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The asymptotic solution of the boundary value prob1ems for 

ordinary differentia1 equation of the forro 

k s:.- aj(x) /j)(x) + 
. (k+r) 

e ra (x)y (x) = 0 
le + r 

j = 0 r = 1 

~(x) lOin 0 ~ x ~ 1, 

\",'hich exhibits boundary layer behavior as étends to zero are 

studied. Sufficient conditions under which the solution or the 

full problem converges to the solution of the reduced proâl~m 

(obtained by setting tE = 0), except in the boundary layer, are 

stated. 
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The initial value problems for nonlinear ordinary differential 

equation of the forms 

dx 
dt = 

eS! 
dt 

f(x, y, t), 

= gex, y, t), 

",/here x and y are m- and Io1-dimensional vectors respectively are 

also considered. The the sis is primarily a compilation of sorne of 

the important works on singular perturbation problems by Visik and 

Lyusternik, and Vasil'eva. 
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INTRODUCTION 

In the boundary value problems of mathematical physics the 

differential equations are often simplified by neglecting terms 

\'1hich are of higher order of differentiation than those taken 

into consideration. The best known example is the relationship 

between the theories of the flows o~ viscous and perfect fluids. 

Now given a differential equation involving a small parameter 

~ , and ofsome boundary conditions (we call it the problem Ae ) 

in such a way that the reduced differential equation obtained by 

letting ~ formally tend to zero (we call problem A to this o 

reduced problem) is of lower or der though positive. Then the 

solution of problem A , being the solution of a lower order differ­o 

ential equation, in general cannot be expected to satisfy all the 

original boundary conditions. This loss of boundary conditions in 

the passage ·to the limit means that the solution does not converge 

uniformly everywhere. This nonuniformity of the convergence is 

the most interesting aspect of this type of problem. In fluid 

dynamics it leads to the formation of boundary layers. These type 

of problems occur in the the ory of viscous flow, in certain problems 

in the the ory of elasticity and in other branches of Applied 

Mathematics. 

A consideration of two very simple examples will show some of 

the features of such type of problems. 
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(1) A simple model that illustrates 1055 of the highest 

derivative in boundary layer theory is given by [1]*' as 

e d
2

y + ~ = a, 
dx

2 
dx 

y(O) = 0 and y(l) = l 
where 'a' is a constant. 

and 

The exact solution is 

y(x, fi,) = (1 - a) l - exp(-x/.f ) 
l - exp(-l/ é:. ) + ax, 

Lim y(x, e..') 
~ ~ 0 + 

= (1 - a) + ax O.(x~1. 

The limit value is the solution o'f the reduced equation that satis­

fies the boundary condition at x = 1, but not at x = 0 unless a = 1. 

The convergence is uniform in every closed interval 0 <::. S ~ x ~l, 

but not in the whole interval 0 ~ x ~ 1. In a narro\., interval of 

width 0 (~ ) the solution changes rapidly from y(x, t& ) = 0 at x = 0 

to a value differing by a function that is O(e. ) from the limit 

y(x, 0) = (1 - a) + axe This is the interval of boundary layer. 

(2) An example illustrating the additional difficulties 

which arise in the case of nonlinear differential equations is 

gi ven by [2 ] • 

Consider the problem A é as 

~ ~~ +! + (!) = 0, 0 ~ x ,f, 1, y(O) = Yo' y(l) = Y1 

(0.1) 

The limiting differential equation having the real solution is 

~ = 0, and one might expect a behaviour some\oJhat resembling that of 

* Numbers in square brackets refer to the Bibliography. 
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in example (1). Nevertheless, it will turnout that with the 

exception of the trivial case Yo = Yl equa~ion (0.1) fails to 

possess any solution at all when ~ is sufficiently small. We con-

si der the case when ~ ~O +. 

We know that y(O) = y • 
o Let us set 5! 1 

dx x=O 
= tan!:-, 

. - 1l/2 < .y < "' /2. Here.y may depend on ~ and tan..f:, as a function 

of E , may be unbounded. Now the differential equation in (0.1) 

may be integrated explictly in the form 

y(x,~) = Yo + E [v- sin-l (exp.(-x/~ sin-/'-»] , 
-1 where sin denotes the principa.l value, between - TT /2 and TT /2, 

of the inverse sine function. lt follows that 1 y(x, ~) - Yo 1 < €- \11' , 

and for given Yo' Yl there will be no solution of (0.1) v/hen 

2(Yl - Yo) 
o < f < 7T 

The non-existence of the solution of (0.1) is generally attri-

buted to the circumstance tha~ the differential equation is nonlinear 

in ~. For this reason some authors 
dx 

[2] , [3J restrict themselves 

to the differential equations that are linear in ~ and d2~ (not 
dx dx 

necessarily in y). 

In this thesis we shall restrict ourselves to singular pertur-

bation problems (defined in Theorem 1.1) involving ordinary linear 

and nonlinear differential equations assuming that·the singular 

nature of the problem is carried entirely by a reduction of the order 

of the differential equation (and the consequent failure of sorne of 

the boundary conditions) as E ~O. M. l. Visik and L. A. Lyusternik 
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developed a powerful method for the solution of linear singular 

perturbation problems, which is inde~endent of the general 

asymptotic theory of lineai' differential equations. Here the 

material is based on the work of M. I. Visik and L. A. Lyusternik 

[4] and A. B. Vasil'eva [5J • 

The first three chapters carry a detailed investigation of 

the connection between the distribution of the signs of the roots 

of the characteristic equation of an arbitrary nth order linear 

differential equation and the nature of the supplementary conditions 

under which the passage to the limit leads to the solution of the 

equation. ~d the fourth chapter surveys the above problem for 

nonlinear equations. 

In this paper we shall make use of the notations 

(u, v) = Sf u. v dx, 
~ . 

~ lIu Il = (u, u) 

~(~) is the Hilbert space consisting of the functions u{xl ,x2 ••• ,x
n

), 

which are in t
2 

together with all of their derivatives up to the 

k-th order, with the nor.m 
s 

k 2 

= rr 
~ 

l:. 
s = 0 

dx. 

Il Ur denotes the norm in a certain Banach space. Q is the region 

of n-dimensional space. 
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CHAPTER 1. 

ORDINARY DIFFERENTIAL EQUAT~ONS WITH CONSTANT COEFFICIENTS. 

We shall consider the asymptotic representation of the solu~ 

tion of problem Aé as ~--;. O. 

. Problem A consists in solving the differential equation of 
o 

order k, 

with the 

and 

k (") 
L . a. y J =0, ~ lo 
j = 0 J 

k boùridary conditions ." 

/i) (0) .- D.· (i =0,' l, •••• , .k1 -
~o· 

/j)(l) = D. (j ='0, l, •• ' •• ,k2 -
Jl' 

The coefficients a. are constant. 
J 

1) (1.2') , 

l, k1 + k2 = k)(1.2") 

Problem Aé consists in solving the equation of or der (k + (?), 

k 
'Il 

L' (i) r (k r) L ,e,~ 
+ a.y + 

r Y 
J + -

j = 0 r = 1 

where é-:::> 0, with the' (k +~) 'boUIldary conditions 

§r)(O)= Dro (r = 0, l, ••••• , kl+,f1 -1) 

0 

(1.4') 

(s = 0, 1, ••• ,k2 + l2 - l, ~l + ~2 = 1) 

(1.411 ) 

We shall first consider the case when al1 the (k + .e) boundary 
1 • 

conditions are at the boundary point x = 0 and none at x = 1; i.e., 

when k2 = 0, ~~2 == 0, .t; 1,0 and k1 f. O. 

The characteristic equation corresponding to equation (1.1) is 

k 
P (,,) 

o 

j = 0 
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For simpiicity we assume that the roots?l' P2' ••• ~ of (1.5) 

are a11 distinct. Therefore the general solution of (1.1) has the 

form 
k 

y(x) = L 
j = 1 

c .. exp Cp .x) 
J, J 

and therefore using tne boun.dary conditions at x = 0, we have 

k 

L 
j = 1 

D:io (i'= 0, l, ••• , k - 1) 
(1.6) 

It is a sys~em of 1inear equations in ~ j' so its de terminant 

V1Cp.1' }l2'··· 'h) is vandermonde determinant and since the numbers)li 

are distinct, we have 

w (Pl' )l2'··· ,~) 1 0 (1.7) 

The auxi1iary characteristic equation for (1.3) is 

Qo (,\ ) 
·e· r (1.8) - L ~ + r 

'" 
= 0 

r = 0 

Let the roots of this equation be ~1' v2' ••• '~e· 

A1so the characteristicequation associated with (1.3) is . kt· 
'() ~ j. r k+r ( ) 

PE '/1 == j'""= 0 a j ,\ + ! = 1 é. a k + r ).. = 0 1.9 

The fo110wing 1emma ho1ds. 

Lemma 1.1 PB: The roots of equation (1.9) have the form 

}li = )li + G-. (i = l, 2, ••• ,k) 
J. 

and ":i v + f (r = l, 2, ••• ,i.) , r .::: r r 
E E 

where ~ i and É-'~ go to zero with .E'. , }li and Vr are the roots of the 

equation (1.5) and (1.8).respective1y. 

Proof: see [4] page 262-3. 
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For simp1icity we assume that the roots!-l' P2'· •• f1k of (1.5) 

are aIl distinct. Therefûre the general solution of (1.1) has the 

form 
k 

y(x) = L 
j = 1 

c:.. exp (p .x) 
J, J 

and therefore using the boun.dary conditions at x :: 0, we have 

k 

L ê .. <p.)i = j:iJ(O) = Di) (i'= 0, l, ••• , k - 1) 
;F· J (1.6) 

j = 1 

It is a system of 1inear equations in ~ j' so its determinant 

W(1l1' P2'··· 'h) is vandermonde de terminant and since the numbers}li 
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w <Pl' P2'''. ~) t 0 

The auxi1iary characteristic equation for (1.3) is 

. ·e·· r 
Qo ( ~) - L ~ + r ~ = 0 (1.8) 

r = 0 

Let the roots of this equation be ~1' v2' ••• '~€· 
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The fo11owing 1emma ho1ds. 

Lemma 1.1 [~: The roots of equation (1.9) have the form 

p.. = 11. + €-. (i = l, 2, ••• , k) 
~ r~ ~ 

.and""-i v + f 
r -= r r (r = l, 2, ••• ,1), 

E E 

where <: i and É"'~ go to zero withE' , )li and vr are the roots of the 

equation (1.5) and (1.8).respective1y. 

~: see [4J page 262-3. 

Let v~ (xl' x
2

' ••• ,xn ) = vE (x) be a functiondefined in a regicn 
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Q of n-dimensional space (n ~ 1) which is p times differentiable. 

Vie say that v E- (x) is a function of boundary layer type of the 

k-th order (k ~ p) if: 

1) the function v E (x) and its derivatives up to the p-th 

order (p > k) inclusive are concentrated near the boundary f' of the 

region Q, i.e., these functions converge uniformly to zero as é~ 0 

on an arbitrary closed subset of Q not containing points of f1 • 

2) the k-th derivatives of the function vé (x) are bounded 

in Q as E ~ 0, and at the same time among the (k + l)-st derivatives 

of v~ are functions converging to 00 in the norm of the corres-

ponding problem A E as 

vanish on Q when fi -;;> O. 

,.;.~ 0; the j-th derivatives of v é: (for j < k) 

Theorem 1.1 [4) The solution y (;- of· problem A ~ has the represen-

tation 

(1.10) 

where Yo(x) is the solution of the reduced problem Ao; v~ (x) is a 

function of boundary layer type of k-th order in a.neighborhood of the 

point x = 0, and z;é ,together with aIl of its derivatives, converges 

uniformly to zero, as ~-7 0, on an arbitrary interval [a, b] , a < b. 

Proof: The general solution of equation (L3) ha~ the form 
k i 

exp trtK ) z: ,-J C) -y;: = c. exp .p..x + Z . ck (1.11) + r 
j = l J J r=l 

We calI the perturbation of problem AE to problem Ao singular if 

the real parts of the roots of (l.8) are negative. Let the real 

parts of these roots be nagative denoted by - ÀrC- À = v ) j' r = l, ••• ,t. 
. r r 

to these correspond the roots - Àr = 
~ 

( - '," 
}.r (; r ~ of the characteristic 

é 
equation of (1.3), and, accordingly, we write the particular solutions 
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k 
of (1.3) in the form é exp (:- "'rx/ E- ). 

Then the general solution of (1.3) is of the form: 

k . ï 
y (x) = ~ ~. expCji .x) + .~ 'C

k ~ j = 1 J J r = 1. + r 

Using the boundary conditions (1.4), ·we get the first k equations as 

roJ 
ck + r = Dio (i = 0, 

and the succeeding .~ equations aftermultiplication by 

the form 

\vhere c( = i - k, 

-c. + 
J 

0(= 0, l, ••• ,.t - 1. 

l,.;.. ,k - 1) 
(J,..13') 

take on 

i'Jhen E->O· the system (1.13') goes to system (1.6) with determin­

ant \vCpl' P2' ••• 'Pk) and the system (1.13") go into the equations 

k k·f k 
L: (p.) c. + z:. (-).r~ ck + r = Dko for o(~ 0 

j = 1 J J r = 1 

.e (1.14) 

'Ç'" (_ '\ )k +1>{ 0 
.t- l' ck + r = 
r = 1 r 

for 0( = l, 2, ••• ,t - 1 • 

The determinat of system (1 .• 6) and (1.14) is 

since by assumption any of these factors is not zero. 

The coefficients and the right members of the systems (1.13') 

and (1.13") approach the respective coefficients and right members of 
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the limit system (1.6) and (1.14)·as~O. It means that Bé (deter­

minant of the system before the passage to the 1imit) approaches to 

B as fi -7 O. Consequently for small .é " Bé-
o 

f. 0 and the systems (1.13') 

and (1.13") are solvable, their solutions 'ë'.(j = 01, ••• ,k + iJ approach-
, J 

r' ing the solutions c
J
. of the 1imit systems: c. = c. +' 'n .,11. ~ 0 as 

J J .• J °fJ 

lE -;>0. 

Introducing the notations 

and 

.-l k 
~é 

r = 1 
[~ ~rX] 

. é 0 

k 
= E ~. exp(p.x) - y (x) 

j = 1 J J 0 

k 

= ~ (c j +1t j ) exp (Pjx) -

j = 1 

k 
= :>-. YJ. exp (ct· + é Jx) 

j = 1 J J J 

in (1.12), we get the required solution 

y li (x) = Yo(x) + v6 (x) + zé' (x) 

of the prob1em A ~ • 

k 

L c j exp (Pjx) 

j = 1 0 

k 
+E. c. exp(p.x)exp( ~ .x - 1) 

j = l J J J 

Now we consider the case when k2 = 0, LI = 0, k1 ~ 0, and ~ ~ ° 
in equàtions (1.1) to (1.4). 

ioJe wri te the genera1 solution y é """"" of (1.3) rep1acing ck + r by 

exp[ - ~r l~ + 1 in (1.11) as 

e. 
Yé:o (x) 

k 

=2:: 
".." 

C j exp <jjx) + 

j = 1 

It is c1ear from the second term of this equation that if aIl 

Re 0'5. > 0, then for sufficiently sma11 G. aIl such solutions have the 
~ . 

character'of a bcundary layer near the 'point x = 1; otherwise the 
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second term will tend to infinity as é-7 O. Therefore in this case 

the perturbation is singular provided all ,troot~ of equation (1.8) 

have positive real parts •. 

Now we consider the slightly more complicated problem when k2 = 0, 

kl ~ 0, ~l ~ 0 and!2 ~ 0 in (l.~) to (1.4). Now the perturbation of 

problem A é. to problem Ao is singular when Q.o (). ) = 0, hast1 roots 

- }.1'···' - ~e ' with negative real part and e2 roots 'v1 ' ~2'·· .V.t
2

.' 
. 1 

with positive real part. The characteristic equation (1.9) has the 

roots 

Pi =}li + '" i' - ~ 
E 

- ~r +é-r , v .. = ...§. 
E- 6 

" = 

(i = l, .... ,k; r = 1, ••• ,1i;s = i, ... ,22 ) 

v + é s s 
(;:. 

Therefore the general solution of (1.3)canbe written in the 

form 
k ~l kl f ~x) y~ (x) 

,-.J 

eXP(jijx) + = L c. L:" E- ê'. " ". exp"T J k+r" 
i = l r = 1 .. 

where the last two terms are the boundary layer of order kland k2 in 

the neighborhood of the points x = 0 and x = l respectively. This 

solution can be expressed in the form of (1.10). 

Consider now the most general problem consisting of (1.1, ) to 

(1.4) where kl , k2 , gl and .f2 are nonzero numbers. 

Theorem 1.2. [4] If the reduced problem A is solvable and if the o 

perturbation of problem A é- to problem Ao is singular, then for 

sufficiently small E- problem A E is also solvable, and the solution 

YI:: (x) of the problem A é has the form 
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y E. (x) = y~+ vf:.U=-) + z
f

0c.) , (1.10) 

where yo(x) is the solution of the reduced problem Ao' v~~s a 

function of boundary layer type of the ~ and k
2
th order in the neigh­

borhood of the point x = 0 and x = 1 respectively, which along with 

all of its derivatives vanishesuniformly with ~ on an arbitrary 

interval interior to ,[O,~;." the function Z G(x) together with all, of its. 

de:dvatives vanishes uniforniiy with é: on the entireihterval[O,l] • 

.. ~: . î.eth'f~' .•• ~;Pkbetherootsof the. equation (1.5). The 

general solution of(Ll) has the fo~m 

k 
y(x) _. z::. c. exp ~.x) = 

j=.l,J . J 

In order that boundary conditions (l.2) be satisfied, we have 

and 

In case prob'lem Ao is solvable the determinant Bl of this system is 

not equivalent tozero. 

Here problem A e perturbs singularly to problem Ao if Qo ()..) = 0 
, 

has .ii roots -À-l' - ~2' ••• ' - ~ vdth negative real parts and . 

'2(=·f -)11) roots ~l' V2'~··'V~ with positive real parts, so in virtue 
2 

of 1emma 1.1, the charaqteristic equation (1.9) has roots 

u. = Uo. + ~. (i 
1 ~ r ~ ~ 

. Ii 
v. (~+ ,f;;) 
~J = ~ 1 

The numbers ~ i ' ~i ' 

= l, ••• ,k), -~i = 
(1 

1 
-( À i + é i), (i = 

(j = l, ••• , "2). 

Il;,. ~ 
é ~'. van~sh wi th Q::.... 

~ 

G 

The general solution y 6; (x) of (1.3) has the form 

1, ••• lS.), 
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y é (x) 
k rJ 

exp (jijX) + ~l r-' k (- Àp: ).. = L- c . l: ok + j 
~. l exp 

J 
j = l j = l é-

.i2 
k?e (~j. (x - 1) ) + L .-...J 

0 ~+ j E·~· XP., ~ 1 k + j = 

k+ il. 
= L """ ,-.J 

o. w. 
j = l J J 

It can be shown that the determinant B of the limit system 

obtained by the above problem is equal to 

~ = BI B2 B3 

where BI is the determinant of problem A ,'which is not equal,to zero 
.0 

by the assumption that the reduoed problem A is 
. . ~ . 

solvable, 

"\ (_ ~r)kl +Y"\ r = (h, 2, ... , fI ,..., 

y= 0, l' ••. '~l- l 

B3 = V k2 +5 

\ 
s = l, 2, ••• ,fi?-

s 

'$ = 0, 1,··~,-e2 - l 

Therefore 13 .p O. 

1- 0, 

,'-l 0 . 

Moreover by a similar argument as was given in theorem 1.2, the 

Consequently, 

for 'sufficiently small <:,:, B ~ .p 0, and so problem A f is solvable. 

In the same fashion the constants ~. (j = 'l, ••• ,k + ;(t) in the 
J ' . 

solution (1.15) tend to the constants c.(j = l, ••• ,k ~ e) of the 
J '. 

liinit systems. 

'YJj -7 0 as E....:;> ° (j = l, 2, ••• ,le +.t) 

In (1.15) we introduce the notations 

(C. + Î"l .) 'W. - Yo (x) 
l. 'l. l. 
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= Ya.(X) + v ë (x) + Z é (x) 
.K k 

then y E: 

and z Go (x) = L' (c. +YI.) exp (p-.. +E-.)x-
1 = 1 ~.Q ~ ~ 

L c. 
1 = 1 ~ 

expç,uix ) 

k 
= L: 1-\. exp Cp.. + f .)x + !. 

1 = 1 'I~ ~ ~ . ' 
c. exp yu.x)(exp(f.x) 
~ ,~ ~ 

Since 1'\ . ......::r 0 and, E;. '7 ° when € -7 0, it failows that f-70, i:..;.-(x) 
, ,~ , ~ ~ 

vanishes unifarmly on the segment [0, 1] together with all of its 

deri,ra ti ves. ' 

(-1:: ) 
'.', e-

Thefirst sum on the right in (1.16) vanishes unifarmly as 

é~O together with all of its derivativesan' [0, 1] autside an 

arbitrary neighbarhood of the point 'x = 1. Hence the p~oaf of the 

theorem. 
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CHAPTER 2 

ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE CO~~FICIENTS 

In the first chapter we calculated the asymptotic solution of 

the problem A é in the case of its singular perturbation. There 

the problem A ~ consists of the' ordinary differential equation with 

constant coefficients. In this chapter we shall consider the ordinary 

differential equationwith variable coefficients'. 

Problem Aconsists in solving theequation, o 

with theboundaryconditions 

Y"(i) (0)' _- 0 (' ) i= 0, l, •••• , kl - l , (2.2' ) 

y(j)(l) = 0 (j = 0, l,~.' •• , k 2' ~,l, ~2 = k, -l~) . (2.2") 

Under our hypothesis the coefficients a.(x) (j = l, 2, ••• , k + e> 
, , . J ' 

are differential asufficient number of'times. In particular the,co-

efficients in the neighborhoodof the points x = 0 and x = l with 

remainder of order N + l'can be expressed as 

N' 

a.(x) = a. + Z a. X
S + a. N l (x) ~ + l 

J Jo s = l J,s,o J, + ,0 

and, with the substitution xl = l - x," 

(2.3') 

N s ' N + l. (2.3") 
~ a . l xl + a. N l l (xJ!'X1 

Here a. = 
Jo 

~ J,s, J, +" 
S = l 

Problem A~ consists in solving the equation 

= E' a/x) y(j) -'+ cf ,~r~ + r(x) y(k + r) _ 

j =,0 r = l 

f(x) 

(2.4) 

~, + r' (x) 1 0 for 0 S. x ~ l 
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\,Jith the boundary conditions 

y(kl + r)(O) = 0 (r;" 0, 1, ••• ,t
1 

- 1) (2.5') 

(k2 41 s) (1) = 0 y . 

along \\Ii th (2.2). 

(s = 0, l, ••• ,:~ -1; .t
2 = e - e ) l 

The auxiliary charact~ristic equations at the points x = 0 and 

x = l whichappeared in the' foregoing chapter also enter into our 

problem; namely, a~ x= 0 the equation is 

, ,~' .r 
Qo ([\) =:2: ~ , \ = 0, 

r = 0 + r, 0 1\ 

and at x = l, 

(_l)k + s s -_ 0 
~ + s,l P. • 

s = 0 

Theorem 2.1 [4J The solution y of the problem Aé has the 

representation 

, y = y 0 + v 0 + f. C(O 

Where y is t.he solution of the problem A ,v is the function of 
000 

. ' 

boundary layer type of order kl in a neighborho~d of x = 0 and of 

order k2 in a neighborhood ,of x = l, and ~o is a bounded polynomial 

in é and x. 

Proof: - The introduction of the pOlynomial Q ().. ) is motivated by 
o 

means of the stretching transformation 

x t- - x= ~t - E t 1:. 

In terms of new variable t we have from (2.4) 
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k - 1 

l 
k (j) 

é a. (x) y (x)' + k + r C ) Ck + r) ) 
~ ~ + r x y (x 

= 

j = ° 
k - 1 
L 
j = ° 

J . . 
!" ::: 0 

If the right member is expanded in powers of E this becomes 

Here 

k.'L M N j N+ .~ .. + 
L ,:, y = y + ~., . é R.y + é 1Y• 
ç € o· j = 1 J 

My _. 
o 

.t . (k + r) C·t) 
l: ~ +r,O y 

r = ° 
. . 

is a 1inear differential ope~ator with constant coefficients: 

~Y= ~ .. ta . ·yCk+r)(t)+a /k-1)Ct) 
--~ F _ OK + r,l,O . K - 1,0 

and in general for 1 ~ i ,. Nt R.y is a 1inear ~ifferential operator, 
•.. =1- . 

the coefficients of which are powers of t not greater' than i. R_ 
. J -~ + 1 

is a'linear differentia1 operator, each of the coefficients of which 

is theproduct of a bounded function. 

.xl .....; 1 - x at Similarly the stretching transformation t l ;: - - é the 
JE: 

right end .poin~ produces, .in ana1ogous manner, the relation 

in which Ril is an operator like the operator Ri' 1 ~ i ~ N + 1. 

Now for t~e differential equations 

MoY _ ~ ~ + r,O y(k + r)Ct) = 0, 

r = ° 
(2.9') 
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the respective characteristic equations can be written by virtue of 

(2.6) in the form 

>,kQo (" ) = 0, (2.10' ) 

k 0- (2.10") ~Ql(P) = 

The nonvanishing roots of these equations are identical with those of 

(2.6). 

\ve assume that the perturbation of problem At: to problem A~ is 

singular i.e.' equation(2.6t) has '~l roots - ).1' - À2 ,.··,- À~ , 
.. l 

and equation (2.6") hase2 roots -Vl '·-V2 ' ••• '-+e
2 

\'Iith negative real 

parts. Also we shall assume that the problem A possesses a unique 
.0 

solution and that the same is true of the problem A<::; , provided ~~ 0 

is sufficiently small. 

Let y (x) be the solution of the problem A. In general it will 
o 0 

fail to satisfy el + e2 condi~ions. In order to improve the approxi-

mation we add to y (x) two correction terms which will yield an 
o 

o approximation to the boundary layer near the two end points, which will 

be obtained from stretched form of 0 the differential operators (2.7') 

and (2.8'). In the first approximation the stretched equation 

t o y(k + r)(t) = 0 (2.9) M Y = L ~+ 0 r, 
r = 0 

is a differential equation in the independent variable t w{th constant 

coefficients. Now we shall construct a solution of (2.9) which 

remains bounded, as ~~+ 0 and which compensates for the discrepancy 

between the boundary conditions actually prescribed at x = 0 and those 



o \..!J 

- 14 -

satisfied by yo(x) i.e.,we require th~t, 

= 0, l, ••• ,~ - l 
(2.10) 

i = ~, ~ + lt ••• t~ + el - l 

or, equiva1ently, 

{

Ot 

= _ i (i) (0) 
, é: Yo '. ' .. ; . 

i = 0, 1, ••• ,kl - l 

'. , 

For simplicity we shall stipulate that the. "\ roots (with negative 

real part) - ~l' - ).2' ••• ' - ~:e~ of (2.6') are distinct t but this 

j' À·t is not essential. The k + t functions t (j = 0, l, ••• ,k - 1), exp(- J) 

(j = l, 2, ••• ,-el ) and exp( Àji!) (j = l, 2, ••• ,:t
2

) constitute a funda­

mental system for the differential equation (2.9) ~ Ide discard the 

e - ~l = t
2 

solutions exp( ).j~) j <. t l , since exp( Àj1;) = exp( }.j:~) 

diverges for these j, as E"~ + O. From the remaining k + e.l 
particular solutions a 1inear combination can be formed that satisfies 

the kl + ~l boundary conditions (2.11). To see this we firstdetermine 

constants' 
,,--
Cj , j = l, 2, ••• , el so that 

= 
i (i) 

- t Yo (x)., x = ° 
= ° 

i = kl , kl +l, ••• ,kl + el - l 
(2.12) 

The coefficient matrix of the left member is of vandermonde type which 

is not zero by the assumption that roots ~j' j = l, ••• ,el are 

different. Rence (2.12) have a unique solution, which is of theform 
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ê'/é) = j = i, 2, •••• Ql 

where C~( ~ ) 
J 

are polynoU1ials in <: • Therefore, the functioll 

al 
0 2: v = 
0 

~. 

c j 

~ . 
1 

~ 'ci eXPt\j~(2.14') 
j = 1 j= 1 

is the solution of (2.9) which satisfies the second group of conditions 

in '(2.11).' The first group of boundary conditions in (2.11) can be 

satisfied by subtracting the partial sum, up to terms of degrees ~ - l, 

of its Maclaurin series, from (2.14'). The p~tial sum, 

k1 
Q.l k -1 

L 1 
À.)k t k é 0 2:. (- 0 c . = - l: aCo , 

j = 1 J k = 0 J k' • 
Therefore 0 0 (2.15' ) Yo + v + E"b 0 

satisfies-_ the k1 + el conditions at x= 0 and which is expected to 

approximate the solution of the problem A~ better than y in 0 ~ x ~1. 
.. 0 

_ Similarly we get, by the same type of construction, 

1 1 
Yo + Vo + E ~o ' 

which satisfies all k2 + e
2 

conditions at x = 1. 

where 
k

2 
~2 k -1 1 1 

. 2 
(_ )l.)k t k e- L 'C . L = - G: oI.a 

J J :.l 
j = 1 - k = 0 lq 

.-. 

and 
k

2 
Q2 -p t 1 1 
~ 

1 j (2.14") v = E c. • 0 J 
j = 1 

Now we shall combine the two formulas (2.15') and (2.15") in one, 

which will givea uniformly solution in the interval 0 ~ x ~1. Let 



- 16 -

~(x) be an infinitely differentiable function of x such that 

l, 0 ~x~S 
~(x) = 

where 6 is small positive number. Set 

0( = ~(x) 0(0 + ~(l - x) ,.} o 0 0 -b 
, 

Then 

y +v +éo<. o 0 0 

(2.16) 

can be expected to be an improvement on the approximation y alone, in 
o 

the whole interval 0 .:s x ~ 1. 

Now we illustrate the theorem by an example. 

Let the problem A be o 

- y(l)(x) = - l, 

under the condition y(O) = 0, and the problem A <: be 

2 (3) . (2) (1) 
Lé;Y = t: Y (x) + E- S:LIl (7L:.) y (x) - y (x) = - 1 

2-

wi th boundary conditions y (0) = y Cl) (0) = 0, YOJ 0 = ° 
clearly, here ao(x) = 0, al(x) = -l, a 2(x) = Sin(~X), a

3
(x) = 1 

k l = l, k 2 = 0 t ~ = :e 2 = 1. 

The solution y (x) of the problem A is y (x) = x. loJe find from 
o 0 0 

(2.6) that, 

Qo(~) = -~ + ~2 = 0, with zeros ~l = + l, ~= - i, 

2 
Ql (JI-) = 1 +).A - A = 0 wi th zeros P 1 = 'J )J2 

°Furthermore from (2.9)~we get 

= 1 -.ff 
'2. 
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M Y = - y(l)(t) + /3)(t) = 0; . 
o 

Mi' = /l)(t
l

) + /2)(t
l

) - y(3)(t
l

) = 0; t l := 1- x 
é: 

• 

Thus from (2.11) it follows that· 
() 

V must satisfy the conditionS 
o 

M (V?) = ° o 0 ' 

0(1)( )1' , 
V o t t = ° = -~, 

Thus, vO, which must be a multiple of 
o 

theparticular solution 

exp(-t) of M (vo ) = O,becomes . 
o 0 

v~ = ~ exp (-t) = ~ exp(-2f ) 
, é' 

Moreover, we find that 

o 
E ~ = -é 

Similarly, vl must satisfy o ' 
1 

Ml(vo ) = 0, 

1 
voC~)ltl = ° = -1 

. [1-/5- J' and must be a multiple of exp ,,' 2. t l ,i.e., 

l [1 -./5 • v = - exp ... o ... , 

~ = 0, since no other boundary condition'need to be 

satisfied at x = 1. 

The solution of problem A é becomes 
'. 1 

y(x) = yo (x) + ~ (x) v~ + '~(l - x)v! + é [~(x) o(~+ ~'l - x) ~] 

= x + é ~(x) exp (_;) _ ~(l _ x) exp. (1 -~~(l - x)j_ E~(X). 
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'\~e now aim at the following theorem \'lhich is a generalization 

of the formula (2.17) of the form 

y(x) = co r 
f l. O(r e (2.18) 

r = 0 

Theorem 2.2. [4J Under the conditions of solvability of problem 

Ao' of uniform solvability of problem AE ' and of singular perturbation 

ofproblem Ali. to problem Ao' the solution y(x) 'of problem AG for 

sufficiently small ~>O admits the following representation: 

N N 

L y(x) = r 
é 

r = 0 

Here Yo is the solution of problem Ao; Yr' r = l, 2, ••• ,N (together 

with its derivatives) are bounded with respect to ~ on 0 <: x ~ 1; - -
v

r 
is of boundary layer type of order kl in a neighborhood of x = 0, 

and of order k
2 

ina neighborhood of x = l and 

polynomials in x and € • 

Proof:·· Inserting (2.18) in (2.4), we get 

L.[ ~= 

0( are bounded 
.r 

The functions, y , 0<. and v to be no\'/ constructed depend on x, r r r 

as well as on ~. Expanding 

.0( rJ ré 
r = 0 

- f(x) 

in powers of ~ and setting the coefficients of ~ equal to zero, we 

get the differential equation of the form 
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k 

L a . (x) y (j)'= F 
J r r' r=O,l, ••• ~ 

j = l 
where F = f and the F , r> 0 are linear differential expressions in 

o . r 

j( 'r, with coefficients holomorphic in 0 ~ x ~ 1. .... 
Let us assume that we have already determined y.(x,' E ) j ~ r, as 

J 

infinitely differentiable function in 0 ~ ,x ~l and~(x, é), j < r 

as polynomials in é • Then the equation (2.20) has a unique solution 

satisfying the k boundary conditions of the problem Ao. This is our 

inductive definition of y. The function,y (x, é ) is infinitely often 
r r 

differentiable if Y j (x, é ), 

polynomial in ~ • 

o(.(x, é ), j ~ rare. Horeover, it is a 
J 

NO\-I stretching the term L ~ . v é r] by independent 
~~= 0 r 

variable t = x/~ and expressing it in the power of é 

equating all terms to zero, 

M v = GO 
o r r ' 

. 0 
r ;::;. 0, G 

o :: 0 

vie get a fter 

(2.21' ) 

\'Jhere Gare linear differential expressions in the v., j < r, whose 
r. J 

coefficients are polynomials in t. Similarly in terms of the independent 

variable t l = l - x 
é 

~vr = 

Now from (2.21'), 

solutions 0 0, v , r = r 

kl 
~1 

0 ~ v = é' r 
i = 

, we get the sequence of differential equations 

r ~ 0 o 

we shall construct a sequence of particular 

l, ... of the form 

exp(- ,,/), 1, ••• (2.22) cC? (t, E ) r = 0, 
l.r 

l 
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o c. are polynomials in both variables. 
lX 

For r = 0 vie 

have already defined a solution V
O with this property. Under the 
o 

inductive hypothesis that ail v~ ,j <r, are of·the forro (2.22) the 

functions GO with v. = v~ also becomep a function of this type. Now 
r J J 

by the method of undetermined coefficients the equation (2.21') 

possesses a particular solution of the type (2.22), say, 

..... 0 
v r 

e.l 
:~ êi ir (t, ~ ) exp(- ).jt) , 

:i = 1 

r = 0, l, 2, ••• 

Now if we add to it a solution of the' homogeneous equation of 

the form 

~o 
v = r 

e.l 
~ Y'~. exp(- -\t) 
.i = 1 

vrith constant coefficients { , i = l, 2, ••• ,Al that may depend on 
J.r 

é) we can find that 

(0) _0 
v = v r r 

satisfies the el conditions 

o 
v 

r = 

+ =0 v r 

The function vO 

r 
o 

so defined is a solution of (2.21'), and Yr + vi: 

satisfies the el highest order boundary conditions at x = O. 

l'Je also wish to satisfy the first ~ boundary conditions (2.11). 

o 
VJe expand v in powers of t about t = 0 and observe that the partial 

r 
kl - 1 

sum up to and including terms of degree t of this series is 

annihilated by the operator Mo. vJe call this partial oSum ' - E- O(~, 



21 -

which is polynomial in x and ~ • The sum y + V
o +E 0(0 

r r r satisfies' 

the all required boundary conditions (2.11) at x = O. Similarly 

l l 
Yr + vr + e ~r can be constructed to satisfy the all prescribed 

boundary conditions at x = 1. Finally we define v and ~ by 
r r 

vr = ~(x) v~ + ~(l - x) v; 

0( = !O(x) 0(0 + !O (1 - x) o? r r r 

We wishto construct an approximate solution to the order N, for 

our singular perturbation problem. Here the Ek term in (2.7') and 

(2.8') creates the trouble, which can be reduced by this correction 

modification: For r ~ N we proceed as described. For r> N we calculate 

a number of additional functions ~j , 
r 

. t th t' ... j manner, excep a we ~pose on v
r 

~, j = 0, 1;.,' in the same 

~j + é ""r the boundary conditions 

at x = 0 and x = l, respectively, ins~ead of doing it for Yr + i~ + é~j 
~ r 

as before. It is sufficient to go up to r = N + k in this manner. 

~. ~ However, in view of the factor E ~n (2.22) and similarly E 
, 

for the expression for v , it suffices to go up to r 

In this case the expression 
N N N 

Y L 
r 

~ 
r 

~L = Yr E + v E No r -t 
r = 0 r = 0 

is the solution of the full problem A 6 • Here 

N + 1 
E 

r = 

and g..(x, E- ) is bounded for 0 ~ x ~ l, 0 < L < é: • 
~i'l - " .... 0 

( ~o is constant). 

r 
o(r é 

0 

o $ x ~ l, , . 

The error W~ = ~N - y is the solution of the differential 
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equation 
N + l 

L~(\~~) = t: ~ (x, é· ) 

"lhich sat:i..sfies the boundary conditions (2.5). 
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CHAPTER 3 

ORDINARY DI:fFERENTIAL EQUATIONS OF EVEN AND OnD OHDSaS 

This chapter deals with the con~itions under which an ordinary 

differential operator L~ (with parameter~ in the term with highest 

derivatives) has a uniformly positive symmetric part (3.7) and a 

. uniform inverse, which guarantee the solvability of the problem AIE. • 

Furthermore we shall see under what conditions the problem A é 

perturbs singularly to problem A • 
. .0 

Let. the differential operator 

k 
Lé Y ii L as(x)/s) (x) + 

s = 0 

1 
= LoY + Lé Y 

(~+ l(x) ~ ° for ° ~ x ~ 1) 

be give? on the interval 0 ~.x ~ 1. The characteristic forms 

1 1 
17~ C 5' ; x) and ne (~, x) of the operators Lé and Lé: at 

thé point x are defined respectively by, 

and 

l x) Tl e ~ ; = 
é: 

If k + € = 2(kl + ~l) 

boundary conditions 

y(s)(O) = y(s)Cl) = 0, 

L J" k " 
~ lE ~ JO ex) (;i. ~ .) + J 
J = 0 + 

e-
L €j~ /x) (i; 

k + j ) 
+ j = 1 

is an even number, then we consider 

s = 0, 1, ••• ,~ + el - 1 

, 

(3.3) 

the 
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If k + t = 2(k1 + ~l) + l is an odd number, then the number of 

boundary conditions at x = 0 and l depend'on the sign of thé 
e. kl+ ~1. 

coefficient ~ + e. (x) (_l)kl + 1 i.e., for (-1) ~ +e. ex) :> O'~" 

y<r)(O) 0, r = 0, 1, ••• ,k1 + e.1 , 
.., 

= 

y<s) (1) = 0, s = 0, 1, ••• ,k1 + e -1 li 
and for 

kl + e.l 
(-1) , ~ + e. (x) L. 0, 

/r)(0) = 0, r = 0, 1, ••• ,k1 + e.1 -1 ) 

y(s)(l) = 0, s = 0, l, ••• ,k1 +~1 

We begin with the case in which k = 2k1 and .f = 2t1 are even 

numbers. We shal1~~rive below conditions under which the operator 

Le with thé boundary conditions (3.4) are positive and moreover are 

uniformly positive, i.e., 

whére 0(2 is independent of i: and y. 

Ily(kr)(X) 11 2 
+ lIy(x) Il 2] 

(3.7) 

Theorem 3.1. (4] If the numbers k = 2k1 , k + ~ = 2(~ + el) are even, 

if the characteristic form of the operator L~ has a positive real 

Re. T1~( ~ ;x) 

, l 
.~(kl~j k 2~' 2j i 2 (;k" 'l"+ 

+j) (x) Y' -;' 4o(;L E- ~:. ?' 

part, i. e. , , 

j = 1 

and moreover if the operator L is positive: 
, 0 
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for arbitrary sr.looth function y satisfying conditions (3.4), then 

the operator L~ under the boundary conditions (3.4) is uniformly 

positive for sufficiently small ~ • 

Proof of the Theorem will be given after quoting a fe-", lemmas. 

l'le denote by Aé; Y the part of the operator LE li ': \'lhich is 

equal to the sum of the terms of 'LE with derivatives of even order 

and coefficients which contain é. 

Lemma 2.1- If k = 2kl and the characteristic form 
,..., 

, l( ~ TIf: ( ~ jX) = Re. "1: jX) of th.e operator /1(;- is 

k . - l( ~ ~l 2j 2(kl+j) 
Tié ( .~ ;x) = Re, né jX) = L 

(-1) l+J 
é a2(~+j)(X) ~ ., 

j l = 
t!.- 2j 2(kl + j) 

2 
.1. 

;:;;. 0{ L é '$ , (3.8) 
j = l 

\vhere 0<.2 is independent of x and ~ then for sufficient1y smal1 é-

2 
.,,( ÀfT ,y):~p 

e.1 

[r 
J = 

2j (k1 + j) .~] 
é \): Y (x) \1 

l 

- Mé [If y (k1) (x) Il 2 + Il y(x) n ~ , 
(3.9) 

\rihere H is sorne constant, and y is an arbitrary smooth function which 

vanishes near the points ° and 1 and,outside of [0, 1J • 

Froof: First we consider the case when the coefficients a.(x) = a. 
~ ~ 

are constants. Let the fourier transform of y(x) be 
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+00 

Y ( ~ ) = )2~ f exp(-i ~ x) y(x) 

_00 

cLx 

Therefore -;co 

'";( ~ ) = l.l,i2nJexp(';'i ~ x) d-x. 
c. '. -CXJ 

Now making use of the Parseval's equation and (3.8), we get , 

.-.J - ~ 2 
el 2j 2(kl+j) 

( I\~ y, y) = . ( Tlé (~ )y( ~ ), y( ~ » ~ 0( L ( é ~ y,y) 
j = 1 

2 el 2j 
/1 y(k

1
+

j 'lr . (3.9") .:= 0( ~ é 
j = 1 

and the estimate (3.9) is establ~shed, which holds for any finite 

functions y(x) •. 

Now w·e prove the inequality (3.9') when the coefficients a. (x) 
l. 

are variables. Let 'v} is an arbitrary smooth function which vanishes 

near the points...J and -1 +S (and outside of [~, -1 +s] ), 

Ci, 1+6) C. [0, 1]. Denote by o "t:: the operator lié 1t/hen its 

coefficients are replaced with their values at the point x , 
o 

Applying (3.911 ) to vi, we get 

(Vl­
E' 

I\~). 'vI, \'1) 

(3.10) 

Integrating by parts up to the order which is half the order of each 

component entering into I\~, we get 
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A1so, 

Estimating the scalEl.r product in each term of (3.11), \'le get 

s 

~ i)VJ(S-i.)) 1 
.s 

i = 1 
s 

:S: ~1I.w·(s)II':2 +;. co[Z"- l (iol(s), ;~~)i'/(S-i)Ù 
:Jo. = 1 . s ~ 

illhere {;:tfj = max. 1" s, for x é (-:Y', -:( + 61 
and c is constant. 

o 

Now after making use of the inequa1ity 

for arbitrary ~ >0, \'le get 

(3.12) 

1 (H(s), {~? w(S-i))./ ~ ~ [ ~2 Il\v(s)1I 2 + iÀ) -2 1l.~~)w(S-i)1I 2J 

::= ~ [ ~~. Il w(s)11 . + c2 ~ -2 J 1 i'J(S-i~,r] . 

i = l, 2, •••• ,s. 

l;ihere . , (i)()1 c = max. a2j x , for 0 ~ x ~ 1 

j := ki + l, ••• ,k1 .,. ~1; 1 ~ i ~ j 
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Taking ~ 2 = E: ,we have for i ~ l, 

_ /Cs -k1 )1.< ~JCs), ~i:\/S-i)) l.f é ( ~l(S-k1) Il l'J(s) 11 2
.} 

.... : :l ~2C~-k1)_1 Hw(S-i)1I
2

. 
2: 

For , 

and for s - i ~. k
1

, (Since s > k1 , é «1). 

Therefore for s> k
1 

(3.12) gives 

( ) 
1 

2(s;"1::1) fI· (s)112 
C~~) S) , (~~1~)~ d 

+c;i <o[~l /Cr-k1ll ".(':>/1 ~ t I/wtr ) l~ J 
. r = k 1 +1 . ~=o 

Substituting in (3.11) the estimnte found and reducing 1ike terrris, 

\'le get 

Choose é and S in such a way that 

\'1e get· from (3.10) 

2,1 2j (l .. ) fI 2 Z é: Il \0/ ""l-1'<J 

j = 1 

and since I!w Ci ) Il 2~ M. 
~ 
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the estimate is established. 

Let u be an arbitrary smooth function \'lhich vanishes near the 

points 0 and l(and outside of [.0, 1] ) and ~ . (x) be a smooth 
l. 

fune tion not vanishing on (-:1., ':(. +. c.), ~ . ~ CS 
l. l. Dl. l. 

such that 
N 2 

1· - I 1;. :'(K) 0 ~ x ~ 1 
l. 

i = 1 

Therefore 

Li. y) + 
l. 

B (y, 

in \<lhich y appears in B(y, ;.) with derivatives of order lo\<ler at 
l. 

least by one than in the corresponding term of L ( 1\~?iY' '":{".y). 
l. 

After integrating by parts and having the sameestimate of sca1:ar product 

1 2· (k +. 1 

as we:have appl.ied be~ore, we find that,] ~k 

1 B(y, 'i)k c€~I= l J //Y 1 J)/ ' +c ~ 0 

2 
Choosing small enough t sueh that C €. ~ Cl(. and 

Lt 
making use of (3.13) in each ter:m ( i\; ~iY' ~iY)' \<le get 

~ l N 2 . 2 k 1 N (vol '2 ( "tY, y)~ ~2 l I. t Ile "l;iy)(kl+j)lI~ clL L 1/( L;iy )1I 
j = 1 j = 1 . <T = 0 i =1 

s = 
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N 

L E2j 1\ ~i y(k1 +j) Il 2 ~ 
i =1 

s = 1 

Again taking sufficient sma11 é so tha t c 2 :$ 0< 2 
-Z;:. 

2 

lI/k1+j - r ) tI 

and using 

(3.14) and (3.16), we get (3.9 1 ), vlhich was to. be proved. 

Now we sha11 see that Lemma 3.1 a1so ho1ds for functions y in 

. 2(k1+t~) 'W
2 

. satisfying the boundary conditions (3.4). To prove, in 

short, it is enough to add to the estiroate (3.9 1 ) the expression 

$ , 2' 
(-l}'l +J E J 

j = 1 

2j 
E 

j = 1 

in which the sum in the 1eft hand side resu1ts from integrating the 

·forro ( A~ y, y) by parts. 
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Let y b 1 t W 2(kl+h) 
e ong 0 2 and let y satisfy the boundary 

conditions (3.4). Then, \'1e can construct a sequence of functions 

\Yn (x)} .( = : t "i""Z;ll y) }. where ~"n . is a smooth function 

vanishing in [0, ~J and [1 -
1 

lJ; iT'l-t_ is an averaging ii 
operator with radius ~ 

1 ) , is an arbitrary smooth = Y..I). 211 
function which vanishes near the points 0 and 1 (and outside of 

[0, 1] ) and converges to y in W
2

2 (Kl+ 11). Substituting y = Yn 

in the above written equation and passing to the limit as '"'n ~()O t 

we see the validity of this inequality for y of the ab ove indicated 

type. 

Denote by HE y tre part of the LE- Y consisting of odd or'der 

\'/hich have E in their coefficients:· 

~-1 

= L 
j = 0 

2j+1 
E 

Lemma 3.2. Let y(x) belong to 'v1
2

2 (kl +{tl) and let it satisfy the 

boundary conditions (3.4). Then 

Proof: Integrating by parts and using the boundary conditions (3.4), 

we get 
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o 

=- 2~i -l,~ (b
j
/ k1+ 1-1), ,yU») 

j ~ k1 + ~1-1 . 

Simi1ar1y as we have done in 1emma 3.1, we get 

(k) 2, Z, 
+ Ily 1 II· 1'- l\ y 1\ .l 

'vIe get the simi1ar estimate for the remaining terms of H cf; also. Rence 

1emma is proved. 

Proof of Thëorem 4.1: 2(k + t 1) For functions y in '.. 'IN l which 
" 2 

satisfy the boundary conditions (3.4), we have from the 1emmae 3.1 

and 3.2, 

CLL.Y,y) = " (1\,_ y, y) + (HL Y, y) + (L y,y) 
~ ,~ t ç' 0 

~ 2 l 2j JJ (k1+j) 11 2 
, Cf.' - c é) E E y + (1 2

- He - cE:)· 
j ;:: 1 
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2 
\"Ihere ~ is small such that p2 

-
CE 9 '-i > 0 and 

2 2 
--( -ME ~ c E: ~ j3 > 0 

1 

It follows from the uniform positiveness that the equation 

L~y = f(x) is solvable with the boundary conditions and arbitrary 

f(x) in ~2. In fact, the number of boundary conditions is 

equal to the order of the equation, and the positiveness then 

guarantees the uniqueness, and consequently the existence of the 

problem Ae • Hence uniform positiveness implies uniform solva-

'bility of problem A é: • Hence the theorem is proved. 

Similar theorems on the uniform positiveness of L~ hold 

also in the other cases, "'/hich can be stated as: 

Th,eorem 3.2. If k + R, = 2(~ + il) is an even number, k = 2kl + 1 
l l 

is, odd, if the characteristic form Tif: of the operator Lf. has a 

positive real part 

Re. 

and if the operator L is positive 
2 0 (~) 2 

CL y, y ) ~ l' (II y II· + 
o 

i.e. 
2 

J.J y JI ), then the operator L~ 

under the boundary conditions 0.4) are uniformly positive for 
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sufficiently small é • 

Theorem 3.3. If the operator of Lé is odd, i.e. 

le. of- e. = 2(k
1 

+ il) + l, if the characteristic form of the operator 
i 

Lé ha,s a positive real part, 

Re ( ~ ;x) 

or 

Re 

2' E J 
2(j + k l ) ,] 

~ " 

depending on the parity of k: k ~ 2kl or k = 2kl + l, and if the 

operator L is positive i.e. 
o 

(LoY' y) ~ y2( Il /kl ) Il 2 + Il y Il 2 rj 
then the operator L~ under the respective conditions (3.5) or 

(3.6) are uniformly positive for sufficiently small é 

Now we shall find the number of the roots \l1ith negative real 

parts of the auxiliary characteristic equation 

(k, i ) 
Q (t) = 

e ' 
L a .t

j 
= 0; a j 0. 3k +~ -1 0 

j=OK+J K \:. 

k '(k, t ) 
"~e assume that the real part 'of the polynomial t Q(tj 

t is imaginary, say t = is positive i.e. 

k (k, e. ) 
Re (i ~ ) Q. (i~) - L (-1)ja

2j 
k ~ 2j ~k+l 

~ c
2

( ~2m + i2'~~) 

, , 

~2j 

(3.18) 
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\Vhere 2m and 2M are respectively the smallest and large st of the 

four numbers 2j for which k ~ 2j ~ k + g ., If the 'free term 

ak.in (3.17) vanishes, then with the remaining coefficients 

aj(j > k) fixed and ak + 1 assumed to be different from zero, only 

one of the roots lb of (3.17) vanishes \orith ~, and 

Renee, for su:(ficiently 

.: ... 

Sign Re. ~o:> 

, Re. A 
o 

small ~, 

-~ 
~~ 

~+1 

-~ 

~+l 
• 

In the same fashion, if the leading coefficien~ ~ +i!. in (3.17) 

vanishes, \'ii th all remaining coefficients a., j <. k -r~ ,fixed 
J 

and ~ + t -1 1 0, equation (3.17) for ak + e _ 1 1 0 has one root 

\oJ'hich becomes infinite as k + ~ -7 0, such that 

Sign Re ?' - sign 
~+ ~ -1 

~+a. ' 
Now we consider the following lemmas. 

Lemma 3.3 Let k = 2~ = 2m and k + t -= 2(~ + el) = 2H be 

even numbers. When condition (3.18) is satisfied, equation 

(3.17) has exactly ~ rbots in the left half plane. 

'Proof: Let 
(k, e ) h 2j t -1 1 , 
~ (t) = L a2 (, .) li + -c'[ 

j = o K1+J a2 (k
1 

+j)+l 
j = 0 

2j+l 
t 
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On account_ of (3.18) on the imaginary axis 

k (k, Q. ) 
(-1) 1 Re. Qi't' Ci ~ ) 

kl = (-1) __ Re. 

--3- 2 2.1. -c (1 + ~ 1);;' 0 ,a. ~ s )'J 

(k1e) 
and 1; are real. Thus for any real " the equation q", (t) = 0 

has no roots on the imaginary axis. Therefore if ~ varies from 
(k,a) 

o to l, the roots of Q--c (t) = 0, which vary continuously, do 

not meet the imaginary axis. Now since the coefficient a2(kl+~1) 

in t~e term of the highest order is fixed and different from 
(k, e ) 

zero, the-roots Qot- (t) = a do not become infinite \·lhen --: varies. 

It follows that the number of roots of Q (-t) = 0 lying in the 
'G 

left half plane does not change with variation in 
(k, e ) 

-t: = 0,_ Q-c (tr = o becomes, 
II 
L a2 (k

1
+.j) 

j = 0 

2j 
t = 0 

" . ·~Jhen 

and it has il pairs of roots ( :>ï, - .)J.). 'l:herefore it has 

exactly Rl roots in the le ft half plane for arbitrary ~ 
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Rence if q; = 1 th en by [6J the ·lemma is proved. 

In the same fashion the corresponding lemmas for the 

different value of k and e.can be carried out • 

Lemma 3.4 . If k = 2 ~ + 1 is odd, k +.~ = 2(~ + 12
1

) is even 

and condition (3.18) is satisfied, then the equation (3.17) has 
k

1 
. 

(-1) a 2k ·1" < 0 and 
1+ . 

in the left half-plane .el roots "'/hen 

kï 
/'1 - 1 roots when (-1) a2k +1"> o. 

1 

Lemma 3.5 Let k = 2~ be even and e = 2 il + 1 ~e odd. 

'\1hen condition (3.18) is satisfied,' equation (3.17) has in the 

. left half-plane 01 + 1 roots for 

~1+ al 
(-1) a 2 (k

1
+ ll)+l> 0 

Lemma 3.6 If k = 2k1 + 1 and k + e = 2(k1+ ~) + 1 are odd and 

(3.18) is satisfied, then equation (3.17) has roots lying in the 

left 

In theorem (3.1) we have shown that the positiveness of the 
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l 
characteristic form of the operator L~ and the positiveness of 

Lo guarantee the uniform positiveness of the operator Lé and, 

consequently, the uniform solvability of problem A€;. 

Now we shall define the boundary conditions of the reduced 

problem in the same way as we have'defined in the case of 

problem Aé ' to make the operator Lo positive. 

\oJhen the order k = 2k
1 

of the operator is even, then" 

(s) 
y(O) 

(sJ . 
.'- 0 ... 

= y(l) = 0, ~ = 0, ~, ••• ,~-l 

and for k = 2k1+1 the boundary conditions at x = 0 and x = 1 
kl 

depend on the sign of the coef~icient (-1) a~+l(x) i~e., 

~ 
for (-1) a2k +1 (x) "> 0, 

1 

y( r ) (0) = 0, 

( r ) 
y (0) = 0, 

/s) (1) = 0, 

r = 0, 1, ••• ,~ ] 

s = 0, 1,.e.,k1-l 

r = 0, l, ••• ~ k1""1 "1 
.s = 0,1, ••• ,k1 J 

Nm'l we shall. study the asymptotic behaviour of y(x), the 

solution of problem A e: According to the chapter 2 if the 

perturbation of A~ to Ao is singular then there isa representation 
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in theorem 2.2 of the solution y(x) containing a boundary 

layer. ive sha:ll prove nO\of that the conditions of theorem 3.1 

and above boundary conditions of problem A imply that the 
, 0 

perturbation of problem Aé to problemAo is singular. 

Theorem 3.4 (4). Under the conditions of theorem 3.1 (3.2, 

3.3), if for the operator L there are assigned the boundary 
o 

conditions 3.19 (3.20, 3.21) ,then the problem Ac: is solvable, 

it singularly perturb.; to problem A ,andits solution y(x) o 

has the asymptotic behaviour given by formula in the theorem 

2.2. 

Proof: Ive shall prove it only for the case when L~ and Lo are 

of even order, i.e., k = 2kl , k +~ = 2(Y~ + el). On passage 

from problem Aé to problem Ao' from conditions (3.4) to (3.19), 

exactly il conditions,arelost at each end points x = 0 and x = 1. 

No\'! the theorem will be proved if theauxiliary characteristic , 

equation has exactly .Ql roots 1:/ith negative real parts for both 

end points. The equations are 
2el =:L a2kl+ j ,O 

j = 0 
= 0, a 0 s, 

2 al 

L 
2kl +j j 

(-1) a 2k . l À = = 
l +J , 

j = 0 

Since by assumption of theorem 3.1 

= a.(x)1 
J x = 0, 
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j = 1 

2 2Q1 
~ cl (é. 

. k1 and by the fact that (-1)· a2k (x) > 0, we have 
1 

k~ 2k 
(-1) a2k (x) ~ 1 + 

1 

Nultip1ying by and setting , we get 

which gives for x = Othe inequa1ity 

\'lhich proves the fact with the help of lftmma 3.3 that the auxi1iary 

characteristic equation has for each of the ends exact1y il roots 

with negative real parts. So we have thesingu1ar perturbation 

and hence the theorem is proved. Simi1ar1y it can be proved for the 

odd and even orders of LE and L operator. 
. 0 
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CHAPT ER 4 

INITIAL VALUE PROBLEMS FOR NONLIN~ ~UATION3 
• 

The Chapter is concerned with the asymptotic behaviour of 

the solution of nonlinear initial value problems. More precisely, 

wè shall consider the system of differential equations of the 

type 

dx = 
"dt 

LoS! 
c;;:; dt = 

f(x, y, t) 

g(x, y, t) 

together with the initial conditions 

= 
0'; z 

} 

vie shall denote the variables x and y by z. 

. o.,' . 

(4.1) 

(4.2) 

E is small positive parameter, x is an m-dimensional vector and 

y an M-dimensional vector. vie shall' denote by z( t, é. ) the 

solution of (4.1) satisfying (4.2). 

First we shall introduce some definitions, 

Reduced system of equations Let y = ~(x, t) Qe one of the roots 

of the system of equations g(x, y, t) = 0 defined on a bounded 

closed set D. The system of equations 

y = ~(x, t), 

and 

dx dt = f(x,y, t) 
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will be called the reduced system "of equations corresponding 

to the root y = ~(x, t). 

We shall denote the solution of this equation satisfying 

the initial condition x.1 t = t 0 
o -= x by z(t). 

Isolated root We shall call the ro~t y = ~(x, t) isolated 

on the set D if there exists an p> 0 such that the system 

g(x, y, t) = 0 has no solution other than ~(x, t) for 

1 y - ~(x, t) 1 <. p. 

Boundary layer system The system of differential equations 

~ = g(x, y, t) 

in which x and t are parameters, will be called the boundary 

layer system of the equations (4.1). 

(4.4) 

Positively stable root The isolated root y = ~ (x, t) ~dll be 

called positively stable in D if, for all points (x*, t*) belong-

ing to D, the points y = ~(x*, t*),are asymptotically stable 

stationary points, in the sense of Lys":punov[ 81 , of the boundary 

layer system (4.4), as -c; -" (JO • 

If the same situation holds as 'C ~ - cP, then the root 

\-Jill be called negatively stable. 

Domain of Influence". The domain of influence of an isolated 

positively stable root y = ~(x, t) is the set of point~ (x*, y*, t*) 

such that the solution of (4.4) with y l 'l: = 0 = y* tends to the 
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value ~(x*, t*), as '" -7 cil. In . the same '-I/ay we may define 

the domain of influence of a negatively stable root. 

Uniform asymptotically stability A stationary point y = ~(x*, t*) 

of the system (4.4) is called uniformly asymptotically stable with 

respect to the domain of variation D of x*, t* if, for any p> 0, 

there exists a 6 ÇA) such that, for aU (x*, t*) belonging to D, 

the inequali ty 

1 y(tC) - ~(x*, t*)/ ~ f 
holds, provided 

and, moreover, the passage to the limit 

lim y( ft,) ._ ~(x*, t*) 
tt:~co 

is uniform in the set D. 

~heorem 4.1 [7] If some root y = ~(x, t) of the system 

g(x, y, t) = 0 is an isolated positively stable root in some 

bounded closed domain D, if the initial point (xo , yO, t O
) belongs 

to the domain of influence of this root, and if the solution 

x = x (t) of the reduced system (4.3) bel~ngs to D for tO~ t ~ T 

then the solution z(t, é ) of the original system (4.1) tends to 

the solution z( t) of the reduced system (4.3), as E'~ 0, the 

passage to the limit 

Lim Y ( t, E ) = y ( t) = li" (X (t.) '1 t) 
~-?-O 
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o 0 holding for t ê t "'- T < T, and the passage to the limi t 

lim x (t, €) = x ( t ) 
é~O 

Pro of: Let us fix an arbi trary small number Pl > 0, then by 

the property of uniformly asymptotic stability, we may define 

b(~) 
2 ,allowing us to write 

Pl 
-- on the right hand side of 
2 

Consider the boundary layer system (4.4) reffered to the 

initial point, and its solution y ( ~ ) defined by the condition 
o 

o 
y 1 = y • . 0 "1:=0 

Bince by hypothesia the initial point belongs 

to the domain of influence of the stable root y = ~(x, t), therefore 

for any given p, there exists a "Go (p) such that, for 1:' ~ "1:
0

' 

The stretching transformation 

t _ t O 
q; ==..;..........;. 

é 

takes the system (4.1) and (4.2) into 

dx 
d~ = 

~­
d't - g(x, y, t

O 
+ ~ € ), 

o = z 

(4.6) 
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The system of equations contains the parameter ~ on the 

right hand side; therefore by virtue of a standard theorem con-

cerning the continuous dependence of the solution of a differentiBJ. 

equation on the initial values and on parameters [9 J , there 

exist~ a ~o(p) for any p > 0 su ch that, for 

'.y (t, ~ ) - Yo(C(,)1 < ~ " 
, x(t, é) - X

O 1 <. p .. , 

o 
E- <.~ , -

if 0 <: "" <tG , where - .... 0 "to is as large as we wish, but fixed. 

o addition, we may assume that, for ~ <: € , .-

(4.7) 

(~.8) 

In 

1 t - t
O 

, <}l (4.9) 

If we choose}l =}l ~) appropriately in all these inequalities, 

then from (4.7), (4.6), (4.8) and (4.9) 

~ y(t, ~) - ~ (x (t, é), t)\ <6(,ul) 
2 

, 
Therefore at the point t = t l , we may assert that 

(4.10) 

~ (t, ~ ) = t y(t, é ) - ~(x(t, é- ), t)J < Pl (5~'~~) ~P1). 

NO\of we shall show that this inequality is preserved v/hen the 

projection of the integral curve under consideration into the space 

(x, t) belongs to D, i.e. (x (t, é ), t) belongs to D. Suppose 

that the equality occurs at the point t
2 

> t l ; in general, t
2 

is a 

function of ~ , as is t l • Let us take a sequence E -?- O. 
n 
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50 to every ~n there corresponds a value t 2n for which 

1 y (t2n, ~ ) - ~"'x( t 2 ' ~ ), n ~ n n 

Also, by (4.10) 

1 y(tln, é n) - ~ (x (tln, ~), tln! « 

Clearly we can find a value t such that .tln~ t ~ t 2 n n n 

and 

é.> - ~I'x (t , n ~ n = 
(4.11) 

Let tn be the last value of t beyon~ which the trajectory 

y(t, i!:n) no longer returns to the G(~) -neighborhood of 

~, but falls on the boundary of the~-neighborhood of~, so 

that for t ~ t ~ t 2 ' we have n n 

The sequence of points 

x(tn , ~), y(tn , ~), tn' 

(4.12) 

has a limit point (x(O), y(O), t(O» by virtue of (4.11) and the 

fact that (x (t ,f)1~ belongs to D, so we can select a subsequence 
n ~. 

converging to this limit point. To avoid fresh notations let us sup-

pose that x(t, é), y(t, é), t be such a subsequence. 
n n n n n 

Consider' the boundary layer system . 



- 47 -

y, \ " = 0 
= y 

(0) 

since 

so for "G~ 0 

1 y'(.-c) - ft'(x(O), t (0»., < -fl~ 1 

while for ...,; ~rto(f'2r· 

1 y (tT:,) - ft (x (0 ), t (0 » , <: Jl'i . (4.14) 

whereJU2 is any given positive small number. 

Now stretching the system (4.1) by the transformation 

. t - t . 
n" '" ::---

~ 

dx 
~ 

Sl. 
d~ 

= 

= 

~. ' . ... - ....... -
we get 

~ f(x, 

g(x, y, 

t én"G) y, + n 

t + n éon 1: ) 

z, 1 't:=0 
= z(t " é n > , n 

Because of the continuous dependence of the solution of this 

system on é. for 0 ~ "r ~ -c::; , where '" is as large as \'le please 
.... ~ 0 0 

but fixed. So by using (4.13), we see that for n"> N'Pl)' 

i. e. for sufficiently small ~ , 
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(4.15) 

where tn ~ t ~ t(n) = tn + 'CoE...... Now using (4.14) and 

choosing)U2 =P2~1) appropriately, we find that, for t = t(n), 

, y (t(n), é
n
) - ~. (x (tn , ~), t(il») 1 < b(?J 

(4.16) 

The inequality (4.15) tells us that, in the interval from 

t to t(n), the trajectory we are considering has not yet reached 
n 

the boundary of the Pl-neighborhood of fl$(x (t, E-n), t), i.e. 

t(n) satisfies ·the inequality t n"' 't (n) L t
2 

and, therefore, 
. n 

the inequality (4.12) must hold for t(n), which contradicts (4.16). 

So we have proved by contradiction that the inequality 

is preserved. 

Thus, we may assume that in the domain D 

~ = fÇc(t, é ), ~(x( t, é ), t), t) (4.17) 

with J IJ (t, é ), < 1U1 • In addition, by (4.8) and (4.9) 

'x(t,é) _xol<.p (Pl)' 

1 t - t
O 1 ~ /U(Pl) 

} (4.18) 

Now we assume that the solution of the system (4.17) depends 

continuously on any variation in the right h~d sides and in the 

initial point. Then for any P3' we can choose an Pl (p.3) and so, 
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in the last analysis, a €o Vu3) such that 

'x(t, é; ) - X (t) 1..c JU3' (x(t, e ), t) E- D, (4.19) 

Since the unperturbed system corresponding to (4.l7) and (4.l8) i6 

just the system definingx(t). By hypothesis, the curve x = x(t) 

belongs to D for t O ~ t ~ T; but then, sinee JU
3 

is arbitraryd:t 

small, we may deduce that x = x(t, 'E),beiongs to D in the interval 

t O ~ t ~ TO
, where TO is as close to T as we please, but fixed as 

," 

é-~ O. If 1r/e choose}l3 =}l3 (P4 ), 

The last two inequalities prove the theorem. 

Series expansion for the initial value problem 

N01r1 we shall construct the asymptotic expansion of the 

solution z(t, €) of the system (4.1) in terms of the small para-

meter E • Theorem 4.1 is only the first step in the asymptotic 

solution of initial value problems of the singular Ferturbation 

type. The actual approximate solution of such problerns in series 

has been analyzed in a series of papers (10) , [U1 ,[ 12J "and 

[13] • An entirely different approach is taken in [14J and 

[15J • Here we are giving an aceount of the important part of 

Miss Vasileva's theory. The nature of the asymptotic expansion 

depends essential1y on whether or not the stationary point ~(x, t) 

is stable. Thus, we may assume that the real parts of the roots of 
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the characteristic equation 

Det. 1\ ~(x, !D(X, t), t) - À:r Il = 0 

are negative in D. 

Here ~ isa matrix and l is an unit matrix. 
~y 

We attempt a solution of (4.1) in the form of a series in 

powers of 

The system definingz (t) is of the form o 

g(x , y , t) = 0 
o 0 } 

\.Jhile the system defining zl (t) is of the form 

d'Y 0-0 . .E aL = -:x & + Yl dt .1 OYo 0 

d'Xl = ---. ai Yl è5f x" 
ot -J. + 

th oy 
0 

(4.20) 

(4.21) 

} (4.22) 

0 

The subscript 0 and the above mean that the function has 

arguementsx, y , t; e.g. o 0 

= 
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The system defining the ~(t) are linear for all k ~ l 

with nonhomogeneous terms depending on the z.(t) (i ~ k). 
, 1 

To determine all th2se functions in succession we must 

specify the initial conditions, but ainee the first M equations 

in the systems (4.21), (4.22), etc. are not differential 

equations, we need only specify initial condiltions for functions 

of type x. 

For values of t that are small of order O( € ) t the solution 

to our p'erturbation problem can be found by means of the stretehing 

transformation 

The stretched form of our problem is then 

( t 0 .... tt::.. ... g x, y, 'c;;" ) 

If the functions f and g are analytie the solutions of 'this problem 

have convergent expansio:œ in powers of é , say, 
d) r 

z = L zr( '"C ) E 
r = 0 

Here, also Z 0 (tt) and zl (~) are determined by the respec ti ve 

systems. 

dx 
0 

0 J dit = " 
dy 

, (4.24) 
0 

g(xo ' y , tO) 
~ = 

0 
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and 

dx
l 

f 
d~ 

= 

1 
0 

(4.25) 
dyl 

~ 
~g 4g 

~= xl + Yl 
BYo 

+ 1:. ot· 
0 

In general, the zk( 'C) (k ~ 1) satisfy a linear system of 

equatioIl$ with non-homogeneous terms depending on the 

Z. ('C) (i ~ k). To determine the solution of the systems 
~ 

(4.24), (4.25) etc. in succession we must specify initial con-

ditions. Let the conditions be of this term 

o = Z 

(k> 0) 

The fact that the initial. values vanish for k "> 0 is connected 

o with the fact that Z does not depend on ~ • 

Also we construct an expansion of (4.1) in the variables E 

and t _ tO 

Z = Zoo + (t 

Z n - 1,1 + ••• + 

(~.26) 

which is obtained by expanding all coefficients in (4.20) in powers 

of (t _ te) 

z (t) = zOk + (t - tO)Zlk + (t. - tOl": Z2k + ••••• 

Here zik are constants. 
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vie give the initial conditions defining Zk in the form 

0 (4.27') x 1 t t O = x 
0 ;: 1 

. d'J 

~, t • tO = ) [f _ 1(1:) - 'fk_
1 
(~)] d'C 

o k , 
(4.27") 

where f
k 

_ 1 (~) is the (k - 1)-st coefficient in the. exposition 

of L(X, y, t) of the type (4.23) 

while 

k - 1 
f· k 1 . ~, - -~, 

i = 0 

f;. . being the coefficient in the expansion of the same function 
~, J 

f(x, y, t) of the type (4.26). 

It is clear that the data (4.27') determine the zero order 

terms in the expansion (4.20) and also the cOefficients in (4.26) 

allow,-. us to give the initial values Xl and, therefore, to de termine 

zl' from which we find all the coefficients in the expansion (4.26) 

with 1 for their second index etc. Later we shall see that this 

choice of initial conditions for the determination of the ~ will 

make zk' the limiting values of the derivatives of the solution with 

respect to the parameter é· • 

I.~e shall show now that the required asymptotic formula [16J 

is 
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Z = (z) ;- (i) - (z) 
n n n n (4.28) 

where (z) , (Z) and (~) are respectively the partial surns of the 
n n n 

series (4.23), (4.20) and the double series (4.26) containing terms 

of orderup to n. 

If we suppose, in addition to the conditions of Theorem 4.1, 

that the right hand sides of (4.1) have continuouspartial derivatives 

of order up to n + 2 inclusive in an arbitrary small neighborhood, 

fixed as é'-70, of the limiting curve of the integr~ curve of the· 

system (4.1), which consists of two parts 

(a) t = ta, x = xo, y =''1 ('t') (O~'"l:; <cP), 

° 
(b) te> < t ~To, x = 'X(t), y = y(t):: 91(x (t),t), 

then the following theorem ensures the validity of the asymptotic 

formula (4:28). 

Theorem 4.2 . The inequality 1: z (t, é' ) - Zn 1 c:::. c 
n ;- l 

é 

holds for the solution z(t, ~ ) of the system (4.1) which satisfies 

the initial conditions (4.2), where c is a constant independent of 

t and e for sufficiently small. ç ( E ~ ~o) and for 

t O ~ .t ~ TO. 

First we state two propositions which \'1e will use for the 

proof of Theorem 4.2. 

i'/ithout 1055 of generality we ma~:. take t O = o. 

Proposition A. 

Consider the linear system of equations 
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/tl._ ( );:; 
C dt - At, é:- .) + P, 

Vlhere A( t, E ) is a matrix which is continuous in t and é and 

for which the roots of the characteristic equation Det. 

have negative real parts for E:E (:0 and 0 ~ t ~ T
O

• 

The solution ~ (t, li: ) of this system satisfies the 

inequality 

\oJhere = r 0, k and c are. sufficiently small and large 

o 
constants, respectively, independent of t and €: for E.$ é- and 

o 
O~t~T. 

Proposition B. 

Cûnsider the system of equations 

d~ 
dt 

~ = 

= A ~ + B 1] + P, 

where A(t,~ ) s~tisfies the above condition. The other coefficients 

may depend (continuously) on t and é . 

The solution ~ (t, ~ ), ?J-( t, t: ) of this system· satisfies 

the inequality 

+ i
t 

(max. 
o 

(p 1 Q ) dt, 
JI 
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whe:re ~ \t = 0 = ~O, 
"1\t=O 

= '1\0, k and c'are con-

stants independent of t and E o ' 0 
for é ~é and 0 ~ t ~ T • 

Before passing to the proof of the theorem, \'le state the 

following lemmas, the proofs of which can be seenin '[17] . 
, ' , 

Lemma 4.1. If é- is sufficiently small( é.$ eO
), then the 

following inequalities hold: 

1 Z('"C) i 
n, 

c 

\'lhere c is a constant independent of t and ~ 

Lemma 4.2. The following inequalities hold: 

nn (z'o) 1 < c exp( -~t ) 

1 ~,,:17n(z) 1 < c exp. (-ktl:). 

n i 
where if (z) = Z ('t) - ~ ( ~) and z (tt:) = 1:' rc- z. . 

n n n n ' i = 0 J.,n-l.. , 

Lemma 4.3. The following inequalities hold in the interval 

o :: t ~ -A € log é ,where A is sorne sufficiently large con-

stant which is fixed as é","":;' 0: 

\ Zn - (z)n + 1 f ~ a-

I ~'(;, (Zn (z)n + .) 1 

Proof of Theorem 4.2. 

We shall use the notations 

é 

< c 

n + l 

n 
.. é 

Dn + l = Z - Zn( D-n + l = Y - Yn ' ~ + 1 = x - ~), 

Dn + l = Z - (z)n ( An + l = Y - (Y)n' ~ + 1 = 'x - <X)n) 

\oJe divide the interval 0 ~ t ~ TO into two parts; one is 

o ~ t ~ t 0 = -A ~ log tG , where A is some sufficiently large con-
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o stant which is fixed as <: ~ 0, and the other part. is t .c::: t ~ T • 0..... .,. 

Using Lemma 4.2, on the interval (t , TO
), the assertion of 

o 

Theorem 4.2 becomes 

,-.J n+l 
1 Dn + 11 <. c ~ (4.29) 

'""'" Since Dn + l = D n + l + 
n k . 
L é n k Çx) .,'.", 
k = 0 ... 

So, we shall prove this. inequality for the interval (t , TO
), 

o 

while the inequality 

n + l 
c é 

will be proved on the interval (0, t). First we prove (4.30) on o 

(0, t). The equations satisfied by D are of the form 
o n 

r l + ~ A l + gO(: ,Y , t) - L d~ Dn + . y ~ + 'll. . 'll ç 
dt 

~s = dt n + l 

\r/here • means that the values of the functions are taken at some>. 

intermediate point between z and Z • 
n 

By definition 

gn = Coefficient ofé-
n 

in g (xo + é xl + ••• , Yo + é Yl + ••• , et) 

(4.32) 
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and by Lemma 4.3 

d 
gCXn , 1.. n' t) - é:. dt y n 

= g(x)n + l'(Y)n + l,t) -

While by Lemma 4.1 

g(x)n + l'(Y)n + l,t), 

d n + l 
dt (Y)n + l + G 

(4.33) 

Since on' the interval (0, -A E:: log €: ) , t n + 2 <. c -E- n + l 

After using these last four equations, we obtain 

g (x , y. , t) 
nn 

d (2"+1) dt ~n = '-

Now using Lemmas 4.3 and 4.2, we get, 

n + l 

f<X n , Yn , t) -' dlC'n = f~<X) + l' (y) + l' t) - dXn +1 +E 
dt n n dt 

d n+l n+l 
- dt (x) + 2 7" E .9- 7f () (i!.. ) n dt n + l x + ~. 

= f(X)n + l' (Y)n + l' t) 

d n + l n 
- dt (x)n + 2 + (f:. ) + é- exp. ( - ~ ) 

dXn + l. 
dt 

Also by using the analogous result~3) for f and (4.32); we obtain 

clX n+1 
f(Xn , ~n' t) - dt n·= (E ) + ~n exp.'( -~) 

By virtue of (4.34), equation (4.31)takes the form 



d 
dt S 

n + 1 

- 59 -

n + 1 
(t" ), 

* * n+l n 
= f 6 1 + f A 1 + (E ") + (E x n+ yn+. - exp. (-~H 

é--
(4.35") 

. Here An + 1 and ~ + 1 are zero at t = O. 

Also using the proposition B, we get for (4.35) 

n+l 
dt .( c é , 

after which, using proposition A for (4.35 1 ), we get 

t 

\ ~n + 1 \ . <- ~. 
( ) n + 1 

( -k t-tl. -) ~* ) .5:. exp. .. , - -- e: _b + 1 + E 
€ ' .. E :- <Je n 

. 0 

n + l 
Hence = \z - Zn t L cé • 

Now we consider the part (t , TO
) and prove (4.29). We know 

o 

that 

,...., d ......, ** ~~ + 1 + g(x)n' (Y)n' t) - d E . .. f}) 
1 = g- bn + 1 + é- dt\Y)n l <Œ:' n+ X . j (4.36') 

.!L~ ** S ** ,.., 
f(CX)n' (Y)n' t) -

d (x) 
1 = f. 1 + f A 1 + dt n dt n + n + y n + 

X 

\'/here ** me ans that the values of the functions are taken at some 

intermediate point between z and (Z) • 
n 

It follows from the definition of the quantities~ that 
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n + 1 
- é !L (y ) = (E ) dt n 

and with these equations (4.36') becomes 

d ~ 
dt ~n + 1 = 

,.J 

Here ~ + 11 t = t 
o 

~: 'fh + i + ~;~ + 1 + (Eon + 1. )} 

** ,...., ** "" n + 1 
fC fA· +(L .) 

X ~n + 1 + Y n + 1 ç 

= ( n + 1) rc 1 . = (&on +. 1). 
é ,. on + 1 t = t \~ 

o 

Using the propositions A and B, we obtain (4.29) from (4.36) in the 

same way as we obtained (4.30)· from (4.35). 

This completes the proof of Theorem 4.2. 
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