
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of thl. reproduction la dependent upon the quallty of the

copy aubmltted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g.• maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and continuing

from left to rigtit in equal sections with small overtaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

•

.~ COlVlPREHENSIVE i\PPROi\CH TO ARRAY BOUNDS
CHECI(ELIlVIINi\TION FOR Ji\VA

by
Feng Qian

School of Cornpllter Science
;\·lcGill C niversity.)'Iontreal

~Iarch 2001

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RE5EARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MA5TER OF SCIENCE

Copyright © 2001 by Feng Qian

1+1 National Library
of Canada

Acquisitions and
Bibliographie services
315 WeIingIDn StrMt
oaawa ON K1A 0N4
CAnIldI

BibIiott*Iue nationale
du Canada

Acquisitions et
services bibliographiques

_.rueW~
ae-ON K1A0N4
can.ca

The author bas gnmted a non·
exclusive licence alloWÏDg the
National Library ofCanada to
reproduce, loan, distnbute or seD
copies of this thesis in microform,
paper or electronic formats.

The author retains ownershîp ofthe
copyright in this thesis. Ncither the
thcsis nor substantial extracts nom it
may be printed or otherwise
reproduced without the author's
permission.

L'aute1D' a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la fonne de microfiche/~ de
reproduction SlU' papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse Di des extraits substantiels
de celle-ci nc doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-70489-0

Canadl

•

•

•

Abstract

The Java progralnluing language requin~s array reference range checks at l'un time
to guarantee a program's safe execution. If the array index exceeds the range. the
run-tiruc en\'ironluent Illust throw an IndexOutOfBoundsException at the precise
progranl point wherc the array reference occurs. Compilers generate conditional
brandI instructions for implementing array bounds checks. .-\ brandl instruction
has great perfOrtIlance penaltics in modern pipelined architectures. .-\lso. it 1l1akes
IHany other optimizations difficult. For array-intcnsive applications. array bounds
checks lllay cause a hea\'y run-tinle o\·crhead. and thus it is benefidal to eliminate
aH checks which a statie allalysis can proye to be llnneecled. Array houncls checks
are requircd by saine other languages such as .-\da and Fortran. and sornc bounds
check elirnination algorithrns have been developed for these kinds of languages. How
ever! these algorithnls are not directly applicable for .Java applications because of the
precise-exception requirenlcnt of the language.

\Ve present a new approach to eliminate array bounds checks in Java by using
statie analyses. Our approach is based upon a flow-sensitive intraprocedural analysis
called variable constraint analysis ('VC.-\). VC.-\ collects constraints between locals
related to array references. The array bounds check problem is fonnulated as solving
a system of difference constraints. The analysis builds a small constraint graph for
each important point in a method! and then conlputes the shortest-path weight of
the graph. The shortest-path weights froni upper bound to array index and from the
index to lower bound indicates the safety of checks. Using \·CA as the base analysis.
we also show how two further analyses can improve the results of VC.-\. Array field

analysis is applied on each class and provides information about sorne arrays stored in
fields! while rectangular array analysis is an interprocedural analysis to approximate
the shape of arrays~ and is useful for finding rectangular (non-ragged) arrays.

ii

•

•

•

\Ve have implemented aU three analyses using the Soot bytecode optimizationjanno
tation framework and we transnlit the results of the analysis to virtual machines using
class file attributes. \Ve have modified the Kaffe JIT. and IB~rs High Performance
Conlpiler for .Java (HPCJ) l to luake use of these attributes. and we denlonstrate
significant speed-ups.

l The experiment on HPCJ was conducted by Clark Verbrugge.

iii

•

•

•

Résumé

Le langage Java vérifie les \'aleurs des indices de tableaux durant l'exécution pour

garantir une exécution slne. Si l'indice est supérieur à la taille du tableau, l'environne
rnent d'exécution produit une exception IndexOutOfBoundsException à l'endroit

précis du prognuIlrIlc oil 1ïndice de tableau fautif apparah. Les coulpïlatellrs génèrent
des instructions de brancheruents conditionnels pour irnpléruenter cette vérification.
L'ne instruction de branchernent est très pénalisante dans les architectures en pipeline
n10dernes. et rend difficiles beaucoup d'autres optirIlisations. Pour les applications qui
utilisent beaucoup de tableaux, la vérification des lirnites de tableaux peut causer une
iruportante élugrnentation du ternps d'exécution, et il serait donc bénôfique (réliruiner

toutes les \'érifications qu'une analyse statique révélerait inutiles. Les ':érifications de

liruites de tableaux sont nécessaires pour certains langages con1n1e Ada et Fortran. et
des algorithmes d'élirnination ont été développés pour ceux-ci. Or ces algorithn1es ne
sont pas directernent applicables à Java de par la présence du mécanisme cl'exceptions
du langage.

~ous présentons une nouvelle approche pour éliminer les vérifications de limites
de tableaux en Java par des analyses statiques. Xotre approche est basée sur une
analyse intraprocédurale et "flow-sensitive~' appellée analyse à contraintes variables
(VCA). La VCA collecte les contraintes entre variables locales liées aux indices de

tableaux. Le problènle des \'érifications de limites de tableaux est formulé comnle un
système de difl'érence de potentiels. L ~ analyse construit un petit graphe de contraintes
pour chaque point important de la méthode et calcule la valeur du plus court chemin
du graphe. Les valeurs des plus courts chemins de la linlÎte supérieure à la valeur de
l'indice et de l'indice à la limite inférieure indiquent l'utilité de la vérification. En
utilisant VC.-\ comme analyse de base, nous montrons aussi comn1ent deux analy
ses plus poussées peuvent améliorer les résultats. L'analyse des chu'mps tableaux est
appliquée sur chaque classe et fournit des informations sur certains tableaux utilisés

iv

•

•

•

dans les chanlps. tandis que l'analyse de tableaux rectangulaires est une analyse inter
procédurale d~approximationde la forme des tableaux multi-dimensionnels. qui est
utile pour trouver les tableaux rectangulaires.

Ces trois analyses ont été irnplémentées avec la structure d'optimisation et d'anno
tation Soot gràce à laquelle nous transmettons les résultats de nos analyses aux ma
chines virtuelles Java par le biais des attributs des fichiers classes.)Ious avons modifié
le .JIT de Kaffe. ainsi que le High Perfornlance Cornpiler for Java (HPC.J) dlB)..[:!

pOUl" utiliser ces attributs et nous montrons les ëlInéliorations significatives qui en
résultent.

2L'expérience sur HPCJ a été réalisée par Clark Verbrugge.

v

•

•

•

Acknowledgements

This thesis would not he writtcn without the help from others. First of aH. [would
like ta give special thanks to aiY advisor. Laurie Hendren~ who led me ta the fantastic
\Vorld of cornpilers. ~ot only she gave great hclp in acadernic research. but also
providcd personal support and consistant encouragenlent. Her cheerful nature and
enthusiasnl rnakc the group full of fun. 1 would also like to thank Karel Dricsen for
teaching rne many things about conlputer architectures and object-oriented langallges.

Special thanks go ta the authors of Soot on which the experinlental part of thesis
is based. Raja Vallée-Rai designed and irnplerncnted bealltiflll ,J[~IPLE [R and APIs

which nUlke the implcruentation much casier. ~Iany llseflll tool classes designed by
Patrick LarIl are bases of rny analysis. 1 also lcarned many 00 design patterns from
their code. Pa.trice Porninville's work on class file annotation nlakes the experinlent
on l'cal Java \'irtual machine possible. 1 would also like to thank other menlbers in
Sable Research Group. Etienne Gagnon. his advise on carcel' is invaluable. .JeronlC
~liecznikowski. Fabien Deschodt. and Felix Kwok~ wc got so ruuch fun fronl many
talks wc had. 1 also appreciated .Jeronle~s proofreading of the thesis~ and Fabien!s
help on translating the abstract to the french version,

Finally~ 1 would like to thank my family members. my parents and my uncle. who
support me at ail time. This thesis is also a special gift to my wife. Beibei. who
shared nlY happiness and sadness every day.

vi

•

•

•

Contents

Abstract

Résumé

Acknowledgements

1 Introduction

1.1 Array bounds checks in Java: the problerIl

1.1.1 Elirninating unnecessary array bounds checks in Java

1.2 500t: background . .

1.2.1 .JI~[PLE: il typed 3-address IR

1.2.2 Intraprocedllral analysis tool classes.

1.2.3 Cali graphs .

1.2...1 Class file annotations . . .

1.3 Thesis Contributions

1...1 Thesis Organization .

2 Analyses

2.1 Variable Constraint .-\nalysis .

2.1.1 Systems of difference constraints .

2.1.2 Variable constraint graphs

2.1.3 Data-flow analyses ..

vii

ii

iv

vi

1

3

6

9

9

Il

Il

12

12

15

16

16

17

20

32

•
:2.1.-l Improving the perfornlance of the algorithnl

2.1.5 Running tinle analysis

2.1.6 Revisiting the example

2.2 .-\rray Field .-\nalysis

2.3 Rectangular .-\rray Analysis

2.:3.1 CalI graphs

2.3.2 Recover array initializers .

39

-l2

-l3

-15

-l8

-19

.jü

2.-1

2.3.3 .-\rray type graphs

Other Enhancements

:\ u1l Pointer .-\nalysis

-.)
;j-

5-1

57

•

•

3 Experimental Results

:3.1 Experinwntal ~Iethocl .

:3.2 Benchnlarks......

3.:3 DynanlÎc characteristics of the algorithlll

3.-l Array Boullds Check Attributes .

:3.5 Dynarnic Rcsults and Discussion .

4 Related Work

5 Conclusions

A Implementation classes in Soot

viii

58

59

59

61

63

66

70

76

82

•
List of Figures

1. L IndexOutOtBolludsException examples

1.2 A precise-exception exarnple)

1.3 Corllpare mllltidiIllcnsional array shapes 6

1.-1 A ref(~rencc to two-dimensional array in Java

2.10 Control-fla\\' graph of basic blacks

2.11 VCGs of the black B

2.12 Tracking clown the array length.

2.13 Rectangular array example.

1.5 Exalnple of .JI~IPLE representation

1.6 Exarnplc of DL·-L·O webs .

-19

-15

20

29

29

LO

10

L:3

L8

19

:30

:31

40

41

4-1

A VCG exanlple: Java source code

.\ \'CG exanlple: .JI~IPLE code and difference constraints

The constraint graph before $i1 = aU]

:\ negative cycle.

The negativc cycle at P:

Transiti\'ity of inequality edges

The status of constraint graph changes

Pseudo-code of the worklist algorithm ..

An infinite for loop

Soot annotation

2.8

2.9

2.6

.) _..

2.2

2.1

.) _.;J

1.7

2.3

2.-1

•

•

ix

•

•

•

2.1-1 Recover the creation of rectangular arrays

2.15 Propagation graph

2.16 Traverse the graph.

:3.1 .-\rray Bounds Check :\ttriuute

:3.2 ~(odifil'd Kaffe InternaI Structure

:3.3 [sing attributes in Katre \'~\l

:3.-1 Dynanlic Results of VCA

3.5 Speed-ups for Kaffe and HPC.J

-1.1 Conlparing the VC.\ and .\SCO constraint graphs.

x

51

5-1

63

6-1

6'::>

6i

68

7-1

•

List of Tables

2.1 ~Ierge t\Vo t'tige weights .)--,
2.2 Liveness for array referl'Ilces :3-!

2.:3 Stateluents genel'ating constraillts 38

2A The rule for llpdatillg the field table. -!G

.) - The state machine for matching two-dilllensionai arrays . 51_.0

• :3.1 Characteristics of the bCllchluarks 61

:3.2 Charactcristics of the aigorithlll 62

• xi

•

•

•

Chapter 1

Introduction

The Java progranuning language is beconüng increasingly popular for the iInpleInen
tation of a \Vide nuiety of application programs. including loop-intensive programs
that use arrays. Java offers Inany desirable fcatures sueh as objcct-oriented software
design. cross-platfonn portability. safe execution. and IUélny support dass Iibraries .
By prograIIlnling in .Java. a progralunler can increase productivity while writing safe
code. :\Iso the prograIIl ean be written once and l'un everywhere. These attractive
features. however. cause perforrnance penalties. The object-oriented feature relies on
virtual nlethod caIls: the cross-platfornl portability is accomplished by interpreting
and/or just-in-time cornpiling bytecode: and the safety is secun-~d by "arious com
piler and run-time checks. e.g. dass file verification. (uray bounds checks. Hull pointer
checks. and type checks. Because of these expensive operations. a Janl program
usually is luuch slower than its counterpart in C/C++.

.-\ .Java progranl is compiled to a class file in bytecode format. The bytecode class
file is executed by a virtual rnachine (\":\1). The Ja"a programming language has its
own specification [iaL which defines the syntax and semantics of the language. The
.Ja\11 virtual machine specification [17] defines the bytecode fornlat and the run-time
support environment. The bytecode class file can be executed in several ways. In
an internet environment. the class file is loaded and executed br a virtual machine.
The \·~I can interpret the bytecode! or use a Just-In-Time compiler to translate
the bytecode to native code and execute it by hardware directly. In this case. the
interpretation and/or compilation time contributes to the total execution time of the
program. In other fields! such as scientific computations and real-time applications,

1

•

•

•

aIl the class files of the application can be compiled to native code by an Ahead

Of-Tirne (:\OT) conlpïler before execution. In this case. the cOInpilation time can

uSllally he ignored.

To speecl up the execution of Java progranls, a general approach is to bllild a

sophisticated virtual nUlchine. which includes a class file loader and verifier. an in
terpreter and/or .lIT ~onlpi1er(s). and a garbage collector. :\ naive .JIT conlpiler [15]
translates bytecode to native code without perfornling rnany optinlizations (it ntay

perform sorne simple optimizations within basic blocks). Sophisticated .nT contpilers

[5. :30. 1. Il] apply traditiollal and adaptive optirnizations on the process of transla

tion. It has been proved that .Just-In-Time cornpilation makes the execlltion of .Java

programs much faster than interpretation. Because the conlpilation tinle accollnts il

part of the progrilrIl execution time. il .lIT cornpiler can not afford many advanced
optirnizations which are llsually expensi\'e.

.-\llother approach to intprove the performance uf .Java prograrns is to OptllIllZe

the bytecode and perfonn relatively expensi\'c analyses statically. The optimizations

can target cither space reduction. which removcs unused fields and nwthods [rOl11

c1ass files. or perfonnance irnpro\'(~nlent. ~Iany traclitional analyses can be applied

to bytecode and procluce good-quality bytecode class files. Such optiIllizations in

duel€' COlnnlon subexpression elimination. deadcodc renlova!. static inlining. and so

on. .-\notller group of analysis results cannot be reflected by transfornüng bytecode
directly. for exanlple. array bounds check elinlination, type check renIova!. and stack

object allocation. But these analysis results can be used by a virtual ntachine or an
.\head-Of-Tinte conlpiler (the optimizations can be built in :\OT compilers). The

analyses are not linlÎted in coulpilation from bytecode to native code. they can also

irnprove menlory managen1ent. task organization. and so on. This approach rno\"es

the performance burden from running time to statie compilation tirne~ and allows us
to optimize the class file once for reuse by nlany V~,Is at any time.

The focus of this thesis is on reducing the run-tinle overhead caused by array
bOllnds check instructions (and partially null pointer check instructions). \Ve are
llsing static analyses to analyze .Java applications at the bytecode level. The results
are encoded in the class file as attriblltes. .\ .JIT or .-\OT compiler understands the

attributes and removes the bounds check instructions which are nlarked as unneces

sary. The algorithm can also be implemented in an .-\OT compiler. :\lthough the

algorithm was developed for .Java. it also can be implemented in compilers for other
imperative languages which require arra)' bounds checks.

2

•

•

•

The rest of this chapter is organized as f01l0ws. Section 1.1 introduces the prob
lenl of array bounds check elimination in Java. Section 1.2 describes the franlCwork
on which our analyses are implemented. Thesis contribution and organization are
presented in Sections 1.3 and 1.-1.

1.1 Array bounds checks in Java: the problem

In languages Iike C. a nlajor source of potential errors is illegal nlemory accesses. For
exarnple. writing to the region outside of an array can cause unanticipated conse
quences. Java pro\'ides secure and safe execution of progranlS..\s part of the safety
systerll. array bounds checks are used ta detect memory violations due ta illegal array
accesses. The Java language specification reqllif(~s that an exception has to be raised
for any array access in which the array index expression evaluates to be out of bonnds.
Figure 1.1 gives several exanlples that raise IndexOutOfBoundsExceptions. [n ad
dition to the IndexOutOfBoundsException exception, an array rererence will thra\\'
a NullPointerException if the array object is nul!. and the virtual nlachine will
not check the array bounds. The Java language specification also reqllires that the
exception has to be thrown at the precise point where the exception happens because
user code can catch such exceptions or dunlp stack traces for debugging purposes.
Exet:utioll of an array reference bytecode (e.g. iaload 1 istore) needs a null pointer
check first. and thcn check~ of both lower and upper bounds. The lower bOllnd of
an array refcrence is fixed to the constant O. and the upper bOllnd is 1 less than the
array length stored in the array abject. Both lower and upper bounds t:hecks must
be satisfied. The exceptions for lower and upper bounds checks are the sanle.

int a = new int[10];

(1) a[-l] = Il lower bound out of range••• J

(2) a[10] = Il upper bound out of range••• 1

(3) for (i=O; i<=a.length; i++)
a[i] ... J Il upper bound out of range

Figure 1.1: IndexOutOtBoundsException examples

3

•

•

•

.-\ direct irnplementation of checks for one array reference adds three conditional
brandI instructions: 1) if the address of the array object equals zero. branch to a
routine raising a null pointer exception. 2) if the index is less than zero. raise an
array bounds out of range exception. and 3) after reading in the array length. if the
index is greater than the array length minus 1. l'aise an array bounds out of range
exception. Sonle well-known techniques can reduce three brand1 instructions to one
in most of modern architectures (e.g. x86. PPC). The null pointer check does Ilot
need an explicit check instruction when the hardware is capable of catching Illell10ry
accesses to the first page (page address starting fron1 zero). Csually the anay
length field is located near the object head. Thus. reading in the field frorIl a null
object would cause a hardware trap and the trap hancHer would raise il null pointer
exception. Lower and upper bounds checks can be irllplcrncnted by one unsigned
cornparison instruction because any ncgative integer is greater than any positive one
when it is treated as an llllsigned integer.

.-\lthough wc l'an usp the abon~ «.\chniques to redllce the cast of checks. at least
one conditional brandl instruction is still rweded for each array aCCflSS..\ naive .lIT or
AOT conlpiler inserts checks for each array access. which is clearly illefficient. These
checks cause a prograrn to execllte slower due to bath direct and indirect effects of the
bounds check. The direct effect is that the bOllnds check is tlsually irnplementcd via
canlparison and brandi instructions. and thus each array access ha~ this additional
o\·crhead. The indirect effect is that these checks also linlÏt further optimizations
becêluse the Java \'irtual nlachine specification requires precise exception handling.
This limits code mO\'enlent and also limits many effective loop transformations which

are comn10nly used in high-perforrnance C and Fortran compilers [21 1. Furtherrnore.
this saUle precise exception requirernent limits prograrn transformations that optin1Îze
the run-time checks. For example. checks cannat be nlOved to earlier program points
if this changes the exception beha\'ior of the program.

The problem of elinlÏnating array bonnds checks has been studied for other lan
guages and statie analyses have been shown to be quite snccessful[12. 13. 161. Ho\\'
e\·er. array bounds check analysis in Java presents several special challenges. Firstly.
the length of an array is determined dynamieally. when the array is allocated. and thus
the length (or upper bounli) of the array nlay Ilot be a known constant. Secondly.
arrays in Java are objects~ and these abjects may be passed as references through
method caUs. or may be stored as a field of sorne objects. Thus. there may be a
non-obvious correspondence between the allocation site of an array and the accesses

•
ta the array. Thirdly, multidimensional arrays in Java are nat necessarily rectangu
lar. and sa reasonillg about the lengths of higher dinlensions is not simple. Finally.
techniques that require transforrlling the program or inserting checks at othe1' earlier
program points are Ilot as applicable in Janl as in other languages with less strict
sernantics about exceptions.

Figure 1.2(a) shows a piece of code which needs t\\'o checks for two array references.
SanIe well-known algoritluns[12, 1:3. 16] can nIerge two checks to olle as in 1.2(b) .
.-\'lthough the change reduces t\Vo checks ta one. the new code does not have sanIe
exception behuvior as original one. Consider that the length of the alTay is -1. In (a)

the exception is raised 1>efore the second array access a [5] . and in (b) the exception
happens before the first rpferenee. The problern is that a user Illay write a try-catch
clause ta catch the exception and do SaIlle rl'cover work. The catch statenlCnt would
get different value of i for the two different cases. The second treatIllent violates the
precise exception requirenlent of the Java language.

• int a = new int[k];

; if a.length <= i
raise exception

a[i] . .. ;

; if a.length <= i+l
raise exception

a[i+l] ... ;

Ca) original checks

int a = new int[k];

; if a.length <= i+l
raise exception

a[i] . .. ;

a[i+l] ...

Cb) merged check

•

Figure 1.2: .~ precise-exception example

~Iultidimensionalarrays are the most common data structures in scientific COIT1

putation. \"ectors and matrices in linear algebra are represented as one- and t""O
dimensional arra~<·s (we have used a few in our benchmarks). To make Java as
competitive as C and Fortran~ operations on multidimensional arrays must be per
formed efficiently. In C or other languages, a two-dimensional array is allocated in a
contiguous memory block as in Figure 1.3(a). However, .Java defines a multidimen
sional array as an array of arrays. See Figure 1.3(b) which is a legal array shape in

5

•

•

Java. Sub-arrays are independent and t:ëln ha\'l~ dift'erent lengths. Ta deal with this.
a reference ta the set:ond cliruension in source code is ÏlllplenlCnted in bytecode by

two array references. as in Figure 1.-1. The bytecode instruction set provides only
one-dintensional array access and accesses to IllultidiIllellsional arrays are perforrned
one dinlCnsion at Cl tirlle. This definition Inakes the multidirnensional array be a very
loose structure. and the sub-arrays Illay not aIl be the saille length. or sub-arrays may
he references ta the same array object (aliased). or they coulcl even be nul!.

o 2 345

o
I---+---+--+---+-+-.......

l
..,

3
t---+---+--+---+-+-"'"""'i

4

(a) .-\ two-dimensional array in C

o
l

2

3

4

(b) .-\ two-dinlensional anay in Java

Figure 1.3: Conlpare multidimensional array shapes

1.1.1 Eliminating unnecessary array bounds checks in Java

•

This thesis describes a flow-sensitive. intraprocedural algorithm called variable con

.stra-int analysis (VCA for short) that cao prove that nlany array references are safe.
without transforming the original program. The algorithm colleets differences eon
straints. and builds a eonstraint graph for eaeh array reference. Then it uses the
graph ta infer the relationship between the index of the array reference and the ar
ray's length. The algorithm was designed carefully to take advantage of the faet that

6

•

•

•

int [] [] l = new int [10] [10] ;

1[2] [3] = 10;

a) Java source code

bipush 10
bipush 10
multianewarray <[[1> 2 (2)
astore_l
aload_l
iconst_2
aaload
iconst_3
bipush 10
iastore

b) Bytecode

$rl = multinewarray int[lO] [10];
$r2 = $rl[2];
$r2[3] = 10;

c) More readable JIMPLE code

Figure 1.4: A. reference to two-dimensional array in Java

\'ariables used in index expressions often ha\'e very short lifetimes. and thus build
ing graphs for only live variables of interest leads to \'ery slnall graphs, Further, wc
tuned the worklist algorithnl to rcduce the numher of iterations. .-\s a result. the
actual running time is linear in the size of the rnethod being analyzed.

\Ve have inlproved the base VC.-\ algorithm using t\Vo additional analyses: aTTay

field analysis is applied to each class and provides information about sorne arrays
stored in fields~ while rectangular array analysis is an interprocedural analysis based
on caU graphs to approximate the shapes of arrays.

Java is a class-based object-oriented language, Each class can declare fields. and
each field has a modifier which defines the access privilege to it. ATTay field analysis

..
1

•

•

•

takes advantagc of the faet that updates ta final or private fields are lirnited. A
final type field ean only he assigned once in its dedaring class..-\ private field ean
only he assigned in the cleclaring dass. By analyzing assiglllnents to such fields. we
can often idcntify fields whieh always hold sorlle constant lellgth array objects. Such
infornultion ean pass the bound of rnethods and be utilized by aU nlethods of the
dass.

For prograrns using nnlltidinlensional arrays. \"CA does Ilot know any information
about sub-arrays. Even if the progranuner knows ail sub-arrays have the same length.
a conservative approach must assume that sub-arrays may ha\"e different lengths.
Recta'flfJ'lI.lar an'ay analysis ainls ta deternline if an array is guaranteed to be rectan
gular. Le. aU sub-arrays IUl"e the same length. Rectal1gular array infornlC:ttion can be
used to rllakc \'CA nlOrc powerful by aUowing \'CA to include sub-array accesses,

AIl three analyses have becn iruplemented using the Soot byteeode optinlization
frarllework[3--l. :331~ but could be easily irnplemented in other cotnpilers with good
internwdiate representations. The Soot fnunework converts bytecode fronl dass files
into a typed 3-address represcntation called .JL\IPLE. and the analysis is inlplemented
on this l'l'presentation. In order to cotl\"ey the results of the analysis to \"irtllal rna
chines wc use the tagging/attribllting capabilities of Soot ta tag each array access
instruction ta indicate if the lower bound and/or upper bOllncl checks can he elimi
nated. .\Ioreo\'er, a sinlple intraprocedural Hull pointer analysis generates null pointer
check attributes about array rel'erences, The Soot fraluework then produees bytecode
output. with the tag infornlation stored in the attributes section of the c1ass files, \ïr
tuaI rnachines or ahead-of-time bytecode-to-nati\'ecode cOlupilers can then use these
attributes to avoid l'nlitting bOllnds checks basl'd on the attriblltes, \Ve have instru
nlented bath the Kaffl' .JIT and 18.\[HPC.J ahead-of-time compiler to l'l'ad these
attributes.

\Ve have experimentl'd with 10 benchrnark progranls~ induding 5 spec.JV~[bench
nlarks. 3 kernels fronl the scimark2 suite 1 and 2 array-based bl'nchmarks we impll'
nlented according to standard algorithrns. First~ we measured the complexity of our
base VCA analysis. measuring both the maximum and average sizes of the constraint
graphs. and the average nunlber of times each black \vas analyzed. These results show
that the analysis is practieal. \Vith snlall graph sizes (nlïl.xirnum size 13) and a la\\"
number of iterations (average always ll'ss than 3). \Ve then nleasured the dynamic
behavior of array bounds checks and compared the synthetic case when aIl bounds

l.-\vailable at http://math .nist ,gov/scimark2,

8

•

•

•

checks are removed (an upper bound of \Vhat could he achieved with static analysis
) and the results of our analysis. ~ot surprisingly. we found that it was much harder
to eliruinate upper array bOllnds checks than lower array bouncls checks. \Ve showed
that the base "C.-\. algorithrll couId eliluinate from 3% to 60% of both the lower and
upper bOllnds checks for array rl'ferences. while adding the array field analysis and
rcctangular array analysis iluproved these results. In five of the benduuarks we could
elinünate 60~ or [11ort' checks and in three of those cases we l'liruinate nlore than
999é of the checks. \Ve also pro\'ide run-tilne speed-ups. and wc showed significallt
spced-ups for both the Kaffe \.~[and IB~rs HPC.J.

1.2 Soot: background

\\Oc illlplc[uented algorith[llS on the Soot franlcwork bccause it provides a stacklcss.
typcd. 3-address interr11ediate l'l'presentation. Ali analyses work on this IR. Some
Soat utility classes alleviate the work of dc\·clopment. Furthennore. the analysis
results are passed to class files llsing Soot's attribute annotation functionality.

Soot is a Java bytecode optinlization and annotation franlework[28. :1-1]. Soot
rcads in a bytecode class file. couverts it to an intennediate l'l'presentation forul
calleel .J[~[PLE. which is a typed 3-address code. Static analyses and transfonnations
are performed on the .JI~IPLE IR. After that. the .JD.IPLE IR is written back to the
dass file bytecode fornlat.

In Soot. a bytecodc class is represented with a SootClass object. Fields and
rnethods are represented as SootField and SootMethod objects. respectively. A
SootMethod abject may IH\\'e a method body. which consists of a chain of .JD.IPLE
stateluents..-\nalyses can eithel' directly optilnize the .JI~[PLE statements by chang
ing instructions (e.g. peephole optinlizations. CSE. and static inlining). or encode
results in class file attributes which can be used by a Jaxa virtual [nachine (l'.g.
bounds checks and null pointer checks).

1.2.1 JIMPLE: a typed 3-address IR

JI~IPLE is a 3-address (stackless) intermediate representation of bytecode. It sim
plifies the representation of more than t\Vo hundred types of bytecode instructions
to about seventeen types of .JHvIPLE statements. A JI~'IPLE statement is a typical

9

•
3-address code. which is suitable for ffiêlll'y analyses and optinlizations. Readers can
get detailed description fronl [33]. Here [would like to describe SOIlle features used
for the analyses presented in this thesis.

Locals in .J[~IPLE code are typed by il statie type inferenee systeIu[8]. The
operands of a statcment have dedarcd types. Based on these types we can deter
mine if a rnethod inyolves arrays by exanlining the types of its locals.

A static analysis on .JI).IPLE is sirnplificd since each .JI~IPLE statemcnt has only
one conlplex feature. Figure 1.5 shows an example. An assigIlInent l'ranI a field
reference to an array referencc is achievcd by using a local ,·ariable. The focus of the
first statement is the field referenee. and the second stateIllent eIuphasizes the array
referenee.

Figure 1.5: Example of JINIPLE representation•
a[i] = o. f;

a) Java code

Sri = o.f;
a[i] = Sr1;

b) Jimple code

To further inlprO\'c the results of analysis. local \ï:ll'iables are split nsing def
use/use-deI' webs. which is a sinlple alternatÏ\'e to 5S.-\ fornl. Figure 1.6 shows an
exaruple of the original Jaxa code and the resulting .JI~[PLE code. It shoulcl he dcar
that two assignments ta variable a are split to t\Vo ullrelated \"è:lriables ri and r2.

a = new int[10];
a[i] = ...

a = o.f;
a[i] = ...

a) Java code

ri =new int[lO];
ri [il] = ... J

r2 = o.f;
r2 [il] = ... ;

b) Jimple code

•
Figure 1.6: Exanlple of DU-UD webs

10

•

•

•

1.2.2 Intraprocedural analysis tool classes

For a luethod with bytecode. the Soot franlework provides various control graphs.
\Vith or without exception edges. on the unit base or basic blacks. and sa ail, .-\

set of well-irIlplemented tool classes nHlkes data-fla\\" analyses (flow-sensitive or flow
insensitive) easy (sel' the package soot . j imple. toolkits).

Here. 1 describe il few classes used by \"C.-\:

BlockGraph iruplprnents a control-f1o\\' graph (eFG) for a rnethod body where

the llodes of the graph are basie blacks.

BackwardFlowAnalysis pro\'ides the fixed point itl'ration funetionality required
hy aU backward fla\\" analyses. \·C.-\ extellds the BaekwardFlow:\nalysis t.o

COlllpute live loeals related to array references.

ForwardBranchedFlowAnalysis proddes fllnetionality for branehed forward flow
analysis. .-\ branehed flow analysis cau propagate clitfercnt infonnation ta the

successors/predecessors of anode (l'.g.. a conditional brandI instruction).
\"CA llses a eustoruized \'ersion of this class. which has special operations such
as ordering graph nodes and widening edge weights.

1.2.3 CalI graphs

\ïrtual rnethod calls are resolved at run tinle. which nleans the exact type of a reeeh'er

rnay not be known at compilation tÏIne. However. for closed-world applications. the

class hierarchy can be statieally computed, Glass hierarchy analysi.s (CHA) [7]
pro\Oides a set of potential recei\Oer types for a \-irtual luethod calI. ~[oreo\·er. rapiel

type analysis (RTA) [2} and variable type analysi,o; ("TA) [:31. 32] can rnake the
type set srllaller.

Based on the results of CH.-\. Cl conservative call graph can be bllilt for a .Ja\'a
application. \\"hole-prograrll (interprocedllral) analyses need the call graph as a

backboneo Soot has inlplementations of CH_-\. RT.-\. and \"TA. and builds a conser

vative caIl graph for other analyses. Our rectang'Ular array analysis is based on the

call graph pro\-ided by the Soot framework.

Il

•

•

•

1.2.4 Class file annotations

Soot can also be used as a bytecode annotation franlework[2-l]. Becausp the bytecode
is a relatively high-Ie"el instruction set. it hides SOUlt' low-Ien~l operations behind the
bytecode instructions. For eXéUnple. a virtual machine irllplicitly pl'rfonns the array
bouuds checks for array ëlccess bytecodes. such as iaload. iastore. etc. However.
at the bytecode level. l'ven if we know that an array access bytecode has an index in
the safe range. it is inlpossible to represent such infornlëltion in the bytecode itself.
The attributes of a class file provide an alternative way to pass the results of a statie
analysis. which cannot he conveyed by the bytecode. to the underlying systenls. .\
.lIT or ahead-of-tinle cOlllpiler can then generate [nore efficient native code when it
uses the annotation infonnation. Figure 1.7 shows the internaI structure of the Soot
annotation framework.

Based on this idea. the results of our analyses are encoded in the attriblltes of a
class file. The modified Kaffe .lIT and HPC.l can use these attributes to optimize the
native code they produce. The details of annotation goes beyond this thesis. but the
modification of .lIT compiler to lItilize the attributes is described in Chapter :3 .

1.3 Thesis Contributions

\Ve have designed a ne\\' algorithrll to pro\'c the safety of array reCerences in general
Ja\'a prograIlls. In our algoritlull difference constraints. which are program-point
specifie. are used ta approxÎInate the run-tirne value relationships alllong local vari
ables. .\ constraint guarantees that. at the respective progranl point. a \'ariable~s

run-time "allie is less than or equal to another variable~s run-tinle "alue plus/nlinus
a constant integer. If an index expression has a constraint that is bound to a "aIue
less than the length of an array abject. the upper bound check can be removed at the
run-tirne. Similarly. the lower bound check is redundant when the index is greater
than or equal to the constant O.

The basic Variable Constraint Analysis analyzes the code of one rnethod. It con
structs a constraint graph at each important program point. By using sorne special
techniques (e.g. ordering CFG, widening edges~ and liveness analysis L the analysis
propagates constraint graphs along the control-fiow graph of the method until reach
ing a fixed point. The relationships of variables can be inferred from the constraint
graphs. VCA is also extended to take advantage of the information from our array

12

•
class files

SOOT
/

1 Jimplify and Type 1

typed 3·addr code

•

1 Static Analysis and Transformations

optimized 3·addr code
with static analysis info.

'1

1 AddTags 1

optimized 3·addr code
with tags

Generate Jasmin Code
(Tag aggregation)

1

•

jasmin assembler (bytecode)
with attribute directives

•
Assemble attributed

Jasmin

\
\

Optimized class files with attributes

Figure 1.7: Soot annotation

13

•

•

•

field analysi.o; and rectang-ular array analy..,is. \\"e have implelnented the algorithm in
the Soot franlC\\"ork. General and array-intensive benchrnarks are analyzed to demon
strate the effectin:,ness and effidency of the algoritlun. The results are encodcd in the
class file attributes \'ia Soot's annotation functionality. \\"e also dernonstrate ho\\" to
make a .lIT cOlllpiler be aware of such attributes. and cxperiInents on the Kaffe \':\1
and IB:\rs HPCJ showed significant speed-ups.

In SUlllluaQ'. the main contrihutions of this thesis are:

• Definition of the constraint graph and operations on it. \\"e dcmonstl'ate ho\\"

the array boullds check problelll can he l'epresented by a systcrll of diffcrence
cOllstl'aints. and ho\\" to soh'c the systern by fincling the shortest-path weight in
the corl'espollding constraint graph. \\"e also use several techniques to rninilnize
the averhead of the analysis.

• Design of the array bouuds check elimination algorithm. which includes three
analyses:

1. Variable Con.,;traint A nalysis (\'C.-\) is an intraprocedural analysis which
builds and salves cOllstraint graphs in the scope of one nlCthod. \"C.-\ also
serves as the basis for the t\Va extended analyses.

2. Array field aTwlysis analyzes the assignlllents to a class field with specifie
Inodifiers. Th(' ëlllalysis is perforrlled in the scope of a Java class.

:3. Rectang-ular arra:'} analysis is for finding thl' shape of multidinlellsional
arrays. It is an iuterproccdural analysis based on tl}{~ caH graph of a \\"hole
application. The analysis builds an array type graph and tracks clown array
shapes from paths leading to a rnethod parameter or a local \·ariable.

The results of array field analysis and rectang'ular arra!} analysis help the VC.\
impro\'e the analysis of both one-dimensional and nlultidinlensional arrays .

• Inlplenlentation of the algarithnl in the contcxt of Soot. The algorithnl is im
pleluented in pure Ja\'a language.

• Experiments on l'eal JV~,Is. l defined the format of array bounds check at
tributes and modified Kaffe .JIT compiler to use the attributes. The annotated
class files were also provided to Clark Verbrugge at IB~I Toronto Lab who
performed the experiments using IB~l's HPC.J ahead-of-tinle compiler.

14

•

•

•

1.4 Thesis Organization

The renuünder of the thesis is structured as fol1o\\'s. \Ye present our algorithnl in
Chapter 2. The base variable con.-;traint analysis is presented in Section 2.1. the
array field analy.sis and rectangular array analysi.., are presented in Section 2.2 and 2.:3.
respectively. \Ye also discuss SOllle enhancenlCnts ruade to the \·C.-\ in Section 2.-1.
Related nul! pointer' analY8is is described in Section :2 ..j. ExperiIncntal rcsults are
givcn in Chapter 3. where the modification of Kaffe .JIT cOlupiler is also describecl.
The related work is discussed in Chapter -1. and conclusions are in Chapter 5.

15

•

•

•

Chapter 2

Analyses

In this chapter we introdllce the three analyses used in our approach. The Variable
Con.-;traint Analys'i.-; is presented first becallse it serves the basis of the other two
analyses. Then two extensions. array field analysi.'3 and reetang'Ular array analysi:,.

are described after \'C:\.. :\.lso. sorne extensions we nlade on \'CA are introduced
later. although they do not have ob\'iotls effects on our results. In the last section.

Wl' hriefly describe an intraprocedural analysis for elinlinating null pointer checks. In

sorne cases eliruinating array bounds checks reqllir<~s inserting null pointer checks if
the array r('ference cannat he shawn to be non-null.

Each analysis is illustrated by graphs and eXélIuples. AlI exaruples are gi\'en in
.Janl or .JI~(PLE fornl.

2.1 Variable Constraint Analysis

The objectÏ\'e of our variable constraint analys'is is to deternlÎne the relationships
between array index expressions and the bounds of the array. In .Java. an array
reference of the form a[i] is in bounds if 0 :::; i :::; a.length - 1. If the array reference

is out of bounds. an ArraylndexOutOfBoundsException must be thro\\'n. and this
exception must be thrown in the correct context.

The relationships between variables can be represented as difference constraints.
.-\ system of difference constraints has a corresponding constraint graph. Findil1g
the shortest-path weights in the graph gives a solution to the system, Our base
analysis uses a variable constraint graph (VCG) to represent difference constraints

16

Systctns of ditl"erence constraints can he used to solve the generallinear-programrning
problern[6](p.539-p.5-l3) ..-\ constraint is Cl. sinlple linear inequality of the fonn

between variables. The VCG is a weighted. directed graph. in which nodes represent
nl.riables. constants. or other synlbolic representations; and each edge has a weight to
represent the difference constraint fronl the source ta destination node. The analysis
is intraprocedural and flow-sensitive. Each program point of interest (control-flow join
points and array references) has a VCG ta approxiuw.te the relationships between
variables. These \'CGs arc propagated through the control-fio\\" graph by using an
optiInistic worklist-baSl"'d fio\\' allalysis. \\'hen the analysis reaches a fixed point. the
distance in the VCG froln an array variable ta its index expression can he solved as
the single-source shortest path problenl. By redllcing the size of the graphs. careful
design of the worklist strategy. and the appropriate use of widening operators. wc
have de\'eloped an efficient and scalable analysis.

[n the rcmainder of this section wc introduce the concept of the variable constraint
graph which is the essence of our algorithm. Then we describe the data-flow analysis.
and tinally we outline the techniques we llsed to illlpron' the algoritllIn's performancf·.

•

• 2.1.1 Systems of difference constraints

•

where .L't" .r] are unknown nlriables and Ck is a constant. .-\ solution to a set of
diffcrence constraints is a \'ector (XL, X2 . •••• .rn) which satisfies the constraints:

~ow we show how systems of difference constraints can represent the array bounds
check problenl. Figure 2.1 is a piece ùf code From an insertion sorting program. Our
goal is to prove three array references (except the first one) are safe. and thus no
bounds checks are necessary for them. The corresponding JI~[PLE 3-address code
is in Figure 2.2(a). Figure 2.2(b) lists the difference constraints generated by each
statement. For example. an assignment j = i - 1 produces two difference constraints:

17

•

•

•

j - i ~ -1 and i - j ~ 1: the array reference a[i] generates 0 - i ~ 0 and i - a ~ -1.

where a represents the array length (because an out-of-bounds index expression can
not pass the bounds checks of the array reference): and so on. The confluence point
and special assignment (j = j - 1) need speciai uperations (c.g. rne'f'ge and ILpriatp.

) to (uaintain the correctness of the anah'sis. we will talk about these iu more detail
later.

key = a[i];
j = i - 1;
while <j>=O && a[j]>key)
{

a[j+1] =a[j] ;
j--;

}

Figure 2.1: A. VCG example: Java source code

By \\'alking through the instruction sequence. wc can collect se\'eral difference
constraints befon~ an arrar refercuee. [n the exarnple given in Figure 2.2(a). wC' have
fi\'{, difference constraints before statemcnt Sil = a(j] (terllporarïly assulning there
is no flow-joint point at labeLl):

0- i ~ 0

i-(l~-l

j-i~-l

i - j ~ l

O-j~O

where i. j. and a are \rariables. the 0 on the left sicle of inequality is a special node
representing the 10\\'er bound of array references.

.-\ system of difference constraints can be represented as a weighted. directed
constraint graph. and a solution can be obtained br finding shortest-path weights in
the graph. Given a system of difference constraints at the beginning of this section,
the corresponding constraint graph is a weighted, directed graph G = (l'~ E). where

18

0 - i <= 0 i - a <= -1
j - i <= -1 i - j <= 1

mergeCG1, G2)

Cb) Difference constraints

•

•

key :: a[i];
j :: i - 1;

label_1:
if (j<O)

goto exit;

$il :: a[j];
if ($il <:: key)

goto exit;

$i2 :: j + 1;
$i3 :: a[j];
a[Si2] :: $i3;
j :: j - 1;
goto label_1;

exit:

Ca) JIMPLE code

o - j <= 0
o - j <= 0

$i2 - j <= 1
o j <= 0
o - $i2 <:: 0

j - a <= -1

j - $i2 <:: -1
j - a <= -1
Si2 - a <= -1
update(j, -1)

•

Figure 2.2: A. \l'CG exaillple: JINIPLE code and difference constraints

and

Each vertex Ci in the graph. for i = 1. 2..... n. corresponds to the variable .L·i' .-\n
extra node L~O nlakes aH L'i reachable fronl it. The edge weight of (L'O' L'd is 1111

tialized to 0, If the constraint graph G contains no negative-weight cycle. theu

.\ = (6(vo, L'd. 6(L'O' L'::d.··· .6(L'O' L'n)) is a feasible solution for the systern of clif
ference constraints. where 6(il. L') is the shortest-path we-ight fronl u to L'.

In our problem definition. however. we do not need to find a solution ta ail \'ariables
in the systenl of difference constraints. The shortest-path weight fronl the array
\'ariable node to the index expression node is sufficient to prove whether the upper
bound check of an array reference is safe or not. Fornlally. if 6(a. i) S; -1. a[i] has a
safe upper bound check: if 6(i, 0) S; O! a[i] has the safe lower bound check. Figure 2.3
shows the corresponding constraint graph before the statement $i1 = aUL where

19

•
e5(a. j) = -2 and dU.O) = O. Therefore. the a[j] can be pro\'cd to be safe.

o

•

•

Figure 2.3: The constraint graph before $il = a[i]

2.1.2 Variable constraint graphs

Givpn the .JL\IPLE :3-address rcpresentation of il Inethod body. we build a control
fiow graph (CFG) of basic blacks. where a statenlent with an array reference breaks
a basic black into t\\'o srnaller ones. Thus. the array accessing statement will always
appear at the top of a basic block. Each basic block is associated with an input ,"CG.
Difference constraints are collected when going through statetnents in the black. The
ne\\' constraints are incorporated iuto the constraint graph directly..-\t the exit of the
block. an output '"CG is produced. and passed to successors as their input "CGs.
"'c define a variable constraint graph as 1'0110\\'5:

.-\ node in il variable constraint graph represents one of:

• an int type local which is related to sorne array index or array abject length:

• an array type local which is used ta represent the length of the array:

• a 0 node representing the lower bound of array references: or

• an abstract representation for fields! array elements. and cornmon sub expres
sions (used only in Section 2.4) .

20

•

•

•

.-\ directed edge in a \f:uiabll' l'onstraint graph is associated with an abstraction \ï:l.1tW

which is one of:

• 1-. the edge is llninitialized:

• an integer constant: or

• T. there is no constant constraint froni the source to the destination.

The \\'(lights associated to edges are conlparable. The integer constants are in the
arder of ordinary integers. For any constant c. the Ordl\ring 1.. < c < T holds. The
1- weight is a sp{lcial case. it is ouly llsed to l'l'present the graph as llninitialized (
or never visited)..-\5 wc can sec later. the iteration on a control-flow graph follows
the graph's pseudo-topological arder. and the first input graph's edges are initialized
to T. we llC\'(lr operate on an llninitialized graph except merging it wit.h sorne other
ini t ialized graphs.

From a systerIl of differeucc l'onstraints to a uariable con.'itraint graph. Cl \'ê:lriable
un rlw left hand sicle of an inequality has Cl corresponding Bode in the graph. The
graph l'an be \'iewed as full-connected. If there is aB inequality of i - j ~ c. the
corresponding edge l'rom j to i is assodated with weight c. Other edges without
corresponding constraints have weight T. Csing this representation. wc show how
constraints are generatcd and how to operate on the constraint graph in following
text.

Constraint generation

\Vhen going through a statenlent. sorne constraints ma)' be generated (and sonle may
be killed. which is cxplained later). \Ve have seen Cl few exarnples in Figure 2,2 how
statcments generate difference constraints. Generally. an assignment Inay build con
straints between its right and left hand side \'ariables..-\n array reference expression
bounds its index expression in the range of 0 ta arra)' length nlÎnus 1. For branch in
structions. different constraints are produced according to the outcorne of the branch
condition. \Ve define the constraint generation here for different types of staternents
and expressions. Other effects of the statenlents. such as killing constraints of a ncde.
are discussed afterwards. In our l'ules. c is an integer constant. i and j are integel'
variables related to sorne array references. a is an array type variable and represents
the al'ray object length.

21

•

•

•

t c
.\ssigning an integer to a local variable generates two constraints: i - 0 ~ c and
o- i ~ -co The constraint graph is changed by adding an edge fronl node 0 to
i with weight c and a re\'ersed edge with weight -co

-c

\re do Ilot create a node for each iIlteger constant appearing in statl'rnents. but
represeIlt the constraint as edges to/frorn the 0 node with adjusted weights.
This approach ensures the graph size lllanageabie. and nlore iruportant. the 0
node l'an connect two variables which have no direct edges between then!.

i = i + c
The statenlent also generates two constraints: l - J ~ c and j - i < -co The
edges added to the graph are following:

-c

t - a.length
The arraylength is a bytecode instruction which gets length of an anay. The
expression can be \-iews as il variable like others. In our representë:ltion. the
array nuiable a is used to represent the length of array. Theu the constraints
generated fronl the statelllent are i - Cl ~ 0 and a - i ~ O. The edges in the
graph are:

o

G8G
o

a = new T[c]
A new expression assigns the variable on the left hand side the length of c.

22

•

•

•

It has the sanle effect as the assignnlent a.length = c. Csing CL to represent
a.lengtlz. the constraints fronl the new staternent are (l - 0 ~ c a.nd 0 - (l ~ -co

a == new T[i]
This statement has the sanle effect as statement ll.lt=ngth = i. and constraints
generated are Cl - i ~ 0 and i - Cl ~ o.

a[il
\Ve know that the .}\').[check the bOllnds of an array reference. If the index i

is Ilot in the range of bOllnds. the '}\").[th1'o\\"s an ArraylndexOutOfBounds

Exception and exits the nornuli execution path. So. on the nonnal execution
path. the index i rnust IHwe passed the bOllUds checks arter the array reference
a[il. Then the array reference expression prodllces two const1'aints: 0 - i ~ 0
and i - Cl ~ -1. which can he represented as following edges:

Q- -\ G

~
if (i < j)

The ijlt conditional brandi instruction has two out paths. In this exanlple.
the TRUE path has constraint i - j ~ -1. and the FALSE pénh has constraint
j - i ~ o. \Ve can use the sanIe \Vay to derive constraints from other brandl
conditions such as ifeq. ifgt. ifge. and ifle.

i==j&c
Sonle constraints are not ob\'ious in the statement. An arithmetic and expres
sion of j &: c will make the expression value no Inore than c if c is a positive
integer. Then two hidden constraints. 0 - i ~ 0 and i - 0 ~ c. are derh'ed from
this statement.

Two special cases have no constraint generation. but neecl special operations on
the graph. \Ve discuss thenl here. and the operations are described in next subsection.

'&==i+c
:\. loop induction variable increases or decreases itself. The rules aboye can only

23

•

•

•

genera.te difference constraints between different variables. and ob"iously none
can be applied direetly on this case. The assignnlenL however. can be written
in ëlnother form by using a tenlporary \"ariable:

.' .
l = l + C

l = l

[n this way we can find suitable fuIes for the new statements. [n faet. it has
s~une effect. as inl'n~asing i's in-edges· weights by c and deereasillg its out-('c1ges·
weights hy carter hypassing the tenlporary variable i' in the graph. '''e clefined
au 0pf1ration update ta hancile the changes in the graph due to these kinds of
assignlnents.

'''hen a variable i is assigned a new value. its old eonstraints have to be remo\'ed
before new eonstraints are added (exeept i = i + c where the update function
perfonns this operation implicitly). [nstead of renlo\'ing ald eonstraillts of i

directly. howe\·er. we take a special operation detachnode to bypass the node i .

[f the right hand side expression is one of the cases ab()\"e. the new constraints
are added in the graph. otherwise, wc do not take any action.

Constraint graph operations

The inlplenlentation of the eonstraint graph can use either the adjacency-list repre
sentation for sparse graphs. or the adjaeency-nHltrix rl'presentation for dense graphs.
Because the graph size is relati"cly sInall. wc inlplemented the graph as a collection of
adjacency lists. :\s we introduced before. an edge's wl'ight can have diffl'rent values.
1. indicates the edge is uninitialized. However. in our analysis. iterating the CFG in
its pseudo-topological arder ensures that only aIl edgl's of an uninitializeci graph can
be 1. at the same time. Once the graph is initialized. its edges can ne\'er be 1. again.
Thus. in our representation. 1. is indicated by astate \'ariable of the graph. [n an
initialized graph. a physical edge of a pair of nodes has an integer constant weight.
otherwise. it rueans the pair has a virtual edge with weight T. [n following text. we
assunle an initialized graph is full-connected with physical or virtual edges. The edge
weight is an integer constant or T,

~o matter what kind of representation we use. howe\'er. the functionality of the
constraint graph is independeut of the implementation. In the following text~ wc

24

•

•

introdllce these runetions (or prinlitiyes) in further detail. AlI operations are only
applied on an initializecl graph where the edge weight cannat he 1...

Creating a graph:
\Vheu we do flow-aualysis. only variables rclated ta sorne array rl'ferences need
ta be exarnined. As can be seen later. at an interesting prograrIl point. if the
set of variables under exarninatioll does not change~ then the graph llode set
will not change. The creation fUllction accepts a set of variables as \·ertices.
The graph does not pro\'ide any fllIletionality to add or delete variables. Graph
edges can be set ta T for the cutry block's input graph. or the graph stene
\'ariable is set ta 1- which means the graph is in an uninitialized state.

Adding a constraint:
\Vhen collecting a ne\\' constraint. we add a new edge to the eonstraint graph.
The addition will make the graph have nl0re than one (physical or virtual)
edge frorn a source to a destination. Ho\\'en~r. we only need to keep one edge for
each pair of source and destination. which has the snlallest weight. to guarantee
that both constraints hold. It caIl be proved as follows. Two edges can be
written as twu constraillts:

i - j :s Cl

i - j :s C'2

(2.1)

(2.2)

•

where CL :5 C'!. If iuequality 2.1 is truc. 2.2 is alltonlatically true. Then ineqllal
ity 2.2 is redundant.

\\"hen adding an edge to a graph. we keep the one \Vith the snlaller weight. The
abstraet value T is greater than any other \·alues.

addedge(from, to, weight)
oldweight = edge(from, to).weight
if (oldweight > weight)

edge(from, ta) .weight = weight

Deleting a constraint:
\\"hen a constraint does not hold anymore. the corresponding edge weight should
be changed to reflect the removal of the constraint. The edge weight is set to T
in the graph. Right now~ a constraint is deleted ollly in detachnode operation.

•

•

•

delete_edge(from, to)
ed~e(from, to).weight = TOP

Updating anode's in and out edges:
For an expression i = i + c. we do not kill the node i. Rather. ail in-edges'
weights are increased by c. and all out-edges' weights are decreased by c. to
reHeet the constraint changes. For exanlple. there is an existing illequality of
i - a ::; CL' and we lise [' represent the ne\\" value of i after the assignrnent
i = i + c. \\"e hayl' constraints:

i - (l ::; Cl

/-i::;c

frOIll whkh wc cart pasily g;ct / - a ::; ('(+ c. The wpight of in-edge from Cl is
added by c. The sanie process cart be llsed to derive the ollt-edge changes,

update(node, e)
for eaeh predeeessor p of node

edge(p.node).weight += e;

for eaeh suceessor s of node
edge(node,s).weight -= e;

Detaching anode:
\\llen a variable is assigned a new value. its old constraint edges should be
renloyed before adding new ones. However. the edges rnay be part of sonle
paths connecting other nodes. and we wish ta retain this infornultion. Thus. the
detachnode prinlÏtÎ\T1 first builds edges from each predecessor to each successor.
and then renloves ail in and out edges.

detachnode(node)
for eaeh predecessor p of node

for each suceessor s of node
edgeCp, s).weight = edge(p,node) .weight

+ edge(a,node) .weight
delete_edge(p,node)

for each suceessor s of node
delete_edge(node,s)

26

•

•

l\tlaking the shortest path:
.-\ constraint graph also pro\'idcs nlcthods ta find the shortest path between two
nodes or of aU pairs. It irnplerllents the single-source shortest paths and alI-pairs
shortest paths algorithms[61. If the Inethod detects a negati\'e t'yclt:' existing in
paths. it aborts the operation. This is a com;ernttive decision..-\s t'CUl be seen
in following texl. there should not be any Ilcgativc t'ydes at reachable program
points arter reaching the fixed point.

lVlerging two graphs
.-\t confluence points we Illust Illerge \"CGs cOlnillg from Illore than one precle
l'essor. .-\ll predecessar graphs will ha\'e the Si:une set of nodes. but their edges
Inay have different weights. Thus. nlerging graphs is donc by simply Illerg
ing edge weights. :\'ote that this is different than adding an edge ta il graph.
.-\dding edges iluplies the new and old constraints are existing at the saIne tiIlle
(in logie. they are AND relationship). and the tightcr one gives the rnost precise
inforrnation. ~lerging edges nleans different constraints froln Illultiple paths are
aIl possible (they are OR relationship). 50 the nl<~rged constraint should he
able ta eontain ail possibilities. as thus we I1lUst llse the weakest eonstraint. One
or more VCGs from predeeessors nUlY not he initialized. \,"hen an initializecl
graph (not 1-) is rnerged with an uninitialized graph (1-). we sirnply take the
initialized one. The complete rnl'rging tahle is gin'Il in Table 2.t.

cl

•

1- ..L cl T
c2 c2 ~L-\X(cl. c2) T
T T T T

Table 2.1: ~Ierge t\va edge \veights

It is inlportant to note that when conlputing the merge of an edge p -of q fronl
two graphs Cl and C2 we need not use the \"aiue stored on the edges, rather
we cao get a more precise aoswer by using the shortest path. Thus. we merge
the shortest path from p ta q in Cl with the shortest path fronl p ta q in C2.

merge(Gl, G2)

•

•

•

if Gl is uninitialized
return a copy of G2

if G2 is uninitialized
return a copy of Gl

make Gl, G2 be the shortest-path graphs

G = make a copy of Gl

for each edge e of Gl
el = Gl.e.weight
e2 = G2.e.weight
if el is TOP or e2 is TOP

G.e.weight = TOP
else

G.e.weight = MAX (Gl.e.weight, G2.e.weight)

return G

Negative Cycles

[n a directed constraint graph with negative edge weights. it is possible that a negati\'e
cycle exists at sanIe points of the data-flow analysis. before the fixcd-point is rcached.
However. after reaching the fixed point. every reachable point in the program should
ha\'e a graph without negative cycles. For exanlplc. if a negati\'e path from n ta b

ta c. and back ta Cl. as in the figure 2...L the edge weight is LL'a. LL'b. and Wc while
lL'a + IL'b + tee < O. 50 we have

b - Cl < IL'_ CL

(' - b ::; lCb

a - c ::; /.L'c

.\dding bath sides. we get 0 ~ Wa+LL'b+Wc. which is a contradiction to the assurnption.

It is possible ta have a graph \Vith negative cycles for programs with unreachable
code due ta useless branches. For example:

28

•

•

•

Figure 2.4: A. negative cycle

if (i < j) {
if (j < i) {
P: .
}

}

wOlild Icad to a ncgatÏ\'e cycle at prograrll point P: (see Figure 2.5). but of course
this point is never reached. [n the presence of ncgatÏ\'c cycles in a path. wc cannot
COluplite the shortest path wcight for nodcs in the path. Lcaving tlWIll llnchangcd is
a l'onscr\"atin~ approach to kl'ep the correctness of the analysis.

-1

czc=xD
-1

Figure 2.5: The negative cycle at P:

Properities of a CODstraint graph

After secing ho\\" the array bounds check problerll is converted to solving systems of
difference constraints and the difference constraints are encoded in a variable C01t

straint graph. we would like to study sorne properties of the constraint graph. A
variable constraint graph has the following inlportant properties.

Directed Edges: Instead of keeping equality relationships. an assignment state
ruent produces t\Vo directed edges between nodes. The first five cases of con
straint generation generates t\Va edges between nodes with reversed directions.

29

•

•

•

The brandI instructions and array rl'ferences generate asynlnletric edges. But
ail edges are directed and weighted. This approach unifies the graph represen
tation for the constraints from different sources.

Inequality edges are transitive: .-\ path from CL L to an can bp n'presented by a
series of constraints. for exaruple the constraints in Figure 2.6 are:

By sUlllmillg hoth sid('s. W(l l'an derive the constraÎnt (ln - (lL ~ ICL + Il''2 +
... + Il'rt-l' whidl illlplies the clashpd cdge from al to (lrt with weight L~l-L IL'i

The transitive property sirnplifies graph opprations, .-\ny new eonstraints an'
added directly as edges. The l'dge nodes. howc\'er, can indirectly get constraints
from other nodes connected in the graph. \\"c l'an lazily perforrn sorlle other
operations. such as detaching anode. conlputing the shortcst péHh, as required.

~f:::\ }v2 n lVn-l n
~ \!0-.\!!!)_..._..._..._...-;\!!!})

Figure 2.6: Transitivity of inequality edges

Shortest path gives the tightest constraint: Several paths nIay exist fronl a
source to a destination node in the graph. Each path represents sonle constraints
from different sources. However. only the shortest path gives the (nost accurate
approxiruation..\ny non-shortest paths are conservati\'c estimations: they are
correct. but not as precise.

Because the inequality graph is transItive. it has the advantage of preserving
constraints when sorne variables are redefilled. Figure 2.7(a) gives an example of four
statements.

30

•

•

•

.-;0 : i = j + 2:

.-;1 : a[i} -= ... :
:;2 : i = ... :

.-;:3 : aU] = ... :

(a) a basic block

.,
QE -~CD

-2
(b) the constraint graph before sI

(c) the constraint graph before s2

Q CD- Y 11

0(0
(d) the constraint graph before s3

Figure 2.7: The status of constraint graph changes

Figure 2.7(b). (cL and (d) show the constraint graphs before the statement sI.
.-;2. and 83. respecth·ely. \Ve are interested in the graph before s3 because it has an
array access and we want to know whether j is in the bounds. The other two graphs
only reflect the constraint changes.

The statement 81 generates the constraint i - a ~ -1. which makes a path from
a to j ~ and 0 - i < O. The path from a to j implies the constraint j - a ~ -3

by adding its edge weights. Statement 82 detaches the node i froni the graph by

31

•

•

•

bypassing it. Before the staternent ..,3. i has lost its constraints l'rom il and j. but the
path fronl a to j. which goes through i. is shortcut by a new edge directly fronl 1L to
j with weight -3. ThllS the constraint j - a :::; -3 is preserved before 83. even when
i was redefined. Therefore~ the upper bound check for ..,,3 can be proved ta be safe
(we can Ilot derive the safe lower bOllnd Cronl this sinlple exanlple. becallse it only
Îluplies 0 - j ::; 2).

50 far. wc can conclude sorne advantages of llsing constraint graphs for alTay
bounds check eliminatiol1. althollgh there are nlany other abstractions that can be
used tao. The constraint graph offers SC\'eral advêlntages. including:

1. .-\S Wp explained in abo\'e text. a cOllstraint graph can represent and preserve
indirect constraints. tln~1l when a variable is redefined.

2. It has a llnifieci representation for constraints l'rolll ditfercnce sources. e.g. as
sigIllucnts. conditional branches. and array references.

:3. The lower and upper bounds relationships can bp represented in tlw saille graph .
.-\rray abject. index. and constant a are encoded in the sanle graph.

-1. It is flexible. and can be extended ta hold other infornlation. For exanlple. in
Section 2.-1. wc show ho\\" to include infornlation about the second dimension of
reetangular arrays and cornIllOn sub-expressions.

Certainly. the variable con..,traint graph has sonle weakness. It can not represent
saine subtle constraints that we ean infer from sernantics of the language. A typical
linlÎtation is that it is hard ta represent other arithrnetic operations such asmultiply

and division.

2.1.3 Data-ftow analyses

Ta understand ho\\' a method rnanipulates its data. we can apply clata-flow analyses
on the code of a rnethod body. \Ye de\'eloped two data-flo\\' analyses in our algorithnl.
.-\ special live-local analysis. which is relatively simple. cletermines which loeals are
relenl.nt to array references..-\ rnore cornplicated analysis performs abstract execution
of the method. and gets a conseryativc approximation of constraints among live locals.
The first analysis limits the number of nodes in a constraint graph and therefore
reduces the computation of the second analysis.

32

•

•

Array-related liveness analysis

.-\ \'ariable t:onstraint graph eantains nodes of laeals and edges between thenI. The size
of the graph can be reduced by including only thase lot:als that are llsed to conlpute
an index or an array object length in the future..-\ SInaller constraint graph allows
faster cOluputation of shortest paths. and IHay also recluce the nunlber of iterations
required for the fixed-point cornputation.

[n Ollr liveness ilnalysis. a variable is li vc at a progri:Ull point if there is an exe
cution path from this pragranl point ta an array reference expression such that the
constraints collected br using eonstraint generatillg nlles defined in section 2.1.2 can
fornl a path froIIl the nniable ta the array index or alTay objeet length in the corre
sponding constraint graph. 'Ye briefly say that the \"ë:uiable is re1enlnt ta SaIlle array
referenees. Our goal is ta determinc that whether wc need to add a constraillt col
lected at this point to the constraint graph by consulting the Ii\'eness of the variable.

\\"e fornmlatfl the analysis as follows:

Partial ordering for approximation domain
[n this analysis. wc have a set of int or a.,..,.ay type local variables. The extencled
analysis includes fields. array elernents. and eotruuon sub-expressions. The par
tial ordering of the set is from erupty set (..L) to the full set of nlriables (T).

It is best represented by following pieture. assulIling the Iuethod has int type
loeals (i l. l'l' lm) and array type loeals ((Ll. a,! a rl) :

T
.....t_ ..._.. .'.'-"'_"'_11.-

• 33

•

•

Problem statement
\Ve already defined the liveness of a local in the above paragraph.

Direction
.-\s with ordinary liveness analysis. it is a baekwanl flow analysis.

Confluence operator
.-\t the flow-joint point. we are take union operator

beeause a local is live at this program point if it is lhoe in any paths fronl this
statelllent.

Equations for instructions
Table 2.2 pro\Oides the key flow funetions. The tirst colurnn givl's the types
of statellu1nts or expressions that may generate or kill li\T' loeals. The second
and thinl eolllnln should 1)(' used together. Only whell at least one of the
local(s) in the condition set are live. does the statement generate live loeals
in the gen set. ~ote that array referenees generate live 10eals withollt any
conditions. The statenlent i = i + c needs no operations becallse the variable
is illereasingjdeereasing itself. For any assignrnent statements that arc not the
case listed in the table. the left hand side variable is rernoved fronl the set.

1 st Int / expr Icond~

•

i=j+c l J l

i = a.length l a l

a = ne'W T[i] a l a
a [i 1 fL. l

if (i op j) l.J i. j
i=i+c
l = . o. l

Table 2.2: Liveness for array references

\Vhen going through a statement s. we retrieve the cond(s)~ gen(s). and kill(s).
The equations for computing I1Vand OUT sets are changed to reflect the con
ditions.

34

•

•

•

OCT[s] = U I~V[p]
pE.'iUcc[s]

if cond[s] = 0 or cond[s] n OFT[s] =1= 0

I.V[s] = geTl[s] U (OCT[s] - kill[s])
cise

I.V[8] = OCT[s] - kill[s]

The starting approximation
The analysis starts with the sare approximation. B(\CêH1Se the analysis is back

ward. all nodes' out sets are initialized as o.

:\"ow wc look back the exaruple in Figuf(\ 2.2..-\lthough variable $il and key can he
int type variables. thcre is no path leading them ta an anay rcfercnce. \re do not

collect constraints produced by the if (Sil ~ key) statenlent.

One can easily cxtend the liveness analysis to aCCOIUIIlodate other special nocles.

sueh as class fields. array elements. and cornillon sub-expressions.

Variable Constraint Analysis

\Ve use a forward. flow-sensitive. aptinlÎstic data-flow analysis ta approximate a yari

able constraint graph for each inlportant point in a ITlethod body. \\'c nalued the
analysis as variable con..,tra'int analy."ii..,. or ,'C.-\.

'·C.-\ is based on the control-fio\\' graph of basic blacks as we cxplaincd before..-\n

instruction with an array r('ferenee appears on the top of the basic black. The entry

of eaeh basic black is associated with a ,"CG. Thf' initial state of each graph has 1..

state. except the entry point graph which has all T edges. The analysis is dri\'cn by

a worklist algorithnl which conlputes an output "CG based on the input "CG and
the effect of the statements in the basic block. \\"hen processing a conditional branch

statenlent. it may generate clifferent constraints for the target black and the next
block. After reaching a fixed point. the infornlation for each array aecess statement.

S. is encoded by the VCG assoeiated basic block starting with S.

~ow we define the variable constraint analysis formally:

Partial ordering of approximation domain
.\t any program point the set of interesting variables is known from array

related liveness analysis, so the set of nodes is fixed. There is one node for each

35

•

•

•

variable of interest. plus il node representing the constant o. The abstraction
cOlnputed by our analysis is aIl-pairs shortest paths of il variable con.straint

gruph. But instead of cOIuputing the shortest paths at l'very prograrn point. we
only perfonn such COIllputation at the confluence point. [n other places. we do
siruple operations on the graph. The abstract infonnation that changes is the
weights associated to edges. For any constant c. the ordering .1 Cee c + 1 C

c + :2 C ... C rnaxùzt C T nlllst hold.

Problem statement
:\. pair of nodes (i. j) has the shortest path weight of c frolll j to i at a pro
grarn point P if the syrllbolic cxeclltion of the prograrn l'an guarantce that tlu'
constraint i - j ~ c hoIds at any tinlC when it l'caches the prognull point P.

Direction
The variable con.'itraint analysi.'; is a forward flow-analysis. ~Iorcov(lr. it rcquires
the node of the CFe must be visited in its pseudo-topological ordpr becël.use
the analysis is simulating dl(' execution of the program. The douLinators of il

node must be \'isited before that nodf'. Recall that we initializl' tlll' entry point
graph to T and othvr graphs to .1.. By keeping; tlU' topological ord<'r. the input
VCG of il basic black can ne\"(~r be .1 when \\"v start to go through it.

~Ion)o\·er. the analysis is flow-sensitive. \rhen going through a conditional
brandi statelnent. different constraints nu\y be procluced for different out paths
of the branch. The flow function of if statenlent adds different edges to the
target and next graphs.

Conftuence operator
.\t a confluence point P. we use a set of output graphs frOl11 predecessors (Cl'
C"!. G n) and the old input graph oldgraph(P) to conlpute the ne\\' input
graph newgraph(P). \Ve firstly caU the merge operation to union aU output
graphs fronl predecessors:

newgraph = copy of Gl

for i = 2 to n
newgraph = mergeC newgraph, Gi)

Then wc apply a special operation called widening on each ne\\' graph edge
weight by comparing it to the old graph edge weight.

36

•

•

•

widen(newgraph, oldgraph)

The widening operation looks at the changing trend of an edge weight. If the
weight is increasing. we set it to T directly. But if the ne\\' weight is less
than the old weight. we will eliscard the new weight anel lise the olel one. The
widening technique speeds up the synlbolic execlltion and also stops infinite
loops t:orrcctly. \ re will explain it in detail later.

Equations for instructions
The base analysis deals only with local variables. It is obdous that the integer
londs t:annot he aliased. nor can they be modified by rnethod calls. The array
objects referenced by anay type locals have the saille properties. '\"c only cleal
\Vith the first dinlension of arrays in our base aualysis. Once an array abject
was crcated. the only \Vay to change the array size is to re-allocate a new anay
object. Then. the array lengths can be trcatcel as intcg(~r locals in the sanIe
way. ThllS. the effect of each statement on Cl. \'CG is quite straightforward. The
fla\\' function for each kind of relevant .JI~[PLE staternent is given in Table 2.3.
\'ariables i. j and a represent nodes in the graph. and c is an integer constant.
Each graph has a node for the constant O.

The first column shows the kinds of statcnlent which have effect on a ,"CG. The
second column lists the constl'aints can be gcnerated from the staterncnt in the
first column. The thircl colulnn shows the node of which constraints should he
bypassed. The last colurnn gÏ\'es operations on the constraint graph accorcling
to the statelnent. \\"c always check the liveness of \"ë:uiables before perfornling
the flow-through function for a statenlcnt. Only when the variables arc live. the
operations on the graph are perfornled.

The ruies in Table 2.3 use se\'eral prirnitives. which \\'ere definecl in 5cction
2.1.2. The kinds of statenlent that can affect constraint graphs clepend ou
the seluantics of languages. Table 2.3 clefines sorne basic staternents for Java.
One can also add IHore conlplicated ones if they do (lot violate the language
sernantics. \Ve will show a fe\\' extension in section 2...l.

The starting approximation
As we stated before. the edges of entry point VCG are initialized to T. which
is the safe solution. Other VCGs~ edges are set ta 1...

Briefly. the implementation of the analysis uses a heap (implemented as 8ounded

PriorityList) ta rnaintain the topological arder of blacks in the control-flow graph.

37

•
1 stIIlts 1 gen 1 deta<:h 1 operations

•

•

l = C i-O~[' i detachllOde(i)
0- i ~ -[' aclcleclgc (O. i.c)

addedge(i.O. -cl
i=j+c i - j ~ c i dctachnade(i)

j - i ~ -e addedge(j.Lc)
addedge (i.j. -c)

i = a.length i-(l~O i detachnode(i)
a-i:S;O addedge(a. i.O)

addedgc(i.a.O)
CL = neLL' T[c] a-O~c a detachnade(a)

o- (l ~ -c addedge(O.a.c)
addedge(a.O!-e)

CL = new T[i] a-i:S;O a detachnodc(a)
i-i:::;O addedge(i.a.O)

addedge(a.i.O)
CL [i 1 i-(l~-L addedge(a.î.-1)

O-i:::;O addedge(i.O.O)
if (i < j) target:

1

1

1 i-)<-l 1 addpdgl'(j .i.- L)
1 clse: -

j-i:::;O addcdge(i.j,O)
i = j&c i-O:::;c l addedge(O. i. c)

O-i:::;O addedge(i. O. 0)
i=i+c update(i.e)
l = ... 1 detachnode(i)

Table 2.3: Statements generating constraints

The \'CGs are associated to the edges of the CFG instead of being attached ta the
blacks directly. Each head of the CFG has an auxiliary edge as its incorning edge.
The input graph of a block cornes fron1 merging aU graphs on its incoIIlÎng edges. The
output graph is associated to each outgoing edge..-\ block with a branch as the last
instruction would produce t\Vo different output graphs for its t\Vo out-edges. which
nlakes the analysis conditional. .-\ block also keeps the input graph after nlerging the
inconlÎng edges! graphs. Ta better understand the variable constra'int analysis. we
provide the pseudo-code in Figure 2.8. sorne functions used br worklist are defined

38

•

•

•

in the later paragraph introducing the BoundedPriorityList dass.

The flowThrough function take an input \"CG and goes through a basic black.
It operates on the VCG according the flow funetions in table 2.3. and updates the
"CGs associated to the block's out-edges. It returns the set of successor blacks whose
inconlÎng edge's "CG has changed. \Vhen goillg throllgh a basic black. SOlne \'ariables
added in the tplnporary graph lnay be not live at the end of black. we detach those
nodes when updating ollt-edges' VCGs.

2.1.4 Improving the performance of the algorithm

:\. uain~ irnplementation of the algoritlun requin~s a large \'olunle of computation to
n'ë:lch the fixed point. \re can analyze the expensin.1 parts of the aigoritlull. There
are t\\'o factors dominating the performance of the algorithrn: the \"iuiable constraint
graph sizp and the time that the data-flow analysis takes to rcach the fixed point.
In this section. wc describe sorne techniques wc have llsed to rl'duce the perfonnance
overheads in our algoritlull .

Limiting the size of constraint graphs

The running tirne of conlputing the shortcst path on a graph depcnds on the nurnber of
nodcs and the number of edges. Since we cannot clirectly control the uunlber of edges.
we reduce the nunlber of nodes. which subsequently reduces the nUInber of edges. The
array-related liveness analysis keeps the node size rninimai. The experinlent shows
the average node size is If'sS than 10 and the nlaxinllllIl node size never exceeds 13
for the base "C.-\..

Widening edges at confluence points

Given the long chains in the ordering for edge weights. the ordinary fixed-point com
putation is too expensive. \Ve reduce the number of iterations by applying a widening
at loop entry points..-\.t these points we replace the ordinary merge operation which
uses the maxinlum "alue with a widening irnplemented as fo11ows. If an edge's previ
ous weight was not J... and the current weight increases, the edge is set ta T. Thus.
it is clear that an edge!s weight at loop headers can change t\Va times at most alang
the same executian path. The following is the pseudo-code for the operation.

39

•

•

•

units = make PseudoTopologicalOrder of the CFG
worklist = make BoundedPriorityList of units

/* initializes aIl VCGs to BOTTDM. */
for each edge of CFG
{

edge's VCG = new VCG with live locals of
edgels source node

edge's VCG is set to BOTTOM
}

/* initializes the entry VCGs to TOP. */
for the incoming edge of CFG heads

edge's VCG is set to TOP

/* performs iterative flow-analysis. */
while not worklist.isEmpty()
{

Block block = worklist.removeFirst()

prevVCG = block's input VCG

if the block has only 1 incoming edge
beforeVCG = copy of incoming edgels VCG

else
{

beforeVCG = merge aIl incoming edges l graphs
widen (beforeVCG, prevVCG)

}

block's input VCG = copy of beforeVCG

List changedSuccs = flowThrough (block, beforeVCG)

add aIl elements of changedSuccs to the worklist
}

Figure 2.8: Pseudo-code of the worklist algorithm

-to

•
widen(newgraph. oldgraph)

for each edge of oldgraph and newgraph
do

if oldgraph's edge weight is BOTTQM
continue;

if oldgraph's edge weight is less
than newgraph's edge weight
set newgraph's edge to TOP.

done

.-\ subtle effpct of widening ('dge weights is that it l'cUl stop tlw How-analysis quickly

and COlTcctly on an infinitc Ioop. For exanlplc. a programrller may unintentionally

writp an iufinite for loop as in Figure 2.9. \\ïthout widenillg edge (i. 0) at the Ioop

• for (int i=O; i<a.length; i--)

int i=O;

label_1 :
if (i >= a.length)

goto exit

i = i-1;
goto label_l

exit:

•

Figure 2.9: .~n infinite for loop

eutry label_1. c5(i.O) is inl'reased by l for each iteration o\'er thf' Ioop body. The
analysis cannot e\'er reach the fixed point. Howe\'er. the widening fUIlction l'an find
out that c5(i.O) is increasing when the analysis visits label_l the second time. then
set li (i. 0) to T. and the analysis stops correctly.

Ordering the nodes of a CFG

\Valking through a CFG in its pseudo-topological order can speed up data-flow anal
ysis. However. a simple depth-first search (DFS) algorithm cannot guarantee an

41

•

•

•

optimal order for the successors of a Ioop exit node.

For our analysis. we prefer to dsit the loop body before the 100[> exit. Ta enforce
a good ordering wc perfOrIll a DFS l'rom exiting uodes of the erG in re\'e1'se order
first: then the DFS froru the starting node can conslllt the order of re\'ersed DFS
when it meets a loop exit allowing liS to put loop body nodes IH'fore loup exits.

Our worklist algorithnl puts the successors of anode. whase vut set t'hauges. auto
the worklist for re-calculation. The worklist is handled as a heap using the arder
cornpllted as abo\'e. By enforcing this order we ensure that inner loops rcach a fixcd
point before the outer loops. Expcriments show this is \'ery effectÎ\'e way of making
our data-flow analysis l'un efficiently,

The worklist is irnplt.~rnellted as the class BoundedPriori tyList which pro\'ides
spveral rnethods:

public BoundedPriorityList(List Iist)
The constrllctor accepts a list as the fullli.o;t (unin:!rsal set). the arder of each
elenamt is decided by its index in the list. The flllllist is a list of blocks in an
optimal topological order conlputcd as above. This list is llsed ta keep the index
of each element. anothcr linked Ibt is ('l'Patccl as the LUorkli.o;t. .-\ll clements in
fulllist are added to the worklist in arder.

public boolean isEmpty()
The rnethod returns true if the worklist is ernpty. otherwise returns l'aIse.

public Object removeFirst()
This Iuethod remO\'es the first elculent in the worklist and rcturns it to the
caller.

public void add(Object toadd)
\rhen a black needs re-coruputation! it is put back ta the worklist. Howe\'cr.
unlike the usual worklist which adds the node ta the end of the list. this Illethod
will find the right place in the worklist by its index. Ali elements are kept the
arder in worklist as the sanle arder in the fulUist.

2.1.5 Running time analysis

The performance of our algorithm is decided by t\Vo factors: the size of constraint
graphs and the number of iterations required ta reach a fixed-point. The nodes of a

•

•

•

constraint graph consists of locals. thererore. the graph size is baunded by the nunlber
of loeals in a mcthod. Liveness analysis ean lirnit the graph size even further. and
our experinlents confirnl the graphs are sInall in practkc.

For a control-flow graph without cycles. the data-flow analysis takes linear tiule
to reach the fixed point. However. most of Iuethods contain loops. At a loop cutry.
the special widcning step of conlparing an edge weight with befon~ makes the edge
weight reach a fixed-point quickly. An edge weight can not change Iuore than twice
because of \'isitillg the sanIe path. 50 the upper bound of the analysis depends on
the depth of loops and the nUInber of nodes in the loaps. [t can bp represented as
I.VI + L 21LDi+l * !L·\l where .V is the total nUIuber of nodes in a eFG. LD is thp
loop depth. and L.V is tht' nUIuber of nodes in the loap. Theoretically. tlw \Vorst l'ase
nlaY han' expunential running tinle in the loop depth. Ho\Vp\·cr. in 0111' l'xperiments.
the practinll running tiule is linear in the size of the BlPthod body \Vith a constant
less than :3.

2.1.6 Revisiting the example

~ow wc rcvisit the exarnple in Figure 2.2 with consideration of control-flow infonna
tion. Figure 2.10 shows the progranl's control-flow graph of basic blacks. ~ote that
each stateIuent \Vith array reference shows on the top of a basic black. The blacks
are labeled l'rom A to G.

First of aIl. we perfonn the array-related liveness analysis on the control-flo\\"
graph. The live-local set is nlarked before each basic black. in which the constant
node oro is added. The optinli:l.l topological order of the eFG is (.-l. B. C. D. E. F. G).
The VC.-\ creates a constraint graph G ILU for cach edge (Ll. L') in the CFG \Vith the node
set before black L'. .-\11 graphs are initialized to 1.. except the black .-\·s input graph
G .-L-\. which is set ta T. The analysis iterates the blacks in their pseudo-topological
arder. But after \'isiting the block F. it will visit B instead of G since the block B is
added in the worklist and it becolnes the first one with higher priority than G.

~ow wc look at the flow-joint point at block B in detail. The first iteration O\'er
block B has only one initialized input graph CAB in Figure 2.11(a). Artel' going
through blocks B~ C. D~ E. and F. C FB \Vas initialized as in Figure 2.11(b). The
merged input graph G B is same as G.-\B. Now the flow analysis reaches the fixed
point. [n this example~ c5(i 0) = 1 in C FB although there is a statement j = j - 1 in
black F. The reason is that~ in block E, the reference a[j] always produces constraint

43

•

•

A

c

D

E

F

(a. i. 0)

key = a [i 1
j=i-1

(a. j. 0)

. if (j < 0)
gata exit

(a. j. 0)

$i1 = a [j 1
if ($i1 <=key) t--~

gata exit

Ca. j. Si2. 0)

a[$i2] =$i3
j =j - 1
geta label_1

G exit:

()

•
Figure 2.10: Control-flow graph of basic blocks

44

•
0- j ~ 0 which [nay eliminate other paths of e5(j. 0) < O. A.t the fixed point. the input
\'CGs of block C. E. and F correctly give the shortest path weights: e5(a. j) = -:2
and e5(j.O) = 0 in Gc and GE. e5(a.$i2) = -1 and e5($i:2.0) = -1 in CF. Thus. array
references in these blacks were proved ta be safe.

(a) G AB

•

•

Figure 2.11: \leGs of the black B

2.2 Array Field Analysis

The base analysis only looks at locals and analyzes the body of cach nlethod (in
traprocedllral). It does not kno\\' any infornlC:ltion fronl olltside of the ruethod. such
as fields or method paranleters. There are no communications bctween Inethods. In
Jant applications. progranuners may use fields ta hold sonle constant \'ë:tlue for code
nlodularity and darity. For example. sonle fields are initialized in constructors and
are ne\"er changecl again. or fields are assigned in sorne methods and llsed by others.
Ta explore the full relationships of fields and on different rnethods is non-trÏ\·ial. and
needs whole progranl infornHltion. The analysis in our algorithrll looks for special
cases where a field holds a fixecl length arrar object. This infornla.tion allows us to
extend the \'CA analysis ta include these fields.

A class field with modifier final or private can only be assigned a value in the
dass declaring that field. A final type field has rnore restrictions. it is assigned by a
variable initializer in the source code. That means the assignment can only be in the
constructors (< clinit> or < init>) of the declaring class. The array field analysis
nlaintains a one-to-one map from classes ta field information tables. For a class. each

-l5

•

•

array type field with the private or final modifier has an eutry in the table. and a

\'alue is assigned ta that field. The value can he .1-. an integer constant c. or T ..-\

fipld f dedared in a class C is represented as C.fno matter the fis static or non-statie.

For ea<:h class C. a.,..,.ay field unalysis exanlines the dass fields. Let Fe be the set

of array-type fields Illodified by private or final declared in C. If Fe is non-enlpty.

then a table TC is created. and for l'adl f E Fe an entry Tc[f] is created and initialized

to 1... Eadl nlethod rTL dedared in C is then eonsidered. Sinee the Soot framework

pro\'ides typed loeals. and eusures that a putfield or putstatic is always in the

fornl of an assignluent frolll a lo<:al to a field. a sinlple pre-scan of the types of Ioeals

of /Tl can he used ta avoid further processing of methods that cannot change the "alue

of any f E Fe. For each Illethod rll that rnight change an array field. the body of nl

is scanned. Let f = { he an assignmeut ta SOIlle f E Fe . .-\ value â(() is cOIuputed

as [ol1ows:

1. If (is a newarray or multianewarray operation. then extract the array length
expression d and l'et urn ()(d) .

2. If { is a local variable. the CO-OC chains provided by the Soot fraInework are

used to locate the definitions of f. [f [has Inorc than one definition point. return

T. otherwise for a definition [=.L" return ()(.r).

3. If [' is an iuteger constant c. return c.

~. Otherwise. return T.

Figure 2.12 is the pseudo-code for the process. The while loop enels when the length

value is Ilot BOTTO~[(.1...). The table inforrllation ïc[f] is then llpdated by merging

the existing value for Tc[f] with the conlputed 6"(t) according to Table 2A: note that

6" ({) is ne"er 1...

cl

•

c2 c2 cl : cl==c2 T
T: otherwise

T T T T

Table 2.4: The rule for updating the field table.

\Vhen the intraprocedural VCA analysis meets an array type field read of the form

a=o.f; where 0 has type of class C, it consults the array field analyzer to get the value

-16

•

•

•

length = BOTTOM;
usestmt = currentStatement;
local = currentStatement.RHS;

while length is BOTTOM
{

List defs = getDefsOfAt(local, usestmt);
if (defs.size != 1)
{

length :: TOP;
break;

}

usestmt = (DefinitionStmt)defs.get(O);
tmp_rhs = usestmt.getRHS;

case tmp_rhs is a NewArrayExpression
{

size = tmp_rhs.getSize;
case size is an integer constant

length = size;
case size is a local

local = size;
others

length = TOP;
}

case tmp_rhs is an integer constant
length = tmp_rhs;

case tmp_rhs is a local
local = tmp_rhs;

others
length = TOP;

}

Figure 2.12: Tracking do\vn the array length.

47

•
associated to the field C.f. If the field has a constant value c. we can analyse this

statement as if it was a = new T Cc] (sec rule in Table 2.3).

Our experience shows that this usually happens for a field with an initializer. where

aB assignnlents are nuule in the constructors. For sirllplicity. our impleruentation of

array field analysis focuses only on the first dimension of array objects.

2.3 Rectangular Array Analysis

•

•

.-\nothel" opportunity to iIIlprove '"CA lies in rectangular arrays. Bccause multidi

nlcnsional arrays in Java can be ragged. it is rnore difficlllt to get gond array bounds

analysis for nlllitidinlensionai arrays. Howcver. in scientific prograrns arrays are nlost

often rectangular. Thus. wc have developcd il whole-progranl a.nalysis using the caH

graph to identify rectangular arrays that are passed to methods as pararneters.

Java defines Cl \'ery loose structure for rllultidiIIlensional arrays. .-\ nlllitidilllcn

sional array objcct can have a ragged shape (different rows in an array Hlay ha\'e

different lengths): sub-arrays can be sparse in rnernory or aliased: and array objects

can be assigned to variables of type java. lang . Ob j ect ..\B of these properties make

array bounds analysis hard, (rccall the figure 1.:3(h). which is an exarnple of aliased

sub-arrays.)

In orcier to find aIl ëUTays that are rectangular. wc must find aIl cases where a

rectangular array is allocated. and Wl' nlust track thase allocations to their c\'entua.l

uses.

Consider the example in Figure 2.13. the new_copy ruethod is taken from the

scimark2 benchnlark. If we only analyze the rnethod new_copy. it is not possible

to say that aH array references are sare because we do not kno\\' the array abject

passed to the paranleter A are rectangular or not. However, if we kno\\' that the

pararneter A always hoIds rectangular arrays from ail method caUs. then we would be

sure N equals to the length of any A[i]. which is the programmer's assunlption. The
rectanguLa'r array analy.sis tracks the array shape at each ruethod caUs of new_copy.

and in this case can sarely conclude that aIl method caUs will pass a rectangular array
to new_copy.

48

•

•

•

public class C
{

public static void main(String[] args)
{

doubler] [] A = new double [10] [9] ;
doubler] [] B = new_copy(A);

}

protected static doubler] [] new_copy(double A[](])
{

int M= A.length;
int N = A[O] .length;

double T[] [] = new double[M] [N];

for (int i=O; i<M; i++)
{

int [] Ti = T Ci] ;
int: [] Ai = ACi] ;

for (int j=O; j<N; j++)
Ti [j] = Ai [j] ;

}

return T;
}

}

Figure 2.13: Rectangular array example.

2.3.1 Call graphs

In section 1.2.3. wc nlentioned that the Soot provides the caU graph of an .Java
application. The caU graph has one node for each methocl reachable fronl any start
ing nlethod. which can he the main nlcthod of an application. or the start or run
method of a runnable thread. The user can specify a set of starting methods. Each
node (nlethod) has a list of call sites. which are invokestatic. invokespecial.
invokevirtual and invokeinterface bytecode instructions. The receiver of the
invokestatic is resolved by the javac compiler and it has only one target. The

-19

•
invokespecial has a fixed target also. For virtual method caBs. invokevirtual
and invokeinterface. the calI graph provides a set of all possible targets. The
edges of the graph connect cach calI site ta its possible target nlethods. :\[ore details
about calI graphs l'an be found in [31}.

An algorithIll based on the calI graph is a conservative approxirllation because it
cloes not kllow the exact l'aIl target which is resoln.'d at the run-time. If a rnethod is
reachable. ail targets of its call Sitl'S lllust be rnarked as reachable. Our rectanyular

a.,.."ay analysi.o; builds an array type graph based on the l'aIl graph. For each reachable
method. it first recovers the rectangular array initializer as explained in section 2.3.2.
It then constructs a propagation graph where nodes consist of locals. mcthod param
eters. and method returns. Edges are then added between nodes when \'èllues arc
passed. such as assignruents and rnethod caBs. Creation sites for rectangular arrays
are marked as TRUE. If Cl nodes changes shape it is marked as FALSE..-\11 nodes
reachahle fronl FALSE nodes are marked as FALSE. The rernaining nodcs reach
able froIH TRUE nodes are rnarked as TRUE. ~odes luarked with TRUE after tllfl
analysis reprcsent variables referring ta a rcctangular arrays.

• 2.3.2 Recover array initializers

•

Bcforc constructing the arrar type graph. we have to look at sorne special Lases. If
a progranlnler allocates a new rnllltidinlCnsional array llsing il statcment of the forn1
new int [10J [10J. this instruction is translated into Cl. mu! tianewarray bytecode
instruction which allocates rectanglliar arrays. Howen'L a nlll1tidiInensional array
initializer is conlpiled by javlLc or jike.'i as indi\'iclllai allocations to gi\'e a potentially
ragged array of array objects. .-\n array of arrays is createel. then each elenlent is
assigned a sub-array object. Figure 2.1-l{a) shows a typical Java exanlple. and Figure
2.1-l(b) shows the resulting bytecode.

\Ve use il sinlple pattern nlatcher that can find this idionl and recoyer a rectangular
array's creation l'rom its sparse representation to a dense one. as shown in Figure
2.1-l(c). The pattern nlatcher is a state machine which identifies the patterns as in
Figure2.1-l(b). Table 2.5 gives a simplified state table for identifying two-dimensional
arrays. which is the current implenlentation.

The input of the state machine is a sequence of JI~[PLE instructions of a method.
The start state 0 accepts a statement of rl = new (A []) Cc] ;. \Ve briefty describe
the operations at each state:

50

•
intel [] a = {{l},

{2}};

a) An array
initializer

a = newarray (int[J) [2];
Sr2 = newarray (int) [1] ;
Sr2[O] = 1;
a[O] = $r2;
$r3 = newarray (int) [1] ;
$r3[0] = 2;
a[l] = $r3;

b) Compiled code by
javac and jikes

a = multianewarray
int [2J [1] ;

$r2 = a[O];
$r2 [0] = 1;

$r3 = a[lJ;
$r3[OJ = 2;

c) Recovered code

•

•

Figure 2.14: Recover the creation of rectangular arrays

st.ate input goto
0 r l = nl'\\" (.-\[J) [cl l
l r2 = ne\\' .-\[d] :2
:2 r2[*J = ... :2

r1[el = r2 (e=<:-1) :3 1

r1[('] = r2 (('=e'+l) l
:J end

Table 2.5: The state machine for matching t\vo-dimensional arrays.

State 0 records the base type .4. the length c. and the left hand sicle variable r1.

State 1 accepts a statemcnt of array creation. The base type is checked with the
recorded type A in state O. the sub-array ,.2 and the length d are recorded.

State 2 goes to different states according ta the input statenlent. ft could be the
initialization of the sub-array r2. in which case. it will continue on sta.te 2.
Or it is a store to the first dimension of the array object r 1. the array index
e is checked \Vith the array length c. It also ensures the reference index is
incremental by l (e = e' + 1) if it does not reach the array length.

State 3 returns the length of the second dimension d if the pattern is nlatched.
otherwise it returns -1.

For any exceptional inputs. the state machine jumps to the state 3 and returns -1.

51

•

•

•

2.3.3 Array type graphs

.-\.fter finding aH the creation sites for rectangular arrays. we then build an iuray type

propagation graph ta flnd which variables rllust he associated with rectangular arrays.
The graph has following nodes:

1. Two special nodes for TRUE and FAL8E. ~[arking another node is achieved
by adding an edgp between it and mw of the special nodes.

2. ~[ethod locals that are Illultidirnensional arrays. Consider the example in Figure
2.1:3. the methad new_copy in the c1ass Chas a local M. The local Mis represented
as C.new_copy.AJ.

3. ~Iethod pararneters whose types are Illultidiulcnsional arrays. The pal'arlleters

are handled in the sanle way as loeals. Th(l pal'aIneter A in the exanlple is
represented by C.new_copy.A.

-1. ~[ethod returns whose types are multidimensional arrays. [n our example. the

retllrn of method new_copy is n~presented as C.new_copy.ret'Urn.

.J. Class fields . .-\S in array field analysis. an array type field f of the c1ass C

is reprcsented as C.f whether f is statie or nOIl-statie.

Then we define l'ules to add edges to the graph aecording to the types of the

statenlents. [n general. assignnwllt statenlCnts and iu\'oke expressions add edges

between nades in the graph. SaIlle special cases will add edges between nonnal nades

and the special Ilodes TRUE or FAL8E. Gnly rnllitidinlcnsionai array type \1:1riables
are considered in this analysis. [n following l'ules. lower-case Ictters are loeals. and
by default. they are referred in a nlethod C. ,no

1. a = neu:.-l[i][j]
This is a site that ereates a rectangular array. \'·e add an edge between C.m.a
and the special node TRUE.

2. a = b
For a general assignment. we add an edge between nodes C.m.a and C.rn.b. The
b is either a local or a parameter.

-.)'l_

•

•

•

:3. a[i} = b
If a is Cl nlultidimensional array type local. a store into it adds an edge bet,,"een
C.rn.a and the special nocle FALSE.

-1. o.rz(a~b~ ...)

An invocation expression needs rnore explanation. Let Cn be the set of possible
recei\'er classes of this caB site. and pO. pl, ... be the pararneters of the rnethod
n. For each C' of C'l' we add edges between C.1Tl.a and C' .n.pO. C.m.b and
C' .n.pl. and so on.

;J. (l = V.Il(...)

An assignrIlent from a method return adds edgcs between C.rn.a and the retllrn
of each possible target. C' .n. retlLl'TZ.

G. relllrn Cl

A return expression adds edges between C.rn. cL and C. m. return.

ï. t.f = Cl or (J, = t.f

Field referen('{'s add edges between C. m.a and T.I where dU' class T declares

the field f.

8. IL = (A)b
For the assignruent with a cast expression. we cheek the statie type of a and b. If
both loeals are rnultidinlensional arrays and ha\'c the saille dinlension Humber.
the statenlent is treateel as a nornml assignnlent Cl = b. otherwise. C.1Tl.a and
C.ln.b are eODnected to the FALSE node. This is a conservative approach to
reduce the complexity of the anal:ysis because array types l'an be casted from
and to java .lang. Object in Janl.

If Cl local gets a return value fronl a method which is out of our analysis context
{ i.e. we only analyze the application code without Iibrary code L we make a conser
\'ative assunlption and connect the \'ariable to the FALSE Dode. Paranleters of the
method in\'ocation are treated in the sanle way. Figure 2.15 gives the propagation
graph of the example in Figure 2.13.

After building the propagation graph. we want to find ail nodes which are reached
starting at the TRUE node (were allocated as rectangular). and are Dot reached
starting at the FALSE Dode (may have become ragged). \Ve achieve this as follows:
first we traverse the graph~ starting from the FALSE node. marking these nodes as

53

•

•

(FALSE)

Figure 2.15: Propagation graph

reachable fronl FALSE. Then wc tra\'crsc the graph starting at the TRUE node.
finding all reachablc Ilodes that are not markcd FALSE. This set indicatcs that the
rnelllbcrs are always assigned rectangular arrays. The pseudo-code is listed in Figure
2.16.

To use rectangular array infornultion. the constraint graph has sorlle special nodes
to represent the sub-arrays. In our rectangular eX(lruple (figure 2.13). a special node
.-l[is used to represent the second diruension length of A. \Vhen the \·C.-\ meets
Cl stateIIlcnt of a = .-l(i] and .-1 is a nnlltidinlellsional array. it checks the truc node
set gcnerated by the rectang'ular array analysis. \rhen the node is in the truc set.
dirflcted edges are added between nocle a and .-\[. In the exaruple. since the \"C.-\

analysis will detennine that local nuiable .V is equal to A[. it is possible to detennine
that aH array references are safe in the progranl.

2.4 Other Enhancements

•

Besicles the nlultidintensional arrays. the variable constraint graph can he extended
to accommodate sonle extra nodes. snch as class fields and array references. "-e have
done this in a very conservative way. assuming the \Vorst-case aliasing and side-effect
infornlation. \Vith these conservative assumptions we did not find much improvement
in the result. ~Iore accurate side-effect information may improve the situation .

54

•

•

•

Set startNodes = suceessors of FALSE oode
add startNodes to falseSet
add startNodes to workList

while workList is oot empty
node = workList.removeFirst
Set suces = suceessors of node
for eaeh suce in suces

if falseSet does oot eontain suce
add suce to falseSet
add suce to workList

(a) markillg f.-\LSE nodes

Set startNodes = suceessors of TRUE node
for eaeh node of startNodes

if falseSet does not eontain node
add node to trueSet
add node to workList

while worklist is not empty
oode = workList.removeFirst
Set suces = suceessors of node
for eaeh suce in suces

if falseSet does not eontain oode
and trueSet does not eontain oode

add oode to trueSet
add Dode to workList

(b) tuarking TRloE nodes

Figure 2016: Traverse the graph.

55

•

•

•

\Ve did following extension to our intraproeedural algorithn1. In the liveness anal
ysis. wc also add fields! array elements. and common sub expressions as loeals to the
li\"e local sets. For exanlple. a.f. a[iL and i * jean be added into the live local sets
and the constraint graph can add edges conneeting thenl to other nodes.

But it should be consernni\'c when dcaling with an assignrnent to a field or array
deuwnt since we do not have alias infonnation. Detailed operations are:

a
If il is an array type lucal. aIl array ell'rnents uf a[*] ShOlild he killed. If it is a
reference type lucal. all fields of (l.f should b<' killcd.

a[iJ
Sillee we du not knu\\' any alias inforInatioll. a11 array referl'ncl' nudes should he
ki11ed. However. if we use the type infol'lnation of a. we only nel'd to kill the
sarne type arrays' elenlents.

1 -

\Vhen i is an integer variable. Array eIenlents of *[i] ShOllld he killed. and all
expressions containing i~ such as i * j. should be killed.

a.J = ...
Fields of *.f should he killcd. Because the declaring class of Cl. field is l'l'sol vcd
by the conlpiler. f in this statement should be understood as T.I where T is
its dl'claring class. rather to be interpreted as a synlbolic nanle f.

m(a)
\\llen an array or rl'l'erl'ncl' type local is passed to a nlethod. aIl rl'lated fields
and array l'lenlents should be killed sincl' we do not kno\\' the alias information
and the side effect of the Inethod calI.

a.m()
.-\ virtual ml'thod calI passes the caller as the first parameter to the callee
inlplicitly. then it has ta take the sanle action as m,(a).

[n our experiment~ the enhancements increased the constraint graph size dra
matically~ but the resuIts has very few improvements. In Java applications. method
invocations happen very often, thus the lire time of a field in the graph is very short .
Basically fields get killed again and again. The same situation happens ta array

56

•

•

•

eleluents. The side-effect analysis and alias analysis may help us ta make Jess conser

vati\"e assulllptions whell dealing with assigllllwnts and Illethod l'aIls.

2.5 Null Pointer Analysis

Elirnillating array bounds checks is often related ta eliminating Hull pointer checks.

Each aITay reference. for exanlple a Ci] ~ nlust first check that the array abject refer

enced by a is non-nu Il. In IHany 1l1odern conlpilers null pointer checks are perfornled

by handling the associated hardware trap if a null pointer is dereferenced. In this case

the rnachine architecture guarantecs a hardware exception if any \"ery la\\" mernory

addresses are read or written. In arder to do the upper array bounds check the length

of tll<' array nlllst he accessed. and since the lellgth of the array is usually stored at

il sIIlall offset fronl the abject address. this access will trap if a is null. Thus. the

array hounds check gin's a null pointer check for free. If the array bonnds check is

eliminated. then it may he necessary ta insert an explicit null pointer check (sinC(~

the address of a[i] lIlay be sufficiently large to a\'oiel the null pointer trap. e\"en if a

is Hull).

Our nullness é:lnalysis is a fairly straightforward flow-sensitive intraprocpdural anal

ysis that is ilIlplemented as an extension of the BranchedForwardFlowAnalysis dass

tliat is part of the Soot .-\PI. The basic idea is that \'ëniable a is non-null arter st<:l.te

[uents of the fonn a = new T(); and statenlents that l'efer to a. f or a [i]. \re also

infer nullness illfonllation fronl condition checks of the fornl if (a == null). Since

the nullness analysis is intraprocedural we make conser\'ativc assunlptions about the

effect of tuethod caIls .

57

•

•

•

Chapter 3

Experimental Results

'\"e have inll>lpnlentt'd tllP algorithlll in the context of the Sont franH'work l . In t.his
chaptf\r we present and disCllSS the experÏlnental results that wc haYl\ ol>tained. Thr
results are grouped into three categories:

1. 're rneasured the dynanlic characteristics of the variable con.stralnt analy:"i.., in
ternlS of twa most iIuportant factors affecting the algorithnl's perfornlance: the
size of variable constraint graphs and the nurnber of iterated blocks to reëlch the
fixed point.

2. In section 3.5. we show the results of the base intraprocedural analysis. followed
by the array field analysis and reetang'ular array analysis as they are added in
separately. and finally cOlllbined. The results are presented as percentages of
lower and upper bound checks that can he proved safe.

3. Our analyses resllits are encoded in the attributes of c1ass files. To mea....,ure the
l'cal impact to the run-tinle performance of .Jan\ progranlS. wc nlodificd Kaffe
.JIT and HPC.J compiler to n~ad and take acl\"ë:\ntages of snch attributes. The
run-tirlle measurements show speecl-ups in rnost of benchmarks.

In section 3.1. we briefly introduce the implenlentation of array bounds checks
in a JV~I at first. which often interleaves with the null pointer checks. :\Iso we
describe the experimental ep.vironment and methodologies. Then we show the static
and dynamic characteristics of benchmarks. \Ve measured hvo important factors of

l..\. brief overview of the code organization is given in Appendbc ..\.

58

•

•

•

the analysis. which show the algorithm l'uns in linear tinle with respect to the size
of thE' ruethod body. Finally. we describe in detail how to clefine the structure of the
array bounds check attributes and make a \.~[take advèlntage sueh attributes.

3.1 Experimental Method

Our algorithnl is irnplenlellted in the Soot fraruework as an independent package which
call be found in soot. j impIe. toolki ts, annotation. arraybounds. .-\ "'l'appel' is
cl'eated ta let the Soot rnain method call the analysis according the connnand options,
[n this section. wc introduce our profiling nlCthodology used in our experinlent. and
the hardware anù software en\'ÎroIlrnent in which the experiruent is conducted.

To rneasure the characteristics of bendunarks and the results of the analysis, We
need a profiler ta tell us the run-tirue results. This \Vas done by inserting instructions
increasing an integel' coullter before each bytecode which requires array bounds check
or null pointer check.

Tht' experirllent \Vas conducted on t\Va en\'iranrllents. The first one lises Kaffe
open \'~I 1.05 with .JIT engine :3 l'unning on a dual Pentiulll II -100),[PC with 38-1),[
meIllory, Linux OS kernel :2.2.8. and glibc-2.1.:3. \re rueasured the benchmark char
acteristics and profiling infonnatian on Kaffe \':\1. \\'p also rIlodified the Kaffe .lIT
conlpîler to take a(l\'antage of attributes and compared the results with no attributes.
The second part of experinlCnt is conclucted on IB),I's High Perforrnance Compiler for
Java (HPC,J). which l'uns on a PentillUl III 500),,[PC with 192~[nlCmory. \\ïndows
~T operating systenl. The HPC,J ahead-of-tinle compiler understands the attriblltes
and generate irnproved code fol' the benchnuuk class files. \Ve measured the perfor
mance changes with/without attributes.

3.2 Benchmarks

\Ve chose several benchmarks including bath general and nunlerical ones: as weil as
Spec.JV:\1 and scimark2. LeS. an implernentation of a Longest CornIllon Subsequence
algorithrn. and Alea: an algorithm for finding an optimal arder of matrix multiplica
tion. Here a brief description of each of the bellchmarks is presented (the description
of first five benchmarks cames from [29]).

59

•

•

•

db : The db benclllllark perfonns multiple database fUlletions on rl1enlOQ' resident
database. It reads in a l :\[B file whieh contains records with names. addrcsses
and phone nunlbers of entities and Cl. 19KB file callcd 5cr6 which contains a
strl'anl of operations to perform on the records in the file.

jack: Jack is a .Janl parser generator. The workload consists of a file nanled jack.jack.
which contai ilS instructions for the generation of jack itsclf. This is l'cd to jack
50 that the parser generates itself nmltiple tinles.

javac : This is the Java compiler fronl the .JDK 1.0.2.

mpegaudio : This is an application that decompresses audio files that ~onform to
the [Sa :\IPEG Layer-:3 audio s[H'cification. From our (·xperinH'llts. \\'p kno\\'
this benchmark uses arrays hea\'ily.

raytrace : This is a raytracer that works on a scpne depicting a dinosëlur.

scimark2 : Scî:\lark 2.0 is a Java benchnlark for scientific and numcrical conlputing.
h nleasures several corllputational kernels which include FFT. SOR. LL" rnatrix
factorization. :\Ionte Carlo integration. and Sparse matrix llluitiply. In our
experirnent. wc rueasured the run-tirne improvenlCnt on the first three kernels
since the algorithrIl can prove most of their array references safe.

MCO This is an algorithnl computing the matrix-chain rnultipl'ication probie'm. The
function nanle is called Matrix-Chain-Order (see (6](p.3ü6)).

Les This algorithnl finds a ruaximunl-length comnlon subsequenee of two sequences.
Both of :\[CO and LCS algorithnl use two-dinlensional arrays as rnain data
structures.

The benchnuuks are chal'acterized by their size. arl'ay l'eference density. and the
run-tilue o\'erhead caused br array bounds checks. Table 3.1 shows benchluark chan\c
tel'btics, .-\11 numbers are collected fronl benchnlark code (excluding the clas5 libraries
). The thirel eolurnn describes the size of benchnlark as the number of bytecodes of
class files in the package. FFT. Le. and SOR are packaged together in ··scinlark2:·.
They share sorne cornmon classes. the total size of the "scirnark2" package is showed
in the cell. The last t\Vo columns. density and overhead: show dynamic nleasurements
of the benchmarks. The problem size of benchmarks from ""SpeeJV).I9S:: are set as
100. The exeeution of benchmarks from ··scimark2:: is specified as ""LARGE':. LCS

60

•
and ~ICO both have loop size of 3000. which nlakes the benchnuuks l'un long enough

ta reduce the efl'ect of \'~I initialization. The density is Cl count of how nHl.ny array

references pel' second OCClU in the benchnlark (not including class libraries). It is a

rough estiruate of the potential benefit of array bouncls check elinlination. The last

colunln shows the o\'erhead caused by array bounds chf'ck instructions. To nleè:lsure

the o\·erheael. wC' rnoclified Kaffe .1IT to turn off generating bOUIllis t:heck instructions

for bcnchnuuk code. then t:ompare the tinle without checks against with checks.

densi tv 1 overhead 1source ! # b"tecode 1
k k

db Spec.JV~I98 1-1526 1.07-1.979/s 0.-1%
jack Spec.JV~I98 3160-1 ')9 96') / ~ 1.1~-. - ~

ja\'êlc Spec.J\'~I98 5-1897 73.861/s :3.8<X:
lupegaudio Spec.JV~[98 -1726.5 L9.531.665/s 22.3%
raytrace Spec.JV~[98 19:359 1.05-1.832/s 1.79t
FFT scimark2 8.667.59-1/s 5.1~

Le scimark2 2303 23.120.315/5 -0.9<it
SOR scimark2 1-1.528.328/s 11.3%
LCS 255 58.384.589/s 13.9){;
~ICO -118 33.6.39.6-17/s 15.1%

! naIlle

•
Table 3.1: Characteristics of the benchmarks

The Spee benchrnarks are relatively large. while the other fh'c benchluarks are

relatively small. Froln the dpnsity of array references and the rUIl-tillle o\"erhead of

bOllnds checks. we can see 'rnpegaudio' has Cl large o\-erhead. as do LCS. ~ICO and

three sub-benchmarks in scinlark2. (The Le benchnlark exhibits a negative overhead.

which is probably due to the impact of instruction caches al'ter wc renlo\'ed bounds

check instructions. we also flnd such impact in later experinlcnts.) These benchmarks

are aU typical examples of array-intensive programs_ Other benchmarks in our study

sen'e as exanlples of normal programs which are less array intensive. but also reflect

the dynamic characteristics of the algorithm in the next section_

•
3.3 Dynamic characteristics of the algorithm

As we analyzed in the section 2.1.5. the theoretical upper bound of the variable
constraint analysis cao be exponential. To understand the real cost of the algorithm.

61

•

•

•

we chose ta nleasure two factors: the constraint graph size and the nunlber of blocks
ite1"ated by the worklist algorithn1.

Table 3.2 shows sonle of the dynan1Ïc properties of our algoritlun applied to the
different benchnlarks. The Blocks column gives the nurnber of basic blocks in the
program. while the NonZero Block8 column givcs the nllluber of blocks that have
non-ernpty lh'e sets for local variables. and so non-enlpty constraint graphs. Only
\'onZero blocks were llsed in the calculation of average and maxirnUlll constraint
graph sizes. and every (non-ernpty) eonstraint graph includes at least one nocle for
the constant zero. FrOlll this. the size of the constraint graphs is quite reasonable:
average size ne,-er exceeds la nodes. and maxinlllIIl size no nlO1"(' than 13. These are
quite practical factors.

1 \'am(' Graph size Blocks Iter \'onZero

1
(avg) (rnax) (Hvg) Blacks

,
db :3.17 61 280 1.28 89
jê:u.:k .) - 6 207G 1.0-l 1892_.;J

janle 2.-l5 6 :33-1, l .)- IG31,-1

rnpegalldio :3.-12 la 698, 1.10 6670
raytl'ace 2.56 6 626 1.31 -176
scinlark2 5.8 12 :388 1.i9 301
Les 9 13 59 2.8 :Ji)

~[eO -l.6 Il 98 2.0 9.3

Table 3.2: Characteristics of the algorithm

The Ite'" colunul is the a"erage nUITlber of tinles a block is pl'ocessed as the analysis
iterates toward a fixed point. It is a good indicator ho\\' long the analysis will rUIl.
and suggests that in a practical sense the running tinle of our algorithm is lineal' in
the code size. There is an inlpact due ta loop oesting: in srnall benchnulrks. LeS.
~[CO and scimal'k2. the code bodies are don1Ïnated by nested loops and hence. the
factor is higher than other benchrnarks. \'e\·ertheless. the factor l'l'mains relatively
small o\-erall.

62

•

•

•

3.4 Array Bounds Check Attributes

.-\fter the ë:lllalysis phase the fiow inforrnation is associated with .J[\IPLE statements.
The l}l'Xt step is ta propagate this infonnation sa that it will he clubedded in the
dass file attributes. This is clonc by first tagging the ,JI),IPLE statelnents. and then
specifying a tag aggregator which packs ail the tags for a method into onc aggregated
tag. The process of tagging/attl'ibuting is described in [2:3],

\\"c first outline the attribute as it e\'cntually appears in t.he generated dass file.
The structure of the array bOllnds attribllte is quite straightforwa.rd. It has the nanle
Il ArrayNullCheckAttribute". Figure :3.1 shows the fonnat of the array bounds check
attribute as it will he gcnerated for thc dass files.

array_oull_check_attribute
{

u2 attribute_name_index;
u4 attribute_length;
u3 attribute[attribute_length/3];

}

Figure 3.1: :\rray Bounds Check A.ttribute

The value of attribute-Ilame_index is an index iuto the class file's constant pool.
The corresponding cutry at that index is il CONSTANT_Utf8 string representing the
nan1e "ArrayNullCheckAttribute ll

• The value of attribute_length is the length
of the attributp data. excluding the initial six bytes. The attribute [J field is a table
that holds the array baund check infornmtian. The attribute_length is :3 tilnes
larger than the table size. Each eutry consists of a PC (the first twa bytes) and the
attribute data (Iast one byte). totaling tlnee bytes. These pairs are sorted in the
table by ascending PC value.

The least twa bits of the attribute data are used to flag the safety for the two array
baunds checks. The bit is set ta 1 if the check is needed. The null check infarnlation
is incarporated into the array bounds check attribute. The third lowest bit is used
to represent the null check info. Other bits are unused and are set to zero. The
array reference is non-null and the bounds checks are sare only when the value of the
attribute is zero.

63

•

•

•

After generating the annotated class file. we need to rnake a .1\":\[aware of at
tfibutes and ha\'e it use theni to inIpro\"e its generated nati\'e code. \Ve niodified
both Kaffe's OpenV\[1.0.5 .lIT and IB\rs HPC.J ahead-of-tirne conlpiler to take
advalltage of the array bound attributes. Below we clescribe the nlOdifications needed
for Kaffe. The rnodifications to HPC.J are sirnilar.

The KaffeV:\[.lIT r(lads in class files. verifies theln. and produces native code on
cll'Inancl. It uses the' -lucthods' structure to hold rnethod infornlation. \Ve addecl a
field to the' Jllethods' structure to hold the array bounds check attribute. Figure :3.2
shows the data structure.

typedef struct _methods {

soot_attr attrTable;
} methods;

typedef struct _soot_attr{
u2 size;
soot_attr_entry* entries;

} soot_attr;

typedef struct _soot_attr_entry {
u2 pc;
ul attribute;

} soot_attr_entry;

Figure 3.2: ~Iodified Kaffe InternaI Structure

\Vhen the \'\[reads in the array bounds check attribute of the Code attribute.
it allocates nlernory for the attribute. The <PC. data> pairs are then stored in the
attribute table. The pairs were already sorted by PC when written into the class file.
sa no sorting has to be done now.

The Kaffe .lIT uses a large switch statement to generate nati\~e code for bytecodes.
It goes through the bytecodes sequentially. \Ve use the current PC as the key to look
up the array bounds check attribute in the table before generating code for array
references. Because attribute pairs are sorted by ascending PC~ and bytecodes are

64

•

•

•

processed sequentially. we can use an index to keep the cturent eutry in the attribllte
table and use it to find the next entry instead of searching the whole table. Figure
:3.:3 gives the pseudo-code.

idx = 0;

case IALOAD:

if Cattr_table_size > 0) {
/* the method has attributes. */
attr = entries[idx] .attribute;
idx++;
if (attr &Ox03)

/* generates bounds check instr. */
check_array_index(..);

else
if (attr Sc Ox04)

/* null pointer check instr. */
explicit_check_null(..) ;

}

else
/. normal path */
check_array_index(..) ;

Figure 3.3: Using attributes in KaffeV~I

In section 2.5. wc discussed the subtle relationship between array bounds check and
null pointer check for an array references. Here. wc turn off bounds check instructions
whell the array reference is non-null and bath bounds are safe. \Ve also insert null
check instructions at the place where bounds check instructions can he renloved but
the Hull check is stilllleeded. The check_array_index function enlits following code
for checking array bounds:

cmp reg!, [reg2+off]
jge outofboundserror

and the explicit_check-Ilull generates instructions for checking nu11 pointers:

cmp reg!, 0
je nullpointerexception

65

•
HPC'.J uses a slightly different scheme ta hancHe bOUllds checks. If array bounds

checks are required. a test-and-brandi code sequence is inserted prior ta the array
access :

moveax,[ebx+offset]
cmp eax,edx
jge outofboundserror

\rhen only bounds checks arc pro\'ccl ta unneed. the Hull pointer check is accomplished
by a test instruction:

test eax, [eax]

The reason for llsing different check instructions in two expcriruents is that we utiliz(ld
existing routines in the twa systenls.

Figure :3.-1(a) shows the percentage of bounds checks that our basic intraprocedural
analysis is able to detect as safe to remove. :\otc that thcsc arc dynarnic statistics.
obtained by instruruenting the dass files and inserting profiling instructions before
each array referenee bytccode. Lower bounds and upper bOllUds are measured sepa
rately in the first two bars for each benchmark. while the last bar gin:'s tlu' percentage
of array references with both safe checks.

The intraprocedural algorithrll can detenlline that a fairly high percentagc of
the lower büuud checks are safe. Safcty of upper bonnd checks is morc difficult ta
asccrtain. Still. the results for the array-intensivc benchnlarks (rightnlOst five) are
encouraging: these are the benclunarks which will bcnefit the most. and also in which
we achieve the best results.

• 3.5 Dynamic Results and Discussion

•

Figure 3.-1(b) gives the percentage of cases where both upper and lower bonnds
checks could be determined ta be safe. The second and third bars are from the basic
intraproeedurai aigorithm augmented with either array field analysis or rectangular
array analysis; the last bar represents the intraprocedural algorithm with both array
field and rectangular array analyses.

By analyzing the fields holding constant length array objects! the intraprocedural
analysis can get more information about field accesses. The success of this method.

66

•

MeoLesSOR

.~

javac mpegaudio raytrace FFT LU

(a) Resllits of the base ë:lllalysis
jackdb

20% 1

0%1 ~~

40%

60%

100% r ----------- ---
1 (] Safe lower bound

80% C Safe upper bound

• Safe both bounds

db jack javac mpegaudio raytrace FFT LU SOR LeS MCC

(b) Irnprovelllent~ due ta field and shape analyses (both bOllnds safe)•

100%

80'%

60%
1

40% i

2000 ;

-------~._._-~~-~--

ClVCA

OVCA+Field

CJVCA+Rect

.AII

Figure 3.4: Dynamic Results of VC.A.

•

howeyer. depends on the application: 'Jllpegaudio' and 'raytrace: inlprOye greatly.
while others are more or less unaffected (Figure 3.-l(b)). Rectangular array analysis
also pro\'CS ta be \'l'ry application-clependent. It is of benefit only to those bCllchmarks
using rllultidinlensional arrays. Ll·. SOR. and LeS and ~[CO irnpro\'c dranultically
with the addition of this analysis.

The last experirnent shows the result of the cornbinecl use of field and rectangular
analyses. Becallse these are essentially independent analyses. the cornbined inlprove
rnent is close to the sunl of the iruprOyenlcnts seen indi\·idually. \\ïth most of our
benclunarks this brings the percentage of checks we coulel elirninatl' to 50% or more:
again. array-intensive benchnHuks fare best. and in sorne cases wc identify almost
100<X: of array bounds checks as safe.

Relative run-time perfonnance improvements for the instrumented versions of the
Kaffe JIT and HPCJ are given in Figure 3.5. Both systems were modified to read the
array attribute information stored within the class file and to apply that data during

67

•
code generation.

25%

20%

15°/0

10%

5%

0%

-5%

Cl No checks

IlWith attributes

mpegaudio FFT LU SOR LCS MCC

(a) Katfe

Cl Na checks

mWith attributes

mpegaudio FFT LU SOR Les MCC
(51 s) (25s) (29s) (24s) (87s) (38s)

(h) HP.JC (orher optimizations off)
60% 1 Cl No checks ~-----------
50% 1 . .

O
I!IWlth attrlbutes

4 %
30%
20%
10%

0%
-10%
-20%

60%

50%

40%

30 0
/0

20%

100
/0

0 0
/0•

mpegaudio FFT LU SOR LCS MCO
(21s) (17s) (22s) (12s) (525) (175)

(c) HP.JC (ot her optimizat ions on)

Figure 3.5: Speed-ups for Kaffe and HPCJ

•
If an array access is deemed safe from the attribute information. no such checks

are created-this is done during actual (just-in-time) code generation for Kaffe. and
at an internaI, intermediate stage for HPCJ. In the latter case. this eliminates the

68

•

•

•

potential array bounds exception that may restrict subsequent internaI optimizations.
resulting in different code output. For this reason we present results with and without
HPC.rs own optimizations applied.

FinaIly. note that every array access is an abject access. and so null pointer checks
an" also requircd at these points. Depending on rlluchine architecture and ho\\" ob
jpcts are organizcd. this check l'an be cOlubined \Vith the array bounds check. and
so n'nlO\'in~ the latter IItaY requin:> inserting explicit Ullll pointer checks [:2:31. Bcst
perfonllance r('sults therefore OCClU" when both kinds of checks an~ e1iminatcd. Our
rpsults indude this optirnization.

In each case the result of using the intraprocedurai analysis cornbined with both
field and rectangular analyses is compared with the effect of artificially disabling
aIl bounds checks. .-\ couple of cases (Ll" in Kaffe. FFT in HPC,J (opt)) exhibit
interesting anonlalous results that we have been able to attribute ta code cache èffccts.
In aIl other cases. however. wc achieve significant pcrforrnance increases. roughly
corresponding to the quality of inforrnation wc were able to collect .

69

•

•

•

Chapter 4

Related Work

.-\rray bounds check optinlÎzation has been performed for other languages. sueh as
Paseal. Fortran. and :\da[22]. for a long time, '\"e first discuss sorne related work
de,'eloped on other languages. These algorithnls can not he directly applied t.o Ja.va
prograrns because of its unique requirernent of precise exceptions (.-\da shan~s this
sarne property), However. another unique property of Java is that rnultidirnellsional
arrays are defined as array of arrays. which pre"ents rHany existing rnethods from
applying on .hwa. ~cw solutions han:! been erncrging since the introduction of Java,
\'Oe will discuss more details in the following text.

\\·.H.Harrison[l-lj described an algorithm for value ranges analysis. The algorithrn
consists of t\Vo nlechanisllls called range propagation and range analy,"ris. Range prop
agation uses the data and the conditional structure of a progralll to derive and propa
gate syrnbolic range infonnation. Targeting eonlplex control flow structures (100ps).
range analysis tracks the changes applied ta a variable at each point in a loop of the
progralll. The infonllation is used to deri,'e a range of nlilles for the 100p nuiable.
The resulting range infonnation can be used to elinlÏnate unnecessary tests and pro
duce diagnostic infonuation. \\llile this \Vas a nO"el idea to redllce redundant tests
at that tinle. the simple mechanical propagation of symbolic "alue can only prove a
srnall part of safe checks.

The problem of run-tÏIne overhead of array bounds checks was first addressed by
~·Iarkstein et. al. [18]. R. Gupta[12, 13] extended their work by usiug data-flow
analysis to elînlinate redundant checks, propagate checks out of loops. and combine
multiple checks into a single check. The algorithm has the same principle as partial
redundancy elimination. It relies on hoisting check instructions to the earlier point,

70

•

•

•

Several kincls of checks Lan be sllbsurllecf: identical checks. checks with identical
bounds. and checks with identical subscript expressions. Kolte eLai. [16} extended
Gupta's algorithru in a partial redundancy (:""liruination frarnework..-\ fundanlental
assulnption of the algorithms is that the exception can be thrown at the point before
original exception point (rernernber that Figure 1.2(b) showed such an example).
This assunlption is acceptable when working on languages that do not require precise
exceptions. .Java does not allow an exception to happen before the place it really
should be. However. a more basic problerll with this type of algorithrll is that the
language should be able to express and rnodify checks explicitly. where bytecode
instructions can not do thaL

There are several aigorithllls targeting different problenls invoh"ed in rernoving
bounds check overhead for .Jaxa. Scientific computing programs use rnultidinlensional
arrays. Becêluse of .Java·s 100se llluitidiluensionai array structure. it is \'ery hard
to optiluize such programs. ~Ioreira et.al. [21. 19. 20} designed an Array package
for two- and three-diluensiollal arrays. The package provides Fortran 90-like array
funetionality (ail array opprations are perfonned through method caBs). Internally.
a multidiruensional array is irnplementccl by a one-dimensiollal array. To achiew\
good perforrnance. an inlilling technique is llsed tu reduce the o\"erhead caused hy
rnethod caIls. and a special regioning or 10op-\'ersioning technique is used to l'reate
sare regions for array accesscs. and thllS. rCnlO\'C unnceded array bounds checks. The
algoritlnn only works on loops and relies on llnderlying virtual Inachine to be aware
of the .-\rray package and perform unllsual optirnizations on it.

SOllle .JIT conlpilers perfornl array bounds check elilllination whcn translating
bytecode ta native code. The Intel .JIT[5] perfofIlls analysis ta approxiIuate the range
that an urray nlight access within a loop. In the case of a known range. a special check
free loop body is createcL while the bounds check code is inserted olltside the loop.
The 18:\.[.JIT(30] uses the sanle technique called loop versioning, but also has a data
flo,," analysis to analyze checks not in a loop, The data-flow analysis is an extension
of Gupta's algarithnl. Both of twa compilers have to obey the precise exception
requirement of Java. A basic poliey is to not nlOving checks over any bytecode which
has side-effect (e.g.. mernory access. bytecode rnay cause ather exceptions). Loop
\"ersioning also can cause code explosion. Sa the application of the optimization is
limited by sorne parameters: the code size of loop body. the innerrnost loops. and so
on.

:\[ore recently. Bodik et. al. [3] presented an algorithm called ABCD (Eliminating
Array Bounds Checks on Demand) for general Java applications. The algorithm uses

71

•

•

•

a different fornl of constraillt graphs to solve bounds checks. The algorithnl finit
splits locals~ definitions and uses according the nllue range constraints. It bllilds an
extended SS:\. (statie single assignrnent) fornl for a nwthod body. In this e-SS.-\
fornl. ail uses of a variable would have the sante value range which can be derived
frorn the program, For exarnple, assignments can change a variable's value range as in
ordinary 5S.-\ fonu. and array references and conditiollal branches can also bouncl the
valup rangp of tlw index or condition variables in tht' scope aftel' tlwtll, Thus. these
stateruents are treated as assignnwnts in the 55.-\ algorithul. The e-55:\. guarantees
that aU uses (by narne) of a variable are bounded by the sanie constraints. the value
range, at the run-titue. The value range could be an approxirnation, Based on the new
fonn. a constraint graph is constructed. where nodes are loeals and constants. and
weighted cdges are constraints representing inequality relationship between nodes.
To infer the relationship between array and index. the shortest path between thetn
is solved by a custornized depth first search algorithrn which specially hancl1es the 0

nodes in the graph. If the shartest path length is less than zero. the upper bonnd
check for that array referenee is uunceded. The 10\\'e1' bound can be elirninated if the
weight of the shortest path fronl array index ta the node of constant 0 is gr('~lter or
equal to O. .-\t each control flu\\' joint point (0 node). the weakest constraint has to
he takcn.

Our "C.-\. shares sorne sirnilarities with theirs. bath are using inequality graphs ta
represent const1'aints. Hawe\'er. there are se\'eral differences between our algorithnl
and ABCO approach:

1. The .-\BCO algorithIll is based on an extended 55.-\ fonn. and uses one graph to
surnma1'ize constraints l'l'OUI aIl statements in a method. Thus. the control-fio\\'
infornla.tion is inc1uded in the constraint graph. Our "C.-\ approach does not
rely on any underlying prograul representation form. it uses a fixed nurnber of
snIall progranl-point specifie constraint graphs.

2. Sased on e-SS.-\ forrn. the ASCO algorithrIl can be llsed in a deuland-driven
nlanner. Each dernand (query) is solved individually~ and ulay be perforrned
on selected array referenees that occur in hot spots. Eaeh query is relatively
inexpensive. The VC.-\ approach is designed to prove ail array referenees at
once. Ir builds constraint graphs and salves eonstraints in relatively expensive
costs~ but the results are available for all array refe1'ences immediately.

3. The VCA approach keeps eonstraints of 10we1' and upper bounds in the same
g1'aph~ which is not the case in the ASCD approach.

-.?,-

•

•

•

-1. ASCD is capable of catching partial redundallt bOUIlds checks. VCA is not able
to do that currently.

v. In sonle cases. a prograln-point specifie graph call hoId sorne inlplicit constraints
where a sunuuary graph based on a 5S.-\ representation fonu cannot. Figure
-1.1 illustrates this point. Givcn the progranl segtnent in Figure -l.1(a). our
VCA algorithIIl builds the constraint graph shown in Figure -l.1 (b). whereas
the ASCO algorithnl builds the graph shown in Figure -1.1(c). ~ote that in the
ASCD graph. constraints are only encoded along the direction of the control
How (for exarnple. the assigIllnent i = k + 2; results only in one edge. l'rom k

to i). Given this graph. it is not possible ta find the safe upper bonnd at p2.

However. since \'CA collects a separate graph for p2. and the constraint gained
fronl pl is also applied to i and q. it is possible to show that the bounds are
safe at prograrn point p2.

6. In our aigorithlll. the constraint graph serves as the basis of other two analyses.
\\'c call sec. for certain type applications. the inlpacts of the analyses are sig
nificant. Currently it is not clear how class fields and Illultidiluensional arrays
infornHltion ean be used to help the .-\BCO algorithrIl.

\"CAmay not be faster than the ASCO algol'ithnl. although the techniques we
uscd Inake Ollr algorithrJl l'un at a rea~onable speed. In sanIe SPEC .1\'~I98 bench
marks. VCA can prove nearly sanle percpntages of safe upper bound checks as reportecl
in [3]. \\1th array field analysis and rectangular array analysis. VC.-\ cau outperform
.\BCO significantl.y. Experiluents show that \"C.-\ \Vith rectang'lLlar an-ay analysis

is very effective on rniero benchrnarks using two-diluensional arrays. \Ye also think
the approach of formulating a problenl in constraint graphs and soh'ing it by lIsing
data-flow analysi~ cau be useful for other problcrlls.

The general idea of using the single-source shortest-path of an ineqllality graph
to solve systerIlS of difference constraints has been stated in [6](p.5:39-p.5-l5).

R. Shahanl et. al. [27. 26) described an algorithm for identifying live regions of
arrays to detect array memory leaks in Ja\·a. In their work. the representation and
analysis are very similar as our VC.-\. Constraint graphs and data-flow analyses are
used to compute inequalities between variables. However. their focus is on finding
relationships betwcen special class fields across method boundaries based on super
graphs of a few particular library classes. .-\lthough the supergraph can make our
field analysis more powerful, our VCA approach foeuses on intraprocedural analysis

73

•
i = k+2;

pl: a[i 100. ~

j=k+l~

p2: aU 1... ~

(a) example (b) a part ofVCA
graph before p2

(c) ASCD graph
for ail statements

•

•

Figure 4.1: Comparing the VC.~ and l\BCD constraint graphs.

for gencral Java applications. and wc hancHe different stateluents in more detail. .-\n
other irnportaut aspect of our VC.-\ approat.:h is that we use different techniques to

recluce the cost of data-flow analysis. such as limiting constraint graph Ilode sizc. and
enforcing iteration in pscudo-topological arder.

Conlparcd with other algorithnls. our \·C.-\ works on bytecodc level and cloes not

t.:hangf' the prograru. The analysis results arc cllcoded in the dass file attributcs .
Thus. th('re are no problems with pn'dsl' exception selnantics. It is capable of pre
senoing inl'ol'lllation froul \'arious sources..-\lthough it uses a relath'cly sophisticated
abstraction for the data-flo\\" analysis. the techniques llsed in the algorithIfl reduce

the ovcrhead to a minirnum. \'CA can he very easily extendcd to take advantagc of

results l'rorll other analyses. \Ve deITIOnstrated how the two extended algorithrns can

ilupro\"e the analysis results dranlatically for array intensive benchmarks.

Ghelnawat et. al. [9] described an algorithnl called field analysis which exploits
the declared access restrictions placed on fields in a nlodular language. .Java programs
are based on classes. Classes. fields. and methods have nlodifiers which limit access
to thenl. Sorne fields with modifiers private. or final can only be accessed in a
limited scope. By scanning the code in the scope. ail possible value or object that

a field can hold at the run-time is detenninable. They implemented the algorithm
in the Swift optimizing compiler [25]. The analysis results is used by other analyses

for object inlining~ stack allocation. and synchronization removal. They reported an
average 7% speedups.

To target the scientific programs which use multidimensional arrays frequently. our
rectangular array analysis provides very important information to the VC.-\. which
helps the conservative VC.\ remove almost hundred pel' cent bounds checks in sorne

7-1

•

•

•

typical applications, To the best of our knowledge. very few other works takes advan
tage of knowing array shapes. Further. we believc the array shape information call
also help nlcnlOQ' layout of array objects in a virtual nluchine[-l] .

75

•

•

•

Chapter 5

Conelusions

[n this thesis wc have presented a collection of techniques for elirninating array bounds
dwcks in Java. Our base analysis. variable constl"aint analysis (\·C.-\). is a flo\\'
sensitive intraprocedural analysis that approxirnates the constraints between impor
tant prograrn \'ariables at progranl points corresponding to array access statenlents.
The analysis has been made f'fficicllt by rcdllcing the size of the graphs. dlOosing a.n
appropriate worklist arder. and applying a widcning at 100p entry points. As shawn
in the experinlPlltal results. the size of the graphs is small (around LO nodes for our
benchmarks). and the a\'l'rage nlllubcr of iteratiolls pel' basic block is always lcss than
:3.

[n order to iIUprO\'e the precision of the base \·CA aualysis. wc have described
two additional techniques. Array field analysis is applied to each class ta find those
array type fields that always hold an array \Vith a fixed constant length. Rectangular
array analysis is applied ta whole programs to find thase variables that always refer
ta rectangular. non-ragged. arrays. Given the infornlation frorn these analyses. the
intraprocedural VCA analysis \Vas inlpra\"ed ta includc infornlation about fields. and
upper dimensions for multidinlcnsional arrays.

Our analyses were iIupletnented in the Soot optinlizationjannotation franlework.
and we provided dynamic results that showed the effectiveness of the base VC.-\
analysis and the incremental impravements due ta field and rectangular array analysis.
These results were quite encauraging and demonstrated that almost aH checks could
be eliminated for thase bcnchmarks with very regular computations. \Ve also pravided
experimental results for Kaffe and [B~rs HPC.J ta demonstrate that significant run
time savings can be achie\'ed as a result of the analysis.

76

•

•

•

Our next phase of work will be to integrate a side-cffect analysis into the framc
work. and impro\'c upon infonnation for arrays stored in objects. Ta extend constraint
graphs to represent other arithmetic operations is a \"cry interesting tapie .

77

•

•

•

Bibliography

[1] :\1. Arnold. S. Fink. D. Gro\·e. :\1. Hind. and P. F. Sweeney. .-\dapati\"e Op
tinlization in the .1alapeiio .1\':\1. In Proeeedings OOPSL.-l 2000 Conference on

Object-Oriented Progr(J;,nrrL'ing Syste'TTL.'i. Language:;. lLnd Applications. .-\C:\[SIG
PLA~ ~otiees. pages -17 -65..-\C:\L Oct. 2000.

[2] O. F. Bacon and P. F. Sweeney. Fast Statie .-\nalysis of C++ \ïrtual Fllnction
CaUs. [n Proceeding.'i of the Conference on Object-Oriented ProgrU'rrt'rning Sy.-;

tems. Language..,. anci Application,;. \'olulne 31. 10 of .-lC.J\I SICPLAiV Notices .

pages 32-1-:3..11. Xew York. Oct. 6-10 1996..-\C:\[Press.

[:3] R. Bodik. R. Gupta. and \'. Sarkar. ASCO: Elirllinating .-\rray BOllnds Checks on
OPIlland. In Procecding."i of the A CAl SICPLAiV '(JO Conference on Prograrnrning

Language Design and lrnple."u~ntation(PLDI). pages :321 <33:3. \'ancouver. BC.
Canada. .June 2000.

H] :\L Cierniak and \r. Li. Optinlizing Java bytecodes. Conc'lJ.rrency. Prad-iee anci

Experience. 9(6):-127--1-1-l. 1997.

[5] :\1. Cierniak. G.-Y. Lueh. and .1. :\l. Stichnoth, Practicing JCDO: Java under Dy
narnic Optinlizations. In Proceedings of the A CAtI SICPLA1V '00 Conference on

Progra-mming Language Design and Implelnentation(PLDI). pages 13-26. \'an
couver. BC. Canada. June 2000.

[6] T. H. Cormen. C. E. Leiserson. a"ld R. L. Rivest. Introduction to Algo'rithms.

:\IcGraw-Hill and ~nT Press. 1990.

[7] .J. Dean~ D. Grove~ and C. Chambers. Optimization of Object-Oriented Programs
Csing Static Class Hierarchy Analysis. In \V. G. Olthoff. editor~ ECOOP~95

Object-Oriented Programming~ 9th European Conference. volume 952 of Lecture

78

•
lVote8 in Co'rnputer Science. pages 77-101. Aarhus. Denlllark. 7~ Il ,\llg. 1995.
Springer.

[8] E. :\1. Gagnon. L. J. Hendren. and G. :\[arceall. Efficient inferellce of statie
types for Java bytecode. In Statie Analysis Syrnposturn 2000. Lecture :'\otes in
C'orllputer Science. pages 199-219. Santa Barbara. June 2000.

[9] S. Ghenlawat. K. Randall. and D. Scales. Field :\nalysis: Getting Cseful and
Low-Cast lnterprocedural Infonnation. In Proceedings of the ACAJ SIGPLAN

'00 Confer'ence on Programming Language Design and I"~ple.,,~entation(PLDI).

pages 33-1-:3-1-1. Vancoll \·er. BC. CanadéL .J une 2000.

(l0] .1. Goslillg. B..Joy. G. Steele. and G. I3racha. The .Java LanyulLge Sp~eijication.

Addison- \Yesley. 1996.

[Il]

• [12]

[13]

[1-1]

[15]

[16]

D. Griswold. The Jaxa HotSpot \ïrtllal :\Iachille ,-\rchitel'ture. 1998.
htt p: j jwww.ja\ëlsoft.comjproductsjhotspot j whitepapf'r .hUlll.

R. Gupta. A fresh look at optirnizillg array bOllUd checkillg. In Proceedtng,.;

of the .-\CA-I SIGPLAiV '90 Conference on Prog'T'll'TTl'lning Language De:;ign and

Implementation. pages 272~282. \\llite Plains. :,\Y. June 1990.

R. Gupta, Optimizing array bound checks llsing flaw analysis. A Ci\[Lette'ni on

Progranznzùzg Languages and Systern8. 2(l-4):135~150. 1993.

\Y. Harrison. Conlpiler analysis of the value ranges of variables. IEEE Transac

tion8 on Software Engineering~ 3(3):243-250. 1977.

Kaffe \ïrtual :\Iachine. hup:j jwww.katre.org.

P. Koltc and :\1. \Volfe. Elinlination of redundant array subscript range checks.
A CA! SICPLAiV lVotù:es. 30(6):270-278.1995.

•

[17] T. Lindholnl and F. Yellin. The Java Vir·tuat A!achine Specification. Addison
\\'esley. 1996.

[181 V. :\Iarkstein. J. Cocke~ and P. :\Iarkstein. Optiluization of range checking.
P'roceedings of the SIGPLA1V'S2 Syrnposiu'm on COTnpiler Construction. pages
11-1-119. June 1982.

[19] S. ~lidkiff. J. ~Ioreira. and :\1. Suir. Optimizing bounds checking in Java pro
granlS. IBkl Syste'ms Journal. 37(3):409-453. August 1998.

ï9

•

•

•

[20] .J. :\Ioreira. S. :\Iidkiff. and :\1. Gupta. .-\ Standard Java Array Package for
Technical Computing. In Proceedùzgs of the .Ninth SIAAJ Conference on ParaUel

Proces.sing for Scientific CO'TTzputing. San Antonio. TX. :\larch 1999.

[21] .J. :\loreira. S. :\1idkiff. and :\L Gupta. FrOIll flop to nlegaflops: Java for tech
nical l'ornputing. .4 CAl Tran.'iaetion:i on PrograrTLrning Language,..; and Sy,.,tenz.,;.
')')('))")6~" ')9- '1' . ')000___ ._ J -_ .J ••\ clI. _ .

[22] S. S. :\Iuchnick. Advatlced Co'mpiler De8ign and Imple'TTLentation. :\lorgan Kauf
[nann. 1997.

[2:3] P. Ponünville. F. Qian. R. Vallée-Rai. L. Hendl'en. and C. \'erbrugge..-\ Frarne
work for Optiruizing .Java Csing Attributes. Sable Technical Report 2000-2
(l'c\'ised). Sable Research Group. :\IcGill L·niversity. Sept. 2000. Ta appear ~n

CC2001.

[2-11 P. PonlÏnvillc. F. Qian. R. \'alléc-Rai. L. Hendren. and C. \'erbrugge. A franle
work for optinlizing java llsing attributcs. In R. \Vilhelrn. editor. Co'mpiler Con

:îtruction. lUth International Confe1·ence. volurne 2027 of Lecture LVote,.; in Conz

[J'iLter Science. pages 33-1-35-1. Genova. ltaly. April 2001. Springer.

[25] D. J. Scales. K. H. Randall. S. Ghemawat. and J. Dean. The swift java com
piler: Design and iInplenlcntation. Technical Report 2000/2. Conlpaq \Vestern
Research Laboratory. :2000.

[26] R. Shaharn. AutoIllatic l'l'IllOnll of array mClllon' leaks in .Jan\. :\Iaster's
t hesis. Tel-A \'Ï\' C niversity. Tcl-:\viv. Israel. Septernber 1999. Avétilable at

http://w.."w.rnath.tau.ac.il/- l'ans/thesis.zip.

[27] R. Shaham. E. K. Kolodner. and :\1. Sagiv. Autonlatic removal of array nlenlory
leaks in java. In D..-\.. \Yatt. editor. Cornpiler Construction. 9th International

Conference. volume 1781 of Lecture lVotes in Co'rnpute'r Science. pages 50-66.
Berlin, Germany. :\Iarch 2000. Springer.

[28] Soot - a Java OptinlÏzation Franlework. http://ww,,".sable.nlcgill.ca/soot/.

[29] Spec JV~198 benchmarks. http:/ jwww.spec.orgjosg/jvm98/index.html.

[30] T. Suganuma. T. Ogasawara, ~L Takeuchi, T. Yasue, NI. Kawahito, K. Ishizaki.
H. Komatsu. and T. Nakatani. Overview orthe IB~I Java Just-in-Time Compiler.
IBJ\tf Systems Jou'mal, 39(1):175-193,2000.

80

•

•

•

[31] V. Sundaresan. L. Henclren. C. Razafinulhefa. R. Vallée-Rai. P. LaIll. and Étienne
Cagnon. Practical \ïrtual ~IethodCall Resolution for Java. In Proceedings OOP

SLA 2000 Conference on Object-Oriented PrograrnnL'ing Syste'ms. Languages. and

Applications. AC~I SIGPL.-\~ :':otices. pages 26-1-280. AC~I. Oct. 2000.

[32] F. Tip and .J. Palsberg. Scalable propagation-based calI graph construction algo
rithms. In Pr'oceedings OOPSLA. 2000 Conference on Object-Oriented ProgrurTt

rning Systerns. Languagc.~. and Applications. pages 281-29:3. oct 2000.

(:3:3] R. Vallée-Rai. Soot: .-\ .Ja\'a Bytecodc Optimization FraIuework. ~Iaster's thesis.
~IcGill l·nivcrsity. October 2000.

[:3-11 R. Vallée-Rai. E. Gagnon. L. Hcndrcll. P. Larn. P. Ponlin\'ille. and \'. Sundaresan.
OptiInizing Janl byt(lcodl~ using thc Soat franwwork: [s it feasihle? In D..-\.

\ratt. editol". Compiler Construction. 9th International Conference. \'olUIlle 1781
of Lecture lVote:; in Computer Science. pages 1S-:3··L 13('din. Gennany. ~[arch

2000. Springer.

81

•

•

•

Appendix A

Implementation classes in Soot

Classes implclnenting thrp.e analyses locate in the directol'Y l'ooted fron1 Saot project:
%SOOTDIR%/soot/ j imple/toolkits/annotat ion/arraycheck/. The class files are
listed heIo\\':

Array2ndDimensionSymbol.java
ArrayBoundsChecker.java
ArrayBoundsCheckerAnalysis.java
ArraylndexLivenessAnalysis.java
ArrayReferenceNode.java
BoolValue. java
BoundedPriorityList.java
ClassFieldAnalysis.java
ExtendedHashMutableDirectedGraph.java
FlowGraphEdge.java
IntContainer.java
MethodLocal.java
MethodParameter.java
MethodReturn.java
RectangularArrayFinder.java
WeightedDirectedEdge.java
WeightedDirectedSparseGraph.java

The ArrayBoundsChecker class is a wrapper handling parameters and calling

82

•

•

•

other analyses. The ArrayBoundsCheckerAnalysis inlplelnents VC.-\. and the Weighted
DirectedSparseGraph inlplenlCnts \"CG. The ClassFieldAnalysis and Rectangular
ArrayFinder inlplenlent array field analysis and rectangular array analysis
respectivdy. Other classes are utility classes.

83

