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Abstract

We describe how to embed a graph into a small n-dimensional hypersphere such
that the endpoints of any edge are placed exactly one unit of distance apart. As an
application. we show how such an embedding can be used to find large independent
sets in sparse 3-colorable graphs. By combining this algorithm with another which is
specialized in dense graphs, we obtain a randomized. polynomial time algorithm that

can color any 3-colorable graph using at most O(n'/* log"/? n) colors.

Résumé

Nous décrivons comment inclure un graphe dans une petite hypersphére en n dimen-
sions de sorte que la distance entre les extremités de chaque aréte soit de exactement
une unité. Comme application. nous montrons comment une telle inclusion peut étre
employvée pour trouver de grands ensembles indépendants dans les graphes creux qui
sont 3-colorables. En combinant cet algorithme avec un autre qui est specialisé dans les
graphes denses. nous obtenons un algorithme randomisé qui peut colorer n'importe
quel graphe 3-colorable en temps polynomial. en utilisant au plus O(n"*lug'”? n)

couleurs.
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Chapter 1

Introduction

Suppose that given a graph. we build a physical model of it where edges are unit-
length rods and vertices are flexible joints. To give more freedom. we suppose that
this linkage lies in many dimensions and that edges and vertices can cross. A graph
constructed in this manner is likely to be very flexible, and therefore can take a variety

of shapes. These shapes are called unit-distance embeddings of a graph in R

Having made this definition, we can ask for a unit-distance embedding that is optimal
in some respect. One such optimization will be investigated: given a graph. find
the most ~compact” unit-distance embedding. That is. the linkage should lie in a
hypersphere of radius r where r is minimum. Finding such a compact embedding has
applications to the problem of graph coloring. We will show how it can be used to
find an independent set of size > 0.006 n*/3m~1/3 (In %m)-l/? in a 3-colorable graph
with n vertices and m edges such that m > 2.61n. This will be added to a tool-
box of algorithms that also find large independent sets in 3-colorable graphs. [t will
be shown how these can be combined to give an algorithm that can color 3-colorable

graphs using O(n*/* log'/? n) colors, and how most of the approximation algorithms of
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the literature for this problem can be obtained as a combination of some independent

set algorithms from our tool-box.

1.1 Statement of originality

The main result is not new (it can be found in [KMS94]), however. the approach taken
here is different. For instance, we consider an embedding that is equivalent to but
different from the one in [KMS94]. This allows us to replace the voncepr of rector-
coloring by the known concept of unit-distance embedding, which is also more intuitive.
Although the connection with unit-distance embeddings is simple and obvious. it is
neither mentioned in [KMS94]. nor in the rewrites [MNR97] and [KMS98]. In fact. all
of the results of Chapter 2 have been rediscovered by myself. and the proof supplied

is mine.

Finding independent sets as an intermediate step toward a coloring is an old idea
[JohT4a]. but it is not explicitly stated in recent papers like [BK97] and [IKMS98].
Here. the idea is fully exploited. and leads to the diagram of Figure 3.2. which not only
explains graphically where the number 1/4 of the performance analysis comes from.
but also contains in itself an historical account of most of the previous approximation

algorithms for coloring 3-colorable graphs. Such a diagram has never appeared before.

1.2 Previous work on general graph coloring

Most previous results on approximate graph coloring can be classified into 4 categories.
depending on whether they apply to all graphs or only to k-colorable graphs, and

whether thev are approzimation algorithms or inapprorimability results.
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We will denote by A an algorithm that colors an n-vertex graph G in time polynomial
in n. and write A(G) for the number of colors used by the algorithm A on the graph
G. We also write x(G) for the chromatic number of G (the minimum number of colors
necessary to color the graph G). See Definitions 2.1 and 2.6 for formal definitions of

a graph. of a coloring. and of the function x.

Definition 1.1 Write f = O(g(n)) to mean that f < cg(n) for some constant c, and
f = 0(g(n)) to mean that f = O(g(n)log*n) for some constant erponent a.

In the case of general graphs. the results are often given as a bound on the approz-

*((g)) in terms of n. (Note that 2& > 1 by definition of \(G).) For

mnation ratwo G

example. the trivial algorithm “Color G by using one different color for euch verter”

is an example of an algorithm A which satisfies:

A(G)

o X(G) —— < n for every graph G (L.1)

In [Joh74bl. Johnson analyses the worst case performance of many heuristics and
shows that in this respect they are comparable to the trivial algorithm. Furthermore.

the best known algorithms are in some sense not significantly better. as shown in

Table 1.1.

On the other hand, by using Probabilistically Checkable Proof systems. many inap-
proximability results have been found. That is, assuming various computational com-
plexity conjectures. it is shown that some approximation ratios cannot be attained by

any polynomial time algorithm. A list is given in Table 1.2.

The result of [FK96] is inspired by zero-knowledge proof systems and almost matches

the performance of the best approximation algorithm.
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reference | performance
[Joh74b] | 23 = O(2;)
- a n)?
[Wigs3] | 481 = o(aibsienr’)
3
BRo] | 49 - o)
n n)?
[Halg3] | 48 = o(2hekenl)

Table 1.1: Approximation algorithms for general graph coloring

| reference | impossible for any € > 0 assumption
[BS94] ::—CG;; <n&~* for everv graphG | P # NP
[BS94] f{% < ni6~¢ for every graph G | co-RP # NP
[BGS95] %g} <nt=* for every graph G P #NP
(Fiir93] %‘% < ni~t for every graphG | co-RP # NP
. [FK96] | 4G < n'~* for every graphG | co-RP # NP |

Table 1.2: Inapproximability results for general graph coloring

1.3 Previous work on restricted graph coloring

In the previous section it was shown that finding good colorings is a hard problem.

but this is due to the presence of some graphs with relativelv large chromatic number

Y(G). If we restrict ourselves to graphs with x(G) < k (called k-colorable graphs).

then more refined results become possible.

In a classic paper, Karp [Kar72] showed that it is NP-complete to color a 3-colorable

graph using 3 colors. More recently, it has been shown [KLS92] that it is also NP-

complete to color a 3-colorable graph using 4 colors. Therefore. assuming that P #

NP. it is impossible to find a polynomial time algorithm 4 such that:
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A(G) <5 for every 3-colorable graph G (1.2)

For k > 6. Garey and Johnson [GJ76]. [GJ79] exhibit a family of k-colorable graphs
such that it is NP-complete to color them using less that 2k — 4 colors. Therefore.
assuming that P # NP, the following is impossible:

A(G) <2k -4 for every k-colorable graph G (k > 6) (1.3)
More recently it was shown [KLS92]. [LY94] that for any ¢ > 1. there exists a constant
k. such thar the following is impossible (again. assuming that P # NP):

A(G) < ck for every k-colorable graph G (k > k) (L.4)

On the positive side. the literature contains many approximation algorithms for the

problem (which are described and classified in this thesis). shown in Table 1.3.

 reference | A(G) for 3-colorable G | A(G) for k-colorable G :

_ [Wigsy) oA ons)
[BR9Q] O(y/n/logn) O((n/ logn) &)
[Blu89) O(n?) O(n3=%)
[Blu94] O(ni) O(n¥=)

. [RMS94] O(n3) O(nt)

. [BK97] O(n3)

. [BKYT| O(n)

Table 1.3: Approximation algorithms for restricted graph coloring
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We note that for k-colorable graphs there currently exists a large gap between the
performance of the best known approximation algorithm and the best known in-
approximability result. Namely for 3-colorable graphs, the best performance A(G)
theoretically achievable in polynomial time can be anything between 5 and nt. This
is unlike the case of general graphs (Section 1.2) where the gap is practically closed.

assuming that co-RP # NP.

Finally. by using improvement techniques, Linial and Vazirani [LV89] have shown that
if an approximation algorithm ever achieves 4(G) < n® Ve > 0. then there exists an
approximation algorithm that achieves A(G) < log'™n Ve > 0. In other words. for
fixed k. the best possible approximation algorithm for k-colorable graphs uses either

more that n° colors (for some c). or closer to logn colors. but not in between.



Chapter 2

Unit-Distance Embeddings of
Graphs

2.1 General embeddings

Since we will only consider graphs that are simple. finite. undirected and unweighted.

we will use the following definition.

Definition 2.1 A graph G = (V. E} is composed of two parts: a setV = {v1.va. .. .. ta}
of n elements called vertices, and a set E = {ey,e3,...,em} CV x V" of m unordered

pairs of distinct vertices (called edges).

Definition 2.2 4n embedding of an n-vertez graph G = (V. E) into a d-dimensional
Euclidean space is simply a function ¢ : V — R mapping vertices into points in
Re. Let r, = (v;) for all i. Then the matrix of an embedding is a d x n matriz

X =[z1. 3. .. .. zp], where each z; 1s viewed as a column vector.
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V= {v. v, t3. 14}

E = {(vy, va). (1. ). (Lo, 13). (02 13) }

03 -2 1
22 0 -2

X=

Figure 2.1: An embedding of a graph in R?

The following result shows that not too many dimensions are necessary.

Lemma 2.1 Embedding an n-verter graph never requires more than n dimensions.
If we have an embedding ¢ : V' — R? with d > n, then it is equivalent to another

embedding v : 1" = R" up to an orthogonal transformation.

Proof. The n vectors (v1). =(ta). .- .. () span a subspace S C R of dimension
at most n. Let & be the dimension of S and choose an orthonormal basis for S.
For each v,. let w(v;) be the coordinate vector of (t;) in the new basis. Then

v() ERFCR® Vil<i<n.

Note. The careful reader will notice that onlv n — 1 dimensions are necessary if we
allow translations. (For example, any triangle has 3 vertices. but it can be drawn
on a piece of paper in only 2 dimensions.) A systematic way of achieving this is by
translating the set of points to make its “center of mass” coincide with the origin
before we apply Lemma 2.1. However, this “(n — 1)-Lemma” will not be used later

because the position of the origin will be important (it cannot be moved).

One reason for embedding a graph into an Euclidean space is that doing so defines a

distance between vertices.
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Definition 2.3 The Euclidean distance between two points z;,z, € R* is defined to

be ||z, —1,lla = \/(Iz' - ;) (z: — 7,).

2.2 Small distortion embeddings

Now that these basic concepts have been defined many possibilities can be investi-
gated. For instance. given a connected graph G. it is not always possible to find an
embedding - such that dist(v;. ;) = [|2(v,) — 2(¢;)l2. where dist(r,.v,) denotes the
graph distance between two vertices. An example of this is the star i 3. However,
Bourgain [Bou83] has shown that it is possible to find an embedding with small dis-
tortion and small dimension. More precisely. for any n-vertex graph G. there exists
an embedding - : V" = R? satisfving:

Cy
log
d<cylogn

ndiSt(viv UJ) < () = ;9(1'])”2 < dist(v;, UJ) Vi.y € I

where ¢;.c, > 0 are some fixed constants.

[n {LLR93]. it is shown how such an embedding can be found in polynomial time (by
semidefinite programming), and how it can be used to find approximate solutions to

a variety of problems.

2.3 Unit-distance embeddings

The previous section was a digression because we will not use small distortion embed-

dings. However. we will use the following:
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Definition 2.4 A unit-distance embedding of a graph G = (V' E) is an embedding
¢ : V' — R" such that edges act like unit-length rods. That is:

llo(u) —o(w)ll: = 1 Y{(v,v) €E

Figure 2.2: The Petersen graph. drawn as a unit-distance graph in R*

The following definition will help in visualizing many proofs geometrically. as opposed

to merely checking the algebra as it is dore in. say, [KMS94].

Definition 2.5 4 regular simplex is the generalization of the equilateral triangle and
of the regular tetrahedron to many dimensions. If a regular simpler has k vertices.

k(k-1)

then the distunce between all ==— possible pairs of distinct vertices must be the same.

A regular simplex with & vertices and unit-length sides is easily constructed. Let
1.2, ---. 2k € R* be the vertices of the simplex. Then one possibility is represented

by the following k x k& matrix:
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: xfiiiik 4éij§5>
k =2 k =3 k=4

Figure 2.3: Some regular simplices with k& vertices

/3
29 0 .
0 £ 0 ... 0

Z=[z.n xl=]0 0 %5 0 (2.1)
0 0 0 v

Clearly. (5, - z)T(s-5) =1 Vi#j1<ij<k

However. the center of the simplex described above is not the origin. To obtain a
centered regular simplex with k vertices and unit-length sides. we simply subtract

¥2(1) from every entry in the above matrix to obtain:

Bkl (L) (L) L () |
(L) £y 2L L -2

Z=| ) -2 g . -2 (2.2)
Bl (RS SRR £

From this explicit representation we can derive an important lemma:



CHAPTER 2. UNIT-DISTANCE EMBEDDINGS OF GRAPHS 14

Lemma 2.2 In a regular simplez with k vertices and unit-length sides. the distance
between a verter and the center of the simplez is always /5L

Proof. Let r be the distance in question. In the representation given by the ma-
trix (2.2). the center of the simplex is the origin. By symmetry, r can be computed

from any column of the matrix Z. r? = 2l z; = }(52)+(k-1)3(})* = 5. Therefore.

— [k=1
r= BT

Corollary 2.3 In a regular simpler with k vertices and unit-length sides. the distunce
between a verter and the center of the simplex for k =1.2.3.4.... 15 0. 3. \/g \/g ...
and this tends to \/g as k = oc.

Proposition 2.4 Every graph G has a unit-distance embedding.

Proof. Suppose that G has n vertices. Simply map the vertices of G to an n-vertex
regular simplex. That is, let ¢ be represented by the matrix (2.1) or (2.2) with & = n.
Every pair of distinct vertices (in particular the endpoints of everv edge) is mapped
by - to points that are 1 unit apart. Therefore, this in a unit-distance embedding of
G.

2.4 Spherical embeddings, colorings and cliques

Definition 2.4 can be interpreted in an interesting way. If we imagine that the graph is
a linkuge where vertices are joints and edges are unit-length rods between the joints.

then any configuration of the linkage is a unit-distance embedding, and vice-versa.

One question that we can ask is “can we fold the linkage into a small ball?” More

formally. we ask the question:
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Given r > 0. can we find an embedding ¢ : V — R”™ which satisfies:

oo (ui) - 'r:(uj)”'l =1 V(u, UJ) €E (2.3)

le(edlla=r Yeel’ (2.4)

Such an embedding will be called a spherical unit-distance embedding because all ver-

tices lie on a hypersphere of radius r centered at the origin.

We will now make important connections between possible values of r and some

standard graph theoretical numbers.

Definition 2.6 Let G = (V, E) be a graph. A k-coloring of G is a function f: V" —
{1,2.....k} mapping vertices of G into k numbers called “colors”. A coloring f is said

. to be proper iff f(v;) # f(v;) Y (vi,v)) € E. The chromatic number of G is defined to
be x(G) = min{k > 1: there ezists a proper k-coloring of G}.

Lemma 2.5 Let G = (1, E) be ¢ graph. Let k = x(G). Then there exists u spherical
unit-distance embedding of G of radius r = /5L

Proof. The idea is to map V" to the vertices of a simplex according to a coloring of G.
See Figure 2.4 for an illustration. Let f : V" — {1,2, ..., k} be a proper k-coloring of
G. Let Z ={z;.z...., 2] be the representation matrix of a centered regular simplex
with & vertices and unit-length sides. Z is given by equation (2.2). We define an
embedding - : V* — R* by ¢(v,) = zf(,,)- This is a unit-distance embedding since
(visv5) € E = f(u:) # f(v;) = llp(vs) = o(v;)ll2 = 1. By Lemma 2.2. r = /&=L,
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Figure 2.4: A colored graph, and its corresponding embedding onto a simplex (the

points should actually overlap on the right)

Definition 2.7 Let G = (V. E) be a graph. A subset S C V" is said to be a clique of
size |S| in G off (v;,v;) € E Yuy,v; €S, v, #vj. Define the clique number of G to be
w(G) = max{|S]|: S CV and S is a cligue in G}.

Lemma 2.6 Let G = (V. E) be a gruph. Let k = w(G). Then for every spherical
unit-distance embedding of G. the radius must satisfy r >/ 5_,1—1

Proof. The intuition in this case is that a regular simplex is a “rigid” object that re-
quires a large enclosing radius. Since any embedding maps cliques to regular simplices
with unit sides. if G contains a large clique, then the embedding must have a large ra-
dius because it contains 2 large simplex. A formal proof is as follows. Let £ : 1" = R"

be any spherical unit-distance embedding. Since the embedding is spherical. we have:

lo(ullla=r Yv el

—_—
(V]
.
[W]]
~

Let S ={s;.5,...., s} be 2 maximum clique in G. For conciseness. write 2, = (3,).
Since S is a clique, the z’s are vertices of a regular simplex with & vertices and unit
sides. Let w = 1 %, z be the center of the simplex. We have the following equation,

which is similar to the basic equality Var(X) = E(X?) - (E(X))? of probability
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theory:
Lo A r
EZ“Zi-w"E = EZ(&-W) (z~w)
=1 i=t
1 k T 9 k T 1 k T
= k;-m Egélu—zgu w
1 k
= —leztll")—?wru.-i-wTw
ki:l
Ly .
= 23l - i (26)
i=1

From Lemma 2.2. ||z —w[. = /52 Vi and from (2.3) ||z}l = r ¥ i. Therefore.

(2.6) now reads:

k"’l 3 2
T=f"“"a|lz
k_l )

= T =T

= r> k-1
- 2k

2.5 The Sandwich Theorem

Let G = (1" E) be an n-vertex graph. Bv Lemma 2.5. at least one spherical unit-

distance embedding of G exists. So the following definition makes sense:

Definition 2.8 Let r(G) be the minimum r > 0 such that there ezists a spherical

unit-distance embedding ¢ : V- —+ R" of rudius r.
Then Lemma 2.5 and Lemma 2.6 combine to give the following result:

Theorem 2.7 Let G be any graph. Let x = x(G) and w = w(G) be the chromatic
and clique numbers of G. Then /%2 < r(G) < ‘/%
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To get 2 nicer result, we make a substitution:

Definition 2.9 (The Lovasz number of a graph) Let G be any graph. We define

1

3G) = T 2.

[ A
-~}
~—

Solving for r gives r(G) = /45*. Since the function f(zr) = /53! is increasing on

the interval 1. ) on which it is used. Theorem 2.7 becomes:

Theorem 2.8 (The Sandwich Theorem) Let G be any graph. Then

w(G) < 9(G) < x(G) (2.8)

The Lovisz number of a graph is a graph parameter that has surprisinglv manv
different characterizations (see [Knu94] for instance). It is proven in [KMS94| that

the characterization given here is equivalent to other accepted definitious.
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Finding a Minimum Radius

Embedding

The number r{G) of Definition 2.8 is interesting theoretically, but even better is the
fact that r(G) can be approximated in polynomial time. A spherical unit-distance
embedding - of the claimed radius can also be found. This may be surprising because
by Theorem 2.7. r(G) is “sandwiched” between two numbers that are known to be

hard to compute (computing anv of them is an NP-complete problem).

The technique uses semidefinite programming, which unfortunately is too complex
to describe here. However, in this chapter we will give enough details so that it
will be possible for the reader to compute r(G) numerically by using a semidefinite
programming package as a black box. The same basic idea is used in [LLR93] to

compute the small distortion embedding of Section 2.2.

19
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3.1 Positive semidefinite matrices

Definition 3.1 Let 4 be a real symmetric n x n matriz. A is said to be positive

semidefinite iff ul Au >0 Vu e R

We now make a correspondence between embeddings and positive semidefinite matri-

ces.

Fact 3.1 Let X be the matriz of an embedding. as described in Definition 2.2. Let

A =XTX. Then A is real symmetric positive semidefinite.

Proof. This is straightforward. 4 is svmmetric because A7 = (XYTX)T = XTXTT =
XN7X = A, A is positive semidefinite because for all « € R*. u7du = o' X \Nu =

(Nu)T(Nu) = [ Xul} > 0.

The converse will be more important to us:

Fact 3.2 Let A be a real symmetric positive semidefinite n x n matriz. Then we can

find a real n x n matriz X such that 4 = X7 X.

Proof. Since A is a real symmetric matrix. we can write 4 = PTDP where P is
orthogonal and D is diagonal. Since 4 is positive semidefinite. the diagonal elements
of D will be non-negative. So we put X = DY2P. Alternatively, .\ can be found by
the Cholesky decomposition, slightly modified so that it will not divide by zero if 4

is not of full rank. See a book on matrix computations such as [GVL83] for details.
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3.2 Reformulating spherical unit-distance embed-
dings
Let V" = (G.E) be a graph and let - : 1" — R" be an embedding of G. By letting

X = [o(v).¢(va), . ... o(vs)] and 4 = [a;;] = X7 X, we can rewrite the constraints

(2.3) and (2.4) of a spherical unit-distance embedding as:

L= () = 2@)lE = llz - 2,05 = (2. - 2)T (2 - £))
= 1:3-1:, - 2:::3-1:J + .‘L'}-J.'J =a;-2a;;+a,; V(v.tv)€EE
o= feeli =l =zln =a Yo eV

Hence the problem of finding a minimum radius spherical unit-distance embedding of

a graph (recall Definition 2.8) can be rewritten as the following semidefinite program.

Theorem 3.3 Let G = (V' E) be graph. Suppose that we can find A = [u,,| such that

A is real symmetric positive semidefinite (3.1)
ai; —2a;;+a;, =1 V(y,vy)€EE
a;—ap =0 Vi,2<i<n

a) I minimum

Then.
r(G) = Vau (3.2)
= 1
U6) = ;50 (33)

an embedding matriz X can be found by solving A = XTX (3.4)
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3.3 Solving the semidefinite program

Definition 3.2 In general, a semidefinite program is an optimization problem with
variables a;; that includes the constraint (3.1) and some linear equality constraints of
the form ¥ i) Y5y tijai; = c. The objective function to minimize (or marimize) is a

linear combination of the a;;’s.

Theorem 3.4 A semidefinite program of size n with m equality constraints can be
solved within € of the optimum in time polynomial in n, m and log.L by intertor poini
methods [Ali93] or by the ellipsoid method [GLS88], provided that a bound on the value

of the optitnum is known in advance.

Theorem 3.4 will not be proved. but we will show that the search space of a semidefinite
program is convez. Since optimizing a linear function over a convex set is in general

much easier than over an arbitrary set. Theorem 3.4 is not too surprising.

Proposition 3.5 The search space of a semidefinite program is conver. Let A and
B be matrices. Let 0 < A < 1. If A and B satisfy the constraints of a semudefinite
program. then C = AA + (1 — A} B also satisfies these constraints.

Proof.

1. C is real symmetric. CT = AAT + (1 -AN)BT =24+ (1-A)B=C

[§%7

. C is positive semidefinite. Let u € R*. ufCu = u7(Ad +(1 = A\)B)u =
ATAu+(1-AuefBu>0+0=0.

3. C satisfies the linear equality constraints. Suppose that one of the linear con-
straint is Z?:l Z;‘=[ t"ja.,'j = c. Then:

?:l ?:[ t‘!]c!] = A Z?:l ;:l tiJaU+(1—A) 2?:1 Z"x=1 tijbij = AC'\"(I —/\]C =c
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To simplify the rest of the exposition, we will disregard the error e. assuming that ¢

is chosen sp that the precision will be satisfactory.

3.4 An example: the 5-cycle

Let G be a graph. If somehow we know that

«(G) = x(G) (3.3)

Then for this graph. Theorem 2.8 becomes w(G) = #(G) = x(G). This means that
for this graph. w(G) and x(G) can be found in polynomial time by computing ¥(G).

Furthermore. the embedding given by Lemma 2.5 will have minimal radius.

The smallest graph G with w(G) < x(G) is the 5-cycle Cs. Finding a spherical unit-
distance embedding of minimum radius for Cs should prove to be interesting because

by Theorem 2.7. we know that % <r(Cs) < \/é_

In this case. solving the semidefinite program given by Theorem 3.3 gives:

r 1
a b cc b

babeec where a=§-%\/5=0.276393...
4= b “

chabe b=—i0\/§=—0.223606.._

ccbaybd 31 |

Lb ccba c=§'6 9—1=0.{)83410.,.

Interestingly. rank(4) = 2, therefore the spherical unit-distance embedding of C;5 of

minimum radius lies in two dimensions. It is shown in Figure 3.1.

r(Cs) = Va =0.525731 . ..
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1

—— =/5=2.236067...
— V5 36067

9(Cs) =

Ce \ z f ;C-‘./’

Figure 3.1: Optimal spherical unit-distance embeddings of Cs and of C-

3.5 Other applications of semidefinite programming

Semidefinite programming has been used by Lovdsz [Lov79] to compute the Shannon
capacity of a graph. It is also the only known way of computing 2 maximum clique

and a minimum coloring in perfect graphs in polynomial time {GLS81].

Historically. the first use of semidefinite programming in combinatorial optimization
was by Goemans and Williamson [GW94]. [GW93] to obtain improved approximabil-

ity results for the MAX CUT and MAX 2SAT problems.

These results inspired Karger. Motwani and Sudan [KMS94} to adapt the technique to
GRAPH COLORING, which in this case corresponds to finding a unit-distance spherical

embedding of minimum radius, as described in Chapter 2.

To date. semidefinite programming has also been successfully applied to MAX k-CUT
[FJ97]. Max BISECTION [FJ97] and GRAPH PARTITIONING [WZ96]. Furthermore. for
MAX CUT and GRAPH COLORING. one can use the specialized procedure of [PL96]

that runs significantly faster that a general purpose semidefinite program solver, if

the tolerance ¢ is not too small.



Chapter 4

Finding Large Independent Sets

In this chapter. we will see how the graph embedding of the previous chapter can be
used to find a large independent set in a k-colorable graph. This first step is already

interesting because in general it is hard to find large independent sers.

Sections 4.4 and 4.5 each present an additional independent set algorichm that does
not require any result from the previous chapter. These algorithms have different
properties. and they nicely complement the independent set algorithms that are based

on graph embeddings.

4.1 Generating random n-dimensional vectors

The algorithms in the next two sections require random n-dimensional vectors. They
are rundomized algorithms. A good way to generate a random n-dimensional vector

in practice is through the multidimensional normal distribution.

[\]
[4]]
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Theorem 4.1 Let z),2;,...,2, ~ N(0,1) be independent, normally distributed ran-
dom variables with mean 0 and variance 1. Then the distribution of the random vector

2= (2.29....,20)7 is spherically symmetric.

Proof. Write ¢(z) = le;e‘% for the density of the standard normal distribution.

The joint density of the n-dimensional standard normal distribution is:

T 1 s 1
IL1,T2,...,Lp) = I)=|——e 7 |...| —=—e7
f( 1. 42 n) EQ( ) (\/2—71_ \/ﬁ
1 _ xzx +:::,+...+z:’t 1 _ M
= ———e Z = =€ 32
(2%)z (27)2
Note that f(r).Is,.... z,) depends only on the length ||z|| of the vector r. therefore

the distribution must be spherically ssmmetric.

As a practical note. there is a very nice way to obtain two independent standard
normal random variables z;,2z0 ~ N(0.1) from two independent uniform random

variables u;, uy ~ UNTF(0.1) on a computer:

Let t = Vv =21n Uy

a = 27?11.'_)
Put z; = tcosa
z» = tsina

4.2 Hyperplane partitions

Let G = (1. E) be a graph with n vertices and let J = ¢(G). Apply Theorem 3.3
to get a spherical unit-distance embedding ¢ : V" — R" of radius r = % This
embedding is compact. vet pairs of vertices that are joined by an edge are forced to be

“far” apart. This section and the following exploit this observation to construct large
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independent sets. We start with the hyperplane partitions approach, which gives a

weaker result. but is easier to explain.

Definition 4.1 Given a graph G and an embedding ¢ as above, a random hyperplane
partition of the vertez set V' is defined as follows. Let z = (21, zs....,2,)7 be a random
n-dimensional vector. Then z partitions the verter set as V" = Vi U V) in a natural

way:

hh={veV:g)- >0}
la={veV:¢g(r) 2<0}

Note that the set {v € V : p(v) - z = 0} is empty with probability 1. If we imagine
the hyperplane orthogonal to z and going through the orgin. then this classify ver-
tices according to which side of the hyperplane they lie on. This erpluins the name

hyperplane partition.

Figure 4.1: The partition V" = V] U V5 of the vertex set by =

As an aside, there is an application (Theorem 4.3) of hyperplane partitions to clique
breaking. This is interesting because it is a special case of the NP-complete problem

SET SPLITTING.
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Proposition 4.2 (Clique breaking) Let G = (V) E) be a k-colorable graph. There
erists a partition V' = Vy; UV, such that the graphs induced by Vi and V) are both
k-clique free.

Proof. Let f: V" — {1.2,....k} be a proper &-coloring of G. There are many possible

solutions. One of them is to put

WN={velV:fv)=1}
Vo={veV:fr)=23..... ork}

The induced subgraphs are respectively 1 and k — 1 colorable. therefore they must be

k-clique free.

Theorem 4.3 4 “clique breaking” partition as described in Proposition 4.2 cun be

found in polynomial time.

Proof. Compute J(G). By Theorem 2.8. J(G) < k. If 9(G) < k then by Theorem 2.8.
G contains no k-clique. so no partition is necessary. Else 9(G) = k. Find a spherical
unit-distance embedding ¢ of radius r = \/% Let = be a random n-dimensional
vector and compute an hyperplane partition 1" = 1} U V5 from : as in Definition 4.1.
We claim that 1} and V2 contain no k-clique. We proceed by contradiction. Suppose
without loss of generality that V} contains a k-clique A" C V). Since g(v)-2>0 Vv €
K. we have that %Z,e,\» ¢(v) -z > 0. But this is impossible because the center of 2
regular simplex with & vertices and unit side must be the origin when it is embedded

on the surface of a hypersphere of radius r = /5.

Note. If G is 2-colorable, then the partition found by Theorem 4.3 is 2-clique free.

that is. it is edge free. By assigning one color to V; and one color to V5. we have found



CHAPTER 4. FINDING LARGE INDEPENDENT SETS 29

a 2-coloring of G in polynomial time. (There is no surprise here, but it is nice to see

that our complex approach can solve this basic problem.)

Now, the application of hyperplane partitions to finding independent sets in 3-colorable
graphs.

Definition 4.2 Let G = (V,E) be a graph. A subset S C 1’ is said to be an indepen-
dent set of size |S| in G iff (vi,vj) € E Vv, v; €S, vi # vj. Note that this definition

is tn some sense the opposite of the Definition 2.7 of a clique.

Lemma 4.4 In a spherical unit-distance embedding of radius 7‘5 the probability that

the two endpoints of an edge are on the same side of a random hyperplane is %

Proof. Let € = (v;,v,) be an edge of the embedding. Consider the two-dimensional
plane going through z, = ¢(v;). T, = ¢(v,). and the origin. The intersection of this
plane with a random hyperplane is a line L going through the origin. Furthermore.
since the hyperplane is random. the orientation of L on the two-dimensional plane
must also be uniform. See Figure 4.2. The probability that the two endpoints are on

the same side of the hyperplane can be computed geometrically: it is 3.

Theorem 4.5 (Markov’s inequality) Let .X' be ¢ random varicble that takes only

non-negative values. Then for any a > 0,

P(X > a) < 2X)
a

When a graph is very sparse. it is very easy to find an independent set directly. The
following proposition will be useful as the final step of other methods. It also gives

our first independent set algorithm.
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Figure 4.2: The probability that a random line through the origin does not cut a

segment spanning 120° is &

Proposition 4.6 Let G = (1 E) be a graph with n vertices and m edges such that

m< %n. We can find an independent set of size > %n in polynomiul time.

Proof. For every edge. remove one of its endpoint from the vertex set. Since there are
at most 3n edges, at most 3n vertices will be removed. In the process. every edge will
be destroved and at least %n vertices will remain. Therefore. we get an independent

set of size at least in.

Theorem 4.7 (Karger-Motwani-Sudan [KMS94] [KMS98]) LetG = (1. E) be
a 3-colurable graph unth n vertices and m edges such that m > -}n. We can find an
independent set of size > 0.104n'%¥m=081 in polynomial time with probability at

i
least 2

Proof. Find a unit-distance embedding ¢ of G of radius r = ;—% in R™. This is possible
since G is 3-colorable. Let ¢ = [log; *2]. Use ¢ independent random hyperplanes to
partition V into 2¢ subsets. By Lemma 4.4, the probability that an edge “resists™

these ¢ cuts and have both endpoints in the same subset is (%)c Let m’ be the
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number of such edges. The expected value of m’ is:

1\¢ 1 lo8s 4 n n
E ’=‘- - < (—) = —_—— = -
m)=m(3) <m(3) " =mim=1

By Markov’s inequality, P(m’ < §) > 7. If m’ > § then exit with a failure. Otherwise.
build a subgraph H of G by removing one endpoint from each edge. By construction.
H has at least § vertices, and every edge of H has endpoints in different subsets. By
the pigeonhole principle, one of the 2° subsets must contain at least 5/2¢ vertices.

c log, &2
This subset will be our independent set. It has size > %(%) > %(%) Bt
m)lngal

loga ( logs 2
(L) =2 (& = — L nlHog3 2, —logs2 4 71630 -0.631
4 (") =3 (-hn) = it m >0.104n*%%m )

Note that by repeating the above randomized algorithm ¢ times. the probability of

failure drops to (%)t

In this section we considered 3-colorable graphs only. but the algorithm and its analysis

can be generalized to k-colorable graphs in a straightforward way.

4.3 Vector projection

Instead of using many hyperplane cuts through the origin. the following method uses
only one hvperplane which is at some carefully chosen distance to the origin. The

method considers only the vertices lying in the small half of the hypersphere.
This is the most complex section of the thesis, but the main result of the section

(Theorem 4.11) is key to get good colorings later, so proving it is justified.

Lemma 4.8 Let £ € R™ be a unit vector. Let = = (2;.2.....2,)7 be a random

variable having the n-dimensional standard normal distribution. Then r-z ~ N{0.1).
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Proof. Note that since ||z]] = 1, £ - z is the length of the projection of z along z.
Since the distribution of z is spherically symmetric, the distribution of r - = does not

depend on the direction of z. Therefore, -z ~ (1.0,...,0)7 -z = z; ~ V(0. 1).

Definition 4.3 Write N(z) for the tail of the standard normal distribution. i.e.

N(z) = [ ~ 8(t)dt

4

Lemma 4.9 (folklore) For everyz >0, (}: - 'le) o(z) < N(z) < ().

Proof.

Lemma 4.10 Firanya <1 Theni-%>2 forr> /-

- l-a

Proof. This is embarrassingly straightforward.

l-a

(multzplvmg each side by ﬂa)

The constant 0.006 that is derived in the next theorem is in no way fundamental.
For instance. it depends on the number 2.61 which is somewhat arbitrary. Deriving a
constant is not usually done in theoretical works but it makes the result much more

concrete.
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Theorem 4.11 (Karger-Motwani-Sudan [KMS98]) Let G = (V,E) be a greph

with n vertices and m edges such that m > 2.61n. Let d > max(J(G).3). We can
] bl ——1—

find an independent set of size > b = 0.006 R~ $m3~! (In i:_'-) * in polynomial time

with probability at least 2.

Proof. Find a spherical unit-distance embedding > of G of radius r = / ’{,—;‘- in R™.
In this case it is important that z = (z;, 23, ...,2,)7 have the n-dimensional standard

normal distribution.

Define S= {vi el : %cp(u,) -z 2> c}

2d - 2)
J

where c¢=

im . .-
In — is a “magic” number
n

Note that ¥ > 3and m > 2.61n = ¢ > 1.25. Let n’ and m’ be the number of vertices
and edges in the subgraph induced by S. As a first step. we derive a lower bound
for E(n’). Since t(z,) is a unit vector. by Lemma 4.8 1o(v;) ~ N(0.1). So for any

t; € V.

Plv,eS] = P [%’*’(U") -z 2 c] = N(c)

1 1
> [= =~ =
= (C c,) o(c)

036 1 &2 I
2 =€ T sl >1.25=
= 273 since ¢ 2> 1.25 —o
-_— 0'36 1 d=2 lnlm
T ooc ?.we
036 1 (4m)%“
T ¢ Vr\n
0'09 1 2 b -
= E(n’) = TlP['U,‘ € Sl > —c- 9‘_4;"’2-3'”1%-1

Next. we derive an upper bound for E(m’). Let (v, v;) € E. Since we are using the

standard normal distribution, the calculation will reduce to a 2-dimensional problem
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in the plane that goes through z; = (v:), z; = ¢(v;) and the origin.

Pir,eSandv; €8] = P[%xiozZC and —i-z,»:Zc]
= Pz falls in region R| (see Figure 4.3)
< P falls in region U] (see Figure 1.3)

29 -
= N(ac) where a= °(g 91) > V2

1 0.72
< —odfac) < —ao(ac
< —o(ac) < —=o(ad
0.!2_1- _ﬂ}—ﬁln%ﬁ
c V2x
0

012 1 (im
T ¢ Var\n
0

11 2,
E(n'y = E(m") > (0.09 - 0.043)-—=4in*"ms™"
c\2r
. ] dm\“: 1 .o, : s
= 0043\]2(&-—2) ([DT) -E-ldn oI
9.2 2_1 "lm —i
> 001202 3m} ([n T)

We will use Markov’s inequality to show that n’ —m’ will be within half of its expected

> 2 -4
value with some reasonable probability. Let b = 0.006 n*>~3mi~" (In *T”‘) * (half of
the bound above). Define the random variable X =n +m' — n’ > 0. Note that our

result above translates into £(X) < n - 2b.

Pl'-m'>b = Pm'-n' < -b=PX <n-1}
E(X)

= 1=P[X>n~b>1-
1-PX2>2n-b2>1 ——

n-2 b >b
n-b n-6""n

> 1
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If n' —m' < b then exit with a failure. Otherwise, build a subgraph H starting
from S and removing one endpoint from each edge of the graph induced by S. By

construction. H will be an independent set with at least b vertices.

VA,

X, + X,
e+ x,l

Z2uc

Figure 4.3: Finding both endpoints of an edge in S is surprising because it implies that
the projection of = onto the plane going through z,, r; and O falls into region R. It
is easier to evaluate the (greater) probability that the projection of = falls into region
U'. The computation of a (omitted) can be done geometrically from the drawing on

the right. and using Definition 2.9.

Note that by repeating the above randomized algorithm a polynomial number of times.

the probability of failure drops exponentially.

We have the following specialization of the theorem to 3-colorable graphs:

Corollary 4.12 Let G = (V. E) be a 3-colorable graph with n vertices and m edges

such that m > 2.61n. We can find an independent set of size

b = 0.006 n*3m-1/3 (ln 47"‘)—1/2 in polynomial time with probability at least 2.
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4.4 Greedy coloring

Definition 4.4 Let G = (V, E) be a graph. For every vertez v € \". the degree d(v)

of the vertez v is the number of neighbors of v in G. The maximum degree in « graph
is defined to be A(G) = maxyev d(v).

Greedy coloring is a very simple coloring algorithm: At every step, we pick an arbitrary
uncolored vertex v and color it using the smallest-indexed color that is not already
used by some neighbor of v. Since every vertex has at most A(G) neighbors. greedy

coloring will use at most A(G) + 1 colors.

We show how the greedy coloring algorithm can be turned into an independent set

algorithm.

Theorem 4.13 In any graph G = (V. E) with n vertices and m edyes such that

m > -n we can find an independent set of size > —n ’m-t.

Proof. Partition " into two sets.

Lee S={vel: <im}

Let T={vel: >im}

Then 2m = Ter d(v > Toerd(v) > [Tl

=>|Ti<inso|S|l=n-|T|2>3in

Let H be the graph induced by S. A(H) < 2, so the greedy coloring algorithm will
color H by using at most ** + 1 colors. By the pigeonhole principle. at least -r-—

vertices will get the same color This gives us an independent set of size > m—n, >
n? }.

-1
2(4m1-.m)

n“m
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4.5 Wigderson’s technique
We present Wigderson's algorithm, specialized for 3-colorable graphs.

Theorem 4.14 (Wigderson [Wig83|) Let G = (V. E) be a 3-colorable graph with

n vertices and m edges. We can find an independent set of size > n™'m.

Proof. 2m = ¥ ¢y~ d(v), so by the pigeonhole principle, 3v € V" such that d(¢) > 2.
Let N(r) be the neighborhood of v. Since G is 3-colorable, the subgraph H induced by
V(v) is 2-colorable. Use a polynomial time algorithm to 2-color H. By the pigeonhole
principle. one of the color classes will contain at least $Z% = 2 vertices. This gives
our independent set.

Note that if m < n then the argument still goes through. but the result becomes ~we

can find an independent set of size 17, which is trivial. So we might as well require

that m > n.



Chapter 5

Approximate Graph Coloring

5.1 Heuristics vs approximation algorithms

Let G be a graph. Finding a proper coloring of G with the minimum number (G)
of colors is & hard problem (it is NP-complete [Kar72|, [GJ79]). However. in practical
applications. a proper coloring with slightly more than x{(G) colors can still be useful.
Practical applications of graph coloring are mostly resource allocation problems. For
example. if V" is a set of equally long tasks and E is the set of pairs of conflicting
tasks. then a small coloring of the graph G = (V) E}) will give a way of scheduling the

tasks that avoids conflicts and minimizes the time needed to run all the tasks.

It is not hard to invent a heuristic that will color most graphs with few colors. How-
ever. it is usually not hard either to find an example for which the heuristic will fail
to give a good coloring. (Such examples can be found in [Joh74b].) [t is much more
interesting (at least theoretically) when a heuristic comes with a performance guar-
antee. When an algorithm has such a guarantee and runs in polynomial time it is

called an approzimation algorithm.

38
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5.2 From independent sets to colorings

From any algorithm that finds large independent sets, we can derive a graph coloring

algorithm as follows:

while G is non-empty
find an independent set I of vertices in G
color these vertices using one new color
replace G with G - I

end while

The following proposition gives a guarantee on the quality of the coloring in terms of

the qualitv of the independent set algorithm.

Proposition 5.1 Let G be a graph with n vertices. Suppose that we have an alyorithm
that can find an independent set of size > c¢N® for any N -verter subyruph of G (for

some constants 0 < a.c < 1). Then the technique above will find u proper coloring of

1
c(l=a}

G with at most n'~¢ colors.

Proof. Note that if at some iteration G has n vertices. then at the next iteration
G will have at most |n — cn®] vertices. Since [n — cn®| < n — 1. the algorithm will
terminate. Let s{n) be the maximum number of iterations the algorithm can possibly
take when its input graph has n vertices. We prove by strong induction on n that
s(n) < qll_a)n““.

Basis: if n = 0 then s(n) = 0 < £z150'~* so the proposition holds.

Induction step: The algorithm provides a recurrence relation:

s(n) = 1+s(|ln~cn"]) the recurrence relation
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1
< 14—
- c(l - a)

1
I+ c(l -a)
1
c(l —a)
1
c(l -a)

= I-L_].—n
" ¢(l —a)

(ln = cn®))t™® by induction

(n - cna)l-n

= 1+ n'=e(1

— ma—l)l-a

< 1+ n'=%(1-(1-a)en®*!') sincel—a<1

l-a

c(l -a)
B c(l —a)

Since we use exactly one color per iteration, an n-vertex graph will be colored with

at most n'~2 colors.

L
c(l—a)

5.3 Combining independent set algorithms

All the independent set algorithms that we have so far for 3-colorable graphs (ran-

domized or not) are reviewed below.

method reference condition | size of independent set
Direct Proposition 4.6 | m < 3n n

Hyperplane partitions | Theorem 4.7 | m > tn 0.104 nt630 m-0-63t

Vector projection Corollary 4.12 | m > 2.61n | 0.006 n*/*m~t3 (In %)-L/‘!
Greedy coloring Theorem 4.13 | m > in HnPm™t

Wigderson's technique | Theorem 4.14 | m >n n~im

Some algorithms are good for sparse graphs, others are good for dense graphs. To
make this idea precise, consider a graph with m = n® edges. The above algorithms

all return an independent set of size O(n®) for some b. The relation between « and b
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is as follows (shown graphically in Figure 5.1):

method condition | relation

Direct 0<a<l |b=1

Hyperplane partitions | 1<a<2 | b=1.630-0.631¢c

Vector projection 1<a<? }b a

L
3

=4
3
=2

Greedy coloring 1<a<?2 |b -

Wigderson's technique | 1<a<2 |b=~1+a

A direct

vector
projection

hyperplane
partitions

Wigderson's
technique greedy

algorithm

0 : i ] i >
0 1 13 1.75 2

Figure 5.1: For m = n®, the independent set found is of size Q(n?)
We can see from Figure 3.1 that
e The direct method is the only method available in the range 0 <« < 1.

e Vector prujection is the best method in the range 1 <a < 1.73

e Wigderson’s technique is the best method in the range 1.75 < a <2
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o Hyperplane partitions and greedy coloring are strictly inferior to vector projec-

tion
So by combining the algorithms properly. we obtain:

Proposition 5.2 Let G = (V,E) be any 3-colorable graph with n vertices and m

edges. We can find an independent set of size Q(n®™(Inn)~1/2).
Proof.

e if m < 0.3 n. use the direct method to obtain an independent set of size Q(n).

¢ if 0.3n < m < 2.61n, use greedy coloring to obtain an independent set of size
Qn).

e if 2.61 < m < nb™, use vector projection to obtain an independent set of size

Q(n® 3 (lnn)=1).

o if n'3 < m. use Wigderson's technique to obtain an independent set of size

Q{nﬂd\))'

In every case. the size of the independent set is 2(n%*(in n)'%). therefore the result
follows. Note that we use greedy coloring only to fill the small gap 0.5n < m < 2.61 n.

which cannot be seen in Figure 5.1.

Corollary 5.3 (Karger-Motwani-Sudan [KMS98]) Let G = (V. E) be any 3-

colorable graph unth n vertices. We can color G using O(n'/*In'/* n) colors.

Proof. This follows by combining Proposition 3.2 and Proposition 5.1. In fact. the
(Inn)~'? factor in Proposition 5.2 is a small nuisance, and technically. we need to

apply a generalization of Proposition 3.1.
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Historically, there was a time [Wig83| when only the direct method, the greedy algo-
rithm method. and Wigderson's technique were known. It’s easy to see from Figure

5.1 that in that case:

e The direct method was the only method available in the range 0 < a < 1.
o Greedy coloring was the best method in the range 1 < e < 1.5

o Wigderson’s technique was the best method in the range 1.5 < a <2

So together. these three methods can be used to find an independent set of size Q(n'/?)
in any 3-colorable graph. By Proposition 3.1. this allows us to color any 3-colorable

graph with O(n'/?) colors. hence repeating the result of Wigderson [Wig83].

5.4 Blum’s improvement

We see from Figure 5.1 that hyperplane partitions and vector projection are in some
sense improvements to greedy coloring. Blum attacked the problem from the other
direction. trving to improve Wigderson's technique. He found two interesting im-
provements which. unfortunately, are not as simple as adding two new independent
set algorithms to our tool-box. However, these improvement can still be represented

as new lines in our figure.

Theorem 5.4 (Blum 1 [Blu94] [BK97]) If there is a constant “a” and an algo-
rithm that finds independent sets of size S'l(n‘%*%“) for 3-coloruble gruphs unth m < n®,
then there s an algorithm which, for any 3-colorable graph G, unll output either:

e 2 yertices which must have the same color in any legal 3-coloring of G, or:

e an independent set of size Q(n‘§*§“).
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Theorem 5.5 (Blum 2 [Blu94] [BK97]) Same as above, but with Q(n~373).

Note that finding two vertices which must have the same color in any legal 3-coloring
of G is in fact much more desirable than finding independent sets, because we can

collapse the two vertices together and start again with one less vertex.

b
A
{ direct
| T/~
|
!
t
vector
projection
[
|
|
Blum2 - ,’ hyperplane
: Blum | -~ partitions
|
! i . greedy
; andf:rson s algorithm
i technique
Q —- — =
0 ! 2

Figure 3.2: For m = n®, the independent set found is of size Q(n?). This is not

technically true for Blum 1 and Blum 2. but these algorithms behave similarly.

Each marked intersection point in Figure 5.2 corresponds to a coloring algorithm that
appeared in the literature as the result of combining two methods (whose names are

given by the labels on the two lines creating the intersection).
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l_intersection coloring obtained | reference

1 O(n'?) [Wigs3]
2 O(n?3) [Blu94]
2b O(n3/) [Blu94]
3a O(n"-336) [KMS94]
3b O(n*/3) [KMS94]
a O(n*?) (BKY7]
4b O(n¥™) [BK97]

Basically. all the components were present in 1994. but the way in which these com-
ponents should be combined to give the best coloring wasn't published until 3 vears
later. In our framework this amounts to noticing the two intersections da and 4b at

the top of Figure 3.2.
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Conclusion

Asstated in Section 1.3, the best result on the inapprozimability of coloring 3-colorable
graphs is a result by Khanna, Linial. and Safra [KLS92]. which says that it is NP-
complete to color a 3-colorable graph with 4 colors. Thus a polynomial time algorithm
that would color any 3-colorable graph with 3 colors is still possible in our current

state of knowledge.

Hence there is the obvious open problem:

Can we unprove the best bound for 3-colorability, currently O(n®™)? In particular.
can we color any 3-colorable graph using a constant number of colors in polynomial
time? Or maybe using a constant times logn colors? Or is there an inapprorimability

result that would forbid one or both of these possibilities?

On the other hand. it is also possible that progress in the near future will be made
by devising better independent set algorithms that insert new cuts in the diagram of

Figure 5.2. In that case, the framework laid out in Section 5.3 will prove to be useful.

Spherical unit-distance embeddings have nice properties, thus one additional question

46
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would be:

Can compuct embeddings of graphs be used for applications other than approrimate
graph coloring?

Also, I find that an algorithm that uses semidefinite programming is less attractive
than a discrete algorithm because the former involves computing with imprecise real
numbers. and the implementations of semidefinite programming solvers are still slow.

Therefore:

Can we prove Corollary 4.12 (or something at least as strong) without using semidef-

inite programming?
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