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Abstract

This thesis demonstrates that the abstract topological and analytical notions and
results of input optimization can be successfully used in solving real-life problems
in management and engineering. In particular, we use a marginal value formula to
determine improvable stable pcrturbations of arbitrary parameters in mathematical
programming models of economic/engineering systems. Globally stable paths are
determined by a new kind of feasible directions method and an optimal realization of
mathematical models is verified by recently introduced optimality conditions. The
problems used in numerical experimentations and in demonstrating input optimiza-
tion include two case studies of real companies (a textile mill and a coffee company),
a nonlinear engineering program that ocurred in a heat exchanger design problem,
and an unconstrained nonlinear optimization problem. Computer programs, used

in solving the case studies, are included in appendices.
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Résumé

Cette thése démontre que des notions abstraites de topologie et d’analyse et les
résultats de I’“input optimization” peuvent servir a résoudre des problémes concrets
en génie et en gestion des ressources. En particulier, nous utilisons une formule
de valeur marginale pour indiquer les perturbations stables de parameétres arbi-
traires dans des modéles mathématiques de systémes économiques et d’ingénierie.
Des trajets globalement stables sont déterminés par une nouvelle sorte de méthode
des directions faisables et une réalisation optimale de modeéles mathématiques est
prouvée i |'aide de conditions d’optimum récemment présentées. L'étude es! faite
de deux cas de compagnies américaines (une impliquée dans le commerce du textile
et l'autre dans la production du café), d’un probleme d’optimisation non-linéaire
en génie (concernant un transfert de chaleur) et d’un probléme d’optimisation non-
linéaire sans contraintes. Deux programmes informatisés, utilisés dans la solution

des cas, sont inclus en appendice.
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Chapter 1

Introduction

The main objective of this research is to explore whether and how some of the

abstract results from input optimization can be used in real-life case studies.

In each case, we study a company’s production schedule and the factors which
influence it (cost, quality control, technical capacities, etc.). This allows us to model
the production schedule with a linear model. Optimizing this model (with fixed
parameters) gives an optimal production policy for the next time period (one week
or one month, depending on the case). An objective of this thesis is to show that from
this stage it is possible, in practice, to change or perturb globally certain parameters
in the model in such a way as to get an even better production schedule (i.e., greater
profit or lesser cost) while retaining continuity of the output. By output we mean
the feasible production policies, the optimal production policies and the optimal
value of the problem (which is the overall cost or profit). These perturbations can
lead to an “optimal realization” of the initial model. This is a state of the model in

which the value of the objective function cannot be improved by feasible and stable
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perturbations of the parameters (all definitions are given below in Chapter 2).

Finding a stable (i.e., output continuous) path that governs the system from
its present (initial) state to its optimal realization, is the main subject of “input

optimization,” see, e.g., [4], [19], [20], [21], {22], [23], [24], [25], [26] and {27].

The originality and contribution of this thesis lies in the application of input

optimization theory to “real-life” cases.

In Chapters 2 and 3, we recollect some basic r-otions and results of input opti-
mization. Chapter 4 contains a description of the numerical optimization method
used to study both cases. This method is based on the results of the second and
thitd chapters. As well as the general method being described there, the particular

adaptations to ecach case arec mentioned.

Chapters 5 and 6 present two case studies adapted from [17], with the results

of the numerical optimization method described in Chapter 4. Case study I is the
Shenandoah Valley Textile Mill case—a fictitious name—which poses the problem
of improving the forthcoming week’s profits on seven different fabrics by changing
the efficiency of three differeat stages of production. The results for several possible
situations are given, i.e., for different assumptions regarding the company and for

variations of the numerical algorithm.

The second case study is the Evangeline Coffee Company—again, a fictitious
name. The original case study was an unnecessarily large problem for our purpose.

The objective here is to show that input optimization theory can be applied in

2



4

practice, and not to present new ways of tackling large problems. This company
imports, blends and roasts green coffees (coffecs that have not been roasted are
referred to as “green coffees”) to produce different quality coffee blends. The goal is
to vary certain characteristics of the green coffees which affect the total cost of the

blends. The results given are, again, from different initial situations.

The cases of Chapters 5 and 6 translate into linear programuming models to
which input optimization theory is applied. In Chapter 7, we give some nou-linecar
examples to which this theory is also well-suited. The second section of Chapter
7 discusses the importance of stability in input optimization with respect to two

models.

The appendices contain computer listings and explanations regarding their use
and implementation. Appendix A contains a listing for performing the revised sim-
plex method. It was written for use in the program listed in Appendix B. The
latter program is the numerical algorithm described in Chapter 4 which optimizes
a linear programming model (i.e., the optimal value function with respect to stable

perturbations of parameters).
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Chapter 2

General Concepts

The results put torth in this thesis are all based on input optimization theory. We

therefore will give here the necessary definitions and preamble which introduce this

theory, presented in part in Chapter 3.

We study the general model of the form

M  fO=,0)
(=)
(P,0)
st fiz0) <0, ieP¥{1,...,m)

where 0 € I C B* and I is a convex set. The functions f?: R® x RP — R, j € {0}U

P are assumed to be continuous and convex in z, t.e., f/(-,8) : R* = R, 7 € {0}UP,
is convex for every 8 € RP. Such a model is known as a conver model. Furthermore,

if the functions f?(r,-): B — R, j € {0} U P, are convex for every z € R, then

we have a bi-convexr model.

We recall that a function f: R* — R is convez if for all z and y in R" and all
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) such that 0 < A < 1 we have
fOe + (1= Ny) < Af(z) + (1= Nf(y).
If f is differentiable then it is convex if, and only if
Vi)y — ) < fy) - f(2)

for all z € R*, y € R*. This is known as the gradient inequality. A set § C R" is

convex if, for all A suchthat 0 <A< 1,

€S, yeS=izr+(1-A)y€S.

In the model (17, §), the vector § € R? is known as the parameter vector, and also
as the input in “input optimization.” The vector ¢ € R" is the vector of decision

variables. Note that for fixed 6 € RP, (P,0) is an ordinary convex progran:.

- .

With respect to the model (P,#) and tor a fixed 8, we define the following:

e F(0) ={zx€ R": f'(z,0) <0, i€ P} is the feasible sel.
e () is the set of all optimal solutions Z(0).
o f(6) = f%(#(9),9) is the optimal value of the modei for a particular 0.

e P=(0) = {i € P:z & F(§) == f(z,0) = 0} is the minimal indez set of
active constraints (see Ben-Israel, Ber-'Lal, and Zlohec (3], [4]).

o P(E(0)) = {i € P: f(&(0"),0") = 0} is the set of active constraints for
(P,6*).



o P<(0) = P \ P=(9). This definition is introduced to simplify notation.
e F'=(0)={z € R*: fi(z,0) =0, i€ P=(0)}
o L<(z,u;0) = [, 0) + L.ep<(g) wSf*(x,0) is the restricted Lagrangian.

o Li(z,u;0) = f%z,0) + T,ep<(er)nf*(,0) is the restricted Lagrangian at a

fixed 0 = 0*.

In a convex program, for fixed § € R", we say that Slater’s condition holds if
there exists £ € R" such that f'(£,0) <0, for all i € P.

Note that under Slater’s condition, P(¢) = # and therefore F=(0) = R".

For fixed 0 € RP, F(0) is a set in R" (possibly empty). We can therefore define
the mapping F' : § — F(8) which is a point-to-set mapping. Continuity of the
output refers to continuity of the triple {F(8), F(9), f(8)}, so it includes continuity
of the mapping F. We say that a general point-to-set mapping I' : Z — X is
continuous at 0* € Z, in the sense of Hogan (see [15]), if it is both open and closed.
Such a mapping is closed at 6* € Z, if given any sequence 8¥ — §* and z* € T'(6¥)
such that z¥ — z*, it follows that z* € I'(#*). The point-to-set mapping I is said
to be open at 0* € Z if, given any sequence 8* — 8%, and z* € I(6*), there exists
a value m and a sequence {z¥} C X, such that ¥ € I'(6*) for each k > m and
a* — r*. We say that the mapping I is open, closed, or continuous on Z if it has

the same property at every 0 € Z.

Given that in (P,0), the functions f', i € P, are continuous, it follows immedi-
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ately that F' : 8 — F(0) is closed. Therefore, for the mapping to be continuous, we
need only verify that it is open. This is equivalent to the mapping F' being lower
semi-continuous in th< sense of Berge (see [5]). The point-to-set mappingI': Z — X
is lower semi-continvous at 8" € Z if for all open sets A such that I'(0*) N A # 0,
there exists a neighbourhood N(6*) such that I'(6) N A # @ for all § € N(0*).

One of the distinguishing characteristics of input optimization theory is that it
requires continuity of the output triple {F(8), F(6), f(8)}. This notion of continuity
is incorporated in the definition of a “stable model,” which will be given in the next
chapter. An objective function f°(z,6) in the convex model (P,0) is said to be

realistic at 6* € I if F(0*) # 0 and bounded.

These concepts will be used in the next chapter to formalise input optimization

and state several of its theorems.




Chapter 3

Some Results from Input
Optimization

Input optimization is the optimization of a model rather than a particular program.
Recall the convex model (P,6) given in Chapter 2. For a fixed vector § € RP, we

have the “usual” convex program (C).

Min f%z)
(C) ,
st. fiz) <0, i€eP={l,...,m}.

Optimizing the objective function with respect to the constraints yields an optimal

solution Z.

The difference with input optimization is that the objective function and con-
straints are not fixed functions only of £ but also of an input parameter 8. For each
fixed @ we get an optimal solution #(#) (note that it now depends on 6) and the

optimal value f(8) = fO(#(6),0). The objective of input optimization is to vary 0,

8
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within some pre-determined set, so that we can arrive at a local optimal input 6.
This input ¢* is such that f(6*) < f(0) for all @ € N(6°) N S, where S is a set in
which perturbations of 8 are “stable” (to be defined shortly). The corresponding
program (P,0*) is a locally optimal realization and £(6°) is a locally optimal value

of the model (P, 0).

In terms of cases similar to those in Chapters 5 and 6, the input parameter 0
can correspond to technological coefficients, capacities of machines and/or people,
available resources, or any input quantity necessary to define an appropriate mathe-
matical program. Thus varying 8 could mean changing the efficiency of a machine or
person, or maybe altering a certain product’s characteristics. Ideally, in a practical
situation and in order to achieve some optimal set-up of the parameters, we don’t
want to have a drastic jump in our results or output. For example, if improving the
efficiency of a component of the model for Company X entails greater profits—great!
However, if at one point, further improvements of efficiency necessitate a jump in
production rate, we will not strive for this further improvement since the instanta-
neous jump in production rate may not be possible. As an illustration we take the

following example studied in Chapter 7.



Example 1
M in T3 + 01 + 02

s.t. 171+(L‘2+$3—'150
—z1+ 234+ 23—-1<0
Zl—olzzso
—3:1—02:2250
"‘IL'2_<_0
'—13350
-1<6, <1
0<6,<1

With 0 = (1, 1), the point # = (0, 7, 0) is optimal (actually all z with z; = z3 =
0,0 < 2y < 1, are optimal). Changing § to 8 = (0, 0), & remains optimal and
the objective value function improves. If we change 0 to § = (—¢,0), € > 0, the
objective value function improves but the optimal solution is forced to jump from a
line segment to the point (0, 0, 0). This is the type of improvement one should not

seek if stable results (no jumps) are required.

Input optimization guards against such jumps in the output. Only stable per-
turbations of the input parameter are considered. We want to be able to guarantee
that perturbations in @ result in stable, continuous changes in F(8), F'(8) and f(0).
Therefore, we determine a region S(8#) C I in which all perturbations result in sta-
bility. All the results given here hold true if § is in a region of stability. The following
theorem (see Zlobec, Gardner and Ben-Israel [23]) simplifies the task of defining a

region of stability.

Theorem 3.1 Consider the convez model (P,0) at * € I. Then the following are

equivalent:

10



1. The point-to-set map I' : @ — F(0) is continuous at 0*.

("
L7

2. For every realistic objective function f°, there ezists a neighbourhood N(6*) of

0* such that
o F(0) #£0 for every 0 € N(6*) and
o 0 € N(6*), 0 — 6* = F(8) is bounded and all its limit points are in
F(6).
8. For every realistic objective function f°, there exists a neighbourhood N(0*) of
0* such that
o F(0) #0 for every 6§ € N(6*) and

o 0 €N, 00 = f(8) — f(6*).

We now define a region of stability. We say that (P,0) with a realistic objective
function f° is stable in a region S C I C RP if we have lower semi-continuity of
I':0 — F(0) for 6 € S. If we can specify S = N(6*), then (P,0) is stable at 0°.
Since lower semi-continuity of ' : § — F(6) implies continuity of I' (we alrcady
know that it is closed), this definition of a region of stability includes continuity of
the output triple {F(6), F‘(O), £(0)} by the above theorem. We now give some basic

regions of stability.

Theorem 3.2 Consider the convezr model (P, 0) at some 0*. The set
M(6°) ¥ {0: F(6") C F(0)}

is a region of stability at 0" for every realistic objective function.

- 11




This result is immediate if one considers the definition of lower semi-continuity.

Theorem 3.3 Consider the convez model (P,0) at some 6*. If the point-to-set-map

I':0 — F=(0) is lower semi-continuous at 6, then
Ri(07) £ {0: P=(6) = P=(6)}

is a region of stability at 6* for every realistic objective function.

The notation used for the regions of stability is that introduced by Zlobec, et al.
There are regions of stability Ry, Rz, and M;, hence the notation R,. However,
they are not needed for our purpose. For a list of regions of stability see [16], [24],
and [26]. Theorem 3.3 was proved by Semple and Zlobec in [20]. The following
corollary can be found in [23]; the lemma that follows (a necessary condition for

lower semi-continuity of the mapping F'=) is borrowed from [20].

Corollary 3.4 Consider the convex model (P,0) at 6*. The set
W(0*) % {0: F=(6") C F=(6) and P=(8") = P=(9)}

is a region of stability at 8* for every realistic objective function.

Lemma 3.5 Consider the convex model (P,0) at some 6*. If the point-to-set map

I' : 0 — F=(0) is lower semi-continuous at 6* then there exists a neighbourhood
N(0*) of 6* such that

P<(8*) C P<(8)
Jor every § € N(0*).

12



The next three sets are also proved to be regions of stability.

¢

V() ¥ {0:F=(6")c F=(8) and fi(z,0) <0,

Yz € F(6%), i € P=(6*) \ P=(0)}
Vi(e*) E {9: F=(6*) C F=(6) and fi(z,0) <0,

Yz € F=(0"), i € P=(0")\ P=(0)}
Va(6*) € {0:F=(6") = F=(6) and f'(z,9) <0,

Vz € F=(0"), i € P=(0")\ P=(0)})

It was shown by Zlobec and Ben-Israel in [22] that perturbations inside V(0*) arc
stable. The regions V;(6*) and V3(6*) were presented by Semple and Zlobec in [19)].

We now give an example of V(6*).

Example 2
-~ Min f9= -2,

s.t. f‘=x1+m2—1§0
2=—'.'E1+$2—'1§0
=m1—-0m2_<_0
f4=—$1—0.’122$0
=—-z;<0

We see that
{3,4,5} if6<0

P=(0) = { {3,4} if0=0
0 if >0

and

=@0)={ z,=0 if0=0

$1=0,$2=0 if0<0
R? if 0 > 0.
The optimal value is

: 0 if0<0
f(a)"{ ~1 620

-~ 13



and the optimal solution is

. (0,0) if8<0
“’(”)={ (0, 1% ;fozo.

At 0" =0, the set V(0*) is

V(6%) = {0:0 > 0}.

The following is a necessary condition for stability. It was {irst stated by Sem-
ple and Zlobec in [20] but Huang, in [16], showed that the assumption on path

connectedness is unnecessary. It is stated here in its latest form.

Theorem 3.6 Consider the convex model (P,0) at some 8* € I. Let S be a region
of stability at 9* for every realistic objective function at 6*. Then there ezists a

neighbourhood N(0*) of 0" such that
P=(6) C P=(0")

for every @ € N(6*)N S.

The numerical method used in the case studies finds a path connecting an initial
6° to an optimal 0* by iteration—the method for some special cases is described
in detail in the next chapter. Let us observe that the optimal input 6* generally
depends on the choice of the initial input #°. For example, suppose we have the

following:

14
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Example 3
Min fo=—-z46,

st. fl=—-z-~1<0

f2=z-1<0
fP=(0-0)z<0

with I = {0:]|0|| < 1}, then we find that

F(a)"{ [-1,1] if 2 = 62

If our initial # is such that 62 = 62 then optimal inputs are §* = (3, -3) and
0* = (—3, —1), the optimal solution is #(*) = 1 and the optimal value function is
f(e*) = —2. If, on the other hand, our initial  is, say, 8 = (0, —31) then the optimal
input is 8* = (0, —1) with #(6*) = 0 and f(6*) = —1. To establish the optimality

of 6%, we use this sufficient condition, adapted from [25].

Theorem 3.7 Consider the convex model (P,0) with a realistic objective function
at some 0* € I. Let z* € F=(0*) and u* € Ri(o.) be some given points, and let S(0")

be some region of stability at 0*. If there exists a non-negative vector function
U:S@O)NN6*) — R

such that U(0*) = u™ and with the property that for every 0 € S(6*) the saddle-point
inequality

L3(a®w0°) < L3(2U(0°);0%) < LY (=,U(0); 0)

holds for every u € Ri‘o.) and every x € F=(0) then 0" is a locally optimai input

with respect to S(0*) and z* is a corresponding optimal solution, i.e., z* € F(or)

15



where ¢(0”) is the cardinality of P<(6*) and Ri(o.) is the non-negative orthant of

R9(6°)

To apply this theorem, one must therefore find such a function /4. When the
program (P, 0) is non-trivial, such as in the case studies, determining this function is
no easy task. However, if Slater’s condition holds then we can use the following result
from [3], abbreviated here as the BBZ condition, and the solution u will be suitable
for use as #(0) in Theorem 3.7. The BBZ condition is a complete characterization
(i.c., without assuming any constraint qualifications) of optimality of a solution z*
to a convex program. Therefore, in our case, we fix § = 6* and then use it. For
unstable models, a complete characterization of an optimal input was obtained by
van Rooyen and Zlobec (see [21]). A model which is unstable at 6* is simply not
stable for all 8 € N(0*). A model which is stable at #*, as defined in Chapter 2, is
stable for all perturbations of 8* in a feasible neighbourhood (i.e., # € I) of 6*. The

following theorem recalls the BBZ condition, where 8 is fixed at 6 = 6*.

Theorem 3.8 Consider the differentiable convez program (C) and z* € F(6*).
Then x* is optimal if, and only if, the system below is consistent:

VA=) + Y wVfET) e{ ) DI(=)}*

1eP(z*)\P= iep=

u, >0, ieP(z*)\P=

Here D (z*) = {d € R" : 3@ > 0 such that f'(z* + ad) = f(z*) V0 < a < &} is
known as the cone of directions of constancy and P(z*) = {i € P : fi(z*) =0} is

the set of active constraints at z*. Since f* in (C) is convex and, for the purposes of

16
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the theorem, differentiable, then D is a convex cone. The set M+ = {u : (u,z) >
0, Vx € M} is the polar of the set M. If Slater’s condition holds, then P= = @ and
the BBZ system becomes
VRE)+ X wVfiE) =0
1EP(z*)

u, 20, i€ P(z*)

which is the well-known Karush-Kuhn-Tucker condition.

A necessary condition for a locally optimal input will now be given. First, how-
ever, some definitions are needed. If S(6*) is a region of stability at 0*, then we

define
0—0

B, =B(6") ¥ {___”0 —

€ R :0.€ N(0*)n S(0°), 0 # o-}.

This corresponds to a section of the unit ball in RP. The set BY is the set of limit
points of B, as § — 0*, 6 € S(6*). The following index condition is dencted (/N D)

and is also needed for the necessary condition:
(IND) {P<(6*)NP(2(0°))} C P<(0°)

as ¥ — 6, ¢¥ € S(0*). Although there are several necessary conditions for an

optimal input for convex models, we concentrate here only on bi-convex models.

Theorem 3.9 Consider the bi-convez model (P, 0) with a realist.c objective funclhion

at 0* € I. Assume that the corresponding saddle-point

{z(0°), 0,(0%):i€ P<(0")}

17



is unique and that the functions fi(%(6*),0), ¢ € {0} U P<(8") are differentiable at

0°. Also assume that the indez condition (IN D) holds at 6*, relative to Vi(6*).

If 0" is a locally optimal input with respect to V41(6*) then

VoL (2(0%),a(0" ):0)o=s+ € (BY)™.

The following theorem presents a marginal value formula used in input opti-

mization. It guarantees that the numerical method iterates from 6% to §*+! only if

F(0**1) < J(0%).

Theorem 3.10 Consider the bi-convex model (P,0) at 0* € I with a realistic objec-
tive function. Suppose the corresponding saddle-point {Z(6*), u;(0*): i € P<(0%)}
is unique and the index condition (IN D) holds at 6* with respect to S = V3(8*). Also
suppose that f*(z,-), ¢ € {0} UP<(8*) are differentiable functions in V3(6*)NN(6*),
where N(0%) is some neighbourhood of 6%, and that Vg f(z,0%), 1 € {0} U P<(J%)

are contimuous functions in x at &(6*).

Then for every fixed path 6 € V5(0*), 6 — 6 such that the limit

lim —————0 i def
9eV;(6°) 6 — 6]
9—6*

erists, we have

. fe) - fer) _ .
oel‘g{})‘) ”0 _ 0'” - (Vg(o )7 e)

where

9(8) & LE(3(67), a(67);9).

18
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If the inner product (Vg(8*), €) is negative, then we know f(8) < f(6*) for 8 “close”
to 6*, i.e., moving from 6* to # improves the model (we know we can move from 6*
to # in a stable manner because the limit is taken inside V3(0*)). If the saddle-point
{#(6*),1;(6%), i € P<(8")} is not unique, then one can still use the theorem. In this

case, one simply gets an approximation to the limit

f(0) - f(6)
seva(er) || — 0%]]
by using
i Vg(6*), ¢
ehion Wy (V90

For more on this, see Zlobec [24] and Eremin and Astafiev [11].

To demonstrate the marginal value formula, consider Example 3 at 0* = (0, 0).
Then V(6*) = {0 : 6% = 6%}, %(0*) = 1, P<(6*) = {1, 2}, w(0*) = 0, tz(0") = 1
and

9(0) = =1+ 0,,
which establishes
Vg(6*) = (0, 1)7.
For the path 8 = 8* + ad, a > 0 with d = (-1, —1) we have (as will be explained
in Chapter 4)
d

= — = (-1, =17,
<l

The marginal value formula gives
(Vg(6*), ) =-1<0
and thus indicates a local direction of improvement of the optimal value function

f(0).

19



The theorems just presented are of a local nature. The results hold true for 6 in
some neighbourhood N (6*). However, we would like to know how far we can stray
from our current 8 and still ensure stability of the model. This quantity or distance
is known as the radius of stability r. That is, we want to determine the largest r
such that for every 0 € S(6*,r) = {0:||@ — 6*|| < r}, the model is uniformly stable
in this neighbourhood. Note that for a linear model, where the constraints are of the
form Az-b<0, A= (a,), a,;, >0, b=(}), b,>0,t=1,...,m, j=1,...,n,
decreasing a,, increases the set F', thus guaranteeing stability. This amounts to the
whole set ] being the region of stability M(6*) (unless some values of 6 € I lead to
infeasibility of the constraints), and r = mingesy ||6* — ||, where @I is the boundary

of the closure of the set I.

The basic difference between input optimization and usual mathematical pro-
gramming is that the latter ignores the present state of the system and global sta-
bility. Therefore, the solutions obtained by input optimization and mathematical
programming (after considering 2z = (z, #) as a single vector variable) do not gener-

ally coincide! For examples, see [28].
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Chapter 4

A Numerical Method for Linear
Input Optimization

4.1 General Method

A general description of a numerical optimization method for solving linear input
optimization problems is included in this section. The problem to which it is applied

is assumed to be of the form

Maz (c,z)

st. Az <b
z2>0

where A € R™*", b€ R™, ¢ € R". The input parameter is introduced into the
matrix A. Cases where only the vectors b and ¢ vary have been studied by others

(see for example, Gal [12], and Guddat [13]) hence the interest here is to vary A.
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Our system (L) therefore becomes the system (L, 6)

Maz (c,z)
(L,9)
st. A@)z<b
z20
el

which, in order to use input optimization is transformed into
Min f°=(—c,z)
s.t. f'=(a'(0),z)-b<0, i=1,...,m

fl=-2,20, j=m'+1,...,n
bel.

Here @', i = 1,...,m’ is the :** row of the matrix A and I is some arbitrary but

fixed set in RP. This system now has the form of a convex program (P, ).

The numerical method is iterative in nature, where each iteration yields a vector
0* such that f(8*) < f(0*-1). It is assumed that any perturbation within I is stable
and maintains the feasibility of the constraints f*, i € P. This set is bounded by

the fixed vectors L € R? and U € RP:

I={0eRr:L<06<U).

Two versions of the method, differing only slightly one from the other, will be
given here. The difference lies in the way of choosing a direction emanating from the
current * which improves the optimal value function. The path emanating from 6*
to 8¥+1 is chosen to be linear, i.e., 0**' = ¢* + ad, a € R,, d € R?. A non-linear
path could have been chosen, however since the problems studied here are linear,

it is natural to assume linearity of the path. The limit ¢, defined and used in the
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marginal value formula (Theorem 3.9) can therefore be expressed as

t=lim o= _ fim 24 _d
0—0° |0 — 6]  a—ot|al|-||d| |ld||

The norm used is the £, norm, i.e., for y € R?, |ly]| = max;<icp | yi |. Recall that

the marginal value formula holds for all norms, not only the Euclidean norm.

The method starts by fixing 6 = 6° (k = 0) and solving (L,0*) using the
revised simplex method. The solution #(6*) and the dual solution (%) enable us
to calculate Vg(6*). By the marginal value formula, we want the inner product
(Vg(8*), £) to be negative. This will guarantee that f(ﬂ"“") < f(6%), i.e., a local
improvement of the optirnal value function. The inner product, in view of the type

of path, is
1
Il

(the direction d is only zero if the current 6 is optimal). Ideally, we would like to

(Vg(6"), d)

solve

Min  n(Vg(6%), d)

st |4 £1
0k +del

to get a “best” d. However this involves minimizing a non-linear objective function.
We therefore proceed as follows: We say that d is a direction of steepest descent al
0* if ||d||c =1 and d minimizes

oo 100+ ad) - f(6°)

a—0+ o

i.e., if d is on the unit sphere in £, and d minimizes the directional derivative f(0).

To determine such a direction we want to

min lim f(0‘ t+ad) - f(0")

d€Bo a—0t (44
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where By, = {z : ||z||c = 1}. If the direction d that we obtain is such that the
limit as @ — 0% is negative then we know (Vg,¢) < 0. If we also get d such
that |d]|oc = 1 then 5(Vg, d) = (Vg, d) and so (Vy, {) is minimal and d is a
direction of usual steepest descent. I ||d|lo < 1 then (Vg, £) is still negative but
not necessarily minimal. Either way, we know that the direction d improves the
optimal value function f(f) because (Vg, £) < 0. Hence we now solve

Min (Vg(6*), d)

st |4 £1
F+del

The feasible set here is compact since both [ and the unit ball are compact. Thus,
a minimum exists for the continuous, linear functional, due to the Weierstrass The-

orem. In order to find an optimal d, one can benefit from the structure of the set I.

One simply chooses

0 if Vg,(6¥)=0
min(U, - 85,1)  if Vg;(6*¥) <0

where L = (L;), U = (U,), ¢ € {l1,...,p} are the upper and lower bounds of

{ max(L, — 0%, 1) if Vg,(6%) >0
d; =

the set I. If we have | Vg;(6%) |< ¢ for i € {1,...,p) for some pre-determined
€ > 0, then Vg,(6%) is assumed to be zero and we set d, = 0. Similarly, if for some
i €{l,...,p},d, >0and | U, - 6" |<e ord, <0and|L,— 6 |< ¢ (ie., some
boundary is “close” to 6¥) where &’ is another pre-determined positive quantity,
then we reset d, to zero. If d = 0 then the method terminates and, according to the
marginal value fromula theorem, one cannot improve the objective value function

locally while remaining in I.

The second version of the numerical optimization method differs in its way of

choosing the direction d. Instead of solving a minimization problem, we simply
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assign

d; = —sgn(V,(6*)).

Again, if some | Vg;(0%) |< ¢ then we set d, = 0. If ¢* is located on a boundary of
I and some d;e (here e = (1, 1,...,1)T) points out of I, then that d; is simply reset
to zero. The resulting direction d is still such that (Vg(6*), d) < 0 (note that, here,
|d|| = 1). If, at this point, d = 0, then only now do we solve

Min (Vg(6%), d)

st |ldf <1
0k +del

If we still get d = 0 then the method terminates; if not, then we normalize d and
continue iterating. Note that the second version is simpler, but we expect it to

produce slower convergence.

At this step, in both versions, we have a direction d along which f(0) decreases,
at least locally. Now comes the question of choosing the distance we will travel
along d in order to get #**'. That is, we now must choose a, where 0*t! = 0% 4 ad.
To do this, we first determine &, which is the greatest distance we can travel along
d and still remain in 7. Once we know &, we use the Method of Golden Rule
(MGR) to find a. This MGR is an iterative method for minimizing a real-valued
function on a closed, bounded interval [a,b] in R, provided we can evaluate the
function at specific points in the interval. Our interval is [0,&] and the function is
f(@) = f(6* + ad) which is an unknown function mapping R into K. However we
can evaluate f(€*+ad) for a € [0, a]; we simply solve the linear program (L, 0% 4 ad)
(the difficulty here is that the optimal value function £(0) is not explicitly known,

so the usual methods of nonsmooth analysis are not directly applicable).
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The ‘Golden’ in MGR refers to the so-called “golden” proportion

or, approximately ¥ = 0.3819660 . ... The function f (a) is evaluated at a = 0, y =
a+v(b-a), z=0b—~(h—a), and & If f(y) < f(z) then we assign b = z and
repeat the iteration on the new interval [a, b] = [a, z]. If f(y) > f(z) then we assign
« = y and repeat the iteration on the new interval [a,b] = [y, b]. Iterations are
continued until the interval being considered has a length less than some ¢ > 0.
This final interval after n + 1 iterations is smaller than the interval obtained by
the Fibonacci search after n 1terations. The MGR is much simpler than Fibonacci
and yet is only marginally slower to converge. Greater detail is provided by, e.g.,
Petrié and Zlobec in [18]. There are two different stopping rules for the MGR.
When we start iterating from 6° to 6, to 62, etc., it is less important that our a be
the best on the interval [0,a] than when our ’s a>proach an optimal 6*. We are
therefore not very demanding of the MGR, choosing a after only three iterations.
However, as we approach 6%, we are more demanding for the choice of a. OQur rule
implemented is as follows: If the percentage of change ia f(0) from 652 to g*-1
is greater than some pre-established quantity PERCENT then we perform only three
iterations of MGR to get a on the k' iteration. If the change is less than PERCENT
then MGR is carried out until the interval [a,b] on which we study f(a) is reduced
to a length of less than some specified amount é (this amount and PERCENT are
determined before commencing the numerical method and depend on the problem

being studied).

If the “theta-iterations”—a theta-iteration is an iteration from 6* to #**! where
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F(0**') < f(6*); in order to determine 6¥*!, we use “MGR-iterations” to establish
an o as described above—are in their early stages, then our MGR stopping rule is
three MGR-iterations. It is possible that after these three iterations, f(a) > f(0).
Such would be the case if f(c) decreases close to a = 0 and quickly rises from then
on. In these circumstances the MGR-iterations are continued until an a is found
with f(a) < f(0) or until there have been thirty MGR-iterations (to guard against

infinite loops).

At this stage, we have a and d, so we set §¥*! = 0* 4 ad, adjust the affected
coefficients a,; and repeat the iteration with **!, The algorithm for the first version

is now given in point form.

Algorithm

1. Set 0% = 6°.

2. Update the matrix A = A(8*) (or, initially, specify which elements of A are to

be perturbed).
3. Solve (L, 0%) to get #(6*) and @(6*).

4. Calculate Vg(6%) and determine d. If d = 0, stop—the current 0 is a locally

optimal input; if not, continue.

5. Calculate @ and then use MGR to find a. If

fo+-) - fe-)
767
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then perform only three MGR-iterations to get a. Otherwise iterate until the

interval [a, b] has length [b—a [< 6.

6. Set **! = 0¥ + ad. Repeat from Step 2.

4.2 An Adaptation for Use in the Case Studies

The program listed in Appendix B performs the numerical optimization method just
described, on Case study I (given later in Chapter 5). Some further specifications
to the method were necessary to adapt it to the situations presented by the case
studies. The program listed is very specific. It was not made general because it

depends heavily on the nature of the functions a,,(9).

The input parameter @ appears in the matrix A in our studies. However, if a
choice is possible, one must choose carefully which elements a,, should depend on ¢
and which should remain constant. Perturbing a particular a,, may have no effect
on the optimal value function whereas a small perturbation in another element a,;
may result in a great improvement in the optimal value function. To establish which
elements a,; are most sensitive to small perturbations, we use the marginal value
formula of Theorem 3.9. We have

n m n m’
90 = =08, + 33 aiing, — 3.
=1 =1j=1 =1

If our perturbations are made along a line then we can specify

0 =60+ as
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where ||s|| = 1, a > 0. Adapting the marginal value formula to this situation we

get

50, i [ 200 0) _ o)
Let the vector s have n + (m' x n) + m' components, one corresponding to each of
¢, aij, b, 1 =1,...,m', j = 1,...,n. Then, to isolate a particular a;, in s, say,
an, 1 <k < m', 1< 1< n,which will give us

af(0")

6ak,

we set all elements of s equal to zero except the one corresponding to ag, which is
set equal to one. Then it is obvious that

af(67)

day

= Uy,

We will use this formula in the case studies to select the a,,’s which will depend on

6.

The input needed by the program includes the matrix A (m’ x n), the vectors
b and c, the initial input parameter °. which a,; are functions of 0, and the sct [
determined by the input vectors L and U. If a more general type of set [ is required,
then modifications to the method will be necessary. Our method assumes that any
perturbation within I is stable (this significantly simplifies our method). Hence
the vectors L and U must be initialized in such a way that I is itself a region of
stability. In Case study II, this required readjusting the initial estimates for L and
U, as will be described in Chapter 6. If I # S(6*), i.e., if there are parts of I which
are unstable, then once we determine @, it is possible that some a, 0 < a < 4,

be such that 6% + aod ¢ S(0*). In which case, the theorems and results do not
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necessarily hold for this a. In some instances this may also imply that a particular
0* is unattainable from our current 6* due to “patches” of instability between them.

One must therefore be sure no such “holes” exist (before applying our method).

The program parameter ¢ mentioned in the description of the method, was set
cqual to 5x 1078 in both cases whereas ¢’ was 5 x 1078 in Case study I and 5 x 10~2

in Case study II. In both case studies, the quantities § and PERCENT were 10~2 and

0.001% respectively.
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Chapter 5

Case Study I: The Shenandoah
Valley Textile Mill

The first of two cases studied is the Shenandoah Valley Textile Mill', A complete
decription of the case can be found in Naylor, et al. [17]. We give here a brief outline

of the case.

The objective of the case presented in [17] is to determine a suitable lincar
program which reflects the company’s operations and to solve it to establish an
optimal production plan. Our study of the mill commences at this point. Using
input optimization, we would like to improve the efficiency of certain departments
in order to get a more profitable production plan than the original one, obtained by

solving the linear program.

The mill, on the recommendation of the marketing rescarch department, will

1The company’s name and operating figures were changed to maintain the anonymity of the
firm.
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produce seven different styles of cotton cloth for the coming week. They are: one
bleached style (denote the number of yards produced by B), four printed styles
(P,, P;, P3, and Py) and two dyed styles, blue and red (D; and D;). To produce
the finished cloths, the mill purchases large quantities of rough, unfinished cotton
cloth and converts it into the different styles through a series of finishing operations.
If the mill functions at maximum capacity, there will be excess capacity in several of
the finishing operations. Hence, only restrictive operations need be considered. They
are: singeing, desizing, kier-boiling, bleaching, drying. mercerizing, printing, aging,
dyeing (blue or red), starching, and calendering. There are two types of constraints
for this mill. The first type is the process restraints. They are determined by
the production rates for each of the seven styles for each of the eleven restrictive
operations and by the maximum number of process-hours that will be available next
week for the restrictive operations. The rates and maximum number of process-
hours are given in Tables 5.1 and 5.2. The coefficients of the process restraints are
expressed in hours per yard; hence, to get the coefficients for the matrix A, we must

use the reciprocals of the values in Table 5.1.

The other constraints are imposed by contract demands and estimated sales. The
company is committed by contract to supply a garment factory with 5000 yards of
each of the printed styles. The sales department has estimated that the maximum
possible sales for the third and fourth printed styles will be 100 000 yards and 50 000
yards respectively. The company should be able to sell all it can produce of the

other five styles. The revenue from each yard of each style is outlined in Table 5.3.

The linear program which reflects this system is given in Table 5.4 (coefficients
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STYLES
PROCESS B P P, P P, D, D,
Singeing 9000 6000 9000 7000 8000 9000 8000

Desizing 13000 10000 9000 11000 8000 13000 12000
Kier Boiling | 1500 900 1000 800 900 1300 1200
Bleaching 1000 1100 1050 1100 1100 1100 1200

Drying 13000 10000 10000 12000 11000 11000 12000
Mercerizing 800 550 600 650 700 700 800
Printing — 300 300 200 250 — —
Aging — 5000 4000 4000 6000 — —
Dyeing — — — — — — —-

(blue) — — — — — 4000 —

(red) — — — — — — 3500

Starching 2000 1800 1800 1600 1500 2000 1500
Calendering | 4000 5000 3000 2500 4000 3200 3500

Table 5.1: Production rates in yards per hour. Source: Naylor, et al., [17].

in the matrix A are rounded only in this table, not when calculations are carried

out).

Using the revised simplex method (the program listing is included in Appendix
A), the optimal production plan for the coming week for this initial set-up ap-
pears in Table 5.5. The optimal value is -1022 380.000$ (recall that we’re minimiz-
ing (—¢,z)). The dual solution is @t = 0.336, i3 = 0.144, @5 = 0.200, i =

0.100, digo = 0.290, @, =0, i = 1,...,7,9,10, 11, 12,14, 16,17, 18.

We now would like to introduce an input parameter. We must decide which

elements a,, should be perturbed. Using the formula

of _ ..

AT = UL
aa,'_-, *a
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OPERATION CAPACITY
Singeing 150
Desizing 150
Kier Boiling 900
Bleaching 1500
Drying 140
Mercerizing

(bleached) 830

(printed) 830

(dyed) 830
Printing 1800
Aging 150
Dyeing

(blue) 150

(red) 140
Starching 500
Calendering 450

Table 5.2: Maximum Number Of Process Hours Available. Source: Naylor, et al.,
[17].

STYLE | REVENUE PER YARD
B 0.40%
P 0.60
P, 0.80
P; 1.00
Py 1.25
D, 1.20
Dy 1.30

Table 5.3: Revenue from each style. Source: Naylor, et al., [17] p.184.
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%“‘% Maz 0.40B + 060P, + 080P; + 100Ps + 1.25P, + 120D, + 130D,
st 1.1B + 1.7 + 11P; + 14Py + 12 + 11Dy 4+ 1.2D; < 1500000
7.7B + 100P, + 1L1P; + 9.1Py + 125R + 177Dy + 83D, < 15000000
6.7B + 111 + 100P; + 125Py + 111° 4+ 19D, + 83D; < 9000000
10.0B + 9.1 4+ 95P; + 9.1P + 9.1F + 91D, + 83Dy < 15000000
7.7B + 100, + 100P; + 83P; + 91F + 91Dy + 83D; < 14000000
1.28B < 830 000
18P + L7P, + 15P; + 145 < 830000
14D, + 12D < 830 000
33 + 33P; + b5.0P + 40P, < 1800000
20, + 25P; + 25P3 + 1.7P, < 1 500 000
2.5D, < 1500000
29D; < 1400000
5.0B + 56P, + bH56P, + 63P3 + 6.7P, + 50D, + 6.7TDy < 5000000
2.58B + 20, + 33P, + 40P + 25P 4+ 31Dy 4+ 29D; < 4500000
-1.0~ < -5 000
-1.0P; < -H000
-1.0P; < -5 000
—1.0P, < -5 000
1.0P; < 100 000
1.0P, < 50 000

B >0, D; 20, D2>0

Table 5.4: Linear program reflecting the initial set-up of the mill. Source: Naylor,
et al., [17], p.185

STYLE | QUANTITY
(YARDS)
B 0
P 5000
P, 199 600
P 100000
P, 50 000
D, 581000
D, 0

Table 5.5: Optimal production schedule for the initial set-up of the mill.
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we determine that perturbing the coefficients ags, @133, and a;3¢ will affect the
optimal value function. These correspond to the number of yards of D; produced
by the mercerizing operation and the starching operation and the number of yards of
P, produced by the starching operation. The dependance of the three technological

coefficients on @ will be as foilows:

1 1 1
96 =700 +6,” T 180046,° T 2000+ 0,

Now we must define the set / in which # can be perturbed. In a real-life setting, the
management would be able to define it by considering the possible improvements in
the efficiency of the operations involved. For example, the possible improvement as
a result of the replacement of a particular machine with a newer, more efficient one.

In this study we will estimate reasonable values which define I. We will set

0 400
L=|ol|, u=| 700
0 1000

i.e., we will consider improvements of an extra 400 yards per hour in the mercerizing
of dyed style one, and so on with the other two. Our objective is to find a 8* € I
which is an optimal input. All perturbations within I are stable since the point
& = (1, 5001, 5001, 5001, 5001, 1, 1) satisfies Slater’s condition for all § € I. The

marginal value formula theorem can be used in this case because:

o The model is bi-convex, with a realistic objective function (at every 6* € I).

o The saddle-point {Z(6*),%,(6*), i € P<(0*)} is not necessarily unique, but as
noted in Chapter 3, this condition can be relaxed (we are not really aiming at

the locally fastest improvement).
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0.000000
341.640786
391.4855056
398.757752
390.818758
399.973557
399.996142
399.999437
399.999918
399.999988
399.999998
400.000000
400.000000
400.000000

0.000000
341.640786
391.485505
398.757752
399.818758
400.672860
401.526962
402.381064
403.235166
404.089268
404.943370
405.791472
406.651574
657.201041

0.000000
341.640786
391.485505
398.757752
399.818758
400.672860
401.526962
402.381064
403.235166
404.089268
404.943370
405.791472
406.651574
657.201041

-1022380.000
-1172990.927
-1 187 869.340
-1189929.191
-1190227.485
-1190432.182
-1190630.231
-1190827.322
-1191024.282
-1191221.232
-1191418.190
-1191615.157
-1191812.133
-1 231 550.039

Table 5.6: Path connecting 6° to 6°.

¢ The index condition (IND) holds since P<(8) =P for all 0 € 1.

o The whole region I is stable since Slater’s condition holds (in z) throughout

I.

o All functions f*, ¢ € P are continuously differentiable with respect to 0, for

0 el

The initial input is #° = (0, 0, 0)7. The algorithm described in the previous
chapter was applied to this model. A complete listing of the program used appears
in Appendix B. The variable MGRITER was set so that the Method of Golden Rule
only iterates three times in order to choose a, but this maximum only applies if
the change in f(f) is greater than 1073%. The results of the program appear in

Table 5.6. The program was run using Turbo-Pascal 3.0 on an IBM compatible and
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STYLE | QUANTITY J]

(YARDS)
B 0.00
P, 5000.00
P, 181 403.46
Py 5000.00
Py 50 000.00
D, 600 000.00
D, 227 636.36

Table 5.7: Optimal production plan corresponding to an optimal input 6*.

the run time was approximately 77.4 seconds. The optimal input for this linear
model is 0* = (400, 657.201, 657.201)7 and we have f(6*) = —1231550.039$, an
improvement of 20.5% over the initial set-up with 8°! The corresponding optimal
production rate is given in Table 5.7. The corresponding dual optimal solution is
itz = 0.0800, iz = 0.5067, @, = 0.0496, @5 = 0.2889, ity = 0.3611, @; =0, ¢ =

1,2,4,5,6,7,9,10, 12,13, 14, 16,17, 18, 19.

The numerical optimization method used to compute these values only termi-
nates if no further improvement from the current ¢ is possible, i.e., only if the current
0 is a locally optimal input. Hence the 6* given above is a locally optimal input. We
would, however, like to verify this optimality (i.e., that (L, 6*) with 6* given above,
is an optimal realization of the model) and ascertain that the program terminated
properly. To do this, we can apply Theorem 3.7 and find a suitable non-negative
vector function U(6). Note that for this case, P= = §, since Slater’s condition holds
for all 0 € I and that P(z(6*)) = {3,8,11,15,17,20,21}. The set I corresponds to

the region of stability W(8*); hence, as affirmed in [19), there exists a continuous

38



-

non-negative vector function. We first solve the BBZ system (this is equivalent to
the Karush-Kuhn-Tucker condition since P= = @) which yields u3 = 0.0800, ug =
0.5067, uy5 = 0.2889, u;7 = 0, uzp = 0.3611, uy =0.1333, u; = 0, i € P\ P(2(0*))

and
202.67
700 40,

uy = 0.2338 —

Letting Ui(0) = ux, k € P(Z(0")), we get the necessary vector function. The left-
hand inequality of the saddle-point inequality is easily satisfied with this (). The

right-hand inequality becomes

304 000 000

—1231550.039 < — . -
31550.039 < —1507913.7 + 700 + 0,

which is true for all @ € I. This proves that 8* is indeed a locally optimal input.

From the marginal value formula, we can derive

R

IQJ

= ;.

Q

b;

Therefore, our expression Uy, (0) indicates how f varies with changes in b,.

To experiment with the computer program and the algorithm, the program in
Appendix B was run several times in different versions. For each version we noted
the optimal input 6*, the optimal value f (6*), the number of #-iterations, the total
number of MGR-iterations, and the run-time for the computer program. Each ver-
sion yielded the same #(#*) and f (6*), but different optimal inputs 6*! The first type
of variation was a change in 6°. The program was run with ¢° = (150, 25, 400)”
and with 8° = (50, 400, 800)T. When the initial input was §° = (150, 25, 400)", the
results were 6 = (400, 331.9666, 706.9666)T, 14 0 iterations, 39 MGR-iterations
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and a run-time of 114.1 seconds. With 6° = (50, 400, 800)7, we obtained 6* =
(400, 570.8204, 970.8204)7, 10 O-iterations, 53 MGR-iterations and a run-time of
112.8 seconds. Although these optimal inputs differ greatly, the corresponding op-
timal solutions are the same! This means that vastly different production rates for
the starching operation have the same effect on the optimal production plan! So
our three initial °’s yield three different optimal realizations of the same model,
but with the same optimal value. The optimal value function f() was evalu-
ated at 40 different points on the line joining 6*' = (400, 657.2010, 657.2010)T and
0% = (400, 570.8204, 970.8204)T and at each point the optimal value was the same,

i.e., -1231550.0398.

Another variation in the program is changing the program parameter MGRITER
which indicates the maximum number of MGR-iterations to be performed if the
change in f(0) was greater than 0.001%. In the program, MGRITER is set to two
less than the maximum number of iterations desired, i.e., if we want only three
MGR-iterations performed, then we set MGRITER = 1. The program was run for
MGRITER = 1,6,11,16, and 21. Each time the program was run, the initial input
was 0° = 0, the optimal value was f(6*) = —1231550.039$, and 8* was such that
0; = 400 and 0; = 03 and the optimal solution #(§*) was the same. The results
appear in Table 5.8. These five runs were repeated with the alternate method for
choosing d, described in the previous chapter. The results of these runs are given in
Table 5.9. It appears that the original method for choosing d is faster. This makes
sense since at each f-iteration, d is chosen by solving a linear program, hence it is

optunal and indicates a sort of steepest descent direction. The alternate version (as
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NUMBER OF NUMBER OF | RUN-TIME |
MGRITER 63 | 0-ITERATIONS | MGR-ITERATIONS | (SECONDS)
1 657.2010 14 39 174
6 589.2992 8 56 93.1
11 584.3077 6 65 104.1
16 578.9910 5 72 113.9
21 578.9905 4 69 110.2

Table 5.8: Results of the numerical method for different values of MGRITER.

NUMBER OF NUMBER OF RUN-TIME
MGRITER 0; 0-ITERATIONS | MGR-ITERATIONS | (SECONDS)
1 578.1332 14 65 122.1
6 578.1332 9 69 119.9
11 578.1332 7 73 122.3
16 578.1332 5 82 131.3
21 578.1332 4 74 119.1
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Table 5.9: Results of the numerical method (using the alternate method for choosing
d) for different values of MGRITER.




noted earlier) chooses d according to a simplistic rule which yields only a feasible
direction of descent, not necessarily the best one. It also seems, at least for this
case, that a small value for MGRITER is better than a large one. This means that
it is not necessary to obtain an optimal a to determine the next 8. One therefore
should seek the best direction for decreasing f(6) and then not be too demanding of
the distance travelled along that direction. This seems to be true for this particular

case and for all but the last few iterations.

To further experiment with the numerical method, we altered the model for this
case and ran the program again. For this new model we chose new coefficients to
perturb and a new set I. The coeflicients affected now are age, asr, aiz4 and a;as.
They become

1 1 1 1
6= 70016, T 80046, T 1600405 T 1500+ 0,

and we define I by

0 550
0 300
L=1ol> U={400
0 475

The program was run three times with this set-up. Each time, we had MGRITER = 1,
f(6*) = —11211799.5788, and the same solution (6*) (given in Table 5.10). With an
initial input of #° = 0, the optimal input was 6* = (391.4855, 49.8447, 400, 475)7.
With 6° = (125, 40, 210, 180)7, we obtained 0* = (287.2794, 202.2794, 400, 475)7
and with ¢° = (250, 100, 10, 400)”, we obtained 6* = (432.6010, 282.6010, 400, 475).
The number of #-iterations was 18, 18, and 19 respectively. The number of MGR-
iterations was 77, 77, and 80 respectively, and the run-times were 171.7, 175.6, and

132.0 seconds respectively.
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Table 5.10

STYLE | QUANTITY
(YARDS)
B 0.00
P 5000.00
P, 5000.00
P 100 000.00
P, 50 000.00
D, 600 000.00
D, 178 691.98

: Optimal production plan corresponding to an optimal input 6*.
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Chapter 6

Case Study II: The Evangeline
Coffee Company

The second case study is the Evangeline Coffee Company of New Orleans, Louisiana’.

It is based on the case of the same name which appears in Naylor, et al. [17]. The
case presented there is solved by a linear program where the matrix A is 36 x 36.
Performing the numerical method on this system would have taken a few hours to
run on a microcomputer. Since the primary objective in this thesis is to show that
numerical applications of input optimization are possible, it is felt that studying
a small subsystem is sufficient for our purposes. Therefore, some constraints and
variables which appear in the case by Naylor, et al., do not appear here. We present

only the aspects of the case which are needed.

This company imports, blends, and roasts green coffees (coffees which have not

been roasted yet) for distribution in a six-state area along the Gulf Coast. The

!The company’s name and the pertinent figures were again changed to maintain the anonymity
of the firm.
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CAFE D’ELITE PLANTATION
Strength | < 8.0 || Strength | < 7.0
Acidity | <3.5 || Acidity | < 4.0
Caffeine | < 2.8 || Caffeine | < 2.2
Hardness | < 2.5 || Hardness | <€ 3.0

Table 6.1: Requirements for each blend. Adapted from Naylor, et al., [17] p.176.

company markets two different blends of coffee under the brand names: Café d’Elite
and Plantation. The former is a high quality blend served exclusively by leading
hotels, fine restaurants, and espresso houses. The latter is a medium quality blend
with a widespread distribution in the six-state'area. These blends are created by
using five different green coffees: Santos 4’s, Bourbon Santos, Rios, Victorias, and
Medellins. Seven characteristics describe each of the two blends; however, only four
are considered here: strength, acidity, caffeine, and hardness. Each green coffee has
been assigned an index number between 0 and 10 for each characteristic to quantify
that characteristic. For example, a relative strength of 8 or 9 indicates a “very
strong” taste whereas 1 or 2 indicates a “weak” coffee. The acidity is determined
by measuring the pH factor, and caffeine content is measured as a percentage of
weight. It has been found that these taste characteristics of different green coffees

combine linearly when blended.

The two coffee blends have set requirements for each characteristic. These re-
quirements are outlined in Table 6.1. The company forecasts its green coffee needs
one month in advance and then orders the appropriate quantities. These green

coffees vary according to price, quantity available, and taste characteristics, as indi-
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PRICE | AVAILABLE PERCENT

GREEN COFFEES PER SuPPLY IN | STRENGTH | ACIDITY | CAFFEINE | HARDNESS
AVAILABLE Pounp | PoOuNDS INDEX pH CONTENT INDEX
Santos 4’s $0.35 25000 6 4.0 1.8 2
Bourbon Santos 0.36 10000 6 3.9 1.6 3
Rios 0.20 75000 10 4.5 1.0 7
Victorias 0.17 5C 000 10 5.0 0.9 8
Medellins 0.44 5000 8 3.0 3.0 2

Table 6.2: Adapted from Naylor, et al., [17] p.177.

cated in Table 6.2. The demand for the coming month has been estimated at 5 000

pounds of Café d’Elite and 20000 pounds of Plantation.

We denote each variable by X,,, ¢ = 1,...,5, j = 1,2 which represents the
quantity of the i** green coffee used in the j** blend. There are three types of linear

restraints: demand, supply, and quality. Demand restraints have the form
i1 X, £ D,
1=12

i=1
> 1—Xi; <-D,
where D, is the demand for the j®* blend. Supply restraints are imposed by the

1=1

quantity available of each green coffee. They may be expressed as
Xil +XI2 S Si7 t= 1""75

where S, is the number of available pounds of green coffee i. The quality restraints

are derived from the values in Tables 6.1 and 6.2. They are of the form

5
Za:qu < D]ka) j= 112a k= 1,2)314

=1

where
ax = kth quality characteristic of the ith green coffee
D, = demand for the jth blend

b,x = kth characteristic of the jth blend.
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- Maz —35X11 - 36X31 - 2031 - 1741 - 4451
- -35X12 - 3622 — 2032 - 1742 — 4459
s.t. Xn + X + Xa1 + Xa + Xn <
-Xn - X - X1 — Xa - Xa <
X2 + X22 + X2 + X2 + Xs2 <
-X12 - X2z — X2 - Xaa — Xs2 <
X1 + X2 <
Xn + Xa2 <
X3 + Xaa <
Xa1 + Xaz <
X51 + Xg2 <
6X11 + 6Xan + 10Xa + 10X4a +  8Xy, <
44X + 39Xy + 45X; + 5X4 + 3X5 <
18Xy + 16Xa + Xa1 + 09X4 + 3X5 <
2X11 + 3Xa + Xa1 + 8Xa + 2Xp <
6X12 + 6X22 4+ 10X32 + 10X42 + 8Xs2 <
4X12 + 39Xz + 45X32 +  5Xax + 33X <
1.8X12 + 1-6X22 + X32 + 0.9X42 + 3‘\’52 S
2X12 + 33X + TXa +  8Xaz + 2Xp5y <
Xi; 2 0

Table 6.3: Linear program for the Evangeline Coffee Company.

These 17 restraints define the feasible set in the linear program presented in Ta-
ble 6.3. The matrix A has dimension 17 x 10. In order to fit it onto one page,
some columns overlap; however this shouldn’t cause any problem in understanding
the linear program. This program was solved using the revised simplex method
computer program listed in Appendix A. The optimal value is 8 502.50%. The op-
timal solution is given in Table 6.4. The dual optimal solution is @, = 75.2, 14 =
907.2, fiyy = 9, g = 2.1, gy = 1.8333, @15 = 1.2667, 7 = 0.2667, @, = 0, i =
L,3,5,...,10,12,16.

At this point we would like to apply input optimization and obtain a solution
with a lesser cost. Suppose it were possible to alter a characteristic of a green

coffee, by developping a hybrid plant. This would change the program and therefore
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VARIABLE | QUANTITY || VARIABLE | QUANTITY
(POUNDS) (POUNDS) ll
X 1750 X2 14000
Xa 0 Xa2 0
X3 500 [ Xa 4000
Xa 0 X 0
X5 2750 Xs2 2000

Table 6.4: Optimal solution for the initial set-up.

the optimal solution. Assume it is possible to grow a new plant which produces
Santos 4’s with any desired strength within 11.25% of the present strength, i.e.,
it is possible to get Santos 4’s with a strength between 5.325 and 6.675. Similarly,
assume that Rios and Medellins can be made to have an acidity in the range +8.89%
and £16.67% respectively, i.e., between 4.1 and 4.9 for Rios and between 2.5 and
3.5 for Medellins. Finally, suppose that an acidity index of less than or equal to
4.1 is acceptable for the Café d’Elite blend. Implementing these conditions means

changing an,s 415,10 blla @101y 2146, 211,35 and a158 to the following:
ans = ays10= 3 +0;, by =5000(3.5+ 6,),

a1 = 146 =6+ 03, a113=0a158 =45+ 0,

whered € I={0 € R': L <0 < U} and where

~0.500 0.500
| o0.000 _ | 0.600
L=1 _oers|> U=] o6
—0.400 0.400

If we try to run the numerical method on this set-up, we discover that for some 6 € I,

the constraints are infeasible. We therefore must redefine I. On closer inspection of
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the constraints we determine that if we redefine I with

~0.500 0.035
| 0025 | 0.600
L=1 _o65|" VU=]o061|"

—0.400 0.100

then the point £ = (2250, 1, 1, 1, 2747, 18000, 1, 1, 1, 1997)7 is such that P<(£(8)) =
{5,...,27} for all € 1. Hence I = W(8") (6* = (0, 0, 0, 0)T), which is a region of
stability. Note that in this case study, for all 6 € I, P=(0) # 0. Hence to use the
necessary theorems we must assure ourselves of the presence of a region of stability
such as W(6*) (in Case study I, Slater’s condition held for all 6 € I, hence we knew

the model was stable in I).

The program for the numerical method listed in Appendix B vas used to solve
Case study I. To use it for Case study II, one must modify certain segments of the
program, in particular the lines which update a,,(#), thosc which calculate V4g(0),

and other obvious lines of source code.

The marginal value theorem can be used here because:

o The model is bi-convex, with a realistic objective function.

e The saddle-point {%(6*), @,(6*), i € P<(6*)} is not necessarily unique but,
as mentioned before, the values we obtain for (Vg(0), £) will approximate the

actual ones sufficiently.
e The index condition (IN D) holds since P<(#) is constant for all 8 € I.

o [ = W (") is a region of stability. The set [ is also equal to V3(0*) since P=(0)

is constant for all 8 € 1.
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0, 0; 0 04 (&)
0.000000 0.000000 0.000000 0.000000 | 8 502.500%
-0.427051 0.512461 -0.576519 -0.341641 | 8116.013
-0.499980 0.599975 -0.576519 -0.399984 | 8 099.004
-0.500000 0.599975 -0.576519 -0.400000 | 8 099.000
-0.500000 0.599975 -0.576519 -0.400000 | 8 099.000

St N X

Table 6.5: Path connecting &° to 6*.

VARIABLE | QUANTITY || VARIABLE | QUANTITY
(POUNDS) (POUNDS)

X 4583.333 X2 15733.333
X2 0.000 X 0.000
X3 0.000 X3 4 000.000
Xa 416.667 X42 0.000
Xs1 0.000 X2 266.667

Table 6.6: Optimal solution for (P, 6*).

o All functions f*, i € P are continuously differentiable with respect to 4.

The initial input was 6° = (0, 0, 0, 0)7. The variable MGRITER was set to 1 so
that three MGR-iterations would be performed at each of the first few 8-iterations.
The program gives a finite sequence {0%} which determines the path connecting 0°
with the optimal input 6*. These 6*’s are given in Table 6.5. The run-time was 54.4
seconds. The optimal input is 8* = (—0.5, 0.599975, —0.576519, —0.4)T and the op-
timal value is f(8°) = 8099.008, an improvement of 4.75%. The corresponding opti-
mal solution is given in Table 6.6. The corresponding dual optimal solution is i, =

41, '{14 = 64.76, flw = 3, ﬂ15 = 6, ﬂ17 = 2.889, ft,- = 0, 1= 1, 3,5,...,12, 14, 16.
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The primal solution indicates that Café d’Elite should be blended from Santos 4's

“ and Victorias, whereas Plantation should be blended from Santos 4’s, Rios, and

Medellins.

To verify the optimality of 6%, we use Theorem 3.7. Since the region of stability
here is W(6*), we know from [19] that if 8* is a locally optimal input then there exists
a continuous non-negative vector U(f). We can solve the BBZ system to determine
U(9). The polar set in the system is as follows (recall that P=(0) = {1,2,3,4} for
all g € I).

{ N DFEM ={ueR:u=u;, i=23,4,5 us =u;, j =7,8,9,10}.

i€P=(9)
We also have

[ 35 + 2U|3
36 + 3'![13 - U19
20 + 7“13 — U20

e 17 + 8‘U,13
. - 44 + 2uy3 — up
V% (z,6) + Y wVfi(E,0%) =
’ ieP(5(6°)\P= 35 + 4uy5 + 2uy7

36 + 3.9“15 + 3u17 — U4
20 + (45 + 04)7115 -+ 7'U,|7
17 + Suys + 8uy7 — uye
| 44 4+ (3 + 01)uys + 2uy7

Solving this system determines U(f) to be as follows:

9 4.5+ 90
Ua(0) =3, Uis(0) = T~ U7(0) =3 ~ 5(1 ~ 01;

u19(0) = 4, U20(0) = 0, ugz(o) - 9

Uz(0) =4 — 2‘8—-}3—:‘;‘, Up(0) =

U(8) =0, i€ P=UP\PE0))

18(1 — 30,)
5(1 - 6,)
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NUMBER OF NUMBER OF RUN-TIME

MGRITER ] 03 0-ITERATIONS | MGR-ITERATIONS | (SECONDS)
1 0.599975 | -0.576519 5 51 54.6
6 0.592107 | -0.666120 4 40 43.7
11 0.599288 | -0.674199 4 45 48.2
16 0.599936 | -0.674928 4 50 52.5
21 0.599994 | -0.674993 3 39 41.8

Table 6.7: Results of the numerical method for different values of MGRITER.

This is a continuous function around 6*. The left-hand inequality of the saddle-
point inequality is easily satisfied with this function /(8). The right-hand inequality

becomes

1
809 900 < 807 500 + 18 OOOg—ii%"—)-
-0

which holds for all € I. Hence 8* is a locally optimal input.

If we change the initial input so that ° = (-0.25, ~0.25, 0.40, 0.05)7, then
the optimal input is found to be 6* = (—0.5, 0.599965, —0.599720, —0.4)T with
f (0°) = —8099.00$ and the same optimal blend as the first time. The run-time was

virtually the same as before, being 55.2 seconds.

As with the first case study, we varied the program variable MGRITER. For values
of 1,6,11, 16, and 21 for MGRITER, the results were as outlined in Table 6.7. Note that
f(0°) = —8099.008, 6; = —0.5. and 6; = —0.4 in each case and that the optimal
solution was always the same. The values in Table 6.7 indicate that, unlike Case
study I, it seems a larger value for MGRITER yields a faster run-time. The conclusions

we can draw regarding the value of MGRITER is that no one value is necessarily best;
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each case seems to dictate which value is best for it.
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Chapter 7

The Numerical Method for
Nonlinear Programming and
Questions of Stability

7.1 Nonlinear Programming

The numerical method described in Chapter 4 was designed for use on linear pro-
grams. For example, the simplex method solves each linear program, the path from
one ¢ to the next is linear, etc. One might wonder if it can be used on nonlinear
programs. Certainly the theory of input optimization holds for nonlinear programs
(although most of the results are stated for convex models). It was mentioned in
Chapter 4 that the algorithm’s way of determining & and a would require modifica-
tions for regions of stability more complex than a cube in RP. Very often in nonlinear
programming, the region of stability is not a simple cube. Thus we already have an
obstacle to direct application of the method to nonlinear programs. However, some

programs favour direct application and we will show here how input optimization
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and this method can be applied in the nonlinear case.

A general nonlinear programming problem has a vector variable z = (zy, 23,...,2y).
Most other methods, when solving such a problem, consider each component of z
equally. However, some nonlinear problems are such that redefining their vector
variable z € R* as z = (z,0) where z € R, § € RP and n + p = ', transforms
them into linear programming models (!) with an input parameter 6. For example,
we could let z; = z;,i=1,...,nand §, = 2,, § = n + 1,...,n’ or some other com-
bination. Both examples presented in this section are well suited for a redefinition
of their vector variable z into vector variables  and 6. The first example is an un-
constrained optimization problem which can be solved using an adapted numerical
method. The advantage to solving a nonlinear optimization problem using input
optimization techniques is that one obtains in the process, a stable path connect-
ing 6° to 6* and an optimal solution #(0*). When solving a problem using other
techniques (even under ideal conditions), no indication is given as to whether it is
possible, in practice, to get from an initial point 2% = (20, 22,...,2%) to an optimal
2* = (2%, 23,...,2%). Since the examples and cases in this work are derived from

real-life situations, the notion of feasibly attaining an optimal z* from an initial z°

is of importance to the people/systems involved.

The first example is adapted from one presented by Hock and Schittkowski in
[14] and originally from Colville [7]. It is an unconstrained minimization problem

with the following objective function.
f(z) = 100(2z3 —22)% + (1 — 21)2 + 90(z4 — 23)% + (1 — 2z3)?
+10.1((2 — 1)2 4 (24 — 1)?) 4+ 19.8(22 — 1)(24 — 1)
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A possible “splitting” of z into z and 8 is z = (64, z, 63, 03). After rearranging and
grouping certain terms, this redefines the objective function as
f(z,0) = 110.1z% + (—40 — 20067 + 19.803)x + (10007 + 63
—20, + 906 + 62 — 180030, + 100.163 — 20, — 4005 + 42)
This problem has no constraints and the objective function is a simple quadratic
function in z, for fixed §. The numerical method of Chapter 4 is easily adapted to
this problem and solved by hand (stability considerations can be ignored here). We

define 0° = (-3, —3, —1)7 which determines
£°(z,0°) = 110.1z% — 1 859.8z + 17222.1,

#(0°) ~ 8.4660 and f(6°) = 19192. The gradient of g(9) is calculated as

—-40004% + 4000:13 + 20, -2
Vg(0) = 36002 + 20, — 3600,05 — 2
19.8% — 18002 + 200.265 — 40

Notice the absence of Lagrange multipliers u; due to the absence of constraints
in the problem. If we evaluate Vg(0) at ° we find an optimal direction d to be
d = (1,1, 1)T. Examining the original function f(z) we see that it vanishes at
z = (1,1, 1, 1)7. Choosing a = 2 (« is the distance travelled along the direction

d) brings us closer to this point. Our new @ is therefore ! = (-1, —1,1)T, our

quadratic function is
Y%z, 0") = 110.1z% — 220.2z + 118.1

and #(0') = 1, f(6") = 8. Evaluating Vg(0) at 6" indicates d should be d =
(1, 1,0)7. We choose a = 2 and obtain 6> = (1,1, 1)T. The quadratic function
becomes

f(z,6%) = 110.15% — 220.2z + 110.1
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and #(6%) = 1, f(6*) = 0. Evaluating Vg(0) one more time determines d to be the
zero vector. Thus 6* = 6% and f(6") = 0. Our path from ¢° to 6" consists of the
two straight lines joining 6° to 6" and 0! to #*. The program from Appendix B was
adapted to solve this method but got “stuck” iterating from one side of 8* to the
other and back again (close to 8*) indefinitely. The objective function seems to have
a very small slope at 8*, and would require a method with a quadratic convergence
rate instead of linear (this is a typical behaviour of steepest descent type methods).

Hence the solution was obtained by hand.

The second example is also adapted from one in Hock and Schittkowski [14] and
is derived from a heat exchanger design problem. For more references regarding this
problem, consult Avriel and Williams [1] and Dembo [9]. The objective function is

f(2) = z4+ z5 + 26 + 27 + 23 which is to be minimized subject to the constraints

1- 00025(24 + 26) 2 0

1 —0.0025(z5+ 27 —24) 20

1- 001(2‘8 - 25) 2 0

z12¢ — 833.33252z4 — 1002, + 83333.333 > 0
2927 — 125025 — 2924 + 1 25024 Z 0

232g — 1250 000 — z325 + 250025 > 0

100 <z <£10000

1000<2 <10000, :=2,3

10< 2 <1000, i=4,...,8

We can split z so that z = (0,, 6, 03, =4, 3, T3, T4, x5)T and the nonlincar program
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VARIABLE | VALUE
z 181.9289
Ty 295.5600
T3 217.7137
T4 286.3692
Ts 395.5600

Table 7.1: Optimal solution with 6°.

becomes the following linear model.

Min f%z,0) =z, + 3+ 23 + T4 + x5

st.  fYz,0) = 0.0025z, + 0.0025x3 —1 < 0
f(z,0) = —0.0025z, + 0.0025z, + 0.0025z4 —1 < 0
f3z,0) = —0.01z; + 0.01z5s — 1 <0
f4(z,0) = 833.33252z, — 6,z — 83 333.333 + 1006, <0
f“"(:t 0) = —1250:21 + 02(01 + 12501!2 - 02.'24 <0
f8(z,0) = —2500z; + O3z, — 0325 + 1250000 < O
f‘(x,0)=—:v.+1050 , 1=T1,...,11
f(z,0)=2,-1000<0 , j= 12,...,16
6e
where [ is defined by
100 10000
L= [ 1000], and U = [100001
1000 10000

The gradient of g(0) is
(100 — z3)uq
Vg(9) = | (z1 — z4)us

(1'2 - ms)ue

The set I is not a region of stability. For example, if § = (579, 1359, 5110)7,
the corresponding program is infeasible. However with § = (100, 1360, 5111)T,
the model is stable for all # < # < U. The initial input was chosen to be #° =

(580, 1360, 5111)T, where f(8°) = 1377.13174 and £(6°) is given in Table 7.1. The
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k 0} 6 0 J(6%)

1 580.00000 1360.00000 5111.00000 | 1377.13174
2 | 4755.70451 5535.70451 9286.70451 | 488.05707
3 | 4042.43654 6248.97248 9999.97248 | 419.45206
4 [ 4041.81349 6249.59554 9999.98963 | 419.44595
5 | 4040.92686 6250.48216 9999.99882 | 419.43887
6 | 4039.95938 6251.44964 9999.99996 | 419.43013
7 14039.03832 6253.70709 10000.00000 | 419.42287
8 201.41229 9999.99674 10000.00000 | 341.24998
9 201.41228  9999.99999 10000.00000 | 341.24997
10 | 291.41228 10000.00000 10000.00000 | 341.24997

Table 7.2: Path connecting 6° to 6°.
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£(0*) = (10, 99.99998, 10, 21.25, 199.99999)7.

usual nonlinear (highly non-convex) programs.

numerical method solved this problem in 214.0 seconds, performing 10 f-iterations
and 122 MGR-iterations. The program variables, described in Chapter 4, were set
as follows: MGRITER = 1, PERCENT = 0.0001%, e = 5 x 107%, & = 10°, and 6 = 107°.
The path connecting 8° to * = 6'° consists of the straight-line segments joining

0 to 8+, 1 = 0,...,9. These inputs appear in Table 7.2. The final solution was

A direct application of the numerical method to this problem was possible be-
cause the nonlinear program was easily transformed into a linear input optimization

model. Here we have demonstrated how input optimization can be used to solve
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7.2 A Few Words of Caution Regarding Stability

The importance of stability in input optimization is vital. One cannot use input
optimization theory to get reliable results for a problem without having information
on instability, and if so, where (in the parameter space R’) such instability occurs.
It is not obvious when looking at most problems which perturbations of the model
are stable and which lead to instability. One must actually work with a model in

order to establish this. We mention here two situations in which instability can

arise.

The first is in multi-objective programs such as a lexicographic problem. As
an cxample, we look at Case study I as a lexicographic problem. Suppose our
first objective, %, is to maximize profitability (which is the only objective in Case
study 1), and that our second, f%, is to minimize wear and tear on the machines
by minimizing the total number of yards of material produced. Then, finding an
optimal input and optimal realization of the model for the first objective function
leads to 0* = (400, 657.201, 657.201)T and f(6*) = —1231 550.039. The optimal

solution #(0*) is degenerate and not unique. We therefore add the constraint
O (=,0%) < F1(0%),
and the new objective function
f%(2,60°) = 21+ o2 + 23+ T4 + 25 + 36 + T7.

Now, we know that 21 € P=(f), where f(z,6) = f%(z,0) — f(6*) < 0. From

0=, any perturbations where @ < * are unstable since we would have f?!(z,6) > 0,

60



whereas 6 > 0" ensures stability. This is obvious from the fact that 8* is an optimal

S input for f%'(x,0). Hence one must be careful before using input optimization on
such models. Ncte that in this “lexicographic optimization”, Slater’s condition is
never satisfied!

The second example demonstrating instability is a simple nonlinear program.
Consider the program
Min T3 + Ty + x5
st. 1t+zy+23<1
-1+ a3+ 23 <1
T1 — T4 S 0
—~T1 — X372 S 0
T4 S 1
—T4 S i
32207 wSZOa 1?520
If we let 8, = x4 and 0; = xg, then we get the linear model:
i Min 25+ 6, +6,

st. zy+z;423—1<0
—-T1+ 23+ T3—-1<0
T — 02, <0
—$1—02$2S0
—$250
—$3_<__0
bel

i={oer: [ ] <0< 1]}

If 8° = (1, 1)T, then the feasible set F(f°) is a nice convex set in R3, F(0°) is

where

a square surface in the z3 = 0 plane and f(6°) = 2 (see Figure 7.1). To obtain
a better reaization of this model we let * = 6° + ad, a > 0, d = (-1, -1)7.

When a = 1, 6" = (0, 0)T, F(6*) has been reduced to a triangular surface in the
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Figure 7.1: 6° = (1, 1)T.

ry = 0 plane, F(6*) is the line segment {z : z; = z3 = 0, 0 < z; < 1} and
f(0") = 0 (see Figure 7.2). To further improve this model requires decreasing 6,
from 0 and maintaining §; at 0. But for all 8 with 8; < 0, 62 = 0, the feasible set
is simply the line segment {z, = z, =0, 0 < z3 < 1} and F(8) = {(0, 0, 0)T}
(see Figure 7.3). The feasible set did not change continuously when 8 went from
(0, 0)T to (v, 0)T, 7 < 0. For 8 = (0, 0)7, F(8) is not lower semi-continuous in a
neighbourhood of 6*. The definition of lower semi-continuity is contradicted here.
Using the notation of the definition in Chapter 2,let 4 = {z: [z—(0, 3, 1)|l2 < 55}.
Then ANF(6") = {z:2; =0, (z; — })* + (z3 - 1)* < &} but AN F(0) = 0 for
all 0 such that §; < 0, §; = 0. Thus F(0) is not lower semi-continuous at §* and

S(0°) = {0 € I1: 0 > 0}. Therefore this model is unstable at * = 0.
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Chapter 8

Conclusion

The main objective of this thesis was to explore the applicability of input optimiza-
tion to real-life situations and to formulate a numerical method for solving linear
input optimization problems. The numerical method of Chapter 4 has accomplished
this. The case studies on which it was used satisfied the conditions of the theorems

presented in Chapter 3.

Many so-called “real-life situations” do not fit the necessary mould for the
method to work. Mainly, it is not always possible to have a cubic region of sta-
bility in R?. Regions of stability, especially for large models, are typically included
in a set which has “holes” or “patches” of instability. Therefore if the method it-
crates from the current 0 along a certain direction d, it is not assured that every
point along that direction is in the region of stability. The step-size part in the
method would have to be altered to detect such “holes”. These regions of instability
also present the following possibility. If a region of instability separates a globally

optimal 0* from our current 0, it may be impossible (in a stable sense) to attain 6"
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from our current position. We may have to settle for another * which is a locally
optimal input and yields a worse realization of the model than the unattainable
6. It is possible that this “unattainable” 6° is attainable from some other °. An
opiimal input 8* is indeed very much a function of the initial input 6°. One should
also keep in mind that our marginal value formula is not valid in every region of

stab.lity.

Another modification to the method could be the choice of the path ¢ from
one @ to the next. In every example and case presented herc, ¢ was a straight-
line direction. Other possibilities include moving from one 8 to the next along a
parabola; or a combination of straight-line segments and parabola, whichever is

best depending on the current 6.

A method which employs second order input optimization results may be faster
than this one. The speed of convergence may be accelerated if some sort of quasi-
Newton method for solving input optimization problems is formulated, i.e., one
which takes into consideration the curvature of the functions involved. Uunfortu-
nately, one should keep in mind that the optimal value function f(0) is not ana-
lytically given, so it is not clear at the present time how to use here the efficient
numerical methods of non-smooth analysis (c.g., [28]). Moreover, even the second
order optimality conditions over arbitrary regions of stability are presently nonex-
istent. Finding these conditions and their numerical implementations is one of the

directions of future research.
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Appendix A

General Program for the Revised
Simplex Method

Included here is a computer program listing which performs the revised simplex
method. The implementation, terminology, and notation are that used by Chvatal
in the first seven chapters of [6]. The implemeatation was modified slightly. Chvatal
enumerates many measures for ensuring numerical accuracy of the method. These
were originally included in this program but later dropped because they slowed down
the program unnecessarily. All the problems considered in this research were too
small to warrant these efliciency measures. The program included here is tailored to
these problems. In order to be accurate in treating large models, one should include
a procedure to perforin an Fta Factorization of the basis (if By # I—the identity
matrix), i.e., determine eta matrices E,, : = 1,...,k, such that By = BoE\E, - - - E}.
One should also include a procedure to perform a triangular factorization of the

initial basis By, i.e., determine permutation matrices P,, ¢ = 1,...,m and lower
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triangular eta matrices L;, 1 =1,...,m, such that

Lum e L]P]Bo = U.

To run, the program needs as input the number of constraints m, the number of
variables n, the vectors ¢ and b, and the matrix A (all in that order). The last item
input is the letter ‘s’, ‘t’, or ‘v’, which determine the mode to be silent, testing, or
verbose respectively. In the silent mode, only the final basis, solution, and optimal
value are output. When the mode is testing, at each iteration the values of the n
decision variables are output. The verbose mode prints the value of each variable

(decision, slack, and artificial) as well as the variables leaving and entering the basis.

The simplex method called by the program i. Appendix B is essentially the same
as this one except that no mode need be specified and no output comes directly from

the simplex method (solutions are passed back to the other program).

PROGRAM SIMPLEX (INPUT,OUTPUT);

{

Performs the revised simplex method on a linear program of the form

Max (c,x) s.t. Ax<=b, x>=0

}

CONST FILE1="MILLSIM.INP’;
FILE2="MILLSIM.OUT?;

TYPE
MATRIX=ARRAY[1..30,1..40] OF REAL;
DSOL=ARRAY[1..30] OF REAL;
PSOL=ARRAY[1..40] OF REAL;
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BASES=ARRAY[1..30] OF INTEGER;
ETAPTR="ETA;
( ETA=RECORD
NUM: INTEGER;
P0S:1..30;
COLUMN :DSOL;
NEXT:ETAPTR;
PREV:ETAPTR;
END;

VAR K,M,N:INTEGER;
C:PS0OL;
B:DSOL;
A:MATRIX;
EPS1:REAL;
MODE :CHAR;
POIN,Q:ETAPTR;
OFILE:TEXT;

PROCEDURE MESSAG(MSG: INTEGER) ;

BEGIN
( WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
’ CASE MSG OF
1:WRITELN(OFILE,’===> PHASE I TERMINATED NORMALLY. ENTERING PHAS’,

'E I1.7);
2:WRITELN(OFILE,’===> ORIGINAL PROBLEM IS INFEASIBLE’);
3:WRITELN(OFILE,’===> PROBLEM IS UNBOUNDED’);

4 :BEGIN
WRITE(DFILE,’===> ENTERING PHASE I. THROUGHOUT PHASE I’);
WRITELN(OFILE,’ VARIABLES ’);

WRITELN(OFILE,’ RENUMBERED AS FOLLOWS:’);
WRITELN(OFILE); WRITELN(OFILE,
’ ARTIFICIAL VARIABLE......... X(1)?);
WRITELN(OFILE,’ DECISION VARIABLES.......... X(2) T0 X(’,
'N+1)°);
WRITE(OFILE,’ SLACK VARIABLES............. X(N+2)');
WRITELN(OFILE,’ TO X(N+M+1)’);
WRITELN(OFILE);
WRITELN(OFILE,’ DECISION VARIABLES WILL BE GIVEN THEIR OR’,
"IGINAL’);
WRITELN(OFILE,’ LABELS WHEN PHASE II IS ENTERED.’);
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END; { CASE 4 }
5:WRITE(OFILE,’===> THE ABOVE SOLUTION IS OPTIMAL’);
END; { CASE }
WRITELN(OFILE); WRITELN(OFILE);
END; { PROC MESSAG }

PROCEDURE INIT;
{ Initialize these to zero }
VAR I,J:INTEGER;

BEGIN
FOR I:=1 TD 30 DO
BEGIN
B[1]:=0.0;
FOR J:=1 TO 40 DO A[I,J]:=0.0;
END; { For i loop }
FOR J:=1 TO 40 DO C[J]:=0.0;
END; { proc init }

PROCEDURE READIN;

VAR I,J:INTEGER;
IFILE:TEXT;

BEGIN
ASSIGN(IFILE,FILE1); RESET(IFILE);
READLN(IFILE,M,N);
K:=N+M;
FOR J:=1 TO N DO READ(IFILE,C[J]);
FOR I:=1 TO M DO READ(IFILE,B[I]);
FOR I:=1 TO M DO FOR J:=1 TO N DO READ(IFILE,A[I,J]);
READLN(IFILE);
READLN(IFILE,MODE) ;
CLOSE(IFILE);

END; { proc readin }
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PROCEDURE PRINTDATA;

VAR I,J:INTEGER;

BEGIN
WRITELN(OFILE,” PROBLEM DAT A’);
WRITELN(OFILE,? ~<-==-===<<==-==c-===- ’);

WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,® NUMBER OF CONSTRAINTS:’,M:4);
WRITELN(OFILE,’ NUMBER OF VARIABLES: °’,N:4);
WRITELN(OFILE) ; WRITELN(OFILE,’ VECTOR C:’);
FOR J:=1 TO N DO WRITELN(OFILE,C[J]:15:4);
WRITELN(OFILE); WRITELN(OFILE,? VECTOR B:?);
FOR I:=1 TO M DO WRITELN(OFILE,B[I]:15:4);
WRITELN(OFILE) ;WRITELN(OFILE,’ MATRIX A:?);
WRITELN(OFILE); WRITELN(OFILE, ROW #°);
FOR I:=1 TO M DO
BEGIN
WRITE(OFILE,I:3);
FOR J:=1 TO N DO WRITE(OFILE,’ ' ,A[1,J]:7:3);
WRITELN(OFILE);
END; { for i loop }
WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
CASE MODE OF
'g’,’S’ :BEGIN
WRITELN(OFILE,’ MODE: SILENT’);
WRITELN(OFILE,’ ONLY THE FINAL BASIS, DICTIONAR’,
'Y AND’);
WRITELN(OFILE,’ COST WILL BE PRINTED');
END; { case s }
'y?,’V? :BEGIN
WRITELN(OFILE,’ MODE: VERBOSE’);

WRITELN(OFILE,’ FOR EACH PIVOT, THE ENTERING AN’,
'D LEAVING®);

WRITELN(OFILE,’ VARIABLES AND THE NEW DICTIONAR’,
’Y WILL BE’);

WRITELN(OFILE,’ PRINTED’) ;

END; { case v }
’¢?,’T? :BEGIN
WRITELN(OFILE,?® MODE: TESTING’);

WRITELN(OFILE,’ VALUES OF THE DECISION VARIABLE’,
'S WILL BE’);
WRITELN(OFILE,’ PRINTED FOR EACH ITERATION’);
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END; { case t }

- END; { case }
- WRITELN(OFILE) ; WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,’ QOUTPUT); WRITELN(OFILE,®? ~~~~~~"~=~-~ '),

END; { proc printdata }

PROCEDURE GAUSS1(VAR Y,EI,V:DSOL; POS:INTEGER);

{ This procedure solves a system of the form yE=v by substitution
where E is an eta-matrix }

VAR I:INTEGER;

BEGIN
FOR I:=1 TO M DO Y[I]:=V[I];
g FOR I:=1 TO M DO
/ IF I<>P0S THEN Y[POS]:=Y[POS]-EI[I]*Y[I];
f Y[P0S] : =Y [P0S] /EI [P0S] ;
END; { proc gaussi }

PROCEDURE GAUSS2(VAR D,EI,V:DSOL; POS:INTEGER);

{ This procedure solves a system of the form Ed=v by substitution
vhere E is an eta-matrix }

VAR I:INTEGER;
BEGIN
D[POS] :=V[POS]/EI[POS] ;
FOR I:=1 TO M DO

IF I<>P0S THEN D[I]:=V[I]-EI([I]*D[POS];
END; { proc gauss2 }

FUNCTION BASIC(INDEX:INTEGER; VAR BASIS:BASES) :BOOLEAN;

{ returns true if x(index) is basic }

VAR I:INTEGER; BAS:BOOLEAN;

-



BEGIN
é;n I:=1; BAS:=FALSE;

REPEAT
IF INDEX=BASIS[I] THEN BAS:=TRUE;
I:=1+41;
UNTIL BAS OR (I>M);
BASIC:=BAS;
END; { func basic }

PROCEDURE OUTPT(VAR X:PSOL; VAR BASIS:BASES; ENTER,LEAV:INTEGER);
{ produces the appropriate output depending on the value of mode }

VAR J:INTEGER;

BEGIN
CASE MODE OF
181,287

*v?,'V’ :BEGIN
WRITELN(OFILE) ; WRITELN(OFILE) ; WRITELN(OFILE) ;
WRITELN(OFILE) ;
( WRITELN(OFILE,’ ITERATION NO. ’,q".NUM:4);
- WRITELN(OFILE);
WRITELN(OFILE,> ENTERING VARIABLE:’,ENTER:4);
WRITELN(OFILE,’ LEAVING VARIABLE: ’,LEAV:4);

WRITELN(OFILE) ;
WRITELN(OFILE,” CURRENT DICTIONARY’); WRITELN(OFILE);
WRITE(OFILE,>  VARIABLE VALUE’);
WRITELN(OFILE,’ STATUS’);
FOR J:=1 TO K DO
BEGIN
IF BASIC(J,BASIS) THEN
BEGIN
WRITE(OFILE,’ X’,J:3,’ *,X[J]:18);

WRITE(OFILE, BASIC’);
WRITELN(OFILE,’ VARIABLE’);
END
ELSE BEGIN
WRITE(OFILE,® X?,J:3,° ’,X[J]:18);
WRITELN(OFILE,’ NON-BASIC VARIABLE’);
END; { if ... then ... else }
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END; { for j loop }

WRITELN(OFILE) ; WRITE(OFILE,’ ==~=-cemccremrcccccccccnx ),
WRITELN(OFILE, ’~======mecccccanmncccccncecrccanncaccn = ’,
deseocons ")

END; { case v }
’¢?,'T? :BEGIN
WRITELN(OFILE) ; WRITELN(OFILE) ; WRITELN(OFILE);
WRITELN(OFILE);
WRITELN(OFILE,® ITERATION NO.’,Q".NUM:4);
WRITELN(OFILE) ; WRITELN(OFILE,’ DECISION VARIABLES’);

WRITELN(OFILE,’  VARIABLE VALUE’);
FOR J:=1 TO N DO

WRITELN(OFILE,” X*,J:3,’ ', X[J]:18);
WRITELN(OFILE) ; WRITE(OFILE,’ -=======m-==mmemmerecme——- "
WRITELN(OFILE, ’ ==========m=m=mmmemmm;acccc e oo ),

END; { case t }
END; { case }
END; { proc outpt }

FUNCTION VALU(VAR C,X:PSOL) :REAL;
{ calculates value of objective function for current feasible vector x}

VAR VAL:REAL;
CNT:INTEGER;

BEGIN
VAL:=0.0;
FOR CNT:=1 TO K DD VAL:=VAL+X[CNT]*C[CNT];
VALU:=VAL;

END; { func valu }

PROCEDURE OPTIMAL(VAR C,X:PSOL; VAR U:DSOL; VAR BASIS:BASES;
MSG:INTEGER; PHASE1:BOOLEAN);

VAR I,J:INTEGER;
OPTVAL:REAL;

BEGIN
WRITELN(OFILE); WRITELN(OFILE);
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WRITELN(OFILE,’ PRIMAL SOLUTION (BASIC AND NON-BASIC VARIABLES):’);
WRITELN(OFILE) ;
FOR I:=1 TO K DO BEGIN
WRITE(OFILE,’ X’,I:3,’ ', X[11);
IF BASIC(I,BASIS) THEN WRITELN(OFILE,’ BASIC VARIABLE’)
ELSE WRITELN(OFILE,® NON-BASIC VARIABLE’);
END;
WRITELN(OFILE) ; WRITELN(OFILE);
WRITELN(OFILE,’ DUAL SOLUTION:’); WRITELN(OFILE);
FOR I:=1 TO M DO WRITELN(OFILE,’ U’,I:3,’ »,ul1l);
WRITELN(OFILE) ; WRITELN(OFILE);
OPTVAL : =VALU(C,X);
WRITELN(OFILE,’ VALUE OF OBJECTIVE FUNCTION:?,0PTVAL:18);
IF (MSG=2) OR (MSG=3) THEN
BEGIN
WRITELN(OFILE); WRITELN(OFILE); WRITELN(DOFILE);
WRITE(OFILE, *===> THE ABOVE SOLUTION IS NOT OPTIMAL;’);
WRITELN(OFILE,’ IT WAS THE CURRENT SOLUTION WHEN’);
WRITELN(OFILE,’ THE SIMPLEX METHOD WAS ABORTED.’);
END; { if msg=... }
IF MSG=5 THEN MESSAG(MSG);
END; { proc optimal }

FUNCTION ENTVAR(VAR Y,U:DSOL; VAR C:PSOL; VAR BASIS:BASES;
RULE:CHAR) : INTEGER;

{ rule g is greatest coefficient rule; rule 1 is least subscript }
{ rule; entvar determines the entering variable }

VAR SUM:REAL;
ENTER,CNT,I,J:INTEGER;

BEGIN
ENTER:=0;
IF RULE='G' THEN
BEGIN
FOR I:=1 TO K DO
BEGIN
IF NOT(BASIC(I,BASIS)) THEN
BEGIN
SUM:=0.0;
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FOR CNT:=1 TO M DO SUM:=SUM+Y[CNT]=A[CNT,I];
IF ((C[I]-SUM)>EPS1) AND (ENTER>0) THEN
IF C[I)J>C[ENTER] THEN ENTER:=I;
IF ((C[I)-SUM)>EPS1) AND (ENTER=0) THEN ENTER:=I;
IF I>N THEN U[I-N]:=-C[I]+SUM;
END
ELSE IF I>N THEN U[I-N]:=0.0;
END; { for i loop }
END; <{ if rule=g }
IF RULE=’L’ THEN
BEGIN
I:=1;
WHILE (ENTER=0) AND (I<K+1) DO
BEGIN
IF NOT(BASIC(I,BASIS)) THEN
BEGIN
SUM:=0.0;
FOR CNT:=1 TO M DO SUM:=SUM+Y[CNT]=A[CNT,I];
IF (C[I]-SUM)>EPS1 THEN ENTER:=I;
IF I>N THEN U[I-N]:=-C[I]+SUM;
END
ELSE IF I>N THEN U[I-N]:=0.0;
I:=I+1;
END; { while }
END; { if rule=l1}
ENTVAR:=ENTER;
END; { func entvar }

PROCEDURE ITERATE(VAR U:DSOL; VAR C,X:PSOL; VAR RULE:CHAR;
VAR BASIS:BASES; VAR LEAV,ENTER:INTEGER;
VAR CURVAL:REAL; VAR FINISH,PHASE1:BOOLEAN);

{ performs one iteration of the simplex method }
LABEL 10;

VAR T,O0LDVAL:REAL;
TEMPO,MSG,H,I,J:INTEGER;
SUBS:BASES;
POIN?,Q1:ETAPTR;

UNSET ,UNBDD:BOOLEAN;
D,TEMP,V,Y:DSOL;
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BEGIN
FINISH:=FALSE;

FOR J:=1 TO M DO Y[J]:=C[BASIS[J]]; { solve the system y*Bk=cB }
Q1:=Q;
WHILE Q1<>NIL DO
BEGIN
FOR J:=1 TO M DO V[J] :=Y[J];
GAUSS1(Y,Q1" .COLUMN,V,Q1".POS);
Q1:=Q1~ .PREV;
END;

ENTER:=ENTVAR(Y,U,C,BASIS,RULE); { determine entering variable }

IF¥ ENTER=0 THEN { if optimal, break out of }
BEGIN { procedure iterate }
IF NOT(PHASE1) THEN BEGIN
MSG:=5;
OPTIMAL(C,X,U,BASIS,MSG,PHASEL);
END;

FINTSH:=TRUE; GOTO 10;
END, { if enter=0 }

FOR J:=1 TO M D0 D[J):=A[J,ENTER]; { solve the system Bk*d=a }
PDINL:=POIN;
WHILE POIN1<>NIL DO
BEGIN
FOR J:=1 TO M DO V[J]:=D[J];
GAUSS2(D,POIN1~ .COLUMN,V,PCIN1~.POS);
POIN1:=POIN1~ .NEXT;
END;

T:=0.0; UNSET:=TRUE: { this section calculates largest possible t }
FOR I:=1 TO M DO
BEGIN
IF D[1]>0.0 THEN TEMP[I]:=X[BASIS[I]1]/D[I]
ELSE TEMP[I]:=1.E20;

IF ((TEMP[I]>=0.0)AND(TEMP[I]<>1.E20))AND UNSET THEN
BEGIN
T:=TEMP[I]; UNSET:=FALSE; SUBS[1]:=I; J:=1;
END; { if temp }



IF (TEMP[I]=T) AND ((I<>1) AND NOT(UNSET)) THEN
BEGIN
SUBS[J+1] :=1; J:=J+1;
END; <{ if tempst }

IF (TEMP[I]I<T) AND (TEMP(I]>=0.0) THEN
BEGIN
SUBS[1]:=I; J:=1; T:=TEMP[I];
END; { if temp>t }
END; { for i loop }

UNBDD :=TRUE ;
FOR I:=1 TO M DO
IF TEMP[I]<>1.E20 THEN UNBDD:=FALSE;

IF UNBDD THEN { i.e. problem is unbounded }
BEGIN
MSG:=3; MESSAG(MSG);
OPTIMAL(C,X,U,BASIS,MSG,PHASEL) ;
FINISH :=TRUE;
GOTO 10;
END;

now subs contains all subscripts i such that basis(i) is a candidate
for leaving. there are j such candidates. now get smallest sub-
script as leaving variable }

LEAV:=SUBS [1];
FCR H:=2 TO J DO
IF BASIS[LEAV]>BASIS[SUBS([H]] THEN LEAV:=SUBS[H];

{ now leav denotes the element of the array basis which contains the

the subscript of the leaving variable }

X[BASIS[LEAV]]):=0.0; { leaving variable becomes non-basic }
TEMPO:=BASIS[LEAV];
BASIS[LEAV] :=ENTER;
NEW(Q1); o create new eta-column }
FOR I:=1 TO M DO
BEGIN
IF I<>LEAV THEN X[BASIS[I]]:=X[BASIS[I]]-T*D[I]
ELSE X[BASIS[I]]:=T;
Q1~.COLUMN[I] :=D[I];
END; { for i loop }
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IF Q=NIL THEN
BEGIN
POIN:=Q1;
Q1 .NUM:=1;
END
ELSE BEGIN
Q1~.NUM:=Q" .NUM+1;
Q" .NEXT:=Q1;
END; { else }
Q1~ .P0S:=LEAV;
Q1~ .PREV:=Q;
Q1~ .NEXT:=NIL;
Q:=Q1;
OUTPT(X,BASIS,ENTER,TEMPO) ;

OLDVAL:=CURVAL; { if z* hasn’t changed since last iteration then }
CURVAL:=VALU(C,X); { next iteration uses least subscript rule }
IF OLDVAL=CURVAL THEN RULE:=’L’
ELSE RULE:=’G’;
10: END; { proc iterate }

PROCEDURE PH2(VAR PHASE1:BOOLEAN; VAR BASIS:BASES; VAR RULE:CHAR;
VAR X:PSOL; VAR U:DSOL; VAR CURVAL:REAL;
VAR FINISH:BOOLEAN) ;

VAR LEAV,ENTER,I,J:INTEGER;
V:DSOL;

BEGIN
IF NOT(PHASE1) THEN { phasel wasn’t necessary so initialize phasell}
BEGIN
FOR I:=1 TO M DO
BEGIN
BASIS[I]:=N+I; °{ set the initial basis }
FOR J:=N+1 TO K DO
IF J=N+I THEN A[I,J}:=1.0 {set the slack variable columns}
ELSE A[I,J]:=0.0;
END; { for i loop }
FOR I:=1 TO M DO X([N+I]:=B[I];
FOR I:=1 TO N DO X[I]:=0.0;
RULE:="G’;
CURVAL : =0.0;
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POIN:=NIL;
Q:=NIL;
REPEAT
ITERATE(U,C,X,RULE,BASIS,LEAV,ENTER,CURVAL ,FINISH,PHASEL) ;
UNTIL FINISH;
END { if not(phasel) }
ELSE BEGIN
PHASE1 : =FALSE ;
N:=N-1; { enter phIl from phI 8o eliminate the artificial }
K:=K-1; { variable and corresponding column of A }
FOR I:=1 TO M DO
BEGIN
BASIS[I]:=BASIS[I]-1;
FOR J:=1 TO K DO A[I,J]:=A[I,J+1];
END; { for i loop }
FOR J:=1 TO K DO X[J]:=X[J+1];

REPEAT
ITERATE(U,C,X,RULE,BASIS,LEAV,ENTER, CURVAL,FINISH, PHASE1) ;
UNTIL FINISH;
END; { else}
END; { proc phII }

PROCEDURE PH1;

VAR FINISH,PHASE1:BOOLEAN;
POIN1:ETAPTR;
NEG:REAL;
RULE:CHAR;
I,J,M5G,ENTER,LEAV,MOST: INTEGER;
U:DSOL;
AUXC,X:PSOL;
BASIS:BASES;

BEGIN
PHASE1:=FALSE;
NEG:=0.0;
MOST:=0;
FOR I:=1 TO M DO
IF BLI]J<NEG THEN { find "most" negative b(i); if there isn’t }
BEGIN { one then phlI is not necessary. if there }
NEG:=B[I]; { is one then artificial variable replaces }
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MOST:=I; { the corresponding slack variable }
END;
IF NEG<0.0 THEN PHASE1 :=TRUE;
IF PHASE1 THEN { i.e. phl is necessary so initialize it }
BEGIN
N:sN+1;
K:=K+1,;
FOR I:=1 TO M DO
BEGIN
FOR J:=N DOWNTO 2 DO
A[I,J):=A[I,J-1]; { make room in A for the x0 column }
A[1,1]:=-1.0; { ist column of A is for x0 }
FOR J:=N+1 TO K DO

IF J=N+I THEN
A[I,J]:=1.0 { set up identity submatrix in last }
ELSE { m columns }
A[I,J]:=0.0;

END; { for i loop }

FOR I:=1 TO M DO
IF I=MOST THEN

BEGIN
BASIS[I]:=1; { bring x0 into the basis and }
X[BASIS[I]]:=-NEG; { initialize it }
END { if i= }
ELSE BEGIN

BASIS[I]:=N+I;
X[BASIS[1]]:=B[I]-NEG;
END; { else and also for i loop }

FOR J:=1 TO K DO
IF NOT(BASIC(J,BASIS)) THEN X[J1:=0.0;

NEW(POINi); { start up the eta matrices }
POIN1".NUM:=0;

POIN1".POS:=MOST;

POIN1".PREV:=NIL;

POIN1".NEXT:=NIL;

FOR I:=1 TO M DO POIN1~.COLUMN[I]:=~1.0;
POIN:=POIN1;

Q:=POINi;

FOR J:=2 TO K DO { initialize new objective function }
AUXC[J]}:=0.0;
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AUXC[1]:=-1.0;
RULE:='G’;

IF NOT((MODE=’s’) OR (MODE=’S’)) THEN
BEGIN
MSG:=4;
MESSAG(MSG);
END;

REPEAT
ITERATE(U,AUXC,X ,RULE,BASIS,LEAV,ENTER,NEG,FINISH ,PHASE1) ;
UNTIL FINISH;

IF ABS(NEG)<EPS1 THEN
BEGIN
IF (MODE<>’s’) AND (MODE<>'S’) THEN BEGIN
MSG:=1;
MESSAG (MSG) ;
END;
PH2(PHASE1,BASIS,RULE,X,U,NEG,FINISH);
END { if neg< }
ELSE BEGIN
MSG:=2;
MESSAG(MSG);
OPTIMAL (AUXC,X,U,BASIS,MSG,PHASEL) ;
END; { else }
END { if phasel }
ELSE PH2(PHASE1,BASIS,RULE,X,U,NEG,FINISH);
END; { proc phI }

AN A AN A A A Y AN Y N A AN A Y A A A A A A A AR A A Y A A YA A A A A AN A A
CURRARAAARAANAAAARAA, M A TN P RO G R A M AUAAAAAAALLAAAAANAAAD Y
A A A A A YA S A AN AN A AR AN AN A A A AN A A A A AN AA Y YA Y A YA A Y A YA A VAV Y VAR Y YA N

BEGIN
EPS1:=1 .E-5;

ASSIGN(OFILE,FILE2); REWRITE(OFILE);
INIT;

READIN;

PRINTDATA;

PH1;

CLOSE(OFILE);
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END. { main prgm }
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Appendix B

Program for the Shenandoah
Valley Textile Mill

This program listing is from the first case study, since the program is specific to one
problem. However minor changes quickly adapt it to other similar problems. In the
code, one must change the value of P accordingly (6 € RF), as well as the expressions

for Vg(0) and a,,.

PROGRAM LIO (INPUT,OUTPUT);

{

This program determines a locally optimal input for a linear input
optimization problem by iterating from an initial theta (given) to
a locally optimal theta

}

CONST P=3; { Dimension of the parameter space. }
MGRITER=1; { MGR will perform MGRITER+2 iterations
in its search for an alpha; but only

for the first few theta-iterations. }

EPS1=1E-5; { Zero tolerance in simplex method. }
EPS2=5E-8; { Zero tolerance for gradient of g. }
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EPS3=5E-8; { Zero tolerance for the boundary of I. }

EPS4=1E-3; { Zero tolerance for intervals in MGR. }

FILE1="MILL.INP’; <{ Input file }

FILE2=’MILLB1.0UT’; { Output file }
TYPE PARM=ARRAY[1..P] OF REAL; { Vector in the parameter space. }

PSOL=ARRAY[1..40] OF REAL; { Solution vector for primal problem. }
DSOL=ARRAY[1..30] OF REAL; { Solution vector for dual problem. }
MATRIX=ARRAY[1..30,1..40] OF REAL;
BASES=ARRAY[1..30] OF INTEGER;
ETAPTR="ETA;
ETA=RECORD

NUM: INTEGER;

P0S:1..30;

COLUMN:DSOL;

NEXT :TAPTR;

PREV:ETAPTR;

END;

VAR I,ITER,.!,K,#,MSG,N,HOUR,MIN,SEC,FRAC,COUNT: INTEGER;
X,C:PSOL;
U,B,NORMAL ,SLATER:DSOL ;

A:MATRIX;
ALPHA ,ALPHABAR ,BIGGEST,F,O0LDF ,PERCENT,SUM,T,STIME,ETINE,
RUNTIME :REAL;

POIN,Q:ETAPTIR;

THETA ,DIR,GRADG,HIBD, LOBD,LOWER,UPPER:PARM;
CONTINU:BOOLEAN;

OFILE : TEXT;

PROCEDURE TIMER(VAR HOUR,MIN,SEC,FRAC:INTEGER);

TYPE REGPACK=RECORD
AX,BX,CX,DX,BP,S1,DI,DS,ES,FLAGS: INTEGER;
END;

VAR REGS:REGPACK;
BEGIN
WITH REGS DO BEGIN

AX:=$2C00;
MSDOS (REGS) ;
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HOUR : =HI(CX) ;
MIN:=LO(CX);
SEC:=HI(DX);
FRAC:=L0(DX);
END;
END; { proc timer }

PROCEDURE INIT;
{ Initialize these to zero }
VAR I,J:INTEGER;

BEGIN
FOR I:=1 TO 30 DO
BEGIN
B[1]:=0.0;
FOR J:=1 TO 40 DO A[I,J)]}:=0.0;
END; { For i loop }
FOR J:=1 TO 40 DO C[J]:=0.0;
END; { proc init }

PROCEDURE READIN;

VAR I,J:INTEGER;
IFILE:TEXT;

BEGIN
ASSIGN(IFILE,FILE1);
RESET(IFILE);

READLN(IFILE,M,N);
K:=N+M;

FOR I:=1 TO M DO READ(IFILE,NORMAL[I]); { Normal is a normalization
vector. }
FOR J:=1 TO N DO READ(IFILE,c[J]);
FOR I:=1 TO M DO BEGIN
READ(IFILE,B[I]);
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B[I]:=B[I]*NORMAL[I];
END;

FOR I:=1 TO M DO
FOR J:=s1 TO N DO
BEGIN
READ(IFILE,A[I,J));
IF A[I,J1<>0 THEN A[I,J]:=NORMAL[I]/A[1,J];

END;

FOR I:=1 TO P DO READLN(IFILE,LOBD[I],HIBD[I]);

CLOSE(IFILE);
END; { proc readin }

PROCEDURE PRINTDATA;

VAR I,J:INTEGER;

BEGIN
WRITELN(OFILE,” PROBLENMN DATA);
WRITELN(OFILE,’? ~~~~"~=-==-=s=-=ssssssss )5

WRITELN(OFILE); WRITELN(OFILE);

WRITELN(OFILE,’ Number of constraints:’,M:4);
WRITELN(OFILE,’ Number of variables: ’,N:4);

WRITELN(OFILE); WRITELN(OFILE,’ Vector c¢: ’,C[1]:12:2);
FOR J:=2 TO N DO WRITELN(OFILE,C[J]:26:2);

WRITELN(OFILE) ; WRITELN(OFILE,” Vector b: °’,B[1]:12:2);
FOR I:=2 TO M DO WRITELN(OFILE,B[1]:26:2);

WRITELN(OFILE) ;WRITELN(OFILE,’ Matrix A:’);
WRITELN(OFILE); WRITELN(OFILE, ’Row #’);
FOR I:=1 TO M DO
BEGIN
WRITE(OFILE,I:3);
FOR J:=1 TO N DO WRITE(OFILE,’ ’,A[I,J]:7:3);
WRITELN(OFILE);
END; { for i loop }
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END; { proc printdata }

PROCEDURE PRINTI;
VAR I:INTEGER;

BEGIN
WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,’ The set I is the region in which THETA can be’,
’ perturbed.’);
WRITELN(OFILE,’ The upper and lower bounds defining I in this’,
' case are’);
WRITELN(OFILE,’ as follows.’); WRITELN(OFILE); WRITELN(OFILE);
FOR I:=1 TO P DO
WRITELN(OFILE,’ ’:15,LOBD[I]:7:2,’ <= THETA(’,I:1,’) <= ?’,
HIBD[I]:7:2);
WRITELN(OFILE); WRITELN(OFILE);
END; { proc printi }

PROCEDURE CURRENT;
VAR I:INTEGER;

BEGIN
WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,’ Alpha =’ ,ALPHA:16:7);
WRITELN(OFILE); WRITELN(OFILE);
FOR I:=1 TO P DO BEGIN THETA[I]:=THETA[I]+ALPHA*DIR[I];
WRITELN(OFILE,’  THETA(’,I:i,’) =’,THETA[I]);
END;
END; { proc current }

PROCEDURE HEADING;

BEGIN
WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
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WRITELN(OFILE, > €<€<<<< << K<< <<< ITERATION NO.’,ITER:3,
3333533333553 3 333535 3 D 32D
WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
END; { proc heading }

PROCEDURE MESSAG;

BEGIN
WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);

CASE MSG OF
1:WRITELN(OFILE,’===> PROBLEM IS INFEASIBLE’);

2:WRITELN(OFILE,’===> PROBLEM IS UNBOUNDED’) ;

END; { CASE }
WRITELN(OFILE); WRITELN(OFILE);
END; { PROC MESSAG }

PROCEDURE GAUSS1(VAR Y,EI,V:DSOL; PO0S:INTEGER);

{ This procedure solves a system of the form yE=v by substitution
where E is an eta-matrix }

VAR I:INTEGER;
BEGIN
FOR I:=1 TO M DO Y([I]:=V[I];
FOR I:=1 TO M DO
IF I<>P0S THEN Y[P0S] :=Y[POS]-EI[I]*Y[I];

Y [Pos] :=Y [Pos] /EI[POS] ;
END; { proc gaussi }

PROCEDURE GAUSS2(VAR D,EI,V:DSOL; PO0S:INTEGER);

{ This procedure solves a system of the form Ed=v by substitution
where E is an eta-matrix }

VAR I:INTEGER;

BEGIN
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D[P0S] :=V[P0OS]/EI[P0S];
FOR I:=1 TO M DO
IF I<>P0OS THEN D[I]:=V[I]-EI[1]1*D[P0S];
END; { proc gauss2 }

FUNCTION BASIC(INDEX:INTEGER; VAR BASIS:BASES) :BOOLEAN;
{ returns true if x(index) is basic }

VAR I:INTEGER;
BAS :BOOLEAN;

BEGIN
I:=1; BAS:=FALSE;
REPEAT
IF INDEX=BASIS[I] THEN BAS:=TRUE;
I:=I+1;
UNTIL BAS OR (I>M);
BASIC:=BAS;
END; { func basic }

FUNCTION VALU(VAR CEE:PSOL):REAL;
{ calculates value of objective function for current feasible vector x}

VAR VAL:REAL;
CNT:INTEGER;

BEGIN
VAL:=0.0;
FOR CNT:=1 T0 K DO VAL:=VAL+X[CNT]*CEE[CNT];

VALU:=VAL;
END; { func valu }

PROCEDURE PRSOL(VAR C:PSOL);

{ Print the solvtion vectors (primal and dual) and the objective value}
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VAR I,J:INTEGER; OPTVAL:REAL;

- BEGIN
WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,’ Primal solution’);
WRITELN(OFILE);
FOR I:=1 TO N DO WRITELN(OFILE,® X?,I1:3,? ', XLI1);

WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,’ Dual solution’); WRITELN(OFILE);
FOR I:=1 TO M DO WRITELN(OFILE,’ U’,I:3,°’ ',U[I]);

WRITELN(OFILE); WRITELN(OFILE);
OPTVAL :=VALU(C);
WRITELN(OFILE,’ Value of objective function:’',0PTVAL:13:3,’$’);

IF (MSG=2) OR (MSG=3) THEN
BEGIN
WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
WRITE(OFILE,’===> THE ABOVE SOLUTION IS NOT OPTIMAL;’);
WRITELN(OFILE,’ IT WAS THE CURRENT SOLUTION WHEN’);
WRITELN(OFILE,’ THE SIMPLEX METHOD WAS ABORTED.’);
END; { if msg=... }

END; { proc optimal }

LW S

FUNCTION ENTVAR(VAR Y:DSOL; VAR BASIS:BASES;
VAR C:PSOL; RULE:CHAR) :INTEGER;

{ Rule g is greatest coefficient rule; rule 1 is least subscript }
{ rule; entvar determines the entering variable }

VAR SUM:REAL;
ENTER,CNT,I,J:INTEGER;

BEGIN
ENTER:=0;
IF RULE=’G’ THEN
BEGIN
FOR I:=1 TO K DO
BEGIN
IF NOT(BASIC(I,BASIS)) THEN
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BEGIN
SUM:=0.0;
FOR CNT:=1 TO M DO SUM:=SUM+Y[CNT]*A[CNT,I];
IF ((C[I]-SUM)>EPS1) AND (ENTER>O) THEN
IF C[I]>C[ENTER] THEN ENTER:=I;
IF ((C[I]-SUM)>EPS1) AND (ENTER=0) THEN ENTER:=I;
IF I>N THEN U[I-N] :=-C[I]+SUNM;
END
ELSE IF I>N THEN U[I-N]:=0.0;
END; { for i loop }
END; { if rule=g}
IF RULE='L’ THEN

BEGIN
I:=1;
WHILE (ENTER=0) AND (I<K+1) DO
BEGIN
IF NOT(BASIC(I,BASIS)) THEN
BEGIN
SUM:=0.0;
FOR CNT:=1 TO M DO SUM:=SUM+Y[CNT]*A[CNT,I];
IF (C[I]-SUM)>EPS1 THEN ENTER:=I;
IF I>N THEN U[I-N]:=-C[I]+SUM;
END
ELSE IF I>N THEN U[I-N]:=0.0;
I:=I+1;

END; { while }
END; { if rule=l }
ENTVAR:=ENTER;
END; { func entvar }

PROCEDURE ITERATE(VAR C:PSOL; VAR RULE:CHAR; VAR BASIS:BASES;
VAR LEAV,ENTER:INTEGER; VAR CURVAL:REAL;
VAR FINISH,PHASE1:BOOLEAN);

{ pexforms one iteration of the revised simplex method }
LABEL 10;
VAR T,0LDVAL:REAL;

TEMPO,H,I,J: INTEGER;

SUBS:BASES;
POIN1,Q1:ETAPTR;
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UNSET ,UNBDD:BOOLEAN;
-~ D,TEMP,V,Y:DSOL;

BEGIN
FINISH:=FALSE;

FOR J:=1 TO M DO Y[J):=C[BASIS[J]]; { solve the system y*Bk=cB }
Q1:=Q;
WHILE Q1<>NIL DO
BEGIN
FOR J:=1 TO M DO V[J]:=Y[J];
GAUSS1(Y,Q1~.COLUMN,V,Q1~.P0S);
Q1:=Q1~ .PREV;
END;

ENTER:=ENTVAR(Y ,BASIS,C,RULE); { determine entering variable }

IF ENTER=0 THEN { if optimal, break out of }
BEGIN { procedure iterate }
IF NOT(PHASE1) THEN
F:=VALU(C);
FINISH:=TRUE;
GOTO 10;
END; { if enter=0 }

it FOR J:=1 TO M DO D[J]:=A[J,ENTER]; { solve the system Bk*d=a }
POINi:=POIN;
WHILE POIN1<ONIL DO
BEGIN
FOR J:=1 TO M DO V[J]:=D[J];
GAUSS2(D,POIN1~.COLUMN,V,POIN1~.POS);
POIN1 :=POIN1~ .NEXT;

END;
T:=0.0; { this section calculates largest possible t }
UNSET:=TRUE;
FOR I:=1 TO M DO

BEGIN

IF D[I1]>0.0 THEN TEMP[I]:=X[BASIS[I]1/D[I]
ELSE TEMP[I]:=1E20;

IF ((TEMP[1]>=0.0)AND(TEMP[I]<>1.E20))AND UNSET THEN
BEGIN
T:=TEMP[I];
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UNSET :sFALSE;
SUBS[1]:=I; J:=1;
END; { if temp }

IF (TEMP[I]sT) AND ((I<>1) AND NOT(UNSET)) THEN
BEGIN
SUBS[J+1]) :=I;
J:=Jel;
END; { if temp=t }

IF (TEMPLI]<T) AND (TEMP[I]>=0.0) THEN
BEGIN
SUBS[1]:=I;
J:=1;
T:=TEMP[I];
END; { if temp>t }
END; { for i loop }

UNBDD :=TRUE ;
FOR I:=1 TO M DO
IF TEMP[I]<>1.E20 THEN UNBDD:=FALSE;

IF UNBDD THEN { i.e. problem is unbounded }
BEGIN
MSG:=2; MESSAG;
PRSOL(C) ;
FINISH:=TRUE;
GOTO 10;
END;

now subs contains all subscripts i such that basis(i) is a candidate
for leaving. there are j such candidates. now get smallest sub-
script as leaving variable }

LEAV:=SUBS[1];
FOR H:=2 TO J DO
IF BASIS{LEAV]>BASIS[SUBS[H]] THEN LEAV:=SUBS[H];

now leav denotes the element of the array basis which contains the
the subscript of the leaving variable }

X[BASIS[LEAV]]:=0.0; { leaving variable becomes non-basic }
TEMPO : =BASIS [LEAV] ;
BASIS [LEAV] :=ENTER;
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NEW(Q1); { create new eta-column }
FOR I:=1 TO M DO
BEGIN
IF I<O>LEAV THEN X[BASIS[I]]:=X[BASIS[I]]-T#*D[I]
ELSE X[BASIS[I]]:=T;
Q1~.COLUMN[I]:=D[I];
END; { for i loop }
IF Q=NIL THEN
BEGIN
POIN:=Q1;
Q1" .NUM:=1;
END
ELSE BEGIN
Q1" .NUM:=Q" .NUM+1;
Q” .NEXT:=Q1;
END; { else }
Q1" .P0S:=LEAV;
Qi~.PREV:=Q;
Q1~ .NEXT:=NIL;
Q:=Q1;

OLDVAL:=CURVAL; { if z* hasn’t changed since last iteration then }
CURVAL:=VALU(C); { next iteration uses least subscript rule }
IF OLDVAL=CURVAL THEN RULE:=’L’
ELSE RULE:=’G’;
10: END; { proc iterate }

PROCEDURE PH2(VAR BASIS:BASES; VAR RULE:CHAR; VAR CURVAL:REAL;
VAR FINISH,PHASE1:BOOLEAN);

{ Sets up the second phase of the simplex method }

VAR LEAV,ENTER,I,J:INTEGER;
V:DSOL;

BEGIN
IF NOT(PHASE1) THEN { phasel wasn’t necessary so initialize phaseII}
BEGIN
FOR I:=1 TO M DO
BEGIN
BASIS[I]:=N+I; { set the initial basis }
FOR J:=N+1 TO K DO
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IF J=N+I THEN A[I,J]:=1.0 {set the slack variable columns}
ELSE A[I,J]:=0.0;
END; { for i loop }
FOR I:=1 TO M DO X[N+I]:=B[I];
FOR I:=1 TO N DO X[I]:=0.0;
RULE:=’G’; CURVAL:=0.0;
POIN:=NIL; Q:=NIL;
REPEAT
ITERATE(C ,RULE,BASIS,LEAV ,ENTER,CURVAL,FINISH,PHASE1);
UNTIL FINISH;
END { if not(phasel) }
ELSE BEGIN

PHASE1 :=FALSE;
N:=N-1; { enter phII from phl so eliminate the artificial }

K:=K-1; { variable and corresponding column of A }
FOR I:=1 TO M DO
BEGIN
BASIS[I] :=BASIS[I]-1;
FOR J:=1 TO K DO A([I,J]:=A[I,J+1];
END; { for i loop }
FOR J:=1 TO K DO X[J]:=X[J+1];

REPEAT
ITERATE(C,RULE,BASIS,LEAV,ENTER, CURVAL ,FINISH,PHASE1);

UNTIL FINISH;
END; { else }
END; <{ proc phII }

PROCEDURE PH1;

{ Sets up the first phase of the revised simplex method, if necessary.}
{ If not, then calls PH2. }

VAR FINISH,PHASE1:BOOLEAN;
POIN1:ETAPTR;
NEG:REAL;
RULE:CHAR;
I,J,ENTER,LEAV,MOST:INTEGER;
BASIS:BASES;
AUXC:PSOL;
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P:DSOL;

P BEGIN
PHASE1:=FALSE; NEG:=0.0; MOST:=0;
FOR I:=1 TO M DO
IF B[I]<NEG THEN { Find "most" negative b(i); if there isn’t
BEGIN { one then phl is not necessary. If there
NEG:=B[I]; { is one then the artificial variable will
MOST:=I; { replace the corresponding slack variable
END; { in the set up of a feasible dictionary.
IF NEG<C.0 THEN PHASE1:=TRUE;
IF PHASE1 THEN { i.e. phI is necessary so initialize it
BEGIN
N:=N+1; K:=K+1;
FOR I:=1 TO M DO
BEGIN
FOR J:=N DOWNTO 2 DO
A[1,)]:=A[1,J-1]; { make room in A for the x0 column }
A[I,1]}:=-1.0; { 1st column of A is for x0 }
FOR J:=N+1 T0 K DO
IF J=N+I THEN
A[I,J]:=1.0 { set up identity submatrix in last }
ELSE { m columns }
A[I1,3]:=0.0;
END; { for i loop }

FOR I:=1 TO M DO
IF I=MOST THEN

BEGIN
BASIS[I] :=1; { bring x0 into the basis and }
X[BASIS[I]]:=-NEG; { initialize it }
END { if i= }
ELSE BEGIN

BASIS[I] :=N+I;
X[BASIS[1]]:=B[I]-NEG;
END; { else and also for i loop }

FOR J:=1 TO K DO
IF NOT(BASIC(J,BASIS)) THEN X[J]:=0.0;

NEW(POIN1); { start up the eta matrices }
POIN1~ .NUM:=0;

POIN1~.P0S:=MOST;

POIN1~ .PREV:=NIL;
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POIN1~ .NEXT:=NIL;
FOR I:=1 TO M DO POIN1~.COLUMN([I]:=-1.0;

POIN:=POIN1; Q:=POINi;

FOR J:=2 TO K DO { initialize mew objective function }
AUXC[J] :=0.0;
AUXC[1] :=-1.0;

RULE:=’G’;

REPEAT
ITERATE(AUXC,RULE,BASIS,LEAV ,ENTER ,NEG,FINISH,PHASEL) ;

URTIL FINISH;

IF ABS(NEG)<EPS1 THEN
PH2(BASIS,RULE,NEG,FINISH,PHASE1)

ELSE BEGIN
MSG:=1; MESSAG;
PRSOL (AUXC) ;

END; { else }
END { if phasel }
ELSE PH2(BASIS,RULE,NEG,FINISH,PHASE1);
END; { proc phI}

PROCEDURE CALCDG;

{ This procedure determines the gradient of g at the current theta.
The expression for GRADG[i] must be written into the code in this

procedure. }

VAR I:INTEGER;

BEGIN
GRADG[1] :=-X[61*U[8]/((7TO0+THETA[1])*(700+THETA[1]));
GRADG[2] :=-X[3]*U[13]/((1800+THETA[2] ) *(1800+THETA[2]));
GRADG[3] :=-X[6]1*U[13]/((2000+THETA [3] ) *(2000+THETA[3]));
WRITELN(OFILE); WRITELN(OFILE);

WRITELN(OFILE,” Gradient of g: °’,GRADG[1]:9:4);
FOR I:=2 TO P DO WRITELN(OFILE,GRADG[I]:28:4);
END; { proc gradg }
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FUNCTION SIGNUM(REEL:REAL):INTEGER;

BEGIN
IF REEL>0 THEN SIGNUM:=1;
IF REEL=0 THEN SIGNUM:=0;
IF REEL<O THEN SIGNUM:=-{;
END; { proc signum }

PROCEDURE MAXALPHA;

{ Determine the direction of improvement d and alpha-bar (greatest
positive alpha such that theta+alpha*d belongs to I }

VAR I:INTEGER; TEMP:PARM;

BEGIN
FOR I:=1 TO P DO BEGIN
IF DIR[I]<O THEN TEMP[1]:=LOWER[I]/DIR[I];
IF DIR[I]=0 THEN TEMP[I]:=1.0E20;
IF DIR[I]>O THEN TEMP[1]:=UPPER[I1]/DIR[I];
END;
ALPHABAR:=TEMP[1];
FOR I:=2 TO P DO
IF TEMP[I]<ALPHABAR THEN ALPHABAR:=TEMP[I];
IF ALPHABAR=1.0E20 THEN ALPHABAR:=0.0;
WRITELN(OFILE) ;
WRITELN(OFILE,’ Direction of’);
WRITELN(OFILE,® improvement d: ’,DIR[1]:11:8);
FOR I:=2 TO P DO WRITELN(OFILE,DIR[I]:32:8);
WRITELN(OFILE) ;
END; { proc dalphabr }

PROCEDURE NEWVAL(VAR ALPH1,ALPH2,Q,R:REAL; FLAG:INTEGER);
{ Given y-k and z-k from MGR, NEWVAL evaluates f at each of these, i.e.

given alphal and alpha2, it calls PHI to evaluate the optimal value
of the objective function at
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THETA + alphalixd
and
THETA + alpha2sd.

}

BEGIN
IF FLAG<>2 THEN BEGIN
A[8,6] :=NORMAL[8]/(700+THETA[1] +ALPH1#DIR[1]);
A[13,3] :=NORMAL[13]/(1800+THETA[2] +ALPH1*DIR[2]);
A[13,6] :=NORMAL[13]/(2000+THETA[3]+ALPH1*DIR([3]);
PH1;
Q:=-F;
END;
IF FLAG<>1 THEN BEGIN
A[8,6] :=NORMAL[8]/(700+THETA[1] +ALPH2*DIR[1]);
A[13,3] .=NORMAL[13]/(1800+THETA [2] +ALPH2+*DIR[2]);
A[13,2] :=NORMAL[13]/(2000+THETA [3] +ALPH2#DIR[3]);
PHY;
R:=-F;
END;
END; { proc newval }

PROCEDURE MGR;

{ Finds an alpha such that the optimal value at thetatalpha*d is better
than that at theta. As the iterations from one theta to the next are
carried out, the search in this procedure for such an alpha becomes
longer and more thorough. }

VAR FLAG,I:INTEGER; G,Q,R,V1,V2,Z1,Z2:REAL; CONTINU:BOOLEAN;

BEGIN
I:=1;
COUNT :=COUNT+1;
V1:=0; V2:=ALPHABAR;
G:=(3-SQRT(5))/2;
Z1:=Vi+G*(V2-V1);
22:=V1+V2-21;
FLAG:=3;
NEWVAL(Z1,22,Q,R,FLAG);
IF Q>R THEN Vi:=Z1
ELSE V2:=22;
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WRITELN(OFILE); WRITELN(CFILE);
WRITELN(OFILE,’ I',°Vv1?:11,°V2?:18,’ALPHA’ :19);
WRITELN(OFILE);
WRITELN(OFILE,I:4,V1,V2,ALPHA);
CONTINU:=TRUE;
WHILE CONTINU DO BEGIN
IF ((PERCENT>ZPS1) AND (I>MGRITER)) OR
((PERCENT<=EPS1) AND ((V2-V1)<EPS4)) THEN
IF ALPHA>EPS2 THEN CONTINU:=FALSE;
I:=I+1;
COUNT :=COUNT+1;
IF Q>R THEN BEGIN
Z1:=22;
Q:=R;
22:=V2-Gx(V2-V1);
FLAG:=2;
NEWVAL(Z1,Z2,Q,R,FLAG);
ALPHA :=Z2;
END
ELSE BEGIN
22:=21;
R:=Q;
Z1:=V1+G*(V2-V1);
FLAG:=1;
NEWVAL(Z1,Z2,Q,R,FLAG);
ALPHA:=Z1;
END;
IF Q>R THEN V1:=Z1
ELSE V2:=22;
WRITELN(OFILE,I:4,V1,V2,ALPHA);
END;
END; { proc mgr }

Y A A A A A A A A A YAy YA A Yy AN AN A YA AN AN A AN AR
LURARABAIRRAARUNIAAAAAY, M A TN P RO G R A M YUMUAAAAAANAAAAAAL AR
A Y YA Y A A A Y Y A A Y Y A Y A AN Y Y YA AN Y AN A AN A Y YA AA YA YA

BEGIN
CLRSCR;
PERCENT :=1;
MSG:=0;
COUNT:=0;

TIMER(HOUR,MIN,SEC,FRAC) ;
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STIME : =HOUR*3600+MIN+60+SEC+FRAC/100;

ASSIGN(OFILE,FILE2) ; REWRITE(OFILE);
INIT;

READIN;

PRINTDATA;

PRINTI;

ALPHA :=0;

FOR I:=t TO P DO DIR[I]:=0.;

THETA[1]:=0.; THETA[2]:=0.; THETA[3] :=0;

A[8,6] :=NORMAL[8]/(700+THETA[1]+ALPHA*DIR[1]);
A[13,3]:=NORMAL[13]/ (1800+THETA[2] +ALPHA*DIR[2]);
A[13,6] :=NORMAL[13]/(2000+THETA[3] +ALPHA*DIR[3]);
PHL;

ITER:=0; CONTINU:=TRUE;
WHILE CONTINU DO BEGIN
ITER:=ITER+1;
HEADING;
CURRENT;

GOTOXY(12,5);
WRITELN( *PERFORMING THETA-ITERATION NO.’,ITER:3);
GOTOXY(12,9);
WRITELN(’CURRENT THETA:’);
FOR I:=1 TO P DO BEGIN
GOTOXY (28,8+I);
WRITELN(’THETAC’,I:1,’) =’ THETA[I]:13:7);
END;

PRSOL(C) ;
ALPHA:=0;
CALCDG;
FOR I:=1 TO P DO BEGIN
LOWER[I] :=LOBD[I]-THETA[I];
IF ABS(LOWER[I])<EPS3 THEN LOWER[I]:=0;
UPPER[I] :=HIBD{I]J-THETA[I];
IF ABS(UPPER[I])<EPS3 THEN UPPER[I]:=0;
DIR[I]:=-SIGNUM(GRADG[I]);
IF ABS(GRADG[I])<EPS2 THEN DIR[I]:=0.0;
IF (DIR[I]=-1) AND (LOWER[I]>-1) THEN DIR[I]:=LOWER[I];
IF (DIR[I]= 1) AND (UPPER[I]< 1) THEN DIR[I]:=UPPER[I];
END;
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BIGGEST:=0;
FOR I:=1 TO P DO IF ABS(DIR[I])>BIGGEST THEN BIGGEST:=ABS(DIR[I]);
IF BIGGEST>EPS3 THEN BEGIN
MAXALPHA ;
OLDF:=F;
MGR;
END
ELSE CONTINU:=FALSE;
PERCENT ;= (F-0LDF) /OLDF;
END;

FOR I:=1 TO M DO BEGIN
SLATER[I] :=0;
FOR J:=1 TO N DO
SLATER[I] :=SLATER[IJ+A[T,J]*X[J];
SLATER([I] :=SLATER[I]-B[I];
WRITELN(OFILE,'P[’,I:2,’]=",SLATER[I]);
END;

TIMER (HOUR,MIN,SEC,FRAC);

ETIME : =HOUR*3600+MIN*60+SEC+FRAC/100;

RUNTIME:=ETIME-STIME;

WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE, 'NUMBER OF THETA ITERATIONS:’,ITER:4);

WRITELN(OFILE, ’NUMBER OF MGR ITERATIONS: ’,COUNT:4);

WRITELN(OFILE) ;WRITELN(OFILE, ’RUN TIME: ’,RUNTIME:10:2,’ SECONDS’);

CLOSE(OFILE) ;

END. { main program }
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