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Abstract

This paper attempts to show how fuzzy set thcory can be used to weilken some of the

stringent rationality assumptions used in c1assical micro-economics. TIle objeclive of lhe

paper is to see whether by introducing fuzziness we arrive to new rcsults or jusl only

generalizations of classical micro-economic results. We discover that lhe lIxiom of

completeness is not needed anymore. Using fuzziness will also allow us to betler e:l.l,lllin

the existing gap between delimiting possible choices and making the aclual choice. We

also introduce the notions of a fuzzy indifference set with a measurable area. 'Ille fuzzy

utility surface is also discussed. The demand curve is now 'thick'.

ln the producer area, the c1assical hypothesis that maximum profit enlails maximum utility

ofprofit is now substantially weakened when introducing fuzziness.

Finally, we consider revealed preference within a fuzzy context.

Abrégé

Par le présent travail, nous tenterons de démontrer comment l'application de la théorie des

ensembles flous peut attenuer certaines des hypothèses rigoureuses sur la rationalité

proposées par la micro-économie classique. Ce travail a pour objectif de rechercher si de

nouveaux résultats sont obtenus par l'application des ensembles flous ou si nous n'arrivons

qu'à une généralisation des résultats obtenus en micro-économie classique. Nous

découvrirons que l'axiome de complétude n'a plus de sense. L'application des ensembles

flous nous permettra également de mieux expliquer l'écart qui existe entre la délimitation

des choix possibles et l'acte en soi de faire un choix. Nous introduirons également la

notion d'un ensemble d'indifférence flou avec surface mesurable. La surface t1'utilité floue

sera également traitée. La courbe de demande est alors "épaisse".

Du "oint de we du producteur, l'hypothèse classique selon laquelle le profit maximal

• engendre l'utilité maximale du profit perd de sa force par l'introduction des ensembles

flous. Finalement, nous considérons les préférences révélés dans un contexte flou.



• Introduction

This paper is concemed with seeing how lùzzy mathc'llatics could contribute to an

enriched vision of economics. We are specifically interested in seeing how the result of

the traditional problem of maximizing a utility function subject to a budget constraint can

be extended when utility and/or budget constraint are fuzzy. The idea behind the

fuzzification of this type of problem is quite intuitive. As consumers our preferences are

vague and basically the resulting demand function we derive from successive optimizations

of utility functions subject to budget constraints should perhaps not have to lead to the

'ultra-thin' demand curve but rather to a 'thick' demand curve. The suggestion by the

French economist Marchal is essential here. The main objective of the paper thus consists

in seeing where exactly fuzzy sets may contribute in the area ofmicro-economics. We will

try to pinpoint the advantage of using fuzzy sets as a procedure which allows us to

uncover the way by which we express preferences. Furthennore we will try to argue in

• favor ofgetting rid ofthe completeness axiom which is used in c1assical choice theory.

Fuzzy set theory at this present stage is knowing a tremendous boost in research. Research

in the axiomatization of fuzzy set theory is overwhelming. This paper uses only the very

basics of fuzzy set theory and shuns as much as possible fuzzy set axiomatization.

Therefore we suggest that, as expected, this paper can be at most a very srnall eye-opener

to a newcomer in the field.

•

Our paper contains six different parts which are meant to fonn an integrated whole. Part 1

deals with the philosophical underpinnings of fuzzy set theory. It looks at the roots of

multivalued logic through authors such as Black and Carnap. The main protagonists in

formalizing multivalued logic are Lukasiewicz and Bochvar. We analyze some of

Lukasiewicis ideas. The law ofthe excluded middIe, central to the discipline of fuzzy set

theory is also analyzed.
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We look also at sorne of the 'hot' questions which are currently 'hanging in the air' so to

speak. In 1994 Elkan elaimed that multivalued logic ean be reduced to bi-valued logic. We

analyze his argument and try to refute il.

Part Il deals with sorne of the building blocks of fuzzy theory proper. 'I1le survey is

simple, non-exhaustive and certainly not rigorous. We briefly survey Goguen's extension

of the membership value set [0,1] to a lattice. nIe extension is quite useful as il renders

the task of defining certain c1assical concepts into a fuzzy set environll1ent easier. An

example is the issue ofpseudo-complementation. We have also a look at the concept of Il

fuzzy binary relation, a concept which is most appropriate for defining fuzzy preferences.

We start rounding off part Il with a discussion on fuzzy numbers and possible algebmic

operations on fuzzy numbers. The L-R fuzzy number is also discussed. Finally we propose

a measure which may be used to indicate the fuzziness ofa fuzzy sel.

Part III deals with a crucially important topic which is the membership function. Ali too

many applied papers have often assumed a membership function to be given from the

outsel. Ifwe want to tmderstand how we could possibly construct a membership function

for a particular problem we must inquire about the meaning of a fuzzy sentence. Two

views are presented the syntactic and the semantic approach. We survcy several

propositions mainly ail belonging to the semantkal approach. Dombi proposes a 'better'

membership function based on a survey he conducted over a period of three years. Hisdal

tries to model membership functions using a probabilistic approach. Howcver, her

approach is not clear-cut. Giles uses mainly a Bayesian approach where evidence does not

have to back up beliefs. Shafer caUs this the 'personalist view'. Smets and Magrez are

using a more syntactical approach. This part of the paper also tries to distinguish between

probabilities and possibilities; in view of separating the notions of respectively quantity of

information from meaning ofinformation.
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Part IV deals with another essential topic which are !he operators. We survey the

axiomatic proposition of Bellman and Giertz who propose that the max and min operators

may respectively correspond to fuzzy union and intersection. However, Bellman and

Giertz mathematical justification of the two main operators is not sufficient to deal with

real world problems. nIe argument by Zimmerman and Zysno tries to alter the max-min

proposition into a wcighted connective.

Part V finally gets to the economics subject which after ail is the objective of this paper.

Our goal is to depart somewhat from the ail too much restrictive assumption of rationality

which is so widely used in economics today. Whether we are in an environment where

there is certainty, risk Of uncertainty the information on the set of options we have is

assumed to be perfect. Fuzziness is 'invited' in when we would reasonably assume that the

options knOWll in advance may only be partially knOWll. Furthermore the choice the agent

is supposed to make may be much less c1ear-cut than assumed. Therefore we do introduce

the notion of fuzzy preference. This notion has a weak equivalent in the economic

Iiterature with concepts such as bounded rationality. Of course, the critique may be that in

departing from the assumption of rationality we resume into a merely descriptive rather

than a normative mode!. This is a difficult issue. The fine tread separating the IWo

positions is indeed very hard to trace. The scope of probabilities is shOWll to be of Iittle

value in an imprecise environment. We introduce the notion of a fuzzy relation which we

discussed in part II. We look at the ail important definition of transitivity and see how

filZZY transitivity may indeed weaken the rationality assurnption. We want to argue that

when introducing fuzzy preferences we do uncover the procedure on haw an agent arrives

to a preference rather than with the result of the preference per se. Finally it is shOWll that

the assumption of completeness is not at ail needed within a fuzzy context.

Incomparability is avoided in c1assical theory by imposing the axiom of completeness.

Because we can use degrees of preference we can give a true expression to

incomparability.
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Part VI deals with applications in micro-econol11ics and finance. We look III fllur

applications in the micro-economics field. TIle optimization of a crisp utility I1l11ctiou

subject to a fuzzy budget constrainl. TIle optimization of a fhzzy utility function subject III

a fuzzy budget constraint. We also look at a fuzzy producer's equilibriul11. Finally wc

consider revealed preference within a fuzzy setting. Part VI starts first with an eXllansion

on the idea of fuzzy preferences. TIle tick demand function is an outgrowth of this

assumption. TIlen we progress into the notion of a fuzzy indilTerencc sel. ll.is set carries a

membership function which is a fuzzy number. We then go into the notion of a weak and

strong preference sel. Finally we round offwith an expectable proposition which refers to

the convexity of a weak preference sel.

The optimization problems are then tackled. First, we argue about the dangers of fU7zy

optimization when simple Iinear membership functions are taken into accounl. ·n.en we

enter the problem of optimizing a crisp utility function subject to a fuzzy budget

constraint. Then we look at optimizing a fuzzy utility function subject to a fU7.zy budgel

constraint. We wonder whether a solution is possible using Brouwer's fixed point theorel11.

We try to argue whether we do indeed have an optimal solution. We also maximize the

utility the producer gets !Tom the profit he realizes when subjected to technological

constraints. This is not a straightforward problem in a fuzzy environment as the objective

of maximum profit does not necessarily coincide with maximum utility, as it wouId be in

the classical case. Finally we make a brief discussion on Basu's paper which deals with

fuzzy revealed preference. We round off part VI with sorne simple applications 011 basic

finance concepts. We look at a fuzzification of future values and the net present value.

Finally it is shown that the internaI rate ofreturn has no specific fuzzy equivalent.
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Part 1: Fuzzy Logic

'l1Jis lirst part of the paper deals with sorne of the philosophical issues surrounding the

issue of fuzzy sets. This part will be subdivided into four chapters. Chapter 1 deals with a

brief and simple survey on sorne of the reactions the academic community has been

uttering against (or in favor) of fuzzy set theory. This chapter has no pretense at ail. Il just

wants to shed sorne Iight on the popular stance vis-à-vis fuzzy set theory. Chapter Il wants

to enlighten us a Iittle on the roots of fuzzy set theOlY. Chapter III deals with a

formalization of what Black had to sayon vagueness. Elements of Lukasiewicz logic are

taken up. Finally chapter IV deals with sorne 'hot' questions on fuzzy sets.

Chapter 1

====

I.I.The academic community and sorne popular reactjons

Professor Bart Kosko in his popular book on fuzzy thinking wanted to show to his class

what a fuzzy set is ail about. Says Kosko: "How many ofyou are male? Raise your hands.

Males hands go up and female hands stay down. This gives us a non-fuzzy set. Nowa

harder question. How many of you are satisfied with your jobs? The hands bob up and

down and soon come to rest with most elbows bent. A confident few point their arms

straight up or do not raise them at ail. Most persons are in between. That defines a fuzzy

set...'([43); p.13) A simple experiment but with big ramifications. To start with in the

applied field of engineering for instance, numerous applications have been made using

fuzzy set theory. To name but a few. Hitachi invented an air-conditioner which adjusts

temperature in the most optimal way possible. Sony developed a palmtop computer using

fuzzy sets so that it can recognize handwritten Kanji characters. Washing machines as

developed through numerous Japanese and South Korean firms such as Daewoo, Samsung

or Sanyo can now adjust their washing strategy based on sensing dirt level; fabric type;

load size and water leveI. FinalIy the Sendai Subway System is ran using fuzzy 10gic. Fuzzy

(ogic is truIy engraved in the Japanese industriallmdscape.

1
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TIle Japanese Ministl)' of Intemational Trade and Industl)' (MITI) launched thc

Laboratol)' for Intemational Fuzzy Engineering Research (LIFE) in 1989. 'Ille chainlll1n

of LIFE is the president of Hitachi Corporation. Among the dircctors on LIFE are Joichi

Aoi, president ofToshiba Corporation but also Yutaka Kume; president ofNissau Motors.

The cream of the world largest and finest technology corporations are member of LIFE.

This is to say that the practical implications of fuzzy set theol)' as they IIrc applicd in

engineering can not be washed away.

At the non-applied front there is opposition however. 1 have rcmarked whilc wriling up

this thesis that most writings on the fimdamentals of fuzzy set theol)' are coming from

Western and Eastern Europe. Westem Europe is heavily represented through Frcnch,

Belgian and German Universities. Eastern Europe main!y through Polish and

Chekoslovakian universities. North America is foremostly represenled by the main

inventor of fuzzy sets Lotfi Zadeh of Berkeley. Sorne Canadian wliversities are also

involved with authors such as Giles and Gupta.

It is interesting however to see how fuzzy sets has been accepted in North America. One

interesting stol)' is the one which opposes Rudolf Kalman to Zadeh. Kalman was the

inventor of the KJ1lman !ilter which is basically an optimal estimator. Says Kosko 'It gives

the 'best' guess wliere the plane went when it flew behind a cloud'. 1 am not an engineer

and can thus not grasp the beauty of Kalman's invention. One thing is sure would therc

have been a Nobel priee in engineering Kalman would have won it 'hands down' as Kosko

says. Kosko however argues that it is Zadeh's basic work in this field which helped lay the

foundations of the Kalman filter. As Kosko says ' ..Zadeh missed the priee and Kalman

found it. That is why we cali it the Kalman filter and not the Zadeh filter.' This is what

Kalman had to sayat the Man and Computer conference in Bordeaux of 1972: 'No doubt

professor Zadeh's enthusiasm for fuzziness has been reinforced by the prcvailing climate in

the US- one of unprecedented perrnissiveness. 'Fuzzification' is a kind of scientific

permissiveness; it tends to result in sodally appealing slogans unaccompanied by the

discipline of hard scientific work and patient observation.' 1 could go on for hours citing

other big names who have opposed fuzzy set theol)'. Howcver the big names are on both

sides! Richard Bellman; the noted mathematician is certainly one of them; not to forgel

2
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Zadeh himself; ehair of the department of eleetrieal engineering at Berkeley. On the

philosophy side there are great names sueh as Blaek and Russell.

Il is truly eldremely diffieult to make an assessment of sorne depth on what fuzzy set

theory has to offer. 1 do think; from my very limited exposure and my very Iimited

eapacities that it holds promise. Il has shown to be useful in sorne areas of technology.

From the proliferation of material written on the subject one may at least have a good 'gut

feeling' about the future of this field. Finally Iittle or nothing of this area has been used in

eeonomics. Sorne French economists such as Ponsard and Billot have been writing on the

subject but Iittle else is to be noted.

Chapter II

=====

II.1. Max Black and the roots to fu:u;y set theory

Black's article is certainly one of the lirst articles which deals with the problem in depth.

Philosophers of aneient Greeee had posed the problem ofvagueness; but little of a precise

argument followed from their questioning. Black's article which appeared in the late

thirties joins however a series of other papers on the same problem The fundamental

papers of Lukacsiewiez; Bochvar and K1eene came in 1938. They are quite more

sophisticated in argument that Black's paper. It seems that the connection with fuzzy sets

lies in Lukasiewiez 3-valued logie. We will inquire sorne of the elements of this

multivalued logie and the possible connection with fuzzy sets in the neld section. For now

let us have a c10ser look at what Black has to say.

Black cites the weil known philosopher Peirce who defines a 'vague' proposition as

follows: 'a proposition is vague when there are possible states ofthings conceming which

it is illtrillsica//y III/certaill whether, had they been contemplated by the speaker, he would

have regarded them as excluded or allowed by the proposition. By intrinsically uncertain

we mean not uncertain in consequence ofany ignorance ofthe

interpreter, but because the speaker's habits oflanguage were indeterminate.'([6]; pA31)

Peirce also invokes the idea of 'indeterminacy of habits' by which he means the

3
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hypothetical variation by the speaker in the application ofthc proposition; 'so that onc day

he would regard the proposition as cxcluding, another as admitling, those statcs ofthings' .

The knowledge of such variation could ol/Iy be deduced from a perfect kllowledgc of his

state ofmind...

B1ack's discussion on the location of the mnge gets us right to the point where vagneness

may be defined. Says Black: 'The presupposition of the existence of a class of 'donbtfill'

objects will involve the assumption either of an exact boundary or of Il doubtflll region

between the fringe and the class ofunproblematic objects'. ([6];p.435) Either IISS11lllption

will be shown to invalidate the concept of negation which is used in the classical 10giclll

principles. B1ack's example which purports to the above quote is as follows. SIIYs the

philosopher: 'Let L be a typical example of a vague symbol. 11le vagueness ofL consists in

the irnpossibility ofapplying L to certainnumbers of a series. Let the series S be cOlllposed

ofa finite number; say 10 ofterms x; and let the rank ofeach term in the series be used as

its name. Let the region of doubtful application (or mnge) be supposed to consist of the

terms whose numbers are 5 and 6 respectively. The choosing of those mnge terms is

arbitrary. In the usual notation of prepositional calculus Lx will mean L applied to x and

-Lx; Lx is false. Suppose now that L" L" LJ , L. are tnœ, bul L" L. are doubtful. 11le

question which then arises is that of what is the range of Lx in that case?' We know the

L's which are true though we do not know for sure about the L 's which rerer to position 5

and 6. To exclude positions 5 and 6 may be right or it may be wrong; we do not know. We

definitely exclude positions 7 to 10, though. The problem cornes in when 100king at -Lx.

We should be positively excluding 1 to 4 including; not really knowing what to do with 5

and 6; though we certainly include positions 7 to 10 now. Assume now we include the

mnge (i.e positions 5 and 6) in both cases. What can we say ofLx versus -Lx? We know

that -Lx is only true when Lx is false. -Lx is true when excluding positions 1 to 4; or

including positions 5 to 10. Lx is true only when we exclude positions 7 to 10; so the

negation ofthis true Lx is to include positions 7 to 10! There is overlap between these two

negations and this makes no sense according to the formaI properties of negation in which

a domain and its complement can not overlap. Here they c1early overlap!
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'Ille problem spot is certainly positions 5 and 6; which we called the fiinge. We see clearly

that because there is no clear boundary between Lx and -Lx we get to such a

contradiction. However on the other hand and this leads us Îlilo quite sorne trouble, weil

defined boundaries to the fiinge also lead to problems. The following is one among the

many of such examples which ilIustrate the latter problem:

'A measure of corn when thrown out makes a sound. Each grain and each smallest part of

a grain must therefore have made a sound yet no sound is made by a single grain.' ([6];

p.438). Black's paper does not offer any solutions to the circular problem he posed above.

But he posed the problem. Though we are far still from a formalization of multivalued

logic or even remoter from fuzziness altogether this paper has the merit to have shown in a

simple way the problem of the 'excluded middle' in sorne sense. Goguen cornes to a very

similar conclusion as Black does. Says Goguen:' ...representing concepts by sets and

deduction by methods of traditional logic does not yield an adequate model of our

customary use of inexact concepts and deduction; for we have shown this representation

leads to paradoxical conclusions.'([26]) Goguen's proposaI for a resolution of this

problem is to use fuzzy sets. We now go to chapter m wbich wants to look at sorne ofthe

formalizations of multivalued logic. We then make the connection between tbis kind of

logic with fuzziness.

Chapterm

III LSome Elements ofmultivalued logic

ml.l. Early History

It is said that the founding fathers of many valued logic are the Scotsman Hugh MacColI

(1837-1909) the American Charles Peirce (1839-1914); and the Russian Nikolai Vasil'ev

(1880-1940). MacColl developed a system of prepositional logic in wbich three values

could appear. The traditional true and false values and a 'variable' value. An example is

this: '2=2';'3=2' and 'x=2'; which respectively would form a certain proposition (wbich is

always true); an impossible proposition which is always false and the variable proposition
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which is somr.times false and sometimes true. (i.c ifwe attribute x to be 3 thenthe variable

proposition is false)

Peiree also invented a similar kind of\ogic he called 'triadic' logic. Together with Frege he

became the inventor ofthe truth tables for 2-valued logic. It is c1aimed that by 1909 Peirce

had been extending this truth table to a three-valued logic truth tllble. Peirce WIIS 11150

instrumental in developing connectives specially geared towards threr. vlllued logic. SOllle

of those connectives were taken over later by mathelllatical philosophers snch as

Lukasiewicz. Finally, Vasil'ev also developed a similar duee valued logic. He proposed a

world in which sorne objects have the predicate A; others its negation predicate not-A and

still others which simultaneously have both A and non-A.

III. 1.2. Breakthrough

The real breakthrough aRer sorne groundwork had been laid by MacColI; Peirce and

Vasil'ev came in the early 20th century; mainly in the period 1920 to 1932. Instrumental

authors were Lukasiewicz and Post. Lukasiewicz published the first systematization on a

3-valued system of logie in a lecture before the Polish Philosophical Society in Lwow in

1920. Axiomatization ofLukasiewicz logic was achieved by Mordehaj Wajsberg in 1931.

The interesting part of Lukasiewicz development of 3-valued logic is that it went through

several stages. He distinguished about 3-valned and n-valued logic. While in the beginning

of bis development he held that 3-valued logic was of philosophical interest later on he

pointed out that it would be 4-valued logic. Post himself discovered also this 3-valued

logic and systematized it also. His discovery was independent of Lukasiewicz.

The difference between Post and the Polish philosopher was that Post started out right

away with a formaI development of n-valued logic while, as we said above Lukasiewicz

progress went frOiD a 3 valued to 4 valued and n valued logic. He also contemplated

infinitely valued logic.

6
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111.1.3. More recent

Following Resher the more recent period would coyer 1932 to 1965. Tarski and Turquette

carried further the work of mainly Lukasiewicz. FurthemlOre Lodi Zadeh in fact also

worked his fuzzy sets out based on this logic. There are however others systems of many

valued logic which have been worked out indeper:dently of what Lukasiewicz had to say.

Prominent authors are Kleene, Godel and Bochvar. 1 would dare to classifY in the applied

field of multivalued logic authors such as Zadeh but also Shannon and Birkhoff, von

Neumann and the Dutch mathematician Brouwer.

III. lA. Elements oftwo valued logic

1do follow the notation introduced by Rescher. The following is at use then:

Two- valued Systems Many - valued Systems

Negation ..,

Conjunction & 1\

• Disjullctioll V v

lm plicatioll ::::> -+
Equivalellce '" ~,=

The truth tables in Iwo valued logic are weil known. We re-iterate thc following:

m-p

T F where T=true and F=false

F T

Using the other connectives ofthe table above we get then:

•

p q p&q pVq p::::>q p"'q

T T T T T T

T F F T F F

F T F T T F

F F F F T T

Using the truth table we cao find the truth value for what Rescher caIls 'weil formed

formulas' (or wft).
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An example ofsuch wffis for instance this:

a::> (p&[(aVp)::> (r '" am

where the truth values of the constitucnt clements are given as:

lai =T;lpl =F a/ld Irl =T

simply replacing in the wffwe get:

T::> (F&[(TVF)::> (T", Tm

using the truth table from above we get:

T::> (F&[(T)::> (Tm =T::> (F& T) =T::> F =F

The connectives are ca11ed tM/th filllctio/lai as the truth value of the resulting wff, given

that the constituent part's truth values are known, is always uniquely delined. ·nlis is the

characteristic of the classical two-valued prepositional calculus designated as C2 •

III. \.5. Elements of3-valued logic

With Lukasiewicz we introduce a third 'intermediate' or also 'neutral' truthvaluc 1.

Lukasiewicz defends intuitively the introduction of1 with the fo11owing example:

'1 can assume without contradiction that my presence in Warsaw at a certain moment of

next year; e.g. at noon on 21 December; is at the present time determined neither

positively nor negatively. Hence it is possible; but not /lecessary; that 1 sha11 be present in

Warsaw at the given time. On this assumption the proposition '1 sha11 be in Warsaw at

noon on December 21 ofnext year', can at the present time be neither true nor false. For

if it were true now; my future presence in Warsaw would have to be necessary; which is

contradictory to the assumption. If it were false now ..my future presence in Warsaw

would have to be impossible which is also contradictory to the assumption. Therefore the

proposition considered is at the moment /lei/her tM/e /lor false and must possess a third

value; different from '0' or '1'. We can designate this value by 1/2. It rcprescnts the

'possible' and joins the 'true' and the 'false' as a third value.... '[50]

Thus in other words Lukasiewicz points out thus that propositions regarding 'future

contingent' matters have a truth status that does not correspond to either of the orthodox

truth-values oftruth and falsity.
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'nIe truth tables based on this 3-valued logie, as proposed by Lukasiewicz himself looks

then as follows:

p -,P

T F
/ /

F T

p q pl\q pvq p~q pBq
T T T T T T

T F F T F F

T / / T / /

/ T / T T /

/ F F / / /

/ / / / T T

F T F T T F

F F F F T T

F / F / T /

One can replace T=/;/=//2 and F=O. Note that the results are somewhat less intuitive

than in the case of C, . This 3-valued logic we can abbreviate as L,.

The guiding principles, following Rescher, for 3-valued logic would then be:

1) Obviously three truth values

2) The truth value ofa conjunction is thefalsest; and ofa disjunction the tnlest ofthe truth

values of its components. This can be seen easily in the above table. To take the

disjunction of T and / ; then the truest ofboth is T.

II1.1.6.The law ofthe excluded middle

We can not of course go into any serious details about the L, logic. The law of the

excluded middle however for our purposes is worth to be mentioned.

Let us first for this explain the meaning of a two-valued tautology. This is a formula which

always takes the truth value T regard1ess of what truth values may be assigned to the

9
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componcnt prepositional variablcs. An examplc is for instance pl' - p. The 3-valued tnnh

table corresponds to the 2-valned truth table when only T's and F's are involved. From

this fol1ows then that any 3-valued tantology must also be a two vlllued tautology. The

rellson for this is that a tllutology must tllke on the truth value '1' no malter the assignment

oftruth values to the constituent parts of the wff. TItis is easily i1\ustrated. Take the cllse lIf

p V - p in C, and this is a tautology. But look now lit a two valucd tllutology in LI' '11len

pv - p (where 'v ; is the disjuttctive operator in L,) Clin yield easily / if P adopts the

truth value /. p v (or V) - P is exactly the law of the excluded middle; IInd it relllly fllils tll

obtain in L, as a tautology. TItis could have been avoided would Lukasiewicz have tllken

for the disjuttctive operator the following truth table:

v

p q pvq

T T T

T F T

T / T

• / T T

/ F /

/ / T

F T T

F F F

F / /

One sees c1early that this new disjuttctive operator on / yields now a true value T. TIle

tautology can thus be rnaintained and the law ofthe excluded middle would remain valid in

L,. However this new disjuttctive forro ha5 drawbacks. This paper is not the place in

which we should further extend other avenUf;S conceming the law of the excluded middle.

At Jeast what we have shown here is that it is not 50 obvious that in multivalued logic the

law of the excluded middle would by definition not hold. /1 cali ho/d rif/der certaill

•c::.

circumslallces.
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"'.1.7. Many valued generalizations of3-valued logic

3-valued logic can be extended into n-valued logic. Working with our truth values on [0,1]

we can see the following quite easily:

Il

2

3

.4

Divisioll po int s

(1,0)

(1,1/2,0)

(1,2/3,1/3,0)

•

11 1= (11-1/11- 1);(11- 2)/ (11- 1); ...2/11-1;1/11-1;0/11-1 = 0

Where for 11=2 we worked in C2 ; and for 11=3 we worked in LJ •

Furthennore an extension can be made to infinite-valued logic in two cases:

1) 4.. which symbolizes the case that if we take 0 and 1 together with ail the rational

numbers between 0 and 1 as truth values.

2) 4., when we take real numbers from [0,1] as truth values.

We now get into two propositions which look at the number of tautologies we may find in

each system. This has relevance to our law ofthe excluded middle.

Proposition 1: Every tautology of Ln is a tautology of C2

References has been made already to this idea. The proposition is quite intuitive. The truth

tables for Ln will agree with the two-valued system when only 0 or 1 is involved. This will

be the overlap with C2 • The reverse is not true however as we have been remarking

already above. Considering the law ofthe excluded middle; which is a tautology in C2 ; it

will not be a tautology in L. for in~ance. Take for instance from (1 ;2/3;1/3;0) for

Ipl = 1/ 3; thellip v ~I = 1/ 3v 2/3 = 2/3.' 1; and thus the law of the excluded middle

does not hold. Recall that the value ofa conjunction is the fa/sest; and of a disjunction the

tn/est ofthe truth values ofits components; as we saw for LJ •

This is aIse valid in extension on LJ ; say Ln' One can now aIse get a quite serious

'foretaste' of the use of max-min operators in fuzzy union and intersection. As the

membership values ofelements offuzzy sets lie in [0,1] ,at least in the simplest case.
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We now better wlderstand why fuzzy wlion would imply maximum and intersection;

minimum. Sorne ofthe logieal connectives are then defined as follows:

(set tri/th va/Ile eqlla/ to p(x))(p/ease refer to part //1 for a discussioll 011 probabili~1'

/ogics.)

O:S; p(x):S; 1

p(x) = 1- p(x)

p(x 1\ y) = min(p(x),p(y»

p(xv y) = max(p(x),p(y»

nIe above development gives us an idea on how the fuzzy set theory draws its origins

from multivalued logie.The math part and subsequent parts of this paper will, 1hope make

this c1earer. Giles onee said that "..Lukasiewiez logie is exaetly appropriate for the

fonnulation of the 'fuzzy set theory'; fir&t deseribed by Zadeh'; indeed it is not too mueh

to elaim that L~ is related to fuzzy set theory exaetly as elassieal logie is related to

ordinary set tlIeory." (note that L~ = 4, (i=O,I) as we noted it above.). Giles argument

requires mueh more of a development than it seems. Giles paper is an example of making

this connection. We will however not take up a discussion on this subjcct. ([22])

Chapter IV

IV 1 Sorne 'hot' questions befme the start

As 1hope tlIe reader will notice, after having read tlIe subsequent parts of this paper; it is

not clear whetlIer fuzzy set tlIeory is still as fuzzy as before or just not. There are still quite

a lot of wlTesolved high cah'ber questions in this theory. 1 deliberately mention 'high

cah'ber' because of tlIe fundamental natur<. tlIe questions involved. A short Iist of sorne

oftlIe problem areas may tlIen be tlIe following.

1) Are grades ofmembership to have a probabilistic or possibilistic interpretation?

2) How do we define grades ofmemberships?

3) What about ensuing operators?

4) Is fuzzy set tlIeory a unified tlIeory?
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) We will not define yet precisely what a grade of membership is. An example 1s the

easiest to handle at this stage. Consider the set of golfers of Canada. This set contains

professional golfers; golfers with 1 year of golfing experience etc...Each element of this

basically fuzzy set belongs to sorne degree to the set. One is inclined to give a membership

value of')' to the element 'professional golfer'. Less of a value would go to the element

which exemplifies the golfer with 2 years of free-time golf experience. We know from our

discussion on multivalued logics grades ofmemberships may have to take values in [0,1].

The confusion which ensues out ofthat is serious. Toth says it in somewhat of a superficia!

way as follows: ' ..using membership functions of the form )1: X ~ [0,1] .. is a very

appealing presentation, because in a simple way it generalizes both the logical truth

functions and the characteristic function of ordinary set theory. But it is just that last

property and the fact that for probabilities we have li: Y~ [0,1]; which have proved to be

drawbacks because of the two following reasons: [1] the equality of the ranges of

)1 and li has misled many people to believe the underlying concepts to be the same

too... [2].. .'.[71]lt was Goguen; by introducing a lattice structure which perhaps avoided

further confusion with the [0,1] problem. We deal briefly with Goguen's extension in the

math chapter of this paper. The above passage is to set the tune. The probabilistic versus

possibilistic interpretation remains a problem. We will discuss it further in part III of this

paper.

2) Related to the first question is the definition of grades of memhership. Now, let us be

c1ear the membership function and its grades is certainly the basic template upon which

fuzzy set theory is to be build. 1 think part III of this paper gives us an idea of this. As we

will see in part III definiilg and finding a workable and acceptable way to make grades of

membership functional is far from easy.

3) The problem of operators is ail important for the obvious reason that it will give us a

tool kit by which we can optimize for instance. The mathematical branch of fuzzy set

theory has opted widely for t-norms and t-conorms. As we aIso will see in part III the

traditional max-min operators have been discarded somewhat; at least in the practice field.

4) Finally we may wonder if at ail fuzzy set theory is unified at this present stage. This is

again a very hard question.
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Hisdal c1aims that there would be two orientations in fuzzy sels; the syntaelieal und

semantical branc1l. Part III discusses the differences. From our readings however il looks

as ifthere is still a lot ofwork to perform before to cali fuzzy set theory unified.

Unified in the sense of a common base (such as membership funclions and ensuing

operators) upon which everybody agrees. On the other hand it may be asked whelher 1\

unified theory is that important; or even worse whelher it is by definition possible in 1111

area such as fuzzy sels.

IV.2.The hottest questioQ of all

Finally tltere are even hotter questions! Elkan claims in [18] that fuzzy logic can basieally

be reduced to binary logic. This is an attack ofthe utmost serious sort! Wc need 10 expand

on Elkan's argument. Elkan defines the the 'degree oftrulh' as follows:

Definition 1: Let A and B be arbitrary assertions. TIlen:

l)t(A 1\ B) = min(t(A), t(B)}

2)t(Av B) = max{t(A), t(B)}

3)t(-.A) = 1- t(A)

4)t(A) = t(B) if A and B are logically eqllivalent.

(with t(.) the truth value)

Then given titis definition Elkan proposes the following 'revolutionary' theorem:

if ..,(A 1\ -,8) and B v (-.A 1\ -,8) are logieally equivalent then for any two assertions A

and B; either t(B)=t(A) or t(B)=l-t(A). The proposition derived ITom this theorem takes

then the following form:

ElIran 's Proposition: Let P be a finite Boolean algebra ofpropositions and let a be a truth

assignment function P~ [0,1]; then for ail p E P,a(p) E {O,I} .

This is indeed an incredible claim given that ail values in a multivalued setting; when

following the four clements of definition l, must collapse to a two-valued setting. Elkan

gives the proofofbis proposition; wbich wc will not re-iterate here.

This looks like an enormous blow to ail what has been constructed in the fuzzy lileralure.

Would Elkan's statement have validity fuzzy sets would be just relegated as a menlal

exercise ofno value; just as studying latin in bigh school.
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Is Elkan's proposition refutable? The 'super' trio Didier Dubois-Henri Prade-Philippe

Smets and also Lolli Zadeh refute this statement completely. We want to look in their

argumentation and ~tart out lirst with the refutation ofDubois-Prade-Smets.

DPS do totally refute Elkan 's use of the logical equivalence. ll1ey clairn that this

equivalence is true in a Boolean algebra setting but not at ail in fuzzy logic. It is the fourth

property in his delinition 1 which is very bothering. Let us see why this is so. When

looking at ONLY the lirst tluee statements we can, following DPS derive sorne cIassical

logical equivalencies. They are for instance:

A /\ (v)A =A (idempotel/ce)

A /\ (Bv C)= (A /\B)v(A /\ C)

A v (B /\ C) =(Av B)/\ (Av C) (distributivity)

For instance A /\ A =A, derives imrnediately frorn the tirst staternent; i.e. that

min(t(A), t(A» = t(A) .Much more important is that other Boolean equivalencies do NOT

hold using the lirst three staternents of detinition 1. As an example, it is not true that:

A /\ -.A =K with teK) = 0 always holds. The reason follows irnrnediately frorn statement 1

in delinition 1. Namely that t(A /\ -.A) = min(t(A),I-t(A» ~ Il 2. Similarly

t(A v -.A) =rnax(t(A),I-t(A» ~ I12 ; meaning thus that Av -.A =E; with teE) =1 does

not always hold. Thus without staternent 4 in definition 1 using tbus tbe first three

statements the law of the exc/uded middle is still refuted, as A v -.A =E; with teE) = 1

does not always hold. Zadeh gives us a very nice insight in wbat is wrong in Elkan's

equivalence. We know that ....,(A /\ --.B) =-.A v B; this just uses the fact that

....,(A /\ B) = -.A v --.B (law of de Morgan). Then extending the RHS with

(-.AvB)/\(Bv--.B); where the new appendix is tbe law oftbe excluded middle. The

latter expression is claimed to be equivalent to : B v (-.A /\ --.B). Hence

....,(A/\--.B)=Bv(-.A/\--.B); and this is precisely the equivalence Elkan uses in his

theorern 1. No doubt the law of the excluded middle is 'disguised' to use Zadeb's words

(-.AvB)/\(Bv--.B); tbrough the latter term; i.e. (Bv--.B). The non-equivalence of

....,(A /\ --.B) al/d Bv (-.A /\ --.B) is aIso shown in Klir and Yuan.
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A sharp note is by Ruspini who wonders whcn cquivalcnce in a binary setting involves the

equality of the truth values of two formulas; it looks definitely awkwanl to impose lin

axiom then; i.e. condition 4 of definition 1; to cstablish this truth .

An important point is this: the equivalence in the scnsc of a ~ p is not the same as the

equivalence in the sense of the equality oftruth values illlllllltiva/llcd /agie. It al\ depends

what type of multivalued logic is considered. In part 1 wc looked briefly at Lllkasiewicz

logic. Wc also mentioned the multivalued logic ofBochvar.
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Part 1/: Fuzzy Mathematics - Building Blocks

Chapter 1: Introduction

================

Zadeh in 1965 fonnlllated his idcas on fuzzy sets, which basically expressed the id,:a of

introducing a degree of belonging of an element to a sllbset. Zadeh's creation is in sorne

sense 'natural', but it needs a genius to create it! As Hans Zimmennan once said it is

difficult to find 'a one-to-one mapping between the richness of our thoughts and the

expression of it into daily language'. Fonnal language is even poorer in meaning , as

opposed to daily language. Therefore Zimmennan concludes that a one-to-one mapping

betwcen rich human thoughts and fonnal logic is inexistant. In the social sciences the Iack

oftruly crisp phenomena is omnipresent. Economics tries certainly to abstract from heavily

complex situations so to provide approximate solutions to tbose real problems. Zadeh in

1973 pointed out that if the complexity of a system increases, our ability to make precise

statements about its behavior diminishes until a threshold is reached beyond which

precision and significance become almost mutually exclusive charaeteristics. Perhaps tbe

most englobing definition of fuzzy matbematics was given by Goguen who said tbat :' the

theory offuzzy sets studies formai properties of i/l-posed problems and ill~efinedsets... '

([25]; P146) From tbe outset 1 tbink we can aiready cIarifY one main divergence of fuzzy

math from the traditional bi-valued matb and tbat is tbe law of the excluded middle. We

know in probability theory tbat p(A (') A) = O. This is precisely not universally true in a

fuzzy conteX!. Natural examples abound: 'yellow and yellowish' 'Iittle taIl, tall and very

tall', ail examples which we use with high frequency in our daily language. No clear

boundaries as such and tberefore no law oftbe excluded middIe. We have been discussing

the law oftbe excluded middle in part I.

If E is a 'universe of discourse' tben I.1 expresses 'belonging' according to classical set

tbeory.

il. Let E be a set and A cE;x eA can bewrilten as UA (x)= 1; UA (x) = 0 for x lêA.
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12. Define {X:UA(X)};'I1x E A; where UA (X) indicates the DEGREE of membership of x

in ii. In other terms let E be defined as above and let x E E; if c E is Il fuzzy subset snch

that {xIU,7 (x) }; 'I1x E A; where E is defined as above.

A fuzzy set on X (X being finite) can also be expressed as:

"if =U ,7 (x, )1 x,+".U ,7 (x" )1 n =LUÂ(x, )/x,,.,
Example 1: For X=N (positive integers) let if.=.I/7+.5/8+.8/9+1/10+.8/11+.5/12+.1/13;

where the fuzzy set A does indieate to be a fuzzy subset ofintegers ofapproximately 10.

Example 2: Let E={a,b,e,d,e,f} and M={O, 1/2, 1}(M=Membership set or va/llatioll set)

then: if = {(a 1O),(b 11),(c/1 12), (d 10), (e,1 12), (f10) } where if cE. Remark il is from

M that the set A takes its membership values.

Example 3: IfE={a,b,e} and M=[O,I] then A={(a/O),(b/l),(e/l)} is an ordinary set.

Example 4: An interesting example by Miaymoto is this:

Say E is the set ofnon-negative integers. Say E is the set including the ages of people. Can

we define a subset B denoting 'young ages'? Clearly, there is no weil defined objective

criterion by which we ean separate 'young' from 'old' ages. Define now a fWletion Un

eorresponding to the concept of 'young ages'.

So for instance U iJ (x) = 1for x = 10 and U iJ (x) = 0 for x = 60; where 'x' denotes age.

Thus the fuzzy subset B is preeisely 'fuzzy' because there is no elear defined boundary.

([52]; p.?) The membership funetion ean also be drawn. In (age,membership value) space

the function may be horizontal at 1 up to x=20 and start declining from x=20 onwards.

The membership fimetion is sometimes ealled preference funclion,,(see [45] for instance)

Note that in fuzzy set theory we could also define a possibility jllI/ction. Wc then invoke

the possibility that a certain event wiII happen and establish boundaries. Lai and Hwang

attempt to make the difference c1ear between the two concepts: 'the grade of a

membership fimction indicates a subjective degree of satisfaction within given tolerances.'

and 'the grade ofpossibility indicates the subjective or objective degree of the occurrence

ofan event.' ([45]; p3) The above definitions also seem to show us that we explicit\y deal
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with possibility and not probability; as in the latter case we refer solely to the objective

degree of the occurrence of an event. Zadeh claimed in his original 1965 paper that the

'notion of a fuzzy set is completely non-statistical in nature' ([77]; p.. 340) Zadeh however

does not offer, in this paper, any deep explanation on why this could be so. To make our

stance clear on the differential between probability and possibility we can re-state Zadeh's

intuition: 'what is possible may not be probable and what is improbable need not be

impossible' ([37]; p.24) This is also known as the consistency principle. Part III deals with

the problem more extensively.

1.3. SUjlj)ort and beight:

The common set suppA={ XE X,U:i(X) > O}; where X is the universe of discourse set.

'suppA' is called the support of the fuzzy set A. We emphasize the fact that suppA only

includes membership values which are strictly greater thall zero. The least upper bound of

U:i(x) is called the height ofA: hgt(A)= 'sup U:i(x) ([1]; p.IO)(see fig.! - appendix)
:f~X

A fuzzy set with height '=1' is normalized. Linked to the concept of 'hgt' is the concept of

cardinality. IfX is a finite set the cardinality, cardA is defined as:

cardA = LU:i(x)([I]; p.1I and [52]; p.!8) The definition rnakes sorne sense, when we.....
think in analogy with the crisp set cardinality. A crisp set containing 5 elements will have

cardinality 5; i.e the SUffi = 5 times 1. The membership value of elements in the set is 1. By

analogy we do the same for a fuzzy set. Defining cardinality on X not being finite is

however more tedious. The relative cardinality is defined as: card..1A= cardA1cardX .

Cardinality and height are special cases ofellergy-measures. ([1]; p.12)

Toth [72] remarks that fuzzy cardinality as defined above is quite meaningless. For one

thing cardinality couId be defined as two sets having the same cardinality if tÎtere is a

bijection between them. Of course this definition can not at ail be followed when using

cardA = LU:i (x). The reason is simply that in the crisp case the cardinality is formed by
:teX

the binary value 'l'of elements in the set. If one considers two fuzzy sets with same

cardinality there need not at ail to be a bijection between those two sets as we do not have
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to work with integers. I.e. say cardA =cardB =5; then working with non integers tllere

are tons ofdifferent ways how to reach this equality; and no bijection is at ail gllarantecd.

One of the great extensions in fuzz;y set theory is the extension which can be IlInde from

the [0,1] to a more general structure which is a laltice.

At this point it may he useful to have a quick look at sorne of the peclllinr Inltices we clin

encounter.

20



•

•

•

1.4 Lattices

Let L be an ordered set; suppose for any ordinary subset {x"x j } ofL there exists ONE

AND ONLY ONE clement of L constituting an inferior limit of the subset and Iikewise

there exists one and only one clement of L constituting a superior Iimit of the subset. If so

then L is called a laltice. In symbols this is written as:

{'rJx,,'rJxj(x, eL,xj eL):3!x, =x,ôxj;x, eL}

{ 'rJx,,'rJxj(x, eL,xj eL):3!x, =x,'ilxj;x/ eL }

Four properties can be invoked: (A,B,C are elements ofL.)

At:.8 =8M and A 'ilB =B'ilA

(commlltativity )

At:.(8t:.C) =(AM)t:.C

(idem for 'il)

(associativity)

AM=A

(idem for 'il)

(idempotence)

A'il(AM) = A

At:.(A'ilB) = A

(absorption)

Sorne examples will c1arifY sorne ofthe lattices we may consider.

A Hasse diagram (figure 2) gives the following interesting results:

Seltillg x, < x j for x, precedillg x j ; we assume this is ail ordered set, thelT.

I)A <B<C<F

2)A <8<E<F

3)A <8<D<F

Then we can verifY our four rules:

For instance A'il(AM) = A? We 101011' that: AM= A a/uJ A'ilA = A; hellce A'il(AM) = A
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Note that maximal chaillS of a lattiec arc defincd as ehains whieh arc non-ovcrlllpping with

othcr ehains. TIle lattiee offigure 2 givcs maximal chains whieh arc as follows:

A<B<C<F or A<B<E<F. COlIIIterexamplcs arc uscful as thcy show us immcdilltely the

important eomponents of the definition of li lattiec. Figurc 3 shows us a first example of li

non-Iattiec. C is inferior Iimit of both D and E. But B is also the inferior Iimit of D lInd E.

Henee this violates the definition of a lattiee. We only ean have one inferior Iimit for li

same given ordered set. In Figure 4 we may wonder what is the superior limit of D lInd E.

This also violates the definition ofa lattiee as we are required to have a superior limit.

Figure 7 is an example.

A lattiee L is eomplemented when:

a) it possesses a unique element '0'= inferior Iimit and U= a superior Iimit

clementslIrbitmry3

1.5 Important types ofJattje~

1. Modular Lattice

A lattiee L is modulaI' when for

x"x"x, eL:x, :::;x, =>x,Y'(x,ôx,)=(x,"1x,)ÔX,

Figure 5 provides an example.

2.Distributive Lattice

A IlIttiee L is distributive when:

'ltx"x, ,x, eL: x, Y'(x,ôx,) =(x, Y'x, )Mx,Y'x,) and x,D.(x, Y'x,) =(x,ÔX, )Y'(x,Ax,)

Figure 6 provides also an example.

Property: Any Distributive Lattiee is ModulaI'.

3.Sublattice

A lattiee L and Ac L if 'ltx e A, 'lty e A:xD.y e A and xY'y e A then A is li sublattiee of L.

Property: A Sublattiee L'of a distributive lattiee L is itselfdistributive.

4. Complemented Lattice

Suppose a lattiee L possesses an element denoted '0' whieh is thc inferior Iimit of the

entire lattiee L; suppose L also possesses a superior limit for the entire lattiee; say 'U·.

x) isacomplementojx, (x) eL,x, eL) if:
Then

x,ÔX) =Oandx,Y'x) =U

•

•
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b) each X, EL posscsses at Ieast one complement in L.

Property: In a distributive lattice; the complement of an clement x, is always unique.

5. Boolean Lattice

A distributive and complemented lattice

a) for each x,: = x,

c) x, 'ilx) = x,lix)

6. Vector Lattice

Let A,B,...S be n sets; each totally ordered by '<'; the product set is an ordered set and

forms a vector lattice. To create an order in this product set we use the dominance

relation:

A vector lattice is distributive but not complemented.

7. Product of Lattices

Let L, and L2 be two lattices. The product ofthese two lattices gives again a lattice.

An example:

Let L, = {A,B, C,D,E,F} and L, = {a,p,y ,Ô,E}. Figure 8 shows the first lattice is not

totally ordered; i.e. is B<C<D?

No! In fact a lattice may be constmcted from partially ordered sets as long as the maximal

chaillS indicate a total order and that there is a superior and inferior limit. The first lanice

has maximal chains which are totally ordered, as one can see. Consider now this:

(x, ,y) XX', ,y') ) E L, X L2 if (x', ,y') ) >(x"y) ) then x', > x, and y') > y); then L, x L2

will be ordered; and the associativity etc.. mIes can be verified; confirming L, xL, to be a

lattice. Thus in our examplll ail possible combinations must be verified. I.e.

(F,i:) < (F,y)< (F,P) «F,a) etc..

The ligure 9 gives an idea of a partially ordered set not forming a lattice. D,E,F have no

inferior limit.
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8. Sup and Inf Scmilatticcs

Whcn only the superior limit (or only the inferior limit) belollgs to the latliec wc have

respeetive1y a sup-semillltliee and illf-semilatliee. TIle figure 10 is self-c:\llianalory. A

lauiee is at the same time sup and inf semi tauiee.
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Chapter Il. Gcneralization of the notion ofa fuzzy subset

=====~===================================

So far we have been looking at fuzzy subsets taking membership values in M=[O, 1].

We want to extend the membership set to L, whieh is more general than M.

We will then talk about L-fuzzy subsets; L being a Iattice. 11le extension was worked out

by Gogucn. Up to this point fuzzy sets where subsets of an ordinal)' set E. 11lerefore we

ealled them fuzzy subsets. One eould perform operations on fuzzy subsets having the same

referenee set. We wan! to look speeifically at the ordinal)' ~ets El'

Il. i. Set of Mappiu&s of E, ÎI11ll.. E2

The set offunetion"I mappings of E, into E2 is denoted as: E2 "', •

Those mappings aœ funetions; a funetion is a relation.

An example:

Let E, = {A,S } alld E2 = {a,p,y }. Ali the possible combinations: are totaling:

#[ E,""'J =# E:H
, ; i.e. 32 = 9 combinations.

Two properties are:

I)(E,xE2 )"" = E,""xE,""'

Il,2 Flwdameutal Prnllerties ofa set ofmapllings ofone set into anotheL

The set of mappings of E into L (lattice) is : L"'. The following property is extremely

important:

Any internallaw ,*, dejined en L induces a co"esponding internallaw ~ on LH
•

The law of internaI composition says: to each ordered pair (x, y) e ExE corresponds one

and only one element zeE. Example:E,=E2 =!R+ifx-y==;x,ye!R+then it

certainly can be Z E!R+; one obtains thus then an externallaw.

Another example makes the concept even more clearer:

Consider a finite set: E= {x, ,x2 , ... x.} alld L = {O,I} Then:
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L/I = {{(X, ,0), (X1,0), ... (x" ,O)} {(X, ,1), (X1,0).. (x" ,O)} ... {(X, ,1), (x1,1)... (X" ,I)}}

If L indicatcs the membership values of the elements then L/I = ~J(E) where the latter

indicates the power set of the set E. F,,' the 'case of for instance E={ x" Xl } und L={0,11 .

~
o 1

We can define the product operator C'l L po: ° ° ° l11e law ' .. is intemul. An

1 ° 1

importa'jt question to know is whether '.' is remaining intemul on L/I', Take for instance

: {(XI' a)(x1,I)}~ {(x "I)(xl ,I)} = {(x l' (a.l»(xl' ( I.I»} = {(XI' a)(x1,I)} E L/I. Where the

symbol'~' stands for '.' on L/I. (multipFcation)

We get in fact two interesting cases f(), L':

1) E= {x, ,. .. X"} alld L = {O,I} yiell1ing ~o(E) = L/I, L/I now being the set ofsubsets.

2) E={x" ... x"} alld L = [0,1) yielding p(E) = L"'; where the latter is the set of fuzzy

subsets. Sorne other interllsting properties are forthcoming. 1'0 see for instance intuitivcly

how for the case E= {x, ,Xl} alld L = {O,I}the intemal operator '*' wherc '*'='.' induces

n 011 L/I . Forming f.J(E) is immediate. Take for instance

{(X1 ,I)(x, ,I)}. {(x1 ,I)(x, ,o)} = {(x1 ,U)(x, ,La)} = {(Xl ,I)(x, ,a)} = {x1 ,x,} n {Xl} = {x1 }

Forthe case where E= {x" ... x"} alld L = {O,I}

1) An intemal operator '*' where *= '.' induces n 011 L/I .

2) An intemal operator ,*, where *= :;. induces v 011 Lh' • (where A:;' B = A + B - AB )

3) A complement on L induces a complement on Lh
••

For the case where E= {x,'" .. x"} alld L = [0,1)

1) An internaI operator ,*, where *= 1\ on L induces n on LI1
•

2) An internaI operator ,*, where *=v on L induces v on L/I .

IfE=Z and L"'[O, 1); then L8 is the set offuzzy integers.

IfE= Z and L={O,I}; then L8 is the set ofintegers.
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11.3. Proposai

a) If* is associativc in L=> l8i is associative in LH

b) If* is commutative in L=> l8i is commutative in LH

c) If* is idempotent in L => l8i is idempotent in LH

'nIe inducement of operators and characteristics on LH through operators and

characteristics in L is absolutely crucial. nIe approach by Michel Prévôt starts fi'om this

line. Furthermore if there exists an operating structure (Monoid, Group etc.. ) we must

check whether the structure is kept on Lli
• A 'prelude' example could be the following:

Two fuzzy subsets Aalld Îi , the fuzzy subset knowo as the intersection of those two

fuzzy subsets is ifnÎi; where U ;;",i1(x) =min{U;r (x),Ui1(x)} . The way we arrive ta this,

at flrst arbitrary deflllitioll; is ta cOllsider that ifail illternal operator ,*. where '* '= 1\ ,

it illdl/ces n 011 LH
• Another example is the issue of pseudo-complementation. In the

sense ofZadeh Îi =if Ç::> ';fx, eE:Ui1 (x,)= I-U;;(x,); but this result may not at ail be

obtained ifwe consider lattices other than the Boolean lattice!
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Chapter III. Fuzzy Subsets Proper

===--====================

III. 1. GeneraHties

Given a non-empty set and a Inttice L containing at least two elements:

E---f---L

x-------u(x)

where the number ofmappings possible is : (# L)"I

A fuzzy subset A is an element of Jl:E,L). lllUs ÎÏ is a fuzzy subset:

A~Ae/(E,L)whereA={x,Ui\;;lxeE:U:1(x)eL). lllUs if E is non empty; 1\

fuzzy subset A defined on E is a set of ordered couples sueh that:

\;;Ix eA:A = (x,U:1(x»); where L isthe membership set and where U:1(x) is the degree

ofmembership ofx to A.

01.2. Basjc Operatjons on Fuzzy subsets

Consider a set E={A,B,C} with the following lattice L (a Hasse Diagram)(figure Il) and

L={a,b,c,d,e,f). Then we can look at:

al) Inclusion:

Let :s; be the order relation ofthe lattice; ÎÏ c jj~ \;;Ix, e E: Â. :1 (x, ) :s; Â. il (x, ) .Two fuzzy

subsets are comparable ifthe respective vailles by the membership filllctioll ill the laltice L

are comparable. As an example let A = {(AlbXBjaXClc)} alld li = {(AldXBjeXClc)}. Arc

those two fuzzy subsets comparable? Is b:S;d;a:S;e,c:S;c? From the Hasse diagram wc

can see this is true. So we can conclude in this example that Ac li. But remark that

E= {(AIIXBI bXC1d)}is not comparable to fuzzy subset A. Can wc say for instance

that c:s; d? We can not! Furthermore we need a relation of dominance to be able to

compare two sets. Considering 15= {(AldXBleXClb)} , this fuzzy subset is not

comparable with the fuzzy subset A as c;:: b. So comparability and dominance arc key.
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Note that if L={O, I} we get ordinary inclusion; i.e

Ac B<:::> ":Ix eE:UA (x)S U//(x)so ":Ix e A~ UA (x) = 1~ U//(x) =1~ x eB which

fits the standard definition of inclusion. Note that one could think about a degree of

conlainmefll.

a2) Equality:

A= B <:::> ":Ix, eE:À.(x/) = ÀI1 (x,)

Similarly as in al) one may think ofa degree ofequality oftwo fuzzy subsets.

a3) Complementation:

B =A<:::> ":Ix, eE:UI1 (x,)= I-U.(x/)

The complementation issue is quite interesting, as highlighted already above.

Complementation in lattices requires that x,ôx) = 0 and x,Vx) = U (U=Upper);

furthermore the complement must be unique. Unique complements require thus Boolean

lattices. Vector lattices are not complemented. Thus if L=[O,1] we will have a vector

lattice and no unique complement. We must thus require LB to be a Boolean lattice, in

order to get a unique complement. So we can re-write the above definition of a

complement as:

B =A<:::> ":Ix/ eE:U• (x, )l1Ug(x,) = 0 and U.(x, )VUg(x,) =Upper

Therefore we could cali Zadeh's complementation; pseudo-complemenlalion. Pseudo 

complementation and complementation coincide when L={0,1 }. If A is a fuzzy set, the

pair (A, AC) is called a fuzzy partition ofX, since U.(x)+U., (x) =I. This definition ofa

partition requires obviously a Boolean lattice.

a4) Intersection:

AnB:":Ix eE:À .nil(x) = À.(x)l1Àg(x)

The above is of course not valid for sup-semilattices. The 'min' operator is also called

'aggregator'. As U~ (.) belongs to a Iattice; we know that every pair of elements

possesses a greatest and a smaIIest element. Thus for every pair {U. (x), Ug (x)} part of a

lattice we can define a greatest element:

max[U. (x), U i1 (x)] =U.(x)vUg (x)
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And a smallest element:

Note that we can of course picture such an intersection. Just take the two membership

fimctions and take the maximum ofboth. (figure 12)

aS) Union:

The above is not valid for inf-semilattices.

a6) Ordinary subset oflevel a :( a - cuts)

A. = {xç eE:U. (x)~ a}

Example:

À = {(a;0.2)(b;0.3)(c;0.6)(d;0.55)(e;0.78)} where L = [0,1] and A = {a,b,c,d,e} Theil Au., = {c,d,e}

It is easy to see that if ale a, =:> A. c A• .(monotonicity)
, 1

The a - ClIts is an important concept. Such a cut induces an ordinary set derived from a

fuzzy set. Hence for different levels of a e [0,1] we get different ordinary sets referring to

the same fuzzy subset. Hence the fuzzy subset can be defined as a family of a -cuts. 'nle

resolution identity is the following: À = UaC(a)A where C(.)A is just another notation
•

for an alpha-cut (using an operator C(.». Note however that the erisp membership grades

ofC(.)A are to be multiplied by a; and so for ail values of a . (see also part VI)

Distinction is also sometimes made in the Iiterature between strong and weak a - cuts; in

the latter a strong inequality is used. ([52]; p.II). One may wonder whether there is not an

operator transforming fuzzy subsets into other fuzzy subsets. L( a ) is such an operator

and it is defined as: UL(.)\AI(x)=UA(x)ifUA(x)~aalldOifUA(x)<a. This is

interesting and very different from the a - cuts definition, in that the membership value is

accorded ifU(.) is bigger than or equal to alpha. L(a)[A] is called a level fuzzy set. The

figure 13 shows the alpha eut. It takes zero for ail levels below alpha and 1 for ail

membership values above alpha. The concave line is the membership fimetion. The alpha

level set follows the membership fimetion for a membership value above alpha.
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III 3. Sorne operations inyoJving union and intersection.

Because a lattice has the following properties: (see above)

For V and tJ. we gel:

1)commutativity

2)associativity

3)idempotence

4)absorption

We can then derive the following:

a) 'V(A,B, C) el] (E,L): (A nB)n C= An (B n C); and similarJy for union. TIle proof

is immediate; use orthe definition plus the associativity property oflattices gives the resul!.

b)'V(A,8) e/'(E,L):AnB = BnA; here the proofis also straightforward we use the

commutativity of tJ. and V and the definition ofunion and intersection offuzzy subsets.

c) An(Bu A) = A which uses the property ofabsorption. (also for union Vs intersection)

d) AnA = A, which uses property 3. (also for union)

Theorem 1:

'V(ïi,B) el' (E,L): AnB = B <=> AuB = A

The proofuses commutativity and absorption.

Property:

'V(A,B,C)e/ 3 (E,L):Au(BnC)=(AuB)n(AuC), and similarly for intersection

Vs. union. This property requires the lattice to be Boolean, as we explicitly need

distributivity.

III 4. Conyexity offuz:zy sets

A fuzzy set A is called convex iffor any le, yeS, and for any parameter À e [0,1] :

U À(ÀX+(I-À)y) ~ min[U;r(x),U;r(y)] holds.
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8ee figure 14. A concave function f:8->[0, 1] defines a membership of a convcx fil:l,zy sct

A by taking U1(x) = f(x). TIte converse is nilt tmc ([52]: p.16); a mcmbcrship function

ofa convex fuzzy set is not necessarily a concave function of x.

Figure 15 shows that for A which i~ a convex set thc mcmbcrship fimction is not concnvc

(at one point A is convex). As Miyamoto says thc ncccssary and sufficicnt condition in

order that a fuzzy set A be convex is that an arbitrary alpha-cut of A bc a crisp convcx scl.

This can be shown quite easily; i.e. the projection on the X-axis must bc a closcd intcrvnl.

If the fuzzy set A is a convex set and B is a fuzzy sct which is also convcx thcn thc

intersection will also be convex. (as we use 'min')

32



-.

•

•

Chapter IV. Fuzzy Relations

Let us reiterate the case of an ordinary binary relation. For any relation R, there exists a

crisp subset GR ç;,Sx TsuchthatxRYÇ;) (x,y) eGR,xRYÇ;) (x,y) ~GR' Wltere S and T

are two sets. The converse is also possible. For any subset G ç;, S x T there exists a

relation Ra such that (x,y) e G Ç;) xRoY, (x,y) ~ G Ç;) xRoY. ([52]; p.21)

IV.I. CartesiaD Product

A crisp relation on ExF is a set ofExF. Similarly for a fuzzy relation R. Consider two sets

E and F; the set of ordered couples (x,y); x e E and y e F defines the product set Ex F.

We get then A= {(x,y),U;r:'v'x eE;'v'y eF:U;r(x,y) eL};L being a lattice. Thus x is in

'relation' with y to some degree. We can also say we have a binary relation between

elements ofE and F noted 'P.

So we can define the fuzzy subset A then as:

A= ip(X,Y) = {(x,y);Uq;;'v'x eE;'v'y eF:Uq;(x,y) eL}

Examples of fuzzy relations abound. For instance 'Car X is better than car Y' is an

example.

1) Reciprocal Relation: Given a fuzzy binary relation ip of E to F; there is a reciprocal

relation (dual) noted : ip-' defined on F to E. We get: 'v'x,y eE x F: ip-I (y,x) Ç;) ip(x,y)

2) Complementary Relation: if we have a uniquely complemented lattice then we can

define a new relation 'P' ofE to F which is the complementary relation.

Note: We can instead of on1y defining binary relations also define n-ary relations. I.e. a

fuzzy relation R on S. x S2 X S3' ..S. which is a set ofthe Cartesian product ofthose sets.
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IV 2 Operations on Fuzzy Relations

l. Inclusion:

A fuzzy relation is included in another fuzzy relation ilf:

'i1(x,y) eE xF: V'f (x,y) ~ V.p.(x,y), i. e.:p e.:p·.

2. Union:

Let .:p and.:p· be two fuzzy relations. Then V"u••. (x,y) = max[V.• (x,y),V.T" (x,y)].

This fol1ows entirely from the definition of the union of two fuzzy subsets, givcn L is 0

lattice.

3. Intersection:

V .." ..'(x,y) = min [V•• (x,y), V ..' (x,y)]

4. Property: let .:p and Q be two fuzzy relations of E into F. then:

.:p eQ=> .:p-I eQ-1

The proofuses the concept of inclusion ofa fuzzy relation by another relation.

5. Composing offuzzy relations:

GWen a fuzzy relation .:p ofE to F and a fuzzy relation Q of F to G then the composcd

relation is a relation of E to G such thot:

•

IV.3 BinaIY Relations in a set E

We have been looking at fuzzy relations defined on a product set of E and F. Wc

particularize somewhat now and look to the case where E=F.

1.The equality relation noted Il is the fuzzy relation of E to E such that:

Il = {(x,y),Vn;x eE,y eE:Vn(x,x) = 1and Vn (x,y) = 0 for x;e y}

It looks intuitive that:

- - - t'P 0 Il = 'P = Il 0 'P and Il = Il-

2. Reflexive relation:
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We remark this property May be too strong in a fuzzy context.

We can therefore also define: a-rej1exivity:a e jo,l[ <::> '<:Ix eX:U,~(x,x)~ a ([1]; p.35)

3. Irreflexive relation ~ I;Jx e E: U rp (x,x) "" 1

4. Antireflexive relation <::> '<:Ix e E: U,~ (x,x) =0

5. Transitive relation <::> '<:I(x,z) eE2 :maxJmin(U'l' (x,y),Urp (Y,z)]:;; U'l'(x,z)

One sees that the 1eR part of this equation is nothing else than the definition of the

composition of two fuzzy relations. The inclusion is embodied in the ':;;'. In general a

fuzzy binary relation is not transitive but the iji can be made transitive by using the notion

of transitive closure. The transitive closure is defined as follows:

Given a binary relation defined on E; the transitive cIosure is defined as:

~ ..... -2 ..... ) -.
'P ='Pv'P v'P ....v'P v ....

Note: Transitive closure can be defined in other ways too.

Theorem 1: The transitive closure of a fuzzy binary relation is transitive.

Proof:

We must show that iji 0 iji c iji . This follows direetly from the definition of transitivity.

I.e. the composition and inclusion are embodied in that definition as we remarked above.

Form:

":'2 ..:...:. ..... ' -2 -- -2 -2 -3 -4 ..... -2 -3
'P ='P O'P = ('Pv'P v ... )o('Pv'P v .... ) = ('P v'P v'P v ... ) c ('P v'P v'P v ... ). .
This means that iji2 c iji i. e iji 0iji c iji

Theorem II: Let us have a fuzzy binary relation. Iffor a certain 'k':
.

iji'+\ =iji' thell iji =iji v iji 2v ...

-- -. ..:. -- -2 -. -. ..... -2 -.Proof: '<:Ill =k +1> k:'P· ='P thell 'P ='Pv'P v .... 'P v'P ='P v'P v .... 'P

(where use was made ofassociativity and idempotence)

6. Symmetric Relation:

'<:I(x,y) eE2 :U'1' (x,y) = U'l' (y,x)

7. Antisymmetric relation:

l;J(x,y) eE2 :U'1' (x,y) and U'l' (y,x):=) x = y
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NA. Structures QfBjpary RelatjQPs

1. Resemblance relatiQn

A fuzzy binary relatiQn is a resemblance relatiQn Ç:) \ji is symmctrical and reflexive i. e.:

V'x e E:U 'JI (x,x) =1and V'(x,y) eE':Uq; (x,y) =U.p(y,x)

2. Dissemblance relatiQn

This CQmes fQrth when:

V'x e E:Uq;(x,x) =0 and V'(x,y) e E':U.p(x,y) =U.p(y,x)

3. Fuzzy Pre-order relation

This relatiQn is reflexive and transitive i.e.:

V'x eE:Uq; (x,x) = 1and V'(x,y,=) e E': max.Jmin(U.p (x,y), U.p (Y,=»] 5 U.p (x,=)

We knQW when the fuzzy relatiQn is reflexive that: \ji c \ji 0 \ji

When the fuzzy relatiQn is transitive then: \ji 0 \ji c \ji

SQ fQr a pre-Qrder we get: \ji 0 \ji = \ji

4. Order relation

Ifthe pre-Qrder is anti-symmetric we have an Qrder relatiQn.

5. Similitude relatiQn

Ifthe pre-Qrder is symmetric we have a similitude relatiQn. The similitude relatiQn is alsQ

calJed equivalence relatiQn.

6. Subrelation of a similitude relation in a fuzzy pre-order

Let \ji cE x E be a fuzzy pre-Qrder relatiQn. If there exists an Qrdinary subset El c E

such that V'x,y eE,:Uq; (x,y) =U'JI (y, x); then there exists amQng E, a similitude relatiQn

which is calJed a similitude sub-relatioll in the pre-order. The similitude sub-relatiQn is

maximal if there is nQ Qther similitude relatiQn Qf the some nature in the relatiQn. An

example makes this clearer.
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\ji A B C D E F G

A 1 .2 .2 .2 .2 .3 .4

B .2 1 .5 .2 .2 .3 .5

• C .2 .5 1 .2 .2 .3 .5

D .2 .2 .2 1 .8 .3 .5

E .2 .2 .2 .8 1 .3 .5

F .2 .2 .2 .2 .2 1 .4

G .2 .2 .2 .2 .2 .2 1

a)Wc first want to ensure that the fuzzy relation is a pre-order (reflexive and transitive)

b)Wc do not obtain symmetl)'; as an example U,p (F,D) =.2 but U,p (D,F) =.3!

c)We can howevcr find subsets of \ji which make similitude relations.

As an example the subset KI={A,BC,D,E} verifies a pre-order and is symmetric; f.i.

U.p(A, C) =.2 = U,p (C,A). The subset KI ={A,B,C} would also verilY a similitude sub-

•

•

relation but it would not be maximal as we can extend this subset into KI' Two other

subscts are also maximal i.e. K 2 = {F} alld K, = {G} are similitude sub-relations. Ali

KI' K2 , K, are disjoint from each other as one can easily veritY. Thus the fuzzy relation

\ji is decomposable into maximal disjoint similitude sub-relations. K" K2 ' K, form then

similitude classes.

Note that:

a) a maximal subrelation does not have to be disjoint.

b) finding maximal subrelations is not at a11 easy. There is a general method to perform the

quest for sub-relations, called the Malgrange algorithm as per Y.Malgrange a Belgian

engineer. ([38]; p.387)
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Chapter V. 11le Extension Principle

============--=============

This is an essential concept in fuzzy set theory. 11le principle aHows us to extend non

fuzzy concepts in order for us to deal with fuzzy quantities. 11le concc;Jt bnsieaHy asks: 'if

there is sorne relationship between non-fuzzy entities; what is its cquivalent betwecn fu;<.zy

entities?'([37); p.19)

V.I. Definition

Letf be a m:lpping from X to a universe JI sueh that: y=f(x), x E X,y E JI.

We now assume that instead ofhaving x being an element ofX; only the fuzzy quantily À

on X is given; f.i. 'approximately x'. We may now wonder what thefil==y image byfis of

the fuzzy argument A. SO to write jj =f(A) is to say what exaetly?

Figure 16 provides us with sorne insights:

Take an element x on the X-axis on the graph. This point has a precise mapping on the Y

axis. The problem to solve is what is the image of the fuzzy variable 'approximatcly x'"

The answer is logieal: the membership funetion assoeiated to the fuzzy set A must be

mapped through f on the Y-axis yielding the mapping of the membership function of the

fuzzy set A. For a one-to-one mapping (and assuming that membership values must be

non-negative):

The case ofnon-one-to-one mappings is a Iittle more trieky:

Considering again the same figure; we elearly see that y is the mapping of x and x'. 11le

mapping of the membership function throughfis now dubious; i.e. should we consider A

or B? The definition Zadeh then proposes is:

Ui1(y) = suP''''''fC')''U:l' (x)
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Y.2.FIIZZY Nllmbers

Let the universe U be the realline. A fuzzy set if on 91 is calied a fuzzy number ifT if is

convex and there exists exactly one point, say ME 91 with U;;(M) = 1. As Nather ([1];

p.20) says the linguistic expression for such number is 'approximately M'. A fuzzy interval

is a straightforward extension of a fuzzy number. See figure 17. Zimmerman adds to the

definition of Nather that the membership function should be piecewise continuous. This

makes sense. In general thus a fuzzy number is a restricted case ofa fuzzy set in thet it has

to be convex (i.e. the alpha cut sets must be convex) and it must be normalized. Fuzzy sets

in general do not have to carry those properties.

Kaufinann and Gupta take a more intuitive approach to defining a fuzzy number. Il

basically involves a coupling of an intervaI of confidence with a level of presumption. 11le

higher the level of presumption the smaller the interval of confidence gets. Very large

intervals ofconfidence such as in the extreme case ofthe re&lline gives very low levels of

presumption. The membership function which then couples both interval ofconfidence and

level of presumption can either be smooth or flattened out. The interval of confidence

should be a closed interval; this is precisely requiring A to be convex. The level of

presumption called alpha is nothing else than the alpha v:e used in the alpha cuts definition.

V.2.I.The L-R Fuzzy Number

This is a particular fuzzy number and it is defined as:

'lx'e91;<Il(.) e[O,I:]

<Il(x' ) = FL (x' ) for x' e ]-00,0(

<Il(x') = 1for x'= 0

<Il(x' ) = FR (x' ) for x' e ]0,00[

Increasing monotonicity is imposed on FL (x') and decreasing monotonicity on FR (x').

The function <Il(:r' J is a concave function. Left and right 'Ieg' of the function do not

necessarily make up a symmetric function. We get a Iittle mor;) precise now on right and

left leg ofthe function:

'lx e91:U(x) =FL (x- MA)I T;; for XE ]-oo,M.[

39



•

•

•

U(x)= Iforx= MA

U(X) = Fu(x- M A )/ V, fon: e]MA ,OC[

where T and V are both positive.

One sees that if xrr deereases when T increases; i.e. the slope gets nalter; we speak then

of a dilatation. In the case where T decreases we speak nbont a contraction. M is the

central value and T measures the left spread of the function and similarly for V.(right

spread)

nie usual notation is:

A=(M,r,v),.H

An example ofan L-R fuzzy number is:

F,. (x') = O,x'S-1

F,. (x') = ~\+x' ,x' e[-I,O]

Fu(x')= I-x': ,x'e[O,I]

Fu (x' ) = O,x'> 1

We also may have loR's with a flat; i.e. the <1>(.) function has a flat portion. We also can

have (semi)-symmetric loR's. Dubois and Prade's delinition concems a semi-symmetrical

loR. ([16]; p.53) We also have other special types of fuzzy numbers such as TFN's

(Triangular Fuzzy Numbers (triangular shape of the function); or also T, FN; Trapezoïdal

Fuzzy numbers. Kaufinann and Gupta also come fCJrth with the concept of a hybrid

nurnber, which is a blend of fuzzy and randorn numbers. We do not go in detail on the

latter however. Atthis point it is also interesting to note that a fuzzy number is a

subjective valuation. Two human operators may assign different membership values for a

sarne fuzzy number; say 'approximately live'. Observations can either be precise or

statistically rneasurable or they are not. measurable at ail which puts them in the c1ass of

fuzziness.
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V.2.2. Extended Real Operations

At this point it is interesting to investigate somewhat deeper the different operations we

can perform on fuzzy numbers whatever their type may be. In this section we also want to

look at the extended operations on fuzzy sets. 111is will give us the background to look at

fuzzy functions and at non-fuzzy functions with fuzzy arguments.

We follow the set up of Kaufinann and Gupta. A fuzzy number derives from a fuzzy set.

'nle fuzzy set derives from its membership function. As seen as above the fuzzy number is

a coupling of interval of confidence with level of presumption which is nothing eIse than

a . TIlerefore it is logical to see what the traditional operations on numbers will yield when

applied on intervals ofconfidence.

.1.. QperatiOn5.Qn.lntelY.alsoJ.CQnMence

We first define uncertain values; i.e. values belonging to an interval of confidence. Those

uncertain values are not yet fuzzy numbers however!

11len :

1)Let A=[a,b] and B=[c,d] and .•:, ie:A(+)B=[a+c,b+d]

2)A(-)B=[a-c,b-d]

3)A(+)A-=[a,b](+)[-b,-a]=[a-b,b-a] which isnot equal to zero!

'(+)' is commutative and associative. There is also a neutral element i.e. [0,0). However

there is no Ïi:verse element.

4)A(.)B=[a,b](.)[c,d]=[a.b,c.d] (a,ï" c,d e !Tt+)

5)A(/)B=[a/d,bIc]

6)A-'=[l/b,I1a]

For (.) there is no inverse but tbere is commutativity and associativity; tbere is also a

neutral clement; i.e [1,1].

7) A(I\)8 = [a 1\ c,b 1\ dl
8)similarly for minimum
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2...\"~y~1s ..9.r.p'!:ç.~!!mpÜ9\1.

'lta"a, e[O,I]:a, < a, =>[a'" ,b'" ]c[a"' ,b"']

TIlUs the higher the level of presumption the smaller the interva\ of confidence gels. This

makes sense.

~ . .A.4.di.\i!'!!1. i!!1d. ~11~\r.aç!.i.9.\I ..<;IffJ1zm. JI!!J11I~.ers

Let A" be the interval of confidence of the fuzzy set A. Let B" be the intervlll of

confidence of the fuzzy set B. Remark the subscript 'lI\pha' which indiclltes the level of

presumption. Let the fuzzy number associated to the fuzzy set A be 'near\y 5' IInd Ihe

fuzzy number associated with the fuzzy set B be nearly 'nearly 8'. Both fuzzy sels arc

convex and reach at one point a = 1. Furthermore the membership functions arc piecewise

continuous. Adding both fuzzy numbers will give:

A" (+)B" = [aa ,ba]+[Ca,da] = [aa +C" ,bu +d,,], 'lta e[O,I]

For instance at a = 1 we win get [5,5]+[8,8]=[13,13]

There is another method which is as follows:

U1(+)iI (=) =v'+y., (U1(x)/\ Uil (x»

An example can c1arifY this definition somewhat.

Consider the fuzzy set A={(O,O),( 1;.1 ),(2;.3),(3,.8),(4;1),(5,.7),(6,.3),(7,0),(8,0) )

Consider the fuzzy set B={(O,O),( 1,.3),(2,.6),(3,1),(4,.7),(5,.2),(6,.1 ),(7,0),(8,0) )

The membership functions sprouting out of those givens are for both more or Icss

symmetrieal concave functions. Using our new definition:

1) taking 'l' for instance: we know 1=\+0 and 0+1 we must look for the membership

values for both 'l'in A and '0' in B; we also must look at the membership values of '0'

in A and 'l'in B. Applying our definition we get then:

v[.l/\ 0;0/\.3] = v[o,o] = 0

This gets substantially more convoluted when taking higher numbers such as 3. Because

'3' can be the result offour different additions of2 positive numbers.
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Il can bc shown that (+) is an intcrnallaw. 11lis shows that when using (+) we obtain again

a fuzzy number. We get then the following properties for (+):

1) (+) is commutative (here for fuzzy numbers)

2) (+) is associative

3) Uas a neutral element

4) Uas no inverse.

Subtraction can be seen as adding the negative to the first argument. 11lis resumes as

expeeted in the interval of confidence case. Neither commutatitivity nor associativity is

present. Subtraction is then defined as:

UA(-)II (=) =v :••JUA(x)/\ UIl (y)]

4.. .MlIItipliçatil1l1.and.d'0.~iol) .l1fI)J~. nllmJ1.ers

11le result for the fuzzy number case is exactly as in the confidence interval case.

The properties are as in (+). Division will not be commutative nor associative.

11le definition is as above except that we have that Y..y=z figuring as the new subscript

under the max sign. Furthermore the operation one must carry out to find the maximum

(or more generally the supremum) is complicated.

Finally it can be shown that (.) is distributive vis a vis (+) but not vice versa.

Division is similar and we use x1y=z as subscript.

5. .Ma~mllm am!..Miniml!mof.~lII1IDh~rl!

The fuzzy minimum is defined as follows:

'Va e[O,I]: A. (/\)B.

11le fuzzy maximum is defined simiIarly.

Equivalently we can use:
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Q. ,ÇO)Iy0.111tjllH, QfF.ll~ Numl>er~

TIle definition we have been looking at so far are called by Kaufil1l1nn-Gupta lIIax-lIIil/

cOl/vollllions. It is as this point important to see those max-min convolutions liS dircct

applications of the exlensiol/ principle which we have treated IIbovc. We clin IIlso considcr

lIIin-lIIax cOl/vollllions. One can calculate a sum (+) for two fuzzy numbcrs according to

min-max convolution without restriction. Whal relllains illlporlalll 1l01l'1'wI" i.l' Illm 1/11'

fll::Y Il/III/ber wllich is yielded IIIl1sl be associaled la a cOI/l'ex sel and be nOl"lIIali:ed, Min

max convolutions may not keep convexity and normality. 111is is however gllllfllIIteed wilh

max-min convolutions.

7.ÇQ))Y().111~iQI1.QfkltF.u~.JIIllmJ1e~s

The max-min convolution for (+) on L-R numbers is proven by Dubois and I>nlde IInd we

will not re-iterate the proofhere. ([16]) TIle result for (+) is:

Given A=[M. ,T., V.],R and B=[M", T" ,v"lm' two L-R fuzzy numbers. 'I11en:

A(+)B=[M. +M",T. +T",V. +V"L

(.) for L-R's is a Iittle more complicated. Ittums out we can have 2 different cases:

-a) whenthe right spreads ofboth L-R's are small with respect to thcir ccntral vlllucs

ob) whcn the right spreads ofboth L-R's are not small with respect to thcir central values

For a) this yields:

M,>OandM,>O

A, (.lA, .. (M,M, ,M,T" +M, T"M,V, +M,VI )m

For b) this yields:

AI (.lA, .. (M,M, ,MIT" +M, T, - T,T" ,M,V, +M,V, - VI V, )/J/

For scalar multiplication we get:
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8. DecQJ1volutioll QfJU7,ZY .nu.lTlber~

Let A,B and C be fuzzy nUlTlbers. Let C and B be given in C=A(+)B. How can wc find A?

15 A=C(-)B? 11le answer is no! Wc defined a max-min convolution for (-) as:

V ~(-)" (x) =v ,.x_y(V~ (x) 1\ VII (y»

'nlat C(-)B does not yield the solution can be easily seen:

A =[a" b"]alld B =[c" d"]alldC =[a" +c" b" +d"],,' fi' (1 ,

C"(-)B,, =[a" +c" ,b" +d"](_{cu ,du]=[a" +cu -dU ,bu +d" -cu]"" Au

'nlere is a way to determine whether a solution exists in this simple equation. Wc do not

go in detai] however on this issue. Similar theorems exist for deconvolutions of(-),(.) and

(/).
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Chapter VI: Fuzzy FWlctions

=====================

We may consider two types of fuzzy fWlctions. A non filzzy fllnction with Il Ihl.zy

argument. And a fuzzy function with a fllZZY or non-fuzzy argnment.

TIle first type is what Nather cal1s all/==Y ex/ellsioll 0111011-11/==,1' fil/lctiolls.

An example makes the first type clearer.

Consider a straight line equation I(X) = ax+b and there is a fill.zy IIrglllllent which is:

(x, T = V) 1. which is nothing else than a perfectly symmetric L-R fUl.zy nnmber. LeU IInd

right spread are equal. Now we want to find the image, fol1owing the extension principle

and using the definitions on convolutions on L-R fuzzy numbers, we get:

I(x) =(ax+b,laIT =V)I.

where we apply the definition of the multiplication of an L-R with a scalar. The fill.zy

number L-R is mapped through a non-fuzzy function. We see that the central value of the

L-R is changed through the mapping ITom 'x' to 'ax+b '. Furthemlore the spread has

changed also ITom T=v to T=v multiplied by a scalar. Figure 18 relates this non-ful.zy

function with a fuzzy argument. It clearly shows us the fuzzy L-R which is symmetric and

which is mapped through the ordinary Iinear fWlction is reduced in spread and has changed

ifs central value on the Y-axis. Mind the height of this fuzzy number depiction is still the

same as the level of presumption alpha is 1. Furthennore in this case we can say that the

domain of the function is fuzzy, as the argument of the non-fuzzy function is a fU72Y L-R

variable.

The second class is the fuzzy function which is also called fil==ifyillg fiIllC/ioll. ([ 1]; pAO)

The fuzzifYing function maps a crisp point x EX into a fuzzy set ïi =f(x) E p(V); where

the latter shows the fuzzy subset ïi belongs to the set of fuzzy sets; i.e. the power set.

The fuzzy function ofthe straight line we considered above is now writtcn:

j(x)=A (.) x (+) b

The situation is here somewhat different. If the c1imb parameter A=[a, T = VL. which is

again a symmetrical fuzzy L-R then the image ofthe fuzzifYing function is:

j(x) = [ax+b, T= vlxJL.
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Here the domain of the function is non-fuzzy, consisting of arguments which are for

instance clements of the real numbers. As the ascent parameter is a fuzzy L-R

(symmetrical) different versions of the straight !ine are possible. Figure 19 pictures the

story. 11le images of the fuzzifYing function are fuzzy as one can see ITom the graph.

For different values of crisp x variables we will have different L-R fuzzy numbers, with ail

equal height of 1.

Y.ll Fuzzy Extremum

ln the case of an extremum of a fuzzy function on a non-fuzzy domain we may consider

the fuzzy fWlction and apply 'alpha cuts' on it. Recall that the alpha cut on a fuzzy set

yielded an ordinary set. By applying an alpha cut on a fuzzy function we get an ordinary

fWlction. The fuzzy function corresponds to the different associated ordinary functions

generated through the alpha cut for ail alpha. So we could in maximizing the fuzzy

function f, maximize fa' ';f a E ]0,1]. Nather says that the maximum of l could then be

defined by a fuzzy set M which contains ail the maxima of fa' ';fa E ]0,1].([1]; pAZ)

We can then define y= sup•.vIa (x); the degree ofmembership ofy belonging to the fuzzy

set M could then be defined as being equal to the largest alpha. Note that D stands for the

domain ofthe function. 11lis is written as:

Vil (y) =sup{a: sup•.vIa (x) =y}

11lis is somewhat of an ad hoc definition which may fit its purpose in sorne circumstances

but is ofcourse not a general proposition.

Chapter VII. Flou, Disorder, and Entropy

VI! 1 Fuu.}' Index:

a) Generalized Hamming Distance: d(A,:4) =tlu.(x)-U.t(x)1,.,
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Where V:. = Oif v ;;(x) <.5 alld V:. = 1if U:;(x) >.5 alld Ut(x) = Ov 1if U:;(x) =.5.
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This description is the one ofail ordillary slIbselllearesl 10 a[II::)' sllbsel.

From this distance formulation we use the so called limar[I/::Y illdex:

v(.4) = 2/I1.d(.4,.4) TIlis linear fuzzy index, which is one among many fuzzy indexes, can

give us an idea of the gap between a fuzzy infonnation and a binary inlormation.

VU.2. Probabilistic EntrollY

Fuzziness can also be investigated through entropy. TIle entropy measures the degree of

disorder of components with respect to the probabilities of state. Define fuzzy entropy as:

N

H(n;; (x, ), ... n;; (x,,» = -llIn(N).Ln;; (x, ).In(n:; (x, »
'-1

N

where n;;(x,) = V ;;(x, )/LV;;(x,),.,
There is severe problem with such definition. Take the ease where

.4 = (.1,.1,.1,.1,.1,.1) alld B= (.8,.8,.8,.8,.8,.8). Then in both cases fi will be the same

(about .89) Why? Because through
N

n ;;(x,) = V ;;(x,)1 L V.i(x, ),,-,

•

n;;(x, )=.I/.6=.I6alldn ii (x,)=.8/4.8=.I6. A better example is to consider the fuzzy

sets .4 and jj with the ordinary set A=( 1,1,1,1,1,1) being an ordinary set, and B=

(.1,.1,.1,.1,.1,.1). Both cases yield H=I! This makes no sense! TIle ordinary set A would

have the same entropy as the fuzzy set!

VU 3 The Fum' Index ofde Luca and Termini

The serious problem which occurred with the probabilistic entropy approach is that it

does not take ioto account the effective values of V;; (.) but only looks at relative values.

De Luca and Termini propose a mach more serious approach to indexing fuujness.

The set up is as follows:

a) define p(A) as a degree of fuzziness of the fuzzy set .4. Three properties should be

satisfied:
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i) P(A)=O iff U. (.) =0 or U.(.)=l; this makes sense as we are in an ordinary set here

and the fuzziness should therefore be O.

ii) P(A) is maximal iff U.(.)=1/2; this is also c1ear; the fuzziness becomes highest for

membershir values which becomes c10sest to 1/2. A membership values of. 9 is Jess fuzzy

than .49.

... '<:IxeE:U.(x)~ l/2alldUii(x)~U.(x)~p(if»P(B)
01) _ _

'<:Ix eE:U.(x)S 1/2 and U"(x)S UJ(x)~ P(A) > P(S)

'l1Jis property makes again plain sense. Ifthe membership value of an element of the fuzzy

set A is close to.5 for instance then ifthe rnembership value ofan element ofthe fuzzy set

B is higher than .5 (and thus further removed trom .5) then the fuzziness is higher relative

to the fuzzy set A than to the fuzzy set B. The second line in iii) casts the same intuition.

reminiscent of the probabilistic entropy definition we saw above. Formulation iv) creates

very severe problems. In analogy with the probability content of the probabilistic entropy•
iv) Let

N

'II(A)=-k.LU.(x l ).In(U.. (x, »,k>O; this is a formulation which is
1-'

•

N

measure we encounter the problem that for instance LU;; (.) does not necessarily add
1-'

up to '1', as it should be the case with probabilities. (as in the probabilistic entropy

definition)

The goal is ta keep the jormulatioll of the probabilistic elltropy but by avoidillg the

relative lIIeasurillg. We ofcourse must also solve the problem ofnoll-adding ta 'J '.

Therefore de Luca and Termini introduce sorne additional properties on '11(.).

il)'<:IA cE:'II(A)~ 0, which looks acceptable out of the definition. We know the

membership values are taken here in the simplest rnernbership set; i.e. [0,1]; hence the

logarithm must be smaller or equal to O. Mernbership values are positive. The negative sign

in '11(.) makes thus the whole expression positive.

i2)'<:IAcE,'<:IBcE:'II(AvB)+'II(AnB)='II(A)+'II(B); the latter is proven in ([39];

pA3).

i3) 'II(A.B) = cardB. 'II(A)+ cardA. 'II(B)
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We know the measure of cardinality of a fhzzy sel, us defined before:

V/(A.E) = v/(A)+ V'CE). Furthermore, and this is importunl, when card(A) = 1 Ihen

V/(A) =H(A) us then LUA(.) =1 and we recupernle the definilion of probabilislic•
il is cleur that if card( A) =1=card(8) lhen

•

•

entropy.

What we now want to show is whether V/(') satisfies i)ii)iii) of above. Recall lhal

conditions i)ii)iii) are very reasonable indeed.

N

i-) recall the definition of V/(.) which is: V/(A) =-k.L UT (x, ).b(UT (x, »,k > 0; Ihen,-,
V/(Â) =0 as through i) membership values are either 0 or 1. We must omil '0' howevcr us

the logarithm of '0' does not exist. This is a problem however as the logarithm of 0 can

only be approximated by a limit which tends to -<t::J. Wc conclude thal for ordinury sels

V/(A) = O.

ii-) From the definition of V/(.) we could caleulate the maximulII, and il occurs al

UA (x) = 1/e whieh is definitely not 1/2 as prescribed through ii)!

The way to circumvent Ibis problem is as follows:

a)define p(A)=V/(A)+v/(A)andU;j(x,)=I-UA(x,); where we IIIUSt remark thut a

Boolean lattiee would be a necessity to provide for a unique complement.

Next de Luca and Termini introduee the so called Shanllon Fllllc/ion which is a fWlction

which is monotonieally increasing in [0,1/2] and monotonieally deereasing in [1/2,1];

having a maximum at 1/2 (which we need dearly to satislY ii))

The Shannon function is defined as:

S(x) =(-x) In(x)- (I-x) In(l-x)

Knowing how p(A) is defined we can write it up:

N

p(A) = -kLUA(x, )In UA(x, )+Ul(x, )In UA (x,),.,
N

p(A) =-kLUA(x, ) ln U A(x, )+(1- U A(x, »(In(l- U A(x,»
'-1
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Using the definition of the Shannon function: S(x) = (-x)ln(x)-(I-x)ln(l-x) and

replacing 'x' by U;r (.) we getthen:

N

p(A) = k. 2: S(U;r (x,»
1-)

This result satisfies ii) and iii) and hence de Luca and Termini's fuzzy index guards the

form of the probabilistic entropy without reverting to relative values, i.e. we use the full

membership function. Furthermore the problem ofnon-adding to '1' is now also solved as

U;r (. ) and 1- U;r (.) add up to 'l'.

N

Note: k in p(A) = k. L S(U ;r (x,» is a factor which normalizes such that 0 ~ p(A) ~ 1.
1-1

nIe necessary formulation for k is then k= 1/ N.ln 2

Example:

Fuzzy set A:[.I,.I,.I,.I,.I,.I]

Fuzzy set B:[.8,.8,.8,.8,.8,.8]

Fuzzy set C:[I,I,I,I,I,I]

N

Using H(O;r(xl), ... O;r(x,,»=-llIn(N).2:0;r(x,).ln(O;r(x,» we obtain H=I in ail
1-1

cases which makes no sense. de Luca and Termini's fuzzy index yields the following:

Our intuition should show us that fuzzy set A is less fuzzy than fuzzy set jj as it is further

removed from .5. Clearly fuzzy set C which is an ordinary set should not be fuzzy at ail.

N

Using p(A)=k.2:S(U;r(x,)) weobtain:
1-)

for fuzzy set A : 1.95 and norrnalized yields:.47

for fuzzy set jj : 3 and normalized yields .72.

for ordinary set C: 0

If v( A) = 2/ Il.d( A, A) is used, which we called a linear fuzzy index we get:

for fuzzy set A= .2 =(.1(6).(2/6»

for fuzzy set jj = .4

for ordinary set C: 0
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TIle values are substantially difTerent; the value for the ordinary set rel11l1ins zero.

'1'0 mllke Il truc assessment ofboth approaches is difficult givcn that we do not have rClllly

a bench mark to which wc can comparc thc obtaincd valucs. Thc highest value is of course

for x=0.5 and is 0.69. TIlc lowest is for 0 and 1; which yields O. 'l1lOse arc however noll

normalized values. For instance for [.5,.5,.5,.5,.5,.5]anonnalized value 01'0.99 is yiclded.
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l'art III: 'Ille Membership Function

Eliciting I\iembership fWlctions and classes ofmembership functio;:s: Introduction
~::::;;;::=:::::;;.;:~:::::;:::==,:.::;;:;::;;::===:.:==================::;======================

Fu:rzy sets has as rr.ain goal to provide for a more richer approach to modelir.•g 'common'

thinking pallems. Binary logic has been the basic tenet for the fonnalizaticlII of thinking

pallems. In 1982 Robin Giles, wrote an interesting statement conceming the dangers

practitioners and/or theorists of fuzzy set theory may face. Everything boils down in

finding the meOllillg of a grade of membership. Giles advances the example of 'an

unbreakable glass to a degree of 0.9' An agent asserting such statement expresses

infonnation about a helief he holds. But as Gîles says, it is by no means c1ear what the

infonnation is behind that belief. TItis is where Giles point cornes in about the dangers of

fU7,zy set theory. Says Gîles 'it is common to avoid this question by saying the matter is

not important....(titis) provides a measure of fTeedom LO the theorist, who can suggest

rules (axioms) for manipulating grades of membership and for introducing new fuzzy sets

almost \vithout constraint, and certainly \vithout fear of refutation.. .in tum this offers to

the practitioner the possibility of choosing fTom a variety of such theoretical procedures

each in general yielding differelll results. The conscientious investigator may be worried by

.!Iis , but others can benefit fTom the fTeedom ~y selecting a procedure that yields the

conclusions they prefer.' ([23]) This statement can not be c1earer and truer.

When entering the field ofeliciting membership functions we automatically have to analyze

the meaning of a fuzzy sentence. Closely related to the problem of e1ecting a suitable

membership function is the discussion of suitable operators. This important sllbject \viII be

treated in part IV.

The subject of e1ecting membership functions can be approached, as in many fuzzy theory

subjects, fTom two viewpoints: either a pragmatic more intuitive point of view or else a

purely mathematical approach. The tonner tries to deduce immediate conclusions fTom a

practical concept. This act of deduetion brings us by repeated choosing of different

subjects to build up gradually a theory. The latter however lies doWII lirst a mathematical

structure and then \viII find possible connections between this mathematical structure and

practice. This is the 'hard' way in sorne sense. Whether it is the best way is debatable.
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Some authors will c1aim that by using the sYl/laclic approach. liS it is clllled by Ellen

I-1isdal, one looses traek of the prnctica! impliclltion of the theoncs so deri"ed. This is

avoided in the semal/lic approach. ntis pllper will stick liS mnch a~. possible to the

semantic approach for immedillte reasons such as the author not being Il mllthemllticilln.

As sllid libove already the subject of c1ecting appropriate membership lilllctions is 111I

importalll one. I-1owever it is ollen omilled! Dombi for instllnce remarks thlit mllny IIpplicd

papers in the fuzzy set area hllve been w1Ïllen withoutll proper ('x-ali/l' sp('cijiCtlIiCJ/I or the

membership function. It is as if in production theory we would not speeiry the speeilie

production function we are about to use! Jain comes to the Sil me conclusion. SIIYs Jain

'Most papers in the field start with a given ..membership function; \\lÎthout IIny mcntion or

how and why they were chosen.. .'.Chandun and Majumder say that ' .. it is ellsy to lind a

function that takes on values in [0, 1)lInd is monotonic over a ronge, but the compatibility

of a sample to the set may not be renected by the function... .'

We will survey several viewpoints. For instance Dombi's histoncal survey of membership

functions and his mathematical model of a membership function. and Giles' selllantic

approach. Il is somewhat difficult to c1assify in a clear-cut way where DOlllbi's approllch

stands. Wc leave this up to the reader to declde. Giles point ofview is c1early semantic; so

is I-1isdal's. Smets and Magrez ~re looked bneny at and their approaeh is more of Il

syntactic nature. At this j'Joint we olso want to make the distinction between a measure or

information approach versus a meaning of information approach. Bouchon and Kaufinann

are in the measurement c1ass; while Giles, Hisdal and Smets would be in the Illeaning of

infOlmation class. Those two classes arc in principle disjoint. 1 believe howcver that they

can be used logelher to form a better picture. We will not expand on the work by Bouchon

and Kaufinann. Bouchon is esscntially concemed with a method to finding the best

combination of fuzzy answers which reduces to a minimum the loss of information when

fuzzy an~wers arl" attached to crisp answers. Her treatmcnt is quite interesting but has the

drawback she does not define a fuzzy evcnt. Kaufinann's approach on dilferent levels of

uncertainty using essentially the probability of a fuzzy event and the Shannon function is

also highly interesting. However though wc may be eapable of measuring a total cntropy

as he defines it, we do not have any benchmark value upon which we ean refer.

54



•

•

•

Kaufmann's mcthod dcfincs c"Plicitly a fuzzy cvcnt; somcthing Bouchon docs not do. For

Bouchon scc [37J; Jor Kaufmann sec [39J.

Chaptcr 1. Memling of fnformalion f: Dombi's Rough classification of Mcmbership
functions.
~~================================~==~================ ==========

An example ofa membership fWlction is for instance: Zadeh's Unimodal Function:

U = {II {I+[(x- 25)1 5J'} if x > 25
,1'fIlm,e n~' 1if x S 25

Where of course '25' is a perfectly arbitrary cut off point. 111e membership value for a

va;üc less than '25' is thus 1. Wc can formulate the 'old age' membelship function

similarly. Dubois and Prade's L-R fuzzy number is another example of a membership

fWlction.

I...l.....l&nJb.Common Traits

Based on a historical survey Dombi performed on fuzzy set articles for the period of 1987

to 1990, Dombi cornes to the following common traits or properties for membership

functions:

1. they arc continuous functions

2. they map [a,b] into [0,1]

3. they arc either monotonically increasing or decreasing or could be divided into

monotonically increasing and decreasing parts.

4. the functions may be either concave or convex or both, in the latter case they arc called

S-shaped.

5. sorne membership functions have meaningless parameters while other membership

functions are really too general in nature. Finally in sorne membership functions the

parameters are very hard to calculate.
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1.2. ne 'better' membJ:rshiILfiUlction-polllbj's muthcmntÏ«nLmo.dJ:LuLIUllCtllb.crsllill

fw~io.u.

To create a 'better' membership function Dombi tries to lise his 'conllllon tmits' liS derived

from the slllvey of membership functions and avoids the pitfalls llIentioned lIIuler (5)

above. 11le 'belter' membership function aecording to Dombi shollid then hllve Ihe

following characteristics:

1. 11le membership function mllst be continllollsly increasing from [0,1]~ [0,1\. This is 1111

expe~table requirement; the more we IIdvance on [0,1] the higher the membership vllille is

supposed to be.

2. V A (0) = 0 and V A (1) = 1 which are the boundary conditions. '11lis nlso is 1\ nnlul'lIl

requirement. I.e. the membership vnlue at x= 1 must be 'l'.

3. S-shaped charncter; i.e. V'A (0)= oand V'A (1)= O.

4. V A(x) is a rational function ofpolynomials. 11lis is quite less obviolls.

5. Find such membership function such that n+m is minimnl; where 'n' stands for the

degree ofthe nominator polynomial and 'm'as the degree llîthe denominntor polynolllini.

Properties '3','4' and '5' look less intuitive. 11lere is c1enrly no apparent reason, nssllming

we would start from scratch, to require that the membership fWlction should be S-shaped.

But many membership functions surveyed by Dombi were S-shaped! '1\ere is no direct

apparent reason why we should assume a rational function of polynomials, but ar;ain nlllny

surveyed membership functions were of that forlU. 11lis is of course not enough "f an

argument to propose ail five conditions. Below we will see whether Dombi cornes forth

with more solid arguments for proposing his live pfOperties of the 'belter' membershill

function.

I.2.1.Theorem 1:

There are no membershipfimctionsfulfilling the properties /-5 ifn+mS3.

Proof:

Saywe define V(x)=ax+b 1(Ax+B); therefore m+n=2 S 3.

Then as V(O) =0 (property 2) we have b=O which is straightforward.
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But if U(I) = 1 and b=O then a=A+B. TIlerefore substituting we obtain that: U(x)=(A+B)x 1

(Ax+B). Taking the derivative of this and using U'(O)=O (property 3) it must be that

(A+B)B=O inducing either A+B=O or B=O. If B=O then U(x) = l, this is obvious as in

U(x)=(A+B)x 1(Ax+B), putting B=O we get AxlAx whieh makes 1 for ail x. Similarly for

A+B=O, making a=O and yiclding U(x)= O. TIlis contradiets property 2. Say we now

deline U(x)= ax+b/(Ax2 +Bx+C); which gives for m+n=3. Aller calculation of the

lirst derivative this again leads to a contradiction. Similarly if we want to deline

U(x)= ax2+bx+c/(Ax+B); giving again n+m=3; we will again encounter a

contradiction. TIle argumentation is the same.

We can see that use is made of the imposed property of the S shape ofthe wnction.

1.2.2. TIleorem 2:

The minimum ofn+m is 4 and the membershipfilllction is:

U(x)= (I-V)x2
(l-v)x 2+v(I-x)2

where 'v' is the intersection value of y=U(x) and the 45 degree line, v is ealled the

characteristic value ofthe shape.

Proof:

Let U(x)= ax: +bx+c . We knowthat U(O) =0 therefore e=O is immediate. Calculating
Ax +Bx+C

the lirst derivative we get:

U'(x)= (Ax 2 +Bx+CX2ax+b)-(2Ax+BXax2 +bx+c)/(Ax2 +Bx+ C)2

The dcrivative simplifies slightly because of the fact c=O. Because of property 3 we know

that U'(O) =0 50 we have in the above derivative that C.b=O (remark that already c=O); but

as theorem 1 asserts that n+m >3, to satis!)' the live properties theo C can not be 0,

therefore b=O in C.b=O. C can not be zero plainly because if U(O) =0 (property 2) then

given that c=O we would have 0/0 which is not defined.
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ax'
TIlUs U(x) becomes: U(x)= " • (1); and as U(I)=1 lInd U'(I)'oO wc gct

Ax +Sx+C

directly from the 'new' U(x), (1) that a=A+B+C and al50 taking the tirst derivlltivc of thc

'new' U(x),

(1) and using U '( 1)=0 we obtain B=-2C. Substituting those newly obtaincd equalitics in

(1) yields:

U(x)= (A-C)x'
Ax' -2Cx+C

where it is required that A *" C.

The fnrm can be re-written as:

x'
U(x)= , , ,(2)wherea=CI(A-C)

x +a(\-x)

v'
Toshowthat a=v/(l-v) whereU(v)=vsimplyderivealphafrom v= , -,-

,," +a(\-v)

1)U(v)=v takes care ofy=U(x) and y=x where v is the intersection value.

2)Substituting a = vI (\- v) into (2) we get the form U(x) = (\ ~ vlx' ,
(I-v)x +v(l-x)

The latter can be re-written by dividing by (\- v)x' , we obtain then:

U(x) = l , ,(3). As one can sec from the above. the membership function
I+_~ (I-x)

I-v x'

depends on the parameter v. Dombi claims, and right1y 50, that this n.embership function

has the same form as the Zimmerman-Zysno function.

This function is delined as: U(x) = 1I2+(l/d)[I/(\+e-o
"-b l )-c); where 'd' indicates

'distance' between the given object and the ideal object. 'c' and 'd' have particular

formulas attached for purposes ofestimation.

Defining membership as a function of distance (i.e. the distance betwecn the given object

__1_ where in our general
I+d(x)
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derivation using (3); d (x) beeomes d(x) = _v_ (1- :)2 ,(4). Zimmennan and Zysno used
I-v x

thus a 'distance' approach where the distance is '0' when the given objeet we are trying to

evaluate has ail ideal features and the distance is infinite when there is total dissimilarity

between given and ideal object. We can easily see that ifd (x) = 0 the membership value is

'l' while if it is infinite the membership value is '0'. This is quite infonnative as it shows

Zimmennan-Zysno respect the eonditions put forth by Dombi for a 'better' membership

function. Of course we must define the distance concept itself and then compare again to

what Zimmennan and Zysno did, before we can arrive towards a final judgment. It tUnlS

out that d(x) has already a fonn as exemplified in (4). Dombi generalizes this distanee

fi · fi Il d(; (v)'-' (I-x)' () h h 1'"unctlon as 0 ows: x) ,_, , ' 5 w ere t e genera tzalton IS
(1- v) x

straightforward by looking at (4). v's exponential is one less than (f-x); and similarly for

the denominator. Plugging (5) in (3) and rc-writing we get for the new more general

membership function:

(1 )'-1'
U(x)= -v x ,1.> 1 (6)

(1 ),., , '-'(1 )" , .-v x +v -x

(6) is valid for XE [0,1], ifwe want to transfonn (6) tll be valid on [a,b] we get:

(I-v)'-'(x-a)'
U(x)= , l " l ,,(7)

(I-v) - (x-a) +v - (b-x)

As one can see this takes the same fonn as (6); but adaptation is made to work within the

interval [a,b]. The transfc,nnation on [a,b] is important because most of the time we will

not work \Vith x-values which are in [0,1]. Height is an example. Remark also that

U(x) E [0,1]. Finally remark that (7) exemplifies the case of a monotonically increasing 5

shaped function. The distance function is now also modified: as:

vA-! (b-x)'
d(x) = H , ,(8) (relative to (7»

(I-v) (x-a)

A brief int~LÏYe discuS!>ion on the parameters is now important:

1) The larger the [a,b] we are considering the larger d(.) will be. (c.p)

2) The higher the À factoris the larger d(.) will be.(c.p)
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3) l1Ie lower v is the lower the v/I-v fraction will be and the lower d(.) will bc.(e.p)

4) l1Ie À factor has no influence on (b-x)/(....-a) when choosing a+b/2 in [a,b].

We remark that v(x) is nothing else than a fixed point. We havc a continuous fimction on

a compact set, i.e [a,b]. v(.) can be seen as an indicator of variability of thc mcmbcrship

fiutction. TIlis is also an indicator of ambiguity. While.-1. can be seen as lm indicator of

'lharpness or also vagueness. TIle higher .-1. is the ~ess vagucncss wc cncountcr. (figurc 20)

We remark that (7) satisfies Dombi's properties for a 'beller' membership fimction. Wc

dlink Dombi does not make a solid argument why a rational form ofpolynomials should be

followed for a 'better' membership fiUlction. TIle S shape is also not solidly argucd. Finally

we remark that property 5 is a property which we dlink has to do with a simplification of

membership fiutctions. Requiring m+n to be minimal implies finding the 'bellcr' form in its

most simplified form.

1.2.3. l1Ie parameters in action

Zysno did an experiment in which 64 subjects from age 21 to 25 were asked to rate 52

different statements concerning age with reference to four groups: very young! young!

very old! old. l1Ie four groups are four fuzzy sets. il is straightforward HI show that; by

using (7) and having d(x)= V·

H

A
1 (b-x): ,(8); that I-U = d(x). Taking logarithms

(I-v) - (x-a) U

on both sides we obtain then:

I-U b-x v
In(-) = À In(-)+ (.-1. -1)ln(-)

U x-a I-v

where we can simplifY the notation somewhat:

I-U b-x v
y= In(--) and x= In(--) and c= In(--), so the membership funetion becomcs now

U x-a I-v

in shorthand notation: y=ÀX+(À-I)c=ÀX+d.ln short because of the f~ct wc use

logarithms, we established a linear reiationship between x and y and therefore the straight

line can be estimated through the least squares ofdeviation. (figure 21)
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The results Dombi obtains yield optimal Â and v. 11lOse 'optimal' values are the result of

minimizing the least square error when fitting the data against the regression.

11le Â values are quite low for 'very young' and are higher for old, young and very old.

'nlis may indicate there is less 'vagueness' in the latter three fuzzy statements than in the

first one. 11le slopes of the membership functions are also steeper the higher the Â values.

What is Jess dear are the v values. Comparing the v values for very young and young we

see a dilference ofapproximately 0.17; while comparing old and very old we see a

dilference ofabout 0.1. This may indicate that the variability of the membership fi.mction is

higher in the young/very young case than in the old and very old case. This is of course

applicable to the sample which was sclected to answer questions relating to the four fuzzy

sets.

1.3. DiscussioD

Are we wiser after this small exposition? 1 do not think Dombi argues solidly why he

proposes his five properties other than the fact they are based on common traits Dombi

derived from sUiVeying membership fuactions over a three year period. 1 do have sorne

trouble seeing why the membership fi.mction should be necessarily S-shaped. Dombi shows

that under his properties his 'better' membership fi.mction is very close to the Zimmernan

Zysno membership fi.mction. We could appreciate the Zimmerman fi.mction to a fuller

extent would ûle properties Dombi proposes have been more solidJy argued. Why assume

Ûlat the membership fi.mction should be a rational fi.mction of polynomials? '1'0 assume an

S-shape membership fi.mction is certainly not unreasonable, far from that but why only

assume such a shape? Deriving common traits of membership fi.mctions based on a

historical survey is not enough as an argument, 1would say.

Chapter Il. Memlillg ofIllformatioll 2: Smets and Magrez

The approach by Smets and Magrez tries to link degree oftruth with grade ofmembership.

This 'Iinking' is crucial and will be made explicit under the Giles approach. The basic idea
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is to consider an object which has a continuum ofvalues attached. We then decide whethel'

the proposition relating to this object is true or false for extreme vaincs of this continuum.

For the case of'John is taU' when John is 100 cm in height the proposition would he fi.lse

but true when John is 190 C'l1. TIIUS when the height moves from 100 cm towal'ds 190cI\l

the proposition of John being taU increases in value. We can then find a cut off vnlue lit

which 'taUness' starts. Underlying this Iogic with a multivalued truth domain is a set of

axioms which relate to the implication operator. TItis is where Smets and Magrez lire

merely syntactic than semantic in their approach. Smets and Magrez's method seems to

have as objective to be precise in that it wants to auach significance to a membership vlliue

of say.2 as being equivalent to a truth value of .2. But we would omit Il crucilll

assumption in Smets and Magrez's approach and that is that the reference scale is strict~l'

personal. TItis means there is no assumption whatsoever by the authors there would he Il

universal definition on what for instance ta/lness wouId mean just as the 'meter' would he

defined. The workability of the method however is quite questionablc.

Chapter III. Memling ofInformation 3: Giles

III 1 The cJassjeal sentence versus the fuzzy sentence

Giles starts out wondering what the use is of a 'sentence'. It is there to communicllte

information. The information, most of the time, wiU not consist of facts but of belief.~ and

even degrees ofbelief The cIassicaI sentence apart from conveying facts conveys a belier

but no degree ofhelief. The fuzzy sentence wiU convey a degree ofbelief. Furthermore, as

Giles says, the degree ofbeliefhas a tight relat:1111 with a subjective degree ortruth.

III.2. The notion ofmeaning-meaning ofthe cJassjcal sentence

fi tlte case ofa cJassical sentence it is sometim~5 cJaîmed that the meaning of a sentence is

given by its truth value. Thus if John is effective1y over 180 cm tall then the meaning of

'John is over 180 cm taU' is the same as '1+1=2'.
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As an e"ample Carnap said that 'The eonnection between meaning and confinnation has

sometimes becn fonnulated by the thesis that a sentence is meahingful iff if its verifiable;

and that its meaning is its method ofverification' ([9];p.421) But one May wonder whether

the concept of 'meaning' is to be restricted that much. In fact, as Giles points out, we can

easily sense the meaning of the sentence 'John is over 180 cm taIl' WITHOUT having to

know whether this is actuaIly true, and thus meaning May e"ist without an expIicit

immediate truth value. Furthennore, it is not very useful to engage in communication on

sentences which are universaIly true. TIlis is the case of ' 1+1=2'. Classical sentences wiIl

have the same meaning if their truth values would be the same under aIl conditions, or in

aIl states of the world. TIlUs the meaning ofa c1assical sentence is to be identified through

its truth function which generates a map t/J:D.-+ (O,I},D. being the set of aIl world

states. And t/J(llJ ) = 1 if the sentence is true in world state llJ, and '=0' if the sentence is

false. If 1 am confident that 'John is over 180cm taIl' but 1 do not have measured his

height; i.e. thus 1 am not knowledgeable ofIhe aclual world slale. Say it is my belief that

this CUITent world state belongs to a subset of aIl possible world states, D.. Giles is

explicit in that here 1have a belief, and not a degree ofbeIief. The beIiefis that the CUITent

world state ( Le. John's actual height) , which 1 do not know, is part of a subset of D..

When wiIl 1 assert? ln pure tenns 1 wiIl assert the sentence if t/J«(J) expresses the truth for

every llJ ill D.n cD.. Mind that my belief refers to my assumption the actual world state

belongs to D.n' Let us be careful howcver that the truth fimction in this ca';c only refers to

a subset of aIl world states. Hence truth is only partial. TIle reason for this is twofold:

a) we work with a beIiefthe actual world state belongs to a subset ofaIl world states

b) the truth fimction refers to the subset and the not the fuIl set ofail world states.

Thus Giles defines the meallillg ofa c1assical selltellce with its In/lh filllClioll as:

Proposition 1: The meaning of a c1assical sentence is that information that is

necessary and sufficient , in conjunction with an agent's beliefs about the world

state, to allow the agent to decide whether or not to assert the sentence.
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For the example of'John is over 180cm' the necessary and suflicient inlormation will hllve

to purport to who John really is. Once we know who John is. we must envision 1111 the

possible wor!ds in which John Clin be over 180cm. l11is can be for instllnce the intclvlIl

[180,300].

J1.13J1lC..meJlIIÎng orthe filZZY sentelll,C

For a fuzzy sentence things are different. Now, 1 have various degrees of willingness to

assert a fuzzy sentence; my degree of willingness may be rc1ated to my degree of belief in

the sentence. TIle reason for that is quite simple. Because 1have a 'fuzzy' stntement in my

sentence 1 have degrees of beliefs as to which the possible world couId be. For instllnce

saying that 'John is tall' is a fuzzy sentence. 1must find out who is John, this will yic1d me

the necessary information; but this infom.ation will not yield sufliciency! 1 also must find

information relevant 10 what tallness is ail about. 1 then have to think about the possible

world states and the height of John will be cntica! here.(f.i il = [130,200]) But my bclief

in the world states which are possible is fuzzy because of the fuzzy lJualifier 'tall' in the

sentence. Thus, 1 must have degrees of belier, to the opposite of the case where 'John is

over 180cm'.

Proposition 2: Two fuzzy sentences have the sarne rneaning ta me iff, under the sllrne

conditions, 1 am always exactly as willing to assert one as to assert the other.

III 4. Choosing to assert or not to a.s.sm

Assurning that a normal person wants to tell as rnuch as possible the truth it is lJuite easy

to imagine the agent rnay have; trouble deciding what assertion to rnake.

Would he know ail the outcornes of every assertion he rnakes he would have to choose this

assertion which he mast prefers. It is expectable thatthis is extrernely rare. For the case of

'John is over 180crn' we have a beliefabout the possible states and this implies we are not

sure of the outcorne of our assertion. It is assurned thatthe possible outcorne is a known

function f (A, w) , where A stands for 'oct' (011 assertioll is 011 oct); and (IJ stands for the
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world state. Of course the agent has partial knowledge of the actual world state. Wc have

becn introducing an important argumcnt and that is the onc oi' 'most prefclTcd'; which

implies utilitics. Hcrc somc troublc arises with GiIes' argument.

Proposition 3: Assuming thnt the ngent's preferences between the various outcomes

and between lotteries which have these outcomes as prizes are known; it is possible

to represent these preferences by assigning to each outcome a numerical utility u

which indicates ib value to the agent; in such a way thnt also the valuc of any lottery

is given by its corresponding weighted mean of the utilities of the outcomes involved.

Thc utility scalc is ordinal and only affine transformations can be considered; as expected.

We must imaginc the full set of ail possible outcornes. Different lotteries may yield

diffcrent outcomes; Le. sornc outcornes of the full set may be realized under certain

lotterics with zero probability. The value ofa lottery will be given by the weighted rnean of

utilities of the various outcornes permitted by the specific lottery in question. The latter is

important bccause it refers to the fact the agent can distinguish between lotteries. He will

choose that lottery which brings him the highest weighted average in utility. The issue of

the lottery per se is appropriate also. The agent before nsserting or acting is in an uncertain

state in that he does not know what the actual world state is. Does the actual world state

bclong to il n cil? Either 1 belief that it does belong or 1 belief it does not. If1 belief it

does belong thcn probable outcornes are considered following a certain lottery. The

problern which occurs here is that we explicitly handle probabilities rather than

possibilities. We must consider ail possible worlds, rather than only probable worlds.

Furthermore proposition 3 would be hard to maintain witllin a fuzzy context, as we are

confronted with degrees of beliefs. In the case of the c1assical sentence things are quite

simplc; either you belief 'belonging' occurs either you do not. Then you consider ail

possible outcornes which follow differcnt lotteries. In the fuzzy case, frorn the outset you

have degrees of belief. Once the degree is determined you must follow a lottery of

::.utcornes given that degree of belief. How do we determîne this degree of belief'? Does it

also follow a probability distribution? This is unlikely!
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What Giles is introducing here is Bayesianism. for belief functions the Bayesian appl'OlIch

mllY be IIwkward. TIlis issue will be discussed further up.

Il I.5. Pay.:.!lff.fiwction

ln simple terms the agent whether he is dellling with a c1assical or fuzzy sentence derives

utility from either asserting the sentence or not. Il may elTectively be that not IIsserting

yields higher utility than asserting. TIle problem to act is rendered more difficult lvithill Il

fuU)' context. TIle utility scale will yie1d a pay-off fill/ctiol/. We now must be more

specific how this pay off function can be determined. When 1 assert Il sentence, givell 1

have decided upon my belier, given also 1 know the lottery onteomes; 1 will receive Il

certain utility, or pay-off. When 1 do not assert 1 bnsically reccive the opposite of what 1

would have received by asserting. Say by asserting 1 obtllin negative utility then by not

asserting 1 will get zero utility. Il looks acceptable to assume non-assertion will yicld zero

utility. The objective is to find a payoff of asserting for astate w; given 1 assume zcco

utility for non-asserting. Giles caUs this function v«(v); which gives in the state w the

additional utility of making the assertion as opposed to not making it; Giles ealls this also

the pay-offfill/ctio/l ofthe assertiol/. Il is this pay-offfunction whieh will fonn the bllsis of

making a decision to assert or not to assert.

Proposition 4: The meaning of an assertion is given by its payolT function.

The pay off function is equaUy valid for a fuzzy sentence. We must be reminded however

that the way (lf arriving to the payoff function in the fuzzy context is more dimcult givell

that we are cllnfronted witlt degrees ofbeliefs rather than beliefs.
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We musl envision a nonnal sociely, as Giles tenns il. We gain prestige when we assert

somelhing which reveals to be tme, and loose prestige when asserting something which

tUnlS ouI 10 be unIme. For the fU7Z)' sentenee of'John is tall' the tmlh of the sentenee will

certainly be a function of the height of John. Hence the pay-offfunetion will certainly have

as variable 'height'. 11le utilily of the assertion of 'John is tall' will be approximalely a

fimetion f(h} for n given state. f(h} is only a rOl1gh npproximr.lion of the pny oIT. Our

degrees of belief influence the probable outeomes and il is 'tnllness' being fU7Z)' which

induces those degrees of beliefs. 11111s the pay-off fWletiOlI can not be c1aimed to be f(h}

bul il is only approximaled by this function. Finally we are explicitly assuming 'nonnal'

tmth seeking individuals. The meaning of fuz.:iness lies in the realm of reasonably

rational people, and not in tlle marginal case.... Ookers, irroâonal bellal'ior etc.) 11le

height funelion, according to Giles, could also be viewed as an indicator for the degrœ of

wil/illglless of the agent to assert 'John is tall'. 11lis is a strong statement beeause of the

facl it is bascd solcly onf(h}. We ean resort into the 'protection' of approximation but we

do not answer how weil Wl: approximate. 11lis is a drawback of the serious sort. 11leff"}
function eould be detennined by offering bribes. Say the agent knows John's height is

170cm. We mp a fair coin and olTer the following proposition to the agent: 'if the coin

shows heads you'lI get the reward of 5 units (figure 22) if not you must aS.ert 'John is

tall". 11le latter outeome is diminishing the prestige of the agent in sorne world state. If

the agent accepts we know that f(l70) >5. Penalties would be used for the positive

ordinates. 11le problems with the pay off fWlction as based on f(h} in this example are

mulliple:

1. Height is not the only eriterion to consider when eonsidering the paYQlT flmction for
'John is tall'

2. We must assume rational individuals

3. Point 2 does not preclude possibilities such as 'stretehing the faets'. Therefore Giles
proposes the eoncept of 'average meaning ofthe assertion in soeiety'. This is c1early vague
and hard to describe in precise tenns.
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Chaptcr IV. Memlillg ofIllformatioll -/: Hisdal

===============================~~

Hisdal is ccnainly wonh to bc mcntioncd. Shc prcscnts Il uuificd thcOl)' which trics to

bcttcr Cxpllli.1 whcrc mcmbcrship fuuctions could rcally come frolll. She is dellliled lI\so on

how shapcs ofmcmbcrship fWlctions can bc cXlllaiucd.

l\U....S.c.llIJU1,Ù1Jc TEE mQdcl

Zadch's motivc to' dcvclop a thcory of fhzzy scts was bllsically to show that bcclIusc

individuals communicatc with linguistic conccpts such as 'tall', 'small' ctc..thcrc must cxist

somc undcrlying proccdurc for this communication to work. 111crcforc Zadch's invented

thc conccpt of dcgrcc of mcmbcrship in a sct. l'lisdlll's TEE modcl mnkes use of

probabilities rather than possibilities. TEE stands for 'l1ueshold, Error, assumption of

Equivalence'. Hisdal's stnning point is to claim that in most of fuzzy thcory. nt lenst in the

semantic realm, a mystic agent is at work making its fU7ZY dccisions accllIding 10 some

undefined procedure. This is a very imponant claim. It is crucial bccausc if wc want to

app1y fuzzy sets in a economics contcxl panicu1arly the onc of consumcr behavior it is

useful to have a serio/ls grasp of the workings of such proccdurcs which lead us to 1II0dcl

preferences for instance. Hisdal's TEE modc1 is i;;:;trumental in that.

IV. 1. 1. Label sets and types ofexperiments

There are three types ofexperiments:

1)LB experimcnts; called labeling experiments

2)YN experiments; called yes or no experiments

3)MU experiments; ealled grade ofmembership expcriments

The LB experiment corresponds to a situation in which an object is dcscribed as bcing

'very tall' and tlle YN experiment would refer to a situation in which a person is asked

whether •John is tallT and he is supposed to answer with yes or no. Finally in the MU

experiment a subject is asked to assign a membership value JI E [ 0,1] to an object
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conccmin8 thc label À. It is c1ear that the MU cxperiment can refer either to an LB or YN

experiment. 11le latter two experiments being the oncs wc encolUlter in reallife.

An important requirement is that the experiment must refer to a label set

0= (À, ,À, , .. ..1.,.1. An example;s for instance 0 = (small,medillm,/alll

IV. 1.2. Sources offu7ziness

Hisdal's approach with the TEE model is ta avoid any ad-hoc kind ofdefinitions. 1meal"

definitions which arc re-fomlUlated or plainly changed to fit the situation. 11le objective of

the TEE modcl is ta be able /0 derive correct formlllas and opera/ors. Wc only mention

two sources offuzziness here.

1)Fuzziness 1/ 1a

11lis source of fuzziness is definecl by Hisdal as follows:

Anticipation by the subject oferrors ofobservation under nonexact conditions. Even if the

subject performs an exact experiment in which he measures p"; he is aware of the fact

that undcr non-exact conditions of observations his estimate p of the attribnte value may

assume varying values :lccording to sorne probability distribution cr 'error limction'

p(,ulp").' Sorne small explanation is needed on sorne of Hisdal's wording. 111e 'exact

conditions ofail experiment' refers to a semantic experiment in which the subject measures

(or is told) the exact attribute valu-:: ofeaeh oiJject. So p = JIu .

2)Fuzzilless 1/3a

Intersubject fuzziness. It is for instance the subject's awareness that different persons may

have somewhat different ideas as to the threshold height value in an LB or YN experiment.

IV.2. Discussjon

Hisdal's collection ofpapers makes a very delaiJed account on her TEE model. Space is in

this thesis is very limited and therefore wc must omit important details. For the sake ofthe

argument we deem that what follows below is a reasonable summary of Hisdal's argument.

ln ail exac/labeliilg experimellt (where thus pU is kllown) the subject will set a threshold
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and a 2-valucd thrcshold function will cmcrgc. 11.is will yield a step-fimction. As lm

cxamplc thc scntcncc 'tall mcn' may havc a thrcshold of 170cm if the objcct hlls bccn

mcasurcd at I70cm. TIlc agcnt will thcrcforc sct lin uppcr IInd lowcr limit for Cilch IlIbc1 in

hcr labcl sct. TIIUS thc agcnt may sct 170cm as thc thrcshold for tall. Whcn thc lllbcling

cxpcrimcnt is I/ot exact shc may makc an crror in thc cut on' vllluc , i.c whcrc thc vllluc

zcro changcs into onc. TIlcrcforc thc thrcshold function is now a rOllndcd 011' vcrsion of

thc two valucd stcp fWlction as obtaincd wldcr cxact conditions. In thc CIISC of lin MU

cxperimcnt thc conncction betwccn MU and LB is basically modulatcd through Ih7ziness

1/ 1a. In an MU cxpcriment undcr cxact conditions for instancc ,thc TEE assumcs the IIgcnt

secs a conncction betwccn the membcrship valuc and thc labcling clqlcrimcnt. Through

fuzziness 1/ la shc b:nows that shc can makc an crror in hcr cstimlltc of thc height vlIlllC of

the object. TIIUS evcn though we are in an cxact cxpcriment whcrc thc hcight is known thc

agcnt assumcs that in evcryday lifc this willnot bc so. TIlis looks a little wcird at first sigb'..

Howcver; the MU experiment is morc gencral than YN or LB cxpcrimcnts; bccausc of this

generality wc impose every day conditions through fuzzincss ilia. TIlis gcncrality can cven

be more extendcé: to fuzziness of others sorts such as 113a for instancc. In our same

example the agent will ask hil11Self thc following qucstion in relation to the MU

experimcnt: 'given l am confronted with this object (i.c. a mali of cxact hcight 170cm)

what is my estimate of the fraction of times 1would estimatc thc hcight of the objeet to be

above 170 in an everyday situation?' Thus a refcrence is uscd and this is thc cxact hcight

but an estimation is put relative to this exact valuc. TIIUS thc mcmbcrship curve, cvcn in

exact conditions is a rounded off version of thc non-fuzzy thrcshold curvc. Wc rcmark

however that this membership function is thc result of thc 'casicst sccnario' in the TEE

model; i.e. fuzziness of I/Ia and exact conditions. Rcmark that if wc would considcr an

MU under 1I01/-eXccl conditions that further rounding off wCluld occur. First thc MU

experiment yields a rounded off version even in exact conditions. Considcr now thc casc

wherc a YN and MU are perforrned under the same lIoll-exact cOl/di/iolls First the MU

will be a rounded offversion of the non-fuzzy step threshold function bccause offu7zincss

1/1a, as explained above. But further rounding off occurs because both cxperiments arc

conducted under the same non-exact conditions. The rounding off is th~ samc bccause thc
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experimental eonditions are the same. TIlUs the MU membership function will bc 'wider'

than the rounded off curve in the YN (we round off twice in MU but only once in YN).

Remark that for a YN experiment the situation is very similar to an LB experiment; the

1.

non-fi\l".l".Y threshold curves remain. As Hisdal says, based on L>(À,III")= 1 we get
'·1

then Zadeh's negation such that Il lU" (II" ) = 1- IlY'," (II U ).

lY..3 TIle problem ofprobabilities Vs possibilities

IV.3.1. Introduction

ln 1978 G&ines wrote that ' ... there are significant differences between fuzzy logics and

probability logics, in thcir motivations, applications and axioms. However, there are also

close relationships between the two forms oflogic which are themselves significam.

We must define a probability logic. Probability logic as defined in relation to many valued

logic gives a probability to s/a/emellls. This logic assumes the postulates of mathelllaticai

probability as we see in any statistics course. From part l's discussion on multivalued logie

we S3id that a truth value of a proposition p, was denoted Ipl. In similar terms will

probability logic in a multivalued setting Ipl now adopt pr(p);pr(p) =p. A fuller

enumeration of the links between the sorts oflogics is as follows:

[pl = pr(p)

l-,pl =1- pr(p)

Ipv ql =pr(p) +pr(q) (if p, q are lIlu/ual/y exclusive)

Ip/\ ql = pr(p) +pr(q)- pr(pvq)

Ip'" ql = I(p-,+ q)/\ (q -.+ p~

Note however that the system obtained is not truth functional anymore. The concept of

truth functionality has been introduced in part 1. It is easy to show there is no truth

functionality anymore: example:

1/2/\ 1/2 = Ip/\ pl = pr(p /\p) = pr(p) + pr(p)- pr(p v p) = 1-1/2 = 1/2

l's.

1/2/\ 1/2 = Ip /\ ..,(p~ = pr(p/\ ..,(P» = pr(p) + pre-,p)- pr(pv -..p) = II2 + 1/2- (1/2+ II2) = 0

So a unique value is not guaranteed. Rescher however points out that the non-truth
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functionality makes a Ilrobability logic system not dilTerent trom othcr systcms (such liS thc

one presented in pllrt 1). A provable f.1ct (in Reseher) i~ this :

TIle tautologies of PL are exactly the same as the tautologics of C,

1 do want to make a remark in functiol\ "t'part IV which deals with opcrntors. It is. 1think,

c1ear that the operators behavior will be extremely dcpendent on thc killll of undcrlyinj!.

multivalued logic which is being used. We introduced the connectivcs for thc 'truth·vllluc'

approach in part 1 and those are the operators we find bnck in whllt Zadch hlls bccn

writing. Where is Hlsdal here?

IV.3.2. Hisdal's argument

After all Hisdal may be working with such probability logic. 'nlis is the ~eason of our smlll\

introduction. The argumentation Hisdal gives for using probabilities in her TEE modcl can

be briefly summarized through the following proposaI. 'n,e sum of grade of membcrship

values for a givelliabel, snch as tall f.i, c',er all p" values may not add up to 1. But with

the formulation that p(À-I.u") is a probability distributioll ovcr the dilTerent c1cmcnts of

e ,as Hisdal defines it; the sum of this p(À-lp") must add up to 1. Some clarification is

needed here. Looking back at the figure 23 one can easily see that for a given p" vlliue

and differellliabeis the medium non-fuzzy threshold curve and the tallnon-fuzzy threshold

curves each determine a cut-off area under the error function, We know Ihat the llrea

under the probability density function (which is the error function here) must add up to 1.

Consideri!lg all the different labels 11'0m the label set over a givell value of p" it is then

1.

totally expectable that LP(À-1\.u") = 1; where 'l' stands for the dilTerent labcls in the
'.1

label set e. Remark that for a YN experiment the situation is very similar to an LB

experiment; the non-fuzzy threshold curves remain. As Hisdal says, based on

1.

LP(À-,j.u") =1 we get then Zadeh's negation such that .u"",. (p") = (- .u"" (.u" ).
'·1

This is the crux of the argument Hisdal uses to defend the probabilistic interprctation of

grades of memberships. A hltl' nore expansion is needed here too. 'l1Je sum of grade of
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membership values/or a givel/label, such as 'tall' f.i, over ail p'-' values may not udd up

to 1. nlis may be the reason, according to Hisdal, that the max-min approach "'las used.

Mind here the label is given and "'le run over ail attribute values. nIe 'summing up to l'

however is in a context where "'le vary the labels over a given p " value. Or in 'non

J-1isdal' terms, 'use is made of the summing up to 1 fonnula of the grades ofmembership

of a point of the attribute universe in ail clusters; i.e. in aIl labels,' ln this crucial argument

which trics to defend the use ofprobabilities it is important to give two important remarks.

'nle first one is that Zadeh has c1aimed p(Â./lp") = p(p"IÂ./). Ifthis is true then J-1isdal's

argument can not possibly hold. Wc remark however that Zadeh secs this equality within a

Jiossibility contexl. nIe second argument is that as an alternative to max-min operators 1

I/orms wd l-col/orlllS have been used. We have no idea what the implication is of the use

of such nonns. Certainly a min operator is an example of a I-nonn; while a max operator

would be an example of an 5ononn (or t-cononn).(see [36])

1V.3.3. nIe probability approach

nIe probability approach opposes itself to the possibility approach and the related max

min approach. We must however be careful to assign the adjective 'subjective' to

probability! A question is this: Is Hisdal using subjective probability; in that she looks at an

individual assessing his own estimaI" ofa probability ofthe occurrence ofan event?

nIe issue at stake here is to briefly examine what the arguments may be for a possibilistic

versus subjective probability framework. It is out of this discussion that "'le hope, "'le will

be capable ofbetter appreciating Hisdal's appro3l'a. Zadeh in 1978 wrote:' The possibility

;r, is defined to be numerically equal to the :nembership fun~tion of F when "'le are given

the proposition 'X is F',' Grades of ml- _.;ship would thus be Lite same as possibilities

out of this proposition. We hillted already between Zadeh's pmposed equality between

p(Â.,lu" )=p(p''1Â.,); using possibilities however. In an example: the possibility that an

object which is tall has a height of 175 cm= the possibility that an object with height

175cm is tall. It is not at ail obvious why there may be an equality between the"" two
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propositions. Following Hisdal p(J.,lp") is associaled with Ihe grnde of llIembership.

p(p"IJ.,) however is c1aillled by Hisdallo be equallo p(J.,ip").p(p"). Some

exalllplcs, as presented still by Hisdal may c1ari/)' the debate in Il more precisc mllllncr.

,1. :n!~. t,a Il. man,fr.llm.~he,cllmpllny

Suppose professor X expeets a man ITom Il compllny who is cllllcd Y. X is told 011 thc

phone that Y is tall and that he is the passenger on a certain plllne. X gocs to thc lIilllort 10

meet Y and wllits at the exit ITom the plane. l1uee men come oui of the pllllH); Ihey IIrc

III, ,111, ,111,. X assigns the grade; ofmembership oficspectively .7; .6;.4 for 'tall'. Wc IIsk:

what is the (possibility) or (probability) that either man is Y? If wc use the set up of Ihc

math chapter then ail wc need to do is to look for the fuzzy union; which uses max.

(as per Zad~h;Poss{X is Al = Il"(A) = sup ofIhe lIIelllbership filllclion)

Therefore the result would be .7! 111is obviously makes no sense as it is absolutely certllin

that one of them is Y. We obtained a possibility value 01'.7 while therc is certaillty! 11.is is

indeed weird! This may be a Iirst renSail for whieh wc may discard possibilities (liS going

through min-max» Let us now modilY the situation somewhat. Cali case (a) the ellsc

above; i.e. let III. be the person with membership value.7. Case (b) is a \iule dilfcrcl'I

ITom (a) as now it is assumed that 750 people leave the plane.

We also assume that X assigns a grade ofmembership of 1 to 100 ofthose passengcrs. Let

III. be one of the hundredth man with membership of 1. III. in case (a) is the person wilh

membership value of .7. We ask again what is now the probability(or possibility)lhat Y is

III. ? Using max-min the answer would be I! 11IÏs again makes no sense! III. is one of Ihe

hundredth men having membership of 1; out of the 750 men in total. Still the max-min

accords a higher value to the (b) case than to the (a) case. Some comments arc in order

here. Those are earefully searched out examples which would show us thal using the

possibilistic appronch is erroneous. However, ITom the possibilbtic camp examples may he

found showing that the probabilistic camp may be wrong also i'1 sorne instances. Wc do

not have an example at iÏJ;.t sight; but it should not be ruled .1Ut.

74



•

•

•

2, p(À.I/I''' ) "".p(1' "lÀ. 1) ~wJthirlpQ~~i!Jjlitie~,

Suppose a person has a height of2.5m. We assign a grade ofmembership of 1; to tall; thus

the possibility that this person is tall is I. Because of the proposed equality (Zadeh), we

get: the possibility that an object which is tall has a height of2.5m = the possibility that an

object with height 2.5m is tall. Intuitively if the object is a person the equality does not

make much sense. The RHS of the equality has certainly possibility 1. For objects which

are persons the LHS can not possibly be 1. Following Hisdal's proposition that

p(I"'1À.,)=p(À.,II''').p(I'''); which would come !lut to be very small given that

p(I''') is extremely smaIJ, confirming our intuition.11le e'luality would thus not hold if

Hisdal's proposition is acceptable. It certainly is from an intuitive point of view. Il is

almost common sense that ifwe would accord to the possibility that an object which is tall

has a height of2.5m a value of 1 we would indeed be in a strange world!

IV.3.4. Subjective probability or probability?

.1.Jntr9.~lIcliQIl

Il is at this point useful to wonder whether Hisdal's use of probabilities is to be found

within probabilities (and attached repeated experiments) or subjective probabilities. 11le

issue is not really clear. Recall that p(À.,II''') was defined by Hisdal ~s the probability

that un object with given attribute value l''' will be labeled À. in a YN or LB experiment.

Furthermore we also introduced the bell-shaped error CUlVe p(I'II'''). The only way 1can

see this as a probability is that the experirnent has been conducted over several subjects

forming a large enough sample so that such probability distribution can be formed. We

know that p(À.,I,u") is cut offarea under the error function when it is superimposed on

the non-fuzzy threshold CUlVe. The question then becomes how the error CUlVe is derived.

Hisdal does give very little clues to tbat. There is au estintated error function as detennined

by the subject. This can easily involve subjective probabilities. The estimate could also be

based on a derived forro orthe real error functinn.
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2... ~!!y~~il!l).n'~Qry

We must make a hait however here. Confusion and non-sense may start building up rather

quiekly...The issue of subjeetive probability is not at ail an easy concept. Following Shafer

Bayesian theory has played a predominant role in the developlllent of subjective

probability. We may pause a Iittle on the Bayesian stance. Before starting let us relllllrk

that in a great deal of economic Iiterature Bayesianislll is ollen equated with rntionlllislll.

Harsanyi for instance has maintained that every rational individulIl would be also be Il

Bayesian. ([53]; p.ll) Tne Bayesian stance says that a belief/tille/ion should obey thl'ee

mies:

l
Be'«(2J) = 0

Be/(0) = 1

if AnB=0~Be/(AvB)=Be/(A)+Be/(B)

The set 0 is a finite set and 2" =#Üo(0». 11len we suppose the function

lfJe'«(2J) = 0

Be/:2" ~ [0,1] sa/isfies: Be/(0) = 1

Sum of the Be/- }ill/ctions attached to each sllbse/ of tJ(0)::; 1

For instance if we wOI:iri set a belief function on Hisdal's error fWlction; instead of this

very awkward probability function which happens '.0 be nice1y bell-shaped; then we would

get the possibility we make an error at a certain height versus the possibility we do not

make an error at a certain height. Define for instance fol' a particular height

t;E') = {B, ,O,}; where the indivi<lual thetas refer to making an error or not. 1Re only very

seriolls problem which occurs here is that evidellce will have to be the main factor in

assessing B, and B,. Wbere will 1 get as an agent evidence on whether 1, myself will make

a mistake or not? This is important. Ifwe assume evidence exists to this purpose we still

have LO look in what fonn there is a Iink between this evidence and degrees of support or

belief. It is here where the Bayesian stance is introduced. There seem to be two

orientations in Bayesian theory either the older stream which Shafer calls the 'Iogical view'

or else the 'pers ;nalist view'.The first option insists that numerical degrees of support are

indeed objectively detennined by given evidence; the second option :;nalyzes the degrees

of belief as psychological facts; facts which can be discovered by observing an individual
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preferenees among bets or risks but which may not bear any particular relation to any

particular evidence as Shafer says. Giles proposition on the analysis of a fuzzy sentence at

one point uses this personalistic point ofview. ft is important that this point ofview does

not look at the relation between degrees ofbelief and evidence.

Perhaps tbis is the correct stance to take. As we just remarked finding evidence in the case

of the error function expressed as a belief function is a difficult issue to resolve. However

the error function is instrumental in finding the membership function; at least in Hisdal's

work. Giles does not need an error function. Giles' membership function us~s the

personalistic view and therefore does not care about evidence as such.

Ifone wants to model a degree ofmembership function as a degree ofbeliefby which an

agent attributes a label then if evidence is avaiJable in sorne forrn the Bayesian approach

looks not promising; unless one wants to follow the personalist view. 11le additivity rule

Bel(A u B) =Bel(A)+ Bel(B)(A nB =0) is the problem. Shafer gives an excellent

example on where this additivity rule may go totally wrong. ([64]-p.24) In fact in Hisdal

one could interpret the error function and the non-fuzzy threshold function as evidence to

thc membership function. Do we need to bother about evidel"~e?

If we follow a non-Bayesian appl'oach it will become harder to :lgue for subjective

probabilities as we would think they are used in Hisdal.

Whether we are here in a pure subjective probabilistic approach is to question. The issue is

important because if subjective probabilities are used in Hisdal's TEE model a problem of

aggregation of illdivid/lal membership functions imposes itself. This kind of aggl'egation is

certainly very difficult to handle. Hisdal's stance can perhaps be~t be expressed through the

following. Laviolette and Seaman in a critique on Hisdal's TEE model say that for events

not reproducible; Iike the result of an upcoming e!ection; the relative frequency approach

cIearly does not apply. Hisdal responds to this by saying that a subject could carry out &

subj~~tive analysis of errors /Ising the freq/lellcy-probabilistic approach. She could

estimate a probability distribution for the number of voters who change their mind at the

last minute. Says Hisdal 'the subject's subjective uncertainties are thus given a frequency

probabilistic approach. 'In my mind this says nothing else than deriving a subjective

probability distribution. The point remains unclear. The key issue is to know , in the TEE
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setup where the estimated error fWlction comes rrom. Is it tnaly a probability distribution?

Could it be a belief fiUlction using evidence as in Shafer? Is it Il personalistic-llllyesilln

approach? Do we need evidence or can we dissociate evidence trom degrees of belicl'! If

Hisdal does use subjective probability we will have to aggregate trom individulIl

membership functions:, so to obtain the membership fimction for Il specific label. In short

the aggregation would have to run according to the following procedure. For the

constnaetion of the membership fiutction 'tall' and using only fU7..ziness 11111. the estimated

error fiutction for a given attribute value is to be superimposed on the non-fuzzy threshold

curve of the individual.

TIlis will yield a membership value given this attribute value for the specific label 'tlll1'. The

same procedure is to be repeated for 1111 other attribnte values; and it is almost sure that

the estimated error curves will change when the attribute value is c1umged. The

membership fiutction for the label 'tall' is then constnacted. In very superficilll tenns

aggregation to a gel/era/ membership fiutction for 'tall' will involve taking into account ail

the membership fiutctions for the different individuals in the sample and tested on the label

'tall'. On the other hand as we pointed out in the introduction to this section Hisdalmay be

using a probability logic. The reader may follow the definition of probability logic as

introduced above and then decide. TIle matter remains a hard ;;dl howcver. As a final word

Herbert Toth presents somewhat of another view on Hisdal's probability approach. Toth

basically agrees on Hisdal's TEE model but finds that the dependency between conditional

probabilities ofa certain kind and membership degrees should be less strong. He proposes

a more general format such as p, (p" ) = f(p( ..tI,u" ). Toth however does not go into :my

detail on howf may be typified.

IV.3.5. Hans ate X eggs for breakfast

At this point it still may not be clear what the differences arc between possibility and

probability. Zadeh provides about the best 1 came across showing the difference between

those IWo concepts. We may associate a possibility distribution with X taking values in
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U~II,2,3, ... J by interpreting Ir, (lI)as the degree ofease with which Hans can eatll eggs.

Also, wc can associate a probability distribution with X by interpreting P.• (lI)as the

probability of Hans eating Il eggs for breakfast. 'Ille values of Ir .• (II) and p, (II) could

• then be the following:

Il 1 2 3 4 5 6 7 8

Ir. (II ) 1 1 1 1 .8 .6 .4 .2

P.(II) .1 .8 .1 0 0 0 0 0

•

•

'111US Hans possibility; or degree of case; to eat 3 eggs for breakfast is 1; while his

probability of doing so may be much lower. His degree of case of eating 7 eggs is .4 while

his probability is plainly O. 11Ie following conclusions follow directly:

1) a high degree ofpossibility does not imply a high degrec ofprobability

2) a low degree of probability does not imply a low degrec ofpossibility

3) if an event is impossible it can not be probable

One way to express a degree of consistency between probability and possibility

distributions is simply as follows:

Let n= (1r"7T,, .... Ir,,)and P= (p"p" ... p,,). respectively for possibilities and

probabilities. '111en r expresses the degree of consistency as follows:

r = Ir,.p, +7T,.p,+, .. Ir".p"

For the above r = 1. It is intuitive that the higher the consistency the higher the level of

r. Let us remark however that in this example 'degree of case' is associated to a

possibility and not a probability as would be the case in HisdaI.TIle above example may

give us also a very superficial but intuitive reason why perhaps the degree of a label

belonging to a certain object may have to go through possibility rather than probability,

How cise could we define possibility?
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Part IV: A Discussion On Fuzzy Opcrators

A discussion on opcmtors or conncctives imposes itsclfifwe want to treat the subjcct of

fuzzy sets in some depth. 111is part surveys some of the proposaIs in thc area. Wc do not

want to go into too great detail given that the main issuc ofthis papcr is thc cconomic

applicability offuzzy sets.

As wc have seen in the math part ofthis paper the definition of union and iutcrsection

following Zadeh was that:

ifnB = {x: min{U ](x),Uii(x)}}

AuB= {x:max{U](x),Uii(x)}}

We first look at two authors who arc arguing in favor of this definition. 'nlcn wc will

confront this argument with opposing views. Bellman and Yager arc in f.1V:Jr of Zadch's

definition. Thole, Zimmerman and Zysno are against il. From the outset we notc that

Zimmerman's argument is within the experimental realm. Yager and Belhnan do arguc

within a theoretical context.

Chapter I.

====

I. I.Bellman...and Giertz

The problem of operators is not an easy one to solve. As Bellmann says 'if an object is

accepted to 60% as a member of fuzzy set A; and to 40% as a mernber in B how willing

should we be to accept it as a member in both fuzzy sets if and B1' ([31 ;p. 150)

Very interesting is Bellman's observation that though we are quite free to aUach a

subjective evaluation to a degree of membership in a fuzzy set, we are more constraincd if

we eonsider compound statements.

As an example say we attach a subjective valuation to x being a mernber to sorne degree of

the fuzzy set if; and y being a member to some degree orthe fU7ZY set A. Can we be so
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'fi'cc' in attaching a mcmbcrship vahlc to for instancc . bolh x wu/y bl'illg mt'mbas of Ihl'

fll==Y sel if'? Ccrtainly not! For instancc assigning n Inrgcr mcmbcrship to x mu/ y

mcmbcrs of if than to x mcmbcr of if; is inconsistcnl. Thc gcncrnl problcm is thcn:

Givcn two statcmcnts S, alld S, with givcn tmth vaIncs; whnt arc thc rcstrictions which

arc to bc obscrvcd whcn n tmth valuc to a compound statcmcnts such as S, or S, lIT nlso

S, and S,?

1.1.1. Assumptions

Bcllman now proposcs a Iist of quitc straightfoTWard assumptions which should hc

respected when using connectivcs. nlc assamptions arc quitc natural thongh wc wondcr

whether they arc exhaustivc. Bascd on thosc assumptions an axiomatic structurc is thcn

devcloped. The goal is here to have a brieflook at thosc two componcnts.

a) Assumptions

Deline F ={[S,Us]} be a fuzzy set ofstatemcnts. Notc that thc statcmcnts in F nre un

rclated to each other. We consider compound statements such as S, alld S, ctc...

AI: Th,:: tmth value of a compound statement depcnds on thc truth valucs of thc

statements in F. For S, and S, (sub-statements ofS) for instancc wc spccify a rcal-valucd

function f(x,y) with x e[O,I] and y e[O,I]; so

that:Us,œuJs, =f(Us"Us,);Us,.,s, =g(Us"Us,)

A2: If tmth values have been assigned to arbitrary statemcnts S or T (which arc thus

unre1ated) then the Sllme functions f and g provide us also with truth valucs for Sand '1'

UsœuJr =f(Us,Ur )
and also S or T:

Us.,r =g(Us'Ur )

A3: f and gare non-decreasing and continuous in both variables. This makcs scnsc. If thc

willingness to accept S or T increases there is no reason to assumc f and g would not

increase. (S and Tare arbitrary statements)

A4: f and gare symmetric; Le. f(x.y) =f(y,x) or a/so g(x,y) =g(y.x). Thcrc is no rcason to

assign different tmth values to S and T than to T and S.
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AS: f(x,x) and g(x,x) are strietly inereasing in x, lllis also makes sense. Say

Il,, =Il.,.and Il,. =Il,,. and U, > V,. then we are more willing to aeeept 8 and T tllan V

and w'(similarly for the 'or' eonnective)

A6: f(x ,y):;; min {x,y} and g(x,y) ~ max{x,y} ; this is quite intuitive. It says that the

membership value of8 and Twill ùe lower (or equal) than the membership value of8 or T.

It is intuitive to daim that the membership 'JaIue of8 and T will be less than when 8 or T

is considered alone. Clearly, the membership value of8 or T is however highcr (or cqual)

than whcn considering 8 or T alonc.

A7:fO,/)= / and g(O, 0) =0. If8 and T arc both complctely acceptcd (individually) thcn '8

and T' II/ust he complete/y accepted. Similarly for the 'or' connective and rejection. We

may wondcr what happcns to gO,/) or f(O, 0) or even a/so g(/, 0) for instance.

A8: Logically equivalcnt statements have equal truth values.

1.1.2. Showing that [(x. v) =min Ix.y} and g(x.vJ=maxlx.yl

Bcllman introduccs the notation f(x.y) = x I\Y and for g(x,y) = x v y. The following

conditions arc then emerging (based upon the assumptions):

x I\Y = Y 1\ X and x v y = y v X (I)(froll/ A4)

(x I\Y)I\= = X1\ (y 1\=)(2Xa/so for 'or' )(frOIl/ A8)

(x I\Y) v = = (x 1\ =)v (y 1\ =)(3)(a/so for v Vs. 1\)(frOIll A8)

x I\Y is non-decreasing and continuous in x. (4)(a/sofor 'or ')([1'011/ A3)

x I\X is strictly increasing in x. (SXa/sofor '01'')([1'0111 AS)

x I\Y:;; min{x,y} and xv y ~ max{x.y} (6)(frolll A6)

11\ 1=1and Ov 0 =0 (7) (frOIll A7)

Bcllman shows that out of those seven conditions which have been taken over from his

initial assumptions that:

X I\Y = min {x, y}

xvy=max{x,y}

The proofcan be found in ([3],p.IS4)

The qucstion we may raise is whether the list ofassumptions is exhcustive enough.
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1.2, Ronald..Yug\1I

Yagcr's trcatmcnt is sOlllcwhat Icss fonnal than whal Bcllman l'rcscntcd, '1110ugh 1 do

think it gocs somcwhal in grcatcr dcpth,

1.2.1. 11lc choicc ofmcmbership functions and thcir influcncc onunion.lIIj!(jntcŒcCÛPUOr

fi....zy scts.

Yager makes a distinction bctwecn thc abso/lIle mcmbcrship fimction and Il non-Ilbsolnlc

membership liUlction. 1 find this distinction artificial and nol of grcal nsc. A tme fnzzy

context will rarely generate an absolute mcmbership function. Wc saw this in exlcnsio in

part III. 11le problem however to know whether Ill!ion and intersection's validity and usc

is dependent on how we choose such membership function remains a emcial point.

Assume thus that we have two membership functions; cali thcm Il and ln' Now Yagcr

says that he wants to define A nB =C; where h(x)*1 17 (x) =l"(x) .

Two properties must be imposed to the ,*, operator:

1) lë(x) is indifferelll to the particular selection of the membership fimction

2) reduces to the usual intersection ofthe set. if the memberships arc binary.

The same criteria are needed for union. Ali what is being assumed here is that the

individual has sorne idea of ranking the membership values, though there is NO known

precise relationship between values. Let us therefore remark that the treatment wc viewed

under Hisdal or also Dombi came to the conclusion membcrship functions were definable

in some quite precise fonu. Thus here we are at a quite more gcncral level. Yager shows

that under certain conditions there will be only one way to define intersection and union

between two fuzzy subsets. His development shows that union and intersection basically

reduce to Zadeh's min and max operators.The foregoing devclopmcnts (Bcllman and

Yager) are mathematicaUy justified. However sucb justification is insufficient whcn

modeling real world phenomena. This is where Zimmerman et al. comes in.
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Chapter"

JI 1. UlOle. ZjmmefDIan..Jtnd Zysno

Zimmerman starts his analysis really at the bottom. We have been talking in part III abolit

possible approaches to electing membership functions. Our discussion was quite general

and compared several propositions. Zimmerman asks himself again this question:' how can

grades of membership be determined in practice'? He distinguishes two different streams

i.e. the direct and indircct approach. The direct approach &ssumes human beings work as

good measuring devices. Hisdal's approach was based on this direct stream. I.e. wc had a

step function which was rounded off through our error funcdon and bingo the membership

function came forth! Yager's treatment on operators also contains a section on what he

caUs the 'cardinal approach'. This approach is equivalent to Zimmerrnan's 'direct stream'.

Zimmemlan also provides us with sorne more new insights. Says Zimmerrnan there are

quite a serious amount ofresponse biases and a very important bias is the 'end effect'. Ulis

effect says Zimmerrnan has 'subjects to shift stimuli towards the ends of the rating

scale' .([70], p.169) There are other biasing effects. Then there is the indirect approach

which is in fact the essence of Yager's argument as presented above. In this stream only

ordinal judgments are being used. Preciseness is not the issue here. No doubt that this

indirect stream does put much less weight on the human being as a measuring device as

compared to the direct stream. Zimmerman proposes the nse ofboth streams.

In the nex! section (111.1) we will look at a detailed set up of how a fuzzy experiment

could be conducted. In part III we have often used the example of 'John is tall' to generate

a membership function. Never have we gone into sufficient detail however on the issue of

possible biases. Basically we always have been assuming that the human being would lie a

good measurer. This rnay not be so. The now following section provides us with sorne

detailed background on how we rnay want to constrnct a membership function using ail

the details possible. The latter is more than useful when considering example such as 'John

is modest' rather than 'John is tall'.
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II. 1. 1. Set up

The steps as proposed by Zimmennan are as follows:

A) A sample of objects is to be taken which should represent lIle11lbership gradcs I1Ither

evenly on the [0,1] interval. At least two objects should be included which translate in Il

full '0' and full '1' grade. TIlis is what Zimmennan calls the 'condition of undisputed

eXlremes'. I.e. ail subjects assign the same number to the eXlre11les. A pre-test is to he

instated so that this can be verified.

B) Objects are now rated on a percentage scale by the subjects; the conversion to (0,\1 is

immediate.

C) The scale position of each object is now estimated by using the 11ledilln of the

distribution of ratings given by the subjects on that object. We are here thus nt the

aggregate level. TIlis scale; cali it D; may be distorted by several binses which belong to

Zimmennan's direct stream. The end effect is an example. D is now compnred with a scnle

S which is obtained through the indirect stream. One will c1leck whether the order between

the two streams is still preserved. If so D can be transfonned into D' which is an

approximation ofS.

II.1.2. A concrete experiment

Consider three fuzzy sets: 'I\'~etallic object'; 'container' and finally 'metallic container',

The following hypothesis is fonnulated:

Set:

I)U,i(x) as the grade ofmembership ofsome object x in the set 'metallic object'.

2)Uè(x) as the grade ofmembership ofx in the set 'container'

The grade ofmembership ofx in the set 'metallic container' is hypothesized to be then:

HI :U'inè (x) =min[U.il (x),U1.' (x)]

Hz: U .ilnë(x) = U,i (x).Uë (x)

At this point we may also c1arilY somewhat the difference between a max-min and produet

operator. In sorne cases the produet operator may really be more appropriate. An example

may c1arilY this. Consider two fuzzy statements A and B. Fuzzy statement A says 'a one

day old infant is young' and fuzzy statcment B says 'living one more day does not alter
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one's youth'. Clearly statemcnt B is definitely fuzzier than statement A. Now, intuitively

statements B is difficult to agree with. However using the min operator it makes perfer;t

sense! 'nlis is indeed awkwar.:!. Using the product operator however will show the

statement not to be truc. If wc multiply the same membership value successively the

product ofall those same numbers will be smaller. ([66])

J. Apre~test

A pre-test is to be performed on two items:

-the intersection of two fuzzy subsets labels 'metallic object' and 'container' is in fact

represented by the subset 'metallic container'.

ois D'an approximation of 57

1) For the first problem Zimmerman performed a test on a sample of(only) 5 subjects. He

looked at whether objects which were referred to as metallic and containers were indeed

also rated as metallic containers.

2) Zimmerman then started selecting objects which would fit in each of the three classes;

Le. 'metallic objects'; 'container' and finally 'metallic container'. Each c1ass would have to

contain an object which gets a full rating of '0'; and a full rating of' l'.

3) Furthermore the objects had to be so chosen as to enable an even 'spacing' of stimuli.

For so doing Zimmerrnan took a sample of 20 subjects to rate 50 provisiollally selected

objects. From there the objects which best approximate conditions 2 and 3 wOllld he

chosen. There are other details to be mentionell but we limit ourselves to the above.

2. A{!lal.e:qJ.!l{im!llll.

Omitting the details; the results out of the experiment now based upon a sample of 60

subjects gave the following results.The table below incorporates a re-arrangement of scale

as set out above. Both direct and indirect streams (as explained above) are used. The fuzzy

set M stands for 'metallic objects'; and the fuzzy set C stands for 'containers'. The

intersection as tested gave the following results:
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Stimllills x U,iini' (X)[T] Viin" (x)[Mill] U iin" (x)[l'r ad, 1
bag 0.007 0.000 0.000

bakillg - till 0.517 0.419 0.380

ball- po int a.170 0.149 0.032

bathillg - tllb 0.674 0.552 0.444

book wrapper 0.007 0.023 0.010

car 0.493 0.437 0.219

cash register 0.537 0.400 0.252

cOlltailler 1.000 0.847 0.847

fridge 0.460 0.424 0.264

hollywood - swillg 0.142 0.212 0.067

ker aselle -Iamp 0.401 0.310 0.149

lIaii 0.000 0,000 0.000

parkometer 0.437 0.335 0.222

pram 0.239 0.283 0.127

press 0.101 0.130 0.067

shovel 0.301 0.239 0.078

silver - SpOOIl 0.330 0.256 0.248

sledge - ha~mler 0.023 0.012 0.006

water - bottle 0.714 0.546 0.525

wille - barrel 0.185 0.12.7 0.124

The letters 'T'and 'Min' and 'Prod' refer to the 3 possibilities we have been alluding tu.

The latter two correspond to the two hypotheses we have set out above. 'T' stands for tcst

and the results of the two hypotheses should be compared with the test results.

The issue here is to know what kind of criteria one should be using to either accept or

discard sorne values. Zirnrnerman's proposaI on that issue is then as follows:

1) the rnean difference between observed and predicted values is not different from zero.

2) the correlation between observed and predicted values is higher than 0.95.

If 1) and 2) are observed then the connective operator should be accepted. Il tums out

after sorne statistical manipulation that both hypotheses can not be accepted. Hence in this

experiment product and rnin-operator are not acceptahle. A srnall word of caution is in

order here. There is no explicit reason why the results of the experiment should be

accepted. Where is there a generally accepted standard procedure which could act as a

87



•

•

•

benchmark so to validate or also in-validate Zimmerman's procedure? Granted the pre-test

he uses makes lot of sense. But the adaptation of the direct scale to the indirect scale may

contain errors. When looking at the table above we see there is in a majority of cases an

excess of the observed rating over the min operator. Zimmerman argues that this may be

due to the fact that human beings 'compensate' when they combine fuzzy sets in the sense

of 'and'. Says Zimmerman: ' ... in rating objects with respect to a composite attribute they

do not process the relevant information as ifthey were choosing the smaller oftwo grades

of membership, but proceed intemally as if they were using the smaller one oIlly as an

orientation and then modifYing it in the direction of the higher value.'([70], p.179)

Interestingly eIlough the compensation seems to work also in the max-operator or lII1ion of

fuzzy sets. An experiment carried out by Hersch and Caramazza showed that the observed

values were mostly be/GIll the predicted result as going through the max-operator.

Assume now for a moment that there is nothing wrong with Zimmennan's experiment then

we may wonder how workable the max-min operators really are. They may be theoretically

justified but from a practice point ofview they should still be operationaI. IfZimmerman's

experiment is correct then there is a problem. The urgent question is then: what sort of

operator should one use? Is there a connective for each situation?

Il.2. A general connective

Zimmerman makes a proposaI where he defines a grade of compensation. This leads to a

more general fonn of operator which lies between the 'and' and 'or' as we know il.

Whether this is a solution is to be seen. It is certainly useful to develop somewhat this idea.

We have been defining the operator for the intersection either by

H,: U.il"" (x) =min[U" (x),U,,(x)]

H,: U""ë(x) = U,' (x).Uë(x)

. H, '= max[U" (x), U,,(x)]
For the III110n we get:

H, '= U.ft (x)+Uè(x)-U,,(x).Uè(x)

Zimmerrnan's idea is this. Introduce a compensation parameter r. This parameter takes

the value zero when it is on the connective 'and' and 'l' when it is on the connective

'or'.!t is Zimmennan's goal to establisb a weighted combination ofboth connectives. The
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'end-points' ; thus either 'or' and 'and' can bc eXJlrcsscd cithcr in pl'oduct or max-min

form. Zimmenllan opts for the product fonll by arguing that hc wants an ill/eractioll of

membership values. Let us remark that Yagel' has serious ohjections to use fi,' as a union

connective. (see [74], Jl.198) 11le 'interaction' resides in thc algcbraic opcration which has

to be carried out and which links membership values to each other in a muclt morc c~qllicil

way than ifwe would be using max or min.

Intuitively the weighted combination l'Cposes on the following idea:

[(and)-no compensation] ° 1 [(or)-flill compensation]

11le idea is intuitively appealing from what we said above when wc dcalt with

Zimmermall's experiment. Out ofhis experiment it was shown that 'and' froma theoretical

point ofview had lower values that the 'experimental' 'and'. 11le theoretical 'or' throllgh

work by Hersch and Caramazza lied in value above the experimclltal 'or'. Using thc

interactive version of the connectives as defined above through fi, alld fi, the following

. f . h d b" f' d' d' ,. V V 1-, V 'version 0 a welg te corn mal10n 0 an an or IS seen: J"l = J,.,il . .luil .

Using the interactive connectives (H, alld H,) the general form becomes

m m

then: V n = (IlV,)'-' (I- Il(l-V,»';V e[O,I]alldy e[O,I].
;_1 1_1

and i= 1,2,....m; m = number of sets to be connectee. The firs! term corresponds tn 11,

and the second tenn corresponds to H',.This general form is thus easily checked. Taking

the case for m=2 we see it immediately thatV, +V, -V,.V, = I-[I-V,][I-V,] which

corresponds to the second part of the general form. 11le L.H.S of this equality simply

corresponds to H',. One can also see quite easily that if r = °alld r = 1 respectively that:

m m

V,., =IlV, (for r = 0) alld V v = 1-Il (1- V,) (for r =1) which thus reduces to the
1-1 1.1

interactive definitions H, orH, . Isolating r from

•
m m

Vn = (IlV, )'-' (1- Il(l-V,»';V e[O,I] alld r e[O,I] wegetthen:
1-1 ,-)
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m

10gUfI -logIl U,

r = ,.,; out of there one ean find a value for r and set thi.
m m

10g(l- Il (1- U,»-logIlU,
'_1 1.1

value in the conncctive. Finally one can match the obtaincd result of the experiment with

the predicted value using the obtained value for r .

One should remark that UÀ", = UÀnil J-r .UÀU/ is not the only possibility for a weighted

connective. TIlere arc other possibilities.

IJ.3.Conclusilm

ln sorne sense there is no single form of a general operator which can be used in any

practical situation. TIlis is worrisome to say the least. The 'applications' area is

tremendously demanding especially when a descriptive rather than a prescriptive attitude is

taken. The theoretical justification ofmax-min or also the interactive product operators are

certainly too simple as to mimic the decision processes which go on in our brains.

Zimmerman's proposaI for a more general connective is perhaps a 'step in the rigiJt

direction' when considering the higiJly demanding descriptive applications. Before

switching to part V of this paper we may effectively wonder how tolerant one may be in

accepting gaps between theory and practice. It remains the objective of fuzzy sets to

formalize our everyday speech to sorne degree. Both practice and theory must be married

and one may perhaps say the practice is a test on the validity of the theory. To develop a

consistent and thus non-contradictory theory of fuzzy sets on itself is not a very

praiseworthy objective with which practitioners will be contented with. Choosing the rigiJt

assumptions and working out postulates on those assumptions in a consistent way is

basically ail what matters in the theoretical field. The consistency gets harder and harder to

be obtained when the assumptions become more and more convoluted. The fuzzy set

discipline looks to be Iike a great effort in optîmization. Says Richard Bellman: 'We must

balance the needs for exactness and simplicity, and reduce complexity without

oversimplification in order to match the level of detaiJ at each step with the problem we
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face'.([3],p.149) Zimmennan in [82] proposes some saliCl1t propertil's Il suitllble opel'lltor

shollld have. Among those properties lire:

1) Axiomatic Strength: An operntor with less IIxiomlltic restrictions is better

2) Empirical fit: An operator must be an approprillte modcl of relll systcm bchavior which

can nonnal1y only be proven by empirical testing.

3)Adaptability: An operator shollid be dependent on the contcxt and thc scnlllnlic

interpretation.

4) Numerical Efficiency: An operator sholl1d be computational1y efficient.
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l'art V: Fuzzy logic and Economics

l'art V will survey sorne of the possible contributions of fuzzy set theol)' in economics.

y. 1 Intm.du.cJio.n

ln 1988 Michael Smithson asked the following question:' Why have so few researchers in

these fields utilized fuzzy set theol)', and why has the dialogue between them and fuzzy set

theorists been so underdeveloped?' ([67], p.l) TIle words 'these fields' refer to the social

sciences in general. Says Smithson: ' ... the human sciences tend to be methodologically

conservative when mathematically sophisticated and mathematically ignorant when

methodologically innovative.' ([67], p.2) From our literature survey there is exceedingly

!ittle to remark in the area of fuzzy sets and economics. Smithson puts fuzzy sets in a vel)'

new daylight. Says Smithson 'Qualitatively oriented researchers are fond of castigating

quantitative researchers for their inability to convineingly translate sophisticated theories of

human behavior into mathematical form...while quantitative proponents berate 'anti

positivists' for the vagueness oftheir concepts and techniques.' ([67], p.12) Herein may lie

the great vaiue offuzzy sets in that it brings the two warring camps together.

Claude Ponsard makes an excellent statement on where exactly fuzzy set theol)' could

enter economics. He distinguishes the three frameworks in which traditional micro

economics is performed. Either we are in a framework of cl'rtaillty where the agent is

perfectly knowledgeable ofthe consequences attached to the ehoices he makes.

Either we are in the framework of risk in which the consequences of a decision are still

weil known bllt now randomness is attached to the outcome of the decision(s). Finally we

also may be in the framework of IIllcertaillty where the probability law we knew in the risk

framework is now unknown. The three frarneworks have however sorne vel)' salient

features in common. The information on the set of options is perfect; the possible results

arc clearly known by the agent. Following Mongin the distinction Ponsard presents may

aetually be borrowed from Knight. ([53], p.ll)

The question Ponsard asks himself is OOat will fuzzy set theol)' input be in this set up of

the three frameworks mentioned above? Basically the options known in advance may be
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known in only an imperfect way; this of course thcn 'bcgs' for thc introuuction of

fuzziness. Furthennore the choice the 1I11ent is supposcu to Illllkc 1ll1lY bc Illuch Icss c1cllr

cut thlln presented in the c1assical theory. TIle agent mllY havc lim~y prefercnces Il COIICCpt

which is intuitivcly c1ear. Il is ail too Illuch of an oversimplificatioll to pronc thllt wc havc

neat preferences over an allocation. This idca has been indircctly capturcu in thc cconolllic

literature notably in fields such as indnstrial organizntion whcre usc is madc ofthc conccpt

of bounded raliona/ity. Perhaps Mongin says it in the Illost gencral way:' ... i1 Iiml

clairement distinguer le principe de rationalité lui-même, comllle modèle génériquc , et Ics

modèles divers, spécifiques, qui peuvent se réclamer de lui, Illais 11011 prétendre cn épuiscr

le contenu,,[,,]...rationnd => économique; (mais) elle est neutre pour l'implicatioll

inverse'. ([53], p.12) This means bnsically that concepts such as bounded rntiolllllity or

even expected utility can draw from a general template of rationality but cach can NOT

pretend to be the sole representative of it. Ponsard very aptly rcmarks the trnuitiolllll

argument we mny expect as a critique on the 'new' stance; and that is that tnkillg into

account a more 'human' preferellce behavior of an agent will without question lead to

positing a descriptive problem rather than a normalive one. TIle answer to such li 111I

important critique may not be conclusive. However, the purpose of fuzzy set theory is

exactly to provide for a more softly-oriented decision making approach. To c1aim that the

introduction of fuzzy set theory in the preference behavior of an ngellt will reduce the

problem to a descriptive problem is to say, in sorne sense thlit fuzzy set theory has ollly

descriptive power. This is incorrect as one could see by reading through the differellt parts

of this paper. But such a loose refutation however should also have to include thc

possibility of the orientation we introduced in part 111; Le. either syntactic or semantic.

And we do 1101 come full circle with our argument. Perhaps we should use Ponsard's

proposition which says that 'a descriptive model is nlso a nonnative model at the optimum'

([5], p.14) That says it ail but without any great solid argumentation. A whole paper can

be filled with the pro's and con's to the problem posited above.

Intuitively fuzzy set theory is not inherently descriptive. Would it be, then we would work

on a case by case basis and there would not be any scope whatsoever for a theory as such.

lhis is a debate which is also ruminating in artificial intelligence circles, One must continue
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to sec the fine tread whieh separates a theory whieh has a certain levcl of generality from a

fully eontext dependent eonstruet. TIlis tread is sometimes diffieult to distinguish and

eertainly the fuzzy set theory is going in the direction of inereasing diffieulty. 1 however

refuse the argument that fuzzy set theory in fuzzifyng the preferences of an agent yields a

descriptive model of the consumer; whieh therefore is totally separated from normativity.

'Illis is too easy an argument whieh clears the debate in favor of classieal miero-eeonomie

theory. 'Ille results obtained must show that this is not 50.

Claude Ponsard writes : 'Un évènement imprécis est celui qui peut se réaliser

incomplètement.' ([5]) TIlis is exactly the problem. By recognizing that an imprecise event

can not be complctely realiled we recognize indeed that our preferences are fuzzy. Using

instead a probability distribution will severe us from Ponsard's statement because in that

case an event will know a complete realization.

Or to citc Luhandjula ' situations where doubt arises about the exactness of concepts;

correctness of statements and judgments; degree of credibility, have Iittle to do with the

occurrence of events, the backbone ofprobability.' ([49], p.257)

y'2. Imprecision-uncertajnty

We arc perhaps arriving again at a point ofhigh confusion. Our task is to disentangle the

ingredients which lead to this confusion. The main issue here at stake is to distinguish

clearly between the two concepts stated in the title; i.e. uncertainty and imprecision. 1 do

think that imprecision and uncertainty bave a common link; in that they purport to the

meallillg ofinforrnation. We may have to represent three elements: error, uncertainty and

fuzziness (or imprecision). ([57], p.20) Uncertainty is linked to future events wbich rnayor

may not realize. But this is essentially Ilot talking about fuzziness.

Probability and fuzziness are not the same and a simple example sbould make tbis clear.

The statement 'element x belongs to a fuzzy subset with degree ofmembership 0.5' is not

the same as saying that x would belong with probability 50% to this set. Ifit tums out that

x belongs to this set then the membership value would be 100%! Thus the probability

measure, as a would-be equivalent to fuzziness takes away the notion of fuzziness

altogetber; i.e. it continues to operate within a binary setting. Following Bellman and
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Zadeh in ([4], p.B 14!) the authors c1aim that fuzziness yic1ds a type olïmprecision which

yields 'classes in which thcre is no shal1> transition l'rom mcmbcrship 10 non-mcmbcrship.·

Zadeh in [76] c1aims that information is 'intrinsically stntistical in nnturc' nnd thcrcliJrc

probability thcory is to be used. However this statement has rc1evnnce to Iii" qllclIlli(l' of

information rather than to thll meallillg of information. Decision making undcr uncel1ninly

is a typica! examp!e which refers to meallillg of infonl1ation. 111e tool used in thc arcn of

meaning of informntion is possibilities rnther than probabilities. Following this Hne of

thought, imprecision and uncertninty should be put in the possibility area rather thnn in the

probability area. We have been talking nlrendy about the difTerences between possibilily

and probability. One major difTerence may be that there is very explicit link between the

probability of an event and its opposite. However this may not at ail bc the case when

talking about possibilities.

Assume that effectively this may ail be true, i.e. that wc choose to model uncertninty and

imprecision through possibilities rather than through probabilities. We may then wonder as

Chandrasekaran does whether fuzzy sets; which then plnys the role of a possibility

distribution can handle this calculus of uncertainty. Chandrasekaran makes the interesting

comment whether we should view fuzzy sets as either a psychological or either a

mathematical theory. Ifthe former is chosen as Chandrasekaran says thcn 'we would nced

certain kinds of evidence about human behavior in uncertainty handling.'([ 10], p.ll) If the

latter is chosen then an abstract world would emerge whose constituents parts arc

uncertainties of certain types. As Chandrasekaran aptly remarks such an abstract world

would tirst have to exist and also the fuzzy set axioms would then also have to show they

capture 'the operations ofthis world'. ([! 0], p.12) Of course, this is open for debate but it

certainly raises an important point. On the other hand Chandrasekaran may be taking too

much of a purist stance. Christian Freksa tells us that Zadeh realized that it was 'much

more important to have a good mode! of the semantics of human concepts and perform

reasonable operations than to have a bad model and perform verifiably correct operations'

([19], p.2I)
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Y..J~.k.tc's thcQIY

A very nice applicatioll tQ the treatment Qf uncertainty in a possibilistic rramewQrk rather

than in a probabilistic framework is the work by the English eCQllomist Shackle. TIle

central idea in Shackle's theory is the cQncept of polenlial surprise. pQtential surprise is

delined as follows. Says Shackle : 'we decide 011 a particular course Qf action Qut of a

number of rival courses because this one gives us, as an immediatcly present experience,

the most enjoyment (QI' distress) by anticipatiQn of its outcome.' ([63].p.10) TIle entity

which gives enjoyment by anticipation has. accQrding to Shackle, two characteristics. The

lirst characteristic says Shackle 'describes the situation QI' sequence Qf situations. saying

what it would be like if it were to happen ( without saying anythillg as tQ whether it will

happell)'.([63],p.10) The other characteristic 'consists in our degree of belief that this

picture will becQme true'.

TIle interestillg question Shackle now proposes is what is this degree of belief referring to.

Basically it refers tQ the fact that the mQre we are sure sQmething will happen the higher

our polenlial surprise if it does Ilot bappell. The l'eason why Shackle talks about surprise

as the image of belief is tbat he considers 'degree of belief' not tQ be a sensation or an

emQtion in itself; thQugh feeling of surprise is. TIlis is what Shackle says 'The concrete

mental eX)lerience which corresponds tQ any given degree of belief ill sorne particulaI'

hYJlothesis is , 1 think, the degree of surprise tQ which tbis belief eX)loses us.. .'([63],p.ll)

Shackle also makes the important remark that surprise felt at the aclual Qccurrence can not

serve as an uncerlainly variable. The reason fQr this is quite simple; uncertainty will be

Iinked to somethiug which may happen in the future and we do have incomplete

information as to whether it will happen QI' not. ([62],p.68) If the event has happened the

question about uncertainty is of course irrelevant. Thrrefore it is important to talk about

polenlial surprise. Imagiue now that we have several, mutually exclusive hYJlotheses,

conceming the same question. How are we now supposed tQ assign a poteutial surpri:;e?

Shackle's suggestiQn is this :' ..an iudividual degrees Qf belief iu a hypothesis can be

easily...eX)lressed by rneans Qf the poteutial surprise he assigns to the least poteutially

surprising rival hypothesis.' ([62],p.71)

96



•

•

111is looks nicc but is troublcsomc. It rcally mcans that onc can ccrtainly NOT havc

positive belip.fs in diffcrcnt rival hypothesizcs at thc samc timc. '111c rcason is simplc; as wc

just use the minimum of ail thc dcgrees attached to thc potcntial surpriscs of ail hypothcscs

wc cffectivcly rule out consideration of ail othcr rival hypothcsizcs which havc highcl'

dcgrees of surprise. 1 do not lind Shackle gives a reasonablc c"llianalion to this pl'Oblcll1.

Billot however in ([5],p.29) shows howcvcr how tight thc rclationship is bctwccn

SJ.llIckle's thcory and possibilities. 111el'c is much morc to sayon Shacklc's thcory Ihan

thosc vcry fcw words. nIe grcat achievemcnt of Shacklc's thcory is ccrtainly Ihat it

emulates human thinking behavior to some extent. In this scnse it is close to filzzy scl

theory.

YA. Fuzzy Probabilitjes?

If fuzziness is not probability how could we then ever talk about a fuzzy probabilily'l This

looks Iike to be confusing! In fact it is not. Basically to talk about a fuzzy pl'Obability onc

must lirst accept the fuzziness which goes into the proposcd subjcct. To put a probability

on this subject is then a fuzzy probability. Nothing new hcre! Ponsard in Billot ([5], p.38)

gives an example. Say a woman Iikes more or less fur coats. Say that her membcl'ship 10

the set 'coats' is for instance 0.2. Then good fiiends of this lady may construct a

probability distribution centered around 0.2. This will then bc a fm'J.)' pl'Obability

distribution.

Y.5 A new tumjng pojnt jn economics?

The goal in this section is to provide a taste of sorne of the changes which will occur;

specifically in the area of preferences of the consumer, when the assumption of perfee!

ra!iona/ity of the individual is not upheld. This assumption of a rational agent is crucial in

economics. It looks as if this requirement of rationality, which is so far away from reality,

is a necessity in the build up of a coherent and consistent economic theory. Of course, this

is a very flamboyant statement. Gut feeling however would command that it may be quite
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useful to have assurnptions which arc a little c10ser to reality so to speak. Herein cornes

fU7ziness.

Y.1.J. TIle fU7,Z)' relation

In part II of this paper under the heading of 'structure of binary relations' we surveyed

sorne of the different order relations. The pre-order was defined to be a transitive and

reflexive relation. In an econolll)' where there arc 1 goods and ni individuals and where

total resources to be distributed is il, any allocation will be a vector of !Tl + lm •

m

TIle allocation in order to be feasable must satis!)' the condition that: X = LXi :5 il ;
1-1

where x' represents a basket ofgoods allocated to agent i.

TIle set ofail the allocations S={X,Y,Z,... } is non-fuzzy. An agent will classi!)' allocations

by using his preferel/ces. This preference (non-strict) is a pre-order. We obtain a utility

function out ofthis pre-order when also imposing completeness and continuity. Following

Billot ([5], p,4S) the c1aim is that when entering the fuzzy arena the structure as presented

here remains valid; however the meaning will be altered very seriously towards 'a more

c10ser to reality' setting.

We have been looking in part II at the concept of a fuzzy relation. Fuzzy reflexivity and

transitivity have also been defined. We re-iterate the definitions here:

.1) .f.!IZZY.ReJal.Ï.on:

A crisp relation on ExF is 3 set ofExF. Similarly for a fuzzy relation R. Consider two sets

E and F; the set ofordereà couples (x,y); xe E al/d y e F defines the product set Ex F.

We get then A= {(x,y),U:.: \7'x eE; \7'y eF:U;;:(x,y) eL}. Where is for simplicity [0,1].

Thus x is in 'relation' with y to sorne degree. We can 31so say we have a binary relation

between elements ofE and F noted 'Î'. So we can define the fuzzy subset A then as:

A= 'Î'(X,Y) = {(x,y);Uq; ;\7'x eE;\7'y eF:Uq;(x,y) eL}

Examples of fuzzy relations abound. For instance 'Car X is better than car Y' is an

example.
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"Ix e E: U.p (x,x) = 1

We remark this property may be too strong in a fuzzy context.

We can therefore also define: a-reflexivity:a e jo,l[~ "Ix eX:U.p(x,x)2: a ([I],p.35)

.~).Ix,msjl.iye. xela.\!<m;
nIe transitive relation is a key relation in decision making. As classical theory does

aeknowledge there are two classes of individuals i.e. rational and irrational ones, it must

guarantee that for the group in which it is interested; rational consumers; there is

consistency. nIe transitivity relation plays a crucial role in this. A rational consumer should

reveal transitive preferences. The max-min tral'lsitivity definition is a fonnal statement

which tries to weaken the all too rigid transitivity requirement ofclassicp1theory.

"I(x,z) e E': max,Jmin(U '1' (x,y),U '1' (y,z}]::; U ~.(x,z)

See part II for the explanation of the fonn of this definition. nlere is somewhnt of n

problem with this definition. Kaushik Basu remarks thnt if for instance

U'1' (x,y) =0.5 al/d U'1' (y,z) = 0.5 then the min on this will give 0.5. However using for

U'1' (x,y) =0.5 al/d U'1' (y,z) = 1 we get again a minimum of 0.5, which mnkes not much

intuitive sense. He therefore presents a definition of the following foml:

"I(x,y,z) e E 3 :U'1'(x,z) 2: 1/2 U'1' (x,y)+ 1/2 U'1' (y,z). ([2],p.215)Clearly the problem

with such definition is cleared away. However, Billot in ([5], p.47) remarks that the first

definition is not really a problem. In fact the 'weakening' of the definition oftransitivity is

just what is sougbt for; so as to weaken the rationality assumption. In sorne sense this is

not so surprising given that we definitely want to get rid of a 'homo economicus' who has

been given hyper-rational powers. Such super beings can distinguish one basket of goods

from another. Those powers express themselves in a 'super-sensitivity' when comparing

allocations. It is assumed that the finest detaiIs are not overlooked when comparing...:lùis

is the reason why we should be contented with the traditional definition of fuzzy

transitivity.
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Blin et al. «(7],p.19) provide a diseussion in whieh they propose to ereate a fuzzy set of

transitive preference pattems. The membership fW1ction of such fuzzy set would then give

us an indication how close the pattem is to the rigid transitivity pattem as proposed in

c1assical theory. Consumer preferences will be distinguished as to their closeness with the

classical transitivity definition. TIte idea is interesting but lacks practical application.

We could so to speak replace the max-min definition with a general membership function

on transitive preferences.

V.5.2. The preference relation

We said above that the preferences of lite agent will yield a classification of the different

allocations in S. The behavior of an agent will be determined by the structure

(S, ip) where ip is a fuzzy binary relation between the elements of the Cartesian product

on S x S . We get then the following expression:

x}ipx, ={(x},x,),U'I';V'x) eS,V'x, eS:U'I'(x},x,) eM}

This needs a little explanation. x"x} are the quantities ofgoodsj and k; and U;y(.,.)

expresses the degree of preference between the two goods. The set M contains the

membership values; and is usually [0,1]. We can consider the two main cases; i.e.

preference and indifference. We now separate the structure (S, ip) into (S,:--) and (S, -).

\.(S,:--)

The most expected property is that the preference relation is anti-symmetric. We defined

this in part III. We re-iterate it here:

V'(x},x,)eS2:U'I'(x},x,)andU'I'(x"x})=>x} =X,. TItis means thus that we can not

find x} ~x,;suchthatU;y(xl'x,)=U'I'(x"x}). Furthermore we also obtain fuzzy

transitivity. RecalI that the max-min form of transitivity is weaker than what the classical

binary form wilI yield.
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7. (S,-)

ln c1assical thcory indifferencc will be rellexive and synlllletric. We need some notation

before introducing fuzzy symmetry. 'nIe following notation ll1akes sense:

V,~ (x) ,x. ) > V'T' (x. ,x,)

where Vq,(x},x.) expresses a strong preference; while V,~(X.,X/) expresses Il wellk

preference. TIle degrees in the first case is bigger than the degree in the second case. In his

decision making an individual will always compare his strong with wellk prefercnce. 11 is

expected that if the weak and strong preferences are equal to each other then thcrc will be

indifference. Using the notation introduced above this yields then:

":I(x}'x.) eS x S:V ij1 (x) ,x.) = V .• (x. ,x,)

where the R.H.S stands for a weak preference and the L.H.S for a strong prcfercncc.

Remark that this equality also implies the fuzzy symmetry property.

Finally one needs also to look at fuzzy rellexivity. Two possible definitions arc offcred

either: ":Ix eE:Vij1(x,x) = 1 or also a-reflexivity:a e lO,I[ (:) ":Ix eX:V,~(x,x)~ a

([I],p.35). The latter form is less strong than the former form.

As preferences are fuzzy it is an overstatement to assume that the individual knows exact/y

what satisfaction to derive trom being indifferent towards the identical allocation. In that

case his preferences would not be fuzzy. When engaging into preferences on an allocation

one will look at the intrinsic qualities ofthis allocation but also at the relative qualities; i.e.

in relation with other allocations. In the rellexivity cases ail what we are doing is 100king at

the intrinsic qualities of the allocation. However as preferences are fuzzy we are not that

sure about the level of this kind ofquality for a given allocation. In the classical definition

of fuzzy reflexivity; when following this train of thought, we would have reached the

highest satisfaction possible attached solely to intrinsic quality; as then

":Ix e E:V ij1 (x,x) = 1; i.e. takes the value I. The definition of a - rellexivity is appropriate

in the set up we just exposed above.

We can thus summarize now that (S,>-, -) is a pre-order; i.e. fuzzy ref1exive and fuzzy

transitive.
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V.S.3. A New Interpretation?

1) A vel)' important point is that with the use of fuzziness in preferences we are much

more concemed with how an agent arrives to a preference than with the result of the

preference as would be the case in classical theol)'. For instance the exposition on

refiexivity showed us this quite clearly. When using the traditional refiexivity we could not

come to a refiection on the degree of satisfaction we had when contemplating the intrinsic

qualities of an allocation. Another example of this concem; which is more indirect is the

use of the max-min fuzzy transitivity which relaxes the rigid and ail too precise c1assical

definition.

2) Because we can use degrees of preference we can give significance to strong and weak

preference, through using U,~(Xj,Xl»Uq;(Xl,Xj)' We also could use this inequality for

giving tme meaning to indifference ; i.e. the equality of strong and weak preference. Here

again, we stress that with the introduction of fuzziness it is shown what the underlying

'ingredients' are before coming to the result. OnIy the reSlllt is of importance in the

classical case.

3) The issue of comparability oftwo alloc&tions is also vel)' important. In classical theol)'

incomparability is avoided by imposing the axiom of completeness which requires that ail

goods are SIIpposed to be comparable. Here, because of the possibility of using degrees of

preference we can declare incomparability! I.e. the degrees ofpreference of one allocation

to the other is plainiy O. I.e. we get 'r;f(xl'x.) eS x S:Uq;(xj,x.) =U q; (x. ,xj )=0. Weak

and strong preference are equal to each other and express thus indifference. A level of

indifference of'O' is equivalent to incomparability.

In brief the introduction of fuzziness brings us the possibility of the evaluation of a

comparison•
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V.5.4. Degree ofcornparability

To set up degrees of cornparability we can define the following:

x}ix, ={(Xj ,X,),U17 :V'(Xj ,X,) eSxS,U 17 (xj ,x,) e[O,I)}

Where Hstands for the relation expressing this degree of cornparability; this is a fu".zy

relation. lllis relation is said to be reflexive, syrnrnetric; which following part Il, wc also

called a resemblance relatio//' Qut of this relation we can define a fuzzy set C such thlll:

C={(xj,x,):U,; 'd(xj ,x,) eSx S:U,,(xj ,x,) e[O,I]} Now we can dcfinc a levcl

a e[O,I]. Below the level set there is no cornparability. Depending on the Icvcl set we will

have cornparability in sorne case and non-cornparnbility in other cases. 'nlis is then writtcn

Ca = {(xj,x,),U c ;V'(xj,x,) eC;Uco (Xj,x,)= I<::>U,,(xj ,x,)2:aand
as: Q

U Co (xj,x,) =0 <::> Uè(xj,x,) <al

Remark this alpha-eut is a non-fuzzy set. Integrating in the definition ofnon-cornpllrability

we get then: If (xj,x,)ECa ::::) 'd(xj,x,)eSxS:U'F(xj,x,)=U'T'(x"xj)=O.

Furthermore Ca vC. = SxS; where Ca is the complement of C,,; i.e. this takcs the

union of ail comparable and non-comparable allocation; this forms the total sel of

allocations.

V.5.5. Similitude Sub-Relations and the formalization how to arrive to

indifference/preference

We have covered the concept of similitude sub-relation in a fuzzy pre-order in part JI of

this paper. Consider a fuzzy preference relation 'Ji cS x S. We know the preference

relation is a fuzzy pre-order relation. I.e. it is fuzzy reflexive and transitive. Now our goal

is to find sub-relations which belong to 'Ji and which are transitive, reflexive and

symmetrical Because the relation 'Ji is already a pre-order the subrelation will also be a

pre-order. Now, as we add symmetry the sub-relations or sub-c1asses will form what is

caIled a similitude sub-relation in a fuzzy pre-order. The classes in question express

indiflerence as now we have also symmetry. Furthermore the elements in those classes
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also express degrees ofilldifferellce. We need to go further however. It is claimed that the

relation an/ollg the differellt classes is ail arder relatio1/. This means that we now have

renexivity, anti-symmetry and transitivity. Consider the same example we had when

looking at sub relations in part II.

if1 A 8 C D E F G
A 1.2.2.2.2.3.4

8.21.5.2.2.3.5

C.2.51.2.2.3.5

D.2.2.21.8.3.5

E.2.2.2.8 1.3.5

F.2.2.2.2.2 1.4

G.2.2.2.2.2.21

15 the relation if1 a pre-order relation?

1) We have to check fuzzy renexivity and transitivity. Using the max-min definition of

transitivity we get then the following. The couple (A,F) in the above matrix wben

interpreted as the result ofa transitivity operation bas as underlying couples (A,.) and (.,F);

where '.' stands for either A,B,C,D,E or F. Taking the minimum witb respect to the

membership degree of each two possible couples; we will obtain 6 different minimae

values trom which we are supposed to take the maximum. The results are then as fol1ows:

(A,A)<->(A,F):--------min[1;0.3]=0.3

(A,B)<->(B,F):--------min[0.2;0.3]=0.2

(A,C)<->(C,F):--------min[0.2;0.3]=0.2

(A,D)<->(D,F):--------min[0.2;0.3]=0.2

(A,E)<->(E,F):---------min[0.2;0.3]=0.2

(A,F)<->(F,F):--------min[0.3,1]=0.3

From this we need to take the maximum: 0.3. Does the membership value of 0.3

correspond to the couple (A,F)? It does.

One must perform the same operation for ail other possible couples. Fuzzy reflexivity is

immediate. Here the classical definition offuzzy reflcxivity bas been taken.

2) The pre-order is not symmetrical: as an example Uop (F,D) =.2 but Uop (D,F) =.3!
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3) We can however find subsets of if which make similitude relations.

As an example the subset KI ={A,BC,D,E} verifies a pre-order and is symmetric; f.i.

V'i' (A, C) =.2 = V'1; (C, A). The subset KI ={A,B,C} would also verify a similitude sn\>

relation but it would not be maximal as we can extend this subset into KI' l'wo other

subsets are also maximal i.e. K 2 = {F} alld K, = {G} are similitude sub-relations. Ali

KI' K 2 , K, are disjoint !Tom each other as one can easHy verify. 111l1s the fuzzy relation

if is decomposable into maximal disjoint similitude sub-relations. KI' K2 • KI fonn then

similitude classes.

4)We can observe that the levels of indifference in between the classes does vary. For

instance the degree of indifference between (A,B) and (B,A) is not the saille as the

indifference between Band C in the similitude c1ass KI={A,BC,D,E}.

We now want to look at the idea behind an order relation amollg similitude classes. We

continue our example. Take the case of the couples (B,F) and (F,B). One sees that we

work among classes here as F belongs to K 2 = {F} and B belongs to KI={A,B,C,D,E) .

The degrees of membership are certainly not equal and this shows the anti-symmetrie

property necessary for an order relation. We can also compare the degrees of preferel/ce

of B versus F. The degree of membership for (B,F)=0.3 and of (F,B) is 0.2.; so we

strongly prefer B over F. Remark again that we work here amollg classes. Furthennore

with the use of the order relation and the similitude sub-relations in a fuzzy pre-order we

have been formalizing the set up ofhow we arrive to indifference or preference.

There is at least one problem however. It is claimed that the relation among classes is an

order relation and thus reflexivity is implied. However it looks impossible to c1aim

reflexivity among classes! For instance reflexivity of {F} is possible as V'i' (F, F) =] but

titis is not a statement which links elements among classes! So we doubt the fact ref1exivity

can ever be present amongst classes. For a strong preference relation we can obvious]y not

have reflexivity.
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Y.5.6. Discussion

Georgescu-Roegen tells us that when an individual makes a choicc on the given set of

allocations two steps are usually taken. nIe first one being the delimitation of possible

allocations which will be considered by that individual. nIe second step consists in

emitting the choice the individual made.([21],p.137) Classical theOl'Y does not treat what

happens ill-betweell those two steps. To put this in the traditional analogy with our 'homo

economicus'; he just is again the robot, and the robot program is inaccessible for earthly

beings. nIe kernel of bringing fuzziness into econornics lies in the fact that now we have

degrees ofpreferellce. We can now totally agree that to prefer object A to object B may

have a different degree ofpreference as preferring object C to D. In classical theOl'Y we do

not have this differential weight of preference. nIe same is valid for iudifference where

now we have levels of il/differellce. This led also to the important c1aim that the

completeness axiom is of no use anyrnore; as now we can really pinpoint incomparability;

we do not have to hide incomparability behind indifference. This is also confinned in

Basu.([2], p.225) There are more achievements which are worth mentioning. But we

satis!)' ourselves with the above. The above is more impressive than one may think. The

root of the problem with economics, to my idea is that it treats human beings in the same

way as physics would treat objects. Physics does a good job on this; but how possibly can

economics do a good job? If it is assumed that we are ail the same ;if it assumed there is a

weil known bluepJint of rationality which we ail carry in us then we are far removed from

the real world. This reminds me of what Popper once said concerning rationality. Says

Popper:'....c'est la méthode qui consiste à élaborer un modèle à partir de l'hypothèse de

rationalité complète ... de la part de tout les individus concernés, puis à estimer l'écart

entre le comportement effectif et le comportement postulé par le modèle... ' ([53], p.56)

This is ofcourse a very sterile proposition.

However, it is a very honest proposition which basically asks not to ONLY theorize but

also to experiment on the proposed theories.

The problem we have to seriously wonder about is the trade off between generalization

and specificity. The more we generalize the less concrete we become and vice versa. It

looks however as ifwe are now too far removed on the side ofgeneralization.
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11lere is a critique however a1so. If individuals ean now e:oqlress their degree of prefèrenee

why is it so that they can be that precise? 11tis is definitely a very reasonable critiqne.

Instead ofeoncentrating on suclt cardinal measures some theorists will prefer Il much more

weaker ordinal form. 11le notion of 'soft sets' dcrives from titis lIpprollCIt. Sec [I.II lIud

[2.1].
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Part VI: Applications

This is then the last part of this paper which deals with applications. It is certainly an

exceedingly important part of this paper as, 1 hope, it will set out somewhat what the

potential of fuzzy sets may be in the sucial science sphere; especially in the areas of

economics and finance. We lire specifically interested in the following applications:

1) The construction ofa fuzzy utility function

2) Fuzziness and the Producer's Equilibrium

3) Applications in Finance.

We will ofcourse draw on sorne ofthe concepts which have been introduced in the former

parts ofthis paper.

VI 1 The Construction ofa fuZ74' utilib' functjop

Part V of this paper introduced already sorne of the possible newities which may be

expected when using fuzzy sets in micro-economics.

Though the work by Chen et al. seems to lie down sorne intuitive groundwork; 1 do think

the article is faulty in rnany respects. Therefore we follow some ofthe points Chen et al. in

([12]) propose and develop also our own arguments.

VI. 1.1. Introduction

The utility funetion is traditionally defined as a mapping from an n-ary commodity space to

a utility space. By fuzzifYing this we will not use numbers (of course in an ordinal

framework) attached te indifference curves but fuzzy sets in the form offuzzy numbers.

VI. 1.2. Mathematical recap and extensions

Sorne notions Chen et al. introduce in their set up have not been incJuded in part II of this

paper. Therefore we introduce the new concepts here. Furthermore we recap briefly some

notions which have been covered in part II already.
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.1 ... Twq.dimç,,~i9!!~I.mlm.~e.\~

This is a straightf01ward ex1ension of the original delinition of a lilZZY set. l11e only

difference comes in here where the variable which is supposed to belong to sOllle degree to

the fuzzy set is now a vector with two coordinates. Hence the membership limction will

not be anymore a simple bi-dimensional graph but a graph in 3 dimensions. I.e. the

coordinates take up two axis's and the membership value takes up one axis. Of course we

can encounter membership limctions of any dimension.

Related to point 1) is the concept ofcylil/drical extel/siol/. 111e basic idea ofthis is that the

variable in its original form; whether a vector or not; will be transformed into a vector of

dimension: dim(original)+1. Thus if the variable is originally a two dimensional vector;

cylindrical extension will make it a three dimensional vector.

Z·.P.rQi~ç\i.Qn.of.~.~.r.eJ~\jQI)

A fuzzy relation was delined as:

A= 'Î'(X,Y) = {(x,y);U,,;\fx eE;\fy eF:U.p(x,.") eL}; where L for the membership

set, which is usually [0,1]. The projection ofa fuzzy relation is a Iittle less intuitive. Ifwe

consider a relation in product space E x F x G then the ensuing relation could be

represented as a tltree dimensional figure. Each point making up this ligure will carry a

membership value referring thus to the fuzzy relation in question. The projection of this

fuzzy relation will be defined as the supremum of subsequences of membership values of

this fuzzy relation. As an example consider the relation 'f'(X, Y,Z); then the projection of

tbis relation on the plane XY would be defined as: 'P'(X, Y) = px.r'P(X,Y,l); with P

standing for 'projection'.

~....CQ.l.J;lp.osition.of./4.77;y..l:elation~

The composition of a. fuzzy relation was defined in part II b: given a fuzzy relation 'Î' of

E to F and a fuzzy relation fi ofF to G then the composed relation fio'Î' is a relation of

E to G such that: \f(x,z) eE x G: U(llo'l') (x,z) = maxJmin(U 'l' (". y),Ull(y,Z)]. There is

an equivalent to titis definition. Using the concept of projection the above can be stated
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altematively as: noif=~i,,,(nnif). It is important to see first why this is an

alternative definition. Furthermore remark that the relations are extended cylindrically.

(noted with a bar); the reason for this will become clear in a moment. The equivalence

sprouts out as follows:

as Ucil.'i')(x,z)=maxy[min(U,~(x,y),Uil(Y'Z)] then we can re-write this as:

UCil.'i')(x,z)=v,[<U'i'(x,Y)I\Uil(Y,z)]; using the definition of projection which says

that we use a supremum then: ~1,o[(U'l'(x,Y)I\Uil(y,=)]=PH'G(nnif); where the

equality is legal given the definition of fu7.zy intersection; as deflned by Zadeh. Hence the

alternative way. We need still to come to terms with the fact that cylindrical extensions

have been used. This is in faet not that hard to see. The extension is a necessity as we

compose relations on Ex F and F x G ; and the composite relation will thus have to lie in

E x G. But composing the two relations in E x F and F x G spaces; reduces to

composing those relationships in E x F x G space. Rence the need for an extension on

both nand if .

4..J'w:zyN.I),Il1\l.exs

Let the universe U be the real line. A fuzzy set A on !n is cal1ed a fuzzy nnmber iff A is

convex and there exists exactly one point, say ME!n with UÀ (M) = 1. The renson for

convexity has been explained in part D. The reason for the normalization is that for the

case of f.i approxirnateiy 50; the membership value must be '1' at x=50. Note also that

there are different types of fuzzy nnmbers. One special case is the L-R fuzzy nnmber of

Dubois and Prade. (see part D) Again note that a fuzzy nnmber is a special case of a fuzzy

set in that it is restrieted through the normalization and convexity condition.

.~....~!4!!g .Q.f~ .1\\!m1!~r~

Chen et al. define a fuzzy set K to be greater ( or equal) than a fuzzy set L if al1 of the

alpha-cuts ofK are greater than or equal than the alpha cuts ofL. ([12], p.290) One of

course compares at the same level ofalpha for both fuzzy sets. A simple example ofthis is
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in the case of nicely shaped bell cUlVes with a membership for x at 1 (in CRse of li fu7.7.Y

number); and 'one bell shaped cUlVe sits on the other' .

VI. 1.3. Basie Concepts in Fuzzv Economics

.1... .f.\l~ .r.n;~(~r.e",e;e~

We have been talking already about the rationale behind the idea of fuzzy preferences in

part V ofthis paper. TIle utility level attached to the preference will be fuzzy. Chen et lIl.

propose that a sUlVey could be made bllsed on different combinlltions of commodily

bundles and consumers could be indicllting the level of fuzzy utility in terms of whether

they are very satisfied; or merely satisfied etc. with a particular selection.

A sufficient number of such indicators willlead us to derive a crude fuzzy utility funclion

for the entÎre commodity spaee. The intuition here should now be clear. Consider the cllse

ofa commodity bundle consisting ofIwo goods. In classical theory the utility function will

be a 3-dimensional figure which has on its two axis's the goods of the eommodity bundle in

question and an axis indicating the level of utility. The surflice traced out will then be

called a utility surface. The very interesting thing here as compared with the fuzzy

counterpart ofthis is that because utility would now be a fuzzy set; i.e. utility levels would

now be fuzzy numbers the utility surface would have a 'skin' ofvarying thickness to use

imagery. The 'tickness' of the 'skin' of the classical utility surface will be uniform and be

as thin as a point basically.

Clearly, when using the ordinal concept of utility one does not bother about the exactness

of the numbers obtained; levels of utility have only a l'anking purpose. However because

there is a precise number attributed to each combination ofquantity ofthe goods in a given

commodity bundle we assume that we have crystal clear preferences. The case of the thick

utility surfaee does assume exactly this away. However, as a unique argument the above is

not really revolutionary. Basically, because of the ordinal character of utilities the

exactness of a number attached to a certain commodity bundle is clearly not relevant. In

the same vein can one argue for the tick utility surface. The implication of a 'tick' utility

surface however cornes through the dernand cUlVe. This is what we want to sulVey now

before continuing. The concept of 'thick demand' cUlVes was invented by the French
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eeonomist MarehaI. The basic idea of such demand curve is that it expresses a variability

of rationality. The ticker the curve becomes the less rational we are. Hence, in this

framework the regular demand curves as we know them would express ultra-rationality.

We know the versions of Hicks and Marshall on demand curves. The former introduced

substitution and income effects; while the latter only bothered about substitution effects. In

any case the resulting demand curve was assuming a tatally rational individual. The

interesting issue in Marchal's book is that he also considers the demand of an individual he

calls 'l'individu partiellement rationnel et partiellement conditionné par le milieu.'

([SI],p.S43) This is of course closer to reality than the perfect1y rational consumer as

treated by Hicks and Marshall.

The idea is simple, the individual when facing a price for a good will not know what exact

quantity he would be willing to buy. Let us remark lirst that more leeway is given to the

true nature ofthe average consumer when also considering the income effect. However the

'exactness of quantity' problem is never solved under such framework. Says Marchal

'pour chaque prix, il Ya, en fait, non plus une certaine quantité qui sera automatiquement

demandée; mais une quantité minima qui sera certainement atteinte et une quantité

maxima qui ne sera pas depassé. Entre l'une et l'autre; la demande se fixera d'après

l'ill/ensité des stimulants que présentera le milieu externe.' ([51], p.S44) TItis looks

straightforward and makes sense. But we should carry the analysis a little further however.

Let us consider the indifference curve which can be viewed as a horizontal cut; through the

utility surface at a given level of utility. The major implication of such indifference curve

forthcoming thus from an u1tra-thin utility surface is that we are now able to compare any

super small amoullt ofone good versus an amount of the other good a/ways respecting

the level of indifference. We are capable ofcomparing any possible combination of IWo

goods under the constraint of ir.difference. TItis is of course gross exaggeration. The

human being is not hom with live Pentium® chips in his brain! Let us go a little further

now. The points on the ultra-thin demand function are found successively by maximizing a

utility funetion subjeet to a budget constraint. Hence the point found for a particular

maximization derives from the fuet that we are able to compare an infinite amount of

quantities no matter how small or hig they are, all respecting indifference! This is
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erroneous. Thus it must now be clear that ifwe leave sorne leeway to thc individual, as we

kllow him; then we will not obtain a precise quantity as the result of thc optitnization but a

fuzzy quantity! Let us go still a Iittle fiuther. III arder ta make hllmall sellse Ollt of the

IIltra-thill illdifferellce cllrve we are tnl/y obliged ta accept that some qllalltities ofgo()(is

will be illcomparable. I.e. we cali Ilot compare olle milliollth of a IlIlit of good X ta /0

IIllits ofgood Y. This is thell illcomparabi/ity. Bllt illcomparability is IlImped together with

illdifferellce here givell that we face ail IIltra-thill illdifferellce cllrve. Helice Ihe lIecessi~v

of the completelless axioml The problem of IlImpillg illcomparability illlo illdifferellce :

which is c1early fallity bllt Ilecessary ill arder ta make hllmall sellse 0111 of ail II/Ira-Ihill

illdifferellce cllrve is absellt whell cOllsiderillgfllz;;y IIti/ity /tIllC•. JIIS.

The reason for that is quite simple. The fuzzy utility fiutction now cames fuzzy numbcrs as

levels of utility. The fuzzy utility surface will have a 'skin' of varying thickness! Now

consider a horizontal cut through this fuzzy utility surface. Say that fuuy utility is

measured on the Z-axis (vertical) and the non-fuzzy quantities ofboth goods on X and Y

axis. The projection of the cut on the XV plane will yield an indifference curve which will

be fuzzy and will now be non-uniform. The non-uniforrnity of such projection could be

roughly defined as indicating that we can denote an area to the indifference curve. TI.ere is

no such area in the classical case. When optimizing a fuzzy utility fiutction with a non

fuzzy budget constraint we obtain a quantity on our fuzzy demand fiutction which

precisely corresponds to the quantities found on MarchaI's thick demand curves. For a

fixed quantity ofgood Y; the indifference will purport to a certain interval of quantities for

good X. This makes much more sense now. Remark that the utility level for the fuzzy

indifference curve is also fuzzy. Another important question arises and that is the one of

levels of indifferellce. The concept makes plain sense as we will see below. In effect the

fuzzy indifference 'curve' has also a membership fiutction; and hence levels ofilldifferellce

can be contemplated.
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;2..N9.ffillIliu\!!!I!. Qf.th~.fiI~.im\iffc;r.\l)).Çc;.~~,

Point 1 dealt with an intuitive outline on the fuzzy utility function. We now want to

formalize our thougltts a little more. We begin with the fuzzy indifference funetion. The

fuzzy utility funetion is de6ned as a mapping from X in F(U) thus: 1: X ~ F(U). X is

the commodity space ; i.e. the set of ail commodity bundles. F(U) is the collection of ail

fuzzy numbers which indicate the level of fuzzy utility. The locus of l in the product

space X x U; which Chen et al. cali the consumption space is then a fuzzy subset of

X x U . Equivalently one may also construct a fuzzy relation 'PI between X and U.

Now we could view in the case of the utility function that the level of fuzzy utility is the

dependent variable. In the case of indifference curves we cc.u1d view the commodity

bundle as the dependent variable. Hence we could define for fuzzy utility functions the

relation 'PI (x, u); where x is a commodity bundle and u the level of non-fuzzy utility; this

represents a relation from X to U. The inverse relation 'PI -1 goes then from U to X .

Following Chen et al. the indifference set of commodity bundles is defined as:

Jm = Px(M n'PI -1). This needs sorne explanation. First of ail M eF(U); and it has to

be extended to M because 'PI -1 operates in U x X ; hence as we know the projection to

be equivalently defined to a composition of relations (see 3) under VI.I.2.) then as Mis

defined in U; the composition M0 'PI -1 will be defined in U x X ; so M is to be extended

in U x X . The question arises why there is a need to compose with M. The only way 1

can see this is that u takes non-fuzzy values and ail those non-fuzzy values 1inked to the

different non-fuzzy commodity bundles sorne of them will fit witbin the fuzzy set M. The

intersection of the inverse fuzzy relation and the extended M will yield the indifference

area; Le. given a certain level offuzzy uti1ity what are the consumption bundles; which are

non fuzzy here; which carry this same level offuzzy utility? This 'interseeted area' is then

projeeted on the commodity space. Remark that in faet 'PI (x, u) is not a fuzzy relation as

neitber x nor u is fuzzy; but MeF(U) is fuzzy. We are Blso concemed in finding a form

for the membersbip function belonging to the fuzzy indifference set. That the indifference
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set is fuzzy is an immediate consequence of the fact that wc arc conlfonted with a fuzzy

utility. Therefore wc now have a look at this membership function. As seen in 3) under

VI. 1.2. the composition of two relations may also be expressed through max-min. l11is

yields then the following:

PT., (X) = max.min[p.l1 (II), P1(1) (II)]. Ali explanation oft:le symbols used is immediatcly

needed. P = membership grade and X = non-fuzzy commodity bundle. Now it is

important to correctly read this definition. M and l (X) arc fuzzy sets. Il is not a fuzzy

lIumber but is an ordinary number.

M is a fuzzy number and l (X) yields a fuzzy utility which is also a tuzzy number. By

denoting P!J (.) or P1<Il (.) we look at how well the non-fuzzy utilities arc members of

the fuzzy set of utilities. How can we describe the membership grade of the non-fuzzy

commodity bundle X in the indifference set TM? Basically we need to look at how close

the fuzzy utilities through l (x) match the given level of fuzzy utility M. A perfect match

for instance will generate a perfect membership of' l'in TM' Thus following Chen ct al.

'this 'closeness' of Iwo fuzzy sets l (X) and M is measured by the maximum of

membership grades of the intersected set of l(x) and M '.([12], p.288). Remark that

lm = p.~ (M ("\ ïpJ -1) indicates the set of commodity bundles eligible to be claimed

indifferent. Using pi,,(x)=max.min[PA,(u),P111)(II)] we look at how well those

quantities are members of the fuzzy indifference set; i.e. it traces out the membership

funetion. Both formulations show us that the indifference set is clearly a fuzzy set. Remark

finally that in the case of a horizontal cut (still with Iwo commodities) the membershir

funetion will be three-dimensional

.~....pj~~i!ÎQ!)

The fuzzy indifference set was defined through : lm = Px (M ("\ ïpJ -1). The meaning ofthis

formulation is crucially important. Let us go a little deeper. Assume commodity bundles of

Iwo goods. We can basica1ly express the fuzzy indifference set in a one dimensional setting
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or a two dimensional sctting. In the one dimensional setting a vertical cut is perfonned on

the fuzzy utility surface. The intersection of the cylindrical extension of the fuzzy utility

and the vertical eut of the fuzzy utility surface will gÎve us an area which is to be projected

on the commodity space. The rcsult is a fuzzy indifference set. For our purposes it is , in

lioe with the classical case, more interesting to perfonn a horizontal eut on the fuzzy utility

surface. For this we take again the cylindrical extension of the fuzzy utility which is now

horizontal of course and let it intersect with the fuzzy utility surface. This intersect;ull is

now projected on the commodity space. The fuzzy indifference set thus obtained looks Iike

in the figure below. Remark that the fuzzy indifference set has an 'area'; to the contrary of

the classical case where there is no area. A three-dimensional membership function is put

on this fuzzy indifference set.

~_---J> Xl

__---+ A Fuzzy
Indifference
Set.

X2

VI. 1.4. Fuzzy Weak Preference Set

In classical theory the upper contour set of the convex indifference curve would show us

the weak preference set; ifof course the lower boundary is included. This upper contour

set we know is a convex set. How would the fuzzy weak preference set be defined? In the

c1assical case an upper contour set given a certain level of utility can be defined as the

Wlion of all indifference curves carrying a level ofutility greater than or equal to the given

utility. Says Chen et al 'The weak preference set RSl is the union of an indifference sets

with fuzzy utility indicators greater or equal to M. ' ([12]; p.290)

An immediate question arises: how can one define one fuzzy number to be greater than

another? 11ùs was looked at under Vil.l.2. The definition as proposed under that heading
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makes sense as long as the membership funetions of the fuzzy number are similar in shape.

If membership funetions can assume different shapes it will be difficult to $tart comparing

the alpha-cuts for ail alpha before we can conclude that a fuzzy number is really grealer

than another. The operability of the proposed definition is certainly quesiionable 10 some

extend. One way to write Rtl (the weak preference set) is then as follows:

U{i; = M, 0 Rf -1 .; M, ~ M} .
1

VI. 1.5. TIle fuzzy steD funetion

Let M be a fuzzy number; the fuzzy step function is defined as a fuzzy set obtained frolll

M by letting P AI (x) = I;/or ail X > X o. TIle qunntity at which the bWldle assigns Il

membership value of' l' is denoted XO' For ail quantities beyond X0 a membership vlllue

of 1 is counted. Remark that X0 ,x are thus vectors. This proposition is extremc\y

debatable, however! We still assume that we work with Iwo commodities.

As the fuzzy indifference set is indeed carrying a membership function ail couples in the

given set will carry a degree of membership in that set. Clearly if a specific commodity

vector has a low membersbip value in the given set, a set, which we recall is of course

totally conditioned upon the given level of fuzzy utility, then we may either conclude, in

rough terms, that the level of fuzzy utility is either t<>o high or too low for this specific

conunodity vector. Chen et al. propose however that if a particular vector can be localizcd

which has degree of membersbip '1' then aIl vectors greater than this vector would also

have the same membersbip degree in the fuzzy indifference set. First a vector greater than

nnother vector, in Iwo-dimensional space, means that at least one of the coordinates has to

be strictly bigger thnn the corresponding coordinate of the other vector. There is at least

one problem to this proposition. By augmenting the quantity of at least one of the

coordinates it is not appropriate to think the membership degree would have to remain at

100%. Ifa commodity vector is higher in qunntity thnn nnother for which the melllbership

was 100%, it is erroneous to think that the higher quantity couples would have alsa this

membersbip grade! Instead they would have lower membership grades as they would fit

less weil in the given level of fuzzy utility; i.e. for the higher qunntities the given level of
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fuzzy utility would be too lowl Hence we can not subscribe to Chen et al. proposition of a

fuzzy stcp function. Recall that the union of fuzzy indifference sets which have a fuzzy

utility higher than or equal to an imposed threshold level of fuzzy utility would form the

fuzzy preference set. Using the Zadeh operator for union which is 'max' wc would then

take the maximum of ail membership grades of ail the fuzzy indifference sets constituting

the weak fuzzy preference set and we would then have found the membership function, in

three dimensions, ofthe fuzzy weak preference set.

VI.I.6. Analysis of the strong preference set

We now need to thir.k a little deeper on how a fuzzy preference set would be con!'tructed

in detai1; when we are confronted with a strong preference set. We agree that

U{T, = M, 0 Rf -, .; M, > M} now expresses the strong preference set instead of the
1

weak preference set. There is a serious difference as to the construction approach when

lookillg at the two types ofpreference sets. In the strong fuzzy preference set we needfirst

to disentangle the problem of knowing which coordinates belong to the fuzzy threshold

utility level and which coordinates would not belong. In the weak fuzzy preference case

there is no snch problem as we have a weak inequality between fuzzy numbers. So in the

weak preference case we can satisfY ourselves with just constructing the membership

function of the preference set. The problem we want to discuss now is related to the fact

that we do not really know how to delimit the strong fuzzy preference set. Under the

condition of a concave fuzzy utility surface (see VU.? below) we will in most

circumstances be confronted to an overlap of fuzzy indifference sets. The situation is

pictured in the figure below:
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1----.. Il

Two Overlapping
Indifference Sets

~---t> 12

The fat-lined curves fonn one indifference !let (Il) and the thin-lined another indiffercncc

set.(I2). Clearly the fuzzy indifference sets do overlap. The commodity vectors which lie in

the overlapping area can not have a membership degree of 1. This is expectablc as fi ) 00%

membersmp in both sets would imply a contradiction against ordinary set theory. We will

exclude the commodity vectors which belong to the fuzzy indifference set carrying the

benchmark fuzzy utility. The other 100% commodity vectors will fatally belong to the next

higher level of fuzzy utility and should thus be included in the strong fuzzy preference set.

The problem is ofcourse not solved yet because we have to decide what to do with a11 the

commodity vectors which have membership degrees which are less than ')'. The vectors in

the overlapping area will nonnally have two membership values; i.e. in relation to each of

the membership functions. The issue is clear if for a certain vector the membership value is

higher in one set than versus another. If the membership of a vector is higher in the

benchmark fuzzy utility indifference set then this commodity vector will be excluded. [fthe

reverse occurs the vector shouId be included in the strong preference set. We are still nol

finished. We still have two remaining cases. The vectors which are in the non-overlapping

areas but do not have membership values of 'l'and the vectors which are in the

overlapping areas but do not have two membership values. For the case of non-overlap

and membership degrees inferior to 1 a proposition could consîsts in crealing a

neighborhood of sorne radius around the commodity vector in question and to find out

whether membership increases ifat least one ofthe coordinates is increased. Ifmembership

increases then the low original membersbip value is due to the faet tltat tlte fuzzy utility is

tao high; rather than tao low. Ifthe membership decreases while increasing at least one of
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the coordinates then wc can conelude the fuzzy utility is in fact too low for the particular

commodity vector. In the latter case for instance the commodity vector will be included in

the preference set; while he will not be included in the former case. We need of course to

take a radius which is small enough so that one remains in the same non-overlapping area.

The same procedure eould be followed for the case of overlap but no double membership.

This is only a sketch of the possibilities. There may be more possibilities and things may

get quite more complieated ifthe membership functions take peculiar forms.

lllere is sorne 'discipline' however in what possible forms the membership functions of

fuzzy indifference sets can adopt. lllis discipline is imposed from the fact that the

membership functions ofthe fuzzy utilities are fuzzy numbers and must thus be convex and

normalized.

VI. 1.7 Is the weak preference set a convex set?

ln classical theory this is an important issue. A unique optimal point depends on the

convexity of the preferences set. The same goal has to be pursued in a fuzzy set

environment.; though this may weil be more difficult. One of the crucial requirements for a

convex indilference set is the requirement that the utility surface is concave; i.e. that it

indicates diminishing marginal utility. TIus will yield in classieal theory nice convex

preferences and consequently a preference set which will be a convex set. We assume the

commodity bundles are 'good' goods, i.e. not 'bads'. The problem when introducing

fuzziness is that we are confronted with a non-uniform utility surface, as said already

before. Hence we need astringent requirement so to be able to clam that the fuzzy utility

surface is indeed concave. Imagine that the 'top layer' of this surface is indeed concave;

this does certainly not imply that the layers below that 'top layer' will be concave; they

may have convex parts. So to be able to clam that a fuzzy utility surface is concave we

must tear apart this 'tick' surface into several layers and examine each of the Iayers

separately as to whether they are concave or not. Chen et al. ([12];p.294) call such layers

iso-membership grade suifaces.(IMGS). Each layer has a varyingjùzzy utility but carries

the same membership grade in the dilferent membership functions associated to the varying

fuzzy utility. Ifeach ofthose layers is indeed concave then we can declare the enlire fuzzy
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utility surface to be concave. An this leads us to a possibly important theorem which mllY

be the base offinding fuzzy equilibriae:

Theorem: /1 every III=ZY IItility il/dicator 01 a 11I==Y IItility relatioll is cOI/I'ex alld

I/ormali=ed, al/d if there is a dimil/ishil/g margil/allltilitylor every IMGS thel/ the lI'eak

preferel/ce set is cOl/vex. ([12],p.298)

Let us briefly discuss the conditions ofthe theorem.

1)The fuzzy utility indicator has to be convex and normalized. In other words we milst use

fuzzy numbers as utility indicators. The requirement is important because it anows liS to

claim that the fuzzy utility surface win be uniform. Of course the uniformity of the fuzzy

utility surface does not guarllntee there win be no convex parts in this sllrfllce. 'nie

requirement ofusing fuzzy numbers only lead us to conclude that the ISMG surflices win

never intersect when the fuzzy sets (here utility indicators) are convex and normlllized.

2) There is also a diminishing marginal utility needed for the fuzzy utility surface. In other

words we must impose that every ISMG surface is to be subjected to diminishing marginlll

utility. Requirement 2) is expected, given of course that !Tom 1) we only could conclude

the fuzzy utility surface would he uniform. If every ISMG surface is indeed concave then

the fuzzy utility surface win he concave.
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YI.I.S. The optimi7J1tion I1roblem

We now will consider the simple case of optimizing a utility function subject to a fuzzy

budget constrainl. 'nle result out of this optimization should yield us Marchal's thick

demand cuIVe as discussed before.

'nlis section has four objectives. First, to give a taste of the dangers offuzzy optimization

and second to show the dependency of fuzzy optimization on underlying membership

functions. TIle third objective has as mission to spell out a possible approach to optimizing

a crisp utility function subjer;t to a fuzzy budget constraint. The fourth objective concerns

the optimizing of a fuzzy utility function subject to a fuzzy blldget constraint. Let us

remark howcver we will not use any fuzzy optimization techniq~'e proper as this would

re·.luire too much sophistication and space is not provided in this paper to expand upon a

possible fuzzy optimization with sophisticated membership fu:lctions. This relates to the

~cond objective we mentioned above.

,1.Qbjective.I ,811d ,II;. Oallger.s ,of. i)Jzzy, optimizatiQII•. P~pcndcncy., Qffuzzy.QPtilJ)i,z;!tiollQn

IJ)embersltip. fUIICliQlIs.

ln most offuzzy optimization max-min operators are used. Lai and Hwang are an exal1lple.

([45]). Part IV showed us that max-min operators have theoretical validity but are quite

less useful in a practical descriptive context. The max-min operator within the

programming context derives from a paper by Bellman and Zadeh in which the authors

propose that the decision should be based upon the conjunction ofobjective and constraint

and therefore the 'and' operator (or min) would be used on objective and constraint. A

decision based upon those two ingredients is un-debatably a necessity howcver whether

the min opr:ator is to be used for tbat is to be discussed. The word 'conjunction' is

somewhat debatable however. Following Bellman and Zadeh in ([4],p.8149) this

conjunction refers to the 'hard' 'and'. Howe-,er other operators may be looked at notably

the product operator (i.e. compensatory) as seen in part IV of this paper. Note that

Bellman and Zadeh only give an intuitive type argument for this 'and; operator in [4].

Many fuzzy optimization techniques which 1 came across with, mainly through Lai and

Hwang ([46]) d01nly cover an extremely lirnited fOTm ofmembership function: linear and
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of a particular shape. For more sophisticated shapes as the. one which wc will be lookillg nt

in objectives three and four~ i.e. when optimizing (fuzzy) utility subjcct to a {fh7ZY) budget

the briefsUlvey R'I~towing here below will be ofno use whntsocver. 111e particular shape or
the membershlp functions considered in ([46]) would be orthe following type:

Consider this h:i~b prohlem in fuzzy optimization

max:= ex

s. t. (Ax), '5:b,. 'fii;x ~ 0;6, e[b"b, +P,]

and the Hoear assumed membership function is defined as:

{

rI if (Ax), :5. b,

V,(x)= l-[(Ax),-b,]IPlifb, «Ax), <b,+p,

Oif (Ax), ~ bl +P,

The following points should he raised:

1) the membership functions are often assumed to be nicely tinear. Lai and Hwang in

([46]) is an example. From part III we have been stressing enough that the way to get to

membership functions is extremely dependent on the problcm at hand. Also important arc

the derivations whieh arE'! presented using this type of membership function. More

eomplieated membership functions will also yield in general more complex solution. Wc

can not go in detait on this however. Different approaehes for specifie more sophisticated

sets ofmembership functions do exist (for instance piece-wis~ Encar continuous functions).

However the solution procedures are rcaUy quitc Hmitcd to a quitc simple set of

membership funetions. Wc did not come across specifie solution procedures when

memhership funetions adopt a much more 'non~c1assified' character. Remark however that
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if fuzzy numbers are present we need to consider a normalized and convex membership

function. Hence there is quite less scope to consider more convoluted membership

functions in that case.

2) related to 1) is the problem of the assumed operators. Clearly max-min has been

resolutely shoWII in part IV to be of doubtful value in practical cases. The Zimmerman

Zysno study showed this conclusively. Recall Zimmerman's attempt to detine an operator

with a weighted compensation build in. Here also the solution procedures when using

those more sophisticated operators becomes clearly more difficult to handie.

3) An explicit form ofthe Operations Research approach is stochastic programming where

randomness is key. One argument to leave this approach aside is by pretending that fuzzy

prograrnrning is less concerned with the issue of quantity of information than with the

problem of meaning of information. The quantity of information approach cornes in there

where randomness is introduced. I.e. it purports to the transmission of information. What

has reference to meaning of information should be represented tbrough possibility rather

than probability. This is the stance Zadeh took in ([76]). We have left the possibilistic

distribution approach, as an alternative to membership functions totally aside in this paper.

As an aside it is however interesting to look at the distinction where fuzzy sets uses

membership function and where it does uses possibility distn"butions. In ([1 7],p. 15) Dubois

and Prade tell us that the tirst area (i.e. membership function) purports really to a state of

complete information; i.e. there is no uncertainty. Remark inunedilltely that membership

functions refer thus to imprecision, but not to uncertainty. The scope of fuzziness in

economics remains valid however. The second area; i.e. ofposS1"bi1istic distribution wouid

be the area which relates to uncertainty; or also incomplete information. The important

point is that the propositions in the second case are explicitly BOO/l'an; i.e. true or false.

Say Dubois and Prade' degrees ofuncertainty apply to ail or nothing propositions, and do

not model truth values but express the fact that the truth value (true or faIse) is unkOWII.

([17], p.16).

4) One should perhaps show a littIe more nuance towards the kind of black and white

distinction of randomness and fuzziness. It weil may be that there are instances in
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programming problems where both randomness and fuzziness appear. What to do in such

a case is a mystery.....

5) Last but not least let us show the case where with the assumed membcrship fimction

(i.e. Iinear) we optimize a crisp utility fiUlction subject to a fuzzy budget constraint. Many

of the methods used in Lai and Hwang for instance arc in faet iterations on optimal

solutions obtained in a crisp setting. Many optimal solutions do not makc use of ail input

resources which are avaitable in for instance a production problem. By altowing a produccr

to be 'fuzzy' on sorne constraint variables this input use can be re~modeled so tltat bctler

optimal solutions are found. As such this is not reany new at ait! A simple example can

m xO,JyO.K U( y)
eonfirm this. A specifie utility function is as follows: ax = x, ; which i5 a

s.t.2x+yS 100

elassical problem. We assume non-satiation. The Lagrangian is as follows:

t' = xO.
J

yO.8 +Â[IOO- 2x-y]; solving titis yields us for x=1O and y=80. Now consider the

optimization problem when we are confronted with a budget which i5 not crisp. Say that

the constraint ofthe budget is DOW a fuzzy number. We get then the following problem:

max xO.
2

yO.8 = U(x,y)

s.t.2x+YSI00

Assume the level of tolerance is 10. Name the budget function B(x). The membership

function, for the fuzzy number 100 would then be in ilS simplest forro:

{

I if B(x) < 100

PB(X)= l-[(B(x)-lOO)/IO]if 100SB(x)S 110. So the membership function ofthis

Oif B(x) > llO

1~~le 11 fuzzy nu.niler
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fuzzy number is then just as in the figure. Remark that the membership at x=100 is 1; while

it is '0' at 110. The point wc want to make is that if we follow the approach of the basic

fuzzy optimization problem as set out above, then the maximization problem could be re

written as follows:

maxx··'y···

s.t.2x+y:S; 100+10(I-a)

The Lagrangian is then: e=x··'y··· +,1.[100+ 10(B)- 2x- y]; where B=1- a;B e[O,I].

One sees immediately that if one takes first derivatives towards x and y that the obtained

result will not be very different. We would simply obtain that x =10+B;y =80+8B.

Setting for instance B= 1 we would indeed find the budget of 110. So we could see this as

juS! a separate optimization for different budget values lying between 100 and 110. There

is effectively nothing new here! For more sophisticated membership function resllits may

weil be very different as said above. The solution method proposed here would not be

usable.

;2.•.Obje.cti.Y.~ ..lU~.Çri~ .\!tjJÎty..:mIJ..fu2:?;y..bu.dg~.t .Ç<91!~r!\mt

The set up ofobjective III is as follows. First we will make a general proposai for the case

of optimizing a crisp utility subject to a fuzzy budget constraint. The proposed result will

then be translated into the economic setting. The development follows here Billot and

Ponsard.

2. 1. Basic Set up

Define a set E ofail possible commodity bundles. The agent has a crisp utility function on

E but has to take into account that he is confronted with a fuzzy budget constraint. The

objective function results can be captured in a crisp set F; subset of the set E. The

objective function is defined as : f:E ~ [0,00[; wherefrom we derive immediately

f(x) e [0, 00[; where f(x) measures thus utility. The fuzzy constraint is a juz..-y subset ofE;

which can be denoted as è; and which is defined as: U(':E~ [0,1]; thus the membership
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values are taken in [0,1]. Those membership values signif)- the degree of membership to

the constraint.

Following the proposai by Bellman and Zadeh ([4]) that optimization is a basically a max

min operation; we can write our problem then as:

supHcf(x) = sup ,eh' [min(f(x), Uc (x))]. TItis means thus that the best allocation possible

is the maximal element ofthe intersection ofF and C. The 'optimum' formulation can be

re-written however. Use is made ofthe definition of an alpha-eut which we covered in pllrt

II ofthis paper. The following definition was presented: A= Ua.C(a)A. Let us take Il

"
simple example. Consider the following fuzzy set: A= 0 Il +0.5/2 +0.8/3 + 1/4 +0.2/5 .

Taking C(O.5)A ofthis yields: 0/1+112+1/3+1/4+0/5. The fuzzy set A is the union for ail

levels of a of a. C(a)A. This yields then for a = 0.5: 0/1+0.5/2+0.5/3+0.5/4+0/5. l11is

procedure is to be repeated for allieveis of a e[O,I]; taking then the fuzzy union or what

is equivalent of all the membership values for the respective variables we must obtain the

original fuzzy set A. Il is straightforward to see that a. C(a)A = min(a. C(a)A). TIlis

should be c1ear as we know that C(a)A adopts only binary values of '0' and' l '. The

above example is an easy check on this. Following the definition; A= Ua. C(a)A we can

"
thus write that U;,(x) = max" [a.C(a)A]; which is now equivalent given

a.C(a)A = min(a,C(a)A), to: UJ(x)=max,,[min(a,C(a)A)]. Given this last

formulation then sup ,.f!f(x) = suP'<E [min(f(x),Uc(x))]; can be re-written as:

sup ,.f!f(x) = suP,... [min[(f(x), max" [min(a,UCC,,) (x»]]] .

Using this last formulation and applying several operations of distributivity, associativity

and commutativity on max-min operators (see in part II) the above fonn can be reduced to

the following formulation:

sup ,.f!f(x) = sup" min[a, suP,.cc,,/(x)]

which can easily be re-written as:

sup,.f!f(x) = suPa [a 1\ sup ,.c(a/(x)]
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2.2. Sugcno Measures

The solution will not be fuzzy, though of course the obtained commodity bundle will

belong to the fuzzy \>udget set. Would the solution be fuzzy then we would obtain a

solution set with a membership function and every feasable solution would belong to sorne

degree to this membership function. It is of great importance however to accept that the

solution obtained is truly a function of the membership function which is proposed. My

view is therefore that the Sugeno-integral gives us a clue at how the membership function

may influence the probability that the optimal couple will belong to the fuzzy budget

constraint we have been imposiog. ([1],p.48) The solution statement

sup •.rf(x) = sup a [a 1\ sup .<c(a/(x)] can be reduced to a Sugeno iotegral following

Billot in ([5], p.66). Before we come to a rudimentary explanation ofthis iotegral wc first

must briefly consider the fuzzy measures on ordinl1ry sels. We will see that the fuzzy

Sugeno measure on ordinary sets is io fact a very general approach to fuzzy measures.

Special cases from this general approach are for iostance the belief function of Shafer

([64]) which we covered io a former part io this paper. Our objective is not to stress the

fuzzy measures on ordioary sets but to look at the Sugeno iotegral. Both approaches have

a common set up however.

2.2.1. Fuzzy measures on ordioary sets

We follow the development by Dubois and Prade. ([16],p.126-134)

Let g be a function from .(:1(X)~ [0,1]; where .(:1(.) is the set of subsets ofX. g(.) is said

to be a fuzzy measure iff:

1) g(0) = O;g(X) = 1

2) 'VA,B E&'J(X),if A c B =:> g(A) ~ g(B)(monolonicity)

3) if 'Vi EN, A, E &'J(X); (A, ), is monolonic:A. ç; Azoo.c An or also A, :::l Az ;;;loo.An
=:> Iim'...œg(A,) =g(Iim'...œA,) (conlinuity)
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g(A) is llalIed by Sugeno a 'grade offuzziness' ofA.

To just establish a brief ovelVÎew of the connection of a fuzzy Sugeno measure with for

instance probabilities or also Shafer belief functions we need to define Sngeno's

À - jilZ::Y measures. Those measures relax the additivity property of probnbilities in the

folIowing sense:

'r/A,B E~o(X);AIiB= 0: gA (AuB) = gA (A)+ gA (B)+Âg. (A)gA (B); Â > -\. Note the

added term ' ÂgA(A)gA (B)'. Would gA be a probability we would I/olneed this additionnl

term; as AliB = 0. Dubois and Prade give a short proof which explains why Â > -\.

([16],p.127) The proof mainly uses the property 2 of monotonicity. We do not re-iternte

the proof here. It is interesting to note that if Â = 0 the above formulation reduces to a

probability statement with AliB = 0. As long as Â ~ 0 the fuzzy measure wilI be a

Shafer belieffunction. Thus a belieffunction is thus a special case of Â - fuzzy measures.

2.2.2. The Sugeno Integral

Billot claims that sup.<i:'f(x)= SUPa [a 1\ suP'eCla/(x)] can be reduced to a Sugeno

integral. For this the folIowing is necessary:

1),u/ (C(a» = suP.eCla/(x)

2) supJ(x) = 0

3) sup....f(x) = 1

Note that Jl / (.) is a fuzzy measure on an ordinary set. (see below) f(.) is our utility

funetion which is crisp here. ,li/ (.) is found by running through the values found through

an alpha-cut, i.e. XE C(a). So we can truly speak about a fuzzy measure on an ordinary

set though the budget constraint is fuzzy. The 'ordinariness' of the set comes thus through

the alpha-cut.

Of course the fuzzy budget has a membership funetion and the results obtained after

different alpha-cuts refleet the membership funetion in sorne sense. Using ïi = UaC(a)A
a
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wc ean sec immediately that such proposai makes sense. The crisp set E is the set of ail

commodity bundles. Note also that the utility value through f(.) will tend to 1; when ail

commodity bundles are considered. This is a necessity ifwc want to respect the conditions

ofa fuzzy measure on an ordinary set. It is such that the fuzzy measure on the entire set is

I. (condition 1; under 2.1) The intuition behind ,u/(C(a»=suPxoC(a/(x) as a fuzzy

measure on an ordinary set could be as follows. Considering that a fuzzy measure in our

context would indicate a 'degree' of certainty of a commodity bundle belonging to E a/so

will be/ong to the budget set AND POTENTIALLY SOLVE THE OPTIMIZATION

PROBLEM As an example if a commodity bundle is way above the fuzzy budget

constraint the 'degree' of certainty will effectively be zero; plainly because this bundle will

not be included in the ordinary set C(a). Hence ifbundles are in C(a)(thus for a certain

level of a) which provoke a high singular level of utility through sup •.ela/(x) then

effectively the 'fuzzy measure' or equivalently the 'degree of certainty' the bundles

belonging to E will belong to the budget set and potentially solve the optimization problem

will be high. Note that for bundles which belong to C(a) one can not obtain a fuzzy

measure ofzero. This should be c1ear as the fuzzy measure is the result of a supremum and

hence as values obtained through the utility function afier an alpha-cut has been performed

should be necessarily zero. This is weird indeed as wc would need negative utilities! So we

should conclude being a member of C(a) confers already a positive fuzzy measure. The

higher this fuzzy measure however the better. The reason why tbis is so is that our

maxirnization problem still consists in finding the highest utility possible subject to a

constraint. Note also that if a = 0 there is no reason to believe that automatically the

fuzzy measure on C(a) will be 1. We only have that suP•.sf(x) = 1; i.e. thus for ail

commodity bU/id/es. Wc also remark that an alpha -cut of0 is in fact a senseless statement.

Consider a fuzzy set A= 11 0+2/ 0.4 +3/ 0.6 +4/1. Taking an alpha cut for a = 0 would

lead to a contradiction ifwe work with a weak alpha cut. The reason is simple as then the

element 'l' would now belong to the ordinary set whi1e it neither belongs to the fuzzy set

nor to the ordinary set associated to the fuzzy set. Wc can set a = 0 but then we should

consider a strong alpha-cut. Another issue is that the fuzzy measure suP.oCca/(x) is very
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dependent on the membership fonction which is attached to the budl~et constraint under

consideration. In fact this specifie fuzzy mensure is dcpendent on tluee variables: a; the

membersbip fonction and finally the utility fonction!

Let us first see the dependence on tlie membership fonction with ditfcrent cases of

membership fonctions.

The figures represent three possible membership fonctions for the fuzzy budget constrnint.

Note that the possible budget quantities are on the X-axis (denoted B(x». f(.y) is the utility

fonction.
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The three figures are A, Band C. Let us look at the results for sup'eCla/(x), One sees

that for the alpha cut of a = 0.5 the eligible budget quantities are drawn horizontally down

to the quantities used as input for the utility function. The figures should be three

dimensional but that is impossible to draw here. Taking the supremum of the utility values

on the Y-axis in the bottom graph of A we obtain a value of 0.7. Imagine the same alpha

value for figure B. The eligible quantities will yield when the supremum is applied a value

of ' l '. No matter what alpha value is cOl1sidered il1 figure B the supremum value will

a/ways be '1 '. In case C we see that for lower values ofalpha higher supremum values are

obtained. Thus the relationship between the fuzzy measure and the level of alpha is very

dependent on the kind ofmembership function under consideration.

A1so the value of sup 'eCla/(x) is also dependent on the level of alpha under

consideration. Finally it is also dependent on the shape of the utility function. Let us

assume that the utility function has the concave shape as presented in the three figures.

The above figures are caricatures. Considering our optimization problem il looks appealing

to assume that allocations which are 'closer' to the richness of the individual will also be

allocations which will be having a higher membership value in the fuzzy budget constraint.

On the contrary the allocations which are far from exhausting the richness ofthe individual

will have much lower membership values. Figures B and C are especially caricatures. It is

unappealing indeed to assume that there is a whole set of allocations which would have a

100% membership value in the fuzzy budget constraint. It may indeed be exaggeration to

assume that the membership set should be normalized. In the case ofnon-normalization the

fuzzy budget set can not be a fuzzy number anymore however. Figure B does pose some

serious trouble, apart trom the fiat part, in that no matter the alpha value the fuzzy

measure will always yield a value of 1. This is truly senseless. Let us recall that a low alpha

value as applied in an alpha cut implies that the fuzzy set is very fuzzy indeed. A high value

will mean the opposite. Take the alpha cut with alpha=1 and we obtain the same crisp set

as the crisp set associated wilh thejùzzy set. This is clearly non-fuzzy. Our proposition for

a reasonable membership function would resemble figure A and would of course have to

be drawn in three dimensions; given that we have commodity bundles with at least two

goods. We could draw this in two dimensions as follows:
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The membership function has now several contours. In a two good commodity case the

membership function would be of the fonn a =g(x.y); where x and y are two goods. TIle

function would best be captured in a three dimensional setting. TIte above membcrship

function has several contours which come from cutting the membership 'surfacc'

vertically. Using the fact that the more of each good is present the higher the utility would

be up to a point of saturation; i.e. we assume non-satiation. The utility filllctÎon has

contours. The contours provide from a vertical cut on the crisp utility surface. We transit

from a lower contour to a higher contour (i.e. for instance from 1to II) by augmenting one

of the fixed coordinates. Say the vertical eut was obtained by varying the quantities of

good X but leaving quantities of good Y fixed then we get a higher contour Une if wc

bigher the fixed quantity ofY. Now let us look at the contoured membership funcdon of

the fuzzy budget constraint.

Following the proposition that the more we exhaust the budget the higher the mcmbcrship

value will be then it is logical to assume that for instance the membership values at vector

xwill be higher ifwe let positively vary the coordinate y; and keep the x-coordinate fixcd.

Note that the intercept A on the X-axis is a set which contains the different vectors where

each vector has a fixed coordinate while the other coordinate is increased with a constant

value. Thus if there are for instance three contours then the set A will contain three

veetors.

We need to argue in favor of why the specific forro of the membership funetion was

chosen. Assume we would know our precise wealth then the membership values would

increase to the commodity bundle which exhausts 100% our wealth; at that point the
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membership value would be one. Beyond that point the membership value would have to

be O. As wc do not know our wealth precisely we could argue that considering sorne

specifie set of allocations will have suecessively higher and higher membership values up to

where membership is highest and then decreases. The left part of the membership function

would then 'mirror' the right part of the graph. Note however that it would be erroneous

to assume that we could have a 100% membership value in this case. Merely the contours

maximae tend to a 100% membership degree but never reach it. Would a commodity

bundle (x=fixed and y=variable) reach 100% membership there would be no scope to

accord positive membership grades for higher quantities beyond that point. Thus we

t:xplicitly assume thot the membership function can not be a fuzzy number; as it is not

normalized

What is to be done now is to look at the evolution of a Vs. f.I j (C(a». We can clearly

see that for a given membership contour there is an inverse relation between the two

variables. The lower alpha the higher the supremum value and the higher alpha the lower

the supremum value. This is not a good relationship however! If a specifie number of

quantity vectors belonging to a certain very low alpha eut yield thus high utility then they

are effectively good candidates for our optimization. The only serious problem is that

those vectors have been found with very low alpha values and thus the set from which

those vectors are drawn is a high1y fuzzy set! The best result is to obtain quantity vectors

eoming from a high alpha-eut and yielding a high utility. The proposed membership

function does not allow this. We do want to find an overall measure which would take into

account the trade-off between a level of alpha and the fuzzy measure. The forro could be

as follows: suPa<lO.1) [a 1\ f.I j (C(a»]. This forro does totally mimic the solution forro we

have found under the section in which we dealt with the basic set up. After re-working we

found for our problem the following solution forro:

sup•..:-f(x) = supa [a 1\ suP•.c(a/(x)]. Following the definition of a fuzzy measure ail

what is to be done is to replace the supremum in titis statement by the fuzzy measure and

we arrive to the forro SUPa<lo.I)[al\f.lj(C(a})]. This latter forro, we propose is the

Sugeno Integral. The Sugeno integral has the same definition in general The interesting
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issue about this integral is that it is afl/==Y lIIeasl/re ofa FUZZY sel. '111e fuzzy measure wc

considered so far were fuzzy measures on ORDINARY sets. Let us look ill our case what

the result would be ofthe required operation. Of course the result depends 011 the shape of

the utility function and the assumed shape of the membership fUllctioll. Note however that

a e(O,I] and f(x) e(O,I] as defined above. So it would be impossible for instance to have

consistently higher utility values than values of alpha.

So both are comparable. The min operator on alpha and the fuzzy measure does make a lot

of sense. Il takes care of the problem of high alpha and low fuzzy measures or the

opposite. What is NOT rcprimanded is high fuzzy measures and high alpha's; as wc only

take the minimum. Taking the minimum, instead of the maximum does take care of the

problem that high (Iow) alpha and low (high) fuzzy measures is not a praiseworthy

situation. This is ofcourse not taken care ofwith a maximum. TIle supremum is taken for

ail values which have been obtained at each level of alpha. Note that we need a supremul1\

as the results obtained may have decimal places of the same digits. We do not consider

working only with integer values of alpha. The Sugeno integral gives us a global measure

of the fuzziness of a fuzzy set. The fuzzy set in our problem is the set &011\ which the

solution will be drawn. Clearly the higher the supremum value the better as it means that

the optimal result will have a lesser degree of fuzziness. There are certainly fU7zy

optimization techniques which take the quite sophisticated shape of the membership

function ofthe budget constraint into account.

As a final comment on this section we would Iike to mention two points. First, we choose

cornmodity bundles which are in the fuzzy budget. Clearly we do not know the Iimit of this

constraint as it is fuzzy but the Iimits do not go as far as the set of ALL commodity

bundles. Ifwe are not sure of our resources but we know we are not a millionaire thell to

consider the whole cornmodity space is not relevant. If we want to mimic as c10scly as

possible human behavior then we must have an idea of a cornmodity space in which

cornmodity bundles are members of our budget constraint. This commodity space is

certainly a subsct of the set of ail cornmodity bundles. Second, lIle 'Sugeno integral' we

have been using above will give us an indication of basically 'how weil we are doing' in

having our solution belonging to the chosen fuzzy budget constraint. Looking back at the
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ligure ubove we eun reudily see, keeping the utility funetion in its sume shape, that if we

widen the tails of our membership function of the fuzzy budget constraint that the gap

between a and IlJ C{(a)) would efTectivcly beeome wider. As we are taking the

minimum of a and IlJ C{(a)) it should not be precluded that the resulting value of the

supremum is c10ser tG 'l'or cven 'l'. lllis is in fact to be expected given the fact that a

mel;1bership function such as the one in the last ligure but with much wider tails will have

more chance to contain the solution which maximizes the problem. Nothing really new

here, but at least we may get a better grasp of the meaning of the result of

sup "qO.1I [a 1\ Il J (C(a ))]. Basically we do want to come to a result which is as close to

'l'as possible. If this is so we do know that a solution is therefore findablt and we ha\c

weil positioncd our fuzzy bl:dgct constraint.
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,3,.,Q\>jeeliyeIV;,f~~,WIil.y,al1d,(iJ7,ZYbudget,CQn~fAillt,

The problem is now inereased in diffieulty as we are now also eonsidering a fU7.zy utility

funetion. We will be brief on t!lis as basieally the set up is very similar to the first problel1\.

TIlough solving the problem as sueh may be quite more difficult. We definitcly do not

attempt any solving. Neither did we in the first problem. Recall that the solution stlltel1\eUI

for the first problem was: sup •.«f(x) = sup HII [min(f(x),U ,,(x))]; where E would stand

for the set lif ail commodity bundles. Remark our comments on this set in the last pages of

the former section. The problem with a fu7,ZY utility and fu7,ZY constrninl is then hllving Il

very similar form: sup.... U j.' (x ) = supHII [min(UIl (x), Uf' (x))]. TIle following fU7oZ}' sels

mentioned in the solution statement havI: to be defined:

1) fu7,ZY set fi which refers to the fu7,ZY utility fùnction.

2) C which is the fu7,ZY budget constraint

3) F which stands for the fu7,ZY decision set; this means thus that the solution will ck,arly

be fu7,ZY.

We can do the same re-working through mainly using if = Ua.C(a)A as we did with the

first problem and the result of the second problem becomes then:

sup .... Uj.'(x) = sup .... [min(a,supHC(a)Un(x»]. Note that C(a) refers to an alpha cul

on the budget constraint, and NOT 0'.\ the fu7,ZY utility.

3.1. Is a solution possible?

It is ofgreat intere:.:t !:> expand on a possible approach to see if a solution may exist to this

problem. No optimization technique is presented to practically solve the problem but a

formaI way to see whether feasable solutions really can exist. The framework which is

followed here goes by Billot ([S],p.72).

Before looking at Billot's very interesting set up relative to 'the' problem let us quickly re

iterate sorne of the ideas behind the fu7,ZY indifference set which we covered in the

beginning ofpart V. The fu7,ZY indifferenee set can be the result ofa horizontal eut on the
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fu;r.zy utility surface. It contains commodity vectors which belong to the same fuzzy utiIity.

Recall that the fuzzy utility is a fuzzy number, thus a normalized and convex fuzzy sel. TIle

requirement of fuzzy utility as a fuzzy number is important for reasons of being able to

rank the fu;r.zy utilities. I.e. the membership functions should be alike. Sorne discipline is

thus imposed here. One of the issues with the indifference set notion was that they could

overlap. TIlUs certain commodity vectors may indeed have for instance two membership

values; as thus the indifference set itselfis fuzzy and also has a membership fimction. Note

however that the problem of 'sorting out' suitable commodity vectors in view of deciding

whether they should or should not belong to the preference set is only problematic when

we are confronted with a strong preference set.

Recall also that a weak fuzzy preference set is convex ifthe iso-rnernbership grade surfaces

(IMGS) are themselves concave. Finally recall that if every fuzzy utility indicator of a

fuzzy utility relation is convex and normalized, and ifthere is a dirninishing marginal utility

for cvery IMGS then the weak preference set is convex. ([12],p.298)

Let us no'v -,vitl1 the argumentation. First we will re-write the solution expression in

sornewha~ of a different way. We obtained that:

SUP'dl Up(x) = sup ,<J,' [mïn(a,sup'.Cla) Un(x))), Define now the following functions:

1) 91:[O,I]-lo[O,I]: a-lo91(a)= SUP,.c(a) Un (x)

2) ",:[O,I]-lo[O,I]: a-lo",(a)=al\91(a)

Given 1) and 2) we can thus re-write the solution staternent as:

sup ,dl U P(x) = SUPaqO.11 ",(a). Wbere thus 'min' cornes thus from definition 2.

Sorne interpretation is needed as to d~;mition 1. Definition 2 foUows straight out of 1.

We are thus supposed, fol1owing definition l, to take commodity vectors through an alpha

eut on the fuzzy budget and subject those vectors to the degree ofbelongingness they have

in each Icvel of fuzzy utiIity. The supremum is to be taken on aU those values. An example

rnay better c1arifY this requirement.

Consider the figure below which foUows the same idea that the higher the quantities of a

comrnodity involved the higher the membership value will be to the fuzzy budget.
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Alpha-eut

The alpha eut is thus the horizontal fat Hne. Remark lhat the possible maxima of the

contour Hnes tend ta ~ 1'. The set A is a collection of commodity vectors where on

coordinate is fixed and the other coordinate is variable. SA the set A for instance would

contain couples A={(5,2),(5,3),(5,4)... } No further explanation is needed on this grnph as

we discussed this graph already before. Say now that the clements of set A arc to he

subjected to membership grades in the fuzzy utility function. TIlen for instance (5,2) may

belong with degree 0.3 to a utility level say al' But (5,2) may belong also to az with for

instance a lesser degree of say 0.25. Assume for instance az > al' The issue here is that

we take thus the supremum over all those membership degrees in the fuzzy utility over all

eligible couples which are the result of an alpha-eut on the fuzzy budget constraint. TIlUS n

certain value (Le. the supremum) is obtained for a given level of a . Definition 2 only asks

to take the minimum ofthis supremum at a given level of alpha and the level ofalpha.

At tirst sight a problem occurs here and that is that it weIl may be that sorne of the couples

do have 100% membership in a given level of fuzzy utility. This is entirely possible given

that our levels of fuzzy utility are normalized and convex sets; i.e. fuzzy numbers. Taking

the supremum at a certain level may indeed yield the value of ~ 1'. As such however this is

not really a problem as a minimum is guaranteed through fil (a). It may also occur that

when a = 1 and it oceurs that lP(a) = 1 then If/(a) =1 and hence the

suP.. ee U/l(x) = sup'U{o.t1If/(a)=l.

This means thus th:lt the fuzzy solution would belong for a J00% to the membership

function of the fuzzy decision set; and the solution would thus be crisp. There is little else
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to explain on what is 'behind' the funetions. The reason for that is simple the functions fit

in the definition ofthe decision problem.

The properties ofthose functions are however very important. We look at them now:

1) tp(O) = sup .<11 U fi (x)

2) a 5, p~ tp(a) ~ tp(P)

nIe first property is quite straightforward. Ifwe take an alpha eut at a = 0; we obtain the

total set of ail possible commodity vectors; hence the notation E. Let us make the

comment that couples which have a 0 membership degree should still have to be ruled out

aller this O-alpha eut has been performed otherwise there would be contradiction.

The second property has a simple proof. As

a 5, P ~ C(P)c C(a); and as tp(P) =SUP• .cIP! U fi (x) 5, suP •.c(a) U fi (x) =tp(a).

Remark that the implication is of course dependent on the shape of the membership

function. Would the membership function be convex-shaped for instance then the

implication would of course not hold. We have been discussing however the shape of the

fuzzy budget constraint membership function, and the shape is appropriate for property 2.

Out of property 2 we can readily map a relationship between tp(a) and a. The

relationship is immediate: a decreasing function in a. The important factor in showing

that a solution to our fuzzy problem is possible consists in introducing the notion ofa fixed

point. Ifthat is possible sorne re-working is needed to show that effectively the supremum

on the membership values ofthe fuzzy decision set bas effectively a value. In otber words

ifit can be shown that suP.<HUI'(x)=a then it will have been proven that the fuzzy

optimization problem bas indeed a solution. Now wbat still has then to be done is to show

that a is indeed the optimal solution. We proceed in the following order:

1) show that a = suP• .c(a)Ufi (x)

2) show that a = sup.<H Ul'(x)

3) show that a is indeed optimal

1) For this, we need Brouwer's fixed point theorem basically. We need to show only that a

fi.xed point exists. Any continuous function mapping of the unit interval into itself must
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cross the 45 degree Hne at least once; this function has at Icast one fixcd point.([68].

p.516). 11le problem of the uniqueness of the fixed point is not a problem here given thlit

we are confronted with a continuous alld decreasillg jill/clio//' l11c proof is stllndllrd IInd

follows Varian. ([73],p.320) We definc <p(a)- a =fla). 11lis should bc a continuous

function as long as it can be shown that <pla) is continuous. 11lis is much less

straightforward however. 11lere is a theorem by Tanakll and Asai which SIlYS the

following: If the fuzzy subset C is strictly convex then <pla) is continuous. ([69]) '1'0

have the fuzzy set C to be convex we need to show that ail alpha-cuts ofthis fuzzy set arc

indeed convex.. 11le proof of this theorem is convoluted and wc leave it aside. Note

however that the continuity of <p(a)is a necessity when applying Brouwers's

theorem.f(a) in the above measures the vertical gap between <pla) and the 45 degree

Hne. For a fixed point we need to have that f(a)=O. We also know thatJ{O)=<p(O)> O.

The strict inequaHty eomes forth from property 1. Obviously a supremum on membership

values ofall commodityvectors in the fuzzy utility can not possibly be O. Would it be zero

then ail commodity vectors would have zero membership in the fuzzy utility which is

senseless. Also we know that f(l) = <p(I)- 1~ O. This is also expected, as the maximum

value of the supremum can not possibly exceed '1'. Now the illiermediaie value theorem

can be used. This theorem says that ufis continuous on [a,b] and C is a number between

J{a) and J{b); then there is at least one number c between a and b for which J{c)=C.

([27],p.98)

Here as cp:[O,I]~ [0,1] and the function is continuous then using the theorem we can

effectively conclude that there is sorne a e[O,I] such that f(a) =<p(a)- a = O. 11l8t

shows thus that we have a fixed point.

2) This is a little more convoluted as an argument and we follow Billot here. ([5],p.72)

We know that sup.... U.. (x) = sup .... [min(a, suP••CCa) U 11 (x))] = SUp"qo.lllf/(a). We also

know that If/(ÎÏ) = a1\ cp(a) = a1\ a = a.
Hence there is a fixed point on the <p(.) and If/(.) functions. In order to show that

a = sup a<\o.lIlf/(a) we have to literally show that a is the supremum indeed. 111Ïs is
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quitc easy to understand. TIlere was no problem in case one as

tp(a) =a =sUP~~'(rJ)U /1 (x) by definition. We can however Nor define

111(a)=a=sup~d{Up'(X); as '11(a) is only defined as :'1I(a)=tp(a),'\a. This is the

reason why we have to show that a is thus the supremum ofthe '11(.}.

What has thus ta he proven is:

a) can we say that if a < fi then 'II ca) ~ 'II (a)?

b) can wc say that if a ~ Ci then If/(a) ~ 'II (a ) is still valid?

Ifboth a) and h) are valid then effectively ljI(a) = a will be the supremum; and therefore

thus a = VI(a) = sup ~d>' U 1" (x) is true statement.

Let us tacklc case a). Consider the graph below which shows the fimction tp(a) :

•
tp(a) :

tp(a) = a

(a,tp(a»

•

a

The funetion tp(a) is indeed dOWllward sloping, as we have remarked already under

property 2.

al) a < li => tp(a) ~ tp(a) =a > a. Where use is made thus of the property of the

tp(a)fimction and also ofthe fact that it has a fixed point.

a2) '11(a)=tp(a)l\a[l);andtp(a)l\a=a[l/]<(ëi=If/(ti»[l/I]. We have put roman

numhers to separate the parts upon which w~ want to comment in the formulation. Part [I]

ohviously Tcfers to the definition of the 1jI(.) function. The result obtained in part [II]

refers to the implicit result obtained in al.

ln al we can read almost immediately that qJ(a) > a; and hence the minimum is ohviously

a. Finally part [III] Terers to the fixed point we obtain alsa through the If/(.) function, we
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have mentioned this already. Out of [1].[11].[11I] one can readily see that ef1èctively

V/(a):5 V/(a).

b 1) a ~ a =:> 11'(a) :5 Ip(a) =a :5 a . TIlis is as in al.

b2) V/(a)=al\lp(a)=Ip(a)[/];alldlp(a):5(a=V/(a»[II]. Part [1) obtains the

minimum which follows straight out ofb 1. In b 1 we read that Ip(a) < a ; and the minimnm

out of those two components is thus immediate. Part [II] follows also straight out of b1.

Use is a1so made of the fixed point property of the V/(.).

TIlUS out of [1],[11] we conclude that V/(a):5 V/(a).

TIlUS no matter whether a < a or a ~ a we obtain that V/(a):5 V/(a). TIlIls this meaus

that 'II(a) =a =sup.<li U .. (x).

3) What remains to be done is to show that a is indeed optimal.

We know so far that suP.<li U.. (x) =a alld SUP.«CCii) U fi (x) =a. Remark that the alpha

cut on the fuzzy budget set is taken at the specifie level a. TIle conclusion is then

immediate i.e.; that sup .<h' U.. (x) = sup ..C(â) U fi (x). Billot provides for an extensive

proof on finding a sharper formulation to which sup .</; U.. (x) maybe equal to. 'Ille form

he finds is the following: sup .<h' U.. (x) =suP.... Ufi (x) ; where the ordinary set A is

defined as: A = {'i7'x E E, U è (x) ~ U fi (x)} . This is indeed a sharper result than the specifie

alpha-eut result. The interpretation of t1lis is that the optimal decision as exemplified

through sUP.<h' Ur(x)will he a decision which maximizes a fuzzy objective on the set A or

also which maximizes a fuzzy objective on elements ofE which satisfY at least as weil the

constraint as the objective. AIl other elements are ruled out.

Nowhere has mention been made that the fuzzy utility surfaee would have to be concave in

order to have a convex weak preference set. This is indeed a little strange to say the least.

The solution form does only work with membership functions and the concavity of the

fuzzy ntility surface as such is not registered into those membership functions.
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We may make a point here. From the classical backgroWld we know that the convexity of

the weak preference set is a necessity. Using the set up here this convexity seems to be

taking quite Jess importance. This is indeed bothering.

YI.2 The case of the pr!lll.u.w

So far we have becn concerned in Jooking at a framework in which it wouJd be possible to

find possible fuzzy optimae. This has been perforrned for the case of a fuzzy utility

fWlction which is subjected to a fuzzy budget constraint. Il is certainly interesting to see

what the conditions would be would we enter the producer area. This is what will be

looked at now.

YJ.2.1. Refutation ofbasic hvpotheses

Ponsard in ([56], p.302) puts the producer in a spatial framework. This is indeed a highly

interesting approach. 'n.c following hypotheses are commonly made, according to

Ponsard:

A) all inputs and outputs are located in a single space where the producer is located and

where the production is carried out.

B) the producer has complete information concerning th-:: conditions of his producer's

activity; i.e. he perfectly comrnands inputs and outputs and realizes a maximum profit

given the constraints oftechnology and available price.

Assumption A, we know from reaJlife, does of course not always hold. An input which is

totally non-transportable will basically comrnand the location of the production unit. As

there are many combinations possible depending on the transportability of inputs and the

necessity of those inputs and the location where outputs can be possibly sold we could

easily envisage that the producer has a utility function which is linked here to profit of

course and which is dependent on the possible combinations oflocation elements we have

set out. This is the interest of considering a spatial mode!. Il is much richer and doser to

real life than non-spatial models. Condition B is definitely more cumbersome. The

assumption of complete information again, is a very idealistic assumption. Inputs are fuzzy

to sorne extent and maximum profit can be modulated based on tolerance levels one
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accords to the inputs. The ultimate goal of this scction is to havc an idca of what 1111

optima/fu==y supp/y may be.

Necessary assumptions as set forth by Ponsard are as follows:

1) The producer's space is characterized by the location of his production unit. by thc

inputs supply space and the outputs demand space.

2) Production capacity is fixed. We are in the short ternI.

3) The input supply space is denoted by y,'; r=/, ...p and i=/...n Whcrc ,. stands for thc

number of places where the input is available. i stands for thc numbcr of inputs nccdcd in

the production process. So when noting for instance Y,] this mcans thc 2 nccdcd inputs

for the production process can be found at duee places. Beware however: 2 inputs can be

found at the 3 places; or only one input can be fowld at 2 places; while the other input is

available at only one place. etc... ail combinations are thus possible.

4) The output demand space is defined identically as in 3); however sorne explicit

dependencies are created between output and input space. There is a dependeney betwccn

the places where inputs can be bought and the places where outputs arc demandcd.

Similarly there also will be a dependency between the number of inputs and outputs

considering of course a specifie product. Ponsard is somewhat arbitrary in those

dependencies and we do not want to re-iterate his proposition.

What is however very important to consider is that the space Y of productions has two

important dependent variables i.e. inputs and places. lllUs Y= (Y,' 1 is the set of ail

productions. '1' stands for the number of inputs used and 'r' stands for the number of

places. Take the case of Y, J. This means here that 2 output good!' can be sold in 3

different places. Any combination is possible as in the input case. I.e. we may be able to

sell the 2 output goods only in one place or in IWO places etc.. but every option is possible.

To the eontrary in the case yi, the 2 goods ean ONLY be sold in one place. The set of

productions does contain ail possible elements but not ail possible elements are technieally

feasable for the producer. Take the case of Y, J it may weil be that for the producer none

ofthe available inputs ean produce IWo different outputs. Or it rnay be impossible to sell

IWo different outputs at three different locations. Only the technologically feasabll:
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productions are a base from which we can draw a supply. Let Z c Y and cali Z the

feasable production set. An element y ofZ is called a producer's supply. Note that such an

element denotes a quantity. A production y is said to be efficient in Z Hf

'Vy' E!n
A:y'~y => y' i! Z. Remark thaty is a multidimensional vector where the amount of

the variable 'location' and the amount of the variable 'different outputs' detennine the

dimension.

We compare units ofy' with y for the same number ofdifferelll types ofoutput andfor the

same number ofdifferellt locations. The definition of efficiency is thus c1ear then.

Ali this however is classical and the point Ponsard wants to make is an important one. Says

Ponsard: ' ...the result of a production process is by nature imprecise. It follows that a

technically possible production is more or Jess efficient. It is not advisable to partition the

set of all possible productions into two classes: the efficient productions and the inefficient

productions.' ([56], p.304) Ponsard wants to show us that basicaily l)the efficiency of an

input is a relative and not an absolute concept and 2)the inputs even if their technical

efficiency is maximal will not be the sole factors which will detennine the output. We need

to expand somewhat on this c1aim.That the efficiency of the input is in most of the cases

relative rather than absolute is not really new. The prevailing technology for instance is in

fact a constraint on attaining an absolute level of efficiency.

The absoluteness would basically mean that technology reJated to that input could not

possibly be improved. This is theoretically achievable but not practically. The second point

also makes sense. Even ifsuch theoretical absoluteness would be achievable there are a lot

of'irnponderabilia'; i.e. factors which can not be controlled for and which may negatively

influence the optimal result. Argument two has the most weight we would say. In ail,

inputs should in fact have degrees of efjiciency. The limiting case is the classical case

which assumes 100% membership and which yields the unique optimal quantities of

output.

Thus following this train of thought we can thus define a fuzzy set H which is a fuzzy

subset of the ordinary reference set Z. Obviously a membership function is defined on this

subset and the membership values are, for simplicily lying in [0,1]. The case where

Un (x) = 1 resumes to the c1assical case of 100% technical efficiency; which equates thus
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an absolute efficiency and/or total control over ail imponderabilia. Would thc IlIclllbcrship

value be '0' then we would be working with inputs having no tcchnical cfficicncy

whatsoever and this would thus equate to waste. Clcarly, thc c1assical casc rCSlllllCS whcll

the membership values are in {O,I}. Ponsard remarks in ([56], p.304) that thc mcmbcrship

functions will here be determined by 'pllrely technical reasons'. TIlis, says Ponsard llIakcs

'that the fuzziness is objective'. TIlis is a quite interesting point. lllcrc is no 'hlllllall

judgment' so to speak which is to be reflected by the mClllbcrship fiUlction; only thc

technology will determine its shape. We recall our discussion on finding lIIclllbcrship

functions for semantic problems such as 'John is tall' which involvcd qllitc SOIllC

subjectivity. This is the first time in this paper that wc can c1aim that thc mClllbcrshill

function is elltirely dependent on the technology in question. In the section which trcatcd

with consumer behavior the membership function over the budgct constraint was qllitc Icss

c1ear-cut. Remark also that the membership function will not takc into accollllt

imponderabilia. Furthermore we recall that probability states are not rclcvant . TIlis 'ctcmal

problem' was discussed in former parts ofthis paper.

VI.2.2. Fuzzv Profit

We need prices and quantities of output so to be able to use lIlC notion of profit. 'nlc pricc

system must be constructed to reflect the spatial nature of the production. Ponsard

introduces FOB and CIF prices to account for the transport cost of bringing the input to

the production location. The notation J p,' with 1=1,...11 alld r=I, ...p would be refcrring

to an input price. The input price of course will be higher the higher 1 will be. It also may

be expected that the higher is r the lower relatively speaking this price will be. The morc

locations at which inputs may be bought the lower, given competition, the input pricc

should be. The output price will also have dependency on 1 and r; but the relationship is

less c1ear when looking at r. As we said, the advantage of treating the profit maximization

problem in a spatial context is that it provides for a richer context which is closcr to

reality. The maximization of profit in titis more realistic set up is indced quitc more

challenging than in an a non-spatial context. The problem which immediately occurs is that
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the producer must in fact not only maximize profit but also must think about how weil he

can reconcile possibly conflicting strategies in order to attain such maximum profit. In the

classical case with one output and say two inputs the relativity of the technological

efficiency of the inputs is an important factor in diminishing the absolute notion of

maximum of profit. Also the imponderabilia aIso play a roIe. But the problem stops there.

In a spatial context one must be Iooking at the implications of selling 3 outputs on 5

locations. The links with this decision and the fact that 10 inputs can be found at 20

locations are existent. The problem can become exceedingly complex. Just imagine you

make the initial decision to sell three different outputs at 4 locations. The 10 inputs needed

for the 3 different outputs go into each output at differing degrees of units of input. 3

inputs may be sold at 3 different locations while 2 other inputs at 2 different locations and

the five remaining inputs may be sold at 15 different locations. Each location has different

transport costs. This becomes a quite complex problem. To find a maximum profit given

the efficiency of technology which would not be absolute given the imponderabilia and

given the complex interaction between number of locations and number of outputs/inputs

it would be pretentious to think that we may find a maximum profit output combination

which at the same time gives highest utility to the producer. A very high profit may give

less utility to the producer because it does not as weIl blend the conflicting strategies as a

lower profit may do. Recall again that in the non-spatial and classical case it has always

been assllmed that there is absolute efficiency, no imponderabilia (i.e. a fixed

environment); and inputs and outputs are always found in the same single space. No

wonder ofcourse that in snch a context maximum profit and highest utility to thc producer

have a straightforward relationship. The classical hypothesis is that the maximum profit

elltails a maximum utility oj profit. Thus we need to define, what Ponsard calls an

imprecise profit utilityjUllctioll. ([56],p.306)

A degree of membership will be accorded in function of how weIl the conflicting

strategies are blended together in relation to the level ofprofit.

Clearly the membership function exemplLfYi.nf:l fuzzy utility of profit is subjective as

opposed to the objective membership function oftecbnological efficiency.
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VI.2.3. nie fuzzy optimization problem

It is the objective of the producer to maximize the utility he gets from the profit realized.

n,is is a straightfOlward problem in the classical case as this objective will coincide with

maximum profit. In our fuzzy context coincidence is not guarantecd at ail. Following

Ponsard we assume that the spatial price system is given. l11e lilzzy technologiclIl

constraint is given by the fuzzy set fi. The fuzzy objective is the maxilllization of the

fuzzy utility of profit. Define therefore the fllZZY sel

Pas P= (y, V jl; 'v'y e Z,V jl(y) e[O,I]} n,en the solution will be a fllZZY sel; following

Bellman and Zadeh ([4]) we must marry objective an constrnint together following IlII1X

min. So we can write that S= Pn fi. Using max-min we can then write the solution

statement, exactly in the same form as in the consumer's problem as:

supYelV.(y)= SllpYel[Vjl(y)I\Vn (y)]. Using the notion of A=Ua.C(a)A; we

"
obtain a more summarized fonn, as in the consulller's case:

supyel V.0') = suPa<jo.11 [a 1\ supy.JI. V jl(y)]'

The way we continue to proceed is exactly as in the consumers case. We will define two

new functions and theu try to find fixed points. We do not repeat the steps involved 115

they are ideutical to the consumer's case.

Define the following functions:

1)q.>: [0,1]~ [0,1]: a ~ q.>(a) =sUP,.JI. V jl (y)

2) If/:[O,I]~ [0,1]: a ~ If/(a) = a I\q.>(a)

Theu sup,el V .0') = suPa<jo.lllf/(a).

The q.>(.) has the same properties as in the consumer's case. 1t also will yield a fixed point if

it is continuous and decreasing over a . Recall however that it is not straightforward at ail

to find the conditions under which q.>(a) is continuous. The following results are totally

mimicking the consumer's case:

1)a =sup y./I. Vi' (y) =supyel V. (y); i.e. a solution exists to the problem.

2) supy<A Vi' (y) = suP,<z V.(y); A = (y,y eZ,Vn (y) ~ V jl(y)} ; which provides thus for

a sharper solution to the problem This is totally similar to the consumer's case.
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'Ille interpretation of this is that the optimal decision as exemplified through

sup,., U.1 (y) will be a decision which maximizes a fuzzy objective on the set A or also

which maximizes a fuzzy objective on ~;ements of Z which satisfy at least as weil the

constraint as the objective. Ali other c1emen~1 arc ruled ~ut.

Iliterestingly enough Ponsard proposes conditions undcr which a unique solution can be

found. ([56],p.311 )'Illis unique solution would thus be non-fuzzy. 'Ille conditions

however arc very stringent. Wc do not pause on this however.

YJ.2.4. Conclusion

'Ille consumer and producer models have been solved in a fuzzy context. Basically what

one m3Y claim now is that th" classical case is in fact a special case of the much more

general set up proposed here. 'Illis may be tenned as rather being generalization than

innovation.

The innovation may come more in the uncovering of a choice behavior which is definitely

more human. Clearly in the set up above we could render the problem more sophisticated

by intro<lucingjit=::y expected utility. Wc stress 'fuzzy' to clearly distinguish fuzziness !Tom

probability.
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VI.3 Fuzzy Reyealed Preference

Another interesting application where fuzziness lI1ay be of intcresting lise is rcvealed

preference. We observe that revealed preference has as wlderpinnings very strong

rationalit.y assull1ptions. Richter Rationality or for instancc also regular ralionlllity IIrc

exall1ples ofthat. 11le use offuzzy sets lI1ay weaken again this tight level ofralionlliity.

VU.!. Set up

The dcvelopment here follows mainly Basu. ([2))

Basu uses the Gel/era/ized Hammil/g Distal/ce which is defincd as follows:

d(A,B)=:L\U.. (x)-Ujj(x)l. Where ..,. represents a fuzzy set. U.(.)represenls the

lI1ell1bership value of x in the fuzzy set. It IS e"lllicitly llssull1ed that X which is the sel of

altemativr.s is a crisp set. We do have a fuzzy hinary relalion (FBR) which is then gencrally

defined as: R: X x X ~ [O,I];R is a fuzzy sub<el of X x X. 11le mell1bership values of

this binary relation are taken in [0,1]. But we could generalize this interval to a laltice. As

an example UR(X,y) measures the strongness of the relation between x and y. ·n.is FBR

is defined by Basu as being a fuzzy order; i.e. it is fuzzy reflexive, fuzzy transitive and

complete.

Here a first problell1 occurs. It hints towards Basu's definition of fuzzy rel1exivity and

fuzzy transitivity. Basu defines fuzzy reflexivity as: ';Ix E X:UR(X,X) = 1. This is too

strong as a dl,finition of fuzzy reflexivity, as a matter of fact it totally corresponds 10 the

cIassical definition. Bandemer ([1)) for instance has becn defining a weaker form

as: ';Ix E X:Uil'(x,x) ~ a;a E jO,I[ .There is indeed no reason to belicve; given fuzzy

relations that the strongness ofx with itselfhas to be necessarily 100%! The fuzzy ordcr by

Basu is defined thcn as follows:

1) reflexive

2) ';Ix,y E X;x '" y:UR(X,y) +UR(Y'X) ~ 1; which is the completcness property

';Ix,y E X:Uil'(x,y) ~ i 12.Uil'(x,z) +1/2.Uil'(z,y); ';Iz EX \ (x,y};Uil'(X';:) '" 0
3)

UR(Z,y) '" 0
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The transitive property has nlready been discussed under V.5.1.

VI.3.2. The Oreatest Set

Let X be the set of ail alternatives. Define S as a non-empty subset ofX. The greatest set in

Sis denoted G(S,R):S~[O,I]:\ixeS,G(S,RXx)=miny".UIl(x,y). An example

clarifies the definition.

Example:

Let UIl(x"y,) = O.4I1UIl (x"y,) = O.3I1UIl (x"YJ) = 0.2... Then the definition tells us

that we have to take the minimum over ail thf/se membership values. Say the minimum is

0.1 then G(S,R)(x,) = 0.\. 1 must repeat the same procedure for ail x. The significance of

G(S,R)(x,) = 0.\ is thus that x, belongs to the greatest set with a membership value of

0.1. Thus G(S,R) is c1early a fuzzy set so delined. We can easily imagine that G(S,R)

has a rnernbership function. The individual expresses bis preferences over pairs of

alternatives. He assigns a value to denote the strcngness ofhis preference. The immediate

objection is that ofcourse assigning such value is somewhat equ'valent to re1apsing in crisp

preferences so to say. This is an important point. However we can use sorne of the

theories which have been invoked for eliciting membership functions so to give a better

grounding to this problem. Hisdal's approach may be an example.

VI..3.3. Choice Function and Rationality

Define the set of ail alternatives X such that 3::;'# X ::;, 00. So the set of alternatives must

contain at least 3 elements. Now deline K as the set of ail subsets on X BUT each subset

is to contain two or more elements. So K '" f.l( X). Theo the choice function is defined

as:C:K~ K and 'VS eK:C(S) c S.

The idea ofcourse is to know whether the choice is indeed rational.
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VI.3.4. Crisp Binary relations: Richter Rationality and Reglllar Rationality

Basil proposes two types of rationality definitions. Richter rationality and rcglllllr

rationality. Richter's idea says that a choicc function is rational if it has becn gcncratcd as

the olltcome of preference maximization. C(.) is Richter rational ilf therc cxists ail exact

binary rclation R on C sllch that 'ïfS E K; C(S) = G(S, R). lllis is for an cxact binary

relation and there is no order reqllirement.

The greatest set is c1early a crisp set now. There is with a crisp relation no dOllbt IIbollt the

fact that x may prefer y to sorne degree and vice versa that y may prefer x to sOllle degrcc.

If x strictly prefers y with degree 0; then either y strictly prefcrs x or is indilfercnt.

Furthermore ifx strictly prefers x to y with degree 'l'; then there is no possibility y mllY

prefer x or x to be indifferent to y. Reca1l that the definition of greatest set uses min.

Hence the Richter idea of preference maximization says thus that if x, is strictly prcferred

over any Y, ES tben XI EG(S, R), and only then.

lllUs tbe notion of greatest set coincides with the choice ful1l:tion if the greatest set is

crisp. A second type of crisp binary relations refers to regular rationality. C(.) is regular

rational ifftbere exists an exact binary ORDERING R on X: 'ïfS E K:G(S,R) = C(.)

The definition is almost identical to Richter's rationality with the difference the crisp binary

relation has now to be an order; i.e. be reflexive, complete aDd transitive.

VI.3.5. FBR's: Unfuzzy Dominance and D-rationality

It is clear tbat regular rationality and Richter ratiunality are of no great use within a fU7ZY

context. The nnfuzzy dominance and D-rationality do explicitly work with FBR's bllt

explicit1y keep tbe greatest set to be crisp. luere is an obvious reason to that. Having a

fuzzy greatest set will not be very helpful to define greatest elements.

Unfuzzy dominance is defined as fo1lows: Given a FBR, Ron X the ullfuzzy domillalll sel

is denoted D(S,R) = (x E S:G(S, RXx) = Il There is no doubt that this is a cxtremely

restrictive definition. AlI membership values for a fixed x must ne minima1ly 'l'. Wc do not

see a choicc funetion. This is what D-rationality will do. C(.) is D-raliollal ifftberc cxists a
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fuzzy ordering R on X such that 'VS E K:C(S) = D(S,R). SO D-rationality is like regular

rationality exccpt that it accepts FBR's.

Ali this leads to deceiving little newity. Basu's theorem 1 which says an individual is D

rational iffhe is regular rational continns the intuition we just had. We omit the proof.

The theorem is c1ear: if a person's behavior can be rationalized using a fuzzy ordering then

there must exist an exact ordering. So fuzzy ordering is ofno use.

VI.3.6. Q\lf1 There may be a way out!

The way out needs however tirst a new concept which is the idea of lIearest exact set.

Given a fuzzy set A in X, a nearest set ofthis fuzzy set is N(A); it is an exact set which

is nearest to A in tenns of the Hamming Distance. The c10ser to zero this Hamming

distance is the hetter. There is a useful property which is the following:

{xEX:U.(x»O.5}cN(A)c{XEX:U.(X)~O.5}. An example May c1ari/)' this

relation. Consider A = {x,/0.5;x,/0.6;x, /0.7;x./O.l}. Then N(A)= {x"x,} and this

yields using Hamming distance 0.5+0.4+0.3+0.1=1.3. For instance would 1have taken for

N(A) = {x"x"x"x.} then the Hamming distance would have becn 1.3+0.9=2.2

Note also that if N(A) = {x"x"x,} thcn the Hamming distance would still have becn 1.3.

TItis is because the membership value of x, is 0.5. Hcnce one can now better see the

intuition behind the relation above i.e. that {x"x,}c{x"x"x,}; i.e. that

•

(N(A) c {x E X:U.(x) ~ 0.5}. Now consider another example. Let

jj = {x, /O.l;x, / 0.2} The nearest exact set is in fact the empty set. The Hamming distance

would thcn be 0.1+0.2. There is no non-empty exact set which can beat this distance. For

instance the singleton {XI} yields a Hamming distance of 0.9+0.2= \. \. H aU membership

values are strictly lower tban 0.5 tbe nearest exact set will be tbe empty set.
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VI.3.7. N-Rationality

C(.) is N-rational ilfthere exists a fuzzy ordering such that 'VS E K:C(S) = N[G(S,R)].

This definition is quite dilferent from D-rationality and thus from regular rationality. l11e

relation is fuzzy and an order; so far for the overlap with D-rationaiity. nie newity is now

that the greatest set can be fuzzy. We approximate this greatest fuzzy set with a ncnrest

exact sel. nie idea of nearest set is useful because wc knew that a fuzzy grentest set is

very hard to interpret. By introducing the nearest exact set wc make this decision making

simpler though WE AVOlD to impose that the greatest set is to be crisp.

A theorem which we now must consider is Basu's theorem 2: Ali illdividuals are N

ratiollal. We must discuss the proof oftheorem 2.

Basu lirst defines a completely fuzzy binary relation as follows:

{
0.5 if x .. y

'Vx,y E X:Un(x,y) = .
lifx=y

This relation so defined is indeed the fuzziest we can have. Remark also that this fu;·.ziest

relation is also an order. We can for instance immediately sense the fuzzy renexivity

property. As ail membership values for x different of y are 0.5. From a fu7.ziness point of

view such set is the most fuzzy.

The definition ofsuch mos! fuzziest r"ktbn however is key. As G(S,R)(x) = 0.5; 'Vx; (as

we use a minimum)then from the example we have seen above N (G(S, R» must exist. It

can not be an empty set as the OIcmbership values are 0.5. We said that if ail membership

values are strictly smnller than 0.5 then elfectively N(G(S,R»=0, as seen at the end of

section IX. This is the reason why the FBR is so defined by Basu. As N (G(S, R» exists

then so must the choice function. The fuzzy relation is alsa an ordering. So if the FBR is

defined as above we can rationalize any choice function.

A question arises whether we need to restrict that much the FBR as being most fuzzy. Wc

could easily assume the following definition:

{

E [0.5,1] if x .. y
'Vx,y E X:Un(x,y) = "= a if x =y;a e[O.5;I]
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This would relax Basu's definition and would also relax somewhat the too binary charaeter

of fuzzy reflexivity. We may seriously wonder if theorem 2 is acceptable. There is no a

priori reason to belicve that ail fuzzy order relation should be ofthe type as defined above.

Therefore we may weil wonder whether theorem 2 is at ail realistic.

It is easy to make a proofwhen a fuzziest order relation is presented. You will not be able

to proofthat ail individuals are N-rational when the fuzzy order relation is neither fuzziest

or of the type right above. This is simply because the greatest set may have membership

values which fall below 0.5 and therefore a nearest set may be impossible to find. The main

problem with theorem 2 is that it does not make room for fuzzy orderings which are not

necessarily of the type defined above. The problem could be solved if instead of defining

the greatest set being the result of a minimum we define it as a maximum; i.e.

G(S,R) =max,esUII(x,y). Would we be able to define the greatest set as a maximum

then ail what we would have to require in order to find the nearest crisp set of the greatest

set is that there exists at least one fuzzy relation which has a membership value which is

greater than 0.5. Then we know that G(S,R) defined as a maximum will have a value of

0.5 or higher and therefore the nearest exact set of the greatest set could be found. We

would think there is not necessarily an argument against using max of the greatest set. If

50, then theorem 2 makes much more sense because the restriction on the fuzzy orderings

is much less stringent. There is howcver one problem spot and that is that we must be able

to guarantee we still have a fuzzy order. With low membership values for instance the

completeness condition may for instance be violated. Thus a possible extension on Basu's

theorem 2 could be: If G(S,R) = max,es UIl (x,y) , and ifat least one fuzzy relation has a

membership value greater than 0.5 and if the fuzzy ordering conditions can still be

respected then more individuals can be declared N-rational. This does contradict

somewhat theorem 2 which says that ail individuals wOllld. be N-rational. The correct

version of theorem 2, we think should be that sorne individuals will be N-rational if the

fuzzy ordering is ofthe fuzziest type.
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VU.S. Extent ofRationality

We want to know how fuzzy a binary relation reaUy is. TIlis wiU be useful to define levcls

of rationality and irrationality. The c1assical distinction is restrictcd to irralionalily and

rationality. There are several measures for fuzziness indexes. For instance in chapler VII of

part II we develop the fuzzy index of de Luca and Termini. Basu uses another fuzzy index.

The consequences ofusing a specific kind of fuzzy index are important. One Ilaw in Basu's

paper is that he reaUy does not give a serious argument on why he uses a spcdfic fu7.7.Y

index. For any FBR (thus not necessarily an order) the index of fuwness

v(R) = 2.:~~,:1~» .It is obvious that N(.) is non-wlique. For instance the nearesl sel

for A= {x / O.5;y / 0.5} is in fact anyelement of the ,p(A). However the d(.,.) will be

unique and so v(.) is weU defined. For a completely fuzzy binary relation the index of

fuzziness must be 'l'. This is very easy to see. Consider thus the fuzziest relation defined

as: 'v'(x,y) E X x X:UR(X,y) = 0.5. TIlen say

X = {x,y};thell X x X: {(x,x),(y,y),(x,y),(y,x)} . Given the definition of the fuwest

binary relation we use v(R) = [2.(0.5.4)] /4= 1. It is obvious for an exact set lhal

d(R, N(R» = °and hence v(R) = °
The definitiolls here developed relate to a fuzzy binary relation which does not havc to be

an order. If we impose an order then there are sorne smaU differcnces to be takcn into

account. We use the same definition for a complete fuzzy ordering; i.e.:

{
O.5 if X;Cy ..

'v'x,y E X:UR(X,y) =. . This IS a fuzziest ordering. Considel' the same
lif x=y

example as above then given this fuzziest ordering the mernbership values will be

sornewhat different: UR(X,y) = UR(Y'X) = 0.5 but UR(X, >;) = UR(Y'Y) = 1. Using this in

our definition of a fuzzy index we would get: We need to find a nearest exact set to the

fuzzy set ereated. We need take ail couples into account for a nearest set in this case and

we obtain that d(R, N(R» = 1. Plugging this in our fuzzy index formula wc obtain a value

ofO.5. This is not a very Dice result as the FBR here is still fuzziest but is now an ordering.
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Basu wants a 'l' measure for a fuzziest ordering and therefore modifies the fuzzy index

formula as follows: ô(R) = 2.d(R,N(R» . Plugging the numbers of our example
#(X x X)-#(X)

shows then that ô(R) =2.(0.50) / 4 - 2 = I. The exact ordering gives also an index of

zero.

VI.3.9. Denee ofFuzzv rationality

Basu calls 9l(C(.» the set offuzzy orderings which N-rationalize C(.). N-rationalizing C(.)

means that N(G(S,R» = C(.). Of course, we do not need fuzziest orderings, any

ordering is acceptable as long the membership values of the fuzzy relation is higher than or

equal to 0.5. This is quite important because we need to define a fuzzy ordering for which

the minimal values must be 0.5. The reason forthat is that G(S,R) =miny..,UiI(x,y). In

order to find the nearest crisp set to the fuzzy G(S, R) ; the minimal membership value for

G(S,R) must be 0.5. So for instance an acceptable proposaI for a fuzzy order relation

{

E [0.5,1] if x .. y
would then be: "i/x,y E X:U iI(x,y) = which we discussed

~ a if x =y;a E[O.5;I]

alreadyabove. Thus 9l(C(.» is the set of aU fuzzy order relations which are defined

as above. This is important.

Basu defines C(.) to be fuzzy rational ofdegree Q[C(.)]. This degree would be defined as:

Q[C(.)] =1- min il <'lt(C(.)) ô(R). The formulation is self-explanatory. Remark that

Q[C(.)]=0 when the minimum of ô(R)(over ail fuzzy orderings which N-rationalize C(.))

is elfectively equal to unity. But as we use the minimum it MUST be that ail fuzzy

orderings which have been N-rationaIizing C(.) must be complete fuzzy ordering or

fuzzi d · ·th d fin' . {0.5 if x .. y .est or enngs W1 e Illon: "i/x,y E X:U il (x,y) =. This makes then
lif x=y

intuitive sense why we can claim that the degree of rationality in that case would be zero.

Furthermore it a1so makes more sense to talk about the minimum here. Imagine for a

moment we would have maximum then it is simple to show that ifthere is just one fuzziest
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ordering then o(R) will be 'l'and the degrec ofrationality would bc O. 'I1Iis would indccd

make little sense if the other fuzzy order relations in 91(C(.»would not bc ofthc filzzicst

type. Hence the use of the minimum. 91(C(.» can not bc cmpty givcn Basu's thcorcll\ 2.

Hence n[C(.)] =l-minil",,(C(.))o(R) is wcll defined. Remark howcvcr onr discussion of

having the greatest set defined over a maximum rather than a minimum. Then we do not

nlled such pure type offuzzy ordcr and we still may have that \H(C(.» willnot bc cmpty.

VU.IO. WARP

Basu defines WARP as follows:

If C(.) satisfies WARP ilf therc is not

S"S. eK;for some x,y e X:x eC(S,),y eS, and y eC(S. ),x eS. \C(S.).

This definition implies in the classical setting that ifthere is S" S. e K thcn thc pcrson will

be called irrational. Otherwise if the above definition is satisfied thcn hc is dcclared

rational. When introducing fuzziness we will observe that this extremc situation of rational

or irrational can be weakened. This is the object ofBasu's third theorem.

Theorem 3 says t1lls:

If C(.) satisfies WARP thcn n[C(.)] =1 and if C(.) everywhcrc violatcs WARI' thcn

n[C(.)] =O. Furthermore if n[C(.)] =1 then C(.) satisfies WARP. Wc omit thc proof.

Theorem 3 is a crucial theorem as it shows that with fuzziness introduccd wc can wcakcn

the extremes of '!ltionallirrational spectrum. Masu provides for a nice examplc in which

the concept ofdegrees ofrationality is weil shown.

The following is givcn:

X ={x,y,z} and C(X) ={x,y},C({x,y}) =(y};C({y,z}) =(y};C({x,z}) ={x}.

This choice violates WARP and this is checkable as follows. Sct

S, ={x,y,z} and S. ={x,y}.x eC(S,Xi.e.x e {x,y});y eS, (i.e.y e {x,y,z}). We do

want to find y eC(S.) and x eS. \C(S.)? It is possible. As

C{x,y} =(y};so y eC(S.). xe {x,y} \ {y} ={x} (:) X eS. \ C(S.). Hcnce we violated
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WARP. As he violates WARP he can thus not be regular rational. If he is not regular

rational he is irrational. The use of fuzzy theory will now show us that the individual is

rational but ofa certain degree.

We want a fuzzy order relation belonging to 9t(C(.». This means thus that the fuzzy

ordering can be used to N-rationalize C(.). TIlis means thus that N(G(S,R) = C(.)

TIlerefore given the delined choice functions we obtain immediately that:

N[G({x,y,z}),R] ={x,y};N[G({x,y}),R] ={y}; N[G({y,z}), R] ={y}

N[C({x,z}),R] = {x}

We get then:

UJ1(x,x) =I;UJ1(y,y) =I;UJ1(z,z) =I;UJ1(x,y) ~ O.5;UJ1(x,z) ~ 0.5;UJ1(y,x) ~ 0.5

U'ï(Y'z) ~ O.5;UJ1(z,x) ~ 0.5;UJ1(z,y) ~ O.5;UJ1(x,y) ~ 0.5.

Remark that most ofthis derivation cornes right out ofthe set N[G({x,y,z}),R].

The next step is to lind the nearest crisp relation to the relation with membership values as

set out above. We also must keep in mind we still need a fuzzy order. Basu's proposition is

this:

UR'(X,y) = O.5;UJ1'(Y'x) = UJ1,(y,z) = UJ1'(x,z) = UJ1'(x,x) = UJ1,(y,y) = UJ1,(z,z) = 1

UJ1'(z,y) =U;;,(z,x) =0

That U;;,(x,y) = 0.5 follows immediately from the fact that

U;;,(x,y) ~ 0.51\ U;;, (y, x) ~ 0.5. The cases with the membership values of ']' derive

directly from the fact that the fuzzy values can be greater or equal to 0.5. Also we choose

them to be equal to 'l' because the crisp case (i.e. the original given) accorded a

membership value (i.1 'l' in the crisp case) to the same elements. We can give '0'

membership value to the last two cases as in the crisp case they also have '0' membership

value. Hence the d(R*, N(R*» = 1/2. Says for instance we wouId give for the latter two

cases U;;,(z,y) =U;;,(z,x) =0.2 then this wouId not be very wise from a nearest set point

ofview as the Hamming distance wouId then be 0.9.
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The rest of the calculations are immediate. /I(X x X) = 9;//(.\') = 3, 50

aso(R) = 2.d(R, N(R» = 2.(1/ 2) = .!.. Hence n[C(.)] = 5/6. So the degree of
/I(X x X)-/l(X) 6 6

rationality is in fact 5/6. TIlis is truc even though WARP has been violated.

V1.3.1 !. Final Comments

There are sorne problems in Basu's paper. TIle first problem relates of course to BIISlI'S

definition of Il fuzzy binary order. We may have to relax the fuzzy renexivity rcllllion.

Furthermore Kaufinann's definition, following Billot's argument may have to be lIscd. A

second problem relates to theorem 2. Using a fuzziest order relation to proof this IheorclI\

seems to be mSllfficient. Problem 3 refers to the use of the fuzzy index Basu proposes. '1'0

violate WARP and to be still declared rational up to a certain degree is definilely an

iateresting idea. However the choice of the right fuzzy index is of paramowlt importance

and influences the interpretation for a great part ofthe above mentillned idea.
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VIA. Simple applications OD basic finance concePlS

'nle theory of liJzzy sets has rdevance also to the finance discipline. 111e fol1owing

development deals with applying fuzzy numbers to some basic finance concepts. Recal1

that fuzzy numbers have normalized and convex membership functions. The basic idea of

using fuzzy numbers is again related to the vagueness of estimates relative to possible

invested amounts or estimated interest rates.

Applications in finance using fuzzy sets is picking up. Two recent publications by Refenes

and De Boeck use several insights of fuzzy sets to re-model certain finance models. Some

other applications; especially in the 80's have concemed the extension of the CAPM model

with fuzzy policy constraints. Instead of having crisp policy constraints the constraints are

fuzzy and a fuzzy mathematical programming method as covered in this paper may be used

to solve such problem. 11le paper by Ostermark does treat the problem, in a very

superficial way. Ostermark's paper does not explil.:it1y indkate what sort of enrichment the

CAPM will enjoy when policy constraints would be fuzzy. The argument that the CAPM

rejection on empirical grounds may be resting 0:: the faet that imprecision has never been

introduced in the m'ldel is debatable and is certainly not proven by Ostermark. An honest

statement may be that if one wants to fuzziIY the CAPM one should be fuzzilYing some of

the assumptions underlying this mode!. This, however would certainly not be an easy task.

11le assumption of having rational investors with homogeneous expectations as to the

minimum variance opportunity set is convertible to a an assumption of heterogeneous

expectations but makes the mode! somewhat more complicated. The pre-requisite that

CAPM is an equilibrium model which assumes that the market portfolio is efficient is

however a very so!id assumption which is not alterab!e. In fact the model is amenable to

changes on assumptions such as normally distnllUted returns or homogeneous

expectations. Even without risk1ess assets the mode! is feasable. But fuzzifying the fact

that the CAPM is an equilibrium model with an efficient market portfolio is impossible.

AlI this, just to say that the attempt to fuzziIY the CAPM should Dot be Iimited to

fuzzifying the policy constraints. Ifthe CAPM proper should at ail be fuzzilied a judicious

choice ofwhat assumption should be fuzzilied may be a tirst step.
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It is not at ail sure that empirical results will be bettcr as comparcd to the ATP IIftcr hllving

fuzzified.

Other papers have been written in the finance al'ca and most of thcm have appcurcd in thc

'Fuzzy Sets and Systems' collection. TIle main articlc to which wc dcdicate this lust scction

ofthe paper is anurticle by J.J Buckley. Li Calzi in a more rccent paper makcs u fol1ow up

of BuckIey's treatment of fuzzifYing simple finauce concepts. Li Calzi is a morc

sophisticated paper which deals with the fuzzification of discount and IICCUI11Ullltion

models. We omit this here.

VIA. 1. Future values

The applications treated here make solely use of fuzzy numbers. Please refer to pllrt II on

the section which deals with fuzzy numbers; for more extensive infonnatÎou on perfol1uing

operations on fuzzy number~. Remark that when applying fuzzy sets to social sciences we

are not always obliged to use fuzzy numbers.. TIle section which dealt with the

optimization of a fuzzy utility function subject to a fuzzy budget constraint showed us thlit

the budget constraint being fuzzy eould have a membership function which does not have

to be nonnalized for instance.

Ifan amount A is invested now at rate of r (pel' period) for 11 periods then S" =(1 +r)" A .

In most cases however the amount may be more or Jess an amounl A and most important

the interest rate will always be a 'more or less' figure. No matter what econometrics arc

being used the interest rate can not be predieted in a totally stable manner. We know

therefore that there is sorne variation around the interest rate but we do not know how

much variation. Then we get the expression În the fuzzy context as: fi" = if0 (1 œr)".

Recall that an operation snch as addition and multiplication remains internaI if the resull of

this operation remains a fuzzy number; i.e is a convex and nonnalized membership

function. AIso we assume that max-min (and not min-max) is being used for the execution

ofthe operation; 50 to guarantee that the operation remains internaI.

The point here consists in showing whether the fuzzy expression is a 'Iegal' one. From part

Il we know that multiplication is distributive vis a vis addition and also that multiplication

is associative. This shows immediately that the above expression is indeed 'Iegal'.
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.s', = Ail') (1 ED i') for the Hrst period and .s', = S, ED (S, il') i') = Ail') (1 +rj'; lIsing the

properties. What is interestinp, is to obtain the membership funclion for S". 'nlis must be a

membership fU/lction associated to a Ihzzy number as for the addition and multiplication

we have been assuming that max-min was used and thus the operations remain intemlll.

Obviously the membership function of s., will be strongly dependent on the membership

functions of thc independent vllrillbles i.e Aand r .Both being fuzzy numbers IInd thus

convex and normalized membershir functions. Using Blickley's notlltion we get liS form for

the membership function of S" the following /", (y 1S,,) =/,(Y 1.1).( 1+/,(Y 1r»"; for

;=/,2 and /",(01 S,,) = s", ;/'" (II S,,) = s", ;/",(01 S,,) = s". ;/",(11 S,,) = s,,], This

symbolism only wants us :<J tell that the membership function for S" when the

membership value is 0 the point S ", i~ !lbt..ined. 11le membership fi!l1ction attains again a

value of '0' at point s"., Remark however that the rnembeish;p function is Ilat leveled

bctween the points S", and sn] where the memb~rshjp value is then 1. 11le rnembership

function so obtained would thus give us dilferent values ail belonging with dilferent

degrees to the fuzzy number S", We cOlild also contemplate having the nurnber ofperiods

to be fuzzy. 11lis is however a little more complex and does not add much to the finding.

VI.4.2. Fu~ Cash Flows

A more interesting application is the one which relates to the concepts which are used in

comparing investment alternatives. The NPV or net present value method is weil known.

Another rnethod is the IRR or the internaI rate of re'urn method.

1. A fuzzyNI'Y.approacfJ

Consider a sequence of cash Ilows over Il-periods cali it Ô = AD' A, , ... An' To find the net

present value of those projected cash Ilows (after deducting for initial c9sh outlays) the

n

traditional formulation is used : NPV(ô,lI) =2:A,(I+ro r' .Say now that different
'_0

investmcnt proposais are put forth ô, B, X ...Follo\ving the value of the obtained NPV's
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projects will be sclected. TIle important issue here is that of cour.~e r" (cost of cilpitllito

the finn) and the projected cash values are ail estilllated. So the scope lilr fi11,zy nUlllhers is

more than appropriate. TIle way to go about il here is not that cOlllplicated. A Ih1.7.Y cash

f10w is now defined as t; =A" A, ,... A". Ear.h of those filZlO:Y cash Ilows are thus Ih1.7.Y

nUll1bers. We will assume that .4" is a negative fU1,zy nnlllber. 111is means that the

mell1bership fWlction ofthis f~zzy number lies elllire(v to the lell of the Y-axis; i.e. the axis

which registers the lI1ell1bership values. A positive fuzzy number will lie elllire(l' to the

"
right of the Y-axis. TIle NPV (t;, Il) =A" œL PV(A, .i) where the sununation is fiI1.7.Y.,-,
TIle lI1elllbership function for each fuzzy cash f10w will lilllow the crisp delinition as was

the case in the future value ealculation. Buekley presents an interesting example whcre the

method is exemplified. TIlere some small problems which have to be tackled first:

1. Fuzzy NPV must be greater than fuzzy 0; in order to be considered

2. Comparing fuzzy numbers

Problem 1 indicates a threshold level which is fuzzy O. Buckley proposes for instance a

membership function whieh is having lI1embership value of' l' at x=O to be a good

candidate for fuzzy O. To have a criterion which assesses whether the obtained Ih1,zy NPV

is greater than fuzzy 0 we necd to use a possible definition of ranking fU7.zy numbers. One

possibility is to require that one fuzzy number is greater than the other if ail of the alpha

cuts of the first fuzzy number are bigger than ail alpha-cuts of the other fU7.zy numbcr.

([12]) The 'ail' quantifier may be leading us in some trouble however. Problem 2 is already

tackled through the definition we just gave.

Consider the fol\owing example in Buckley ([8]; p.270) Two projects are pTOposcd in

which the projected fuzzy cash f10ws are as follows:
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I>r.l Pr.B
----_:....:..:..::=------+=----~=------

if" = (-1100/-1000,-1000/-900) S" = (-1100/-1000,-1000/-900)

if, = (450/500,500/550) B, = (50/ 100,100/ 150)

if, = (350/400,400/450) S, = (150/200,200/250)

if, = (250,300,300/350) S, = (250/300,300/350)

ÎÎ.. = (150/200,200/250) S. = (350/400,400/450)
S, = (450/500,500/550)

if, = (50/100,100/ 150)
S. = (550/600,600/650)

Assume also that the fuzzy cost of capital to the finn is : r; = (O.OS /0.1,0.1/0.12) 11le

table entries read simply for instance if, as membership value of'O' for x=50 and at x= 150;

and membership value of' l' at x=100. Those are tbus ail triangular fuzzy numbers. 11le

membership function for each project can be found using the same procedure we used for

finding the membership function of the future value. The membership functions

([S];p.270) with sorne minor alterations, ofthe two projects is:

IL] .H ••••

Remark that the two projects are thus triangular fuzzy numbers. We may prefer project B

over the other as it looks as if the alpha cuts for ail alpha would be greater than for the

other project. There are more sophisticated definitions in ranking fuz2.)' nlJIIlbers however.

We do oot go io detail 00 this issue however. Remark also that the oumber of periods

considereLl here could also be fuzzy. Tenninatioo dates of the projects may indeed be

imprecise. This is iodeed a senseful idea. We do oot go in detail 00 this issue however.
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.2... A.fuzzy .IRR

"TIle internai rate ofreturn is delined as the solution r>-I which solves: LA, (1 +rr' = O.
'.11

TIlis equation may have no solutions. unique or several solutions. 11".. projects if a uuiquc

solution exists will be ranked on the basis on how weil r> rn• We cau trauslatc the IIbovc

"
hornogeneous equation in a fuzzy setting as: An EllL PV(A"i) = O. Solving such a fuzzy,-,
equation resumes to using deconvolution as we have seen in pllrt Il. I-Iowever it is c1cllr

that a clear-cut solution is far !Tom easy. I-Iow do we deline the fU7.zy nUlllbcr 0'/ '11lis

makes thus that the internai rate ofreturn has in fact no feasable fuzzy equivalent when thc

problem is written in this way. TIlis may be an interesting observation and wc IIII1Y C:l.l'Ccl

that in other areas of linance or economics sucll cXlt::!sions lII~y thus be lIIissing at SOIllC

times.
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Conclusion

This {laper has tried to show how fuzzy set theory could weaken the stringent rationality

assumptions used in classical micro-economics. Fuzzy set theory in its simple form is

intuitively appealing. This property has adwntages but also disadvantages. As a main

disadvantage we can mention that the theor; as such is often relegated to the area of

pseudo-theories. TIleories thus, which have no intrinsic rigor and which only exist becanse

nobody cares to get rid of them. Lotfi Zadeh who is the main protagonist in fuzzy theory

has had to endure many cheap and not so cheap criticisrns on his ideas. The strength of a

theory however is also dependent on its maker. Zadeh is not a nobody, we ail know that.

As we have said in part 1of this paper the practice of fuzzy set theory at this point in time

draws people from both strongly scientific backgrounds as weil as from much weaker

backgrounds. Research in the field is extremely dynamic. Appikations in whatever field

makes it to be a theory which is gaining respect day by day. The discus:;ion Iists on

comp.ai.fuzzy on the internet for instance show very c1early that ail creatures 'great and

small' are drawn to this new science, so to speak. 1 mention 'great and small' because

'champions ofthe brain' such as Marvin Minsky ofM.I.T do post positive messages on this

diseussion Iist too.

1have proposed in this thesis that fuzzy set theory, in the very simple form presented here,

can make a contribution to a discipline wbich is condemned to work within Il bighly

imprecise environment. Thus, by definition an economist in bis strong desire to model

must make abstraction from the real world intricacies. The economist, it seems to an

aspirant economist such as this author, must discover this magic fine thread wbich

separates deseriptivity from normativity. This is a very difficuit task indeed. The question

is whether we do fall into the reaim cf descriptivity when using fuzzy set theory in

economics. A more 'acid test' oriented question is the one which asks whether fuzzy sets

enriches or just only genera\izes our propositions in economics. This thesis can not

po~ibly be conclusive on the latter question.
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The problem of descriptivity is inrlecd a vcry fuzzy problcm and we leavc it to the

appreciation ofthe reader to decide on il.

TIle results obtained are mainly that we can get rid of the completeness axiom when

working with fuzzy preferences. Furthermore fuzzy sets in micro-ecc,nomics brings the

added be;lefit of being able to UIIcover what happcns between the stnge where the

individual delimits the possible allocations and the final choiee he makes. From the

optimization problems we considered we wondc,'ed whether a unique solution was at lIll

possible and Ponsard does propose an argum~i1t whieh favors this possibility.

Il must be stressed however that at best this thesis can be at the stage of the earliest of

beginnings of much more extensive research of fuzzy s~t theory in economies. l11e drive

which brought us to the field of fuzzy sets in economics is the one which derives from a

truly UIIcornfortable feeling as to the c1assical assumptions whieh are used in miero

economics. As an example the property of negative transitivity "as little rclevanee to

observed choice behavior. It is however a property whieh is crucial in defining a IItility

function. We must always keep in mind the words of Karl Popper who reminds us that

theory and testing have to be in a perpetuaI relationship. 1 do think, from my limited

exposure to economics, that the testability of the models as proposed in c1assieal choice

theory briogs quite bad news. This is not an argument in favor of using fuzzy set theory in

economics, but it certainly opens somewhat the 'gates of opposition' which are against

introducing it. This thesis, unfortunately cornes to deceiving little formaI conclusions. We

\mow that fuzziness may relax rationality assumptions which we \mow lire too farfetched.

The only objective is to see that if we modulate the strongness of those assumptions by

introducing fuzziness we may come to richer results. Either they are further

generalizations or either they are truly new. The former is not of high interest. The latter

is. In addition to the finl!ings of the completeness axiom , we alsa looked at preferenee

sets with measurable areas and fuzzy utility surfaces. Those are direct consequences of

assuming levels of fuzzy utility. Another newity which is of interest is that the demand

function is 'tick' according to Marchal.



ln the producer area the relaxation of the equivalence between maximizing a utility

function subjectto a technological constraint and the maximization ofprofit subject to that

same constraint may be another newity. Fi..elly fuzzy revealed preference may hold sorne

• promise in that it shows that an individual violating WARP may still be declarcJ rational

to sorne degref;.

So far for the meager accomp!ishments. The other side of the coin has also to be

investigated. The biggest problem with fuzzy sets in economics is the precision by which

we express a degree of membership. This precision is as far-fetched as assuming that we

are ail hyper-rationaI. However to leave this statement as is, is not that fair either. The part

in this paper which dealt with membership functions showed us possible approaches of

how we could auain such membership function. HisdaI's approach mainly probabilistic and

therefore somewhat awkward (unkss we really think about subjective probabilities)

proposed an estimated error function. This may indeed refute the critique that membership

grades are assumed to be ail too precise. Finally there is the classical critique which

, ) equates fuzzy set thenry with a theory of'hidden probabilities'. 1 think we have been quite

extensive on this issue. The most important point here is that fu"";ness is imprecision and

because of this it refers to events which can never realize completely, to re-iterate the

words ofClaude Ponsard. Wc recall also the words ofLuhandjula who says that si~uations

in which there is doubt about the exactness of concepts; correctness of statements have

!iule to do with the occurrence ofevents which is the backbone ofprobability.
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