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Abstract 

Genes are fundamental units of heredity that encode genetic information and serve as 

the basis for the development and functioning of all living organisms. Variations within the 

genetic code, as well as their interactions with environmental factors, underpin the diverse array 

of individual differences that ultimately dictate our susceptibility to various diseases. 

 Genome-wide association studies (GWAS) have increasingly generated informative 

genetic risk variants for mental health-related traits (Wray et al. 2012). These correlation 

studies highlight the complex and intricate polygenic nature of many psychiatric disorders. A 

standard GWAS, however, falls short of properly capturing the mechanisms that can control 

gene expression. In particular, the influence of epigenetic factors, which have a significant 

impact on gene regulation, is disregarded. Consequently, employing a multi-omics approach 

that integrates data from various sources, such as genomics, transcriptomics, and epigenomics, 

can build more accurate and informative risk assessment models. 

Using a Neighbourhood Disadvantage (ND) EWAS (Reuben et al. 2020), we 

constructed an expression-based polygenic risk score (ePRS) weighted by Nacc (Nucleus 

Accumbens) tissue expression (Silveira et al. 2017a) and a methylation score for children using 

3 different cohorts (GUSTO, ALSPAC, BIBO). We also calculated a prenatal adversity score 

by summing various sources of hardship experienced during the prenatal period to inform on 

the impact of early life environmental stressors. Multiple linear regression models were 

constructed to investigate the influence of the ePRS, methylation scores (M) and prenatal 

adversity (A) on socioemotional outcomes. We observed that variability was best explained by 

a multi-omics model (M + ePRS x A + ePRS +A) in the GUSTO cohort at 7 years. Using 

simple slope analysis, we showed that children at age 7 years old who have higher ePRS and 

who are exposed to high prenatal adversity have heightened emotional and behavioural 

problems in comparison to children who have low exposure to adversity. Meanwhile, we 



observed that children with a higher. ePRS score in the ALSPAC cohort at 11 years has 

increased externalizing behavioural problems when exposed. To high levels of prenatal 

adversity. We also observed that children in the BIBO cohort who have high ePRS and who 

are not exposed to adversity have lower internalizing scores than children with lower ePRS. 

We also investigated the biological background of the ePRS exploring its gene network, 

biological pathways and tissue expression. Our enrichment analysis revealed that the 

Neighbourhood Disadvantage (ND)  gene network is prominently expressed in fetal 

development and young adulthood. The genes in the ND network are involved in the regulation 

of the synaptic vesicle cycle, synapse organization and nervous system development. These 

results highlight an important gene network involved in individual differences in 

neurodevelopmental processes, as well as vulnerability to behavioural problems in children.   

Overall, this thesis aimed to explore the complex interplay between genes and the 

environment and their impact on childhood socioemotional problems, focusing on the role of 

variability in genetic and environmental factors in influencing susceptibility to these 

socioemotional issues.  

 

  



Résumé 

Les gènes sont des unités fondamentales de l'hérédité qui codent l'information 

génétique et servent de base au développement et au fonctionnement de tous les organismes 

vivants. Les variations au sein du code génétique, ainsi que leurs interactions avec les facteurs 

environnementaux, sont à la base de toute une série de différences individuelles qui 

déterminent en fin de compte notre susceptibilité à diverses maladies. Les études d'association 

à l'échelle du génome (GWAS) ont de plus en plus généré des variantes de risque génétique 

informatives pour les traits liés à la santé mentale (1). Ces études de corrélation mettent en 

évidence la nature polygénique complexe de nombreux troubles psychiatriques. Toutefois, une 

étude d'association pangénomique standard ne parvient pas à saisir correctement les 

mécanismes qui peuvent contrôler l'expression des gènes. En particulier, l'influence des 

facteurs épigénétiques, qui ont un impact significatif sur la régulation des gènes, n'est pas prise 

en compte. Par conséquent, l'utilisation d'une approche multi-omique qui intègre des données 

provenant de différentes sources, telles que la génomique, la transcriptomique et 

l'épigénomique, peut permettre d'élaborer des modèles d'évaluation des risques plus précis et 

plus informatifs. 

À l'aide de l'EWAS (Neighbourhood Disadvantage) (2), nous avons construit un score 

de risque polygénique basé sur l'expression (ePRS) pondéré par l'expression du tissu Nacc 

(Nucleus Accumbens) (3) et un score de méthylation pour les enfants en utilisant 3 cohortes 

différentes (GUSTO, ALSPAC, BIBO). Nous avons également calculé un score d'adversité 

prénatale en additionnant diverses sources de difficultés rencontrées pendant la période 

prénatale afin d'obtenir des informations sur l'impact des facteurs de stress environnementaux 

au début de la vie. Des modèles de régression linéaire multiple ont été élaborés pour étudier 

l'influence du ePRS, des scores de méthylation (M) et de l'adversité prénatale (A) sur les 

résultats socio-émotionnels dans trois cohortes indépendantes à différents âges (GUSTO, 



ALSPAC et BIBO). Nous avons observé que la variabilité était mieux expliquée par un modèle 

multi-omique (M + ePRS x A + ePRS +A) dans la cohorte GUSTO à 7 ans. En utilisant une 

analyse de pente simple, nous avons montré que les enfants âgés de 7 ans qui ont un ePRS plus 

élevé et qui sont exposés à une adversité prénatale élevée ont des problèmes émotionnels et 

comportementaux accrus par rapport aux enfants qui sont peu exposés à l'adversité. 

Parallèlement, nous avons observé que les enfants de la cohorte ALSPAC âgés de 11 ans et 8 

mois ont des problèmes comportementaux extériorisés. Nous avons également observé que les 

enfants de la cohorte BIBO qui ont un ePRS élevé et qui ne sont pas exposés à l'adversité ont 

des scores d'intériorisation inférieurs à ceux des enfants qui ont un ePRS plus faible. 

Nous avons également étudié le contexte biologique de l'ePRS en explorant son réseau 

de gènes, ses voies biologiques et l'expression des tissus. Notre analyse d'enrichissement a 

révélé que le réseau de gènes ND (Neighbourhood Disadvantage) est exprimé de manière 

proéminente dans le développement fœtal et chez le jeune adulte. Les gènes du réseau ND sont 

impliqués dans la régulation du cycle des vésicules synaptiques, l'organisation des synapses et 

le développement du système. Ces résultats mettent en évidence un important réseau de gènes 

impliqué dans les différences individuelles dans les processus de développement neurologique, 

ainsi que dans la vulnérabilité aux problèmes de comportement chez les enfants.   

Dans l'ensemble, cette thèse visait à explorer l'interaction complexe entre les gènes et 

l'environnement et leur impact sur les problèmes de l'enfance, en se concentrant sur le rôle de 

la variabilité des facteurs génétiques et environnementaux dans l'influence de la susceptibilité 

à ces problèmes comportementaux.  
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CHAPTER 1. INTRODUCTION  

1.1 Framing the questions  

Psychiatric disorders are the leading contributor to global disability, affecting 1 in every 

8 people or 970 million individuals around the world ("Global Burden of Disease Collaborative 

Network. Global Burden of Disease Study 2019 (GBD 2019) Population Estimates 1950-

2019."  2020). Recent data from the Global Burden of Disease (GBD) 2020 report highlights 

the negative impact of the COVID-19 pandemic, showing an increase of 25.6% and 27.6% in 

anxiety and major depressive disorder in just one year, respectively (Santomauro et al. 2021). 

In 2019, 58 million children and adolescents were living with an anxiety disorder and 23 

million were living with depression ("Global Burden of Disease Collaborative Network. Global 

Burden of Disease Study 2019 (GBD 2019) Population Estimates 1950-2019."  2020). Certain 

adverse conditions, such as poverty, violence or early life trauma, can increase the risk of 

developing psychopathology, whereas protective factors can aid in preventing the onset of 

these disorders. Genetic and epigenetic factors produce unique spectra of phenotypes and play 

a crucial role in the complexity of mental health-related traits. Identifying causal genetic 

variants and epigenetic markers that are sensitive to stressors would allow a better 

understanding of the underlying pathobiology of disorders.  

The identification of reliable and informative genetic markers for mental health 

disorders has been hindered by the challenge of accessing human brain tissue. Collaborative 

efforts such as the Human Genome Project and the HapMap have contributed to the unravelling 

of the genetic basis of complex psychiatric diseases since recent advances in sequencing 

technologies through genome-wide association analyses (GWAS). More than 600 GWASs 

have been published and over 128,550 associations were made linking single nucleotide 



polymorphism (SNP) to a disease or trait (Buniello et al. 2019; MacArthur et al. 2017). DNA 

microarrays enable cost-efficient testing techniques that provide a long-term repository 

biobank that will better represent a population in its entirety. Mapping gene loci associated 

with psychiatric disorder traits is of fundamental biological interest to make clinically relevant 

interferences as well as to early, more accurate diagnosis and personalized therapy. 

Despite the success of GWAS, various limitations restrict the application of gene 

association studies in a clinical context. Firstly, the majority of trait or disease-associated SNPs 

(~93%) lie in non-coding regions of the genome and thus do not interfere directly with gene 

expression but may disrupt binding sites for transcription factors regulating expression levels 

(Maurano et al. 2012). Secondly, most gene-mapping studies are focused on single gene 

candidacy aiming to explain a complex disease trait with a reductionist approach ignoring the 

cellular concept that genes operate together and interact with each other and with 

environmental factors (e.g. gene x gene and gene x environment interactions) (Williams and 

Auwerx 2015). Lastly, GWAS is limited by the burden to correct for multiple comparison to 

reach statistical significance (Martin et al. 2019). This limitation can also be influenced by 

phenotypic variance which is determined by how strongly two allelic variants differ in their 

effect sizes and their frequency in the sample. These calculations are problematic for a GWAS 

regarding rare variants or SNPs with small effect sizes (Asimit and Zeggini 2010). 

Furthermore, identifying causal variants is complex due to a variety of factors including the 

incapability to standardize environmental experiences, as well as the inaccessibility to brain 

tissue through biological sample collection that is currently and mostly done by buccal cells or 

blood (Tarantino, Sullivan, and Meltzer-Brody 2011). Therefore, GWAS results heavily rely 

on follow-up studies gathering more information regarding environmental factors, epigenetics 

and/or tissue specificity to narrow disease-related loci. 



The Polygenic Risk Score (PRS) is a useful tool for estimating an individual's genetic 

propensity to a trait or disease by summing up the effects of single nucleotide polymorphisms 

(SNPs) weighted by their corresponding effect sizes (Wray et al. 2014). However, PRS alone 

captures only a fraction of the genetic contribution to risk and integrating it with other risk 

metrics and accounting for tissue specificity can improve accuracy. To address this, our lab has 

developed the expression-based polygenic risk scores (ePRS), which considers co-expression 

gene networks in different tissues to contribute to disease risk or traits additively and 

synergistically (Silveira et al. 2017b; Hari Dass et al. 2019; Miguel et al. 2019; de Mendonça 

Filho et al. 2021; de Lima et al. 2022; Silveira and Meaney 2023). A critical question that will 

be addressed in this thesis is whether ePRS derived from methylation data can be used in 

combination with environmental data to predict variability in childhood problems.   

Prenatal adversity, such as exposure to maternal stress or infection during gestation, has 

been identified as a major environmental stressor that can increase the risk of infants 

developing mental disorders later in life (Schlotz and Phillips 2009). Studies have shown that 

prenatal adversity can impact gene expression and induce epigenetic modifications, leading to 

alterations in brain development and function that increase the likelihood of developing 

disorders such as anxiety, depression, and schizophrenia (Monk, Spicer, and Champagne 

2012). Moreover, individuals with a genetic predisposition to mental disorders may be 

particularly vulnerable to the effects of prenatal adversity, suggesting the existence of gene-

environment interactions in the development of such disorders. Understanding the mechanisms 

by which prenatal adversity influences gene expression and brain development can inform the 

creation of interventions to prevent or mitigate the negative impact of environmental stressors 

on mental health. 

The present thesis builds upon the findings of epigenetic risk factors from human 

population studies on behavioural phenotypes in children. Specifically, we aimed to investigate 



if the ePRS is suitable for translating the findings from EWAS’s back to the genetic variants 

associated with the epigenetic markers. To describe the functional relevance of these genetic 

variants, we addressed our hypothesis on three levels of analysis. We first (1) built scores 

representing the genetic information (ePRS), epigenetic information (methylation score) and 

environmental information (prenatal adversity score) for each individual from each cohort. We 

then proceeded to (2) explore interactions between multi-omics models and childhood 

problems to observe if the ePRS moderated the influences of environmental exposure, with or 

without the addition of the methylation score into the models. Finally, we (3) did a gene 

enrichment analysis to gain mechanistic insights into the gene network associated with the 

methylation markers from the EWAS and represented in the ePRS. The rationale for each of 

these studies follows: 

(1) Given the significance of epigenetic processes in underlying biological responsivity to 

the environment, we rely heavily on the epigenome to gain insights into the 

transcription regulation to further embrace the complexity of individual traits. Current 

DNA methylation populational approaches use epigenome-wide association studies 

(EWAS) or methylation risk scores (MRS) to predict disease risk, which capture 

selected CpGs from high penetrant genes and do not reflect the true effects of complex 

traits where both genetic variants and CpG sites play a role in an intricate expression 

network. Therefore, we investigated the suitability of EWAS data (Reuben et al. 2020) 

to inform and complement the development of a genetic risk prediction model by 

creating an ePRS and a methylation score. 

(2) Early life stressors such as prenatal adversities can exert profound influences on the 

neurodevelopment and cognitive-emotional phenotype of the offspring. Elucidating 

how genetic and epigenetic variants interact with prenatal adversity may provide 

insights in identifying biological markers that are susceptible to the environment. 



Therefore, we explored whether biological signatures in a multi-omics model interact 

with prenatal adversity scores and how such interactions influence childhood problems.  

(3) The conventional approach of single candidate genes has been found to be ineffective 

in explaining complex, non-Mendelian disorders. Psychopathologies are a prime 

example of such intricacy. By examining how genes interact with one another in a 

network, we can gain insights into how several variants, each with small effects, 

accumulate to influence the risk of multifactorial mental health disorders. To 

understand the functional and biological mechanisms underlying the ePRS gene 

network, we performed a gene enrichment analysis. 

Currently, there is a gap in the genetic risk models to accurately capture the entirety of 

gene translation into phenotype and disease traits. Through this approach, we sought to 

contribute to the elucidation of complex interactions between gene variants, gene expression 

and environmental factors that contribute to the development and progression of various 

disorders. The subsequent section presents a comprehensive overview of our efforts to 

understand the complex nature of mental health risk and the current identification of genetic 

and epigenetic risk factors associated with childhood problems in response to early life 

adversity. It also provides an update on the status of multi-omics technologies and the potential 

for integrating multiple omics levels in functional genomics. We will also address genomics, 

prenatal adversity and neighborhood disadvantage as early-life environmental challenges. 

 

1.2 Unravelling the complexity of mental disorders 

The etiology of mental illnesses exhibits significant complexity in genetic architecture, 

as evidenced by the fact that the aggregate contribution of genetic risk factors only accounts 

for a fraction of the heritability observed across most mental health disorders. The recent and 



rapid progress in psychiatric genomics has simultaneously created a set of opportunities and 

challenges. By combining large-scale human datasets with robust biostatistical approaches, we 

now have powerful tools that enable us to seek important clues regarding the puzzling nature 

of psychopathologies. 

But why is our current understanding of psychiatric diseases limited?  The limitations 

in our current comprehension of psychiatric disorders arise from the impact of genetic 

variations on biological mechanisms within molecular pathways, including neurotransmitter 

transmission. These variations can affect intermediate processes such as attention and working 

memory, which, in turn, can influence macro-level processes such as stress sensitivity and 

behavioral patterns. The interplay between these processes and their interactions with one 

another contribute to an individual's overall phenotype. Furthermore, susceptibility or 

resistance-conferring genetic variants interacting with environmental factors can lead to 

different phenotypes, ultimately affecting disease severity and progression. 

Despite the growing recognition and research in mental health, our current 

understanding, diagnosis, and treatment remain rooted in a monocausal framework. The 

etiology of these disorders exhibits both multifinality meaning that the same causal factor can 

result in various mental health outcomes, and equifinality, meaning that different causal factors 

can lead to the same mental disorder (Cicchetti and Rogosch 1996). McLaughlin and 

colleagues, in their review of transdiagnostic risk and resilience to childhood trauma and 

psychopathology, argue that understanding how mechanisms and processes unfold over time, 

especially during childhood and adolescence, is crucial in preventing the development of 

psychopathology. This emphasizes the need for a developmental approach in the study of 

mental disorders, which considers the dynamic interplay between environmental stressors, 

genetic vulnerability, and neural processes (McLaughlin et al. 2020).   



Furthermore, the challenges in understanding and treating mental disorders are not only 

limited to their pathobiology but also stem from societal stigmas and stereotypes surrounding 

mental illness. However, recent efforts in recognizing the importance of mental health in the 

job market, such as implementing laws that provide support and days off, signify a positive 

shift towards reducing the negative impact of societal attitudes on mental health. To fully 

understand the complex pathophysiology of mental disorders, it is necessary to combine 

scientific efforts with the recognition and support of the population. By acknowledging and 

addressing early symptoms, and seeking appropriate treatment, we can interrupt the 

progression of these disorders and prevent the development of later psychopathology. 

In the following chapter, we will discuss current techniques in populational genomics 

and how they can contribute to our understanding of the multifaceted nature of mental health 

disorders, including the role of genetic and environmental factors, as well as the importance of 

multi-omics models in accurate risk assessment and effective prevention and treatment 

strategies. 

 

1.3 Current functional genomics risk approaches for psychopathologies 

The Polygenic Risk Score (PRS) is a powerful tool to infer heritability and explore the 

shared etiology of complex traits or diseases. While Genome-wide Complex Trait Analysis 

software (GCTA) (Yang et al. 2011) and  LD score regression (LDSC) (Yang et al. 2010) can 

also be used for the same strategy, the PRS is the only approach that provides an estimate of 

genetic propensity to a trait or disease at the individual level. The PRS is calculated by the sum 

of the SNPs weighted by the corresponding genotype effect size estimates (Z- scores) identified 

in an independent discovery sample, creating a single value estimate for an individual’s genetic 

liability to a specific trait or disease. Targeting high-risk patients can aid a subsequent stratified 



medicine approach and exploit the pleiotropy of mental health diseases. However, PRS only 

captures part of the genetic contribution to risk, and genetic factors do not play the whole role 

in mental diseases. According to a review from Murray et al. 2020, the variance in mental 

health disorder liability described by PRS is 11% for schizophrenia, 4% for bipolar disorder, 

4% for attention-deficit/hyperactivity disorder, 4% for depression, 2% for autism spectrum 

disorder, and 2% for anorexia nervosa (Murray et al. 2021). Therefore, the accuracy of risk 

assessment may be improved by integrating PRS with other risk metrics that not only account 

for genetic variance but include refined measurements that consider gene expression and tissue 

specificity.  

In hindsight of this matter, our lab has created an expression-based polygenic risk score 

(ePRS) (Hari Dass et al. 2019),   a novel technique for genomic risk profiling that creates a new 

perspective for enhanced functional genomics. This expertise has led to the publication of many 

articles focusing on individual risk differences in responsivity to environmental adversity in 

childhood (Batra et al. 2021; de Mendonça Filho et al. 2022; De Lima et al. 2020; Dalmaz et 

al. 2021; Barth et al. 2022; Miguel et al. 2019). This technique differs from traditional PRS as 

it considers co-expression gene networks in different tissues, where the combined effect of 

tissue-specific gene expression can additively and synergistically contribute to a disease risk 

or trait. While the original PRS focuses primarily on candidate associations between scattered 

loci and a trait/condition, the novel ePRS incorporates detailed levels of information on co-

expression and tissue specificity. To incorporate the gene network, the ePRS uses co-

expression RNA sequencing databases from human or animal models, owing to the dynamic 

nature of various polygenic diseases in the mental health field. To address tissue specificity, 

the ePRS uses variant-gene expression association slope given by GTEx, a post-mortem tissue 

bank that provides genetic effects on the transcription from a range of human tissues and organs 

('Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 



regulation in humans'  2015). With these attributes, the ePRS was for example able to better 

predict children with impulsivity, as well as individuals with high risk for addiction and 

Alzheimer’s disease, in comparison to conventional PRS for ADHD, addiction, and dementia 

(Hari Dass et al. 2019). 

  



 

 

Figure 1: Flowchart for functional genomics risk approaches. Created in Biorender.com  

(A) A GWAS requires genotype information from cases and controls or from a population 

sample. After quality control such as adjusting for population ancestry structure, a statistical 

analysis is performed to investigate whether the observed allele proportions are significantly 

more represented in one of the groups at each SNP. If a certain allele is statistically significantly 

more frequent in the group of individuals carrying the disease or trait (below the GWAS level 

of significance), it will be significant in the GWAS analysis. GWAS also estimates the effect 

size of this association, which quantifies the increased likelihood of developing the trait per 

risk allele count. These results are plotted in a Manhattan plot, which can serve as a platform 

for fine-mapping the genomic regions to find a true causal variant, identifying genes affected 

by the variant or identifying pathways, tissues and cell types implicated in this trait.  



(B) The estimated PRS is informed by an external or discovery GWAS. The PRS is calculated 

in the target/test sample by the sum of the individual-level genotype weighted by the SNP effect 

sizes stated in a discovery GWAS. The final score is seen as a normally distributed score in the 

sample where the higher the score, the higher the genetic risk of trait or disease compared to 

the lower genetic risk score. 

(C) The ePRS model is informed by a gene co-expression network identified using RNA 

sequencing data to characterize disease-relevant biological processes that are coregulated in 

certain tissues. Following the discovery of a gene network, the genetic variation within the co-

expression network is mapped in an independent target sample to weight the SNPs based on 

tissue specificity, often utilizing the association between alleles and gene expression provided 

by GTEx. The final ePRS score is tissue-specific, mapping the relationship between 

functioning biological processes and the target sample genotype. 

  



1.4 Beyond traditional genetic data: the role of epigenetics  

Genotype risk prediction models mentioned above are of importance for the study of 

psychiatric phenotypes but are limited by not including epigenetic and/or environmental data. 

The field of epigenetics studies the changes in gene expression profiles that are not caused by 

the nucleotide sequence of the DNA. The four main components of epigenetics are DNA 

methylation, histone modification and chromatin remodelling, as well as non-coding RNA-

mediated modifications with small non-coding RNAs, such as microRNAs (miRNAs).  

DNA methylation, considered to be the most extensively studied epigenetic 

modification, can change the accessibility of genes to the transcriptional machinery, thus, 

directly modulating the mRNA expression levels. DNAm involves the transfer of a methyl 

group by the DNA methyltransferase (DNMT) enzymes to the cytosine bases present in 

eukaryotic DNA, resulting in the addition of a methyl group to the C5 position of the cytosine 

residues (5-methylcytosine). This process is separated by two regulatory layers: de novo and 

maintenance methylation. De novo methylation results in establishing new methylation 

patterns to previously unmethylated DNA regions. This process is primarily done by DNMT3a 

and DNMT3b enzymes. Maintenance methylation, on the other hand, refers to the preservation 

of existing methylated patterns during replication. This is done by DNMT1 which recognizes 

hemimethylated CpG sites (where only one DNA strand is methylated) and adds a methyl 

group the newly synthesized strand to restore full methylation of the CpG site. Both regulations 

ensure the proper establishment and maintenance of DNAm patterns.  



 

Figure 2: The mechanism of DNA methylation. Created in Biorender.com  

The process of DNA methylation involves DNMT1, DNMT3A, and DNMT3B enzymes, 

which catalyze the addition of a methyl group to the fifth position of the pyrimidine ring of 

cytosine. These DNA methyltransferases (DNMTs) utilize S-adenosylmethionine (SAM) as a 

donor of the methyl group. As a result of this process, SAM gets converted to S-

adenosylhomocysteine (SAH). 

  



Recent scientific advancements have led to a paradigm shift from the early belief that 

DNAm has the same effects on transcription across all locations within the genome. It is now 

well known that the effects of DNAm on transcription are different and location-dependent. 

DNAm at gene promoters located within CPG islands is linked to the formation of a condensed 

chromatin structure, resulting in the suppression of gene expression, including X chromosome 

inactivation (Jaenisch and Bird 2003) and genomic imprinting (Li, Beard, and Jaenisch 1993). 

On the other hand, DNAm occurring at enhancers can promote transcriptional activation by 

recruiting transcriptional factors known to be crucial for early development (Ziller et al. 2013). 

Furthermore, other effects of DNAm have been associated with critical functions in a variety 

of biological processes suggesting roles in repression, promotion or modulation of the gene 

expression (Moore, Le, and Fan 2013). 

DNAm can be highly sensitive to environmental factors and can be induced by stress, 

diet, smoking, medication and physical activity. Developmental factors also play a role in 

mitigating the DNAm profile. Prenatal adversities have been reported to have an effect on a 

widespread of DNAm changes at birth. Tobi et al. reported that DNAm at an enhancer linked 

to PIM3 expression mediated the association between prenatal famine exposure and BMI (Tobi 

et al. 2018). Suggesting that there is a connection between prenatal exposure to adversity and 

later-life metabolic health. Kundakovic et al. has also investigated how early-life adversity can 

increase the risk of psychopathology in later life due to epigenetic variation(Kundakovic et al. 

2015). They showed that prenatal bisphenol A (BPA) exposure induces lasting DNA 

methylation changes in the transcriptionally relevant region of the BDNF gene in the 

hippocampus and blood of BALB/c mice, which is consistent with BDNF changes in the cord 

blood of humans exposed to high maternal BPA levels in utero. Additionally, studies of 

“Epigenetic clocks”, that are biological markers for aging, have associated epigenetic age 

acceleration with the onset of stress-related mental health problems (McGill et al. 2022).  



Epigenetics is an exciting and growing field of research that has already made a 

significant impact on our understanding of the role of genes in the development of mental 

health disorders. Unlike genetics, which focuses on changes in the DNA sequence itself, 

epigenetics looks at the modifications above nucleotide sequences that can be influenced by 

environmental factors. The brain is particularly relevant to these influences, as it is the tissue 

that contains the highest levels of methylation (Ehrlich et al. 1982). This makes it an important 

area of study for understanding the molecular mechanisms underlying mental health disorders. 

In the subsequent section, we will dive into some of the latest research on epigenetics in mental 

health, highlighting the importance of this emerging field for improving our knowledge and 

treatment of these disorders. 

  

1.5 Exploring DNAm effects in psychiatric disorders  

The in-depth study of the molecular bases of mental illnesses can now be done through 

a new lens thanks to the area of epigenetics. DNA methylation (DNAm), one of the many 

epigenetic pathways, has become a major field of study for psychiatric diseases. The function 

of DNAm in a variety of psychiatric illnesses, including major depressive disorder (MDD), 

schizophrenia, bipolar disorder, and anxiety disorders, among others, has been the subject of 

numerous research. These analyses have uncovered fascinating relationships between 

particular genes or genomic areas engaged in crucial biological processes important to mental 

health. 

Determining the age of onset for mental health disorders can be challenging, and 

understanding the time-dependent modifications of epigenetics by the environment adds 

another layer of complexity. Unravelling whether epigenetics acts as a mediator or a causal 

factor in this context is a complex task. Additionally, the concept of biological aging, which is 



associated with various health risks, introduces another dimension. The way the epigenome is 

tied to this concept is called epigenetic clocks and it has been used to predict one’s biological 

age. Epigenetic clock acceleration can be influenced by many aspects, such as smoking, alcohol 

use, and even Social Economic Status (SES) (Luo et al. 2020; McCrory et al. 2022; Oblak et 

al. 2021). This highlights the significance of projects that integrate multiple cohorts with 

longitudinal data, contributing to our understanding of the dynamic nature of DNA methylation 

(DNAm) patterns in mental health. 

One of the key interests has been identifying methylation of specific genes and their 

potential as predictors in different psychiatric disorders. For example, Zhou et al demonstrated 

the role of DNAm in drug response in different psychopathologies including major depressive 

disorder (MDD) which is a prevalent mood disorder that is distinguished by periods of low 

mood, reduced motivation, and loss of interest in enjoyable activities (Zhou et al. 2021). With 

blood samples taken from patients diagnosed with schizophrenia, bipolar disorder and major 

depressive disorder, as well as healthy controls, researchers found significant differences in 

DNA methylation patterns in specific genes that are associated with drug response and 

neurotransmitter pathways in patients with psychiatric disorders compared to controls. 

Specifically, patients with schizophrenia and bipolar disorder showed methylation changes in 

genes that are involved in the dopaminergic and glutamatergic neurotransmitter systems, such 

as the promoter region of the DRD2 and GRIN1 genes. In patients with major depressive 

disorder, methylation changes were found in genes involved in the serotoninergic and 

neurotrophic pathways, including the promoter region of the SLC6A4 and BDNF genes. These 

findings suggest that DNA methylation changes in specific genes may contribute to the 

differences in treatment response observed in these disorders and allow a clinical approach to 

these targeted genes. 



Overall, the emerging field of DNA methylation research in psychiatric disorders provides 

valuable insights into the underlying mechanisms and potential targets for therapeutic 

interventions. 

 

1.6 EWAS and MRS 

Genetics and epigenetics alone are insufficient to serve as the sole determinants of 

mental health. The development and manifestation of mental disorders are influenced by 

intricate interactions between gene expression networks and environmental factors. 

Acknowledging this complex nature, scientists have embarked on exploring the integration of 

epigenetic risk analysis, similar to current gene risk analysis, to gain deeper insights into the 

etiology of mental disorders. This chapter delves into the notion that the multifaceted nature of 

mental disorders arises not from single nucleotide polymorphisms (SNPs) or isolated CpG sites 

but rather from the intricate interplay and cumulative effects of multiple genetic and epigenetic 

factors.  

Significant advancements in computational approaches and technology have 

accelerated epigenome research. The analysis of DNA methylation patterns on a genome-wide 

scale is made possible by high-throughput sequencing methods like next-generation 

sequencing. The identification and characterization of CpG sites and areas that display diverse 

methylation patterns in response to numerous biological activities and disease states have been 

made easier by these large epigenomic databases. To uncover these complex interactions, 

researchers have been integrating epigenetic data into epigenome-wide association studies 

(EWAS) or even by creating methylation risk scores (MRS).  

For instance, a study in 2020 by Provençal et al. created a polyepigenetic score 

assessing differentially methylated CpG sites when human hippocampal progenitor cell line 



and blood cells were exposed to glucocorticoids (Provençal et al. 2020). The weighted 

polyepigenetic score was applied to new-borns’ cord blood DNA (n=817) and the score was 

significantly associated with maternal anxiety and depression. This suggests that early-life 

stress can induce epigenetic changes and modify vulnerability to later stress exposure.  

Moreover, articles on methylation risk scores (MRS) have been of recent interest. 

Similar to the PRS calculation, MRS is defined by a linear combination of n CpG sites beta 

values C and weights W. Using certain methylation patterns at numerous CpG sites, this method 

enables the estimation of a person's epigenetic risk profile. MRS provides a valuable tool for 

assessing the cumulative impact of epigenetic modifications on disease susceptibility and other 

phenotypic outcomes. 
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A recent publication from Thompson et al. demonstrated the outstanding predictive 

performance of MRS on a variety of outcomes. Unexpectedly, the MRS-based imputations 

were more informative compared to PRS in 84 (92%) medication usage, 32 (94%) lab panel 

values, and 123 (82%) diagnoses, and in more than half of the cases, the imputation accuracy 

was more than doubled (Thompson et al. 2022). This article highlights the importance of 

including other measurements such as methylation, RNA, microbiome, metabolomics, or 

proteomic data when accessing individual risk. Tangentially, while polygenic risk scores 

provide unchangeable risk for a patient, methylation risk scores may provide a current risk state 

for the patient over the last months, and other information may provide risk within a timeline 

of days or even hours (e.g., RNA or metabolomics) (Thompson et al. 2022).  

Another notable contribution to the field of psychiatric epigenetics comes from the 

recent study conducted by Charlie et al. published in 2022 (van den Oord et al. 2022). This 



study specifically focused on the power of methylation risk scores in predicting psychiatric 

disorders. Notably, by developing an MRS specific to trauma-related outcomes, the score 

exhibited superior predictive capabilities compared to merely counting the occurrences of 

traumatic events. The trauma-related MRS captured the individualized long-term effects of 

trauma, enabling the prediction of various outcomes including depression, nicotine 

dependence, and alcohol use disorder.   

Hence, the integration of epigenetics is promising for trait genetics studies since genes 

alone provide insufficient information to understand the full scope of non-monogenic 

phenotypes. By incorporating epigenetic information through methods like MRS, researchers 

can enhance their understanding of the underlying mechanisms and predictive models, paving 

the way for advancements in personalized medicine and the comprehensive assessment of 

individual risk profiles. 

 

1.7 Impact of Early Environmental Stressors 

The onset of mental health disorders is heavily influenced by the complex interplay 

between genes and environmental factors. The role of the environment in mental health 

disorders has been firmly assessed by twin studies (Manolio et al. 2009). Additionally, research 

has shown that early-life adversities, especially child abuse and/or neglect, have negative 

neurodevelopmental impacts that are associated with an increased susceptibility to develop 

psychiatric disorders later in life (Teicher and Samson 2016). One interesting data cites that by 

age 16 nearly 2 of 3 children have experienced some sort of traumatic experiences including 

parental death or family violence (Copeland et al. 2007). 

Plausible mechanisms of such associations include blunted effects on the reward system 

(Mehta et al. 2010), amygdala hyperactivity and reduced hippocampal volume (Teicher and 



Samson 2013). Nevertheless, prenatal stresses have also been linked to increased mental health 

risk (Coussons-Read 2013). Extensive studies have shown that maternal stress can lead to long-

lasting cognitive and emotional consequences for their offspring (Lautarescu, Craig, and 

Glover 2020). Interestingly, Grundwald et al showed that pregnant female rats that were 

exposed to repeated social stress produced second-generation male offspring that displayed 

heightened anxious behavior compared to controls (Grundwald and Brunton 2015). This 

demonstrates that there is not only a direct but also a transgenerational transmission of prenatal 

stress that surpasses the first filial generation in rodents. In human studies, prenatal and 

postnatal stressor measurements, such as smoking during pregnancy or child neglect, can be 

important quantitative variables for genetic risk assessment models (Ekblad et al. 2010). In 

contrast, positive early life experiences such as high-quality of maternal care can buffer against 

stress (Jaffee, Takizawa, and Arseneault 2017). Therefore, environmental data such as 

pre/postnatal adversity are relevant to psychiatric symptomatology and are promising 

contributions to risk prediction models. 

While there is a large variation in hardships children may experience, there is also 

variability in children’s responses to adversity. To date, studies of gene and environment 

interactions follow two main theories that explain this variability. The first one of these 

theories, the diathesis-stress framework, states that some individuals possess an inherent 

vulnerability that can be triggered by environmental stress (Monroe and Simons 1991). This 

model suggests that the intensity of stress threshold to impact the development of a disorder 

varies according to one’s degree of inherent vulnerability. The second theory is the differential 

susceptibility hypothesis, which suggests that an individual’s biological context varies in their 

responsivity to their environment, some individuals respond more to environmental changes – 

be they negative or positive, with increased risk for pathology when exposed to negative 

environments but above average performance when faced with enriched positive environments 



(Belsky 1997a). Some other individuals are not as sensitive and thus are not affected by either 

negative or positive experiences. Therefore, the idea of "vulnerability" has been steadily moved 

to "plasticity/responsivity" (Dalle Molle et al. 2017). The first evidence for the differential 

susceptibility model was proposed simultaneously and independently by Belsky (Belsky 

1997b) and by Boyce (called biological sensitivity to context) (Boyce and Ellis 2005). An 

example of the genetic evidence for differential susceptibility was described by Pluess et al, 

showing that children with the DRD4 7-repeat allele were not only more likely to be diagnosed 

with ADHD when exposed to prenatal smoking, but they were also less likely to exhibit ADHD 

symptoms when exposed to a healthier intrauterine environment (Pluess, Belsky, and Neuman 

2009). This indicates that genetic variants convey differential responsivity to environmental 

factors rather than vulnerability. Nevertheless, better evidence on what promotes resilient or 

susceptible profiles in children exposed to trauma or adversity is necessary for effective 

interventions to avoid or mitigate the immediate and long-term psychological repercussions. 

 

1.8 The impact of Neighborhood Disadvantage on children’s neurodevelopment 

The present thesis aims to uncover plausible mechanisms of biological epigenetic and 

genetic markers related to neighborhood disadvantage exposure that is linked to childhood 

problems in response to prenatal adversity. The nature of most mental disorders is complex, 

and thus identifying GxE interaction effects on neurodevelopmental outcomes is fundamental. 

As previously described, these interactions provide the biological basis during the plastic 

period of childhood and the understanding of these relationships can contribute to the 

prevention of severe psychiatric consequences in later adulthood. 

Considering the environment, the impact of neighborhood disadvantage on mental 

health and child upbringing is profound and cannot be overstated and can have far-reaching 



consequences throughout adulthood (Christie-Mizell 2022). Growing up in disadvantaged 

neighborhoods exposes children to a range of adverse environmental factors, including poverty, 

violence, substance abuse, and limited access to resources and opportunities. The constant 

exposure to these unfavorable conditions contributes to chronic stress and disrupts the normal 

development of children's cognitive, emotional, and social capacities (Brooks-Gunn 1997; 

Leventhal and Brooks-Gunn 2003; McCoy et al. 2015). 

  



  

Figure 3: How adversity in early stages is linked to mental and physical health throughout 

adulthood. Created in Biorender.com 

Exposure to adversity interacts with a child's genetic endowment, including variations in 

genetic polymorphisms, leading to a wide range of biological changes across various levels. 

These changes manifest as altered gene expression profiles, particularly in genes involved in 

stress response, neural plasticity, and inflammation. Moreover, adversity triggers epigenetic 

modifications, such as DNA methylation and histone modifications, which further modulate 

gene expression patterns and contribute to long-lasting neurodevelopmental disruptions. These 

disruptions affect crucial processes related to stress regulation, reward processing, and 

cognitive function. Collectively, these pathobiological changes in response to early life 

adversity have profound implications for mental and physical health outcomes in adulthood. 

They contribute to an increased vulnerability to mental health disorders and may worsen overall 

well-being.  



Children residing in disadvantaged neighborhoods are more likely to experience higher 

levels of stress and trauma, which can have detrimental effects on their mental well-being 

(Santiago, Wadsworth, and Stump 2011). Chronic exposure to stressors may lead to an 

increased risk of developing mental health disorders, such as anxiety and depression. 

Moreover, neighborhood disadvantage can also contribute to behavioral problems, aggression, 

and delinquency among children and adolescents (Burt et al. 2016). 

These responses have extensive systemic implications that are thought to eventually 

link adversity to physical and mental health (Figure 3). The higher levels of diurnal cortisol 

patterns are an example of an indicator of chronic physiological stress that has been linked to 

neighborhood disadvantage (Karb et al. 2012). Although the precise impacts may differ based 

on each individual, neighborhood conditions have also been connected to cortisol and blood 

pressure reactivity in response to stressful situations (Hackman et al. 2012). Neighborhood 

surroundings have an impact that goes beyond short-term stress and emotion since they can 

also have an impact on long-term stress and emotional functioning because of the cumulative 

effects of acute stress reactions and the long-term costs of adapting to unfavorable 

neighborhood environments. This process of adaptation might appear as either habituation or 

sensitization (increased reactivity with repeated exposures), each having distinct implications 

for the relationship between neighborhood stressors and health outcomes. 

Children's socioemotional problems are made worse by the scarcity of high-quality 

healthcare and education options in underprivileged areas. Poor quality in educational options 

can impede intellectual growth and academic success, perpetuating the cycle of disadvantage. 

Moreover, lack of access to high-quality medical care could lead to misdiagnosed or untreated 

mental health disorders, which would have a longer-term negative effect on children’s 

development. Interestingly another factor that contributes to physical and mental health in low-

income populations is the lack of quality nutritious food. The surroundings of fast foods can 



contribute to malnutrition, affecting the potential healthy growth and becoming an increasingly 

important contributor to adult obesity, diabetes and cardiometabolic diseases (Black et al. 

2013).  

Additionally, the social environment of disadvantaged neighborhoods may lack 

supportive social networks and positive role models, leaving children with limited 

opportunities for positive socialization and mentorship. Social isolation and a higher 

prevalence of negative peer influences can contribute to maladaptive behaviors and increase 

the risk of engagement in risky activities, such as substance abuse. Notably, 

neurodevelopmental consequences may persist throughout adulthood. To circumvent this 

problem several community-based interventions and policies can buffer and modify future 

mental health consequences. This thesis offers multiple layers of analyses, where genetic risk 

profiling with additional epigenetic information can vastly improve our understanding of 

mental health by examining biological susceptibility and its interaction with the environment. 

 

1.9 The Nucleus Accumbens  

In the previous chapter, we explored how children who live in underprivileged areas 

are more likely to experience stress, trauma, and mental health problems because of their 

surroundings and how this can significantly impact their neurodevelopment. To successfully 

understand the biological underpinnings of these effects, it is imperative to acknowledge the 

profound influence that neighborhood disadvantage can exert on brain functioning and 

development.  

Recent studies have shed light on living in disadvantaged neighborhoods and distinctive 

patterns of brain reactivity. For instance, consider a groundbreaking 2022 study involving a 

sample of twins aged 7–19 years (N = 354 families, 708 twins). In this research, these young 



participants engaged in a socioemotional face processing fMRI task. Furthermore, a group of 

unrelated individuals from the same neighborhoods as the twins were enlisted to serve as 

informants on neighborhood social processes. What emerged from this study was truly 

noteworthy: neighborhood disadvantage was found to be associated with heightened reactivity 

in the right amygdala, particularly in response to threat (Suarez et al. 2022). 

Interestingly, the nucleus accumbens (NAcc) and its associated neural systems are often 

implicated in various neurological and psychiatric disorders and have yet to be explored under 

a major cause which is the heightened cases of mental illnesses in disadvantaged populations. 

The nucleus accumbens (NAcc), located in the ventral striatum, plays a crucial role in 

goal- and reward-based behavior. This region integrates information between the limbic and 

extrapyramidal motor systems by receiving neural projections from various midbrain regions, 

such as the ventral tegmental area (VTA), as well as regions involved in emotion (amygdala 

and cortex), motor functions (dorsal caudate and globus pallidus), and memory processes 

(hippocampus) (Jiang et al. 2023). Simultaneously, the NAcc sends signals to several 

interconnected regions including the cortex, amygdala, and hypothalamus, among others. 

Importantly, dysregulation of these neural pathways has been implicated in the development 

of major depressive disorder (MDD) and dysregulation of motivation, highlighting the 

significance of NAcc dysfunction in mental health (Salgado and Kaplitt 2015; Shiflett and 

Balleine 2010). 

Both anxiety and depression, despite having distinct etiologies, share an intriguing 

similarity: the presence of reward-related abnormalities. This observation raises the possibility 

of developing refined treatments targeting dysfunction in the nucleus accumbens (NAcc), a key 

brain region involved in reward processing. Supporting this notion, a recent study revealed that 

adolescents with depression or anxiety exhibited reduced nucleus accumbens volume and 



activation following reward receipt compared to healthy individuals (remaining significant 

even after excluding medicated individuals) (Auerbach et al. 2022). Additionally, multimodal 

modelling indicated that structural alterations in the NAcc were the sole predictors of 

depressive symptoms over a 6-month follow-up period. This suggests that alterations in the 

structure and function of the NAcc play a crucial role in characterizing depressed-anxious 

adolescents, with reduced volume specifically associated with depressive symptoms.  

During the transition from childhood to adolescence, the NAcc undergoes significant 

changes. These functional changes may explain the age-related increase in depression in 

adolescents following exposure to early life stress (ELS). By exploring this idea, B.Goff 

conducted a study comparing 38 youths that have been previously institutionalized and 31 

control individuals with no history of ELS (Goff et al. 2013). The findings revealed higher 

depression rates in adolescents with ELS, along with atypical NAcc development. Unlike the 

typical increase in NAcc reactivity seen in adolescence, the ELS group exhibited 

hypoactivation of the NAcc. Moreover, the lower reactivity in the ELS group was linked to 

higher depression scores. Understanding that the NAcc primarily consists of medium spiny 

neurons, which can be influenced by environmental factors, it is noteworthy that animal studies 

have also shown that exposure to maternal separation or mild prenatal stress can lead to 

alterations in the complexity of dendritic morphology in the accumbens (Monroy, Hernández-

Torres, and Flores 2010; McClure, Ishtoyan, and Lyon 2004b). These results emphasize the 

importance of this age-related limbic structure suggesting a potential neural mechanism 

underlying the increased risk of later depression.  

Abnormalities in the structure and function of the NAcc are thought to contribute to the 

development of these disorders. As such, understanding the role of the NAcc throughout 

different stages of life and its susceptibility to the effects of ELS is crucial for developing 

targeted interventions. 



 

1.10 Multi-Omics Models Challenges and Future perspective 

In our previous chapter, we examined how early life stress (ELS) impacts the Nucleus 

Accumbens (NAcc) and its potential association with increased depression risk during 

adolescence. The atypical development and hypoactivation of the NAcc in response to ELS 

underscore the intricate interplay between environmental factors and neural structure and 

function. Recognizing the NAcc's significance across various life stages and its vulnerability 

to ELS is pivotal for the development of targeted interventions. In this chapter, we will be 

discussing how we can use cutting-edge data integration and analytical techniques to advance 

our exploration. 

Over the past few years, there have been significant advances in precision medicine, 

where medical treatment can be tailored to an individual's specific needs. These advances have 

been facilitated by the increasing availability of large-scale clinical datasets, including data 

from patient records, 24-hour monitoring devices, and smartphones. However, it is worth 

noting that only a small proportion of this data is currently being utilized for research purposes, 

highlighting the need for better integration and analysis of these complex datasets. 

One promising approach for integrating different data types from multi-omics datasets 

is the use of Machine Learning and Systems Genomics approaches, which make use of data 

mining and predictive algorithms. Recent high-impact research studies have demonstrated the 

power of this approach in predicting mental health outcomes and identifying new therapeutic 

targets. Compared to studying a single data type in isolation, the integration of many data types 

through Machine Learning and Systems Genomics offers a more comprehensive understanding 

of phenotype-genotype interactions. This can pave the way for a more customized approach to 

healthcare, with individually tailored medical practices and treatments based on an individual's 



unique genetic and clinical profile. However, there are still challenges to be addressed in the 

development and application of multi-omics models, including data quality control, data 

standardization, and effective integration of data from different sources.  

This thesis delves into the multi-omics analysis of genetic variants across different 

layers of biological information, including genotype, transcriptomics and epigenomics. It 

investigates how these variants can be employed to examine alterations in biological networks 

and provide valuable knowledge regarding the unique ways individuals respond to stress. 

Specifically, we investigate how prenatal adversity interacts with genetic variants and 

epigenetic factors to influence the expression of socio-emotional childhood problems.  
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Abstract 

Exposure to neighborhood disadvantage represents a chronic environmental stressor 

that has detrimental effects on youth development. Notably, individuals exposed to adversities 

early during development are prone to increased risk for a range of health disorders, including 

worsened mental health outcomes in comparison to their peers. However, not all children 

exposed to adversity will develop chronic diseases in the long term. This is due to important 

individual genetic and epigenetic differences accounting for mechanisms of vulnerability and 

susceptibility to adversity that are still to be discovered. In this study, we investigated whether 

interactions between methylation signals associated with Neighborhood Disadvantage and 

related expression-based polygenic score predict risk socioemotional behavior in children 

exposed to different levels of prenatal adversity severity. We constructed a methylation score 

considering the CpG sites discovered in the Neighborhood Disadvantage EWAS. We also 



mapped these CpGs to the nearest genes and calculated an expression-based polygenic risk 

score (ePRS) in the same individuals. We then investigated the influence of ePRS, methylation 

score (M) and prenatal adversity (A) on socioemotional development outcomes in three 

independent cohorts with participants’ ages ranging from childhood to early adolescence 

(GUSTO, ALSPAC and BIBO).  

In the GUSTO cohort at 11 years, a multi-omics model (M + ePRS x A + ePRS + A) 

demonstrated the strongest explanatory power for the variability in socioemotional outcomes. 

High ePRS was associated with worsened behavioral problems in childhood when the 

individuals were exposed to high prenatal adversity but were linked to reduced risk for 

problems in the absence of prenatal adversity. In the ALSPAC cohort at 11 years and 8 months, 

the simpler models exhibited lower explanatory power, while the multi-omics interaction 

model showed promising results, particularly for Externalizing problems. The BIBO cohort 

yielded different results, with all models displaying lower explanatory power, with the multi-

omics interaction model having a stronger association with Internalizing problems.  

Such findings are critical for demonstrating how high exposure to adversity interacts 

with genomic features and neural circuits that together mediate risk and resilience in adulthood. 

Notably, these developmental consequences may persist throughout adulthood and highlight 

the importance of community-based interventions and policies that can buffer and modify 

future health consequences.  

 

Introduction  

It is well known that neighborhood disadvantage has consequential effects on children’s 

mental health problems (Kosidou et al. 2011). Children from disadvantaged backgrounds are 

more likely to experience anxiety and depression and have poorer adult health including 



physical disability and premature death (Kessler et al. 2010; Luby et al. 2017). Regarding fetal 

development, neighborhood disadvantage can also partake in intrauterine growth restriction 

through the poor nutritional status of the mother which leaves an inbuilt vulnerability to a range 

of problems in later life (Lahti et al. 2015; Hales and Barker 1992; Barker et al. 1993; Silveira 

et al. 2018). Similarly, indirect effects of adversity such as prenatal stress are a major risk factor 

for a range of adverse developmental problems, starting from birth with poor fetal growth and 

premature birth (Hedegaard et al. 1996; Bolten et al. 2011), childhood cognitive problems and 

impulsivity or hyperactivity (O'Connor et al. 2003; Laplante et al. 2004) to higher symptoms 

of depression and anxiety in young adulthood (Murphy et al. 2017; Davis and Sandman 2012).  

Exposure to prenatal stress is not only associated with disease risk, but also with 

enduring effects on lasting biological changes including alterations in brain structure, function, 

and connectivity. In animal models, pregnant rats exposed to mild chronic stress produce 

offspring with reduced volumes and cell numbers in the nucleus accumbens (Nacc), a brain 

area involved in reward and emotional processes (McClure, Ishtoyan, and Lyon 2004a). Similar 

associations between early adversity and altered Nacc functional connectivity have been 

described (Fareri et al. 2017; Hanson et al. 2018; Marshall et al. 2018), which is significant for 

several clinical symptoms (Salgado and Kaplitt 2015), especially mood disorders (Sequeira et 

al. 2012). The Nacc is a major component of the mesocorticolimbic dopaminergic pathway 

(Yamaguchi et al. 2011).  Exposure to prenatal stress may exert important effects on Nacc 

function, and this may be a key brain region for understanding susceptibility to adversity. 

Interestingly, while most individuals who emerge from such adverse conditions have a higher 

risk of later psychopathology, not all children exposed to distress will develop psychopathology 

in the long term(Baldwin and Degli Esposti 2021). The main reasons explaining these 

individual differences are due to predisposing genetic and epigenetic factors that can influence 

vulnerability and susceptibility. Genetics plays an important part in the development and onset 



of mental diseases, as well as aiding protective factors. Finding stress-sensitive causative 

genetic variations and epigenetic modifications would enable a better understanding of the 

underlying time-dependent pathobiology of mental disorders (Parikshak, Gandal, and 

Geschwind 2015; Shonkoff et al. 2022). Traditional single-candidate genes do not inform the 

complexity of highly polygenic psychiatric disorders (Gandal et al. 2018). This is due to 

intrinsic expression networks that engage in several linked neurobiological pathways and 

processes (Gandal et al. 2016). Therefore, systems biology approaches and multi-omics 

modelling seem promising for understanding both genetic and epigenetic influences on 

neurobiological networks that may contribute to risk assessment models. 

Here, we aim to investigate whether epigenetic changes associated with the exposure 

to neighborhood disadvantage described in a previous epigenetic-wide association study 

(Reuben et al. 2020) can predict the risk for childhood problems in response to prenatal 

adversity in different cohorts of children. We considered a multi-omics approach including the 

epigenetic changes associated with an adversity exposure (CpGs associated with neighborhood 

disadvantage described in Reuben (Reuben et al. 2020), combined in a methylation score), as 

well as genetic individual variability in the genes where these epigenetic changes were 

identified. For that, we used our novel method of genome profiling, informed by biological 

function, and based on the association between genotype and gene expression in a specific 

tissue (expression-based polygenic scores or ePRS). We focused on the nucleus accumbens as 

our brain region of interest given its strong associations with emotional outcomes (Sequeira et 

al. 2012; McClure, Ishtoyan, and Lyon 2004a), as a brain region important for the childhood 

adversity effects on the risk for psychopathologies. We also investigated whether different 

levels of exposure to prenatal adversity would influence the severity of childhood emotional 

problems.  

  



Material and Methods  

Samples  

Three independent cohorts were included in our analysis: Growing Up in Singapore 

Towards Healthy Outcomes (GUSTO), Avon Longitudinal Study on Parents and Children 

(ALSPAC) and Basal Influences on Baby Development (BIBO). Informed consent was 

obtained from all participants (or their legal guardians). 

The GUSTO cohort consisted of pregnant women 18 years old and above who were 

recruited at the National University Hospital and KK Women’s and Children’s Hospital in 

Singapore (Soh et al. 2014). The eligibility criterion for mothers was being of Chinese, Malay 

or Indian ethnicity with a homogenous parental ethnic background. The exclusion criteria were 

significant medical conditions for mothers, taking certain medications, and mixed marriages. 

The project was approved by The National Healthcare Group Domain Specific Review Board 

and the Sing Health Centralized Institutional Review Board for GUSTO. A total of 102 children 

had complete data (birth records, genotype, methylation data and complete behavioral 

questionnaire) and were included in the study. 

The ALSPAC cohort included pregnant women from the former county of Avon, UK 

with expected delivery dates between April 1991 and December 1992 (Fraser et al. 2013). 

Additional recruitment was done later during Phases II, III and IV respectively, bringing the 

total sample size of prospective mother-child dyads to 15,658 mother-child dyads (Boyd et al. 

2013). This study was approved by the ALSPAC Law and Ethics Committee, and by Local 

Research and Ethics Committees (a full list of the ethics committees that approved different 

aspects of the ALSPAC studies is available at 

http://www.bristol.ac.uk/alspac/researchers/research-ethics/). Consent for biological samples 

has been collected in accordance with the Human Tissue Act (2004). Informed consent for the 



use of data collected via questionnaires and clinics was obtained from participants following 

the recommendations of the ALSPAC Ethics and Law Committee at the time. Please note that 

the study website contains details of all the data that is available through a fully searchable data 

dictionary and variable search tool reference the following webpage: 

http://www.bristol.ac.uk/alspac/researchers/our-data/ and the full ALSPAC data dictionary 

accessible at http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). A total of 

656 children had all provided data (birth records, genotype, methylation data and complete 

behavioral questionnaire) and were included in the current analyses. Demographic 

characteristics for the ALSPAC cohort are provided in Table 3. 

The BIBO cohort consisted of a community-based cohort from the Netherlands. This 

study is part of a project that examines how early caregiving affects children's growth. Mothers 

were enlisted while pregnant through flyers given out in Nijmegen, Arnhem, and nearby towns. 

The research adhered to the Helsinki Declaration. Before the study began, mothers agreed to 

write for themselves and their infants. Inclusion rules were a simple pregnancy with one baby, 

no drug use, and no ongoing health issues, physical or mental. Ethical approval for the study 

was approved by the Ethical Committee of the Faculty of Social Sciences, Radboud University, 

Nijmegen. A total of 119 children had all complete information (birth records, genotype, 

methylation data and complete behavioral questionnaire) and were included in the current 

study.  

 

DNA Methylation data 

In GUSTO, Infinium MethylationEPIC array (Illumina) was used to describe genome-

wide DNA methylation from buccal cell–derived genomic DNA. Signal extraction from raw 

image files, quality control, and preprocessing steps were performed using R’s Minfi package 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/


(Aryee et al. 2014). Standard Minfi quality control (QC; QC threshold < 10.5) was performed 

to have a call rate >99% and we removed all poorly performing samples whose probes had a 

call rate of <75%. DNA methylation of the sex chromosomes and biological sex was predicted 

and matched the reported sex in all cases. Samples with a buccal cell content of less than 55% 

were disqualified and for the measures of buccal cell heterogeneity, we used a well-established 

deconvolution method. 

In ALSPAC, the methylation of DNA in white blood cells in ARIES kids was examined 

three times: at birth (cord blood), at 7 and 15-17 years of age (peripheral blood). DNA 

methylation was processed on maternal buffy coat samples using the Infinium 

HumanMethylation450 BeadChip (“Infinium 450K”) and bisulphite converted with the Zymo 

Research’s EZ DNA methylation Kit (Cat #: D5002). For this study, we used only methylation 

data collected at 7 years of age from peripheral blood.  

In BIBO, buccal epithelial cells were collected from children at 5-6 years using the 

Infinium MethylationEPIC array (Illumina). DNA methylation quality control was performed 

using the meffil package in R (Min et al. 2018). All samples had a call rate above 99%, and 

poorly performed probes with call rates lower than 75% were removed. Buccal cell 

heterogeneity was estimated using a deconvolution approach (Smith et al. 2015) and samples 

with less than 55% buccal cell content were excluded. 

 

Genotyping  

For the extraction of genomic DNA from buccal samples provided by GUSTO 

participants we used the Isohelix DDK-50 kit (Isohelix, UK) and DNA Clean & Concentrate 

Kit (Zymo Research, USA). Genotyping was conducted utilizing the Infinium 

OmniExpressExome array and split by ethnicity for quality checks. Non-autosomal SNPs were 



excluded, as were SNPs with < 95% call rates, 5% minor allele frequencies, 5% and a Hardy-

Weinberg equilibrium p-value of 10-6. Variants in the 1000G reference panel that were 

discordant with their respective subpopulations were deleted. More precisely, variants with 

different allele codings than 1000G, as well as SNPs with frequencies that differ more than the 

threshold specified for the reference population (Chinese: EAS with a threshold of 0.20; Malay: 

EAS with a threshold of 0.30; Indian: SAS with a threshold of 0.20), were excluded. Samples 

with a call rate of less than 99%, cryptic relatedness, or sex/ethnic discrepancies were removed. 

The generated data were pre-phased using SHAPEIT v2.837 with family trio information. The 

Sanger Imputation Service was then used for imputation, with 1000G Phase 3 as the reference 

panel and the Positional Burrows-Wheeler Transform (PBWT) algorithm ("with PBWT, no 

pre-phasing" as the pipeline)(Rubinacci, Delaneau, and Marchini 2020). Imputed data that had 

biallelic SNPs and an INFO score > 0.80 were retained. Imputed genotyping data that were 

common in all three ethnicities (5,771,259 SNPs) were used for further analyses. 

In the ALSPAC cohort, children were genotyped using the Illumina HumanHap550 

quad chip genotyping platform by the Welcome Trust Sanger Institute, Cambridge, United 

Kingdom and the Laboratory Corporation of America, Burlington, NC, United States 

(Richmond et al. 2017). DNA was extracted from blood, cell lines, and mouthwash samples. 

A standard quality control (QC) process was applied. We excluded participants with 

inconsistent self-reported and genotyped sex, minimal or excessive heterozygosity, high levels 

of individual missingness (>3%), and insufficient sample replication (IBD < 0.8). SNPs with a 

call rate < 95%, a MAF < 1%, or those that were not in Hardy-Weinberg Equilibrium (HWE; 

p<5*10-7) were removed. Cryptic relatedness was measured as the proportion of identity by 

descent (IBD > 0.1). Related subjects that passed all other quality control thresholds were 

retained during subsequent phasing and imputation. For all the subjects that were retained (N 

= 9115), a total of 500,527 SNPs passed these quality control filters. Following the quality 



control, the genotyping data was imputed using Impute v3 and the Haplotype Reference 

Consortium (HRC) imputation reference panel (release 1.1), total genotyping data resulted in 

38,898,739 SNPs. 

For BIBO, the QIAamp DNA Mini Kit (Qiagen, Netherlands) and DNA Clean & 

Concentrator columns (Zymo Research, USA) were used to isolate genomic DNA from buccal 

samples. After genotyping arrays, SNPs that had a call rate less than 95%, a minor allele 

frequency (MAF) less than 5% or did not follow the Hardy-Weinberg equilibrium (p < 1e-20) 

were excluded. Non-autosomal SNPs from our analysis and removed samples with call rates 

less than 95% were also excluded from the analysis. To perform genome-wide imputation, we 

utilized the Sanger Imputation Service (McCarthy et al. 2016). 

To evaluate population structure, we conducted principal component analysis (PCA) 

(Patterson, Price, and Reich 2006a; Price et al. 2006) using PLINK 1.9 (Purcell et al. 2007) for 

each cohort on all genotyped SNPs that passed the quality control with MAF > 5% and the 

following pruning parameters: not in high linkage disequilibrium r2<0.20 across 50kb region 

and an increment of 5 SNPs (GUSTO and BIBO) or a threshold of 1.01 for variance inflation 

factor, 100 SNPs region, a 5 SNPs step size (ALSPAC). Based on the screen plot, the first three 

principal components were the most informative of population structure in the three cohorts 

and were included in all analyses. 

 

Methylation score calculation  

In the Neighborhood Disadvantage EWAS by Reuben et al. (Reuben et al. 2020), 

estimates were identified to provide an ecological risk assessment based on 4 independent 

sources including local government data, criminal justice data, systematic social observation 

(using Google Street View), and surveys of neighborhood residents (conducted by the E-Risk 



Study team) (Reuben et al. 2020). This EWAS ultimately provided an association effect 

between exposure to neighborhood disadvantage and their influence on affected CpG’s 

methylation. For the methylation score calculation, in all cohorts we selected only the CpGs 

available in the Neighborhood Disadvantage EWAS (Reuben et al. 2020) with the FDR 

adjusted p-value < 0.15, resulting in 219 CpGs selected for the methylation ND score. Then, 

we kept only the CpGs available in the respective cohorts and weighted the methylation levels 

at each of the CpGs by the estimated beta value derived from the EWAS (association with 

Childhood Neighborhood Disadvantage corrected for smoking). Summation over all CpGs 

provided the Neighborhood Disadvantage (ND) methylation score. Variations in the 

methylation ND score represent individual methylation variation associated with the epigenetic 

responsivity to neighborhood disadvantage. The calculated ND methylation scores in three 

cohorts contained the following number of CpGs: GUSTO - 190, ALSPAC – 218, and BIBO 

– 198. 

 

ePRS calculation  

The ePRS score was calculated based on the SNPs located on the 177 genes related to 

the CpGs described in the Neighborhood Disadvantage EWAS reported from Reuben et al. 

(Reuben et al. 2020). The genetic score was created according to the protocol previously 

described by Silveira et al. (Silveira et al. 2017b; Hari Dass et al. 2019). First, we mapped the 

CpGs included in the ND methylation score in each cohort into the closest genes and selected 

all the SNPs from these genes using the biomaRt package (Durinck et al. 2005; Durinck et al. 

2009). From this list of SNPs, we identified all the SNPs available in each cohort and applied 

linkage disequilibrium clumping (r2 < 0.2 within 500kb region) to eliminate highly correlated 

SNPs. To link the score to a specific brain region, we weighted each SNP by the estimated 



effect of the number of alleles at each SNP on gene expression in the nucleus accumbens (Nacc) 

provided by the Genotype-Tissue Expression (GTEx) ('Human genomics. The Genotype-

Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans'  2015). We 

used the sign of the estimated effect of the association with Childhood Neighborhood 

Disadvantage corrected for smoking from the Neighborhood Disadvantage EWAS (26). The 

sum of all SNPs provided the ND ePRS score (Figure 1). Variations in this score represent 

individual gene expression variation of the set of genes associated with epigenetic responsivity 

to Neighborhood disadvantage. The calculated ND ePRS scores in three cohorts contained the 

following number of SNPs (genes): GUSTO – 1272 SNPs (125 genes), ALSPAC – 7527 SNPs 

(146 genes), and BIBO –5651 SNPs (133 genes). 

 

Environmental adversity - Cumulative Prenatal Adversity Score  

To describe and quantify prenatal adversity conditions we used a cumulative prenatal 

adversity score as a measurement. To create this score, we utilized various indicators pre-

established from the literature, such as maternal health and social economic status, as being 

related to worsening behavioral and health outcomes in children (Silveira et al. 2017b). The 

Cumulative Prenatal Adversity Score predicts childhood problems to a larger extent than any 

single indicator in isolation (Silveira et al. 2017b). One point was given for each criterion 

that was met and all points were summed to obtain the adversity score.  Details of the 

adversity score can be seen in the reference (Silveira et al. 2017b). 

 

Outcomes 

To assess socio-emotional development and possible risk for the development of later 

psychopathology, we used the questionnaires CBCL (for GUSTO and BIBO) and the SDQ (for 



ALSPAC). The Child Behavior Checklist (CBCL) is a questionnaire that includes 100 items 

that are used to evaluate emotional, behavioral, and social difficulties in preschool children 

(Achenbach 1991). The Strength and Difficulties Questionnaire (SDQ) is a questionnaire that 

consists of 25 questions representing 5 subscales (Conduct Problems, Inattention 

Hyperactivity, Emotional Symptoms, Peer Problems, and Prosocial Behavior) and a Total 

Difficulties score that is the sum of all subscales (Goodman 1997; Goodman, Meltzer, and 

Bailey 1998). Over the last two decades, the CBCL and SDQ have become the most used 

instruments for assessing mental health in children and adolescents. Both questionnaires are 

validated and demonstrate adequate reliability as a psychiatric assessment tool for the detection 

of a child mental health problems (Rescorla et al. 2007). CBCL Internalizing problems reflect 

anxious and depressive symptoms, social withdrawal, and somatic complaints, whereas CBCL 

Externalizing problems are characterized by hyperactivity, impulsivity, noncompliance, and 

aggression. The total difficulties score is derived by the summation of 100 items for an overall 

view of children’s behavior. To match the SDQ scores to CBCL scores we computed 

externalizing and internalizing scales by summing the scores from the SDQ related to conduct 

problems, hyperactivity and prosocial scores into Externalizing problems, and emotional 

symptoms and peer problems into Internalizing problems. Externalizing, Internalizing and 

Total problems were considered as outcomes in the current study. 

 

Gene-set enrichment analysis  

Based on the list of ND ePRS genes we used co-expression values from GeneMania to 

query the possible biological relationship between the genes (Mostafavi et al. 2008). We 

explored the topological properties of this group of genes using the Cytoscape application 

(Shannon et al. 2003) and Cytoscape's NetworkAnalyzer (Assenov et al. 2008) plugin was used 



to determine measures of centrality (degree and betweenness).  The co-expression network’s 

topological properties were examined by calculating centrality measures, including degree and 

betweenness. Bottlenecks were defined as genes with higher betweenness (measures how often 

a node occurs on all shortest paths between two nodes) and hub genes were defined as genes 

with high degree (high interactions or nodes highly connected) (Figure 6B). To explore the 

complex network of reactions important to biological processes we also analyzed protein-

protein interactions mined from String (Szklarczyk et al. 2019). 

Cell-type Specific Expression Analysis (CSEA) and Tissue-Specific Expression 

Analysis (TSEA) were also performed to investigate if these genes are differentially expressed 

in diverse tissues, and at which developmental time points (Dougherty et al. 2010; Xu et al. 

2014). We used FUMA Gene2Function (Watanabe et al. 2017) to investigate the level of 

expression of these genes in 54 different tissue types from GTEX ('Human genomics. The 

Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans'  

2015). We also investigated different psychopathological diseases associated with the ND 

network using Metacore® and Clarivate Analytics®. 

 

Statistical Analysis  

To determine the most predictive model for explaining childhood problems, we 

employed a step-by-step multiple linear regression analysis, sequentially adding variables to 

the model based on their statistical significance. We compared the adjusted R2 values to assess 

the improvement in model fit with the addition of each variable. The adjusted R2 is particularly 

suited to determining the best-fit model since it accounts for the number of predictors in the 

model and only increases if added predictors improve model fit. This approach allowed us to 

identify the key factors that contribute to child health outcomes.  



To assess the distinctiveness of the variables, we conducted tests for multicollinearity 

and examined the variance inflation factor (VIF) for each variable in the models. The results 

revealed that all VIF values were below 1.3, indicating a lack of substantial intercorrelation 

among the variables and suggesting the absence of multicollinearity in our models. 

 

Initial Model 

The initial model included the dependent variables and Internalizing, Externalizing, and 

Total Problems as outcomes. We then performed step-by-step regression by iteratively adding 

variables. 

Model type 1: simple models 

(1) Methylation model: Y ~ M + covariates  

(2) Genotype model: Y ~ ePRS + covariates  

(3) Multi-omics model: Y ~ M + ePRS + covariates.  

(4) Adversity model: Y ~ A + covariates  

(5) Multi-omics + adversity model: Y ~ M + ePRS + A + covariates  

 

Model type 2: ePRS, methylation and Prenatal Adversity Score interaction models  

(6) Methylation interaction model: Y~ M x A + covariates  

(7) Genotype interaction model: Y~ ePRS x A + covariates  

(8) Methylation interaction + ePRS model: Y~ M x A + ePRS+ covariates  

(9) Multi-omics interaction model: Y ~ M + A + ePRS x A + covariates.   



(10) Two interactions model: Y ~ M x A + ePRS x A + covariates.  

 

Baseline cohorts’ characteristics description and statistical analyses were performed 

using R (R Core Team 2022). Multiple linear regression analysis was used to investigate the 

impacts of the polygenic score, methylation score, and adversity score on childhood 

socioemotional outcomes while controlling for sex, buccal cell counts or cell types and genetic 

principal components to adjust for population stratification (Patterson, Price, and Reich 2006b). 

For the analyses with a significant effect of the interaction term, a simple slope analysis was 

conducted to describe the differences in the ePRS effects between lower/ higher adversity 

groups. To adjust the regression analyses for the variation in buccal cell counts or blood cell 

types, in the respective models, we included principal components (PCs) from the buccal cell 

counts or from the blood cell types depending on how samples were collected in each cohort 

(see Table 1). The significance level for all tests was set at p < 0.05. The assumptions of the 

linear regression analysis in all models were checked and were not violated. In all models, the 

variance inflation factor (VIF) was below 1.3. Sensitivity analyses were also run with the 

influential cases removed. 

 

Results  

Descriptive analysis 

Three independent cohorts of different ancestries were included in our analysis: 

Growing Up in Singapore Towards Healthy Outcomes (GUSTO), composed of participants of 

Chinese, Malay, and Indian backgrounds, the Avon Longitudinal Study on Parents and 

Children (ALSPAC), mostly composed of Caucasian participants from the UK and the Basal 

Influences on Baby Development (BIBO) included mostly Caucasian participants from 



Netherlands (Table 1). No significant differences were found in the main confounding variables 

in GUSTO, ALSPAC and BIBO (Tables 2, 3 and 4 respectively).  

  



Main findings  

GUSTO 

Initially, we examined the individual contributions of methylation (M), genotype 

(ePRS), and multi-omics (M + ePRS) models as separate predictors (Figure 1). However, the 

simple models (1-3) exhibited lower adjusted R-squared values, suggesting a relatively low 

model fit for predicting mental health in children when considering these variables in isolation. 

Additionally, we investigated the role of prenatal adversity (A) as an independent variable in 

model 4, which resulted in a noteworthy increase in the adjusted R-squared value compared to 

the simple models (1-3). This increase resulted in a meaningful and statistically significant 

(p<0.001) contribution of prenatal adversity to the prediction of childhood problems. 

Furthermore, we compared model 4 (including only adversity) to model 5 (including main 

effects from all predictors) and observed an increase in the adjusted R-squared value, indicating 

an improved predictive capability of model 5. 

Next, we added interaction terms with prenatal adversity score to the model. The multi-

omics interaction model (9) emerged as the most informative among the various models for all 

three outcomes at 7 years old (Internalizing, Externalizing and Total Problems), displaying a 

higher adjusted R-squared value, which suggests that it explained a greater proportion of the 

variance in predicting childhood problems, adjusted for the number of predictors in the model 

(Figure 1). Moreover, we found a significant effect of multi-omics x adversity interaction term 

for all three outcomes: Internalizing (p = 0.000168), Externalizing (p = 0.0001932), and Total 

Problems (p = 0.0004256) at 7 years. The interaction term in each of the models was 

significantly associated with Internalizing (p = 0.02557) and Externalizing (p = 0.03150), but 

not Total Problems (p=0.05461). 

 



Effects of Prenatal Adversity Severity 

To examine the specific levels of severity of the prenatal adversity score at which the 

multi-omics x adversity interaction term effects were significant, we conducted a simple slope 

analysis (Figure 2). The results indicated that, for participants with higher exposure to prenatal 

adversity, an increase in ePRS was associated with higher Internalizing problems (p = 0.04760 

at prenatal score 4, p = 0.07006 at prenatal score 3) and Externalizing problems (p = 0.08871 

at prenatal score 4). Conversely, in the absence of prenatal adversity, higher ePRS was 

associated with lower Internalizing problems (p = 0.05671), Externalizing problems (p = 

0.02052), and Total problems (p = 0.06007). This finding suggests that the combination of high 

ePRS and higher prenatal adversity exposure leads to amplified levels of childhood mental 

health and functioning, emphasizing the complex interplay between prenatal adversity, genetic 

susceptibility (ePRS), and their impact on child psychosocial development. 

To explore different interactions, we incorporated the methylation interaction model 

(M x A) and genotype interaction model (ePRS x A) into our analysis. Within these interaction 

models, all of them (6-10) demonstrated either comparable or slightly improved adjusted R-

squared values when compared to the adversity model alone (4) and similar to or less than the 

multi-omics + adversity model (5). Among the various models, the multi-omics interaction 

model (9) and the model including two interactions (10) exhibited the highest adjusted R-

squared value, suggesting their superior predictive capacity for childhood mental health 

outcomes.  

However, during the analysis, we encountered two strong influential cases that had a 

substantial effect on the fit of the methylation x adversity models (6,8,10). To address this 

issue, we removed the influential cases from the analysis, leading to a drastic reduction in the 

adjusted R-squared values for all three models that included this interaction (6,8,10). After 



doing so, the multi-omics interaction model (9) emerged as the best predictor across all three 

outcomes: Internalizing, Externalizing, and Total Problems at 7 years. 

 

ALSPAC  

In the ALSPAC cohort at 11 years and 8 months of age, we observed similar patterns 

to those seen in the GUSTO cohort. The simple models (1-3) exhibited lower adjusted R-

squared values, indicating modest model fit when considering these variables in isolation 

(Figure 3). Moreover, similar to GUSTO, we found a significant increase in the adjusted R-

squared value for the adversity model (Model 4) compared to the simple models (1-3), 

demonstrating the meaningful and statistically significant (p<0.001) contribution of prenatal 

adversity to the prediction of childhood problems. However, when comparing model 4 to model 

5 (including all main effects), the adjusted R-squared values were very close or slightly smaller 

for all dependent variables. 

Subsequently, we introduced interactions with the prenatal adversity score as 

independent variables to the model, focusing on the multi-omics interaction model (Model 9) 

as it had shown the best fit in the GUSTO cohort. The multi-omics interaction model (Model 

9) in the ALSPAC cohort demonstrated a high adjusted R-squared value, indicating that it 

explained a substantial proportion of the variance in predicting all three childhood problems, 

accounting for the number of predictors in the model. 

Moreover, we found significant multi-omics interaction models for all three outcomes: 

Internalizing (p = 0.01482), Externalizing (p = 0.01042), and Total Problems (p = 0.002304) 

at 11 years and 8 months. The interaction term was significant for Externalizing (p = 0.064519), 

but not for Internalizing (p = 0.2543) and Total Problems (p=0.016039). 

 



Effects of Prenatal Adversity Severity 

To explore the specific levels of prenatal adversity score at which the multi-omics x 

adversity interaction term effects were significant, we conducted a simple slope analysis 

(Figure 4). The results indicated that, for participants with higher exposure to prenatal 

adversity, an increase in ePRS was associated with higher Externalizing problems at prenatal 

scores 3, 4, and 5 (p = 0.046823644, p = 0.045372116, and p = 0.047257506, respectively). 

This finding suggests that the combination of high ePRS and higher prenatal adversity exposure 

leads to amplified levels of childhood mental health problems, highlighting the complex 

interplay between prenatal adversity, genetic susceptibility (ePRS), and their impact on child 

psychosocial development. 

 

 BIBO  

We extended our investigation to examine the predictive capability of the multi-omics 

model for childhood problems at 6 years using a sample group from the BIBO cohort. 

Surprisingly, the findings in the BIBO cohort diverged from those observed in the GUSTO and 

ALSPAC cohorts. Unlike the other cohorts, all models, including both simple and interaction 

models, exhibited lower adjusted R-squared values (adjusted R-squared < 0.04) (Figure 5). 

Moreover, contrary to the previous cohorts, the adversity model with prenatal adversity alone 

did not show a significant increase in adjusted R-squared compared to the simpler models. 

Nonetheless, similar to GUSTO, the multi-omics interaction model (Model 9) in the 

BIBO cohort demonstrated a higher adjusted R-squared for Internalizing problems, suggesting 

that it explained a greater proportion of the variance in predicting Internalizing problems, 

accounting for the number of predictors in the model. 



However, in contrast to GUSTO, we did not find a significant multi-omics interaction 

model for all three outcomes: Internalizing (p = 0.1666), Externalizing (p = 0.2272), and Total 

Problems (p = 0.4409) at 6 years. The interaction term in each of the models was significant 

for Internalizing (p = 0.0984), but not for Externalizing (p = 0.2214) and Total Problems 

(p=0.1635). 

 

Effects of Prenatal Adversity Severity 

To examine the specific levels of severity of the prenatal adversity score at which the 

effects were significant, we conducted a simple slope analysis (Figure 6). The results indicated 

that, for participants with higher exposure to prenatal adversity, an increase in ePRS was 

associated with higher Internalizing problems at prenatal score 0 (p = 0.03721). This finding 

suggests that the combination of low ePRS and no prenatal adversity exposure leads to lower 

levels of internalizing child problems. 

Despite incorporating the methylation interaction model (M x A) and genotype 

interaction model (ePRS x A) into our analysis, the addition of these interactions did not 

substantially affect the predictive capability in our various models. 

 

  



Biological and functional characterization of ND gene network  

Early psychological adversity can have an impact on subsequent health via direct 

biological mechanisms, and this has important consequences for adult chronic physical and 

mental conditions (Scott et al. 2011). To explore the biological mechanisms of the associations 

seen in human cohorts, we performed enrichment analysis from the genes that were near the 

methylation CpG sites described in the original EWAS (Figure 7A). We began by exploring 

the possibility these genes might be working together in a network, rather than in isolation, 

following the principle of gene regulatory networks. Genes that are co-expressed are thought 

to be working together. Figure 7A depicts the ND co-expression gene network and shows that 

the genes are well connected. In fact, according to physical interactions (protein-protein 

interactions) mined from String (Szklarczyk et al. 2019), the ND gene network has significantly 

more interactions than expected by chance (p=0.000459). This strengthens the idea that these 

genes are working as a network. Amongst hubs-bottlenecks genes (considering betweenness 

and degree higher than +1SD above mean), represented by high degree and betweenness, which 

most likely have a key role in regulating the network, we found BSN (Bassoon Presynaptic 

Cytomatrix Protein gene), Fc mu receptor gene (FAIM3) and Dynamin 1 gene (DNM1) as the 

ones with the highest degree (Figure 7B). BSN is primarily expressed in neurons, and it encodes 

a scaffolding protein that has a role in cytoskeleton organization and recruitment of proteins 

relevant to presynaptic plasticity and regulated release of neurotransmitters (Montenegro-

Venegas et al. 2020). FAIM plays a role in the immune responses by encoding the Fc receptor 

for IgM (Kubagawa et al. 2009). DNM1 has a role in synaptic vesicle recycling by encoding 

dynamin-1 a GTPase that is particularly critical during postnatal development (Boumil et al. 

2010).  

To identify cell-type and specific tissues in the human brain associated with the ND 

gene network we performed an enrichment analysis using Cell-type Specific Expression 



Analysis (CSEA) (Figure 8A) and Tissue Specific Expression Analysis (TSEA) tools (Figure 

8B and 8C). The results reveal that the ND ePRS gene network is highly enriched in the brain 

during early development in the thalamus and striatum, as well as in the cortex during young 

adulthood (Dougherty et al. 2010; Xu et al. 2014). The network is also predominantly expressed 

in brain and pituitary tissues which might be related to the hypothalamic-pituitary axis, a 

pathway that has a key role in regulation of the endocrine system in response to stress. 

The genes within the ND network were significantly enriched for biological processes 

associated with synaptic signalling and organization and nervous system development in 

Metacore® (Figure 9A). This finding is aligned with the hubs-bottlenecks from ND network, 

such as DNM1 and BSN, which have important roles in plasticity and neurotransmission. To 

investigate in which tissues these genes are expressed we used FUMA Gene2Function 

(Watanabe et al. 2017) and obtained their level of expression in 54 different tissue types from 

GTEX ('Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue 

gene regulation in humans'  2015). The encoded genes that were highly expressed in the brain 

(right upper corner of Figure 9B) were significantly associated with different 

psychopathological diseases (Metacore®) such as anxiety, panic disorder, schizophrenia, and 

autism (Figure 9C). These results suggest that there are important genes in our ND network 

expressed in early fetal and young adulthood that are related to neurodevelopment and 

associated with psychopathology. 

  



Discussion  

As previously described, stressors occurring early in life have the most influential 

contribution to childhood psychosocial adversities (Scott et al. 2011). Growing up in 

disadvantaged neighborhoods is a major risk factor for acute and chronic physical and mental 

diseases (Taylor et al. 2020; Reuben et al. 2020; Chase-Lansdale 1997; Glymour et al. 2010). 

Our objective was to map the molecular/genetic architecture of responsivity to ND and using 

a multi-omics approach, including a polyepigenetic expression-based polygenic score, identify 

individuals who are more vulnerable to the effects of prenatal adversity. Our findings showed 

that some children will be at greater risk for emotional development problems than others after 

exposure to prenatal adversity, and risk can be identified by addressing genomics/epigenetic 

markers related to responsivity to neighborhood disadvantage. 

Going beyond the conventional PRS that uses single nucleotide polymorphisms in G × 

E studies, our model managed to capture in a more accurate manner the complexity of 

biomolecular processes and thus inform the intrinsic mechanisms that can lead to the onset of 

susceptibility to psychiatric disorders. We used epigenome-wide DNAm array data from a 

neighborhood disadvantage study to construct a methylation score and a novel EWAS-based 

ePRS. While capturing the polygenicity of genes that respond to the environmental influence 

with changes in DNAm, we also took into consideration the different methylation profiles from 

the EWAS CpGs. The integration of EWAS data into a PRS has come to light in recent years 

enabling a broader view for populational studies. The recent publication of Kresovich et al. 

showed that the addition of a methylation-based risk score to existing genetic and 

questionnaire-based cohorts can significantly improve prediction for breast cancer (Kresovich 

et al. 2022).  Tangentially, while polygenic risk scores provide unchangeable risk for a patient, 

methylation-based risk scores may provide a current risk state for the patient over the last 

months. 



We demonstrated here that a linear regression adjusted by sex and buccal cell count (or 

blood cell type) that includes methylation scores and the ePRS with interaction with prenatal 

adversity exposure is statistically associated with internalizing, externalizing and total 

problems in GUSTO at 7 years. Additionally, ePRS originated from tissue expression of the 

Nacc, suggesting a strong relationship of this brain region to childhood problems at 7 years of 

age. The Nacc is a major dopaminergic projection area that collectively with the VTA, anterior 

hippocampus (aHipp), and medial prefrontal cortex (mPFC) form the mesocorticolimbic 

pathway that mediates reward processing. During development, proper establishment of 

neuronal circuits is crucial and involves complex tasks of cell proliferation, cell fate 

determination, cell migration, and cell and synapse formation that allow for the refined buildout 

of cognitive processing and mental health (Shohat, Amelan, and Shifman 2021). B.Goff 

showed that children exposed to early life adversity had NAcc hypoactivation during 

adolescence and lower Nacc reactivity was correlated with higher depressive scores (Goff et 

al. 2013). Similarly, Forbes et. al. have shown that DA-related functional polymorphisms 

increase ventral striatum reactivity and is associated with higher impulsivity (Forbes et al. 

2009) and the same has been demonstrated in lesioned Nacc rat models (Cardinal et al. 2001). 

This suggests that disrupted or altered Nacc signalling can partake in pathological reward-

related behaviors. This is reflected in our results, where models with the constructed ePRS 

using Nacc tissue expression predict externalizing problems (characterized by aggressive, 

oppositional, and oppositional behavior that can be provoked by hyperactive impulsive 

symptoms) and internalizing problems (characterized by social withdrawal, anxious and 

depressive symptoms) in children.). Therefore, Nacc is an important stress-related behavioral 

structure, and aligned with our findings, we show that the Nacc ND-related gene network is 

associated with neurological development and pathological diseases. Our enrichment analysis 

results show that the ND gene network is highly expressed in fetal and young adulthood tissues. 



The genes within the network are seen to be involved in numerous aspects of 

neurodevelopmental processes. The ND gene network interestingly plays a role in the 

regulation of the synaptic vesicle cycle, synapse organization and system development, 

according to the gene ontology processes and hubs-bottlenecks associated with the network. 

While capturing the polygenicity of genes that respond to environmental factors with variations 

in DNAm, we took into consideration the various methylation patterns from the EWAS CpGs. 

One of the most inciting results is how the epigenome-wide DNAm data that was collected 

from adolescence with neighborhood disadvantage associates with genes that are expressed 

during early fetal developmental stages and young adulthood. This suggests that this network 

is highly preserved, and its expression is sensitive to critical developmental periods of firstly 

the arrangement of neural circuitry and secondly the development of childhood behavior. 

GUSTO model 9 demonstrated the presence of a gradient linear pattern, indicating that 

the ePRS and prenatal adversity score (A) interact together to predict the severity of childhood 

internalizing and externalizing problems. Specifically, individuals with higher expression of 

the gene network associated with Neighborhood disadvantage (indicated by high ePRS) 

exhibited heightened susceptibility to childhood problems with increasing prenatal adversity 

exposure. These findings underscore the importance of considering these variables collectively 

to gain a deeper understanding of the gene-environment situation and its impact on the intricate 

mechanisms of child health outcomes. 

Another intriguing finding was that significant interactions were evident with 

internalizing and externalizing problems, but not with the combined total problems score. As 

we had previously mentioned, the total problems score encompasses a broader spectrum of 

issues. As we previously discussed, the total problems score encompasses a wide array of 

issues, including not only internalizing and externalizing problems but also other factors such 

as sleeping difficulties. The amalgamation of these diverse scores into the total problems score 



may lead to a dilution of specific effects and interactions that are associated with internalizing 

and externalizing problems when analyzed in combination. 

Similar to the GUSTO cohort, the ALSPAC cohort also exhibited lower adjusted R-

squared values for the simple models, with prenatal adversity playing a significant role in 

predicting childhood problems. The multi-omics interaction model demonstrated the second 

highest predictive capacity across all three outcomes, supporting the importance of considering 

gene-environment interactions in understanding childhood mental health outcomes.  

An intriguing observation within the ALSPAC cohort pertains to the specificity of the 

interactions with externalizing scores. This holds intriguing implications, especially given that 

adolescence is often characterized by an increase in defiant behaviors. We hypothesize that this 

convergence on externalizing problems could be reflective of the defiance often observed 

during adolescence. 

Furthermore, it's important to acknowledge the ongoing developmental processes of 

brain structures responsible for stress response (prefrontal cortex, hippocampus, amygdala) 

during childhood and adolescence. These structures follow diverse developmental trajectories, 

each with distinct windows of stress sensitivity. Bosch et al.'s findings (2012) highlighted the 

impact of adversities on the HPA-axis during puberty, emphasizing the temporal importance 

of stress exposure (Bosch et al. 2012). Notably, brain regions sensitive to stress hormones also 

respond to gonadal hormones, which surge during puberty. The transition from childhood to 

adolescence involves considerable biological and social adjustments, potentially leading to 

stress-induced changes in the post-pubertal brain, thereby contributing to an individual's 

vulnerability to psychopathologies (Goddings et al. 2019). Additionally, our findings 

underscore the critical importance of validating the findings in other cohorts to ensure the 

robustness and validity of gene-environment interaction analyses. 



An interesting observation in the BIBO cohort was the presence of only two prenatal 

adversity levels (0 and 1), which resulted in a dichotomous distribution. Given that we have 

previously seen the significant role of prenatal adversity in the model, the limited variety of 

prenatal adversity levels in this cohort might contribute to the differences observed in 

comparison to the other cohorts. Notably, we found that the model performed well in predicting 

childhood problems for higher adversity scores, suggesting that the impact of prenatal adversity 

may be more pronounced in such cases. This underscores the potential influence of the range 

and severity of prenatal adversity exposure on the predictive capacity of our multi-omics model 

in this cohort. 

In addition to constructing the linear models, we also observed that including 

information from blood or buccal epigenome, prenatal adversity and ePRS can provide a better 

prediction of childhood socio-emotional problems. We observed an increase in the adjusted R-

squared value when the linear model has both epigenetic and genetic scores plus the interaction 

with prenatal adversity in comparison to when the scores are alone in the model in both GUSTO 

and ALSPAC. This suggests that the effect of genetic and epigenetic profiles is conditional to 

exposure to adversity and can improve the prediction rate. 

In sum, we demonstrated a multi-omics approach to explore the risk to childhood socio-

emotional behavior. Our study provides a methodology that captures the integration of 

epigenetic and polygenic scores for individual differences in susceptibility associated with 

early adversity exposure. This shows how complex the molecular processes of the neural circuit 

are and how adding more levels of information about gene tissue expression and epigenetics 

may better inform the identification of individuals who are susceptible to the long-term effects 

of prenatal adversity on psychiatric conditions.  



Limitations  

We note that our coverage of DNA modifications is currently incomplete as there are other 

epigenetic modifications, such as histone modification, acetylation, and micro-RNA that are 

not currently accessible. Another limitation is that our coverage of ethnicity in different cohorts 

lacks an African American-based cohort since Sharkey et. al estimated that black youth are 10 

times more likely to live in a poor neighborhood than their white peers (Sharkey 2013).  

 

Conclusion 

Undoubtedly, there are many ways to improve the environment to protect newborns and 

children from disadvantaged locations with policies and initiatives on education, social welfare, 

employment, training, criminal policy, and youth unemployment. Our study can be a resource 

to support the development of policies that can help buffer the damaging and enduring effects 

of early adversity on mental and physical health.  

 

Data Availability 
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at http://www.bristol.ac.uk/alspac/researchers/our-data/. For BIBO, visit 
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Table 1: Overview of the three cohorts  

 

Cohort 

Sample 
size 

(male)  Ethnicity  Country  Methylation  Questionnaire 

GUSTO 
102 
(56)  

Chinese, Malay & 
Indian  Singapore 3m CBCL 7y 

ALSPAC 
656 

(325) Mostly Caucasian  UK 7y SDQ 11y 
BIBO 119 (62) Mostly Caucasian Netherlands 5-6y CBCL 6y 

  

 

Table 2: Description of baseline characteristics in GUSTO sample for high and low ND 

ePRS score groups defined by median split of the ePRS score. 

 

GUSTO 

Sample descriptive  Total  

(n = 102)  

Low ePRS  

(n = 51)  

High ePRS  

(n = 51)  

p  

Sex - Male 54.9% (56) 50.98% (26) 58.82% (30) 0.551 

Birth weight (grams)  3116 (427) 3109 (387) 3123 (468) 0.870 

Still breastfed at 3 months 56.9% (58) 54.9% (28) 58.8% (30) 0.842 

Gestational Age (Weeks) 38.87 (1.27) 39.08 (1.25) 38.65 (1.28) 0.088 

Maternal age at birth 30.35 (4.94) 30.89 (4.86) 29.8 (5) 0.270 

Household income < 

SG$2000 
19.6% (20) 23.5% (12) 15.7% (8) 0.454 

Smoking during pregnancy  3.9% (4) 1.96% (1) 5.88% (3) 0.610 

Self-reported ethnicity     0.183 



Chinese 

Indian 

Malay 

59.8% (61) 

13.7% (14) 

26.5% (27) 

68.63% (35) 

9.8% (5) 

21.57% (11) 

50.98% (26) 

17.65% (9) 

31.37% (16) 

 

Table 3: Description of baseline characteristics in ALSPAC sample for high and low ND 

ePRS score groups defined by median split of the ePRS score. 

 

ALSPAC 

Sample descriptive  Total  

(n = 656)  

Low ePRS  

(n = 328)  

High ePRS  

(n = 328)  

p  

Sex - Male 
49.5% (325) 50.3% (165) 

48.78% 

(160) 
0.755 

Birth weight (grams)  3518 (460) 3513 (442) 3523 (478) 0.778 

Still breastfed at 3 months 60.3% (395) 60.6% (198) 60.1% (197) 0.961 

Gestational Age (Weeks) 39.70 (1.30) 39.66 (1.27) 39.73 (1.32) 0.527 

Maternal age at birth 29.94 (4.33) 30.03 (4.26) 29.86 (4.40) 0.620 

SES (Crowding index* 

above 1) 
2.59% (17) 3.1% (10) 2.1% (7) 0.623 

Smoking during pregnancy  13.6% (89) 11.6% (38) 15.6% (51) 0.171 

*Low socioeconomic status (SES) in ALSPAC: crowding index higher than 0.75 at 2-year-

and-9-month time point was considered as low SES. Crowding index was calculated by 

dividing the number of individuals living in the family dwelling by the number of rooms in 

the family dwelling and was used as a proxy measure of socioeconomic status. 

 

Table 4: Description of baseline characteristics in BIBO sample for high and low ND 

ePRS score groups, defined by median split of the ePRS score. 



 
BIBO 

Sample descriptive  
Total 

(n = 119) 

Low ePRS 

(n = 57) 

High ePRS 

(n = 62) p 

Sex - Male 52.1% (62) 57.89% (33) 46.77% (29) 0.303 

Birth weight (grams)  

3589.84 

(449.9) 

3593.7 

(450.15) 

3586.29 

(453.3) 0.929 

Still breastfed at 3 months 64.41% (76) 57.89% (33) 70.49% (43) 0.217 

Gestational Age (Weeks) 40.09 (1.22) 40.20 (1.30) 39.98 (1.14) 0.349 

Maternal age at birth 32.93 (3.79) 32.18 (3.73) 33.61 (3.74) 0.038 

Maternal education level 

(HBO or higher) 78.99% (94) 77.19% (44) 80.65% (50) 0.813 

 



Figure 1: Comparison of simple and complex models by adjusted R-squared in GUSTO. 
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problems 7y -0.03602 -0.03559 -0.02789 0.15798 0.17508 0.17723 0.16799 0.17209 0.19911 0.20368 



Figure 1: Adjusted R-squared estimates in GUSTO models. The model fit is determined by the adjusted R-squared represented by the y axis. The 

x axis represents the 10 different linear models, and the different colored columns represent Internalizing problems (blue), externalizing problems 

(pink) and total problems (gray). 



Figure 2: Multiple linear regression and simple slope analysis demonstrating the effects 

of prenatal adversity x ePRS on socioemotional problems in 7-year-old children in 

GUSTO. 
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Figure 2: Simple slope analysis of different severity levels of early adversity in GUSTO at 7 

years of age. White stars indicate significant associations (p <0.05) and black stars indicate 

marginally significant associations (p <0.10). At the higher values of ePRS, significant 

differences in predicted behavioural problems are seen contrasting high and low adversity 

groups, indicating that high ePRS individuals are susceptible to adversity and contribute 

differently to developmental outcomes. 
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Figure 3 Comparison of simple and complex models by adjusted R-squared in ALSPAC.  
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Figure 3: Adjusted R-squared estimates in ALSPAC models. The model fit is determined by the adjusted R-squared represented by the y-axis. 

The x-axis represents the 10 different linear models, and the different colored columns represent Internalizing problems (blue), externalizing 

problems (pink) and total problems (gray).
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Figure 4 Simple slope analysis demonstrating the effects of prenatal adversity x ePRS on 

socioemotional problems at 11-year-old children in ALSPAC. 

 

 

Figure 4: Simple slope analysis of different levels of early adversity severity in ALSPAC at 

11 years and 8 months of age. White stars indicate p <0.05 and black stars indicate p <0.10. 

Significant differences in children with high ePRS scores are seen contrasting high ePRS 

individuals are susceptible to adversity and contribute to developmental outcomes.   
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Figure 5 Comparison of simple and complex models by adjusted R-squared in BIBO.  
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Figure 5: Adjusted R-squared estimates in BIBO models. The model fit is determined by the adjusted R-squared represented by the y-axis. The 

x-axis represents the 10 different linear models, and the different colored columns represent Internalizing problems (blue), externalizing problems 

(pink) and total problems (gray). 
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Figure 6 Simple slope analysis demonstrating the effects of prenatal adversity x ePRS on 

socioemotional problems at 6y children in BIBO. 

 

Figure 6: Simple slope analysis of different levels of early adversity severity in BIBO at 6 

years of age. White stars indicate p <0.05 and black stars indicate p <0.10. Significant effects 

were seen at prenatal score 0 in Internalizing Problems.  
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Figure 7. Topological properties of the ND gene network  

A)  

 

  



 

B) 

 

Figure 7A: NaCC ND co-expression gene network. The genes from the ND co-expression 

gene network are represented by nodes, by which the size of the node and the color intensity is 

proportionate to the degree of connectivity. Bigger and darker blue nodes represent genes with 

the highest degree (more connected). The edges of the nodes indicate co-expression, where the 

darkest lines represent a higher co-expression relationship. 

Figure 7B: Topological properties of the ND gene network, showing hubs (high connectivity 

genes with degrees higher than +1SD above the mean), bottlenecks (highly influential genes 

that serve as bridges in the network with betweenness higher than +1SD above the mean), and 

hubs-bottlenecks. Horizontal and vertical lines in black indicate mean +1 SD for betweenness 

and degree. We see that the ND co-expression gene network is well connected, representing a 

cohesive network and the genes most important to the overall network structure, according to 

degree and betweenness centrality measures are, Bassoon Presynaptic Cytomatrix Protein gene 

(BSN), Fc mu receptor gene (FAIM3) and Dynamin 1 gene (DNM1). 



Figure 8. Cell-type and Tissue Specific Expression Analysis associated with ND network. 

A) 
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C) 

 



Figure 8A: Cell-type Specific Expression Analysis (CSEA)  

Figure 8B 8C: Tissue-Specific Expression Analysis (TSEA). TSEA confirms that the gene 

network The levels of the hexagons represent varying stringencies for enrichment going from 

least specific lists (outer hexagons) to most specific (center). The size of the hexagon is scaled 

to the size of the gene list, and the color represents the FDR-adjusted p-values of the overlap 

between the genes in the network and the list of enriched genes in the specific cell or tissue. 

The ND gene network is enriched during early and mid-fetal life in the striatum and thalamus, 

and cortex during early development. In general, the network is predominantly expressed in 

brain and pituitary tissues. 

  



Figure 9: Combined enrichment analysis of the ND gene network  

A) 

 

 

 

 

 

 

B) 

 

  



 

C) 

 

Figure 9A: Metacore pathway map, network, and processes. Combined enrichment analysis 

for the gene network shows enrichment for predominantly Notch signaling pathway suggesting 

that the ND gene network has a brain maturation role in neurodevelopment. (Metacore®, 

FDR<0.05) 

Figure 9B: Expression levels of the ND network in 54 different tissue types from GTEX using  

theFUMA gene2function. Benjamin-Hochberg (FDR) p-value <0.05. 

Figure 9C: Metacore disease analysis for the significant genes from brain tissues in FUMA 

gene2function.  

 

 



CHAPTER 3. SUPPLEMENTAL MATERIALS  

Supplemental Material 

 

Supplementary Table 1: Results of linear regression analyses in GUSTO 

 

  Internalizing Problems - 7 years  Externalizing Problems - 7 years  Total Problems - 7 years  
  B SE t p-value B SE t p-value B SE t p-value 
(Intercept) -0.161 12.157 -0.013 0.989 1.836 14.487 0.127 0.899 -5.928 46.461 -0.128 0.899 
Gender -1.108 1.078 -1.028 0.307 -0.251 1.285 -0.195 0.846 -2.280 4.120 -0.553 0.581 
Genetics PC1 39.336 19.649 2.002 0.048 -4.002 23.414 -0.171 0.865 26.545 75.092 0.353 0.725 
Genetics PC2 -3.198 18.256 -0.175 0.861 -3.736 21.755 -0.172 0.864 -28.904 69.770 -0.414 0.680 
Genetics PC3 9.961 16.748 0.595 0.554 -15.984 19.957 -0.801 0.425 -19.235 64.006 -0.301 0.765 
Buccal cell count 0.047 0.170 0.278 0.781 0.013 0.203 0.062 0.951 0.271 0.651 0.417 0.678 
Standardized ND  
score at 3 months -1.004 0.586 -1.715 0.090 -1.837 0.698 -2.631 0.010 -4.809 2.239 -2.148 0.034 

Standard NACC ePRS -1.355 0.702 -1.930 0.057 -1.972 0.837 -2.357 0.021 -5.108 2.683 -1.904 0.060 
Prenatal Adversity 2.345 0.459 5.105 <0.001 2.842 0.547 5.193 <0.001 9.189 1.756 5.234 <0.001 
ePRS x Adversity  
interaction 1.172 0.516 2.270 0.026 1.343 0.615 2.184 0.032 3.841 1.973 1.947 0.055 

*All p-values are calculated with two-tailed hypothesis 

  



Supplementary Table 2: Results of linear regression analyses in ALSPAC 

 

  Internalizing Problems - 7 years  Externalizing Problems - 7 years  Total Problems - 7 years  
  B SE t p-value B SE t p-value B SE t p-value 
(Intercept) 1.930 0.198 9.735 <0.001 11.535 0.205 56.291 <0.001 4.920 0.341 14.425 <0.001 
Gender 0.098 0.207 0.471 0.638 0.223 0.214 1.043 0.297 0.887 0.356 2.495 0.013 
Genetics PC1 5.544 8.939 0.620 0.535 -2.315 9.239 -0.251 0.802 5.713 15.378 0.371 0.710 
Genetics PC2 9.458 9.305 1.016 0.310 8.982 9.585 0.937 0.349 18.230 15.954 1.143 0.254 
Genetics PC3 1.497 9.243 0.162 0.871 -5.763 9.541 -0.604 0.546 -5.818 15.881 -0.366 0.714 
Cell Count PC1 2.899 1.137 2.550 0.011 1.265 1.174 1.077 0.282 5.088 1.954 2.604 0.009 
Cell Count PC2 0.131 2.128 0.062 0.951 1.149 2.193 0.524 0.600 0.113 3.650 0.031 0.975 
Cell Count PC3 1.877 3.322 0.565 0.572 3.129 3.431 0.912 0.362 3.792 5.710 0.664 0.507 
Standardized ND score -0.140 0.113 -1.239 <0.001 0.167 0.117 1.425 0.155 0.012 0.195 0.063 0.950 
Standard NACC ePRS -0.191 0.169 -1.131 0.258 -0.184 0.174 -1.057 0.291 -0.301 0.290 -1.038 0.299 
Prenatal Adversity score 0.342 0.105 3.271 0.001 0.412 0.108 3.811 0.000 0.631 0.180 3.503 0.000 
ePRS x Adversity interaction 0.117 0.102 1.141 0.254 0.196 0.106 1.852 0.065 0.247 0.176 1.405 0.160 

*All p-values are calculated with two-tailed hypothesis. However, as this is a replication cohort, interactions should be tested as a one-tailed 

hypothesis, i.e. significance threshold for interactions going in the same direction as GUSTO should be p=0.1 in this table. 

 

  



Supplementary Table 3: Results of linear regression analyses in BIBO 

 

  Internalizing Problems - 7 years  Externalizing Problems - 7 years  Total Problems - 7 years  
  B SE t p-value B SE t p-value B SE t p-value 
(Intercept) 10.539 4.954 2.127 0.036 6.557 6.581 0.996 0.321 31.800 14.686 2.165 0.033 
Gender 0.793 0.731 1.085 0.280 0.543 0.971 0.559 0.578 1.248 2.168 0.576 0.566 
Genetics PC1 -2.744 4.140 -0.663 0.509 -2.286 5.500 -0.416 0.679 -8.154 12.274 -0.664 0.508 
Genetics PC2 -0.663 4.142 -0.160 0.873 -8.620 5.503 -1.566 0.120 -11.661 12.280 -0.950 0.344 
Genetics PC3 -1.570 4.300 -0.365 0.716 -12.555 5.713 -2.198 0.030 -16.098 12.748 -1.263 0.209 
Buccal Cell Count -0.088 0.064 -1.367 0.174 -0.003 0.085 -0.035 0.972 -0.189 0.191 -0.991 0.324 
Standardized ND score 0.660 0.411 1.607 0.111 0.695 0.546 1.274 0.205 1.509 1.217 1.240 0.218 
Standard NACC ePRS -0.957 0.454 -2.109 0.037 -0.315 0.603 -0.522 0.602 -1.455 1.346 -1.081 0.282 
Prenatal Adversity score -0.813 0.760 -1.069 0.288 -0.681 1.010 -0.674 0.502 -1.944 2.254 -0.862 0.390 
ePRS x Adversity interaction 1.185 0.711 1.667 0.098 1.162 0.945 1.230 0.221 2.958 2.108 1.403 0.164 

*All p-values are calculated with two-tailed hypothesis. However, as this is a replication cohort, interactions should be tested as a one-tailed 

hypothesis, i.e., significance threshold for interactions going in the same direction as GUSTO should be p=0.1 in this table. 



CHAPTER 4. DISCUSSION 

 

We found that a multiple linear regression model adjusted for sex and buccal cell count 

(or blood cell type) that combines methylation scores and the ePRS interaction with prenatal 

adversity exposure has effects on internalizing, externalizing, and total problems in GUSTO 

children at 7 years. Furthermore, the ePRS was derived from Nacc tissue expression, 

suggesting a strong link between this brain area and children’s difficulties at 7 years of age. 

The Nacc is a dopaminergic projection region that, together with the VTA, anterior 

hippocampus (aHipp), and medial prefrontal cortex (mPFC), forms the mesocorticolimbic 

circuit, which mediates reward processing (Kleinridders and Pothos 2019). 

The formation of neural circuits is critical throughout initial developmental stages and 

involves complicated processes such as cell proliferation, cell fate determination, cell migration 

and cell and synapse formation, which allow for the refined buildout of cognitive processing 

and mental wellness. B.Goff discovered that adolescents who experienced hardship early in 

life exhibited NAcc hypoactivation during adolescence and that reduced Nacc reactivity was 

associated with a greater depression score (Goff et al. 2013). Similarly, Forbes et al. revealed 

that DA-related functional polymorphisms enhance ventral striatum responsiveness, which is 

linked with increased impulsivity, and the same has been observed in Nacc rat models with 

lesioned striatum (Forbes et al. 2009). This shows that aberrant reward-related behaviors can 

be caused by interrupted or altered Nacc signalling. This is reflected in our findings, which 

show that models with the constructed ePRS using Nacc tissue expression predict externalizing 

problems (characterized by aggressive, oppositional, and oppositional behavior that can be 

triggered by hyperactive impulsive symptoms) and internalizing problems (characterized by 

social withdrawal, anxious, and depressive symptoms) in children. 
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As a result, Nacc is a key stress-related behavioral structure, and our findings support 

the notion that the Nacc gene network associated with responsivity to ND is linked to brain 

development and pathological illnesses. The findings of our enrichment analysis suggest that 

the ND gene network is significantly expressed in fetal and young adulthood (Figure 10A). 

The genes in the network are thought to be engaged in a variety of neurodevelopmental 

processes (Figure 11A). NOTCH signalling is one of the pathways that appear often in the 

enrichment analysis. This route is vital in early neurodevelopment, learning, and memory and 

is critical for neuronal differentiation in early development (Lasky and Wu 2005). According 

to the gene ontology processes and hubs-bottlenecks connected with the network, the ND gene 

network also plays an intriguing function in the control of the synaptic vesicle cycle, synapse 

structure, and system development. One of the most intriguing findings is how epigenome-

wide DNAm data gathered during adolescence in response to neighborhood deprivation 

interacts with genes expressed throughout early fetal developmental stages and young 

adulthood. This network appears to be well conserved, and its expression is sensitive to 

important developmental phases in both neural circuitry architecture and early behavior 

development. 

In other cohorts, we found that the substantial interaction with prenatal adversity was 

lost at later ages (11y ALSPAC) and that the complete linear model had little significance at 

earlier stages. In ALSPAC, the complete multi-omics interaction model for each childhood 

issue is significant, however, there is no significant interaction between adversity and ePRS in 

the model. Notably, our intriguing observation within the ALSPAC cohort revolves around the 

specificity of interactions with externalizing scores, particularly pertinent given the behavioral 

changes often associated with adolescence. We hypothesize that the convergence on 

externalizing problems may reflect the defiance commonly observed during adolescence.  
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The interaction between adversity and the ePRS is seen to play a huge role in our 

model. In our 3rd cohort BIBO, we saw significant effects in the internalizing problem when 

children were exposed to lower levels of prenatal adversity. However, it is important to 

acknowledge that the range of adversity in this sample was relatively low. This limited range 

of adversity might have attenuated the predictive power of the interaction between polygenic 

risk and adversity. Future research with larger sample sizes and a wider range of adversity 

levels should be conducted to provide a more comprehensive understanding of the interplay 

between genetic vulnerability and environmental factors in forecasting childhood mental health 

problems. 

In addition to building linear models, we discovered that incorporating information 

from the blood or buccal epigenome, prenatal adversity, and ePRS can help predict childhood 

socio-emotional problems. In both GUSTO and ALSPAC, we found that when the linear model 

included both epigenetic and genetic scores, as well as the interaction with prenatal adversity, 

the adjusted R-squared value increased. This implies that the influence of genetic and 

epigenetic profiles is conditional on adversity experience and can increase prediction rate. 

Beyond the standard PRS, which employs single nucleotide polymorphisms in GxE 

studies, our model was able to capture the intricacy of biomolecular processes more precisely 

and illuminate some inherent mechanisms that might contribute to the start of vulnerability to 

psychiatric diseases. We created a methylation score and a unique EWAS-based ePRS using 

epigenome-wide DNAm array data from neighborhood disadvantage research. We considered 

the varied methylation patterns from the EWAS CpGs while capturing the polygenicity of 

genes that respond to environmental influences with variations in DNAm. In recent years, the 

integration of EWAS data into a PRS has emerged, allowing for a larger picture for 

populational investigations. Tangentially, while polygenic risk scores provide unchangeable 
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risk for a patient, methylation-based risk scores may provide a current risk state for the patient 

over the last months. 

In conclusion, we presented a multi-omics strategy for investigating risk factors for 

childhood socioemotional behavior. Our research presents a mechanism for capturing 

individual variations in susceptibility linked with early adversity experience by integrating 

epigenetic and polygenic scores. This demonstrates how intricate the brain circuit's molecular 

processes are, and how adding more layers of knowledge regarding gene tissue expression and 

epigenetics may better illuminate the reality of genetic predisposition relevant to mental 

illnesses.  
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