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Abstract/Résumé 

Abstract 

Osteoporosis is a common aging-related disease diagnosed by the measurement of several risk 

factors, the most clinically useful of which is bone mineral density (BMD). The Richards lab recently 

published large-scale genome-wide association study (GWAS) for BMD and showed that a large 

proportion of the variance in BMD was explained by genetic variants. With this information, we 

sought to fulfill one of the promises of the Human Genome Project - that our understanding of genetic 

information will impact our approach to medicine. In Chapter 2, we propose a way to implement 

genetic information into osteoporosis screening guidelines to reduce the number of individuals 

requiring expensive dual-energy X-ray absorptiometry (DXA) bone mineral density measurements. 

In Chapter 3, we show how the use of GWAS summary statistics for BMD and fracture can be 

combined with summary statistics for a circulating protein, vascular endothelial growth factor 

(VEGF) to better understand whether it would serve as an effective treatment target for osteoporosis. 

Chapter 2 involved developing a polygenic risk score model for BMD in 341,449 individuals from 

the UK Biobank. The utility of this model in screening for osteoporosis-related fracture risk was then 

tested in a cohort of 10,522 individuals who would have been eligible for screening according to the 

National Osteoporosis Guideline Group guidelines. We showed that by targeting assessments only 

to individuals with high genetic risk resulted in a 41% decrease in the number of individuals requiring 

DXA measurements while only decreasing the sensitivity to identify individuals requiring 

intervention from 99% to 93%. While Chapter 2 does not prescribe the optimal way of considering 

polygenic risk scores in the clinic, it demonstrates that their use can make osteoporosis screening 

more efficient and that future research into how they can be effectively incorporated into clinical 

decision-making is needed. Chapter 3 involved a Mendelian randomization study to better understand 

the effect of altered levels of circulating vascular endothelial growth factor on DXA-measured BMD, 
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BMD estimated at the calcaneus and fracture. We first obtained 10 single nucleotide polymorphisms 

(SNPs) that served as instrumental variables for circulating VEGF, explaining up to 52% of the 

variance in circulating VEGF. Then, we obtained GWAS summary statistics for these 10 SNPs on 

fracture and DXA-measured BMD, BMD estimated at the calcaneus to determine the effect of 

genetically altered levels of VEGF on osteoporosis outcomes. Because genetic variants cannot be 

influenced by factors that generally confound observational studies or be influenced by reverse 

causation, this experimental setup provided a framework for causal inference. Our results 

demonstrated that altering levels of circulating VEGF would not be an effective treatment or 

prevention for osteoporosis. Taken together, this work demonstrates that understanding the genetic 

determinants of bone density and fracture can help to improve clinical care by influencing screening 

strategies and more precisely identifying causal circulating proteins. 
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Résumé 

L'ostéoporose est une maladie courante liée au vieillissement diagnostiquée par la mesure de 

plusieurs facteurs de risque, le plus utile étant la mesure de la densité minérale osseuse (DMO). Le 

laboratoire Richards a récemment publié une étude d'association pangénomique (GWAS) pour la 

DMO et a démontré qu'une grande partie de la variabilité dans la DMO serait expliquée par des 

variables génétiques. Avec cette information, nous avons cherché à tenir l'une des promesses du 

Projet Génome Humain, soit que notre compréhension du génome ait une incidence sur notre 

approche de la médecine. Au chapitre 2, nous proposons un moyen d'intégrer l'information génétique 

dans une procédure de dépistage pour l'ostéoporose afin de réduire le nombre d'individus nécessitant 

des mesures dispendieuses de DMO par absorptiométrie biénergétique à rayons X (DXA). Au 

chapitre 3, nous utilisons des statistiques récapitulatives venant d’une GWAS pour la DMO, la 

fracture et le niveau en sérum d’un facteur de croissance endothélial vasculaire (VEGF) afin de mieux 

comprendre si le VEGF peut servir d’objectif de traitement efficace pour l’ostéoporose. Le chapitre 

2 porte sur le développement d'un modèle de risque polygénique pour la DMO à partir de 341,449 

individus venant de la UK Biobank. L'utilité de ce modèle pour le dépistage du risque de fracture 

liées à l'ostéoporose a ensuite été testée dans une cohorte de 10,522 individus qui auraient été 

éligibles pour le dépistage conforme aux modalités définies par le National Osteoporosis Guideline 

Group. Nous avons établi qu’en ciblant les évaluations uniquement sur les individus présentant un 

risque génétique élevé, le nombre d’individus nécessitant des mesures de DXA diminuait 

considérablement à 41% en ne réduisant que de 99% à 93% la sensibilité de détection des individus 

nécessitant une intervention. Bien que le chapitre 2 n’ait pas pour objectif de recommander la façon 

optimale de considérer les modèles de risque polygénique dans la clinique, il montre que leur 

utilisation peut rendre le dépistage de l'ostéoporose plus efficace et que des recherches futures sur la 

manière de les intégrer rentablement à la prise de décision clinique sont nécessaires. Le chapitre 3 
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comprenait une étude de randomisation Mendélienne visant à mieux comprendre l'effet de la 

modification des niveaux en sérum de VEGF sur la DMO mesurée par DXA, sur la DMO estimée au 

niveau du calcanéum et sur la fracture. Nous avons d’abord obtenu 10 polymorphismes 

mononucléotidiques (SNP) qui ont servi d’instruments pour le niveau en sérum de VEGF, expliquant 

jusqu’à 52% de sa variabilité. Étant donné que ces variables génétiques ne peuvent pas être 

influencées par des facteurs qui confondent généralement les études d'observation ni influencées par 

des causalités inverses, cette configuration expérimentale a fourni un cadre pour l'inférence causale. 

Nos résultats ont suggéré qu'une modification des niveaux de VEGF en sérum ne constituerait pas 

un traitement ou une prévention efficace pour l'ostéoporose. Somme toute, ces travaux établissent 

que la compréhension des déterminants génétiques de la DMO et de la fracture peut aider à améliorer 

les soins cliniques en influençant les stratégies de dépistage pour l’ostéporose et en identifiant des 

protéines qui seraient de bonnes cibles pour son traitement. 
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Chapter 1: Introduction 

1.1 The economic burden of osteoporosis 

Osteoporosis is a common aging-related disease characterized by weakened bones that lead to 

increased risk of fracture(1). Due to the aging population of North America, the incidence of 

osteoporosis is increasing, costing the Canadian healthcare system up to $3.9 billion per year(2) and 

the United States healthcare system over $17 billion per year(3). To minimize costs, healthcare 

systems around the world have developed screening procedures that exclude individuals at low risk 

for the disease on the basis of measurable factors that are known to influence the risk osteoporosis-

related fractures(4,5). However, these risk factors do not generally include genetic information, which 

has been recently shown to explain a significant proportion of the variance in the disease(6) and is 

now less expensive to measure than many clinical tests. Further, genetic information can facilitate 

the discovery of osteoporosis determinants that have not yet been identified, leading to better or more 

efficient treatments for this common and costly disease. The focus of my thesis is therefore to 

investigate the clinical utility of the genetic determinants of bone mineral density (BMD) to improve 

the efficiency of osteoporosis screening programs and to identify novel drug targets for its treatment. 

 

1.2 Bone mineral density 

BMD is a heritable and complex trait that is influenced by several biological and environmental 

factors(7). Low BMD is the most clinically relevant risk factor for osteoporosis, playing a fundamental 

role in the decision to treat individuals pharmacologically as a preventative measure against 

osteoporosis-related fractures(8). BMD is generally measured using a non-invasive method, dual-

energy X-ray absorptiometry (DXA)(9), at the forearm, hip or vertebral bones, each region comprising 

a different proportion of cortical bone and trabecular bone. Cortical bone is the dense, compact bone 

tissue that constitutes the majority of the human skeleton. Trabecular bone is soft, spongy bone tissue 
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that constitutes the remainder of the skeleton, providing structural support and flexibility to handle 

the stresses of movement and minor injury(10). People with osteoporosis have an abnormally thin 

cortical bone and less trabecular bone. BMD can also be estimated at the heel calcaneus using 

quantitative ultrasound measurements, which allows for inexpensive and rapid assessment of BMD 

in a large number of individuals and has been shown to be predictive of osteoporosis-related fracture 

risk(11,12). 

 

1.3 Risk factors for low bone mineral density and fracture 

Although bone loss is expected at older ages, several risk factors will predispose individuals to 

abnormal amounts of bone loss and increased risk of fracture as they progress through life. These 

risk factors include increasing age, female sex, premature menopause, low bodyweight, 

glucocorticoid therapy, cigarette smoking, excessive alcohol consumption, low dietary calcium 

intake, vitamin D deficiency and a family history of hip fractures(13). Because family history of hip 

fracture, at least in part, quantifies the inherited predisposition to low bone mineral density and 

fracture, a more precise measurement of this predisposition may be of clinical relevance.   

 

1.4 Genetic determinants of bone mineral density 

Genome-wide association studies (GWAS) and meta-analyses have identified single nucleotide 

polymorphisms (SNP) associated with BMD(14–22). SNPs are positions in the genome that differ in 

their coded base pair (allele) between individuals and across populations. GWAS quantifies the 

association between an allele and its average effect on a trait in a population. SNPs can be measured 

in large cohorts using genotyping arrays which measure, at the individual-level, the alleles at 

hundreds of thousands of genomic positions. To increase the number of SNPs available for a GWAS, 

reference panels are created using whole-genome sequencing on thousands of individuals, which are 
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then used to impute the most likely coded alleles at genomic locations that are not covered by the 

genotyping array(23). The basic form of a genome-wide association test is a linear or logistic 

regression of a single SNP on an outcome, which is usually a trait, or disease status, respectively. 

Current methods utilize linear mixed models to incorporate population stratification and cryptic 

relatedness into association tests(24). 

 

1.5 Polygenic risk scores 

Once a GWAS is complete, polygenic risk scores (PRS), which are predictions of a phenotype from 

a set of genotypes, can be calculated to estimate the overall genetic risk associated to a particular 

individual. It is calculated by summing the products of the count of risk alleles for a set SNPs with 

their corresponding effect sizes. These effect sizes can be obtained from a GWAS on the outcome, 

or with LASSO regression(25), which learns the effects of SNPs in a multivariable model, while 

simultaneously minimizing the absolute magnitude of effect sizes assigned to the genomic positions 

in question.  It is possible that the latter can perform better in PRS generation because effect sizes 

can be estimated while considering all of the other SNPs in the model, whereas the former relies on 

effect sizes obtained from independent SNP-outcome associations. 

 

1.6 Mendelian Randomization 

In contrast to controlled experiments, observational studies are subject to a number of factors that 

can bias their results. One such factor is confounding, where one or more unmeasured variables 

associate with both the exposure of interest and the outcome, but do not lie in the causal pathway 

between the exposure and the outcome. Overlooking, or improperly measuring, such variables in 

observational studies leads to biased estimates of the effect of the exposure on the outcome. The 

randomized control trial (RCT) is a commonly-used approach to ensure that exposures do not 
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associate with confounding variables. In RCTs, patients are randomly assigned to a treatment or 

control group under the assumption that the groups are comparable at all but one variable of interest 

and its associated effects. Although the RCT is a powerful tool in clinical research, it is often not 

applicable to the study of potentially harmful exposures such as smoking or increased levels of a 

circulating biomarker. An alternative approach to assessing the causality of associations in 

observational studies is Mendelian Randomization (MR). Similar to RCTs, MR compares outcomes 

between groups of individuals that differ at a single genetic variant and its associated effects but that 

are comparable in all other ways. Because genetic variants are passed from parents to offspring 

independently of environmental factors, they can serve as instrumental variables that influence the 

exposure independently of factors that would generally confound observational studies. Further, 

because the germline genotype does not change throughout life, associations derived from MR 

analyses cannot be influenced by reverse causation, where levels of the exposure are influenced by 

the outcome itself. An MR study is performed by identifying genetic variants that are associated with 

an exposure of interest, then observing differences in outcomes between groups of individuals that 

differ at these genetic variants. If the genetic variants satisfy a set of assumptions(26) described in 

Figure 1, then they are considered valid instruments for the estimation of the causal effect of the 

exposure on the outcome. 
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Figure 1. Mendelian randomization assumptions.   

 

1.7 Objectives, rationales and hypotheses 

The two major objectives of this thesis were to: 

● Provide evidence that genomic information as a whole, rather than single genotypes, can 

improve the efficiency of osteoporosis screening programs, by removing from the screened 

population, individuals at low genetic risk.  

● Identify a novel pharmacological target for the treatment or prevention of osteoporosis.  

To address objective 1, we developed a real-world application of a polygenic risk score to 

improve osteoporosis screening. Since most screening programs identify a small proportion of the 

screened population to be at high risk of disease, we incorporated a polygenic risk score into a 

validated osteoporosis screening program in order to decrease the number of individuals that are 

prescribed expensive bone mineral density tests. The genetic prediction of complex traits and 

diseases could be clinically useful since the cost of genome-wide genotyping is decreasing rapidly 

and is now less expensive than many clinical tests. Further, such testing could be performed once 
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and provide insight into risk for many diseases. There is currently much debate in the community as 

to the role of polygenic risk scores, which was summarized in a Perspective in the New England 

Journal of Medicine in May of 2019, which concluded that, “It is time to evaluate polygenic risk 

scores in translational studies that assess clinical utility...”(27). Osteoporosis might be a reasonable 

place to start the conversation about polygenic risk scores in screening programs, since it is less 

sensitive than breast cancer, or colon cancer screening. 

To address objective 2, we conducted a MR study using circulating vascular endothelial 

growth factor (VEGF)-associated genetic variants, as identified by the largest published genome-

wide association meta-analysis for circulating VEGF levels to date, providing the first evidence 

addressing the causal effect of altering circulating VEGF levels on bone mineral density in up to 

426,824 individuals and on fracture in 76,549 cases and 470,164 controls. Several published 

observational and experimental studies in humans and animal models have associated lowered 

vascular endothelial growth factor (VEGF) with bone mineral density and adverse osteoporosis 

outcomes. If altered levels of VEGF is causal of adverse osteoporotic outcomes, then it could serve 

as a target for a novel pharmaceutical therapy. However, given that observational epidemiology 

studies are susceptible to confounding, it remains unclear whether this association is causal, driven 

by confounding or a product of the disease process itself. Further, there are currently no published 

randomized controlled trials investigating the skeletal effects of influencing circulating VEGF. Given 

that genetic variants are not vulnerable to many confounding variables or reverse causation, MR can 

circumvent many of the limitations that are inherent to observational studies. This provides a 

framework for causal inference and offers insight into the effect of a lifetime exposure to genetically 

decreased VEGF levels on osteoporosis outcomes, which cannot be assessed by short-term clinical 

trials. 
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Chapter 2 

Preface: Bridge Between Chapter 1 and Chapter 2 

A study by Lello et al.(28) showcased the utility of LASSO regression in the prediction of human 

height from genetic information. We decided to perform a similar study on heel bone mineral density 

in the UK Biobank. Given our understanding of the genetics of osteoporosis, a polygenic risk score 

for bone mineral density seemed likely provide clinical utility. Collaborating with bone experts from 

around the world, including members of FRAX® team, we hypothesized that considering a PRS for 

BMD alongside other commonly used clinical risk factors was a reasonable approach to implement 

genetic risk scores into osteoporosis screening as it avoided entirely displacing well-validated clinical 

practices, such as the National Osteoporosis guideline group screening (NOGG) algorithm. 

Implementing a PRS to the NOGG guidelines resulted in a substantial decrease in the number of 

individuals being needlessly prescribed an expensive bone mineral density test with a relatively small 

decrease to the sensitivity to correctly identify those requiring treatment. This represented the first 

successful implementation of genetic information into osteoporosis screening programs and set the 

stage for the implementation of PRS into screening programs for other common and costly diseases.  



 

26 

 

Chapter 2: A Polygenic Risk Score to Improve Screening for Fracture Risk 

Vincenzo Forgetta PhD1*, Julyan Keller-Baruch BSc2*, Marie Forest PhD1, Audrey Durand PhD 3, 

Sahir Bhatnagar PhD 1, John Kemp PhD 4,5, Maria Nethander PhD6,7 Daniel Evans PhD,8 John A 

Morris PhD 1, Douglas P. Kiel MD9, Fernando Rivadeneira MD PhD,10 Helena Johansson PhD 11, 

Nicholas C Harvey MD12,13, Dan Mellström MD,7 Magnus Karlsson MD,14 Cyrus Cooper MD,12,13,15 

David M Evans PhD 4,5, Robert Clarke MD,16 John A Kanis MD11, Eric Orwoll MD,17,18 Eugene V 

McCloskey MD19, Claes Ohlsson MD,7 Joelle Pineau PhD3, William D Leslie MD20, Celia MT 

Greenwood PhD1,2,21,22, J Brent Richards MD MSc1,2,23 

* These authors contributed equally. 

1 Centre for Clinical Epidemiology, Department of Medicine, Lady Davis Institute, Jewish General 

Hospital, McGill University, Montréal, Québec, Canada 

2 Department of Human Genetics, McGill University, Montréal, Québec, Canada, 

3 School of Computer Science, McGill University, Montréal, Québec, Canada 

4 University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 

Queensland, Australia 

5 MRC Integrative Epidemiology Unit, University of Bristol, UK, 

6 Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Sweden; . 

7 Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition, 

Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden 

8 California Pacific Medical Center Research Institute, San Francisco, California, USA 

9 Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess 

Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard University, Boston, 

USA 

10 Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands 



 

27 

 

11 Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK, and Australian 

Catholic University, Melbourne, Australia 

12 Medical Research Council Lifecourse Epidemiology Unit, University of Southampton, 

Southampton, UK 

13 National Institute for Health Research Southampton Biomedical Research Centre, University of 

Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK, 

14 Department of Orthopaedics and Clinical Sciences, Lund University, Skane University Hospital, 

Malmo, Sweden 

15 National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, 

Oxford, UK, 

16 Clinical Trial Service Unit and Epidemiological Studies Unit, University of Oxford, UK 

17 Bone & Mineral Unit, Oregon Health & Science University, Portland, Oregon, USA 

18 Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA 

19 Mellanby Centre for Bone Research, Centre for Integrated Research in Musculoskeletal Ageing, 

University of Sheffield, and Sheffield Teaching Hospitals Foundation Trust, Sheffield, UK, 

20 Department of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada, 

21 Gerald Bronfman Department of Oncology, McGill University, Montréal, Québec, Canada, 

22 Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montréal, 

Québec, Canada, 

23 Department of Twin Research and Genetic Epidemiology, King’s College London, London, United 

Kingdom 

  



 

28 

 

Corresponding Author 

Brent Richards, MD, MSc 

Professor of Medicine 

William Dawson Scholar / FRQS Clinical Research Scholar  

McGill University 

Senior Lecturer, King's College London (Honorary) 

 

Contact: 

Pavillon H-413, Jewish General Hospital 

3755 Cote Ste Catherine 

Montreal, QC, Canada, H3T 1E2  

T: +1 514 340 8222 x24362 

F: +1 514 340 7529 

E: brent.richards@mcgill.ca 

www.mcgill.ca/genepi 

  



 

29 

 

2.1 Key Points 

Question: Can genomics-enabled screening significantly reduce the number of individuals requiring 

bone mineral density measurements when screening for fragility fracture risk? 

Findings: We developed “gSOS”, a polygenic risk score for heel ultrasound speed of sound, in 

341,449 individuals and tested its performance in 10,522 individuals from 5 different cohorts. 

Applying a gSOS-based filtering step in a screening program for high fracture risk reduced the 

proportion of the population requiring bone mineral density screening tests by 41%, while only 

reducing the sensitivity to identify individuals eligible for therapy from 99% to 93% and increasing 

specificity.  

Meaning: Use of a polygenic risk score can decrease the number of people requiring bone mineral 

density scans in the assessment of fracture risk. 
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2.2 Abstract 

Importance: Since most screening programs identify only a small proportion of the screened 

population to be eligible for an intervention, genomic-prediction of heritable risk factors could 

decrease the number needing to be screened by removing individuals at low genetic risk. Whether a 

polygenic risk score can identify people who are unlikely to benefit from bone mineral density 

(BMD) testing in screening for high fracture risk is unknown.  

Objective: To test whether a polygenic risk score for heel quantitative ultrasound speed of sound 

(SOS)—a heritable risk factor for osteoporotic fracture—can identify low risk individuals who can 

be excluded from a fracture risk screening program.   

Design, Setting and Participants: 341,449 individuals from UK Biobank with SOS measures were 

used to develop polygenic risk score models using LASSO regression. The optimal prediction model 

was determined in 5,335 separate individuals and termed “gSOS”. Its utility in fracture risk screening 

was tested in 5 validation cohorts (N = 10,522 eligible participants) using the National Osteoporosis 

Guideline Group clinical screening guidelines.  

Main Outcomes and Measures: The sensitivity and specificity to identify individuals requiring 

treatment, where the reference-standard was a BMD-based FRAX® score. The secondary outcomes 

were the proportions of the screened population requiring clinical risk factor-based FRAX screening 

or BMD-based FRAX screening. 

Results: gSOS correlated with measured SOS (r2 = 23.2%, 95% CI: 22.7-23.7%). Without genetic 

pre-screening, guideline recommendations were able to achieve a high sensitivity and specificity for 

correct treatment assignment (99.6% and 97.1%, respectively, in the validation cohorts). However, 

81% of the population required clinical risk factor based-FRAX tests and 37% required BMD-based 

FRAX tests to achieve this accuracy. Using gSOS in screening and limiting further assessment to 

those with a low gSOS, resulted in small changes to the sensitivity and specificity (93.4% and 98.5%, 
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respectively), but substantial reductions in the proportion of individuals requiring clinical risk factor-

based FRAX tests and BMD-based FRAX tests by 37% and 41% respectively. 

Conclusions and Relevance: The use of a polygenic risk score in fracture risk screening can 

decrease the number of individuals requiring detailed assessments, including BMD, while 

maintaining a high sensitivity and specificity. 

  



 

32 

 

2.3 Introduction 

Screening programs are generally designed to identify a proportion of the screened population whose 

risk of a clinically-relevant outcome is high enough to merit an intervention. However, usually only 

a small proportion of individuals who undergo screening is found to be at high risk, indicating that 

much of the screening expenditure is spent on individuals who will not qualify for intervention. 

Osteoporosis is a common and costly disease that results in an increased predisposition to 

fractures.(1) Many guidelines(2–6) aimed at the prevention of osteoporosis-related fractures incorporate 

the fracture risk assessment tool (FRAX®),(7,8) a validated method to risk stratify individuals for 

treatment by assessing their 10-year probability of hip and major osteoporotic fracture. Guidelines 

vary widely, but often recommend a staged screening process where individuals are first screened 

with a clinical risk factor-based FRAX and those at increased risk of fracture are screened with a 

more expensive bone mineral density (BMD)-based FRAX score. Recently, a large randomized 

controlled trial (SCOOP) demonstrated the potential benefit of community-based fracture risk 

screening, by reducing rates of hip fractures in elderly women.(9) This trial used a screening strategy 

based on the National Osteoporosis Guideline Group (NOGG)(3) which implements fracture risk 

stratification through the use of FRAX scores. In this trial, the entire screened population underwent 

FRAX assessment using clinical risk factors and almost half (49%) had a sufficiently high probability 

of fracture to warrant further testing using a BMD-based FRAX. Yet, only 14% of the screened 

population had a resultant probability of fracture high enough to warrant intervention. This suggests 

that methods to improve screening efficiency could decrease the number of persons undergoing risk 

stratification using clinical and BMD-FRAX tests, while still correctly identifying the individuals 

who should be treated. 

Skeletal measures that predict fracture risk are highly heritable (50-85%) and include BMD 

and quantitative speed of ultrasound (SOS) measurements, which are highly correlated.10–13 
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Recently, large cohort resources have enabled the genomic prediction of such heritable clinical risk 

factors from genotypes through polygenic risk scores,(10–15) which capture information from a large 

number of single nucleotide polymorphisms assayed from genome-wide genotyping. These assays 

assess common genetic variation at millions of single nucleotide polymorphisms and cost 

approximately $40 in a research context. However, the clinical utility of such polygenic risk scores 

is unclear, wide-spread replication of polygenic risk scores is currently lacking, and it is unknown 

whether they can aid in screening programs.  

We therefore developed a polygenic risk score for SOS (gSOS) in a large cohort of 341,449 

individuals from the UK Biobank. We then tested the generalizability and potential benefit of 

incorporating gSOS into NOGG screening guidelines using 5 cohorts, comprising 10,522 eligible 

individuals, to see if gSOS could decrease the number of people requiring more detailed assessments, 

such as BMD measurement, while still identifying those who require interventions to decrease their 

risk of fracture. 

 

2.4 Methods 

2.4.1 Overall study design and cohorts 

This study included three phases (Figure 1). The first two phases were conducted in two distinct 

subsets of the UK Biobank Study cohort, and the final phase in a further subset of UK Biobank 

combined with 4 other cohorts.  Characteristics of the cohorts are shown in Table 1, with the cohorts 

described in detail in Table S1. 

The first phase used least absolute shrinkage and selection operator (LASSO) regression, a 

form of machine learning(16) to train a set of polygenic risk score models to predict SOS in the UK 

Biobank Training Set (N = 341,449). In phase 2, the polygenic risk score model explaining the most 

variance in measured SOS in the UK Biobank Model Selection Set (N = 5,335) was selected and 
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named “gSOS”. The ability of gSOS to explain variance in measured SOS was then tested in the UK 

Biobank Test Set (N = 84,768).  

In phase 3, gSOS was tested for its performance in a clinical fracture risk screening program 

applied to a population of 10,522 individuals derived from five separate cohorts. Inclusion in the 

screening program required these individuals to be ≥50 years with at least one risk factor and 

available measurements of femoral neck BMD.  This population comprised a further distinct subset 

of the UK Biobank Test Set (N = 2,445), as well as individuals from the Canadian Longitudinal Study 

of Aging [CLSA] (N = 2,931), the Study of Osteoporotic Fractures [SOF] (N = 2,094), Mr OS US 

(2,026) and Mr OS Sweden (N = 1,026). Together these five cohorts in phase 3 are referred to as 

validation cohorts. 

 

2.4.2 SOS and BMD Measurement (Details in Supplement) 

We decided to use polygenic risk scores to predict SOS, rather than BMD, because polygenic risk 

scores require large number of individuals with proper phenotyping and genome-wide genotyping. 

The largest dataset for SOS is approximately ten-fold larger than that for BMD.(17,18) SOS also 

predicts fracture, with similar performance characteristics compared to BMD, and the two measures 

are correlated (r = 0.4–0.6).(19) However, since femoral neck BMD is required for FRAX calculations 

used in screening programs,(20) we required that all individuals in the phase 3 analysis had femoral 

neck BMD measures available. Details of SOS and BMD measurement are available in the 

Supplement. All analyses used SOS standardized to a mean of zero and standard deviation of one.  

 

2.4.3 Development of machine learning model to predict SOS (Figure 1) 

I. Training, Model Selection and Test datasets: To develop and test gSOS, we followed best practices 

in clinical prediction to ensure unbiased estimates of model performance by developing models in 
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datasets distinct from datasets which were used to test model performance.(21)  Participants in the UK 

Biobank with White British ancestry, measured SOS, and genotyping information (N= 426,811) were 

randomly assigned to either the UK Biobank Training set (80% of participants), the UK Biobank 

Model Selection set (1.25% of participants), or the UK Biobank Test set (18.75% of participants) 

(Figure 1 & Table 1). Since BMD was measured in only 4,741 individuals in all of UK Biobank,(22) 

these individuals were assigned to the UK Biobank Test set to enable them to be used in phase 3 of 

the study. 

II. GWAS: Using the UK Biobank Training set (N=341,449 individuals with White British 

ancestry), we tested the additive allelic effects of each of the 13.9 million SNPs passing QC, 

separately, on SOS using a series of linear mixed-models(23), adjusting for age, sex, assessment 

centre, and genotyping array (Supplement). The GWAS was also controlled for the top 20 principle 

components of ancestry to reduce effects of cryptic relatedness. Linkage disequilibrium-independent 

associations where obtained using PLINK by clumping SNPs in linkage equilibrium at a r2 > 0.05 

and selecting a single most significant SNP from within each clumped set. To reduce potential bias 

due to population stratification the UK Biobank Training, Model Selection and Test sets included 

only White British participants, whereas all other cohorts included only people of general European 

ancestry (defined in the Supplement). 

III. Polygenic Risk Scores using LASSO: Using the UK Biobank Training set, we fitted 6 

LASSO models(16) to predict SOS using only SNPs with P-values smaller than a chosen set of 

thresholds (Table S2). The UK Biobank Model Selection set was then used to identify the P-value 

threshold and regularization parameter (!) that resulted in the lowest root mean square error for the 

prediction of SOS. This P-value threshold and regularization parameter were then taken forward for 

testing in the UK Biobank Test set. Hence, we ensured that the performance of only one final 
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polygenic risk score was evaluated in the UK Biobank Test set. We refer to this final predictor as 

“gSOS”, in which SOS is predicted only from genotypes.   

IV. Traditional Polygenic Risk Scores: Traditional polygenic risk scores(10) were derived 

from the GWAS for SOS performed in the UK Biobank Training set, without the use of LASSO, by 

including different sets of SNPs, selected by P-value threshold as described in the Supplement (Table 

S2).  

 

2.4.4 Generation of FRAX Scores 

FRAX risk scores for major osteoporotic fracture (hip, clinical vertebra, proximal humerus and wrist) 

can be generated with or without BMD, referred to in this paper as BMD-FRAX and clinical risk 

factor CRF-FRAX, respectively.(20) Therefore CRF-FRAX and BMD-FRAX were calculated for all 

participants in each validation cohort.(20) FRAX CRFs were assessed at the baseline visit for each 

cohort and included age, sex, body mass index (BMI), previous fracture, smoking, glucocorticoid 

use, rheumatoid arthritis and secondary causes of osteoporosis. Measures of more than two daily 

units of alcohol and parental history of hip fracture variables were not available in the UK Biobank 

and were set to “no” for this cohort, as suggested by FRAX guidelines. Not all secondary causes of 

osteoporosis were available for the SOF, Mr OS US and Mr OS Sweden cohorts and these variables 

were also set to “no” for these cohorts. Age was recorded at baseline visit. Sex was self-reported and 

verified by genotype. Individuals with discordant sex between self-report and genotype were 

excluded. CRF-FRAX and BMD-FRAX were calculated for all participants in each of the clinical 

cohorts, using country-specific FRAX scores.(20)   
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2.4.5 Genomic Screening in Fracture Risk Screening 

In the absence of an international consensus on fracture risk screening,(2,4,24,25) we chose to use the 

assessment and management clinical algorithm developed by NOGG,(3) since it is supported by 

randomized controlled trial evidence.(9) NOGG uses 10-year absolute probability of fracture as 

calculated by FRAX and suggests treatment or reassurance based on thresholds of risk, which are 

age dependent and consider competing risks. NOGG guidelines (Figure 2) also aim to identify 

individuals at risk for fracture in a cost-efficient manner by reserving clinical visits and more costly 

BMD testing for only those at intermediate risk, i.e. where the FRAX score lies close to an 

intervention threshold. This intervention threshold is equivalent to the age-specific FRAX 10-year 

probability in women with a prior fragility fracture, since nearly all such women would be 

recommended an intervention.(3) Individuals without a risk factor are excluded from the CRF-FRAX 

assessment.  By applying CRF-FRAX, individuals can be recommended for either an intervention 

(high risk), a BMD-FRAX (intermediate risk) or reassurance and no further participation in the 

screening program (low risk). Those having a BMD-FRAX can then be recommended an intervention 

if their resulting 10-year probability of major osteoporotic fracture exceeds the age-specific 

threshold, or they can be reassured. See Figure 2. 

Despite the efficiencies gained by using this stepwise approach,(26) false-negatives can occur 

when interventions are not recommended to individuals who have a low CRF-FRAX-based 

probability and are discharged from subsequent screening, whereas if they had undergone BMD-

FRAX, would qualify for intervention. Likewise, false-positives can arise when an individual is 

recommended for an intervention based on the CRF-FRAX score but would not have qualified for 

an intervention with BMD-FRAX.  

Thus, using the BMD-FRAX as a reference standard, we were able to calculate the sensitivity 

and specificity of the NOGG screening strategy. Furthermore, resources are often expended to 
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measure BMD-FRAX in individuals whose final probability of fracture is too low to warrant 

intervention.  Therefore, we also estimated the number of CRF-FRAX and BMD-FRAX tests that 

were performed but led to the individual being reassured without a recommended intervention.  

To try to reduce the number of individuals undergoing testing, particularly BMD, who would 

subsequently not require intervention, we introduced a gSOS-based screening step in the NOGG 

algorithm, where individuals were reassured from the program if their gSOS was above a threshold 

(Figure 3). We chose the sex-specific thresholds of gSOS which reduced CRF-FRAX and BMD-

FRAX testing but minimized the loss of sensitivity to identify individuals who would be 

recommended for treatment. This threshold was chosen using data from the UK Biobank Test set. 

This same gSOS thresholds were then applied in the remaining four validation cohorts (CLSA, SOF, 

Mr OS US and Mr OS Sweden). The sensitivity and specificity of including a gSOS screening step 

were calculated, where intervention according to BMD-FRAX probability was again used as the 

reference standard. The number of CRF-FRAX and BMD-FRAX tests performed, but not leading to 

an intervention, were also counted. These analyses were conducted in each validation cohort, men 

and women separately, and in all groups combined.  

 

2.5 Results 

2.5.1 Cohort Characteristics 

Table 1 describes the FRAX risk factors for all of the cohorts. There were few clinically-relevant 

differences in any of the osteoporosis-related risk factors in the UK Biobank Training, Model 

Selection and Test sets, as expected, since these sets were generated randomly. As planned, all 

individuals from the UK Biobank with BMD measures were included in the UK Biobank Test set, to 

ensure availability of BMD-FRAX scores as the reference standard. There were few differences in 

demographics or CRFs between individuals with or without BMD measured. The validation cohorts 
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(CLSA, SOF, Mr OS US and Mr OS Sweden) provided a range of characteristics, allowing for a 

better assessment of generalizability of results (Table 1). 

 

2.5.2 GWAS 

After quality control (Supplement), 13,958,249 SNPs were included in the GWAS. The GWAS in 

the training set identified 1,404 independent (r2 ≤ 0.05) genome-wide significant loci at a P-value 

threshold of < 5 × 10-8. Figure S1 shows the Manhattan and QQ plots for this GWAS.  

 

2.5.3 Variance Explained in SOS in the UK Biobank Model Selection Set 

The polygenic risk scores models trained with LASSO explained at most, 25.0% (95% confidence 

interval: 23.0-27.0%) of the variance in SOS in the UK Biobank Model Selection set (Table S2). 

Figure S2 provides detailed information on the optimal algorithm tuning parameters. None of the 

traditional polygenic risk scores performed better than the polygenic risk score derived from the 

LASSO regression. Figure S3 demonstrates that, as expected, the estimated effects of the activated 

SNPs from the LASSO algorithm were attenuated, when compared to the effects estimated from the 

GWAS. 

 

2.5.4 Variance Explained in SOS in the UK Biobank Test Set 

Age, sex and BMI explained 4.0% (95% CI: 3.7-4.2) of the variance in SOS. Adding all available 

FRAX clinical risk factors increased the variance explained to 5.3% (95% CI: 5.0-5.6%). The 

polygenic risk score from the UK Biobank Model Selection set explaining the most variance in 

measured SOS, was designated as “gSOS” and was then tested for its correlation with SOS in the 

UK Biobank Test set. This model (using 21,717 activated SNPs with P-value ≤ 10-4) explained 23.2% 

(95% CI: 22.7-23.7%) of the variance in measured SOS (Table S2, Figure 3).  
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2.5.5 Screening by NOGG Guidelines in Validation Cohorts 

The validation cohorts comprised 10,522 individuals eligible for fracture risk screening (Table 1). 

Both the sensitivity and specificity of NOGG guidelines to identify individuals at high enough risk 

to merit an intervention, compared to the reference standard BMD-FRAX, were high (99.6% and 

97.1%, respectively, Figure 5 and Table S3). This high sensitivity and specificity required CRF-

FRAX tests to be undertaken in 81% of the population eligible for screening with BMD-FRAX tests 

subsequently recommended in 37% of the population. 74% of those requiring CRF-FRAX tests were 

ultimately reassured without a recommendation for an intervention. As well, just over one third of 

all BMD-FRAX tests resulted in the individual being reassured without intervention. (Figure 5 and 

Table S3) 

 

2.5.6 Screening incorporating a gSOS-based screening step 

Using the UK Biobank Test set we selected the threshold of gSOS that would minimize the number 

of BMD tests done in persons who would be ultimately reassured, but also minimize the false 

negative rate (Figure S4). Applying this threshold separately in men and women, we found that a 

threshold of standardized gSOS set to 0.5 and zero for men and women, respectively, balanced these 

goals in the UK Biobank Test set and subsequently individuals above these thresholds were excluded 

from further screening in the validation cohorts, prior to receiving a CRF-FRAX or BMD-FRAX 

Test (Figure 4) 

Figure 5 demonstrates that applying a gSOS screening step resulted in a small decrease in 

sensitivity to identify eligible participants for therapy to 93.4%, but that the specificity increased 

slightly to 98.5%. However, the proportion of screened individuals requiring CRF-FRAX testing 

decreased from 81% to 51% (representing relative decrease of 37%), when compared to NOGG 

guidelines without a gSOS screening step. Additionally, the proportion of screened individuals 
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requiring BMD-FRAX testing decreased from 37% to 22% (representing a relative decrease of 41%). 

(Figure 5 and Table S3) 

The proportion of CRF-FRAX and/or BMD-FRAX tests that resulted in an individual being 

excluded from the screening program without a recommendation for an intervention also decreased 

from 74% to 46% and from 34% to 20%, respectively. (Figure 5 and Table S3). Cohort-specific 

results are shown in Tables S4 – S8. 

 

2.5.7 Women and Men Separately 

The SOF cohort was comprised of only women (SOF), while Mr OS US and Mr OS Sweden, were 

comprised of only men providing the opportunity to explore performance characteristics by sex. 

Further, we divided the UK Biobank Test set and CLSA into sex-specific datasets. Amongst 4,859 

women who were eligible for screening in the cohorts (SOF, UK Biobank Test set and CLSA), the 

sensitivity and specificity for correct treatment assignment were high (99.9% and 95%, respectively). 

Nevertheless 58% of the population required CRF-FRAX tests and 43% required BMD-FRAX tests. 

(Table S9) 

When applying a gSOS screening step, the sensitivity decreased marginally to 94.6% and the 

specificity increased marginally to 98.2%. The proportion of the population requiring CRF-FRAX 

tests reduced from 58% to 27% (representing a relative decrease by 55%), while the proportion 

requiring BMD-FRAX tests reduced from 43% to 20% (representing a relative decrease by 55%). 

(Table S9) 

Amongst the 5,668 men eligible for screening, the sensitivity and specificity were 96.9% and 

98.2%, respectively, using CRF-FRAX alone as the screening step.  In order to achieve this 

performance, 100% of men had a CRF-FRAX and 31% required a BMD-FRAX. The yield of high-

risk individuals from these tests was low, such that 94% of men receiving a CRF-FRAX were 
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reassured, and 29% of those receiving a BMD-FRAX were reassured (Table S10).  Applying a gSOS 

screening step to these men reduced the sensitivity to 82% while maintaining a similar specificity at 

99%. However, the proportion of men requiring a CRF-FRAX reduced to 72% (representing a 

relative decrease of 28%), and the proportion undergoing BMD-FRAX reduced to 23% (representing 

a relative decrease of 25%).  

 

2.6 Discussion 

By using a polygenic risk score, gSOS, generated from 341,449 individuals, we provide evidence in 

5 separate cohorts totaling 10,522 individuals, that genomics-enabled fracture risk screening can 

reduce the proportion of people that require BMD-based testing by 41%, while maintaining a high 

overall sensitivity and specificity for correct treatment assignment. While these findings are not 

meant to be prescriptive, they suggest a role for polygenic risk scores in screening programs that are 

dependent on heritable risk factors. 

Screening programs for fracture risk are expensive, with estimates of approximately $50,000 

USD per quality adjusted life year gained,(27) but are less expensive, or even cost-saving using NOGG 

screening strategies,(28,29) because NOGG decreases the number of individuals who require CRF 

and/or BMD-FRAX testing. Current guidelines suggest testing a large proportion of the 

population,(2,3,5) yet most patients are not identified to have a clinically-actionable level of risk.(9,30) 

This provides an opportunity for genetically-derived measures of risk to increase cost-efficiency in 

health care systems where investments have been made in genome-wide genotyping. Already at least 

seven large health care systems have invested in genome-wide genotyping of a large proportion of 

their population, within whom electronic health record (EHR) data are available.(31,32) Since the costs 

associated with genome-wide genotyping have now dropped below those of several routine clinical 

tests, the use of polygenic risk scores may be particularly helpful in these environments since a one-
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time genotyping cost could be used to generate several polygenic risk scores. However, there is a 

clear need to study the translation of such polygenic risk score to clinical applications(33)—and the 

work presented here provides one example of how such scores could be translated to the clinic. 

Limitations. While nearly all FRAX risk factors were available for study, alcohol intake and 

parental history of fracture were not available from the UK Biobank cohorts and secondary causes 

of osteoporosis were not uniformly available in SOF, Mr OS US and Mr OS Sweden. Nevertheless, 

CLSA provided similar results to other cohorts and had all required information. Like participants in 

most cohort studies, the participants used in these studies are, on average, healthier than the general 

population.(34) Thus, external validation in a truly population-based study may provide helpful 

estimates of the performance of genomics-enabled fracture risk screening. This risk score has not 

been tested outside of individuals of European ancestry, due to lack of data, which underlines the 

need for large-scale GWAS datasets in individuals of non-European ancestry.(35) We recognize that 

different approaches could be taken to incorporate polygenic risk scores into fracture risk screening, 

but here we offer a simple approach that could be readily implemented in a genotyped population 

with required FRAX risk factors using the NOGG screening strategy, which has supportive evidence 

from a randomized controlled trial.(9) Further refinement could improve the efficiencies presented 

here, including a polygenic risk score for BMD when sample sizes are large enough to enable this. 

 

2.7 Conclusion  

In summary, we have developed and tested gSOS, a polygenic risk score for SOS, which when 

introduced into a fracture risk screening program can decrease the number of people requiring CRF- 

and BMD-FRAX assessments, while still maintaining a high sensitivity and specificity to identify 

individuals in whom an intervention should be recommended. These findings highlight the role that 

genetic prediction could play in screening programs that rely upon heritable risk factors. 
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2.10 Tables and Figures 

2.10.1 Tables 

Table 1. Cohort Characteristics 

 Cohorts Used for Model 
Development 

 Cohorts Used to Test gSOS-Based Screening 

Participant Characteristics UK Biobank 
Training Set 

UK Biobank 
Model Selection 

Set 

 UK Biobank 
Test 

CLSA SOF Mr OS US Mr OS 
Sweden 

Sample Size 341,449 5,335  4,741 6,704 3,426 4,657 1,880 

Number Individuals Eligible for Screening (%) - -  2,445 (51.6) 2,931 (43.7) 2,094 (61.1) 2,026 (43.5) 1,026 (54.6) 

Age (SD) 56.8 (8.0) 56.6 (8.1)  55.8 (7.6) 62.6 (9.9) 71.5 (5.3) 74 (6) 75.4 (3.2) 

Women (%) 186,569 (55) 2,863 (54)  2,489 (52.5) 3,396 (50.7) 3,426 (100) 0 (0) 0 (0) 

Smoker (%) 27,181 (8.0) 397 (7.4)  966 (20.4) 581 (8.7) 270 (7.9) 145 (3.1) 178 (9.5) 

Previous Fracture (%) 34,917 (10.2)   386 (8.1) 1,032 (15.4) 1,210 (35.3) 1,084 (23.3) 637 (33.9) 

Corticosteroids use (%) 3,330 (1.0) 51 (0.8)  79 (1.7) 258 (3.9) 363 (10.6) 98 (2.1) 34 (1.8) 

Alcohol User (%) - -  - 1189 (17.7) 98 (2.9) 182 (3.9) 52 (2.8) 

Fall Within Last 12 Months (%) 69,057 (20.2) 1,052 (20.0)  1,500 (31.6) 699 (10.4) 1,021 (28.4) 984 (21.1) 298 (15.9) 

Rheumatoid Arthritis (%) 3,312 (1.0) 41 (0.8)  28 (0.6) 191 (2.9) 252 (7) 226 (4.9) 27 (1.4) 

Secondary Osteoporosis (%) 14,541 (4.3) 215 (4.0)  192 (4.1) 313 (4.7) - - - 

Parental History of Fracture (%) - -  - 820 (12.2) 404 (14.4) 599 (16.8) 164 (8.7) 

Baseline Clinical FRAX Score for MOF 5.1 (3.1) 5.0 (3.1)  4.8 (2.7) 8.1 (6.8) 18.7 (9.5) 9.5 (4.7) 11.1 (6.3) 

Baseline Clinical FRAX Score for Hip Fracture 0.75 (0.9) 0.73 (0.9)  0.7 (0.8) 2.1 (4) 6.4 (7) 3.8 (3.8) 5.3 (5.5) 

Baseline BMD FRAX Score for MOF - -  4.9 (2.6) 7.5 (5.8) 17.1 (9.5) 8.1 (4.4) 13.1 (5.6) 

Baseline BMD FRAX Score for Hip Fracture - -  0.7 (1) 1.5 (3) 5 (6.7) 2.5 (3.3) 7.1 (4.9) 

gSOS - -0.002 (1.0)  0.043 (0.98) -0.005 (1) 0 (0.99) -0.033 (0.98) -0.708 (0.5) 
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2.10.2 Figures 

 

Figure 1. Overall study design.  

PRS: Polygenic Risk Score. QC: Quality Control. CLSA: Canadian Longitudinal Study of Aging, 

SOF: Study of Osteoporosis Fracture. 
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Figure 2. NOGG Screening Strategy.  

Both CRF and BMD FRAX generate ten year probabilities of major osteoporotic fracture, which are 

used to designate risk of fracture. 
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Figure 3. Variance explained in SOS by clinical risk factors and gSOS in the UK Biobank Test 

Set.  

Available FRAX Clinical Risk Factors included: Age, Sex, BMI, Smoking, Previous Fracture, use 

of Glucocorticoids, Rheumatoid Arthritis and Secondary Osteoporosis. BMI = body mass index. 95% 

CI = 95% Confidence Intervals. 
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Figure 4. NOGG screening strategy with a gSOS screening step.  

Both CRF and BMD FRAX generate ten year probabilities of major osteoporotic fracture, which are 

used to designate risk of fracture. gSOS is standardized to have a mean of zero and standard deviation 

of one. 
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Figure 5. Performance characteristics of screening with and without a gSOS screening step. 
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2.12 Supplement 

2.12.1 Supplementary information 

Role of the Funding Source 

This program was funded by the Canadian Institutes of Health Research. UK Biobank is funded by 

the Wellcome Trust, UK Medical Research Council, Department of Health, Scottish Government 

and the Northwest Regional Development Agency. It has also had funding from the Welsh Assembly 

Government and the British Heart Foundation. None of these funders had a role in the design, 

implementation or interpretation of this study. 

 

The Richards lab is supported by the Canadian Institutes of Health Research, the Canadian 

Foundation for Innovation, the Lady Davis Institute and the Fonds de Recherche Santé Québec 

(FRSQ). Dr. Richards is supported by a FRQS Clinical Research Scholarship. TwinsUK is funded 

by the Wellcome Trust, Medical Research Council, European Union, the National Institute for Health 

Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre 

based at Guy’s and St Thomas’ NHS Foundation Trust in partnership with King’s College London. 

JPK is funded by a University of Queensland Development Fellowship (UQFEL1718945). CLSA is 

funded by the Canadian Institutes of Health Research and the Canadian Foundation for Innovation. 

MrOS: The Osteoporotic Fractures in Men (MrOS) Study is supported by National Institutes of 

Health funding. The following institutes provide support: The National Institute on Aging (NIA), the 

National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Center 

for Advancing Translational Sciences (NCATS), and NIH Roadmap for Medical Research under the 

following grant numbers: U01 AG027810, U01 AG042124, U01 AG042139, U01 AG042140, U01 

AG042143, U01 AG042145, U01 AG042168, U01 AR066160, and UL1 TR000128. NIAMS 

provided funding for the MrOS ancillary study ‘Replication of candidate gene associations and bone 
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strength phenotype in MrOS’ under the grant number R01 AR051124 and the MrOS ancillary study 

‘GWAS in MrOS and SOF’ under the grant number RC2 AR058973. Dr. Nielson is supported by a 

K01 from NIAMS (K01AR062655). SOF: The Study of Osteoporotic Fractures (SOF) is supported 

by National Institutes of Health funding. The National Institute on Aging (NIA) provides support 

under the following grant numbers: R01 AG005407, R01 AR35582, R01 AR35583, R01 AR35584, 

R01 AG005394, R01 AG027574, and R01 AG027576. The National Institute of Arthritis and 

Musculoskeletal and Skin Diseases (NIAMS) provides funding for the SOF ancillary study ‘GWAS 

in MrOS and SOF’ under the grant number RC2AR058973. 

 

Measurement of SOS and DXA-BMD 

Full details of SOS measurement in UK Biobank are available here: 

https://biobank.ctsu.ox.ac.uk/crystal/docs/Ultrasoundbonedensitometry.pdf 

Full details of BMD measurement in UK Biobank are available here: 

http://biobank.ctsu.ox.ac.uk/crystal/docs/DXA_explan_doc.pdf 

 

SOS measurement in UK Biobank 

Briefly, a Sahara Clinical Bone Sonometer (Hologic Corporation, Bedford, Massachusetts, USA) 

was used for quantitative ultrasound assessment of calcanei in UK Biobank participants. Details of 

the complete protocol are publicly available on the UK Biobank website (see above URLs). 

Participants were initially measured at baseline (N = 487,428) and had their left calcaneus (N = 

317,815), right calcaneus (N = 4,102) or both calcanei (N = 165,511) measured. Prior to quality 

control, ultrasound data were available for 488,366 individuals at either baseline and/or follow-up 

assessment. To reduce the impact of outlying measurements we first identified subjects that had both 

heels measured and removed those with highly discrepant (i.e. left vs. right) SOS and/or BUA 
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measurements. To achieve this, subjects were stratified by sex and bivariate scatter plots comparing 

left and right heel measures of SOS and BUA were generated separately. Outliers were identified by 

manual inspection and removed. The same method was used to identify and remove individuals with 

highly discordant SOS v BUA measured for each heel. Strict quality control was thereafter applied 

to male and female subjects separately using the following exclusion thresholds: SOS [Male: (≤1,450 

and ≥1,750 m/s), Female (≤1,455 and ≥1,700 m/s)] and BUA [Male: (≤27 and ≥138 dB/MHz), 

Female (≤22 and ≥138 dB/MHz)]. Individuals exceeding the threshold for SOS or BUA or both were 

removed from the analysis. A unique list of individuals with a valid measure for the left calcaneus 

(N = 477,380) and/or right (N = 181,953) were identified separately across the three time points. 

Individuals with a valid right calcaneus measure were included in the final data set when no left 

measures were available, giving a preliminary working dataset of N=481,100, (left = 475,724 and 

right = 5,376) unique individuals. Bivariate scatter plots of calcaneal measured were again visually 

inspected and 579 additional outliers were removed, leaving a total of 480,521 valid QUS measures 

(264,371 females and 216,150 males). Descriptive statistics of the cohort, after quality control, are 

detailed in Morris et al.(18) 

 

Femoral Neck BMD Measurement in UKBiobank (see Table S1 for other cohort details) 

A GE-Lunar iDXA instrument was used to measure bone mineral density at the femoral neck in UK 

Biobank participants. Details of the complete protocol are publicly available on the UK Biobank 

website (“URLs”). We use data fields Data-Field 23299 and 23208, which correspond to left and 

right 'Femur neck BMD (bone mineral density)', respectively. There were 5,184 individuals with 

either left, right or both femoral neck BMD measurements, of which 4,834 are within the White 

British subset. Individuals who were not in the White British subset were excluded. To reduce the 

impact of outlying measurements in the White British subset, we excluded individuals who had left 
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and right measurements that had greater than one standard deviation between left and right femoral 

neck BMD measurements (N=93). The remaining individuals (N=4,741) were assigned the left 

measurement if only left (N=1) or both (N=4739) were measured and assigned the right measurement 

if only right was measured (N=1). For all subsequent fracture prediction, femoral neck BMD was 

transformed to NHANES T-scores standardized to the mean of young women, calibrated to the GE-

Lunar machine, using the formula provided by the manufacturer: NHANES T-Score = (femoral neck 

BMD [g/cm2]-1.03796) / 0.139. 

 

GWAS for SOS in UK Biobank Test Set 

Selection of SNPs and participants for GWAS 

SNPs were first filtered for stringent quality control metrics, retaining only SNPs with a minor allele 

frequency (MAF) > 0.0005 and an imputation quality score (INFO score) >0.3 (Figure 1), leaving 

13,958,791 SNPs for analysis. Ancestry was determined only for UK Biobank participants with high-

quality genotype data (N=486,369). Using flashpca,(36) genotype data comprising 38,539 LD-pruned 

HapMap3 SNPs (MAF > 0.01, minor allele count > 5, Hardy-Weinberg Equilibrium P-value < 1e-6) 

were projected onto previously computed principal components using the same SNPs set from 1000 

Genomes Phase 3 (N=2,504). Cluster analysis as implemented in by the EMCluster R package was 

used to extract the UK Biobank individuals that are within the same cluster as the GBR (British in 

England and Scotland) 1000 Genomes population, resulting in 486,369 participants.  

 

Genome-wide association study (GWAS) 

In the training dataset, tests of association were performed between SOS and each SNP, using an 

additive coding for the number of minor alleles, and with the BOLT-LMM software.(23) Age, sex, 

assessment centre, genotyping array and the first 20 principal components of ancestry were calculated 
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from the white British subset and included as covariates in each of these models. These covariates 

were included to increase the power of the GWAS by reducing the residual error variance.  

 

Non-White British, Population Stratification and Cryptic Relatedness 

To identify non-White British we used flashpca,(36) on UK Biobank directly genotyped SNPs 

comprising 38,539 LD-pruned HapMap3 SNPs (MAF > 0.01, minor allele count > 5, Hardy-

Weinberg Equilibrium P-value < 1e-6) which were projected onto previously computed principal 

components using the same SNPs set from 1000 Genomes Phase 3 (N=2,504). Cluster analysis as 

implemented in by the EMCluster R package was used to extract the UK Biobank individuals that 

are within the same cluster as the GBR (British in England and Scotland) 1000 Genomes population. 

 

LASSO Regression and Polygenic Risk Scores Models to Predict SOS 

LASSO Regression model: 

For 6 P-value thresholds (Table S2), we selected all SNPs with P-values smaller than the threshold 

and used L1-penalized least absolute shrinkage and selection operator (LASSO) regression(16) to 

predict SOS in the training dataset. LASSO regression controls for model overfitting by introducing 

a regularization term, λ, that shrinks all estimated parameters towards zero. This machine learning 

method achieves improved prediction when only a subset of all predictor variables independently 

contributes to the prediction.  Importantly, this subset of predictors need not be genome-wide 

significant, nor need they be independent of each other. Only SNP data was used to build these 

LASSO models, and the number of SNPs considered ranged from 642,127 to 104,836. We used the 

biglasso implementation of LASSO given the size of the dataset,(37) but nevertheless we required use 

of Amazon cloud computing services and recoding the algorithm to use disk storage rather than 

memory for interim calculations.  Each biglasso model was fit for a series of values of the 
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regularization parameter, !.  In the model selection dataset, we identified the optimal value of the 

regularization parameter to minimize root mean square error for each of the 6 SNP sets, and we 

further identified which P-value threshold gave the best results (Table S2). The regularization 

parameter controls the number of SNPs contributing to the prediction models, and this varied from 

40,864 to 6,823 across the 6 SNP sets.  

 

Traditional Polygenic risk score models 

Polygenic risk scores were built by calculating weighted sums of the number of eBMD-reducing 

alleles (0, 1 or 2 for each SNP) carried by each person. The slope estimates from the GWAS 

regressions in the training dataset were used as the weights.(10) Six different p-value thresholds were 

used (Table S2), and then these SNP sets were filtered to eliminate highly correlated SNPs using 

GCTA-COJO.(38) This method conditions upon the lead SNP per locus (i.e. per region identified 

containing significant SNPS) by approximating the genotype-phenotype data with correlation 

matrices and summary statistics. For a p-value threshold of 5e-3, 44,091 SNPs were used to build the 

polygenic risk score; in contrast for a p-value threshold of 5e-8, only 1893 SNPs were used.  The 6 

resulting polygenic risk scores were evaluated in the Model Selection dataset to identify which one 

gave the smallest root mean squared prediction error. 

 

FRAX Clinical Risk Factors in UK Biobank 

To identify smokers in the cohort we use UK Biobank data fields 1239 (“Current Tobacco Smoking”, 

recording smokers as those answering “Yes, on most or all days”) and 20116 (“Smoking status”, 

recoding smokers as those marked “Current”). Self-reported rheumatoid arthritis was not recorded, 

as this is often confused with osteoarthritis.(39)  
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Glucocorticoid use 

Each individual has a list of “Treatment/medication” codes of length greater than or equal to zero. 

Individuals having at least one of the following codes in their list was assigned a positive flag for 

glucocorticoid use: '1140868364', '1140874930', '1140874950', '1140874954', '1140888628', 

'1140874956', '1140874976', '1140883026', '1141157402', '1140874896', '1140884704', 

'1140910424', '1140910484', '1141157294' and '1141173346'. These codes represent medications 

‘prednisone’, ‘prednisolone’, ‘prednesol 5mg tablet’, ‘hydrocortistab 20mg tablet’, ‘hydrocortistab 

1% cream’, ‘hydrocortone 10mg tablet’, ‘methylprednisolone’, ‘methylprednisolone+neomycin’, 

‘prednisolone product’, ‘hydrocortisone’, ‘cortisone product’, ‘hc - hydrocortisone’, ‘cortisol 

product’, ‘hydrocortisone product’ and ‘cortisone’ respectively.  

 

Definition of Rheumatoid Arthritis: 

ICD10 

M06 = Other rheumatoid arthritis 

M06.0 = Seronegative rheumatoid arthritis 

M06.00 = Seronegative rheumatoid arthritis (multiple sites) 

M06.01 = M06.01 Seronegative rheumatoid arthritis (Shoulder region) 

M06.02 = Seronegative rheumatoid arthritis (Upper arm) 

M06.03 = Seronegative rheumatoid arthritis (Forearm) 

M06.04 = Seronegative rheumatoid arthritis (Hand) 

M06.05 = Seronegative rheumatoid arthritis (Pelvic region and thigh) 

M06.06 = Seronegative rheumatoid arthritis (Lower leg) 

M06.07 = Seronegative rheumatoid arthritis (Ankle and foot) 

M06.08 = Seronegative rheumatoid arthritis (Other) 
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M06.09 = Seronegative rheumatoid arthritis (Site unspecified) 

M06.8 = Other specified rheumatoid arthritis 

M06.80 = Other specified rheumatoid arthritis (Multiple sites) 

M06.81 = Other specified rheumatoid arthritis (Shoulder region) 

M06.82 = Other specified rheumatoid arthritis (Upper arm) 

M06.83 = Other specified rheumatoid arthritis (Forearm) 

M06.84 = Other specified rheumatoid arthritis (Hand) 

M06.85 = Other specified rheumatoid arthritis (Pelvic region and thigh) 

M06.86 = Other specified rheumatoid arthritis (Lower leg) 

M06.87 = Other specified rheumatoid arthritis (Ankle and foot) 

M06.88 = Other specified rheumatoid arthritis (Other) 

M06.89 = Other specified rheumatoid arthritis (Site unspecified) 

M06.9 = Rheumatoid arthritis, unspecified 

M06.91 =  Rheumatoid arthritis, unspecified (Shoulder region) 

M06.92 = Rheumatoid arthritis, unspecified (Upper arm) 

M06.93 = Rheumatoid arthritis, unspecified (Forearm) 

M06.94 = Rheumatoid arthritis, unspecified (Hand) 

M06.95 = Rheumatoid arthritis, unspecified (Pelvic region and thigh) 

M06.96 = Rheumatoid arthritis, unspecified (Lower leg) 

M06.97 =  Rheumatoid arthritis, unspecified (Ankle and foot) 

M06.98 = Rheumatoid arthritis, unspecified (Other) 

M06.99 = Rheumatoid arthritis, unspecified (Site unspecified) 
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ICD9 

714 = Rheumatoid arthritis and other inflammatory polyarthropathies 

714.0 = 714.0 Rheumatoid arthritis 

714.00 = Rheumatoid arthritis (multiple sites) 

714.01 = Rheumatoid arthritis (shoulder region) 

714.02 = Rheumatoid arthritis (upper arm) 

714.03 = Rheumatoid arthritis (forearm) 

714.04 = Rheumatoid arthritis (hand) 

714.05 = Rheumatoid arthritis (pelvic region and thigh) 

714.06 = Rheumatoid arthritis (lower leg) 

714.07 = Rheumatoid arthritis (ankle and foot) 

714.08 = Rheumatoid arthritis (other specified site) 

714.09 = Rheumatoid arthritis (site unspecified) 

714.2 = 714.2 Other r.a. with visceral or systemic involvement 

714.21 = Other r.a. with visceral or systemic involvement (shoulder region) 

714.22 = Other r.a. with visceral or systemic involvement (upper arm) 

714.23 = Other rheumatoid arthritis with visceral or systemic involvement (forearm) 

714.24 = Other rheumatoid arthritis with visceral or systemic involvement (hand) 

714.25 = Other r.a. with visceral or systemic involvement (pelvic region and thigh) 

714.26 = Other r.a. with visceral or systemic involvement (lower leg) 

714.27 = Other r.a. with visceral or systemic involvement (ankle and foot) 

714.28 = Other r.a. with visceral or systemic involvement (other specified site) 

714.29 = Other r.a. with visceral or systemic involvement (unspecified site) 
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Secondary Causes of Osteoporosis 

Individuals reporting type 1 diabetes, menopause prior to age 45, chronic liver disease or 

osteogenesis imperfecta were recorded as having a secondary cause of osteoporosis.  

 

Type 1 diabetes 

Type-1 diabetes was defined as follows: Individuals having a self-reported non-cancer illness code 

'1222' in data-field 20002 were assigned a positive type-1 diabetes status. Others were assigned a 

negative status.   

 

Menopause prior to age 45 

Women who indicated that their periods had stopped through a touchscreen questionnaire (Data-

Field 2724) were asked at what age this occurred (Data-Field 3581). Women who answered “Do 

not know” or “Prefer not to answer” were assigned a value of zero. Women who provided an age 

greater than or equal to 45 were assigned a value of 0. Women who provided an age less than 45 

were assigned a value of 1. All other individuals in the cohort were assigned a value of zero.  

 

Chronic liver disease 

Individuals having one of the following ICD9 codes were assigned a positive chronic liver disease 

status: 571, 5710, 5711, 5712, 5713, 5714, 5715, 57150, 57151, 57152, 57158, 57159, 5716, 5717, 

5718, 5719. These ICD9 codes correspond to ‘Chronic liver disease and cirrhosis’, ‘Alcoholic fatty 

liver’, ‘Acute alcoholic hepatitis’, ‘Alcoholic cirrhosis of liver’, ‘Alcoholic liver damage, 

unspecified’, ‘Chronic hepatitis’, ‘Cirrhosis of liver without mention of alcohol’, ‘Cirrhosis of liver 

without mention of alcohol (congestive)’, ‘Cirrhosis of liver without mention of alcohol 

(postnecrotic)’, ‘Cirrhosis of liver without mention of alcohol (childhood function)’, ‘Portal fibrosis 
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without cirrhosis of liver without mention of alcohol’, ‘Cirrhosis of liver without mention of 

alcohol (other and unspecified)’, ‘Biliary cirrhosis’, ‘Other chronic nonalcoholic liver disease’, 

‘Unspecified chronic liver disease without mention of alcohol’, respectively.  

 

Osteogenesis imperfecta 

Individuals having one or both of the ICD9 code 75650 and ICD10 code Q780 were assigned a 

positive osteogenesis imperfecta status. The codes correspond to ‘Osteodystrophies (osteogenesis 

imperfecta)’ and ‘Osteogenesis imperfecta’, respectively. All other individuals in the cohort were 

assigned a negative osteogenesis imperfecta status.  
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2.12.2 Supplementary tables 

Table S1. Study cohorts. 

Short name Full name Study design Study Type Country of Origin Ethnicity 
BMD Assessment method 

(Lunar, Hologic) Short Study Description 
Genome-Wide Genotyping & 

Imputation References 

UKB Training UK Biobank 
Training Set 

Cohort General population Britain Mixed, but 
predominantly White 

British 

GE-Lunar iDXA UK Biobank is a large-scale 
health resource that follows 
502,628 volunteer participants 
in the United Kingdom. UK 
Biobank has ethical approval 
from the Northwest Multi-
centre Research Ethics 
Committee, and informed 
consent was obtained from all 
participants. 

Affymetrix UK Biobank array, 
followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

UK Biobank: An 
Open Access 
Resource for 
Identifying the 
Causes of a Wide 
Range of Complex 
Diseases of Middle 
and Old Age. PLoS 
Med. 12, e1001779 
(2015). 

UKB Model 
Selection 

UK Biobank 
Model 

Selection Set 

Cohort General population Britain Mixed, but 
predominantly White 

British 

GE-Lunar iDXA UK Biobank is a large-scale 
health resource that follows 
502,628 volunteer participants 
in the United Kingdom. 
Participants within the UK 
Biobank have been genome-
wide genotyped using 
Affymetrix arrays, followed by 
genotype imputation to the 
Haplotype Reference 
Consortium. UK Biobank has 
ethical approval from the 
Northwest Multi-centre 
Research Ethics Committee, 
and informed consent was 
obtained from all participants. 

Affymetrix UK Biobank array, 
followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

UK Biobank: An 
Open Access 
Resource for 
Identifying the 
Causes of a Wide 
Range of Complex 
Diseases of Middle 
and Old Age. PLoS 
Med. 12, e1001779 
(2015). 

UKB Test UK Biobank 
Test Set 

Cohort General population Britain Mixed, but 
predominantly White 

British 

GE-Lunar iDXA UK Biobank is a large-scale 
health resource that follows 
502,628 volunteer participants 
in the United Kingdom. 
Participants within the UK 
Biobank have been genome-
wide genotyped using 
Affymetrix arrays, followed by 
genotype imputation to the 
Haplotype Reference 
Consortium. UK Biobank has 
ethical approval from the 
Northwest Multi-centre 
Research Ethics Committee, 
and informed consent was 
obtained from all participants. 

Affymetrix UK Biobank array, 
followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

UK Biobank: An 
Open Access 
Resource for 
Identifying the 
Causes of a Wide 
Range of Complex 
Diseases of Middle 
and Old Age. PLoS 
Med. 12, e1001779 
(2015). 

CLSA Canadian 
Longitudinal 

Study of 
Aging 

Cohort General population Canada Mixed, but 
predominantly European 

Hologic QDR The Canadian Longitudinal 
Study of Aging (CLSA) is a 
cohort consisting of a 
comprehensive cohort with 
DNA samples available and a 
tracking cohort without 
biological samples. The 
Tracking cohort of 21,241 
participants who are 
interviewed by telephone and 
the Comprehensive cohort of 
30,097 participants who are 
interviewed in person and 
provide blood and urine 
samples. For this study, only 
participants with available 
genome-wide genotyping and 
BMD measures were included. 
Genome-wide genotyping is 
on-going for the entire 
comprehensive cohort. 

Affymetrix Biobank array, 
followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

The Canadian 
longitudinal study on 
aging (CLSA). Can. 
J. Aging 28, 221–229 
(2009). 

MrOS US Osteoporotic 
Fractures in 
Men USA 

Cohort General population United States Non-Hispanic white Hologic QDR The Osteoporotic Fractures in 
Men (MrOS) Study enrolled 
5,994 participants in 2000¬ to 
2002 at six clinical centers in 
the U.S. Eligible participants 
were community-dwelling men 
who were at least 65 years of 
age, able to walk without 
assistance from another person, 
and had not had bilateral hip 
replacements. Written 
informed consent was obtained 
from all participants, and the 
Institutional Review Board at 
each study site approved the 
study. 

Genome-wide genotyped on 
Illumina HumanOmni1-Quad, 
followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

Orwoll E, Blank JB, 
Barrett-Connor E, et 
al. Design and 
baseline 
characteristics of the 
osteoporotic fractures 
in men (MrOS) 
study--a large 
observational study 
of the determinants of 
fracture in older men. 
Contemporary 
clinical trials. Oct 
2005;26(5):569-585. 
Blank JB, Cawthon 
PM, Carrion-Petersen 
ML, Harper L, 
Johnson JP, Mitson 
E, Delay RR 2005 
Overview of 
recruitment for the 
osteoporotic fractures 
in men study 
(MrOS). Contemp 
Clin Trials 26:557–
568 

SOF Study of 
Osteoporotic 

Fractures 

Cohort General population United States Non-Hispanic white Hologic QDR The Study of Osteoporotic 
Fractures (SOF) is a 
prospective multicenter study. 
The cohort originally 
comprised 9704 community 
dwelling women recruited 
from population-based listings 
in four U.S. areas. Inclusion 
criteria were 1) 65 years of age 
or older, (2) ability to walk 
without the assistance of 

Genome-wide genotyped on 
Illumina HumanOmni1-Quad, 
followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

Cummings SR, 
Nevitt MC, Browner 
WS, et al. Risk 
factors for hip 
fracture in white 
women. Study of 
Osteoporotic 
Fractures Research 
Group. The New 
England journal of 
medicine. Mar 23 
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another, (3) absence of 
bilateral hip replacements, (4) 
ability to provide self-reported 
data, (5) residence near a 
clinical site for the duration of 
the study, (6) absence of a 
medical condition that (in the 
judgment of the investigator) 
would result in imminent 
death, and (7) ability to 
understand and sign an 
informed consent. Written 
informed consent was 
provided, and the IRB at each 
enrollment site approved the 
study. 

1995;332(12):767-
773.Steiger P, 
Cummings SR, Black 
DM, Spencer NE, 
Genant HK. Age-
related decrements in 
bone mineral density 
in women over 65. 
Journal of bone and 
mineral research : the 
official journal of the 
American Society for 
Bone and Mineral 
Research. Jun 
1992;7(6):625-
632.Ensrud KE, 
Palermo L, Black 
DM, et al. Hip and 
calcaneal bone loss 
increase with 
advancing age: 
longitudinal results 
from the study of 
osteoporotic 
fractures. Journal of 
bone and mineral 
research : the official 
journal of the 
American Society for 
Bone and Mineral 
Research. Nov 
1995;10(11):1778-
1787. 

Mr Os Sweden Study of 
Osteoporotic 

Fractures 
Sweden 

Cohort General population Sweden Swedish Gothenburg subset: Hologic 
QDR Malmö subset: Lunar 

Prodigy DXA 

The Osteoporotic Fractures in 
Men (MrOS) study is a 
multicenter, prospective study 
including older men in 
Sweden, Hong Kong and the 
United States. The MrOS 
Sweden study (n=3014) 
consists of three sub-cohorts 
from three different Swedish 
cities (n=1005 in Malmö, 
n=1010 in Gothenburg, and 
n=999 in Uppsala). Study 
subjects (men aged 69 to 81 
years) were randomly 
identified using national 
population registers. A total of 
45% of the subjects who were 
contacted participated in the 
study. To be eligible for the 
study, the subjects had to be 
able to walk without 
assistance, provide self-
reported data, and sign an 
informed consent. The study 
was approved by the ethics 
committees at the Universities 
of Gothenburg, Lund, and 
Uppsala. Informed consent was 
obtained from all study 
participants. 

Gothenburg part: Genotyped 
with Illumina 
HumanOmni1_Quad_v1-0 B 
array, followed by genotype 
imputation to the Haplotype 
Reference Consortium. Malmö 
part: Genotyped with 
HumanOmniExpress-12v1_B 
build 36, followed by genotype 
imputation to the Haplotype 
Reference Consortium. 

PMID: 16598372 
Mellström D, Johnell 
O, Ljunggren O, 
Eriksson AL, 
Lorentzon M, 
Mallmin H, 
Holmberg A, 
Redlund-Johnell I, 
Orwoll E, Ohlsson C 
2006 Free 
testosterone is an 
independent predictor 
of BMD and 
prevalent fractures in 
elderly men: MrOS 
Sweden. J Bone 
Miner Res 21:529-
535. 
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Table S2. Variance explained in SOS by clinical risk factors, polygenic risk scores and LASSO-based polygenic risk scores. 
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Table S3. Performance of NOGG Guidelines with and without gSOS screening step in all 

validation cohorts. 

 

 

Table S4. Performance of NOGG guidelines with and without gSOS screening step in men and 

women from the UK Biobank Test Set. 
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Table S5. Performance of NOGG guidelines with and without gSOS screening step in men and 

women from the CLSA cohort.  

 

 

Table S6. Performance of NOGG guidelines with and without gSOS screening step in the SOF 

cohort. 

 

  



 

72 
 

Table S7. Performance of NOGG guidelines with and without gSOS screening step in the Mr 

Os US cohort. 

 

 

Table S8. Performance of NOGG guidelines with and without gSOS screening step in the Mr 

Os Sweden cohort.  
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Table S9. Performance of NOGG guidelines with and without gSOS screening step in women 

from validation cohorts. 

 

 

Table S10. Performance of NOGG guidelines with and without gSOS screening step in men 

from all cohorts. 
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Table S11. Performance of NOGG guidelines with and without gSOS screening step in women 

from the UK Biobank Test Set. 

 

 

Table S12. Performance of NOGG guidelines with and without gSOS screening step in women 

from the CLSA cohort 
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Table S13. Performance of NOGG guidelines with and without gSOS screening step in men 

from the UK Biobank Test Set 

 

 

Table S14. Performance of NOGG guidelines with and without gSOS screening step in men 

from the CLSA cohort  
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2.12.3 Supplementary figures 

Figure S1-A. Manhattan plot from GWAS of SOS 

 
 

Figure S1-B. QQ plot from GWAS of SOS 
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Figure S2. Performance of each SNP set using LASSO regression in the model selection set 

Each feature set consists of a set of SNPs associated with SOS at a specified p-value threshold (sub-

panel titles). For each feature set, we fit a regularized model to the training set over a range of 

regularization constants (λ) (top-left), with each λ resulting in a variable subset of activated features 

(bottom-left). The model with the minimal RMSE in the model selection set (top-right) was selected 

to compare the variance explained (r2, bottom right) among all feature sets. 
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Figure S3. Correlation of betas from GWAS and betas from gSOS for activated SNPs 
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Figure S4. Effects of gSOS threshold on treatment assignment 
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Chapter 3 

Preface: Bridge Between Chapter 2 and Chapter 3 

Several published observational and experimental studies in humans and animal models have 

associated lowered VEGF with bone mineral density and adverse osteoporosis outcomes. However, 

given that these observational studies were susceptible to confounding, it remained unclear whether 

this association was causal, driven by confounding or a product of the disease process itself. Using 

the largest circulating VEGF genome-wide association meta-analysis to date(29), that included genetic 

variants explaining up to 52% of the variance in levels of circulating VEGF, we hypothesized that 

combining this information with our current knowledge of the genetic determinants of osteoporosis, 

would help us better understand whether circulating VEGF could serve an effective target for the 

treatment or prevention of osteoporosis-related fractures. The following chapter presents a Mendelian 

randomization study providing evidence that pharmacologically altering levels of circulating VEGF 

is unlikely to have clinically-relevant effects on osteoporosis outcomes.  
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3.1 Abstract 

Vascular endothelial growth factor (VEGF) is important for bone formation and has been associated 

with osteoporosis in humans. Therefore, we conducted a two-sample Mendelian randomization study 

to test whether genetically decreased circulating VEGF was associated with decreased bone mineral 

density (BMD) and increased risk of fracture. 

Summary statistics from a genome-wide association meta-analysis of circulating VEGF level 

(N=16,112) were used to identify 10 genetic variants that explained up to 52% of the variance in 

circulating VEGF levels. Genome-wide association study meta-analyses on dual X-ray 

absorptiometry-derived BMD of forearm, lumbar spine, and femoral neck (N = up to 32,735), and 

BMD estimated from heel calcaneus ultrasound (eBMD) (N=426,824) were used to assess the effect 

of genetically lowered circulating VEGF levels on BMD. A genome-wide association meta-analysis 

consisting of 24 cohorts including a total of 76,549 cases and 470,164 controls was used to assess 

the effect of genetically lowered circulating VEGF levels on risk of fracture. 

A natural log-transformed pg/mL decrease in circulating VEGF levels was not associated 

with a decrease in forearm BMD (0.02 standard deviations (SD), CI: [-0.024, 0.064], p=0.38), lumbar 

spine BMD (-0.005 SD, CI: [-0.03, 0.019], p=0.67), femoral neck BMD (0.004 SD, CI: [-0.017, 

0.026], p=0.68), eBMD (-0.006 SD, CI: [-0.012, -0.001], p=0.031) or risk of fracture (odds ratio: 

0.99, CI: [0.98, 1.0], p=0.37) in inverse-variance weighted Mendelian randomization analyses. MR-

Egger analyses did not provide evidence of pleiotropic effects. 

Genetically lowered circulating VEGF was not associated with a decrease in BMD or increase 

in risk of fracture, suggesting that efforts to influence circulating VEGF level are unlikely to have 

beneficial effects on osteoporosis outcomes and that previous observational associations of 

circulating VEGF with BMD were influenced by confounding or reverse causation. 
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3.2 Introduction 

Osteoporosis is an aging-related disease characterized by weakened bone microarchitecture leading 

to increased risk of fracture(1). While osteoporosis is a common disease with important clinical 

outcomes, such as hip fracture, many patients who are at high risk are not treated — in part due to 

side-effects of current medical therapies(2). This has led to efforts to identify additional targets for 

new therapies(3). A source of potential drug targets are circulating proteins since they are amenable 

to manipulation with small molecules and monoclonal antibodies. One such circulating protein is 

vascular endothelial growth factor (VEGF), the factor responsible for angiogenesis. 

Although VEGF plays a role in bone formation(4–6), its role as a circulating protein influencing 

osteoporosis outcomes has not yet been clearly established(7). Several studies in animal models and 

humans support a role for VEGF in bone formation and osteoporosis. For instance, VEGF has been 

shown to be highly expressed in osteoblastic precursor cells and stimulate bone formation(8,9). 

Furthermore, VEGF influences bone remodeling in glucocorticoid-induced osteoporosis in the mini-

pig animal model(10). In mouse models, VEGF-mediated bone angiogenesis is required for proper 

bone gain induced by exercise(11). These findings suggest that VEGF may influence osteoporosis 

outcomes. 

In humans, observational epidemiology supports a role for circulating VEGF in 

osteoporosis(12), however, the findings were suggestive and may be subject to confounding by 

unmeasured, or improperly measured factors. Observational studies may also be influenced by 

reverse causation, where the outcome itself influences the risk factor. This may be the case in 

osteoporosis outcomes as the precise timing of osteoporosis onset is often not known. Moreover,  

osteoporosis treatment may influence levels of circulating VEGF(13–15). Therefore, further study is 

needed to determine whether VEGF has a causal role in osteoporosis. 

The principles of Mendelian randomization (MR) can be used to assess the causal role of 
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circulating biomarkers in risk of disease. Similar to a randomized control trial, MR compares 

outcomes between two groups of individuals that differ at one variable of interest and its associated 

effects. In MR, this variable is a genetic variant, yielding two groups that differ by any factor that the 

genetic variant relates to. Because genetic variants are passed from parents to offspring independently 

of environment, they can serve as instrumental variables that are largely independent of factors that 

would confound observational studies. Further, because the germline genotype does not change 

throughout life, associations derived from MR analyses cannot be influenced by reverse causation. 

MR has been previously used to investigate the causal role of high-density lipoprotein(16) and C-

reactive protein(17) in predisposition to cardiovascular disease, and has provided evidence that PCSK9 

inhibition prevents cardiovascular disease(18). MR has also provided evidence that higher vitamin D 

status leads to reduced multiple sclerosis risk(19), subsequently informing the vitamin D 

supplementation guidelines for the Multiple Sclerosis Canada(20). A recent MR study supported a 

causal role for bone mineral density (BMD) on fracture and showed that several other exposures, 

such as lowered levels of vitamin D levels in the general population, did not influence fracture risk(21). 

MR methods may be of particular relevance for understanding the etiology of osteoporosis since the 

disease onset occurs long after birth and MR studies assess the effect of lifetime exposures. 

Understanding the risk associated with a lifetime exposure to lowered circulating VEGF could 

therefore elucidate the role of this circulating protein in osteoporosis. 

In this study, we performed a MR study to provide evidence for, or against, a causal role of 

circulating VEGF levels on BMD, the single best predictor of osteoporosis risk and fracture 

susceptibility(22). We used a two-sample MR approach(23) which entailed first obtaining genetic 

variants that were significantly associated with circulating VEGF levels from a meta-analysis of  

genome-wide association studies (GWAS) on 10 cohorts of European ancestry(24), comprising a total 

of 16,112 individuals. Next, we tested their validity as instrumental variables for MR analyses(25). 
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Finally, using all circulating VEGF-associated genetic variants, we conducted MR analyses and 

meta-analyzed their combined effect of circulating VEGF levels on dual-energy X-ray 

absorptiometry (DXA)-measured BMD at the forearm (FA) (N=8,143), lumbar spine (LS) 

(N=28,498) and femoral neck (FN) (N=32,735)(26), on BMD estimated from heel calcaneus 

ultrasound (eBMD) (N=426,811)(27) and on risk of fracture (76,549 cases and 470,164 controls)(21). 

 

3.3 Methods 

3.3.1 Instrumental variable selection and data source 

The first assumption of MR studies requires that instrumental variables (which are most often single 

nucleotide polymorphisms (SNP) in MR studies), are associated with the exposure of interest(25), in 

this case circulating levels of VEGF. We identified 10 genome-wide significant SNPs for circulating 

VEGF (p<5x10-8) and collected their effect size estimates from the largest published GWAS meta-

analysis for circulating VEGF levels to date consisting of 16,112 individuals of European ancestry. 

Together, these 10 SNPs explained up to 52% of the variance in circulating VEGF levels. The mean 

variance explained across the cohorts in the meta-analysis was 33%(24). The meta-analyzed cohorts 

were the Age Gene/Environment Susceptibility Reykjavik Study (n=1,548), the Cilento study 

(n=1,115), the Framingham Heart Study (n=7,048), the Ogliastra Genetic Park (n=897), the 

Prospective Investigation of the Vasculature in Uppsala Seniors Study (n=945), the Val Borbera 

study (n=1,759), the Gioi (n=470) population, the Sorbs population (n=659), the STANISLAS 

Family Study (n=676) and a sample of hypertensive adults (n=995). Units of circulating VEGF levels 

were in pg/mL and were natural log-transformed(24).  

 

3.3.2 Independence from confounding factors. 

The second assumption of MR studies requires that there are no unmeasured confounders of the 
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association between the genetic variants and the outcome(25). This assumption can be violated if the 

genetic variants are subject to population stratification, that is if they are associated with ancestry, 

which in turn is associated with the outcome. Prior to the MR analysis, SNPs from the VEGF, FA, 

LS and FN DXA-measured BMD, eBMD and fracture GWAS meta-analyses were confirmed to have 

been adjusted for population stratification using methods described in their respective studies(21,24,28) 

Further, all cohorts analyzed in the GWAS meta-analyses consisted uniquely  of individuals of 

European descent. 

 

3.3.3 Horizontal pleiotropy assessment 

The third assumption of MR studies requires that instrumental variables influence the outcome only 

through their effect on the exposure(25). To explore potential violations of this assumption, each of 

the 10 VEGF-associated SNP was queried against the Phenoscanner database(29) of GWAS and was 

excluded from the analysis if it was significantly associated to any known risk factor for osteoporosis 

or fracture, after Bonferroni correction for the number of SNPs queried  (p<0.05/10=0.005). Well-

validated risk factors for osteoporosis included advancing age, previous fracture, glucocorticoid 

therapy, parental history of hip fracture, low body weight, current cigarette smoking, excessive 

alcohol consumption, rheumatoid arthritis and secondary osteoporosis (e.g. hypogonadism or 

premature menopause, malabsorption, chronic liver disease, inflammatory bowel disease(30)). Other 

potential pleiotropic pathways were also considered, such as history of a fall, lower-extremity 

weakness, cognitive impairment, balance problems, psychotropic drug use, arthritis, history of 

stroke, orthostatic hypotension, dizziness and anemia(31–43).  

To further exclude the possibility that any of the 10 VEGF-associated SNPs influenced the 

outcome independently of circulating VEGF levels, they were queried against a GWAS of 2,994 

circulating protein levels conducted on 3,301 individuals(44). SNPs that were significantly associated 
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to a circulating protein after Bonferroni correction for the number of circulating proteins in the study 

and the number of SNPs queried (p<0.05/(10x2994)=1.67x10-6) were considered potentially 

pleiotropic and were excluded from the main MR analysis. We note that the above sensitivity 

analyses do not necessarily differentiate between horizontal and vertical pleiotropy, where only the 

former would bias MR studies. 

 

3.3.4 Independence of instrumental variables 

MR studies require that instrumental variables are independent of one another.(45) To verify that the 

VEGF-associated SNPs met this assumption, linkage disequilibrium (LD) was measured between 

those that shared a chromosome using LDLink(46), considering the following 1000 Genomes 

reference populations: Utah Residents from North and West Europe, Toscani in Italia, Finnish in 

Finland, British in England and Scotland, and Iberian population in Spain. 

 

3.3.5 Association of instrumental variables with BMD and fracture 

Summary statistics, including effect sizes for the association of instrumental SNPs with BMD, were 

obtained using three separate GWAS of FA, LS and FN DXA-measured BMD from Zheng et al.(26), 

the largest GWAS on DXA-measured BMD to date. eBMD summary statistics were obtained from 

the largest GWAS on this phenotype to date(27). Summary statistics for the association of instrumental 

SNPs with fracture were obtained from a fracture fixed effect meta-analysis comprising a total of 24 

cohorts from two recently published fracture GWAS, which included 23 cohorts from Genetic 

Factors for Osteoporosis consortium(21), the EPIC-Norfolk study(21) and the UK Biobank ’s full 

release(27). Proxies for SNPs that were not present in an outcome GWAS were identified using 

LDLink(46) (r2>0.8, considering 1000 Genomes populations: Utah Residents from North and West 

Europe, Toscani in Italia, Finnish in Finland, British in England and Scotland, and Iberian population 
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in Spain) and corresponding summary statistics were assigned to instrumental SNPs assuring that 

proxy effect directions were aligned with the correlating VEGF-decreasing allele of the instrumental 

SNP. 

 

3.3.6 MR estimates 

MR estimates for instrumental SNPs were computed using the Wald method(47) and were meta-

analyzed by computing an inverse-variance weighted (IVW) average. The Python code written to 

compute MR estimates is presented at the following link: https://github.com/richardslab/MR-VEGF-

Osteoporosis   

 

3.3.7 Sensitivity analyses 

To investigate the extent to which the IVW estimate was influenced by the SNP with the largest 

effect on circulating VEGF levels, the IVW meta-analysis was repeated after its exclusion.  

SNPs that were associated with non-VEGF circulating protein levels in Sun et al.(44) were 

excluded from the main analysis to avoid potential violations of the MR assumptions. However, it is 

possible that the circulating proteins associated to these SNPs are members of pathways that 

influence circulating VEGF level and have no effect on BMD or fracture risk other than through 

circulating VEGF. Or, these same proteins may be influenced directly by VEGF. In such cases, the 

use of these SNPs as instrumental variables for VEGF would be valid. As a second sensitivity 

analysis, MR analysis was repeated using all 10 VEGF-associated SNPs(24), acknowledging that 

nonzero MR estimates could be driven by pathways that are independent of VEGF and that null MR 

estimates could be the additive outcome of two or more opposing nonzero effects.  

To estimate the extent to which MR estimates were influenced by pathways that are 

independent of circulating VEGF, MR-Egger regression analyses were performed using the 
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Mendelian Randomization R package(48), using the intercept as a test for horizontal pleiotropy. 

 

3.4 Results 

3.4.1. Selection of Instrumental Variables 

Choi et al. 2016(24) identified 10 genome-wide significant SNPs for circulating VEGF level that, 

together, explained up to 52% of the variance in circulating VEGF in individuals of European 

ancestry(24) (Table 1). LD was measured between SNPs on the same chromosome, and high LD was 

not found between the tested SNP pairs (Table 2).  

By querying the 10 VEGF-associated SNPs in the Phenoscanner database, we found that 

rs10761741 [JMJD1C], rs6993770 [ZFPM2], rs2639990 [ZADH2], rs4782371 [ZFPM1], were 

significantly associated with at least one secondary cause of osteoporosis after correcting for multiple 

hypothesis testing (p<0.05/10=0.005) and removed them the main MR analysis (Table S1). 

Additionally, rs10761741 [JMJD1C] was associated with cognitive function (p=1.52x10-3) and 

rs6993770 [ZFPM2] was associated with myocardial infarction (p=8.65x10-4) and Parkinson’s 

disease (p=2.28x10-3), which can all increase fall susceptibility and, by consequence, risk of fracture 

(Table S2). This provided yet another rationale for their exclusion from the main MR analyses.  

To exclude the possibility that any of the 10 VEGF-associated SNPs associated with 

biological pathways that act upon the studied outcomes independently of circulating VEGF, each of 

the 10 VEGF-associated SNPs were queried against the Sun et al. circulating protein GWAS. We 

found that rs6921438 [LOC100132354], the SNP of largest effect in Table 1, rs34528081 [VEGFA] 

and rs2375981 [KCNV2] were uniquely associated with circulating levels of VEGF (Table S3). 

While rs10761741 [JMJD1C] and rs6993770 [ZFPM2] were associated with circulating VEGF  level 

after Bonferroni correction for the number of proteins in the study and the number of SNPs queried 

(p<0.05/(10x2994)=1.67x10-6), they were also associated with 14 and 86 circulating protein levels 
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respectively, prompting their removal from the main MR analyses (Table S3). The Sun et al. study(44) 

was possibly not powered to detect the association of the remaining SNPs with VEGF level. 

rs114694170 [MEF2C] was significantly associated with Noggin (p=1.78x10-10), a protein known to 

bind and inactivate proteins that stimulate angiogenesis through the production of VEGF-A by 

osteoblasts(49). However, this protein has also been shown to be implicated with bone formation via 

pathways that are independent of VEGF(50). Further, rs114694170 is located in MEF2C in which 

deletions have been shown to be responsible for severe mental retardation with stereotypic 

movements, epilepsy and cerebral malformations(51), all of which are risk factors for falls 

susceptibility and fracture. Due to the potentially pleiotropic nature of this genomic region, 

rs114694170 was excluded from the main MR analysis. 

 

3.4.2 Association of VEGF-associated SNPs with BMD and fracture 

Summary statistics for the association of the VEGF-associated SNPs with DXA-measured BMD on 

FA, LS, and FN are shown in Table 3. Summary statistics for the association of the VEGF-associated 

SNPs with eBMD and fracture are shown in Tables 4 and 5, respectively. For the DXA-measured 

BMD and eBMD analyses, rs11965885 (R2=0.83) was used as a proxy for rs34528081 as summary 

statistics for the latter were not available. 

While the p-value for the association of rs6921438 with eBMD was less than 0.05, none of 

the 10 VEGF-associated SNPs were significantly associated with DXA-measured BMD or eBMD 

after Bonferroni correction for the number of independent SNPs tested (p≥0.05/10=0.005) (Tables 3 

and 4). Likewise, none of the VEGF-associated SNPs were significantly associated with fracture 

after Bonferroni correction for the number of SNPs tested (p≥0.05/10=0.005) (Table 5).  
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3.4.3 MR for association of VEGF with FA, LS, FN BMD, eBMD and fracture risk 

MR estimates for the valid instruments (rs34528081, rs6921438, rs1740073, rs7043199 and 

rs2375981) were computed individually for all three DXA-measured BMD outcomes and then meta-

analysed using an IVW average of the individual MR estimates. For all three DXA-BMD outcomes, 

we observed that a natural log-transformed pg/mL decrease in circulating VEGF was not associated 

with a change in DXA-measured BMD for any of the instrumental SNPs. Of note, the variant 

rs6921438, that decreases circulating VEGF by 0.64 natural log-transformed pg/mL per VEGF-

decreasing allele, showed null effects on FA, LS and FN DXA-measured BMD (Table 3). The IVW 

estimates of VEGF on DXA-measured BMD were also null for all 3 outcomes (0.02 standard 

deviations (SD), CI: [-0.024, 0.064], p=0.38), (-0.005 SD, CI: [-0.03, 0.019], p=0.67), (0.004 SD, CI: 

[-0.017, 0.026], p=0.68) for FA, LS, FN, DXA-measured BMD, respectively. (Figure 1).  

MR estimates for the valid instruments were also computed for eBMD along with an IVW 

meta-analysis of the individual MR estimates. All of the SNPs had a null effect on eBMD except for 

rs6921438 which showed a small negative effect of circulating VEGF on eBMD (-0.008 SD, CI: [-

0.014, -0.002], p=0.009) that was different from zero after Bonferroni correction for the number of 

SNPs tested (p<0.05/5=0.01) (Figure 2). The IVW estimate showed a small suggestive negative 

effect of VEGF on eBMD (-0.006 SD, CI: [-0.012, -0.001], p=0.031) in response to a natural log-

transformed pg/mL decrease in circulating VEGF. 

For the fracture study, MR estimates for the valid instruments and their resulting IVW 

estimate did not demonstrate a change in odds of fracture in response to a natural log-transformed 

pg/mL decrease in circulating VEGF (odds ratio: 0.99, CI: [0.98, 1.01], p=0.37) (Figure 3).   

 

3.4.4 Sensitivity analysis 

Of the 10 VEGF-associated SNPs, one SNP, rs6921438, located ~171 kb downstream of the VEGF 
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gene(52) had the largest effect on VEGF with a 0.64 natural log-transformed pg/mL decrease in 

circulating VEGF level per VEGF-decreasing allele. This effect size is three times larger than that of 

the SNP with the second largest effect on VEGF (rs2375981) that results in a 0.21 natural log-

transformed pg/mL decrease in circulating VEGF levels per VEGF-decreasing allele. To investigate 

the extent to which the IVW estimate was driven by rs6921438, we excluded it from the FA, LS, FN 

DXA-measured BMD and eBMD analyses. Consistent with the findings from Figure 1, IVW 

estimates did not demonstrate a change in FA, LS, FN DXA-measured BMD or eBMD, albeit with 

larger confidence intervals, (0.03 SD, CI: [-0.089, 0.149], p=0.62), (-0.033 SD, CI: [-0.1, 0.035], 

p=0.34), (0.018 SD, CI: [-0.04, 0.076], p=0.54), (0.006 SD, CI: [-0.009, 0.02], p=0.46), respectively 

(Figures S1 and S2). This sensitivity analysis was repeated for the fracture study and, consistent 

with the findings from Figure 3, the resulting IVW estimate did not demonstrate a change in odds of 

fracture in response to a natural log-transformed pg/mL decrease in circulating VEGF  (odds ratio: 

1.04, CI: [0.99, 1.09], p=0.17) (Figure S3). 

We then repeated the DXA-measured BMD and eBMD analyses using all 10 VEGF-

associated SNPs acknowledging that some MR estimates may be influenced by pleiotropic effects, 

in violation of the third assumption of MR studies requiring that instrumental variables influence the 

outcome only through their effect on the exposure (Figures S4 and S5). Consistent with the findings 

from Figure 1, all newly introduced SNPs (rs114694170, rs6993770, rs10761741, rs4782371 and 

rs2639990), including the resulting IVW averages, showed MR estimates that spanned the null with 

the exception of rs114694170 that showed a 0.26 SD decrease in DXA-measured FN BMD in 

response to a natural log-transformed pg/mL decrease in circulating VEGF (CI: [-0.48, -0.038], 

p=0.022). (Figure S4.C). This sensitivity analysis was repeated for the fracture study and none of 

the estimates, including the IVW average, demonstrated a change in odds of fracture in response to 

a natural log-transformed pg/mL decrease in circulating VEGF (Figure S6).  
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To estimate the extent to which the MR estimates from the second sensitivity analysis were 

influenced by pathways that are independent of VEGF, we performed MR-Egger regression analyses 

using the 10 VEGF-associated SNPs on the studied outcomes. For the FA, LS and FN DXA-

measured BMD analyses, we observed intercepts of -0.009 SD (CI:[-0.025, 0.007], p=0.25), -0.006 

SD (CI: [-0.015, 0.003], p=0.18) and -0.007 SD (CI: [-0.016, 0.003], p=0.18), respectively (Figure 

S7). For the eBMD analysis, we observed an intercept of 0.002 SD (CI: [0.000, 0.005], p=0.04) 

(Figure S8). For the fracture analysis we observed an intercept of 0.002 SD (CI: [-0.004, 0.009], 

p=0.48) (Figure S9). None of the regressions had an intercept that was different from zero after 

Bonferroni correction for the number of MR-Egger analyses performed (p>0.05/5=0.01), and thus 

provided no evidence of pleiotropic effects. 
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3.5 Discussion 

Using large sample sizes for circulating VEGF, BMD and fracture, we showed that a decrease in 

circulating VEGF was not associated with clinically-relevant changes in FA, LS or FN DXA-

measured BMD, eBMD or odds of fracture in individuals of European descent. Despite large changes 

in circulating VEGF level captured by genetic variants, no effects were observed on BMD or fracture 

and the confidence intervals of these null effects excluded clinically-relevant changes for these 

outcomes. These findings suggest that circulating VEGF does not have an important causal effect on 

osteoporosis outcomes in humans. 

These findings are inconsistent with an observational study which suggested a role for 

circulating VEGF on BMD(12) suggesting that this study may have been influenced by confounding 

and/or reverse causation. Our results suggest that pharmacological efforts to influence circulating 

VEGF are unlikely to have beneficial skeletal effects. Further, MR may be the only feasible study 

design to assess the role of a lifetime exposure to lowered VEGF on BMD, as randomized control 

trials would generally only assess the effect of targeting circulating VEGF over a relatively short 

period of time. 

While MR can overcome some of the limitations of observational studies, the possibility that 

one or more of our instrumental SNPs exhibit undetected pleiotropy is difficult to eliminate. 

Therefore, it is possible that the resulting IVW estimates of circulating VEGF on BMD and fracture 

risk are affected by factors that alter BMD and fracture risk independently of VEGF. However, this 

becomes increasingly unlikely as the number instruments suggesting a null effect of VEGF on BMD 

or fracture increases. Furthermore, the SNP with the largest effect on VEGF sits near the VEGF gene 

and likely influences its transcription. Such cis-associated SNPs are less likely to be influenced by 

horizontal pleiotropy. Our results remained consistent in both sensitivity analyses, with the exception 

of rs114694170 that showed a decrease in DXA-measured FN BMD associated with a decrease in 
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circulating VEGF. Although this SNP was not associated with measured clinical risk factors for 

osteoporosis or fracture, it lies in the MEF2C gene which has been associated with severe mental 

retardation, stereotypic movements, epilepsy and cerebral malformations(53). Its validity as an 

instrument is therefore questionable, as individuals with one or more of these phenotypes can be 

subject to lifestyle habits that would result in lowered BMD(54). Finally, it is important to note that 

our study is limited to the effect of circulating VEGF level on BMD and fracture. Our results cannot 

be generalized to the role of intracellular VEGF levels on BMD or fracture. Several studies have 

shown that intracellular VEGF influences bone-marrow stem cell differentiation independently of 

the role of VEGF in circulating(55) and it remains unclear whether the targeting of intracellular VEGF 

levels can be used as a preventive treatment for fracture. It is also possible that a life-long exposure 

to lowered circulating VEGF results in compensatory developmental processes that bias the apparent 

effect circulating VEGF on BMD and fracture toward the null. In such a case, influencing circulating 

VEGF levels in adults could in fact have a non-null effect on BMD or fracture. This phenomenon is 

called canalization(25) and has not been directly assessed, since MR studies can only assess the 

relationship between a biomarker and a disease at the time point in the life-course where the genetic 

variant has been associated with circulating VEGF. We have also not examined effects of VEGF 

level in individuals with extreme levels of circulating VEGF, and our results do not permit comment 

on such individuals. Lastly, because the GWAS was conducted on individuals of European descent, 

the results may not generalize to other populations. 

In conclusion, this study provides evidence against a causal role for circulating VEGF on 

BMD and fracture in humans. These findings suggest that efforts to influence circulating VEGF are 

unlikely to have beneficial skeletal effects and that previous observational associations of circulating 

VEGF and lowered BMD in humans may be due to confounding or reverse causation. 
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3.7 Tables and Figures 

3.7.1 Tables 

Table 1. Summary statistics for 10 genome-wide significant variants on circulating VEGF level from Choi et al., 2016.  

Effect alleles represent a decrease in circulating VEGF level. 

SNP Chromosome Position (hg19) 

Effect 

Allele 

Effect Allele 

Frequency Effect 

Standard 

Error p-value Gene Location 

rs114694170 5 88180196 T 0.96 -0.15 0.023 1.09 × 10-11 MEF2C intron 

rs34528081 6 43704417 T 0.6 -0.09 0.01 1.83 × 10-17 VEGFA intergenic 

rs6921438 6 43925607 A 0.46 -0.64 0.008 1.66 × 10-1449 LOC100132354 intergenic 

rs1740073 6 43947398 C 0.64 -0.09 0.01 4.40 × 10-17 C6orf223 intergenic 

rs6993770 8 106581528 T 0.3 -0.16 0.01 3.83 × 10-55 ZFPM2 intron 

rs7043199 9 2621145 A 0.21 -0.1 0.013 4.16 × 10-14 VLDLR-AS1 intron 

rs2375981 9 2692583 G 0.46 -0.21 0.01 9.49 × 10-99 KCNV2 intergenic 

rs10761741 10 65066186 G 0.57 -0.08 0.009 2.99 × 10-19 JMJD1C intron 

rs4782371 16 88568831 T 0.67 -0.07 0.011 1.26 × 10-9 ZFPM1 intron 

rs2639990 18 72915551 C 0.09 -0.11 0.018 5.85 × 10-10 ZADH2 intron 
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Table 2. Linkage disequilibrium between SNPs on the same chromosome.  

Coefficients of determination (R2) were calculated using 1000 Genomes populations: Utah Residents 

from North and West Europe, Toscani in Italia, Finnish in Finland, British in England and Scotland, 

and Iberian population in Spain. 

Chromosome SNP1 SNP2 R2 

6 rs6921438 rs1740073 0.001 

6 rs6921438 rs34528081 < 0.001 

6 rs1740073 rs34528081 0.0007 

9 rs7043199 rs2375981 < 0.001 
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Table 3. Summary statistics for the VEGF-associated SNPs from the DXA-measured FA, LS and FN BMD GWAS  

rs11965885 was used as a proxy (R2=0.83) for rs34528081 as summary statistics for the latter were not available in the FA, LS, or FN 

GWAS. 

 Forearm Lumbar spine Femoral neck 

SNP Chromosome Effect allele 

Effect allele 

frequency Effect 

Standard 

error p-value Effect 

Standard 

error p-value Effect 

Standard 

error p-value 

rs114694170 5 T 0.057 -0.001 0.035 0.981 0.025 0.02 0.221 0.039 0.017 0.025 

rs11965885 6 T 0.462 0.015 0.016 0.363 0.014 0.009 0.118 1.5 × 10-4 0.008 0.985 

rs6921438 6 A 0.483 -0.012 0.016 0.467 0.001 0.009 0.931 -0.001 0.007 0.846 

rs1740073 6 C 0.437 0.012 0.016 0.461 0.011 0.009 0.247 0.014 0.008 0.086 

rs6993770 8 T 0.274 0.002 0.017 0.903 -0.008 0.01 0.401 -0.002 0.008 0.788 

rs7043199 9 A 0.234 -0.025 0.019 0.192 -1.9 × 10-4 0.011 0.986 -0.006 0.009 0.522 

rs2375981 9 G 0.446 -0.012 0.016 0.442 5.9 × 10-5 0.009 0.995 -0.009 0.008 0.224 

rs10761741 10 G 0.416 0.024 0.017 0.157 0.009 0.009 0.313 0.012 0.008 0.133 

rs4782371 16 T 0.297 0.017 0.017 0.328 0.006 0.01 0.558 0.007 0.008 0.391 

rs2639990 18 C 0.07 -0.023 0.03 0.445 -0.022 0.017 0.207 0.019 0.015 0.209 
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Table 4. Summary statistics for the VEGF-associated SNPs from the eBMD GWAS.  

rs11965885 was used as a proxy (R2=0.83) for rs34528081 as summary statistics for the latter were 

not available in the FA, LS, or FN GWAS. Effect alleles, effect sizes and effect allele frequencies 

were aligned to the VEGF-decreasing alleles from Table 1. 

SNP Chromosome Effect allele 

Effect allele 

frequency Effect 

Standard 

error p-value 

rs114694170 5 T 0.94 -0.0047 0.0041 0.40 

rs11965885 6 T 0.58 0.0003 0.0020 0.74 

rs6921438 6 A 0.49 0.0050 0.0019 0.02 

rs1740073 6 C 0.61 -0.0010 0.0021 0.73 

rs6993770 8 T 0.29 -0.0034 0.0021 0.10 

rs7043199 9 A 0.23 -0.0024 0.0023 0.42 

rs2375981 9 G 0.45 -0.0007 0.0020 0.60 

rs10761741 10 G 0.58 0.0028 0.0020 0.08 

rs4782371 16 T 0.70 -0.0028 0.0021 0.30 

rs2639990 18 C 0.07 -0.0061 0.0039 0.08 
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Table 5. Summary statistics of the VEGF-associated SNPs on fracture.  

Effect alleles, effect sizes and effect allele frequencies were aligned to the VEGF-decreasing alleles 

from Table 1. 

SNP Chromosome Effect allele Effect allele frequency Effect Standard error p-value 

rs114694170 5 T 0.94 -0.013 0.015 0.37 

rs34528081 6 T 0.58 0.003 0.007 0.70 

rs6921438 6 A 0.49 0.002 0.006 0.79 

rs1740073 6 C 0.61 0.004 0.007 0.55 

rs6993770 8 T 0.28 0.003 0.007 0.67 

rs7043199 9 A 0.23 0.003 0.008 0.68 

rs2375981 9 G 0.45 0.012 0.007 0.08 

rs10761741 10 G 0.58 -0.001 0.006 0.90 

rs4782371 16 T 0.70 -0.002 0.007 0.79 

rs2639990 18 C 0.07 -0.002 0.014 0.86 
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3.7.2 Figures 

(A) 

(B) 

(C) 
 

Figure 1. Circulating VEGF effect on DXA-measured BMD.  

(A) Forearm, (B) Lumbar spine and (C) Femoral neck. Two-sample Mendelian Randomization 

(MR): individual effects and inverse-variance weighted (IVW) average. Effects are expressed as 

standard deviation changes in DXA-measured BMD per natural log-transformed pg/mL decrease in 

circulating VEGF.  
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Figure 2. Circulating VEGF effects on eBMD.  

Two-sample Mendelian Randomization (MR): individual effects and inverse-variance weighted 

(IVW) average. Effects are expressed as standard deviation changes in eBMD per natural log-

transformed unit (pg/mL) decrease in circulating VEGF. 

 

 

Figure 3. Circulating VEGF effects on fracture.  

Two-sample Mendelian Randomization: individual effects and inverse-variance weighted (IVW) 

average. Effects are expressed as odds of fracture per natural log-transformed unit (pg/mL) decrease 

in circulating VEGF 
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3.9 Supplement 

3.9.1 Supplementary Tables 

Table S1. VEGF-associated SNPs that were significantly associated with at least one secondary 

cause of osteoporosis in the Phenoscanner database.  

SNP Proxy rsID r2 Trait PMID P 

rs10761741 rs7923609 0.809 Alkaline Phosphatase 22001757 6.00E-23 

rs10761741 rs10761741 1 Alkaline phosphatase ALP 18940312 4.70E-08 

rs10761741 rs7923609 0.809 Alkaline phosphatase ALP in plasma 22001757 5.90E-23 

rs10761741 rs10761741 1 BMI 23754948 0.0002024 

rs10761741 rs10761741 1 BMI in females 25673413 0.0002493 

rs10761741 rs10761741 1 BMI in females less than or equal to 50 years of age 26426971 0.00027 

rs10761741 rs10761741 1 Body mass index BMI 20935630 0.000923 

rs10761741 rs12355784 0.805 Fat mass 17463246 0.0002381 

rs10761741 rs10761741 1 Former smoker 20418890 0.004586 

rs10761741 rs10761741 1 Height 25282103 0.0012 

rs10761741 rs7082470 0.805 Height in males 23754948 0.0045 

rs10761741 rs7923609 0.809 Liver enzyme levels alkaline phosphatase 22001757 6.00E-23 

rs10761741 rs10761741 1 Obesity class 1 23563607 0.0048 

rs10761741 rs10761741 1 Serum dihydrotestosterone DHT level 22936694 0.004591 

rs10761741 rs10761741 1 Serum testosterone T level 22936694 9.03E-05 

rs10761741 rs7923609 0.809 Serum testosterone T level in dutasteride or placebo treatment group 22936694 3.66E-08 

rs10761741 rs7923609 0.809 Serum testosterone T level in dutasteride treatment group 22936694 0.000124 

rs10761741 rs7923609 0.809 Serum testosterone T level in placebo group 22936694 7.90E-05 

rs10761741 rs7910927 0.809 Sex hormone binding globulin levels 22829776 6.00E-35 

rs10761741 rs7910927 0.809 Sex hormone binding globulin SHBG concentrations 22829776 6.10E-35 

rs2639990 rs609303 0.926 Sarcoidosis 22952805 1.61E-06 

rs4782371 rs868874 0.969 Alcohol dependence symptom count 23089632 1.28E-05 

rs6993770 rs6993770 1 Body fat percentage 26833246 4.63E-05 

rs6993770 rs6993770 1 Crohn's disease 26192919 0.004238 

rs6993770 rs6993770 1 Height 23754948 0.003329 

rs6993770 rs6993770 1 Height in females 23754948 0.0008 

rs6993770 rs4602861 0.93 Inflammatory bowel disease 26192919 0.002103 
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Table S2. VEGF-associated SNPs that were significantly associated with at least one risk factor 

for falls in the Phenoscanner database.  

SNP Proxy rsID r2 Trait PMID P 

rs10761741 rs10761731 0.984 Cognitive function 25201988 0.00152 

rs10761741 rs10761739 0.992 Cognitive function 25201988 0.001692 

rs10761741 rs7896518 0.996 Cognitive function 25201988 0.001736 

rs10761741 rs10740118 1 Cognitive function 25201988 0.001755 

rs10761741 rs10761741 1 Cognitive function 25201988 0.001795 

rs10761741 rs7075195 0.988 Cognitive function 25201988 0.00186 

rs10761741 rs4454603 0.809 Cognitive function 25201988 0.002614 

rs10761741 rs10761742 0.809 Cognitive function 25201988 0.002837 

rs10761741 rs3999089 0.801 Cognitive function 25201988 0.003086 

rs10761741 rs10509186 0.805 Cognitive function 25201988 0.003452 

rs10761741 rs7092784 0.805 Cognitive function 25201988 0.003483 

rs10761741 rs3740331 0.805 Cognitive function 25201988 0.003508 

rs10761741 rs10740125 0.805 Cognitive function 25201988 0.003526 

rs10761741 rs7085621 0.801 Cognitive function 25201988 0.003526 

rs10761741 rs10740126 0.805 Cognitive function 25201988 0.003527 

rs10761741 rs2393977 0.805 Cognitive function 25201988 0.003546 

rs10761741 rs10761762 0.805 Cognitive function 25201988 0.003557 

rs10761741 rs10761756 0.805 Cognitive function 25201988 0.003607 

rs10761741 rs7896783 0.805 Cognitive function 25201988 0.003608 

rs10761741 rs7910927 0.809 Cognitive function 25201988 0.003747 

rs10761741 rs2393966 0.805 Cognitive function 25201988 0.003936 

rs10761741 rs2393969 0.809 Cognitive function 25201988 0.003941 

rs10761741 rs7923609 0.809 Cognitive function 25201988 0.003985 

rs10761741 rs10509189 0.805 Cognitive function 25201988 0.004149 

rs10761741 rs4486511 0.805 Cognitive function 25201988 0.004151 

rs10761741 rs12355784 0.805 Cognitive function 25201988 0.004239 

rs10761741 rs10761779 0.805 Cognitive function 25201988 0.004768 

rs6993770 rs66489920 0.811 Myocardial infarction 26343387 0.0008651 

rs6993770 rs16873418 0.811 Myocardial infarction 26343387 0.0008689 

rs6993770 rs2343592 0.925 Myocardial infarction 26343387 0.002136 

rs6993770 rs34826779 0.921 Myocardial infarction 26343387 0.002273 

rs6993770 rs4734879 0.976 Myocardial infarction 26343387 0.002279 

rs6993770 rs6993770 1 Myocardial infarction 26343387 0.003836 

rs6993770 rs7832219 0.972 Myocardial infarction 26343387 0.003983 

rs6993770 rs16873418 0.811 Parkinson's disease 19915575 0.002278 
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Table S3. VEGF-associated SNPs that were significantly associated with at least one circulating 

protein level using a GWAS study for 2,994 circulating protein levels in 3,301 individuals. 

SNP chromosome Effect StdErr P Protein 
rs114694170 5 -0.3383 0.053 1.78E-10 NOG.5846.24.3 

rs6921438 6 -0.7023 0.0215 1.66E-234 VEGFA.14032.2.3 

rs6921438 6 -0.4199 0.0236 7.76E-71 VEGFA.2597.8.3 

rs34528081 6 -0.1296 0.0266 1.12E-06 VEGFA.14032.2.3 

rs6993770 8 0.3042 0.027 2.09E-29 VEGFA.14032.2.3 

rs6993770 8 0.3027 0.027 3.89E-29 COCH.7227.75.3 

rs6993770 8 0.2868 0.0271 3.09E-26 PDGFD.9341.1.3 

rs6993770 8 0.2607 0.0272 7.76E-22 DKK1.3535.84.1 

rs6993770 8 0.2596 0.0271 1.12E-21 CTSA.3179.51.2 

rs6993770 8 0.2553 0.0272 5.75E-21 DKK4.3365.7.2 

rs6993770 8 0.246 0.0272 1.48E-19 ERP44.6064.4.3 

rs6993770 8 0.2387 0.0272 1.78E-18 APLP2.10627.87.3 

rs6993770 8 0.2375 0.0272 2.63E-18 LGALS7.9196.8.3 

rs6993770 8 0.2331 0.0272 1.10E-17 ANGPT1.2811.27.1 

rs6993770 8 0.2161 0.0273 2.29E-15 PDGFA.4499.21.1 

rs6993770 8 0.2125 0.0273 6.76E-15 SIRT5.12461.8.3 

rs6993770 8 0.212 0.0273 7.76E-15 CCL17.3519.3.2 

rs6993770 8 0.2089 0.0273 1.95E-14 CPXM1.6255.74.3 

rs6993770 8 0.2085 0.0273 2.14E-14 UGT2A1.8907.11.3 

rs6993770 8 0.2029 0.0273 1.07E-13 PPBP.2790.54.2 

rs6993770 8 0.202 0.0273 1.38E-13 SERPINE1.2925.9.1 

rs6993770 8 0.1979 0.0273 4.37E-13 PDGFB.4149.8.2 

rs6993770 8 -0.193 0.0273 1.58E-12 EDAR.2977.7.2 

rs6993770 8 0.1901 0.0273 3.55E-12 NSG2.13409.9.3 

rs6993770 8 0.1897 0.0273 3.89E-12 SYT11.7089.42.3 

rs6993770 8 0.1862 0.0273 9.77E-12 SPARC.3043.49.2 

rs6993770 8 0.1852 0.0273 1.26E-11 BDNF.2421.7.3 

rs6993770 8 0.1849 0.0273 1.35E-11 DNAJB11.7110.2.3 

rs6993770 8 0.1805 0.0274 4.07E-11 INPP5E.11370.20.3 

rs6993770 8 0.1788 0.0274 6.31E-11 SELP.4154.57.2 

rs6993770 8 0.1756 0.0274 1.38E-10 FUT8.8244.16.3 

rs6993770 8 0.1746 0.0274 1.78E-10 MPP7.12732.13.3 

rs6993770 8 0.1735 0.0274 2.29E-10 ARL1.12392.30.3 

rs6993770 8 0.1722 0.0274 3.09E-10 CENPW.8864.59.3 

rs6993770 8 0.1694 0.0274 6.17E-10 CST7.3302.58.1 

rs6993770 8 0.1692 0.0274 6.31E-10 RHOG.12540.25.3 

rs6993770 8 0.1686 0.0274 7.41E-10 CGB2.6213.10.3 

rs6993770 8 0.1646 0.0274 1.82E-09 CHST11.7779.86.3 

rs6993770 8 0.1625 0.0274 2.95E-09 COTL1.4905.63.1 

rs6993770 8 0.1624 0.0274 3.02E-09 PCDHGA8.11259.71.3 

rs6993770 8 0.1599 0.0274 5.25E-09 SPTLC1.7886.26.3 

rs6993770 8 0.1595 0.0274 5.75E-09 B4GALT7.7806.33.3 

rs6993770 8 0.1577 0.0274 8.51E-09 APP.3171.57.2 

rs6993770 8 0.1578 0.0274 8.51E-09 SPOCK3.9906.21.3 

rs6993770 8 0.1576 0.0274 8.71E-09 SATB1.13511.29.3 

rs6993770 8 0.157 0.0274 1.00E-08 IL7.14049.17.3 

rs6993770 8 0.1568 0.0274 1.05E-08 WFDC13.9345.436.3 

rs6993770 8 0.1557 0.0274 1.32E-08 OBP2A.6526.77.3 

rs6993770 8 0.1556 0.0274 1.35E-08 SERPINE2.3217.74.2 

rs6993770 8 -0.1549 0.0274 1.55E-08 APBB1.14206.28.3 

rs6993770 8 0.1544 0.0274 1.74E-08 SCGB2A1.5001.6.2 

rs6993770 8 -0.1541 0.0274 1.86E-08 AGER.4125.52.2 

rs6993770 8 0.1523 0.0274 2.75E-08 LILRB4.6453.70.3 

rs6993770 8 0.1512 0.0274 3.39E-08 PAIP1.12430.78.3 
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rs6993770 8 0.151 0.0274 3.55E-08 C10orf54.14123.34.3 

rs6993770 8 0.1502 0.0274 4.17E-08 DEFB119.8315.5.3 

rs6993770 8 0.1481 0.0274 6.46E-08 ARSA.3583.54.4 

rs6993770 8 0.1481 0.0274 6.46E-08 KIRREL2.7958.15.3 

rs6993770 8 -0.1467 0.0274 8.71E-08 EDA.2826.53.2 

rs6993770 8 -0.1467 0.0274 8.71E-08 RBM28.11927.3.3 

rs6993770 8 0.1456 0.0274 1.07E-07 PROL1.6530.63.3 

rs6993770 8 0.1456 0.0274 1.10E-07 SMPDL3A.4771.10.3 

rs6993770 8 0.1448 0.0274 1.29E-07 CRIM1.8699.43.3 

rs6993770 8 -0.1428 0.0274 1.91E-07 GSTM1.7239.9.3 

rs6993770 8 0.1427 0.0274 1.95E-07 GRP.5897.58.3 

rs6993770 8 0.1419 0.0274 2.29E-07 SYT17.9110.2.3 

rs6993770 8 0.1418 0.0274 2.34E-07 KITLG.9377.25.3 

rs6993770 8 0.1413 0.0274 2.57E-07 CCL5.5480.49.3 

rs6993770 8 -0.1405 0.0274 3.02E-07 SPARCL1.4467.49.2 

rs6993770 8 -0.1397 0.0274 3.47E-07 RFK.13059.33.3 

rs6993770 8 0.1391 0.0274 3.89E-07 EIF4EBP2.4184.43.3 

rs6993770 8 0.1386 0.0274 4.27E-07 P2RX6.7233.73.3 

rs6993770 8 -0.1381 0.0274 4.79E-07 MFGE8.4455.89.2 

rs6993770 8 -0.1377 0.0274 5.13E-07 PTPRD.9296.15.3 

rs6993770 8 0.1373 0.0274 5.50E-07 THRA.12527.50.3 

rs6993770 8 0.1373 0.0274 5.62E-07 MYSM1.11536.9.3 

rs6993770 8 0.1369 0.0274 5.89E-07 RGS3.12827.37.3 

rs6993770 8 0.1361 0.0274 6.92E-07 HIF1A.13089.6.3 

rs6993770 8 -0.135 0.0274 8.51E-07 REG3A.9277.16.3 

rs6993770 8 -0.1347 0.0274 9.12E-07 EPHB2.5077.28.3 

rs6993770 8 0.1341 0.0274 1.00E-06 EDC4.13066.42.3 

rs6993770 8 0.1342 0.0274 1.00E-06 MADCAM1.11258.41.3 

rs6993770 8 0.134 0.0274 1.05E-06 GPX7.8345.27.3 

rs6993770 8 0.1332 0.0274 1.20E-06 PDIA5.5593.11.3 

rs6993770 8 0.133 0.0274 1.23E-06 N6AMT1.11096.57.3 

rs6993770 8 0.1325 0.0274 1.35E-06 PLOD3.10612.18.3 

rs6993770 8 0.1324 0.0274 1.38E-06 CASP2.4904.7.1 

rs6993770 8 0.1318 0.0274 1.55E-06 LRRN3.10471.25.3 

rs6993770 8 -0.1316 0.0274 1.58E-06 CD300E.10798.4.3 

rs6993770 8 0.1315 0.0274 1.62E-06 PXDNL.11324.3.3 

rs2375981 9 0.1261 0.0247 3.31E-07 VEGFA.14032.2.3 

rs10761741 10 0.1783 0.0252 1.58E-12 HBEGF.14094.29.3 

rs10761741 10 0.158 0.0253 4.07E-10 DKK1.3535.84.1 

rs10761741 10 0.1577 0.0253 4.27E-10 DKK4.3365.7.2 

rs10761741 10 0.1542 0.0253 1.05E-09 CTSA.3179.51.2 

rs10761741 10 0.1443 0.0253 1.15E-08 SIRT5.12461.8.3 

rs10761741 10 0.142 0.0253 2.00E-08 CCL5.5480.49.3 

rs10761741 10 0.1342 0.0253 1.12E-07 CXCL11.3038.9.2 

rs10761741 10 0.1338 0.0253 1.26E-07 BCL2A1.3413.50.2 

rs10761741 10 -0.1304 0.0253 2.63E-07 CRISPLD2.5691.2.3 

rs10761741 10 0.1304 0.0253 2.63E-07 SCGB2A1.5001.6.2 

rs10761741 10 0.129 0.0253 3.47E-07 LGALS7.9196.8.3 

rs10761741 10 0.129 0.0253 3.47E-07 NID2.3633.70.5 

rs10761741 10 0.1252 0.0253 7.76E-07 ARL1.12392.30.3 

rs10761741 10 0.1249 0.0253 8.13E-07 ARSA.3583.54.4 
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3.9.2 Supplementary Figures 

(A) 

(B) 

(C) 
 
Figure S1. Sensitivity analysis on DXA-measured BMD excluding SNP rs6921438.  

(A) Forearm, (B) Lumbar spine and (C) Femoral neck. Two-sample Mendelian Randomization 

(MR): individual effects and inverse-variance weighted (IVW) average. Effects are expressed as 

standard deviation changes in DXA-measured BMD per natural log-transformed pg/mL decrease in 

circulating VEGF.  
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Figure S2. Sensitivity analysis on eBMD excluding SNP rs6921438.  

Two-sample Mendelian Randomization (MR): individual effects and inverse-variance weighted 

(IVW) average. Effects are expressed as standard deviation changes in eBMD per natural log-

transformed pg/mL decrease in circulating VEGF. 

 

 

Figure S3. Sensitivity analysis on fracture excluding SNP rs6921438.  

Two-sample Mendelian Randomization (MR): individual effects and inverse-variance weighted 

(IVW) average. Effects are expressed as odds of fracture per natural log-transformed pg/mL 

decrease in circulating VEGF.  
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(A) 

(B) 

(C) 
 
Figure S4. Sensitivity analysis on DXA-measured BMD including all VEGF-associated SNPs.  

(A) Forearm, (B) Lumbar spine and (C) Femoral neck. Two-sample Mendelian Randomization 

(MR): individual effects and inverse-variance weighted (IVW) average. Effects are expressed as 

standard deviation changes in DXA-measured BMD per natural log-transformed pg/mL decrease in 

circulating VEGF.  
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Figure S5. Sensitivity analysis on eBMD including all VEGF-decreasing alleles.  

Two-sample Mendelian Randomization (MR): individual effects and inverse-variance weighted 

(IVW) average. Effects are expressed as standard deviation changes in eBMD per natural log-

transformed pg/mL decrease in circulating VEGF.  

 

 

Figure S6. Sensitivity analysis on fracture including all VEGF-decreasing alleles.  

Two-sample Mendelian Randomization (MR): individual effects and inverse-variance weighted 

(IVW) average. Effects are expressed as odds of fracture per natural log-transformed pg/mL 

decrease in circulating VEGF.  
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Figure S7. MR-Egger analysis for DXA-measured FA, LS and FN BMD. 
 

 
Figure S8. MR-Egger analysis for eBMD. 
 

 
Figure S9. MR-Egger analysis for fracture.  
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Chapter 4: Discussion 

Osteoporosis is a common and costly disease. BMD is the single best predictor of future osteoporotic 

fractures. Genetic variation explains a large proportion of variance in BMD and can be used to 

improve osteoporosis screening guidelines. Genetic determinants of BMD can also be used, in 

conjunction with GWAS summary statistics for circulating biomarkers to assess the causality of 

circulating biomarkers in osteoporosis, leading to a better understanding of whether the manipulation 

of these biomarkers could serve as effective treatment or prevention strategies for osteoporosis. The 

purpose of this thesis was to leverage our understanding of the genetics of BMD to, first, improve 

the efficiency of osteoporosis screening programs and, second, to investigate the utility of targeting 

circulating VEGF for the treatment or prevention of osteoporosis. Below, we discuss the strengths 

and limitations of each chapter. 

Chapter 2 of this thesis represents the first proof of concept in the use of PRS to improve 

upon clinical guidelines for osteoporosis screening. Building a PRS in 341,449 individuals, we 

showed that genetic variants explain an important proportion of the variance in BMD and 

demonstrated, in 5 separate validation cohorts comprising 10,522 individuals, that a PRS threshold 

that excluded individuals at a low genetic risk from an osteoporosis screening program substantially 

reduced the proportion of individuals requiring expensive BMD testing with a relatively small 

reduction in the sensitivity to identify individuals eligible for therapy. While our results were not 

intended to be prescriptive of how to use genetic information in the clinic, they did show that 

polygenic risk scores are now mature enough to require careful consideration as to how they can be 

incorporated meaningfully into clinical care. 

This study was not without limitations. Our polygenic risk score was trained uniquely on 

individuals of White British ancestry from the UK Biobank. It is important to note that our results 

may not generalize to individuals of other ancestries. Ancestry-specific polygenic risk score models 
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and modified NOGG screening simulations are to be repeated as genomic datasets grow in size and 

diversity.   

Chapter 3 represented an attempt to identify a novel pharmaceutical target, circulating VEGF, 

for the treatment of prevention of osteoporosis. However, using large sample sizes for circulating 

VEGF, BMD and fracture, we found that a decrease in circulating VEGF was not associated with 

clinically-relevant changes in BMD or odds of fracture, despite large changes in circulating VEGF 

captured by our instrumental variables. Although this was a null result, the findings suggested that 

circulating VEGF does not have an important causal effect on osteoporosis in humans, which is 

inconsistent with several observational studies that suggest a role for circulating VEGF on BMD. 

This result provides evidence that these studies may have been influenced by confounding or reverse 

causation and that VEGF is not an effective drug target for the treatment or prevention of 

osteoporosis. 

Given that GWAS summary statistics for VEGF, BMD and fracture were computed on 

individuals of European ancestry, the lack of causality can only be discussed for such individuals. 

Therefore, it is possible that lowered levels of VEGF are sufficient to influence bone mineral density 

in groups of different ancestries and our results do not permit comment on such individuals. Further, 

since our study was performed using summary statistics which represent the average effect of variants 

on circulating VEGF in a population, our results only provide evidence that supplementing VEGF 

would have a null effect on osteoporosis outcomes in the general population. We cannot comment 

on individuals that have extreme levels of circulating VEGF. Lastly, while our results provide 

evidence for the role of circulating VEGF, they do not provide information about the role of 

intracellular VEGF on osteoporosis outcomes.  

  



 

122 
 

Chapter 5: Conclusion and Future Aims 

This thesis was an investigation of the clinical utility of incorporating genetic information into 

osteoporosis screening programs and of targeting circulating VEGF for the treatment or prevention 

of osteoporosis. In Chapter 2, we demonstrated that polygenic risk scores can be useful to effectively 

exclude individuals at low genetic risk from osteoporosis screening programs. In Chapter 3, we used 

MR to show that previous observational studies that associated circulating VEGF to osteoporosis 

outcomes were likely influenced by confounding or reverse causation, providing the first evidence 

suggesting that manipulating levels of circulating VEGF is unlikely to be an effective treatment for 

osteoporosis. Several future aims can be suggested to continue these projects.  

As our polygenic risk score model was only trained on individuals of White British ancestry, 

it may not accurately reflect true genetic risk when applied to individuals of other ancestries. Chapter 

2 can be repeated on large datasets of non-European ancestry. Polygenic risk scores and modified 

screening guidelines should therefore be trained and validated on non-European cohorts such as the 

Kadoorie Biobank (www.ckbiobank.org), Biobank Japan(30) and other future trans-ethnic cohorts as 

they will likely result in polygenic risk score models that differ in the set of SNPs considered as well 

as in the effect sizes associated with SNPs that they have in common. Further, the threshold at which 

individuals are excluded from the modified NOGG screening guidelines should be investigated in 

cohorts of non-European ancestry. It is possible that the balance of environmental and genetic 

contributions to osteoporosis is different across ancestries, requiring a different threshold at which 

individuals should be excluded from the screening procedure.  

Chapter 3 should also be replicated in datasets of non-European ancestry to confirm that the 

causal effect of VEGF on osteoporosis outcomes is null, independent of ancestry. Our results 

provided evidence for a lack of causality only in individuals of European ancestry and do not permit 

comment on individuals of other ancestries. Lastly, this analysis can be repeated on other circulating 
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biomarkers for which GWAS summary statistics are available to better understand their effectiveness 

as pharmacological targets for the treatment or prevention of osteoporosis. 

In conclusion, the findings presented in this thesis represent the first successful 

implementation of genetic information into osteoporosis screening programs and the first evidence 

suggesting that VEGF supplementation is unlikely to have clinically-relevant effects on osteoporosis 

outcomes. 
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Appendix 

Ethics Approval 

For Chapters 2 and 3, written and informed consent was obtained for each participant and was 

approved by each participating site’s regional ethical review board.  


