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Abstract

This paper attempts to show how fuzzy set theory can be used to weaken some of the
stringent rationality assumptions used in classical micro-cconomics. The objective of the
paper is to see whether by introducing fuzziness we arrive to new results or just only
generalizations of classical micro-economic results. We discover that the axiom of
completeness is not needed anymore. Using fuzziness will also allow us to better explain
the existing gap between delimiting possible choices and making the actual choice. We
also introduce the notions of a fuzzy indifference set with a measurable area. The fuzzy
utility surface is also discussed. The demand curve is now 'thick'.

In the producer area, the classical hypothesis that maximum profit entails maximum utility
of profit is now substantially weakened when introducing fuzziness.

Finally, we consider revealed preference within a fuzzy context.

Abrégé

Par le présent travail, nous tenterons de démontrer comment lapplication de la théoric des
ensembles flous peut attenuer certaines des hypothéses rigoureuses sur la rationalité
proposées par la micro-économie classique. Ce travail a pour objectif de rechercher si de
nouveaux résultats sont obtenus par l'application des ensembles flous ou si nous n'arrivons
qu'a une généralisation des résultats obtenus en micro-économie classique. Nous
découvrirons que l'axiome de complétude n'a plus de sense. L'application des ensembles
flous nous permettra également de mieux expliquer I'écart qui existe entre la délimitation
des choix possibles et I'acte en soi de faire un choix. Nous introduirons également la
notion d'un ensemble d'indifférence flou avec surface mesurable. La surface d'utilité floue
sera également traitée. La courbe de demande est alors "épaisse”.

Du noint de vue du producteur, Ihypothése classique selon laquelle le profit maximal
engendre l'utilité maximale du profit perd de sa force par lintroduction des ensembles

flous. Finalement, nous considérons les préférences révélés dans un contexte flou.



Introduction

This paper is voncemed with seeing how fuzzy mathematics could contribute to an
enriched vision of economics. We are specifically interested in seeing how the result of
the traditional problem of maximizing a utility function subject to a budget constraint can
be extended when utility and/or budget constraint are fuzzy. The idea behind the
fuzzification of this type of problem is quite intuitive, As consumers our prcferenbcs are
vague and basically the resulting demand function we derive from successive optimizations
of utility functions subject to budget constraints should perhaps not have to lead to the
‘ultra-thin' demand curve but rather to a 'thick’ demand curve. The suggestion by the
French economist Marchal is essential here. The main objective of the paper thus consists
in seeing where exactly fuzzy sets may contribute in the area of micro-economics. We will
try to pinpoint the advantage of using fuzzy sets as a procedure which allows us to
uncover the way by which we express preferences. Furthermore we will try to argue in

favor of getting rid of the completeness axiom which is used in classical choice theory.

Fuzzy set theory at this present stage is knowing a tremendous boost in research. Research
in the axiomatization of fuzzy set theory is overwhelming. This paper uses only the very
basics of fuzzy set theory and shuns as much as possible fuzzy set axiomatization.
Therefore we suggest that, as expected, this paper can be at most a very small eye-opener

to a newcomer in the field.

Our paper contains six different parts which are meant to form an integrated whole, Part I
deals with the philosophical underpinnings of fuzzy set theory. It looks at the roots of
muitivalued logic through authors such as Black and Carnap. The main protagonists in
formalizing multivalued logic are Lukasiewicz and Bochvar. We analyze some of
Lukasiewicz's ideas. The law of the excluded middle, central to the discipline of fuzzy set
theory is also analyzed.



We look also at some of the 'hot' questions which are currently 'hanging in the air' so to
speak. In 1994 Elkan claimed that multivalued logic can be reduced to bi-valued logic. We

analyze his argument and try to refute it.

Part II deals with some of the building blocks of fuzzy theory prover. The survey is
simple, non-exhaustive and certainly not rigorous. We briefly survey Goguen's extension
of the membership value set [0,1] to a lattice. The extension is quite useful as it renders
the task of defining certain classical concepts into a fuzzy set environment casier. An
example is the issue of pseudo-complementation. We have also a look at the concept of a
fuzzy binary relation, a concept which is most appropriate for defining fuzzy preferences.
We start rounding off part II with a discussion on fuzzy numbers and possible algebraic
operations on fuzzy numbers. The L-R fuzzy number is also discussed. Finally we propose

a measure which may be used to indicate the fuzziness of a fuzzy set.

Part III deals with a crucially important topic which is the membership function. All too
many applied papers have often assumed a membership function to be given from the
outset. If we want to understand how we could possibly construct a membership function
for a particular problem we must inquire about the meaning of a fuzzy sentence. Two
views are presented the syntactic and the semantic approach. We survey severa
propositions mainly all belonging to the semantical approach. Dombi proposes a 'better’
membership function based on a survey he conducted over a period of three years. Hisdal
tries to mode! membership functions using a probabilistic approach. However, her
approach is not clear-cut. Giles uses mainly a Bayesian approach where evidence does not
have to back up beliefs. Shafer calls this the 'personalist view'. Smets and Magrez are
using a more syntactical approach. This part of the paper also tries to distinguish between
probabilities and possibilities; in view of separating the notions of respectively quantity of

information from meaning of information.



Part IV deals with another essential topic which are the operators. We survey the
axiomatic proposition of Bellman and Giertz who propose that the max and min operators
may respectively correspond to fuzzy union and intersection. However, Bellman and
Giertz mathematical justification of the two main operators is not sufficient to deal with
real world problems. The argument by Zimmerman and Zysno tries to alter the max-min

proposition into a weighted connective.

Part V finally gets to the economics subject which after all is the objective of this paper,
Our goal is to depart somewhat from the ail too much restrictive assumption of rationality
which is so widely used in economics today. Whether we are in an environment where
therc is certainty, risk ov uncertainty the information on the set of options we have is
assumed to be perfect. Fuzziness is invited' in when we would reasonably assume that the
options known in advance may only be partially known. Furthermore the choice the agent
is supposed to make may be much less clear-cut than assumed. Therefore we do introduce
the notion of fuzzy preference. This notion has a weak equivalent in the economic
literature with concepts such as bounded rationality. Of course, the critique may be that in
departing from the assumption of rationality we resume into a merely descriptive rather
than a normative model. This is a difficult issue. The fine tread separating the two
positions is indeed very hard to trace. The scope of probabilities is shown to be of little
value in an imprecise environment, We introduce the notion of a fuzzy relation which we
discussed in part II. We look at the all important definition of transitivity and see how
fuzzy transitivity may indeed weaken the rationality assumption. We want to argue that
when introducing fitzzy preferences we do uncover the procedure on sow an agent arrives
to a preference rather than with the result of the preference per se. Finally it is shown that
the assumption of completeness is not at all needed within a fuzzy context.
Incomparability is avoided in classical theory by imposing the axiom of completeness.
Because we can use degrees of preference we can give a true expression to

incomparability.



Part VI deals with applications in micro-cconomics and finance. We look at four
applications in the micro-economics field. The optimization of a crisp utility function
subject to a fuzzy budget coustraint. The optimization of a fuzzy utility function subject to
a fuzzy budget constraini. We also look at a fuzzy producer's equilibrium. Finally we
consider revealed preference within a fuzzy setting. Part VI starts first with an expansion
on the idea of fuzzy preferences. The tick demand function is an outgrowth of this
assumption. Then we progress into the notion of a fuzzy indifference set. This set carries a
membership function which is a fuzzy number. We then go into the notion of a weak and
strong preference set. Finally we round off with an expectable proposition which refers to
the convexity of a weak preference set.

The optimization problems are then tackled. First, we argue about the dangers of fuzzy
optimization when simple linear membership functions are taken into account. Then we
enter the problem of optimizing a crisp utility function subject to a fuzzy budget
constraint. Then we look at optimizing a fuzzy utility function subject to a fuzzy budget
constraint. We wonder whether a solution is possible using Brouwer's fixed point theorem.
We try to argue whether we do indeed have an optimal solution. We also maximize the
utility the producer gets from the profit he realizes when subjected to technological
constraints. This is not a straightforward problem in a fuzzy environment as the objective
of maximum profit does not necessarily coincide with maximum utility, as it would be in
the classical case. Finally we make a brief discussion on Basu's paper which deals with
fuzzy revealed preference. We round off part VI with some simple applications on basic
finance concepts. We look at a fuzzfication of future values and the net present value.

Finally it is shown that the intemal rate of retumn has no specific fuzzy equivalent.
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Part I: Fuzzy Logic

This first part of the paper deals with some of the philosophical issues surrounding the
issue of fuzzy sets, This part will be subdivided into four chapters. Chapter I deals with a
brief and simple survey on some of the reactions the academic community has been
uttering against (or in favor) of fuzzy set theory. This chapter has no pretense at all. It just
wants to shed some light on the popular stance vis-a-vis fuzzy set theory. Chapter II wants
to cnlighten us a little on the roots of fuzzy set theory. Chapter Il deals with a
formalization of what Black had to say on vagueness. Elements of Lukasiewicz logic are

taken up. Finally chapter IV deals with some ‘hot’ questions on fuzzy sets.

Chapter I

Professor Bart Kosko in his popular book on fuzzy thinking wanted to show to his class
what a fuzzy set is all about. Says Kosko: "How many of you are male? Raise your hands.
Males hands go up and female hands stay down. This gives us a non-fuzzy set. Now a
harder question. How many of you are satisfied with your jobs? The hands bob up and
down and soon come to rest with most elbows bent. A confident few point their arms
straight up or do not raise them at all. Most persons are in between, That defines a fuzzy
set...’([43]; p.13) A simple experiment but with big ramifications. To start with in the
applied field of engineering for instance, numerous applications have been made using
fuzzy set theory. To name but a few. Hitachi invented an air-conditioner which adjusts
temperature in the most optimal way possible. Sony developed a palmtop computer using
fuzzy sets so that it can recognize handwritten Kanji characters. Washing machines as
developed through numerous Japanese and South Korean firms such as Daewoo, Samsung
or Sanyo can now adjust their washing strategy based on sensing dirt level; fabric type;
load size and water level. Finally the Sendai Subway System is ran using fuzzy logic. Fuzzy
logic is truly engraved in the Japanese industrial lzndscape.



The Japanesc Ministry of International Trade and Industry (MITI) launched the
Laboratory for International Fuzzy Engineering Research (LIFE) in 1989, The chairman
of LIFE is the president of Hitachi Corporation. Among the directors on LIFE arc Joichi
Aoi, president of Toshiba Corporation but also Yutaka Kume; president of Nissan Motors.
The cream of the world largest and finest technology corporations are member of LIFE,
This is to say that the practical implications of fuzzy set theory as they are applied in
engineering can not be washed away.

At the non-applied front there is opposition however. 1 have remarked while writing up
this thesis that most writings on the fundamentals of fuzzy set theory are coming from
Western and Eastern Europe. Western Europe is heavily represented through French,
Belgian and German Universities. Eastem Europe mainly through Polish and
Chekoslovakian universities. North America is foremostly represented by the main
inventor of fuzzy sets Lotfi Zadeh of Berkeley, Some Canadian universities are also
involved with authors such as Giles and Gupta.

It is interesting however to see how fuzzy sets has been accepted in North America. One
interesting story is the one which opposes Rudolf Kalman to Zadeh. Kalman was the
inventor of the Knlman filter which is basically an optimal estimator. Says Kosko ‘It gives
the ‘best’ guess wisere the plane went when it flew behind a cloud’. I am net an engincer
and can thus not grasp the beauty of Kalman’s invention. One thing is surc would there
have been a Nobel price in engineering Kalman would have won it ‘hands down’ as Kosko
says. Kosko however argues that it is Zadeh’s basic work in this field which helped lay the
foundations of the Kalman filter. As Kosko says ‘..Zadeh missed the price and Kalman
found it. That is why we call it the Kalman filter and not the Zadeh filter.” This is what
Kalman had to say at the Man and Computer conference in Bordeaux of 1972: "No doubt
professor Zadeh’s enthusiasm for fuzziness has been reinforced by the prevailing climate in
the US- one of unprecedented permissiveness. ‘Fuzzification’ is a kind of scientific
permissiveness; it tends to result in socially appealing slogans unaccompanied by the
discipline of hard scientific work and patient observation.” I could go on for hours citing
other big names who have opposed fuzzy set theory. However the big names are on both

sides! Richard Bellman; the noted mathematician is certainly one of them; not to forget



Zadeh himself, chair of the department of electrical engineering at Berkeley. On the
philosophy side there are great names such as Black and Russell.

It is truly extremely difficult to make an assessment of some depth on what fuzzy set
theory has to offer. I do think; from my very limited exposure and my very limited
capacities that it holds promise, It has shown to be useful in some areas of technology.
From the proliferation of material written on the subject one may at least have a good ‘gut
feeling’ about the future of this field. Finally little or nothing of this area has been used in
economics. Some French economists such as Ponsard and Billot have been writing on the

subject but little else is to be noted.

Chapter I1

Black’s article is certainly one of the first articles which deals with the problem in depth.
Philosophers of ancient Greece had posed the problem of vagueness; but little of a precise
argument followed from their questioning. Black’s article which appeared in the late
thirties joins however a series of other papers on the same problem. The fundamental
papers of Lukacsiewicz; Bochvar and Kleene came in 1938, They are quite more
sophisticated in argument that Black’s paper. It seems that the connection with fuzzy sets
lies in Lukasiewicz 3-valued logic. We will inquire some of the elements of this
multivalued logic and the possible connection with fuzzy sets in the next section. For now
let us have a closer look at what Black has 1o say.

Black cites the well known philosopher Peirce who defines a ‘vague’ proposition as
follows: ‘a proposition is vague when there are possible states of things conceming which
it is intrinsically uncertain whether, had they been contemplated by the speaker, he would
have regarded them as excluded or allowed by the proposition. By intrinsically uncertain
we mean not uncertain in consequence of any ignorance of the

interpreter, but because the speaker’s habits of language were indeterminate.’([6]; p.431)

Peirce also invokes the idea of ‘indeterminacy of habits’ by which he means the



hypothetical variation by the speaker in the application of the proposition; "so that one day
he would regard the proposition as excluding, another as admitting, those statcs of things'.
The knowledge of such variation conld only be deduced from a perfect knowledge of his
state of mind...

Black’s discussion on the location of the fringe gets us right to the point where vagueness
may be defined. Says Black: ‘The presupposition of the existence of a class of ‘doubtful’
objects will involve the assumption either of an exact boundary or of a doubtful region
between the fringe and the class of unproblematic objects’, ([6];p.435) Either assumption
will be shown to invalidate the concept of negation which is used in the classical logical
principles. Black’s example which purports to the above quote is as follows. Says the
philosopher: 'Let L be a typical example of a vague symbol. The vagueness of L consists in
the impossibility of applying L to certain numbers of a series. Let the serics S be composed
of a finite number; say 10 of terms x; and let the rank of each term in the series be used as
its name. Let the region of doubtful application (or fringe) be supposed to consist of the
terms whose numbers are 5 and 6 respectively. The choosing of those fringe terms is
arbitrary. In the usual notation of prepositional calculus Lx will mean L applied to x and
~Lx; Lx is false. Suppose now that L,,L,,L,,L, are true,but L,, L, are doubtful. The
question which then arises is that of what is the range of Lx in that case? We know the
L’s which are true though we do not know for sure about the L 's which refer to position 5
and 6. To exclude positions 5 and 6 may be right or it may be wrong; we do not know. We
definitely exclude positions 7 to 10, though. The problem comes in when looking at ~Lx.
We should be positively excluding 1 to 4 including; not really knowing what to do with 5
and 6; though we certainly include positions 7 to 10 now. Assume now we include the
fringe (i.e positions 5 and 6) in both cases. What can we say of Lx versus ~Lx? We know
that ~Lx is only true when Lx is false. ~Lx is true when excluding positions 1 to 4; or
including positions 5 to 10. Lx is true only when we exclude positions 7 to 10; so the
negation of this true Lx is to include positions 7 to 10! There is overlap between these two
negations and this makes no sense according to the formal properties of negation in which

a domain and its complement can not overlap. Here they clearly overlap!



The problem spot is certainly positions 5 and 6; which we called the fringe. We see clearly
that because there is no clear boundary between Lx and ~Lx we get to such a
contradiction. However on the other hand and this leads us nito quite some trouble, well
defined boundaries to the fringe also lead to problems. The following is one among the
many of such examples which illustrate the latter problem:

‘A measure of com when thrown out makes a sound. Each grain and each smallest part of
a grain must therefore have made a sound yet no sound is made by a single grain.” ([6];
p.438). Black’s paper does not offer any solutions to the circular problem he posed above.
But he posed the problem. Though we are far still from a formalization of multivalued
logic or even remoter from fuzziness altogether this paper has the merit to have shown in a
simple way the problem of the ‘excluded middle’ in some sense. Goguen comes to a very
similar conclusion as Black does. Says Goguen:’ ...representing concepts by sets and
deduction by methods of traditional logic does not yield an adequate model of our
customary use of inexact concepts and deduction; for we have shown this representation
leads to paradoxical conclusions.’([26]) Goguen’s proposal for a resolution of this
problem is to use fuzzy sets. We now go to chapter III which wants to look at some of the
formalizations of multivalued logic. We then make the connection between this kind of

logic with fuzziness.

Chapter II1

111 LSome EI ¢ multivalued losi

[1L.1.1. Early History

It is said that the founding fathers of many valued logic are the Scotsman Hugh MacColl
(1837-1909) the American Charles Peirce (1839-1914); and the Russian Nikolai Vasil’ev
(1880-1940). MacColl developed a system of prepositional logic in which three values
could appear. The traditional true and false values and a ‘variable’ value. An example is
this: ‘2=2";"3=2" and ‘x=2’; which respectively would form a certain proposition (which is

always true); an impossible proposition which is always false and the variable proposition



which is sometimes false and sometimes true. (i.¢ if we attribute x to be 3 then the variable
proposition is false)

Peirce also invented a similar kind of logic he called ‘triadic’ logic, Together with Frege he
became the inventor of the truth tables for 2-valucd logic. It is claimed that by 1909 Peirce
had been extending this truth table to a three-valucd logic truth table. Peirce was also
instrumental in developing connectives specially geared towards three valued logic. Some
of those connectives were taken over later by mathematical philosophers such as
Lukasiewicz. Finally, Vasil’ev also developed a similar three valued logic. He proposed a
world in which some objects have the predicate A; others its negation predicate not-A and

still others which simultaneously have both A and non-A.

IIL1.2. Breakthrough

The real breakthrough after some groundwork had been laid by MacColl; Peirce and
Vasil’ev came in the early 20th century; mainly in the period 1920 to 1932. Instrumental
authors were Lukasiewicz and Post. Lukasiewicz published the first systematization on a
3-valued system of logic in a lecture before the Polish Philosophical Society in Lwow in
1920. Axiomatization of Lukasiewicz logic was achieved by Mordchaj Wajsberg in 1931,
The interesting part of Lukasiewicz development of 3-valued logic is that it went through
several stages. He distinguished about 3-valued and n-valued logic. While in the beginning
of his development he held that 3-valued logic was of philosophical interest later on he
pointed out that it would be 4-valued logic. Post himself discovered also this 3-valued
logic and systematized it also. His discovery was independent of Lukasiewicz.

The difference between Post and the Polish philosopher was that Post started out right
away with a formal development of n-valued logic while, as we said above Lukasiewicz
progress went from a 3 valued to 4 valued and n valued logic. He also contemplated
infinitely valued logic.



I11.1.3, More recent

Following Resher the more recent period would cover 1932 to 1965. Tarski and Turquette
carried further the work of mainly Lukasiewicz. Furthermore Lotfi Zadeh in fact also
worked his fuzzy sets out based on this logic. There are however others systems of many-
valued logic which have been worked out independently of what Lukasiewicz had to say.
Prominent authors are Kleene, Godel and Bochvar. I would dare to classify in the applied
field of multivalued logic authors such as Zadeh but also Shannon and Birkhoff, von

Neumann and the Dutch mathematician Brouwer.

111.1.4. Elements of two valued logic

[ do follow the notation introduced by Rescher, The following is at use then:

Two - valued Systems Many - valued Systems
Negation ~ -
Conjunction & A
Disjunction V %
Im plication o -
Equivalence = o=

The truth tables in two valued logic are well known. We re-iterate the following:

Pi~pP
T | F where T=true and F=false
F| T

Using the other connectives of the table above we get then:
piglp&qipVglpoq|p
T|T| T T T
T|F| F T F
F|T| F T T
F|F| F F T T

q

oo m

Using the truth table we can find the truth value for what Rescher calls ‘well formed
formulas® (or wif).



An example of such wiff is for instance this:
a2 (B&[(alf)o(y = a)l)
where the truth values of the constituent clements are given as:

lal=7:|8|=Fand|y|=T

simply replacing in the wif we get:
To(F&[(TVFY(T=T)))
using the truth table from above we get:
To(F&[(TYo(MD=To(F&T)=TDF=F
The connectives are called truth functional as the truth value of the resulting wit, given
that the constituent part’s truth values are known, is always uniquely defined. This is the

characteristic of the classical two-valued prepositional calculus designated as C, .

IIL. 1.5. Elements of 3-valued logic

With Lukasiewicz we introduce a third ‘intermediate’ or also ‘neutral’ truthvaluc /.
Lukasiewicz defends intuitively the introduction of / with the following ecxample:

‘I can assume without contradiction that my presence in Warsaw at a certain moment of
next year; e.g. at noon on 21 December; is at the present time determined neither
positively nor negatively. Hence it is possible; but not necessary; that I shall be present in
Warsaw at the given time. On this assumption the proposition ‘I shall be in Warsaw at
noon on December 21 of next year’, can at the present time be neither true nor false. For
if it were true now; my future presence in Warsaw would have to be necessary; which is
contradictory to the assumption. If it were false now ..my future presence in Warsaw
would have to be impossible which is also contradictory to the assumption. Therefore the
proposition considered is at the moment neither true nor false and must possess a third
value; different from ‘0’ or ‘1°. We can designate this value by 1/2. It represents the
‘possible’ and joins the ‘true’ and the ‘false’ as a third value....’[50]

Thus in other words Lukasiewicz points out thus that propositions regarding ‘future-
contingent’ matters have a truth status that does not correspond to either of the orthodox

truth-values of truth and falsity.



The truth tables based on this 3-valued logic, as proposed by Lukasiewicz himself looks

then as follows:

¢ »

P

7| F

1|1

F{T
pla|lprqlpvalp>q|pog
rirt 7 {r {7 T
T\F| F | T | F F
Tir| 1| 7| 1 /
I O A A I /
1\F| F | 1 / I
1\ 1| T T
Flr| F | T | T F
FI\IF| F{ F | T T
Fli| F | 1 T !

One can replace 7=1;/=1/2 and F=0. Note that the results are somewhat less intuitive
than in the case of C,. This 3-valued logic we can abbreviate as L,.

The guiding principles, following Rescher, for 3-valued logic would then be:

1) Obviously three truth values

2) The truth value of a conjunction is the falsest; and of a disjunction the #ruest of the truth
values of its components. This can be seen easily in the above table. To take the

disjunction of 7 and I ; then the truest of both is T.

I1L. 1.6.The law of the excluded middle

We can not of course go into any serious details about the L, logic. The law of the

excluded middle however for our purposes is worth to be mentioned.
. Let us first for this explain the meaning of a two-valued tautology. This is a formula which

always takes the truth value T regardless of what truth values may be assigned to the



component prepositional variables. An example is for instance p}’ ~ p. The 3-valued truth
table correspouds to the 2-valued truth table when only T's and F's arc involved. From
this follows then that any 3-valued tautology must also be a two valued tautology. The
reason for this is that a tautology must take on the truth value T no matter the assignment
of truth values to the constituent parts of the wif. This is easily illustrated. Take the casc of
pV ~p inC, and this is a tautology. But look now at a two valued tautology in L,. Then
pv ~p (where 'v ; is the disjunctive operator in L,) can yicld easily / i’ p adopts the
truth value /. pv (or V')~ p is exactly the law of the excluded middle; and it really fails to
obtain in L, as a tautology. This could have been avoided would Lukasicwicz have taken

for the disjunctive operator the following truth table:

plajpve
T|IT[ 7
TIF| T
TV1| T
1\ T
I\F{ 1
Iyrlr
FlT] T
FIF| F
Fl1]| 1

One sees clearly that this new disjunctive operator on / yields now a true valuc 7. The
tautology can thus be maintained and the law of the excluded middle would remain valid in
L,. However this new disjunctive form has drawbacks. This paper is not the place in
which we should further extend other avenue:s concerning the law of the excluded middle.

At least what we have shown here is that it is not so obvious that in multivalued logic the

law of the exciuded middle would by definition not hold. /t can hold under certain

circumstarnces.
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111, 1.7, Many valued generalizations of 3-valued logic
3-valued logic can be extended into n-valued logic. Working with our truth values on [0,1]

we can sce the following quite casily:

H Division points
(i,0)
3 (1,1/2,0)
(1,2/3,1/3,0)

nil=@-1/n=1);(n=-2)/(n-1);..2/n=5L1/n-1,0/n-1=0
Where for n=2 we worked in C, ; and for #=3 we worked in L,.

Furthermore an extension can be made to infinite-valued logic in two cases:

1)L, which symbolizes the case that if we take 0 and 1 together with all the rational

numbers between 0 and 1 as truth values.

2) L,,, when we take real numbers from [0,1] as truth values.

We now get into two propositions which look at the number of tautologies we may find in
each system. This has relevance to our law of the excluded middle.

Proposition 1: Every tautology of L, is a tautology of C,

References has been made already to this idea. The proposition is quite intuitive. The truth

tables for L_ will agree with the two-valued system when only 0 or 1 is involved. This will
be the overlap with C,. The reverse is not true however as we have been remarking
already above. Considering the law of the excluded middle; which is a tautology in C, ; it
will not be a tautology in L, for instance. Take for instance from (1;2/3;1/3;0) for
|p|=1/3; then|pv —p|=1/3v2/3=2/331; and thus the law of the excluded middle

does not hold. Recall that the value of a conjunction is the falsest; and of a disjunction the

truest of the truth values of its components; as we saw for L,.
This is also valid in extension on L,; say L,. One can now also get a quite serious

‘foretaste’ of the use of max-min operators in fuzzy union and intersection. As the

membership values of elements of fuzzy sets lie in [0,1] ,at least in the simplest case.
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We now better understand why fuzzy union would imply maximum and intersection;
minimum. Some of the logical connectives are then defined as follows:
(set truth value equal to p(x))(please refer to part Ill for a discussion on probability
logics.)

0<p(x)<1

p(X)=1-p(x)

p(x A y)=min(p(x), p(»))

p(xv y) = max(p(x), p(»))

The above development gives us an idea on how the fuzzy set theory draws its origins
from multivalued logic. The math part and subsequent parts of this paper will, I hope make
this clearer. Giles once said that “.Lukasiewicz logic is exactly appropriate for the
formulation of the ‘fuzzy set theory’; first described by Zadeh’; indeed it is not too much

to claim that L, is related to fuzzy set theory exactly as classical logic is related to
ordinary set theory.” (note that L_ = L, (i=0,1) as we noted it above.). Giles argument

requires much more of a development than it seems. Giles paper is an example of making

this connection. We will however not take up a discussion on this subject. ({22])

Chapter IV

IV. L Some ‘hot’ questions before the start

As I hope the reader will notice, after having read the subsequent parts of this paper,; it is
not clear whether fuzzy set theory is still as fuzzy as before or just not. There are still quite
a lot of unresolved high caliber questions in this theory. I deliberately mention ‘high
caliber’ because of the fundamental nature  the questions involved. A short list of some
of the problem areas may then be the following.

1) Are grades of membership to have a probabilistic or possibilistic interpretation?

2) How do we define grades of memberships?

3) What about ensuing operators?

4) Is fuzzy set theory a unified theory?

12



1) We will not define yet precisely what a grade of membership is. An example is the
casicst to handle at this stage. Consider the set of golfers of Canada. This set contains
professional golfers; golfers with 1 year of golfing experience etc...Each element of this
basically fuzzy set belongs to some degree to the set, One is inclined to give a membership
value of ‘1’ to the element ‘professional golfer’. Less of a value would go to the element
which exemplifies the golfer with 2 years of free-time golf experience. We know from our
discussion on multivalued logics grades of memberships may have to take values in [0,1].

The confusion which ensues out of that is serious, Toth says it in somewhat of a superficial

way as follows: ‘.using membership functions of the form X —[0,1].. is a very

appealing presentation, because in a simple way it generalizes both the logical truth
functions and the characteristic function of ordinary set theory. But it is just that last
property and the fact that for probabilities we have z:Y — [0,1]; which have proved to be

drawbacks because of the two following reasons: [1] the equality of the ranges of

st and mhas misled many people to believe the underlying concepts to be the same

too...[2]...".[71] It was Goguen; by introducing a lattice structure which perhaps avoided
further confusion with the [0,1] problem. We deal briefly with Goguen’s extension in the
math chapter of this paper. The above passage is to set the tune. The probabilistic versus
possibilistic interpretation remains a problem. We will discuss it further in part HI of this
paper.

2) Related to the first question is the definition of grades of membership. Now, let us be
clear the membership function and its grades is certainly the basic template upon which
fuzzy set theory is to be build. I think part III of this paper gives us an idea of this. As we
will see in part I1I defining and finding a workable and acceptable way to make grades of
membership functional is far from easy.

3) The problem of operators is all important for the obvious reason that it will give us a
tool kit by which we can optimize for instance. The mathematical branch of fuzzy set
theory has opted widely for t-norms and t-conorms. As we also will see in part Il the
traditional max-min operators have been discarded somewhat; at least in the practice field.
4) Finally we may wonder if at all fuzzy set theory is unified at this present stage. This is

again a very hard question.
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Hisdal claims that there would be two orientations in fuzzy sets, the syntactical and
semantical branch. Part Il discusses the differences. From our rcadings however it looks
as if there is still a lot of work to perform before to call fuzzy set theory unificd.

Unified in the sense of a common base (such as membership functions and cnsuing
operators) upon which everybody agrees. On the other hand it may be asked whether a
unified theory is that important; or even worse whether it is by definition possible in an

area such as fuzzy sets.

1Y.2.The hottest question ofall
Finally there are even hotter questions! Elkan claims in [18] that fuzzy logic can basically
be reduced to binary logic. This is an attack of the utmost serious sort! We need to expand
on Elkan’s argument. Elkan defines the the ‘degree of truth’ as follows:
Definition 1: Let 4 and B be arbitrary assertions. Then:

D#(A A B) = min{t(A4), 1{B)}

2)t(Av B) = max{t(A4),1(B8)}

Nt(—A)=1-1(A)

4y (A)=1(B)if Aand B arelogically equivalent.
(with ¢() the truth value)
Then given this definition Elkan proposes the following ‘revolutionary’ theorem:
if ~(AA—-B)and Bv{—-An—B) are logically equivalent then for any two assertions A
and B; either ¢(B)=t(4) or t{B}=1-1(A). The proposition derived from this theorem takes
then the following form:
Elkan’s Proposition: Let P be a finite Boolean algebra of propositions and let a be a truth
assignment function P— [0,1]; then for all p e P,a(p) € {0,1}.
This is indeed an incredible claim given that all values in a multivalued setting; when
following the four elements of definition 1, must collapse to a two-valued setting. Elkan
gives the proof of his proposition; which we will not re-iterate here.
This looks like an enormous blow to all what has been constructed in the fuzzy literature.
Would Elkan’s statement have validity fuzzy sets would be just relegated as 2 mental
exercise of no value; just as studying latin in high school.

14



Is Elkan’s proposition refutable? The ‘super’ trio Didier Dubois-Henri Prade-Philippe
Smets and also Lotfi Zadeh refute this statement completely. We want to look in their
argumentation and start out first with the refutation of Dubois-Prade-Smets.

DPS do totally refute Elkan’s use of the logical equivalence. They claim that this
equivalence is true in a Boolean algebra setting but not at all in fuzzy logic. It is the fourth
properly in his definition | which is very bothering. Let us see why this is so. When
looking at ONLY the first three statements we can, following DPS derive some classical
logical equivalencies. They are for instance:

An(v)A = A (idempotence)
AA(BvCY=(ArB)V(AAC)
Av(BAC)= (Av BYA(Av C) (distributivity)

For instance AAnA= A, derives immediately from the first statement; ie. that
min(#(A), t(A)) = t(A).Much more important is that other Boolean equivalencies do NOT

hold using the first three statements of definition 1. As an example, it is not true that:

AA=A =K witht(K)= 0 always holds. The reason follows immediately from statement 1
in definition 1. Namely that (AA—A4)=min(t(A4),1-1(4))<1/2. Similarly
{Av —A) = max(¢(A),1-1(A)) 2 1/2 ; meaning thus that Av—A4=E;witht{E)=1 does
not always hold. Thus without statement 4 in definition 1 using thus the first three
statements the law of the excluded middle is still refuted, as Av—-A=E;with(E)=1

does not always hold. Zadeh gives us a very nice insight in what is wrong in Elkan's

equivalence. We know that —(4A-B)=—-AvB; this just uses the fact that
~(AnB)=—-A4Av—=B (law of de Morgan). Then extending the RHS with
(—Av B)A(Bv-B); where the new appendix is the law of the excluded middle. The
latter expression is claimed to be equivalent to :Bv(-4A-B). Hence
~(AA-B)=Bv(—AA=B); and this is precisely the equivalence Elkan uses in his
thcorem 1. No doubt the law of the excluded middle is ‘disguised’ to use Zadeh’s words
(—Av B)A(Bv—B); through the latter term; ie. (Bv—B). The non-equivalence of
—(AA—B) and Bv (-4 A —B) is also shown in Klir and Yuan.
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A sharp note is by Ruspini who wonders when equivalence in a binary setting involves the
equality of the truth values of two formulas; it looks definitely awkward to impose an
axiom then; i.e. condition 4 of definition 1; to establish this truth.

An important point is this: the equivalence in the sensc of o <> # is not the same as the
equivalence in the sense of the equality of truth values in multivalued logic. It all depends
what #ype of multivalued logic is considered. In part 1 we looked briefly at Lukasicwicz.

logic. We also mentioned the multivalued logic of Bochvar.
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Part 1I: Fuzzy Mathematics - Building Blocks

Chapter I Introduction

Zadch in 1965 formulated his ideas on fuzzy sets, which basically expressed the idea of
introducing a degree of belonging of an element to a subset. Zadeh’s creation is in some
scnse ‘natural’, but it needs a genius to create it! As Hans Zimmerman once said it is
difficult to find ‘a one-to-one mapping between the richness of our thoughts and the
expression of it into daily language’. Formal language is even poorer in meaning , as
opposed to daily language. Therefore Zimmerman concludes that a one-to-one mapping
between rich human thoughts and formal logic is inexistant. In the social sciences the lack
of truly crisp phenomena is omnipresent. Economics tries certainly to abstract from heavily
complex situations so to provide approximate solutions to those real problems. Zadeh in
1973 pointed out that if the complexity of a system increases, our ability to make precise
statements about its behavior diminishes until a threshold is reached beyond which
precision and significance become almost mutually exclusive characteristics. Perhaps the
most englobing definition of fuzzy mathematics was given by Goguen who said that :” the
theory of fuzzy sets studies formal properties of ill-posed problems and ill-defined sets..."’
([25]; p146) From the outset I think we can already clarify one main divergence of fuzzy
math from the traditional bi-valued math and that is the /aw of the excluded middle. We
know in probability theory that p(4~ A)=0. This is precisely not universally true in a

fuzzy context. Natural examples abound: ‘yellow and yellowish® “little tall, tall and very
tall’, all examples which we use with high frequency in our daily language. No clear
boundaries as such and therefore no law of the exciuded middle. We have been discussing

the law of the excluded middle in part I,
If E is a ‘universe of discourse’ then 1.1 expresses ‘belonging” according to classical set

theory.
Ll.LetEbeasetand ACE;xed canbewrittenasU ,(x)=LU ,(x)=0 forx ¢ A.
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L2. Define {x:U P (x)};Vx € A; where U ,(x) indicates the DEGREE of membership of x
in A. In other terms let E be defined as above and let x € £; 4 < £ is a fuzzy subset such
that {xIU 7(x) }; Vx € 4;where E is defined as above.

A fuzzy set on X (X being finite) can also be expressed as:
A=U; () x+. . Usz(x, ) n="2 U, (x)x,

fm]
Example 1: For X=N (positive integers) let A.= 1/7+.5/8+.8/9+1/10+.8/11+.5/12:+,1/13;
where the fuzzy set A does indicate to be a fuzzy subset of integers of approximately 10.
Example 2: Let E={a,b,c,d,e,f} and M={0,1/2,1}(M=Membership sct or valnation set)

then: A= {(a/O), (b/1),(c/1/2),(d10),(e,1/2),(f/0) }where Ac E. Remark it is from

M that the set A takes its membership values.

Example 3: If E={a,b,c} and M=[0,1] then A={(a/0),(b/1),(c/1)} is an ordinary sct.
Example 4: An interesting example by Miaymoto is this:

Say E is the set of non-negative integers. Say E is the set including the ages of people. Can
we define a subset B denoting ‘young ages’? Clearly, there is no well defined objective

criterion by which we can separate ‘young’ from ‘old” ages. Define now a function U

corresponding to the concept of ‘young ages’.

So for instance Uz(x)=1for x=10and Uz(x)=0 for x=60; where ‘x’ denotes agc.
Thus the fuzzy subset B is precisely ‘fuzzy’ because there is no clear defined boundary.
([52]; p.7) The membership function can also be drawn. In (age,membership value) space
the function may be horizontal at 1 up to x=20 and start declining from x=20 onwards.
The membership function is sometimes called preference function..(see [45] for instance)
Note that in fuzzy set theory we could also define a possibility function. We then invoke
the possibility that a certain event will happen and establish boundaries. Lai and Hwang
attempt to make the difference clear between the two concepts: ’the grade of a
membership function indicates a subjective degree of satisfaction within given tolerances.’
and ‘the grade of possibility indicates the subjective or objective degree of the occurrence

of an event.” ([45]; p3) The above definitions also seem to show us that we explicitly deal
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with possibility and not probability; as in the latter case we refer solely to the objective
degree of the occurrence of an event. Zadeh claimed in his original 1965 paper that the
‘notion of a fuzzy set is completely non-statistical in nature’ ([77]; p.340) Zadeh however
does not offer, in this paper, any deep explanation on why this could be so. To make our
stance clear on the differential between probability and possibility we can re-state Zadeh’s
intuition: 'what is possible may not be probable and what is improbable need not be
impossible’ ([37]; p.24) This is also known as the consistency principle. Part III deals with

the problem more extensively.

L3. Support and height:
The common set suppA={x € X,U ;(x)> 0}; where X is the universe of discourse set.
‘suppA’ is called the support of the fuzzy set A. We emphasize the fact that suppA only

includes membership values which are strictly greater than zero. The least upper bound of

U 4(x)is called the height of A: hgt(A)="sup U, (x) ([1]; p.10) (see fig.1 - appendix)

xeX
A fuzzy set with height ‘=1 is normalized. Linked to the concept of ‘hgt’ is the concept of
cardinality. If X is a finite set the cardinality, cardA is defined as:

cardAd = ZU 7(x)([1]; p.11 and [52]; p.18) The definition makes some sense, when we
xeX

think in analogy with the crisp set cardinality, A crisp set containing 5 elements will have
cardinality 5; i.e the sum = 5 times 1. The membership value of elements in the set is 1. By
analogy we do the same for a fuzzy set. Defining cardinality on X not being finite is

however more tedious. The refative cardinality is defined as: card, A = cardd/cardX .

Cardinality and height are special cases of energy-measures. ([1]; p.12)

Toth [72] remarks that fuzzy cardinality as defined above is quite meaningless. For one
thing cardinality could be defined as two sets having the same cardinality if there is a
bijection between them. Of course this definition can not at all be followed when using

cardd = ZU 7(x). The reason is simply that in the crisp case the cardinality is formed by

xel

the binary value ‘1’ of elements in the set. If one considers two fuzzy sets with same

cardinality there need not at all to be a bijection between those two sets as we do not have
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to work with integers. Le. say cardd = cardB =5 then working with non integers there

are tons of different ways how to reach this equality; and no bijection is at all guarantced.

One of the great extensions in fuzzy set theory is the extension which can be made from

the [0,1] to a more general structure which is a lattice.

At this point it may be useful to have a quick look at some of the peculiar lattices we can

encounter.
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1.4 Lattices

Let L be an ordered set; suppose for any ordinary subset {x,,x ; } of L there exists ONE
AND ONLY ONE element of L constituting an inferior limit of the subset and likewise
there exists onc and only one element of L constituting a superior limit of the subset. If so
then L is called & /attice. In symbols this is written as:

{ Vx,,Vx,(x, €Ll,x, el)3lx, =x,Ax;;x, €L }

{ vx,,vx,(x, eL,x, eL)y3lx, =x,Vx ;x, €L }

Four properties can be invoked: (A,B,C are elements of L.)

AAB= BAA and AVB=BVA
{(commutativity)

AA(BAC) = (AAB)AC
(idem for V)
(associativity)

AM=A4
(idem for V)
(idempotence)

AV(AAB)= A
AA(AVB)= 4
{absorption)

Some examples will clarify some of the lattices we may consider.

A Hasse diagram (figure 2) gives the following interesting results:

Setting x, <x, for x, preceding x ;;we assume this is an ordered set, then.
DA<B<C<F

NA<B<E<F

NA<B<D<F

Then we can verify our four rules:

For instance AV(AAB)= A7 We know that: AAB= A and AVA = A; hence AV(AAB)= A

2]



Note that maximal chains of a lattice are defined as chains which are non-overlapping with
other chains, The lattice of figure 2 gives maximal chains which are as follows:

A<B<C<F or A<B<E<F. Counterexamples arc useful as they show us immediately the
important components of the definition of a lattice. Figure 3 shows us a first example of a
non-lattice. C is inferior limit of both D and E. But B is also the inferior limit of D and £,
Hence this violates the definition of a lattice, We only can have one inferior limit for a
same given ordered set. In Figure 4 we may wonder what is the superior limit of D and E.

This also violates the definition of a lattice as we are required to have a superior limit.

L3, Important types of lattices

1. Modular Lattice

A lattice L is modular when for 3 arbitrary clements
X,,X,,%; €Lix, Sx; = x,V(x,Ax;) = (x,Vx, )Ax,

Figure 5 provides an example,

2.Distributive Lattice

A lattice L is distributive when:

Vx,,x,,%, €Lix, V(x,Ax,} = (x,Vx,)A(x,Vx,) and x A(x,Vx,)=(xAx,)V(x,Ax,)
Figure 6 provides also an example.

Property: Any Distributive Lattice is Modular.

3.Sublattice

Alattice Land Ac Lif Vx e A,Yy e A:xAy € Aand xVy € A then A 1s a sublattice of L.

Property: A Sublattice L’ of a distributive lattice L is itself distributive.

4. Complemented Lattice

Suppose a lattice L possesses an element denoted ‘0’ which is the inferior limit of the
entire lattice L; suppose L also possesses a superior limit for the entire lattice; say ‘U’.

x, is a complement of x, (x, € L,x, €L} if:

x,Ax, =0and xVx, =U

Then

Figure 7 is an example.
A lattice L is complemented when:

a) it possesses a unique element ‘0’= inferior limit and U= a superior limit
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b) each x, € L possesses at least one complement in L.
Property: In a distributive lattice; the complement of an element x, is always unique.

5. Boolean Lattice

A distributive and complemented lattice

a) for cach x,:=x,

b) x,Ax, = x,Vx,

o) x,Vx, =x,Ax,
6. Vector Lattice
Let A,B,...S be n sets; each totally ordered by ‘<‘; the product set is an ordered set and

forms a vector lattice. To create an order in this product set we use the dominance

relation:

Ex.:V=(x,,x,,x,) dominates v'=(x', ,x', ,x'; )& x, 2x', ;x, 2x', ;x, 2x",

A vector lattice is distributive but not complemented.

7. Product of Lattices

Let L, and L, be two lattices. The product of these two lattices gives again a lattice.

An example:

Let L, ={4,B,C,D,E,F}and L, = {a,pB,y,5,¢} . Figure 8 shows the first lattice is not
totally ordered; i.e. is B<C<D?

No! In fact a lattice may be constructed from partially ordered sets as long as the maximal
chains indicate a total order and that there is a superior and inferior limit. The first lattice
has maximal chains which are totally ordered, as one can see. Consider now this:
(x, 0, X' 0 el x Ly if (¢ V)2 (x,,y, Ythenx', > x, and y' >y ;then L, x L,
will be ordered; and the associativity etc.. rules can be verified; confirming L, x L, to be a
lattice. Thus in our example all possible combinations must be verified. Le.
(F,e)<(F,.y)<(F,B)<(F,a) etc..

The figure 9 gives an idea of a partially ordered set not forming a lattice. D,E,F have no

inferior limit,
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8. Sup and Inf Semilattices
When only the superior limit (or only the inferior limit) belongs to the lattice we have

respectively a sup-semilattice and inf-semilattice, The figure 10 is self-cxplanatory. A

lattice is at the same time sup and inf semi lattice.
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Chapter I1. Generalization of the notion of a fuzzy subset

So far we have been looking at fuzzy subscts taking membership values in M=[0,1].

We want to extend the membership set to L, which is more general than M.

We will then talk about L-fiszzy subsets; L being a lattice. The extension was worked out
by Goguen. Up to this point fuzzy scts where subsets of an ordinary set E. Therefore we
called them fuzzy subsets. One could perform operations on fuzzy subsets having the same

reference set. We want to look specifically at the ordinary sets E,.

The set of functional mappings of £, into E, is denoted as: £,

Those mappings ave functions; a function is a relation,

An example:

Let E, = {A,B Yand E, = {a,ﬂ,y }. All the possible combinations are totaling:

HLE,"1=#E"" ;ie 3’ =9 combinations,
Two properties are:
IWE,xE,)" = EPxE,"

2) (E,")" = £

[.2. Fund 1P ies of E . ¢ . ]
The set of mappings of E into L (lattice) is : L*. The following property is extremely

important:

Any internal law *’ defined cn L induces a corresponding internal law ® on L.
The law of internal composition says: to each ordered pair (x, y) € ExE corresponds one
and only one element zeE. Example:E, =E, =R if x-y=z;x,y eR" then it
certamly can be z¢ R ; one obtains thus then an external law.

Another example makes the concept even more clearer:

Consider a finite set: E={x,,x,,...x, } and L= {0,1} Then:
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L” = {{(xl ,0), (xl ,0),- e (x" ’0)} {(xl s]), (x1 ,0)" (xu '0)}' v {(xi !l)‘ (-“z 'l)” '('\.u ‘l)}}
If L indicates the membership values of the clements then L' =g@(E) where the latter

indicates the power set of the set E. For the case of for instance E={ x,,x, } and L={0,1}.

We can define the product operator cn L #=:| 0
1

< O |o

1
0| The law *.° is internal, An
1

impoitaut question to know is whether “.” is remaining internal on L"? Take for instance
H{(x,,0X%, D} {(x,,)(x, 1)} = {(x,, (0.D)x,, (L)} = {(x,,0)(x,,1)} € L". Where the
symbo! * @’ stands for *.” on L*. (multip!-cation)

We get in fact two interesting cases for L'

1)E={x,,...x, }and L ={0,1}yielding @(E)= L*,L* now being the set of subsets.

2) E={x,,...x,}and L=[0,1] yielding ()= L";wherc the latter is the sct of fuzzy
subsets. Some other interesting properties are forthcoming. To see for instance intuitively

how for the case E= {x, ,x,} and L = {0,1}the intemal operator “*’ where “*="." induces
~onlt. Forming P(E) is immediate. Take for instance
{Ge 0% D {(x, (x,,0)) = {06y LINx L 0)Y = {3, 1,00} = {xy e J A {x ) = i, )
For the case where E={x,,...x, }and L={0,1}

1) An internal operator “** where *="." induces ~on L* .

2) An internal operator “** where *= 4 induces won L, (where A+ B=A+B- AB)
3) A complement on L induces a complement on L.

For the case where E={x,,....x, } and L=[0,1]

1) An internal operator “** where *=A on L induces n on L*.
2) An internal operator ‘*’ where *=v on L induces U on L%,
IfFE=Z and L--[0,1]; then LY is the set of fuzzy integers.

IfE= Z and L={0,1}; then L® is the set of integers.
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113, Proposal

a) If * is associative in L= ® is associative in L*

b) If * is commutative in L= @ is commutative in L"

¢) If * is idempotent in L = ® is idempotent in L”

The inducement of operators and characteristics on L* through operators and
characteristics in L is absolutely crucial. The approach by Michel Prévét starts from this
line. Furthermore if there exists an operating structure (Monoid, Group etc..) we must
check whether the structure is kept on L”. A “prelude’ example could be the following:
Two fuzzy subsets 4 and B , the fuzzy subset known as the intersection of those two
fuzzy subsets is A~ B;where U ang ()= min{U () Ug (x)} . The way we arrive to this,
at first arbitrary definition; is to consider that if an internal operator '*' where ™*'=na ,
it induces ~ on L'. Another example is the issue of pseudo-complementation. In the
sense of Zadeh B = 4 < Vx, € E:Ug(x,)=1-U4(x,); but this result may not at all be

obtained if we consider lattices other than the Boolean lattice!
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Chapter II1. Fuzzy Subsets Proper

ILLG lit
Given a non-empty set and a lattice L containing at least two elements:
E-eefe--L
Xmommnme u(x)

where the number of mappings possible is : (# L)**

A fuzzy subset A is an element of AEL). Thus A4 is a fuzzy subset:
Ao def(E,L) whereZ={x,Uz:Vx EE:U;{-(x)eL}. Thus if E is non cmpty ; a
fuzzy subset A defined on E is a set of ordered couples such that:
Vxedd= {x,U z(x)} ; where L is the membership set and where U (x) is the degree

of membership of x to 4.

IL2. Basic C . F |
Consider a set E={A B,C} with the following lattice L (a Hasse Diagram)(figure I1) and
L={a,b,c.d,e.f}. Then we can look at:

al) Inclusion:

Let < be the order relation of the lattice; 4 < B & Vx, € £: A (%)< 2 5(x,). Two fuzzy
subsets are comparable if the respective values by the membership function in the lattice L
are comparable. As an example let 4 = {(A|b)(B|a)(C|c)} and B = {(Ald )(B|e)(C]c)}. Are
those two fuzzy subsets comparable? Is 6 < d;a <e,c<¢? From the Hasse diagram we
can see this is true. So we can conclude in this example that 4 < B. But remark that
C ={(4/ f}(B/bXC/d)}is not comparable to fuzzy subset 4. Can we say for instance
that ¢<d? We can not! Furthermore we need a relation of dominance to be able to

compare two sets. Considering D= {(4/d)¥B/eXC/b)}, this fuzzy subset is not

comparable with the fuzzy subset 4 as ¢ > b. So comparability and dominance are key.
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Note that if L={0,1} we get ordinary inclusion; ie
AcBeVreb U, (x)sU,(x)soVxeA=>U , (x)=1=2U,(x)=1=>xeB  which
fits the standard definition of inclusion. Note that one could think about a degree of
containnent,
a2) Equality:
A=BeVx, €E:Ay(x,)=25(x,)
Similarly as in al) one may think of a degree of equality of two fuzzy subsets,
a3) Complementation:
B=-do Vx, e E:Ug(x,)=1-U,(x,)
The complementation issue is quite interesting, as highlighted already above.
Complementation in lattices requires that x,Ax, =0andx,Vx, =U (U=Upper),
furthermore the complement must be unique. Unique complements require thus Boolean
lattices. Vector lattices are not complemented. Thus if L=[0,1] we will have a vector
lattice and no unique complement. We must thus require L° to be a Boolean lattice, in
order to get a unique complement. So we can re-write the above definition of a
complement as:
B =4 Vx, eE:U. (x,)AU(x,) = 0and U (x,)VU (x,) = Upper
Therefore we could call Zadeh’s complementation; pseudo-complementation. Pseudo -
complementation and complementation coincide when L={0,1}. If A is a fuzzy set, the
pair (4, A7)is called a fuzzy partition of X, since U, (x)+U_, (x) = 1. This definition of a
partition requires obviously a Boolean lattice.
a4) Intersection:
AnB:Vx eE:d; 5(x)=2;(x)Ad;(x)
The above is of course not valid for sup-semilattices. The ‘min’ operator is also called
‘aggregator’. As U_(.) belongs to a lattice; we know that every pair of elements
possesses a greatest and a smallest element. Thus for every pair {U,(x),U;(x)} part of a

lattice we can define a greatest element:
max{U, (x),Uyz(x)] = U (x}vU;(x)
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And a smallest element:
min[U 5 (x), Uy (x)]= U5 (x)AUz(x)
Note that we can of course picture such an intersection. Just take the two membership
functions and take the maximum of both, (figure 12)
a5) Union:
AVB:Vx eE: A4 y(x)= A, (x)VA,(x)
The above is not valid for inf-semilattices.
a6) Ordinary subset of level a :(a — cuts)
A, ={x&eE:U, (x)2 a}
Example:
A = {(a;,02)(5;0.3)(c;0.6)(d;0.55)(¢;0.78)} where L =[0,1] and A = {a,b, e,d,e} Then A,,
It is easy to see that if @, ca, = 4, < 4, .(monotonicity)
The « - cuts is an important concept. Such a cut induces an ordinary set derived from a

fuzzy set. Hence for different levels of o €[0,1] we get different ordinary sets referring to
the same fuzzy subset. Hence the fuzzy subset can be defined as a family of « -cuts. The

resolution identity is the following: A = UaC(a)A where C(.)A is just another notation

for an alpha-cut (using an operator C(.)). Note however that the crisp membership grades
of C(.)A are to be multiplied by ¢ ; and so for all values of « . (see also part VI)

Distinction is also sometimes made in the literature between strong and weak a - cuis; in
the latter a strong inequality is used. ([52]; p.11). One may wonder whether there is not an
operator transforming fuzzy subsets into other fuzzy subsets. L{a ) is such an operator
and it is defined as: Upaennn®)=Uz(x)if Us(x)zaand 0if Uy(x)<a. This is
interesting and very different from the a - cuts definition, in that the membership value is
accorded if U(.) is bigger than or equal to alpha. L{a)[A] is called a level fuzzy sct. The
figure 13 shows the alpha cut. It takes zero for all levels below alpha and 1 for all

membership values above alpha. The concave line is the membership function. The alpha

level set follows the membership function for a membership value above alpha.
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L3, S ions involvine uni L :

Because a lattice has the following properties: (see above)

For Vand A we get:

Dcommutativity

2)associativity

3)idempotence

4)absorption

We can then derive the following:

a) V(4,B,C)ef*(E,L):(AnB)nC = A~ (B C); and similarly for union. The proof
is immediate; use of the definition plus the associativity property of lattices gives the result.
b)V(A,B)e f*(E,L). AnB =B~ A4, here the proof is also straightforward we use the
commutativity of A and V and the definition of union and intersection of fuzzy subsets.

c¢) A~ (B 4)= 4 which uses the property of absorption. (also for union Vs intersection)

d)A~ 4 = A, which uses property 3. (also for union)

Theorem I:

V(4,B)ef (E, L. AnB=B=A4UB=4

The proof uses commutativity and absorption.

Property:

V(4,B,O)efM(E, Ly Au(BnC)=(AuB)n(AuC), and similarly for intersection
Vs. union. This property requires the lattice to be Boolean, as we explicitly need

distributivity.

114, Convexity of fuzzy sets

A fuzzy set A is called convex if for any x, y € §, and for any parameter A €[0,1]:
U;(Ax+(1-4)y)Zmin[U ; (x),U ;(»)] holds.
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See figure 14, A concave function f:S->[0,1] defines a membership of a convex fuzzy set
A by taking U 1{x)= f(x). The converse is not true {[52]; p.16); a membership function

of a convex fuzzy set is not necessarily a concave function of x,

Figure 15 shows that for A which is a convex set the membership function is not concave
(at one point A is convex). As Miyamoto says the necessary and sufficient condition in
order that a fuzzy set A be convex is that an arbitrary alpha-cut of A be a crisp convex set.
This can be shown quite easily; i.e. the projection on the X-axis must be a closed interval.
If the fuzzy set A is a convex set and B is a fuzzy set which is also convex then the

intersection will also be convex. (as we use ‘min’)
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Chapter IV. Fuzzy Relations

Let us reiterate the case of an ordinary binary relation. For any relation R, there exists a
crisp subset G, = S x T such that xRy < (x,y) € G,, xRy < (x,y) ¢ G,. Where S and T
are two sets. The converse is also possible. For any subset G < §x7 there exists a

relation R, such that (x,y) € G < xRy, (x,y) € G < xR, y. ([52]; p.21)

IV.1. Cartesian Product
A crisp relation on ExF is a set of ExF. Similarly for a fuzzy relation R. Consider two sets
E and F; the set of ordered couples (x,y); x € £ and y € F' defines the product set Ex F,
We get then 4 = {(x,y),Uz:Vx eE;VyeF.U;(x,y) EL} ; L being a lattice. Thus x is in
‘relation’ with y to some degree. We can also say we have a binary relation between
elements of E and F noted V.
So we can define the fuzzy subset 4 then as:

A=P(X,Y)={(x,y);Uq:Vx €E;Vy eF:Uq (x,y) € L}
Examples of fuzzy relations abound. For instance ‘Car X is better than car Y’ is an
example.
1) Reciprocal Relation: Given a fuzzy binary relation P of E to F; there is a reciprocal
relation (dual) noted : ¥' defined on F to E. We get: Vx,y e ExF: P (y,x) & F(x,y)

2) Complementary Relation: if we have a uniquely complemented lattice then we can
define a new relation V' of E to F which is the complementary relation.

Note: We can instead of only defining binary relations also define n-ary relations. Le. a
fuzzy relation R on S, x5, x§,...S, which is a set of the Cartesian product of those sets.
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V.20 . F Relati
1. Inclusion:
A fuzzy relation is included in another fuzzy relation iff:
V(x,y) €Ex FiUqy(x,y) < Uq.(x,p),i.e ¥ <P
2. Union:

Let ¥ and P' be two fuzzy relations, Then Ugog.(x,¥)= max[U,F (x,y),U,T,,(x,y)].

This follows entirely from the definition of the union of two fuzzy subsets, given L is a

lattice.

3. Intersection;
Ug o 6,) = min[Us (x,), U (x,)]
4, Property: let ¥ and ) be two fuzzy relations of E into F. then:
P9
The proof uses the concept of inclusion of a fuzzy relation by another relation.
5. Composing of fuzzy relations:
Given a fuzzy relation ¥ of E to F and a fuzzy relation O of F to G then the composed

o

relation QoF is a relation of E to G such that:

V(x,2) €ExG:U g,4,(x,2) = max [min(Ug (x,7),U5(5,2)]

IV.3. Bi Relations i E
We have been looking at fuzzy relations defined on a product set of E and F. We
particularize somewhat now and look to the case where E=F.

1.The equality relation noted IT is the fuzzy relation of E to E such that:
M= {(x,y),Uy;x €E,y €E:Uy(x,x)=1and Uy (x,y)= 0 for x # y}
It looks intuitive that:
Poll=F=HoPand 1=11"
2. Reflexive relation:

VxeE:Ug(x,x)=1
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We remark this property may be too strong in a fuzzy context.

We can therefore also define: a - reflexivity:a €]0,]] & Vx e X:U 4 (x,x) 2 & ([1]; p.35)
3. Irreflexive relation <> Vx e £:Ug (x,x) # 1

4. Antireflexive relation <> Vx e E:Uy (x,x)=0

5. Transitive relation <> V(x,z) eE*? :maxy[min(Um (x,»)Ug (y,::)] SUg(x,2)

One sees that the left part of this equation is nothing else than the definition of the

composition of two fuzzy relations. The inclusion is embodied in the ‘<’. In general a
fuzzy binary relation is not transitive but the P can be made transitive by using the notion
of transitive closure. The transitive closure is defined as follows:
Given a binary relation defined on E; the transitive closure is defined as:

F=FoP TP
Note: Transitive closure can be defined in other ways too.

Theorem I: The transitive closure of a fuzzy binary relation is transitive.
Proof:

We must show that ¥o¥ ¥, This follows directly from the definition of transitivity.
Le. the composition and inclusion are embodied in that definition as we remarked above.

Form:

P2 =Po¥=(FuPu.)o(FuPiu. . )=(F uP uTP'u. ) c(FuPiuTPiu..)
This means that ¥*> c ¥ i.e ¥oF « P

Theorem II: Let us have a fuzzy binary relation. If for a certain ‘k’;

e P oy P =P Py,

Proof Vin=k+1> kP =P* then ¥ =P U P*0.... P* UFP* =P UTF2L.... P!
(where use was made of associativity and idempotence)

6. Symmetric Relation:
V(x,p) eE*:Ug(x,y)=Ug (3,x)
7. Antisymmetric relation:
V(x,y) eE*:Ug(x,y)and Uy (y,x)=>x=y
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V.48 £Bi Relati
1. Resemblance relation

A fuzzy binary relation is a resemblance relation <> ¥ is symmetrical and reflexive i.c.:
Vx € B:U 4 (x,x) = land ¥(x,y) e E*:U g (x,y) =Uqg(,%)

2. Dissemblance relation

This comes forth when:

Vx e E:Ug(x,x)=0and ¥(x,y) e E*:U 5 (x,p) = Uy (¥,%)

3. Fuzzy Pre-order relation

This relation is reflexive and transitive i.e.:

Vx €E:Uq (x,x)= land V(x,y,z) e E*:max [min(Uq (x,9),Uq (7,2)] S Ug (x,2)

We know when the fuzzy relation is reflexive that : ¥ = ¥ o ¥
When the fuzzy relation is transitive then: ¥ o¥ c ¥

So for a pre-order we get: ¥ o = ¥

4. Order relation

If the pre-order is anti-symmetric we have an order relation.
5. Similitude relation

If the pre-order is symmetric we have a similitude relation. The similitude relation is also

called equivalence relation.

6. Subrelation of a similitude relation in a fuzzy pre-order

Let ¥ c ExE be a fuzzy pre-order relation. If there exists an ordinary subset E cE
such that Vx,y € E,:Uqg (x,y}= Uy (y,x); then there exists among £, a similitude relation
which is called a similitude sub-relation in the pre-order. The similitude sub-relation is

maximal if there is no other similitude relation of the same nature in the relation. An

example makes this clearer,
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Y 4 BCDETFG
A1 2 2 2 2 3 4
B 2152 2335
C 25122335
D 22 21 8 335
E 222 81 3 35
F 2222214
G 2 2 2 2 2 21

a)We first want to ensure that the fuzzy relation is a pre-order (reflexive and transitive)
b)We do not obtain symmetry; as an example U (F,D)=2but Uz (D, F)=3!

¢)We can however find subsets of ¥ which make similitude relations.

As an example the subset K,={A,BC,D,E} verifies a pre-order and is symmetric; fi.
Uz (4,C)=2=U4(C, 4). The subset K, ={A,B,C} would also verify a similitude sub-
relation but it would not be maximal as we can extend this subset into X,. Two other
subsets are also maximal i.e, K, = {F}and K, = {G} are similitude sub-relations. All
K|,K,,K, are disjoint from each other as one can easily verify. Thus the fuzzy relation
¥ is decomposable into maximal disjoint similitude sub-relations, K 1»K;.K, form then
similitude classes.

Note that:

a) a maximal subrelation does not have to be disjoint.

b) finding maximal subrelations is not at all easy. There is a general method to perform the

quest for sub-relations, called the Malgrange algorithm as per Y.Malgrange a Belgian
engineer. ([38]; p.387)
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Chapter V. The Extension Principle

This is an essential concept in fuzzy set theory. The principle allows us to extend non-
fuzzy concepts in order for us to deal with fuzzy quantitics. The concept basically asks: 'if

there is some relationship between non-fuzzy entities; what is its equivalent between fuzzy
entities?’([37]; p.19)

V. L. Definiti
Let f be a mapping from X to a universe ¥ such that: y=f{x),x e X,y eV,
We now assume that instead of having x being an element of X; only the fuzzy quantity A
on X is given; fi. ‘approximately x’. We may now wonder what the fiz=zy image by fis of
the fuzzy argument 4. So to write B = () is to say what exactly?
Figure 16 provides us with some insights:
Take an element x on the X-axis on the graph. This point has a precise mapping on the Y-
axis. The problem to solve is what is the image of the fuzzy variable ‘approximately x*?
The answer is logical: the membership function associated to the fuzzy set 4 must be
mapped through f on the Y-axis yielding the mapping of the membership function of the
fuzzy set A. For a one-to-one mapping {and assuming that membership values must be
non-negative):

Uz (0) = U (f " @)= Uz(x)
The case of non-one-to-one mappings is a little more tricky:
Considering again the same figure; we clearly see that y is the mapping of x and x’. The
mapping of the membership function through fis now dubious; i.e. should we consider A

or B? The definition Zadeh then proposes is:
Ug(¥)=5Up,ex.s(a)ny Uz (X)
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Y.2.Fuzzy Numbers

Let the universe U be the real line. A fuzzy sct Aon R is called a fuzzy number iff 4 is
convex and there exists exactly one point, say Me R withlU ;(M)=1. As Nather ([1];

p.20) says the linguistic expression for such number is ‘approximately M’. A fuzzy interval
is a straightforward extension of a fuzzy number, See figure 17, Zimmerman adds to the
definition of Nather that the membership function should be piecewise continuous. This
makes sense, In gencral thus a fuzzy number is a restricted case of a fuzzy set in that it has
to be convex (i.e. the alpha cut sets must be convex) and it must be normalized. Fuzzy sets
in general do not have to carry those properties.

Kaufmann and Gupta take a more intuitive approach to defining a fuzzy number. It
basically involves a coupling of an interval of confidence with a level of presumption. The
higher the level of presumption the smaller the interval of confidence gets. Very large
intervals of confidence such as in the extreme case of the real line gives very low levels of
presumption. The membership function whick then couples both interval of confidence and
level of presumption can either be smooth or flattened out. The interval of confidence
should be a closed interval; this is precisely requiring A to be convex. The level of

presumption called alpha is nothing else than the alpha v:e used in the alpha cuts definition.

V.2.1.The L-R Fuzzy Number
This is a particular fuzzy number and it is defined as:

Vx' e R;®(.) €[0,1]
O(x') = F, (x') for x' € ]-,0]
O(x*')=1forx'=0
O(x') = Fp(x') for x' €]0,0o
Increasing monotonicity is imposed on F (x') and decreasing monotonicity on F,(x').
The function ®(»') is a concave function. Left and right ‘leg’ of the function do not

necessarily make up a symmetric function. We get a little morz precise now on right and
left leg of the funciion:

Vx eR:U(x)=F, (x-M )/ T; forx €}-oo,M,[
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Ux)=1forx=M,
UQe)=F(x-M )/ Vy forx E]MA,OD[
where T and V are both positive.
One sees that if x/T decrcases when T increases; i.¢. the slope gets flatter; we speak then

of a dilatation. In the case where T decreases we speak about a contraction. M is the

central value and T measuves the left spread of the function and similarly for V.(right
spread)
The usual notation is:
A=(M,T,V),,
An example of an L-R fuzzy number is:
F(x')=0,x's-1
Fo(x'y=Jtrx' x' e[~1,0]
Fp(x')=1-x" x'€[0,1]
Fo(x')=0,x'>1
We also may have L-R’s with a flat; i.e. the $(.)function has a flat portion, We also can

have (semi)-symmetric L-R’s. Dubois und Prade’s definition concems a semi-symmetrical
L-R. ([16]; p.53) We also have other special types of fuzzy numbers such as TFN’s
(Triangular Fuzzy Numbers (triangular shape of the function); or also T, FN; Trapezoidal
Fuzzy numbers. Kaufmann and Gupta also come forth with the concept of a hybnd
number, which is a blend of fuzzy and random numbers. We do not go in detail on the
latter however. At this point it is also interesting to note that a fuzzy number is a
subjective valuation. Two human operators may assign different membership values for a
same fuzzy number; say ‘approximately five’. Observations can either be precise or

statistically measurable or they are not measurable at all which puts them in the class of
fuzziness.
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V.2.2, Extended Real Operations

At this point it is interesting to investigate somewhat deeper the different operations we

can perform on fuzzy numbers whatever their type may be. In this section we also want to
look at the extended operations on fuzzy sets, This will give us the background to look at
fuzzy functions and at non-fuzzy functions with fuzzy arguments,

We follow the set up of Kaufmann and Gupta. A fuzzy number derives from a fuzzy set.
The fuzzy set derives from its membership function. As scen as above the fuzzy number is
a coupling of interval of confidence with level of presumption which is nothing else than
a . Therefore it is logical to see what the traditional operations on numbers will yield when

applicd on intervals of confidence.

We first define uncertain values; i.e. values belonging to an interval of confidence. Those

uncertain values are not yet fuzzy numbers however!
Then :

1)Let A=[a,b] and B=[c,d] and ' i ;e:A(+)B=[a+c,b+d]

2)A(-)B=[a-c,b-d]

3)A(+) 4™ =[a,b](+)[-b,-a]=[a-b,b-a] which is not equal to zero!

‘(+)’ is commutative and associative. There is also a neutral element i.e. [0,0]. However
there is no ii:verse element.

4)A(.)B=[a,b](.)[c.d]=[a.b,c.d] (a,i,c,d € R")

$YA(/)B=[a/d,b/c]

6) A™' =[1/b,1/a]

For (.) there is no inverse but there is commutativity and associativity; there is also a
neutral element; i.e [1,1].

7YA(A)B= [aAc,bAd]

8)similarly for minimum
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Va,,a, €[0l]a, <a, =>[a": ,bu,]c[aa, 'b,,,]

Thus the higher the level of presumption the smaller the interval of confidence gets. This

makes sense.

Let A, be the interval of confidence of the fuzzy set A. Let B, be the interval of

confidence of the fuzzy set 5. Remark the subscript ‘alpha’ which indicates the level of
presumption. Let the fuzzy number associated to the fuzzy set 4 be ‘nearly 5° and the

fuzzy number associated with the fuzzy set B be nearly ‘nearly 8'. Both fuzzy scts are
convex and reach at one point a = I. Furthermore the membership functions are piccewise

continuous. Adding both fuzzy numbers will give:

A, (+)B, =|a,.b,]+[c..4.]=[a, +¢,.b, +d,].Va €]0,]
For instance at @ =1 we will get [5,5]+[8,8]=[13,13}
There is another method which is as follows:

Uz(+)g (=) ZV piyms (U:.' (x)n Un (x})

An example can clarify this definition somewhat,
Consider the fuzzy set 4={(0,0),(1;.1),(2;.3),(3,.8),(4:1),(5,.7),(6,.3),(7,0),(8,0)...}
Consider the fuzzy set B={(0,0),(1,.3),(2,.6),(3,1),(4,.7),(5,.2).(6,. 1),(7,0),(8,0)...}
The membership functions sprouting out of those givens arc for both more or less

symmetrical concave functions. Using our new definition:

1) taking ‘1° for instance: we know 1=1+0 and 0+l we must look for the membership
values for both ‘1’ in 4 and ‘0’ in B; we also must look at the membership values of ‘0’
in 4 and ‘1’ in B. Applying our definition we get then:

V[ 1A 0;,0n.3]=v{0,0]=0
This gets substantially more convoluted when taking higher numbers such as 3. Because

*3” can be the result of four different additions of 2 positive numbers.
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It can be shown that (+) is an internal law. This shows that when using (+) we obtain again
a fuzzy number, We get then the following properties for (+):

1) (+) is commutative (here for fuzzy numbers)

2) (+) is associative

3) Has a neutral clement

4) Has no inverse.

Subtraction can be scen as adding the negative to the first argument. This resumes as
expected in the interval of confidence case. Neither commutatitivity nor associativity is

present. Subtraction is then defined as:

Uz @) =v ., [Us00A U0

tmy—y

The result for the fuzzy number case is exactly as in the confidence interval case.

The properties are as in (+). Division will not be commutative nor associative.

The definition is as above except that we have that x.y=z figuring as the new subscript
under the max sign. Furthermore the operation one must carry out to find the maximum
(or more generally the supremum) is complicated.

Finally it can be shown that (.) is distributive vis a vis (+) but not vice versa,

Division is similar and we use x/y=z as subscript.

5. Maximum and Minimum of fuzzy numbers
The fuzzy minimum is defined as follows:

Va e[O,]]: A, (N)B,
The fuzzy maximum is defined similarly.

Equivalently we can use:

U.:I-(I\)E =V:-:Ay (Uj‘ (x) A UE (y))
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The definition we have been looking at so far are called by Kaufinann-Gupta max-min
convolutions. It is as this point important to sce those max-min convolutions as direct
applications of the extension principle which we have treated above. We can also consider
min-max convolutions. One can calculate a sum (+) for two fuzzy numbers according to
min-max convolution without restriction. What remains important however is that the
Suzzy number which is yielded must be associated to a convex set and be normalized. Min-
max convolutions may not keep convexity and normality, This is however guaranteed with

max-min convolutions.

The max-min convolution for (+) on L-R numbers is proven by Dubois and Prade and we

will not re-iterate the proof here. ([16]) The result for (+) is:

Given 4= [M,, , TZ,,VJ]”‘ and B = [M,,,T,,,V,,]m, two L-R fuzzy numbers. Then:
z(‘{')g:[M,c +My, T, +T,,V, +VH],_R

(.) for L-R’s is a little more complicated. It turns out we can have 2 different cases:

-a) when the right spreads of both L-R’s are small with respect to their central values

-b) when the right spreads of both L-R’s are not small with respect to their central values
For a) this yields:

M, >0and M, >0

A = (MM, MT,+ M, T, MV, + MV,

For b) this yields:
ZI(‘)ZZ = (Mlelej; +M2T1 - T;TleVz +M2V| _V1Vz)m
For scalar multiplication we get:

ad = (aM,|a

T,

a1



Let A,B and C be fuzzy numbers. Let C and B be given in C=A(+)B. How can we find A?

1s A=C(-)B? The answer is no! We defined a max-min convolution for (-) as:
Ua(_,g (x) =V sy (Ualx)alUy(y))
That C(-)B does not yield the solution can be easily seen;
A, = [a" " |and B = [c" ,d"]and C, = [a" +c*, 0" +d" ]
C,(-)B, = [a" +c¢“,6" +d"” ](- c“,d" ] = [a" +c” —-d” b" +d" —~c" ] A,
There is a way to determine whether a solution exists in this simple equation. We do not

go in detail however on this issue, Similar theorems exist for deconvolutions of (-),(.) and

.
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Chapter VI: Fuzzy Functions

We may consider two types of fuzzy fimctions. A non fuzzy function with a fuzzy
argument. And a fuzzy function with a fuzzy or non-fuzzy argument,

The first type is what Nather calls a fuzzy extension of non-fuzzy functions.

An example makes the first type clearer.

Consider a straight line equation f{x) = ax+b and there is a fuzzy argument which is:
(x, T =V"), which is nothing else than a perfectly symmetric L-R fuzzy number. Left and
right spread are equal. Now we want to find the image, following the extension principle
and using the definitions on convolutions on L-R fuzzy numbers, we get:

S(x)=(ax+b,|aT=V),

where we apply the definition of the multiplication of an L-R with a scalar, The fuzzy
number L-R is mapped through a non-fuzzy function. We sec that the central value of the
L-R is changed through the mapping from ‘x’' to ‘ax+&'. Furthermore the spread has
changed also from T=V to T=V multiplied by a scalar, Figure 18 relates this non-fuzzy
function with a fuzzy argument. It clearly shows us the fuzzy L-R which is symmetric and
which is mapped through the ordinary linear function is reduced in spread and has changed
it’s central value on the Y-axis. Mind the height of this fuzzy number depiction is still the
same as the level of presumption alpha is 1. Furthermore in this case we can say that the
domain of the function is fuzzy, as the argument of the non-fuzzy function is a fuzzy L-R
variable.

The second class is the fuzzy function which is also called fuzzifying function. ([t]; p.40)
The fuzzifying function maps a crisp point x € X into a fuzzy set B =f{x) € (V) ; where

the latter shows the fuzzy subset B belongs to the set of fuzzy sets; i.c. the power set .
The fuzzy function of the straight line we considered above is now written:

~

JX)=A()x(+)b
The situation is here somewhat different. If the climb parameter A4 =[a, T=V ] , Wwhich is
again a symmetrical fuzzy L-R then the image of the fuzzifying function is:
Sy =[ax+b,T =V,
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Here the domain of the function is non-fuzzy, consisting of arguments which are for
instance clements of the real numbers. As the ascent parameter is a fuzzy L-R
(symmetrical) different versions of the straight line are possible. Figure 19 pictures the
story. The images of the fuzzifying function are fuzzy as one can see from the graph.

For different values of crisp x variables we will have different L-R fuzzy numbers, with all

equal height of 1.

VL1 Fuzzy Extremum

In the case of an extremum of a fuzzy function on a non-fuzzy domain we may consider
the fuzzy function and apply ‘alpha cuts’ on it. Recall that the alpha cut on a fuzzy set
yielded an ordinary set. By applying an alpha cut on a fuzzy function we get an ordinary
function. The fuzzy function corresponds to the different associated ordinary functions

generated through the alpha cut for all alpha. So we could in maximizing the fuzzy

function f, maximize f, ,Va E]O,l]. Nather says that the maximum of J could then be
defined by a fuzzy set A7 which contains all the maxima of f,,, Va €]0,1].([1]; p.42)
We can then define y=sup, ../, (x); the degree of membership of y belonging to the fuzzy

set M could then be defined as being equal to the largest alpha. Note that D stands for the
domain of the function. This is written as:

Ug ()= sup{a:sup, o/, (x) = }
This is somewhat of an ad hoc definition which may fit its purpose in some circumstances

but is of course not a general proposition.

Chapter VII. Flou, Disorder, and Entropy

VILL Fuzzy Index:

a) Generalized Hamming Distance: d{( A , Z )= Z

U;(6)-U..(x)
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Where Uy=0ifUs(x)<Sand Uy =1if Uz (x)>Sand U ;(x)=0v lif U;(x) =5,

This description is the one of an ordinary subset nearest to a fuzzy subsel.

From this distance formulation we use the so called linear fizzy index:

v(A)=2/n.d(A4, A) This linear fuzzy index, which is one among many fuzzy indexes, can

give us an idea of the gap between a fuzzy information and a binary information.

VI1.2. Probahilistic E
Fuzziness can also be investigated through entropy. The entropy measures the degree of
disorder of components with respect to the probabilitics of state. Define fuzzy entropy as:

H(1;(x,),...10;(x,)) = —l/ln(N).il'I;(x,).ln(['l;l(:c, )

=1

N
where T (x,)=U(x,)/ 2. U5(x,)

i=]

There is severe problem with such definition. Take the case where
A=(1,.1,.,1,.1,)and B= (8,8,8,8,8,8). Then in both cases / will be the same

N
(about .89)  Why?  Because through I, (x,)=U;(x,)/ D U5(x,),

it
[1.(x,)=V.6=16and I1;(x,)=.8/48=.16. A better example is to consider the fuzzy
sets 4 and B with the ordinary set A=(1,1,1,1,1,1) being an ordinary set, and B=
(.1,.1,.1,.1,.1,.1). Both cases yield A/=1! This makes no sense! The ordinary sct A would
have the same entropy as the fuzzy set!

VIL3. The F Index of de | { Termini
The serious problem which occurred with the probabilistic entropy approach is that it

does not take into account the effective values of U ; (.} but only looks at relative valucs.

De Luca and Termini propose a much more serious approach to indexing fuzziness.

The set up is as follows:

a) define A(A)as a degree of fuzziness of the fuzzy set 4. Three properties should be

satisfied:
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i) A(A)=0iff Uy(.)=0 or U5(.)=1, this makes sense as we are in an ordinary set here
and the fuzziness should therefore be 0.

ii) B(A) is maximal iff U 1 (.}=1/2; this is also clear; the fuzziness becomes highest for
membership values which becomes closest to 1/2. A membership values of .9 is less fuzzy
than .49.

LI eE UL (x)21/2and Uy (x)2 U5 (x)= B(A)> B(B)

Wk € B () 1/ 2 and Uy (x) S U (2) = B(A) > B(B)

This property makes again plain sense. If the membership value of an element of the fuzzy
set A is close to .5 for instance then if the membership value of an element of the fuzzy set

B is higher than .5 (and thus further removed from .5) then the fuzziness is higher relative
to the fuzzy set A than to the fuzzy set B. The second line in iii) casts the same intuition.
N
iv) Let  w(A)=-k.3 Us(x,)InU;(x,)),k>0; this is a formulation which is
i=]
reminiscent of the probabilistic entropy definition we saw above. Formulation iv) creates

very severe problems. In analogy with the probability content of the probabilistic entropy

N
measure we encounter the problem that for instance ZU 4(.) does not necessarily add
i=]

up to ‘I’, as it should be the case with probabilities, (as in the probabilistic entropy
definition)

The goal is to keep the formulation of the probabilistic entropy but by avoiding the
relative measuring. We of course must also solve the problem of non-adding to '1".

Therefore de Luca and Termini introduce some additional properties on y(.).

i)VAc E:w(A)2 0, which looks acceptable out of the definition. We know the
membership values are taken here in the simplest membership set; i.e. [0,1]; hence the
logarithm must be smaller or equal to 0, Membership values are positive. The negative sign
in (. )makes thus the whole expression positive.

2)VAcCE,VBc E:y(AuB)+y(AnB)=y(4)+w(B); the latter is proven in ([39];
p.43).

i3)w(A.B) = cardB.y (4)+ cardd.y(B)
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We know the measure of cardinality of a fuzzy sct, as defined before:
card(A)=> Uz(x). It is clear that if card(A)=1=card(B) then
w(A.B)= w(A)+y(B). Furthermore, and this is important, when card(A)=1 then
w(A)= H(A) as then ZU 7(G)=1 and we recuperate the definition of probabilistic
entropy.

What we now want to show is whether w/(.) satisfies i)ii)iii) of above. Recall that

conditions i)ii)iii) are very reasonable indeed.

i-) recall the definition of w(.) which is: w(A)= —k.iU 2(x, 112U+ (x,)), 4 > 0; then
=l

w(A)= 0 as through i) membership values are either 0 or I. We must omit ‘0" however as

the logarithm of ‘0’ does not exist. This is a problem however as the logarithm of 0 can

only be approximated by a limit which tends to —oo. We conclude that for ordinary sets

w(A)=0.

ti-) From the definition of w(.) we could calculate the maximum, and it occurs at

U 4 (x)=1/e which is definitely not 1/2 as prescribed through ii)!

The way to circumvent this probiem is as follows:
a)define p(4)=w(4)+ y/(j) and Uj (x,)=1-U+(x,); where we must remark that a

Boolean lattice would be a necessity to provide for a unique complement.
Next de Luca and Termini introduce the so called Skannon Function which is a function
which is monotonically increasing in [0,1/2] and monotonically decreasing in [1/2,1];
having a maximum at 1/2 (which we need dearly to satisfy ii))
The Shannon function is defined as:

S(x)=(=x)In(x)- (1-x)In{1-x)
Knowing how p(4) is defined we can write it up:

p(A)y= kS U(x) U, (x,)+ U, (x)In U (x,)

inl

¥
pA)==kY Uz (x ) InU 5 (x )+ (1=U ;5 (x, )XIn(1-U ; (x,))
1=

50



Using the definition of the Shannon function: S(x)=(-x)Iln{x)-(1-x)In{l1-x) and

replacing ‘x’ by U4(.) we get then:

- N
pA)= k.3 8(WU5(x,))
=]

This result satisfies ii) and iii) and hence de Luca and Termini’s fuzzy index guards the
form of the probabilistic entropy without reverting to relative values, i.e. we use the full
membership function. Furthermore the problem of non-adding to ‘1’ is now also solved as
Us()and 1-U4(.) addup to ‘1",
N
Note: £ in p(4)=k.D S(U;(x,)) is a factor which normalizes such that 0< p(4)<1.
[
The necessary formulation for £ is then A=1/N.In 2
Example:
Fuzzy set A:[.1,.1,.1,.1,.1,.1]
Fuzzy set B:[.8,.8,.8,.8,.8,.8]
Fuzzy set C:{1,1,1,1,1,1]
N
Using H([1.(x,),...TT:(x,))= —l/ln(N).Z M. (x,). In{(I1 (x,)) we obtain A=1 in all
i=1
cases which makes no sense. de Luca and Termini’s fuzzy index yields the following:
Our intuition should show us that fuzzy set A is less fuzzy than fuzzy set B as it is further
removed from .5. Clearly fuzzy set C which is an ordinary set should not be fuzzy at all,

N
Using p(A)=k.> S(U;(x,)) we obtain:
i=]

for fuzzy set A : 1.95 and normalized yields:.47

for fuzzy set B : 3 and normalized yields .72.
for ordinary set C: 0

Ifv(A)=2/ n.d( A, Z ) is used, which we called a linear fuzzy index we get:

for fuzzy set 4 =.2 =(.1(6).(2/6))
for fuzzy set B= .4
for ordinary set C: 0
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The values are substantially different; the value for the ordinary set remains zero.

To make a true assessment of both approaches is difficult given that we do not have really
a bench mark to which we can compare the obtained values, The highest value is of course
for x=0.5 and is 0.69. The lowest is for 0 and 1; which yields 0. Those are however non

normalized values. For instance for [.5,.5,.5,.5,.5,.5] a normalized value of 0.99 is yiclded.
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Part I11; ‘The Membership Function

Eliciting Membership functions and classes of membership functio.:s: Introduction

Fuzzy sets has as mein goal to provide for a more richer approach to modeling ‘common’
thinking patterns. Binary logic has been the basic tenet for the formalization of thinking
pattemns. In 1982 Robin Giles, wrote an interesting statement concerning the dangers
practitioners and/or theorists of fuzzy set thecory may face. Everything boils down in
finding the meaning of a grade of membership. Giles advances the example of ‘an
unbreakable glass to a degree of 0.9° An agent asserting such statement expresses
information about a helicf he holds. But as Giles says, it is by no means clear what the
information is behind that belicf. This is where Giles point comes in about the dangers of
fuzzy set theory. Says Giles ‘it is common to avoid this question by saying the matter is
not important....(this) provides a measure of freedom io the theorist, who can suggest
rules (axioms) for manipulating grades of membership and for introducing new fuzzy sets
almost without constraint, and certainly without fear of refutation...in turn this offers to
the practitioner the possibility of choosing from a variety of such theoretical procedures
cach in general yielding differeni results. The conscientious investigator may be worried by
this . but others can benefit from the freedom by selecting a procedure that yields the
conclusions they prefer.” ({23]) This statement can not be clearer and truer.

When cntering the field of cliciting membership functions we automatically have to analyze
the meaning of a fuzzy sentence. Closely related to the problem of clecting a suitable
membership function is the discussion of suitable operators. This important subject will be
tremed in part 1V,

The subject of electing membership functions can be approached, as in many fuzzy theory
subjects, from two viewpoints: either a pragmatic more intuitive point of view or else a
purely mathematical approach. The former tries to deduce immediate conclusions from a
practical concept. This act of deduction brings us by rcpeated choosing of different
subjects to build up gradually a theory. The latter however lies down first a mathematical
structure and then will find possible connections between this mathematical structure and

practice. This is the ‘hard’ way in some sense, Whether it is the best way is debatable.
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Some authors will claim that by using the synactic approach, as it is called by Ellen
Hisdal, one looses track of the practical implication of the theories so derived. This is
avoided in the semantic approach. This paper will stick as much az possible to the
semantic approach for immediate reasons such as the author not being a mathematician.

As said above alrcady the subject of electing appropriate membership functions is an
important one. However it is often omitted! Dombi for instance remarks that many applied
papers in the fuzzy set area have been written without a proper ex-ante specification of the
membership function. It is as if in production theory we woukd not specify the specific
production function we are about to use! Jain comes to the same conclusion. Says Jain
‘Most papers in the field start with a given ..membership function; without any mention of
how and why they were chosen...’.Chanduri and Majumder say that *..it is casy to find a
function that takes on values in [0,1] and is monotonic over a range, but the compatibility
of a sample to the set may not be reflected by the function....’

We will survey several viewpoints. For instance Dombi’s historical survey of membership
functions and his mathematical model of a membership function, and Giles' semantic
approach. It is somewhat difficult to classify in a clear-cut way where Dombi’s approach
stands. We leave this up to the reader to decide. Giles point of view is clearly semantic; so
is Hisdal's. Smets and Magrez ore looked briefly at and their approach is more of a
syntactic nature. At this point we also want to make the distinction between a measure of
information approach versus a meaning of information approach. Bouchon and Kaufmann
are in the measurement class; while Giles, Hisdal and Smets would be in the meaning of
information class. Those two classes are in principle disjoint. 1 believe however that they
can be used fogether to form a better picture. We will not expand on the work by Bouchon
and Kaufmann. Bouchon is essentially concemed with a method to finding the best
combination of fuzzy answers which reduces to a minimum the loss of information when
fuzzy answers are attached to crisp answers. Her treatment is quite intcresting but has the
drawback she does not define a fuzzy event. Kaufmann's approach on different levels of
uncertainty using essentially the probability of a fuzzy event and the Shannon function is
also highly interesting. However though we may be capable of measuring a total entropy

as he defines it, we do not have any benchmark value upon which we can refer.
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Kaufmann's method defines explicitly a fuzzy cvent; something Bouchon does not do. For

Bouchon see [37]; for Kaufimann see [39].

Chapier 1. Meaning of Information I: Dombi’s Rough classification of Membership
functions.

An example of a membership function is for instance; Zadeh’s Unimodal Function:
g ={1/{|+[(x--25)/5]’} if x>25
e if x <25
Where of course ‘25’ is a perfectly arbitrary cut off point. The membership value for a
vaiae less than ‘25° is thus 1. We can formulate the ‘old age’ membetship function
similarly. Dubois and Prade’s L-R fuzzy number is another example of a membership

function.

1.1 Dombi’s Common Traits

Based on a historical survey Dombi performed on fuzzy set articles for the period of 1987
to 1990, Dombi comes to the following common traits or properties for membership
functions:

1. they are continuous functions

2. they map {a,b} into [0,1]

3. they are either monotonically increasing or decreasing or could be divided into
monotonically increasing and decreasing parts.

4, the functions may be either concave or convex or both, in the latter case they are called
S-shaped.

5. some membership functions have meaningless parameters while other membership
functions are really too general in nature. Finally in some membership functions the

parameters are very hard to calculate.
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L2. The ‘better’ membership finction-Dombi’s mathematical model of_a_membership
function,

To create a ‘better’ membership function Dombi trics to use his ‘common traits’ as derived
from the survey of membership functions and avoids the pitfalls mentioned under (5)
above. The ‘better’ membership function according to Dombi should then have the
following characteristics:

1. The membership function must be continuously increasing from [0,1]—]0,1]. This is an
expe-table requirement; the more we advance on [0,!] the higher the membership value is
supposed to be.

2. U;(0)=0and U;(1)=1 which are the boundary conditions. This also is a natural
requirement. I.e. the membership value at x=1 must be “1°,

3. S-shaped character; i.e. U'- (0)=0and U'; (1)=0.
4. U 5 (x) is a rational function of polynomials. This is quite less obvious.

5. Find such membership function such that n+m is minimal; where ‘n* stands for the
degree of the nominator polynomial and ‘m’ as the degree of the denominator polynomial,

Properties ‘3°,‘4> and '5' look less intuitive. There is clearly no apparent reason, assuming
we would start from scratch, to require that the membership function should be S-shaped.
But many membership functions surveyed by Dombi were S-shaped! There is no direct
apparent reason why we should assume a rational function of polynomials, but again many
surveyed membership fanctions were of that form. This is of course not enough of an
argument to propose all five conditions. Below we will see whether Dombi comes forth
with more solid arguments for proposing his five propertics of the ‘better’ membership

function.

1.2.1.Theorem 1:

There are no membership functions fulfilling the properties 1-5 if n+m<3.
Proof.

Say we define U(x)=ax+b / (Ax+B); therefore m+n=2 < 3.
Then as U(0)=0 (property 2) we have b=0 which is straightforward.
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But if U¢1)=1 and b=0 then a=A+B. Therefore substituting we obtain that; Ufx)=(A+B)x /
(Ax+B). Taking the derivative of this and using U'(0)=0 (property 3) it must be that
(A+B)B==0 inducing ecither A+B=0 or B=0, If B=0 then Ufx)=1, this is obvious as in
Ufx) =(A+B)x / (Ax+B), putting B=0 we get Ax/Ax which makes ! for all x. Similarly for
A+B=0, making a=0 and yielding U(x)=0. This contradicts property 2. Say we now
define U(x)= ax+5b/(Ax* +Bx +C); which gives for m+n=3, After calculation of the
first derivative this again leads to a contradiction. Similarly if we want to define
U(x)=ax? +bx+c/(Ax+B); giving again n+m=3; we will again encounter a
contradiction. The argumentation is the same.

We can sec that use is made of the imposed property of the S shape of the function.

1.2.2. Theorem 2:

The minimum of n+m is 4 and the membership function is:

(1-v)’

V)= e oo n)?

where ‘v’ is the intersection value of y=Ufx} and the 45 degree line, v is called the
characteristic value of the shape.

Proof:

ax® +bx+c
Axt +Bx+C

the first derivative we get:

U'(x)=(Ax* + Bx +C)2ax +b)~ (2Ax+ BYax® +bx+c)/ (Ax? + Bx+C)*

Let U(x)= . We know that U/(0)=0 therefore ¢=0 is immediate. Calculating

The derivative simplifies slightly because of the fact ¢=0. Because of property 3 we know
that {/'(0)=0 so we have in the above derivative that C.b=0 (remark that already c=0); but
as theorem 1 asserts that n+m >3, to satisfy the five properties then C can not be 0,
therefore b=0 in C.b=0. C can not be zero plainly because if U(0)=0 (property 2) then
given that c=0 we would have 0/0 which is not defined.
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2

ax
Thus Ufx) bee CU)E ———
() becomes: U{x) AX +Bx+C

directly from the ‘new” U(x), (1) that a=A-+B+C and also taking the first derivative of the

‘new’ U(x),

(1) and as Uf1)=1 and U'(1)=0 we get

(1) and using U'(1)=0 we obtain B=-2C. Substituting those newly obtained equalitics in
(1} yields:

Ugry=—44-9% C)’
Ax* =2Cx+C
where it is required that A =C,
The form can be re-written as:
x2
Ux)= m,(Z)where a=Cl{A-C)

)2

To show that a = v/{1-v) where Ufv)=v simply derive alpha from v = —-,—~—-—"-“—~ F
vio+al(l-v

1)U(v)=v takes care of y=Ufx} and y=x where v is the intersection value.

(1-v)x?
(1=-v)x? +v(1-x)?

2)Substituting a = v/(1-v) into (2) we get the form U(x)=

The latter can be re-written by dividing by (1-v)x?, we obtain then:

1
i+ (1-x)

T 2

I-v x

Ux)= +,(3). As one can see from the above, the membership function

depends on the parameter v. Dombi claims, and rightly so, that this rsembership function
has the same form as the Zimmerman-Zysno function.

This function is defined as:U(x)=1/2+(1/d)[1/(1+e™*" " )~c]; where ‘4" indicates
‘distance’ between the given object and the ideal object. ‘c’ and ‘d’ have particular
formulas attached for purposes of estimation.

Defining membership as a function of distance (i.e. the distance between the given object

and an ideal object) Zimmerman-Zysno used: U(x)=

where in our gencral

1+d(x)
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2
derivation using (3); d (x) becomes d(x) = _Il— s :) ’
x

(4). Zimmerman and Zysno used

thus a ‘distance’ approach where the distance is ‘0’ when the given object we are trying to
evaluate has all ideal features and the distance is infinite when there is total dissimilarity
between given and ideal object. We can easily sec that if 4 (x) = 0 the membership value is
"' while if it is infinite the membership value is ‘0°, This is quite informative as it shows
Zimmerman-Zysno respect the conditions put forth by Dombi for a ‘better’ membership
function. Of course we must define the distance concept itself and then compare again to
what Zimmerman and Zysno did, before we can arrive towards a final judgment. It turns

out that dfx) has already a form as exemplified in (4). Dombi generalizes this distance

@ (-x)’

(l_v)/l—l x).

function as follows: dfx)= , (5) where the generalization is

straightforward by looking at (4). V's exponential is one less than (7-x); and similarly for
the denominator. Plugging (5) in (3) and re-writing we get for the new more general
membership function:

(] _ v)l-lxl
(1=-v)*'x* +v2(1=-x)*

Ux)= A >1,(6)

(6) is valid for x e [0,1], if we want to transform (6) to be valid on [a,b] we get:

(-v)"'(x-a)'
(1-v)"(x-a)* +v(h-x)*

U(x)= A7)

As one can see this takes the same form as (6); but adaptation is made to work within the
interval [a,b]. The transfcrmation on [a,b] is important because most of the time we will
not work with x-values which are in [0,1]. Height is an example. Remark also that
Utx) €[0,1]. Finally remark that (7) exemplifies the case of a monotonically increasing S-
shaped function. The distance function is now also modified: as:

pA! (b-x)‘t
(1=-v)*" (x-a)*’

d(x)= (8) (relative to (7))

A brief intuaive discussion on the parameters is now important:
1) The larger the [a,b] we are considering the larger d{.) will be. (c.p)
2) The higher the A factor is the larger d{’) will be.(c.p)
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3) The lower v is the lower the v/1-v fraction will be and the lower df.) will be.(c.p)

4) The A factor has no influence on (3-x)/(x-a) when choosing a+b/2 in {a,b].

We remark that v{(x) is nothing else than a fixed point. We have a continuous function on
a compact set, i.¢ [a,b]. w(.) can be seen as an indicator of variability of the membership
function. This is also an indicator of ambiguity. While 4 can be seen as an indicator of
sharpness or also vagueness. The higher A is the less vagueness we encounter. (figure 20)

We remark that (7) satisfies Dombi’s propertics for a ‘better’ membership function, We
think Dombi does not make a solid argument why a rational form of polynomials should be
followed for a ‘better’ membership function, The S shape is also not solidly argued. Finally
we remark that property 5 is a property which we think has to do with a simplification of

membership functions. Requiring m+n to be minimal implies finding the *better’ form in its

most simplified form.

1.2.3. The parameters in action

Zysno did an experiment in whick 64 subjects from age 21 to 25 were asked to rate 52
different statements conceming age with reference to four groups: very young/ young/
very old/ old. The four groups are four fuzzy sets, It is straightforward to show that; by

vi (b-x)t 1-U
T —— (8); that

using (7) and having d{x)= a = d(x). Taking logarithms

on both sides we obtain then:

b-x
x—a

1-U v
In(—=)= AlnG—)+ (A= In(—)

where we can simplify the notation somewhat:
l'U) and x=ln(b—
U x-

in shorthand notation: y= Ax+(A-1)c=Ax+d.In short because of the fact we use

y=In( x) and ¢= ln(IL), so the membership function becomes now
a -v

logarithms, we established a linear relationship between x and y and therefore the straight
line can be estimated through the least squares of deviation. (figure 21)
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The results Dombi obtains yield optimal A and v. Those ‘optimal’ values are the result of
minimizing the least square crror when fitting the data against the regression.

The A values are quite low for ‘very young® and are higher for old, young and very old.
‘This may indicate there is less ‘vagueness’ in the latter three fuzzy statements than in the
first one, The slopes of the membership functions are also steeper the higher the A values.
What is less clear are the v values. Comparing the v values for very young and young we
sce a difference of approximately 0.17; while comparing old and very old we see a
difference of about 0.1, This may indicate that the variability of the membership function is
higher in the young/very young case than in the old and very old case. This is of course
applicable to the sample which was selected to answer questions relating to the four fuzzy

sets.

L3. Dj .
Are we wiser after this small exposiiion? I do not think Dombi argues solidly why he
proposes his five properties other than the fact they are based on common traits Dombi
derived from suiveying membership fusictions over a three year period. 1 do have some
trouble seeing why the membership function should be necessarily S-shaped. Dombi shows
that under his properties his ‘better’ membership function is very close to the Zimmeman-
Zysno membership function. We could appreciate the Zimmerman function to a fuller
extent would the properties Dombi proposes have been more solidly argued. Why assume
that the membership function should be a rational function of polynomials? To assume an
S-shape membership function is certainly not unreasonable, far from that but why only
assume such a shape? Deriving common traits of membership functions based on a

historical survey is not enough as an argument, I would say.

Chapter 1. Meaning of Information 2: Smets and Magrez

The approach by Smets and Magrez tries to link degree of truth with grade of membership.
This ‘linking’ is crucial and will be made explicit under the Giles approach. The basic idea
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is to consider an object which has a continuum of values attached. We then decide whether
the proposition relating to this object is true or false for extreme values of this continuum,
For the case of ‘John is tall’ when John is 100 cm in height the proposition would be false
but true when John is 190 cm. Thus when the height moves from 100 ecm towards 190cm
the proposition of John being tall increases in value. We can then find a cut off value at
which ‘tallness’ starts. Underlying this logic with a multivalued truth domain is a set of
axioms which relate to the implication operator. This is where Smets and Magrez arc
merely syntactic than semantic in their approach. Smets and Magrez's method scems to
have as objective to be precise in that it wants to attach significance to a membership value
of say .2 as being equivalent to a truth value of .2. But we would omit a crucial
assumption in Smets and Magrez’s approach and that is that the reference scale is strictly
personal. This means there is no assumption whatsoever by the authors there would be a
universal definition on what for instance faliness would mean just as the ‘meter’ would be

defined. The workability of the method however is quite questionable.

Chapter llI. Meaning of Information 3: Giles

LL 1. The classical sentence versus the fuzzy sentence

Giles starts out wondering what the use is of a ‘sentence’. It is there to communicate
information, The information, most of the time, will not consist of facts but of beliefs and
even degrees of belief. The classical sentence apart from conveying facts conveys a belief

but no degree of belief. The fuzzy sentence will convey a degree of belief. Furthermore, as

Giles says, the degree of belief has a tight relation with a subjective degree of truth.
2Tl ion of . ine of the classical

In the case of a classical sentence it is sometim.s claimed that the meaning of a sentence is
given by its truth value. Thus if John is effectively over 180 cm tall then the meaning of

‘John is over 180 cm tall’ is the same as 1+1=2",
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As an example Carnap said that ‘The connection between meaning and confirmation has
sometimes been formulated by the thesis that a sentence is meaningful iff if its verifiable;
and that its meaning is its method of verification’ ([9];p.421) But one may wonder whether
the concept of “meaning’ is to be restricted that much. In fact, as Giles points out, we can
casily sense the meaning of the sentence ‘John is over 180 cm tall’ WITHOUT having to
know whether this is actually true, and thus meaning may exist without an explicit
immediate truth value. Furthermore, it is not very useful to engage in communication on
sentences which are universally true. This is the case of ‘1+1=2". Classical sentences will
have the same meaning if their truth values would be the same under all conditions, or in
all states of the world. Thus the meaning of a classical sentence is to be identified through

its truth function which generates 2 map $:Q— {0,1},Q being the set of all world
states. And @(w)=1 if the sentence is true in world state w, and ‘=0 if the sentence is

false. If I am confident that ‘John is over 180cm tall’ but I do not have measured his
height: i.e. thus I am not knowledgeable of the actual world state. Say it is my belief that
this current world state belongs to a subset of all possible world states, Q. Giles is
explicit in that here I have a belief, and not a degree of belief. The belief is that the current
world state ( i.e. John’s actual height) , which I do not know , is part of a subset of Q.

When will I assert? In pure terms I will assert the sentence if @¢(w)expresses the truth for
every w in ) < €2, Mind that my belief refers to my assumption the actual world state
belongs to . Let us be careful however that the truth function in this case only refers to

a subset of all world states. Hence truth is only partial. The reason for this is twofold:
a) we work with a belief the actual world state belongs to a subset of all world states
b) the truth function refers to the subset and the not the full set of all world states.
Thus Giles defines the meaning of a classical sentence with its truth function as:

Proposition I: The meaning of a classical sentence is that information that is
necessary and sufficient , in conjunction with an agent’s beliefs about the world

state, to allow the agent to decide whether or not to assert the sentence,
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For the example of ‘John is over 180cm’ the necessary and sufficient information will have
to purport to who John really is. Once we know who John is, we must envision all the

possible worlds in which John can be over 180cm. This can be for instance the interval
[180,300].

1133, _The meaning of the fuzzy sentence

For a fuzzy sentence things are different. Now, I have various degrees of willingness to
assert a fuzzy sentence ; my degree of willingness may be related 1o my degree of belief in
the sentence. The reason for that is quite simple. Because [ have a ‘fuzzy” statement in my
sentence I have degrees of beliefs as to which the possible world could be. For instance
saying that ‘John is tall’ is a fuzzy sentence. | must find out who is John, this will yicld me
the necessary information; but this information will not yield sufficiency! I also must find
information relevant to what tallness is all about. I then have to think about the possible
world states and the height of John will be critical here.(fi ©Q =[130,200]) But my belicf
in the world states which are possible is fuzzy because of the fuzzy qualifier ‘tall’ in the

sentence. Thus, I must have degrees of belief, to the opposite of the casc where ‘John is

over 180ciw’.

Proposition 2: Two fuzzy sentences have the same meaning to me {ff, under the same

conditions, I am always exactly as willing to assert one as to assert the other.
1114, Choosing to assert or not o assert

Assuming that a normal person wants to tell as much as possible the truth it is quite casy

to imagine the agent may havc trouble deciding what assertion to make.

Would he know all the outcomes of every assertion he makes he would have to choose this
assertion which he most prefers. It is expectable that this is extremely rare. For the case of
‘John is over 180cm’ we have a belief about the possible states and this implics we are not
sure of the outcome of our assertion. It is assumed that the possible outcome is a known

function f(A,w), where A stands for ‘act’ (an assertion is an act), and @ stands for the
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world state. Of course the agent has partial knowledge of the actual world state. We have
been introducing an important argument and that is the one oi ‘most preferred’; which

implies utilities. Here some trouble arises with Giles” argument.

Proposition 3: Assuming that the agent’s preferences between the various outcomes
and between lotteries which have these outcomes as prizes are known; it is possible
to represent these preferences by assigning to each outcome a numerical utility u
which indicates its value to the agent; in such a way that also the value of any lottery

is given by its corresponding weighted mean of the utilities of the outcomes involved.

The utility scale is ordinal and only affine transformations can be considered; as expected.
We must imagine the full set of all possible outcomes. Different lotteries may yield
different outcomes; i.e. some outcomes of the full set may be realized under certain
lotteries with zero probability. The value of a lottery will be given by the weighted mean of
utilitics of the various outcomes permitted by the specific lottery in question. The latter is
important because it refers to the fact the agent can distinguish between lotteries. He will
choose that lottery which brings him the highest weighted average in utility. The issue of
the lottery per se is appropriate also. The agent before asserting or acting is in an uncertain
state in that he does not know what the actuai world state is. Does the actual world state

belong to Q_ < Q7 Either I belief that it does belong or I belief it does not. If I belief it

does belong then probable outcomes are considered following a certain lottery. The
problem which occurs here is that we explicitly handle probabilities rather than
possibilities. We must consider all possible worlds, rather than only probable worlds.
Furthermore proposition 3 would be hard to maintain within a fuzzy context, as we are
confronted with degrees of beliefs. In the case of the classical sentence things are quite
simple; either you belief ‘belonging’ occurs either you do not. Then you consider all
possible outcomes which follow different lotteries. In the fuzzy case, from the outset you
have degrees of belief. Once the degree is determined you must follow a lottery of
sutcomes given that degree of belief. How do we determine this degree of belief? Does it

also follow a probability distribution? This is unlikely!
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What Giles is introducing here is Bayesianism, For belief functions the Bayesion approach

may be awkward. This issue will be discussed further up.

IIL3, Pay-off function

In simple terms the agent whether he is dealing with a classical or fuzzy sentence derives
utility from either asserting the sentence or not. It may effectively be that not asserting
yields higher utility than asserting. The problem to act is rendered more difficult within a
fuzzy context. The utility scale will yield a pay-off function. We now must be more
specific how this pay off function can be determined. When 1 assert a sentence, given |
have decided upon my belief, given also I know the lottery outcomes; I will receive a
certain utility, or pay-off. When I do not assert I basically receive the opposite of what §
would have received by asserting. Say by asserting [ obtain negative utility then by not
asserting 1 will get zero utility. It looks acceptable to assume non-assertion will yicld zero
utility. The objective is to find a payoff of asserting for a state w; given I assume zero

utility for non-asserting. Giles calls this function v(w): which gives in the state w the

additional utility of making the assertion as opposed to not making it; Giles calls this also
the pay-off function of the assertion. It is this pay-off function which will form the basis of

making a decision to assert or not to assert,
Proposition 4: The meaning of an assertion is given by its payoff function.

The pay off function is equally valid for a fuzzy sentence. We must be reminded however
that the way of arriving to the payoff function in the fuzzy context is more difticult given

that we are cunfronted with degrees of beliefs rather than beliefs.

66



1116, *John js Tall

We must envision a normal society, as Giles terms it. We gain prestige when we assert
something which reveals to be true, and loose prestige when asserting something which
turns out to be untrue. For the fuzzy sentence of ‘John is tall’ the truth of the sentence will
certainly be a function of the height of John. Hence the pay-off function will certainly have
as variable ‘height’. The utility of the assertion of ‘Joha is tall’ will be approximately a
function ff) for a given state. f{7) is only a rough approximation of the pay off. Qur
degrees of beliel influence the probable outcomes and it is “tallness’ being fuzzy which
induces those degrees of beliefs. Thus the pay-off function can not be claimed to be /()
but it is only approximated by this function. Finally we are explicitly assuming ‘normal’
truth secking individuals. The meaning of fuz:ziness lies in the realm of reasonably
rational people, and not in the marginal cases. (jokers. irrodional behavior etc.) The
height function, according to Giles, could also be viewed as an indicator for the degrze of
willingness of the agent to assert ‘John is tall’. This is a strong statement because of the
fact it is based solely on f{h1}. We can resort into the ‘protection’ of approximation but we
do not answer how well we approximate. This is a drawback of the serious sort. The f7)
function could be determined by offering bribes. Say the agent knows John’s height is
170cm. We flip a fair coin and offer the following proposition to the agent: ‘if the coin
shows heads you’ll get the reward of 5 units (figure 22) if not you must as.ert ‘John is
tall’’. The latter outcome is diminishing the prestige of the agent in some world state. If
the agent accepts we know that f(770) >5, Penalties would be used for the positive
ordinates. The problems with the pay off function as based on f{#} in this example are

multiple;

1. Height is not the only criterion to consider when considering the payoff function for
*John is tall’

2. We must assume rational individuals
3. Point 2 does not preclude possibilities such as ‘stretching the facts’. Therefore Giles

proposes the concept of ‘average meaning of the assertion in society’. This is clearly vague
and hard to describe in precise terms.
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Chapter IV. Meaning of Information 4: Hisdal

Hisdal is certainly worth to be mentioned. She presents a unified theory which tries to
better explain where membership functions could rveally come from. She is detailed also on

how shapes of membership functions can be explained.

IV. 1 Setup ofthe TEE model

Zadch’s motive to develop a theory of fuzzy sets was basically to show that because
individuals communicate with linguistic concepts such as ‘tall’, ‘small’ ctc..there must exist
some underlying procedure for this communication to work. Therefore Zadceh’s invented
the concept of degree of membership in a set. Hisdal's TEE model makes use of
probabilities rather than possibilitics. TEE stands for ‘Threshold, Error, assumption of
Equivalence’. Hisdal’s starting point is to claim that in most of fuzzy theory, at least in the
semantic realm, a mystic agent is at work making its fuzzy decisions according to some
undefined procedure. This is a very important claim. It is crucial because if we want to
apply fuzzy sets in a cconomics context particularly the one of consumer behavior it is
useful to have a serious grasp of the workings of such procedures which lead us to model

preferences for instance. Hisdal’s TEE model is instrumental in that.

IV.1.1. Labe] sets and types of experiments

There are three types of experiments:

1)LB experiments; called labeling experiments

2)YN experiments; called yes or no experiments

3)MU experiments; called grade of membership experiments

The LB experiment corresponds to a situation in which an object is described as being
‘very tall’ and the YN experiment would refer to a situation in which a person is asked
whether ‘John is tall?” and he is supposed to answei with yes or no. Finally in the MU

experiment a subject is asked to assign a membership value pe€[0,1] to an object
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concerning the label 4. It is clear that the MU experiment can refer either to an LB or YN
experiment. The latter two experiments being the ones we encounter in real life,
An important requirement is that the experiment must refer to a label set

@={4,,4,,..4,}. An example is for instance © = {small, medium, rall}

IV.1.2. Sources of fuzziness

Hisdal’s approach with the TEE model is to avoid any ad-hoc kind of definitions, 1 mear;,
definitions which are re-formulated or plainly changed to fit the situation. The objective of
the TEE model is to be able ro derive correct formulas and operators. We only mention
two sources of fuzziness here,
1)Fuzziness #1a
This source of fuzziness is defined by Hisdal as follows:

Anticipation by the subject of errors of observation under nonexact conditions. Even if the
subject performs an exact experiment in which he measures 4**; he is aware of the fact
that under non-exact conditions of observations his estimate u of the attribute value may

assume varying values according to some probability distribution er ‘error function’

Py

#)." Some small explanation is needed on some of Hisdal’s wording. The ‘exact

conditions of an experiment’ refers to a semantic experiment in which the subject measures

(or is told) the exact attribute value of each ovject. So y=u" .

2)Fuzziness #3a
Intersubject fuzziness. It is for instance the subject’s awareness that different persons may

have somewhat different ideas as to the threshold height value in an LB or YN experiment.

IV.2. Dj .
Hisdal's collection of papers makes a very detailed account on her TEE model. Space is in
this thesis is very limited and therefore we must omit important details. For the sake of the

argument we deem that what follows below is a reasonable summary of Hisdal's argument.

In an exact labeling experiment (where thus 4 is known) the subject will set a threshold
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and a 2-valued threshold function will emerge. This will yield a step-function. As an
example the sentence ‘tall men’ may have a threshold of 170cm if the object has been
measured at 170em. The agent will therefore set an upper and lower limit for cach label in
her label sct. Thus the agent may sct 170cm as the threshold for tall. When the labeling
experiment is not exact she may make an error in the cut off value , i.c where the value
zero changes into one. Therefore the threshold function is now a rounded off version of
the two valued step function as obtained under exact conditions. In the case of an MU
experiment the connection between MU and LB is basically modulated through fuzziness
#1a. In an MU experiment under exact conditions for instance ,the TEE assumes the agent
secs a connection between the membership value and the labeling experiment. Through
fuzziness #1a she knows that she can make an error in her estimate of the height value of
the object. Thus even though we are in an exact experiment where the height is known the
agent assumes that in everyday life this will not be so. This looks a little weird at first sighe.
However; the MU experiment is more general than YN or LB experiments; because of this
generality we impose every day conditions through fuzziness #1a. This generality can even
be more extendec to fuzziness of others sorts such as #3a for instance. In our same
example the agent will ask himself the following question in refation to the MU
experiment: ‘given [ am confronted with this object (i.e. a man of exact height 170cm)
what is my estimate of the fraction of times I would estimate the height of the object to be
above 170 in an everyday situation?’ Thus a reference is used and this is the exact height
but an estimation is put relative to this exact value. Thus the membership curve, cven in
exact conditions is a rounded off version of the non-fuzzy threshold curve. We remark
however that this membership function is the result of the ‘casiest scenario’ in the TEE
model; i.e. fuzziness of #1a and exact conditions. Remark that if we would consider an
MU under non-excct conditions that further rounding off would occur. First the MU
experiment yields a rounded off version even in exact conditions. Consider now the case
where a YN and MU are performed under the same non-exact cenditions First the MU
will be a rounded off version of the non-fuzzy step threshold function because of fuzziness
#la, as explained above. But further rounding off occurs because both experiments are

conducted under the same non-exact conditions. The rounding off is the same because the
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experimental conditions are the same, Thus the MU membership function will be ‘wider’
than the rounded off curve in the YN (we round off twice in MU but only once i YN).

Remark that for a YN experiment the situation is very similar to an LB experiment; the

3
non-fuzzy threshold curves remain. As Hisdal says, based on Zp(& ,
L]

Hy=1 we get

then Zadeh'’s negation such that g, (¢ )=1-pu,.. (7).

13, The nrablem of probabilities Vs nossibilit

1V.3.1. Introduction

In 1978 Gaines wrote that ‘...there are significant differences between fuzzy logics and
probabihiy logics, in their motivations, applications and axioms. However, there are also
close relationships between the two forms of logic which are themselves significaut.

We must define a probability logic. Probability logic as defined in relation to many valued
logic gives a probability to statements. This logic assumes the postulates of mathenatical
probability as we see in any statistics course. From part I’s discussion on multivalued logic
we said that a truth value of a proposition p, was denoted Ip] In similar terms will
probability logic in a multivalued setting |p| now adopt pr(p); pr(p)=p. A fuller
cnumeration of the links between the sorts of logics is as follows:

] = prip)

[-pl=1-prp)

s | pv q| = pr(p)+pr{q) (if p,q are mutually exclusive)

lo~dl = prip)+pr(g)-pripv q)

lp=ql=l(p—=> A (g p)

Note however that the system obtained is not truth functional anymore. The concept of

truth functionality has been introduced in part I. It is easy to show there is no truth
functionality anymore: example:
V2Al/2=|pAp|=pr(pap)=pr(p)+pr(p)-pripvp)=1-1/2=1/2

Vs.

1V2A1/2=|pAa—(p)=pr(pA=(p) = pr(p)+pr(—p)-pr(pv-p)=1/2+1/2-(1/2+1/2)=0
So a unique value is not guaranteed. Rescher however points out that the non-truth

71



functionality makes a probability logic system not different from other systems (such as the
one presented in part 1). A provable fact (in Rescher) is this :

The tautologies of PL are exactly the same as the tautologies of C,
I do want to make a remark in function ot part 1V which deals with operators, 1t is, | think,
clear that the operaiors behavior will be extremely dependent on the kind of underlying
multivalued logic which is being used. We introduced the connectives for the ‘truth-value'

approach in part 1 and those arc the operators we find back in what Zadeh has been

writing. Where is Hisdal here?

1V.3.2. Hisdal’s argument

After all Hisdal may be working with such probability logic. This is the eason of our small
introduction. The argumentation Hisdal gives for using probabilitics in her TEE model can
be briefly summarized through the following proposal. The sum of grade of membership

values for a given label, such as tall £i, ever all 4 values may not add up to 1. But with

the formulation that p(ll,u"‘) is a probability distribution over the different elements of

© ,as Hisdal defines it; the sum of this p(21

4") must add up to 1. Seme clarification is

needed here. Looking back at the figure 23 one can casily see that for a given 4" value

and different labels the medium non-fuzzy threshold curve and the tall non-fuzzy threshold
curves each determine a cut-off area under the error function. We know that the area

under the probability density function (which is the error function here) must add up te 1.

Considering all the different labels from the label set over a given value of u*™ it is then

L
totally expectable that > p(4,

iml

1) =1; where ‘' stands for the different labels in the

label sei @ . Remark that for a YN experiment the situation is very similar to an LB

experiment; the non-fuzzy threshold curves remain. As Hisdal says, based on

z p(4,

I=]

47 ) =1 we get then Zadeh’s negation such that u,_, (4" )=1-u ., (u").

This is the crux of the argument Hisdal uses to defend the probabilistic interpretation of

grades of memberships. A litt} > ncre expansion is needed here too. The sum of grade of
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membership values for a given label, such as 'tall' fi, over all 4 values may not add up

to 1. This may be the reason, according to Hisdal, that the max-min approach was used.

Mind here the label is given and we run over all attribute values. The ‘summing up to I’
however is in a context where we vary the labels over a given u#** value. Or in ‘non-

Hisdal’ terms, ‘usc is made of the summing up to 1 formula of the grades of membership
of a point of the attribute universe in all clusters; i.e. in all labels.” In this crucial argument

which tries to defend the use of probabilities it is important to give two important remarks,

'The first one is that Zadeh has claimed p(4,

4 )=p(u*|4,). If this is true then Hisdal’s

argument can not possibly hold. We remark however that Zadeh sees this equality within a
possibility context. The second argument is that as an alternative to max-min operators /-
norms end t-conorms have been used. We have no idea what the implication is of the use
of such norms, Certainly a min operator is an example of a t-norm; while a max operator

would be an example of an s-norm (or t-conorm).(see [36])

1V.3.3. The probability approach
The probability approach opposes itself to the possibility approach and the related max-

min approach. We must however be careful to assign the adjective ‘subjective’ to
probability! A question is this: Is Hisdal using subjective probability; in that she looks at an
individual assessing his own estimate of a probability of the occurrcnce of an event?

The tssue at stake here is to briefly examine what the arguments may be {ar a possibilistic
versus subjective probability framework. It is out of this discussion that we hope, we will
be capable of better appreciating Hisdal’s appraach. Zadeh in 1978 wrote:” The possibility

m, is defined to be numerically equal to the membership fun:tion of F when we are given

the proposition ‘X is F’.” Grades of m¢ . .sship would thus be the same as possibilities

out of this proposition. We hinted already between Zadeh’s proposed equality between
p(d ,}_u “)=p(u"|4,); using possibilities however. In an example: the possibility that an

object which is tall has a height of 175 cm= the possibility that an object with height

175cm is tall. It is not at all obvious why there may be an equality between thew: two
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propositions. Following Hisdal p(l,‘p"') is associated with the grade of membership.

p(u”|2,) however is claimed by Hisdal to be equal to  p(A,[u""). p(u"). Some

examples, as presented still by Hisdal may clariiy the debate in a more precise manner.

Suppose professor X expects a man from a company who is called Y. X is told on the
phone that Y is tall and that he is the passenger on a certain plane. X goes to the airport to
meet Y and waits at the exit from the plane. Three men come out of the pluiie; they are
my,m,,m,. X assigns the grades of membership of iespectively .7; .6, .4 for ‘tall’, We ask:
what is the (possibility) or (probability) that either man is Y? If we use the set up ol the
math chapter then all we need to do is to look for the fuzzy union; which uses max.

(as per Zadeh; Poss{X is A} = n(A) = sup cf the membership function)

Therefore the result would be .7! This obviously makes no sensc as it is absolutely certain
that one of them is Y. We obtained a possibility value of .7 while therc is certainty! This is
indeed weird! This may be a first reason for which we may discard possibilities (as going
through min-max)) Let us now modify the situation somewhat. Call case {a) the case
above; i.e. let m, be the person with membership value .7. Case (b) is a little different
from (a) as now it is assumed that 750 people leave the plane.

We also assume that X assigns a grade of membership of 1 to 100 of those passengers. Let
m, be one of the hundredth man with membership of 1. m_ in case (a) is the person with
membership value of .7. We ask again what is now the probability(or possibility)that Y is
m,? Using max-min the answer would be 1! This again makes no sense! m, is one of the
hundredth men having membership of I; out of the 750 nien in total. Still the max-min
accords a higher value to the (b) case than to the (a) case. Some comments arc in order
here. Those are carefully searched out examples which would show us that using the
possibilistic approach is erroneous. However, from the possibili=tic camp examples may be
found showing that the probabilistic camp may be wrong also in some instances. We do

not have an example at first sight; but it should not be ruled Hut.
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2!, p(;{l

Suppose a person has a height of 2.5m. We assign a grade of membership of 1; to tall; thus
the possibility that this person is tall is 1. Because of the proposed equality (Zadeh), we
get: the possibility that an object which is tall has a height of 2.5m = the possibility that an
object with height 2.5m is tall. Intuitively if the object is a person the equality does not
make much sense. The RHS of the equality has certainly possibility 1. For objects which

arec persons the LHS can not possibly be 1. Following Hisdal’s proposition that

p(p*|A,)=p(4,

uy. p(u"); which would come out to be very small given that

p(u") is extremely small, confirming our intuition, The eyuality would thus not hold if

Hisdal’s proposition is acceptable. It certainly is from an intuitive point of view. It is
almost common sense that if we would accord to the possibility that an object which is tall

has 2 height of 2.5m a value of 1 we would indeed be in a strange world!

1V.3.4. Subjective probability or probability?

It is at this point useful to wonder whether Hisdal’s use of probabilities is to be found

within probabilities (and attached repeated experiments} or subjective probabilities. The

issue is not really clear. Recall that p(4,

#") was defined by Hisdal as the probability

that an object with given attribute value 4 will be labeled Ain a YN or LB experiment.

Furthermore we also introduced the bell-shaped error curve p(uju* ). The only way I can

see this as a probability is that the experiment has been conducted over several subjects

forming a large enough sample so that such probability distribution can be formed. We

know that  p(4,

") is cut off area under the error function when it is superimposed on

the non-fuzzy threshold curve. The question then becomes how the error curve is derived.
Hisdal does give very little clues to that. There is 2i; estimated error function as determined
by the subject. This can easily involve subjective probabilities. The estimate could also be

based on a derived form of the real error function,
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We must make a halt however here. Confusion and non-sense may start building up rather
quickly...The issue of subjective probability is not at all an casy concept. Following Shafer
Bayesian theory has played a predominant role in the development of subjective
probability. We may pause a little on the Bayesian stance. Before starting let us remark
that in a great deal of economic literature Bayesianism is ofien equated with rationalism.
Harsanyi for instance has maintained that every rational individual would be also be a
Bayesian. ([53]; p.11) The Bayesian stance says that a belief function should obey three
rules:

Bel(@)=0

Bel(®)=1

if AnB =@ = Bel(Aw B)= Bel(A)+ Bel(B)
The set @ is a finite set and 27 =#(%(©)). Then we suppose the function

Bel(D)=0

Bel:2® — [0,1] satisfies:{ Bel(®) =1

Sum of the Bel— functions attached to each subset of ((©})<1
For instance if we woult set a belief function on Hisdal’s error function; instead of this

very awkward probabiiity function which happens ‘o be nicely bell-shaped; then we would
get the possibility we make an error at a certain height versus the possibility we do not
make an error at a certain height. Define for instance for a particular height

t;© = {@,,0,}; where the individual thetas refer to making an error or not. The only very

serious problem which occurs here is that evidence will have to be the main factor in
assessing &, and 8, . Where will I get as an agent evidence on whether 1, myself will make
a mistake or not? This is important. If we assume evidence exists to this purpose we still
have o0 look in what form there is a link between this evidence and degrees of support or
belief. It is here where the Bayesian stance is introduced. There scemn to be two
orientations in Bayesian theory either the older stream which Shafer calls the ‘logical view’
or else the ‘pers:nalist view’.The first option insists that numerical degrees of support are
indeed objectively determined by given evidence; the second option unalyzes the degrees

of belief as psychological facts; facts which can be discovered by observing an individual
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preferences among bets or risks but which may not bear any particular relation to any
particular evidence as Shafer says. Giles proposition on the analysis of a fuzzy sentence at
one point uses this personalistic point of view. It is important that this point of view does
not look at the relation between degrees of belief and evidence.

Perhaps this is the correct stance to take. As we just remarked finding evidence in the case
of the error function expressed as a belief function is a difficult issuc to resolve. However
the error function is instrumental in finding the membership function; at least in Hisdal’s
work. Giles does not need an error function. Giles’ membership function uses the
personalistic view and therefore does not care about evidence as such,

If one wants to model a degree of membership function as a degree of belief by which an
agent attributes a label then if evidence is available in some form the Bayesian approach
looks not promising; unless one wants to follow the personalist view. The additivity rule
Bel(Au B)= Bel(A)+Bel(B{AnB =) is the problem. Shafer gives an excellent
example on where this additivity rule may go totally wrong. ([64]-p.24) In fact in Hisdal
onc could interpret the error function and the non-fuzzy threshold function as evidence to
the membership function. Do we need to bother about evidence?

If we follow a non-Bayesian approach it will become harder te <sgue for subjective
probabilitics as we would think they are used in Hisdal.

Whether we are here in a purc subjective probabilistic approach is to question. The issue is
important because if subjective probabilities are used in Hisdal’s TEE model a problem of
aggregation of individual membership functions imposes itself. This kind of aggregation is
certainly very difficult to handle. Hisdal’s stance can perhaps best be expressed through the
following. Laviolette and Seaman in a critique on Hisdal’s TEE model say that for events
not reproducible; like the result of an upcoming election; the relative frequency approach
clearly does not apply. Hisdal responds to this by saying that a subject could carry out a
subjuctive analysis of errors wsing the frequency-probabilistic approach. She could
estimate a probability distribution for the number of voters who change their mind at the
last minute. Says Hisdal ‘the subject’s subjective uncertainties are thus given a frequency
probabilistic approach. *In my mind this says nothing else than deriving a subjective

probability distribution. The point remains unclear. The key issue is to know , in the TEE
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setup where the estimated error function comes from, Is it truly a probability distribution?
Could it be a belief function using evidence as in Shafer? Is it a personalistic-Bayesinn
approach? Do we need evidence or can we dissociate evidence from degrees of beliet? If
Hisdal does use subjective probability we will have to aggregate from individual
membership functions: so to obtain the membership function for a specific label. In short
the apgregation would have to run according to the following procedure. For the
construction of the membership function ‘tall’ and using only fuzziness #1a, the estimated
error function for a given attribute value is to be superimposed on the non-fuzzy threshold
curve of the individual.

This will yield a membership value given this attribute value for the specific label ‘tall’. The
same procedure is to be repeated for ail other attribute values ; and it is almost sure that
the estimated error curves will change when the attribute value is changed. The
membership function for the label ‘tall’ is then constructed. In very superficial terms
aggregation to a general membership function for ‘tall’ will involve taking into account all
the membership functions for the different individuals in the sample and tested on the label
‘tall’. On the other hand as we pointed out in the introduction to this section Hisdal may be
using a probability logic. The reader may follow the definition of probability logic as
introduced above and then decide. The matter remains a hard scil however. As a final word
Herbert Toth presents somewhat of another view on Hisdal’s probability approach. Toth
basically agrees on Hisdal’s TEE model but finds that the dependency between conditional

probabilities of a certain kind and membership degrees should be lcss strong. He proposcs

a more general format such as u, (4 )= f(p(2

). Toth however does not go into an
H 8 Y

detail on how /" may be typified.

IV.3.5. Hans ate X eggs for breakfast
At this point it still may not be clear what the differences are between possibility and
probability. Zadeh provides about the best I came across showing the difference between

those two concepts, We may associate a possibility distribution with X taking values in
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U={1,2,3,...} by interpreting 7 _(u)as the degree of ease with which Hans can ¢at v eggs.
Also, we can associatc a probability distribution with X by interpreting p, (u)as the
probability of Hans cating v eggs for breakfast. The values of 7, (#) and p, (x) could

then be the following;

u ]
7, (u) |l
p.(w) |1

o — |

3
|
A

5 8
8 2
0 0

o =
O w2

Thus Hans possibility; or degree of case; to cat 3 eggs for breakfast is 1; while his
probability of doing so may be much lower. His degree of ease of eating 7 eggs is .4 while
his probability is plainly 0, The following conclusions follow directly:
1} a high degree of possibility does not imply a high degree of probability
2} a low degree of probability does not imply a low degree of possibility
3)if an event is impossible it can not be probable
Onc way to express a degree of consisiency between probability and possibility
distributions is simply as follows:
Let M=(r,,7,,...x,)and P=(p,,p,....p,). respectively for possibilities and
probabilities. Then y expresses the degree of consistency as follows:

Yy=T,.p T, Pt P,
For the above y =1. It is intuitive that the higher the consistency the higher the level of
y . Let us remark however that in this example ‘degree of ease’ is associated to a

possibility and not a probability as would be the case in Hisdal. The above example may
give us also a verv superficial but intuitive reason why perhaps the degree of a label
belonging to a certain object may have to go through possibility rather than probability.

How else could we define possibility?
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Part IV: A Discussion On Fuzzy Operators

A discussion on operators or connectives imposes itself if we want to treat the subject of
fuzzy sets in some depth. This part surveys some of the proposals in the area. We do not
want to go into too great detail given that the main issue of this paper is the economic

applicability of fuzzy sets.

As we have scen in the math part of this paper the definition of union and intersection
following Zadeh was that:

AnE = pemin{U;(x),U; (x)}}

AU B = {x:max{U;(x),U;(x)}}
We first look at two authors who are arguing in favor of this definition. Then we will
confront this argument with opposing views. Bellman and Yager arc in favor of Zadeh’s
definition. Thole, Zimmerman and Zysno are against it. From the outset we note that

Zimmerman’s argument is within the experimental realm. Yager and Bellman do argue

within a theoretical context.

Chapter 1.

The problem of operators is not an easy one to solve. As Bellmann says ‘if an object is
accepted to 60% as a member of fuzzy set A ; and to 40% as a member in B how willing

should we be to accept it as a member in both fuzzy sets A and B 7" ([3];p.150)

Very interesting is Bellman’s observation that though we ar¢ quite free to attach a
subjective evaluaiivn to a degree of membership in a fuzzy set, we are more constrained if
we consider compound statements.

As an example say we attach a subjective valuation to x being a member to some degree of

the fuzzy set A; and v being a member to some degree of the fuzzy set A. Can we be so
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‘free’ in attaching a membership value to for instance * both x and y being members of the
Juzzy set A Certainly not! For instance assigning a larger wmembership to x and y

members of A than to x member of A ; is inconsistent. The general problem is then:

Given two statements S, and §, with given truth values; what are the restrictions which

are to be observed when a truth value to a compound statements such as S, or S, or also

S, and §,"

L.1.1. Assumptions

Bellman now proposes a list of quite straightforward assumptions wiich should be
respected when using connectives. The assumptions ar¢ quite natural though we wonder
whether they are exhaustive. Based on those assumptions an axiomatic structure is then
developed. The goal is here to have a brief look at those two components,

a) Assumptions

Define F = {[S,U;]} be a fuzzy set of statements. Note that the statements in /7 are un-

related to each other. We consider compound statements such as S, and S, ctc...

Al: The truth value of a compound statement depends on the truth values of the

statements in F. For S, and S, (sub-statements of S) for instance we specify a real-valued
function Jftxy) with x €[0,1]] and y €[0,1]; $0
that: Us guss, = f(Us, U5, )3Usrs, =8Ws,Us,)

A2: If truth values have been assigned to arbitrary statements S or T (which arc thus

unrelated) then the same functions f/ and g provide us also with truth values for S and T

and also SorT.USde =f(U;,U;)

Usarr =8Us,Ur)
A3: fand g are non-decreasing and continuous in both variables. This makes sense. If the
willingness to accept S or T increases there is no reason to assume f and g would not
increase. (S and T are arbitrary statements)
A4: f and g are symmetric; i.e. fx,y)=f{(y.x) or also g(x,y)=g(y,x). There is no reason to
assign different truth values to S and T than to T and S.
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A5 ffxx) and g(x,x) arc strictly increasing in x. This also makes sense. Say
U,=U,and U, =U, and U > U, then we are more willing to accept S and T than V
and W.{similarly for the ‘or’ connective)

A6 f{x,y)<min{x,y}and g(x,y) = max{x, y}; this is quitc intuitive. It says that the
membership value of § and T will be lower (or cqual) than the membership value of Sor 7.
It is intuitive to claim that the membership value of S and 7 will be less than when S or 7
is considered alone. Clearly, the membership value of S or T is however higher (or equal)
than when considering S or T alone.

A7 fr1,1)=1 and g(0,0)=0. If § and T are both completely accepted (individually) then ‘S
and T’ must be completely accepted. Similarly for the ‘or’ connective and rejection. We
may wonder what happens to g(/, 1) or f{0,0) or even also g{1,0) for instance.

A8: Logically equivalent statements have equal truth values,

I.1.2. Showing that /{x.y)=min{x v} _and gfx,y) =max{x.y}

Bellman introduces the notation ffey)=xAy and for g(x,y)=xvy. The following

conditions are then emerging (based upon the assumptions):
xay=yaxandxvy=yvx (1) from A4)
(xAay)az=xA(yaz)(2Xalso for 'or' ) from A8)
(xAy)vz=(xnz)v(yaz)(3Nalso for v Vs. A from A8)
x Ay is non-decreasing and continuous in x. (4){also for ‘or’)(from A3)
x Ax is strictly increasing in x. (5)}also for ‘or’)(from A3)
xAy < minfx,y} and x vy 2 max{x.y} (6)(from A6)
Inl=1land 0v 0=0(7)(from A7)
Bellman shows that out of those seven conditions which have been taken over from his
initial assumptions that:
x Ay =minfx, y}
xvy=max{x,y}
The proof can be found in ([3],p.154)

The question we may raise is whether the list of assumptions is exhcustive enough.
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L2. Ronald Yager
Yager's treatment is somewhat less formal than what Bellman presented. Though 1 do

think it goes somewhat in greater depth.

I.2.1. The choice of membership finctions and their influence on union and intersection of’

fi..zy sets.

Yager makes a distinction between the absolute membership function and a non-absolute

membership function. I find this distinction artificial and not of preat use. A true fuzzy
context will rarely generate an absolute membership function. We saw this in extensio in
part 1iI. The problem however to know whether union and intersection’s validity and use
is dependent on how we choose such membership function remains a crucial point.

Assume thus that we have two membership functions; call them f; and f;. Now Yager
says that he wants to define 4B = C; where S0P fr(x)= falx).

Two properties must be imposed to the ‘** operator:

1) fa(x) is indifferent to the particular selection of the membership function

2) reduces to the usual intersection of the sets if the memberships are binary.

The same criteria are needed for union. All what is being assumed here is that the
individual has some idea of ranking the membership valucs, though there is NO known
precise relationship between values, Let us therefore remark that the treatment we viewed
under Hisdal or also Dombi came to the conclusion membership functions were definable
in some quite precise form. Thus here we are at a quite more general level. Yager shows
that under certain conditions there will be only one way to define intersection and union
between two fuzzy subsets. His development shows that union and intersection basically
reduce to Zadeh's min and max operators.The foregoing developments (Bellman and
Yager) are mathematically justified. However such justification is insufficient when

modeling real world phenomena. This is where Zimmerman et al. comes in,
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Chapter 11

UL Thole. Zimmerman and Zysno

Zimmerman starts his analysis really at the bottom, We have been talking in part III about
possible approaches to electing membership functions. Our discussion was quite general
and compared several propositions. Zimmerman asks himself again this question:’ how can
grades of membership be determined in practice’? He distinguishes two different streams
i.c. the direct and indircct approach. The direct approach assumes human beings work as
good measuring devices. Hisdal’s approach was based on this direct stream. I.e. we had a
step function which was rounded off through our error funciion and bingo the membership
function came forth! Yager’s treatment on operators also contains a section on what he
calls the “cardinal approach’. This approach is equivalent to Zimmerman’s ‘direct stream’,
Zimmerman also provides us with some more new insights. Says Zimmerman there are
quite a serious amount of response biases and a very important bias is the ‘end effect’. This
cffect says Zimmerman has ‘subjects to shift stimuli towards the ends of the rating
scale’.([70], p.169) There are other biasing effects. Then there is the indirect approach
which is in fact the essence of Yager’s argument as presented above. In this stream only
ordinal judgments are being used. Preciseness is not the issue here. No doubt that this
indirect stream does put much less weight on the human being as a measuring device as
compared to the direct stream. Zimmerman proposes the use of both streams.

In the next section (11.1.1) we will look at a detailed set up of how a fuzzy experiment
could be conducted. In part III we have often used the example of ‘John is tall’ to generate
a membership function. Never have we gone into sufficient detail however on the issue of
possible biases. Basically we always have been assuming that the human being would Le a
good measurer. This may not be so. The now following section provides us with some
detailed background on how we may want to construct a membership function using all
the details possible. The latter is more than useful when considering example such as ‘John

is modest’ rather than ‘John is tall’.
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IL1.1. Set up

The steps as proposed by Zimmerman are as follows:

A) A sample of objects is to be taken which should represent membership grades rather
evenly on the [0,1] interval. At least two objects should be included which translate in a
full ‘0" and full ‘1> grade. This is what Zimmerman calls the ‘condition of undisputed
extremes’. Le. all subjects assign the same number to the extremes. A pre-test is to be
instated so that this can be verified.

B) Objects are now rated on a percentage scale by the subjects; the conversion to {0,1] is
immediate.

C) The scale position of each object is now estimated by using the median of the
distribution of ratings given by the subjects on that object. We arc here thus at the
aggregate level. This scale; call it D; may be distorted by several biases which belong to
Zimmerman’s direct stream. The end effect is an example. D is now compared with a scale
S which is obtained through the indirect stream. One will check whether the order between
the two streams is still preserved. If so D can be transformed into D’ which is an

approximation of S.

II.1.2. A concrete experiment

Consider three fuzzy sets: 'Metallic object’; 'container' and finally 'metallic container',
The following hypothesis is formulated:

Set:

U (x) as the grade of membership of some object x in the set ‘metallic object’.

2)U x(x) as the grade of membership of x in the set ‘container’

The grade of membership of x in the set ‘metallic container’ is hypothesized to be then:
H:Ug 2(x)=min[U g (x),Ux(x)]

HyUg s(x)=Ug(x).Uz(x)

At this point we may also clarify somewhat the difference between a max-min and product
operator. In some cases the product operator may really be more appropriate. An example
may clarify this. Consider two fuzzy statements A and B. Fuzzy statement A says ‘a onc-
day old infant is young’ and fuzzy statement B says ‘living one more day does not alter
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onc’s youth®, Clearly statement B is definitely fuzzier than statement A. Now, intuitively
statements B is difficult to agree with. However using the min operator it makes perfect
sense! This is indeced awkward, Using the product operator however will show the
statement not to be true, If we multiply the same membership value successively the

product of all those same numbers will be smaller. ([66])

A pre-test is to be performed on two items:

-the intersection of two fuzzy subsets labels ‘metallic object’ and ‘container’ is in fact
represented by the subset ‘metallic container’,

-is D’ an approximation of S?

1} For the first problem Zimmerman performed a test on a sample of (only) 5 subjects. He
looked at whether objects which were referred to as metallic and containers were indeed
also rated as metallic containers.

2) Zimmerman then started selecting objects which would fit in each of the three classes;
i.e. ‘metallic objects’; ‘container’ and finally ‘metallic container’. Each class would have to
contain an object which gets a full rating of ‘0’; and a full rating of *1°,

3) Furthermore the objects had to be so chosen as to enable an even ‘spacing’ of stimuli.
For so doing Zimmerman took a sample of 20 subjects to rate 50 provisionally selected
objects. From there the objects which best approximate conditions 2 and 3 would he

chosen. There are other details to be mentionea but we limit ourselves to the above.

Omiitting the details; the results out of the experiment now based upon a sample of 60
subjects gave the following results. The table below incorporates a re-arrangement of scale
as set out above. Both direct and indirect streams (as explained above) are used. The fuzzy
set M stands for ‘metallic objects’; and the fuzzy set C stands for ‘containers’. The

intersection as fesfed gave the following results:
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Stimulus x Ugng CNT] | U o (NMin] | Uy a(x)Prod.|
" bag 0.007 0.000 0.000
baking - tin 0517 0.419 0.380
ball — point 2170 0.149 0.032
bathing — tub 0.674 0.552 0.444
book wrapper 0.007 0.023 0.010
car 0.493 0.437 0.219
cash register 0.537 0.400 0.252
container 1.000 0.847 0.847
Jridge 0.460 0.424 0.264
hollywood — swing 0.142 0.212 0.067
ker osene — lamp 0.401 0.310 0.149
nail 0.000 0.000 0.000
parkometer 0.437 0.335 0222
pram 0.239 0.283 0.127
press 0.101 0.130 0.067
shovel 0.301 0.239 0.078
silver — spoon 0.330 0.256 0.248
sledge — hammer 0.023 0.012 0.006
water — bottle 0.714 0.546 0.525
wine — barrel 0.185 0.127 0.124

The letters ‘T and ‘Min’ and ‘Prod’ refer to the 3 possibilities we have been alluding to.
The latter two correspond to the two hypotheses we have set out above. ‘T stands for test
and the results of the two hypotheses should be compared with the test results.

The issue here is to know what kind of criteria one should be using to either accept or
discard some values. Zimmerman’s proposal on that issue is then as follows:

1) the mean difference between observed and predicted values is not different from zero.
2) the correlation between observed and predicted values is higher than 0.95.

If 1) and 2) are observed then the connective operator should be accepted. It turns out
after some statistical manipulation that both hypotheses can not be accepted. Hence in this
experiment product and min-operator are not acceptahle. A small word of caution is in
order here. There is no explicit reason why the results of the experiment should be

accepted. Where is there a generally accepted standard procedure which could act as a
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benchmark so to validate or also in-validate Zimmerman’s procedure? Granted the pre-test
he uses makes ot of sense, But the adaptation of the direct scale to the indirect scale may
contain errors. When looking at the table above we see there is in a majority of cases an
excess of the observed rating over the min operator. Zimmerman argues that this may be
due to the fact that human beings ‘compensate’ when they combine fuzzy sets in the sense
of ‘and’. Says Zimmerman: ‘...in rating objects with respect to a composite attribute they
do not process the relevant information as if they were choosing the smaliler of two grades
of membership, but proceed intemally as if they were using the smaller one only as an
orientation and then modifying it in the direction of the higher value.’([70], p.179)
Interestingly enough the compensation seems to work also in the max-operator or union of
fuzzy sets. An experiment carried out by Hersch and Caramazza showed that the observed
values were mostly below the predicted result as going through the max-operator.

Assume now for a moment that there is nothing wrong with Zimmerman’s experiment then
we may wonder how workable the max-min operators really are. They may be theoretically
justified but from a practice point of view they should still be operational. If Zimmerman’s
experiment is correct then there is a problem. The urgent question is then: what sort of

operator should one use? Is there a connective for each situation?

112, A general connective

Zimmerman makes a proposal where he defines a grade of compensation. This leads to a

more general form of operator which lies between the ‘and’ and ‘or’ as we know it.

Whether this is a solution is to be seen. It is certainly useful to develop somewhat this idea.

We have ©been defining the operator for the intersection either by

H:U g a(x)=min[U  (x),Ux(x)]

HyUg a()=U45;(x).Uz(x)

For the union we get: Hy'= max{l g (1), U (]
H,'=UgL(x)+Uz(x)=Ug(x).Us(x)

Zimmerman'’s idea is this. Introduce a compensation parameter y . This parameter takes

the value zero when it is on the connective ‘and’ and 1> when it is on the connective

‘or’.It is Zimmerman’s goal to establish a weighted combination of both connectives. The
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‘end-points’ ; thus etther ‘or’ and ‘and’ can be expressed cither in product or max-min
form. Zimmerman opts for the product form by arguing that he wants an interaction of
membership values. Let us remark that Yager has serious objections to use #,' as a union
connective. (see [74], p.198) The ‘interaction’ resides in the algebraic operation which has
to be carried out and which links membership values to each other in a much more explicit
way than if we would be using max or min,

Intuitively the weighted combination reposes on the following idea:

[(and)-no compensation] 0 1 [(or)-full compensation]

The idea is intuitively appealing from what we said above when we dealt with
Zimmerman’s experiment. Out of his experiment it was shown that ‘and’ from a theoretical
point of view had lower values that the ‘experimental’ ‘and’. The theoretical ‘or’ through
work by Hersch and Caramazza lied in value above the experimental ‘or’. Using the

interactive version of the connectives as defined above through H, and H, the following
version of a weighted combination of ‘and’ and ‘or’ is seen: U, =U ,Tnnl—r Uai

Using the interactive connectives (H, and H, ) the general form becomes

then: U, =(]_ﬂ_[U,)"" (l—ﬁ(l-—U,))’;U e[0,1] and » €[0,1].

=1 inl

and /=1,2,....m; m = number of sets to be connected. The first term corresponds to //,
and the second term corresponds to H',.This general form is thus casily checked. Taking
the case for m=2 we see it immediately that: U, +U, -U .U, = 1-[1-U,][1-U,] which
corresponds to the second part of the general form. The L.H.S of this equality simply

corresponds to H',. One can also see quite easily that if y = 0 and y = | tespectively that:

U, =HU, (fory=0and U = l—H(l-U,)(fory = 1) which thus reduces to the

i=]1 {=l

interactive definitions H,orH, . Isolating 7 from

U, =(Iﬂ[U,)"” (l—ﬁ(l-U,))’ U €[0,1] and y €[0,1] we get then:

i=] fal
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logl, -IogHU,
i=l

y= ; out of there one can find a value for y and set this

log(1-[T(1-U, )-10e] TV,

value in the connective, Finally one can match the obtained result of the experiment with

the predicted value using the obtained value for y .

One should remark that U, =U,.;' .Uz ;" is not the only possibility for a weighted

connective, There are other possibilities.

1L3.Conclusion

In some sense there is no single form of a general operator which can be used in any
practical situation. This is worrisome to say the least. The ‘applications’ area is
tremendously demanding especially when a descriptive rather than a prescriptive attitude is
taken. The theoretical justification of max-min or also the interactive product operators are
certainly too simple as to mimic the decision processes which go on in our brains.
Zimmerman’s proposal for a more general connective is perhaps a ‘step in the right
direction’ when considering the highly demanding descriptive applications. Before
switching to part V of this paper we may effectively wonder how tolerant one may be in
accepting paps between theory and practice. It remains the objective of fuzzy sets to
formalize our everyday speech to some degree. Both practice and theory must be married
and one may perhaps say the practice is a test on the validity of the theory. To develop a
consistent and thus non-contradictory theory of fuzzy sets on itself is not a very
praiseworthy objective with which practitioners will be contented with. Choosing the right
assumptions and working out postulates on those assumptions in a consistent way is
basically all what matters in the theoretical field. The consistency gets harder and harder to
be obtained when the assumptions become more and more convoluted. The fuzzy set
discipline looks to be like a great effort in optimization. Says Richard Bellman: ‘We must
balance the needs for exactness and simplicity, and reduce complexity without

oversimplification in order to match the level of detail at each step with the problem we
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face’.([3],p. 149) Zimmerman in [82] proposes some salicat propertics a suitable operator
should have. Among those propertics are:

1) Axiomatic Strength: An operator with less axiomatic restrictions is better

2) Empirical fit: An operator must be an appropriate model of real system behavior which
can normally only be proven by empirical testing,

3)Adaptability: An operator should be dependent on the context and the semantic
interpretation.

4} Numerical Efficiency: An operator should be computationally efficient.
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Part V: Fuzzy logic and Economics

Part V will survey some of the possible contributions of fuzzy set theory in economics,

Y.L Introduction

In 1988 Michacl Smithson asked the following question :* Why have so few researchers in
these fields utilized firzzy set theory, and why has the dialogue between them and fuzzy set
theorists been so underdeveloped?’ ([67], p.!) The words ‘these fields’ refer to the social
sciences in general. Says Smithson: °...the human sciences tend to be methodologically
conservative when mathematically sophisticated and mathematically ignorant when
methodologically innovative.” {([67], p.2) From our literature survey there is exceedingly
little to remark in the area of fuzzy sets and economics. Smithson puts fuzzy sets in a very
new daylight. Says Smithson ‘Qualitatively oriented researchers are fond of castigating
quantitative researchers for their inability to convincingly translate sophisticated theories of
human behavior into mathematical form...while quantitative proponents berate ‘anti-
positivists’ for the vagueness of their concepts and techniques.” ([67], p.12) Herein may lie
the great vaiue of fuzzy sets in that it brings the two warring camps together.

Claude Ponsard makes an excellent statement on where exactly fuzzy set theory could
enter economics. He distinguishes the three frameworks in which traditional micro-
cconomics is performed. Either we are in a framework of certainty where the agent is
perfectly knowledgeable of the consequences attached to the choices he makes.

Either we are in the framework of risk in which the consequences of a decision are still
well known but now randomness is attached to the outcome of the decision(s). Finally we
also may be in the framework of uncertainty where the probability law we knew in the risk
framework is now unknown. The three frameworks have however some very salient
features in common. The information on the set of options is perfect; the possible results
are clearly known by the agent. Following Mongin the distinction Ponsard presents may
actually be borrowed from Knight. ([53], p.11)

The question Ponsard asks himself is what will fuzzy set theory input be in this set up of

the three frameworks mentioned above? Basically the options known in advance may be
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known in only an imperfect way; this of course then ‘begs’ for the itroduction of
fuzziness. Furthermore the choice the agent is supposed to make may be much less clear-
cut than presented in the classical theory. The agent may have fuzzy preferences a concept
which is intuitively clear, It is all too much of an oversimplification to prone that we have
neat preferences over an allocation. This idea has been indircctly captured in the economic
literature notably in fields such as industrial organization where use is made of the concept
of bounded rationality. Perhaps Mongin says it in the most gencral way:® ..il faul
clairement distinguer le principe de rationalité lui-méme, comme modéle générique | et les
modeéles divers, spécifiques, qui peuvent se réclamer de lui, mais non prétendre en épuiser
le contenu..[..]...rationnel = économique; (mais) elle est ncutre pour I'implication
inverse’. ([53], p.12) This means basically that concepts such as bounded rationality or
even expected utility can draw from a general template of rationality but each can NOT
pretend to be the sole representative of it. Ponsard very aptly remarks the traditional
argument we may expect as a critique on the ‘new’ stance; and that is that taking into
account a more ‘human’ preference behavior of an agent will without question lead to
positing a descriptive problem rather than a normative one. The answer to such a an
important critique may not be conclusive. However, the purpose of fuzzy set theory is
exactly to provide for a more softly-oriented decision making approach. To claim that the
introduction of fuzzy set theory in the preference behavior of ar agent will reduce the
problem to a descriptive problem is to say, in some sense that fuzzy sct theory has only
descriptive power. This is incorrect as one could see by reading through the different parts
of this paper. But such a loose refutation however should also have to include the
possibility of the orientation we introduced in part 1II; i.e. either syntactic or semantic.
And we do not come full circle with our argument. Perhaps we should use Ponsard’s
proposition which says that ‘a descriptive model is also a normative model at the optimum’
([5], p.14) That says it all but without any great solid argumentation. A whole paper can
be filled with the pro’s and con’s to the problem posited above.

Intuitively fuzzy set theory is not inherently descriptive. Would it be, then we would work
on a case by case basis and there would not be any scope whatsoever for a theory as such.

This is a debate which is also ruminating in artificial intelligence circles. One must continue
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to sec the fine tread which separates a theory which has a certain level of generality from a
fully context dependent construct. This tread is sometimes difficult to distinguish and
certainly the fuzzy set theory is going in the direction of increasing difficulty. 1 however
refuse the argument that fuzzy set theory in fuzzifyng the preferences of an agent yields a
descriptive model of the consumer; which therefore is totally separated from normativity.
This is too casy an argument which clears the debate in favor of classical micro-economic
theory, The results obtained must show that this is not so.

Claude Ponsard writes : ‘Un ¢évenement imprécis est celui qui peut se¢ réaliser
incomplétement.’ ([5]) This is exactly the problem. By recognizing that an imprecise event
can not be completely realized we recognize indeed that our preferences are fiizzy, Using
instead a probability distribution will severe us from Ponsard’s statement because in that
case an event will know a complete realization.

Or to cite Luhandjula ¢ situations where doubt arises about the exactness of concepts;
correctness of statements and judgments; degree of credibility, have little to do with the

occurrence of events, the backbone of probability.” ([49], p.257)

V2l i .
We arc perhaps arriving again at a point of high confusion. Our task is to disentangle the
ingredients which lead to this confusion. The main issue here at stake is to distinguish
clearly between the two concepts stated in the title; i.e. uncertainty and imprecision. I do
think that imprecision and uncertainty have a common link; in that they purport to the
meaning of information. We may have to represent three elements: error, uncertainty and
fuzziness (or imprecision). ([57], p.20) Uncertainty is linked to future events which may or
may not realize. But this is essentially »of talking about fuzziness.

Probability and fuzziness are not the same and a simple example should make this clear.
The statement ‘element x belongs to a fuzzy subset with degree of membership 0.5' is not
the same as saying that x would belong with probability 50% to this set. If it turns out that
x belongs to this set then the membership value would be 100%! Thus the probability
measure, as a would-be equivalent to fuzziness takes away the notion of fuzziness

altogether; i.e. it continues to operate within a binary setting. Following Bellman and
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Zadeh in ([4], p.B141) the authors claim that fuzziness yields a type of imprecision which
yields ‘classes in which there is no sharp transition from membership to non-membership.”
Zadeh in [76] claims that information is ‘intrinsically statistical in nature’ and therctore
probability theory is to be used. However this statement has relevance to the guantity of
information rather than to the meaning of information. Decision making under uncertainty
is a typical example which refers to meaning of information. The tool used in the arca of
meaning of information is possibilities rather than probabilitics. Following this line of
thought, imprecision and uncertainty should be put in the possibility area rather than in the
probability area. We have been talking already about the differences between possibility
and probability, One major difference may be that there is very explicit link between the
probability of an event and its opposite. However this may not at all be the case when
talking about possibilities.

Assume that effectively this may all be true, i.e. that we choose to model uncertainty and
imprecision through possibilitics rather than through probabilitics. We may then wonder as
Chandrasekaran does whether fuzzy sets; which then plays the role of a possibility
distribution can handle this calculus of uncertainty, Chandrasekaran makes the interesting
comment whether we should view fuzzy sets as either a psychological or cither a
mathematical theory. If the former is chosen as Chandrasekaran says then ‘we would need
certain kinds of evidence about human behavior in uncertainty handling.’([10], p.11) If the
latter is chosen then an abstract world would emerge whose constituents parts arc
uncertainties of certain types. As Chandrasekaran aptly remarks such an abstract world
would first have to exist and also the fuzzy set axioms would then also have to show they
capture ‘the operations of this world’. {[10], p.12) Of course, this is open for debate but it
certainly raises an important point. On the other hand Chandrasckaran may be taking too
much of a purist stance. Christian Freksa tells us that Zadeh realized that it was ‘much
more important to have a good model of the semantics of human concepts and perform

reasonable operations than to have a bad model and perform verifiably correct operations’
([19], p.21)
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V.3, Shackle’s theory

A very nice application to the treatment of uncertainty in a possibilistic framework rather
than in a probabilistic framework is the work by the English economist Shackle. The
central idea in Shackle’s theory is the concept of potential surprise. Potential surprise is
defined as follows. Says Shackle : *we decide on a particular course of action out of a
number of rival courses because this one gives us, as an immediately present experience,
the most enjoyment (or distress) by anticipation of its outcome.’ ([63],p.10) The entity
which gives enjoyment by anticipation has. according to Shackle, two characteristics. The
first characteristic says Shackle ‘describes the situation or sequence of situations, saying
what it would be like if it were to happen { without saying anything as to whether it will
happen)’.([63],p.10) The other characteristic ‘consists in our degree of belief that this
picture will become true’.

The interesting question Shackle now proposes is what is this degree of belief referring to.
Basically it refers to the fact that the more we are sure something will happen the higher
our potential surprise if it does not happen. The reason why Shackle talks about surprise
as the image of belief is that he considers ‘degree of belief ¢ not to be a sensation or an
emotion in itself;, though feeling of surprise is. This is what Shackle says ‘The concrete
mental experience which corresponds to any given degree of belief in some particular
hypothesis is , I think, the degree of surprise to which this belief exposes us...’([63],p.11)
Shackle also makes the important remark that surprise felt at the actual occurrence can not
serve as an uncertainty variable. The reason for this is quite simple; uncertainty will be
linked to something which may happen in the future and we do have incomplete
information as to whether it will happen or not. ([62],p.68) If the event has happened the
question about uncertainty is of course irrelevant. Therefore it is important to talk about
potential surprise. Imagine now that we have several, mutually exclusive hypotheses,
conceming the same question. How are we now supposed to assign a potential surprise?
Shackle’s suggestion is this :” ..an individual degrees of belief in a hypothesis can be
easily...expressed by means of the potential surprise he assigns to the least potentially
surprising rival hypothesis.’ ([62],p.71)
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This looks nice but is troublesome. It really means that one can certainly NOT have
positive beliefs in different rival hypothesizes at the same time. The reason is simple: as we
just use the minimum of all the degrees attached to the potential surprises of all hypotheses
we cffectively rule out consideration of all other rival hypothesizes which have higher
degrees of surprise. 1 do not find Shackle gives a rcasonable explanation to this problem.
Billot however in ([5],p.29) shows however how tight the relationship is between
Shackle’s theory and possibilitics. There is much more to say on Shackle’s theory than
those very few words. The great achievement of Shackle's theory is certainly that it

emulates human thinking behavior to some extent. In this sense it is close to fuzzy sct

theory.

V4 F Probabilities?
If fuzziness is not probability how could we then ever talk about a fuzzy probability? This
looks like to be confusing! In fact it is not. Basically to talk about a fuzzy probability one
must first accept the fuzziness which goes into the proposed subject. To put a probability
on this subject is then a fuzzy probability. Nothing new here! Ponsard in Billot {[5], p.38)
gives an example. Say a woman likes more or less fur coats, Say that her membership to
the set ‘coats’ is for instance 0.2, Then good friends of this lady may construct a

probability distribution centered around 0.2. This will then be a fuzzy probability
distribution.

V.5, 2 . . . 0
The goal in this section is to provide a taste of some of the changes which will occur;
specifically in the area of preferences of the consumer, when the assumption of perfect
rationality of the individual is not upheld. This assumption of a rational agent is crucial in
economics. It looks as if this requirement of rationality, which is so far away from reality,
is a necessity in the build up of a coherent and consistent economic theory. Of course, this

is a very flamboyant statement. Gut feeling however would command that it may be quite
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uscful to have assumptions which arc a little closer to reality se to speak. Herein comes

fuzziness.

V.5.1. The fuzzy relation

In part 11 of this paper under the heading of ‘structure of binary relations’ we surveyed
some of the different order relations. The pre-order was defined to be a transitive and

reflexive relation. In an economy where there are / goods and m individuals and where

total resources to be distributed is €3, any allocation will be a vector of 9",

The allocation in order to be feasable must satisfy the condition that: X = ix' <Q:
i=1

where x’ represents a basket of goods allocated to agent i.

The set of ali the allocations S={X,Y,Z,...} is non-fuzzy. An agent will classify allocations

by using his preferences. This preference (non-strict) is a pre-order. We obtain a utility

function out of this pre-order when also imposing completeness and continuity. Following

Billot ([5], p.45) the claim is that when entering the fuzzy arena the structure as presented

here remains valid; however the meaning will be altered very seriously towards ‘a more

closer to reality’ setting.

We have been looking in part II at the concept of a fuzzy relation, Fuzzy reflexivity and

transitivity have also been defined. We re-iterate the definitions here:

A crisp relation on ExF is a set of ExF. Similarly for a fuzzy relation R. Consider two sets
E and F; the set of ordered couples (x,y); x€E and y € I defines the product set £x F.

We get then A= {(x,y),U]:Vx eE;VyeF.U.(x,y) eL} . Where is for simplicity [0,1].

Thus x is in ‘relation’ with y to some degree. We can also say we have a binary relation

between elements of E and Fnoted V. So we can define the fuzzy subset 4 then as:
A=9(X,7)={(x,y):Uq;Vx €E;Vy e F:Uqg(x,y) e L}

Examples of fuzzy relations abound. For instance ‘Car X is better than car Y’ is an

example.

08



VxeL:Ug(x,x)=1
We remark this property may be too strong in a fuzzy context,

We can therefore also define: « ~ reflexivity: a e]O, I[ S VryeX:Ug(xx)2a ([1]p.35)

The transitive relation is a key relation in decision making, As classical theory docs
acknowledge there are two classes of individuals i.e. rational and irrational ones, it must
guarantee that for the group in which it is interested; rational consumers; there is
consistency. The transitivity relation plays a crucial role in this. A rational consumer should
reveal transitive preferences. The max-min transitivity definition is a formal statcment

which tries to weaken the all too rigid transitivity requirement of classicel theory.

Y(x,z)eE*: maxy[min(Uq, (x, ), U (2, .-.)] <Uq(x,2)

See part I for the explanation of the form of this definition. There is somewhat of a
problem with this definition. Kaushik Basu remarks that if for instance
Ug(x,y)=05and U;(y,z)=0.5 then the min on this will give 0.5. However using for
Ug(x,y)=05and Uy (y,z)=1 we get again a minimum of 0.5, which makes not much
intuitive sense. He therefore presents a definition of the following form:
V(x, y,z) eE":U¢ (x,2)212U4(x,»)+1/2U4(y,2). ([2),p.215)Clearly the problem
with such definition is cleared away. However, Billot in ([5], p.47) remarks that the first
definition 1is not really a problem. In fact the ‘weakening’ of the definition of transitivity is
just what is sought for; so as to weaken the rationality assumption. In some sense this is
not so surprising given that we definitely want to get rid of a ‘homo economicus’ who has
been given hyper-rational powers. Such super beings can distinguish one basket of goods
from another. Those powers express themselves in a ‘super-sensitivity’ when comparing
allocations. It is assumed that the finest details are not overlooked when comparing....This

is the reason why we should be contented with the traditional definition of fuzzy

transitivity.
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Blin ¢t al. ([7],p.19) provide a discussion in which they propose to create a fuzzy set of
transitive preference patterns. The membership function of such fuzzy set would then give
us an indication how close the pattern is to the rigid transitivity pattern as proposed in
classical theory. Consumer preferences will be distinguished as to their closeness with the
classical transitivity definition, The idea is interesting but lacks practical application.

We could so to speak replace the max-min definition with a general membership function

on transitive preferences.

V.5.2. The preference relation

We said above that the preferences of the agent will yield a classification of the different

allocations in S. The behavior of an agent will be determined by the structure
(S, V) where ¥ is a fuzzy binary relation between the elements of the Cartesian product
on SxS. We get then the following expression;
x,Px, = {(x,,x,),Uq:Vx, €8,Vx, eS:Uq(x,,x,) € M}

This needs a little explanation. x,,x, are the quantities of goods j and 4; and Uy (.,.)
expresses the degree of preference between the two goods. The set M contains the
membership values; and is usnally [0,1]. We can consider the two main cases; i.e.

preference and indifference. We now separate the structure (S, ¥)into (S,>) and (S,~).

The most expected property is that the preference relation is anti-symmetric. We defined
this mn part II1. We re-iterate it here:

Y(x,,x,) eSzzU‘.p(xJ,x,)andUﬂx‘,xj)=>xJ = x, . This means thus that we can not
find x, #x,;suchthatUy(x,,x,)=Uy(x,,x,). Furthermore we also obtain fuzzy

transitivity. Recall that the max-min form of transitivity is weaker than what the classical

binary form will yield.
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In classical theory indifference will be reflexive and symmetric. We need some notation
before introducing fuzzy symmetry. The following notation makes sense:

Uglx; x)>Uqg(x,,x))
where Uq(x,,x,) expresses a strong preference; while Uy (x,,x,) expresses a weak

preference. The degrees in the first case is bigger than the degree in the second case. In his
decision making an individual will always compare his strong with weak preference. 1t is
expected that if the weak and strong preferences are equal to cach other then there will be
indifference. Using the notation introduced above this yields then:

V(x,,x, ) eSxSUG(x,,%,)=Us(x,,x))
where the R.H.S stands for a weak preference and the L.H.S for a strong preference.
Remark that this equality also implies the fuzzy symmetry property.
Finally one needs also to look at fuzzy reflexivity. Two possible definitions arc offered

either: Vx eE:Ug(x,x)=1 or also a-reflexivity:a €|, & Vx e X:Ug(x,x) 2 a

([11,p.35). The latter form is less strong than the former form.

As preferences are fuzzy it is an overstatement to assume that the individual knows exactly
what satisfaction to derive from being indifferent towards the identical allocation. In that
case his preferences would not be fuzzy. When engaging into preferences on an allocation
one will look at the intrinsic qualities of this allocation but also at the relative qualities; i.c.
in relation with other allocations. In the reflexivity cases all what we are doing is looking at
the intrinsic qualities of the allocation. However as preferences are fuzzy we are not that
sure about the level of this kind of quality for a given allocation. In the classical definition
of fuzzy reflexivity, when following this train of thought, we would have reached the
highest satisfaction possible attached solely to intrinsic quality, as then

Vx e E:Ug (x,x) = 1; i.e. takes the value 1. The definition of a — reflexivity is appropriate

in the set up we just exposed above.
We can thus summarize now that (S,>,~) is a pre-order; i.c. fuzzy reflexive and fuzzy

traasitive.
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V.5.3. A New Interpretation?
1) A very important point is that with the use of fuzziness in preferences we are much

more concemned with how an agent arrives to a preference than with the result of the
preference as would be the case in classical theory. For instance the exposition on
reflexivity showed us this quite clearly. When using the traditional reflexivity we could not
come to a reflection on the degree of satisfaction we had when contemplating the intrinsic
qualitics of an allocation. Another example of this concern; which is more indirect is the
use of the max-min fuzzy transitivity which relaxes the rigid and all too precise classical
definition,

2) Because we can use degrees of preference we can give significance to strong and weak

preference, through using Uy (x,,x,) > Ug(x,,x,). We also could use this inequality for

giving true meaning to indifference ; i.e. the equality of strong and weak preference, Here
again, we stress that with the introduction of fuzziness it is shown what the underlying
‘ingredients’ are before coming to the result. Only the result is of importance in the
classical case,

3) The issue of comparability of two allocations is also very important. In classical theory
incomparability is avoided by imposing the axiom of completeness which requires that all
goods are supposed to be comparable. Here, because of the possibility of using degrees of
preference we can declare incomparability! Le. the degrees of preference of one allocation
to the other is plainiy 0. Le. we get V(x,,x,) eSxS:U4(x,,x,)=U4(x,,x,)=0. Weak
and strong preference are equal to each other and express thus indifference. A level of
indifference of '0’ is equivalent to incomparability.

In brief the introduction of fuzziness brings us the possibility of the evaluation of a

comparison,

102



V.5.4. Degree of comparability

To set up degrees of comparability we can define the following:
x,He, = {(x,, %, ) UpiVix,,x,) €SxS,U, (x,,x,) €[0,1]}

Where H stands for the relation expressing this degree of comparability; this is a fuzzy
relation. This relation is said to be reflexive, symmetric; which following part 11, we also

called a resemblance relation. Out of this relation we can define a fuzzy set C such that:

C= {(e,,x, 2 Uy Vix,,x, ) eSx8:Ux(x,,x, ) €[0,1]} Now we can define a level

a €[0,1]. Below the level set there is no comparability. Depending on the level set we will

have comparability in some case and non-comparability in other cases. This is then written
. C,= {(xj,x,),Ucu V(x,,x)eCU, (x),x)=1=Us(x,,x)2aand

as: Ug (x,,%)=0Ux(x,,x,)<a}

Remark this alpha-cut is a non-fuzzy set. Integrating in the definition of non-comparability

we get them: Jf(x,,x,)eC,=V(x,x,)eSxSUs(x,,x.)=Us(x,,x,)=0.

Furthermore C, wC, = §xS; where C, is the complement of C,; i.c. this takes the

union of all comparable and non-comparable allocation; this forms the total set of

allocations.

V.5.5. Similitude_ Sub-Relations _and___the formalization _how _to__arrive to

indifference/preference

We have covered the concept of similitude sub-relation in a fuzzy pre-order in part Il of
this paper. Consider a fuzzy preference relation ¥ cSxS. We know the preference
relation is a fuzzy pre-order relation. Le. it is fuzzy reflexive and transitive. Now our goal
is to find sub-relations which belong to ¥ and which are transitive, reflexive and
symmetrical. Because the relation ¥ is already a pre-order the subrelation will also be a
pre-order. Now, as we add symmetry the sub-relations or sub-classes will form what is
called a similitude sub-relation in a fuzzy pre-order. The classes in question express

indifference as now we have also symmetry. Furthermore the elements in those classes

103



also express degrees of indifference. We need to go further however. It is claimed that the
relation among the different classes is an order relation. This means that we now have
reflexivity, anti-symmetry and transitivity, Consider the same example we had when

looking at sub relations in part IL.

Qo0 s
(SRS S S S e
[T TS I I T S .
Moo= i O
oot — D
o o — oI
N = W oW Ww W WY
'—'-PsU'tU'lU'lU'l-hQ

Is the relation ¥ a pre-order relation?

I) We have to check fuzzy reflexivity and transitivity. Using the max-min definition of
transitivity we get then the following. The couple (AF) in the above matrix when
interpreted as the result of a transitivity operation has as underlying couples (A,.) and (.,F);
where ‘. stands for either A,B,C,D,E or F. Taking the minimum with respect to the
membership degree of each two possible couples; we will obtain 6 different minimae

values from which we are supposed to take the maximurm. The results are then as follows:

(A,A)<->(A,F):eemenean min{1;0.3]=0.3

(A,B)<->(B,F):--------min[0.2;0.3]=0.2
(A,C)<->(C,F):——----- min[0.2;0.3]=0.2
(A,D)<->(D,F):-------- min[0.2;0.3]=0.2
(AE)<->(E,F):-------- min[0.2;0.3]=0.2

(AF)<->(F,F);----=----min[0.3,1]=0.3
From this we need to take the maximum: 0.3. Does the membership value of 0.3
correspond to the couple (A,F)? It does.
One must perform the same operation for all other possible couples. Fuzzy reflexivity is
immediate. Here the classical definition of fuzzy reflexivity has been taken.
2) The pre-order is not symmetrical: as an example Uy (F,D)=.2 but U5 (D, F)=.3!
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3) We can however find subsets of ¥ which make similitude relations.

As an example the subset K ={A,BC,D,E} verifics a pre-order and is symmetric; fi.
Ug(4,C)=2=Uy(C, 4). The subset K, ={A,B,C} would also verify a similitude sub-

relation but it would not be maximal as we can extend this subset into K. Two other
subsets are also maximal ie. K, = {F}and K, = {G}arc similitude sub-rclations, All
K,,K,,K; are disjoint from each other as one can casily verify. Thus the fuzzy relation

¥ is decomposable into maxima! disjoint similitude sub-relations. K, X,,K, form then
similitude classes.

4)We can observe that the levels of indifference in between the classes does vary. For
instance the degree of indifference between (A,B) and (B,A) is not the same as the

indifference between B and C in the similitude class X,={A,BC,D,E}.

We now want to look at the idea behind an order relation among similitude classes. We
continue our example. Take the case of the couples (B,F) and (F,B). One seecs that we

work among classes here as F belongsto K, = {F} and B belongs to K,={A,B,C,D,E}.

The degrees of membership are certainly not equal and this shows the anti-symmetric
property necessary for an order relation. We can also compare the degrees of preference
of B versus F. The degree of membership for (B,F)=0.3 and of (F,B) is 0.2,; so we
strongly prefer B over F. Remark again that we work here among classes. Furthermore
with the use of the order relation and the similitude sub-relations in a fuzzy pre-order we
have been formalizing the set up of how we arrive to indifference or preference.

There is at least one problem however. It is claimed that the relation among classes is an
order relation and thus reflexivity is implied. However it looks impossible to claim

reflexivity among classes! For instance reflexivity of {F} is possible as U (F,F)=1 but

this is not a statement which links elements among classes! So we doubt the fact reflexivity
can ever be present amongst classes. For a strong preference relation we can obviously not

have reflexivity.
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V.5.6, Discussion

Georgescu-Roegen tells us that when an individual makes a choice on the given set of
allocations two steps are usually taken, The first one being the delimitation of possible
allocations which will be considered by that individual. The sccond step consists in
emitting the choice the individual made.([21],p.137) Classical theory does not treat what
happens in-between those two steps. To put this in the traditional analogy with our ‘homo
economicus’; he just is again the robot, and the robot program is inaccessible for earthly
beings. The kemel of bringing fuzziness into economics lies in the fact that now we have
degrees of preference. We can now totally agree that to prefer object A to object B may
have a different degree of preference as preferring object C to D. In classical theory we do
not have this differential weight of preference, The same is valid for indifference where
now we have levels of indifference. This led also to the important claim that the
completeness axiom is of no use anymore; as now we can really pinpoint incomparability;
we do not have to hide incomparability behind indifference. This is also confirmed in
Basu.([2], p.225) There are more achievements which are worth mentioning. But we
satisfy ourselves with the above. The above is more impressive than one may think. The
root of the problem with economics, to my idea is that it treats human beings in the same
way as physics would treat objects. Physics does a good job on this; but how possibly can
economics do a good job? If it is assumed that we are all the same ;if it assumed there is a
well known blueprint of rationality which we alil carry in us then we are far removed from
the real world. This reminds me of what Popper once said concerning rationality. Says
Popper:’....c’est la méthode qui consiste a élaborer un modéle a partir de I’hypothése de
rationalité compléte ... de la part de tout les individus concernés, puis a estimer 1’écart
entre le comportement effectif et le comportement postulé par le modéle...” ([53], p.56)
This is of course a very sterile proposition.

However, it is a very honest proposition which basically asks not to ONLY theorize but
also to experiment on the proposed theories.

The problem we have to seriously wonder about is the trade off between generalization
and specificity. The more we generalize the less concrete we become and vice versa. It

looks however as if we are now too far removed on the side of generalization.
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There is a critique however also. If individuals can now express their degree of preference
why is it so that they can be that precise? This is definitely a very reasonable critique.
Instead of concentrating on such cardinal measures some theorists will prefer a much more

weaker ordinal form. The notion of 'soft sets' derives from this approach. See [1.1] and

[2.1].
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Part VI: Applications

This is then the last part of this paper which deals with applications, It is certainly an
exceedingly important part of this paper as, I hope, it will set out somewhat what the
potential of fuzzy sets may be in the sucial science sphere; especially in the areas of
economics and finance, We are specifically interested in the following applications:

1) The construction of & fuzzy utility function

2) Fuzziness and the Producer’s Equilibrium

3) Applications in Finance,

We will of course draw on some of the concepts which have been introduced in the former

parts of this paper.

VLL The € iop of a f ity funeti

Part V of this paper introduced already some of the possible newities which may be
expected when using fuzzy sets in micro-economics.

Though the work by Chen et al. seems to lie down some intuitive groundwork; I do think
the article is faulty in many respects. Therefore we follow some of the points Chen et al. in

([12]) propose and develop also our own arguments.

VL.1.1. Introduction

The utility function is traditionally defined as a mapping from an n-ary commodity space to
a utility space. By fuzzifying this we will not use numbers (of course in an ordinal
framework) attached tc indifference curves but fuzzy sets in the form of fuzzy numbers.

VL 1.2. Mathematical recap and extensions

Some notions Chen et al. introduce in their set up have not been included in part I of this
paper. Therefore we introduce the new concepts here, Furthermore we recap briefly some

notions which have been covered in part II already.
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This is a straightforward extension of the original definition of a fuzzy set. The only
difference comes in here where the variable which is supposed to belong to some degree to
the fuzzy set is now a vector with two coordinates. Hence the membership function will
not be anymore a simple bi-dimensional graph but a graph in 3 dimensions. lLe. the
coordinates take up two axis's and the membership value takes up one axis. Of course we
can encounter membership functions of any dimension.

Related to point 1) is the concept of cylindrical extension. The basic idea of this is that the
variable in its original form; whether a vector or not; will be transformed into a vector of
dimension: dim(original)+1. Thus if the variable is originally a two dimensional vector;

cylindrical extension will make it a three dimensional vector.

A fuzzy relation was defined as:
A=PX, = {(x,y);Uq-,;Vx eE;VyeF:Ug(x,>) e L}; where L for the membership
set, which is usually [0,1]. The projection of a fuzzy relation is a little less intuitive. If we
consider a relation in product space ExF x (G then the ensuing relation could be
represented as a three dimensional figure. Each point making up this figure will carry a
membership value referring thus to the fuzzy relation in question. The projection of this
fuzzy relation will be defiried as the supremum of subsequences of membership values of

this fuzzy relation. As an example consider the relation ¥ (X, Y, Z); then the projection of
this relation on the plane XY would be defined as: W'(X,Y)= P, ,'V(X,V,Z); with P

standing for ‘projection’.

The composition ¢f 2 fuzzy relation was defined in part II as: given a fuzzy relation ¥ of
E to F and a fuzzy relation & of F to G then the composed relation Qo¥ is a refation of

E to G such that: V(x,z) e ExG: U@w)(x,z) =max [min(Uq, (x.y),Uy (y,z)]. There is

an equivalent to this definition. Using the concept of projection the above can be staied
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alternatively as: Qo¥P =P, ,(Q~F). It is important to see first why this is an
alternative definition. Furthermore remark that the relations are extended cylindrically.
(noted with a bar); the reason for this will become clear in a moment. The equivalence

sprouts out as follows:

as U(ﬁ,.T,)(x,z)=maxy[min(U.T, (x,y),Ug (y,z)] then we can re-write this as:
U(ﬂ_q;)(x,:):vy[(U,?(x, Y)AU5(7,2)]; using the definition of projection which says

that we use a supremum then: Py ;[(Uq(x, IANUx(,2)]= F0 (anﬁ); where the

cquality is legal given the definition of fuzzy intersection; as defined by Zadeh. Hence the
alternative way. We need still to come to terms with the fact that cylindrical extensions
have been used. This is in fact not that hard to see. The extension is a necessity as we
compose relations on £ x F and F x G ; and the composite relation will thus have to lie in
ExG. But composing the two relations in ExFand FxG spaces; reduces to
composing those relationships in £ x Fx G space. Hence the need for an extension on

both Qand ¥ .

Let the universe U be the real line, A fuzzy set A on R is called a fuzzy number iff A is

convex and there exists exactly one point, say Me R with{/,(M)=1. The reason for

convexity has been explained in part II. The reason for the normalization is that for the
case of f.i approximateiy 50; the membership value must be ‘1’ at x=50. Note also that
there are different types of fuzzy numbers. One special case is the L-R fuzzy number of
Dubois and Prade. (see part II) Again note that a fuzzy number is a special case of a fuzzy
set in that it is restricted through the normalization and convexity condition.

Chen et al. define a fuzzy set X to be greater ( or equal) than a fuzzy set L if all of the
alpha-cuts of X are greater than or equal than the alpha cuts of L. ([12], p.290) One of
course compares at the same level of alpha for both fuzzy sets. A simple example of this is
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in the case of nicely shaped bell curves with a membership for x at 1 (in case of a fuzzy

number); and ‘one bell shaped curve sits on the other’.

VI.1.3. Basic Concepts in Fuzzy Economics

We have been talking already about the rationale behind the idea of fuzzy preferences in
part V of this paper. The utility level attached to the preference will be fuzzy. Chen et al.
propose that a survey could be made based on different combinations of commodity
bundles and consumers could be indicating the level of fuzzy utility in terms of whether
they are very satisfied; or merely satisfied etc. with a particular sclection.

A sufficient number of such indicators will lead us to derive a crude fuzzy utility function
for the entire commodity space. The intuition here should now be clear. Consider the casc
of a commodity bundle consisting of two goods. In classical theory the utility function will
be a 3-dimenstonal figure which has on its two axis's the goods of the commodity bundle in
question and an axis indicating the level of utility. The surface traced out will then be
called a utility surface. The very interesting thing here as compared with the fuzzy
counterpart of this is that because utility would now be a fuzzy set; i.e. utility levels would
now be fuzzy numbers the utility surface would have a ‘skin’ of varying thickness to use
imagery. The ‘tickness’ of the ‘skin’ of the classical utility surface will be uniform and be
as thin as a pomt basically.

Clearly, when using the ordinal concept of utility one does not bother about the exactness
of the numbers obtained; levels of utility have only a ranking purpose. However because
there is a precise number attributed to each combination of quantity of the goods in a given
commodity bundle we assume that we have crystal clear preferences. The case of the thick
utility surface does assume exactly this away. However, as a unique argument the above is
not really revolutionary. Basically, because of the ordinal character of utilities the
exactness of a number attached to a certain commodity bundle is clearly not relevant. In
the same vein can one argue for the tick utility surface. The implication of a ‘tick’ utility
surface however comes through the demand curve. This is what we want to survey now

before continuing. The concept of ‘thick demand’ curves was invented by the French
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cconomist Marchal. The basic idea of such demand curve is that it expresses a variability
of rationality. The ticker the curve becomes the less rational we are. Hence, in this
framework the regular demand curves as we know them would express ultra-rationality.
We know the versions of Hicks and Marshall on demand curves, The former introduced
substitution and income effects; while the latter only bothered about substitution effects. In
any case the resulting demand curve was assuming a fofally rational individual, The
interesting issue in Marchal’s book is that he also considers the demand of an individual he
calls ‘Iindividu partiellement rationnel et partiellement conditionné par le milieu.’
([51],p.543) This is of course closer to reality than the perfectly rational consumer as
treated by Hicks and Marshall.

The idea is simple, the individual when facing a price for a good will not know what exact
quantity he would be willing to buy. Let us remark first that more leeway is given to the
true nature of the average consumer when also considering the income effect. However the
‘exactness of quantity’ problem is never solved under such framework. Says Marchal
‘pour chaque prix, il y a, en fait, non plus une certaine quantité qui sera automatiquement
demandée; mais une quantité minima qui sera certainement atteinte et une quantité
maxima qui ne sera pas depassé. Entre ['une et l'autre; la demande se fixera d’aprés
Uintensité des stimulants que présentera le milieu externe.” ([51], p.544) This looks
straightforward and makes sense. But we should carry the analysis a little further however.
Let us consider the indifference curve which can be viewed as a horizontal cut; through the
utility surface at a given level of utility. The major implication of such indifference curve
forthcoming thus from an ultra-thin utility surface is that we are now able to compare any
super small amount of one good versus an anount of the other good always respecting
the level of indifference. V/e are capable of comparing any possible combination of two
goods under the constraint of irdifference. This is of course gross exaggeration. The
human being is not born with five Pentium® chips in his brain! Let us go a little further
now. The points on the ultra-thin demand function are found successively by maximizing a
utility function subject to a budget constraint. Hence the point found for a particular
maximization derives from the fact that we are able to compare an infinite amount of

quantities no matter how small or big they are, all respecting indifference! This is
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erroneous. Thus it must now be clear that if we leave some leeway to the individual, as we
know hinr; then we will not obtain a precise quantity as the result of the optiinization but a
fuzzy quantity! Let us go still a little further, /n order to make human sense out of the
ultra-thin indifference curve we are truly obliged to accept that some quantities of goods
will be incomparable. I.e. we can not compare one millionth of a unit of good X to 10
units of good Y. This is then incomparability. But incomparability is lumped together with
indifference here given that we face an ultra-thin indifference curve. Hence the necessity
of the completeness axiom! The problem of lumping incomparability into indifference ;
which is clearly faulty but necessary in order to make human sense out of an ultra-thin
indifference curve is absent when considering fuzzy utility func.. ns.

The reason for that is quite simple. The fuzzy utility function now carries fuzzy numbers as
levels of utility. The fuzzy utility surface will have a ‘skin’ of varying thickness! Now
consider a horizontal cut through this fuzzy utility surface. Say that fuzzy utility is
measured on the Z-axis (vertical) and the non-fuzzy quantities of both goods on X and Y
axis. The projection of the cut on the XY plane will yield an indifference curve which will
be fuzzy and will now be non-uniform, The non-uniformity of such projection could be
roughly defined as indicating that we can denote an area to the indifference curve. There is
no such area in the classical case. When optimizing a fuzzy utility function with a non-
fuzzy budget constraint we obtain a quantity on our fuzzy demand function which
precisely corresponds to the quantities found on Marchal’s thick demand curves. For a
fixed quantity of good Y; the indifference will purport to a certain interval of quantities for
good X. This makes much more sense now. Remark that the utility level for the fuzzy
indifference curve is also fuzzy. Another important question arises and that is the one of
levels of indifference. The concept makes plain sense as we will see below. In effect the
fuzzy indifference ‘curve’ has also a membership function; and hence levels of indifference

can be contemplated.
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2. Normalization of the fuzzy indifference set,

Point 1 dealt with an intuitive outline on the fuzzy utility function. We now want to
formalize our thoughts a little more. We begin with the fuzzy indifference function. The
fuzzy utility function is defined as a mapping from X in F(U) thus: f: X = F(U). Xis
the commodity space ; i.e. the set of all commodity bundles. F(L/) is the collection of all
fuzzy numbers which indicate the level of fuzzy utility. The locus of f in the product
space X xU ; which Chen et al. call the consumption space is then a fuzzy subset of

X xU . Equivalently one may also construct a fuzzy relation P ', between X and U

Now we could view in the case of the utility function that the level of fuzzy utility is the
dependent variable. In the case of indifference curves we could view the commodity

bundle as the dependent variable. Hence we could define for fuzzy utility functions the

relation ¥ ; (x,u); where x is a commodity bundle and u the level of non+fizzy utility, this
represents a relation from X to U. The mverse relation q’f ™ goes then from U to X .
Following Chen et al. the indifference set of commodity bundles is defined as:

I =P.(M AP, ™). This needs some explanation. First of all A7 e F(U); and it has to
be extendedto M because ¥ f" operates in U/ x X ; hence as we know the projection to

be equivalently defined to a composition of relations (see 3) under VI.1.2.) then as A is
defined in U; the composition A o‘?f ~ will be defined in U x X ; so M is to be extended
in I/ x X . The question arises why there is a need to compose with A7. The only way I
can see this is that « takes non-fuzzy values and all those non-fuzzy values linked to the
different non-fuzzy commeodity bundles some of them will fit within the fuzzy set A7. The
intersection of the inverse fuzzy relation and the extended A/ will yield the indifference
area; i.e. given a certain level of fuzzy utility what are the consumption bundles; which are
non fuzzy here; which carry this same level of fuzzy utility? This ‘intersected area’ is then
projected on the commodity space. Remark that in fact "I"’., (x,u) is not a fuzzy relation as
neither x nor u is fuzzy; but M e F(U) is fuzzy. We are also concerned in finding a form
for the membership function belonging to the fuzzy indifference set. That the indifference
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set is fuzzy is an immediate consequence of the fact that we are confronted with a fuzzy
utility. Therefore we now have a look at this membership function. As seen in 3) under

VI.1.2, ithe composition of two relations may also be expressed through max-min. This

yields then the following:
Hr, (x)=max, min[z g (), 1 7w (1)]. An explanation of tue symbols used is immediately
needed. u = membership grade and y =non-fuzzy commodity bundle, Now it is

important to correctly read this definition. M and f(y) are fuzzy sets. u is not a fuzzy
number but is an ordinary number.

M is a fuzzy number and f(y) yields a fuzzy utility which is also a fuzzy number. By
denoting u g (.)or p4.,,(.) we look at how well the non-fuzzy utilities are members of

the fuzzy set of utilities. How can we describe the membership grade of the non-fuzzy

commodity bundle y in the indifference set 7, ? Basically we need to look at how close
the fuzzy utilities through f( %) match the given level of fuzzy utility M.A perfect match
for instance will generate a perfect membership of ‘1” in 7,,. Thus following Chen et al.
‘this ‘closeness’ of two fuzzy sets f(x)and M is measured by the maximum of

membership grades of the intersected set of f(y)and A ’.([12], p.288). Remark that
I, =Px(1\:fi nq’,") indicates the set of commodity bundles eligible to be claimed
indifferent. Using Hy, (x):max,nﬁn[pﬁ(u),pfm(u)] we look at how well those

quantities are members of the fuzzy indifference set; i.e. it traces out the membership
function. Both formulations show us that the indifference set is clearly a fuzzy set. Remark
finally that in the case of a horizontal cut (still with two commodities) the membership
function will be three-dimensional.

3. Discussion

The fuzzy indifference set was defined through : 7, = P, (ﬁ ¥ y ™). The meaning of this

formulation is crucially important. Let us go a little deeper. Assume commodity bundles of
two goods. We can basically express the firzzy indifference set in a one dimensional setting

115



or a two dimensional setting. In the one dimensional setting a vertical cut is performed on
the fuzzy utility surface. The intersection of the cylindrical extension of the fuzzy utility
and the vertical cut of the fuzzy utility surface will give us an area which is to be projected
on the commodity space. The result is a fuzzy indifference set. For our purposes it is , in
line with the classical case, more interesting to perform a horizontal cut on the fuzzy utility
surface. For this we take again the cylindrical extension of the fuzzy utility which is now
horizontal of course and let it intersect with the fuzzy utility surface. This intersectiva is
now projected on the commodity space. The fuzzy indifference set thus obtained looks like
in the figure below. Remark that the fuzzy indifference set has an ‘area’; to the contrary of
the classical case where there is no area. A three-dimensional membership function is put

on this fuzzy indifference set.

IL____.———-—’ Xl

A Fuzzy
Indifference

Set.

v

\—-)X2

VL1.4. Fuzzy Weak Preference Set

In classical theory the upper contour set of the convex indifference curve would show us
the weak preference set; if of course the lower boundary is included. This upper contour
set we know is a convex set. How would the fuzzy weak preference set be defined? In the
classical case an upper contour set given a certain level of utility can be defined as the

union of all indifference curves carrying a level of utility greater than or equal to the given

utility. Says Chen et al. ‘The weak preference set Rn is the union of all indifference sets

with fuzzy utility indicators greater or equalto A7 . ¢ ([12]; p.290)
An immediate question arises: how can one define one fiizzy number to be greater than

another? This was looked at under VII.1.2. The definition as proposed under that heading
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makes sense as long as the membership functions of the fizzy number are similar in shape.
If membership functions can assume different shapes it will be difficult to start comparing
the alpha-cuts for a// alpha before we can conclude that a fuzzy number is really greater

than another. The operability of the proposed definition is certainly questionable to some

extend. One way to write R-n (the weak preference set) is then as follows:

U, =7, R, £ i1, = ).

¢

VL1.5. The fuzzy step function

Let M be a fuzzy number; the fuzzy step function is defined as a fuzzy set obtained from
M by letting u a&)=1 forall > y,. The quantity at which the bundle assigns a
membership value of ‘1’ is denoted y,. For all quantities beyond x, a membership value
of 1 is counted. Remark that y,,r are thus vectors. This proposition is extremely
debatable, however! We still assume that we work with two commeodities.

As the fuzzy indifference set is indeed carrying a membership function all couples in the
given set will carry a degree of membership in that set. Clearly if a specific commodity
vector has a low membership value in the given set, a set, which we recall is of course
totally conditioned upon the given level of fuzzy utility, then we may either conclude, in
rough terms, that the level of fuzzy utility is either too high or too low for this specific
commodity vector. Chen et al. propose however that if a particular vector can be localized
which has degree of membership ‘1’ then all vectors greater than this vector would also
have the same membership degree in the fuzzy indifference set. First a vector greater than
another vector, in two-dimensional space, means that at least one of the coordinates has to
be strictly bigger than the corresponding coordinate of the other vector. There is at least
one problem to this proposition. By augmenting the quantity of at least one of the
coordinates it is not appropriate to think the membership degree would have to remain at
100%. If a commodity vector is higher in quantity than another for which the membership
was 100%, it is erroneous to think that the higher quantity couples would have also this
membership grade! Instead they would have lower membership grades as they would fit
less well in the given level of fuzzy utility; i.e. for the higher quantities the given level of
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fuzzy utility would be too low! Hence we can not subscribe to Chen et al. proposition of a
fuzzy step function. Recall that the union of fuzzy indifference sets which have a fuzzy
utility higher than or equal to an imposed threshold level of fuzzy utility would form the
fuzzy preference set. Using the Zadeh operator for union which is ‘max’ we would then
take the maximum of all membership grades of all the fuzzy indifference sets constituting
the weak fuzzy preference set and we would then have found the membership function, in

three dimensions, of the fuzzy weak preference set.

VL. 1.6. Analysis of the strong preference set

We now nced to think a little deeper on how a fuzzy preference set would be constructed

in detail;, when we are confronted with a strong preference set. We agree that

U, =M, oR,™ £ M,> M} now expresses the strong preference set instead of the
[

weak preference set. There is a serious difference as to the construction approach when
looking at the two types of preference sets. In the strong fuzzy preference set we need first
to disentangle the problem of knowing which coordinates belong to the fuzzy threshold
utility level and which coordinates would not belong. In the weak fuzzy preference case
there is no such problem as we have a weak inequality between fuzzy numbers. So in the
weak preference case we can satisfy ourselves with just constructing the membership
function of the preference set. The problem we want to discuss now is related to the fact
that we do not really know how to delimit the strong fuzzy preference set. Under the
condition of a concave fuzzy utility surface (see VL1.7 below) we will in most
circumstances be confronted to an overlap of fuzzy indifference sets. The situation is

pictured in the figure below:
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I

Two Overlapping
Indifference Sets

12

The fat-lined curves form one indifference set (I1) and the thin-lined another indifference
set.(12). Clearly the fuzzy indifference sets do overlap. The commodity vectors which lic in
the overlapping area can not have a membership degree of 1. This is expectable as a 100%
membership in both sets would imply a contradiction against ordinary set theory. We will
exclude the commodity vectors which belong to the fuzzy indifference set carrying the
benchmark fuzzy utility. The other 100% commedity vectors will fatally belong to the next
higher level of fuzzy utility and should thus be included in the strong fuzzy preference set.
The problem is of course not solved yet because we have to decide what to do with all the
commodity vectors which have membership degrees which are less than ‘1°. The vectors in
the overlapping area will normally have two membership values; i.e. in relation to each of
the membership functions. The issue is clear if for a certain vector the membership value is
higher in one set than versus another. If the membership of a vector is higher in the
benchmark fuzzy utility indifference set then this commodity vector will be excluded. If the
reverse occurs the vector should be included in the strong preference set. We are still not
finished. We still have two remaining cases. The vectors which are in the non-overlapping
areas but do not have membership values of ‘1’ and the vectors which are in the
overlapping areas but do not have two membership values. For the case of non-overlap
and membership degrees inferior to 1 a proposition could consists in creating a
neighborhood of some radius around the commodity vector in question and to find out
whether membership increases if at least one of the coordinates is increased. If membership
increases then the low original membership value is due to the fact that the fuzzy utility is
too high; rather than too low. If the membership decreases while increasing at least one of
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the coordinates then we can conclude the fuzzy utility is in fact too low for the particular
cormmodity vector. In the latter case for instance the commodity vector will be included in
the preference set; while he will not be included in the former case. We need of course to
take a radius which is small enough so that one remains in the same non-overlapping area.
The same procedure could be followed for the case of overlap but no double membership.
This is only a sketch of the possibilities, There may be more possibilities and things may
get quite more complicated if the membership functions take peculiar forms.

There is some ‘discipline’ however in what possible forms the membership functions of
fuzzy indifference sets can adopt. This discipline is imposed from the fact that the
membership functions of the fuzzy utilities are fuzzy numbers and must thus be convex and

normalized.

VI.1.7 Is the weak preference set a convex set?

In classical theory this is an important issue, A unique optimal point depends on the
convexity of the preferences set. The same goal has to be pursued in a fuzzy set
environment.; though this may well be more difficult. One of the crucial requirements for a
convex indifference set is the requirement that the utility surface is concave; i.e. that it
indicates diminishing marginal utility. This will yield in classical theory mice convex
preferences and consequently a preference set which will be a convex set. We assume the
commodity bundles are ‘good’ goods, i.e. not ‘bads’. The problem when introducing
fuzziness is that we are confronted with a non-uniform utility surface, as said already
before. Hence we need a stringent requirement so to be able to claim that the fuzzy utility
surface is indeed concave. Imagine that the ‘top layer’ of this surface is indeed concave;
this does certainly not imply that the layers below that ‘top layer’ will be concave; they
may have convex parts. So to be able to claim that a fuzzy utility surface is concave we
must tear apart this ‘tick’ surface into several layers and examine each of the layers
separately as to whether they are concave or not. Chen et al. ([12];p.294) call such layers
iso-membership grade surfaces.(IMGS). Each layer has a varying fizzy utility but carries
the same membership grade in the different membership functions associated to the varying
fuzzy utility. If each of those layers is indeed concave then we can declare the entire fuzzy
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utility surface to be concave. All this leads us to a possibly important theorem which may
be the base of finding fuzzy equilibriae:

Theorem: If every fuzzy utility indicator of a fuzzy utility relation is convex and
normalized, and if there is a diminishing marginal utility for every IMGS then the weak

preference set is convex. ([12],p.298)

Let us briefly discuss the conditions of the theorem.

1)The fuzzy utility indicator has to be convex and normalized. In other words we must use
fuzzy numbers as utility indicators. The requirement is important because it allows us to
claim that the fuzzy utility surface will be uniform. Of course the uniformity of the fuzzy
utility surface does not guarantee there will be no convex parts in this surface. The
requirement of using fuzzy numbers only lead us to conclude that the ISMG surfaces will
never intersect when the fuzzy sets (here utility indicators) are convex and normalized.

2) There is also a diminishing marginal utility needed for the fuzzy utility surface. In other
words we must impose that every ISMG surface is to be subjected to diminishing marginal
utility. Requirement 2) is expected, given of course that from !) we only could conclude
the fuzzy utility surface would be uniform. If every ISMG surface is indeed concave then
the fuzzy utility surface will be concave.
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V1. 1.8. The optimization problem

We now will consider the simple case of optimizing a utility function subject to a fuzzy
budget constraint. The result out of this optimization should yield us Marchal’s thick
demand curve as discussed before.

This section has four objectives. First, to give a taste of the dangers of fuzzy optimization
and second to show the dependency of fuzzy optimization on underlying membership
functions. The third objective has as mission to spell out a possible approach to optimizing
a crisp utility functicn subject to a fuzzy budget constraint. The fourth objective concems
the optimizing of a fuzzy utility function subject to a fuzzy budget constraint. Let us
remark however we will not use any fuzzy optimization technique proper as this would
rejuire too much sophistication and space is not provided in this paper to expand upon a
possible fuzzy optimization with sophisticated membership fuuctions. This relates to the

sccond objective we mentioned above.

In most of fuzzy optimization max-min operators are used. Lai and Hwang are an example.
{[45]). Part 1V showed us that max-min operators have theoretical validity but are quite
less useful in a practical descriptive context. The max-min operator within the
programming context derives from a paper by Bellman and Zadeh in which the authors
propose that the decision should be based upon the conjunction of objective and constraint
and therefore the ‘and’ operator (or min) would be used on objective and constraint. A
decision based upon those two ingredients is un-debatably a necessity however whether
the min ope:ator is to be used for that is to be discussed. The word ‘conjunction’ is
somewhat debatable however. Following Bellman and Zadeh in ([4],p.B149) this
conjunction refers to the ‘hard’ ‘and’. However other operators may be looked at notably
the product operator (Le. compensatory) as seen in part IV of this paper. Note that
Bellman and Zadeh only give an intuitive type argument for this “and; operator in [4]).

Many fuzzy optimization techniques which I came across with, mainly through Lai and
Hwang ([46]) do nnly cover an extremely limited form of membership function: linear and
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of a particular shape. For more sophisticated shapes as the one which we will be looking at
in objectives three and four; i.e. wien optimizing (fuzzy) utility subject to a {fuzzy) budget
the brief survey f:\'owing here below will be of no use whatsocver, The particular shape of

the membership functions considered in ([46]) would be of the following type:

Ux(.) '

X

Consider this basic problem in fuzzy optimization
max z = cx
s.1.(Ax), <b,,Vi;x 2 0;b, €[b,,b, +p,1]
and the linear assumed membership function is defined as:
' 1if (Ax), < b,
U,(x)=31-[(Ax), b1/ p, if b, <(Ax), <b, +p,
0if (Ax), 25, +p,
The following points should be raised:
1) the membership functions are often assumed to be nicely linecar. Lai and Hwang in
([46]) is an example. From part III we have been stressing enough that the way to get to
membership functions is extremely dependent on the problem at hand. Also important are
the derivations which are presented using this type of membership function. Morc
complicated membership functions will also yield in general more complex solution. We
can not go in detail on this however. Different approaches for specific more sophisticated
sets of membership functions do exist (for instance piece-wise ¥near continuous functions).
However the solution procedures are really quite limited to a quite simple sct of
membership functions. We did not come across specific solution procedures when

membership functions adopt a much more ‘non-classified’ character. Rerark however that
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if fuzzy numbers are present we need to consider a normalized and convex membership
function. Hence there is quite less scope to consider more convoluted membership
functions in that case.

2) related to 1) is the problem of the assumed operators, Clearly max-min has been
resolutely shown in part IV to be of doubtful value in practical cases. The Zimmerman-
Zysno study showed this conclusively. Recall Zimmerman’s attempt to define an operator
with a weighted compensation build in. Here also the solution procedures when using
those more sophisticated operators becomes clearly more difficult to handle.

3) An explicit form of the Operations Research approach is stochastic programming where
randomness is key. One argument to leave this approach aside is by pretending that fuzzy
programming is less concerned with the issue of quantity of information than with the
problem of meaning of information. The quantity of information approach comes in there
where randomness is introduced. Le. it purports to the transmission of information. What
has reference to meaning of information should be represented through possibility rather
than probability. This is the stance Zadeh took in ([76]). We have left the possibilistic
distribution approach, as an alternative to membership functions totally aside in this paper,
As an aside it is however interesting to look at the distinction where fuzzy sets uses
membership function and where it does uses possibility distributions. In ({17],p.15) Dubois
and Prade tell us that the first area (i.e. membership function) purports really to a state of
complete information; i.e. there is no uncertainty. Remark immedistely that membership
functions refer thus to imprecision, but not to uncertainty. The scope of fuzziness in
economics remains valid however. The second area; i.e. of possibilistic distribution would
be the area which relates to uncertainty; or also incomplete information. The important
point is that the propositions in the second case are explicitly Boolean; i.e. true or false.
Say Dubois and Prade “ degrees of uncertainty apply to all or nothing propositions, and do
not model truth values but express the fact that the truth value (true or false) is unkown.
([17], p.15).

4) One should perhaps show a little more nuance towards the kind of black and white

distinction of randommness and fuzziness. It well may be that there are instances in
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programming problems where bofh randomness and fuzziness appear. What to do in such
a case is a mystery.....

5) Last but not least let us show the case where with the assumed membership function
(i.e. linear) we optimize a crisp utility function subject to a fuzzy budget constraint. Many
of the methods used in Lai and Hwang for instance are in fact itcrations on optimal
solutions obtained in a crisp setting. Many optimal solutions do not make use of all input
resources which are available in for instance a production problem. By allowing a producer
to be ‘fuzzy’ on some constraint variables this input use can be re-modeled so that better
optimal solutions are found. As such this is not really new at all! A simple example can

confirm this. A specific utility function is as follows: ::'XZZO:';: roi)j(x,y); which is a
classical problem. We assume non-satiation. The Lagrangian is as follows:
£=x"%y°® 4 A[100 - 2x - y]; solving this yields us for x=10 and y=80. Now consider the
optimization problem when we are confronted with a budget which is not crisp. Say that
the constraint of the budget is now a fuzzy number, We get then the following problem:

02,08

maxx “y" =U(x,y)
s.t.2x+y$105 '

Assume the level of tolerance is 10, Name the budget function B(x). The membership
function, for the fuzzy number 100 would then be in its simplest form:

1if B(x) <100
Hg(x)=41-[(B(x)-100)/10]if 100< B(x)<110. So the membership function of this
0if B(x)>110
A simple
Hs{x) 1 |fuzzy number

110

\—o 100 5
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fuzzy number is then just as in the figure. Remark that the membership at x=100 is 1; while
it is ‘0’ at 110, The point we want to make is that if we follow the approach of the basic
fuzzy optimization problem as set out above, then the maximization problem could be re-
written as follows:

max x0.2y 0.3

5.1.2x+y < 100+10(1- @)
The Lagrangian is then: ¢=x"%y®* +A[100+10(8)-2x - y]; where 6 =1-a;0 €[0,1].
One sees immediately that if one takes first derivatives towards x and y that the obtained
result will not be very different. We would simply obtain that x=10+6;y=80+86.
Setting for instance @ =1 we would indeed find the budget of 110. So we could see this as
just a separate optimization for different budget values lying between 100 and 110. There
is effectively nothing new here! For more sophisticated membership function results may
well be very different as said above. The solution method proposed here would not be

usable.

The set up of objective III is as follows. First we will make a general proposal for the case
of optimizing a crisp utility subject to a fuzzy budget constraint. The proposed result will
then be translated into the economic setting. The development follows here Billot and

Ponsard.

2.1, Basic Set up

Define a set E of all possible commodity bundles. The agent has a crisp utility function on
E but has to take into account that he is confronted with a fizzy budget constraint. The
objective function results can be captured in a crisp set F; subset of the set E. The
objective function is defined as : f:E —[0,00[; wherefrom we derive immediately

Jx) €[0, 00 ; where f{x} measures thus utility. The fuzzy constraint is a_fizzy subset of E,
which can be denoted as C ; and which is defined as : U &£ = {0,1]; thus the membership
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values are taken in [0,1]. Those membership values signify the degree of membership to

the constraint.

Following the proposal by Bellman and Zadeh ([4]) that optimization is a basically a max-
min operation; we can write our problem then as:

sup, ~f (x) = sup, o [min(f(x),U z(x))]. This means thus that the best allocation possible

is the maximal element of the intersection of F and C . The ‘optimum’ formulation can be

re-written however. Use is made of the definition of an alpha-cut which we covered in part

II of this paper. The following definition was presented: A = Ua.C(a)A . Let us take

simple example. Consider the following fuzzy set: A =0/1+05/2+08/3+1/4+02/5.
Taking C(0.5)A4 of this yields: 0/1+1/2+1/3+1/4+0/5, The fuzzy set A is the union for alf

levels of a of a.C(a)A. This yields then for a =0.5: 0/1+0,5/2+0,5/3+0.5/4+0/5, This
procedure is to be repeated for all levels of a €{0,1]; taking then the fuzzy union or what
is equivalent of all the membership values for the respective variables we must obtain the
original fuzzy set A. It is straightforward to see that a.C(a)4 = min(a,C(a)A4). This
should be clear as we know that C(a)A4 adopts only binary values of ‘0’ and ‘1°. The

above example is an easy check on this. Following the definition; A= U a.C(a)A we can

[/ 4

thus write that U.(x)=max, [a.C(a)4]; which is now equivalent given

a.C(a)4 = min(a,C(a)4), to: U;(x)=max,[min(a,C(a)d)]. Given this last

formulation then sup__.f(x) = sup, . [min(f(x),U »(x))] ; can be re-written as:
sup, of (¢) = SUp,  [min[(f (x), max., [min(, U o, DI

Using this last formulation and applying several operations of distributivity, associativity

and commutativity on max-min operators (see in part II) the above form can be reduced to

the following formulation:
Sup;c(',‘f(x) = sup a miﬂ[a, Supxc('(a)f(x)]
which can easily be re-written as:

sup, af (x)}=sup,[a@Asup, o,/ (¥)]
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2.2. Sugeno Mecasures

The solution will not be fuzzy, though of course the obtained commodity bundle will
belong to the fuzzy budget set. Would the solution be fuzzy then we would obtain a
solution set with a membership function and every feasable solution would belong to some
degree to this membership function. It is of great importance however to accept that the
solution obtained is truly a function of the membership function which is proposed. My
view is therefore that the Sugeno-integral gives us a clue at how the membership function
may influence the probability that the optimal couple will belong to the fuzzy budget
constraint we have been imposing. ([1],p.48) The solution statement

sup S (x)=sup,[@Asup, .,/ (x)] can be reduced to a Sugeno integral following

Billot in ([5], p.66). Before we come to a rudimentary explanation of this integral we first
must briefly consider the fuzzy measures on ordinary sets. We will see that the fuzzy
Sugeno measure on ordinary sets is in fact a very general approach to fuzzy measures.

Special cases from this general approach are for instance the belief function of Shafer
({64]) which we covered in a former part in this paper. Our objective is not to stress the
fuzzy measures on ordinary sets but to look at the Sugeno integral. Both approaches have

a common set up however,

2.2.1. Fuzzy measures on ordinary sets

We follow the development by Dubois and Prade. ([16],p.126-134)
Let g be a function from @(X)— [0,1]; where f(.) is the set of subsets of X. g} is said
to be a fuzzy measure ifft

D g(@)=0;g(X)=1

2) VA, B e po(X),if A< B=>g(A)< g(B)(monotonicity)

3)if VieN,A ep(X);(4,), ismonotonic: A, c A,..c A, oralso A, 2 4, D... 4,
= lim,_,g(4,)=g(lim,,A4,) (continuity)
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g(A) is called by Sugeno a ‘grade of fuzziness’ of 4.

To just establish a brief overview of the connection of a fuzzy Sugeno measure with for
instance probabilities or also Shafer belief functions we need to define Sugeno’s
A = fuzzy measures. Those measures relax the additivity property of probabilities in the
following scnse:
VA,Bep(X),AnB=0.g,(AuB)=g,(A)+g,(B)+Ag,(A)g,(B), A>~1. Note the
added term ‘ Ag, (4d)g, (B)’. Would g, be a probability we would #of need this additional

term; as A~B=2. Dubois and Prade give a short proof which explains why 1> -1{.
([16],p.127) The proof mainly uses the property 2 of monotonicity. We do not re-iterate
the proof here. It is interesting to note that if 2 = 0 the above formulation reduces to a
probability statement with AnB=@. As long as A = 0the fuzzy measure will be a
Shafer belief function. Thus a belief function is thus a special case of A — fuzzy measures.

2.2.2. The Sugeno Integral

Billot claims that sup _.f(x)=sup,[@Asup, .,/ (¥)] can be reduced to a Sugeno

integral, For this the following is necessary:

1)4”_[ (C(a)) = supxe('(a)-f(x)
2)supof(x)=0
3)sup,ef(x)=1

Note that u, (.) is a fuzzy measure on an ordinary set. (see below) /() is our utility
function which is crisp here. u,(.) is found by running through the values found through
an alpha-cut, i.e. x € C(a). So we can truly speak about a fuzzy measure on an ordinary

set though the budget constraint is fuzzy. The ‘ordinariness’ of the set comes thus through
the alpha-cut,

Of course the fuzzy budget has a membership function and the results obtained after
different alpha-cuts reflect the membership function in some sense. Using A= U aC(a)A
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we can sec immediately that such proposal makes sense, The crisp set £ is the set of all
commodity bundles. Note also that the utility value through /) will tend to 1; when all
commodity bundles are considered. This is a necessity if we want to respect the conditions
of a fuzzy measure on an ordinary set. It is such that the fuzzy measure on the entire set is

1. (condition 1; under 2.1) The intuition behind u,(C(@)) = sup, ¢,/ (¥) as a fuzzy

measure on an ordinary set could be as follows. Considering that a fuzzy measure in our
context would indicate a ‘degree’ of certainty of a commodity bundle belonging to £ also
will belong to the budget set AND POTENTIALLY SOLVE THE  OPTIMIZATION
PROBLEM. As an example if a commodity bundle is way above the fuzzy budget
constraint the ‘degree’ of certainty will effectively be zero; plainly because this bundle will

not be included in the ordinary set C(a). Hence if bundles are in C()(thus for a certain
level of @) which provoke a high singular level of utility through sup, .,/ (x) then

effectively the ‘fuzzy measure’ or equivalently the ‘degree of certainty’ the bundles
belonging to £ will belong to the budget set and potentially solve the optimization problem
will be high. Note that for bundles which belong to C(a) one can not obtain a fuzzy
measure of zero. This should be clear as the fuzzy measure is the result of a supremum and
hence as values obtained through the utility function after an alpha-cut has been performed
should be necessarily zero. This is weird indeed as we would need negative utilities! So we
should conclude being a member of C(a) confers already a positive fuzzy measure. The
higher this fuzzy measure however the better. The reason why this is so is that our
maximization problem still consists in finding the highest utility possible subject to a
constraint. Note also that if & =0 there is no reason to believe that automatically the
fuzzy measure on C(a) will be 1. We only have that sup,_.f(x)=1; i.e. thus for a//
commodity bundles. We also remark that an alpha -cut of 0 is in fact a senseless statement.
Consider a fuzzy set A=1/0+2/04+3/0.6+4/1. Taking an alpha cut for @ = 0 would
lead to a contradiction if we work with a weak alpha cut. The reason is simple as then the
element ‘1’ would now belong to the ordinary set while it neither belongs to the fuzzy set
nor to the ordinary set associated to the fuzzy set. We can set @ =0 but then we should
consider a strong alpha-cut. Another issue is that the fuzzy measure sup, ..,/ (x) is very
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dependent on the membership function which is attached to the budget constraint under
consideration. In fact this specific fuzzy measure is dependent on three variables: «; the
membership function and finally the utility function f.

Let us first see the dependence on the membership function with different cases of
membership functions.

The figures represent three possible membership functions for the fuzzy budget constraint.
Note that the possible budget quantities are on the X-axis (denoted B{x)). f(¥) is the utility
function.
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The three figures are A, B and C. Let us look at the results for sup, ...,/ (). One sees

that for the alpha cut of @ = 05 the eligible budget quantities are drawn horizontally down
to the quantities used as input for the utility function. The figures should be three
dimensional but that is impossible to draw here, Taking the supremum of the utility values
on the Y-axis in the bottom graph of A we obtain a value of 0.7. Imagine the same alpha
value for figure B. The eligible quantities will yield when the supremum is applied a value
of ‘1. No matter what alpha value is considered in figure B the supremum value will
always be ‘1. In case C we see that for lower values of alpha higher supremum values are
obtained. Thus the relationship between the fuzzy measure and the level of alpha is very
dependent on the kind of membership function under consideration.

Also the value of sup,.(,/(x) is also dependent on the level of alpha under

consideration. Finally it is also dependent on the shape of the utility function. Let us
assume that the utility function has the concave shape as presented in the three figures.
The above figures are caricatures. Considering our optimization problem it looks appealing
to assume that allocations which are ‘closer’ to the richness of the individual will also be
allocations which will be having a higher membership value in the fuzzy budget constraint.
On the contrary the allocations which are far from exhausting the richness of the individual
will have much lower membership values. Figures B and C are especially caricatures. It is
unappealing indeed to assume that there is a whole set of allocations which would have a
100% membership value in the fuzzy budget constraint. It may indeed be exaggeration to
assume that the membership set should be normalized. In the case of non-normalization the
fuzzy budget set can not be a fuzzy number anymore however. Figure B does pose some
serious trouble, apart from the flat part, in that no matter the alpha value the fuzzy
measure will always yield a value of 1. This is truly senseless. Let us recall that a low alpha
value as applied in an alpha cut implies that the fuzzy set is very fuzzy indeed. A high value
will mean the opposite. Take the alpha cut with alpha=1 and we obtain the same crisp set
as the crisp set associated with the fuzzy set. This is clearly non-fuzzy. Our proposition for
a reasonable membership function would resemble figure A and would of course have to
be drawn in three dimensions; given that we have commodity bundles with at least two

goods. We could draw this in two dimensions as follows:
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The membership function has now several contours. In a two good commodity case the
membership function would be of the form a = g(x,»); where x and y are two goods. The
function would best be captured in a three dimensional setting, The above membership
function has several contours which come from cutting the membership ‘surface’
vertically. Using the fact that the more of each good is present the higher the utility would
be up to a point of saturation; i.e. we assume non-satiation. The utility function has
contours. The contours provide from a vertical cut on the crisp utility surface. We transit
from a lower contour to a higher contour (i.e. for instance from I to II) by augmenting one
of the fixed coordinates. Say the vertical cut was obtained by varying the quantities of
good X but leaving quantities of good Y fixed then we get a higher contour line if we
higher the fixed quantity of Y. Now let us look at the contoured membership function of
the fuzzy budget constraint.

Following the proposition that the more we exhaust the budget the higher the membership
value will be then it is logical to assume that for instance the membership values at vector
¥ will be higher if we let positively vary the coordinate y; and keep the x-coordinate fixed.
Note that the intercept 4 on the X-axis is a set which contains the different vectors where
each vector has a fixed coordinate while the other coordinate is increased with a constant
value. Thus if there are for instance three contours then the set 4 will contain three
vectors.

We need to argue in favor of why the specific form of the membership function was
chosen. Assume we would know our precise wealth then the membership values would

increase to the commodity bundle which exhausts 100% our wealth; at that point the
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membership value would be one. Beyond that point the membership value would have to
be 0. As we do not know our wealth precisely we could argue that considering some
specific set of allocations will have successively higher and higher membership values up to
where membership is highest and then decreases. The left part of the membership function
would then ‘mirror’ the right part of the graph. Note however that it would be erroneous
to assume that we could have a 100% membership value in this case. Merely the contours
maximae fend to a 100% membership degree but never reach it. Would a commodity
bundle (x=fixed and y=variable) reach 100% membership there would be no scope to
accord positive membership grades for higher quantities beyond that point. Thus we
explicitly assume that the membership function can not be a fuzzy number; as it is not
normalized.

What is to be done now is to look at the evolution of & Vs. u,(C(a)). We can clearly

see that for a given membership contour there is an inverse relation between the two
variables. The lower alpha the higher the supremum value and the higher alpha the lower
the supremum value. This is not a good relationship however! If a specific number of
quantity vectors belonging to a certain very low alpha cut yield thus high utility then they
are effectively good candidates for our optimization. The only serious problem is that
those vectors have been found with very low alpha values and thus the set from which
those vectors are drawn is 2 highly fuzzy set! The best result is to obtain quantity vectors
coming from a high alpha-cut and yielding a high utility, The proposed membership
function does not allow this. We do want to find an overall measure which would take into
account the trade-off between a level of alpha and the fuzzy measure. The form could be

as follows: sup ,q0.4;[@ A 1, (C(@))]. This form does totally mimic the solution form we

have found under the section in which we dealt with the basic set up. After re-working we
found for our problem the following solution form;

sup, ~f(x)=sup,[@Asup,cn,/(x)]. Following the definition of a fuzzy measure all

what is to be done is to replace the supremum in this statement by the fuzzy measure and

we arrive to the form sup, ., [an u,(C(a))]. This latter form, we propose is the

Sugeno Integral. The Sugeno integral has the same definition in general. The interesting
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issuc about this integral is that it is a fizzy measure of a FUZZY set. The fuzzy measure we
considered so far were fuzzy measures on ORDINARY sets. Let us look in our case what
the result would be of the required operation. Of course the result depends on the shape of
the utility function and the assumed shape of the membership function. Note however that
a €[0,1] and f(x) €[0,1] as defined above. So it would be impossible for instance to have
consistently higher utility values than values of alpha.

So both are comparable. The min operator on alpha and the fuzzy measure does make a lot
of sense. It takes carc of the problem of high alpha and low fuzzy measurcs or the
opposite. What is NOT reprimanded is high fuzzy measures and high alpha’s; as we only
take the minimum. Taking the minimum, instead of the maximum does take care of the
problem that high (low) alpha and low (high) fuzzy measures is not a praiseworthy
situation. This is of course not taken care of with a maximum, The supremum is taken for
all values which have been obtained at each level of alpha. Note that we need a supremum
as the results obtained may have decimal places of the same digits. We do not consider
working only with integer values of alpha. The Sugeno integral gives us a global measure
of the fuzziness of a fuzzy set. The fuzzy set in our problem is the set from which the
solution will be drawn. Clearly the higher the supremum value the better as it means that
the optimal result will have a lesser degree of fuzziness. There are certainly fuzzy
optimization techniques which take the quite sophisticated shape of the membership
function of the budget constraint into account.

As a final comment on this section we would like to mention two points. First, we choose
commodity bundles which are in the fuzzy budget. Clearly we do not know the limit of this
constraint as it is fuzzy but the limits do not go as far as the set of ALL commodity
bundles. If we are not sure of our resources but we know we are not a millionaire then to
consider the whole commodity space is not relevant. If we want to mimic as closcly as
possible human behavior then we must have an idea of a commodity space in which
commodity bundles are members of our budget constraint. This commodity space is
certainly a subset of the set of all commodity bundles. Second, the ‘Sugeno integral’ we
have been using above will give us an indication of basically ‘how well we are doing’ in

having our solution belonging to the chosen fuzzy budget constraint. Looking back at the
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figure above we can readily see, keeping the utility function in its same shape, that if we
widen the tails of our membership function uf the fuzzy budget constraint that the gap

between aand u,C((a)) would effectively become wider. As we arc taking the
minimum of a and u,C((a)) it should not be precluded that the resulting value of the

supremum is closer to ‘1’ or even *1°, This is in fact to be expected given the fact that a
mebership function such as the one in the last figure but with much wider tails will have
more chance to contain the solution which maximizes the problem. Nothing really new
here, but at least we may get a better grasp of the meaning of the result of

SUp oy [@ A 1, (C(a))]. Basically we do want to come to a result which is as close to

‘1’ as possible. If this is so we do know that a solution is therefore findable and we have

weli positioned our fuzzy budget constraint.
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The problem is now increased in difficulty as we are now also considering a fuzzy utitity
function. We will be brief on this as basically the sct up is very similar to the first problem.
Though solving the problem as such may be quite more difficult. We definitely do not
attempt any solving. Neither did we in the first problem, Recall that the solution statement
for the first problem was: sup _f(x) = sup ., [min(/(x),U 2(x))]; where £ would stand
for the set uf all commodity bundles. Remark our comments on this set in the last pages of
the former section. The problem with a fuzzy utility and fuzzy constraint is then having a
very similar form: sup, ., Ug(x)=sup, ., [min(U, (x),U(x))]. The following fuzzy sets
mentioned in the solution statement have to be defined:

1) fuzzy set H which refers to the fuzzy utility function.

2) C which is the fuzzy budget constraint

3) F which stands for the fuzzy decision set; this means thus that the solution will clearly
be fuzzy.

We can do the same re-working through mainly using 4 = U a.C(a)A as we did with the

]

firt problem and the vresult of the second problem becomes then:

sup, o Up (x) = sup, ., [min(a, sup, .o, U p{x))]. Note that C(a) refers to an alpha cut

on the budget constraint, and NOT 0.1 the fuzzy utility.

3.1. Is a solution possible ?

It is of great interest to expand on a possible approach to see if a solution may exist to this
problem. No optimization technique is presented to practically solve the problem but a
formal way to see whether feasable solutions really can exist. The framework which is
followed here goes by Hillot {[5],p.72).

Before looking at Billot’s very interesting set up relative to ‘the’ problem Jet us quickly re-
iterate some of the ideas behind the fuzzy indifference set which we covered in the

beginning of part V. The fuzzy indifference set can be the result of a horizontal cut on the
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fuzzy utility surface. It contains commodity vectors which belong to the same fuzzy utility.
Recall that the fuzzy utility is a fuzzy number, thus a normalized and convex fuzzy set. The
requirement of fuzzy utility as a fuzzy number is important for reasons of being able to
rank the fuzzy utilitics. Le. the membership functions should be alike. Some discipline is
thus imposed here. One of the issues with the indifference set notion was that they could
overlap. Thus certain commodity vectors may indeed have for instance two membership
values; as thus the indifference set itself is fuzzy and also has a membership function. Note
however that the problem of ‘sorting out’ suitable commodity vectors in view of deciding
whether they should or should not belong to the preference set is only problematic when
we are confronted with a strong preference set.

Recall also that a weak fuzzy preference set is convex if the iso-membership grade surfaces
(IMGS) are themselves concave, Finally recall that if every fuzzy utility indicator of a
fuzzy utility relation is convex and normalized, and if there is a diminishing marginal utility
for every IMGS then the weak preference set is convex. ([12],p.298)

Let usnov - with the argumentation. First we will re-write the solution expression in
somewhat of a different way. We obtained that:

sup, . Up(x) = sup, ., [min(a, sup, (., Uz (x))]. Define now the following functions:

D @:[0,]]>[0,1]: a-—>g(a)=sup,.nUyx)

2) ¢:{0,1] > [0,1]: a—=y(a)=arp(a)

Given 1) and 2) we can thus re-write the solution statement as:

SUp,, o Up (x) = sup, 4o, ¥(a). Where thus ‘min’ comes thus from definition 2.

Some interpretation is needed as to deunition 1. Definition 2 follows straight out of 1.

We are thus supposed, following definition 1, to take commodity vectors through an alpha
cut on the fuzzy budget and subject those vectors to the degree of belongingness they have
in each level of fuzzy utility. The supremum is to be taken on all those values. An example
may better clarify this requirement.

Consider the figure below which follows the same idea that the higher the quantities of a
commodity involved the higher the membership value will be to the fuzzy budget.

138



rilat

I
\2/@‘\\

L Alpha-cut \
A

The alpha cut is thus the horizontal fat line. Remark that the possible maxima of the
contour lines tend to ‘1’. The set A is a collection of commodity vectors where on
coordinate is fixed and the other coordinate is variable. So the set A for instance would
contain couples A={(5,2),(5,3),(5,4)...} No further explanation is needed on this graph as
we discussed this graph already before. Say now that the elements of set A are to be

subjected to membership grades in the fuzzy utility function. Then for instance (5,2) may
belong with degree 0.3 to a utility level say {7, . But (5,2) may belong also to {/, with for
instance a lesser degree of say 0.25. Assume for instance {/, > U, . The issue here is that
we take thus the supremum over all those membership degrees in the fuzzy utility over all
eligible couples which are the result of an alpha-cut on the fuzzy budget constraint. Thus a
certain value (i.e. the supremum) is obtained for a given level of « . Definition 2 only asks
to take the minimum of this supremum at a given level of alpha and the level of alpha.

At first sight a2 problem occurs here and that is that it well may be that some of the couples
do have 100% membership in a given level of fuzzy utility. This is entirely possible given
that our levels of fuzzy utility are normalized and convex sets; i.e. fuzzy numbers. Taking
the supremum at a certain level may indeed yield the value of ‘1°. As such however this is
not really a problem as a minimum is guaranteed through w(a). It may also occur that
when a=1 and it occurs that ¢(a)=1 then w(a)=l znd hence the
SUP, e Up (x) = SUP, g0, V(@) =1

This means thus that the fuzzy solution would belong for a 100% to the membership
function of the fuzzy decision set; and the solution would thus be crisp. There is little clsc
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to explain on what is ‘behind’ the functions, The reason for that is simple the functions fit
in the definition of the decision problem,

The properties of those functions are however very important. We look at them now:

1) @(0)=sup,q Uy (x)

2) as = pl(a)z(B)

The first property is quite straightforward. If we take an alpha cut at o = 0, we obtain the
total sct of all possible commodity vectors; hence the notation E. Let us make the
comment that couples which have a 0 membership degree should still have to be ruled out
after this 0-alpha cut has been performed otherwise there would be contradiction.

The second property has a simple proof, As
a < f= C(B)C Clar); and as p(B)= SUP,ecqp U (¥) € SUP ey Up () = 0(2).
Remark that the implication is of course dependent on the shape of the membership
function. Would the membership function be convex-shaped for instance then the
implication would of course not hold. We have been discussing however the shape of the
fuzzy budget constraint membership function, and the shape is appropriate for property 2.
Out of property 2 we can readily map a relationship between ¢(a)and a. The
relationship is immediate: a decreasing function in . The important factor in showing
that a solution to our fuzzy problem is possible consists in introducing the notion of a fixed
point. If that is possible some re-working is needed to show that effectively the supremum
on the membership values of the fuzzy decision set has effectively a value. In other words
if it can be shown that sup, U, (x)=a then it will have beecn proven that the fuzzy
optimization problem has indeed a solution. Now what still has then to be done is to show
that & is indeed the optimal solution. We proceed in the following order:

1) show that @ = sup, ., Up (x)

2) show that a = sup, . Up(x)

3) show that o is indeed optimal

1) For this, we need Brouwer’s fixed point theorem basically. We need to show only that a

fixed point exists. Any continuous function mapping of the unit interval into itself must
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cross the 45 degree linc at least once; this function has at least onc fixed point.([68],
p.516). The problem of the uniqueness of the fixed point is not a problem here given that
we are confronted with a continuous and decreasing function. The proof is standard and
follows Varian. ([73],p.320) We define ¢p(a)—a = f(a). This should be a continuous
function as long as it can be shown that ¢(«) is continuous., This is nmwch less
straightforward however. There is a theorem by Tanaka and Asai which says the
following: If the fuzzy subset € is strictly convex then ¢(a) is continuous. ([69]) To
have the fuzzy set C to be convex we need to show that all alpha-cuts of this fuzzy set arc
indeed convex.. The proof of this theorem is convoluted and we leave it aside. Note
however that the continuity of @(a)is a necessity when applying Brouwers's
theorem. f(a) in the above measures the vertical gap between ¢(a) and the 45 degree
line, For a fixed point we need to have that f(a)=0. We also know that f0)=¢(0)> 0.
The strict inequality comes forth from property 1. Obviously a supremum on membership
values of all commodity vectors in the fuzzy utility can not possibly be 0. Would it be zero
then all commodity vectors would have zero membership in the fuzzy utility which is
senseless. Also we know that f(1) = ¢(1)- 1< 0. This is also expected, as the maximum
value of the supremum can not possibly exceed ‘1°. Now the intermediate value theorem
can be used. This theorem says that if /'is continuous on [a,b] and C is a number between
Aa) and fib); then there is at least one number ¢ between a and b for which f{c)=C.
([271,p.98)

Here as @:[0,1]—[0,1] and the function is continuous then using the theorem we can
effectively conclude that there is some a €[0,1] such that f(a)}=¢(a)-a=0. That
shows thus that we have a fixed point.

2) This is a little more convoluted as an argument and we follow Billot here. ([5],p.72)

We know that sup, . U(x)= sup, . [min{a, Sup, .o, U (x))]=SUP , 4o, W (). We also
know that y(a)=arp(@)=anra=a.

Hence there is a fixed point on the @(.)and w(.) functions. In order to show that

@ = SUp, 4o, (@) we have to literally show that @ is the supremum indeed. This is

141



quitc easy to understand. There was no problem in case one as
p(@)=a = sup, e,y U y(x) by definition. We can however NOT  define
p(a)=a=sup,, Uy(x); as y(a) is only defined as : w(a)=gp{a)Ara. This is the
reason why we have to show that « is thus the supremum ofthe y(.).

What has thus to be proven is:

a) can we say that if a <& then w(a)2 y(a)?

b) can we say that if @ > @ then w(a)2 y(a) is still valid?

If both a) and b) are valid then effectively w(a)=a will be the supremum,; and therefore
thus a = w(a) = sup, ., U, (x) is true statement.

Let us tackle case a). Consider the graph below which shows the function ¢(a):

p(a)
pla)=a

(@.0(2))

The function ¢(a) is indeed downward sloping, as we have remarked already under
property 2.

al) a<a=>¢(a)2p(a)=a>a. Where use is made thus of the property of the
¢(a)function and also of the fact that it has a fixed point.

a2) w(a)=pla)aall];and p(a)ra=a[ll]<(a = w(a)){///]. We have put roman
numbers to separate the parts upon which we want to comment in the formulation, Part [I]
obviously refers to the definition of the y(.) function. The result obtained in part [II)
refers to the implicit result obtained in al.

In al we can read almost immediately that ¢(e)> e ; and hence the minimum is obviously

« . Finally part [III] refers to the fixed point we obtain aiso through the w(.) function, we
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have mentioned this already. Qut of [I],[I1]{III] one can readily see that effectively
y(a) s y(a).

bl)aza=p(a)Sp(a)=a<a.Thisisasinal.

b2) w(a)=anp(a)=pla)l]and p(a)<(a=w(a@N[//]. Part [[] obtains the
minimum which follows straight out of bl. In bl we read that ¢(a) < a; and the minimum

out of those two components is thus immediate, Part [I1] follows also straight out of bi.

Use is also made of the fixed point property of the (.).

Thus out of [I],[II] we conclude that y(a)< w(a).

Thus no matter whether @ <@ or @ 2 @ we obtain that w{a)< w(a). Thus this means
that y(a)=a = sup, Uy (x).

3) What remains to be done is to show that «a is indeed optimal.

We know so far that sup, ., Up(x)=a and sup, ., Uy (x)= a. Remark that the alpha-

cut on the fuzzy budget set is taken at the specific level @. The conclusion is then

immediate ie.; that sup,, Uy (x)=sup, ., Up(x). Billot provides for an extensive
proof on finding a sharper formulation to which sup, ., U/, (x) maybe equal to. The form
he finds is the following: sup,.. U (x)= sup,,, U, (x); where the ordinary sct A is

defined as: 4= {Vx eE,U(x)2Up(x)}. This is indeed a sharper result than the specific
alpha-cut resuit. The interpretation of this is that the optimal decision as exemplified
through sup, . U, (x)will be a decision which maximizes a fuzzy objective on the sct 4 or

also which maximizes a fuzzy objective on elements of £ which satisfy at least as well the
constraint as the objective. All other elements are ruled out.

Nowhere has mention been made that the fuzzy utility surface would have to be concave in
order to have a convex weak preference set. This is indeed a little strange to say the least.
The solution form does only work with membership functions and the concavity of the

fuzzy utility surface as such is not registered into those membership functions.
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We may make a point here, From the classical background we know that the convexity of
the weak preference set is a necessity. Using the set up here this convexity seems to be

taking quite less importance. This is indeed bothering,

VL2, The case of the producer

So far we have been concerned in looking at a framework in which it would be possible to
find possible fuzzy optimae. This has been performed for the case of a fuzzy utility
function which is subjected to a fuzzy budget constraint. It is certainly interesting to see
what the conditions would be would we enter the producer area. This is what will be

looked at now,

VL.2.1. Refutation of basic hypotheses

Ponsard in ([56], p.302) puts the producer in a spatial framework. This is indeed a highly
interesting approach, The following hypotheses are commonly made, according to
Ponsard:

A) all inputs and outputs are located in a single space where the producer is located and
where the production is carried out.

B) the producer has complete information concerning the conditions of his producer’s
activity; i.e. he perfectly commands inputs and outputs and realizes a maximum profit
given the constraints of technology and available price.

Assumption A, we know from real life, does of course not always hold. An input which is
totally non-transportable will basically command the location of the production unit. As
there are many combinations possible depending on the transportability of inputs and the
necessity of those inputs and the location where outputs can be possibly sold we could
easily envisage that the producer has a utility function which is linked here to profit of
course and which is dependent on the possible combinations of location elements we have
sct out. This is the interest of considering a spatial model. It is much richer and closer to
real life than non-spatial models. Condition B is definitely more cumbersome. The
assumption of complete information again, is a very idealistic assumption. Inputs are fuzzy

to some extent and maximum profit can be modulated based on tolerance levels one
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accords to the inputs. The ultimate goal of this section is to have an idea of what an
optimal fuzzy supply may be,

Necessary assumptions as set forth by Ponsard are as follows:

1) The producer’s space is characterized by the location of his production unit, by the
inputs supply space and the outputs demand space.

2) Production capacity is fixed. We are in the short term.

3) The input supply space is denoted by ¥,"; r=1....p and i=1/,..n Where r stands for the
number of places where the input is available. i stands for the number of inputs needed in
the production process. So when noting for instance ¥,’ this means the 2 needed inputs
for the production process can be found at three places. Beware however: 2 inputs can be
found at the 3 places; or only one input can be found at 2 places; while the other input is
available at only one place. etc... all combinations are thus possible.

4) The output demand space is defined identically as in 3); however some explicit
dependencies are created between output and input space. There is a dependency between
the places where inputs can be bought and the places where outputs are demanded.
Similarly there also will be a dependency between the number of inputs and outputs
considering of course a specific product. Ponsard is somewhat arbitrary in those
dependencies and we do not want to re-iterate his proposition.

What is however very important to consider is that the space Y of productions has two
important dependent variables i.e. inputs and places. Thus ¥ ={},"} is the set of all
productions. 7' stands for the number of inputs used and ‘#* stands for the number of
places. Take the case of Y,’. This means here that 2 output goods can be sold in 3
different places. Any combination is possible as in the input case. l.e. we may be able to
sell the 2 output goods only in one place or in two places etc.. but every option is possible.
To the contrary in the case ¥'; the 2 goods can ONLY be sold in one place. The set of
productions does contain all possible elements but not all possible elements are technically

feasable for the producer. Take the case of Y,’ it may well be that for the producer none

of the available inputs can produce two different outputs. Or it may be impossible to sell

two different outputs at three different locations. Only the technologically feasable
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productions are a basc from which we can draw a supply. Let Z< Y and call Z the
feasable production set. An clement y of Z is called a producer's supply. Note that such an
clement denotes a quantity. A production y is said to be efficient in Z iff
Vy'e Rt p'2 y = y' ¢ Z. Remark that y is a multidimensional vector where the amount of
the variable 'location' and the amount of the variable 'different outputs' determine the
dimension.

We compare units of y’ with y for the same number of different types of output and for the
same number of different locations. The definition of efficiency is thus clear then.

All this however is classical and the point Ponsard wants to make is an important one. Says
Ponsard: ' ...the result of a production process is by nature imprecise. It follows that a
technically possible production is more or less efficient. It is not advisable to partition the
set of all possible productions into two classes: the efficient productions and the inefficient
productions.’ ([56], p.304) Ponsard wants to show us that basicaily 1)the efficiency of an
input is a relative and not an absolute concept and 2)the inputs even if their technical
efficiency is maximal will not be the sole factors which will determine the output. We need
to expand somewhat on this claim. That the efficiency of the input is in most of the cases
relative rather than absolute is not really new. The prevailing technology for instance is in
fact a constraint on attaining an absolute level of efficiency.

The absoluteness would basically mean that technology related to that input could not
possibly be improved. This is theoretically achievable but not practically. The second point
also mzakes sense. Even if such theoretical absoluteness would be achievable there are a lot
of ‘imponderabilia'; i.e, factors which can not be controlled for and which may negatively
influence the optimal result. Argument two has the most weight we would say. In all,
inputs should in fact have degrees of efficiency. The limiting case is the classical case
which assumes 100% membership and which yields the unique optimal quantities of

output,

Thus following this train of thought we can thus define a fuzzy set & which is a fuzzy
subset of the ordinary reference set Z. Obviously a membership function is defined on this
subset and the membership values are, for simplicity lying in [0,1]. The case where
Uy (x)=1 resumes to the classical case of 100% technical efficiency; which equates thus
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an absolute efficiency and/or total control over all imponderabilia. Would the membership
value be '0' then we would be working with inputs having no technical efliciency
whatsoever and this would thus equate to waste. Clearly, the classical case resumes when
the membership values are in {0,1}. Ponsard remarks in ([56], p.304) that the membership
functions will here be determined by 'purely technical reasons', This, says Pongard makes
‘that the fuzziness is objective’. This is a quite interesting point. There is no human
judgment' so to speak which is to be reflected by the membership fimction; only the
technology will determine its shape. We recall our discussion on finding membership
functions for semantic problems such as 'John is tall which involved quite some
subjectivity, This is the first time in this paper that we can claim that the membership
function is entirely dependent on the technology in question. In the section which treated
with consumer behavior the membership function over the budget constraint was quite less
clear-cut. Remark also that the membership function will not take into account
imponderabilia. Furthermore we recall that probability states are not relevant . This 'eternal

problem’ was discussed in former parts of this paper.

VL.2.2. Fuzzy Profit
We need prices and quantities of output so to be able to use the notion of profit. The price
system must be constructed to reflect the spatial nature of the production. Ponsard

introduces FOB and CIF prices to account for the transport cost of bringing the input to
the production location. The notation / p,” with i=/,...n and r=1,...p would be referring

to an input price. The input price of course will be higher the higher / will be. It also may
be expected that the higher is » the lower relatively speaking this price will be. The more
locations at which inputs may be bought the lower, given competition, the input price
should be. The output price will also have dependency on / and r; but the relationship is
less clear when looking at . As we said, the advantage of treating the profit maximization
problem in a spatial context is that it provides for a richer context which is closer to
reality. The maximization of profit in this more realistic set up is indeed quite more

challenging than in an a non-spatial context. The problem which immediately occurs is that

147



the producer must in fact not only maximize profit but also must think about how well he
can reconcile possibly conflicting strategies in order to attain such maximum profit. In the
classical case with one output and say two inputs the relativity of the technological
efficiency of the inputs is an important factor in diminishing the absolute notion of
maximum of profit, Also the imponderabilia also play a role. But the problem stops there,
In a spatial context one must be looking at the implications of selling 3 outputs on 5
locations. The links with this decision and the fact that 10 inputs can be found at 20
locations are existent, The problem can become exceedingly complex. Just imagine you
make the initial decision to sell three different outputs at 4 locations. The 10 inputs needed
for the 3 different outputs go into each output at differing degrees of units of input. 3
inputs may be sold at 3 different locations while 2 other inputs at 2 different locations and
the five remaining inputs may be sold at 15 different locations. Each location has different
transport costs. This becomes a quite complex problem. To find a maximum profit given
the efficiency of technology which would not be absolute given the imponderabilia and
given the complex interaction between number of locations and number of outputs/inputs
it would be pretentious to think that we may find a maximum profit output combination
which at the same time gives highest utility to the producer. A very high profit may give
less utility to the producer because it does not as well blend the conflicting strategies as a
lower profit may do. Recall again that in the non-spatial and classical case it has always
been assumed that there is absolute efficiency, no imponderabilia (ie. a fixed
environment); and inputs and outputs are always found in the same single space. No
wonder of course that in such a context maximum profit and highest utility to thc producer
have a straightforward relationship. The classical hypothesis is that the maximum profit
entails a maximum utility of profit. Thus we need to define, what Ponsard calls an
imprecise profit utility function. ([56),p.306)

A degree of membership will be accorded in function of how well the conflicting
strategies are blended together in relation to the level of profit.

Clearly the membership function exemplifving fuzzy utility of profit is subjective as
opposed to the objective membership functior of technological efficiency.
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V1.2.3. The fuzzy optimization problem

It is the objective of the producer to maximize the utility he gets from the profit realized.
This is a straightforward problem in the classical case as this objective will coincide with
maximum profit. In our fuzzy context coincidence is not guarantecd at all. Following

Ponsard we assume that the spatial price system is given. The fuzzy technological

constraint is given by the fuzzy set A. The fuzzy objective is the maximization of the

fuzzy utility of profit, Define therefore the fuzzy set
PasP={y,Up;Vy €Z,Uy(») €[0,1]} Then the solution will be a fuzzy sct; following
Bellman and Zadeh ([4]) we must marry objective an constraint together following max-

min. So we can write that § =P~ /. Using max-min we can then write the solution

statement, exactly in the same form as in the consumer's problem as:

sup,o; Ug ) =sup, . [Us (M)A Uy (y)]. Using the notion of Z=Ua.C(a)A; we

obtain a more summarized form, as in  the consumers casc:
Sup, ., Us 0= SUP ; 0.1 [aA SUup, e, UF ol

The way we continue to proceed is exactly as in the consumers case. We will define two
new functions and then try to find fixed points. We do not repeat the steps involved as
they are identical to the consumer’s case,

Define the following functions:

De:[0,]] > [0,1):a = p(a) =sup,., Us(¥)

2) w:[0,1]]=[0,1}: a—y(a)=arnp(a)

Then sup,.;, Uz (¥) = sup, g ¥(2).

The ¢(.)has the same properties as in the consurmer’s case. It also will yield a fixed point if
it is continuous and decreasing over « . Recall however that it is not straightforward at all
to find the conditions under which @(a)is continuous. The following results are totally
mimicking the consumer's case:

Na=sup,y Us(y)=sup,, Uz(y);ie. asolution exists to the problem.

2) sup,, U =sup,,Us(v); A= {y,y €Z,U,(y)2 Up(»)}; which provides thus for

a sharper solution to the problem. This is totally similar to the consumer’s case.
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The interpretation of this is that the optimal deciston as exemplified through

sup .., Uy (y)will be a decision which maximizes a fuzzy objective on the sct 4 or also

which maximizes a fuzzy objective on ciements of Z which satisfy at least as well the
constraint as the objective. All other elemen*s are ruled »ut.

Iuterestingly enough Ponsard proposes conditions under vhich a unique solution can be
found. ([56],p.311)This unique solution would thus be non-fuzzy, The conditions

however are very stringent. We do not pause on this however.

VI1.2.4, Conclusion

The consumer and producer models have been solved in a fuzzy context. Basically what

onc may claim now is that the classical case is in fact a special case of the much more
general set up proposed here. This may be termed as rather being generalization than
innovation.

The innovation may come more in the uncovering of a choice behavior which is definitely
more human. Clearly in the set up above we could render the problem more sophisticated
by introducing fuzzy expected utility. We stress 'fuzzy’ to clearly distinguish fuzziness from
probability.
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Y13, Fuzzy Revealed Preference

Another interesting application where fuzziness may be of interesting use is revealed
preference. We observe that revealed preference has as underpinnings very strong
rationality assumptions, Richter Rationality or for instance also regular rationality are

examples of that, The use of fuzzy sets may weaken again this tight level of rationality.

VL3.1. Setup

The development here follows mainly Basu. ([2])

Basu uses the Generalized Hamming Distance which is defined as follows:
d(4,B) =ZIU (x)-U E(x)|. Where ~ represents a fuzzy set. U_(.)represents the
membership value of x in the fuzzy set. It 1s explicitly assumed that X’ which is the set of
alternatives is a crisp set. We do have a fuzzy binary relation (FBR) which is then generally
defined as;: R:X x X > [0,1];]? is a fuzzy subcet of X x X'. The membership values of
this binary relation are taken in [0,1]. But we could generalize this interval to a lattice. As
an example U;(x,y) measures the strongness of the relation between x and y. This FBR
is defined by Basu as being a fuzzy order; i.e. it is fuzzy reflexive, fuzzy transitive and
complete,

Here a first problem occurs. It hints towards Basu's definition of fuzzy reflexivity and
fuzzy transitivity. Basu defines fuzzy reflexivity as: Vx € X:U (x,x)=1. This is too
strong as a definition of fuzzy reflexivity, as a matter of fact it totally corresponds to the
classical definition. Bandemer ([1]) for instance has been defining a weaker form
as:Vx € X:Uy(x,x) > a;a €]0,].There is indeed no reason to believe; given fuzzy
relations that the strongness of x with itself has to be necessarily 100%! The fuzzy order by
Basu is defined then as follows:

1) reflexive

2)Vx,y € X;x # y:Ug(x,y) +Uz(y,x) 2 1; which is the completeness property

Vx,y € X:Ugz(x,p) 21/ 2.U5(x,2)+ 1/ 2.U (2, y), V2 eX\{x,y};Uz(x,2)#0
Uz(c,»)#0
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The transitive property has glrecady been discussed under V.5.1.

VI1.3.2. The Greatest Set
Let X be the set of all alternatives. Define S as a non-empty subset of X. The greatest set in

S is denoted G(S,R):S —[0,1}:Vx eS,G(S,ﬁ)(x)=minm.U”(x,y). An example

clarifics the definition.
Example:
Let Up(x,,3,)=04/1U4(x,,y,) =03/ /Uy(x,,y,)=02... Then the definition tells us

that we have to take the minimum over all those membership values. Say the minimum is

0.1 then G(S,ﬁ)(x,) = 0.1. I must repeat the same procedure for all x. The significance of
G(S,ﬁ)(x,) = 0.1 is thus that x, belongs to the greatest set with a membership value of

0.1. Thus G(S,R) is clearly a fuzzy set so defined. We can easily imagine that G(S, R)
has a membership function. The individual expresses his preferences over pairs of
alternatives, He assigns a value to denote the strengness of his preference. The immediate
objection is that of course assigning such value is somewhat equvalent to relapsing in crisp
preferences so to say. This is an important point. However we can use some of the
theories which have been invoked for eliciting membership functions so to give a better

grounding to this problem. Hisdal's approach may be an example.

VL..3.3. Choice Function and Rationality
Define the set of all altematives X such that 3 <#.X €. So the set of altematives must

contain at least 3 elements. Now define X as the set of all subsets on X BUT each subset

is to contain two or more elements. So X # g(X). Then the choice function is defined
as:C:K>Kand VS e K:C(S)c S.

The 1dea of course is to know whether the choice is indeed rational.

152



V1.3.4. Crisp Binary relations: Richter Rationality and Regular Rationality

Basu proposes two types of rationality definitions. Richter rationality and regular
rationality. Richter's idea says that a choice function is rational if it has been gencrated as
the outcome of preference maximization. C(} is Richter rational iff there exists an exact
binary relation R on C such that VS e K;C(S) = G(S,R). This is for an exact binary
relation and there is no order requirement,

The greatest set is clearly a crisp set now. There is with a crisp relation no doubt about the
fact that x may prefer y to some degree and vice versa that y may prefer x to some degree,
If x strictly prefers y with degree 0; then either y strictly prefers x or is indifferent.
Furthermore if x strictly prefers x to y with degree '1'; then there is no possibility y may
prefer x or x to be indifferent to y. Recall that the definition of greatest sct uses min.
Hence the Richter idea of preference maximization says thus that if x, is strictly preferred

over any y, €§ then x, € G(S, R), and only then.

Thus the notien of greatest set coincides with the choice fimction if the greatest set is
crisp. A second type of crisp binary relations refers to regular rationality. C(,} is regular
rational iff there exists an exact binary ORDERING R on .X: VS € K:G(S,R) = C(.)

The definition is almost identical to Richter's rationality with the difference the crisp binary

relation has now to be an order; i.e. be reflexive, complete and transitive.

V1.3.5. FBR's: Unfuzzy Dominance and D-rationality

It is clear that regular rationality and Richter rationality are of no great use within a fuzzy
context. The unfuzzy dominance and D-rationality do explicitly work with FBR's but
explicitly keep the greatest set to be crisp. There is an obvious reason to that, Having a
fuzzy greatest set will not be very helpful to define greatest elements.

Unfuzzy dominance is defined as follows: Given a FBR, R on X the unfuzzy dominant set
is denoted D(S,R)= {x € 5:G(S,R)x) =1} There is no doubt that this is a extremely
restrictive definition. All membership values for a fixed x musi be minimally 'l'. We do not

see a choice function. This is what D-rationality will do. C() is D-rational iff there exists a
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fuzzy ordering R on X such that VS € K:C(S) = D(S,R). So D-rationality is like regular
rationality except that it accepts FBR's.

All this leads to deceiving little newity. Basu's theorem 1 which says an individual is D-
rational iff he is regular rational confirms the intuition we just had. We omit the proof.

The theorem is clear: if a person's behavior can be rationalized using a fuzzy ordering then

there must exist an exact ordering. So fuzzy ordering is of no use,

VI1.3.6. Quf! There may be a way out!

The way out needs however first a new concept which is the idea of nearest exact set.

Given a fuzzy set 4 in X, a nearest set of this fuzzy set is N(4); it is an exact set which

is nearest to A in terms of the Hamming Distance. The closer to zero this Hamming

distance is the better. There is a useful property which is the following:
{(xeX:U (x)>05}c N(Z) c{xeX:U.(x}205}. An example may clarify this
rclation. Consider 4 = {x, /0.5;x, / 0.6;x, /0.7;x, /0.1}. Then N(A)= {x,,x,} and this
yields using Hamming distance 0.5+0.4+0.3+0.1=1.3. For instance would I have taken for
N(A)= {x,,x,,X;,x,} then the Hamming distance would have been 1.3+0.9=2.2

Note also that if N(4)= {x,,x,,x,} then the Hamming distance would still have been 1.3.
This is because the membership value of x, is 0.5. Hence one can now better see the
intuition  behind the relation above ie. that {x,x,}c{x,,x,,x;}; ie that
{N( A e {x e X:U;(x)2035}. Now consider another example. Let
B = {x, / 0.1;x, / 0.2} The nearest exact set is in fact the empty set, The Hamming distance

would then be 0.1+0.2, There is no non-empty exact set which can beat this distance. For

instance the singleton {x,} yields a Hamming distance of 0.9+0.2=1.1. If all membership

values are strictly lower than 0.5 the nearest exact set will be the empty set.
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VL.3.7. N-Rationality

C() is N-rational iff there exists a fuzzy ordering such that VS e K:C(8) = N[G(S, -R)].
This definition is quite different from D-rationality and thus from regular rationality, The
relation is fuzzy and an order; so far for the overlap with D-rationality. The newity is now
that the greatest set can be fuzzy. We approximate this greatest fuzzy sct with a nearest
exact set. The idea of nearest set is uscful because we knew that a fuzzy greatest set is
very hard to interpret. By introducing the nearest exact set we make this decision making
simpler though WE AVOID to impose that the greatest set is to be crisp.
A theorem which we now must consider is Basu's theorem 2: All individuals are N-
rational. We must discuss the proof of theorem 2.
Basu first defines a completely fuzzy binary relation as follows:

Y,y € XU (x,y) = {?,Sf’fx:y
This relation so defined is indeed the fuzziest we can have. Remark also that this fuzziest
relation is also an order. We can for instance immediately sense the fuzzy reflexivity
property. As all membership values for x different of y are 0.5. From a fuzziness point of
view such set is the most fuzzy.
The definition of such most fuzziest rciztion however is key. As G(S, RYx)=05; Vx;(as
we use a minimum)then from the example we have seen above N(G( S, R)) must exist. It

can not be an empty set as the membership values are 0.5. We said that if all membership

values are strictly smaller than 0.5 then effectively N(G(S,R)) =, as scen at the end of

section IX. This is the reason why the FBR is so defined by Basu. As N (G(S, R)) exists
then so must the choice function. The fuzzy relation is also an ordering. So if the FBR is
defined as above we can rationalize any choice function.

A question arises whether we need to restrict that much the FBR as being most fuzzy. We
could easily assume the following definition:

ef0s1]if x=y

Vx,y € X:Uh'(x’y) = {2 a {f xX=ya E{O-S;I]
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This would relax Basu's definition and would also relax somewhat the too binary character
of fuzzy reflexivity. We may seriously wonder if theorem 2 is acceptable. There is no a-
priori reason to believe that all fuzzy order relation should be of the type as defined above.
Therefore we may well wonder whether theorem 2 is at all realistic.

It is easy to make a proof when a fuzziest order relation is presented. You will not be able
to proof that all individuals are N-rational when the fuzzy order relation is neither fuzziest
or of the type right above. This is simply because the greatest set may have membership
values which fall below 0.5 and therefore a nearest set may be impossible to find. The main
problem with theorem 2 is that it does not make room for fuzzy orderings which are not
necessarily of the type defined above. The problem could be solved if instead of defining

the greatest set being the result of a minimum we define it as a maximum; i.e,

G(S, R) = max yes Ug(x,y). Would we be able to define the greatest set as a maximum

then all what we would have to require in order to find the nearest crisp set of the greatest
set is that there exists at least one fuzzy relation which has a membership value which is
greater than 0.5. Then we know that G(S, R) defined as a maximum will have a value of
0.5 or higner and therefore the nearest exact set of the greatest set could be found. We
would think there is not necessarily an argument against using max of the greatest set. If
so, then theorem 2 makes much more sense because the restriction on the fuzzy orderings
is much less stringent. There is however one problem spot and that is that we must be able
to guarantee we still have a fuzzy order. With low membership values for instance the
completeness condition may for instance be violated. Thus a possible extension on Basu's

theorem 2 could be: If G(S, R) = max yes Uz(x,y), and if at least one fuzzy relation has a

membership value greater than 0.5 and if the fuzzy ordering conditions can still be
respected then more individuals can be declared N-rational. This does contradict
somewhat theorem 2 which says that all individuals would be N-rational. The correct
version of theorem 2, we think should be that some individuals will be N-rational if the
fuzzy ordering is of the fuzzest type.
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VI.3.8. Extent of Rationality

We want to know how fuzzy a binary relation really is. This will be useful to define levels
of rationality and irrationality. The classical distinction is restricted to irrationality and
rationality. There are several measures for fuzziness indexes. For instance in chapter VI of
part II we develop the fuzzy index of de Luca and Termini, Basu uses another fuzzy index.
The consequences of using a specific kind of fuzzy index are important. One flaw in Basu's
paper is that he really does not give a serious argument on why he uses a specific fuzzy
index. For any FBR (thus not necessarily an order) the index of fuzzness

2.d(R,N(R))

AR ==X

. It is obvious that N(.) is non-unique. For instance the nearcst set

for 4= {x/05;y/05} is in fact any element of the 2(A4). However the 4(.,.) will be
unique and so u(.)is well defined. For a completely fuzzy binary relation the index of
fuzziness must be '1'. This is very easy to see. Consider thus the fuzziest relation defined
as: V(x,y) € X x XiUy(x,y)=05. Then say
X = {x,y};then X x X:{(x,x),(y,¥),(x,¥},(¥,x)}. Given the definition of the fuzziest
binary relation we use o(R)=[2.(054)]/4=1. It is obvious for an exact set that
d(R,N(R)) =0 and hence v(R)=0

The definitior:s here developed relate to a fuzzy binary relation which does not have to be
an order. If we impose an order then there are some small differences to be taken into
account, We use the same definition for a complete fuzzy ordering; i.c.

0Sif x=y

Vx,y eX:Uﬁ(x,y)={hfx=y . This is a fuzziest ordering. Consider the same

example as above then given this fuzziest ordering the membership values will be
somewhat different: U;(x,y) =Uz(y,x) =05 but Uy(x,¥)=Uz(y,y) = 1. Using this in

our defiition of a fuzzy index we would get: We need to find a nearest exact set to the
fuzzy set created. We need take all couples into account for a nearest set in this case and
we obtain that (R, N(R)) = 1. Plugging this in our fuzzy index formula we obtain a value
of 0.5. This is not a very nice result as the FBR here is still fuzziest but is now an ordering.
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Basu wants a 'l' measure for a fuzziest ordering and therefore modifies the fuzzy index

2.d(R,N(R))
#(X x X)-#(X)

formula as follows: §(R)= Plugging the numbers of our example

shows then that &(R)=2.(0.50)/4-2=1. The exact ordering gives also an index of

Zero.

VI1.3.9. Degree of Fuzzy rationality

Basu calls R(C(.)) the set of fuzzy orderings which N-rationalize Cf.). N-rationalizing C(.)
means that N(G(S,R))=C(.). Of course, we do not need fuzziest orderings, any
ordering is acceptable as long the membership values of the fuzzy relation is higher than or
equal to 0.5. This is quite important because we need to define a fuzzy ordering for which

the minimal values must be 0.5. The reason for that is that G(S, R) = min yesUg(x, ). In

order to find the nearest crisp set to the fuzzy G(S, R) ; the minimal membership value for
G(S,R) must be 0.5. So for instance an acceptable proposal for a fuzzy order relation

e[051] if x=y

which we di d
zaif x=y,a €[05]1] v Scusse

would then be: Vx,y eX:UE(x,y)={

already above. Thus R(C(.))is the set of all fuzzy order relations which are defined

as above. This is important.

Basu defines Cf,) to be fuzzy rational of degree Q[C(.)]. This degree would be defined as:

QIC(.))=1-min S(R). The formulation is self-explanatory. Remark that

Rew(cr)
Q[C(.)]=0 when the minimum of S(R} (over all fuzzy orderings which N-rationalize C{.))
is effectively equal to unity. But as we use the minimum it MUST be that all fuzzy
orderings which have been N-rationalizing C{) must be complete fuzzy ordering or
05if x#
fuzziest orderings with definition: Vx,y € X:U (x,y) = {1 f‘f =y
ifx=y

intuitive sense why we can claim that the degree of rationality in that case would be zero.

This makes then

Furthermore it also makes more sense to talk about the minimum here. Imagine for a

moment we would have maximum then it is simple to show that if there is just one fuzzest
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ordering then §(R) will be '1' and the degree of rationality would be 0. This would indeed
make little sense if the other fuzzy order relations in  R(C(.)) would not be of the fuzziest
type. Hence the use of the minimum. R(C(.))can not be empty given Basu's thcorem 2.
Hence Q[C(.)] =1-min @ew S(R) is well defined. Remark however our discussion of

having the greatest set defined over a maximum rather than a minimum. Then we do not

nced such pure type of fuzzy order and we still may have that R(C(.)) will not be cmpty.

VL.3.10. WARP
Basu defines WARP as follows:
If Ce) satisfies WARP iff there is not

$,,8, €K; for some x,y € X:x eC(S,),y €5, and y e C(8,),x €5, \C(S,).

This definition implies in the classical setting that if there is §,,S, € K then the person will
be called irrational. Otherwise if the above definition is satisfied then he is declared
rational. When introducing fuzziness we will observe that this extreme situation of rational

or irrational can be weakened. This is the object of Basu's third theorem.

Theorem 3 says this:
If Cf) satisfies WARP then Q[C(.)]=1 and if C() everywhere violates WARP then
Q[C(.)] = 0. Furthermore if Q[C(.)] = 1 then C(.) satisfies WARP. We omit the proof.

Theorem 3 is a crucial theorem as it shows that with fuzziness introduced we can weaken
the extremes of sationalfirrational spectrum. Basu provides for a nice example in which

the concept of degrees of rationality is well shown.

The following is given:

X ={x,y,2} and C(X) = {x,y},C({x,y}) = };C({y,z}) = {(¥};C({x,2}) = {x}.

This choice violates WARP and this is checkable as follows. Set
S, ={x,y,z}and S, = {x,v}.x eC(§,Xi.e.x e{x,y});y €S§,(i.e.y €{x,y,2}). We do
want to find yeC(S,)andxeS,\C(S,)? It is  possible. As
C{x,y} = {y};s0y eC(S,) x e{x, y}\{y} = {x} & x €5, \C(S,). Hence we violated
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WARP. As he violates WARP he can thus not be regular rational, If he is not regular
rational he is irrational. The use of fuzzy theory will now show us that the individual is
rational but of a certain degree.

We want a fuzzy order relation belonging to 9(C(.)). This means thus that the fuzzy
ordering can be used to N-rationalize C(). This means thus that N(G(S,R)=C(.)
Therefore given the defined choice functions we obtain immediately that:

NIG({x,,2}) R1 = (x,y}; NIG({x, ¥)), R] = {p}; NIG({,2), R] = (3}

NC({x,2)), R} = {x} '

We get then:

Ug(x,x) = LUy(1,y) = LU z(2,2) = LU g(x,y) 2 05U (x,2) 2 05U 5 (y,x) 2 0.5
Ug(9,2) 205 U5(2,x) S 05U 3(2,) £ 05Uz (x,y) £ 05,

Remark that most of this derivation comes right out of the set NIG({x,y,z}),R].

The next step is to find the nearest crisp relation to the relation with membership values as

set out above, We also must keep in mind we still need a fuzzy order. Basu's proposition is
this:

Upe(5,3) = 05U 5. (5,%) = U (0,2) = U (%.2) = U (%,%) = U, (0, 9) = Upa(5,2) = 1
Uplz,y)=Ug(z,x)=0

That Ug(x,y)=05 follows immediately from the fact that
Uge(x,)<05AUL(¥,x)205. The cases with the membership values of 'l' derive

directly from the fact that the fuzzy values can be greater or equal to 0.5. Also we choose
them to be equal to 'I' because the crisp case (i.e. the original given) accorded a
membership value (i.1 'l' in the crisp case) to the same elements. We can give '0'
membership value to the last two cases as in the crisp case they also have '0' membership
value. Hence the d(%*, N(R*))=1/2. Says for instance we would give for the latter two

cases U, (z,y) =Ug.(z,x) = 0.2 then this would not be very wise from a nearest set point

of view as the Hamming distance would then be 0.9,
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The rest of the calculations are immediate, #(.Xx X)=9#(X)=3., so

2.d(R,N(R)) _2.(1/2)

1
HXxX)-#(X) 6 6

asd(R) = < Hence Q[C())=5/6. So the degree of

rationality is in fact 5/6. This is true even though WARP has been violated.

VI.3.11, Final Comments

There are some problems in Basu's paper. The first problem relates of course to Basu's
definition of a fuzzy binary order. We may have to relax the fuzzy reflexivity relation.
Furthermore Kaufmann's definition, following Billot's argument may have to be used. A
second problem relates to theorem 2. Using a fuzziest order relation to proof this theorem
seems to be insufficient. Problem 3 refers to the use of the fuzzy index Basu proposes. To
violate WARP and to be still declared rational up to a certain degrec is definitely an
inieresting idea. However the choice of the right fuzzy index is of paramount importance

and influences the interpretation for a great part of the above mentioned idea.
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VL4, Simole anplicati basic f s

The theory of fuzzy sets has relevance also to the finance discipline. The following
development deals with applying fuzzy numbers to some basic finance concepts. Recall
that fuzzy numbers have normalized and convex membership functions. The basic idea of
using fuzzy numbers is again related to the vagueness of estimates relative to possible
invested amounts or estimated interest rates.

Applications in finance using fuzzy sets is picking up. Two recent publications by Refenes
and De Boeck use several insights of fuzzy sets to re-model certain finance models. Some
other applications; especially in the 80's have concemed the extension of the CAPM model
with fuzzy policy constraints. Instead of having crisp policy constraints the constraints are
fuzzy and a fuzzy mathematical programming method as covered in this paper may be used
to solve such problem, The paper by Ostermark does treat the problem, in a very
superficial way. Ostermark’s paper does not explicitly indicate what sort of enrichment the
CAPM will enjoy when policy constraints would be fuzzy. The argument that the CAPM
rejection on empirical grounds may be resting on: the fact that imprecision has never been
introduced in the mndel is debatable and is certainly not proven by Ostermark. An honest
statement may be that if one wants to fuzzify the CAPM one should be fuzzifying some of
the assumptions underlying this model. This, however would certainly not be an easy task.
The assumption of having rational investors with homogeneous expectations as to the
minimum variance opportunity set is convertible to a an assumption of heterogeneous
expectations but makes the mode! somewhat more complicated. The pre-requisite that
CAPM is an equilibrium model which assumes that the market portfolio is efficient is
however a very solid assumption which is not alterable. In fact the model is amenable to
changes on assumptions such as normally distributed returns or homogeneous
expectations. Even without riskless assets the model is feasable. But fuzzifying the fact
that the CAPM is an equilibrium model with an efficient market portfolio is impossible.
All this, just to say that the attempt to fuzzify the CAPM should not be limited to
fuzzifying the policy constraints. If the CAPM proper should at all be fuzzified a judicious
choice of what assumption should be fuzzified may be a first step.
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It is not at all sure that empirical results will be better as compared to the ATP after having
fuzzified.

Other papers have been written in the finance arca and most of them have appeared in the
'Fuzzy Sets and Systems' collection. The main article to which we dedicate this last section
of the paper is an article by J.J Buckley. Li Calzi in a more recent paper makes a follow up
of Buckley's treatment of fuzzifying simple finance concepts. Li Calzi is a more

sophisticated paper which deals with the fuzzfication of discount and accumulmion

models. We omit this here.

VL4.1. Future values

The applications treated here make solely use of fuzzy numbers, Please refer to part 1t on
the section which deals with fuzzy numbers; for more extensive information on performing
operations on fuzzy numbers. Remark that when applying fuzzy sets to social sciences we
arc not always obliged to use fuzzy numbers. The section which dealt with the
optimization of a fuzzy utility function subject to a fuzzy budget constraint showed us that
the budget constraint being fuzzy could have a membership function which does not have
tc be normalized for instance.

If an amount 4 is invested now at rate of  (per period) for # periods then S, = (1+r)" 4.
In most cases however the amount may be more or less an amount A and most important
the interest rate will always be a 'more or less' figure. No matter what econometrics are
being used the interest rate can not be predicted in a totally stable manner. We know
therefore that there is some variation around the interest ratc but we do not know how
much variation, Then we get the expression in the fuzzy context as: S, = A@(1®F)".
Recall that an operation such as addition and multiplication remains internal if the resuli of
this operation remains a fuzzy number; i.e is a convex and normalized membership
function. Also we assume that max-min (and not min-max) is being used for the execution
of the operation; so to guarantee that the operation remains internal.

The point here consists in showing whether the fuzzy expression is a 'legal’ one. From parnt
IT we know that multiplication is distributive vis a vis addition and also that multiplication

is associative. This shows immediately that the above expression is indeed 'legal’.
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§ = A®@(1®F) for the first period and §, = §, @ (5, ®F)= 4@ (1+F)*; using the
propertics. What is interesting is to obtain the membership function for §. This must be a

membership function associated to a fizzy number as for the addition and multiplication

we have been assuming that max-min was used and thus the operations remain internal.
Obviously the membership function of S, will be strongly dependent on the membership
functions of the independent variables i.c A and 7 .Both being fuzzy numbers and thus
convex and normalized membership functions. Using Buckley’s notation we get as form for
the membership function of S, the following £, (v/S,)= f,(3/0).(1+ f,(y/F))"; for
i=1,2 and  f,(0/8))=5,:fu(1/8,)=5,1:/2(0/8,)=5,,:£,.(1/5,)=5,,. This
symbolism only wants us to tell that the membership function for S, when the
membership value is 0 the point s,, ic obtzined. The membership fizaction attains again a
value of '0' at point s,,. Remark however that the membership function is flat leveled
between the points s,, and s,, where the membership value is then 1. The membership
function so obtained would thus give us different values all belonging with different
degrees to the fuzzy number §,. We could also contemplate having the number of periods

to be fuzzy. This is however a little more complex and does not add much to the finding,

V14,2, Fuzzy Cash Flows

A more interesting application is the one which relates to the concepts which are used in
comparing investment alternatives. The NPV or net present value method is well known.

Another method is the IRR or the internal rate of retum method.

Consider a sequence of cash flows over n-periods call it A= 4, 4,,...4,. To find the net

present value of those projected cash flows (after deducting for initial cash outlays) the

traditional formulation is used : NPV (A,n)=3" A4,(1+r,)™" .Say now that different

i=0

investment proposals are put forth A,B, X...Following the value of the obtained NPV's
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projects will be sclected. The important issue here is that of course r, (cnst of capital to

the firm) and the projected cash values are all estimated. So the scope for fuzzy numbers is

more than appropriate. The way to go about it here is not that complicated. A fuzzy cash
flow is now defined as A = 4, 4,,...4,. Each of those fuzzy cash tlows are thus fuzzy
numbers. We will assume that 4, is a ncgative fuzzy number. This means that the

membership function of this fuzzy number lics entirely to the lefl of the Y-axis; i.¢. the axis

which registers the membership values. A positive fuzzy number will lie entirely to the

right of the Y-axis. The NPV (A.m)= A, @i Pl”(;f,.i) where the summation is fuzzy.
i

The membership function for cach fuzzy cash flow will follow the crisp definition as was

the case in the future value calculation. Buckley presents an interesting example where the

method is exemplified. There some small problems which have to be tackled first:

1. Fuzzy NPV must be greater than fuzzy 0; in order to be considered

2. Comparing fuzzy numbers

Problem 1 indicates a threshold level which is fuzzy 0. Buckley proposes for instance a

membership function which is having membership value of '1' at x=0 to be a good

candidate for fuzzy 0. To have a criterion which assesses whether the obtained fuzzy NPV

is greater than fuzzy 0 we need to use a possible definition of ranking fuzzy numbers. One

possibility is to require that one fuzzy number is greater than the other if @i/ of the alpha

cuts of the first fuzzy number are bigger than a/l alpha-cuts of the other fuzzy number,

([12]) The 'all’ quantifier may be leading us in some trouble however. Problem 2 is already

tackled through the definition we just gave.

Consider the following example in Buckley ([8]; p.270) Two projects are proposed in

which the projected fuzzy cash flows are as follows:
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Pr.A Pr.B
A, = (=1100/-1000,~1000/-900) | B, = (~1100/-1000,~1000/-900)

A, = (450/500,500/550) B, = (50/100,100/150)

A, =(350/400,400/450) B, = (150/200,200/250)
A, = (250,300,300/350) B, =(250/300,300/350)
4, = (150/200,200/250) B, = (350/400,400/450)

B, =(450/500,500/550}
B, =(550/ 600,600/ 650)

~

, =(50/100,100/150)

Assume also that the fuzzy cost of capital to the firm is : 7, =(0.08/0.1,0.1/0.12) The
table entries read simply for instance ;f, as membership value of '0' for x=50 and at x=150;

and membership value of 'I' at x=100, Those are thus all triangular fuzzy numbers. The
membership function for each project can be found using the same procedure we used for
finding the membership function of the future value. The membership functions

([8];p.270) with some minor alterations, of the two projects is:

L

Remark that the two projects are thus triangular fuzzy numbers, We may prefer project B
over the other as it looks as if the alpha cuts for all alpha would be greater than for the
other project. There are more sophisticated definitions in ranking fuzzy numbers however.
We do not go in detail on this issue however. Remark also that the number of periods
considered here could also be fuzzy. Termination dates of the projects may indeed be

imprecise. This is indeed a senseful idea. We do not go in detail on this issue however.
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"
The intemnal rate of retum is defined as the solution #>-1 which solves; Z A(1+r)y' =0,

=il
This equation may have no solutions , unique or several solutions, The projects if a unique
solution exists will be ranked on the basis on how well r > r,. We can translate the above
"
homogencous cquation in a fuzzy setting as: 4, EBZ PV(A,,i)=0. Solving such a fuzzy
fa)
equation resumes to using deconvolution as we have seen in part 11, However it is clear
that a clear-cut solution is far from easy. How do we define the fuzzy number 07 ‘This
makes thus that the intenal rate of return has in fact no feasable fuzzy equivalent when the
problem is written in this way. This may be an interesting observation and we may expect
that in other areas of finance or economics suchi extensions my thus be missing at some

times.
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Conclusion

This paper has tried to show how fuzzy set theory could weaken the stringent rationality
assumptions used in classical micro-economics. Fuzzy set theory in its simple form is
intuitively appealing. This property has advantages but also disadvantages. As a main
disadvantage we can mention that the theory as such is often relegated to the area of
pscudo-theories. Theories thus, which have no intrinsic rigor and which only exist becaise
nobody cares to get rid of them. Lotfi Zadeh who is the main protagonist in fuzzy theory
has had to endure many cheap and not so cheap criticisms on his ideas. The strength of a
theory however is also dependent on its maker, Zadeh is not a nobody, we all know that.
As we have said in part I of this paper the practice of fuzzy set theory at this point in time
draws pcople from both strongly scientific backgrounds as well as from much weaker
backgrounds. Research in the field is extremely dynamic. Appiications in whatever field
makes it to be a theory which is gaining respect day by day. The discussion lists on
comp.ai.fuzzy on the intemet for instance show very clearly that all creatures 'great and
small' are drawn to this new science, so to speak. I mention 'great and small' because
‘champions of the brain' such as Marvin Minsky of MLL.T do post positive messages on this

discussion list too.

I have proposed in this thesis that fuzzy set theory, in the very simple form presented here,
can make a contribution to a discipline which is condemned to work within a highly
imprecise environment. Thus, by definition an economist in his strong desire to model
must make abstraction from the real world intricacies. The economist, it seems to an
aspirant economist such as this author, must discover this magic fine thread which
separates descriptivity from normativity. This is a very difficult task indeed. The question
is whether we do fall into the realm cof descriptivity when using fuzzy set theory in
cconomics. A more 'acid test' oriented question is the one which asks whether fuzzy sets
enriches or just only generalizes our propositions in economics. This thesis can not

possibly be conclusive on the latter question.



The problem of descriptivity is indeed a very fuzzy problem and we leave it to the
appreciation of the reader to decide on it.

The results obtained are mainly that we can get rid of the completeness axiom when
working with fuzzy preferences. Furthermore fuzzy sets in micro-economics brings the
added benefit of being able to uncover what happens between the stage where the
individual delimits the possible allocations and the final choice he makes. From the
optimization problems we considered we wonde.ed whether a unique solution was at all

possible and Ponsard does propose an argumeiit which favors this possibility.

It must be stressed however that at best this thesis can be at the stage of the carliest of
beginnings of much more extensive research of fuzzy set theory in economics. The drive
which brought us to the field of fuzzy sets in economics is the one which derives from a
truly uncomfortable feeling as to the classical assumptions which are used in micro-
economics. As an example the property of negative transitivity has little relevance to
observed choice behavior. It is however a property which is crucial in defining a ntility
function. We must always keep in mind the words of Karl Popper who reminds us that
theory and testing have to be in a perpetual relationship. I do think, from my limited
exposure to economics, that the testability of the models as proposed in classical choice
theory brings quite bad news. This is not an argument in favor of using fuzzy set theory in
economics, but it certainly opens somewhat the 'gates of opposition’ which are against
introducing it. This thesis, unfortunately comes to deceiving little formal conclusions. We
know that fuzziness may relax rationality assumptions which we know sre too farfetched.
The only objective is to see that if we modulate the strongness of those assumptions by
introducing fuzziness we may come to rvicher results. Either they are further
generalizations or either they are truly new. The former is not of high interest. The latter
is. In addition to the findings of the completeness axiom , we also looked at preference
sets with measurable areas and fuzzy utility surfaces. Those are direct consequences of
assuming levels of fuzzy utility. Another newity which is of interest is that the demand
function is 'tick' according to Marchal.



In the producer arca the relaxation of the equivalence between maximizing a utility
function subject to a technological constraint and the maximization of profit subject to that
same constraint may be another newity. Finglly fuzzy revealed preference may hold some
promise in that it shows that an individual violating WARP may still be declarcd rational

to some degree,

So far for the meager accomplishments. The other side of the coin has also to be
investigated. The biggest problem with fuzzy sets in economics is the precision by which
we express a degree of membership. This precision is as far-fetched as assuming that we
arc all hyper-rational. However to leave this statement as is, is not that fair either. The part
in this paper which dealt with membership functions showed us possible approaches of
how we could attain such membership function. Hisdal's approach mainly probabilistic and
thercfore somewhat awkward (unless we really think about subjective probabilities)
proposed an estimated error function. This may indeed refute the critique that membership
grades are assumed to be all too precise. Finally there is the classical critique which
equates fuzzy set theory with a theory of 'hidden probabilities'. I think we have been quite
extensive on this issue. The most important point here is that fuzziness is imprecision and
because of this it refers to events which can never realize completely, to re-iterate the
words of Claude Ponsard. We recall also the words of Luhandjula who says that situations
in which there is doubt about the exactness of concepts; correctness of statements have

little to do with the eccurrence of events which is the backbone of probability.
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