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Abstract

In a computer animation workflow, an animator has to plot keyframes and adjust the in-between

frames to create or edit a motion, and motion is represented by keyframes and in-between

frames that connect the keyframes. The sequence of significant poses, represented by keyframes,

determine the general motion in animations. In-between frames are generated by interpolation

strategies using keyframes, such as linear interpolation or parametric curve equation, where the

starting and ending point of the parametric curve set to the two adjacent selected keyframes.

In-between frames determine the trajectory and the speed an animated object moves from one

keyframe to the next. Since in-between frames are reconstructed from adjacent keyframes, the

selection of keyframes influences the reconstruction distance of reconstructed in-betweens, and

a great amount of research has focused on strategies to select appropriate keyframes.

Dance motion and dance music are often closely related to each other. Choreography is

generally designed to synchronize with the rhythm of the music, and various deep learning

research topics have been proposed to choreograph dance motion from dance music. In this

thesis, inspired by previous research studying the close relation between dance and music, I use

musical features of dance music to select keyframes and examine the reconstruction distance of
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the generated dance motion based on the AIST++ dataset. I hypothesize that the close relation

between dance and music may improve reconstruction of dance motions. Three experiments

are designed to evaluate the effect of musical features when reconstructing dance motions.

The first experiment is used as a baseline and does not use musical features in both keyframe

selection and in-between reconstructions. Keyframes are selected evenly over the measure. The

in-between dance motions are reconstructed with linear interpolation and Bézier curve fitting.

The second experiment uses musical features (onset peak positions) to select keyframes.

In-between frames are reconstructed in the same way as in the first experiment, using

interpolations.

In the third experiment, keyframes are selected in the same way as in the first experiment

(evenly), and neural network models are used to reconstruct in-between frames using musical

features, such as Mel-frequency cepstral coefficients, onset strength, and onset peak positions.

Two evaluation metrics are used for assessing the reconstructed dance motion: The Frechet

Inception Distance and mean Euclidean distance between the reconstructed dance and the real

dance is used to evaluate the reconstruction distance. These metrics answer the question of

whether injecting musical features improves the distance of the reconstructed dance motion.

Experimental results suggest that when using fewer keyframes, strategies to select keyframes

and reconstruct in-between frames using dance music improve the distance of reconstructed

dances.
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Résumé

Dans un flux de travail d’animation par ordinateur, un animateur doit tracer des images clés

et ajuster les images intermédiaires pour créer ou modifier un mouvement. Le mouvement est

représenté par des images clés et des images intermédiaires qui relient les images clés. La

séquence de poses significatives, représentée par des images clés, détermine le mouvement

général dans les animations. Les images intermédiaires sont générées par des stratégies

d’interpolation utilisant des images clés, telles que l’interpolation linéaire ou l’équation de

courbe paramétrique, où le point de départ et le point d’arrivée de la courbe paramétrique

sont fixés aux deux images clés adjacentes sélectionnées. Les images intermédiaires

déterminent la trajectoire et la vitesse de déplacement d’un objet animé d’une image clé à

l’autre. Bien qu’elles aient peu d’influence sur le contenu d’un mouvement, elles en influencent

le style. Puisque les images intermédiaires sont reconstruites à partir d’images clés adjacentes,

la sélection des images clés influence la précision de la reconstruction des images

intermédiaires reconstruites, et de nombreuses recherches se sont concentrées sur les stratégies

de sélection d’images clés appropriées.

Les mouvements de danse et la musique de danse sont souvent étroitement liés les uns aux
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autres. La chorégraphie est généralement conçue pour être synchronisée avec le rythme de la

musique, et divers sujets de recherche en apprentissage profond ont été proposés pour réaliser

la chorégraphie de mouvements de danse à partir de la musique de danse. Dans cette thèse,

inspirée par des recherches précédentes étudiant la relation étroite entre la danse et la musique,

j’utilise les caractéristiques musicales de la musique de danse pour sélectionner les images clés

et examiner la précision de reconstruction du mouvement de danse généré sur la base du jeu

de données AIST++. J’émets l’hypothèse que la relation étroite entre la danse et la musique

peut améliorer la reconstruction des mouvements de danse. Trois expériences sont conçues pour

évaluer l’effet des caractéristiques musicales lors de la reconstruction des mouvements de danse.

La première expérience est utilisée comme base de référence et n’utilise pas les

caractéristiques musicales dans la sélection des images clés et dans les reconstructions

intermédiaires. Les images clés sont sélectionnées de manière uniforme sur la mesure. Les

mouvements de danse intermédiaires sont reconstruits par interpolation linéaire et ajustement

de la courbe de Bézier.

La deuxième expérience utilise des caractéristiques musicales (positions des pics de onset)

pour sélectionner les images clés. Les images intermédiaires sont reconstruites de la même

manière que dans la première expérience, en utilisant des interpolations.

Dans la troisième expérience, les images clés sont sélectionnées de la même manière que

dans la première expérience (uniformément), et des modèles de réseaux neuronaux sont utilisés

pour reconstruire les images intermédiaires à l’aide de caractéristiques musicales, telles que Mel

fréquence Cepstral Coefficients, l’enveloppe d’attaque et la détection de la position d’attaque.



Résumé v

Deux mesures d’évaluation sont utilisées pour évaluer le mouvement de la danse reconstruite

: La Fréchet Inception Distance et la distance euclidienne moyenne entre la danse reconstruite

et la danse réelle sont utilisées pour évaluer la précision de la reconstruction. Ces mesures

répondent à la question de savoir si l’injection de caractéristiques musicales améliore la précision

du mouvement de danse reconstruit. Les résultats expérimentaux suggèrent que lorsqu’on utilise

moins d’images clés, les stratégies de sélection des images clés et de reconstruction entre les

images en utilisant de la musique de danse améliorent la précision des danses reconstruites.
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Chapter 1

Introduction

In a computer animation workflow, an animator has to plot keyframes and adjust the in-

between frames to create an animation. An animated motion is represented by keyframes and

in-between frames that connect the keyframes. Keyframes represent significant poses. They tell

the story in each shot and provide the overall trajectory of the motion. In-between frames are

generated by interpolation strategies using keyframes, such as linear interpolation or parametric

curve equations, where the starting and ending points of the parametric curve equations are set

to the two adjacent selected keyframes. In-between frames determine the detailed trajectory

and the speed an animated object moves from one keyframe to the next. Though they have

little influence on the overall position of a motion, they impact the style of a motion. For

example, in a gait animation, keyframes decide the content of a gait animation, such as its

overall trajectory, hand poses when each time the character’s feet contact the floor, and the

speed of the gait animation. The in-between frames do not change the content but influence
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the style of a motion, such as walking calm or desperate, lazy or energetic, drunk or frightened

(Williams 2012).

There are a significant amount of research topics focusing on converting animation data

into keyframes and in-between frames. Given motion data, strategies are proposed to select

keyframes, such as designing dance motions or selecting frames in motion data with

significant features as keyframes, and using clustering algorithms to cluster frames with

significant features and select the most significant frames as keyframes from each cluster.

After selecting keyframes, in-between frames are derived using selected keyframes, and

strategies such as linear interpolation and parametric curve equation are used to derive

in-between frames. However, in these research topics, dance motion is regarded as one of the

tested motion data, such as walk, run, and jump motion. While the close relation between

dance motion and dance music has been investigated in previous research (Solberg and

Jensenius 2019), this relation was not considered in strategies to select keyframes and

in-betweens from dance motion. Consequently, in this thesis, I will use musical features to

select keyframes and reconstruct in-betweens and examine the reconstruction distance of the

generated dance motion. I hypothesize that the close relation between dance and music may

improve reconstruction of dance motion, and I will use metrics for measuring the

reconstruction distance of the generated dance motion to evaluate two main strategies to

select keyframes and in-betweens: using motion only and using musical features and motion.
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1.1 Thesis Organization

This thesis is organized into five chapters. Chapter 1 is the introduction, which gives this

thesis’s background and research objective. Chapter 2 is the Literature Overview that

provides backgrounds and previous research in representing motion, neural networks,

extracting keyframes and reconstructing in-betweens, analyzing dance motion and dance

music, metrics evaluating dance motion, and dance datasets. Chapter 3 is the Methods that

explains the experimental workflows to extract keyframes and reconstruct in-betweens frames

using different features: musical features and dance motion. The reconstructed dances are

evaluated with metrics to examine their reconstruction distance. Chapter 4, the Experiments

section, presents and discusses the experimental results. Finally, Chapter 5 is the Conclusion

that discusses and concludes the experimental results and provides an overview of possible

future work.
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Chapter 2

Background

This chapter presents information about analyzing dance motion and music, generating dance

motion from music, neural networks, and reconstructing motion using keyframes and

in-betweens. Section 2.1 provides an overview of capturing motion in photographs and motion

capture systems. Section 2.2 presents general overview of representing a 3D motion in

computer animation. Section 2.3 introduces neural networks and their application. Section

2.4 presents existing works on converting a motion into keyframes and in-betweens. Section

2.5 and Section 2.6 present works on analyzing dance motion and music. Section 2.7 continues

its previous sections and introduces works on generating dance motion from dance music.

Section 2.8 presents metrics to evaluate generated dances. Finally, Section 2.9 introduces

dance datasets that are essential for machine learning models to generate dances.
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2.1 Understanding Human Motion

This section discusses techniques to sample and record the motion of human, animal, or moving

objects. The history of capturing motion in photographs is discussed in Section 2.1.1, and the

introduction of motion capture systems is presented in Section 2.1.2

2.1.1 Motion in Photograph

Eadweard Muybridge (1830–1904) was known for capturing a galloping horse by a sequence of

photographs and proving that a galloping horse had no feet touching the ground (Kitagawa and

Windsor 2008). In 1879, Eadweard Muybridge invented the zooproxiscope, one of the earliest

devices to display motion with sequential images. Etienne-Jules Marey (1830–1904) developed

chronophotography, a high-speed photographic technique to capture successive frames on a

single photographic plate (Blake and Shiffrar 2007). He filmed a person walking while wearing

a black suit with markers attached to joints and lines connecting joints. The result was a

photograph of the changing positions of the joints. In the 1970s, Gunnar Johansson devised

the point-light display, where the motion was represented by positions of bright spots attached

to the subject (Jensenius 2013). Taps made of reflective materials were attached to the subject’s

joints, and lights hitting the taps were reflected back and recorded by cameras.

2.1.2 Motion Capture System

Motion capture (mocap) systems commonly used today are able to capture the movements

of a subject. They are categorized as optical mocap systems and non-optical mocap systems.
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The optical mocap system describes motions as consecutive 3-d positions of the markers and

requires subjects to wear either reflective or light-emitting markers. Markers are often attached

to joints. A multi-camera system is in charge of capturing the lights either reflected or emitted

by markers, and the 3-d position of each joint is reconstructed from frames captured by the

multi-camera system (Zhu and Li 2016).

The inertial mocap system is one of the non-optical mocap systems. Subjects wear inertial

measurement units (IMUs), typically including gyroscopes, accelerometers, and magnetometers.

Data from IMUs are used to determine the position and movement of each IMU sensor. Cameras

are not required in an inertial mocap system, and the occlusion problem in the optical mocap

system is eliminated (Yahya et al. 2019).

2.2 Representing Human Motion

This section contains background knowledge for representing human motion in computer

animation. Section 2.2.1 discusses 3-d coordinate systems to represent a 3-d point in

computer animation. Section 2.2.2 explains the transformation matrix, which is the way to

represent a point’s 3-d position in a coordinate system. Section 2.2.3 explains different

representations to represent a rotation in a 3-d coordinate system. Section 2.2.4 describes the

tree-like data structure representing a humanoid motion. Finally, Section 2.2.5 describes

methods to reconstruct 3-d positions of a humanoid motion, including multi-camera systems,

camera parameters, and joint detection techniques.
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2.2.1 World Coordinate and Local Coordinate

In computer graphics, when a point is represented as its 3-d coordinates, a canonical

coordinate system, which is referred to as the world coordinate system (Shirley, Ashikhmin,

and Marschner 2009) or global coordinate system, needs to be defined in order to represent the

3-d coordinates. Its origin can be defined at an arbitrary position, and for an object, its

transformation, consisting of translation, rotation, and scaling, is defined relative to the

origin. Coordinate systems can be added to the world coordinate and represented as their

transformation in the world coordinate. Additional coordinate systems are referred to as local

coordinate systems, and with a local coordinate system, instead of being represented as the

transformation in the world coordinate, an object could be represented as the transformation

in a local coordinate system (Salomon 2006). Multiple local coordinate systems can be

chained together to form a hierarchical structure. Considering a hierarchical structure that

contains multiple objects, the 3-d positions of objects are represented as transformations with

respect to chained local coordinate systems of the hierarchical structure. By doing this, one

can change the transformation of the top-most coordinate system in the structure to move the

whole hierarchical structure while keeping the relative object positions.

2.2.2 Transformation Matrix

A 3-d transformation of an object or coordinate system represents a series of operations: moving

the object to a location, scaling the object, and rotating the object (Shirley, Ashikhmin, and

Marschner 2009, Chapter 6). These operations are represented by a 4×4 transformation matrix,
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which consists of an upper-left 3 × 3 rotation matrix, an upper-right 1 × 3 translation matrix,

and a lower 1× 4 matrix. The transformation matrix transforms a point or vector in 3-d space,

and a point or vector in 3-d space is represented as a 4-d vector. The last element of the 4-d

vector is set to 1 to represent a point and 0 to represent a vector. Given a 4-d transformation

matrix M ∈ R4×4 and a point or vector x ∈ R4×1, a new point or vector y ∈ R4×1 transformed

from x using the transformation matrix M is computed by matrix multiplication y = Mx

(Bloomenthal and Rokne 1994, Bellekens et al. 2014).

2.2.3 Rotation Representation

Even though a transformation matrix uses a 3x3 rotation matrix to represent the rotation of

an object, the rotation can be represented in different ways, such as Euler-angle

representation, axis-angle representation, or Quaternion. These representations can be

converted to 3x3 rotation matrices to form a transformation matrix. Each representation is

briefly introduced in this section. For detailed mathematical proof of conversion to rotation

matrix, please refer to Sarabandi and Thomas (2019), Diebel (2006), and Navaza (1990).

Euler-angle representation

Euler-angle representation defines rotation as three rotation angles regarding to x, y, and z axis.

The mathematical representation of rotating θ angle regarding to x, y, and z axis is represented

in Equation 2.1, 2.2, 2.3, respectively, and the rotation matrix R is represented by a series of

matrix multiplication of three matrices in Equation 2.4 (Foley et al. 1996, Chapter 11).
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Rx(θ) =



1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)


(2.1)

Rz(θ) =



cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)


(2.2)

Rz(θ) =



cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1


(2.3)

R(θ) = Rx(θ)Ry(θ)Rz(θ) (2.4)

Axis-angle representation

A rotation in 3-d space can be represented by rotating an angle concerning a rotation axis

(Foley et al. 1996, Chapter 11). This is referred to as the axis-angle representation. A rotation



2. Background 10

represented in axis-angle representation is stored as a 3-d vector, where the rotation axis is the

stored vector, and the norm of the vector is the rotation angle.

Quaternion

Quaternion is a four-parameter vector representing a rotation (Shepperd 1978). A quaternion q

is composed of a 3-d vector v and a scalar s as q = [s; v]. Operations for quaternions are defined,

such as adding two quaternions, multiplying a vector and a quaternion, and inversing quaternion

(Shirley, Ashikhmin, and Marschner 2009). A 4-d quaternion can represent the rotation of

degree θ around an axis represented by a vector n, and it is formulized as q = [cos( θ2), nsin( θ2)].

When rotating a point p in its quaternion representation qp = [0,p], using the quaternion q

defined eariler, the quaternion of the rotated point q′p is calculated by q′p = qqpq
−1 (Shirley,

Ashikhmin, and Marschner 2009, Chapter 16).

2.2.4 Skeleton

In computer animation, a humanoid motion is often represented by a skeleton (Shirley,

Ashikhmin, and Marschner 2009, Chapter 16), as shown in Figure 2.1, which is a tree

representing the structure of the humanoid skeleton. In the tree structure, the root represents

the whole character’s 3-d transformation in the world coordinate, and nodes represent joints

in body parts, such as ankles, wrists, and elbows, and edges represent bones, such as upper

arms and lower arms. The transformation of each node, which explains its rotation,

translation, and scale, is relative to the local coordinate system centered at its parent node.
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For a node containing child nodes, its transformation also defines a new coordinate system

centered at the node, and for each child node, the new coordinate system serves as the local

coordinate system centered at its parent node. By doing so, a skeleton is parameterized by

chained transformations of each node relative to its parent node.

The transformation of each node in the world coordinate system is computed by Forward

Kinematics (Kucuk and Bingul 2006). Forward Kinematics tracks down all the parent nodes

until the target node and keeps their transformation matrices. Then it sequentially applies

tracked transformation matrices to convert the target node’s transformation from its local

coordinate system to the world coordinate system (Shirley, Ashikhmin, and Marschner 2009,

Chapter 16).

2.2.5 Detecting Joint Positions

This section introduces methods to reconstruct 3-d joint positions in a humanoid skeleton

described in Section 2.2.4, which is important for representing a dance motion in terms of

the 3-d positions of each joint. For an image containing people, the 2-d joint positions of the

person, represented as the x and y coordinate in the image, can be detected using 2-d pose

estimators (Cao et al. 2017, Rogez, Weinzaepfel, and Schmid 2019, Newell, Yang, and Deng

2016). The 3-d joint positions of a subject can be reconstructed using 2-d pose estimators and

a multi-camera system. A multi-camera system is an arrangement of a set of cameras filming

the same location (Olagoke, Ibrahim, and Teoh 2020), and for detecting 3-d joint positions,

the camera parameters of each camera need to be reconstructed. Camera parameters describe
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Figure 2.1: (Left, Middle) A hierarchy of humanoid skeleton (Shirley, Ashikhmin, and
Marschner 2009, Chapter 16). (Right) A humanoid skeleton represented with a tree structure.

the transformation matrix of a camera in the world coordinate system and how a 3-d point is

projected to its 2-d position in the image filmed by the camera. Several research topics have

been proposed working on reconstructing camera parameters of a multi-camera system (Triggs

et al. 1999, Zhang 2000). For detailed review on reconstructing camera parameters, please

refer to Li et al. (2013) and Remondino and Fraser (2006). After reconstructing the camera

parameters of each camera in a multi-camera system, a 2-d pose detector is used to detect 2-d

joint positions in the image filmed by each camera. The 3-d joint positions can be reconstructed

using the reconstructed camera parameters and the detected 2-d joint positions in each camera.
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For details regarding the reconstruction process, please refer to Frahm, Köser, and Koch (2004).

2.3 Neural Network

This section gives an overview of neural networks and their applications. Section 2.3.1

introduces the history and basic knowledge about neural networks; Section 2.3.2 discusses the

application of the convolution neural network; Section 2.3.3 introduces the recurrent neural

network and its application; finally, Section 2.3.4 describes the Transformer model, its

difference with the convolution neural network and recurrent neural network, and its

application.

2.3.1 Introduction

With the recent development of computational resources, neural network models have become

tools for academic research, and they brought benefits to research related to Computer Vision,

Natural Language Processing, Audio, and Music. The most common form of deep learning is

supervised learning (LeCun, Bengio, and Hinton 2015). In supervised learning, a set of data

is manually annotated with ground-truth labels, and a deep neural network is trained to take

data as input and map the input data to its correct label. Annotated data is split into three

sets: training set, validation set, and testing set. During the training time, a deep learning

model learns to map from input to its manually annotated label using the training set. The

validation set is used to evaluate the performance of the model and tune parameters during

the training process. The model with the best performance evaluated with the validation set is
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selected as the trained neural network. Finally, after finishing training and selecting the neural

network with the best performance, the testing set is used to evaluate the performance of the

trained neural network (Yamashita et al. 2018).

A neural network model consists of internal trainable parameters and hyperparameters.

Trainable parameters are often referred to as “weights,” and they allow the neural network

model to map an input to its label. Hyperparameters refer to parameters needed to be decided

before the training process starts. During the training process, training data are sent to a neural

network model, and their labels are predicted with weights. A loss function is used to measure

the error between the predicted label and the annotated label, and optimization techniques,

such as Gradient Descent, are used to update weights such that the error is minimized during

the next prediction (Yamashita et al. 2018, LeCun, Bengio, and Hinton 2015).

The history of neural networks increased in the 1980s (Yoo 2015). However, it reached

a significant amount of progress with improving computational resources. AlexNet, VGG,

googLeNet, and Resnet are well-known neural network models in image classification tasks

(Minaee et al. 2021). In these neural network models, images are sent to the neural network

and processed with kernels that slide through the entire image and compute an output in each

location. Kernels are the trainable weights in these neural network architectures, and a neural

network may consist of multiple layers, each containing multiple kernels. Neural networks using

this architecture are referred to as convolution neural networks (CNN) (Yamashita et al. 2018).
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2.3.2 Convolution Neural Network

Other than image classification, convolution neural networks have multiple applications, such

as object detection (Ren et al. 2015, He et al. 2017, Redmon et al. 2016, He et al. 2015), where

given an input image, a convolution neural network recognizes objects’ label and mark their

bounding boxes (Li et al. 2021b), and image segmentation (Zhao et al. 2017, Badrinarayanan,

Kendall, and Cipolla 2017, Ronneberger, Fischer, and Brox 2015), where a neural network

divides an input image into different regions and predicts one label for each region. Besides

images, convolution neural network can process different data, such as 1-d CNN that process

audio in time-domain representation (Abdoli, Cardinal, and Koerich 2019, Li et al. 2019), 2-d

CNN processing audio in time-frequency representation (Huzaifah 2017, Donahue, McAuley,

and Puckette 2019, Xie et al. 2019), and 3-d CNN processing video (Huang, Guo, and Gao

2020, Qiu, Yao, and Mei 2017, Yan et al. 2019).

2.3.3 Recursive Neural Network

Different from convolution neural networks, which cannot deal with temporal states behind

the input data, recursive neural network (RNN) contains cyclic connections, and the internal

states, represented as trainable weights, are updated using the cyclic connection (Yu

et al. 2019). Because of the cyclic connection and internal states, RNN is adequate for

modeling temporal information and processing data with variable input length. With this

characteristic, the application of RNN is mainly in natural language processing, including text

semantic classification (Dong et al. 2014), machine translation (Cho et al. 2014), and
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generating dialogue (Tran and Nguyen 2017). Other than natural language processing, RNN

can be used to process video, such as action recognition (Zhao, Ali, and Van der Smagt 2017,

Ullah et al. 2017) and pose detection (Luo et al. 2018). It is also used to process audio, such

as speech recognition (Zhang et al. 2016, Irie et al. 2016) and music-to-score alignment

(Kwon, Jeong, and Nam 2017).

2.3.4 Transformer

Besides CNN and RNN, the Transformer model has significantly impacted the deep learning

research recently (Tay et al. 2022). Compared to CNN, a Transformer model can capture the

long-range dependency using the self-attention mechanism (Han et al. 2022). Though RNN can

keep the long-range dependencies of training data, it relies on the sequential cyclic connection,

which disables parallel computing. As a result, data must be computed sequentially, which

increases its training time (Vaswani et al. 2017). Transformers fix these issues by entirely

relying on self-attention layers, where each sample is connected to the other sample to compute

attention weights, which determine the degree of attention between each pair. By doing so, it

allows the model to learn the long-range dependency. Besides, the computation of self-attention

is not recursive, and it can be computed parallelly using matrix multiplication, which speeds

up the training process (Han et al. 2022). Moreover, there are multiple self-attention layers in

the transformer model, which allow the model to learn multiple attention weights. This implies

that each sample can have different weights to describe multiple degrees of attention regarding

other samples. A self-attention layer is computed from three inputs: Key, Query, and Value,
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and they serve as the input to the transformer model.

Besides the self-attention layers, a Transformer model also consists of an encoder and decoder

models (Tay et al. 2022). There are three variations of a Transformer model: encoder-only,

decode-only, and encoder-decoder. The encoder and decoder both include multi-head self-

attention layers computed with a query, key, and value as inputs. In the encoder model, training

data is used as the query, key, and value to the multi-head self-attention layers. However, the

output of the encoder model is sent as the key and value to the decoder model. A multi-head

self-attention layer in the decoder module is computed using the output of the encoder as the

key and value, and the input to the decoder as the query. These three variations can be used

for different cases. For example, the encoder-only model can be used for classification tasks, the

decoder-only model can be used for language modeling tasks, and the encoder-decoder model

can be used for machine translation tasks (Tay et al. 2022).

The Transformer model was first proposed in Natural Language Processing (NLP) for

machine translation tasks by Vaswani et al. (2017). It surpassed other models, such as

recursive neural networks or convolutional neural networks. Transformer models can be

pre-trained on generic tasks and fine-tuned to process downstream tasks (Wolf et al. 2020).

Various research has worked on strategies to pre-train the Transformer model, including

BERT (Devlin et al. 2019), where the model was pre-trained to predict masked words and

fine-tuned on downstream tasks. Liu et al. (2019) conducted extensive research on

hyperparameters and the procedures when training BERT, and by tuning the training

procedures, it reached better results in NLP challenges such as language understanding,
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Question-Answering system, and reading comprehension.

Transformer models are adapted to process data such as images, audio, and video.

Dosovitskiy et al. (2021) adapted Transformer to achieve image recognition tasks, where the

input image was split into patches and sent to the Transformer to recognize the content of the

image. Ramesh et al. (2021) used Transformer models for text-to-image generation. A

Transformer model was trained to model text and image tokens as a single stream of data,

and given an input text, an image was generated using the modeled relation. Girdhar

et al. (2019) proposed utilizing Transformer models to recognize and localize human actions.

The action of human action depends on the spatial and temporal context of a video. For

example, recognizing the action of “listening to someone” requires the prediction of another

person, and recognizing the action of “watching someone” requires the understanding that the

person of interest is not just staring into the distance. The model was trained to understand

the spatial and temporal context of a video to recognize actions. Sun et al. (2019) proposed

using contrastive learning to train the Transformer model for learning video representation,

which could be fine-tuned to benefit downstream tasks such as video segmentation. In

contrastive learning, the deep learning model is encouraged to minimize and maximize the

distance between similar samples and different samples in a feature space. Lin, Wang, and Liu

(2021) employed Transformer models to reconstruct 3D human pose and mesh from images.

Dong, Xu, and Xu (2018) proposed Speech-Transformer to replace the recurrent neural

network for speech recognition. However, as the Transformer model was originally proposed in

NLP, the attention mechanism is designed to process 1-d temporal dependencies. To tackle
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the 2-d time-frequency representation, a 2-d attention mechanism was proposed to compute

attention for both temporal and spectral information. Hawthorne et al. (2021) proposed using

Transformer models for piano transcription, where the input is the spectrogram of a music

piece, and the model predicted events similar to MIDI-like vocabulary to describe the pitch,

velocity, and time of each note.

2.4 Representing Motion in Keyframes and In-betweens

Representing a motion as keyframes and in-betweens originates from a traditional 2-d

animation technique. Thomas, Johnston, and Thomas (1995) proposed twelve principles of

animation. Among them, “Straight Ahead Action and Pose to Pose” is a principle regarding

animation workflow. “Straight Ahead Action” means that an animator draws poses following

their chronological order; “Pose to Pose” implies that an animator first draws key poses and

fills up the in-between poses. The keyframe and in-between representation is applied to

computer animation, where this representation allows users to edit a motion (Roberts 2018)

and compress a motion, which represents a motion as keyframes and in-between frames to

reduce the size of motion data and reach a more compact representation of motion data

(Zhang et al. 2013). This section introduces strategies to select keyframes (Section 2.4.1) and

reconstruct in-between frames (Section 2.4.2) from a motion.
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2.4.1 Selecting Keyframes

Keyframes are representative poses to summarize the content of a motion (Miura et al. 2014),

and they can be used to allow users efficiently browse and retrieve motion data (Lim and

Thalmann 2001, Liu, Hao, and Zhao 2013). Miura et al. (2014) selected keyframes as frames

whose poses are representative of describing the elementary structure of a motion, and the

selected keyframes were used to summarize the content of motions. This allowed users to

easily browse, edit, and reuse motions. The speed of each joint was calculated and filtered

with a low-pass filter, frames whose speed was a local minimum were clustered, and frames

whose speed was representative in each cluster were selected as keyframes. To efficiently store

and browse motion data, Lim and Thalmann (2001) converted motion data into keyframes

and in-between representation. They treated motion data as curves and recursively selected

keyframes until the maximum distance between the original curve and the reconstructed curve

was lower than a threshold. In each iteration, the curve was reconstructed by a straight line

between selected keyframes. The frame that had a maximum distance between its value on

the original curve and the reconstructed curve was selected as the new keyframe in the next

iteration. Bulut and Capin (2007) converted motion data into keyframes and in-betweens

to efficiently store a large amount of motion data. To select keyframes, they calculated the

saliency value of each frame. For each frame on a motion curve, the saliency value was defined

as the difference between two values calculated by a Gaussian weight filter centered at the

frame but with a different standard deviation. Frames with higher saliency values were selected

as candidate keyframes, and a clustering algorithm was applied to select the representative
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keyframes from candidate keyframes to represent the motion. Halit and Capin (2011) applied

Principle Component Analysis before calculating saliency values and used a clustering algorithm

to select keyframes. In Togawa and Okuda (2005), the keyframe and in-between representation

were used to convert motion data into a compact representation to retrieve required motion

data from a large amount of motion data. All frames were selected as keyframes at first.

A cost function was designed to evaluate the distortion caused by removing a keyframe. In

each iteration, the keyframe with the least cost function value was removed. Keyframes were

iteratively removed until the number of remaining keyframes matched the number of keyframes

arbitrarily determined by users. To compress, store, browse and retrieve motion capture data,

Liu, Hao, and Zhao (2013) employed a genetic algorithm to find a set of keyframes that, with the

in-between motion being reconstructed from selected keyframes, reached the low reconstruction

error with respect to joint positions and velocities. In order to browse and edit motion capture

data, Huang et al. (2005) treated keyframe selection as a matrix factorization problem, and a

sequence of motion represented as the 3-d positions of each joint is represented as a motion

matrix. The motion matrix was computed by multiplying a keyframe matrix and a frame

matrix, where the keyframe matrix was updated iteratively. In each round, a frame located

furthest away from the reconstructed motion was selected as the new keyframe in the next

round.

Roberts (2018) aimed to convert motion capture data into keyframes and in-betweens,

which allows users to edit them. In the proposed method, keyframes were selected using

dynamic programming, which requires iterative computation. The objective was to provide a
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fast keyframe selection technique for computer animation software and, by converting a

motion into keyframes and in-between frames, allow users to edit the motion. In this strategy,

a sequence of dance motion with T frames in Euler-angle representation is a multidimensional

curve with T points, and a partial graph of K points is referred to as the sub-sequence D

containing the first K frames. A keyframe matrix records optimized selected keyframes in

each partial graph, and a cost matrix saves the cost of selected keyframes in each partial

graph. Before the iterative computation starts, costs for all combinations of selecting three

keyframes from each subgraph are computed and saved to the cost matrix. The selection with

the least cost in each partial graph is selected and recorded inside the keyframe matrix and

cost matrix. After selecting three keyframes in each partial graph, the number of selected

keyframes, starting from four, is increased by one in each iteration. In each iteration, the

selected keyframes and their cost is optimized for all partial graphs, and the keyframe matrix

and cost matrix are updated accordingly. The iterative process stops when the number of

selected keyframes reaches the number of points inside the motion curve.

The sub-optimal structure of the subgraph reduces the computation cost to find the best

keyframes, which reach the least cost in each subgraph. Reducing computation costs is

important so as not to block the computer animation software. The possible costs of selecting

k keyframes from a subgraph i of length t can be reduced to a collection of costs of selecting

k − 1 keyframes from subgraph j being shorter than t, plus the value of a cost function the

calculated the cost when using j as the sub-optimal structure. Among all possible costs, the

subgraph j with the lease cost is selected, and the selected k keyframes in subgraph i are the
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selected k − 1 keyframes inside subgraph j with the ending frame of subgraph j selected as

the new keyframe. There are multiple ways to define a cost function. In Roberts (2018), the

cost function takes three inputs, the ending point of subgraph i, the ending point of subgraph

j, and the segment of subgraph i starting from subgraph j’s ending point. The return value is

calculated as the maximum distance between the value of a point on the segment and its

value reconstructed by a curve linearly interpolated between two ending points.

2.4.2 Reconstructing In-betweens

The goal of reconstructing in-betweens is to use two adjacent keyframes to derive their

intermediate frames. In such a case, intermediate frames can be represented by two

keyframes, a reconstruction method to derive intermediate frames, and parameters for the

reconstruction method to derive intermediate frames. This section introduces three methods

to reconstruct in-between frames: linear interpolation, Bézier curve fitting, which are the two

common methods for generating in-between frames in computer animation, and generating

in-between frames with Transformer models.

For a motion represented as a series of poses, with each pose represented using a skeleton, the

in-between frames can be reconstructed from performing linear interpolation using the adjacent

keyframes (Lim and Thalmann 2001, Togawa and Okuda 2005, Liu, Hao, and Zhao 2013). For

two keyframes kft1 and kft2 at timesteps t1 and t2, an in-between frames int at time t, where
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t1 ≤ t ≤ t2, is reconstructed by:

int = kft1 ∗ u(t) + kft2 ∗ (1− u(t)), u(t) = t2 − t
t2 − t1

(2.5)

Poses represented in rotation angles are converted into Quaternions. For two keyframes

qt1 and qt2 whose rotation of each joint is in quaternion representation, the quaternion of a in-

between frame t can be represented by performing the Quaternion spherical linear interpolation

(SLERP), which is equivalent to performing a spherical interpolation, as shown in Equation 2.6

(Shoemake 1985):

SLERP (qt1, qt2, t) = qt1(q−1
t1 qt2)t (2.6)

Besides linear interpolation and quaternion SLERP, in-between frames can be represented as a

Bézier curve of degree d having the form (Faraway, Reed, and Wang 2007, Shoemake 1985):

C(t) =
d∑
i=0

PiB
d
i (t), t ∈ [0, 1] (2.7)

where Bd
i is the Bernstein polynomials of degree represented as Bd

i =
(
d
i

)
ti(1 − t)d−i. To

represent a segment of in-between frames with a cubic bezier curve (d=3), the start and end

points, P0 and P3, are set to two adjacent keyframes. The cubic Bézier curve will start and

end at P0 and P3. Interior control points, P1 and P2, determine the shape of the cubic Bézier

curve. Various optimization methods can be adapted to find the best interior control points to
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reconstruct the in-between motion curve. Khan (2016) defined a cost function as the squared

L2 distance between the original motion curve and a quadratic Bézier curve (d=2). The interior

control point, P1 , is updated iteratively by solving the partial differential of the cost function

with respect to P1.

Other than linear interpolation and Bézier curve fitting, in Li et al. (2022), a Transformer

model was used to predict parameters to control parametric curve equations to reconstruct

in-betweens. Li et al. (2022) focused on generating dance motion in keyframe and in-between

representation, where in-between frames were generated by Kochanek-Bartels splines

(Kochanek and Bartels 1984), and Transformer models were used to predict parameters to

control Kochanek-Bartels splines.

2.5 Dance Movement Analysis

Since this thesis specifically focuses on converting dance motion into keyframes and in-betweens,

which is related to analyzing dance movement, this section discusses approaches for dance

movement analysis and provides insight into techniques to analyze a dance movement. In

dance movement analysis, a dance movement is represented as a sequence of poses, and dance

movement analysis tries to find repeating patterns in each sequence or find the relation between

sequences. Dance movement analysis has wide applications, including assisting beginners in

learning new dances (Yang et al. 2013, Aristidou et al. 2015) and analyzing the cross-cultural

differences in dance motion (Tommi and Thompson 2011).

Tang et al. (2008) proposed using a self-similarity matrix to find repeating patterns in a
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motion, and the similarity between the two poses was measured by the differences between 3-d

coordinates of each joint. Poses with high similarities are shown as lines on the self-similarity.

Using Dynamic Time Warping (DTW) algorithm, a segment of poses whose diagonal line ranged

from top-right to bottom-left was extracted as a repeating pattern. Extracted patterns were

clustered such that patterns within a cluster share a similar starting or ending time. Note that

an extracted pattern could consist of multiple repeating sub-patterns. Therefore, repeating sub-

patterns of each clustered diagonal pattern were further extracted by computing the correlation

coefficient with respect to the extracted pattern and the lagged pattern. By changing the

lagged time and calculating the correlation coefficient, a function of lagged time was computed,

and a peak value at a lagged time l implied that the poses of the extracted pattern were

close to the extracted pattern lagged by time l. Therefore, periodicity was detected using

the computed function, and sub-patterns were extracted using the detected periodicity. Yang

et al. (2013) presented a system to teach beginners learning dance. First, dance motion is

analyzed and decomposed into repeating and non-repeating basic patterns using the algorithm

proposed by Tang et al. (2008). Then, decomposed patterns were converted into a directed

acyclic graph (DAG), which contained the pre-requisite relation between dance patterns and

allowed beginners to learn a dance starting from the most basic dance pattern. Brick and Boker

(2011) suggested using correlation to examine the similarity inside a dance motion. Following

the equation proposed in Cohen, West, and Aiken (2014), the correlation was calculated from

a sequence of dance poses and a lagged copy of itself. For each lagged time, a correlation

score was calculated, and a function of lagged time was computed by changing the lagged
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time. A high correlation value at lagged time l implied that the dance motion was similar to

itself lagged by time l, and the periodicity in the dance motion could be found by extracting

the lagged value with the highest correlation values. For a long dance sequence consisting of

many dance poses, a window function was used to crop a sub-sequence of dance poses. After

calculating the correlation function using the sub-sequence, the window function was moved

to crop the next sub-sequence. The step was repeated until the window function reached the

end of the dance sequence. By doing so, a function of lagged time and time was computed,

and the changes in periodicity regarding time could be observed from the computed function.

Tommi and Thompson (2011) used the similar correlation function, but instead of calculating

the correlation of a dance sequence with respect to itself, it calculated the correlation between

two dances performed by different dancers, and it represented to what degree two dancers dance

similarly.

Instead of using the 3-d positions of each joint as features and evaluating the motion

similarity using correlation functions, Aristidou et al. (2015) designed a set of features that

reflects four components in Laban Movement Analysis (LMA) (Groff 1995), a method to

describe and analyze a dance in four components proposed by dance theorist Rudolf von

Laban. Various features were designed to reflect each component. For example, the Effort

component describes the dynamic of a dance movement, and features describing it were

extracted from a dance motion by calculating the velocity and acceleration of the root joint.

Given a pair of dances, features to reflect four components in LMA were extracted

individually from each dance. Then, for features describing each component, Pearson’s linear



2. Background 28

correlation coefficient (Benesty et al. 2009) was computed to evaluate their similarity, and the

overall similarity was computed from the weighted sum of the correlation coefficient of four

components.

2.6 Dance Music Analysis

Dance motion and dance music are often closely related to each other. Diverse research topics

have been working on investigating the relation between dance motion and dance music. Fitch

(2016) suggested that the groove of a dance music piece affects its capacity to fit in a certain

type of dance, and the groove is affected by musical features such as upbeats and syncopations.

Toiviainen, Luck, and Thompson (2010) studied how movements aligned with the accompanied

music’s metrical levels. Participants were recruited and instructed to move to the motion freely,

and a motion capture system was used to capture participants’ motion. Captured motion clips

were analyzed and evaluated in terms of synchronization with the music. The result showed

that different body parts tend to be aligned with certain metrical levels. For example, the arm

movement was aligned with the tactus level, and the upper torso movement was aligned with

the period of two or four beats. Krumhansl and Schenck (1997) conducted a subjective test to

examine the structural and expressive mapping between dance and music. Participants were

asked to watch dance videos and listen to dance music and label the level of section ends, new

ideas, tension, and emotion under three conditions: music only, dance only, and both music

and dance. The result suggested that music and dance shared a similar temporal organization,

and the position labels for music and dance videos were aligned temporally.
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Besides, the relation between human motion and the tempo and rhythm of the

accompanying music are studies in Van Dyck et al. (2012), Solberg and Jensenius (2017),

Leman et al. (2013), and Van Dyck et al. (2015). The results suggest that tempo and rhythm

are related to motion. As a result, music source separation strategies to extract rhythmic

components from dance music are discussed in Section 2.6.1. Music information retrieval

techniques to extract rhythmic features and timbre from dance music are discussed in Section

2.6.2. Lastly, research topics focusing on analyzing dance music are introduced in Section

2.6.3 to provide insight into strategies to analyze dance music.

2.6.1 Music Source Separation

Diverse research topics focus on music source separation, a task to decompose a music piece

into components. Each stem consists of instruments, and instruments of different stems are

recorded individually and mixed together to form a song. For example, a music piece can be

separated into four stems: drums stem, vocals stem, bass stem, and the stem for any other

accompanying instruments (others stem). Non-negative matrix factorization (NMF ) is an

unsupervised blind source separation technique to decompose a music signal into components

and their activation curves, where components correspond to stems, and activation curves

indicate whether stems contribute to the audio sample of the music signal. In NMF , a music

signal V represented in a 2-d time-frequency representation is represented by the

multiplication of two non-negative matrices: the template matrix W and the activation

matrix H. In other words, V = WH (Müller 2015, Smaragdis et al. 2014), where separated
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components are represented as column vectors of W , and a column vector contains the

spectral features of a component. Their activation curves, regarding whether components

contribute to the music signal in each timestep, are represented as the row vectors of H. By

specifying a distance function to measure the quality of the approximated music signal V , W

and H can be solved by numeric optimization techniques (Müller 2015). With the solved

template matrix W and activation matrix H, a stem can be reconstructed from the column

vector of W , representing the spectral features of the stem, and its corresponding activation

curve in H.

In NMF , a component is represented as a column vector describing its spectral feature

and does not contain temporal information. Non-negative Matrix Factor Deconvolution

(NMFD) (Smaragdis 2004) presented an extension of NMF where components include

temporal information. As a result, a component, or a stem, is not represented as a 1-d column

vector but a 2-d matrix possessing its temporal and spectral features, and the activation

matrix contains activation curves for each component. This fixes the shortcoming of NMF ,

where the temporal information of a component is discarded (Smaragdis 2004).

Recently, deep neural network models have been used to perform music source separation in

a supervised manner, where the music and sound sources are provided as training data. Uhlich,

Giron, and Mitsufuji (2015) used fully-connected layers to separate a magnitude spectrogram

into multiple magnitude spectrograms. Each of them corresponded to a stem, and Short-time

Fourier transform (STFT) was performed to recover the audio for each stem. Takahashi and

Mitsufuji (2017) split the music source into multi-bands before sending it into the proposed
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neural network to perform source separation. Neural network-based source separation methods

typically separate a magnitude spectrogram into a set of spectrograms, each corresponding to a

separated source. However, the phase of the separated spectrogram is incorrectly reconstructed,

and the quality of the recovered audio is degraded (Kong et al. 2021). Kong et al. 2021

proposed an Unet structure to separate both the magnitude and phase spectrograms from

the input spectrogram. OpenUnmix (Stöter et al. 2019) was based on the bi-directional RNN

model for music source separation proposed by Uhlich et al. (2017). It provides an open-source

implementation of deep-learning-based music source separation to decompose a music piece into

four stems: drums, vocals, bass, and others, where the others stem contains any instruments

excluded from the first three stems.

2.6.2 Extracting Musical Features from Dance Music

Other than music source separation to acquire stems, onset detection is used to detect the

start of musical events that corresponds to a sudden change in the energy of a music signal.

In onset detection algorithms, an onset novelty curve, which is a function of time representing

the sudden increase of energy in a music signal, is computed. A peak detection algorithm is

followed to select peak positions in the onset novelty curve as candidate onset positions. There

are multiple ways to represent an onset novelty curve, and the result of the onset novelty curve

affects the following peak detection algorithm. For example, an energy-based novelty curve

uses a window function centered at a timestep to crop a segment of musical signal and compute

the energy of the cropped musical signal. The window function is shifted until its centered
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timestep reaches the end of the musical signal. Then, the deviation of the novelty function

is calculated to acquire the energy difference in each timestep, and negative differences are

removed. Finally, with the computed function, an arbitrary peak detection algorithm can be

used to detect peak positions as onset positions (Müller 2015). Instead of computing the energy

from the time domain signal, a spectral-based novelty curve first converts a music signal into

a time-frequency representation. The temporal deviation of the time-frequency representation

is computed. The value for a timestep of the spectral-based novelty curve is the summation

of all frequency bins of the deviation at the timestep (Müller 2015). Besides musical features,

Mel-Frequency Cepstral Coefficients (MFCC) are used to represent the timbre of a given music

piece, and it has been used as features in music genre classification task (Baniya, Ghimire, and

Lee 2015, Vishnupriya and Meenakshi 2018).

2.6.3 Dance Music Analysis

Research topics have been working on leveraging musical features to analyze dance music.

Panteli, Bogaards, and Honingh (2014) analyzed the similarity of Electronic Dance Music

(EDM) by extracting the rhythmic stream consisting of instruments dedicated to the

rhythmic pattern of an EDM track. Downbeats were detected to split a rhythmic stream into

measures. Features were extracted from the rhythmic stream to model the characteristics of

the attack phase, the rhythmic pattern in each measure, and the periodicity of the rhythmic

pattern. Subjective tests were conducted where subjects were asked to rate the similarity of

EDM music pieces, and the results were compared with similarity evaluated with extracted
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patterns. Dixon, Pampalk, and Widmer (2003) classified Latin ballroom dance music using

tempo, time signature, and the distribution of periodicities. Kell and Tzanetakis (2013)

investigate the transition of tracks in disk jockey (DJ) mixes in terms of musical features

represented by timbre, key, loudness, and tempo. The features included Spectral Centroid,

Roll-Off, Flux, and MFCC. The transition was quantized by measuring the distance between

features of two ordering tracks. Besides analyzing dance music, there are research topics

working on proposing dance music datasets. Knees et al. (2015) proposed a dataset consisting

of EDM for key detection and tempo estimation. They provided benchmarks by using the

dataset to evaluate key detection and tempo estimation accuracy using commercial products

and academic research. Beauguitte, Duggan, and Kelleher (2016) proposed an annotated Irish

dance music dataset, where the onset time, pitch, and duration of note events of recorded

Irish dance music were labeled.

2.7 Cross-modality Analysis and Generation

Multi-modal perception is essential to capture the richness of real-world sensory data and

environment. There is a long history of cross-modality learning in computer vision. Barnard

et al. (2003) modeled the joint distribution between image and text, and it was able to predict

labels for regions in an input image. Frome et al. (2013) proposed a model to jointly map an

image and its description text into a shared embedding space, and by leveraging the shared

representation, it was able to reach a performance comparable to the state-of-the-art

performance in image classification tasks. Davis and Agrawala (2018) extracted musical beats
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and visual beats from the music and video, where musical beats were extracted using the

onset strength, and visual beats were extracted by analyzing the optical flow of the video.

After acquiring musical beats and motion beats, the video was stretched to align visual beats

with musical beats, and the result was a video with its visual beats synchronized with the

accompanying music. Recently, deep neural networks have been used to learn cross-modality

relations of the input data. Zhao et al. (2018) proposed a neural network to take videos and

the spectrogram of its sound as inputs, and for each pixel, the model predicts a mask to

separate the sound produced by the object located around the pixel’s coordinate. Gao and

Grauman (2019) designed a dataset containing aligned video and audio recorded in stereo and

binaural. A neural network consisting of ResNet and Unet was used to convert stereo audio

into binaural audio. The input video was sent to the ResNet to extract visual features

regarding the sound source’s position. The spectrogram of the stereo audio was passed

through an Unet, where visual features were sent to the middle layer. The outputs were

complex masks, and they were applied to the input spectrogram to get the left and right

channels of the predicted binaural audio. Zhou et al. (2020) proposed using recursive neural

networks to generate talking videos from a facial image and audio. The content of the audio

was identified, and positions of pre-defined facial landmarks were predicted to match with the

identified content. Image warping algorithms or deep-learning-based image-to-image

translation were used to synthesize frames from the predicted facial landmarks and facial

image.

With the possibility of learning cross-modality relation between dance and music, deep
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neural networks are used to analyze and generate dance from the dance music. Lee

et al. (2019) proposed decomposing a dance into basic dance units and leveraging deep

learning models to generate basic dance units from music. A basic dance unit was defined as a

sequence of continuous dance poses whose starting and ending poses were movements that

drastically slowed down. The training process contains two stages. In the first stage, a model

was trained to disentangle the dance units into its initial pose feature and movement feature,

and reconstruct the dance unit back using its two features. A loss function was designed to

encourage the model to discard information related to movement in the initial pose feature

and the pose information in the movement feature. In the second stage, a model was trained

to generate movement features from the input musical features. The musical features

contained MFCC features, the first temporal derivative of MFCC features, and the log-mean

energy. In the testing stage, the generated movement features and initial pose features were

used as the inputs to the trained model in the first training stage to generate dance

movements. Ye et al. (2020) proposed predicting dance units from musical features containing

chromagram, beat, and onset. Predicted dance units were aligned with musical beats, which

resulted in unnatural transitions between adjacent dance units. As a result, a model was

trained to generate smooth transitions between dance units. Chen et al. (2021) employed

CNN and RNN to map musical features and dance motions to the shared dance rhythm

signature and their genre, which were annotated by professional dancers. In the test time,

rhythm signatures and genres were predicted from the input dance music, and a graph-based

motion reconstruction strategy was used to generate the accompanying dance motions by
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retrieving and smooth dance motion from the annotated dance and minimizing the designed

cost function. The cost function included constraints such as matching the genre of the music

and dance, minimizing the distance between their rhythm signatures, and ensuring smooth

transitions between motion segments. Li et al. (2021a) proposed using three Transformer

models to synthesize dance motion from audio features, including MFCC, chromagram, peak

positions, and onset strength. Three Transformer models consisted of an audio Transformer

model, a motion Transformer model, and a cross-modal Transformer model. The audio and

motion transformer models were used to extract musical and motion features. These features

were concatenated and sent to the Transformer model to synthesize dance motion. Different

from the related research, Li et al. (2022) reformulated the dance problem into two stages,

generating keyposes and synthesizing parameters to control parametric curve equations to

derive in-between poses. Keyposes were defined as poses located on the detected beat

positions. A transformer model was used to synthesize key poses, and musical features located

around a beat position were used as the input to the Transformer model. Musical features

were defined as MFCC features and chromagram. A similar Transformer model was used for

generating parameters to control a parametric curve equation, which was used to derive

in-between poses between two generated keyposes.

2.8 Evaluation Metrics for Motion

When machine learning is used for generation, such as realistic images, music, or motion, it is

critical to select good metrics to evaluate the results of generative tasks (Borji 2019). Therefore,
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this section introduces metrics to evaluate generated dance motion. Section 2.8.1 presents the

Frechet Inception Distance that assesses the distances of features of two sets of dances. Section

2.8.2 introduces metrics to evaluate the diversity of the generated dances. Section 2.8.3 presents

metrics to estimate the alignment between musical beats and motion beats. Finally, Section

2.8.4 presents the mean square error to assess the reconstruction distance of a generated dance.

2.8.1 Frechet Inception Distance

Frechet Inception Distance (FID) is commonly used to evaluate generated results (Choi et

al. 2020, Karras et al. 2020, Ding et al. 2021), and it was originally proposed by Heusel et

al. (2017), where it was used to evaluate generated images containing faces, numbers, indoor

scenes, and outdoor scenes. Considering the objective of a generative task, which is usually

defined as producing generated data that match with the observed data (Heusel et al. 2017),

Heusel et al. (2017) proposed using the distance between features of collections of generated

data and observed data as the measurement to evaluate a generative task. The shorter the

distance is, the better the generated results are. Using generated images and real images as an

example, to calculate FID of collections of generated images (fake images) and real images, a

feature extractor, which can be an image classification network, is used to encode all fake images

and real images into their features. Two collections of features, one for fake images and the

other for real images, are viewed as two continuous multivariate Gaussian distributions (Lucic et

al. 2018). The distance between two multivariate Gaussian distributions is measured by Frechet

Distance (Fréchet 1957). In other words: FID(f, g) = ‖µf − µg‖2
2 +Tr(∑f +∑

g−2(∑f

∑
g)

1
2 ),
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where (µf ,
∑
f ) and (µg,

∑
g) are the mean and variance of collections of real and fake images’

feature. A smaller FID result implies that the distance between two multivariate Gaussian

distributions is short, and the distribution of fake images is close to real images. Other than

evaluating generated images, FID has been adapted to evaluate generated videos (Unterthiner

et al. 2019) and audio (Kilgour et al. 2019) using feature extractors designed for video and

audio.

In the literature on dance motion generation, FID is used to measure how close, in terms of

a dance feature space, the collection of generated dance is to a collection of real dance. Lee et

al. (2019) used FID to measure the generated dance. As there is no standard feature extractor

to extract the features of a dance sequence, they proposed a neural network trained on the

dance motion as an action classifier and used it as the feature extractor. When evaluating the

FID of a collection of generated dance motion, sequences of generated dance and real dance

were sent to the action classifier to extract features, and for each sequence, the outputs of an

intermediate layer of the action classifier were used as its feature. After calculating features,

a collection of real dance features and fake dance features were acquired. Mean and variance

were calculated separately, and they were used to calculate the FID to evaluate the distance

between features of the generated dance and real dance.

The workflow of evaluating FID is similar in research regarding dance motion generation,

yet the difference is in the way the dance feature extractor is proposed. Ye et al. (2020) and

Chen et al. (2021) trained a motion auto-encoder to map dance motion into features and map

features back to the dance motion, and mapped features were used as dance motion features.
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Instead of training a motion classifier and using the outputs of its intermediate layer as extracted

features, Li et al. (2021a) used feature extractors to extract geometric and kinematic features of

poses. The geometric features were proposed by Müller, Röder, and Clausen (2005) to describe

the relation of body parts, and the kinematic features were proposed by Onuma, Faloutsos,

and Hodgins (2008) to describe the kinetic energy of each joint. Both features were originally

used to measure the similarity of motion clips. Müller, Röder, and Clausen (2005) defined a

set of features to express the geometric relations between body parts of poses represented as

skeletons, and designed features were used to evaluate the similarity between motion clips to

extract similar clips from a dataset. A feature was described as a Boolean function to express

a geometric relation of body parts. For example, a Boolean function expressed whether the

right toes lie in front of a plane spanned by the left ankle, left hip, and the root, and whether

the right-hand raises above a plane whose normal vector is a vector defined by the “chest”

and “neck” joint. It also expresses the distance between a joint and body part exceeding a

threshold or not, such as expressing if the right hand touches the right legs, and whether the

joint angle between body parts exceeds a threshold, which implies that the body part, such as

the arm or thigh, is stretching or bending. The illustration of Boolean functions is shown in

Figure 2.2. Müller, Röder, and Clausen (2005) designed 31-d geometric features for evaluating

the similarity between video clips. Features expressed as Boolean functions were invariant to

global transforms and scaling, and this made geometric features robust to variations in video

clips and benefits extracting similar features. Onuma, Faloutsos, and Hodgins (2008) defined

kinematic features and relied on defined features to classify motions, search for similar motions,
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Figure 2.2: An illustration of geometric features (Müller, Röder, and Clausen 2005). (a–c)
A Boolean function expressing a joint in front of or behind a plane. (d–f) A Boolean function
expressing if the distance between a joint and body part exceeds a threshold. (e) A Boolean
function expressing whether the distance between two body parts exceeds a threshold.

and detect outlier motions. The kinematic feature of a motion clip was calculated as follows:

first, the velocity of each joint at each frame was calculated using the first derivative of the

joint position. Then, the kinetic energy of each joint at each frame was calculated from the

square of each velocity. Finally, for each joint, the mean kinetic energy was computed by finding

the mean of the kinetic energy of all frames. Li et al. (2021a) used these features, geometric

features and kinematic features, as the features used by FID to evaluate the distance between

collections of generated dance and real dance. Li et al. (2022) followed Li et al. (2021a) and

used the same feature extractors to evaluate FID metrics.

2.8.2 Diversity and Multimodality

Besides FID, Lee et al. (2019) evaluates the diversity and multimodality of generated dances.

The diversity was evaluated among dance motions generated using different dance music pieces,

and it assessed the trained model’s ability to generate diverse dances from different music pieces.

Diversity was calculated by randomly selecting combinations from a set of generated dance

motions, computing the distance between two generated dance motions in each combination,
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and finding the average distance of all combinations. Multimodality was evaluated using dance

motions generated from the same music piece, and it evaluated the ability of the model to

generate diverse dance conditioned on the same music piece. When evaluating multimodality,

combinations of five dance motions were picked from a set of generated dance motions using

the same music piece. The average distance of generated dance within each combination was

calculated, and the average distance of all combinations was calculated and used to represent

the multimodality of generated dance motions. Lee et al. (2019), Chen et al. (2021), Li et

al. (2022), and Li et al. (2021a) used the same metrics to evaluate the diversity of generated

dance motions.

2.8.3 Music-Beat Alignment

Other than only evaluating the dance motion, metrics are proposed and used to evaluate the

relation between the generated dance motion and its dance music. Lee et al. (2019) proposed

evaluating how well the kinematic beats match with musical beats. Kinematic beats Bk were

defined as the number of dance poses whose velocity, calculated from the first derivative of

joint positions, drastically slowed down. Musical beats were detected using a beat detection

algorithm, and Bm was defined as the number of detected musical beats. Ba was defined as

the number of aligned kinematic beats and musical beats. With Bk, Bm, and Ba, the beat

coverage was defined as the ratio of the number of kinematic beats to musical beats. In other

words, Bk

Bm
. Beat hit rate, Ba

Bk
, was defined as the ratio of the number of aligned beats to

kinematic beats. Similarly, Chen et al. (2021) proposed Beat accuracy as the number of aligned
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beats to the musical beats, where aligned beats referred to motion beats that were adjacent to

musical beats. Besides, they followed the motion beats defined in Shiratori and Ikeuchi (2008),

where motion beats were defined as dance motion with stopping postures. Li et al. (2021a)

proposed Beat Alignment Score to evaluate how well generated dance correlates to the dance

music. Kinematic beats referred to beats whose velocities were local minimum values of velocity

curves. The beat alignment score was calculated as the average distance of kinematic beats

to their nearest musical beats. Similarly, Li et al. (2022) proposed Beat Consistency Score

calculated from the average distance of each musical beat to the nearest kinematic beat, where

the definition of kinematic beats was the same as Lee et al. (2019).

2.8.4 Mean Squared Error

A great amount of research related to keyframe selection and in-between reconstruction

strategies is proposed to perform motion compression, and the evaluation metric for motion

compression assesses the reconstruction distance of keyframe selection and in-between

reconstruction strategies. As a result, the evaluation metric for motion compression is

discussed in this section, and it will be used in this thesis to evaluate the reconstruction

distance of the generated dance and assess how similar the generated dance is to its original

dance. Mean squared error is adapted to evaluate the difference between reconstructed

motion and the original motion (Khan 2016, Zhang et al. 2013, Halit and Capin 2011, Bulut
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Music Video 3-d joint
positions Depth Views Duration

MADS × X X X
3 (video)
1 (depth) 58 mins

DanceDB × X X × 1 226 mins
ChoreoMaster X × X × 1 19.1 hours

AIST X X × × 9 118.1 hours
AIST++ X X X × 9 311.6 mins

Table 2.1: Dance datasets comparison.

and Capin 2007, Togawa and Okuda 2005), which is defined as:

MSE = 1
NJ

N∑
n=1

J∑
j=1

∥∥∥xjn − x̂jn∥∥∥2
(2.8)

where N is the number of frames, J is the number of joints, x is the original motion, and x̂ is

the reconstructed motion.

2.9 Dance Datasets

Datasets that provide ground-truth data are essential for training and evaluating supervised

machine learning methods, including deep neural networks. With the increasing interest in

dance information retrieval, datasets corresponding to dance music and video have been

proposed recently. This section describes various dancing datasets, and the comparison of

dance datasets is listed in Table 2.1.
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2.9.1 The MADS Dataset

Zhang et al. (2017) proposed the Martial Arts, Dancing, and Sports (MADS) dataset, which

consists of martial art actions (Tai-chi and Karate), dances (Hip-hop and Jazz), and sports

(basketball, volleyball, football, rugby, tennis, and badminton). It features multi-view RGB

videos captured with three cameras, single-view videos filmed with a stereo camera to capture

the distance of objects to the camera, and ground-truth poses obtained with a motion capture

system. Motion capture data were downsampled to be in sync with videos. The multi-view

videos and single-view videos were captured separately, and subjects were asked to modify their

actions to face the camera as much as possible in the single-view depth videos. The total length

of multi-view videos is around 53,000 frames, approximately 1 hour under 15 frames per second

(FPS).

2.9.2 The Dance Motion Capture Dataset

The dance motion capture dataset (DanceDB dataset) (Aristidou, Stavrakis, and Chrysanthou

2014) is designed to preserve the Cypriot folk dance. The dataset preserves 3-d motion capture

data, video data, photographs, drawings, text descriptions about dance types, and metadata

about dancers, recording data, location, and recording system. While the dataset aims to

preserve Greek and Cypriot dances, most of the dances in the dataset are contemporary dances.

The total length is 226 minutes.
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Style 1 Duration Style 2 Duration

Music

Chinese 20.7 hours Mild 21.4 hours
Japanese 40.8 hours Exciting 32.9 hours
English 18.7 hours Neutral 48.2 hours
Korean 22.3 hours - -

Dance

Anime 7.5 hours Sexy 1.6 hours
Hip-Hop 5.4 hours Lovely 5.9 hours
K-pop 3.9 hours Cool 5.4 hours

Tradition 3.1 hours Gentle 2.7 hours
- - Other 4.3 hours

Table 2.2: The style label for dance and music in the ChoreoMaster dataset.

2.9.3 The ChoreoMaster Dataset

The ChoreoMaster dataset (Chen et al. 2021) consists of dances from motion capture systems

and dances animated by animation software. In total, there are 19.1 hours of dance motion;

among them, 9.91 hours of dance are paired with dance music. It also collects 102.5 hours of

dance music. Dance motion and music are manually labeled with two styles, as shown in Table

2.2. All dance motions are structured in four-beat meters, and professional dancers were asked

to label each dance with an 8-bit rhythm signature, which is used to compare with the beat

pattern of the dance music to assess the similarity between dance motion and music.

2.9.4 The AIST and AIST++ Dance Video Database

The AIST dance dataset (Tsuchida et al. 2019) consists of multi-genre dance videos filmed with a

multi-camera system and dance music. In each genre, professional dancers choreographed basic

and complex dance patterns and participated in the filming of dance videos. The AIST++

dance dataset (Li et al. 2021a) used the same dance videos and music in the AIST dataset, and
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it reconstructed camera parameters for the multi-camera system and 2-d and 3-d dance motion

from the original AIST dance videos. For details about the AIST and AIST++ datasets, please

refer to Chapter 3.2.
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Chapter 3

Methods

This chapter discusses the experimental setting and implementation in detail. Section 3.1

describes the experimental workflow, including preprocessing, keyframe selection, and

in-between reconstruction. Section 3.2 lists the structure of the AIST and AIST++ dataset

and the preprocessing steps prior to experiments. Section 3.3 and Section 3.4 describes

strategies to select keyframes and reconstruct in-betweens, respectively. Finally, Section 3.5

lists the evaluation metrics to assess a reconstructed dance motion.

3.1 Overview of Workflow

The workflow for the experiment (Figure 3.1) contains four blocks: preprocessing block,

keyframe block, in-between block, and evaluation block. First, the preprocessing block

extracts dance motion features and musical features from the dance motion and music of the

AIST++ dataset. Different strategies are used to extract features, and features are sent to
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the keyframe and in-between block for keyframe selection and in-between reconstruction.

Second, the keyframe block contains strategies for taking the preprocessed motion and

musical features as inputs and selecting keyframes from the dance motion feature. The

outputs of the keyframe block, selected keyframes, are sent to the in-between block. Third,

the in-between block uses strategies that take the selected keyframes and musical features as

their inputs to reconstruct the dance motion. Last, different strategies to select keyframes and

reconstruct in-betweens are evaluated with metrics to assess their distance. Since keyframes

and in-betweens are both required to reconstruct a dance, strategies for selecting keyframes

cannot be evaluated without using a strategy for deriving in-between frames and vice versa.

As a result, when assessing strategies for selecting keyframes, they are combined with two

in-between reconstruction processes: linear interpolation and Bézier curve fitting, and

reconstructed dances are compared among strategies using the same in-between

reconstruction process. Keyframes are linearly selected when assessing strategies for deriving

in-between frames.

3.2 Datasets: AIST and AIST++

The foundation of the experiment depends on the AIST++ dataset (Li et al. 2021a), which

is based on the AIST dataset (Tsuchida et al. 2019). The AIST dataset includes multi-genre

dance music and videos filmed with a multi-view camera system. It consists of seven categories

of dance videos: basic dance, advanced dance, group dance, moving camera, showcase, cypher,

and battle. Each category is explained in detail in the following section. The AIST++ dataset
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Figure 3.1: Overview of the experimental workflow.

contains the dance music and videos for the basic dance and advanced dance categories in

the AIST dataset, and it further extends the dataset by recovering the camera parameters of

each camera in the multi-view camera system and reconstructing dance motions‘ 2-d and 3-d

positions and rotations. In this thesis, only the reconstructed 3-d positions and rotations are

used for experiments. Experiments are only conducted on multi-genre dance motion in the

basic and advanced dance categories.
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3.2.1 Dataset Structure

Dance Genre

The AIST dataset contains ten dance genres: Break, Pop, Lock, Middle Hip-Hop, LA style

Hip-Hop, House, Waack, Krump, Street Jazz, and Ballet Jazz. After consulting professional

dancers, genres were selected to cover dance styles starting from the 1970s. For each genre,

three professional dancers having dancing experience of more than five years were asked to

select six dance music pieces and make dance choreographies (Tsuchida et al. 2019).

Dance Music

Each of the ten genres contains six dance music pieces, and, thus, there are 60 music pieces in

the AIST dataset. The tempi for six different music pieces are set to 80, 90, 100, 110, 120, and

130 beats per minute (BPM), except for the six pieces for House, which are set to 110, 115,

120, 125, 130, and 135 BPM. Professional musicians were asked to create six different music

pieces for each genre, and dancers were asked to choreograph with created music pieces. All

dance music pieces are in four-four time signatures (Tsuchida et al. 2019).

Dance Video

Dance videos were filmed with a multi-camera system in 60 frames per second, and each dance is

associated with multiple videos filmed from different angles. Videos in each dance genre contain

four categories: basic dance, advanced dance, group dance, and moving camera. In addition,

there are situation videos cover three scenarios: showcase, where a group of dancers performs
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on stage, cypher, where a group of dancers lines up in a circle, and each dancer performs at

the center of the circle, and battle, where two dancers face to each other and dance (Tsuchida

et al. 2019). Details of dance videos are listed in Table 3.1. Note that each camera produces

one video file, and for each dance genre, three professional dancers participated in recording

dance videos.

Basic Dance The basic dance category contains ten basic dance patterns selected by

participating dancers. The length of each video is four measures, and most of the dance

patterns are repeated in each video. Each of the three dancers performs ten selected dance

patterns with four music pieces selected from six music pieces of the dance genre, and basic

dance videos were filmed with nine cameras. Dancers were not restricted to dancing to the

same four music pieces. In total, there are 1,080 (three dancers × ten dance patterns × four

dance music pieces × nine cameras) basic dance videos per genre. Note that the basic dance

category is the only category where dancers are restricted to dancing to the same dance

patterns. For the rest of the categories, dancers are allowed to choreograph their own dances,

and each of the three dancers dances differently.

Advanced Dance In the advanced dance category, each dancer performs seven

choreographies filmed by nine cameras. The length of each choreography is 16 measures. In

total, there are 189 (three dancers × seven choreographies × nine cameras) dance videos

inside advanced dance videos, and the choreography of an advanced dance video is more

complicated than the basic dance video.
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Group Dance The group dance category contains a group of three dancers performing ten

choreographies, each of 16 measures in length. The dance group is filmed by nine cameras, and

there are 90 group dance videos in total.

Moving Camera In the moving camera category, each dancer performs three or four dances,

and each dance was filmed with two cameras with fixed positions and one moving camera.

The length of each dance is 16 measures, and there are 30 dance videos in the moving camera

category.

Showcase Showcase refers to the case where dancers perform on stage. In videos for the

showcase, a group of eight dancers performs three choreographies. The duration of each

choreography is 24 measures, and each choreography was filmed by eight cameras.

Cypher In cypher videos, ten dancers form a circle while one dancer improvises dance in the

center. Dancers take turns improvising in the center, and the timing to change the dancer in

the center is left up to the dancers themselves. The group performs two sets of dances filmed

by five cameras, and the duration of a set is around ten minutes.

Battle In battle videos, two dancers take turns improvising with music. There are three

groups in battle videos, and each group performs a 4-minuets dance filmed by five cameras.
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#Videos #Cameras Length
Basic Dance 1080 9 4 measures

Advanced Dance 189 9 16 measures
Group Video 90 9 16 measures

Moving Camera 30 3 16 measures
Showcase 24 8 24 measures
Cypher 10 5 ≈10 mins
Battle 15 5 ≈4 mins

Table 3.1: Statistics of dance videos for one dance genre (top) and situation videos (bottom)
in the AIST dataset.

Dance Motion

The AIST dataset stores dance videos represented frame by frame, and it lacks the 2-d and

3-d information of dance motions. Li et al. (2021a) refined the dataset by reconstructing the

3-d joint coordinates of each dance motion. Compared to the AIST dataset, the AIST++

dataset contains: estimated camera parameters (see Chapter 2.2.5), 17-joints 2-d coordinates

(Ruggero Ronchi and Perona 2017), 17-joints 3-d coordinates (Ruggero Ronchi and Perona

2017), and 24-joints 3-d motion in Skinned Multi-Person Linear (SMPL) format (Loper et

al. 2015). The steps to reconstruct additional dance-related data are listed below: First, a joint

detection algorithm (Papandreou et al. 2017) was employed to detect 2-d joint coordinates

from multi-view videos frame by frame. Next, camera parameters were initialized, and bundle

adjustment (Triggs et al. 1999) was applied to optimize camera parameters. With optimized

camera parameters and detected multi-angle 2-d joint coordinates, 3-d joint coordinates were

reconstructed by leveraging camera parameters to triangulate multi-angle 2-d joint coordinates

to 3-d coordinates (see Chapter 2.2.5). Finally, reconstructed 3-d joint positions were fit to an

SMPL model to represent 3-d joint positions as the translation of root and the rotation of each
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joint in axis-angle representation (see Chapter 2.2.1, 2.2.2, and 2.2.3).

3.2.2 Dataset Format

Dance music pieces are stored in WAV files and MP3 audio files. Dance videos were filmed with

60 frames-per-second (FPS) and stored in MP4 video files. The 2-d and 3-d joint coordinates are

stored in pickle files, which are serialized Python objects. The 3-d motion is stored in pickle file,

and it is represented as the translation of the root joint, the rotation of each joint regarding its

parent in the axis-angle representation, and the pose blend parameters that control the surface

of the SMPL model, which is related to the body shape of a dancer.

3.3 Preprocessing

The dance motion and the music in the AIST++ dataset are preprocessed to exract features

describing the dance motion and elements in music, such as timbre, rhythm, and measure,

before sending them into the keyframe block and in-between block. The dance music and

motions in the Ballet Jazz genre are removed first, and the keyframe selection and in-between

reconstruction experiments use only the remaining nine genres. This is because the dance

music pieces in Ballet Jazz do not have drums, resulting in the drums stem from the music

source separation algorithm, one of the preprocessing steps, being silent. Since some in-between

reconstruction strategies in this thesis rely on musical features of the drums stem, a silent drums

stem leads to empty musical features, which I defined as invalid inputs to the strategy. As a

result, I decided to remove the Ballet Jazz genre. At the beginning of preprocessing steps, input
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music and dances are split into segments such that each segment contains dance motions and

music within a measure. Since all dance music pieces are in four-four time signatures and at

constant tempi, the number of frames per measure is calculated from the frame rate (FPS) of

the dance motion, which is always 60 frames per second, and the tempo (BPM) of the dance

music, by:

Frames per Measure = 60
BPM

∗ 4 ∗ FPS (3.1)

The Dance music is split by calculating the number of samples per measure by Equation

3.2, where SR is the sample rate of the music.

Samples per Measure = 60
BPM

∗ 4 ∗ SR (3.2)

A segment, which represents a measure of music, is sent to the preprocessing workflow, and

the preprocessed motion and musical features are sent to the keyframe selection block and in-

between-reconstruction block to reconstruct the dance motion. Procedures to preprocess and

extract features are discussed in the following section, and the labels of extracted dance motion

features and musical features are listed in Table 3.2.
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Label Description
Drotmat Dance motion represented in rotation matrix
Deulers Dance motion represented in Euler-angle representation
Mfull 22-d musical features of the dance music
Monset 1-d onset strength of the dance music
Mfull drums 22-d musical features of the drums stem
Monset drums 1-d onset strength of the drums stem
Monset bass 1-d onset strength of the bass stem
Monset vocals 1-d onset strength of the vocals stem
Monset others 1-d onset strength of the others stem
Mnmfd drums Activation curves of the drums stem processed by NMFD
Mgenres Genre vector of the dance music

Table 3.2: Labels for preprocessed motion and musical features. Four stems of a dance music
are split by OpenUnmix (Stöter et al. 2019). Activation curves are computed by applying Non-
negative Matrix Factorization Deconvolution (NMFD) (Smaragdis 2004) to further separate
the drums track into three components. The musical features for the bass stem, vocals stem,
and others stem (Mfull bass, Mfull vocals, Mfull others) are not shown as they are not used in this
thesis.

3.3.1 Processing Dance Motions

In the preprocessing for motion features, axis-angle rotation representation is converted into

rotation matrix and Euler-angle rotation (see Chapter 2.2.3). In the AIST++ dataset, a dance

pose with 24 joints is represented with a 72-d axis-angle rotation representation and a 3-d

translation of the root. In preprocessing steps, the rotation of each joint is converted to 9-d

rotation matrix and 3-d Euler-angle representation, resulting in a 216-d vector (24 joints × 9-d

rotation matrix) and 72-d vector (24 joints × 3-d Euler-angle representation). These vectors

are further concatenated with the 3-d root translation, and following the preprocessing steps

proposed in Li et al. (2021a), the rotation matrix is additionally padded with a 6-d zero vector.

After preprocessing steps, a dance sequence of T frames is represented as Drotmat ∈ RT×225
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using rotation matrix and Deulers ∈ RT×75 using Euler-angle representation.

3.3.2 Extracting Features from Dance Music

The musical features used here consist of features related to rhythm and timbre, and they

are extracted from dance music pieces and tracks separated using a music source separation

algorithm. Labels for musical features for music pieces and tracks are listed in Table 3.2.

Details about features regarding each label will be discussed in this section. Dance music is

re-sampled to 30,700 samples per second. 20-d Mel-frequency Cepstral Coefficients (MFCC)

features relating to timbre and 1-d spectral flux onset strength envelope relating to rhythm

are extracted using 512 hop size and the hann window of 2,048 fast Fourier transform window

length. The hop size and window length are set to 512 and 2,048 as they are commonly used in

research related to musical features (Bahuleyan 2018, Engel et al. 2020, Lu et al. 2017, Cheuk,

Agres, and Herremans 2020). The sample rate is selected such that the number of frames per

second in music matches with video (60 frames per second = 30,700 samples per second ÷ 512

hop size). A peak detection algorithm is used to detect the onset envelope’s peak locations. The

result is represented in a binary format, where 0 indicates that the value of the onset envelope

at this timestep is not a peak value, and 1 indicates its counterpart. The extracted musical

features in each frame is a 22-d (20-d MFCC + 1-d onset strength + 1-d onset peak positions)

vector, and the dance music of T frames is represented as Mfull ∈ RT×22, and its onset strength

is represented as Monset ∈ RT×1.

Prior to extracting 22-d musical features, a piece of dance music is processed by OpenUnmix
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(Stöter et al. 2019) to split it into four stems: drums, bass, vocals, and others (see Chapter

2.6). This is based on the assumption that dance motion is more related to certain components

of dance music. Four stems are sent to the same workflow mentioned above to acquire musical

features for each stem. In addition, the drums stem is further processed by a non-negative

matrix factorization deconvolution (NMFD, see Chapter 2.6) to split into three components,

and three activations curve Mnmfd drums ∈ RT×3 are kept as musical features. Finally, other

than acquiring musical features from the audio, the genre of each dance music is converted into

a one-hot dance genre vector. For a dance music in i-th genre, the genre vector is represented

as Mgenre ∈ R9×1.

3.4 Keyframe Selection

Given processed dance motion features or musical features, six strategies select keyframes from

dance motion frames while keeping the first and last frames selected as keyframes. Details

about each strategy are explained in this section, and labels of each strategy are listed in

Table 3.3, including selecting keyframes using the Euler-angle representation (KFeven rotmat)

and the rotation matrix (KFeven euler) evenly, using the dynamic programming (KFdp), the

onset strength envelop of the dance music piece (KFonset) and its four stems split by OpenUnmix

(KFstems), and using the activation curve of the drums stem processed with NMFD (KFnmfd).

Among these strategies, KFeven rotmat, KFeven euler, and KFdp only use dance motion features,

and the rest depends on musical features.
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Label Description
KFeven rotmat Evenly select keyframes from dance motion represented in rotation matrix
KFeven euler Evenly select keyframes from dance motion represented in Euler-angle

representation
KFonset Select keyframes from peak positions of the dance music’s onset strength
KFstem Select keyframes from peak positions of the weighted onset
KFnmfd Select keyframes from peak positions of the weighted activation curve
KFdp Select keyframes with dynamic programming using the dance motion

Table 3.3: Labels for strategies to extract keyframes.

3.4.1 Evenly Selecting Keyframes

Given a sequence of dance motion features Deulers in Euler-angle representation or rotation

matrix, keyframes are selected to be evenly spaced. For an experiment of selecting N keyframes,

the selected keyframes are defined as KFeven euler ∈ RN×75 with Euler-angle representation and

KFeven rotmat ∈ RN×225 in rotation matrix.

3.4.2 Selecting Keyframes using Onset Curves

The following strategies select keyframes using different musical features. Given an onset curve

Monset, onset peak positions are detected by selecting the local maximum of the onset curve.

After the detection algorithm, M peaks are found inside the onset curve, which is represented

as Peak := {pi : pi ∈ R, i ∈ {1...M}}.

For selecting N keyframes, the N most significant values are selected from Peak, and motion

frames of Deulers whose timesteps are located on N peak positions are selected as keyframes,

represented as KFonset ∈ RN×75. In the implementation, there exist onset curves having less

than N peaks. In such a case, the motion frame located at the middle point between the



3. Methods 60

two keyframes with the highest onset value is assigned as the new keyframes. This strategy

is performed iteratively until the number of selected keyframes matches the desired keyframes.

Besides, peaks located within the first and the last G keyframes are removed from Peak. This

is to avoid the misalignment leading to the peak of the first beat deviating from the first frame.

Since the first frame is always a keyframe, this keeps the keyframe selection strategy away from

selecting two motion frames close to each other temporally.

Onset curves of four stems, Monset drums, Monset bass, Monset vocals, and Monset others, are also

used as musical features to select keyframes. Four onset curves are weighted and summed up to

obtain a new onset curve (Monset stem) in Equation 3.3. The peak detection strategy is applied

to Monset stem to get keyframes KFstems ∈ RN×75. Activation curves of three components,

Mnmfd drums ∈ RT×3, are also used to select keyframes. Similar to Monset stems, a new activation

curve is calculated from the weighted sum of all activation curves, and the detection strategy is

used to select N keyframes KFnmfd ∈ RN×75 from the new activation curve. In summary, these

strategies take three types of onset curves as their inputs and select different motion frames as

keyframes shown in Figure 3.2.

Monset stem = WdrumsMonset drums

+WbassMonset bass

+WvocalsMonset vocals

+WothersMonset others

(3.3)
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Figure 3.2: Selected keyframes using peak detection algorithm on three curves: the onset
curve of a Break dance music, the weighted onset curve of four stems (drums, bass, vocals,
others) from OpenUnmix, and the weighted activation curve of activation curves from applying
NMFD to the drums stem.

3.4.3 Dynamic Programming

The last strategy for the keyframe selection uses the dynamic programming method proposed

in Roberts (2018) to select keyframes (see Chapter 2.4.1). Keyframes are optimized iteratively

using dynamic programming, and the result of selecting N keyframes using this algorithm is

defined as KFdp ∈ RN×75.

3.5 In-between Reconstruction

Dance motion features, musical features, and selected keyframes are used by different

strategies to reconstruct in-between motions. The labels of each strategy are listed in Table

3.4. Strategies include linear interpolation and Quaternion SLERP (D̂eulers linear,

D̂rotmat linear), Bézier curve fitting (D̂bezier), and Transformer models (D̂cross full, D̂cross drum,
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Label Description
D̂eulers linear Reconstructed dance in Euler-angle representation using linear interpolation

and Quaternion SLERP
D̂rotmat linear Reconstructed dance in rotation matrix using linear interpolation and

Quaternion SLERP
D̂bezier Reconstructed dance using Bézier curve fitting
D̂cross full Reconstructed dance using the Full Model/Full Track
D̂cross drum Reconstructed dance using the Full Model/Drum Track
D̂merged full Reconstructed dance using the Full Model/Full Track/Merged
D̂merged drum Reconstructed dance using the Full Model/Drum Track/Merged
D̂genre Reconstructed dance using the Genre
D̂motion Reconstructed dance using the Motion

Table 3.4: Labels for the reconstructed dance of strategies to reconstruct in-betweens.

D̂merged full, D̂merged drum, D̂genre, D̂motion). Details are described in the following sections.

3.5.1 Linear Interpolation and Quaternion SLERP

Given N keyframes selected from an original dance motion of T frames in Euler-angle

representation, the 3-d translation of the root position is reconstructed with linear

interpolation, and the rotation of each joint is converted to Quaternion. Quaternion SLERP is

conducted to derive in-between frames, and derived frames, represented in Quaternion, are

converted back to their original representation. The result of this strategy is a reconstructed

motion D̂euler linear ∈ RT×75 in Euler-angle representation and D̂euler rotmat ∈ RT×225 in

rotaiton matrix.
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3.5.2 Bézier Curve Fitting

In this strategy, in-between frames are reconstructed with cubic Bézier curves. Each cubic

Bézier curve reconstructs in-between frames represented as a joint’s x, y, and z rotation angle.

Selected N keyframes in Euler-angle representation and the motion Deuler are taken as inputs.

Two consecutive keyframes at time i and j are used as the first and the last control points P0

and P3 when reconstructing in-between frames located between them. scipy, which invoked

Levenberg–Marquardt algorithm (Moré 1978, Levenberg 1944), is used to solve P1 and P2 such

that the cubic Bézier curves recover the original motion Deuler. The reconstructed motion is

denoted as D̂bezier ∈ RT×75 in Euler-angle representation.

In this thesis, when Bézier Curve Fitting is in combination with evenly selecting keyframes,

the position of the two intermediate control points (P1 and P2) are computed using the dance

motion of the training split with Levenberg–Marquardt algorithm. The average of P1 and P2

are computed respectively from the training split’s predicted P1 and P2, and they are used

as the predicted P1 and P2 points of dance motion in the test split. This is to ensure that

Bézier Curve Fitting is fairly compared with linear interpolation, and both have no access to the

ground-truth dance data when operating on unseen dances in the dance split. However, when

Bézier Curve Fitting is in combination with the dynamic programming to select keyframes, the

intermediate control points are optimized using the unseen dance motion. This is to ensure

that I follow the strategy Roberts (2018) proposed to reduce an animation into keyframes and

in-betweens.
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3.5.3 Transformer Model

The final strategy use variations of deep learning models consisting of Transformer models to

reconstruct in-between frames. Musical features and selected N keyframes are used as inputs

to six model variations, whose output is the reconstructed motion. Six variations are listed in

the following section.

Full Model/Full Track

The Full Model/Full Track consists of two transformer blocks: an audio transformer and an

in-between transformer. The audio transformer uses the encoder model, and the in-between

transformer uses the decoder model (see Chapter 2.3). Given a sequence of evenly-spaced

keyframes KFeven rotmat and musical features Mfull, musical features are sent to the audio

transformer first. Evenly-spaced keyframes, KFeven rotmat, are linearly interpolated such that

their length is the same as the original dance. The goal of the in-between transformer is to

predict the difference between the original dance and the linearly-interpolated dance. The

output of the audio transformer is sent to the in-between transformer as the key and value, and

linearly-interpolated keyframes are sent as the query. To get the reconstructed dance motion,

the output of the in-between transformer, which is the difference between the original dance

and the linearly-interpolated dance, is added with the linearly-interpolated keyframes. The

reconstructed motion of Full Model is referred to as D̂cross full
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Full Model/Drum Track

This variation, Full Model/Drum Track, is almost identical to Full Model/Full Track. The

only difference is the musical features. Unlike Full Mode/Full Track, which uses the musical

feature of the full track, Mfull, Full Model/Full Track uses musical features of the drums stem,

Mfull drum, as the input to the audio transformer. The reconstructed dance is referred to as

D̂cross drum

Full Model/Full Track/Merged

This variation, Full Model/Full Track/Merged shared the same model and feature as Full

Model/Full Track, with the only difference in the way the output of the audio transformer and

linearly-interpolated keyframes are sent to the in-between transformer. In this variation, the

output and the interpolated keyframes are concatenated together first, and concatenated

feature is sent as the key, value, and query to the in-between transformer model. The

reconstructed dance from this variation is denoted as D̂merged full

Full Model/Drum Track/Merged

The model (Full Model/Drum Track/Merged) is the same as Full Model/Full Track/Merged,

except that the musical feature is replaced with Mfull drum. The reconstructed dance is referred

to as D̂merged drum
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Genre

This variation (Genre) only contains the in-between transformer. Musical features are replaced

with the genre vector Mgenre that indicates the style of the dance music. The genre vector is

concatenated with the linearly-interpolated keyframes, and the concatenated features are sent

to the in-between transformer. The reconstructed dance is referred to as D̂genre.

Motion

This variation (Motion) reconstructs dance motion without using musical features or genre

vectors. The audio transformer is removed, and linearly-interpolated keyframes are sent to the

in-between transformers. The reconstructed dance is referred to as D̂motion.

3.6 Evaluation Metrics

The reconstructed dance is evaluated with mean squared error (MSE) to evaluate the difference

between its original dance and itself (see Chapter 2.8) and examine whether the reconstructed

dance is close to the original dance. Instead of evaluating each pair of reconstructed dances and

generated dances, FID is used to evaluate how close a set of reconstructed dances is to a set of

original dances. Kinematic feature and geometric feature extractors are used to extract features

from original and reconstructed dances (see Chapter 2.8), and FID using the kinematic feature

extractor is referred to as FIDk, using the geometric feature extractor is referred to as FIDg.
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Chapter 4

Experiments

In this chapter, the experimental workflow discussed in Chapter 3 is executed and evaluated

then the result of the evaluation metrics is discussed. The overall goal of the experiments is to

test whether injecting musical features improves the results of various keyframe selection and

in-between-reconstruction strategies. In Section 4.1, evaluation metrics are verified by

applying metrics to assess dances reconstructed from different numbers of evenly selected

keyframes. In Section 4.2, keyframe selection and in-between reconstruction strategies

independent of musical features are used to reconstruct dances. Reconstructed dances are

evaluated with metrics verified in Section 4.1. In Section 4.3, in-between strategies are the

same as Section 4.2, and keyframe selection strategies are replaced with strategies using

musical features. The reconstructed dances are compared with Section 4.2 to verify whether

injecting musical features in keyframe selection strategies improves the reconstructed dances.

In Section 4.4, keyframe selection strategies are the same as Section 4.2, and in-between
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strategies are replaced with strategies using musical features. The reconstructed dances are

compared with Section 4.2 to test whether injecting musical features in in-between strategies

improves the reconstructed dances or not.

4.1 Metric Verification Experiment

Before starting experimental workflows, metrics are tested to verify their usefulness. The

metrics used in this thesis are expected to return a higher value when evaluating inaccurately

reconstructed dance motion, and they should return a lower value when evaluating

well-reconstructed dance motion. I wanted to verify empirically that this was indeed the case.

This experiment uses three strategies to select keyframes in Euler-angle representation:

selecting keyframes evenly (KFeven rotmat), using onset curve (KFonset), and dynamic

programming (KFdp). After acquiring keyframes, linear interpolation is used to reconstruct

in-between frames. This experimental setting to verify metrics is repeated for selecting nine,

five, and three keyframes, and the results are evaluated with three proposed metrics: MSE,

FIDg, and FIDk. The number of selected keyframes affects the reconstruction distance. As

the number of selected keyframes increases, there are fewer frames between two adjacent

keyframes that the in-between reconstruction strategy needs to reconstruct, which decreases

the difficulty. In other words, the reconstructed dance using more keyframes should

outperform those with fewer keyframes, and their values evaluated with metrics should

decrease.
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3 keyframes 5 keyframes 9 keyframes
KFeven rotmat 42.73 20.89 6.75
KFdp 18.3 15.04 13.82
KFonset 48.12 23.11 17.46

Table 4.1: Evaluate FIDg with three, five, and nine keyframes.

3 keyframes 5 keyframes 9 keyframes
KFeven rotmat 86.70 69.25 51.48
KFdp 54.40 44.35 33.16
KFonset 84.26 70.26 54.62

Table 4.2: Evaluate FIDk with three, five, and nine keyframes.

4.1.1 Experimental Results

The results of evaluating FIDg, FIDk, and MSE are shown in Table 4.1, 4.2, and 4.3,

respectively. As shown in each table, selecting nine keyframes reaches the best result, and the

value decreases when the number of selected keyframes increases.

4.1.2 Discussions

The experimental result matches the expected behavior of metrics, where increasing the number

of selected keyframes decreases the value of metrics. This confirms the hypothesis that metrics

for evaluating reconstructed dance exhibit the expected behaviour of metrics.

3 keyframes 5 keyframes 9 keyframes
KFeven rotmat 0.83 0.50 0.25
KFdp 0.47 0.28 0.12
KFonset 0.90 0.56 0.31

Table 4.3: Evaluate MSE with three, five, and nine keyframes.



4. Experiments 70

4.2 Experiment 1: Reconstructing Dance Motion

without Musical Features

This section evaluates the reconstructed dances of keyframe selection strategies and

in-between reconstruction strategies without using musical features. The result of this

experiment will be used as the baseline for comparison with the subsequent two experiments,

which use musical features. There are four combinations of keyframe selection and in-between

reconstruction strategies to reconstruct dances. Strategies used in this experiment include:

evenly selecting keyframes using dance motion features and reconstructing the dance motion

with linear interpolation (KFeven eulers/D̂eulers linear), Bézier curve fitting

(KFeven eulers/D̂bezier), and Transformer model (KFeven eulers/D̂motion), and selecting

keyframes with dynamic programming KFdp and reconstructing in-betweens with Bézier

curve fitting (KFdp/D̂bezier). Four strategies are tested with selecting nine or three keyframes,

and the reconstructed dances are evaluated with evaluation metrics.

4.2.1 Experimental Results

The results evaluated with MSE, FIDg, and FIDk with nine and three keyframes are shown

in Table 4.4 and Table 4.5, respectively. The results in Table 4.4 suggest that KFdp/D̂bezier

reaches the best result in MSE and FIDk and KFeven eulers/D̂motion has the best result in

FIDg. On the contrary, KFeven eulers/D̂bezier performs the worst in MSE, FIDg, and FIDk.

The results of four strategies are listed in Table 4.5, which show that KFdp/D̂bezier
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MSE FIDg FIDk

KFeven eulers/D̂eulers linear 0.25 16.75 51.48
KFeven eulers/D̂bezier 0.91 34.37 198.08
KFeven eulers/D̂motion 0.26 11.02 37.90
KFdp/D̂bezier 0.12 13.82 33.16

Table 4.4: Evaluated results of dance reconstructed by selecting nine keyframes and
reconstruct in-between frames without musical features.

MSE FIDg FIDk

KFeven eulers/D̂eulers linear 0.83 42.73 86.70
KFeven eulers/D̂bezier 1.07 29.74 76.01
KFeven eulers/D̂motion 0.90 16.57 33.76
KFdp/D̂bezier 0.47 18.30 54.40

Table 4.5: Evaluated results of dance reconstructed by selecting three keyframes and
reconstruct in-between frames without musical features.

achieves the best result in MSE, while KFeven eulers/D̂bezier has the worst. For FIDg and

FIDk, KFeven eulers/D̂motion has the best result and KFeven eulers/D̂eulers linear has the worst.

4.2.2 Discussions

The results of both selecting nine and three keyframes show that selecting keyframes with

dynamic programming and reconstruction inbetweens with Bézier curve fitting (KFdp/D̂bezier)

has the best result in MSE, which implies the least reconstruction error between the real dance

and reconstructed dance.

Regarding both nine keyframes and three keyframes setting, the best FIDg result in

KFeven eulers/D̂motion suggests that compared to other strategies, the geometric features of its

reconstructed dance are the closest to the real dance. This means that even though



4. Experiments 72

KFdp/D̂bezier has the best reconstruction distance, the relation of body parts in dance

reconstructed by KFeven eulers/D̂motion, is closer to the real dance.

When the dances are reconstructed with nine keyframes and evaluated with FIDk,

KFdp/D̂bezier has the best result. However, when reducing the number of keyframes to three,

KFeven eulers/D̂motion outperforms KFdp/D̂bezier. This seems to imply that when

reconstructing dances with fewer keyframes, using Transformer model as the in-between

strategy achieves reconstructed dances whose kinematic features are the closest to the real

dances. The similar kinematic features may indicate that the velocity, relating to the way a

dance pose transforms to the next, is more similar to the real dance.

4.3 Experiment 2: Select Keyframes with Musical

Features

This section evaluates strategies to select keyframes using musical features but reconstruct

in-betweens without musical features. Three combinations of strategies are used to

reconstruct dances, which include: KFonset/D̂eulers linear that selects keyframes using onset

peak positions of the onset strength and reconstructs in-betweens with linear interpolation,

KFstems/D̂eulers linear that uses the weighted onset strength’s onset peak positions to select

keyframes and reconstructs in-betweens with linear interpolation, and KFnmfd/D̂eulers linear

that selects keyframes by peak positions of the weighted activation curve and reconstructs

in-betweens with linear interpolation. Strategies are evaluated with selecting nine and three
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keyframes, and reconstructed dances of each combination are evaluated with three metrics to

examine the best selection of musical features. The reconstructed dances using the three

strategies will be compared against each other to evaluate the selection of musical features in

keyframes selection strategies, and they will be compared with reconstructed dances in

Experiment 1 to test if using musical features improves the reconstructed dance.

4.3.1 Experimental Results

The results of combination of strategies tested with nine and three keyframes are shown in

Table 4.6 and Table 4.7, respectively. When using nine keyframes, selecting keyframes with

onset peak positions and weighted onset peak positions outperform the weighted activation

curve when reconstructed dances are evaluated with MSE. When the reconstructed dances

are evaluated with FIDg, the results of KFstems/D̂eulers linear outperforms others. As to FIDk,

KFonset/D̂eulers linear reaches the best result.

As shown in Table 4.7, with three keyframes, the result for MSE shows that selecting

keyframes with the weighted activation curve outperforms other musical features.

KFstems/D̂eulers linear reaches the best result in FIDg. As with selecting nine keyframes,

KFonset/D̂eulers−linear has the best result in FIDk.

To evaluate the impact of musical features in keyframes selections strategies, the results in

Table 4.6 and Table 4.7 are compared with results in Table 4.4 and Table 4.5. As shown in

the Table 4.6 and Table 4.4, when using linear interpolation to reconstruct in-betweens, evenly

selecting keyframes (KFeven eulers/D̂eulers linear) has the best results in all metrics, and selecting
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MSE FIDg FIDk

KFonset/D̂eulers linear 0.31 17.46 54.62
KFstems/D̂eulers linear 0.31 17.08 54.63
KFnmfd/D̂eulers linear 0.35 17.53 55.27

Table 4.6: Results of selecting nine keyframes with keyframe selection strategies using musical
features, and reconstruct in-between frames using strategies independent of musical features.

MSE FIDg FIDk

KFonset/D̂eulers linear 0.90 48.12 84.26
KFstems/D̂eulers linear 0.89 48.10 84.92
KFnmfd/D̂eulers linear 0.87 48.81 86.65

Table 4.7: Results of selecting three keyframes with keyframe selection strategies using musical
features, and reconstruct in-between frames using strategies independent of musical features.

keyframes with peak positions of the weighted activation curve (KFnmfd/D̂eulers linear) has the

worst results.

When selected frames are reduced from nine to three, the following can be observed by

comparing Table 4.7 and Table 4.5. When deriving in-between frames with linear interpolation,

KFeven eulers/D̂eulers linear has the best results in MSE and FIDg, while KFonset/D̂eulers linear

and KFnmfd/D̂eulers linear have the worst result separately.

4.3.2 Discussions

Comparing the Selection of Musical Features

When evaluated with MSE, the onset curve (KFonset) and weighted onset curve (KFstems)

outperform the weighted activation under nine keyframes. However, when the number of

selected keyframes is reduced to three, the weighted activation curve (KFnmfd) outperforms
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other musical features. As for FIDg, regardless of the number of the selected keyframes, the

weighted onset strength (KFstems) are better musical features that improve the geometric

features of the reconstructed dance.

When evaluated with FIDk, the onset strength surpasses other musical features regardless of

the number of selected keyframes. This implies that the kinematic features of its reconstructed

dance are close to the real dance, and knowing the musical components of dance music failed

to improves kinematic features of the reconstructed dance.

Examining the Impact of Musical Features

Regardless of the number of selected keyframes, the results show that the evenly-spaced

keyframes selection strategy reaches the best MSE and FIDg. It has the best reconstruction

distance, and injecting musical features does not improve the reconstruction distance (MSE)

and geometric features of the reconstructed dance (FIDg). This may be because injecting

musical features results in unevenly selected keyframes. Compared to unevenly selecting

keyframes, evenly selecting keyframes seems to better depict the overall poses of a motion,

which results in better results in MSE and FIDg. Therefore, it achieves better results in

MSE, which describes the reconstruction distance, and FIDg, which evaluates the distance

of reconstructed dances’ geometric features to those of the real dances.

When the number of keyframes is three, KFonset/D̂eulers linear has better results in FIDk.

This implies that when reducing the number of keyframes, even though evenly selecting

keyframes reaches a better reconstruction distance, the kinematic features of dances

reconstructed from the onset-curve and dynamic programming strategy are closer to real
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dance motion. Kinematic features extract the velocities of dance poses’ joints, which are

different from the geometric features used in FIDg that focus on using Boolean functions to

describe the relation of body parts in dance poses. As a result, when selecting three

keyframes, the better FIDk and inferior FIDg in KFonset/D̂eulers linear indicates that:

although the overall poses of the reconstructed dance differ from the original dance, the way

the reconstructed dances move from pose to pose, which is describes by kinematic features

using velocities, is close to the original dance.

4.4 Experiment 3: Reconstruct In-betweens with

Musical Features

This section evaluates combinations of keyframe selection strategies without musical features

and in-between strategies with musical features. Five combinations of strategies are tested to

reconstruct dance motion, including evenly selecting keyframes and reconstructing in-between

frames with Transformer model using musical features of the dance music (KFeven/D̂cross full),

drums stem (KFeven/D̂cross drum), using genre vectors KFeven/D̂genre, and using the same

inputs (selected keyframes and musical features) as KFeven/D̂cross full and KFeven/D̂cross drum

but concatenating inputs along the feature dimension, resulting KFeven/D̂merged full and

KFeven/D̂merged drum. Strategies are tested with selecting nine and three keyframes, and their

reconstructed dances are evaluated with three metrics. The reconstructed dances using five

strategies will be evaluated against each other to determine the best selection of musical



4. Experiments 77

features in in-between reconstruction strategies. They will also be compared with

reconstructed dances in Experiment 1 to assess the impact of musical features in in-between

reconstruction strategies.

4.4.1 Experimental Results

The results of combination of strategies tested with nine and three keyframes are shown in

Table 4.8 and Table 4.9, respectively. As shown in Table 4.8, for selecting nine keyframes, using

genre vector (KFeven/D̂genre) has the best reconstruction distance (MSE), and using musical

features of the drums stem (KFeven/D̂cross drum) has the best geometric features (FIDg). For

both metrics, KFeven/D̂merged drum has the worst result. As to assessing reconstructed dances

with FIDk, KFeven/D̂merged drum has the best result, while KFeven/D̂cross drum performs the

worst. For selecting three keyframes, as show in Table 4.9, KFeven/D̂genre reaches the best

results in all metrics, and KFeven/D̂cross full has the worst results in all metrics.

To evaluate the impact of musical features in in-between reconstruction strategies, the

experiment results in Table 4.8 and Table 4.9 are compared with Table 4.4 and Table 4.5,

respectively. Firstly, the experiment is tested by selecting nine keyframes. The results in

Table 4.8 and Table 4.4 suggest that reconstructing in-between frames with Bézier curve

fitting (KFeven eulers/D̂bezier) performs the best in MSE, and using musical features of the

drums stem concatenating it with keyframes (KFeven/D̂merged drum) performs the worst. When

the reconstructed dances are evaluated in terms of FIDg and FIDk, KFeven eulers/D̂motion and

KFeven eulers/D̂merged drum perform the best respectively, and KFeven eulers/D̂eulers linear
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MSE FIDg FIDk

KFeven/D̂cross full 0.34 12.84 35.75
KFeven/D̂cross drum 0.30 11.10 38.47
KFeven/D̂merged full 0.36 15.04 29.35
KFeven/D̂merged drum 0.37 15.14 28.53
KFeven/D̂genre 0.27 11.38 36.88

Table 4.8: The evaluated result of dances reconstructed by evenly selecting nine keyframes
and deriving in-between frames using musical features.

MSE FIDg FIDk

KFeven/D̂cross full 0.96 19.09 39.10
KFeven/D̂cross drum 0.95 18.81 37.17
KFeven/D̂merged drum 0.95 17.65 36.34
KFeven/D̂genre 0.88 15.16 30.24

Table 4.9: The evaluated result of dances reconstructed by evenly selecting three keyframes
and deriving in-between frames using musical features.

performs the worst for these two metrics.

When reducing the number of selected keyframes to three, the following can be observed.

The results in Table 4.9 and Table 4.7 show that when evaluating the reconstructed dances in

terms of MSE, the result is similar to the experiment with nine keyframes, where

KFeven eulers/D̂bezier has the best result and KFeven/D̂merged drum has the worst. When

evaluating the reconstructed dances with FIDg and FIDk, the result suggested that

KFeven/D̂genre performs the best, and KFeven/D̂eulers linear performs the worst.
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4.4.2 Discussions

Comparing the Selection of Musical Features

Regardless of the number of selected keyframes, using genre vectors (D̂genre) surpasses other

musical features in terms of reconstruction distance (MSE). As to FIDg, when evenly

selecting nine keyframes, the musical features of the drums stem (D̂cross drum/D̂merged drum)

outperforms other musical features. However, when changing the number of selected

keyframes to three, D̂genre surpasses other musical features. Lastly, when reconstructing dance

with nine keyframes and evaluating them with FIDk, concatenating musical features of the

drums stem with the selected keyframes (D̂merged drum) outperforms other musical features.

However, similar to FIDg, when the number of selected keyframes is reduced to three, D̂genre

outperforms other musical features.

In conclusion, regardless of the number of selected keyframes, using genre vectors (D̂genre)

as the musical features outperforms other musical features in terms of MSE, implying that the

reconstructed dance has less reconstruction error. Furthermore, when reducing the number of

selected keyframes to three, it also outperforms others in terms of FIDg and FIDk, implying

that the geometric and kinematic features of its reconstructed dance are the closest to the real

dance. However, when the number of keyframes is increased, using musical features of the drums

stem (D̂cross drum/D̂merged drum) surpasses genre vectors. This suggests that understanding the

musical components helps improve the geometric and kinematic features of the reconstructed

dance when using more keyframes.
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Examining the Impact of Musical Features

The result suggests that regardless of the number of selected keyframes, Bézier curve fitting, the

in-between strategy without musical features, has the best result in MSE. This implies that

musical features may not improve the reconstructed dance’s reconstruction distance. However,

the results are different when FIDg and FIDk are used to evaluate the reconstructed dance.

For reconstructing nine keyframes, the Transformer model (D̂motion) depending on selected

keyframes has the best FIDg result. The Transformer model with musical features of the drums

stem, D̂merged drum, has the best FIDk result. In contrast, D̂eulers linear, which performs the best

in MSE, has the worst result. This implies that even though D̂eulers linear, the interpolation

strategy without musical features, has the best reconstruction distance (MSE), strategies using

musical features reconstruct dances whose kinematic features are closer to the real dance. The

result is the same when reducing the number of keyframes to three to increase the reconstruction

difficulty. When using three keyframes, even though D̂eulers linear still has the best reconstruction

distance, D̂genre has the best FIDg and FIDk result. This suggests that when in-between

frames are derived from fewer keyframes, knowing the dance music genre helps improve the

reconstruction distance of reconstructed motion.

4.5 Summary

In the metric verification experiment (Section 4.1), three evaluation metrics: MSE, FIDg, and

FIDk were verified by using them to evaluate dances reconstructed from different numbers of

evenly selected keyframes. The result suggested that they were valid metrics that were able to
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reflect the reconstruction distance of the reconstructed dances.

In Experiment 1 (Section 4.2), where both keyframe selection and in-between reconstruction

strategies did not use musical features, the result suggested that selecting keyframes with

dynamic programming and reconstructing in-between frames with Bézier curve fitting achieved

the best reconstruction distance, regardless of the number of selected keyframes. However, when

reducing the number of selected keyframes, deriving in-between frames with the Transformer

model reconstructed dances whose geometric features and kinematic features were close to the

real dance. The results of Experiment 1 were used as the baseline to compare against the results

of Experiments 2 and 3.

In Experiment 2 (Section 4.3), the experimental result suggested that with nine keyframes,

the onset strength and weighted onset strength outperformed the weighted activation curve in

terms of the reconstruction distance; when using three keyframes, the weighted activation curve

outperformed other musical features. However, regardless of the number of selected keyframes,

using the weighted onset strength of the dance music improved the geometric features of the

reconstructed dance. Lastly, using the onset strength enhanced the kinematic features of the

reconstructed dance. The result in Experiment 2 was compared with Experiment 1 (Table 4.10

and Table 4.11), and it suggested that when using strategies to select nine keyframes, injecting

musical features failed to improve the reconstruction distance (MSE) and the geometric feature

(FIDg) of the reconstructed dance. However, when selecting three keyframes and using linear

interpolation as the in-between strategy, the keyframe selection strategy using onset strength

was able to reconstruct dances with the best kinematic features (FIDk).
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MSE FIDg FIDk

KFeven eulers/D̂eulers linear 0.25 16.75 51.48
KFonset/D̂eulers linear 0.31 17.46 54.62
KFstems/D̂eulers linear 0.31 17.08 54.63
KFnmfd/D̂eulers linear 0.35 17.53 55.27

Table 4.10: Evaluated results of dance reconstructed by selecting nine keyframes and
reconstruct in-between frames with/without musical features.

MSE FIDg FIDk

KFeven eulers/D̂eulers linear 0.83 42.73 86.70
KFonset/D̂eulers linear 0.90 48.12 84.26
KFstems/D̂eulers linear 0.89 48.10 84.92
KFnmfd/D̂eulers linear 0.87 48.81 86.65

Table 4.11: Evaluated results of dance reconstructed by selecting three keyframes and
reconstruct in-between frames with/without musical features.

In Experiment 3, where musical features were injected into in-between selection strategies,

the result indicated that using genre vectors outperformed other musical features in terms of

reconstruction distance. With nine keyframes, using musical features of the drums stem

improved the geometric and kinematic features of the reconstructed dances. With three

keyframes, using genre vectors reconstructed dances whose geometric and kinematic features

were close to the real dance. The result was compared with Experiment 1 (Table 4.12 and

Table 4.13), and it implied that: the reconstructed dance using Bézier curve fitting had the

best MSE result. However, the geometric and kinematic features of dances reconstructed

from musical features were closer to the real dance.
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MSE FIDg FIDk

KFeven eulers/D̂eulers linear 0.25 16.75 51.48
KFeven eulers/D̂bezier 0.91 34.37 198.08
KFeven eulers/D̂motion 0.26 11.02 37.90
KFeven/D̂cross full 0.34 12.84 35.75
KFeven/D̂cross drum 0.30 11.10 38.47
KFeven/D̂merged full 0.36 15.04 29.35
KFeven/D̂merged drum 0.37 15.14 28.53
KFeven/D̂genre 0.27 11.38 36.88

Table 4.12: Evaluated results of dance reconstructed by selecting nine keyframes and
reconstruct in-between frames with/without musical features.

MSE FIDg FIDk

KFeven eulers/D̂eulers linear 0.83 42.73 86.70
KFeven eulers/D̂bezier 1.07 29.74 76.01
KFeven eulers/D̂motion 0.90 16.57 33.76
KFeven/D̂cross full 0.96 19.09 39.10
KFeven/D̂cross drum 0.95 18.81 37.17
KFeven/D̂merged drum 0.95 17.65 36.34
KFeven/D̂genre 0.88 15.16 30.24

Table 4.13: Evaluated results of dance reconstructed by selecting three keyframes and
reconstruct in-between frames with/without musical features.
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Chapter 5

Conclusion

In this thesis, I attempted to show that injecting musical information of dance music improves

the reconstruction distance of the reconstructed dance. A music source separation algorithm

was used to separate dance music into four stems. Musical features of each stem were

extracted by computing the spectral flux onset curve, Nonnegative Matrix Factorization

Deconvolution (NMFD), Mel frequency cepstral coefficients (MFCC), and peak locations of

the onset curve. Dance motion was reconstructed by first selecting a subset of frames as

keyframes and reconstructing in-between frames using selected keyframes. Four experiments

were conducted to evaluate dances reconstructed from different keyframe selection strategies

and in-between-reconstruction strategies, with and without musical features. Three evaluation

metrics were used to evaluate reconstructed dances: Mean squared error (MSE) was used to

evaluate the difference between the original dance motion and the reconstructed dance

motion. Frechet Inception Distance with geometric features (FIDg) and kinematic features
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(FIDk) was used to evaluate the distance of geometric features and kinematic features of a

set of generated dances and real dances.

In metric verification experiment, evaluation metrics were verified by evaluating

reconstructed dance using three, five, and nine keyframes, which were expected to have

reconstruction distance from low to high. The result suggested that the value of each metric

decreased as the number of evenly selected keyframes increased, which reduced the difficulty

for strategies to reconstruct dances and reduced the reconstruction distance of reconstructed

dances. This implied that metrics were valid and could assess the reconstruction distance of

reconstructed dances.

In Experiment 1, keyframe selection and in-between reconstruction strategies without

musical features were employed to reconstruct dance motion. The result suggested that

disregarding the number of selected keyframes, selecting keyframes with dynamic

programming and reconstructing in-betweens with Bézier curve fitting achieved the best

reconstruction distance. Besides, regardless of the number of selected keyframes, evenly

selecting keyframes and reconstructing in-between frames with the Transformer model was

able to reconstruct dances whose geometric features were close to the real dances. When

selecting nine keyframes, selecting keyframes with dynamic programming and reconstructing

in-betweens with Bézier curve fitting reconstructed dances with the best kinematic features.

However, when reducing the number of selected keyframes to three, replacing the in-between

strategy with the Transformer model reconstructed dances with the best kinematic features.

The result suggested that when using nine keyframes, the onset strength and weighted
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onset strength outperforms the weighted activation curve in term of the reconstruction

distance. When using three keyframes, the weighted activation curve outperforms others. The

result suggested that regardless of the number of selected keyframes, the weighted onset

strength improves the geometric features, and the onset strength improves the kinematic

features. Compared to Experiment 1, the result indicated that regardless of the number of

selected keyframes, musical features did not improve the reconstruction distance and

geometric features. When selecting three keyframes and reconstructing dances with linear

interpolation, the keyframe selection strategies using onset strength as musical features was

able to reconstruct dances with the best kinematic features. This suggested that it

outperformed its counterparts in terms of metrics that assess the kinematic features.

Compared to keyframe selection strategies without musical features, its reconstructed dances

moved more like real dances.

In Experiment 3, keyframes were selected evenly, and musical features were used to

reconstruct in-between frames together with the selected keyframes. The result suggested that

the in-between strategy using genre vectors reconstructed dances with the best reconstruction

distance. When reconstructing nine keyframes, strategies using musical features from the

drums stem were able to reconstruct dances with the least geometric and kinematic features

distances. However, as the number of keyframes was reduced to three, the in-between strategy

using genre vectors outperformed others, where the reconstructed dances had the least

geometric and kinematic feature distances. Compared to Experiment 1, the result showed

that regardless of the number of selected keyframes, in-between strategies with musical
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features did not surpass strategies without musical features in terms of reconstruction

distance. However, strategies using musical features were able to reconstruct dances whose

geometric and kinematic features were closer to the real dances.

In conclusion, using musical features in keyframe selection and in-between reconstruction

strategies did not improve reconstruction distance. However, musical features did improves the

geometric and kinematic features of its reconstructed dances. This implies that although the

reconstructed dances deviate from the real dances, the overall dance poses and the way a dance

pose transforms to the next pose are closer to the real dances when musical features were used.

5.1 Future Work

Two future works are discussed in this section. Different input features relating to dance and

music to the neural network can be explored further to see if certain features improve the

reconstructed dance. For example, the geometric and kinematic features can be used as inputs

to the neural network model, and in-between frames can be reconstructed by the model that

is conditioned on keyframes, musical features, and geometric and kinematic features. Since

the positions of predicted keyframes influence the difficulty of the interpolation strategy, other

than predicting keyframes and in-between independently, they can be predicted jointly in future

work. In this way, and neural network is trained to take dance music as input and directly

predict the keyframes and in-betweens.

Proposing metrics to evaluate generated dances and whether a dance fits to its music is a

future research topic. Recent works normally use only three metrics to evaluate a generated
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dance: FID to evaluate the realness of a dance motion, metric calculating the variance of

generated dance motions to evaluate the diversity of generated dances, and metric evaluating the

beat-alignment score to measure how well a dance motion fits into its dance music. Nevertheless,

there are no common standards for implementing these metrics. For example, for evaluating

FID metrics, Li et al. (2021a) used geometric and kinematic features defined in Müller, Röder,

and Clausen (2005) and Onuma, Faloutsos, and Hodgins (2008), which were originally designed

for motion recognition. However, Ren et al. (2020) used a pre-trained Graph Convolutional

Network (Yan, Xiong, and Lin 2018) as the feature extractor to evaluate FID metrics. No

studies focus on proposing evaluation metrics to evaluate generated dance and assess whether a

dance fits its accompanying dance music. Studies on evaluation metrics are needed to establish

a standard to compare and assess the generated dance motion.
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Appendix A

Hyperparameters

This section includes the hyperparameters of the Transformer and the split of the AIST++

dataset. The number of multi-head self-attention layers is four, with the number of heads

set to 10 in each layer. A fully-connected layer is used to transform the dimension of the

input musical or motion features into 800-d vectors. Two fully-connected layers whose output

dimension is 3072-d and 800-d, respectively, are attached to the end of each multi-head self-

attention layer. At the end of the last multi-head attention layer, a fully-connected layer is

used to transform the dimension from 800-d back to the dimension for the input data. The

activation function is the softmax function, and the dropout rate is set to 0.1.
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Appendix B

Dataset Split

The dataset split follows the split proposed in the AIST++ dataset, where the choreography

and music in the test/validation split is not overlapped with the training split. There are

50 music pieces and eight choreographies in the training split and ten music pieces and two

choreographies in the test/validation split. The numbers of dance motion in the training split

and test/validation split are 980 and 40, respectively.
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Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. “Learning Phrase

Representations using RNN Encoder-Decoder for Statistical Machine Translation.” In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing, 1724–1734.



References 94

Choi, Yunjey, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. 2020. “Stargan v2: Diverse

Image Synthesis for Multiple Domains.” In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 8188–8197.

Cohen, Patricia, Stephen G. West, and Leona S. Aiken. 2014. Applied Multiple

Regression/Correlation Analysis for the Behavioral Sciences. Psychology Press.

Davis, Abe, and Maneesh Agrawala. 2018. “Visual Rhythm and Beat.” In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2532–2535.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.” In

Proceedings of the 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies, 4171–4186. Association for

Computational Linguistics.

Diebel, James. 2006. “Representing Attitude: Euler Angles, Unit Quaternions, and Rotation

Vectors.” Matrix 58 (15-16): 1–35.

Ding, Ming, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu

Zou, Zhou Shao, and Hongxia Yang. 2021. “Cogview: Mastering text-to-image Generation

via Transformers.” Advances in Neural Information Processing Systems 34:19822–19835.

Dixon, Simon, Elias Pampalk, and Gerhard Widmer. 2003. “Classification of Dance Music by

Periodicity Patterns.” In Proceedings of the International Society for Music Information

Retrieval Conference, 26–30.



References 95

Donahue, Chris, Julian McAuley, and Miller Puckette. 2019. “Adversarial Audio Synthesis.” In

Proceedings of the International Conference on Learning Representations.

Dong, Li, Furu Wei, Chuanqi Tan, Duyu Tang, Ming Zhou, and Ke Xu. 2014. “Adaptive

Recursive Neural Network for Target-dependent Twitter Sentiment Classification.” In

Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics

(volume 2: Short papers), 49–54.

Dong, Linhao, Shuang Xu, and Bo Xu. 2018. “Speech-transformer: a no-recurrence Sequence-

to-sequence Model for Speech Recognition.” In Proceedings of the 2018 IEEE International

Conference on Acoustics, Speech and Signal Processing, 5884–5888. IEEE.

Dosovitskiy, Alexey, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,

Thomas Unterthiner, Mostafa Dehghani, et al. 2021. “An Image is Worth 16x16 Words:

Transformers for Image Recognition at Scale.” In Proceedings of the International

Conference on Learning Representations.

Engel, Jesse, Lamtharn Hantrakul, Chenjie Gu, and Adams Roberts. 2020. “DDSP:

Differentiable Digital Signal Processing.” In Proceedings of the International Conference

on Learning Representations.

Faraway, Julian J., Matthew P. Reed, and Jing Wang. 2007. “Modelling Three-dimensional
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