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Abstract 

 

Nanomechanical resonators are tiny, operate at very high frequencies (in the GHz regime), and are 

ultrasensitive; recent measurements show that these structures can measure mass and force at the 

atomic level. The sensitivity of these devices can be further improved by reducing damping and 

enhancing the linear range. Difficulties in studying damping and dynamics in nanoresonators using 

experiments arise from their small size and the simultaneous existence of several mechanisms. As 

a result, despite of a lot of research activity a detailed microscopic understanding of the 

mechanisms of material damping and nonlinear oscillations has not been achieved. To address 

some of these problems, we use classical molecular dynamics to study damping and nonlinear 

dynamics in a set of nanoresonators made of nickel and silicon atoms with dimensions in the range 

of nanometers. 

 

In the last decade several attempts have been made for estimating damping in nanostructures using 

adiabatic molecular dynamics simulation in which the temperature of the system is not controlled. 

On the other hand, isothermal simulations are more meaningful for damping simulations because 

they mimic the operating conditions of actual devices. To bridge this gap, we performed isothermal 

simulations of damping using Nosé-Hoover thermostat in a nickel nanofilm undergoing 

longitudinal oscillations at 300 K and established the relationship between different measures of 

damping and the dynamics. In the subresonant regime, damping was quantified as the loss tangent 

and the loss factor using steady-state harmonic oscillations and their magnitudes were found to 

differ by less than 3%. We identified simulation parameters needed to be selected to ensure 

linearity and convergence. The quality factor was obtained from the spectrum of the 



iv 
  

thermomechanical noise and also from the Duffing-like nonlinearity during steady-state harmonic 

oscillations. In addition, the nonlinear logarithmic decrement was obtained from the Hilbert 

transform.  

 

Damping in a single-crystal silicon nanofilm and a single-crystal silicon nanowire was simulated 

to measure loss angle and loss factor for longitudinal oscillations as a function of frequency and 

temperature.  The results of this study showed damping peaks around 300 K and 500 K in the 

nanofilm which had qualitative resemblance with Akheiser damping. In addition, damping in the 

nanowire was larger than in the nanofilm at 300 K because of comparatively larger surface to 

volume ratio. In another study, damping in amorphous silicon was found to be orders of magnitude 

larger than in single-crystal silicon for longitudinal oscillations. In addition, temperature dependent 

peaks were observed in the damping of the amorphous silicon.  

 

In the last chapter, nonlinear oscillations is explored for the fundamental bending mode of two 

doubly-clamped beams (one with square and the other with rectangular cross-section) and the 

longitudinal mode of a silicon nanofilm. The doubly-clamped beam with rectangular cross-section 

showed spring hardening behavior in the steady-state harmonic response while the nanofilm 

showed spring softening behavior. In both cases the response could be captured using the Duffing 

equation. The doubly-clamped beam with square cross-section showed signatures of 1:1 internal 

resonance consistent with the theory of two-degree-of-freedom Duffing system with cubic coupled 

terms.  
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Sommaire 

 

Les résonateurs nanomécaniques sont des dispositifs  minuscules, ultrasensible  et  fonctionnent à 

des fréquences très élevées (GHz); des mesures récentes montrent que ces structures peuvent 

mesurer des masses et des forces au niveau atomique. La sensibilité de ces dispositifs peut être 

encore améliorée en réduisant l'amortissement et  avec l'amélioration  de l'intervalle linéaire. 

L'étude de l'amortissement et des forces dynamiques trouvées a l'intérieure des nanorésonateurs 

apportent des difficultés qui découlent principalement de leur petite taille. En conséquence, en 

dépit du grand nombre d'activités de recherche, une compréhension microscopique détaillée des 

mécanismes d'amortissement et  d'oscillations non linéaires  n'a pas encore été atteint. Pour 

répondre à certains de ces problèmes, nous utilisons la dynamique moléculaire classique pour 

étudier l’amortissement et la dynamique non linéaire dans un ensemble de nano résonateurs faite 

a partir de nickel et de silicium avec des dimensions de l'ordre de nanomètres. 

 

Dans la dernière décennie, plusieurs tentatives ont été faites pour simuler un amortissement a 

l'intérieur de nanostructures a l'aide de simulations adiabatiques,  dans lesquels la température du 

système est non contrôlée. De l'autre part,  les simulations isothermes sont plus significatives pour 

les simulations d'amortissement parce qu'ils imitent les conditions de fonctionnement des 

dispositifs réels. Pour combler cette lacune, nous avons effectué des simulations isothermes 

d'amortissement utilisant un thermostat Nosé-Hoover dans un nanofilm de nickel subissant  des 

oscillations longitudinales à 300 K et nous avons établi la relation entre les différentes mesures 

d'amortissement et de la dynamique. Dans le régime sous-résonant,  l'amortissement a été 

quantifiée comme étant la perte tangente et le facteur de perte en utilisant l'état d'équilibre 
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d'oscillations harmoniques et une différence inférieure à 3% de leurs amplitudes a été trouver. 

Nous avons identifié les paramètres de simulation nécessaires pour assurer la linéarité et la 

convergence. Le facteur de qualité a été obtenu à partir du spectre de bruit thermomécanique et 

aussi de l'aspect non-linéarité Duffing pendant l'état d'équilibre d'oscillations harmoniques. De 

plus, le décrément logarithmique non linéaire a été obtenue à partir de la Transformée de Hilbert. 

 

L'amortissement dans un nanofilm et nanofil de silicium monocristallin a été simulée pour mesurer 

l'angle de perte et le facteur de perte pour des oscillations longitudinales en fonction de la fréquence 

et température. Les résultats de cette étude ont montré des pics d'amortissement  a des températures 

d'environ 300 K et 500 K dans le nanofilm qui avait une  ressemblance qualitative avec un  

amortissement Akheiser. L'amortissement  à 300K dans le nanofil était plus grand que dans le 

nanofilm  en raison d'un rapport surface/volume  plus grand. Dans une autre étude, l'amortissement 

dans le silicium amorphe a été trouvé comme étant plusieurs ordres de magnitude plus grande que 

dans le silicium monocristallin pour les oscillations longitudinales. De plus, des pics dépendant de 

la température  ont été observés dans l'amortissement du silicium amorphe. 

 

Dans le dernier chapitre, les oscillations non linéaires sont explorées pour le mode de flexion 

fondamental de deux poutres doublement encastrées (une avec une coupe transversale carré l'autre 

rectangulaire) et le mode longitudinal d'un nanofilm de silicium. La poutre rectangulaire 

doublement serrée présente un comportement de durcissement de ressort dans la réponse 

harmonique en régime permanent tandis que le nanofilm montre un comportement 

d'amortissement. Dans les deux cas, la réponse pourrait être capturée à l'aide de l'équation Duffing. 

La poutre carrée doublement serrée montre une signatures 1:1 de résonance interne, qui est 
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conforme à la théorie Duffing de système a deux-degrés-de-liberté avec des termes couplés 

cubiquement. 
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TED Thermoelastic damping 
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Latin Symbols 

 

A  Amplitude of vibration 

cA
 

Critical amplitude 

pA  Peak amplitude 

a-Si Amorphous silicon 

C  Specific heat per unit volume 

c  Coefficient of viscous damping 

c-Si Crystalline silicon  

E  Young’s modulus 

0F  Force applied on the mass 

f  Frequency of oscillation 

nf  Resonance frequency 

)(rg  Radial distribution function 
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H  Hamiltonian function 

Bk  Boltzmann’s constant 

k  Thermal conductivity 

xK  Axial stiffness 

L  Length of the beam 

fd  Number of internal degrees of freedom 

Ni Nickel 

P Probability distribution function  

Q  Quality factor 

S  Cross-section 

Si Silicon 

SiC Silicon carbide 

CNT Carbon nanotube 

SWCNT Single walled carbon nanotube 

DWCNT Double walled carbon nanotube 

Si3N4 Silicon nitride 

xS  Power spectral density of axial displacement noise 

ft
 

Duration of forced vibration 

ct  Convergence time 

U  Embedded atomic potential 

W  
Total mechanical energy stored in a vibrating structure during 

each cycle of vibration 
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x  Displacement 

s  Phonon wave vector polarization 

u


 Phonon wave vector 

v  Phonon wave velocity 

eF  Force field 

nrV  Velocity of the nanoresonator  

raiset  
Simulation time for raising the temperature of the structure in 

NVT ensemble 

eqt  Simulation time for thermal equilibration 

G  Equivalent mass of Nosé-Hoover thermostat 

 

 

 

Greek Symbols 
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t  Simulation time step 
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v  Period of mechanical vibration 
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Chapter 1 

Introduction to nanoresonators 

 

Recent advances in microfabrication techniques have enabled manufacturing of resonators with 

structural dimensions on the order of hundreds of nanometers, these devices are popularly known 

as nanoresonators. Nanoresonators are mechanical structures such as beams [1], plates [2], 

membranes [3], wires [4], and discs [5] and are harmonically excited in one of their resonant 

modes. Depending on the direction of vibration, these structures operate in different mechanical 

modes, for example flexural [6], longitudinal [7], torsional [8], lamé [9], contour [10], and 

breathing [11]. Common choice of materials for manufacturing nanoresonators include carbon 

nanotubes (CNT) [12, 13], graphene [14, 15], single-crystal silicon [16], SiC [17] and Si3N4 [18]. 

 

Nanoresonators have extraordinary performance capabilities, these devices have natural 

frequencies in the microwave frequency range [19], making them useful in diverse array of 

applications such as sensing, detection, and filtering. Carefully designed experimental setups using 

nanoresonators have been demonstrated to have mass sensitivity to the attogram (10-18 g) level at 

room temperature [20], and yoctogram (10-24 g) sensitivity at cryogenic temperatures [21]. These 

results serve as an inspiration to build spectrometers capable of imaging spatial distribution of 

mass within individual analyte using nanoresonating structures in a lab-on-a-chip [22, 23]. In 

addition, these devices are also capable of measuring forces as small as 10-19 N [24] and 

fluctuations on the order of 10-12 meters [25] at room temperature. 
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Applications of nanoresonators in biosensing include detection of biological entities such as 

viruses [26], marker proteins [27], DNA [28], and enzymatic activity [29]. Furthermore, 

nanoresonator based experimental setups have been used for exploring applications in quantum-

enhanced sensing and quantum information. For example, beam-nanoresonators combined with 

magnetic resonance imaging have been demonstrated to capture the spin of a single electron [25, 

30]. Also, recently researchers have been able to cool nanoresonators down to their quantum 

mechanical ground state to show macroscopic mechanical objects can obey laws of quantum 

mechanics [31, 32]. In addition, the use of carbon nanotube and graphene based resonators as 

switches [33, 34], transmitters [35],  filters [36] is actively being pursued for applications in radio-

frequency (RF) communication.  

 

As nanoresonators evolve and gain maturity, there is a growing need for developing systematic 

and rational design methodologies for improving their performance and to make transition from 

laboratory scale experimental demonstrations to full-fledged commercialization. Two critical 

operating aspects that determine the performance of resonators in general are damping in the 

structure and the linearity of oscillations. Section 1.2 and 1.3 discusses the role of damping and 

nonlinear oscillations in the context of performance of nanoresonators.  

 

1.1 Damping 

Mechanical structures dissipate stored energy during vibrations by damping. In general damping 

is measured in terms of quality factor ( Q -factor), logarithmic decrement ( ), loss factor ( ), loss 

angle ( ), and loss tangent ( tan ). For small values of damping ( 01.0 ) these measures are 

related [37] 
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(1.1) 

(This relationship is essential to the damping estimates reported in this thesis, expressions for 

calculating each of these measures have been discussed in Chapter 2.)  

Reducing damping in nanoresonators is important for the following reasons: (a) enhancing 

sensitivity in sensing applications, (b) improving frequency stability and selectivity in 

communications applications, and (c) reducing the power consumption of devices used in RF and 

IC applications. For example the mass sensitivity of nanoresonators is given by [38] 
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(1.2) 

where 0m  is the mass, 0f  is the natural frequency, DR is the dynamic range of the resonator, f

is the available frequency range of detection. The dynamic range is defined as the ratio of the 

maximum amplitude at the onset of nonlinear oscillations and the thermomechanical noise floor. 

An outcome of Eq. (1.2) is that the sensitivity of a given resonator, i.e. the smallest mass that a 

resonator can detect for fixed values of 0m , 0f  , and f   increases by reducing damping in the 

resonator. Therefore reducing damping in nanoresonators is warranted to be able to detect smaller 

mass.  

 

Damping arises from various sources depending on the operational parameters (frequency, 

temperature, crystallographic defect, mode, amplitude, chemistry). The mechanisms responsible 

for damping are broadly classified into material damping and extrinsic damping [39]. Examples of 

extrinsic damping mechanisms are: support loss resulting from the stress-wave radiation at the 
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supports, clamping loss due to stick-slip friction at the clamps, and fluid damping due to the 

frictional forces exerted on the resonator by the surrounding fluid [39]. Material damping 

mechanisms originate in the resonator itself, these are thermoelastic damping, phonon damping, 

surface-medicated damping, and internal friction. Details of different material damping 

mechanisms relevant to the results presented in this thesis are presented in Chapter 2. Progress has 

been made in developing design strategies to reduce damping from extrinsic mechanisms to 

insignificant values, for example, operating a resonator in vacuum can reduce fluid damping to 

negligible values [40]. However, material damping mechanisms are unavoidable, therefore, it is 

imperative to understand the material damping mechanisms in detail for designing nanoresonators 

with low damping. 

 

Over the years considerable effort has gone into developing experimental and theoretical strategies 

for understanding different material damping mechanisms [39, 40]. Studying a particular 

mechanism using experiments is difficult because the measured damping has contributions from 

all the damping sources and the identification of contributions from each of the damping sources 

is not trivial [41]. Furthermore, experimental uncertainties and calibration limitations also 

influence accuracy of the measurements [42]. In addition, difficulty arises in the measurement of 

damping in nanoresonators because of: (a) fragility of the intricate architectures, and (b) 

unavailability of suitable transduction schemes for the measurement of high frequency of 

oscillations. 

 

On the other hand, in the past century, several phenomenological theoretical models have been 

formulated to model damping. These are: viscous damping [37], Kimball-Lovell solid [43], and 

anelastic solid [44, 45]. A limitation of these models is that they incorporate damping in the 
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equations of motion using ad-hoc assumptions about the governing mechanisms, and do not take 

into consideration the specifics of the underlying mechanisms. Therefore, despite of considerable 

efforts, a detailed atomic level understanding of energy dissipation in solids is still elusive.  

 

1.2 Nonlinear oscillations 

The motion of linear resonators can be described using the model of harmonic oscillator as long 

as the restoring force is proportional to the displacement from the equilibrium position [46]. But, 

this linear assumption does not hold in the nonlinear regime [47]. Recent research shows that the 

linear regime in nanoresonators is limited because these structures are prone to nonlinear 

oscillations when excited near the resonance frequencies [48, 49]. This limits the useful dynamic 

range in nanoresonators.  

 

Unlike linear systems, resonance frequencies in nonlinear systems are amplitude dependent, and 

for deterministic harmonic excitations their responses can be inconsistent. In continuous systems 

these irregularities give rise to interesting phenomena such as jump, bifurcations, and modal 

coupling [50]. For example, in linear multi-degree-of-freedom systems different mechanical 

modes are independent of each other, therefore it is possible to excite a particular mode without 

perturbing other resonant modes. However, in nonlinear systems mechanical modes can couple, 

interact and exchange energy when excited [1, 51-53]. There are practical purposes for which 

designers want to avoid or control bifurcations, and modal coupling in nanoresonators. Therefore, 

there is a growing need to study nonlinear oscillations, understand the key mechanisms, develop 

mathematical models, in order to identify conditions to avoid it when unwanted, and explore it 

efficiently to open up future possibilities. 
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In general nonlinearities in mechanical structures can arise from various sources. In nanoresonators 

these mechanisms can be broadly categorized as material, inertial, geometric and dissipative [54].  

For small magnitudes of applied stress the strain in the system is usually proportional. However, 

for large applied stress the linear relationship between the stress and the strain becomes invalid, 

this condition is known as material or constitutive nonlinearity. Geometric nonlinearities arise at 

large oscillation amplitudes giving rise to nonlinear strain-displacement relationships (such as mid-

plane stretching, large curvature, and large strain). A concentrated or distributed mass leads to 

nonlinear velocities/accelerations in the dynamics of resonators known as inertiaI nonlinearity. 

Mechanisms of dissipative nonlinearity are unclear [55, 56]. 

 

Efforts have been made for modelling nonlinear oscillations theoretically by making assumptions 

about the governing dynamics, and approximating the problem with an equivalent nonlinear 

system [50, 54]. In the absence of generic principles for the analytical modelling of nonlinear 

oscillations in nanoresonators, attempts have been made mostly on a case by case basis. For 

example the Duffing equation for long has served as an important paradigm for a broad class of 

nonlinear phenomena. The basic assumption of the Duffing model is a cubic restoration force in 

the equation of motion [47, 50]. This simplifying assumption has been found to capture the 

nonlinearity of oscillations in several nanoresonators reasonably well [48, 53, 57]. However a 

blanket use of the Duffing nonlinearity can be grossly incorrect essentially because new 

phenomena can occur at the nanoscale that can significantly alter the response. For example, the 

thermal noise is an important aspect in the dynamics of nanoscale resonators. It has been recently 

shown that the thermal noise itself can drive nanoresonators into nonlinear regimes [58]. However, 

there have been fewer attempts made to account for this effect into the mathematical treatment of 
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the nonlinear dynamics [13]. Studying nonlinear dynamics using experiments is also difficult 

because several mechanisms simultaneously contribute to the observed nonlinearity, making it 

difficult to identify the underlying mechanisms. 

 

1.3 Use of molecular dynamics simulations 

A different approach for studying damping and dynamics in nanoresonators is to tackle the 

problem from a microscopic point of view. A significant recent progress in this regard is the use 

of molecular dynamics (MD) simulations. In classical MD simulations atoms are treated as point 

particles and their motions are tracked by performing numerical computations over long sequence 

of time steps. Typically MD simulations are performed for systems with 102 – 109 atoms [59], over 

times to the tune of nanoseconds [60]; these numbers match suitably with nanoresonators because 

of their tiny mass and small period of oscillations (to the tune of nanoseconds).  

 

In general, the following steps are performed in order to perform MD simulations. The first step 

is to find a potential function, commonly known as the interatomic potential, which describes the 

mutual interactions between atoms. The potential function is either approximated by an empirical 

force model, or is fitted using electronic structure calculation data. The second step is to formulate 

an algorithm for integrating the equations of motion numerically to calculate atomic positions, 

velocities and forces. The final step is to specify the initial conditions (for example initial atomic 

positions, velocities) and feed them to the integration scheme for solving the equations of motion. 

The details of the different aspects of MD simulations are presented in Chapter 3. 

 

In MD simulations, the system is evolved in time under certain macroscopic constraints, and there 

are infinite number of microstates (microstates are particular configurations of the system with a 
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given set of positions and momenta) compatible with the imposed constraints. In the context of 

statistical mechanics ensembles are defined as an assemblage of these microstates, each of which 

represent a possible macroscopic constraint that the real system experiences. MD simulations are 

used to estimate the material and structural properties by invoking ergodicity which states that 

given sufficient time a system will attain all possible positions and momentum consistent with the 

imposed macroscopic conditions [61], in other words, time averages are equal to ensemble 

averages. This consideration allows the prediction of structural, dynamic and thermodynamic 

properties using limited computational resources. Typically, the time evolution of a single 

ensemble is simulated to characterize the system. There are several commonly used ensembles in 

molecular dynamics simulations, e.g. microcanonical NVE ensemble, in which number of atoms 

(N), volume (V) and energy remains constant (E); canonical NVT ensemble (NVT) in which 

number of atoms, volume, and temperature (T) remain unchanged; isothermal-isobaric NPT 

ensemble in which number of atoms, pressure and temperature (T) is kept constant; and 

isoenthalpic-isobaric NPH ensemble in which number of atoms, pressure and enthalpy (H) remain 

statistically invariant. 

 

Using MD simulations researchers have studied different mechanisms of material damping in 

idealized nanoresonators by eliminating extrinsic damping mechanisms. For example, instead of 

using an external substrate, clamping conditions have been achieved by freezing motion of few 

atoms in the structure, thereby eliminating attachment losses [62]. Energy dissipation due to fluid 

damping has been eliminated by performing simulations with the nanoresonators surrounded by 

vacuum [63]. The next section presents an exhaustive survey of the literature on material damping 

and nonlinear oscillations in nanoresonators investigated using MD. The aim is to organize results 
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from various studies and identify gaps in the knowledge. Subsequently, Section 1.7 outlines the 

organization of the thesis. 

 

1.4  Literature survey 

Till date a small set of materials have been used to study material damping and nonlinear 

oscillations in nanoresonators. A summary of the range of materials, structural dimensions, 

vibrational modes, frequency and temperature is presented in Table 1.1. In these studies the 

simulations have been performed using the NVE and the NVT ensemble.  

 

Table 1.1: Summary of materials and operating parameters for MD simulations. 

Materials 

Graphene [64-74], Carbon nanotubes [63, 75-80], Silicon [81], 

Silver [82], Copper [82-84], and Nickel [62, 85] 

Structural dimensions 4 nm to 50 nm 

Frequency 3 GHz to 1.2 THz 

Temperature 0.05 K to 1200 K 

Method used for 

calculating damping 
Free decay, loss angle, loss factor 

Mode of oscillation Bending, longitudinal, torsional 

 

   Damping in CNTs:  Guo et al. [79] studied the effect of morphology of carbon nanotubes (CNT) 

on damping using the free decay method and found that commensurate (armchair/armchair or 

zigzag/zigzag) CNTs damp more compared to the incommensurate (armchair/zigzag) CNTs. 

Similar results on damping were obtained for SWCNTs and DWCNTS by Akita et al. [78]. Jiang 
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et al. [63] simulated damping in CNTs using the free decay method, they used the following 

expression for calculating the Q -factor,  

,)21( n
extn QEE   

 (1.3) 

where nE  is the total energy after n  cycles and extE  is the initial energy. Their calculations 

revealed that the DWCNTs (double walled carbon nanotube) dissipate more energy compared to 

SWCNTS (single walled carbon nanotube). The excess dissipation was attributed to interlayer 

interaction present in DWCNTs. Further analysis revealed that the damping in the SWCNT varied 

with temperature showing 
36.0T dependence.  

 

Vallabhaneni et al. [75, 76] modified the free decay method and used a band pass filter based 

approach to remove the thermal noise from the overall response for calculating damping in 

SWCNTs. They reported that Q -factor in SWCNTs was independent of the length and the 

diameter for longitudinal vibrations, but increased with increasing length and decreased with 

increasing diameter for the bending vibrations. In addition, damping was found to increase linearly 

at temperature below 300 K [76], contrary to the trend of 
36.0T  reported by Jiang et al. [63]. 

Vallabhaneni et al. concluded that the discrepancy in the temperature dependence of damping in 

CNT was due to an error in the method for calculating damping used by Jiang et al. wherein the 

authors did not separate the external and internal energies in Eq. (1.3) which lead to an over 

estimation of Q -factors. 

 

Zhou et al. [80] calculated damping in SWCNTS and DWCNTs in terms of   and observed that 

damping is inversely related to the tube radius. In addition, significant increase in damping was 
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reported at frequencies in the vicinity of the resonance frequency. The excess energy dissipation 

close to the resonance frequency was attributed to the excitation of additional phonon modes.   

 

   Damping in graphene membranes:  In a series of papers, Kim et al. [69] reported that for flexural 

mode oscillations in the absence of extrinsic damping mechanisms Q -factor in graphene 

membranes is limited. In addition, they investigated into the effect of edge effects and grain 

boundaries on damping and observed that without the application of any external stress, additional 

vibrational modes appear because of free edges and contribute to the energy loss in graphene [70, 

72]. Passivating the free edges with hydrogen atoms was found to be ineffective in reducing the 

damping, whereas externally applied strain of 1% reduced damping as a function of temperature 

below 300 K. Similar results related to the edge effects on damping in graphene membranes have 

been reported by Jiang et al. [66, 67]. Kim et al. [72] found that damping in graphene with grain 

boundaries is orders of magnitude larger than its pristine counterpart.  

 

   Damping in MoS2 membranes: MD simulations of damping in single layered MoS2 membranes 

revealed that material damping in MoS2 is smaller than in graphene at temperatures below 300 K 

[86]. The reduction in damping was attributed to the energy gap in its phonon dispersion, which 

helps to prevent the resonant oscillation from being interrupted by other vibrational modes. This 

study also demonstrated that nonlinear oscillations lead to larger damping in MoS2 compared to 

graphene due to the existence of additional ripples in MoS2.  

 

   Damping in ZnO nanowires: Jiang et al. [87] simulated damping in ZnO nanowires with: (a) 

reduced surface charges on the polar surfaces, and (b) free polar surfaces. They reported that 

damping in ZnO with free polar surface is one order of magnitude smaller than the structure with 
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reduced surface charges. Further analysis revealed that low damping is due to shell like surface 

reconstruction in the free polar surface that prevents the resonant oscillations in the free nanowires 

from being dissipated through the torsional motion. 

 

   Damping in Ag nanowires: The effect of tensile strain on the damping in Ag nanowires was 

studied by Kim and Park [71]. They reported that the application of tensile strain effectively 

mitigates both the intrinsic surface and thermal losses, with improvements in Q -factor by a factor 

of 3–10 across a range of operating temperatures. In addition, the damping was found to be 

independent of the surface area to volume ratio, but varied with the aspect ratios. Furthermore, 

irrespective of the applied strain the damping showed a 7.0T  dependence. 

 

   Damping in SixGe1_x and Si/SixGe1_x  nanowires: Georgakaki et al. [81] investigated damping in 

doubly-clamped SixGe1_x and Si/SixGe1_x  nanowires from free oscillations. The atomic 

interactions were calculated using the Tersoff potential [88]. They found that Q -factor in all the 

structures were to the tune of 103 at 300 K at frequencies in the range 180 GHz and 260 GHz. In 

addition, below 300 K the Q -factor was found to follow power law ( TQ ~ , 0.7< <1), with 

the composite structures Si0.5Ge0.5 and Si/Si0.5Ge0.5 exhibiting higher Q -factor than pristine Si at 

300 K. Furthermore, a passivation of the free surfaces with atomic hydrogen enhanced the Q -

factor from 104 to 105 at 23 K.  The authors however did not explicitly identify the dominant 

mechanism responsible for the observed damping.  

 

During the oscillations of a damped resonator the stored mechanical energy is converted into heat. 

Under isothermal conditions the heat energy is dissipated into the environment and the resonator 
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maintains its initial temperature. However, in NVE ensemble the energy of the structure is kept 

constant, this condition prohibits energy exchange between the structure and any heat reservoir. 

Under such conditions a constant increase of temperature in the structure is inevitable.  

 

     Damping in nickel nanofilm and graphene nanoribbon: The damping results discussed above 

were obtained by evolving the resonators in NVE ensemble.  Recently Kunal and Aluru [62, 73, 

74, 85] have introduced a method for MD simulations of damping in nanoresonators under 

isothermal conditions using the canonical NVT ensemble. In this method, the resonator is made to 

undergo harmonic oscillations and the velocity and the displacement of the structure is recorded. 

The dissipation in the structure is estimated using the loss factor ( ). Kunal et al. calculated 

frequency dependent damping in nickel nanoresonators and nanoribbons. Their analysis revealed 

phonon mediated damping to be the dominant source of energy dissipation in nickel 

nanoresonators and graphene nanoribbons.  

 

   Nonlinear oscillations in CNT and graphene nanoresonators: Recently Koh et al. [89] studied 

the thermal fluctuation induced nonlinear oscillations in cantilevered and suspended SWNTs and 

observed spectral broadening and multiple peaks in the frequency spectra. From Poincaré maps of 

SWNT tip trajectories, they detected repeated occurrence of planar and nonplanar (whirling) 

motion. Koh et al. proposed approximate solutions of nonlinear beam equations which were able 

to capture the alternation of the patterns of motion in both the structures reasonably well. By using 

this analytical approach, they found that multiple peaks in the frequency spectra are due to the 

coupling of the two degenerate modes, caused by nonlinear effects. Midtvedt et al.  [90] studied 

the thermal equilibration dynamics in graphene nanodrums and found that nonlinear modal 
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coupling leads to spectral broadening and redistribution of initially localized energy from the 

fundamental vibrational mode to other vibrational modes.  

1.5 Open questions 

The literature survey identified several open questions regarding the use of MD simulations in 

studying material damping and nonlinear oscillation in nanoresonators.  These considerations 

motivate the work presented in this thesis. 

 

     What are the methods for simulating damping in nanoresonators under isothermal 

conditions? 

As outlined in the previous section, majority of the MD simulation studies concerning material 

damping in nanoresonators utilized the adiabatic microcanonical ensemble. The constant increase 

in temperature of a damped resonator in NVE ensemble may influence estimates of damping when 

the underlying dissipation mechanism is temperature dependent. This effect can be avoided by 

evolving the resonator under isothermal conditions using NVT ensemble. In addition, isothermal 

simulations are important because they mimic the typical operating conditions of nanoresonators. 

However, the technique for simulating damping is NVT ensemble is still at an early stage of 

development, and many basic aspects of estimating damping still remain to be addressed.  

 

     What are the mechanisms of material damping in single-crystal silicon and amorphous Silicon 

nanoresonators? 

 

Single-crystal Si is a common choice for manufacturing mechanical resonators because they are 

lowly damped. For example, resonators made of single-crystal Si have been measured to have Q

-factors to the tune of 106 at 300 K [41, 91]. However, several studies have shown that the Q -

factor of nanoresonators made of single-crystal silicon diminishes by several orders of magnitude 
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while oscillating at high frequencies (few hundred MHz to GHz range) [32, 92]. Literature suggest 

the presence of several damping mechanisms at play, however the dominant damping mechanism 

is still not known.  

 

The long range order of the crystalline materials is broken in its amorphous form. This atomic 

disorder results in anomalous behavior in the acoustic and thermal properties of amorphous 

materials compared to their crystalline counterparts [93]. For example, despite a lot of activity our 

understanding of damping in amorphous silicon is not clear. Isothermal molecular dynamics 

simulations of damping in single-crystal Si and amorphous Si for understanding the underlying 

mechanisms is therefore an open field.   

 

     Can MD simulations be used to understand the nature of nonlinear oscillations and the 

governing mechanisms? 

 

A handful of articles [89, 90] have tried to explore nonlinear oscillations in nanoresonators using 

molecular dynamics simulations. All of these studies have primarily focused on thermal noise 

mediated nonlinear oscillations and modal coupling. There are several other features of nonlinear 

oscillations which occur during harmonic oscillations remain unexplored, such as internal 

resonance, subharmonics, super harmonics, bifurcations etc. Methods need to be developed and 

compared with existing models to demonstrate the utility of MD simulations for exploring the rich 

science at the nanoscale. 

 

1.6 Objectives of the thesis 

(1)     Establish methods for isothermal molecular dynamics simulations of damping using single-

crystal Ni as a model material.  
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(2)     Use the technique to study mechanisms of material damping in two materials, 

technologically important single-crystal Si and amorphous Si.  

(3)     Establish protocols for studying nonlinear oscillations in nanoresonators using MD 

simulations.  

 

1.7  Organization of the thesis 

Considerations in the previous sections motivate the work presented in this thesis. The 

organization of the chapters are described below. A schematic categorization of the literature on 

damping and nonlinear oscillations in nanoresonators studied using MD simulations and the results 

reported in this thesis is presented in Figure 1-1. 

 

Chapter 2 critically reviews different mechanisms of material damping relevant in single-crystal 

and amorphous materials. Also presented are the relationships between different measures of 

damping and the governing dynamics. These relationships are subsequently used in the following 

chapters for calculating damping using molecular dynamic simulations.  The chapter ends with 

discussions on Duffing nonlinearity. Chapter 3 presents a brief introduction to different aspects of 

molecular dynamics simulations, such as numerical integration schemes, interatomic potentials, 

thermostat, and other relevant boundary conditions. 

 

Chapter 4 establishes the methods for estimating damping in a single-crystal Ni nanoresonator 

using isothermal MD simulations. The nanoresonator was evolved in NVT ensemble and the 

thermally relaxed structure was then used for damping simulations in the subresonant and the 

resonant regime. The chapter starts with the details of the structural dimensions of the resonator, 

thermal equilibration steps (thermostat time constant, thermal equilibration duration), axial 
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stiffness, modeshape and natural frequency. Choices of the simulation parameters needed to ensure 

precision of the damping estimates have been discussed. In the resonant regime, damping in the 

nanofilm showed signatures of nonlinear oscillations. The methodology adopted for tackling 

nonlinearities to estimate precise values of damping has been discussed. 

 

Chapter 5 reports the results from MD simulations of damping in a single-crystal Si nanofilm and 

single-crystal Si nanowire as a function of frequency and temperature. Details of the thermal 

relaxation steps have been discussed. Damping was evaluated in the subresonant regime as loss 

tangent and loss factor. A comparison of the simulated results with relevant sources of material 

damping has been presented. 

 

Chapter 6 present the estimates of damping in an amorphous nanofilm as functions of frequency 

and temperature. The details of the method used for the preparation and characterization of the 

amorphous structure have been discussed. Damping in the amorphous nanofilm is compared with 

that of the single-crystal nanofilm mentioned in Chapter 5. The chapter ends with a discussion on 

possible sources of material damping in amorphous Si. 

 

Chapter 7 presents simulations of nonlinear oscillations in two doubly-clamped nanobeams for the 

flexural mode oscillations and for the longitudinal mode oscillations in a nanofilm made of single-

crystal Si. A protocol is presented to obtain the steady-state harmonic oscillations in the 

nanoresonators in the vicinity of their resonance frequencies. The harmonic response of the 

doubly-clamped nanobeam and the nanofilm is compared with the Duffing equation. The doubly-

clamped nanowire displayed signatures of internal resonance, qualitative comparison of which 

with cubic coupled Duffing equation has been presented. 
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Figure 1-1: Schematic categorization of the literature on damping and nonlinear oscillations in 

nanoresonators. 
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Chapter 2 

Review of material damping and nonlinear oscillations  

 

Damping is the dissipation of energy stored in vibrating structures. The magnitude of dissipation 

depends on the physical mechanisms operating in the structure. The mathematical equations 

describing the nature of damping are generalizations and approximations of the actual physical 

processes operating in the material. Nonlinearities, in general, arise in systems which have 

products of dependent variables and their derivatives in the equations of motion. The sheer quantity 

of articles published in these two fields makes it difficult to report all of them. Exhaustive reviews 

on different aspects of material damping and nonlinear oscillations can be found in the books by 

Norwick & Berry [37] and Nayfeh & Mook [50]. 

 

The sources of material damping focusing on the ones relevant in single-crystal Si and amorphous 

Si are presented in Section 2.1. The discussions include different aspects of thermoelastic damping, 

phonon-phonon interactions, two level systems and surface damping. Section 2.2 summarizes 

various measures of damping and establishes their relationships with the dynamics. These 

relationships have been used for the estimation of damping in different parts of this thesis. 

Nanoresonators show nonlinear phenomenon, which includes the Duffing nonlinearity. Section 

2.3 presents a brief summary of the different aspects of the Duffing nonlinearity. In Section 2.4, 

we discuss a specific mechanism of nonlinear modal coupling known as internal resonance.  

 

 

 

 



20 
  

2.1 Mechanisms of material damping  

Mechanisms of material damping originate inside the resonator material and at the free surfaces.  

Depending on the nature of the mechanism, material damping can be broadly classified into two 

categories: (a) fundamental damping mechanisms, and (b) internal friction. Fundamental damping 

mechanisms are unavoidable and therefore set the lower limit on damping in resonators. These 

mechanisms are thermoelastic damping, phonon-phonon damping etc. Internal friction refers to 

damping mechanisms which arise from the activity of different crystallographic defects (for 

example, vacancies, interstitial atoms, substitutional atoms, surface adatoms, dislocations, grain 

boundaries etc.). Each type of defect can give rise to several mechanisms of dissipation, for 

example damping from two level systems in amorphous materials, surface damping from free 

surfaces etc.  

 

2.1.1 Thermoelastic damping (TED) 

The thermoelastic damping (TED) is one of the main sources of energy dissipation in small 

mechanical structures [94]. TED arises from the irreversible heat transfer between different regions 

in an oscillating solid [95]. To understand the origins of the temperature gradient, let us consider 

the case of a structure under the influence of a travelling wave. As the wave passes through the 

structure, different portions in the structure expand and contract. Depending on the magnitude of 

the thermal expansion coefficient this periodic shape change results in a stress field. Under 

adiabatic conditions, the compressed regions heat up whereas the regions in tension cool down 

creating thermal gradient throughout the body [96]. The heat transfer from the hot spots to the cold 

spots of the structure leads to entropy generation thereby leading to damping.  
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TED is generally large in flexural mode resonators. But, uniform spatial strain gradients caused by 

longitudinal vibrations produce very small TED [9, 62]. TED in a structure oscillating in the 

longitudinal mode is given by [97] 
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where k  is the thermal conductivity, T  is the equilibrium temperature,   is the coefficient of 

thermal expansion,  is the density, and VC is the specific heat at constant volume of the material. 

 

2.1.2 Phonon mediated damping  

Phonons are vibrational states of matter. In the absence of lattice impurities, imperfections and 

electrons, phonons can scatter in two ways, (a) Normal process, and (b) Umklapp process [98]. In 

case of normal scattering the momentum of the phonons is conserved, unlike the Umklapp 

processes [99, 100]. The nature of the phonon damping depends on two time scales: the period of 

mechanical vibration, v  (where fv
 2 ) and the mean phonon relaxation time ( p ) [100]. The 

relaxation time p  is the time required for restoration of thermal equilibrium between different 

phonon branches and is dependent on both the Normal and Umklapp processes. At temperatures 

comparable to the Debye temperature, p  is dominated by the Umklapp processes and can be 

related to the thermal conductivity by 
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where the velocity of sound ( SV ) is given by 
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(2.3) 

where E  is the elasticity constant of the material in the direction of the propagating wave. The 

probability of the occurrence of the Umklapp processes diminish rapidly at low temperatures and 

therefore, under such conditions the relation between p and the thermal conductivity mentioned 

in Eq. (2.2) is no longer valid [37, 101]. 

 

2.1.2.1 Phonon relaxation (Akheiser damping) 

The nature of the phonon-phonon scattering process in the regime 12 pf  was first modelled 

by Akheiser in 1937 [102]. At thermal equilibrium the distribution of phonon population obeys 

Planck distribution law. Akheiser suggested that the ultrasonic wave travelling through a crystal 

causes anisotropic temperature changes of different phonon branches. This temperature change 

arises from the frequency modulation of each phonon branch because of the modulation of the 

elastic properties of the medium. The mode dependent Grüneisen parameter ( ) which describes 

the vibrational properties of solids, determines the extent of the coupling between the strain field 

and the phonon modes. The modulated phonons attain thermal equilibrium by phonon-phonon 

scattering leading to modulation of equilibrium population of each phonon mode. The delay in 

readjusting to the new equilibrium population, results in phase lagging behind the driving wave 

causing dissipation of energy.  

 

Akheiser used time independent Boltzmann transport equation (BTE) to analyze the kinetics of the 

phonon scattering process. In its most general form, the BTE can be written as [99] 
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where ),( sun


 is the distribution function of phonons with wave vector u


, and polarization s , v  

is the phonon group velocity, and eF  is the force field. 
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 is the rate of change in phonon 

population in different phonon branches due to the phonon-phonon collisions. For small strain 

gradients in bulk solids the second and the third term in the right hand side of Eq. (2.4) can be 

ignored. The magnitude of energy dissipation was calculated by multiplying the rate of change of 

entropy with temperature. 

 

There have been several theoretical modifications proposed to the derivation of Akheiser. 

Woodruff and Ehrenreich  [103]  suggested two major modifications: (a) they calculated the 

collision term in Eq. (2.3) by considering specific contributions from normal phonon-phonon 

processes and Umklapp processes, and (b) the magnitude of the dissipated energy was calculated 

as the amount of energy the phonons give away to the thermal bath. In the simplest form the 

expression for Akheiser damping derived by Woodruff and Ehrenreich is given by 
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Mason and Bateman [104] derived expression for Akheiser damping considering the effect of time 

dependent strain caused by the travelling wave on the phonon branches in different directions in 

the crystal. They introduced a nonlinearity parameter as a function of second the order and the 

third order elastic constants of crystals. Their calculations produced good agreement with 

experimental measurements of Akheiser damping in single-crystal Si and Ge. However, it was 
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later pointed out by Barrett and Holland [105] that the derivation was not correct and the match 

with experimental results was accidental.  

 

A different set of corrections to the Akheiser’s damping model was brought about by Bӧmmel and 

Dransfeld [106], which were later modified by Maris [107]. The assumptions used by Bӧmmel 

and Dransfeld are: (a) dispersion can be neglected under the assumption that the Grüneisen 

parameter ( ) for a given phonon branch is independent of frequency, where dispersion is 

described as the relationship between the frequency and the wavelength of a phonon mode, (b) 

only two phonon modes are present, longitudinal and transverse, (c) all phonon modes have the 

same heat capacity, and (d) entropy is generated because of energy exchange between different 

phonon modes. The expression for Akheiser damping from the work of Maris is given by [107] 
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where   is the angular frequency of oscillation. 

 

2.1.2.2 Phonon collisions (Landau-Rumer damping) 

Akheiser’s theory of phonon damping is invalid when 12 pf . Such situations are observed at 

very high oscillation frequencies and low temperatures. Under such circumstances the phonon 

mean free path is larger than the wavelength of the external harmonic force. Landau and Rumer 

suggested that for 12 pf  the phonons are scattered from the travelling wave to different phonon 

modes by interactions with other individual phonons of the resonator. This results in frequency 
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independent energy dissipation. The expression for damping in the Landau and Rumer regime is 

given by [108] 
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where Bk is the Boltzmann’s constant, and h  is the Planck’s constant.  

 

2.1.3 Two level systems (TLS) 

Experimental investigations of thermal and acoustic properties of amorphous materials have 

revealed striking differences with their crystalline counterparts [93]. For example, according to 

Debye theory, thermal conductivity ( k ) and specific heat ( C ) of crystalline insulators are 

proportional to 3T  below 1 K. However, in amorphous materials in the same temperature range k   

is proportional to 2T  and C is proportional to T . Similarly, unexpected trends have been observed 

in the experimental measurements of damping as functions of temperature and frequency in 

majority of amorphous materials. For example, irrespective of chemical composition and 

processing route, damping in majority of amorphous materials is qualitatively similar below 10 K, 

this is known as the glassy range. Below 10 K damping approaches a temperature independent 

plateau, the fall away at the lowest temperature depends on the frequency of oscillation, occurring 

at lower temperatures with decreasing frequencies [93]. Several theories have been proposed in 

order to explain these anomalies, the most successful one being the model of two level systems 

(TLS), introduced simultaneously by Phillips [109]  and Anderson et al. [110]. This model was 

later named as the Standard Tunneling Model (STM).  
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The basic tenet of the TLS model is the assumption that groups of atoms in amorphous materials 

have more than one potential minimum. This assumption is invalid in crystalline materials where 

atoms have single potential minimum. To further elucidate the point, let us consider the 

arrangement of atoms in vitreous silica shown in Figure 2-1 (a), in which the number of atoms per 

ring and the binding angles are different from cristobalite. As a result different atoms or group of 

atoms can move between two preferable configurations [111].  

 

Figure 2-1: (a) Atomic configuration in vitreous silica, arrows indicate three possible defects states 

(Figure taken from Ref. [111], (b) Schematic illustration of a two-level system (TLS) with barrier 

height V , asymmetry energy  , well separation d  (Figure taken from Ref.  [112]). 

 

 

A double well potential model can be applied to amorphous materials where an atom or group of 

atoms can occupy any one of the two possible energy minima. This situation is schematically 

shown in Figure 2-1 (b). Because of lack of crystal symmetry the potential wells are separated by 

an energy barrier height V , d  is the separation between the two potential wells along the 

configurational coordinate and   is called the asymmetry energy. At low temperatures, the atoms 

cannot switch between different wells classically by overcoming the potential difference, instead 

quantum tunneling facilitated by coupling with the phonons (in case of insulators) gives rise to the 
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atomic activities. During harmonic oscillations the motions of the atoms produce strain which 

couples the tunneling atoms and the phonons.  

 

2.1.4 Surface damping 

Studying surface damping and the factors that promote it is difficult. As a result a clear 

understanding of the underlying mechanisms is not available. Experiments show that damping in 

resonators linearly increase with an increase in the surface to volume ratio. This behavior has been 

attributed to surface damping mechanisms [113]. In single-crystal materials surface damping could 

transpire from: (a) poorly terminated bonds in the surface states, (b) due to a thin layer of surface 

contamination, and (c) rearrangement or motion of surface dangling bonds between metastable 

positions [114]. For structures with very small surface to volume ratios, the damping caused by 

the surface related phenomenon is relatively small compared to the contribution of atoms in the 

bulk and therefore can be neglected. But as the surface to volume ratio increases the surface related 

damping becomes significant. Experimental results suggest that the surface related losses are 

negligible when the structural dimensions are larger than few millimeters [41]. However, it 

becomes significant as the surface to volume ratio increases [113]. Several studies indicate that 

surface damping can be significantly reduced by surface treatments such as annealing [94], 

removal of contaminants from the surface [115], and passivation of dangling bonds in the surface 

[116].  

 

2.2 Measures of damping 

A structure under the application of a periodic force, moves back and forth across an equilibrium 

position because of a periodic restoring force. In linear oscillators, the restoring force is 
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proportional to the displacement of the body from the equilibrium position. For damped linear 

systems the equation of motion under the application of sinusoidal harmonic force is given by 

)2sin(00 ftFKxxcxm   ,            (2.8) 

where x  is the displacement, c  is the coefficient of viscous damping, K  is the stiffness, 0F  is the 

magnitude of the harmonic force, and f  is the frequency of oscillation. For such systems, damping 

is defined by the ratio of 
W

W
, where W is the amount of energy dissipated per cycle of vibration, 

and W is the total mechanical energy stored in the structure. Additionally damping is measured by 

monitoring the dynamics of the oscillations. The common measures of damping are: the loss factor 

( ), the loss tangent ( tan ), loss angle ( ), logarithmic decrement ( ), and the quality factor (

Q ). For small values of damping ( 01.0 ) tan  and   are equivalent. The loss angle and the 

loss factor are calculated from the dynamics of the structure from the steady-state forced harmonic 

oscillations. The logarithmic decrement is calculated by taking the logarithm of two consecutive 

amplitudes of the structure during its free decay. The Q -factor is calculated from the frequency 

response of the structure during harmonic oscillations near the resonance frequency. Alternatively, 

the Q -factor can also be calculated by fitting a Lorentzian curve to the PSD (Power Spectral 

Density) of the thermal noise in the vicinity of the resonance frequency. It is important to mention 

that the logarithmic decrement and the Q -factor give estimates of damping only at the resonance 

frequencies of the structure whereas the loss angle and the loss factor are valid at any frequency. 

For small values of damping ( 01.0 ) the different measures are related by Eq. (1.1). This 

section will present a brief overview of the different measures of damping and their relationship 

with the dynamics.  
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2.2.1 Loss factor, η  

The loss factor is defined as 
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where nrV  is the velocity of the structure, and ft  is the duration of forced vibration.  

The stored energy, W  is given by [13] 
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where S  is the cross section of the beam, and nru  represents the displacement profile along the 

beam. For linear displacements, the stored energy is given by 
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where A  is the amplitude of vibration. 

 

2.2.2 Loss tangent, tan  

This measure of damping denotes the tangent of the angle by which the response of a structure 

lags behind the harmonic force. The situation is depicted in Figure 2-2 in which the curve with 

blue color represents the trace of the harmonic force and the black curve represents the 

displacement of the oscillating structure. The phase lag,  , is the difference in phase between the 
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applied harmonic force and the displacement. Therefore, the displacement response of a damped 

resonator to a harmonic applied force is given by [7] 

)2sin(   fAx   (2.13) 

 

Figure 2-2: Schematic illustration of the loss angle,  . The black line represents the harmonic 

force and the blue line is the displacement of the structure. 

 

 

2.2.3 Logarithmic decrement, δ  

The logarithmic decrement,  , is measured from the response of freely decaying structures. In 

order to calculate  , initially, the structure is excited at the resonance frequency followed by the 

removal of the excitation. The structure vibrates at the resonance frequency with decaying 

amplitudes as it continues to dissipate energy. The vibration eventually ceases to zero once all the 

stored energy is spent. For an underdamped system,   is defined as the natural logarithm of the 

ratio of the amplitudes of any two successive oscillations. Therefore,   can be expressed as 
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(2.14) 

where 
v

A  and 
vv nA   are the peak amplitudes n  period away. Alternatively, the logarithmic 

decrement of a freely decaying signal can be calculated by computing the Hilbert transform of the 
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time series of vibration [41]. The Hilbert transform of the signal )(ty , is defined as the convolution 

integral 
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(2.15) 

Hilbert transform can also be defined as a 90˚ phase shift system, i.e., )(~ ty  is equal to )(ty  shifted 

by 90˚. For a viscously damped system, the equation of motion is expressed as 

),cos()( dd
t

tety n 



  (2.16) 

where n  is the undamped angular natural frequency, d  is the damped natural frequency and 

d  is a constant. The Hilbert transform of )(ty  shifted by 90˚ and is given by 

).sin()(~
dd

t
tety n 



  (2.17) 

Now, we define an analytical signal )(tB  

),(~.)()( tyjtytB    (2.18) 

The phasor form of )(tB  is given by 

,)()( )(tjetEtB    (2.19) 

where )(t  is the instantaneous phase signal and is equal to tn . )(tE  is known as the envelope 

signal and can be expressed as 

.)(~)()( 22 tytytE    (2.20) 
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A line can be fit to the logarithm of the envelope signal using the technique of least mean squares. 

The slope of this line, m, is equal to 0f . Assuming low damping, we can relate the slope, m, to 

the logarithmic decrement,  , by 

  
,

)(log1

00 dt

tEd

ff

m
  

 
(2.21) 

The logarithmic decrement is a measure of damping at the resonance frequency. 

 

2.2.4 -Q factor from harmonic oscillations  

The Q -factor can be extracted from the steady state harmonic response of the structure. This is 

achieved by applying harmonic forces with frequencies in the vicinity of the resonance frequency. 

The frequency response curves of the system for different harmonic forces are symmetric across 

the resonance frequency and the resonance frequency is independent of the amplitude of 

oscillation. The Q -factor of the structure at the resonance frequency can be calculated from the 

half power points of the frequency response of the amplitude curve and the resonance frequency. 

If 1f  and 2f  correspond to the frequencies where the amplitude of forced response takes the value 

of 
2

1   the amplitude at resonance, then Q  at 0f  can be calculated using the expression [46] 
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ff

f
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
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(2.22) 

2.2.5 -Q factor from thermal noise 

Thermal noise is defined as the spontaneous, random fluctuation of atoms that manifest at 

temperatures above absolute zero. The power spectral density (PSD) of thermomechanical noise 
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exhibits prominent peaks at the natural frequencies of vibration. This observation can be explained 

using the Equipartion theorem, which states that the kinetic energy is distributed equally among 

all energetically possible degrees of freedom of a system. The kinetic energy of atoms couple with 

the resonators normal modes resulting in multiple peaks in the PSD. The Fluctuation-Dissipation 

theorem (FDT) is combined with the Equipartition Theorem to link the spectrum of the 

thermomechanical noise and the dissipation of a system [117-119].  FDT dictates that in the 

presence of a dissipative process, there will always be a reverse process present. This consideration 

leads to spontaneous fluctuations. The first peak (corresponding to the fundamental natural 

frequency) in the Power Spectral Density (PSD) is symmetric and well-approximated by a simple 

Lorentzian function given by 
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(2.23) 

where xS  denotes the PSD of the time series of the displacement noise. Therefore the Q -factor at 

the natural frequency can be estimated by fitting Eq. (2.23) to the PSD of the thermal noise.  

 

To obtain accurate estimation of damping the noise should be captured for extended periods of 

time. However, in experiments or simulations the noise can only be captured for a brief period of 

time, resulting in an unwanted sampling noise in the PSD. As a consequence, the estimations of 

Q -factor are associated with uncertainties. Standard deviation in the fitted Q -factor obtained from 

least squares analysis, due to the presence of the sampling noise is given by [120] 
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(2.24) 

where   is the duration for which the noise is captured and 0Q  is the mean value of the quality 

factor. 

 

Figure 2-3: Schematic representation of steady-state amplitude response of a Duffing oscillator as 

a function of forcing frequency ( f ), showing a shift in the peak frequency depending on arbitrary 

magnitudes of harmonic force 0F . The shift in the peak frequency is dependent on the nonlinear 

spring constant 2K  and the magnitude of the force. The assumed Q -factor of the oscillator is 50 

and its natural frequency is 0f .  

 

2.3 The Duffing oscillator 

The discussion in the previous section was limited to the linear oscillatory systems. However, in a 

realistic system various type of nonlinearities can exist and for such cases the Hookian type linear 
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restoring force assumption is not valid. In a number of publications, the Duffing equation has been 

found to capture the nonlinear oscillations in nanoresonators. In this section we discuss the basic 

tenets of the Duffing equation in relation to mechanical oscillations. Also discussed are the 

relations between the dynamics of a Duffing oscillator and the Q -factor. The section ends with 

discussion on an interesting property of nonlinear oscillations known as internal resonance. 

 

2.3.1 Dynamics 

The cubic Duffing nonlinearity is introduced in the Eq. (2.8) by including cubic nonlinear restoring 

forces equal to
3

21 xKxK  , where 1K  is a linear elastic constant, and 2K  is a nonlinear elastic 

constant. The governing equation is given by [50] 

),2sin(0
3

21 ftFxKxKxcxm     (2.25) 

Schematic representation of steady-state frequency response of amplitude for different magnitudes 

of harmonic forces (arbitrary) for two different Duffing oscillators with Q -factor 50 (arbitrary) is 

shown in Figure 2-3. The following observations can be made from the figure.  

 

a)     For small magnitudes of applied force ( 0F , and 02F ), the responses of the oscillators show 

characteristic peak at the natural frequency ( 0f ). Similar to linear oscillations, an increase in the 

magnitude of the harmonic force increases the amplitude of oscillation.  

 

b)     An increase in the magnitude of the force (e.g., 04F , 06F  , ..) causes a shift in the frequency 

corresponding to the peak amplitude towards higher or lower frequencies, depending on the sign 

of the nonlinear elastic constant 2K . For positive values of 2K , the response is said to be hardening 

type. On the other hand, the response is said to be softening type for negative values of [121]. 
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c)     The dotted lines in the figure are obtained by joining the peak amplitudes for different forces 

and is called the back-bone curve.  

 

d)     If one traces the amplitude of oscillation as a function frequency for any force magnitude, 

there would be frequencies at which multiple solutions exist. As a consequence, at these 

frequencies the oscillators can oscillate with different amplitudes, making the response unstable. 

The transition from stable to unstable or unstable to stable oscillations occur at these frequencies 

with an associated tangent of infinity. This behavior is called jump phenomenon [50].  

 

2.3.2 Q -factor  

The quality factor, Q , for a Duffing oscillator can be extracted from the equation [42] 
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where nf  is the resonance frequencies of the structure and n  is the mode number, cA  is called the 

critical amplitude and is defined as the first amplitude which displays infinite slope in the 

frequency response curve, and pA  is the peak amplitude of the curve. It can be shown that the ratio 

of cA  over pA  at the onset of nonlinearity is equal to 
3

2
 [50]. In general, the critical amplitude at 

the onset of nonlinearity is given by                                 

,
3

2
2

EQ

l
fA x

nc




  

 
(2.27) 
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where xl  is the length of the oscillator. For a doubly-clamped beam with rectangular cross-section, 

the expression for cA  is given by 
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where 0T  is the tension in the beam and yw  and zt  are the width and the thickness of the structure.  

The backbone curve of a Duffing oscillator joins the peak amplitudes of the frequency response 

curves and is given by 

.
3

2)(2
2

2

c

p

n

n

A

A

f

ffQ



 

 
(2.29) 

 

2.4 Internal resonance 

Unlike a single-degree-of-freedom system, a continuous mechanical system can be considered to 

have finite degrees of freedom. As a consequence, these systems have finite number of resonance 

frequencies and normal modes [46]. In a linear continuous system, when a particular normal mode 

is being excited, the other modes remain dormant. Therefore, any interaction between different 

mechanical modes is prohibited in linear theory. But, this linearized idealization of mechanical 

motion is not valid in case of nonlinear oscillations. As a consequence, different modes constantly 

interact and exchange energy during oscillations. A particular case of interest is internal resonance, 

that exists when the resonance frequencies of different modes are commensurable, that is there 

exists integers nmmmm  .....,  ,, , 321 , such that 0 .....  332211  nn fmfmfmfm , where 

nffff  .....,  ,, , 321  are the resonance frequencies of different modes [50].  
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In mechanical systems, internal resonance are the cause of most of the strongly nonlinear 

phenomenon, such as bifurcations. Internal resonance is named as the ratio of the frequencies of 

the modes being coupled through the internal resonance, for example if the coupled modes have 

resonance frequencies nf5  and, nf  then the internal resonance would be called 5:1 type. The first 

instance of 3:1 internal resonance in a doubly-clamped quartz microresonators was reported in 

2012 [122]. Very recently, internal resonance has been observed in MoS2 nanomembranes as well 

[51].  

 

2.5 Summary 

Material damping can arise from various sources depending on the type of material and the nature 

and the configuration of the defects. A brief review of the different mechanisms of material 

damping relevant in single-crystal and amorphous materials is presented in Section 2.1. Several 

measures exist for the estimation of damping in linear resonators. Relationships between these 

measures and the dynamics of oscillation are presented in Section 2.2. Logarithmic decrement, 

and the Q -factor provide damping estimates only at the resonance frequency, however the loss 

tangent and the loss factor can be used to measure damping over the entire frequency spectrum. 

Section 2.3 gave a discussion on different aspect of Duffing nonlinearity, which included a 

comparison with linear oscillations, and a method for estimating Q -factor from the steady-state 

time harmonic response. In section 2.4 we provided a brief discussion on a specific mechanism of 

modal coupling in multi-degree-of-freedom nonlinear oscillators, namely the internal resonance. 

These discussions serve as foundations for the interpretations of simulated results of damping and 
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nonlinear oscillations in single-crystal Ni, Si and amorphous Si presented in different parts of this 

thesis.  
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Chapter 3 

Foundations of MD simulations 

 

MD simulations reported in this thesis were run on the CLUMEQ (Consortium Laval, Université 

du Québec, McGill and Eastern Quebec) supercomputer nodes, using LAMMPS (Large-scale 

Atomic/Molecular Massively Parallel Simulator) software developed by Sandia National 

Laboratory [123]. LAMMPS makes use of Message Passing Interface (MPI) for parallel 

communication and is a free, open-source software, distributed under the terms of the GNU 

General Public License. In this chapter, we describe different aspects of the implementation 

technique for MD simulation which include brief introduction to the algorithms used for numerical 

integration of the equations of motion, choice of simulation timestep, interatomic potentials, initial 

boundary conditions such as periodic boundary condition, and basics of thermostats.  

 

3.1 Algorithms for solving equations of motion 

For a system with N particles, the Newton’s second law is given by 

                                       ,iii amF                                (3.1) 

where im , ix  ( Ni ,..1 ) are the mass and the position of the i -th atom and iF  denotes the 

magnitude of the force acting on it. Alternately, the equation of motion can also be found using 

Hamiltonian dynamics. The Hamiltonian of an isolated system is constant and expressed as 
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(3.2) 
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where ip  is the momentum of atom i , U  is the potential energy of the system, which is a function 

of the atomic positions. The force field for individual atoms can be derived using the expression 

i

i
x

H
F




 . 

 
(3.3) 

To solve for the atomic positions, and velocities, the equations of motion are discretized in time 

and integrated consequently using the method of finite difference. Several algorithms have been 

proposed over the past few decades to solve these equations numerically in a computationally 

effective manner, e.g. Gear algorithm [124], leap-frog algorithm [125], Verlet algorithm [126], 

and the velocity-Verlet algorithm [127]. LAMMPS uses the velocity-Verlet algorithm to solve the 

equations of motion of individual atoms.  

 

The key idea of the Verlet algorithm is to calculate the position )( ttx 


of a particle at time tt   

using the third order Taylor series expansion of its position at time t , and tt  . Denoting iV


 as 

the velocity, ia


 as the acceleration, and ib


 as the third derivative of position with respect to t  for 

the i th particle, one can express positions of the particle i  at time tt  , and tt  as 
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(3.5) 

Eq. (3.4) and (3.5) can be combined as  

            ).()()()(2)( 42 tOttattxtxttx iiii 


    (3.6) 

Further, Eq. (3.1) and (3.6) can be combined and expressed as 
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(3.7) 

The term iF  for individual atoms is obtained from the interatomic potential. Also, subtracting Eq. 

(3.6) from Eq. (3.5) and doing some elementary operations we get 
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  (3.8) 

Eq. (3.7) is correct except for errors of order )( 4tO   (local truncation errors) and velocities from 

Eq. (3.8) are susceptible to errors of the order )( 2tO  . However, for the calculation of )( ttxi 


, 

it is necessary to know the position of the atoms in the previous step )( ttxi 


, which is estimated 

as: tVxtx iii  )0()0()(


. This leads to a numeric error when 2)( tta 


is added to larger )(txi


 

and )( ttxi 


. The advantages of the Verlet algorithm are: (a) it is straightforward, and (b) the 

storage requirements are moderate.  

 

Considering this shortage, the velocity-Verlet algorithm was proposed which is included in the 

LAMMPS [123] package and has been used for simulations presented in this thesis. The velocity-

Verlet algorithm adopts half-step velocity calculation and calculates position, velocity, and 

acceleration all at the same time and minimizes round-off errors. In addition, the velocity-Verlet 

algorithm requires lesser computing resources compared to the Verlet algorithm, and takes the 

form 
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  (3.9) 
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3.2 Simulation timestep ( t Δ ) 

The computational cost of MD simulations is directly proportional to the magnitude of the 

timestep.  The accuracy of the numerical calculations improves with the use of smaller t . It is 

however, desirable to use larger time steps to sample longer trajectories. Therefore, the choice of 

t   is a trade-off between accuracy and computational feasibility.  

 

For numerical stability and accuracy in conserving the energy, one typically needs to pick a time 

step t   which is at least an order of magnitude smaller than the fastest time scale in the system. 

Too large a time step can lead to an unstable MD simulation because of irregular atomic collisions. 

These atomic collisions transpire because of large timestep resulting in nearly coinciding atomic 

positions for two or more atoms. This results in repulsive interactions between atoms, thereby 

generating strong forces and destroying inherent atomic arrangement. Typically, the magnitudes 

of t   used in MD simulations are on the order of femtoseconds. A timestep of 1 fs have been used 

for the MD simulations of damping in single-crystal Ni [62, 85] and single-crystal Si [128].  

 

3.3 Interatomic potential 

In order to run MD simulations it is necessary to describe the rules that govern the interactions 

between a pair of atoms or the interaction of an atom with a cluster of atoms. Starting from Born-

Oppenheimer approximation, treating atoms as classical particles, it can be shown that the 

Hamiltonian of a N particle system can be expressed by describing the effect of the electrons using 

a single potential energy function dependent on individual atomic coordinates, ),....,( 21 NrrrU . This 
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potential function can then be used for developing equations for predicting the evolution of the 

system as a function of time by solving forces and torques acting on individual atoms.  

 

In general there are three methods for obtaining the potential function. The most accurate method 

is to perform electronic structure calculations of forces using ab-initio simulations. However, these 

calculations are computationally expensive [129]. Alternatively, one can assume a functional form 

for the potential and select parameters that fit experimental data. These potentials (e.g. Lennard-

Jones [130], Morse [131]), commonly known as pair potentials, are computationally less 

demanding, but are ineffective in capturing complex interactions of atoms in metallic bonds. The 

last method for producing potentials for metals, and semiconductors is to calculate the electronic 

wave function for limited atomic positions and apply several approximations derived from 

quantum-mechanical understandings (e.g. Embedded Atom Method (EAM) by Foiles et al. [132], 

Glue Model by Ercolessi et al. [133], bondorder potentials by Brenner et al. [128] etc.). 

 

3.3.1 Embedded atom method (EAM) Potential  

 

The damping simulations for single-crystal Ni reported in this thesis were performed using the 

EAM potential. The idea for generating EAM potential was developed by Foils and Baskes [132], 

but the particular potential used here was created by Angelo et al. [134]. The key idea of EAM 

method is that atoms in metallic systems are embedded into a gas made of electrons created by the 

rest of the atoms. The electron gas experienced by atoms at the surface of the metal is different 

from the atoms in the bulk. The functional form for the EAM potential is given by 
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where ijr  is the distance between atoms i  and j , )( ijij rO  is the pair energy dependent on the 

distance ijr , iF  is the energy needed for placing an atom i  into an electron gas with a density i  

resulting from the electrons associated with neighboring atoms. The functional form is fit to the 

cohesive energy, cubic elastic constants, equilibrium lattice constant, bond length and bond 

strength to obtain different parameters. 

 

3.3.2 Stillinger-Weber (SW) Potential 

In 1985, Stillinger and Weber proposed an interatomic potential for Si with two and three-body 

parts [135]. Silicon forms 4-coordinated tetrahedral bonded structures. The Stillinger-Weber (SW) 

potential, enforces the tetrahedral bond angle (109.47˚) among triplets of bonded atoms by means 

of the three body component. Therefore, directional bonding is introduced in the Stillinger-Weber 

potential through an explicit three-body term of the potential energy expansion 
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where )2(
, jiU is the two-body term and )3(

,, kjiU is the three-body term contribution to the total potential 

energyU . The two-body term is given by 
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The three body term is: 
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where .)()()( 222
jijijijiij zzyyxxrrr 


 The cutoff of this potential is determined 

by arc  . ijk  is the angle centered on atom i  and is given by )/(.  cos kjkjijk rrrr


 . The values 

of the parameters pBA ,,,,,,  and a  is presented in Table 3.1. 

Table 3.1: Parameters used for Si in the Stillinger-Weber potential. 

      a    A  B  p  

2.16826 eV 1.2 2.0951 Ǻ 1.8 21 7.049955627 0.6022245584 4 

 

 

3.4 Thermostat 

In NVT ensembles a thermostat facilitates energy transfer between the system and the heat bath, 

thereby maintaining its temperature. The use of a thermostat can be motivated by one of the 

following reasons: (i) to emulate experimental conditions, (ii) to study temperature dependent 

processes, and (iii) to evacuate the heat in dissipative non-equilibrium MD simulations. Several 

thermostats are used in NVT ensemble to maintain the temperature of the system, e.g. Anderson 

[136, 137], Langevin [127], and Nosé-Hoover thermostat [138]. Nosé-Hoover (NH) thermostat 

has been used for the results reported in this thesis.   

 

The use of the NH thermostat requires the definition of an instantaneous temperature. To enable 

energy transfer between the system and the thermal bath, the equations of motion are modified 
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when a NH thermostat is used for the simulation. A frictional parameter   is introduced and the 

modified equation of motion is rewritten as  
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(3.16) 

where fd  is the number of internal degrees of freedom of the system, )(tT  and 0T  are the current 

and the reference temperature respectively. G  is the equivalent mass of the thermostat and is given 

by fBNH dkT0 ;
NH is the specified time constant for temperature fluctuations and is given by 
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(3.17) 

The choice of the time constant ( NH ) is crucial from the point of view of the requirement of 

computational resources.  It is apparent from Eq. (3.16) that the friction coefficient,  , controls 

the rate of energy transfer in such a way that the current temperature of the system )(tT  is close 

to the desired temperature, 0T . It aids energy flow from the system to the thermal bath and results 

in fluctuations in temperature around 0T . A large NH  allows the system to attain 0T  faster, but 

generates rapid temperature fluctuations; a small value of NH  results in a sluggish response 

resulting in delayed attainment of thermal equilibrium. 

 

3.5 Periodic Boundary Condition (PBC) 

MD simulations become computationally demanding as the size of the structure increases, making 

it difficult to simulate properties for large bulky systems. As a consequence, the structures studied 

using MD are in general small in size with large surface to volume to ratios. Therefore, in order to 
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simulate the properties for bulk systems it is necessary to employ boundary conditions that remove 

free surfaces from the system thereby replicating the environment of infinite bulk surroundings for 

any atom inside. This is achieved by using periodic boundary condition (PBC) as shown in Figure 

3-1. The simulation box is treated as the primitive cell of an infinite structure with duplicate units. 

Therefore, a particle will not only interact with its neighbors in the original simulation cell, but it 

will also interact with atoms residing in the periodic images of the original cell. The consequence 

of this condition are the following: (a) atoms leaving one face of the simulation cell straightaway 

appear from the opposing face with identical momentum, and (b) atoms within the cut-off distance 

of a simulation box boundary interact with atoms near the opposing faces of the simulation box. 

 

Figure 3.1: Illustration of periodic boundary condition. Atoms in the original simulation box are 

colored red, and their mirror images are colored blue; atoms interact across the boundaries of the 

simulation box. 
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3.6 Summary 

 

In this section, we have introduced different aspects of MD simulations. The foundations of the 

velocity-Verlet algorithm implemented in LAMMPS for calculating the positions and velocities 

of individual atoms by integrating Newton’s equation of motion is presented in Section 3.1 The 

value of the simulation timestep is critical to the stability of MD simulations. Section 3.2 briefly 

touches upon the factors which determine the choice of the timestep. The quality of the interatomic 

potential is central to the accuracy of the simulated results. In Section 3.3 we discussed the EAM 

potential and the SW potential which have been used for the simulations reported in this thesis. 

Details of the NH thermostat and periodic boundary conditions have been discussed in Section 3.4 

and Section 3.5. 
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Chapter 41 

 

Simulations of linear and non-linear damping in single-crystal nickel nanoresonators 

 

As a step towards developing methods for calculating damping using classical MD, we present a 

comparative study of five different methods for computing damping in a single-crystal Ni 

nanoresonator using an NVT ensemble. In Section 4.1 we discuss the details of the simulation 

methodology. The discussions include details of the structural dimensions, thermal relaxation 

steps, thermostat time constant, estimates of natural frequency and axial stiffness. The section ends 

with describing a protocol used for selecting simulation parameters such as frequency of 

oscillation, magnitude of harmonic force, and duration of force application to ensure precise 

estimates of damping in the subresonant regime. Section 4.2 is divided into two parts. In the first 

part we report the convergence and linearity of tan  and   for oscillations at 10 GHz and 30 

GHz. The second half discusses the details of damping simulations in the resonant regime which 

includes calculations of nonlinear logarithmic decrement from the free oscillations, Q -factor from 

the Duffing analysis of the nonlinear amplitude- frequency response during steady-state harmonic 

oscillations, and also the Q -factor from the spectrum of the thermal noise.  

 

 

 

                                                           
1 This chapter is an expanded version of the work presented in the following publication: Z. 

Nourmohammadi, S. Mukherjee, S. Joshi, J. Song, and S. Vengallatore (2015), "Methods for 

atomistic simulation of linear and nonlinear damping in nanomechanical resonators," Journal of 

Microelectromechanical Systems, vol. 24, pp. 1462-1470, 2015. 
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4.1 Simulation Methodology  

A simulation timestep of 1 fs was chosen for the simulations. The following steps were 

implemented for simulating damping in a single-crystal nickel nanofilm resonator. The first step 

was to create the structure in LAMMPS environment. Structural dimensions were chosen 

considering computational constraints. Next, the atoms were equilibrated at 300 K. The NH 

thermostat was used for the thermal equilibration of the structure. Appropriate boundary conditions 

were employed depending on the method for measuring damping. This procedure was followed 

for all the damping simulations reported in this thesis.  

 

4.1.1 Structural details 

 

 

 

Figure 4-1: Schematic illustration of the nickel nanofilm. Clamping condition is employed by 

freezing the motion of the atoms colored in red. 
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A single-crystal Ni nanofilm was constructed by arranging atoms on a face centered cubic (fcc) 

lattice with a lattice parameter of 3.53 Å. A Cartesian coordinate system was attached to the 

structure with the x, y, and z axes oriented along the [1 0 0], [0 1 0], and [0 0 1] directions 

respectively. The dimension of the y-z cross-section was 4.2 nm  4.2 nm and the length (
xl ) along 

the [1 0 0]-direction was 6.75 nm. In the axial direction, the structure was clamped at one end by 

freezing the motion of atoms, the rest of the atoms were free to move (shown in Figure 4-1). In the 

lateral (y and z) directions, the boundaries were periodic.  

 

4.1.2 Thermal equilibration  

Thermal equilibration of the nanofilm was carried out using the following steps. To begin with, a 

random velocity was assigned to the initial configuration of the atoms and the starting temperature 

was chosen to be 1 K. Thereafter, the structure was equilibrated at 300 K in two stages. First the 

temperature of the structure was slowly increased to 300 K. This step was followed by thermal 

equilibration for a certain duration at 300 K.  

 

Generally, the starting configuration of the atoms are significantly different from the equilibrated 

state. It is therefore necessary to perform thermalisation steps for extended lengths of time to 

ensure averaged quantities, such as temperature and potential energy. There is no definite rule for 

finding the equilibration time because it depends on several variables such as the target 

temperature, the type of the interatomic potential, the thermostat being used and the time constant. 

In general, quantities such as temperature and potential energy are monitored during the thermal 

relaxation process. The thermal relaxation is said to have been achieved once there are no large 

fluctuations in the time traces of these quantities. 
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The structure was evolved in time in NVT ensemble using the Nosé-Hoover (NH) thermostat. 

Generally, three parameters need to be selected to perform thermal equilibration, these are: (a) the 

time constant of the thermostat ( NH ), (b) simulation time ( raiset ) during which temperature is 

increased from 1 K to 300 K, and (c) the simulation time ( eqt ) for the thermal equilibration at 300 

K.  Let us see, how these parameters were chosen for the nickel nanofilm. Kunal and Aluru [62] 

found that a NH  of 0.1 ps was suitable for simulations of damping in single-crystal Ni. We begin 

by examining the suitability of this selection and record the average potential energy and the 

average temperature as a function of simulation time. 

 

A raiset of 4 ns was selected by trial and error. The time traces of the temperature and the potential 

energy were monitored to ensure gradual increase in the temperature. A eqt  of 2 ns was also 

selected by trial and error to avoid fluctuations in the traces of temperature and potential energy. 

Figure 4-2 shows the time trace of the temperature and the potential energy in the nanofilm during 

the entire thermal equilibration process.  

 

For any system evolved using an NVT ensemble, at steady-state, the kinetic energy (KE) of the 

atoms follow the Maxwell-Boltzmann distribution. Figure 4-3 shows the comparison of the kinetic 

energy distribution ( )(KEf ) for the nanofilm at steady state with the Maxwell Boltzmann 

distribution. The Maxwell-Boltzmann distribution of kinetic energy is given by 
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The variance of the temperature fluctuations is given by 
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Figure 4-2: Time traces of (a) temperature, and (b) potential energy in the nickel nanofilm obtained 

using the NH thermostat during thermal equilibration process. 

 

Figure 4-3: Comparison of the distribution of kinetic energy of the atoms in the nanofilm at 300 K 

and the Maxwell-Boltzmann distribution of kinetic energy. 
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where 0TT  , N  is the number of particles in the system. A T = 2.4 K is obtained for the 

nanofilm by using Eq. (4.2), which is in good agreement with a T of 2.35 K obtained from the 

simulations. 

 

4.1.3 Natural frequency ( 0f ) and mode shape  

Simulations were performed to find out the fundamental natural frequency and the mode shape of 

the nanofilm. In NVT ensemble the system exhibits spontaneous random movements around its 

equilibrium position due to an injection of energy from the reservoir. These movements manifest 

as thermal noise. The thermal noise was acquired by recording the spontaneous axial 

displacements of the atomic layer at the free end ( xlx  ). The time series of the thermomechanical 

noise (shown in Figure 4-4) was analyzed in the frequency domain using the Fast Fourier transform 

(FFT) method. The corresponding FFT plot (shown in Figure 4-5) exhibited Lorentzian peak at 

the natural frequency of the structure. The frequency corresponding to the first peak was 183 GHz. 

Since periodic boundary condition restricted the motion of the atoms in the out-of-plane directions; 

the first peak in the FFT therefore presented the fundamental longitudinal mode of the structure. 

  

The mode shape for the first longitudinal mode was evaluated by applying harmonic force of 

0.0001 nN with frequency 10 GHz on the free end of the structure. The motion of the atoms in 

different atomic layers along the length of the nanofilm were traced. Figure 4-6 shows the mode 

shape of the nanofilm obtained by plotting the displacement of each atomic layer from their 

respective equilibrium positions as a function of their positions along the length of the structure.  
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4.1.4 Estimation of axial stiffness ( xK ) 

 

Figure 4-4: Time trace of the thermal noise captured by recording the motion of the free layer. 

In the elastic domain, stiffness is defined as the resistance exerted by a mechanical structure to an 

external force. The axial stiffness ( xK ) of the nanofilm was evaluated by performing simple tensile 

tests. Static forces of varying magnitudes were applied on the atoms in the end layer ( xlx  ) and 

the motion of the forced atoms were monitored. Figure 4-7 (a) shows the force-displacement 

relationship in the nanofilm. The corresponding stress-strain data is plotted in Figure 4-7 (b). It 

can be seen that the nanofilm behaved linearly till a stress of 5 GPa which corresponds to a force 

of 92 nN. A straight line was fit to the linear part of the response using the least square algorithm. 
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The slope of the line is the stiffness of the structure, which in the case of the nanofilm was 555.2 

N/m. The coefficient of regression exceeded 0.99.  

 

For a beam stretched by pure axial load, the axial stiffness is given by [62],  

.
x

x
l

ES
K   

 
(4.3) 

Eq. (4.3) gives a stiffness of 535 N/m for the nanofilm which is in agreement with our estimates 

of stiffness using MD simulations.   

 

Figure 4-5: FFT of the displacement noise in the nanofilm. The peak at 183 GHz represents the 

fundamental longitudinal mode.  
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Figure 4-6: Mode shape of the nanofilm during harmonic longitudinal oscillations for applied force 

0.0001 nN and frequency 10 GHz. 

 

4.1.5 Protocol for estimating damping in the subresonant regime                                                                                                                                                                                     

In the subresonant regime damping was estimated using the loss factor (  ) and the loss tangent (

tan ). An axial harmonic force, )2sin(0 ftF  , was applied at the free end of the nanofilm at xlx   

to excite longitudinal oscillations at frequencies less than the resonance frequency. The velocity 

and the displacement of the forced atoms were recorded after each simulation time step. The 

magnitude of tan  was estimated by calculating the phase of the applied force and the response 

using the FFT algorithm distributed with MATLAB. The magnitude of   was calculated using 

Eq. (2.9). W  was calculated by numerically integrating the velocity and the applied force using 
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Eq. (2.10). W was calculated by plugging in the values of xK  and the amplitude of oscillation into 

(Eq. 2.12). The amplitude of oscillation was given by  
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(4.4) 

where datax  is the time-series of the average displacement of atoms at the free end, and datan is the 

number of data points used for calculating the FFT. 

 

 

Figure 4-7: (a) Force-displacement, and (b) stress-strain curves for the nanofilm used for 

estimating the axial stiffness and Young’s modulus using a linear least-squares analysis. The 

coefficient of regression exceeded 0.99.  
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In the beginning, the application of the harmonic force caused an impulse response in the nanofilm. 

This behavior necessitated identification of the steady state response regime. Data from the 

transient regime was discarded and tan   and   were calculated using the steady-state oscillation 

data. In order to find out the onset of steady state vibration, the motion of the free end of the 

structure was analyzed as a function of time. Figure 4-8 shows this behavior in the nanofilm while 

the structure was undergoing forced harmonic oscillations at 10 GHz for various magnitudes of 

0F . An initial transient duration of 2 ns was discarded as transient vibration.  

 

Figure 4-8: Axial displacement of the free end of the nanofilm as a function of time while 

oscillating at 10 GHz. The black green, blue colors correspond to force amplitudes of 55 nN, 46 

nN, and 18 nN respectively. 
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For precise evaluation of tan  and  , three simulation inputs needed to be selected. These are: 

(a) frequency of oscillation ( f ), (b) magnitude of the applied harmonic force ( 0F ), and (c) the 

duration of the time harmonic oscillations ( ft ).  In the next section, we discuss the rationale behind 

the selection of these inputs. The optimal values of the simulation parameters were identified by 

devising a protocol consisting of the following four steps. 

 

Step 1: Selection of the frequency  

 

Figure 4-9: Axial displacement as a function of time at the free end of the nickel nanofilm at 10 

GHz. The blue curve shows the thermomechanical noise. The red, green, and black curves show 

the response when the structure is driven harmonically with force amplitudes of 2 nN, 18 nN, and 

55 nN, respectively. 

 

The first step was to decide the frequency range over which the damping simulations were to be 

performed. The lower bound of frequencies depended on the limitations of computational 
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resources. For all the simulations, the lower limit of the frequency of operation was selected to be 

1 GHz. On the other hand, the upper limit of frequency was dictated by the response of the structure 

close to the resonance frequency. The upper bound of frequency was selected to be 30 GHz to 

ensure linear response of the structure.  

 

Step 2: Finding the magnitude of the harmonic force ( 0F ) 

The magnitude of the harmonic force was selected by considering the linearity of oscillations and 

the magnitude of the thermomechanical noise floor. The selected magnitude of 0F  was small to 

ensure linear oscillations, but sufficiently large so that the harmonic response was significantly 

larger than the thermal noise floor.   

 

Figure 4-9 illustrates the response of the nanofilm undergoing harmonic oscillations in the steady 

state at 10 GHz for varying loads. In the absence of the harmonic force, the response was entirely 

due to thermomechanical noise with a root mean square (rms) value of 
31012.3 

x

B

K
Tk

 nm. 

A 0F  of 2 nN was selected as the lower limit of the force as it produced harmonic response larger 

than the thermal noise floor.  

 

The magnitude of the harmonic force was chosen such that the material behaved in the linear 

regime. This was ensured by studying the stress-strain response of the nanofilm obtained from the 

simple tensile tests mentioned in Section 4.1.4. For a linear material response the stress-strain plot 

should produce a straight line.  The stress-strain behavior in the nanofilm for a range of static loads 

is presented in Figure 4-7 (b). Linear material behavior was observed for forces below 92 nN.  
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Step 3: Confirm convergence 

Displacement of a structure oscillating at subresonant frequencies can be classified into three 

regimes: fluctuation-dominated response, linear mechanical response, and non-linear mechanical 

response. These regimes can be observed in the response of the sample in Figure 4-9. For large 

forces, the harmonic amplitude surpasses the thermomechanical fluctuations and the displacement 

is dominated by the mechanical response. For comparatively small forces ( 0F = 2 nN), the 

harmonic response is comparable to the thermomechanical noise. And in the absence of harmonic 

force ( 0F = 0 nN), the response is completely due to thermal noise. As a consequence of this 

behavior thermal fluctuations have profound effect on the magnitude of damping in the 

subresonant regime.  

 

The fluctuation theorem dictates that for responses comparable to the fluctuation dominated 

region, the analysis of damping must account for fluctuations in thermodynamic quantities such as 

entropy, work done, heat, internal energy, and dissipation. The steady-state Work Fluctuation 

theorem for harmonically oscillating structures is expressed as [139] 
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(4.5) 

Where p  is the probability distribution function,   is the time interval over which the work is 

calculated, and   is a dimensionless parameter that takes care of finite-time effects.  

 

Following implications can be derived from Eq. (4.5). For example, based on the statistical 

properties of the work distribution, there is a finite probability of observing trajectories for which 

the work done is negative. Therefore, from the viewpoint of estimating damping using classical 
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MD, it is best to avoid the fluctuation-dominated regime and focus on the mechanical regime. 

Therefore, for obtaining precise estimates of damping, convergence of tan  and   was 

considered as a function of simulation time. 

 

To this end, a series of harmonic forces were applied on the atoms in the end atomic layer with 

frequencies of 10 GHz and 30 GHz. Convergence data was obtained by calculating tan  and 

for every nanosecond of forced oscillation. We defined convergence time, ct , as the forced 

oscillation duration after which tan  and   reached a value that did not vary by more than 3%. 

Damping is estimated by calculating the average of the values of tan  and   over the time from  

ct  to ft .  

 

Step 4: Check for linearity 

The final step was to check for the linearity of the estimated damping. According to Eq. (1.1) for 

small magnitude of damping, in the absence of material nonlinearities tan  and   are equivalent. 

Taking into consideration the propensity of numerical errors inherent to the MD algorithm, 

uncertainties in the simulated estimates of axial stiffness ( xK ), and the influence of thermal 

fluctuations on the dynamics of oscillations, the estimated damping values were said to be linear 

when tan  and   differed by less than 5%. 

 

4.2 Results 

This section presents damping estimates for the Ni nanofilm at subresonant and resonance 

frequencies obtained using different measures of damping. 
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4.2.1 Damping in the subresonant regime 

 

Figure 4-10: Convergence behavior of damping for longitudinal-mode oscillations at 10 GHz in 

the nickel nanofilm. Different curves represent damping computed after every nanosecond for: 0F

= 2 nN, (red), 0F = 9 nN (violet), and 0F = 18 nN (black). The maximum difference between tan  

and   was less than 5%. 

 

Damping in the nanofilm in the subresonant regime was estimated by calculating tan  and   

over the frequency range of 10 GHz and 30 GHz. At each frequency, the convergence behavior 

and linearity of tan  and   were considered for a series of harmonic forces. The convergence 

behavior of damping values varied significantly depending on the relative strength of oscillation 

amplitude and the thermal fluctuations. For very small forces, when the harmonic response is 
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comparable to the rms value of thermal noise, the damping measures converged sluggishly. 

Further, as the magnitude of force was increased, tan  and   converged faster, in the linear 

regime to an average value. For very large values of harmonic force, material nonlinearities 

gradually became significant, and tan  and   ceased to become equivalent. The results were 

interpreted using the fluctuation theorem and nonlinear material behavior. Simulation parameters 

were identified for accurate estimation of damping.  

 

4.2.1.1 Response at 10 GHz 

 

Figure 4-11: Trend of tan  and   in the nickel nanofilm while oscillating in the longitudinal-

mode at 10 GHz. Different colors represent the damping computed after every nanosecond of 

oscillations for: 0F = 46 nN (green), 0F = 55 nN (brown), and 0F = 92 nN (blue). The maximum 

difference between tan  and   was less than 5%. 
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Harmonic forces of magnitude in the range 2 nN and 230 nN and frequency 10 GHz were applied 

at the free end of the nanofilm. This range of the harmonic force covered both the linear and the 

nonlinear material behavior regime (see Figure 4-7). 

 

Figure 4-12: Trend of tan  and   in the nickel nanofilm while oscillating in the longitudinal-

mode at 10 GHz. Different colors represent the damping computed after every nanosecond of 

oscillation for: 0F = 138 nN (blue), 0F = 230 nN (violet). The dashed line represents the represents 

the converged limit for linear damping. 

 

Fig. 4-10 and 4-11 demonstrate the difference in the behavior of tan  and   between the 

fluctuation dominated regime and the linear mechanical regime. For small harmonic forces (2 nN 

and 18 nN), the time series of tan  and   showed wild fluctuations and did not converge after 

forced oscillations for 150 ns. These forces were excluded from further analysis. As the magnitude 
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of the force was increased (Figure 4-11), i.e. forces in the range 46 nN and 92 nN, the trend of 

tan  and   converged faster. For the harmonic force of 55 nN, tan  and   converged to a value 

of 9×10-4. 

 

As the magnitude of the force was further increased beyond 92 nN till 230 nN, the material was 

driven into nonlinear regime. As a consequence, the equivalence of tan  and   was no longer 

observed (the difference between tan  and   became 14%). However both tan  and 

converged faster to values larger than 9×10-4. This behavior is illustrated in Figure 4-12. 

 

Figure 4-13: Trend of tan  and   in the nickel nanofilm while oscillating in longitudinal-mode 

at 30 GHz for five different harmonic forces. The maximum difference between tan  and   was 

less than 5%. 
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4.2.1.2 Response at 30 GHz 

Figure 4-13 shows damping in the nanofilm for oscillations at 30 GHz calculated after each 

nanosecond for a total of 100 ns. For further elucidation, this plot is separately shown in Figure 4-

14 and 4-15. Figure 4-14 shows the convergence results for tan  during oscillations at 30 GHz 

corresponding to small forces (2 nN and 18 nN). It can be seen that similar to the damping at 10 

GHz, tan  is sluggish in converging towards a mean value. Therefore these forces were discarded 

from further analysis. As the magnitude of the force was increased further (see Figure 4-15) e.g., 

55 nN, tan  and   converged to a value of 2.1×10-3, meeting the criteria for linear damping 

described earlier. 

 

Figure 4-14: Trend of tan  and   in the nickel nanofilm while oscillating in longitudinal-mode 

at 30 GHz. Different colors represent damping computed after every nanosecond of oscillation for 

0F = 2 nN (green), 0F  = 18 nN (blue). The maximum difference between tan  and   was less 

than 5%. 
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4.2.1.3 Summary of converged results of damping in the subresonant regime 

Table 4.1 lists the full set of results for linear damping at room temperature for the longitudinal-

mode oscillations of the nickel nanofilm in the frequency range of 10 GHz to 30 GHz. The 

magnitude of the harmonic force was chosen to be 55 nN for calculating damping at all the 

frequencies.  

 

Figure 4-15: Trend of tan  and   in the nickel nanofilm while oscillating in longitudinal-mode 

at 30 GHz. Different colors represent the damping computed after every nanosecond of oscillation 

for: 0F = 46 nN (black) , 0F  = 55 nN (red), and 0F = 92 nN (violet). The maximum difference 

tan  and   was less than 5%. 

 

 

4.2.2 Damping in the resonant regime 

Linear, continuous systems, undergoing steady-state harmonic oscillations show peaks at the 

resonant frequencies in the frequency-amplitude curves. The Q -factor at the resonance frequency 
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can be obtained by fitting the spectrum of amplitude to a Lorentzian function. Similarly, in case 

of thermal noise, the peak corresponding to the fundamental natural frequency can be fit to a 

Lorentzian function to obtain the Q -factor. Additionally, the system can be excited harmonically 

to reach steady-state and the free vibrations can be studied in the time domain to obtain the 

logarithmic decrement,   at the resonance frequency. In this section we discuss how damping in 

the nanofilm was estimated at the resonance frequency using the above-mentioned damping 

measures.  

 

Our simulations showed that the nanofilm behaved nonlinearly when harmonic forces were applied 

at frequencies in the vicinity of the resonance frequency. This behavior in the presence of the 

thermomechanical noise made it difficult to assess the linear range. Furthermore, the frequency 

response displayed the characteristic signatures of  Duffing-like nonlinearity, as also observed in 

experimental studies of nonlinear damping in nanomechanical resonators [1]. 

 

Table 4.1: Damping in the Ni nanofilm at 300 K for the longitudinal mode oscillations. 

Frequency 

(GHz) 
Force, 0F (nN) 

Convergence 

time, ct (ns) 
tan    100

tan

tan







 

10 

55  

107 8.55×10-4 8.95×10-4 4.6 

15 44 12.03×10-4 12.56×10-4 4.4 

20 35 14.91×10-4 15.51×10-4 4.0 

25 15 18.14×10-4 18.76×10-4 3.4 

30 15 20.34×10-4 20.88×10-4 2.6 
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4.2.2.1 Logarithmic decrement, δ  

 

Figure 4-16: (a) Free decay plots for the nanofilm for a range of harmonic excitations. The black, 

yellow and green color represent free decays obtained using harmonic excitation of forces 0.46 

nN, 0.23 nN, and 0.09 nN respectively. (b) Hilbert transformation represented by the red line, 

superimposed on the free decay obtained using harmonic force of 0.46 nN. 

 

 

Linear freely decaying structures vibrate at the resonance frequency, and reduce amplitude by 

dissipating useful mechanical energy as heat. The decay envelop can be fit to Eq. (2.21) to calculate

 . The following steps were implemented to obtain the free decay of the nanofilm and calculate 

  from the envelop function.  

 

(1) First the thermally equilibrated structure was oscillated harmonically at the resonance 

frequency (i.e. 183 GHz). The harmonic force was chosen such a way that the steady-state 
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response surpassed the thermal noise floor, but was smaller than the elastic limit of the 

structure.  

 

(2) Once the structure started oscillating at the steady-state, the harmonic force was removed, and 

the structure was allowed to decay freely.  

 

(3) The motion of the end atomic layer ( xlx  ) of the nanofilm was recorded during the free 

vibration. 

 

Figure 4.16 (a) represents the decay envelop of the nanofilm obtained using harmonic forces of 

magnitude 0.46 nN (black), 0.23 nN (yellow), 0.09 nN (green). As a check to assess linearity, the 

instantaneous decay frequency and   were calculated for different segments of the decay in the 

time domain, each of 0.03 ns in duration, using FFT and Hilbert transformation. Figure 4-16 (b) 

represents the Hilbert transformation of the decay envelop corresponding to an initial excitation of 

0.46 nN obtained using Eq. (2.20), also super imposed in the same plot is the time trace of the 

actual decay.  

 

As shown in Figure 4-17 (a), the instantaneous decay frequencies in the nanofilm were not identical 

for different decay segments for all the harmonic excitations. This behavior is a signature of the 

underlying nonlinear dynamics. The range of the decay frequency was between 180 GHz and 186 

GHz. Also, as shown in Figure 4-17 (b) the magnitude of   also varied for different decay 

segments depending on the amplitude of initial excitation. For the full decay duration of 1 ns, the 

average log decrement was found to be 0.015, which is equivalent to a Q -factor of 210 obtained 

using Eq. (1.1).   
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Figure 4-17: Plots of instantaneous decay frequency and   obtained using the FFT method and 

the Hilbert transformation of the decay envelops corresponding to harmonic excitations of 0.46 

nN (black), 0.23 nN (orange) and 0.09 nN (green). 

 

4.2.2.2 Q -factor from harmonic oscillations 

In order to calculate the Q -factor, first, the thermally relaxed structure was harmonically oscillated 

at frequencies around the first longitudinal resonance frequency by applying forces at its free end. 
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The magnitude of the harmonic forces were selected smaller than 92 nN, in order to avoid material 

nonlinearities (see Figure 4-7). The amplitude of the steady-state oscillations was calculated using 

Eq. (4.4). 

 

Figure 4-18: Frequency response curves of the nanofilm during steady-state longitudinal 

oscillations for varying magnitudes of harmonic forces.  

 

Figure 4-18 shows the steady-state harmonic amplitudes of the nanofilm for a range of harmonic 

forces around the natural frequency. It can be seen that the frequency corresponding to the 

maximum amplitude is not constant and as the magnitude of the force is increased the peak shifts 

towards lower frequencies showing signatures of nonlinear spring softening. Consequently, Eq. 

(2.22) is not valid for calculating the Q -factor. 
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Therefore, in order to calculate the Q -factor, we checked whether the nonlinear behavior showed 

signatures of Duffing-like oscillators. In order to confirm this behavior we identified critical 

amplitude,
 cA , defined as the first amplitude among the set of nonlinear curves that displays 

infinite slope as 0.04 nm. This observation quantitatively agreed with a magnitude of 0.033 nm for 

cA  obtained using Eq. (2.27). The back-bone curve shown in Figure 4-19 was fit to Eq. (2.29) to 

obtain, Q = 215, and 0f = 183 GHz. 

 

Figure 4-19: Fit to the backbone curve using Eq. (2.29). The fit gives 0f = 183 GHz and Q = 215. 

 

Figure 4-20 shows the amplitude frequency curve obtained directly from MD simulations and 

superimposed in the same plot is the simulated amplitude-frequency curve obtained using Eq. 

(2.26) for Q = 215, and 0f = 183 GHz. 
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Figure 4-20: Nonlinear frequency response for the nickel nanofilm. The symbols are the results of 

simulations and the curves were computed using Eq. (2.26) with cA = 0.04 nm, Q = 215, and 0f = 

183 GHz. 

 

4.2.2.3 Q -factor from thermal noise 

Figure 4-21 shows the PSD of the thermomechanical noise of the atoms at xlx   captured for a 

total simulation time of 154 ns. The simulation time step of 1 fs correspond to a Nyquist frequency 

(that is, one-half of the sampling frequency) of 5×105 GHz which is significantly larger than the 

fundamental natural frequency of the structure. The PSD of the displacement noise was computed 

using the Welch's methodology built-into MATLAB [140]. The first resonance peak located at 183 
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GHz corresponded to the first longitudinal mode. The remaining peaks were from the resonance 

frequencies of the higher modes. 

 

Figure 4-21: Power spectral density (PSD) of the displacement noise captured for 154 ns for the 

nickel nanofilm calculated using the Welch method. The peaks in the PSD represent resonant 

modes in the longitudinal modes in the longitudinal direction. 

 

 

In order to calculate the Q -factor, the entire noise data was divided into 5 equal segments, each 

29 ns in duration. The peak at 183 GHz was fit to the Lorentzian function given by Eq. (2.23). A 

zoomed in view of the peak at 183 GHz is shown in Figure 4-22, also shown in red color is the 

Lorentzian fit to the PSD. The fit was performed by using the least squares algorithm. The 

frequency band width for the fit was guessed by trial and error by looking at the shape of the peak. 

A weighted fit was performed using the Levenberg-Marquardt algorithm [141], built into the 
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software ORIGINLAB. This was done to ensure that all the points in the PSD had equal 

contribution. It can be seen that the fitted Lorentzian captured the PSD spectrum of the 

thermomechanical noise which is a signature of linear vibration.  Therefore, the Q -factor was 

computed by plugging in computed fit parameters into Eq. (2.22).  

 

The estimates of Q -factor and the resonance frequency of the fundamental longitudinal mode at 

183 GHz, obtained using the five noise segments are summarized in Table 4.2. The mean value of 

Q -factor, and Q  were found to be 183 and 25. The latter is in good agreement with Eq. (2.24) 

which predicted a standard deviation of 20.3 (i.e., 11% of the mean). 

 

Figure 4-22: Illustration of the Lorentzian fit to PSD of the thermal noise around the primary peak 

corresponding to the fundamental longitudinal vibration mode. The black circles represent the 

calculated PSD and the red color represent the Lorentzian fit.  
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Table 4.2: Estimates of Q -factor and 0f  from the Lorentzian fit of thermal noise for different 

segments of the thermomechanical noise. 

  

 

Run Q  0f  

1 187 183.2 

2 174 183.2 

3 148 183.3 

4 219 183.1 

5 186 183.3 

 

 

4.3 Discussion 

In this chapter, we focused on five techniques of estimating damping in a nickel nanofilm using MD 

simulations. The various factors involved in extracting the dynamics of the structure have been 

discussed in detail. The interactions of the Ni atoms were captured using the EAM potential. The nickel 

nanofilm was evolved in an NVT ensemble using the NH thermostat. This ensured that the thermal 

environment of the system resembled a realistic scenario of constant temperature. The details of the 

thermal equilibrium process, and the selection scheme for the choice of the thermostat time constant 

have been discussed.  

 

Damping in the nanofilm was estimated at two different frequency regimes. In the subresonant regime, 

damping was estimated in terms of loss factor ( ) and loss tangent ( tan ) by harmonically oscillating 

the nanofilm in the longitudinal mode. Harmonic forces were applied on the free end of the structure 

and the displacement and the velocity of the end layer was recorded. The loss angle method provided 
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a computational advantage over the loss factor approach since the stiffness and the amplitude of 

vibration were not required for computing the loss tangent, unlike the loss factor. As a check on our 

simulations, the loss factors in Table 4.1 for the Ni nanofilm were compared with the results in Ref. 

[62], and the results are shown in Table 4.3. The structural dimensions and several simulation 

parameters (including the EAM potential, integration time step, and the thermostat time constant) are 

the same in both studies. But the simulation times are significantly different at certain frequencies, as 

noted in the table. The results are in good agreement with differences ranging from 9% to 24%. 

 

Table 4.3: Loss factors of the Ni nanofilm at 300 K. The simulation time is noted in parentheses. 

Frequency 

Loss factor 

This work Ref. [62] Difference 

10 GHz 
9.06×10-4 

(80 ns) 

6.90×10-4 

(30 ns) 
23.8% 

15 GHz 
1.27×10-3 

(42 ns) 

1.08×10-3 

(30 ns) 
14.9% 

20 GHz 
1.56×10-3 

(30 ns) 

1.37×10-3 

(30 ns) 
12.1% 

25 GHz 
1.87×10-3 

(11 ns) 

1.67×10-3 

(30 ns) 
10.7% 

30 GHz 
2.11×10-3 

(14 ns) 

1.92×10-3 

(30 ns) 
9.0% 

 

 

Two aspects which affected the precision of our calculations in the subresonant regime were 

convergence and linearity of damping. The magnitude and the convergence behavior of the loss angle 

and loss factor was found to depend on the magnitude of the harmonic force. For very small forces the 

response of the system was in the fluctuation dominated regime and the loss angle and the loss factor 

were very slow to converge, an increase in the magnitude of the harmonic force drove the system into 
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mechanical regime and faster convergence of damping was observed, further increase in the force 

magnitude resulted in nonlinear damping. This interplay between thermal noise and its effect on the 

dynamics was found to determine the precision of the damping estimates.  

 

While controlling the linear behavior of the structure is not always possible, it is desirable to verify the 

linearity of extracted measurements to ensure the selection of the simulation parameters and the 

subsequent analysis (which usually assumes linearity) is reasonable. We have proposed a rational 

selection of the simulation parameters and their linearity assessment using convergence. 

 

In the resonant regime, damping was estimated using three methods. Analysis of the free decay in the 

longitudinal mode revealed that the damping and the decay frequency varied depending on the 

amplitude of vibration, which is a signature of nonlinearity. The frequency response of amplitude from 

steady-state harmonic vibrations around the longitudinal resonance frequency showed that the system 

was driven into nonlinear regime showing characteristics of Duffing nonlinearity. Finally, a Lorentzian 

fit to the PSD of displacement noise gave a Q -factor of 183, which matched closely with Q -factor of 

210 from free decay analysis, and Q -factor of 215 from the nonlinear Duffing analysis.  

 

For all the methods, the damping was estimated without invoking any assumptions of macroscale (or 

continuum-based) concepts. In addition the methods were also insensitive to the underlying 

mechanisms of dissipation. The choices of the dynamic model was guided by the response observed 

in the simulations, and by following the dictum of selecting the simplest model that can provide 

the required level of detail and insight. Therefore, the proposed methodology can be applied to study 

any material, structure, mode, and temperature, using the appropriate potentials, boundary conditions, 

and thermal equilibration. For instance, the equations used for estimating the loss tangent and the 

loss factor were selected after observing the linear force displacement curve and steady-state time-
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harmonic oscillations in the sub-resonant regime. Similarly, the use of the Duffing model was 

guided by the nonlinearity observed at resonance.  

 

In the sub-resonant regime, damping can be estimated as functions of frequency and temperature 

using the loss tangent and loss factor. No assumptions are made about the nature, magnitude, or 

mechanisms of dissipation. Further, both measures can be computed using the same set of 

simulations with little incremental cost. It is useful to do so because the relative values of tan  

and   can be used to assess linearity. In general, however, simulating damping in the sub-resonant 

regime is expensive because of the cost associated with assessing convergence and linearity.  

 

4.4 Summary  

Isothermal MD simulations have been performed to estimate damping in a nickel nanofilm using 

four different measures of damping. Thermomechanical noise and amplitude dependent material 

nonlinearities were found to influence the precision of the loss factor and loss tangent in the 

subresonant regime. We devised guidelines for a cost effective selection of the simulations 

parameters to ensure precision of the damping estimation by considering linearity and convergence 

of the damping measures. In the resonant regime damping was estimated using the logarithmic 

decrement, the Q -factor from the steady-state harmonic oscillation in the vicinity of the resonance 

frequency and the Q -factor from the spectrum of the thermomechanical noise. The oscillations in 

the nanofilm during free and forced vibration in the vicinity of the resonance frequency was of 

nonlinear nature. However, the spectrum of the thermal noise technique which does not necessitate 

the use of external stimuli showed linear Lorentzian peaks at fundamental frequency. Damping 
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estimated using nonlinear analysis of the free decay and the steady-state harmonic oscillations 

showed good agreement with damping calculated from the PSD of the thermal noise. 
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Chapter 5 

Damping in single-crystal silicon nanoresonators 

 

This chapter presents results from the isothermal molecular dynamics simulations of damping in a 

single-crystal Si nanofilm and a single-crystal Si nanowire. The SW potential and the NH 

thermostat were used to account for the atomic interactions and perform thermal equilibration of 

the structures. Damping was evaluated as a function of frequency and temperature in the 

subresonant regime in terms of tan  and  .  

 

Section 4.1 discusses the structural details of the Si nanostructures, and the thermal equilibration 

steps. The section ends with the estimates of natural frequencies of both the structures obtained 

from the FFT of the thermal noise and rationale behind the choice of the harmonic force and 

simulation time to ensure the convergence and linearity of tan  and   in the subresonant regime. 

Section 4.2 presents the results of damping in the nanofilm as a function of temperature and 

frequency. A comparison of damping in the nanofilm and the nanowire as a function of frequency 

at 300 K is also reported. In Section 4.3, we present an analysis of different mechanisms of material 

damping using the method of elimination to identify phonon related mechanisms as the dominant 

source of damping in Si nanostructures. Quantitative comparisons of tan  with different models 

of phonon mediated damping are presented.   
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5.1 Simulation methodology 

This section presents the details of the simulation parameters such as structural dimensions, 

interatomic potential, and thermal equilibration steps. Surface reconstruction was observed in the 

free surfaces of both the structures as they were heated up to the desired temperatures. We have 

discussed different aspects of the surface reconstruction process. The section ends with the 

estimates of natural frequencies calculated from the thermal noise, values of axial stiffness 

obtained from the tensile tests, and the choice of simulation parameters used for the estimation of 

tan  and   in the subresonant regime for both the nanoresonators. 

 

 

Figure 5-1: A schematic illustration of the single-crystal Si nanofilm. 

   

5.1.1 Structural details 

A nanofilm and a nanowire of single-crystal Si were constructed by placing atoms in body centered 

tetragonal (bct) lattice positions with a lattice parameter of 5.43 Å. A schematic of the nanofilm is 

shown in Figure 5-1. The structures were clamped at one end. The dimensions of the y-z cross-
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sections were 4.3 nm  4.3 nm, and the lengths ( xl ) along the [1 0 0]-direction were 7.6 nm in both 

the structures. Periodic boundary condition was applied in the lateral (y and z) directions and free 

surface condition was applied in the axial direction for the nanofilm. The nanowire was built using 

free surface condition in all the directions.  

 

5.1.2 Thermal equilibration 

The thermal equilibration of the nanostructures were performed using the methodology discussed 

in Section 4.1. The starting temperature of the Si atoms was 1 K which was further raised to the 

desired temperatures in 4 ns using the NH thermostat. Four different thermostat time constants 

(0.01 ps, 0.1 ps, 1 ps and 10 ps) were selected for the thermal equilibration steps. The potential 

energies and the temperatures of the structures were monitored while they evolved in the NVT 

ensemble for each of the above-mentioned values of NH .  

 

Figure 5-2 shows the time trace of the potential energy in the nanofilm captured for a total duration 

of 84 ns for all four values of NH . It can be observed that the structure attained an equilibrium 

potential energy of -5.3005  10 -15 Jules using a NH -value of 0.01 ps, the lowest compared to the 

rest of the values of NH . Time trace of temperature in the nanofilm using  of 0.01 ps is shown 

in Figure 5-3. No large fluctuations were observed in the potential energy and the temperature 

profiles of the nanofilm for the entire duration. The structure was thermally equilibrated after 84 

ns. Similar steps were followed for the thermal equilibration of the nanowire using a  of 0.01 

ps. 

NH

NH
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Figure 5-2: Time traces of potential energy in the nanofilm at 300 K simulated using a Nosé-

Hoover thermostat for NH : (a) 0.01 ps, (b) 0.1 ps, (c) 1 ps, and (d) 10 ps captured for 84 ns. 

 

Figure 5-3: Temperature profile of the nanofilm during the thermal equilibration at 300 K using 

NH  = 0.01 ps. No major fluctuations in the temperature profile could be observed for the entire 

duration. 
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5.1.3 Surface reconstruction 

Surface reconstruction was observed in the free surfaces of the nanofilm and the nanowire. When 

free surfaces are imposed on nanostructures, at least one bond per atom is cut upon cleavage. These 

bonds are called the dangling bonds. These unsaturated dangling bonds make the surface unstable 

and are responsible for an increase in the surface energy. A reduction in the number of dangling 

bonds minimizes the surface energy and is the driving force behind the reconstruction. The 

reconstruction of surfaces involve changes in the surface unit cells compared to the bulk, leading 

to changes in the periodicity and symmetry of the atoms at the surface.  

 

Figure 5-4: Potential energy of the individual atoms in the (1 0 0) surface in the nanofilm: (a) initial 

configuration, and (b) after surface reconstruction. Color chart represents different levels of 

potential energy, red being the highest potential energy and blue is the lowest potential energy. 

 

We observed that as the temperature of the structures were increased, atoms in the free surfaces in 

both the structures broke away from the initial diamond cubic network and created dangling bonds, 

forming 2×1 surface dimers. This observation is consistent with previous work on surface 

reconstruction in SW Si [142]. Figure 5-4 (a) shows the (100) surface of the nanofilm at 1 K, and 

Figure 5-4 (b) is the reconstructed surface. Once the surface reconstruction was over, the 

configuration of the surface atoms were different from the bulk atoms.  

(a) (b) 
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Figure 5-5: Time trace of (a) potential energy, and (b) temperature in the nanofilm during heating 

from 1 K to 300 K. 

 

Figure 5-5 (a) and (b) represent the time traces of the potential energy and the temperature in the 

nanofilm as it was gradually heated up to 300 K. It can be observed from Figure 5-5 (a) that till 

about 0.2 ns the potential energy in the nanofilm increased monotonically. After 0.2 ns and till 0.8 

ns the potential energy dropped and reached a minimum of -5.332 10 -15 Joules. During this time 

the reconstruction was completed. After 0.8 ns the potential energy again increased monotonically. 

This behavior is absent in the temperature profile (Figure 5-5 (b)) and for the entire duration the 

temperature in the nanofilm increased monotonically. The potential energy of individual atoms in 

the free (1 0 0) surface of nanofilm at 0 K and after 0.8 ns of heating is shown in Figure 5-4 (a) 

and (b) using color gradient. It can be seen that during heating the structure some of the atoms in 

the free surface move and form 2×1 dimers and in the process reduce their potential energy.  

(a) (b) 

(a) (b) 
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Figure 5-6: Fast Fourier transform (FFT) of the thermomechanical noise for the nanowire and the 

nanofilm. The peaks at 256.5 GHz for the nanofilm and 202 GHz for the nanowire correspond to 

the fundamental longitudinal natural frequencies. 

 

5.1.4 Natural frequency ( 0f ) and axial stiffness ( xK ) 

The FFT of the thermal noise of the atoms at xlx   was analyzed to obtain the estimates of natural 

frequencies of the nanofilm and the nanowire. Figure 5-6 shows the FFT spectrum for both the 

structures showing characteristic peaks at their natural frequencies. The fundamental longitudinal 

frequency of the nanofilm and nanowire were 256.5 GHz and 202 GHz, respectively. Tensile tests 

were performed by applying static forces on the atoms in the end layer at xlx   to estimate the 

values of the longitudinal stiffness. As shown in Figure 5-7 (a), the force-displacement curves 

exhibited linear response till a force magnitude of 73 nN for the nanofilm and 61 nN for the 
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nanowire. Corresponding stress-strain plots are shown in Figure 5-7 (b). The magnitude of the 

axial stiffness for the nanofilm and the nanowire at 300 K were estimated to be 352 N/m and 210 

N/m. Similar tests were performed to obtain estimates of xK  at other temperatures. These results 

indicate that for identical dimensions and material properties, the resonance frequency and the 

axial stiffness of the nanowire is smaller than the nanofilm. Also, the Young’s modulus for the 

nanowire dropped to 87 GPa compared to 143 GPa in the nanofilm. This behavior is in agreement 

with experimental findings [143]. 

 

Figure 5-7: (a) Force-displacement, and (b) stress-strain curves for the nanofilm (black) and the 

nanowire (blue) used for estimating the axial stiffness and Young’s modulus utilizing a linear least-

squares analysis. 
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5.1.5 Damping in the subresonant regime 

This section discusses the rationale behind the selection of different simulation parameters such as 

frequency of oscillation ( f ), magnitude of harmonic force ( 0F ), and convergence time ( ct ) used 

for obtaining precise estimates of tan  and  .  

 

Figure 5-8 (a) and (b) show the response of the nanofilm and the nanowire under the application 

of harmonic forces at 300 K, respectively. It is seen that for forces above 2 nN, the response of the 

structures surpass the thermomechanical noise floor. The stress-strain plots for the nanofilm and 

the nanowire (see Figure 5-7 (b)) reveal that for stresses up to 4 GPa (force 73 nN) for the nanofilm 

and 3.3 GPa (force 67 nN) for the nanowire the structures behave linearly.   

 

Figure 5-9 represents the convergence curves of tan  and   in the nanofilm for longitudinal 

oscillations at 10 GHz calculated after each nanosecond for a total duration of 150 ns. The 

operating temperature was maintained at 300 K. The different curves illustrate the effect of 

increasing the magnitude of the harmonic force (starting from 12 nN till 86 nN) on damping as a 

function of time. The following observations are made from the figure. For small value of 0F  (12 

nN), the harmonic response is comparable to the thermal noise floor and damping fluctuates 

between 3×10-4 and 4×10-4. As the force amplitude was increased, simulations converged in the 

linear regime with tan  and   converging to 2.4×10-4 after 122 ns. Furthermore, tan and   

remained unchanged and converged linearly when the force was increased to 61 nN and 86 nN. 

We used 49 nN as the harmonic force for further damping simulations in the nanofilm. 
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Figure 5-8: Axial displacement of the free end of the silicon (a) nanofilm and (b) nanowire while 

oscillating at 10 GHz. The blue curve shows the thermomechanical noise in the absence of any 

external driving force. In (a) the black, green, and red correspond to force amplitudes of 86 nN, 49 

nN, 6 nN respectively. In (b) the black, green, red and pink correspond to force amplitudes of 49 

nN, 37 nN, 12 nN and 2nN respectively. 

(a) 

(b) 
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Figure 5-9: Convergence behavior of the loss tangent ( tan ) and the loss factor ( ) in the 

nanofilm for longitudinal-mode oscillations at 10 GHz. The symbols represent the loss factor ( ) 

and the lines represent the loss tangent ( tan ). Both measures were computed after every 

nanosecond. In all cases, tan  and   differed by less than 5%.  

 

 

Figure 5-10 represents the convergence curves of tan  and   in the nanowire for longitudinal 

oscillations at 10 GHz calculated after each nanosecond for a total duration of 150 ns. For very 

small 0F  (2.5 nN) damping fluctuates wildly and does not converge. For the magnitude of the 

force 25 nN and 29 nN, the fluctuations in damping were mild but still did not converge till 150 

ns. As the force amplitude was further increased, the simulations converged in the linear regime, 

with average tan  and   in the range 3.73×10-4 to 5.73×10-4, giving a standard deviation of 

7.08×10-5 for tan . We chose 37 nN as the harmonic force for damping simulations in the 

nanowire in the subresonant regime. 
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Figure 5-10: Convergence behavior of the loss tangent ( tan ) and the loss factor ( ) for 

longitudinal-mode oscillations at 10 GHz of the nanowire. The symbols represent the loss factor (

 ) and the lines represent the loss tangent ( tan ). Both measures were computed after every 

nanosecond. In all cases, tan  and   differs by less than 5%. 

 

5.2 Results 

In this section we report the estimates of damping in the nanofilm and the nanowire for longitudinal 

oscillations as a function of frequency and temperature.  Estimates of damping were obtained as a 

function of frequency at 50 K, 300 K and 500 K for the nanofilm, and at 300 K for the nanowire. 

Frequency response curves of damping showed characteristic peaks. The peaks in damping for the 

nanofilm shifted as the operating temperature was varied. 
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5.2.1 Frequency response of damping in the nanofilm as a function of temperature 

 

Figure 5-11: Comparison of frequency response of tan  in the nanofilm at 50 K, 300 K and 500 

K. The magnitude of the harmonic force was 49 nN for all the simulations. Symbols of different 

colors represent damping estimates at 50 K (red), 300 K (green), and 500 K (blue). For the entire 

frequency range the maximum difference between the converged values of tan  and   in the 

nanofilm was less than 2.28% at 50 K, 1.86% at 300 K, and 3.06% at 500 K. 

 

 

Figure 5-11, shows the comparison of damping in the nanofilm as a function of frequency at 50 K, 

300 K and 500 K. The following observations can be made from the figure: (a) damping in the 

nanofilm at 300 K and 500 K is not monotonic, rather damping initially increases as the frequency 

is increased, reaches a peak, as the frequency is further increased damping drops monotonically, 

(b) a reduction in the temperature of the nanofilm from 500 K to 300 K shifted the frequency 
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corresponding to the peak in damping, (c) the peak in damping is not clearly visible for the curve 

corresponding to 50 K, for which damping initially increases till 3 K after which decreases 

monotonically till 40 GHz,  and (d) overall, damping in the film increased with an increase in 

temperature. For the entire frequency range the maximum difference between the converged values 

of tan  and   in the nanofilm was less than 2.28% at 50 K, 1.86% at 300 K, and 3.06% at 500 

K. Lists of  tan  and   over the entire frequency range is presented in Table 5.1 (at 50 K), Table 

5.2 (at 300 K) and Table 5.3 (at 500 K). 

 

Figure 5-12:  Comparison of the frequency response of damping in the nanofilm and the nanowire 

for longitudinal oscillations at 300K. Symbols represent estimates of tan . The magnitude of the 

applied force on the nanofilm and the nanowire was 49 nN and 37 nN respectively. 
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5.2.2 Comparison of damping in the nanofilm and the nanowire at 300 K 

Figure 5-12 represents the comparison of damping in the nanofilm and the nanowire for 

longitudinal oscillations at 300 K. It can be seen that the damping-curves for both the structures 

follow similar trends as the frequency of oscillation is varied. Initially damping increases in both 

the structures, reaches a maximum in the range 6 GHz and 10 GHz. For frequencies larger than 10 

GHz damping in both the structures decreases. Another interesting feature is that for the entire 

frequency range the nanowire dissipates more energy than the nanofilm. A list of  tan  and   in 

the nanowire over the entire frequency range is presented in Table 5.4. 
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Table 5.1: Damping in the Si nanofilm at 50 K for the longitudinal-mode oscillation. 

Frequency 

(GHz) 

Total simulation 

time, ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

1.5 352 308 4.45×10-5 4.55×10-5 2.26 

2 253 214 4.76×10-5 4.87×10-5 2.22 

2.5 253 129 4.87×10-5 4.98×10-5 2.23 

3 253 169 4.98×10-5 5.09×10-5 2.23 

3.5 253 124 4.38×10-5 4.47×10-5 2.23 

4 267 125 4.25×10-5 4.35×10-5 2.21 

5 254 124 4.20×10-5 4.29×10-5 2.21 

8 152 112 3.77×10-5 3.85×10-5 2.15 

10 152 73 3.45×10-5 3.52×10-5 2.11 

12 152 65 3.36×10-5 3.43×10-5 2.05 

15 152 91 2.79×10-5 2.85×10-5 1.96 

17.5 152 89 2.57×10-5 2.62×10-5 1.86 

20 152 77 2.50×10-5 2.54×10-5 1.75 

25 152 62 2.15×10-5 2.18×10-5 1.44 

30 152 77 2.05×10-5 2.08×10-5 1.10 

40 152 89 1.73×10-5 1.73×10-5 0.23 
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Table 5.2: Damping in the Si nanofilm at 300 K for longitudinal-mode oscillation. 

Frequency 

(GHz) 

Total simulation 

time, ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

1.5 548 359 1.01×10-4 1.03×10-4 1.85 

2 552 381 1.32×10-4 1.34×10-4 1.86 

2.5 351 218 1.55×10-4 1.56×10-4 0.39 

3 550 288 1.71×10-4 1.73×10-4 1.58 

5 352 188 2.35×10-4 2.40×10-4 1.84 

7 252 114 2.47×10-4 2.51×10-4 1.75 

8 246 147 2.48×10-4 2.52×10-4 1.73 

10 251 122 2.44×10-4 2.48×10-4 1.72 

12 152 69 2.35×10-4 2.39×10-4 1.65 

14 152 43 2.21×10-4 2.25×10-4 1.61 

15 152 54 2.13×10-4 2.16×10-4 1.57 

17.5 152 70 2.11×10-4 2.11×10-4 0.12 

20 151 76 2.00×10-4 2.03×10-4 1.42 

22.5 149 36 1.76×10-4 1.78×10-4 1.20 

25 152 47 1.76×10-4 1.77×10-4 1.04 

30 150 51 1.61×10-4 1.62×10-4 0.15 

35 152 44 1.53×10-4 1.53×10-4 0.31 

41 152 34 1.43×10-4 1.42×10-4 0.29 

45 152 37 1.35×10-4 1.34×10-4 0.74 

49 152 38 1.29×10-4 1.28×10-4 1.23 
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Table 5.3: Damping in the Si nanofilm at 500 K for longitudinal-mode oscillation. 

Frequency 

(GHz) 

Total simulation 

time, ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

2 253 192 2.22×10-4 2.27×10-4 2.43 

3 252 162 2.59×10-4 2.67×10-4 3.06 

3.5 252 206 2.91×10-4 3.00×10-4 3.04 

4 152 94 3.18×10-4 3.28×10-4 3.05 

5 152 57 3.84×10-4 3.95×10-4 3.05 

6 252 82 4.01×10-4 4.13×10-4 3.04 

8 252 77 4.20×10-4 4.32×10-4 3.01 

10 252 74 4.47×10-4 4.60×10-4 2.97 

12 152 39 4.65×10-4 4.79×10-4 2.92 

15 152 44 4.46×10-4 4.59×10-4 2.82 

20 136 23 4.14×10-4 4.25×10-4 2.60 

25 152 42 3.95×10-4 4.04×10-4 2.31 

30 152 54 3.63×10-4 3.70×10-4 1.96 

35 152 39 3.39×10-4 3.44×10-4 1.53 

40 152 16 3.38×10-4 3.42×10-4 1.04 

45 150 15 3.22×10-4 3.24×10-4 0.48 

50 152 22 3.06×10-4 3.05×10-4 0.14 
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Table 5.4: Damping in the Si nanowire at 300 K for longitudinal-mode oscillations. 

Frequency 

(GHz) 

Total simulation 

time, ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

2 149 132 2.59×10-4 2.67×10-4 3.36 

3 148 70 3.18×10-4 3.29×10-4 3.39 

3.5 150 118 3.24×10-4 3.35×10-4 3.37 

5 147 80 3.70×10-4 3.82×10-4 3.36 

6.5 150 68 4.20×10-4 4.34×10-4 3.35 

7.5 150 53 4.13×10-4 4.26×10-4 3.29 

10 148 38 4.24×10-4 4.38×10-4 3.24 

12 198 155 4.15×10-4 4.15×10-4 0.05 

15 150 59 4.06×10-4 4.18×10-4 2.96 

17.5 150 57 3.88×10-4 3.99×10-4 2.81 

20 151 41 3.81×10-4 3.91×10-4 2.56 

25 151 22 3.66×10-4 3.74×10-4 2.13 

40 147 51 3.48×10-4 3.48×10-4 0.13 

 

5.3 Comparison between simulated damping and mechanisms of material damping 

In order to understand these findings we go back to Section 2.1 where we have described common 

sources of material damping in single-crystal materials. We can examine these mechanisms one-

by-one to see if their predictions are consistent with our simulations. Among the various 

mechanisms of material damping the possible dissipation sources in the nanofilm and the nanowire 

are thermoelastic damping (TED), surface damping, and phonon damping. 
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Table 5.5: Properties for bulk Si obtained using the SW potential. 

Property Symbol Unit 300 K 500 K 

Density   (Kg/m3) 2315 [144] 2310 [144] 

Specific heat VC  (J/m3/K) 1.55  106 [145] 1.84  106 [145] 

Young’s modulus E  (GPa) 141.4 (current work) 
140.1 (current 

work) 

Thermal conductivity k  (W/m K) 350 [146], and 255 [147]  284 [10], and 75 

Speed of sound sV  (m/s) 
7815 (calculated using 

Eq. (2.5) 

7776 (calculated 

using Eq. (2.5) 

Coefficient of 

thermal expansion 
  (K-1) 

2.67×10-6 [144], 3.9×10-6 

[148] 
3.43×10-6 [144] 

Grüneisen parameter   - 0.2, 0.5, 1.2 0.2, 0.5, 1.2 

 

 

Figure 5-13, shows prediction of thermoelastic damping (TED) as a function of frequency for 

single-crystal Si at 300 K calculated using Eq. (2.1), also super imposed in the same plot are the 

estimates of tan  for the nanofilm and the nanowire at 300 K. The material properties used for 

the calculations are presented in Table 5.5. The calculations of TED were performed using two 

different values of thermal conductivity, k 255 W/m K, and 355 W/m K. It can be observed that 

in the frequency range of 1 GHz to 50 GHz, the estimates of tan  for both the nanofilm and the 

nanowire are significantly larger than the predictions of TED obtained using Eq. (2.1). For 

example, at 1 GHz, TED in single-crystal Si is equal to 1×10-6 whereas the magnitude of tan  in 
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both the structures were to the tune of 1×10-4. It is important to note that the magnitude of 

thermoelastic damping gradually increased with frequency. These comparisons suggest that 

although TED had contributions in the estimated values of tan , but it was not the dominant 

source of damping in the Si nanoresonators.  

 

Figure 5-13: Comparison of tan  in the nanofilm and the nanowire at 300 K and TED calculated 

using Eq. (2.1). The material properties used for calculating TED are presented in Table 5.5. 

 

Surface reconstruction in the free surfaces of both the structures took place during the thermal 

equilibration process (see Figure 5-4). Furthermore, due to the presence of extra free surfaces, the 

ratio of surface to volume ratio is higher in the nanowire (0.15) compared to the nanofilm (0.0175). 

As a consequence of this increased surface to volume ratio, damping in the nanowire increased by 

60% to 100% than the nanofilm at 300 K over the entire frequency range investigated. This implies 

that damping from surface related mechanisms were significant in both the structures. 
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Unfortunately, a quantitative comparison of the simulated estimates of tan  and surface damping 

is not possible because of unavailability of closed-form expressions for calculating the later. 

 

In order to find out the contribution of phonon-phonon damping, we compare the frequency 

response of damping in the nanofilm at 300 K and 500 K with the phonon damping models 

described in Section 2.1.2. Depending on the period of mean phonon relaxation time compared to 

the period of the forced oscillation, phonon damping manifests as either Landau-Rumer (L-R) 

damping or Akheiser damping.  

 

     Comparison of damping estimates with Laundau-Rumer damping (Eq. (2.7)): Figure 5-14 (a) 

and (b) show the comparison between the estimates of tan  in the nanoresonators and L-R 

damping for bulk SW Si calculated using Eq. (2.7) at 300 K and 500 K, respectively. The properties 

for the SW Si used for the calculations are presented in Table 5.5. The magnitudes of L-R damping 

were calculated for  equal to 1.2, 0.5 and 0.2 to account for the uncertainties associated with this 

parameter in calculated L-R damping. This assumption for the values of  is reasonable since the 

average experimental value of  is 0.5 at 300 K [9].  

 

A quantitative comparison reveals that the values of tan  are within the limits of the calculated 

L-R damping, but the frequency dependencies do not match. For example, the magnitudes of tan  

varies with frequency showing characteristic peaks at both 300 K and 500 K in the nanofilm, and 

at 300 K in the nanowire but such peaks are not present in the frequency dependence of L-R 

damping. Instead, the L-R damping values are frequency independent. 
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Figure 5-14: (a) Comparison between simulated tan  in the nanostructures and Laundau-Rumer 

damping in bulk SW silicon calculated using Eq. (2.1) at (a) 300 K, and (b) 500 K. The red and 

the violet squares represent the estimates of tan  in the nanofilm and the nanowire respectively. 

The material properties used for the calculation of L-R damping are given in Table 5.5.The blue, 

black and green colored lines represent damping values for  equal to 1.2, 0.5 and 0.2. 
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Figure 5-15: Comparison between simulated tan  with Akheiser damping for bulk SW silicon 

calculated using Eq. (2.5) at (a) 300 K, and (b) 500 K, respectively. The red and the violet squares 

represent the estimates of tan  in the nanofilm and the nanowire, respectively. The material 

properties used for the calculation of Akheiser damping are given in Table 5.5. The solid lines and 

the dashed lines represent the magnitude of Akheiser damping for the ranges of thermal 

conductivity for SW Silicon (355 W/m K and 255 W/m K at 300 K and 284 W/m K and 75 W/m 

K at 500 K). The blue, black and green colored lines represent Akheiser damping calculated using 

 values of 1.2, 0.5 and 0.2, 0.5.  
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Figure 5-16: Comparison between simulated tan  with Akheiser damping in bulk SW silicon 

calculated using Eq. (2.6) at (a) 300 K, and (b) 500 K. The red and the violet squares represent the 

estimates of tan  in the nanofilm and the nanowire respectively. The material properties used for 

the calculation of Akheiser damping are given in Table 5.5. The solid lines and the dashed lines 

represent the magnitude of Akheiser damping for the ranges of thermal conductivity for SW 

Silicon (355 W/m K and 255 W/m K at 300 K and 284 W/m K and 75 W/m K at 500 K). The blue, 

black and green colored lines represent Akheiser damping calculated using  values of 1.2, 0.5 

and 0.2, 0.5.  
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     Comparison of simulated damping with Eq. (2.5): Figure 5-15 (a) and (b) show the comparison 

between the magnitudes of tan  in the nanofilm and the nanowire with Akheiser damping 

calculated using Eq. (2.5). Here also, three different magnitudes of  (1.2, 0.5 and 0.2) was 

considered to account for the uncertainties in the values of Akheiser damping. A qualitative 

comparison shows that our estimates of tan  fall directly between the values of Akheiser 

damping. No peak is observed in the frequency dependence of Akheiser damping. 

 

     Comparison of simulated damping with Eq. (2.6): Figure 5-16 (a) and (b) show the comparison 

between the magnitudes of tan  in the nanofilm and the nanowire and Akheiser damping 

calculated using Eq. (2.6) at temperatures 300 K and 500 K. It can be clearly observed that 

Akheiser damping values calculated using Eq. (2.6) provide the best agreement with the simulated 

tan  values over the entire frequency range. Eq. (2.6) not only captures the magnitudes of tan , 

but also captures the presence of the peaks in damping at both the temperatures.  

 

5.4 Discussions  

Following are the key deductions from the discussions in the previous section: (a) TED in the 

nanofilm and the nanowire is significantly smaller than the simulated tan , (b) an increase in 

surface to volume ratio increased damping in the nanowire by 60% - 100% compared to the 

nanofilm, (c) the estimates of tan  are in the same range but not identical compared to the 

magnitudes of Akheiser damping, and (d) the peaks in Akheiser damping calculated using Eq. 

(2.6) are in the same frequency range compared to the peak frequencies of tan .  
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During the longitudinal oscillations of a structure, uniform spatial strain gradients are generated. 

Therefore, generally, the contribution of TED to the total damping in a longitudinally oscillating 

structure is small [148]. 

 

Akheiser damping arises from the heat transfer between different phonon modes of the structure.  

The physical origin of such heat flows lies in the difference of the mode dependent Grüneisen 

parameter ( ). Large difference between the Grüneisen parameter implies an increased energy 

exchange between different phonon modes, and therefore large damping. In a bulk crystal, there 

are only two phonon modes present namely the longitudinal and the transverse modes. Therefore, 

the magnitude of damping depends on the magnitude of the difference between the Grüneisen 

parameter of these two modes only. However, a deviation from the bulk case, (i.e. the nanofilm 

and the nanowire) leads to the generation of additional modes in the phonon spectrum. The 

presence of these additional modes will therefore contribute to an increase in the inter-modal heat 

transfer, hence, an increase in the energy dissipation. The magnitude of the extra damping will 

depend on the Gruneisen parameters of the additional phonon branches, the properties of the 

surface atoms, and the volume fraction of the surface atoms. Therefore, the increased damping in 

the nanowire is not surprising.  

 

The discrepancy mentioned in observation (c) can be attributed to the following factors: (i) as 

discussed above, the Akheiser damping model is strictly valid for bulk solids, the nanoresonators 

investigated in this thesis had free surfaces which resulted in additional phonon damping by 

dissipation due to the extra phonon modes, (ii) the material properties used for calculating Akheiser 

damping had large spread, for example, the magnitude of k  ranged between 350 W/m K and 255 

W/m K at 300 K and 284 W/m K and 75 W/m K at 500 K, this inconsistency could have introduced 
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errors  in our calculations, (iii) the occurrence of surface reconstruction in the free surfaces of both 

the structures could have led to additional surface mediated damping.   

 

The Akheiser damping calculated using Eq. (2.5) and (2.6) is strictly valid in the case: 12 pf . 

This effect is captured in Figure 5-16, wherein the prediction of Akheiser damping increasingly 

deviates from the tan  estimates at frequencies away from the damping peak at both 300 K and 

500 K. However, interestingly, Eq. (2.6) captures the trend of tan  over the entire frequency 

range. Additionally the magnitude of tan  also falls in the range of Landau-Rumer damping at 

frequencies smaller than the peak frequency. The physical origins of these observations are not 

clear.  

 

A direct comparison between our simulated results and experimental measurements is difficult, 

because: (a) very few measurements of damping in single-crystal Si at the GHz regime are 

available in the literature, and (b) the available measurements do not specify the contributions of 

phonon damping.  

 

5.5 Summary 

This chapter presented results from the isothermal molecular dynamics simulations of damping in 

single-crystal Si nanoresonators as a function of frequency and temperature. The interactions 

between Si atoms were captured using the SW potential. Characteristic peaks were obtained in the 

damping spectrum as a function of temperature. Analysis of different sources of damping and a 

quantitative comparison of the simulated damping and Akheiser model showed satisfactory match. 

These results demonstrate the dominant role played by phonons in the dissipation of energy in 
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single-crystal nanoresonators. The performance of silicon nanoresonators can be significantly 

improved by operating them away from frequency dependent phonon damping peaks.  
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Chapter 6 

Damping in amorphous silicon  

 

The low temperature transport, thermodynamic and acoustic properties of amorphous materials 

are different from crystalline materials. The first measurement of damping peaks in fused silica 

was reported in 1953 [149, 150], later it was identified to be caused by structural relaxation of the 

glassy state [151]. Since then, damping measurements in glasses have mainly focused on two 

regimes: (i) very low temperatures (<10 K) and low frequencies [152, 153], and (b) very high 

frequencies below 300 K. Phenomenological models such as TLS [109, 154] have been used to 

explain these properties [155]. On the other hand, damping in glasses at temperatures above 10 K 

and at high frequencies in the range 1 GHz to 1 THz is not well understood [156, 157]. This is 

primarily because of the complexity arising from the presence of several mechanisms that can 

potentially cause damping [158]. In this chapter we report MD simulations of damping in an 

amorphous silicon nanofilm with dimensions identical to the single-crystal Si nanofilm discussed 

in Chapter 5. We use identical parameters for the SW potential to describe the interactions of 

silicon atoms in the amorphous phase. Damping simulations were performed at high frequencies 

(GHz regime) as a function of temperature. These results have been compared with damping 

estimates in the single-crystal silicon nanofilm. We point out possible mechanisms contributing to 

the damping. 

 

Sections 6.1 describes the simulation methodology which includes a review of techniques used for 

obtaining a-Si using MD, the details of the thermal relaxation process, analysis used for 

characterizing the amorphous phase, simulation parameters used to ensure linearity, and 
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convergence of tan  and   in the subresonant regime. Section 6.2 includes the damping estimates 

in the amorphous structure as a function of frequency and temperature. The damping results are 

also compared with damping in the single-crystal Si nanofilm. In section 6.3 we discuss the results 

and make an effort to interpret the results by drawing comparison with experimental results. The 

chapter ends with a summary in section 6.4.  

 

6.1 Simulation methodology 

This section starts with a brief overview of the different techniques used for creating amorphous 

silicon (a-Si) in MD simulations. The details of the structural dimensions of the nanofilm, 

interatomic potential, and details of the thermal relaxation process are presented next. Also 

discussed are the results obtained from the analysis performed to characterize the amorphous 

silicon phase. The section ends with summarizing the simulation parameters used for calculating 

tan  and   in the subresonant regime. 

 

6.1.1 Review of methods for creating amorphous silicon 

In crystalline Si, every atom is tetrahedrally bonded to four nearest neighboring atoms giving four 

fold coordinated atoms.  This structure is repeated over and over, forming a long range ordered 

lattice. In a-Si, however, this long range order is damaged. In contrast, there exists a random 

network of atoms, with fewer atoms retaining the four fold coordination of the crystalline phase. 

This randomness in the structure makes preparing an amorphous phase a difficult task in MD 

simulations.  
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Over the years, several methods have been proposed for generating a-Si in MD simulations. These 

methods can be broadly classified into three categories: the direct construction by bond switching 

method developed by Wooten, Winer and Weaire (WWW) [159, 160], the activation-relaxation 

(ART) method [161, 162] and the melting-and-quenching method [163-165]. In the first two 

techniques i.e. WWW and ART, the simulations start with a perfectly crystalline diamond cubic 

structure, which undergoes series of bond rearrangements according to a set of rules. These rules 

are chosen to achieve agreement with the continuous random network (CRN) model [166]. The 

melting-and-quenching method starts with a perfect crystalline structure, which is heated well 

above the melting point to obtain a liquid phase. The liquid phase is then rapidly quenched to the 

desired temperature to obtain the amorphous phase. The rate of cooling the liquid melt should be 

sufficiently large to restrict the atoms to diffuse back to the long range order of the crystalline 

phase [163].   

 

These methods have different advantages and disadvantages. The disadvantage of the bond 

switching method is that even though effective for small system sizes, difficulties arise in the  

implementation when the number of atoms in the system is to the tune of thousands [167]. This is 

because increased number of force calculations (hundreds for each atom) are needed to be 

performed in order to reach the desired random configuration. The limitations of the ART method 

arises because the algorithm does not describe the thermal trajectory through phase space in detail 

[168]. 

  

The limitation of the melting-and-quenching technique originates from the inherent time scales 

associated with atomistic simulations. With current day computational resources, it is difficult to 
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perform simulations of cooling liquid melts at a rate less than 1010 K/s. Nevertheless, instead of 

this limitation, in several studies, the melting-and-quenching method has been found to be a viable 

method for obtaining the amorphous silicon phase. Also, the melting-and-quenching method does 

not necessitate assumptions about the configuration of atoms in the amorphous phase [164, 169]. 

These considerations motivated us to adopt the melting-and-quenching method for creating the 

amorphous silicon phase. 

 

6.1.2 Structural details 

The starting structure consisted of Si atoms arranged in a body-centered tetrahedral (BCT) lattice 

with lattice parameter of 5.43 Å. A Cartesian coordinate system was attached to the structure with 

the x, y, and z axes oriented along the [1 0 0], [0 1 0], and [0 0 1] directions, respectively. The 

structural dimensions, and the boundary conditions of the a-Si nanofilm were identical to the 

single-crystal Si nanofilm mentioned in Chapter 5. 

 

6.1.3 Interatomic potential for obtaining amorphous silicon 

Several interatomic potentials [88, 135, 170, 171] including the SW potential [162, 167, 172, 173] 

have been used to simulate the amorphous phase of silicon. The a-Si obtained using SW potential 

has a high-density liquid-like structure which is characterized by a shoulder on the second-

neighbor peak of the radial distribution function (RDF) and a large fraction of over-coordinated 

atoms [174, 175], which has not been observed in experiments. A solution suggested to this 

problem is to increase the three-body term by 50% to 100% [161, 176]. In addition, a comparison 

with the experimental measurements of the elastic constants for a-Si shows that the SW potentials 
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fail to produce the elastic constants for a-Si accurately. Also, to be able to compare damping in c-

Si and a-Si for the same structure, the SW potential was used unchanged. 

 

6.1.4 Thermal equilibration 

The NH thermostat was used for generating and equilibrating the a-Si phase using a NH  of 0.01 

ps. In order to obtain the amorphous phase, the initial crystalline phase at 1 K was first melted at 

3000 K followed by rapid quenching to 300 K. This is achieved by implementing the following 

steps. First, the temperature of the c-Si structure was raised to 3000 K in 0.05 ns, followed by 

equilibration at 3000 K for another 1 ns. Quenching the molten Si atoms to 300 K was carried out 

in two steps. The liquid Si phase was first cooled down to 1000 K using a cooling rate of 40 K/ps. 

The transition from the liquid to the amorphous state occurred during this step [173]. Next, the a-

Si phase was annealed at 1000 K for another 2 ns. Finally, the amorphous structure was cooled to 

300 K in 0.002 ns, and equilibrated to ensure the atoms reach equilibrium potential energy and 

pressure. Once equilibrated, selected atoms were removed from the simulation box to obtain 

desired dimensions for the amorphous nanofilm. Clamping condition was imposed by freezing the 

motion of the first two atomic layers from 0x  in the axial direction. Schematic illustrations of 

the initial c-Si structure, the liquid Si phase, and the a-Si nanofilm at 300 K are shown in Figure 

6-1(a), (b), and (c) respectively. 

 

Figure 6-2, shows the variation of pressure in the lateral directions of the a-Si nanofilm at 300 K 

as a function of time. The mean value of pressure in the lateral directions were tensile 5050 Bar 

and 4800 Bar respectively. The reason behind such pressure build-ups is not clear yet. However, 

the tensile nature of the pressure indicates that there was an increase in the density of the Si atoms 
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in the amorphous phase compared to the c-Si phase which caused a decrease in the volume of the 

structure. Further analysis confirmed a density of 2.56 g/cm3 for the a-Si nanofilm, an increase of 

10% from the density of the c-Si nanofilm. In order to avoid such pressure build-ups, the 

equilibrium lattice spacing for the a-Si was identified.  
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Figure 6-1: Schematic illustration of atomic configurations in (a) the initial c-Si structure, (b) the 

liquid silicon, and (c) the a-Si nanofilm. The clamped atoms are shown in red.  

 

Figure 6-2: Variation of pressure in the lateral directions for the lattice spacing 5.43 Å. The mean 

pressure in the y (Pyy) and z (Pzz) direction from 30 ns till 45 ns were tensile 5050 Bar and tensile 

4800 Bar respectively. 
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Figure 6-3: Variation of pressure in the lateral directions for the lattice spacing 5.283 Å. The mean 

pressure in the y (Pyy) and z (Pzz) direction from 100 ns till 220 ns were compressive 85 Bar and 

compressive 43 Bar respectively. 

 

Figure 6-4: Time trace of the potential energy in the a-Si nanofilm as a function of time for lattice 

spacing 5.283 Å. It can be seen that the potential energy reached equilibrium after 145 ns. 

 

 

Experimental measurements of damping in vitreous silica indicate that a high pressure in the 

structure influences the distribution of barrier heights of TLSs [177]. Therefore, in order to avoid 

the influence of pressure, a set of lattice parameters were selected and the a-Si nanofilm was 

created following the melting-and-quenching steps. The magnitudes of the mean pressure in the 

lateral directions were calculated for each simulation. The optimum value of the lattice parameter 

was selected using the method of trial and error. It was found that for a lattice parameter of 5.283 

Å, the magnitudes of the mean pressure in the y and z directions were of 85 and 43 Bar at 300 K. 

The corresponding plots of the pressure in the y and z directions as functions of time are shown in 

Figure 6-3. Figure 6-4 shows that the a-Si phase reached equilibrium potential energy in 150 ns. 
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The atomic configuration in the nanofilm at 300 K was used to obtain the amorphous phase at 

temperatures below 300 K. Equilibrium lattice parameters were obtained in each case by rescaling 

the simulation cell size to avoid high pressures in the simulation cell. 

6.1.5 Characterization of the amorphous phase   

In general, structural properties of amorphous phases are characterized in terms of the radial 

distribution function ( )(rg ), and bond order parameters. In this section, we present a detailed 

analysis of these parameters, and their distributions in the a-Si nanofilm. The radial distribution 

function showed characteristic smooth peaks as a function of radial distance. The bond order 

parameters revealed that the bct lattice of the crystalline phase was destroyed in the amorphous 

phase.   

 

6.1.5.1 Radial distribution function ( g(r) ) 

Radial distribution function (RDF) is a common method for analyzing the distribution of atoms in 

any structure [178]. For a group of atoms, the radial distribution function, )(rg , is defined as the 

likelihood of finding a particle at distance r  from another particle. The RDF is obtained by 

calculating the number of particles within a distance of r and drr  for every particle in the group, 

and binning them into a histogram. 

 

The RDF as a function of the distance between atoms shows characteristic peaks. These peaks 

correspond to groups of neighbors surrounding each atom. The RDF for the a-Si phase was 

calculated using the VMD [179] software by analyzing the atomic trajectories obtained from the 

MD simulations.   
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Figure 6-5 shows the RDF for the a-Si phase at 300 K (red line), also shown is the same plot is the 

RDF for c-Si (black line) at 300 K. The following observations can be made from Figure 6-5: (a) 

the c-Si system had more number of peaks in the RDF compared to a-Si, (b) a-Si phase had 3 peaks 

in the RDF with each of them smaller than the preceding one, with the first peak having a deep 

valley, (c) the location of the first peak in the RDF for both c-Si and a-Si appeared at the same 

distance of 2.35 Å, and (d) after a distance of 6 Å the long range order was broken in the amorphous 

phase. The RDF is also used to find the cut-off distance for calculating coordination number 

distribution. This cut-off given by the first minimum value in RDF, was found to be 2.45 Å in a-

Si, which matches with the value reported in the literature for SW potential [180]. Figure 6-6 shows 

the effect of cooling rate on the RDF. It can be seen that the intensity of the peak at 45.2r  Å is 

the smallest for the largest cooling rate, implying maximum irrecoverable disorder caused by 

smaller time for diffusion. The intensity of this peak increases as the cooling rate is reduced as 

there is more time for the diffusion of the Si atoms through the structure. 
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Figure 6-5. The radial distribution functions (RDFs) for c-Si (green) and as-quenched a-Si (black) 

system at 300 K.  
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Figure 6-6. Radial distribution function for three different a-Si structures obtained using different 

cooling rates. Different colors represent different cooling rates. 

 

 

6.1.5.2 Bond order parameters 

Bond-order parameters are extensively used for quantifying the extent of disorder in amorphous 

structures [181-183]. These parameters are useful in distinguishing particles in a solid environment 

from those in a liquid, and therefore can be used for identifying different crystalline phases without 

requiring any knowledge about the initial structure. The bond order parameters describe the 

symmetry of the bond orientations regardless of the bond lengths [184], and are calculated using 

the spherical harmonic functions, lmY .  The  definition of the complex vector )(iqlm  for particle i  

is given as [183] 
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where nN  is the number of particles within a given radius 02.1 rrnb   (where 0r  is the position of 

the first peak in the radial distribution function for the structure) around particle i , ijR


 is the unit 

vector connecting atom i  with each of its nN  neighboring atoms j , l  is a free integer parameter 

and m  is an integer that runs from lm   to lm  .  

 

The rotational invariants of the bond-order parameters are given by [183] 
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(5.2) 

The bond order parameters are found to distinguish between solid-like and liquid-like atoms. These 

quantities depend on the angles between the vectors related to the neighboring atoms. Therefore 

these parameters are independent of a reference frame.  

 
Different methods have been developed depending on the local bond order parameters for 

analyzing the crystalline structure in liquid and solid phases. For example, the bond order 

parameters are sensitive to the crystal structure depending on the choice of  l . For example, 6l

,  is used to detect atoms experiencing fcc and hcp-like surroundings. This is because the hexagonal 

planes in these lattices have six-fold symmetry.  
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Figure 6-7. The distribution of the local bond order parameters 4q , 6q , and 8q , for the a-Si phase 

at 300K. 

 

The values of )(4 iq , )(6 iq , and )(8 iq for perfect structures at 0 K and 300 K calculated in this 

work along with their values in the literature are listed in Table 6-1. The table also contains the 

values for the bond order parameters for the a-Si and c-Si phase. Figure 6-7 shows the histogram 

of  4q , 6q , and 8q  for the atoms in the a-Si phase. 

 

The average 6q for c-Si and a-Si was calculated as 0.7725 and 0.554. These numbers indicated a 

loss of order in the amorphous phase. The value of 0.554 for the 
6q in a-Si is in good agreement of 

0.45 at 1000 K for 2-D a-Si obtained using cooling rate of 10.8 K/ ps [184].  
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Table 6-1: Average values of 4q , 6q , and 8q  for different local environments at 0 K  and 300 K. 

Bond order parameter FCC BCC  (300 K) c-Si (300 K) a-Si (300 K) 

4q  

Current work 0.0364 0.1909 0.7115 0.575 

Literature 0.036 [183] 0.191 [183]   

6q  

Current work 0.5106 0.5745 0.7725 0.554 

Literature 0.511 [183] 0.575 [183]   

8q  

Current work 0.4293 0.4039 0.603 0.552 

Literature 0.429 [183] 0.404 [183]   

 

 

6.1.6 Natural frequency ( 0f ) and axial stiffness ( xK ) 

The FFT of the thermal noise captured for the layer at xlx   produced resonance peak for the first 

longitudinal mode at 284.5 GHz. The force displacement curve obtained by applying static forces 

on the atoms in the end layer is shown in Figure 6-8. The figure shows that the structure exhibited 

an initial linear elastic region followed by nonlinear deformation beyond a force magnitude of 18 

nN.  

Figure 6-9 shows the response of the a-Si nanofilm for static force 24 nN. It can be seen that the 

nanofilm progressively deformed with time as the force was applied. Axial stiffness was obtained 

by fitting a straight line to the linear portion (shown by arrows) of the force-displacement curve 

shown in Figure 6-8. The stiffness of the structure was found to be 389 N/m at 300 K. 
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Figure 6-8: Force-displacement curve for the nanofilm used for estimating the axial stiffness.  

 

 

Figure 6-9: Time series of displacement for the a-Si nanofilm for static force 24 nN. The film 

progressively deforms as the load is applied.  
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6.1.7 Damping in the subresonant regime 

Damping in the a-Si nanofilm in the subresonant regime was estimated using tan  and  .  

 

Figure 6-10: Axial displacement of the free end of the nickel nanofilm at 10 GHz. The blue curve 

shows the thermomechanical noise in the absence of any external driving force. The green, red and 

black curves correspond to force amplitudes of 2.1 nN, 4.3 nN, and 13 nN respectively.  

 

 

Figure 6-10 shows the response of the nanofilm undergoing harmonic oscillations for different 

force magnitudes, also shown in the same plot is the time trace of thermal noise. It is seen that for 

forces above 2 nN, the response of the structure surpasses the thermomechanical noise floor. The 

stress-strain plots obtained from the static tensile tests are shown in Figure 6-11. It can be 

concluded that for stresses up to 0.97 GPa (17 nN) the response of the nanofilm was linear. 
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Figure 6-11: Stress-strain curve for the nanofilm in the axial direction at 300 K. The magnitude of 

the static force varies between 2 nN and 30 nN. The deviation of the trend from the elastic behavior 

take place for forces larger than beyond 17 nN (shown by the arrow) which corresponds to a strain 

of 0.6%. 

 

 

The convergence behavior of tan  and   for the longitudinal mode in the a-Si nanofilm for 

different harmonic forces with frequency 10 GHz is shown in Figure 6-12. The following 

observations are made from the figure. For small values of 0F , the harmonic response is 

comparable to the thermal noise floor (1 nN and 2 nN), and the simulations are slow to converge. 

As the force amplitude is gradually increased, the simulations converge in the linear regime. As 

the force is further increased, the damping values converge fast (4.3 nN to 17.4 nN). For forces 

larger than 17 nN, damping values converge faster but are large. A force of 4.3 nN was selected 
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for damping analysis since it was found to be the smallest force for which damping converged, 

and the difference between tan  and   was less than 7%.  

 

Figure 6-12: Convergence behavior of the loss tangent ( tan ) and the loss factor ( ) in the 

nanofilm for longitudinal-mode oscillations at 10 GHz. The markers represent the loss factor ( ) 

and the solid lines represent the loss tangent ( tan ). Both measures were computed after every 

nanosecond. In all cases, tan  and   differed by less than 7%.  

 

6.2 Results  

In this section we discuss the results obtained for the damping simulations in the a-Si nanofilm for 

oscillations in the longitudinal mode. MD simulations were performed as a function of temperature 

and frequency. Frequency response of damping was simulated at 300 K and was compared with 

that of the c-Si nanofilm. Damping in the a-Si nanofilm as a function of temperature (15 K≤ T  

≤300 K) at 10 GHz revealed two peaks.  
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6.2.1 Comparison of damping in a-Si and c-Si nanofilms at 300 K 

 

Figure 6-13: Frequency response of damping in the a-Si nanofilm (shown in blue), and the c-Si 

nanofilm (shown in red) for longitudinal mode vibrations. The magnitude of the harmonic force 

applied on the a-Si and c-Si nanofilms were 4.3 nN and 49 nN respectively. The magnitudes of

tan and   differed by less than 2% in the c-Si nanofilm, and less than 7% in the a-Si nanofilm 

over the entire frequency range. 

 

Frequency dependent damping in the a-Si nanofilm in the longitudinal mode for the harmonic 

force 4.3 nN as a function of frequency at 300 K is plotted in Figure 6-13. It can be seen that 

damping is a weak function frequency at 300 K. The minimum and the maximum difference 

between tan  and   over the frequency range of 2 GHz to 50 GHz was between 4% and 8%. In 

the same figure we have plotted the magnitudes of tan  and   for the c-Si nanofilm at 300 K. 

From the figure it can be noticed that for identical structural dimensions, boundary conditions, and 
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clamping conditions the damping in the a-Si nanofilm was orders of magnitude more than the c-

Si nanofilm. For the entire frequency range the converged values of tan  and   in the a-Si 

nanofilm are given in Table 6.2. 

6.2.2 Damping in a-Si nanofilm as a function of temperature 

The effect of temperature on the damping in the a-Si nanofilm is illustrated in Figure 6-14. Starting 

from the atomic configurations at 300 K, the a-Si structure was first equilibrated at various 

temperatures in the range 15 K and 300 K. Previous experimental measurements in vitreous silica 

indicated that damping at ultrasonic frequencies is dependent on the external pressure [185]. 

Therefore, in order to minimize effects from the pressure build ups in the lateral directions, the 

size of the simulation box was adjusted and equilibrium lattice parameters were obtained for every 

temperature. The magnitudes of axial stiffness at all the temperatures were obtained following the 

procedure discussed in Section 6.1.6.  

 

Over the entire temperature range, for oscillations at 10 GHz the difference between tan  and   

was less than 7%. Following observations can be made from the figure: (a) over the entire 

temperature range the damping in the structure increased by a factor of 10, but this trend was not 

monotonic, (b) as the temperature of the nanofilm was increased above 15 K damping also 

increased till 50 K and then started to decrease until 70 K. After 70 K, damping in the structure 

increased monotonically and maximized at 150 K, (c) at temperatures between 150 K and 275 K 

overall damping in the structure reduced with increasing temperature. The temperatures at which 

damping peaks are observed are shown as P1 and P2 in the same figure. For the entire temperature 

range the converged values of tan  and   in the a-Si nanofilm are given in Table 6.3. 
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Figure 6-14: Damping in the nanofilm for temperatures ranging between 15 K and 300 K for 

longitudinal mode oscillations at 10 GHz. The magnitude of the harmonic force applied on the a-

Si was 4.3 nN. The magnitudes of tan  and   differed by less than 7%  over the entire temperature 

range.  
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Table 6.2: Damping in the a-Si nanofilm as a function of frequency at 300 K for the longitudinal-

mode oscillation. 

 

Frequency 

(GHz) 

Total simulation 

time, ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

2 309 288 9.48×10-3 1.02×10-3 7.17 

3 350 304 8.86×10-3 9.50×10-3 7.21 

4 243 227 6.25×10-3 6.66×10-3 6.52 

5 243 162 7.21×10-3 7.66×10-3 6.24 

8 243 178 5.77×10-3 6.14×10-3 6.40 

10 393 328 8.46×10-3 9.05×10-3 6.99 

12 276 217 8.81×10-3 9.43×10-3 7.01 

15 161 135 7.41×10-3 7.67×10-3 3.47 

25 242 154 8.67×10-3 9.20×10-3 6.20 

30 243 104 8.99×10-3 9.55×10-3 6.22 

40 243 207 1.10×10-2 1.17×10-2 6.08 

50 243 218 1.19×10-2 1.25×10-2 4.94 
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Table 6.3: Damping in the a-Si nanofilm as a function of temperature for oscillations in the 

longitudinal-mode at 10 GHz. 

 

Temperature 

(K) 

Total 

simulation time, 

ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

15 258 131 1.09×10-3 1.14×10-3 4.83 

20 256 96 1.94×10-3 2.06×10-3 6.17 

25 271 83 2.04×10-3 2.16×10-3 5.86 

30 257 68 2.32×10-3 2.46×10-3 5.81 

33 214 51 3.38×10-3 3.56×10-3 5.20 

37 215 110 2.81×10-3 2.95×10-3 4.84 

40 223 64 5.96×10-3 6.17×10-3 3.51 

42 402 129 4.58×10-3 4.82×10-3 5.16 

45 390 193 4.44×10-3 4.66×10-3 4.94 

48 264 86 3.91×10-3 4.13×10-3 5.70 

60 284 133 4.54×10-3 4.77×10-3 5.04 

70 291 234 4.40×10-3 4.60×10-3 4.60 

75 272 135 4.83×10-3 5.00×10-3 3.59 

80 239 101 7.02×10-3 7.34×10-3 4.55 

100 335 285 7.58×10-3 8.05×10-3 6.30 

115 246 139 8.56×10-3 8.97×10-3 4.81 

125 272 153 8.59×10-3 8.94×10-3 4.10 

 

 



138 
  

Table 6.3 continued 

Temperature 

(K) 

Total simulation 

time, ft  (ns) 

Convergence 

time, ct  (ns) 
tan    100

tan

tan







 

135 358 244 8.34×10-3 8.73×10-3 4.62 

150 270 89 9.65×10-3 1.01×10-2 4.52 

160 315 93 9.08×10-3 9.44×10-3 3.97 

165 312 289 9.01×10-3 9.26×10-3 2.82 

190 243 190 7.45×10-3 7.69×10-3 3.31 

200 270 206 7.22×10-3 7.47×10-3 3.41 

210 303 263 7.29×10-3 7.54×10-3 3.44 

225 338 200 7.12×10-3 7.48×10-3 5.02 

235 320 144 7.01×10-3 7.32×10-3 4.53 

250 249 147 6.55×10-3 6.76×10-3 3.15 

275 251 207 6.46×10-3 6.58×10-3 2.00 

 

 

6.3 Discussion 

The results from the MD simulations of damping in the a-Si nanofilm can be summarized as 

follows. 

(1)     No clear trend could be observed in the magnitudes of tan  for the longitudinal oscillations 

in a-Si nanofilm at 300 K over the frequency range 2-50 GHz. The magnitude of damping over the 

entire frequency range stayed between 9.48×10-3 and 1.19×10-2 -which is orders of magnitude 

larger than the damping in the c-Si nanofilm for similar temperature and frequencies.  
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(2)     Damping as a function of temperature for oscillations at 10 GHz showed two peaks, a narrow 

peak at 40 K (P1) and another broad peak at 150 K (P2).  

 

In order to interpret the simulated results, let us start the discussion by considering observation (1). 

Amorphous materials are usually more damped than their crystalline counterparts, for example, at 

300 K and 35 GHz damping in vitreous silica (damping = 4×10-3) is nearly 4 times that of quartz 

at 40 GHz (damping =1.4×10-3) [186]. Recent room temperature measurements at 50 GHz and 100 

GHz also report a 6 to 7 times more damping in thin films of a-Si compared to c-Si thin film [157]. 

However, our estimate of tan  (1.19×10-2 ) at 300 K and 50 GHz is about an order larger than the 

damping in the a-Si thin film (1.2×10-3±5.9×10-4) reported in Ref. [157]. Possible explanations for 

this discrepancy are: (a) difference in the material properties and the film thicknesses of the 

nanofilm reported in this thesis and those in Ref.  [157], and (b) the possibility of hydrogen 

contamination in the a-Si film reported in Ref. [157].  

 

In order to calculate frequency dependent Akheiser type phonon damping in a-Si, Fabien and Allen 

calculated mode dependent Gruneisen constant for a SW a-Si structure with WWW coordinates 

[187, 188]. Their model considered internal strain in the a-Si which originates from the random 

atomic positions in amorphous systems. The internal strain produces large anomalous Gruneisen 

parameter (as large -30) in certain low-frequency resonant modes in a-Si. Their calculated 

frequency dependent phonon damping in a-Si at 300 K with and without internal strain and our 

tan  estimates are presented in Table 6.4. It can be seen that tan  estimates are larger than the 

calculated Akheiser-type phonon damping below 15 GHz, however a better agreement is present 

above 15 GHz.  
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A direct comparison of observation (2) with published literature is not possible due to the 

unavailability of experimental damping measurements in a-Si at 10 GHz as a function of 

temperature. Nevertheless, an indirect comparison can be made with the low frequency 

measurements. The damping peak P2 (see Figure 6-14) bears resemblance to the low frequency (5 

KHz) broad peak at 130 K reported in Ref  [155, 189] and 270 K peak at 300 MHz in Ref [190]. 

In order to compare the activation energies of the underlying relaxation processes, P2 was fit to an 

Arrhenius type equation, 











Tk

E

B

exp0 , where 0  is assumed to be 10-13 for a-Si [190].  The fit 

produced E  = 70 meV as opposed to 200 meV for the peak reported in Ref [155, 190]. Further 

calculations predict that the 200 meV peak should appear at 426 K for the longitudinal oscillations 

of a-Si nanofilm at 10 GHz; this temperature range was not probed in this thesis.  

 

An indirect comparison of temperature dependent magnitudes of tan  can be made with the 

Brillouin-scattering measurements of damping in vitreous silica. Such a comparison shows two 

striking similarities, (a) in the temperature range of 15 K to 300 K, the range of tan  (1.09×10-3 

– 9.65×10-3) at 10 GHz is of similar order compared to damping in vitreous silica at 35 GHz 

(1.3×10-3 and 5.8×10-3), and (b) the temperature dependent trend of tan  at 10 GHz resembles the 

trend in damping in vitreous silica at 30 GHz. For example, damping in vitreous silica as a function 

of temperature shows a hump at 40 K and a broad peak at 135 K similar to P1 and P2 (see Figure 

6-14).  Foret et al. [158] calculated the magnitude of damping due to TLS and obtained reasonable 

agreement with experimental measurements. However, it should be noted that the above 

mentioned similarities between the damping estimates in the a-Si nanofilm and the experimental 

measurements of damping in vitreous silica can be fortuitous because the state of disorder can be 
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different in these two material systems. Therefore, mechanism specific damping calculations in 

SW a-Si need to be performed and compared with simulated estimates of tan  to find out the 

dominant damping mechanism.   

Table 6.4: Damping in the a-Si nanofilm as a function of frequency at 300 K for the longitudinal-

mode oscillation. 

 

Frequency 

(GHz) 
tan  

Ref [188] 

With internal strain Without internal strain 

2 9.48×10-3 9.73×10-4 6.08×10-5 

3 8.86×10-3 1.46×10-3 8.11×10-5 

4 6.25×10-3 1.82×10-3 1.22×10-4 

5 7.21×10-3 2.48×10-3 1.52×10-4 

8 5.77×10-3 4.01×10-3 2.21×10-4 

10 8.46×10-3 5.06×10-3 3.16×10-4 

12 8.81×10-3 5.37×10-3 3.04×10-4 

15 7.41×10-3 6.49×10-3 4.22×10-4 

25 8.67×10-3 1.02×10-2 5.45×10-4 

30 8.99×10-3 1.05×10-2 6.41×10-4 

40 1.10×10-2 1.14×10-2 7.24×10-4 

50 1.19×10-2 1.27×10-2 8.52×10-4 

 

6.4 Summary 

This chapter presented the first MD simulations of damping in amorphous silicon for longitudinal 

oscillations as a function of frequency and temperature using the SW potential. The amorphous 
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phase was obtained by melting a single-crystal Si structure followed by rapid quenching. Detailed 

analysis using RDF and bond order parameters revealed the destruction of the long range order of 

the crystalline phase in the amorphous structure. The damping in the nanofilm was found to be 

orders of magnitude larger than the c-Si nanofilm at 300 K for frequencies in the range 2 GHz to 

50 GHz. Peaks in damping in the a-Si nanofilm were observed at 40 K and 150 K for oscillations 

at 10 GHz.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
  

 

Chapter 7 

Nonlinear oscillations in silicon nanoresonators 

 

In this chapter, we present molecular dynamic simulations of nonlinear oscillations in two doubly-

clamped nanobeams a undergoing flexural oscillations, and a clamped-free nanofilm undergoing 

longitudinal oscillations. The nanostructures were made of single-crystal Si atoms, and the atomic 

interactions were described using the SW potential.  

 

In Section 7.1 we describe the simulation methodology which include details about the structural 

dimensions, boundary conditions, the thermal relaxation steps and the protocol used for obtaining 

the steady-state harmonic response. Results from simulations are presented in Section 7.2. 

Attempts have been made to make comparisons between simulated estimates of different 

dynamical quantities, e.g. resonance frequencies, and Q -factor with existing models of linear and 

nonlinear oscillations.  

 

7.1 Simulation methodology 

The following steps were implemented for simulating the steady-state harmonic responses of the 

single-crystal Si nanoresonators as a function of frequency and force. The first step was to create 

nanoresonators in LAMMPS environment with fundamental natural frequencies in the GHz range. 

These structures were then equilibrated at 300 K isothermally using the NH thermostat.  Thermally 

relaxed structures were excited by applying sinusoidal harmonic forces with frequencies in the 

vicinity of their natural frequencies.  
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7.1.1 Structural details 

 

Figure 7-1: Schematic representation of the Sample 1. The thickness of the structure is zt . The 

structure is clamped at the two ends (shown by black arrow), i.e. 0x  and xlx  . The dotted 

lines show the initial configuration of the atoms. The harmonic force )2sin(0 ftF   is applied on 

the atoms in the center of the structure in the z-direction to obtain bending vibrations. 

 

Single-crystal Si structures were constructed by placing atoms in the body centered tetragonal 

lattice positions with a lattice parameter of 5.43 Å. The interactions between Si atoms were 

modeled using the SW potential.  A Cartesian coordinate system was attached to the structures 

with the x, y, and z axes oriented along the [1 0 0], [0 1 0], and [0 0 1] directions respectively. The 

dimensions, clamping conditions, modes of oscillations, and the aspect ratios of the different 

structures studied are presented in Table 7.1. Doubly-clamped condition was achieved by fixing 

atomic layers at the two ends ( 0x  and xlx  ) of the structure in the axial direction. A schematic 

illustration of the Sample 1 (doubly-clamped beam) is shown in Figure 7-1. The clamping 

condition for Sample 3 (clamped-free nanofilm) was the same as that for the silicon nanofilm 

mentioned in Chapter 5.  Free-surface boundary condition was applied in the lateral directions of 
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the doubly-clamped structures, and the nanofilm had free-surface boundary condition for the atoms 

in the end atomic layer ( xlx  ).  

7.1.2 Thermal equilibration 

The method used for the thermal equilibration of the structures at 300 K was similar to the method 

presented in Section 5.1.2. The NH thermostat was used for the entire equilibration process and 

the value of NH
 
was chosen to be 0.01 ps. Initially the structures were heated to 300 K, the doubly-

clamped structures reached 300 K in 6 ns and the nanofilm in 4 ns. At 300 K the structures were 

equilibrated for 40 ns to prepare them for further simulations. Surface reconstruction was observed 

in all the samples.  

Table 7.1: Boundary conditions and geometric properties of the nanoresonators 

 
Boundary 

condition 
Mode Geometry 

Length, 

xl  (nm) 

Width,  

yw (nm) 

Thickness, 

zt  (nm) 

Aspect 

ratio, 

y

x

w

l
 

Sample 

1 

Doubly-

clamped 
Flexural Beam 30 6 3 5 

Sample 

2 

Doubly-

clamped 
Flexural Beam 29.6 3.5 3.5 8.5 

Sample 

3 

Clamped-

free 
Longitudinal Film 7.6 4.34 4.34 2 

 

7.1.3 Methodology for obtaining steady-state harmonic response 

The steady-state harmonic responses of the structures were obtained using the following steps.  
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a)     The displacement noise was captured in the axial and the out-of-plane directions for all the 

samples. The resonance frequencies for the first bending modes of Sample 1 and Sample 2 and the 

first longitudinal mode of Sample 3 were obtained by analyzing the FFT of the displacement noise.  

b)     Doubly-clamped structures were set to flexural oscillations in the out of plane direction by 

applying sinusoidal harmonic forces ( )2sin(0 ftF  ) on the atoms in the central atomic layer, i.e., 

at 
2

xl
x   (see Figure 7-1). The nanofilm was put to oscillations in the axial direction by applying 

forces on atoms in the end layer, i.e., at xlx  . The motions of the atoms under the application of 

the harmonic forces were recorded for calculating the amplitude of oscillation.  

 

c)     Amplitude of oscillation was calculated from the steady-state response using Eq. (4.4). The 

initial transient was selected manually from the time trace of the displacement. The duration of the 

transient oscillations varied from sample to sample, depending on the frequency of operation, 

magnitude of the force and the mode of oscillation.  

 

7.2 Results 

In this section, we report dynamical quantities of the single-crystal Si nanoresonators estimated 

from the simulations of steady-state harmonic response, and thermal noise. The resonance 

frequencies of mechanical modes were calculated using the finite element simulations and the FFT 

of the thermomechanical noise. The Q -factor for the fundamental modes were calculated from the 

thermal noise and the steady-state harmonic response.  
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7.2.1 Sample 1  

The analysis of nonlinear oscillators involves the identification of linear resonance frequencies and 

normal modes. The nonlinear response is then interpreted in terms of linear resonance frequency 

and mode shapes. Therefore modal analysis is central to the understanding of nonlinear 

oscillations.   

7.2.1.1 Modal analysis 

The resonance frequencies for the bending modes of a doubly-clamped Euler-Bernoulli beam with 

rectangular cross-section is given by [46]  

,..}73.4{,
12 2 2

2

 nz

x

n
n k

E
t

l

k
f


. 

 
(7.1) 

Using the properties of SW Si and Eq. (7.1) the resonance frequencies for the first and the second 

bending modes for Sample 1 were calculated as 21.05 GHz and 57.9 GHz.  

Table 7.2: Comparison of the resonance frequencies of the first 4 modes of Sample 1 obtained 

using COMSOL and MD simulations 

 

Mechanical mode 
Resonance frequency using 

COMSOL (GHz) 

Resonance frequency from 

thermal noise (GHz) 

Principal in-plane flexural 

mode 
20.4 20.86 

Principal out-of-plane 

flexural mode 
34.5 35.5 

Principal torsional mode 49 51 

In-plane second bending 

mode 
58 59 
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Figure 7-2, shows the modeshapes of the first 4 modes of Sample 1 calculated using the finite 

element software COMSOL. These modes are the fundamental bending mode, first in-plane 

bending mode, first torsional mode, and the second bending mode. Next, the predictions of the 

resonance frequencies obtained using the finite element analysis is compared with the estimates of 

molecular dynamic simulations. In order to do that, the displacement noise in the x, y and z 

directions at 300 K were captured by tracking the motion of the atomic layer at 
2

xlx   for a total 

duration of 300 ns. The mode dependent resonance frequencies of Sample 1 were calculated from 

the FFT of the displacement noise. A comparison of the resonance frequencies of the first 4 modes 

of Sample 1 calculated using the FFT of thermal noise and the finite element simulations is 

presented in Table 7.2.  

 

Figure 7-2: Modal analysis of the Sample 1. The images were obtained using the finite element 

method simulation software, COMSOL. The calculated resonant frequencies of the different 

modes are: (a) principal in-plane flexural mode, 20.4 GHz; (b) principal out-of-plane flexural 

mode, 34.5 GHz; (c) principal torsional mode, 49 GHz and (d) in-plane second bending mode, 58 

GHz. These images are indicative of the dynamic behavior of the different modes and should not 

be used to compare relative modal displacement. 
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7.2.1.2 Q -factor from thermal noise 

The Q -factor for the first bending mode of Sample 1 was calculated from the time trace of thermal 

noise using the method described in Section 4.2.2.3.  The thermal noise for the atomic layer at 

2

xlx   in the z-direction was captured for a total duration of 400 ns. The PSD of the displacement 

noise was calculated after dividing the noise data into equal segments of duration 100 ns each. The 

estimates of the Q -factor for the fundamental bending mode obtained for each of these segments 

were 313, 1234, 1026, and 1498. These numbers gave the estimates of 0Q  and Q  as 1018 and 

508. The latter is in reasonable agreement with Eq. (2.24) which predicts a standard deviation of 

491.  

 

7.2.1.3 Steady-state harmonic response 

 

Steady-state harmonic response around the fundamental bending mode frequency for Sample 1 is 

plotted in Figure 7-3. For small forces, 0F = 0.002 nN, the harmonic response resembled linear 

Lorentzian behavior with the peak in amplitude at 20.9 GHz. As the magnitude of the force was 

increased, the response increasingly deviated from the linear behavior and the peak amplitude 

frequencies shifted further away from the damped natural frequency of 20.9 GHz, showing 

signature of spring hardening. The curve for 0F = 0.01 nN showed infinite slope at 21.01 GHz. 

The backbone curve was fit to Eq. (2.29) to obtain 0f = 20.9 GHz, Q = 835. Figure 7-4, shows the 

amplitude frequency curve obtained from MD simulations with simulated amplitude-frequency 

curves obtained using Eq. (2.26) superimposed.  
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Figure 7-3: Steady-state harmonic response of Sample 1 in the vicinity of the fundamental bending 

resonance frequency as functions of frequency and harmonic force.  

 

Figure 7-4: Comparison of the nonlinear response in Sample 1 obtained from MD simulations and 

the Duffing equation. The symbols represent data from MD simulations and the curves are 

calculated using Eq. (2.26).  
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7.2.2 Sample 2 

 

7.2.2.1 Modal analysis 

The modal analysis using COMSOL and thermal noise revealed that the resonance frequencies of 

the first out-of-plane bending mode and the first in plane bending mode for Sample 2 to be 25.2 

GHz. Figure 7-5 shows the simulated modeshapes of these two degenerate modes superimposed. 

The resonance frequencies for the out-of-plane and the in-plane resonance frequencies were found 

to be 25.19 GHz from the FFT of the thermal noise captured for 10 ns. 

 

7.2.2.2 Steady-state harmonic response 

Steady-state harmonic response across the fundamental bending mode natural frequency for 

Sample 2 is plotted in Figure 7-6. For very small magnitude of the harmonic force, 0F = 8×10-4 

nN, the harmonic response shows two resonant peaks at 25.15 GHz and 25.2 GHz. As the 

magnitude of the force was increased, the peak at 25.2 GHz increasingly shifted towards higher 

frequencies showing signatures of spring hardening. Jump like phenomenon did not take place for 

forces smaller than 0.1 nN. The resonance peak at 25.15 GHz, initially, did not change with 

increased force amplitudes, and stayed at 25.15 GHz till a force of 8×10-3 nN.  However, for the 

force 3.2×10-3 nN this peak shifted to 25.2 GHz, and disappeared for the maximum force of 0.1 

nN.  This harmonic response is similar to 1:1 internal resonance of two-degree-of-freedom Duffing 

system with cubic coupled terms [191]. Similar coupling of orthogonal modes has been reported 

in doubly-clamped gold nanoresonators [192].  
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Figure 7-5: Mode shapes for the fundamental out-of-plane bending mode and in-plane bending 

mode of Sample 2. 

 

Figure 7-6: Steady-state harmonic response of Sample 2 in the vicinity of the fundamental bending 

mode resonance frequency as function of frequency and harmonic force.  
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7.2.3 Sample 3 

The structural dimensions and clamping conditions of Sample 3 are identical to the silicon 

nanofilm reported in Chapter 5. In this section, we present results from the nonlinear oscillations 

of the nanonfilm for oscillations in the longitudinal mode. The steady-state harmonic response of 

the structure was simulated around the first longitudinal mode natural frequency of 256.5 GHz, 

and the response was fit to the Duffing model.  

 

7.2.3.1 Q -factor from thermal noise 

The axial displacement noise in the end layer of the nanofilm was captured for 285 ns and was 

divided into 3 equal segments 85 ns. The Lorentzian fit to the peak in the PSD of the noise 

corresponding to the fundamental longitudinal mode for each of these segments produced Q -

factor estimates of 7034, 3956 and 5451, the mean of which was 5480 and the standard deviation 

was 1539. The latter is in good agreement with Eq. (2.24) which predicted a standard deviation of 

2074.  

 

7.2.3.2 Q -factor from harmonic response 

Steady-state harmonic response across the first longitudinal resonance frequency for Sample 3 for 

a range of harmonic forces is plotted in Figure 7-7. For small magnitude of the harmonic force, 

0F = 0.001 nN, the harmonic response is similar to linear Lorentzian behavior. As the magnitude 

of the force was increased, the response increasingly deviated from the linear behavior. The peak 

amplitude frequencies shifted further away from the damped natural frequency of 256.5 GHz, 

showing signature of spring softening. The curve for 0F  = 0.004 nN showed infinite slope at 
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256.37 GHz. A fit to the backbone curve with Eq. (2.29) was performed to obtain 0f = 256.5 GHz 

and Q = 6384, which was in good agreement with the thermomechanical noise analysis.  

 

Figure 7-7: Nonlinear frequency responses for the silicon nanofilm. The data points were obtained 

from MD simulations and the curves were calculated using Eq. (2.29) with cA = 0.00927 nm 

(corresponding force 0.004 nm), 0f = 256.5 GHz and Q = 6384. 

 

7.2.3.3 Modeshape  

The simulated mode shape for the longitudinal mode at 255 GHz is shown in Figure 7-8, also 

superimposed in the same plot is the modeshape at 10 GHz. It is clearly observed that at 255 GHz, 

the structure deviates from linear behavior displaying signatures of nonlinear geometric effects. A 

possible source of this nonlinearity is the mode coupling between the longitudinal mode and a 

torsional mode at 182 GHz. 
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Figure 7-8: Comparison of the modeshape in the nanofilm calculated for oscillations at 10 GHz 

and 255 GHz. 

 

7.3 Discussion 

Steady-state harmonic oscillations of Sample 1 (doubly-clamped beam) showed spring hardening 

type nonlinearity, this observation is in agreement with the experimental investigations of 

nonlinear oscillations in doubly-clamped beams [48, 53]. Dissipative nonlinearities can be 

neglected because the quality factor is in good agreement with the value of 1018±507 obtained 

from the linear analysis of thermomechanical noise. Similarly, the Q =835 is of similar orders 

compared to the value of tan =3.81×10-4  (~Q =2600) at 20 GHz for the nanowire investigated in 

Chapter 5.  
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The flexural oscillation of a doubly-clamped beams is associated with the stretching of the mid 

plane. The increase in the length is associated with displacement-dependent nonhomogeneous 

tension in the structure (increased tension at the clamped ends compared to the center of the beam). 

This effect is small as long as the amplitude of oscillation is much smaller than the width of the 

beam. Accounting for the tension in the beam due to strain, we get the following equation of 

motion similar to the Duffing equation mentioned in Section 2.3 [193] 
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Ignoring the tension term in Eq. (7.3) and using Q =1018, cA  can be calculated as 0.08 nm which 

is in reasonable agreement with 0.17 nm obtained from MD simulations.  

 

The presence of multiple peaks in the harmonic response of doubly-clamped strucutres due to 

internal resonance has been observed before [122]. Geometries with square cross-section such as 

wires, strings, and beams have commensurate resonance frequencies for the in-plane and out-of-

plane fundamental modes. When one of these two modes is harmonically oscillated the other mode 

gets excited. Therefore, the observation of 1:1 internal resonance indicates modal coupling 

between these two modes.  
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Sample 3 showed nonlinear spring softening behavior in the harmonic response. An analysis of 

the mode shape close to the resonance frequency and away from the resonance frequency also 

showed signatures of nonlinearity. It is interesting to note that two geometries (Sample 1 and 

Sample 3) of the same material showed different nonlinear behavior depending on the mode of 

oscillation, and clamping condition.  

 

The results reported in this chapter demonstrate the usefulness of MD simulations in studying 

nononlinear oscillations in nanoresonators. Steady-state harmonic response in nanoresonators can 

be reached easily because of very high frequency oscillations. Therefore, in spite of limitations of 

computational resources, multiple measurements of amplitude across the resonance frequencies 

can be performed easily. Moreover, in MD simulations the user can enforce boundary conditions 

at will and study idealized conditions which is otherwise difficult to achieve using experiments. 

Furthermore, tiny devices with dimensions on the order of few nanometers, and intricate 

architectures can be simulated with precise control, which are difficult to fabricate and investigate 

experimentally. The method used for studying nonlinear oscillations in single-crystal silicon 

nanoresonators can be applied to a wide range of nanoresonators of different materials, and modes. 

 

7.4 Summary 

In this chapter we have presented MD simulations of nonlinear oscillations for the fundamental 

flexural modes of two doubly-clamped nanobeams and fundamental longitudinal mode oscillations 

of a nanofilm, all made of single-crystal Si. A protocol has been developed for obtaining the 

steady-state harmonic oscillations in the structures in the vicinity of their resonance frequencies. 

The harmonic response of one of the doubly-clamped nanobeam (with rectangular cross-section) 

and the nanofilm had qualitative match with the Duffing model. The doubly-clamped nanobeam 



158 
  

with square cross-section displayed signatures of 1:1 internal resonance which had qualitative 

similarities with 1:1 internal resonance two-degree-of-freedom Duffing system. 
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Chapter 8 

 

8.1 Statement of original contributions  

The original contributions contained in this thesis are as follows.  

1.   Developed protocol for the estimation of damping in nanoresonators using isothermal MD 

simulations considering the linearity and convergence of damping to ensure accuracy. 

2.   Models of Akheizer damping mechanism have been shown to be in agreement with MD simulations 

of damping in single-crystal Si nanoresonators.  

3.   Performed first MD simulations of damping in amorphous nanoresonators. 

4.   It has been demonstrated that damping in a-Si is two orders of magnitude larger than c-Si for room 

temperatures oscillations in the GHz range. Temperature dependent damping peaks in a-Si have been 

observed. 

5.   Simulation methodology has been developed for studying nonlinear oscillations in nanoresonators. 
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8.2 Future work 

This study can be extended in any of the following areas.  

 

Damping in the Landau-Rumer regime 

MD simulations of damping in the silicon nanofilm showed Akheiser damping as the dominant source 

of dissipation in silicon at room temperature. The same structure can be used to find out the frequency 

and temperature range in which Landau-Rumer damping becomes significant.   

 

Damping from free surfaces in nanoresonators 

MD simulations of damping in the single-crystal Si nanofilm and the nanowire showed that free 

surfaces contribute to the overall damping. One way to minimize this effect would be to passivate the 

dangling bonds at the surfaces which are formed during the surface reconstruction by atomic hydrogen. 

Experimental studies at low frequencies have indicated that hydrogen contamination in very small 

volume fraction reduces dissipation in amorphous silicon by eliminating the dangling bonds. Molecular 

dynamics simulations can be used to confirm this behavior and gain insight into the mechanisms that 

causes this drop in damping.  

 

Mechanisms of damping by crystallographic defects  

Materials used for nanoresonators often have crystallographic defects such as vacancies, impurity 

atoms, and grain boundaries. Although we understand how these defects affect damping at low 

frequencies, there is a growing need to understand and develop models for damping caused by 

crystallographic defects at very high frequencies. The damping results for the silicon nanofilm can be 
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used as benchmark to understand the effect of defects such as interstitials, vacancies, dislocations, 

twins, grain boundaries (by creating bamboo-like structure) on damping in silicon and other materials. 
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