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Abstract 

Aerosols significantly influence Earth’s energy budget by scattering and absorbing 

radiation, which is known as the aerosol direct radiative effect (ADRE). This thesis delves into the 

fundamental physics of ADRE and its significant impacts on climate variability, model accuracy, 

and atmospheric monitoring. It integrates findings from four comprehensive studies to elucidate 

the multifaceted nature of ADRE, its drivers from the surface to the stratosphere, and its impacts 

on satellite observations. 

First, a comprehensive analysis of ADRE and its spatiotemporal variabilities was 

conducted. A multivariable regression model was developed to reproduce these variabilities based 

on global reanalysis data. Using this analytical framework, the contributions of aerosol-related and 

environmental factors to the spatial distributions and trends of ADRE, as well as the poleward 

energy transport driven by it, were separated. About 70% of the ADRE inhomogeneity is attributed 

to aerosol optical depth (AOD), with the remainder influenced by environmental factors such as 

surface albedo and cloud radiative effects. The findings highlight the importance of surface albedo 

trends, which drive the enhanced ADRE cooling in the Arctic. 

Using the analytical ADRE model, the considerable variability of ADRE among global 

climate models (GCMs) in the Sixth Coupled Model Intercomparison Project (CMIP6) was 

investigated. Differences in state variables and radiative sensitivity explain 67% and 17% of the 

global ADRE inter-model spread, respectively. Key factors driving these anomalies, such as AOD, 

were identified in specific models. The findings suggest that constraining key state variables 

(AOD, surface albedo, and cloud radiative effect) and ADRE sensitivity to aerosol-related 

processes (aerosol-only scattering, aerosol-surface interaction) could reduce inter-model 

discrepancies in ADRE among CMIP6 models. 



 x 

The research then shifted focus to the stratosphere. A global dataset of spectrally 

decomposed and broadband ADRE kernels was developed using radiative transfer calculations to 

quantify the stratospheric ADRE. Using the regression method, physically-sorted aerosol kernels 

which are independent of geophysical locations were also developed. These kernels can accurately 

quantify stratospheric ADRE from wildfire and volcanic eruption events with relative errors within 

10%, providing an efficient and versatile tool for stratospheric ADRE assessment. 

Lastly, the impact of aerosol-radiation interaction on satellite-based atmospheric methane 

(CH4) measurements, GHGSat, was investigated. Neglecting aerosols results in biases from -3.0% 

to 6.3% in retrieved GHGSat CH4 concentrations, with the bias shifting from negative to positive 

as surface albedo increases. By integrating angle-dependent scattering information in GHGSat 

observations, simultaneous retrievals of CH4 and AOD were conducted and CH4 retrieval accuracy 

was significantly improved. The findings provide guidance for incorporating ADRE in satellite-

based greenhouse gas monitoring. 

Collectively, these studies advance the understanding of ADRE, highlighting its 

variability, its representation in climate models, and its impact on satellite-based atmospheric 

measurements. The findings underscore the importance of accurately representing ADRE in 

climate models and remote sensing to improve climate predictions and atmospheric monitoring. 
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Résumé 

Les aérosols exercent une influence significative sur le budget énergétique de la Terre en 

diffusant et en absorbant le rayonnement, ce qui est connu sous le nom d'effet radiatif direct des 

aérosols (ADRE). Cette thèse explore la physique fondamentale de l'ADRE et ses impacts 

importants sur la variabilité climatique, la précision des modèles et la surveillance atmosphérique. 

Elle intègre les résultats de quatre études complètes pour élucider la nature multifacette de l'ADRE, 

ses conducteurs de la surface à la stratosphère et ses impacts sur les observations satellitaires. 

D'abord, une analyse complète de l'ADRE et de ses variabilités spatiotemporelles a été 

menée. Un modèle de régression multivariable a été développé pour reproduire ces variabilités à 

partir de données de réanalyse globale. Ce cadre analytique a permis de distinguer les contributions 

des facteurs liés aux aérosols mais aussi des facteurs environnementaux aux distributions spatiales 

et aux tendances de l'ADRE, ainsi qu'au transport d'énergie polaire qu'il entraîne. Environ 70 % de 

l'inhomogénéité de l'ADRE est attribuée à la profondeur optique des aérosols (AOD), le reste étant 

influencé par des facteurs environnementaux tels que l'albédo de surface et les effets radiatifs des 

nuages. Les résultats soulignent l'importance des tendances de l'albédo de surface, qui entraînent 

un refroidissement accru de l'ADRE dans l'Arctique. 

Utilisant le modèle ADRE analytique, la variabilité considérable de l'ADRE parmi les 

modèles climatiques globaux (GCMs) dans le cadre du Sixième Projet d'Intercomparaison de 

Modèles Couplés (CMIP6) a été étudiée. Les différences dans les variables d'état et la sensibilité 

radiative expliquent respectivement 67 % et 17 % de l'écart inter-modèles de l'ADRE global. Les 

facteurs clés de ces anomalies, tels que l'AOD, ont été identifiés dans dans certains de ces modèles. 

Les résultats suggèrent que contraindre les variables d'état clés (AOD, albédo de surface, et effet 

radiatif des nuages) et la sensibilité de l'ADRE aux processus liés aux aérosols (dispersion 
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uniquement par les aérosols, interaction aérosol-surface) pourrait aider à réduire les divergences 

inter-modèles de l'ADRE parmi les modèles CMIP6. 

La recherche s'est ensuite déplacée vers la stratosphère. Un ensemble de données global de 

noyaux ADRE, décomposés spectralement et à bande large, a été développé en utilisant des calculs 

de transfert radiatif pour quantifier l'ADRE stratosphérique. En utilisant la méthode de régression, 

un ensemble de noyaux d'aérosols physiquement triés et indépendants des emplacements 

géophysiques a également été développé. Ces noyaux peuvent quantifier avec précision l'ADRE 

stratosphérique provenant d'événements tels que l'éruption volcanique de Hunga en 2022 et les 

incendies de forêt en Australie en 2020, les résultats étant en grande concordance avec les calculs 

du modèle de transfert radiatif. 

Enfin, l'impact de l'interaction aerosol-radiation sur les mesures atmosphériques de 

méthane (CH4) basées sur un satellites GHGSat, a été étudié. Négliger les aérosols entraîne des 

biais allant de -3,0 % à 6,3 % dans les concentrations de méthane CH4 mesurées par le satellite 

GHGSat, le biais passant du négatif au positif à mesure que l'albédo de surface augmente. En 

intégrant des informations de dispersion dépendantes de l'angle dans les observations GHGSat, 

des prélèvements simultanés de CH4 et AOD ont été effectués et la précision des récupérations de 

CH4 a été considérablement améliorée. Les résultats fournissent des orientations pour intégrer 

l'ADRE dans la surveillance des gaz à effet de serre basée sur les satellites. 

Collectivement, ces études améliorent la compréhension de l'ADRE, mettant en évidence 

sa variabilité, sa représentation dans les modèles climatiques, et son impact sur les mesures 

atmosphériques basées sur les satellites. Les résultats soulignent l'importance de représenter 

précisément l'ADRE dans les modèles climatiques et les applications de télédétection pour 

améliorer les prédictions climatiques et la surveillance atmosphérique. 
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This research has laid a foundation for understanding the contributors to ADRE on a global scale. 

The regression framework we designed for studying ADRE has been rigorously validated and 

applied not only in our subsequent research projects but also in other researchers' studies. 

Model discrepencies of aerosol direct radiative effect (Chapter 3). 

 We analyzed the discrepancies in ADRE among the Sixth Coupled Model Intercomparison 

Projects (CMIP6) models by dissecting ADRE anomalies into differences in aerosol and 

atmospheric states and their sensitivities to aerosol-related radiative processes. Our regression 

model, developed in Chapter 2, effectively captures the spatial distributions of ADRE anomalies 

and their inter-model standard deviations. We determined that differences in state variables and 

radiative sensitivity account for 67% and 17%, respectively, of the global ADRE anomaly. By 

constraining key state variables (e.g., aerosol optical depth (AOD), surface albedo, cloud radiative 
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effect) and fine-tuning ADRE sensitivity to aerosol-related processes (such as aerosol-only 

scattering and aerosol-surface interactions), we can significantly reduce ADRE uncertainties. The 

diagnostic method we proposed can identify the major factors responsible for ADRE anomalies in 

each model and the regions where they are most influential, offering insights that can improve 

ADRE simulations and reduce their uncertainties. 

Radiative kernels for stratospheric aerosol direct radiative effect (Chapter 4). 

We developed, for the first time, a comprehensive set of radiative kernels specifically 

designed for quantifying stratospheric ADRE. We introduced both broadband and band-specific 

kernels to address the spatial, temporal, and spectral variability of stratospheric aerosols. Building 

on the multivariate regression framework established in Chapter 2, we also developed an analytical 

set of aerosol kernels by incorporating key controlling variables. These kernels were successfully 

applied to assess the impact of significant events like the 2022 Hunga volcanic eruption and the 

2020 Australia wildfire, with the results agree well with radiative transfer model calculations. Our 

development offers a versatile and efficient tool for accurately quantifying stratospheric ADRE.  

Impact of aerosol-radiation interactions on GHGSat methane retrievals (Chapter 5). 

The latest generation of space-borne spectrometers designed for greenhouse gas retrieval 

demands exceptional accuracy. One significant challenge is the inaccurate understanding of 

photon path-length distribution, heavily influenced by atmospheric scatterers, particularly 

aerosols. Our research quantified, for the first time, the errors that arise from ignoring aerosol-

radiation interactions in GHGSat methane retrieval. We explored the variations in bias under 

different conditions of aerosol optical properties, surface albedo, and satellite zenith angles, and 

performed simultaneous retrievals of AOD and methane. This study provides crucial insights into 
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the impact of aerosols on GHGSat and offers recommendations for enhancing the accuracy of 

future GHGSat-like instruments by using the multi-angle viewing method. 
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Chapter 1  Introduction  

 1.1. Sources and Components of Aerosols 

Aerosols are tiny particles, both microscopic and submicroscopic, suspended in the air 

(Boucher, O., & Boucher, O., 2015). These particles can exist in solid, liquid, or mixed-phase 

forms (Hinds & Zhu, 2022). They originate from either natural sources or human activities. Natural 

sources include sandstorms, volcanic eruptions, wildfires, sea spray, and biogenic emissions 

(Christensen et al., 2022; H. Yu et al., 2006). Human activities that generate aerosols encompass 

a wide range of processes, such as fossil fuel combustion, industrial production, agriculture, 

cooking, and heating (H. Yu et al., 2006; Hinds & Zhu, 2022; Christensen et al., 2022).  

Aerosols can be classified based on their formation mechanisms. Primary aerosols are 

directly emitted into the atmosphere from mechanical processes or natural sources (Kremser et al., 

2016; Christensen et al., 2022; J. Li et al., 2022). In contrast, secondary aerosols are formed in the 

atmosphere from gaseous precursors through chemical or physical reactions, undergoing a gas-to-

particle transformation (Tomasi & Lupi, 2017; Hinds & Zhu, 2022).  

Once in the atmosphere, aerosols undergo various microphysical transformations such as 

coagulation and condensation, as well as chemical reactions like oxidation (Yau & Rogers, 1996). 

These particles are then transported by atmospheric circulations. Depending on the atmospheric 

conditions, tropospheric aerosols remain in the atmosphere for days to weeks (Kristiansen et al., 

2016), while stratospheric aerosols can persist for weeks to months (Willis et al., 2018). These 

relatively short lifetimes, especially when compared to greenhouse gases, are due to efficient 

removal processes. Aerosols are either directly deposed to the surface (e.g., sedimentation, 

precipitation, or turbulence) or scavenged by and into cloud droplets and ice crystals, followed by 

precipitation (Bellouin et al., 2020; Kremser et al., 2016).  
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The combination of these physical and chemical processes, along with the spatially 

heterogeneous distribution of aerosol sources and atmospheric conditions, makes it challenging to 

model aerosol properties accurately and to assess their impact on air quality, Earth's radiative 

budget, and climate (Bellouin et al., 2020; J. Li et al., 2022; Kremser et al., 2016; H. Yu et al., 

2006; J. Haywood & Boucher, 2000). 

1.1.1. Tropospheric Aerosols 

Tropospheric aerosols are highly spatial-temporal heterogenous. They are concentrated in 

and downwind of source regions such as deserts and industrialized regions, with a mean residence 

time of approximately 5 days and typical transport distances of about 2000 km (Bellouin et al., 

2020). Tropospheric aerosols originate from a wide variety of sources. Classifying aerosols based 

on their composition or source can be somewhat arbitrary, as particles often undergo different 

processes, such as internal mixing in the atmosphere, leading to inevitable overlaps between 

groups (Pósfai & Buseck, 2010). In this context, we distinguish among carbonaceous, sulfate, sea-

salt, mineral dust, and nitrate aerosols. The estimated annual emissions and atmospheric burdens 

of these aerosol groups are summarized in Table 1.1. 

Table 1.1 Estimated emissions and atmospheric burdens of the major aerosol types for the year 

2000. Data are obtained from Andreae & Rosenfeld (2008) 

 Mass emission (Tg/year) Mass burden (Tg) 

Carbonaceous aerosols   

    Primary organic (0–2 µm) 95 1.2 

    Black carbon (0–2 µm) 10 0.1 

    Secondary organic 28 0.8 
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Sulfates 200 2.8 

    Biogenic 57 1.2 

    Volcanic 21 0.2 

    Anthropogenic 122 1.4 

Nitrates 18 0.49 

Sea Salt 10,130 15 

Mineral dust 1,600 18 

 

Table 1.1 suggests that natural aerosols, such as mineral dust, dominate the aerosol mass 

burden in the atmosphere. Dust mainly originates from wind erosion in the dust belt, a chain of 

arid regions including the Sahara Desert, deserts in the Middle East, and the Gobi and Taklamakan 

Deserts (Mahowald et al., 2014). Dried lakebeds and other formerly wet areas are also significant 

sources of dust as the dust emissions depend on soil moisture, surface wind speed, soil texture, and 

soil surface conditions (Tegen & Lacis, 1996). Dust mobilization is influenced by surface 

conditions such as moisture, roughness elements, geological characteristics, as well as atmospheric 

conditions like low rainfall and high windspeeds (Duce, 1995; Tegen & Lacis, 1996; Mahowald 

et al., 2014). Desert dust can be the dominant particle type even thousands of kilometers from the 

source area. Mineral dust is important to human health, air quality, weather, climate, and 

biogeochemistry, as shown in Figure 1.1 from Mahowald et al. (2014). 
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Figure 1.1 Diagram of interactions between dust and climate and biogeochemistry from 

Mahowald et al. (2014). 

Sea-salt aerosols account for the largest mass emission flux in the troposphere (Andreae & 

Rosenfeld, 2008). They are produced through physical processes such as the bursting of entrained 

bubbles at the sea surface and the tearing of droplets from wave crests over wind-swept saline 

water bodies (Grythe et al., 2014; Lewis & Schwartz, 2004). Similar to dust, the emissions of sea-

salt aerosols are highly dependent on the surface wind (Andreae & Rosenfeld, 2008; Lewis & 

Schwartz, 2004). Sea-salt aerosols contain around 10% organic matter, as the ocean surface is 

enriched with microorganisms, viruses, and extracellular biogenic material (Aller et al., 2005). 

These aerosols have important radiative effects on the climate: they are responsible for the aerosol-

scattered light  and comprise a significant fraction of the inferred cloud condensation nuclei (CCN) 

due to their hygroscopic properties (Murphy et al., 1998). 
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Sulfate aerosols are a significant component of atmospheric particulates, derived from both 

natural and anthropogenic sources (Andreae & Rosenfeld, 2008; Pósfai & Buseck, 2010). 

Naturally, they are produced from the oxidation of sulfur-containing gases emitted by volcanic 

eruptions and the oxidation of dimethyl sulfide (DMS) from marine phytoplankton (Charlson et 

al., 1987). Anthropogenic sources include the combustion of fossil fuels and industrial processes, 

which release sulfur dioxide (SO₂) into the atmosphere. This SO₂ subsequently undergoes chemical 

reactions to form sulfate aerosols (X. Liu et al., 2005). Sulfate aerosols are typically found in the 

fine particle (PM2.5) mode and are associated with various environmental and health issues, such 

as acid rain and air pollutions, posing risks to human health (Seinfeld & Pandis, 2016). Due to 

their ability to scatter solar radiation, sulfate aerosols exert a cooling effect on the Earth's climate, 

counteracting some of the warming caused by greenhouse gases (Charlson et al., 1992). 

Additionally, they serve as CCN, influencing cloud properties and albedo, which further impacts 

the Earth's radiative balance (Twomey, 1977). 

 Carbonaceous aerosols arise from the combustion of fossil fuels (e.g., transportation and 

energy production), domestic burning (cooking and heating), the burning of vegetation (such as 

savannah and deforestation fires), and agricultural waste. These aerosols consist of elemental 

carbon (EC) and organic carbon (OC) (Rauber et al., 2023).  

OC aerosols can originate from biogenic and anthropogenic precursors. Biogenic aerosols 

cover a wide range of particle sizes due to the variety of particle types (Pósfai & Buseck, 2010). 

These include (in size sequence) microbial particles such as living and dead viruses, bacterial cells, 

spores, pollen, algae, and biogenic debris such as marine colloids and plant fragments (Andreae & 

Rosenfeld, 2008). The sources and evolutionary mechanisms of these aerosols are diverse and 

remain poorly characterized (Jimenez et al., 2009; Kanakidou et al., 2005). Emissions of organic 
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carbon from anthropogenic sources are 5 to 10 times lower than those from biogenic sources 

(excluding methane) (Kanakidou et al., 2005). Between 10% to 40% of the organic aerosols are 

secondary organic aerosols (SOA), which originate from the condensation of organic vapors in the 

atmosphere (Volkamer et al., 2006). The precursors of  SOA may be biogenic (e.g., terpenes, 

isoprene) or anthropogenic (e.g., petroleum, combustion) (Volkamer et al., 2006; Kanakidou et al., 

2005). Estimates of the global contributions of various SOA sources vary widely (Andreae & 

Rosenfeld 2008), reflecting the need for more detailed studies on this class of particles. The direct 

radiative effect of organic aerosols is typically a weak cooling effect, influenced by the treatment 

of water uptake and consideration of internal mixing of aerosols (Kanakidou et al., 2005). As 

effective CCN, organic aerosols play a crucial role in regulating cloud properties across both 

polluted and remote parts of the atmosphere (Andreae & Rosenfeld, 2008).  

Combustion-derived carbonaceous soot particles, commonly referred to as black carbon 

(BC), predominantly arise from the incomplete combustion of fossil fuels, residential biofuel, and 

biomass (Bond et al., 2013). As one of the key components of fine particulate matter (PM2.5), 

black carbon is noteworthy not only for its health impacts but also for its significant role in 

atmospheric and climate science (Choomanee et al., 2024). The atmospheric science community 

commonly uses the term BC for the strongly absorbing component of the aerosol, which makes 

them unique among other aerosol species that typically scatter light. This absorption leads to the 

warming of the atmosphere and, when deposited on snow and ice, can accelerate melting by 

reducing the surface albedo, thereby further influencing global climate dynamics (Bond et al., 

2013). Furthermore, BC influences cloud formation processes by acting as CCN, although its 

effects are complex and vary based on the atmospheric conditions (McConnell et al., 2007). The 

climate effects of BC are shown in Figure 1.2 by Bond et al. (2013). Beyond its climatic effects, 
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BC is linked to serious health issues, as it can penetrate deeply into the lungs and bloodstream (J. 

Yang et al., 2021). Despite having a shorter atmospheric lifetime, typically lasting from several 

days to weeks, BC has a potent and immediate effect on the climate system. Controlling the 

emissions of BC is therefore crucial for both climate mitigation and air quality improvement in the 

short term (Bond et al., 2013; Ramanathan & Carmichael, 2008). 

 

Figure 1.2 Diagram of climate effects of black carbon emissions from Bond et al. (2013) 

1.1.2. Stratospheric Aerosols 

The primary factor controlling stratospheric aerosol variability is episodic but powerful 

volcanic eruptions, which inject sulfur directly into the lower stratosphere (Kremser et al., 2016). 

They reside in the atmosphere for several months to a few years because of slow particle 

sedimentation velocities and secondary aerosol production (Bellouin et al., 2020). These particles 
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scatter sunlight and cause a lasting cooling effect on the climate after a major eruption (Solomon 

et al., 2011; Kremser et al., 2016; Christensen et al., 2022; Schoeberl et al., 2023). Additionally, 

these aerosols provide surfaces for heterogeneous chemical reactions, enhance the depletion of 

stratospheric ozone, and change the chemical balance of the atmosphere (Molina et al., 1987). 

During passive degassing and weakly explosive or effusive eruptions, the relatively low volcanic 

emissions can also produce a cooling effect by increasing the cloud brightness and cloud droplet 

numbers (Schmidt et al., 2012).  

There are also non-sulfate stratospheric aerosols including volcanic ash, organic carbon, 

smoke particles from biomass burning, and other species (e.g., meteoric ablation, space debris, 

rocket emissions) (Kremser et al., 2016). Among them, increasing attention has been paid to 

pyrocumulonimbus (PyroCb) clouds, which are formed when intense heat from wildfires generates 

powerful updrafts that can penetrate the tropopause and enter the stratosphere (Fromm et al., 2022; 

P. Yu et al., 2019; Fromm et al., 2010). The sensible heat released from the fire, the strong vertical 

velocity, and the lack of precipitation and scavenging act together to effectively transport smoke 

and other aerosols from large wildfires directly into the stratosphere (Fromm et al., 2010; Kremser 

et al., 2016). Moreover, buoyancy changes owing to solar heating of black carbon can cause 

subsequent self-lofting of upper tropospheric aerosols (Ohneiser et al., 2023). Smoke aerosols, 

consisting of varying fractions of organics, soot, and inorganic carbon, absorb incoming solar 

radiation and lead to a warming effect in the shortwave (Christian et al., 2019; Damany-Pearce et 

al., 2022). In response to the heating, the temperature-adjusted stratosphere emits longwave 

radiation back to space (C.-C. Liu et al., 2022; P. Yu et al., 2023). Overall, the effect radiative 

forcing of wildfire tends to be negative (C.-C. Liu et al., 2022; P. Yu et al., 2023). With more 
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intense and frequent wildfires due to climate change, it is important to consider the climate impact 

of stratospheric wildfire smoke in future climate projections (Friberg et al., 2023).  

The impact of stratospheric aerosols on the global climate system, their role in ozone 

chemistry, and their potential for future geoengineering efforts to offset global warming highlight 

the importance of studying these particles (Kremser et al., 2016; Visioni et al., 2020; P. Yu et al., 

2023). With the help of new measurement systems and techniques such as High altitude Aerosols, 

Water vapor and Clouds (HAWC) system (Bourassa et al., 2020), there will be an increased 

understanding of their sources, properties, and behaviors to help accurately model their impacts 

and predicting future changes in Earth’s atmospheric dynamics. 
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Figure 1.3 Schematic of the relevant processes that determine the life cycle and distribution of 

stratospheric aerosols. Large-scale atmospheric circulation is represented by large blue arrows, 

transport processes by red arrows, and chemical transformations between compounds by black 

arrows. Gas-phase components are shown as grey triangles, and aqueous-phase components as 

blue drops. The downward movement of aerosols from the stratosphere to the troposphere is 

indicated by thin blue arrows. This figure is adapted from Kremser et al. (2016). 

1.2. Aerosol Distributions 

1.2.1 Aerosol Size Distributions 

 According to diameter, aerosols can be classified into four modes: nuclear mode (Dp < 0.01 

𝜇𝑚), Aitken mode (0.01	𝜇𝑚 < Dp < 0.1 𝜇𝑚), accumulation mode (0.1	𝜇𝑚 < Dp <1 𝜇𝑚), and coarse 

mode (Dp >1 𝜇𝑚) (Raes et al., 2000). In reality, aerosol size distributions are complex (e.g., mono-

, bi-, tri-, and quad-modal), and they vary a lot according to the seasons, emission types, 

meteorological conditions, and measurement locations (Kinne, 2019; Q.-R. Yu et al., 2019; Raes 

et al., 2000).  

To simplify the representation of aerosol size in modeling, two main approaches are used: 

the discrete and continuous approximations. The discrete approximation, also known as the bin 

method, divides the aerosol size spectrum into discrete intervals and calculates concentrations in 

each size bin (Mahowald et al., 2014; Q.-R. Yu et al., 2019). Within each bin, however, the size 

distribution remains constant, implying a fixed relationship between the mass in the bin and the 

number of particles (Mahowald et al., 2014). The number of bins is usually reduced in general 

circulation models (GCM) to enhance computation efficiency (Mahowald et al., 2014). For the 

continuous approximation, a bi-model lognormal size distribution is generally assumed in most 

aerosol retrieval models, with peak concentrations located at fine and coarse modes, respectively 
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(Mahowald et al., 2014; Q.-R. Yu et al., 2019). Although both the mass median diameter and 

number concentration are allowed to change within each mode with fixed geometric standard 

deviation and effective radius, the potential discrepancies and inaccuracies in parameterizing 

aerosol size distributions among GCMs can still lead to potential biases when assessing the climate 

effects of aerosols (Goto et al., 2024; J. Li et al., 2022; Q.-R. Yu et al., 2019). 

1.2.2. Aerosol Height Distributions 

Aerosols exhibit complex vertical distributions influenced by their sources, atmospheric 

dynamics, and physical and chemical characteristics (Koffi et al., 2016). These distributions can 

be analyzed using satellite instruments, ground-based lidars, and measurements from balloons and 

aircraft (J. Li et al., 2022). Specifically, the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) on space-borne lidar platforms provides reliable global aerosol vertical profiles, 

although its geographical coverage is limited (Winker et al., 2009). Figure 1.4 illustrates the 

normalized mean global annual aerosol extinction profiles from CALIOP (2007–2009), compared 

with model simulations from Koffi et al. (2016). There is significant variability among models and 

discrepancies between simulated and observed aerosol height distributions. These inconsistencies 

stem from multiple factors, including uncertainties in emission sources and heights, the 

complexities of convective transport processes and secondary aerosol formation, and the limited 

availability of in-situ observations to refine these models (Koffi et al., 2016).  
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Figure 1.4 "Normalized" extinction coefficient profiles (km-1) at 550 nm for models in the year 

of 2006 and at 532 nm for CALIOP data from 2007 to 2009. The range for CALIOP data is 

depicted in black. The profiles are normalized to a common AOD (AOD=1) over the 0-10 km 

altitude range from Koffi et al. (2016) 

The vertical distribution of aerosols plays a crucial role in solar radiative transfer, 

particularly through their relative altitude compared to clouds, which is especially significant for 

absorbing aerosols. When clouds are situated above aerosols, they can mask the aerosols' radiative 

effects (Q. Yu & Huang, 2023b). When aerosols are located near cloud altitude, their radiative 

effect can be enhanced due to the increase in AOD due to hygroscopic growth effect near clouds 

(C. K. Yang et al., 2022). The transition regions between cloudy and clear skies, referred to as 

twilight zone, contain a mix of liquid droplets and aerosols ranging from humidified to dry (Jahani 

et al., 2022; Koren et al., 2007). This zone is characterized by complex processes such as cloud 

dissipation and formation, aerosol hydration and dehydration, shearing of cloud fragments, and 
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clouds becoming undetectable (Jahani et al., 2022). The complexity of characterizing these regions 

could lead to an underestimation of the aerosol direct effect, since aerosol optical depth (AOD) 

measurements from current satellite retrievals are typically biased towards cloud-free 

environments (Koren et al., 2007). Furthermore, when aerosols are positioned above clouds, their 

absorption is intensified due to the increased brightness of the underlying surface (Q. Yu & Huang, 

2023b). 

1.2.3. Aerosol Spatial Distributions 

The spatial distribution of aerosols varies significantly across the globe, with 

concentrations typically highest near their sources. High concentrations of sulfate aerosols are 

predominantly found over East and South Asia, regions known for intense industrial activity and 

significant anthropogenic emissions (Koch et al., 2007). Both BC and OC are prevalent in South 

America, Southern Africa, and Southeast Asia. These regions experience extensive biomass 

burning associated with agricultural practices and land clearing (Koch et al., 2007). Dust aerosols 

originate predominantly from arid areas such as North Africa, the Middle East, and Central Asia. 

With strong wind lift and transportation, these particles can travel vast distances, affecting areas 

far from their desert sources (Schepanski, 2018). Sea-salt aerosols are concentrated primarily over 

the oceans. 

1.3. Radiative Characteristics of Aerosols 

1.3.1. Scattering Aerosols 

The aerosol complex refractive index (m = n - ki) is a crucial optical parameter that governs 

how light interacts with aerosols. The real part of the refractive index (n) is associated with particle 

scattering, while the imaginary part (k) relates to absorption (Sokolik et al., 1993). Globally, the 

scattering of solar radiation, which enhances the planetary albedo and cools the climate, dominates 
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the aerosol direct radiative effect (H. Yu et al., 2006; Bellouin et al., 2020; Q. Yu & Huang, 2023b). 

The scattering aerosols such as sulfate and sea salt, known for their purely scattering properties, 

are often modeled as spherical particles due to their hygroscopic nature. Using Mie theory, their 

optical properties, such as the mass extinction coefficient, single scattering albedo (SSA), and 

asymmetry factor, are calculated based on predefined reflective indices and aerosol size 

distributions (Q.-R. Yu et al., 2019). For non-spherical particles, some numerical techniques for 

optical propertie calculations include the T-matrix method and the Discrete Dipole Approximation 

(DDA) (Draine et al., 1994 and Mishchenko et al., 1996).  

Scattering by aerosols is directionally dependent. The angular distribution of aerosol 

scattering is described by the phase function (P(Θ)). The first moment of the phase function, 

defined as the asymmetry parameter (g), can represent the degree of forward scattering (Toublanc, 

1996).  

𝑔 = %
&∫ cosΘP(Θ) sin(Θ) dΘ'

(         (1.1) 

A value of g = -1 indicates complete backward scattering, whereas g = +1 signifies 

complete forward scattering. The global mean value of g is approximately 0.7, indicating primarily 

forward scattering (Ayash et al., 2008). By taking measurements at multi-angle geometry, satellites 

can distinguish different types of clouds, aerosol particles, and surfaces (e.g., multi-angle Imaging 

Spectro Radiometer (MISR)) (Diner et al., 1998).  

The radiative effects of scattering aerosols are displayed in Figure 1.5 from Li et al. (2022). 

Scattering aerosols can cool the climate both by directly scattering sunlight and by increasing the 

number of cloud droplets, thereby enhancing the cloud reflectance. 
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Figure 1.5 Schematic of the radiative effects of scattering and absorbing aerosols, and their 

interactions from Li et al. (2022) 

1.3.2. Absorbing Aerosols 

Some aerosols possess the ability to absorb solar radiation, thereby exerting a notable 

warming effect on the climate system almost instantaneously. Among these, black carbon stands 

out as a particularly strong absorber, while dust and organic carbon exhibit moderate absorption 

capabilities (Kanakidou et al., 2005; McConnell et al., 2007; J. Li et al., 2022). This absorption of 

solar energy by aerosols can lead to atmospheric heating, which, in turn, may cool the surface (C. 

Wang, 2013; J. Li et al., 2022). This dynamic interplay between heating and cooling significantly 

influences atmospheric processes on multiple scales, potentially increasing atmospheric stability, 

and altering patterns of cloud formation and precipitation (C. Wang, 2013). The effectiveness of 

these absorbing aerosols is contingent upon the brightness of the surface below them. Absorption 

is markedly enhanced when aerosols are positioned above highly reflective surfaces such as clouds 

or deserts. Additionally, when absorbing aerosols like black carbon settle on snow and ice, they 

can reduce the surface albedo, leading to increased solar absorption and accelerated melting.  
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The radiative effects of absorbing aerosols are depicted in Figure 1.5 from Li et al. (2022). 

The radiative effect of absorbing aerosols is complex, depending on the relative location of 

aerosols. 

1.4. Climate Effects of Aerosols  

1.4.1. Direct Effects 

The Aerosol Direct Radiative Effect (ADRE) quantifies changes in radiative flux caused 

by the direct absorption and scattering of solar radiation by both natural and anthropogenic 

aerosols (Bellouin et al., 2020; Lei et al., 2020; Q. Yu & Huang, 2023b). ADRE can be measured 

at different atmospheric levels—namely, the top of the atmosphere (TOA) and the surface—and 

under varying sky conditions, such as clear-sky or all-sky scenarios (McComiskey et al., 2008; Q.-

R. Yu et al., 2019). This effect significantly influences the planetary albedo, leading to either 

cooling or warming impacts, which crucially affects the Earth's energy balance. It's important to 

distinguish ADRE from aerosol direct radiative forcing (ADRF), which specifically addresses 

changes due to anthropogenic aerosols (Thorsen et al., 2021). 

 Aerosols continue to be the largest uncertainty in determining the radiative forcing of 

climate and understanding ADRE is the most elementary step (J. Li et al., 2022). The influence of 

ADRE on global climate is intricate and depends on factors like aerosol properties (size, 

composition, concentration) and environmental conditions (presence of clouds, angle of solar 

insolation, and the characteristics of the underlying surface) (Thorsen et al., 2020; Q. Yu & Huang, 

2023a, 2023b). Moreover, the interactions between aerosols and these environmental factors add 

layers of complexity (Q. Yu & Huang, 2023b). Despite its straightforward definition, many critical 

questions about ADRE remain unsolved, such as what factors predominantly affect ADRE, trends 

in ADRE in recent years, discrepancies in GCMs, differences in stratospheric versus tropospheric 
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ADRE sensitivities, efficient quantification of ADRE, and its impact on atmospheric monitoring 

of greenhouse gases in the shortwave spectrum (Q. Yu et al., 2024; Q. Yu & Huang, 2023b; Q.-R. 

Yu et al., 2019). Therefore, this thesis focuses on studies related to ADRE, exploring both its 

theoretical foundations and practical implications in climate.  

1.4.2. Indirect and Semi-direct Effects 

Aerosols can indirectly influence the climate by altering cloud microphysical properties. 

These microphysical changes can subsequently lead to alterations in macroscopic properties like 

cloud albedo, cloud optical thickness, and cloud lifetime (Johnson et al., 2004; Storelvmo, 2017). 

Aerosols impact liquid clouds by acting as CCNs. Effective CCNs include water-soluble aerosols 

such as sulfate, nitrate, sea salt, and secondary organic aerosols (Yau & Rogers, 1996). An increase 

in these particles can increase the number concentration of cloud droplets, reduce their effective 

radius, and enhance cloud reflectance, resulting in a cooling effect on the climate (Bellouin et al., 

2020; J. Haywood & Boucher, 2000). However, the rapid adjustments in aerosol-cloud interactions 

can vary based on cloud dynamics and environmental conditions. Smaller cloud droplets are less 

likely to precipitate, which can intensify the cooling effect by increasing cloud lifetime or cloud 

fraction (Johnson et al., 2004; J. Li et al., 2022; Storelvmo, 2017). Conversely, smaller droplets 

evaporate more rapidly, and changes in droplet size distribution can potentially leading to a 

warming effect due to a reduced liquid water path (LWP) (J. Haywood & Boucher, 2000; Johnson 

et al., 2004; J. Li et al., 2022). Although some studies suggested that aerosols can affect the 

efficiency of radiatively driven entrainment in the boundary layer. The aerosol-entrainment 

coupling is still poorly understood (Su et al., 2022; Chylik et al., 2023). 

Aerosols also interact with ice and mixed-phase clouds by serving as ice nucleation 

particles (INPs), particularly in the case of dust and organic aerosols (J. Haywood & Boucher, 
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2000; J. Li et al., 2022). INPs can increase the heterogeneous ice nucleation rate and suppress 

homogeneous nucleation (Storelvmo, 2017). When heterogeneous nucleation dominates ice cloud 

formation, an increase in INPs can elevate the number of ice crystals, increasing cloud optical 

depth and leading to a warming effect. The opposite is true if homogeneous nucleation dominates. 

In mixed-phase clouds, an increase in INPs can accelerate cloud glaciation (through diffusional 

growth or riming), decrease cloud optical depth, and enhance precipitation. Meanwhile, when 

aerosol precursor gases increase, their ice-nucleating ability may be temporarily or permanently 

deactivated, reducing cloud glaciation (J. Haywood & Boucher, 2000; Storelvmo, 2017; J. Li et 

al., 2022). 

Lastly, absorbing aerosols can decrease low-cloud cover and LWP by heating the air and 

reducing relative humidity, contributing to a warming effect on the climate system. This effect is 

often referred to as the aerosol semi-direct effect (Johnson et al., 2004).  

1.5. Key Factors Influencing Aerosol Direct Radiative Effect 

1.5.1. Aerosol Microphysical Properties 

Aerosol microphysical properties, which include factors such as chemical composition, 

shape, mixing states, hygroscopicity, and particle size distribution, determine their optical 

properties (J. Li et al., 2022; X. Liu et al., 2005; H. Yu et al., 2006; Q. Yu & Huang, 2023b). These 

optical properties, in turn, significantly influence the ADRE (McComiskey et al., 2008; Thorsen 

et al., 2020). 

The chemical composition of aerosols determines their scattering and absorbing ability 

(Ayash et al., 2008). The shape of aerosol particles can vary from spherical droplets to irregularly 

shaped dust particles (C. Liu et al., 2017; Mishchenko, 2009). Non-spherical particles interact with 

light differently from spherical particles, influencing both the magnitude and directionality of 
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ADRE (Mishchenko, 2009). The aerosol mixing state and aerosol chemical component and 

morphology are highly correlated. For example, when black carbon is internally mixed with other 

substances, it can absorb more light, increasing its warming potential by 1.5 to 2.5 times compared 

to when it is externally mixed (C. Liu et al., 2017). The ability of aerosols to absorb water from 

the atmosphere, known as hygroscopicity, affects their size and optical properties (Grythe et al., 

2014). Given the complexity and variability of these microphysical properties, accurately 

representing them in climate models remains a significant challenge (Bellouin et al., 2020; J. Li et 

al., 2022; Q.-R. Yu et al., 2019).  

1.5.2. Surface Albedo 

ADRE will change when the surface albedo changes even with no change in aerosols 

(McComiskey et al., 2008; Thorsen et al., 2020; Q. Yu & Huang, 2023b). The efficiency of aerosol 

scattering decreases over surfaces with high albedo, such as snow and deserts, while it increases 

over darker surfaces, like the ocean (Q. Yu & Huang, 2023b; J. Li et al., 2022). In contrast, the 

efficiency of absorbing aerosols behaves oppositely, being more pronounced over high-albedo 

surfaces and less effective over dark surfaces (Bellouin et al., 2020; Q. Yu & Huang, 2023b). Over 

a reflective surface, multiple reflections between aerosols and the surface serve to increase surface 

absorption by enhancing the surface downward flux (Stephens et al., 2015). Moreover, 

atmospheric absorption (e.g., from atmospheric water vapor) is also enhanced during the multiple-

reflection process (Bellouin et al., 2020). The concept of critical surface albedo, which refers to 

the threshold albedo at which ADRE shifts from negative to positive, is important for both 

theoretical understanding of ADRE and aerosol satellite retrieval (Bellouin et al., 2020; Seidel & 

Popp, 2012; J. Haywood & Boucher, 2000). 



 

 20 

1.5.3. Clouds 

Clouds can impact the ADRE depending on their relative location with respect to aerosols 

(Bellouin et al., 2020; Myhre et al., 2020). Most anthropogenic aerosols are located in the boundary 

layer, where the solar radiation they receive is often obscured by clouds above. Therefore, the 

magnitude of all-sky ADRE is generally smaller than that of clear-sky ADRE (Myhre et al., 2020; 

Q. Yu & Huang, 2023b). However, in regions where absorbing aerosols are located above clouds 

(e.g., smoke aerosols above marine stratocumulus decks), the aerosol absorption is enhanced and 

can lead to a regional warming effect (Adebiyi & Zuidema, 2018; Redemann et al., 2021). 

Nevertheless, these situations only contribute to a small portion of ADRE on a global scale 

(Bellouin et al., 2020).  

The complex interactions between aerosol properties, such as SSA, and environmental 

factors like clouds complicate the determination of their individual contributions to the ADRE, 

making it challenging to quantify the specific impacts of each factor on ADRE (Q. Yu & Huang, 

2023b). 

1.6. Impacts of ADRE  

1.6.1 Regional and Global Climate Impacts of ADRE  

Aerosols influence local climates by inducing cooling or warming, affecting temperature 

gradients and consequently impacting broader climate dynamics through dynamical processes like 

convection and precipitation and feedback mechanisms such as surface albedo feedback (Adebiyi 

& Zuidema, 2018; Z. Li et al., 2016; Schmale et al., 2021; Willis et al., 2018). This localized 

impact can ripple out to affect global climate systems in significant ways (Z. Li et al., 2016; Lei et 

al., 2020). 
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For example, in Asia, aerosols can modulate the amplitude, frequency, intensity, and phase 

of the Asia monsoon via many mechanisms such as increasing atmospheric stability, reducing the 

land-ocean thermal contrast, and inducing dynamical feedback processes (Z. Li et al., 2016). 

Aerosol also contributes to solar dimming over both South and East Asia, profoundly affecting the 

energy radiation budget, atmospheric circulations, precipitation patterns, and agriculture (Z. Li et 

al., 2016; Wild, 2009). 

Similarly, the impact of the ADRE over the Arctic is complex but not well-constrained due 

to unique environmental conditions (Willis et al., 2018; Schmale et al., 2021). The Arctic 

experiences no sunlight for half the year, has surfaces that are often covered by sea ice and snow, 

and features low-level clouds that are frequently mixed-phase with pollution plumes transported 

into the area (McConnell et al., 2007; Schmale et al., 2021). These unique characteristics make the 

ADRE in this region particularly challenging to observe, understand, and represent in models 

(Willis et al., 2018). Absorbing aerosols in the Arctic free troposphere cool the surface while 

absorbing aerosol particles within the planetary boundary layer warm the surface (Schmale et al., 

2021). Furthermore, mineral dust (and to some extent black carbon) deposited on a surface covered 

by snow and ice may substantially modify the surface albedo (J. Li et al., 2022). The surface albedo 

feedback triggered by ADRE can in turn impact aerosol emissions. For example, the retreating 

snow and sea ice can free soil and dusty regions, leading to more open ocean, allowing more 

socioeconomic activities, which in return allow more sea-salt, dust, and anthropogenic aerosol 

production (Schmale et al., 2021). 

ADRE can change atmospheric circulation and induce surface temperature responses on a 

hemispheric scale (Yoshimori & Broccoli, 2008; H. Wang, Xie, Tokinaga, et al., 2016; Diao et al., 

2021). The inhomogeneity of ADRE, including interhemispheric asymmetry (northern versus 
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southern hemisphere), latitudinal difference (tropical versus extratropical), and meridional 

differences (eastern versus western hemisphere), have led to energy transport and associated large-

scale circulation changes (e.g., jet stream and Intertropical Convergence Zone shifts) (Yoshimori 

& Broccoli, 2008; H. Wang, Xie, Tokinaga, et al., 2016; Diao et al., 2021; J. Li et al., 2022). 

Volcanic and anthropogenic aerosols also play a role in the recent slowdown of global surface 

warming (D. M. Smith et al., 2016; J. Li et al., 2022).  

The aerosol-radiation interactions can cause different feedbacks depending on aerosol 

types and locations. For example, there is a positive feedback between absorbing aerosols and the 

boundary layer (Li et al., 2017). As aerosols absorb heat, the surface cools while the atmosphere 

warms. This reduces the lapse rate and increases the likelihood of temperature inversions, which 

hinder the dispersion of pollutants, further stabilizing the atmosphere. This increased stability leads 

to greater aerosol accumulation, thereby amplifying the initial ADRE. Additionally, other 

feedbacks exist, such as enhanced warming caused by absorbing aerosols (dust, black carbon), 

which heat the middle troposphere over the Himalayan-Gangetic region and the Himalayan 

foothills. This intensifies the warming associated with the elevated heat pump effect, promoting a 

positive dynamical feedback (Lau et al., 2006). 

1.6.2. Impact on Trace Gas Atmospheric Monitoring 

To combat climate change, it is important to reduce greenhouse gas emissions, especially 

those from anthropogenic source sectors. Methane is a powerful greenhouse gas that has increased 

from 720 to 1800 ppb and has contributed 0.6 °C of global warming since pre-industrial times 

(Stocker et al., 2014). Satellites have the ability to identify strong point sources and quantify 

atmospheric methane concentrations on a regional and global scale. However, most satellites 

retrieve atmospheric methane using spectrally resolved backscattered solar radiation in the 
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shortwave near-infrared band (Jacob et al., 2016; Parker et al., 2020). The methane retrieval in the 

SWIR spectral range requires accurate knowledge of the lightpath through the Earth's atmosphere 

and the aerosol-radiation interaction can introduce biases during these processes (Aben et al., 2007; 

Y. Huang et al., 2020; Sanghavi et al., 2020).  

Aerosol-radiation interactions, through direct scattering or absorption of insolation, can 

either lengthen or shorten the optical path relative to conditions without aerosols (Q. Yu et al., 

2024; Y. Huang et al., 2020; Frankenberg et al., 2012). The net effect of neglecting aerosols in gas 

retrieval depends on various factors including aerosol optical characteristics, vertical distribution 

of aerosols, surface albedo, and solar and viewing angles (Aben et al., 2007; Frankenberg et al., 

2012; Jacob et al., 2016).  

GHGSat is a Canadian company that provides a precise, scalable, and economical method 

of measuring greenhouse gas (GHG) emissions from industrial facilities worldwide (Jervis et al., 

2021). GHGSat operates a constellation of satellites with high spatial and spectral resolution. The 

FabryPérot (F–P) imaging spectrometer onboard GHGSat satellite can resolve methane absorption 

lines at around 1.65 μm (Jervis et al., 2021). The details of the GHGSat satellite parameters are 

listed in Table 1.2. To date, their CH4 retrievals have not included the effect of aerosol ( Jervis et 

al., 2021; Q. Yu et al., 2024). Therefore, it is crucial to estimate and understand the errors induced 

by aerosol-radiation interactions in GHGSat’s CH4 retrievals under varying atmospheric 

conditions to help future generations of GHGSat-like instruments. 
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Table 1.2 Satellite parameters for GHGSat-D from Jervis et al. (2021) 

 

1.7. ADRE Uncertainties 

1.7. ADRE Uncertainties 

Aerosols remain the largest source of uncertainty in determining the radiative forcing of 

the climate (Intergovernmental Panel on Climate Change, 2014). This uncertainty arises from 

various factors, including the inaccurate quantification of aerosol optical properties (AOD, SSA, 

and g) and environmental factors (such as surface albedo and cloud optical depth), incomplete 

knowledge of the spectral dependencies of aerosol scattering properties, oversimplifications of the 

aerosol vertical profile, and inaccurate estimations of the anthropogenic fraction of aerosols 

(Intergovernmental Panel on Climate Change, 2014; Stier et al., 2013; Thorsen et al., 2021; Q. Yu 

& Huang, 2023a). Sensitivity experiments indicate that SSA and the vertical distribution of 

absorbing aerosols are the major contributors to ADRE uncertainty (Intergovernmental Panel on 

Climate Change, 2014; Stier et al., 2013; Thorsen et al., 2021; Yu & Huang, 2023a). Discrepancies 

not only exist between model simulations and observations, but also between the ADRE 

calculations in different GCMs (Halthore et al., 2005; Randles et al., 2013; Stier et al., 2013; Q. 

Yu & Huang, 2023a). Despite significant advancements in global aerosol modeling, climate 
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models still report at least a 30% uncertainty in ADRE (Thorsen et al., 2021; Q. Yu & Huang, 

2023a). This multi-model uncertainty depends on various factors: aerosol emissions and transport, 

assumed aerosol microphysical properties, aerosol radiative properties, representations of surface 

albedo and clouds, and the treatment of radiative transfer, including spectral resolution and 

molecular scattering (Randles et al., 2013; Thorsen et al., 2021; Q. Yu & Huang, 2023a). It is, 

therefore, crucial to dissect and identify the contributors to the inter-model spread in ADRE, which 

will help improve the models' ability to accurately constrain ADRE. 

1.8. ADRE Quantifications 

1.8.1. Tropospheric ADRE Quantifications 

The classical single aerosol layer model (Charlson et al., 1991; Chlek & Coakley Jr, 1974; 

J. Haywood & Boucher, 2000) quantified ADRE using a straightforward formula. ADRE is 

expressed as a function of insolation, solar zenith angle, AOD, SSA, aerosol backscattering ratio, 

surface albedo, and cloud fraction (Charlson et al., 1991; J. Haywood & Boucher, 2000; Q. Yu & 

Huang, 2023b). This analytical relationship provides fundamental insights into the physical 

mechanisms behind ADRE and the nonlinear interactions between aerosol-related and 

environmental variables. However, this analytical approach overlooks the wavelength dependency 

of AOD, assumes a thin layer of aerosol concentration near the surface, and does not account for 

multiple scattering processes (Charlson et al., 1991; J. Haywood & Boucher, 2000; Bellouin et al., 

2020). 

To calculate ADRE accurately, a comprehensive set of aerosol optical properties is 

required, along with detailed radiative transfer calculations (H. Yu et al., 2006; Q.-R. Yu et al., 

2019). Model settings such as plane-parallel radiative transfer, the number of streams, and spectral 

resolution, along with assumptions about aerosol mixing and the Henyey-Greenstein phase 
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function, can introduce uncertainties into ADRE calculations (Jacobson, 2001; Toublanc, 1996; 

Wiscombe & Grams, 1976). Even with accurate ADRE calculated, the impact of individual 

contributors and their sensitivity to those contributors still remains unclear, especially on a global 

scale (Thorsen et al., 2020; Q. Yu & Huang, 2023b). 

1.8.2. Stratospheric ADRE Quantifications 

Quantifying Stratospheric ADRE can be challenging due to the limited sampling of 

aerosols in the stratosphere, the difficulty in accurately identifying the tropopause, and the 

complexity associated with various aerosol species (Andersson et al., 2015; Friberg et al., 2023; 

Kremser et al., 2016; Ohneiser et al., 2023). To address these issues, many studies simplify the 

calculation by assuming a linear relationship between stratospheric ADRE and stratospheric 

Aerosol Optical Depth (AOD), typically applying a fixed scaling factor (Hansen et al., 2005; 

Schoeberl et al., 2023, 2024a; P. Yu et al., 2023). This approach, while reducing computational 

complexity, overlooks the nuances of aerosol interactions. 

 As mentioned before, ADRE is influenced not just by aerosol properties but also by 

environmental conditions (Q. Yu & Huang, 2023a). Neglecting these factors can introduce 

potential biases, even in the case of stratospheric ADRE. Clouds, for example, can modify the 

solar radiation pathway, affecting both the scattering and absorption processes of aerosols above 

them, and thus altering the net radiative effect (Andersson et al., 2015; Kremser et al., 2016; 

Ohneiser et al., 2023). These interactions can vary significantly depending on the geographic 

location, season, and current climatic conditions, suggesting that a one-size-fits-all approach might 

not be sufficient. 
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1.9. Outstanding Questions  

The modeling of aerosol optical properties is challenging due to their diverse sizes, 

concentrations, shapes, compositions, and the chemical and physical processes they undergo. 

Additionally, the interactions between aerosol physical properties (e.g., aerosol optical properties 

and vertical distributions) and the surrounding environment (e.g., clouds) make it difficult to 

disentangle the characteristics, the dominant factors, and the uncertainties in ADRE. As climate 

change progresses, understanding the ADRE trend and its associated climate impact becomes 

crucial for future climate projections and policymaking. Moreover, ADRE uncertainty (e.g., inter-

model spread) needs to be reduced for better analysis of climate forcing and feedback. With 

increased wildfire and discussion about stratospheric geoengineering, more attention should be 

paid to stratospheric ADRE. Furthermore, to improve monitoring of greenhouse gas emissions, 

particularly from super emitters like heavily polluted industrial sites, it is essential to account for 

aerosol-radiation interactions. 

Thus, this thesis begins with an exploration of the fundamental physics behind ADRE and 

then extends this knowledge to practical applications. The research presented in this thesis is 

guided by four pivotal yet unresolved questions: 

1. How do aerosol and environmental variables contribute to the distribution and trends in 

ADRE, and what is the extent of their individual contributions? 

2. What causes the discrepancies in ADRE across different GCMs as observed in the 

Coupled Model Intercomparison Project CMIP6? 

3. How can stratospheric ADRE be quantified both efficiently and accurately? 



 

 28 

4. How do aerosol-radiation interactions affect methane monitoring by GHGSat, and how 

can their impacts be mitigated? 

1.10. Dissertation Outline 

Following the questions above, this thesis is organized into six chapters as follows: 

Chapter 2 discusses the distributions and trends of the ADRE from 2000 to 2020. A regression 

model is proposed to quantify the clear-sky and all-sky ADREs and to separate the contributions 

of aerosol-related and environment-related factors to the spatial distributions and trends for the 

ADRE and the poleward energy transport driven by it. This regression framework has been 

validated against radiative transfer calculations and will continue to be carried out in Chapters 3 

and 4 for ADRE representations. This chapter has been published in the Journal of Geophysical 

Research: Atmosphere (Q. Yu & Huang, 2023b).  

Chapter 3 analyzes the inter-model spread of ADRE among the GCMs of CMIP6 using the 

regression method. Contributions from the differences in state variables and the radiative 

sensitivity are separately quantified and compared. This chapter has been published in Geophysical 

Research Letters (Q. Yu & Huang, 2023a). 

Chapter 4 provides a comprehensive set of radiative kernels for stratospheric ADRE for the 

first time. Kernels developed here include both broadband and spectral band-by-band TOA flux 

kernels provided on conventional latitude-longitude-month grids, as well as physically sorted 

broadband kernels whose values are determined from regression models. The developed aerosol 

radiative kernels are validated as effective in assessing the stratospheric ADRE of different aerosol 

types. This chapter is under review in the Journal of Geophysical Research: Atmosphere. 
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Chapter 5 investigates the impacts of aerosol-radiative interaction on GHGSat methane 

retrieval and conducts simultaneously AOD and methane retrieval using the multi-angle viewing 

method under different aerosol optical properties, surface albedo, and satellite zenith angle 

conditions. This chapter has been published in Atmospheric Measurement Techniques (Q. Yu et 

al., 2024). 

Chapter 6 summarizes the main conclusions of this dissertation and discusses the future 

research plan. 
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Chapter 2 Distributions and Trends of the Aerosol Direct Radiative Effect in the 21st 

Century: Aerosol and Environmental Contributions 

 

This Chapter is a reprint of the published article in Journal of Geophysical Research: 

Atmospheres. 

Yu, Q., & Huang, Y. (2023). Distributions and trends of the aerosol direct radiative effect in the 

21st century: Aerosol and environmental contributions. Journal of Geophysical Research: 

Atmospheres, 128, e2022JD037716.  

DOI: https://doi.org/10.1029/2022JD037716 
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Distributions and Trends of the Aerosol Direct Radiative Effect in the 21st Century: 

Aerosol and Environmental Contributions 
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Key Points: 

• Nonaerosol factors contribute significantly to the spatial inhomogeneity of the aerosol 

direct radiative effect (ADRE) and its trends in recent decades  

• The hemispheric difference in scattering aerosols drives northward cross-equator energy 

transport, which shows a declining trend 

• Changes in the surface albedo due to sea ice melt strongly influence the ADRE trends in, 

and the energy transport to, the Arctic 
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Abstract 

The aerosol direct radiative effect (ADRE) is controlled by both aerosol distributions and 

environmental factors, making it interesting and important to quantitatively assess their effects on 

the ADRE inhomogeneity and climate trends. By analyzing the ADRE in the 21st century from a 

global reanalysis data set, we find that the spatial variability of the ADRE and its trends can be 

well explained by a linear regression model. In this model, scattering and absorbing aerosol optical 

depths (AODs) are used, along with critical environmental variables such as surface albedo and 

cloud radiative effect, as predictors. Based on this model, we find that approximately 70% of the 

ADRE inhomogeneity is due to the AOD distributions and the remainder is attributable to 

environmental factors. This study also shows that a stronger cooling effect of the scattering 

aerosols in the Northern Hemisphere drives northward cross-equator meridional energy transport, 

although this transport exhibits a declining trend over the last two decades. The changes in surface 

albedo and cloud radiative effect strongly influence the trends in the regional ADRE and the 

meridional energy transport driven by them. In particular, the reduction of surface albedo (sea ice) 

is primarily responsible for the enhancement of the cooling ADRE, as well as an associated trend 

in meridional energy transport, in the Arctic. 

Plain Language Summary 

Aerosols are particles produced by natural events such as volcanic eruptions and 

anthropogenic emissions such as fossil fuel combustion. They can scatter and absorb incoming 

solar radiation, leading to a strong local cooling or warming effect on the Earth’s climate. The 

impact of aerosols on the Earth’s radiative balance is known as the aerosol direct radiative effect 

(ADRE). Factors that can affect ADRE include the types and amounts of aerosols and the 

environmental conditions such as surface albedo and clouds. This study proposed a regression 
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model to predict the distributions and trends of global ADRE. According to the results, 70% of the 

ADRE variability is contributed by aerosols, while the rest is influenced by surface albedo and 

clouds. The high aerosol concentrations in the Northern Hemisphere require energy to be 

transported from the South Hemisphere to the North. However, this demand has decreased over 

the past two decades. Changes in surface albedo and clouds have a significant impact on the ADRE 

trend. In particular, the retreating sea ice plays a major role in the ADRE trend in the Arctic. 

2.1 Introduction 

The Aerosol Direct Radiative Effect (ADRE) affects the planet's energy balance and hence 

the average temperature of Earth’s climate. The effect is caused by aerosols, which are microscopic 

particles suspended in the atmosphere that are chemically highly variable. These particles are 

emitted both by natural events such as sea spray, volcanic eruptions, wildfires, and dust storms 

and by anthropogenic sources such as fossil fuel combustion and agricultural activities. Aerosols 

can scatter and absorb solar (shortwave) radiation, leading to a strong cooling or warming effect 

on the radiation energy budget (Q.-R. Yu et al., 2019). This effect is known as the ADRE, as it 

does not involve atmospheric adjustments. To determine the ADRE, radiative transfer models 

require aerosol optical properties obtained from ground-based measurements, satellite 

observations, or model simulations (Bellouin et al., 2020; Thorsen et al., 2020; Loeb et al., 2021; 

X. Wu et al., 2021). The quantification of the ADRE has improved significantly over the past 

decades (H. Yu et al., 2006; McComiskey et al., 2008; Peters et al., 2011; Willis et al., 2018; 

Bellouin et al., 2020; Loeb et al., 2021), although it still remains a contributor to the uncertainty 

in climate forcing (Pörtner et al., 2022). 

The sign and strength of the ADRE depend on aerosol and environmental state variables 

such as aerosol optical depth (AOD), relative humidity, surface albedo, and the solar zenith angle. 
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Yu et al. (2006) investigated the distribution of the clear-sky global ADRE for March–May, 

finding a correlation between the patterns of the ADRE and AOD. For example, AOD as high as 

0.8 in East Asia results in a top-of-atmosphere (TOA) cooling of more than -10 Wm−2, and this 

cooling can extend as far as the northern Pacific. Besides aerosol emissions, atmospheric relative 

humidity can affect the ADRE by changing the microphysical structures of aerosols and thus their 

optical properties. Zhang et al. (2008) found that soot particles coated with sulfuric acid acquire 

large hygroscopic size and mass growth at subsaturated conditions (<90% relative humidity), 

causing a tenfold increase in their scattering and a twofold increase in their absorbing effect. Unlike 

relative humidity, surface albedo affects the ADRE without changing the aerosol chemical 

compositions and microphysical structures. Many studies have shown that the ADRE changes 

nonlinearly with surface albedo. For example, McComiskey et al. (2008) studied the ADRE 

uncertainty due to measurement uncertainties in aerosol optical properties, surface albedo, and 

solar geometry. In their study, the ADRE varies linearly with AOD but nonlinearly with surface 

albedo. Based on the Aerosol Robotic Network (AERONET) observations, Yoon et al. (2019) 

empirically determined how the ADRE varies with surface albedo. According to their study, the 

radiative forcing efficiency of biomass-burning aerosols can switch from negative to positive 

depending on the surface type. These results are consistent with the “critical single scattering 

albedo” concept, which describes how the ADRE switches from net cooling to net warming at a 

certain value of single scattering albedo (SSA), depending on surface albedo (Chlek & Coakley 

Jr, 1974; Lenoble et al., 1982). The solar zenith angle is another important environmental state 

variable that determines the ADRE. Yu et al. (2019) mentioned that the ADRE first decreases and 

then increases with the increase in the solar zenith angle due to a competition between the increased 

light path and the decreased solar energy. The above studies have demonstrated that the clear-sky 
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ADRE depends not only on aerosol distributions but also on environmental variables including 

relative humidity, surface albedo, and the solar zenith angle.  

In addition to the environmental variables mentioned above, clouds have been found to 

have a significant impact on the ADRE. The ADRE is generally less negative (cooling) in all-sky 

conditions than in clear-sky conditions, since the amount of solar radiation aerosols interact with 

is reduced by reflective clouds (Bellouin et al., 2020). In some studies, the all-sky ADRE is 

approximated by scaling the clear-sky ADRE with the clear-sky fraction (ADREall = ADREclr (1 - 

f), where f is the cloud fraction; (Quaas et al., 2008; Su et al., 2013). Cloud cover, however, is not 

the only factor determining the all-sky ADRE. Aerosol absorption and their vertical location 

relative to clouds are also important. The absorption of aerosols above clouds may result in a strong 

positive ADRE (Chand et al., 2009), while the ADRE is considerably weaker when aerosols are 

located below clouds (Takemura et al., 2002). Some observations and model simulations have 

focused on the Southeastern Atlantic where absorbing biomass-burning aerosols often lie above 

bright marine stratocumulus clouds, causing net warming of the regional climate (Peters et al., 

2011; Adebiyi & Zuidema, 2018; Redemann et al., 2021). Cloud optical depth (COD) is another 

environmental state variable that affects the all-sky ADRE. Thorsen et al. (2020) calculated the 

ADRE radiative kernels for aerosol optical properties, surface albedo, and cloud fraction. Their 

results show that the all-sky ADRE kernels are more sensitive to AOD, asymmetry factor, and 

surface albedo in the case of thin cloud (COD < 2) than thick cloud (COD≥2). Myhre et al. (2020) 

found the interaction of aerosols with clouds is important for determining the strength of the all-

sky shortwave ADRE. These studies indicate that a variety of factors can impact the effect of 

clouds on the ADRE, making it important to determine the global extent of this influence and 

whether it can be predicted based on cloud properties. 
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This study aims to develop an analytical model that can explain the global distributions 

and variations of the ADRE under both clear- and all-sky conditions and to elucidate how aerosols 

and environmental state variables are tied together to influence the ADRE. Previous theoretical 

work has established a quantitative relationship between the ADRE and aerosol properties. For 

example, Charlson et al. (1991) developed a global model to estimate the TOA ADRE for sulfate. 

The analytical model is, however, limited to simplified assumptions such as optically thin sulfate 

aerosol layers and no regional variations in surface albedo and atmospheric transmittance. There 

are also conceptual models built based on the regional ADRE. Using satellite observation data, 

Quaas et al. (2008) divided the 60 S–60 N region into 14 regions and linked the planetary albedo 

change (∆P) due to the ADRE to log(AOD), although it was unclear whether this logarithmic 

relationship applies to the high latitudes. Chen et al. (2022) fitted satellite-retrieved radiative fluxes 

to an exponential function of AOD over the 20–40 N region according to the Beer-Lambert law, 

but this is also a regional ADRE study and does not apply to cloudy sky conditions. With the 

development of the global aerosol data sets (H. Yu et al., 2006; Myhre et al., 2013; Gueymard & 

Yang, 2020), it is important to quantify the degree to which aerosol and environmental variables 

contribute to the distribution and variation of the ADRE worldwide. 

An analytical model of the global ADRE can also facilitate the analyses of aerosol-induced 

poleward energy transport (PET) and circulation changes. As the atmospheric circulations are 

fundamentally driven by the uneven distribution of radiation energy, aerosols, as well as 

greenhouse gases (GHGs), strongly influence the circulation by modulating the radiation 

distribution pattern (e.g., Huang and Zhang 2014; Merlis 2015). Many studies have indicated that 

aerosols can induce regional climate responses. Using a slab ocean model, Yoshimori and Broccoli 

(2008) demonstrated that sulfate aerosols and black carbon can cause shifts in the Intertropical 
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Convergence Zone (ITCZ). Based on CMIP5 models, Wang, Xie, and Liu (2016) identified the 

climate response patterns of aerosol radiative forcing versus the change in GHG emissions. Their 

findings indicate that aerosol-induced negative radiative forcing in the Northern Hemisphere 

requires a cross-equatorial Hadley circulation to compensate for interhemispheric energy 

imbalances. Wang, Xie, Tokinaga, et al. (2016) detected a robust change in the zonal mean cross-

equatorial wind over the twentieth century, and they considered this wind change as a fingerprint 

of anthropogenic aerosol forcing. By separating the fossil-fuel-related aerosol forcing in different 

Hemispheres, Diao et al. (2021) concluded that the aerosol forcing in Western Hemisphere, located 

in the extratropics, drives a northward shift of the Hadley cell, while the aerosol forcing in Eastern 

Hemisphere, located near the tropics, drives an equatorward shift of the Northern Hemisphere jet 

stream. The extensive research on this subject emphasizes the importance of ascertaining what 

physical factors govern the inhomogeneity of the ADRE and thus the resulting changes in 

atmospheric circulations. 

Besides identifying the key variables that influence the ADRE distributions globally, this 

study also aims to understand how changes in these variables, including those related to the 

environment, influence the trend in ADRE patterns and the atmospheric circulation driven by the 

radiation inhomogeneity. Although no significant trend in the global mean ADRE was detected 

since 2002 (Loeb et al., 2021), there are significant regional trends. For example, the ADRE has 

become less strong (negative) over China, the United States, South America, and Europe, but 

stronger over India. Apart from the impact of the AOD and solar radiation trends (Boers et al., 

2017; Streets et al., 2006), few studies have addressed the impact of environmental changes (e.g., 

surface albedo change) on the ADRE trend. The sea ice loss and land use changes (e.g., Amazonian 

deforestation) have led to significant changes in surface albedo (Pistone et al., 2014; Lejeune et 
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al., 2015). Meanwhile, the regional cloud cover also changes in response to global warming (Sfîcă 

et al., 2021; Zhong et al., 2021). Given the importance of these environmental variables for the 

ADRE, it is important to understand how the changes in these variables affect the ADRE trend. 

This study aims to connect the distribution and trends in the ADRE to those in the aerosol 

and environmental variables on a global scale. A regression model is proposed to quantify the 

clear-sky and all-sky ADREs and to determine their sensitivity to key aerosol and environmental 

variables that govern the inhomogeneous ADRE spatial patterns. This conceptual model affords a 

straightforward means for determining how the changes of these key variables would change the 

ADRE. It can also help infer the energy transport and circulation changes due to the ADRE. 

Furthermore, this study separates the contributions of aerosol and environmental variables to 

aerosol-induced poleward energy transport and its trend in the 21st century. The data and method 

used to estimate the ADRE and its trend are described in Section 2.2. Section 2.3 examines the 

relative contributions of key variables to the distribution of global ADRE, as well as the ADRE 

sensitivities to these variables. Aerosol-induced PET is decomposed into different physical 

processes in Section 2.4. Section 2.5 discusses how the trends in the ADRE are related to the trends 

in the key variables over the 21st century. In Section 2.6, a summary of the findings is provided. 

2.2 Data and Method 

2.2.1 Aerosol and Meteorological Data Sets 

This analysis is built on the aerosol and radiation diagnostics and meteorological fields 

from the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-

2) data set. The MERRA-2 aerosol simulation is performed by the Goddard Chemistry, Aerosol, 

Radiation, and Transport model (Chin et al., 2002). The assimilated AOD products include 

observations from ground-based (AERONET) and satellite (MODIS, MISR, and AVHRR) 
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measurements (Randles et al., 2017). The MERRA-2 diagnostics total aerosol products include 

major aerosol types of sulfate, dust, black carbon, organic carbon, and sea salt. The hygroscopic 

growth process is parameterized as a function of ambient relative humidity (Chin et al., 2002, 

2004). Many studies have shown that MERRA-2 aerosol products are consistent with aircraft, in 

situ, and satellite observations (Buchard et al., 2017; Gueymard & Yang, 2020). 

The analysis is conducted for the period from 2000 to 2021 to avoid the perturbations in 

aerosol concentrations caused by the volcanic eruptions in the 1980s and 1990s as well as the 

changes in the MERRA-2 observing system. Previous studies have shown that MERRA-2 aerosol 

data become more reliable and consistent after 2000, when Earth Observation System data (e.g., 

MODIS on Terra and Aqua, and MISR) are assimilated (Korras-Carraca et al., 2021). The spatial 

resolution of the data used is 2.5° ×	2.5°, while the temporal resolution is 1 hour.  

The ADRE is the difference in radiative fluxes with and without aerosols. The TOA net 

fluxes from MERRA-2 are available in all-sky conditions, including clear-sky no aerosol, clear-

sky, all-sky no aerosol, and all-sky conditions. Therefore, the instantaneous clear-sky and all-sky 

ADREs can be calculated from these fluxes: 

ADRE)*+(hour) = F)*+,-#(hour) −	F)*+,)*,,-# (hour)      (2.1) 

ADRE"**(hour) = F"**,-#(hour) −	F"**,)*,,-# (hour),      (2.2) 

where F is the net shortwave flux (downward positive) at the TOA, F)*+,-# and F"**,-# are for clear- 

and all-skies with aerosols, and F)*+,)*,,-# 	and F"**,)*,,-#  are for clear and all skies without aerosols. 

Subscript cln denotes clean conditions, and hour indicates the hourly average data at a given time. 

Since the ADRE does not exist during the night, the climatological mean ADRE can be calculated 

as follows: 
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ADRE = 	 %
/"0$

∑ %
&1234+$∫ ADRE(hour)d(hour)$4,$-#

$4,+5$-/"0$      (2.3) 

Note that the ADRE values analyzed here are averaged over a full diurnal cycle, as opposed to 

only during daytime.  

2.2.2 The Selection of Predictors 

A conceptual model of aerosol-radiation interaction is built based on Charlson et al. (1991). 

Assuming an optically thin reflective aerosol layer in the boundary layer, they proposed the TOA 

ADREclr as follows: 

ADRE)*+ = −TISR ∙ ∆P = 	−TISR ∙ T"#& 	(R"$ − alb),     (2.4) 

where TISR is the TOA incoming solar radiation, ∆P is the planetary albedo change caused by 

aerosols, T"# is the atmospheric transmittance, R"$ is the combined reflectance of the aerosol layer 

and the Earth’s surface, and alb is the surface albedo. Following Haywood and Boucher (2000), 

the ADRE can be further expressed as follows: 

ADRE!"# = −TISR ∙ T$%& ∙ β ∙ SSA ∙ AOD ∙ secθ
(()$"*)!)	"#$(&'(())+ 	-!'),-∙/012(() 	)./0∙23!4(&5)()6

()$"*∙./0∙23!4∙5∙77.
 (2.5) 

In the equation above, several parameters are considered to influence the ADRE. Among 

them, the aerosol-related parameters are AOD, SSA, and the backscattering ratio (β). The 

backscattering ratio is the ratio of the radiation energy reflected to space to the energy scattered in 

all directions. It is important to note that β is not only affected by the aerosol but also affected by 

the solar geometry (Wiscombe & Grams, 1976). The environment-related parameters are the solar 

zenith angle (θ), TISR, T"# , and alb. Although the above expression was derived based on a 

simplified representation of radiative transfer, it suggests that it is possible to select a few key 
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parameters to represent the aerosol–radiation interaction processes and to quantify the ADRE 

accordingly. 

Selecting the predictive variables is an essential step in building a multivariate linear 

regression model that captures the variations in the ADRE. The selection criterion needs to balance 

between maximizing explained ADRE variance and minimizing the number of predictors 

(principle of parsimony). Predictors are chosen based on the conceptual model of Equation 2.5. 

First, to disentangle covariabilities between the ADRE and incident solar radiation, the regression 

model is formulated to predict the planetary albedo change due to aerosols (6789
:;<8

). To measure the 

reflection of the aerosol layer, SAOD is included as a predictor. To account for the multiple 

scattering between the aerosol layer and the underlying surface, SAOD ∙ alb  is selected as a 

predictor. The solar zenith angle affects not only the length of the path that light travels in the 

atmosphere but also the aerosol backscattering ratio, so it is also considered. Furthermore, because 

aerosols absorb radiation and this effect is highly sensitive to the surface albedo, the aerosol 

absorption effect is represented by AAOD ∙ alb. 

Considering the complexity of the cloud-induced ADRE, this paper examines clear-sky 

and all-sky ADREs separately. Shortwave cloud radiative effect (CRE) is used for all-sky 

situations based on the findings of other studies showing that CRE is a good predictor of both 

shortwave and longwave radiative forcing (Y. Huang et al., 2016; Myhre et al., 2020; Balmes & 

Fu, 2021). This predictor is expressed as SAOD ∙ =89
:;<8

 to better represent the aerosol-cloud radiative 

interactions. These predictor variables are chosen despite their correlations because the form of 

the prediction model reflects physical laws governing the ADRE, which varies nonlinearly with 

these key aerosol and environmental variables. 
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To abide by the principle of parsimony, many other factors that influence the ADRE to a 

lesser extent or are not independent from the above-selected predictors are omitted. For example, 

the relative humidity is important for hydrophilic aerosols like sulfate because they absorb water 

and grow, thereby enhancing their optical properties. This analysis uses the optical properties (e.g., 

SAOD and AAOD) of five major aerosol species whose values have been simultaneously adjusted 

based on the appropriate relative humidity conditions in the MERRA-2 data set. Therefore, the 

effect of relative humidity has already been included in the covarying aerosol optical properties. 

The effects of SSA are considered by separating SAOD and AAOD, so it is not necessary to 

include it in the regression model. Despite the known sensitivity of the ADRE to aerosol 

asymmetry factor (McComiskey et al., 2008; Su et al., 2013), its effect is found to be small in 

explaining the globe inhomogeneity in the ADRE (less than 0.1% according to our study). The 

effect of cloud fractions has been included in the CRE term, so this study does not consider it 

separately. Furthermore, although other environmental variables such as ozone and water vapor 

have been linked to regional ADREs (e.g., Stubenrauch et al. 2013; Gharibzadeh, Bidokhti, and 

Alam 2021), they are less representative than the above-selected predictors and the regression 

model does not improve with their addition. As a result, they are not considered in the regression 

model. Interested readers can find a summary of various candidate variables we have tested in 

Tables S2.1–S2.3 in Appendix A.  

In summary, the choice of the predictors in our prediction model is guided by a physical 

model (Equation 2.5) and its prediction ability is statistically evaluated. The following aerosol-

related and environment-related predictors are selected: scattering aerosol optical depth (SAOD), 

scattering aerosol optical depth × surface albedo (SAOD ∙ alb), absorbing aerosol optical depth × 

surface albedo (AAOD ∙ alb), cosine solar zenith angle (cosθ), and scattering aerosol optical depth 
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× cloud shortwave radiative effect (normalized by TISR; SAOD ∙ =89
:;<8

). The predictands are the 

TOA ADRE normalized by incoming solar radiation in clear-sky and all-sky conditions (6789!"#
:;<8

 

and 6789$""
:;<8

), respectively.  

2.2.3 The Regression Model 

A multivariate regression model for the global ADRE distribution is formulated as follows: 

>(5,@)B>C

>C
= ∑ AD

E%(5,@)BE%FFFF

E%FFFF
,
DG%  ,         (2.6) 

where i and j represent latitude and longitude, X are predictors (e.g., SAOD) and n is the 

number of predictors. 𝐴H 	is the regression coefficient, which represents the sensitivities of the 

predictor 𝑋I  to Y. Y is the predictand, and it can either be the clear-sky or all-sky ADRE 

normalized by insolation (6789
:;<8

). The global mean value is denoted by a bar. To better represent 

the spatial distribution anomaly, both predictors and predictands are normalized by their global 

mean values. Therefore, it is a combination of all these anomalies in the predictors that leads to 

anomalies in the ADRE. Calculating regression coefficients 𝐴H requires finding the weighted least 

squares solution by minimizing ∑ W5 n
>(;,@)B>C	

>C
− ∑ AD,

E%(;,@)BE%FFFF	
E%FFFF

o
&

;,@ , where W; is the cosine of the 

latitude of each sample.  

One advantage of this regression model is it can capture the nonlinear radiative interactions 

between aerosols and the environment (e.g., AOD and surface albedo). The validation of the 

regression model against the radiative transfer model can be found in Figure A1 in Appendix A. 

Another advantage of this regression model is that it effectively provides a “recipe” for 

constructing the global ADRE and enables a comparison of the relative importance of the different 

predictors. This regression model is also simple to be incorporated in energy balance models, 
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allowing us to link the variations in the predictors to the changes in the atmospheric circulation in 

response to the ADRE changes. 

One potential disadvantage of the linear regression method is that the radiative sensitivity 

determined may be subject to inaccuracies caused by the correlated variations (collinearity) of the 

predictor variables, for example, caused by the coemitted scattering and absorbing aerosols or 

black carbon depositions on snow. However, through a test with idealized covariations of AAOD 

and SAOD (Figure A2 in Appendix A) and also by comparing to results obtained from a different 

regression technique addressing the collinearity impacts (Figure A3 in Appendix C  S2), we find 

the sensitivities of the ADRE to key aerosol-related and environmental-related variables robustly 

quantified. 

This study uses the 22-year climatological mean ADRE data (Equation 2.3) to construct 

the regression model. The global mean Xq and Yq values are listed in Table 1. It is worth mentioning 

that the values of 𝐴 are not sensitive to the chosen study period. As we have tested this regression 

model over different study periods, the regression coefficients show similar values. 

To compare the relative importance of different predictors to the ADRE, a standardized 

regression coefficient (coef) is calculated by adjusting each regression coefficient according to a 

ratio of sample standard deviations (Siegel, 2016). Thus, the values of the standardized regression 

coefficients can be directly compared to determine their relative importance.  

coefD = AD
$#/(E%	∙:;<8)
$#/(6789)

,         (2.7) 

where std(XD ∙ TISR)and std(ADRE) are the standard deviations of predictors and the predictand. 

The relative contributions of each predictor to the change in the ADRE explained by the regression 

model are further evaluated using 
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rela)3,#+5LD =
()3-M%)&

∑ ()3-M%)&'
%()

	 ∙ R&,        (2.8) 

where the coefficient of determination (R2) is the percentage of the ADRE variance that the 

regression model explains. 

Table 2.1 Climatological Global Mean Values of the Parameters Used in the Regression Models 

Xq Yq 

SAODvvvvvvvv cosθvvvvvv SAOD ∙ albvvvvvvvvvvvvvv AAOD ∙ albvvvvvvvvvvvvvv SAOD ∙
CRE
TISR

vvvvvvvvvvvvvvvv
 

ADRE)*+
TISR

vvvvvvvvvvv
 

ADRE"**
TISR

vvvvvvvvvv
 

0. 13 0.25 0.02 1.1 × 10BO −0.02 
−9.86

× 10BO 

−4.36

× 10BO 

Note. The standard units are used: ADRE, TISR, and CRE in Wm-2; SAOD, AAOD, alb, and 

cosθ;,@ are dimensionless. 

2.2.3.1 The clear-sky ADRE 

For the ADREclr, the regression model is constructed as follows: 

*+,-.,0
!"#

123,.,0
PQ.ST×%(45

BQ.ST×%(45
= A%

<6V7.,0B(.%O
(.%O

+ A&
)3$W.,0B(.&X

(.&X
+ AO

(<6V7∙"*L).,0B(.(&
(.(&

+

A1
(66V7∙"*L).,0B%.%×%(45

%.%×%(45
		(2.9) 

when regressed with the climatological mean values of all the predictor variables in their standard 

units (ADRE and TISR in Wm-2; SAOD, AAOD, alb, and cosθ;,@  are dimensionless), the 

regression coefficients A% to A1 take the values of 1.40, -0.94, -0.27 and -0.20, respectively.  
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The four predictor terms on the right-hand side of Equation 2.9 represent the key physical 

processes that control the sign and strength of the ADREclr over the globe. The SAOD term is a 

proxy for the aerosol single scattering effect, which measures the solar radiation directly scattered 

to space by the aerosol layers. Positive A% indicates that an increase in SAOD leads to an increase 

in the strength of the negative ADRE, resulting in a stronger cooling effect (more negative ADRE) 

on the planet. The AAOD ∙ alb  term provides a measure for aerosol absorption. Negative A1 

indicates the aerosol absorption process tends to reduce the photons reflected over a bright surface, 

thereby reducing the negative ADRE (a warming effect). The SAOD	∙ alb term is a proxy for 

aerosol-surface multiple scattering effects, which also increase energy loss due to surface or 

atmospheric absorption. Hence, negative AO  indicates an increase in SAOD 	∙  alb making the 

ADRE less negative. As for the cosθ term, it determines the effective AOD encountered by 

incident radiation in different solar geometry conditions and also affects the aerosol backscattering 

ratio β. The smaller the cosθ (the higher the latitude), the longer the light path and the more 

photons are scattered back to space at a smaller scattering angle (as aerosol particles tend to scatter 

more to the “forward” direction), leading to a more negative ADRE. 

2.2.3.2 The all-sky ADRE 

Apart from the four predictors mentioned above, SAOD ∙ =89
:;<8

 term is added to represent the 

effect of clouds through the aerosol-cloud radiative interactions. Therefore, the regression model 

for the ADREall becomes: 

 
*+,-.,0

$""

123,.,0
	P1.OT×%(45

B1.OT×%(45
= A%

<6V7.,0B(.%O
(.%O

+ A&
)3$W.,0B(.&X

(.&X
+ AO

(<6V7∙"*L).,0B(.(&
(.(&

+

A1
Y<6V7∙	6,-123,Z.,0

	P(.(&

B(.(&
+ AX

(66V7∙"*L).,0B%.%×%(45

%.%×%(45
       (2.10) 
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When regressed with the climatological mean global distributions of the ADREall, A%-AX  take 

these values: 3.08, -0.42, -0.74, -0.98 and -0.29, respectively.  

Similar to the clear-sky regression model, Equation 2.10 quantifies the effect of each 

anomaly term on the spatial inhomogeneity in the normalized ADRE (
67892,0

$""

:;<82,0
). A thicker cloud or 

a larger cloud fraction, represented by a larger CRE, tends to reduce the strength of the ADREall. 

Therefore, the sensitivity of SAOD ∙ =89
:;<8

 to the all-sky ADRE is negative. The sensitivities of 

ADRE to other predictors (the regression coefficients) in all-sky conditions have the same sign as 

that of the clear-sky conditions, but are generally weaker. This is due to the cloud masking effect, 

which reduces the amount of radiation that interact with aerosols.  

2.3 Aerosol Direct Radiative Effects 

2.3.1 The Spatial Distribution of Predictors and Predictands 

Figures 2.1a and 2.1b show the climatological mean clear-sky and all-sky ADREs from 

2000 to 2021 at TOA from the MERRA-2 data set, which vary significantly between regions in 

both sign and magnitude. Globally, aerosols cool the planet by −3.41 W m2 in clear-sky conditions 

and −1.64 W m2 in all-sky conditions, which are consistent with those of other studies (e.g., 

Thorsen et al. 2020). This can be attributed to many factors, including the vast differences between 

aerosol emissions and the prevailing aerosol types. Over heavy aerosol loading regions such as 

East China, Indo-Gangetic Plain, and their adjacent areas, a strong negative ADRE is caused by 

the anthropogenic sulfate, carbonaceous, and dust aerosols. In regions affected by seasonal 

biomass-burning (e.g., central Africa and South America), organic and black carbon aerosols result 

in a slightly negative ADRE. Additionally, carbonaceous aerosols in central Africa are transported 

westward to the Southeast Atlantic, resulting in a negative ADRE. Over remote oceanic regions, 
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the presence of sea salt aerosols is responsible for the negative ADRE values. The climatological 

AOD for different aerosol species can be found in Figure A4 in Appendix A. Another factor 

contributing to the strong spatial inhomogeneity in the ADRE is the variance of the underlying 

surface. When high albedo surfaces are present (e.g., polar and desert regions), the ADRE is 

positive (warming), because the aerosol absorption effect outweighs the aerosol scattering effect. 

Except for the polar regions, the ADREall shows a similar global pattern to the ADREclr, but at a 

smaller magnitude due to the cloud masking effect. In regions of high surface albedo such as over 

sea ice, the multiple scattering between clouds and surface enhances atmospheric absorption 

caused by absorbing aerosols, leading to a positive ADREall. Both ADREall and ADREclr 

distributions suggest that aerosol properties alone are not sufficient to explain the large regional 

differences in the ADRE patterns. Environmental variables such as surface reflection and clouds 

significantly influence ADREs. Hence, a proper assessment of the global ADRE distribution needs 

to measure the effects of both aerosol and environmental factors. 
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Figure 2.1 The geographic distributions of the climatological mean values of (a) MERRA-2 

ADREclr, (b) MERRA-2 ADREall, (c) predicted ADREclr, (d) predicted ADREall, (e) predicted 

ADREclr - MERRA-2 ADREclr, and (f) predicted ADREall - MERRA-2 ADREall. The global 

mean values are indicated in the top-right corner of each subplot. 

2.3.2 The Predicted Clear-sky and All-sky ADREs 

Following Equations 2.9 and 2.10, the clear-sky and all-sky ADREs can be obtained by the 

regression model. In Figure 2.2, we compare the predicted climatological mean ADREs with the 

benchmark “true” values from MERRA-2. The sample number is 10512 and the color shading 
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indicates the probability density of the ADRE. Regardless of the sky condition, the predicted 

ADREs are very close to the true ADREs (following the 1:1 line). The root mean square error 

(RMSE) is 0.62 W m−2 for the ADREclr and 0.43 W m−2 for the ADREall. The R-squared (R2) 

values, which show the percentage of the variance in the ADRE explained by the regression 

models, are 92.96% and 93.13% in clear- and all-sky conditions, respectively. These results 

indicate general agreements between the predicted and true ADRE values and the reliability of the 

regression model. In comparison, if using log(AOD) or AOD as the sole predictor for the ADREclr, 

the R2 value is only 62.48% and 56.06% (Table A2 in Appendix A.1). This again shows that it is 

necessary to include environmental variables in the conceptual model to explain the ADRE 

inhomogeneity. 

To further examine how the regression model captures the regional features of the ADRE 

distributions, the predicted global distribution of the ADRE is compared to that of the benchmark 

MERRA-2 ADRE in Figure 2.1. Figure 2.1e indicates that the clear-sky regression model well 

captures the sign of the global ADREclr, while the relative bias of the magnitude is less than 20%. 

While the regression model effectively captures the most important physical processes influencing 

the ADRE, it does have some quantitative biases. The regression model underestimates the 

ADREclr magnitude over midlatitudes and high latitudes, but overestimates the ADREclr magnitude 

over the ITCZ. This is because the atmospheric transmittance differs from region to region, which 

can influence the ADRE. For example, the abundant tropospheric water vapor in tropical areas can 

potentially mask the clear-sky ADRE, which is not taken into account in the regression model. In 

addition, the cooling ADREclr is generally overestimated in heavily polluted regions such as East 

Asia and is underestimated over land. These biases are unavoidable when using a linear 

(regression) model to represent the nonlinear radiative transfer process governing the ADRE. 
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Despite these biases, the predicted ADREclr well reproduces the global pattern of the true ADREclr. 

Similarly, Figure 2.1f shows that the all-sky regression model successfully captures the regional 

differences in the ADREall with local biases generally less than 22%. The bias pattern is similar to 

Figure 2.1e except for the Southeast Atlantic. In this region, biomass-burning aerosols overlie (and 

sometimes interact with) the relatively bright stratocumulus clouds (e.g., Adebiyi and Zuidema 

2018). When clouds are located beneath aerosols, the highly reflected cloud layers can enhance 

the aerosol warming effect or change the ADRE sign from negative to positive depending on the 

surface type as well as the aerosol SSA (Redemann et al., 2021). Therefore, the regression model 

does not adequately capture the ADREall because nonlinear processes are involved. Moreover, the 

regression model does not distinguish the relative locations of aerosols and clouds, which can also 

lead to potential biases. Except for such regions, the regression model makes a reasonably well 

prediction of the inhomogeneous global distribution of the ADREall.  

After validating the accuracy of the regression model, the calculated regression coefficients 

are applied to Equations 2.7 and 2.8 to quantify the relative importance of each predictor to the 

global ADRE inhomogeneity. The results are shown in Table 2.2. Of the 92.96% of explained 

spatial variance in the ADREclr, SAOD (aerosol direct scattering effect) is the primary contributor, 

accounting for 72.69% of the spatial inhomogeneity. The remaining variance is due to 

environmental factors. There is a 10.56% contribution from the multiple scattering effects between 

aerosols and surface (SAOD ∙ alb), and 6.86% and 9.89% contributions from solar geometry (cosθ) 

and aerosol absorption (AAOD ∙ alb), respectively. In all-sky conditions, SAOD is still the 

dominant factor (70.12%). The relative contributions of the aerosol-surface multiple scattering 

(SAOD∙alb) and the aerosol-cloud radiative interactions (SAOD ∙ =89
:;<8

) to the ADREall spatial 

variation are 15.51% and 10.02%, respectively. In terms of the aerosol absorption (AAOD∙alb) 
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and the cosθ term, the contributions are 4.07% and 0.003%, respectively. Overall, Table 2.2 

indicates that SAOD is the dominant contributor to the spatial inhomogeneity in the ADRE, while 

environmental factors contribute the remainder. 

 

Figure 2.2 Scatterplots of the predicted climatological mean ADRE against MERRA-2 ADRE 

for (a) clear-sky and (b) all-sky conditions. The color coding indicates the probability density of 

the ADRE values. 
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Table 2.2 Relative Contributions From Each Predictor to the Spatial Inhomogeneity in the 

Global ADRE 

 
SAOD 

(%) 
cosθ (%) 

SAOD ∙ alb 

(%) 

AAOD ∙ alb 

(%) 

SAOD ∙ =89
:;<8

 

(%) 

Total (%) 

ADREclr 72.69 6.86 10.56 9.89 - 92.96 

ADREall 70.12 0.003 15.51 4.07 10.02 93.13 

 

2.3.3 The Sensitivity of the ADRE 

In addition to dissecting the spatial pattern of the ADRE, the regression model can also 

help quantify the sensitivity of the ADRE to its controlling factors (the aerosol and environmental 

variables governing the ADRE). Based on the regression Equation 2.9, the following is the 

ADREclr sensitivity to SAOD, surface albedo, and AAOD. 

[6789.,0
!"#

[<6V7.,0
= n− %.1(

(.%O
+ 0.27	 "*L.,0

(.(&
o ∙ (9.86 × 10BO) ∙ 	TISR5,@     (2.11) 

[6789.,0
!"#

["*L.,0
= n0.27	 <6V7.,0

(.(&
+ 0.20	 66V7.,0

%.%×%(45
o ∙ (9.86 × 10BO) ∙ 	TISR5,@   (2.12) 

[6789.,0
!"#

[66V7.,0
= n0.20	 "*L.,0

%.%×%(45
o ∙ (9.86 × 10BO) ∙ 	TISR5,@     (2.13) 

Based on the equations above, Figure 2.3 shows the ADREclr sensitivities to SAOD, 

surface albedo, and AAOD. In each subplot, the global mean sensitivities are displayed at the top-

right. Sensitivity values are expressed in units of W m−2 per unit change in the dependent variable; 

for example, Figure 2.3a illustrates that if SAOD were increased by 1 globally then the cooling 

ADREclr would be strengthened by 29.4 W m−2. Similarly, if the surface albedo and AAOD were 
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enhanced by one unit globally, the ADREclr would increase by 10.4 and 93.5 W m−2, respectively 

(Figures 2.3b and 2.3c). 

The ADREclr sensitivities to SAOD, surface albedo, and AAOD are regionally dependent 

on aerosol types and surface characteristics. The regional ADREclr sensitivity to SAOD is typically 

negative (i.e., an increase in SAOD causes a stronger radiative cooling effect) as shown in 

Figure 2.3a. The sensitivity to SAOD over the ocean is generally greater than that over land, 

because the planetary albedo is more sensitive to scatterer changes over a dark surface. The highest 

sensitivity to SAOD locates in tropical regions because the aerosol direct scattering effect 

dominates the aerosol-surface multiple scattering effects and it is most sensitive to insolation. The 

ADREclr sensitivity to surface albedo is always positive (Figure 2.3b), since brighter surfaces leave 

less room for aerosols to increase the planetary albedo and cool the planet. Also, it is noted that 

the surface albedo sensitivity has a larger magnitude in regions with high aerosol loadings, such 

as East Asia and India where scattering aerosols (sulfate) are abundant and Sahara and Arabian 

Peninsula where absorbing aerosols (dust) are abundant. In terms of the ADREclr sensitivity to 

AAOD (Figure 2.3c), it is also always positive and increases with an increase in surface albedo. 

Let us now examine the sensitivity of the ADREall to SAOD, surface albedo, AAOD, and 

=89
:;<8

 , which are calculated as follows: 

	
[6789.,0

$""

[<6V7.,0
= Ç− O.(S

(.%O
+ 0.74 "*L.,0

(.(&
− 0.98	

6,-
123,.,0

(.(&
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[6789.,0
$""

[Y6,-123,Z.,0
= n	−0.98 <6V7.,0

(.(&
o ∙ (4.36 × 10BO) ∙ TISR5,@     (2.17) 

As a result of the cloud masking effect, the magnitudes of the ADRE sensitivities to SAOD, 

surface albedo and AAOD tend to be weaker in all-sky conditions (Figure 2.4) than in clear-sky 

conditions (Figure 2.3). Figure 2.4a shows that if SAOD were to increase by 1 globally then the 

negative ADREall would strengthen by 15.7 Wm-2. If =89:;<8
 were to increase by 1, the cooling ADRE 

would be 8.8 Wm-2 weaker. Furthermore, if the surface albedo and AAOD were increased by 1 

globally, the ADREall would weaken by 10 Wm-2 and 61.5 Wm-2, respectively (Figures 2.4b 

and 2.4d). Clouds also alter the regional pattern of the ADRE’s sensitivity to the key variables. 

The sensitivity to SAOD (Figure 2.4a) is noticeably damped in very cloudy regions such as the 

ITCZ. The =89
:;<8

 sensitivity (Figure 2.4c) is always negative because an increase in CRE values 

means a reduction of the aerosol-cloud radiative interactions, resulting in weaker atmospheric and 

surface absorption and thus a more negative ADRE. Like the surface albedo sensitivity, the =89
:;<8

 

sensitivity is especially pronounced over regions with high aerosol loading.  

Despite using a linear regression model with a limited number of predictors, the regression 

method allows us to physically and quantitatively interpret the sensitivity of the ADRE to the 

changes in AAOD, SAOD, surface albedo, and =89
:;<8

. The results here are comparable to those of 

other studies; e.g., the quantification of Thorsen et al. (2020) based on radiative transfer 

computations ( Figure A5 in Appendix A). 
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Figure 2.3 The sensitivities of the ADREclr to (a) scattering aerosol optical depth, (b) surface 

albedo, and (c) absorbing aerosol optical depth. The global mean values are indicated in the top-

right corner of each subplot. 
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Figure 2.4 The sensitivities of the ADREall to (a) scattering aerosol optical depth, (b) surface 

albedo, (c) cloud shortwave radiative effect normalized by insolation, and (d) absorbing aerosol 

optical depth. The global mean values are indicated in the top-right corner of each subplot. 

2.4 The Climatological Zonal Mean ADRE and the Poleward Energy Transport 

Based on Equations 2.9 and 2.10, we can calculate the zonal mean clear-sky and all-sky 

ADREs, which can be used to assess the contribution of aerosol-induced radiation change to 

poleward energy transport (PET). According to Hartmann (2015), the PET due to the ADRE is 

calculated as follows: 

PET(i) = ∫ ∫ ADRE(i, j)r& cos(i) djdi&\
(

5
B7&

,       (2.18) 

where PET is the ADRE-induced northward energy flux, r is the Earth radius, i and j are the latitude 

and longitude, and ADRE is the TOA clear-sky or all-sky aerosol radiative effect. A positive PET 

value indicates northward energy transport driven by the ADRE compared to a world without 

aerosols. 

Figures 2.5a and 2.5c compare the predicted zonal mean ADREclr and the poleward energy 

transport it induces by using the regression model with the results from MERRA-2. There is a 

good agreement between these two results. As shown in Figure 2.5a, the ADREclr show peaks 

between the 30°S and 60°S due to the sea salt aerosols generated by strong winds over the vast 

open ocean, and between 0° and 30°N due to the presence of dust aerosols. Due to the more intense 

anthropogenic activities in the Northern Hemisphere midlatitude regions, the ADREclr is also 

strong in these regions. As a result of the absorbing aerosols over bright sea ice surfaces, especially 

in the Arctic, the MERRA-2 zonal mean ADREclr exhibits a slight warming effect over the polar 

regions, which eludes the regression model. 
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Cross-equator energy transport is a dominant feature of the ADREclr-induced PET 

(Figure 2.5c). From 90°S to 30°N, the energy transport due to the presence of aerosols is northward 

and can reach 0.15 PW at 15°S. From 30°N to 90°N, the aerosol-induced energy transport is 

southward and peaks at 55°N with 0.07 PW. An asymmetric aerosol-induced poleward energy 

transport leads to northward cross-equatorial energy transport (∼0.13 PW) in clear-sky conditions, 

which may enhance and/or shift the location of the Hadley circulation (Frierson & Hwang, 2012). 

 

Figure 2.5 The climatological zonal mean clear-sky (a) ADRE, (b) corresponding poleward 

energy transport (northward positive), (c) ADRE contributed by different predictors, and (d) 

poleward energy transport contributed by different predictors. 

Figures 2.5c and 2.5d illustrate how the regression model decomposes the ADREclr and the 

corresponding PET into the contributions from the SAOD anomaly, cosθ anomaly, SAOD ∙ alb 

anomaly, AAOD ∙ alb anomaly, and global mean terms. If the predictors are global mean values 

for all locations, the ADRE and its PET, which is only affected by insolation, are symmetric (green 

line). However, SAOD, cosθ, AAOD, and alb are not uniformly distributed, leading to an inter-
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hemispheric asymmetric zonal ADREclr pattern. Among all the predictors, the SAOD terms caused 

the energy transport from the Southern Hemisphere to the Northern Hemisphere. This significant 

interhemispheric transport amounts to as large as 0.4 PW, as shown in Figure 2.5d. In contrast, the 

SAOD ∙ alb and the AAOD ∙ alb terms act oppositely to the SAOD term, resulting in an offsetting 

southward energy transport as large as 0.11 PW and 0.10 PW near the equator, respectively. As a 

result of these offsetting effects, the SAOD-driven cross-equator northward energy transport is 

reduced by 62.4%. 

 

Figure 2.6 The same as Figure 2.5, but for all-sky conditions. 

The zonal mean ADREall and PET patterns are similar to those of clear-sky cases but with 

a smaller magnitude due to the cloud masking (Figure 2.6). Again, the predictions of the regression 

model are in good agreement with the truth results of MERRA-2. The SAOD term is still the 

primary contributor to the cross-equator energy transport in all-sky conditions despite being partly 

(75.8%) offset by the SAOD ∙ alb, AAOD ∙ alb and SAOD ∙ =89
:;<8

 terms. Due to the cloud masking in 
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the Southern Hemisphere storm track regions, there is no longer a peak in the ADREall in the north 

of 60°S. Instead, the ADREall mostly peaks at 15°N. The cross-equator energy transport driven by 

ADREall is around 0.09 PW as shown in Figure 2.6d. 

2.5 The ADRE and PET Trend Analysis 

2.5.1 The ADRE Trend Decomposition 

         The ADREclr and ADREall have been changing since 2000, and these changes are 

associated with changes in aerosol properties (e.g., due to emission control) and environmental 

variables (e.g., melting sea ice and changing cloud distribution). By using regression models, we 

can isolate the influence of aerosols and the environmental variables on ADRE trends, and better 

understand the role that environmental variables played in ADRE trends. According to Equation 

2.10, the global ADREclr is dominated by SAOD, AAOD, alb, and cosθ. Since there is no trend 

in cosθ, trends in ADREclr can be attributed to trends (noted by ∂#(… ) terms below) in SAOD, 

AAOD, and alb, as shown below: 

∂#ADRE5,@)*+ 	= 	
[6789.,0

!"#

[<6V7.,0
∂#SAOD +	

[6789.,0
!"#

[66V7.,0
∂#AAOD +	

[6789.,0
!"#

["*L.,0
∂#alb,   (2.19) 

where 
[67892,0

!"#

[(… )2,0
 terms are the ADREclr sensitivities as Equations 2.11 – 2.13. Similarly, trends in 

ADREall result from the joint effect of SAOD, AAOD, alb, and =89:;<8
 trend. 

∂#ADRE5,@"**	          (2.20) 

=	
[6789.,0

$""

[<6V7.,0
∂#SAOD +	

[6789.,0
$""

[66V7.,0
∂#AAOD +	

[6789.,0
$""

["*L.,0
∂#alb +	

[6789.,0
$""

[6,-123,.,0

∂#
=89
:;<8

 ,  

where 
[67892,0

$""

[(… )2,0
 terms are the ADREall sensitivity as Equations 2.14 – 2.17. 
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The above equations disclose the relationship between ADRE trends and the trends of 

predictor variables, providing a means for attributing ADRE trends. Note that trend contributions 

(Equations 19 and 20) quantified this way use the climatological mean values of each sensitivity 

term determined from the training of the regression model. In other words, this trend 

decomposition assumes that the ADRE sensitivity to key variables does not vary with time, which 

could lead to a source of error in the attribution results.  

The geographical distribution of the predicted ADRE trends is compared to that of the 

MERRA-2 ADRE trends in Figure 2.7. All trends in the predictors and MERRA-2 ADRE have 

passed the Student t test with a significance level of 1%. Globally, the trend in ADREclr is 

−0.01 W m−2/decade. In contrast, the global mean ADREall trend is 0.05 W m−2/decade, which is 

primarily the result of an increase in the global mean cloud shortwave radiative effect (Figures A7 

and A8 in Appendix A). The regional ADRE trend is quite different according to regions. From 

2000 to 2021, the enhancement of cooling ADREall in India could reach −1.8 W m−2/decade, while 

over Northeastern America, Europe, and East Asia, the decrease of cooling ADREall could be as 

high as 0.57, 0.29, and 0.55 W m−2/decade, respectively. For both clear-sky and all-sky conditions, 

the predicted trends in the ADRE are in good agreement with the MERRA-2 trends. Although the 

regression models are simple linear models, they can explain 75.88% and 68.87% of the global 

ADRE trends in the clear-sky and all-sky conditions, respectively, and the RMSE is smaller than 

0.11 W m−2/decade (Figure A6 in Appendix A). The regression model overestimated the 

magnitude of the ADRE trend in certain regions (e.g., East China and Northeast Russia), which 

could be caused by other factors ignored by our regression model. For example, if the vertical 

distribution of aerosols becomes closer to the ground, the ADRE magnitude can be more likely 
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masked by clouds or atmospheric water vapor even though the column concentration of aerosols 

remains unchanged. 

The regression model allows us to further examine how the ADREclr and ADREall trends 

are driven by the trends of SAOD, AAOD, and surface albedo (Figures 2.8 and 2.9). In general, 

ADREclr trends over low and midlatitudes are primarily driven by the changes in local aerosol 

loading, while the ADREclr trends in the Arctic are dominated by the declining surface albedo 

trend. As for the regional ADREclr trends, it is negative (more cooling) in the Indo-Gangetic Plain, 

Central Africa, Northwestern North America, and Northern South America. This is mainly due to 

the SAOD trends (Figure 2.8a), with the AAOD trends slightly offsetting them (Figure 2.8b). The 

ADREclr in the Southern Ocean is also declining due to the enhanced SAOD trend (Figure A9 in 

Appendix A). There are regions where the ADREclr becomes less negative (more warming) such 

as Southeastern North America and Europe. For Southeastern North America, positive ADREclr 

trends are caused by the SAOD trends, whereas in Europe, the positive ADREclr trends result from 

the trends of both SAOD and surface albedo. The contributions of the SAOD and AAOD trends 

to the ADRE trends are generally synchronized; however, the two trends can change separately in 

some regions. For example, both the SAOD and AAOD trends cause a decreasing ADREclr (more 

cooling) in Southeast China, which is caused by the change in aerosol types (more scattering 

aerosols and less absorbing aerosols). Similarly, the decreasing ADREclr trends in Southeast 

America are weakly contributed by the increasing scattering aerosols, while the absorbing aerosols 

remain unchanged. Figure 2.9 presents the ADREall trends contributed by SAOD trends, AAOD 

trends, surface albedo trends, and =89
:;<8

 trends. Due to =89
:;<8

 trends, the negative ADRE trends in 

central Africa, the midlatitude Southern Hemisphere, and Northern South America in clear-sky 

conditions have become positive in all-sky conditions. 
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The ADRE in the Arctic, where sea ice retreat is significant in the 21st century, can be greatly 

influenced by changes in surface albedo. Figures 2.8c and 2.9c indicate the albedo trend 

dominates the trends of the ADREclr and ADREall near 70°N, while AOD shows little trend. 

These results allow us to better understand how the interplay between aerosols and the 

environment would change the ADRE and the PET trend. Interested readers can find the trend of 

key variables in Figure A8 in Appendix A. 

 

Figure 2.7 The geographic distributions of (a) MERRA-2 ADREclr trend, (b) MERRA-2 

ADREall trend, (c) predicted ADREclr trend, (d) predicted ADREall trend, (e) predicted ADREclr 
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trend - MERRA-2 ADREclr trend (f) predicted ADREall trend - MERRA-2 ADREall trend. The 

global mean values are indicated in the top-right corner of each subplot. 

 

Figure 2.8 The geographic distributions of predicted ADREclr trends contributed by (a) SAOD 

trend, (b) AAOD trend and (c) surface albedo trend. The global mean values are indicated in the 

top-right corner of each subplot. 
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Figure 2.9 The geographic distributions of predicted ADREall trend contributed by (a) 

SAOD trend, (b) AAOD trend, (c) surface albedo trend and (d) CRE/TISR trend. The global 

mean values are indicated in the top-right corner of each subplot. 

2.5.2 The PET Trend 

The ADRE-induced PET trend is important because it is a direct indicator of how 

circulation may change in response to aerosol emissions (primarily anthropogenic sources) and 

environmental conditions. With the ADRE trend known, the PET trend it induced can be 

calculated as follows: 

[^9:
[#

(i) = ∫ ∫ [6789
[#

(i, j)r& ∙ cos(i) djdi&\
(

5
B7&

       (2.21) 

Figures 2.10 and 2.11 show the zonal mean ADREclr and the PET trend driven by it, 

respectively. The ADREclr is increasing in 30°S–60°S and 0°–30°N, while it is decreasing in 30°S–
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60°S and 30°N–60°N. Based on this ADREclr trend, a negative PET trend is observed, which 

weakens the climatological positive PET in Figure 5. During the period from 2000 to 2021, 

aerosol-induced cross-equator energy transport decreases by 1.26 × 10−2 PW in clear-sky 

conditions, which is 9.67% of its climatological mean value. Similar to the clear-sky situation, the 

ADREall trend results in a negative PET trend (Figures 2.11a and 2.11b), leading to a slight decline 

in aerosol-induced cross-equator energy transport. It is estimated that northward cross-equator 

energy transport caused by the ADRE has declined by 1.07 × 10−3 PW over the 22-year period, 

which is about 1.19% of its climatological mean value. Using the regression model, the zonal mean 

ADRE and PET trends are decomposed into the contributions from SAOD, surface albedo, AAOD, 

and =89
:;<8

. As presented in Figure 2.10c, the ADREclr trend is mainly controlled by the SAOD trend, 

except for the Arctic regions, where the surface albedo and AAOD trends are strong. For all-sky 

conditions (Figure 2.11c and 2.11d), the SAOD trend still dominates the lower latitude area and 

leads to a decreasing PET trend, whereas other variables partly mitigate this effect.  

To further quantify the contributions from each factor to the PET trend in the different 

regions, Figure 2.12 lists the all-sky PET trend contributed from the SAOD, AAOD, surface albedo 

and =89
:;<8

 trend at 70°N, the equator, and 45°S, respectively. At 70°N, the influence of the 

decreasing surface albedo contributes a strong positive PET trend, and it is offset by the trend of 

other variables. As a result, the all-sky southward energy transport in the Arctic is slightly 

weakened over the past 22 years. At the equator, where the albedo and =89
:;<8

 trends are not 

significant, the PET trend is dominated by the SAOD trend. Despite the SAOD trend causing a 

negative ADREall trend at 45°S, the =89:;<8
 trend compensates for it, resulting in an insignificant local 

ADREall trend in this region.  
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Figure 2.10 The zonal mean clear-sky (a) ADRE trend, (b) corresponding poleward 

energy transport trend, (c) ADRE trend contributed by key variables, and (d) poleward energy 

transport trend contributed by key variables.  

 

Figure 2.11 Same as Figure 2.10 but for all-sky conditions. 
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Figure 2.12 The decomposition of the PET trends at 70°N, the equator, and 45°S for all-sky 

conditions. 

2.6 Conclusions 

The ADRE plays an important role in modulating the regional energy budgets and shows 

strong inhomogeneity in its global distribution patterns. This study develops a multivariate 

regression model for the global clear-sky and all-sky ADREs and separates the contributions of 

aerosol-related and environment-related factors to the spatial distributions and trends for the 

ADRE and the poleward energy transport driven by it.  

The global distribution of the clear-sky ADRE, ADREclr, is largely explained by the 

scattering aerosol optical depth, absorbing aerosol optical depth, surface albedo, and the solar 

zenith angle. Using these predictors, the regression model can explain 92.96% of the spatial 

inhomogeneity in the ADREclr (Figure 2.1 and 2.2a). Unlike studies that focus on the correlation 

between AOD and the ADREclr, this study suggests that AOD alone, which explains only 56.06% 
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of the spatial variance, is insufficient to account for the geographical variability of the ADREclr, 

and the remaining variance is caused by environmental factors. The ADREclr is controlled by four 

key processes: aerosol direct scattering, aerosol absorption, multiple scattering between surface 

and aerosols, and solar geometry, which account for 72.69%, 9.89%, 10.56% and 6.86% of the 

geographical inhomogeneity, respectively. Aside from these four factors, clouds, which are 

represented by the cloud shortwave radiative effect, also play a role in determining the spatial 

inhomogeneity in all-sky ADRE distributions. In total, 93.13% of the spatial changes in the global 

all-sky ADRE, ADREall, can be explained by the five predictor variables (Figures 2.1 and 2.2b). 

The relative contributions of aerosol direct scattering, aerosol-surface multiple scattering, aerosol–

cloud radiative interactions, aerosol absorption, and solar geometry are 70.12%, 15.51%, 10.02%, 

4.07%, and 0.003%, respectively. 

In addition to global patterns of the ADRE, the regression model also helps understand the 

sensitivity of the ADRE to its key controlling variables. Increases in scattering aerosols (SAOD) 

typically result in enhanced ADRE cooling. On the global average, an increase in SAOD by 1 

would result in a reduction of 29.4 and 15.7 W m−2 in the ADREclr and ADREall. However, the 

sensitivity of ADRE can also be affected by other factors. Surface albedo and AAOD are always 

positively correlated with the ADRE, suggesting that aerosol absorption increases as surface 

albedo or AAOD increases. The ADRE sensitivity to AAOD peaks at high surface albedo regions, 

while the ADRE sensitivity to surface albedo increases with aerosol loadings. These sensitivities 

quantified here suggest that the changes in these factors can potentially lead to nonnegligible 

changes in ADRE. For example, if surface albedo were decreased by 0.1 due to the sea ice melt in 

the Arctic, the cooling ADRE there would decrease by 0.5 and 0.4 W m−2 in clear-sky and all-sky 

conditions, respectively.  
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There is a cross-equator energy transport driven by both the clear-sky and all-sky ADREs 

(0.13 PW and 0.09 PW, respectively), which can influence the strength of the Hadley circulation 

and the location of the ITCZ. Most of this northward cross-equator energy transport is due to the 

hemispheric difference in SAOD, which is mitigated by aerosol absorption, aerosol-surface 

multiple scattering, and aerosol–cloud radiative interactions (Figures 2.5 and 2.6).  

We further apply the regression models to analyze the ADRE and PET trends in the 21st 

century (2000–2021). The global mean trend for the ADREclr and ADREall is −0.01 and 

0.05 W m−2/decade, respectively; however, regional trends are significantly higher, given their 

strong inhomogeneity. For example, the reduction of the cooling ADREall amounts to over 

0.1 W m−2/decade in terms of the zonal mean values at 30°N. In India, the cooling ADREall is 

enhanced by −1.8 W m−2/decade, whereas in Northeastern America, Europe, and East Asia, the 

cooling ADREall is decreased by 0.57, 0.29, and 0.55 W m−2/decade (Figure 2.7b). 

With the regression model, we can reproduce the global ADRE trends by linearly 

decomposing them into the contributions from the trends in the key controlling variables. The 

regression model explains 75.88% and 68.87% of the global ADREclr and ADREall trends, 

respectively. During the 22 years, the ADRE-induced northward cross-equator energy transport 

has decreased by 9.67% and 1.19% in clear-sky and all-sky conditions, respectively (Figures 2.10 

and 2.11). 

This study also indicates changes in the environment can have a significant impact on the 

regional ADRE trend. In the Arctic, the decreasing surface albedo in the past 22 years leads to a 

more negative ADREclr, despite the trends in the scattering and absorbing AODs acting the 

opposite way (Figure 2.12a). At midlatitudes in the Southern Hemisphere, the changes in CRE can 

mitigate the effect of the SAOD trend, neutralizing the local ADREall trends (Figure 2.12c). In 
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general, the ADRE trend is dominated by the SAOD trend at low and midlatitudes, while at high 

latitudes it is strongly influenced by the albedo trend.  

This study presents a MERRA-2 reanalysis-based dissection of the ADRE and adopts a 

regression method to quantify the relative contributions of aerosol and environmental variables to 

the ADRE spatial inhomogeneity. Despite the success of the method in explaining most of the 

ADRE spatial variance, the simple model does not fully describe the aerosol–radiation interaction, 

which is a complex nonlinear process, and thus is left with unavoidable quantitative errors in 

certain regions. Moreover, the results of this study are limited by the accuracy of the MERRA-2 

data set, given that there are known uncertainties both in its forecast model and assimilated satellite 

observations. Nevertheless, the attribution of the global ADRE inhomogeneity and the sensitivities 

to various controlling factors quantified here provide a reference, which can be verified based on 

other data sets and attribution methods in future studies.  

Data Availability Statement 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 

(MERRA-2) data used to study the variations and trends in the ADRE are provided by NASA 

Global Modeling and Assimilation Office (Randles et al., 2017). The radiation and 

aerosol diagnostics data are available at Global Modeling and Assimilation Office via 

https://doi.org/10.5067/Q9QMY5PBNV1T and https://doi.org/10.5067/KLICLTZ8EM9D. Our 

processed climatological mean ADRE and its trend as well as all the other data necessary to 

reproduce the reported findings in this paper are uploaded to Mendeley Data at 

https://doi.org/10.17632/8tgk5799k7.3 
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Chapter 3 A Dissection of the Inter-Model Spread of the Aerosol Direct Radiative Effect in 

CMIP6 Models 

This Chapter is a reprint of the published article in Geophysical Research Letters. 

Yu, Q., & Huang, Y. (2023). A dissection of the inter-model spread of the aerosol direct 

radiative effect in CMIP6 models. Geophysical Research Letters, 50, 

e2023GL105112.https://doi.org/10.1029/2023GL105112 
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Key Points: 

• A regression model is used to dissect the inter-model spread of the all-sky Aerosol Direct 

Radiative Effect (ADRE) in Sixth Coupled Model Intercomparison Projects Models 

• The model explains 86% of ADRE inter-model spread, with variances in state-variable and 

radiative sensitivity contributing 67% and 17% each  

• Differences in aerosol optical depth and ADRE sensitivity to aerosol-surface interactions 

drive the spatial variance in global ADRE spread 
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Abstract 

The all-sky Aerosol Direct Radiative Effect (ADRE) varies considerably among global 

climate models (GCMs), which results from differences in aerosol and atmospheric states and 

ADRE sensitivity to aerosol-related radiative processes. This study uses a regression method to 

analyze the inter-model spread of ADRE among the GCMs of the Sixth Coupled Model 

Intercomparison Projects (CMIP6). The key state variables examined include scattering and 

absorbing aerosol optical depth, surface albedo, and shortwave cloud radiative effect. We find that 

differences in state variables and radiative sensitivity explain 67% and 17%, respectively, of the 

global ADRE anomaly. The ADRE anomaly in different models is dominated by different factors, 

which sometimes leads to compensating effects. For the global mean ADRE anomaly, aerosol 

optical depth differences dominate in CNRM-ESM2-1 and GFDL-ESM4 models, while ADRE 

sensitivity variations to aerosol-only scattering effect dominate in HadGEM3-GC31-LL, MPI-

ESM-1-2-HAM, and MRI-ESM2-0 models. 

Plain Language Summary 

Aerosols scatter and absorb solar radiation, impacting the Earth's climate. Global climate 

models differ in their quantification of this effect. The differences in quantification arise from 

different state variables, including the aerosol properties and atmospheric conditions. Additionally, 

the radiative sensitivity of aerosol effect to aerosol-related physical processes varies with models. 

In this study, we identify the primary causes of the differences in aerosol radiative effect among 

climate models and quantify their respective impacts by using a regression method. We find that 

besides the aerosol optical depth, whose influence on aerosol radiative effect is well recognized, 

the radiative sensitivity of aerosol and surface interactions significantly contributes to the aerosol 

radiative effect differences in the latest climate models. 
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3.1 Introduction 

Aerosols affect the Earth's radiative energy budget by scattering or absorbing solar 

radiation. This effect is termed the Aerosol Direct Radiative Effect (ADRE). The magnitude and 

spatial distribution of ADRE influence the global surface temperature, the atmospheric circulation, 

and regional climate patterns (Bellouin et al., 2020; Visioni et al., 2020; Günther et al., 2022; Q.Yu 

& Huang, 2023b). ADRE is usually quantified using radiative transfer models based on aerosol 

optical properties from in-situ and satellite observations or model simulations. However, ADRE 

quantifications exhibit a wide range of values, reflecting significant underlying uncertainties (H. 

Yu et al., 2006; Bellouin et al., 2020; Thorsen et al., 2021). To better constrain ADRE uncertainty 

and its impact on climate projection, it is crucial to identify the primary causes of the uncertainty 

in the global climate models (GCM). 

  The inter-model spread of ADRE arises from many factors, including aerosol and 

atmospheric states as well as radiative transfer calculations. The representation of aerosols in 

CMIP6 models remains discrepant, especially in heavily polluted areas, desert and polar regions 

(Cherian & Quaas, 2020; Lapere et al., 2023). The discrepancies can result from various factors, 

including aerosol emissions and deposition, the representation of microphysics (such as size 

distribution and hygroscopicity) as well as the vertical distribution of aerosols (J. Li et al., 2015; 

Q.-R. Yu et al., 2019; Guo et al., 2021; Su et al., 2021; Lapere et al., 2023). Many studies have 

highlighted the uncertainty in aerosol optical properties. For example, Zhang et al. (2022) found 

that Aerosol Optical Depth (AOD) and Single Scattering Albedo (SSA) each explained 36% of the 

total ADRE uncertainty in the GCMs of the Coupled Model Intercomparison Project (CMIP6) for 

external and internal mixing assumptions, respectively.  
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Apart from aerosol properties, the representation of environmental conditions such as 

surface albedo and cloud accounts for the ADRE inter-model spread (Thorsen et al., 2021). In 

regions with poorly constrained cloud and surface albedo (i.e., stratocumulus cloud decks and sea 

ice), ADRE uncertainty may be especially large. By prescribing identical aerosol radiative 

properties in AeroCom models, Stier et al. (2013) showed that host model uncertainties, 

particularly surface albedo, clouds, and radiative transfer, could explain about 36% of the overall 

sulfate forcing diversity. 

Besides the aerosol and environmental parameters, which constitute the inputs to radiative 

transfer models for the ADRE quantification, uncertainties can result from the structural 

differences in radiative transfer models (Halthore et al., 2005; Randles et al., 2013; Zanchettin et 

al., 2022). For example, Randles et al. (2013) showed a large inter-model diversity in aerosol 

radiative forcing primarily due to the treatment of multiple-scattering; they also demonstrated that 

global models with two-stream radiation approximation are subject to persistent biases compared 

to multi-stream models.  

On a relevant note, GCMs are complex modeling tools that are often subject to 

compensating errors in their simulated processes (Cherian & Quaas, 2020; Zhao et al., 2022; H. 

Huang & Huang, 2023). Zhao et al. (2022) indicated that a seemingly good agreement in cloud 

radiative effect (CRE) and absorption of solar radiation (ASR) between CMIP6 models and 

satellite observations may result from the compensating errors between cloud optical depth (COD) 

and liquid water path (LWP). Similarly, Cherian & Quaas (2020) noted that LWP and cloud 

fraction (CF) errors may compensate for setting the CRE trend. Recognizing the radiative transfer 

coupling among aerosols, clouds, and other radiative constituents in GCMs, these studies 

demonstrate the importance of identifying ADRE uncertainty arising from their coupling effects. 
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Although many studies have examined ADRE uncertainty, quantitative and comparative 

assessments of the contributions to ADRE uncertainty from the different factors remain lacking, 

especially for the latest CMIP6 GCMs. To address this issue, this study uses an analytical model 

developed by Q.Yu & Huang (2023b) that quantitatively relates the global ADRE to several key 

aerosol-related and environment-related variables, accounting for their coupled effects. We apply 

this approach to dissect the ADRE inter-GCM spread and to address the following questions: (a) 

How well does the analytical model explain the all-sky ADRE inter-model spread in the CMIP6 

models? (b) How much do the differences in state variables and ADRE radiative sensitivity 

respectively contribute to the spread? And (c) what are the dominant factors in each GCM that 

contribute to its ADRE anomaly? The paper is structured as follows: Section 3.2 describes the 

analytical model used in this study and the data from CMIP6 models; Section 3.3 documents the 

contributions to the ADRE spread; Section 3.4 summarizes the answers to these questions. 

3.2 Data and Method 

3.2.1 CMIP6 data 

This study uses five CMIP6 coupled ocean-atmosphere models (listed in Table B1) that 

provide the necessary variables for our analysis. To reduce sampling bias, only one model is 

selected from each modeling center. The following variables are extracted from the Earth System 

Grid Federation platform (Cinquini et al., 2014), for the period running from 2000 to 2014 from 

the historical experiment. The variable fields used include the ambient aerosol optical thickness at 

550 nm (od550aer), ambient aerosol absorption optical thickness at 550 nm (abs550aer), top-of-

atmosphere (TOA) outgoing aerosol-free shortwave radiation (rsutaf), TOA outgoing shortwave 

radiation (rsut), TOA incident shortwave radiation (rsdt), TOA outgoing clear-sky, aerosol-free 

shortwave radiation (rsutcsaf), surface downwelling clear-sky shortwave radiation (rsdscs), and 
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surface upwelling clear-sky shortwave radiation (rsuscs). The model outputs are re-gridded to a 

common 2.5° × 2.5° latitude-longitude grid for comparison. The all-sky ADRE, shortwave cloud 

radiative effect (CRE), and broad-band shortwave surface albedo (ALB) are derived as: 

ADRE = (rsut − rsdt) − (rsutaf − rsdt) = rsut − rsutaf    (3.1) 

CRE = (rsutaf − rsdt) − (rsutcsaf − rsdt) = rsutaf − rsutcsaf   (3.2) 

ALB = +$4$)$
+$/$)$

           (3.3) 

Although the sampling size in our study is limited due to data availability, the multi-model 

mean and standard deviation of key variables such as AOD and ALB from the 5-model subset 

agree well with the mean from all CMIP6 models, which confirms the representativeness of the 

multi-model mean ADRE (Figures B1–B3 in Appendix B). 

3.2.2 Regression Model 

Following Yu & Huang (2023, YH23 in short), we represent the global distribution of the 

all-sky ADRE with a multivariate regression model: 

>B>C

>C
= ∑ β5 ∙

E.BE8FFF

E8FFF
1
5G%              (3.4) 

where Y is the predictand variable and is defined as the ADRE value normalized by the TOA 

insolation (TISR): 6789
:;<8

; X; and β; are the ith predictor and regression coefficient. This regression 

model includes four predictors: the scattering AOD: SAOD , the product of SAOD  and surface 

albedo: SAOD ∙ ALB, the product of absorptive AOD and surface albedo: AAOD ∙ ALB, and the 

product of SAOD and the TISR-normalized CRE: SAOD ∙ =89
:;<8

. Both the predictand and predictor 

variables vary spatially, although this dependency is omitted in the equation for a simpler 

expression. The global mean values are denoted by an overbar. Note that, as shown by YH23, a 

main advantage of this regression model is that the analytical form it adopted recognizes the 
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nonlinear coupling between the aerosol-related and environment-related variables. Consequently, 

it captures well the spatially varying ADRE sensitivity to these variables (Figure 4 in YH23 and 

Figures B4 and B5 in Appendix B). For individual GCMs, the model generally explains over 92% 

of the spatial variance of the ADRE values (Table B1 in Appendix B). 

Using the CMIP6 data described above, we train a regression model with the globally 

distributed multi-model mean values of the predictor and predictand variables and denote the 

prediction of this model as ADRE(
_, where the subscript 0 denotes the multi-model mean values. 

We also train a prediction model with the predictor and predictand values from each GCM; these 

predictions are denoted as ADRE@
_ , where the subscript j denotes the jth CMIP6 model. The 

superscript p denotes the predicted ADRE, which distinguishes from the truth ADRE value of 

each model: ADRE@ and that of the multi-model mean: ADRE(,	both of which are obtained from 

the CMIP6 archive.  

In this way, we decompose the ADRE anomaly of a GCM with respect to the multi-model 

mean as: 

 ∆ADRE@ = ADRE@ − ADRE( = ∆ADRE@
_ + res     (3.5)  

The first term on the right-hand side represents the ADRE anomaly explained by the regression 

method:  

∆ADRE@
_ = ADRE@

_ − ADRE(
_       (3.6) 

The residual term represents the unexplained part and takes the form: 

res = nADRE@ − ADRE@
_o − ãADRE( − ADRE(

_å     (3.7) 
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Based on the expression of the regression model, the explained part can be further decomposed to 

terms that multiply with ΔX;,@, which is the anomaly of the ith predictor in the jth model compared 

to the multi-model mean and those that multiply with Δβ;,@,  

Δβ5,@ =
`.,0
E8,9FFFFF−

`.,:
E8,:FFFFF           (3.8) 

which measures the anomaly in the ADRE sensitivity to the ith predictor in the jth model.  

 The ΔX;,@ terms measure the contributions to ADRE anomaly in a GCM by the anomaly of 

the aerosol and environment state variables in this GCM. For instance, if a GCM has anomalously 

high SAOD values, the term multiplying with ∆SAOD@ measures how much ∆ADRE@ anomaly is 

caused by this factor. The Δβ;,@ terms, explained in Table 3.1, measure the contribution from the 

differences in ADRE sensitivity to aerosol-related radiative processes such as aerosol-only 

scattering. These ADRE sensitivity variations among models can be attributed to the differences 

in radiative transfer (such as radiative transfer solvers, spectral resolution, and stream 

approximation) and other state variables excluded from the selected predictors (such as 

atmospheric water vapor). For example, due to Δβ<6V7  differences, even if two models have 

identical SAOD values, their ADRE values may differ. See Text B1 in Appendix B for a full 

decomposition of the ADRE anomaly in our analysis and the definitions of all relevant terms. 

3.3 Results and Discussions 

3.3.1 ADRE   

Figure 3.1a displays the multi-model mean ADRE computed by the GCMs, which 

discloses several regions with pronounced local ADRE, including strong warming effects in the 

Sahara and Arabian Deserts as well as strong cooling effects in the Arabian Sea, Bay of Bengal, 

and the tropical Atlantic Ocean (consistent with the global reanalysis—e.g., Figure 1b in YH23). 
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In addition, ADRE exhibits positive values in the Arctic and Greenland, while it takes negative 

values in Antarctica. Figure 1b shows that these regional features are captured very well by the 

regression model, which explains a total of 95% (measured by the R2 value) of the spatial variance 

of the multi-model mean ADRE. 

Figures 3.1d and 3.1e show the standard deviation (Std) of the ADRE values in every GCM 

as simulated by the GCMs and predicted by the regression method, respectively. The regions with 

large inter-model spread are East Asia and the Sahara, with Std values greater than 3 W/m2. In the 

Arctic, although the absolute Std values are small, they are comparable to the magnitude of ADRE 

values there, indicating considerable discrepancies among the models. Again, the regression 

method effectively captures these regional features and explains a total of 94% of the Std variance. 

In summary, we find that the simple regression model (Equation 3.4) explains very well 

both the average global distribution of the ADRE in the CMIP6 GCMs and the inter-GCM 

differences, except for some regions with relatively large prediction bias (the hatched areas in 

Figure 3.1c). The unexplained residual is likely due to the factors and nonlinearity that are 

neglected in Equation 3.4, including the absence of vertical distribution information of aerosols 

and clouds as well as unaccounted nonlinear coupling, which, for example, may make ADRE 

delicately depend on the underlying surface and cloud (Chlek & Coakley, 1974). 
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Figure 3.1 Truth values of the (a) multi-model mean ADRE (ADRE() and (d) the standard 

deviation of ADRE inter-model anomaly (std(∆ADRE@)); the regression model predicted (b) 

multi-model mean ADRE (ADRE(
_) and (e) the standard deviation of ADRE inter-model 

anomaly (std(∆ADRE@
_)); (c,f) corresponding prediction biases. The hatched areas in (c) indicate 

regions where the magnitude of the bias exceeds that of the truth value. Global mean values are 

indicated in the top-right corner of each subplot. 
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Table 3.1 CMIP6 Models Used in This Study and the Spatial Variance in the Global ADRE 

Anomaly in Each Model Explained by the Regression Method (Bold Values) and Its Component 

Terms 

 Spatial variance explained (R2) 

Total State difference (ΔX;,@ terms) Radiative sensitivity difference  

(Δβ;,@ terms) 

 Total ∆SAOD ∆AOD ∆ALB ∆CRE Total ∆β% ∆β&  ∆βO ∆β1 

CNRM

-ESM2  

87% 39% 7% 0% 1% 27% 29% 14% 7% 12% 0% 

GFDL

-ESM4 

83% 77% 9% 28% 22% 0% 1% 11% 42% 32% 5% 

HadG

EM3 

81% 65% 20% 8% 0% 19% 48% 39% 20% 23% 8% 

MPI-

ESM 

88% 75% 24% 16% 2% 3% 0% 1% 5% 7% 9% 

MRI-

ESM2-

0 

89% 78% 46% 0% 1% 13% 7% 5% 6% 4% 5% 

Avg± 

Std 

86±

3% 

67±1

6% 

21±1

6% 

11±1

2% 

5±1

0% 

12±1

1% 

17±2

1% 

14±1

5% 

16±1

6% 

16±1

2% 

5±

3% 

ADRE radiative sensitivity to different aerosol-related radiation processes (β;,@ terms): 

β% or β<6V7: Aerosol-only scattering effect.  
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β& or β<6V7∙6ab: Scattering aerosols and surface interaction.  

βO or β66V7∙6ab: Absorptive aerosols and surface interaction.  

β1	or	β<6V7∙=89: Cloud masking effect. 

Full model names and references 

The Centre National de Recherches Météorologiques Earth System Model (Séférian et al., 

2019): CNRM-ESM2-1 

The Geophysical Fluid Dynamics Laboratory Earth System Model (Dunne et al., 2020): 

GFDL-ESM4 

The Hadley Centre Global Environmental Model (Sellar et al., 2020): HadGEM3-GC31-LL 

The Max Planck Institute Earth System Model (Gutjahr et al., 2019): MPI-ESM-1-2-HAM  

The Meteorological Research Institute Earth System Model (Yukimoto et al., 2019): MRI-

ESM2-0 

 

3.3.2 The ADRE Anomaly 

3.3.2.1 Global Mean 

Given the success of the regression method in explaining the distributions of the multi-

model mean ADRE and Std of the inter-model ADRE anomaly, we then examine the ADRE 

anomaly in every GCM. A survey of the global mean ADRE in different GCMs and its predictor 

variables (Text B2 in Appendix B) discloses substantial inter-GCM differences in both ADRE and 

its controlling factors. Following the formulation in Section 3.2.2, we decompose ΔADREj into 

contributions from state and radiative sensitivity differences. Table 3.1 summarizes the spatial 

variance of the explained ADRE anomaly. On average, the regression model explains 86±3% of 
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the ADRE anomaly in the GCMs, with state differences contributing 67±16%, and radiative 

sensitivity differences contributing 17±21%.  

Figure 3.2b summarizes the component contributions to the global mean ADRE anomaly 

in every GCM, which shows that the dominant contributors differ among the models. The ADRE 

anomaly in the CNRM-ESM2 and GFDL-ESM4 models is primarily caused by the state anomaly 

of these two models, while the other models exhibit stronger impacts from radiative sensitivity 

differences. 

Figure 2c identifies the main factors contributing to the ADRE anomaly in each model. For 

example, the CNRM-ESM2 model has an underestimation of SAOD and AAOD compared to the 

multi-model mean. Despite the compensation of their effects, the SAOD difference dominates the 

ADRE anomaly in this model. In contrast, in the GFDL model, AAOD is the primary cause for its 

ADRE anomaly. The contributions from differences in ALB and CRE are relatively small. In the 

HadGEM3, MPI-ESM, and MRI-ESM2 models, the ADRE sensitivity to aerosol-only scattering 

effects (the Δβ<6V7  term) is the main driver of the ADRE spread. Overall, the CNRM-ESM2 

model appears to be an outlier with large contributions from its differences in both state variables 

and radiative sensitivity.  

On regional scales, the major contributors to the ADRE anomaly differ from the global 

means. In East Asia (100°E-125°E, 20°N-40°N, Figure B8 in Appendix B), where the ADRE 

displays the largest inter-model spread (Figure 3.1d), higher AAOD compared to the multi-model 

mean contributes most to the ADRE anomaly in the GFDL model, while for the MPI-ESM model, 

reduced CRE (less cooling and masking effect of clouds) is the main driver. For the MRI-ESM2 

model, the anomaly in SAOD, ALB, and the ADRE sensitivity to aerosol-only scattering effect 

contribute nearly equally to its ADRE anomaly. The Arctic is also a region with a large ADRE 
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discrepancy because the ADRE anomaly surpasses its mean value, and the regression residual is 

relatively large. Results suggest that over the Arctic (70°N – 90°N, Figure B9 in Appendix B), the 

anomaly in AAOD contributes the most to the ADRE anomaly in the GFDL and MRI-ESM2 

models. In the CNRM-ESM2 and MPI ESM models, the ADRE anomaly is mainly caused by the 

differences in the evaluation of the scattering aerosol and surface interaction (the Δβ<6V7∙6ab 

term), which can lead to uncertainty in atmospheric absorption due to changes in photon path-

length. The HadGEM3 model shows the largest bias in the regression model’s prediction of the 

ADRE spread, indicating a distinct relationship between the predictors and the ADRE in this model 

compared to others in the region.  
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Figure 3.2 Global mean ADRE anomaly in the CMIP6 GCMs. The ADRE anomaly in each 

GCM (a) compared to the multi-model mean, (b) decomposed to contributions from the state and 

radiative sensitivity differences and unexplained residual, and (c) fully decomposed to 

contributions due to the differences in state variables: ∆SAOD, ∆AAOD, ∆ALB, ∆CRE, and 

Σ(∆X)c and due to the differences in radiative sensitivities as measured by regression coefficient 

differences: Δβ<6V7, Δβ<6V7∙6ab, Δβ66V7∙6ab, Δβ=89∙<6V7, and regr-clos. See Text B1 in 

Appendix B for the full expressions of the component terms. 

3.2.2 Spatial Distributions 

Next, we analyze the spatial distribution of the ADRE discrepancies in the GCMs. Figures 

3.3a-3.3e show the spatial distribution of the inter-GCM Std of the ADRE anomaly caused by 

different state variables (i.e., the ΔX;,@ terms, Equation. B9 in Appendix B). The ∆SAOD term 

prevails in several mid-latitude regions, especially in China, India, and central Africa, which 

reflects large inter-GCM discrepancies in SAOD values in these regions. The ∆AAOD term is the 

most noticeable in the desert areas, China, and India. China is an interesting hotspot as both 

aerosol-related and environment-related state variables (∆ALB and ∆CRE) contribute strongly to 

inter-model ADRE discrepancies in this region. In other regions, the contributions from ∆ALB 

and ∆CRE terms are generally small. Overall, the inter-model differences in SAOD contribute the 

most (0.66 W/m2 globally) to the inter-model differences in ADRE, which is consistent with other 

studies (Regayre et al., 2018). Scattering aerosols, such as sea salt and sulfate, have a greater 

impact on the global ADRE uncertainty compared to absorbing aerosols like carbonaceous 

aerosols. This is because carbonaceous aerosols contribute to ADRE uncertainty primarily during 

high-emission months, and their effect is more limited to regions proximate to emission sources. 

These results suggest that it is a priority to constrain the base states in the GCMs to reduce ADRE 
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uncertainty. Given the significant compensating errors caused by different state variables (Figure 

B10a in Appendix B), it is important to simultaneously address the GCM biases in SAOD, AAOD, 

ALB, and CRE.  

The dominant contributor to the state variable induced ADRE differences differs in each 

model: ∆SAOD contributes the most in the CNRM-ESM2 and HadGEM3. ∆AAOD dominates the 

GFDL and MPI-ESM model. ∆ALB has the largest impact in the MRI-ESM2 model. 

Apart from the state variables that are prescribed as inputs to radiation models, ADRE 

quantification is subject to a variety of uncertainties in the radiative transfer calculation, including 

the representations of the vertical distributions of aerosols and clouds, the parameterizations of 

spectrally and angularly dependent surface reflection and aerosol scattering, the difference in 

atmospheric absorbers (e.g., water vapor), and the simplifications in the solvers of the radiative 

transfer equation (Table B2 in Appendix B). These result in differences in the ADRE sensitivities 

quantified by the regression method (β; in Equation B4) and their contribution to ADRE anomaly 

are represented by the Δβ;,@ terms in our decomposition (Equation B20 in Appendix B).  

Figures 3.3f - 3.3j presents the Std of the radiative sensitivity-caused ADRE anomaly. The 

Δβ<6V7, Δβ<6V7∙6ab, Δβ66V7∙6ab, and Δβ=89∙<6V7 terms represent discrepancies resulting from 

the ADRE sensitivity to the aerosol-only scattering, scattering aerosol and surface interaction, 

absorptive aerosol and surface interaction, and cloud masking processes, respectively. We find 

that, in oceanic regions, the aerosol-only scattering effect dominates the ADRE discrepancies, 

which may result from the backscattering representation of the sea salt aerosols that are dominant 

in those regions. In polluted regions such as China, the contribution from the scattering aerosol 

and surface interaction is strong. In desert regions, absorptive aerosols and surface interaction is 

important. The contribution from the cloud masking effect is generally smaller. In terms of global 
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mean values, the scattering aerosol and surface interaction contributes the most (0.4 W/m2) to the 

spread of ADRE, which is consistent with other studies (e.g., Randles et al., 2013).  

For the dominant contributor to the radiative sensitivity-caused ADRE differences in each 

model (Figure B10b in Appendix B), the ADRE sensitivity differences to scattering aerosols and 

surface interaction and cloud masking effect contribute most to the CNRM-ESM2 model and the 

GFDL model, respectively. The sensitivity to aerosol-only scattering effect dominates the 

HadGEM3, MPI-ESM, and MRI-ESM2 models. 
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Figure 3.3 Spatial distributions of the standard deviations of decomposed components of ADRE 

anomaly in the CMIP6 GCMs. (a–e) Contributions from differences in state variables. (f–j) 

Contributions from differences in radiative sensitivity. Global mean values are indicated in the 

top-right corner of each subplot. 

3.4 Conclusions 

This work evaluates the contributions to the ADRE anomaly in CMIP6 models using a 

novel regression method abiding by the principle of parsimony while accounting for the key 

nonlinear radiative transfer effects. Contributions from the differences in state variables and the 

radiative sensitivity are separately quantified and compared. The following questions are 

addressed. 

How well does the analytical (regression) model represent the ADRE inter-model spread 

ã∆𝐴𝐷𝑅𝐸då in the CMIP6? The regression model effectively captures the spatial distributions and 

global mean values of the ADRE anomaly (Figure 3.1). For individual GCMs, it explains 86±3% 

of the spatial variance in the ADRE anomaly; it also captures 94% of the spatial variance in the 

inter-model standard deviations of the ADRE anomaly. The model almost perfectly constrains the 

global mean values of the ADRE anomaly and their standard deviation (0.72 Wm−2). The 

unexplained ADRE anomaly, accounting for 2% of the ADRE standard deviation, is primarily 

located in China and the Southeast Atlantic likely because the regression model is limited by its 

linear assumption and the simplified representations of the ADRE. 

How much do the differences in state variables and radiative sensitivity contribute to the ADRE 

discrepancy? On average, the state variable differences explain 67±16% of the model spread in 

ADRE, while the radiative sensitivity variances explain 17±21% (Table 3.1). Among the state 

variables assessed, scattering aerosol optical depth (∆SAOD) contributes most to the standard 
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deviation of the ADRE anomaly, with the global mean value being 0.66 W/m2. Other factors, such 

as cloud and surface albedo (∆CRE and ∆ALB), also manifest regional impacts (Figure 3), for 

example, contributing significantly over China where the standard deviation of the ADRE spread 

exceeds 3 W/m2. The radiative sensitivity differences assessed in this study account for the 

treatments of aerosol-only scattering, scattering and absorptive aerosol-surface interaction, and 

cloud masking effects. Over the ocean, the contribution from the aerosol-only scattering effect 

dominates, while in desert regions and East Asia, the treatment of aerosol and surface interaction 

is more important.   

What are the dominant contributors in each selected CMIP6 model? For global mean 

values (Figure 3.2), the CNRM-ESM2 and GFDL-ESM4 models are mainly influenced by 

differences in state variables, while others are more affected by radiative sensitivity variance. The 

dominant contributor in the CNRM-ESM2 model is the overall underestimation of SAOD, whereas 

in the GFDL model it is the overestimation of AAOD. For the HadGEM3, MPI-ESM, and MRI-

ESM2 models, the ADRE sensitivity to aerosol-only scattering effects is the main contributor. The 

CNRM-ESM2 model stands out as an outlier, displaying substantial contributions from both state 

variables and radiative sensitivity in comparison to other models. The dominant contributor to the 

ADRE anomaly varies across regions. In East Asia, the main contributors in the GFDL and MPI-

ESM models are the AAOD and CRE differences, respectively. In the Arctic, the main contributor 

in the GFDL and MRI-ESM2 models is the AAOD difference. It is also noticeable that the 

compensations from different contributors can be significant. 

These results highlight the need for constraining the inter-model discrepancies in ADRE 

among the CMIP6 models. In particular, constraining the key state variables (AOD, ALB, and 
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CRE) and the ADRE sensitivity to aerosol-related processes (aerosol-only scattering, aerosol-

surface interaction) could help reduce ADRE uncertainty according to our findings.  

While this work provides a simple way of diagnosing the inter-model ADRE spread, the regression 

method has limits in its accuracy because of the number of predictors included and simplified 

representation of their interactions (e.g., inability to represent relative vertical positions of aerosol 

and clouds). Nevertheless, the method identifies the major factors accounting for the ADRE 

anomaly in each model and the regions where they matter, which warrants, and provides guidance 

to, future work to improve their ADRE simulations.  

Data Availability Statement  

The CMIP6 data used for this analysis including the radiation and aerosol optical depth 

data are available at Earth System Grid Federation (Krasting et al., 2018; Seferian, 2018; Ridley 

et al., 2019; Neubauer et al., 2019; Yukimoto et al., 2019). 
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Chapter 4 Quantifying the Direct Radiative Effect of Stratospheric Aerosols Using 

Radiative Kernels 

Chapter 4, in full, is a manuscript submitted to Journal of Geophysical Research: 

Atmospheres.  

Qiurun Yu, Yi Huang. Quantifying the Direct Radiative Effect of Stratospheric Aerosols Using 

Radiative Kernels. ESS Open Archive. August 15, 2024. 

DOI: 10.22541/essoar.172374105.56686934/v1 
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Quantifying the Direct Radiative Effect of Stratospheric Aerosols Using Radiative Kernels 
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Key Points: 

• A global dataset of radiative sensitivity kernels is developed to quantify stratospheric 

aerosol direct radiative effect (ADRE).  

• An analytical model is developed to emulate the kernel values from a handful of predictor 

variables. 

• The stratospheric aerosol kernels capture the spatiotemporally varying ADRE values of 

volcanic eruptions and wildfire events well. 
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 Abstract 

To facilitate the quantification of the stratospheric aerosol radiative effect, this study 

generates a set of aerosol direct radiative effect (ADRE) kernels based on MERRA-2 reanalysis 

data. These radiative kernels measure the sensitivities of ADRE to perturbations in scattering and 

absorbing aerosol optical depth (AOD), respectively. Both broadband and band-by-band radiative 

kernels are developed to account for the wavelength dependency of ADRE. The broadband kernels 

are then emulated by a multivariate regression model, which predicts the kernel values from a 

handful of predictors, including the top-of-atmosphere (TOA) insolation, TOA reflectance, and 

stratospheric AOD. These kernels offer an efficient and versatile way to assess the ADRE of 

stratospheric aerosols. The ADREs of the 2022 Hunga volcano eruption and the 2020 Australia 

wildfire are estimated from the kernels and validated against radiative transfer model-calculated 

results. The Hunga eruption induced a global mean cooling forcing of -0.46 W/m² throughout 

2022, while the Australia wildfire caused a warming forcing of +0.28 W/m² from January to 

August. The kernel estimation can capture over 90% of the ADRE variance with relative errors 

within 10%, in these assessments. The results demonstrate the spectral dependencies of 

stratospheric ADRE and highlight the distinct radiative sensitivity of stratospheric aerosols, which 

differs significantly from that of tropospheric aerosols. 

Plain Language Summary 

Stratospheric aerosols influence the Earth's energy balance by scattering and absorbing 

solar radiation, making it crucial to accurately measure their radiative impact. However, 

quantifying the aerosol radiative impact is computationally expensive if using radiative transfer 

models. In this work, we develop a set of aerosol radiative kernels, which can provide a flexible 

and efficient means for calculating the radiative effects of stratospheric aerosols. The kernels have 
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been demonstrated to effectively quantify the radiative impacts of stratospheric aerosols resulting 

from wildfire and volcanic eruption events. 

4.1 Introduction 

Stratospheric aerosols influence the Earth’s radiative energy budget and have profound 

climate impacts (Kremser et al., 2016). The largest contributor to stratospheric aerosols is volcanic 

eruptions, which can inject a mixture of sulfur dioxide, sulfuric acid, and water directly into the 

stratosphere, where they transform into stratospheric aerosols (Martinsson et al., 2019). By 

increasing the reflection of solar radiation, those volcanic aerosols exert a negative radiative 

forcing at the top-of-the-atmosphere (TOA), which can lead to pronounced surface cooling and 

changes in atmospheric circulation and water cycle (Robock, 2000; Grinsted et al., 2007; C.-H. 

Wu et al., 2023; Günther et al., 2024). Apart from volcanic eruptions, wildfires-induced 

pyrocumulonimbus (PyroCb) events can also transport a significant amount of carbonaceous 

aerosols into the lower stratosphere (Fromm et al., 2010; Ohneiser et al., 2020; C.-C. Liu et al., 

2022; Damany-Pearce et al., 2022). Observation and model studies suggest that the absorptivity of 

biomass-burning aerosols can warm the stratosphere, deplete the stratospheric ozone, and modify 

vertical dynamics and horizontal dispersion (Damany-Pearce et al., 2022; Ohneiser et al., 2020, 

2023).  

Although the importance of stratospheric aerosols is well recognized, the quantification of 

their radiative effect has not been an easy task, as it requires the consideration of multiple factors, 

including aerosol types, height and size distributions, as well as the environmental factors at their 

locations (Weisenstein et al., 2015; MacMartin et al., 2017; Q.-R. Yu et al., 2019; Visioni et al., 

2020; P. Yu et al., 2023; Q. Yu et al., 2024). The straightforward and most accurate way to quantify 

the aerosol direct radiative effect (ADRE) is the Partial Radiative Perturbation (PRP) method, 
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which requires running a radiative transfer model and differencing the modeled radiative fluxes 

with and without aerosol perturbations, although this quantification method is computationally 

expensive. Many studies used alternative approaches to estimate ADRE, for example, by using an 

analytical relationship between the aerosol optical depth (AOD) and the radiative effect. Hansen 

et al. (2005) estimated a radiative sensitivity of -22 W/m2 per unit AOD change, based on the 

simulation of the Pinatubo eruption case using a global climate model. P. Yu et al. (2023) reported 

a similar scaling relation for stratospheric aerosols also based on modeling experiments. 

(Schoeberl et al., 2023, 2024a) applied the radiative sensitivity kernels of Q. Yu & Huang (2023b) 

to evaluate the climate impacts of the 2022 Hunga volcano eruption. However, these kernels were 

derived based on the aerosol perturbations in the whole atmospheric column, which is dominated 

by tropospheric, as opposed to stratospheric aerosols.  

To the best of our knowledge, a global dataset of radiative sensitivity kernels specifically 

developed for assessing the ADRE of stratospheric aerosols is still lacking. The existing global 

aerosol kernels, including those of Q. Yu & Huang (2023b) and Thorsen et al. (2020), were 

developed with a focus on tropospheric aerosols, whose radiative sensitivity, as shown later in this 

paper, differ markedly from stratospheric aerosols. A recent study by Gao et al. (2023) tested the 

kernel quantification of the ADRE of tropopause aerosols, although the development was limited 

to the East Asia region. A global kernel dataset, which can facilitate an efficient yet accurate 

quantification of the spatiotemporally varying radiative impacts of stratospheric aerosols, is 

expected to have a broad spectrum of applications. This is especially relevant given the frequent 

occurrence of wildfires (Damany-Pearce et al., 2022), recent volcanic eruptions (Taha et al., 2022), 

and the increasing discussions about stratospheric aerosol geoengineering (Visioni et al., 2020). 
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It is well recognized that the aerosol optical properties, radiative transfer, and the resulting 

aerosol radiative effects, all have a strong spectral dependence. For example, the spectral 

dependence of AOD is often approximated using the Angstrom relationship (Ångström, 1929), 

although the Angstrom exponent (AE) may vary with wavelength (Schuster et al., 2006) and height 

(Z. Chen et al., 2020). Incorporating spectrally measured aerosol optical properties can reduce 

uncertainty in the ADRE quantification (Chauvigné et al., 2021). Thorsen et al. (2020) found that 

distinguishing column-integrated aerosol optical properties in the mid-visible and near-infrared 

wavelengths can help constrain ADRE, pointing to the potential benefits of developing band-by-

band kernels. In addition, spectral kernels may take advantage of the spectral AOD information, 

which is available from many state-of-the-art climate models as well as satellite and ground-based 

measurements. Therefore, in addition to a set of broadband stratospheric aerosol kernels, we also 

aim to produce an accompanying set of spectrally decomposed, band-by-band kernels, to facilitate 

the use of spectral information in the ADRE quantification. 

Observational and modeling studies have shown that ADRE sensitivity is strongly 

influenced by environmental conditions such as clouds, relative humidity, and surface albedo 

(McComiskey et al., 2008; Loeb et al., 2019; Schoeberl et al., 2023; Q. Yu & Huang, 2023a, 

2023b). However, the primary environmental factors affecting stratospheric ADRE sensitivity and 

their underlying physics remain to be elucidated. Another objective of our study is to investigate 

this environmental dependence. Integrating a physical model with statistical analyses, we 

experiment with sorting the global aerosol kernels, which are conventionally computed on 

geographic grids (latitude, longitude, and calendar month), based on the geophysical variables that 

govern the kernel values according to radiative transfer physics. We aim to establish an analytical 

equation to capture the spatiotemporal variations of the kernel values. Such an analytical relation 
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can be considered a physical (as opposed to geographical) kernel dataset and can be used for the 

ADRE quantification under arbitrary situations regardless of the geographic location, which 

potentially makes the kernels suitable for broader applications. 

In summary, in this study, we aim to develop a set of radiative sensitivity kernels that are 

specifically designed for quantifying the stratospheric ADRE. The kernels developed here include 

both broadband and spectral band-by-band TOA flux kernels provided on conventional latitude-

longitude-month grids, as well as physically sorted broadband kernels whose values are 

determined from analytical equations. The structure of this paper is as follows. Section 4.2 details 

the methods used to calculate both broadband and band-by-band kernels. Section 4.3 describes the 

development of physically sorted kernels. These aerosol kernels constitute a versatile means to 

quantify the stratospheric ADRE. We demonstrate the use and performance of these kernels by 

applying them to two cases: the 2022 Hunga volcanic eruption (Bourassa et al., 2023; Kloss et al., 

2022; Taha et al., 2022) and the 2020 Australia wildfire (Ohneiser et al., 2020; Damany-Pearce et 

al., 2022; Sellitto et al., 2022) in Section 4.4. A summary is provided in Section 4.5. 

4.2 Data and Methods 

4.2.1 Stratospheric Aerosol Direct Radiative Effect 

The stratospheric ADRE is calculated as the difference in net radiative fluxes at TOA with 

and without stratospheric aerosols: 

 Stratos	ADRE	 = 	𝐹cef(𝑎𝑙𝑙	𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠) − 𝐹cef(𝑛𝑜	𝑠𝑡𝑟𝑎𝑡𝑜𝑠	𝑎𝑒𝑟𝑜𝑠𝑜𝑙𝑠)  (4.1) 

where 𝐹cef = 𝐹↓ − 𝐹↑, with the downward flux 𝐹↓ being positive. 

In this study, we focus on the shortwave stratospheric ADRE at the TOA under all-sky conditions. 

This is because the longwave ADRE is orders of magnitude smaller (Reddy et al., 2005; Heald et 

al., 2014; Balmes & Fu, 2021), and aerosol scattering is often neglected in the longwave schemes 
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of radiative transfer models (Mlawer et al., 1997, 2016), despite stratospheric aerosols being 

primarily scattering particles. However, the method described here can also be used to calculate 

aerosol kernels in the longwave spectrum, at the surface, or for atmospheric heating rate. Radiative 

fluxes are computed using the Rapid Radiative Transfer Model (RRTMG) (Mlawer et al., 1997, 

2016). The required inputs for these calculations are obtained from the Modern-Era Retrospective 

Analysis for Research and Applications, Version 2 (MERRA-2) dataset (Gelaro et al., 2017). We 

use instantaneous atmospheric and cloud profiles, including air temperature and pressure, surface 

temperature, surface albedo, water vapor, ozone, specific humidity, cloud fraction, and the mass 

fraction of cloud liquid and ice water. The tropopause is defined according to the criterion of the 

World Meteorological Organization (WMO, 1957) as the lowest level where the temperature lapse 

rate decreases to 2 K/km or less, and the average lapse rate from this level to any level within the 

next 2 km does not exceed 2 K/km.  

Aerosol optical properties are calculated based on the MERRA-2’s instantaneous aerosol 

mixing ratio profiles, which include 72 layers. MERRA-2 provides 15 externally mixed aerosol 

tracers: hydrophobic and hydrophilic black and organic carbon, sulfate, dust (five size bins), and 

sea salt (five size bins) (Randles et al., 2017). Aerosol optical properties vary with relative 

humidity to account for hygroscopic growth. For computational efficiency, the 3-hourly MERRA-

2 inputs are resampled into a 2.5° × 2.5° grid box. Our goal is to replicate the aerosol radiative 

transfer calculations from the MERRA-2 dataset and isolate the impact of stratospheric aerosols 

to study the stratospheric ADRE. Validations of aerosol optical property inputs and total ADRE 

calculations against MERRA-2 diagnostic aerosol and radiation products are provided in the 

Appendix C (Figures C1-C3). 
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4.2.2 Computation of Stratospheric Aerosol Kernels  

Aerosol radiative kernels (i(jklm)
in

) are the partial derivative of the ADRE to an aerosol-

related property 𝑥 such as AOD and single scattering albedo. These kernels represent how ADRE 

responds to atmospheric aerosol perturbations. By multiplying the radiative kernels with the 

changes in 𝑥, we can approximate the resulting change in ADRE, which provides a convenient 

means for estimating the radiative impact of aerosols.  

In this study, we develop kernels for both stratospheric scattering aerosol optical depth 

(AODscat) and absorbing aerosol optical depth (AODabs). For each type of kernel, radiative transfer 

calculations are performed twice: one with background aerosols and one with perturbations in the 

stratospheric aerosols. The sizes of the perturbation are 0.1 for AODscat and 0.01 for AODabs at 550 

nm. The perturbation magnitude differs between stratospheric AODscat and AODabs due to the 

smaller background stratospheric AODabs compared to AODscat. We use absolute perturbation 

values instead of relative ones (such as 1%) to minimize noise from numerical errors caused by 

very small background AOD values. We have verified that the radiative flux changes respond 

linearly to the AOD perturbations within the typical magnitudes of stratospheric aerosol 

perturbations (∆AODscat ranging from 10-3 to 1 and ∆AODabs ranging from 10-4 to 1, respectively). 

The sum of the AODscat and AODabs effects can also be linearly added to determine the total 

stratospheric ADRE. Sensitivity tests have also been conducted to determine the impacts of 

perturbation height on the aerosol kernels. Results indicate minimal difference between perturbing 

a single layer at random altitudes versus the entire stratosphere. Therefore, for our perturbation 

runs, we assume a conserved vertical profile shape of stratospheric aerosols. Details about 

sensitivity tests of linear scaling, linear additivity, and height dependency of stratospheric aerosol 

kernels are provided in the Appendix C (Figures C4-C6). 
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The perturbation computations produce both broadband and band-by-band stratospheric 

aerosol kernels. To account for the diurnal cycle, the 3-hourly kernels are averaged into monthly 

mean values. These aerosol kernels are computed for an El Niño-Southern Oscillation (ENSO) 

neutral year, 2022. The impact of interannual variability on aerosol kernels is small, as 

demonstrated by the comparisons of monthly mean kernels between 2020 and 2022. The R-

squared values and Root Mean Squared Errors (RMSE) between the monthly mean AODscat 

kernels in those two years are 92% and 3.62, respectively, while for the AODabs kernels, they are 

97% and 46.90, respectively. Detailed comparisons are provided in the Appendix C (Figure C7), 

showing consistency in both spatial distributions and global mean values. 

4.2.2.1 Broadband Aerosol Kernels 

Given that solar energy peaks in the mid-visible bands and that aerosol optical properties 

are commonly observed in this range, we use the 550 nm AOD as the perturbation variable. The 

stratospheric AODscat and AODabs kernels are defined as follows: 

i(jklm)
i(jok;<=>)

	= p
?@>(jok;<=>P∆jok;<=>,			jok=A;, SSA’, g’)Bp?@>(jok;<=>,		 jok=A;,	 SSA, g)

∆jok;<=>
BB:   (4.2)  

 i(jklm)
i(jok=A;)

	= p
?@>(jok;<=,			jok=A;P∆jok=A;, SSA’, g’)Bp?@>(jok;<=>,		 jok=A;,	 SSA, g)

∆jok=A;
BB:   (4.3) 

 In the unperturbed runs, the background aerosol profiles of AOD, single scattering albedo 

(SSA), and asymmetry factor (g) are taken from reconstructed MERRA-2 aerosol optical property 

profiles. In the perturbation runs, an aerosol layer representing the stratospheric aerosol 

perturbations is added to the background aerosol profile. This added aerosol layer has the scattering 

or absorbing AOD values at 550 nm of 0.1 and 0.01, respectively, and the incremental AOD values 

(∆𝐴𝑂𝐷rstf  and ∆𝐴𝑂𝐷tur ) at other wavelengths are prescribed according to the Angstrom 

relationship (with the AE being 1). For the scattering AOD perturbation, the SSA and g values of 
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this added layer are assumed to be 1 and 0.7. The g value is based on annual and global mean 

asymmetry factor values reported by Ayash et al. (2008) as well as the background upper 

troposphere and lower stratosphere aerosol configurations in Sellitto et al. (2022). Weighted 

averaging is used to calculate the values of these aerosol properties in the perturbation runs. For 

𝐴𝑂𝐷rstf perturbation runs, 

𝑆𝑆𝐴v = wwjBB:∙jokBB:P%∙∆jok;<=>
BB:

jokBB:P∆jok;<=>
BB:         (4.4) 

𝑔v = xBB:∙wwjBB:∙jokBB:P(.y∙%∙∆jok;<=>
BB:

wwjBB:∙jokBB:P%∙∆jok;<=>
BB:         (4.5) 

For AODabs perturbation runs, the SSA and g values are 

 𝑆𝑆𝐴v = wwjBB:∙jokBB:P(∙∆jok=A;
BB:

jokBB:P∆jok=A;
BB:         (4.6)  

𝑔v = 𝑔           (4.7) 

To use the aerosol kernels derived here to calculate ADRE, users simply need to obtain 

stratospheric ∆𝐴𝑂𝐷rstfXX(  and ∆𝐴𝑂𝐷turXX( values appropriate to the case of interest, and then multiply 

these with broadband kernel values. 

∆𝐴𝐷𝑅𝐸 = i(jklm)
i(jok;<=>)

∙ ∆𝐴𝑂𝐷rstfXX( + i(jklm)
i(jok=A;)

∙ ∆𝐴𝑂𝐷turXX(     (4.8) 

Figure 4.1 shows the global distribution of annual mean stratospheric AODscat and AODabs kernels, 

in the units of W/m2 per unit change in stratospheric AOD. Both AODscat and AODabs kernels 

exhibit strong atmosphere dependencies. In cloudy regions (e.g., the Intertropical Convergence 

Zone, tropical eastern Atlantic, northwest Pacific Ocean, and Southern Ocean), the sensitivity of 

stratospheric ADRE to stratospheric AODscat is relatively lower due to the presence of underlying 

clouds, while the sensitivity to AODabs is relatively higher, compared to other regions. This is 

because in the case of the scattering effect, clouds already brighten the atmosphere and make the 

TOA radiation less sensitive to scattering aerosols and in the case of the absorbing effect, clouds 
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increase the solar radiation reflected into the stratosphere, thereby amplifying the absorption by 

the stratospheric aerosols. Similar patterns are observed over the polar and desert regions with high 

surface albedo. Because of their scattering or absorbing nature, AODscat kernels are always 

negative, while AODabs kernels are always positive. In terms of global means, a 0.1 increase in 

stratospheric 𝐴𝑂𝐷rstfXX(  results in a -2.65 W/m² cooling, while a 0.1 increase in 𝐴𝑂𝐷turXX( results in a 

+41.95 W/m² warming at the TOA. Note that these sensitivity values are larger than those reported 

by Q. Yu & Huang (2023b), particularly for absorbing aerosols. This is because the kernels 

developed in this study focus exclusively on stratospheric aerosols. These aerosols interact with a 

larger proportion of photons that have not been attenuated by clouds or tropospheric absorbers. 

Additionally, underlying clouds enhance the brightness of the troposphere, which further intensify 

the sensitivity of stratospheric ADRE to AODabs. 
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Figure 4.1 Spatial distributions of annual mean broadband aerosol kernels (a) for stratospheric 

AODscat and (b) for stratospheric AODabs. The global mean and annual mean values are indicated 

in the upper right corner of each subplot. Kernels are shown in units of watts per square meter 

per unit change in stratospheric AOD at 550 nm. 

 

 

Figure 4.2 Temporal variations of zonal mean broadband stratospheric aerosol kernels (a) for 

stratospheric AODscat and (b) for stratospheric AODabs. 

Apart from the spatial inhomogeneity, stratospheric aerosol kernels also display strong 

temporal variations. Figure 4.2 displays the temporal variations in zonal mean stratospheric 

broadband AODscat and AODabs kernels. The pronounced latitudinal differences in aerosol kernels 

reflect patterns of solar insolation. In tropical regions, the sensitivity of ADRE to stratospheric 

aerosols remains high throughout the year, while polar regions show notable seasonal variations. 
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4.2.2.2 Band-by-band Aerosol Kernels 

While broadband aerosol kernels are convenient to use, they rely on assumptions about the 

wavelength dependency of aerosol optical properties, which may not always be accurate. To 

facilitate a more flexible and accurate ADRE quantification, we leverage the band configuration 

of the RRTMG model to calculate a set of band-by-band stratospheric aerosol kernels. The 

RRTMG shortwave bands, detailed in Table 1, cover a spectrum from 0.2 μm to 12.2 μm across 

14 bands. 

Table 4.1 RRTMG Shortwave Bands. 

SW band Wavenumber 

𝝊[𝒄𝒎B𝟏] 

Wavelength 

𝝀	[𝒏𝒎] 

AOD 

wavelength 

[nm] 

Band 29 820-2600 12195- 3846 7082.2 

 

Band 16 2600-3250 3846-3077 3444.7 

Band 17 3250-4000 3077-2500 2777 

Band 18 4000-4650 2500-2151 2320.2 

Band 19 4650-5150 2151-1942 2044.2 

Band 20 5150-6150 1942-1626 1778.4 

Band 21 6150-7700 1626-1299 1455.2 

Band 22 7700-8050 1299-1242 1270 

Band 23 8050-12850 1242-778 944.3 
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Band 24 12850-16000 778-625 693.5 

Band 25 16000-22650 625-442 527.1 

Band 26 22650-29000 442-345 399.8 

Band 27 29000-38000 345-263 329.1 

Band 28 38000-50000 263-200 229.8 

 

The stratospheric aerosol band-by-band kernels for AODscat and AODabs are expressed as: 

ijklmC

ijok;<=>C 	 =
p?@>Yjok;<=>

C P∆jok;<=>
C ,	jok=A;

C ,		SSA', g'ZBp?@>Yjok;<=>
C ,	jok=A;

C ,	SSAC,	gCZ

∆jok;<=>C 	 (4.9) 

ijklmC

ijok=A;
C 	 =

p?@>Yjok;<=>
C ,	jok=A;

C P∆jok=A;
C ,	SSA', g'	ZBp?@>Yjok;<=>

C ,	jok=A;
C ,		SSA', g'Z

∆jok=A;
C    (4.10) 

In the equations above, i represents the ith band in RRTMG. ∆𝐴𝑂𝐷rstf!  and ∆𝐴𝑂𝐷tur!  are the added 

AOD perturbation at the ith band, which vary with wavelength according to the Angstrom relation 

in our calculation.  

∆𝐴𝑂𝐷rstf! = 0.1 ∙ ({t|e}ecxf~
C

XX(
)
B%
       (4.11) 

∆𝐴𝑂𝐷tur! = 0.01 ∙ ({t|e}ecxf~
C

XX(
)
B%
       (4.12) 

Note that for each band, perturbed AOD is calculated at the central wavelength following RRTMG 

configuration as listed in Table 4.1. The SSA and g calculations in the perturbation runs are similar 

to those in the broadband kernel calculation. 

To use the band-by-band kernels, users need to obtain the ∆𝐴𝑂𝐷rstf! 	and ∆𝐴𝑂𝐷tur!  for each band, 

multiply them by band-by-band kernels, and sum over the 14 bands. 

∆ADRE = ∑ ( ijklm
C

ijok;<=>C
&Q
!G%T ∙ ∆𝐴𝑂𝐷rstf! ) + ∑ ( ijklm

C

ijok=A;
C

&Q
!G%T ∙ ∆𝐴𝑂𝐷tur! )   (4.13) 
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Figure 4.3 Global mean annual mean stratospheric aerosol band-by-band kernels for (a) AODscat 

and (b) AODabs. For demonstration purposes, kernels are normalized by the corresponding 

bandwidth. The normalized kernel unit is watts per meter squared per unit change in the 

respective stratospheric AOD per wavenumber. (c) Normalized spectral solar radiation. 

Figure 4.3 presents the global mean band-by-band stratospheric AODscat and AODabs 

kernels. For comparison purposes, the spectral kernels are normalized by the bandwidth. The 

results indicate that the spectral signatures of the band-by-band aerosol kernels are primarily 

dominated by the strength of incoming solar radiation. The aerosol radiative sensitivity peaks from 

the near-ultraviolet band (~22650 cm-1) to the near-infrared band (~8080 cm-1), which corresponds 

to band 23 to 25 (442 nm-1242 nm) in RRTMG as indicated in Table 4.1.  

Accurately determining aerosol optical properties in these bands can help constrain the 

ADRE without needing the aerosol information across the full spectrum. Most aerosol retrieval 
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products provide optical properties at a few discrete wavelengths ranging from near-ultraviolet to 

near-infrared. For example, the AErosol RObotic NETwork (AERONET) provides AOD products 

at 340, 380, 440, 500, 675, 870, and 1020 nm (Giles et al., 2019). By interpolating observed AOD 

values at the central AOD wavelengths in the RRTMG configuration for relevant bands and 

assuming spectral dependence of optical properties for the remaining bands, users can calculate 

stratospheric ADRE more accurately than using broadband kernels. In the following section, we 

will use the spectral AOD observations to compare the ADRE values computed from the 

broadband and band-by-band stratospheric aerosol kernels.  

4.2.3 OMPS Aerosol Data and Quality Control 

To quantify the stratospheric ADRE, we utilize the aerosol extinction coefficient profiles 

from the OMPS-LP Level 2 daily product. The Ozone Mapping and Profiler Suite (OMPS) 

measures limb scattering of sunlight at tangent altitudes from ground level up to approximately 

100 km with a vertical resolution of 1km (Flynn et al., 2006). The aerosol product from OMPS has 

been widely used to study the stratospheric ADRE (Damany-Pearce et al., 2022; Bourassa et al., 

2023; Schoeberl et al., 2023, 2024a). This study uses aerosol extinction coefficient retrievals along 

the center slit (aligned with the orbital track) of the OMPS-LP. The retrieved extinction profiles 

extend up to 40km, and quality control procedures are applied before the analysis following 

Damany-Pearce et al. (2022). Only data with ResidualFlag = 0, SingleScatteringAngle ≤ 145 ̊, and 

SwathLevelQualityFlags with bits 0, 1, and 7 = 0 are considered valid. The tropopause definition 

is consistent with that used in the kernel calculation. We integrate the extinction coefficient 

throughout the stratosphere to calculate the stratospheric AOD. To facilitate kernel application, we 

average the AOD data onto the same 2.5° × 2.5° latitude-longitude grid. 
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For using the broadband aerosol kernels, we choose the 869 nm extinction coefficient from 

OMPS and scale it to 550 nm, assuming an AE value of 1. This AE value is chosen because it 

represents the background stratospheric aerosol conditions and the specific conditions of the 

Hunga aerosols, and has been applied in other similar studies (Schoeberl et al., 2023; Sellitto et al., 

2024). The 869 nm wavelength is chosen over other channels closer to 550 nm because OMPS 

aerosol products have performance issues at shorter wavelengths in the southern hemisphere (Taha 

et al., 2021).  

For the band-by-band kernel application, we utilize extinction coefficients measured at 510 

nm, 600 nm, 675 nm, 745 nm, 869 nm, and 997 nm, and interpolate extinction values to 527.1 nm, 

693.5 nm, and 944.3 nm using measurements from the nearest wavelengths as required by the 

aerosol kernels. For the remaining bands, we scale the extinction coefficient from 869 nm to the 

corresponding central AOD wavelength, assuming an AE of 1. In the following section, we use 

the OMPS spectral AODs as an example to demonstrate the usage of our kernels.  

Our goal is to estimate the changes in stratospheric ADRE (∆ADRE) due to the 2022 Hunga 

volcanic eruption and the 2020 Australia wildfires using our aerosol kernels. We consider the 

MERRA-2 stratospheric AOD as the background aerosol states because no eruptive volcanoes are 

included in MERRA-2 after 2010 (Randal et al., 2016). Therefore, the stratospheric AOD anomaly 

is calculated by subtracting the background stratospheric AOD values given by MERRA-2 from 

OMPS stratospheric AOD. For the kernel application, the AOD values in Equations 4.8 and 4.13 

are the differences between OMPS and MERRA-2 stratospheric AOD. To validate the 

performance of our aerosol kernels, we use the same AOD anomalies as input to the RRMTG 

model to calculate the "truth" values of stratospheric ADRE for comparison.  
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4.3 Physically Sorted Aerosol Kernels  

As shown in the previous section (e.g., Figures 4.1 and 4.2), there are strong spatial and 

temporal variabilities in the kernel values. It is thus important to understand how the aerosol 

properties and environmental variables (e.g., surface albedo and clouds) interact with each other 

to influence the radiative sensitivity. To address this question, we follow a widely used conceptual 

model of ADRE (Chlek & Coakley Jr, 1974; J. M. Haywood & Shine, 1995) to identify the key 

factors and their expressions to use in an analytical model to predict the kernel values. We then 

determine the coefficient values statistically using a multivariable regression method following (Q. 

Yu & Huang, 2023a, 2023b). Different from the geographically gridded kernels presented in the 

previous section, the physically sorted kernels developed here are not constrained by space and 

time, allowing one to more flexibly estimate the stratospheric ADRE.  

4.3.1 Physical Model 

We follow the formulation of Haywood & Shine (1995), but consider the stratospheric aerosols as 

a scattering layer and represent the troposphere-surface system as a whole with a reflectance 

parameter at the tropopause. The all-sky stratospheric ADRE at the TOA can be expressed as 

follows: 

ADRE = −S ∙ T"#& ∙ β ∙ω ∙ τ ∙ secθ
(%Bl;)&B	

D;∙()4F)
H 	&4I∙JK!LF 	BÄ∙$-)W∙(&`B%)Å

%Bl;∙`∙Ç∙Ä∙$-)W
   

 (4.14) 

The environment-related variables are solar insolation (S), atmospheric transmittance (𝑇tf) above 

the aerosol layer, the solar zenith angle (θ), and tropopause reflectance (𝑅r). The aerosol-related 

variables are the aerosol backscattering ratio (β), aerosol single scattering albedo (ω), and aerosol 

optical depth (τ). The stratospheric ADRE is further expanded as: 
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ADRE =          (4.15) 

−S ∙ T"#& ∙ β ∙ω ∙ τ ∙ secθ(1 + 𝑅r ∙ τ ∙ secθ ∙ β ∙ω){(1 − 𝑅r)& − 	
𝑅r(1 − ω)

β 	[
2 − τ ∙ secθ

ω 	 − τ

∙ secθ ∙ (2β − 1)]} 

The sensitivity of stratospheric ADRE to τ is 

ijklm
iÄ

= −S ∙ T"#& ∙ β ∙ω(1 − 𝑅r)&(1 + 2β ∙ω ∙ 𝑅r ∙ τ ∙ secθ)    (4.16) 

+S ∙ T"#& ∙ β ∙ω(1 + 2β ∙ω ∙ 𝑅r ∙ τ ∙ secθ)
𝑅r(1 − ω)

β 	 °
2 − τ ∙ secθ

ω 	 − τ ∙ secθ(2β − 1)¢ + S ∙ T"#&

∙ β ∙ω(τ ∙ secθ + β ∙ω ∙ 𝑅r ∙ τ ∙ secθ&) °−
𝑅r
β
1 − ω
ω 	 − 2β + 1¢ 

Neglecting higher-order terms, Equation 4.16 is approximated as 

ijklm
iÄ

              (4.17) 

= −S ∙ T"#& [β ∙ω+ 𝑅r(2β ∙ω+ 2 − 3ω) − 𝑅r&β ∙ω+ 𝑅r ∙ τ ∙ secθ(−2 + 3ω − 2ωβ − ω&) + β

∙ω ∙ τ ∙ secθ] 

This equation suggests that stratospheric aerosol kernels are influenced by these terms: 𝑅r, 𝑅rτ, τ, 

and 𝑅r&. The combination terms arise from the coupling effects between the stratospheric aerosol 

layer and the underlying troposphere-surface system. In the following section, we will use these 

terms as predictors to reproduce the spatiotemporally varying stratospheric aerosol kernels. The 

goal is to capture the physical processes governing ADRE sensitivity, which should be 

independent from geographic locations. 

4.3.2 Statistical Model 

Regression models have been a useful tool in predicting radiative forcing and capturing 

nonlinear radiative interactions in many studies (Y. Huang et al., 2016; Datseris et al., 2022; Q. 
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Yu & Huang, 2023a, 2023b). In this work, we built a multi-variable regression model to represent 

the annual mean global stratospheric aerosol kernels following Q. Yu & Huang (2023b, 2023a). 

The model is expressed as: 

𝐘(𝐢,𝐣)B𝐘C

𝐘C
= ∑ 𝐀𝐤 ∙

𝐗𝐤(𝐢,𝐣)B𝐗𝐤FFFF

𝐗𝐤FFFF
𝐧
𝐤G𝟏          (4.18) 

Here, X are predictors (e.g., 𝑅r, 𝑅rτ) at latitude i and longitude j. Y is either the broadband aerosol 

kernels for stratospheric AODscat or AODabs. 𝐴H 	is the regression coefficient and n is the number 

of predictors. Note that the global field of Y is predicted by one uniform set of 𝐴Hvalues. Both 

predictors and predictands are normalized by their global mean values, denoted by a bar.  

Following the physical model derived above, we select 𝑅r, 𝑅rτ, τ, and 𝑅r& as predictors. As TOA 

reflectance (R) is more easily obtained, we use it as a proxy for the tropopause reflectance. To 

accurately represent global aerosol kernels using as few predictors as possible, we have tested the 

performance of all possible combinations of predictors (listed in Appendix C Table C1-C2). 

Results suggest that the four predictors are sufficient to capture almost all main features of 

stratospheric aerosol kernels.  

The physically sorted broadband aerosol kernels for stratospheric AODscat is given by 

N(OPDQ)
N(ORP;<=>)

S B(B(.(yT)

(B(.(yT)
  = −2.264 8B(.1%O

(.1%O
+ 0.753 l

&B(.%S1
(.%S1

+ 0.671 âB(.((&
(.((&

 -0.3186 8∙âB(.((%
(.((%

  (4.19) 

The physically sorted broadband aerosol kernels for stratospheric AODabs is given by 

N(OPDQ)
NTORP=A;U

S 		B	%.O&O

%.O&O
 =−0.313 lB(.1%O

(.1%O
+ 0.696 l

&B(.%S1
(.%S1

− 0.175 âB(.((&
(.((&

 +0.258 8∙âB(.((%
(.((%

   (4.20) 

The comparison of statistically fitted broadband aerosol kernels for stratospheric AODscat 

and AODabs against benchmark RRTMG calculations is shown in the Appendix C (Figures C8). 
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Results suggest that more than 94% of the spatial variance in aerosol kernels is captured by the 

regression model, indicating its effectiveness in predicting the variability of aerosol kernels. 

Figure 4.4 displays the impact of environmental variables (TOA insolation 𝑆  and 

reflectance 𝑅) on the distributions of annual mean global aerosol kernels. Generally speaking, an 

increase in solar insolation results in a larger magnitude of aerosol kernels, while a more reflective 

underlying "surface" (due to clouds or Earth’s surface) leads to a less cooling or more warming 

impact on net TOA fluxes. The physically sorted aerosol kernels can well capture their sensitivity 

to those environmental variables. More importantly, they can estimate stratospheric ADRE 

sensitivity in idealized conditions where actual observations are lacking. 

 

Figure 4.4 Distributions of broadband stratospheric AODscat and AODabs kernels as a function of 

TOA reflectance and TOA insolation. Left column: RRTMG-calculated stratospheric aerosol 

kernels; Right column: the physically sorted aerosol kernels predicted by the regression model. 
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4.4 Stratospheric Aerosol Kernel Applications 

Multiplying aerosol radiative kernels by changes in stratospheric AOD from specific events 

(e.g., volcanic eruptions) provides estimates of the corresponding ADRE. In this section, we 

examine the radiative effects of the volcanic ash plume from the 2022 Hunga eruption and the 

biomass-burning aerosols from the 2020 Australia wildfires to demonstrate the application of 

stratospheric aerosol kernels. We compare the results of broadband, band-by-band, and physically 

sorted kernels. 

4.4.1 Aerosol Radiative Kernel Comparisons 

Given the kernels here are developed specifically for stratospheric aerosols, it is of interest 

to compare them with other kernels not designed this way. Besides the simple scaling relations 

given in the literature (e.g., Hansen et al. 2005; P. Yu et al. 2021), Q. Yu & Huang, (2023b, denoted 

as YH23 from here on) derived a set of global ADRE sensitivity kernels mainly for tropospheric 

aerosols and validated against the independent results of Thorsen et al. (2020). Schoeberl et al. 

(2023, 2024) used the YH23 kernels to estimate the radiative impact of the Hunga eruption. We 

include the YH23 kernels for comparison in the following.  

In Figure 4.5, we compare the zonal mean AODscat and AODabs sensitivity in YH23 with 

the broadband stratospheric aerosol kernels calculated by RRTMG and the statistical regression 

model. Results show that the aerosol kernels display significant latitudinal differences. For all-sky 

stratospheric AODscat kernels, the magnitude peaks in the subtropical regions because the relative 

brightness of aerosols is reduced above the tropical cloudy regions. The physically sorted kernels 

closely match the RRTMG results, indicating a good performance of the physical sorting method. 

Interestingly, the clear-sky, as opposed to the all-sky, AODscat kernels given by YH23 render more 

similar magnitudes to the all-sky stratospheric AODscat kernels developed here, especially in the 
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mid-latitudes. This is because the stratospheric aerosols are located above tropospheric clouds, 

which suppress the radiative sensitivity to tropospheric AOD perturbations but do not strongly 

affect the radiative effect of stratospheric aerosols. Compared to the AODabs kernels in YH23, the 

stratospheric AODabs kernels developed here are much larger due to the enhanced ADRE 

sensitivity to AODabs above bright underlying clouds. 

 

Figure 4.5 Annual mean and zonal mean broadband stratospheric (a) AODscat and (b) AODabs 

radiative kernels. YH23-clr and YH23-all represent the clear-sky and all-sky scattering AOD 

radiative sensitivity quantified in Q. Yu & Huang (2023b) for tropospheric aerosols. Kernel and 

Kernel-phys indicate the broadband kernels calculated from RRTMG and emulated by a 

regression model, respectively. 

4.4.2 2022 Hunga Volcanic Eruption 

On January 15, 2022, the Hunga Tonga volcano (20.57°S, 175.38°W) erupted violently, 

releasing sulfur compounds and other aerosols into the atmosphere (Kloss et al., 2022; Taha et al., 
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2022; Schoeberl et al., 2023, 2024). To assess the corresponding ADRE, we first calculate the 

stratospheric AOD anomaly following Section 4.2.3.  

Figure 4.6a - 4.6d shows the evolution of the zonal mean stratospheric AOD anomaly 

relative to the background at different wavelengths throughout 2022. Although the Hunga eruption 

occurred in late January, the OMPS product showed little AOD signal initially because the 

extinction retrieval becomes unreliable in the presence of clouds and optically thick aerosol plumes 

(Taha et al., 2021). Over time, the aerosol plume descented to the lower stratosphere and dispersed 

horizontally. Within four months after the eruption, the aerosols primarily remained in tropical 

latitudes with some northward spread. This led to an initial AOD peak in the tropical regions due 

to the immediate formation and accumulation of aerosols, as reported by other studies (Schoeberl 

et al., 2023; Taha et al., 2022). As the southern hemisphere approached winter, a meridional 

circulation developed between the tropics and subtropics to maintain the thermal wind balance, 

known as the QBO direct, meridional, or secondary circulation (Strahan et al., 2015). This 

circulation transported stratospheric aerosols into the mid-latitudes. Meanwhile, the polar vortex 

acted as a barrier, causing the accumulated aerosols in the subtropics to create a second AOD peak 

during July-September. The double peak features shown here were also reported in other 

observations and model simulations (Wang et al., 2023; Schoeberl et al., 2024). Gaps in the data 

are caused by spacecraft anomalies or failures to meet the data screening criteria. 

Figure 4.6e also suggests that the zonal average stratospheric AOD anomaly varies 

significantly with wavelength, indicating that assuming a simple Angstrom exponent cannot fully 

represent the wavelength dependency of AOD. Therefore, it is important to incorporate the band-

by-band kernels with AOD observations to accurately calculate the stratospheric ADRE. 
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Figure 4.6 Latitude-time plots of the zonal mean stratospheric AOD anomaly at (a) 600 nm, (b) 

745 nm, (c) 869 nm, and (d) 997 nm from OMPS-LP in 2022, with the x-axis in (a)-(d) 

representing corresponding months. (e) Zonal and annual mean aerosol extinction coefficient at -

25S and 17.5 km. The red dots represent OMPS observations, while the blue line shows the 

wavelength dependency assuming an AE of 1. 

In the ADRE calculation, we assume the AOD anomaly with SSA = 1 because observations 

suggest that the absorbing particles in the volcanic ashes are of small amounts and do not 

significantly impact the radiative properties (Kloss et al., 2022). We also assume the stratospheric 

AOD anomalies from OMPS at a discrete set of wavelengths represent the observational truth. 
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Figure 4.7a displays the global mean stratospheric AOD anomaly as calculated in Section 4.2.3 

throughout 2022. We have listed the spectral AOD anomaly at RRTMG mid-visible bands (bands 

23-25). These values are interpolated from the nearby wavelengths from OMPS. For the broadband 

AOD anomaly, we calculate the AOD using OMPS 869 nm, assuming an AE of 1. This way, we 

can estimate the relative errors of the broadband kernel method when there are observation 

uncertainties in AE. Results indicate distinct features in the spectra AOD, suggesting a peak in 

global mean AOD values around June.  

We further calculated the stratospheric ADRE using both the stratospheric kernels 

developed here and the kernels from YH23. The YH23 kernels, although based on total column 

aerosols, have been used in stratospheric ADRE quantifications in Schoeberl et al. (2023, 2024). 

By including YH23 kernels in the comparison, we show the discrepancies that would be caused 

by kernels not specifically made for stratospheric aerosols. Figure 4.7b shows the stratospheric 

ADRE from the Hunga Eruption in 2022. For comparison, the RRTMG-calculated results based 

on the band-by-band AOD inputs are indicated by the red line. In general, the ADRE peaks with 

AOD near June, and using the band-by-band aerosol kernels can quantify it most accurately. The 

performance of broadband and physically sorted stratospheric aerosol kernels is slightly worse 

than that of the band-by-band kernels, as they fail to capture the wavelength dependency 

information and the Angstrom exponent assumption may be inadequate. In terms of global mean 

values, using the YH23 clear-sky kernel overestimates the cooling effect of the Hunga eruption, 

while using the YH23 all-sky kernel underestimates it.  
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Figure 4.7 Time series of the global mean (a) stratospheric AOD anomaly from OMPS-LP 

following the Hunga Eruption in 2022 and (b) stratospheric ADRE from Hunga Eruption in 

2022. YH23-clr and YH23-all represent the clear-sky and all-sky scattering AOD radiative 

sensitivity quantified in Q. Yu & Huang (2023b), respectively. Kernel, kernel-phys, and kernel-

byb indicate the broadband kernels calculated from RRTMG, broadband kernels from the 

regression model, and the band-by-band kernels, respectively. 
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Figure 4.8 Annual mean stratospheric ADRE from the Hunga eruption in 2022, with global 

mean values indicated in the top right of each subplot. (a) RRTMG benchmark calculations; (b) 

Band-by-band kernel quantifications; (c) Broadband kernel quantifications; (d) Physically sorted 

kernel quantifications; (e) YH23 clear-sky kernel quantifications; (f) YH23 all-sky kernel 

quantifications. Global mean values are shown in the top right of each subplot. 

Apart from the time evolution, we also compare the spatial patterns of stratospheric ADRE 

using different kernel schemes. Figure 4.8 displays the annual mean stratospheric ADRE from the 
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Hunga eruption calculated from RRTMG as well as the kernels developed in this work. Results 

show that the volcanic eruption caused a uniform cooling in the southern hemisphere’s tropical 

and subtropical regions due to the dispersion of aerosols described before. In terms of global mean 

ADRE, the Hunga eruption induced a cooling of -0.46 W/m2. All stratospheric kernels developed 

in this work can reproduce the spatial features of ADRE relatively well, with the band-by-band 

kernels performing the best. Although the YH23 clear-sky scheme can approximately reproduce 

the global mean stratospheric ADRE values, it fails to capture the spatial patterns, especially over 

the cloudy regions.  

Table 4.2 listed the R2 and RMSE values comparing the ADRE induced by the Hunga 

eruption, calculated using different kernel schemes and the RRTMG model. Globally, the band-

by-band, broadband, and physically sorted aerosol kernels capture 98.89%, 93.83%, and 94.33% 

of the variance in RRTMG-calculated ADRE, with RMSEs less than 0.04 W/m² (approximately 

8.7% relative to the global mean values). Using YH23 kernels results in RMSEs greater than 0.11 

W/m², which is 23.91% relative to the global mean. 

Table 4.2 Performance of Stratospheric Kernels Calculated in This Study and Kernels from 

YH23 in Quantifying the ADRE of the 2022 Hunga Volcanic Eruption and 2020 Australia 

Wildfire. 

 2022 Hunga volcanic eruption 2020 Australia wildfire 

R2 RMSE 

(W/m2) 

Relative 

errors 

R2 RMSE(W/m2) Relative 

errors 
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Band-by-

band 

kernels 

98.89% 0.02 4.35% 99.02% 0.01 3.57% 

Broadband 

kernels 

93.83% 0.04 8.70% 94.75% 0.04 14.29% 

Physically 

sorted 

kernels 

94.33% 0.04 8.70% 83.19% 0.08 28.57% 

YH23-clr 95.11% 0.11 23.91% 83.59% 0.37 132.14% 

YH23-all 91.88% 0.17 36.96% 51.32% 0.31 110.71% 

Note: R2 represents the coefficient of determination, and RMSE is the Root Mean Squared Error. 

Relative errors are calculated by dividing the RMSE by the global mean values. Broadband and 

physically sorted kernels are used under the assumption of AE being 1. 

4.4.3 2020 Australia Wildfire  

In late December 2019, massive bushfires occurred in southeastern Australia and lifted a 

considerable amount of smoke into the stratosphere via pyrocumulonimbus clouds. Unlike the 

volcanic eruption case, we apply both the AODscat and AODabs kernels to study the stratospheric 

ADRE of the black-carbon-containing smoke particles as they are partly absorbing.  
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Figure 4.9 Same as Figure 4.6, but for the year 2020. 

Figure 4.9 shows the zonal mean stratospheric AOD anomaly at different wavelengths, 

over 8 months starting in January 2020. After several periods of intense fires in early January 2020, 

the stratospheric AOD reached a maximum in early February and decayed afterward. The delay in 

reaching the AOD peaks might be due to the subsequent self-lofting of upper tropospheric aerosols, 

caused by buoyancy changes from the aerosols absorbing solar radiation (Ohneiser et al., 2020). 

After being lifted, aerosols spread equatorward and dilute significantly, leading to a decrease in 

the stratospheric AOD anomaly which lasts around eight months. Same as Figure 4.6e, Figure 4.9e 
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also suggests that the AOD wavelength dependency relationship is complex, and assuming a 

certain Angstrom exponent may not be sufficient to represent the band-by-band AOD.  

To investigate the performance of kernels in quantifying wildfire-related events, we 

assume the stratospheric aerosol anomaly consists of aged biomass burning aerosols with a single 

scattering albedo at 550 nm of 0.86 as suggested by recent studies (Damany-Pearce et al., 2022; 

Ohneiser et al., 2020). Figure 4.10a shows the global mean stratospheric AOD anomaly in the mid-

visible bands in 2020. The interpolated AOD at RRTMG bands shows distinct differences 

compared to the broadband AOD, especially in February. Broadband AOD is calculated from 

scaling 869 nm to 550 nm assuming an AE of 1. Stratospheric ADRE is further calculated with 

known AOD and SSA. Figure 4.10b shows ADRE calculated from the RRTMG as well as kernel 

methods. Results show that using YH23 kernel schemes significantly underestimates the warming 

effect of stratospheric aerosols. This is because the stratospheric AODabs kernels are nearly twice 

as large as the YH-clearsky AODabs kernels, whereas the AODscat kernels show similar magnitudes 

compared with the YH-clearsky values (Figure 4.5b and Figure C9 in the Appendix C). These 

results further emphasize the need to use kernels specifically designed for stratospheric aerosols 

to accurately quantify ADRE. As a comparison, using the stratospheric aerosol kernels captures 

wildfire-induced ADRE relatively well. The agreements in ADRE calculations indicate that our 

stratospheric aerosol kernel dataset is applicable for quantifying ADRE regardless of aerosol types 

(either scattering or absorbing). For the Australia wildfire, the carbonaceous aerosols led to a peak 

global mean warming of over +0.4 W/m2 in mid-February 2020. 

Figure 4.11 shows the comparison of the spatial distributions of ADRE calculated by 

different kernel schemes. Similar to the Hunga volcanic eruption case, the band-by-band kernel 

quantifications align most closely with the RRTMG-calculated results, with the R2 being 99.02% 
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(Table 4.2). Both the broadband and the physically sorted kernels slightly overestimate the aerosol 

warming, especially in the high-latitude regions. The slightly lower performance of broadband and 

physically sorted kernels in capturing the spatial patterns of ADRE might come from the bias in 

AOD550, as using a uniform AE value for AOD wavelength conversion across the globe may not 

be representative. This aligns with other studies indicating that the Angstrom exponent can vary 

significantly (Malinina et al., 2019), particularly during wildfire events when the inclusion of 

organics can complicate the particle size distribution interpretation (Bourassa et al., 2019). Overall, 

the stratospheric kernels can capture more than 83.19% of the variance in the Australia wildfire-

induced ADRE, with the RMSEs less than 0.08 W/m2 (i.e. 28.57% relative to the global mean). 

Both Figure 4.11 and Table 4.2 suggest that YH23 kernel schemes are not suitable for quantifying 

the wildfire-dominated stratospheric ADRE because of its significant underestimation of AODabs 

kernels.  
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Figure 4.10 Same as Figure 4.7 but for the 2020 Australia wildfire. 

 

Figure 4.11 Same as Figure 4.8 but for the 2020 Australia wildfire. 

4.5 Conclusions  

 This paper provides, for the first time, a comprehensive set of radiative kernels for 

stratospheric aerosols. The kernels are derived for the scattering and absorbing aerosol optical 

depth, respectively, based on partial radiative perturbation (PRP) computations using one year of 
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3-hourly MERRA-2 data. We analyzed the spatial variability of broadband aerosol kernels, 

demonstrating that they can be emulated as a joint function of solar insolation, TOA reflectance, 

and stratospheric aerosol optical depth. The developed aerosol radiative kernels provide a versatile 

tool for assessing the stratospheric ADRE of different aerosol types. 

Stratospheric aerosol kernels exhibit significant spatial, temporal, and spectral variability 

(Figures 4.1-4.3). Validation tests have been done to evaluate the aerosol height dependency, linear 

scaling, and linear additivity of the kernels (Figures C4-C6). On a global scale, a 0.1 increase in 

stratospheric 𝐴𝑂𝐷rstfXX(  leads to a cooling effect of -2.65 W/m2 at the TOA, while a similar increase 

in 𝐴𝑂𝐷turXX(  results in a warming effect of +41.95 W/m2 (Figure 4.1). The magnitude of 

stratospheric aerosol kernels is greater than that for tropospheric aerosols (e.g., Thorsen et al., 

2020; Q. Yu & Huang, 2023b), particularly for absorbing aerosols. This is due to the higher 

placement of aerosols, which interact with radiation less attenuated by clouds or tropospheric 

absorbers. Additionally, underlying clouds enhance the brightness of dark surfaces, thus 

amplifying the sensitivity of stratospheric ADRE to absorbing aerosols. Band-by-band aerosol 

kernels were calculated for the 14 bands in RRTMG SW, with spectral signatures indicating peak 

sensitivity from the near ultraviolet to the near-infrared (bands 23 to 25, 442 nm-1242 nm) (Figure 

4.3). Using discrete AOD observations at these wavelengths allows for a more accurate constraint 

on ADRE. 

From the single-layer aerosol analytical model, we identified that broadband aerosol 

kernels are related to TOA insolation, tropospheric reflectance, and stratospheric aerosol optical 

depth. We proposed a physically sorted set of aerosol kernels using a multivariate regression 

model, which can effectively reproduce the RRTMG-calculated broadband kernels (Figure 4.4 & 
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C8). These physically sorted kernels are independent from geophysical location and can provide 

first-order estimations of stratospheric ADRE using satellite measurements. 

The kernels were applied to calculate the ADRE for two stratospheric aerosol injection 

events: the 2022 Hunga volcanic eruption and the 2020 Australia wildfire. There is overall good 

agreement between the RRTMG-calculated results and those obtained using the kernels (Figures 

4.7-4.8, Figures 4.10-4.11, and Table 4.2). Band-by-band kernels perform best by constraining the 

wavelength dependency of AOD. Using band-by-band kernels can reproduce 99% of the ADRE 

variance with relative errors of less than 4%. Using other stratospheric kernels can capture more 

than 90% of the variance with relative errors of less than 10% (Table 4.2), despite the uncertainty 

in AE. The stratospheric ADRE from the 2022 Hunga eruption peaked six months after the event, 

inducing a global mean cooling of -0.46 W/m2 (Figures 4.7-4.8). For the 2020 Australia wildfire, 

the stratospheric ADRE peaks one month after the event and results in a global mean warming of 

+0.28 W/m2 from January to August (Figures 4.10-4.11).  

To accurately calculate stratospheric ADRE, users are recommended to use the band-by-

band kernels when reliable spectral AOD data is available. If such information is unavailable, the 

broadband aerosol kernels can be used alternatively, although the results should be used with 

caution as the broadband kernels are calculated based on an assumed Angstrom Exponent of 1. 

The physically sorted kernels have the advantage of not being restricted to specific geographical 

locations. With climate change, the aerosol-related and environmental conditions at a location may 

change. In such cases, physically sorted kernels may have an advantage for the ADRE 

quantification. Considering that there may be rapid stratospheric temperature adjustments in 

response to the instantaneous perturbations of the aerosols, the kernels developed in this work can 
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be extended to include the radiative effects of such adjustments in future work, to provide an 

estimation of the effective (adjusted) radiative effect of the stratospheric aerosols.  

Data Availability Statement 

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 

(MERRA-2) data used to calculate stratospheric aerosol kernels are provided by NASA Global 

Modeling and Assimilation Office (Randles et al., 2017). The aerosol mixing ratio, assimilated 

meteorological fields, radiation and aerosol diagnostics data are available at Global Modeling and 

Assimilation Office via https://doi.org/10.5067/LTVB4GPCOTK2, 

https://doi.org/10.5067/WWQSXQ8IVFW8, https://doi.org/10.5067/Q9QMY5PBNV1T and 

https://doi.org/10.5067/KLICLTZ8EM9D (Gelaro et al., 2017). The dataset of stratospheric 

aerosol direct radiative effect kernels (monthly mean broadband, band-by-band, and the annual 

mean physically sorted ones), along with the scripts and data to reproduce the findings in this 

paper, are available on Mendeley Data at https://data.mendeley.com/datasets/t87tfnk2xd/1  
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Chapter 5 Accounting for the Effect of Aerosols in GHGSat Methane Retrieval 

 

This Chapter is a reprint of the published article in Atmospheric Measurement 

Techniques. 

Yu, Q., Jervis, D., and Huang, Y.: Accounting for the effect of aerosols in GHGSat methane 

retrieval, Atmos. Meas. Tech., 17, 3347–3366, https://doi.org/10.5194/amt-17-3347-2024, 2024.  

The thesis author is the lead author and principal investigator for this paper. 
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Abstract  

GHGSat comprises a constellation of satellites with high spatial and spectral resolution that 

specialize in monitoring methane emissions at 1.65 μm. This study investigates the ability to 

accurately retrieve both the methane mixing-ratio enhancement ∆𝑋äãV  and the aerosol optical 

depth (AOD) simultaneously from simulated GHGSat observations that incorporate angle-

dependent scattering information. Results indicate that the sign of the ∆𝑋äãV bias when neglecting 

aerosols changes from negative to positive as surface albedo increases, which is consistent with 

previous studies. The bias in ∆𝑋äãV is most pronounced when AOD is not simultaneously retrieved, 

ranging from −3.0 % to 6.3 % with an AOD of 0.1, a 60° solar zenith angle, and a surface albedo 

of 0.2 for the nadir-only retrieval. Using multiple satellite viewing angles during the GHGSat 

observation sequence with a scattering angle ranging from 100 to 140°, the study shows that the 

mean bias and standard deviation of ∆𝑋äãV are within 0.3 % and 2.8 % relative to the background. 

The correlation between simultaneously retrieved ∆𝑋äãV and AOD shifts from being positive to 

negative as surface albedo increases and the aerosol asymmetry factor decreases, signifying a 

transition of the dominant aerosol effect from aerosol-only scattering to aerosol–surface multiple 
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scattering. The variety of scattering angle ranges has little impact on the performance of the multi-

angle viewing method. This study improves the understanding of the impact of aerosols on the 

GHGSat ∆𝑋äãV retrieval and provides guidance for improving future GHGSat-like point-source 

imagers. 
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5.1 Introduction 

Aerosols can modify photon path lengths via their scattering and absorption effects and 

have been identified as one of the major sources of errors when retrieving greenhouse gases from 

spectrally resolved backscattered solar radiation in the shortwave infrared (SWIR) (Aben et al., 

2007; Butz et al., 2009; Connor et al., 2016; X. Chen et al., 2017; J. Huang et al., 2021). Accurately 

assessing greenhouse gas emissions in the presence of aerosols remains a challenge. This is 

because unaccounted-for aerosols can either enhance or reduce the absorption of light by gases, 

depending on factors such as the aerosol concentration, aerosol height distribution, viewing 

geometry, and surface albedo, among others (Butz et al., 2009; Frankenberg et al., 2012; Sanghavi 

et al., 2020). Houweling et al., (2005) analyzed Scanning Imaging Absorption Spectrometer for 

Atmospheric Chartography (SCIAMACHY) measurements of total-column CO2 over the Sahara 

and found that the unrealistically large CO2 variability of the total column, 10 % (37 ppm), was 

caused by mineral dust aerosols. Butz et al. (2009) found that if aerosols are not considered, 

atmospheric CO2 retrieval errors larger than 1 % may occur when using SCIAMACHY and 

Greenhouse gases Observing SATellite (GOSAT)-like observers. These errors are dependent on 

both the surface albedo and the type of aerosols present. Huang et al. (2020) simulated Airborne 

Visible/Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) measurements for methane 

emissions. Their results show an underestimation of CH4 resulting from aerosols, particularly those 

with a high single-scattering albedo and a low asymmetry factor (such as water-soluble aerosols). 

These studies, among many others, underlined the importance of understanding the effect of 

aerosols on the remote sensing of greenhouse gases. 
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To account for the atmospheric scattering in the SWIR satellite retrieval of greenhouse gas, 

a “full-physics” retrieval requires simultaneously solving for the vertical profile of gas 

concentration, aerosol extinction, and the surface reflectivity through the inversion of the radiance 

spectrum using a radiative-transfer model (Butz et al., 2012; Jacob et al., 2022). However, this 

method is time-consuming and is likely to fail if the atmosphere is heavily polluted or if the surface 

is too dark (Lorente et al., 2021). In contrast to “physics-based” methods, some proxy methods, 

which are much faster than full-physics retrieval and achieve similar precision and accuracy, have 

been proposed. To simultaneously retrieve the CO2 total-column and aerosol properties, the “three-

band” retrieval exploits measurements of the absorption bands of O2 (0.77 μm) and CO2 (1.61 and 

2.06 μm) to retrieve the aerosol amount, height distribution, and size distribution based on a simple 

aerosol microphysical model (Butz et al., 2009). However, this approach requires additional 

consideration of the uncertainty of a prior estimate of CO2 (Butz et al., 2012). According to Parker 

et al. (2020), methane mixing ratio (𝑿𝑪𝑯𝟒) can be retrieved using both CH4 (1.65 μm) and the 

adjacent CO2 band (1.61 μm) by taking advantage of the 
𝑿𝑪𝑯𝟒
𝑿𝒄𝒐𝟐

 ratio without accounting for 

atmospheric scattering. However, this “CO2 proxy” method is subject to bias for sources that co-

emit CH4 and CO2, such as gas flaring. Depending on the instrument design and its limitations, the 

approach to accounting for the effect of aerosols on greenhouse gas retrieval varies. 
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GHGSat, Inc., has developed a nano-satellite system that measures greenhouse gas 

emissions from individual industrial facilities (Varon et al., 2019). Its satellite achieves a 

combination of fine spatial resolution and spectral resolution by pointing at targeted methane point 

sources (Jervis et al., 2021; Jacob et al., 2022). As of the time of writing, GHGSat has launched a 

constellation of 11 commercial satellites (GHGSat-C1 to GHGSat-C11) which monitor methane 

emissions from natural-gas industry operations, landfills, hydroelectric reservoirs, and oil sand 

operations, among others (Calvello et al., 2017; Varon et al., 2019; Jacob et al., 2022; Maasakkers 

et al., 2022). However, industrial activities such as oil extraction and pre-treatment involve not 

only gaseous emission but also aerosol production (e.g., water-soluble and black-carbon aerosols). 

The continued development of the GHGSat satellite requires identifying and minimizing the 

uncertainty in methane retrieval due to aerosol interference. Newer GHGSat satellites only target 

the CH4 band; consequently, the above-mentioned “proxy” methods to account for the aerosol 

effects do not apply to their instrument. An accurate aerosol retrieval model for GHGSat would 

not only reduce the uncertainty in their methane retrieval but also provide a new aerosol data 

product, potentially allowing high spatial-resolution air quality measurements from space.  
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The angular dependence of aerosol scattering allows space-borne observations of aerosol 

properties based on multi-angle measurements, which have the potential to mitigate aerosol-

induced errors in current greenhouse gas satellite observations. Frankenberg et al. (2012) 

demonstrated that adding multiple satellite viewing angles to Orbiting Carbon Observatory 2 

(OCO-2)-like observations enhances the ability to retrieve aerosol properties. The aerosol 

information can, in turn, significantly decrease errors in the measurement of CO2 and CH4 total 

columns. However, this multiangle viewing method was applied to area flux mappers which are 

designed to observe emissions on regional scales. There has been little study of how to retrieve 

aerosols using point-source imagers like GHGSat. A method to co-retrieve aerosols and methane 

using GHGSat spectral content could address a gap in current research on point-source imagers, 

improve the accuracy of their greenhouse gas retrieval, and provide greater details about local 

aerosol and methane concentrations. 

This study has three objectives. First, we assess how aerosols impact the accuracy of 

GHGSat methane mixingratio enhancement (∆𝑋äãV) retrieval when the aerosols are present but 

not retrieved. This assessment involves simulating GHGSat satellite observations for a wide range 

of aerosol optical properties and surface albedo values to evaluate the distribution and magnitude 

of any resulting bias in ∆𝑋äãV  under different aerosol and surface conditions. Second, we 

simultaneously retrieve the aerosol optical depth (AOD) and ∆𝑋äãV using a multi-angle viewing 

method and perform a comparison with the ∆𝑋äãV -only retrieval obtained under the same 

conditions. Finally, we investigate how different scattering angles as well as uncertainties in 

aerosol type, height distributions, and surface albedo affect the performance of the simultaneous 

retrieval. 
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This paper is organized into five sections. Section 5.2 provides an overview of the 

atmospheric models, the GHGSat instrument model, and the simultaneous retrieval methods for 

aerosols and methane. Section 5.3 evaluates the errors that occur in GHGSat methane retrieval 

under various aerosol, surface, and satellite zenith angle conditions. Synthetic data are used to 

conduct retrieval under two scenarios: methane-only nadir retrieval and the simultaneous retrieval 

of methane and aerosols using the multi-angle viewing method. Section 5.4 investigates the impact 

of satellite viewing angles as well as the uncertainty in aerosol and surface albedos on simultaneous 

retrieval. A summary is presented in Sect. 5.5. 

5.2 Method  

5.2.1 Atmospheric Model  

The top-of-the-atmosphere (TOA) radiance detected by the satellite comes from both direct 

and diffuse reflections. The incoming sunlight is reflected into space by the Earth’s surface and 

atmospheric scatterers such as aerosols. When the solar beam travels through the atmosphere, it 

can be partly absorbed along its path by atmospheric absorbers, such as methane molecules and 

aerosols. Additionally, multiple scattering processes occur between the surface and aerosol layers. 

To assess the radiative impact of aerosols in the GHGSat methane retrieval, a forward model to 

simulate GHGSat-measured solar radiation is required. 

The radiative-transfer forward model used in this study is DIScreet Ordinate Radiative 

Transfer (DISORT) version 4.0.99 (Stamnes et al., 1988). As one of the most general and versatile 

plane-parallel radiative-transfer models, DISORT has been widely used for the remote sensing of 

greenhouse gases, aerosols, and clouds (Tzanis and Varotsos 2008; Wang et al. 2013; Boiyo et al. 

2019). It can numerically compute satellite-measured radiance at different wavenumbers using 

discrete vertical coordinates. For each atmospheric layer, the spectral optical depth and single 
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scattering albedo for atmospheric molecules are computed by using a rigorous line-by-line 

radiative-transfer model (LBLRTM) over a 0.1 cm2 interval (Clough et al., 2005). The mid-latitude 

summer profile is chosen as the default atmospheric state. The absorption of four main atmospheric 

absorptive gases (H2O, CO2, O3, CH4) at 45 layers is considered through line-by-line calculations. 

To facilitate the analysis of aerosol-induced errors during the GHGSat CH4 retrieval, this 

study focuses on the shortwave near-infrared band (1662–1672 nm). This band covers absorption 

lines which are mainly caused by CH4. The surface is assumed to be Lambertian, and we adopt the 

16-stream approximation. With the specified viewing geometry and surface albedo, DISORT can 

calculate the solar radiation that is backscattered into space by the Earth’s surface and atmosphere. 

For a clean atmosphere with a surface albedo of 0.2, the TOA upward radiance simulated by 

DISORT is shown in Figure 5.1b. The solar zenith angle is 60°, and the satellite field of view is in 

the nadir position. In Figure 5.1b, strong CH4 absorptions are observed around 1666 nm, consistent 

with results from other studies like Jervis et al. (2021) and Chan Miller et al. (2023). Given that 

GHGSat measures methane concentrations by analyzing spectrally decomposed solar 

backscattered radiation within the methane absorption band (∼ 1.65 μm), this alignment supports 

the adequacy of DISORT-simulated radiance for capturing the methane effect. With the TOA 

incoming solar radiance known (Figure 5.1a), the TOA reflectance (Refè:V6) can be calculated via 

Refè:V6 =
+"/5",)-]

1^*↑

+"/5",)-]
1^*↓ ,          (5.1) 

Where 	radianceè:V6↓  and radianceè:V6↑  are the TOA downward and upward radiance at 

wavelength 𝜆. The radiance is in units of Wm-2sr-1m-1. For GHGsat retrieval considering only gas 

absorbers, the relative depth of the absorption line directly corresponds to the retrieved methane 
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enhancement compared to the background. Therefore, Refè:V6 is directly linked to the retrieved 

CH4 enhancement and is shown in Figure 5.1c. 

 

Figure 5.1 (a) TOA incoming solar radiance; (b) Simulated TOA upward radiance (nadir 

viewing); (c) Spectral reflectance (nadir viewing). Spectra are simulated with a surface albedo of 

0.2 and a solar zenith angle of 60°. 

5.2.2 Aerosol Settings  

Many factors, such as aerosol type, concentration, and height distribution, can impact the 

radiance measurement. In this study, the aerosol types are predefined in the retrieval. We used 

climatological aerosol optical-property values from Ayash et al. (2008) to account for the diverse 
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range of particles found in industrial sites. For aerosols composed of multiple components, the 

single-scattering albedo (SSA) spans from 0.86 to 0.98, while the asymmetry factor (g) ranges 

from 0.54 to 0.76. GHGSat mainly focuses on measuring the CH4 enhancement over methane 

hotspots, where CH4 and the co-emitted aerosols are concentrated near the surface. To emulate the 

aerosol emissions from the industrial plume, one arbitrary aerosol layer is added near the surface 

between 1000 to 900 hPa. Considering the limitation of the instrument to one spectral band, the 

simplified treatment of aerosols in the forward model allows for a more direct physical 

interpretation of the effect of aerosols on methane retrieval. We focus mainly on the AOD retrieval 

because this variable is highly representative of the aerosol radiation effect (Frankenberg et al., 

2012; Q. Yu & Huang, 2023a, 2023b). In this study, the simulated truth of the AOD is 0.1 at the 

SWIR (∼ 0.3 AOD at 550 nm). This threshold is selected in the retrieval because it is used to filter 

values in other XCH4 retrieval studies (Lorente et al., 2021). 

5.2.3 The Multi-angle Viewing Method  

The multi-angle aerosol retrieval method proposed by Frankenberg et al. (2012) uses the 

radiance difference at various viewing geometries to retrieve aerosol information and takes 

advantage of the fact that aerosols scatter more light forward than backward. In this study, the 

satellite azimuth angles are chosen to be 0 and 180° to represent forward-viewing and backward-

viewing observations (i.e., straight south- and north-looking), respectively. Table 5.1 summarizes 

the angles used in the multi-angle viewing simulations. The scattering angle Θ is calculated 

following (Thompson et al., 2022) as 

Θ = 180° − arccos[cosθ% ∙ cosθ& + sinθ% ∙ sinθ& ∙ cos(φ% − φ&)],   (5.2) 

where 𝜃% and 𝜃& are the solar and satellite zenith angles, respectively, and 𝜑% and 𝜑& are 

the solar and satellite azimuth angles, respectively. Figure 5.2 shows the schematics of the multi-
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angle viewing method and its corresponding angles. This study assumes the Henyey-Greenstein 

Phase Function for aerosols (Toublanc, 1996), which defines the phase function via 

Pêë(cosΘ) =
%Bí&

(%B&í∙)3$ìPí&)
5
&
 ,             (5.3) 

where g is the aerosol asymmetry factor. The high g value implies that most of the scattered 

light is directed forward in the same general direction as the incident light. 

 

Figure 5.2 Schematic of a given solar and viewing geometry, as well as corresponding 

scattering angle for forward and backward viewing modes. Solar zenith angle 𝜃%, satellite zenith 

angle 𝜃&, and satellite azimuth angles 𝜑& are indicated by the purple, orange, and black double 

arrow curves. Scattering angle Θ is represented by the green double arrow curves. The viewing 
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angles are depicted using solid and dashed double-arrow curves for the backward and forward 

viewing modes, respectively. In this case, the satellite azimuth angles are 0° and 180° for the 

backward and forward viewing directions (angles relative to the north-facing vector). 

Table 5.1 Angles used in the multi-angle satellite viewing simulations for Sects. 5.3.1 and 5.3.2 

 
Solar zenith 

angle 𝜃% 

Satellite 

zenith angle 

𝜃& 

Solar azimuth 

angle 𝜑% 

Satellite 

azimuth angle 

𝜑& 

Scattering 

angle Θ 

Forward 

viewing 
60° 20° 180° 0° 100° 

Nadir 60° 0° 180° 0° 120° 

Backward 

viewing 
60° 20° 180° 180° 140° 

 

5.2.4 GHGSat Instrument Model  

A nominal GHGSat measurement covers a targeted 12 × 15 km2 area with approximately 

25 × 25 m2 pixel resolution and 0.3 nm spectral resolution (Jervis et al., 2021; Jacob et al., 2022). 

The instrument adjusts its altitude to ensure that the targeted area remains within its field of view 

for an extended period, thereby enhancing its signal-to-noise ratio (SNR). During the observation 

sequences, the GHGSat spectrometer typically takes 200 images of closely overlapping 

atmospheric absorption spectra. A more detailed description of the design of the GHGSat 

instrument and its measurement concept is presented in Jervis et al. (2021). To simulate GHGSat 

measurements, this study focuses on the spectral region between 1662 and 1672 nm and applies a 
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Gaussian broadening kernel of 0.3 nm full width at half maximum (FWHM). Using the multi-

angle viewing method, the satellite observes the target position from different angles, transitioning 

from a forward view to a view looking directly downward (nadir) and finally to a backward view.  

As an example, Figure 5.3 displays the simulated GHGSat radiance corresponding to the 

solar geometry detailed in Table 1, under the assumption of a single layer of sulfate aerosols near 

the surface with an SSA of 1 and a g of 0.78. These simulations are based on a surface albedo of 

0.2 and an AOD of 0.1 at the SWIR for illustration purposes. Figure 3 indicates that with the 

addition of a highly reflective aerosol layer, TOA reflectance in the forward viewing direction 

exceeds that in the nadir or backward viewing direction. This suggests the importance of viewing 

angles in GHGSat observations when aerosols are present and highlights the potential for 

retrieving them using multi-angle information. In the following discussions, a positive satellite 

zenith angle corresponds to an azimuth angle of 0° (forward viewing), while a negative zenith 

angle corresponds to an azimuth angle of 180° (backward viewing). 

 
1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672

Wavelength (nm)

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

Si
m

ul
at

ed
 G

H
G

Sa
t m

ea
su

re
d 

TO
A 

re
fle

ct
an

ce

0.2 Sfc Alb, AOD(Sulfate) = 0.1 at SWIR

forward(20 deg)
nadir
backward(20 deg)



 

 145 

Figure 5.3 Simulated TOA reflectance measured by the GHGSat instrument at a spectral 

resolution of 0.3 nm FWHM. The instrument observes the surface with an albedo of 0.2 from 

different viewing positions as defined in Table 1: forward viewing, nadir, and backward viewing. 

Sulfate aerosols with an AOD of 0.1 at the SWIR are added near the surface. 

5.2.5 Retrieval Methods  

Figure 5.4 illustrates the steps in the simulated retrieval process in this study. First, we 

combine the atmospheric-molecule optical properties calculated from the LBLRTM with the 

aerosol optical properties to run the atmospheric model (DISORT). Then DISORT is further 

modified according to the GHGSat instrument design to build a complete forward model 𝑭(𝑿) to 

simulate the TOA reflectance (Equation 5.1). X is the state vector, which includes elements such 

as the methane mixing ratio XCH4, the aerosol optical depth (AOD), and the the surface albedo 

𝑋t}u. The goal of the retrieval is to estimate ∆𝑋äãV and 𝑋t}u for the ∆𝑋äãV-only retrievals, and to 

estimate ∆𝑋äãV , AOD, and 𝑋t}u  for the simultaneous retrieval using the multi-angle viewing 

method from the measurement vector 𝒚:  

𝒚 = 𝑭(𝑿) + 𝝐𝒚          (5.4) 

where 𝝐𝒚 is the measurement error. 

Full GHGSat retrieval consists of two steps: a scene-wide retrieval to estimate the 

background average state vector 𝑿© and a per-cell retrieval to estimate the local methane plume 

enhancement. Note that surface albedo is retrieved in both cases. In this study, we focus on the 

per-cell retrieval assuming known background 𝑿© . In Jervis et al. (2021), a linearized forward 

model (LFM) is proposed for the GHGSat spatially resolved ∆𝑋äãV-only retrieval. 
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𝑭ïpñ(𝑿) = (𝑋t}u + 𝑏%𝑛 + 𝑏&𝑛&) ™𝑭ã𝑿©å + ã𝑋äãV − 𝑋äãV́å𝐾óabV́≠     (5.5) 

= (𝑋t}u + 𝑏%𝑛 + 𝑏&𝑛&) ™𝑭ã𝑿©å + ∆𝑋äãV𝐾óabV́≠			

𝑿©  is the linearization point, at which the state vector in the observation scene is assumed 

to be in the background state. 𝑲𝑿ò , the Jacobian that corresponds to different state vector elements, 

is a matrix of partial derivatives that describes how the simulated TOA reflectance changes with 

respect to the elements of the state vector.  

𝑲 = i𝑭(𝑿)
i𝑿
           (5.6) 

To account for the bidirectional distribution of surface albedo and the per-pixel signal 

changes resulting from satellite motion, the forward model includes a second-order polynomial 

that is a function of the image frame index n (Jervis et al., 2021). In this study, we employed the 

LFM model with current GHGSat instruments and estimated ∆𝑋äãV and 𝑋t}u by minimizing the 

difference between the simulated instrument-measured 𝒚 and 𝑭ïpñ(𝑿). 

For simultaneous ∆𝑋äãV and AOD retrieval, we added AOD as an additional variable of 

interest in the LFM, as depicted below. 

𝑭ïpñ = (𝑋t}u + 𝑏%𝑛 + 𝑏&𝑛&) ™𝑭ã𝑿©å + ∆𝑋äãV𝐾óabV́ + 𝐴𝑂𝐷𝐾joḱ≠    (5.7) 

The applicability of the simultaneous ∆𝑋äãV  and AOD retrieval method mainly comes 

from two aspects: it enhances the methane gas retrieval accuracy by accounting for the effect of 

aerosols for GHGSat-like point-source imagers, and it enables the measurement of aerosol plumes 

using those imagers. By integrating the LBLRTM, DISORT, and the GHGSat instrument model 

and applying the same inverse model (Equation. 5.5) utilized in current GHGSat operations, our 

retrieval results can provide a truthful assessment of the simultaneous ∆𝑋äãV and AOD retrieval 



 

 147 

technique on GHGSat-like point-source imagers using the multi-angle viewing method. In the 

following section, the retrieval method is tested across a wide range of aerosol optical properties, 

surface albedos, and satellite zenith angle conditions, demonstrating its direct applicability to real 

measurements. 

 

Figure 5.4 Schematic diagram of the retrieval steps. 
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5.3 Assessment of Two Retrieval Methods  

This paper aims to estimate the impact of aerosols on GHGSat methane retrieval, assess 

the validity of the multiangle viewing method for GHGSat aerosol and methane co-retrieval, and 

understand the algorithm’s sensitivity to different input parameters, including surface albedo, SSA, 

g, and satellite geometry. To achieve this, retrieval experiments were conducted using synthetic 

data, and the retrieval errors were estimated.  

Figure 5.5 depicts Jacobians with respect to the methane mixing ratio and the AOD with 

different SSA and g values when the surface albedo is 0.2 and the solar zenith angle is 60°. A 

negative 𝐾ó value indicates that the reflectance at the TOA decreases as the value of the state-

vector element X increases. As expected, considering the absorption properties of methane, 𝐾äãV 

is negative. Similarly, 𝐾jok is also negative in the case of absorbing aerosols (SSA = 0.1). For 

strongly scattering aerosols (SSA = 0.95) with a high g (0.7) over a dark surface (0.2), 𝐾jok is 

slightly positive at the forward viewing position and negative at the backward viewing position 

(Figure 5.5b). When the satellite is at the backward viewing position, the aerosol-only scattering 

is less pronounced because less light scatters towards space in that direction, resulting in a negative 

𝐾jok. In contrast, in the forward viewing position, more light is scattered by aerosols towards 

space, and this effect prevails over the effect of atmospheric-absorption enhancement due to 

aerosol–surface multiple scattering, resulting in a slightly positive 𝐾jok . This is particularly 

noticeable when the asymmetry factor, g, is low (0.1). In this case, the dominant factor is the 

shortening of the light path caused by aerosol-only scattering, which leads to a positive 𝐾jok, 

regardless of the viewing angle (Figure 5.5c). For aerosol with a low g (0.1) over a mid-range 

albedo (0.5), the competition between aerosol-only scattering and aerosol–surface multiple 

scattering results in a near-zero 𝐾jok (Figure 5.5e). 
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Figure 5.5 also compares the Jacobians between the satellite forward (scattering angle 

100°) and backward (scattering angle 140°) viewing positions. With high SSA and g values, 

differences in aerosol Jacobian between the two angles increase, providing more information to 

the simultaneous retrieval. For simulated GHGSat retrieval using the multi-angle viewing 

technique, the scattering angle increases from 100 to 140° from forward viewing to backward 

viewing, as depicted in Figure 5.6a. Given a specific asymmetry factor value (g = 0.78), the angular 

distribution of aerosol scattering energy within this scattering angle range is depicted in Figure 

5.6b. This illustrates that the intensity of scattering energy diminishes as the scattering angle 

increases, leading a decrease in TOA reflectance. The greater the variation in TOA reflectance at 

various angles, the richer the aerosol information it can provide for simultaneous retrieval.  
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Figure 5.5 Jacobians of TOA reflectance with respect to (a) the methane mixing ratio; (b) the 

AOD with an SSA of 0.95, a g of 0.7, and a surface albedo of 0.2; (c) the AOD with an SSA of 

0.95, a g of 0.1, and a surface albedo of 0.2; (d) the AOD with an SSA of 0.1, a g of 0.7, and a 

surface albedo of 0.2; and (e) the AOD with a SSA of 0.95, a g of 0.1, and a surface albedo of 

0.5. Aerosols are concentrated near the surface, and the forward and backward viewing-angle 

settings follow Table 5.1. 

 

Figure 5.6 (a) Scattering angles Θ and (b) Phase function 𝑃ãö  for g =0.78 as a function of the 

satellite zenith angle 𝜃& during a GHGSat observation sequence when applying the multi-angle 

viewing method with a maximum satellite zenith angle of 20°. 

As instrument measurements are always subject to noise and errors, it is important to 

include these in the simulated retrieval process to represent real-world conditions. During the 

simulated retrieval, white noise and 1/f errors with a magnitude of 0.2 % each (calculated as the 

standard deviation of the individual noise fields) are added to the TOA reflectance. The 
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background value for the methane mixing ratio is 1.7 ppm. The simulated truths of methane 

enhancement (∆𝑋äãV) and aerosol optical depth (AOD) are 0.1 ppm and 0.1, respectively. We 

performed 1000 independent retrievals for each aerosol and surface albedo setting, and we 

quantified the mean bias and standard deviation of the retrieved ∆𝑋äãV relative to the background 

to represent the level of accuracy and consistency of the retrieved data. 

5.3.1 The Impact of Incorporating the AOD and Employing the Multi-angle Viewing 

Method  

To assess the extent to which incorporating aerosols and applying the multi-angle viewing 

method can improve the GHGSat methane retrieval, we conducted retrieval under four conditions: 

when aerosols are present but not retrieved for the (1) nadir-only methane retrieval and (2) the 

multiangle viewing methane retrieval and when aerosols and methane are co-retrieved (3) in the 

nadir viewing mode and (4) in the multi-angle viewing mode. The mean bias in the retrieved ∆𝑋äãV 

and AOD is shown in Figure 5.7.  

Figure 5.7a - 5.7b indicate that the multi-angle viewing method alone has little impact on 

the methane retrieval accuracy for the methane-only retrieval. For extreme aerosol SSA and g 

values, the mean bias in ∆𝑋äãV ranges from 6 % to −25 % when aerosols are neglected in the 

retrieval. After adding AOD as an additional retrieval variable, the mean bias in ∆𝑋äãV 

significantly decreased to 0.32 % (Figure 5.7c). Further applying the multi-angle viewing method 

with angles specific in Table 1 reduced the mean bias in ∆𝑋äãV  even further to 0.15 % (Figure 

5.7d). This suggests that the good performance of aerosol and methane co-retrieval using the multi-

angle method largely comes from incorporating AOD as an additional retrieval variable.  
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As for the AOD retrieval performance, Figure 5.7e - 5.7f suggest that applying the multi-

angle viewing method yields better accuracy in the AOD retrieval than the nadir-only method, 

with the mean bias in AOD being less than 0.02. In theory, the multi-angle viewing method should 

provide more information than nadir viewing observations, especially for aerosol retrieval. The 

relatively modest improvement observed with the multi-angle viewing method in our study 

compared to the substantial enhancement achieved by adding AOD alone may stem from the 

instrumental limitation of intensity-only measurements within a single spectral band. Nevertheless, 

our study continues to employ the multi-angle viewing method for simultaneous aerosol and 

methane retrieval, as it yields the most significant improvement in retrieval accuracy and precision 

for both ∆𝑋äãV and AOD. 
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Figure 5.7 (a, c, e) Nadir-only viewing mode. (b, d, f) Multi-angle viewing mode (Table 

5.1; the scattering angle ranges from 100–140°). (a, b) Mean bias in retrieved ∆𝑋äãV values when 

aerosols are present but not retrieved. (c, d) Mean bias in retrieved ∆𝑋äãV values when aerosols 

and methane are simultaneously retrieved. (e, f) Mean bias in retrieved AOD values when 

aerosols and methane are simultaneously retrieved. Retrieval results are displayed as a function 

of aerosol SSA and g when the surface albedo is 0.2. The simulated truths of ∆𝑋äãV and AOD 

are 0.1 ppm and 0.1, respectively. The mean bias in ∆𝑋äãV is calculated relative to the 

background methane mixing ratio. 

5.3.2 Comparisons between the ∆𝑿𝑪𝑯𝟒-only Retrieval and Simultaneous ∆𝑿𝑪𝑯𝟒 and AOD 

Retrieval  

To examine the performance of different retrieval methods, we conduct simulated retrieval 

with a range of surface albedos and aerosol optical properties. We compare two scenarios in terms 

of the mean bias and standard deviations of retrieved variables (∆𝑋äãV, AOD, and Xalb): (1) when 

aerosols are present but not retrieved in the nadir-viewing mode and (2) when both ∆𝑋äãV and 

AOD are retrieved simultaneously using the multi-angle viewing method. 

5.3.2.1 Impact of Aerosol SSA and g  

As we only retrieve the AOD for aerosol-related parameters, unaccounted-for variables 

such as the aerosol single scattering albedo (SSA) and asymmetry factor (g) can influence our 

results. To assess this impact, we fix the background surface albedo at 0.2 and examine how the 

mean bias and SD vary with different combinations of aerosol SSA and g.  

Figure 5.8a – 5.8d display the mean bias of the retrieved ∆𝑋äãV and Xalb values for the 

∆𝑋äãV-only retrieval scenario. The angle setting follows Table 5.1. When retrieving ∆𝑋äãV without 
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accounting for aerosols, the ∆𝑋äãV  only method underestimates ∆𝑋äãV  for situations with low 

aerosol g and overestimates it in cases with high aerosol g. This occurs because aerosols scatter 

more light back into space when g is low, reducing the absorption of CH4. Conversely, when 

aerosol g is high, increased aerosol–surface multiple scatterings lead to greater atmospheric CH4 

absorption. Figure 5.8a also shows that the magnitude of the retrieval bias increases with 

increasing SSA. For a surface albedo of 0.2, the maximum bias in ∆𝑋äãV for ∆𝑋äãV-only retrieval 

can reach −25 % relative to the background with extremely high SSA and low g values. These 

results are in agreement with other studies (Huang et al., 2020). Both increasing SSA and 

decreasing g enhance the radiation scatter back into space, thereby decreasing the atmospheric-

methane absorption. For typical optical-property ranges of aerosols (SSA ∈ [0.86, 0.98] and g ∈ 

[0.54, 0.76]), the mean bias in ∆𝑋äãV  falls between −3.0 % and 6.3 % for ∆𝑋äãV -only nadir 

retrieval. Neglecting aerosols also affects the retrieval of Xalb. As shown in Figure 5.8d, Xalb is 

underestimated (overestimated) when SSA is small (large).  

In contrast, Figure 5.9 suggests that simultaneous retrieval of ∆𝑋äãV  and AOD can 

significantly improve the accuracy of ∆𝑋äãV  retrieval while also retrieving relatively accurate 

values for AOD and Xalb. Using simultaneous retrieval can reduce the mean bias in ∆𝑋äãV to within 

0.1 % (Table 5.2) for typical optical-property ranges of aerosols. As for the consistency of the 

simultaneous retrieval, Figure 5.9d indicates that the maximum SD in ∆𝑋äãV is near to 2.5 %, 

which is slightly higher than that in the ∆𝑋äãV-only retrieval (∼ 1.6 %). This results from the near-

zero AOD Jacobian values (Figure 5.5b). Although aerosols have little effect on the TOA 

reflectance under these conditions, their inclusion in the simultaneous retrieval inevitably increases 

the uncertainty in retrieved ∆𝑋äãV. As for the AOD results, the mean bias falls within 1.7 % for 

typical aerosol optical-property ranges (Figure 5.9b), with the SD showing a slightly high value, 
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suggesting that retrieval uncertainties are larger when aerosol SSA and g vary. In general, the 

multi-angle method performs better for AOD retrieval when aerosols have a high SSA and a high 

g, which can be explained by the more pronounced AOD Jacobian differences between forward 

and backward viewing angles, as indicated by Figure 5.5b. In the retrieved surface albedo results 

(Figure 5. 9c), the mean bias in Xalb is less than 2.1 % for typical aerosol optical-property ranges. 

The mean bias and SD distribution pattern of Xalb are similar to those of AOD as a result of the 

interference of aerosol scattering energy with surface albedo retrieval. 

 

Figure 5.8 Mean bias of retrieved ∆𝑋äãV (a, b, c) and Xalb (d, e, f) values when aerosols are 

present but not retrieved in the nadir viewing mode. (a, d) Mean bias as a function of aerosol 

SSA and g when the surface albedo is 0.2. (b, e) Mean bias as a function of surface albedo and 

aerosol SSA when aerosol g is 0.7. (c, f) Mean bias as a function of surface albedo and aerosol g 
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when aerosol SSA is 0.95. The black box represents typical values for aerosol optical-property 

and surface albedo (sfc alb) ranges (SSA ∈ [0.86, 0.98], g ∈ [0.54, 0.76] and sfc alb ∈ [0.1, 0.5]) 

in the observations. The simulated truths of ∆𝑋äãV and AOD are 0.1 ppm and 0.1, respectively. 

The scattering angle ranges from 100–140°. 

 

Figure 5.9 Mean bias (a, b, c) and standard deviations (SDs) (d, e, f) of the retrieved ∆𝑋äãV, 

AOD, and Xalb as a function of aerosol SSA and g. The simulated truths of ∆𝑋äãV, AOD, and Xalb 

are 0.1 ppm, 0.1, and 0.2, respectively. The scattering angle ranges from 100–140°. The black 

box represents the typical values for aerosol optical-property ranges (SSA ∈ [0.86, 0.98] and g ∈ 

[0.54, 0.76]) in the observations. 
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5.3.2.2 Surface Albedo Impact  

Since the interaction between aerosols and the underlying surface can largely determine 

the retrieval performance, we further explored the accuracy and precision of the retrieved ∆𝑋äãV, 

AOD, and Xalb for ∆𝑋äãV-only retrieval and simultaneous retrieval under different surface albedo 

conditions.  

Figure 5.8b - 5.8e display the distribution of mean bias in ∆𝑋äãV  and that in Xalb for 

∆𝑋äãVnadir retrieval when aerosol g is fixed at 0.7. As shown in Figure 5.8b, neglecting aerosols 

results in an overestimation (underestimation) of the retrieved ∆𝑋äãV  with high (low) surface 

albedo. These results are in agreement with other studies (Butz et al., 2009; Huang et al., 2020), 

despite the differences in retrieval variables, experiment settings, and instruments. A high surface 

albedo enhances the surface and aerosol multiple scattering, leading to increased methane 

absorptions. Conversely, a low surface albedo favours aerosol-only scattering, reducing methane 

absorptions. As a result, in the case of ∆𝑋äãV-only retrieval, the bias is most pronounced (∼ 27 %) 

when both aerosol SSA and surface albedo are extremely high. Therefore, it is advisable to refrain 

from performing methane retrieval over highly reflective surfaces. For commonly encountered 

aerosol SSA (0.86–0.98) and surface albedo (0.1–0.5) values, the mean bias in ∆𝑋äãV for ∆𝑋äãV-

only retrieval ranges from −5.9 % to 13.1 % when g is fixed at 0.7. Similar to Figure 5.8d, Figure 

5.8e suggests that the retrieved Xalb value increases with an increase in SSA. 

When simultaneously retrieving methane and aerosols, Figure 5.10a suggests that the mean 

bias in ∆𝑋äãV is significantly reduced to 0.1 % when compared with the ∆𝑋äãV-only retrieval. The 

SD of the retrieved methane is slightly higher when high-SSA aerosols are present over low-albedo 

surfaces. This is explained by the near-zero AOD Jacobian values (Figure 5.5b), as previously 
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discussed. Moreover, the SDs of the retrieved ∆𝑋äãV  and AOD are a bit higher when SSA is 

extremely low (0.1). This decrease in retrieval precision results from the positive values in the 

AOD Jacobian as well as minimal differences in the AOD Jacobian between forward and backward 

viewing (Figure 5.5d), considering the strongly absorbing characteristics of aerosols. In this 

scenario, it is challenging to distinguish between aerosols and the surface, thereby affecting the 

CH4 and aerosol retrieval. The mean bias in the retrieved AOD and Xalb is within 1.7 % and 0.07 

%, respectively, for typical values of aerosol SSA and surface albedo ranges (sfc alb ∈ [0.1, 0.5] 

and SSA ∈ [0.86, 0.98]). In general, the multi-angle viewing technique demonstrates higher 

accuracy compared with the ∆𝑋äãV-only retrieval, regardless of surface albedo values, especially 

when aerosols with stronger scattering abilities are present. 
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Figure 5.10 Mean bias (a, b, c) and standard deviations (SDs) (d, e, f) of the retrieved ∆𝑋äãV, 

AOD, and Xalb as a function of surface albedo and aerosol SSA when aerosol g is 0.7. The 

simulated truths of ∆𝑋äãV and AOD are 0.1 ppm and 0.1, respectively. The scattering angle 

ranges from 100–140°. The black box represents the typical values for aerosol optical-property 

and surface albedo ranges (sfc alb ∈ [0.1, 0.5] and SSA ∈ [0.86, 0.98]) in the observations. 

Apart from SSA, it is also interesting to examine how the retrieval bias varies under 

different combinations of aerosol asymmetry factor and surface albedo. Figure 5.8c – 5.8f present 

the mean bias in ∆𝑋äãV and Xalb for ∆𝑋äãV-only retrieval and simultaneous retrieval when aerosol 

SSA is fixed at 0.95. For ∆𝑋äãV-only retrieval, ∆𝑋äãV is underestimated (overestimated) with low 

(high) surface albedo, especially when g is small. These errors arise because aerosols with low g 

over dark surfaces tend to scatter more light towards space. However, when the surface is bright, 

it reflects a larger proportion of the light towards aerosols, and aerosols with low g tend to scatter 

this light back to the surface again, thereby enhancing methane absorption. The maximum bias in 

∆𝑋äãV  for ∆𝑋äãV -only retrieval is around −50 % when both aerosol g and surface albedo are 

extremely low. For typical values of g (0.54–0.76) and surface albedo (0.1–0.5), neglecting 

aerosols results in a mean bias in ∆𝑋äãV ranging from −20.5 % to 12.2 %. 

By employing simultaneous retrieval, the mean bias in ∆𝑋äãV can be reduced to 0.27 % 

(Figure 5.11a), demonstrating an enhancement in ∆𝑋äãV accuracy. An increase in surface albedo 

enhances surface–aerosol multiple scattering, while a decrease in g enhances aerosol 

backscattering. This competition effect results in a slope in the distribution of large SD values. 

Regarding the retrieved AOD and Xalb, their mean bias falls within −4.9 % and 0.06 % (Figure 

5.11b – 5.11c), respectively, in the presence of strongly scattering aerosols (SSA = 0.95). 
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Figure 5.11 Mean bias (a, b, c) and standard deviations (SDs) (d, e, f) of the retrieved ∆𝑋äãV, 

AOD, and Xalb as a function of surface albedo and aerosol g when aerosol SSA is 0.95. The 

simulated truths of ∆𝑋äãV and AOD are 0.1 ppm and 0.1, respectively. The scattering angle 

ranges from 100–140°. The black box represents the typical values for aerosol optical-property 

and surface albedo ranges (sfc alb ∈ [0.1, 0.5] and g ∈ [0.54, 0.76]) in the observations. 

Overall, in simultaneous ∆𝑋äãV and AOD retrieval using the multi-angle viewing method, 

the retrieved ∆𝑋äãV, AOD, and Xalb values generally match very well with the simulated truths 

across various aerosol optical properties and surface albedo conditions. Table 5.2 summarizes the 

mean bias and SDs in the retrieved ∆𝑋äãV , AOD, and Xalb for the ∆𝑋äãV-only retrieval in the nadir 

viewing mode and for the simultaneous ∆𝑋äãV  and AOD retrieval in the multi-angle viewing 

mode, considering typical values of aerosol optical properties and surface albedo encountered in 
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the observations. Using the simultaneous retrieval method, the mean bias and SD in ∆𝑋äãV fall 

within the ranges of 0.3 % and 2.8 %, respectively. Similarly, the mean bias in AOD and Xalb 

remains within 3.1 % and 0.1 %, respectively. It should be noted that under certain conditions 

characterized by near-zero AOD Jacobian values, such as scenarios with high SSA and high g 

values over a low-albedo surface and high SSA and low g values over a moderately reflective 

surface, or for positive AOD Jacobian values when SSA is extremely low over surfaces with 

medium-to-high albedo, we observe a slightly higher SD in simultaneous retrieval. Although the 

retrieved AOD shows relatively high accuracy, its SD can exceed 10 %, suggesting an uncertainty 

in AOD retrieval when SSA and g are not constrained. 

Table 5.2 Mean bias and SDs in retrieved ∆𝑋äãV, AOD, and Xalb values for the ∆𝑋äãV-only 

retrieval in the nadir viewing mode and for the simultaneous ∆𝑋äãVand AOD retrieval in the 

multi-angle viewing mode with a 20° maximum satellite zenith angle. The simulated truths of 

∆𝑋äãV and AOD are 0.1 ppm and 0.1, respectively. The mean bias and SD are given CH4 relative 

to the background values. Experiment nos. 1 to 3 correspond to Sect. 5.3.2, and experiment no. 4 

corresponds to Sect. 5.4.1. “Correlation coef”: correlation coefficient. 
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5.4 Simultaneous Retrieval Analysis  

5.4.1 The Effect of Satellite Zenith Angle on Simultaneous Retrieval  

The discussions above have proved that using the multiangle viewing method for 

simultaneous ∆𝑋äãV and AOD retrieval can significantly improve the retrieval accuracy of ∆𝑋äãV 

when compared with the ∆𝑋äãV-only nadir retrieval. It is still worth investigating whether the 

retrieval results are highly dependent on the chosen satellite zenith angles. In this section, satellite 

zenith angles ranging from 0 to 80° are tested in both the ∆𝑋äãV-only retrieval and the simultaneous 

retrieval. As shown in Table 5.3, the scattering angle range broadens with increasing satellite 

zenith angle magnitude, which could benefit aerosol retrieval, as it leads to more distinct 

differences in TOA reflectance across various satellite viewing positions. However, larger satellite 

zenith angles could also introduce more bias into methane retrieval because of the slanted-path 

effect. 

Considering aerosols with an AOD of 0.1, a SSA of 0.95, and a g of 0.7, the mean bias and 

SDs for the ∆𝑋äãV-only retrieval and for the simultaneous retrieval as a function of surface albedo 

and the maximum magnitude of the satellite zenith angle are shown in Figure 5.12. If aerosols are 

neglected, the retrieved ∆𝑋äãV is always overestimated except under the extremely low surface 

albedo (0.1) condition. The retrieval bias magnitude escalates with growing maximum magnitude 

of the satellite zenith angle. A larger satellite zenith angle brings a longer light path, which 

enhances atmospheric absorption and introduces larger retrieval errors. The maximum mean bias 

in ∆𝑋äãV for ∆𝑋äãV-only retrieval can exceed 80 % when the satellite zenith angle exceeds 70°. 

For typical ranges of the GHGSat satellite zenith angle (10–20°) and the surface albedo (0.1–0.5), 

the mean bias in ∆𝑋äãV for ∆𝑋äãV-only retrieval is −5.7 % to 12.4 %. 
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For simultaneous ∆𝑋äãV and AOD retrieval, the mean bias in ∆𝑋äãV remains below 0.1 %, 

and it varies little with the chosen satellite zenith angle. This suggests that the multiangle viewing 

method is effective for GHGSat-like satellites, regardless of their observation swath. The better 

retrieval performance of simultaneous retrieval in the multi-angle viewing mode largely results 

from adding AOD as an additional predictor instead of applying the multi-angle method, 

considering that the GHGSat satellite is an intensity-only instrument targeting one specific band.  

The magnitude of the SD in ∆𝑋äãV from the simultaneous retrieval experiences a slight 

increase and then decreases as the satellite zenith angle magnitude increases. This happens 

because, with the increase in the satellite’s zenith angle, more energy scatters back into space, 

while a longer light path leads to greater atmospheric absorption. At a specific point, the aerosol 

Jacobian approaches zero, which introduces relatively high uncertainty into the simultaneous 

retrieval process. 

Table 5.3 Satellite zenith angle ranges tested for ∆𝑋äãV-only retrieval and simultaneous ∆𝑋äãV 

and 𝐴𝑂𝐷 retrieval using the multi-angle viewing method. The solar zenith angle is 60°. 

Satellite zenith 

angle range 

0° -10° ~ 

10° 

-20° ~ 

20° 

-30° ~ 

30° 

-40° ~ 

40° 

-50° ~ 

50° 

-60° ~ 

60° 

-70° ~ 

70° 

-80° ~ 

80° 

Scattering angle 

range 

120° 110° 

~ 

130° 

100° 

~ 

140° 

90° ~ 

150° 

80° ~ 

160° 

70° ~ 

170° 

60° ~ 

180° 

50° ~ 

180° 

40° ~ 

180° 
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Figure 5.12 (a) Mean bias and (d) standard deviations (SD) of retrieved ∆𝑋äãV values when 

aerosols are present but not retrieved. (b) Mean bias and (e) SD of retrieved ∆𝑋äãV values for 

simultaneous ∆𝑋äãV  and AOD retrieval. (c) Mean bias and (f) SD of retrieved 𝑋jok values for 

simultaneous ∆𝑋äãV  and AOD retrieval. The retrieval results are displayed as a function of 

surface albedo and maximum magnitude of satellite zenith angle when aerosol SSA is 0.95, g is 

0.7, and the solar zenith angle is 60°. The satellite is in the multi-angle viewing mode. The black 

box represents the typical values for the GHGSat satellite zenith angle range and the surface 

albedo range (max(sat zenith) 𝜃& ∈ [0°, 20°] and sfc alb ∈ [0.1, 0.5]). 
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5.4.2 Relationship between the Retrieved ∆𝑿𝑪𝑯𝟒 and AOD from Simultaneous Retrieval  

Figure 5.13 illustrates the correlation coefficients between the retrieved ∆𝑋äãV and AOD 

for various combinations of SSA, g, surface albedo, and satellite zenith values. The simultaneous 

retrieval is conducted under four specific conditions using the multi-angle viewing method: (1) 

when the surface albedo is 0.2, (2) when the g is 0.7, (3) when the SSA is 0.95, and (4) when the 

SSA is 0.95 and g is 0.7. For conditions (1) to (3), the angle setting follows Table 5.1, while for 

condition (4), the angle settings are based on Table 5.3. Figure 5.13a suggests that ∆𝑋äãV and AOD 

are negatively correlated for high g values and negatively correlated for low g values when the 

surface is dark. A high g results in more concentrated forward scattering towards the ground, 

causing more atmospheric absorption via aerosol–surface multiple scattering. To maintain the 

relative depth of the CH4 absorption spectra, less ∆𝑋äãV needs to be retrieved to balance the effect 

of the increasing AOD. In Figure 5.13b, ∆𝑋äãV and AOD are positively correlated for low-albedo 

surfaces and negatively correlated for mid- and high-albedo surfaces when g is 0.7. With a dark 

surface, increasing the aerosol causes a greater amount of light to be scattered back into space, 

leaving less light to interact with CH4. Consequently, a larger ∆𝑋äãV is retrieved to counterbalance 

the impact of the increasing AOD. Figure 5.13c shows that the correlation between ∆𝑋äãV and 

AOD changes from positive to negative with increasing g and surface albedo when SSA is 0.95. 

This pattern occurs because of the shift in the dominant aerosol-involved physical processes from 

the aerosol-only scattering effect to the aerosol–surface multiple scattering effect. Figure 5.13d 

shows that for aerosols with an SSA of 0.95 and a g of 0.7, ∆𝑋äãV  and AOD are positively 

(negatively) correlated at low (high) albedo. With increasing satellite zenith angle, the magnitude 

of the correlation coefficient first increases and then decreases, suggesting that it is still beneficial 
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to apply large scattering angle ranges in the multi-angle viewing method to better distinguish 

aerosols and methane. 

When considering a surface with an albedo of 0.2, a SSA from 0.86 to 0.98, and a g from 

0.54 to 0.76, the correlation coefficient between the retrieved ∆𝑋äãV and AOD falls within the 

range of −85 % to 30 %. Similarly, when the SSA is maintained between 0.86 and 0.98, the surface 

albedo varies from 0.1 to 0.5, and g is fixed at 0.7, the correlation coefficient ranges from −81 % 

to 43 %. Lastly, for cases where g ranges from 0.54 to 0.76, the surface albedo spans from 0.1 to 

0.5, and SSA is set at 0.95, the correlation coefficient varies from −83 % to 52 %. In general, the 

pattern in Figure 5.13 is similar to the ∆𝑋äãV SD pattern in Figures 5.9–5.12, which confirms that 

the high correlation of ∆𝑋äãV with AOD results in a larger SD in ∆𝑋äãV.  
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Figure 5.13 Correlation coefficient (%) between the simultaneously retrieved methane 

enhancement (∆𝑋äãV) and aerosol optical depth (AOD) for varying aerosol types and surface 

albedo values. (a) Surface albedo is fixed at 0.2. (b) Aerosol g is fixed at 0.7. (c) Aerosol SSA is 

fixed at 0.95. For panels (a) to (c), the maximum magnitude of the satellite zenith angle is 20°. 

(d) Aerosol SSA is fixed at 0.95 and g is fixed at 0.7. The black box represents the typical values 

of the ranges for aerosol optical properties, surface albedo, and solar zenith angle in the GHGSat 

observations. 

5.4.3 Impact of Aerosol and Surface Albedo Uncertainties on Simultaneous Retrieval 

Although aerosol types could be inferred from emission plumes by considering the 

combustion type and its location, the uncertainty that arises from inaccurate representation of 

aerosol types and distributions could impact the performance of our simultaneous retrieval. 

Additionally, assumptions regarding the Lambertian surface and satellite viewing geometry could 

potentially introduce uncertainties in surface albedo retrieval. To access such uncertainty, we 

employ certain aerosol SSA and g, height distributions, and surface albedo in retrieval, while for 

the simulated GHGSat radiance, we incorporate more complex representations of aerosol type and 

distributions, and surface albedo. The differences between retrieval with fixed (inaccurate) 

parameters and retrieval with real (accurate) parameters enable us to quantify the uncertainty 

resulting from the inaccurate representation of these parameters. 

5.4.3.1 Aerosol Type Uncertainties  

Figure 5.14 presents the differences in the mean bias and standard deviations of retrieved 

variables between retrieval assuming SSA = 0.95 and g = 0.7 for aerosols and retrieval assuming 

the correct SSA and g (ranging from 0 to 1). These differences could suggest that there is 
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uncertainty in simultaneous retrieval when assuming inaccurate aerosol types. Figure 5.14a -5.14d 

show that the uncertainties in the mean bias and SD of ∆𝑋äãV related to aerosol types range from 

−5.8 % to 2.7 % and from −0.2 to 0.9 %, respectively, for typical aerosol optical-property values. 

The uncertainties in the mean bias and SD of AOD fall within −40.2 % to 16.1 % and within −9.6 

% to 20 %, respectively. Similarly, the uncertainties in the mean bias and SD of Xalb range from 

−5.6 % to 5.4 % and from −1.5 % to 0.39 %, respectively. These findings suggest that even with 

incorrect SSA and g assumptions in the retrieval, the maximum uncertainty induced in the accuracy 

of the retrieved ∆𝑋äãV is within 5.8 %.  

 

Figure 5.14 Uncertainties induced by aerosol type in the mean bias (a, b, c) and standard 

deviations (SD) (d, e, f) of the retrieved ∆𝑋äãV, AOD, and Xalb, assuming aerosols with an SSA 

of 0.95 and a g of 0.7 in the retrieval. The simulated truths of ∆𝑋äãV, AOD, and Xalb are 0.1 ppm, 
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0.1, and 0.2, respectively. The scattering angle ranges from 100–140°. The black box represents 

the typical values for aerosol optical-property ranges (SSA ∈ [0.86, 0.98] and g ∈ [0.54, 0.76]) in 

the observations. 

5.4.3.2 Aerosol Height Distribution Uncertainties  

While aerosols primarily reside near the surface at the industrial site, they could also ascend 

to higher altitudes under favourable atmospheric conditions. Therefore, we examined the 

uncertainty brought by aerosol height assumptions. We compared the difference between the 

retrieval when we assume aerosols are near the surface and the retrieval when aerosols are elevated 

to 5 km. In the latter case, AOD linearly decreases with height, but we still use the near-surface 

Jacobian calculations in retrieval. Figure 5.15 shows the uncertainties in simultaneous retrieval 

when assuming an incomplete aerosol height. 

Similar to the uncertainty results related to aerosol types, Figure 5.15a and d show that the 

uncertainty induced by aerosol height in the mean bias and SD of ∆𝑋äãV ranges from 2.3 % to 6.4 

% and from −0.1 % to 0.1 %, respectively, for typical values of aerosol optical properties. The 

mean bias uncertainties for AOD and Xalb fall within the ranges of 2.3 % to 41.5 % and −0.8 % to 

1.4 %, respectively. The SD uncertainties for ∆𝑋äãV, AOD, and Xalb are generally small, indicating 

minimal sensitivity of the retrieval precision to the aerosol height distributions. 
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Figure 5.15 Uncertainties induced by aerosol height distributions in the mean bias (a, b, c) and 

standard deviations (SDs) (d, e, f) of retrieved ∆𝑋äãV, AOD, and 𝑋t}u, assuming near-surface 

aerosols in the retrieval. The simulated truths of ∆𝑋äãV, AOD, and 𝑋t}u are 0.1 ppm, 0.1, and 

0.2, respectively. The scattering angle ranges from 100–140°. The black box represents the 

typical values for aerosol optical-property ranges (SSA ∈ [0.86, 0.98] and g ∈ [0.54, 0.76]) in the 

observations. 

5.4.3.3 Surface Albedo Uncertainties  

Although a second-order polynomial was applied in the retrieval to account for the 

bidirectional distribution of surface albedo, the imperfect representation of surface albedo, 

particularly in regions with heterogeneous landscapes, could introduce uncertainty into the 

simultaneous retrieval. To quantify such uncertainty, we compared the differences between the 
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retrieval when we assume the surface albedo is 0.2 and the retrieval with the correct surface albedo 

values. Figure 5.16 shows the uncertainties in simultaneous retrieval when assuming imperfect 

surface albedo.  

Figure 5.16a and d show that the uncertainty in the mean bias and SD of ∆𝑋äãV resulting 

from surface albedo variations ranges from −15.1 % to 4 % and from −0.1 % to 0.7 %, respectively, 

for typical aerosol SSA and surface albedo ranges (sfc alb ∈ [0.1, 0.5] and SSA ∈ [0.86, 0.98]). 

The mean bias uncertainties for AOD and Xalb fall within the ranges of −12.7 % to 37.6 % and 

−5.9 % to 3.5 %, respectively, while the SD uncertainties for AOD and Xalb range from −1.1 % to 

31.9 % and from −0.31 % to 2.25 %, respectively.  

In summary, the uncertainties in the mean bias and SD of ∆𝑋äãV induced by inaccurate 

aerosol types, height distributions, and surface albedo are less than 15.1 % and 0.9 %, respectively. 

These uncertainties are obtained when assuming near-surface aerosols with fixed SSA (0.95) and 

g (0.7) and a surface albedo of 0.2 in the retrieval, while simulated radiance, aerosol SSA, g, height 

distribution, and surface albedo vary across typical observation ranges. 
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Figure 5.16 Uncertainties induced by surface albedo in the mean bias (a, b, c) and 

standard deviations (SD) (d, e, f) of retrieved ∆𝑋äãV, AOD, and Xalb, assuming a surface albedo 

of 0.2 in the retrieval. The simulated truths of ∆𝑋äãV and AOD are 0.1 ppm and 0.1, respectively. 

The scattering angle ranges from 100–140°. The black box represents the typical values for 

aerosol optical-property and surface albedo ranges (sfc alb ∈ [0.1, 0.5] and SSA ∈ [0.86, 0.98]) 

in the observations. 

5.5 Conclusions  

This study investigates the impacts of aerosols on GHGSat methane retrieval in the 

shortwave near-infrared band by exploiting dynamic aerosol scattering behaviour during the 

GHGSat “multi-angle” observation sequence. Specifically, this research assesses how reliably 

aerosols can be simultaneously retrieved with methane using the multi-angle viewing method 
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under different aerosol optical-property, surface albedo, and satellite zenith angle conditions. 

Observing system simulation experiments (OSSEs) are conducted to simulate GHGSat 

observations and perform retrieval in the presence of white noise and 1/f errors. These experiments 

involve a comparative assessment of retrieval accuracy and precision under two conditions: (1) 

when aerosols are present but not retrieved in the satellite nadir viewing mode and (2) when both 

methane mixing-ratio enhancement (∆𝑋äãV ) and aerosol optical depth (AOD) are retrieved 

simultaneously in the multi-angle viewing mode. 

The general behaviour observed in the ∆𝑋äãV-only retrieval experiment is that ∆𝑋äãV is 

underestimated for low-albedo surfaces and overestimated for high-albedo surfaces when aerosols 

are not taken into account. The estimated errors in ∆𝑋äãV for non-aerosol retrieval become more 

significant as the aerosol single-scattering albedo (SSA) increases and the asymmetry factor (g) 

decreases. For nadir viewing simulations where AOD is set at 0.1 and the solar zenith angle at 60°, 

the mean bias in the retrieved ∆𝑋äãV  is most significant when scattering aerosols over bright 

surfaces are neglected. For a surface with an albedo of 0.2, the bias in ∆𝑋äãV varies from −3.0 % 

to 6.3 % for typical aerosol optical properties (SSA ∈ [0.86, 0.98] and g ∈ [0.54, 0.76]) (Figure 

5.9a); for a satellite zenith angle ranging from 0–20° and a surface albedo varying between 0.1 and 

0.5, the mean bias in ∆𝑋äãV for ∆𝑋äãV-only retrieval spans from −5.7 % to 12.4 % (Figure 5.12a), 

assuming an AOD of 0.1, SSA of 0.95, and a g value of 0.7.  

Using the multi-angle viewing method for simultaneous ∆𝑋äãV and AOD retrieval, we find 

that the bias in retrieved ∆𝑋äãV is significantly reduced at the modest cost of slightly worse ∆𝑋äãV 

precision. Through simultaneous retrieval, the mean bias in ∆𝑋äãV can be reduced to as low as 0.3 

% for the typical ranges of aerosol optical properties, surface albedos, and satellite zenith angles 
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(Table 5.2). The standard deviation (SD) of ∆𝑋äãV in simultaneous retrieval experiences a slight 

increase when aerosols have a minimum impact on the TOA radiance, as indicated by near-zero 

AOD Jacobian values. Nevertheless, this SD remains within 2.8 %. The uncertainties in the mean 

bias and SD of ∆𝑋äãV  induced by inaccuracies in aerosol types, height distributions, and the 

surface albedo are less than 15.1 % and 0.9 %, respectively (Figures. 5.14 – 5.16). The multi-angle 

viewing method also performs relatively well in AOD retrieval, as characterized by a mean bias 

of less than 3.1 % (Table 5.2). The performance assessment shows that retrieving aerosols and 

methane simultaneously using the multi-angle viewing method is a viable approach for operational 

application to GHGSat.  

The correlation coefficient between simultaneously retrieved AOD and ∆𝑋äãV  switches 

from positive to negative with increasing surface albedo and decreasing aerosol g (Figures 5.13a–

5.13c). This transition occurs because the dominant influence of aerosols on the radiance shifts 

from the aerosol-only scattering effect to the aerosol–surface multiple scattering effect, which 

suggests that the ability to differentiate between aerosols and methane is highly dependent on the 

aerosols and surface conditions present. 

This study also explored whether the success of the AOD and ∆𝑋äãV  co-retrieval with 

multi-angle viewing technique is largely determined by the range of scattering angles present in 

the GHGSat observation sequence. After conducting retrieval over a range of satellite zenith angle 

values (0 to 80°), results suggest that a broader scattering angle range, such as a larger satellite 

zenith angle, has little impact on the improvement in AOD and ∆𝑋äãV co-retrieval accuracy and 

precision. Therefore, the multi-angle viewing method is relatively insensitive to the satellite angle 

setting for the GHGSat-like instrument when AOD is incorporated into the retrieval. Finally, future 
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work on the GHGSat retrieval algorithm and a real retrieval test will investigate the feasibility of 

adding an aerosol retrieval capability to current and future instruments. 

Data Availability  

The atmospheric model, synthetic data used by the assessment can be obtained from the Mendeley 

Data https://data.mendeley.com/datasets/jxcmc63p2h/1. 
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Chapter 6 Conclusions and Future Work  

6.1 Conclusions 

 This thesis comprehensively explores the interactions between aerosols and radiation, 

examining their impact on the radiative budget, climate variability, atmospheric modeling, and 

trace-gas monitoring. Improvement in understanding the ADRE were achieved through: 1) 

Analyzing the spatial-temporal variations of global ADRE throughout the 21st century; 2) 

Investigating the discrepancy of ADRE across CMIP6 models to understand inter-model 

differences; 3) Developing radiative kernels specifically for stratospheric ADRE; 4) Simulating 

the simultaneous aerosol and methane retrieval for GHGSat to improve the accuracy of their 

methane measurement.  

 In Chapter 2, we developed a multivariate regression model to simulate global clear-sky 

and all-sky ADREs, isolating the effects of aerosol-related and environmental factors on their 

spatial distributions and trends. Additionally, we utilized this model to analyze how these factors 

contribute to poleward energy transport driven by ADRE. Our findings indicate that while factors 

such as scattering AOD, absorbing AOD, surface albedo, and solar zenith angle predominantly 

influence clear-sky ADRE, AOD alone explains just over half of the spatial variance. This 

highlights the significant impact of environmental conditions in determining ADRE. For all-sky 

conditions, the model suggests that the cloud shortwave radiative effect, combined with the 

aforementioned predictors, adequately represents the all-sky ADRE. 

The regression model also quantifies how ADRE responds to changes in key variables. 

Globally, for each unit increase in SAOD, the ADRE decreases by 29.4 W/m² under clear-sky 

conditions and 15.7 W/m² under all-sky conditions. Conversely, each unit increase in AAOD raises 
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the ADRE by 83.5 W/m² under clear-sky and 52.7 W/m² under all-sky conditions. Additionally, a 

0.1 increase in surface albedo results in a uniform 1.0 W/m² increase in both ADREclr and ADREall. 

The analysis also highlights significant hemispheric differences in scattering AOD, which 

primarily drive the northward cross-equator energy transport in both clear-sky and all-sky 

scenarios. Despite a generally weak global trend in ADRE over the decades, regional trends can 

vary substantially. For example, in India, ADRE cooling has intensified (−1.8 W m−2/decade for 

all-sky conditions), whereas in Northeastern America, Europe, and East Asia, it has diminished. 

Changes in the environmental variables also have a significant impact on the regional ADRE trend. 

For example, the decreasing surface albedo in the Arctic enhanced ADRE cooling, while changes 

in cloud radiative effects at midlatitudes in the Southern Hemisphere counteract the impact of 

scattering AOD trends, diminishing local ADRE trends.  

In Chapter 3, we applied the regression model from Chapter 2 to analyze the variability 

among CMIP6 models regarding the ADRE. We found that the ADRE discrepancies across models 

account for approximately 38% of the multi-model mean value, highlighting significant 

uncertainties in ADRE simulations. To delve into the causes of these anomalies, we dissected the 

ADRE variations into components attributable to differences in state variables and radiative 

sensitivities. The regression model successfully captured 86 ± 3% of the inter-model ADRE 

anomaly. Differences in state variables, such as SAOD, explained 67 ± 16%, while variations in 

radiative sensitivity, such as how ADRE responds to changes in SAOD, accounted for 17 ± 21%. 

In assessing specific state variables, the anomaly in SAOD was identified as a major 

contributor to the global distributions in ADRE anomalies. Other factors, such as anomalies in 

cloud properties and surface albedo, showed significant regional effects. The influence of 

differences in radiative sensitivity also varied geographically; over oceans, aerosol-only scattering 
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effects were predominant, whereas in desert regions and East Asia, interactions between aerosols 

and the surface were more critical. 

The key drivers of ADRE inter-model discrepancy differed among the models. For 

example, the CNRM-ESM2 model's ADRE anomaly stemmed primarily from an underestimation 

of SAOD, whereas the GFDL model's ADRE anomaly mainly resulted from an overestimation of 

AAOD. In models like HadGEM3, MPI-ESM, and MRI-ESM2, the sensitivity of ADRE to 

aerosol-only scattering effects was the principal contributor. Our results suggest that better 

constraints on key state variables (AOD, surface albedo, and CRE), along with refined ADRE 

sensitivities to aerosol-related processes (e.g., aerosol-only scattering and aerosol-surface 

interaction), could reduce uncertainties in ADRE modeling. 

In Chapter 4, we developed a set of radiative kernels tailored for stratospheric aerosols, 

accounting for their spatial, temporal, and spectral variations. These kernels, which include both 

broadband and band-specific versions, serve as effective tools for analyzing the stratospheric 

ADRE across various aerosol types. We found that the impact of stratospheric aerosol kernels on 

radiation is more pronounced than that of tropospheric aerosols, especially for absorbing aerosols. 

Globally, a unit increase in SAOD results in a cooling effect of -26.5 W/m2 at the TOA, whereas 

a similar increase in AAOD leads to a warming effect of +419.5 W/m2. This difference is attributed 

to the higher altitude of these aerosols, which allows them to interact with less attenuated radiation 

and enhances their interaction with underlying clouds, thus increasing the brightness of darker 

surfaces below and amplifying stratospheric ADRE sensitivity to absorbing aerosols.  

Based on our ADRE regression analysis framework, we developed a physically sorted set 

of aerosol kernels using TOA insolation, TOA reflectance, and stratospheric AOD as predictors. 
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These kernels, which are geographically independent, can provide initial estimates of stratospheric 

ADRE using satellite data.  

We tested the performance of our kernels by applying them to evaluate the stratospheric 

ADRE resulting from the 2022 Hunga volcanic eruption and the 2020 Australia wildfire. The 

kernel estimation can capture over 90% of the ADRE variance with relative errors within 10%, in 

these assessments, confirming that our radiative kernels effectively capture the characteristics of 

stratospheric ADRE. 

In Chapter 5, we conducted a detailed study on the effects of aerosol-radiation interactions 

on methane retrieval accuracy for GHGSat under varying conditions of aerosol optical properties, 

surface albedo, and satellite zenith angles. Our analysis showed that disregarding aerosols leads to 

an underestimation of methane enhancement ( ∆𝑋äãV ) over low-albedo surfaces and an 

overestimation over high-albedo surfaces. The error in ∆𝑋äãV  become more pronounced with 

increasing aerosol SSA and decreasing asymmetry factor (g). Specifically, for a surface albedo of 

0.2, the bias in ∆𝑋äãV ranges from -3.0% to 6.3% for typical aerosol properties (SSA ∈ [0.86, 0.98] 

and g ∈ [0.54, 0.76]). 

To mitigate the influence of aerosols, we implemented simultaneous retrievals of ∆𝑋äãV 

and AOD using a multi-angle viewing technique. This approach significantly reduced the mean 

bias in ∆𝑋äãV to as low as 0.3%, while keeping the standard deviation within 2.8%. The uncertainty 

in these measurements, influenced by variations in aerosol types, their vertical distribution, and 

surface albedo, remained below 15.1% for mean bias and 0.9% for standard deviation. 

Additionally, we observed that the correlation between ∆𝑋äãV and AOD shifted from positive to 

negative as surface albedo increased and the aerosol g decreased, indicating a shift from 
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predominant aerosol-only scattering to complex aerosol-surface multiple scattering interactions. 

These findings validate the effectiveness of the multi-angle viewing strategy in enhancing the 

accuracy of GHGSat methane retrievals by accounting for aerosol-radiation interactions, paving 

the way for improvements in future point-source imagers similar to GHGSat. 

6.2 Future Work 

Despite significant advancements in aerosol observation and modeling in recent years, 

many critical questions about aerosol-radiation-climate interactions remain unresolved. Key 

challenges include improving the representation of aerosols, from their microphysical 

characteristics to their observable impacts on weather and climate systems, deepening our 

understanding of how aerosols influence climate systems—such as their interactions with monsoon 

climates and boundary layers—and reducing discrepancies between models and observations to 

refine estimates of aerosol radiative forcing. Addressing these challenges requires enhancements 

in observational techniques, analytical understanding, and modeling approaches. 

Rapid Adjustments to Aerosol-Radiation Interactions 

The effective radiative forcing (ERF) for aerosol-radiation interactions allows shorter-

timescale atmospheric elements to adjust to equilibrium while fixing sea surface temperatures. 

This ERF can be separated into the instantaneous ADRE and subsequent rapid adjustments, 

involving both the stratosphere and troposphere. These adjustments may amplify or mitigate the 

initial ADRE through changes in atmospheric temperature, cloud dynamics, and land surface 

modifications. The complexity of these adjustments varies with the type, amount, and location of 

aerosols relative to clouds, underscoring the need for a nuanced understanding of aerosol impacts 

under varying conditions. 
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For stratospheric aerosols, although many studies convert the global mean ERF directly 

from the stratospheric AOD, the scaling factor varies a lot among studies. For example, Marshall 

et al. (2020) reported a scaling factor of -17.0 ± 0.2 W/m2 per unit of volcanic stratospheric AOD 

using the HadGEM3-GA4 climate model, compared to the IPCC AR5's factor of -26 W/m2 per 

unit volcanic stratospheric AOD (Intergovernmental Panel on Climate Change, 2014). Using the 

GISS model based on the Pinatubo eruption, Hansen (2005) suggested a factor of -22 W/m2. While 

the adjustment for volcanic aerosols is relatively straightforward (slightly mitigates the 

instantaneous ADRE sign), the adjustment for stratospheric absorbing aerosols can be more 

significant. Yu et al. (2023) estimated a scaling factor of −37 Wm−2 per unit stratospheric wildfire 

smoke AOD anomaly, averaged over the period from 2014 to 2022, highlighting that stratospheric 

aerosols offset about 20% of the CO2-induced ERF increase during that time. These findings reveal 

that the relationship between stratospheric AOD and ERF is complex and not accurately captured 

by a single global mean conversion factor. Future research should focus on how ERF adjustments 

for stratospheric aerosols vary with aerosol distribution, solar radiation, and the timing and location 

of emissions. Such studies will enhance our understanding of the global radiation budget, provide 

insights for stratospheric geoengineering strategies, and aid climate projections, especially in 

scenarios with increased wildfire activity. 

For tropospheric aerosols, the magnitude and mechanisms behind the spatial variability of 

ERF remain unclear, especially for absorbing aerosols (Bellouin et al., 2020; C. J. Smith et al., 

2018; Williams et al., 2022). This uncertainty arises from the 'critical surface albedo' at which the 

instantaneous ADRE for absorbing aerosols shifts from negative to positive (Koch & Del Genio, 

2010; J. Li et al., 2022; Williams et al., 2022). Subsequent adjustments depend on environmental 

conditions such as the co-location of aerosols with different cloud types (Quaas et al., 2024; Stjern 
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et al., 2017). For instance, the semi-direct effect can exhibit opposite signs depending on the 

position of BC relative to the altitude of the cloud layer (Koch & Del Genio, 2010). Localized 

aerosol heating (or cooling) can dynamically influence atmospheric circulation, affecting regional 

precipitation and clouds, which leads to markedly different responses in ERF (Bellouin et al., 2020; 

C. J. Smith et al., 2018; Stjern et al., 2017; Williams et al., 2022). For example, Williams et al. 

(2022) found that ERF is positive in response to midlatitude anthropogenic absorbing aerosols and 

negative in the tropical Western Pacific. Future research should focus on (1) deepening the 

analytical understanding of ERF mechanisms, (2) quantifying ERF variations across models to 

reduce discrepancies, and (3) using observations to refine model estimates of ERF for tropospheric 

aerosols. 
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Appendix  A  

A Chapter 2 Supplementary Information  

A1 Introduction 

Figure A1 shows the comparison of the regression method used in this study with the 

radiative kernel method for a single site. The site is Beijing (40N, 115.625E) and the study time is 

00:00 UTC on May 1, 2019. First, we use RRTMG to calculate the ADRE when SAOD (AAOD) 

and surface albedo are perturbed from 0 to 1 respectively. Apart from these variables, other 

variables all take realistic values (e.g., atmospheric and aerosols profile). The star in the upper 

panel shows the ADRE value with the actual SAOD and AAOD. The benchmark RRTMG 

calculations in the upper panel clearly show the nonlinear change of the ADRE with surface albedo 

and SAOD (AAOD). To reproduce the ADRE, we use the regression model 
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shown in the middle panel. Note that the sensitivity values A%- A1 are trained according to the 

ADRE on this site. The R2 value for using the regression model is larger than 98%, indicating the 

regression model can well reproduce this nonlinear ADRE feature. As a comparison, we also 

calculated the SAOD, AAOD and surface kernel values by imposing small perturbations to the 

base-state values (the location of stars). Appling kernel values to ADRE5)*+ = ADRE()*+ +

[6789:
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results in the lower panel, which have R2 values less than 62%. These results suggest the ADRE 

variations can be well captured by the combination of predictors chosen in our study, while the 

kernel method may be less representative of the nonlinear ADRE behaviors.  
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Figure A2 illustrates the performance of the regression model when using predictors that 

are either 100% correlated or uncorrelated. The location under examination is Beijing (40N, 

115.625E) and the data was collected at 00:00 UTC on May 1, 2019. In the scenario where SAOD 

and AAOD are perfectly correlated (depicted in the right column), as SAOD increases from 0 to 

1, AAOD also increases by the same relative proportion. In contrast, when SAOD and AAOD are 

uncorrelated, AAOD remains constant as SAOD increases from 0 to 1. The star in the upper panel 

represents the ADRE value using the actual SAOD and AAOD. The R-squared values are 98.53% 

and 99.72% for the perfectly correlated and uncorrelated SAOD and AAOD scenarios, 

respectively. This figure demonstrates that the performance of the regression model is not 

influenced by the degree of correlation among the predictors. 

Figure A3 shows the all-sky ADRE sensitivities to the SAOD, surface albedo, AAOD and 

CRE/TISR calculated using the partial least square regression method. This figure is similar to 

Fig. 4, indicating the regression results are not sensitive to the regression techniques. 

Figure A4 shows the distributions of the climatological mean aerosol optical depth of five 

aerosol species included in the MERRA-2 data, which aids the interpretation of the global AOD 

and ADRE distribution.  

Figure A5 compares the global ADRE sensitivities to AOD and surface albedo between 

the regression model and Thorsen et al. (2020). The upper panel is for clear-sky conditions and the 

lower panel is for all-sky conditions. 

To facilitate the AOD kernel comparison, we assume single scattering albedo (SSA) is 

fixed for all grids, so that 

∂ADRE
∂AOD =

∂ADRE
∂SAOD

∂SAOD
∂AOD +

∂ADRE
∂AAOD

∂AAOD
∂AOD =

∂ADRE
∂SAOD

(SSA) +
∂ADRE
∂AAOD

(1 − SSA) 
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where [6789
[<6V7

 and [6789
[66V7

 are calculated by regression models and SSA is the climatological 

value. The results show our ADRE sensitivities are quite consist with the sensitivities calculated 

from radiative transfer model. The R-squared (R2) values are larger than 80% regardless of sky 

types. These comparisons give confidence that our regression model can well separate the aerosol 

effect and surface albedo effect. 

Figure A6 is the validation of the predicted ADRE trends against the MERRA2 ADRE 

trends. 

Figure A7 and A8 display the trends in the global mean ADRE and key predictors.  

Figure A9 The distribution for the trends of scattering aerosol optical depth, surface albedo, 

absorbing aerosol optical depth and cloud shortwave radiative effect normalized by insolation. 

Tables A1 to A3 summarize the predictors tested in this work and the performance of 

regression models using different combinations of them. 
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A2 List of Figures and Tables 

 

Figure A. 1 The comparison of the regression model built in this study with the radiative kernel 

method for a single site. 
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Figure A. 2 Performance of the regression model when using predictors that are either perfectly 

correlated or uncorrelated. Left column: uncorrelated scenario (AAOD remains constant as 

SAOD increases from 0 to 1); Right column: perfectly correlated scenario (as SAOD increases 

from 0 to 1, AAOD increases by the same relative proportion); Upper panel: RRMTG 

benchmark results; Lower panel: regression model results. 
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Figure A. 3 The sensitivities of the ADREall to (a) scattering aerosol optical depth, (b) surface 

albedo, (c) cloud shortwave radiative effect normalized by insolation, and (d) absorbing aerosol 

optical depth calculated by using the partial least square regression method. The global mean 

values are indicated in the top-right corner of each subplot. 
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Figure A. 4 The climatological mean aerosol optical depth for (a) black carbon, (b) organic 

carbon, (c) dust, (d) sulfate and (e) sea salt 
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Figure A. 5 Comparisons of the global ADRE sensitivities to AOD and surface albedo between 

the regression model and Thorsen et al. (2020). The upper panel is for clear-sky conditions and 

the lower panel is for all-sky conditions. 
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Figure A. 6 Comparison of the predicted 2000 – 2021 ADRE trend against the MERRA-2 

ADRE trend in (a) clear-sky, (b) all-sky conditions. The color coding indicates probability 

density. 
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Figure A. 7 The trends of global mean ADREclr and ADREall. 

 

Figure A. 8 The trends of global mean scattering aerosol optical depth, absorbing aerosol optical 

depth, surface albedo, and cloud shortwave radiative effect normalized by insolation. 
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Figure A. 9 The trends of scattering aerosol optical depth, surface albedo, absorbing aerosol 

optical depth and cloud shortwave radiative effect normalized by insolation. 

Table A. 1 Name of predictors and their performances in predicting ADRE. R2 is the coefficient 

of determination. 

Predictor 1 2 3 4 5 6 7 8 9 10 

 SAOD AAOD AOD cosθ alb SAOD

∙ alb 

AAOD

∙ alb 

AOD

∙ alb 

log(AOD) SSA 

Predictor 11 12 13 14 15 16 17 18 19  
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 O3 Column 

Water 

Vapor 

Asymmetry 

factor 

CRF
TISR 

SAOD

∙
CRF
TISR 

AAOD

∙
CRF
TISR 

AOD

∙
CRF
TISR 

Cloud 

Fraction 

Cloud 

optical 

depth 

 

 

Table A. 2 Combination of predictors and their performances in predicting global clear-sky 

ADRE. R2 is the coefficient of determination. 

predictor 1 2 3 4 5 6 7 8 9 10 11 12 13 R2 Comment 

 Ö             56.42%  

  Ö            46.14%  

   Ö           56.06%  

    Ö          37.99%  

     Ö         55.65%  

      Ö        39.93%  

       Ö       40.38%  

        Ö      39.97%  

         Ö     62.48%  

          Ö    40.01%  

           Ö   48.69%  

            Ö  39.05%  

             Ö 39.24%  

   Ö  Ö     Ö    71.94%  
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     Ö    Ö Ö    69.96%  

   Ö Ö Ö         83.63%  

 Ö   Ö Ö         93.90%  

   Ö Ö Ö     Ö    83.99%  

 Ö Ö  Ö Ö         83.92%  

 Ö   Ö  Ö        92.02%  

   Ö Ö    Ö      91.13%  

 Ö   Ö  Ö Ö       92.96% Chosen 

scheme 

 Ö Ö  Ö  Ö Ö       92.95%  

 Ö   Ö  Ö Ö   Ö    93.00%  

 Ö   Ö  Ö Ö    Ö   92.96%  

 Ö   Ö  Ö Ö     Ö  93.21%  

 Ö   Ö  Ö Ö      Ö 92.99%  

 

Table A. 3 Same as Table A2, but for all-sky conditions. 

Predicto

r 

1 2 3 𝟒 5 6 7 8 1

3 

1

4 

1

5 

1

6 

1

7 

1

8 

1

9 

R2 Commen

t 

 Ö               53.80%  

  Ö              47.92%  

   Ö             53.48%  
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    Ö            50.57%  

     Ö           52.07%  

      Ö          50.07%  

       Ö         53.62%  

        Ö        50.47%  

         Ö       42.98%  

          Ö      46.35%  

           Ö     48.03%  

            Ö    49%  

             Ö   48.01%  

              Ö  45.32%  

               Ö 43.79%  

   Ö Ö Ö         Ö  72.31%  

   Ö Ö Ö          Ö 70.87%  

   Ö Ö Ö     Ö      76.99%  

   Ö Ö  Ö     Ö     92.51%  

 Ö   Ö   Ö    Ö     90.88%  

 Ö   Ö   Ö Ö   Ö     93.13

% 

Chosen 

scheme 

 Ö   Ö   Ö Ö   Ö Ö    93.23%  

 Ö   Ö   Ö Ö Ö  Ö     93.42%  
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 Ö   Ö   Ö Ö   Ö Ö  Ö  93.69%  

 Ö   Ö   Ö Ö   Ö Ö   Ö 93.20%  

 

Appendix  B  

B Chapter 3 Supplementary Information 

B1 Text B1 

The full decomposition of the inter-model differences in the Aerosol Direct Radiative 

Effects (∆ADRE) are as follows: 

For the jth GCM, the truth ADRE is  

ADRE@ = rsut@ − rsutaf@        (B1) 

Where rsut is TOA outgoing shortwave radiation, and rsutaf is TOA outgoing aerosol-

free shortwave radiation.  

ADRE@ can be predicted using  

*+,-0
e

123, B
*+,-9
123,
FFFFFFFFF

*+,-9
123,
FFFFFFFFF = ∑ β5,@

E.,0BE8,9FFFFF

E8,9FFFFF
1
5G%         (B2) 

or 

ADRE@
_ = (∑ `2,0

E2,9FFFFF X;,@
1
5G% + 1 − ∑ β;,@1

5G% ) ∙ 67899
:;<8
vvvvvvv ∙ TISR     (B3) 

The i#2 predictor (X;,@) includes SAOD@; SAOD@ ∙ ALB@; AAOD@ ∙ ALB@; SAOD@ ∙
=89
:;<8@

 for all 

grid points over the global. SAOD and AAOD are the scattering and absorptive aerosol optical 

depth, respectively. ALB is the broad-band shortwave surface albedo, and CRE is the shortwave 

cloud radiative effect. TISR is the Top of the Atmosphere (TOA) incoming solar radiation.	Β;,@ are 
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the regression coefficient, and their values are listed in Table B1. The overbar denotes global mean 

values. 

For the CMIP6 multi-model mean ADRE (ADRE(), the predicted ADRE is 

*+,-:
e

123, B*+,-:123,
FFFFFFFFF

*+,-:
123,
FFFFFFFFF = ∑ β5,(

E.,:BE8,:FFFFF

E8,:FFFFF
1
5G%         (B4) 

or 

ADRE(
_ = (∑ `2,:

E2,:FFFFF X;,(
1
5G% + 1 − ∑ β;,(1

5G% ) ∙ 6789:
:;<8
vvvvvvv ∙ TISR    (B5) 

The predicted ADRE anomalies with respect to the multi-model mean ADRE is 

∆ADRE@
_ = ADRE@

_ − ADRE(
_       (B6) 

The full expansion of ∆ADRE@
_ is 

∆ADRE@
_ =           (B7) 

∞[6789:
e

[<6V7:
+ ™Δβ%,@ + Δβ&,@ALB( + Δβ1,@ n

=89
:;<8

o
(
≠ ∙ 6789:

:;<8
vvvvvvv ∙ TISR± ∙ ∆SAOD@  (term 1) 

+ °[6789:
e

[66V7:
+ ãΔβO,@ALB(å ∙

6789:
:;<8
vvvvvvv ∙ TISR¢ ∙ ∆AAOD@     (term 2) 

+ °[6789:
e

["*L:
+ ãΔβ&,@SAOD( + ΔβO,@ ∙ AAOD(å ∙

6789:
:;<8
vvvvvvv ∙ TISR¢ ∙ ∆ALB@  (term 3) 

+ ≤[6789:
e

[Y6,-123,Z:
+ Δβ1,@SAOD( ∙

6789:
:;<8
vvvvvvv ∙ TISR≥ ∙ ∆ n=89

:;<8
o
@
     (term 4) 

+	Σ(∆X),          (term 5) 

+Δβ%,@ ∙
6789:
:;<8
vvvvvvv ∙ TISR ∙ SAOD(       (term 6) 

+Δβ&,@ ∙
6789:
:;<8
vvvvvvv ∙ TISR ∙ (SAOD( ∙ ALB()      (term 7) 

+ΔβO,@ ∙
6789:
:;<8
vvvvvvv ∙ TISR ∙ (AAOD( ∙ ALB()      (term 8) 
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+Δβ1,@ ∙
6789:
:;<8
vvvvvvv ∙ TISR ∙ ™SAOD( ∙ n

=89
:;<8

o
(
≠      (term 9) 

+	regr-clos                      (term 10)  

In Equation. (B7), ΔX;,@ is the anomaly of the ith predictor in the jth model with respect to 

the multi-model mean. Δβ;,@ , which measures the anomaly in the ADRE sensitivity to the ith 

predictor in the jth model, is denoted as  

Δβ5,@ =
`.,0
E8,9FFFFF−

`.,:
E8,:FFFFF          (B8) 

Terms 1-5 are composed of the aerosol and environment state variable anomalies ΔX;,@. We 

denote the sum of terms 1-5 as 

∆EADRE@
_ = ∑ termD

X
DG%         (B9) 

Terms 6-10 are composed of the ADRE sensitivity differences to aerosol-related radiative 

processes Δβ;,@. We denote the sum of terms 6-10 as 

∆`ADRE@
_ = ∑ termD

%(
DGT         (B10) 

Therefore, 

 ∆ADRE@
_ = ∆EADRE@

_ + ∆`ADRE@
_       (B11) 

In the expressions of terms 1-5 in ∆EADRE@
_, the partial differential factor, e.g., [6789:

e

[<6V7:
, 

measures the ADRE sensitivity to the corresponding state variable according to the multi-model 

mean regression model (Equation. B7); their respective expressions are: 

[6789:
e

[<6V7:
= °`),:

E),:FFFFFF+
`&,:
E&,:FFFFFFALB( +

`V,:
EV,:FFFFFF n

=89
:;<8

o
(
¢ ∙ 6789:

:;<8
vvvvvvv ∙ TISR     (B12) 

[6789:
e

[66V7:
= ∂`5,:

E5,:FFFFFF 	ALB(∑ ∙
6789:
:;<8
vvvvvvv ∙ TISR       (B13) 
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[6789:
e

[6ab:
= ∂`&,:

E&,:FFFFFF SAOD( +
`5,:
E5,:FFFFFFAAOD(∑ ∙

6789:
:;<8
vvvvvvv ∙ TISR     

 (B14) 

[6789:
e

[Y6,-123,Z:
= ∂	`V,:

EV,:FFFFFF SAOD(∑ ∙
6789:
:;<8
vvvvvvv ∙ TISR       (B15) 

The spatial distribution the values of [6789:
e

[<6V7:
, [6789:

e

[66V7:
, and [6789:

e

[6ab:
, which measure the 

ADRE sensitivity to these state variables, are shown and validated to the quantification of Thorsen 

et al. (2020) in Figure B4 and B5. These results evidence that the regression model, despite its 

simplicity, very well captures the radiative sensitivity to these state variables.  

Term 5, Σ(∆X),, denotes the contribution from the higher-order ∆X terms: 

	Σ(∆X), = [&6789:
e

[<6V7: [6ab:
∆SAOD@∆ALB@ +

[&6789:
e

[66V7: [6ab:
∆AAOD@∆ALB@ +

[&6789:
e

[<6V7: [Y
6,-
123,Z:

∆SAOD@∆ n
=89
:;<8

o
@
+ (Δβ&,@∆SAOD@∆ALB@ + ΔβO,@∆AAOD@∆ALB@ +

Δβ1,@∆ n
=89
:;<8

o
@
∆SAOD@)] ∙

6789:
:;<8
vvvvvvv ∙ TISR       (B16) 

This term has a considerably smaller magnitude than the first order terms 1-4 in Equation. 

(B7). 

Terms 1-4 can be further separated into two contributions: one with the ADRE sensitivity 

quantified by the multi-model mean regression model, i.e., assuming universal sensitivities to these 

state variables governed by the same radiative transfer physics: 

∆EADRE@
_,4,5õ-+$"* =         (B17) 

[6789:
e

[<6V7:
∙ ∆SAOD@ +

[6789:
e

[66V7:
∙ ∆AAOD@ +

[6789:
e

["*L:
∙ ∆ALB@ +

[6789:
e

[Y6,-123,Z:
∙ ∆ n=89

:;<8
o
@
  

+ [&6789:
e

[<6V7: [6ab:
∆SAOD@∆ALB@ +

[&6789:
e

[66V7: [6ab:
∆AAOD@∆ALB@  
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+ [&6789:
e

[<6V7: [Y
6,-
123,Z:

∆SAOD@∆ n
=89
:;<8

o
@
  

and the other one addressing differences in ADRE sensitivity to selected predictors in 

individual GCMs: 

∆EADRE@
_,5,/5õ5/4"* =         (B18) 

∏™Δβ%,@ + Δβ&,@ALB( + Δβ1,@ n
=89
:;<8

o
(
≠ ∙ 6789:

:;<8
vvvvvvv ∙ TISRπ ∙ ∆SAOD@ + °

[6789:
e

[66V7:
+

ãΔβO,@ALB(å ∙
6789:
:;<8
vvvvvvv ∙ TISR¢ ∙ ∆AAOD@ + ™ãΔβ&,@SAOD( + ΔβO,@ ∙ AAOD(å ∙

6789:
:;<8
vvvvvvv ∙ TISR≠ ∙

∆ALB@ + [Δβ1,@SAOD( ∙
6789:
:;<8
vvvvvvv ∙ TISR] ∙ ∆ n=89

:;<8
o
@
+ (Δβ&,@∆SAOD@∆ALB@ +

ΔβO,@∆AAOD@∆ALB@ + Δβ1,@∆ n
=89
:;<8

o
@
∆SAOD@)] ∙

6789:
:;<8
vvvvvvv ∙ TISR  

We find that ∆EADRE@
_,4,5õ-+$"* terms dominate the ∆EADRE@

_,5,/5õ5/4"* terms, as shown in 

Figure B6. 

Terms 6-9 in Equation. (B7) measure the ADRE anomalies caused by the regression 

coefficient differences in each model: Δβ;,@. As explained by Yu & Huang (2023), the expressions 

involving SAOD, SAOD ∙ ALB,	AAOD ∙ ALB, and SAOD ∙ =89
:;<8

  in the regression equation represent 

the aerosol-only scattering, scattering aerosol and surface interaction, absorptive aerosol and 

surface interaction, and cloud masking effect, respectively. Therefore, the Δβ;,@ terms associated 

with these expressions can be considered to be caused by different ADRE sensitivity to those 

radiative transfer processes in each GCM. This may be due to either structural differences in the 

radiation model used in a GCM or different state variables other than selected predictors in the 

GCM because the ADRE sensitivity varies with state variables.  

Lastly, the regression closure term is: 
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regr-clos = 6789:
:;<8
vvvvvvv ∙ TISR ∙ ã∑ β5,(1

5G% − ∑ β5,@1
5G% å      (B19) 

This term occurs because of the imperfect global mean value closure of the regression 

model, which results from representing the nonlinear radiative transfer processes with linear 

representations. However, its magnitude is relatively small, and it does not impact the 

inhomogeneous distribution of the ADRE anomalies, because it is only a function of the TISR and 

thus latitude. 

Therefore, the radiative sensitivity effect, which consists of the different treatments of the 

above processes across models, is denoted as the sum of terms 6-10 following:  

∆`ADRE@
_ 	= Δβ%,@ ∙

6789:
:;<8
vvvvvvv ∙ TISR ∙ SAOD( + Δβ&,@ ∙

6789:
:;<8
vvvvvvv ∙ TISR ∙ (SAOD( ∙ ALB() +

ΔβO,@ ∙
6789:
:;<8
vvvvvvv ∙ TISR ∙ (AAOD( ∙ ALB() + Δβ1,@ ∙

6789:
:;<8
vvvvvvv ∙ TISR ∙ [SAOD( ∙ n

=89
:;<8

o
(
] + regr-clos 

             (B20) 

To illustrate the decomposition as detailed above, the spatial distributions of all the 

decomposed components of the ADRE of one GCM, the GFDL-ESM4 model, are shown in Figure. 

B7 as an example.  

B2 Text B2 

The average of global mean values for the SAOD, AAOD, ALB, CRE, and ADRE from 

the 5-model subset are as 0.13±0.02, 0.006±0.003, 0.16±0.01, -48.61 ±2.58 W/m2, and -

1.89±0.49 W/m2, respectively. The standard deviation of ADRE is around 26% of its absolute 

value, indicating a significant inter-model difference. The regression coefficients for predictor 

SAOD, SAOD∙ALB, AAOD∙ALB, and =89
:;<8

∙SAOD are 2.17±0.34 W/m2, -0.24±0.26 W/m2, -

0.29±0.14 W/m2, -0.81±0.26 W/m2, respectively. Variations in the regression coefficients suggest 
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that the ADRE sensitivity to predictors differs considerably among models. For the individual 

model, the regression coefficients are listed in Table B1. 

Figure B1 displays the 2001-2014 global mean values of 31 CMIP6 models that archive 

predictors (SAOD, AOD, and ALB). The red star indicates the selected 5 models in our study. The 

multi-model global mean values of SAOD, AAOD, and ALB for the 31 models are 0.14 ± 0.06, 

0.006 ± 0.004, 0.15 ± 0.03, respectively. For the selected 5 models, the average values are 0.13 ± 

0.04, 0.006 ± 0.003, 0.16 ± 0.02, respectively. Results suggest that the selected 5 models are 

representative in terms of global mean values. 

Figure B2-B3 compare the spatial distribution of the multi-model mean and standard 

deviations of predictors (SAOD, AOD, and ALB) between all models available and the 5-model 

subset. Results indicate that the selected models are representative in terms of spatial distributions. 

However, the standard deviation (STD) values for the selected 5 models are relatively smaller than 

those for 31 models, especially in North Africa and polar regions. This suggests that there may be 

larger STD in ADRE among GCMs than those that are selected in our study. 

Figure B4 shows the spatial distribution of the ADRE sensitivities using the CMIP6 multi-

model mean data with the regression model (subplots (a)-(c)). The regression-based ADRE 

sensitivities are compared with the kernel data (Thorsen et al., 2020) derived from radiative 

transfer calculations (subplots (d)-(f)). It is important to note that the ADRE sensitivities obtained 

from the regression model are based on the CMIP6 historical experiments for the 2000-2014 

period, while the kernel data is derived from the MERRA2 reanalysis for the year 2007. Despite 

the differences in datasets and study periods, the relatively good agreement in the ADRE 

sensitivities obtained from the two methods indicates the robustness of the regression method. 
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Figure B5 shows the point-by-point comparisons between the ADRE sensitivities obtained 

from the regression method and the kernel data. The R2 for the ADRE sensitivity to SAOD, 

AADO, and ALB is 70%, 95%, and 77%, respectively, which also suggests the relatively good 

performance of the regression method. 

Figure B6 compares the standard deviations of contributions from input difference terms 

when the ADRE sensitivity is the same across models (Equation B17) and when it changes 

(Equation B18). Results suggest that the input difference terms when assuming the same ADRE 

sensitivity across different models are the major contributor to the total input difference terms. 

Figure B7 shows all the decomposed components of the ADRE anomalies for the GFDL-

ESM4 model. This is used as an example to illustrate our decomposition method. 

Figure B8-B9 show the regional mean values for the decomposition terms among different 

models for East Asia and the Arctic, respectively. 

Figure B10 shows the distinct compensating effects between different contributors for both 

the input difference terms and the radiative sensitivity terms. 

Table B1 listed the R2 and RSME of the predicted ADRE for each CMIP6 model and the 

multi-model mean data using the regression method by comparing with the model outputs. On 

average, the regression method can explain over 90% of the variance in ADRE.  

Table B2 listed the radiative schemes used in the selected CMIP6 models. This shows that 

all models adopt some form of the two-stream approximation for RT computation. The delta-

Eddington method is used in the CNRM-ESM2-1, MPI-ESM-1-2-HAM, and MRI-ESM2-0 

models (Stevens et al., 2013; Voldoire et al., 2013; Yukimoto et al., 2019). For the GFDL-ESM4 

model, the delta-Eddington method is used to solve for the reflection and transmission, while the 

adding method is used to combine the layers (Freidenreich & Ramaswamy, 1999). For the 
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HadGEM3-GC31-LL model, the delta-Eddington approximation with 𝛿-rescaling of 𝜏, 𝜔 and, g 

are used (Edwards & Slingo, 1996). Apart from the differences in RT schemes, the differences in 

aerosol schemes could potentially lead to ADRE sensitivity differences. 

B3 List of Figures and Tables 

 

Figure B. 1 The global mean values of SAOD, AAOD, and ALB for 31 CMIP6 models. The 

solid horizontal lines are multi-model mean results for all models, while the dashed horizontal 

lines are multi-model mean results for selected 5 models. The corresponding values for selected 

models are marked by red stars. 
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Figure B. 2 The spatial distribution of the multi-model mean SAOD, AAOD, and ALB. The 

upper panel is for the selected five CMIP6 models, and the lower panel is for 31 CMIP6 models. 

Global mean values are indicated in the top-right corner of each subplot. 

 

 

Figure B. 3 The same as Figure B2, but for the standard deviation. 
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Figure B. 4 Spatial distributions of the ADRE sensitivity to SAOD, AAOD, and ALB (a) based 

on the multi-model mean regression model (Equation. B4); (b) from the aerosol kernels 

computed from a reanalysis dataset MERRA2 (Thorsen et al., 2020); (c) Their differences. 
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Figure B. 5 Comparison between the sensitivity of ADRE calculated by regression model and 

the kernel data from Thorsen et al. (2020) 
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Figure B. 6 Standard deviations of the ADRE anomaly components caused by differences in 

state variables, (a-e) quantified with the universal ADRE sensitivity (Equation. (B17)) and (f-j) 

due to the anomalous ADRE sensitivity in individual models (Equation. (B18)). 
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Figure B. 7 Contributions to the ADRE anomalies in the GFDL-ESM4 model from (a-e) state 

variable anomalies and (f-j) from ADRE sensitivity differences. 
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Figure B. 8 Similar to Figure 3.2, but for the regional mean ADRE anomalies in the CMIP6 

GCMs for East Asia.  (a) ADRE inter-model anomalies; (b) decomposition terms of ADRE inter-

model anomalies; (c) all contributions. 
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Figure B. 9 Same as Figure B8, but for the Arctic. 
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Figure B. 10 The global mean component contributions to ADRE anomalies by (a) state 

variables (ΔX;,@ terms) and (b) radiative sensitivity difference (Δβ;,@ terms). 

 

Table B. 1 For each CMIP6 model and the multi-model mean, the regression coefficient β;, and 

the R2 and the RSME compared to the truth values provided by the model outputs. 

 R2 RMSE 

(Wm-2) 

𝛃𝐒𝐀𝐎𝐃 𝛃𝐒𝐀𝐎𝐃∙𝐀𝐋𝐁 𝛃𝐀𝐀𝐎𝐃∙𝐀𝐋𝐁 𝛃𝐒𝐀𝐎𝐃∙𝐂𝐑𝐄 

State Dif

(a)

W
/m

2

Rad sensi Dif

(b)

W
/m

2

SAOD

SAOD*ALB

AAOD*ALB

CRE*SAOD
regr-clos

Global Mean
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CNRM-

ESM2-1 

95% 0.28 1.97 

 

 

0.20 

 

-0.47 -0.52 

GFDL-ESM4 94% 0.41 2.67 

 

 

-0.52 -0.41 

 

-1.08 

HadGEM3-

GC31-LL 

93% 0.50 1.78 

 

 

-0.30 

 

-0.16 -0.56 

MPI-ESM-1-

2-HAM 

92% 0.39 2.23 

 

-0.28 

 

-0.20 

 

-0.95 

MRI-ESM2-0 95% 0.35 2.17 

 

 

-0.29 -0.32 

 

-0.71 

Multi-model 

mean 

95% 0.32 2.06 

 

 

-0.37 

 

-0.24 -0.71 
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Table B. 2 Name, radiation scheme, short-wave spectral resolution, spatial resolution, aerosol 

scheme, and references for selected models. 

 Radiation 

scheme 

Spectral 

resolution 

Spatial 

resolution 

Aerosol scheme 

CNRM-ESM2-

1 

2-stream, 𝛿-Ed 

(Dqu et al., n.d.) 

6 SW bands 

(Voldoire et al., 

2013) 

Arpege 6.3 

(T127; Gaussian 

Reduced with 

24572 grid points 

in total distributed 

over 128 latitude 

circles); 91 levels; 

top level 78.4 km) 

TACTIC_v2 

GFDL-ESM4 𝛿-Ed+adding 

(Freidenreich & 

Ramaswamy, 

1999) 

18 SW bands GFDL-AM4.1 

(Cubed-sphere 

(c96) - 1 degree 

nominal 

horizontal 

resolution; 360 x 

180 

longitude/latitude; 

49 levels; top 

level 1 Pa) 

interactive 
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HadGEM3-

GC31-LL 

SW: 2-stream 

𝛿-Ed +	𝛿-

scaling; LW: 2-

stream PIFM + 

𝛿-scaling  

(Edwards & 

Slingo, 1996; 

Mulcahy et al., 

2020) 

6 SW bands MetUM-

HadGEM3-

GA7.1 (N96; 192 

x 144 

longitude/latitude; 

85 levels; top 

level 85 km) 

UKCA-

GLOMAP-mode 

MPI-ESM-1-2-

HAM 

2-stream 𝛿-Ed 

(Stevens et al., 

2013) 

14 SW bands ECHAM6.3 

(spectral T63; 192 

x 96 

longitude/latitude; 

47 levels; top 

level 0.01 hPa) 

HAM2.3 

MRI-ESM2-0 2-stream 𝛿-Ed 

(Yukimoto et 

al., 2019) 

22 SW bands MRI-AGCM3.5 

(TL159; 320 x 

160 

longitude/latitude; 

80 levels; top 

level 0.01 hPa) 

MASINGAR 

mk2r4 (TL95; 

192 x 96 

longitude/latitude; 

80 levels; top 

level 0.01 hPa) 

Abbreviations: adding = adding method, δ-Ed = delta Eddington,	𝛿 -scaling = delta scaling, 

PIFM = Practical Improved Flux Method 
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Appendix  C  

C Chapter 4 Supplementary Information 

C1 List of Figures and Tables 

 

Figure C. 1 Validation of total column aerosol optical depth (AOD) reconstructed from 

MERRA-2 aerosol mixing ratio data for black carbon (BC), dust (DU), sea salt (SS), organic 

carbon (OC), and sulfate (SU) aerosols. The validation is conducted for Beijing, China, in 

January 2020. 
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Figure C. 2 The same as Figure C1 but for total column scattering aerosol optical depth. 
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Figure C. 3 Validation of all-sky total column ADRE calculations using RRMTG for January 

1st, 2020. Upper: ADRE from MERRA2; Middle: RRTMG-calculated ADRE; Bottom: Bias. 
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Figure C. 4 Linear scaling test for broadband Top-Of-Atmosphere (TOA) flux changes (∆R) in 

response to perturbations in stratospheric scattering and absorbing AOD. Aerosols are placed at 

the 1st layer above tropopause. The scattering AOD perturbations are 0.1 and 0.01, while the 

absorbing AOD perturbations are 0.01 and 0.001, respectively. 
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Figure C. 5 Linear additivity test for broadband TOA flux changes (∆R) in response to 

perturbations in both stratospheric scattering and absorbing AOD. Aerosols are positioned at the 

1st, 5th, and 10th layer above the tropopause, respectively. The perturbations are set to 0.1 for 

scattering AOD and 0.01 for absorbing AOD. The summed ∆R for scattering and absorbing 

AOD perturbations shows good agreement with the results from total AOD perturbations. 
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Figure C. 6 Height dependency test for broadband TOA flux changes (∆R) in response to 

aerosol perturbation layer height. The ADRE results from perturbing AOD at a single random 

layer (e.g., 1st, 5th, 10th above the tropopause) are similar to those obtained from perturbing the 

entire stratospheric aerosol profiles. 
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Figure C. 7 Comparisons between the annual mean stratospheric AODscat and AODabs kernels 

for the years 2020 and 2022. First row: 2020; Middle row: 2022; Bottom row: differences (2020-

2022). 
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Figure C. 8 Validations of the physically sorted broadband aerosol kernels for stratospheric 

AODscat and AODabs against benchmark RRTMG calculations. 

Figure C. 9 Comparisons between the stratospheric ADRE kernels developed in this work and 

the YH23 clear-sky kernels for total column aerosols. Left column: kernels for AODscat; Right 

column: kernels for AODabs. 
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Table C. 1 Evaluation of predictor performance for SAOD kernels normalized by insolation 

(%
w
ijklm
iwjok

). R is the TOA reflectance and τ is the stratospheric aerosol optical depth. R2 represents 

the coefficient of determination, and RMSE is the Root Mean Squared Error. 

1 

predictor 

𝑅r 𝑅r&  τ 𝑅r τ - - 

R2 86.04%  84.21%  69.82%  73.18%  - - 

RMSE 3.40 3.63 4.75 4.51 - - 

2 

predictors 

(𝑅r τ& 

(𝑅r&) 

(𝑅r τ& (τ (𝑅rτ& (𝑅r) (𝑅r&) & (τ (𝑅r) & (τ (𝑅r&) & 

(𝑅r) 

R2 92.50%  83.87%  92.50%  91.72%  93.91%  87.30%  

RMSE 2.27 3.55 2.27 2.44 2.02  3.15 

3 

predictors 

(𝑅r&) & (𝑅r) 

& (τ) 

(𝑅r&) & (𝑅r) 

& (𝑅r τ) 

(𝑅r&) & (τ) 

& (𝑅r τ) 

   

R2 94.01% 93.55%  92.50%  - - - 

RMSE rmse=2.99 rmse=3.06  rmse=3.26 - - - 

4 

predictors 

(τ) & 𝑅r& & 

(𝑅r) & (𝑅r 

τ) 

- - - - - 

R2 94.08%  - - - - - 

RMSE 2.38 - - - - - 
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Table C. 2 Evaluations of predictor performances for AAOD kernels normalized by insolation 

(%
w
ijklm
ijjok

). R is the TOA reflectance and τ is the stratospheric aerosol optical depth. 

1 

predictor 

𝑅r 𝑅r&  τ 𝑅r τ - - 

R2 74.03%  87.49%  1.97%  50.86%  - - 

RMSE 45.45 29.54 83.21 52.46 - - 

2 

predictors 

(𝑅r τ) & 

(𝑅r&) 

(𝑅r τ) & (τ) (𝑅rτ) & (𝑅r) (𝑅r&) & (τ) (𝑅r) & 

(τ) 

(𝑅r&) & 

(𝑅r) 

R2 90.43%  86.32%  82.59%  88.64%  76.37%  89.89%  

RMSE  23.96 27.55 32.37 26.59 39.53 25.57 

3 

predictors 

(𝑅r&) & (𝑅r) 

& (τ) 

(𝑅r&) & (𝑅r) 

& (𝑅r τ) 

(𝑅r&) & (τ) & 

(𝑅r τ) 

   

R2 90.43%  86.32% 82.59% - - - 

RMSE 23.96 27.55 32.37 - - - 

4 

predictors 

(τ) & 𝑅r& & 

(𝑅r) & (𝑅r τ) 

- - - - - 

R2 95.30%  - - - - - 

RMSE 17.99 - - - - - 
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