
NUMERICAL EXPERIMENTATIONS WITH

INPUT QpTIMIZATION

by Marc P. Brunet

Department of Mathematics and Statistics
McGill University, Montreal

February, 1989

A Thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

© Marc P. Brunet 1989

Acknowledgements

1 am extremely grateful to Prof essor S. Zlobec for having guided and counselled

me not only throughout my research for this thesis, but also throughout myentire

undergraduate and graduate programs. My guide and counsellor for "the way things

are done in a thesis" was my father, Professor J.P. Brunet-thank you! 1 wish to

thank Carole Nahum for her input <!) into the numerical method of Chapter 4,

namely determining the scalar a. 1 also wish to thank Diane C. Brunet, proof­

reader par t.1:cellence, for her time and effort.

On those occasions when time kept flying and 1 didn't, it was my wife, Violaine,

who encouraged me to keep at it. Je t'en remercie de tout mon cœur!

(

Abstract

This thesis demonstrates that the abstract topological and analytical notions and

results of input optimization can be successfully used in solving real-life problems

in management and engineering. In particular, we use a marginal value formula to

determine improvable stable perturbations of arbitrary parameters in mathematical

programming models of economie/engineering systems. Globally stable paths are

determincd by a new kind of feasible directions method and an optimal realization of

mathematical models is verified by recently introduced optimality conditions. The

problems used in numerical experimentations and in demonstrating input optimiza­

tion include two case studies of real companies (a textile mill and a coffee company),

a nonlinear engineering program that ocurred in a heat exchanger design problem,

and an unconstrained nonlinear optimization problem. Computer programs, used

in solving the case studies, are included in appendices.

11

--, -

Résumé

Cette thèse démontre que des notions abstraites de topologie et d'analyse et les

résultats de l"'input optimization" peuvent servir à résoudre des problèmes concrets

en génie et en gestion des ressources. En particulier, nous utilisons une formule

de valeur marginale pour indiquer les perturbations stables de paramètres arbi­

traires dans des modèles mathématiques de systèmes économiques et d'ingénierie.

Des trajets globalement stables sont déterminés par une nouvelle sorte de méthode

des directions faisables et une réalisation optimale de modèles mathématiques est

prouvée à l'aide de conditions d'optimum récemment présentées. L'étude es~ faite

de deux cas de compagnies américaines (une impliquée dans le commerce du textile

et l'autre dans la production du café), d'un problème d'optimisation non-linéaire

en génie (concernant un transfert de chaleur) et d'un problème d'optimisation non­

linéaire sans contraintes. Deux programmes informatisés, utilisés dans la solution

des cas, sont inclus en appendice.

III

(
Table of Contents

Acknowledgements ... i

Abstract ... , , , , ii

Résumé , , iii

1 Introd uction , , ... , , ,...... 1

2 General Concepts , , .. , .. 4

3 Sonle Results from Input Optimization 8

4 A N umerical Method for Linear Input Optimization ,..... 21
4.1 (;encral Method ... 21
4.2 An Adaptation for Use in the Case Studies 28

5 Case Study 1: The Shenandoah Valley Textile Mill 31

6 Case Study II: The Evangeline Coffee Company 44

(
7 The Numerical Method for Nonlinear Programming

and Questions of Stability 54
7.1 Nonlinear Programming ... 54
7.2 A Fcw Words of Caution Regarding Stability 60

8 Conclusion. .. 64

A General Program for the Revised Simplex Method ,... 66

B Program for the Shenandoah Valley Textile Mill 83

References 103

(IV

-

Chapter 1

Introduction

The main objective of this research is to explore whether and how sOllle of lIu'

abstract results from input optimization can be used in real-lire case stlldics.

In each case, we study a company's production schedule and th(' factors which

influence it (cost, quality control, technical capacities, etc.). This allows us to model

the production schedulc with a linear model. Optimizing this mod('1 (with fix('<!

parameters) gives an optimal production policy for the next tirnp period (OIH' w(·('k

or one month, depending on the case). An objective of tbis tbesis is t.o show thaf. frolll

this stage it ;q possible, in practice, to change or perturb globally œrtain paralllet(·l's

in the model in such a way as to get an even bcttcr production schcdllie (i.e., greatN

profit or lesser cost) while retaining continuity of the output. By output. wc rnean

the feasible production policies, the optimal production policies and the opt.imal

value of the problem (which is the overall cost or profit.). These p(·rturbat.ions can

lead to an "optimal realization" of the initial mode!. This is a state of the rnodd in

which the value of the objective function cannot be improvcd by feasible and st.able

1

(

(

perturbations or the parameters (aU definitions are given below in Chapter 2).

Finding a stable (i.e., output continuous) path that governs the system from

its present (initial) state to its optimal realization, is the main subject of "input

optimization," see, e.g., [4J, [19], [?Oj, l21], [22], [23], [24], [25], [26] and {27].

The originality and contribution of this thesis lies in the application of input

optimization theory to "real-lire" cases.

ln Chapters 2 and 3, wc recollect sorne basic riotions and results of input opti-

mization. Chapter 4 contain:. a description of the numerical optimization method

IIsed to study both cases. This method is based on the resuIts of the second and

third chapl,(·rs. As weIl as the general method being described there, the particular

a<laptat.iolls to ('Mh case are mentioned.

Chapt('rs [) and 6 present two case studies adapted from [17], with the results

of the nUITwrical optimization method described in Chapter 4. Case study 1 is the

Sh(,llandoah Vall('y Textile Mill case-a fictitious name-which poses the problem

of illlproving th(' forthcoming week's profits on seven different rabrics by changing

t!w efficirllcy of thrœ differcllt stages of production. The results for several possible

situations are givell, i.e., for different assumptions regarding the company and for

variations of the numerical algorithm.

The second case study is the Evangeline Coffee Company-again, a fictitious

nallle. The original case study was an unnecessarily large problem for our purpose.

The objective hcre is to show that input optimization theory can be applied in

2

-
',r

practice, and not to present new ways uf tackling Idrge problems. This company

imports, blends and roasts green coffees (coffees that have not been roa...'lted an'

referred to as "green coffees") to produce different quality col[<.'<.' bl<.'nds. The goal is

to vary certain characteristics of the green coffees which aff<.'ct the tot.al cost of 1.11<'

blends. The results given are, again, from different initial situations.

The cases of Chapters 5 and f' translate into linear prograuulllug modcls t.o

which input optimization theory is applied. In Chapter 7, wc givp SOI11(' nOIl-lin('éu'

examples to which this theory is also well-suited. The second s('ct,ioll of Chapt.('!'

7 discusses the importance of stability in input optimizat.ion with rt'sl)('d t.o t.wo

models.

The appendices contain computer listings and cxplanations regarding tllt'ir IlS('

and implementation. Appendix A contains a iisting for pcrforming tilt' rt'vist'd silll­

plex method. It was written for use in the program listpd in Appt'ndix B. '1'1)('

latter progra!ll is the numerical algorithm dcscribcd in ChapLe/" tl whi(:h opt.il1liz,('s

a linear programming model (i.e., the optimal value functioTl wit.h ft'SP('ct. (,o st.ahl(·

perturbations of parameters).

3

(

(

Chapter 2

General Concepts

'1'11<' rf'SllIts put torth in this thesis are aIl hased on input optimization theory. We

t.h('rdolC' will givC' here the necessary definitions and preamble which introduce this

t.heory, prpsPllted in part in Chapter 3.

W<' st.udy the general model of the form

Mm fO(;/"O)
(x)

(P,O)
s.t. fi(x,O) < 0, iEP*l{1, ... ,m}

W}Wf(' ° E 1 C U" and J is a convex set. The functions P : Rn X Rf> ~ R, jE {O} U

Parc assuIIled 1.0 he continuous and convex in x, i.e., fJ(·,O) : Rn -+ R, j E {O}U'P,

is COIIV('X for ('very 0 E RP. Such a model is known as a convex model. Furthermore,

if the fUllctiollS fJ(.1',·) : Rf> ---+ R, j E {D} U P, are convex for every x E Rn, then

wC' have a hl-rOll ue.r mode/.

Wc recall that a function f : Rn ~ Ris convex if for aIl x and y in Rn and all

4

À such that 0 ::; À < 1 we have

f(~x + (1 - À)Y) ::; Àf(x) + (1- À)f(y)·

If f is differentiable thcn it is convex if, and only if

\1 f(x)(y - x) ~ f(y) - f(x)

for aIl x E Rn, y E Rn. This is known as the gradient inequality. A set S C Rn is

convex if, for aIl À such that 0 ::; À S; 1,

:r E S, y ES===} Àx + (1 - À)Y ES.

In the model (1',0), the vector 0 E RP is known as the parameter vcctor, and also

as the input in "input optimization." The vector x E Rn is the vecLor of decisioll

variables. Note that for fixed 0 E RP, (P,O) is an ordinary convcx prograrn.

With respect to the model (PJ}) and for a fixed 0, wc dcfine the following:

• F(O) = {x E Rn: f'(x,O) ::; 0, i E P} is thefeasible set.

• F(0) is the set of all optimal solutions x(0).

• j(0) = fO(x(0),0) is the optimal value of the model for a particular O.

• p= (0) = {i E P : x E: F(fi) =-==> f'(x, 0) = O} is the minmwl ind(!x sel of

active constraznts (sec Ben-Israel, Berc 'ia.l, ;j,nd Zlobcc [3], [4]).

• P(X(01») = {i E P : P(x(O*),O*) = O} is the set of active constrainLs for

(P, ()*).

5

(,

<.

• P«o) = 'P \ p=(o). This definition is introduced to simplify notation.

• P=(o) = {x E nn : fi(x,O) = 0, i E p=(On

• L «x, Uj 0) = jO{x, 0) + E,e1'«8) u.J'(x, 0) is the J'estricted Lagrangian.

• L~(x, Uj 0) = jO(x, 0) + E.e1'«80) u,P(x,O) is the restricted Lagrangian at a

fixed 0 = 0*.

In a convex program, for fixed 0 E Ir', we say that Slater's condition holds if

there exists x E Rn such that f'(x,O) < 0, for all i E P.

Note that under Slater's condition, P::(O) = 0 and therefore F=(O) = RH.

For fixed 0 E RP, P(0) is a set in Rn (possibly ernpty). We can therefore define

the mapping F : 0 -+ F(fJ) which is a point-to-set mapping. Continuity of the

output refers to continuity of the triple {F(O), F(O), j(On, so it illcludes continuity

of the mapping F. We say that a general point-to-set mapping r : Z -+ X is

continuous ai 0* E Z, in the sense of Hogan (see [15]), if it is both open and closed.

Such a mapping is c/osed at 0* E Z, if given any sequence (}k -+ 0* and xk E f(Ok)

snch that :r k -+ x*, it follows that x· E r((}.). The point-to-set mapping r is said

to be open ai O· E Zif, given any sequence Ok -+ ()*, and x* E r«(}*), there exists

il value m and a sequence {xk
} C X, such that xk E r(Ok) for each k > m and

:rk -+ x·. We say that the mapping r is open, closed, or continuous on Z if it has

the same property at every ° E Z.

GiVCIl that in (P,O}. the functions Ji, i E 'P, are continuous, it follows immedi-

6

.-.

ately that F: fJ -+ F(fJ) is closed. Therefore, for the rnapping to he continuous, we

need only verify that it is open. This is equivalent to the mapping F being lower

semi-continuous in tJ.~ sense of Berge (see [5]). The point-to-set mapping r : Z -+ X

is lower semi-contint;ous at (J* E Z if for all open sets Â buch that r«(J·) n Â i- 0,

there exists a neighbourhood N(fJ*) such that qO) n .A -:f 0 for ail ° E N(O·).

One of the distinguishing characteristics of input optimization theory is that it

requires continuity ofthe output triple {F(fJ), F(O), j((J)}. This notion of continuity

is incorporated in the definition of a "stable model," which will he given in the next

chapter. An objective function fO(x,O) in the convex model (P,O) is said to be

realistic at O· E 1 if F(O*) i- 0 and hounded.

These concepts ,"il! be used in the next chapter to formalise input optirnization

and state several of its theorems.

7

(.

Chapter 3

SOIIle Results from Input
Optimization

Input optimization is the optimization of a model rather than a particular program.

Recall the convex model (P, 0) given in Chapter 2. For a fixed vector 0 ER!, we

have the "usual" convex program (C).

(C)
s.t. Ji(x) <0, iEP={l, ... ,m}.

Optimizing the objective function with respect to the constraints yields an optimal

solution x.

The difference with input optimization is that the objective function and con-

straints are not fixed functions only of x but also of an input parameter O. For each

fixcd 0 we get an optimal solution x(IJ) (note that it now depends on IJ) and the

optimal value j(fJ) = fO(x(O),fJ). The objective of input optimization is to vary 0,

8

--

within sorne pre-determined set, so that we can arrive at a local optimal input O·.

This input 0* is such that i(O*) < j((J) for ail 0 E N(O*) n S, where Sis a set in

which perturbations of () are "stable" (to be defined shortly). The corresponding

program (P, (J*) is a locally optimal realization and j((J*) is a locally optimal value

of the modei (P, (J).

In terms of cases similar to those in Chapters 5 and 6, the input parameter ()

can correspond to technological coefficients, capacities of machines and/or people,

available resources, or any input quantity necessary to define an appropriate mat he­

matical program. Thus varying () couid mean changing the efficiency of a machine or

person, or maybe altering a certain product's characteristics. Ideally, in a pradieal

situation and in order to achieve sorne optimal set-up of the parameters, wc <lou't

want to have a drastic jump in our results or output. For example, if improving the

efficiency of a component of the model for Company X entails greater profits-great!

However, if at one point, further improvements of efficiency necessitate a jump in

production rate, we will not strive for this further improvement sinee the instant.a­

neous jump in production rate may not be possible. As an illustration wc take the

following example studied in Chapter 7.

9

Example 1

s.t. Xl + X2 + X3 - 1 :5 0
-Xl + X2 + X3 - 1 :5 0
Xl - 0lX2 < 0
-Xl - 02X2 < 0
-X2 :5 0
-X3:5 0
-1 < 01 :5 1
o < ()2 :5 1

With 0 :::: (l, 1), the point x = (0, i, 0) is optimal (actually aU X with Xl :::: X3 =

0, 0 :5 X2 < 1, are optimal). Changing 0 to 0 = (0, 0), x remains optimal and

t.he objective value function improves. If we change () to 0 = (-e, 0), e > 0, the

ob jedive value function improves but the optimal solution Îs forced to jump from a

line segment to the point (0, 0,0). This is the type of improvement one should Dot

seek if stable results (no jumps) are required.

Input optimization guards against su ch jumps in the output. Only stable per-

turbations of the input parameter are considered. We want to be able to guarantee

that perturbations in 0 result in stable, continuous changes in F(O), p(O) and j(O).

Therefore, we determine a region SeO) c J in which ~1l perturbations result in sta­

bility. AlI the results given here hold true if () is in a region of stability. The following

theol'crn (see Zlobec, Gardner and Ben-Israel [23]) simplifies the task of defining a

l'cgiOll of stabilay.

Theorem 3.1 Consider the convex model (P, 0) at 0* E J. Then the following are

cqllivalellt:

10

-

1. The point~to-set map r : 0 -+ F(0) is continuous at 0* .

2. For every realistic objective Junction JO, there exists a neighbourhood N (0*) oJ

0* such that

• F(O) ~ 0 Jor every 0 E N(O*) and

• 0 E N(O*), 0 -+ 0* =} F(O) is bounded and ail ifs limit points are in

F(O*).

3. For every realistic objective Junction f O
, there exists a neighbourhood N (0*) of

0* such that

• F(O) ~ 0 Jor every 0 E N(O*) and

• 0 E N(O*), 0 -+ 0* ==} j(O) --+ j(O*).

We now define a region of stability. We say that (P,O) with a realistic objective

fllnction f O is stable in a region Sel c R" if we have lower serni-continuity of

r : 0 -+ F(O) for 0 E S. If we can specify S = N«()*), then (P,O) is stable al. 0*.

Since lower serni-continllity of r : 0 -+ F(() irnplies continllity of r (wc alwady

know that it is closed), this definition of a region of stability includes cont.inuil.y of

the output triple {F(O), F(O), R())} by the above theorern. Wc now givc sorne hasic

regions of stability.

Theorem 3.2 Consider the convex model (P, 0) at sorne 0*. The set

M(O*) ~ {O : F(O*) c F(O)}

is a region of stability at 0* for every realistic objective Junclion.

11

(

(

This result is immediate if one considers the definition of lower semi-continuity.

Theorem 3.3 Consider the convex mode! (P,O) at sorne 0*. If the point-to-set-map

r : 0 -+ F=(O) is lower semi-continuous at 0* J then

is a region of slabihty al 0* for every realistie objective Junetion.

The notation used for the regions of stability is that introduced by Zlobec, et al.

There are regions of stability R2' R3' and Ml! hence the notation RI' However,

they are not needcd for our purpose. For a Hst of regions of stability sec [16], [24],

and [26]. Theorem 3.3 was proved by Semple and Zlobec in [20]. The following

corollary can be round in [23]; the lemma that follows (a necessary condition for

)ower scmi-continuity of the mapping F=) is borrowed from [20].

Corollat"y 3.4 Consider the convex model (P,O) at 0*. The set

is a region of stability at 0* for every rea!istic objective function.

Lemma 3.5 Consider the convex model (P,O) at some 0*. If the point-to-set map

r : 0 -+ F= (0) is Lowe1' semi-continuous at 0* then there exists a neighbourhood

N(O*) oJ O· such that

fOI' every () E N(O·).

12

-

The next three sets are al80 proved to be regions of stability.

• V(O*) ~ {O: F=(O*) C F=(O) and Ji(x, 0) ~ 0,

'Ix E F(O*), i E P=(O*) \ P=(O)}

Vi(O*) der {O: F=(C*) C F=(O) and fi(x,O) ~ 0,

'Ix E F=(O*), i E P=(O*) \ P=(O)}

~(O*) der {O: F=(O*) = F=(O) and f'(x,O) ~ 0,

'Ix E F=(O*), i E P=(O*) \ P=(O)}

It was shown by Zlobec and Ben-Israel in [22] that perturbations inside V(O*) arc

stable. The regions Vt(O*) and "3(0*) were presented by Semple and Zlobcc in (19).

We now give an example of V(O*).

Example 2

Wesee that

and

The optimal value is

s.t. JI = Xl + X2 - 1 ~ 0
J2 = -Xl + X2 - 1 ~ 0
J3 = Xl - OX2 < 0
J4 = -Xl - OX2 < 0
J5 = -X2 ~ 0

{

{3, 4, 5} if 0 < 0
P=(O) = {3,4} if (J = 0

o if 0> 0

{

Xl = 0, X2 = 0 if 0 < 0
F=(O) = Xl = 0 if 0 = 0

112 if ° > o.

- {O if 0 < 0
f(O) = -1 if 0 > 0

13

(

{

and the optimal solution is

_((}) _ { (0, 0) if () < 0
x - (0, 1) if 0 2: o.

At 0* = 0, the set V((}*) is

V((}*) = {O : () ~ O}.

The following is a necessary condition for stability. It was flrst stated by Sem-

pie and Zlobec in [20] but Huang, in {16], showed that the assumption on path

connededness is unnecessary. It is stated here in its latest form.

Theorem 3.6 Consider the convex model (P, 0) at some 0* E 1. Let S be a region

of stability at o· for every realistic objective function at ()*. Then there exists a

neighbourhood N(O·) of 0* such that

for cve1'y 0 E N(O*) n s.

The numerical method used in the case studies finds a path connecting an initial

0° to an optimal 0* by iteration-the method for some special cases is described

in detail in the next chapter. Let us observe that the optimal input 0* generally

depend8 on the choice of the initial input 0°. For example, suppose we have the

following:

14

-

Example 3

s.t. fI = -x - 1 ~ 0
f2 = x -1 ~ °
f3 = (O~ - OD2x ~ 0

with J = {O: 11011 < 1}, then we find that

F«(}) = { [-1, 0] if O~ f (}~
[-1, 1] if (}~ = (}~

If our initial 0 is such that (}~ = (}~ then optimal inputs are 0* = (l, -!) and

(}* = (-l, -l), the optimal solution is X(O*) = 1 and the optimal value function is

j«(}*) = -~. If, on the other hand, our initial (} is, say, 0 = (0, -~) then the optimal

input is 0* = (0, -1) with x«(}"') = 0 and j(O"') = -1. To establish the optimality

of (}., we use this suflicient condition, adapted from [25].

Theorem 3.7 Consider the convex model (P,O) with a realistic objective function

at sorne 0* E J. Let x'" E F=(O"') and u'" E R~6·) be sorne given points, and let S(O"')

be sorne region of stability at (}"'. If there exists a non-negative vector funclion

such that U(O"') = u· and with the property that for every 0 E S(6"') the saddlc-point

inequality

L«x· u'O*) < L«x· U«(}"')'O"') < L«x U(O)'O) ." -., ,-"', ,

ho/ds for every u E R~W) and every x E F=(O) then 0'" is a locally optimal mput

with respect to S((}.) and x'" is a corresponding optimal solution, i. e., x· E jl(0'")

15

where q(O*) is the cardinality of 'P«O*) and ~(J*) is the non-negative orthant of

nq(o*).

To apply this theorem, one must therefore find such a function U. When the

program (P, 0) is non-trivial, such as in the case studies, determining this function is

no easy task. However, if Slater's condition holds then we can use the following result

from [3], abhreviated here as the BBZ condition, and the solution u will he suitable

for use as U(O) in Theorem 3.7. The BBZ condition is a complete characterization

(i.e., without assuming any constraint qualifications) of optimality of a solution x*

1.0 a convex program. Therefore, in our case, we fix 0 = O· and then use it. For

unst.able models, a complete characterization of an optimal input was obtained by

van Rooycn and Zlobec (see [21]). A model which is unstable at 0* is simply not

stable for all 0 E N(O*). A mode} which is stable at O·, as defined in Chapter 2, is

stable for aIl perturbations of 0* in a feasible neighbourhood (i.e., 0 E 1) of 0*. The

following theorem recalls the BBZ condition, where 0 is fixed at 0 = 0*.

Theorem 3.8 Conr.ider the differentiable convex program (C) and x* E F(O*).

Thcn x· is optimal if, and only if, the system be/ow is consistent:

v fO(x*) + L U J V fi(x*) E { n D;(x·)} +
'EP(x*)\ P= iEP=

u, 2: 0, i E 'P(x*) \ p=

Berc D;(x*) = {d E Rn : 3a > 0 such that f'(x* + ad) = f(x*) VO < a < a} is

known as the cone of directions of constancy and 'P(x*) = {i E P : fi(x*) = O} is

the set of active constraints at x*. Since f' in (C) is convex and, for the purposes of

16

-

--

the theorern, differentiable, then Di is a convex cone. The set M+ = {u : (u,x) >

0, Vx E M} is the polar of the set M. If Slater's condition holds, then p= = 0 a.nd

the BBZ system becomes

VfO(x*) + L ujVP(x*) = 0
'EP(x·)

which is the well-known Karush-Kuhn-Tucker condition.

A necessary condition for a locally optimal input will now be givcn. First, how-

ever, sorne definitions are needed. If S(f)*) is a region of stability at 0*, then w('

define

This corresponds to a section of the unit baIl in RP. The set B? is the set. of limit.

points of BI as 0 -+ 0*, 0 E S(O*). The following index condition is denct.cd (IN IJ)

and is also needed for the necessary condition:

(IND)

as f)k -+ 0*, Ok E S(O*). Although there are several neccssary conditions for an

optimal input for convex models, we concentrate herc only on bi-convcx modds.

Theorem 3.9 Consider the bi-convex model (P, 0) with a realist~c obj(:ctivc functwn

at f)* El. Assume that the corresponding saddle-point

{i(O*), Û,(O*) : i E P«O*)}

17

(

(

is unique and that the functions P(ii(O*),O), i E {O} U P«O*) are differentiable at

0*. Also assume that the index condition (IN D) holds at 0*, relative to v,.(O*).

If 0* is a locally optimal input with respect to Vt (0*) then

The following theorem presents a marginal value formula used in input opti­

mization. It guarantees that the numerical method iterates from Ok to OHl only if

Theorem 3.10 Consider the bi-convex model (P,O) at 0* El with a realistic objec­

tiv(: fllnclion. Suppose the corresponding saddle-point {i(0*), Ui(0*): i E P< (O*)}

is unique and t'te index conditwn (IN D) ho/ds at 0* with resput fo S = V3(0*). Also

SUppOSf' lhal f'(x,-), i E {O} UP«(}*) are differentiable functions in l':3(O*)nN(O*),

wherc N(O*) is some neighbourhood of 0*, and that Voj'(x,O*), i E {O} U P«O*)

a1'e contmuous Junctions in x at i(O*).

7'hcn for evel'y fixed palh 0 E lt3(0*), () -+ 0* such that the limit

lim
(} - 0* deC

110 _ 0*11 = i

crists, wc have

lim j(0) - j(0*) = ('\7 (0*) i)
BE V3(O·) 110 - 0'" Il g,

where

g(O) ~C L~(x(O*), u(O*)j 0).

18

---_ ----------

-
If the inner product ('\7g(O*), l) is negative, then we know j(O) < j(O*) for 0 "close"

to 0*, i.e., moving from 0* to 0 improves the model (we know we can move from O·

to 9 in a stable manner because the limit is taken inside V3 (0*)). If t.he saddle-point

{x(O*), ui(lJ"') , i E 1'«O*)} is not unique, then one can st.ill use t.he theorem. In this

case, one simply gets an approximation to the limit

by using

1
. j(O)-j(O·)
lm

OeV3(O*) 110 - 0*11

min max ('\7g(O·), f)
xeP(o*) ü(o*)

For more on this, see Zlobec [24] and Eremm and Astafiev [11].

To demonstrate the marginal value formula, consider Examplc 3 aL O· = (0, 0).

Then V(O*) = {O : Oi = On, x(O*) = 1, P«O*) = {1, 2}, u}(O·) = 0, 11 2 (0*) = 1

and

which establishes

'\1g(O·) = (0, 1)1'.

For the path 0 = O· + ad, a > 0 with d = (-1, -1) we have (as will be explaincd

in Chapter 4)

d l'
l = jjdjf = (-1, -1) .

The marginal value formula gives

('\1g(O·), l) = -1 < 0

and thus indicates a local direction of improvement of the optimal value function

f(O).

19

(

The theorems just presented are of a local nature. The results hold true for (J in

sorne neighbourhood N«(J*). However, we would like to know how far we can stray

from our current (J and still ensure stability of the model. This quantity or distance

is known as the radius of stability r. That is, we want to determine the largest r

such that for every 0 E S(fr, r) = {O : 110 - 0*11 < r}, the model is uniformly stable

in this neighbùurhood. Note that for a linear model, where the constraints are of the

Corm Ax - b::; 0, A = (a,), a'3 > 0, b = (b), b3 > 0, i = 1, ... ,m, j = 1, . .. ,n,

decreasing a,) increases the set F, thus guaranteeing stability. This amounts to the

whoJe set 1 being the region of stability M(O*) (unless sorne values of 0 E 1 lead to

infeasibiIity of the constraints), and r = minoE8rll0* - 011, where al is the boundary

of the closure of the set 1.

The basic difference between input optimization and usual mathematical pro­

gramming is that the latter ignores the present state of the system and global sta­

bility. ThereCore, the solutions obtained by input optimization and mathematical

programming (after considering z = (x, 0) as a single vector variable) do not gener­

ally coincide! For examples, see [28].

20

-

--

Chapter 4

A Nurnerical Method t'Or Linear
Input Optimization

4.1 General Method

A general description of a numerical optimization method for solving linear input

optimization problems is includeù in this section. The prohlem to which it is applied

is assumed to he of the form

(L)
Max (c,x)

s.t. Ax < b
x >0

where A E n;n'xn, b E .R:'"-', c E Ir'. The input parameter is introduccd into the

matrix A. Cases where only the vectors band c vary have been studied by others

(see for example, Gal [12J, and Guddat [13]) hence the interest here is to vary A.

21

(

Our system (L) therefore becornes the system (L,8)

(L,O)
Max (c,x)

s.t. A(8)x ~ b
x~O
Oel

which, in order to use input optimization is transformed into

Min 1° = (-c,x)

s.t. 1'= (ai(O),x)-bi 50, i=l, ... ,m'
P = -XJ 5 0, j = m' + l, ... , n
() E 1.

Here ai, z = 1, ... , m' is the i th row of the matrix A and 1 is sorne arhitrary but

fixed set in RP. This system now has the form of a convex prograrn (P,8).

The numerical method is iterative in nature, where each iteration yields a vector

Ok such that j(Ok) < j((i-1). It is assurned that any perturbation within 1 is stable

and maintains the feasibility of the constraints fi, i E 'P. This set is bounded hy

the fixed vectors L E RP and U E JlP:

1 = {O E RP : L 5 0 < U}.

Two versions of the method, differing only slightly one from the other, will he

given hel'e. The difference lies in the way of choosing a direction emanating from the

current Ok which improves the optimal value function. The path ernanating from 8k

to Ok+l is chosen to be tinear, i.e., Ok+1 = Ok + ad, a E R+, dE RP. A non-linear

path could have been chosen, however sinee the problems studied here are !inear,

it is natural to assume linearity of the path. The limit l, defined and used in the

22

.....

-

--

marginal value formula (Theorem 3.9) can therefore he expressed as

1 = Hm 0 - 0* = lim ad d
9-+8*110 - (J*II 0-0+ 1 a 1 ·lIdli = jjdjj'

The norm used is the '-00 norm, i.e., for y E RJI, 111111 = maxlSiSJI 1 Yi 1. Recrul that

the marginal value formula holds for ail norms, not only the Euclidean norme

The method starts hy fixing (Jk = f11 (k = 0) and solving (L,Ok) using tht'

revised simplex method. The solution x(Ok) and the dual solution 11(Ok) enahlc liS

to calculate Vg(Ok). By the marginal value formula, we want the inner product

(Vg(Ok), i) to he negative. This will guarantee that j(Ok+1) < j(Ok), i.e., a local

improvement of the optimal value function. The inner product, in view of the type

of path, is

1 k
jjdjf(Vg(O), d)

(the direction d is only zero if the current 0 is optimal). Ideally, we would like to

solve
Min 1I~II(Vg(Ok), d)

s.t. IIdli ~ 1
Ok + dEI

to get a "best" d. However this involves minimizing a non-linear objective function.

We therefore proceed as follows: We say that d is a direction of steepest descenl al

0* if IIdlloo = 1 and d minimizes

Hm j(0* + ad) - j(0*)
a-+O+ Ct

Le., if d is on the unit sphere in '-00 and d minimizes the directional derivative j(O*).

To determine such a direction we want to

1
. j(O* + ad) - j(O") mm lm "--'---~---'--'--"';'"

deBoo 0 0+ a

23

(.

{

where Boo = {x : IIxlloo = 1}. If the direction d that we obtain is such that the

limit as a -+ 0+ is negative then we know (V g, l) < O. If we also get d such

that IIdl/oo = 1 then 1I~II(Vg, d) = (Vg, d) and so (Vg, i) is minimal and d is a

direction of usual steepest descent. If IIdlloo < 1 then (Vg, l) is still negative but

not necessarily minimal. Either way, we know that the direction d improves the

optimal value function Î(IJ) because (Vg, i) < O. Hence we now solve

Min (Vg(IJk), d)

S.t. IIdl! ~ 1
IJk + dE J

The feasible set here is compact since both J and the unit baIl are compact. Thus,

a minimum exists for the continuou~, linear functional, due to the Weierstrass The-

orcrn. In order to find an optimal d, one can benefit from the structure of the set J.

One sim ply chooses

{

max(LI - IJ~ , -1)
d; = 0

min(VI - IJ~, 1)

if V g, (Ok) > 0
if V gl (Ok) = 0
if V9i(Ok) < 0

where L = (Li), V = (VI)' i E {l, ... ,pl are the upper and lower bounds of

the set J. If we have 1 V9i(Ok) 1< e for i E {l, ... ,pl for sorne pre-determined

e > 0, then V91(Ok) is assumed to be zero and we set dl = O. Sirnilarly, jf for sorne

i E {l, ... ,p}, dl> 0 and 1 VI - 0: 1< e' or dl < 0 and 1 L, - 07 1< e' (i.e., sorne

boundary is "close" to IJk) where e' is another pre-deterrnined positive quantity,

then we reset dl to zero. If d = 0 then the method terminates and, according to the

marginal value fromula theorem, one cannot irnprove the objective value function

locally while rernaining in J.

The second version of the numerical optimization method differs in its way of

choosing the direction d. Instead of solving a minimization problem, we simply

24

-

-,

assign

di = -sgn(Vg,(Ok)).

Again, if sorne 1 Vgi((Jk) 1< ê then we set d, = O. If Ok is located on a boundary of

1 and sorne die (here e = (1, 1, ... , l)T) points out of l, then that di is simply reset

to zero. The resulting direction dis still such that (Vg(Ok), d) < 0 (note that., here,

Ildl! = 1). If, at this point, d = 0, then only now do we solve

Min (Vg(Ok), d)

S.t. Ildl! ~ 1
Ok + dEI

If we still get d = 0 then the rnethod terminates; if not, then we normalize d and

continue iterating. Note that the second version is simpler, but we expect it to

produce siower convergence.

At this step, in both versions, we have a direction d along which](0) decreases,

at Ieast Iocally. Now cornes the question of choosing the distance we will travcl

along d in order to get OHI. That is, we now must choose a, where Ok+ 1 = Ok + ml.

To do this, we first deterrnine a, which is the greatest distance we can travel along

d and still rernain in J. Once we know a, we use the Method of Golden Rule

(MGR) to find a. This MGR is an iterative method for minimizing a rcal-vaJued

function on a closed, bounded interval [a, b] in R, provided we can evaJuatc the

function at specifie points in the interval. Our interval is [0, a] and the function iH

](a) =](Ok + ad) which is an unknown function mapping il ioto Il. Howcver wc

can evaluate j(Ok +ad) for a E [0, a]; we simply solve the linear program (L, Ok +ad)

(the difliculty here is that the optimal value function j(0) is not explicitly known,

so the usuai methods of nonsmooth analysis are not directly applicable).

25

1
!
, ,

(

(

The 'Golden' in MGR refers to the so-called "golden" proportion

3-VS
"(=

2

or, approxirnately "(= 0.3819660 The function j(ex) is evaluated at a = 0, y =

a + "(h - a), z = b - ,(h - a), and a. If j(y) < j(z) then we assign b = z and

repeat the itcration on the new interval [a, b) = [a, z). If j(y) > j(z) then we assign

a = y and rcpeat the iteration on the new interval [a, hl = [y, b). Iterations are

continued until the interval being considered has a length less than sorne e > O.

This final interval after n + 1 iterations is smaller than the interval obtained by

the Fibonacci search after n Iterations. The MGR is much simpler than Fibonacci

and yet is only marginally slower to converge. Greater detail is provided by, e.g.,

Pctrié and Zlobec in [18]. There are two different stopping rules for the MGR.

When we start iterating from ()O to (JI, to ()2, etc., it is less important that our ex he

the best on the interval [0, a) than when our ()'s a,>proach an optimal (J'". We are

thereforc not very demanding of the MGR, choosing ex after only three iterations.

However, as wc approach (J"', we are more demanding for the choice of o. Our rule

irnplemented is as follows: If the percentage of change b j«()) from (Jk-2 to (Jk-l

is greater than sorne pre-established quantity PERCENT then we perform only three

iterations of MGR to get ex on the kth iteration. If the change is less than PERCENT

theu MG Il is carried out until the interval [a, b] on which we study j(Cl) is reduced

to a lcngth of less than sorne specified amount 6 (this amount and PERCENT are

dctcrmincd bcfore cornmencing the numerical method and depend on the problem

being studicd).

If the "theta-iterations" -a theta-iteration is an iteration from ()k to ()k+l where

26

-

-

j(Ok+l) < Ï(8"); in order to determine Ole+!, we use "MGR-iterations" to establish

an a as described above--are in their early stages, then our MGR stopping rule is

three MGR-iterations. It is possible that after these three iterations, Ï(a) > j(O).

Such would be the case if j(a) decreases close to a = 0 and quickly rises Crom then

on. In these circumstances the MGR-iterations are continued until an 0 is found

with j(a) < j(O) or until there have been thirty MGR-iterations (to guard against

infinite loops).

At this stage, we have a and d, so we set OHI = Ok + ad, adjust the affeded

coefficients a,; and repeat the iteration with Ok+!. The algorithm for the first version

is now given in point forme

Aigorithm

1. Set Ok = 8°.

2. Update the matrix A = A(8k) (or, initially, specify which elements of A arc to

be perturbed).

4. Calculate V' g((}k) and determine d. If d = 0, stop-the current () is a locally

optimal input; if not, continue.

5. Calculate lX and then use MGR to find o. If

j(8k - 2) _ j(Ok-l)
- le 2 > PERCENT

1(0 -) -

27

(.

then perform only three MGR-iterations to get a. Otherwise iterate until the

interval [a,61 has length 16- a 1< 6.

6. Set OHI = Ole + ad. Repeat from Step 2.

4.2 An Adaptation for Use in the Case Studies

The program Iisted in A ppendix B performs the numerieal optimization method just

described, on Case study 1 (given later in Chapter 5). Sorne further specifications

to the method were necessary to adapt it to the situations presented by the case

studies. The program Iisted is very specifie. It was not made general because it

depends heavily on the nature of the funetions al)(O).

The input parameter 0 appears in the matrix A in our studies. However, if a

choice is possible, one must choose carefully which elements al) should depend on ()

and which should remain constant. Perturbing a partieular al} may have no effect

on the optimal value funetion whereas a small perturbation in another element al;

may result in a great improvement in the optimal value funetion. To establish whieh

elements al; are most sensitive to small perturbations, we use the marginal value

formula of Theorem 3.9. We have

n m' n m'

g(O) = - LC)x) + L:EaijÎl,x) - EÛi6i'
J=1 1=1 ;=1 1=1

If our perturbations are made along a line then we can specify

o = ()* + as

28

-

-1 i '. ' -

where IIsll = 1, a > O. Adapting the marginal value formula to this situation we

get

Let the vector s have n + (m' x n) + m' components, one corresponding to each of

Ch ai;, bi, i = 1, ... ,m', j = 1, ... , n. Then, to isolate a particular ai) in s, say,

aleh 1 ~ k ~ m', 1 < 1 ~ n, which will give us

we set all elements of s equal to zero except the one corresponding to aleh which is

set equal to one. Then it is obvious that

We will use this formula in the case studies to select the al) 's which will depcnd on

o.

The input needed by the program includes the matrix A (m' x n), the vectors

band c, the initial input parameter (fJ. which alj are functions of 0, and the set 1

determined by the input vectors Land U. If a more general type of set 1 is requin .. od,

then modifications to the method will be necessary. Our method assumes that any

perturbation within 1 is stable (this significantly simplifies our mcthod). IIcnce

the vectors Land U must be initialized in such a way that 1 is itself a rcgioi. of

stability. In Case study II, this required readjusting the initial estimatcs for Land

U, as will be described in Chapter 6. If 1 =f S(O·), i.e., if therc are parts of 1 which

are unstable, then once we determine a, it is possible that sorne a, 0 < a < Q,

be such that Ok + ad ft S(fr). In which case, the theorems and results do not

29

(
necessarily hold for this a. In sorne instances this may also imply that a particular

O· is unattainable from our current 0" due to "patches" of instability between them.

One must therefore be sure no such "holes" exist (before applying our method).

The program parameter e mentioned in the description of the rnethod, was set

cqual to 5 x 10-8 in both cases whereas e' was 5 x 10-8 in Case study 1 and 5 x 10-9

in Case study II. In both case studies, the quantities b and PERCENT were 10-3 and

0.001 % respectively.

30

-

-

Chapter 5

Case Study 1: The Shenandoall
Valley Textile Mill

The first of two cases studied is the Shenandoah Valley Textile MilP. A complete

decription of the case can be found in Naylor, et al. [17]. We give hcre a brier outlinc

of the case.

The objective of the case presented in [17] is to determinc a suitablc lincar

program which reflects the company's operations and to solve it to cstablish an

optimal production plan. Our study of the mill commences at this point. Using

input optimization, we would like to improve the efficiency of certain departrncnts

in order to get. a more profitable production plan than the original one, obtaincd by

solving the linear program.

The mill, on the recommendation of the marketing rescarch department, will

IThe company's name and operating figures were changed to maintain the anonyrnity of the
firm.

31

(

produce seven different styles of cotton cloth for the coming week. They are: one

bleached style (denotc the number of yards produced by B), four printed styles

(Pl, P2' P3, and P4) and two dyed styles, blue and red (Dl and D2). To pro duce

the finished c1oths, the mill purchases large quantities of rough, unfinished cotton

cloth and converts it into the different styles through a series of finishing operations.

If the mill functions at maximum capacity, there will be excess capacity in several of

the finishi ng operations. Hence, only restrictive operations need be considered. They

are: singeing, desizing, kier-boiling, bleaching, drying. mercerizing, printing, aging,

dyeing (blue or rcd), starching, and calendering. There are two types of constraints

for this mill. The first type is the pro cess restraints. They are determined by

the production rates for each of the seven styles for each of the eleven restrictive

operations and by the maximum number of process-hours that will be available next

week for the rcstiÏctive operations. The rates and maximum number of pro cess­

hours are given in Tables 5.1 and 5.? The coefficients ofthe process restraints are

expressed in hours per yard; hence, tu get the coefficients for the matrix A, we must

use the reciprocals of the values in Table 5.1.

The other constraints are imposed by contract demands and estimated sales. The

company is committed by contract to supply a garment factory with 5000 yards of

each of the printed styles. The sales department has estimated that the maximum

possible sales for the third and fourth printed styles will be 100 000 yards and 50 000

yards l'espectively. The company should be able to sell aIl it can pro duce of the

other five styles. The revenue from each yard of each style is outlined in Table 5.3.

The linear program which reflects this system is given in Table 5.4 (coefficients

32

-

-

STYLES

PROCESS B Pl P2 P3 p .. Dl D2

Singeing 9000 6000 9000 7000 8000 9000 8000
Desizing 13000 10000 9000 11 000 8000 13000 12000
Kier Boiling 1500 900 1000 800 900 1300 1200
Bleaching 1000 1100 1050 1100 1100 1100 1200
Drying 13000 10000 10000 12000 11 000 11000 12000
Mercerizing 800 550 600 650 700 700 800
Printing - 300 300 200 250 - -
Aging - 5000 4000 4000 6000 - -
Dyeing - - - - - - --

(blue) - - - - - 4000 -

(red) - - - - - - 3500
Starching 2000 1800 1800 1600 1500 2000 1500
Calendering 4000 5000 3000 2500 4000 3200 3500

Table 5.1: Production rates in yards per hour. Source: Naylor, ct al., [17].

in the matrix A are rounded only in this table, not when calculations are carried

out).

Using the revised simplex method (the program listing is included in Appcndix

A), the optimal production plan for the coming week for this initial set-up ap­

pears in Table 5.5. The optimal value is -1022380.000$ (recall that we're minimiz­

ing (-c, x)). The dual solution is Us = 0.336, Ul3 = 0.144, U15 = 0.200, 1119 =

0.100, U20 = 0.290, U, = 0, i = 1, ... ,7,9,10,11,12,14,16,17,18.

We now would like to introduce an input parameter. We must decide which

elements a" should be perturbed. Using the formula

33

(~
OPERATION CAPACITY

Singeing 150
Desizing 150
Kier Boiling 900
Blea.ching 1500
Drying 140
Mercerizing

(bleached) 830
(printed) 830
(dyed) 830

Printing 1800
Aging 150
Dyeing

(bIue) 150
(red) 140

Starching 500
Calendering 450

Table 5.2: Maximum Number Of Process Hours Available. Source: Naylor, et al.,
[17].

STYLE REVENUE PER YARD

B 0.40$
Pl 0.60
P2 0.80
P3 1.00
P4 1.25
Dl 1.20
D2 1.30

Table 5.3: Revenue from each style. Source: Naylor, et al., [17] p.184.

(34

,! ~,
~

-

Maz O.40B + 0.60PI + O.80P, + l.OOPa + 1. 25P4 + 1.20Dl + 1.30D,

•. t. l.IB + 1.7PI + 1.1P, + 1.4Pa + 1.2P4 + 1.1 Dl + 1.2D2
T.TB + IO.OPI + ll.1P, + 9.IPa + 12.5P4 + 7.7D l + 8.3D2
6.TB + tl.IPI + IO.OP, + l2.5Pa + tl.lP4 + 7.7Dt + 8.3D2

lO.OB + 9.1 PI + 9.5P, + 9.IPa + 9.lP4 + 9.lDI + 8.3D2
T.7B + 10.OPI + IO.OP, + 8.3Pa + 9.lP4 + 9.JDt + 8.3D2

l.2B
1.8P1 + 1.7P, + 1.5Pa + 1.4P4

lAD I + 1.2D2

3.3Pl + 3.3P2 + 5.0Pa + 4.0P"
2.0PI + 2.5P, + 2.5Pa + 1.7P4

2.SD1

2.9D2
5.0B + 5.6P1 + 5.6P1 + 6.3Pa + 6.7P4 + S.ODt + 6.7D2
2.5B + 2.0PI + 3.3P, + 4.0Pa + 2.5P4 + 3.JD1 + 2.9D2

-l.OPt
-1.0P2

-1.0Pa
-1.OP4

1.0Pa
1.0P4

B~O, Dl ~O, D2~ 0

Table 5.4: Linear program refleding the initial set-up of the mill. Source: Naylor,
et a!., [17], p.185

STYLE QUANTITY

(YARDS)

B 0
Pl 5000
P2 199600
P3 100000
p .. 50000
Dl 581000
D2 0

Table 5.5: Optimal production schedule for the initial set-up of the mill.

35

< 1500000
:5 15000000

:5 9000000

:5 15000000

:5 14000000

:5 830000
< 830000

:5 830000
< 1 800000
< 1 fiOO 000

:5 1 fiOO OO()
< 1 400000
< 5 000 OO()
< 4 fl()O ()()()

< -5 ()()()

< -5 ()OO
< -500()
< -5000
< 100 ()()()

< 5000()

(

we determine that perturbing the coefficients a86, aI3,3, and a13,6 will affect the

optimal value function. These correspond to the number of yards of Dl produced

by the mereerizing operation and the starching operation and the number of y:vds of

Pl produced by the starching operation. The dependance of the three technological

coefficients on 0 will be as follows:

111
a86 = 700 + O.' a13,3 = 1 800 + O

2
' al3,6 = 2 -00-0-+-0-

3
•

Now we must define the set J in which 0 can be perturbed. In a real-life setting, the

management would be able to define it by considering the possible improvements in

the efficiency of the operations involved. For example, the possible improvement as

a result of the replacement of a particular machine with a newer, more efficient one.

In this study we will estimate reasonable values which define J. We will set

[
400 1 U= 700

1000

i.e., we wiJl consider improvements of an extra 400 yards per hour in the mercerizing

of dyed style one, and so on with the other two. Our objective is to find a 0* E 1

which is an optimal input. Ali perturbations within J are stable sinee the point

x = (1, 5001, 5001, 5001, 5001, 1, 1) satisfies Slater's condition for aIl 0 E J. The

marginal value formula theorem can be used in this case because:

• The model is bi-convex, with a realistic objective function (at every 0* E I) .

• The saddle-point {x(O*),ù,(O*), i E P«O*)} is not necessarily unique, but as

noted in Chapter 3, this condition can be relaxed (we are not really aiming at

the locally fastest improvement).

36

.....

--

-

k IJt IJ~ IJ~ f(9k)

1 0.000000 0.000000 0.000000 -1022380.000
2 341.640786 341.640786 341.640786 -1172990.927
3 391.485505 391.485505 391.485505 -1187869.340
4 398.757752 398.757752 398.757752 -1189929.191
5 399.818758 399.818758 399.818758 -1190227.485
6 399.973557 400.672860 400.672860 -1190432.182
7 399.996142 401.526962 401.526962 -1190630.231
8 399.999437 402.381064 402.381064 -1190827.322
9 399.999918 403.235166 403.235166 -1191024.282
10 399.999988 404.089268 404.089268 -1191221.232
11 399.999998 404.943370 404.943370 -1191418.190
12 400.000000 405.791472 405.791472 -1]91615.157
13 400.000000 406.651574 406.651574 -1191812.133
14 400.000000 657.201041 657.201041 -1231550.039

Table 5.6: Path connecting (Jo to (J*.

• The index condition (IN D) holds since P< (0) = 'P for aIl 0 E J.

• The whole region 1 is stable sinee Slater's condition holds (in x) throughout

1.

• AlI functions fi, i E 'P are continuously differentiable with respect to 0, for

(J El.

The initial input is 0° = (0, 0, of. The algorithm described in the previoll8

chapter was applied to this modeJ. A complete listing of the program uscd appcars

in Appendix B. The variable MGRITER was set so that the Method of Golden Rule

only iterates three times in order to choose a, but this maximum only applies if

the change in Î(0) is greater than 10-3 %. The results of the program appear in

Table 5.6. The program was run using Turbo-Pascal 3.0 on an IBM compatible and

37

(~

(

STYLE QUANTITY
(YARDS)

B 0.00
Pl 5000.00
P2 181403.46
P3 5000.00
P4 50000.00
Dl 600000.00
D2 227636.36

Table 5.7: Optimal production plan corresponding ta an optimal input ()*.

the run time was approximately 77.4 seconds. The optimal input for this linear

mode) is 0* = (400, 657.201, 657.201)T and we have j(()*) = -1231550.039$, an

improvemcnt of 20.5% over the initial set-up with Oo! The corresponding optimal

production rate is given in Table 5.7. The corresponding dual optimal solution is

U3 == 0.0800, Us = 0.5067, U11 = 0.0496, U15 = 0.2889, U20 = 0.3611, Ui = 0, i =

1,2,4,5,6, 7,9,10, 12,13,14,16,17,18,19.

The numerical optimization method used to compute these values only termi-

nates if no further improvement from the current () is possible, i.e., only if the current

o is a]oca]]y optimal input. Renee the ()* given above is a locally optimal input. We

would, howcver, like ta verify this optimality (i.e., that (L, ()*) with ()* given above,

is an optimal realization of the model) and ascertain that the program terminated

properly. To do this, we can apply Theorem 3.7 and find a suitable non-negative

vector function U(0). Note that for this case, P= = 0, since Slater's condition holds

for aIl () Eland that P(i(O*)) = {3,8,U, 15, 17,20, 21}. The set 1 corresponds to

the region of stability W(O*)j hence, as affirmed in [19], there exists a continuous

38

-
.....

non-negative vector function. We first solve the BBZ system (this is equivalent to

the Karush-Kuhn-Tucker condition since 1'= = 0) which yields U3 = 0.0800, Us =

0.5067, UI5 = 0.2889, UI7 = 0, U20 = 0.3611, U:ll = 0.1333, Ui = 0, i E 1'\ P(x(O*»)

and

202.67
Ull = 0.2338 - 700 + 8

1
•

Letting U,,«(J) = u", k E P(x«(J*)), we get the necessary vector function. The left~

hand inequality of the saddle-point inequality is easily satisfied with this U(O). The

right-hand inequality becomes

-1231550.039::; -1507913.7 + 3~~~~~~0

which is true for aIl (J E J. This proves that (J* is indeed a locally optimal input.

From the marginal value formula, we can derive

ôi _
ôb

i
= Ui·

Therefore, our expression Ull «(J) indicates how j varies with changes in b11 •

To experiment with the computer program and the algorithm, the program in

Appendix B was run several times in different versions. For each version wc not.ed

the optimal input (J*, the optimal value j(O*), the number of O~iterations, the total

number of MGR~iterations, and the run-time for the computer prograrn. Each vef-

sion yielded the same x«(J·) and i((J*), but different optimal inputs O·! The firai. type

of variation was a change in (/J. The program was run with 00 = (1.50, 25,400f

and with 00 = (50, 400, 800)T. When the initial input was fi' = (150, 2.5, 400)1', the

resuIts were (J. = (400, 331.9666, 706.9666f, 14 (} iterations, 39 MGR-itcrationa

39

(,

(

and a run-time of 114.1 seconds. With fil = (50,400, 800)T, we obtained (J* =
(400, 570.8204, 970.8204)T, 10 O-iterations, 53 MGR-iterations and a run-time of

112.8 seconds. Although these optimal inputs differ greatly, the corresponding op­

timal solutions are the same! This rneans that vastly different production rates for

the starching operation have the sarne effect on the optimal production plan! So

our three initial f?'s yield three different optimal realizations of the same model,

but with the same optimal value. The optimal value function je (J) was evalu­

ated at 40 different points on the line joining (}*1 = (400, 657.2010, 657.201O)T and

0.2
= (400, 570.8204, 970.8204)T and at each point the optimal value was the same,

i.e., -1231550.039$.

Another variation in the program is ehanging the program parameter MGRITER

whieh indicates the maximum number of MGR-iterations to be performed if the

change in j(0) was greater than 0.001%. In the program, MGRITER is set to two

less than the maximum number of iterations desired, Le., if we want only three

MGR-iterations performed, then we set MGRITER = 1. The program was run for

MGRITER = 1,6,11,16, and 21. Each time the program was run, the initial input

was 0° = 0, the optimal value was j(O*) = -1231550.039$, and 0* was sueh that

0i = 400 and 0; = 0i and the optimal solution x(O*) was the same. The results

appear in Table 5.8. These five runs were repeated with the alternate method for

choosing d, described in the previous chapter. The results of these runs are given in

Table 5.9. It appears that the original method for choosing dis faster. This makes

sense sinee at each O-iteration, d is chosen by solving a linear prograrn, hence it is

optImal and indicates a sort of steepest descent direction. The alternate version (as

40

-

NUMBER OF NUMBER OF RUN-TIME
MGRlTER ~ O-ITERATIONS MGR-ITERATIONS (SECONDS)

1 657.2010 14 39 77.4
6 589.2992 8 56 93.1
11 584.3077 6 65 104.1
16 578.9910 5 72 113.9
21 578.9905 4 69 110.2

Table 5.8: Results of the numerical method for different values of MGRITER.

NUMBER OF NUMBER OF RUN-TIME

MGRlTER O· 3 O-ITERATIONS MGR-ITERATIONS (SECONDS)

1 578.1332 14 65 122.1
6 578.1332 9 69 119.9
11 578.1332 7 73 122.3
16 578.1332 5 82 131.3
21 578.1332 4 74 119.1

Table 5.9: Results of the numerical method (using the alternate method for choosing
d) for different values of MGRITER.

41

(.

noted earlier) chooses d according to a simplistic rule which yields only a feasible

direction of descent, not necessarily the oost one. It also seems, at least for this

case, that a small value for MGRlTER is better than a large one. This means that

it is not necessary to obtain an optimal a to determine the next O. One therefore

should seek the best direction for decreasing i(O) and then not be too demanding of

the dil,tance travelled along that direction. This seems to be true for this particular

case and for all but the last few iterations.

To further experiment with the numerical method, we altered the model for this

case and ran the program again. For this new model we chose new coefficients to

perturb and a new set J. The coefficients aft'ected now are a86, aS7, a13,4 and a13,5'

They become

111 1
aS6 = 700 + 0

1
' aS7 = 800 + (}2' a13,4 = 1 600 + 0

3
' a13,5 = 1 500 + 0

4

and we define J by

[

550] 300
U = 400 .

475

The program was run three times with this set-up. Each time, we had MGRITER = 1,

j(O*) = -1121799.578$, and the same solution x(O*) (given in Table 5.10). With an

initial input of fil = 0, the optimal input was 0* = (391.4855, 49.8447, 400, 475)T.

With fil = (125, 40, 210, 180)T, we obtained 0* = (287.2794, 202.2794, 400, 475)T

and with 00 = (250, 100,10, 4ool, weobtained 0* = (432.6010, 282.6010,400, 475f.

The number of O-iterations was 18, 18, and 19 respectively. The number of MGR-

iterations was 77,77, and 80 respectively, and the run-times were 171.7, 175.6, and

132.0 seconds respect i vely.

42

STYLE QUANTITY

(YARDS)

B 0.00
Pl 5000.00
P2 5000.00
P3 100000.00
P4 50000.00 - Dl 600000.00
D2 178691.98

Table 5.10: Optimal production plan corresponding to an optimal input 0-.

43

Chapter 6

Case Study II: The Evangeline
Coffee Company

The second case study is the Evangeline Coffee Company of New Orleans, Louisiana1 •

It is based on the case of the same name which appears in Naylor, et al. [17]. The

case presented there is solved by a Iinear program where the matrix A is 36 x 36.

Performing the numerical method on this system would have taken a few hours to

run on a microcomputer. Since the prirnary objective in this thesis is to show that

numerical applications of input optimization are possible, it is felt that studying

a small subsystem is sufficient for our purposes. Therefore, sorne constraints and

variables which appear in the case by Naylor, et al., do not appear here. We present

only the aspects of the case which are needed.

This company imports, blends, and roasts green coffees (coffees which have not

bœn roasted yet) for distribution in a six-state area along the Gulf Coast. The

lThe company's name and the pertinent figures were again changed to maintain the anonymity
of the firtll.

44

-

-

CAFÉ D'ELITE PLANTATION

Strength ~ 8.0 Strength :::; 7.0
Acidity ~ 3.5 Acidity :::; 4.0
Caffeine ~ 2.8 Caffeine ~ 2.2
Hardness ~ 2.5 Hardness :::; 3.0

Table 6.1: Requirements for each blend. Adapted from Naylor, et aL, [17] p.176.

company markets two different blends of coffee under the brand names: Café d'Élite

and Plantation. The former is a high quality blend served exclusively by leading

hotels, fine restaurants, and espresso houses. The latter is a medium quality blend

with a widespread distribution in the six-state' area. These blends are crt'ated by

using five different green coffees: Santos 4's, Bourbon Santos, Rios, Victorias, and

Medellins. Seven characteristics describe each of the two blends; however, only four

are considered here: strength, acidity, caffeine, and hardness. Each green coffe<! ha..,

been assigned an index number between 0 and 10 for each characteristic to quantify

that characteristic. For example, a relative strength of 8 or 9 indicates a "very

strong" taste whereas 1 or 2 indicates a "weak" coffee. The acidity is dctcrmincd

by measuring the pH factor, and caffeine content is measured as a percentage of

weight. It has been found that these taste characteristics of different green cofrees

combine linearly when blended.

The two coffee blends have set requirements for each characteristic. These re-

quirements are outlined in Table 6.1. The company forecasts its green coffee nceds

one month in ad vance and then orders the appropriate quantities. These green

coffe es vary according to priee, quantity available, and taste characteristics, a.<; indi-

45

(

{

PRICE AVAILABLE PER.CENT

GREEN COrFEES PER. SUPPLY IN STRENGTH ACIDITY CAFFEINE HARDNESS

AVAILABLE POUND POUNDS INDEX pH CONTENT INDEX

Sa.ntos 4's $0.35 25000 6 4.0 1.8 2
Bourbon Santos 0.36 10000 6 3.9 1.6 3
Rios 0.20 75000 10 4.5 1.0 7
Victorias 0.17 5COOO 10 5.0 0.9 8
Medellins 0.44 5000 8 3.0 3.0 2

Table 6.2: Adapted from Naylor, et al., [17] p.177.

cated in Table 6.2. The demand for the coming month has been estimated at 5 000

pounds of Café d'Élite and 20000 pounds of Plantation.

We denote each variable by X,), i == 1, ... ,5, j = 1,2 which represents the

quantity of the ith green coffee used in the ph blend. There are three types of linear

restraints: demand, supply, and quality. Demand restraints have the form

L~=1 Xi) ~ D3 } .
J == 1,2

L~=1 -Xi3 ~ -D)

where D3 is the demand for the jth blend. Supply restraints are imposed by the

quantity available of each green coffee. They may be expressed as

where S, is the number of available pounds of green coffee i. The quality restraints

are derived from the values in Tables 6.1 and 6.2. They are of the form

where

5

La'kX.) ~ D)b3k , j == 1,2, k == 1,2,3,4
.=1

a.k == kth quality characteristic of the ith green coffee
DJ == demand for the jth blend
b)k == kth characteristic of the jth blend.

46

<~ Maa: - 35Xl1 - 36X21 - 2031 - 17.u - 44111
-35X12 - 3622 2032 1742 - 44~2

s.t. Xl1 + X21 + X31 + X 41 + XIII < 5000
-Xll X21 XS1 - X 41 Xu ~ -5000

X12 + X 22 + X 32 + X42 + X~2 ~ 20000
-X12 - X 22 - X32 X42 - X~2 < -20000

Xu + X l2 < 250()O
X21 + X 22 < 10 O()O

X31 + X 32 < 75000
X41 + X42 < 50000

X 51 + X62 < 5000
6Xll + 6X21 + 10X31 + lOX41 + 8Xlil < 40000
4Xl\ + 3.9X21 + 4.5X31 + 5X41 + 3X51 < 1750()

1.8Xll + 1.6X21 + X 31 + 0.9X41 + 3X5l < 14 OO()
2Xll + 3X21 + 7X 31 + 8X 41 + 2X51 < 1250()

6X 12 + 6X22 + 10X32 + 10X."2 + BX62 < 14000()
4X12 + 3.9X22 + 4.5X32 + 5X42 + 3X52 < 800(J()

1.8X12 + 1.6X22 + X 32 + 0.9X42 + 3X~2 < 44 ()(J()
2X12 + 3X22 t 7X32 + 8.\"42 + 2X52 < 60 ()(J()

Xij ~ 0

Table 6.3: Linear program for the Evangeline Coffee Company.

These 17 restraints define the feasible set in the linear program presented in Ta-

ble 6.3. The matrix A has dimension 17 x 10. In order to fit it. onto olle page,

sorne columns overlaPi however this shouldn't cause any problem in understanding

the linear program. This program was solved using the revised simplex method

computer program listed in Appendix A. The optimal value is 8502.50$. The op-

timal solution is given in Table 6.4. The dual optimal solut.ion is U2 = 75.2, ii., =

97.2, Un = 9, Ul3 = 2.1, Ul4 = 1.8333, Ul5 = 1.2667, Ù17 = 0.2667, Ù. = 0, i =

1,3,5, ... , 10, 12, 16.

At this point we would like to apply input optimization and obtain a solution

with a lesser cost. Suppose it were possible to alter a charaderist.ic of a green

coffee, by developping a hybrid plant. This would change the prograrn and thereforc

47

(

VARIABLE QUANTITY VARIABLE QUANTITY
(FOUNDS) (POUNDS)

XU 1750 Xt2 14000
X21 0 X22 0
X3\ 500 X32 4000
X41 0 X42 0
X 51 2750 X52 2000

Table 604: Optimal solution for the initial set-up.

the optimal solution. Assume it is possible to grow a new plant which produces

Santos 4'8 with any desired strength within 11.25% of the present strength, i.e.,

it is possible to get Santos 4'8 with a strength between 5.325 and 6.675. Similarly,

assume that Rios and Medellins can he made to have an acidity in the range ±8.89%

an(1 ±16.67% respectively, i.e., between 4.1 and 4.9 for Rios and between 2.5 and

3.5 fol' Mcdellins. Finally, suppose that an acidity index of less than or equal to

4.1 is acceptable for the Café d'Élite blend. Implementing these conditions means

changing all,S, a15,10, bu, ato,l, a14,6, all,3, and a15,8 to the following:

an,s = a15,10 = 3 + Ob bu = 5000(3.5 + (}2),

alO,1 = a14.6 = 6 + 03 , all,3 = a15,8 = 4.5 + (}4

wbt')'c () E J = {(} E R4 : L ~ () ~ U} and where

[

-0.500]
L = 0.000

-0.675 '
-00400

[

0.500]
U = 0.600

0.675 .
00400

If wc try to run the numerical met.hod on this set-up, we discover that for sorne IJ E J,

the constra.ints are infeasible. We therefore must rcdefine J. On doser inspection of

48

-

-.....

the constraints we deterrnine that if we redefine 1 with

[

-0.500]
L = -0.025

-0.675 '
-0.400

U _ 0.600

[

0.035]

- 0.675 '
0.100

then the point x = (2250, 1, 1, 1, 2747, 18000, 1, 1, l, 1997)T js such that P«i(O» =
{5, ... , 27} for a11 0 E 1. Hence 1 = W(O·) (O· = (0, 0,0, O)T), which is a region of

stability. Note that in this case study, for alllJ E l, 1'=(0) "# 0. Hence to use the

necessary theorems we must assure ourselves of the presence of a region of stability

such as W(O·) (in 8ase study l, Slater's condition held for aH 0 E 1, hence wc knew

the model was stable in 1).

The program for the numerical method listed in Appendix B "';1$ used to solve

Case study 1. To use it for Case study II, one must modify certain segments of the

program, in particular the lines which update a,AO), thosc which calculatc VOg(O),

and other obvious lines of source code.

The marginal value theorem can he used here hecause:

• The model is bi-convex, with a realistic objective function.

• The saddle-point {x(O·), u,(O·), i E P«O·)} is not necessarily unique but,

as mentioned before, the values we ohtain for (Vg(O), i) will approxirnate tJw

actual ones sufliciently.

• The index condition (IND) holds since 1'«0) is constant for aH 0 E 1.

• 1 = W(O·) is a region of stability. The set 1 is also equal to lt3(O·) sinee P=(O)

is constant for aIl () E J.

49

(-

{.

(

k
1
2
3
4
5

9~ 0;
0.000000 0.0000

-0.427051 0.5124
-0.499980 0.5999
-0.500000 0.5999
-0.500000 0.5999

00 0.000000
61 -0.576519
75 -0.576519
75 -0.576519
75 -0.576519

0.000000
-0.341641
-0.399984
-0.400000
-0.400000

f{IJ)
8502.500$
8116.013
8099.004
8099.000
8099.000

Table 6.5: Path connecting fIJ to 0*.

VARIABLE QUA

(PO

Xl1 45
X 21

X 31

X 41 4
X S1

NTITY

UNDS)

83.333
0.000
0.000

16.667
0.000

VARIABLE QUANTITY

(POUNDS)

X 12 15733.333
X 22 0.000
X 32 4000.000
X 42 0.000
X S2 266.667

Table 6.6: Optimal solution for (P,O*).

• AIl functions Ji, i E 'P are c ontinuously differentiable with respect to IJ.

The initial input was fIJ = (0, 0, 0, O)T. The variable MGRITER was set to 1 so

that thrce MGR-iterations would be performed at each of the first few O-iterations.

1 lU' program glves a fimte sequence {Ok} which determines the path connecting (JO

with the optimal input ()*. These Ok's are given in Table 6.5. The run-time was 54.4

seconds. The optimal input is 0* = (-0.5,0.599975, -0.576519, -O.4)T and the op­

timal value is j(O*) = 8099.00$, an improvement of 4.75%. The corresponding opti-

r,

mal solution is given in Table 6.6. The corresponding dual optimal solution is U2 =

41, il .. = 64.76, ii l3 = 3, ÙIS = 6, U11 =2.889, Ùj = 0, i = 1,3,5, ... ,12,14,16.

50

, ,
.:.:.;

-

-

The primai solution indicates that Café d'Élite should he hlended from Santos 4's

and Victorias, whereas Plantation should he blended from Santos 4 's, Rios, and

Medellins.

To verify the optimality of 0*, we use Theorem 3.7. Since the region of stability

here is W(fr), we know from [19] that if ~ is a locally optimal input l.hen there exists

a continuous non-negative vector U(fJ). We can solve the BBZ system to determine

U(O). The polar set in the system is as follows (recall that P=(O) = {l, 2, 3,4} for

ail 0 El).

{ n Di(x)}+={UERto:U1=Ui, ;=2,3,4,5, U6=Uj! j=7,8,9,1O}.
iEP"" (6)

We also have

35 + 2U13
36 + 3Ut3 - UI9

20 + 7U13 - U20

17 + 8UI3

VjO(x,o*) + L uiV ji(x,8·) =
ieP(z(6°))\P=

44 + 2UI3 - U22

35 + 4U15 + 2U17
36 + 3.9u15 + 3U17 - U2"

20 + (4.5 + O,,)Ull; + 7U17
17 + 5U15 + 8Ul7 - U26

44 + (3 + 8.)U15 + 2U17

Solving this system determines U(O) to he as follows:

U19(O) = 4, U2o(8) = 0, U22(O) = 9

9(1 + (4) 18(1 - 30,,)
U24(O) = 4 - 5(1 _ 8d' U26(8) = 5(1 - 8.)

Ui(fJ) = 0, i E P= u P \ P(x(O*»

51

(

(.

NUMBER OF NUMBER OF RUN-TIME

MGRITER 0; 6; 6-ITERATIONS MG R-ITERATIONS (SECONDS)

1 0.599975 -0.576519 5 51 54.6
6 0.592107 -0.666120 4 40 43.7
11 0.599288 -0.674199 4 45 48.2
16 0.599936 -0.674928 4 50 52.5
21 0.599994 -0.674993 3 39 41.8

Table 6.7: Results of the numerical method for different values of MGRITER.

This is a continuons function around 0*. The left-hand inequality of the saddle-

point inequality is easily satisfied with this function U(0). The right-hand inequality

becomes

809900 < 807500 + 18000 (1 + 2(4
)

- 1 - 01

which holds for ail 0 E 1. Hence 0* is a locally optimal input.

If we change the initial input so that (JO = (-0.25, -0.25, 0040, 0.05)T, then

the optimal input is found to be 0* = (-0.5, 0.599965, -0.599720, -OA)T with

j(O·) = -8099.00$ and the same optimal blend as the first time. The run-time was

virtually the same as before, being 55.2 seconds.

As with the first case study, we varied the program variable MGRITER. For values

of 1,6, Il,16, and 21 for MGRITER, the results were as outlined in Table 6.7. Note that

j(O·) = -8099.00$, 6i = -0.5. and 0: = -004 in each case and that the optimal

solution was always the same. The values in Table 6.7 indicate that, unlike Case

study l, it seems a larger value for MGRITER yields a faster run-time. The conclusions

wc cau draw regarding the value of MGRITER is that no one value is necessarily best;

52

-

-,

each case sooms to dictate which value is best for it.

53

Chapter 7

The N umerical Method for
N onlinear Programming and
Questions of Stability

7.1 Nonlinear Programming

The nurncrical method described in Chapter 4 was designed for use on linear pro-

grams. For cxample, the simplex method solves each linear program, the path from

one 0 to the next is linear, etc. One might wonder if it can be used on nonlinear

programs. Certainly the theory of input optimization holds for nonlinear prograrns

(although rnost of the results are stated for convex rnodels). It was mentioned in

Chapter 4 that the algorithm's way of determining cl and a would require modifica-

tions for regiolls of stability more complex than a cube in R!'. Very often in nonlinear

programming, the region of stability is not a simple cube. Thus we already have an

obstacle to direct application of the rnethod to nonlinear programs. However, sorne

programs favour direct application and we will show here how input optimization

54

-

and this method can be applied in the nonlinear case.

A general nonlinear programming problem has a vector variable z = (Zh z~, ... , Zn')'

Most other methods, when solving such a problem, consider each component of Z

equally. However, sorne nonlinear problems are such that redefining their vector

variable z E Rn' as Z = (x,O) where X E R", 0 E R" and n + p = n', transforms

them into linear programming models (!) with an input parameter O. For example,

we could let Xi = Zi, i == 1, ... , n and OJ == ZJ' j = n + 1, ... ,n' or sorne other corn·

bination. Both examples presented in this section are weil suited for a redefinition

of their vector variable Z into vector variables X and O. The first example is an un-

constrained optimization problem which can be solved using an adapted numcrical

method. The advantage to solving a nonlinear optimization problem using input

optirnization techniques is that one obtains in the process, a stable path connect.-

ing (JO to 0* and an optimal solution x(O"'). When solving a problem using othcr

techniques (even under ideal conditions), no indication is given as to whether it is

possible, in practice, to get from an initial point ZO = (z~, z~, ... , z~,) to an optimal

Z* = (zi, z;, ... ,z:,). Since the ex amples and cases in this work are dcrived from

real-life situations, the notion of feasibly attaining an optimal z* from an initial zO

is of importance to the people/systems involved.

The first example is adapted from one presented by Hock and Schittkowski in

[14] and originally from Colville [7]. It is an uncorrstrained minimization problcm

with the following objective function.

55

(.

(

A possible "splitting" of z into x and (J is z = (BI, x, 92 , (3). After rearranging and

grouping certain terrns, this redefines the objective function as

r(x, B) = 1l0.1x2 + (-40 - 200B: + 19.8(3)X + (1009: + B~

-2B1 + 90~ + B~ - 180B~93 + 100.IB~ - 292 - 40B3 + 42)

This problem has no constraints and the objective function is a simple quadratic

function in x, for fixed O. The numerical method of Chapter 4 is easily adapted to

this problern and solved by hand (stability considerations can be ignored here). We

define (f1 = (-3, -3, _1)T which determines

fO(x, (JO) = 1l0.lx2 -1 859.8x + 17222.1,

i(OO) ~ 8.4660 and j(f1J) = 19192. The gradient of g(9) is calculated as

[

-40001x + 4008~ + 291 - 2]
V' g(0) = 360B~ + 282 - 36082B3 - 2

19.8i - l800~ + 200.283 - 40

Notice the absence of Lagrange multipliers Uj due to the absence of constraints

in the problem. If we evaluate V g(8) at (fJ we find an optimal direction d to be

d = (l, l, IV. Examining the original function f(z) we see that it vanishes at

z = (l, l, l,IV. Choosing 0' = 2 (0' is the distance travelled along the direction

d) brillgs us doser to this point. Our new 8 is therefore 81 = (-l, -1, I)T, our

quadratic function is

fO(x, (1) = 110.lx2 - 220.2x + 118.1

and x((1
) = 1, j (01

) = 8. Evaluating V g(0) at 81 indicates d should be d :::

(1, l, O)T. We choose a = 2 and obtain 82 = (l, l, I)T. The quadratic function

becomes

f(x, (2) = 1l0.lx2 - 220.2x + 110.1

56

-

and i(02) = l, j(93) = O. Evaluating Vg(9) one more time determines d to he the

zero vector. Thus 9* = 92 and i(fJ*) = O. Our path from (/J to 8- consists of the

two straight lines joining fIJ to 81 and (JI to 0*, The program from Appendix B was

adapted to solve this method but got "stuck" iterating from one side of O· to the

other and back again (close to 0*) indefinitely. The objective function seems to have

a very small slope at 9*, and would require a method with a quadratic convergence

rate instead of linear (this is a typical behaviour of steepest descent type methods).

Hence the solution was obtained by hand.

The second example is ruso adapted from one in Rock and Schittkowski (14] and

is derived from a heat exchanger design problem. For more references regal'ding this

problem, consult Avriel and Williams [1] and Dembo [9]. The objective function is

fez) = Z4 + Zs + Z6 + Z7 + Z8 which is to he minimized subject to the conslrainls

1 - O.0025(Z4 + Z6) ;:: 0
1 - O.0025(zs + Z7 - Z4) ;:: 0
1 - 0.01(z8 - zs) ;:: 0
Z1Z6 - 833.33252z4 - 100z1 + 83333.333 ;:: 0
Z2Z7 - 1 250zs - Z2Z4 + 1 250z4 > 0
Z3ZS - 1 250 000 - Z3Z5 + 2500zs ;:: 0
100 5 Zl < 10 000
1 000 5 z, < 10 000, i = 2,3
10 5 Zj ~ 1 000, i = 4, ... ,8

57

(

(~

VARIABLE VALUE

xl 181.9289
X2 295.5600
X3 217.7137
X4 286.3692
Xs 395.5600

Table 7.1: Optimal solution with 0°.

becomes the lollowing linear model.

s.t. P(x,O) = 0.0025xI + 0.0025x3 - 1 < 0
j2(x,O) = -0.0025xI + 0.0025x2 + 0.0025x4 - 1 < 0
f3(x,0) = -0.01x2 + O.01xs - 1 ~ 0
j4(x,O) = 833.33252xl - 01X3 - 83333.333 + 10001 :::; 0
fS(x,O) = -1250Xl + 02XI + 1250x2 - 02X4 :::; 0
r(x,O) = -2500X2 + 03X2 - 03XS + 1250000 :::; 0
Ji(x,O) = -X, + 10:::; 0, i = 7, ... ,11
f'(x,O) = x, -1000 < 0, j = 12, ... ,16
OE]

where] is defined by

The gradient of g(O) is

[
100] [10 000]

L = 1 000 , and U = 10 000
1000 10000

[

(100 - X3)U4]
V g(fJ) = (Xl - X4)US

(X2 - XS)U6

The set 1 is not a region of stability. For example: if 0 = (579, 1359, 5110)T,

the corresponding program is infeasible. However with Ô = (100, 1360, 5111)T,

the model is stable for aIl Ô :::; 0 :::; U. The initial input was chosen to be (JO =

(580, 1360, 5111)T, where j(OO) = 1377.13174 and i(OO) is given in Table 7.1. The

58

-

.-.
\

k (Jk
1

(Jk
2

(Jk
3 f«(Jk)

1 580.00000 1360.00000 5111.00000 1377.13174
2 4 755.70451 5535.70451 9 286.70451 488.05707
3 4042.43654 6248.97248 9999.97248 419.45206
4 4041.81349 6249.59554 9999.98963 419.44595
5 4040.92686 6 250.48216 9999.99882 419.43887
6 4039.95938 6 251.44964 9999.99996 419.43013
7 4039.03832 6253.70709 10000.00000 419.42287
8 291.41229 9999.99674 10000.00000 341.24998
9 291.41228 9999.99999 10000.00000 341.24997

10 291.41228 10 000.00000 10 000.00000 341.24997

Table 7.2: Path connecting 00 to (J*.

numerical method solved this problem in 214.0 seconds, performing 10 (J-iterations

and 122 MGR-iterations. The program variables, described in Chapter 4, were set

as follows: MGRlTER = 1, PERCENT = 0.0001 %, e = 5 X 10-6
, e' = 10-5

, and 6 = 10-5
•

The path connecting (Jo to 0* = (JIO consists of the straight-line segments joining

BI to (J1+l, i = 0, ... ,9. These inputs appear in Table 7.2. The final solution was

x(O*) = (10, 99.99998, 10, 21.25, 199.99999f.

A direct application of the numerical method to this problem was possible bc-

cause the nonlinear program was easily transformed into a linear input optimization

model. Here we have demonstrated how input optirnization can be used to solve

usual nonlinear (highly non-convex) programs.

59

(

(

7.2 A Few Words of Caution Regarding Stability

The importance of stability in input optirnization is vital. One eannot use input

optimization theory to get reliable results for a problem without having information

on instability, and if so, where (in the parameter space RP) such instability occurs.

It is not. obvious when looking at most problems whieh perturbations of the model

are stable and whieh lead to instability. One must actually work with a model in

order to est.ablish this. We mention here two situations in which instability ean

arIse.

The first. is in multi-objective programs sueh as a lexicographie problem. As

an cxample, we look at Case study 1 as a lexicographie problem. Suppose our

firsi. objective, fOl, is to maximize profitability (which is the only objective in Case

study 1), and that our second, f0
2

, is to minimize wear and tear on the machines

by minimizing the total number of yards of material produced. Then, finding an

optimal input and optimal realization of the model for the first objective function

leads t.o 0* = (400, 657.201, 657.201f and j(()*) = -1231550.039. The optimal

solution i(O*) is degenerate and not unique. We therefore add the eonstraint

and the Ilew objective function

Now, we kllow that 21 E P=(O), where j21(X,O) = fOl(X,9) - jt(()*) ~ O. From

0*, ally perturbations where 0 < 0* are uns table sinee we would have f21(X,O) > 0,

60

-

-

-

whereas 0 > (J* ensures stability. This is obvious from the fact th'-l.t (J* is an optimal

input for f0
1 (x,O). Hence one must he careful before using input optimization on

such models. Note that in this "lexicographie optimization", Slatcr's condition is

never satisfied!

The second ex ample demonstrating instability is a simple nl)nlinear program.

Consider the program

s.t. Xl + X2 + X3 < 1
-Xl + X2 + X3 ~ 1
Xl - X4X2 ~ 0
-Xl - XSX2 < 0
X4 < 1
-X4 < 1
X2 > 0, X3 2:: 0, X5 2:: 0

If we let 01 = X4 and O2 = X5, then we get the linear model:

where

Min X3 + 01 +02

s.t. Xl + X2 + Xa - 1 $ 0
-Xl + X2 + X3 - 1 ~ 0
Xl - 0}X2 ~ 0
-Xl - 02X2 < 0
-X2 < 0
-X3 < 0
o E 1

1 ~ {8 E R': [-~ 1 <8 ~ D]}.
If (}O = (l, Il, then the feasible set F((JO) is a nice convex set in R3

, fl'((0) is

a square surface in the X3 = 0 plane and j((}O) = 2 (see Figure 7.1). To ohtain

a better reatization of this model we let 0* = (/J + ad, a > 0, d = (-1, -Il.
When Ci = 1, 0* = (O,O)T, F(O*) has been reduced to a triangular surface in the

61

(

(

,
Fee)

-,
Figure 7.1: {/J = (l, If .

. r 1 = 0 plane, F(O·) is the line segment {x : XI = X3 = 0, 0 ~ X2 ~ 1} a.nd

j(O-) = 0 (see Figure 7.2). To further improv~ this model requin~ decreasing 01

from 0 and maintaining O2 at O. But for aU 0 with (JI < 0, O2 = 0, the feasible set

is simply the line segment {Xl = X2 = 0, 0 < X3 :5 l} and F(O) = {(O, 0, Of}

(see Figure 7.3). The feasible set did Dot cha.nge contiDuously when 0 weDt from

(0, of to (-y, of, , < O. For O· = (0, O)T, F(O) is not lower semi-continuous in a

neighbourhood of O·. The definition of lower senù-contiDuity is contradicted here.

U sing the notation of the definition in Chapter 2, let A = {x : IIx - (0, ~, t)112 < 1~}'

Then An F(fr) = {x: XI = 0, (X2 - :)2 + (X3 - ~)2 < I~} but An F(O) = 0 for

aIl 0 snch that 01 < 0, O2 = O. Thus F(O) is not lower semi-continuous at O· and

S (O·) = {O El: 0 > O}. Therefore this model is unstable at O· = O.

62

,\ -
ree)

- "tt,

~,

\

(

Chapter 8

Conclusion

The main objective of this thesis was to explore the applicability of input optimiza­

tion to r(~al-life situations and to formulate a numerical method for solving linear

input optimization problems. The numerical method of Chapter 4 has accomplished

this. The case studies on which il. was used satisfied the conditions of the theorems

presented in Chapter 3.

Many so-called "real-life situations" do not fit the necessary mould for the

method to work. Mainly, it is not al ways possible to have a cubic region of sta­

bility in HP. Regions of stability, especially for large models, are typically inc1uded

in a 1'('1. which has "holes" or "patehes" of instability. Therefore if the method it­

('ratps from the current 0 along a certain direction d, it is not assured that every

point alollg that dif(~ctioll is in the region of stability. The step-size part in the

Ill<'t.hod would have to be alt~red to det~d such "holes". These regions of instability

also pres('J\t. the following possibility. If a region of instability separates a globally

opt.imal O· from our rurrent 0, it may be impossible (in a stable sense) to attain 0*

64

from our current position. We may have to settle for another 0- which is a locally

- optimal input and yields a worse realization of the model thall the ullattainable

0'. It is possible that this "unattainable" ()- is attainable from sorne other (fJ. An

op, imal input ()- is indeed very much a function of the initial input (fJ. One should

also keep in mind that our marginal value formula is not valid in cW'ry region of

stab,lity.

Another modification to the method could be the choicc of the path f from

one () to tht. next. In every example and case presented h('rc, f wa.'l a straight.-

Hne direction. Other possibilities include moving fflJm one 0 to the Iwxt alollg a

parabolaj or a combination of straight-line segmt'nts and parabol<l" whidU'\'('r is

best depending on the current O.

A method which employs second order input optimizatioll results lIIay hl' fa..'ltpf

than this one. The speed of convergence may be accderated if SOIl)(' SOft of qllasi-

Newton method for solving input optimizatioll problem~ is fOflllIl l'lt('d, i.l'o, 011('

which takes iuto consideration the curvature of the functiolls involwd. (Jllfortll-

nately, one should keep in mind that the optimal valup fllllctioll j(0) is not <Llla-

lytically given, so it is not c1ear at the present time how to llS(' h('f(' the (·meil·1I t

numerical methods of non-smooth analysis (c.g., [28}). MoreOV('f, ('WII th(' senllld

order optimality conditions over arbitrary regions of stability arc pws('ntly 1I0/ll'X-

istent. Finding these conditions and their numerical irnplcmclltatiolls is one of the

directions of future research.

65

(

(,

(

Appendix A

General Program for the Revised
Simplex Method

Included here is a computer program listing which performs the revised simplex

Ilwthod. The irnplernentation, terminology, and notation are that used by Chvâtal

in tilt' tirs! sevcll chapters of [6]. The impleme.ltation was modified slightly. Chvâtal

CIllIITl('ratc-s nJally measures for ensuring numerical accuracy of the method. These

W('f(' ol'iginally induded in this program but later dropped because they slowed down

the program unnecessarily. Ail the problems considered in this research were too

small t,o warrant these efficiency rneasures. The program included here is tailored to

tlu'se problpllls. In order to he accurate in treating large models, one should include

a proc('dure to perform an Eta Factorization of the hasis (if Bo =f]-the identity

mat.rix), i.e., det('rmine da matrices E., i = 1, ... , k, such that Bk = BoEtE2'" Ek'

One should also include a procedure to perform a triangular factorization of the

initial basis Bo, i.e., determine permutation matrices P" i = 1, ... , m and lower

66

-

triangular eta matrices Li, i = 1, ... , m, such that

To run, the program needs as input the number of constraints m, the number of

variables n, the vectors c and b, and the matrix A (aU in that order). The last item

input is the let ter 's', 't', or 'v', which determine the mode to he silent, testing, or

verhose respectively. In the silent mode, only the final hasis, solution, and optimal

value are output. When the mode is testing, at each iteration the values of t.h(· "

decision variables are output. The verhose mode prints the value of each variablt>

(decision, slack, and artificial) as weIl as the variables leaving and entering the basis.

The simplex method caUed by the program i., Appendix il is esscntially the sam ..

as this one except that no mode need he specified and no output cornes directly from

the simplex method (solutions are passed back to the other program).

PROGRAM SIMPLEX (INPUT,OUTPUT);

{

Performs the revised simplex method on a linear program of the form

Max (c,x) S.t. Ax<=b, x>=O
}

CONST FILE1='MILLSIM.INP';
FILE2='MILLSIM.OUT';

TYPE
MATRIX=ARRAY[1 .. 30,1 .. 40J OF REAL;
DSOL=ARRAY[1 .. 30J OF REAL;
PSOL=ARRAY(1 .. 40J OF REAL;

67

(

(

BASES-ARRAY[l .. 30] OF INTEGER;
ETAPTR-AETA;
ETA-RECORD

NUM: INTEGER;
PDS: 1. .30;
CDLUMN:DSOL;
NEXT:ETAPTR;
PREV:ETAPTR;

END:

VAR K,M,N:INTEGER:
C:PSOL:
B:DSOL:
A:MATRIX;
EPS1:REAL:
MODE:CHAR:
POIN,Q:ETAPTR:
OFILE:TEXT:

{--}
PROCEDURE MESSAG(MSG:INTEGER):

BEGIN
WRITELN(OFILE); WRITELN(OFILE): WRITELN(OFILE): WRITELN(OFILE):
CASE HSG OF

I:WRITELN(OFILE,'===> PHASE 1 TERMINATED NORMALLY. ENTERING PHAS',
'E II.'):

2:WRITELN(OFILE.'===> ORIGINAL PROBLEM IS INFEASIBLE');
3:WRITELN(OFILE.'===> PROBLEM IS UNBOUNDED'):
4:BEGIN

WRITE(OFILE.'===> ENTERING PHASE 1. THROUGHOUT PHASE l');
WRITELN(OFILE,' VARIABLES '):
WRI TELN (OF! LE • ' RENUMBERED AS FOLLDWS:');
WRITELN(OFILE): WRITELN(OFILE.

ARTIFICIAL VARIABLE•... X(l)'):
WRITELN(OFILE.' DECISION VARIABLES X(2) TO XC'.

'N+l)'):
WRITE(OFILE.' SLACK VARIABLES X(N+2)'):
WRITELN(OFILE.' TO X(N+H+l)'):
WRITELN (OFILE) ;
WRITELN(OFILE.' DECISION VARIABLES WILL BE GIVEN THEIR OR'.

'IGINAL'):
WRITELN(OFILE.' LABELS WHEN PHASE II IS ENTERED.');

68

......

-

DD. {CASE 4 }
6:VRITE(OFILE, ,_ •• > THE ABOYE SOLUTION IS OPTIMAL').

!ID; {CASE}
VRlTELI(OFILE); VRlTELN(OFlLE):

!ID; {PROC MESSAG }

{--}
PROCEDURE INIT;

{ Initialize these to zero }

VAR I,J:INTEGER:

BEGIN
FOR 1:-1 TO 30 DO

BEGIN
BU] :-0.0:
FOR J:-1 TO 40 DO A[I,J):=O.O:

END; {For i loop }
FOR J:-1 TO 40 DO C[J]:=O.Oj

END; {proe init }

{--}
PROCEDURE READIN:

VAR I,J:INTEGER:
IFILE:TEXTj

BEGIN
ASSIGN(IFILE,FILE1): RESET(IFILE);
READLN(IFILE,M,N);
K:-N+M:
FOR J:=l TO N DO READ(IFILE,C[J]):
FOR 1:=1 TO M DO READ(IFILE,B[I]);
FOR 1:=1 TO M DO FOR J:=l TO N DO READ(IFILE,A[I,J);
READLN (IFILE) :
READLN(IFILE,MODE):
CLOSE(IFILE) ;

END: {proe readin }

{--}

69

--

(

(

(

PROCEDURE PRINTDATA:

VAR I.J:IITEGER:

BEGIN
VRITELN(OFILE.' PRO BLE M D A TA'):
VRITELN(OFILE.' ----------------------,):
VRITELN(OFILE): WRlTELN(OFILE);
VRlTELN(OFILE.' HUMBER OF CONSTRUNTS:' .M:4):
WRITELN(OFILE.' HUMBER OF VARIABLES: '.N:4):
VRITELN(OFILE);WRITELN(OFILE,' VECTOR C:');
FOR J:-1 TO N DO WRITELN(OFILE.C[J]:15:4);
VRITELN(OFILE); WRITELN(OFILE.' VECTOR B:');
FOR 1:-1 TO M DO WRITELN(OFILE.B[I]:15:4);
WRITELN(OFILE):WRITELN(OFILE.' MATRIX A:');
VRITELN(OFILE); WRlTELN(OFILE.'ROW ");
FOR 1:-1 TO M DO

BEGIN
WRITE(OFILE.I:3);
FOR J:-1 TO N DO WRITE(OFILE.' '.A[I,J]:7:3);
WRlTELN(OFILE) ;

END; {for i loop }
WRlTELN(OFILE); WRITELN(OFILE); WRITELN(OFILE);
CASE MODE OF

's'. 'S' :BEGIN
WRITELN(OFILE,' MODE: SILENT');
WRITELN(OFILE.' ONLY THE FINAL BASIS, DICTIONAR'.

'Y AND');
WRITELN(OFILE.' COST WILL BE PRINTED');

END; {case s }
'v' ,'V' :BEGIN

WRITELN (OFILE. ' MODE: VERBOSE');
WRITELN(OFILE,' FOR EACH PIVOT, THE ENTERING AN',

, 0 LEAVING');
WRITELN(OFILE,' VARIABLES AND THE NEW DICTIONAR'.

'Y WILL BE');
WRITELN(OFILE.' PRINTED');

END; {case v }
't' ,'T' :BEGIN

WRITELN(OFILE,' MODE: TESTING');
WRITELN(OFILE.' VALUES OF THE DECISION VARIABLE',

's WILL BE');
WRITELN(OFILE.' PRINTED FOR EACH ITERATION');

70

END: {ca •• t }

END; {ca •• }
VRITEL.(OFILE): VRITELI(OFILE): VRITELI(OFILE): VRITEL.(OFILE):
VRITEL.(OFILE,' 0 U T PUT'): VRITEL.(OFILE,' -----------,):

EID: {proc printdata }

{---_ .. _----------------------}
PROCEDURE GAUSS1(VAR Y.EI,V:DSOL: POS:INTEGER);

{ This procedure solves a system of the form yE-v by substitution
where E ls an eta-matrix }

VAR I:INTEGER;

BEGIN
FOR 1:-1 TO M DO Y[I]:-V[I];
FOR 1:-1 TO M DO

IF I<>POS THEN Y[POS]:-Y[POS]-EI[I]*Y[I];
Y[POS]:-Y[POS]/EI[POS]:

END; {proc gauss1 }

{--}
PROCEDURE GAUSS2(VAR D,EI,V:DSOL; POS:INTEGER);

{ This procedure solves a system of the form Ed=v by substitution
where E is an eta-matrix }

VAR I:INTEGER;

BEGIN
D[POS]:=V[POS]/EI[POS];
FOR 1:=1 TO M DO

IF I<>POS THEN D[I]:=V[I]-EI[I]*D[POS];
END; {proc gaus82 }

{--}
FUNCTION BASIC(INDEX:INTEGER; VAR BASIS:BASES):BOOLEAN;

{ returns true if x(index) i8 basic}

VAR I:INTEGER; BAS:BOOLEAN;

71

(

BEGIN
1:-1; BAS:-FALSE;
REPEAT

IF INDEX-BASIS[I] THEN BAS:-TRUE;
1:-1+1;

UNTIL BAS OR (I>M);
BASIC:-BASj

ENDj { tunc basic}

{--}
PROCEDURE OUTPT(VAR X:PSOLj VAR BASIS:BASES; ENTER,LEAV:INTEGER);

{ produces the appropriate output depending on the value of mode }

VAR J:INTEGER:

BEGIN
CASE MODE OF

's','S': :
, v' , , V J : BEGIN

WRITELN(OFILE):WRITELN(OFILE):WRITELN(OFILE):
WRlTELN (OF ILE) :
WRITELN(OFILE,' ITERATION NO.
WRITELN(OFILE):

, ,QA .NUM:4);

WRITELN (OFILE, , ENTERING VARIABLE:' ,ENTER: 4) :
WRITELN (OFILE, , LEAVING VARIABLE: ',LEAV : 4) ;
WRITELN(OFILE):
WRITELN (OFILE, ,
WRITE (OFILE, ,
WRITELN (OF ILE , ,
FOR J:=l TO K DO

CURRENT DICTIONARY'); WRITELN(OFlLE);
VARIABLE VALUE'):

STATUS') :

BEGIN
IF BASIC(J,BASIS) THEN

BEGIN
WRlTE(OFILE,' X',J:3,'
WRITE(OFILE,' BASIC'):
WRITELN(OFILE,' VARIABLE'):

END
ELSE BEGIN

, ,X[J]: 18):

WRITE(OFILE,' X' ,J:3,' , ,X[J] : 18);
WRITELN(OFILE,' NON-BASIC VARIABLE');
END; {if ... then ... else }

72

-

END; {for j loop }
WRITELI(OFILE); WRITE(OFILE,'-------------------------,);
WRITELI(OFILE,'--,,

, --------,) ;
END; {case v }

't' , 'T' :BEGIN
WRITELN(OFILE);WRITELH(OFILE); WRITELN(OFILE);
WRITELH (OlILE) ;
WRITELH(OFILE,' ITERATION HO.',Q~.HUM:4);
WRITELH(OFILE); WRITELH(DFILE,' DECISION VARIABLES');
VRITELH(OFILE,' VARIABLE VALUE');
FOR J:-1 TD N DO

VRITELN(OFILE,' X',J:3,' ',X[J]:16);
VRITELN(OlILE); VRITE(OFILE,' ------------------.. ------,) ;
VRITELN(OlILE, '-------------------------------.. ------');

END; {case t }
END; {case}

END; {proc outpt }

{--}
FONCTION VALU(VAR C,X:PSOL):REAL;

{ calculates value of objective function for current feasible vector x}

VAR VAL:REAL;
CNT: INTEGER;

BEGIN
VAL:=O.O;
FOR CNT:=l TO K DO VAL:=VAL+X[CNT]*C[CNT]j
VALU:=VAL:

END; {tunc valu }

{--}
PROCEDURE OPTIMAL(VAR C,X:PSOL: VAR U:DSOL; VAR BASIS:BASES;

MSG:INTEGER; PHASE1:BOOLEAN);

VAR I.J:INTEGER;
OPTVAL:REAL:

BEGIN
WRITELN(OFILE): WRITELN(OFlLE);

73

(.

(

VRITELW(OFILE,' PRIMAL SOLurIOI (BASIC AID NOl-BASIC VARIABLES):');
VRITELW(OFILE) ;
FOR 1:-1 TO K DO BEGIN

VRITE(OFILE,' 1',1:3,' ',X[I]);
IF BASIC(I,BASIS) THEN VRITELN(OFILE,' BASIC VARIABLE')
ELSE VRITELN(OFILE,' ION-BASIC VARIABLE');

END;
VRITELW(OFILE)j WRITELN(OFILE);
VRITELN(OFILE,' DUAL SOLUTIOI:'); VRlTELI(OFILE);
FOR 1:-1 TO M DO WRITELN(OFUE,' U',I:3,' ',U[I]);
VRITELN(OFILE)j WRITELN(OFILE);
OPTVAL:=VALU(C,X);
VRITELN(OFIlE,' VALUE OF OBJECTIVE FUNCTION:',OPTVAL:18)j
IF (MSG=2) OR (MSG=3) THEN

BEGIN
WRITELN(OFILE); WRITElN(OFILE); VRlTELN(OFIlE);
WRITE(OFILE,'===> THE ABOVE SOLUTION IS NOT OPTIMAL;');
WRITElN(OFILE,' IT VAS THE CURRENT SOLUTION WHEN');
WRITELN(OFILE,' THE SIMPLEX METHOD VAS ABORTED.');

END; {if msg= ... }
IF MSG=5 THEN MESSAG(MSG);

END; {proc optimal }

{--}
FUNCTION ENTVAR(VAR Y,U:DSOL; VAR C:PSOLj VAR BASIS:BASES;

RULE:CHAR):INTEGERj

{ rule g is greatest coefficient rule; rule l is least subscript }
{ rule; entvar determines the entering variable}

VAn SUM:REAl;
ENTER,CNT,I,J:INTEGERj

BEGIN
ENTER:=O;
IF RULE='G' THEN

BEGIN
FOR 1: =1 TO K DO

BEGIN
IF NOT(BASIC(I,BASIS» THER

BEGIN
SUM:=O.O;

74

FOR CIT:-1 TO M DO SUM:-SUM+Y[CIT]*A[CIT.I];
IF «C[I]-SUM»EPS1) AID (EITER>O) THEN

IF C[I]>C[ENTER] THEl ENTER:-I;
IF «C[I]-SUM»EPS1) AID (ENTER-O) THEl ENTER:-l;
IF I>N THEM U[I-N]:--C[I]+SUM;

END
ELSE IF I>N THEN U[I-N]:-O.O;

END; {for i loop }
END; {if rule=g }

IF RULE='L' THEN
BEGIN

1:=1 ;
WHILE (ENTER=O) AND (I<K+1) DO

BEGIN
IF NOT(BASIC(I.BAS1S» THEN

BEGIN
SUM:=O.O:
FOR CNT:=1 TO H DO SUH:=SUM+Y[CNT]*A[CNT.I]:
IF (C[I]-SUM»EPS1 THEN ENTER:=I;
IF I>N THEN U[I-N]:=-C[I]+SUM:

END
ELSE IF I>N THEN U[I-N]:=O.O;
1:=1+1:

END: {vhile}
END: {if rule=l }

ENTVAR: =ENTER;
END; {fune entvar }

{--}
PROCEDURE ITERATE(VAR U:OSOL; VAR C.X:PSOL; VAR RULE:CHAR:

VAR BASIS:BASESj VAR LEAV.ENTER:INTEGER:
VAR CURVAL:REAL; VAR FINISH.PHASE1:BOOLEAN):

{ performs one iteration of the simplex method }

LABEL 10;

VAR T.OLDVAL:REAL:
TEMPO.MSG.H.I.J:INTEGER:
SUBS: BASES;
POIN1.Q1:ETAPTR:
UNSET.UNBDD:BOOLEAN:
D.TEMP.V.Y:DSOL:

75

(.

{

BEGIN
FINISH:=FALSEj

FOR J:-1 Ta M DO Y[J] :=C (BASIS [J]] ; {solve the system y*Bk=cB }
Q1:=Qj
WHILE Q1<>NIL DO

BEGIN
FOR J: = 1 Ta 14 DO V [J] : aY [J] ;
GAUSS1(Y,Q1 A .COLUMN,V,Q1A .POS);
Ql:=Q1- .PREVj

ENDj

ENTER:=ENTVAR(Y,U.C,BASIS,RULE); { determine entering variable }

U' ENTER=O THEN
BEGIN

IF NOT(PHASE1) THEN BEGIN

{ if optimal, break out of }
{ procedure iterate }

MSG:=5j
OPTIMAL(C,X.U,BASIS,MSG,PHASE1)j

ENDj
FIN!5H: =TRUE; GOTO 10;

END, {if anter=O }

FOR J :=1 TO M DO D[J] :=A [J • ENTER] ; { solve the system Bk*d=a }
POINl : =POIN ;
WHILE POIN1<>NIL DO

BEGIN
FOR J: =1 TO M 00 V[J] : =O[J] ;
GAUSS2(0.POIN1- . COLUMN , V,POIN1- .POS);
POIN1:=POIN1-.NEXTj

END;

T:=O.Oj UNSEl':=TRUE: {this section calculates largest possible t }

FOR 1:=1 TO M DO
BEGIN

IF 0 [1] >0.0 THEN TEMP [I] : =X [BASIS [1]] ID [1]
ELSE TEMP[I] :=1.E20j

IF «TEMP[I]>=O.O)ANO(TEMP[I] <>1.E20»AND UNSET THEN
BEGIN

T:=TEMP[I]j UNSET:=FALSE; SUBS[l] :=1; J:=l;
END; {if temp }

76

-

-

IF (TEMP[I]-T) AND «1(>1) ARD NOT(UNSET» THEN

BEGIN
SUBS[J+1] :-1; J:-J+1;

END; {if temp-t }

IF (TEMP[I]<T) AND (TEMP[I]>-O.O) THEN

BEGIN
SUBS[1]:-I; J:=1; T:=TEMP[I];

END; {if temp>t }
END; {for i loop }

UNBDD: .. TRUE ;
FOR 1: = 1 TO M DO

IF TEMP[I]<>1.E20 THEN UNBDO:-FALSE;

IF UNBOO THEN

BEGIN

{ i.e. problem is unbounded }

MSG:-3: MESSAG(MSG):
OPTIMAL(C,X,U,BASIS,MSG,PHASE1);

FINISH: =TRUE ;
GOTO 10;

END;

{ nov Bubs contains an subscripts i such that basis(i) is a candidate
for leaving. there are j such candidates. nov get smallest sub­
script as leaving variable }

LEAV:-SUBS [1];
FeR H:=2 TO J 00

IF BASIS [LEA V] > BASIS [SUBS [H]] THEN LEA V : =SUBS [H] ;

{ now leav denotes the element of the array basis which contains the
the Bubscript of the leaving variable}

X(BASIS[LEAV]]:=O.O; {leaving variable becomes non-basic}
TEMPO:=BASIS[LEAV] ;

BASIS[LEAV] :=ENTER;
NEW(Ql); {create nev eta-column }
FOR 1: = 1 TO M 00

BEGIN
IF I<>LEAV TH EN X[BASIS[I]] :=X[BASIS[I]]-T*D[I]

ELSE X [BASIS [1]] : =T;
Ql~.COL~[I] :=0[1]:

END; {for i loop }

77

(

IF Q-NIL THEM
BEGIN

POIN: =Ql;
Ql~ .NUM:-l:

END
EL SE BEGIN

Q1 ~ .NUM ::o:Q~ .NUM+l:
Q~ .NEXT :=Q1;

END: {else}
Ql- .POS:=LEAV;
Ql- .PREV:=Q;
Q1- .NEXT:=NIL:
Q:=Ql;
OUTPT(X,BASIS,ENTER,TEMPO):

OLDVAL:=CURVAL; {if z* hasn't changed sinee last iteration then }
CURVAL:=VALU(C,X): {next iteration uses least subseript rule }
IF OLDVAL=CURVAL THEN RULE:='L'
ELSE RULE: = 'G' :

10: END: {proe iterate }

{--}
PROCEDURE PH2 (VAR PHASE1: BOOLEAN: VAR BASIS: BASES; VAR RULE: CHAR;

VAR X:PSOL: VAR U:DSOL; VAR CURVAL:~AL;
VAR FINISH:BOOLEAN):

VAR LEAV,ENTER,I,J:INTEGER;
V:DSOL;

BEGIN
IF NOT(PHASE1) THEN {phaseI vasn't necessary so initialize phaseII}

BEGIN
FOR 1: = 1 TO M DO

BEGIN
BASIS[I] :=N+I: .{ set the initial basis }
FOR J:=N+1 TO K DO

IF J=N+I THEN A[I,J] :=1.0 {set the slack variable columns}
EL SE A[I,J]:=O.O:

END; {for i loop }
FOR 1: = 1 TO M DO X [N+1] : =B [I] ;
FOR 1:=1 TO N DO X[I]:70.0;
RULE:='G' :
CURVAL: ~o. 0;

78

-
POIN:-NIL;
Q:-NILj
REPElT

lTERATE(U,C,X,RULE,BASIS,LEAV,ENTER,CURVAL,FINISH,PHASE1);
UNTIL FINISH;

END {if not(phasel) }
ELSE BEGIN

PHASEl : -FALSE;
N:=N-l; {enter phIl from phI so eliminate the artificial }
K:-K-lj {variable and corresponding eolumn of A }
FOR 1: = 1 Ta M DO

BEGIN
BASIS [1] : =B15IS [1] -1 ;
FOR J:=l TO K DO A[I,J] :=A[I,J+l];

END; {for i loop }
FOR J:=l Ta K DO I[J] :=I[J+l];

REPEAT
ITERATE(U,C,X,RULE,BASIS,LEAV,ENTER,CURVAL,FINISH,PHASEl);

UNTIL FINISH;
END; {else}

END j {proe phIl }

{--}
PROCEDURE PH 1 ;

VAR FINISH,PHASE1:BOOLEANj
POINl :ETAPTR;
NEG:REAL;
RULE:CHAR;
I,J,MSG,ENTER,LEAV,HOST:INTEGER;
U:DSOL;
AUXC,X:PSOLj
BlSIS:BASESj

BEGIN
PHASEl :=FALSEj
NEG:=O.O;
MOST:=Oj
FOR 1: = 1 TO M DO

IF B[I]<NEG THEN
BEGIN

NEG:=B[I] j

{ f ind "most" negat ive b (1); if there iBn' t }
{ one th en phI i9 not necessary. if there }
{ is one then artifieial variable replaces }

79

(

(

MOST:-I; { the corresponding slack variable
END;

IF NEG<O.O THEl PHASE1:-TRUE;
IF PHASEl THEN { i.e. phI is nacessary so initialize it

BEGIN
N:-N+l;
K:-K+l;
FOR 1:-1 TO M DO

BEGIN
FOR J:-N DOVITO 2 DO

A[I,J]:-'[I,J-1]; {make room in A for the xO column}
A[I,1]:--1.0; {lst column of A is for xO}
FOR J:=N+l TO K DO

IF J=N+ 1 THEl
A[I ,J] :=1.0

ELSE
A[I,J) :=0.0;

END; {for i loop }

FOR 1:=1 TO M DO
IF I=M05T THEN

BEGIN

{ sat up identity submatrix in last }
{ m columns }

BASI5[1]:=1; { bring xO into the basis and }
X[BA5I5[1]] :=-NEG; { initialize it }

END {if i= }
ELSE BEGIN

BASI5[I] :=N+I;
X [BASIS [1]] : =B [1] -NEG;

END; {else and also for i loop }

FOR J:=1 TO K DO
IF NOT(BA5IC(J,BA5IS» THEN X[J]:=O.O;

NEW(POIN1); {start up the eta matrices}
POIN1 A .NUM: =0;
POIN1 A .P05:=MOST;
POIN1 A .PREV:=NIL;
POIN1 A .NEXT:=NIL;
FOR 1:=1 TO M DO POIN1 A .COLUMN[I]:=-1.0i
POIN:=POIN1;
Q :=POIN1;

FOR J:=2 TO K DO {initialize nev objective function }
AUXC[J] :=0.0;

80

}

}

--

-

AUXC[l] :--1.0;

IF NOT«MODE-'s') OR (MODE-'S'» THEl
BEGIlf

MSG:=4;
MESSAG(MSG) ;

ElfD;

REPEAT
lTERATE(U,AUXC,X,RULE,BASIS,LEAV,ElfTER,lfEG,FIlfISH.PHASE1);

UlfTIL FINISH;

IF ABS(NEG)<EPS1 THEN
BEGIN

IF (MODE<>'8') AND (MODE(>'S') THEN BEGIN
MSG:=l:
MESSAG(MSG);

END;
PH2(PHASE1,BASIS,RULE,X,U,NEG,FINISH);

END {if neg< }
EL SE BEGIN

MSG:=2;
MESSAG(MSG) ;
OPTIMAL(AUXC,X,U,BASIS,MSG,PHASE1);

END: {eise}
END {if phase1 }

ELSE PH2(PHASE1,BASIS,RULE,X,U,NEG,FINISH);
END; {proe phI }

{XXXXY.Xy.y.y.y.y.1.y.y.y.y.y.y.Y.Xy.%y.Yey.Y.Xy.y.y.Yey.y.y.Y.XY.XYeYey.7.y.Ye7.X7.7.y.y.y.7.7.y.y.y.7.7.7.7.7.y.7.7.7.7.7.7.}
{XY.Y.Xy.y.7.y.y.y.y.y.y.y.Y.Xy.y.y.%% MAI N PRO G R A M XY.Y.YeY.Y.%y.y.y'y.y'y'y.y'y'%y'y'y.y'}

{Y.y'y.y.YoY.Y.XYoYoYoYoY.Y.Y.Y.Y.YoY.Y.YoYoYoYoYoYeYoYoy.y.YoYeYey.Y.f.y.y.y.YoYeYoXYeYoYoYeYoYeYeXYoYoXYeYeXX7.XXYeX7.7.XXX}

BEGIN
EPS1:=1.E-5;

ASSIGN(OFILE,FILE2); REWRITE(OFILE);
INIT:
READIN;
PRINTDATA;
PH1:
CLOSE(OFILE);

81

END. {main prgm }

(

(

(82

J -

......

Appendix B

Program for the Shenandoah
Valley Textile Mill

This program listing is from the first case study, sinee the program is specifie to one

problem. However minor changes quickly adapt it to other similar problems. In the

code, one must change the value of p accordingly (8 ERP), as well as the expressions

for V g(0) and al)'

PROGRAM LlO (INPUT,OUTPUT);

{

}

This program determines a locally optimal input for a linear input
optimization problem by iterating from an initial theta (given) to
a locally optimal theta

CONST P=3;
MGRITER=l;

{ Dimension of the parameter space. }
{ MGR will perform MGRITER+2 iterations

in i ts search for an alpha; but only

EPS1=lE-5;
EPS2=5E-8;

for the first few theta-iterations. }
{ Zero tolerance in simplex method. }
{ Zero tolerance for gradient of g. }

83

(~

(

(

EPS3-6E-8; { Zaro tolarance for the boundary of 1. }
EPS4-1E-3; { Zero tolarance for intarva18 in MGR. }
FILE1- tMILL.INpt; {Input fila }
FILE2- tMILLB1.0UTt; { Output file }

TYPE PARK-ARRAY[1. .P] OF REAL; {Vactor in the paramatar spaca. }
PSOL-ARRAY[1 .. 40] OF REAL; { Solution vactor for primaI problem. }
DSOL-ARRAY[1. .30] OF REAL; { Solution vactor for dual problem. }
MATRIX-ARRAY[1 .. 30,1 .. 40] OF REAL;

VAR

BASES-ARRAY[1 .. 30] OF INTEGER;
ETAPTRaAETA;
ETA-RECORD

NUM: INTEGER;
PDS: 1. .30;
CDLtn!N : DSOL;
NEXT: ETAPTR;
PREV: ETAPTR;

END;

l, ITER,J ,h ,ii,MSG,N ,HOUR,MIN ,SEC,FRAC.COUNT: INTEGERj
X,C:PSOL;
U,B,NORMALtSLATER:DSOL;
A:MATRIX;
ALPHA,ALPHABAR,BIGGEST.F,OLDF,PERCENT,SUM,T,STIME,ETIME,

POIN,Q:ETAPTR;
THETA,DIR,GRADG,HIBD,LOBD,LOWER,UPPER:PARM;
CONTINU:BOOLEAN;
OFILE : TEXT ;

RUNTlME : REAL;

{---}
PROCEDURE TIMER(VAR HOUR,MIN,SEC.FRAC:INTEGER);

TYPE REGPACK=RECORD
AX,BX,CX,DX,BP,SI,DI,DS,ES,FLAGS:INTEGER;

END;

VAR REGS:REGPACK;

BEGIN
WITH REGS DO BEGIN

AX:=$2COOj
MSDOS(REGS) ;

84

-

-..

HOUR:-HI(CX);
MIN:-LO(CX) ;
SEC: -HI (DX) ;
FRAC:-LO(DX);

END;
END; {proe timer }

{---}
PROCEDURE INIT;

{ Initialize these to zero}

VAR I,J:INTEGER;

BEGIN
FOR 1:=1 TO 30 DO

BEGIN
B[I] :=0.0;
FOR J:=l TO 40 DO 1[I,J]:=0.0;

END; {For i loop }
FOR J: = 1 TO 40 DO C [J] : =0 .0;

END; {proe init }

{ ___________ w. __ ---------------}

PROCEDURE READIN;

VAR I,J:INTEGER;
IFILE:TEXT;

BEGIN
ASSIGN(IFILE,FILE1);
RESET(IFILE) ;

READLN(IFILE,M,N);
K:=N+M;

FOR 1:=1 TO M DO READ(IFILE,NORMAL[I]); { Normal is a normalization

FOR J:=1 TO N DO READ(IFILE,C[J]);

FOR I:=1 TO M DO BEGIN
READ(IFILE,B[I]);

vector. }

85

(

B [IJ : =B [1] .IORMAL [1] ;
END;

FOR 1:-1 TO M DO
FOR J:-1 TO 1 DO

BEGIN
READ(IFILE,A[I,J])j
IF A[I ,J] <>0 THEl A [1 ,J] :-NORMAL[I] /A[I, JJ ;

END;

FOR 1:=1 TO P DO READLN(IFlLE,LOBD[IJ,HIBD[I]);

CLOSE(IFILE) Ô

END; {proe readin }

{--}
PROCEDURE PRINTDATA;

VAR I,J:INTEGERô

BEGIN
WRITELN(OFILE,' PRO BLE M D A TA');
WRITELN(OFILE,' ----------------------,);
WRITELH(OFILE)i WRlTELH(OFlLE);

WRITELH(OFILE, ,
WRITELN(OFILE, ,

Humber of constraints:',M:4);
Number of variables: ',N:4);

WRITELN(OFILE); WRITELN(OFlLE,' Vector c: ' ,C[lJ:12:2);
FOR J:=2 TO H DO WRlTELN(OFILE,C[JJ:26:2);

WRITELN(OFILE); WRITELN(OFILE,' Vector b: ',B[lJ:12:2);
FOR 1:=2 TO M DO WRlTELN(OFILE,B[IJ:26:2);

WRITELN(OFILE);WRITELN(OFILE,' Matrix A:');
WRITELN(OFILE); WRITELN(OFlLE,'Row l');

FOR 1: = 1 TO M DO
BEGIN

WRITE(OFILE,I:3);
FOR J:=l TO N DO WRITE(OFILE,' , ,A[I ,J] :7:3);
WRITELN (OFILE) ;

END; {for i loop }

86

-

......

ElD; {proe printdata }

{--}

PROCEDURE PRINTI;

VAR 1: IIfTEGER.

BEGIN
WRlTELN(OFILE); WRlTELN(OFlLE); WRlTELN(OFILE);
WRITELN(OFILE,' The set 1 is the region in vhieh THETA ean be' ,

, perturbed.').
WRlTELN(OFILE, , The upper and lover bounds defining 1 in this' ,

, case are');
WRlTELN(OFILE.' as follovs.'). WRITELN(OFILE); WRITELN(OFILE).
FOR 1:=1 TO P DO

WRlTELN(OFILE.' ':15,LOBD[I] :7:2,' <= THETA('.I:1.') <= ,
HIBD[I]:7 :2).

WRITELN(OFILE); WRITELN(OFlLE).
END; {proe printi }

{--}
PROCEDURE CURRENT.

VAR 1: INTEGER;

BEGIN
WRITELN(OFILE). WRITELN(OFlLE).
WRITELN(OFILE,' Alpha =',ALPHA:16:7);
WRlTELN(OFILE); WRITELN(OFlLE);
FOR I:=l TO P DO BEGIN THETA[I]:=THETA[I]+ALPHA*DIR[I];

WRlTELN(OFILE.' THETA('.I:l.') ='.THETA[I]);
END;

END; {proe current }

{---}
PROCEDURE HEADING;

BEGIN
WRITELN(OFILE); WRlTELN(OFlLE); WRITELN(OFILE);

87

(

WRITELN(OFILE,'««««««««««««< ITERATION BO.'.ITER:3.
»»»»»»»»»»»»)');

WRITELN(OFILE); WRITELB(OFlLE); WRITELB(OFILE);
END; {proc heading }

{---}
PROCEDURE MESSAG;

BEGIN
WRITELN(OFILE): WRITELN(OFlLE); WRITELN(OFILE); WRITELN(OFILE);
CASE MSG OF

1:WRITELN(OFILE.'===) PROBLEM IS INFEAS!BLE'):
2 : WRITELN (OFI LE , '===> PROBLEM IS UNBOUNDED') ;

END: {CASE}
WRITELN(OFILE): WRITELN(OFILE):

END; {PROC HESSAG }

{---~----------}

PROCEDURE GAUSS1(VAR Y,EI,V:DSOL; POS:INTEGER):

{ This procedure soIves a system of the fom yE=v by substitution
where E is an eta-matrix }

VAR 1 :INTEGER:

BEGIN
FOR 1:=1 TO M DO Y[I]:=V[I]i
FOR 1:=1 TO M DO

IF I<>POS THEN Y [POS] :=Y[POS]-EI[I]*Y[I]:
y [POS] : =Y [POS] lEI [POS] i

END; {proc gauss1 }

{--}
PROCEDURE GAUSS2(VAR D,EI,V:DSOL; POS:INTEGER)i

{ This procedure solves a system of the fom Ed=v by substitution
where E is an eta-matrix }

V AR 1: INTEGER i

BEGIN

88

1

-
D [POS] :.V [POS] lEI [POS] :
FOR 1:-1 TO M DO

IF 1<> pas THEN D [I] : =V [1] -El [1] *D [PDS] :
END: {proc gauss2 }

{--}
FUNCTION BASIC(INDEX:INTEGER; VAR BASIS:BASES) :BDOLEANj

{ returns true if x(index) is basic }

VAR I: INTEGER;
BAS:BDDLEAN:

BEGIN
l :=1; BAS:=FALSE:
REPEAT

IF INDEX=BASIS[I] THEN BAS:=TRUE;
1:=1+1 :

UNTIL BAS OR (I>M);
BASIC:=BAS;

END: { func basic}

{--}
FUNCTION VALU(VAR CEE:PSDL):REAL;

{ calculates value of objective function for current feasible vector x}

VAR VAL:REAL:
CNT: INTEGER;

BEGIN
VAL:=O.O:
FOR CNT:=l TO K DO VAL: =VAL+X [CNT] *CEE [CNT] ;
VALU:=VAL:

END: {func valu}

{--}
PROCEDURE PRSOL(V\R C:PSDL):

{ Print the solt1tion vectors (primaI and dual) and the objective value}

89

-
VAR I,J:INTEGER; OPTVAL:WL;

BEGIN
WRlTELN(OFILE); WRITELN(OFILE);

WRlTELN(OFILE,' Primal solution');
VRlTELN(OFILE) ;
FOR 1:-1 TO N DO VRITELN(OFILE,' X',I:3,' ',X[I]);

VRlTELN(OFILE); VRlTELN(OFILE);
VRlTELN(OFILE, J Dual solution'); WRITEl,N(OFILE);
FOR 1:-1 TO M DO VRlTELNCOFILE,' U',I:3,' ',U[I]);

VRlTELN(OFILE); VRITELN(OFILE);
OPTVAL:-VALU(C) ;
VRlTELN(OFILE,' Value of objective function:',OPTVAL:13:3,'.');

IF (MSG=2) OR (MSG=3) THEN

BEGIN
WRITELN(OFILE); VRITELN(OFILE); VRITELN(oFILE);
WRITE(OFILE,'===> THE ABOVE SOLUTION IS NOT OPTIMAL;');
WRITELN (OF ILE, , IT WAS THE CURRENT SOLUTION VHEN');
WRITELN(OFILE, , THE SIMPLEX METHOD VAS ABORTED.');

END; {if msg= ... }

END; {proe optimal }

{--}
FUNCTION ENTVAR(VAR Y:DSOL; VAR BASIS:BASES;

VAR C:PSOL; RULE:CHAR):INTEGER;

{ Rule g is greatest coefficient rule; rule 1 is least subscript }
{ rule; entvar determines the entering variable }

VAR SUM:REAL;
ENTER,CNT,I,J:INTEGER;

BEGIN
ENTER: =0;

IF RULE-'G' THEN
BEGIN

FOR 1:=1 TO K DO
BEGIN

IF NOT(BASIC(I,BASIS» THEN

90

BEGIN
SUM:-O.O;
FOR CNT:-1 TO M DO SUM:-SUM+Y[CNT] *A[CNT ,1];
IF «C[I]-SUM»EPS1) AND (ENTER>O) THEIl

IF C[I]>C[ENTER] THEN ENTER:-I;
IF «C[I]-SUM»EPS1) AND (ENTER-O) THEN ENTER:-I;
IF I>N THEN U[I-N] :--C[I]+SUM;

END
ELSE IF I>N THEN U[I-N] :-0.0;

END; {for i loop }
END; {if rule=g }

IF RULE= 'L' THEN
BEGIN

1:=1 ;
WHILE (ENTER=O) AND (I<K+1) DO

BEGIN
IF NOT(BASIC(I.BASIS» THEN

BEGIN
SUM:=O.O;
FOR CNT:=l TD M DO SUM:=SUM+Y[CNT] *A [CNT, 1] ;
IF (C[I]-SUM»EPSl THEN ENTER::I;
IF I>N THEN U[I-N] :=-C[I]+SUM;

END
ELSE IF I>N THEN U[I-N] :=0.0;
1:=1+1;

END; {vhile}
END; {if rule=l }

ENTVAR: =ENTER;
END; {fune entvar }

{--}
PROCEDURE ITERATE(VAR C:PSOL; VAR RULE: CHAR; VAR BASIS:BASES;

VAR LEAV. ENTER: INTEGER; VAR CURVAL: REAL;
VAR FINISH,PHASE1:BOOLEAN);

{ pelforms one iteration of the revised simplex method }

LABEL 10;

VAR T .OLDVAL:REAL;
TEMPO,H.I ,J: INTEGER;
suaS: BASES;
POINl , Q 1 : ETAPTR;

91

-

URSE'!' ,URBDD:BOOLEANj
D, TEMP, V, Y:DSOL;

BEGIN
FINISH: -F ALSEj

FOR J:-1 TO M DO Y[J] :-C [BASIS [J]] ; {solve the system y*Bl(-cB }
Q1 :-Qj

WHItE Q1<>NIL DO
BEGIN

FOR J:=1 TO M DO V[J] :-Y[J];
GAUSS1(Y,Q1-.COLUMR,V,Q1-.POS):
Q1: -Q1- .PREV:

END:

ENTER:=ERTVAR(Y,BASIS,C,RULE):

IF ENTER=O THEN
BEGIN

IF ROT(PHASE1) THER

F:=VALU(C) :
FlRISH : =TRUE :
GOTO 10:

END; {if enter=O }

{ determine entering variable }

{ if optimal, break out of }
{ procedure iterate }

FOR J:=1 TO M DO D[J] :=A[J ,ENTER]: { solve the system Bk*d=a }

POIN1 :=POIN:
WHItE POIN1<>NIL DO

BEGIN
FOR J :=1 TO M DO V[J] :=D[J] :
GAUSS2(D,POIN1-.COLUMN,V,POIN1-.POS):

POIR1:=POIR1-.NEXT;

END:

T:=O.O: { this section calculates largest possible t }

UNSET:=TRUE:
FOR 1:=1 TO M DO

BEGIN
IF D[I]>O.O THEN TEMP[I]:=X[BASIS[I]]/D[I]

ELSE TEMP[I] :=1E20;

IF «(TEMP[I]>=O.O)ARD(TEMP[I]<>1.E20»AND miSET THEN

BEGIN
T : =TEMP [1] j

92

(

(

UJf5ET:-FAL5E;
5085[1]:-1; J:-l;

END; {if temp }

IF (TEMP[I]-T) AND «1<>1) AND NOT(UN5ET» THEN
BEGIN

5085 [J+l] :-1;
J:=J+l ;

END; {if temp=t }

IF (TEMP[I]<T) AND (TEMP[I]>=O.O) THEN
BEGIN

5UB5[1] :=1;
J::·1 ;
T : =TEMP [1] ;

END; {if temp>t }
END; {for i loop }

UNBDD : =TRUE ;
FOR 1: = 1 TO M DO

IF TEMP[I]<>1.E20 THEN UNBDD:=FALSE;

IF UNBDD THEN
BEGIN

MSG: =2 ; MESSAG;
PRSOL(C);
FINISH: =TRUE;
GOTO 10;

END;

{ i.e. problem is unbounded }

{ nov subs contains all subscripts i su ch that basis(i) is a candidate
for leaving. there are j such candidates. nov get smallest sub­
script as leaving variable }

LEAV: =SUBS[1];
FOR H:=2 TO J DO

IF BASIS[LEAV]>BASIS[SUBS[H]] THEN LEAV:=SUBS[H];

{ nov leav denotes the element of the array basis vhich contains the
the subscript of the leaving variable }

X[BASIS[LEAV]]:=O,O;
TEMPO : =BASIS[LEAV] ;
BASIS[LEAV]:=ENTER;

{ leaving variable becomes non-basic }

93

of'· -

-

NEV(Q1); {ereate ne. eta-column }
FOR 1:-1 TO M DO

BEGIN
IF 1<> LEAV THEN X [BASIS [1]] : -x [SASIS [1)] -T*D [1]
ELSE X [BASIS [I]] : -T;
Q1 ~ . COLUMN [1] : -0 [I] ;

END; {for i loop }
IF Q=NIL THEN

BEGIN
POIN:=Q1;
Q1~.NUM:=1;

END
ELSE BEGIN

Q1~.NUM:=Q~.NUM+l;

Q~ .NEXT:=Ql ô
END; {else}

Ql~.POS:=LEAVô

Ql~.PREV:=Qô

Ql~.NEXT:=NILô

Q:=Q1ô

OLDVAL:=CURVAL; {if z* hasn't changed sinc6 last iteration then }
CURVAL:=VALU(C)ô {next iteration uses least subscript rule }
IF OLDVAL=CURVAL THEN RULE:='L'
ELSE RULE:='G';

10: END ô {proe iterate }

{--}
PROCEDURE PH2(VAR BASIS:BASES ô VAR RULE:CHARô VAR CURVAL:REAL;

VAR FINISH.PHASE1:BOOLEAN)ô

{ Sets up the second phase of the simplex method }

VAR LEAV.ENTER.I.J:INTEGER;
V:DSOL ô

BEGIN
IF NOT(PHASE1) THEN {phase! vasn't necessary so initialize phaseII}

BEGIN
FOR 1:=1 TO M DO

BEGIN
BASIS[I]:=N+I; {set the initial basis }
FOR J:=N+l TO K DO

94

(

(

IF J=N+I THEN ArI,J]:=1.0 {set the slack variable columns}
ELSE A[I,J]:-O.U;

END; {for i loop }
FOR 1:=1 TO M DO X[&+I]:=B[I];
FOR 1:=1 TO & DO X[I]:=O.O;
RULE:a'G'; CURVAL:=O.Oi
POIN:=NIL; Q:=NIL;
REPEAT

ITERATE(C.RULE.BASIS.LEAV,ENTER,CURVAL,FINISH,PHASE1);
UNTIL FINISH;

END {if not(phase1) }
ELSE BEGIN

PHASE1 :=FALSE;
N:=N-1; {enter phIl from phI so eliminate the artificial }
K:=K-1; {variable and corresponding column of A }
FOR 1:=1 TO M DO

BEGIN
BASIS [1] : =BASIS [1] -1 ;
FOR J:=l TO K DO A[I.J] :=A[I.J+1];

END; {for i Ioop }
FOR J:=l TO K DO X[J]:=X[J+1]i

REPEAT
ITERATE(C,RULE.BASIS,LEAV,ENTER.CURVAL,FINISH.PHASE1);

UNTIL FINISH;
END; {eIse}

END; {proc phIl}

{--}
PROCEDURE PH 1 ;

{ Sets up the first phase of the revised simplex method, if necessary.}
{ If not. then calls PH2. }

VAR FINISH.PHASE1:BOOLEAN;
POINl :ETAPTR;
NEG:REALi
RULE: CHAR;
I,J,ENTER,LEAV.MOST:INTEGER;
BASIS:BASES;
AUXC:PSOL;

95

-

-

P:DSOL;

BEGIN
PHASE1:-FALSE; NEG:-O.O; M05T:-0;
FOR I:~l TO M DO

IF B[I]<NEG THEN {Find "most" negative b(i); if there il!m't}
BEGIN { one th en phI ls not necessary. If there }

NEG:=B[I]; { i8 one then the artificial variable viII }
MOST:=I; { replace the correBponding 8lack variable }

END; { in the set up of a feasible dictionary. }
IF NEG<O.O THEN PHASE1:=TRUE;
IF PHASE1 THEN { i.e. phI iB necesBary so initialize it }

BEGIN
N:=N+l; K:=K+1;
FOR 1:=1 TO M DO

BEGIN
FOR J:=N DOWNTO 2 DO

A[I,J]:=A[I,J-1]; {make room in A fOT the xO column}
A[I ,1] :=-1.0; {lst column of A iB for xO }
FOR J:=N+1 TO K DO

IF J=N+I THEN
A[I,J] :=1.0

EL SE
A [1 ,J] : =0 • 0 ;

END; {for i loop }

FOR 1:=1 TO M DO
If I=MOST TH EN

BEGIN

{ set up identity submatrix in last }
{ m columns }

BASIS[I] :=1; { bring xO into the basis and }
X [BASI5 [1]] :=-NEG; { initialize it }

END {if i= }
ELSE BEGIN

BASIS [1] : =N+ 1 ;
X[BASI5[I]]:=B[I]-NEG;

END; {else and also for i loop }

FOR J:=l TO K DO
IF NOT(BASIC(J,BASIS» THEN X[J]:=O.O;

NEW(POIN1); {start
POIN1-.NUM:=0;
POIN1-.POS:=MOST;
POIN1-.PREV:=NIL;

up the eta matrices }

96

(

(

(

POIN1 A .NEXT:-NILj
FOR 1:-1 TO H DO POIN1 A .COLUHN[I):--1.0j
POIN:-POINlj Q:-POIH1j

FOR J:-2 TO K DO {initialize nev objective function }
AUXC[J):-O.Oj

AUXC[l] :--1.0 j

RULE:='G' ;

REPEAT
ITERATE(AUXC.RULE.BASIS.LEAV,ENTER,NEG.FINISH,PHASE1)j

UNTIL FINISHj

IF ABS(NEG)<EPS1 THEN
PH2(BASIS.RULE.NEG,FINISH,PHASE1)

EL SE BEGIN
MS\1:':.:l: HESSAG:
PRSOL(AUXC)j

END: {eIse}
END {if phase1 }

EL SE PH2(BASIS,RULE.NEG,FINISH,PHASE1);
END: {proc phI}

{---}
PROCEDURE CALCDG:

{ This procedure determines the gradient of g at the current thete.
The expression for GRADG[i] must be vritten into the code in this
procedure. }

VAR 1: 1NTEGER;

BEGIN
GRADG[1]:=-X[6]*U[8]/«700+THETA[1])*(700+THETA[1]»;
GRADG[2]:=-X[3]*U[13]/«1800+THETA[2])*(1800+THETA[2]»;
GRADG[3]:=-X[6]*U[13]/«2000+THETA[3])*(2000+THETA[3]»;
WRITELN(OFILE): WRITELN(OFILE)j
WRITELN(OFILE.' Gradient of g: '.GRADG[1]:9:4)j
FOR 1:=2 TO P DO WR1TELN(OFILE.GRADG[I]:28:4);

END; {proc gradg }

97

-

{---}
FUlCTIOM SIGIUM(REEL:RElL):INTEGER:

BEGIN
IF REEL>O THEM SIGIOM:-l:
IF REEL-O THEM SIGIOM: -0:
IF REEL<O THEM SIGNUM:--1:

END: {proc signum }

{---}
PROCEDURE MAXALPHA:

{ Determine the direction of improvement d and alpha-bar (greatest
positive alpha such ~nat theta+alpha*d belongs to 1 }

VAR I:INTEGER: TEMP:PARM:

BEGIN
FOR 1:=1 TO P DO BEGIN

IF DIR[I] <0 'l'HEN TEMP [1] :=LOWER[I] /DIR[I] ;
IF DIR[I]=O THEN TEMP[I]:=1.0E20i
IF DIR[I] >0 THEN TEMP [1] : =UPPER [1] /DIR[I] ;

END;
ALPHABAR:=TEMP[1]:
FOR 1:=2 TO P DO

IF TEMP[I]<ALPHABAR THEN ALPHABAR:=TEMP[I]:
IF ALPHABAR=1.0E20 THEN ALPHABAR:=O.O:
WRITELN (OFILE) :
WRITELN(OFILE, , Direction of');
WRITELN(OFILE, , improvement d: J ,DIR[1] : 11: 8):
FOR 1:=2 TO P DO WRITELN(OFILE,DIR[I]:32:8):
WRITELN (OFILE) :

END; {proc dalphabr }

{---}
PROCEDURE NEWVAL(VAR ALPH1,ALPH2,Q,R:REAL; FLAG:INTEGER);

{ Given y-k and z-k from MGR, NEWVAL evaluates f at each of these, i.e.
given alpha1 and alpha2, it calls PHI to evaluate the optimal value
of the objective function at

98

(.

and
THETA + alpha2*d.

}

BEGIN
IF FLAG()2 THEN BEGIN

A[8,6]:=NORMAL[8]/(700+THETA[1]+ALPH1*OIR[1])j
A[13,3]:=NORMAL[13]/(1800+THETA[2]+ALPH1*DIR[2])j
A[13,6]~=NORMAL[13]/(2000+THETA[3]+ALPH1*OIR[3])j

PH1;
Q:=-Fj

END;
IF FLAG()1 THEN BEGIN

A[8,6]:=NORMAL[8]/(700+THETA[1]+ALPH2*DIR[1]);
A[13,3].=NORMAL[13]/(1800+THETA[2]+ALPH2*DIR[2])j
A[13.C]:=NORMAL[13]/(2000+THETA[3]+ALPH2*OIR[3])j
PH1;
R:=-Fj

END;
ENDj {proe nevval }

{---}
PROCEDURE MGR:

{ Finds an alpha such that the optimal value at theta+alpha*d is better
than that at theta. As the iterations from one theta to the next are
carried out, the search in this procedure for such an alpha becomes
longer and more thorough. }

VAR FLAG,I:INTEGER: G,Q,R,V1,V2,Zl,Z2:REAL: CONTINU:BOOLEAN:

BEGIN
1:=1:
COUHT: =COUNT+1 ;
Vl:=O; V2:=ALPHABAR:
G:=(3-SQRT(5»/2;
Zl:=V1+G*(V2-V1);
Z2 :=V1+V2-Z1 j
FLAG:=3;
NEWVAL(Zl,Z2,Q,R,FLAG):
IF Q>R TH EN V1: =Z1
EL SE V2:=Z2:

99

-
VaITELN(OFILE); WRlTELN(GFlLE);
VaITELN(OFILE,' 1','V1':11,'V2':18,'ALPHA':19);
VaITELN(OFILE) ;
WRITELN(OFILE,I:4,Vl.V2,ALPHA);
CORTlNU:=TRUE;
WHILE CONTINU DO BEGIN

IF «PERCENT>ZPS1) AND (I>MGRlTER» OR
«PERCENT<=EPS1) AND «V2-Vl)<EPS4» TH EN

IF ALPHA>EPS2 THEN CONTlNU:=FALSE;
1:=1+1;
COUNT:=COUNT+l ;
IF Q>R THEN BEGIN

Zl:=Z2;
Q:=R;
Z2:=V2-G*(V2-V1);
FLAG:=2;
NEWVAL(Zl,Z2,Q.R.FLAG).
ALPHA:=Z2j
END

EL SE BEGIN
Z2:=Zl;
R:=Q.
Zl:=Vl+G*(V2-Vl)j
FLAG:=l;
NEWVAL(Zl,Z2,Q,R.FLAG).
ALPHA:=Zlj

ENDj
IF Q>R TdEN Vl:=Zl
ELSE V2:=Z2j
WRITELN(OFILE,I:4,Vl,V2,ALPHA).

END;
END; {proc mgr}

{XXXXXXXXXXXXY.Y.Y.Y.Y.XY.Y.Y.Y.Y.XXXXY,Y.Y.Y.XXXXXY.Y.Y.XY.XY.XY.XXXY.Y.Y.XXXY.Y.XY.Y.Y.Xy'y.y.y.Y.Y.Y.}
{XY.y.Y.Xy'y'y'y'y.y.y.y'y'y'y'y.y.Y.XY. MAI N PRO G R A H y. Y. 1. 1. Y. Y. Y. Y. Y. Y. 1.y.1. Y. Y. Y. Y. y.1.y.y.}
{XY.y. y. y. Y. Y. Y. y. y. Y. Y. y.y.1.y. y.y.y.y.y.y.y. y.Y,y.y.y.y.y.1.y.y. y. y. y. 1. y. y. y. y. y.1.y.1.y.y. y. 1. 1. Y. Y. Y. Y. Y. y. Y. 1.y.y.y.y. y.y.y.y.y.y.}

BEGIN
CLRSCR;
PERCENT: = 1 ;
MSG:=O;
COUNT:=O;

TIMER(HOUR.HIN,SEC,FRAC)j

100

(

(

STlME:=HOUR*3600+MIN*60+SEC+FRAC/100;

ASSIGN(OFILE,FILE2); REWRITE(OFlLE);
lNIT;
READIN;
PRINTDATA;
PRlNTI;

ALPHA :=0;
FOR I :=1 TO P DO DIR[I] :=0. ;
THETA[l] :=0.; THETA[2] :=0.; THETA[3] :=0;
A[8,6] :=NORMAL [5J / (700+THETA [1] +ALPHA*DlR [1]);
A [13.3] :=NORMAL[13] 1 (1800+THETA[2] +ALPHA*DIR[2]);
A[13.6] :=NORMAL[13] / (2000+THETA[3] +ALPHA*DIR[3]) ;
PHi;

lTER: =0; CONTINU: =TltUE;
WHILE CONTINU DO BEGIN

lTER: =ITER+l ;
HEADING;
CURRENT;

GOTOXY(12,5) ;
WRITELN(~PERFORMING THETA-ITERATION NO.' ,ITER:3);
GOTOXY(12 ,~) ;
WRITELN('CURRENT THgTA:');
FOR. 1: =1 TO P DO BEGIN

GOTOXY(28,8+I) ;
WRITELN('THETA(' .1: 1,') =' ,THETA [1]: 13:7);

END;

PRSOL(C) ;
ALPHA:=O;
CALCDG;
FOR 1:=1 TO P DO BEGIN

LOWER[I] :=LOBD[I]-THETA[I];
IF ABS(LOWER[I]) <EPS3 TH EN LOWER[I] :=0;
UPPER [I] : =HIBD [I] -THETA [I] ;
IF ABS(UPPER[I])<EPS3 THEN UPPER[I]:=O;
OIR[I] : =-SIGNUM(GRADG[I]);
IF ABS(GRADG[I])<EPS2 THEN DIR[I]:=O.O;
IF (DIR[I] =-1) AND (LOWER[I] >-1) THEN DIR[I] :=LOWER[I] ;
IF (DIR[I]= 1) AND (UPPER[I]< 1) THEN DIR[I] :=UPPER[I] ;

END;

101

-
BIGGEST: =0 ;
FOR 1 :=1 TO P DO IF ABS(DIR[I] »BIGGEST THEN BIGGEST:-ABS(DIR[I]);
IF BIGGEST>EPS3 TREN BEGIN

MAXALPHA:
OLDF:=F;
MGR;

END
ELSE CONTlNU:=FALSE;
PERCENT:=(F-OLDF)/OLDF;

END;

FOR 1: =1 TO M DO BEGIN
SLA TER [1] : =0 ;
FOR J:=l TO N DO

SLATER[I] : =SLATER [1] +A [l, J] *X [J] :
SLATER [1] : =SLATER [1] -B [1] ;
WRITELN(OFILE,'P[' ,1:2,']=' ,SLATER[I]);

END;

TIMER(HOUR,MIN,SEC,FRAC);
ETIME: =1I0UR*3600+MIN*60+SEC+FRAC/100;
RUNTIME:=ETIME-STIME;
WR1TELN(OFILE); WRITELN(OFlLE); WRITELN(OFILE); WRITELN(OFILE);
WRITELN(OFILE,'NUMBER OF THETA ITERATIONS:',ITER:4):
WRITELN(OFILE,'NUMBER OF MGR ITERATIONS: ',COUNT:4);
WRITELN(OFILE);WRITELN(OFILE,'RUN TIME: ',RUNTIME:l0:2,' SECONDS');

CLOSE(OFILE) ;
END. {main program }

102

(

References

[1] Avriel, M., A.C. Williams, "An Extension Of Geometrie Programming With
Applications In Engineerin~ Optimization," Journal Of Engineering Mathematic8 5
(1971) 187-194.

[2] Bank, B., J. Guddat, D. Klatte, B. Kummer, K. Tammer, Non-Linear Pam­
metric Optimization (Akademie-Verlag, Berlin, 1982).

[3] Ben-Israel, A., A. Ben-Tai, S. Ziobec, Optimality In Non-Linear Progmmming:
A Feasible Directions Approoch (John Wiley & Sons, Ine., New York, 1981).

[4] Ben-Israel, A., A. Ben-Tai, S. Ziobec, "Optimality Conditions in Convex Pro­
gramming." in: A. Prékopa, ed., Survey of Mathematical Progmmming, Proceedings
of the 9th International Mathematical Progmmming Symposium Budapest (1976)
153-169.

[5] Berge, C., Espaces topologiques, fonctions multivoques (Dunod, Paris, 1966).

[6] Chvatal, V., Linear Progmmming (W.H. Freeman and Company, New York, 1983).

[7] Cc:dville, A.R., A Compamtive Study On Nonlinmr Progmmming Codes IBM Sei-
entific Center Report 320-2949, New York, 1968.

[8] Dantzig, G.B., J. Folkman, N. Shapiro, "On the Conti nuit y of the Minimum
Set of a Continuous Funetion," Journal of Mathematical Analysis and Applications
17 (1967), 519-548.

[9] Dembo, R.S., "A Set Of Geometrie Programming Test Problems And Their Solu­
tions," Mathematical ProgTYJm~;ng 10 (1976) 192-213.

[10] Dorfman, R., "Mathematical or "Linear," Programming: A Non-Mathematical
Exposition," The American Economie Review 43 (1953), 797-825.

[11] Eremin, 1.1., N.N. Astafiev, Introduction To The Theory Of Linear And Com'ex
Progmmming (Nauka, Moscow, 1976). In Russian.

[12] Gal, T., "Linear Parametrie Programming-A Brief Survey," Mathematical Pro­
gmmming 21 (1984), 43-68.

[13] Guddat, J., "Parametric Optimization: Pivoting and Predictor-Corrector Contin­
uation, A Survey," in: J. Guddat, H.Th. Jongen, B. Kummer, F. Nozicka, eds.,
Pammetric Optimization and Related Topics, (Akademie-Verlag, Berlin, 1987) 125-
162.

103

......

[14:J Hock, W., K. Schittkowski, "Test Examples For Nonlinear Programming Codes,"
in: M. Beckmann and H.P. Künzi, eds., Lecture Notes In Economics Ând Mathe­
matical Systems 187 (Springer-Verlag, Berlin, 1981).

[15J Hogan, W.W., "PoÎnt-to-Set Maps in Mathematical Programming: SIAM Review
15 (1973), 591-603.

[16J Huang, S" Regions of Stability in Mathematical Programming Modela, M.Sc. The­
sis, Concordia University, 1988.

[17J Naylor, T.H., E.T. Byrne, l.M. Vernon, Introduction to Linear Programming:
Methods and Cases (Wadsworth Publishing Company, Ine., Belmont, California,
1970).

[18J Petrié, J., S. Zlobec, Nonlinear Programming (Seientific Books Publisher, Bel­
grade, 1983). In Serbo-Croatian.

[19J Semple, J., S. Zlobec, "On the Continuity of a Lagrangian Multiplier Function in
Input Optimization," Mathematical Programming 34 (1986) 362-369.

[20J Semple, J., S. Zlobec, "On a Necessary Condition for Stability in Perturbcd
Linear and Convex Programming," Zeitschrift für Operations Researrh, Series A,
Theorie 31 (1987) 161-172.

[21 J van Rooyen, M., S. Zlobec, "A Complete Characterization of Optimal Economie
Systems with Respect to Stable Perturbations" (To be published).

[22] Zlobec, S., A. Ben-Israel, "Perturbed Convex Programs: Continuity of Optimal
Solutions and Optimal Values," in: W. Oettli and F. Steffens, eds.,Methods of Op­
erations Research: Proceedings of the III Symposium on Operations Re8earch Verlag
AthenaumjHainjScriptorjHanstein 31 (1979) 739-749.

[23] Zlobec, S., R. Gardner, A. Ben-Israel, "Regions of Stability for Arbitrarily
Perturbed Convex Programs," in: A. Fiacco, ed., Mathematical Programming with
Data Perturbation (M. Dekker, New York, 1981) 69- 89.

[24] Zlobec, S., "Regions of Stability for IlI-Posed Convex Programs," Aplikace Matem­
atiky 27 (1982), 176-191.

[25] Zlobec, S., "Characterizing an Optimal Input in Perturbed Convex Programming,"
Mathematical Programming 25 (1983), 109-121.

[26] Zlobec, S., "Sur vey of Input Optimization," Optimization 18 (1987) 309-348.

[27] Zlobec, S., "Topics in Input Optimization," Paper presented at the International
Symposium on the Occasion of Professor A. Charnes' 70th Birthday, University of
Texas at Austin, October 1987.

[28] Zlobec, S., "Characterizing Optimality in Mf't.hematical Programming Modela,"
Acta Applicandae Mathematicae 12 (1988), 113-180.

104

(

(~

[29] Zowe, J., "Nondifferentiable Optimization-A Motivation and a Short Introduction
into the Subgradient and the Bundle-Concept," in: K. Schittkowski, ed., Computa­
tional Mathematical Progmmming (Springer-Verlag, Berlin, 1985).

105

