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RIBONUCLEIC ACID AND RIBONUCLEASE LEVELS IN THE PEA 

EPICOTYL FOLLOWING TREATMENT WITH VARIOUS GROWTH REGULATORS 

Growth responses and levels of R~A and RNase 

activity were measured in subcellular fractions of the growing 

region of decapitated Pi·SUIn sativum epicotyls following 

treatment with various growth regulators. Auxin-treated 

tissue swelled and developed higher total RNase activity than 

controls. There were comparable increases in RNA and proteine 

A marked unilateral rise in RNase activity (e.g., 20-fold) was 

associated with a "heavy" ribosomal membrane subfraction of 

the microsomes. 

Other growth regulators had no such effects. Treat­

ment with benzyladenine (BA) prevented the losses of RNA and 

prote in which occurred in controls, but total and microsomal 

RNase activity were not affe~en BA was added together 

with auxin, effects of the two growth regulators on growth and 

RNA and protein increments were more than additive, and the 

great accumulation of RNase activity in the microsomal fraction 

which usually followed auxin treatment was completely abolished. 

~olysomal profiles prepared after auxin plus BA treatment 

showed less degradation than those from any other treatment. 

It is concluded that treatment with auxin generates and BA 

suppresses the RNase activity found in a membrane-bound fraction. 

This activity rnay have a function in control of the "turnover" 

of auxin-evoked polysornes required for growth. 
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PREFACE 

In keeping with the newly-accepted regulations 

for thesis style which have been authorized by the Graduate 

Training Committee of the Biology Department at McGill, the 

main body of this thesis has been written in a form suitable 

for publication. Use is made of the style recommended by 

the journal Plant Physiology and, with minor changes, it is 

due to be submitted to that journal for publication. At 

relevant points in the text, reference is made to appendices 

where further details of the points under consideration are 

given. This includes a more extensive citation of literature 

and supplementary experimental data from results obtained 

in this study and not reported elsewhere. 
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ABSTRACT 

Growth responses and levels of RNA and RNase 

activity were measured in subcellular fractions of the growing 

region of decapitated Pisum ~~tivum epicotyls following 

treatment with various growth regulators. Auxin-treated 

tissue swelled and developed higher total RNase activity than 

controls. There were comparable increases in RNA and proteine 

A marked unilateral rise in RNase activity (e.g., 20-fold) was 

associated with a "heavy" ribosomal membrane sub-fraction of 

the microsomes. 

Other growth regulators had no such effects. Treat­

ment with benzyladenine (BA) prevented the losses of RNA and 

protein which occurred in controls, but total and microsomal 

RNase activity were not affected. When BA was added together 

with auxin, effects of the two growth regulators on growth and 

RNA and protein increments were more than additive, and the 

great accumulation of RNase activity in the microsomal fraction 

which usually followed auxin treatment was completely abolished. 

Polysomal profiles prepared after auxin plus BA treatment 

showed less degradation than those from any other treatment. 

It is concluded that treatment with auxin generates and BA 

suppresses the RNase activity found in a membrane-bound fraction. 

This activity may have a function in ccmtrol of the "turnover" 

of auxin-evoked polysomes required for growth. 
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There is a growing literature confirming that 

long-term control of growth by hormones is exercised through 

actions on nucleic acid metabolism in both plant and animal 

systems (15,34,37). Plant hormones often evoke RNA synthesis, 

both messenger and ribosomal, and new polysomal species 

presumably code for enzymes that help to bring about growth (10). 

It should also be recognized that precise regulation of enzyme 

synthesis can result from control of stability of messenger 

RNA (36). At least in animal tissues, such control can be 

effected by hormonal regulation of RNase levels at crucial times 

and locations in growing cells (4). In differen't plant tissues, 

however, effects of various hormones on RNase activity appear 

to be contradictory, (15,37) and a precise role for this enzyme 

during growth has not been established for any one system. 

For example, concurrent increases in RNA, protein 

and RNase activity in response to auxin treatrnent have been 

reported for corn mesocotyl (29) and barley and wheat leaves 

(2l). In bean leaves, however, Fletcher (1969) clearly 

demonstrates that these responses follow cytokinin treatment, 

which suppresses total RNase activity in barley and wheat 

(30,31,32). In further contrast, Key and Shannon (1964) report 

large increases in RNA and prote in levels in auxin-treated 

soybean hypocotyl without concurrent increases in RNase activity. 

Inhibition of RNase activity after auxin treatment is reported 

for bean endocarp (28), bean petioles (1) and soybean seedlings 

(21). Undoubtedly, whether auxins or cytokinins stimulate or 

inhibit RNA metabolism depends in part on their relative 

concentrations (26,39). 
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Another source of confusion may be the fact that, 

in the majority of developmental studies, only total RNase 

activity has been measured, and in cases where tissue is 

fractionated, often only one fraction is investigated. Whenever 

plant RNase has been analysed with any degree of sophistication, 

more than one RNase has been demonstrated to co-exist in the 

same tissue (24,27,40,42) and, in most cases, the various RNases 

have been associated with either the soluble or mernbrane-bound 

fractions (e.g., microsomes). 

To date, a thorough investigation of the effects of 

different growth regulators on total and subcellular levels of 

RNA and RNase activity, and their relation to growth in a weIl 

characterized tissue has not been reported. This paper describes 

effects mainly of auxin and cytokinin, alone or together, on 

these pararneters in growing regions of decapitated pea epicotyls. 

In this semi-intact system, auxin treatment has been shown (6,9) 

to result in lateral cell expansion and massive increases in 

RNA and prote in in various cell subfractions, inciuding 

microsomes. 

MATERIALS AND METHODS 

Growth and Treatment of Peas. Seedlings of Pisurn sativum L. , 

var. Alaska were grown in darkness for 8 days. Under dim 

green light, those with third internodes 3 to 5 cm long were 

decapitated just below the hook. A point on the epicotyl 10 mm 

below the apex was marked with ink to delineate a "segment" of 

tissue. Each apex was painted with about 2.5 mg lanolin paste 

(70% w/w water) ± approximately 10 ~g growth regulator, and 
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seedlings were.allowed to continue growth in darkness at 22 C. 

Three days later, at least 50 segments per treatment were 

detached, lanolin was wiped from the surface and length and 

fresh weight were recorded • 

. Ts·olati·onof· "L·ight" and ·"Heavy"microsomes. Segments 

(approximately 5 g fresh wt/treatment) were ground in a mortar 

at 4 C in approximately 2 volumes of extraction medium consisting 

of 0.4 M sucrose (ribonuclease-free), 5 mM Mg acetate, 100 mM 

Tris-Hel (pH 7.5 at 22 C), 20 mM KCl, and 5 mM e-mercaptoethanol. 

The brei was squeezed through Miracloth (Calbiochem) to remove 

cell walls and debris (wall fraction) and the exudate was 

centrifuged at l6,000g for 10 min to sediment mitochondria and 

nuclei (particulate fraction). The resulting supernatant was 

divided into two 6-ml aliquots and layered over 6 ml 50% (w/v) 

sucrose (ribonuclease-free) dissolved in resuspension medium 

[10 mM Tris-HCl (pH 7.5 at 22 C), 10 mM KCl, 2.5 mM Mg acetate 

and l mM e-mercaptoethanoll. The tubes were centrifuged in an 

IEC SB rotor No. 283 at 40,000 rpm (190,000gav) for 3 hr. A 

band of material approximately 2 mm thick was visibly held 

back by the 50% (w/v) sucrose interface. This was collected 

readily with a Pasteur pipette and is referred to here as the 

"light" microsomal fraction (contaminated with supernatant). 

The pellet sedimenting at the bottom of the tubes is termed 

the "heavy" microsomal fraction. 

To prepare "washed heavy" microsomes, pellets were 

dispersed in resuspension medium by agitation for 2 sec in a 

Polytron PT 10/ST Homogenizer. A 6-ml aliquot was layered 
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over 6 ml 20% (w/v) su~rose dissolved in resuspension medium 

and recentrifuged as above for 1 hr. For protein, nucleic 

acid and RNase assays, both "light" and "heavy" microsomes were 

resuspended and homogenized using the Polytron. 

P'reparation 'of P'olysomal Profiles. The methods used were 

modified from those described by Wettstein ~al. (1963). 

Aliquots (6 ml) of the l6,000g supernatant were layered over 

6 ml 50% (w/v) sucrose dissolved in resuspension medium and 

centrifuged in an IEC angle rotor No. 169 at 40,000 rpm 

(145,000gav) for 1 hr. The resulting pellet was gently re­

suspended in 0.5 ml resuspension medium with a round-tipped 

glass rod and was layered over a l2-ml linear gradient of 

sucrose (10 - 35%, w/v) in resuspension medium underlaid by 

0.5 ml 56% (w/v) sucrose. This was centrifuged in an IEC SB 

rotor No. 283 at 30,000 rpm (105,000gav) for 2.5 hr. at 0 C. 

The gradient tubes were punctured and the absorbance of the 

effluent was scanned continuously at 254 nm using an ISCO 

model D density gradient fractionator. The effluent was 

monitored at a speed of 2 ml/min and recorded at a chart speed 

of 1 inch/min. 

Protein 'and Nucleic acid estimation (cf. Appendices l to IV). 

Aliquots of subcellular fractions were precipitated with equal 

volumes of ice-cold 10% (w/v) trichloroacetic acid (TCA) and 

washed consecutively with cold 5% (w/v) TCA, absolute acetone 

and ether. Nucleic acid was extracted from the de-fatted 

precipitate in warm (70 C) 0.5N perchloric acid and estimated 
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by measuring OD260 minus OD 290 values using wheat germ RNA 

(Calbiochem) as standard (14). Protein in the perchloric 

acid-inso1ub1e residue was dissolved in IN NaOH and estimated 

by the Biuret method (12) or the Lowry method (.18) using 

bovine serum albumin as standard. 

·RNaseactivi~. RNase activity was assayed using a modification 

of the methods of Zitt1e (1946) and Lyndon (1966). The reaction 

medium consisted of 0.2 ml suspended subcellular fraction, 

0.5 ml 0.2 M Tris-acetate, pH 6.0, and 0.1 ml 2% (w/v) wheat 

germ or yeast RNA (highly-polymerized Calbiochem). The mixture 

was incubated at 35 C for 35 min and the reaction was stopped 

by adding 1.0 ml ice-cold 0.375% (w/v) uranyl acetate dissolved 

in 10% (w/v) TCA and 0.1 ml conc. HCl. Reaction mixtures 

were left to precipitate at 4 C for 30 min and centrifuged at 

37,000g for 5 min. The supernatant was diluted with 10 volumes 

of disti11ed water and OD260 minus 00290 was measured using 

a Beckman DB-G spectrophotometer. One ~g RNA hydrolysed to 

acid-so1ub1e products under the above conditions was equivalent 

to an increment in the value for 00260 minus 00290 of 0.014 

units, and was defined as one unit of RNase activity. RNase 

activity in the most active pea fractions was proportional to 

the time of incubation and concentration of the enzyme (cf. 

Appendix V). The pH (6.0) used in this assay was a compromise 

between the pH optima reported earlier for soluble pea RNase 

(pH 5.6), (13,24) and microsomal pea RNase (pH 5.9 - 6.2), 

(19,24). 
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RESULTS 

Surveyof Effects of Growth Regulators in the Decapitated 

Epicotyl (cf. Appendices VI and VII). 

When plumule and hook were excised from 8-day old 

etiolated pea seedlings, and the cut apex was painted with 

lanolin paste containing no growth regulators (control), 

tissues in the apical 10 mm of the epicotyl showed changes 

often associated with senescence. In the 3-day period fol­

lowing treatment, these changes included (Table I): little 

further growth by elongation, swelling or cell division (DNA 

was constant)~ marked decreases in total protein and RNA; and 

an increase (doubling) in total RNase activity. The latter 

was the result of a graduaI drifting upwards of RNase levels 

(Table II) which did not resernble the sigrnoidal increment 

typical of wound responses (2,8). 

The addition of GA and BA to the cu~ apex resulted 

in pronounced elongation and swelling respectively, (Table I). 

Both regulators had "protective" effects on prote in and RNA 

levels, yet neither altered the total RNase levels (Table I) • 

The addition of IAA to decapitated epicotyls, however, 

caused swelling, massive rises in protein, RNA and DNA levels 

(9) and a substantial enhancement of RNase levels over control 

values (Table I). The latter increase was graduaI and continued 

for at least 4 days (Table II). The herbicide 2,4-D, evoked 

similar responses (Table II). The increment in RNase activity 

was particularly striking in the rnicrosomal fraction of the 
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tissue. 

The addition of both IAA plus BA to the decapitated 

apex resulted in the greatest swelling and increments in 

protein, RNA and DNA levels that were observed throughout this 

study. The effects of the two growth regulators were more 

than additive (Table I). The total RNase activity, however, 

did not reach as high a level as it did in the presence of IAA 

alone. BA completely suppressed the IAA-evoked rise in RNase 

activity in the microsomal fraction. 

Properties of Subcellular Fractions. 

Figure 1 shows protein and nucleic acid levels 

recovered in fractions extracted from epicotyl segments after 

treatment with IAA and/or BA. Generally these components in 

each fraction decreased in controls, remained approximately 

constant upon treatment with BA alone, and increased after 

IAA treatment. The increases were especially pronounced after 

treatment with IAA plus BA. No attempt was made to subdivide 

the fraction containing cell wall material and large particulate 

debris (0 - l6,000g pellet). This fraction contained a large 

part (up to half) of the total nucleic acid and most (98%) of 

the tissue's DNA· (6). 

Microsomes were separated into "light" and "heavy" 

fractions which displayed RNA/protein ratios of 0.1 to 0.2, and 

0.5 to 1.0 respectively. This indicates a relatively high 

content of membranes in the "light" fraction, compared with 

the "heavy" fraction (3,33). The increases in total RNase 
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levels which occurred in con troIs and in lAA-treated tissues 

(Tables l and II) were distributed throughout the above 

fractions (Table III). lAA effects were particularly marked 

in both "light" and "heavy" microsomes. The increase which 

occurred in BA-treated tissues was accounted for by increments 

in aIl fractions except the "heavy" microsomes. BA reduced 

the lAA-evoked RNase activity by an amount that could be 

accounted for by suppression of RNase activity in the "heavy" 

microsomal fraction. BA also caused a partial relocation of 

microsomal RNase activity into the soluble fraction. 

Effects of "washing" microsome fractions on retention 

of RNase activity are shawn in Table IV. Generally, RNase 

activity was easily removed from microsomal fractions simply 

by re-centrifugation through 20% (w!v) sucrose, but in 

microsomes extracted from lAA-treated tissue over half of the 

total activity remained associated with the pellet. Since 

"washing" also removed about half the total RNA and protein, 

the specific activity of RNase did not change in these micro­

somes. It is concluded that there exists a merobrane-bound 

fraction of the total RNase activity which is evoked by lAA, 

suppressed by BA, and located in the microsomes. 

'S'ucro's'e Density 'Gradient Profiles (cf. Appendix VIII) • 

Figure 2 shows the ribosome distribution of "heavy" 

micros omal fractions isolated from lAA and/or BA-treated 

epicotyl segments. A monosome peak occurs near the top of 

each gradient with a series of polysomal associations extending 
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towards the bottom. Yellow, opaque material sedimenting 

through the 56% sucrose "cushion" at the bottom of the tube 

was only partially recovered by the gradient fractionator. 

This material yielded a small peak of UV absorption and 

probably contained membrane-bound polysomes, comparable with 

the "heavy rough endoplasmic reticulum" of Tata and Widnell 

(1966) • 

Pellets isolated from epicotyl segments at zero day 

contained 80 to 85% of ribosomes as polysomes. In pellets 

isolated after 3 days from untreated segments, the profile 

indicated only 40% polysomes. Whereas BA treatment did not 

prevent this decline, lAA treatment partially reversed it 

(resulting in pellets with approximately 60% polysomes) • 
... 

Treatment with both lAA and BA preserved the polysome proportion 

present at zero day. Since lAA and lAA plus BA treatments 

greatly increased the RNA content of the "heavy" microsomes 

per segment (Fig. 1) the absolute yield of polysomes per segment 

increased 2 to 3 fold following such treatments. In repeats 

of this experiment, there were minor variations in values for 

percentages of polysomes, but relative effects of growth 

regulators were remarkably reproducible. 

The location of RNase activity in relation to the 

polysomal profile was determined in a gradient prepared from 

"heavy" microsomes isolated from seedlings sprayed with 2,4-D. 

The profile (Fig.3) was similar to that found for segments 

treated with lAA plus BA, i.e., 77% polysomes. Approximately 

40% of the RNase activity was located in the top 2 ml of the 
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centrifuge tube and represented soluble enzyme not sedimenting 

into the gradient. Another 40% precipitated with the pellet 

at the bottom of the tube. The remaining activity was spread 

diffusely throughout the gradient and showed no reproducible 

association with any peak. 

DISCUSSION AND CONCLUSIONS 

The RNase activity which is associated with microsomal 

fractions of the pea epicotyl is evidently controlled by two 

classes of plant growth regulators. Treatment with auxin 

(IAA or 2,4-0) greatly increases the total and specific RNase 

activities in microsomes, whereas treatment with equal amounts 

of cytokinin, alone or in combination with lAA, effectively 

suppresses this RNase fraction. These changes occur against 

a background of relatively high soluble RNase activity which 

increases gradually with age, particularly after treatments 

which cause protein levels to rise (Fig. 1, Tables l and III) • 

No growth regulator caused an increase in the specific activity 

of soluble RNase activity in these tests. These observations 

are in keeping with the conclusion that there is more than one 

RNase in peas (19,24), and indicate that a microsomal RNase 

exists which is susceptible to antagonistic regulation by auxin 

and cytokinin. 

Whatever the mechanisms may be whereby auxin and 

cytokinin control microsomal RNase activity, the consequences 

could be crucial for growth if a very high or very low RNase 

level were specifically associated with a fraction containing 

polysomes. There is no doubt that a primary action of auxin in 
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the pea epicotyl is promotion of RNA synthesis (6,9,23,25,38), 

specifically polysomes (6,38). Treatment with BA alone does 

not lead to polysome formation, but treatment with lAA plus BA 

results in increases in both the amount and proportion of 

auxin-evoked polysomes which can be recovered from the tissue 

(Figs. 1 and 2). Thus, it appears that auxin and cytokinin 

control polysome production and preservation respectively, and 

thereby both hormones may have a decisive influence on the 

rate of polysome turnover and growth. 

To be sure, it can be calculated that there is 

sufficient potential RNase activity in microsomal fractions 

after auxin treatment to de grade aIl of the RNA in these 

fractions within one or two minutes (Fig. l and Tables land 

III). This obviously does not happen. Auxin greatly enhances 

RNA levëls in microsomal and other fractions (Fig. 1), and 

polysomal profiles were only partially degraded (Figs. 2 and 3). 

Moreover, the results of inhibitor studies (9,25Fsuggest that 

sorne of this new RNA is necessary for growth. It is necessary 

to suppose that auxin-evoked RNase activity is kept apart from 

RNA_at least for a time, by compartmentalization. Certainly, 

much of the pea microsomal RNase activity is associated with 

a heavy membrane-rich subfraction (Fig. 3), and there is 

evidence (22) that soluble RNase is normally present in vacuoles. 

Accordingly, factors, including hormones, which control enzyme 

localization, e.g., by regulation of membrane properties, have 

the potential for modifying the results of hormonal controls 

Qver polysome longevity. 
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Table l. Effects of Various Growth Regulators on Total 

Levels of Prot'ein, Nucleic Actd and RNase Activity. 

An apical segment (1 cm) was delineated on each 

decapitated epicotyl and the cut apex was painted with 

lanolin paste ± additives. At zero day (8 days old) and 

3 days after treatment, segments were removed for measurements 

of length and fresh weight. Homogenates were prepared and 

total protein, RNA, DNA and RNase activity were assayed as 

described in "Materials and Methods". Microsomal fractions 

were obtained as a pellet after centrifugation of l6,000g 

supernatants through 50% (w/v) sucrose at l50,000g (i.e. = 
"heavy" microsomes). When seedlings were left to elongate 

undisturbed (intact), protein, nucleic acid and RNase levels 

in apical regions were similar to those recorded for GA-treated 

decapitated segments (cf. Appendix VIA). Fresh Wt/Length is 

a measure of the swelling response. 



RNase activity 

Treatment Fresh Wt . 
Length Length Prote1n RNA DNA Total Microsoma1 

mm mg/mm llg/seg llg RNA hydro1ysed/hr/seg 

Zero day 10.0 1.9 179 43.7 7.3 607 2 

3 days 

Control 12.4 2.7 119 22.0 6.6 1142 19 N 
1-' 

+ Gibbere11ic Acid (GA) 19.8 2.8 263 32.0 7.0 1157 9 

+ 2,4-D 12.5 3.2 291 82.3 13.7 1595 265 

+ Indo1eacetic acid (IAA) 12.5 4.9 343 100.2 13.8 2093 383 

+ N6-Benzy1adenine (BA) Il.9 3.5 182 30.2 6.8 1211 9 

+ lAA + BA 12.1 7.1 495 131.2 21.8 1708 Il 

~ 
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Table II. Effect of Auxins on Total RNase Activity Levels 

in Decapitated Epicotyls. 

This test was conducted with Alaska peas grown 

from younger pea seed than was used for other studies 

reported here; RNase levels were relatively high, probably 

due to natural variation between batches (17). 

Time 

days 

o 

l 

2 

3 

4 

RNase Activity 

Control +IAA +2,4-D 

pg RNA hydrolysed/hr/seg 

1930 

2860 

2830 

3660 

3840 

3150 

4130 

5950 

6575 

4150 

6520 

7340 



- 23 -

Table III. RNase Activity of Subcellular Fractions of 

Apical Segments of Decapitated Epicotyls Following Treatment 

with IAA and/or BA. 

protein and nucleic acid levels in the fractions 

are shawn in Fig. 1. 

RNase Activity 

Treatment Walls + Microsomes Supernatant Total 

Particulate "Light" "Heavy" 

llg RNA hydrolysed/hr/seg 

Zero day 226 5 2 511 744 

3 days, 

Control 352 21 19 665 1057 

+ lAA 728 238 386 962 2314 

+ BA 330 62 6 736 1134 

+ lAA + BA 797 94 17 1178 2086 
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Table IV. RNa's'e' Acti vit Y 'o'f "Washed" Microsomes. 

The "heavy" microsomal fractions described in 

Table II and Fig. 1 were "washed" by centrifugation 

through 20% sucrose at l50,000g. 

Treatment 

for 3 days 

Control 

+ lAA 

+ BA 

+ lAA + BA 

RNase Activity 

/seg /~g prote in /~g RNA 

~g RNA hydrolysed/hr 

2 1 1 

258 

2 

4 

20 

2 

1 

26 

1 

1 
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Fig. 1. Protein and Nucleic acid levels in subcellular 

fractions of epicotyl segments following treatment with lAA 

and/or BA •. Homogenates were filtered to remove walls and 

centrifuged at l6,000g (pellet = particulate fraction) and 

again at 190,000g through 50% sucrose (interface material = 

"light" microsomes, pellet = "heavy" microsomes)~ supernatant = 

l6,000g supernatant minus microsomes. Nucleic acid was 

estimated by 0.0. measurement of warm perchloric acid extracts 

of the fractions~ protein was estimated in residues by the 

Lowry method. RNase activities of these fractions are recorded 

in Table III. 
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Fig. 2. Sucrose density gradient profiles of RNA derived 

from "heavy" microsomal pellets. Pellets from approximately 

2g fresh wt were centrifuged through a linear sucrose 

gradient (10 - 35%) as described in "Materials and Methods". 

Direction of centrifugation is from left to right. The 

percentage of ribosomes occurring as polysomes is as follows: 

Zero day, 84%; 3-day control, 40%; +IAA, 61%; +BA, 34%; 

and +IAA+BA, 78%. 
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Fig. 3. RNase activity distribution in a sucrose density 

gradient profile of "heavy" microsomes isolated from intact 

pea epicotyls following treatment with 2,4-D. 8-day old 

epicotyls were sprayed once with 0.1% (w/v) 2,4-D in 0.1 M 

NaCl. After 3 days, swollen regions of the epicotyl (subapical 

10-12 mm) were excised, extracted and fractionated as described 

in "Materials and Methods". RNase activity was assayed in 

0.5 ml aliquots of the gradient and is represented by the 

histograph. 
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Appendix I. Relationship between protein Concentration and 

Optical Oensity as Measured by the Biuret Method. 

For assay, 1.0 ml stock solution containing bovine 

serum albumin was precipitated with 0.2 ml cold trichloro­

acetic acid and centrifuged at 3,000g for 10 min. The super­

natant was discarded and the precipitate resuspended in 3.0 ml 

water plus 3.0 ml Biuret reagent (9.0 g NaK tartrate, 3.0 g 

cuS0 4 .5H20, 5.0 g KI/l litre 0.2 N NaOH) and let stand at 

room tempe for 30 min, when 0.0. 545 was determined. Values 

are corrected for reagent blanks (6). 

Protedn 0.0. 545 0.0. 545 

(mg/ml) per mg prote in 

1.0 0.041 0.041 

2.0 0.080 0.040 

3.0 0.115 0.038 

4.0 0.158 0.040 

5.0 0.196 0.039 

6.0 0.242 0.040 

7.0· 0.282 0.040 

8.0 0.314 0.039 

Average value = 0.040 0.0. units/mg protein 
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Appendix.II. Relationship between Prote in Concentration and 

Optical Oensity as Measured by the Lowry Method. 

For assay, 0.4 ml stock solution containing bovine 

serum albumin was mixed with 3.6 ml Lowry' s reagent "c" [50 ml 

2% (w/v) Na2C0 3 plus 1.0 ml 0.5% (w/v) CuS0 4 .5H 20 in 1% (w/v) 

NaK tartrate]. After 10 min at room temp., 0.4 ml Lowry's 

reagent "E" (O.l N Folin reagent, Fisher Scientific Co.) was 

added with rapid mixing. After exactly 30 min, 0.0. of the 

samples was read at 750 nm. Values were corrected for reagent 

blanks (11). 

protein 0.0. 750 0.0. 750 

(~g/ml stock solution) per mg protein 

40 0.074 0.18 

80 0.146 0.18 

120 0.213 0.17 

160 0.280 0.17 

200 0.342 0.17 

240 0.404 0.16 

280 0.472 0.16 

Average value = 0.17 0.0. units/mg prote in 
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Appendix III. Re1ationship between RNA Concentration and 

Optica1 Oensity. 

For assay, stock solution of wheat germ RNA 

hydro1ysed in warm (70 C) 0.5 N perch10ric acid was used 

direct1y for 0.0. measurements in a Beckman OB-G spectro­

photomer. 

RNA 0.0. 260 - 0.0. 290 0.0. 260 - 0.0. 290 

(~g/m1 stock solution) per ~g RNA 

2.5 0.036 0.014 

5.0 0.071 0.014 

7.5 0.104 0.014 

10.0 0.141 0.014 

20.0 0.262 0.013 

30.0 0.422 0.014 

40.0 0.529 0.013 

50.0 0.677 0.014 

60.0 0.867 0.014 

Average value = 0.014 0.0. units/~g RNA 
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Appendix IV. Relationship between DNA Concentration and 

Optical Density as Measured after Reaction with Diphenylamine. 

For assay, reaction mixtures containing 1 vol of 

DNA hydrolysed in warm (70 C) 0.5 N perchloric acid plus 2 

vols Diphenylamine reagent (1.5 g diphenylamine dissolved in 

1.5 ml conc. H2S0 4 plus 100 ml glacial acetic acid, plus 0.1 

ml freshly made aqueous acetaldehyde (16 mg/ml water) added 

to each 20 ml reagent) were incubated at 30 C for 18 hr and 

0.D. 600 minus 0.D. S40 measured with a Bausch and Lomb 

"Spectronic 20" spectrophotomer. Values were corrected for 

reagent blanks (4). 

DNA 0.D· 600 - 0.D· S40 0.D. 600 - 0.D. S40 

(~g/ml stock solution) per mg DNA 

10 

20 

40 

80 

120 

160 

0.034 

0.067 

0.144 

0.293 

0.424 

0.515 

3.4 

3.3 

3.6 

3.6 

3.5 

3.2 
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Appendix V. Properties of pea RNase Activity in Vitro. 

1. progress of the RNase reaction. 

Using the reaction mixture reported in the main 

body of the text plus supernatant enzyme extracted from 

2,4-0-treated peas, progress of the reaction was followed 

for 5 hrs (Appendix VA). The rate of production of acid-

soluble nucleotides was linear for the first hour and then 

levelled off during the next two hrs. The enzyme was unable 

to digest aIl the RNA substrate. No attempt was made to 

determine whether this was due to enzyme inactivation, end-

product inhibition or resistance of an RNA "core" to RNase 

degradation. 

A reaction time of 35 min was arbitrarily chosen 

and used throughout these studies as a convenient assay periode 

The progress curve was linear for this period using the most 

highly active enzyme preparations that were encountered in 

the study. 

2. Effect of Enzyme Concentration on Reaction Rate. 

Appendix VB shows the results of an experiment 

using a seriaI dilution of the same enzyme preparation used 

in Appendix VA and the standard reaction procedure as reported 

above. Increasing the concentration of the enzyme caused a 

proportional increase in reaction rate up to at least 185 ~g 

protein per assay tube. Protein levels in aIl assays reported 

in this thesis were less than this value. 
~ 
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Appendix VI. Effects of Various Growth Regulators on Growth 

and Total Levels of RNA, ONA, protein and RNase Activity in 

the Oecapitated Pea Epicotyl. 

1. Survey of Growth Regulator Effects. 

Appendix VIA records a summary of results obtained 

using Alaska peas received from our supplier (Asgrow Seed 

Co. - 90% germination) in 1969-70. In general, these peas 

gave very similar response patterns to added growth regulators 

as those reported in the main body of this thesis, which were 

grown from peas which were a year older. Using younger peas, 

growth responses were greater and levels of protein, RNA and 

RNase activity were aIl consistently higher. Ribosomal RNase 

levels have been shown (10) to vary widely between different 

batches of Alaska peas. 

2. Effect of 2,4-0. 

Appendix VIB records the results of a study of the 

effects of the auxin-herbicide 2,4-0 on pea seedlings grown 

from the same batch of pea seed used in Appendix VIA. RNA, 

ONA, protein and RNase levels rose dramatically over the 3-day 

period but swelling and fresh weight increases were no greater 

than in controls (cf. IAA effects, Appendix VIA). 2,4-0-treated 

tissues turned brown and became flaccid in 3 days. 

3. Effect of BA added together with IAA. 

Appendix VIC records the results of an experiment 

investigating the effects of adding increasing concentrations 

of BA together with lAA to the decapitated epicotyl. Even at 
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concentrations l/lOOOth that of lAA, BA had distinct effects 

on swelling, RNA, DNA and prote in levels. Similar effects of 

cytokinin plus auxin on swelling have been recorded using 

excised pea epicotyl sections (19). When BA was added at equal 

. ___________ ~".ncentrations t9._~~~~ __ ... ~_~ lM, additive responses by these 

components were observed. 
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Appendix VIA. Effects of Various Growth Regulators 

on Growth and Total Levels of RNA, DNA, Prote in and 

RNase Activity in Decapitated pea Epicotyls. 

Segments 10.5 mm long were marked at the 
._----_ ...... ~. __ .... -

decapitated apex of the third internode of 8-day old 

etiolated pea epicotyls, and growth regulators 

(10 ~g/epicotyl) applied in lanolin paste. In the 

case of ethylene treatment, pea seedlings were grown 

in large glass jars and decapitated and painted when 

the 'second internode was 1 to 3 cm long. The jars 

were then covered with plexiglas, sealed with silicone 

grease and ethylene gas (10 ppm) injected with micro-

syringes through vaccine caps fitted into the covers. 

The gas mixture was changed twice daily to reduce 

fungal infection and improve growth by flushing the 

jars with air and re-injecting the ethylene gas. After 

3 days treatment, segments were removed for measurement 

of length and fresh weight, and homogenized in 1 to 2 

vols of cold 0.4 M sucrose, 5 mM Tris-Hel (pH 7.4 at 

22 C), 1.5 mM MgC1 2 and 0.02% (w/v) Na deoxycholate 

using a "Virtis 45" homogenizer run at top speed for 

5 min. The homogenate was used directly for RNA, DNA, 

protein and RNase activity estimations as described 

above. 



Appendix VIA. Effects of Various Growth Regu1ators on Growth and Total Leve1s of RNA, DNA, 

protein and RNase Activity in the Decapitated Pea Epicoty1. 

Treatment Length F~:~~t~t protein RNA DNA RNase Activity 

lO11g/epi mm/seg mg/mm llg/seg llg RNA hydro1ysed/hr/seg 

Zero day 10.5 2.3 277 46 7.3 1660 

3 days, 

Control (decapitated) 12.9 3.7 260 32 6.6 3100 

Control (intact) 27.5 2.2 343 33 6.1 4675 

+ E (10 p.p.m.) 15.5 4.0 344 42 7.1 3260 

+ GA 26.3 3.8 357 41 6.3 5915 

+ 2,4-D 12.0 4.4 681 110 14.0 7340 

+ IAA 12.5 6.2 585 90 14.0 7050 

+ BA 13.3 4.2 331 41 6.8 2940 

+ IAA + BA Il.7 9.6 1053 155 22.0 6690 

~ 
1-' 



Appendix VIB. Effect of 2,4-0 on Growth, RNA, ONA, Protein and RNase Activity in 

Oecapitated pea Epicoty1s. 

Segments 11 mm long were marked at the decapitated apex of the third 

internode of 8-day old etio1ated pea epicoty1s. They were painted with 1ano1in ± 2,4-0 

and treated segments were removed dai1y for measurements df 1ength and fresh weight. 

The tissue was homogenized and extracted as described in Appendix VIA. 

Treatment 

1011g/epi 

Zero day 

1 day + 2,4-0 

2 days + 2,4-0 

3 days + 2,4-0 

3 days, control 

Length 

mm/seg 

Il.0 

12.2 

12.2 

12.0 

15.2 

Fresh Wt 
Length 

mg/mm 

2.6 

4.4 

4.4 

4.4 

3.7 

Protein 

365 

517 

663 

681 

333 

RNA 

llg/seg 

57 

69 

112 

110 

36 

ONA 

7 

10 

14 

14 

7 

RNase Activity 

119 RNA hydrolysed/hr/seg 

3198 

4152 

6525 

7339 

3745 

~ 
N 
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Appendix VIC. Effects of Increasing Amounts of BA Added 

Together with IAA. 

Treatment Length Fresh Wt Protein RNA DNA Length 

119/e pi mm/seg '. mg/mm 11g/s eg 

Zero day Il.0 2.4 339 54 Il 

3 days 

Control 13.2 3.4 257 29 7 

+ 10 119 BA 12.0 4.3 336 41 7 

+ 10 119 IAA 13.0 5.3 718 109 16 

+ 10 119 IAA + 0.01 119 BA 13.4 7.4 823 133 18 

+ 10 119 IAA + 0.10 119 BA 12.2 8.6 1057 167 21 

+ 10 119 IAA + 1.00 119 BA 12.4 9.9 1184 181 25 

+ 10 119 IAA +10.00 119 BA 12.3 10.9 1259 190 25 
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Appendix VII. The development and Distribution of RNase 

Activity in the Pea Epicotyl. 

1. Total RNase Activity Development during Pea Seedling Growth. 

Following 17 to 24 hrs imbibition, germination is 

initiated in the pea seed (2l). During the two days following 

germination, there is a rapid rise in the RNA and prote in 

content of the cotyledons and a smaller rise of these components 

in the axis (l). About four days after germination, RNA and 

protein levels drop in the cotyledons, and there is a corres­

ponding increase of these components in the axis (l). 

RNase activity on a fresh weight basis rises rapidly 

in the cotyledons to a maximum about four days after germination, 

however the specifie activity continues to rise (1,2,7). On a 

fresh weight basis, the RNase activity in the axis rises almost 

as rapidly as in the cotyledons, levelling off about seven days 

after germination, the activity then rises or falls depending 

on whether the seedling is grown in the dark or in the light. 

In the latter case, the RNase activity rises (7), and in the 

former, it falls (3). The specifie activity of axis RNase 

in both light and dark grown peas, rises sharply until about 

the sixth day after germination, and th en rises more gradually, 

(1,2,3) • 

RNase activity is low in the embryo and increases 

with the RNA and prote in levels in the young and developing 

tissue. This suggests that RNase plays an initial role in the 

turnover of RNA in rapidly synthesising tissues and is probably 
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relocated in the vacuole as the tissue matures (cf. Appendix 

VIIB). The role of RNase in mobilising cotyledon reserves is 

more complex because RNase activity only rises aftermost of 

the RNA in the cotyledon has been depleted (1,3) and only a 

small percentage of labelled nucleotides incorporated into 

cotyledon RNA appears in the axis RNA (3). 

2. The Distribution of RNase Activity in the Pea Epicotyl. 

Several workers have reported gradients of RNase 

activity between meristematic and mature regions of the growing 

plant [corn root tip, (8,13): corn mesocotyl, (18): lentil 

root tip, (16)]. Maroti (1969) has attempted to correlate 

RNase activity with growth. Results of a similar investigation 

of meristematic, elongating and maturing regions of the etiolated 

pea epicotyl are shown in Appendix VIlA. In aIl of these tissues, 

when RNase activity is expressed on a fresh weight basis, there 

appears to be a decline in activity with age of the tissue. 

However the specific activity of the enzyme and its activity 

per cell (or per ~g DNA) show steady increases during elongation, 

with a maximum at early maturity, and a levelling off in more 

mature cells. During this developmenta1 process, major increases 

in the volume of the vacuole occur. This organelle is associated 

with high levels of RNase activity (14,15), which suggests a 

possible correlation between RNase activity and vacuolation 

rather than with growth ~ ~. 
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Appendix VIIA. Fresh Weight, RNA, DNA, protein and RNase 

Activity of Pea Epicoty1 Sections. 

8-day old etio1ated pea epicoty1s with third 

internodes 3-5 cm long were cut into sections with razor 

b1ades (12). Sections were weighed and then ground in a 

chi11ed mortar with 1 to 2 vols of extraction medium (cf. 

Appendix VIA). Total RNA, protein and RNase activity were 

estimated as described above. 

Component Plumule & Hook 0-1 cm 1-2 cm 2-3 cm 

Fresh wt (mg/section) Il.2 22.2 30.2 31.3 

protein (llg/mg fr wt) 45.2 10.5 4.3 3.0 

RNA (llg/mg fr wt) 310 114 90 110 

DNA (llg/mg fr wt) 2.5 0.33 0.11 0.09 

Total RNase Activity (llg RNA hydro1ysed/hr) 

/mg fr wt 199 57 40 26 

/llg protein 4.4 5.4 9.3 8.7 

/llg DNA 80 173 364 289 
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Appendix VIII. Effects of the Nuclease Inhibitor Diethyl 

Pyrocarbonate (DEP) on the Extraction of Pea Epicotyl Polysomes. 

Weeks and Marcus (1969) and Travis et al (1970) 

reported that an increase in the proportion of the ribosomal 

profile which is present as polysomes can be obtained by 

including DEP in the normal extraction medium for plant 

preparations. A number of such tests were carried out using 

pea epicotyls. First, it was confirmed that the pH of standard 

extraction buffers falls after adding DEP, presumably because 

this reagent decomposes in water to form ethanol and CO2 (5). 

The pH could be maintained above 7.5 at 0 C for 1 hr, however, 

by using 50 - 100 mM HEPES-NaOH buffer (Appendix VIllA). This 

pH was sufficiently high to prevent massive precipitation of 

particulate debris during fractionation. 

In the following experiment, polysomes were isolated 

from the pea epicotyl in the presence and absence of 1% (v/v) 

DEP. The standard extraction medium buffer was replaced by 

100 mM HEPES-NaOH (pH 8.0 at 0 C). Appendix VIIIB shows the 

resulting profiles. The yield of ribosomes recovered in the 

16,000 - l45,000g subfraction was increased by 60% after DEP 

treatment. The percentage of polysomes was increased by 10% 

(from 82 - 92%). It must be concluded that RNase activity in the 

preparation causes sorne degradation during the isolation 

procedure. 

DEP cou Id not be used in the main body of this study, 

of course, when RNase activity in ribosomes was to be assayed. 

It should be added that this reagent is not selective in its 

action against nucleases. It attacks tryptophan residues and 
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free amine groups and causes irreversible structural denaturation 

in proteins (17). It also causes ring-opening of adenine (9) 

and inhibits the amine acid incorporating ability of isolated 

polysomes (20,22). 
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Appendix VIllA. Effect of DEP on pH of Extraction Buffer. 

DEP [final concentration, 1% (v/~]was added to 

different concentrations of Tris-HCl (pH 7.8 at 0 C) and 

HEPES-NaOH (pH 7.8 at 0 C) and the decrease in pH (at 0 C) 

was measured at 15 min intervals. 50 mM Tris-HCl (o)~ 

100 mM Tris-CHI (.)~ 50 mM HEPES-NaOH (0) ~ 100 mM HEPES-NaOH (_). 
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Appendix VIIIB. Effect of DEP on Yield and Percentage of 

Polysomes Extracted from Pea Epicotyls. 

The apical tissue (top 10 to 12 mm) of 8 to 9-day 

old etiolated pea seedlings was collected in cold water, 

weighed and ground in 1 to 2 vols of a similar extraction 

medium to that reported in the main text {100 mM HEPES-NaOH 

(pH 7.7 at 22 C) was used in this experiment). DEP was added 

directly during extraction to give a final concentration of 

1% (v/v), the rest of the extraction and preparation of polysomes 

was performed as described above. Total 0.D· 254 nm under 

profile: -DEP = 5.26, +DEP = 8.27; percentage of polysomes: 

-DEP = 82, +DEP = 92. 
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