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This dissertation is divided into two sections. 

The first, Chapters 4 to 9, concentrates on the distribution 

theory of the Inverse Gaussian distribution. The author 

develops a general limit theorem for convergence in law 

to this distribution. This result is of interest to 

nonparametric statisticians. Other results from this 

section includel a convenient method of obtaining percentage 

points; Bayes estimates of parameters; and four original 

characterizations of the distribution. A definition of 

the Multivariate Inverse Gaussian distribution (MVIG) 

is given. Necessary and sufficient conditioüs that 

all the marginal distributions of the MVIG be Inverse 

Gaussian are developed. 

The second section, Chapters 10 to 12, deals with 

a general family of stochastic processes, of which the 

separable Inverse Gaussian and Poisson processes are 

members. The topic is treated from a measure theoretic 

point of view. Properties of the sample functions and 

Stieltjes stochastic integrals are treated in detail~ 

Illustrative examples of how ones intuition, regarding 

path properties, can lead him astray, are included. 
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ORIGINAL RESULTS OF THIS THESIS 

Apart from Chapters 1,2,3, and 10, to the best 

of the authors knowledge, each result is original. 

Further, the author feels that. 

(1) THEOREM 4.1 has great potential practical significance. 

Although, perhaps a shorter proof of the result might be 

possible, by bringing in Brownian Motion, the proof of 

Chapter 4 gives convergence rates. 

(2) The author has shown a simple way to obtain percentage 

points of the Inverse Gaussian distribution, and investigated 

the structure of estimates of parameters. 

(3) The author has also shown several sets of conditions 

which characterize the distribution. A workable definition 

of a multivariate Inverse Gaussian distribution 1s g1ven, 

and invest1gated. 

(4) S1gn1ficant contributions to the field of Stochastic 

Frocesses appear in this work. The approach is perhaps 

different from the classical method~. The true essence 

of certain types of processes are indicated. Stochast1c 

IntegraIs are defined, and their properties developed. ' 

(5) Two research papers, by the author, solve thorny 

problems in the experimental area. Analysis of Reciprocals. 



1 

CHAPTER 1 INTRODUCTION 

study of the Inverse Gaussian distribution was initiated 
by Tweedie [15J, in 1957, although as early as 1915, Schrodinger 
showed that the distribution occurs as the first passage time 
of Brownian Motion with positive drift. It was Tweedie j who 
named the distribution, from the fact that the cumulant­
generating functions of the Gaussian and Inverse Gaussian 
distributions are inverse functions to each other. 

Khatri [7J, in 1962, characterized the distribution ~lith 
a rather remarkable theorem, based on the independence of two 
random variables. The author [12J, in 1968, obtained a 
convenient method of obtaining the percentage points of the 
distribution. The most significant contributions to this 
field were made by Wasan [16 J, in 1966, in his work, "Il1onograph 
on Inverse Gaussian Distribution." Not only did he collect most 
of the original work mentioned above, but he developed a large 
quanti ty of new mate rial , applicable' in many are as of 
Statistics and Probability. 

The first three chapters of this thesis serve as an 
introduction, and hence contain few original results. Chapt.er 
2 is devoted to basic definitions and notation, whi1e Chapter 
3 includes results, quoted without proof, which can be found 
in the literature. In each case, a reference is given, as to 
where the proof may be found. 
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With the exception of a few results, given without 

proof, Chapters 4 through 9, contain, to the best of the 

author's knowledge, original research. 

, In Chapter 4, the author develops a situation, under 

very genera1 conditions, in which Inverse Gaussian random 

variables occur. 

Chapter 5 includes a simple proof of the author's resu1t, 

[12J, enabling one to find percentage points of the Inverse 

Gaussion distribution. 

In Chapter 6, the author discusses confidence sets for 

the parameters of the distribution; while Chapter 7 treats 

Bayes estimates of parameters. 

In Chapter 8, four characterizations of the Inverse 

Gaussian distribution are deve1oped, three of whlch depend 

on a resu1t of Prof. V. Seshadri, glven in Chapter 5. Khatri's 

characterization is discussed in an example. 

Chapter 9 ls devoted to the definitlon of a multlvariate 

Inverse Gaussian distribution. Lemma 9.1 gives necessary 

and sufficient conditions for surns of independently distributed, 

Inverse Gaussian random variables to be Inverse Gaussian 

distributed. This Lemma in turn gives necessary and sufficient 

conditions that the marginal distributions of a multivariate 

Inverse Gaussian random vector, aIl be univariate Inverse 

Gaussian distributions. 

Chapters 10 to 12 deal with families of stochastic 

processes, of which the Inverse Gaussian Process is a rnember. 
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Chapter 10 ls of an lntroductory nature, and as such, contalns 

11ttle orlglnal work. In Chapter Il, the author shows that 

for separable stochastlc processes, such that P(Xt ~ Xs } = l 

whenever t > s , almost every sample functlon ls monotone 

non-decreaslng. In Chapter 12, the author defines MISI 

stochastic processes. Stochastlc lntegrals wlth respect to 

MISI processes are lntroduced. At the concluslon of the 

chapter, propertles of the Inverse Gausslan stochastlc process 

are 11sted. 

Followlng Chapter 12, the author proposes certaln conjectures 

and problems, whlch would make excellent research projects. 

The author has also lncluded two research papers, written 

after the typing of this manuscript had been completed. The 

results of these papers do not appear in the text of the 

thesis. 



4 

CHAPTEH 2 NOTATION AND DEFINITIONS 

In this chapter, the reader will be introduced to the 

basic notation used throughout this thesis. 

l 

2 

3 

4 

5 

6a 

6b 

7 

8 

9 

10 

Il 

f ) 
[a, b] 

(a,b) 

z+ 

[x] 

X"vF(x) 

2 
X n,a. 
F n,m,a. 

Notation Chart 

A set of points 

ttla ~ t < b} 

{t la < t < b~ 
Set of positive integers 

Largest integer ~ x 

Random variable X has distribution 

function F(x) 

Random variables X and Y are 

identically distributed 

y has the chi-square distribution 

with n degrees of freedom 

y has the F-distribution with 

n and m degrees of freedom 

If YI\Jf)"2 P(Y> "Y'2 ) = a. 
.A n ' """ n, a. 

If YruFn,m ' p(Y > Fn,m,a.) = a. 

As n --7 00, the distribution 

function of Xn converges to 

F(x), at every continuity point 

of F(x) 



A 
V 

12 

13 

14 

15 

16 

17 

18 

x 
\Jet ) 
(~) 

J 

iff 

CfL,::f ,p) 

E(X) 

a.e. 

5 

Sample mean, a random variable 

Gamma function 

Binomial coefficient 

if and only if 

Probability space 

Mathematical expectation of random 

variable X 

almost everywhere with respect 

to the measure P 

Definitions 

Definition 2.1. 

A random variable X, has the Inverse Gaussian 

distribution with positive parameters p and À, if it has 

density function. 

f(xl= (iTl~~texp (- x>O , 

= 0 x < 0 • 

The fact that X is an Inverse Gaussian random variable 

will be denoted by: 

X!\"IG(-,.). 

The fact that X is an Inverse Gaussian random variable 

with parameters p and À, will be denoted by, 

X~IG(f' À). 
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Definition 2.21 

If XrvIG(I,I), X is called a standard Inverse 

Gaussian random variable. 

Definition 2.31 

The cumulative distribution function of an Inverse 

Gaussian random variable will be denoted bYI 

F(Xql,À.) = l x 1 2 

( ). )2 exp(: ).(t-ll) J dt 
o 21Tta L 2pa't 

x > 0 , 

= o x < O. 

Definition 2.4, (Infinitely Divisible Law) 

A distribution function, F(x), is an infinitely 

divisible law, if for every positive integer n, there exists 

a distribution function Fn(x), such that if XI ,X2, ••• ,Xn 

is a random sample from Fn(x), then 

(Xl +X2 + • •• +Xn)rv F(x). 
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CHAPTER 3 1 IMPORTANT THEOREMS FROM THE 

LITERATURE, CONCERNING INVERSE GAUSSIAN RANDOM VARIABLES 

In this chapter, sorne resu1ts, whose applications will 

appear in later chapters, will be 1isted without proof. In 

each case, the author will give the reference where the proof 

may be found. Sorne resu1ts will be slightly generalized. 

THEOREM 3.11 ( Characteristic function of F(x;p,À) ) 

If X~IG(p,À), and if e is any real number, then 

E( exp(1eX}} = exp ~ 

Proofl See [16-1J. 

THEOREM 3.21 

E(Xn) 

(a) 

(b) 

(c) 

(d) 

If X~IG(p,À), then for every positive integer n, 

and E(X-n ) exist, and in particular, 

E( (x/p)n) = E( (Xt/u)l-n) 

E(X) = P 
E(X2 ) ~ )l2 + 1 p.3/À 

Var(X) = p.3/À 

Proofl See [15-1J • 

THEOREM 3. 31 

Let X~IG(~,À). Let U,V be independent randorn variables 

with ÀUI\,121 and VrvIG(l!}l, À/pa). Then l!X~U+V. 

Proofl See [15-2J • 
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THEOREM J.4, ( Corollary to THEOREM J.J ) 

Let X,T be independent random variables wlth XrvIG(l,l) 

and Tf\; ](21. Then l/X%1X+T. 

In this case, l/X ls the convolution of a standard 

Inverse Gaussl~n random variable and a chi-square-one 

random variable. 

THEOREM J • 51 

If X'VIG(p,À ), and c> 0, then CXIVIG(cp,c;\). 

Proofl By THEOREM J.1, 

E (exp( i ecX) = exp I.cÀ (l-Q- 2i9(Cp)2)i))l. 
lCP cÀ /j 

By uniqueness of Fourier Transform, the desired result 

follows. This completes the proof. 

THEOREM J.6. 

Let 

Then (a) 

and (b) 

Proofl See 

(Xl +X2+ ••• +Xn)f\j IG (nf' n 2;\) 

xrvIG(F,n;\) 

[16-2 J. 

THEOREM J.71 

Let Xl' X2 ' ••• , Xn be a random samp1e from F(x;p,;\). 

n 
Let Y = À~ (1 _ 1) • 

j=l Xj X 
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Then. (a) y and X are stochastically inde pendent 

and ( b ) Y f'\, XZ 
11-1 

Pro of. See [16-3 ] 

THEOREM 3.8 (Khatri's Characterization) 

> Let xl ,x2 , ••• 'Xn be a random sample of size n = 2, 

from an absolutely continuous distribution. Let E(X), E(X2 ), 

E(X-l ), and E(X- l ) be finite and not zero. 

Then a necessary and sufficient condition that 

XjtVIG(.$.)j) j = l, ..• sn, is that 

n 
X and [(--L. - 1) 

Xj X 
j=l 

Proof. See [ 7-1 ] 

THEOREM 3.9 

are independent. 

F(X;p,À) is an infinitely divisible law. 

Proof. Let n be an arbitrary integer, and let Xl ,X2"",Xn 

be a random sample from F(X;p/n,À/n2 ). By THEOREM 3.6(a), 

Xl+X2+ .•• tXnIVIG(Jl,À). Hence, by Definition 2.4., F(X;p,À) 

is aninfinitely divisible law. 

This completes the proof. 
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THEOREM 3.101 (Kolmogorov) 

If F(x) is an infinitely divisible law, with flnlte 

second moment, its characteristic function, f(a), can 

be represented uniquely bYI 

log(f(e» = iya + J: (e;x:p(iau)-1-iau)(1!u2 )dK(u) 

where y is a constant, and K(u) is a non-decreasing 

function such that K( -00) = 0 and K(oo) < 00 • 

Proof 1 See [6-1 J. 

Wasan [16-4 J, found the Kolmogorov representatlon 

of the characteristic function of F(x;t,t2 ). The author 

will obtain the representation for arbitrary Inverse 

Gaussian laws, by a different technique. 

Lemma J.ll 

Let F(x) be an infinitely divisible law with finlte 

second moment, and characterlstic function f(a). 

Then if K(u) is the function given in the Kolmogorov 

representation of f(a), 

d2 1n(f( e» = - Joo (exp(iau)dK(u) • 
d e:a -00 

Proofl Since F(x) has finite second moment, f(e), and 

hence In(f(e~, is twice differentiable. Differentiating 

twice under the integral sign gives the desired result. 

This completes the proof. 
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THEOREM 3.11 1 

The Kolmogorov representation of the character1st1c 

funct10n of F(X;P,À) 1s 

y = p. 
J. 

dK(u) = aU2exp( -bu)du , u> 0, 

= 0 , u < 0, 
.6. 

where a = (À/2rr)2 and ~b = À/2p.a. 

Proofa By THEOREM 3.1, w1th f(a) the character1stlc 

funct10n of F(x;p,À), 
.6. 

log(f(a) = (À/p)(l - (1 - 219f2)2) , and hence 
À 

Us1ng the elementary 1dentity 

1000 
(S-ex!\(oJ )yex-lexp (-y/s)exP(1ey)dy .. = (1 - 1se)-ex 

for positive constants ex and S, one has 

()l~/À)(l - 21ey..2)-3/2 = 
- À 

1~ (p~/À)(À/p2)3/2(2n)-iyiexP(-Ày(p.2)exP(1eY)dY = 
J. 

1~ (ÀY/2n)2exP (-Ày/p2)exP(1eY)dy • 

= o y< 0 

one has by •• (1), 

= 100 
exp(1eu)k(u)du. 

-00 

•• (1) 
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Hence, by Lemma J.lI 
00 

f (exp(ieu)dK(u) = 
-00 

fOO exp(ieu)k(u)du. 
-00 

From the defin1tions of k(u),a,and b, and the uniqueness 

of Fourier Transform, one hasl 

dK(u) = 
= 

~ 

au2 exp(-bu)du 

o 

u > 0 

u ~ 0 • 

Thus, i t remains only to prove 1 y = P. • 
The Kolmogorov representat10n of f(e} iSI 

f( a) = exp [1 ya + 1:' (exp( 1au) -1 - 1au)k(u)(1/u· )dj 

with k(u} as above. 

dU Q) = [1Y + . 1 1: (eXP(1aU)-1)k~U)dUJ f( a) • 

Thus since F(x;p,À) has first moment p, 

lim df(e) = 
e-)o de 

~ [1Y + 1 r;; (exp(1au) -l)k~U)dj 

= 

Remark: In order to show that Y=)l; it 1s therefore 

enough to show: 
00 

11m fo (exp(ieu}-l)~dU = o. 
e~o u 

That is, it 1s sufficient to show; 
~ 

lim foo (exp(ieu)-1)au-2 exp(-bu}du = 0 
HO 0 

Since l(exP(ieu)-l)1 ~ 

I
l( exp (1 eu) -l} au -*exp( -bu)! ~ 

é -
00 ~ 

But since f 0 2au-2 exp( .. bu)du 

2 for aIl real Gand u, 
~ 

2au-2 exp( -bu) u ~ 

< 00 , one has by the 

Lebesgue dominated convergence theorem [ 9-1 J: 

•• (2) 

o . 
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1im JO
oo (exp(ieu)-l)au-!exp(-bu)dU = 

9-70 
1 

1im (exp(ieu)-1)au-2 exp(-bu)du = o. 
~o 

Therefore, •• (2) ho1ds, and hence by the remark, 

This completes the proof. 

Ct 
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CHAPTER 4 1 A DERIVATION OF INVERSE GAUSSIAN 

RANDOM VARIABLES 

To date, several derivations of Inverse Gaussian 
random variables have been obtained. Four such construct-
ions can be found in [16 J. In this chapter, the author 
will develop a new construction, with applications in 
nonparametric statistics. 

Let Xl, ••• ,Xn be an ordered sample from an absol­
utely continuous distribution F(x). Label a partition 
of the real line as follows. 

= 

= j = 1,2, ••• ,n-l 

Definition 4.1, The empirical distribution function, 
Fn(x) is defined as followsl 

Fn(x) = j/n. x E Ij , j = O,l, ••• ,n. 

Definition 4.2: (notation) 

minl j , SUP (F(x)-Fn(x)) > d~ , if l xEI j ) 
SUP (F(x)-Fn(x»)>d, 
xERl 

= n + l otherwise. 

Here, RI denotes the set of real numbers. 



15 

Definition 4.31 Let Zn(d) be the following 

conditional random variablel 

Zn(d) = (Yn(d)} SUP (F(x)-Fn(x) > d) • 
xéRl 

That is, Zn(d) = j is the event that the least x to 

violate the inequality F(x)-Fn(x) ~ d , given that the 

inequality is somewhere violated, occurs in the interval 

Ij' provided j ~ n. 

THEOREM 4.11 

Let À > 0, and • Then 

THEOREM 4.1 will be proved in a,sequence of lemmas. 

Lemma 4.11 The distribution of Yn(d). 

P(Yn(d) = r) = d(~) (d + .!: )r-l (1 _ d _ .!: )n~r 
n n 

where r = O,l, ••• ,[n(l-d)] • 

Proof: Since Yn(d) is a function of a distribution 

free quantity, it is itself distribution free. Thus, 

without loss of generality, one can choose 

F(x) = 0 x < 0 

= x o < x < l 

= l l < x • 
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By Definition 4.2, one readi1y sees: 

Yn(d) = ° iff no observations in [C,d). 

Yn(d) = 1 iff one observation in [o,d) and no 

observation in [d,d + 1) 
n 

For 2 ~ r ~ n(l-d) , 
(a) at .least k+l observations in [O,d + k ), k = 0,1, •• ~,r-2 

n 
(b) exactly r observations in [O,d + r-1 ), and 

n 

(c) no observation in [d + r-l , d + ~ ) • 
n n 

By binomial probabilities, the desired result is 

easily verified for r = ° or 1. For 2 ~ r ~ n(l-d) 

P(Yn(d) = r) = 

, 

Jd (l+dJ 
(n:) J,~ .. 

o YI 
. J rn-2 + dJ rn-l + di, l t 1 • t 1 • Y dYne .dYl 

Yr-2 y r-l ~ + d YI'i-l n-l 

= d(~)(d + ~)r-l(l _ d _ !: )n-r 
n n 

by [ 2.J. 

This exact integral is evaluated in [ 2-1 J. 
This completes the proof. 

Lemma 4.2 1 For À ~ ° and ° < y < l, let 

fn(À'Y) = (-+-n-
2

-y + l~ nY(l ,_ À \n(l-y) 
ni (l-y)-} 

/ 
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Let f (À, y) = exp(-? ) 
2y l-y) 

and A be any 

rectangle of finite Lebesgue measure, of the forma 

A = f a ~ À ~ b • c ~ y ;; dl c [o,oo)X(O,l). 

Then f n ) f , un1form y on A, as ll---)oo. 

Proof. Let 

Hence, 

hn(À'y) )( f1( . r = (- -À- -1. ++1 1- II. • 
l-y Y n2y n2(1-y) 

For. (À,y) E. A, one hasl 

-À < < -À 
~dl-~~ = hn(À'y) = ;}!J l-~~ • 

(1 - b J (1 + +) ni(l-d) . n 2 c 

For n> 4b2 that 1s, 1/2 > b 
(l_d)a l 

n2 (1-d) 

(1 - r t Ci~l-d}Y l + 2b •• (1) 
ni(~_d) = < 

l 
n2 (1-d) 

J_ 

and for n> b2 that 1s n2c > b, 
ëa" 

(1 + +y1 00 1-

= l + L (4'f = 1 - bn2 c 
x x 

n2c 1 
r=l n2c n 2 c (n2 c+b) 

> l - b •• (2) = --:r-
n 2 c 



tiI& 
~ 

18 

Substituting (1) and (2) in the double inequality 

for hn , above, one obtains for (À,y) CS A, and 

n > , M = max [ 4b2 
, b2

] D l-d ):a ë=T 

~ -À (1 - b ) 
- y(l-y) rirc 

Integrating throughout (3) from 0 through À, notlng 

the deflnltlon of hnt as well as the fact that fn(O,y) = l, 
for all n and y, one obtalns for n > M, and (À,y) € A, 

_À2 (1 - b ) 
2y(1-y) ~ 

• • (3) 

Exponentlatlng the above, and substituting for f(À,y), one has& 

< 

Let e> 0 be an arbi trary constant. 

(a) 

exp f y{ l-Y)~~~l-da > exp (Tn~~:-d)) ~ I-f 
where T = minCC(l-C),d(l-d~ and n is sufficiently 

large, say n > Nl (€ ). 
(b) 

< < 1 + f , 

for n sufficiently large, say n > N2 (E: ). 
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Finally, noting that for all (À,y) E A , ° ~ f(À,y) < l, 

one obtains for n > N(E) = Max (M, Nl (E) ,N2 (E )) , 
f(À,y) -Ef(À,y) < fn(À,Y) < f(À,y) +Ef(À,y) • 

That is, given E> 0, there exists an N > 0, independent 

of which point in A is chosen, but dependent on the choice 

of E, such that for all n > N, and (À,y) E. A, 

< E · 
Therefore, fn~f uniformly on A. 

This completes the proof. 

Eefore proving the next 1emma, the fo11owing definitions 

are required, 

Definition 4.4: 

Let À be a non-negative constant, and n be a positive 
l. 

integer, We define for j = 1,2, ••• ,[n-n2"À] , 
hn(j) = ni(j) (~ + ~y-l e - .J;. - Vn

- j , and 
n2" n 

= o otherwise. 

Definition 4.5' 

Let À be a non-negative constant. We define 

cD(y) = 
a ( 2TIY3(1_y)-i exp( -À 2 \ 0 < y < l, 

_ 2y(1-y)j 

= o otherwise. 
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Lemma 4.; , 
Let B = (YI C;;;Y;;;d~ C (0,1), and let E > 0 be an 

arbitrary constant. Then there exists an integer N = N(Eh 

and a positive number ô = ô (E) such thatl 

\ hn (j) - ~(y) < E. , whenever 

( i) n > N, ( i i) \ ~ - y \ < ô ,and ( i 1 i) j ln and y E B. 

Proof 1 Let j/n E.. B. 

j j+i (n-jln-j+i 
n+-n 2 

where fn(À'y) is as defined in Lemma 4.2. 

Step 11 

= 1 
nn+"Ze-n 

j +.:h _j j 2e 
j! 

( . )n-j+i -(n-j) n-J e 
(n-j) : 

= 

• 

We shall use the following result found in [4-1J 1 

1. 
(2TT )"Zexp( 1 ) 

1. 

< (2TT)"Zexp( 1 ) 
12k+l 12k 
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Hencel one obtains the double inequa1itYI 

JTZlT)-lexp(- ....L - 1 + 1 ~ < bn(j) 
12j 12{n-j) 12n+lj 

Jf2IT) -lexp(_ 1 - l + 1) 
12j+l 12(n-j)+1 ï2n 

< 

But since j/nE B, the above may be weakened tOI 

• 

•• (1) 

Since the exponential terms converge to ~ independently 

of the choice of j/n E B, for given El> 0, one can find 

an integer NI = N1 ( El)' such that whenever n > NI j and 

j/n E B, 

Step 2, 

Considera 

g(y) = (Y3(1_y ))-i . 
-

Since g(y) is continuous for· y E (0,1), g(y) is 

uniformly continuous for y ~ B, a closed subinterval 

of (0,1). Hence, given E2 > 0, there exists a positive 

nU!Jlber Ô = ô2( E2 ) such that whe~ever !j/n - y\ < 62' 

\g (y) - g( j/n)) < €2 · 

Step 31 

Consider fn(À,y). 

By Lemma 4.2, for any given E3 > 0, there exists 
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an lnteger N3 = N3 (EJ ' such that whenever n > N3, and 

j/n E. B, 

\ f n ( À, j/n) -f (;\., j/n)) < ~. E.3 , where f n' f are as ln 

Lemma 4.2. 

But f(À.,y) ls uniformly contlnuous in y, for yE. B. 

Hence, there exists a positive number ô3=ô3(E 3), such 

that whenever 1 j/n - yI < ô 3 "and j/n E B, 

\f(À.,j/n) - f(4,y)l< iE3 • 

Thus, by the triangle inequality, whenever 

(i) n> N3 ' (li) Ij/n - yi < ô3 ' and (ili) j/n,yE. B , 

\fn(À.,j/n) - f(À.,y)1 < 6 3 • 

Step 4: 

For j/nE B, one has: 

> 
= l - -+- ----7,) l 

n2 c 
•• (2) 

Thus, given E4 > 0, there exists an integer N4 = N4 (E4 ), 

such that whenever n > N4 ,and j/n E B, 

• 

Step 5: 

The uniform boundedness on B, of the functions given 

in the first four steps will be shown. 
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( i ) From (1), < 
_J... 

(2n) 2 exp (1/12) < 2 
= 

(ii) Sinee for every yE B, g(y) < (e:J(l_d))-i = M, 

then for eaeh j/nE B, 

g(j/n) < M. 

(iii) By Lemma 4.2, ehoosing ES between 0 and l, there 

exists an NS = NS(ES) , sueh that whenever n > NS ' and 

y E B, 

l f n ( À, y) - f ( À, y)\ < Es < 1 • 

But sinee f(À,y) ~ 1 , one has for n > NS ' 

f (À,y) < 2. 
n 

(iv) From (2), one has: 

(1 + À \-1 
ni(j/n)) 

< 1 

Ste:e 6: (Completion of proof) 

Choosea El = c;. 

BM 
~ 

€3 = E{2n ~ 2 
4M 

ES = 1/2 

• 

Let E> 0 be arbitrary. 
~ 

E2 = E ~ 2n ~ 2 
8 

€4 
~ 

= E~~n )2 

Let N = N(E) = Max ( NI (El) , N)( E
3

) , N4 (E4 ) , NS( ES) ) 
and ô = ô(€) = Min( ô2 (E2), ô)(E))) 
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We shall now show that whenever 1 

( i ) n > N, ( i 1) ) j / n - yI < ô, and ( i i i) j / n, y E. B, 

\ hn (j) - ~(y)} < E · 

We note the followingl 

qxy) -, (211)-i g(y)f()"y) and 

hn(j) = bn(j)g(j/n)fn()"j/n) (1 + X À \-1 

n 2 (j/n») 

Successlvely applylng the triangle inequa11ty, one hasa 

\hn(j) -~(y)1 < fbn(j) -J(2rT)-~(j/n)fn(À,~)(l + .b À \-1 
1 n2(j/n») 

< E (2M) 
SM 

+ .jT2rT) -1 g ( y) 1 f n ( )" ~ ) - f ( )" y) (1 + .J. À ~ -1 
n 2 (j/n») 

+J(2rT)-
llg (j/n)-g(y)! fn()',~)(l + ,x À )-1 

n 2 (j/n) 

+J (21T) -lg (y) f ( À, 11) (1 + .J. À )-1 
, n 2 (j/n) 

- 1 

.!. 
+ E(211) 2 2 

8 • 1 (2rr)2" 
=E 

whenevera n> N, {j/n - 'y/< Ô , and j/n,y€ B. 

This completes the proof. 
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Lernma 4.41 

Let 0 < c < d < l . Then 

lim L hn(j)/n = id ~(Y)dY • 
n~oo 

jIC<i<d 

Proofa Partition [c,dJ , in the followinga 

Pn = fe.e + l/n.e + 2/n ••••• e + r/n.d~ wlth r satlsfying, 

(d - c - r/n) < lin. 
Since ép 1s cont1nuous on [c,dJ , 1t 1s 1ntegrable there. 

Hence, g1ven 6.> 0, there exists NI = NI ( E ) , such that 

for n> NI' 

< E/2 •• (1) 

But by Lemma 4.3, 

for n> N2 ' and c < 

\~(j/n) 
1 

- hn ( j ) 1 < €/2 

cD( j/n) /n 
J IL 

jac<.kd n 

< Er < E/2 
2n 

there exists N2 = N2 (E ) , such that 

j/n < d, 

That 1s a' 

L hn(j) LI~(j/n) < l - hn(j) = n 
jaC<~d n jlc<it<d 

•• (2) 

Taking N(E) = N = Max(Nl ,N2 ) , one obtains, from (1) and (2) 

together with the triangle inequality, for n > NI 
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<€ • 

This completes the proof. 

Lemma 4.51 

Let a < d < 1. Thenl 

fod qxY}dY = expt2/.·} F(d/(l-d};l. ),.} • 

with F(x;u,À) as in Definition 2.3. 

Proofa 

rad r1v Y)d. y = jd (21ly3 (l-Y)) -iexp [- _À2 ~ dy Jn ~ a _ 2Y{1-y0 

Let X = y/Cl-Y) ,that ls y = X/(X+l) • 

. f qxY}dY = fod/(l-d} (2TIX:tli exfÀ;y+112J dX 

= exp é2 À:a) F (d/ (l-d) : l, À 2 ) • 

À 

This completes the proof. 

• 
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The proof of the next 1emma depends on the fo11ow1ng 

two weIl known results concerning an abso1utely 

cont1nuous distr1but1on, F(x), and the emp1rical 

distribution function. 

lim 
n~oo 

Result l, ( Smirnov, see [17-1J) 

p [ ~l (F(x}-Fn(x}) > I.!nit] = 

Result 2, (Birnbaum and T1ngey, see [2-2J ) 

lim 
n~oo 

Lemma 4.6, 

Proof, 

= 

= ~l CP(Y}dY 

n 
1 - L: 

j=l 

Taking the limit as n~,in Resu1t 2, and equating this 

with Resu1t l, one has, 

lim 
n-700 

* 

But by Lemma 4.5 and the continuity of the integral, 

exp(-2À2 ) lim F(t;1,À2 ) = 
À t-7oo 

This completes the proof, by virtue of * • 
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lim 
n.-poo 

Lemma 4.7 1 

Let 0 < d < 1. 

end] 
L h (j )/n 

j=l n 
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Thenl 

= • 

Proofa By Lemma 4.6, one hasl 

lim 
:n-:,oo 

= I l ,.h)I •• \~ .. 
IJ.. \,y lU:,! 

o 1 
• 

Henee, Lemma 4.4 and the above give, for e < t 1 

lim 
n....!)oo 

le rf>(Y)dY + JI rt\(Y)dY 
o Ir l-e~ 

By the absolute eontinuity of the integral, for given E> 0, 

one ean find a number e, 0 < e < t , sueh that. e < d, and 

< E 

Tnereforel Lemma 4.4 and the above imply 

lim 
n-}OO 

and 1 

lim 
n-?oo 

> Jd ~(Y)dY - f-
o 

• 

= ~d cjAY)dY 

•• ( 1) , 



lim 
n~oo 

b 

C~J h (j)/n = 
j-:::l n 
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lim 
n~oo 

< r <P(Y)dY + E: 

+E 

(1) and (2) together imply, that for given E> 0, 

C'f:J h (j)/n 
. l n J= 

< E 

• • (2) • 

By virtue of the fact that E: 1s arbitrarily chosen, 

this completes the proof. 

lim 
n-:'>oo 

Lemma 4.8, 

= , 

where Zn(d) is defined in Definition 4.3. 

Proof: 

p (Zn( À/n!) < nd) = pC Yn(À/n!) < nd , Yn(À/n!)E.{o,l, •• ,[n-n!ÀJn 

P [ Yn (ÀJn1tJ E: l 0, l, • •• , [n-niÀJD 
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By Lemma 4.1 and definition 4.4, the above reduces tos 

Letting ~,and noting that the summands at j = 0 become 

negligeable, one obtains from Lemma 4.7, 

•• (1) 

But as was seen in Lemma 4.6, 

Substituting this result in (1), above, the desired result 

is immediate. 

This completes the proof. 

Lemma 4.9: ( Completion of THEOREM 4.1 ) 

lim 
n-7OO 

where 

Proofs 

, c > 0 , 

• 

The following are immediates 

.0 (1) 
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and 

iff < nC/(l+c). • • (2) 

Therefore, 

= (by Lemma 4.8) 

= (by Lemma 4.5). 

This completes the proof. 

One has, therefore by Lemma 4.Q, 

:L 

Wn (À/n2") ----=L:---~IG (l, À;a) • 

This completes the proof of THEOREM 4.1. 

We have thus shown that under quite general conditions, 

that the conditioned random variable is approximately 

Inverse Gaussian, for large n. Potential application 

of this result will be discussed at the end of this thesis. 
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CHAPTER , 1 EVALUATION OF THE INVERSE GAUSSIAN 

DISTRIBUTION FUNCTION 

The author,[ 12-1 J, by means of a sequence of 

transformations, evaluated the distribution function 

of the Inverse Gaussian distribution. In this chapter, 

the result will be verified by a simpler, although less 

deductive method than appears in [ 12 J. 
THEO REM ,.11 

F(C;P,À) = H [( xIe )~(1 - ;~ + 

for all c > 0, where 
00 l. 

H(z) = Iz (2n)-2exp(-t 2 /2)dt 

and F(c;p,À) is as defined in Chapter 2. 

Proofl Let 

H [( xIe) li- (1 - ; J 
Then for c> 0, 

QG (c ;U, À) 
Vc' 

[i( X/e~ ) l;- (1 

where k(c) 

Simplifying the 

qG(c;p,è,,) = 
'Oc 

+ 

-00 < z < 00, 

= • 
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Noting that as defined, G(c;P,À) is an absolutely 

continuous distribution function, one has by the 

Radon-Nikodym Theoreml G(c;P,À) = F(c;p.'À). 

In view of the definition of G(c;P,À), this completes 

the proof. 

The significance of this Theorem is that Inverse 

Gaussian probabilities may be easily obtained from 

Standard Normal and Exponential tables. ( H(z) is the 

upper tail of the Standard Normal distribution.) 

Thus,with a minimum of computations, one can obtain 

the cumulative distribution function of random variables 

having the Inverse Gaussian distribution. Goodness of 

fit tests, for example, are quite easy using THEOREI1 5.1 

and an appropriate distribution free test. 

At this time, we shall prove an important result, 

first obtained by V. Seshadri, uSing the characteristic 

function of the Inverse Gaussian distribution. The author 

[ 12-2 J, obtained this same result by a change of variable. 

Here, we shall prove it as a corollary of THEOREM 5.1. 

THEOREM 5·2 . . 
If XI\.; IG(p, À), then Z = ~{X_~~2 rv X

2 

fa L-l 

Proofl Let a < p, and b = ~~a-B~2 • Then clearly: if a> 
p2a 

a< x< raja iff z< b. 

0, 



Therefore, one hass 

P(Z < b) = P{a < X < )la/a) 

F{pa/a;p,À) - F(a;p,À) . 

H[()Ja'!(; - l~ H[<>./a'!(l - ;~ 
1 1 

H{-(b)2) H(b2) 

= 

= 

= 

_1" / (2rry) 2 exp (_y 2)dy, 

the integral of the ](21 density from 0 to b. Since for 

suitable choice of a, b can be any positive number,one has 

Zrv X~. This completes the proof. 

THEOREM 5.2 has great importance. The result will be 

used in several subsequent places in this thesis. 

It is of sorne interest to note the following similarity 

between the Gaussian and Inverse Gaussian distributions 1 

In each case, minus twice the exponent, occurring 

in the density function, has the chi-square distribution 

with one degree of freedom. 
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CHAPTER 6 1 CONFIDENCE SETS FOR THE PARAMETERS 

OF THE INVERSE GAUSSIAN DISTRIBUTION 

Throughout thls chapter, we shall assume that we 

have drawn a random samplel Xl ,X2 , ••• ,Xn from the Inverse 

Gausslan distribution F(x;p,À). 

First, the required distribution theory will be 

developed. 

THEOREM 6.11 

(a) 

(b) 

Proofl 

- 2 n(n-l) (X-g) , 

(a) By THEOREM 3.6, X t'V IG(p,nÀ), and hence by THEOREM 

5·2, 

n 
ÀL (L - 1. ) 'V y 2 and ls 
j=l Xj X Jv n-l 

(b) By THEOREM 3.7, 

independent of X. Hence by part (a) of thls THEORE~l 

and elementary distribution theory, the assertion of 

part (b) of the THEOREM holds. 

This completes the proof. 
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THEOREM 6.21 Confidence Interval for À, ~ known. 

P < À < 2X2 
P n, /3 = 1-0.-/3 

where positive quantities a. and 13 satisfYI 0 < a.+/3 ~ 1. 

Proofl By THEOREM 5.2, one has 
2 À{Xj-r) for j = 1,2, ••• ,n are n independent chi-square, 

)laXj 

one degree of freedom, random variables.Therefore, 

n 

..À.. LJX j _p)2/Xj f\.., X~· 
)la j=l 

This fact in turn impliesl 

n 

P(X
2 

< n,l-a. ..À.. ~(Xj_,u)2 /X j )la j=l 

y-2 \ 
< ~ n, 13 J = l-a.-/3. 

This completes the proof. 

THEOREM 6.31 Alternate method to THEOREM 6.2. 

< À < 1-0.-/3 , 

where a. and /3 are as in THEOREM 6.2. 

Proof: By THEOREM 3.6, X IVIG(p,nÀ). Hence, by Theorem 

6.2 applied to X, a sample of size one, the desired result 

is immediate. 

This completes the proof. 
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THEOREM 6.4: Confidence interval for À, p unknown. 

P < < 
''Y 2 
J'v n-l,8 

n 1 1 L (- - - ) 
j=l Xj X 

where a. and a are as in THEOREM 6.2. 

Proofa By THEOREM 3.7, 

= l-a.-a, 

Proceeding exactly as in THEOREM 6.2, the desired 

result follows. 

This completes the proof. 

THEOREI-1 6.5 , Confidence sets for p, À known. 

n 
P ()la (À t (X j )-1 -(a) C) - 2nfÀ + À?=X j 

,J=l J=l 

(b) 
P (t( i' - D ) 2npÀ + nÀX 

where o < a. < l, 

Proof: 

(a) As was 'noted j.n THEOREM 6.2, 

n 2 X2 
À L (X

J
, -p) /X. 1\..; \." • P j=l J n 

Therefore, P (>.. t. (X j _p)2/Xj < c) \Y j=l 

< 

= 

<0)= 
0) = 

1-0. • 

1-0. , 

1-0. , 
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By a simple rearrangement of terms in the above, one 

sees that equation (a) holds. 

(b), In order to prove that equation (b) holds, one 

merely notes that X~IG(p,nÀ)' and applies equation 

(a) of this THEOREM to X, a sample of size one from 

F(x;p,nÀ) • 

This completes the proof. 

Definition 6.1. 

The following notation will prove to be convenient 

throughout the balance of the chapter. 

y = 

THEOREM 6.6 • 

P (p2Cl-EY) - 2Xp + 

where E - R - -.L,n-l,a. 

Confidence set for f' À unknown. 

x2 < 0) = 1-0. 
and 

Proof. From the definition of Y, and THEOREM 6.1(b), 

one has: 
_ 2 

(X-g) " p.2y . v 

Proceeding exactly as in THEOREM 6.5, the desired 

result follows. 

This completes the proof. 
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It is of sorne interest to investigate the confidence 

sets of THEOREMs 6.5 and 6.6 • Can these be reduced to 

intervals? THEOREMs 6.7 and 6.8 will answer this question. 

Definition 6.21 

The following notation will prove useful in this 

investigationl 

(a) 

(b) h(p) = (l-Ey)p:a_ 2Xp + -2 X f 

, 

where D,E, and Y are defined as in THEOREM 6.5(b), 

THEOREM 6.6, and Definition 6.1, respectively. 

Lemma 6.1: 

With probability one, the roots of g(p) and hep) 

are real. 

Proof: Since X and Y are positive with probability 

one, and D and E are positive constants, the discriminants 

in each quadratic equation g(p) = 0, and hep) = 0, 

are positive with probability one. 

This completes the proof. 

Remark: The degenerate case that g or h has a 

double root occurs with probability zero, since D = 0, 

and EY = ° cannot occur. 
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Reroark: The degenerate case that the coefficient of 

pa vanishes in either quadratic forros are also events 

of zero probability, by virtue of the absolute continuity 

of random variables X and Y. 

THEOREM 6.71 

Let m < M be the roots of g(p), computed after 

a sample has been drawn. Then, providing that )l > 0, 

tPlg(Pl<O} = tP1m<p<M i if o , 

= [pIM<p ~ < o. 

Proofs If (nI. - nX) > 0, one sees 

g(r l t:;' -D )ro - 2nlf + nÀX 

(i) has both its roots positive 

(ii) has its minimum, by Rolle's Theorem,in the interval 

[m,MJ. 

Hence: g(p) < 0 iff m < p < M • 

If (nÀ-nx) < 0, one sees that g(p) 

(1) has one positive, and one negative root, 

(ii) has its maximum in the interval [m,MJ. 

Hence: g(p) < 0 iff M < f . 
This completes the proof. 
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THEOREM 6.8 1 

Let m < JiI be the roots of h(p.) , after a sample has 

been drawn. Then, provided that )l > 0, 

{tUh(P)<O~ = fp,m<p<MJ 
= fPaM<pj 

if (l-EY) > ° , 
if (l-EY) < O. 

Proofa The proof of this result is exactly the same as 

the previous one. 

This completes the proof. 

Example 6.11 

For a samp1e of size 20 from an Inverse Gaussian 

distributiona Y = .189 X = 1.69 , Fine'. 95% and 99% 

confidence intervals for p. 
(a) 95%; from the F-distribution table, E = 4.38. 

h(p) = .172p2 - 3.38)1 + 2.86. 

m = .89 and M = 18.9 • 

Therefore, • 89 < p < 18.9 is a 95% confidence interval 

for )le 

(b) 99% from the F-table, E = 8.19 . 
h(p) = -.452p2 3.38p + 2.86 • 

m < 0 and M = • 78 . 
Therefore, • 78 <F is a 99% confidence interval for p. 

Example 6.2: The analogous result does not apply to . 

THEOREM 6.5(a). Let À=1,n=2, Xl < .10, and X2> 5. 
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What form has the 95% confidence set for p, given in 

THEOREJl1 6.5 (a)? 

From the chi-square table, C = 5.99 • 

Substituting for known terms, one has 

4p + (5+w) , 

n 
À LX 

j=l j 
o 

where v and w are positive quantities depending on the 

values of Xl and X2 • 

In this case, ·a case of positive probability, k(P.) 

has imaginary roots. Thus the analogous result to THEOREMs 

6.7 and 6.8 do not hold. 
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CHAP'rER 7 1 BAYES ESTIMATES OF PARAMETERS 

iofasan, [ 16-5J, found a Bayes estimate of ta, for a 

sample of size l, from the Inverse Gaussian distribution 

IG(t,t a ), for the apriori distribution, 

g(t) = 

= 

-t e 

o 

t > 0 , 

t < 0, and 10ss functionl 

L(ta,a) = (a_ta)a. (squared error loss) 

In this section, two other restricted families 

of Inverse Gaussian distributions will be considered. 

THEOREM 7.11 (Bayes estimate of À) 

Let the conditional distribution of X for each given À, be 

IG(l,À). That is, the conditional density of X given À is 

= ° elsewhere. 

Let À have apriori distributionl 

g(À) = 2!.r-l e-À À > 0 

\tr) 

= 0 À < 0, 

where r is a known positive constant. 

For action a, let the loss function be 

L(À,a) 
2 

= (À-a) squared error loss. , 
Then d(X) = 2~r+t~X is a Bayes estimate for À, 

X2+1 

for apriori distribution g(À) and loss function L(À,a). 



44 

Proof, We shall use the weIl known result for squared 

error loss, (See Ferguson [5-lJ , for example,) that 

E(ÀIX) 1s a Bayes est1mate ofÀ. The f1rst step, therefore,' 

1s to compute the densi ty of À gi ven X, fI (À lx) • 

The joint dens1ty of X and À is clearlYI 
).. r-J:· r: ~ f 2 (x,À) = (2TIX3 )-2 À G eXPL-~À(x + l/X~ x, À > 0 

\(r) 

= o otherw1se. 

The uncondit10nal density of X, for x > 0 1s. 

and the unconditional density of X, f (x) = 0, elsewhere. 
:3 

For x > 0, we therefore obta1n, 

= 

= 

, 

À < O. 

= 2 (x + l/x) -1 [l(r+ 2[2) 

\'(r+'~) 

t.. > 0, 

t.. /' 0, 
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The above equation, by virtue of the fact that 

= e'\?(e) , reduces tOI 

E() .. lx) = 2 (r+1:;)x 
x2+l 

x > o. That is 

d(X) = 2(~+~)X 
X +1 

is a Bayes estimate of À, for 

the apriori distribution and loss function given. 

This completes the proof. 

The following result is needed in the proof of 

THEOREl'1 7.2. 

Lemma 7.11 

Let c,r be positive constants. Then 

= 

Proofa Let y = ct 2
• Change of variable in the above gives: 

l = . . 

This completes the proof. 

THEOREM 7.2 (Bayes estimate of the reciprocal 

of the mean) 

Let the conditional distribution of a random variable 

X, for given t be IG(l/t,l). That is, the conditional 
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density of X given t, iSI 

x,t > 0, 

= o e1sewhere. 

Let t have the apriori distribution. 

t > 0 

= o t < 0, 

where r is a known positive constant. 

Let the 10ss function be: 

L{t,a) = (t-a)2, for action a. 

Then d{X) = (2/X)i lJ!(r+1)) 

\'< ~'r) 
is a Bayes estimate 

of t, with respect to the apriori distribution g(t) and 

10ss function L{t,a). 

Proofa As in the case of the previous theorem, where the 10ss 

function was squared error, it suffices to show that 

E (t\'X) = d (X) • 

The first step is therefore to compute f 1{tlx), the 

conditiona1 density of t given X. 

The joint density of X and t, f 2 (x,t), is readi1y 

seen to be: 

= o e1sewhere. 
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Hence, the unconditional density of X, for x > 0, 1s 

= 

= 

00 

exp(-1/2x) (2rrx3)-~ JI t r - l exp(_ixt 2 ) 

,Cr) - ° 
exp(-1/2x) (2rrx 3)-! Gr/2) (2/x)r/2 

2 "(r) 

the last equality by Lemma 7.1, and the unconditional 

density of X, for x < 0, is 

= o. 

Therefore, for x > 0, 

fl(t\x) = f2(x,t) 
fJ(X} 

= 2(X/2}r/2 t r - l exp( -ixt 2 ) 

\!(r/2 ) 

fl(tlx) = ° 
E(ti x ) = 

= • 

That is, E(tlX) = d(X), as required. 

This completes the proof. 

t > 0, 

t < O. 
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CHAPTER 8 s CHARACTERISTIC PRO~ERTIES OF THE 

INVERSE GAUSSIAN DISTRIBU'I'ION. 

THEOREM J.8, gives a characterization of the Inverse 

Gaussian distribution. In this chapter, further character­

izations will be proved. 

The reader might pose the following questions "Is the 

converse of THEOREM 5.2 true?" 

That is to say, if 

À(X_p)2 rv X2
1 

' is it true that XrvIG('?,À) ? 
p.2X 

The following theorem will help negate this conjecture. 

THEOREM 8.1 1 (Characterization) 

Let X be a non-negative random variable with density 

function f (x) • 

Then in order that Xr\.;IG(p."..) il; is necessary and 

sufficient that the following holds 

T(X) = ~~X-H~2 
faX 

f\; X~ •• (1) 

and f(x) = J3.! f (f2 /x) •• (2) 
x~ 

Proof. Necessity of conditions 

If X'\; IG(Jl,À), (1) holds by THEOREM 5.2, and 

1/:<,. -"J 
f(x) = ( À,\exP[-~-T(x)1 • 

~) J 

Since T(x) = T(pZ/x) , (2) fol101'TS by a simple algebraic 

manipulation. 
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Sufficiency of conditions 

Define a random variable Y = X if X < P. 

= p2/X if X ~ p. 

Since for all X, T{Y) = T{X) , ·one has by (l), 

T(Y)f\., J:}l · 
By elementary change of variable, Y has density g{y), 

defined 

But by 

Now by 

T(Y) = 

h(T) = 

= 

This is 

h(T) = 

= 

bYI 

g(y) = f{y) + G f(p2/y ) 
Y 

= 0 elsewhere. 

(2) , this can be simplified tOI 

g(y) = (1 + fi) f(y) 

0 elsewhere. 

elementar~ change of variable to the above, one has 

À(y_~)2 has density h(T) defined bYI 
pJày 

l:}2 y2 , (1 + l.) f ( Y ) 
À(jl2 - yz-r f 

T > 0, o < y < f' 

0 elsewhere. 

readily simplified to: 

t~2 f(y) T > 0, o < y < f' 
À p-y) 

0 elsewhere. 

But as was shown above, TI\.X\ ' and hence: 



h(T) = 

= 

_..Jl. 
(2rrT) 2exp(_~T) 

o 
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T > 0 

T < O. 

Writing T in terms of y, a bijective funct10n of 

T, one obtainsl 

h(T) = (2nÀ) -if HY! exp [- ~(~-.Hl2J T > 0, o < y<f 
)l-y 2Jl Y 

= 0 elsewhere. 

Equat1ng the 

J(y 2 f(y) 
À p.-y) 

two expressions for h(T) ab ove , one obtainsl 

= (2rrÀ)-t p.y"~ exp[- À(~-.H)2J 0 < y < p. 
p.-y 2p Y 

Solving for f(y), one has 

f(y) 1Z 2 
= (2~Y"J ext ~t~?l J o < y < p. 

Byapplying (2), one readily sees, that except possibly 

at y = ]l, 

f(y.) 

-
Therefore f, the density function of the random 

variable X, is the Inverse Gaussian density, required. 

That is, xrv IG(p, À). 

This completes the proof. 

Example 8.1: 

The random variable Y, defined in THEOREr1 8.1, is 

clearly not Inverse Gaussian distributed, since it has 
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density function g(y) defined bYI 

g(y) = (1 + Y..) f(y) 
? 

= o 

O<y<jl 

elsewhere. 

One therefore sees, that whenever 0 < y < ~, 

g(y) , since exactly one side of the 

-
equation, namely the right hand side, vanishes. That is, 

(2) does not hold. 

But in the proof of THEOREM 8.1, T(Y) was shown to 

be l}lo Therefore, condition (1) of THEOREI".l 8.1, is not 

sufficient by itself, to yield Inverse Gaussian random 

variables. 

The following three lemmas will provide two further 

characterizations,based on THEOREM 5.2. 

Lemma 8.1: 

Let X be a non-negative random variable, and let 

y = (X_»)2 ,where y is an arbitrary real constant. 
X 

Then if for a positive integer k, E(yk) exists, 

2k 

E(yk) = ~ (-f)j(~k)E(Xj-k) 

Proof: = 



52 

the above following from the Binomial Theorem. By the 

linearity of the expectation operator, one obtainsl 

E(yk) = 

This completes the proof. 

Lemma 8.2 1 

Let X be a non-negative random variable, and 

y = ~x_~~2 
X 

, where p is an arb1trary positive number. 

Then 1f E(yn) exists for every nE Z+, 

E(Xn ) and E(X-n ) also exist for every n~Z+. 

Proof 1 Let K = 1NFt nE z+, MAX (E (Xn ) ,E (X-n » = +=i · 
It 1s clearly suff1cient to prove K = +00. We shall therefore 

assume that K <~, and obtain a contradiction. 

By Lemma 8.1 and the fact that Y is clearly non-negative, 

o < 
= 

E(yK) = = 

2K-I 
+ L < ~ . •• ' (*) 

j=l 

But by the pro pert y that K is the smallest integer 

in Z+ such that at least one of E(XK) or E(X-K) does not 

exist, one sees: E(X j
) < 00, j =±1,±2, ••• ,±(K-l}, and since 

K is finite, and r is positive, 
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< 00 (**) and 

hence: (*) gives 

E(XK) + r 2KE (X-K) < 00. 

But since X is non-negative and f > 0, 

E(XK) ~ E{XK) + r2~(X-K) < 00, and similarly, 

E(X-K) ~ p-2KE(XK) + E(X-K) < 00. But from the definition of K, 

one of E(XK) or E(X-K) must be equal to +00, and therefore, 

the assumption that K < 00, leads to the above contradiction. 

Therefore K = +00. In view of the remark at the start 

of this proof: 

This completes the proof. 

Lemma 8.3: 

Let X be a non-negative random variable with density 

function f(x), and let E(X) = f. 
Then if E(Xn ) and E(X-n) exist for all nE Z+, the 

following are equivalent: for all x > 0, 

f(x) = ~ f(p2/x ) 
x 

•• (2) 

and E( (x/Jl)-n) = E( (X/Jl)n+l) for all nE: Z+ • • • ( 3) 



54 

Proofl (2) implies (3)1 

(By (2)) 

By substituting y = p2/X in the above, elementary 

change of variable rules give 

= 100 

yn+3 f(y)~ dy 
o p-n+3 ya 

= E( (x/p)n+l) • 

Therefore (2) implies (3). 

yn+l f(y)dy 
n+l p 

Next, we shall show that (3) implies (2). 

(3) is readily seen to be equivalent to 

Let 

that 

for aIl nE z+ • 

y = p2/X • The above equation, together with the fact 

E(X) = ]l, give 

E(yn) = E(Xn+l ) . for aIl non-negati ve integers, 

F n. 

= Loo exp(ty)dF(y) ,with Y l'V F(y). o _ 

Since aIl the moments of Y exist, 

My(t) = t = 
j=O 

Next, let g(y) = yf(y), where f is the density of X. 

f 
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Since for every n E Z+U{o~, 

roOO Jn exp(ty)g(y)dy = = 

By uniqueness of Laplace Transform , we obtainl 

y has density ~ f(y). (*) 
)l 

But X = ~ 
y 

Therefore, change of variable yieldsl 

~ f(y) = g(y) = for aIl y > o. 
F 

That is, for aIl y > 0, condition (2) holds. 

This completes the proof. 

The previous Lemma, gives rise to the following 

version of THEOREM 8.1, 

THEOREM 8.2 l,' (Characterization) 

Let X be a non-negative random variable, with density 

function f(x). Then in order that X"vIG(p"..), it is 

necessary and sufficient that the following hold: 

(1) and 

(3) for aIl non-negative 

integers n. 
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Proof, , E (Tn ) exists for all n E. z+Ui~ . 

That is, E«X_p)2n X-n ) exists for every nE z+. By virtue 

of the fact that X is a non-negative random variable, Lemma 8.2 

gives, For every nEz-t, E(Xn ) and E(X-n ) existe 

Also, Inverse Gaussian random variables have moments 

of all positive and negative orders. Therefore, in both the 

Necessity and Sufficiency parts of the proof, moments of 

all positive and negative orders existe Hence, 

Conditions (1) and (3) are equivalent to (1) and (2), by 

Lemma 8.3, and conditions (1) and (2) are equivalent to 

x f\.,. IG(p,À.). «2) is defined in THEOREM 8.1 ). 

This completes the proof. 

The following theorem characterizes the Standard 

Inverse Gaussian distribution, IG(l,l). 

THEOREM 8. 3 : 

In order that X rv IG (l, 1), i t is necessary and 

sufficient that 

(1) • 

(4) 

Proof: 

X+t~l/X 

and 

2 with X,t independent, tf\;X l • 

Necessity of Conditions 

If X I\.r IG(l,l), THEOREMs 5.2 and 3.4 respectively, give 

( 1)' and ( 4 ) • 
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Sufficiency of Conditions 

Conditions (1)' and (4) will give aIl the moments of X. 

Let Y = (X_l)2 • By Lemma 8.1, (X 1s clearly non-negative) 
X 

j

)=?k._ E(yk) = ~ (_l)j(~k)E(Xj-k) for aIl kE Z+ • • • (A) 

Also, by (4), for aIl k E. Z+ , 

E«X+t)k) = E(X-k ) • Applying the binomial expansion, 

one obtains: 

= for aIl k Z+ •• (B) 

Since t ~ Y'Î.JX\, a distribution with moments of 

aIl positive orders, the expectations given on (A) and (B), 

aIl existe (Those of the form E(X j ) exist by Lemma 8.2) 

We shall evaluate E(Xk ) and E(X-k ) by induction. 

For k=l, equat10ns (A) and (B) yieldl 

E(Y) = E(X-l ) - 2 + E(X) 

Since y rv t'VX\ , E(Y) = E(t) = 1. Therefore, 

the solution to the above system is: E(X) = l, E(X-l ) = 2. 

Assume for aIl integers k < n, that E(Xk ) and E(X-k ) 

are uniquely determined quantities, from (1)' and (4), by 

equations (A) and (B). We shall then show that E(Xn ) and 

E(X-n ) are also uniquely determined from (1)' and (4) via 

(A) and (B). 
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Equations (A) and (B) yieldl 

= 

By the induction hypothesis, and the fact that the 

moments of Y and t,JC2
l random variables, are known, the 

right hand sides of equations (An) and (Bn) are known. 

Since the equations (An) and (Bn) are non-singular 

in unknowns E{Xn ) and E{X-n ), the equations have a 

unique solution. Therefore, E(Xn ) and E(X-n ) are indeed 

uniquely determined from (1)' and (4). This completes 

the induction. 

Therefore, for every nEz+, conditions (l)' and (4) 

determine E{Xn ), uniquely. 

Since as was remarked earlier, E{Xn ) exists for aIl 

nEZ+, conditions (l)' and (4) uniquelYdetermine 

00 ,-
E {exp ( eX) ) = L ~ E (X j ) 

j=O j! 
• 

By uniqueness of Laplace Transform, there exists at 

most one probability distrJ.bution, satisfying (1)' and (4). 

But in the Necessity part of the proof, we showedl If 

X '\.; IG ( 1,1), then (1)' and (4) hold. Hence the only 

distribution such that (1)' and (4) hold is IG(l,l). 

This completes the proof. 
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A particular case of a theorem of Patil and Seshadri 

[lO-lJ ' can be stated as followsl 

Let xl ,X2 be non-negative independent random variables 

with common density function, f{x}; and Yl 'Y
2 

be non-negative 

independent random variables with common density, g(x}. 

Assume further thatl ' 

(l) f(x}, g(x) > 0 , for x ~ 0 • 

(2) d(XlIXl+X2) = d(YIIYl+Y2) = the conditional 

density of Xl given (Xl +X2 ) = the conditional density of 

YI given (Yl +Y2 ), a continuous function of Xl' say, for 

aIl (Xl +X2 ) • 

Then there exist constants a and b, such that 

f(x) = ag(x)exp(bx). 

While this result will not be of direct use to us, 

to characterize the Inverse Gaussian distribution, as 

will be discussed below, the above ~heorem can be general­

ized to be of use. 

We note, that assumption (1), demands that f(O) = limf(h) 
h~O 

must be positive. The quantity f(O) appears in the denominator, 

in the proof of the above theorem, in one of the steps. 

The Inverse Gaussian density vanishes at x = 0+. The 

above theorem, must be modified, to deal with the Inverse 

Gaussian distribution. 

The following lemmas will clear up this difficulty. 
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Lemma 8.4: 

Let independent, non-negative random variables Xl ,X2 , 

Yl 'Y2 have respective density functions f(x),f(x),g(x),g(x). 

Assume further thatz 

(1) f(x),g(x) > 0, whenever X> o. (f(O),g(O) - 0, 

permitted. ) 

(2) For all values of Xl +X2 , and Yl +Y2 , the conditional 

densities of Xl given Xl +X2 and Y
l 

given Yl +Y2 are continuous 

and identical, d(xlx+y). 

Then 0 < lim f(x) < 00 

x~O g(X) 
, exists. 

Proofz Let k(x+y) be the density of X
l

+X2 ' and 

h(x+y) be the density of Yl +Y
2

• 

By (2), we obtainl for x,y>O, 

f(x)f(y) 
k(x+y) 

= g(x)g(y) 
h(x+y) 

We immediately note the followingl 

(*) • 

(a) Since d(xlx+y) is continuous, so must be f(x) and g(x) 

for all x > O. ( k(x+y) and h(x+y) cannot vanish for 

positive x+y, by (1), above.) 

(b) k(x+y) and h(x+y) are also continuous for x+y positive, 

by virtue of (a) and (~q. 

Rearranging in (*), we obtainz 

f(x) = 
g(xf 

k(x+y)p;(y) 
h(x+y)f(y) 
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TaJüng limits on both sides of the above, as x \t 0, 

one obtains by virtue of (a) and (b): 

1im f(x) 
x ~O g(x"r 

, a finite, positive quantity. 

This completes the proof. 

Lemma 8.51 

Under the conditions of Lemma 8.4, there exist constants 

a and b, such that 

f(x) = ag(x)exp(bx). 

Proof: Let the notation be as in the previous lemma. (*) of 

the previous lemma gives: for x,y > 0 , and 0 < h < x+y, 

= g(x)g(y) 
h(x+y) 

f(h)f~X+Y-h) = 
k(x+y 

Therefore, for x,y > 0 and 0 < h < x+y, 

f(x)f(y) = 
g(x)g(YT 

g(h)g~X+y-h) 
h(x+y 

Taking limits on both sides, as h ~o, and setting 

lim f(h) = a ~ a being well defined, positive and finite, 
h~O g(h) 

by Lemma 8.4; and using (a) of the previous lemma's proof, 

concerning the continuity of f and g, we ohi;ain 

= a .f (x+y ~_ 
g(x+y 

for x,y > O. 

Let cp(x) = LC~.-L_ for all x > o. The above 
~ 

yields: ~(X)~(y) = ~(x+y) • 

• 
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This is the weIl known Cauchy Functional Equation, whose 
unique solution iSJ 

CP(x) = exp(bx) for some constant b, and x > o. 
Therefore, for y > 0, 

~(x) = exp(bx) = ~ 
a-g[Xf 

x > o. 

That is, f(x) = a g(x)exp(bx) x > 0, for some constants 
a and b. 

This completes the proof. 

The machinery has now been est.ablished to prove 
a Patil-Seshadri type characterization of the Inverse 
Gaussian distribution. 

THEOREM 8.4 J (Characterization) 

Let X,Y be independent, identically distributed random 
variables, such that E(X) < 00. 

Then a necessary and sufficient condition that for 
some positive f' that X,YrvIG(f'À)' is that the conditional 
density of X given X+Y, is 

d(X{X+y) = 

° < x < x+y. 



Proofl Necessity of Condition 

Let X,YrvIG(p,À) be lndependent random variables. 

By THEOREM 3.6(a), X+yrvIG{2?,4À). Hence 

d(x}x+y) = f(X)fp~:~ (*) 
h(x+y 

where f ls the Inverse Gausslan denslty d 
dz F (z ; Jl' À) and 

h ls the Inverse Gausslan density ~z F (z; 2Jl, 4À) • 

The required value of d{x!x+y) 1~ immedlate from (*), 

upon substltuting the functional forms of the Inverse Gaussian 

densities f and h. 

Sufficiency of Condition 

Let g{x) = ~ F(X;P,À) • Suppose that densities 
dx 

f (x) and 

d(x!x+y ) 

-whenever 0 < x < x+y. By Lemma 8.5,·there exist constants 

a and b, such that whenever 0 < x < 00 ., 

f(x) = ag(x)exp(bx) 

a/-6)i expr- -L [(1 -~)x- 2)1 + ~ 
(2TTX l 2r 2 X x~ 

= 

and f(x) = 0, x < o. 

Let K = and c = l - 2bu 2 -À 
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Therefore, 

f(x) = 

(i) If c > 0, by completing the square of the exponent, 

one obtains the fact that f{x) is an Inverse Gaussian 

density. The fact that f has the correct value of À, 

follows from the necessity part of this proof, for if 

f had sorne other value of À, say À', one wou Id have 

ilij x+Y~ = crrx x+y 
l 

= 

whenever 

(À/À')~ exp[- i{À-À') (x-l + y-l_ 4(x+y )-I] , 

o < x < x+y. This is an obvious contradiction. 

(ii) If c = 0, one has 

f(x) = , 

= o , 

E(X) = fOO Kx-i exp(- À/2x)dx 
o 

x > 0 

x < o. 

This contradicts the fact that E(X) exists. Therefore, 

c = 0 cannot occur under the assumptions of the theorem. 

(iii) If c < 0, we obtain: 

,lim f(x) 
x-;oo 

= lim K x-3/ 2 exp( - ~ (cx + u2 
)) 

X-;)OOO 2u'2 X 

That is, f(x) cannot be a probability density. 

In view of the fact that (i) is the only possible 

case that can oceur, 

This completes the proof. 



Examp1e 8.2: 

He sha11 show, by examp1e, that in Khatri's character-

ization of the Inverse Gaussian distribution, THEOREM 3.8, 

assumptions on the moments cannot be dropped. 

Let X1 ,X2 be independent random variables, with 

common density function 

f(x) = _.!. 
(2TIx3 ) 2 exp(- 1/2x) x > 0 

= o x < o. 
Result (i): f is a density function. 

This is easily seen, from the fact that YI'\.; JC. \ iff 

l/Y has density f(x), above. 

Result (ii): U = Xl + X2 
are independent. 

and 

Argument 1 Let YI = min(X1 ,X2 ) Y2 = max(X1 ,X2 ) • Then 

U = Yl +Y2 V = 1/Y1 + 1/Y2 - 4/(Y1+Y2 ) • 

Also, the joint density of Y1 'Y2 wherever positive, is 

and 

The joint density of U and V is therefore, 

f (U ) = 1 (Y Y )-3/2 ( 1 - l ) exp[-~( y
1

- 1 + y2- 1j 2'V TI 1 2 P p 
1 2 

= 
1 

1 (Y1Y2)2 exp(-~)exp(-iV). 
TI Y2::3 - yt 



v = 

66 

Next, we note thatl 

y
l - l + Y2- l - 4(Y +Y )-1 1 2 

= 

= • Hence, 

Therefore, by substituting the above in the expression 

for f 2 , the joint density of U and V is seen to be 

= 

= 

l u-3/ 2exp(_2/U)V-1/ 2exP(_V/2) t 

TT 

o 

U, V > 0 , 

e1sewhere. 

Since f 2 can be factored into a function of U times 

a function of V, U and V are indeed independent random 

variables. 

We have shown, that f(x), a non Inverse Gaussian 

density, enjoys the property of Khatri's characterization. 

Assumptions on the moments cannot be dropped, therefore. 
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CHAPTER 9 1 THE MULTIVARIATE INVERSE GAUSSIAN 

DISTRIBUTION 

Definition 9.11 

A random vector X = (xl, ••• ,xn)T is "Multivariate 

Inverse Gaussian distributed," if there exists a non-

singular matrix P, of n rows and n columns, such that 

z = PX 1s a vector of independently distributed 

Inverse Gaussian random variables. 

In symbols, one wri tes a X f'\J NVIG. 

The reader may askl "Under what conditions are all 

the uni variate marginal distributions of an MVIG random 

vector, Inverse Gaussian distributions?" 

The next important lemma will provide the key to 

answering this question. 

Lemma 9.1 : 

Let Xl, ••• ,Xn be independent random variables with 

X j rv IG (}l j' À j ) ,j = l, ••• , n. 

Then a necessary and sufficient condition that 

n 

X = L. X 
o j=l j 

be·an Inverse Gaussian random variable 

is thata does not depend on j, j = l, ••• , n. . 
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Proof: Necessity of condition 

Let XO"VIG(p.O'À,o) , and let fj(e) be the charact­

eristie funetion of Xj , j = O,l, ••• ,n. 

By THEOREM 3.11, for j = O,l, ••• ,n, 

where 
1 

a. = (À,. /zrt) 2" and 
J JI' 

But s1nee Xl ••• Xn are 1ndependent random variables, 

one obta1ns from the def1nit1on of Xo ' 

n 
L log f .(e) 
j=l J 

= 

By the uniqueness of the Kolmogorov representation, 

the following is elear: 

for positive u. •• (1) 

By taking limits on both sides of (1), as u~O, one 

obtains: 

= 
n 
La. · 
j=l J 

By differentiating both sides of (1), and letting 

u tend to 0, one also obtains: 
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n 
= ::> m ajb. 

j=l J 
ID = 1,2, ••• 

That is, since a O > 0, 

( b )m ° = 
f= (a '/ao) (b.)m 
j=l J J 

m = 0,1, ••• •• (2) • 

Next, consider the following q.iscrete distribution, 

for a random variable YI 

P(Y=bj) = aj/aO j = l, ••• , n 
* p(Y=t) = ° t + a j for any j. 

The above is clearly a probability function, by (2) above, 

with m = O. Also by (2), for m = 1,2, ••• 

Hence, the moment generating function of Y is: 

E(exp(ty)) = exp(bot) • 

By uniqueness of Laplace Transform, one obtains: 

P(Y=bO) = 1. ** 
By the definition of a j and the fact that Inverse 

Gaussian random variables have ~ > 0, a
j 

> 0, j = l, ••• ,n. 

* and iH'. therefore imply, for j = l, ••• , n , that 

= bO • That is, by definition of b j , 

= j = l, ••• ,n, and is therefore 

independent of j. 
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Sufficiency of condition 
2 Setting Jlj l'J = C ,j = l, ••• ,n , THEOREM 3.1 givesl 

= exp ( 1..j- [1 - (1 - 2i e C ) ~ J)\ j = 1, ••• , n. 
~~j 

By the independence of Xl, ••• ,Xn , one obtains 

= ~ n l..l~ exp ( ~.~.J)[l- (1 - 2ieC) J' 
j=l)l j 

Hence, by THEOREM 3.1, and uniqueness of Fourier 

Transform, one obtains 

This completes the proof. 

The following theorem gives necessary and sufficient 

conditions that a Multivariate Inverse Gaussian random 

vector have aIl its univariate components Inverse Gaussian 

distributed. 

THEOREM 9.1: 
T 

Let Z = (zl, .• "zn) be a vector of independent 

random variables with Zj 0vIG(fj,Àj) , j = l, ••• ,n. 

Let P be an nxn l1on-singular matrix, and let 
T 

X = (xl""'xn ) be the random vector satisfyinga 

Z = PX. 

Denote p-l by Q = (qn q12 • • . 

;nl • 

• 

• 
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Then necessary and sufficient conditions that for a 

fixed i,i = l, ••• ,n, that x. be Inverse Gaussian dis­l. 
tributed, is that for each j such that q1j t 0, the 

following hold, 

(1) 

(2) 

qij > 

El qij 

Àj 

o 

does not depend on j. 

Proof, Necess1ty of (1)1 

We assume Xi~IG(. ,e) and shall conclude qij ~ o. 
Suppose it were possible that Xif\...;IG(e,e), and qij < O. 

n 
But = ~ q'jz, • Were sorne 

j=l l. J 

and non-negativity of the Zj givea 

qij < 0, the independence 

P(xi < 0) > O. This cannot happen for Inverse Gaussian 

random variables, which are positive with probability 1. 

The assumption that sorne q .. could .be negative,with xl.' 
l.J 

Inverse Gaussian distributed cannot be compatible. That is, 

(1) 1s indeed necessary. 

Necessityand sufficiency of (2): 

Let {qi j 1 
• • • • • qi j r

) be the set of positive 

qij for a fixed i. This set is non-empty, since P is 

non-singular. 
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= , where 

, k = l, ••• ,r, are independent random 

variables, such that; by THEOREM 3.5, 

Wj rv IG(qij Jlj , qij Àj ) 
k k k k k 

Hence, by Lemma 9.1, 
2 

qijk fjk 

Àjk 

k = l, ••• ,r 

k = l,o •• ,r, does 

not depend on k. In view of the definition of 

k = l, ••• , r, 

This completes the proof. 

Remark: 

If the properties enjoyed by the fixed i, is enjoyed 

byall the i, i=l, ••• ,n, all univariate marginals are 

Inverse Gaussian distributions. 

THEOREM 9.2 

In the statement of THEOREM 9.1, if zl, ••• ,zn' is 

a random sample with Zj rv IG(p, À), then a necessary and 

sufficient condition that aIl the marginaIs of X, be 

Inverse Gaussian distributions, is that all the row 

vectors of Q, (qil'. • • qin) consist only of zeros and a 

positive quantity ci' depending only on i. 
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Proof, (Special case of THEORE}1 9.1) 

Example 9.1, (Sequential sampling) 

Let zl'. • • , zn be a random sample, wi th Z j rv,IG (f' ).J • 

Let. 

~ 
1 0 0 0 • • • 

r
Z1 

k i 0 0 • Z2 2 • • 
X = o 1 1/3 1/3 1/3 0 • • • ! • 

1 

1 1 
• • · • • • 1 ! • 

1 

i 1 
1 

, • • • • · • • • ! • i i 
1 

1 

ll/n lin lin • • • • 1/~ (Zn) 

XI'\.,. f'IVIG since the matrix above is nOl'l-singular. (The 

determinant is the product of the terms of the main 

diagonal) • 

X has all its marginals Inverse Gaussian, by THEOREM 9.2, 

with ci = l/i i=l, ••• ,n. 
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CHAPTER 10: MEASURE THEORETIC INTRODUCTION 

TO THE INVERSE GAUSSIAN PROCESS 

In this chapter, the author will introduce the 

notation required in Chapters Il and 12. Illustrative 

examples will be given to show how ones intuition can 

lead him to false conclusions, with regard to properties 

of the sample functions of a stochastic process. 

IMPORTANT DEFINITIONS 

Definition 10.1: (Stochastic Process) 

A Stochastic Process is a 4-tuple (Jl,2t,p,Xt :tE.T) 

such that: 

(1) T is a subset of the non-negative real numbers, 

(2) -Il= r\1 Il 
tET t 

, where each Jl t is the sample 

space of the random variable Xt , 

(3) :3 is the sigma-field generated by Tf j-t , 
tET 

where each ::Jt is the Borel field generated by sets of 

the form: and. 

(4) P is the probability measure induced on Cf , 
by the finite dimensional distributions of 

for every finite subset 
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Definition 10.2z (Notation) 

Let S be a finite subset of T. We define :1*s byz 

= '/1 
tET 

Definition 10.3: (Notation) 

, where tEs 

, t ~ s. 

Let S = ttl, ••• ,tn~ be a finite subset of T. We 

shall define P S as the measure induced on (Il, J*s ) by 

the finite dimensional distribution of (Xt , ••• ,Xt ). 
1 n 

Definition 10.4: (Inverse Gaussian Process) 

An Inverse Gaussian Stochastic Process, Xt,t ~ 0 , 

is one with the following properties: 

(1) (Xt - Xs) rv IG(a.(t-s),i3(t-s)3) for t > s, with 

a. and p positive constants. 

(2) Process has independent increments. That is, 

the set of random variables {ft j+ ~ -Xt j) , j = l, ••• , n J 
are mutually independent whenever 0 ~ t 1 < t 2 < ••• < tn+l < 00. 

(3) x = 0 
o 

Definition 10.5: 

a.e. 

A Stochastic Process is "Monotonie increasing in 

probability" if whenever t > s, 
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Definition 10.6: 

A Stochastic Proeess (il, -:3 ,P,Xt : t ~ 0 ) is 

" a.e. monotonie increasing" if there exis·ts a set NE '3 , 
such that: 

(1) peN) = 0 and 

(2) For every fixed w E. fn-- Nf Xt (w) is a monotonie 

non-decreasing function of t. 

Definition 10.7: 

A Stoehastie Process is 'bontinuous in probability~ if 

for every €> 0, and t ~ 0 

lim p( IXt +h - Xt \ >E) = 0 (*) 
h~ 

If (*) holds subjeet to the condition that h-70from 

above, the process is "right-continuous in probability". 

Definition 10.8: 

A Stochastic Proeess 

" a.e. continuous (right-continuous), if there exists a 

set NE::f, such that: 

(1 ) peN) = 0 and 

(2) For every fixed wE fn. - Nf Xt (w) is a continuous 

(right-continuous) funetion of t. 
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Definition 10.9: (Separable process) 

A Stochastic Process (..n, '::J, p,Xt 1 t ~ 0) is called 

"Separable", if there exists a countable set SC [ 0, 00 ), 

with the following property: 

For every open interval l, of finite length, 

= INF Xt(w) 
tE I()S 

a.e. 

a.e. 

and 

Definition 10.10: (Universal Separating Set, USS) 

A set S with the property required in Definition 

10.9 is called a universal separating set. 

Definition 10.11: (Modification of a process) 

A Stochastic process,{Zt:t€T}, is a modification of 

a process fxt : tE TJ, if for every t€ T , 

P(Zt = Xt ) = 1. 

Definition 10.12: 

A Stochastic Process is finite a.e., if for aIl 

finite T, P(SUP Xt(w) = 00 ) = 0 • 
t<T 

Definition 10.13: 

A Stochastic Process is unbounded in probability if 

for every K >0, t >0 : 

P(Xt > K) > o. 
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Before one can continue with the introduction to 

the measure theoretic properties of the Inverse Gaussian 

Process, one logical question must be answeredr "How 

does one know that there exists a measure P, such that 

P extends the measures induced by each finite dimensional 

distribution?1I 

The answer lies i'n the famous Kolmogorov Theorem, 

which we state without proof. 

THEOREM 10.1: (Kolmogorov) 

Let il be defined by (2) of definition 10.1, with each 

J1t a copy of the real line. Then if there exists a probability 

measure Ps on (..n..,"3;) for every finite SeT, such that 

whenever SIC: S2' PS2 is an extension of PSI' it follows 

that there exists a probability measure P which extends every 

PS • ((f; and Ps are as in Definitions 10.2 and 10.3 respectively) 

Proof: See [8-1J or [14-1J. 

THEOREM 10.2: (Restatement of above) 

Each Stochastic Process whose finite dimensional 

distributions are specified, corresponds to at least one 

Stochastic Process. (i.e. the Process, given by Definition 

10.4, corresponds to at least one process in the sense of 

Definition 10.1, provided the distributional conditions 

are consistent with each other. ) 
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THEOREM 10 • .31 

Inverse Gaussian Processes as in the sense of 

Definition 10.4, exist in the sense of Definition 10.1. 

Proofl Wasan [16-6J ' showed that conditions (1),(2), and 

(.3) of Definition 10.4 are consistent, and uniquely determine 

the finite dimensional distributions of (Xt ,··· ,Xt ). 
1 n 

(In fact, these are clearly Multivariate Inverse Gaussian 

random vectors. See Chapter 9.) Hence, by Theorem 10.2, 

the process exists in the sense of Definition 10.1. 

This completes the proof. 

We shall discuss the Inverse Gaussian Process in 

the context of Definition 10.1. However, we shal1 see 

by example, that little can be said about many aspects 

of the process, unless a suitable modification is chosen. 

THEOREM 10.4: 

Every Inverse Gaussian Process is monotonie increasing 

in probability. 

Proof: 

t > s, since Inverse Gaussian random variables are positive 

with probability l, and P extends 

This completes the proof. 
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Intuitively, one might feel that a Stoehastie Process, 

monotonie inereasing in probability is a.e. monotonie 

inereasing. This need not be the case. This fact is 

dramatically demonstrated in the following example. 

Example 10.1: 

Let (11, ;:J,p,XtJt~O) be an Inverse Gaussian Process, 

whose measure P is complete. (This ean be done by adjunction 

to 2t , aIl subsets of sets of measure zero, and assigning 

P-measure zero to each of these.) 

Let Y be the cumulative distribution funetion of 

(X2 - Xl)' (i. e. of Xt =2 - Xt=l ) ~ y is uniformly distributed 

over the interval (0,1). 

Define the following proeess: (Il, :1-,P,Zt,t~O ), where 

if 

if 

y ...L t 
1 

Y - t 

Sinee the event {w:Y(W)=t; has probability zero 

for every t, with respect to the measure P/t~ (and henee p), 
t -' 

the finite dimensional distributions of the Zt proeess 

are identieal with those of the Xt proeess. The Zt proeess 

is therefore Inverse Gaussian, and as sueh, by Theorem 10.4, 

is monotonie inereasing in probability. 

vIe shall now show that the Zt process is not a.e. 

monotonie increasing. In faet, it will be shown that the 

w-set for whieh Xt(w) is monotonie inereasing, is a set 
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of P-measure zero. 

Argument 1 

Let e be an arbitrary constant sueh that 0 < e < 1. 

Sinee Ze is an Inverse Gaussian random variable, and P is 

an extension of Pte} , 

P(Z > 0 e = 1. 

Under the assumption that the Zt proeess is a.e. monotonie 

inereasing, one has by the eompleteness of P, 

P(Zt > 0, for aIl tle<t<l) = l • 

Renee, taking the eomplimentary event to the above, 

P(Zt ~ 0, for some tle<t<l) = o. • • (1) 

But from the definition of Y, Zt = ° if t=Y. Renee 

P(Zt ~ 0, for some t:e<t<l) ~ P(e<Y<l) = l - e •• (2) 

Sinee e < l, the assumption that the Zt proeess is a.e. 

monotonie inereasing, leads to eontradietory results (1) 

and (2). Therefore, the Zt proeess is not a.e. monotonie 

inereasing. 

Sinee the set of aIl sample funetions whieh are not 

monotonie inereasing, eontain 

{WIZt (w) ~ 0, for some t:e<t<l) n N', 

. where N' = lii:Ze(W) :> o} , a set of P-measure l, 

therefore, the set of aIl sample funetions whieh are 

not monotonie inereasing, eontain a set of measure l-e, 

(above by (2) ), for arbitrary e:O<e<l, and as such, is 

a set of measure 1. 
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We shall see in Chapter 11, that Definitions 10.5 and 

10.6 are equivalent provided P is a complete probability 

measure, and the process 1s separable. The next theorem, 

given without proof, is therefore of great importance. 

THEOREM 10.5 1 

Every Stochastic Process, whose measure is complete, 

has a separable modification. 

Proofl See [14-2J • 

Example 10.21 

The Zt modification of Xt of Example 10.1 is not 

separable. 

Argument : 

(WI INF 
{ tEe c, lJ 

That is, 

Let O<c<l. 

Zt (w) ;; 0 ~ 
Then for Y as in Example 10.11 

• 

(W: INF Zt(w) ~ 0 2 l tEe c,lJ ) 
contains a ,set of P-measure l-c. (*) 

But for any countable set SI 

p( U {WI Zt(w) < oJ) = tEe c, lJns 

= 0 

Therefore, INF Zt tEe c, lJns 
> 0 a.e. 



8) 

Now were the Zt proeess separable, one would have. 

II'-J"F Zt > 0 a. e., and henee 
tE.[e,lJ 

F( WI INF Zt(W) ~ 0) = 0 (**) 
\ tE[e,l] 

Sinee e<l, the assumption that the Zt proeess is separable 

leads to eontradietory equations (*) and (**). The Zt 

proeess 1s therefore not separable. 
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CHAPTER 11 1 SEPARABLE STOCHASTIC PROCESSES, 

MONOTONIC INCREASING IN PROBABILITY 

The first goal of this chapter will be to show that 

for separable processes whose measures are complete, Definitions 

10.5 and 10.6 are equivalent. The reader will also be shown 

that for separable processes monotonie in probability, with 

complete measures, there exist right continuous modifications. 

We shall now set up the machinery that will be used 

in our proofs. 

Definition 11.1: (Upcrossings and Downcrossings) 

Let fa Rl~Rl be an arbitrary function, where 

Hl 1s the real Une. Let A = f Xl'X2 , .. • 'Xn je Hl be an 

arbitrary finite set, with xl < x2 < ••• < xn • Further, 

let [a,~ c: Rl be an arbitrary closed interval of positive 

length. 

and 

We shall first define Yl' ••• 'y as follows: . n 

Yl = 
= 

= 

for j = 

Yj = 

= 

= 

0 if 

~ if '2 

l if 

2,3,··.,n: 

0 if 

Yj-l if 

l if 

f(x l ) < a 

a ~ f(x l ) ~ b 

b < f(xl ) 

f(X j ) < a 

a ~ f(xj) < b 

b < f(xj) 



Cons1der the sequence Yl' ••• Yn 1 

U = the number of t1mes that ° is 

= the "number of upcross1ngs of 

We shall denote this by: 

1mmed1ately followed by l 

[ a. bJ by f f (x Jo x E A) ." 

U = U(f,A,Ca,b]). 

AIso, 

D = the number of t1mes that 1 1s 1mmed1ately 

= the "number of downcross1ngs of Ca,b] by 

We shall denote th1s bYI 

D = D(f,A,Ca,b]). 

Example 11.1: 

f(x) 

• 
• f(xJ) 

f(x2 ) 
----------b l 

! 

1 

a -, 

followed by ° 
tf(x) IXEA}" 

• • 
f(x4) f(x7) 

~~o-__ ........ ~._._~ .... _. __ ... -. ---_---e ..... -______ .. ··-___ .. ______ ··e ___________ .·_ ------- x 

Xl X2 xJ x4 x 5 x6 x7 

Let A = fXl' ••• 'X7} • The y-sequence by definition 1s: 

i,l,l,O,O,l,O • Therefore: 
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U(f,A,[a,bJ) = 1 and n(f,A,[a,bJ) = 2. 

Definition Il.2: (Upcrosslngs,Downcrossingsl lnfinite case) 

Let f,Rl---~Rl be an arbltrary functlon; Be RI be an 

arbltrary set; and [a,bJ be an arbltrary closed lnterval of 

finite,positive length. 

We define the number of upcrossings and downcrossings 

of [a,bJ by tf(X)'XE:B) respectively by, 

U(f,B,[a,bJ) = SUP U (f ,A, [a, bJ) , and 
ACB 

A finite 

D (f ,E, [a, bJ) = SUP n(f,A,[a,bJ) 
ACE 

A finite 

Lemma Il.11 

Let f: [0,00)---)R1 be an arbitrary function, and S be 

a dense countable subset of [0,00) satisfylngl 

for every interval I, with endpoints in S, 

SUP f(x) = SUP f(x) and INF f(x) = INF f(x). 
x€I xEInS xEI xEInS 

Then for every finite set AC [0,00), and every interval l 

with endpoints in S, 

n(f,I A, [a,bJ) < D(f,I S,[a,b~ •• (1) • = 
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Proof: We shall assume that for sorne finite A, and interval 

Io with endpoints in S, that (1) is false, and obtain a 

contradiction. That is, we assume 

no = D (f , l l'lA, [ a, b J) > D0 ,IJ1S, [a, b~. 

It is clear that no is finite, since no must be 

smaller than the number of elements of the finite set, A. 

Since S is dense, it is easily seen that Io can be 

partitioned into no intervals, each of which has its 

endpoints in S, and each, when intersected with A, has 

exactly one downcrossing of [a,bJ by f. 

Since D(f,IonS,[a,bJ) < no ' at least one of 

the no intervals, above, when intersected with S, has 

no downcrossing of [a,bJ by f. Let one such interval be 

denoted by I*. 

* We have thus constructed an interval l , with endpo:l.nts 

in S, such that 

D ( f , l ~h S , [a, b J ) = 0 and D(r,I*nA,[a,bJ) = 1 •• (2) • 

Since it is clear that for any B, such that D (f ,B, [a, bJ) 

is finites ID(f,B,[a,bJ)- U(f,B,[a,bJ)} < 1 , (see 

Definitions Il.1 and Il.2), two cases can existe These are: 

Case 1. U(r,I'f]s,[a,bJ) = 0 1 Case 2. U(r,I*OS,[a,bJ)=I. 
We shall in turn treat each, and produce an appropriate 

contradiction. 



Case 1: V(f,Iihs,Ca,bJ) 

Since we also have 

eitherl 

(a) sgP f (x) 
xEI'nS 

< 
= 
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= 0 

D(f,Iihs,[a,bJ) = o , then 

b or (b) INF f(x) 
xE:I*f)S 

> a • 

(Otherwise, an upcrossing or a downcrossing would exist.) 

But in view of the given properties of f, this 

implies that either 

(a) 

(b) 

b > 
= 

a < 
= 

SUP f(x) 
x€I* 

INF f(x) 
xEI* 

> 
= 

< 
= 

This in turn implies: 

D(f,I*nA,[a,bJ) = 0 

which gi ves D (f , I*nA, [a, b J) 

occur. 

SUP f{x) 
x€I-Il()A 

or 

, contrary to equation 

= 1. Hence Case l cannot 

Case 2: V (f, I*{1A, [a, bJ) = l 

(2) , 

Partition p~ into intervals J l and J 2 ' with endpoints 

in S , such that SUP{X:XEJ1) = 11~{X:XEJ2J and 

SVP f(x) 
x€Jl'!S 

< b and INFf(x) ~ a 
xEJ2t1S 

(This is possible, since S is dense, and since 

D ~ ,Ii~nS , [a, b J) = 0 .) 

b > 
= 

But by the given properties of f, we obtain: 

SVP f(x) 
xEJl 

> 
= 

and 



a < < 
= = 

That 1s, f (x) is never above b for xE JlnA, and 

f (x) is never belol'l a for xE J2nA. Therefore, 

D (f, r~~nA, [a, bJ) = 0, s1nce J IUJ2 = r*, and 

J l is "to the left of " J2 • Again, this gives a contradiction 

of equation (2), which gives D(f,r~A,[a,bJ) = 1. 

Therefore, Case 2 cannot occur. 

Hence, for every finite set A, and every interval 

r, l'ri th endpoints in S, 

D f,I/lA,[a,bJ < D (f , rns, [a, b J) , since = 

contrary assumpt10ns led us to the contradiction: 

"There exists an interval r~!-, wi th endpoints in S, 

such that 0 = D(f,r-l'I1A,[a,bJ) = 1." 

This completes the proof. 

Lemma Il.2: 

Under the conditions of Lemma Il.1, for any 1nterval 

l with endpoints in S, 

D(f,r,[a,bJ) = D (f , rnS , [a, b J) 
Proof: By Lemma Il.1, one has 

D(f,I,[a,bJ) = ~gi D(f,A,[a,bJ) < 
= 

Afinite 

On the other hand, Definition 11.2 gives: 
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D (f, rns, [a, bJ) = SVP D(f,A,[a,bJ~ 
ACrnS ~ 

A finite 

= o(r,l,[a,bJ) . < 

< = SUP D(f,A,[a,bJ' 
ACr V 

A finite 

Combining the inequalities (*) and (**), one has: 

D(f,rt[atbJ) = 
This completes the 

D (r, lOS, [a, b J) 
proof. 

• 

Lemma 11.2 will be instrumental in proving THEORE1'1 11.1. 

The result will be used with S as the universal separating 

set of a separable Stochastic Process, and for almost 

every w, by the definition of separability, Xt(w) will have 

the same property that f had in Lemmas 11.1 and 11.2. 

THEOREM 11.1 ~ 

Let (1l., Ô,p,Xt,t ~ 0) be a separable Stochastic 

Process t monotonie increasing in probability, and complete 

measure P • 

. Then the process is a.e. monotonie increasing. 

Proof: Let S be a universal separating set for the process. 

t-lithout loss of generality, we may select S as a dense 

subset of the positive real numbers. ( The rational numbers 

together with an arbitrary universal separating set form 

a dense universal separating set, for example.) Also, by 

definition S is countable. 
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One has therefore, 

P tw, Xt(w) ;;: Xs(w) for aU t,s E S,with t > s J 
= P (n ! w z Xt (w) ~ X s (w ) L) = 1. 

t,sES t } 
t>s 

The above follows from the facts that since the process 

is monotonie inereasing in probabili ty, t w ,Xt (w) ;;: Xs (wy is 

an event of probability l, whenever t > s, and countable 

intersections of events of probability l, have probability 1. 

Therefore, noting that for arbitrary finite intervals 

l, [a,b] z 

(WI D(Xt (W),II1S,[a,bJ) = 0) -.. 
~ 

~WJ Xt(w) ~ Xs{w) for aIl t,s S with t > s~ 
one has by the completeness of the measure P, 

( \ \ 
D \ Xt (w ) , InS , [ a, b]) = 0) = 1 

let .·1= l[Cl,~J: Cl,~ES with ~ > Cl) 

•• ( 1) • 

Next, 

= the set of aIl closed intervals 

with endpoints in S. 

Let Ea,b = tw. D(Xt(W),II)S,[a,b~ = D(Xt(w),I,[a,bJ) ,II Id] 

Therefore, by Lemma Il.2, 

E "-'\ () j w z S UP Xt (w) = S UP Xt ( w ) , I NF Xt (w) = 
a, b.J I~j {tEl tE Ins tEl 

~ ,1" • 
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But since the process is separable, one hasa 

SUP Xt (w) 
tfI 

= SUP Xt(w) 
tEIns 

, INF Xt(w) 
tEl 

= INF Xt (W)~) = 
tEIns }J 

holds for every interval l. 

Also, it is clear that since there are only countably 

many choices for the endpoints of the intervals in j , j is 

itselfa countable set. 

Therefore Ea,b contains a countable intersection of 

events of measure l, and hence it eontains an event of 

measure 1. By the completeness of P, one henee obtainsJ 

P(Ea , b) = l •• (2) • 

By (1), and the fact that 1 is countable, one has: 

~(W ID (Xt (w), 1I)S, [a, b J) = 0, v Id]) = l , 

and rewriting (2), using the definition of 

P((WID (Xt (w), 1nS, [a, b J) = D (Xt (w), 1, [a, b J)) 
Combining the above, one obtainsJ 

P~W'D(Xt(W),1,[a,bJ) = 0 ,V Id]) = 
Now' if a path Xt (wo ) is not monotonie increasing, 

l •• (3) 

there will exist an l Ej , and rational numbers a, b wi th 

a<b, such that 

D (Xt (wo), 1, [a, bJ) > 1. 

E = 

E = {,"Xt(W) is monotonie, nondeereasing in 

Il tW'D(Xt(W),I,[a,bJ) = 0, V IE.:Û 
a, b rational ) 

Henee, if 

l 
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That is, E is a countable intersection of events 

of probability l,and is therefore itself an event of 

probability 1. The process is therefore a.e. monotonie 

increasing • 

This completes the proof. 

The next Theorem is a converse to THEOREM 11.1, and 

under restricted conditions, characterizes separability. 

THEOREM 11.2s 

Let (n,2J,p,xt st > 0) be a Stochastic Process, a.e. 

monotonie increasing, with complete measure P. 

Then: 

(a) The process is monotonie increasing in probability, and 

(b) If the process is also continuous in probability, Definition 

10.7, it is separable. 

Proofs 

(a) Let s,t be arbitrary real numbers with O<s<t. 

tW:Xt(W) > Xs (W1 :>' tW:Xt(W) is monotonie, non-deereasing in t] • 

Therefore, {w:Xt(W) ~ Xs(W)} 

l, and by the completeness of 

contains an event of probability 

P, it must itself be an event 

of probability 1. ( Note: For (a) completeness of P is 

not really needed. P, being a monotone set function, and 

Xs,Xt being measurable functions give this result.) 
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(b) Let S = the set of positive rational numbers. 

Sinee the proeess is a.e. monotonie inereasing, 

P((WI SUP Xt = Xb INF Xt = 
Xa;) = 1 •• (1) • 

tE[a,b] tE[a,b] \ 

Let t 1 ,t2 ,... be an inereasing sequence of rationa1s in 

[a,b] such that 1im tn = b. 
n~ 

By the continuity in probabi1ity, for every E> 0, 

~::. 1(WI IXtn - xbl > EJ) = o. 

1fW1 

P~WI 

Hence, for every E> 0, since P is a monotone set function, 

SUP Xt ~ Xb _EJi\ = 1. 
t€[a, b]nS V 

That is, since. the choiee ofE is arbitrary, 

SUP Xt ~ Xb ~)\ = 1. 
t€[a,bJns ) 

Also, by equaticn (1), we have 

SUP X < xbj) = 1. 
tE[a,b]tîS t = 

Combining the above equations, we readi1y obtain: 

SUP Xt = Xb}) = 1. 
t€[a,b]()S 

Simi1ar1y, by taking a sequence of.rationa1s in [a,b], 

decreasing to a, we obtain 

Pitw: Il\1F X 
\ ( tE [ a, b ]OS t 

1. 
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Combining the last two equations with (1), it is 

readily se en that: 

sUP X 
tE[a, b] t 

= SUP Xt 
tE[a,b]()S 

= 

INF Xt = INF Xt = Xa tE[a,b] tE[a,b]nS 

for ,any closed interval [a, b] C [0,00) • 

a.e. and 

a.e. , 

This is clearly equivalent to the conditions for 

separability, since open intervals can be represented as 

countable unions of closed intervals, and closed intervals 

can be represented as countable intersections of open 

intervals, and countable intersections or unions of 

events cf probability l, are events of probability 1. 

This completes the proof. 

We shall now develop an a.e. right continuous 

modification of certain types of Stochastic Processes. 

Definition Il.]: 

Let (11, d ,P, Xt : t ~ 0) be a Stochastic Process, 

which is a.e. monotonie increasing, with X = o. o 

We shall define 

xt(w) = 0 if wE. 

= lim Xt+h(W) 
h~O 

where N = fW:Xt(W) 

X+ 
t 

N 

1s 

for t > 0, in the following way: 

not monotonie, non-deereasing in tJ 



Lemma 11.): 

For fixed WE.il, Xf(w) 1s weIl def1ned for aIl t ~ o. 

Proof: By Definition Il.3, the result is evident for w€ N. 

Let w E. (.Il- N~ and let f hn~ and {h~ J be two sequences 

of positive numbers decreasing to 0, as n tends to infinity. 

Since both sequences converge to 0 from above, for 

every integer n ~ 0, there exists an integer m > 0, such that 

hn > h~. 

By the monotonicity of Xt ' for aIl wE~- I}\ we have 

lim Xt +h (w) 
n~oo n 

> lim Xt +h g (w) 
n-m n 

Reversing the roles of the sequences hn and h~, the 

same argument gives the above inequality in the' opposite" 

sense. Therefore, we have shown: 

lim Xt +h (w) 
n--*'o n 

= lim Xt +h , (w) 
n~oo n 

• 

Hence, the limit exists independently of the choice 

of the sequence converging to zero from above. That is, 

for wE...fL- N, 

2Ç(w) is also weIl defined. 

This completes the proof. 
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The next Lemma will further assert that 1s a 

Stochastic Process. 

Lemma 11.4: 

( 1""'1 --, + ) 
~ L., ..:r, P, Xt a t ~ 0 is a Stochastic Process, where 

xi is defined in Definition 11.). 

Proofa By Lemma 11.3, for a ~ 0, and b < Oa 

and 

(Since 

Since the right hand sides of both equat10ns above 

are members of 2t , we have for each t, xt is a random 

variable. In view of Definition 10.1, 

This completes the proof. 

THEOREM 11.): 

Let (il, 5, P,xt : t ~ 0) be·a Stochastic Process 

with complete measure P, monotonic 1ncreasing in probability 

and contiuous in probability, with Xo = o. 

Then there exists a separable modification of the 

process, which is a.e. monotonic increasing, and a.e. 

right continuous. (i.e. there exists a separable modification 

with almost every sample function being right continuous 

and monotonic, non-deCreaSing0 



Proof: ( five steps) 

(i) By THEOREM 10.5, the process has a separable modification. 

Since the properties, described in probability, are preserved 

under modifications, this modification is monotonie increasing 

in probability. Renee by TREOREM 11.1, the modified process 

wL, J ,P,Xtlt ~ 0) is a.e. monotonie increasing. 

(ii) Next, x! will be shown to be a modification of Xt ' the 

separable version of the process. 

By part (i) above, and Definition 11.3, 

for all t ~ 0, nE z+ • 

But by continuity in probability we have, for all €> 0, 

~~ P,\Xt + lin - Xt \ > E) = o. 

Combining the two equations above, we obtain, for all 'E> 0, 

P (Xt ~ x! ;; Xt + €) = 1. 

Since the choice of € is arbitrary, we have 

+ P (Xt = Xt ) = 1. 

Therefore, X~ is indeed a modification of Xt • 

(iii) Next, xt will be shown to be a.e. monotonie increasing. 

Let A = f w:Xt (w) is a monotonie non-decreasing funetlon of ~ • 
By part (i) of this proof, again assuming Xt is separable, 

P(A) = 1. 

But for every 'VJ E A, and whenever 0 ~ t < s, we have, 

by the monotonicity of Xt(w), 
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> 

Therefore for every wE A, X~(w) is a monotonie non-deereasing 

funetion of t. Henee, 

B = lws xt(w) is monotonie non-deereasing in t3 ~ A, 

a set of P-measure 1. Therefore, by the eompleteness of P, 

B is a set of P-measure 1. 

x~ 1s thus indeed an a.e. monotonie inereasing proeess. 

(iv) The X!(w) proeess is a separable modification, sinee 

by hypothesis, Xt(w) is eontinuous in probability, and so 

must be its modification (by (ii) ) xt ; x~ is aoe. monotonie 

inereasing; and thus, the conditions of THEOREM Il.2(b)~ being 

satisfied, imply the separability of x~. 

(v) It remains only to show, that xt is a.e. right eontinuous. 

For wE A = {w:xt(w) is monotonie non-deereasing in tJ ' 

with Xt taken as a separable modification, we have for 

every h > 0, that sinee the Xt proeess is a.e. monotonie 

inereasing, 

Taking limits on both sides, and applying Lemma 11.3, 

lim X!+h(w) ~ lim Xt +2h (w)= X~(w) 
h~O h~O 

But sinee by (iii), xt is a.e. monotonie inereasing, we have 

> x~ ,on a set eontaining A. See (iii). 
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Therefore, for every w E A, we have 

= x+ 
t 

, for all t ~ 0 • 

But by (i), the set A, of monotonie non-decreasing Xt(w) 

sample functions, is an event of probability 1. In view 

of the completeness of P, the set of all right continuous 

sample functions, is an event of probability 1. Therefore 

X+ is indeed a.e. right continuous. 
t 

We have thus constructed a modification Xi of Xt ' 

such that 

(1) x+ 
t is separable 

(2) xt is a.e. monotonie increasing 

()) x+ 
t is a.e. right continuous. 

This completes the proof. 
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CHAPTER 12 1 STOCHASTIC INTEGRATION WITH 

RESPECT TO MISI PROCESSES 

In this chapter, we shall further restrlct the 

processes occurrlng in the discussions to the followings 

Definition 12.11 

A MISI Stochastic Process lO, 'J,p,Xtst ~ 0) is a 

separable process, with complete measure P, satisfyingl 

(1) process is monotone increasing in probability, 

(2) is an independent increment process, that is,if 

0 = to ; t l 
< t 2 ~ ••• < t then = = n 

, 

{(Xt j+l 
\ 

Xt j) s j = O.l •...• n-lj are a set of 

nutually independent random variables, 

(3) is a stationary increment process, that is, if h is 

an arbitrary non-negative number and 

o = to ; t l ~ tz ~ ••• ~ tn ' the joint distribution of 

does not depend on h, and 

(4) Xo = o. 

MISI means Monotonie, with Independent and Stationary 

Increments. The separable Inverse Gaussian and Poisson 

processes are examples of MISI processes. 
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Definition 12.2: (Stieltjes Stochastic Integral) 

Let Lfl, ct, P ,Xt a t ~ 0) be a MISI process, and 

f: [a,bJ-->Rl be a continuous function with 

0 < a < b < 00. We define = 

If(w) = jbf(t)dXt(W) 
a 

wEJl- N 

= 0 wE N , 

with N = lw' Xt(w) is not monotonie non-decreasing in 

and the integral is the ordinary Stieltjes integral. 

If(W) is called the Stieltjes Stochastic Integral 

of f with respect to the MISI process Xt over the interval 

[a, b J • 

THEOREM 12.1 : 

If Xt is a MISI process, which is finite a.e., then 

If exists for almost every w 

Proofa Let Nl = {WIXb(W) = ooJ, a~d N be as in Definition 12.1. 

Since a MISI process satisfies the conditions of THEOREM 11.1, 

N is therefore a set of measure o. Also, since the process 

is finite a.e., Nl is also a set of measure o. 

Hence for WE(n.- (NUN1 ») , a set of measure l, we have: 

f(t) is continuous and Xt(w) is a monotonie, non-decreasing 

function of bounded variation. By the elementary theory 

Riemann-Stieltjes integration,[ 1)-1 J J If exists on r·­
This completes the proof. 
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THEOREM 12.2: 

For MISI processes, finite a.e., Ir(w) is a random 

variable. 

Proof: Clearly, it is sufficient to prove l +(w) is a 
+ f 

random variable, where f = MAX(f,O), for if this were 

the case, l (w) = I(_f)+(w) would likewise be a random 
f-

variable, and since If+ and If- are finite a.e. , by 

THEOREM 12.1, If = l + - l would be a random variable. 
f f-

Let Pn be the following sequence of partitions of [a,b]: 

a + ~ ( b-a ) 1 k = O. 1 ••••• n ~ and 

INF f r+ (t) 1 tE: [tk- l •n • tk.nJ ~ 

n = 1,2, ••• 

Let = k = l, ••. n • 

Finally, let 

S~(w) = • 

Since f is continuous, it is·clear that f+ is continuous. 

Hence, by THEOREM 12.1, we have for almost every w, 

lim SUP S~(w) 
r~ n>r 

= l (w), 
f+ 

•• (1) 

(since the S~(w) are merely the Riemann-Stieltjes sums, and 

these converge a.e. to the Riemann-Stieltjes integral.) 

But for each n, S~(w) is a linear combination of 

random variables, and hence is a random variable. Since 

the lim SUP of a family of random variables, which is 

countable, is itself a random variable, the left hand 
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side of equation (1) is a random variable. But (1) holds 

for almost every w. Rence by the completeness of the measure 

P, If+(W) is a random variable. 

In view of the remark at the start of the proof, we 

obtain that If(w) is a random variable. 

This completes the proof. 

THEûREIVl 12.:3 : 

For a MISI process, finite a.e., the following hold. 

If f and gare continuous functions from [a,bJ to Rl' 

with 0 ~ a < b <00, and c, any real constant, then 

(1) 

(2) 

a.e. 

That is, the integral is linear with respect to the 

functions'f and g. 

Proofl The proof of the above follow immediately from the 

corresponding results for ordinary Riemann-Stieltjes 

integrals. 

THEOREM 12.4 : 

For a MISI process Xt , and f:[a,bJ~\Rl' a continuous 

function, with 0 ~ a < b < 00, l +(w) and l (w) are 
- f f-

stochastically independent, provided the process is a.e finite. 
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Proofz Let Pn be the fo11owing partition of [a,b]1 

Pn = i tk,n = 

Let C}{,n 

Dk,n 

Next, let 

S~(w) 

= 

= 

= 

a + ~(b-a) , k = 0, l, ••• ,n ? ,n = 

INF { r(t) 1 tE: C'k-1,n ' tk,~}! k = 

INF fret) 1 t E [tk-1,n ' tk,nJ)! k = 

n L Ck,n (Xt (w) - Xt (W)) 
k=1 k,n k-l,n 

1,2, ••. 

1, ••• , n, 

1, ••• ,n. 

and 

= - Xt (W)\. 
k-l,n ) 

We now note that is a refinement of , whenever 

q > r, q, rE: z+. Hence by the fundemental results of lower 

Riemann-Stieltjes sums: THEOREM 12.1 gives 

s+ (w) l If+ (w) a.e .', and 
2r 

(*) 
S- (w) 1 l (w) a.e. as r~oo. 

2r f-

But from the definition of C and D , it is k,n k,n 

clear that C and D cannot both be positive for fixed k,n k,n 
k and n, (for if this were the case, there would exist an 

interval such that, f is always positive and a1ways negative.) 

Hence at least one of Ck,n and Dk,n must vanish. 
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Therefore S+(w) 1s a 11near comb1natlon of the 
n 

lncrements (Xt - Xt \ such that f(t) > 0, for all t 
k,n k-l,n) 

in the interval [tk_l,n' tk,nJ ' (i.e. Ck,n> 0 ). 

Also, S~(w) is a linear eomblnation 

- Xt ) sueh that f(t) < 0, for 
k-l,n 

of the inerements 

aIl t in the 

interval [tk_l,n' tk,nJ ' (i.e. Dk,n> 0 ). 

Sinee a MISI proeess has independent inerements, and 

S+(w) 1s a funetion of inerements of intervals disjoint n 

of those upon whieh S~(w) depend, we see that for arbitrary 

n, S~(w) and S~(w) are independent random variables. 

By (-l~), and the faet that P is a measure, and 

therefore eontinuous from below, we obtain for any e > 0, 

d > 0: 

lim P[S+ (w) > e, S- (w) > dJ 
r-)oo 2 r 2 r = 

S+ S- Independent)) 
n n 

= 

That is, l (w) and l (w) are indeed independent 
f+ f-

random variables. 

This completes the proof. 
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Remark, The assumption that the process be a.e. 

flnlte was never used in the proof. In fact, neither was 

the fact that l (w) is arandom variable dependent,on thls 
f+ 

fact. However, the result ls of no value to our discussion 

un1ess If(w) is a random variable, and this requires that 

the process be finite a.e •• 

The next theorem gives a rather remarkable resu1t, 

which ls proved using THEOREM 12.4. 

THEOREM 12.5: (Characterlzatlon) 

Let Xt be a MISI process, flnite a.e., and unbounded 

in probability. (See Definition 10.13). Let f be a continuous 

function from [a, b] to Rl ,with 0 ~ a < b < 00. 

Then a necessary and sufficient condition that 

(a) a.e. is that 

(b) f(t)= 0 for all té [~,b]. 

Proof: Necessity of condition 

If If(w) = 0 a.e., then 

l (w) = l (w) 
f+ f-

a.e. •• (1) 

Hence for any c ~ 0, THEOREM 12.4 gives 

peI (w) < c] 
f+ 

= peI +(w) < c, 
f 

= peI +(w) < c]P[I (w) < c] 
f f-

l (w) < c] 
f-

= peI (w) < c] 2 • 
f+ 
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The above equation has solutions 

peI (w) < c] 
f+ = ° or 1. 

Therefore, there exists a constant d ~ 0, such that 

l +(w) = l (w) = d a.e. 
f f-

(Since the process is finite a.e., d must be finite, by THEOREM 

1Z.1) 

We sha11 assume, for some t E[a,b], that f(t ) > 0, o 0 

and obtain a contradiction. 

Since f(t) is continuous, and f(t o ) > 0, there exists 

a positive number Ô, and an interval of finite 1ength, 

[t1,tZ]c[a,b], with toE[t1,tZ]' such that 

f(t) ~ ô, fora11 tE[t1,tZ]. 

By the monotonicity of a1most every samp1e function, 

and by dominated convergence, we obtains 

> a.e. 
= 

Hence by the above, and the fact that a MISI process. 

has stationary increments, as v-J'e11 as the fact that the 

process is unbounded in probability, we obtains 

peI (w) > d] ?: P[Xt - Xt > d/ô] 
f+ - Z 1 

= P[X > d/ô] > o. 
tz-tl 

This is a contradiction of (Z), which states l + = d a.e. 
f 
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The assumption that f(t) is positive for sorne tE[a,b], 

gives rise to a contradiction. Hence, for aIl tE. [a, b], 

f(t) ~ 0 • 

The same arguement applied to l (w) readily givesl 
f-

f(t) ~ 0 , for aIl tE: [a,b]. 

Therefore, f(t) = 0 for aIl tE [a, b] 

Sufficiency of condition 

If f(t) = 0 for aIl t E[a,b], THEOREM 12.1 gives 

a.e. 

= o a.e. 

This completes the proof~ 

THEOREM 12.6 1 (Characterization) 

Let Xt be a MISI process, finite a.e., and unbounded 

in probability. Let f and g be continuous functions from 

[a,b] to RI ,with 0 ~ a < b < 00. 

(a) 

(b) 

Proof: 

to 

Then a necessary and sufficient condition that 

= a.e. is that 

f(t) = g(t) for aIl tE[a,b]. 

If(w) = Ig(W) a.e. , by THEOREM 12.3, is equivalent 

If (w) = 0 a.e., which in turn, by THEOREM 12.5, 
-g 

is equivalent to f ( t) - g ( t) = 0 for aIl t E [a, bJ • 

This completes the proof. 
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A Note on the Integral: 

For MISI processes, finite a.e., and unbounded in 

probability, the integral If defines a 1-1 mapping from 

the continuous functions with domain, [a, bJ C @,oo), to the 

set of random variables on (Il,'J ,p). 

The separable Inverse Gaussian and Poisson Processes 

are examples of MISI processes, finite a.e., and unbounded 

in probability. The results of Chapters Il and 12 therefore 

hold for these processes. 

Table 12.1 lists sorne properties of the separable 

Inverse Gaussian Process, in particular. 
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Table 12.11 (For complete measures) 

Properties of the Separable Inverse Gaussian Process 

(1) Continuous in probability 

(2) Monotone increasing in probability 

(3) Unbounded in probability 

(4) a.e. monotonie increasing 

(5) MISI process 

(6) If a and b are the parameters given in Definition 10.4, 

for any interval le [0,(0), such that l is closed, Separability, 

( l ) and (4') g ive: 

P[SUP Xt < c] 
tél 

= 

where M is the right hand endpoint of l, SUPft:t€I) • This 

result was obtained first in [ 16-7] ,by means of double 

Laplace Transform. The result is in general false, if the 

process is not separable. (In examp~e 10.1, letYt be the 

following modification of Xto 

y ~ t 

= 00 Y = t. 

(7) By (6), the process is finite a.e. 

(8) By (3),(5), and (7) aIl the results in Chapter 12, 

with regard to Stochastic IntegraIs hold. 

(9) The process has a separable modification, a.e. 

monotonie increasing, and a.e. right continuous. (THEOREM 11.3) 
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APPENDIX 1, CONCLUSIONS AND CONJECTURES 

(1) Test1ng for the mean of an Inverse Gauss1an population 

when À is unknown. 

Let Xl, ••• ,Xn be a random sample from F(x:p,À), 

where u and À are unknown. Assuming that our decision 1s 

based ona 

z = 
- 2-2 

n(n-l} (X-Fo) fo 

how would one testa 

H 
·A 

aga1nst 

at significance levelo<.'1 

Under HO' THEOREM 6.1 givesl zrv Fl,n-l • Therefore 

the distribution of Z, under the null hypothesis does 

not depend on À. One might conjecture that the best test 

based on ,Z, would be to reject if Z were too large. The 

follow1ng computation supports this conjecture a 

Since X and 
n 

:2 - (l/X j - l/X') are inde pendent random 
j=l 

variables, and the distribution of the latter does not 

depend on p, in order to minimize E(Z), it is equivalent 

to min1mize : 

1 - 2 \ t(X - Po) 
El _ 2 

\ X?o ) 
with respect to f' the true mean of the 

population. 
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By THEOREM 6.1, X rv IG (p, n;d. THEOREM 3.3 gi ves 

E (X -1) = 1 + 1 
p. nÀ 

Using the above, .simple algebraic manipulation givesl 

= 1 + 
nÀ 

is the true mean. The expectation, above, is clearly 

minimum at f = po. Hence, intuitively, the smaller Z is, the 

c10ser we would expect the true mean to be to }lo. A challenging 

problem would be to obtain the distribution of Z under HA' and 

apply the Neyman-Pearson 1emma, to check this conjecture. 

(2 ) Analysis of Reciproca1s. 

Tweedie, [15-3J, suggests a method of comparing the 

means of several Inverse Gaussian random samples, having the 

same À.. The method 1s known as "Analysis of Reciprocals". 

Let Xil, ••• ,Xin be a random sample.of size n from F(X'Pi'À)' 

i = 1, ••• ,k. Let Xi, be the 1th sample mean, and X, be the 

mean of the nk observations, X ..• Let 
~J 

k 

S = L ( 1/ Xi - 1/ X ) 
i=l 

The suggested method of testil" ... C; l 

HO: fl = ••• = rk 

n(n-l)kS 
(k-l)T 

> 

versus HA: HO false, is: reject if 

F 
k-l,k(n-l)~a. 

Conjecture: This rejection region is UMP. 
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(3) For MISI processes, unbounded in probabi1ity, it l'ras 

noted that the stochastic integra1, defined in Chapter 12, 

can be regarded as a 1-1 mapping from the continuous 

functions on a closed interva1 to the random variables 

on the measure space of the process. 

The definition of the integral is easily extended 

to funtions with at most countable discontinuities on 

the positive real numbers. Interesting problems to be 

investigated in further work are: 

(1) What 1s the image space of the integral of an Inverse 

Gauss1an MISI process? That is, what distributions can 

the integral have? 

(2) Find a class of functions which will produce a 

canonical form for aIl infinitely divisible laws. Here 

the integration will be with respect to a Poisson MISI 

process. The extended definition would have to be used, 

and allowance would have to be mad.e for addition of an 

inde pendent Gaussian terme 

The fact that the mapping is 1-1, of course, does not 

imply, that there is a unique way to obtain a given 

distribution. The class of functions selected, therefore, 

must bring about this uniqueness. 
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(4) Potential application of THEOREM 4.1 might occur in 

the following test of goodness of fit, for large samples: 

verSl s 

continuous, and 

FO(X) > Fl(x) 

< Fl(x) 

Hl: F = Fl ' where F is absolutely 

x < Xo ' 

x > Xo ,with FO(Xo ) = F~Xo) = ~ , say. 

Here, the fact that the ine'quali ty, gi ven in Definition 

4.3, is violated, is not in itself asignificant fact, but 

the fact that it was violated early, is significant. 

The rejection of HO in favor af Hl would be made on 

the joint facts that the inequality was violated, and that 

it was first violated before an appropriate value of x, 

determined from Fo(x). 

Note that are procedure is vastly different from 

locating the sup of the difference FO(x) - Fn(x) , and 

determining where this occurs. The first violation of 

the inequality, is not necessarily the sup. 
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APPENDIX 2 1 THE INVERSE GAUSSIAN PROCESS 

AS A CENTERED PROCESS 

Definition A.2.1: (Centered Stoehastie Proeess) 

A stochastic process, tXtla~~b] , 1s a centered stochast1c 

process provided 

(1) It is a stationary, independent inerement proeess; 

( 2 ) For eaeh t E (a, b ) , 

= lim X 
sft s 

and = where 

the limits are sequential, exist with probability 1 and 

are independent of the ehoice of the sequence with probability 

(3) If (a) P(Xt - Xs = C) = 1 tts , or 

(b) P(X X = C) = 1 tfs, or . t- s 
(e) P(Xt + - X + = C) = 1 tfs, then 

s 

C = 0; 

(4) For aIl but eountably many fixed tE,(a,b), 

P(X = X = X +) = 1 • t- t t 

This definition oceurs in Doob, [3-1J. 

THEOREM A.2.1 : (Charaeterization) 

Let Xt ' a ~ t ~ b , be a eentered proeess, with no 

fixed points of diseontinuity, (that is, eontinuous in 

probability). Then the fol1owing are equivalent: 
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(1) If the process is separable, almost every sample 

function is continuous; and 

(2) For each s,t€ [a,bJ ' the random variable 

has a normal distribution. Process is separable. 

Proofa See [3-2J · 

THEOREM A.2.2a 

x -X 
t s 

A separable Inverse Gaussian process is a centered proc-

eSSe 

Proofa 

By definition, the process has stationary, independent 

increments. By Lemmas Il.3 and 11.4, and Definition 11.3, 

X + = X + sat,isfies (2) of Definition A.2.1. By THEOREM 
t t 

Il.3, X
t

+ is a modification of Xt • Hence P(Xt = X
t
+) = 1. 

The same arguments in Chapter Il, are easily seen 

to carry through for X
t

- , giving.analogues of Lemmas 

Il.3 and 11.4 , and THEOREM 11.3. Hence (1),(2), and (4) 

of Definition A.2.1 hold. 

(3) clearly holds, since in each case, we have 

an Inverse Gaussian random variable, which, of course 

has an absolutely continuous distribution function. 

Xt is therefore a centered process. 

This completes the proof. 
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Remark: If a stochastic process is a.e. continuous, it is 

clearly separable. (Bee Definition 10.9, with S = the set 

of rational numbers.) 

THEOREM A.2.) : 

There does not exist a modification of the Inverse 

Gaussian process, almost aIl of whose sample functions are 

continuous. 

Proof. 

We shall asume such a process exists, and obtain a 

contradiction. 

By the above remark, the process must be separable. 

Bince it does not have any fixed discontinuities, and 

is a centered process, THEOREM A.2.1 gives: Xt-Xs 1s 

a Gaussian random variable, for tfs. This cannot 

happen, since Gaussian random variables are negative, with 

positive probability, while Inverse Gaussian random 

variables are negative with probability O. (Contradiction) 

This completes the proof. 

Remark: a.e. right continuous and a.e. left continuous 

modifications of the Inverse Gaussian process existe 

However, a.e. continuity cannot be attained. This is 

intuitively logical, since the Poisson process has aIl 

of the properties used above, except absolute continuity. 

The Poisson process is highly discontinuous. 
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APPENDIX 3: THE CAUCHY FUNCTIONAL EQUATION 

In this section, we shall derive the solution of 

. the Cauchy functional equation, with a minimum of 

assumptions. 

THEOREM A.3.1: 

Let f(x) be an extended real valued function, satisfying 

(1) f(x) + f(y) = f(x+y) for aIl x,yE RI ' 

(2) f(x) is bounded in an interval [O,C]. 

Then f(x) = f(l)x for aIl X€Rl • 

Proof: 

Step 1: f is right continuous at O. 

Let tE[O,C]. Since f is bounded on [O,C], there 

exists a positive number K, such that 

f(t) < K. 

But by (1), for arbitrary nE.Z+, 

f(t/n) = !lU 
n 

Therefore, for aIl tE,[O,C], f(t/n) < K/n • 

That is, whenever t < C/n, f(t) < K/n. Hence: 

lim f (t) = o. 
t~o 

By (1), f(O) + f(y) = f(y), and therefore, f(O) = o. 
f is thus right continuous at o. 
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Sten 2: f is continuous at all xE R
l

-

(a) Right continuityz 

By (1), f(x) + f(t) = f(x+t) • Therefore, for XER1 , 

f(x) + lim f(t) 
t-\.l 0 

= lim f(x+t) 
t~O 

f(x) = lim f(x+t) . 
t\,tO 

f 1s right continuous at x. 

(b) Left cont1nuitYl 

, and hencel 

By (1), f(x) = f(x-t) + f(t). Therefore, for xER1 , 

f(x) = lim f(x-t) 
t\io 

= lim f(x-t) • 
t~O 

+ .lim f(t) 
t~O 

f is left continuous, and hence cont1nuous at x. 

Step 3: The theorem holds for the rationals. 

Let x = p/q be a positive rational number, with p,q 

positive integers., 

f(x) = p f(l/q) 

f(l) = q f(l/q) 

(By (1) ). 

(Put x = 1 in above) 

Combination of the above yields: 

f(x) = f(l) l2. = f(l) x • 
. q 

This gives the theorem for negative rationals: 

If Y is a negative rational, ane obtainsl 

f(y) + f(-y) = f(O) = o. Therefore, 

f(y) = -f(-y) = f(l) y. 
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Therefore, the theorem indeed holds for the rationals. 

Step 4: Completion of proof. 

Let xE RI' and r n , n = 1,2, ••• be a sequence of rationals 

converging to x. (Such sequences exist by the density of 

the rational numbers) 

By Step 2, f(x) = lim f(rn ) 
n~ 

= f(l)x. 

This completes the proof. 

(rn rational) 

Remark: If the domain of f is restricted to an interval 

containing 0, it clearly has a unique extension from (1) 

to the domain RI • 

Remark: If there does not exist an interval containing 

o such that f is bounded, the only solutions of the 

required forro are f = 00, except possibly at x = 0, or 

f = ~ , except possibly at x=O. 

Reroark: By letting qb(x) = exp(f(x)), we obtain: 

= cP(x+y ) has i ts unique solution 

exp(cx) cERI ' provided cP is bounded 

in an interval containing o. 
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TWO RESEARCH PAPERS, WRITTEN BY JONATHAN SHUSTER. 

The results of these papers supplement those of this 

thesis. They were discovered after the typing of the 

manuscript had been completed. Both articles center 

around problems in testing hypotheses. As of Feb. 1969, 

they are in the hands of referees for the Annals of 

Mathematical Statistics. 
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LIIŒLIHOOD RATIO TESTS FOR INVERSE GAUSSIAN POPULATIONS, 

1 
by JONATHAN SHUSTER, McGILL UNIVERSITY. 

1. Introduction. In this paper, we shall deve~op the 

likelihood ratio test for the mean of an inverse Gaussian 

population, and further, we shall show that the "Ana1ysis 

of Reciprocal" procedure, deve10ped by Tweedie,[3], is in 

fact, the 1ikelihood ratio test in its setting. 

Definition: A random va.riable, X, is said to fo11ow the 

inverse Gaussian distribution, with positive parameters p 
and À, if it has density functionl 

f(x'p'À) = À*(2nX~)-~exP[-~Àr-2(X-f)2X-~ x > 0 •• (1) 

= 0 x < O. 

2. The Fundamenta1 Lemma. Let Xi ' ••• , Xi ' i=l, ••• ,k, 
1 n. 

~ 

respective1y, be k independent1y drawn random samp1es from 

the inverse Gaussian density f(x;Pi,À). Let Xi be the ith 

samp1e mean, and X be the mean of the totality of observations. 

The joint maximum 1ikelihood estimators of ~l"'.'Pk 

and À, respective1y, are: 

.. 
fi = Xi ' i = l, .•• ,k, and 

1 
Work supported by National Research Council of Canada. 
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Proof: The proof is very elementary, and therefore will 

merely be outlined. As usual, the log of the jOint density 

of the (nI + . • + ~) random variables is maximized, the 

first derivatives of the function giving the estimates, and 

the matrix of second derivatives, diagonal at the point in 

Q+k)-dimensional space, given by the estimate, checking that 

the function indeed has been maximized., 

3. Lilcelihood Ratio Test for p. We are now prepared to 

determine the likelihood ratio test for f' the population 

m,ean of an inverse Gaussian random sample, 

H : o 
against H 1 

a 
u ~ u at level a. T 0' 

Let Xl, ••• ,Xn be a random sample from a population 

whose density is f(x;p,À). Then the rejection region 

of the likelihood ratio test is: Reject if ~ 

[

n . )~-l -2 --1 - 2 - - -1 (n-l)? X (X-llo ) n [(X. 1 - X 
o 1 'J=l . J 

> K 
a 

determined in section 5, is a constant 

depending only on a. 

, 

Proof: Let L(?,À) be the joint density of xl, .•• ,X
n

' 

for given? and À. Let A = (O,oo)X(O,oo) : and B = fYo)X(O,O:l). 

The likely ratio test is therefore: Reject if 

C 
a • 

Applying the fundamental lemma, and substituting the 

functional form given by equation (1), we obtain: 
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, 

= 
l ) n/2 (n-l) - T , where 

(; -2 - -1 - 2 ~( -1 - -1 -~( n· ~ 1 
T =~(n-l)UO X (X-~O)~ ~ Xj - x 

The rejection region is therefores Reject if 

= • 

This completes the proof. 

4. Likelihood Ratio Test for the Equality of Several Inverse 

Gaussian Populations. Under the conditions of the fundamental 

lernma, we can determine the likelihood ratio test forl 

S 

against Ha' H is false, at the level œ. 
o 

The rejection region of this te~t is given bys Reject if 

= [in. (x.-l_ ~ -l~[t 
. l ~ ~ . l 
~= ~= 

> M, œ 

where M, determined in section 5, is a constant, depending œ 
only on œ. 

Proof: Let L(PI' ••• 'Pk,À) be the joint density of the 
k+l 

totality of random variables X .. ' Let A' = (0,00) ; and 
~J 

B' = t<l'-l'.··' }'k' À) E. A' :1'-1 =P2=· • =l'-k). In B', the fundamenta1 

lernma in applied to the totality of observations Xij as a 

single random sample from f(x;f,À). Computation as in 3, 
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yields the desired result. 

5· Evaluation of K and M 

(a) K 
a: = 

a: a: 

F 
l,n-l,a: • 

Proof: If Xl, ••• ,Xn is a ra~~om sample from the inverse 

Gaussian distribution, with density f(X'f,À), Wasan, [4J, 

page 2.26)showed that X has the inverse Gaussian density, 

f(x;p,nÀ). The author,[2J, shows that for an inverse Gaussian 

random variable, with density f(x;p,À), that 

Àr-2X-l(X-u)2~JC2l • Tweedie [.3J, showed that 

n \ 
~(-l --1) y2 À LX. - X /\.) J'v ,and is independent of X. 
j=l J n-l 

Rence T~Fl,n_l ' where T is defined in .3, gives the 

required value of K a: 
(b) 

N = 

M = (N_k)J(k_l) 
a: 

k ,,-
L n. • -. ~ 
i=l 

F k-l,n-k,a. 
, where 

This is Tweedie's distributional result, the basis of 

Analysis of Reciprocals, namely, that 

(N-k) (k_l)-l Sf\..; Fk_l , N-k under Ho. 

6e Summary and Conclusions. We have produced the like-

lihood test for the mean of an inverse Gaussian population, 

a test remarkably similar to the two-sided t-test. We have 

also shown that Tweedie 9 s Analysis of Reciprocal procedure 

is in fact the likelihood ratio test. 
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3ARTLET'r' S TEST FOR HTVB:RSE GAUSSIAN ?OPULA'T'IN!S 

by JONATHAN SHUSTER, McGILL & UNIV. of FLORIDA l 

o. Introduction. Tweedie [JJ and the author [2J, have 

investigated a rnethod for testin,g the equality of the means 

of.several Inverse Gaussian populations. The major 

assumption of this procedure is that the secondary 

parameter Ài' does not vary from sample to sample. This 

is the analogous assumption to that of constant variance 

in regression analysis. In this paper, the author will 

develop a modification of Bartlett's Test, to test the 

validity of the assumption on the secondary parameter Àio 

1. Construction of the Test. 

Definitions A random variable X, follows the Inverse 

Gaussian distribution, if it has density function 

x > 0 

= o x < 0 

Lemmal Let . . . , i = 1, •.• ,K, be K 

independently drawn samples respectively, from f(X;Pi,Ài). 

The Likelihood Ratio, M, for the test df hypothesis: 

versus 

l Work supported by National Research Council of Canada 
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N = ~n. 
. l J. 1= 
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and Xi is the i-th sample mean. 

Proof: Under Ho' the joint density of the N random 

variables is readily. seen to be maximized with respect to 

(P.l'.·.,JlK,À.l, ••• ,À.K) at the point (Xl,.··,XK,L ••. ,~) 

l'1hile under Ha' the joint densi ty of the N random variables 

is readily seen to be maximized w'ith respect to 

(~l' .•• '?K'À.l' •.• 'À.K) at the point (Xl,···,XK,Àl'···'~K)· 

The above value of fJJ is obtained by taking the ratio 

of the joint density evaluated at (Xl, ••• ,XK,~, ••. ,À) to 

the joint density evaluated at (Xl'··· ,XK, ~l' • •. , ~K) . 

Definition: A two parametcr farnily of probability 

densi ties is flRegular", provided that i t satisfies 1 

(1) = 

(2 ) + 

where g(p,À.) i8 a probability density of a random variable 

X, forQ.l,À.) in an appropriate parameter space. 

Lemma: The Inverse Gaussian densities, f(Xi)~,À.~ form a 

regular family. 

o , 

~ ~ ~~~-_ .. ~-_._._-
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Proofa The proof of this statement uses the followinga 

(a) Tweedie [3J, showed E(X) = p, Var(X) = p3/À , and 

(b) the author [lJ , showed G(X-p)2/f21rvJ,21-' hence 

E ŒX-p)2/f2XJ = l/À , whenever X has the Inverse Gaussian 

distribution, defined above. 

o 

. 0 • 

This completes the proof. 

THEOREM& (Bartlett's Test for the equality of the Ài 

The critical region for the test in the first lemma, is 

a symptotically! t M • -2 logM > X 2 
K-l, p ~ ,where pis the 

significance level of the test, an~ M 1s as g1ven in the 

first lemma. 

Proofa This resultSimmediately from 1 (a) the second lemma, 

(b) 13.8.1, page 419 of Wilks [4J , on the limiting distribution 

of the likelihood ratio of regular densities, (c) Ho's equivlence 

* to Ho 1 Ài-Àl = 0, i = 2, ••• ,K, (K-l constraints), and 

(d) -2 logr1 is a monotonie decreasing function of M. 

2. Conclusion. Analysis of Reciprocals, depends on the Ài 

remaining constant, from sample to sample, of Inverse Gaussian 

random variables. The above modification of Bartlett's Test 

gives an approximate method of criecking out this homogeneity. 
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