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Abstract

\oVe describe how to embed a graph into a small n-dimensional h~lpersphere such

that the endpoints of any edge are placed e.''(actly one unit of distance apart. As an

application. wC' show how such an embedding can be used ta find largp indeppndent

sets in sparse 3-colorable graphs. By combining this algorithm with another which is

specialized in dense graphs! we obtain a randomized. polynomial time algorithm that

can color any 3-colorable graph using at mast O(nl/-llogl/2 n) colors.

Résumé

~ous décrivons comment indure un graphe dans une petite hypersphère en Tl dimen­

sions de sorte que la distance entre les extremités de chaque arête soit de exactement

une unité. Comme application! nous montrons comment une telle inclusion peut être

employée pour trouver de grands ensembles indépendants dans les graphes cretLX qui

sont 3-colorables. En combinant cet algorithme avec un autre qui est specialisé dans les

graphes denses. nous obtenons un algorithme randomisé qui peut colorer nïrllporte

quel graphe 3-colorable en temps poLynomial. en utilisant au pLus O(nl. "lug1
/:! n)

couleurs.
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Chapter 1

Introduction

Suppose chat given a graph. we buiId a. physical model of it where edges are lluit­

length rads and vertices are flexible joints. To give more freedom. we suppose that

this linkage lies in many dimensions and that edges and vertices can cross. A graph

constructed in this manner is likely ta be very Jle.~ble, and therefore cau take a variety

of shapes. Thcse shapes are called unit-distance embeddings of a graph in RtL.

Having made chis definitian~ we can ask for a unit-distance embedding that is optimal

in sorne reSpflct. One such optimization will be in,·estigated: gi\"en a graph. tiuu

the mast -compact~ unit-distance embedding. That îs. the linkage shauld lie in a

hypersphere of radius r where r is minimum. Finding such a compact embedding has

applications ta the problem of graph coloring. We will show how it can he used to
. .• -1/2 .

find an mdependent set of SlZe ~ 0.006 n4/3m-1f3 (ln 4:) ln a 3-colorable graph

\Vith n vertices and m edges such chat m ~ 2.61 n. This will be added to a tool­

box of algorithms that aIso find large independent sets in 3-colorable graphs. It "in
be shown ho,," chese can he combined to give an algorithm that can color 3-colorable

graphs using O(n1/-llogt
/
2 n) colors~ and how most of the approximation algorithms of

3



the literature for this problem can be obtained as a combination of sorne independent

set algorit~ms from our toDI-box.
•
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1.1 Statement of originality

The main resuit is not new (it cao be found in [K~IS94D, however. the approach taken

here is different. For instance, we consider an embedding that is equivalent ta but

different from the one in [K~[S941. This allows us to replace the rOIll"~pr of u~ctvr·

c%ring by the known concept of unit-distance embedding~ which is also nlore intuitive.

.-\lthough the connection with unit-distance emheddings is simple and ob\·ious. it is

neither mentiolled in [K~rS9-lI, nor in the rewrites [~INR97] and [K~IS98I. In facL aIl

of the results of Chapter 2 ha\"e been rediscovered by myself. and the proof supplied

is mine.

Finding independent sets as an intermediate step toward a coloring is an old irlea

[.Joh74aI. but it is not e.'\.1Jlicitly stated in recent papers like [BI':97} and [K~[S98I.

Here. the idea is fully exploited. and leads ta the diagram of Figure 5.2. which nat only

explains graphically where the number 1/4 of the performance analysis cornes from.

but aIso cantains in itself an historical account of most of the previaus approximation

algorithms for coloring 3-colorable graphs. Such a diagram has never appeared heforp.

1.2 Previous work on general graph coloring

~Iost pre\ious results on approximate graph coloring can be classified into 4 categories~

depending on whether they apply ta aIl graphs or only ta k-colorable graphs~ and

whether they are approximation algorithms or inapproximability results.



\Ve will denote by A an algorithm that calors an n-vertex graph G in time polynomial

in n. and ~"rite A.(G) for the number of colors used by the algorithm A. on the graph

G. \Ve also write x(G) for the chromatic number ofG (the nlinimum number of colors

necessary to (Oolor the graph G). See Definitions 2.1 and 2.6 for formaI cll'finirillns of

a graph. of a coloring! and of the functian x.

•
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Definition 1.1 ~Vrite f =O(g(n)) to mean that f $ cg(n) for sorne constant c! and

f =O(g(n)) to mean that f = O(g(n) lof n) for sorne constant exponent a.

In the case of general graphs~ the results are often gi"en as a bound on the approx­

imation ratio ':~gj in terms of n. (Note chat :~:g; ~ 1 br definition of \ (C) 0) For

example. the trivial algorithm ;;Co[or G by using one different co[ur for eCLch uertex"

is an example of an algorithm A. which satisfies:

.-l(G) n
X( G) = X(G) ~ n for every graph G (1.1 )

•

In (.Johï~b!o Johnson analyses the worst case performance of many heuristics and

shows that in this respect theyare comparable ta the trhial aIgorithm. Furt!wrnll)rp.

the best knùwn aIgorithms are in sorne sense not significantly better. as shown in

Table 1.1.

On the other hand, by using Probabilistically Checkable Proof systems. many inap­

proximability results have been found. That is! assuming various computationaI com­

plexity conjectures. it is shawn that sorne approximation ratios cannat he attained by

any polynomial time algorithm. A list is given in Table 1.2.

The result of [FK961 is inspired by zero-knowledge praof systems and almost matches

the performance of the best apprœàmation algorithm.
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1reference 1performance

(Joh74b] A(G) O( n )
~(G) = lo~n

[\\ïg831 ACG) =o(n(10gI0gn)2)
X{G} lorn

[BR90) A(Gl =o(n(lDgIOgn)J)
:\.'\G) lorn

[Hal93) ACa} =o(n(lOglOgn)2)
~(G) loltJn

Table 1.1: Approximation algorithms for general graph coloring

1

1 reference impossible for any € > 0 assumption

1 [8594} .-tCG) < ..L -( for every graph G P;f ~p 1
x(G) _ nH

1

[B594} ACG) < nto-( for every graph G co-Rf> ;f xI>
~(G) -

[BG595] ACG) < l-f for every graph G P;f XPifGl _ n·

[Für95] ..teG) < l_t for every graph G 1 co-RP ::= XP 1'ICG) _ n5

[FK961 1~ :5 nl-~ for every graph G leu-RF # ~p 1

Table 1.2: Inapproximability results for gener-al graph coloring

6

1.3 Previous work on restricted graph coloring

•

In the pre\ions section it was shown that finding good colarings is a hard problem.

but this is due to the presence of sorne graphs \\ith relativply large chromatic number

'dG). If wp restrict ourselves ta graphs with x(G) ~ k (called k-calorable graphs).

then more retined resuIts became possible.

In a cIassic paper! Karp [Kar721 showed that it is N1>-camplete ta color a 3-colorable

graph using :J calars. ~lare recently! it has been shawn (KLS92) that it is aIso ~p­

complete ta eolor a 3-colarable graph using 4 calars. Therefore. assuming that P #

~P. it is impossible ta find a polynomial time algorithm A. such that:
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.4(G) < 5 for every3-colorable graphG (1.2)

For k ~ 6. Garey and Johnson [GJ761. [GJï9} exhibit a farnily of k-colorable graplCi

such that it is >';P-complete co color them using less that 2k - 4: colors. Tht-'refore.

assuming that P #- ~P~ the following is impossible:

..t.(G) < 2k - 4 for every k-colorable graphG (k ~ 6) (1.3)

~rore recently it \Vas shawn [KL592I" [LY9-!} that for any c > 1. therp exists a constant

kc such that the foUo\\;ng is impossible (again. assuming that P '# XP):

• .-l(G) < ck for e~"ery k-colorable graph G (k ~ kc ) (lA)

On the posith"e sicle. the literature cantains many approxima.tion algorithrns for the

problem (which are described and classified in this thesis). shown in Tabltl 1.3.

1 reference 1 .-l(G) for 3-colorable G 1 .-l(C) for k-colorable G 1

1 1 1 10-2 1: [\\ïg831 O( JTi) O(n~)'

i [BRaO}
1 O(vn/logn)

/t-l 1

O((nj logn)r=L) 1

1 1

[Blu89}
1

- 2 - 3k-7'

O(ns) O(n~=i)

[BLu941
1

- J - JIi:-7'
Q(n i ) O(nii=q

[K~[S941 1

- [ - "-2; O(n i ) O(n~)

[BK9ïI

[BK971
- 3

O(nIi)

•
Table 1.3: .o\pproximation algorithms for restricted graph coloring



\Ve note that for k-colorable graphs there currently exists a large gap between the

performançe of the best knO\\Il approximation algorithm and the best known in­

approximability result. Namely for 3-colorable graphs~ the best perfOrtllance A(G)

theoretically achievable in polynomial time can be anything between 5 and nIT. Th~

is unlike thp case of general graphs (Section 1.2) where the gap is practicalLy closed.

assuming that co-RP # NP.

•
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Finally. by using improvement techniques! Linial and Vazirani [LV891 have shawn that

if an approximation algorithm ever achieves A(G) :5 nE V€ > O. then there exists an

approxinlation algorithm that achie\·es .-l(G) :5 10gLTt n TI l > o. [u other wards. for

fi.xed k. the best possible approximation algorithm for k-colorable graphs uses either

Inore that ne calors (for sorne c). or doser to log n colors. but not in between.
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Chapter 2

Unit-Distance Embeddings of

Graphs

2.1 General embeddings

Since we will only consider graphs that are simple. finite. undirected and unweighted.

we will use the foLlowing definition.

Definition 2.1 A graph G = (\'~~ E) is composed oftwo paris: a set ~~ = {Ut. t't•.... 'l.'n}

oln elements called vertices, and a set E ={ette2, ... ,em} ç tl x~· otm unordered

pairs of distinct vertices (called edges).

Definition 2.2 .4n embedding of an n-vertex graph G =(\: E) into a d-dirnen.sional

Euclidean space is simply a function '; : \t" ~ Rd mapping vertices 'Lnto points in

Rd. Let Xl = .;( Vi) for ail i. Then the matrix of an embedding is a d x n matrix

.Y = [Xb X2~ ..•• xnL -where each Xi is viewed as a column vector.

9
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• t
xl.T ~X2 ~. = {Ut. "U2~ l:3! u.d

E ={(t'b 1,'2). (Cl- L'4)' (Vt. l.'3)- (C"!_ l"-d}

10
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Figure 2.1: An embedding of a graph in R'l

The following result shows that not tao many dimensions are necessary.

Lemma 2.1 Embedding an n-uertex graph never requires more than n dimensions.

If we have an embedding cp : ~,.. .-,. Rd UJith d > nt then it is equivalent to another

embeddingrt : ,. -+ Rn up to an orthogonal transformation.

Proof. The n. \'ectors ~(t'l)':;( t'2) _.... :;( c"n) span a subspace 5 ç R,L of dimension

at nlost n. Ler. k be the dimension of Sand choose an orthonormal basis for S.

For each rz- [et w( L'd be the coordinate vector of 1,:( t'd in the new basis. Then

l.:J(vdeRkçRn V'i.lSi$n.

Note. The careful reader will notice that only n - l dimensions are necessary if we

allow translations. (For examplet any triangle has 3 vertiees. but it can be drawn

on a piece of paper in only 2 dimensions.) A systematic way of achieving tms is by

translating the set of points to make its ~center of mass:t coincide \\ith the origin

before we apply Lemma 2.1. HoweverT this "'(n - l)-Lemma"! will nat be used later

because the position of the origin will be important (it cannot be moved).

One reason for embedding a graph into an Euclidean space is that doing 50 defines a

distance between vertices.
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Definition 2.3 The Euclidean distance between two points Xi! XJ E Rd is defined ta

be IIxt - xJ I12 = V(Xi - Xj)T(Xi - XJ)'

2.2 Small distortion embeddings

Now that these basic concepts have been defined many possibilities can be in\"esti­

gated. For instance. given a connected graph G~ it is not always possible ta find an

embedding..; such that dist(t·i.·VJ) = Il:,.:(ttt) - ;(L'J}IIt. whpre di.st(I·I' t'J) clenotes th(~

graph distance between twa vertices. An example of this is the star [\·l.3. Hu\\"ever.

Bourgain [Bon851 has shawn that it is possible ta find an embedding \\ith small dis­

tortion and small dimension. ).[ore precisely. for any n-vertex graph G. ther~ exists

an embedding ..; : t,- ~ Rd satisfying:

-[CL dist(Vi, uJ ) :5 II<;{ Ut) - iP(vj)lb :5 dist( Vi~ vJ) Tt L't,Cl E l"
ogn

d ~ cllogn

where Cl. C'! > 0 are sorne fixed constants.

[n [LLR95]. it is shawn how such an embedding can be found in polynomial time (by

semidefinite programming), and how it cau be used ta find approximate solutions ta

a varlet!- of problems.

2.3 Unit-distance embeddings

The previous section was a digression because we will not use small distortion embed­

dings_ However. we will use the following:



Definition 2.4 A unit-distance embedding of a graph G = (~.~ E) is an f1nbedd'ing

iP : t .. --; R/ sflch that edges act like unif-length rads. That is:
•
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Figure 2.2: The Petersen graph. drawn as a unit.distance graph in R!

The foUowing definition will help in visualizing many proofs geontetrically_ as opposetl

ta merely dlPcking the algebra as it is done in. say, [K1IS9-l.I.

Definition 2.5 .4 regular simplex is the generalization of the equilateral triangle and

of the regular tetrahedron ta many dimensions. If a regular simplex has k vertices.

then the di.'ifllnce between ail k(k
2
-11 possible pairs of distinct vertices must he the same.

A regular simplex with k vertices and unit-Iength sicles is easily constructed. Let

':1- Z2~ ••• - =k E R k be the vertices of the simplex. Then one possibility is represenred

by the follo\\ing k x k matrL··c
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k = 1 k = 2 k = 3 k = 4

13

Figure 2.3: Sorne regular simplices with k vertices

V2 0 0 0T

0 J2 0 0T

Z-[~" "l- 0 0 J2 0 (2.1)- ':'l~ ..·1····· ..4: - T

0 0 a ,,/ï
'!•

Howe\Oer. the center of the simplex described above is not the origin. Ta ohtain a

centered regular simplex \Vith k vertices and unit-Iength sides. we sinlply subtract

V;(t) from e\·ery entr)" in the above matrLx to obtain:

•

1e:;1) - "{(t) -~(i) -~(i)

-~(î) ~C~;l) -1Cî) _..12(1)
2 k

z= -~(i) -1(î) ~(k;L ) _./2(1) (2.2)
2 k

-~(i) -"{(t) -~(i) .;1(k-L )
:! le

From this explicit representation we can derive an important lemma:



Lemma 2.2 ln a regular simplex with k vertices and unit-length sides. the distance

between a .vertex and the center of the simplex is always Jk;l .

•
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Proof. Let r be the distance in question. In the representation given by the ma­

trL"{ (2.2). the center of the simple."{ is the origin. By symmetry, T can be computed

fromanycolumnofthematrixZ.r2 = zfZt = ~(kkl)2+(k-1)~(t)2 = ~;l. Therefore.

r=Jkv/·

Corollary 2.3 In a regular simplex with k vertices and unit.length sides. the distance

between a veTtex and the center of the simplex for k =1. 2. 3.4.... is O. ~·If· Ifs.···
and this tends ta If as k --+ oc.

Proposition 2.4 Even) graph G has a unit-distance embedding.

Proof. Suppose that G llas n vertÏces. Simply map the vertices of G to an rt-\·ertex

regular simplex. That is. let cp he represented by the matrb.: (2.1) or (2.2) with k =n.

Every pair of distinct vertices (in particular the endpoints of every edge) is mapped

by 'Y ta points that are 1 unit apart. Therefore, this in a unit-distance embedding of

G.

2.4 Spherical embeddings, colorings and cliques

Definition 2.-t tan he interpreted in an interesting way. Ifwe imagine that the graph is

a linkage wbere vertices are joints and edges are unit-length rads between the joints~

then any configuration of the linkage is a unit-distance embedding~ and \fiee-versa.

One question that we can ask is ;Lcan we fold the linkage into a small buLI?- ~[ore

formally. we ask the question:
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Given r ~ O. can we find an embedding f{) : V -;. Rn which satisfies:

IIc;(Ui) - ;( l:j HI2 = 1 'v' (lh, uJ ) E E

1Ic;{Z:i)1!2 = r "ri Ut E \P

15

(2.3)

(2.-1)

•

•

Such an embedding will be called a spherical unit-distance embedding because aH ver­

tices lie on a hypersphere of radius r centered at the origin.

\Ve will no\\· make important connections between possible values of r and sorne

standard graph theoretical numbers.

Definition 2.6 Let G = (\t, E) be a graph. A k-coloring of G is a function f : ~. -+

{l! 2. "'! k} mapping vertices ofC into k numbers called ~colors~. A coloring fi..; said

ta be proper iff [(Vi) #: feUil 't/ (Vit vj ) E E. The chromatic number of G is defined ta

be x(G) = min{k ~ 1 : there erists a proper k-coloring of G}.

Lemma 2.5 Let G =(\', E) be a grnph. Let k =\(G). Tht::.1L therp exbts il .,plu:.ricu[

unit-dist(Lnc(~ f'Tnbedding of G of radius T= Jk;kl.

Proof. The idea is to map vP

ta the vertices of a simplex according to a coloring of G.

See Figure 2.4 for an illustration. Let 1 : \/ -;. {1, 2, ..., k} he a proper k-coloring of

G. Let Z = [Zt. Z2 •••• ! Zk} be the representation matrix of a centered regular simplex

\Vith k vertices and unit-length sides. Z is given by equation (2.2). \re define an

embedding;; : \'" --; Rie by <;(t:t) = '[(u,). This is a unit·distance embedding since

(Ui!Uj) E E => J(vil :f: I(vi) ~ Ifcp(l!i) - CP(Uj)!I2 = L By Lemma 2.2. r = Jk2'7cl .
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2113

1----...... 2

Figure 2.4: A colored graph, and its corresponding embedding onto a simplex (the

points shoulù actually overlap on the right)

•

Definition 2.7 Let G = (~.~ E) be a grnph. A subset S ç \. is said to be a clique of

size ISI in G lff (t'it vi) E E li t'it"Vi E St ul #: Vj. Define the clique number of G to be

w(G) = ma..x{iSI : S ç Il and S is a clique in C} .

Lemma 2.6 Let G = (F, E) be a gruph. Let k =w(G). Then for e\'ery $phe:rical

unit-distance ernbedding of G. the radius rnust sati,sfy r ~ J~;l .

Proof. The intuition in this case is that a regular simplex is a ~rigid'~ abject that re­

quires a large endasing radius. 5înce any embedding maps cliques ta regular simplices

\Vith unit sicles. ifG cantains a large clique, then the embedding must have a large ra­

dius because it cantains a large simplex. A formai proof is as follaws. Let :; : \. ~ R FI

be any spherical unit-distance embedding. Sînce the embeùding is spherical. Wp hU\'e:

(2.5)

•

Let S = {51' S2 •.•• ~ Sk} he a maximum clique in G. For conciseness. write ~ =;;(:11 ),

Since S is a clique, the z.: '5 are vertices of a regular simplex with k ver..lces c:nd unit

sicles. Let w =tL:f:l Zi he the center of the simple.x. vVe have the following equation!

which is similar to the basic equality t ·ar(..\) = E(.y1) - (E(.\))2 of prohability
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theory:

1 ft ., 1 11:

kL II zi - wUï - - E(Zi - w)T(Zi - W)
1=1 k i=l

1 11: ? ft 1 k

- k~ z;Zi - i ~ z;u: + kL (L,T iL'
1=1 1=1 l=1

1~ ') T T- kL..IIZtlli - 2LL' U: + œ LL'

i=l

1~ 2 .,- k~ IIzilb -1I'Wllï
i=l

From Lemma 2.2.. IlZi - wlb =Jk;/ 'tf i. and from (2.5) lI=ill2 = r

(2.6) now rends:

k -1 ,) II Il')--=r--u; -
2k 2

k -1 "
=> -- < r-

2k -

=:} r> Jk-l
- 2k

li

(2.6)

'ri i, Therefore.

2.5 The Sandwich Theorem

•

Let G = (t·, E) be an n-vertex graph. By Lemma 2.5. nt least uIlt" spherical unit­

distance embedding of G exists. So the following definition makes sense:

Definition 2.8 Let rCG) he the minimum r ~ 0 such that there erist;) a spherical

unit-distance ernbedding cp : ~. ~ Rn of radius r.

Then Lemma 2.5 and Lemma 2.6 combine to give the follo\\ing result:

Theorem 2.7 Let G he any graph. Let X = x(G) and w = w(G) he the chromatic

and clique numbers ofG. Then JrJ;;} ~ r(G) ~ J~.
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Ta get a aicer result! we make a substitution:

18

Definition 2.9 (The Lovâsz number of a graph) Let G he any graph. ~Ve define

- 1
D(G) = 1- 2(r(G))2 () -)_.f

Sobâng for r gives r(G) = Jij2~1. Sïnce tb.e function f(x) = )Z;l is incre(L~in~ on

the interval [1. x) on wlùch it is used. Theorem 2.7 becomes:

Theorem 2.8 (The Sandwich Theorem) Let G be any graph. Then

w(C) S D(C) S X(G) (2.8)

•

•

The Lo\'âsz Humber of a graph is a graph paranleter that has surprb:iillg1v man"

different characterizations (see [Knu941 for instance). le i.s proven in [K:\159-l1 that

the charactenzation given here is equh-alent ta ather accepted definitiollS.



•

•

•

Chapter 3

Finding a Minimum Radius

Embedding

The number r(C) of Definition 2.8 is interesting theoretically~ but even better is the

face that r(C) can he approximated in polynomial time. A spherical unit-distant:e

embedding .; of the claimed radius can aIso be round. This may be ~urprisin~ l)t'cause

by Theoreul 2.7. r(G) is Msandwiched~ between two numbers that are known to he

hard to compute (computing any of them is an ~P-completeproblem).

The technique uses semidefinite programming~ which unfortunately is tao complex

ta describe here. However, in this chapter we will give enough details sa that it

will he possible for the reader to compute r(G) numerically by using a semidefinite

programming package as a black box. The same basic idea is used in [LLR951 ta

compute thp small distortion embedding of Section 2.2.

19
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3.1 Positive semidefinite matrices

20

•

•

Definition 3.1 Let .4 be a real symmetric n x n matrix. A. is said ta be positive

semidefinite iff uTA:u ~ 0 Vu E Rn

\Ve now make a correspondence between embeddings and positive semidefinite matri-

ces.

Fact 3.1 Let.\ be the matrix of an embedding~ as described in Definition 2.2. Let

.-l = .\.T.\,. Then A is real symmetric positive semidefinite.

Proof. This is straightforward. A. is sYlllmetric because A.T = (.\",T.\)T = .\,T.\,IT =

.\T.\ = .-t. A. is positive semidefinite because for all u E Rn. urAu = li r.\ r.\ II =

(.\u)T(.\' u) =Il.\ull~ ;:: o.

The converse will be more important to us:

Fact 3.2 Let.-1 be a real symmetric positive semidefinite n x n matnx. Then we can

find a real n x n matrix .\ such that .-1 = .\rT.y.

Proof. Since.-1 is a real symmetric matrL~. we can wrice .-1 = pTDP where P is

orthogonal and D is diagonal. Since .4. is positive semidefinite! the diagonal elements

of D \\ill he non-negative. So we put .X =D1!2P. Altematively~ .\ can be round by

the Chalesky decamposition! slightly modified 50 that it will nat dhide by zero if A.

is nat of full rank.. See a book on matrL~ computations such as [G\~831 for details.



3.2 Reformulating spherical unit-distance embed­

dings

•
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•

Let t .. = (G ~ E) he a graph and let c.; : '" -+ Rn he an embedding of G. By It:l tting

.1\ = [cp(vd. CP(V2)' •.• ' <P(-Un )) and A. = [ai;] = ~"(T."(, we can rewrite the constraints

(2.3) and (2.4) of a sphericaL unit-distance embedding as:

= xrIl - 2xfx] + x;x) =ari - 2lZij + an 'V ('L'l'C)) E E

r~ - lIiP(udll~ = Ilxill~ = x;Xl = aii Tf Ut E ~"

Hence the problem of finding a minimum radius spherical unit-distance embedding of

a graph (recal! Definition 2.8) can be rewritten as the following se"üdefil1ite pnJqram.

Theorem 3.3 Let G = (\t", E) he graph. Su.ppose that we can jind ..l = [ail! sueIL that

A. is real symmetric positive semidefinite

Clii - aII =0 Ti i~ 2 S i $ n

au is minimum

Then.

r(G) = vICiU (3.2)

D(G) = 1 (3.3)
1- 2au

an embedding matrix X can he found by soluing A = ..\'T){ (3.4)
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3.3 Solving the semidefinite program
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•

•

Definition 3.2 In general: a semidefinite program is an optimization problemwith

variables aij that includes the constraint (3.1) and sorne linear equality constraints of

the form L~l Ej=l tijllii = c. The objective function to minimize (or maximize) i.s a

linear combination of the ltij 's.

Theorem 3.4 A. semidefinite program of size n with m equality constraints can be

solved within f of the optimum in time polynomial in n, m and log: by interior point

methods [Ali95J or by the ellipsoid method [GLS88/r provided that a bound on the value

of the opti1num is known in advance.

Theorem 3.4 will not be proved. but we will show that the search space of a semidefinire

program b convexe Sînce optimizing a linear function over a canvex set is in general

much easier than over an arbitrary set. Theorem 3.4 is not tao surprising.

Proposition 3.5 The search space of a sem'idefinite program is convexe Let.-l and

B be matrices. Let 0 $ À $ L lf.-t and B satisfy the constraints of a semulefinite

program. then C =,\.4. + (1 - À) B also satisfies these constraints.

Proof.

1. C is real symmetric. CT = À..4T + (1- ,,\)BT =ÀA. + (1 - À)B = C

2. C is positive semidefinite. Let u E Rn. UTCu = UT (..\.4. + (1 - ,\)B)u =

,,\uTAu + (1- À)'UT Bu ~ 0 + 0 = o.

3. C satisfies the linear equality constraints. Suppose that one of the linear con­

straint is E~=l EJ=t tijllij = c. Then:

Ef:l EJ=L tiiCij =ÀEi:l Ej=1 tijCZij+(l-À) E~1 2:.j=1 ti]bii = Àc+(l-À)c =C•



To simplify the rest of the exposition, we will disregard the error f. assuming that f

is chosen sp that the precision will be satisfactory.

•
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3.4 An example: the 5-cycle

Let G be a graph. U someho\V we know that

w(G) = X(G) (3.5)

•

Then for this graph. Theorem 2.8 becomes w(G) = D(G) = '- (C). This means that

for this graph. w(G) and x(C) can be found in polynomial time by computing J(C).

Furthermore. the embedding given by Lemma 2.5 will have minimal radius.

The smallest graph G \Vith w(G) < X(G) is the 5-cycle Cs. Finding a spherical unit­

distance embedding of minimum radius for Cs should prove to be interesting because

by Theorenl 2.7. we kno\\t that ~ ~ r(Cs) ~ If.
In this case. solving the semidefinite program given by Theorem 3.3 gh'es:

-4.=

abc c b

b abc c

c b abc

c c b a b

bec b a

where a =! - 2:..y'5 =0.2ï6393 ...
2 10

b =- 2:.. r;. - -0 "')3606IOVO - ._- .

c = 2
3
0J5 - ~ =0.085·nO .

•

Interestingly. rank( ..4.) =2! therefore the spherical unît-distance embedding of Cs of

minimum radius lies in two dimensions. It is shawn in Figure 3.1.

r(Cs) = JO. =0.525731 ....
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- l ~
t9(Cs) =-2- =v5 =2.236067 ...

1- a

•

•

Figure 3.1: Optimal spherical unit-distance embeddings of Cs and of C7

3.5 Other applications of semidefinite programming

Semidefinite programming has been used by Lovâsz [Lovï91 ta compute the Shannon

capacity of a graph. It is aIso the only knO\\ïl \vay of computing a maximum clique

and a minimum coloring in perfect graphs in polynomial time [GL581I.

Historically. the fust use of semidefinite programming in combinatorial optimization

was by Goemans and \Villiamson [G\V941. [G\V95} ta obtain impro,·ed approximabil­

ity results for the MAX eUT and MAX 2SAT problems.

These results inspired Karger. ~Iotwani and Sudan [K~IS9-!1 ta adapt the technique ta

GRAPH COLORlNG~wrnch in this case corresponds to finding a unit-distance spherical

embedding of minimum radius~ as described in Chapter 2.

Ta date. semidefinite programming has also been successfully applied to M.-LX k-CUT

[F.J9TI. M.-LX BISECTION [FJ971 and GRAPH P.'\RTITIONING [\VZ96I. Furthermore. far

MA.X Ct:T and GRAPH COLORING. one can use the specialized procedure of [PL961

that runs significantly raster that a general purpose semidefinite program solver~ if

the tolerance f is not tao smaIl.
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Chapter 4

Finding Large Independent Sets

In this chapter. we \Vill see how the graph embedding of the pre\ious chapter cau be

used to find a large independent set in a k-colarable graph. This first step is already

interesting because in generaI it is hard ta find large independent sers.

Sections -lA and ·l.5 each present an additional independent ~et algorithnl that does

[lot reqllîre any result from the pre\iaus chapter. These algorithms have different

properties. and they nicely complement the independent set algorithms that are based

on graph embeddings.

4.1 Generating random n-dimensional vectors

The algorithms in the next two sections require random n-dimensional veetors. They

are randomized algorithms. A good way to generate a random n-dimensional vectar

in practice is through the mulfidimensional normal distribution.



Theorem 4.1 Let Zb Z2, ••• , Zn ~ 2V(O,I) be independentt normally distributed ran·

dom t!aria~les with mean 0 and variance 1. Then the distribution of the random vector

z = (=l. Z2 • ••. , Zn) T is spherically symmetric.

•
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"'
Proof. \Vrite fb(x) = ~e- z; for the density of the standard normal distribution.

The joint density of the n-dimensional standard nomla! distribution is:

Xate rhat !(.rl.X2,. -. .xn ) depends only on the length IIxll of the ,·eetar x. therefore

the distribution must be spherically symmetric.

.-\s a pracrîcal note. there is a very nice way ta obtain two indepeudent standard

normal random variables Zb Z2 "'oJ L'/'(0.1) from two independent uniform random

variables Ul- U:! "'oJ [,ij,VIF(O, 1) on a computer:

Let t = J-21n Ut

a = 2iiU2

Put Zl = tcosa

Z2 = tsina

4.2 Hyperplane partitions

Let G = (t: E) he a graph \vith n vertices and let 19 = d(G). Apply Theorem 3.3

ta get a spherical unit-distance embedcling <p : t" -f Rn of radius ,. = /fJ2-/. This

embedding is compact. yet pairs of vertices that are joined br an edge are forced ta be

"i'ar~ apart. This section and the follo\\ing exploit this obsepiation ta construct large



independent sets. \Ve start with the hyperplane partitions approach~ which gives a

weaker re~lt~ but is easier to e.xplain.
•
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Definition 4.1 Given a graph G and an embedding r.p as above~ a random hyperplane

partition of the vertex set tt is defined as follows. Let z = (Zl' Z2!"" .zn)T be a random

n-dimensional vecfor. Then z partitions the vertex set as t' = ~ i. u ~2 in a naturel

way:

t i = {u E \' : .;( u) . : > o}

~2 = {u E \.. : <p( v) . z < O}

2Vote that the set {v E l/ : ~(u) . z = O} is empty with probability 1. If we imagine

the hyperplane orthogonal ta z and going through the origin. then this classify ver­

tices according to which side of the hyperplalle they lie on. This e:rplains thp name

hyperplane partition.

Figure 4.1: The partition F = vi u Vi of the vertex set by z

As an aside~ there is an application (Theorem 4.3) of hyperplane panitions ta clique

breaking. This is interesting because it is a special case of the !'tll-complete problem

SET SPLITTING.



Proposition 4.2 (Clique breaking) Let G = (~'~ E) be a k-colomble graphe There

exists a pg.rtition v" = vi u ~2 such that the graphs induced by 't--1 and ti are both

k-clique free.

•
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Proof. Let f : t· ~ {1. 2! ... ! k} be a proper k-coloring of G. There are many possible

solutions. One of them is ta put

Vi = {v E V' : f(v) = I}

v'2 ={v E \t-: f(v) =2.3..... ork}

The induced subgraphs are respectively 1 and k - 1 colorable. therefon~ th<,~· must bp

k-clique free.

Theorem 4.3 .4 "clique breaking'" partition as described in Proposition 4.2 can be

found in polynomial time.

Proof. Compute J(G). By Theorem 2.8. tl(G) 'S k. If d(G) < k then by Theorern 2.8.

G coutains no k-clique. sa no partition is necessary. EIse J(G) = k. Find a spherical

unit-distance emhedding c.; of icldius r = Jk;l. Let =be a random n-dimensional

\·ector and compute an hyperplane partition l- = tï u t'2 from z as in Definition 4.1.

\Ve daim that tï and t''2 contain no k-dique. \Ve proceed by contradiction. Suppose

without l05S of generality that ~i contains a k-clique K ç ~"l' Since .p( u)·: > 0 "ir E

[{ ~ we have that t LueK cp(u) . z > O. But this is impossible because the center of a

regular simplex with k vertices and unit sicle mllit""t he the origin when it is embedded

on the surface of a hypersphere of radius T = Jk~l •

Note. If G is 2-colorable1 then the partition found by Theorem 4.3 is 2-clique free!

that ÏS. it is edge free. By assigning one color to y'i and one color ta ~i. we have found



a 2-coloring of G in polynomial time. (There is no surprise here, but it is nice ta see

that our c~mplex approach can solve this basic problem.)
•
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Now, the application ofhyperplane partitions ta findingindependent sets in 3-colorable

graphs.

Definition 4.2 Let G = (V', E) be a graph. .4. subset S ç \ ~ is said ta he an indepen­

dent set of size ISI in G iff(Vit t'j) ~ E 'VUi, l:j E S, Vi :FUj. Note that thùs definition

is in sorne sense the opposite of the Definition 2.7 of a clique.

Lemma 4.4 ln a spherical unit-distance embedding of radius ~, the probability that

the tu.-o endpoints of an edge are on the same side of a random hyperplane i.s t·

Praof. Let E = ('Vi ,L'}) be an edge of the embedding. Consiùer the two-dinlen~ional

plane going through Xt = "'(Vi). Xl = iP(v]), and the ongin. The intersection of this

plane with a random hyperplane is a line L going through the origin. Furthernlore.

since the h~lperplane is random. the orientation of L on the two-dimensional plane

must aIso be uniform. See Figure 4.2. The probability that the two endpoints are on

the saIne sicle of the hyperplane cau be computed geometrically: it is t.

Theorem 4.5 (Nlarkov's inequality) Let.\ he a randam variable that takes only

non-negative values. Then for any a > 0,

P()( ~ a) ~ E(.X:)
a

\Vnen il graph is very sparse. it is very easy to find an independent set directly. The

following proposition will be useful as the final step of other methods. lt aIso giY'es

our first independent set algorithm.
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Figure 4.2: The probability that a random line through the origin does not eut a

segment spanning 1200 is k

Proposition 4.6 Let G = (\.~ E) be a graph l!:ith n vertices and m edges such that

m $ tn. ~re can find an independent set of size ~ ~n in polynomial time.

Proof. For every edge! remove one of its endpoint from the vertex set. Sînce there are

at mast ~n edges, at most ~n vertices will be removed. In the process. every edge will

be desrroyed and at least ~n vertiees will remain. Therefore. we get an independent

set of size at [east ~n.

Theorem 4.7 (Karger-rvlotwani-Sudan [K~IS941 [KMS98J) Let G = n: E) be

a 3-colorable graph with n vertices and m edges such that m ~ tn. ~Ve can find an

independent set of sue ~ 0.104 n t.630m -0.631 in polynomial time with probab-ility at

least ~.

Proof. Find a unit-distance embedding r.p ofG of radius r = --Ji in Rn. This is possible

since G is 3-eolorable. Let c = flog3 4:1. Use c independent random hyperplanes ta

partition ~. inta 2C subsets. By Lemma 4.4! the probability chat an edge ~esist5~

these c cuts and have bath endpaînts in the same subset is (i)C • Let m' be the



•
CH.4.PTER 4. FThTJING L.ffi.GE INDEPEZ'iDENT SETS

number of such edges. The e.\.rpected value of m' is:

1 4m

(1)1: (1) ogJ ~ n nE(m') =m - <m - =m- =-.
3- 3 4m 4

31
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By j\Iarkov~s inequality, P(m' < ~) ~ ~. Ifm' ~ ~ then exit with a failure. Othernise.

build a subgraph H of G by removing one endpoint from each edge. By construction.

H has at least Ï vertices~ and every edge of H has endpoints in different sllbsets. Br

the pigeonhole principle, one of the 21: subsets must contain at least ~ /2c \·ertices.
c ~ 10 ~

This subset will be our independent set. It has size ~ Ï (~) 2: ~ (~) g.1" =
1 ( .. nt ) 1°13 :! 1 ?

~ (1) ug:! ""';\ = !! (...!!...) og3- = 1 nl+lo1l2m-logJ2 > O.104nl.6JOm-O.631.
4 2 .; -lm 4.4(0&3 1 -

~ote chat by repeating the above randomized algorithm t times. the probability of

failure drops to (~r.

In thi:; sectiùn we considered 3-colorable graphs only. but the algorithm and its aualysis

can be ~eneralized to k-colorable graphs in a straightforward way.

4.3 Vector projection

Instead of using many hyperplane cuts through thp. ongin. the followin~ mpthud u~es

only one hyperplane which is at sorne carefully chosen distance to the origin. The

method considers only the vertices l}ing in the small half of the hypersphere.

This is the most complex section of the thesis, but the main result of the section

(Theorem ~.11) is key ta get good colorings later, sa pro\*Ïng it is justified.

Lemma 4.8 Let l E Rn be a unit vector. Let == (ZL. =2- _..• Zrl)T be a nL1LdoTn

variable ha'L'ing the n-dimensional standard normal distribution. Then x· ='" .\*(0. 1) .



Proof. Note that since IIxl! = 1, x . z is the length of the projection of z along x.

Since the qistribution of z is spherically symmetric, the distribution of x . .: does not

depend on the direction of x. Therefore. X· : "-1 (L DT ... , OlT •== Zl ......V(O. 1).

•
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Definition 4.3 ~Vrite i.V(x) for the taiI of the standard normal distribution. i.e.

N(x) = fe q,(t)dt

Lemma 4.9 (folklore) For every x > 0, (~- ~) 4J(x) < .V(x) < ~a}(.r).

Proof.

•
(1 - ~) tP(t) < O(t) < (1 + t~) tP(t) 'Vt > 0

~ [(1 - ~) q,(t)dt < [ <t>(t)dt < f' (1+ t~) ,p(t)dt 'Vi: > 0
=> (~-~) tb(x) < l'l(X) < ~cP(x) Vx > a

l r' l

Lemma 4.10 Fi:J: any Q < 1. Then l - ~l >!! for l > J1 l
~ J;'"" - r --(l

1-0 1
~ -->­

l - r'
1 l (}

~ --->­
x r l - x

? 1
x>O and x->-­

-l-Q

(multiPlYing each side br 1~Q)

Proof. This is embarrassingly straightfonvard.

i:~Jl~Q ~

•

The constant 0.006 that is derived in the next theorem is in no way fundamental.

For instance. it depends on the number 2.61 which is somewhat arbitrary. Derhing a

constant is not usually done in theoretical works but it makes the result much more

concrete.



Theorem 4.11 (Karger-lVlotwani-Sudan (K1V1598]) Let G = (\~ E) be a graph

with n ve,!ices and m edges such that m ~ 2.61 n. LetJ ~ ma."«t?(G).3). ~Ve can
l

find an independent set of size ~ b = 0.006 n2-jm~-1 (ln 4:) -ï in polynomial time

wïth probab'ility at least ~.

•
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Proof. Find a spherical unit-distance embedding IP of G of radius r =Jd2-;/ in Rn.

In this case it is important that z = (.:h =2,'" ,;)T have the n-dimensional standard

normal distribution.

Define

where

5 = {Vi E ~. : ;1'(u,) . z ~ c}
2(d - 2) ln 4m . ,. . .. bc = - 15 a ·magtc·· num era n

•

•

Xote that J ~ 3 and rn ~ 2.61 n ~ c ~ 1.25. Let n'and .,n' be the number of \'ertices

and edges in the subgrapl1 induced by S. As a tirst step. we derive a lower bound

for E(n'). Since ~''';(-L't) is a unit vector. by Lemma 4.8 ~'P(L'd ".; LV(O.l). 50 for any

Ci E \'.

P[v, E 51 = P [;>,(Vi) .Z~ cl =N(c)

> G- ~)Q(C)

0.36 l t:
1 ~> ---e-T since c ~ 1.25 = 1 _ 0.36

c J2;
0.36 1 _d-'l(n:!.!!!.

= ---e fi Il

C J2rr
= 0.36_1_ (4rn)î- t

c J2rr n

0.09 1 l '2 1
=> E(n') =nP[Ui E S] ~ - M=4Jn2-imJ-l

C v2-;r

Next. we éerive an upper bound for E(m'). Let ('Uir Vj) E E. Sînce we are using the

standard normal distributiont the calculation will reduce to a 2-dimensional problem
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in the plane that goes through Xi = iPCUi), XJ =cp(Vj) and the origin.

P[r, ES and vi E SI = P [~Xi • Z ~ c and ~I]. Z ~ cl
== P[.: faIls in region R] (see Figure 4.3)

< P[= falls in region Cl (see Figure 4.3)t(ij -1)
== LV(ac) where a == -19 _ 2 ~.f2

1 ( ) 0.72. )< -tiJ ae ~ -lP(ae
ac e
0.,2 1 4l!i J-Zl l -lm== ---e--,J- U7

c ft[;

= O.~2 ~ (4:) ~-2

0.045 Il l!

::} E(m') = mP[Vi E Sand Vj E SI ~ -- r.=c-!Jn2
- j mJ - 1

e v2~

This upper bound is exactly hall the lower bound that we derived for E(n' ).

\Ve \\ill use ).tIarkov~s inequality ta show that n' - m' will he \\ithin halE of its expected
t

value \\ith sorne reasonable probability. Let b = 0.006 n2
-: m ~-l (ln 01;;) -} (halE of

the bound above). Define the random variable .'( = n + m' - n' ~ O. :\ote that our

result above translates inta E(.t) ~ n - 2b.

P[n' - m' > hl - P[m' - n' < -bI =P[.X· < n - bI

_ 1 - P[..X > n - hl > 1 _ E(..t)
- - n-b

> 1 _ n - 26 = _b_ > !:
n-b n-b-n



If n' - rn' ~ b then exit with a failure. Otherwise! build a subgraph H startÎllg

from S ~d removing one endpoint from each edge of the graph induced by S. By

construction. H will be an independent set with at [east b vertices.

•
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Figure .1.:3: Finding both endpoints of an edge in S is surprising becalliie it iUlplies thar

the projection of =onto the plane going through XH Xl and 0 faIls into region R. Ir

is easier ta evaluate the (greater) probability that the projection of =falls into region

CI. The computation of a (omitted) can be done geometrically from the dra\\ing aIl

the right. and using Definition 2.9.

Note that by repeating the abo\·e randomized algorithm Cl polynomial number of tirnes.

the probability of failure drops e.'\llonentially.

\'le have the following specialization of the theorem to 3-colorable graphs:

Corollary 4.12 Let G = (l: E) be a 3-colorable graph with n vertices and m edges

such that m ~ 2.61 n. ~Ve can find an independent set of size

b =0.006 n4i3m-L/3 (ln 4:) -l(2 in polynomial time with probability at least ~ .
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4.4 Greedy coloring
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Definition 4.4 Let G = (v·, E) be a graph. For every vertex 'U E ~'. the degree d( L')

of theueriex u ·is the number of neighbors of l,.' in G. The maximum degree in il graph

is defined to be ~(G) = maXvEtl d(v).

Greedy c%ring is a very simple colaring algorithm: At every step! we pick an arbitrary

uncolored vertex u and color it using the smallest-indexed color that is nat ëùready

used by sonle neighbor of 'U. Since every vertex has at mast ~(G) neighbors. greedy

colaring will use at most ~(G) + 1 calars.

\Ve show how the greedy coloring algorithm can be turned inta an independent set

algorithm.

Theorem 4.13 In any graph G = (~.: E) with n vertices and m edges .'Hl.ch that

m ~ ~n. lL'~ can find an independent set of sue ~ 1~n2m-l.

Proof. Partition lP inta two sets.

Let S = {li' E \ P : d(v) < 4:}.

Let T = {c E t
P

: d(-u) ~ 4:}.

Then 2m = }r:Et· d(v) ~ Luerd(U) ~ ITI 4
:

~ ITi ::; ~n. 50 ISI =n - ITI ~ ~n

Let H be the graph induced by S. .!l(H) < 4: t sa the greed~l coloring aIgorithm will
l

calor H by using at most 4;; + 1 colors. By the pigeonhole principle. at Least "~:l
" .

vertices wi.ll get the same color. This gives us an independent set of size ~ 2(4:
l

+n) ~

n 2 _ l 2 -1
2(4m+2m) - En m
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4.5 Wigderson's technique

\Ve present \\ïgderson's algorithmt specialized for 3-colorable graphs.
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Theorem 4.14 (\Vigderson (\Vig83J) Let G = (~'. E) be a 3~co[orable graph with

n vertices and m edges. ~Ve can find an independent set of size ~ n- L1n.

Proof. 2m = LuE\': d(u), so by the pigeonhole principle. 3v E ~!.. such that d(z:) ~ 2:.
Let lV(t') be the neighborhood of v. Since G is 3-colorable, the subgraph H induced by

.V(v) is 2-colorable. Cse a polynomial time algorithm to 2-color H. By the pigeonhole

principltl. one of the color classes will contain at least t:n = ;. vertices. This gÎ\'ps

our indept.'udeut set.

Sote chat if m < n then the argument still goes through~ but the result beconlt~S "we

can find an independent set of size 1~ ~ which is trivial. 50 we might as wplI require

that m ~ r1. •
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Chapter 5

Approximate Graph Coloring

5.1 Heuristics vs approximation algorithms

Let G bt\ a graph. Finding a proper coloring of G \Vith thf Illinimum number \: (G)

of colors is il. hard problem Ot is XP-complete [KarT21~ [G.J,g]). Howe\"er. in practical

applications. a proper coloring with slightly more than x(G) colors can still be illieful.

Practical applications of graph co[oring are mostly resource allocation problenls. For

example. if ~. is a set of equally long tasks and E is the set of pairs of conflicting

tasks. then a small coloring of the graph G = (t~ E) will give a way of scheduling the

tasks that avoids conflicts and minimizes the time needed ta ron all the tasks.

lt is not hard ta invent a heuristic that will color most graphs with few calors. How­

ever. it is usually not hard either to find an f.."{ample for which the heuristic will fail

ta give a good caloring. (Such f.."{amples can be found in [Joh74bI.) lt is much more

interesting (at [east theoreticaIly) when a heuristic cornes with a performance guar­

antee. \\ùen an algorithm has such a guarantee and runs in polynomial time it is

called an approximation aIgorithm.

38
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5.2 From independent sets ta colorings
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From any algorithm that finds large independent sets, we ean derive a graph coloring

algorithm as follows:

~hile G is non-empty

find an independent set l of vertices in G

color these vertices using one nev color

replace G ~ith G - l

end ~hile

The following proposition gives a guarantee on the quality of the coloring in ternlS of

the qnalitv of the independent set algorithm.

Proposition 5.1 Let G be a graph with n vertices. Suppose that we have an alyorithm

that can .find an independent set of size ~ c~va. for any iV-vertex subgraph of G (for

sorne constants 0 < a. c < 1). Then the technique above willfind a proper coluring of

G with at Tno.st c(l~a)nl-C1 colors.

Proof.. Xote that if at sorne iteration G has n vertiees. then at the next iteration

G "ill have at most Ln - cna.J vertices. Sinee ln - maJ ~ n - 1. the algorithrn will

terminate. Let s( n) be the ma."<imum number of iterations the aIgorithm ean possibly

take when its input graph bas n vertices. vVe prave by strong induction on n that

.,,(n) < _l_n1- a .
- c{l-a)

Rasis: if n = 0 then s(n) =0 :5 c(1~C1)OI-4 sa the proposition holds.

Induction step: The algorithm provides a recurrence relation:

• s(n) = 1 + s( Ln - cnŒj) the recurrenee relation
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< 1 + 1 (Ln - cnaJ) 1-a by induction
c(l -a)

1< 1 + (n - cna)t-a
c(l -a)

_ 1+ l n 1- a(1_ ena-I)l-a

c(l -a)

< 1+ 1 n1-a(1_ (1 - a)cna
- 1) since 1 - a < 1

c(l -a)
1 1-a c(l - a)= 1+ n ---...;..

c(l -a) c(l - a)
1 1-a= nc(l- a)

40

Since \\"e use exactly one color per iteratian, an n-verte."{ graph will he colored \Vith

t t L L-a 1a mas c( 1-a) n co ors.

• 5.3 Combining independent set algorithms

..\lI the iudependent set algorithms that we have sa far for 3-<:olorabl(~ graphs (ran­

domized or uat) are re\;ewed below.

! Hyperplane partitions 1 Theorem 4.7 1 m ~ tn 1 0.104 nL6JOm-O.631

method reference condition size of independent set

1 Direct 1 Proposition 4.61 m ~ 4n 14n

Vectar projection 1 Corollary 4.12 1 m ~ 2.61 n 0.006 n-l/:J'm-L;:l (ln 4:) -LI"! 1

Greedy coloring Theorem 4.13 m> ln ..Ln2m - 1
1-2 12

\Vigderson·s technique Theorem 4.14 m~n n-tm
1

•
Sorne algorithms are good for sparse graphs, others are good for dense graphs. Ta

make this idea precise~ consider a graph with m = na. edges. The above algorithms

ail retum an independent set of size Ô(n6) for sorne b. The relation between a and b
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is as follaws (shawn graphically in Figure 5.1):
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1condition 1relation

Direct O~a~l b=l

Hyperplane partitions 1~a~2 b = 1.630 - 0.631 a 1

\ Pector projection 1~a$2 1 b = i - la
1

3 3

Greedy coloring 1$a$2 b=2-a

\\lgderson t s technique 1:5a:52 b = -1 +a

· 1 method

•

b

+ direct

v~ctor

proj~ction

\vïgderson•s
technique

hypc=rplane
punitions

gre~dy

algorithm

O+------------~--------+-----+--~---~a

o 1.5 1.75 2

Figure 5.1: For m = nl1
, the independent set round is of size 11(nb

)

\Ve can see from Figure 5.1 that

• The dirEct method is the only method available in the range 0 $ a $ L

•
• trector projection is the best method in the range 1 :5 a ~ 1.75

• WigdeTson~s technique is the best method in the range L75 $ a ~ 2



• Hyperplane partitions and greedy coloring are strictly inferior to vector projec­

tion
•
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Sa by combining the algarithms praperly! we obtain:

Proposition 5.2 Let G = (~~ E) be any 3-colorable graph with n vertices and m

edges. ~Ve can find an independent set of S'ize n(nO.75 (lnn)-1/2).

Proof.

• if n1 ~ 0.5 n. use the direct method ta obtain an independent set of size Q(n).

• if 0.5 n < m ~ 2.61 n! use greedy coloring ta obtain an independent set of size

O(n).

• if 2.G 1 < m ~ n1.75. use vector projection ta obtain an independellt set of size

Q( no.7s (ln Tl) -î).

• if n 1.7:) < ln. use ~Vigderson1s technique ta abtain an independent ~et of size

n(nO. 73 ).

ln every case. the size of the independent set is n(no·i5 (ln n)-î). therefore the result

follows. Xote that we use greedy coloring only ta fill the small gap 0.5 n < m ~ 2.61 n.

which cannat bl-'1 seen in Figure 5.1.

Corollary 5.3 (Karger-Motwani-Sudan [KMS98}) Let G = (~: E) be any 3­

coLorable grnphWtth n vertices. We can coLor G using O(n1/ 4 ln1/'2 n) colors.

Proof. This follows by combining Proposition 5.2 and Proposition 5.1. In facto the

(ln n)-1/2 factor in Proposition 5.2 is a small nuisance~ and technically. we need to

applya gpneralization of Proposition 5.1.



Historically, there was a time [\Vig83} when ooly the direct method, the greedy algo­

rithm me~hod. and ~Vigderson's technique were known. Ifs easy to see from Figure

5.1 that in that case:

•
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• The direct method \Vas the ooly method available in the range 0 ~ a ~ 1.

• Greecly coloring \Vas the best method in the range 1 :5 a :5 1.5

• ~Vi!lderson~s technique was the best method in the range 1.5 :5 a :5 2

50 together. these three methods can be used ta find an independent set of size O(nt/2)

in any 3-colurable graph. By Proposition 5.1. this allows us to colur any 3-culùrablp

graph with O(I1 L(l) colors. hence repeating the result of \\ïgderson (\\ïgS:3I .

5.4 Blum's improvement

\Ve see [roln Figure 5.1 that hyperplane partitions and vector projection are in sorne

sense iIllpron~Ineuts ta greedy coloring. Blum attacked the problern frum the other

direction. trying to improve ~~'ïgderson's technique. He round [WO interesting im­

provements which. unfortunately! are not as simple as adding two new independent

set algorithms ta our tooI-box. However! these improvement can still be represented

as new lines in our figure.

Theorem 5.4 (Blum 1 (Blu94] [BK97]) If there is a constant ~a ~ and an algo­

rithm that find:i independent sets ofsize n(n-î+jd) for 3-colorable graphs with m ~ na ~

then there i.'j an aigorithm which, for any 3-colorable graph G ~ will output either:

• 2 vertices which must have the same color in any Legal 3-coloring of G ~ or:
- 1 2

• an independent set of sue n(n-ï+ïd) •
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Theorem 5.5 (Blum 2 [Blu94] [BK97]) Same as above~ but with r2(n-k+tà
).

44

~ote that finding two vertices which must have the same color in any Legal 3-coloring

of G is in fact much more desirable than finding independent sets~ because we can

collapse the two vertices together and start again with one less verte..'C.

b

•

1
1 direct
-1-----

1

2b
"", ""a, " -

" "" "" ", "
Blum:! ," ,,"

",
Blum l '

vector
projection

hypc:rplane
partitions

greedy
algorithm

•

Wigderson·s

1 technique
1o -:- - --..L-----------------~f___. a
o

Figure 3.2: For m = na, the independent set round is of size f2(nb ). This is nat

technically true for Blum 1 and BLum 2. but these algorithms behave similarly.

Each marked intersection point in Figure 5.2 corresponds ta a coloring algorithm that

appeared in the literature as the result of combining two methods (whose names are

given by the Labels on the two lines creating the intersection) .
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1 [K).[S941 13b

intersection coloring obtained reference

1 O(n1/ 2) [\Vig83]

2a O(n2/5) (BLu94]
1

O(n3/ 8)2b [BLu94]

3a O(nO.386 ) [K~IS941

•

1
4a O(n2/9) [BK97}

4b O(n3/1-l) [BK97}

•

BasicaIly. aH the components were present in 1994. but the way in which these com­

ponents shouLd be combined to give the best coLoring wasn·t published until 3 years

later. In onr fralnework this amounts ta noticing the twa intersections -la and -lb at

the top of Figure 5.2.

•
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Chapter 6

Concl1lsion

As stated in Section 1.3, the best result on the inapproximability of coloring 3-colorable

graphs is il resu[c by Khanna, Linial. and Safra [KLS92]~ which says chat it is XP­

complete to colol" a 3-calarable graph with 4 calars. Thus a polynomial time algorithm

that wonld eo[or any 3-colorable graph with 5 colors is still possible in our enrrent

stace of k[ll)wletlge.

Renee there is the ob\-ious open problem:

Gan we llTLprUl.'t; the best bound for .~-cDlorability~ currently O(n3/ 14 )? ln particular.

cun we color an!} 3-colorable graph using a constant number of calors in polynomial

time if O'r maybe using a constant times log n colorsq Or is there an inapproximability

result that would forbid one or both of these possibilities?

On the oeher hand. it is also possible that progress in the near future will be made

by de\-ising- better independent set algorithms that insert new cuts in the diagram of

Figure 5.2. In that ease, the framework laid out in Section 5.3 will praye ta be useful.

Spherical unit-distance embeddings have nice properties, thus one additional question

46



would he:

Can comp~ct embeddings of graphs be used far applications other than approximate

graph coloring?

•
CH.-\PTER 6. CONCLUSION 4;

•

•

Also, l find that an algorithm that uses semidefinite programming is less attractive

than a discrete ëùgorithm because the former involves computing with imprecise rea!

numbers. a.nd the irnplementations of semidefinite programming solvers are still slow.

Therefore:

Can we prore Corollary 4.12 (or something at least as strong) without using semidef­

inite programming'!
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