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de mes parents et de ma compagne de vie. Merci. My advisor Guy Moore also played

a crucial role in it, which he may or may not recognize. I thank him.

The very idea of doing a Ph. D. would make little sense without the many enlightening

discussions that occur during it. My deepest thanks (in arbitrary order) go to Alex

Maloney, Charles Gales, Keshav Dasgupta, Sangyong Jeon, Robert Brandenberger,

Omid Saremi, Nima Lashkari, Mohammed Mia and everyone else here at McGill,

for the several discussions which I had the chance to enjoy with them. Also my

deepest thanks to Mikko Laine and Aleksi Vuorinen for very enjoyable discussions

at Bielefeld.

iii



ABSTRACT

Relativistic heavy ion collisions aim to study the quark-gluon plasma, a hot and

dense state of matter in which quarks and gluons, which are the elementary con-

stituents of nuclei, are set free from the forces that normally confine them. Because

of the very short lifetime of the produced plasmas, to study them it is necessary to

use probes produced by the collisions themselves. Particles carrying exceptionally

large energies, so-called hard probes, are promising candidates to allow a precise

reconstruction of the complete history and properties of the evolving plasma. In

this thesis, by extending to next-to-leading order at weak coupling the calculation

of scattering rates of high-energy jets, we identify an important source of theoreti-

cal uncertainties in existing models of their propagation through the medium, and

we discuss how this could be improved in the near future. Considering energy loss

of heavy quarks, we propose a novel nonperturbative method for quantifying it in

the large mass limit, using numerical lattice simulations. Finally, we consider the

prospects that hard processes in supersymmetric theories could enjoy a simplified

description compared to the non-supersymmetric case, thus making these theories

into useful mathematical tools.
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ABRÉGÉ

Les collisions ultrarelativistes d’ions lourds visent à étudier le plasma de quarks

et gluons, un état extrêment dense et chaud de la matière dans lequel les quarks et les

gluons, les constituants élémentaires des noyaux atomiques, sont libérés des forces qui

les confinent habituellement. Les plasmas produits ont une durée de vie très brève

et doivent être étudiés à l’aide des particules produites lors de la collision elle-même.

Les particles exceptionellement énergétiques, ou sondes dures, offrent la possibilité de

reconstruire de façon précise l’évolution du plasma. Dans cette thèse, en étendant au

second ordre perturbatif le calcul du taux de collision pour un jet de haute énergie,

nous identifieront une source importante d’incertitude dans les théories existantes

concernant la propagation des jets, et nous discuterons de possibles améliorations à

moyen terme. Considérant l’énergie perdue par des quarks lourds, nous proposerons

une méthode non-perturbative pour quantifier leur perte d’énergie dans la limite de

grande masse, au moyen de simulations numériques en théorie de jauge sur réseau.

Finallement, nous considérerons la possibilité que les processus durs à température

finie dans les théories supersymétriques bénéficient d’une description simplifiée, par

rapport au cas non supersymétrique, ce qui leur conférerait un intérêt mathématique

accru.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTRIBUTIONS OF AUTHORS . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Brief historical review . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relativistic heavy ion collisions . . . . . . . . . . . . . . . . . . . 4
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . 6

2 Finite temperature field theory . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Real-time formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Euclidean formalism and retarded amplitudes . . . . . . . . . . . 13
2.3 Hard thermal loops . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Euclidean version of HTL theory . . . . . . . . . . . . . . . . . . . 19
2.5 Limitations of perturbation theory . . . . . . . . . . . . . . . . . . 21

3 A technique for evaluating space-like and light-like correlators . . . . . . 23

3.1 Field correlators on space-like hypersurfaces . . . . . . . . . . . . 24
3.2 Light-like hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Application: elastic scattering rates for ultrarelativistic particles . 28
3.5 Sum rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



3.5.1 Proof of Eq. (3.5) using sum rules . . . . . . . . . . . . . . 30
3.5.2 Comparison with Aurenche, Gelis and Zaraket’s sum rule . 31

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Jet quenching at next-to-leading order . . . . . . . . . . . . . . . . . . . 34

4.1 Motivation and introduction . . . . . . . . . . . . . . . . . . . . . 34
4.2 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Collision kernel . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.2 Application to jet quenching . . . . . . . . . . . . . . . . . 41
4.2.3 Momentum broadening coefficient (q̂) . . . . . . . . . . . . 43

4.3 Elastic collision rate at next-to-leading order . . . . . . . . . . . . 47
4.3.1 Operator definition of C(q⊥) and dimensional reduction . . 47
4.3.2 Diagram (b) . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Diagram (c) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.4 Diagrams (d)-(g) . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.5 Final formulas . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Evaluation of q̂(NLO) . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Momentum broadening versus bremsstrahlung . . . . . . . . . . . 59

4.5.1 “Three-pole” propagation at next-to-leading order . . . . . 60
4.5.2 Operator ordering . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Heavy quark momentum diffusion . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Reduction of the current-current correlator . . . . . . . . . . . . . 69

5.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Heavy quark limit . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 Euclidean correlator . . . . . . . . . . . . . . . . . . . . . . 77

5.3 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Correlator in lattice regularization . . . . . . . . . . . . . . . . . . 84
5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Supersymmetry in high-energy processes at finite temperature . . . . . . 88

6.1 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3 Thermal masses at weak coupling . . . . . . . . . . . . . . . . . . 91
6.4 Imaginary parts of self-energies at weak coupling . . . . . . . . . . 96

viii



6.4.1 Collinear radiation . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.2 2→ 2 scattering at weak coupling . . . . . . . . . . . . . . 99

6.5 Self-energies at strong coupling . . . . . . . . . . . . . . . . . . . 103
6.5.1 Bulk equations . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5.2 WKB solution and supersymmetry . . . . . . . . . . . . . . 106

6.6 Deeply virtual correlators . . . . . . . . . . . . . . . . . . . . . . . 110
6.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Appendix A: Examples of dynamics leading to a transport peak . . . . . . . . 118

Appendix B: Calculation of next-to-leading thermal masses . . . . . . . . . . . 120

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

ix



LIST OF TABLES
Table page

6–1 DGLAP kernels for various branching processes . . . . . . . . . . . . . 98

6–2 Scattering amplitudes in Wess-Zumino model . . . . . . . . . . . . . . 100

x



LIST OF FIGURES
Figure page

1–1 Cartoon of a heavy ion collision . . . . . . . . . . . . . . . . . . . . . 5

2–1 Schwinger-Keldysh contour . . . . . . . . . . . . . . . . . . . . . . . . 10

2–2 Self-energy diagrams resummed by HTL theory . . . . . . . . . . . . 17

4–1 Nuclear modification factor RAA. . . . . . . . . . . . . . . . . . . . . 35

4–2 Di-hadron azimuthal correlations at high pT . . . . . . . . . . . . . . 36

4–3 Next-to-leading order correction to the collision kernel C(q⊥). . . . . . 40

4–4 Feynman diagrams for bremsstrahlung . . . . . . . . . . . . . . . . . 42

4–5 Wilson loop giving the dipole amplitude . . . . . . . . . . . . . . . . 47

4–6 Tree- and one-loop Feynman diagrams contributing to C(q⊥) . . . . . 50

4–7 Additional Feynman diagrams for a triplet of charges . . . . . . . . . 61

5–1 Numerical evaluation of Eq. (5.40) . . . . . . . . . . . . . . . . . . . . 83

6–1 One-loop self-energy of a high-energy fermion . . . . . . . . . . . . . 93

6–2 2→ 2 scattering processes in Wess-Zumino model . . . . . . . . . . . 102

6–3 Schematic features of effective potential in AdS . . . . . . . . . . . . 107

xi



CHAPTER 1
Introduction

1.1 Brief historical review

The physical world, in our present understanding, involves four, more or less

independent, known forces through which its known constituents interact: the grav-

itational force, the electromagnetic force, the weak nuclear force and the strong

nuclear force. Remarkably, the electromagnetic and weak nuclear forces are known

to unify at very high energies, or short distances of order 10−16 cm, where they be-

come entangled aspects of the “electroweak” interaction, but the other forces do not

unify under any known regime and are naturally studied in isolation.

The modern understanding of the strong nuclear force was assembled through-

out the twentieth century. A major and fundamental step was undoubtedly the very

discovery by Rutherford and collaborators in 1911 of nuclei lying at the center of

every atom. The discovery by Chadwick in 1932 of the neutron as a partner to the

proton brought another fundamental step. In 1935, Yukawa theorized the existence

of a new set of light particles which would mediate the strong force between nucleons

(the protons and neutrons), thereby accounting for their binding together into nu-

clei. Remarkably, these particles were discovered experimentally in the late 1940’s;

we now refer to them as pions. This was shortly after the immense power of the

strong force had irreversibly and permanently forced its way into History. Yet, a

full understanding of this force remained elusive, as the discovery of a complete and
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unexpected spectrum of strongly interacting particles proceeded during the 1950’s

and 1960’s. The constituent quark model, proposed independently by Gell-Mann

and Zweig in 1964, could organize this complex spectroscopy in terms of the bound

states of elementary constituent quarks, but it was plagued by a fundamental puzzle:

the elementary quarks in question had never (and still have not) been observed in

isolation. This was the so-called confinement problem.

A fully fledged theory of the dynamics of the quarks and of their interactions

eventually emerged in 1973 after much work, under the name of Quantum Chro-

modynamics (QCD). QCD possesses the key property of asymptotic freedom, which

was discovered in theoretical work by Gross, Politzer and Wilzcek [1, 2] (who shared

the Nobel Prize for this discovery in 2004), and which reconciles apparently contra-

dictory facets of the strong interactions. For one thing, and as was suggested by

the high-energy experiments which took place at Geneva’s CERN and at Stanford

SLAC’s during the sixties, at high energies the constituents of hadrons behave much

like free, non-interacting particles: the quarks and the gluons. On the other hand,

confinement requires interactions to become very strong as quarks are taken to large

separations, so as to forbid their separation. Asymptotic freedom is that property

of the effective interaction strength of a theory – which in quantum field theory, as

in generic multi-scale systems, generally depends on the scale of interest – to be-

come weaker and weaker at shorter distances. At short distances the “strong” force

is intrinsically weak, and its strength builds up as larger and larger distance scales

2



are allowed to cooperate, until it eventually becomes very strong and confinement

dynamics sets in (at distances of order Λ−1
QCD ∼ (400 GeV)−1)1 .

The known hadrons find their places in QCD as the bound states of quarks and

gluons, each of which carry an elementary SU(3) “color” charge; confinement means

that they always bind into overall color-neutral objects. The pions, which Yukawa

originally proposed to be the mediators of the strong force, are the mediators of

only a (still strong) residual interaction between such color-neutral objects. There

is nowadays overwhelming evidence for QCD accurately describing the strong force,

and the confinement problem has evolved into an enduring mathematical problem,

of proving rigorously that, and understanding how, confinement is actually realized

within the theory of QCD.

Asymptotic freedom means, as was soon realized by Collins and Perry in 1976

[3], that if quarks and gluons could be packed sufficiently densely in a region of space

(as is believed to have happened in the early history of the Universe, and which could

occur in the core of certain neutron stars), the interaction between them would have

no room to grow strong and confinement would be lost. As a function of density

QCD thus experiences a deconfinement phase transition over which the relevant

degrees of freedom turn from color-neutral bound states to streaming quarks and

gluons. At asymptotically high temperatures (and thus densities), the interaction

strength will be weak and due to formal similarities between weakly coupled QCD

and electromagnetism this state of matter is expected to behave much like a plasma.

1 We work in units in which h̄ = c = 1.
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Hot and deconfined QCD matter is thus referred to as a quark-gluon plasma (QGP)

[4].

An experimental program was launched in the 1980s with the aim of producing

and studying this state of matter through the collisions of relativistic heavy ions. This

was pursued at several locations, which included Berkeley’s Bevalac, Brookhaven’s

Alternating Gradient Synchrotron (AGS), CERN’s Super Proton Synchrotron (SPS),

and Brookhaven’s Relativistic Heavy Ion Collider (RHIC), which was commissioned

in year 2000. For the first time at RHIC, evidence has begun to accumulate, in gold-

gold collisions with center-of-mass energy of 200 GeV per nucleon, showing that a

new state of matter is being produced [5, 6, 7, 8]. The commissioning of the heavy ion

program at CERN’s Large Hadron Collider (LHC) near Geneva, in the near future,

will provide access to even higher energies and temperatures.

1.2 Relativistic heavy ion collisions

The unfolding of a heavy ion collision goes as in the following [9]. Two nuclei

collide head on with each other and a dense region is created in the intersecting

region. The produced matter interacts with itself, and the inertia of the outer crusts

acts like a wall exerting a pressure onto the inner crusts, thereby slowing down

their expansion; this is why large nuclei are used. The very large pressure of the

matter drives its expansion until it eventually cools down to temperatures below the

deconfinement transition. At that point the quark-gluon plasma is converted to a

gas of hadrons, which ultimately stream to the experimental detectors where their

properties are measured. The lifetime of the dense matter (as measured in its local

rest frame) is relatively modest, estimated (from hydrodynamics model) to be of
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Figure 1–1: Cartoon of a heavy ion collision: (a) two Lorentz-contracted nuclei
(“pancakes”) collide forming (b) a dense, expanding matter in the intersecting region.
Some hard particles, represented by longer arrows, are produced in the initial collision
and have a finite probability of escaping the plasma.

order 5 ÷ 10 fm/c (∼ 2 ÷ 3 × 10−23 s), depending on the impact parameter of the

colliding nuclei. Heavy ion collisions are thus sometimes referred to as “little bangs”.

A cartoon of a heavy ion collision is depicted in Fig. 1–1.

A most remarkable finding at RHIC was the success of ideal hydrodynamics

to describe global observables (overall momentum distributions) [5, 6, 7, 8]. This

is indicative that local thermal equilibrium is achieved, with very short mean free

paths compared to the lifetime of the medium. In fact the viscous corrections to ideal

hydrodynamics are very well constrained [10], suggesting even that the quark-gluon

plasma created at RHIC behaves very nearly like a perfect, viscosity-free, liquid.

To study any state of matter one needs some kind of probe. The accessible

quark-gluon plasmas are too small and too short-lived for any external probe to

be used, and internally produced probes must be used. The vast majority of the

thousands of particles which come out of a collision are soft particles, which carry

momenta pT
<∼ 1 GeV in the directions perpendicular to the beam axis. Since the
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medium is optically thick to them, these particles only retain information about the

latest stages of the fireball evolution, at which local kinetic and chemical equilibrium

are lost (kinetic and chemical freezeout). It is from these particles that the low

viscosity is inferred.

To constrain better the history of the fireball, in particular the early, ther-

malization, stages, probes having less interactions are required. Good candidates

are photons, which interact only electromagnetically, as well as high-energy partons

(jets) or heavy quarks (charm and bottom). These are known collectively as hard

probes.

This thesis will be devoted to studying and developing the theory of the latter

two types of hard probes, high-energy jets and heavy quarks, in interaction with a

locally thermalized quark-gluon plasma.

1.3 Organization of the thesis

The organization of this thesis is the following. In chapter 2 we begin with

a review of the general formalism relevant for studying thermalized quantum field

theories, with special emphasis on the quark-gluon plasma at weak coupling. In

chapter 3 we introduce a novel mathematical technique for dealing with correlation

functions along lightlike trajectories, which is based on ideas of Euclidean field theory.

This will be applied in chapter 4 to the calculation, for the first time, of the next-to-

leading order corrections to the elastic collision rate felt by a ultrarelativistic particle.

This elastic rate will be related to that of bremsstrahlung energy loss.

In chapter 5 we review the description of heavy quark dynamics, at small ve-

locities, in terms of a Langevin model. We will establish rigorously for the first time

6



how to extract the relevant transport coefficient, the momentum diffusion coefficient,

from nonperturbative lattice simulations of QCD from which the heavy quarks have

been integrated out. In chapter 6 we investigate the factorization of hard processes at

nonzero temperature in terms of a perturbatively calculable hard part, times a soft,

temperature-dependent, part. More specifically, we will investigate the question of

whether supersymmetry, if present in the zero-temperature theory, will be preserved

in the hard sector.

7



CHAPTER 2
Finite temperature field theory

In finite temperature (quantum) field theory one has to study expectation values

of operators in thermal ensembles,

〈O1(x1) · · ·On(xn)〉β ≡
1

Z
Tr
[

e−βHO1(x1) · · ·On(xn)
]

≡ 1

Z

∑

n

e−βEn〈n|O1(x1) · · ·On(xn)|n〉, (2.1)

where β = 1/T is the inverse temperature of the ensemble and Z = Tr e−βH is its

partition function; the states |n〉 span a basis of energy eigenstates of the theory.

Throughout this thesis we set chemical potentials to zero, since the quark-gluon

plasma created at RHIC can be considered, in a first approximation, to be charge-

neutral. In this technical chapter, we review the general formalism relevant for

studying Eq. (2.1).

We assume basic knowledge of quantum field theory and of QCD at zero tem-

perature at the level of [11, 12]. Unless expressly stated otherwise, we ignore the

massive quarks and study QCD with Nf = 3 flavors of massless quarks. The QCD

action is1

S = −
∫

d4x

[

Ga
µνG

µν a

4g2
s

+

Nf
∑

i=1

ψi(γ
µDµ)ψi

]

, (2.2)

1 We use (−,+,+,+) metric signature.
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where

Ga
µν = ∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν (2.3)

is the field-strength tensor of the gauge field Aaµ, which takes value in the adjoint

representation of the SU(3) gauge group. The ψi are Nf Dirac fermions in the fun-

damental representation of SU(3) with

Dµψi = (∂µ − iAaµta)ψi, (2.4)

the SU(3) generators ta being normalized to Tr tatb = 1
2
δab. Real QCD has Nc=3

colors, but it is useful to consider also the slight generalization in which the gauge

group is replaced with SU(Nc).

Textbook presentations of thermal field theory can be found in [13, 14], the first

of these references also introducing the quark-gluon plasma. Review articles dealing

specifically with the dynamics of the weakly coupled quark-gluon plasma are [15, 16].

2.1 Real-time formalism

The operators entering Eq. (2.1) are in the Heisenberg representation,

Oi(ti, ~xi) ≡ eiHtiOi(t=0, ~xi)e
−iHti , (2.5)

so inspection of Eq. (2.1) reveals that any correlator of unequal-time operators will

contain at least one forward and one backward time evolution operator. This is

the key difference with conventional vacuum time-ordered amplitudes, for which

only forward time evolution is needed (since then the final state vacuum resides at

t = +∞): here one has to go back to the initial time.

9



tin tmax

int  −iβ

2

1 time

Figure 2–1: Schwinger-Keldysh contour, with tin → −∞ and tmax →∞ in the end.

In a path-integral formulation, the forward time evolution operator e−iHt is

represented by a path-integral of ei
R

dtL, L the Lagrangian, over paths (field config-

urations) spanning the time interval t. Its inverse eiHt is similarly represented by a

path-integral of ei
R

dtL over the same fields, with the sign of dt reversed as if the paths

were moving backward in time. The density matrix e−βH is represented by a path

integral going an amount −iβ in the imaginary time direction. Thus the minimal

contour C needed to compute Eq. (2.1), depicted in Fig. 2–1, contains two horizontal

components and one vertical component. C is called the Schwinger-Keldysh contour

[17]. Bosonic fields are periodically identified at the endpoints of the contour, and

fermionic fields are anti-periodically identified.

The fields on the different branches on the contour are just integration variables

in a path integral, but being distinct they need distinct labels to avoid confusion.

Thus we formally distinguish operators inserted on the two horizontal branches using

the superscripts 1 and 2, respectively, as in O1 and O2.

10



The path integral over the contour C generates C-ordered correlation functions,

meaning time-ordered for the 1- fields and anti-time-ordered for the 2- fields:

〈O1
1 · · ·O1

mO2
m+1 · · ·O2

n〉C ≡
1

Z

∫

[Dφ(x ∈ C)] ei
R

C
dtL

×
[

O1
1 · · ·O1

mO2
m+1 · · ·O2

n

]

= 〈
[

T Om+1 · · ·On
]

[T O1 · · ·Om]〉β, (2.6)

with the space-time arguments suppressed for clarity; T (T ) is the (anti-) time-

ordering symbol.

In perturbation theory vertices are generated in every part of the contour and

propagators connecting different branches are needed; the vertical part of the contour

can be moved to time tin = −∞ and ignored for any practical purpose [18] (except

for computing the partition function), in which case one is left with a propagator

which is a 2× 2 matrix involving the 1- and 2- fields (see also, [19]).

Cyclic invariance of the trace applied to Eq. (2.1) leads to identities, known as

Kubo-Martin-Schwinger (KMS) or fluctuation-dissipation relations [13, 14], which

hold in thermal equilibrium. They relate amplitudes with different operator order-

ings, and in particular they relate all two-point amplitudes to the retarded one







G11
ij (p) G12

ij (p)

G21
ij (p) G22

ij (p)






=







GR
ij(p)± n(p)ρij(p) ±n(p)ρij(p)

(1± n(p))ρij(p) −GR
ij(p) + (1± n(p))ρij(p)







(2.7)

where

ρij(p) ≡ G12
ij (p)−G21

ij (p) = GR
ij(p)−GA

ij(p) (2.8)
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is the spectral density, and the different signs refer to bosons and fermions, in which

case n(p) ≡ 1/(eβp
0∓1) stands, respectively, for the Bose-Einstein distribution nB or

the Fermi-Dirac distribution nF. The retarded two-point function is defined as

GR
ij(x−y) ≡ 〈[Oi(x),Oj(y)]〉βθ(x0−y0) (2.9)

= G11
ij (x−y)−G12

ij (x−y)

= G21
ij (x−y)−G22

ij (x−y),

where θ is the step function. The advanced function is defined as GA
ij(x−y) ≡

GR
ji(y−x). For the autocorrelator of bosonic operators, we record that GA

ii(p) =

−GR
ii
∗(p) and ρii(p) = 2ReGR

ii(p), in momentum space.

It is useful to bring retarded amplitudes to the forefront of one’s formulation.

Heuristically, since the Schwinger-Keldysh formalism makes causality manifest by

requiring only initial data to be specified, working with explicitly causal quantities at

intermediate steps can rightfully be expected to lead to simplification. In agreement

with this logic, the retarded propagators are those which take the simplest form at

nonzero temperature; for instance, for a free scalar field at any temperature,

GR
(0)(p) =

i

(p0+iǫ)2 − ~p2
, ρ(0)(p) = 2πδ(p2

0 − ~p2) sgn(p0), (2.10)

which differs from the vacuum time-ordered propagator only through the iǫ prescrip-

tion (the same being true of any free-field propagator in general). This should be

contrasted with the more complicated expression for the time-ordered propagator,

G11, given in (2.7). Furthermore, retarded amplitudes possess natural and immediate

physical interpretations in terms of response theory, to be given in the next section,

12



whereas the physical significance of time-ordered functions, familiar at T = 0, be-

comes far less immediate at T 6= 0. For all these reasons, the so-called Keldysh basis

is particularly useful. It is defined by the field relabelling

φr =
1

2
(φ1 + φ2), φa = φ1 − φ2 (2.11)

in which the equilibrium propagator becomes the 2 by 2 matrix







Grr(p) Gra(p)

Gar(p) Gaa(p)






=







(1
2
± n(p))ρ(p) GR(p)

GA(p) 0






. (2.12)

A review of this formulation, in which the transformed interaction vertices can also

be found, is given in [20]; a brief overview is in [21]. In this thesis our use of this

particular formalism will be limited to the tree-level in perturbation theory.

2.2 Euclidean formalism and retarded amplitudes

In zero-temperature quantum field theory, much information is contained in the

Euclidean amplitudes. In fact, they are known to encode the full content of the

Lorentzian theory [22]. A similar situation holds at non-zero temperature. In the

Euclidean description of a thermal system, the Euclidean time becomes periodic

with period β, just like the vertical component of the contour C. The Euclidean

frequencies are correspondingly quantized,

ωn = 2πnT, bosons, ωn = 2π(n+
1

2
)T, fermions, (2.13)

and frequency integrals in perturbation theory turn into frequency sums:

∫

d4p

(2π)4
→ T

∑

ωn

∫

d3p

(2π)3
. (2.14)
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These are the only formal changes to the Euclidean theory, compared to the situation

at T = 0. The frequencies (2.13) are known as the Matsubara frequencies.

Any real-time correlator for which the time evolution in Eq. (2.5) is superfluous

can be calculated equivalently in Euclidean or Lorentzian signature; examples include

equal-time correlators. But to obtain a general correlator, analytic continuation must

be used. There is a distinguished analytic continuation of the Euclidean amplitudes,

in which all frequency arguments ωi are taken from the discrete set of Matsubara

frequencies to the full complex frequency plane, which is singled out by having only a

branch cut singularity on the real (Lorentzian) axis in each ωi and at most polynomial

growth at large |ωi| [23]. This coincides with the real-time retarded amplitudes

[24, 25]. These are the real-time n-point amplitudes involving one Keldysh r- field

and (n−1) Keldysh a- fields; the terminology “retarded” is used because these vanish

unless the r- field carries the largest time argument. More precisely, in this analytic

continuation the branch cuts along the real frequency axis should be approached from

above for each a-field. The ensuing analyticity of the amplitudes in the upper-half

plane implies the “retarded” causality structure.

Consider for instance a two-point amplitude. At the Euclidean Matsubara fre-

quencies this may be written as (throughout this section, for clarity, we make explicit
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only the frequency dependence):

GE
ij(ω

E
n ) ≡ 1

Z

∫ β

0

dτ eiω
E
n τTr

[

e−βHOi(τ)Oj(0)
]

=
1

Z

∑

m,n

〈n|Oi|m〉〈m|Oj |n〉
∫ β

0

dτ eiω
E
nτ−τEm−(β−τ)En

=
1

Z

∑

m,n

〈m|Oi|n〉〈n|Oj|m〉
e−βEm − e−βEn

En − Em + iωE
n

, (2.15)

where the sums run over complete sets of energy eigenstates. The “distinguished

analytic continuation” of GE is simply Eq. (2.15) with iωE
n replaced with ω, where ω

is real in Lorentzian signature. On the other hand, from its the definition (2.9), the

retarded two-point amplitude evaluates to

GR
ij(ω) = Gra

ij (ω) = i
1

Z

∑

m,n

〈n|Oi|m〉〈m|Oj|n〉
e−βEn − e−βEm

En −Em + ω + iǫ
. (2.16)

Comparing, we find:

GR
ij(ω) = −iGE

ij(iω
E
n ⇒ ω + iǫ). (2.17)

This is the claimed nonperturbative identity between the retarded and Euclidean

two-point amplitudes. Higher-point amplitudes are discussed in [24, 25].

Following [20] we now give the physical interpretation of retarded amplitudes,

two-point and higher-point, in terms of (non)linear response theory. Consider adding

a small perturbation δfH(t′) =
∑

i f
i(t′)Oi(t′) to the Hamiltonian of a system, taken

initially to be in a thermal configuration at t = −∞. This amounts to adding a

perturbation δfL
1(t′) = −δfL2(t′) = −δfH(t′) to the Lagrangian along the contour

C, and thus amounts to the insertion of Keldysh a operators. The expectation value

of the operator Oi(t) is equal to that of O1
i (t) or of O2

i (t), or of their averages, all
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being equal within unitary evolution2 ,

〈O1
i (t)〉f = 〈O2

i (t)〉f = 〈Ori (t)〉f . (2.18)

Thus, expanding Eq. (2.6) in powers of f , we obtain the response to the perturbation:

〈Oi(t)〉f = 〈Ori 〉β − i
∫ t

−∞
dt′
∑

j

Gra
ij (t, t

′)f j(t′)

−1

2

∫ t

−∞
dt′dt′′

∑

jk

Graa
ijk (t, t′, t′′)f j(t′)fk(t′′)

+ . . . , (2.19)

the first term being the unperturbed expectation value and the suppressed terms

being proportional to f 3. The time integrations are restricted to t′, t′′ < t since the

integrands vanish outside of this region. Equation (2.19) contains the physical inter-

pretation of the retarded amplitudes; in particular, retarded two-point amplitudes

give the linear response to small perturbations.

2.3 Hard thermal loops

In a plasma, the naturally long-ranged gauge interactions get cut off at large dis-

tances by screening effects. Several physical quantities depend strongly on screening

and would in fact receive (unphysical) infrared divergences were this not accounted

for. These include, for instance, generic transport coefficients since without screening

the transport scattering rates, e.g. scattering rates weighted by the square of the

2 Note that for composite operators, Or ≡ 1
2
(O1 +O2) is not in general a product

of only r-fields.
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Figure 2–2: Self-energy diagrams, including fermions, gauge bosons and ghosts,
which are resummed by the HTL theory.

deflection angle, would diverge logarithmically like
∫

d2θθ2/θ4 at small θ. This is dis-

cussed for nonrelativistic plasmas in [26, 27], the relativistic case being qualitatively

similar [15]. Thus it is crucial to properly describe screening.

A somewhat naive account of screening in the quark-gluon plasma could proceed

by analogy with the simplest nonrelativistic plasmas, for which, in the Coulomb

gauge (~∇· ~A = 0), screening takes the form of a constant mass term included in the

electrostatic potential propagator [26, 27]:

GR
00

∣

∣

non-relativistic (ω, ~p) =
i

~p2 +m2
D

. (2.20)

This interaction decays like e−mDr at large distances. Equation (2.20), however,

is unsatisfactory in many respects for use in the quark-gluon plasma. First, since

this plasma is relativistic, a static description only applies in a restricted region

of phase-space where ω ≪ |~p|, in general one must account for the velocities of the

constituents. Second, one would like a gauge-invariant formulation that does not rely

on making the choice of the Coulomb gauge, which is more natural for non-relativistic

systems.

The Hard Thermal Loop (HTL) resummation scheme developed by Braaten and

Pisarski [28] fulfills both of these requirements (see also, Frenkel and Taylor’s work

[29]). Its name comes from the fact that it accounts for the effects of “hard” thermal
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particles, having momenta p ∼ T , on “soft” modes with p, ω ∼ gsT ≪ T . The

soft scale gsT ∼ mD is where the screening effects become important. The HTL

theory describes screening effects to the leading order at small gs and it resums,

into the gluon propagators, (approximations of) the one-loop self-energies drawn

in Fig. 2–2. The screening effects are important whenever all external momenta of

some subdiagram are of order gsT or less, and for these cases one must also use HTL-

resummed vertices, in addition to the resummed propagators; all HTL corrections

become subdominant as soon as one component of a momentum leaves the soft

scale, however, in which case they should not be included (the HTL description then

becoming inaccurate).

The full HTL effective theory can be deduced from a manifestly gauge-invariant

effective action [30, 31] (it is written down within the real-time formalism in [21]).

Here we give only the corresponding propagators, known as HTL-resummed propa-

gators, in the Coulomb gauge:

GR
00(ω, ~p) =

i

~p2 + Π00(η)
, GR

ij(ω, ~p) =
−i
(

δij−pipj

~p2

)

ω2 − ~p2 − ΠT (η)
, (2.21)

with GR
0i = 0 and where we have introduced η = ω/|~p|. Screening comes about

through the HTL self-energies:

Π00(η) = m2
D

[

1− η

2
ln

(

η + 1 + iǫ

η − 1 + iǫ

)]

, (2.22a)

ΠT (η) = m2
D

[

η2

2
+
η(1− η2)

4
ln

(

η + 1 + iǫ

η − 1 + iǫ

)]

. (2.22b)

There exists also HTL self-energies for soft fermions, which we will not require.
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Equations (2.21) and (2.22) provide a complete description of screening in the

quark-gluon plasma at the leading order in gs. The Debye mass is given as

m2
D =

g2
sT

2

3
[Nc +NfTf] . (2.23)

In QCD with Nc=3 and Nf quark flavors, m2
D = g2

sT
2(1 + 1

6
Nf). The poles of the

HTL propagators (2.21) give the dispersion relations of quasiparticles, which at soft

momenta have the interpretation of collective excitations of the plasma particles

and soft gauge fields. In the longitudinal channel, the residue of the pole vanishes

exponentially at k ≫ mD.

The HTL effective propagators and vertices generate a loop expansion at the

soft scale gsT which proceeds in single powers of gs [28]. The unusual power of gs,

compared to the familiar g2
s , is due to the large Bose-Einstein population functions

nB(ω) ∼ 1/gs arising at the soft scale. In this sense, loops at the soft scale describe

classical plasma physics effects [32, 16, 21].

2.4 Euclidean version of HTL theory

For computations in Euclidean signature, when no analytic continuation is re-

quired and only correlation functions at the Matsubara frequencies are demanded,

HTL resummation can be simplified greatly. (When analytic continuation is needed,

the fully-fledged HTL theory must be used.)

Fields carrying zero and non-zero Matsubara frequencies must be distinguished;

HTL resummation is only needed for the former (and it would be, in any case,

inaccurate for the latter). At the zero Matsubara frequency the HTL propagators
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(2.21) simplify to

GE
44(ωn = 0, ~p)→ 1

~p2 +m2
D

, GE
ij(ωn = 0, ~p)→

δij−ξ pipj

~p2

~p2
(2.24)

where ξ is the ξ-gauge parameter of a three-dimensional gauge theory (which coin-

cides with the four-dimensional ξ-parameter in the zero-frequency limit of the stan-

dard covariant gauges. The strict Coulomb gauge considered above corresponds to

the value ξ = 1 in Eq. (2.24).) Here A4 is the gauge field component along the Eu-

clidean temporal direction, e.g. the Wick rotation3 of A0. The interaction vertices

do not require any resummation, contrary to the case in the real-time HTL theory,

because the HTL vertices identically vanish at zero frequency [28].

A very efficient bookkeeping device to deal with the splitting between zero and

nonzero Matsubara modes is provided by dimensional reduction [33, 34]. In this

formalism, based on effective field theory ideas, the modes with nonzero Matsubara

frequencies are first completely “integrated out” leaving a three-dimensional effec-

tive theory to describe the zero modes. This effective theory, called electric QCD

or EQCD, is three-dimensional Yang-Mills theory with coupling g2
sT coupled to a

massive scalar field A4, in the adjoint representation, whose mass is m2
D. At the

leading order its propagators are those shown in Eq. (2.24) and the scalar field has

no self-interactions.

The three-dimensional loop expansion proceeds in powers of gs (through the

dimensionless ratio g2
sT/mD), just like the real-time HTL theory does at the soft

3 In correlation functions depending explicitly on A0, one should use A0 = iA4.
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scale. Gradient and loop corrections from the hard scale, accounted for during the

dimensional reduction process, generate higher-dimensional local operators in the

EQCD Lagrangian plus O(g2
s )-suppressed corrections to the parameters present at

leading order, but all of these effects in correlation functions are suppressed by at

least O(g2
s ), or two loops, compared to leading-order results. These effects are beyond

the accuracy which will be considered in this thesis and so they will not be described

here [35].

2.5 Limitations of perturbation theory

Finite temperature perturbation theory has a fundamentally different struc-

ture than the zero-temperature case, because it involves the hierarchy of scales

g2
sT ≪ mD ≪ T ; expansions in gs necessarily contain both effects so “quantum”

loop corrections are difficult to separate from corrections due to ratios of scales.

More fundamentally, there is a limiting accuracy to which ab initio perturbative

calculations can be pushed, due to nonperturbative dynamics driving the infrared

scale g2
sT [36] (as can be guessed from the Yang-Mills coupling g2

sT of EQCD – the

dimensionally-reduced theory “confines” at this scale). The order in gs at which this

physics becomes important depends on the particular observable of interest. For the

thermodynamic pressure, perturbation theory is limited to g6
sT

4 log 1
gs

accuracy [36]

(though progress to include nonperturbative g6
sT

4 effects through lattice simulations

of EQCD is under way [37]), but for other quantities this may come earlier.
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Independently of this limitation, one may ask how well do gs-expansions con-

verge4 . At zero temperature, perturbative expansions are typically expected to be

reliable, once large logarithms are properly accounted for via renormalization group

methods, provided αs/π is small (though of course each application must be consid-

ered individually). At high temperatures, however, as established by a large body of

work on the thermodynamic pressure [38, 39, 40], strict expansions in gs are typically

not reliable unless αs
<∼ 0.1.

Large (non)perturbative corrections to real-time observables currently mark a

frontier in the analytic understanding of the quark-gluon plasma. Studying and

dealing with these corrections will be a central theme to this thesis.

4 Such expansions are always only asymptotic and do not converge like Taylor
series. By “convergence” we refer to the rate at which the first few terms decrease
at sufficiently small coupling.
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CHAPTER 3
A technique for evaluating space-like and light-like correlators

The hard thermal loop effective theory discussed in section 2.3 simplifies dramat-

ically when its Euclidean version, dimensional reduction, is applicable. Heuristically,

the difference between Euclidean and Minkowskian physics is that between statics (or

thermodynamics) and dynamics. Examples of Euclidean quantities are equal-time

correlation functions, which admit representations as sums over Euclidean Matsubara

frequencies [13]:

Gij(t=0, ~x) ≡ 1

Z
Tr
[

e−βHOi(~x)Oj(0)
]

= T
∑

n

∫

d3~p

(2π)3
ei~p·~xGE

ij(ωn, ~p) , (3.1)

where we use the notation ωn = 2πinT in this chapter.

The purpose of this essentially technical chapter is to generalize Eq. (3.1), and

the formalism of dimensional reduction that applies to the computation of GE(ωn, ~p),

to any correlation function supported on a spacelike or lightlike hypersurface of the

form x0 = ṽx3, where |ṽ| ≤ 1. Note that these do not depend on the operator

ordering, since field operators at space-like separated points (anti)commute with

each other; thus Gij in Eq. (3.1) can be equivalently a Wightman function G12
ij or

G21
ij , or a time-ordered propagator.
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3.1 Field correlators on space-like hypersurfaces

We first treat the case |ṽ| < 1, in which case the sought-after formula can be

derived from the Lorentz invariance of the underlying theory. Specifically, consider a

z-axis boost with velocity ṽ, under which the spacelike hypersurface becomes equal-

time and the thermal density matrix transforms to:

e−βH → e−βγ̃(H
′+ṽP ′3), (3.2)

where the primed quantities refer to quantities in the boosted frame and

γ̃ =
1√

1−ṽ2
. (3.3)

The identification of H ′ and P ′3 as the generators of time and space translation gives

the “twisted” periodic identification x′µ = x′µ + iγ̃(β,−ṽβ, 0⊥) for the geometry

associated to Eq. (3.2), and the associated quantization condition on the Matsubara

frequencies p′0 + ṽp′3 = 2πinT/γ̃. The spatial momentum p′3 must be kept real: it

serves as a label for the physical states living on the x′0 = 0 hypersurface. Thus only

the frequency p′0 is complex. This establishes the version of Eq. (3.1) applicable to

equal-time two-point functions in the boosted frame:

Gij(x
′0=0, ~x′) =

T

γ̃

∑

n

∫

d3~p

(2π)3
ei~p

′·~x′GE′(p′n
0, ~p′) , (3.4)

with p′n
0 = −ṽp′3 + 2πinT

γ̃
. The prefactor T/γ̃ comes from the spacing in energy.

It is convenient to boost this formula back to the plasma rest frame and to write

it as a formula for general two-point functions at space-like separation, by setting
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ṽ = x0

x3 :

Gij(x
0, ~x) = T

∑

n

∫

d3~p

(2π)3
eip

µ
nxµ GE

ij(pn) (3.5)

with

p0
n = 2πinT, p3

n = p3 + 2πinT
x0

x3
.

The reason why GE(p) in Eq. (3.5) is the same as GE ′(p′) in Eq. (3.4) is that the

Euclidean function, at any four-momentum with a time-like imaginary part, is an

intrinsically defined quantity. Namely, it is the Fourier transform of the physical

real-time retarded function (see the discussion in section 2.2),

GE(p) = i

∫

d4xe−ip
µxµGR(x), (3.6)

the point being that GR(x) is a physical quantity which can be evaluated in any

frame and which transforms covariantly under Lorentz transformations, and that

the Fourier transform converges and is unambiguous for said complex momenta.

Eq. (3.5) is the main result of this chapter. It differs from the standard Eq. (3.1)

only due to the imaginary part to p3
n, which ensures that the Fourier exponential is

a pure phase so that the sum over n makes sense. It extends in a straightforward

way to any higher-point correlator supported on (x
0

x3 = ṽ)-type hypersurfaces: one

gets a summation-integration
∑

n

∫

p
, with the pn as in Eq. (3.5), for all external legs,

subject to the usual restriction of momentum conservation (and of “n conservation”),

as one would get for equal-time higher-point correlators.

In perturbation theory, the momenta running in loops must be the “twisted”

ones like those entering Eq. (3.5), e.g. Im p3 = ṽIm p0, to reflect the boosted-frame

origin of the formula. This ensures that the imaginary part of the momentum flowing
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in any propagator in a graph is timelike (and its real part is spacelike), which is the

natural domain for Euclidean physics.

3.2 Light-like hypersurfaces

In the next chapter we will consider amplitudes relevant for ultrarelativistic par-

ticles moving with velocity v = 1, e.g. x3 = x0 (note that ṽ = 1/v). Our derivation

of Eq. (3.5) might seem compromised since an “infinite” boost with velocity ṽ = 1

obviously doesn’t exist. However, a more careful look at the argument reveals that

the boost is not essential: after all it was undone at the end. All that is really im-

portant, is that we can imagine quantizing the system along hypersurfaces parallel

to ṽ, and express the thermal density matrix within these hypersurfaces. Since it is

certainly possible to quantize a system along light fronts, the result (3.5) holds for

x3 = x0.

In physical applications to amplitudes felt by a particle moving with velocity

v, setting x3 = x0 in Eq. (3.5) corresponds to taking a v ց 1 limit whereas the

physically relevant limit v ր 1 lies beyond the reach of Eq. (3.5). Whether these

two limits agree is nontrivial, and depends on the specific phenomena under consid-

eration. Thus we will need to address this question before we apply Eq. (3.5) in the

next chapter.

3.3 Dimensional reduction

Let us restrict our attention to correlation functions with soft external momenta,

p ∼ gsT . Naturally, the contributions to sums such as Eq. (3.5) will behave very

differently for n = 0 and n 6= 0 and it is natural to begin by “integrating out” modes

with n 6= 0, following the philosophy of dimensional reduction as in section 2.4.
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First, we claim that loop diagrams for which all external momenta have n = 0

are equal to the standard ones, e.g. the ṽ = 0 case. Both sets of diagrams each have

p0 = 0 and pz real and thus they could only differ due to the “twisted” Matsubara

momenta which circulate in the former; the claim is that this does not affect the

result. The reason is that, as noted above, every momentum entering the former

loops has a timelike imaginary part but a spacelike real part, and so p2 has a positive-

definite (spacelike) real part. This will remain so as the imaginary parts of the p3

integration contours are deformed from Im p3 = ṽIm p0 to Im p3 = 0, ensuring that

no propagator poles are crossed in this deformation, proving the claim.

This implies that correlation functions involving only n = 0 modes as external

legs are described by precisely the EQCD three-dimensional effective theory of section

2.4. With the Wick rotation of the A0 gauge field not performed, the degrees of

freedom are actually (Ai, A0) with the propagators

G̃00(q) =
−1

q2 +m2
D

, G̃ij(q) =
δij
q2
− ξqiqj

q4
. (3.7)

In addition to its interaction with the n = 0 modes, we must also include the

direct coupling of the correlator of interest to the n 6= 0 modes. In the effective theory

language, this amounts to a matching procedure between the original correlator and

the one defined within EQCD. In the next chapter we will be calculating one-loop

(O(gs)) effects and in this case a contribution from n 6= 0 modes is not expected since

O(gs) effects come from soft scale, not hard scale. Mathematically, and as proved

in section 3.5 below, a contribution from the n 6= 0 modes would correspond, in

a Minkowski-signature calculation, to a failure of the soft approximation nB(p0) ≈
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T/p0. But such a failure would signal a contribution from the p0 ∼ T region in

Minkowski space, which would necessary be signaled by ultraviolet divergences in

the soft approximation, since this approximation correctly describes the intermediate

region gsT ≪ p0 ≪ T and any contribution from the scale T should leave an imprint

on this region.

The conclusion is that, provided no divergences from the n = 0 contribution

alone (which computes exactly the soft approximation) are met, it is justified to

ignore the direct coupling to the n 6= 0 modes in calculating O(gs) effects and simply

work within ordinary EQCD.

3.4 Application: elastic scattering rates for ultrarelativistic particles

An important role is played in the theory of bremsstrahlung in the quark-gluon

plasma (to be reviewed in the next chapter) by the elastic scattering rate felt by an

ultrarelativistic parton as a function of transverse momentum transfer q⊥,

(2π)2d
2Γel

d2q⊥
≡ CsC(q⊥) (3.8)

where Cs is the (quadratic) Casimir of the hard parton under consideration. At the

leading order in perturbation theory, for q⊥ ≪ E (with E >∼ T being the energy of

the hard parton), this is given by [41, 42]

C(q⊥) = g2
s

∫ ∞

−∞
dz

∫

d2x⊥e
iq⊥·x⊥vµvνGrr

µν(t = z, x⊥) (3.9)

where vµ = (1, 0, 0, 1) is the parton’s four-velocity and, for q⊥ ∼ mD ≪ T , Grr
µν is

the HTL-resummed propagator (2.21). Physically, (3.9) accounts for the dominant

s-channel scattering events against plasma particles. This interaction is proportional
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to Cs, which has been factored out in (3.8). Equation (3.9) is of the form studied

in the present chapter, supported on a null plane, and at q⊥ ≪ T it can thus be

evaluated by means of Eqs. (3.5) and (3.7) with only the n = 0 term contributing:

C(q⊥) = g2
sT

(

1

q2
⊥
− 1

q2
⊥+m2

D

)

, (3.10)

This remarkably compact expression was first obtained by Aurenche, Gelis and

Zaraket [42], who studied Eq. (3.9) explicitly. While the present approach appears

to be more direct, it will be instructive to discuss the connection.

3.5 Sum rules

Following Aurenche, Gelis and Zaraket, we consider computing Eq. (3.9) di-

rectly in four-dimensional Minkowski space [42]. This is readily reduced to a single

integration over energy

C(q⊥)/g2
s =

∫ ∞

−∞

dq0

2π
vµvνGrr

µν(q
0 = qz, q⊥). (3.11)

This integral was evaluated exactly in [42] by means of a sum rule, relying on the

analyticity properties of the integrand in the complex q0 plane. Following a similar

approach we will be able to provide an independent proof of Eq. (3.5) that does not

rely on the “boosted” path integral approach used above. We will then relate it to

the calculation in [42].
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3.5.1 Proof of Eq. (3.5) using sum rules

The relevant analyticity property is that of the (gauge-invariant) retarded corre-

lator vµvνGR
µν(q)

1 , which by causality is an analytic functions of the four-momentum

q when a positive timelike or lightlike imaginary four-vector is added to it (see

Eq. (3.6)).

In the classical approximation nB(q0) ≈ T/q0, which is valid for small q⊥,

Eq. (3.11) becomes

T

∫

dq0

2π
vµvν

GR
µν(q

0 = qz, q⊥)−GA
µν(q

0 = qz, q⊥)

q0
. (3.12)

To evaluate this by contour integration we first displace the q0 = 0 pole slightly

off-axis, 1/q0 → 1/(q0 − iǫ), which does not affect the result because the numerator

vanishes at q0 = 0. This allows the integrals of the GR and GA terms to be per-

formed separately. Next, we note, using the standard HTL expressions (2.21), that

vµvνGR,A
µν vanishes at large |q0| (like 1/q2

0), making it possible to close the integration

contours at infinity. Closing the contour for GR (GA) in the upper (lower) half-

surface, one obtains a unique residue iTvµvνGR
µν(q

0 = qz = 0, q⊥) from the GR term

and nothing from the GA term, due to their aforementioned analyticity properties,

thus reproducing Eq. (3.10):

C(q⊥)/g2
s = T

(

1

q2
⊥
− 1

q2
⊥+m2

D

)

. (3.13)

1 This is gauge-invariant at the order we are considering, that is in the Abelian
theory, when v·q = 0, as is presently the case.
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Had we not made the soft approximation to Eq. (3.12), we would have found

additional poles in the above calculation, located at the poles of nB(q0) which are

at the Matsubara frequencies q0 = qz = 2πinT . It is easy to convince oneself that

these terms precisely reproduce the n 6= 0 terms in Eq. (3.5). This way we see

that Eq. (3.5) can be proved directly from the analyticity properties of the retarded

Green’s functions, without resorting to the “boosted path integral” argument.

One also sees from this derivation that making the classical approximation

nB(q0) ≈ T/q0 to real-time distribution functions is exactly the same as neglect-

ing the n 6= 0 modes in an Euclidean formulation. In the same way we expect the

same equivalence at the one-loop level.

3.5.2 Comparison with Aurenche, Gelis and Zaraket’s sum rule

The above calculation is basically that of [42]. Nevertheless, it differs in some

aspects that are worth clarifying. The authors of [42] study exactly the integral

(3.12), but parametrized using the variable x = q0/q (so that q0(x) = qz(x) =

|q⊥|x/
√

1− x2):

C(q⊥)/g2
s = |q⊥|

∫ 1

−1

dx

2π(1−x2)3/2
vµvνGrr

µν(x, q⊥) (3.14)

A key observation in [42] is that the HTL propagators, viewed as a function of x

with q⊥ fixed and q0 = qz, are analytic in the whole complex x-surface apart from a

branch cut at real x ∈ [−1, 1]. Using methods of complex analysis they could then

derive Eq. (3.13).

This analyticity property in x follows from the analyticity in q0=qz that we have

just used (e.g., from causality). To see this, we rewrite the change of variable above
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Eq. (3.14) as

q0(x) = qz(x) = i|q⊥|
x√
x2 − 1

, (3.15)

and choose to put the branch cut of the square root at real x ∈ [−1, 1]. Thus q0 →

i|q⊥| as |x| → ∞ in any direction. With this choice of branch cut, GR(q0(x), qz(x), q⊥)

goes into the standard retarded function as Imx → 0+ and reproduces exactly the

analytic structure of the function GR(x, q⊥) that is considered in [42]. Careful in-

spection of Eq. (3.15) then reveals that the imaginary part of q0=qz is positive for

all x. Thus analyticity in x away from the [−1, 1] branch cut (for q0 = qz and fixed

q⊥) is a general consequence of causality.

The authors of [42] worked in the Coulomb gauge and found, at intermediate

steps, contributions from a large circle at |x| = ∞ (proportional to 1/(q2
⊥+1

3
m2

D)).

The point x = ∞ corresponds to q0=qz = iq⊥ in our approach and no contribution

can originate from there, so this raises an apparent puzzle. This puzzle is only

apparent, however, since these contributions are found in [42] to cancel out in the end,

between the transverse and longitudinal propagators. This happens because these

terms are merely artefacts of decomposing Eq. (3.14) into transverse and longitudinal

parts, which, taken separately, violate Lorentz-covariant causality (viz., both mediate

instantaneous interactions). Since our approach assumes Lorentz-covariant causality

from the start it cannot detect such unphysical contributions. Their appearance

at intermediate steps can be easily avoided, either by working with gauge-invariant

quantities, or by restricting to relativistically covariant gauges so that causality is

respected at all intermediate steps.
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3.6 Concluding remarks

In this technical chapter we have derived a Euclidean summation formula valid

for general correlation functions on space-like hypersurfaces, and we have adapted the

formalism of dimensional reduction to them. The technique rests on a “twist” of the

standard Euclidean formalism by a Lorentz boost. We have illustrated its power by

reproducing known results for the elastic collision rate as seen by an ultrarelativistic

particle, and we have re-derived the general formula for two-point functions using a

sum-rule that had previously appeared in the literature.

In the next chapter this technique will be applied to the same correlator, but at

the next-to-leading order in the coupling gs.
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CHAPTER 4
Jet quenching at next-to-leading order

4.1 Motivation and introduction

Jet quenching is the phenomenon of energy loss by highly energetic partons as

they propagate through the medium produced in a heavy ion collision. After exit-

ing the medium, these partons decay into collimated beams of hadrons, called jets,

which are detected experimentally. Jet quenching is manifested as the suppression

of observed jets having high energies, compared to expectations in the absence of a

medium.

This suppression is quantified by comparing the spectra measured in Au+Au

collisions to the result of Ncoll independent binary p+p collisions, where Ncoll is esti-

mated from the geometry of the overlap region between the colliding nuclei and using

the nuclear density profiles (see, for instance, chapter 5 of [6]). The ratio is called

the nuclear suppression factor or RAA (the “AA” is for a nucleus-nucleus collision).

In the absence of initial state nuclear effects and final state interactions, one would

have RAA = 1. Figure 4–1 displays the nuclear suppression factor as measured in

Au+Au collisions at
√
sNN = 200 GeV; the value RAA = 0.2 ÷ 0.4 indicates the

strong suppression of high-energy jets. The absence of such a suppression both in

d+Au collisions at
√
sNN = 200 GeV and in peripheral collisions, in which a dense

medium is not believed to be produced, gives strong evidence that this effect is not
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Figure 4–1: Nuclear modification factor RAA for π0 particles for central (0-10%) and
peripheral (80-92%) Au+Au collisions and minimum-bias d+Au collisions. Taken
from [6], Fig. 36 (PHENIX collaboration).

due to initial state nuclear effects. RHIC is the first heavy ion collider for which this

effect has been measured.

Jet quenching is seen strikingly in azimuthal two-hadron correlations at high pT.

In p+p collisions or peripheral Au+Au collisions, a strong peak in the correlation

is observed at an angle π, corresponding to the fact that hard jets are likely to be

produced in back-to-back pairs. This peak dissolves for more central collisions, as

shown in Fig. 4–2, an effect which is generally attributed to the energy degradation

of the backward jet (which is pictured as having travelled a longer distance in the

medium than the forward, or trigger, jet).

Jet quenching is thus an experimental fact. A long-standing proposal is to

use it as a “tomographic”-like probe of the quark-gluon plasma [43, 44, 45, 46],
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Figure 4–2: Di-hadron azimuthal correlations at high pT. Left panel shows correla-
tions for p+p, central d+Au and central Au+Au collisions (background-subtracted).
Right panel shows the background-subtracted high pT di-hadron correlation for dif-
ferent orientations of the trigger hadron relative to the Au+Au reaction plane. For
more details, see Fig. 29 in [8] (STAR collaboration).

that is, to use it to constrain experimentally the evolving geometry of the quark-

gluon plasma. This requires a good understanding, or modelling, both theoretical

and experimental, of jet propagation in the quark-gluon plasma as a function of its

properties (essentially, its geometry and local temperature).

The theoretical description of jet quenching (a good starting point is [47] and

references therein) is based on the theory of jet evolution in thermalized media,

whose uncertainties it is thus worthwhile to seek to reduce, or at least, quantify.

This requires the calculation of higher-order effects, which we propose to do in this

chapter in the regime of weak coupling.

As established by a large body of work on the thermodynamic pressure [38,

39, 40], mentioned in section 2.5, finite temperature perturbation theory meets with

serious convergence difficulties. Unless the strong coupling αs obeys αs
<∼ 0.1, strict

perturbation theory in powers of gs does not seem to be reliable. Such a behavior

appears to be generic: it is also observed for the next-to-leading order (NLO, or
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O(gs)) corrections to thermal masses [48, 49, 50], as well as for the only transport

property presently known at NLO, heavy quark momentum diffusion [51] (whose

behavior seems to be even worse).

Following Braaten and Nieto [39], who studied the thermodynamic pressure,

these large perturbative corrections can be attributed to purely classical (nonabelian)

plasma effects. They have shown this by first making use of the scale separation

gsT ≪ 2πT to integrate out the scale 2πT , leaving out a three-dimensional effective

theory (“electric QCD”, or EQCD) describing the scale mD ∼ gsT as well as more

infrared scales. The claim then is that contributions from the scale 2πT , as well

as the parameters of the effective theory, enjoy well-behaved perturbative series; all

large corrections are included in the effective theory. Furthermore, by treating this

effective theory nonperturbatively using various resummation schemes [50, 52] or the

lattice [53], reasonable convergence can be obtained down to T ∼ 3− 5Tc.

It is natural to expect large corrections from gsT -scale plasma effects in other

quantities as well. Unfortunately, for real time quantities such as are most transport

coefficients and collision rates, a resummation program similar to that available in

Euclidean space has yet to be fully developed and applied. This is because the

real-time description of plasmas requires the Hard Thermal Loop (HTL) theory [28,

29, 30], discussed in section 2.3. In essence this theory is classical (nonabelian)

plasma physics, or equivalently the Wong-Yang-Mills system, which is arguably more

complicated than its Euclidean counterpart EQCD.

In this chapter we aim to point out progress which can be made for a specific

class of “real-time” quantities: those which probe physics near the light cone. This
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includes the elastic collision kernel C(q⊥) that is relevant for the evolution of jets in

transverse momentum space, whose crucial role in the theory of jet quenching will

be reviewed below.

To explain the idea, we observe that the soft contribution to the elastic rate

(that arising from soft collisions with q⊥ ∼ gsT ) is described by soft classical fields

that are being probed passively by the high-energy jet passing through them. These

soft classical fields are the Coulomb fields surrounding the plasma particles. We

now observe that the components of these fields which move collinearly with the jet

are not particularly important — the classic calculation of collision rates following

Braaten and Thoma [54] (see Eq. (4.18) below) reveals that the target particles move

with generic angles in the plasma frame, with even a suppression for the ones collinear

to the jet (due to the reduced center-of-mass energy). In the absence of collinear

components to the jet, the end result for the elastic rate cannot depend sensibly on

the value of the jet velocity v ≈ 1, and so must depend smoothly on it. The trick is

then to set v = 1+ǫ — which, though unphysical, cannot affect the answer — thus

making the hard particle’s trajectory space-like. This makes Euclidean techniques

directly applicable, thereby dramatically simplifying the calculation. In other words,

at the classical level, the elastic collision rate seen by ultrarelativistic particles is

more “thermodynamical” than actually dynamical.

In this chapter we will thus (analytically) compute the full O(gs) corrections

to the collision kernel C(q⊥) describing the evolution of the transverse momentum

of a fast particle. The second moment of that kernel gives the phenomenologically

interesting momentum broadening coefficient q̂, which we also compute at NLO.
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This chapter is organized as follows. In section 4.2 we summarize our results and

explain their relevance to jet quenching; in particular we discuss the corrections to q̂

and their relevance. Details of the calculation of C(q⊥) at NLO using the techniques

of the previous chapter are given in section 4.3. Calculation of the (ultraviolet-

regulated) second moment q̂ is given in section 4.4. The relation between the collision

rate C(q⊥) for the momentum broadening problem and for jet evolution — which

turns out to be identical to the leading-order relation — is established in section

4.5, where we also discuss operator ordering issues that may be relevant in future

higher-order calculations.

Alternative estimates of q̂ and of jet evolution, based on gauge-string duality

(see, for instance, [55, 56, 57, 58, 59, 60, 61]), will not be discussed here.

4.2 Summary of results

4.2.1 Collision kernel

The main result of the present chapter is the full next-to-leading order (O(gs))

(analytic) expression for the differential collision rate C(q⊥), defined as:

(2π)2d
2Γel

d2q⊥
≡ CsC(q⊥), (4.1)

which describes the evolution of the transverse momentum of a hard particle (with

E >∼ T ). This is the same definition as Eq. (3.8).

The O(gs) corrections to C(q⊥), given in Eq. (4.16), are due to gsT -scale physics

and only arise for q⊥ ∼ gsT ≪ T ; they are plotted in Fig. 4–3. Both the LO and

NLO kernels C(q⊥) are proportional to the (quadratic) Casimir of the gauge group
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Figure 4–3: LO and NLO collision kernels C(q⊥) ≡ (2π)2dΓ/d2q⊥ for a fast quark in
Nf = 3 QCD, for αs = 0.1 and αs = 0.3 respectively. For gluons the curves are to
be multiplied by 9/4.

representation of the jet. The NLO correction is proportional to CA and vanishes in

the Abelian theory.

The “leading order curves” in the plots extend to the hard region q⊥ >∼ T .

There we have used the full (unscreened) Eq. (4.18) at hard momenta, multiplied

by q2
⊥/(q

2
⊥+m2

D) to make it merge smoothly with the analytic leading-order result

(4.8) at low momenta, following the prescription given in [62]. The “next-to-leading

order” curves use this expression, plus C(q⊥)(NLO) as given by Eq. (4.16).

The NLO correction is already quite large for αs = 0.1, where it is nearly a factor

of 2 around q⊥ ≈ T . As discussed in section 4.1, this is consistent with the behavior

observed for O(gs) effects in other quantities. At αs = 0.3, a typical value used in

comparisons with RHIC data (see, for instance, [63]), it is clear that the strength

of the correction has grown out of control, meaning that (presently unknown) yet

higher-order corrections will also be important. This is the most important finding

of this calculation and more will be said about it below.
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An interesting by-product of the present approach is that it extends naturally

to higher orders, suggesting at least one natural way of resumming the large correc-

tions. Namely, it makes perfect sense to evaluate the gauge-invariant Wilson loop,

Eq. (4.6), nonperturbatively within Euclidean three-dimensional EQCD theory, as

done perturbatively to O(gs) in this chapter, for instance using the lattice. This

would not include all O(g2
s ) corrections to C(q⊥) (contributions from the hard scale

2πT will be missed), but by analogy with the works on the pressure mentioned

in the Introduction, these missing contributions can be expected to be numerically

subdominant1 . We leave this possibility to future work.

4.2.2 Application to jet quenching

The dominant energy loss mechanism for a high energy particles (at weak cou-

pling) is bremsstrahlung (radiation of a nearly collinear gluon by a quark or a gluon,

or of a collinear quark-antiquark pair by a gluon). These processes, while capable

of changing energies by O(1) amounts, are triggered by considerably softer elastic

collisions. Thus the elastic rates being presently discussed are directly relevant to

jet quenching. Example of a relevant Feynman diagram is depicted in Fig. 4–4.

The theoretical description of these processes, at the leading order in the cou-

pling, is well-established [44, 45, 64]. Specifically, the duration tform or formation

time of the radiation depends on the energy of the participants and it interpolates

1 Their description could turn out be rather complicated, though; various con-
tributing effects are described in section 6.4.1.
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Figure 4–4: A typical Feynman diagram contributing to the production of a collinear
quark-anti-quark pair from a gluon. Multiple elastic scatterings both trigger and
occur during this process.

between the Bethe-Heitler (single scattering) regime tform ∼ E/q2
⊥ ∼ E/m2

D at ener-

gies E <∼ T , and the Landau-Pomeranchuk-Migdal (LPM) [65] (multiple-scattering)

regime at high energies E ≫ T with tform ∼
√

E/q̂. The LPM regime is charac-

terized by destructive interferences between different collisions playing a significant

role.

In all of these regimes, interestingly, the description factors into a “hard” collinear

splitting vertex (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, or DGLAP vertex [66]),

times (the imaginary part of) a quantum mechanical amplitude (wavefunction in the

transverse plane) which describes the in-medium evolution of the vertex. The lat-

ter accounts for the collisions which trigger, and occur during, the splitting process

[44, 45, 64] (a discussion in a language closer to the present is available in [41], in the

context of infinite length quark-gluon plasmas). The DGLAP vertices themselves

only involve hard scale physics (in essence, they are Clebsch-Gordon coefficients be-

tween different helicity states) and thus cannot receive O(gs) corrections; the NLO

effects, associated with soft classical fields having p ∼ gsT , only arise from the prop-

agation amplitudes.
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In section 4.5 we discuss these amplitudes at NLO and show that the relevant

(three-body) collision kernel factors as a sum of the kernels C(q⊥), exactly like it

does at LO [44, 45, 64, 41].

As a consequence, our results for C(q⊥) can be used to give a full NLO treatment

of radiative jet energy loss: one must simply include the NLO shift (4.16) to the two-

body kernel C(q⊥) which is an input in these calculations2 .

4.2.3 Momentum broadening coefficient (q̂)

When the effects of a large number of small collisions are added together, it is

natural to replace them by an effective diffusive process. The diffusion coefficient rel-

evant for transverse momentum broadening, q̂, is the second moment of the collision

kernel (4.1):

q̂ ≡
∫ qmax

0

d2q⊥
(2π)2

q2
⊥C(q⊥). (4.2)

It is important to note that (4.2) only makes sense with a ultraviolet cutoff

|q⊥| < qmax. This is due to the strong strong power-law tail C(q⊥) ∼ g4
sT

3/q4
⊥ at

large q⊥ (“Coulomb tail”) and leads to a logarithmic dependence of q̂ on qmax. We

emphasize that this is a leading order logarithm; below we shall comment on the

value of the cutoff qmax.

2 For instance, one should simply correct “C(q⊥)” in [67]. Note that C(q⊥) these
is actually C(q⊥)/(g2

sT ) in our conventions.
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Using our NLO kernel, Eq. (4.16), we have calculated the expansion of q̂ up to

terms of order g2
s :

q̂

g4
sCsT 3

=
CA

6π

[

log

(

T

mD

)

+
ζ(3)

ζ(2)
log
(qmax

T

)

+ Cb

]

+
NfTf
6π

[

log

(

T

mD

)

+
3

2

ζ(3)

ζ(2)
log
(qmax

T

)

+ Cf

]

+
CA

6π

mD

T
ξ(NLO) +O(g2

s ) , (4.3)

with ξ(NLO) = 3
16π

(3π2 + 10− 4 log 2) ≃ 2.1985 a constant calculated in section 4.4,

characterizing the strength of the NLO correction. Here m2
D = g2T 2(CA +NfTf )/3

is the leading-order Debye mass, with CA = 3 and NfTf = 1.5 in QCD with

three flavors of quarks. The leading-order constants Cb ≃ −0.068854926766592 and

Cf ≃ −0.072856349715786 are given in [62], to which we refer the reader for further

discussion of the leading order result.

The series (4.3) represents the gs-expansion of (1/(2π) times) the area under the

curve in plots such as Fig. 4–3. For αs = 0.1 the area under the leading order curve

in the figure (up to qmax = 4T ) yields q̂LO ≈ 0.49T 3 whereas the truncation (4.3)

gives q̂LO,truncated ≈ 0.40T 3. The NLO shift seen from the figure is

∆q̂ ≈ 0.43T 3, (4.4)

which represents about a factor two correction (increase). On the other hand

∆q̂truncated ≈ 1.01T 3, (4.5)

according to Eq. (4.3). Thus Eq. (4.3) suffers from sizeable truncation errors and

integrals such as Eq. (4.4) should be preferred over the expansion (4.3). We would
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like to stress, however, that the NLO correction itself, Eq. (4.16), and Fig. 4–3, are

not merely truncation errors from the lower-order contribution, but represent genuine

NLO effects.

For αs = 0.3 the area under the leading order curve in the figure (again with

qmax = 4T ) yields q̂LO ≈ 2.66T 3 while the NLO correction is ∆q̂ ≈ 5.8 T 3; the

correction is, of course, beyond control.

It seems appropriate here to recall some subtleties associated with the phe-

nomenological parameter q̂, which do not arise when one instead works with the full

collision kernel C(q⊥). First, the value of the cutoff qmax to be used in Eq. (4.3) is

process-dependent: since the q⊥>qmax tail of C(q⊥) describes collisions occurring on

a finite rate3 Γ(q⊥>qmax) ∼ g4
sT

3/q2
max, weighting them with q2

⊥ in Eq. (4.19) ceases

to make sense for Γ−1
(q⊥>qmax)

>∼ tjet, with tjet the jet’s lifetime, to be replaced with

a formation time tform for bremsstrahlung pairs in the context of jet quenching cal-

culations when this is shorter than the medium length. Therefore, parametrically,

one should set qmax ∼
√

g4
sT

3tjet. For bremsstrahlung in the deep LPM regime,

tjet → tform ∼
√

E/q̂ so qmax ∼ g(ET 3)1/4 [68], which is parametrically much lower

than the often-used kinematic cutoff qmax ≈ (ET )1/2.

Second, the presence of the ultraviolet tail implies that collisions having q⊥ ∼

qmax (with qmax the physical cutoff as determined above), which are intrinsically non-

diffusive, already contribute at next-to-leading logarithm to bremsstrahlung rates.

Therefore, approximations based on diffusive physics (also known as the “harmonic

3 I am indebted to G. D. Moore for discussion on this point.
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oscillator” approximation [45]) are, at best, expansions in inverse logarithms of the

energy. The quality of such expansions has been studied in [68], with the conclusion

that formulas to next-to-leading logarithm can be trusted at least when Ejet
>∼ 10T

(E being the smallest energy of the participants). However it is appropriate to recall

that the subleading term (e.g. the constant under the logarithm), included in [68],

is not included at present in typical jet quenching calculations which employ q̂ as

an input parameter (see [47, 69, 70] and references therein for an overview of these

approaches).

These limitations pertain to the infinite medium regime. For finite media the

Coulomb tail should play a more important more due to the larger virtuality of the

jet [64] (in particular, the small-length limit is dictated by the hard tail in the so-

called N = 1 scattering approximation). Quite recently, the window, as a function

of the length of the medium, over which the Coulomb tail can be neglected, has been

estimated in the nice paper [71] (see, in particular Fig. (4) of that paper; see also,

[72]); the estimates made there seem to cast doubt on the validity of the neglect of

the Coulomb tail in finite length media.

In applying the present results to jet quenching it should thus be remembered

that the NLO correction is large in the soft region but not in the Coulomb tail, both

of which contribute to q̂ but not both of which are necessarily always important.

Whether the increase in the soft region can be accounted for by a simple rescaling

of q̂ in approaches which neglect the tail becomes nontrivial at this point.
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Figure 4–5: Wilson loop representation of the dipole amplitude.

4.3 Elastic collision rate at next-to-leading order

In this section we proceed to compute the differential collision rate C(q⊥), as

felt by a high-energy particle. We express it as correlator supported on x3 = x0

trajectories, to which we will apply the Euclidean technique developed in the previous

chapter. We only give details in the Feynman gauge ξ = 0; as a check on the

calculation, however, we did check explicitly the ξ-independence of C(q⊥).

4.3.1 Operator definition of C(q⊥) and dimensional reduction

The evolution of the transverse momentum of a high-energy particle can be

described by looking at its density matrix, as discussed in detail in [55]. For classical

effects, however (and even more so because we are taking the velocity to be v = 1+ǫ),

we can neglect operator ordering issues in which case the evolution of a density

matrix becomes equivalent to that of a dipole, that is, both are charge-anti-charge

compounds. We will come back to operator ordering issues in section 4.5.2.

In the high energy limit a dipole (E ≫ mD) propagates eikonally in the soft

classical background, e.g. its impact parameter is constant over a coherence length

of the background. Elastic collisions can thus be encoded in a (imaginary) potential

acting on the dipole. Specifically, the collision kernel in momentum space is recovered

as the Fourier transform of the potential extracted from the long-time limit of the
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dipole propagation amplitude W [44, 45, 73]:

W (t, x⊥) ∼ etC(x⊥)+O(1), t→∞,

C(q⊥) ≡
∫

d2x⊥e
iq⊥·x⊥C(x⊥). (4.6)

C(q⊥) is short for (2π)2dΓ/d2q⊥, as in Eq. (4.1). The dipole amplitude W (t, x⊥)

is given by the trace of a long, thin rectangular Wilson loop stretching along the

light-cone coordinate x+, with a small transverse extension x⊥ (see Fig. 4–5).

We wish to apply the Euclidean formalism of the previous chapter to this observ-

able. For this we must justify the passage from the v ր 1, physical, ultrarelativistic

limit to a v ց 1 limit, that is we must check regularity around v = 1. As explained

above, this will be true provided the fields that contribute to the collision rate do not

move collinearly to the jet, as is the the case for the Coulomb fields which surround

the plasma particles. So we are led to ask, what other fields are there in a classical

plasma? The only other fields are those of on-shell gluons. For a jet moving with

v > 1 one will find a new, unphysical contribution to the collision rate which will

be due to the (stimulated emission and absorption of) C̆erenkov radiation of these

gluons. However, it is easy to verify that this additional contribution vanishes, like

(v−1), as v ց 1. Therefore these fields are also regular as v → 1. At higher orders in

gs (but still within the classical framework), the situation is only expected to become

smoother, because of the smearing effect of interactions on kinematic constraints.

Thus, within classical plasma physics, the limit v → 1 is regular.

Note that it is important that q⊥ be kept fixed while v is varied, because trans-

ferring a large transverse momentum q⊥ ≫ T to a plasma particle implies a large
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longitudinal momentum transfer q+ ∼ q2
⊥/T ≫ q⊥ which would make the final prod-

uct collinear to the jet. This makes the dependence on v sharper at large q⊥ so the

q⊥ →∞ and v → 1 limits may not commute.

Starting at order g2
s in perturbation theory the classical approximation becomes

inaccurate and quantum effects must be included. Then one finds a new class of fields

which move collinearly with the jet, namely the components of its own wavefunction.

Therefore smoothness in v is not guaranteed at this order4 . Regularity of the

rate (4.1) at order O(gs) (and more generally within any classical description of the

plasma) will be sufficient for our purposes.

The naive dimensional reduction of the Wilson loop (4.6) is a Wilson loop

stretching along the z-axis of the three-dimensional EQCD theory, coupling to the

linear combination A+ = (Az+A0) of the EQCD fields, reflecting its ultrarelativistic

origin:

W (t, x⊥) ≃ 〈P expi
R

C
(Aidx

i+A0|dx|)〉. (4.7)

4 In strongly coupled theories accessible to gauge-string duality, there is evidence
suggesting that regularity does not hold. A calculation of q̂ for a physical massive
quark moving with v < 1 (in the sense of momentum broadening coefficient) by
Teaney and Casalderrey-Solana [55], and by Gubser [56], found a divergence q̂ ∼
(1 − v2)−1/4

√
λT 3 as v ր 1. This calculation is valid for energies E < M3/λT 2,

beyond which the coherence time of the force acting on the quark becomes of order
the time scale of its dynamics [56]; a time-independent description is then impossible.
This suggests that q̂ for v < 1 should depend on a cutoff time scale (as also happens
at weak coupling due to the Coulomb tail in C(q⊥)). On the other hand, the v ց 1
limit has been studied by Rajagopal, Liu and Wiedemann [57, 58], by embedding
Euclidean worldsheets into AdS5 space, and no divergences were met in this limit.
These limits thus appear to be qualitatively quite distinct.
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Figure 4–6: Tree- and one-loop diagrams contributing to C(q⊥).

The contour C is a long rectangle of length t stretching along the z-direction with

transverse size x⊥. This “naive” dimensional reduction corresponds to keeping only

the direct coupling to the n = 0 modes. As explained in subsection 3.3, this will be

justified provided we do not find ultraviolet divergences during the calculation.

At the lowest order in perturbation theory, only the single-gluon exchange dia-

gram ((a) of Fig. 4–6) contributes,

C(q⊥) = g2TCs

∫ ∞

−∞
dz

∫

d2x⊥e
ip⊥·x⊥G̃++(z, x⊥)

= g2TCs

(

1

q2
⊥
− 1

q2
⊥+m2

D

)

, (4.8)

where we have used Eq. (3.7), with qz = 0 being a consequence of the z integration;

this is the result of section 3.4. The Wilson loop (4.7) gives the correct generalization

to the next-to-leading order.

4.3.2 Diagram (b)

We proceed with the next-to-leading order (one-loop) calculation of (4.6) withW

as in (4.7). Self-energy insertions to single-gluon exchange, diagram (b), contribute
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an amount (we will often write “q⊥” for a three-vector with qz = 0, which should

cause no confusion; “
∫

p
” is short for

∫

d3p
(2π)3

):

C(q⊥)(b)

g2TCs
=

δΠ00(q⊥)

(q2
⊥+m2

D)2
− δΠzz(q⊥)

q4
⊥

, (4.9a)

δΠ00(q)

g2TCA

=

∫

p

[ −(2q⊥ − p)2

p2((q⊥−p)2 +m2
D)

+
3

p2

]

, (4.9b)

δΠzz(q)

g2TCA
=

∫

p

[ −2p2
z

(p2+m2
D)((q⊥−p)2+m2

D)
+

1

p2+m2
D

]

+

∫

p

[−3p2
z−2q2

⊥−p2

p2(q⊥−p)2
+

2

p2
+

p2
z

p2(q⊥−p)2

]

. (4.9c)

Each bracket includes the contributions of one fish and one tadpole diagram, while

the last one also includes the ghost loop.

The (linear) ultraviolet divergences in Eq. (4.9c) are to be canceled by matching

counter-terms that can be unambiguously calculated within the framework of dimen-

sional reduction [33, 34]. They merely represent the (described by hard thermal loop

theory) coupling of the n 6= 0 gluons to the soft n = 0 ones, e.g. the gluon contri-

bution to the A0 mass squared m2
D. This fact, that the direct coupling to exchange

gluons with q0 = q3 6= 0 does not contribute to the divergences, is also equivalent

to the convergence, with respect to q3, of the real-time integral (4.18) (this justifies

making the soft approximation on q0). Thus the divergences in Eq. (4.9c) do not

signal the presence of “new contributions” beyond the EQCD effective theory and

can be safely regularized using dimensional regularization.
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Employing dimensional regularization, the divergences simply go away5 and the

corresponding counter-terms are zero to O(gs) [33, 34]. This way we obtain (all our

arctangents run from 0 to π/2):

C(q⊥)(b)

g4
sT

2CsCA
=
−mD − 2

q2
⊥
−m2

D

q⊥
tan−1

(

q⊥
mD

)

4π(q2
⊥+m2

D)2
+

7

32q3
⊥

+
mD − q2

⊥
+4m2

D

2q⊥
tan−1

(

q⊥
2mD

)

8πq4
⊥

. (4.10)

4.3.3 Diagram (c)

From diagram (c) plus its permutation we obtain:

C(q⊥)(c)

g4
sT

2CsCA
=

∫

p

[

2

q2
⊥(p2+m2

D)((q⊥−p)2+m2
D)

− 2

(q2
⊥+m2

D)(p2+m2
D)(q⊥−p)2

]

=
− tan−1

(

q⊥
mD

)

2πq⊥(q2
⊥ +m2

D)
+

tan−1
(

q⊥
2mD

)

2πq3
⊥

. (4.11)

In the Feynman gauge there is no contribution involving only transverse gauge

fields, because such a contribution would involve the (trivial) zzz three-gluon vertex.

Eq. (4.11) is manifestly convergent.

4.3.4 Diagrams (d)-(g)

Taking the long-time limit of the dipole amplitude involves making a quasipar-

ticle expansion, e.g. we set on-shell the external legs of scattering diagrams. This is

5 The dimensionally-regulated integrals (4.9c) have poles in dimensions 2 and 4
but are finite and unambiguous in dimension 3.
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why qz was zero in the previous diagram. The relevant parameter for this expansion

the ratio ∼ gs of the scattering width ∼ g2
sT to their intrinsic frequency scale mD;

this is the probability for scattering events to overlap. Thus in evaluating the exter-

nal state corrections (d) we need only keep those effects which are not suppressed

by the smallness of the width. A narrow resonance being described by just its po-

sition and the total area under it, this means that diagram (d), expanded to O(gs),

contains only mass-shell corrections and wave-function renormalization factors. The

(here imaginary) “mass-shell” corrections have no effects: as they are identical in the

initial and final legs the “energy” (z-momentum) transfer remains zero in any case.

We can evaluate this wave-function renormalization contribution by taking an en-

ergy derivative of the (on-shell) eikonal self-energy, and diagram (e) is unambiguous.

Adding them (including all diagrams with similar topology) yields:

C(q⊥)(d)

g4
sT

2Cs
= 2Cs G̃++(q⊥)

∫

p

G̃++(p)
d

dpz

1

pz − iǫ
, (4.12a)

C(q⊥)(e)

g4
sT

2Cs
= 2(Cs−

1

2
CA)G̃++(q⊥)

∫

p

G̃++(p)

(pz − iǫ)2
. (4.12b)

The sum of (d) and (e) is proportional to CA and identically vanishes in the abelian

theory (CA = 0), as required by abelian exponentiation6 . This confirms the righ-

teousness of our evaluation of (d).

6 Abelian Wilson loops, computed using Gaussian distribution for gauge fields
(as is done by diagrams (d)-(g), for which only the two-point function of the gauge
field enters), simply exponentiate: 〈e

R

A〉 = exp(1
2
〈
∫

A
∫

A〉). As a consequence, the
collision kernel as defined in (4.6) is tree-level exact in such theories: there is no
interference between scattering events.
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Part of diagram (f) is already included by the exponentiation of the leading-

order “rung”, diagram (a): this generates the approximation to (f) in which the

intermediate eikonal propagators are put on-shell. To avoid double-counting this

must be subtracted. We must first regulate the associated “pinching” (qz → 0)

singularity, which we do by flowing a small external z-momentum ω into the Wilson

loop. We then take the limit ω → 0 after the subtraction is done. Diagram (g) poses

no difficulty.

C(q⊥)(f)

g4
sT

2Cs
= Cs

∫

p

G̃++(p)G̃++(q−p)× lim
ω→0

[

1

(pz + iǫ)(pz + ω − iǫ) +
2πiδ(pz)

ω − iǫ

]

, (4.13)

C(q⊥)(g)

g4
sT

2Cs
= −(Cs−

1

2
CA)

∫

q

G̃++(p)G̃++(q⊥−p)
(pz − iǫ)2

. (4.14)

Eq. (4.13) has a well-defined ω → 0 limit, as follows from the identity 1/(pz+iǫ −

1/(pz−iǫ) = −2πiδ(pz). This limit takes a form identical to Eq. (4.14) and the

sum is proportional to CA, again as required by abelian exponentiation. Again, this

confirms the correctness of our evaluation of (f).

In summary, diagrams (d)-(g) produce:

C(q⊥)(d)−(g)

g4
sT

2CsCA
=

∫

p

G̃++(p)G̃++(q⊥−p)−2G̃++(p)G̃++(q⊥)

2(pz − iǫ)2

=
mD

4π(q2
⊥+m2

D)

[

3

q2
⊥+4m2

D

− 2

(q2
⊥+m2

D)
− 1

q2
⊥

]

. (4.15)

The function G̃++ is G̃00 + G̃zz as given in Eq. (3.7). To evaluate the integral we

found it convenient to first apply integration by parts to the 1/(pz − iǫ)2 denomina-

tor, which removes the explicit pz-dependence and reduces the integral to a set of
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standard isotropic Feynman integrals. This contribution is manifestly infrared- (and

ultraviolet-) safe, upon enforcing p↔ (q⊥−p) symmetry.

4.3.5 Final formulas

In summary, we have obtained all O(gs) contributions to the collision kernel

C(q⊥):

C(q⊥)(LO) =
g2
sTCsm

2
D

q2
⊥(q2

⊥+m2
D)
,

C(q⊥)(NLO)

g4
sT

2CsCA

=
7

32q3
⊥

+
−3mD − 2

q2
⊥
−m2

D

q⊥
tan−1

(

q⊥
mD

)

4π(q2
⊥+m2

D)2

+
mD − q2

⊥
+4m2

D

2q⊥
tan−1

(

q⊥
2mD

)

8πq4
⊥

−
tan−1

(

q⊥
mD

)

2πq⊥(q2
⊥ +m2

D)
+

tan−1
(

q⊥
2mD

)

2πq3
⊥

+
mD

4π(q2
⊥+m2

D)

[

3

q2
⊥+4m2

D

− 1

q2
⊥

]

. (4.16)

These expressions are valid for q⊥ ≪ T . The leading order kernel for q⊥ >∼ T differs

slightly from its soft approximation given here, see Eq. (4.18) below, but the NLO

corrections are parametrically subdominant there.

The appearance of arctangents with two distinct arguments in (4.16) can be

understood by looking in the complex q2
⊥-plane: tan−1(q⊥/2mD) has a branch cut

starting at q2
⊥ = −4m2

D and represents the exchange of a pair of two quanta of mass

mD (longitudinal gluons), while the branch cut of tan−1(q⊥/mD) starts at q2
⊥ = −m2

D

and represents the exchange of one longitudinal and one transverse gluon. Both

arctangents occur since both of these pairs of states can be exchanged. Exchange of
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two massless quanta also occurs, and generates 1/
√

q2
⊥-type discontinuities instead

of arctangents.

4.4 Evaluation of q̂(NLO)

The effective theory approach we have used so far is valid for q⊥ ≪ T . The

momentum broadening coefficient q̂ (second moment of C(q⊥)) receives, however,

contributions from all scales up to a process-dependent cut-off qmax, on which it

depends logarithmically. In this section, for definiteness, we assume qmax ≫ T .

To separate the soft and hard contributions to q̂, we find convenient to introduce

the auxiliary scale q∗ obeying mD ≪ q∗ ≪ T :

q̂ =

∫ q∗

0

d2q⊥
(2π)2

q2
⊥C(q⊥)soft +

∫ qmax

q∗

d2q⊥
(2π)2

q2
⊥C(q⊥)hard . (4.17)

The soft kernel C(q⊥)soft is given by Eq. (4.16). The hard kernel C(q⊥)hard

describes tree-level 2 → 2 scattering processes against plasma constituents, with

self-energy corrections omitted on the exchange gluon (since they represent only

∼ g2 corrections when q⊥ ∼ T ). The large particle energy E ≫ T guarantees

that the Mandelstam invariants s ∼ ET and −t = q2
⊥ obey |t| ≪ s, so that the

relevant scattering matrix elements assume the universal (eikonal) form ∝ s2/t2.

The kinematics force q0 = qz for the momentum transfer q. In fact, these processes

are precisely described by the central cut of (the four-dimensional version of) diagram

(b) of Fig. 4–6. Performing the qz integration in the expression for the collision rate
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(as done in [54]; more details can be found in [62]), one obtains:

C(q⊥)hard =
g4
sCs

q4
⊥

∫

d3p

(2π)3

p− pz
p

[2CAnB(p)(1+nB(p′))

+4NfTfnF (p)(1− nF (p′))] , (4.18)

with p, p′ the initial and final momentum of the target particle; p′ = p + qz, qz =

q0 =
q2
⊥

+2q⊥·p
2(p−pz)

. In the regime q⊥ ≪ T , p′ ≈ p and Eq. (4.18) reduces (as it must) to

the large q⊥ limit of Eq. (4.8), C(q⊥) ≈ g2m2
DCsT/q

4
⊥.

Integrating Eq. (4.18) over q to obtain the hard contribution to Eq. (4.17), and

expanding it in powers of q∗/T , yields:

q̂hard

g4
sCsT 3

=
CA

6π

[

log

(

T

q∗

)

+
ζ(3)

ζ(2)
log
(qmax

T

)

+ Cb

]

+
NfTf
6π

[

log

(

T

q∗

)

+
3

2

ζ(3)

ζ(2)
log
(qmax

T

)

+ Cf

]

+
CA

6π

3

16

q∗

T
+ . . . (4.19)

with the omitted terms suppressed by (q∗/T )2 or more. We have verified by numerical

integration the first five significant digits of the numerical constants Cg, Cf , as quoted

below Eq. (4.3) from the results of [62]. The ∼ q∗/T term arises from soft bosons with

p, p′ ≪ T and can be obtained in the soft approximation nB(p), nB(p′)→ T/p, T/p′;

it is also given in [62].
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The soft contribution to Eq. (4.17), e.g. the second moment of Eq. (4.16), admits

the expansion:

q̂soft

Cs
=

g4
sT

2CAmD

2π

[

− q∗

16mD
+

3π2 + 10− 4 log 2

16π

]

+
m2

Dg
2T

2π
log

(

q∗

mD

)

+ . . . (4.20)

with the omitted terms being suppressed by powers of mD/q
∗. The q∗ dependence of

Eqs. (4.19) and (4.20) cancels out in their sum, as it must do, producing the claimed

formula, Eq. (4.3). This cancellation is a nontrivial check on the calculation.

The reader might inquire as to whether we have consistently included all O(gs)

contributions to q̂. Taking q∗ ∼ g1/2T , for instance, the omitted terms ∼ (q∗/T )2

in Eq. (4.19) might naively appear to be O(gs), suggesting contributions from other,

omitted terms. Estimates of this kind can be misleading, however, because q∗ is

not a physical scale in this problem. The matching region mD ≪ q∗ ≪ T can be

described equivalently using the low-energy description (EQCD) or the full theory,

ensuring that q∗ always disappears from final expressions. This is seen explicitly for

the leading truncation errors ∼ q∗/T in Eqs.(4.19) and (4.20): instead of producing

O(g
1/2
s ) corrections, as one would naively expect setting q∗ ∼ g1/2T , they cancel

against each other and the leading correction is O(gs) not O(g
1/2
s ). Since similar

cancellations are bound to occur at all orders, this simply means that the scale q∗

should not enter power-counting estimates. Because higher loop diagrams are ∼ g2

when q⊥ ∼ T and because we have included all O(gs) effects when q⊥ ∼ mD, we thus

conclude that we have included all O(gs) contributions.
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Finally, we note that, in the spirit of [74], we could have used dimensional regu-

larization to separate the q integration, instead of the sharp cutoff q∗. In this scheme,

the hard q∗/T term in Eq. (4.19) disappears: there is no suitable dimensionful param-

eter to replace q∗. The O(gs) corrections then come solely from the (unambiguous)

dimensionally-regulated soft integral (4.16).

4.5 Momentum broadening versus bremsstrahlung

We now extend the calculation, which so far had been concerned with the mo-

mentum broadening of a single particle, to obtain the collision kernel which is relevant

for bremsstrahlung and pair production processes. The difference is that, except for

QED processes, the relevant object to evolve in the plasma is not a “dipole” but

involves three charged states. For instance, to describe the gluon bremsstrahlung

process ψ → gψ, one must evolve an operator which annihilates a quark and cre-

ates a quark-gluon pair (see [44, 45, 41]), which, however, use somewhat different

notations):

Oψ→ψg = |ψ, g〉〈ψ| . (4.21)

The three color charges in Eq. (4.21) are paired together to form a color-singlet state,

as dictated by the (DGLAP) gluon emission vertex which generates this operator.

Only one transverse momentum suffices to describe the internal state of the

object (4.21), as a consequence both of momentum conservation and of rotational

symmetry: by suitably choosing the z-axis it is always possible to “gauge” to zero
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one of the transverse momenta (see the discussion preceding eq. (6.6) in [41]7 ). In

the following, for concreteness, we shall gauge to zero the transverse momentum of

particle 1 and q⊥ will refer to the transverse momentum of particle 2.

At the leading order, the relevant collision kernel is expressible as a sum over

two-body contributions [44, 45, 64, 41]:

dΓ3(q⊥)

d2q⊥/(2π)2
=
C2+C3−C1

2
C(q⊥)+

C1+C3−C2

2
C(
E1

E2

q⊥)

+
C1+C2−C3

2
C(
E1

E3

q⊥) . (4.22)

with Ci and Ei respectively the Casimir and longitudinal momenta of the partici-

pating particles, and C(q⊥) is the (Casimir-stripped) single-particle rate as defined

earlier. In the special limit in which one of the Ei becomes much smaller than the

other ones, the motion of this particle dominates and the kernel Eq. (4.22) reduces

to the one for single-particle diffusion, C(q⊥), for i = 2, 3, and C(E1

E2
q⊥) when i = 1.

As we presently show, it turns out that formula (4.22) also holds at NLO, pro-

vided the NLO result for C(q⊥), Eq. (4.16), is used within it.

4.5.1 “Three-pole” propagation at next-to-leading order

To keep the discussion simple we will assume that particle 3 is a gluon (or any

color adjoint state), which is sufficient to cover all splitting processes in QCD (and

7 For high-energy jets (when at least one of the energy of the participant is large,
Emax ≫ T ), these rotations can be taken to have energy-suppressed angles ∼ q⊥/E,
and thus to have negligible effects on the longitudinal momenta. Even when Emax ∼
T , the angles are at most ∼ g and the changes in longitudinal momenta are ∼ g2,
beyond the accuracy considered in this chapter.
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Figure 4–7: Additional diagrams for the evolution of a triplet of charges.

N = 4 super Yang-Mills). This implies that particles 1 and 2 are antiparticles to

each other. We denote by |s〉 the relevant singlet state in the tensor product of the

three charges; explicitly, |s〉 is given by the representation matrices (t1)
a
ij.

The dipole diagrams (a)-(g) treated previously must now be summed over the

three possible pairs of particles, and we must recompute their group theory factors.

Diagrams (a)-(b) involve, in the case the interaction is between particles 1 and 2,

−〈s|ta1 ⊗ ta2|s〉 = 〈s|t
a
1t
a
1 + ta2t

a
2 − (t1+t2)

a(t1+t2)
a

2
|s〉

=
C1+C2−C3

2
, (4.23)

which reproduces the structure of Eq. (4.22), upon summing over pairs and using

rotational invariance to gauge to zero particle 1’s ⊥-momentum. Diagrams (c)-(g)

fit within the same structure, as follows from the fact that they organize themselves

into commutators. For instance,

(c) ∝ ifabc〈s|ta1tb1 ⊗ tc2|s〉 = −CA

2
〈s|ta1 ⊗ ta2|s〉,

(f) + (g) ∝ 〈s|[ta1, tb1]⊗
[ta2, t

b
2]

2
|s〉=−CA

2
〈s|ta1 ⊗ ta2|s〉. (4.24)

Here we have used the identities [ta, tb] = ifabctc and fabcfabc
′

= CAδ
cc′. Thus,

Eq. (4.22) will be proved at NLO provided other contributions vanish.
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The other contributions are the added diagrams (Fig. 4–7), which couple the

three particles together nontrivially. In diagram (h) (see Fig. 4–7), the Yang-Mills

3-vertex generates a factor fabc and the coupling to the gluon line is given by (t3)
c
de ∝

f cde, whence:

(h) = 〈s|ta1tb2tc3|s〉fabc ∝ Tr 1

(

tatdtbte
)

fabcfdec = 0 , (4.25)

with the trace taken in the representation of the particle 1. We could prove this

identity by making extensive use of the antisymmetry of the fabc. Diagrams (i) are

similar to diagram (g) treated in subsection 4.3.4, and the main point is that there

is a sign between the two diagrams, due to the reversed middle propagator, thus

yielding zero:

(i) ∝ 〈s|ta1 ⊗ [ta2, t
b
2]⊗ tb3|s〉 = 0 . (4.26)

Thus the new diagrams (h)-(i) vanish and the factorization formula (4.22) remains

valid at NLO. We view this as somewhat surprising and this could be an artefact of

the relatively low order in perturbation theory to which we are working.

4.5.2 Operator ordering

We now briefly discuss operator ordering issues, for the Wilson lines in Eq. (4.6)

and their three-particle generalization, Eq. (4.21). Although this is not directly

relevant to the purely classical effects which are the main object of this chapter,

since nonperturbative definitions of q̂ have been used in the literature [55, 57] a

discussion of them could be of interest.

To help clarify the physical significance of these issues, let us first consider, in

QED, the processes of photon bremsstrahlung from a charge, and of pair production
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from a photon. These processes differ in that the former takes place within the

electromagnetic field generated by the initial charge, while the latter takes place

in an essentially undisturbed medium (the induced field being suppressed by the

small size of the produced dipole). The elastic collision rates relevant to these two

processes could thus be different, due to the different backgrounds, and should be

defined differently. In the eikonal regime it is the role of the Wilson lines trailing

behind the charges to account for these effects, which requires that they be properly

ordered.

The proper ordering can be readily guessed using the language of the Schwinger-

Keldysh “doubled fields” (see section 2.1), in which amplitudes and their com-

plex conjugate are described by type-1 and type-2 fields, respectively. For pho-

ton bremsstrahlung, evolving the relevant |ψγ〉〈ψ| matrix element clearly requires

one type-1 ψ (and γ) and one type-2 ψ field, whereas for pair production, evolving

|ψψ〉〈γ| requires both charged fields to be type-1 (and γ to be type-2). In the latter

case the Wilson lines approximately cancel against each other (for a small dipole),

whereas in the former case they fail to cancel due to operator ordering issues (they

live on different branches of the Keldysh contour): instead they source an electro-

magnetic field. This way the expected physics is reproduced.

The story for QCD must be similar: for instance, evolving a |ψ, g〉〈ψ| operator,

relevant for gluon bremsstrahlung, should require type-1 ψ and g fields, and a type-2

ψ field, with the obvious replacements to be made for other processes. Thus the

strong coupling calculations of the momentum broadening coefficient in [55] and

[56], strictly speaking, gives a q̂ applicable to photon bremsstrahlung from a quark,
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whereas the “jet quenching parameter” defined in [57], being defined from a space-like

limit of correlators, is by hypothesis independent of operator ordering. It would be

very interesting to quantify the importance of operator ordering at strong coupling,

where it would presumably be sensitive to the amount of broadening which is due to

the induced radiation.

4.6 Concluding remarks

We have evaluated the perturbative corrections to the rate of elastic collisions

at small q⊥ ∼ gsT , as seen by a ultrarelativistic projectile moving in a thermalized

quark-gluon plasma. The correction was found to be more than a factor two (increase

in the rate) at αs = 0.3, signaling poor convergence of the perturbative expansion.

Even at α = 0.1, the correction is sizable and the reliability of the perturbative series

is not clear.

Since in heavy ion collisions gsT = O(T ), we conclude that existing perturbative

estimates of C(q⊥) are unreliable for q⊥ <∼ T ÷ 3T . The shape of the collision rate

at these momenta should thus not be considered as a theoretical known in studies of

jet quenching.

The large corrections we have found are solely attributable to classical plasma

physics at the electric scale (effects contained within the EQCD effective theory). As

such they are unrelated to quantum effects which only begin at order g2
s , and which

we have argued are expected to become important, at these momenta, only at a

much lower temperatures (larger couplings). Also, the magnetic scale g2
sT , although

correctly described by EQCD, is not probed by the present calculation; it will enter q̂
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starting at relative order g2
s . It would be very interesting to estimate the importance

of this nonperturbative scale through three-dimensional simulations of EQCD.

The two-body factorization form (4.22) for the full collision operator C entering

the theory of bremsstrahlung does not receive O(gs) corrections. Since no evidence

suggests important corrections to this form, it seems justified to assume it in future

phenomenological studies and focus on modifications of the single-particle elastic

rates C(q⊥) (also known as dipole amplitude) which is the building block for it.

It is not possible for us to comment on whether an increase in C(q⊥) (and q̂)

is at present favored by the data and by the data analyses, or not; some groups (in

particular, [75]) tend to need a larger q̂ than estimated from perturbation theory,

while this conclusion not shared by all studies [63]. Steps towards comparing the

different treatments were made in [47]; they differ by the approximations that are

being made in computing the radiation rate starting from C(q⊥) (or, in certain cases,

starting from only q̂. Intrinsic limitations of this quantity have been discussed in

section 4.2.3). When this discrepancy (in the theory!) is resolved it will be possible

to draw firmer conclusions about the strength of C(q⊥) from the experiments.

The overall magnitude of jet quenching is a very inclusive measurement and

more informative measurements involve some amount of geometry. Similarly, in all

approaches, changes in the overall “strength” of C(q) ∝ α2
s can be largely undone

by rescaling αs, and more robust signature of NLO effects should be sought after

instead in relation with the shape of C(q⊥).

Due to interference effects between plasma collisions and the original hard scat-

tering events where a jet takes birth [44, 45, 64] (a very clear recent presentation is in
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[76]), at early times the effect of soft collisions is suppressed and only hard collisions

are important (the so-called Coulomb tail). This was briefly discussed in section

4.2.3. Therefore, an increase of C in the soft region combined with a decrease in the

hard region (so as to retain the same overall RAA), should reduce the energy loss

felt along shorter trajectories. Thus, we speculate that NLO corrections will tend to

reduce surface bias in jet emission. This would be helpful in connection with the so

called fragility problem [77, 78]. We look forward to seeing this effect in numerical

simulations using realistic hydrodynamic models for the plasma evolution.
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CHAPTER 5
Heavy quark momentum diffusion

5.1 Introduction

Heavy quarks are potentially good probes of the properties of the quark-gluon

plasma, with “heavy” referring to the charm and bottom quarks. Due to their

large masses these are produced only at the very beginning of nuclear collisions, the

threshold energy 2mc ≈ 2.5 GeV for production of a charm quark pair not being

available afterwards. Correspondingly, just like hard jets, heavy quarks probe the

entire history of the plasma. However, due to their masses different microscopic

mechanisms are responsible for the degradation of their spectra; thus independent

information can in principle be gained. The identification of the dominant mechanism

and its modelling is a subject of ongoing debate; for a recent review see [79].

One of the very interesting discoveries of the RHIC program at Brookhaven

National Laboratory has been that heavy quarks (particularly the charm quarks)

appear to thermalize just about as effectively as the light quarks. This has been

inferred from measuring the electron pT -spectra produced by the decays of the heavy

quarks, showing indications of the same type of hydrodynamic flow as experienced

by the lighter quarks [80].

On the theoretical side, the historical starting point for a QCD-based under-

standing of the behavior of heavy quarks in a thermal environment was the determi-

nation of their energy loss rate to the leading order in the QCD coupling constant,
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αs [81]. The energy loss is directly related to a number of other concepts, such as

the diffusion and the thermalization rates of the heavy quarks [82, 83]. In particular,

assuming that the effective value of αs is relatively small leads to the thermalization

rate Γ ∼ α2
sT

2/M , where T is the temperature and M is the heavy quark mass [83].

The comparable thermalization rate for a light quark or gluon is Γ ∼ α2
sT , or at very

high energies Γ ∼ α2
sT
√

T/E [84]. Hence heavy quarks with M ≫ T are expected

to thermalize slowly, particularly at weak coupling.

As already mentioned, the empirical facts appear however to be in conflict with a

slow thermalization rate [80]. This has lead to a lot of new theoretical ideas, with the

hope of bringing the theoretical determination of Γ beyond the leading order in αs. In

particular, possibilities for a lattice determination were explored [85]; computations

in a strongly coupled theory with some similarities with QCD were carried out [86,

87]; phenomenological model treatments of bound states were considered [88]; and

the first weak-coupling corrections to the leading order result were determined [89].

The studies [86]–[89] showed that there could indeed be substantial corrections (of

a positive sign) to the leading order result; at the same time, the study [85] showed

that a direct lattice determination of the heavy quark related observables would

be extremely hard, because the physics resides in a “transport peak” of a certain

spectral function, of width ∆ω ∼ Γ ∼ α2
sT

2/M ≪ T , which regime is practically

impossible to explore with Euclidean techniques.

The purpose of this chapter is to reconsider the prospects for a lattice deter-

mination, making use of heavy quark effective theory [90] in order to systematically

consider the behavior of the heavy quarks in the limit M ≫ T . Essentially, this
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allows us to restrict the attention to the “numerator” of the thermalization rate,

∼ α2
sT

2, which remains finite in the heavy quark limit. In fact, our main goal will be

to derive an observable measurable on the lattice which has its structure at “large”

frequencies, ω ∼ α1/2
s T ≫ Γ, and can be addressed much more easily than Γ itself.

We note that, in many respects, our study parallels that in ref. [87]. The main

differences are that we use the imaginary-time formalism rather than the real-time

one, in order to make contact with the Euclidean spacetime accessible to lattice

techniques; and that we try to keep explicit track of O(αs) quantum corrections and

renormalization issues.

The plan of this chapter is the following. In section 5.2 we derive, by going

through several intermediate steps, the observable alluded to above, consisting of

color-electric fields along a Polyakov loop. In section 5.3 we analyze the correspond-

ing spectral function perturbatively, demonstrating a relatively flat behavior at small

ω <∼ α
1/2
s T . In section 5.4 we suggest a lattice discretization for the object derived in

section 5.2, while section 5.5 offers some conclusions and an outlook.

5.2 Reduction of the current-current correlator

In order to proceed with our derivation, we focus on one of the heavy quarks of

physical QCD; either the charm or the bottom quark. We assume for the moment

the use of dimensional regularization in order to regulate the theory (though we do

not indicate this explicitly). Then there is only one large scale in the system, namely

the (renormalized) heavy quark mass, M , and the task is to account for its effects

analytically in the basic observable to be defined presently (Eq. (5.1)). In section

5.4 we return to the complications emerging in lattice regularization.
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5.2.1 Definitions

The diffusive motion of heavy quarks within a thermalized medium can be char-

acterized by four different quantities, all of which are related to each other (at least

in the weak-coupling limit). We start by defining the “diffusion coefficient”, D, pro-

ceeding then to the “relaxation rate” or “drag coefficient”, ηD, and the “momentum

diffusion coefficient”, κ. The fourth quantity, the energy loss dE/dx, is historically

the first one addressed within QCD [81]; yet it is not obvious how it could be related

to the others on the non-perturbative level, so we omit it from the discussion below.

Among the three quantities, the one that can most directly be defined within

quantum field theory is the diffusion coefficient D. Consider the spectral function

related to the current-current correlator,

ρµνV (ω) ≡
∫ ∞

−∞
dt eiωt

∫

d3~x

〈

1

2
[Ĵ µ(t, ~x), Ĵ ν(0,~0)]

〉

, (5.1)

where Ĵ µ ≡ ˆ̄ψ γµ ψ̂; ψ̂ is the heavy quark field operator in the Heisenberg picture;

〈. . .〉 ≡ Z−1Tr [(...)e−βĤ ] is the thermal expectation value; and β ≡ 1/T is the inverse

temperature. Diffusive motion leads to a pole in the spectral function at ω = −iD~k2,

where ~k is the momentum (already set to zero in Eq. (5.1)). Solving for the pole

position and making use of various symmetries leads to the Kubo relation (see, e.g.,

chapter 6 of ref. [13])

D =
1

3χ00
lim
ω→0

3
∑

i=1

ρiiV (ω)

ω
. (5.2)

Here χ00 corresponds to a “susceptibility” related to the conserved charge
∫

d3~x Ĵ 0,

χ00 ≡ β

∫

d3~x
〈

Ĵ 0(t, ~x) Ĵ 0(t,~0)
〉

. (5.3)
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For a dilute system of heavy quarks, Tχ00 defines their “number density”1 . Note

that the conserved vector current Ĵ µ does not require renormalization, so that the

definitions in Eqs. (5.2) and (5.3) are guaranteed to be ultraviolet finite at any order.

To define the other quantities, we need to assume that the spectral function

around zero frequency possesses a narrow transport peak. Due to a heavy quark’s

large inertia, this is certainly true for M sufficiently large, which we assume to be

the case from now on. In this limit, the spectral function will on general grounds

take the form of a Lorentzian2 ,

∑

i

ρiiV (ω)

ω

ω<
∼ωUV= 3χ00D

η2
D

η2
D + ω2

, (5.4)

where ωUV is a frequency scale at which the Lorentzian is overtaken by other types

of physical processes.

The other two transport coefficients are then defined from the properties of the

transport peak. We define the “drag coefficient” ηD to be the width of the Lorentzian,

and the (a priori mass-dependent) “momentum diffusion coefficient” κ(M) to be M2
kin

1 In the non-relativistic limit and at zero chemical potential, Tχ00 =
4Nc(MT/2π)3/2 exp(−βM); however, our basic arguments hold also at a non-zero
chemical potential for the heavy quarks, whereby the exponential suppression could
be removed from Tχ00.

2 Two concrete examples for how such a dependence on ω can arise are reviewed
in appendix A.
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times the coefficient of the power-law falloff of its tails,

κ(M) ≡ M2
kinω

2

3Tχ00

∑

i

2TρiiV (ω)

ω

∣

∣

∣

∣

∣

ηD ≪ |ω| <
∼ωUV

. (5.5)

Here Mkin refers to the heavy quark’s kinetic mass, to be defined presently (cf.

Eq. (5.7)). Later on we will define a transport coefficient κ from the M → ∞ limit

of κ(M).

The physical motivation for the definition in Eq. (5.5) is as follows. In the dilute

limit the current Ĵ µ couples individually to the heavy quarks; the spectral function

ρµνV (ω) is thus a product of their number density Tχ00 times a contribution from one

heavy quark. For a single quark,
∫

d3~x Ĵ i ≡ v̂i represents a non-perturbative mea-

surement of its velocity. Recalling Newton’s law, MkindĴ i/dt is the force acting on

the heavy quark; thus κ(M) is a correlator of that force with itself at different times,

transformed into frequency space. The factor 2T/ω relates the spectral function to

a time-symmetric correlator, for which this classically motivated argumentation ap-

plies. Thus Eq. (5.5) generalizes, in a non-perturbative way, the force-force correlator

definition of κ given in ref. [87]. The condition on ω instructs us to integrate this

force over a time scale, long compared with the medium’s correlation time (set by

t ∼ ω−1
UV

), but short compared with the dynamics of the heavy quark (set by t ∼ η−1
D ).

The coefficientsD, ηD and κ(M) thus defined are related by fluctuation-dissipation

relations, which follow from the fact that the area under the transport peak defines

the (coarse-grained) equal-time mean-squared velocity of a heavy quark,

〈v2〉 ≡ 1

Tχ00

∫ ∞

−∞

dω

2π

∑

i

2TρiiV (ω)

ω
GUV(ω) . (5.6)
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Here we have introduced a cutoff function GUV(ω) designed to isolate the transport

peak from other types of physics, for instance GUV(ω) = θ(ωUV − |ω|). In the time

domain we are thus averaging over a time scale tUV
>∼ ω

−1
UV

. Such a time averaging is

mandatory to make 〈v2〉 finite and well-defined, since an instantaneous measurement

of the heavy quark’s velocity would induce it to radiate (or absorb) large amounts

of energy, thereby changing its state. We emphasize that, were there no sharp zero-

frequency peak in the spectral function, there would be no unambiguous notion of a

heavy quark’s (coarse-grained) mean squared velocity.

Motivated by the standard non-relativistic thermodynamic result, we can now

define a kinetic mass via

〈v2〉 ≡ 3
T

Mkin
. (5.7)

Eqs. (5.4)–(5.6) then yield the fluctuation-dissipation, or Einstein, relations:

D =
2T 2

κ(M)
, ηD =

κ(M)

2MkinT
, (5.8)

both of which involve O(ηD/ωUV) relative uncertainties. Note that ηD ∼ 1/Mkin in

the large mass limit, assuming that κ(M) contains no (power-like) dependence on

Mkin, justifying the narrow peak assumption.

Thermodynamic considerations relate the kinetic mass defined in Eq. (5.7) to

the standard notion. Namely, thanks to the slow dynamics of a heavy quark, one can

(approximately) define a free energy F (~v) as a function of its velocity (time-averaged

over a period ∼ tUV); expanding it as F (~v) = Mrest + Mkin~v
2/2 + O(~v4) at small ~v

and taking a thermodynamic average should reproduce Eq. (5.7).
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The only approximations we have made so far concern the assumption of a nar-

row transport peak. Parametrically, in weakly coupled QCD [83], ρiiV (ω)/(χ00ω) has

a peak value D ∼ 1/g4T , where g2 ≡ 4παs; a width ηD ∼ g4T 2/M ; and a perturba-

tive ultraviolet contribution which will start to depart from the 1/ω2 Lorentzian tail

at the scale ωUV ∼ gT (see section 5.3). Thus errors are of order ηD/gT ∼ g3T/M .

In strongly coupled multicolor (Nc →∞) N = 4 Super-Yang-Mills theory [86], with

a ’t Hooft coupling λ = g2Nc, the width of the transport peak is ηD ∼
√
λT 2/M , and

the continuum takes over at ωUV ∼ T ; thus ambiguities are suppressed by
√
λT/M .

Expecting the force-force correlator κ(M) to actually be mass-independent at

large Mkin, as will be verified a posteriori, we are finally led to take the Mkin → ∞

limit of Eq. (5.5), inside of which it is essential to retain ω small but non-zero:

κ ≡ β

3

3
∑

i=1

lim
ω→0

ω2

[

lim
M→∞

M2
kin

χ00

∫ ∞

−∞
dt eiωt

∫

d3~x

〈

1

2

{

Ĵ i(t, ~x), Ĵ i(0,~0)
}

〉]

. (5.9)

The factor 2T/ω has been accounted for by replacing the spectral function by a

time-symmetric correlator. Eq. (5.9) will be the starting point for the further steps

to be taken.

5.2.2 Heavy quark limit

Starting from the definition in Eq. (5.9), our next goal is to carry out the limit

M → ∞. As a first step we note that, making use of time translational invariance

and carrying out partial integrations, the definition in Eq. (5.9) can be rephrased as

κ =
β

3

3
∑

i=1

lim
ω→0

[

lim
M→∞

M2
kin

χ00

∫ ∞

−∞
dt eiω(t−t′)

∫

d3~x

〈

1

2

{

dĴ i(t, ~x)

dt
,
dĴ i(t′,~0)

dt′

}〉]

.

(5.10)
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In order to evaluate the time derivatives here, let us rewrite the QCD Lagrangian,

LQCD = ψ̄(iγµDµ − M)ψ + L light, after a Foldy-Wouthuysen transformation [91]:

expanding in 1/M and dropping total derivatives, this yields

LQCD = θ†

(

iD0 −M +
c2 ~D

2 + cB σ · g ~B
2M

)

θ

+ φ†

(

iD0 +M − c2 ~D
2 + cB σ · g ~B

2M

)

φ

+
i cE
2M

(

θ†σ · g ~E φ− φ†σ · g ~E θ
)

+O
(

1

M2

)

+ L light , (5.11)

where Di = ∂i − igAi, gBi ≡ i
2
ǫijk[Dj, Dk], gEi ≡ i[D0, Di], and θ, φ are two-

component spinors. The mass M is the pole mass3 ,

M = m(µ̄)

{

1 +
3g2CF
(4π)2

[

ln
µ̄2

m2(µ̄)
+

4

3

]

+O(g4)

}

, (5.12)

where m(µ̄) is the MS mass. In regularization schemes respecting Lorentz invariance,

the coefficient c2 must equal unity (because the combination needed for solving for

the pole mass is ∼ p2
0−~p2−M2), and we assume this to be the case in the following.

The matching coefficients cB, cE equal unity at leading order but have quantum cor-

rections; these are not needed in the present study. Note that the linearly appearing

“rest mass” M is normally shifted away (or rather replaced with 0+); however, we

3 This is true in schemes producing no additive mass renormalization, such as
dimensional regularization. There is no multiplicative renormalization to M in
Eq. (5.11) either, because M could be shifted to zero by the field redefinitions
θ → e−iMtθ, φ→ eiMtφ and would then remain zero quantum mechanically.
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prefer to keep it explicit for the moment, because the shifts needed are non-trivial

at a non-zero temperature, where the Euclidean time extent is finite.

Setting c2 = 1 in Eq. (5.11), we can read off the conserved Noether current and

the Hamiltonian in the heavy quark-mass limit:

Ĵ 0 = θ̂†θ̂ + φ̂†φ̂ , (5.13)

Ĵ j =
i

2M

[

θ̂†(
←−
Dj −−→Dj)θ̂ − φ̂†(

←−
Dj −−→Dj)φ̂

]

+O
( 1

M2

)

, (5.14)

Ĥ =

∫

d3~x
[

θ̂†(−gA0 +M)θ̂ − φ̂†(gA0 +M)φ̂
]

+O
( 1

M

)

. (5.15)

Here we treat the fermionic fields as operators but the gauge fields as c-numbers,

anticipating a path integral treatment of the gauge fields. The time derivatives

needed for Eq. (5.10) can subsequently be taken according to the canonical equations

of motion,

dĴ i

dt
= i
[

Ĥ, Ĵ i
]

+
∂Ĵ i

∂t
, (5.16)

where the partial derivative operates on the background gauge fields. The com-

mutator is readily evaluated with the help of equal-time anticommutators, and we

also note that since Eq. (5.10) includes a spatial integral over the currents, partial

integrations are allowed. Adding together the two parts in Eq. (5.16) then yields

dĴ i

dt
=

1

M

{

φ̂†gEiφ̂− θ̂†gEiθ̂
}

+O
( 1

M2

)

. (5.17)

This can now be inserted into Eq. (5.10), whereby the explicit factors of M duly

cancel, since Mkin = M up to O(T/M) thermal corrections which vanish in the
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heavy quark-mass limit:

κ =
β

3

3
∑

i=1

lim
M→∞

1

χ00

∫

dt d3~x

×
〈

1

2

{

[

φ̂†gEiφ̂− θ̂†gEiθ̂
]

(t, ~x) ,
[

φ̂†gEiφ̂− θ̂†gEiθ̂
]

(0,~0)

}〉

. (5.18)

At this point the heavy quarks have become purely static; the ordering of the limits

no longer matters, so we have set ω → 0 inside the Fourier transform.

Given that our derivation made no use of weak-coupling approximations, we

believe that Eq. (5.18) is free from (even finite) renormalization to all orders in

perturbation theory, in the assumed regularization schemes with no additive mass

renormalization and c2 equal to unity. This shows, in particular, that κ is M-

independent.

5.2.3 Euclidean correlator

Eq. (5.18) is a two-point function of gauge-invariant local operators; it therefore

satisfies the standard KMS conditions which allow us to relate it to a Euclidean

correlation function. In particular, let us define the Euclidean correlator

GE(τ) ≡ −β
3

3
∑

i=1

lim
M→∞

1

χ00

∫

d3~x
〈[

φ†gEiφ−θ†gEiθ
]

(τ, ~x)
[

φ†gEiφ−θ†gEiθ
]

(0,~0)
〉

.

(5.19)

Hats have been left out because regular Euclidean path integral techniques apply for

this object, and the minus sign accounts for the fact that a Euclidean electric field

differs by a factor i from the Minkowskian one. The corresponding spectral function
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can be determined by inverting (for recent practical recipes see, e.g., refs. [92]4 ) the

relation

GE(τ) =

∫ ∞

0

dω

π
ρ(ω)

cosh
(

β
2
− τ
)

ω

sinh βω
2

, (5.20)

or analytically from

G̃E(ωn) ≡
∫ β

0

dτ eiωnτGE(τ) , (5.21)

ρ(ω) = Im G̃E(ωn → −i[ω + i0+]) . (5.22)

The momentum diffusion coefficient then follows from

κ = lim
ω→0

2T

ω
ρ(ω) . (5.23)

Note also that by making use of Eq. (5.13), the susceptibility χ00 defined in Eq. (5.3)

can in the Euclidean theory be written as

χ00 =

∫ β

0

dτ

∫

d3~x
〈[

φ†φ+ θ†θ
]

(τ, ~x)
[

φ†φ+ θ†θ
]

(0,~0)
〉

. (5.24)

In order to work out the contractions in Eqs. (5.19), (5.24), we need the heavy

quark propagators within the Euclidean theory

LE = θ†(Dτ +M)θ + φ†(Dτ −M)φ +O
( 1

M

)

. (5.25)

4 The inversion leads to well-known systematic uncertainties, and we have nothing
concrete to add on how to treat those. However, as will be demonstrated below, our
spectral function is smoother at small ω than the ones in refs. [92], which should
somewhat ameliorate the problems in reconstructing the spectral function.
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Making use of the equations of motion satisfied by the propagators, together with

the proper boundary conditions, it can be shown that in the M → ∞ limit and for

τ > 0,

〈

θα(τ, ~x) θ
∗
β(0, ~y)

〉

= δ(3)( ~x− y)Uαβ(τ, 0)e−τM , (5.26)
〈

θα(0, ~x) θ
∗
β(τ, ~y)

〉

= −δ(3)( ~x− y)Uαβ(β, τ)e(τ−β)M , (5.27)
〈

φα(τ, ~x)φ
∗
β(0, ~y)

〉

= δ(3)( ~x− y)U †
αβ(β, τ)e

(τ−β)M , (5.28)
〈

φα(0, ~x)φ
∗
β(τ, ~y)

〉

= −δ(3)( ~x− y)U †
αβ(τ, 0)e−τM , (5.29)

where U is now a straight fundamental Wilson line in the Euclidean time direction.

With these propagators, we obtain

∫

d3~x
〈[

φ†gEiφ− θ†gEiθ
]

(τ, ~x)
[

φ†gEiφ− θ†gEiθ
]

(0,~0)
〉

= 4δ(3)(~0)e−βM
〈

ReTr [U(β, τ) gEi(τ,~0)U(τ, 0) gEi(0,~0)]
〉

. (5.30)

Similarly, the susceptibility χ00 can be written as

χ00 = 4δ(3)(~0)e−βM
∫ β

0

dτ
〈

Re Tr [U(β, τ)U(τ, 0)]
〉

= 4δ(3)(~0)e−βMβ
〈

Re Tr [U(β, 0)]
〉

. (5.31)

In total, then,

GE(τ) = −1

3

3
∑

i=1

〈

Re Tr
[

U(β, τ) gEi(τ,~0)U(τ, 0) gEi(0,~0)
]〉

〈

Re Tr [U(β, 0)]
〉 , (5.32)

and κ can be obtained from the corresponding spectral function through Eq. (5.23).

Note that the correlation function GE(τ) is positive (in a gauge with vanishing A0,
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one can think of it as −∂τ∂σF (τ −σ)|σ=0, where F is the correlation function of Ai).

Eq. (5.32) is our main result. A related formula in Minkowski signature was given

in ref. [87].

It is appropriate to remark that the meaning of Eq. (5.32) is unclear in the

confinement phase of pure SU(Nc) gauge theory, where the expectation value of the

Polyakov loop vanishes. In this situation, however, there would be a flux tube which

drags the heavy quark in a way that is quite unlike diffusion, so it need not be

surprising if the result for a diffusion coefficient were ill-defined.

5.3 Perturbation theory

The derivation of our main result, Eq. (5.32), made no use of the weak-coupling

expansion, and is meant to be applicable everywhere in the deconfined phase, par-

ticularly at the phenomenologically interesting temperatures of a few hundred MeV.

Nevertheless, to gain some understanding on the general shape of the corresponding

spectral function, we now go to very high temperatures, where the weak-coupling

expansion is applicable. Our goal is to demonstrate explicitly that even in this

regime, where spectral functions in general have more peaks and cusps than in a

strongly-coupled regime, ours is relatively smooth.

The leading-order (free theory) behaviors of the correlation function in Eq. (5.32)

and of the spectral function in Eq. (5.22) are easily found:

GE(τ) = g2CF π
2T 4

[

cos2(πτT )

sin4(πτT )
+

1

3 sin2(πτT )

]

+O(g4) , (5.33)

ρ(ω) =
g2CF
6π

ω3 +O(g4) , (5.34)
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where CF ≡ (N2
c − 1)/(2Nc). This shows that at the free level the spectral func-

tion has no zero-frequency peak, in contrast to the spectral functions relevant for

transport coefficients and vector current correlators (which have δ-function peaks at

this order). Given that ρ(ω) in Eq. (5.34) vanishes faster than ∝ ω, the diffusion

constant κ of Eq. (5.23) is zero; we must work harder to find the leading non-trivial

behavior at small frequency.

At next-to-leading order, O(g4), the intercept κ becomes non-vanishing [83]:

κ =
g2CFT

6π
m2

D

(

ln
2T

mD
+

1

2
− γE +

ζ ′(2)

ζ(2)
+

Nf ln 2

2Nc +Nf

)(

1 +O(g)

)

, (5.35)

where m2
D = g2T 2(Nc/3 + Nf/6). As indicated, corrections to this expression start

already at O(g), and have in fact recently been determined [89].

In order to learn how “easy” it is to extract the intercept κ in practice, let us

calculate more carefully the small-ω behavior of the spectral function in Eq. (5.22).

We restrict, in the following, to frequencies at most of the order of the plasmon

(or Debye) scale, ω <∼ gT . Defining κ(ω) to be the product on the right-hand side

of Eq. (5.23), the difference [κ(ω) − κ] gets contributions only from soft momenta

k ∼ mD, and can be calculated at tree-level using Hard Thermal Loop propagators.

Moreover, the Wilson lines in Eq. (5.32) can be set to unity. Inserting the gluon

propagator

〈Aaµ(x)Abν(y)〉 = δab
∑

∫

K

eiK·(x−y)
[

P T
µν(K)

K2 + ΠT (K)
+

PE
µν(K)

K2 + ΠE(K)
+ ξ

KµKν

(K2)2

]

, (5.36)
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where ξ is the gauge parameter, and carrying out the Fourier transform in Eq. (5.21),

we get

G̃E(ωn) = −g
2CF
3

∫

d3~k

(2π)3

[

2ω2
n

ω2
n + k2 + ΠT (ωn, ~k)

+
ω2
n + k2

ω2
n + k2 + ΠE(ωn, ~k)

]

, (5.37)

where k ≡ |~k|. After the analytic continuation in Eq. (5.22), ωn → −i[ω + i0+], the

self-energies become (see, e.g.. ref. [13])

ΠT (−i(ω + i0+), ~k) =
m2

D

2

{

ω2

k2
+

ω

2k

[

1− ω2

k2

]

ln
ω + i0+ + k

ω + i0+ − k

}

, (5.38)

ΠE(−i(ω + i0+), ~k) = m2
D

[

1− ω2

k2

][

1− ω

2k
ln
ω + i0+ + k

ω + i0+ − k

]

. (5.39)

This leads to Landau cut contributions at k > ω, and plasmon pole contributions at

k < ω. Concretely,

κ(ω)− κ =
2g2CFT

3
× 4π

(2π)3
× πm2

D ×
{

∫ ∞

ω̂

dk̂ k̂2
2ω̂ × ω̂

4k̂

(

1− ω̂2

k̂2

)

(

k̂2 − ω̂2 + 1
2

[

ω̂2

k̂2
+ ω̂

2k̂

(

1− ω̂2

k̂2

)

ln k̂+ω̂

k̂−ω̂

])2

+
(

ω̂π

4k̂

)2(

1− ω̂2

k̂2

)2

+

∫ ∞

0

dk̂ k̂4

[

θ(k̂ − ω̂)× 1
ω̂
× ω̂

2k̂
(

k̂2 + 1− ω̂
2k̂

ln k̂+ω̂
k̂−ω̂

)2

+
(

ω̂π
2k̂

)2 −
1

2k̂

(k̂2 + 1)2

]

+ 2ω̂
k̂3
T (ω̂2 − k̂2

T )

|3(k̂2
T − ω̂2)2 − ω̂2|

∣

∣

∣

∣

∣

k̂2
T
−ω̂2+ 1

2
[ ω̂2

k̂2
T

+ ω̂

2k̂T
(1− ω̂2

k̂2
T

) ln
ω̂+k̂T
ω̂−k̂T

] = 0

+
1

ω̂

k̂3
E(ω̂2 − k̂2

E)

|3(k̂2
E − ω̂2) + 1|

∣

∣

∣

∣

∣

k̂2
E

+1− ω̂

2k̂E
ln

ω̂+k̂E
ω̂−k̂E

= 0

}

, (5.40)

where ω̂ ≡ ω/mD and k̂ ≡ k/mD. The four terms correspond to the transverse cut,

electric cut, transverse pole, and electric pole, respectively.
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Figure 5–1: A numerical evaluation of Eq. (5.40), in units of g2CFTm2
D/6π. The cusp is

a feature of the weak-coupling expansion, as discussed in the text.

The outcome of a numerical evaluation of Eq. (5.40) is plotted in Fig. 5–1, in

units of the coefficient g2CFTm
2
D/6π multiplying the logarithm in Eq. (5.35). For

ω̂ < 1/
√

3, the result comes exclusively from the Landau cuts; for ω̂ > 1/
√

3, plasmon

poles contribute as well. For ω ≫ mD, the result is dominated by the transverse pole,

and extrapolates towards κ(ω̂ ≫ 1)→ g2CFTm
2
D/6π × 2ω̂2, the free theory result.

The pattern in Fig. 5–1 illustrates an important point: even at weak coupling

there is no transport peak around the origin; rather ρ(ω)/ω displays a relatively flat

behavior at ω <∼ mD/
√

3, with a significant rise only above the Debye scale. The

only singularity is associated with the onset of the plasmon contributions; however

this should be smoothed out in the full dynamics. The amount of smoothening
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can be estimated from the (zero-momentum) plasmon damping rate calculated in

ref. [93], Γpl = 6.64g2NcT/24π. Already for αs = 0.05 this gives (for Nc = 3, Nf =

0...4) a width Γpl/mD
>∼ 0.2 comparable to that of the cusp; therefore we expect

the true behavior to be completely regular. A more detailed study of the shape,

including the effects of interactions in the small-ω regime and ultraviolet features in

the large-ω regime, is deferred to a future publication [94]. We also remark that the

corresponding spectral functions computed for N = 4 Super-Yang-Mills theory at

infinite ’t Hooft coupling show an analogous behavior, with the smooth infrared part

ending in that case at ω ∼ T [87, 95].

5.4 Correlator in lattice regularization

Let us finally move to lattice regularization. In principle correlators of the type

in Eq. (5.32) can be measured with standard techniques on the lattice, in fact even at

low temperatures where the signal is very small [96]. There is the problem, however,

that the lattice electric fields require in general multiplicative renormalization factors

(see, e.g., ref. [97]); these depend on the details of the discretization chosen, and it

is also not clear how they could be determined on the non-perturbative level5 .

It appears, however, that the problem can at least be ameliorated if we choose

a discretization of the electric fields inspired by lattice heavy quark effective theory

(see, e.g., ref. [99]). The spatial components of the current (Eq. (5.14)) could be

5 For recent progress with lattice magnetic fields, see ref. [98].
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thought of as

Ĵ j =
i

2aM

[

θ̂†(x+ ĵ)U †
j (x)θ̂(x)− θ̂†(x)Uj(x)θ̂(x+ ĵ)− (θ̂ −→ φ̂)

]

, (5.41)

where a is the lattice spacing; ĵ is a unit vector in the j-direction; and Uj is a spatial

link matrix. Discretizing also the time derivatives in Eq. (5.10) and carrying out

the contractions, we end up with a representation of Eq. (5.32) which can best be

represented graphically:

− −
〈 ( ) ( )

+ − −
〉( ) ( )

∑3
i=1 Re Tr

−6a4 Re Tr
〈 〉

GE(τ) = x0

xi

(5.42)

Here the direct lines within parentheses are link matrices; reading from the right, the

long horizontal Wilson lines in the numerator have lengths τ −a and β−τ −a, if the

sources are placed around x0 = a/2 and x0 = τ + a/2, respectively; and the denomi-

nator stands for the trace of the Polyakov loop. It appears that Eq. (5.42) should be

less ultraviolet sensitive than the usual discretizations of the electric fields [96, 97].

Continuing with the framework of the lattice heavy quark effective theory, the

renormalization of Eq. (5.42) can also be discussed in concrete terms, and be related

to two separate issues. First of all, the linearly appearing mass parameter M in

Eq. (5.11) is no longer the pole mass but requires additive renormalization; second,

the coefficient c2 can differ from unity due to the absence of (Euclidean) Lorentz

invariance. It appears that both of these issues could be addressed perturbatively

and, in fact, even non-perturbatively [99]. Since the explicit results depend on the

particular lattice discretization chosen we do not, however, go into details here.
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5.5 Concluding remarks

The main purpose of this chapter has been to give a non-perturbative definition

to the heavy quark momentum diffusion coefficient, κ, allowing in principle for its

lattice measurement. The basic definition is given in terms of a certain limit of the

vector current correlation function, Eq. (5.9). Making use of heavy quark effective

theory, we have furthermore shown that the definition can be reduced to a much

simpler purely gluonic correlator, given in Eq. (5.32), with κ then following from

Eq. (5.23).

An important consequence of these relations is that they show that κ does not

contain any logarithms of the heavy quark mass M . Our formulae could in principle

also serve as the starting point for a first computation of a finite-temperature real-

time quantity to relative accuracy αs, revealing in particular how the renormalization

scale should be fixed.

Moving to the non-perturbative level, we have also suggested a particular dis-

cretization of Eq. (5.32), given in Eq. (5.42), which could be free of significant renor-

malization factors. It remains to be tested in practice, however, how noisy the cor-

relator is, and how fast the continuum limit can be approached. In addition, current

practical recipes [92] related to the inversion of Eq. (5.20) suffer from uncontrolled

systematic uncertainties which our method does not remove completely, although we

hope that from the practical point of view they are less serious than in many other

cases.
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Assuming that a non-perturbative value can be obtained for κ, we can finally

proceed to consider the thermalization rate of heavy quarks. A concrete and theoret-

ically satisfactory meaning for a thermalization rate is provided by the heavy quark

relaxation rate, or drag coefficient, denoted by ηD and defined around Eq. (5.5)

(the relation to thermalization follows from Eq. (7.1)). Employing the fluctuation–

dissipation relation in Eq. (5.8), ηD can be estimated as ηD ≃ κ/2MT , where M is

the heavy quark pole mass and T is the temperature. Although this relation does

have ambiguities related to the definition of the quark mass (a pole mass has in-

herent non-perturbative ambiguities at the level of several hundreds of MeV [100]; a

treatment free of this problem can only be given in terms of non-perturbatively renor-

malized heavy quark effective theory [99]), such ambiguities should be subdominant

compared with the large corrections related to infrared sensitive thermal physics, at

least for the bottom quarks. These large thermal corrections are properly captured

by our definition of κ, so ηD should lie in the right ballpark as well. We are therefore

very much looking forward to the first numerical estimates of κ.
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CHAPTER 6
Supersymmetry in high-energy processes at finite temperature

6.1 Preamble

While there is a clear need for nonperturbative methods at soft momenta, at

hard scales perturbation theory can reasonably be expected to work provided some

suitable way to “factor” soft and hard scale physics applies.

For instance in chapter 4 we have factored the medium-dependence of jet quench-

ing into the collision kernel C(q⊥), which was physically well-motivated in the high-

energy limit, including O(gs) corrections. Chapter 5 was based on a Langevin model

of heavy-quark dynamics that depends only on the transport coefficient κ and on T ,

which was well-motivated in the limit of large quark mass and nonrelativistic veloci-

ties. Yet it would be valuable to account for a variety of typically “hard” corrections,

for instance the running of the coupling including a precise fixing of its scale. Also,

one would like for instance to include DGLAP evolution of the constituents of the

medium, whenever scatterings with large q⊥ occur. For heavy quarks, one would like

to connect the Langevin regime with the relativistic regime where it breaks down.

Clearly, doing perturbative computations is a good way to address such pertur-

bative effects, and to identify how to best parameterize their dependence on difficult-

to-calculate soft physics. Such calculations are evidently rather difficult (no single

real-time quantity has yet been calculated including O(g2
s ) effects), whence a need

for simplified models in which these calculations can be eased.
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Supersymmetry could provide such a simplifying organizing principle. The aim

of this chapter will be to explore this possibility.

At zero temperature, supersymmetric theories enjoy a great degree of simplicity

over non-supersymmetric ones, due to the enhanced symmetry. Various calculations

can be performed to all orders in perturbation theory, or even exactly (nonperturba-

tively); to wit (and to name only a few), the variety of non-renormalization theorems

[101, 102]; the exact determination of the space of vacua of the theory and a rigor-

ous proof of a certain form of confinement [103]. In fact, it has been argued that

the “simplest” non-free quantum field theory in four dimensions is exactly the most

supersymmetric one, N = 4 super Yang-Mills [104]. Tree-level scattering amplitudes

in gauge theories enjoy remarkable simplicity including powerful recursion relations

(some are reviewed in [105], where a general generating functional in the N = 4

case is given). Contrary to other theories, however, multi-loop amplitudes in N = 4

certainly also enjoy remarkable structure [106]. Clearly it would be of great interest

if at least some of these developments could be “recycled” at nonzero temperature.

Of course, in the advent that supersymmetry is confirmed as a symmetry of

nature, the study of thermal supersymmetric theories will acquire a strong impetus

from the phenomenology of the early Universe. The viewpoint taken here is that

a good motivation may also occur provided mathematical simplification happens in

these theories.

Introductions to supersymmetry can be found in [107, 108]; a good technical

reference is [102].
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6.2 Introduction

Supersymmetry is usually considered as being broken at nonzero temperature

(see e.g., [109]). A simple reason is the different statistics and population functions

assumed by Bose and Fermi fields, making it hard to see how a Bose-Fermi symmetry

could be preserved. In Euclidean space, Bose-Fermi symmetry is explicitly broken by

boundary conditions along the periodic time direction (which has period 1/T ), which

are respectively periodic for bosonic fields and anti-periodic for fermionic fields. More

simply, the expectation value of the energy density is not zero. Nevertheless, one can

still ask whether the supersymmetry of the underlying equations of motion leaves

any trace in physical observables.

One example along these lines was described in [110]: due to the existence of

a conserved supercurrent, the effective hydrodynamics theory which describes the

long-wavelength modes of the plasma must contain fermionic degrees of freedom. In

this chapter we will consider the opposite end of the energy spectrum, high-energy

observables.

In the strict high-energy limit one expects the plasma to decouple, and super-

symmetry to be recovered, provided it is present in the vacuum theory. More in-

terestingly, one may look to the leading thermal corrections received by high-energy

observables. We see no obvious reason why these should preserve supersymmetry.

Nevertheless, the aim of this chapter is to report the intriguing fact that, for a wide

class of high-energy observables, the leading corrections indeed do.

This work was motivated by the well-known observation of supersymmetry

preservation for asymptotic thermal masses in weakly coupled plasmas. We will
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find that it also applies to other quantities, in fact to all high-energy correlators we

could study. More precisely, parameterizing supersymmetry violations by the rela-

tive power of the energy E−n by which they are suppressed, in all cases we find n > 2

with strict inequality. Since the leading thermal corrections have n ≤ 2 in all cases,

this is a nontrivial statement.

We will discuss in turn the relevant effective theories for the various observables

we have considered. These include: the effective particle masses at weak coupling,

in section 6.3, where previously unknown next-to-leading order results will also be

reported; the imaginary part of self-energies at weak coupling (including collinear

bremsstrahlung processes and 2 → 2 collisions), in section 6.4; the self-energies of

neutral particles in strongly interacting plasmas having a gravity dual, in section 6.5;

and finally the operator product expansion for deeply virtual correlators, in section

6.6.

By use of the phrase “effective theory” we mean to emphasize that the details

of the plasma are always probed only through a restricted set of low-energy op-

erators, whose expectation values provide the parameters of medium-independent

high-energy effective theories. In the spirit of factorization, we thus understand su-

persymmetry preservation as an intrinsic property of these effective theories: the

thermal or equilibrium nature of the underlying medium plays no important role.

6.3 Thermal masses at weak coupling

At the leading order in perturbation theory, thermal dispersion relations (of

massless particles) are known to approach the form E2 = p2+m2
∞ for any energy E ≫

gsT [111], with gs =
√

4παs a coupling strength. In applications to supersymmetric
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theories, it has been repeatedly observed that the asymptotic masses m∞ ∼ gsT are

the same among particles within a supersymmetry multiplet 1 . Compiling results

from the literature [112], or by direct evaluation of one-loop diagrams such as those

shown in Fig. 6–1, they can be summarized by the formulae:

m2
∞,g = m2

∞,λ = g2
sCA

(

Zg+Z
λ
f

)

+ g2
sNmatterTM

(

Zψ
f +Zφ

)

, (6.1a)

m2
∞,ψ = m2

∞,φ = g2
sCM

(

Zg+Z
λ
f+Z

ψ
f +Zφ

)

+ y2
(

Zψ
f +Zφ

)

, (6.1b)

where the Zi are tree-level condensates that we give shortly; g, λ, φ and ψ stand for

gluon, gluino, scalar and fermionic matter fields respectively, Nmatter is the number

of chiral superfields and CA,M , TA,M and dA,M are the quadratic Casimirs, Dynkin

indices and dimensions of the adjoint and matter representations, respectively. For

simplicity, the Yukawa contribution in Eqs. (6.1) is normalized to correspond to a

term ∼ y√
2
φψψ + c.c. in the Lagrangian of a single-field Wess-Zumino model. We

expect supersymmetry to be preserved for more general (e.g., nonrenormalizable)

superpotentials, though we have not checked this explicitly.

Nonzero expectation values for the D or F auxiliary fields, not considered in

Eqs. (6.1), could break the supersymmetry by lifting bosonic masses. As this is not a

1 During private conversations this observation has been described to the author
as “well known”. A recent occurrence is in [113].
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Figure 6–1: One-loop fermion self-energy of a fermion ψ due to the gauge interaction,
at large energy E. At leading order the asymptotic thermal mass is the sum of four
condensates, which are extracted by letting each of the propagator become soft in
turn (e.g., with all components ∼ T in Minkowski spacetime) and expanding the rest
of the diagram in powers of T/E.

specifically thermal source of supersymmetry breaking 2 , this will not be considered

here.

The (non-local) dimension-two condensates in Eqs. (6.1), each normalized to give

the contribution from two degrees of freedom, admit the following gauge-invariant

(non-renormalized) definitions and tree-level thermal expectation values:

Zg≡
1

dA
〈vσF σµ −1

(v·D)2
vσ′F

σ′
µ〉 = 2

∫

q

nB(q)

q
=
T 2

6
, (6.2a)

ZS ≡
2

dM
〈φ∗φ〉 = 2

∫

q

nB(q)

q
=
T 2

6
, (6.2b)

Zψ
f ≡

1

2dM
〈ψ /v

v·Dψ〉 = 2

∫

q

nF (q)

q
=
T 2

12
. (6.2c)

Here vµ = (1,v) is the four-velocity of the hard particle,
∫

q
=
∫

d3q/(2π)3 and nB,F

are the standard Bose-Einstein and Fermi-Dirac distribution functions. All conden-

sates are time-ordered products, as is appropriate due to the high energy of the

2 Turning on a temperature will not necessarily generate a nonzero expectation
values for these fields. For instance, at the leading order in perturbation theory,
F ∼ φ†φ† vanishes (it involves two antiholomorphic fields), and so does Da ∼ φ†taφ
for ta traceless.
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probe 3 . Useful examples include the thermal masses in N = 4 SYM, which are

all equal to m2
∞ = g2

sNcT
2, and the gluon and gluino masses in pure glue SQCD,

m2
∞,g(λ) = 1

4
g2
sNcT

2.

The structures in Eqs. (6.2) are identical to those entering the Hard Thermal

Loop (HTL) effective action [29, 30]. These are in fact the unique dimension-two

gauge-invariant operators that can be built out of a light-like four-vector vµ.

Although our derivation of Eqs. (6.1) was only carried out at the leading order

in the coupling, we claim that it correctly describes next-to-leading order (NLO)

corrections, which are O(gs). The point is that, O(gs) corrections arise only from

gsT scale HTL physics [28] but not from the hard scale ∼ E (from which only ∼ g2
s

quantum corrections arise). But Eqs. (6.1) are precisely designed to separate high-

energy physics from low-energy physics, in the spirit of a (real-time) operator product

expansion, so at O(gs) only the matrix elements in Eqs. (6.2) can receive corrections

and not the coefficients, which contain only hard scale physics. In particular, the

O(gs) corrections also preserve supersymmetry. The evaluation of the condensates

(6.2) at O(gs), which requires HTL resummation, has not previously appeared in

the literature and is performed in the Appendix 7. For completeness we record the

3 At high energies, the retarded self-energies from which the thermal mass shifts
are defined coincides with time-ordered self-energies. Furthermore, at high ener-
gies, time-ordered and anti-time-ordered propagation amplitudes decouple (see, for
instance, the discussion in [114]).
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results here (with ZNLO
f = ZLO

f +O(g2
sT

2)):

ZNLO
g =

T 2

6
− Tm∞,g

π
√

2
+O(g2

sT
2) , (6.3a)

ZNLO
S =

T 2

6
− Tm∞,S

2π
+O(g2

sT
2) . (6.3b)

Since the energy scale from which the corrections originate is gsT , the NLO mass

shifts obtained by substituting Eqs. (6.3) into Eqs. (6.1) should be valid, up to O(g2
s )

effects, for any energy E ≫ gsT .

Next-to-leading order (momentum-averaged) thermal masses were also obtained

in [50] by means of an indirect thermodynamic argument, by relating them to the

well-known ∼ g3
sT

3 corrections to the QCD entropy. The final results are in agree-

ment with Eqs. (6.3) 4 .

We have no idea about how one should make sense of Eqs. (6.1) and Eqs. (6.2)

beyond NLO order when genuine quantum corrections and renormalization effects

will appear (starting from order g2
s ); at present the factored form (6.1) should be

4 Although we obtain identical NLO mass shifts, it is worth noting that we dis-
agree with their interpretation given in [50] and in [115]. Strictly speaking, the
results of [50] only give momentum-averaged mass shifts, which they argue could
be momentum-dependent. What we have shown is that the NLO mass shifts are
momentum-independent for E ≫ gsT , and this is supported by the fact that the
constant values we find agree with the mean values obtained in [50]. After the
present appeared as a preprint, the work of [115] was brought to our attention, in
which a non-constant asymptotic behavior is found numerically at NLO. We do not
understand at present the origin of the discrepancy between our analytic work and
the work of [115].
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viewed only as a convenient means to summarize the physics relevant at leading-

order (and NLO, we have argued). In particular, we have no idea as to whether

supersymmetry will survive at higher orders in perturbation theory, should it be

possible at all to define asymptotic masses.

The supersymmetry of the thermal masses can be interpreted as a statement

about the couplings of soft particles (of all spins) to hard propagators: these turn

out to be the same among hard superpartners.

6.4 Imaginary parts of self-energies at weak coupling

The imaginary parts of self-energies at weak coupling, or scattering rates, are

due to 2→ 2 scattering against plasma particles as well as to induced collinear radia-

tive processes (bremsstrahlung or pair production). For charged particles in gauge

theories, the dominant contribution to Im Π is ∼ g2
sTE due to small angle elastic

Coulomb scattering, though the dominant inelastic contribution ∼ g4
sT

3/2E1/2 (bar-

ring logarithms) is due to radiative which we will discuss first. These processes also

dominate the self-energies of neutral particles in gauge theories, provided these par-

ticles are allowed to pair-produce charged ones. In non-gauge theories, self-energies

begin at ∼ g4
sT

2E0 due to ordinary 2 → 2 scattering, which we will discuss in

subsection 6.4.2.

6.4.1 Collinear radiation

At the risk of oversimplifying matters, the key aspects of collinear radiative pro-

cesses may be briefly summarized as follows. These processes are only relevant in

gauge theories, where they are initiated by the very frequent small-angle (Coulomb)

scatterings suffered by either the parent or the daughter particles. At high-energies
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E ≫ gsT , their long long formation times (associated with the collinearity) allows

multiple soft scatterings to occur during them and these must be summed coherently.

This causes a parametrically significant destructive interference, the so-called LPM

effect [65], that is responsible for the non-analytic power Π ∝ E1/2 (neglecting log-

arithms). For relativistic plasmas, a complete leading-order treatment was given in

[116, 41] (see also [44, 45], in which different approximations are made). Somewhat

schematically, the result may be written in the form (−2Im Π = 2EΓ):

−2Im Πa(E) =
∑

bc

∫ 1

0

dzPa→bc(z)Fa→bc(E, z) , (6.4)

where Pa→bc are ordinary DGLAP kernels [66], governing collinear physics, the sum

is over final states (bc) and z = Eb/Ea is the longitudinal momentum fraction.

We have omitted final state Bose-enhancement or Pauli-blocking factors, which are

not needed unless z or (1 − z) are very small, ∼ T/E. The functions F (E, z)

depend in a complicated way on E and z, and are to be obtained by solving an

effective inhomogeneous Schrödinger equation for the wavefunction of the pair in the

transverse plane [116]. This equation depends on the details of the plasma through

a collision kernel dΓ/d2q⊥, which is a function of the transverse momentum transfer.

Its only property that we need, however, is that it involves only eikonal physics:

it cares not about the spins of the particles. For our purposes, F (E, z) in Eq. (6.4)

is thus just some universal function that is the same for all final states among a

given supersymmetry multiplet. In the leading logarithmic approximation [116],

F (E, z) ∼ g4
sN

2
c T

3
2E

1
2z−

1
2 (1− z)− 1

2 (log( ET
g2s T

2z(1−z)))
1/2.
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Process DGLAP kernel P (z) Sum
γ → ψ†ψ e2 [z2 + (1− z)2] e2

γ → φ†φ e2 [2z(1− z)]
γ̃ → φ†ψ e2 [2z] e2

g → gg 2g2
sCA

[

(1−z)
z

+ z
1−z+z(1− z)

]

g2
sCA

[

2
z
+ 2

1−z−3
]

g → λ†λ g2
sCA [z2 + (1− z)2]

λ→ gλ g2
sCA

[

4z
1−z + 2(1− z)

]

g2
sCA

[

2
z
+ 2

1−z−3
]

φ→ ψ†ψ† y2 [1] y2

ψ → φ†ψ† y2 [2z] y2

Table 6–1: DGLAP splitting kernels for various branching processes. Supersymmetry
is restored when complete supermultiplets of final states are summed over.

The only ingredients in Eq. (6.4) which could break supersymmetry are thus the

DGLAP splitting kernels Pa→bc(z). Such kernels are listed in table 6–1, for various

supermultiplets of initial and final states. As shown in the table, when complete

supermultiplets of final states are summed over (thereby enforcing the symmetry

under z → (1 − z)), supersymmetry with respect to the initial particle is restored.

Not shown in the table (it is related to the first three entries by a crossing symmetry

[117]), but which also preserves supersymmetry, is the process of bremsstrahlung of

a gauge multiplet off a matter particle. Thus, all in-medium splitting rates preserve

supersymmetry.

Observations of supersymmetry in DGLAP kernels were made long ago in [117],

and subsequently given an explanation in [118]. Here we are simply reporting on

their implications in a medium.

The O(gs) corrections received by Eq. (6.4) have been discussed in chapter 4.

Since these corrections involve only eikonalized hard particles, they manifestly pre-

serve the supersymmetry.
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The O(g2
s ) corrections to Eq. (6.4) are expected to possess a much more inter-

esting and richer structure. For instance, they will most certainly require dealing

with the scale dependence of the partonic constituents of the plasma, which could

ultimately lead to “saturation” effects [119] at very high energies, upon summation

of large logarithms αs log(E/T ) and αs log(q2
⊥/T

2) with q2
⊥ ∼ E1/2T 3/2. The scale

evolution of the constituents of the probe, which has to be treated in the presence

of the LPM effect, should also enter at this order. Other interesting (though mani-

festly supersymmetry-preserving) effects may include sensitivity to nonperturbative

g2
sT -scale magnetic physics, which we believe contributes to q̂ at O(g2

s ). We leave to

future work a detailed analysis of these effects, and of the question of whether they

preserve supersymmetry.

As for effects subleading in T/E at leading order in gs, we expect supersymmetry-

breaking effects in Π not to be larger than ∼ T 5/2E−1/2 (relative to the ∼ E2 natural

size); these could arise from various ∼ T/E or ∼ q2
⊥/E

2 ∼ (T/E)3/2 corrections to

ingredients entering F (E, z), such as the eikonal vertices.

6.4.2 2→ 2 scattering at weak coupling

Ordinary 2→ 2 collisions dominate self-energies in non-gauge models, which we

will now discuss; their total rate will also be found to preserve supersymmetry. We

first recall the general formula for the total collision rate:

−2Im Π(p1) =

∫

d3p2d
3p3d

3p4

(2π)52E22E32E4
δ4(p1+p2−p3−p4)

×
∑

s2s3s4

|M1s2→s3s4 |2

× nb(E2)(1± nc(E3))(1± nd(E4)). (6.5)
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Process |M|2/4y2 Processes |M|2/4y2

ψψ → ψψ 1 ψψ → X, φψ → X 1
φφ→ φφ 1 ψψ → X, φψ → X

[

2 + u
t

+ t
u

]

φψ → φψ −u/s ψφ→ X, φφ→ X 1

ψφ→ X, φφ→ X
[

2 + u
t

+ t
u

]

Table 6–2: Left panel: scattering amplitudes |M|2 in Wess-Zumino model, with am-
plitudes related by crossing symmetry not shown. Right panel: amplitudes summed
over final states, for which supersymmetry is restored as a function of particle 1 with
particle 2 held fixed.

Here the particle labels are as defined as in Fig. 6–2, the si label the corresponding

particle species and ni are the corresponding distribution functions.

Let us first assume, for a moment, that the distribution functions can be omitted

in the final state (“Bose-enhancement” and “Pauli-blocking”) factors (1±ni), which

is justified for generic final state energies E3 ∼ E4 ∼
√
E1E2 ∼

√
ET . The integrand

then depends only on the sum
∑

s3s4
|M|21s2→s3s4 . Such matrix elements summed over

final states turn out to obey supersymmetry identities, with respect to the particle

1, for fixed identities of particle 2. This is exemplified in table 6–2 for single-field

Wess-Zumino model with cubic superpotential and a general proof will be given

shortly. Therefore, contributions to Eq. (6.5) from the region E3, E4 ≫ T preserve

supersymmetry.

It is easy to convince oneself that for bounded amplitudes |M|2, the regions E3 ∼

T or E4 ∼ T suffer from∼ T/E phase-space suppressions, justifying the neglect of the

final state distributions in Eq. (6.5). However, s/t ∼ ET/T 2 singularities in squared

matrix elements when t <∼ T
2 can overcome this suppression and a separate discussion
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is required for the singular terms 5 (u → 0 singularities can be treated similarly).

To establish the supersymmetry of these contributions, for which the distribution

function n(E4) must be kept, we need another ingredient: the universality of the 1/t

singularities. Indeed, the coefficient of 1/t at t → 0, which is due to soft fermion

exchange, is left unchanged when the hard particle 1 is replaced by its superpartner

(e.g. if particles 1 and 3 are exchanged in Fig. 6–2 (a)). This shows that the

complete ∼ T 2E0 self-energies in the Wess-Zumino model preserve supersymmetry,

up to ∼ T 3E−1 corrections.

This universality of soft couplings is reminiscent of that which played a role for

thermal masses in section 6.3, and can in fact be analyzed using the same tools.

Indeed, the region E4 ∼ T , t ∼ T 2 in Fig. 6–2 is characterized by soft fields coupled

to a hard line and is thus governed by the gradient expansion of Fig. 6–1. This

means that the ∼ T 2E0 contribution to Eq. (6.5) from soft fermion exchange is

equivalently captured by an imaginary part of the dimension-two fermion condensates

in Eqs. (6.2), at one-loop in thermal perturbation theory 6 .

We now prove, as claimed, that the supersymmetry of scattering amplitudes

summed over final states holds in any supersymmetric theory as a property of its

5 The total integral of such ∼ 1/t singularities is logarithmically divergent at
t → 0. This is cured by resumming hard thermal loop self-energies [28] to the soft
exchanged fermion propagator. This does not interfere with the present argument.

6 Conversely, for scalar exchange, the locality of the scalar condensate φ∗φ in
Eqs. (6.2) (which implies that it is purely real) is related to the absence of 1/t
singularities coming from scalar exchange.
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(a) (b) (c)

~T

E

1

2 4

3

Figure 6–2: 2 → 2 scattering processes in Wess-Zumino model; solid lines are
fermions and dashed lines are scalars.

vacuum S-matrix. Introducing the notation Pi1...in for projection operators which

perform the sum over complete supermultiplets of scattering states with n particles

(at fixed momenta), this follows from considering the following trace (over scattering

states):

Tr
[

S†P34S
(

|2〉〈2| ⊗
[

Q, |1〉〈1̃|
])]

, (6.6)

with S the S-matrix and 1̃ denotes the superpartner of particle 1. For any su-

persymmetry generator Q which does not annihilate particle 1, the commutator

[Q, |1〉〈1̃|] ∝ (|1〉〈1| − |1̃〉〈1̃|) so Eq. (6.6) computes the difference:

∑

s3,s4

(

|M12→s3s4|2 −
∣

∣M1̃2→s3s4

∣

∣

2
)

. (6.7)

For a massless particle 2 it is always possible to choose Q so as to annihilate particle

2; such a Q commutes with |2〉〈2|, with the S-matrix as well as with the projectors

Pi1...in (by construction), showing that Eq. (6.6) (and thus Eq. (6.7)) vanishes, being

the trace of a commutator. Thus the contributions to Eq. (6.5) from E3, E4 ≫ T

preserve supersymmetry in any theory.

Combining the results of the preceding sections, we have reached a simple conclu-

sion: the full thermal self-energies of gauge-neutral particles preserve supersymmetry,

at leading order in the coupling, up to corrections suppressed by a at least T 5/2E−1/2.
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Although it seems conceivable that the analysis of this subsection could be gener-

alized to charged particles (for which it is made more complicated by the stronger

singularities M ∼ 1/t associated with gluon exchange 7 and by various sources

of infrared divergences which make these self-energies less cleanly defined), here we

will refrain from doing so: we are content with a robust result for gauge-invariant

self-energies.

6.5 Self-energies at strong coupling

Maldacena’s conjectured gauge/gravity correspondence [121] renders possible,

among other things, the calculation of correlators of currents in certain strongly cou-

pled large Nc gauge theories. In theories which have a continuous R-symmetry, such

as the SU(4) of N = 4 super Yang-Mills, “photons” and “photinos” can be intro-

duced by weakly gauging a U(1) subgroup of the R-symmetry, whose self-energies

are then given by two two-point functions of currents and of their superpartners.

In the case of the on-shell photon self-energy in N = 4 SYM, it was argued

by means of a WKB approximation [122] (in appendix) that at high energy the

7 In the effective theory language of Fig. 6–1 these are related to certain
pure-imaginary operators that are not constrained by the equality of the ther-
mal masses. An example is the (gauge-invariant) dimension-1 eikonal amplitude
iv·Aδ(−iv·D)v·A, whose expectation value reproduces the universal (logarithmically
infrared divergent) damping rate of charged particles [120]. It did not appear in our
discussion of thermal masses because it is purely imaginary. At dimension-2 I also
find operators like iv·Aδ(−iv·D)D (representing e.g., an interference term between t-
channel gluon exchange and D-term scalar self-interaction in φφ→ φφ scattering) as
well as its superpartner involving λ. I do not know whether these operators actually
get generated and the circumstances under which they are nonzero.
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calculation localizes itself near the boundary of the AdS space. Here we generalize

this phenomenon to other backgrounds, which leads to a (simplistic) effective theory

for high-energy photon/photino propagation in these theories, of which we can state

two of its properties. First, it only probes the underlying low-energy medium through

the expectation value of the energy-momentum tensor (actually, only through one

component ∝ pµpνT
µν), which determines the leading corrections to the metric at

large radii. Second, it preserves supersymmetry: the absorption rates and dispersion

relations of a photon and of a photino are identical.

We will be considering five-dimensional metrics of the general form

ds2 = R2g(z)dz
2 + hµν(z)dx

µdxν

z2
, (6.8)

for which, near the boundary z = 0, the metric approaches that of AdS5 with radius

R (for which g(z) = 1 and hµν(z) = ηµν). The metric (6.8) should be sufficiently

general to cover any system invariant under space-time translation that admits a

gravity dual. For the AdS5 black hole, relevant for N = 4 SYM at finite temperature

T , −h00 = 1 − (πTz)4, hij = δij , hi0 = 0 and g(z) = (−h00)
−1. At certain steps

below, rotational invariance will be assumed; these steps will be highlighted.

6.5.1 Bulk equations

The bulk dual of the spin-1 current which couples to the photon is a five-

dimensional gauge field, whose field strength tensor obeys Maxwell’s equations:

0 =
z

G(z)
∂z

(

hνσG(z)

zg(z)
Fzσ

)

+ hνσhµρ∂µFρσ , (6.9)

∂αFµν = ∂µFαν − ∂νFαµ , (6.10)
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with G(z) =
√

g(z) det(−h(z)). Here µ, ν, σ, ρ are space-time indices and α may

cover all five coordinates. We will restrict our attention to space-time momentum

eigenstates ∂µ = ipµ. A closed equation for the transverse electric field F0⊥, for ν =⊥

a component perpendicular to pµ, may be obtained by acting on the first equation

with a partial time derivative ∂0, and using the second equation. Specifically, one

uses relations such as ∂0Fz⊥ = ∂zF0⊥, which follow from dropping perpendicular

derivatives ∂⊥ in the latter. To fully exploit such simplifications, rotational invariance

must be assumed, so that upstairs derivative h⊥σ∂σ also vanish. This yields the closed

equation:

zh⊥⊥
G(z)

∂z

(

h⊥⊥G(z)

zg(z)
∂zF0⊥

)

= hµνpµpνF0⊥, (6.11)

in which no summation over ⊥-indices is implied.

The bulk dual of the spin-1
2

operator coupling to the photino is a five-dimensional

Dirac fermion with bulk mass m = 1
2

[123] (in units with R = 1). It possesses as

many components as two four-dimensional Weyl spinors but it is dual to only one

such spinor, the symmetry between the two Weyl components being broken by the

sign of m. The bulk Dirac equation reads:

[ /D +m]ψ = 0 ≡
[

γaeαa

(

∂α +
1

4
ωα

abγaγb

)

+m

]

ψ , (6.12)

with α, a = 0 . . . 4 and eαa the orthogonal basis. Under the assumption of ro-

tational invariance, the term involving the spin connection ω is proportional γz

and can be removed by a z-dependent field rescaling. We choose the rescaling

ψ = z2(det(−h))−1/4e−m
R z dz
√
g(z)/zψ̃, which leads to the following equations for

105



the Weyl components of ψL,R of ψ̃:

∂zψL =
√

g(z) /pRψR, (6.13a)
[

1
√

g(z)
∂z −

2m

z

]

ψR = /pLψL. (6.13b)

Here /pL,R are the Weyl operators associated with the four-dimensional metric hµν(z).

With m = +1
2

the component relevant near the z = 0 boundary is ψL and we are

calculating the self-energy of a left-handed photino. The Eqs.(6.13) square to a closed

equation for ψL,

/pR

[

1
√

g(z)
∂z −

2m

z

]

1

/pR
√

g(z)
∂zψL = hµνpµpνψL . (6.14)

6.5.2 WKB solution and supersymmetry

We are now in position to discuss the WKB approximation. By a change of

variable y ≡ y(z), Maxwell’s equation (6.11) may be cast in a Schrödinger form with

potential proportional to the squared energy p2
0, provided

dy

dz
= 2zh⊥⊥

√

g(z)

det(−h(z)) . (6.15)

For black holes (like the AdS5 black hole metric given above) the function g(z) has

a pole at a finite value of z (the location of the horizon), while the function det(−h)

vanishes there. In this limit y is mapped logarithmically to infinity. The rescaled

potential remains finite there, though, and depends only on the energy E = p0.

The qualitative features of the Schrödinger potential entering the equation [∂2
y−

V (y)]F0⊥ = 0 are sketched in Fig. 6–3. The shape of the potential depends on the
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y

−V/p

0

HorizonAdS

2
0

~1/T
~1/m

1/2

Figure 6–3: Schematic features of the Schrödinger potential V (y)/p2
0, when p2 = 0.

It approaches the universal linear behavior (6.16) near the boundary and tends to a
constant at the horizon y → ∞, with a transition regime that may depend on the
details of the theory and on possible intrinsic mass scales m.

geometry but not on the energy, which only determines its overall normalization. At

large y the potential becomes constant, while for y → 0 the leading term becomes,

for on-shell and off-shell momenta respectively,

V (y)→















1

4y
p2, p2 6= 0,

y

4
pµpν

d hµν(z)

d(z4)
= −yπ

2T µνpµpν
2N2

c

, p2 = 0.
(6.16)

Here we have used that the leading corrections to the metric near the boundary are

proportional to z4 and are related to the expectation value of the stress-energy tensor

Tµν ; its trace part, if nonzero, does not contribute when p2 = 0. The normalization

in Eq. (6.16) is appropriate to the N = 4 SYM theory.

At the horizon y → ∞ the solutions are oscillatory and in-falling boundary

conditions F0⊥ ∝ eiω must be imposed for calculating retarded correlators [124], with

ω = p0πT/2 the natural frequency near the horizon. To obtain correlators of currents,

as described shortly, this solution must be evolved to the AdS5 boundary z = 0.
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For sufficiently large energies compared to all intrinsic scales in the metric a WKB

approximation can be used. This is applicable for y down to y ∼ 1/p2 (respectively

y ∼ (T 4E2)−1/3) for p2 6= 0 (respectively p2 = 0), at which it breaks down due

to the redshift factors 8 . These scales are the intrinsic scales of the Schrödinger

equations with approximate potentials (6.16). The problem is thus reduced to exactly

solving those approximate equations, with large y behavior matching the WKB form

∝ V −1/4ei
R y dy

√
V .

The analysis is similar for the Dirac equation (6.14), with the change of variable

(6.15) replaced with dy
dz

= 2z
√

g(z) /pR(z)/ /pR(z=0). For the on-shell component ψ−
L

of a left-handed photino in a rotationally-invariant background, the operator /pR is

nonsingular with eigenvalue E(
√

|h00| +
√
h33). Here h33 is the metric component

along the longitudinal direction. Like for Eq. (6.15), near the boundary y ∼ z2 and

the horizon is mapped logarithmically to y =∞, and the same WKB approximation

applies. More significantly, one readily sees comparing Eq. (6.14) with Eq. (6.11)

that the approximate potentials near the boundary will be identical to the photon

case (6.16).

Correlation functions are obtained by prescribing the limiting values of the fields

F0⊥ and ψL near the boundary and evaluating boundary terms ∝ ∂yF0⊥ (see e.g.

8 The transition between the two regimes p2 6= 0 and p2 = 0 occurs smoothly
around |p2

s| ∼ E2/3T 4/3, at which value of p2 the two estimates for y cross each other,
which is exactly the “saturation scale” ps ∼ T/xs discussed in [125] (viewed as a
function of E, with xs ≡ p2

s/2ET ).

108



[122]), or proportional to ψψ ∼ ψR/z ∼ 1
/pR
∂yψL [123]. In equations,

Πγ=
−N2

c T
2

8π2
lim
y→0

∂yF0⊥(y)

F0⊥(y)
, Πγ̃=

−N2
c T

2

8π2
lim
y→0

∂yψ
−
L (y)

ψ−
L (y)

. (6.17)

Here Πγ̃ ≡ uΣu is the photino self-energy sandwiched between on-shell polariza-

tion spinors u, whose real part yields the thermal mass squared. The normalization

of Eq. (6.17) has been obtained by matching to the well-known supersymmetry-

preserving vacuum result, Πγ = Πγ̃ = −N2
c p

2/32π2 log(p2/µ2), p2 = p2 − p2
0. On the

light-cone, Schrödinger’s equation with the approximate potential (6.16) is solved

in terms of Bessel (Hankel) functions F0⊥(y) ∼ ψ−
L ∼ y

1
2H 1

3
(2

3
ω̃y

3
2 ) with ω̃2 =

π2Tµνp
µpν/2N2

c , yielding with Eq. (6.17) the result:

Πγ(p) = Πγ̃(p) =
N2
c Γ
(

2
3

)

16π2Γ
(

1
3

)

(

3
1
3 − i3 5

6

)

ω̃
2
3 (6.18)

at large p0 = p. The imaginary part of this result reproduces that given in [122]

(see also [125]) in N = 4 SYM (employing that ω̃ = p0T 2π2/2 then). Corrections in

T/E to this result may be found by expanding the potential (6.16) to higher orders

near the boundary; for the AdS5 black hole this expansion proceeds in powers of

y2 ∼ ω̃−4/3, so the first subleading corrections to Π are ∼ ω̃−2/3.

We find it remarkable that photon self-energies at strong coupling and high

energies depend on only one property of the plasma: its stress-energy tensor. On

the gravity side this may be understood as due to the universal, spin-independent

gravitational attraction towards the black hole at large distances. An heuristic field-

theoretic picture of strongly coupled plasmas, based on the idea of parton saturation,

has been proposed recently [125] in which such a universality also comes out naturally.
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6.6 Deeply virtual correlators

Deeply virtual correlators, which for instance can be related to sum rules for

spectral functions (e.g., dilepton production rates) or to their asymptotics, may be

analyzed by means of the operator product expansion (OPE) [126]. The OPE is a

systematic means of separating short-distance and long-distance physics, allowing

the thermal corrections to deeply virtual (short-distance) correlators with E ≫ T to

be expressed in terms of the expectation value of local operators. Thermal correc-

tions are thus suppressed by powers ∼ E−∆ with the ∆’s determined by the scaling

dimensions of local operators 9 .

The difference between a correlator of operators and of their superpartners is a

supersymmetry variation (in agreement with the fact that it vanishes in supersymmetry-

preserving vacua). For instance, for correlators of transverse currents ǫµJ
µ and of

their superpartners λα, one schematically has:

ǫ1·J(p) ǫ2·J −
1

2
λ†(p) /ǫ1 /p /ǫ2λ ∝ ǫαα̇1 Qα

(

λ†α̇(p)ǫ2·J
)

, (6.19)

with pµǫ
µ
1,2 = 0, α, α̇ spinor indices, and Qα a supersymmetry transformation. As

an operator equation, the OPE must commute with the supersymmetries, so from

the OPE of the right-hand side of Eq. (6.19) one concludes that the operators on

its left-hand side must be supersymmetry variations. This has a simple consequence:

9 It may be worth noting that the OPE is most rigorously formulated in Euclidean
signature, even though we are considering applying it in Minkowski signature, where
it does not enjoy the same rigorous status (see e.g., [127]).
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supersymmetry violations of order E−2 or stronger, in the deeply virtual region, can

only be seen if there exists local gauge-invariant fermionic operators of dimension 3
2

or less.

In a wide class of theories there is an accidental symmetry: such operators

do not exist. These theories certainly include all weakly coupled gauge theories

containing no U(1) vector multiplets and no gauge-singlet chiral superfields. In

these theories, the only gauge-invariant dimension-2 bosonic operators (such as Trφφ

or Trφ∗φ) do not correspond to any supersymmetry variations, and thus cannot

cause supersymmetry violations. The lowest-dimensional fermionic operators are

dimension-5
2

supercurrents, from which we conclude that thermal supersymmetry

breaking can only be seen through dimension-3 operators, ∼ E−3.

When neutral chiral superfields or U(1) vector multiplets are present, nonzero

expectation values for D ∼ φ∗φ or F ∼ φ∗φ∗ auxiliary fields (which enter the su-

persymmetry transformations of gauginos and fermionic matter fields, respectively)

could produce supersymmetry violations at dimension 2. A similar possibility was

observed for thermal masses in section 6.3 but, as we discussed there, we do not

view it as being specifically related to thermal effects. Thus, we conclude that in

weakly coupled theories, there generically cannot be supersymmetry breaking (in

deeply virtual correlators) due to thermal effects below dimension-3.

It is not possible to analyze general theories at finite values of the coupling

constants, because finite anomalous dimensions can alter the power counting. Nev-

ertheless, for certain strongly coupled theories accessible to the AdS/CFT corre-

spondence, it is easy to be more quantitative. For instance, it is known [128] that
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in N = 4 SYM at large ’t Hooft coupling λ ≫ 1, only protected (chiral) operators

have finite dimensions ∆≪ λ1/4 and that the lowest-dimensional fermionic operator

has dimension 2+1
2

= 5
2

(it is the supersymmetry variation of a dimension-2 primary

field). Similarly, the N = 1 theory dual to IIB string theory on AdS5 × T11 [129]

is known to contain no fermionic operator of dimension less than 2 [130]. Thus, in

these theories, supersymmetry violations (in the deeply virtual regime) can only be

seen at ∼ E−3 or ∼ E− 5
2 levels, respectively. A discussion of more general strongly

coupled theories will not be attempted here.

6.7 Concluding remarks

In this chapter we have shown that supersymmetry is a generic property of the

effective theories which describe high-energy correlators in supersymmetric theories,

even in the presence of an underlying medium. The correlators studied include

self-energies at high energies on the light-cone as well as far away from it (large

virtuality).

For all correlators (except for the more tractable deeply virtual correlators

treated in section 6.6) our analysis has been limited to the leading nontrivial order

(and sometimes NLO) at both weak and strong coupling. Without an understanding

of the structure of higher order corrections, which is presently lacking, it seems hard

however to decide whether our findings highlight general structural properties of

supersymmetric theories, or whether they are artefacts of these extreme limits. Nev-

ertheless we find the presented evidence quite suggestive, especially since it includes

both weakly and strongly coupled regimes.
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We have found that thermal supersymmetry violations in all correlators are

suppressed by a power of the energy E−n relative to the vacuum correlators, with

n strictly greater than 2. (Violations with n = 2 were observed in sections 6.3 and

6.6 due to nonvanishing D-term or F -term expectation values, but we do not regard

these effects as being of a specifically thermal origin.) We find pleasing that such

a simple and uniform bound holds: this makes one wonder whether it could be

a consequence of some general principle which would be valid independently of a

perturbation theory, though at present we have no concrete proposal to make along

these lines.

Finally, our results strongly suggest that hard processes in supersymmetric theo-

ries will be considerably simpler to describe, beyond the leading order in the coupling,

than in non-supersymmetric ones since supersymmetry is essentially preserved at the

hard scale. We hope that the study of hard processes in these theories will lead in

the future to fruitful insights into factorization at finite temperature in general.
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CHAPTER 7
Conclusion and outlook

We summarize briefly what we have done in this thesis, highlighting possibilities

for extensions in the near future.

In chapter 2 we have reviewed the general formalism of finite temperature field

theory.

In chapter 3 we have presented a novel technique for calculating a class of space-

like and lightlike observables using Euclidean field theory, which applies to any cor-

relator localized on a spacelike or timelike hyperplane. The technique is new and

general, and in a special case it was used to shed light on a previously known sum

rule.

In chapter 4 we have used it to evaluate for the first time the effects on jet

quenching of interferences occurring between in-medium scatterings. Namely, we

have shown that in the high-energy (eikonal) limit, such interferences can be ac-

counted for by a modification of the scattering rate. We have calculated this rate

to the next-to-leading order in the coupling gs, and shown that it suffers, at soft

momentum transfers of order the temperature (gsT to be more precise), from severe

uncertainties at any realistic value of the coupling, and even much smaller ones.

There are several possibilities for short-term and middle-term improvements of

the theory of jet quenching. As discussed in that chapter, there presently exists
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in the literature discrepancies regarding the estimated values of microscopic param-

eters, due to different theoretical modelling of the experimental data. This is a

well-recognized outstanding issue, whose resolution will open the way to an unbiased

discussion of the properties of the quark-gluon plasma.

Our results indicate that the rates for soft collisions should not be considered

as being known when jet quenching data is fit. Therefore, it would be valuable to

quantify, using simulations of jet quenching including realistic hydrodynamical mod-

elling of the fireball, possible signatures on jet quenching observables of specifically

soft collisions, which would allow for the experimental extraction of their rate. One

such signature was proposed at the end of that chapter.

Finally, we have suggested that numerical lattice simulations within a simpli-

fied, three-dimensional, Euclidean effective theory could correctly pick up the largest

corrections to the soft collision kernel. This would, for the first time for a transport

coefficient, nonperturbatively resum a set of corrections that are known to be large,

thereby greatly improving the quality of comparison between theory and experiments.

In chapter 5 we have discussed the Langevin model of heavy-quark energy loss

from the viewpoint of the underlying microscopic theory QCD. We have substantiated

the heuristic notion of the Langevin momentum diffusion coefficient as a “force-force

correlator” by defining the appropriate QCD correlator, for the first time taking

into account quantum-mechanical renormalization effects. More concretely, we have

related it to the zero-frequency slope of a spectral function whose corresponding Eu-

clidean correlator we have defined. This Euclidean correlator could in principle be
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measured through non-perturbative simulations of four-dimensional Euclidean lat-

tice gauge theory. We have argued that the spectral function should be remarkably

featureless at low frequencies (no sharp peaks), making the prospects for its recon-

struction from Euclidean lattice data particularly good.

If this reconstruction can be carried out, which may ultimately rest on the statis-

tics that can be achieved for this correlator, the result would be a robust parameter-

free description of heavy-quark energy loss at low velocities. Combined with an im-

proved understanding of the relativistic regime coming from jet quenching studies,

this would significantly narrow the present uncertainties in describing heavy-quark

energy loss.

In chapter 6, motivated by the need to perform perturbative calculations at the

hard scale and by the simplifications of hard scale scattering amplitudes which occur

in supersymmetric theories, in particular in N = 4 super Yang-Mills theory, we

have studied hard processes in finite-temperature supersymmetric theories. We have

shown, through explicit leading-order computations at weak and strong coupling,

that supersymmetry is preserved at high energies roughly as much as it could possibly

be: all supersymmetry violations due to finite temperature effects can be factored

into low-energy data. This makes the prospects for higher-order computations at

the hard scale particularly good in these theories, and one would further hope that

a factorization scheme capable of preserving hard scale supersymmetry at higher

orders, whose existence it is natural to conjecture at this stage, could find applications

in other theories as well.
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In conclusion, relativistic many-body systems constitute an exciting and rela-

tively young field of study, with potentially many important discoveries awaiting in

the future. This is especially so in view of the ongoing experimental program at

RHIC and of the coming one at the LHC. RHIC has entered an era of precision

measurements, during which hard probes of the quark-gluon plasma will be called

upon to play an increasingly important role. We hope to have conveyed in this thesis

a good sense of some of the possible developments.
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Appendix A: Examples of dynamics leading to a transport peak

In this appendix, we review briefly two arguments through which the Lorentzian

form of the transport peak in Eq. (5.4) can be established explicitly.

Consider first non-relativistic quantum mechanics. Let us define v̂i = p̂i/Mkin,

where p̂i is the momentum operator of the heavy quarks (i.e. the generator of trans-

lations in their Hilbert space). Suppose that we have, through some external source

field, managed to prepare a non-equilibrium state where there is a heavy quark with

a non-zero velocity. In thermal equilibrium, the average velocity must vanish, so we

may expect the system to behave as

d

dt
〈v̂i(t)〉non-eq = −ηD 〈v̂i(t)〉non-eq +O

(

〈v̂i(t)〉2non-eq

)

. (7.1)

Once t is so large that 〈v̂i(t)〉non-eq ∼ [〈v̂2
i 〉eq]1/2, Brownian motion sets in, and the

system effectively equilibrates. In equilibrium we may define the correlator

∆ii(t) ≡
〈

1

2
{v̂i(t), v̂i(0)}

〉

eq

. (7.2)

This is an even function of t and must vanish for t→∞; in fact, at least on certain

time scales, it can be argued that it vanishes with the same exponent as the non-

equilibrium correlator in Eq. (7.1) (see, e.g., §118 of ref. [131]):

∆ii(t)
|t|≫β≃ ∆̄ii e

−ηD |t| , (7.3)
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where ∆̄ii is a constant. Taking a Fourier transform yields

∆̃ii(ω) ≡
∫ ∞

−∞
dt eiωt ∆ii(t)

|ω|≪T≃ ∆̄ii
2ηD

ω2 + η2
D

, (7.4)

and making use of the general relation ∆̃ii(ω) = [1 + 2nB(ω)] ρii(ω) (see, e.g., ref. [13]),

where nB(ω) ≡ 1/[exp(βω)− 1] and ρii(ω) is the spectral function, we arrive at

ρii(ω)

ω

|ω|≪T≈ 1

2T
∆̃ii(ω)

|ω|≪T≃ ∆̄ii
βηD

ω2 + η2
D

. (7.5)

This indeed agrees with the functional form of Eq. (5.4).

Another example is given by classical Langevin dynamics (see also ref. [85]).

Essentially, we replace 〈p̂i(t)〉non-eq → pi(t), and assume the dynamics to be contained

in

ṗi(t) = −ηD pi(t) + ξi(t) , (7.6)

〈〈ξi(t)ξj(t′)〉〉 = κcl δijδ(t− t′) , 〈〈ξi(t)〉〉 = 0 , (7.7)

with ξ a Gaussian stochastic noise field, and 〈〈...〉〉 denoting an average over the noise.

For a heavy particle the Gaussian nature follows from the central limit theorem and

the slow time scale of its dynamics, while the auto-correlator κcl =
∫∞
−∞dt 〈〈ξi(t)ξi(0)〉〉

can be chosen such as to match that of the underlying theory, Eq. (5.5). It is easy

to verify that within this dynamics, for a distribution with density Tχ00 of heavy

quarks, the equilibrium correlator is exactly Eq. (5.4).
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Appendix B: Calculation of next-to-leading thermal masses

In this Appendix we evaluate the next-to-leading order (O(g)) corrections (6.3)

to the condensates (6.2), which are related to thermal masses. The corrections

originate from the difference between using bare and HTL-resummed propagators,

Eqs. (2.21).

For the scalar condensate we use the fact that the scalar HTL self-energy is

simply a constant mass shift (see [30]). The calculation of ZS = 2Φ∗Φ can be done

in Euclidean space, where only the zero Matsubara mode contributes to the O(g)

correction:

δZS = 2T

∫

q

[

1

q2+m2
∞,S

− 1

q2

]

=
−Tm∞,S

2π
. (7.8)

A quick way to evaluate the shift to the gluon condensate is to use the fact

that −m2
DdA/4 times the angular average of Zg is precisely the HTL effective action

[29, 30], so 〈Zg〉 = −4〈ΓHTL〉/m2
DdA. Given the physical significance of this effective

action, it should be possible to evaluate it in Euclidean space, where it reduces to

a constant mass shift ΓEuclidean
HTL = −m2

DA4A4/2 for the zero Matsubara mode of the

temporal gauge field (see, for instance, Chapter 5 of the review [16]), plus negligible

corrections to the other modes. Thus,

δZg =
2

dA
δ〈A4A4〉

= 2T

∫

q

[

1

q2+m2
D

− 1

q2

]

=
−TmD

2π
, (7.9)

which reproduces Eq. (6.3)(a) upon using mD = m∞,g

√
2.
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The only seemingly weak point of the preceding paragraph is the appeal to

Euclidean techniques. This can be rigorously justified using the techniques developed

in chapter 3: real-time expectation values localized on the lightcone in configuration

space, such as Zg, can always be cast to Matsubara sums, which reduce in the

classical approximation (nB(ω) = T/ω, which is justified for the NLO correction)

to the ωE = 0 contribution in Eq. (7.9). This proves the first line of Eq. (7.9). Of

course, it is always possible to verify Eq. (7.9) directly by numerically integrating

the Minkowski-signature operator Zg in Eqs. (6.2), evaluated with HTL-resummed

propagators (and with bare propagators subtracted); we have done this.
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