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ABSTRACT

The asymptotic solution of the boundary value problems for

ordinary differential equation of the form

k .\  (k+x)
s aj(x) y(J)(x) + E: &€ I‘a.k . r(x)y (x) =0

j=20 r=1

ak(x);!Oin 0<€£x<1,
which exhibits boundary layer behavior as &€ tends to zero are
studied. Sufficient conditions under which the solution of the
full problem converges to the solution of the reduced prok}l%m'
(obtained by setting &€ = 0), except‘ in thg boundary layer, are

stated.



The initial value problems for nonlinear ordinary differential

equation of the forms

ax

EE = f(xa Y t)v
&y _

édt = g(x, N t)a

where x and y are m- and M~dimensional vectors respectiveiy are
also considered. The thesis is prinmarily a compilation of some of
the important works on singular perturbation problems by Visik and

Lyusternik, and Vasileva.
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INTRODUCTION

In the boundary value problems of mathematical physics the
differential equations are often simplified by neglecting terms
which are of higher order of differentiation than those taken
into consideration. The best known example is the relationship
between the theories of the flows of viscous and perfect fluids.

Now given a differential equation involving a small parameter
ig , and of some boundary conditions (we call it the problem Age )
in such a wayvthat the reduced differential equation obtained by
letting & formally tend to zero (we call problem A to this
reduced problem) is of lower order though positive. Then the
.solution.of problem Ao, being tﬁe soiution of a lower order differ-
eh?ial equation, iﬁ.génefal cannot be éxpected to satisfy all the
,”ériginai bo#ndafyvconditions.'vTﬁié loss of boundary conditions in
thé'paséaéépto fhe liﬁiﬁ means that éhe solution does not converge
uniformly everywhere. This nonunifofmity of the convergence is
the_most'interesting1aspect of this type of problem. In fluid
dynamics it leads t§ the formatipn of boundary layers. Thesebtype
of problems occur in the theory of viscous flow, in certain problems
in the ﬁheoryvof elasticity and in other branches of Applied
Mathematics.

A consideration of two very simple examples will show some of

the features of such type of problems.
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(1) A simple model that illustrates loss of the highest

*
derivative in boundary layer theory is given by [1] * as

dxa

2
€ SX LU
dax
y(0) = 0 and y(1) = 1
where ta' is a constant.

The exact solution is

. (1 =-a) 1-expl-x/& )
v g) = U7 TEREET e e

and Lim y(x, £ ) = (1 - a) + ax 0 £ x <1,
& => 0 +

The limit value is the solution of the reduced équation that satis-
fies the boundary condition at x = 1, but not at x = O unless a = 1.
The convergence is uniform in every closed interval 0 £ §< x <1,
but not in the whole interval O é x < 1. In a narrow interval of
width O(€ ) the solution changes rapidly from y(x; £)=0atx=0
to a value différing by a function that is 0(€ ) from the limit
y(x, 0) = (1 = a) + ax. This is the interval of boundary layer.

(2) An example illustrating the additional difficulties
which arise in the case of nonlinear differential equations is
given by { 2] .

Consider the problem Ag as

&y, &, raxy
& L +dx+(dx) =0, 0£x<&1, y(0)=y°, y(1) = ¥

ax 1

eeeees (0.1)

The limiting differential equation }iaving the real solution is

o

= O, and one might expect a behaviour somewhat resembling that of

Numbers in square brackets refer to the Bibliography.
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in example (1). Nevertheless, it will turnout that with the
exception of the trivialv case ¥, = 3 equation (0.1) fails to
possess any solution at all when € is sufficiently small. e con-
sider the case when ¢ =20 +.

We know that y{(0) = Yoo Let us set dy = tan'/:',
dx! x =0

‘= TN/2< ¥ <IT/2. Here « may depend on ¢ and tan<v-, as a function
of € , may be unbounded. Now the differential equation in (0.1)
may be integrated explictly in the form

yix,e) = Yo * € [¥- sin (exp.(-x/¢ sinv¥))}
where sin-l denotes the principal value, betwe'en - 7 /2 and 7 /2,
of the inverse sine function. It follows that [y(x,e:) =Vl < €Nt o
and for givenvyo, ¥q there will be no solution of (0.1) when '

Z(yl -y.)

' o .
0 <€ < =

The non-existence of the solution of (0.1l) is generally attri-
buted to the circumstance that- the differential eguation is noniinear
in dy . For this reason some authors [2] y [3] restrict themselves

dx

to the differential equations that are linear in dy and dzg (not
dx dx

necessarily in y).

In this thesis we shall restrict ourselves t§ singular pertur-
bation problems (defined in Theorem l.l) involving ordinary linear
and nonlinear differential equations assuming that the singular
nature of the problem is carried entirely by a reduction of the o;der
of the differenﬁial equation (and the consequent failure of some of

the boundary conditions) as ¢ —»0. M. I. Visik and L. i. Lyusternik



developed a powerful method for the solution of linear singular

perturbation problems, which is independent of the general
asymptotic theory of linecar differential equations. Here the
material is based on the work of M. I. Visik and L. A. Lyusternik
[4] and A. B. Vasil'eva [5] .
The first three chapters carry a detailed investigation of
the connection between the distribution of the signs of the roots
of the characteristic equation of an arbitrary nth order linear
- differential equation and the nature of the supplementary conditions
pnder which the passage to the limit leads to the solution of the
equation. And the fourth chépter surveys the above problem for
nonlinear equations.v
In this paper we shall make use of the notations
(u, v) = ff u. v ax, Huyf = Cu, u)%
Q S '
W;(Q) is the Hilbert space qépsisting'of'the functions u(xl,xa...,xn),
which are in 2'2 together wiﬁh all ofvtheir derivatiﬁes up to the

k~th order, with the norm
s

_ L
PR O 2P B

saee Dx.
1is

Wl denotes the norm in a certain Banach space. ¢ is the region

of n-dimensional space. :




CHAPTER 7.
ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICILNTS.

We shall consider the asymptotic representation of the solu-
tion of problem A, as ¢—>0.
Problem Ao consists in solving the differential equation of

order k, .

rPeoage aw

c_:.M:x'

with the k bourdary conditions: -
y(l) (0) .

D, . (i ‘=,o,'-‘1,5...., k) - SR (1.2')

J KN o e ey
~and J (1)- =D, (= o, 1.....,k2 Lk +ky = k)(l.a."):__

The coefflc:Lents aJ are constant..

Problem A e cons:.sts in. solv:.ng the equat:x.on of order (k + @) )
. S
A i) o o (k + 1) . o
Z 2 * > 5 x+r¥ 20 (1.3
j=0 '.','1'=1"'" L ‘ . '
where &> O, w:.th the (kx + ﬁ,) boundary condlt:x.ons

$%0) + ﬂ < 1) 8 (1.4')

D‘ ( 0 l’o--o-’ k

ro l

iy =p_, - ,(s_o 1,...,k +£ _-1 2 + 2 1)

| <1 Ly
We shall first consider the ‘ca'sg when all the (k +,0) boundary
conditions are at the boundary point x = 0 and none at x = l; i.e.,

when k, = 0, ,2,2 = 0, ;{7,1 A0 and Ky #Z O. |

The characteristic equation corresponding to equation (1.1) is

k ce
PN = s ay N\° "= 0. o (1.5)

j=0
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For simplicity we assume that the roots Py Poseeespy of (1.5)
are all distinct. Therefore the general solution of (1l.l) has the

form
k

yx) = 37 ey exp Gu %)
=1

and therefore using the boundary conditions at x = O, we have

k i o
Z d.,(,‘l.) = y (O) = D:D (l = O’ l,..o, k - l)
PR d-7d . (1.6)

It is a system of linear equations in c‘j, so its determinant

_W(}.ll, pa,....pk) is vandermonde determinant and since the numbers Py

are distinct, we have

W (ayy Byreeesy ) £0 - (1.7)
The auxiliary characteristic equation for (1.3) is
Qo(/\) = Z CHE }\r=o . (l.g)
r=0 ) ' ‘

Let the roots of this equation be 1)1, 02,...,02.

Also the characteristic equation associated with (1.3) is
. K :

. _ 3 . r k +r _

Pe (?‘): .Z ajA‘fZ éak.‘_rh —0(109)
j=0 r=1

The following lemma holds.

Lemma 1.1 [4: The roots of equation (1.9) have the form

—

T R (L = 1, 2ye0eyk)
and EE = vr * ér (I‘ = 1’ 2’..',2)’
' . € €

where ei and e"'xi. go to zero with :e' v Py and \Vr are the roots of the
equation (1.5) and (1.8).respectively.
Proof: see [ 4] page 262-3.

Let v (xl, xa,...,xn) = Ve (x) be a function defined in a regio

) o)
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For simplicity we assume that the roots Py Poreee iy of (1.5)

are all distinct. Therefore the general solution of (1.1) has the

form

k
y(x) = ‘Zl' ¢y exp (,ua.x)
J =

and therefore using the boundary conditions at x = O, we have

k .
¢..(u)t = $X0) = Db (i= 0, 1,00ey k = 1)
J.Z= 1 9"'}13 : (1.6)

It is a system of linear equations in cj' so its determinant

yl(pl, }12,...,luk) is vandermonde determinant and since the numbers Ay

are distinct, we have

w (}11’ Pa"“‘!ﬂk) % o . . . (107)
The auxiliary characteristic equation for (1.3) is
(M) = 5 a . N=0 | (1.8)

r=20
Let the roots of this equation be 01, 02,...,\‘%.

Also the characteristic equation associated with (1.3) is
; K . :
. _ J : r k +r _
J = 0 r=1
The following lemma holds.
Lemma 1.1 [4: The roots of equation (1.9) have the form

=p v e (=1 2,.1..,1;)

’
:vr+ €r (r=1, 2,000.8),
€

.and

Nhf‘”‘ d

where (:i and é;- go to zero with :(.' v Py and w)r are the roots of the
equation (1.5) and (1.8).respectively.
Proof: see [ 4] page 262-3.

: Let v (xl, xa,...,xn) = Ve (x) be a function defined in a regica
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Q of n-dimensional space (n » 1) which is p times differentiable.

We say that Ve (x) is a function of bbundary layer type of the

k-th order (k & p) if:

1)  the function v (x) and its Qerivatives up to the p-th
order (p > k) inclusive are concentrgted near the boundary p of the .
region Q, i.e., these funct.ions converge uniformly to zero as ¢-=> O
on an arbitrary closed subset of Q nbt contvaining points of /7 .

2) the k-th derivatvives of the function v, (x) al;e bounded:
in Q as ¢- 0, and at the same time -amozllg the (k + 1)-st derivatives
of v, are functions convergin'g to co in the norm of the corres-

ponding problem A, as ¢-> O; the j-th derivatives of v, (for j<k)

vanish on § when g-» O.

Theorem 1.1 [4] The solution y e of problem A . has the represen-
tation ' | .
Ye =y ) +v, &) +az, (x) (1.10)

where yo(x) is the solution of the reduced problem A ; v, (x) is a
function of boundary layer type of k-th order in a.neighborhood of the
point x = O, and % ¢ together with all of its derivatives, converges
uniformly to gero, as ¢—=> 0, on an arbitrary interval [ a b] , ax< b..
Proof: The gle{neral solution of equation (1.3) has the form

Ve = jZ= 1’;j exp (Fx) + Z_ 'l?x rr SXP C—I—'é—x-) (1.11)

We call the perturbation of problem A . to problem Ao singular if
the real parts of the roots of (1.8) are negative. Let the real

parts of these roots be negative denoted by - Ar(f )‘r = w)r) , T = 1,e00,8.

- 7
to these correspond the roots = & T ( >‘r - ér_? of the characteristic

, ¢ 2
equation of (l.3), and, accordingly, we write the particular solutions
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of (1.3) in the form ék exp (=~ ; -}\rx/é ).

Then the general solution of (1.3) is of the form:
= F T exn >+§>: 7 x > (1.12)
yé x) = ¥ ¢ exp(px k+1r € exp( I.x). +12)

j=l » r=1 3

Using the boundary conditions (1.4), .we get the first k equations as

. TG 4 oce) 3 Dio (i =0, 1y.su,k 1)
c.\u. + c = Ujo = Uy Lyeesyk -

z 37 z = (1.13")

K+r
j=1 r=1

and the succeeding Q equations after multiplication by é( take on

the form

k +«0
(1.13")

ko A .
ZE G T TGN =
=l r

Where & = 1 - k, A=0, 1yeee, £ - 1.
When ¢—>O-the system (1.13') goes to system (1.6) with determin-

ant W(/ul, /ua,...,/uk) and the system (1.13") go into the equations

k §)

k k ‘ |
jZ= l(Pj) s+ ;Z= L (=2) ¢ .. = Dk_'o for «=0
£ | (1.1%)
2 (= )\r)k +% °k+r=o for & = 1, 2’__.’Q_l.
r=1

The determinat of system (1l.6) and (1.1k4) is

-.) k.“.....—...‘.".'. - A k
W9ul, PZ,-QQ,}Jk) (_-_l)__~ s . )

(_ Al)k"'z-loooo ( Alf'i"z-l

B

. X k-
W(’.ll, PZ,--M)W(- )l,ono," I\\e)( Al’...’ )E) (—1) ‘Q}{ O,
since by assumption any of these factors is not zero.

The coefficients and the right members of the systems (1.13')

and (1.13") approach the respective coefficients and right members of
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the limit system (1.6) and (1.14) as &~»0. It means that B, (deter-

minant of the system before the passage to the limit) approaches to

B as o= 0. Consequently for small &£ , Bé, # 0 and the systems (1.13')

and (1.13") are solvable, their solutions "é"j(j = Lyeeayk + 4) approach-

cj + 77{ j,'j]j'éO as

ing the solutions c‘_j of the limit systems: /gj
£ =20,

Introducing the notations

L k -
Ve = r%lé ck+rexp[-)\rx]
‘ £
and
2z = Ye =Y, =Ve = 23‘_— 1cj exp(}).jx) - yo(x)
k . x
= (cj +7}j) exp (}1jx) -3 c; exp (ij)
j=1 ' i=1"

k k v
%_= 1’)73. exp(()z.j + éj)x> + %___ lcj exp()ljx)exp(éjx - 1)

in (1.12), we get the required solution

Y& (x) = yo(x) + vg (x) + 2o (x)

of the problem A 2 .

Now we consider the case when k2 = 0, Zl = 0, kl #Z 0, and ‘/2 £ O

in equations (1.1) to (Ll.4).

Lo o
we write the general solution y & of (1.3) replacing °k & p by

expE— ilfg; s 1 in (1.11) as
k : - ~ g
Yo (¥) = 5 ¢ exp (}zjx) + ST e . X vr<x-1))
j =1 r =1 é

It is clear from the second term of this equation that if all

Re '§i> 0, then for sufficiently small & all such solutions have the

character of a bcundary layer near the '‘point x = 1l; otherwise the
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second term will tend to infinity as ¢-> 0. Therefore in this case

the perturbation is singular provided all { roots of equation (1.8)

have positive real parts.

Now we consider the slightly more complicated problem when ka

k. £ 0, Ql Z O and 22 Z 0 in (1.1) to (1.4). Now the perturbation of
problem Aé to problem Ao is singular when Qo( A) = 0, has Ql roots

- }\1,...,- )el, with negative real part and 22 roots '01, '92, .. _.w)zz, g

with positive real part. The characteristic equation (1.9) has thel

roots

;ﬁi =/u_i + éi’ 'lﬁ =:- )r +ér " Vé Vs
. &

2 €

(i = l’o.-o’k; r = l,-..,zl;.s =‘i"oo.,:£2)

Therefore the general solution of (1.3) can be wi‘itten in_the-

form o 7 _ L o
Lk PR N = N ¢ SEEEE RIS
(x) = T, exp(.x) + : ~ = Ax ) o
Ve T GV 2 ¢S el /)
i=1 .o r=1 ' ot Ly
v -
+ 7 & c\ . gl r s exp( (x 1))
s=1 o . €& o

where the last two terms are the boundary layer of order kl ‘and ké in

the neighborhood of the péints x =0 andbx =1 respeétively. ’I.‘hi'sh
solution can be expressed in the form of (1.10).

Consider now the most general problem consisting of (1.1.) to
(1.4) where ks ko 21 and .22 are nonzero numbers.
Theorem 1.2. [’-f] If the reduced problem Ao is solvable and if the
perturbation of problem A ¢ to problem Ao is singular, then for
sulff.icien.tly small ¢ problem A ¢ is also solvable, and the solution

Ve (x) of the problem A ¢ has the form

=0,
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yé(x) = Yo+ v+ zé('x), ' (1.120)
where yo(x) is the solution of the reduced problem Ao, vA?is a _
funcfcion of bo_undar:} layer type of the kl and kath order in the neigh-
borhood of.t‘he pdint X = '0 and x = 1 respectively, which along with
.all o"f ‘its 'derivati\}e.s van:.shes -.uni.formly, with . & on an arbitrary

' interval inter:.or to E_O q the function z é-(x) together wn.th all of its,

' der:.vatlves vanlshes unlformly w:.th é “on. the ent:Lre 1nterval [9 1]
_P_I_'go_f_ Let /ul’ ”12""’)}‘1& be the roots of the equat:Lon (l 5). . The
'general solut:.on of (1 1) has tlﬂe form ,‘ AR, .
,.y(:_c).;;._ ; '=,.lc.j_ ex?_lguj.x) = J}: lcj‘_f’j
In order thag“s_omagy co'ndi.‘ti‘ons‘ (1.2) vbe..':_'s‘étvi'.sﬁfiéd, ‘we have
I ol e ) = Dyp (= Oy k

l_— l>

%;1‘:3'(}_)'3') : ‘e.xp (}J,J) = Dii(l =0y Lyeee,ky = 1).
In césé problem Ao is solvable the determinant Bl of this system is
not eqﬁivalent to “zero. ‘ ‘
Here problem A perturbs singularly to problem A if Q (}\)
has j roots -k -7\2,..., - /\El wn.th negatlve real parts and ‘

12(= £ - [l) roots 01, 02,...,0a2 wi‘ch positive real parts, so in virtue

~of lemma 1.1, the characteristic equation (1.9) has roots

Fi =}Li + éi(i = l,o.o’k), "‘ii = -(}i -+ éli)’ (i = 1,--.%),
é e
‘_},j - (0 é_a) ) (j = 1,000’ (2)0
' € , 4. '
The numbers éi’ é'i’ e%_ vanish with £.

The general solution y_ (x) of (1.3) has the form
&



yé(x)'=§ ,5;3 exp (u.x) + %1 fé’k+ eklexp ("‘—}"_‘]_I)

i=1 a=l. 3

2, s
~ k Filx ~ 1)
* 2 ck+pl+je?e@<3'——-»- =)
j=1 '
k+‘{’:
= 2 T W

j=1 39 (1.15)

It can be shown that the determlnant B of the llmn.t system ’
obtalned by the above problem is equal to

B-BlBZB3

where Bl is the determlnant of problem A o? whlch 1s not equal to zero,

by the assumption. that the reduced problem Ao is. solvable,

B = k +‘$/ L
2 = = 2, a,.-.-.el f A 0,
Y=0, 1,81 |
- kp +6 BTN PR
R B B et T

=0, 1,..0,8, -1
Therefore B # O.

Moreover by a similar aréument as was giverx 1n theorem l.Z, the
determinant Béoiproblem A ¢ approaches t‘o B ,-4 0 as &> 0. Consequently,
for. 'sufficiently smallé¢, B . | P4 O, and so problem Aé, is solv_able. |

In the same fashion the constants 'E:J.(j = 'l‘;...,k + 8 in l(:‘he
solution (1.15) tend to the constants cj(j =1, eeerk + ) of the

limit systems.

fE’j=cj+‘Y’j’ y}j—>0as €2 0 (j =1, 2,0ee,k +.4)

In (1.15) we introduce the notations

Zé(x)=z (e; + M) 'Cv'i - yo(x)
T i =1 ,
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Ve (x) =IZ=1 (°k+r+w\k'+'r) W’_k-&-r

theny, =y (x) + vg (x) +2z . (x)

(ci. + V}i) exp (P'i + ei)x - c; expg;uix)

=1

HFM®
l—‘MW

andz.é(x) =

. K . ,
= E l’hi exp (}11 + éi),x + Z ci exph (/uix)<exp(éix) - 1)

Since 'Y) -ﬁ 0 and é -7' O when ¢ O, it foilows that z_—? 0, wc(x)

vanlshes unn.formly on the segment [0 l] together wn.th all of its

B der:.vatlves. :
: .vé (X) =Z : (.cfk R L A r)‘wk "+ T
=ézlk+i‘+Y)k+r)¢xP( r‘)
k Q? U e -

o+ . : =-.1)

- ol exp(zw 3
Pl s -

s “_1 k.;.él +S _ -y’k. + él + s) N7 Z /

: The 'fifst' ‘sum  on the rlght in’ (1 16) vanlshes unuormly as

é-?O together with. all of its derlvat:wes on [O l] outs:.de an

_ arb:.trary nelghborhood of the pon.nt 'x = 1. Hence the p;'oof of the

theorem.
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CHAPTER 2

ORDINARY DIFFERENTIAL EQUATICNS WITH VARIABLE COEFFICIENTS

In the first chapter we calculated the aeymptotic solutien of
the problem A e in the case of its singular perturbation. There
the .preblem Ae consiets of i:he' ordinary differeniial equation with
constani; -coefficiehts'. In th:.s chapter we shall cons:Lder the ord:.nary
dlfferentlal equatlon w:Lth var:Lable coefflcn.ents. |

: Problem A cons:Lsts in solv:Lng the equat:.on,

zZ a (x) y(a) f(x), ak(x) ;5 O for O<x<l o (2.1)
‘--J'=O,.=,w : .
" with thevr.boux‘ld_ary _:cexidlifi'on:s v
y (O) = 0 (:L = O, l,colu, e l), L (2.2.) .

KD L hmo e b ) e

‘Under‘ dﬁr hypqﬁlieSis the coefflc:.ents 35 (x) (3 =1y 25000, K @)

are fdii‘ferentiai a"sﬁfi‘ic'.:lent number of tlmes. In partlcul_ar the,co- :

efficients in. the nelghborhood of the po:mts x =0 and x = 1 with

‘rema:mder of order N+ 1 can be expressed as

' aj(x); 'jo_;sg_l 35 s, oxs+ 3ﬁ+1o(X)xN+1 (2.3')
and, »with'the substitutien xi =1=x,
aa.(xl) = ajl + NZ aj,s,]_ xls + 335 N .l,l(‘xl}AvXS + L (2.3M)
s =1 '
Here a5, = a0y = 0, ‘ag, = 2,00,

Problem A. consists in solving the equation

.Lc_y = § aj(x) y(.])__‘:* Z. :erak . r(x) y(k + 1) = £(x)
| T TR BNEXY
a’k..i_r.(x) iéo for O ¢ xg 1
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with the boundary conditions
yE* 0y c0 (=0, 1eee,l - 1) (2.5")

52 %9y Lo (s

o, l,..;;@z -1; 22 =0 - Ql) (2.5")
along with (2.2). | L | |

Thexauxiliary charactgristic equations at the points x = O aﬁdv'

X = i whiéh'appeared in'theffbregoing_éhapter also énter into our

problem;'hQMely, at xﬁé'ovthe’equétion is .

and at x = 1,;‘
P . .2‘ . . S N , .
Q (A = 5 (w1)5 t s o v 81 'as = O. ‘ (2.6M)
- ; s = OA . o : - _

Theorem 2.1 [4] The solution y of the.problem A, has the

representation

| 'y=y°+vo+€-;c(°
Where Y, is the solution of the problem Ao, vo is the function of
boundary layer type of order kl in a heighborhdpd of x = O and of
order k2 in a neighborhdbd_pf x‘= 1, and ,‘°<o is a bounded polynomial
in ¢ and x.
Proof: The introduction of the ﬁolyhomial Qo() ) is motivated by

1

means of the stretching tpansformafion

t= g'; x= ¢t

In terms of new variable t we have from (2.4)
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'is the :prqduct of a bounded function.u
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-1
éa(x) {1>(

k + 01

&€ e+ :r'(X)y

n

IU.MW <. M ~
1t

x) + Ge + rzx)

M@

& Ly

H

=0

. .\ ) ’
& e vz s, 0y P
J L r=20

1
o v O

If the ri_ght'x’nember is expande‘d‘ in powers of € " this becomes

il =ty + 2;,:- i equy * f_N TRy, g @

(2.7M)

is a ln.near dlfferentlal operator w:.th constant coeff:.c:.ents.

A (L : (k+r) (k - 1) -
Ry = tak+r,l oY (t) ey Oy‘ t) -,

‘a.nd' in geriéral for '1 & 4 N R y is a llnear differential operator,

vthe coefflclents of whlch are powers of t not greater than: l). RN s 1

is a’linear dlfferent:.al operatqr, e_ach of the coefficients of which

: o ' » ' vx l-x
Similarly the stretching transformation tl-__-_ —él_ =—Z—— at the

right end point produces, .in analdgbus manner, the relation

K R N+ 1 5 -
é- Léy = My * JZ= L € ‘ley, | (2.8")
£ 'k +r ' (k + ) ‘
My = ¥ (-1) ay v () (2.8m)

+ r,1
r=20 »

in which Ril is an operator like the operator Ri l£&igN+ 1.

Now for the differential equations

(k + r)
Moy (t)

' %: % +r,07 =0, (2.9')
- .

=0
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My = (DF 5 DTa v =0 @

H‘\f(&

=0
the reépective characteristic equations can be written by virtue of
(2.6) in the form
| )FQO(}\) -0, - ) © (2.10")
) = o o o (2.10m)
The nonvénishing roots of these equations areridenticgl with those of
(2.6). TN
We assuhé that #he“perturbatibn of problem AE- to problem Ab is
singular i;e; equatioh (2.6') has El roots - )l' = Ajreees= Ay,
. : : o 1

and equation (2;6")vhas'€2 roots fﬁi;‘-ia,...,dﬁe with negative real

« - . 2
parts. Also we shall assume that the problem Ao possesses a unique

solution and thét the séme is true of_ﬁhe problem Aé s provided eé>ﬁ§
is sufficiently small. o
Let yo(x)be the solution of the problem>A°. In general it will
fail tovsatisfy Ql + 22 cohditioné. In order to improve the approxi-
mation Qe add to yo(x) tWo,correction terms which will yield an
. approximation to the boundary layer near the two end points, which will
be obtained from stretched form of' the differential operators (2.71)

and (2.8'). In the first approximation the stretched equation

I3
r=0

e+ r)y -0 (2.9)

is a differential equation in the independent variable t with constant
coefficients. Now we shall construct a solution of (2.9) which
remains bounded, as ¢—>+ O and which compensates for the discrepancy

between the boundary conditions actually prescribed at x = O and those
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satisfied by y _(x) i.e.,we require that
o at,

0, i

O' l,-o-, b l
E! (2.10)

-xfiz (x)\x -0, 1=k, k +1eee,k) + tl -1

y(i)(x)lx =0

or, equivalently,

0’ i = O, 1,ooo’kl - 1 (2.11)

(i) : ‘
Yy (t)‘ = L. . '
t=0 i (i) : . W »
T €% ,(O')"_r: coi, T F Kyaky ¥ lf""kl +eI -1
For simplicity we shall stipulate that the. '21 roots (with negative
real part) - }i' - )2,..., - X of (2.6') are distinct, but this
58
is not essential. The k + & functions t3(j = 0, 1,..0,k - 1), exp(- Ajb)
(3 =1, 2,.0-,0)) and exn( Ast) (5 = 1, 2y40418,) constitute a funda-

mental system for the differential equation (2.9). Ve discard the

L - 2 = 2’2 solutions exp( "j".‘) i« ﬁl, since exp( )'jt) = exp( )‘j:%)

diverges for these j, as ¢&w»+ 0. From the remaining k + al
particular solutions a linear combination can be formed that satisfies'
the k, + £, boundary conditions (2.11). To see this we first determine

constants Ac;., j =1, 2,...,(3,1 so that

| et (1)
( > ’5‘3. exp. (- )\j’c))
i=1

1 = kl, kl 1

The coefficient matrix of the left member is of vandermonde type which

= e é-yo(i)(){)’x =0
t =0

Flyenak + 8 -1 (2.12)

is not zero by the assumption that roots Aj’ j= 1,...,(&1 are

different. Hence (2.12) have a unique solution, which is of the form
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Te) = el e’ e) 5=, 20l (2.13)

where cg(é) are polynomlals in ¢ . Therefore, the function

4 . | k, & -
) Z fa R TV > lc‘j exp(-‘)ﬁ(a.llu)
J = ‘ j=

is the solution of (2.9) which satisfies the second group of conditions
in (2.11). The first group of boundary conditions in (2.11) can be
satisfied by subtracting the partial sum, up to terms of degrees LL_L -1,

of its Maclaurin series, from (2.14'). The partial sum,

l l kl =1
k _k
Z B S I
= k=0 J K
o o '
Therefore ¥+ v + & o (2.15')

satisfies. the kl + ﬁl conditions et x = O and which is expected to
approximate the solution of the problem A¢ better than ¥, in0g xgl.

~_Similarly we get, by the same type of construction,

1 1 "
Y, * Vgt €, . (2.15")
which satisfies all KZ + 22 conditions at x = 1.
where
5 & 1 & kK .k di-
(= )" t] ==-E€
& CJ 3 2
j=1 k=0 K}
=nd k ¢ -4 v
Ve g2 L3 | (2.14m)
vo = é Cj . .
j=1 '

Now we shall combine the two formulas (2.15') and (2.15") in one,

which will give a uniformly solution in the interval O € x £ 1. Let
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#(x) be an infinitely differentiable function of x such that
1, O0g4x<sg

glx) =

. O, 2g£x < 1,

where § is small positive number. Set

% = Bx) o + P - L

vy = B Vo + P - x) v o @as

. Then

' Y, + Vo +.e o(ol | : ' (2.17)
can be expected to be an improvement on the approximation yo. aloné, in
the whole vinterval 0] s-st 1 :

‘Now we iilustraté the theorem by an example.
Let the problem A, be | :
y(l)(x)=-1, - 0g&xgl
under. the condition y(O)..—'_. O, and the problem A . be

Léy = 62 y(E)(x) + & sn.n(_[_}g) y(a)(x) - y(l)(x) = -1
7 .
with boundary conditions y(@) = y(l) (o) = 0, Y- =0

clearly, here aa(x) = 0, al(x) = -1, aa(x) = sin(_;-_r{}g), aB(x) =1

The solution yo(x) of the problem A is yo(x) = %x. e find from

(2.6) that,

QO(M = <1 + ,\2 = 0, with zeros ‘,\l =+ 1, AZ = -1,

Ql(au) =1+ U - ,aa = O with zeros A4, =1 ;E y e = ;‘/—Z .

‘Furthermore from (2.9),we get
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my=-y D@+ yPw =05 0 t-xk

Mpr. = y(l)(tl) + y(a)(tl) - yb)(tl) =0; t

5 - :

Thus from (2.11) it follows that. VO must satisfy the conditions
M (vf’) = 0,

( ) R

Thus, vg, whlch mus., be a multlple of the part:.cular solut:n.on -'_f‘. VR '

exp(-t) of M (vo) 0 becomes _

vg = g exp (-v_t):;‘-_ é:,;exp('_-g)
Moreover,. w§ .find tha{; 4

¢ oco = -e .

S:Lm:Llarly N vi‘. | must sat:x.sfy

Ml(vo) =_

vi(:t_‘)‘lf -0 = -

1 - )

and must be a multiple oi" exp [- -]:—:L l] - e., 7

o
Finally, c% = O, since no other boundary condition need to be
satisfied at x = 1.

The solution of problem A ¢ becomes

it

| L 1
y(x) yo(x) + g (x) vg + g1 - x)vi‘ + € [¢(x) o(o + P - x) @(O]

x + € @(x) exp (;—Z)g) - J(1 - x) exp. - f;el - x)] e B(x).




- 18 =

We now aim at the following theorem which is a generalization

of the formula (2.17) of the form

y(x) = oﬁ yr é!‘ + % Vr ér+ é OZO O(r er (2.18)
r=0 r=0 " r=20

- Theorem 2.2. [4] Under the conditions of solvability of problem

Ao; of uniform solvability of problem Ae 3 and of singular perturbation

'Qf problem Ale - to problem Ao’ the solution y(x) 'of problem A e for

sufficiently small € » O admits the followirig representation:

| N N N
y(‘x_) = Z \ e'ryr"- + Z érvr + £ z Aér a(r ..
o r=0 - r=20 r=20
Here'yo is the solution'of‘pfoblem A3 ¥ T =1, 2,000, (together
‘1~_.ritlh its .dez"ivatives)‘ ai‘e bounded with respect to g én Og x <1;

1 in a neighborhoed of x = O,

and of order kz iri"‘ra neighborhood of x = 1 and %, are bounded

polynomials in x and € ".

' v, is of boundgry layer type of order k

Proof:  Inserting (2.18) iﬁ (2.4), we get
oa - T o0 T o0 T '
L [Z Yr € + éZ o(ré }.;.L[Z r & ]‘-.:f(x)
€] r =0 5 r =0 € r =0 (2.19)

The functioné, Y o(r and Ve to be now constructed depend on X,

as well as on € . Expanding
_ a r 2 ‘ T
L[Z Yre + &2 ré] - ()
_ € r=0 r =0

in povers of ¢ and setting the coefficients of ¢ equal to zero, we

get the differential equation of the form



- 19 -

k .
Z as (x) Y, (33 =F. . =0, 1,000, (2.20)

i=1
where Fo = f and the F o T ‘> 0O are linear differential expressions in

V5o Ky i< 1 w:x.th coeffn.cn.ents hoﬂomorphlc in O

j \x<1.

let us assume that we have already determlned y (x, € )j<gr, as
infinitely dlfferentlable functlon in O < x £ ‘1 and °( (x,¢6)y Jgr
as po.Lynomials' in € . Then the equatlon (2 20) has a un:.que solutn.on‘
satlsfylng the k boundary condltlons oi‘ the problem A « This is our
inductive definition of yr.  The funct10n~ yr(x, €) is infinitely often
differentiable if yj(x, & »), ' Q.(x, e ‘), j& r are. Moreover, it :'Ls a

polynomial in & .

Now strétching the term f__ ? vr & J by independent

variable t = x/¢ and expfessing it in the power of € we get after
equating all terms to zero,

Mv. = G, r >0, G

— ' o 1
oVr - o =0 _ (2.21")
VWhere Gr are linear differential expressions in the v., j < r, whose
coefficients are polynomials in t. Similarly in terms of the independent

variable tl - 1 =-x , we get the sequence of differential equations

Mlv = G:L y =0 Gl = O “(2.21M)
r r 0 .

Now from (2.21'), we shall construct a sequence of particular

solutions v; sy T =0, 1,... of the form

4 .
WO e et Zl 2 (4, €) expl= AE), T =0y 1,...(2.22)
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where the cgr are polynomialé in both variables. For r = O we

have already defined a solution VZ with this property. Under the
inductive hypothesis that all vg sy J <, are of the form (2.22) the
functions G; with vj = vg also becomes a function of tﬁis type. Now'
bj the method of undetermined coefficients the equation (2.21')

possesses a particular solution of the type (2.22), say,

o Ky al | At) |
f?rr = ¢ :Z "é lr (t, & ) exp(- jt ’ r=0, 1, 2,-"-.
i=1

Now if we add to it a solution of the homogeneous equation of

‘the form

=
H

f%; - et : Vér.exp(- )5t>
A

"

with constant coefficients Y;r' is= l,'2,...,£l that may depend on

€ , We can find that

B T
T - r
satisfies the 81 conditions
(3 . g -
o ; - - i, (3 -
Ve (t)lt =0 €Y .. (X)'x =0 J° kl’ klf;""kl+el'

The function vz so defined is a solution of (2.21'), and jr + v;

satisfies the Ql highest order boundary conditions at x = O.
Wle also wish to satisfy the first kl boundary conditions (2.11).
We expand v; in powers of t about t = O and observe that the partial
ke = 1

sum up to and including terms of degree t of this series is

annihilated by the operator M_. UWe call this partial sum - - € «;,



- 21 -

which is polynomial in x and ¢ . The sum ¥t v; +E& o(g satisfies’
the all required boundary conditions (2.11) at x = O. Similarly .
Y.t vi + € 0(3: can be constructed to satisfy the all prescribed

boundary conditions at x = 1. Finally we define V. and o, by

v, = Z(x) vg + g1 - x) vi‘
o =BG 6O+ P - o

We wish to construct an approximate solution to the order.N, for
our singular perturbation problem. Here the ek term in (2.7') and
(2.8") creates the trouble, which can be redﬁced by this correction
modification: For r £ N we proceed as. described. TFor r > N we calculate
a nunber of additional functions ’\‘rg . 2@;, § =0, 1;.. in the same
manner, except that we impose on %g + & 3(2_ the boundary conditions

at x = 0 and x = 1, respectively, instead of doing it for Y. ¥ vY o+ éo(g

as before. It is sufficient to go up to r = N + kK in this manner.
k k
1. -

Eowever, in view of the factor € ~ in (2.22) and similarly € 2

. ]
for the expression for Vo it suffices to go up to
N, =N + k - min. (kl, ka)

In this case the expression

N N N
r ‘ r r
e T s ¥ v freF e
r =0 r=0 r=0 '

is the solution of the full problem A, . Here

N+ 1. A
gfx, ¢) OS€5E, OsxEh

and gN(x, ¢ ) is bounded for O g x ¢ 1, 0o ¢ ¢ < €&y
(eo is constant).

The error W, = YN - y is the solution of the differential
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equation
N+ 1

LeWy) = ¢ gy (xye.)

which satisfies the boundary conditions (2.5).
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CHAPTLR 3
ORDINARY DIFFERENTIAL EQUATIONS OF EVEN AND ODD ORDIRS

This chapter deals with the conditions under which an ordinary
differential operator Lg (with parameters in the term with highest -

derivatives) has a uniformly positive symmetric part (3.7) and a

-uniform inverse, which guarantee the solvability oi‘ the problem Ag .

Furthermore we shall see under what condlt:.ons the problem A €
perturbs smgularly to problem A .

Let. the d:.fferentlal operator

ey = sy kv )
eys ¥y . a (x)y (x) -+ Z éak . J(x) ¥ (x)
s =0 3—1 : o
=L°y+L]é y o o ' (3.1)

(o , () £0 for O£ x g 1)

be given on the interval O £ x < 1. The characteristic forms
Tie(E 5 x) and ﬂel (% , x) of the operators L and Ljé at
the point x are defined respectively by,
: - J | .. Nk o+
(% ;%) = JZ-—IO.é 3 . ) @E ) I (3.2)
and ¢
1. . B K+ ]
n (B ® - JZ Ja L 0 (5% T Gy
Ifk + = 2(kl + Ql) is an even number, then we consider the

boundary conditions

70y = y(s)(l) =0, 5=0, Les,k + ei -1 (3.4)
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Itk + ¢ = 2(kl + Ql) + 1 is an odd‘nﬁmber, then the number of

boundary conditions at x = 0O and 1 depend on the sign of the

ki+ @ ,
coefficient a_ a(X) (-1f * &y i.e., for (-1) * 1ak +€(X)'> oy
y(r)(O) =0, =0, 1 L + 0 !
= 0, v daeeenky 19 f
| (3.5)
y(s)(l) =0, 5=0, Leeask; + 0 -1
k
and for (=1) * + alak . &(x) £0,
(C)0) 20, =0, Lyeeusky + 8, =1
y - ] = [ yer ey l 1

(3.6)
}'(S)(l) = o, s _ .

I

O’ 1,0'.,1{1 +el

We begin with the case in which k = 2k, and L= 2¢, are even
numbers. We shallderive below conditions under which the operator

Le with the boundary conditions (3.4) are positive and moreover are

uniformly positive, i.e.,
- (k1+¢ | .
(Leys ¥) > 0(2, [52‘21 Uy o lEx) 1 24 lly(k')(x) 112 + liy(x) I 2]

(3.7)
where 0(2 is independent of ¢ and y.

Theorem 3.1. [&] If the numbers k = 2k1, k+ €= 2(k1 + @l) are even,

if the characteristic form of the operator Li has a positive real

part, i.e.,’ 0 _ ; ( ) zl ( .
L 2] Ki+j Rk %3l 2 27 _2(ky+
2 € =" 220, +) ) F 1y € g L
: 1 ‘ . .

ji=1 - -

Re. ni'('g 3%)

8

and moreover if the operator Lo is positive:
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' (ky)
Ty 3 v Ny VI (e |® )

for arbitrary smooth function y satisfying conditions (3.4), then

the operator L. under the boundary conditions (3.4) is uniformly

positive for sufficiently small ¢ . .
Proof of the Theorem will be given after quoting a few lemmas.
We denote by /\éy the part of the operator Le-@’ o which is

equal to the sum of the terms of 'Le with derivatives of even order

and coefficients which contain ¢ -.

Lemma 3.1. If k¥ = 2k, and the characteristic form

1
o~ . l .
T.(% ;x) = Re, . ;7&( % jx) of the operator A, is

~ é K145 23 2(k+3)
n (g ;x) = Re, ﬂ:(7§ ;X)) = Zl (-1) 1+ € aa(k1+j)(X) z Gy +J
i=1
g-

> i 25 20k + )
5 o Z_— 'S % s (3.8)
7 j=1

Where 0(2 is independent of x and % then for sufficiently small ¢ :

. ¢ j + 3j) o
g A [T T

J=1

Sne [l ool 2+ 1o
(3.9

Vihere M is some constant, and y is an arbitrary smooth function which

vanishes near the points O and 1 and .outside of [0, 1] .

Proof: First we cogsider the case when the coefficients ai(x) = a;

are constants. .Le‘c the fourier transform of y(x) be ;
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~ +09 . o .
F(T ) = -]-'-J exp(;-i ; x)  y(x) dx
T3 2 2

Therefore 00

13X ¥E)-= ,;L/Jz}-;jexlac‘-i Ex) 8 e

. -

Now making use of the Parseval's equation and (3.8), we get 3

al ' 24 ..
: A _ J 2(k1+3)/v~ .
C Ay = CT(% 033 0,308 N3y (€ % ¥, ¥
e : Y-
j=1 '

and the estimate (3.9) is established, which holds for any finite
functions y(x).. |

Now we prove the inequality (3.9') when the coefficients ai(x)
are variables. ‘Let W is an arbitrary smooth function which vanishes
neér the points «f ar;d < +5 (and outside of [1\‘, < +5] ),
(7, 4+6 ) & [O, 1], . Denote by ,\2 the operator A, when its
coefficients are replaced with' their values at the point X

< X, & Y +8 - Applying (3.9") to W, we get

(A, W) = C Aze 4y W)+ (CAg= AN, W)
2 =1 . .
> o Z. é23 “ Wk +J)u 2y .- ((Ae' /\cé_). W, W)
. i=1 :

(3.10)
Integrating by parts ug to the order which is half the order of each |

component entering into A &’ we get
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1 -
. ' Ky+jf (k1+3) 5
(o= D= 3 & ng: 0, (u<x>‘h )‘kl*if‘))
. j=1 ] 1’&1+J)
(3.11)

Where M, (x) = aZi(X) - aai(xo).

(s) = s (1) (s-1)
Also, (’»)s ) = T + é;’: L oy . W

Estimating the scaldr product in each term of (3.1ll), we get
s

P D T, |, 3%i)w(fs-i))l
Sy ",
i=1

=3 ‘ '
s af|ulsll 2, CO[Z [, p%:)w(s‘l))ﬂ
' o= 1 ‘ . s

(3.12)

,( (s),(q)sw)(s))l ‘ w )y

Where ib"«i = max. ] W\s | for x € [d, b { +5] » 5 =k 4 l,...,kl+€l,

and co is constant.

Now after making use of the inequality

la, ol s - (2% + 2™ v )

for arbitrary ou>O, we get

‘@(s), 7 (s-l)>l< 7 [ a2 ||W(S) ” (l)w(.s-i)“ 2]
R YIRS o] s ]

= 1, 2,oo.o,50

. . (1) '
.uhere c = max." 2; 5 (x),‘ for O g x g.l
J=ky +1yeensky v Ql-, 14143

o
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Taking aa = & , we have for iy,

2(s -k, )'(W(S) (1) (S_l) ,ge(%ea(s-kl)' ” \‘,J("sj)“-?_).

o2 20s-ky)e1 ] (s=i))2

4 Le S=x1)-1 “w(s l)”

2
. . 2(s=kq)=1 2(s=i=k

For s-i> ky, 13 1, ¢ (s kl) < €. € 's L l), ,

and for s - i & kK, éa(s-kl).-l& ¢ (Since s > kl, € <1).

Therefore for s> kl(3.12) gives

2( -kq) 2( -kl1)
s- l'((s) (.“sw)(s)) +°1e)é s-k1 ‘w(s)“a’
— 2(r-kq)
o5&

T2 zl |w°“>nz] |

I' = kl+l

Substituting in (3.11l) the es‘l.;imé\te“foﬁﬁd and reducing like term's,"'

we get
[CCA- a0 | g (B5eicye) Z & Yt fZ, <) =
“ =1 |

Choose ¢ and § in such a way that Qg + G € < i ‘ 

We get from (3.10)

‘ 2 & 2 G 2 S5
CAM W 5 LT 5 ¢ It ._H e 32: &

j=1

(3.13)

/A
=

-and since ”W(i)“ 2$ ‘Mi “W(kl)” 2 » 3 ? (3.14)
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the estimate is established.
Let u be an arbitrary smooth function which vanishes near thé
points O and 1(and outside of [0, 1] ) and Ei(x) be a smooth

function not vanishing on (‘.fi,q(i + gi),vgigg

such that
N 2 |
R LG, - 0gx gl (3.15)
i=1 |
Therefore N
(Z b w3
( Ay, V)= S XIALY 5 Y)
€ i=1"* €”

N
z [CATy 30+ 50 )]
1:

in which y appears in B(y, ;i> with derivatives of order lower at
least by one than in the corresponding term of Z( /\é;iy, @iy>.
After integrating by parts and having the same estimate of scalar product

as we: have applied before, we find that
50 2] < ce[>_ Al Jods o]

-2
Choosing small enough (¢ such that e < X and

making use of (3.13) in each term ( Aéz.y, L.y), we get

¢ Aeys D 052 Z Z € 7"1 )(km)H‘CGZ Z "‘z“”“

J =0 1=1

l 2

(kq 1":
- ceZ ” 1 +a1 2 -GGZ l“ y(s,)“ (336)
5 =

-
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Since
2

2 2 o
BEPS2 2 osyrd | o § sy

r=1
(3.16) becomes

' b 2y o\
vy L Z TSR e 5 )
RIS

=1 i=1

k 2

Soy €3 uv‘s’l\
= 1

Again taking sufficient small &€ so that 5 < o<2 and using
. ~ e

(3.14) and (3.16), we get (3.9'), which was to be proved.

Now we shall see that Lemma 3.1 also holds for functions y in
o 2(k1+£1)
"2
short, it is enough to add to the estimate (3.9') the expression

satisfying the boundary conditions (3.4). To prove, in

- : 5 (), 2 2\
S ¥ G(kui)aa(kp-j)y)‘*’ME("Y LN )

Z ¢ I y(k1+j? if
j=1

in which the sum in the left hand side results from integrating the

-form ( Ae ¥» y) by parts.
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Let y belong to Waa(kl+("1) and let y satisfy the boundary.

conditions (%.4). Then, we can construct a sequence of functions
{yn (x)} (: {V’{‘;h y)} . » where [ "is a smooth function

vanishing in [O, %] and [l - }_ ’ 1]; a‘n is an averaging

operator with radius = 2 is an arbitrary smooth
F "= 5 )’ ¥ y
function which vanishes near the pomnts O and 1 (and outsuie of
[0, 1] ) and converges to y in W 2<kl+ 1), Substituting ¥y =y,

2
in the above written equation and passing to the limit as m-»o0 ,
we see the v'alidity" of this inequality for y of the above indicated
type.

Denote by Mey thre part of the Lgy consisting of odd order

which have & 1in their coefficients::
21-1

2j+1 | 2(ky+3) +1
= 'S 8.3 . (}C) Na
M€ J z 2(k1+3)+l

Lemma 3.2. Let y(x) belong to W, and let it satisfy the

boundary conditions (3.4). Then * _ .
Qf -1 23 (k3+3) 2- (k) 2 . 2
M A y) }_ "’Cé—[ i p “y “ + ”y’ ” + “y “ ]
j=1

Proof: Integrating by parts and using the boundary conditions (3.4),
we get

2 BECROHE

2(k +}?‘> -1y ’ y)
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24
€ (_1)k1 + Ql-l

) 2.
(k1+ﬂl-1a ‘vdx

ol

K a |
S dx[aa(kl+ L) 17
A

2

L S
Tt s e fartir?, NN

j< kl + éi-l
- S5 (k -1 .
.= 21'21_l Z ijy 1+ 1 ?, ‘y(a))

Similarly as we have done in lemma 3.1, we get

| 2%."1 ' ) -1 23 2
. lé Z , (bé,'y(kldl-l) ,y(a)”é oy G[Z ¢ “y(kl-i-g)n
Tsh +€1-:_L : 3 =1

| .
AP0 . Iyl 2]

Ve get the similar estimate for the remaining terms of Mg also. Hence
lemma is proved.
. . _ 3
Proof of Théorem 4.1. For functions y in - “?Gil *f1) which
satisfy the boundary conditions (3.4), we have from the lemmae 3.1
and 3.2,
(Leyyy) = L (A vy )+ My, 7)) + (L yay)
o Ly iy (% %3) 12 5
» (FF-ce) 5T P R LS TN L
i=1 |

v sy Sy

2 - 25  (k,+3) . 2 y
l: 1 1 “ . "y(kl) "2 . ” ; ”2]
J

> 5 ¢ |y

=1
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Where £ is small such that ﬁZ -Ccé€z ﬂE > 0 and
1

2 2
~ -Mé ~ce 2 S >0
. !

It follows from the uniform positiveness that the equation
'Lé y = f(x) is solvable with the boundary conditions and arbitrary
f(x) in Z’Z' In fact, the number of boundary conditions is
equal to the order of the equat;ion, and the positivéness then
guarantees the uniqueness, and consequently the existence of the
problem A . Hence uniform positiveness implies un'iform solva-
'bility of probiem Ag . Hence the theorem is proved.

Similar theorems on the uniform positiveness of Le hold
also in the other cases, which can be stéted as:
Theorem 3.2. If k + £ = 2(_k1 + ﬂl) is an even number, k = 2k. + 1

1
1 - 1
is.odd, if the characteristic form 7, of the operator Lg has a

positive real part

.kl+ j

o 2(j+k1)
i=1
ky
2 2j=1 2(j+kl)
sl y S
J=1

and if the operator Lo is positive i.e.
> (k) 2 2 ‘
L y,y) 2 vy (“y [}« vl ), then the operator Le
o ,

under the boundary conditions (3.4) are uniformly positive for
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sufficiently small & .
Theorem 3.3. If the operator of L. is odd, i.e.
k. +€& = 2(kl + il) + 1, if the characteristic form of the operator

1
AL&' has a positive real part,

o,

2- . : ) -
Re n, (g ix) > o [Zl__ 623 2(j + k_l)',
' =1

or

1 5 L 2541 205 + k)
Re e (% 5x) 3 gt é § .
| 2N

depending on the parity of k: k = 2k, or k = 2k, + 1, and if the
operator Lo is positive i.e.
2 (ky) , 2 | 2
i
Ay D2y Iy oyt
then the operator Lg under the respective conditions (3.5) or
(3.6) are uniformly positive for sufficiently small & .

Now we shall find the number of the roots with negative real

parts of the auxiliary characteristic equation

(x, 2) ¢ ; :
= = b4 - é -
Q (t) J?___ oak - j# 97 ak;é 0, 2y ¢ #0 (3.17)
| ok (k&)
We assume that the real part of the polynomial t G(t) .
t is imaginary, say t = -Lg is positive i.e.
o (e 0)

25

Re (1% ) @ (i%)

> (-1)%a,, %

k ¢2j €k +1

> A 3Pm +;2'M,) (3.18)
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Where 2m and 2M are respectively the smallest and largest of the
four numbers 2j for which k£ 2 <k +0 . If the free term
g, in (3.17) vanishes, then with the remaining coefficients

: aj(j > k) fixed and a, . 1 assumed to be different from zero, only

one of the roots )b of (3.17) vanishes with ak,‘and

)Q,ay,—_ak_ y Re. /\o?fz_ilﬁ‘
S+l '

Hence, for sufficiently small 2

Tk
Zr+l ‘

Sign Re. )\o —

In the same fashion, if the leading coefficient a_ ‘e in (3.17)
vanishes, with all remaining coefficients aj, j<g k+¢ , fixed

and a L0 1 # 0, equation (3.17) for a0 _1 # O has one root

which becomes infinite as k + { - 0, such that

. i . Her 4 21
Sign Re P = =~ sign “ZE:Zf'f'

Now we consider the following lemmas.
Lemma 3.3 Let k = 2k = 2m and k L =2k + el) = 24 be
even numbers. When condition (3.18) is satisfied, equation

(3.17) has exactly Ql roots in the left half plane.

-Proof: Let

é\'(/k, ¢ g_—; 23 @_}_ -1 2341
d ('t ) = : 24 1y . -t -+ ‘C t
T : - 3=0 2(%y +3) JZ; o a2(k1+j)+l '
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On account. of (3.18) on the imaginary axis

kl (k, )
(-1) Re. . Qg (vi§ )
k A 23 -1 T 04941
1 — e oo 2+
= (1) T Re. l:Z a2(1{1+j) < (i%) +‘$Z__ a2(1{1+j)+1(“§)i' ‘[
j = 0. . :
| j=0 : -
x_+0 2(i=k, )
171 ) 1 ,
Gt T a e giyee e
i=k, 24 !
(x,¢)

and ¢ are real. Thus for any real % the equationQ, (t) =0
has no roots on the imaginary axis. Therefore if € varies from

, (k,¢)
O to 1, the roots of G (t) = 0, which vary continuously, do

not meet the imaginary axis. Now since the coefficient a

| 20k, +4.)
in the term of the highest order is fixed and different from
(k,¢)
zero, the roots Q. (t) = O do not become infinite when < varies.

It follows that the number of roots of Qﬂ('ﬁ) = 0 lying in the

v
left half plane does not change with variation in © . Vhen

s (ky &) .
=0, Q¢ 4. = 0 becones,
. th) Ho 2
2 )'<'t>'= DRRCICEE N

J=0"
and it has ll pairs of roots (,>§'L, - _}:‘L). Therefore it has

exactly ﬁl roots in the left half plane for arbitrary T . .
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Hence if <« = 1 then by [6] the lemma is proved.
In the same fashion the corresponding lemmas for the

different value of k and { can be carried out.
Lemma 3.4 If k=2 kK, + 1dis odd, k + { = 2(k1 + Ql) is even

and condition (3.18) is satisfied, then the equation (3.17) has

k
in the left half-plane Ql roots when (-1) *

ﬁl - 1 roots when (=1) a2k1+1> O.

Lemma 3.5  Let k = 2k; be even and =2 £, + 1 be odd.
When condition (3.18) is satisfied, equation (3.17) has in the
left half-plane Ql + 1 roots for

k,+ dl + 0

. ’ 1
(-1) a2(k1+ €1)+1> 0O and (ll roots for (-1)

a KO
2(kl+ ﬁl)+1 -
Lemma 3.6  If k =2k, +landk+ { =20+ &) + 1 are odd and
(3.18) is satisfied, then eguation (3.17) has roots lying in the

left half-plane equal in number to

k) K+ él |
() ) for (-1) B 1> Or (1) fa0, + £,)>€
. kl k. + Ql
(0) ¢ for (-1) 22+ 1% (1) 22y €041 <O
k) + (Zl
(e) _ﬁl - 1 for (~1) .a2k1+1>0, (=1) a2(k1+ 41)+1s;o,
) o+ ¢ :
(a) (Zl-i-l for (-1) a2kl$}<o-’ (~1) aZ(kl+ él)+l->~0 ,

In theorem (3.l) we have shown that the positiveness of the
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characteristic form of the operator Llé and the positiveness of
Lo guarantee the uniform positiveness of the operator Lg and,
consequently, the uniform solvability of ‘problem ag

Now we shall define the boundary »conditions of the reduced
problem in the same way as we have defined in the case of

‘problem Ao , to make the operator L  positive.

When the order k = 2k, of the operafor is even, then

1
(s) G
y(0) =y(1) =0, s =0, 1ee0,k-1 (3.19)

and for k = 2kl+l the boundary conditions at x = O and x = 1
k
depend on the sign of the coefficient (-1) la +1(X) i.e.,

ok +l(x) 2 0,

for (-l)lL'La
| 1

y(r)(o) = 0, N N

(3.20)
y(S)(l) = 0, s = 0, l,,,,,kl-l
and for (-l)k1a2kl+l(x) Z 0
y(r)(O) = 0, r =0, 1yeeeikyl
‘ (3.21)

y(s)(l) = 0, 5= 0,100k J

Now we shall study the asymptotic behaviour of y(x), the
solution of problem Ag . According to the chapter 2 if the

perturbation of A ¢ to Ao is singular then there is a représentation
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in theorem 2.2 of the solution y(x) containing a boundary

_ layer. We shall prove now that the conditions of theorem 3.1

and above boundary conditions of problem Ab imply that the
perturbation of problem Ae to problem.Ab is singular.
Theorem 3.4 [4] . Undef the conditions of theorek 3.1 (3.2,
3.3), if fof the operator Lo thére are assigned the bouﬁdary
conditions 3.19 (3.20, 3.21), then the problem Ag ié solvable,
it singularly perturkg: to problém A ,.;nd'its solution y(x)
has the asymptotic behaviour given by formula in the theorem
2.2.
Proof: We shall prove it onlj for the case when Leg and LO are
of even order, i.e., k = 2kl,'k +4 = 2(k1 + el)' On passage
from problem Az to problem A, from conditions (3.4) to (3.19),
exactly El conditions_aré lost at each end points x = O and x = 1.
Now the theorem will be proved if the auxiliary characteristic
equation has exactlj Ql roots with negative real parts for both
end points. The equations are
, 2QL

- d

¢ (A) = a . _ - v
o) 2kl+3,0 A =0, as o = aj(a)l

j=o0

2 ( 2kl+j . 3 .
Ql( A) = Z (-1 a2kl+j,l A =0, ar oF 2 (X)‘x=l.
j=0 |

Since by assumption of theorem 3.1
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A . | .
" 1 _ Sy S 2(kl+;|)
17, (% ; x) = Re. Hé(% ) = > (<L) é J a2(kl+:j)(X)§

, j=1 ,

_ - E2.) 2(k. +1)
> 2 (et y T, 2
k

and by the fact that (-1) ;la
2k,

A k. 2k : 2k
Re (%) = (-1) Yoy ) ¥ T+ T (3l Tee
L |

(x) > O, we have

2 El a(kl+ Ql))

¥

2kl

Multiplying by € and setting ¢ € =7 , we get

/ :
1 kl+ r 2(k. +T)

2(x+ ¢.)
1 1
2 D SORIOL

2 >/ c2( xqakl +
which givés for x = O the inequality
(s
y
Z (_l)glﬂ- 2{k ) 5 c2< Ylak 2(k + 41)>

1
a2(k1+r),0’y) + N

r=0

which proves the fact with the help of Iemma 3.3 that the auxiliary
characteristic equation has for each of the ends exactly Ql roots
with negative real parts. So we have the ,singul;tr pertur’bation

and hence the theorem is proved. Similarly it can be prbved for the

odd and even orders of L ¢ and Lo operator.
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CHAPTER 4

INITIAL VALUE PROBLEMS FOR NONLINEAR EQUATIONS

The Chapter is concerned with the asyﬁﬁtotic behaviour of
the solution of nonlinear initial value problems. More precisely,

we shall considér the systém of differential equations of the

type
& - f(x t)
Tt » Y
4 (4.1)
é E% = g(x, I t)
together with the initial conditions
o
z. o = A
be=e® (4.2)

Wle shall denote the variables x and‘y by z.
€ 1is small positive parameter, x is an m-dimensional vector and
y an M-dimensional vector. We shall denote by z(t, &€ ) the
solution of (4.1) satisfying (4.2).

First we shall introduce some definitions,

Reduced system of equations Let y = @(x, t) be one of the roots

of the system of equations g(x, y, t) = O defined on a bounded
closed set D. The system of equations
y = ¢(x9 t)v

and

(4.3)

F = 26ay, ©)
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will be called the reduced system of equations corresponding
to the root y = @(x, t).
We shall denote the solution of this equation satisfying

the initial condition x| _ ,0 = % by Z(t).

Isolated root We shall call the root y = @(x, t) isolated

on the set D if there exists an ) O such that the system
g(x, y, t) = O has no solution other than @(x, t) for
|y - 8x, )| < p

Boundary layer system The system of differential equations

Z - oglx oy, 8 | (hoh)

in which x and t are parameters, will be called the boundary
layer system of the equations (k.1).

Positively stable root The isolated root y = ¢ (x, t) will be

called positively stable in D if, for all points (x*, t*) belong-
ing to D, the points y = @(x*, t*),are asymptotically stable
stationary points, in the sense of Lyepunov{ 8] , of the boundary
layer system (4.4), as T—> oo .

If the same situation holds as. T —>» =0, then the root
will be called negatively stable.

Domain of Influence. The domain of influence of an isolated

positively stable root y = @(x, t) is the set of points (x*, y*, t*)

such that the solution of (4.4) with Ylg-o =Y tends to the
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value @(x*, t*), as - @ « In the same way we may define
the domain of influence of a negatively stable root.

Uniform asymptotically stability A stationary point y = @(x*, t*)

of the system (k.4) is called uniformly asymptotically stable with

respect to the domain of variation D of x*, t* if,'for any p > O,
there exists a 6(}1) such that, for all (x*, t*) belonging to D,
the inequality |

| y(T) - gz, )] & (4.5)
holds, provided

|y(@) - g, t9)[ <6
and, moreover, the passage to the limit

lim y(T) = @lx*, t*)
-

is uniform in the set D.

Theorem 4.1 [7] If some root y = ¢(i, t) of the system

g(x, y, t) = O is an isolated positively stable root in some
bounded closed domain D, if the initial point (x°, y°, t°) belongs
to the domain of influence of this root, and if the solution

x = x (t) of the reduced system (4.3) belongs to D for t?g't &T
then the solution z(t, € ) of tﬂe ofiginal system (4.1) tends to
the solution Z(t) of the reduced system (4.3), as &-» O, the
passage to the limit

Lim y(t, € ‘) =7(t) = g& (%), t)
&> 0
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holding for % t £ ° < T, and the passage to the limit

lim x (t, &) = x(t)
€0

for t°2 t < T° < T,
Proof: Let us fix an arbitrary small number My > O, then by

the property of uniformly asymptotic stability, we may define
P
o(52)

(4.5).

pol

s, allowing us to write -é-J-'- on the right hand side of
Consider the boundary layer system (4.4) reffered to the

initial point, and its solution yo( 7 ) defined by the condition

¥ ’ -0 = yo. Since by hypothesis the initial point belongs

to the domain of influence of the stable root y = #(x, t), therefore

for any given m1, there exists a "Co(p) such that, for ¢ 3T,

O, 1
17,(2) - 8G°, £ < p (4.6)
The stretching transformation
c ==t

%{,: ¢ flx, vy, t° + e )y

gy _ g(x t° + e )

az - s Vo )
- S0

z)lz=0 =%
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The system of equations contains the parameter & on the
right hand side; therefore by virtue of a standard theorem con-
cerning the continuous dependence of_ the solution of a differential
equation on the initial values and on parameters [ 9], there
exists a éo‘(}l) for any p > O such that, for ¢ éeo,

v 6y € -3 ,(2)] < p o, | (4.7)
| x(t,¢) =x°| < p -, (4.8)
if O <% S'CO, where =, ] is as large as we wish, but fixed. In
addition, we may assume that, for ¢ SQO, ‘
Je-t° | < p | (4.9)

If we choose p =M (/ul) appropriately in all these inequalities,

then from (4.7), (4.6), (4.8) and (4.9)

Fy(tsé)"¢(x (tsé)s t)l(S(}%) (thO)

vhere t = tl = t° + Tp& s éséo.

Therefore at the point t = tl, we may assert that

Aty &) = |y, €) - g, &), 0] < py (S(Q‘) <P )

Now we shall show that this inequality is preserved when the
projection of the integral curve under consideration into the space
(x, t) belongs to D, i.e. (x (t, & ), t) belongs to D. Suppose

that the equality occurs at the point t2 > tl; in general, t2 is a

function of & , as is tqe Let us take a sequence éh.> o.



- 46 -

So to every én there corresponds a value t for which

2n
'y (th' én) - ¢<x(1-'2n’ én)’ t2n> l = M
Also, by (4.10)

[ €y €0 -8 G Gy &)y ) |< ;‘l

Clearly we can find a vanue tn such that 'tln,‘ tn.z, t2n
and
- .o
| ¥, &) - 8G (b, &)y )] = §(F)

(4.11)

Let tn be the last value of t beyond which the trajectory

y(t, é.n) no longer returns to the 6( ;l) -neighborhood of

@, but falls on the boundary of the ,ul-neighborhood of ¥, so

that for tn 4t & tan’ we have

§(2) < ye, g -8t &) Bl<py (4.12)
The sequence of points

X(tn! én)’ y(tn1 én)’ tn.
has a limit point (x(o), y(o), t(o)) by virtue of (4.11) and the
fact that (x (tn,(fn),t.) belongs to D, so we can select a subsequence
converging to this limit point. To avoid fresh notations let us sup-

pose that x(tn, én)_’ y(tn, é—n), t'n be such a subsequence.

Consider the boundary layer system
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%% = g(x (O>1 M t(O))
. (0}
Y{@w=0 =7

since

|70 - 8@, ) - §(L),

so for “T>O0 §
17(e) - (@, Oy« Ly
(4.13)

while for ¢ 3T (po).-
4 0
|3(e) - 8G9, ) < py (s 14)

where /112 is any given positive small number.

Now stretching the system (4.1) by the transformation

t - tn .
T = < y Wwe get
% = & flx, 7, ¢+ (—n'C).
g—% = glx, y, t v+ €T v)
z | 7~ =0 = Z(tn 4 én)

Because of the continuous dependence of the solution of this
system on g for 047 éto’ where "L’o is as large as we please
but fixed. So by using (4.13), we see that for n > Ngul),

i.e. for sufficiently small & ,
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[v00 &) - 8G a0 D] < 2 my (k. 15)
(n)

where tn$ tgt = tn + T,E., L Now using (4.14) and

choosing My = pa(pl) appropriately, we find that, for t = t(n)
Jir
jv ¢™e) -8 Gt g, [ <b(F

]

(4.16)

The inequality (4.15) tells us that, in the interval from

tn to t(n), the trajectory we ‘are considering has not yet reached .

the boundary of the ju,-neighborhood of g (t, €n), t), i.e.

(n) satisfies ‘the inequality t , < ¢ (n) Z t2n and, therefore,

(n)

t

the inequality (4.12) must hold for t ', which contradicts (4.16).

So we have proved by contradiction that the inequality

8 €2 & i (g(1) <)

is preserved.

Thus, we may assume that in the domain D

& = e, glle, € ), 1) (4.17)

with |48, & Y] < /lxl. In addition, by (4.8) and (4.9)
| x(t, ) -x° | ¢ p (ny). }

le-2 | 2 ) (4.18)

Now we assume that the solution of the system (4.17) depends
continuously on any variation in the right hand sides and in the

initial point. Then for any Pz we can choose an }11(;13) and so,
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in the last analysis, a éo(luj) such that

[x(t, &) =T (WD ]|2pm, ((t,€), 8) &€ D, (419)
Since the unperturbed system corzfelsponding to (4.17) and (4.18) is
just the system defining x(t). By hypothesis, the curve x = x(t)
belongs to D for toé t £ T; but then, since N is ai‘bitraryéy |
small, we may deduce that x = x(t, 'é.).beiongs to D in the interval
o

t7 4t £ To, where ° is as close to T as we please, but fixed as

&> 0. If we choose ,1:13 =,113 (1“4 )’

|3t € ) = F(x(t), t) ) <my for t g b TO

The last two inequalities prove the theorem.

Series expansion for the initial value problem

Now we shall construct the asymptotic expansion of the
solution z(t, & ) of the system (4.1) in terms of the small para-
meter ¢ .+ Theorem 4,1 is only the first step in the asymptotic
solution of initial value problems of the singular perturba{:ionb
type. The actual approximate solution of such problems in series
has been analyzed in a series of papers [10] , [11] ,[12] and
[13] . An entirely different appraach is taken in‘ [14:] and

1_15-_] . Here we are giving an account of the important part of
Miés Vasileva's theory. The nature of the asymptotic expansion
depends essentially on whether or not the stationary point #(x, t)

is stable. Thus, we may assume that the real parts of the roots of
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the characteristic equation

Det. |26 80 00 a1l

are negative in D.

Here g is a matrix and I is an unit matrix.

oy
We attempt a solution of (4.l) in the form of a series in
powers of
et =y o 1 TN TN 3 m o
z =2 (t) + ¢ z,(8) +2 + e zn(t) + oo

o0 T
- T g | (4.20)
. | |

=0
The system defining -io(t) is of the form
g(Eov -ios t) =0
45
dt

While the system defining -El(t) is of the form

f(iEo, 'io, t) , (4.21)

at *1oox, T M1 By
- _ _ (4.22)
d—i]; = —‘1 —a-é + -il Qi-‘—
b dx oy
[o] (o]

The subscript O and the - above mean that the function has
arguements Eo’ T, T; e.8.

QE_
2

o’
X
o]

i}
N |
Lan
wi
o-.
&
ot
A
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The system defining the ék(t) are linear for all k 3 1
with nonhomogeneous terms depending on the zi(t) (i <2k).
To determine all these functions in succession we must
specify the initial conditions, but since the first | equaﬁions
in the systems (4.21), (4.22), etc. are not differential
equations, we need only specify initial condibions for functions
of fype X.
For wvalues of ¢ t;hat are small of order O(e’_), the solution
to our perturbation i)roblem can be found by means of the stretching
transformation

t - t°

T e

The stretched form of our problem is then

% = ¢ f(x, vy, t° +eT )
dy o
at - g(x’ y, t7 t+éc )

If the functions f and g are analytic the solutions of this problem

have convergent expansiors in powers of ¢ , say,

) r
a= 5 2(T)E

r=20

(4.23)

Here, also zo("G) and zl("d) are determined by the respective

systems.
o)
= - o ,
4 (h.2L)
y0 O)
ac = g(xov Yo? t
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and '
ax
1
@ "
! : (4.25) .
EC AT aég ooy, ¢ t-zﬁ?’

In general, the zk('C) (k > 1) satisfy a linear system of
equations with non-homogeneous terms depending on the

zi(ﬂ ) (ick). To determine the solution of the systems
(4.24), (4.25) etc. in succession we must specify initial comn-

ditions. Let the conditions be of this term

. _ .o
Zo"'l;-—-o = 2 ’

z (kx > 0)

k| ¢ =020
The fact that the initial values vanish for k > O is connected
with the fact that z° does not depend on & .
Also we construct an expansion of (4.1) in the variables &
and t - t°
2 = 2 +(t-to)z + é -4 + sececesne
00 jo St .

+ (t -

n
no é Zn-l,l +eee + ézon+ .e

(4.26)
which is obtained by expanding all coefficients in (4.20) in powers
of (t - %)

—_— o o
z (t) = Zoy * (t -t )zlk+ (t. = t7) Zy t oeeees
Here Z4y 2TC constants.



- 53 -

We give the initial conditions defining z, in the form

k
X lg=t0 = x (.27
— ' l'm'
0 = o~
e lt mt gffk_ﬁﬁ)-&dmm]dz,

(4h.27)
vhere f,_ _ 1(47) is the (k - 1)-st coefficient in the exposition

of £(x, y, t) of the type (4.23)

f(xo+ éxl+ ceey yo +éy1+ coey é'c )=fo+ é’f1+ ss e

while
k -1
—~ _ 'f. o
£, _1(T) = Z v Ti, k-1-i,
i=20

f;i 5 being the coefficient in the expansion of the same function
’

f(x, y, t) of the type (4.26). |

It is clear that the data (4.2’7')' determine the zero order
terms in the expansion (4.20) and also the coefficients in (4.26)
allow us to give the initial values 'fl and, therefore, to determine
El’ from which we find all the coefficients in the expansion (4.26)

with 1 for their second index etc. Later we shall see that this

choice of initial conditions for the determination of the Tik will

make 'E'k, the limiting values of the derivatives of the solution with

respect to the parameter & .

We shall show now that the required asymptotic formula ]:16]

is
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z = (2)_+ @), - @), (4.28)
where (z)n, (E)n and (;)n are respectively the partial sums of the
series (4.23), (4.20) and the double series (4.26) containing terms
of order up'tq e

If we suppose, in addition to the conditions of Theorem 4.1,

‘that the right hand sides of (4.1) have continuous partial derivatives

of order up to h +.2‘inc1usive in an'arbitréry small neighborhood,
fixed as &-7 O, of the limiting curve of the iptegra,lvcﬁrve of the
system (4.1), which consists of two parts
@) t=t% x=20 y =y () (0gT <),
@<t 1% x = ®(e), ¥ = T = #F (8), b,
then the following theérem ensures'thevvalidity of the ésymptotic ‘
formula (4.28).
Theorem 4.2 'The inequality | z (¢, € ) -2 | < ¢ & 1 |
holds for the solution z(t, € ) of the system (4.1) which satisfies
the initial conditions (4.2), where ¢ is a constant independent of
t and & for sufficiently small. & ( € <& ) and for
t2¢ t g 1°
First we state two propositions which we will use for the

proof of Theorem 4.2.

Without loss of generality we may. take t° = o.

Proposition A.

Consider the linear system of equations
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é%—é—= At, &) £+ P

where A(t, ¢ ) is a matrix which is continuous in t and ¢ and
for which the roots of the characteristic equation Det. ||A - AIj=0
have negative real parts for €< éo and 0 g t ( 7.

The solution € (t, & ) of this system satisfieé the

inequality
-0 t
12] < ¢ |5 exp. (-%)_‘_ ‘g% exp (k(j:__é_i_;,l)) | P| aty,

where ;,\‘t =0 = }o' k and ¢ are. sufficieptly small and large

constants, respectively, independent of t and & for ¢ Séo and
0 gt g 1°%

Proposition B.

Consider the system of equations

']

d .
s = A g +B12 + P,

[}

T = a € +b N+ Q
where A(t, & ) satisfies the above condition. The other coefficients
may depend (continuously) on t land E . _

The solution f(t, & )y 1L(t' & ) of this system‘satisiflies

the inequality

[e]

Mi< 1Mt c €3

+ }c(max. [Pl Q ) dt,
o V4
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where ’@{t =0 = 'go, 'Y\lt -0 = ')'\o, k aﬁd Cc are con-
sfants independent of t and & for ¢ <&® and 0 £t sTo.

.Before passing tq the proof of the theorenm, wé state the
following 1emas, the proofs of which can be seen in '_)-_17] .
Lemma 4.1. If & is sufficiently small ( € <€°), then the
following inequalities hold:

| 2z (2) | <« e 2% 0 <t ™)

where ¢ is a constant independent of t and € .

Lemma 4.2. The following inequalities hold: -

l n, (z) | < ¢ exp(leli (0 £t.gT°%

| S0 | < e exp. (k).

4
T z

where T (2) = z () -"E.'n(’f') and .Zn(‘ﬁ) = i i
R = O [ . L

H-Mb |

Lemma ’+.§. The following inequalities hold in the interval
0Lt g-A€gloge , where A is some sufficiently large con-
stant which is fixed as & - O:
. n+ 1
| %= @, 1lce €°F
d _ n
}a-,a(Zn - (z)n+l>‘ < ¢ ‘€

Proof of Theorem L4.2.

We shall use the notations

Dn+l=z-zn<An+l=y-Yn’ Sx:1+].=x"xn)"
Nn+l=z-(z)n( En+1=y-(§)n’ ’§1+1='x-&)n)

We divide the interval O £t ( 7° into two parts; one is

0Lt < to = =A & log¢ , where A is some sufficiently large con-
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stant which is fixed as ¢-» 0, and the other part is t. & t € °.

Using Lemma 4.2, on the interval (to, To), the assertion of
. . ¢

Theorem 4.2 becomes

(%.29)
k

€ 77 K(xz;{“”’
So, we shall prove this. inequality for the interval (to, °),

while the inequality

n+1l

D . ll £ ¢ ¢ (4.30)
will be proved on the interval (O, to). First we prove (4.30) on
(0, to). The equations satisfied by Dn are of the form

N . . . o
gl 1= 8 o+ 1t By Ay 4y v XY ) é%—

. * *
%._t'sn+1= i;c n +1 " fy:‘-%-f-lq'fk'n’ jX'L’ t) -%-
(4.32)
where * means that the values of the functions are taken at some,
intermediate point between z and Zn.

By definition

- N « RN |
—_—ll = = - co o - oo -
5T fn -1 Coefficient of ¢ 3...n f(xo T EX) F oseey Y, TEY, ey ET)
dyh = g = Coefficient of én in g (X + €X, + eeey ¥ ‘+ L Yo teeey €7
IT n : o 1 Vo T ETY e

(4.32)
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and by Lemma 4.3
d
g(xny Y'ns t) - é EEYI].

4 1
=g<(X)n+l’(y)n+l’t>T E{(y)n+l+lc—.nf ’

While by Lemma L.l

. n+ 2y _ .o+ 1
g((x)n + 1’(y)n + l’t), =8p+ 1t ,(t ) =8y 41" (¢ )
’ ' , (4.33)
Since on the interval (0, =-A ¢ log & ), g2 *a < ¢ én +1 .
After using these last four equations, we obtain
d ' n+ 1 .
8y Yo B = F Y= (e D) (it 34)
Now using Lemmas 4.3 and 4.2, we get,
n+1
A ; . dX dx
£, Yo, t) - Fn = £ y () v t) - P +€ T+
n'*n T3 ( n+ 1l n+ 1l ) It il
n+ 1l n+l - -
+€ Fhma e D=, @) 1Y)
d n+1 ' n+ 1
- = (x) + £ a :
dt n+2'é =, )+ )

= f<(X)n + 1? (y)n + 1? t>

a n+1 n
S @E WL r €@ )€ e@’(-%) :
. Also by using the analogous result \@3) for £ and (k.32), we obtain
£(X, ¥, t) = _ét_n.--; (€ D+ ¢ exp.( -1_:63) (& 34m)

By virtue of (4.34), equation (4.31)takes the form
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a . o S nv+1
é?i-{dn+1_= 8x gn+l+ qug+1-+ (& )s (k.35%)
4 g =t & + £.A +<e“1) +(e exp. (~kt))
dt n+ 1 x“n+1 yn+1l <

(4.35%)
'HereAn+land€1+lare zero at t = 0.
" Also using the proposition. B, we get for (4.35)

n+ 1

_ t (én+1)'én ¢
) + - exp.{ =k d c ’
182l < §) | ()] o <

after which, using proposition A for (4.35'), we get

t -
A | —k{t=t1) .\ /* n n+1
‘An-i-l &£ S 26 exP'(.—__Z-;—) ng-sn-l-l-‘-é ) dty < c€
] / ,
’ n+ 1
Hence \Dn+ll = \z-an L cé .

Now we consider the part (to, 7°) and prove (4.29). Ve know

that

a % o g
€ Bhs1™8 b *gyAn+1+g((X)'(y)’t) ¢ &P

j(zx .367)
dN »* % ~ kK d(X)
EESn+1-=fx,-sn+1+fy“n+1+fG‘)' ’t>“

where ** means that the values of the functions are taken at some
intermediate point between z and ('ﬁ)n.

It follows from the definition of the quantities Z,_ that
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: n
(@, @, -—eHGY=€ )

n+1l

(G, Op D -L @ = ),

and with these equations (4.36') becomes

d ! ’ n+ 1

é'&% Ah +1° & E% + 1 y‘% +1 7 (e )

(4. 36m)

4 1
a o L I **N' n+ N
dat 55 + 1~ fx 5? +1 7 fy‘% +1°7 (€ - )

~ n+1 v - n + I

Here & 1]t = 6 = (¢ ), é1+-llt =t = (¢ . ).

Using the propositions A and B, we obtain (4.29) from (4.36) in the
same way as we obtained (4.30)- from (4.35). CL '

This completes the proof of Theorem 4.2.
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