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Abstract

Gel electrophoresis is conventionally used for sorting and separating macromolecules.

More recently it has been adopted for nanoparticle sorting and characterization.

While the theoretical interpretation of free-solution (without gel) nanoparticle elec-

trophoresis is well developed, models for interpreting nanoparticle gel electrophoresis

are new. Hill (2016) recently developed a generalized electrokinetic model that ac-

counts for polarization and relaxation effects to calculate the gel electrophoretic mobil-

ity of functionalized/soft spherical nanoparticles translating in charged and uncharged

gels. The model captures hydrodynamic effects based on the Brinkman approxima-

tion for particles with arbitrary size, and includes pH charge regulation models. In

this study, the model was applied to compare with independent calculations in the

literature (including those undertaken using commercial finite-element software). It

was also applied to interpret an experimental gel electrophoresis data for PEGylated

nanoparticles with varying fraction of univalent PEG chains. The model accurately

reproduced calculations in the literature, and extended the parameter space, now

showing potential for quantitatively interpreting nanoparticle characterization and

separation processes.
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Abrégé

Le gel électrophorèse est conventionnellement utilisé pour organiser et séparer les

macromolécules. Récemment, ils ont été adoptés pour l’organisation et la caractérisation

des nanoparticules. Tandis que l’interprétation théorétique de solutions (sans gel) de

nanoparticules électrophorèses est bien développée, des modèles pour l’interprétation

des gels de nanoparticules électrophorèses sont nouveaux. Hill (2016) â récemment

développé un modèle électrocinétique générale qui tient compte de la polarisation et les

effets de relaxations pour calculer la mobilité du gel électrophorétique des nanopartic-

ules sphériques fonctionnalisés en les traduisant en particules chargées et non-chargées.

Le modèle englobe les effets hydrodynamiques basé sur l’approximation de Brinkman

pour les particules de taille arbitraire, et inclut des modèles de régulation de la charge

de pH. Dans cette étude, le modèle â été appliquée pour comparer avec des calculs

indépendants dans la littérature (incluant ceux qui ont été effectuées en utilisant le

logiciel commercial finite-element). Le modèle a aussi été appliqué pour interpréter

des données expérimentales de gel électrophorèse pour PEGlayted nanoparticules avec

une fraction variant d’univalent chaines de PEG. Le modèle a, avec précision, repro-

duit les calculs en littérature et élargit le paramètre d’espace, démontrant le potentiel

pour quantitativement interpréter la caractérisation des nanoparticules et le procès

de séparation.
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Chapter 1

Introduction

Nanotechnology is of great interest due to the unique properties and promising ap-

plications of nanoparticles. Nanoparticle surface modification, size, and shape are

crucial for controlling the nanoparticle properties (Sosa et al., 2003; Win & Feng,

2005). Gel electrophoresis has recently been adopted for nanoparticle sorting and

characterization. As compared to the well understood free-solution electrophoresis,

the theoretical interpretation for nanoparticle gel electrophoresis is subject to present

work. The presence of gel tremendously complicates the interpretation of nanoparticle

electrophoretic mobility. The presence of a gel influences the nanoparticle mobility

through hydrodynamic and steric effects. For nanoparticles that translating in dilute

gels, the hydrodynamic effects are believed dominate. For larger particles translating

in dense gels, the steric effect is expected to be the major influence on the nanoparticle

electrophoretic mobility. An electrokinetic model that accounts for the gel hydrody-

namics was first developed by Allison et al. (2007), using the Brinkman approximation

to model the gel. Hill (2016) recently unified models of free-solution electrophoresis
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for soft nanoparticles and models of gel electrophoresis for bare particles. This model

accounts for polarization and relaxation effects, including pH charge regulation mod-

els for polyelectrolytes and charged gels. It calculates the gel electrophoretic mobility

of functionalized/soft spherical nanoparticles translating in charged and uncharged

gels.

This thesis focuses on applying the unified electrokinetic model to compare with

independent calculations in the literature (including those undertaken using commer-

cial finite-element software). After a thorough examination of this model, it was

applied to interpret experimental gel electrophoresis data from Hanauer et al. (2007)

for PEGylated nanoparticles with varying fraction of univalent PEG chains.

A literature review of the model development of free solution electrophoresis and

gel electrophoresis for spherical particles is presented in Chapter 2. Chapter 3 briefly

introduces the theory of the unified electrokinetic model developed by Hill (2016).

Chapter 4 details the applications of this unified electrokinetic model for four different

cases. Chapter 5 summarizes conclusions and makes recommendations for future work.
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Chapter 2

Literature review

Gel electrophoresis, analogous to the electrophoresis in free-solution, is a widely

used technique for separating macromolecules, such as DNA and proteins. In re-

cent decades, the application of gel electrophoresis has been extended to nanoparticle

separation and characterization (Sperling et al., 2006; Doane et al., 2010; Weidner

et al., 2015). Zanchet et al. (2002) conducted a gel electrophoresis experiment that

shows a successful separation of Au nanoparticles based on the amount of ssDNA

attached to the nanoparticle surface (see fig. 2.11). This study demonstrated that

gel concentration has a significant influence on retarding the nanoparticle gel elec-

trophoretic mobility. Hanauer et al. (2007) applied the gel electrophoresis technique

to separate spherical nanoparticles according to their sizes and surface coatings. This

study indicated that different functionalized PEGylated nanoparticles, such as SH-

PEG-X molecules with X being -OCH3, -SH, -NH2, or -COOH, having significant

1Reprinted with permission from Zanchet et al. (2002). Copyright 2012 American Chemistry

Society.
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difference in electrophoretic mobility. However, theoretical interpretations of gel elec-

trophoretic mobility of soft/functionalized nanoparticles are new. The development

of electrophoretic mobility models for spherical particles are summarized as follows.

Figure 2.1: (a) Gel electrophoresis of gold nanoparticles. Each band corresponds to
gold nanoparticles with well-defined numbers of ssDNA. (b) The relation between gel
electrophoretic mobility and gel concentration (Zanchet et al., 2002).

Smoluchwski (1921) first developed an electrokinetic model to interpret the elec-

trophoretic mobility of bare particles in free solution, whereas his formula is limited

to the situation with low zeta-potential (|ζ| � kBT/e) and κa �1 (κ−1 is the De-

bye length of the particle double layer, a is the particle radius). Hückel (1924) then

calculated the electrophoretic mobility for κa �1 and |ζ| � kBT/e. Henry (1931)

generalized the model of free-solution electrophoresis of weakly charged bare spherical

particles with arbitrary values of κa. These accomplishments did not account for the

polarization (predominantly by electro-migration) and relaxation (by molecular diffu-
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sion) effects, which have a significant effect when particles are highly charged (O’Brien

& White, 1978). A brief description of polarization and relaxation effects is highlighted

in fig. 2.22. The figure shows that the particle couterions form a cloud that generates

a local electric field that is opposite to the applied electric field.

Figure 2.2: Sketch of the counterion cloud surrounding a positively charged col-
loidal particle translating in an electric field E. The arrows indicate the direction of
counterion electromigaration (O’Brien & White, 1978).

The first successful attempt to compute the polarization and relaxation effects is

attributed to Overbeek Overbeek (1943), who derived analytical approximations (us-

ing perturbation methods) for particles having low-zeta potential |ζ| � kBT/e. Sub-

sequent work by Wiersema et al. (1966), and O’Brien & White (1978) extended the

theories to arbitrary values of κa using numerical methods, which solve the coupled

nonlinear ordinary differential equations (Poisson, ion-conservation, fluid momentum,

2Reprinted with permission from O’Brien & White (1978). Copyright 1969 Royal Society of

Chemistry.
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and mass conservation equations). However, other complications arise from surface

coatings, such as adsorbed or grafted polymers, which may be charged or uncharged.

These modifications, though widely used (Couvreur, 1988; Greenwood & Kendall,

1999), are especially difficult to interpret by theory. Ohshima & Kondo (1989) gen-

eralized O’Brien’s numerical solution of the standard electrokinetic model for bare

particles to include a surface charge layer, presenting an approximate analytical so-

lution without accounting for the polarization and relaxation effects. Hill & Saville

(2005) developed a numerical theoretical solution for arbitrarily sized, soft spherical

particles considering the polarization and relaxation effects. These generalized the

electrophoresis model for “soft” particles in free solution for all particle sizes, and

removed restrictions, such as a thin particle layer. Hill (2015a) recently proposed a

pH-charge regulation model that advanced the model of free-solution electrophoresis

for spherical particles to incorporate charge-regulated polyelectrolyte coatings.

Gel electrophoresis, compared to free-solution electrophoresis, has a gel medium

in fluid. The gel network hinders particle motion according to many factors, such as

particle size. A denser gel solution has a smaller pore size that enhances friction on

the migrating particles. Similarly, larger particles tend to move slower, with a lower

electrophoretic mobility. Apart from the size exclusion effect, charged gel can create

an electroosmotic flow in the opposite direction to the movement of particles. Gel

electrophoresis (e.g., agarose gels) has been shown to improve in macromolecular sepa-

rations (Stellwagen, 2009). Hanauer et al. (2007) performed gel electrophoresis exper-

iments to separate gold nanorods and spheres in gels with various gel concentrations,

with the best separation efficiency achieved at 0.2 wt% agarose gel concentration.
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As compared to free-solution electrophoresis, the calculation of gel electrophoretic

mobility is even more difficult due to hydrodynamic and direct interactions between

migrating particles and gel. Therefore, the electrokinetic models need to be modi-

fied to incorporate the gel effect. The hydrodynamic forces have been termed a long

range interaction (Stigter, 2000), and the steric effects a short range effect. For large

molecules, such as DNA (molecular size larger than the gel pore size), the short-

range effects dominate, and reptation theories have been adopted to quantify gel

electrophoresis (Calladine et al., 1991; Zimm & Levene, 1992). For particles that are

small (particle radius smaller than the gel pore size), electrokinetic models have been

adopted to model the electrophoretic mobility of particles based on the Brinkman

approximation of a gel (Brinkman, 1949; Debye & Bueche, 1948; Felderhof & Deutch,

1975; Allison et al., 2007).

An electrokinetic model to interpret nanoparticle gel electrophoresis was first

developed by Allison et al. (2007). Inspired by the successful application of the

Brinkman effective model for describing the electrophoretic relaxation of a single,

initially stretched DNA molecule in a gel support medium (Stigter, 2000) as well as in

describing the diffusion of particles in a gel (Pluen et al., 1999), Allison et al. (2007)

proposed a model to study the problem of electrophoresis of spheres in a gel sup-

port medium. They successfully derived an analytical formula for the electrophoretic

mobility of a weakly charged bare sphere in an uncharged gel, and addressed the

nonlinear electrostatics and ion-concentration perturbation effects numerically when

particles are highly charged. Allison et al. (2007) also proposed a model to account

for the gel steric effects in dilute gels. Fixed charge on the hydrogel couple with the
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mobile countercharge to influence the particle diffuse layer, imposing an additional

electro-osmotic disturbance to the migrating particle. Hanauer et al. (2007) con-

ducted gel electrophoresis experiments, discovering an electro-osmotic flow in agarose

gels (uncharged gel). This phenomenon indicates that even for uncharged gels, which

have no ion dissociation, mobile countercharge still exists. Hanauer et al. (2007) as-

sumed that the electro-osmotic flow driven by a gel could be added to the nanoparticle

gel electrophoretic velocity to furnish the intrinsic gel electrophoretic mobility, which

neglects the nanoparticle disturbance to the electro-osmotic velocity.

Electrophoresis in charged gels is much more difficult to interpret. Doane et al.

(2010) developed a closed-form solution for the gel electrophoresis of a weakly charged,

impenetrable sphere bearing a thin polymer coatings. By fitting the gel electrophore-

sis data of PEGylated Au NPs for several agarose gel concentrations, this model

elucidates how the charges on gel influence the nanoparticle mobility. Adopting the

gel Brinkman model, Hsu et al. (2013) stuided the gel electrophoresis of a charge-

regulated bi-functional particle containing both acidic and basic functional groups

on its surface. They proposed a charge-regulation model to study surface dissocia-

tion/association reactions. Motivated by studies of charge-regulated interfaces (Healy

& White, 1978; Chen et al., 2014), Hill (2015b) proposed a charge-regulation model

to study charge density perturbations in hydrogels. He concluded that charge density

perturbations in hydrogels are mainly produced by the equilibrium electrostatic po-

tential induced by the particle surface charge (termed the primary immobile charge

density perturbation), while the charge density perturbations generated by the exter-

nal forces (termed the secondary immobile charge-density) have a negligible effect on
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the particle mobility. Similar to free-solution electrokinetic models for soft particles,

extensive studies have been carried out to study the problem of gel electrophoresis

for spherical polymer coated particles. These models are still subject to the Debye-

Hückel approximation (relaxation effects ignored) (Li et al., 2014; Allison et al., 2014).

Allison et al. (2016) generalized the problem of gel electrophoretic mobility to include

the relaxation effects for highly charged nanoparticles, including grafted polymer or

polyelectrolytes–termed “soft” nanoparticles, also addressing the effect of hydrogel

charge. However, this model is limited to polymer coatings with uniform charge den-

sity and Brinkman screening length, which is impractical for many real applications.

9



Chapter 3

Theory

Hill (2016) recently developed a generalized electrokinetic model that accounts for

polarization and relaxation effects to calculate the gel electrophoretic mobility of

functionalized/soft spherical nanoparticles translating in charged and uncharged gels.

The model captures hydrodynamic effects based on the Brinkman approximation for

particles with arbitrary size, and includes pH-charge regulation models. This model

unified electrokinetic models developed in two earlier studies (Hill, 2015a,b). Polymer

coatings and the hydrogel are both treated as Brinkman porous media. As illustrated

in fig. 3.1, particles translate with a velocity V in a constant external electric field E.

An electroosmotic fluid velocity u is created in the opposite direction to the particle

translation. The polymer coatings and hydrogels may be polyelectrolytes. The charges

on the polyelectrolytes could be acidic, basic, or amphoteric, all of which are modeled

by pH-charge regulation model. For this electrokinetic model, the particles are dilute

and, therefore, particle interactions are neglected.

10



κ−1

E

V

u

electro-osmotic !ow in gel 

Figure 3.1: Sketch of a nanoparticle translating in gels under a constant electric field
E. V is the particle velocity, and u is the fluid velocity in the gel.

The following equations combine the governing equations from the models of

gel electrophoresis for bare particles (Hill, 2015b) and models of free-solution elec-

trophoresis for “soft” particles (Hill, 2015a), comprising the Poisson, ion-conservation,

fluid momentum, and mass conservation equations to model the motion of the parti-

cles in gel solution under a weak and constant electric field E:

− εoεs∇2ψ = ρm + ρf,1 + ρf,2 (3.1)

0 = −∇ ·
(
niu−Di∇ni − zie

Di

kBT
ni∇ψ

)
(i = 1 . . . N) (3.2)

0 = η∇2u−∇p− η

`21
(u− V )− η

`22
u− ρm∇ψ (3.3)

0 = ∇ · u (3.4)

11



with

ρm =
N∑
j=1

zjenj (3.5)

Here, ψ is the electrostatic potential, εs, η are the solvent relative permittivity

and viscosity, u and p are the fluid velocity and pressure. Ion concentrations in the

electrolyte are denoted by ni, and the subscript i represents the ith ion species, each

of which has its distinct charge zie and mobility Dj/(kBT ), where Dj is a diffusion

coefficient, and kBT is the thermal energy. The total mobile charge density ρm is the

sum of the ion concentrations times its charge. Further, ρf,1 and ρf,2 are the fixed

charge densities on the polyelectrolyte and hydrogels, respectively. The Brinkman

screening lengths `1 (coatings) and `2 (hydrogel) are related to the number density

of polymer segments ns. It is assumed that the hydrogels are uniformly distributed,

so, a constant Brinkman screening length `2 and fixed charge density ρf,2 are used

in the electrokinetic model. For polymer coatings, the Brinkman screening length `1

and fixed charged density ρf,1 are likely to have a non-uniform distribution around

the particle core.

The above equations are solved with the procedures set out in earlier studies (Hill,

2015a,b) by expressing the variables as the sum of the equilibrium solutions and their

perturbations.
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3.1 Equilibrium solution

The equilibrium state, identified with the superscript 0, corresponds to a stationary

particle, polyelectrolyte layer, and electrolyte in the absence of any external forcing.

The equations are then reduced to

− εpεs∇2ψ0 =
N∑
j=1

zjen
0
j + ρ0f,1 + ρ0f,2 (3.6)

0 = −∇ ·
(
−Di∇n0

i − zie
Di

kBT
n0
i∇ψ0

)
(i = 1 . . . N) (3.7)

0 = −∇p0 −
N∑
j=1

zjen
0
j∇ψ0 (3.8)

3.2 Perturbations

The following equations are extracted directly from the theories in Hill (2015a). Lin-

ear perturbations can reasonably approximate the external forcing when the applied

electric field is weak. Since the model is truncated to linear order in these pertur-

bations, linearity and symmetry considerations demand solutions that have following

forms:

u = ∇×Φ + U with Φ = f̂(r)X × er, (3.9)

ψ = ψ0(r) + ψ′ , nj = n0
j(r) + n′j , p = p0(r) + p′, (3.10)
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where

ψ′ = ψ̂(r)X · er −E · r , n′i = n̂i(r)X · er , p′ = p̂(r)X · er + P · r (3.11)

Here, X = Xez denotes the vector (directed along the z-axis) that drives the

perturbations: either the applied electric field vector E = Eez or particle velocity

V = V ez. Note that P = 0 is the far-filed pressure gradient, and U = Uez is the

far-field fluid velocity; moreover, r = rer is the position vector, where er is the radial

unit vector.

In the linear approximation, the perturbations satisfy:

− εoεs∇2ψ′ = ρ′m + ρ′f,1 + ρ′f,2 (3.12)

0 = −∇ ·
(
n0
iu−Di∇n′i − zie

Di

kBT
n′i∇ψ0 − zie

Di

kBT
n0
i∇ψ′

)
(i = 1 . . . N) (3.13)

0 = η∇2u−∇p′ − η

`21
(u− V )− η

`22
u− ρ′m∇ψ0 − ρ0m∇ψ′ (3.14)

0 = ∇ · u (3.15)

Taking the curl of the momentum equation (to eliminate the pressure) and writ-

ing the perturbation equations in terms of the radial perturbation functions (hatted

variables) furnishes the linear ordinary differential system1:

1These equations are derived based on two earlier studies (Hill, 2015a,b). I have independently
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− εoεsL1ψ̂ =
N∑
j=1

zjen̂j +
N∑
j=1

ρ̂f,j (3.16)

0 = n0
i,r(2r

−1f̂X + U − V )−DiL1n̂iX − zie
Di

kBT
(n̂i,rψ

0
r + n̂iL0ψ

0)X...

−zie
Di

kBT
[(ψ̂rX − E)n0

i,r + n0
iL1ψ̂X] (i = 1...N) (3.17)

0 = −ηL2f̂rrX +
η

`21
L1f̂X + η(`−21 )r(f̂r + r−1f̂)X + η(`−21 )rU...

+
η

`22
L1f̂X −

N∑
j=1

zjen̂jr
−1ψ0

rX +
N∑
j=1

zjen
0
j,rr
−1(ψ̂X − rE), (3.18)

where subscripts r denote radial differentiation, and L0(·) = (·)rr + 2r−1(·)r,

L1(·) = (·)rr + 2r−1(·)r − 2r−2(·) and L2(·) = (·)rr + 4r−1(·)r − 4r−2(·).

Forces acting on the “soft” nanoparticle can be evaluated by superposition of the

so-called V and E-problems employed by Hill (2015a). Balancing the hydrodynamic

drag forces and the Coulomb forces furnishes the electrophoretic mobility. These cal-

culations are undertaken by the MPEK package and many results are readily available

from Hill (2016).

verified them. The equation similar to Eqn. 3.18 in Hill (2015a) has a typo: η
`21

L1f̂ should read

η
`21

L1f̂X.
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Chapter 4

Results and discussion

4.1 Charge regulated, bi-functional particles in un-

charged gels

The present model is examined by considering a charge regulated, bi-functional par-

ticle in uncharged gels, and the results are compared with Hsu et al. (2013). The

particle has both acidic and basic functional groups on its surface. The dissoci-

ation/association reaction of these two functional groups can be expressed as AH

←→ A− + H+, and BH+ ←→ B + H+, respectively. KA = [A−][H+]/[AH], KB =

[B][H+]/[BH+] are the coresponding equilibrium constants. In Hsu et al. (2013)’s

simulation, AH and B are specifically chosen as glutamic acid with pKA = 4.1 and

lysine with pKB = 10.5 (Smejtek et al., 2010)1. NAH and NB denote the number

of functional groups AH and B on the particle surface, respectively; τ = NAH/NB

1The values pKA = 10.5, and pKB = 4.1 stated in Hsu et al. (2013) are mixed (Smejtek et al.,

2010).
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denotes the ratio of those two groups. There is an error in definition of the dimen-

sionless density of the functional groups, which is corrected as ξ = (n∗f,Ae
2a/εkBT ),

with ε and e being the solvent permittivity and fundamental charge, respectively;

n∗f,A = NAH/4πa
2 is the biding-site density of acid groups on particle surface, with

a similar definition for basic groups. Hsu et al. (2013) have erroneously mixed the

variables nf,A and NAH in the definition of the dimensionless density of the functional

group. The gel is uncharged, and modeled as a Brinkman porous medium with `2 = a,

where a is the particle radius.

BH+

A－

A－

BH+

BH+

BH+

BH+

A－

BH+
BH+

A－

BH+

A－

AH         A－  +   H＋ 

BH＋       B       +   H＋ 

Figure 4.1: Left is a “soft” particle with charge regulated bi-functional polyelec-
trolyte; right is a charge-regulated bi-functional bare particle.

.

The model could be adopted to solve the present problem with appropriate settings

of the corona geometry parameters. The bare particle with bi-functional groups on its

surface is analogous to the particle with an infinitesimally thin polyelectrolyte layer,

as shown in fig. 4.1.

Following Hill et al. (2015), the number densities of polymer segments and of fixed

charge for the bi-functional groups are specified using Gaussian functions:
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ns(r) = ns,0e
−(r−L1−a)2/δ21 (4.1)

and

n∗f (r) = nf,0e
−(r−L2−a)2/δ22 , (4.2)

where

NsNa =

∫ ∞
a

ns(r)4πr
2dr = 4πa3ns,0f(δ1/a, L1/a) (4.3)

and

Nc =

∫ ∞
a

n∗f (r)4πr
2dr = 4πa3nf,0f(δ2/a, L2/a) (4.4)

with

f(x, y) = x2e−(y/x)
2

(y + 2)/2 + x(1/2)
√
π(y2 + 2y + x2/2 + 1)[1 + erf(y/x)].

Here, Nc denotes the number of functional groups, for acid groups AH: Nc = NAH ,

for basic groups B: Nc = NB, Na is the aggregation number of ligands with Ns the

number of segments in a chain. ns is the corona segment density, n∗f is the binding-

site density of the bi-functional groups, expressed as n∗f,A = [A−] + [AH], n∗f,B =

[B] + [BH+], where subscript A, B represent the acid and basic groups respectively.

ρ∗f is the fixed charge density determined by the dissociation of H+ from AH, and

association of H+ with B. Fig. 4.2 illustrates the distribution of the biding-site density

of functional groups, and number density of polymer segments.
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A－
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BH+

BH+

r-a

ns (n*f )          ns                

L1

 δ1

n*
f   

δ2

L2

Figure 4.2: Gaussian distribution of biding-site density of bi-functional groups n∗f ,
and number density of polymer segments ns.

.

The fixed charge density ρ∗f is related to the biding-site density of acid and basic

groups. Following Hsu et al. (2013),

[A−] =
[AH] + [A−]

1 + [H+]0
KA

exp(−eψe/kBT )

and

[BH+] =
([B] + [BH+]) [H

+]0
KB

exp(−eψe/kBT )

1 + [H+]0
KA

exp(−eψe/kBT )
,

so the fixed charge density ρ∗f associated with H+ mobile ion can be written

ρ∗f = e
n∗f,A

1 + [H+]0
KA

exp(−eψe/kBT )
− e

n∗f,B
[H+]0
KB

exp(−eψe/kBT )

1 + [H+]0
KA

exp(−eψe/kBT )
.
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In the present problem, corona parameters L1 = 0 represent the maximum poly-

mer segment density at the particle surface. The nominal corona thickness could be

mimicked by varying δ1; the polyelectrolyte is normally assumed as being terminally

charged (Hill, 2015a; Hill et al., 2015), e.g., L2 = δ1 as shown in fig. 4.1. In the present

application, L2 = 0 is used to model the particle charge-regulated surface with δ2 =

δ1. By taking limit of the nominal thickness to an infinitesimal value (relative to the

particle radius), the generalized electrokinetic model could be applied to the present

problem.

Fig. 4.3 shows that particles with polyelectrolyte layer of δ1/a = 0.005 and δ1/a

= 0.001 have the same surface potential in the range of κa from 0.1 to 20. However,

the particle with polyelectrolyte layer of δ1/a = 0.01 has a lower surface potential at

large κa. The screening effect plays a key role in attenuating the surface potential at

high ionic strength where the Debye length κ−1 is comparable to the corona thickness.

It suggests that polyelectrolytes with δ/a = 0.01 are not sufficiently thin to model

the present problem. Surface charge densities for soft (thin polyelectrolyte-coating)

spheres with δ1/a = 0.01, δ1/a = 0.005, δ1/a = 0.001 are shown in fig. 4.4. Particles

with corona thickness of δ1/a = 0.01, δ1/a = 0.005 again converge to the same surface

charge density in the above range of κa. In this study, surface charge density is

directly converted from the net particle valence Z, which is conveniently ascertained

by numerically evaluating the integral (Hill et al., 2003b):

Z =
N∑
j=1

n∞j zj

∞∫
a

(e−zjeψ
0/kBT − 1)4πr2dr,
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and, if the corona is thin enough, then

σ∗p ≈
ae

εkBT

Ze

4πa2
.

0.1 1 10 20

κa
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7
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ζ
∗

Figure 4.3: Scaled surface potential ζ∗ for soft (thin polyelectrolyte-coating) spheres
(a = 5 nm) translating in uncharged gels. The blue dashed line, blue solid line and
red dashed line are for particles of corona thickness δ1/a = 0.01, δ1/a = 0.005, δ1/a
= 0.001, respectively. Parameters are the same as Hsu et al. (2013): pH = 7, τ = 0.5,
pKA = 4.1, pKB = 10.5, and gel Brinkman screening length `2 = a.

.
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Figure 4.4: Scaled surface charge density σ∗p for soft (thin polyelectrolyte-coating)
spheres (a = 5 nm) translating in uncharged gels. The blue dashed line, blue solid line
and red dashed line are for particles of corona thickness δ1/a = 0.01, δ1/a = 0.005,
δ1/a = 0.001, respectively. Parameters are the same as Hsu et al. (2013): pH = 7,
τ = 0.5, pKA = 4.1, pKB = 10.5, and `2 = a.

.

A test of the parameter ξ on the influence of the charge density and surface

potential is conducted and the results are compared with Hsu et al. (2013). Figs. 4.5

and 4.6 show that the results modeled by soft (thin polyelectrolyte-coating with δ1/a

= 0.005) particles with various values of ξ are all in excellent agreement with Hsu et al.

(2013). These results again reveal that the nominal corona thickness (δ1/a = 0.005)

is thin enough to model the present problem. Cautiously, a polyelectrolyte-coating

with δ1/a = 0.001 is used in the following calculations.
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Figure 4.5: Model validation by reproduction of fig. 4 of Hsu et al. (2013) for soft
(thin polyelectrolyte-coating with δ1/a = 0.005) spheres (a = 5 nm) dispersed in an
uncharged gel. Scaled surface charge density σ∗p as a function of κa for various values
of ξ = 15, 25, 35, 45, 55 (increasing upward). Parameters are the same as Hsu et al.
(2013): pH = 7, τ = 0.5, pKA = 4.1, pKB = 10.5, and `2 = a.

.
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Figure 4.6: Model validation by reproduction of fig. 4 of Hsu et al. (2013) for soft
(thin polyelectrolyte-coating with δ/a = 0.005) spheres (a = 5 nm) dispersed in an
uncharged gel. Scaled surface potential ζ∗ as a function of κa for various values of
ξ = 15, 25, 35, 45, 55 (increasing upward). Parameters are the same as Hsu et al.
(2013): pH = 7, τ = 0.5, pKA = 4.1, pKB = 10.5, and a = `2.

.

Finally, the generalized electrokinetic model is tested by calculating the elec-

trophoretic mobility under various pH over a wide range of κa. The scaling factor

applied to the dimensionless mobility from the MPEK package includes a factor of

3/2:

M∗ =
3ηe

2εkBT
M. (4.5)

To make it consistent with the dimensionless mobility2 in Hsu et al. (2013), a factor

of 2/3 is needed to multiply the dimensionless mobility from the MPEK package. The

generalized electrokinetic model successfully reproduces figs. 7 and 8 in Hsu et al.

2M∗ = ηe
εkBT

M in Hsu et al. (2013).
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(2013), as presented in fig. 4.7. Meanwhile, the model can extend the applicability of

the current problem to a broader range of ionic strengths. From the figure, a lower

limit on κa is realized for each of the four cases pH = 7, 8, 8.5, 9. The lower limit on

κa is restricted by the minimum ion concentration reached for each cases. Fig. 4.7 d

shows that the Brinkman factor approaches a specific constant in a lower limit and

higher limit of κa. This limit is calculated by the Brinkman formula (Brinkman, 1949;

Stigter, 2000):

FB = 1 +
a

`2
+

(a/`2)
2

9
, (4.6)

which is originally applicable to uncharged spheres translating in an uncharged

Brinkman medium. Hill & Li (2013) recently showed that the Brinkman formula is

also applicable to charged spheres translating in Brinkman medium at sufficiently low

and high ionic strengths. For the present case, the drag coefficient F is expected to

asymptote to 2.111. More interestingly, the mobility at the vanishing ionic strength

(κa→ 0) can be independently verified by the Hückel approximation (Hill, 2015b):

M =
Ze

6πηah
(κa→ 0). (4.7)

This is achieved by balancing the Coulomb force ZeE with the hydrodynamic drag

−6πηahV . Here, hydrodynamic radius ah is related to the drag coefficient F = ah/a.

In the limit of low ionic strength (κa→ 0), the relaxation effects vanish, and ah = FBa.

The red dashed line in fig. 4.7 a comes from applying Eqns. 4.6 and 4.7. It indicates

that Hückel approximation is in excellent agreement with the model calculations.
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Figure 4.7: Model validation by reproduction of figs. 7 and 8 of Hsu et al. (2013) with
soft (thin polyelectrolyte-coating with δ1/a = 0.001) spheres (a = 5 nm) dispersed in
an uncharged gel with bulk pH= 7, 8, 8.5, 9, from uppermost to lowermost. Other
parameters: τ = 0.5, pKA = 4.1, pKB = 10.5, and `2 = a. (a) Scaled electrophoretic
mobility versus κa. Dashed lines are the Hückel mobilities, M = Ze/(6πηaF ) when
(κa → 0); (b) Scaled surface charge density versus κa; (c) Scaled surface potential
versus κa; (d) Drag coefficient F versus κa. Dashed line is the Brinkman formula.

.
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4.2 Highly charged particles in uncharged gels

In this section, following Allison et al. (2007), the electrokinetic model is applied to

calculate the electrophoretic mobility of gold nanoparticles translating in uncharged

gels. When interpreting the electrophoretic mobility of highly charged particles, it is

necessary to account for the relaxation effects (distortion of the charge distribution due

to the imposition of an external electric field) (O’Brien & White, 1978). Here, charged

particles with a range of surface potentials are used to study the influence of the gel

on the particle relaxation effects. The gel material is modeled as a continuous effective

medium with gel screening parameter λ (reciprocal of the Brinkman screening length

`2). This medium comprises solvent (solvent viscosity η = 0.0089 Pa s), multiple

mobile ions (K+, Cl−, H+, OH−).

Following Allison et al. (2007), the same dimensionless variables λ/κ are considered

for particles with different surface potential Y = eζ/kBT over a wide range of κa. It

is assumed the particle core has a uniform electrostatic surface potential ζ, and that

there is no electric or flow induced change in the electrostatic surface potential when

a weak external electric field is applied.

Results are presented in figs.3 4.8, 4.9, and 4.10, which correspond to particles

with surface potentials Y = 1, 3, and 5, respectively. To eliminate the influence of

charge on the magnitude of the electrophoretic mobility, all those three figures are

plotted with M∗/Y over a wide range of κa for different gel parameters λ/κ. Similar

trends with the results of Allison et al. (2007) are found, with slight differences no-

3All data presented in Allison et al. (2007) have evidently been erroneously shifted one unit to

the right along the x-axis.
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ticed. However, Allison et al. (2007) addressed that their calculations are in excellent

agreement with early studies in the absence of gel. Therefore, we calculated the free

solution electrophoretic mobilities for particles with various surface potentials using

the generalized electrokinetic model, and the results are compared with the reference

Allison cited (Wiersema et al., 1966). Fig. 4.12 shows the electrophoretic mobilities

of charged particles with various surface potentials Y = 1, 2, 3, 4, 5 translating in a

free solution over a wide range of κa. We found that our calculation is accurate for

particles with all surface potentials over the whole range of κa.
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Figure 4.8: Model validation by reproduction of fig. 2 of Allison et al. (2007). Scaled
mobility over particle surface potential versus log10(κa)+2 with relaxation effects and
Y = 1 for charged particles in uncharged gels with Brinkman screening parameter λ/κ
= 0, 0.01, 0.027, 0.072, 0.193, 0.519, 1.389, 3.727, 10 (decreasing downward). Dashed
line is for λ/κ = 0.193.

.
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Figure 4.9: Model validation by reproduction of fig. 3 of Allison et al. (2007). Scaled
mobility over particle surface potential versus log10(κa)+2 with relaxation effects and
Y = 3 for charged particles in uncharged gels with Brinkman screening parameter λ/κ
= 0, 0.01, 0.027, 0.072, 0.193, 0.519, 1.389, 3.727, 10 (decreasing downward). Dashed
line is for λ/κ = 0.193.

.
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Figure 4.10: Model validation by reproduction of fig. 4 of Allison et al. (2007). Scaled
mobility over particle surface potential versus log10(κa)+2 with relaxation effects and
Y = 5 for charged particles in uncharged gels with Brinkman screening parameter λ/κ
= 0, 0.01, 0.027, 0.072, 0.193, 0.519, 1.389, 3.727, 10 (decreasing downward). Dashed
line is for λ/κ = 0.193.

.

For weakly charged particles (Y = 1), the relaxation effect is not evident. Shown

in figs. 4.9 and 4.10, particles with higher surface potentials (Y = 3, Y = 5), the

relaxation effect is substantial, especially for those with lower gel densities (λ/κ = 0,

0.01, 0.027, 0.072, 0.193). When particles are placed in a denser gel medium (λ/κ

= 1.389, 3.727, 10.0), the scaled mobility over surface potential is almost indistin-

guishable between the three figures. This indicates that a dense gel can attenuate the

relaxation effects. Allison et al. (2007) concluded that the gel effect on ion relaxation

is only evident for large particles in a dense gel medium, so the relaxation effect is

independent of gel concentration for small particles (κa 6 2). This conclusion is ob-
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vious from fig. 4.11, while the same figure plotted in Allison et al. (2007) might have

errors4.
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Figure 4.11: X versus log10(κa)+2 for three different values of λ/κ. X is de-
fined as (M∗/Y )Y=5/(M

∗/Y )Y=1. From the uppermost to lowermost lines, λ/κ =
0, 0.193, 1.389.

.

4All data presented in Allison et al. (2007) have evidently been erroneously shifted one unit to

the right along the x-axis.
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Figure 4.12: Scaled electrophoretic mobility of charged bare particles with surface
potentials Y = 1, 2, 3, 4, 5 (increasing upward) translating in a free solution versus κa.
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Allison et al. (2007) further applied their electrokinetic model to interpret exper-

imental gel electrophoresis data for gold nanoparticles from fig. 1 of Zanchet et al.

(2002). It is found that Allison’s model has good performance in interpreting gel

electrophoretic mobility for gold nanoparticles at gel concentrations below 3 wt%.

Zanchet et al. (2002) reported gel electrophoresis experimental data for Au particles

with gel concentrations between 0.5 wt% and 6 wt%. The buffer, 0.5 × TBE, used in

separating Au particles is equivalent to the ionic strength of 16.1 mM based on the

calculation of Allison et al. (2007). This ionic strength with a particle radius of 5 nm

furnishes κa = 2.08. Ferguson plots for Au particles are obtained for the considered

range of gel concentrations in Zanchet et al. (2002). The logarithmic mobility data

presented in Ferguson plots could be converted to mobility ratios, M∗/M∗
0 , where
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M∗ is scaled gel electrophoretic mobility, and M∗
0 is the electrophoretic mobility in

free solution. This mobility ratio could be conveniently applied to compare with the

model prediction, even if actual charges on the Au particle are not specified in the

experiment. The reasoning behind this simplification is: (i) the relaxation effect is in-

dependent of gel concentration for small particles (κa = 2.08 in the present case), (ii)

the relaxation effect is canceled when comparing the mobility ratio, so actual charges

on the Au nanoparticles are unimportant. The Brinkman screening length and fixed

charged density are the two primary parameters to model hydrogels. For uncharged

gels, e.g., agarose gels, the gel is characterized by the following physical parameters:

m (gel weight concentration), ρg (dry gel density), as (radius of gel polymer segment),

ws (ratio of dry gel volume to hydrated gel). In the present model, the gel material of

interest is agarose with ρg = 1.64 g/ml (Laurent, 1967), as = 1.9 nm (Johnson et al.,

1995), ws = 0.625 (Djabourov et al., 1989). Felderhof & Deutch (1975) derived the

following equations to relate the physical properties of gel to model parameters:

nsςs =
η

`22
, (4.8)

where the friction coefficient ςs is written:

ςs = 6πηas

[
1 +

as
`2

+
(as/`2)

2

9

]
, (4.9)

and ns is related to the weight concentration of the gel m by

m =
4

3
πρgwsnsa

3
s. (4.10)
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With the foregoing Eqn. 4.8 to Eqn. 4.10, the gel Brinkman screening length `2 is

readily calculated with the given weight concentration of the gel. Once the Brinkman

screening length is obtained, the generalized electrokinetic model could be applied

to compute the gel electrophoretic mobility of the gold nanoparticles. However, it

is also necessary to consider the steric interactions between particles and hydrogel,

since the electrokinetic model only captures the hydrodynamic interactions. The

electrophoretic mobility after accounting for the steric effects can be written (Allison

et al., 2007)

µ∗ ≈ 1

1 + 2φex/3
M∗, (4.11)

where φex is the volume excluded to penetration by the spherical particle; it can

be written

φex =

(
1 +

a

as

)2
m

ρgws
. (4.12)

Recall, a is the particle radius, as is radius of gel polymer segment, and fg = 2φex/3

is a term that accounts for the steric effects.

We applied the foregoing protocol to calculate the mobility ratio (µ∗ relative to

the mobility in free solution) of the Au particles over a wide range of gel concen-

trations. The calculations of the electrophoretic mobility for gold nanoparticles are

summarized in tables 4.1 and 4.2. These again confirm that the mobility ratio µ∗/M∗
0

is not affected by particle surface potential. The model predictions are compared

with gel electrophoresis data from Zanchet et al. (2002), and plotted in fig. 4.13. As
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expected, the electrokinetic model has good performance for dilute gels. The nanopar-

ticle electrophoretic mobility decrease substantially with increasing gel concentration.

However, the model prediction tends to underestimate the nanoparticle mobility at

higher gel concentrations. This is expected, since steric effects accounted for in this

model are only valid for dilute gels. Fig. 4.14 is an illustration of the roles of gel

steric effects and hydrodynamic effects affecting the particle mobility over a range

of gel concentrations. Based on fig. 4.14, the hydrodynamic effects have almost the

same magnitude as the gel steric effects in the considered ranges of gel concentration.

These results are counterintuitive, because the Brinkman screening lengths shown

in tables 4.1 and 4.2 are even smaller compared to the particle radius at high gel

concentrations. At this condition, the gel steric effects must dominate over the hydro-

dynamic effects. Allison et al. (2007) concludes that this is a good interpretation of

the gel electrophoresis data, which is questionable. Agarose gels have been treated as

an uncharged gel in this model, which is contradictory to earlier literature (Hanauer

et al., 2007; Doane et al., 2010), where electro-osmotic flow is observed in agarose

gels. Moreover, the Brinkman screening lengths presented in tables 4.1 and 4.2 are

also not consistent with experimental results. Johnson & Deen (1996) carefully mea-

sured the hydraulic permeability of agarose gels, reporting the gel Brinkman screening

length: (1) 1.9 vt% agarose: `2 = 25 nm (2) 3.8 vt% agarose: `2 = 12 nm (3) 5.5

vt% agarose: `2 = 7 nm (4) 7.2 vt% agarose: `2 = 5 nm. Holmes & Stellwagen

(1990) reported a Brinkman screening length `2 = 100 nm for a 1 wt% agarose gels.

The calculation based on Eqns. 4.8–4.10 employed in Allison et al. (2007) underesti-

mate the Brinkman screening length for all gel concentrations, which would lead to
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stronger hydrodynamic interactions between particles and gel medium. In conclusion,

this analysis confirms that the hydrodynamic effects have been overestimated by in-

accurate calculations of the gel Brinkman screening length at all gel concentrations,

while the electro-osmotic velocity produced by agarose gels also partly contributes to

the decreasing electrophoretic mobility with the gel concentrations.
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Figure 4.13: Scaled mobility ratio µ∗/M∗
0 of gold nanoparticles (a = 5 nm) in various

weight concentrations of gel. Blue circles are the model predictions, and the red circles
the experimental gel electrophoresis data from Zanchet et al. (2002).
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Figure 4.14: Scaled mobility ratio M∗/M∗
0 of gold nanoparticles (a = 5 nm) in various

weight concentrations of gel accounting for: (i) gel steric effects, (ii) gel hydrodynamic
effects, and (iii) gel steric and hydrodynamic effects, from uppermost to lowermost.
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Table 4.1: Calculation of the mobility ratio after accounting for steric effects for gold

nanoparticles with dimensionless surface potential Y = 4.

Y= 4

m (g/ml) `2 (nm) fg M∗ µ∗ µ∗/M∗
0

0.000 - - 3.01 - 1.00

0.006 10.80 0.951 2.79 2.65 0.88

0.014 6.75 0.893 2.59 2.31 0.77

0.018 5.85 0.866 2.51 2.17 0.72

0.025 4.83 0.823 2.38 1.96 0.65

0.039 3.70 0.749 2.17 1.63 0.54

0.051 3.13 0.696 2.01 1.40 0.46

0.058 2.88 0.668 1.94 1.30 0.43

0.068 2.60 0.630 1.84 1.16 0.39
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Table 4.2: Calculation of the mobility ratio after accounting for steric effects for gold

nanoparticles with dimensionless surface potential Y = 1.

Y= 1

m (g/ml) `2 (nm) fg M∗ µ∗ µ∗/M∗
0

0.000 - - 1.04 - 1.00

0.006 10.80 0.951 0.97 0.93 0.89

0.014 6.75 0.893 0.90 0.87 0.77

0.018 5.85 0.866 0.87 0.84 0.72

0.025 4.83 0.823 0.82 0.79 0.65

0.039 3.70 0.749 0.75 0.72 0.54

0.051 3.13 0.696 0.69 0.66 0.46

0.058 2.88 0.668 0.67 0.64 0.43

0.068 2.60 0.630 0.63 1.16 0.38
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4.3 Gel electrophoresis of “soft” nanoparticles with

uniform coatings

Having extensively studied the gel effect, our attention is now focused on how to model

the corona of soft nanoparticles. The corona structure can be characterized by a non-

uniform distribution of segments and charges in the generalized electrokinetic model,

while those having uniform coatings would be a specific type of nanoparticle. The

theoretical interpretations of gel electrophoresis for this specific soft nanoparticle have

been studied by Allison et al. (2016). Here, the model of Hill is used to examine the

gel electrophoretic mobility of this specific nanoparticle. The nanoparticles considered

have the following physical properties: particle radius a = 4 nm, corona thickness

δ1 = 2 nm, with corona having a uniform fixed charge density ρ1 = 0 and Brinkman

screening length `1 = 1 nm. The particle core is usually set as either uniformly charged

or having a uniform surface potential. In the present case, the particle is prescribed

with a constant net valance Z (uniformly charged), where eZ = 4πaσ2
p with σp the

surface charge density (MC m−3). The external hydrogel has a uniform Brinkman

screening length `2 = 14.33 nm, and a uniform charge density ρf,2, from the complete

dissociation of H+.

A complementary error function is used to prescribe the radial distribution of the

segment density profile (Hill, 2016):

ns(r) = ns,00.5erfc[−(r − L− a)/δ]. (4.13)

When δ/L→ 0, the number density of polymer segments is a perfectly “step-like”
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distribution. Fig. 4.15 shows the relation between the number density of polymer

segments and the radial distance from the particle surface for uniform coatings with

`1 = 1 nm when δ/L = 0.01. In the present problem, the dimensionless relative elec-

trophoretic mobility M∗ −M∗
eo is considered, where M∗

eo produced by electroosmotic

flow in the charged gel (Allison et al., 2016; Hill, 2016):

M∗ −M∗
eo =

3ηe

2εkBT

V − Ueo
E

,

where Ueo is the far-field flow velocity driven by the charged gel.
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Figure 4.15: The step-like coatings modeled using the complementary error function
with δ/L = 0.01.

.

Fig. 4.17 is a reproduction of fig. 4 in Allison et al. (2016) for particles (Z =

−9.8,−19.6,−39.2) translating in gels (ρf,2 = 0,−0.005 MC m−3) with (solid lines)

and without (dashed lines) accounting for the relaxation effects. The calculations
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demonstrate excellent agreement, also successfully extending the calculations to ex-

tremely small κa values (κa ≈ 10−2), which could not be achieved with Allison’s

simulation method. The Hückel approximation, rarely addressed in literature for

small particles, due to the difficulties encountered in numerical calculations for small

κa, are realized in these calculations when κa ≈ 10−2. Similar to bare particles,

the Hückel approximation for soft particles is also achieved by balancing the particle

hydrodynamic drag forces −6πηah(V − Ueo) and Coulomb forces ZeE. Here, Z is

the prescribed particle net valence in the present problem. Recall, the hydrodynamic

radius ah = Fa, and F is the particle drag coefficient. For soft nanoparticles, the

drag coefficient is a complicated function of F = f(`1, `2, a) (Hill & Li, 2013). The

calculation of drag coefficient F could be undertaken by the electrokinetic model, and

results are plotted over a range of κa values for those soft nanoparticles in fig. 4.16.

All those soft nanoparticles without accounting for the relaxation effects have a con-

stant drag coefficient F = 1.699 as the red dashed lines shown in fig. 4.16. All

those gel electrophoresis calculations that account for the relaxation effects approach

to the same drag coefficient when κa becomes smaller. However, for charged gels

illustrated in fig. 4.16, the minimum ionic strength can be achieved corresponds to

log10(κa)+2 ≈ 0.75, where the drag coefficients of highly charged (Z = −19.6,−39.2)

soft nanoparticles have not converged to F = 1.699. The dimensionless relative mo-

bility plotted in fig. 4.17 have already accounted for the gel steric effect fg = 0.1139

reported by (Allison et al., 2016). It is worth to address that the dimensionless rela-

tive mobility converges to the same value for particles having same net valance with

and without accounting the relaxation effects at vanishing ionic strength.
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Figure 4.16: F versus log10(κa) + 2 for soft nanoparticles with uniform coatings
translating in a gel solution. Red dash line is the Brinkman formula, blue solid lines
with a lower limit at about 0.75 on the x-axis correspond to ρf,2 = −0.005 MC m−3

with Z = −9.8,−19.6,−39.2 (from lowermost to uppermost). The other three blue
solid lines correspond to ρf,2 = 0 with Z = −9.8,−19.6,−39.2 (from lowermost to
uppermost). Parameters are same as in fig. 4.17.
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Figure 4.17: M∗ − M∗
eo versus log10(κa) + 2 for soft nanoparticles with uniform

coatings translating in gel medium. Parameters are the same as prescribed in Allison
et al. (2016): particle core radius a = 4.05 nm, uniform corona thinkness δ1 = 2 nm,
corona Brinkman screening length `1 = 1 nm, gel Brinkman screening length `2 =
14.33 nm, gel steric effect fg = 0.1139. Blue dashed lines are the relative mobilities
without considering the relaxation effects, while blue solid lines included the relaxation
effects. Blue solid lines with a lower limit at about 0.75 on the x-axis correspond to
ρf,2 = −0.005 MC m−3 with Z = −9.8,−19.6,−39.2 (from uppermost to lowermost).
The other three blue solid lines correspond to ρf,2 = 0 with Z = −9.8,−19.6,−39.2
(from uppermost to lowermost). Red dashed lines are the Hückel approximation.
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4.4 Gel electrophoresis of PEGylated nanoparti-

cles with peripheral charge

In previous sections, the generalized electrokinetic model was successfully applied to

compare with three different independent calculations from the literature. In this sec-

tion, the theoretical model is used to interpret gel electrophoresis data of PEGylated

nanoparticles. Hanauer et al. (2007) conducted a gel electrophoresis experiment to

study how the PEGylated nanoparticle mobility varies with the fraction χ of SH-PEG-

COOH to SH-PEG-OCH3 in a 0.5 wt% hydrogel. Hill et al. (2015) have theoretically

interpreted these gel electrophoresis data using a free-solution electrokinetic model.

They predicted that the gel electrophoretic mobility increase at a lower rate with the

increasing fraction χ of charged to uncharged PEG ligands. While this captured the

general trend, then remained a notable discrepancy with the experimental data at

the lower and higher fraction χ. Hanauer et al. (2007) explained that the mobility

reaches to a plateau when χ > 0.8, because the particle steric interactions take effect

due to the increasing layer thickness arriving from electrostatic repulsion with large

χ. Based on the light-scattering data of the nanoparticles, Hill et al. (2015) argued

that the steric interactions are unlikely to have significant influences. Moreover, the

rapid increase of mobility at χ near 0 has not been well explained. As for the mobility

increasing at a lower rate with respect to the fraction χ, Hill et al. (2015) suggested

that it could be explained by the stronger electro-osmotic flow that accompanies the

increasing fixed charge on the nanoparticle corona. Apart from these two effects, the

gel hydrodynamic effects can not be overlooked. In the present problem, 0.5 wt%
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agarose is a dilute hydrogel. When determining the Brinkman screening length `2,

the effective pore size depends on the methods used. Johnson et al. (1995) developed

a new technique using the reinforced membrane to measure the gel hydrodynamic per-

meability. They proposed an empirical formula to for the hydrodynamic permeability

of agarose gel:

`22 = 0.0244φ−2.45,

where φ = m/ρgws is the hydrogel volume concentration. Recall, ρg = 1.64 g/ml

is the dry gel density, ws = 0.625 is the ratio of the dry gel volume to the hydrated

gel volume, and m is the hydrogel weight concentration. Based on this formula, a 0.5

wt% gel has an effective pore size `2 '103 nm. Jackson & James (1986) proposed a

model that can be used to predict the hydrodynamic permeability of various gels:

`22
a2

= − 3

20φ
(lnφ+ 0.931),

where φ is the hydrogel volume concentration, and as is the gel polymer segment

radius. According to this formula, the Brinkman screening length of a 0.5 wt% gel

is `2 ' 22 nm, while this prediction is significantly smaller than the previous one.

Johnson et al. (1995) explained that the discrepancy at the small concentrations

could be attributed by an increase of polymer segment radius.

Ferguson plots are also widely adopted to estimate the effective pore size of gels.

These are semi-logarithemic plot of electrophoretic mobility versus gel concentrations

for DNA molecule (Slater et al., 1988). Applying Ferguson plot method, Holmes &

Stellwagen (1990) found that the median pore size of a 0.6 wt% agarose gel is `2 ' 160

nm. Serwer & Hayes (1986) applied the gel electrophoresis to determine the effective
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pore size of agarose gels based on the exclusion effects of spheres in agarose gels. They

reported that the effective pore size of agarose gels is well captured by:

`2 = 118C−0.74 with 0.2<C<4,

where C(%) is the gel weight concentrations. This furnishes for a 0.5 wt% agarose gel

an effective pore size of 197 nm.

Atomic force microscopy (AFM) is also an important tool for probing gel structure.

Maaloum et al. (1998) estimated the pore diameters of various concentrations of

agarose gel from AFM images. They concluded that gel pore diameter has a wider

distribution at lower concentrations: a 0.5 wt% gel solution has a median pore size of

810 nm. Stellwagen (2009) reviewed that the gel pore size measured by AFM methods

tend to be larger than the value determined by electrophoresis. They speculated that

the effective pore size of a gel determined by gel electrophoresis is more relevant for

interpreting gel electrophoresis. Based on the above review, a conservative estimate

of the Brinkman screening length for 0.5 wt% agarose gels would be between 100 and

200 nm.

Nanoparticle corona structure is complicated, Hill et al. (2015) assume polymer

segments and fixed charge densities having a radial distribution with Gaussian func-

tions. Several unknown parameters (see Eqns. 4.1-4.4) need to be determined in

Gaussian functions to model the corona structure. Appropriately setting these param-

eters enables a gel electrophoresis model to predict the nanoparticle electrophoresis

data. They conducted free-solution electrophoresis experiments for CM-5kPEG-Au

NPs (a = 2.7 nm) at various ionic concentrations. The electrophoretic mobilities
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for CM-5kPEG-Au NPs were used to fit the parameters in the Gaussian functions.

Two parameters were specifically addressed: the nanoparticle layer thickness δ1 (see

fig. 4.2), and the position of corona maximum charge density L2 (see fig. 4.2). The

nanoparticle is negatively charged with a core surface charge density σp = −15 mC

m−2. The dissociation of H+ from PEG ligands would also made it negatively charged.

These equally signed charges have a strong repulsion effect that repells the terminally

anchored charge from the core. Thus, the corona geometry parameter L2 is expected

to be larger than δ1. For layer thickness δ1, the electrostatic interaction between poly-

mer chain ends and nanoparticle core would increase the layer thickness. The layer

thickness is influenced by the ionic strength, since the screening effect that directly

relates to ionic strength would reduce the electrostatic interaction between chain ends

and the nanoparticle core. To account for the influence of ionic strength on the PEG

layer thickness, Hill et al. (2015) prescribed an interpolating formula:

L/L0 = (L∞/L0 − 1)/(I/I0 + 1) + 1, (4.14)

where L is the layer thickness δ1, L∞ is the maximum layer thickness achieved

at vanishing ionic strength, L0 is the minimum layer thickness achieved at high ionic

strength, and I0 is the transition ionic strength. Apart from the geometry parameters

in Gaussian functions, appropriately setting the hydrodynamic segment size as is

also essential to quantitively interpret the electrophoresis data of CM-5kPEG-Au

NPs. The hydrodynamic drag size as and segment density ns together determine the

corona permeability `21, where a larger corona permeability would furnish a smaller

hydrodynamic particle radius and a higher mobility. The Brinkman screening length
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`1(r) of polymer segment is furnished by equating the drag force on a single segment

f s = 6πηas(u − V )Fs(φ) and the so-called Darcy-drag (η/`21)(u − V ) (Hill et al.,

2003a), giving

`21(r) =
1

6ns(r)πasFs(φ)
,

where Fs(φ) is the segment drag coefficient, and φ = ns4πa
3
s/3 is the segment

volume fraction. The relation between Fs(φ) and φ is shown in fig. 5.1 in the Appendix.

The choice of the number of segments in a chain is arbitrary in the electrokinetic model

when interpreting the free-solution electrophoretic mobility for soft nanoparticles. For

convenience, Hill et al. (2015) treated a polymer chain as one segment (Ns = 1), with

segment hydrodynamic radius as = 1.7 nm, cora radius a = 2.7 nm, core surface

charge density σp = −15 mC m−2, number of ligands Na = 146, and corona geometry

parameters set as follows: corona thickness δ1 = L (from Eqn. 4.14, with L∞ =

18 nm, L0 = 4 nm, I0 = 1 mM), the radial position of the maximum segment density

L1 = 0, the radial position of the maximum charge density L2 = 3δ1/2, and corona

charge density distribution δ2 = δ1/3, they successfully interpreted the electrophoretic

mobility for CM-5kPEG-Au NPs in free solution. However, the arbitrary choice of

the number of segments in a chain is questionable when the gel effect is accounted

for. This is discussed as follows. Here, the radial profile of segment concentration ns

is replotted (see fig. 5.2 in the Appendix) when layer thickness δ1 = 4.14 nm, which

is the thickness at ionic strength I = 100 mM according to Eqn. 4.14. This figure

is consistent with the fig. 2 in Hill et al. (2015). Moreover, the radial profile of the

segment volume fraction φ can be readily obtained with the given radial profile of ns.
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Interestingly, the radial profile of the segment volume fraction φ shown in fig. 5.3 has

a volume fraction larger than one near the particle surface. This indicates that the

number of segments in a chain (Ns = 1) is not realistic, though these parameters could

enable the model to give a satisfactory prediction to the experimental electrophoretic

mobility data. Therefore, we performed the calculation with a larger number of Ns

(Ns = 4), accordingly with a slight adjustment of the segment radius (as = 0.7

nm) and corona geometry parameters (L∞ = 15 nm). The electrokinetic model can

still reproduce the “knee” as shown in fig. 4.18. The figure is consistent with the

calculation of the electrophoretic mobilities for CM-5kPEG-Au NPs with Ns = 1.

The adjustment of the model parameters significantly increases the number density

of segments at each radial position (see fig. 5.5 in the Appendix), also decreasing the

segment volume fraction to reasonable values (see fig. 5.6 in the Appendix).
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Figure 4.18: Calculation of free-solution electrophoretic mobility for CM-5kPEG-Au
NPs (a = 2.7 nm) with Ns = 4, as = 0.7 nm. Electrophoretic mobility reported as a
Smoluchowski ζ potential (mV) versus ionic strength I (mM). The line passes through
the experimental data shown in Hill et al. (2015).

.

Based on these parameter settings for the PEG ligand, the electrophoretic mobility

of the PEGylated NPs of Hanauer et al. (2007) is examined to help understand the

model interpretation of the electrophoretic mobility at small and large fractions χ. As

presented in fig. 3 of Hill et al. (2015), PEGylated NPs (a = 10 nm, Na = 2010) have

a hydrodynamic radius ah ≈ 21 nm, that is significantly smaller than the Brinkman

screening length `2 of 0.5 wt% agarose gels. The gel steric effects anticipated by

Hanauer et al. (2007) are unlikely to be significant with such a large gel pore size 100

∼ 200 nm, whereas the gel hydrodynamic effects on the nanoparticle mobility can

not be overlooked. Moreover, the electrostatic repulsion between chain ends and the

particle core could increase the average layer thickness with the increasing fraction χ

51



of univalent charged PEGylated ligand. This might be significant in influencing the

nanoparticle mobility. The generalized electrokinetic model was applied to account for

the gel hydrodynamic effects to interpret the electrophoretic mobility of PEGylated

NPs (a = 10 nm, Na = 2010) with varying fractions of charged PEGylated ligands. As

shown in fig. 4.19, this model predicts the average layer thickness increasing linearly

from 3.0 nm to 6.22 nm with χ when Brinkman screening length `2 = 110 nm. Note

that a mobility 0.315 µm cm s−1 V−1 is added to the experimental mobility data of

Hanauer et al. (2007) to account for electro-osmotic flow in the gel.
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Figure 4.19: Electrophoretic mobility (µm cm s−1 V−1) of PEGylated nanoparticles
with Ns = 4, as = 0.7 nm versus the fraction χ of charged PEG chains in a 0.5 wt%
agarose gel. Error bars are the gel electrophoresis experimental data from Hanauer
et al. (2007). A mobility 0.315 µm cm s−1 V−1 is added to all data to account for
electroosmotic flow in the gel (Hanauer et al., 2007). Blue line is the theoretical
prediction for a nanoparticle layer thickness that increases linearly from 3.0 nm to
6.22 nm with χ. Red line corresponds to the circles in fig. 4.20.
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Figure 4.20: Averaged nanoparticle layer thickness versus the fraction χ of charged
PEG chains. Blue line is the assumption that the averaged nanoparticle layer thickness
increases linearly with the fraction χ of charged PEG chains. Red circles are for
nanoparticle layer thickness at a given χ that furnishes the best fit to experimental
data in fig. 4.19.

.

According to the scaling/blob theory of Biver et al. (1997), the layer thickness for

uncharged polymers are determined by the grafting density and substrate curvature.

A weaker curvature of univalent PEGylated nanoparticles at the same grafting density

would furnish a larger layer thickness, although the layer is polyelectrolyte rather than

uncharged polymer. Based on this principle, the layer thickness δ1 = 6.22 nm of the

charged PEG NPs (a = 10.0 nm) is reasonable, since CM-5kPEG-Au NPs (a = 2.7

nm) with the same grafting density have a smaller layer thickness δ1 = 4.52 nm at

ionic strength I = 20 mM. From figs. 4.19 and 4.20, we may conclude that changes in

the layer thickness have a significant impact on the nanoparticle mobility. To address
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the hydrodynamic effect of gel, the electrophoretic mobility of the PEGylated NPs

at fraction χ=1 with gel Brinkman screening length l2 = 1000 nm (mimicking free-

solution electrophoresis) are calculated. A higher mobility (M = 1.7 µm cm s−1 V−1)

is obtained without accounting for the gel hydrodynamic effect, suggesting that 0.5

wt% agarose gel has a significant effect in retarding nanoparticle mobility.

However, treating each polymer chain as a collection of N Kuhn segments, each

with Kuhn length l, is more realistic. The length of a fully stretched chain is L = Nl

for the Kuhn segment chain. The number of Kuhn segments for 5 kDa PEG chain is

N = 83 (Hill et al., 2015). Again, the calculations are performed for the free-solution

electrophoretic mobility of CM-5kPEG-Au NPs (a = 2.7 nm) to fit the parameters

in the Gaussian functions when a polymer chain has Kuhn segments. With a larger

number of segments Ns in a chain, the hydrodynamic radius of each segment must

be smaller to have a comparable drag force exerted on the fluids. By fitting the

model to the electrophoresis data for CM-5kPEG-Au NPs (a = 2.7 nm) in fig. 1 of

Hill et al. (2015), the following adjustments are necessary: segment hydrodynamic

radius changes to as = 0.07 nm, corona geometry parameters change to L∞ = 15

nm, and L0 = 3.5 nm (see fig. 5.8 in the Appendix). As expected, when the number

of segments in a chain increases from Ns = 4 to Ns = 83, the segment density ns

increases significantly (see fig. 5.9 in the Appendix), while the segment volume fraction

decreases to a value close to 0 (see fig. 5.10 in the Appendix). The segment drag

coefficient Fs(φ) is close to one at such small segment volume fractions φ. The drag

exerted on each segment is therefore approximately equal to the well known Stokes

drag force, which is consistent with early studies (Hill et al., 2003a). Here, we are
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interested in whether the number of Kuhn segments would have significant influence

on interpreting the electrophoretic mobilities of the PEGylated NPs of Hanauer et al.

(2007). The gel electrophoresis model was applied to calculate the electrophoretic

mobilities of PEGylated NPs with varying fractions of charged PEG ligands, also

permitting the layer thickness to increase with χ. The gel Brinkman screening length

in the calculations remain unchanged (`2 = 110 nm). Not surprisingly, allowing the

layer thickness increases from 3.0 nm to 6.15 nm with the increasing fraction of charged

PEG ligands would furnish a satisfying fit to the experimental mobility data for the

PEGylated NPs of Hanauer et al. (2007), as shown in figs. 4.21 and 4.22. However, the

particle layer thickness increases more rapidly at small χ. To examine the gel effect

on the nanoparticle mobility, the electrophoretic mobility for the nanoparticle bearing

fully charged PEG ligand (fraction χ = 1) with gel Brinkman screening length `2 =

1000 nm (mimicking free-solution electrophoresis) was calculated. The nanoparticle

mobility obtained at this condition is 1.32 µm cm s−1 V−1, which is close to the gel

electrophoretic mobility when `2 = 110 nm, suggesting that the gel does not have

significant effect on the nanoparticle mobility. The conclusion at this condition (Ns

= 83) is contradictory to the previous interpretation (Ns = 4). This contradiction

may be explained by the relation between the segment drag coefficient and segment

volume fraction. When a polymer chain has number of segments Ns = 83, the small

segment volume fraction furnishes a segment drag coefficient close to one. In the

presence of a gel, the small changes in the segment volume fraction in the region of

polyelectrolyte would not have a substantial influence on the segment drag coefficient.

However, according to fig. 5.1, a small addition of polymer segments (due to the gel)
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would significantly increase the segment drag coefficient when the segment volume

fraction is larger than 0.5. While this is the case for polymer chain with number of

segments Ns = 4 (see fig. 5.6 in the Appendix).
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Figure 4.21: Electrophoretic mobility (µm cm s−1 V−1) of PEGylated nanoparticles
with Ns = 83, as = 0.07 nm versus the fraction χ of charged PEG chains in a 0.5 wt%
agarose gel. Error bars are the gel electrophoresis experimental data from Hanauer
et al. (2007). A mobility 0.315 µm cm s−1 V−1 is added to all data to account for
electroosmotic flow in the gel (Hanauer et al., 2007). Red line corresponds to the
layer thickness in fig. 4.22.
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Figure 4.22: Averaged nanoparticle layer thickness versus the fraction χ of charged
PEG chains that gives the best fit to experimental data in fig. 4.21. The layer thickness
increases from 3.0 nm to 6.15 nm.

.

In conclusion, the theoretical interpretation of the PEGylated NPs of Hanauer

et al. (2007) performed by (Hill et al., 2015) could be improved by allowing the layer

thickness to increase with the fraction of univalent charged PEG ligand. It is rec-

ommended to use Kuhn segments to simulate the polyelectrolyte for interpreting the

gel electrophoresis of soft/functionalized nanoparticles. It would also be benefit from

experimental studies that test how the nanoparticle polyelectrolyte layer thickness

changes with the amount of charge.
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Chapter 5

Conclusions

The generalized electrokinetic model recently developed by Hill (2016) has been ap-

plied to simulate the gel electrophoresis of spherical nanoparticles translating in gel

solutions. The model includes a pH-charge regulation model for polyelectrolytes and

hydrogels, and captures the ion concentration perturbation (termed relaxation ef-

fects). The applicability of this model has been successfully tested by several direct

comparisons to literature calculations, including charge regulated bi-functional par-

ticles in uncharged gels (Hsu et al., 2013), highly charged particles in uncharged

gels (Allison et al., 2007), and soft nanoparticles with uniform polymer coatings in

uncharged and charged gels (Allison et al., 2016). For gel electrophoresis of charge

regulated bi-functional particles, a very thin charge-regulated polyelectrolyte is ap-

plied to mimic charge regulated particle surfaces. For gel electrophoresis of highly

charged particles, the relaxation effects and gel hydrodynamic effects were success-

fully captured. Soft nanoparticles with uniform polymer coatings are a specific case

of this generalized electrokinetic model. The rarely addressed Hückel approximation,
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which has not been advanced by Allison et al. (2016) was achieved at κa ≈ 10−2.

The generalized electrokinetic model was further applied to interpret the gel elec-

trophoretic mobilities of PEGylated NPs reported by Hanauer et al. (2007). A rapid

increase in nanoparticle mobility at a small fraction of charged PEG ligands (χ ≈ 0)

and a plateau at a large fraction of charged PEG ligands (χ > 0.8) could be explained

by allowing the layer thickness to increase with the fraction of univalent charged PEG

ligands. It is recommended to use Kuhn segments to simulate polyelectrolytes for

interpreting the gel electrophoresis of soft nanoparticles. The theoretical model also

indicates that gel hydrodynamic effects are not significant for soft nanoparticles in

dilute gel solutions. Finally, this theoretical interpretation would benefit from exper-

imental studies that test how the nanoparticle polyelectrolyte layer thickness changes

with the amount of charge.
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Appendix
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Figure 5.1: Segment drag coefficient Fs(φ) versus segment volume fraction φ.
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Figure 5.2: Radial distribution of segment density ns for CM-5kPEG-Au NPs (a =
2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segment in a chain Ns = 1,
segment friction radius as = 1.7 nm.
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Figure 5.3: Radial distribution of segment volume fraction φ for CM-5kPEG-Au NPs
(a = 2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segment in a chain Ns =
1, segment friction radius as = 1.7 nm.
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Figure 5.4: Radial distribution of Brinkman screening length `2 for CM-5kPEG-Au
NPs (a = 2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain
Ns = 1, segment friction radius as = 1.7 nm.
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Figure 5.5: Radial distribution of segment density ns for CM-5kPEG-Au NPs (a =
2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain Ns = 4,
segment friction radius as = 0.7 nm.
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Figure 5.6: Radial distribution of segment volume fraction φ for CM-5kPEG-Au NPs
(a = 2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain Ns

= 4, segment friction radius as = 0.7 nm.
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Figure 5.7: Radial distribution of Brinkman screening length `2 for CM-5kPEG-Au
NPs (a = 2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain
Ns = 4, segment friction radius as = 0.7 nm.
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Figure 5.8: Calculation of free-solution electrophoretic mobilities for CM-5kPEG-Au
NPs (a = 2.7 nm) with Ns = 83, as = 0.07 nm. Electrophoretic mobility reported
as a Smoluchowski ζ potential (mV) versus ionic strength I (mM). The line passes
through the experimental data shown in Hill et al. (2015).
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Figure 5.9: Radial distribution of segment density ns for CM-5kPEG-Au NPs (a =
2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain Ns = 83,
segment friction radius as = 0.07 nm.
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Figure 5.10: Radial distribution of segment volume fraction φ for CM-5kPEG-Au
NPs (a = 2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain
Ns = 83, segment friction radius as = 0.07 nm.
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Figure 5.11: Radial distribution of Brinkman screening length `2 for CM-5kPEG-Au
NPs (a = 2.7 nm) with layer thickness δ1 = 4.14 nm. Number of segments in a chain
Ns = 83, segment friction radius as = 0.07 nm.
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