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vii
ORIGINAL RESULTS OF THIS THESIS

Apart from Chapters 1,2,3, and 10, to the best
of the authors knowledge, each result is original.

Further, the author feels that:
(1) THEOREM 4.1 has great potential practical significance.
Although, perhaps a shorter proof of the result might be
possible, by bringing in Brownlian Motion, the proof of
Chapter 4 gives convergence rates.
(2) The author has shown a simple way to obtain percentage
polnts of the Inverse Gaussian distribution, and investigated
the structure of estimates of parameters.
(3) The author has also shown several sets of conditions
which characterize the distribution. A workable definition
of a multivariate Inverse Gaussian distribution is given,
and investigated.
(4) Significant contributions to the field of Stochastic
Processes appear in this work. The approach is péihaps
different from the classical methods. The true essence
of certain types of processes are indicated. Stochastic
Integrals are defined, and their properties developed.'
(5) Two research papers, by the author, solve thorny

problems in the experimental area: Analysis of Reciprocals.



~ CHAPTER 1 : INTRODUCTION

Study of the Inverse Gaussian distribution was initiated
by Tweedie [15], in 1957, although as early as 1915, Schrodinger
showed that the distribution occurs as the first passage time
of Brownlian Motion with positive drift. It was Tweedle; who
named the distribution, from the fact that the cumulant-
generating functions of the Gaussian and Inverse Gaussian
distributions are inverse functions to eacn other.

Khatri [7], in 1962, characterized the distribution with
a rather remarkable theorem, based on the independence of two
random variables. The author [le, in 1968, obtained a
. convenient method of obtaining the percentage points of the
distribution. The most significant contributions to this
field were made by Wasan [16], in 1966, in his work, "Monograph
on Inverse Gaussian Distribution." Not only did he collect most
of the original work mentioned above, but he developed a large
quantity of new material, applicable in many areas of
Statistics and Probability.

The first three chapters of this thesis serve as an
introduction, and hence contain few original results. Chapter
2 is devoted to basic definitions and notation, while Chapter
3 includes results, quoted without proof, which can be found
in the literature. In each case, a reférence is given, as to

where the proof may be found.



With the exception of a few results, given without
proof, Chapters 4 through 9, contain, to the best of the
author's knowledge, original research.

- In Chapter 4, the author develops a situation, under
very general conditions, in which Inverse Gaussian random
variables occur.

Chapter 5 includes a simple proof of the author's result,
[12], enabling one to find percentage points of the Inverse
Gausslon distribution.

In Chapter 6, the author discusses confidence sets for
rthe parameters of the distribution; while Chapter 7 treats
Bayes estimates of paresmeters.

In Chapter 8, four characterizations of the Inverse
Gaussian distribution are developed, three of which depend
on a result of Prof. V. Seshadri, given in Chapter 5. Khatri's
characterization 1is discussed in an example.

Chapter 9 is devoted to the definition of a multivariate
Inverse Gaussian distribution. Lemma 9.1 gives necessary
and sufficient conditions for sums of independently distributed,
Inverse Gaussian random variables to be Inverse Gaussian
distributed. This Lemma in turn gives necessary and sufficient
conditions that the marginal distributioné of a multivariate
Inverse Gaussian random vector, all be univariate Inverse
Gausslan distributions.

Chapters 10 to 12 deal with families of stochastic

Processes, of which the Inverse Gaussian Process is a member.
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Chapter 10 is of an introductory nature, and as such, contains
little original work. In Chapter 1ll, the author shows that
for separable stochastic processes, such that P(Xt P4 Xs) =1
whenever t > s y &lmost every sample function is monotone
non-decreasing. In Chapter 12, the author defines MISI
stochastic processes. Stochastic integrals with respect to
MISI processes are introduced. At the conclusion of the
chapter, properties of the Inverse Gaussian stochastic process

are listed.

Following Chapter 12, the author proposes certain conjectures

and problems, which would make excellent research projects.
The author has also included two research papers, written

after the typing of this manuscript had been completed. The

results of these papers do not appear in the text of the

thesis.



CHAPTER 2

NOTATION AND DEFINITIONS

In this chapter, the reader will be introduced to the

basic notation used throughout this thesls.

W F W

6o

10
11

Notation Chart

A set of points
{trase s b}
{tza <t < b%
Set of positive integers
Largest integer : X
Random variable X has distribution
function F(x)
Random variables X and Y are
identically distributed
Y has the chi-square distribution
with n degrees of freedom
Y has the F-distribution with
n and m degrees of freedom
If Yn X%, P(Y > I,Zn,a) = G
If YﬂpFn,m , P(Y > Fn,m,a) = Q
As n .y oo the distribution
function of X, converges to

F(x), at every continuity point
of F(x)



12 X Sample mean, a random variable

13 Yza) Gamma function

14 (?) Binomial coefficient

15 iff if and only if

16 L, J,p) Probability space

‘17 E(X) Mathematical expectation of random
variable X

18 a.e. almost everywhere with respect

to the measure P

Definitions

Definition 2.1:

A random variable X, has the Inverse Gaussian
distribution with positive parameters )2 and ), if it has
density function: |

f(x):(a >%exp gx-gz) x>0 ,

2mx
= 0 ; xX<0 .
The fact that X is an Inverse Gaussian random variable
will be denoted By:
XN\IG(s,e).
The fact that X is an Inverse Gaussian random variable

with parameters P and ), will be denoted by:
XNIG(ps0)




Definition 2.2

If X"IG(1l,1), X is called a standard Inverse
Gausslan random variable.
Definition 2.3:

The cumulative distribution function of an Inverse

Gausslan random variable will be denoted by:

X 1
2
f A__)? exp[- A(t-p)“ ldt x>0
0 (zm-.‘) [ Zp7% J '

F(xip,\)

Definition 2.4: (Infinitely Divisible Law)

A distribution function, F(x), is an infinitely
divisible law, if for every positive integer n, there exists
a distribution function F,(x), such that if X15Xpseees Xy
is & random sample from F, (x), then

(Xl _+‘X2 + e e s +Xn )/\V. P(x).
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CHAPTER 3 + IMPORTANT THEOREMS FROM THE
LITERATURE, CONCERNING INVERSE GAUSSIAN RANDOM VARIABLES

In this chapter, some results, whose applications will
appear in later chapters, will be listed without proof. In

each case, the author will give the reference where the proof

may be found. Some results will be slightly generalized.

THEOREM 3.1l: ( Characteristic function of F(x;y,x) )
If X’bIG(y,A), and if 6 is any real number, then

E( exp(ieX)) = exp [L (1 -(1- 21923)%{]
R A

Proof: See [16-1].

THEOREM 3.2
If X’bIG(p,x), then for every positive integer n,
E(XR) and E(X"?) exist, and in particular,
(a)  E((X/p)™) = BE((x/p)+")
(b) EX) =p |
(¢) E(X®) = p2 + p2/r
(@)  Var(X) = p3/x
Proof: See [15-1] .

THEOREM 3.3:

Let X"LIG(p,A). Let U,V be independent random variables

with wf\,](f’l and VA, IG(1/p, A/p?). Then 1/X,U+V .
Proof: See [15-2] .



‘gb THEOREM 3.4: ( Corollary to THEOREM 3.3 )
Let X,T be independent random variables with X",IG(1,1)

and T X% . Then 1/XAyX+T.

In this case, 1/X is the convolution of a standard

Inverse Gaussian random variable and a chi-square-one

random variable.

THEOREM 3.5
If X’\/IG(}X}; ), and
Proof: By THEOREM 3.1,

E(exp(16cX) = exp [9_;\_ (- 2iegcgzz)“1}’-)i).
C)l CA

By uniqueness of Fourier Transform, the desired result

c¢c> 0, then cXFVIG(cy,cA).

follows. This completes the proof.

THEOREM 3.6:
Let X3, X5, « « « , X, be a random sample from F(X;P,x).

Then (a) (X1+X2+;..+xn)ﬁJIG(ny,nak)
and (b) )’Ef\/IG(}z,nx)

Proof: See [16-2 ].

THEOREM 3.7
Let X4, X3, « « . , X, be a random sample from F(X;P,x).

Let Y =) (-3 .
XJX_



Then: (a) Y and X are stochastically independent
and  (b) YR

j[ﬂﬂ
Proof: See [16-3 ]

THEOREM 3.8 1 (Khatri's Characterization)

Let xl,xz,...,xn be a random sample of size n:2,
from an absolutely continuous distribution. Let E(X), E(Xz),
E(X'l), and E(X~1) ve finite and not zero.

Then é necessary and sufficient condition that

xj,\JIG’(.;. )9 J = l,ooo,n, iS that

2 1
X and (= =

—%f) are independent.
Xj X

J=1
Proof: See [ 7-1 ]

THEOREM 3.9 :

F(X;P,A) is an infinitely divisible law.
Proof: Let n be an arbitrary integer, and let Xl,Xz,...,Xn
be a random sample from F(X;p/n,x/na). By THEOREM 3.6(a),
XI+X2+...+anbIG(P,x). Hence, by Definition 2.47 F(X:P,X)
is an infinitely divisible law. |

This completes the proof.
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jHEOREM 3.10:1 (Kolmogorov)

If F(x) is an infinitely divisible law, with finite
second moment, its characteristic function, f(¢), can
be represented uniquely by:
log(f(e)) = iye + [~ (exp(ieu)-l-iou)(1/u®)dK(u)
where y 1s a constant, and K(u) is a non-decreasing
function such that K(#»): 0 and K(w»)< o .

Proof: See [ 6-1 ].

Wasan [ 16-4 7], found the Kolmogorov representation
of the characteristic function of F(x;t,t®). The author
will obtain the representation for arbitrary Inverse

Gaussian laws, by a different technique.

Lemma 3.1

Let F(x) be an infinitely divisible law with finite
second moment, and characteristic function f(g).

Then if K(u) is the function given in the Kolmogorov
representation of f(sg), |

d?In(f(e)) = =7 (exp(igu)dk(u) .
de®

Proof: Since F(x) has finite second moment, f(¢), and
hence ln(f(e», is twice differentiable. Differentiating
twice under the integral sign gives the desired result.

This completes the proof.
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THEOREM 3.11 :
The Kolmogorov representation of the characteristic

function of F(x;y,k) is

y =R dK(u) au%exp(-bu)du , u> 0,
= 0 , U< 0,

where a = (A/ZH)% and b = A/ZPQ.

Proof: By THEOREM 3.1, with f(¢) the characteristic

function of F(x;p,k),

1

log(f(e) = (A/M)(1 - (1 - 216&3)2) , and hence

P A
‘ .ay~3/2
- d3log(f(e) = 3(1 - Ziega)

de= %T A .o (1)

Using the elementary identity
fo” (87%/Wa))y%~Lexp(-y/p)exp(iey)dy = (1 - ige)~¢

for positive constants o and g, one has

(12/0) (1 - 210p2)" 2 3
- A

17 (/0 (/p2) 32 (2n) "EyBexp(-ay/p? Yexp(ioy)ay =

o

f: (Ay/Zn)%eXP(-Ay(pz)eXP(iey)dy .

' 1
Setting  k(y) = (\y/2m)Zexp(-ya/p®) y>0,
= 0 y<o ,
orne has by .. (1):

- d2log(f(g) = 2 exp(iew)k(u)au .
d o< =%
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Hence, by Lemma 3.1:

I, (exp(iew)dK(u) = 2 exp(ieu)k(u)du .

From the definitions of k(u),a,and b, and the uniqueness

of Fourier Transform, one has:

1
dK(u) = auZexp(-bu)du us> 0
= 0 ulo.
Thus, 1t remains only to prove: y = R -

The Kolmogorov representation of f(g) is:

f{e) = exp [ive + 2, (exp(ieu) -1 - ieu)k(u)(l/ua)dlﬂ

with k(u) as above.

afle) = [w + 107 (exp(ieu)-l)m)du} £(e) .
] u

Thus since F(x;u,A) has first moment Js

lim df(g) = lim [}Y + 1 fz (exp(igu) -1)k(u)du
e-yo do g=>o0 u

= iy .
Remark: In order to show that Y =N it is therefore

enough to show:

lim f: (exp(iou)-l)k(u)du = 0 .
0=30 u

That is, it is sufficient to show:

1 .
lim [ (exp(igu)=l)au™2exp(-bu)du = 0
e=o0 ©

Since kexp(ieu)-l)’ S 2 for all real pand u,

1 1
%exp(ieu)-l)au'fexp(-bu% < 2auTZexp(-bu)
oo 1
But since fo 2au~2exp(~bu)du < o~ , one has by the

Lebesgue dominated convergence theorem [ 9-1 ]:

U=

>

0

(2)
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1lim fd” (exp(ieu)-l)au‘%exp(-bu)du
6—0

(= -]

fO

Y

1
lim (exp(isu)=-1l)au~2exp(-bu)du
6->0

Therefore, .. (2) holds, and hence

}1.

This completes the proof.

= O-

by the remark,
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CHAPTER 4 : A DERIVATION OF INVERSE GAUSSIAN

RANDOM VARIABLES

To date, several derivations of Inverse Gaussian
random variables have been obtained. Four such construct-
lons can be found in L16 ]+ In this chapter, the author
will develop a new construction, with applications in
nonparametric statistics.

Let xl,...,xn be an ordered sample from an absol-
utely csntinuous distribution F(x). Label a partitibn
of the real line as follows:

i
i

J. = Exj’xj'i'l) j: 1,2,...,1‘1-1

@ In [Xps)

Definition 4.1: The empirical distribution function,
Fn(x) is defined as follows:.

Fn(X) = j/n X 6 Ij ,' j - O,l’-oo,nc
Definition 4.2: (notation)

Y (d)

min $ j: SUP (F(x)-Fn(x)) > d4 , if SUp (F(x)-Fn(x)h>d,
XEIJ X€R,

n+ 1 ' otherwise.

Here, Rl denotes the set of real numbers.
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Definition 4.3:1 Let Zn(d) be the following
conditional random variable:

Zy(d) = (xn(cw v (F(X)-Fn(x)>d) :

That is, Z,(d) = J 1is the event that the least x to

violate the inequality F(x)-Fn(x) : d , given that the
lnequality is somewhere violated, occurs in the interval

I., provided j < n.
j =

THEOREM 4.1:

kY
Let A > 0, and wn = Zn(k/nz) « Then
n = 2, (W/55)

wn——-i—-—-)IG(l, A%).

THEOREM 4.1 will be proved in a sequence of lemmas.

Lemma 4.1: The distribution of Yn(d).

P(Yp(d) = 7) = a(@@+ )™t @ -a-)™7
n n

where T = 0,1,...,[n(1-d)] .
Proof: Since Y, (d) is a function of a distribution
free quantity, it is itself distribution free. Thus,
without loss of generality, one can choose

F(x) 0 x< 0

= X 0<x< 1

= 1 l<x.
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By Definition 4.2, one readily sees:

Y (d) =0 iff no observations in [C,d).

¥ (@)

i
~

Aff one observation in [o0,d) and no

observation in [d,d + 1)
n

For 2ZrZ n(l-a) , Y, (d) =71 iff

(a) at least k+1l observations in [0,d+ k), k=0,1,00,,0=2
n

(b) exactly r observations in 0,4 + z=1 ), and

n

(c) no observation in [+ 2=1,d+7x)
n n

By binomial probabilities, the desired result is
easily verified for r = 0 or 1.

P(Y (d) = r) =

(n.)f fl+df fr-2+d r-l+dfr+df / dY..dY

)r-l

For 25 r S n(1-4) ,

(L-a-2)"" wyp[2].
n

=  d)@+x
n

This exact integral is evaluated in [ 2-1 7J.
This completes the proof.

Lemma 4.2: For ) > 0 and O<y<1, let
1.

f‘n(}\,y) = (+ + J> ny( _rl_)n(l-Y)
n<y n=(1-y),
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Let f{r,y) = exp(-~ ) , and A be any
2ysl-y$

rectangle of finite Lebesgue measure, of the form:
A =¢ 0ZraSv,cSysa4 C [0,0)%(0,1).
Then fnf———9f y uniformly on A, as n—j«.

Proof': Let

D f (xy)
h (Ly) = _9) . Hence,
-1 S y=1
h (A,y) = (-_L_-L)_;_’fl - A
l‘y y né’y nf(l-y)

r. (x,y) € A, one has:

) s hy(hy) S e

- b \ (l + b
n2(l-d) nZzc
For n> _ 4p3 , that is, 1/2 > b s
(1-d) © n¥(1-d)

1- v Vo ‘Z‘m ( | )r < 1+ 2b
— : __I_
n2(1-4) = n2(1-4) n?(l-d)

1
and for n > p; , that is n%c > b,

1+ b‘Yl' = 1+ Z’»b“vr = 1 - _ bn®
nzc = (ngc} | n2c (n2c+db)
> 1-_b51
= —_—
n<e

«e(1)
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Substituting (1) and (2) in the double inequality

for h,, above, one obtains for (A,y) & A, and

n > M= max| 4b2 , D3 R
(1-d)% c®

- 1+ _20 %V < n(hy) § =2 f1-_0b -+ (3)
y(l-y5( n%-(l_d)) = 8 T y(l-y ( nzzc)

Integrating throughout (3) from 0 through ), noting
the definitlion of h,, as well as the fact that f,(0,y) = 1,

for all n and y, one obtains for n> M, and (A,y) € A,

22 (1+ _2b )iLn(f(x,y))s -2® _(1-_b )
Zy(1=y ) " 2y (1-y ko

Exponentiating the above, and substituting for f(A,y), one has:

£(x,¥)exp [- A%b S fpny) g f(hylexp A2b__
y(1-y)n®(1-d) Ay(1-y)nZ%e

Let €> 0 be an arbitrary constant.

(a)

exp[.:- \2b > exp/ _-b® > 1-£&
y(1-y)n*(1-d) TnZ(1-d)

where T = min[c(l-c),d(l-d)] y and n is sufficiently

large, say n > Nl(€ )

(b)

exp 2\°b Y < exp(__b® \
(2 B (2

y(1=y)g%c / Tnzc )
for n sufficiently large, say n> Ny(€)

1+& ,

A
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& Finally, noting that for all (A,y)&€ A, 0 5 f(a,y) S 1,
one obtains for n > N(€) = Max(M,Nl(é) ,Nz(e)) R
£(y) —€f(ny) < £,00hL,y) < £(6LY) +EF(NY) .
That is, given &> 0, there exists an N > 0, independent
of which point in A is chosen, but dependent on the choilce
of €, such that for all n > N, and (a,y) € A4,
ltuy) - fa3)| < €£Guy) S €
Therefore, fnf——9f' uniformly on A.
Thls completes the proof.

Before proving the next lemma, the following definitions

are required:
Definition 4.4:

Let )\ be a non-negative constant, and n be a positive

integers: We define for j = 1 2,...,[n-n2A]
b (3) nﬁ(j) (—2&- +- J_) (1 - A - 1} = , and
n’§ n nz n

= 0 - otherwise.

Definition 4.5;

Let )\ be a non-negative constant. We define

Gf)(y) = (Zﬂyf(l-y))'% exp(_zm-{_yy} | 0<y<l,

= 0 otherwise.
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Lemma 4.3 ;
Let B= {ysc§y§dgc (0,1), and let € > 0 be an
arbitrary constant. Then there exists an integer N = N(€),

and a positive number § = 6(&) such that:

[n,) = )

(1) n> N, (i1) P_-y}<5,and (111) i/n and y € B.
n

< & , whenever

Proof: Let j/n& B.

() = n2D/ e N -y - L
ng n ng n

R mI oy (ame - s e 070, 0m)

o E nz(j/n)

where fn(x,y) is as defined in Lemma 4.2.

Step 1
Consider:
R, N S\ N=j+ 3
b (J) = ] z(n;-HJ_i ‘ 2 (?)
n 2
= n! jj+%e"j (n—j)n'3+%e"(n'3) .
nit+se=n Js (n=-3)¢

We shall use the following result found in [4-17

1 1
(2m)Zexp( 1 ) < k! < (2m)2exp( 1 ) kg zt.
| - I2k+1 Kkt 5~k 12k <
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@ Hence: one obtains the double inequality:

ﬂ??)-lexp- 1 - 1 + 1 \ < b_(J)
127 I2(n=3) 12n+1/ = n

< Jrﬁﬁ}-lexp - 1 - 1 + 1 .
- 12j+1 12(n-j)+1 12n _

But since j/n€ B, the above may be weakened tos

zm~L - 1 - 1 S b (3) <_./(2T1 (1) «.(1)
v exp( 12nc 12n(1-d)> -n - noexP Ton

Since the exponential terms converge to one independently
of the cholce of j/ng B, for given El >0, one can find

an integer Ny = Nl(el), such that whenever n > Ny, and

j/n E B,
1,
b (J) - (2m™2l< €, .
Step 2
Consider:

gly) = (y-"(l-y)>"% .

Since g(y) is continuous for 'y € (0,1), &(y) is
unif‘ormlj continuous for y & B, a closed subinterval
of (0,1). Hence, given 62 > 0, there exists a positive

number 5 = 52(e2) such that whehever ]j/n - y} < 8o
g(y) -~ g(i/n)] <&, .

Step 31
Consider fn(x,y).

By Lemma 4.2, for any given 63 > 0, there exists
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@ an integer N3 = N3(€3) , such that whenever n > N3, and
i/MmE B,
\fn()\,J/n)—f(x,j/n)) < %-63 , where f ,f are as in
Lemma 4.2.

But f(),y) is uniformly continuous in y, for y & B.
Hence, there exists a positive number 63=63(€3.) , such
that whenever lj/n - y] <65, and j/né& B,

£, 3/m) - f()x,y)!< $€4 -

Thus, by the triangle inequality, whenever
(1) n>'N3 , (i) lj/n - yl <83 and (iii) j/n,y & B :

|faea/m) = £0u) < €5 -

Step 4:
For j/n € B, one has:

n2c

1> 1+ ) 2 -, —n .. (2)
\ n?(Jj/n)

Thus, given € > 0, there exists an integer Ny = Nu(eu),

such that whenever n > Ny , and Jj/n & B,

PG e

Step 5t

The uniform boundedness on B, of the functions given

in the first four steps will be shown.
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(1) From (1), b, (J) 2 (2n)"%exp(l/12)< 2

A
- (1i) Since for every y &€ B, g(y) < (c“‘(l-d)}"2 = M,

then for each j/n& B,
g(j/n) < M.
(11i) By Lemma 4.2, choosing €5 between 0 and 1, there

exists an Ng = N5(€5) , such that whenever n > Ng , and

y € B,
fn(lyy) - £(A¥) < 65 <1l .

But since f(A,¥) : 1, one has for n > I\I5 ,

fn(}uy') < 2.
(iv) From (2), one has:

1+ _ ) L1,
n®(Jj/n)

Step 6: (Completion of proof) Let &> 0 be arbitrary.

Choose: - €, = 8@_ €, = 2m)®
‘ M
= E(mE €, = E(n)E
63 M b Mﬂ
€ = 1/2
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We shall now show that whenever 1

(1) n>0N, (11) |i/n - y} < &, and (111) 3/n,y € B,
|pa(9) - Q)| <€

We note the following:
1
quﬁ = (2m)7% g(y)rn,¥) and

b, (3)g(i/n)f (X, I/n) (l S .
n*(J/n)

Successively applying the triangle inequallity, one has:

lhn(J) -(t)(y)l s o0 -ﬂm']{g(a/n)fn(x,%%l + _L_z\__>
n=(Jj/n)

<1+ \ -1
n?(j/n)

+/(2m 'llg(J/n)-g(y)lfn(x,%)<l + _I_A___)'l
n?(j/n

<1+» ) -
n®(j/n)

S

h (3)

-1

+ (Zn)'ls(y)lfn(x,%) - £(%y)

+/ (2T~ L (y)E£(0,7)

mll—l
h— Mr—x

< E(2M) + &(2m) 2__ o+ & ( 242144- & (21) *M
8N 8 (21T)’27 4M(2n)2 L(2m)%NM

whenever: n > N , {j/n - yi< 5 , and j/n,y &€ B.

This completes the proof.
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Lemma 4.4

et 0<c<d<l . Then

d
1in 2 h()/mn = f @(y)dy :
n—>o0 —
c

j:c<%<d
Proof: Partition [c,d] , in the following:
P, = gc,c + 1/n,c + 2/NyeeeyC + r/n,d} with 1 satisfying:

(d -Cc - r/n) < 1/n.
Since d) is continuous on [c,d] , 1t is integrable there.

Hence, given £> 0, there exists Ny = Nl(€ ) , such that

for n> Nl’

fd ¢(y)dy - Z@(J/n)/ < &/f2 ve(1)

Jtc<n

But by Lemma 4.3, there exists N, N2(€ ) , such that

for n> N, , and c < j/n < d,

M)(J/n) - hn(J)% < €2 . That is:

} > ¢(J/n) /n - E n,(3)| S E ‘({} j/a) - h (j)l
j:c<a1}l<d j:c<-§l~<d n jre<y dea
< €Er < €2 . .. (2)
2n
Taking N(€) = N = Max(N;,Np) , one obtains, from (1) and (2)

together with the triangle lnequality, for n > N
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|
<& .

. |
) f (})mdy - > h (3)/n
c

ch<g23

This completes the proof.

Lemma 4.5;
Let 0<d < 1. Then:

a
J; (p(y)dy = expE2)®) F(da/(1-d4);1,r?) ,
A

with F(x;u,)) as in Definition 2.3.

Proofs
d d _% - 2
= 3 - -2 H
fo CP(y)éy _}; (Znya(l y)) exp ('Zy 12‘-y J dy
@ Let X = y/(l-y) , that is ¥y = X/(X+1).

fd(b(y)dy = fd/(l-d) (zrrxa) ~% exp{ -2 (X+1)? | dX
0 Y0 ] (‘AZ'}S(—L]

a/(1-d) L
= enggzzg‘jr (énxa) = exp[;ga(XAlzf] dx
A - 2X
0

= exp(2)®) F(a/(1-d);1,A%) &
A .

Thls completes the proof.
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The proof of the next lemma depends on the following
two well known results concerning an absolutely
continuous distribution, F(x), and the empirical
distribution function.

Result 1: ( Smirnov, see [17-1])

lim P[SUP (F(x)=Fp(x)) > x/n%] = 1 = exp(~2)2)
n=»oo xRy

Result 2: (Birnbaum and Tingey, see [2-2] )

1 n
P[}S[Iégl (F(x)—Fn(x))>x/n2] = 1=~ §=: (A/n)h, (3)
Lemma 4.6;
n 1
/ =
n 3 () _g Qerray
Proof:

Taking the limit as n—w,in Result 2, and equating this

with Result 1, one has:

n ‘
lim 2 hn(j)/n = exp(-2)2 *
n—>e = A

But by Lemma 4.5 and the continuity of the integral,

1
hf. q>(y)dy = exp(=2)%) 1lim F(t;1l,A%) = exp(-2)°
0

A oo A

This completes the proof, by virtue of #* .
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Lemma 4.7

ILet 0 < d < 1. Then

fod dviay -

Proof: By Lemma 4.6, one has:

“nd
1im 2. h (3)/n
Nepoo J=1

-

n : 1
1im 2 h(3)/n = f’b’uy .
e J=1 0 i

Hence, Lemma 4.4 and the above give, for ¢ < % 1

__— n (/0 & j{;cq")(y)dy +f:(j)(y)dy .

n->oo J=1

By the absolute continulty of the integral, for given €> 0,

one can find a number c¢c, 0 < ¢ < % , such that ¢ < 4, and

c 1
f (P(y)dy +f (i}(y)dy < & .
0 1l-c

Tnerefore: Lemma 4.4 and the above imply

[l’ld.] \1 . d \
lim Z hn(J)/n > lim jrocla hn(j)/n =J; q)(y)dy

n-yeo Jj=1 n~Hoo0

> J;dCﬁ*(y)dy -€ (1),

and:
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L [nd] o [ne] N
moy hn(J)/n = lim > hn(j)/n + lim h,(§)/n
c<id

n-se  j=1 n->e J=1 nyo Ji

d
- Dy)a
< J: CP;V N + &
ad
)d .o (2).
<J(;q>(yy + C

(1) and (2) together imply, that for given €3> 0,

[(nd] d
im 37 b (§)/n - f(D(y)dy QS
o J=1 0

By virtue of the fact that E; is arbitrarily chosen,

this completes the proof.

Lemma 4.83

L d
lim P[zn(x/nf) < nd] = exp( ZAB)L CP(y)dy B

>
where 2 ,(d) is defined in Definition 4.3.
Proof:
1 1 1 1
P (Zn(k/n"z") < nd) = P[Yn(x/nz) < ni , Yn(k/nz)E{O,l,.-,[n-nzx]%]
P[ Y, (A/n2)€ {0,1, ... ,[n-n%x]%]
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By Lemma 4.1 and definition 4.4, the above reduces to:

. nd n -1
P[Zn()\/né) < l’ld‘.]7 = ([Z] }\hn(j)/';[l) (j=zo- )\hn(:j)/n) .

J=0

Letting ndXo, and noting that the summands at J = 0 become

negligeable, one obtains from Lemma 4.7,

N d 1 -1
1lim P [Zn(x/nz) < nd:) = j q)(y)dy f (y)ay . «e (1)
N> 0 0

But as was seen in Lemma 4.6,

1
. sggb(y)dy = expE2)\®) .

A

Substituting this result in (1), above, the desired result
is immediate.

This completes the proof.

Lemma 4.9: ( Completion of THEOREM 4.1 )

1lim P[:wn(x/n%) <c] = F(c;1,A%®) , ¢ >0,
N> _ '

where W, (»/n%) = Zn(x/n%l .
n - Zp()a/n2)

Proof; The following are immediate:

1 -1
z_ (A/n%)/n (1 - 2z (\/nB)/n (1)

1.
W (\/n=)
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and
W (/nd) < e afr 2z (W% < no/(Lee). .. (2)
Therefore,
in P|W (xn%) < c|= 1lim P Zn(x/n%) < ne/(1+c)
n->o n n-yo
¢/ (1+c)
= aexp( ZAQ)J[~ (P(y)dy (by Lemma 4.8)
0
= F(c;1,23) (by Lemma 4.5).

This completes the proof.

One has, therefore by Lemma 4.9,

W (/0%) o 5TG(1,17).

This completes the proof of THEOREM 4.1.

We have thus shown that under quite general conditions,
that the conditioned random variable is approximately
Inverse Gaussian, for large n. Potential application

of this result will be discussed at the end of this thesis.
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@ CHAPTER 5 s+ EVALUATION OF THE INVERSE GAUSSIAN
DISTRIBUTION FUNCTION

The author,[ 12-1 ], by means of a sequence of
transformations, evaluated the distribution function
of the Inverse Gaussian distribution. In this chapter,
the result will be verified by a simpler, although less
deductive method than appears in [ 12 ].

THEOREM 5.1:
Fleip,a) = [(x/c)z(l-c) * exp(ZA/)l)H[(l/c)%(l+ }_cl_a

for all ¢ > 0, where

H(z) = I: (2n)-%exp(—ta/2)dt o<z < ©,

and F(c;y,k) is as defined in Chapter 2.

Proof:
cleipon) = E[(/e)P(1 - o)] + exp(zh/y)H[(A/0)§(1 o).
P :

Then for c¢> 0,

G{csu, ) =
D¢

[%(x/cs)%(l S o) - 1) T 4 3ve®) E (14 o) ;(x/c)%j K(c)
R SRR
(- 1(e-m)?) .

exp 2; c

Simplifying the above, one has:

. .
QG ( 1R, )) 2 (- Al -{}2) = QF(cim,))
s <2rrc ) P 20 é 82

°c

MP

where k(e) = (2m)”
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Noting that as defined, G(C;P,k) 1s an absolutely
@g@ continuous distribution function, one has by the
Radon-Nikodym Theorem: G(C;P,x) = F(c;F,A).
In view of the definition of G(O;P,k), thls completes

the proof.

The significance of this Theorem is that Inverse
Gaussian probabilities may be easily obtained from
Standard Normal and Exponential tables. ( H(z) is the
upper tail of the Standard Normal distribution.)

Thus,with a minimum of computations, one can obtain
the cumulative distribution function of random variables
having the Inverse Gaussian distribution. Goodness of

fit tests, for example, are quite easy using THEOREM 5.1

and an appropriate distribution free test.

At this time, we shall prove an important result,
first obtained by V. Seshadri, using the characteristic
function of the Inverse Gaussian distribution. The author
[12-2 ], obtained this same result‘by a change of variable.
Here, we shall prer it as a cdrollary of THEOREM 5.1l1.

THEOREM 5.2 :

If Xf\,IG(F,x), then 2Z = zgx-%gz n, :X:i- .
}13

Proof: Let a <, and b = zga-gzz . Then clearly: if a> 0,
pea

a< X< }12/9. iff Z< b.
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Therefore, one has:
P(Z <b) = Pla<Xc< Pa/a)
= F(}l"‘/a:}l,x) - Fla;p,2)

H[(x/a)%(}% - 1)] - H[u/aﬁ(l -;_al_ij

= H(-(0)F) - H(bI)

" e
_j_b% ,

b 1
= j (2ny) " Rexp(-y/2)dy,
0

i

exp(-t?/2)dt

the integral of the ‘7[31 density from 0 to b. Since for
suiltable choice of a, b can be any positive number,one has

Zf\,j[%r This completes the proof.

THEOREM 5.2 has great importance. The result will be
used in several subsequent places in this thesis.

It is of some interest to note the following similarity
between the Gaussian and Inverse Gaussian dlstributions:

In each case, minus twice the exponent, occurring
in the density function, has the chi-square distribution

with one degree of freedom.
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CHAPTER 6 : CONFIDENCE SETS FOR THE PARAMETERS

OF THE INVERSE GAUSSIAN DISTRIBUTION

Throughout this chapter, we shall assume that we
have drawn a random sample: Xl,Xz,...,Xn from the Inverse
Gaussian distribution F(x;p,)).

First, the required distribution theory will be

developed.
THEOREM 6.1
(a) n (X)) 2 2
oV
(b) n(n=L)@n)® ), Fypo
- 1 1
2X (z-=)
a J=lej X
Proof':

(a) By THEOREM 3.6, X~ IG(p,nr), and hence by THEOREM

5.2,

ny (X2 )% ~ iX: %.'.

) g

(b) By THEOREM 3.'}, ki (2~ -1)n, Iz and is
=T X3 X .n-l

independent of X. Hence by part (a) of this THEOREM

and elementary distribution theory, the assertion of

part (b) of the THEOBEM holds.

This completes the proof.
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THEOREM 6.2: Confidence Interval for ), P known.
2 \ 2
) 2K = —-Cy

Zj;(xj'}l)z/xj g (Xj-}l)z/xj

where positive quantities o and g satisfys 0 S otp S 1.

Proof: By THEOREM 5.2, one has

zgxg-gzz for J=1,2,...,n are n independent chl-square,

P

one degree of freedom, random variables.Therefore,

n .
FUDMICIT AL I RAVIN SN

B2
This fact in turn implies:
n
2 2 2\ 2 lege
P(In,l-a < ﬁ%?___:l(xj'}l) /X <xn,s) = l-o=§ -

This completes the proof.

THEOREM 6.3: Alternate method to THEOREM 6.2.

(R e << BE_YE,) - e
n(X-p)2

where o and g are as in THEOREM 6.2.

Proof: By THEOREM 3.6, X "vIG(p,nyp). Hence, by Theorem
6.2 applied to f, a sample of size one, the desired result
is immediate.

This completes the proof.
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THEOREM 6.4: Confidence interval for ), jp unknown.

2 : 2
P n-1,l-q < A < :K: n-1,8 = l-g=B,
(="=) | }_ﬂ_-(____)
=1 % X =1 X3

where o and g are as in THEOREM 6.2.
Proof:s By THEOREM 3.7,

201 1 2
LG v L

Proceeding exactly as in THEOREM 6.2, the desired

result follows.

This completes the proof.

THEOREM 6.5 : Confidence sets for j,\ known.

n n
(a) P (PB(X.%(XJ)-]' -C) - 21’1}.1)‘ + }‘j-_:lej <0)= l=a ,

[}

l"'a ’

(b) P (yz( n, =-D) - qux + nmX <O )
T .

where 0<a< l,‘ C =fn ¢ and D =‘7C‘21,a .
?

Proof:

() As was noted in THEOREM 6.2,

2 2 2
Jtigg}Xjfy) 2SN VI S

n
Therefore, (%% z:. 2/X < ?) = l-qg
)1 =



38

By a simple rearrangement of terms in the above, one
sees that equation (a) holds. .
(b): In order to prove that equation (b) holds, one
merely notes that ffLIG(p,nx), and applies equation
(a) of this THEOREM to X, a sample of size one from
F(x;P,nx).

This completes the proof.

Definition 6.1:
The following notation will prove to be convenlent

throughout the balance of the chapter:

n
d 1 1

Y = X (=« =)
n(n-1) 52; XJ X

THEOREM 6.6 : Confidence set for Po A unknown.
P (pa(l-EY) - ZZP + X% < O‘) = l-0 ,
where E = Ei,n-l,a and O0<a <] .
Proof: From the definition of Y, and THEOREM 6.1(b),

one has: !

- 2
S%%%—l- ay F1,n--l )

Proceeding exactly as in THEOREM 6.5, the desired
result follows.

This completes the proof.
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It 1s of some interest to investigate the confidence
sets of THEOREMs 6.5 and 6.6 . Can these be reduced to
intervals? THEOREMs 6.7 and 6.8 will answer this question.

Definition 6.2;
The following notation will prove useful in this
investigation:

(a) g(}l): (EX-A - D)}J.2 - 2nx}1 + X ’

(b)  h(p)= (1-EY)p® - 2% + %2 ,

where D,E, and Y are defined as in THEOREM 6.5(b),
THEOREM 6.6, and Definition 6.1, respectively.

Lemma 6.1:

With probability one, the roots of g(P) and th)
are real.

Proof: Since X and Y are positive with probability
one, and D and E are positive constants, the discriminants

0,

in each quadratic equation g(p) = 0, and hgl)
are positive with probability one.
This completes the proof.

Remark: The degenerate case that g or h has a

i
(@
-

double root occurs with probability zero, since D

and EY = 0 cannot occur.
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Remark: The degenerate case that the coefficlent of
pa vanishes in either quadratic forms are also events
of zero probability, by virtue of the absolute continulity

of random variables X and Y.

THEOREM 6.7
Let m < M be the roots of g(p), computed after

a sample has been drawn. Then, providing that p > 0,

F'S(P)<O = Jim<p<h if (n), -Dy > 0,
o = frmspenf (2-7)
= {}1:M<}1% if (Q}-D) < 0.
‘ X

Proof: If (n\» -DX) > 0, one sees

&(p) =(11___L -D)}lz - g+ m

X

(1) has both its roots positive
(ii) has its minimum, by Rolle's Theorem,in the interval
[m,M].
Hence: g(y) <0 iIff m<p<M.
If (nx-Df) < 0, one sees that g(p)
(1) has one positive, and one negative root,
(i1) has its maximum in the interval [m,M].
Hence: g(}l) <0 iff M <)1 .

This completes the proof.
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THEOREM 6.8 1

Let m < M be the roots of h(p), after a sample has
been drawn. Then, provided that P> 0,

{}uh(}lko% = {)J.zm<}1<M% if (1-EY) > 0 ,
{)A:M<,u% if (1-EY) < 0.

Proof: The proof of this result is exactly the same as
the previous one. ;

This completes the proof.

Example 6.1:

For a sample of size 20 from an Inverse Gaussiah
distribution: Y = .189 X = 1.69 , Fin® 95% and 99%
confidence intervals for Re
(a) 95% ; from the F-distribution table, E = 4.38.
h(p) = .172p2 - 3.38p + 2.86 . -
m= .89 and M= 18.9 .

Therefore, +89 < 1 < 18.9 is a 95% confidence interval

for e
(b) 99%Z ; from the F-table, E = 8.19 .
MP)= -quﬁ « 3.38n + 2.86 .

m<0 and M = .78 .
Therefore, .78 <'F is a 99% confidence interval for e

Example 6.2: The analogous result does not apply to
THEOREM 6.5(a). Let )=1,n=2, Xy< .10, and X,> 5.
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What form has the 95% confidence set for P given in

THEOREM 6.5(a)?
n

n :
- ’ -1 _ 2 _
kgn = (AZ:(XJ) C)p Znyl + A g;xj .
Jj=1 J=1
From the chi-square table, C = 5.99 .
Substituting for known terms, one has
k(p) = (Hv)p® - o+ (5rw)
where Vv and w are positive quantities depending on the
values of Xl and X2 .
In this case, ‘a case of positive probability, kgl)

has imaginary roots. Thus the analogous result to THEOREMs

6.7 and 6.8 do not hold.
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CHAPTER 7 + BAYES ESTIMATES OF PARAMETERS
Wasan,[ 16-5], found a Bayes estimate of t2, for a
sample of size 1, from the Inverse Gaussian distribution
IG(t,t2®), for the apriori distribution:
g(t) = e* t>0,
| = 0 t < 0, and loss function:
L(t2,a) = (a-t®)2 . (squared error loss)
In this section, two other restricted families
of Inverse Gaﬁssian distributions will be considered.
THEOREM 7.1: (Bayes estimate of ))
Let the conditional distribution of X for each given ), be
IG(1,)). That is, the conditional density of X given ) 1is

L
T(xir) = A Y= exp’: agx-lzé} X,A > 0
(211)(3 2X
= 0 elsewhere.

Let ) have apriori distribution:

g(y) = pF-le-r x>0
\te)
= 0 A < O’

where 1r is a known positive constant.

For action a, let the loss function be

L(x,a) = (x-a)2 » squared error loss.
Then d(X) = 2(r+35)X is a Bayes estimate for ),
X+ 1

for apriori distribution g(a) and loss function L(j,a).
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Proof: We shall use the well known result for squared
error loss, (See Ferguson [5-1] , for example,) that
E(A|X) is a Bayes estimate of A. The first step, therefore,"
is to compute the density of A given X, fl(klx).

The Joint density of X and ) is clearly:

L 1
f,(x,0) = (2mx3)7% zT-2 exp[—%x(x + l/XZ} X,A >0
V(r) '
= 0 ' otherwise.
The unconditional density of X, for x > 0 is:
fa(x) = f £5(x,2)dx

§2nx32'% Jﬁw
Vir) 0

1
Nt exp[—%x(x + l/xa ax

gzexsz'% 2™ d) (x4 1) TE
(r)

and the unconditional density of X, f3(x) = 0, elsewhere.

For x> 0, we therefore obtain:

fl(llx) = fz(x’l)/fB(x) ) A > 0,
= zr"'*ld'z"r""l? (x + l/x)m_% exp(— ) (x + l/x)) A> 0,
‘%r+%) 2 .
and fl(xsx) = 0 A< 0.

2 (x + 1/x)"F {r+ 3/2)

Vized)

it

E(x x) = fxfl(x]x)dx
(e}
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The above equation, by virtue of the fact that

Y79+1) = e‘?(e) , reduces to:
E(Ax) = 2(r+ti)x x > 0. That is
xX*2+1
d(x) = 2(r+3)X is a Bayes estimate of ), for
X<+1

the apriori distribution and loss functlon given.

This completes the proof.

The following result is needed in the proof of
THEOREM 7.2.
Lemma 7.1:

Let c,r be positive constants. Then

00

I = ~£ gT-1 exp(-ct®)dt = %(Qr/Z)c'r/z

Proof: Let y = ct?®. Change of variable 1in the above gives:

1= J p52)2 oV ay o 3Vie2) o/
0 r/2 A

2¢c

This completes the proof.

THEOREM 7.2 : (Bayes estimate of the reciprocal
of the mean)
Let the conditional distribution of a random varlable

X, for given t be IG(1l/t,1l). That is, the conditional
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densiﬁy of X given t, 1is:

f(xlt)

L
(2mx®)"= exp[— t23(x - 1/t)2] x,t > 0,
2X

= 0 elsewhere.
Let t have the aprioril distributlons

g(t) = (t¥Le /V(F) t > 0

= 0 t <0,

where r is a known positive constant.

Let the loss function be:

L(t,a) = (t-a)? , for action a.
’ i
Then d4d(X) = (2/X)° Si%gr+1gg is a Bayes estimate

Vi)

of t, with respect to the apriori distribution g(t) and
loss function L(t,a).
Proof: As in the case of the previous theorem, where the loss
function was squared error, it suffices to show that

E(t]X) = d(X).

The first step is therefore to compute fl(t]x), the
conditional density of t given X.

The joint density of X and t, f,(x,t), is readily

seen to be:

fz(x,t)

i
£T-1 (2mx3)™= exp(-l/Zx)exp(-%xtz)/V%ﬁ)x,t > 0

0 elsewhere.

]
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Hence, the unconditional density of X, for x > 0, is

f3(x)

® f (x,#)dt
Lot

(¢]

o

exp(=1/2x) (2nx3)'%ur tr'lexp(-%xta)
Viz) ) 0

exP(-l/ZX) (2”X3)-%f(r/2) (2/x)r/2
2 \r)

the last equality by Lemma 7.1, and the unconditional

density of

f3(x) =

@ There

fl(tlx) =

fl(tlx)

E(t]x)

li

That

This

X, for x < 0, is

0.

fore, for x > 0,

fZ(X’t)
ETean

' 2(%:7/2)1’/2 71 exp(-dxt2)
(r/2)

0

2§x(2}r/2 t¥ exp(-2xt2)dt
0 V(r/Z)

(2/x)% S?%@r+111 .
Y%%r)
is, E(tiX) = d4a(X), as required.

completes the proof.

t>0,

t < 0.
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CHAPTZR 8 : CHARACTERISTIC PROPERTIES OF THE

INVERSE GAUSSIAN DISTRIBUTION.

THEOREM 3.8, gives a characterization of the Inverse
Gaussian distribution. In this chapter, further character-
izations will be proved.
| The reader might pose the following question: "Is the
converse of THEOREM 5.2 true?"

That is to say, if

2 2
M;;x}dz ", Il » 1s 1t true that X UIG(p,A) ?

The following theorem will help negate this conjecture.
THEOREM 8.1 : (Characterization)
Let X be a non-negative random variable With density
function f(x).
Then in order that Xf\,IG(P,x) it is necessary and

sufficient that the following hold:

T(X) = a}lgx)-(g)z " le | < (1)

and f(x) = ),1_; f(/ua/x) e (2)

X

Proof's Necessity of conditions

If Xru IG(F,A), (1) holds by THEOREM 5.2, and

f(x) = (E_ngexp[-%l‘(xi):) .

T

| Since T(x) = T(Pa/x) sy (2) follows by a simple algebraic

manipulation.
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Sufficiency of conditions

Define a random variable ‘Y = X if X <« P
R3/X if X Z pe
T(X) , one has by (1),

Since for all X, T(Y)

rnn, 13 -
By elementary change of variable, Y has density g(y),

defined bYI

= 0 elsewhere.
But by (2), this can be simplified to:

gly) = (1+x)f(y) 0<y<p
}1

0 elsewhere.

Now by elementary change of varlable to the above, one has

T(Y) = AQY-EQZ has density h(T) defined Dby:
2

h(T) = n2y= L+ y\f(y) T>0, 0<y<nm,
x(p? - y<) ( }1) .‘P

= 0 ’ elsewhere.

This 1is readily simplified to:

h(T) = %xa £(y) T>0,0<y<n,
Mp-y F

= 0 elsewhere.

But as was shown above, ‘Dx:(z , and hence:
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%
h(T) (2nT)  *exp(=-3T) T > 0

i

= 0 T < 0.

Writing T in terms of y, a bijective function of

T, one obtainss
-k 1 2
(2mA) " ° py® exp|- L{g-g) T>0, 0<y<
Py 2py F

= 0 elsewhere.

Equating the two expressions for h(T) above, one obtains:

2 f(y) = (znx)“é'gxé exp .] 0<y<p
x}i,u-yS p-y 2;1 y
Solving for f(y), one has
)
fly) = (J_)kem[ ] 0<¥<pe
2y 2n y

By applying (2), one readily sees, that except posesibly
at ¥y = R

£ly) = (E_AT)’%XP(- %Fﬂg) 0 < 3 <o

wy oy
Therefore f,fthe density function of the random
variable X, is the Inverse Gaussian density, required.
That 1is, Xf\zIG(P,x).

This completes the proof.

Example 8.1:
The random variable Y, defined in THEOREM 8.1, is

clearly not Inverse Gaussian distributed, Since it has
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density function g(y) defined by:

gly) = (L + y)£y) 0O<y<p
2

= 0 elsewhere.
One therefore sees, that whenever 0 < y < P

gly) + E; g(Fa/y) , since exactly one side of the
vy

equation, namelygthe right hand side, vanishes. That is,
(2) does not hold.

But in the proof of THEOREM 8.1, T(Y) was shown to
be (3 Therefore, condition (1) of THEOREM 8.1, is not
sufficient by itself, to yield Inverse Gaussian random

variables.

The following three lemmas will provide two further

characterizations,based on THEOREM 5.2.

Lemma 8.1:
Let X be a non-negative random variable, and let

Y = gxigzz s, Where y is‘an arbitrary real constant.

Then if for a positive integer k, E(Yk) exists,

2k
B(YF) = ZO: (-3 (BOE(x3-E)
J:
X ok 2k 3,2k, j-k
Proof: E(Y') = BOXEX-p)®E) = E[7 _ (-p) 5 X ,
j=0
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the above following from the Binomial Theorem. By the
linearity of the expectation operator, one obtains:
2

Ky _ oy 32K o e d=k
B9 = 2o (I

This completes the proof.

~

i
(@]

Lemma 8.2 3
Let X be a non-negative random variable, and

QX-EQZ s Where P is an arbitrary positive number.
X

Then if E(Y®) exists for every né€ z¥,

]
H

- E(X®) and E(X™P) also exist for every n& z'.

Proof: Let K = INF{n4§z+= MAX (E(XT),E(X™™)) = +w§ .
It is clearly sufficient to prove K = +w. We shall therefore
assume that K < =, and obtain a contradiction.

By Lemma 8.1 and the fact that Y is clearly non-negative,

2K . .
o £ (YY) = 2 (-IHEaiE) -
= = 3
2K-1 . _
Bx®) 4 pfRe) + 7 (a3 < e L)
=1

But by the property that K is the smallest integer
in Z' such that at least one of E(xX) or E(x~K) does not
exist, one sees: E(XY) < o, j =#l,%2,...,%(K~1), and since

K is finite, and P is positive,




2K-1
’ZT (-p) Bz (I < = (**) and

hence: (%) gives
E(xK) + FZKE(X'K) < .

But since X 1s non-negative and P > 0,
E(xX) < E(xK) + FZKE(X'K) < o, and similarly,

E(x7%) £ p~2¥e(xX) + E(XX) < ». But from the definition of K,

one of E(XX) or E(X~X) must be equal to +w, and therefore,

the assumption that K < «, leads to the above contradiction.
Therefore K = +4w. In view of the remark at the start

of this proof:

This completes the proof.

Lemma 8.3:

Let X be a non-negative random variable with density
function f(x), and let E(X) = R

Then if E(X®) and E(X1) exist for all ng 2%, the
following are equivalent: for all x > O,

f(x) = E; f(ya/x) ee(2)
X

and  E((X/p)™) = E((X/A)™)  for all ngzt.  ..(3)
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Proof: (2) implies (3):
E(/)) = [ a3 r(pa/x)a (By (2))
o g s o

By substituting y = yz/x in the above, elementary

change of variable rules give
B = [
0 n+ y=e
P p
= E((x/p)™L) .
Therefore (2) implies (3).

ra
W

f(y)p2 day = f y21 £(y)ay
0 n+l

W

Next, we shall show that (3) implies (2).

(3) is readily seen to be equivalent to

E((pe/x)7) = peo+) for all ne z'.
| P

Let Y = PZ/X « The above equation, together with the fact

that E(X) = P> give

E(Y?) = E{Xn+12 " for all non-negative integers,
F n.
(> <]
Let My(t) = ;f exp(ty)dF(y) , with Y~ U F(y).
0 -

Since all the moments of Y exist,
Z I‘E(Yr Z‘ E(Xr'*'l

Next, let g(y) = yf(y), where £ is the density of X.

}1

“



55

Since for every n€ Z+U{O§,

J; P oely)dy = J; yHloeyay = EL&E:EL ,
}.1 u

(oo

Jﬂ exp(tylg(y)dy = ZE: t¥ B(xTr1) = M _(t).
0 r=0 r!r y

By uniqueness of Laplace Transform , we obtain:

Y has density y f(y). (*)
But X = gi + Therefore, change of variable yields:
Y
rf(y) = gly) = 2 £f(p*/y) , for all y > 0.
F v T

That is, for all y > O, condition (2) holds.

This completes the proof.

The previous Lemma, gives rise to the following
version of THEOREM 8.1:

THEOREM 8.2 : (Characterization)

Let X be a non-negative random variable, with density

function f(x). Then in order that Xf\JIG(y,x), it is

necessary and sufficient that the following hold:

(1) T(X) = MX-—XE)Z Ny le y and
}1 .

(3) E((X(y)'n) = E((X<y)n*l) for all non-negative

integers n.
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Proof: If T(X)f\,le , E(T") exists for all nez*‘u{og .

That is, E((X-}l)zn X™1)  exists for every n € zZ¥. By virtue
of the fact that X is a non-negative random variable, Lemma 8.2
gives: For every ngz", E(X®) and E(X™P) exist.

Also, Inverse Gaussian random variables have moments
of all positive and negative orders. Therefore, in both the
Necessity and Sufficiency parts of the proof, moments of
all positive and negative orders exist. Hence:
Conditions (1) and (3) are equivalent to (1) and (2), by
Lemma 8.3, and conditions (1) and (2) are equivalent to
XN IG(u,a).  ( (2) is defined in THEOREM 8.1 ).

This completes the proof.

The following theorem characterizes the Standard

Inverse Gaussian distribution, IG(1,1).

THEOREM 8.3:
In order that XNy IG(1,1), it is necessary and
sufficient that

2 2
' -
(1) &2 A, XA ana
X 2
(4) X+ tQy 1/X , with X,t independent, ta] x
Proof: Necessity of Conditions

If X", IG6(1,1), THEOREMs 5.2 and 3.4 respectively, give
(L)' and (4).
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Sufficiency of Conditions

Conditions (1)' and (4) will give all the moments of X.

Let Y = gx-lzz . By Lemma 8.1, (X is clearly non-negative)
X

2k
E(Y¥) = 26 (-1)3(23k)E(x3'k) for all k€Zz'. ..(A)
Jj= .

Also, by (%), for all kxezh,
E((X+t)k) = E(X'k) « Applying the binomlial expansion,

one obtains:

k

Z._ (IJ-‘)E(XJ)E(tk'j) =  E(x¥) for all x g¥ .. (B)
J=

since tRy YAY% , =2 distribution with moments of
all positive orders, the expectations given on (4) énd (B),
all exist. (Those of the form E(Xj) exist by Lemma 8.2)

We shall evaluate E(X¥) and E(Xx~K) by induction.

For k=1, equations (A) and (B) yield:
E(Y) = E(X™1) -2+ B(X) ; Et)+ EX) = E(x~L).

Since Yo tmle s E(Y) = E(t) = 1. Therefore,

the solution to the above system is: E(X) = 1, E(X"T) = 2.
Assume for all integers Xk < n, that E(Xk) and E(X'k)

are uniquely determined quantities, from (1)' and (4), by

equations (A) and (B). We shall then show that E(X®) and

E(X™) are also uniquely determined from (1)* and (4) via

(4) and (B).
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Equations (A) and (B) yield:

2n-1
- n _ ny _ S _1yJ(2n J=n
E(X™) + E(x") = E(Y) 2:1 (=1)2(IEXTT) o (A))
n-1
E(X™) - E(x®) = (DEXI)E(ED=]) .o (B)
3=0

By the induction hypothesis, and the fact that the
moments of Y and t,JC%_ random variables, are known, the
right hand sides of equations (An) and (Bn) are known.

Since the equations (An) and (Bn) are non-singular
in unknowns E(Xn) and E(X™®), the equations have a
unique solution. Therefore, E(X") and E(X™®) are indeed
uniquely determined from (1)' and (4). This completes
the induction.

Therefore, for every n££Z+, conditions (1)*' and (&)

determine E(X™), uniquely.

Since as was remarked earlier, E(X®) exists for all

néiz+, conditions (1)' and (4) uniquely determine

qs

E(exp(ex)) = [/ od E(xd) .
J Ji

]
(@]

By uniqueness of Laplace Transform, there exists at
most one probability distribution, satisfying (1)' and (4).
But in the Necessity part of the proof, we showed: If
XN IG(1,1), then (1)' and (4) hold. Hence the only
distribution such that (1)' and (4) hold is IG(1,1).

This completes the proof.
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A particular case of a theorem of Patil and Seshadri
[10-1] y can be stated as follows:

Let Xl,Xz be non-negative independent random variables
with common density function, f(x); and Yl,Yz be non-negative
independent random variables with common density, g(x).

Assume further that:

(1) f£(x), g(x) >0, for x >0 .

(2)  a(Xy|Xy+X5) = d(Y¥;|¥y+Y,) = the conditional
density of Xl glven (X1+X2) = the conditlional density of
Y, given (Y1+Y2), a continuous function of Xy, say, for
all (X1+X2).

Then there exist constants a and b, such that

f(x) = ag(x)exp(bx).

While this result will not be of direct use to us,
to characterize the Inverse Gaussian distribution, as
wlll be discussed below, the above theorem can be general-
ized to be of use.

We note, that assumption (1), demands that £(0) = liﬁf(h)
. h™o0

must be positive. The quantity £(0) appears in the denominator,
in the proof of the above theorem, in one of the steps.

The Inverse Gaussian density vanishes at x = 0T. The
above theorem, must be modified, to deal with the Inverse
Gaussian distribution. |

The following lemmas will clear up this difficulty.



60

Lemma 8.4:

Let independent, non-negative random variables Xl’XZ’
Y,,¥, have respective density functions f(x),f(x),g(x),g(x).
Assume further that:
(1) f(x),g(x) > 0, whenever X > 0. ( £(0),g(0) = 0,
permitted.)
(2) For all values of Xj+X,, and Y;+Y¥,, the conditional

densities of Xl gliven X1+X2 and Y. given Y1+Y2 are continuous

1
and identical, d(x|x+y).

Then 0 < lim £(X) <« 4 exists.

xy0 g(x)
Proof: Let k(x+y) be the density of X1+X2 , and
h(x+y) be the density of Y1+Y2.
By (2), we obtain: for x,y>0,

d(x)x+y) = f{(x)f(xz = ghgxm(v,) (%) .
X+y X+y

We immediately note the following:
(a) Since d(x,x+y) is continuous, so must be f(x) and g(x)
for all x > 0. ( k(x+y) and h(x+y) cannot vanish for
positive x+y, by (1), above.)
(b) k(x+y) and h(x+y) are also continucus for x+y positive,
by virtue of (a) and (*). |

Rearranging in (%), we obtain:

f(x) = k(x+y)e(y)
g(x) h(x+y)f(y)
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Taking limits on both sides o the above, as x‘N 0,

one obtains by virtue of (a) and (Db):

1im £(x) =  k(yixly) , a finite, positive quantity.
Y0 0x) QHD

This completes the proof.

Lemma 8.5
Under the conditions of Lemma 8.4, there exist constants
a and b, such that
f(x) = ag(x)exp(bx).
Proof: Let the notation be as in the previous lemma. (*) of

the previous lemma gives: Tfor X,y > 0, and 0 < h < x+¥,

f(x)f = (x)e( i f(n)f(x+y-h) (h)g (x+y-h)
ka+y§ h3§+y5 k(2+y) . %(X+§)

Therefore, for x,y > 0 and 0 < h < X+J¥,

f(x)f(y) = f(h)f(x+y-h) .
g(x)s(y) g(n)g(x+y-n)

Taking limits on both sides, &as klNO, and setting

1im £(h) = a , a being well defined, positive and finite,
h¥yo g(h;

by Lemma 8.4; and using (a) of the previous lemma's proof,

concerning the continuity of T and g, we obtain

f%x)f(z a f(x+1; for x,y > 0.
gl{x)gly glxX+y -
Let (P(x) = f(x for all x > 0. The above
a z(x)
. ‘
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This is the well known Cauchy Functional Equation, whose
unique solution is:
(P(x) = exp(bx) for some constant b, and x > 0.

Therefore, for ¥ > 0,

_ (p(x) = exp(bx) = f(x ) x > 0.
a g(x

That 1s, f(x) = a g(x)exp(bx) x > 0, for some constants

a and b.

This completes the proof.

The machinery has now been established to prove
a Patil-Seshadri type characterization of the Inverse

Gaussian distribution.

THEOREM 8.4 ; (Characterization)
Let X,Y be independent, identically distributed random

variables, such that E(X) < .
Then a necessary and sufficieﬁt condition that forxr
some positive P’ thaf X,YAJIG(P,A), ls that the conditional

density of X given X+Y, is

d(x‘x+y) = %(zzﬂg§+yx3)3)§ exp[— %(x-l + y-l - 4(x+y)'])f{,

0 < X < x+y.
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Proof' Necessity of Condition

Let X,YFMIG(P,K) be independent random variables.

By THEOREM 3.6(a), X+YfVIG(%p,4A). Hence

d(x|x+y) = i(x)f , (*)
Zx+y§

where f 1s the Inverse Gaussian density iz F(Z;P,A) and
h is the Inverse Gaussian density %E F(z;%p,bx).

The required value of d(x|x+y) is immediate from (%),
upon substituting the functional forms of the Inverse Gaussian
densities f and h.

Sufficiency of Condition

Let g(x) = d_ F(x;y,x) . Suppose that densities
ax

f(x) and g(x) yield:

_ 3\ % -1, -1 -1
d(x‘x+y) = % <3§x+v} ) exp[} %( X T+ ¥y o= b(x+y)TT))

zﬂxaya
whenever 0 < x < x+y.’By Lemma 8.5, there exist constants

a and b, such that whenever 0 < x < » ,

£(x) = ag(x)exp(bx)
%
= - (1 - 2bu2)x- 2 2
a{2nx> exp[_z)%[ AE X }1+)_;_3J ’
and f(x) = 0, x < 0.
Let X = a(A_>% exp(x(P) and c = 1 - 2bn?
21 A
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Therefore,
f(x) = KX-B/ZGXPE __L_(cx+ Zﬂ .
2}12 )%c—l)

(1) If ¢ > 0, by completing the square of the exponent,
one obtalins the fact that f(x) is an Inverse Gaussian
density. The fact that f has the correct value of As
follows from the necessity part of this proof, for if

f had some other value of ), say A', one would have

%gl }}:yx)

i
[

1

(A/A')% exp’[— PO (7t + y'l‘- 4(X+y)'l_)] ;

whenever 0 ¢« x < x+y. This is an obvious contradiction.

(11) If ¢ = 0, one has

f(x) = Kx'3/2exp(- A/2x) 4 x>0
= 0 sy X < 0.
E(X) = f Kx'%exp(- A/2x)dx = + o
0

This contradicts the fact that E(X) exists. Therefore,
¢ = 0 cannot occur under the assumptions of the theorem.

(ii1i1) If ¢ < 0, we obtain:

lim £(x) = 1im‘Kx'3/2exp(- Y (cx + Ei)) = 4o,

X=3% X—poo 2u® X
That is, f(x) cannot be a probability density.

In view of the fact that (i) is the only possible
case that can occur,

This completes the proof.
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Example 8.2:
We shall show, by example, that in Khatri's character-
izatlion of the Inverse Gaussian distribution, THEOREM 3.8,

assumptions on the moments cannot be dropped.

Let Xl,X2 be independent random variables, with
common density function
f(x) = (2nx3)'% exp(~- 1/2x) X s> 0

= 0 X < 0.

Result (1): £ is a density function.
This is easily seen, from the fact that bejC%_ iff

1/Y has density f(x), above. '
Result (ii): U = X+ X, and V= l/Xl + l/X2 - 4/(X1+X2)

are independent.

Argument : Let Y, = min(xl’x2) P Y, = max(Xl,XZ) . Then
U= Xq+Y, 3 V=1/Y + l/Y2 - 4/(Y1+Y2) .

Also, the joint density of Yi,Yz wherever positive, is

-3/2
£(¥),Y,) = % (Y,Y,) 3/ expE— 1/2Y, - :L/zxi-} 0 <Yy < Y,.

_2 -2
and dyg tlJ’, ¥22 = (Y)° - (Y1> < 0.

The Jjoint density of U and V is therefore,

_ -3/2 i -1 -1
fz(U,V) = 1 (YlYZ) (1  =-_1 ) exp(}z( Yl + Y2 j]
i1 Y2 Y2
1 2
1
= 1 _(NY¥p)* exp(-2U)exp(-3V),
11 Y22 - le
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Next, we note that:

-1

2
1 7 Y (Yp-Yy) . Hence,

-1 -1
2 - (Y +Y,)

yd/2yt/z o ¥ - ¥y
—_— I
(Y]_Yz)é
Therefore, by substituting the above in the expression
for fz, the joint density of U and V is seen to be

£,(U,V) 1 U™ 2exp(-2/0)v-1 2exp(~v/2) , U,V > 0,
i

= 0 elsewhere.
Since f2 can be factored into a function of U times
a function of V, U and V are indeed independent random |
varlables.
We have shown, that f(x), a non Inverse Gaﬁssian
density, enjoys the property of Khatri's characterlzatlon.

Assumptions on the moments cannot be dropped, therefore.
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CHAPTER 9 : THE MULTIVARIATE INVERSE GAUSSIAN
DISTRIBUTION

Definition 9.1:

A random vector X = (xl,...,xn)T is "Multivariate
Inverse Gaussian distributed," if there exists a non-
singular matrix P, of n rows and n columns, such that

Z = K is a vector of independently distributed
Inverse Gaussian random variables.

In symbols, one writes: X~ u MVIG.

The reader may ask: "Under what conditions are all
the univariate marginal distributions of anMVIG random
vector, Inverse Gaussian distributions?"

The next important lemma will provide the key to

answering this question.

Lemma 9.1 1

Let X X be independent random variables with

1oee Xy
Xy I6(RysAg) 5 3= 1yeee,ne

Then a necessary and sufficient condition that

n
XO = :Z: XJ be an Inverse Gaussian random variable
=1

is that: (Pj)z/xj does not depend on J, J = lyeceyne
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Proof: Necessity of condition

Let XO/L/IG(pO,AO) , and let fj(e) be the charact-
eristic function of XJ, J=0,1,e00,n0
By THEOREM 3.11, for j = 0,1,...,n,

log fj(e) = i}xje + /: <exp(iue)-l-iue)u'3/2ajexp(-bju)du ,

L
= z - 2
where ay = (xjﬁﬂn and  Dby= (xj/yj ) .
But since xl...xn are independent random variables,
one obtains from the definition of Xo ’

n
log £.(08) = ZZ: log £.(0) =
0 =1 J

4

ig

| o n
Pj »{ <exp(iue)-l-iue>u'3/2(;ajexpébju)) du .

Cue
nrv15
}-‘

By the uniqueness of the Kolmogorov representation,

the following is clear:

n
aoexp(-bou) = ;;;ajexp(-bju) for positive u. ..gl)

By taking limits on both sides of (1), as u\0, one

obtains:
>
a = a. o
0 =9
By differentiating both sides of (1), and letting

u tend to 0, one also obtains:
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n
aob(;n = JZlaijfn M= 1,2y00

That is, since ao > 0,

m
(by)" = 32;1 (aj/ao)(bj)m m= 0y1yc0 e (2).

Next, consider the following discrete distribution,
for a random variable Y:

P(Y=bj) = aj/ao j = l’ooo,n

P(Y=t) 0 t % a; for any j.

The above is clearly a probability function, by (2) above,
with m = 0. Also by (2), for m= 1,2,...

n
B(Y") = ) (aj/ag)(b)™ = (b)" .
=1

Hence, the moment generating function of Y is:
E(exp(ty)) = exp(byt) .

By uniqueness of Laplace Transform, orie obtains:
P(Y:bo) = 1. *F®

By the definition of aj and the fact that Inverse
Gaussian random variables have R > o, aj >0, J= L1lyeeeyne

¥ and *¥* therefore imply, for j = l,...,n , that

bj = bO . That is, by definition of bj’

(RS/a) = (v~

j=1lyeeeyny, and is therefore

independent of j.
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Sufficiency of condition

Setting }{f/% =C,}=1,...,n , THEOREM 3.1 gives:

)\
fj(e) = exp(%?[} - (1 - 2190)%1) J=1,cee4n.
J

one obtains

By the independence of Xl,...,Xn,

n n 11
000 =TT £30) = expf{( 2 M)1- (1 - 2100)%))
0 J=1 J=1py

Hence, by THEOREM 3.1, and uniqueness of Fourler

Transform, one obtains

n 1 n_ 2
Xo’\/IG(jé::Pj' c <3=L1}13)

This completes the proof.

The following theorem gives necessary and Sufficient
conditions that a Multivariate Inverse Gaussian random
vector have all its univariate components Inverse Gausslan
distributed.

THEOREM 9.1:

Let Z = (zl,...,zn)T be a vector of independent
random variables with zy ndIG(Pj,xj) s J = lyeee,n,

Let P be an nxn non-singular matrix, and let

T
be the random vector satisfying:

X = (Xl,ooo,xn)

Z=PX.
Denote }?"1 by Q = A ql2 o« o o qln

Anl « « Ann
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Then necessary and sufficient conditions that for a
fixed 1,1 = 1l,...,4n, that X5 be Inverse Gaussian dise
tributed, is that for each j such that qij + 0, the
following hold:

(1) > 0

qij

2
(2) Pj 943 does not depend on j.

i
Proof: Necessity of (1):
We assune xiq,IG(o,-) and shall conclude qij > 0.

Suppose it were possible that xir\,IG(-,-), and 44 < 0.

But x. = 2{: q. .2, - Were some ¢,. < 0, the independence
1 =1 1373 13

and non-negativity of the zj give:

P(x.

3 < 0) > 0. This cannot happen for Inverse Gaussian

random variables, which are positive with probability 1.
The assumption that some q.lj could be negative, with Xy
Inverse Gaussian distributed cannot be compatible. That is,
(1) is indeed necessary.

Necessity and sufficiency of (2):

Let {qijl 3y ¢ v e qijr% be the set of positive

qij for a fixed i. This set is non-empty, since P is

non-singular.
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r xX..
X, = 2 qi Z . = ZL_ wj , Where
k=1 1dx Jx k=1 Jx

w, = sy K= 1l,e..,r, are independent random

Z .
e T Ry Iy

variables, such that; by THEOREM 3.5,

ijr\,IG(qijk}ljk, qijkxjk) K= lyeee,T
Hence, by Lemma 9.1,
XN IG(#, ) Aff = F;i k=1,.e.,7, does
Ajk

not depend on k. In view of the definition of qij ’
k

k = l,...,I‘,

This completes the proof.

Remark:

If the properties enjoyed by the fixed i, is enjoyed
by all the i, i=1l,...,n, all univariate marginals are
Inverse Gaussian distributions.

THEOREM 9.2 .

In the statement of THEOREM 9.1, if zl,...,zn, is
a random sample with zjf\/IG(F,x), then a necessary and
sufficient condition that all the marginals of X, be
Inverse Gaussian distributions, is that all the row

vectors of Q, (qil" . . qin) consist only of zeros and a

positive quantity ci, depending only on i.
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Proof: (Special case of THEOREM 9.1)

Example 9.1: (Sequential sampling)

Let zl,...,zn be a random sample, with zj’\*IG(F’A)’

Let
o (’l 0 0 0O o o & 6\ z1}
c . £ % 0 0 ... 0 Z,
1/31/31/3 0 « .. O .
i.
. . . e . o o . é. |
kl/n i/mnl/n .+ . .. 1/rj kzn)

ﬁ% XN NVIG since the matrix above is non-singular. (The

determinant is the product of the terms of the main
diagonal).
X has all its marginals Inverse Gausslan, by THEOREM 9.2,

With _1/1 i=l,..-,l’l.

Gi-
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CHAPTER 10: MEASURE THEORETIC INTRODUCTION

TO THE INVERSE GAUSSIAN PROCESS

In this chapter, the author will introduce the
notation required in Chapters 11 and 12. Illustrative
examples will be given to show how ones intuition can
lead him to false conclusions, with regard to properties

of the sample functions of a stochastic process.

IMPORTANT DEFINITIONS

Definition 10.1: (Stochastic Process)

A Stochastic Process is a 4-tuple ({1, F,P,X 1t€T )
such that:

(1) T is a subset of the non-negative real numbers,

(2) ) = WWI.(l s, Where each £} is the sample
t t
teT
space of the random variable Xt’

’ g
(3) ;3 is the sigma-field generated by ﬁrf ;} ’
’ teT

where each :3 is the Borel field generated by sets of
t
Lwe L)
the form: 2W€$ L ¢ X (w) < a} , and
)

(4) P is the probability measure induced on E} ,

by the finite dimensional distributions of (th ,...,th),

for every finite subset Ktl""’tnz T,

)
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Definition 10.2: (Notation)
3
Let S be a finite subset of T. We define :38 byt

3* - T gt » Where gt =3t , t €S

° e ={ﬂt}j , té%s.

Definition 10.3: (Notation)
Let S = %tl,...,tn% be a finite subset of T. We
L
shall define P, as the measure induced on (1, E}S ) by
the finite dimensional distribution of (th,...,Xt ).
n

Definition 10.4: (Inverse Gaussian Process)

An Inverse Gaussian Stochastic Process, Xt't : o,
is one with the following properties:

(1) (Xt - xs) A, IG(a(t-s),s(t-s)2) for t > s, with
a and 3 positive constants.

(2) Process has independent increments. That is,

) t § = 1,0ee,m

ry

the set of random variables (Xt T - Xt
J+1 J

<
are mutually independent wheneve? 0> tl < t2 < ...< tn+l <

(3) Xo =0 a.e.

Definition 10.5:
A Stochastic Process is "Monotonic increasing in
probability" if whenever t > s,

> =
P(Xy Z X)) = 1.

[>= 2
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Definition 10.6:

A Stochastic Process (.Q,H,P,Xt:t Z 0 ) is
" a.e. monotonic increasing'" if there exists a set N€ 3’ ,
such that:

(1) P(N) =0 and

(2) For every fixed wg (f).- N), Xt(w) is a monotonic

non-decreasing function of t.

Definition 10.7:
A Stochastic Process is '"tontinuous in probabilityy if
for every €> 0, and t : 0

1 B( Keen = X,| €) = 0 (%)

If (%*) holds subject to the condition that h—30 from

above, the process is "right-continuous in probability".

Definition 10.8:
A Stochastic Process (ﬂ,&,P,xtzt 20 ) is
" a.e. continuous (right-continuous), if there exists a
set NEEL » such that:
(1) P(N) = 0 and
(2) For every fixed weéﬂ_- N), Xt(w) is a continuous

(right~-continuous) function of t.
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Definition 10.9: (Separable process)

A Stochastic Process (Jl,f;,P,Xt:t 2 0) is called
"Separable", if there exists a countable set SC[0,),
with the following property:

For every open interval I, of finite length,

SUP Xt(w) = SUP Xt(w) a.€. and
tel teINS
tel t€INS

Definition 10.10: (Universal Separating Set, USS)
A set S with the property required in Definition

10.9 is called a universal separating set.

Definition 10.11: (Modification of a process)
A Stochastic Process,{zt:téﬂ%, is a modification of
a process {Xt:teig, if for every t€&T,

&)

Definition 10.12:
A Stochastic Process is finite a.e., if for all

finite T, P(SUP Xt(w) = ) =0 .

t<T

Definition 10.13:
A Stochastic Process is unbounded in probability if
for every K >0, t >0 :

P(X, >K ) > 0.
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Before one can continue with the introduction to
the measure theoretic properties of the Inverse Gaussian
Process, one logical questlon must be answered: "How
does one know that there exists a measure P, such that
P extends the measures induced by each finite dimensional
distribution?"

The answer lies in the famous Kolmogorov Theorem,
which we state without proof.

THEOREM 10.1: (Kolmogorov)

Let L be defined by (2) of definition 10.1, with each
_f% a copy of the real line. Then if there exists a probability
measure PS on Lfl,f%g ) for every finite S C T, such that
whenever SqC S5, PS2 is an extension of PSl , it follows
that there exists a probability measure P which extends every
PS. (E}g and PS are as in Definitions 10.2 and 10.3 respectively)

Proof's See [8-17] or [14-17 .

THEOREM 10.2: (Restatement of above)

Each Stochastic Process whose finite dimensional
distributions are specifled, corresponds to at least one
Stochastic Process. (i.e. the Process, given by Definition
10.4, corresponds to at least one process in the sense of

Definition 10.1l, provided the distributional conditions

" are consistent with each other. )
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THEOREM 10.3:

Inverse Gaussian Processes as in the sense of

Definition 10.4, exist in the sense of Definition 10.1l.

Proof: Wasan [16-6] , showed that conditions (L),(2), and
(3) of Definition 10.4 are consistent, and uniquely determine

the finite dimensional distributions of (th,...,xt ) .
~ n

(In fact, these are clearly Multivariate Inverse Gaussian
random vectors. See Chapter 9.) Hence, by Theorem 10.2,
the process exists in the sense of Definition 10.l.

This completes the proof.

We shall discuss the Inverse Gaussian Process in
the context of Definition 10.1l. However, we shall see
by example, that little can be said about many aspects

of the process, unless a suitable modification 1s chosen.

THEOREM 10.4:

Every Inverse Gaussian Process is monotonic increasing
in probability.
Proof: P(Xy > X ) = P(X, - X > 0) = 1 whenever
t > s, since Inverse Gaussian random variables are positive
with probability 1, and P extends P{s,t}'

This completes the proof.
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Intuitively, one might feel that a Stochastic Process,
monotonic increasing in probability is a.e. monotonic
increasing. This need not be the case. This fact is
dramatically demonstrated in the following example.

Example 10.1:

Let (1, JF,P,X,:1t20 ) be an Inverse Gaussian Process,
whose measure P is complete. (This can be done by adjunction
to E} ’ ail subsets of sets of measure zero, and assigning
P-measure zero to each of these.)

Let Y be the cumulative distribution function of
- X o Y is uniformly distributed

t=2 t=1
over the interval (0,1).

(%, -xl>, (i.e. of X

Define the following process: Lfl,}},P,Zt:t:O ), where

= 4L
Z, =X if Y Tt

t t

= 0 if ¥Y=1¢t

Since the event {w:Y(w):t} has probability zero
for every t, with respect to the measure 3@% (and hence P),
the finite dimensional distributions of the Zt process
are ldentical with those of the Xt process. The Zt process
is therefore Inverse Gaussian, and as such, by Theorem 10.4,
is monotonic increasing in probability. |

We shall now show that the Zt brocess is not a.e.
monotonic increasing. In fact, it will be shown that the

w-set for which Xt(w) is monotonic increasing, is a set
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of P-measure zero.

Argument

Let ¢ be an arbitrary constant such that 0 < c¢c < 1.
Since Zc is an Inverse Gaussian random variabie, and P is
an extension of P#% ;s -

P(Zc >0) = 1.
Under the assumption that the Zt process is a.e. monotonic
increasing, one has by the completeness of P,
P(Zt > 0, for all tic<t<l) = 1 .
Hence, taking the complimentary event to the abové,
P(Z, S 0, for some tic<t<l) = O. e (1)
But from the definition of Y, Zt = 0 if t=Y. Hence

P(2Z, < 0, for some tic<t<l ) : Ple<¥<l) =1 -c  ..(2)

Since ¢ < 1, the assumption that the Zt process is a.e.
monotonic increasing, leads to con;radictory results (1)
and (2). Therefore, the Zt process is not a.e. monotonic
increasing.

Since the set of all sample functions which are not
monotonic increasing, contain

{szt(w) < 0, for some t:c<t<l}/§ N',
" where N' = {w:zo(w) > O} » a set of P-measure 1,

therefore, the set of all sample functions which are

not monotonic increasing, contain a set of measure l-c,
(above by (2) ), for arbitrary c:0<c<l, and as such, is

a set of measure 1.
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We shall see in Chapter 11, that Definitions 10.5 and
10.6 are equivalent provided P is a complete probability
measure, and the process 1ls separable. The next theoremn,
given without proof, 1s therefore of great importance.

THEOREM 10.5

Every Stochastic Process, whose measure is complete,
has a separable modification.

Proof: See [14-2] .

Example 10.2:

The Zt modification of X, of Example 10.1l is not

t
separable.

Argument : Let O<c<l. Then for Y as in Example 10.1l:

%wz INF 2, (w) S o% D) {wz c<3f<1)j ;

te[c,1]

That 1is,

t€[c,1]
But for any countable set S:

P G&; INF 2 (w) S 0%} = P k,) {ﬁ' Zy(w) = 9;-\

{w: INF _Zi(w) o % contains a set of P-measure 1l-c. (%)

tele,1]ns / té[ ¢,1]Ns
N :
< _Z: (P(,{w: zy(w) 2 o,’; = 0.
t€[c,1]ns | ]
Therefore, INF Zt > 0 a.e.

t€[c,1]nS



83

Now were the Zt process separable, one would have:

INF Z., >0 a.e., and hence
= €
t&[c, 1]

()

]
o

P( wi: INF _ Zy(w) S0
Since c¢<l, the assumption that the Zt process is separable
leads to contradictory equations (%) and (¥#¥*). The Zy

process 1is therefore not separable.



84

@ CHAPTER 11 : SEPARABLE STOCHASTIC PROCESSES,
MONOTONIC INCREASING IN PROBABILITY

The first goal of this chapter will be to show that
for separable processes whose measures are complete, Definitions
10.5 and 10.6 are equivalent. The reader will also be shown
that for separable processes monotonic in probability, with
complete measures, there exist right continuous modifications.
We shall now set up the machinery that will be used
in our proofs.
Definition 11.1: (Upcrossings and Downcrossings)
Let £ RI—-aﬁl be an arbitrary function, where
R, is the real line. Let A = gxl’XZ"°"xn%<:'Rl be an

arbivrary finite set, with Xy <X, < «+s <X, . Further,
let [a,b] C R, be an arbitrary closed interval of positive
length.

We shall first define yl,...,yn as follows:

vy, = 0 ‘if f(xl) < a
= 3 if aSf(x) Sp
= 1 if b < f(xl)

and for J = 2,3,..4403

yj_ = 0 ir f(xj) < a
—- < <
= yj-—l if a = f(Xj) = b
= 1 if b < f(xj) .
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Consider the sequence VyseeelVp ¢

the number of times that 0 is immediately followed by 1

<
]

= the "number of upcrossings of [a,b] by {f(x)zx € A} M
We shall denote this by: _
U = U(f,A,[a,b]) :
Also,

D the number of times that 1 is immediately followed by 0

the "number of downcrossings of [a,b] by %f(x):xéA}.“
We shall denote this by:

D = D(f,A,[a,b]) .

Example 1l.1:

f(x)
. fo ) fo )
bt o~ m-- - - L Ll
 t(xy) .
Xl f(x5)
a f- e - = e — = — e — — e m e — el
£ (xy,) £ (x)
.- e ——a . b
Xy X, Xq X x5 X x7

Let A = {xl,...,x7} + The y-sequence by definition is:
%,1,1,0,0,1,0 . Therefore:
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U(f,A,[a,b]) = 1 and D(f,A,[a,b]) = 2.

Definition 11.2: (Upcrossings,Downcrossings: infinite case)

Let f:RI——%Rl be an arbitrary function; B_C Rl be an
arbitrary set; and [a,b] be an arbltrary closed interval of
finite,positive length.

We define the number of upcrossings and downcrossings

of [a,b] by {f(x):x(—_ B% respectively by:

U(f,B,[a,b]>

SUP U(f,A,[a,b] s and
ACB
A finite

D(f,B,[a,b])

SUP D(f,A,[a,b]) :
ACB
A finite

Lemma 11.1:

Let 1 [O,w)——»Rl be an arbitrary function, and S be
a dense countable subset of [O,w) satisfyling:
for every interval I, with endpoints in S,

SUP f(x) SUP f(x) and INF f(x) = INF f(x).
x€I x€ INS xEL x€INSs

Then for every finite set A.C,[O,w), and every interval I

with endpoints in S,

D(f,I A,[a,b]> < D(f,I s,[a,b]) .. (1).
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Proof: We shall assume that for some finite A, and interval
IO with endpoints in S, that (1) is false, and obtain a

contradiction. That is, we assume

n, = D<f,IoﬂA,[a,b]> > D(f,IoﬂS,[a,b]).

o

It is clear that n, 1s finite, since n, must be
smaller than the number of elements of the finite set, A.

Since S is dense, it is easily seen that Io can be
partitioned into n, intervals, each of which has its
endpolints in S, and each, when intersected with A, has
exactly one downcrossing of [a,b] by T.

Since D(f,IéﬁS,[a,b]) < n, , at least one of
the n, intervals, above, when intersected with S, has
no downcrossing of [a,b] by f. Let one such interval be
denoted by ¥,

We have thus constructed an interval I*, with endpoints

in S, such that
D(f,I?ﬁS,[a,b]>

i
o

and D(f,I.*nA,[a,b]> = 1 ..(2).

Since it is clear that for any B, such that D(f B, [a b]>
is finite: !D\f B,[a, blj- U(f B,[a, b] i <1, (see
Definitions 11.1 and 11.2), two cases can exist. These are:
Case 1: U(f,fhs,[a,b]) = 0 ; Case 2: U<f,1*ns,[a,b]>=i
We shall in turn treat each, and produce an appropriate

contradiction.
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@ Case 1: U(f,IihS,[a,b] = 0
Since we also have D{f,I?ES,[a,b]> = 0 , then
either:
() SYP f(x) < b or (b) INF f(x) Z a.
x€I NS X€I*¥NS

(Otherwise, an upcrossing or a downcrossing would exist.)
But in view of the given properties of f, this

implies that elther

(a) b 2 SUP f{x) > SUP f(x) or
- x€I® = x€IMA

(b) a =< INF f(x) % INF f(x)
= xeIw = x€I¥NA

This in turn implies:

D<f,IW1A,[a,b]) = 0 , contrary to equation (2),
which gives D(f,I*ﬂA,[a,b] = 1. Hence Case 1 cannot
occur.

Case 2: U(f,I*ﬂA,[a,b]) = 1

Partition I% into intervals Jl and J2 , With endpoints

(

in S , such that SUP.(»x:erl;: = IN‘F{X:XGJzé and

b and INFf@Q > a .

SUP f(x)
xEJlQS XEJT NS

(This is possible, since S is dense, and since

D(f,I*ﬂS,[a,b]> = 0 .)

But by the given properties of f, we obtain:

A

b 2 SUP f(x) 2 SUP f(x) and
xX€Jq T X€J{NA
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a S INF f(x) = INF £(x)
x€J, T x€EJ,NA

That is, f(x) is never above b for x €JyNA, and
f(x) is never below a for xGZJzﬂA. Therefore,

D @3I*nA,[a,b]) = 0, since JZUJ, = I¥, and
J1 is "to the left of " Jz. Again, this gives a contradiction
of equation (2), which gives D(f,IW\A,[a,b]) = 1.
Therefore, Case 2 cannot occur.

Hence, for every finite set 4, and every interval
I, with endpoints in S,

D f,1N4,[2,b] = D(f,ms,[a,b]) , since
contrary assumptions led us to the contradiction:

"There exists an interval I¥*, with endpoints in 3,

1 ."

such that 0 = D(f,I*/‘SA,[a,b])

This completes the proof.

Lemma 11.2:

Under the conditions of Lemma 11.1, for any interval

I with endpoints in S,

D(f,I,[a,b]) = D(f,IﬂS,[a,b]) :

Proof': By Lemma 1l.1l, one has

D(f,I,[a,bJ) = ig? D(f,A,[a,bq> < D(f,xqs,[a,bq} (%),
A finite

On the other hand, Definition 11.2 gives:
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D(f‘,IﬂS,[a,b]) - igl;nS'D(f,A,[a,b:D < ign(f,A,[a,b])

A Tinite A finite

< D(f‘,I,[a,b])- ()

Combining the inequalities (*) and (#%¥), one has:

D(f,I,[a,b]) - D(f,IOS,[a,b]) :

This completes the proof.

Lemma 1l.2 will be instrumental in proving THEOREM 11.1.
The result will be used with S as the universal Separating
set of a separable Stochastic Process, and for almost
every w, by the definition of separability, Xt(W) will have
the same property that f had in Lemmas 1l1l.1 and 11.2.

THEOREM 11.1 :
Let (11,29,P,Xt,t 2 0) be a separable Stochastic

- Process, monotonic increasing in probability, and complete

measure P.

‘Then the process is a.e. monotonic increasing.
Proof: Let S be a universal separating set for the process.
Without loss of generality, we may select S as a dense
subset of the positive real numbers. ( The rational numbers
together with an arbitrary universal separating set form
a dense universal separating set, for example.) Also, by

definition S is countable.
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One has therefore,
\

P{w; X, (w) 2 X_(w) for all t,s € S,with t > sj
= o[ N ﬁ(w; X, (w) > Xs(W)% = 1.

t,sES -

t>s

The above follows from the facts that since the process
is monotonic increasing in probability, gW:Xt(W) Z Xs(we; is
an event of probability 1, whenever t > s, and countable
intersections of events of probability 1, have probability 1.

Therefore, noting that for arbitrary finite intervals
I, {a,b]

{w; D(Xt(w),InS,[a,b]> = o% D

&

%w: X (w) Z X (w) for all t,s 5 with t > s% ;

one has by the completeness of the measure P,

\
P gW:'D<Xt(w),InS,[a,bJ) = O% = 1 ee(l).
Next, 1let = {[a,sj: ayB €S with g > a}
= the set of all closed intervals
with endpoints in S.
( / by d)
Let Ea,b = iw: DkXt(w),IQS,[a,b] = D(Xt(w),I,[a,blj, IEJj

Therefore, by Lemma 11.2,

E () dw: SUP X, (w) = SUP X, (w) , INF X.(w) = INF X, (w)
a,o 2 Iej{ te1 ° t€Ins °© tex © £€I0S © ;
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But since the process is separable, one has:i

A
Pllws SUP X, (w) = SUP X (w) , INF X (w) = INF RACHIEE
tel t€INs tel t€INS

holds for every interval I.

Also, 1t is clear that since there are only countably
many choices for the endpoints of the intervals in j ,j is
itself a countable set.

Therefore Ea,b contains a countable intersection of
events of measure 1, and hence it contains an event of
measure l. By the completeness of P, one hence obtains:

P(Egp) =1 .. (2).

By (1), and the fact thatg is countable, one has:

P({W:D(Xt(w),IﬂS,[a,b]} =0, Y Ief{}) =

and rewriting (2), using the definition of Ea p above,

Pé% D(Xt(w) 1Ns,[a, b]} (Xt(w I,[=, b]}, 14 Iejg)
Combining the above, one obtalns:

P<{W:D(Xt(w),l,[a,b]) = 0,Y Idf}): 1 .. (3)
Now if a path Xt(WO) is not monotonic increasing,

there will exist an IG;ﬂ » and rational numbers a,b with

a<b, such that

D(Xt(wo),l,[a,b]> > 1.

Hence, if E = {W:Xt(W) i1s monotonic, nondecreasing in i} ,

E = () {w:D(Xt(W),I,[a,b:D = 0 ,\‘/IEj;
a<b
a,b rational
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That 1s, E 1s a countable intersection of events
of probability l,and is therefore itself an event of
probability 1. The process is therefore a.e. monotonic
increasing.

This completes the proof.

The next Theorem is a converse to THEOREM 11l.1, and
under restricted conditions, characterizes separability.

THEOREM 11.2:

Let Lfl,E?,P,tht 2 0) be a Stochastic Process, a.e.
monotonic increasing, with complete measure P.

Then:
(a) The process is monotonic increasing in probability, and
(b) If the process is also continuous in probability, befinition
10.7, it is separable.

Proofs

(2) Let s,t be arbitrary real numbers with O<s<t.

{

Therefore, {W:Xt(w) z Xs(wjg contains an event of probability

{W:Xt(w) > Xs(w?};D (W:Xt(W) is monotonic, non-decreasing in t} .

l, and by the completeness of P, it must itself be an event
of probability 1. ( Note: For (a) completeness of P is
not really needed. P, being a monotone set function, and

XS,Xt being measurable functions give this result.)



(b)

p({w,

te[a,b] ©

oL

Let S = the set of positive rational numbers.

Since the process 1s a.e. monotonic increasing,

.o (1),

i
)

SUP X, = X INF X, = X
b °? t
t¢[a,b] a}

Let tl’tZ"" be an increasing sequence of rationals in

[2,%]

1lim
N300

P({wx
p(( o

such that lim tn = b.
N300

By the continuity in probability, for every €3> 0,

%w: %5, - xbl >€}) = 0.

Hence, for every £>0, since P is a monotone set function,

SUP_ X, > xb-€9= 1.

tg[a,bns
That is, since. the choice of € is arbitrary,
\
SUP Xt > X = 1.
tfa,ps © = P

Also, by equaticn (1), we have

SUP Xt § Xb = 1.
t€[a,b NS '
Combining the above equations, we readily obtain:
l\
SUP Xi = ngﬂ = 1.
te[a,b]0s i

Similarly, by taking a sequence of rationals in [a,b],

decreasing to a, we obtain

Pﬂﬁ:

\{

INF Xt = Xé}E = 1.
t&[a,b]ns /
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Combining the last two equations with (1), it is

readlily seen that:

SUP Xt = SUP Xg = Xb 8eCe and
te[a,b] t€[a,p]Ns

INF Xy = INF X, = X, aee.,
t€[a,b] t€[a,b]Ns

for any closed interval [a,b] (C [0,).

This is clearly equivalent to the condifions for
separability, since open intervals can be represented as
countable unions‘of closed intervals, and closed intervals
can be represented as countable intersections of open
intervals, and countable intersections or unions of
events of probability 1, are events of probability 1.

This completes the proof.

We shall now develop an a.e. right continuous
modification of certain types of Stochastic Processes.

Definition 11.3:

Let ([1,3,p, Xi:t 2 0) be a Stochastic Process,
which is a.e. monotonic increasing, with Xo = 0.

We shall define X: for ¢ 2 0, in the following way:

Xg(w) = 0 iIf we N
- 1'1\m Xpyp (W) if  we (ﬁ_- N,
hyo
where N = %W:Xt(W) is not monotonic, non-decreasing in t

) .
J
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Lemma 11.3:
For fixed we {1, X'E(w) is well defined for all t > O.

Proof: By Definition 11.3, the result is evident for w¢€ N.
Let we(ﬂ— N), and let {hn% and {hﬁ; be two sequences

of positive numbers decreasing to 0, as n tends to infinity.
Since both sequences converge to 0 from above, for

every integer n =_>_ 0, there exists an integer m 2 0, such that

L}
hn > hm .

By the monotonicity of Xt’ for all WE(Q- 1\9, we have

1lim X

n->c - N300 n

gn, ()

Reversing the roles of the sequences h, and hlll s, the
same argument gives the above ilnequality in the opposite
sense. Therefore, we have shown:

= 1lim X
Nn~>co

1lim X

(w) .
I t+hy,

t+hn(W)

Hence, the 1limit exists independently of the choice
of the sequence converging to zebro from above. That is,
for well- N,

X" (w) = 1lim X (w) is also well defined.
t n\0 t+h

This completes the proof.
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The next Lemma will further assert that X: is a
Stochastic Process.

Lemma 11.4:

(11,:§3P,X::t >0) is'a Stochastic Process, where
X{ is defined in Definition 11.3.

Proof: By Lemma 11.3, for a Z 0, and b < 03

{W:KE(W) s a} N {w: X, 1/n (W)§Q}()N and

"n=1
J

Since the right hand sides of both equations above

WA

éw:xz(w) Qb (Since X, = 0).

are members of E; » we have for each t, X: is a random
variable. In view of Definition 10.1,

This completes the proof.

THEOREM 11.3 :

Let (J1, H,P,Xt:t > 0) Dbe a Stochastic Process
with complete measure P, monotonic increasing in probability
and contiuous in probability, with £, = 0.

Then there exists a separable modification of the
process, which is a.e. monotonic increasing, and a.e.
right continuous. (i.e. there exists a separable modification
with almost every sample function being right continuous

and monotonic, non—decreasing)
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Proof: ( five steps)
(1) By THEOREM 10.5, the process has a separable modificatlion.
Since the properties, described in probability, are preserved
under modifications, this modification is monotonic increasing
in probability. Hence by THEOREM 1ll.1, the modified process
Lfl,ff,P,Xt:t > 0) is a.e. monotonic increasing.
(1i) Next, Xz will be shown to be a modification of Xt’ the
separable version of the process.

By part (i) above, and Definition 1l.3,

P(X, SX{ $X ) = 1 for all t 2 0, n€ Z*.

t = “t+1/n

But by continuity in probability we have, for all €:> 0,

1im P(|X -x‘>e)=o.
e t+ 1/n t
Combining the two equations above, we obtain, for all €> 0,

P(X, SXf Sx,+€) = 1.

Since the choice of & is arbitrary, we have
<=
P(Xt = Xt )

Therefore, X; is indeed a modification of Xt'

= 1.

(iii) Next, Xz will be shown to be a.e. monotonic increasing.

Let A = €W1Xt(w) is a monotonic non-decreasing function of

By part (i) of this proof, agaln assuming‘Xt is separable,
P(A) = 1.

But for every wé€ A, and whenever O § t < s, we have,

by the monotonicity of Xt(w),

t}.
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+
w) = 1lim X (w) 2 1lim X (w) = X . (w) .
a0 SR = yo th t

Therefore for every wEgE A, X:(w) is a monotonic non-decreasing
function of t. Hence,
B = i#: Xt(w) is monotonic non-decreasing in t% DR
a set of P-measure l. Therefore, by the completeness of P,
B is a set of P-measure 1.

X: is thus indeed an a.e. monotonlc increasing process.
(iv) The Xg(w) process is a separable modification, since
by hypothesis, Xt(w) is continuous in probability, and so
must be its modification (by (ii) ) Xg : Xz is a.e. monotonic
increasing; and thus, the conditions of THEOREM 11.2(b), being
satisfied, imply the separability of X.

ot

(v) It remains only to show, that Xt is a.e. right continuous.

For wég& A = {w:xt(w) is monotonic non-decreasing in t},
with Xt taken as a separable modification, we have for
every h > 0, that since the Xt process is a.e. monotonic
increasing,

+ <
Xoan(w) S Xpop(w).

Taking limits on both sides, and applying Lemma 1l.3,

lim XD, (w) S Lim X o (W)= X (w)

n\o =  hyo

But since by (iii), Xg is a.e. monotonic increasing, we have
1lim X++h(w > X; , on a set containing A. See (iii).
h{0 -
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Therefore, for every w& A, we have

1im XI_ . (w) = xt , forall t>o0.
hyo t+h t = |

But by (i), the set A, of’monotonic non-decreasing Xt(w)
sample functions, is an event of probability 1l. In view
of the completeness of P, the set of all right continuous
sample functions, is an event of probability 1. Therefore

Xt is indeed a.e. right continuous.

t

We have thus constructed a modification X% of X.;
such that

(1) X; is separable

(2) Xz is a.e. monotonic increasing

(3) Xt is a.e. right continuous.

This completes the proof.
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CHAPTER 12 : STOCHASTIC INTEGRATION WITH
RESPECT TO MISI PROCESSES

In this chapter, we shall further restrict the

processes occurring in the discussions to the following:

Definition 12.1:

A MISI Stochastic Process (), F,P,X¢it 2 0) is a
separable process, with complete measure P, satisfying:
(1) process is monotone increasing in probability,

(2) 1s an independent increment process, that is,if

- < <
0=1t,2t; ¢t < ... 5 t, » then

\
{(th+l = th) 1 J o= 0,1,---,n-l% are a set of

nutually independent random variables,
(3) is a statlionary increment process, that is, if h is
an arbitrary non-negative number and

0=ty Sty Sty 5 the joint distribution of

= oo e

<ty

. - L e e o X - X
( th+h Xto+h ? xt2+h Xt1+h ? > Ttyth tn-1+h

does not depend on h, and

(&) XO = 0.

MISI means Monotonic, with Independent and Stationary

Increments. The separable Inverse Gaussian and Poisson

processes are examples of MISI processes.
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Definition 12.2: (Stieltjes Stochastic Integral)
Let (Il,:gyP,Xt:t 2 0) be a MISI process, and
f+ [a,b]=—>R; be a continuous function with

0Sa<b<w Wedefine

b
If(w) é f(t)dxt(w) wg(l- N

= 0 WEN ,
with N = {W: Xt(w) is not monotonic non-decreasing in t} ,
and the integral is the ordinary Stieltjes integral.
I.(w) is called the Stieltjes Stochastic Integral

of f with respect to the MISI process Xt over the interval

L[a,b] ©

THEOREM 12.1 :

If Xt is a MISI process, which is finite a.e., then
If exists for almost every w .
Proof: Let Ny = {W:Xb(w) = w}, and N be as in Definition 12;1.
Since a MISI process satisfles the conditions of THEOREM 11.1,
N is therefore a set of measure 0. Also, since the process
is finite a.e., Nl is also a set of measure 0 .

Hence for Wé(rl- (NUng , a set of measure 1, we have:
f(t) is continuous and Xt(w) is a monotonic, non-decreasing
function of bounded variation. By the elementary theory of
Riemann-Stieltjes integration,[ 13-1 1, I, exists on&fl- (NUNlj.

This completes the proof.
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THEOREM 12.2:

For MISI processes, finite a.e., If(w) is a random
variable.
Proof: Clearly, it is sufficient to prove If+(w) is a
random variable, where f+ = MAX(f,0), for if this were

the case, If_(w) = +(w) would likewlse be a random

-f)

I
(=f
variable, and since If+ and If_ are finite a.e., by
I +

THEOREM 12.1, If = - If_ would be a random variable.
Let Pn be the following sequence of partitions of [a,b]:

P =3t = a + g(b-a) 1 k = O,l,...,n% and n= 1,2,¢6.

Let Ck

n HW{f*W):té[%blﬂl,tmnjglc=l,u.n.

Finally, let

n
+ S
s, (w) é_:i C,n (th,n(W) - th-l,n(W)> .

Since f is continuous, it is clear that f* is continuous.

Hence, by THEOREM 12.1, we have for almost every w,

1im SUP s;(w) = I (W), .o (1)
+
Iy I>T f

(since the S;(w) are merely the Riemann-Stieltjes sums, and
these converge a.e. to the Riemann-Stieltjes integral.)

But for each n, S;(w) is a linear comblnation of
random variables, and hence is a random variable. Since
the 1im SUP of a family of random variables, which is

countable, is itself a random variable, the left hand
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side of equation (1) is a random variable. But (1) holds
for almost every w. Hence by the completeness of the measure

P, If+(w) is a random variable.

In view of the remark at the start of the proof, we
obtain that If(w) is a random variable.

This completes the proof.

THEOREM 12.3
For a MISI process, finite a.e., the following hold:
If f and g are continuous functions from [a,b] to Rl’

with 0 < a < b<w, and ¢, any real constant, then

® (1) IpgW) = Iglw)+ I(w) a.e.
(2) I __(w)
cf

cIf(w)

That is, the integral is linear with respect to the
functions f and &
Proof: The proof of the above follow immediately from the
corresponding results.for ordinary Riemann-Stleltjes

integrals.

THEOREM 12.4 :
For a MISI process Xt’ and fz[a,b]—maRl, a continuous

function, with 0 S a < b < o, If+(w) and If_(w) are

stochastically independent, provided the process is a.e finite.
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Proof: Let Pn be the following partition of [a,b]z

Pn = {tk,n = a + %(b-a) ’ k = O,l’oo-,n; y N1 = 1,2,000
Let C.k,n = INF{f-l-(t)S té[tk—l,n ’ tk,E{ }k = l,ooo’n,
Dk,n = INF {f’(t)z t é{%k-l,n" tk,gl )k = 1lyeeeyn.
Next, let
N n
S ({w) = ZE: c X (w) -« X (w) and
n v o7 k,n ( tk,n Cx-1,n

=

-

r\“4
)
E]

S (w) = D X (w) - X (W)}
n w k,n ( tk,n w tk-l,n W)

We now note that P q is a refinement of P r wheneverx
2 2

T
|_J

qQq>r, q,r€2Zt. Hence by the fundemental results of lower

Riemann-Stieltjes sums: THEOREM 12.1 gives

+
Szr(w) )% 'If+(w) a.e., and
(*)
ST (w) }ﬁ I (w) a.e. as T—>we
2T =
But from the definition of C and D , 1t is

clear that C and D cannot both be positive for fixed
k,n k,n

k and n, (for if this were the case, there would exist an

interval such that, f is always positive and always negative.)

Hence at least one of Ck,n and Dk,n must vanish.
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Therefore S;(w) is a linear combination of the

increments (Xt - Xt such that f(t) > 0, for all t
k,n k-l,n

(i.e. C >0 ).

in the interval [t s k,n

k=l,n k,n] ?

Also, S;(w) ils a linear combination of the increments

X, - X, such that f(t) < 0, for all t in the
kyn k=1l,n

interval [tk;l,n ’ tk,n] , (i.e. Dk,n >0 ).

Since a MISI process has independent increments, and

S;(w) 1s a function of increments of intervals disjoint

of those upon which S;(w) depend, we see that for arbitrary
n, S;(w) and S;(w) are independent random variables.
By (*), and the fact that P is a measure, and

therefore continuous from below, we obtain for any c¢ > 0,

d > 0:
P[I.,.(w) >c, I..>d] = 1]:—1-20 P[S';r(w) > ¢, s;r(w) > 4]
= I;L__i,g<l>[s';r(w) > c] P[S;r(w) > d]) ( S"r‘l , S;l Indepsandent))

il

P[I +(w) >c¢] P[I (w) > a7
f £~
That is, I +(w) and I _(w) are indeed independent
T T
random variables.

This completes the proof.
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Remark: The assumption that the process be a.e.
finite was never used in the proof. In fact, neither was

the fact that I +(w) is a random variable dependent,on thils
T

fact. However, the result is of no value to our discussion
unless If(w) is a random variable, and this requires that
the process be finite‘a.e..

The next theorem gives a rather remarkable result,

which is proved using THEOREM 12.4.

THEOREM 12.5: (Characterization)

Let Xt be a MISI process, finite a.e., and unbounded
in probability. (See Definition 10.13). Let £ be a continuous
function from [a,b] to Ry , with 0 S a<b <o,

Then a necessary and sufficient condition that

(&) I.(w) = 0 a.e. is that
(b) f(t)= 0 for all t€ [a,b].
Proof: Necessity of condition

If If(w) = 0 a.e., then
I (w)=1I (w) 2e.C. ee{1)

Hence for any ¢ > 0, THEOREM 12.4 gives
P[If+(W) <c] = P[If+(w) < C, If_(w) < c]]

= P[If+(w) < c]P[If_(w) <c] = P[If+(w) < c] 2.
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The above equation has solutions

P[If+(w) < c] = 0 or 1.

Therefore, there exists a constant 4 z 0, such that

I _ (w)=I (w)=24d €.
ot w o= w a.e

(Since the process is finite a.e., 4 must be finite, by THEOREM
12.1)

We shall assume, for some tOEEEa’b]’ that f(to) > 0,
and obtain a contradiction.

Since f(t) is continuous, and f(t,) > 0, there exists
a positive number §, and an interval of finite length,
[tl,tzjc:[a,b], with tgéi[tl’tzj’ such that

£(t) 2 5 , for all tE€[ty,t5].

By the monotonicity of almost every sample function,
and by dominated convergence, we obtain:

If+(w) : G(th - th) " a.e.

Henée by the above; and the fact that a MISI process.
has statlonary increments, as well as the fact that the
process 1s unbounded in probability, we obtain:

P[If+(w) >d] 2 P[X, -X_ >d4d/8] = P[X

> d/é] > 0.
2 b

tz_tl

This 1s a contradiction of (2), which states I _ =d a.e.

£
s
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The assumption that f(t) is positive for some tg [a,b],
glves rise to a contradiction. Hence, for all t€;[a,b],
r(t) <0 .
The same arguement applied to I (w) readily gives:
f-
f(t) 2 0, for all t¢ [a,b].

Therefore, f(t) = 0 for all t&[a,b]

Sufficiency of condition

If f(t) = 0 for all t ¢[a,b], THEOREM 12.1 gives

b
I.(w) = 0dX, (w) .€.
fW L tW a.e

= 0 EeCe

This completes the proof.

THEOREM 12.6 : (Characterization)

Let X be a MISI process, finite a.e., and unbounded

t
in probability. Let f and g be continuous functions from
[a,b] to B, , with 0 g a < b <.

Then a necessary and sufficient condition that

(a) Ip(w) = Ig(w) a.e. is that

(b) £(t) =g(t) for-all tg[a,b].
Proof: If(w) = Ig(w) a.e. , by THEOREM 12.3, is equivalent

to If g(w) = 0 a.e., which in turn, by THEOREM 12.5,

is equivalent to f(t) - g(t) = 0 for all tg [a,b].

This completes the proof.
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A Note on the Integral:

For MISI processes, finlte a.e., and unbounded in
probability, the integral If defines a 1-1 mapping from
the continuous functions with domain, [a,b_] C[O,oo), to the
set of random variables on ({1, ,P).

The separable Inverse Gaussian and Folsson Processes
are examples of MISI processes, finite a.e., and unbounded
in probabllity. The results of Chapters 11l and 12 therefore
hold for these processes.

Table 12.1 lists some properties of the separable

Inverse Gaussian Process, in particular.
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Table 12.1: (For complete measures)

Properties of the Separable Inverse Gaussian Process

(1) Continuous in probability

(2) Monotone increasing in probability

(3) Unbounded in probability

(4) a.e. monotonic increasing

(5) MISI process

(6) If a and b are the parameters given in Definition 10.4,

for any interval IC:[O,w), such that I is closed, Separability,
(1) and (4) give:
PSUB Xy <] = PXy<eo] = F(c;aM,bM?),
where M is the right hand endpoint of I, SUP{tzteI} . This
result was obtained first in [16-7:] , by means of double
Laplace Transform. The result is in general false, if the
process is not separable. (In example 10.1l, let -Yt be the

following modification of Xt‘

- 4
Y£ Xt . Y ¥ t
= o Y=to)
(7) Bj (6), the process is finite a.e.
(8) By (3),(5), and (7) all the results in Chapter 12,

with regard to Stochastic Integrals hold.
(9) The process has a separable modification, a.e.

- monotonic increasing, and a.e. right continuous. (THEOREM 11.3)
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APPENDIX 1: CONCLUSIONS AND CONJECTURES

(1) Testing for the mean of an Inverse Gausslan population
when A 1s unknown.

Let Xy,...,X, be a random sample from F(x;F,x),

n
where u and ) are unknown. Assuming that our decision is

}

based oni:
2 [ -
_ 2 - L e
Z = a@l)&Ep)"p, (2 (X -1) ’
\Jj=1 X,
_ J
how would one test:
HO : F = PO against
HA : P = Pa at significance levelcx?

Under H,, THEOREM 6.1 gives: 27\ F1,n-1 . Therefore
the distribution of 2, under the null hypothesis does
not depend on )A. One might conjecture that the best test
based on -Z, would be to reject if-Z were too large. The

following computation supports this CQnJecture:

n. —
Since X and EL* (l/XJ- 1/X ) are independent random
J=1

variables, and the distribution of the latter does not
depend on o in order to minimize E(Z), it is equivalent

to minimize :

S

—- 2
(X - Po)
Ei with respect to F’ the true mean of the

\ Xpo

population.
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By THEOREM 6.1, fmIG(}A,nx). THEOREM 3.3 gives
Ex~h) = 1 o+ 1 .

o na
Using the above, .simple algebraic manipulation gives:

2
2 (- po) -1+ po)® ,

pé X - b P

where P is the true mean. The expectation, above, 1is clearly

minimum at R = PO' Hence, intuitively, the smaller Z is, the
closer we would expect the true mean to be to Po* A challenging
problem would be to obtain the distribution of Z under HA? and
apply the Neyman-Pearson lemma, to check this conjecture.

@ (2) Analysis of Becj.procals.

. | Tweedle, [15-3], suggests a method of comparing the
means of several Inverse Gaussian random samples, having the
same ). The method is known as "Analysis of BReciprocals”.

Let Xil""’xin be a random sample of size n from F(X,Pi,k),
i=1,ees,k. Let Xiﬁ be the ith sample mean, and X, be the

mean of the nk observations, Xij' Let

k k n
S= 2 (V% -T) 5 T=_ 2 (M- VT .
i=1 i=1  j=1
The suggested method of testing !
HO: Fl T oaes = Fk versys HA: HO false, is: reject if

n(n-1)ks >

Te-D)T Fk-l,k(n-l)gon :

Conjecture: This rejection region is UMP.
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(3) For MISI processes, unbounded in probability, it was
noted that the stochastic integral, defined in Chapter 12,
can be regarded as a 1l-1 mapping from the continuous
functions on a closed interval to the random variables
on the measure space of the process.

The definition of the integral is easily extended
to funtions with at most countable discontinuities on
the positive real numbers. Interesting problems to be
investigated in further work are:
(1) What 1s the image space of the integral of an Inverse
Gaussian MISI process? That is, what distributions can
the integral have?
(2) Find a class of functions which will produce a
canonical form for all infinitely divisible laws. Here
the integration will be with respect to a Poisson MISI
process. The extended definition would have to be used,
and allowance would have to be made for addition of an
independent Gaussian term.

The fact that the mapping is 1l-1, of course, does not
imply, that there is a unique way to obtain a given
distribution. The class of functions selected, therefore,

must bring about this uniqueness.
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(4) Potential application of THEOREM 4.1 might occur in

the following test of goodness of fit, for large samples:

HO: F =T versa s le F= Fl , Where F 1s absolutely

continuous, and

%x)>%@) x<XO ,

< Eﬁx) x > X, , with FO(Xo)v= Eﬁxo) = % , say.

Here, the fact that the inequality, given in Definition
4.3, is violated, is not in itself a significant fact, but
the fact that it was violated early, 1s significant.

The rejection of Hy in favor af Hl would be made on
the joint facts that the inequality was violated, and that
it was first violated before an appropriate value of X,
determined from Fo(x). B

Note that are procedure is vastly different from
locating the sup of the difference Fo(x) - Fn(x) , and
determining where this occurs. The first violation of

the inequality, is not necessarily the sup.
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APPENDIX 2 : THE INVERSE GAUSSIAN PROCESS
AS A CENTERED PROCESS

Definition A.2.1: (Centered Stochastic Process)

A stochastic process, {X :aétg?} , 1s a centered stochastic

t
process provided
(1) It is a statlonary, independent increment process;
(2) For each t€ (a,b),
X - = lim X and X4, = lim X , Where
t sttt © t syt
the limits are sequential, exist with probability 1 and

are independent of the choice of the sequence with probability
1

=

(3) If (a) P(Xt - XS = C) =

() POL_ - X

() P(Xyy = X 4 = C)

t3s, or

C) =1 t#s, or

i
[

1  t#s, then

C = 03
(&) For all but countably many fixed t & (a,b),

=1o
This definition occurs in Doob, [3-17.

THEOREM A.2.1 (Characterization)
Let Xt s astsb, be a centered process, with no
fixed points of discontinuity, (that is, continuous in

probability). Then the following are equivalent:
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(1) If the process is separable, almost every sample
function is continuous; and

(2) For each s,t ¢ [a,b] , the random variable Xt-xs
has a normal distribution. Process is separable.

Proof: See [3-2] .

THEOREM A.2.2%

A separable Inverse Gaussian process 1s a centered proc-
esS.
Proof: \

By definition, the process has stationary, independent
increments. By Lemmas 11.3 and 11l.4, and Definition 11.3,

X

o+ = xt+ satisfies (2) of Definition A.2.1. By THEOREM

11.3, Xt+ is a modification of X_ . Hence P(Xt =X .) = 1.

t t+

The same arguments in Chapter 11, are easlly seen
to carry through for Xt' , g&iving analogues of Lemmas
11.3 and 11.4 , and THEOREM 1l.3. Hence (1),(2), and (4)
of Definition A.2.1 hold.

(3) clearly holds, since in each case, we have
an Inverse Gaussian random variable, which, of course
has an absolutely continuous distribution function.

X, is therefore a centered process.

t
This completes the proof.
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Remark: If a stochastic process is a.e. continuous, it is
clearly separable. (See Definition 10.9, with S = the set

of rational numbers.)

THEOREM A.2.3 i

There does not exist a modification of the Inverse
Gaussian process, almost all of whose sample functions are
continuous.
Proof:

We shall asume such a process exists, and obtain a
contradiction.

By the above remark, the process must be separable.
Since it does not have any fixed discontinuities, and
is a centered process, THEOREM A.2.1 gives: Xt-XS is
a Gaussian random variable, for t%s. This cannot
happen, since Gaussian random variables ére negative, with
positive probability, while Inverse Gaussian random
variables are negative with probability 0. (Contradiction)

This completes the proof.

Remark: a.e. right continuous and a.e. left continuous
modifications of the Inverse Gaussian process exist.
However, a.e. continuity cannot be attained. This is
intuitively logical, since the Poisson process has all
of the properties used above, except absolute continuity.

The Poisson process is highly discontinuous.
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APPENDIX 3: THE CAUCHY FUNCTIONAL EQUATION

In this section, we shall derive the solution of

~the Cauchy functional equation, with a minimum of

assumptlions.

THEOREM A.3.1:

Let f(x) be an extended real valued function, satisfying
(1) ‘f(x) + £(y) = £(x+y) for all x,yERy ,
(2) f(x) is bounded in an interval [0,C].

Then f(x) = f(l)x for all XER,.

Proof':
Step 1: f is right continuous at 0.

Let t€[0,C] . Since f is bounded on [0,C7], there
exists a positive number K, such that

f(t) < K.

But by (1), for arbitrary né;Z*,ﬂ

f(t/n) = f£f(&) .

n
Therefore, for all tg[0,C] , f(t/n) < K/n.
That is, whenever t < C/n, f(t) < K/n. Hence:

lim f(t) = 0o .
ty 0

By (1), £(0) + f(y) = ©(y), and therefore, £(0) = 0.

f is thus right continuous at 0.
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Step 2: T is continuous at all x¢ Rl.

(a) Right continuity:
By (1), f(x) + £(t) = f(x+t) . Therefore, for X€ Ry,

f(x) + 1im £(t) = 1lim f(x+t) , and hence:
£ty 0 t\V 0
f(x) = lim f(x+t) .
ty o

f is right continuous at x.

(b) Left continuity:

By (1), f(x)

f(x=-t) + £(t). Therefore, for x€ Ry,

f(x) = 1lim f(x-t) + .1lim f(t)
t\yo ty0
= lim f(x-t) .
tyo0

f is left continuous, and hence continuous at x.
Step 3: The theorem holds for the rationals.
Let x = p/q be a positive rational number, with p,q
positive integers..

f(x) = p £(1/q) (By (1) ).

(1) = q £(1/q) (Put x = 1 in above)
Combination of the above yields:

f(x) = f(1)p = f(1)x .
Q

This gives the theorem for negative rationals:
If y is a negative rational, ane obtains:
f(y) + f(-y) = £(0) = 0. Therefore,

f(y) = =f(-y) = £(1)y.
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Therefore, the theorem indeed holds for the rationals.
Step 4: Completion of proof.
Let xegRl, and T, n= 1,2,... be a sequence of rationals
converging to x. (Such sequences exist by the density of

the rational numbers)

By Step 2, f(x) lim f(rn)

N—300

= lim [f(1) r,] (r, rational)
500 ,

= f(l)x .

This completes the proof.

Bemark: If the domain of f is restricted to an interval
containing 0, it clearly has a unique extension from (1)
to the domain Ry . |

Remark: If there does not exist an interval containing
0 such that f is bounded, the only solutions of the
required form are f = «», except péssibly at x = 0, or

f = «» , except possibly at x=0.

Remark: By letting Cp(x) = exp(f(x)), we obtain:
q)hc)Qb(y) = <iXx+y) has its unique solution
(D(x) = exp(ex) cé;Rl s Provided (b is bounded

in an interval containing 0.
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TWO RESEARCHVPAPERS, WRITTEN BY JONATHAN SHUSTER.

The results of these papers supplement those of this
thesis. They were discovered after the typing of the
manuscript had been completed. Both articles center

around problems in testing hypotheses. As of Feb. 1969,

they are in the hands of referees for the Annals of

Mathematical Statistics.
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LIKELIHOOD RATIO TESTS FOR INVERSE GAUSSIAN POPULATIONS,

by JONATHAN SHUSTER, McGILL UNIVERSITY. 1

l. Introduction. In this paper, we shall develop the
likelihood ratio test for the mean of an inverse Gaussian
population, and further, we shall show that the "Analysis
of Reciprocal" procedure, developed by Tweedie,[j], is in
fact, the likelihood ratio test in its setting.

Definition: A'random variable, X, is sald to follow the
inverse Gaussian distribution, with positive parameters F

and ), if it has density function:

i -l
AZ(2mx3) %

exp[—%x}l'z(x-}z)zx'lj x>0 .. (1)

= 0 Xx <0,

f(X;)J., >\)

2. The Fundamental Lemma. Let Xil g o e ey Xi y 1=1,...,k,
n

i
respectively, be k independently drawn random samples from
the inverse Gaussian density f(x;pi,x). Let fi be the ith
sample mean, and X be the mean of the totality of observations.

The joint maximum likelihood estimators of Pl""’Pk

and )\, respectively, are:

Ry = fl , 1 =1,...,k, and
w | o 1 1) N
SEPIN DI wl FRet A1
=1 Tli=1 3=1 J
Ji .

Work supported by National Research Council of Canada.
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Proof: The proof is very elementary, and therefore will
merely be outlined. As usual, the log of the jolnt density
of the (nl + .« .+ nk) random variables is meximized, the
first derivatives of the function giving the estimates, and
the matrix of second derivatives, diagonal at the point in

Q+@Fdimensional space, given by the estimate, checking that

the function indeed has been maximized.-

3. Likelihood Ratio Test for P' We are now prepared to
determine the likelihood ratio test for P the population
mean of an inverse Gaussian random sample:

H : R =P against H_ 1 u + u, , at level q.

o)
Let Xl,...,Xn be a random sample from & population
whose density is f(X:P,k)- Then the rejectlon regidn

of the likelihood ratio test is: Reject if T =
-1

n \
21l - 2 ( -1 —-1)
(n-1)p, 2 X (o) L:Zi ERCES > K
where K determined in section 5, is a constant

o)
depending only on a.'
Proof: Let L(P,x) be the joint density of Xl,...,Xn,
for given p and X. Let 4 = (0,0)X(0,00) 5 and B = %}lo))X(o’”)'
The likely ratio test is therefore: Reject if

(sup{L(p, ) (p) lsuplnmues ™ > o
\Supg (}1,x :(}1,x & )(/n,\ up( Por)i(pale 5/ > .

Applying the fundamental lemma, and substituting the

functional form given by equation (1), we obtain:
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(bup{L(}z sA) (s 0) ;)<Sup{L(}l,x)z(}1,x)€lB}>“l
223, )2/ in""(x‘l-rc'l) i
S S '

-1 n/2
(l + (n=1) T) , Where

n , - -1
T = E1(n-l)uo_2 gt (f-uo)z‘][;.(xj-l - X -lﬂ .
. ~ U=

The rejection region is therefore: Reject if

T>K = (caz/n -1>(n-1) .

This completes the proof.

k. Likelihood Ratio Test for the Equality of Several Inverse
Gaussian Populations. Under the conditions of the fundamental
lemma, we can determine the likelihood ratio teSt fori

Hoz P1=P2=°°'ﬁpk against Ha: Ho is false, at the level q.

The rejection region of this test is given by: Reject if

Bl 2w

i=l =
where Ma’ determined in section 5, is a constant, depending
only on q.
Proof: Let L(Pl,...,Pk,x) be the joint density of the

k+1
totality of random variables Xij' Let A' = (0,0) ; and

= %ﬁPl’""Fk’k)E:A'=P1=P2="=Pk} . In B', the fundamental
lemma in applied to the totality of observations Xij as a

single random sample from f(x;ﬁ,x). Computation as in 3,
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yields the deslired result.
5. Evaluation of Ka and Ma .

K = F .
() o4 l,n-1,q

Proof: If xl,...,xn is a rardiom éample from the inverse
Gaussian distribution, with density f(X,P,k), Wasan, [4],
page 2.26,showed that X has the inverse Gaussian density,
f(x;y,nx). The author,[27], shows that for an inverse Gaussian
random variable, with density f(x;p,x), that

x}l-ZX'l(x-u)zmle . Tweedie [37], showed that

n \
-1 —_—— 2 —
E X, - X v and is independent of X.
}“ '=1( J ) VR P

Hence TnuFl n-1 ? where T is defined in 3, gives the
?

required value of Ka .

-
(b) M, (N=-k)(k~1) bk-l,n-k,a , Where

A

N = Nn. «
j:l

'_!-
Il

This is Tweedie's distributional result, the basis of
Analysis of Reciprocals, namely, that

(N-k) (E-1) "1 SAUFy ) .,  under H.
6. Summary and Conclusions. We have produced the like-
lihood test for the mean of an inverse Gaussian population,
a test remarkably similar to the two-sided t-test. We have
also shown that Tweedie's Analysis of Reciprocal procedure

is in fact the likelihood ratio test.
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BARTLETT'S TEST FOR INVERSE GAUSSIAN POPUTATIONS

by JONATHAN SHUSTER, McGILL & UNIV. of FLORIDA 1

0. Introduction. Tweedle [3] and the author [27, have
investigated a method for testing the equality of the means
of several Inverse Gaussian populations. The major
assumption of this procedure is that the secondary
parameter Ki’ does not vary from sample to sample, This
is the analogous assumption to that of constant variance
in regression analysis. In this paper, the author will
develop a modification of Bartlett's Test, to test the
validity of the assumption on the secondary parameter Xi'
1. Construction of the Test.

Definition: A random variable X, follows the Inverse

Gausslan distribution, if it has density function

1
Flxm, ) = __\? exp|=- (x-n)? X > 0
}1 -2—_;1_2;{3) [Lé-}fé—}'{—] > (}1!)\ > O)
= 0 : x < 0

Lemma’ Let Xil, e s o Xin ’ i = l,.u-,K, be K
i

independently drawn samples respectively, from f(x;yi,xi).
Let A = (0 )2K and B = }(p Ao geonsh JEA thq=e =)
= 9 O 3 - }-]_,o--,}lK, 1,..., K‘ s l e e= I{ .

The Likelihood Ratio, M, for the test of hypothesis:

HO: (Pl""’PK’Xl""’KK) & B versus

H, (}ll""’}lK’ll""’)‘K) € ANB, 1is

1 Work supported by National Research Council of Canada
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M= 3% N (Xlnl X2n2 XKnK) ® | where
K n, | V -1
N=1§=:1nl’ Xi—ni{% (X34 i )j} , L= N2 (/%))

and Xi is the i-th sample mean.
Proof: Under H,, the Joint density of the N random
variables is readily seen to be maximized with respect to
(Jis+=esPaAysee+sAg) at the point (XqseeesXpoRoeeesh) s
while under H_, the joint density of the N random variables
is readily seen to be maximized with respect to
(PyssesPgsryse-sry) at the point (Xqs e sXgoRyseevsfy)e
The above value of M is obtained by taking the ratio

of the joint density evaluated at (fl,...,iK,x,...,X) to

the joint density evaluated at (Yl,...,fk,xl,.;.,XK).

Definition: A two parameter family of probability

densities is "Regular", provided that it satisfies:

(1) EP Loxr m(u, ) j = Eldlox @(u A)t = 0 and
{ op j Y

(2) E 8_195 g [’&10“ g }l,k)mloxf S(Pz)\)\ - 0
9 OPDX on A\ DA / | ’

where g(p,k) is a probability density of a random variable
X, forﬂa,%ﬁin an appropriate parameter space.
Lemma: The Inverse Gaussian densities, f(x:y,x% form a

regular family.
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Proof: The proof of this statement uses the followlng:
(a) Tweedie [3], showed E(X) = p, Var(X) = Pa/k , and

(b) the author [1] , showed [}\(X-}l)z/}lz_)gfv‘}jz]:, hence
E:EXTP)2<P2%] = 1/\ , whenever X has the Inverse Gausslan

distribution, defined above.

E[alog £(Xsp, ) ):]
oF

E|\Qlog fgx;ﬁ,zg
DA

Egelog f(X;uiu)(ﬁlog f(X;u,U)A =
6] ! Z- Y

('*/};%(3195—%&7&-’*))] * (’\/}%[X/Zx . -%—(x-}a)z/}xi} = 0.

This completes the proof.

1

) ;‘_ 2 = 21 o . =
E{xx/}lj x/}l \E{Z 15;1 gix.ln,x{] = 0

1/2) - E[—%(X-}J)z/)ﬁ}g = 0

THEOREM: (Bartlett's Test for the equality of the ), )

The critical region for the test in the first lemma, 1s
a symptotically: {M 1 =2 logh >x2K-l,p% , where p is the
significance level of the test, and M 1s as given 1in the
first lemma.
Proof: This resultS immediately from : (a) the second lemma,
(b) 13.8.1, page 419 of Wilks [4] , on the limiting distribution
of the likelihood ratio of regular densitiles, (¢) Ho's equivlence
to Ho* ' 'ii-)\l =0, 1=2,...,K, (K-l constraints), and
(d) =2 logl is avmonotonic decreasing function of M.
2. Conclusion. Analysis of Reciprocals, depends on the Ay
remaining constant, from sample to sample, of Inverse Gaussian
random variables. The above modification of Bartlett's Test

gives an approximate method of cnecking out this homogeneity.
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