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ABSTRACT 

MicroRNAs (miRNAs) are short RNA species derived from hairpin-forming miRNA 

precursors (pre-miRNA) and acting as key post-transcriptional regulators by silencing 

specific messenger RNAs (mRNAs). They are involved in virtually every biological 

process of multicellular eukaryotes and are highly conserved throughout evolution. In 

this thesis, I first present miRdup, a computational approach that accurately predicts 

the position of the mature miRNA sequence on its precursor in a species-dependent 

manner. MiRdup is not only more accurate than the few tools that existed at the time 

of its publication, but it is also significantly more flexible and applicable to a wide 

range of species. Then, I study when and how human miRNAs originated among 

primate ancestors. Existing studies based on last common ancestor (LCA) analysis 

show miRNA accrual in metazoan genomes through time and a rarity of loss but cannot 

provide the ancestral genomes required to identify evolutionary pathways leading to 

their creation. To address this, I inferred the ancestral genomes of the mammal’s 

ancestors and predicted ancient pre-miRNAs and mature miRNAs to classify them in 

various types of mechanisms of origination. Remarkably, I found that a large fraction 

of primate-specific miRNAs is due to the accumulation of substitutions and small 

insertions. Finally, in continuity to the spirit of improving existing research in the field 

of the miRNAs, I present a new method that increases the miRNA target gene 

prediction accuracy of existing tools in human with the help of ancestral 

reconstruction. Many approaches already exist for this purpose, but none has yet 

exploited the potential of ancestral genomes. My results exceed the recall of the best 

existing tools. This whole work brings new ideas that could be applied in the prediction 

of other DNA or RNA functional elements, and improve the understanding of 

miRNAs’ evolution. 

Keywords: miRNAs prediction, target gene prediction, machine learning, ancestral 

reconstruction 
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  ABRÉGÉ 

Les microARNs sont de courts ARNs dérivés de précurseurs en forme d’épingle à 

cheveux qui agissent comme régulateurs post-transcriptionnels par inactivation des 

ARNs messagers. Ils sont impliqués dans quasiment tous les processus biologiques 

des eucaryotes multicellulaires et sont très conservés tout au long de l’évolution. Dans 

cette thèse, je présente miRdup, une approche algorithmique qui prédit avec précision 

la position de la séquence de microARNs matures sur leur précurseur en prenant 

compte les caractéristiques spécifiques de chaque espèce. MiRdup est non seulement 

plus précis que les outils qui existaient au moment de sa publication, mais il est aussi 

beaucoup plus polyvalent et applicable à un large éventail d'espèces. Puis, j'étudie 

quand et comment microARNs humains sont apparus chez les ancêtres des primates. 

Les études existantes basées sur l’analyse du plus petit ancêtre commun montrent que 

les microARNs se sont accumulés dans les génomes de métazoaires à travers le temps, 

en étant rarement éliminés, mais cette technique ne peut produire les génomes 

ancestraux nécessaires pour identifier les mécanismes d'évolution menant à leur 

création. Pour y remédier, j’ai reconstruit les génomes ancestraux des ancêtres de 

mammifères et prédit les anciens pré-microARNs et microARNs matures pour les 

classer dans différents types de mécanismes d'origine. Remarquablement, j’ai constaté 

qu'une grande partie des microARNs spécifiques aux primates est due à l'accumulation 

de substitutions et de petites insertions. Enfin, dans le but de continuer à améliorer la 

recherche dans le domaine des microARNs, je présente une nouvelle méthode qui 

augmente la précision des outils de prédiction des gènes cibles des microARNs chez 

l'homme, avec l'aide de la reconstruction ancestrale. De nombreuses approches 

existent déjà à cet effet, mais aucune n'avait encore exploité le potentiel des génomes 

ancestraux. Nos résultats dépassent le taux de rappel des meilleurs outils existants. 

L'ensemble de ce travail apporte de nouvelles idées qui pourraient être appliquées pour 

la prédiction d'autres éléments fonctionnels de l’ADN ou de l’ARN, et améliore la 

compréhension de l'évolution de microARNs. 

Mots clés: Prédiction de microARNs, prédiction de gènes cibles, apprentissage 

machine, reconstruction ancestrale 
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CHAPTER I : INTRODUCTION 

Until the beginning of the 1990s, molecular biologists had an understanding of cells 

where proteins were the key active players. In 1989 Ambros’s team discovered a new 

type of small RNA molecule, known since 2001 as microRNAs, which appeared to 

affect the expression of other genes. Today, more than 2500 of such molecules are 

known in human, and they play key roles in most of physiological processes. However, 

many aspects of the annotation of miRNAs in genomes, the identification of the genes 

they regulate, and the way they evolved remains poorly understood. In this thesis, I 

propose novel computational approaches to improve the prediction of mature miRNAs 

and their target genes, and bring a better understanding of the human microRNA 

evolution through the study of ancestral mammal genomes.  

In this first chapter, we present the central dogma of biology required to understand 

what microRNAs are and what their role in living organisms and evolution is. It also 

describes what is known about miRNA function and their role in human health and 

disease. Since this thesis focuses on the computational prediction of microRNAs and 

their target genes, three sections of this chapter are devoted to existing bioinformatics 

approaches to calculate RNA secondary structures and predict microRNAs and their 

target genes1.   

                                                 

1 It is important to note that biology described is this chapter is based on 2016 knowledge. Thus, some 

parts may change in the future. This is the meaning of science, it can evolve. In biology, everything is 

possible and rare cases almost always exist, especially in genetic. Consequently, every statement must 

be interpreted as “generally”.  
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1.1  Genomic principles and microRNAs 

To understand the topics covered in this thesis, this section briefly introduces the basic 

notions related to DNA, RNA, non-coding RNAs and proteins, and describes the 

current knowledge on microRNAs.  

 DNA and genomes 

The essence of life is encoded in a molecule, present in every living organism’s cells, 

called deoxyribonucleic acid (DNA). This molecule is organized into long antiparallel 

double-stranded chains of nucleotides, also called nitrogenous bases (or nucleotides), 

which compose the alphabet of life, A: adenine, G: guanine, C: cytosine and T: 

Thymine. Nucleotides are organized such that a specific genome exists for each living 

organism. This code includes regions of variable lengths, called genes, which contains 

the instructions required for guiding the production of proteins. “A gene is a union of 

genomic sequences encoding a coherent set of potentially overlapping functional 

products” (Gerstein et al. 2007), implying that the gene encodes not only the amino 

acid sequence (i.e. the protein), located in exons, but also contains introns and 

regulatory regions, including enhancers or silencer sites, promoter, 5’ and 3’ 

untranslated regions (non-coding sequence), and poly-A tail (Figure I-1). 

 

Figure I-1: Organization of a eukaryotic protein-coding gene region (Klug and 

Cummings 1997) 

An organism is then morphologically and physiologically defined by its genome, which 

is the genetic material of each cell. The size of a genome may vary from few thousand 
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nucleotides for unicellular organisms or viruses, to billions for others. The size of the 

human genome is approximately 3.0×109 base pairs (bp). Note that genome size is not 

directly linked to organism complexity, as some unicellular species, like Amoeba 

dubia, or some plant species, such as Paris japonica, have genomes 50 to 200 times 

larger than that of humans (Pellicer et al. 2010). Nucleotides assembled one after the 

other form long DNA sequences called chromosomes, whose number varies from 

species to species (e.g. human has 23 pairs of chromosomes). Chromosome structure 

is presented in Figure I-2.  

 

Figure I-2: Chromosome structure (Alberts 2002)  

 From DNA to proteins 

Proteins are large and complex biological molecules consisting of an assembly of one 

of more chains of amino acids, which are organic compounds composed of carbon, 

hydrogen, oxygen, and nitrogen. Proteins are involved in virtually all cells functions in 

living organisms, including DNA replication, structural support, stimulus response, 

stress response, molecule transport, storage, etc. Specialized proteins include 

antibodies, enzymes or hormones (Alberts 2002). 
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Proteins are synthesized in cells through a process called gene expression. The main 

steps leading to the production of a protein from DNA in a eukaryotic cell are 

summarized in Figure I-3. In the nucleus of a cell, certain parts of chromosomes called 

promoters, usually located close to genes, allow the attachment of RNA polymerases. 

These polymerases transcribe2 the DNA in RNA molecules, called pre-messenger 

RNAs (pre-mRNA). After splicing3 (RNA processing), pre-mRNA becomes a mature 

messenger RNA (mRNA), which serve as a template readable by ribosomes. Once 

exported from the nucleus, i.e. in the cytoplasm of the cell, nucleotides are read by 

ribosomes three by three (codon) and translated into amino acids chains (polypeptides). 

This is the translation step. Finally, by a complex series of folding and other chemical 

modifications, called protein maturation, amino acids chains become functional 

proteins. 

 

Figure I-3: From DNA to protein (Alberts 2002) 

                                                 

2 Pre-messenger RNA (pre-mRNA) transcript modification in which introns are removed and exons are 

joined. 
3 Transcription is the process in which a particular DNA segment is copied into a messenger RNA by 

the enzyme RNA polymerase. 
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 Ribonucleic Acids (RNAs) biology and structure 

RNA molecules are implicated in various biological roles, including protein coding 

(mRNA), chemical modifications guiding of other RNAs (small nucleolar RNA), 

translation (transfer RNAs) and gene expression regulation (microRNAs). In 

eukaryotes, a very small part of the genome codes for proteins. In mammals, exons 

account for less than 2% of the genome. Portions of the remaining DNA codes for short 

and long non-coding RNAs (Taft et al. 2010). After years of research accomplished 

successfully to annotate the protein-coding regions of the genomes (i.e. the genes), 

research turned to the annotation of the non-coding regions (Alexander et al. 2010).  

In eukaryotes, RNA is produced by the transcription of the DNA in the cell nucleus. 

As DNA, RNA molecules are long nucleotide chains. The chemical structure of both 

molecules is somewhat similar but differs on three points: (i) RNA molecules are 

single-stranded, (ii) Thymine is replaced by Uracile (U), although it has the same 

affinity properties for adenine as thymine and (iii) while DNA nucleotides contains 

deoxyribose, RNA nucleotides contains ribose, which is less stable and prone to 

hydrolysis.   

RNA has the capacity to fold onto itself due to chemical linkages naturally occurring 

between nucleotides, leading to complex secondary and tertiary structures. Secondary 

structure of a nucleic acid molecule is the representation of the set of base pairing 

interactions within single or interacting molecules. Tertiary structure of a nucleic acid 

is a three-dimensional structure representation defined by the atomic coordinates of all 

bases. Folded molecules are near-stable structures maintained by hydrogen bonds 

between pairs of nucleotides. A molecule can have a dynamic landscape of various 

structures with probabilities that are dictated by their free energies, plus interaction 

with other molecules. Usually one or a few structures are more abundant due to 

favorable free energies. Canonical base pairs are: A-U, G-C, and G-U. Pairs A-U and 

G-C are called Watson-Crick (Watson and Crick 1953), and G-U is called Wobble 

(Crick 1966). From the most to the least robust linkage stability, there is the G-C pair, 
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followed by A-U and G-U pairs. Some exceptions exist, called non-canonical base 

pairs, in RNA structures. Many structural elements can coexist in a secondary structure, 

as shown in Figure I-4. These include helices (or stacks), hairpins (or terminal) loops, 

internal loops, exterior loops, bulge loops, multi-branch loops (junction), and pseudo-

knots (Dardel and Kapas 2002). For example, a well-known family of non-coding 

RNA, the transfer RNA, has a clover shape similar to Figure I-4, capable of attaching 

a codon from an anti-codon loop (located at the top of the hairpin loop in the Figure 

I-4) and delivering an amino acid (located at the exterior loop in the Figure I-4). 

 

Figure I-4: Structural elements composing a RNA secondary structure. Source: Nearest 

Neighbor Database Help (Turner and Mathews 2009) 

 Non-coding RiboNucleic Acids   

Since almost 50 years, numerous regulatory RNAs of all shapes and sizes have been 

discovered (Figure I-5). In eukaryotes, non-coding RiboNucleic Acids (ncRNAs) are 

involved in various epigenetic processes (Kaikkonen et al. 2011), including 

transcriptional and post transcriptional silencing (Malecová and Morris 2010), germ 

cell reprogramming (Guan et al. 2013), germinal maintenance (Saxe and Lin 2011), 
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development and differentiation (Fatica and Bozzoni 2014), antiviral defence (Ouellet 

and Provost 2010), transposon silencing (Costa 2008), chromatin remodeling (Saxena 

and Carninci 2011), X chromosome inactivation (Gontan et al. 2011), etc. They 

typically are tissue and developmental stages specific (Koerner et al. 2009; Szymanski 

et al. 2005). 

 



8 

 

 

Figure I-5: Non-coding RNAs timeline discoveries (Rinn and Chang 2012) 

There exist about twenty types of ncRNAs (Taft et al. 2010; Esteller 2011) (examples 

in Table I-1), which differ in their sequence length, structure and function. One of the 

key roles of some of the ncRNAs types is gene silencing, a process called RNA 

interference (RNAi). NcRNAs classes known to be involved in RNAi are small 

interfering RNAs (siRNAs), microRNAs (miRNAs) and piwi-interacting RNAs 

(piRNAs), which are all present in both plants and animals. New types of interfering 

RNAs have been recently discovered, including promoter-associated small RNAs 

(PASRs) (Kapranov et al. 2007) and transcription initiation RNAs (tiRNAs) (Taft et al. 

2009). To give an idea of the scale, scientists have currently identified more than 2500 

miRNAs, hundreds of siRNAs, and millions of piRNAs sequences in the human 

genome alone. All those sequences are unique, often tissue and developmental stage 

specific, and testify that those RNAs have a wide range of regulatory functions 

facilitated by sequence-specific interactions. Due to the fact that some ncRNA families, 

such as miRNAs, have members that are expressed in very particular conditions, it is 

assumed that new ones are still to be discovered.  
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Table I-1: Examples of RNA types 

Type Full name Role Definition Distribution 
Reference of 

discovery 

lncRNA 
Long non-

coding RNA 

Gene transcription, 

epigenetic and 

post-transcriptional 

regulation. 

X-chromosome 

inactivation in 

mammals 

miRNAs sponges  

ncRNA that mirror protein-coding genes by sharing common 

characteristics such as the length (2 to 100 kb) and the presence of 

polyadenylation signals. Several thousand lncRNAs are currently identified 

in mammals, where they are abundantly transcribed (Taft et al. 2010). 

LncRNAs perform epigenetic modifications by recruiting chromatin 

remodeling complexes to specific loci, and regulate chromatin accessibility 

by recruiting histone modification enzymes and RNA polymerases (Esteller 

2011). Finally, lncRNAs can function as endogenous miRNA sponges, to 

compete with inhibition of mRNAs (Xia et al. 2014). 

Eukaryotes 
(Ponting et al. 

2009) 

miRNA microRNA 
Post-transcriptional 

regulation 

ncRNA of about 22 nt encoded in almost all genomic regions, estimated to 

regulate the translation of two-thirds of protein-coding genes, making them 

an important regulator of many physiological processes (Esteller 2011). See 

section 1.1.5 for more details. 

Eukaryotes 
(Lee et al. 

1993) 

mRNA 
Messenger 

RNA 
Protein coding 

Large family of RNA molecules of various lengths (dozen to thousands nt) 

created after DNA transcription that carry the genetic information that 

specifies the amino acid sequence of proteins during translation steps (Voet 

and Voet 2010) 

All organisms 

(Brenner et al. 

1961; Jacob 

and Monod 

1961; Gros et 

al. 1961) 

PASRs 

Promoter-

associated 

small RNAs 

Regulation of gene 

transcription 

ncRNA of 22-200 nt located in 5′ regions of protein-coding genes and 

associated with the transcriptional start sites of genes (Esteller 2011). Eukaryotes 
(Kapranov et 

al. 2007) 

piRNA 

Piwi-

interacting 

RNA 

Epigenetics by 

blocking retro-

transposons, DNA 

methylation 

ncRNA of 24-31 nt located in intragenic regions, dicer-independent and 

bind the PIWI subfamily of Argonaute family proteins, which maintain the 

genome stability in germline cells (Esteller 2011). 
Animals 

(Seto et al. 

2007) 

rRNA 
Ribosomal 

RNA 
Translation 

RNA component of the ribosome that contains two major rRNAs, a large 

and a small subunit of few hundred to thousands bases, with more than 50 

proteins. It is an essential element of protein synthesis in living organisms 

(Voet and Voet 2010) 

All organisms 
(Nissen et al. 

2000) 



10 

 

 

siRNA 
Silencing 

RNA 

Post-transcriptional 

regulation 

ncRNA of about 20-25 nt, double-stranded, act as guide RNA to induce 

specific RNA degradation by breaking down the target after its transcription 

(Agrawal et al. 2003). 
Eukaryotes 

(Hamilton and 

Baulcombe 

1999) 

 

snoRNA 

Small 

nucleolar 

RNAs 

rRNA 

modifications (i.e. 

methylation) 

Gene regulation 

ncRNA of 60-300 bp located in intronic regions that comprise two families, 

the C/D and H/ACA RNAs (Matera et al. 2007). They are components of 

small nucleolar ribonucleoproteins responsible for methylation and 

pseudouridylation of rRNAs in the nucleus to facilitate its folding and 

stability (Esteller 2011). 

Eukaryotes (Kiss 2001) 

snRNA 
Small 

nuclear RNA 

Splicing, 

maintaining 

telomeres, 

transcription factor 

regulation 

ncRNA of about 150 nt highly abundant, that function in the nucleoplasm 

divided in two classes which differ in their LSm (antigen) protein binding 

sites: Sm-class and Lsm-class RNAs (Matera et al. 2007). Eukaryotes 

(Birnstiel and 

Schaufele 

1988) 

tRNA 
Transfer 

RNA 
Translation 

ncRNA of 75-90 nt, which serves as an adaptator molecule between RNA 

and protein amino acids during the translation process by ribosomes (Voet 

and Voet 2010). 

All organisms 
(Plescia et al. 

1965) 

tiRNAs 

Transcription 

initiation 

RNAs 

Regulation of gene 

transcription 

Short ncRNA of 17 to 18 nt located downstream of transcriptional start sites 

and associated with highly expressed transcripts and sites of RNA 

polymerase II binding (Taft et al. 2009; Esteller 2011). 
Eukaryotes 

(Taft et al. 

2009) 

tmRNA 

Transfer-

messenger 

RNA 

Recycling of 

stalled ribosomes 

ncRNA of about 300 bp found in all eubacteria, chloroplasts and 

mitochondria. It is recruited by arrested ribosomes in the middle of protein 

biosynthesis (e.g. end of mRNA with lost stop codon), leading to 

degradation of aberrant mRNAs (Keiler and Ramadoss 2011; Keiler 2008). 

Prokaryotes 
(Wower and 

Zwieb 2000) 
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 Micro Ribonucleic Acids (microRNAs)  

MicroRNA were discovered in 1993, when Dr Ambros’ team discovered single-

stranded non-protein-coding regulatory RNA molecules in the nematode 

Caenorhabditis elegans (Lee et al. 1993). The term “microRNA” was set in 2001 

(Ambros 2001) and since then, research on this topic increases every year, with more 

than 37,000 published papers containing the “microRNA” keyword (Figure I-6).  

 

 

Figure I-6: Number of published papers per year referenced in PubMed containing the 

keyword “microRNA” in the abstract (Data obtained in January 2016).  

These molecules are characterized by a short sequence, generally 19 to 24 nucleotides, 

involved in post-transcriptional regulation by targeting messenger RNAs in eukaryotes 

(Ruvkun 2001; Swami 2010). A microRNA gene is first transcribed to a primary 

miRNA, cleaved by an enzyme called Drosha which results in a sequence of about 100 

nt, the precursor (pre-miRNA), which contains the mature miRNA. The precise 

mechanisms of biogenesis of miRNAs are discussed in the next subsection. MiRNA 

genes can be located in the exons or intron of protein-coding genes, or in intergenic 

regions, in which case they need their own promoter (Lu et al. 2005). Once separated 
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from its precursor, a miRNA has the capacity to hybridize to an mRNA, blocking the 

production of the corresponding protein by translational repression or target 

degradation (more details in subsection 1.1.5.3 ). In humans, miRNAs control the 

activity of at least ~50% of all protein-coding genes and a given miRNA can target 

several hundred mRNAs (Krol et al. 2010). Finally, a large portion of the miRNA 

families are shared between species, reflecting one of most important characteristic of 

the miRNAs: their conservation across evolution and co-evolution with their target 

genes due to negative selective pressure (Berezikov 2011).    

 Structure of microRNAs 

MicroRNAs are distinguished by their particular structure. MiRNA precursors have the 

characteristic to fold into a hairpin shape (Example of has-miR-1 in Figure I-7), i.e. 

two arms containing a miRNA duplex, an extension and a pri-extension, one head loop 

(rarely two) and multiple bulges/internal loops due to mismatches (Figure I-8). This 

shape is explained by the presence of an antiparallel motif, i.e. inverted repeated 

sequence. Experimental observation of such structures are detected by X-ray 

crystallography and NMR spectroscopy (Brünger et al. 1998). 

 

Figure I-7: Example of mature human microRNA miR-1 in its precursor 
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Figure I-8: General representation microRNA precursor’s regions (Kadri et al. 2009)  

 Biogenesis of microRNAs 

MiRNAs biogenesis is a multi-step process (Figure I-9). In the nucleus, a gene coding 

for a miRNA is transcribed by RNA polymerase II or III4 to become a primary 

microRNA (pri-miRNA). The pri-miRNA fold into hairpin to act as a substrate to a 

protein complex, which includes Drosha III (ribonuclease) and DGCR8 (binding 

protein also named Pasha), that cleave it to become a miRNA precursor (pre-miRNA). 

Once exported in the cytoplasm by the protein complex composed of Exportin-5, Ran 

and GTP5 (Ha and Kim 2014), the pre-miRNA is cleaved by Dicer (endonuclease with 

N-terminal6 helicase domain interacting with the pre-miRNA terminal loop) and the 

cofactor TRBP to generate a duplex miRNA 5’:miRNA 3’ (also called 

miRNA:miRNA* in the official nomenclature before 2012) (Krol et al. 2010). In 

plants, Drosha and Dicer are replaced by Dicer Like 1 (DCL1) (Cuperus et al. 2011). 

Each strand of the duplex is about 21 nt. The miRNA in 3’ of the duplex is 

approximately the complementarity sequence of the miRNA in 5’, with a shift of 

                                                 

4 Polymerase III specifically synthesizes small non-coding RNAs that are linked to regulating cell cycle 

(Dumay-Odelot et al. 2010) and growth (Goodfellow and White 2007) 
5 GTP (Guanosine triphosphate) is hydrolyzed during the passage through the nuclear membrane to 

become a GDP. Once in the cytoplasm, Exportin-5 and Ran-GDP are separated from the pri-miRNA 

(Ha and Kim 2014) 
6 N-terminal is the start of a protein or polypeptide terminated by an amino acid with a free amine group 

(-NH2) 
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generally two nucleotides in 3’. This complementarity is not always perfect, since the 

duplex often includes bulges. The functional miRNA is generally the one in the 5’ 

portion of the duplex, although there are cases where it is the 3’ portion and even cases 

where both the 5’ and 3’ portions are functional. The two strands of the duplex are 

separated by the miRNA induced silencing complex (RISC), and the non-functional 

strand is degraded (Hackenberg et al. 2009). Rules for strand selection (i.e. 3’or 5’ 

duplex strand) are determined by AGO2, part of RISC complex, during its loading step, 

including unstable terminus at the 5ʹ side and a presence of uracil at position 1 of the 

strand (Ha and Kim 2014). Finally, RISC guides the miRNA to a targeted messenger 

RNA (mRNA) to repress its expression by one of two ways, which are discussed in 

1.1.5.3 : translation inhibition and mRNA degradation, which includes mRNA target 

cleavage, and mRNA deadenylation (Krol et al. 2010). 
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Figure I-9: microRNA pathway processing in animals (Winter et al. 2009) 

 MicroRNAs target genes 

The role of miRNAs is to silence specific genes called target genes, i.e. to reduce the 

amount of protein copies that will be produced from them. One single miRNA has the 

potential to silence many genes, and silenced genes can be targeted by one or more 

miRNAs (Gennarino et al. 2012). Unlike in plants, where the silencing requires a near-

perfect complementarity between the miRNA and its targeted mRNA, the repression 

of mRNA expression in animals is determined by complementarity of a very short 

region of the miRNA, called the seed (Figure I-10). The seed sequence in animals is 

generally defined as the nucleotides from positions 2 to 8 of the miRNA, from 5’ to 3’, 

called the 7-mer seed, but exceptions exist such as 6-mer and 8-mer, presence of 

mismatches, mer flanked by specific nucleotides (Bartel 2009; Wang 2014; Menor et 
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al. 2014; Peterson et al. 2014). MiRNA target binding sites (MTBS) are generally 

located in the 3’UTR (un-translated region) of genes, but also, in a lower proportion, in 

their 5’UTR and open reading frame (ORF) (Lytle et al. 2007). 

 

Figure I-10: Typical messenger RNA target recognition by miRNAs in plants and animals 

(Huntzinger and Izaurralde 2011) 

The miRNA:mRNA attachment inhibits the protein synthesis by either repressing 

translation, or promoting mRNA deadenylation and decay (Krol et al. 2010). The 

translational repression of an mRNA can occur at all stages of the translation, including 

inhibition during initiation or elongation, co-translational protein degradation, and 

premature termination of translation (Wu and Belasco 2008). It has been shown that 

miRNA-induced changes at the translational level are by far the most common process 

(more than 84%) leading to the reduction of protein products (Guo et al. 2010).  
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Messenger RNA degradation involving a shortening of the mRNA poly(A) tail 

eventually leads to a deadenylation7 of the molecule, followed by decapping8 and 

exonucleolytic digestion9 (Filipowicz et al. 2008). This mechanism generally occurs in 

processing bodies (P-bodies), where mRNAs that are targeted for deadenylation and 

degradation by the decapping pathway (e.g. microRNA induced mRNA silencing) are 

recruited (Kulkarni et al. 2010). 

Finally, the miRNA-induced mRNA cleavage, generally occurring in plants but 

recently discovered to operate also in animals (Shin et al. 2010; Karginov et al. 2010), 

has a repressive effect on target mRNA expression, especially during rapid 

developmental transitions. This mechanism is executed through Argonaute (AGO) 

endonuclease activity, which acts as a slicer when specific domains in the mRNA are 

present and form a tertiary structure, allowing unwinding and facilitates the formation 

of a catalytically competent Argonaute (Park and Shin 2014).  

 Classification and annotations of microRNAs 

Due to their growing importance, databases of miRNAs were created to offer an easy 

access to researchers. The main one is miRBase (Griffiths-Jones 2004), whose latest 

version, number 21 (since June 2014), contains more than 35,800 miRNAs distributed 

among 223 organisms. MiRBase is a repository of all published miRNAs/pre-miRNAs 

sequences and annotation. Each entry in the database is a mature miRNA transcript, 

grouped by species, from which various elements are provided, such as its pre-miRNA 

sequence, genomic location, some type of experimental validation, or target genes 

(Griffiths-Jones 2004). Other databases exist, such as miRMaid (Jacobsen et al. 2010), 

                                                 

7 Removal of the poly(A) tail from the mRNA 3′ end 
8 Removal of the m7G (7-methyl-guanosine-triphosphate) cap, which is a structure at the 5’ end of 

mRNAs that promotes the translation and protects from degradation (Krol et al. 2010) 
9 Removal of single nucleotides from the end of a nucleic acid chain 
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a user-friendly clone of miRbase, or PMRD (Zhang et al. 2010) which contains only 

plant miRNAs, most being predicted by bioinformatics tools. 

Each species contains a variable number of annotated miRNAs. Many mature miRNAs 

have a homologous sequence in several species. To keep track of this conservation, 

newly discovered miRNAs are indexed based on a specific nomenclature (Griffiths-

Jones et al. 2006). The objective of miRNA classification essentially lies in grouping 

into families similar sequences conserved in various species and having potentially 

many of the same (orthologous) target genes. This facilitates attribution of functions 

associated to a miRNA family. The choice of a group number is performed by miRbase: 

from a sequence alignment on Rfam database (Griffiths-Jones et al. 2005), the 

consortium attributes a family to new miRNAs. Some tools are dedicated to this task, 

such as miRClassify (Zou et al. 2014) which identifies with a machine learning 

approach miRNAs from their mature sequence and classifies them to an existing 

family. The nomenclature is set as follows: the name always starts with a concise name 

of a species (ex: hsa for Homo sapiens, tae for Triticum aestivum), followed by “miR” 

if we are talking about the mature miRNA, or “mir” if it is the precursor. Then a number 

is added (ex: hsa-mir-31), which is the family number incremented by order of 

discovery. A letter {a-z} is added at the end of the name if we have many members of 

one family in a species (ex: hsa-mir-33a, hsa-mir-33b). For mature miRNAs, the arm 

where it belongs in the precursor hairpin is specified: 5’ or 3’ (ex: hsa-mir-33a-5p and 

hsa-mir-33a-3p). If the arm is not specified, it is 5’ by default.  

 Formation and evolution of miRNA genes 

Mechanisms leading to the formation of new miRNA genes are multiple (Berezikov 

2011; Fahlgren et al. 2010). One of them is a duplication, which copies an existing 

gene by homologous or non-homologous recombination, transposable elements, gene 

duplication, or large-scale segmental duplication events. Copies eventually take other 

functions after mutation events, avoiding sur-expression of the duplicated gene (Clancy 

and Shaw 2008). New miRNA-like hairpins can also be formed after mutations within 
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a transcription unit, i.e. which contains a promoter (e.g. introns, pseudogenes). The 

chapter 4 investigate in detail the mechanisms of miRNAs’ origins. 

MiRNAs were formed gradually along evolution of species. Current mature miRNAs 

exist in closely related species, but rarely between distant species or kingdoms (e.g. 

plant vs animals). In plants, unlike in animals, the proportion of species-specific 

miRNAs is high, meaning that most of known miRNA genes arose relatively recently 

in evolutionary time. These young miRNAs are usually weakly expressed, processed 

imprecisely and a majority lack functional targets, suggesting they are under neutral 

evolution. It also happens that arising of new miRNAs by mutations can have 

deleterious effects and impacts fitness by perturbing existing regulatory networks 

(Cuperus et al. 2011). Such deleterious miRNAs are usually deleted by natural 

selection. Conversely, new miRNA genes that improve fitness are maintained in the 

genome. It has been shown that, by comparing precursors of conserved miRNAs 

among a set a species, the nucleotide divergence occurs essentially outside the miRNA-

miRNA* region, i.e. within the loop and loop distal stem (Cuperus et al. 2011). 

Targeting ability of the miRNA is then preserved by selective pressure. All these 

characteristics give the opportunity to perform evolutionary studies using miRNAs. 

 MicroRNAs in physiology and pathology  

 Roles in human physiology 

MiRNAs are involved in virtually all physiological processes in animals (Osman 2012; 

Lawrie 2013; Teruel-Montoya et al. 2014). In the last few years, many studies analyzed 

the roles of miRNAs in human, either by knocking out miRNA genes or by 

experimentally screening target genes. For example, it has been discovered that 

miRNA activity influences many biological functions in animals, such as pluripotency 

maintenance (Suh et al. 2004), germinal maturation (Murchison et al. 2007), cellular 

differentiation in many tissues (Chen et al. 2006), immunity (Xiao and Rajewsky 

2009), cholesterol homeostasis (Zampetaki and Mayr 2012), cardiogenesis, cardiac 
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conduction or cell cycle (Zhao et al. 2007). More recently, miRNAs were found to 

regulate foetal gene expression (Li et al. 2015b), and reproduction and sex 

determination (Li et al. 2015c). 

 Roles in Human diseases 

Due to their important participation in the development and the physiology of the host, 

dysfunctional ncRNA often lead to diseases. MiRNAs play an important role in 

pathogenesis (Cooper et al. 2009) (Figure I-11), as the number of studies discovering 

their implication in cancers and many other diseases grows every year. A pathology 

involving miRNAs can be the result of a loss of function or the deregulation of their 

expression (Clop et al. 2006), caused by mutations in a target gene or in the miRNA 

itself. Furthermore, a loss of function in one of the proteins involved in the machinery 

of miRNA processing, for example Dicer, leads to disastrous effects, such as 

developmental defects (Bernstein et al. 2003; Wienholds et al. 2003; Taft et al. 2010). 

In humans, studies found aberrantly expressed miRNAs, globally down regulated, in a 

long list of cancers (more than 170 cancers referenced in miRCancer database in 

September 2015 (Xie et al. 2013)), but also involved in central nervous troubles (e.g. 

schizophrenia, Alzheimer, Parkinson, Huntington) (Meza-Sosa et al. 2012), 

cardiovascular diseases (Dangwal et al. 2012) and various other syndromes (Chang and 

Mendell 2007; Goodall et al. 2013). Considering the growing list of diseases associated 

with ncRNAs, it is not impossible that almost every common disease could present a 

direct or indirect link with particular ncRNAs dysfunction or deregulation.  
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Figure I-11: Example of miRNAs implication in human diseases (Srinivasan et al. 2013) 

 Roles in Plants 

As in animals, thousands of miRNAs have already been identified in plants, and 

virtually all physiological processes involve miRNAs. Many studies show that 

miRNAs have an impact in response to stress and development, where various species 

can tolerate or resist abiotic stresses by regulating specific genes targeted by miRNAs 

(Sunkar et al. 2006, 2012; Khraiwesh et al. 2012), such as extreme temperatures or 

presence of pollutants (Agharbaoui et al. 2015; Lv et al. 2010; Chen et al. 2012). 

MiRNAs are also required in the development of roots (Boualem et al. 2008), vessels 

(Kim et al. 2005), flowers (Chen 2004) and leaves (Palatnik et al. 2003). Researches 
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also demonstrated how production of miRNAs by cells is suppressed by bacteria 

(Navarro et al. 2008) and how, on the opposite, miRNAs contribute to anti-bacterial 

resistance (Navarro et al. 2006). 

 MicroRNAs in medicine and biotechnology 

Research on miRNA helps improve medicine advances, and therapeutic applications 

are in development (Lawrie 2013; Hammond 2015). Many patents exist for treatments 

involving miRNAs (Figure I-12). Currently, miRNAs are used as diagnostic 

biomarkers or therapeutic targets. In cancer research, expression profiling of a 

particular circulating miRNA can accurately identify the localization of a tumor, based 

on miRNA deregulation studies reported for specific cancers. In recent years, miRNAs 

in blood serum are becoming a novel class of biomarkers for diagnosis of cancer (Chen 

et al. 2008) and cardiovascular diseases (Creemers et al. 2012). The profiling can also 

be done directly from saliva and tissues samples. Clinical trials are in progress for 

specific miRNAs biomarkers involved in lung, breast, colorectal, prostate and other 

cancers (Nana-Sinkam and Croce 2013; Andorfer et al. 2011; Lianidou et al. 2015; 

Redova et al. 2013; Barh et al. 2014), but also in atherosclerosis (link with miR-33) or 

fibrosis (link with miR-21) (Van Rooij et al. 2012). For therapeutic applications, it is 

possible to restore artificially the expression of a deregulated miRNA (Taft et al. 2010), 

and recent studies also revealed the potential of miRNA-based drugs for the treatment 

of cardiovascular diseases (cardiac regeneration (Wu et al. 2013a; Porrello 2013), 

cardiac calcium signaling restoration (Harada et al. 2014) and cardiac repair after 

myocardial infarction (Sahoo and Losordo 2014)).  

In plants, due to the requirement of full complementarity (~21 nt) between the miRNA 

and its targets, experiments aiming to silence highly specific genes by artificial 

miRNAs (amiRNAs) have been proposed in rice (Warthmann et al. 2008). This opens 

a new field in genetically modified plants, in order to improve agronomic performance 

and nutritional value, and even virus resistance (Qu et al. 2007; Bahadur et al. 2015). 
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Figure I-12: microRNAs in biotechnology. A, Distribution of technological fields for US 

miRNA-related patents (determined by International Patent Classification codes). B, 

Distribution of medicine fields targeted by medicinal preparations in A. (Van Rooij et al. 

2012) 

1.2  RNA secondary structure prediction 

Unlike coding regions of genomes, non-coding RNA lacks particular signatures in their 

nucleotidic sequence that would help their identification. However, in living 

organisms, RNAs fold into three-dimensional structures, defining their functionality. 

Thus, structural approaches have been developed to reveal functional RNAs (Washietl 

et al. 2005). In this section, I define what the secondary structure of RNA is, and how 

it can be predicted based on energy minimization principles or the analysis of 

evolutionary data. 
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 Definition and representation of RNA secondary structure 

Each type of non-coding RNA has a particular secondary (Figure I-13) and tertiary 

structure. Although tertiary structure prediction algorithms exist (Laing and Schlick 

2010), they nearly all rely on calculating first the secondary structure. By definition, a 

secondary structure of a nucleic acid sequence is the set of Watson–Crick (A:U, C:G) 

or wobble base pairs (G:U) present in the structure. The secondary structure describes 

the set of base pairing interactions within a molecule, and can be represented as a graph 

containing all connections between paired bases on a polymer backbone (Figure I-14). 

Secondary structures can be represented in a parenthesis format, where a pair of 

parentheses corresponds to a pairing between two nucleotides, and a dot is an 

unmatched nucleotides. 
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Figure I-13: Examples of RNA secondary structures (Source: Rfam). A: tRNA, B: tm-

RNA, C: snRNA, D: snoRNA, E: miRNA. Color corresponds to the structure 

conservation. 
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Figure I-14: Secondary structure of an RNA molecule represented as canonical loops 

(hairpin loops, stacked base pairs, bulge loop, interior loop, a multiloop) and on a 

backbone (Dirks et al. 2004). 

 Estimating the free energy of an RNA secondary structure  

The principle of minimum energy is based on the second law of thermodynamics, 

where “the internal energy will decrease and approach a minimum value at equilibrium 

for a closed system with constant external parameters and entropy10” (Calvin 2013). 

“Free energy” refers to Gibbs energy, which describes the amount of energy obtainable 

by a thermodynamic system at a constant temperature and pressure at its initial state. 

The free energy is then minimized when the system, here the RNA, reaches its 

                                                 

10 For a closed thermodynamic system, entropy is a quantitative measure of the amount of thermal energy 

not available to do work (Hellweg 2012). 
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equilibrium in the cell. In other words, the absolute value of MFE can be seen as a 

measure of energy required to unfold a folded RNA molecule at its equilibrium.  

The free energy of a given secondary structure can by approximated by summing over 

each base pair’s and loop’s energy contributions, at fixed temperature and ionic 

concentration, where stacked pairs contribute to decreasing the free energy (Sankoff 

1985). These energies are pre-computed in tables used to calculate the energy of a 

complete structure. The MFE is a negative value, or equals zero when an RNA structure 

contains no pair. Among a series of RNA sequences of same size, the one having the 

most negative value of free energy is considered as the most stable. Nevertheless, 

finding the optimal structure of a RNA molecule is difficult, and such a structure is not 

necessarily unique. Many optimal structures can be produced, their number increasing 

exponentially with sequence length (Durbin et al. 1998), and it is challenging to select 

the native one (Parisien and Major 2008). Furthermore, MFE structures sometimes do 

not match experimental data, because of a certain lack of biological realism in the 

energy calculation model (Zuker and Stiegler 1981). Finally, it is important to note that 

most algorithms based on thermodynamic rules do not take in account the presence of 

pseudo-knots11, due the complexity to predict such structures: it is an NP-complete 

problem12 (Lyngso 2004). Thus, most secondary structure prediction algorithms 

consider that RNA structures are pseudo-knots-free.  

                                                 

11 RNA structure that is minimally composed of two helical segments connected by single-stranded 

regions or loops (Staple and Butcher 2005). 
12 Non-deterministic polynomial time problem (i.e. cannot be solved in a polynomial time)  
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Figure I-15: Example of pseudo-knot structure (Chen et al. 2005) 

 Algorithms for pairing maximization and free energy minimization 

Researchers use various approaches to calculate secondary structures from primary 

sequences. The Energy Minimization Secondary Structure Prediction problem (Zuker 

and Stiegler 1981) is often defined as follows: Given a RNA sequence, find the 

secondary structure that minimizes the free energy.  

There exist many methods in the literature to predict secondary structures of RNAs. 

Among the best known, we briefly present in this section the Nussinov approach 

(Nussinov et al. 1978), the oldest approach that solved the base pair maximization 

problem, and MFold, created by Zuker and Stiegler (Zuker and Stiegler 1981) which 

improved the later by minimizing a more refined approximation of the free energy of 

the calculated structure. We also present a technique to compute base pairs binding 

probabilities, proposed by McCaskill (McCaskill 1990). These three methods, with 

various other optimizations, are used in RNAfold, included in Vienna package 

(Hofacker et al. 1994), the most widely used RNA folding tool in the literature. 

 Nussinov algorithm 

The Nussinov approach (Nussinov et al. 1978) maximizes the number of base pairing 

of a given RNA sequence 𝑆 of length 𝑛 with a dynamic programming algorithm that 

runs in time O(n3). Dynamic programing solves complex problems by breaking them 

into simpler subproblems; here it finds optimal structures for substrings of the input 

sequence. Only canonical or wobble base pairs are considered. The algorithm proceeds 
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as follows (Durbin et al. 1998): Given 𝑆, a matrix 𝑊 is calculated, where 𝑊(𝑖, 𝑗) is the 

maximal number of base pairs among all possible folds of 𝑆[𝑖 … 𝑗] and 𝑊(1, 𝑛) the 

number of base pairs in the maximally base-paired structure. Let 𝛿(𝑖, 𝑗) = 1 if 𝑖, 𝑗 is a 

complementary or wobble base pair, 0 if it is not. The algorithm works in two steps: 

the matrix fill stage and backtracking stage. In the first stage, the matrix is initialized 

with zeros on the main diagonal and bottom one as follows:  

𝑊(𝑖, 𝑖) = 0 for 𝑖 = 1 to 𝑛 

𝑊(𝑖, 𝑖 − 1) = 0 for 𝑖 = 2 to 𝑛   

Then, the triangle upper part of the matrix is filled diagonal by diagonal from 2 to 𝑛:  

𝑊(𝑖, 𝑗) = max
2≤𝑖,𝑗≤𝑛

{
 
 

 
 

𝑊(𝑖 + 1, 𝑗)

𝑊(𝑖, 𝑗 − 1)

𝑊(𝑖 + 1, 𝑗 − 1) + 𝛿(𝑖, 𝑗)

max
𝑖<𝑘<𝑗

[𝑊(𝑖, 𝑘) +𝑊(𝑘 + 1, 𝑗)]

 

In the second stage, to get the optimal structure, a backtracking is done through W, 

beginning from 𝑊𝑖,𝑛. 

This technique has many limitations, such as the lack of consideration of base pairs 

stacking, and the absence of special scoring of multiloops, and in inability to produce 

suboptimal structures. The algorithm delivers only one structure, based on base pair 

maximization, which is not always biologically relevant. There are, however, ways to 

overcome the problem of extracting sub-optimal solutions from the calculated matrices 

(Wuchty et al. 1999).  

 Zuker algorithm 

The Zuker algorithm (Zuker and Stiegler 1981) is a method for folding a given RNA 

sequence. It uses previous work of Salser (Salser 1978) and Nussinov et al. (Nussinov 

et al. 1978), and includes new features compared to previous folding algorithms in the 

literature. It is based on dynamic programming and computes the optimal minimum 

free energy secondary structure of a sequence S of length n in time O(n3). The algorithm 
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uses a defined group of specific substructures (loop, bugles, stacks, etc.) assigned with 

free energy values depending on nucleotides composition, linked to the reactivity of 

nucleotides to chemical modification or enzymatic influence on the RNA. The total 

energy of S is the sum of the energy of its substructures (example in Figure I-16). 

The recursive algorithm runs as follows: the nucleotides of the RNA molecule are 

numbered from 5’ to 3’, denoting by 𝑆𝑖 the 𝑖thnucleotide for 1 ≤ 𝑖 ≤ 𝑛. The technique 

is to compute two possible energies for each subsequence 𝑆𝑖𝑗. For all pairs (𝑖, 𝑗) in 1 ≤

𝑖 < 𝑗 ≤ 𝑛, let matrices 𝑊(𝑖, 𝑗) and 𝑉(𝑖, 𝑗) be the MFE of all possible structures formed 

from 𝑆𝑖𝑗, except 𝑉(𝑖, 𝑗)  is set only in case of a base pairing of 𝑖 and 𝑗. When ( 𝑆𝑖,  𝑆𝑗) 

cannot form base pair, 𝑉(𝑖, 𝑗) = ∞. If distance 𝑑 between 𝑖 and 𝑗 is lower or equal to 

4, 𝑊(𝑖, 𝑗) = 0, otherwise 𝑉(𝑖, 𝑗) and 𝑊(𝑖, 𝑗) are computed in terms of 𝑉(𝑖′, 𝑗′) and 

𝑊(𝑖′, 𝑗′), with 𝑖 < 𝑖′ < 𝑗′ < 𝑗. 𝑉(𝑖, 𝑗) is calculated as follows: 

𝑉(𝑖, 𝑗) = min

{
 

 
𝐸(𝐹𝐻(𝑖, 𝑗))

min
𝑖<𝑖′<𝑗′<𝑗

{𝐸(𝐹𝐿(𝑖, 𝑗, 𝑖′, 𝑗′)) + 𝑉(𝑖′, 𝑗′)}

min
𝑖+1<𝑖′<𝑗−2

{𝑊(𝑖 + 1, 𝑖′) +𝑊(𝑖′ + 1, 𝑗 − 1)}

 

with 𝐸(𝐹𝐻(𝑖, 𝑗)) the energy of the hairpin loop of subsequence 𝑆𝑖𝑗 and 

𝐸(𝐹𝐿(𝑖, 𝑗, 𝑖′, 𝑗′)) the energy of either stacking region, bugle or internal loop. The 

entries of the 𝑊 table are calculated as follows: 

𝑊(𝑖, 𝑗) = min

{
 
 

 
 

𝑊(𝑖 + 1, 𝑗)

𝑊(𝑖, 𝑗 − 1)

𝑉(𝑖, 𝑗)

min
𝑖<𝑖′<𝑗−1

{𝑊(𝑖, 𝑖′) +𝑊(𝑖′ + 1, 𝑗)}

 

Compared to Nussinov algorithm, Zuker is more accurate, essentially because it 

integrates the concept of minimum free energy, which involves far more biological 

knowledge than Nussinov.  
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Figure I-16: Example of calculation of free energy (∆G) for an RNA stem loop (Durbin et 

al. 1998) 

 McCaskill 

The McCaskill dynamic programming algorithm (McCaskill 1990) is based on the 

calculation of the partition function 𝑍 over the canonical ensemble of all possible 

secondary structures of a given sequence. The canonical ensemble refers to the 

probability distribution 𝑃𝑖 of secondary structure states of an RNA molecule, 

characterized by the probability of finding the molecule in a particular structure state 𝑖 

with a particular free energy 𝐸𝑖 at a temperature 𝑇, given by the Boltzmann distribution: 

𝑃𝑖 =
1

𝑍
 𝑒
−𝐸𝑖

𝑘𝑇⁄ = 𝑒−(
𝐸𝑖−𝐴

𝑘𝑇⁄ ) where 𝑍 = 𝑒
−𝐴

𝑘𝑇⁄  is a normalizing constant, 𝐴 is the 

Helmholtz free energy function and 𝑘 is the Boltzmann constant. The resulting partition 

function is calculated by 𝑍 = ∑ 𝑒
−𝐸(𝑆)

𝑅𝑇⁄
𝑆∈𝑄 , where 𝑄 is the set of all possible 

structures, 𝑆 is a particular structure, 𝐸(𝑆) the energy of the structure, 𝑅 is the gaz 

constant in joules/Kelvin and 𝑇 the temperature in Kelvin. The McCaskill algorithm 

works by calculating base pair probabilities of a given RNA sequence in the 

thermodynamic ensemble, using four kinds of partition functions (PF) that describe 

various possible substructures. 
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 RNAfold 

RNAfold (Denman 1993), from Vienna package (Lorenz et al. 2011), is a fast and easy 

to use program developed to calculate minimum free energy (MFE) secondary 

structures and partition function of RNAs by using various state-of-art algorithms 

together. The MFE is computed using the Zuker and Stiegler algorithm (Zuker and 

Stiegler 1981) and the partition function algorithm based on McCaskill algorithm 

(McCaskill 1990). Energy parameters come from the work of Mathews and Turner 

(Mathews et al. 2004; Turner and Mathews 2009).  

 Nucleotide cyclic motifs, covariation analysis and stochastic context-

free grammars 

Other ideas have been proposed to infer RNA secondary structures. We briefly present 

here MC-FOLD (Parisien and Major 2008), which uses nucleotide cyclic motifs 

associated to probabilistic models, and covariation analysis combined with stochastic 

context-free grammars (SCFGs).  

 MC-fold algorithm 

Parisien and Major have created MC-Fold to infer RNA secondary and 3D structures 

from nucleotide sequences (Parisien and Major 2008). In previous algorithms, models 

use canonical base pairs: Watson Crick (A-U, G-C) and Wobble (G-U). In MC-Fold, 

all non-canonical base pairs (e.g. A-A) are accepted, since their contribution to the 

energy of the structure is actually non-negligible. To find the optimal structure, they 

use nucleotide cyclic motifs (NCM) and a scoring function. These motifs, stored in a 

database, include all nucleotides interactions that form loops, bulges and base pairs of 

fixed lengths. The algorithm computes secondary structures by trying all possible NCM 

constructions. From a given sequence, all possible hairpins are generated by 

determining a list of initiation sites assigned to lone-pair NCMs. Then the rest of the 

sequence is matched recursively to double stranded NCMs. The algorithm also 
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calculates multibranch structures. All sub-optimal solutions are ranked by a score 

corresponding to their probability of occurrence. 

 Covariation analysis 

Covariation analysis method has been implemented in COVE (Eddy and Durbin 1994). 

It is based on the principle that base pairing interactions are often better conserved than 

the genetic sequence itself, due to the presence of correlated compensatory mutations 

(Durbin et al. 1998). Comparative analysis using conservation to infer a structure is an 

efficient technique, but difficult to set up. It requires knowing a structurally correct 

multiple alignment, and this alignment requires knowing the correct structure. The 

structure is obtained by an iterative refinement process of guessing the structure based 

on the best multiple alignment, then realigning based on the obtain structure. Also, 

compared sequences must be relatively similar to obtain a good alignment, but 

sufficiently dissimilar to detect covarying substitutions. Pairwise sequence covariation 

can be measured as follows:  

𝑀𝑖𝑗 = ∑ 𝑓𝑥𝑖𝑥𝑗 log2
𝑓𝑥𝑖𝑥𝑗

𝑓𝑥𝑖𝑓𝑥𝑗
𝑥𝑖,𝑥𝑗

 

where 𝑀𝑖𝑗 is the mutual information between columns 𝑖 and 𝑗 of an alignment. 

Frequency of bases (A, C, G, U) is represented by 𝑓𝑥𝑖 and 𝑓𝑥𝑗 in columns 𝑖 and 𝑗 

respectively, and 𝑓𝑥𝑖𝑥𝑗   is the frequency of one of the 16 possible base pairs.  This 

measure reveals dependent columns which vary together, i.e. the covariation to 

maintain base pairing complementarity.  

 Stochastic context-free grammars 

Stochastic context-free grammars (SCFGs) consist of a number of symbols and 

productions rules with probabilities (Durbin et al. 1998). They can be used to predict 

RNA secondary structures without pseudo-knots. In SCFGs, the symbols are either 

terminal or non-terminal, where non-terminal symbols are transformed into terminal or 
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non-terminal ones by production rules. The finality is a string of terminal symbols 

attached to a probability obtained by the product of the probabilities rules used in the 

derivation (parsing). To know if a string belongs to particular grammar (set of symbols 

and production rules), algorithms such as CYK, which employs bottom-up parsing and 

dynamic programming, are used.   

 Limitations of secondary structure prediction 

Ideally, it would be better to directly predict the tertiary structure, but they are very 

complex and existing algorithm take a long time to compute them. Thus, computational 

methods to predict RNA secondary structures have been developed, whose most 

efficient are based on dynamic programming algorithms for MFE folding, which 

guaranty to find the energetically best structure. Moreover, McCaskill, who shows how 

efficiently calculate the partition function over all secondary structures of an RNA 

molecule, made it possible to get structure and base pair probabilities. These algorithms 

avoid costly experimental structure determination but have limits: they cannot handle 

pseudo-knots and interaction with other molecules. Moreover, they do not take in 

account kinetic properties of RNA molecules, i.e. how easily is a state accessible from 

other states (Zhao et al. 2010b). Also, according to a study from Doshi et al. (Doshi et 

al. 2004), the prediction accuracy of secondary structure tested on many rRNAs varies 

from 20 to 70%. In 2013, Hajdin et al. (Hajdin et al. 2013) reported that prediction of 

secondary structure of various RNAs whose sequence was experimentally validated. 

Conventional algorithms based on sequence alone reached a sensitivity (in terms of 

fraction of base pairs in the accepted structure predicted correctly) of 72%. It is low, 

but fortunately partially correct predictions still allowed conducting numerous studies 

implying RNA structures. Research continues to improve the field of structure 

prediction, new approaches being published on a regular basis.    
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1.3  MicroRNAs identification and prediction 

MicroRNAs form one of the most investigated classes of ncRNAs. Thus, research has 

been done on the identification of miRNAs in genomes in order to understand their 

gene regulation networks. But, because detecting miRNAs by experimental techniques 

is expensive, computational methods have been developed. In this section, we will 

present briefly some experimental techniques and bioinformatics methods existing to 

discover new miRNAs. 

 Experimental identification of miRNAs 

In the early 2000s, the first experimentally identified miRNAs were discovered by 

sequencing small RNAs from mammals, flies, and worms (Lagos-Quintana et al. 2001; 

Lau et al. 2001; Lee and Ambros 2001) by Sanger sequencing of cloned small RNA-

derived cDNAs (Lagos-Quintana et al. 2002, 2003; Berezikov et al. 2006b). Today, 

experimental identification or validation of previously annotated miRNAs is generally 

performed from high throughput sequencing of the miRNAome, i.e. all miRNAs coded 

by the genome, by massively parallel signature sequencing (MPSS (Brenner et al. 

2000)) and miRNA serial analysis of gene expression (miRAGE, derived from SAGE 

protocol (Velculescu et al. 1995)). MPSS and SAGE techniques measure the 

expression level of mRNAs through the generation of a 17-20 bp and 9-10 bp tags 

respectively. While MPPS use ligation-based approach by attaching sequences to 

millions of microbeads, SAGE uses short tags of cDNA, made from all mRNAs in a 

cell, linked so they can be cloned in large groups. Once genes are identified by the 

sequencing step, they are counted to determine their relative expression. The massive 

amounts of data generated by such methods are then processed in bioinformatics 

pipelines for identification of miRNAs (Vigneault et al. 2012; Wang et al. 2009; 

Agharbaoui et al. 2015). Nevertheless, one of the limitations of these experimental 

approaches is the unequal expression of miRNAs depending cell type, tissue and 

experimental conditions. Unknown lowly expressed miRNAs have a high probability 

of not being detected by sequencing methods. Also, it is easier to validate specific 
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miRNA computational predictions (Chiang et al. 2010). Experimental validation of 

specific miRNAs can be performed by rapid amplification of cDNA ends (RACE) (Xie 

et al. 2005), hybridization to RNA blots (Berezikov et al. 2005), microarrays (Bentwich 

et al. 2005) and RNA-primed array-based Klenow extension (RAKE) (Berezikov et al. 

2006b) (Figure I-17). 

 

 

Figure I-17: Approaches to experimental validation of miRNA candidates (Berezikov et 

al. 2006a). (a) Cloning-based methods, where miRNAs are validated (1) by random 

sequencing of a collection of small RNA samples (library), or (2) by designing specific 

primers and adapters designed to amplify a predicted miRNA, or (3) by enriching RNA 

samples with biotinylated probes. (b) Hybridization-based methods, where validation is 

done (1) by using specific probes before RNA blot or microarray analysis, primer 

extension, or in situ hybridization. (2) By designing a tiling array (overlapping predicted 

3’ ends of mature miRNAs) used in an RNA-primed, array-based Klenow enzyme 

(RAKE) assay. 
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 Prediction of miRNAs by bioinformatics methods 

Computational identification of novel microRNA (miRNA) genes is a challenging task. 

Today, huge amounts of non-coding RNA transcripts have to be analyzed through 

prediction pipelines. The secondary structure of RNAs is the main type of evidence 

used by miRNA prediction algorithms. Various characteristics of the secondary 

structure, calculated by one of existing technique described in section 1.2 are used to 

identify miRNAs sequences. The hairpin shape, the number, length and position of 

bulges, the number of matches and mismatches between hairpin arms are examples of 

structural properties used by predictor programs. These parameters are set based on 

experimentally validated miRNAs stored in databases such as miRbase. Nevertheless, 

one of the limitations of relying only on structural properties is the resulting high rate 

of false positive (Leclercq et al. 2013; Friedländer et al. 2008). Thus, to improve the 

accuracy of miRNA prediction, researchers started in recent years combining structural 

features with sequencing information and conservation properties among species. 

Indeed, sequencing helps to detect functional miRNAs by revealing those presenting 

high levels of expression or differential expression between different conditions. Also, 

functionality can be identified by measuring conservation between species, revealing 

miRNAs that are maintained by selective pressure in evolution. Finally, another 

limitation of predictor tools is that some of them are species or clade specific, and all 

lack of update capabilities: they are trained only once at time of publication (Leclercq 

et al. 2013). 

We present in the next section the various techniques to predict miRNAs, including 

machine learning and analysis of deep sequencing data. Some are specialized in the 

prediction of pre-miRNAs and others in the localization of the mature miRNAs within 

their precursor. We present both these categories in 1.3.2.1 and 1.3.2.2 These prediction 

techniques are generally using prior knowledge of experimentally validated miRNAs 

from miRbase (Griffiths-Jones et al. 2006). 
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 Prediction of microRNA precursors   

Many programs have been developed since the discovery of miRNAs. Among the 

techniques to predict miRNA precursors (pre-miRNAs), most use machine learning, 

combined or not with cross-species comparison and RNA sequencing data analysis. 

Regardless of their approach, most of the prediction tools have focused on predicting 

human pre-miRNAs and/or mature miRNAs, although some other have been tailored 

to specific clades, such as plants (Jones-Rhoades and Bartel 2004), insects (Lai et al. 

2003) or viruses (Li et al. 2008). While methods using filters can be used to predict 

pre-miRNAs precursors [Vmir (Grundhoff et al. 2006), DIANA-mirExTra (Alexiou et 

al. 2010), miRcheck (Jones-Rhoades 2010)], most of the tools use machine learning 

classifiers to complete this task. The following subsections present the programs 

developed to predict pre-miRNA by approaches involving machine learning, sequence 

conservation and deep sequencing data analysis.  

 Machine learning approach  

In genome, many regions correspond to sequences that, if transcribed to RNA, could 

fold to form pre-miRNA-like hairpin structures. Another challenge is to detect special 

cases, such as multiloop hairpins or pre-miRNAs with large bulges.  

For every program dedicated to the prediction of pre-miRNAs, pre-computed 

secondary structures of RNA molecules are submitted to an algorithm that extracts 

various features and tries to determine if they contain pre-miRNAs hairpins. Machine 

learning approaches to predict the miRNA precursors include support vector machine, 

random forest, hidden Markov models, covariance/SCFG model and Naive Bayes. A 

non-exhaustive list of existing tools utilizing these types of classifiers is presented in 

Table I-2. They usually use miRbase as positive training dataset, which contains 

experimentally validated miRNAs and pre-miRNAs. Negative datasets may be 

generated from random sequences that fold into hairpin, or are hairpins encoded in 

exons.  
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Program using machine learning extracts various features before using classifiers. 

Among the most used features, there are the minimum free energy, number of triplets 

(defined later in this section) normalized by hairpin length, sequence and structure 

characteristics (nucleotides location, length, number of bulges, loop size etc.) and 

conservation among species. 

Table I-2: Non-exhaustive list of pre-miRNAs prediction programs using machine 

learning classifiers 

Type of classifier Programs 

Support vector machine (SVM) 

iMiRNA-PseDPC (Liu et al. 2015b) 

MicroPred (Batuwita and Palade 2009) 

miRanalyzer (Hackenberg et al. 2009, 2011) 

miRBoost (Tran et al. 2015) 

MiRenSVM (Ding et al. 2010) 

miRfinder (Huang et al. 2007) 

miRNA-dis (Liu et al. 2015a) 

miRPara (Wu et al. 2011) 

PMirP (Zhao et al. 2010a) 

RNAmicro (Hertel and Stadler 2006) 

RNAz (Washietl et al. 2005) 

Triplet-SVM (Xue et al. 2005) 

YamiPred (Kleftogiannis et al. 2015) 

Random Forest MiPred (Jiang et al. 2007) 

Hidden Markov Model 

HMMMiR (Kadri et al. 2009) 

Novomir (Teune and Steger 2010) 

ProMiR (Nam et al. 2005) 

SSCprofiler (Oulas et al. 2009) 

covariance/SCFG model Infernal (Nawrocki et al. 2009) 

Naïve Bayes classifier 
BayesMiRNAfind (Yousef et al. 2006) 

MatureBayes (Gkirtzou et al. 2010) 

 

Once the program’s classifier is trained, its efficiency is measured by four values: 

Sensitivity (Sn) and specificity (Sp), which measure respectively the proportion of 

positives and negative instances respectively that are correctly classified, total 

prediction accuracy (Acc) and the Matthew’s correlation coefficient (MCC), calculated 

with the formulas: 

Sn =
TP

TP+FN
  Sp =

TN

TN+FP
  Acc =

TP+TN

TP+TN+FP+FN
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MCC =
TP × TN − FP × FN

√(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)
 

where TP=true positives, FP=false positives, TN=true negatives and FN=false 

negatives. The correlation coefficient MCC returns a value between -1 and +1. A 

coefficient of -1 indicates a total disagreement between predictions and observations, 

0 means random predictions, and +1 a perfect prediction. 

MiPred is an example of a random forest based pre-miRNA prediction tool (Jiang et 

al. 2007). It takes as input an RNA sequence and uses a combination of local contiguous 

structure-sequence composition called triplets, secondary structure MFE and P-value 

of the randomization test in order to distinguish pseudo and real pre-miRNAs. All these 

features are used as attributes in a random forest machine learning algorithm.  

A triplet informs on the status of a nucleotide in the structure: paired, represented by a 

parenthesis in the secondary structure, or unpaired, represented by a dot. Adjacent 

nucleotides structures are included, giving a total of 8 possible compositions: ‘(((‘, ‘((.’, 

‘(..’, ‘…’, ‘.((‘, ‘..(‘, ‘.(.’ and ‘(.(‘. Then, the middle nucleotide is added, giving a total 

of 32 combinations (e.g. ‘A(((‘, ‘C.(.’). Finally, the local contiguous triplet structure-

sequence composition is calculated by the percentage of appearance. 

The P-value of the randomization test determines if the MFE of a given sequence is 

significantly different from a randomly generated RNA sequence. A Monte Carlo 

randomization test is set to obtain this P-value: 

1) Calculate the MFE M of the original given sequence 

2) Shuffle the sequence while keeping dinucleotide distribution constant and re-

compute the MFE. Repeat this step N times (N should be equal to 1000) 

3) P-value =  
𝑅

𝑁+1
 where R is the number of randomized sequences having a MFE 

≤ M 
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HHMMiR is a good example of how Markov models are used in the miRNA prediction. 

The Hierarchical Hidden Markov Model is composed of six states and three levels, 

described in Figure I-18. States starts with hairpin nodes, followed by the regions 

composing the hairpin loop: Loop, the hairpin head, Extension, the duplex strand 

between the loop and the mature sequence, miRNA, the mature sequence, pri-Ext, the 

rest of the sequence. A last state, End, is added as a transition to come back to hairpin 

state. These states follow each other in a one-way directed graph. Every state, except 

hairpin and end, has a lower level probability model. A Loop can only have indel lower-

states (I) and Extension, miRNA and pri-Ext can have a match (M), a mismatch (N) or 

indel at any place, except Extension that starts with a match. All lower-states ends with 

an End state.  

 

Figure I-18: The HHMM state model of HHMMiR (Kadri et al. 2009), based on the 

microRNA hairpin template of Figure I-8. M: match, N: mismatch, I: indel. Dashed 

circles are ending states, and plain circles are production states.  

 Analysis of deep sequencing data 

Non-coding RNAs, and especially miRNAs, tend to have a highly variable expression 

due to various factors such as cell type origin, developmental phase and environmental 

influences. The expression level of a miRNA varies from a few to tens of thousands 

copies per cell (Hackenberg et al. 2011), and Dicer products amounts, such as miRNA-

5p and miRNA-3p sequences, are tissue or developmental stage specific (Krol et al. 
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2010). To identify known or novel miRNAs and measure their expression, deep 

sequencing data analysis experiments are performed. Such experiment that focus on 

the sequencing of miRNAs is called a miRNA-seq, a type of RNA sequencing (RNA-

seq), where only RNA within miRNAs size range, i.e. 16 to 30 nt (Leclercq et al. 2013), 

is isolated. About 10 million reads (expressed sequences) are usually produced for each 

experiment, although read numbers greater than 5 million contribute very little to the 

detection of new microRNAs (Metpally et al. 2013). The deep sequencing experiment 

is mainly defined by the depth of sequencing, which refers to the number of times a 

nucleotide can be read during the sequencing process. The resulting coverage is many 

times larger than the original length of the sequence of reference. Then, one of the 

challenges here is to analyze gigabytes of data generated by each sequencing 

experiment, another is to discriminate miRNAs from other non-coding RNAs or 

degradation products. Both miRdeep (Friedlander et al. 2008, 2012) and miRanalyzer 

(Hackenberg et al. 2011, 2009), the most common used tools, and more recent 

programs, such as miRTRAP (Hendrix et al. 2010), mirTools (Zhu et al. 2010; Wu et 

al. 2013b), mirExplorer (Guan et al. 2011), miRdentify (Hansen et al. 2014) and 

Mirinho (Higashi et al. 2015), take as input deep sequencing data and output 

predictions of pre-miRNAs and mature miRNAs.  

After sequencing, low quality reads are discarded, and mapped (i.e. aligned) to a 

genome of reference. The mapping procedure of high throughput sequencing data 

reveal stacks of reads that cover the sequences of reference. Expression profiles and 

reads stacks allow the identification of potential miRNAs and other Dicer products. 

MiRdeep (Friedlander et al. 2008, 2012) has been developed to process this 

information. It uses a probabilistic model of RNA biogenesis to score the position and 

the frequency of a sequenced small RNAs compared to the secondary structure of the 

precursor. Among the degradation products produced by the experiment, we have the 

Dicer residues, such as hairpin loops and precursor extensions around the duplex 

miRNA and miRNA*. Except for the mature miRNA itself, everything is partially 

degraded. The position and frequencies of these elements are identified by miRdeep as 
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a signature to discover miRNAs. The pipeline works as follows: 1) Mapping reads 

against the reference genome. 2) Extracting and folding precursor around mapped 

reads. Non-hairpin sequences are discarded. 3) Precursors are then submitted to the 

miRdeep model based on the positions and frequencies of Dicer residues mapped on 

the precursor. 4) Identification of conserved miRNAs in miRbase by Blast (Altschul et 

al. 1990) and false positive rate estimation by permuting structure and signature 

pairing.  

Another approach uses Dicer products to predict miRNAs: miRanalyzer (Hackenberg 

et al. 2011, 2009). The difference with miRdeep is that it performs mapping against 

various known RNA stored in databases such as Rfam, a database of RNA families, 

and Repbase, a database of repetitive DNA elements. This step removes known ncRNA 

that are not miRNAs, hence reducing the number of sequenced reads and lowering the 

false positives miRNAs. Besides, instead of a probabilistic model, miRanalyzer 

implements a machine learning method based on random forest generated from a broad 

variety of features associated with nucleotide sequence, structure and energy.   

 Approach based on structure conservation 

An efficient method to detect functional RNAs based on structure conservation is 

implemented in RNAz (Washietl et al. 2005; Lu et al. 2011). This program predicts 

structurally conserved and thermodynamically stable RNA secondary structures in 

multiple sequence alignments. It takes as input an alignment of sequences, usually 

orthologous genome fragments from several related species, and consists in measuring 

the RNA secondary structure conservation based on computed structure consensus and 

their thermodynamic stability by RNAALIFOLD from Vienna package (Hofacker 

2004). Regions with high structure conservation will be annotated as potentially 

functional. RNAz then determines whether the secondary structure consensus 

corresponds to a known ncRNA family. This approach classifies a candidate genomic 

region as functional RNAs by calculating two values: (i) the structure conservation 

index (SCI) and (ii) the normalized z-score. The SCI is obtained by comparing the 
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consensus structure MFE 𝐸𝑐𝑜𝑛𝑠 with the average MFEs �̅� of every independently 

calculated structure (by RNAfold) of the alignment, where SCI =
𝐸𝑐𝑜𝑛𝑠

�̅�
. 𝐸𝑐𝑜𝑛𝑠 is 

calculated by RNAALIFOLD, which uses a combination of phylogenetic information 

(based on sequence covariation) and thermodynamic methods to predict RNA 

secondary structure. If the sequences that compose the alignment fold into a conserved 

common structure, then �̅�≈𝐸𝑐𝑜𝑛𝑠, or SCI≈1, which indicates a perfectly conserved 

secondary structure. At the opposite, when RNAALIFOLD can’t find a consensus 

structure the 𝑆𝐶𝐼 is close to zero. Normalized z-score z is calculated to measure the 

significance of MFE predicted value m, assessed by comparison with a large set of 

randomly generated sequences of same length and single or dinucleotide composition. 

This method relies on the fact that structure MFE alone is not sufficient to detect 

functional RNAs. Moreover, studies show that functional RNAs are more stable than 

random sequences, hence the comparison against random sequences. Mean µ and 

standard deviation σ of those random sequences are calculated to get z, where 𝑧 =

(𝑚−𝜇)

𝜎
. Finally, a support vector machine (SVM) classifier, trained on all classes of 

ncRNAs, is used to classify the aligned sequences in the SCI/z-score plane. An 

advantage to this approach is the fact that the SVM is not trained on structure and 

composition characteristics, so it does not contain specific information about particular 

ncRNAs. Machine learning is used here as a help to interpret SCI and z-score. The time 

complexity is O(𝑁 × 𝑛3), where 𝑁 is the amount of input sequences and 𝑛 the 

alignment length. Finally, the accuracy of this approach depends greatly on the type of 

ncRNA, where low accuracy is obtained for poorly conserved ncRNA family’s 

members, such as tmRNAs, and high accuracy for other classes such as Hammerhead 

III ribozyme and tRNAs classes. 

 Prediction of microRNAs mature sequence 

Search of mature miRNA is the identification of the portion of the pre-miRNA that is 

processed by Drosha and eventually target genes. Although there are many so-called 

“miRNA predictors”, most are actually pre-miRNA predictors and do not specifically 
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identify the position of the miRNA within the pre-miRNA. However, a few tools have 

been developed specifically for this problem, and some of them are even capable of 

predicting both pre-miRNAs and mature miRNAs (Table I-3). It is important to note 

that deep sequence analysis pipelines dedicated to the identification of miRNAs predict 

both pre-miRNAs and mature miRNAs, revealed by read stacks analysis (see 

411.3.2.1.1 and 2.3 ). 

Table I-3: List of mature microRNA sequence predictors 

Mature miRNA 

program 

Also 

predict 

pre-

miRNA? 

Method 

Constraints 

on mature 

miRNA 

length 

Lineage 

HHMMiR (Kadri 

et al. 2009) 
Yes 

Hierarchical hidden Markov models 

(Figure I-18) 
No 

Any (user training 

possible) 

MatureBayes 

(Gkirtzou et al. 

2010) 

No 

Sequence and secondary structure 

features classified with a Naive Bayes 

classifier 

Yes, 22 nt Human and mouse 

MaturePred 

(Xuan et al. 2011) 
No 

miRNA:miRNA* duplex features 

classified with a SVM 

Yes, user 

defined 
Any 

MiRalign (Wang 

et al. 2005) 
Yes Alignment with miRbase Yes, 22 nt Any 

MIRcheck (Jones-

Rhoades and 

Bartel 2004) 

Yes Set of rules and constraints Yes, 20 nt Plants 

MiRmat (He et al. 

2012) 
No 

Identification of Drosha and Dicer 

processing sites using random forest 
No Vertebrates 

novoMIR (Teune 

and Steger 2010) 
Yes 

Set of filtering steps and statistical 

model 
No Plants 

ProMir (Nam et 

al. 2005) 
Yes 

Combination of sequence and 

structural features in a paired hidden 

Markov model 

No Human 
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1.4  Target genes identification and prediction 

One of the most challenging tasks in the study of miRNAs is the identification of the 

set of genes targeted by each miRNA. The target gene repertoire associated to a miRNA 

determines its function. The search for target genes has a dual purpose: validate a 

predicted miRNA and discover new potential targets.  

To be functional, a miRNA has to target one or more messenger RNAs to stop their 

translation in protein, hence the importance of validating the presence of target genes 

after the identification of a putative miRNA. Identifying miRNA target genes is a 

challenging task because: 

 Understanding of the biological processes associated to the binding of a miRNA 

to a target mRNA is limited (Wang 2014),  

 The mRNA structure and the presence of RNA-binding proteins affect target 

site accessibility (Ameres et al. 2007; Kedde and Agami 2008), 

 Target sites inhibiting translation can exist outside UTRs (Hausser et al. 2013a), 

which considerably increase the regions to analyze, 

 Some miRNAs targets lack a complete 6-mer match to the seed portion of the 

miRNA (Shin et al. 2010; Didiano and Hobert 2006; Wang 2014; Lal et al. 

2009; Fasanaro et al. 2012). 

As a consequence, the false positive and false negative rate of miRNA target genes 

prediction programs remains high (Hamzeiy et al. 2014; Zheng et al. 2013). 

Whether target genes are identified experimentally or by bioinformatics, the two 

types of approaches are dependent on each other. Bioinformatics approaches rely 

on knowledge obtained from experimental studies, but are also essential to make 

sense of the data generated. In the rest of this section, I describe in more details the 

experimental and computational approaches for miRNA target gene prediction.  
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 Experimental identification of miRNA target genes 

The experimental identification of target genes is subdivided into three types of 

problems: (1) validation of specific miRNA targets, (2) identification of the targets of 

a given miRNA on a genome-wide scale, and (3) identification of the miRNAs that 

target a given mRNA.  

(1) The objective here is to validate the hypothesis that a particular mRNA is targeted 

by a specific miRNA under specific experimental conditions. Several approaches are 

possible. First, candidate miRNA:mRNA interactions can be validated by luciferase 

reporter assay. This technique uses a vector that is composed of a luciferase gene, a 

target gene to test, and a poly-A tail. The vector is transfected in a model cell line and 

the luciferase expression is monitored by measuring its luminescence (Nicolas 2011). 

Second, taking in account that a miRNA and its targeted mRNA must be co-expressed 

in order that the repression of expression exists, then the co-expression is measured. 

This can be performed by Northern blot analysis, quantitative real-time PCR (qRT-

PCR13) using total RNA isolated from a specific cell type, and probes or primers 

specific for a given miRNA and mRNA target. In situ hybridization can also 

demonstrate co-expression. Third, if a mRNA is a real target of a miRNA, then 

decreasing (by using antisense oligo-ribonucleotides) that miRNA’s expression should 

change the amount of protein produced from the targeted mRNA, which can be 

measured by Western Blot analysis using specific antibodies against the protein (Kuhn 

et al. 2008).  

 (2) For genome-wide identification of the targets of a given miRNA, experimental 

identification of miRNA:mRNA interactions involves various target screening 

techniques (Thomson et al. 2011) associating large scale analyses and laboratory 

methods. It is possible to categorize these techniques in several categories: 

                                                 

13 Real time polymerase chain reaction. Laboratory technique used to amplify and simultaneously detect 

levels of a DNA molecule. 
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Immunoprecipitation-based methods, labelling or tagging based methods, degradome 

analysis, and DNA synthesis by miRNAs.  

1. Immunoprecipitation is a method that uses specific antibodies to target a 

molecule of interest.  In this category several techniques to identify miRNA target 

genes exist: 

 Co-immunoprecipitation14 of RISC components linked to miRNA:mRNA 

complex identified by microarrays or RNA-seq 

 High-throughput sequencing of RNA isolated by HITS-CLIP15 

 PAR-CLIP16, which identifies the binding sites of cellular RNA-binding 

proteins and microRNA-containing ribonucleoprotein complexes (Hafner et al. 

2010) 

 AGO-CLIP17, where samples contain miRNA:target chimeras generated by an 

endogenous ligase (Grosswendt et al. 2014) 

 AGO2-PAR-CLIP18, a similar technique than PAR-CLIP that uses a 

photoactivatable molecule to detect crosslinking interactions (Farazi et al. 

2014) 

2. Isotope labelling and tagged sequences, which consist in adding a marker on 

molecules of interest. With this approach, it is possible to identify target genes by: 

 Transfecting cells by biotinylated miRNA duplexes followed by microarrays 

analysis, 

 Parallel analysis of RNA ends (PARE), i.e. identification of mRNA cleavage 

products on a global scale by high-throughput sequencing of products from a 

modified 5’ RLM-RACE19, 

                                                 

14 Technique using specific antibodies to isolate protein complexes.  
15

 Crosslinking immunoprecipitation. This technique gives the opportunity to locate the targeted site 

precisely on the mRNA by the miRNA.  
16 Photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation. 
17 Argonaute protein crosslinking and immunoprecipitation. 
18 Argonaute-2 photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation0 
19 RNA ligase mediated-rapid amplification of cDNA ends. 
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 Measuring protein abundance by mass spectrometry of samples labelled by 

specific isotopes, i.e. SILAC20 method, 

 Separate miRNA-regulated proteins by electrophoresis on gel labelled by 

fluorescent colored substances, followed by SDS–PAGE21 and mass 

spectrometry, e.g.2D-DIGE22 method. 

3. Degradome analysis, where it is possible to measure degraded mRNAs following 

ectopic23 miRNA expression. Their expression is then analyzed on genome-wide 

scale by microarrays24 or RNA-seq25. 

4. DNA synthesis by miRNAs, which performs a reverse transcription of target genes, 

where endogenous miRNAs serve as primers for cDNA26 synthesis of targeted 

mRNAs. 

All these methods identify novel targets with a relatively high accuracy, especially the 

most recent ones. But despite these performances and the decreasing cost of these 

experimental techniques, they are limited by the miRNAs expression levels, which are 

tissue and conditions dependent. Therefore, computational methods to predict miRNA 

target genes have been developed since several years. 

 Prediction of miRNAs target genes by bioinformatics methods 

After the discovery of the effects of miRNAs on gene regulation, many research teams 

have focused on predicting miRNAs target genes. Many methods have been developed 

so far (Oulas et al. 2015; Ekimler and Sahin 2014; Hamzeiy et al. 2014) (non-

exhaustive list in Table I-4), relying on various features describing miRNA:mRNA 

                                                 

20 Stable isotope labelling with amino acids in cell culture. 
21 Polyacrylamide gel electrophoresis. 
22 Two-dimensional differentiation in-gel electrophoresis. 
23 Abnormal gene expression occurring because of a disease or artificial production. Also a technique to 

determine the function of a gene.  
24 Collection of microscopic DNA or RNA molecules attached to a solid surface. 
25 RNA sequencing, also called whole transcriptome shotgun sequencing. Sequencing technique that 

quantifies and sequence RNA from a genome at a given moment.  
26 Complementarity DNA. It is a DNA copy of a synthesized mRNA molecule. 
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interactions. Among the most common features used by target genes predictors, the 

seed match, part of miRNA:mRNA sequence complementarity, is one of the most used. 

In animals, a seed match contains Watson-Crick (A-U and G-C) or Wobble (G-U) 

pairs; one mismatch is possible. Another feature is the conservation, since the miRNA 

seed is in general more conserved that the non-seed region, as mRNA targeted sites 

(Lewis et al. 2003; Friedman et al. 2009) and miRNAs promoters (Fujiwara and Yada 

2013). Free energy of the miRNA:mRNA duplex is also a widely used feature (Zheng 

et al. 2013), and finally target site accessibility (Long et al. 2007), i.e. nucleotides 

unpaired after folding, which requires to calculate the secondary structure of the 

putative targeted UTRs.  

All programs dedicated to target genes prediction take as input miRNA sequences and 

references sequences, usually 3’ and 5’ UTRs (Witkos et al. 2011). Tools that rely on 

conservation, such as TargetScan, require alignments of UTRs (Friedman et al. 2009). 

All tools have their specific prediction technique to find target genes and do not offer 

same accessibility: online prediction, stand-alone software or precomputed predictions 

download (Peterson et al. 2014). Most of them use prior knowledge from databases of 

experimentally and/or validated targets (Oulas et al. 2015), including, for the best 

known, miRbase (Griffiths-Jones et al. 2008), TarBase (Sethupathy et al. 2006; 

Vlachos et al. 2015), miRDB (Wang 2008), microRNA.org (Betel et al. 2008), 

miRecords (Xiao et al. 2009), Mirwalk (Dweep et al. 2011) and Mirtarbase (Hsu et al. 

2011). 

Finally, recent comparison studies show recall rates between 6 to 20% depending on 

predictor programs (Witkos et al. 2011). In plants, where the target sites are longer than 

animals, i.e. full miRNA length compared to 6-8 nt resp. (see section 1.1.5.3 ), recall 

rates vary between 46 and 97% depending on species and programs (Srivastava et al. 

2014). 
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Table I-4: Non-exhaustive list of microRNA target genes predictors 

Target gene prediction 

program 

Features used to predict 

target genes 
Adaptable parameters Organisms 

DIANA-microT (Maragkakis 

et al. 2009; Reczko et al. 

2012) 

Last update: 2012 

Seed match, conservation, 

free energy, site 

accessibility, target-site 

abundance 

None 

Humans, 

mice, flies, 

and worms 

miRanda (Enright et al. 2003) 

Last update: 2010 

Seed match, conservation, 

and free energy 

Free energy threshold, 

alignment threshold, weight 

of seed region, gap penalty 

Animals 

mirMark (Menor et al. 2014) 

Last update: 2014 

700 features relating to 

site and seed match, free 

energy, conservation,  

target site accessibility 

and others 

Miranda score Humans 

MirTarget2 (miRDB) (Wang 

2008; Wang and El Naqa 

2008) 

Last update: 2012 

131 features, including 

seed match, conservation, 

free energy, site 

accessibility and others 

Adjustable and default 

screening options are 

available 

for the target mining option 

Humans, 

mice, rats, 

dogs, and 

chickens 

PicTar (Krek et al. 2005) 

Last update: 2007 

seed match, pairing 

stability 
None 

Mammals, 

fly, worm 

PITA (Kertesz et al. 2007) 

Last update: 2008 

Seed match, conservation, 

free energy, site 

accessibility and target-

site abundance 

Seed size, wobble or 

mismatch, conservation, 

and 

inclusion of a flank region 

Humans, 

mice, flies, 

and worms 

psRNATarget (Dai and Zhao 

2011; Zhang 2005) 

Last update: 2011 

Seed match,  target site 

accessibility 

Target accessibility, central 

mismatch range, false 

positive  prediction rate 

Plants 

RNAhybrid (Krüger and 

Rehmsmeier 2006) 

Last update: 2006 

Seed match, free energy, 

and target-site abundance 

Advanced parameters 

relative to the 

miRNA:mRNA 

hybridization (i.e. energy 

Animals 
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threshold, internal loop 

length etc.), hits per targets, 

max p-value 

SVMicrO (Liu et al. 2010) 

Last update: 2010 

Seed match, conservation, 

free energy, site 

accessibility and target-

site abundance 

None Animals 

TAPIR (Bonnet et al. 2010) 

Last update: 2010 

Free energy, seed match 
Score threshold, free energy 

ratio 
Plants 

TargetMiner (Bandyopadhyay 

and Mitra 2009) 

Last update: 2009 

Seed match, conservation, 

free energy, site 

accessibility, target-site 

abundance and others 

None Animals 

TargetScan (Lewis et al. 

2005; Friedman et al. 2009; 

Grimson et al. 2007; Garcia et 

al. 2011) 

Last update: 2012 

seed match, conservation None 

Mammals, 

flies, and 

worms 
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1.5  Thesis Outline, publications and contributions  

The thesis is composed of five chapters. This first chapter was a review of the 

background knowledge related to our research. The next three chapters comprise the 

full text and figures of published, submitted, or ready to be submitted papers.  

 Chapter II 

Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the 

localization of microRNAs within their pre-miRNA. Nucleic Acids Research, 

41:7200–11. 

The design and implementation of the computational tool in this publication 

was performed by me under Prof. Mathieu Blanchette's and Prof. Abdoulaye 

Baniré Diallo’s supervision. The manuscript was written by me with input from 

my supervisors.  

 Chapter III 

Leclercq M, Diallo AB, Blanchette M (2016) Evolutionary mechanisms leading 

to the creation of new miRNAs in primates revealed by the analysis of inferred 

ancestral sequences. To be submitted to Genome Biology and Evolution. 

The design and implementation of the computational tool in this publication 

was performed by me under Prof. Mathieu Blanchette's supervision. Prof. 

Abdoulaye Baniré Diallo gave us feedback and reviewed our final work. . The 

manuscript was written by me with input from my supervisors. 

 Chapter IV 

Leclercq M, Diallo AB, Blanchette M (2016) Prediction of Human miRNA 

Target Genes using Computationally Reconstructed Ancestral Mammalian 

Sequence. Paper submitted in February 2016 at Nucleic Acids Research. 

 The design and implementation of the computational tool in this publication 

was performed by me under Prof. Mathieu Blanchette's supervision. Prof. 

Abdoulaye Baniré Diallo gave us feedback and reviewed our final work. The 

manuscript was written by me with input from my supervisors. 
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 Chapter V 

This chapter summarize the main conclusions and highlights the contributions 

made by the work presented in this thesis, and opens future perspectives. 

Finally, here is a list of papers I co-authored during my PhD but that aren’t included in 

my thesis: 

 Agharbaoui Z., Leclercq M., Remita M.A.., Badawi M., Lord E., Houde M., 

Danyluk J., Diallo A.B. and Sarhan F. (2015) An integrative approach to 

identify hexaploid wheat miRNAome associated with development and 

tolerance to abiotic stress. BMC Genomics 16(1), 339 

 Remita MA, Lord E, Agharbaoui Z, Leclercq M, Badawi M, Makarenkov V, 

Sarhan F, Diallo AB. 2015. WMP: A novel comprehensive wheat miRNA 

database, including related bioinformatics software. BioRxiv, 024893. 

 Haudry A., Platts A.E., Vello E., Hoen D.R., Leclercq M., Williamson R.J. et 

al. (2013) An atlas of over 90,000 conserved noncoding sequences provides 

insight into crucifer regulatory regions. Nature Genetics 45: 891–8.



 

 

 

CHAPTER II : COMPUTATIONAL PREDICTION OF THE 

LOCALIZATION OF MICRORNAS WITHIN THEIR 

PRECURSOR  

2.1  Preface 

This chapter present miRdup, a tool that has been created to fulfill three objectives: (1) 

improve the detection of real miRNAs from RNA sequencing by identifying likely 

false positive candidates, (2) predict the position of the mature miRNA within a 

precursor, and (3) create an auto-adaptive model based on miRNA’s species-specific 

characteristics. 

The first objective was defined at the end of my master thesis. My goal was to identify 

the miRNAome in the wheat cereal from deep sequencing data (the results were 

published in (Agharbaoui et al. 2015)). One of our main complications was the very 

high number of predicted miRNAs and lack of computational methods to validate a 

combination of a mature and a precursor sequence. That is the problem addressed by 

miRdup. Applying miRdup to candidate pre-miRNA/miRNA pairs obtained from 

sequencing experiments reduce the false positive rate of predicted miRNAs. Moreover, 

the miRNAs that have been experimentally validated in this study were flagged as true 

positives by miRdup. Later in my thesis, miRdup played a key role in allowing us to 

predict whether ancestral sequences were likely to be functional miRNA (see 

CHAPTER III ). 
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The second objective (predicting the position of the mature miRNA within a precursor) 

will be useful to biologists to create new miRNAs for molecular engineering purposes 

as well as for fundamental research. Finally, the third objective (create an auto-

adaptive model based on miRNA’s species-specific characteristics) was a very new 

approach in the field of miRNA prediction. We have created a program that can 

automatically remain up-to-date with respect to newly published data, and it is species-

customizable. When a user runs miRdup, it retrieves the latest version of miRbase to 

train on it, discarding non-experimentally validated miRNAs. The user can specify the 

clade on which the model should be trained, thus increasing its accuracy depending on 

the species he/she is working on. To support the importance of training species-

specific models, we reported the main differences between five chosen clades. 

MiRdup model is trained with a random forest classifier, which was first developed by 

Leo Breiman (Breiman 2001). It is an ensemble of decision tree predictors trained on 

a random subset of features sampled independently. This classifier has the ability to 

learn only important features and ignore irrelevant ones, reducing the need for feature 

selection. This is achieved by randomly selecting subsets of features during the tree 

construction.  

The rest of this chapter is reprinted from:  

Leclercq M, Diallo AB, Blanchette M (2013) Computational prediction of the 

localization of microRNAs within their pre-miRNA. Nucleic Acids Res, 

41:7200–11. 

Copyright (2013) Oxford university press 
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2.2  Abstract 

MicroRNAs (miRNAs) are short RNA species derived from hairpin-forming miRNA 

precursors (pre-miRNA) and acting as key post-transcriptional regulators. Most 

computational tools labelled as miRNA predictors are in fact pre-miRNA predictors 

and provide no information about the putative miRNA location within the pre-miRNA. 

Sequence and structural features that determine the location of the miRNA, and the 

extent to which these properties vary from species to species, are poorly understood. 

We have developed miRdup, a computational predictor for the identification of the 

most likely miRNA location within a given pre-miRNA or the validation of a candidate 

miRNA. MiRdup is based on a random forest classifier trained with experimentally 

validated miRNAs from miRbase, with features that characterize the miRNA-

miRNA* duplex. Since we observed that miRNAs have sequence and structural 

properties that differ between species, mostly in terms of duplex stability, we trained 

various clade-specific miRdup models and obtained increased accuracy. MiRdup self-

trains on the most recent version of miRbase and is easy to use. Combined with 

existing pre-miRNA predictors, it will be valuable for both de novo mapping of 

miRNAs and filtering of large sets of candidate miRNAs obtained from transcriptome 

sequencing projects. MiRdup is open source under the GPL and available at 

http://www.cs.mcgill.ca/~blanchem/mirdup/. 

2.3  Introduction 

MicroRNAs (miRNAs) are short (generally 19 to 24 nucleotides) non-coding single-

stranded RNA molecules that are involved in post-transcriptional regulation by 

targeting messenger RNAs (Ambros 1989; Ruvkun 2001; Swami 2010). In animals, 

miRNAs expression is a multi-step process (Lee et al. 2004): (i) transcription of the 

primary miRNAs (pri-miRNAs) by RNA polymerase II, (ii)  cleavage of the pri-

miRNA by Drosha and the RNAse III enzyme to isolate long hairpins called miRNA 
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precursors (pre-miRNAs), and (iii)  extraction by Dicer of the miRNA-miRNA* 

duplex from the pre-miRNA. In plants, Drosha and Dicer are replaced by Dicer Like 

1 (DCL1) (Cuperus et al. 2011). The miRNA* is the complementary region of the 

miRNA on the other arm of the hairpin with a shift of 2 nucleotides in the 5' direction 

(Friedländer et al. 2008)). After separation of the two strands of the duplex, the miRNA 

is mature and ready to be attached to the RISC complement. It then targets mRNAs by 

perfect or imperfect complementarity (Schwarz et al. 2003). In some cases, both 

miRNA and miRNA* are functional (Lagos-Quintana et al. 2002). 

Over the past years, a number of studies have shown the involvement of miRNAs in 

most biological process  (Lim et al. 2005). They are involved in developmental and 

physiological roles in animals and plants (Carrington and Ambros 2003; Cuellar and 

McManus 2005), such as differentiation of embryonic (Suh et al. 2004), muscle 

(Ritchie et al. 2009), skeletal (Chen et al. 2006), hematopoietic (Shivdasani 2006) and 

many other types of cells. They are also known to control cell death (Ambros 2004) 

and proliferation (Brennecke et al. 2003), insulin secretion (Poy et al. 2004) or lipid 

metabolism (Wilfred et al. 2007). Loss (Miska et al. 2007) and misregulation (Clop et 

al. 2006) of microRNAs also play an important role in several diseases (Castanotto 

and Rossi 2009; Cooper et al. 2009), such as cancers (Murchison et al. 2007; Osada 

and Takahashi 2007). Finally, several studies revealed that organisms under various 

stress have a responsive miRNAs signature pattern, allowing resistance and 

adaptation(Guy 1990; Jones-Rhoades and Bartel 2004; Fujii et al. 2005; Sunkar et al. 

2006; Saqib et al. 2008). MiRNAs are even used by viruses to infect hosts (Pfeffer et 

al. 2005; Sarnow et al. 2006; Nelson 2007).  

Although experimental techniques for unambiguous identification of miRNAs exist 

(Berezikov et al. 2006a), they remain slow and expensive. Sequencing of short RNAs 

followed by mapping to a reference genome has become an approach of choice (Sunkar 

et al. 2008; Zhang et al. 2010; Schulte et al. 2010), but many small RNA molecules 

are unlikely to be miRNAs, while many true miRNAs are likely to be expressed only 
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under rare circumstances not easily covered experimentally. For those reasons, 

computational prediction of miRNAs continues to play a very important role in 

genomics.  

 Most miRNA prediction approaches rely, at least in part, on the specific hairpin shape 

of the secondary structure of the pre-miRNA (Grey et al. 2005). These include ProMir 

(Nam et al. 2005, 2006), TripletSVM (Xue et al. 2005), miRabela (Sewer et al. 2005), 

miPred (Jiang et al. 2007), SSCprofiler (Oulas et al. 2009), microPred (Batuwita and 

Palade 2009), HHMMiR (Kadri et al. 2009), SplamiR (Thieme et al. 2011), miRFinder 

(Bonnet et al. 2010), MiRenSVM, the only tools that handle multiloop hairpins (Ding 

et al. 2010), and many others. All these tools are trained on known miRNAs stored in 

MiRbase (Griffiths-Jones et al. 2006), a repository of miRNAs (mostly) 

experimentally validated. The prediction of the hairpin can be combined with 

comparative genomics approaches that posit that, in addition to their typical secondary 

structure, pre-miRNAs exhibit high sequence and structure conservation across 

species (Lindow et al. 2007; Griffiths-Jones et al. 2008). However, most computational 

approaches labelled as miRNA predictors are actually pre-miRNA predictors, in the 

sense that they identify candidate genomic regions that may form pre-miRNAs but 

rarely attempt to determine the position of the miRNA itself within them. 

Computationally predicted pre-miRNAs are often combined with high-throughput 

short-RNA sequencing data, in an attempt to determine which of the large number of 

expressed small RNAs may indeed be microRNAs. This kind of approach is 

challenging, though, as short reads may be incorrectly mapped, or may come from 

degradation products from the pre-miRNA, especially from the miRNA*, or from 

other types of RNA molecules. Predictions from deep sequencing can be obtained by 

considering the abundance and distribution of reads mapped to a candidate pre-

miRNA, where read stacks and Dicer products mapped on a reference inform about 

the location of the miRNA. This strategy is used by miRdeep (Friedländer et al. 2008; 

Friedlander et al. 2012), miRdeep* (An et al. 2013), MIReNA (Mathelier and Carbone 
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2010) and miRanalyzer (Hackenberg et al. 2009, 2011). However, lowly expressed 

miRNA, often lineage-specific (Fahlgren et al. 2010) or condition-specific (Breakfield 

et al. 2012) ones, will be difficult to detect because Dicer products and the miRNA* 

are completely degraded.  

To the best of our knowledge, only six mature miRNA predictors have been proposed 

to date. MIRcheck (Jones-Rhoades and Bartel 2004) identifies 20-nt regions of a given 

plant pre-miRNA using a predetermined set of rules and constraints. MiRalign (Wang 

et al. 2005) finds miRNAs positions by aligning pre-miRNAs with miRbase, thereby 

preventing from finding new miRNAs. ProMir (Nam et al. 2005) identifies human pre-

miRNAs and their mature miRNAs by combining sequence and structural features in 

a paired hidden Markov model. MatureBayes (Gkirtzou et al. 2010) identifies 22-nt 

regions that are likely mature miRNA candidates based on sequence and secondary 

structure information using a Naive Bayes classifier. MaturePred (Xuan et al. 2011) 

locates fixed length miRNAs in plants based on miRNA-miRNAs* features and a 

support vector machine predictor. Finally, MiRmat (He et al. 2012) seeks Drosha and 

Dicer processing sites in vertebrates using a random forest predictor. 

Although the recent research activity related to miRNA prediction shows the 

importance of the problem, existing tools have severe limitations. First, most tools are 

trained specifically on data from certain phyla (e.g. plants (Jones-Rhoades and Bartel 

2004), humans (Xue et al. 2005; Jiang et al. 2007), or viruses (Pfeffer et al. 2005)), 

which limits their applicability. Second, most mature miRNA prediction tools seek 

mature miRNA of a fixed length, although in most species miRNAs lengths vary from 

19 to 24 nt. Third, tools are typically trained once, at the time of publication, based on 

the training data available at that time. This means that they do not benefit from the 

rapid increase in the quality and quantity of experimentally verified miRNAs available. 

Finally, accessibility remains an issue, with ProMir 2 being unavailable and 

MaturePred, MiRalign and MiRmat being only available as web servers, which limits 

that usability for large-scale analyses. 
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In this paper, we introduce miRdup (miRNA duplex), a tool for the validation of a 

candidate mature miRNA or the prediction of the precise position and length of the 

mature miRNA within a candidate pre-miRNA, based on a combination of sequence 

and structural features. We trained models separately on data from 5 lineages 

(mammals, fishes, arthropods, nematodes and plants), which increases species-

specificity and allows the discovery of features that distinguishes miRNAs from 

different species. The algorithm works on both single-hairpin and multiloop pre-

miRNAs. Finally, miRdup automatically downloads and trains on the latest miRbase 

release, to ensure it benefits from the most up-to-date data. 

2.4  Material and methods 

 Datasets 

MiRNAs and pre-miRNAs sequences were downloaded from miRbase 

(http://www.mirbase.org/) (Griffiths-Jones et al. 2008) (Griffiths-Jones et al. 2008) 

release 19, which contains 19,823 unique mature miRNAs/pre-miRNAs pairs. We note 

that until recently, miRNAs and miRNA* used to be annotated separately in mirBase 

and were thought to be functionally distinct, with the former playing a functional role 

and the latter being a non-functional by-product. This view has changed now due to 

reports of functional activity of miRNAs* (Yang et al. 2011), and miRbase has stopped 

distinguishing between the miRNAs and miRNAs* (miRbase blog 27 April 2011). We 

chose to follow this direction by considering all miRNAs and miRNAs* as functional, 

labelling them as either 3 prime or 5 prime depending on their location on the pre-

miRNA hairpin. We note, however, that for more than 78% of cases, only one miRNA 

is annotated in a given pre-miRNA, with the complementary region not being 

annotated as functional. 

For the purpose of training classifiers, negative sets of non-miRNAs were generated 

as follows. For each positive example (pair of miRNA and pre-miRNA), a negative 

example was generated by randomly relocating the miRNA along the same pre-
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miRNA sequence, preserving the miRNA length, but excluding the exact position of 

the true miRNA or of any other known miRNAs. Note that because of the non-

deterministic selection of the negative examples, training results vary very slightly 

from run to run. The complete training dataset consisted of 19,823 positive examples 

and an equal number of negative examples.  

 Feature vectors and training 

Each training example was represented as a set of 100 features listed in Supplementary 

Tables (section 2.7 ). The minimum free energy (MFE) and the secondary structure of 

the pre-miRNAs and the miRNA-miRNA* candidate duplexes were obtained with 

RNAfold and RNAduplex, from Vienna package (Hofacker et al. 1994), using default 

parameters. To perform the ranking of attributes and classifier training and evaluation, 

we used Weka and its libraries (Hall et al. 2009). All classifiers were trained using 10-

fold cross-validation. Attributes ranking was performed using information gain 

evaluator (InfoGain evaluator) (Dash and Liu 1997) with the Ranker search method 

(Hong 1997) in Weka with default parameters and 10-fold cross validation. Ranker 

ranks attributes by their individual evaluations in conjunction with other attribute 

evaluators such as ReliefF (Robnik-Sikonja and Kononenko 2003), GainRatio 

(Quinlan 1986) and Entropy (Shannon et al. 1949). 

MiRdup uses a random forest classifier (a combination of decision tree predictors 

trained on a random subset of features sampled independently (Breiman 2001)), 

combined with the Adaboost M1 method (Freund and Schapire 1995). Adaboost is a 

machine learning meta-algorithm that is used in combination of many other machine 

learning algorithms in order to improve their performance (Osman and Kelly 1996). 

The random forest was trained with an unlimited maximum depth of the trees and 50 

generated trees (Weka options: -I 50 -K 0 -S 1). Adaboost used 10 iterations, 

reweighting, and a weight threshold of 100 (Weka options: -P 100 -S 1 -I 10). The 

other classifiers considered were (i) a support-vector machine (SVM) classifier (Cortes 

and Vapnik 1995), working with libSVM library (Chang and Lin 2001), using with 
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radial kernel (Weka options: -S 1 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 

0.0010 -P 0.1) and (ii) the C4.5 decision tree classifier (J48) (Quinlan 1993), trained 

with Adaboost (Weka options: AdaBoostM1 -P 100 -S 1 -I 10 -W trees.J48 -- -C 0.25 

-M 2). 

The efficiency of a given classifier was measured as a function of its number of true 

positive (𝑇𝑃), false positive (𝐹𝑁), true negative (𝑇𝑁), and false negative (𝐹𝑁) 

predictions. A classifier performance is typically measured by its sensitivity 𝑆𝑛 =

 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) and specificity 𝑆𝑝 =  𝑇𝑁/(𝑇𝑁 + 𝐹𝑃), as well as by its total 

prediction accuracy 𝐴𝐶𝐶 =  (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) (Jiang et al. 2007) 

and its Matthew’s correlation coefficient (Matthews 1975) MCC =

TP×TN−FP×FN

√(TP+FP)×(TN+FN)×(TP+FN)×(TN+FP)
 . 

 MiRNA prediction 

MiRdup can be used in two modes. In the validation mode, miRdup takes as input a 

pre-miRNA sequence and the position of a candidate miRNA, and returns a score that 

reflects the likelihood that the candidate is a true miRNA. In the prediction mode, the 

only input to miRdup is a pre-miRNA sequence, and it evaluates all possible miRNAs 

and reports the most likely miRNA-containing duplex. For each candidate starting 

position p and length 16  l  30 on a pre-miRNA of length 𝑛, miRdup calculates 

score(p, l) using the random forest classifier, as described above. Although candidate 

miRNAs could simply be ranked based on these scores, we found that the following 

post-processing approach produced more accurate predictions. We first calculate, for 

each starting position p, the consensus scores for starting position score S(p) and 

ending position E(p): 

𝑆(𝑝) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑝, 𝑙)
16≤ 𝑙≤ 30 s.t.

𝑠𝑐𝑜𝑟𝑒(𝑝,𝑙)>0.99
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𝐸(𝑝) = ∑ 𝑠𝑐𝑜𝑟𝑒(𝑝 − 𝑙 + 1, 𝑙)
16≤𝑙≤30 𝑠.𝑡.

𝑠𝑐𝑜𝑟𝑒(𝑝−𝑙+1,𝑙)>0.99

 

We then identify the position p and length l that results in the largest combined start 

and end position scores: 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑚𝑖𝑅𝑁𝐴 = argmax
16≤𝑙≤30

1≤𝑝≤𝑛−𝑙+1

{𝑆(𝑝) + 𝐸(𝑝 + 𝑙 − 1)} 

2.5  Results and discussion 

We developed miRdup, a classifier for the mature miRNA validation and identification 

in a given pre-miRNA sequence (Methods). In the former case, miRdup assigns a score 

to a given candidate mature miRNAs within its pre-miRNA sequence. In the latter, it 

determines the most likely position of a mature miRNA within a given pre-miRNA 

sequence. MiRdup is based on a random forest binary classifier using a set of sequence 

and structural features of the candidate miRNA-miRNA* duplex. By training mirDup 

on lineage-specific subsets of miRbase, one obtains classifiers that can take advantage 

of miRNA features that are specific to that clade, which helps improve the accuracy of 

predictions. Here, we report on the accuracy of miRdup predictions in various settings, 

and contrast sequence and structure features that are informative for five selected 

clades: Mammals (mostly primates, rodents, and carnivores), plants (mostly crucifers, 

maize, and rice), fish (mostly zebrafish, fugu, etc.), arthropods (insects, crustaceans, 

etc.) and nematodes (Caenorhabditis, P. pacificus, etc.). 

 Evaluation of individual predictive features 

We evaluated a set of sequence and structural features (Supplementary Tables (section 

2.7 ), summarized in Table II-1 that may potentially help characterize the position of 

the miRNA on the pre-miRNA hairpin. They were chosen based on previous studies 

focusing on miRNA prediction (Xue et al. 2005; Jiang et al. 2007) and on the many 

properties that could characterize the duplex. These include numerical features 
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describing the position and length of particular structural elements in the putative 

miRNA, such as bulges and bases pairs, or distance of the miRNA from the start/end 

of the hairpin (Figure II-1). We also included summary statistics on the primary 

miRNA sequence (e.g. mononucleotide and dinucleotide frequencies) and the 

predicted secondary structure of the miRNA/miRNA* duplex (frequency of base pairs 

types (G-U, C-G or A-U), frequency of local sequence/structure triplets27 (Xue et al. 

2005), and minimum free energy of the duplex). We note that we also considered 

adding structural features based on ensembles of structures rather than minimum-free 

energy structures. However, these features did not prove more informative than their 

MFE-based counterparts and were not retained. 

Features vary in their power to distinguish positive from negative examples. 

Identifying and removing uninformative features is often important to avoid overfitting 

and improve computational time (Zhou et al. 2006), although this problem is less of 

an issue for algorithms based on decision trees and forests of random decision trees 

(Robnik-Sikonja 2004) than for SVMs (Guyon et al. 2002). Features were ranked 

based on the information gain they provide (Table II-2). We observe that the most 

influential features are those related to structural aspects of the miRNA-miRNA* 

duplex (number of base pairs, MFE, number/size of bulges, position of miRNA in the 

pre-miRNA hairpin loop). On the opposite, primary sequence features and triplet 

frequencies showed little discriminative power. We note that because our positive and 

negative examples were size-matched, miRNA length was not considered informative. 

                                                 

27 A sequence/structure triplet corresponds to a nucleotide coupled by the sequence of 

presence/absence of base-pairing at that position and the two flanking positions. For 

example, “A(.(“ represents a case where a nucleotide A is in a bulge surrounded by 

two base pairs, and “U.(.” means that a U is paired but its two neighbours are not. 
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Figure II-1: Pre-miRNA hairpin 

Table II-1 : Features used in miRdup 

Features Number Description 

miRNA primary sequence   

     Single nucleotide frequency 4 Frequency of each nucleotide 

     Dinucleotide frequency 16 Frequency of each dinucleotide 

     GC content 1 Frequency of C or G 

     First/last nucleotide 8 Nucleotide type at the miRNA start and end 

     Length 1 miRNA length 

miRNA-miRNA duplex   

     Triplets 32 Frequency of each sequence/structure triplet (Xue et al. 2005) 

     Bulges 22 
Bulge(s) at positions -4 to +4 nt around start and end of the miRNA. 
Bulges lengths and number of bulges in the miRNA. 

     Base pairing 10 
Average number of base pairs in duplex and in a sliding window of length 
3, 5 and 7 nt. Presence and start position of a perfect 5, 10 and 20 nt base 
pairs. 

     Pairs type 3 
Percentage of bases forming each type of canonical/wobble base pairs 
(C-G, A-U, G-U) in the duplex 

     Loop 2 Percentage of the miRNA overlapping the hairpin loop 

     Minimum free energy 1 Minimum free energy of the duplex 
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Table II-2 : Attribute ranking scores evaluated on all miRbase, mammals, and plants 

datasets with Information Gain ranker. Scores are based on the information gain 

between the attribute and the class (Hall et al. 2009). Best score is bold. Features with 

substantially different scores (>0.05) in mammals vs plants are underlined. Full ranking 

values are in Supplementary tables (section 2.7  for miRbase, mammals and plants. 

Features (22) 
miRbase 

Rank 
score 

Mammals 
Rank 
score 

Plants  
Rank 
score 

Arthropods  
Rank score 

Nematodes  
Rank score 

Fishes  Rank 
score 

Average number of paired bases in 3 bp sliding widow 0.186 (1) 0.181 (2) 0.218 (1) 0.165 (2) 0.190 (5) 0.220 (5) 

Length of the longest bulges (% of miRNA length) 0.185 (2) 0.176 (3) 0.203 (5) 0.153 (4) 0.190 (3) 0.193 (3) 

Length of the longest bulges (nt) 0.183 (3) 0.175 (4) 0.197 (7) 0.147 (6) 0.196 (2) 0.189 (2) 

Average number of paired bases in 5 bp sliding widow 0.174 (5) 0.171 (5) 0.21 (4) 0.163 (3) 0.168 (6) 0.201 (6) 

Distance to the terminal loop 0.174 (4) 0.248 (1) 0.151 (9) 0.190 (1) 0.306 (1) 0.274 (1) 

Number of paired bases in the miRNA-miRNA* duplex 0.165 (6) 0.151 (8) 0.213 (3) 0.137 (7) 0.182 (4) 0.188 (4) 

Average number of paired bases in 7 bp sliding widow 0.159 (7) 0.156 (7) 0.2 (6) 0.136 (8) 0.146 (7) 0.181 (7) 

Length of miRNA overlap within the hairpin loop 0.147 (8) 0.167 (6) 0.107 (14) 0.115 (9) 0.145 (8) 0.150 (8) 

Minimum free energy of the duplex 0.137 (9) 0.112 (10) 0.214 (2) 0.162 (5) 0.102 (12) 0.196 (12) 

Percentage of GC base pairs in the duplex 0.122 (10) 0.09 (14) 0.102 (15) 0.060 (16) 0.059 (17) 0.068 (17) 

Percentage of AU base pairs in the duplex 0.118 (11) 0.068 (18) 0.083 (19) 0.027 (22) 0.058 (18) 0.046 (18) 

Triplet U... 0.117 (12) 0.114 (9) 0.124 (10) 0.106 (10) 0.107 (11) 0.128 (11) 

Distance to the start of the hairpin 0.112 (13) 0.094 (13) 0.155 (8) 0.077 (14) 0.144 (9) 0.107 (9) 

Triplet A... 0.111 (14) 0.099 (12) 0.113 (11) 0.085 (12) 0.126 (10) 0.114 (10) 

miRNA included in loop (yes/no) 0.107 (15) 0.105 (11) 0.076 (20) 0.058 (17) 0.088 (14) 0.067 (14) 

Triplet C... 0.082 (16) 0.074 (17) 0.09 (17) 0.063 (15) 0.091 (13) 0.101 (13) 

Percentage of GU base pairs in the duplex 0.074 (17) 0.076 (16) 0.084 (18) 0.034 (20) 0.045 (19) 0.055 (19) 

Triplet G... 0.068 (18) 0.08 (15) 0.069 (21) 0.082 (13) 0.082 (15) 0.110 (15) 

Position of the first 5 nt bulge-free region 0.066 (19) 0.059 (19) 0.098 (16) 0.103 (11) 0.076 (16) 0.124 (16) 

Triplet G((( 0.059 (20) 0.029 (22) 0.058 (22) 0.027 (21) 0.022 (21) 0.040 (21) 

Maximum length without bulges (nt) 0.058 (22) 0.05 (21) 0.112 (12) 0.038 (19) 0.037 (20) 0.056 (20) 

Maximum length without bulges (% of the miRNA length) 0.058 (21) 0.051 (20) 0.11 (13) 0.049 (18) 0.033 (22) 0.063 (22) 

 

 Mature miRNAs exhibit species-specific properties  

We then assessed the power of each feature at distinguishing true miRNA from 

negative examples in specific lineages.  Figure II-2 A-H shows distribution of feature 

values for some of those that vary significantly between lineages based on 
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Kolmogorov–Smirnov test (p-value <0.05 for at least one of the comparisons between 

lineage-specific distribution and the distribution obtained from all MirBase). The 

length of miRNAs varies significantly between species, where plant miRNA are 

generally 21 nt long and almost never 23nt, while animal miRNAs have a broader, 

more regular miRNA length distribution with a mode at 22 nt (Figure II-2 A). Plant 

miRNAs also stand out with duplexes that are on average more stable (lower free 

energy) than animals (Figure II-2 B), while arthropods and, to a lesser extent, 

nematodes, are often less stable. This is also reflected in various structural properties 

such as the presence of fewer and shorter bulges (Figure II-2 C, D). In fact, more than 

13% of plant miRNAs have no bulge at all (100% base-paired positions, Figure II-2 

E) and more than 33% have at least 10 consecutive base pairs starting at positions 0 

(start) or 1 (Figure II-2 F), two properties that are much more rare in animals. 60% to 

90% of animal miRNAs are located within 10 bp of the terminal loop of the pre-

miRNA (Figure II-2 G), whereas plant miRNAs are often found much further, in 

agreement with the fact that plants usually have longer precursors (Zhang et al. 2006). 

The GC content of miRNAs exhibits significant variations between species (Figure 

II-2 H), with fish miRNAs being notably less GC-rich than those of other species. 

Finally, we noted a remarkable nucleotide composition bias at the first position of the 

miRNA with 40% (in mammals) to 60% (in fish) of miRNAs starting with a U 

nucleotide (Figure II-2 I).  

Feature ranking was then repeated on each set of species separately. While certain 

structural features such as those relating to the number of base pairings ranked 

consistently high for all lineages, others, in agreement with the results presented in 

Figure II-2, are ranked quite differently for different species (Table II-2 and 

Supplementary tables (section 2.7 ). In particular, the distance to and overlap with the 

terminal loop showed decreased informativity in plants, while the minimum free 

energy and the number of base pairs in the duplex were more informative in plants 

than animals. 
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Figure II-2: Properties of microRNAs from six different lineages : all eukaryotes (19,823 

miRNAs), mammals (6,959), fish (766), nematodes (1,087), arthropods (2,620) and plants 

(4,732). Each panel shows the distribution of a selected feature. (A) MiRNA length (nt). 

(B) Minimum free energy of the miRNA-miRNA* duplex (kcal/mol). (C) Length of the 

largest bulge in the miRNA (nt). (D) Number of bulges in the miRNA-miRNA* duplex. 

(E) Length of longest bulge-free stem in the miRNA-miRNA* duplex. (F) Start position 

of the first 10 nt bulge-free stem in the miRNA-miRNA* duplex; -1 means no such region 

is present. (G) Distance to the terminal loop of the hairpin (nt). (H) miRNA GC-content. 

(I) Nucleotide type (A, U, G or C) at the first position of the miRNA. 

 Training and evaluation of miRNAs classifiers 

We first evaluated the classification accuracy of various binary classifiers that, when 

presented with a candidate miRNA and its pre-miRNA, determine whether the 

candidate is a positive or negative example. Classifiers were first trained on a balanced 

data set consisting of 19,823 miRNAs from MirBase (irrespective of species) and the 

same number of negative instances (randomly selected regions of actual pre-miRNAs, 

with lengths matched with positive examples; see Methods) and were evaluated using 

10-fold cross-validation (Table II-3). Classifiers included a support vector machine 
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(SVM, using a radial basis kernel), a decision tree classifier (C4.5 with Adaboost), and 

a random forest classifier (with Adaboost). Other learning algorithms were also 

considered but were found to be less accurate (data not shown); these included 

RIPPER (Cohen 1995), a feed-forward artificial neural network (Collobert and Bengio 

2004), and a logistic regression classifier (Cessie et al. 1992). Each classifier was 

trained on either the full set of 100 features or on the subset of 22 best features of the 

Table II-2. The best overall prediction accuracies were obtained by the random forest 

classifier using all features (Figure II-3, Table II-3), with an accuracy of 80.6%, an 

area under the ROC curve of 89.2%, and a Matthews correlation coefficient (MCC) of 

61.4%. Boosting on C4.5 tree produced similar but slightly inferior results. The SVM 

classifier trained using all features performed poorly, with an AUC at 75.8%. The 

SVM’s accuracy improved slightly when restricted to only the 22 most informative 

features but it remained inferior to that of the random forest classifier.  

 

Figure II-3: Receiver-operating characteristic (ROC) curves of classifiers trained on the 

complete mirBase dataset. See selected features in Table 2. 
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Table II-3: Results of various classifiers trained on all features of miRbase (all lineages) 

evaluated using 10-fold cross-validation.

 Classifier 

Correctly 
Classified 
Instances 

(out of  39,646) 

Sensitivity Specificity Accuracy MCC AUC 

Random Forest 
with AdaBoost 

31,940 0.863 0.748 0.806 0.614 0.892 

C4.5 decision tree 
with AdaBoost 

31,317 0.809 0.771 0.79 0.58 0.875 

SVM with radial 
basis kernel 

25,878 0.344 0.962 0.653 0.385 0.653 

 

Knowing that miRNAs properties are different between species, the training and 

evaluation steps were repeated separately on each of the five clades. We chose to train 

lineage-specific classifiers using the random forest classifier with no feature selection, 

as this is the approach that worked best on the full data set. Results are presented in 

Table II-4. Accuracy levels were generally improved as compared to the multi-lineage 

classifier, ranging from 81.7% to 86.4%, but with the exception of arthropods, for 

which the predictions were only 77.7% accurate. For most of lineages, the accuracy of 

the lineage-specific predictor (measured using 10-fold cross-validation) is also higher 

than that of predictors trained on another lineage (Table II-5). The inferior 

performance of the arthropod-specific predictor is likely due to a combination of the 

small size of the dataset, the variability of features within the dataset, and large 

diversity of species within the dataset.  

Table II-4: Prediction accuracy of lineage-specific miRdup predictors (Random forest 

with Adaboost, evaluated using 10-fold cross-validation). 

 Classifier 
Number of 
instances 

Correctly 
Classified 
Instances 

Sensitivity Specificity ACC MCC AUC 

Mammals 13,918 11,415 0.868 0.772 0.82 0.642 0.897 
Plants 9,464 7,734 0.866 0.768 0.817 0.636 0.904 
Nematods 2,174 1,789 0.882 0.764 0.823 0.649 0.898 
Arthropods 5,240 4,071 0.833 0.721 0.777 0.557 0.857 
Fish 1,530 1,323 0.905 0.824 0.864 0.731 0.918 
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Table II-5 : Accuracy of lineage-specific and non-lineage-specific miRdup predictors 

(rows) for the prediction of miRNAs from each lineage (columns). The highest accuracy 

for each column is in bold. For cases where a predictor is applied to data from the lineage 

it is trained on, the numbers reported are obtained by 10-fold cross-validation. 

 Test set 
Training set 

miRbase Nematods Arthropods Fish Mammals Plants 

miRbase 0.806 0818 0.807 0.852 0.808 0.790 

Nematods 0.74 0.823 0.755 0.82 0.768 0.618 

Arthropods 0.768 0.812 0.777 0.806 0.765 0.712 

Fish 0.716 0.808 0.72 0.864 0.741 0.606 

Mammals 0.793 0.834 0.766 0.846 0.820 0.655 

Plants 0.700 0.662 0.644 0.681 0.645 0.817 

 

To illustrate an important use of miRdup, we used it to reanalyze a set of 1670 miRNA 

predicted by MiRdeep2 (Friedlander et al. 2012) from short-RNA sequencing data in 

human cancer lines (SRA SRR029124). MiRdup-mammals validated only 755 (45%) 

of these candidate miRNAs. There are multiple lines of evidence that suggest that the 

candidates that were rejected by miRdup were indeed MiRdeep2 false-positives. First, 

only 3% of the candidate miRNAs that were rejected by miRdup overlapped annotated 

miRNAs from MiRbase, whereas this fraction was of 47% among candidate miRNAs 

that were validated by miRdup. Second, we observe that among the miRNAs predicted 

by MiRdeep2 and validated by miRdup, a large proportion (46.5%) overlap highly 

conserved sequences among mammals (based on PhastCons highly conserved 

elements (Siepel et al. 2005)), whereas this proportion drops to only 19.2% among 

MiRdeep2 miRNA predictions that were rejected by miRdup. These results suggest 

that the candidate miRNAs rejected by miRdup are either non-functional, or are 

atypical, unannotated, and poorly conserved miRNAs. Finally, we also reanalyzed the 

pool of pre-miRNAs and their mature miRNAs predicted and published by the authors 

of miRdeep (Friedländer et al. 2008), and miRdeep2 (Friedlander et al. 2012). MiRdup 

confirmed 89% (201 on 226) and 84% (98 on 117) of the identified miRNAs 

respectively. 
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 Prediction of a miRNA position within a pre-miRNA 

MiRdup can be used to predict the most likely miRNA duplex location, i.e. the most 

likely miRNA in 5 prime (5p) and 3 prime (3p), within a given pre-miRNA. Given a 

pre-miRNA sequence and a trained classifier for the binary decision problem, miRdup 

computes prediction scores for every possible combination of miRNA length (16-30 

nt) and starting position and then identifies the pair of starting and ending positions, 

located within 16 to 30 nt of each other, for which the total evidence is highest (see 

Methods). We finally return the predicted miRNA and its miRNA*. Figure II-4 shows 

an example of the prediction made for a typical pre-miRNA, drosophila 

melanogaster’s dme-mir-10.  

 

Figure II-4: Example of miRdup prediction on the Drosophila melanogaster dme-mir-10 

pre-miRNA. The actual miRNA predicted in 3p extends from positions 48 to 71 of the 

pre-miRNA, and the predicted miRNA in 5p, the miRNA*, is 

CUACCCUGUAGAUCCGAAUUUGUU. Dark columns show the score assigned by miRdup-

arthropods to each possible starting position (summed over all possible lengths), and in 

grey columns are scores of each possible ending position. MiRdup predicts that the 

miRNA extends from positions 47 to 70, off by one position compared to the true miRNA. 
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To estimate the accuracy of miRdup at locating miRNAs within pre-miRNAs, we 

calculated the minimum distance between the true and predicted miRNA/miRNA*, for 

both the start and end positions (Figure II-5 and Supplementary Figure (section 2.8 ). 

When trained and evaluated on data from all five lineages combined, miRdup made 

perfect predictions of start and end positions in 28.7% and 20.18% of the cases 

respectively, and was within 3 nt in 68.9% and 68.3% of cases respectively. This is 

significantly better than MatureBayes, miRalign and ProMir 1, the only miRNA 

predictors we were able to compare to. When evaluated on the same data set, 

MatureBayes yields only 18.8% and 13.3% exact miRNA duplex start and end position 

predictions, while MiRalign yields 18.8% and 7.9%,  MaturePred 10.34% and 9.14%, 

and ProMir1 6.13% and 8.01%. The results also indicate that about 10% of the 

predictions are off by more than 10 nucleotides with miRdup, versus about 20% for 

the best of the competitors (Figure II-5).  
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Figure II-5: Cumulative distribution of the minimum distance between the true and 

predicted miRNAs or miRNAs* starts (up) and ends (down), i.e. the proportion of cases 

where the prediction is within x bases of the true start/end positions. Multi-lineage 

miRdup predictions are compared to MatureBayes (Gkirtzou et al. 2010), MiRalign 

(Wang et al. 2005), MaturePred (Xuan et al. 2011) and PromiR1 (Nam et al. 2005) for all 

experimentally validated pre-miRNAs from miRbase, except for MaturePred, where our 

analysis was limited to only 2400 miRNAs submitted due to web server constraints. For 

MatureBayes and Promir, a small number of queries were rejected by the web server 

and were thus excluded from the results. We only show distances of up to 10 nt, but in 

some rare cases errors are substantially larger (up to 250 nt). Results for lineage-specific 

miRdup compared to MatureBayes for mammals, arthropods, nematods, fish and plants 

are shown in Supplementary figure (section 2.8 ). 

Results obtained using the appropriate lineage-specific version of miRdup generally 

improve on the multi-lineage predictor, with 25.9-34.0% (resp. 20.7-24.6%) of start 

(resp. end) positions predicted exactly correctly (Supplementary Figure (section 2.8 )). 
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Again, fish miRNAs stand out as being the easiest to predict, with 51.5% (resp. 29.6%) 

of start (resp. end) positions correctly predicted. 

 The miRdup program 

MiRdup is distributed as a java program making use of libraries from the Weka (Hall 

et al. 2009) and ViennaRNA (Hofacker et al. 1994) packages. The workflow is 

schematized in Figure II-6. MiRdup can either be trained on a user-provided dataset 

of known miRNAs and pre-miRNAs, or can automatically download the latest version 

of mirBase and be trained on all of it or on a lineage-specific subset. For example, if 

"ruminantia" is specified as clade of interest, the predictor will be trained only on Bos 

Taurus and Ovis aries, which are (currently) the only two species present in miRbase 

in this clade. The set of negative examples is constructed on the fly by randomizing 

the position of miRNAs on the pre-miRNA. A minimum free energy secondary 

structure is obtained for each pre-miRNAs and features are calculated. Finally, the 

random forest predictor is trained. MiRdup can be run in two modes. In the first, 

miRdup takes as input a pre-miRNA sequence (with or without predicted secondary 

structure) and a candidate miRNA position, and assigns a score reflecting the 

likelihood that the candidate is a real miRNA. In the second case, miRdup evaluates 

every possible combination of miRNA position and length, and reports the most likely 

pair. 
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Figure II-6: Workflow of the miRdup algorithm. 

Thanks to its relative simplicity, miRdup is fast. On a computer with a single 2.93GHz 

CPU, the training phase on the complete mirBase database v19 requires less than 80 

minutes, and the miRNA prediction phase takes around 10 seconds for a given pre-

miRNA of 100 nt. 
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2.6  Conclusions 

Although the structural properties of pre-miRNAs are well characterized (Krol et al. 

2004) and have largely been exploited for their predictions (Mendes et al. 2009), the 

sequence and structure properties that allow Dicer to recognize the exact position of 

the mature miRNA remains poorly understood (Park et al. 2011). For this reason, 

computational approaches for the identification of miRNAs within pre-miRNA are 

rare and relatively inaccurate. Such predictors are, however, of great importance. First, 

working hand in hand with pre-miRNA predictors, they are essential for the de novo 

computational miRNA annotation of new genomes. Second, they play an important 

role even for miRNA annotation projects that have the benefit of short-RNA 

sequencing data. Indeed, from our experience, the classical approach of identifying 

likely miRNAs by retaining only reads that map to a genomic regions with strong pre-

miRNA potential (as predicted by miPred (Jiang et al. 2007) or HHMMiR (Kadri et 

al. 2009), for example) still yields tens of thousands predictions. Considering only 

candidates overlapping pre-miRNAs predicted by more than one tool can reduce this 

number, but the consequences on sensitivity and specificity are hard to quantify. A 

more reasonable number of predictions can be obtained by more recent tools such as 

miRDeep (Friedländer et al. 2008; Friedlander et al. 2012), although even it often 

produced unlikely miRNA predictions. MiRdup then offers the opportunity to discard 

these likely false-positives while retaining a high sensitivity. 

MiRdup is a flexible, accurate, fast, and user-friendly tool for the localization of 

mature miRNAs in pre-miRNA. It complements a wide array of computational tools 

that aim to identify pre-miRNAs and should be used as a post-treatment of predicted 

hairpins or to validate the miRNA function of short RNA reads mapped to a reference 

genome. MiRdup’s speed and flexibility let it to be trained on data from specific 

lineages, which allows it to take advantage of species-specific miRNA properties. 

Because it is automatically trained on the latest version of mirBase, it remains up-to-

date and can take advantage of increasingly large and accurate sets of miRNA 
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annotations. The multi-lineage version of MiRdup outperforms the only other miRNA 

predictor available for download, matureBayes (Gkirtzou et al. 2010). The lineage-

specific version is even more accurate, as it is able to take advantage of features such 

as the presence of an Uracyl at the first position of the vast majority of fish miRNAs, 

or the increased stability of the miRNA-miRNA* duplex in plants. 

2.7  Supplementary tables: Attribute rankings  

 Attribute ranking output for miRbase 

Search Method: Attribute ranking. 

 

Attribute Evaluator (supervised, Class (nominal): 101 Class): Information Gain Ranking Filter 
 

Rank scores ID Features 

0.183809 40 Average number of paired bases in a sliding widow of 3 nt along the miRNA 

0.178933 59 Length of the biggest bulges in percentage of the miRNA length 

0.177118 58 Length of the biggest bulges in nucleotides 
0.174022 39 Average number of paired bases in a sliding widow of 5 nt along the miRNA 

0.173801 34 Distance of the miRNA from the terminal loop of the hairpin 

0.163464 7 Bases pairs in the duplex of the miRNA and its complementarity region 
0.159278 38 Average number of paired bases in a sliding widow of 7 nt along the miRNA 

0.143582 37 Length of the miRNA which overlap in the hairpin loop 

0.127442 2 Minimum free energy of the duplex 
0.114706 63 Triplet U... 

0.108587 60 Triplet A... 

0.105129 35 Distance of the start of miRNA from the start of the hairpin 
0.100427 93 Percentage of GC base pairs in the duplex 

0.094015 92 Percentage of AU base pairs in the duplex 

0.092867 36 miRNA included in loop 
0.084723 94 Percentage of GU base pairs in the duplex 

0.079484 61 Triplet C... 

0.072825 62 Triplet G... 
0.070982 13 Start of perfect 5 nt base pair in the miRNA 

0.059999 4 Maximum length without bulges 

0.059992 5 Maximum length without bulges in percentage of the miRNA length 
0.042843 45 Bulge at start position 2 

0.038907 95 nucleotide at start position 0 

0.037558 47 Bulge at start position 3 
0.0335 78 Triplet G((( 

0.031529 11 Start of perfect 10 nt base pair in the miRNA 

0.027518 6 Length without bulges from miRNA start 
0.027212 55 Bulge at end position -3 

0.024292 10 PresenceOfPerfect10MerBasePair 

0.023319 12 PresenceOfPerfect5MerBasePair 
0.021186 67 Triplet U(.. 

0.018154 76 Triplet A((( 

0.017903 43 Bulge at position 1 
0.017436 3 Percentage of GC content 

0.015656 79 Triplet U((( 
0.015532 66 Triplet G(.. 

0.013398 64 Triplet A(.. 

0.013038 53 Bulge at end position -2 
0.011222 44 Bulge at start position -2 

0.011043 77 Triplet C((( 
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0.00878 42 Bulge at start position -1 

0.008604 97 nucleotide at start position +1 

0.008093 16 Percentage of G 
0.00776 9 Start of perfect 20 nt base pair in the miRNA 

0.007667 65 Triplet C(.. 

0.007279 8 PresenceOfPerfect20MerBasePair 
0.007188 56 Bulge at end position +4 

0.007093 49 Bulge at end position 0 

0.006354 51 Bulge at end position -1 
0.006253 26 Percentage of dinucleotides AG 

0.00574 22 Percentage of dinucleotides AU 

0.005649 96 nucleotide at start position -1 
0.005625 71 U((. 

0.004176 23 Percentage of dinucleotides UU 

0.004003 28 Percentage of dinucleotides GG 
0.003838 57 Number of bulges 

0.003728 27 Percentage of dinucleotides UG 

0.003705 18 Percentage of dinucleotides AA 
0.003683 99 nucleotide at end position -1 

0.003494 14 Percentage of dinucleotides A 

0.003112 20 Percentage of dinucleotides GA 
0.003001 15 Percentage of U 

0.002952 69 Triplet C((. 

0.002788 32 Percentage of dinucleotides GC 
0.002381 87 Triplet U..( 

0.002362 48 Bulge at start position -4 
0.002161 19 Percentage of dinucleotides UA 

0.00194 46 Bulge at start position -3 

0.001851 70 Triplet G((. 
0.001651 68 Triplet A((. 

0.001602 85 Triplet C..( 

0.001488 86 Triplet G..( 

0.001233 41 Bulge at start position 0 

0.0012 31 Percentage of dinucleotides UC 

0.001184 84 Triplet A..( 
0.00115 74 Triplet G.(( 

0.001109 72 Triplet A.(( 

0.001057 82 Triplet G.(. 
0.001009 81 Triplet C.(. 

0.000973 100 nucleotide at end position +1 

0.000869 17 Percentage of C 
0.000819 54 Bulge at end position +3 

0.000743 83 Triplet U.(. 

0.000637 88 Triplet A(.( 
0.000523 25 Percentage of dinucleotides CU 

0.000421 24 Percentage of dinucleotides GU 

0.000412 50 Bulge at end position +1 
0.000376 75 Triplet U.(( 

0.000369 52 Bulge at end position +2 

0.000306 80 Triplet A.(. 
0.000271 89 Triplet C(.( 

0.000208 98 nucleotide at end position 0 

0 1 Length 
0 21 Percentage of dinucleotides CA 

0 29 Percentage of dinucleotides CG 

0 30 Percentage of dinucleotides AC 
0 33 Percentage of dinucleotides CC 

0 73 Triplet C.(( 

0 90 Triplet G(.( 
0 91 Triplet U(.( 
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 Attribute ranking output for Mammals 

 
Rank scores ID Features 

0.247652 34 Distance of the miRNA from the terminal loop of the hairpin 
0.1811 40 Average number of paired bases in a sliding widow of 3 nt along the miRNA 

0.176017 59 Length of the biggest bulges in percentage of the miRNA length 

0.175173 58 Length of the biggest bulges in nucleotides 
0.171369 39 Average number of paired bases in a sliding widow of 5 nt along the miRNA 

0.166916 37 Length of the miRNA which overlap in the hairpin loop 

0.156208 38 Average number of paired bases in a sliding widow of 7 nt along the miRNA 
0.151227 7 Bases pairs in the duplex of the miRNA and its complementarity region 

0.114016 63 Triplet U... 

0.112425 2 Minimum free energy of the duplex 
0.10498 36 miRNA included in loop 

0.099441 60 Triplet A... 

0.094377 35 Distance of the start of miRNA from the start of the hairpin 
0.090307 93 Percentage of GC base pairs in the duplex 

0.079723 62 Triplet G... 
0.076208 94 Percentage of GU base pairs in the duplex 

0.073829 61 Triplet C... 

0.068416 92 Percentage of AU base pairs in the duplex 
0.058998 13 Start of perfect 5 nt base pair in the miRNA 

0.050537 5 Maximum length without bulges in percentage of the miRNA length 

0.04952 4 Maximum length without bulges 
0.037305 47 Bulge at start position 3 

0.030906 95 nucleotide at start position 0 

0.029182 45 Bulge at start position 2 
0.028684 78 Triplet G((( 

0.024654 11 Start of perfect 10 nt base pair in the miRNA 

0.022153 55 Bulge at end position -3 

0.020967 76 Triplet A((( 

0.019976 66 Triplet G(.. 

0.019604 10 PresenceOfPerfect10MerBasePair 
0.019576 12 PresenceOfPerfect5MerBasePair 

0.019012 67 Triplet U(.. 

0.018733 6 Length without bulges from miRNA start 
0.016738 79 Triplet U((( 

0.01174 56 Bulge at end position +4 

0.011673 43 Bulge at position 1 
0.011558 53 Bulge at end position -2 

0.011164 64 Triplet A(.. 

0.009842 96 nucleotide at start position -1 
0.009452 77 Triplet C((( 

0.009243 42 Bulge at start position -1 

0.009063 97 nucleotide at start position +1 
0.008585 65 Triplet C(.. 

0.008039 51 Bulge at end position -1 

0.007622 44 Bulge at start position -2 

0.007532 99 nucleotide at end position -1 

0.006332 3 Percentage of GC content 

0.006258 49 Bulge at end position 0 
0.004997 98 nucleotide at end position 0 

0.004951 8 PresenceOfPerfect20MerBasePair 

0.004951 9 Start of perfect 20 nt base pair in the miRNA 
0.004827 71 U((. 

0.003586 16 Percentage of G 

0.003445 69 Triplet C((. 
0.003346 22 Percentage of dinucleotides AU 

0.002345 86 Triplet G..( 

0.002264 82 Triplet G.(. 
0.002256 54 Bulge at end position +3 

0.002032 74 Triplet G.(( 

0.001912 26 Percentage of dinucleotides AG 
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0.001907 17 Percentage of C 

0.001902 72 Triplet A.(( 

0.001868 57 Number of bulges 
0.001827 70 Triplet G((. 

0.001761 83 Triplet U.(. 

0.001581 100 nucleotide at end position +1 
0.001552 14 Percentage of dinucleotides A 

0.00143 31 Percentage of dinucleotides UC 

0.001339 28 Percentage of dinucleotides GG 
0.001323 68 Triplet A((. 

0.001287 87 Triplet U..( 

0.001166 23 Percentage of dinucleotides UU 
0.001134 48 Bulge at start position -4 

0.001092 27 Percentage of dinucleotides UG 

0.000989 88 Triplet A(.( 
0.000912 15 Percentage of U 

0.000905 25 Percentage of dinucleotides CU 

0.00088 18 Percentage of dinucleotides AA 
0.000861 46 Bulge at start position -3 

0.000767 85 Triplet C..( 

0.000765 81 Triplet C.(. 
0.000754 33 Percentage of dinucleotides CC 

0.000705 80 Triplet A.(. 

0.000491 41 Bulge at start position 0 
0.000415 50 Bulge at end position +1 

0.000373 52 Bulge at end position +2 
0 1 length 

0 19 Percentage of dinucleotides UA 

0 20 Percentage of dinucleotides GA 
0 21 Percentage of dinucleotides CA 

0 24 Percentage of dinucleotides GU 

0 29 Percentage of dinucleotides CG 

0 30 Percentage of dinucleotides AC 

0 32 Percentage of dinucleotides GC 

0 73 Triplet C.(( 
0 75 Triplet U.(( 

0 84 Triplet A..( 

0 89 Triplet C(.( 
0 90 Triplet G(.( 

0 91 Triplet U(.( 

 

 

 Attribute ranking output for Plants 

 

Rank scores ID Features 

0.2183596 40 Average number of paired bases in a sliding widow of 3 nt along the miRNA 

0.2136904 2 Minimum free energy of the duplex 

0.2134001 7 Bases pairs in the duplex of the miRNA and its complementarity region 

0.2098282 39 Average number of paired bases in a sliding widow of 5 nt along the miRNA 
0.2029981 59 Length of the biggest bulges in percentage of the miRNA length 

0.2001381 38 Average number of paired bases in a sliding widow of 7 nt along the miRNA 

0.1973837 58 Length of the biggest bulges in nucleotides 
0.1552158 35 Distance of the start of miRNA from the start of the hairpin 

0.1508973 34 Distance of the miRNA from the terminal loop of the hairpin 

0.1241754 63 Triplet U... 
0.1127512 60 Triplet A... 

0.1121255 4 Maximum length without bulges 

0.1101996 5 Maximum length without bulges in percentage of the miRNA length 
0.1072775 37 Length of the miRNA which overlap in the hairpin loop 

0.1022462 93 Percentage of GC base pairs in the duplex 

0.0981264 13 Start of perfect 5 nt base pair in the miRNA 
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0.0897533 61 Triplet C... 

0.0835688 94 Percentage of GU base pairs in the duplex 

0.0826534 92 Percentage of AU base pairs in the duplex 
0.0763566 36 miRNA included in loop 

0.0709132 11 Start of perfect 10 nt base pair in the miRNA 

0.0689285 62 Triplet G... 
0.0583529 10 PresenceOfPerfect10MerBasePair 

0.0581855 45 Bulge at start position 2 

0.0581738 78 Triplet G((( 
0.0527604 3 Percentage of GC content 

0.0487617 6 Length without bulges from miRNA start 

0.0485925 55 Bulge at end position -3 
0.044935 95 nucleotide at start position 0 

0.0396789 12 PresenceOfPerfect5MerBasePair 

0.0373814 43 Bulge at position 1 
0.0372496 57 Number of bulges 

0.0366634 47 Bulge at start position 3 

0.0305678 16 Percentage of G 
0.0295102 53 Bulge at end position -2 

0.0272025 77 Triplet C((( 

0.0267036 64 Triplet A(.. 
0.0263878 67 Triplet U(.. 

0.0257003 9 Start of perfect 20 nt base pair in the miRNA 

0.0246115 8 PresenceOfPerfect20MerBasePair 
0.0224664 19 Percentage of dinucleotides UA 

0.0220973 15 Percentage of U 
0.0210338 18 Percentage of dinucleotides AA 

0.020926 23 Percentage of dinucleotides UU 

0.0199528 76 Triplet A((( 
0.0195947 20 Percentage of dinucleotides GA 

0.0181526 26 Percentage of dinucleotides AG 

0.0175972 22 Percentage of dinucleotides AU 

0.0161085 97 nucleotide at start position +1 

0.015936 32 Percentage of dinucleotides GC 

0.0155202 49 Bulge at end position 0 
0.0148667 28 Percentage of dinucleotides GG 

0.0146388 98 nucleotide at end position 0 

0.0142824 44 Bulge at start position -2 
0.0142462 87 Triplet U..( 

0.0136328 51 Bulge at end position -1 

0.0133243 65 Triplet C(.. 
0.0130869 100 nucleotide at end position +1 

0.0120069 14 Percentage of dinucleotides A 

0.011292 79 Triplet U((( 
0.0101996 41 Bulge at start position 0 

0.0092681 27 Percentage of dinucleotides UG 

0.0082792 71 U((. 
0.0080999 84 Triplet A..( 

0.0071784 66 Triplet G(.. 

0.0064138 42 Bulge at start position -1 
0.0063921 17 Percentage of C 

0.0062835 33 Percentage of dinucleotides CC 

0.0052242 21 Percentage of dinucleotides CA 
0.0049397 24 Percentage of dinucleotides GU 

0.0048082 85 Triplet C..( 

0.0046388 68 Triplet A((. 
0.0040023 29 Percentage of dinucleotides CG 

0.0035412 86 Triplet G..( 

0.0033861 69 Triplet C((. 
0.0020496 99 nucleotide at end position -1 

0.0020327 81 Triplet C.(. 

0.001623 82 Triplet G.(. 
0.0015835 73 Triplet C.(( 

0.0015628 75 Triplet U.(( 

0.001333 83 Triplet U.(. 
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0.0012765 52 Bulge at end position +2 

0.0012623 89 Triplet C(.( 

0.0011736 54 Bulge at end position +3 
0.0010792 72 Triplet A.(( 

0.0008841 80 Triplet A.(. 

0.000736 56 Bulge at end position +4 
0.0006831 96 nucleotide at start position -1 

0.0005589 46 Bulge at start position -3 

0.0002641 50 Bulge at end position +1 
0.0000113 48 Bulge at start position -4 

0 1 length 

0 25 Percentage of dinucleotides CU 
0 30 Percentage of dinucleotides AC 

0 31 Percentage of dinucleotides UC 

0 70 Triplet G((. 
0 74 Triplet G.(( 

0 88 Triplet A(.( 

0 90 Triplet G(.( 
0 91 Triplet U(.( 

 
 

2.8  Supplementary figures  

Cumulative distribution of the distance between the true and predicted miRNAs starts 

and ends, i.e. the proportion of cases where the prediction is within x bases of the true 

start/end positions. We only show distances of up to 10 nt, but in some rare cases errors 

are substantially larger (up to 250 nt). Results are presented for lineage-specific 

miRdup for mammals, arthropods, nematods, fish and plants. 
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CHAPTER III : EVOLUTIONARY MECHANISMS LEADING 

TO THE CREATION OF NEW MIRNAS IN PRIMATES 

REVEALED BY THE ANALYSIS OF INFERRED ANCESTRAL 

SEQUENCES 

3.1  Preface  

Since Darwin’s work on theory of evolution (Darwin 1859), an effort to classify the 

species has been performed by numerous scientists, in order to design the genealogic 

tree of life. Deep sequencing and alignment algorithms allow constructing trees based 

on genetic information, which is highly reliable compared to evolutionary trees were 

elaborated based on morphology traits. We are now able to reconstruct, to a certain 

extent, lost species genomes. The results presented in this chapter use this concept and 

bring new insights in the comprehension of the human genome evolution history. 

The study presented in this chapter aims to estimate the period of origin of human 

miRNAs and determine the mechanisms that lead to their creation in the genome. 

MiRNAs are the result of million years of evolution, undergoing various mechanisms 

of new miRNA genes origination and selective pressure. A miRNA gene exists 

because several conditions were met in the past: (1) the original sequence became a 

Drosha/Dicer compatible sequence, (2) the mature miRNA(s) had an accessible target 

gene repertoire, and (3) the miRNA gene was preserved in the genome by natural 

selection. The first statement implies that a sequence, after many genetic 

modifications, once transcribed, is able to fold into a hairpin shape recognizable and 

processed by Drosha and Dicer enzymes. Then, the functionality of the resulting 

miRNAs is determined by its capacity to target messenger RNAs. Finally, the 
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conservation of the new miRNA gene in the genome will depend on natural selection 

and fitness. If the miRNA has unwanted targets (i.e. detrimental) or its silencing 

control has no impact on the organism (i.e. neutral), then selective pressure is likely to 

eliminate it from the population. Otherwise, it is more likely to be driven to fixation. 

To identify the mechanisms of origination, the genome sequences of the mammalian 

ancestors were reconstructed computationally, for a total of 12 ancestral genomes. 

Extracting from this data the ancestral sequences of human pre-miRNAs allows us to 

identify the period of origin of the miRNA, i.e. the first time it became functional. 

Then, by comparing the sequence at and before the period of origin, we identify the 

type of genetic modifications the ancestral sequence underwent to become a functional 

miRNA. This project makes directly use of miRdup, presented in the CHAPTER II , 

because we need to validate if a mature miRNA is compatible with a pre-miRNA at a 

given ancestral state. Before miRdup, there was no tool to perform this task, which 

now opens new horizons for miRNA research.  

The rest of this chapter is reproduced from: 

Leclercq M, Diallo AB, Blanchette M (2016) Evolutionary mechanisms leading 

to the creation of new miRNAs in primates revealed by the analysis of inferred 

ancestral sequences. Paper in finalization for submission. 

3.2  Abstract  

MicroRNAs (miRNA) are short single stranded RNA molecules derived from hairpin-

forming precursors that play a crucial role as key post-transcriptional regulators in 

eukaryotes and viruses. In recent years, period of origin and birth/death rates of many 

miRNAs have been estimated in various plant and animal clades, but our 

understanding of the evolutionary mechanisms leading to the creation of new miRNAs 

remains poor. Here, we propose an approach that uses ancestral genome reconstruction 

to determine the period of origin and mechanism of creation of a set of 488 primate-

specific human miRNAs. This is achieved by first computationally reconstructing 
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ancestral mammalian genome sequences, based on an alignment of 42 sequenced 

mammalian genomes. Extant and ancestral sequences orthologous to human miRNA 

precursors are then analyzed using pre-miRNA and mature mRNA prediction tools to 

determine the period of origin of these miRNAs. Finally, we have created a 

classification pipeline to analyze the evolutionary history of each miRNA in order to 

identify their mechanisms of origination. A total of nine mechanisms have been 

observed. The results show that half of human miRNA genes are primate-specific, and 

a large proportion of them were derived from transposable elements or were created 

De novo by random mutations. 

3.3  Introduction 

MicroRNAs (miRNAs) are short non-coding single-stranded RNA molecules that are 

involved in post-transcriptional regulation (Ambros 1989; Ruvkun 2001; Swami 

2010). In animals, primary miRNAs transcripts are produced by RNA polymerase II 

and then cleaved by Drosha and the RNAse III enzyme to isolate long hairpins called 

miRNA precursors (pre-miRNAs). Subsequently, the miRNA-5p/3p duplex is 

separated from the hairpin by Dicer, and one of the two strands (or sometimes both 

(Lagos-Quintana et al. 2002)), called the mature miRNA, is attached to a RISC (RNA-

induced silencing complex) complement to target messenger RNAs (Lee et al. 2004).  

The human genome encodes approximately 2500 miRNAs, divided in 1500 families, 

according to the most recent version of miRNA repository, miRbase v21 (Griffiths-

Jones et al. 2006). Some of these families are very ancient and are shared among most 

vertebrates. For example, miR-100 is believed to the oldest known animal miRNA, 

shared by cnidarians and bilaterians (Christodoulou et al. 2010), arisen about 550 

million years ago (Martin et al. 2000). However, not all of the miRNAs of the human 

genome are as old, and nearly half of human miRNA genes have previously been 

reported being primate specific. The rate of creation of new miRNAs is thus quite high 

compared to that of protein-coding genes. Estimation of miRNAs birth and death rates 

have been obtained in recent studies (Iwama et al. 2013; Soumillon et al. 2013; 
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Heimberg et al. 2010; Lyu et al. 2014; Taylor et al. 2014). The most common approach 

to identify the period of origin of a miRNA is based on the lowest common ancestor 

(LCA) algorithm. This method gave insights into the period of origination of human 

miRNAs, and their gains and losses during mammalian evolution. However, this type 

of approach is sensitive to incomplete genomes or annotations.  

Several mechanisms leading to the creation of new miRNAs have been proposed 

(Berezikov 2011). These include the complete duplication of an existing miRNA (e.g. 

through a tandem or segmental duplication). Just like for protein-coding genes, newly 

formed copies can then evolve to acquire new functions through changes in their 

miRNA sequence or their regulation (neofunctionalization) (Clancy and Shaw 2008; 

Hertel et al. 2006). Typically, miRNAs with a high sequence similarity and identical 

seed regions are clustered into families (Ambros 2003), but the miRNA genes are not 

always conserved in primary sequence or secondary structure (Zou et al. 2014), 

making family organization an unreliable mean to classify miRNAs originated as 

duplication events. Then, a specific approach is needed to detect these events. 

Another mechanism involves transposable elements (TE), one of the mechanisms 

leading to the creation of new miRNAs (Smalheiser and Torvik 2005). These DNA 

sequences, known to play a key role in genome function and evolution (Bucher et al. 

2012), are able to change their position within the genome or can be duplicated in 

many copies. They provide functions to their hosts by several ways (Kidwell and Lisch 

2001), including creation of new coding (Volff 2006) and regulatory sequences 

(Britten 1996; Jordan et al. 2003; van de Lagemaat et al. 2003). In mammals, many 

studies discovered miRNAs derived from TE (Piriyapongsa and Jordan 2007a; 

Borchert et al. 2006; Smalheiser and Torvik 2005), and this is probably only an 

incomplete list, since large scale bioinformatics approach to find new miRNAs 

frequently exclude TE sequences from their analysis (Bentwich et al. 2005; Li et al. 

2006). TE-derived human miRNAs are generally less conserved (Piriyapongsa et al. 

2007), and have been associated to interspersed among Alu (Borchert et al. 2006) and 
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LINE-2 (Smalheiser and Torvik 2005) transposable elements. Also, by their ubiquity 

and abundance, TE activity results not only in the emergence of paralogous miRNAs 

gene families (i.e. hsa-mir-548), but also of multiple target sites dispersed throughout 

the genome (Piriyapongsa et al. 2007). 

Finally, it has been shown that certain miRNAs may arise through random 

substitutions or short indels (e.g. inverted duplications), especially when located in the 

right context (e.g. region that is already transcribed) and given a favourable starting 

point (e.g. a tRNA sequence) (Berezikov 2011), but these are relatively rare.  

Overall, despite the excellent work mentioned above based on comparison of extant 

genomic sequences from multiple species, the accuracy and completeness of the 

inferred mechanisms of miRNA origination are limited. This is in part because these 

approaches do not have access to the ancestral sequences corresponding to the time 

where each miRNA is predicted to have been created.  

Dissecting the evolutionary events that led to the creation of a miRNA could perhaps 

best be achieved if the ancestral genomic DNA sequences immediately predating its 

creation, as well as that immediately following it, were available.  Despite recent 

progress in sequencing ancient DNA (Mouttham et al. 2015; Shapiro and Hofreiter 

2014), samples older than 1 Myrs have never been sequenced. An alternate approach 

comes from the field of paleogenomics (Salse et al. 2009; Putnam et al. 2008; Chauve 

and Tannier 2008). Here, one infers ancient DNA sequences computationally, by 

comparison of a set of related extant genomes. Ancestral genome reconstruction 

involves several steps, including multiple sequence alignment, inference of 

insertions/deletions (indels), inference of substitutions and gene rearrangements 

(Blanchette et al. 2008). Given a multiple sequence alignment of orthologous extant 

sequences and a phylogenetic tree, the inferAncestors approach (Diallo et al. 2010) 

infers ancestral sequences at each ancestral node of the tree. Applied to mammalian 

genomes, this approach has been shown to be highly accurate; in particular, the 

Boreoeutherian ancestor, an early mammal living approximately 75 Myrs ago, was 
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reconstructed with estimated base-by-base accuracy of 98-99% (Blanchette et al. 

2004a). 

In this paper, we use the computationally reconstructed ancestral mammalian 

sequences to study the key evolutionary mechanisms leading to the creation of new 

miRNAs, specifically focusing on primate-specific miRNAs. We first estimate the 

period of origin of many human pre-miRNAs and then identify the set of evolutionary 

events that have led to their creation. We found that 53% of human miRNAs of 

miRbase v20 are primate specific, and we characterized nine possible mechanisms of 

origination. A large proportion of human miRNA genes were created De novo by 

random mutations, but also by insertion of both transposable and non-transposable 

distal genomic elements. 

3.4  Results and discussion 

 Dating the Period of Origin of Human MiRNAs  

Whole-genome alignments for a set of 35 mammals (Figure III-1A) and 

computationally reconstructed ancestral sequences (see Methods) were analyzed to 

identify the period of origin (PO) and mechanism of creation of each human miRNA. 

Two methods were used to infer the PO of each miRNA (see Figure III-1B and 

Methods). The first one, denoted PO-AR, analyzes computationally inferred ancestral 

pre-miRNA sequences; it is defined as the most ancient ancestral pre-miRNA 

sequence that is predicted to form a valid miRNA precursor by MiPred (Jiang et al. 

2007) and to contain at least one region that could form a mature miRNA, as predicted 

by miRdup (Leclercq et al. 2013). The second approach, denoted PO-LCA, is obtained 

from analyzing only the extant orthologous sequences to each human pre-miRNA, 

applying the test above to each ortholog, and identifying the least common ancestor 

(LCA) of the set of species with predicted valid miRNA gene. With both MiPred and 

miRdup, permissive settings were used to minimize false-negatives, as the fact that the 

sequences considered are orthologous or ancestral to a functional miRNA in human 



93 

 

 

places a strong positive prior on their own function as miRNAs. Each of the two 

approaches assigns a node of the human ancestry (or the human node itself) as the 

putative period of origin; in reality the creation of a miRNA would have occurred on 

the branch leading to that node from its immediate ancestor. Based on the phylogenetic 

tree used for our study (Figure III-1A), we can assign the PO of a miRNA to one of 13 

nodes of the phylogenetic tree, ranging from the most recent (human itself, which is 

labelled as ancestor 0), to the most ancient (ancestor of all mammals, Theria, labelled 

as ancestor 12). 
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Figure III-1: A: Mammal tree from UCSC genome browser. B: Example of the 

estimation of the period of origin of a miRNA from the species A. The least common 

ancestor (PO-LCA) and ancestral reconstruction (PO-AR) are estimated based on the 

predicted functionality (+ for functional, - for non-functional) of the orthologous and 

ancestral sequences. 

A. 

B. 
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Periods of origination of miRNAs have been previously estimated by Iwama et al. 

(Iwama et al. 2013) using an LCA-based approach where mammalian orthologous 

sequences are predicted functional if (i) their seed sequence is identical to that in 

human, and (ii) the pre-miRNA secondary structure has a minimum folding energy 

(MFE) less than -13 kcal/mol. Notably, the first criterion is very strict: although 

mutations in the seed region are likely to have broad effects of the repertoire of target 

genes, such changes may be expected especially in the early life of a miRNA; our 

approach (miRdup) uses instead a computational prediction of the ability of Drosha to 

process the miRNA, irrespective of sequence conservation. Furthermore, the MFE 

criterion is quite relaxed: whereas 99.99% of human miRNAs (miRbase v21) satisfy 

this criterion, pseudo-hairpins (i.e. non-Dicer compatible) also frequently do. We 

replace this criterion by one based on the predictions of miPred (Jiang et al. 2007), a 

well-established pre-miRNA predictor, which considers not only MFE but also a 

number of other considerations. 

Figure III-2A describes the extent to which the three approaches agree (see also Table 

SD III-1 A-C). PO-LCA and PO-AR estimates are identical for 55% of miRNAs (and 

within one for 75%), while the two LCA-based approaches (PO-LCA and PO-Iwama) 

also are in general agreement (within one for 65%). Unsurprisingly, because it is based 

on a strict criterion of seed sequence conservation, Iwama’s approach tends to assign 

slightly more recent POs (average value of PO-Iwama is 6.18) compared to our two 

approaches (average PO-AR=7.6, average PO-LCA=7.4). We manually investigated 

some of the miRNAs that had inconsistent PO estimates. Disagreements between their 

method and ours generally fall into two categories: (1) miRNAs that had relatively 

recent mutations in the seed region but whose pre-miRNA sequence is predicted to be 

functional in ancestors that predate that mutation, leading to PO-Iwama < PO-AR = 

PO-LCA; (2) miRNAs whose seed region is conserved far back in time but whose pre-

miRNA only appears to be functional in more recent ancestors, leading to PO-Iwama 

> PO-AR = PO-LCA. Disagreements observed between PO-AR and PO-LCA are 
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mainly due to incompletely sequenced genomes, incorrect alignments and low 

ancestral reconstruction prediction confidence score. 

The proportion of miRNAs whose PO is assigned to each node by each of the three 

dating methods is shown in Figure III-2B. Remarkably, 5-7% of all human miRNAs 

are predicted to be human-specific, and 43-53% have been created on the branch 

leading to Simiiformes or more recently. This is significantly more than the <15% of 

human genomic DNA that is primate specific. Two distinct periods have a large 

number of creations of new pre-miRNAs: the period extending from the Haplorrhini 

ancestor to the Catarrhini ancestors (PO=5 & PO=4) and the period that predates the 

Placentals’ ancestor (PO=12 & PO=11).  
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Figure III-2: (A) Difference of period of origin estimation between the three pairs of 

dating methods. Only the 1219 miRNAs that we could have extracted from Iwama et al. 

supplementary material are included in this graph. (B) Percentage of miRNAs assigned 

to each period of origin. Confidence interval corresponds to one standard error on the 

proportion 𝒑 of the number of miRNAs 𝒏: 𝒑 = √((𝒑(𝟏 − 𝒑))/𝒏). Iwama percentages 

were retrieved from Iwama et al. paper. For B and C, PO-AR and PO-LCA are in 

percentage of 1868 human miRNAs. 

Having dated the origin of each miRNA, we turn to studying the evolutionary 

mechanisms behind the creation of new miRNAs. We focused here on a set of 488 

human miRNAs that are predicted to have been gained on the branch leading to the 

primate ancestor or more recently (PO-AR≤7) and whose ancestral sequences could 

be determined with high confidence, based on the following criteria (see also 
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Methods): (i) Consistent PO estimates from both PO-AR and PO-LCA (|PO-AR – PO-

LCA|≤ 1; in case of disagreement, PO-AR is retained); (ii) All intermediate ancestors 

between the PO and human (including human itself) pass our pre-miRNA and miRNA 

prediction criteria; (iii) high confidence level on ancestral sequence at estimated PO. 

These 488 miRNAs represent 51.4% of the set of miRNAs with PO-AR≤7. This 

selection does not bias in a substantial manner the age distribution of miRNAs 

considered (See Figure SD III-1). We preferred not to analyze low confidence 

miRNAs, because erroneous PO estimation would possibly lead to inaccurate 

characterization of the mechanism of origin based to the genetic changes between 

PO+1 and PO. These miRNAs were predicted older by PO-AR compared to PO-LCA, 

due to missing or very low conservation of orthologous sequences.  

 Increased levels of selective pressure follows the period of origin. 

To confirm our estimates of period of origin, we studied miRNA’s and pre-miRNA’s 

mutation rates before (PO+1) and after (PO-1) their predicted period of origin. A 

sudden decrease in observed mutation rate in a given genomic region hints to increase 

selective pressure associated to a gain of function. For each miRNA, we compared the 

mutation rate (substitutions and indels) between its sequence at PO and its modern 

version in human, and contrasted it with the mutation rate between sequences at PO+1 

and PO (see Methods). We observe a significant decrease in insertion and deletion 

rates after the prediction PO (Figure III-3A and B), and a slight decrease in the 

substitution rate (Figure III-3C). The decrease in mutation rates in most notable in the 

seed region, which is indeed the region that is believed to be under the strongest levels 

negative selection due to its role in target selection. These observations support the 

hypothesis that PO estimates are generally accurate.  
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Figure III-3: Average nucleotides insertion (A), deletion (B) and substitution (C) rates 

between PO to human and PO+1 to PO in entire pre-miRNAs, mature miRNAs, and 

mature miRNAs seeds. They were calculated by dividing the number of mutations by 

branch length and sequence length.   

 Evolutionary mechanisms leading to new primate miRNA genes 

Three main types of mechanisms of miRNAs creation are proposed (Figure III-4): (1) 

Full duplication: an existing functional pre-miRNA is copied to another region in the 

genome through a segmental or tandem duplication, or via a trans-duplication by a 

transposable element. (2) Insertions: a pre-miRNA-like hairpin is created by the 

insertion a portion of DNA that is partially complementary to a pre-existing nearby 

region; the inserted DNA may have its origin in cis (e.g. tandem or inverted tandem 

duplication), in trans (transposable element, retroposed gene, or segmental 

duplication), or may be of unknown origin. (3) Accumulation of local mutations 

(substitutions or short indels) that ends up forming a functional pre-miRNA. The 
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availability of accurate ancestral sequences at PO+1 and PO allows us to accurately 

quantify the rate at which each of these mechanisms contributed to the creation of new 

miRNAs. The decision tree used to determine the mechanism of creation of each 

miRNA (see Methods for details), together with the number of miRNAs found at each 

step of the decision process, are shown in Figure III-5. 
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Figure III-4: Mechanisms leading to new miRNA genes in primates. Figure inspired from 

Berezikov 2011. A. Duplication events. A.1: miRNA genes are created by duplication of 

an existing functional miRNA. The copy is located either on the same chromosome within 

100 kb (tandem duplication) or elsewhere in the genome (segmental duplication). The 

copy eventually mutates to become a new miRNA gene having a new function 

(subfunctionalization or neofunctionalization). A.2: Transduplication event, where a 

functional miRNA gene is located on a TE (transposable element) or an rRNA and is 

duplicated. The new copy eventually evolves to a new miRNA gene. B. Insertion events. 

B.1: The insertion of a TE close to a similar region but inverted at nucleotide content 

level creates a new hairpin, leading to a new miRNA gene. B.2: A new miRNA gene is 

created with the insertion of a TE close to a copy of itself on the reverse strand, thereby 

creating a hairpin. B.3: An inverted duplication, by strand slippage or snapback DNA 

synthesis creates a perfect hairpin, leading to a new miRNA gene. B.4: An insertion of a 

sequence from unknown or distant location in the genome creates a hairpin. C. De novo 

events. C.1: De novo miRNA gene creation involves many mutations in a transcribed 

region leading slowly to a dicer-compatible hairpin. C.2: A miRNA gene is located in a 

TE, but was not functional at time of TE insertion, hence considered as de novo.  
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Figure III-5: Classification of human miRNA genes by mechanisms of creation. Each 

number represents the number of pre-miRNAs involved at each decision node. MiRNAs 

involved in each mechanism of creation of this figure are listed in Table SD III-4. Details 

of the region type (intergenic, exonic and intronic) for each mechanism are listed in Table 

SD III-5. 
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 Duplication of pre-existing miRNAs 

Duplication of a pre-existing miRNA gene, either through tandem or segmental 

duplication or TE-mediated trans-duplication, is the most direct route to the creation 

of a new miRNA. MicroRNA duplications are known to have been a major source of 

new miRNA genes prior to the mammalian radiation (Hertel et al. 2006). The 

duplicated miRNA gene eventually changes to get a new function 

(neofunctionalization) or retains aspects of the original function 

(subfunctionalization). Our results show that they are also important in more recent 

evolution (i.e. since the Primates ancestor), although perhaps less so than in earlier 

periods, having contributed to the creation of 17% (83) of the miRNA gene we 

analyzed (see examples in Figure III-6, full results in Table SD III-2), including 13 

and 28 from segmental and tandem duplication resp., and 42 (29+13) duplicated by 

transposable elements, mostly involving DNA class type MADE1 family. Some 

miRNAs families show a large expansion because of duplication events in primates. 

For example, the mir-6511 family has seen its number of members grow from 0 to 6 

between the primate ancestor and human. Another family mir-548, and in a lower 

proportion mir-3118, have also seen a large increase in number of members, but this 

time due to TE-mediated trans-duplication. Finally, we noted that 52 miRNA genes on 

70 that had an origin from non-analyzable pool of miRNA genes. 
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Figure III-6: Duplication event paths examples. Each bubble contains the miRNA gene 

and its associated PO. MiRNA genes in yellow bubbles are present in our analyzable pool. 

Between two copies, an arrow, which represents the direction of the duplication, is 

labelled with the similarity score, the percentage identity, the shared sequence 

proportion, and the period when the duplication occurred. Green arrows represent a 

duplication occurring in a same miRNA gene family, blue arrows for a different family. 

Tandem duplications are represented by dashed arrows and segmental duplications by 

full arrows.  

 Insertions leading to the creation of new pre-miRNAs 

Here, we consider the 131 cases where newly inserted DNA combined (at least 10 bp 

long) with pre-existing DNA resulted in the creation of a new pre-miRNA. We break 

down our analysis based on the source of the new DNA insertion.  
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 Insertions of transposable or repetitive elements 

We consider first insertions of transposable element (TE) origin. We identified 73 

miRNAs (see  

Table SD III-3) whose sequence at their PO consisted up to 85% of newly inserted TE 

DNA. 50 involved only one TE, and 23 two TEs. A special case, mir-548h-3, has been 

created by the insertion of a TE MADE1 (DNA class, TcMar-Mariner family) in the 

middle of two other L3 TEs (LINE class, CR1 family). We observed that members of 

family hsa-mir-548 are mostly derived from MADE1 transposable elements, which 

are short miniature inverted-repeat transposable elements (Piriyapongsa and Jordan 

2007b), but also a family associated with many functional roles, with high levels of 

nucleotide divergence and whose seeds show uneven evolutionary patterns (Liang et 

al. 2012). On the 72 annotated members of the hsa-mir-548 family, our pipeline 

classified 50 of them as being derived from TEs, including 52% identified as pre-

existing miRNA genes duplicated by TE, and 20% created by the insertion of a TE.  

The 103 remaining miRNA genes had no predicted ancestral sequence before their PO 

(No ancestor at PO+1), thus originating directly from duplication event of a TE. In this 

case, two scenarios are possible: either the TE was already carrying a functional 

miRNA gene before the copy, which should result in the presence of many human 

miRNAs members of one family (13 miRNA genes were in that case, classified as 

duplication events), either the region became a functional gene after the insertion of 

the TE (34 miRNA genes were in that case). In this last scenario, either the TE carried 

a functional hairpin and was inserted close to a promoter, either our resolution in 

ancestors, i.e. number of ancestral species, is too weak to determine that the miRNA 

gene existed in other ancestors after its PO. For miRNA genes whose section(s) of the 

sequence exists in other ancestors after the PO, we do not consider that the TE is the 

source of the miRNA gene creation (56 miRNA genes were in that case). 

Finally, two miRNA genes overlapped the same rRNA 5S: miR-7641-1 (created at 

CHLCA, PO1) and miR-7641-2 (hominida, PO3). These sequences of the same family 
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have 83.6% similarity and are located on different chromosomes. Both have no 

existing ancestral sequence before their PO, implying that the rRNA has the same PO 

at these positions. We classified miR-7641-1 as a duplication event from miR-7641-2 

despite both were overlapping the same rRNA. The reason is that about 200 copies of 

this rRNA exist in the human genome, and the miR-7641 family has only two 

members. Then, the most probable scenario is that miR-7641-2 is directly derived from 

an rRNA which have been duplicated with sequence content modifications after its 

copy, thus classified as De novo.  

On the 120 miRNA genes (73+47) created by the insertion of a TE or rRNA, most 

were SINE, LINE and DNA types (25%, 31%, 25% resp.), created in a large proportion 

(61%) between Haplorrhini (PO6) and Hominida (PO3) periods (see Figure III-7). 

 

 

Figure III-7: Distribution of the number of miRNA genes by their period of origin 

created by the insertion of a repetitive/transposable element or rRNA.  

 Inverted duplications  

In many cases, the DNA insertion that led to the creation of a miRNA could be linked 

to transposable elements, but were instead caused by other mechanisms. Inverted 

duplications, copy in tandem the reverse complement of a genomic region – a prime 
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mechanism for the creation of hairpins. This is often caused by snapback DNA, where 

a DNA can renature to form a hairpin structure after synthetization of its self-

complementarity sequence (Lechner et al. 1983), or strand slippage (Petruska et al. 

1998). While this mechanism has been observed for miRNAs in plants (Voinnet 2004; 

Fahlgren et al. 2007), surprisingly, we found 6 miRNAs whose origin can be traced 

back to an inverted duplication event, based on hairpin sequence analysis.  

 Short segmental duplications and insertions of unknown origin 

131 miRNA-creating insertions could not be tied to transposable elements. 

Nevertheless, 33 are partially (ex: hsa-mir-5692c-2) or fully (ex: hsa-mir-606) covered 

by a TE, but the functionality of the miRNA were acquired because of another type of 

insertion. To understand their origin, we blasted the inserted sequences against the 

ancestral genomes at PO and PO+1. 86 returned one or more significant hits, 

sometimes on different chromosomes. The origin of the 39 insertions that are 

unaccounted for remains unclear, although most are suspected of coming from distal 

genomic regions, but they are quite short (30bp on average), which makes determining 

their origin difficult.  

 Full insertions of distal genomic origin 

A total of 23 analyzable miRNA genes have their sequence almost perfectly conserved 

from their period of origin to humans. They were not detected as duplication from pre-

existing miRNA genes, and we couldn’t predict an ancestral sequence before PO. 

These genes do not overlap a TE, and Blast showed that they exist at multiple positions 

in the genome at PO, with highly significant hits. These miRNA genes sequences are 

probably passengers of other non-TE or poorly annotated TE DNA elements that were 

duplicated and inserted close to an existing promoter, or a promoter has been created 

downstream or upstream after their insertion. These two cases are not currently 

investigated by our pipeline, which does not take in account the possibility that a region 

lacking promoter can already have a nucleotide content that fold into a miRNA-like 

hairpin once transcribed.  
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 De novo 

The last type of mechanism we consider is one where a genomic region evolves into a 

functional pre-miRNA through a series of substitutions that turn a transcript that is not 

processed by Drosha into one that is. We identified 144 pre-miRNAs whose origin 

could not be ascribed to any of previously described mechanisms, including 23 

covered by TE material, and for which the mutations between PO+1 and PO did not 

include large insertions. This process is made easier if the region in question is already 

transcribed for some other reason (e.g. it is in the intron of a protein-coding gene).  

Berezikov et al. (2011) reported that after many mutations, it is possible that a tRNA 

or a snoRNA mutate to a hairpin shape and acquire miRNA-like features. Rare are the 

pre-miRNAs derived from these molecules. After aligning human pre-miRNAs and 

human tRNA/snoRNAs, only 7 had a similarity greater than 80%, all with snoRNA: 

miR-1248, miR-1291, miR-3651, miR-3653, miR-6516, miR-664a and miR-664b. But 

none of them belongs to a primate’s period of origin. Only miR-4521 shares by three 

nucleotides a human tRNA (chr17.tRNA7-SerGCT), which is not enough to pretend 

that this miRNA is derived from this tRNA. Finally, we also submitted ancestral 

sequences of human miRNA genes to tRNA (ARAGORN (Laslett and Canback 2004)) 

and snoRNA predictors (SnoReport (Hertel et al. 2008)), but no positive results were 

returned. 

 Intragenic, intergenic, pseudogene 

One may expect that genomic regions that already are transcribed for some reason (e.g. 

intronic region of protein-coding genes) may be more fertile grounds for the birth of 

new miRNAs, especially those that are not created by full duplication events, because 

this waives the requirement of developing a transcriptional regulatory mechanism. 

That is indeed the case. The proportion of miRNA gains by insertions or de novo 

events taking place within intronic regions is 2.4 times higher than among miRNA 

created by full duplications (Chi-square p-value is .00554). Nonetheless, nearly two 

thirds of miRNA creations by insertions or de novo occur outside of protein-coding 
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transcripts, which raise the question of how these regions gained at the same time the 

ability to be transcribed and that of being processed by Drosha. 

We set three subcategories for every mechanism: origination events can be exonic, 

intronic or intergenic, determined by the location of the miRNA gene in RefSeq genes. 

Currently, about 62% of the 1868 human miRNA genes are located in intergenic 

regions, 34% in intronic regions, and the remaining 4% in exons. This proportion is 

relatively maintained in the 488 primate-specific miRNAs we analyzed (72% 

intergenic, 28% intronic). We kept track of these proportions along the pipeline, after 

the filter steps, and we observed that 85% of the miRNA genes that originated from 

duplication events are in intergenic regions, and only 13% in intronic regions. These 

proportions are quite different among miRNA genes that originated from insertions 

and De novo events, of which 75% and 72% resp. lie in intergenic regions while 25% 

and 27% resp. are intronic (See Table SD III-5). Exonic locations are rare except for 

miRNA genes originated from segmental duplications events. Since intragenic regions 

are less prone to undergo large insertions of genetic material because of positive 

selective pressure, this was expected. MiRNA genes created by the insertion of 

transposable elements are also generally located in intergenic regions (76%). The 

remaining 24% miRNA genes are located in intronic regions, which is, in proportion, 

much higher than the 4% of protein-coding regions of all human genes affected by TE 

insertions (Nekrutenko and Li 2001). We denoted no cases of insertion of TE that 

causes the creation of miRNA gene within exonic regions, which is consistent with 

previous studies who reported very low proportions of TEs in human CDS (Kapusta 

et al. 2013). 

 MiRNA functions by period of origin and mechanism of origination 

We analyzed the gene ontology (biological processes) profiles of the experimentally 

validated target genes of miRNAs classified in each mechanism or origination and PO 

(Figure III-8), based on data from miRTarBase v6 (Hsu et al. 2011). We found a large 

heterogeneity of processes across our classification, but some interesting differences 
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were noted. For example, RNA metabolic process (GO:0016070), defined by the 

cellular chemical reactions and pathways involving RNA, is enriched among the 

targets of miRNAs coming from all mechanisms of origination. For periods of origin, 

RNA metabolic process is also represented in all PO from human to primates’ ancestor, 

and is one of the rare significant process found enriched among the targets of miRNA 

that arose in human (PO0), CHLCA (PO1) and Homininae (PO2). A particularity of 

miRNAs that were created in Simiiformes (PO5) and Haplorrhini (PO6) compared to 

other PO is that they include miRNA target repertoire involved in chromatin 

organization (GO:0006325), neuron differentiation (GO:0030182) and 

phosphorylation (GO:0016310).  
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Figure III-8: Heatmap of gene ontologies’ biological processes of miRNAs’ 

experimentally validated target genes of miRTarBase v6 in (A) each mechanism of 

origination and (B) period of origin. P-values of ontologies (red is lowest, green highest, 

black is no target genes associated to given process) have been calculated with G:cocoa 

(Reimand et al. 2007) by comparing a non-redundant selection of enriched GO terms of 

A. 

B. 

Low p-value High p-value 
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each dataset, and the heatmap has been created with GiTools v2.2 (Perez-Llamas and 

Lopez-Bigas 2011). 

 

 Comparison with other studies 

Yuan et al. (Yuan et al. 2011) found 223 miRNAs originated from TEs based on strict 

parameters: TE-derived miRNAs are considered as such if the coverage of the 

repetitive element was at least 50% of the miRNA gene or 100% in one of the 

associated mature miRNA sequences. While this approach is reasonable to detect the 

overlap with a TE, it cannot tell if the insertion of the TE is intimately associated to 

the creation of the miRNA. On the 94 miRNA genes we have identified to have been 

created because of a TE element (duplicated by TE, insertion of a TE), we had 44 in 

common with Yuan et al.. The remaining 50 are disagreements, and although covered 

by a TE, according to ancestral sequences many of these miRNA genes were created 

after the insertion of another non-TE DNA fragment within a TE (e.g mir-3667, mir-

3937). Others were classified in De novo from TE material (e.g. mir-3164, mir-588), 

because we believe that if a miRNA is localized in a TE they would have existed in 

many copies of their family members.  

Piriyapongsa et al. (Piriyapongsa et al. 2007) found 55 TE-derived miRNAs. Of the 

18 being in our set of analyzable miRNAs, we confirm 9 TE-derived. Other studies 

identified miRNAs originated from TEs, such as Smalheiser et al. (Smalheiser and 

Torvik 2005), but we couldn’t compare our results since identified miRNAs are not in 

our set of analyzable miRNAs  

3.5  Conclusions 

Figure III-9 summarizes our classification of primate-specific miRNA genes based on 

their mechanism of origination. We estimated that 949 miRNA genes were created 

during the primate’s evolution, and we were able to analyze 51% of them. Among the 

488 analyzable miRNAs, three major mechanisms are identified: 30% of miRNA 
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genes were created De novo through random point mutations, 18% are the result of 

random insertion of DNA of non-transposable origin, and 15% are derived from 

transposable or repetitive elements that created the hairpin because of their insertion. 

We note that most of the origination events appeared between Haplorrhini ancestor to 

the Catarrhini ancestors (PO=5 & PO=4) periods, mostly by insertion events (Figure 

III-10). During these periods, 180 originated from an insertion event, 90 from 

duplication events, and 69 from De novo mechanism.   

 

 

Figure III-9: Overall distribution of mechanisms leading to new primate-specific human 

pre-miRNAs. 
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Figure III-10: Number of analyzable miRNA genes by period of origin from humans (0) 

to primate’s ancestor (7) in the main categories of mechanisms, i.e. duplication, insertion, 

and De novo events.  

In this study, we restricted our analyses to high confidence miRNAs to allow a more 

accurate estimation of the mechanisms of origination. These represent more than half 

of the primate’s miRNAs, which provides a good perspective on the global distribution 

of all primates’ miRNA’s mechanisms of origination. Much remains unknown about 

the exact mechanisms of gains of miRNAs, and further investigation is needed to find 

the other factors that may be at play. Furthermore, compared to other studies that have 

characterized the mechanisms of origination of some miRNA genes, we identified 

many new miRNAs members in TE-originated and duplication events. We also found 

many some disagreements but we believe that ancestral reconstruction provides a 

much better precision to better identify how miRNA were created in the past. As future 

work, one may want to restart this study with alignments containing more species, 

which will improve the accuracy of ancestral reconstruction and increase the number 

of ancestors, so as the possible periods of origin. Also it could be interesting to analyze 

the regions around the new miRNA genes to find if they are the results of the 

promoter’s presence or insertion.  
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3.6  Material and Methods 

 Datasets 

Experimentally validated human miRNAs precursors and mature sequences 

coordinates were retrieved from MiRbase v20 (Griffiths-Jones et al. 2006), for a total 

of 1868 pre-miRNAs and 2575 mature miRNAs (many pre-miRNAs contain two 

mature miRNAs). Whole genome multiple alignments of 34 mammals (see Figure 

III-1A), referenced on human genome assembly GRCh37/hg19, was downloaded from 

UCSC genome browser (Kent et al. 2002; Schwartz et al. 2003; Blanchette et al. 

2004b). The human complete protein-coding gene annotation used to classify genomic 

regions into exonic, intronic, or intergenic regions was obtained from the same source 

(UCSC known genes). 

 Ancestral reconstruction 

Ancestral genomes were reconstructed with an improved local version of Ancestor 

(Diallo et al. 2010), which uses a maximum likelihood approach based on an 

evolutionary model that takes in account insertions, deletions and substitutions. The 

reconstruction is computed from whole-genome multiple alignments mentioned earlier 

and the phylogenetic tree from Murphy et al (Murphy et al. 2001). The result is an 

augmented multiple genome alignment, which includes both extant sequences and 

computationally inferred ancestral sequences. We defined 13 periods of origin for 

human pre-miRNAs (see Figure III-1A): modern human (PO0), CHLCA (PO1), 

Homininae (PO2), Hominidae (PO3), Catarrhini (PO4), Simiiformes (PO5), Haplorrhini 

(PO6), Primates (PO7), Euarchonta (PO8), Euarchontoglires (PO9), Boreoeutheria 

(PO10), Placentalia (PO11), and Theria (PO12). 

Pre-miRNAs’ and mature miRNAs’ ancestral sequences were retrieved from the 

augmented genome alignment based on the human’s genomic coordinates from 

miRbase. Ancestral reconstruction provides a confidence score assigned to every 

reconstructed base (Blanchette et al. 2004a). This score varies between ancestors and 
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between genomic regions. Thus, in order to avoid bias observations due to low score 

reconstruction, we excluded reconstructed sequence having a confidence score below 

90%, and all pre-miRNAs ancestral sequences containing more than 80% of gaps were 

discarded from our results, considering them as result from wrong alignments.  

 Inferring the period of origin of miRNAs  

The period of origin of a human miRNA genes estimated by ancestral reconstruction 

(PO-AR) were determined as follows: First, all human miRNA genes’ ancestral 

sequences were retrieved from ancestral reconstruction results, from human (PO0) to 

the mammal common ancestor (PO12). Each sequence was then submitted to (i) miPred 

(Jiang et al. 2007) to obtain a score describing the likelihood that the sequence would 

form a functional pre-miRNA, and (ii) miRdup (Leclercq et al. 2013) to determine 

whether the ancestral miRNA, based on homology to the mature human miRNA, is 

likely to be processed by dicer. Since selected pre-miRNAs are functional in human, 

we have prior information that increases our belief that their ancestors are also 

functional. Moreover, despite the fact that miPred seems to be a good tool to predict 

human pre-miRNAs considering its high reported accuracy (Hu et al. 2012), it rejects 

42.8% of experimentally validated human pre-miRNAs from miRbase v20, including 

7.3% it classifies as non-hairpins and 35.5% as pseudo-hairpins. Thus, miPred’s 

distinction between real and pseudo-human pre-miRNAs was ignored, and both were 

considered positive predictions. To predict mature miRNAs in ancestral pre-miRNAs, 

we used miRdup (trained on mammalian miRNAs) which is the only existing software 

that tests the compatibility of a miRNA within a given hairpin.  

To estimate the period of origin of a pre-miRNA based on least common ancestor 

method (PO-LCA), we first extracted extant sequences that are orthologous to the 

human pre-miRNA using the multiple alignment. We then tested each sequence with 

miPred and miRdup as described above. The PO-LCA was then obtained as the least 

common ancestor of all modern sequences where both the miPred and miRdup 

predictions were positive.   
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 Classification of mechanisms of origination 

Duplications: These events were identified by pairwise alignment of pre-miRNAs of 

lengths 𝐿1 and 𝐿2 at their PO using Stretcher (Rice et al. 2000). Only pre-miRNAs 

having a match with percent identity (
#𝑚𝑎𝑡𝑐ℎ𝑠

#𝑚𝑎𝑡𝑐ℎ𝑠 +#𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠
×  100) and a shared 

sequence (
#𝑚𝑎𝑡𝑐ℎ𝑠 +#𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑠

max(𝐿1,𝐿2)
 ×  100) greater than 80% were retained.  

Tandem or segmental duplication were determined by comparing the location of 

duplicated pre-miRNAs. A duplication event is called tandem when both copies are 

within 100 kb. Segmental duplications are either local if both copies are on the same 

chromosome and distant of more than 100 kb, or non-local if located on different 

chromosomes.  

To detect inverted duplications, we focused on pre-miRNAs having an insertion of 

more than 10 nt at PO, and rejected those whose first calculated ancestor was equal to 

PO. We define the first ancestor of a human sequence as the earliest ancestor species 

for which at least one nucleotide is predicted. Inserts localized at start or end of the 

pre-miRNAs were aligned to the reverse complement of the existing sequence before 

insertion, using Stretcher (Rice et al. 2000). If the percentage identity was greater than 

80%, the insert was considered as an inverted duplication event. Otherwise, it was 

identified as an insertion from another source.  

Source of duplicated miRNA genes: Although only miRNA genes from the analyzable 

pool are reported in the duplication events of Figure III-5, all the 1868 human miRNA 

genes were considered as a potential source of the duplications. For duplication events 

whose source originated from non-analyzable pool of miRNA genes, i.e. having 

uncertain PO, we stated the direction of the duplication using PO-LCA. Moreover, pre-

miRNA B is called a duplication of a pre-miRNA A when the PO of A is greater or 

equal to that of B. When many sources existed for a copy, we kept the source having 

the highest percentage identity with its copy. 
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Insertions: Sources of insertions were identified by BLAST against the inferred 

ancestral genome at PO and PO+1, and against NCBI’s genome databases. 

Transposable elements: To identify pre-miRNAs derived from the transposable 

elements, we overlapped elements in UCSC table browser (Karolchik et al. 2004) 

between RepeatMasker (Smit et al. 1996) track and human pre-miRNAs.  

 Mutation rates 

Mutation rate after (MRA, human to PO) and before (MRB, PO to PO+1), normalized 

by branch lengths and sequence lengths. A mutation can either be a substitution, 

insertion or deletion.  

𝑀𝑅𝐴 =
(

#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑏𝑟𝑎𝑛𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ(ℎ𝑢𝑚𝑎𝑛→𝑃𝑂)
)

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ
 

𝑀𝑅𝐵 =
(

#𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠

𝑏𝑟𝑎𝑛𝑐ℎ𝐿𝑒𝑛𝑔𝑡ℎ(𝑃𝑂+1→𝑃𝑂)
)

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐿𝑒𝑛𝑔𝑡ℎ
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3.8  SUPPLEMENTARY DATA 

Table SD III-1: Number of miRNA genes estimated for each period of origin between 

two methods, from 0 (human) to 12 (older than mammal’s ancestor). A: x-axis =PO-AR, 

y-axis=PO-LCA. B: x =PO-AR, y=Iwama et al. C: x=PO-LCA, y=Iwama et al.  

A. LCA\AR 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 52 2 1 5 2 1 1 0 2 0 0 0 0 

1 0 13 8 3 1 3 0 0 0 0 1 0 0 

2 2 0 8 9 3 5 0 0 0 0 1 0 0 

3 1 0 0 21 13 14 2 3 1 5 0 1 0 

4 3 0 3 4 58 67 11 14 3 11 9 6 1 

5 2 0 1 0 2 114 6 20 6 13 7 6 2 

6 0 0 1 1 1 4 2 1 1 1 0 1 1 

7 1 0 0 0 0 4 1 4 0 2 1 7 1 

8 0 0 0 0 0 0 0 0 3 1 0 0 0 

9 6 1 1 1 2 4 1 2 1 2 4 3 2 

10 3 1 5 0 9 16 1 4 5 14 19 32 10 

11 1 0 3 2 1 7 3 4 2 7 11 194 48 

12 1 0 1 0 0 1 1 1 0 2 0 5 183 
 

B. Iwama\AR 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 11 2 2 10 9 7 3 3 3 0 1 6 0 

1 3 4 1 2 2 3 0 1 0 1 1 0 0 

2 9 4 5 1 7 8 0 3 2 0 1 4 0 

3 8 2 7 18 41 62 3 12 3 17 9 10 2 

4 4 1 5 4 14 54 8 12 2 11 5 11 8 

5 6 1 0 5 9 61 6 10 9 11 10 8 4 

6 1 0 2 0 1 3 1 2 0 0 0 6 1 

7 1 0 0 0 0 0 0 0 1 0 0 4 1 

8 0 0 0 1 0 0 0 1 0 1 1 1 0 

9 0 0 1 1 1 3 0 0 0 0 3 3 3 

10 10 1 5 1 6 23 4 5 2 8 14 40 19 

11 14 1 2 3 2 9 4 3 1 8 6 140 33 

12 5 1 2 0 0 7 0 1 1 1 2 22 177 
 

C. Iwama\LCA 0 1 2 3 4 5 6 7 8 9 10 11 12 

0 14 2 1 7 13 8 0 1 0 3 4 4 0 

1 3 4 0 2 2 1 0 1 0 2 2 1 0 

2 9 4 8 1 10 4 0 0 0 1 4 3 0 

3 11 9 9 22 55 58 4 3 0 5 12 6 0 

4 4 5 1 7 54 24 1 5 0 5 16 16 1 

5 4 1 1 9 31 69 1 0 2 3 11 8 0 

6 1 1 0 0 2 3 1 1 0 0 5 3 0 

7 0 0 0 0 0 0 0 2 1 1 2 1 0 

8 0 0 0 1 2 0 0 1 0 0 0 1 0 

9 0 1 1 0 4 1 0 0 0 0 2 6 0 

10 7 1 3 8 12 8 4 3 1 6 38 39 8 

11 10 1 4 3 4 2 2 3 0 3 17 157 20 

12 3 0 0 1 1 1 1 1 0 1 6 38 166 
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Figure SD III-1: Percentage of primates and analyzable miRNAs on a total of 949 and 

488 miRNAs resp., having a PO-AR<=7. 

Table SD III-2: Analyzable miRNAs originated from a duplication event.  

Source 

PO-

LCA = 

PO-AR 

PO-LCA 

of source 
Copy 

PO-

LCA of 

copy 

Percentage 

Identity 

Same family 

between 

source and 

copy 

Segmental 

duplication (else 

tandem) 

hsa-mir-1184-1 x 10 hsa-mir-1184-2 4 100.0 x x 

hsa-mir-1283-2 x 5 hsa-mir-1283-1 4 100.0 x x 

hsa-mir-3118-2   3 hsa-mir-3118-1 1 97.33 x x 

hsa-mir-3118-2   3 hsa-mir-3118-3 0 97.33 x x 

hsa-mir-3118-5   4 hsa-mir-3118-2 3 92.41 x   

hsa-mir-3118-5   4 hsa-mir-3118-6 1 94.94 x   

hsa-mir-3118-6   1 hsa-mir-3118-4 0 100.0 x x 

hsa-mir-3156-2   5 hsa-mir-3156-3 4 97.47 x   

hsa-mir-3179-3   5 hsa-mir-3179-2 3 100.0 x x 

hsa-mir-3198-2 x 12 hsa-mir-3198-1 3 100.0 x   

hsa-mir-3689f x 9 hsa-mir-3689a 2 82.28 x x 

hsa-mir-3690-2   2 hsa-mir-3690-1 0 100.0 x   

hsa-mir-4253 x 11 hsa-mir-4301 0 80.88     

hsa-mir-4444-1 x 11 hsa-mir-4444-2 0 100.0 x   

hsa-mir-512-2 x 7 hsa-mir-512-1 4 85.71 x x 

hsa-mir-515-2 x 5 hsa-mir-515-1 4 100.0 x x 

hsa-mir-516a-1 x 5 hsa-mir-516a-2 4 100.0 x x 

hsa-mir-516b-1 x 7 hsa-mir-516b-2 4 97.83 x x 

hsa-mir-516b-1 x 7 hsa-mir-518c 5 85.29   x 

hsa-mir-516b-1 x 7 hsa-mir-519a-1 5 94.44   x 

hsa-mir-516b-1 x 7 hsa-mir-519e 5 93.33   x 

hsa-mir-516b-1 x 7 hsa-mir-520a 5 94.44   x 

hsa-mir-516b-1 x 7 hsa-mir-520c 5 98.89   x 

hsa-mir-516b-1 x 7 hsa-mir-523 5 97.78   x 

hsa-mir-516b-1 x 7 hsa-mir-526b 5 92.22   x 

hsa-mir-517c x 5 hsa-mir-517a 4 86.73 x x 

hsa-mir-518a-1 x 5 hsa-mir-524 4 100.0   x 

hsa-mir-518e x 5 hsa-mir-522 4 100.0   x 

hsa-mir-519a-1   5 hsa-mir-517b 4 81.18   x 

hsa-mir-519b   5 hsa-mir-519c 4 93.1 x x 

hsa-mir-519e   5 hsa-mir-520h 4 92.22   x 
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hsa-mir-520c   5 hsa-mir-520f 4 100.0 x x 

hsa-mir-520d x 5 hsa-mir-518a-2 4 98.86   x 

hsa-mir-520e x 7 hsa-mir-519a-2 5 100.0   x 

hsa-mir-520e x 7 hsa-mir-519b 5 93.1   x 

hsa-mir-520e x 7 hsa-mir-527 5 98.86   x 

hsa-mir-520g x 5 hsa-mir-519d 4 98.9   x 

hsa-mir-521-1 x 5 hsa-mir-521-2 4 100.0 x x 

hsa-mir-548ad   5 hsa-mir-548f-5 4 91.86 x   

hsa-mir-548ae-2   4 hsa-mir-548ba 3 83.58 x   

hsa-mir-548an   5 hsa-mir-548d-2 1 85.57 x   

hsa-mir-548ax   5 hsa-mir-548o-2 4 87.67 x   

hsa-mir-548f-1   5 hsa-mir-548e 4 82.14 x x 

hsa-mir-548g   4 hsa-mir-548f-3 3 91.01 x   

hsa-mir-548h-2   3 hsa-mir-548aa-2 1 90.72 x   

hsa-mir-548h-4   5 hsa-mir-548ay 4 84.11 x   

hsa-mir-548h-4   5 hsa-mir-548h-2 3 87.13 x   

hsa-mir-548h-4   5 hsa-mir-548j 4 81.42 x   

hsa-mir-548l x 5 hsa-mir-548ah 4 84.88 x   

hsa-mir-548n x 5 hsa-mir-548g 4 80.9 x   

hsa-mir-548n x 5 hsa-mir-548w 4 94.59 x   

hsa-mir-548o-2   4 hsa-mir-548ar 1 81.43 x   

hsa-mir-548u   5 hsa-mir-548ae-2 4 80.49 x   

hsa-mir-548v   5 hsa-mir-548a-3 4 82.47 x x 

hsa-mir-548v   5 hsa-mir-548am 3 82.5 x   

hsa-mir-548v   5 hsa-mir-548ap 4 81.63 x   

hsa-mir-548v   5 hsa-mir-548x-2 3 80.0 x   

hsa-mir-550a-1 x 5 hsa-mir-550a-3 1 97.94 x x 

hsa-mir-5692a-2   3 hsa-mir-5692a-1 1 85.51 x   

hsa-mir-570 x 3 hsa-mir-548al 2 83.51     

hsa-mir-5701-2   4 hsa-mir-5701-1 3 100.0 x x 

hsa-mir-620   3 hsa-mir-3669 0 80.0     

hsa-mir-6511a-2   1 hsa-mir-6511a-3 0 100.0 x x 

hsa-mir-6511b-1 x 11 hsa-mir-6511b-2 2 83.53 x x 

hsa-mir-6511b-2   2 hsa-mir-6511a-2 1 94.37 x x 

hsa-mir-6511b-2   2 hsa-mir-6511a-4 1 94.37 x x 

hsa-mir-6770-1 x 10 hsa-mir-6770-3 1 100.0 x x 

hsa-mir-7641-2   3 hsa-mir-7641-1 1 86.89 x   

hsa-mir-941-2   3 hsa-mir-941-4 1 100.0 x x 

 

Table SD III-3: MiRNA genes created by the insertion of one of more transposable 

elements (TE) or duplicated by a TE. Name, class and family are provided by 

RepeatMasker. PO is the period of origin based on PO-AR. Percentage of shared bases 

between the TE and the pre-miRNA are is in terms of pre-miRNA length.  

Pre-miRNA TE Name TE class TE family PO 

Percentage of 

shared bases 

between TE 

and pre-

miRNA 

Insertion 

of one of 

more TE 

Duplication 

of a pre-

existing 

miRNA 

located in 

TE 

hsa-mir-1266 MIR3 SINE MIR 5 80% x  

hsa-mir-1273g AluJb SINE Alu 4 100%  x 

hsa-mir-1304 AluJo SINE Alu 5 73% x  

hsa-mir-1972-1 AluSx SINE Alu 4 35% x  

hsa-mir-1972-1 FLAM_A SINE Alu 4 34% x  

hsa-mir-1972-2 FLAM_A SINE Alu 4 34% x  

hsa-mir-1972-2 AluSx SINE Alu 4 35% x  

hsa-mir-3118-1 L1PA13 LINE L1 1 100%  x 

hsa-mir-3118-2 L1PA13 LINE L1 3 100%  x 
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hsa-mir-3118-3 L1PA13 LINE L1 0 100%  x 

hsa-mir-3118-4 L1PA13 LINE L1 0 100%  x 

hsa-mir-3118-6 L1PA13 LINE L1 1 100%  x 

hsa-mir-3137 Tigger3b DNA TcMar-Tigger 5 68% x  

hsa-mir-3137 Tigger3c DNA TcMar-Tigger 5 55% x  

hsa-mir-3149 L1ME3G LINE L1 5 65% x  

hsa-mir-3166 L2a LINE L2 1 79% x  

hsa-mir-3166 L2a LINE L2 1 34% x  

hsa-mir-3169 MIRb SINE MIR 5 42% x  

hsa-mir-3179-2 AluJo SINE Alu 3 1%  x 

hsa-mir-3179-3 AluJo SINE Alu 5 1% x  

hsa-mir-3622b AluJo SINE Alu 5 3% x  

hsa-mir-3646 MIR SINE MIR 5 1% x  

hsa-mir-3664 MER46C DNA TcMar-Tigger 5 26% x  

hsa-mir-3670-1 LTR16A1 LTR ERVL 1 80% x  

hsa-mir-3670-2 LTR16A1 LTR ERVL 1 80% x  

hsa-mir-3680-1 MER96 DNA hAT-Tip100 3 100%  x 

hsa-mir-3680-2 MER96 DNA hAT-Tip100 3 100%  x 

hsa-mir-378d-1 MIRb SINE MIR 4 44% x  

hsa-mir-378d-2 MIRc SINE MIR 5 68% x  

hsa-mir-3908 FLAM_A SINE Alu 3 40% x  

hsa-mir-3908 AluSx SINE Alu 3 37% x  

hsa-mir-3912 MER39 LTR ERV1 4 9% x  

hsa-mir-3912 L1ME3G LINE L1 4 41% x  

hsa-mir-3919 L1M6 LINE L1 3 52% x  

hsa-mir-3920 L2a LINE L2 5 35% x  

hsa-mir-4317 MIR SINE MIR 5 3% x  

hsa-mir-4424 L1MA9 LINE L1 5 43% x  

hsa-mir-4457 L1MEc LINE L1 5 59% x  

hsa-mir-4472-2 AluSz6 SINE Alu 3 73% x  

hsa-mir-4477a Tigger1 DNA TcMar-Tigger 4 100%  x 

hsa-mir-4477b Tigger1 DNA TcMar-Tigger 4 100%  x 

hsa-mir-4480 MIRb SINE MIR 3 70% x  

hsa-mir-4484 MER50-int LTR ERV1 4 39% x  

hsa-mir-4491 MER81 DNA hAT-Blackjack 4 15% x  

hsa-mir-4495 MIRc SINE MIR 5 52% x  

hsa-mir-4495 MIRb SINE MIR 5 29% x  

hsa-mir-4504 L1M2 LINE L1 5 47% x  

hsa-mir-4504 L1MA8 LINE L1 5 38% x  

hsa-mir-4508 MIR SINE MIR 5 24% x  

hsa-mir-4512 AluSz SINE Alu 4 45% x  

hsa-mir-4512 AluJb SINE Alu 4 51% x  

hsa-mir-4518 MER117 DNA hAT-Charlie 0 49% x  

hsa-mir-4520a MIRb SINE MIR 5 11% x  

hsa-mir-4520b MIRb SINE MIR 5 2% x  

hsa-mir-4656 MIRc SINE MIR 5 19% x  

hsa-mir-466 L1ME3 LINE L1 3 11% x  

hsa-mir-466 (CATAn Simple_repeat null 3 57% x  

hsa-mir-4684 Charlie8 DNA hAT-Charlie 5 9% x  

hsa-mir-4703 Tigger18a DNA TcMar-Tigger 5 48% x  

hsa-mir-4753 HAL1 LINE L1 5 18% x  

hsa-mir-4781 L3 LINE CR1 5 7% x  

hsa-mir-4797 AmnSINE1 SINE Deu 4 41% x  

hsa-mir-4797 AmnSINE1 SINE Deu 4 42% x  

hsa-mir-4999 L1MA9 LINE L1 5 13% x  

hsa-mir-5007 MSTA LTR ERVL-MaLR 4 2% x  

hsa-mir-5011 Tigger3a DNA TcMar-Tigger 2 9% x  

hsa-mir-5011 MER66C LTR ERV1 2 2% x  

hsa-mir-5095 Charlie1a DNA hAT-Charlie 0 63% x  

hsa-mir-5095 AluSq2 SINE Alu 0 38% x  

hsa-mir-548a-3 MLT1G1 LTR ERVL-MaLR 4 5%  x 

hsa-mir-548a-3 MADE1 DNA TcMar-Mariner 4 81%  x 
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hsa-mir-548a-3 MLT1G1 LTR ERVL-MaLR 4 12%  x 

hsa-mir-548aa-1 MADE1 DNA TcMar-Mariner 5 81% x  

hsa-mir-548aa-2 MADE1 DNA TcMar-Mariner 1 81%  x 

hsa-mir-548ae-2 MADE1 DNA TcMar-Mariner 4 100%  x 

hsa-mir-548ag-1 MADE1 DNA TcMar-Mariner 5 100%  x 

hsa-mir-548ah MADE1 DNA TcMar-Mariner 4 100%  x 

hsa-mir-548al MADE1 DNA TcMar-Mariner 2 95%  x 

hsa-mir-548am MADE1 DNA TcMar-Mariner 3 97%  x 

hsa-mir-548ap MER50 LTR ERV1 4 100%  x 

hsa-mir-548ar MADE1 DNA TcMar-Mariner 1 100%  x 

hsa-mir-548av MADE1 DNA TcMar-Mariner 5 100%  x 

hsa-mir-548ay LTR43 LTR ERV1 4 100%  x 

hsa-mir-548b MADE1 DNA TcMar-Mariner 5 81% x  

hsa-mir-548ba MADE1 DNA TcMar-Mariner 3 100%  x 

hsa-mir-548c MADE1 DNA TcMar-Mariner 5 81% x  

hsa-mir-548d-1 MADE1 DNA TcMar-Mariner 5 81% x  

hsa-mir-548d-2 MADE1 DNA TcMar-Mariner 1 81%  x 

hsa-mir-548e L1M5 LINE L1 4 3%  x 

hsa-mir-548e MADE1 DNA TcMar-Mariner 4 88%  x 

hsa-mir-548e L1M5 LINE L1 4 8%  x 

hsa-mir-548f-2 MADE1 DNA TcMar-Mariner 5 81% x  

hsa-mir-548f-3 L1M3 LINE L1 3 3%  x 

hsa-mir-548f-3 MADE1 DNA TcMar-Mariner 3 94%  x 

hsa-mir-548f-3 L1M3 LINE L1 3 1%  x 

hsa-mir-548f-4 L1MEd LINE L1 5 13% x  

hsa-mir-548f-4 MADE1 DNA TcMar-Mariner 5 70% x  

hsa-mir-548f-5 MADE1 DNA TcMar-Mariner 4 92%  x 

hsa-mir-548g MADE1 DNA TcMar-Mariner 4 87%  x 

hsa-mir-548h-1 Charlie1a DNA hAT-Charlie 5 14% x  

hsa-mir-548h-1 MADE1 DNA TcMar-Mariner 5 77% x  

hsa-mir-548h-2 L1MB3 LINE L1 3 6%  x 

hsa-mir-548h-2 MADE1 DNA TcMar-Mariner 3 90%  x 

hsa-mir-548h-3 L3 LINE CR1 5 19% x  

hsa-mir-548h-3 MADE1 DNA TcMar-Mariner 5 67% x  

hsa-mir-548h-3 L3 LINE CR1 5 14% x  

hsa-mir-548h-4 MADE1 DNA TcMar-Mariner 5 87%  x 

hsa-mir-548h-5 MADE1 DNA TcMar-Mariner 5 100%  x 

hsa-mir-548j MADE1 DNA TcMar-Mariner 4 65%  x 

hsa-mir-548k MADE1 DNA TcMar-Mariner 4 67% x  

hsa-mir-548m MADE1 DNA TcMar-Mariner 5 90%  x 

hsa-mir-548m L1M5 LINE L1 5 3%  x 

hsa-mir-548o-2 MADE1 DNA TcMar-Mariner 4 100%  x 

hsa-mir-548u MADE1 DNA TcMar-Mariner 5 96%  x 

hsa-mir-548w MADE1 DNA TcMar-Mariner 4 100%  x 

hsa-mir-548x-2 MamGypLTR1a LTR Gypsy 3 10%  x 

hsa-mir-548x-2 MADE1 DNA TcMar-Mariner 3 79%  x 

hsa-mir-548x-2 MamGypLTR1a LTR Gypsy 3 10%  x 

hsa-mir-548z MADE1 DNA TcMar-Mariner 5 81% x  

hsa-mir-549a MIR SINE MIR 5 24% x  

hsa-mir-553 MIR3 SINE MIR 2 18% x  

hsa-mir-553 MIR3 SINE MIR 2 3% x  

hsa-mir-5591 L1PB3 LINE L1 5 35% x  

hsa-mir-5591 L1PB3 LINE L1 5 52% x  

hsa-mir-5681a MIRc SINE MIR 5 4% x  

hsa-mir-5684 AluJr SINE Alu 4 48% x  

hsa-mir-5684 AluJo SINE Alu 4 51% x  

hsa-mir-5692a-2 SATR2 Satellite null 3 100%  x 

hsa-mir-5692b SATR1 Satellite null 0 100%  x 

hsa-mir-5692b SATR2 Satellite null 0 37%  x 

hsa-mir-5692c-1 SATR2 Satellite null 1 100%  x 

hsa-mir-5697 HAL1 LINE L1 4 68% x  

hsa-mir-5697 HAL1 LINE L1 4 41% x  
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hsa-mir-5701-1 REP522 Satellite telo 3 100%  x 

hsa-mir-5708 AluJr SINE Alu 5 34% x  

hsa-mir-5708 AluSx SINE Alu 5 34% x  

hsa-mir-571 L1MA9 LINE L1 4 32% x  

hsa-mir-571 L1MA9 LINE L1 4 64% x  

hsa-mir-585 MLT1C LTR ERVL-MaLR 2 31% x  

hsa-mir-587 MER115 DNA hAT-Tip100 3 66% x  

hsa-mir-607 MIR SINE MIR 5 55% x  

hsa-mir-607 MIR SINE MIR 5 67% x  

hsa-mir-634 L1ME3A LINE L1 3 47% x  

hsa-mir-637 L1MC4a LINE L1 4 38% x  

hsa-mir-644a L1MB3 LINE L1 4 62% x  

hsa-mir-6839 LTR7C LTR ERV1 4 55% x  

hsa-mir-7641-1 5S rRNA null 1 97%  x 

hsa-mir-7849 MLT1L LTR ERVL-MaLR 5 17% x  

hsa-mir-8076 MIRc SINE MIR 4 14% x  

hsa-mir-8084 L1ME3Cz LINE L1 3 70% x  

 

Table SD III-4: Mechanisms and period of origin of the 488 analyzable MiRNAs genes. 

Their number in each category is associated with the pipeline in Figure III-5. 

Mechanism 

of 

origination 

Number 

of 

miRNA 

genes 

MiRNA genes and period of origin 

Segmental 

duplication 

of a pre-

existing 

miRNA 

13 

hsa-mir-1184-2 4 hsa-mir-3690-1 0 hsa-mir-5692a-1 1 hsa-mir-6770-3 1 

hsa-mir-3156-3 4 hsa-mir-4301 0 hsa-mir-6511a-2 1     

sa-mir-3198-1 3 hsa-mir-4444-2 0 hsa-mir-6511a-4 1     

hsa-mir-3669 0 hsa-mir-550a-3 1 hsa-mir-6511b-2 2     
 

Tandem 

duplication 

of a pre-

existing 

miRNA 

28 

hsa-mir-1283-1 4 hsa-mir-517b 4 hsa-mir-519d 4 hsa-mir-522 4 

hsa-mir-3689a 2 hsa-mir-518a-2 4 hsa-mir-519e 5 hsa-mir-523 5 

hsa-mir-512-1 4 hsa-mir-518c 5 hsa-mir-520a 5 hsa-mir-524 4 

hsa-mir-515-1 4 hsa-mir-519a-1 5 hsa-mir-520c 5 hsa-mir-526b 5 

hsa-mir-516a-2 4 hsa-mir-519a-2 5 hsa-mir-520f 4 hsa-mir-527 5 

hsa-mir-516b-2 4 hsa-mir-519b 5 hsa-mir-520h 4 hsa-mir-6511a-3 0 

hsa-mir-517a 4 hsa-mir-519c 4 hsa-mir-521-2 4 hsa-mir-941-4 1 
 

Duplication 

of a pre-

existing 

miRNA 

located in a 

TE 

42 

(29+13) 

hsa-mir-1273g 4 hsa-mir-548al 2 hsa-mir-548h-2 3 hsa-mir-548ag-1 5 

hsa-mir-3118-1 1 hsa-mir-548am 3 hsa-mir-548j 4 hsa-mir-548av 5 

hsa-mir-3118-2 3 hsa-mir-548ap 4 hsa-mir-548o-2 4 hsa-mir-548h-4 5 

hsa-mir-3118-3 0 hsa-mir-548ar 1 hsa-mir-548w 4 hsa-mir-548h-5 5 

hsa-mir-3118-4 0 hsa-mir-548ay 4 hsa-mir-548x-2 3 hsa-mir-548m 5 

hsa-mir-3118-6 1 hsa-mir-548ba 3 hsa-mir-5701-1 3 hsa-mir-548u 5 

hsa-mir-3179-2 3 hsa-mir-548d-2 1 hsa-mir-7641-1 1 hsa-mir-5692a-2 3 

hsa-mir-548a-3 4 hsa-mir-548e 4 hsa-mir-3680-1 3 hsa-mir-5692b 0 

hsa-mir-548aa-2 1 hsa-mir-548f-3 3 hsa-mir-3680-2 3 hsa-mir-5692c-1 1 

hsa-mir-548ae-2 4 hsa-mir-548f-5 4 hsa-mir-4477a 4     

hsa-mir-548ah 4 hsa-mir-548g 4 hsa-mir-4477b 4     
 

Insertion of 

one TE 
50 

hsa-mir-1266 5 hsa-mir-3920 5 hsa-mir-4684 5 hsa-mir-549a 5 

hsa-mir-1304 5 hsa-mir-4317 5 hsa-mir-4703 5 hsa-mir-5681a 5 

hsa-mir-3149 5 hsa-mir-4424 5 hsa-mir-4753 5 hsa-mir-585 2 

hsa-mir-3169 5 hsa-mir-4457 5 hsa-mir-4781 5 hsa-mir-587 3 

hsa-mir-3179-3 5 hsa-mir-4472-2 3 hsa-mir-4999 5 hsa-mir-634 3 

hsa-mir-3622b 5 hsa-mir-4480 3 hsa-mir-5007 4 hsa-mir-637 4 

hsa-mir-3646 5 hsa-mir-4484 4 hsa-mir-548aa-1 5 hsa-mir-644a 4 

hsa-mir-3664 5 hsa-mir-4491 4 hsa-mir-548b 5 hsa-mir-6839 4 

hsa-mir-3670-1 1 hsa-mir-4508 5 hsa-mir-548c 5 hsa-mir-7849 5 

hsa-mir-3670-2 1 hsa-mir-4518 0 hsa-mir-548d-1 5 hsa-mir-8076 4 
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hsa-mir-378d-1 4 hsa-mir-4520a 5 hsa-mir-548f-2 5 hsa-mir-8084 3 

hsa-mir-378d-2 5 hsa-mir-4520b 5 hsa-mir-548k 4   

hsa-mir-3919 3 hsa-mir-4656 5 hsa-mir-548z 5   
 

Insertion of 

two or more 

TE 

23 

hsa-mir-1972-1 4 hsa-mir-4495 5 hsa-mir-5095 0 hsa-mir-5697 4 

hsa-mir-1972-2 4 hsa-mir-4504 5 hsa-mir-548f-4 5 hsa-mir-5708 5 

hsa-mir-3137 5 hsa-mir-4512 4 hsa-mir-548h-1 5 hsa-mir-571 4 

hsa-mir-3166 1 hsa-mir-466 3 hsa-mir-553 2 hsa-mir-607 5 

hsa-mir-3908 3 hsa-mir-4797 4 hsa-mir-5591 5 hsa-mir-548h-3 5 

hsa-mir-3912 4 hsa-mir-5011 2 hsa-mir-5684 4     
 

Inverted 

duplication 
6 

hsa-mir-3622a 5 hsa-mir-4643 5 hsa-mir-4755 2     

hsa-mir-4436b-2 4 hsa-mir-4714 5 hsa-mir-548ac 5     
 

Insertion of 

unknown 

origin 

39 

hsa-mir-1267 5 hsa-mir-3942 5 hsa-mir-4752 4 hsa-mir-627 5 

hsa-mir-3129 4 hsa-mir-4440 3 hsa-mir-4771-2 5 hsa-mir-642a 5 

hsa-mir-3148 5 hsa-mir-4490 5 hsa-mir-4780 5 hsa-mir-642b 5 

hsa-mir-3150a 4 hsa-mir-4493 7 hsa-mir-5000 5 hsa-mir-6512 5 

hsa-mir-3202-1 5 hsa-mir-4642 5 hsa-mir-5680 5 hsa-mir-6718 5 

hsa-mir-3910-2 5 hsa-mir-4704 5 hsa-mir-5685 2 hsa-mir-6888 3 

hsa-mir-3913-1 4 hsa-mir-4719 5 hsa-mir-5696 5 hsa-mir-7702 5 

hsa-mir-3913-2 4 hsa-mir-4720 5 hsa-mir-5700 5 hsa-mir-7850 4 

hsa-mir-3922 4 hsa-mir-4727 3 hsa-mir-576 5 hsa-mir-944 5 

hsa-mir-3926-1 4 hsa-mir-4744 5 hsa-mir-610 5     
 

Insertion of 

non-TE 

distal 

genomic 

origin 

109 

(86+23) 

hsa-mir-1265 5 hsa-mir-3938 5 hsa-mir-4803 5 hsa-mir-934 5 

hsa-mir-1269a 5 hsa-mir-4436a 4 hsa-mir-4804 5 hsa-mir-941-2 3 

hsa-mir-1270-1 4 hsa-mir-4439 4 hsa-mir-5008 5 hsa-mir-1324 1 

hsa-mir-1273d 5 hsa-mir-4465 4 hsa-mir-5087 2 hsa-mir-1827 5 

hsa-mir-1273f 5 hsa-mir-4471 5 hsa-mir-5191 5 hsa-mir-3121 3 

hsa-mir-1273h 4 hsa-mir-4474 4 hsa-mir-548ad 5 hsa-mir-3180-1 4 

hsa-mir-1285-1 5 hsa-mir-4524a 1 hsa-mir-548ai 5 hsa-mir-3180-3 0 

hsa-mir-2116 4 hsa-mir-4524b 1 hsa-mir-548an 5 hsa-mir-3673 0 

hsa-mir-2681 5 hsa-mir-4529 5 hsa-mir-548aq 5 hsa-mir-3675 3 

hsa-mir-3116-1 3 hsa-mir-4536-1 5 hsa-mir-548ax 5 hsa-mir-3687 4 

hsa-mir-3116-2 3 hsa-mir-4536-2 5 hsa-mir-548f-1 5 hsa-mir-3690-2 2 

hsa-mir-3119-1 5 hsa-mir-4633 5 hsa-mir-548q 5 hsa-mir-4283-2 4 

hsa-mir-3119-2 5 hsa-mir-4636 5 hsa-mir-548s 5 hsa-mir-4313 4 

hsa-mir-3122 4 hsa-mir-4637 4 hsa-mir-548v 5 hsa-mir-4441 3 

hsa-mir-3145 5 hsa-mir-4661 4 hsa-mir-548x 5 hsa-mir-4509-2 4 

hsa-mir-3150b 4 hsa-mir-4670 5 hsa-mir-5579 5 hsa-mir-4635 4 

hsa-mir-3153 4 hsa-mir-4692 5 hsa-mir-5582 4 hsa-mir-520b 5 

hsa-mir-3156-2 5 hsa-mir-4698 5 hsa-mir-561 5 hsa-mir-5706 4 

hsa-mir-3202-2 5 hsa-mir-4716 5 hsa-mir-5687 5 hsa-mir-572 0 

hsa-mir-320e 4 hsa-mir-4729 5 hsa-mir-5690 5 hsa-mir-6080 4 

hsa-mir-3659 5 hsa-mir-4735 5 hsa-mir-5692c-2 1 hsa-mir-622 4 

hsa-mir-3667 4 hsa-mir-4737 3 hsa-mir-605 5 hsa-mir-6859-3 4 

hsa-mir-3678 3 hsa-mir-4759 5 hsa-mir-606 4 hsa-mir-8069 2 

hsa-mir-3686 5 hsa-mir-4764 5 hsa-mir-620 3 hsa-mir-8071-2 4 

hsa-mir-3910-1 5 hsa-mir-4765 5 hsa-mir-625 5 hsa-mir-941-3 3 

hsa-mir-3926-2 4 hsa-mir-4788 5 hsa-mir-629 4     

hsa-mir-3927 5 hsa-mir-4796 5 hsa-mir-633 5     

hsa-mir-3937 5 hsa-mir-4798 5 hsa-mir-6744 4     
 

De novo 

creation 

from 

material of 

TE origin 

57 

(34+23) 

hsa-mir-1254-2 5 hsa-mir-4428 5 hsa-mir-6500 4 hsa-mir-3915 0 

hsa-mir-1255b-2 5 hsa-mir-4438 4 hsa-mir-6507 4 hsa-mir-422a 5 

hsa-mir-1256 5 hsa-mir-4445 4 hsa-mir-7641-2 3 hsa-mir-4419a 3 

hsa-mir-2115 1 hsa-mir-4448 3 hsa-mir-7975 3 hsa-mir-4425 5 

hsa-mir-3118-5 4 hsa-mir-4487 0 hsa-mir-1202 4 hsa-mir-4447 5 

hsa-mir-3133 5 hsa-mir-4525 4 hsa-mir-1255b-1 0 hsa-mir-4502 4 

hsa-mir-3134 4 hsa-mir-4666b 5 hsa-mir-1261 3 hsa-mir-548ag-2 5 

hsa-mir-3144 3 hsa-mir-5096 4 hsa-mir-1269b 2 hsa-mir-548au 5 

hsa-mir-3164 5 hsa-mir-5585 5 hsa-mir-1285-2 3 hsa-mir-548t 5 

hsa-mir-3657 5 hsa-mir-5586 5 hsa-mir-1290 5 hsa-mir-640 5 
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hsa-mir-3672 5 hsa-mir-5590 5 hsa-mir-151b 5 hsa-mir-7151 3 

hsa-mir-3674 4 hsa-mir-5698 4 hsa-mir-302e 6 hsa-mir-7157 2 

hsa-mir-3683 1 hsa-mir-5701-2 4 hsa-mir-3135a 2     

hsa-mir-3929 4 hsa-mir-579 5 hsa-mir-3163 4     

hsa-mir-4421 4 hsa-mir-588 3 hsa-mir-3611 3     
 

De novo 121 

hsa-mir-1182 5 hsa-mir-4256 5 hsa-mir-4503 5 hsa-mir-6077-1 0 

hsa-mir-1258 5 hsa-mir-4258 3 hsa-mir-4505 5 hsa-mir-6079 2 

hsa-mir-1262 5 hsa-mir-4261 2 hsa-mir-4509-3 4 hsa-mir-6089-1 1 

hsa-mir-1272 2 hsa-mir-4264 5 hsa-mir-4517 5 hsa-mir-6089-2 1 

hsa-mir-1276 5 hsa-mir-4265 4 hsa-mir-4521 2 hsa-mir-6126 5 

hsa-mir-1286 5 hsa-mir-4268 5 hsa-mir-4528 4 hsa-mir-614 3 

hsa-mir-147a 3 hsa-mir-4278 3 hsa-mir-4645 5 hsa-mir-624 5 

hsa-mir-1913 3 hsa-mir-4282 6 hsa-mir-4664 3 hsa-mir-641 5 

hsa-mir-2278 4 hsa-mir-4283-1 3 hsa-mir-4673 5 hsa-mir-648 5 

hsa-mir-3117 6 hsa-mir-4284 2 hsa-mir-4697 2 hsa-mir-6508 5 

hsa-mir-3128 5 hsa-mir-4289 5 hsa-mir-4705 5 hsa-mir-6509 5 

hsa-mir-3146 4 hsa-mir-4290 5 hsa-mir-4711 5 hsa-mir-6511a-1 0 

hsa-mir-3155b 5 hsa-mir-4294 5 hsa-mir-4717 0 hsa-mir-6755 5 

hsa-mir-3160-1 2 hsa-mir-4298 3 hsa-mir-4718 5 hsa-mir-6822 5 

hsa-mir-3160-2 2 hsa-mir-4305 5 hsa-mir-4733 5 hsa-mir-6874 3 

hsa-mir-3176 1 hsa-mir-4310 3 hsa-mir-4740 3 hsa-mir-7114 5 

hsa-mir-3182 3 hsa-mir-4316 2 hsa-mir-4746 4 hsa-mir-7150 7 

hsa-mir-3185 4 hsa-mir-4319 5 hsa-mir-4770 5 hsa-mir-765 3 

hsa-mir-3196 5 hsa-mir-4324 3 hsa-mir-4777 5 hsa-mir-7852 5 

hsa-mir-3199-2 5 hsa-mir-4326 2 hsa-mir-4791 5 hsa-mir-8054 5 

hsa-mir-3606 1 hsa-mir-4328 0 hsa-mir-5091 2 hsa-mir-8056 3 

hsa-mir-3609 2 hsa-mir-4329 5 hsa-mir-5092 5 hsa-mir-8057 5 

hsa-mir-3671 2 hsa-mir-4417 5 hsa-mir-5192 5 hsa-mir-8063 2 

hsa-mir-3689d-2 0 hsa-mir-4443 5 hsa-mir-5195 1 hsa-mir-8065 0 

hsa-mir-3914-1 5 hsa-mir-4453 3 hsa-mir-550b-1 5 hsa-mir-8066 3 

hsa-mir-3916 0 hsa-mir-4466 5 hsa-mir-554 5 hsa-mir-8081 4 

hsa-mir-3935 5 hsa-mir-4473 5 hsa-mir-559 4 hsa-mir-8088 3 

hsa-mir-3941 5 hsa-mir-4475 4 hsa-mir-5681b 0 hsa-mir-943 0 

hsa-mir-3945 4 hsa-mir-4478 5 hsa-mir-5688 5     

hsa-mir-3974 1 hsa-mir-4479 3 hsa-mir-583 5     

hsa-mir-3978 4 hsa-mir-4482 4 hsa-mir-596 3     
 

 

Table SD III-5: Proportion of miRNA for each mechanism of origination in exonic, 

intronic and intergenic regions. Number of miRNA in each category is associated with 

the pipeline in Figure III-5. 

Mechanism of origination 

Number of 

miRNA 

genes 

Proportion 

in intergenic 

regions 

Proportion 

in exonic 

regions 

Proportion 

in intronic 

regions 

Segmental duplication of a pre-

existing miRNA 
13 69,2% 7,7% 23,1% 

Tandem duplication of a pre-

existing miRNA 
28 96,4% 0,0% 3,6% 

Duplication of a pre-existing 

miRNA located in a TE 

29 82,8% 0,0% 17,2% 

13 92,3% 0,0% 7,7% 

Total and average of duplication 
events 

83 85,2% 1,9% 12,9% 
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Insertion of one TE 50 74,0% 0,0% 26,0% 

Insertion of two or more TE 23 72,7% 0,0% 27,3% 

Inverted duplication 6 100,0% 0,0% 0,0% 

Insertion of unknown origin 39 64,1% 0,0% 35,9% 

Insertion of non-TE distal genomic 
origin 

86 61,6% 0,0% 38,4% 

23 78,3% 0,0% 21,7% 

Total and average of insertion 

events 
227 75,1% 0,0% 24,9% 

De novo creation from material of 

TE origin 

34 73,5% 0,0% 26,5% 

23 78,3% 0,0% 21,7% 

De novo 121 64,5% 1,7% 33,9% 

Total and average of De novo 

events 
178 72,1% 0,6% 27,4% 
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CHAPTER IV : PREDICTION OF HUMAN MIRNA TARGET 

GENES USING COMPUTATIONALLY RECONSTRUCTED 

ANCESTRAL MAMMALIAN SEQUENCES 

4.1  Preface 

This fourth chapter present MirAncesTar (microRNA Ancestral Target predictor), 

which proposes a new approach based on the analysis of ancestral genome sequences 

to improve the existing methods to predict miRNAs target genes. MirAncesTar was 

developed in continuity to the study on the mechanisms of origination of miRNAs, 

presented in CHAPTER III We realized that the inferred ancestral sequences could 

also be useful to help improve target genes predictions.  

The problem of miRNAs target genes prediction is challenging: the average recall rate 

of experimentally validated target genes in humans (i.e. sensitivity) by the best known 

tools (e.g. miRanda (Enright et al. 2003), or TargetScan (Agarwal et al. 2015)) remain 

currently very low (about 15 to 25% in average of all human miRNAs having more 

than 200 experimentally validated targets in miRTarBase v6). Many reasons explain 

this situation (see Section 1.4 ), and a lot of work remains to be done to achieve a more 

acceptable level of prediction accuracy. New techniques are presented in the literature 

every year since the first version of miRanda in 2003 (Enright et al. 2003), most of the 

time improving the last microRNA target gene predictor released (at least in the hands 

of the author of these papers). The study presented in this chapter brings its 

contribution to this field, by boosting considerably the recall rate of existing target site 

prediction tools.  
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The rest of this chapter is reproduced from 

Leclercq M, Diallo AB, Blanchette M (2016) Prediction of Human miRNA 

Target Genes using Computationally Reconstructed Ancestral Mammalian 

Sequence. Paper submitted in February 2016 at Nucleic Acids Research. 

4.2  Abstract 

 MicroRNAs (miRNA) are short single stranded RNA molecules derived from hairpin-

forming precursors that play a crucial role as post-transcriptional regulators in 

eukaryotes and viruses. In the past years, many microRNA target genes (MTGs) have 

been identified experimentally. However, because of the high costs of experimental 

approaches, target genes databases remain incomplete. Although many target 

prediction programs have been developed in the recent years to identify MTGs in 

silico, their specificity and sensitivity remain low. Here, we propose a new approach 

called MirAncesTar, which uses ancestral genome reconstruction to boost the accuracy 

of existing MTGs prediction tools for human genome. For each miRNA and each 

putative human target UTR, our algorithm makes uses of existing prediction tools to 

identify putative target sites in the human UTR, its mammalian orthologs and inferred 

ancestral sequences. It then evaluates evidence in support of selective pressure to 

maintain target site counts (rather than sequences), accounting for the possibility of 

target site turnover. It finally integrates this measure with several simpler ones using a 

logistic regression. MirAncesTar improves the accuracy of existing MTG predictors 

by 26% to 157%. Source code and prediction results for human miRNAs, as well as 

supporting evolutionary data are available at 

http://cs.mcgill.ca/~blanchem/mirancestar. 

4.3  Introduction 

MicroRNAs (miRNAs) form a class of evolutionary conserved non-coding single-

stranded RNA molecules involved in the regulation of gene expression by translational 

repression and mRNA destabilization (Ambros 1989; Ruvkun 2001; Swami 2010; 
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Kane et al. 2014). They are involved in the regulation of most animal and plant 

physiological processes (Osman 2012; Lawrie 2013; Teruel-Montoya et al. 2014), are 

implicated in many human diseases (Cooper et al. 2009; Dangwal et al. 2012; Goodall 

et al. 2013), and represent promising therapeutic applications (Lawrie 2013; Hammond 

2015).  

Unlike in plants, where the gene silencing requires a near-perfect complementarity 

between the miRNA and its mRNA target site, the repression of mRNA expression in 

animals is determined in part by the complementarity of a short region of the miRNA, 

called the seed. The seed is usually located between positions 2 to 7 of the miRNA, 

but variations exist (Bartel 2009). MiRNA target binding sites (MTBS) are generally 

located in the 3’UTR (3’ untranslated region) of genes, but also, in a lower proportion, 

in their 5’UTR and open reading frame (ORF) (Lytle et al. 2007). MiRNAs produced 

from a single locus have the potential to silence a large number of genes (henceforth 

called its miRNA target genes (MTG)), and silenced genes are often targeted by more 

than one miRNA (Gennarino et al. 2012). 

Experimental identification of miRNA target genes involves techniques such as gene 

expression analysis, using expression of ectopic miRNAs followed by the 

quantification of remaining non-degraded target mRNA on a genome-wide scale with 

microarrays or RNA-seq (Thomson et al. 2011), as well as approaches that directly 

identify interactions between mRNAs and proteins such as argonaute, including 

AGO2-PAR-CLIP (Farazi et al. 2014). But the number of experiments required to 

identify all MTGs of all miRNAs, in all tissues, conditions, and species of interest 

remains impractical. Therefore, computational methods to predict MTGs continue to 

be necessary.  

Over the last few years, many tools predicting MTGs in various species have been 

developed. A first set of approaches, including miRanda (Enright et al. 2003) and 

PicTar (Krek et al. 2005), focused on identifying thermodynamically stable interaction 

sites between miRNAs and putative target genes. Later, various rule-based approaches, 
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such as PITA (Kertesz et al. 2007), or machine learning approaches, such as 

MirTarget2 (miRDB) (Wang 2008; Wang and El Naqa 2008) and TargetMiner 

(Bandyopadhyay and Mitra 2009), were proposed to integrate miRNA-mRNA duplex 

structural information with other types of features, such as target site accessibility, A/U 

content or target-site abundance, in order to improve prediction accuracy (Zheng et al. 

2013).  

Although these approaches have grown increasingly accurate over the past few years, 

and despite significant efforts, existing programs continue to produce high rates of 

false positives and false negatives (Zheng et al. 2013). In an effort to alleviate this 

problem, several programs, including mirMark (Menor et al. 2014), Diana-microT 

(Maragkakis et al. 2011) and TargetScan (Agarwal et al. 2015), have proposed to use 

inter-species sequence conservation as an indication of functional binding. MirMark 

considers as part of its input cross-species sequence conservation scores from 

PhastCons (Siepel et al. 2005), and TargetScan makes direct use of UTR sequence 

alignments to measure conservation on each branch of a calculated phylogenetic tree.  

The underlying principle of using interspecies conservation is that functional miRNA 

target sites are important to the appropriate regulation of a gene’s expression, so 

mutations that would disrupt binding are generally deleterious and over time more 

mutations should accumulate outside target sites than within them. However, concerns 

about the site conservation condition have been raised by Farh et al. (Farh et al. 2005) 

and Xu et al. (Xu et al. 2013), who observed that a large fraction of MTBS is not highly 

conserved among mammals orders. Applying strict requirements of sequence 

conservation thus results in an increased false-negative rate. Nevertheless, more than 

60% of human protein-coding genes are under selective pressure to maintain pairing 

to miRNAs (Friedman et al. 2009), which explains in part why most mammalian 

miRNAs’ 3’UTRs target sites are conserved above background levels (Xie et al. 2005). 

The failure of conservation-based approaches to identify certain MTBS is partly due 

to an evolutionary process called binding site turnover (Venkataram and Fay 2010). 
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(Note that this concept is unrelated to that of miRNA turnover, which describes a 

change in miRNA expression due to degradation (Rogers and Chen 2013)). Because 

MTBS are short, random mutations can easily create new sites in the vicinity of 

existing ones. Since MTBS are generally not dependant on their exact position in the 

UTRs of a regulated gene, as long as the new site’s position is in an accessible portion 

of the folded mRNA, the newly created site may be as potent as the previous one, thus 

reducing the selective pressure to maintain both. A mutation that would abrogate the 

old site would thus not be deleterious. The result is a turnover event, where although 

the target gene has continuously been targeted by the miRNA over evolutionary time, 

the position of the functional binding site has changed. Interspecies comparison would 

reveal that the sequence of neither the old nor the new site is particularly conserved, 

because both have been evolving neutrally for some time. This phenomenon is well 

characterized for transcription factor binding sites (Moses et al. 2006; Schmidt et al. 

2010; Dermitzakis and Clark 2002) and taking it into consideration has been shown to 

improve the accuracy of binding predictions (Blanchette 2012). For miRNAs, target 

site turnover has been observed in cases where a target gene has multiple target sites 

for the same miRNA, a situation called cooperative targeting that allows MTBS to be 

lost and gained over time, as long as one or more remain present (Saetrom et al. 2007). 

Simkin et al. (Simkin et al. 2014) have recently exhibited several cases of miRNA 

target site turnover within primates. 

In this paper, we introduce MirAncesTar, an approach to improve the miRNA target 

gene predictions made by existing tools by taking into account MTBS turnover. 

MirAncesTar uses computationally reconstructed ancestral mRNA sequences, rather 

than relying on pure conservation scores such as phastCons or PhyloP (Pollard et al. 

2010; Siepel et al. 2005; Siepel and Haussler 2005). Our approach is not a predictor in 

itself, but rather an accuracy booster that can be applied to any existing predictor. 

Applied to three of the most commonly used MTBS predictors, MirAncesTar results 

in a large improvement in accuracy and compares favourably with three of the recent 
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MTG predictors making use of sequence conservation, mirMark (Menor et al. 2014), 

Diana-microT (Maragkakis et al. 2011), and TargetScan (Agarwal et al. 2015).   

4.4  Material and Methods 

 Datasets 

Human miRNAs were retrieved from miRbase v20 (Griffiths-Jones et al. 2006, 2008), 

for a total of 2,580 mature miRNAs. Experimentally validated miRNA targets (called 

known targets in this paper) were downloaded from miRTarBase version 6 (Hsu et al. 

2011) which contains a total of 324,219 interactions between 2,619 miRNAs and 

12,738 target genes. Of those, three subsets of miRNAs were considered: (i) M100 is a 

set of 100 miRNAs that had at least 200 known targets in the union of miRTarBase 

(release 5.0) and mirWalk (version 1) (Table SDIV-1) (ii) M396 is a set of 396 miRNAs 

that had at least 200 known targets in the most recent version of miRTarBase (release 

6.0) (Table SDIV-2) (iii) M308 ⊂ M396, a set of 308 miRNAs for which target 

predictions are available from both TargetScan and Diana-microT. The number known 

targets (based on miRTarBase (release 6.0)) used for the training and evaluation varies 

from 47,388 miRNA-targetGene pairs for M100 to 150,892 pairs for M396.  

Human 5’ and 3’ UTRs sequences of human protein-coding genes were retrieved from 

the UCSC genome browser (build GRCh37/hg19, RefSeq genes annotation). 

PhastCons conservation scores and conserved regions based on a 100-way multiple 

sequence alignment were also retrieved from UCSC genome browser. 

 Target gene predictors 

MTGs predictors were selected based on their availability and running time. We 

considered five target gene predictors:  

1. MiRanda (August 2010 version; (Enright et al. 2003)), which identifies 

putative targets by sequence alignment and ranks them based on 

thermodynamic stability. Default options. 
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2. RNAhybrid (Krüger and Rehmsmeier 2006), which determines the most stable 

hybridization site based on Energy parameters from Mathews et al. (Mathews 

et al. 1999), with length restrictions established for bulges and internal loops 

(Krüger and Rehmsmeier 2006). Default options, except for target length 

option (-m 1000000), a p-value threshold (-p 0.1) and the appropriate species 

selection (-s 3utr_human). 

3. MirMark (version 1.0; (Menor et al. 2014)), a machine learning based method 

using more than 700 features describing the interactions between a miRNA and 

a UTR, such as target site availability, structure and sequence features, and 

PhastCons46way conservation data. Default options. 

4. TargetScan (Agarwal et al. 2015), predicts miRNA target genes by searching 

for the presence of 6 to 8mer sites that match the seed region of a given miRNA 

and make use of species alignment to locate conserved sites. The most recent 

version integrates a regression model to improve TargetScan predictions. We 

did not run this tool ourselves but instead downloaded its predictions from 

targetscan.org, release 7.0, august 2015. Both conserved and non-conserved 

were considered.  

5. Diana-microT v4 (Maragkakis et al. 2011), trained on miRbase v18, is based 

on binding and conservation features identified in high throughput 

experimental data, and calculated for each miRNA and each miRNA 

recognition elements responsible for the interaction with a target gene. Again, 

the score of a given gene was obtained by summing the scores of all predicted 

target sites in that gene. 

For each tool, we obtained a ranked list of putative targets for each miRNA, sorted in 

decreasing order of the sum of confidence scores of predicted target sites. 

 Ancestral reconstruction 

Ancestral genomes were reconstructed with an improved local version of Ancestor 

(Diallo et al. 2010), a tool which uses a maximum likelihood approach based on an 
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evolutionary model that takes in account insertions, deletions and substitutions. The 

reconstruction is computed from whole-genome multiple alignments of 46 vertebrate 

species, built with blastZ/Multiz pipeline (Blanchette et al. 2004b; Schwartz et al. 

2003), and the phylogenetic tree reflecting their distance among each other, available 

from UCSC genome browser (Miller et al. 2007). 5’UTR and 3’UTR reconstructed 

ancestral sequences are available as supplementary data on our site. 

 Measuring evidence of selective pressure on predicted target site 

count 

To identify targets for a given miRNA M, target site predictions are obtained first for 

each human 5’ and 3’UTRs, their orthologs and ancestral sequences, using a given 

Single-Sequence Target Site Predictors (SSTSP). Consider Let the branch (p,u) of the 

phylogenetic tree, where p is the parent of u. We first build a null evolutionary model 

of the target site count, which is aiming at describing how the number of predicted 

target sites changes along branch (p,u), assuming that the sequence under 

consideration is not a true target of M. In other words, we model the evolution of the 

count of false-positive predictions in UTRs. Let Xu denote the random variable 

corresponding to the number of sites at node u, and let 𝑥𝑔,𝑢 denote the observed number 

of target sites predicted in the sequence at node u for gene g. Let T(p,u)(a,b) = Pr[ Xu = 

b | Xp = a ] be the conditional probability of the sequence at u containing b sites given 

that the sequence at p contained a sites. T(p,u) is estimated on the basis that the vast 

majority of predicted target sites for M are false-positives, so that  

𝑇(𝑝,𝑢)(𝑎, 𝑏) =  
∑ 𝕀(𝑥𝑔,𝑝, 𝑎) ⋅ 𝕀(𝑥𝑔,𝑢, 𝑏)𝑔:𝐺𝑒𝑛𝑒𝑠

∑ 𝕀(𝑥𝑔,𝑝, 𝑎)𝑔:𝐺𝑒𝑛𝑒𝑠
, 

where 𝕀(i,j) = 1if i=j and 0 otherwise. Figure IV-1 illustrates some of the 𝑇 conditional 

distributions for branches of the tree that have different lengths. Let 𝑃(𝑝,𝑢)(𝑎, 𝑏) =

∑ 𝑇(𝑎, 𝑏′)𝑏′≥𝑏  be the p-value associated to observing b sites at node u given that there 
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were a sites at node p. The score of gene g as a putative target for miRNA M is obtained 

as 

𝑀𝑖𝑟𝐴𝑛𝑐𝑒𝑠𝑡𝑎𝑟𝑅𝑎𝑤(𝑔,𝑀) = ∑ − log (𝑃(𝑝,𝑢)(𝑥𝑝, 𝑥𝑢))
(𝑝,𝑢) ∈ 𝑇𝑟𝑒𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

  

 

Figure IV-1: Examples of the posterior probability of the count of predicted target sites 

for let7a-5p, for two different branches of the phylogenetic tree: (A) the short branch 

leading from the human-chimp ancestor; (B) The longer branch leading from the mouse-

rate ancestor to mouse.  

 Normalized conservation score  

To take into account the fact that longer UTRs have a higher probability to be targeted 

than shorter ones, we introduce a second scoring mechanism that calculates for each 

branch (p,u) a p-value conditioned on the (binned) length L(u) of the sequence at node 

p. Specifically,  

𝑇𝑛𝑜𝑟𝑚(𝑝,𝑢),𝐿(𝑎, 𝑏) =  
∑ (𝕀𝑥𝑔,𝑝=𝑎 ) ⋅ (𝕀𝑥𝑔,𝑢=𝑏)𝑔:𝐺𝑒𝑛𝑒𝑠 𝑠.𝑡.  𝑏𝑖𝑛(𝐿(𝑔,𝑢))=𝐿

∑ (𝕀𝑥𝑔,𝑝=𝑎)𝑔:𝐺𝑒𝑛𝑒𝑠 𝑠.𝑡.  𝑏𝑖𝑛(𝐿(𝑔,𝑢))=𝐿
 

𝑃𝑛𝑜𝑟𝑚(𝑝,𝑢),𝐿(𝑎, 𝑏) = ∑ 𝑇𝑛𝑜𝑟𝑚(𝑝,𝑢),𝐿(𝑎, 𝑏
′)

𝑏′≥𝑏

 

𝑀𝑖𝑟𝐴𝑛𝑐𝑒𝑠𝑡𝑎𝑟𝑁𝑜𝑟𝑚(𝑔,𝑀)

= ∑ − log (𝑃𝑛𝑜𝑟𝑚(𝑝,𝑢),𝑏𝑖𝑛(𝐿(𝑔,𝑢))(𝑥𝑝, 𝑥𝑢))
(𝑝,𝑢) ∈ 𝑇𝑟𝑒𝑒 𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠
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The length binning function bin(⋅) is chosen so that approximately 500 genes fall 

within each bin. 

 Posterior probability normalized conservation score  

While we found that the MirAncestarNorm score performed well, we realized that it 

over-penalizes genes with long UTRs, by intrinsically assuming that all genes are 

equally likely to be targets, irrespective of their UTR lengths. In reality, longer UTRs 

are generally more likely to be targets for any given miRNA. We thus introduced a last 

score called MirAncestarPost, which captures the posterior probability of a gene g 

being a target for M, given its length L(g) (in human) and its length-normalized score 

𝑀𝑖𝑟𝐴𝑛𝑐𝑒𝑠𝑡𝑎𝑟𝑁𝑜𝑟𝑚(𝑔,𝑀)  (abbreviated 𝑀𝐴𝑁(𝑔,𝑀) in the formula below). Let 

P(g,M) denote the event that g is a target of M. 

𝑀𝑖𝑟𝐴𝑛𝑐𝑒𝑠𝑡𝑎𝑟𝑃𝑜𝑠𝑡(𝑔,𝑀)  = Pr[ 𝑃(𝑔,𝑀) | 𝐿(𝑔),𝑀𝐴𝑁(𝑔,𝑀)] 

=
Pr [𝐿(𝑔),𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)]  ∙  Pr [𝑃(𝑔,𝑀)]

Pr [𝐿(𝑔),𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)]  ∙  Pr [𝑃(𝑔,𝑀)] +  Pr [𝐿(𝑔),𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]  ∙  Pr [𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ]
  

=
Pr [𝐿(𝑔) | 𝑃(𝑔,𝑀)]  ∙ Pr [𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)]  ∙  Pr [𝑃(𝑔,𝑀)] 

Pr [𝐿(𝑔) | 𝑃(𝑔,𝑀)] ∙ Pr [𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)] ∙ Pr [𝑃(𝑔,𝑀)]  +  Pr [𝐿(𝑔) | 𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] ∙ Pr [𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] ∙ Pr [𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] 
 

where Pr [𝐿(𝑔) | 𝑃(𝑔,𝑀)], Pr [𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)] , Pr [𝐿(𝑔) | 𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] , and 

Pr [𝑀𝐴𝑁(𝑔,𝑀) | 𝑃(𝑔,𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] are represented using multinomial distributions and 

estimated from the known targets genes and non-target genes (separately in each cross-

validation iteration, with binning of the MirAncestarNorm score and length). 

 MirAncestar feature set and training 

While the MirAncestarPost scoring approach is in itself competitive with existing 

SSTSPs, we are aware that it is not capturing some properties that could be useful for 

prediction. Thus, we elected to instead combine the three scoring schemes presented 

above (MirAncestarRaw, MirAncestarNorm, and MirAncestarPost) with a set of 7 

other simpler measures: 
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1. UTRlength: The total length of the gene’s UTRs in human. 

2. TotalSitesCount: The total number of target sites predicted in the human gene, 

its orthologs, and ancestors. 

3. TotalSitesCountNorm: TotalSitesCount/UTRlength. 

4. HumanTotalScore-Conserved: The sum of the SSTSP scores of all predicted 

target sites predicted in the human sequence, limited to the highly conserved 

portions (defined by the PhastCons 46-way predictions). 

5. HumanTotalScore-NonConserved: The sum of the SSTSP scores of all 

predicted target sites predicted in the human sequence, outside of the highly 

conserved portions. 

6. HumanMaxScore-Conserved: The maximum of the SSTSP scores of all 

predicted target sites predicted in the human sequence, limited to the highly 

conserved portions. 

7. HumanMaxScore-NonConserved: The maximum of the SSTSP scores of all 

predicted target sites predicted in the human sequence, outside of the highly 

conserved portions. 

The 10 features are combined using a logistic regression approach trained and 

evaluated using 10-fold cross validation, using Weka (Hall et al. 2009). Because we 

work with unbalanced classes, we used a cost sensitive classifier, used to reweight 

training instances according to the total cost assigned to each class. This weighting 

method simulates stratification, avoiding downsampling the majority class and 

allowing taking advantage of the full available data. The cost matrix associated with 

the cost-sensitive classifier was set as follows: False-negatives were assigned a cost of 

1, while false-positives were assigned a cost of |PositiveTrainingSet| / 

|NegativeTrainingSet|. The logistic regression parameters were learned based on a 

positive training set consisting of the set of known targets of M100 miRNAs with more 

than 200 known targets, and the negative training set was the set of non-targets for the 

same M100 miRNAs. For each SSTSP, a different set of logistic regression parameters 

were learned.  
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4.5  Results 

MirAncesTar is an approach that makes use of comparative genomics data to improve 

the predictions of the target genes of a given microRNA by evaluating the conservation 

of the count of predicted target sites among mammalian orthologs and their ancestors. 

MirAncesTar exploits existing Single-Sequence Target Site Predictors (SSTSP) such 

as miRanda (Enright et al. 2003) to identify candidate target sites in genes of the 

genome under study (here, human), their orthologs (here, from 34 other mammals) and 

computationally reconstructed ancestral sequences. The method does not directly 

evaluate sequence conservation of target sites per se, but instead seeks evidence for 

selective pressure to maintain a certain number of target sites in gene’s UTRs 

(irrespective of their position), thus allowing for target site turnover. The target site 

count conservation score is then combined with other simpler measures (UTR length, 

sum and maximum of site SSTSP scores inside and outside conserved regions, and 

total number of predicted sites (see Methods)), using a logistic regression predictor. 

Here, we report our evaluation of the accuracy of MirAncesTar compared to a variety 

of other existing tools, and investigate the factors that affect its performance. 

 MirAncesTar improves the accuracy of miRNA target gene 

prediction 

For each of the 18,653 UTRs sequences of human genes annotated in RefSeq release 

66 (after merging isoforms), we extracted orthologous mammalian sequences from the 

UCSC 46-way vertebrate whole-genome alignment (Blanchette et al. 2004b; Kent et 

al. 2002), which yielded a maximum of 34 aligned mammalian orthologs. Ancestral 

sequences for each of the 34 internal nodes in the phylogenetic tree (Figure SD IV-1) 

were inferred using a local version of Ancestors 1.1 (Blanchette et al. 2008; Diallo et 

al. 2010), which was previously estimated to be able to infer ancestral mammalian 

sequences with accuracy ranging from 85 to 98%, depending on the ancestral node. 

This produced a set of up to 69 extant or ancestral orthologous sequences per human 

gene, although for most genes, orthologs are missing in a small number of species 
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(average number of orthologs/ancestors per gene: 65.3; 0.1% of genes have no 

orthologs outside primates).  

We trained and tested (using 10-fold cross-validation) our various predictors on 

experimentally identified target sites of a set of 100 well-characterized miRNAs (see 

Methods). These 100 miRNAs have on average 474 known targets per miRNA. For 

each SSTSP P ∈ {miRanda, RNAhybrid, mirMark}, we evaluated the accuracy of 

MirAncesTarP, the MirAncesTar predictor based on the predictions obtained with P, 

and compared it to P itself when applied to the human sequences alone. For each 

miRNA and each predictor, we obtained the ranked list of predicted targets among the 

RefSeq genes, sorted by the sum of confidence values (prediction score) of predicted 

targets. We then evaluated the proportion of all known targets captured among the top 

k predictions (recall), for k ranging from 1 to 1000 (Figure IV-2A-C). Although 

receiving-operator curves (ROC) are a more classical way to evaluate predictors 

(presented in Figure SD IV-2), we find that the former provides a more intuitive and 

practical evaluation of a predictor, by providing the answer to the question: if a 

researcher was to look at the top k predictions made by a given tool, what fraction of 

the known targets would be recovered? 

Figure IV-2A compares the recall curves of miRanda and MirAncesTarmiRanda. The 

latter provides a notable improvement. For example, at k = 1000, MirAncesTarmiRanda 

has an average recall of 26.1%, compared to 18.4% for miRanda, a relative increase 

of 20.7%. The recall relative increase is actually much larger when limiting our 

attention to a smaller number of top predictions; for example, at k = 100, 

MirAncesTarmiRanda improves the recall of miRanda by 67%. The improvements in 

recall are even more significant for RNAhybrid (Figure IV-2B) where MirAncesTar 

yields a 158% increase in recall (at k = 1000). MirMark is not a true single-sequence 

predictor because it uses as part of its input a measure of interspecies sequence 

conservation (PhastCons score (Siepel et al. 2005)). As such, we were not able to use 

it directly to predict targets sites in orthologs and ancestors and instead modified it to 
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not take sequence conservation into consideration (see Methods). The resulting 

predictor (MirMark0) had a recall that was slightly worse than the original MirMark 

(Figure IV-2C), but MirAncesTarMirMark0 nonetheless succeeded at increasing the recall 

value 63% above that of MirMark (at k = 1000). (Because MirMark produces better 

results if we calculate the recall based on the maximum of the scores of the putative 

sites instead of their sum, we used the former method in this case). Overall, 

MirAncesTar produced significant improvements over all SSTSP we considered. The 

best recall curve was obtained using MirAncesTarmiRanda, which outperformed the 

other two MirAncesTar-based predictors, by 72 to 78% at  k = 1000, and even more 

for smaller values of k.  

Although MirAncesTar performs on average better than SSTSP predictors, its 

accuracy varies depending on the miRNA whose targets are being predicted. Figure 

IV-2D presents the recall obtained by MirAncesTarmiRanda (at k = 1000) for each 

miRNA, compared to that obtained with miRanda alone. MirAncesTarmiRanda improves 

the recall for 93 of the 100 miRNAs considered, including 39 where the improvement 

was statistically significant (in red in the figure; p≤0.05; two-tailed Student t-test). In 

one case, the recall is more than doubled. Figure IV-2E-F show the analogous results 

for RNAhybrid and MirMark. Improved recall values were obtained for 99% and 98% 

of miRNAs resp., with 85% and 78% of these improvements being statistically 

significant.  
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Figure IV-2. Comparison of the recall (primary y-axis) and relative recall improvement 

(RRI, secondary y-axis, log-scale) of single-sequence target gene predictors and their 

corresponding MirAncesTar predictors. (A-C) Average (over 100 miRNAs) of the recall 

(percentage of known targets recovered) as a function of the number of sites being 

predicted (k). (A) miRanda; (B) RNAhybrid; (C) mirMark with and without PhastCons. 

(D-F) Recall (at k = 1000 predictions), for each of the 100 miRNAs, for each SSTSP (x-

axis) and its corresponding MirAncesTar predictor (y-axis). MiRNAs for which the 

difference between the two recall values is statistically significant (p-value<0.05 based on 

two-tailed Student t-test) are shown in black.  

TargetScan (Agarwal et al. 2015) and Diana-microT  (Maragkakis et al. 2011) are two 

of the most widely used miRNA target gene predictors that exploit interspecies 

comparisons to score putative target sites. For that reason, we could not apply them as 
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a SSTSP for MirAncesTar to be based off. Because both tools offers precomputed 

target predictions for a large set of miRNAs, we were able to expand our study to a 

larger set of 308 well-characterized miRNAs having at least 200 known targets and for 

which target gene predictions were available from both TargetScan and Diana-microT. 

Other SSTSPs were not used on this larger data set because of their excessive running 

time. To estimate the recall rate, we again listed in decreasing order the scores provided 

by the tools. Diana-microT is constituted of a list of genes for each miRNA, associated 

to a score. For TargetScan, target ranking was produced based on the sum of the 

context++ scores of each gene (including both conserved and non-conserved sites). 

Figure IV-3 show that MirAncesTarMiranda obtains recall values that are significantly 

larger than those of Diana-microT (by approximately 25 to 40%, depending on the 

value k). Recall values are comparable to those of TargetScan at k=1000, but 

approximately 10% better for k < 400.  For a larger set of miRNAs (Figure SD IV-3), 

MirAncesTar reports in average a higher recall rate than TargetScan for all values of 

k. 

 

Figure IV-3: Recall obtained by MirAncesTarMiranda, TargetScan and Diana-microT v4, 

averaged across 308 miRNAs.  
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To better understand the properties of different prediction methods, we compared the 

target predictions of miRanda, TargetScan, Diana-microT, and MirAncesTarMiranda on 

the same set of 308 miRNAs. Interestingly, the set of target predictions made by the 

three tools have only moderate overlap (Figure IV-4). This suggests that the three tools 

are somewhat complementary. Genes predicted as targets by all four tools have large 

positive predictive value (PPV; fraction of positive predictions that are currently 

known to be correct), at 21.6%. Those predicted by three of the tools also have high 

PPV, ranging from 23.9% (MirAncestar+TargetScan+Diana-microT) to only 8.7% 

(TargetScan+Diana-microT+miRanda). Targets predicted by a single tool had lower 

PPV, ranging from 4.2% (miRanda alone) to 6% (TargetScan alone). This shows that 

significant gains in specificity can be obtained by combining the three comparative 

genomics based predictors. 

 

Figure IV-4: Venn diagrams of the predictions made with miRanda, MirAncesTarmiRanda, 

and TargetScan, Diana-microT on 308 miRNAs, with k=1000 for each tool and miRNA.  
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 MirAncesTar exploits sequence conservation but is robust with 

respect to target site turnover 

As seen in Figure IV-2D, the recall of MirAncesTarmiRanda (at k=1000) varies quite 

widely between miRNAs, ranging from 7 to 57%. Two main reasons appear to explain 

this variability. The first is the ability of miRanda to correctly identify candidate target 

sites in human. Indeed, the correlation between the recall values of miRanda and 

MirAncesTarmiRanda is quite high (R2 = 0.84, Figure IV-2D); this is unsurprising, since 

MirAncesTarmiRanda builds off miRanda. Second, the extent to which 

MirAncesTarmiRanda improves the target recall (at k = 1000) compared to miRanda 

varies from a 2-fold increase for miR-92b-3p (from 19.2% to 38.4%) to no 

improvement for several miRNAs, and, in the case of let-7i-3p, miR-324-3p, 324-5p, 

30b-3p, 373-3p, 30d-3p and 92a-1-5p, to a slight decrease in recall. We sought to 

understand the particular characteristics of a miRNA that may be associated with a 

gain or loss in accuracy with MirAncesTarmiRanda. We regressed the 

MirAncesTarmiRanda recall improvement against a number of miRNA properties 

(nucleotide content, average PhastCons UTR conservation scores of known targets, 

total predicted target sites count, etc.). The only significant interaction identified was 

with the average PhastCons conservation scores of known targets (p-value = 2.7×10-

6), which suggests that, unsurprisingly, MirAncesTar is more effective for miRNAs 

whose target genes have a tendency to have more conserved UTRs. Those are often 

miRNAs that target transcription factors, especially those whose family is involved in 

regulation of embryonic development and gastrulation such as let-7d (Wong et al. 

2012), let-7e (Colas et al. 2012) and mir-124 (Lee et al. 2010), which are the three 

miRNAs for which MirAncesTar has the highest recall values. 

One of the key innovations of MirAncesTar is its ability to tolerate MTBS turnover. 

This is supported by the fact that the UTRs correctly predicted as targets by 

MirAncesTar tend to have lower conservation levels (avg. PhastCons of 0.305) than 

those predicted by TargetScan, Diana-microT, MirMark (respectively avg. PhastCons 
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score of 0.322, 0.419, and 0.507). Figure IV-5 illustrates the predicted target sites for 

hsa-let-7a-5p in the SMCR8 gene, a known target of that miRNA, which obtained a 

high prediction score (target ranked 39th out of 18,653 genes) by MirAncesTar but 

was scored poorly by other conservation-based tools (target ranking by mirMark: 

4,896th, TargetScan: 768th, Diana-microT: not in the top 7338 predictions available 

for this miRNA). Clearly, no specific target site predicted in human is conserved across 

all mammals. Interestingly however, there is evidence of a turnover event in rodents 

(mouse, rat, and kangaroo-rat), where a site that was otherwise conserved in most 

mammals was shifted by approximately 600 bp.  Overall, the number of predicted sites 

in extant ancestral sequences (shown on the phylogenetic tree in the figure) is 

remarkably constant, which is why this target is scored well by MirAncesTar. 
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Figure IV-5: Example of putative target site turnover for hsa-let-7a-5p in the SMCR8 

gene. Putative target sites predicted by miRanda in each species are marked. The 

number of predicted target sites in each species and each computationally reconstructed 

ancestral sequence is shown on the nodes of the species tree. The position of sites for non-

human species is converted to that of its human orthologous position through the 

multiple sequence alignment.  

 Contribution of the different features used by MirAncesTar  

MirAncesTar is a logistic regression predictor where each putative target is 

represented using ten features that capture in different ways the number of predicted 

target sites in the species of interest (human) and/or in its orthologs and ancestors (see 

Methods). It is instructive to consider how each of these features contributes to the 

overall accuracy of the predictor. Figure SD IV-3 shows the recall curves obtained for 
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each of the ten features when used individually as predictor, for SSTSP = miRanda. 

By far the most informative feature is MirAncesTarPost, a score that captures evidence 

of selective pressure to maintain the number of candidate target sites during the 

evolution of the putative target. In itself, it is competitive with TargetScan and 

outperforms the three SSTSP used in this study. Interestingly, the second most 

predictive feature is the number of sites predicted by miRanda outside highly 

conserved portions of the UTR (PhastCons), which ranks better than the analogous 

number of target sites located within such conserved regions. This counterintuitive 

result is caused by the fact that most validated target UTRs contain zero conserved 

predicted targets.  

4.6  Discussion 

We propose here a new algorithm that relies on ancestral sequence reconstruction to 

improve the predictions of miRNA predictors in human, based on the idea that, despite 

the fact that UTRs are generally under negative selective pressure to maintain a given 

set of miRNA target sites, individual target sites are often subject to turnover. 

MirAncesTar builds off an evolutionary model that characterizes how the number of 

predicted targets in a neutrally evolving sequence changes over time, and seeks to 

identify UTRs that depart from that null model. It uses predictions made by existing 

SSTSPs, executed on UTRs of mammalian species and their ancestors, to identify 

genes that exhibit evidence of this type of selective pressure. It then learns how best to 

combine this measure of selective pressure with other simpler measures of target site 

content in the target species and its ancestors/orthologs. MirAncesTar significantly 

improved the overall accuracy of the three single-sequence target site predictors it was 

based off (miRanda, RNAhybrid, and mirMark). For certain miRNAs, recall (at k = 

1000) was more than doubled, while we found no miRNA for which recall was 

significantly decreased. The best overall accuracy was obtained using miRanda as 

SSTSP, although MirAncesTar produced its largest increase in accuracy for 

RNAhybrid (158% increase in recall at k = 1000). MirAncesTarmiRanda also 
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outperforms existing sequence conservation based predictors Diana-microT and 

MirMark, and has slightly better performance than TargetScan. Notably, the accuracy 

gains obtained using MirAncesTarmiRanda appear to be largely due to its ability to 

tolerate target site turnover. Not all miRNAs benefit equally from the application of 

MirAncesTarmiRanda. Those for which MirAncesTar results in the largest increase in 

recall are those that (i) are already well predicted by miRanda, and (ii) whose known 

targets tend to exhibit elevated levels of sequence conservation, such as miRNAs 

whose function is to regulate cell differentiation or organismal development. 

An important benefit of MirAncesTar is that it can be used with any existing single-

sequence target site predictor, and with the three such predictors considered here, it 

results in significant gains in accuracy. By decoupling the individual target site 

prediction task (performed by miRanda, RNAhydbrid, mirMark, or other tools) from 

the evaluation of selective pressure on target site count (performed by MirAncesTar), 

we obtain an approach that will age well because it will benefit from future 

improvements in single sequence target site predictors. 

Although the overall recall of TargetScan and MirAncesTar are similar, the properties 

of predicted targets are quite different. Part of the explanation lies in how UTR length 

affects prediction accuracy. The recall of TargetScan is almost independent of UTR 

length: short targets (<500 bp) are recovered with the same recall as long ones (>5000 

bp) (Figure SD IV-4A). Conversely, the recall of MirAncesTar increases with target 

length, from only 3% for short UTRs to more than 50% for long ones. This is due to 

the fact that evidence of selective pressure on target site counts is easier to detect for 

target genes that contain a relatively large number of predicted sites. On the contrary, 

the precision (positive predictive value) of MirAncesTar is largely independent of 

target length: in other words, a gene that is predicted to be a target by MirAncesTar 

has approximately 10% probability of being a known target, irrespective of its length 

(Figure SD IV-4B). Instead, the precision of TargetScan is length-dependent, ranging 

from only 6% for genes with very short UTRs to more than 15% for genes with 
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relatively long UTRs. The predictions made by Diana-microT show an intermediate 

effect.  

A similar analysis is instructive to highlight the effect of UTR sequence conservation 

on precision and recall. Unsurprisingly, the precision of each method improves with 

sequence conservation (average UTR PhastCons score) (Figure SD IV-4C). However, 

large differences are observed in terms of recall (Figure SD IV-4D): while both 

TargetScan and MirAncesTar recover 20-30% of known targets irrespective of their 

sequence conservation, Diana-microT has recall values that range from very poor (6%) 

for weakly conserved UTRs to very high (>40%) for highly conserved ones. 

These differences have important consequences on the interpretation of the predictions 

made by these tools. On the one hand, the length bias of MirAncesTar prediction, and 

the conservation bias of Diana-microT, can induce artificial functional enrichment 

(e.g. for a gene ontology enrichment analysis) among predicted targets. On the other 

hand, investigators interested in validating experimentally predicted targets should 

expect a length-dependent success rate if they base their study on TargetScan, but not 

so with MirAncesTar. 

Several possible directions may prove fruitful to explore in order to further improve 

the accuracy of MirAncesTar. First, in the present version, the position of predicted 

sites is not taken into consideration; only the total count matters. While this 

conveniently allows for target site turnover, it could be that an approach that would be 

semi-position specific would have some benefits. One could for example consider a 

model where changes in target site position are allowed but penalized. Second, 

improvements may be obtained by considering more sophisticated machine learning 

predictors to replace our logistic regression classifier, or by considering additional sets 

of features. In particular, one may attempt to predict target genes based on the target 

site predictions of more than one SSTSP, although this would come at the expense of 

additional running time.  
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Finally, we note that although our focus here was on predicting target genes for human 

miRNAs, it should be equally powerful in other mammalian species (provided a 

sufficiently large number of known miRNA target sites are available for the training). 

MirAncesTar should also be applicable to other groups of species that are where 

sufficiently many closely related taxa are sequenced, such as fruit flies (Clark et al. 

2007) or crucifers (Haudry et al. 2013), although the accuracy of ancestral sequence 

reconstruction may not be as high for these lineages.  

In conclusion, this paper is a striking example of a prediction task that can be achieved 

more accurately through a careful analysis of not only a human sequence and its 

orthologs, but also of computationally reconstructed ancestral sequences. Tracing the 

evolution of a region across the mammalian phylogeny significantly eases the 

detection of compensatory events such as target site turnover, by helping resolve the 

timing of these events. Did the loss of a particular target site precede or follow the 

creation of another one nearby? The answer to this question lies in the analysis of 

ancestral sequences, and is crucial for detecting evidence of selective pressure.  We 

note that this concept is quite general and could quite easily be applied to other 

sequence-based prediction tasks. As the number of species whose genome increases 

(Koepfli et al. 2015) so will the power of this family of approaches.  
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4.8  Supplementary Data 

Table SDIV-1: List of the 100 miRNAs used to train and test MirAncesTar 

hsa-let-7a-3p hsa-let-7i-5p hsa-miR-145-5p hsa-miR-18a-3p hsa-miR-25-3p hsa-miR-30e-3p hsa-miR-744-5p 

hsa-let-7a-5p hsa-miR-100-5p hsa-miR-146a-5p hsa-miR-18a-5p hsa-miR-26a-5p hsa-miR-30e-5p hsa-miR-7-5p 

hsa-let-7b-3p hsa-miR-101-3p hsa-miR-148b-3p hsa-miR-192-5p hsa-miR-26b-5p hsa-miR-320a hsa-miR-877-3p 

hsa-let-7b-5p hsa-miR-103a-3p hsa-miR-149-5p hsa-miR-193b-3p hsa-miR-296-3p hsa-miR-324-3p hsa-miR-92a-1-5p 

hsa-let-7c-5p hsa-miR-106b-5p hsa-miR-155-3p hsa-miR-196a-5p hsa-miR-29a-3p hsa-miR-324-5p hsa-miR-92a-3p 

hsa-let-7d-3p hsa-miR-10a-5p hsa-miR-15a-3p hsa-miR-19b-3p hsa-miR-29a-5p hsa-miR-331-3p hsa-miR-92b-3p 

hsa-let-7d-5p hsa-miR-10b-5p hsa-miR-15a-5p hsa-miR-200c-3p hsa-miR-29c-3p hsa-miR-335-5p hsa-miR-93-3p 

hsa-let-7e-3p hsa-miR-122-5p hsa-miR-15b-5p hsa-miR-20a-5p hsa-miR-30a-3p hsa-miR-34a-3p hsa-miR-93-5p 

hsa-let-7e-5p hsa-miR-124-3p hsa-miR-16-5p hsa-miR-21-3p hsa-miR-30a-5p hsa-miR-34a-5p hsa-miR-9-5p 

hsa-let-7f-1-3p hsa-miR-124-5p hsa-miR-17-3p hsa-miR-215-5p hsa-miR-30b-3p hsa-miR-373-3p hsa-miR-98-5p 

hsa-let-7f-2-3p hsa-miR-125a-5p hsa-miR-17-5p hsa-miR-21-5p hsa-miR-30b-5p hsa-miR-373-5p  

hsa-let-7f-5p hsa-miR-125b-5p hsa-miR-181a-5p hsa-miR-221-3p hsa-miR-30c-1-3p hsa-miR-375  

hsa-let-7g-3p hsa-miR-128-3p hsa-miR-181b-5p hsa-miR-222-3p hsa-miR-30c-2-3p hsa-miR-423-3p  

hsa-let-7g-5p hsa-miR-130b-3p hsa-miR-183-5p hsa-miR-23b-3p hsa-miR-30c-5p hsa-miR-423-5p  

hsa-let-7i-3p hsa-miR-132-3p hsa-miR-186-5p hsa-miR-24-3p hsa-miR-30d-3p hsa-miR-484  

 

Table SDIV-2: List of the 396 miRNAs having more than 200 experimentally validated 

target genes 

hsa-let-7a-5p hsa-miR-181b-5p hsa-miR-30e-5p hsa-miR-410-3p hsa-miR-4781-3p hsa-miR-5582-3p hsa-miR-6799-5p 

hsa-let-7b-5p hsa-miR-181c-5p hsa-miR-3122 hsa-miR-421 hsa-miR-4789-3p hsa-miR-5589-5p hsa-miR-6807-5p 

hsa-let-7c-5p hsa-miR-181d-5p hsa-miR-3135b hsa-miR-423-3p hsa-miR-4789-5p hsa-miR-5590-3p hsa-miR-6808-5p 

hsa-let-7d-5p hsa-miR-1827 hsa-miR-3148 hsa-miR-423-5p hsa-miR-4793-3p hsa-miR-5692a hsa-miR-6809-3p 

hsa-let-7e-5p hsa-miR-183-5p hsa-miR-3163 hsa-miR-424-5p hsa-miR-4796-3p hsa-miR-5693 hsa-miR-6817-3p 

hsa-let-7f-5p hsa-miR-185-5p hsa-miR-3175 hsa-miR-4252 hsa-miR-484 hsa-miR-5698 hsa-miR-6821-3p 

hsa-let-7g-5p hsa-miR-186-3p hsa-miR-3183 hsa-miR-4257 hsa-miR-485-5p hsa-miR-574-5p hsa-miR-6825-5p 

hsa-let-7i-5p hsa-miR-186-5p hsa-miR-3187-3p hsa-miR-4279 hsa-miR-497-5p hsa-miR-588 hsa-miR-6829-3p 

hsa-miR-100-5p hsa-miR-18a-3p hsa-miR-3190-5p hsa-miR-4282 hsa-miR-498 hsa-miR-590-3p hsa-miR-6832-3p 

hsa-miR-101-3p hsa-miR-18a-5p hsa-miR-32-5p hsa-miR-4284 hsa-miR-5006-3p hsa-miR-603 hsa-miR-6832-5p 

hsa-miR-103a-3p hsa-miR-190a-3p hsa-miR-320a hsa-miR-4287 hsa-miR-5011-5p hsa-miR-607 hsa-miR-6833-3p 

hsa-miR-106a-5p hsa-miR-1910-3p hsa-miR-324-3p hsa-miR-4295 hsa-miR-503-5p hsa-miR-6077 hsa-miR-6838-5p 

hsa-miR-106b-5p hsa-miR-192-5p hsa-miR-324-5p hsa-miR-4419a hsa-miR-504-3p hsa-miR-6086 hsa-miR-6840-3p 

hsa-miR-107 hsa-miR-193b-3p hsa-miR-329-3p hsa-miR-4419b hsa-miR-505-3p hsa-miR-6127 hsa-miR-6843-3p 

hsa-miR-10a-5p hsa-miR-195-5p hsa-miR-331-3p hsa-miR-4430 hsa-miR-508-5p hsa-miR-6129 hsa-miR-6845-3p 

hsa-miR-10b-5p hsa-miR-196a-5p hsa-miR-335-3p hsa-miR-4435 hsa-miR-5089-5p hsa-miR-6130 hsa-miR-6848-3p 

hsa-miR-122-5p hsa-miR-197-3p hsa-miR-335-5p hsa-miR-4438 hsa-miR-5095 hsa-miR-6131 hsa-miR-6849-3p 

hsa-miR-1224-3p hsa-miR-1976 hsa-miR-339-5p hsa-miR-4446-5p hsa-miR-5096 hsa-miR-6133 hsa-miR-6851-5p 

hsa-miR-1226-3p hsa-miR-19a-3p hsa-miR-340-5p hsa-miR-4458 hsa-miR-512-3p hsa-miR-6134 hsa-miR-6864-3p 

hsa-miR-1228-3p hsa-miR-19b-3p hsa-miR-342-3p hsa-miR-4459 hsa-miR-5193 hsa-miR-615-3p hsa-miR-6867-3p 

hsa-miR-1236-3p hsa-miR-204-5p hsa-miR-34a-5p hsa-miR-4469 hsa-miR-5196-5p hsa-miR-616-5p hsa-miR-6867-5p 

hsa-miR-124-3p hsa-miR-20a-5p hsa-miR-3609 hsa-miR-4478 hsa-miR-519a-3p hsa-miR-619-5p hsa-miR-6873-3p 

hsa-miR-1247-3p hsa-miR-20b-5p hsa-miR-3612 hsa-miR-4500 hsa-miR-519b-3p hsa-miR-623 hsa-miR-6875-3p 

hsa-miR-125a-3p hsa-miR-21-5p hsa-miR-3613-3p hsa-miR-450a-1-3p hsa-miR-519c-3p hsa-miR-627-3p hsa-miR-6881-3p 

hsa-miR-125a-5p hsa-miR-211-5p hsa-miR-362-3p hsa-miR-4510 hsa-miR-519d-3p hsa-miR-642a-5p hsa-miR-6883-5p 

hsa-miR-125b-5p hsa-miR-215-5p hsa-miR-363-3p hsa-miR-4524a-3p hsa-miR-520a-3p hsa-miR-646 hsa-miR-6884-5p 

hsa-miR-1260b hsa-miR-216a-3p hsa-miR-3652 hsa-miR-454-3p hsa-miR-520b hsa-miR-6499-3p hsa-miR-6890-3p 

hsa-miR-1273e hsa-miR-218-5p hsa-miR-3662 hsa-miR-455-3p hsa-miR-520c-3p hsa-miR-650 hsa-miR-6893-5p 

hsa-miR-1273f hsa-miR-221-3p hsa-miR-3663-5p hsa-miR-4635 hsa-miR-520d-3p hsa-miR-6504-3p hsa-miR-7-5p 

hsa-miR-1273g-3p hsa-miR-222-3p hsa-miR-3666 hsa-miR-4638-5p hsa-miR-520e hsa-miR-6506-5p hsa-miR-7106-5p 

hsa-miR-1273h-5p hsa-miR-223-5p hsa-miR-3667-3p hsa-miR-4649-3p hsa-miR-520g-3p hsa-miR-6511a-5p hsa-miR-7110-3p 

hsa-miR-1277-5p hsa-miR-23a-3p hsa-miR-367-3p hsa-miR-4659a-3p hsa-miR-520h hsa-miR-6512-3p hsa-miR-7111-3p 
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hsa-miR-128-3p hsa-miR-23b-3p hsa-miR-3672 hsa-miR-4659b-3p hsa-miR-526b-3p hsa-miR-6513-5p hsa-miR-7111-5p 

hsa-miR-129-5p hsa-miR-24-3p hsa-miR-3681-3p hsa-miR-4667-3p hsa-miR-526b-5p hsa-miR-6516-5p hsa-miR-7151-3p 

hsa-miR-1304-3p hsa-miR-2467-3p hsa-miR-3689a-3p hsa-miR-4668-5p hsa-miR-532-3p hsa-miR-660-3p hsa-miR-7160-5p 

hsa-miR-1307-3p hsa-miR-25-3p hsa-miR-3689b-3p hsa-miR-4684-5p hsa-miR-548ac hsa-miR-661 hsa-miR-744-5p 

hsa-miR-130a-3p hsa-miR-26a-5p hsa-miR-3689c hsa-miR-4685-3p hsa-miR-548ah-3p hsa-miR-665 hsa-miR-764 

hsa-miR-130b-3p hsa-miR-26b-5p hsa-miR-3689d hsa-miR-4691-5p hsa-miR-548ah-5p hsa-miR-6720-5p hsa-miR-765 

hsa-miR-130b-5p hsa-miR-27a-3p hsa-miR-371a-5p hsa-miR-4695-5p hsa-miR-548aj-3p hsa-miR-6727-3p hsa-miR-766-3p 

hsa-miR-132-3p hsa-miR-27b-3p hsa-miR-371b-5p hsa-miR-4698 hsa-miR-548aj-5p hsa-miR-6731-5p hsa-miR-7703 

hsa-miR-1321 hsa-miR-296-3p hsa-miR-372-3p hsa-miR-4701-5p hsa-miR-548am-3p hsa-miR-6734-3p hsa-miR-7977 

hsa-miR-142-3p hsa-miR-29a-3p hsa-miR-372-5p hsa-miR-4722-3p hsa-miR-548aq-3p hsa-miR-6736-3p hsa-miR-8085 

hsa-miR-142-5p hsa-miR-29b-3p hsa-miR-373-3p hsa-miR-4722-5p hsa-miR-548aw hsa-miR-6741-3p hsa-miR-873-5p 

hsa-miR-143-5p hsa-miR-29c-3p hsa-miR-373-5p hsa-miR-4723-3p hsa-miR-548az-5p hsa-miR-6742-3p hsa-miR-877-3p 

hsa-miR-145-5p hsa-miR-301a-3p hsa-miR-374a-5p hsa-miR-4728-5p hsa-miR-548c-3p hsa-miR-6747-3p hsa-miR-877-5p 

hsa-miR-1468-3p hsa-miR-302a-3p hsa-miR-374b-5p hsa-miR-4731-5p hsa-miR-548d-3p hsa-miR-6749-3p hsa-miR-887-5p 

hsa-miR-148b-3p hsa-miR-302b-3p hsa-miR-375 hsa-miR-4739 hsa-miR-548f-5p hsa-miR-6758-5p hsa-miR-9-5p 

hsa-miR-149-3p hsa-miR-302c-3p hsa-miR-377-3p hsa-miR-4747-5p hsa-miR-548g-5p hsa-miR-6769b-3p hsa-miR-92a-3p 

hsa-miR-149-5p hsa-miR-302d-3p hsa-miR-377-5p hsa-miR-4753-3p hsa-miR-548h-3p hsa-miR-6778-3p hsa-miR-92b-3p 

hsa-miR-150-5p hsa-miR-302e hsa-miR-378a-5p hsa-miR-4755-3p hsa-miR-548j-3p hsa-miR-6779-5p hsa-miR-93-3p 

hsa-miR-153-5p hsa-miR-30a-5p hsa-miR-383-3p hsa-miR-4755-5p hsa-miR-548n hsa-miR-6780a-5p hsa-miR-93-5p 

hsa-miR-155-5p hsa-miR-30b-3p hsa-miR-3913-5p hsa-miR-4756-5p hsa-miR-548s hsa-miR-6785-5p hsa-miR-939-3p 

hsa-miR-15a-5p hsa-miR-30b-5p hsa-miR-3924 hsa-miR-4768-3p hsa-miR-548t-5p hsa-miR-6787-3p hsa-miR-940 

hsa-miR-15b-5p hsa-miR-30c-1-3p hsa-miR-3926 hsa-miR-4768-5p hsa-miR-548x-3p hsa-miR-6788-5p hsa-miR-98-5p 

hsa-miR-16-5p hsa-miR-30c-2-3p hsa-miR-3929 hsa-miR-4772-3p hsa-miR-548x-5p hsa-miR-6790-3p  

hsa-miR-17-5p hsa-miR-30c-5p hsa-miR-3934-5p hsa-miR-4775 hsa-miR-548z hsa-miR-6791-3p  

hsa-miR-181a-5p hsa-miR-30d-5p hsa-miR-3941 hsa-miR-4779 hsa-miR-5580-3p hsa-miR-6792-3p  
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Figure SD IV-1: Mammalian species phylogenetic tree used in the study. Extracted from 

the UCSC genome browser. 
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Figure SD IV-2: Receiver–operating characteristic curves of MirAncesTar classifiers.  
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Figure SD IV-3: Recall obtained by predictors based on each of the individual features 

considered by MirAncesTarMiranda, averaged across 396 miRNAs having more than 200 

known targets in miRTarBase v6. Features are detailed in Methods.  
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Figure SD IV-4: Precision and recall rate by UTR length and PhastCons scores for 

MirAncesTar, Miranda, TargetScan and Diana-microT. (A) Recall with respect to target 

length; (B) Precision (or PPV) with respect to target length; (C) Recall with respect to 

target conservation; (D) Precision (or PPV) with respect to target conservation. 
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CHAPTER V : CONCLUSION 

5.1  Summary of Contributions 

There are numerous of topics of research involving miRNAs, including biogenesis 

(e.g. transcription initiation, precursors folding and transport, processing of the mature 

miRNA), target gene silencing processes, evolution through animal and plants, 

differential expression analysis, implications in physiological processes and diseases, 

etc. This thesis focuses on the development of novel algorithms to predict the mature 

miRNAs sequences and their target genes, where we greatly improved the existing 

methods. I also focused my research on the identification of the period of origin and 

the mechanisms of creation of novel miRNAs in mammals, an evolution topic 

relatively unexplored in the literature.  

In CHAPTER II , I introduce in the miRdup algorithm, a machine learning approach 

for the identification of the most likely position of a mature miRNA within a given 

miRNA precursor. Despite its importance, this is a problem that had received relatively 

little attention in the literature at that time. Moreover, I emphasize that the problem 

addressed in the paper is quite different from that solved by dozens of existing 

computational approaches incorrectly called miRNA predictors, which are in fact 

predictors of miRNA precursors, not of mature miRNAs. I believe that, in combination 

with existing miRNA precursor predictors, miRdup will be valuable to a large 



159 

 

 

community of users, from those interested in the de novo miRNA annotation of new 

genomes to those aiming to analyze short-RNA sequencing data and separate miRNAs 

from other short RNA species. Moreover, the program is able to support multi-loop 

precursors as input, and it has been designed to automatically retrain itself on all 

species of the most recent version of the main miRNA repository, miRbase. It contains 

an automatic updater and is able to train new models depending user needs. In 

consequence, at the opposite of almost all predictions tools, which are trained once, at 

publication time, miRdup will continue to improve as more and better data gets 

inserted in miRbase. Furthermore, beyond introducing a highly accurate predictive 

tool, the manuscript reports key sequence and structural features of the miRNA-

miRNA* duplex that allow its recognition and shows that many of these properties 

differ quite significantly between clades. 

CHAPTER III presents an original approach to determine the period of origin and the 

mechanisms of origination that led to the creation of human miRNAs in the evolution 

of primates. For the first time, ancestral reconstruction is exploited to unveil how many 

miRNAs arose in our genome. We were able to track the genetic modifications that 

led to become Drosha-compatible hairpins. A total of 488 primate’s miRNAs have 

been classified into one of nine different mechanisms of origination. We found that a 

large proportion of miRNAs has been created by accumulation of mutations over time 

(De novo), insertions of non-transposable elements from distal genomic regions, and 

insertions of transposable elements. Our study also adds more miRNAs on those that 

have been already identified to result from transposable elements in other studies. 

I finally present in CHAPTER IV MirAncesTar, a new tool specialized in the 

identification of microRNA target genes. In silico prediction of such genes is a 

challenging task, as the best existing tools have a great difficulty to assign good 

prediction scores to known target genes. For the first time, I propose to apply the 

knowledge of ancestral reconstruction to this field, which allows the tracking of 

targeted sites in genes along ancient genomes. MirAncesTar increases the recall of 
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existing miRNA target genes predictors by 26 to 157%. It implements a new algorithm 

that evaluates the selective pressure that maintains the predicted target site counts in 

evolution, boosted with machine learning. This approach allows the prediction of 

target sites that may be poorly conserved in terms of sequence identity due to target 

site turnover. Moreover, a big strength of MirAncesTar is that it can be applied to any 

single-sequence predictor. As these predictors become better over time, so will the 

accuracy of MirAncesTar. This new method will be valuable to many researchers, 

including those interested in improving miRNA target genes prediction tools, and 

those aiming to analyze miRNA-genes interaction networks. Finally, this study 

promotes the usage of ancestral reconstruction compared to relying on pure 

conservation scores, and thus provides new ideas for other genetic research fields.  

5.2  Perspectives on future work 

Each paper presented in the chapters II to IV has the potential to be improved. I propose 

in this section some directions for enhancements.  

 Mature miRNA prediction 

New programs competing miRdup have already been created by other bioinformatics 

teams around the world and more will come, as this field of research is so dynamic. 

Although the dual purpose of miRdup (i.e. verification and identification of mature 

miRNAs), combined to its capacity to be tailored to any species and its unique auto-

updating function, should make it attractive for a longer time than similar programs, it 

can still be improved. Inclusion of more features of interest could help increase the 

predictions accuracy of the machine learning predictors, This was the route taken by 

miRLocator (Cui et al. 2015), a recent competitor to miRdup, which was only able to 

improve upon miRdup on plant miRNAs. Also, in September 2015, a paper claimed 

to predict the position of a mature miRNA in a given precursor with a higher accuracy 

than miRdup. The new tool, called MatPred (Li et al. 2015a), implements interesting 

features that could be brought to miRdup in order to improve it. Nevertheless, the 
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program, which is not yet publicly available, is trained and evaluated on less than one 

third of human known miRNAs, and authors do not describe how they trained miRdup. 

A fairer comparison would have been to compare MatPred vs miRdup trained on the 

same set of selected human miRNAs. Finally, recently a review from Wang et al. 

(Wang et al. 2015) show that miRdup remained the most accurate mature miRNA 

predictor,,  

Also, in the Summer 2015, our group released an online version of miRdup (Remita 

et al. 2015). This online version will make the tool more easily accessible and 

hopefully increase its utilization. The next step will be to propose to train a miRdup 

model online. Users could then choose the species on which miRdup would be trained. 

 Period of origin and mechanisms of origination of miRNAs 

The proposed approach based on ancestral reconstruction to estimate the mechanisms 

of origination of miRNAs is something new. While we focused our research on 

miRNAs, the same exercise could be performed for other types of RNAs or DNA 

elements. Nevertheless, currently this method has limitations. We couldn’t identify the 

origin of all human miRNAs because many predate the earliest mammalian ancestor, 

and many others were discarded from our analysis because we estimated that the 

precision of the reconstruction was insufficient. This weakness may be attenuated if 

we had more species genomes in the alignment used to infer ancestral states of current 

mammals. As the number of fully sequenced species increases, the precision of 

ancestral reconstructed genome will too and also our ability to accurately identify the 

period of origin and mechanisms of origination. Recently, a bigger alignment of 100 

species has been made publicly available on the UCSC genome browser. It would be 

interesting to repeat this whole work on this new dataset. Also, if the understanding of 

mechanisms of creation of miRNA or other genetic elements increases, the same study 

can be performed from other alignments of various species.  
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Finally, this work has generated a lot of data and it would be interesting to create a 

website that would present all these results (e.g. ancestral states, sequence evolution 

of miRNA genes, blast results, etc.), to better explain the history of miRNA genes.  

 MiRNAs target gene prediction 

MirAncesTar relies on ancestral genomes to boost the accuracy of existing single-

sequence target site predictors. It provides very good results but requires heavy 

computing resources, mainly because predictions of a miRNA target gene predictor 

must be computed over all ancestors and orthologous species of choice. Also, if a user 

wants to try other predictors than those tested in our paper, he will need to code a 

parser to extract information from of the predictions output, then execute MirAncesTar 

to calculate the features that have to be submitted to a logistic regression classifier. We 

provide in the user manual of mirAncesTar all guidance to go through these steps. 

However, it would be conceivable to develop a program that automates parsing and 

learning tasks to make it more user-friendly. For example, for the second step, one 

would create an automatic parser where a user could provide or select the column IDs 

used by MirAncesTar. Then, it would be possible to develop a similar tool such as 

miRdup, which supports auto-learning, adapted to handle a much larger amount of 

input data.  

MirAncesTar has place to improvement. More features could be calculated to increase 

the prediction accuracy, such as considering target site positions within the UTR, or 

maybe considering the possibility that a target for specific miRNA could be replaced 

by one for another miRNA. In other words, the target site would still exist, but for 

another miRNA. In that case, we would need to use more than one miRNA at a time. 

Also, to make MirAncesTar more visible, a web server will be developed. Ideally, we 

would like to create a platform offering the possibility to get the target genes of a given 

miRNA and vice versa. For each interaction between a miRNA and its target gene, we 

would provide various types of information supporting the prediction (i.e. prediction 

scores, experimental validation if exists, etc.) and a picture of aligned putative target 
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sites in every orthologs and ancestors, similar to the Figure IV-5, showing the cases 

under turnover. 

Finally, currently, the large majority of target genes predictors, including 

MirAncesTar, restrain the research of targeted sites within genes’ UTRs. Nevertheless, 

in recent years, there has been increasing evidence that miRNAs also bind in the genes’ 

coding regions (CDS) (Hausser et al. 2013b). If these genes’ regions are taken in 

account, new challenges will arise for in silico research of putative miRNAs target 

genes, especially because the targeted sequence length to analyze will increase, and 

also because since CDS are generally much more conserved than UTRs, it will lead to 

a higher rate of false positive predictions. Moreover, calculation times are known to 

be heavy in the research of target genes, thus there is place to improving algorithms 

that would reduce execution time. 

 Other advances 

Although I have not focused my research in this thesis on pre-miRNAs prediction, we 

rely on these predictions for miRdup and for the identification of miRNAs’ periods of 

origin. Indeed, miRdup is a post-processing tool that predicts and validates the position 

of mature miRNAs on predicted or experimentally validated pre-miRNAs, and we 

were able to predict the period of origin of miRNAs by predicting pre-miRNAs in 

ancestral genomes. Prediction of miRNA precursors is relatively accurate, but recent 

discoveries in the miRNA biogenesis could bring further improvements in the mature 

and pre-miRNA prediction field. It has been shown in a recent study that Drosha serves 

as a “ruler” by measuring about 11 bp from the basal ssRNA-dsRNA junction (Nguyen 

et al. 2015) and approximately 22 bp away from the ‘apical’ junction linked to the 

terminal loop (Ha and Kim 2014). Also, Drosha and DGCR8, respectively, recognize 

the basal UG and apical UGU motifs, which ensure proper orientation of the complex 

(Figure V-1). No existing predictor take in account the pri-miRNA. This sequence can 

be retrieved from the human genome, based on pre-miRNA coordinates. Starting from 
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that molecule instead of the pre-miRNA and using the features recently discovered 

could lead to a better prediction of miRNAs molecules.  

 

 

Figure V-1: Model of the functional Microprocessor on a pri-miRNA molecule (Nguyen 

et al. 2015).  

Another work that would be useful for miRNA research is the creation of a tool that 

transcribes old miRNA names to the recent nomenclature. Since its creation, the main 

miRNA registry, miRbase, has adapted its nomenclature to novel discoveries. Thus, 

the comparison is often laborious when the results of old miRNA-related programs 

have to be tested and compared to new tools. The correspondence tool, ideally online, 

would offer name translation of input miRNA names between miRbase versions. The 

user would select the version of input miRNA names and a destination version. The 

implementation would consist of gathering all miRbase databases versions, and make 
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the correspondence between miRNA names based on their accession ID, which hasn’t 

changed since miRbase creation.  

In conclusion, miRNAs research is a young field that has started 15 years ago. Many 

discoveries helped to understand their implication in living beings and revolutionized 

the way we think about non-coding parts of the genome (often been referred to as "junk 

DNA") and post-transcriptional regulation, but a lot of work remains to do. For 

example, we do not clearly comprehend exactly how Dicer select the mature miRNA 

on a pre-miRNA hairpin, or how mature miRNAs select their target sites. Once these 

processes will be much more understood, and they will, better prediction models will 

arise. Finally, I believe that a great therapeutic potential reside in miRNAs, especially 

in the form of cancer biomarkers. MiRNA-based diagnostics have already reached the 

clinic in laboratory-developed tests. Maybe one day, to cure some diseases, 

synthesized miRNAs will be used in next-generation drugs to artificially restore the 

regulation of specific genes. The miRNAs’ story is just beginning! 
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