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ABSTRACT

Firstly, forward photoproduction

of neutral pi~efd eta mesons is simultaneously described in terms

of models involving Regge poles and Regge cuts. Two distinct

models are used to produce good fits to the existing data -

the Dual Absorptive Model (DAM) and the Weak Cut Model (WCM).
This analysis is extended to certain quantities of the processes
‘7N-wN and wN-+>pN through the use of vector dominance relations.
The éuitability of using the absorption prescription ﬁo
calculate the Regge cut contributions corresponding to Reggeized
vector exchanges for the imposition of the DAM requirements is
discussed. The DAM results are compared to those of the WCM

and some tests for experimentally distinguishing between these

two models are suggested.

Secondly, photoproduction of charged
pions in both forward and backward directions is discussed in
detail in terms of the Veneziano model,a crossing symmetric
dual model. A simple model with a small number of beta
functions (and essentially without any free parameters) is seen
to explain the forwerd structure of different experimental
quantities and also to éorrectly predict the residues of some
higher baryon resonances. In the backward direction, the
introduction of some satellite terms is seen to be neccessary

to account for the differential cross-sections.
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Author's statement

The original work contained in the thesis is in two parts:-

1) Forward photoproduction of neutral pi and eta mesons has
been studied for the first time in terms of the Dual Absorptive
Model (DAM). Also, the requirements of the DAM have been
imposed for the first time through the introduction of suitable
combinations of Regge poles and Regge cuts generated by the
absorption prescription. This analysis has been extended
through vector dominance to certain quantities of the processes
nN+pN and 7N+wN,. A parallel study of the above reactions has
also been carried out in terms of the Weak Cut Model (WCM) and
some tests for experimentally distinguishing between the DAM

and the WCM have been suggested.(Part B).

2) Photoproduction of charged pions in both forward and
backward directions has been studied for the first time in
terms of the Veneziano Model, with a small number of beta

functions and essentially without any free parameters, (Part C).
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GENERAL DISCUSSIONS
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CHAPTER 1

e e rr————

INTRODUCTION

Photoproduction has always been
a useful tool for the study of the interactions and structure
of hadrons. ©Strong similarities exist between certain purely
hadronie processes aﬁd photoproduction of certain particles on
hadrons. For example, photoproduction of neutral p mesons
closely resembles elastic hadronic reactions, while photo-
production of pions and kaons has many similarities with
certain inelastic hadronic reactions. At high energies, the
ﬁhenomenological approaches to these two types of reactions

are also quite similar.

In testing high energy models,
photoproduction of pseudoscalar mesons has often been superior
to most hadronic reactions. One reason for this is the
superior quality of the photoproduction data, which are more
precise and reliable compared to the data for most hadronic
reactions., Another reason is the amount of the existing data;
details are known not only of the angular distribution and the
energy dependence of the gifferential cross-sections, but also

of polarised photon asymmetries, polarised target asymmetries

etc.

During the past few years, most

of the high energy phenomenology has been based on models

involving Regge poles and Regge cuts. Photoproduction of



psedoscalar mesons has offered some of the most important
phenomenological arguments in support of the existence of
Regge cuts. These are the forward peak in yN- ﬂiN ( to be
discussed ing 7.2), the large positive values for polarised
photon asymmetry for yp~> Wop and the absence of dips in the
differential cross-sections for yp+np ( to be discussed in

Chapter 5).

Regge phenomenologists have

mostly used either the Weak Cut Model (WCM)(l-h) or the

Strong Cut Reggeized Absorption Model (SCRAM)(5—7). It is now

gccepted that each of these models is only partly successful,
facing serious difficulties in a number of two-body processes.
In an effort to combine the successes of these models, Harari
has proposed the Dual Absorption Model (DAM)(a). On the basis
of this model, Harari offers explanations for a number of

experimental facts on hadronic and photoproduction reactions.
However most of these explanations are strictly on a qualitative

basis; no quantitative comparison with the data has been

presented so far.

A main purpose of this thesis
is to study the photoproduction of neutral pseudoscalar mesons
in the framework of the Regge theory. Our models involve the
exchange of Regge poles and cﬁts; however we incorporéte in
them, et least approximately, the basic requirements of the

DAM.Vector dominance relates YN»7’N ( and yN+nN) to certein



quantities for the processes TN->wN and 7N+pN; our analysis

has been extended to these quantities as well. Our motivation
for this analysis is to determine whether the DAM, formulated
in terms of Regge poles and cuts, accounts for the basie
features of the experimental data. In addition, the results we
obtain in the framework of the DAM are compared with fits of
the same processes in the framework of the WCM; Means of

experimentally distinguishing between these two models are

discussed.

In the last part of this thesis,
we study the photoproduction of charged pions in the framework
of the Veneziano representation. Since for charged pion photo-
production, measuremeﬁts have been made in both forward and
backward directions, our basic objective is to test the ability
of this crossing-symmetric dual model (with a small number of
satellite terms) to correctly account for the experimental.
situation in the two separaté regions of interest.

This thesis is divided into four
parts. Part A ( Chapters 1-4) contains, in addition to this
introduction, the notation and symbols used throughout this
thesis, formulae for the important physical quntities (

Chapter 2), a brief review of the WCM and the SCRAM (Chapter 3)
and a discussion of the physical principles and of the most
important qualitative predictions of the DAM (Chapter 4). In

part B (Chapters 5 and 6), we present our analysis of yN-»w’N,



YNon N and related vector meson production processes. Part C
(Chapters 7,8 and 9) contains our study of the photoproduction
of charged pions in the Veneziano model. Part D is a collection
of three appendices, where we have presented detailed
derivations of some of the most important formulae used in

(*)

this thesis.

(*) This thesis is based to & great extent on two publications:

Part B on Ref (9) and Part C on Ref (10).



CHAPTER 2

DEFINITIONS, NOTATION and FORMULAE

In this chapter, we shall define
the symbols and notation that will be used throughout the rest
of the thesis. We shall also define the invariant amplitudes
used in photoproduction, give their relations with the
corresponding helicity amplitudes in different frames of
reference and express the experimentally measured quantities
(differential cross-section, polarisation etc.) in terms of
these invariant amplitudes. Algebraic details will be kept to
a minimum in this chapter. Whenever more details are required
for our discussions, we shall consider these in Appendix II.
We shall discuss here only the formulae for the pion photo-
production. The corresponding relations for the photoproduc-
tion of eta mesons will be introduced later in Chapter 5 as
modifications of pion production formulae. We shall also
discuss the different Regge exchanges, both poles and cuts,

that are allowed in the various processes under consideration.

2,1 CGLN_ _Amplitudes

Chew, Goldberger, Low and
Nambu(ll) (henceforth referred as CGLN) have defined a
particular set of invariant amplitudes and have also given
their isospin and angular momentum decompositions. In this

section, we shall summarise the CGLN relations. ,



Pion photoproduction is
desceribed by (Fig. 1)

¥(x) + N(p,) » m(a) + N(p,) (2.1)
where the quantities 'inside the brackets denote the
corresponding four-momenta of the particles taking part in the

resction. The four-momenta have the following components:

k=(R,k)3 a=(3,0);5 p1=(3,,E )35 2,=(3,,E,) - (2.2)
After satisfying energy

momentum conservation and mass~shell restrictions, only two

independent scalars can be formed out of the four four-momenta.

CGLN take them as

_ P.xk _ P.q _ q.k
v T s VT (2.3)
M M 2 M

where M= mass of nucleon and P= %(pl+p2). v and Vv, can of

course be replaced by any two of the Mandelstam variables s5,t

and u, which are defined as follows:

s=(p +k)2=W2 ; +t= (k-q)2%=yu? -2kw+2kq Cosfg
1
(2.4)
u=(k-p )%= M2?-2kE -2kq C
( pz) ) q oses
Here p = mass of the pion, es= scattering angle in the C.M.

system of the s-channel 'and W= total energy in C.M. system.

The complete invariant photo-

meson transition element is given by

H = MA+ M B+ MC+ M D (2.5)

where A,B,C,D are functions of v and vl (or say s and t) as



well as nucleon isotopic spin T. The gauge invariant scalar

coefficients are

M,= iv_ v.e Y.k

My = 2iY5(P.e a.k - P.kX q.€)

M= ys(y.e a.k - Y.k q.€ )

(2.6)

My= EYs(y.e P.k - v.k P.e -iM v.€ v.k )
where € is the photon, polarisation vector, and the y's are
the usual Dirac matrices.

Let Ai denote any of the four

invariant amplitudes A,B,C and D . In the isotopic spin space

Ai can be decomposed as follows:

h(s,t.0)= 6 & ls6)ed 108 (s, 0040 Al (s,8)  (2.7)
i s,t,T)= a3 Ai s,t)+ [Ta,T3 Ai (s, +Ta i s,t T

where o denotes the isotopic spin index of the outgoing pion.

The cross-sections for the four possible charge combinations

are obtained by setting:

i) A;=v7 (Ai(')+Ai(°)) for yp»T'n

ii) Ai=/5- (Aé') -Ai(°)) for +yYn-m p (2.8)
11) ;= (4, Fea, (00 for yp»1p '
iv) A;= (Ai(+)-Ai(°)) for yn+ﬂbn

In the C.M. system, the differ-

ential cross-section can be written as

dc _ ; 2
55 - % [<2|F|1>] (2.9)
where |1>, |2> denote the initial and final Pauli spinor

states.For & given isotopic spin combination, F can be

written as



> > , > > L D> L >
+ > +o.qo.(kxe) ig.k 4.€5 iog.q
q

-
- q.
F=io.€F, & F o+ T 3 F (2.10)

where O is the Pauli spin matrix.

The F i's are related to the Ai's in the following fashion:

Fyq : v,
Rl , = A+(W-M)D+EE1(c-D)
[(M+E,)(M+E,)]?

: M+E, ; F 2Mv,

2W_ 212 _2 . . ; — (C-
b o= 0 M+E1] 3 = «A+(W+M)D+ T (c-p)

(2.11)

oW 1 Fa
b WoM ; — = (W-M)B +(C-D)

TV L(urEy) (M+E,)]* @

M+E q F .

oW L

b oTH [M+E13 3z - -(w+M)B+ (C-D)

The angular dependence of the
Fi's is also given by CGLN in terms of expansions involving

- derivatives of Legendre Polynomials as follows:

Fy=gto (Cfmg, +Ep I) . (x)+D(R+1) My + By 1 B, (x)}

F =§ CC+t)M, + My 1 PY (x)

(2.12)
o= 221 {lE,, -Mp, T PIL. (x) +;E2_+M%_] Py, (x)}

Fy= hgl [Mg,~Eg, My _ -Ep 1 P§'(x)

where x = Cos BS

The energy dependent- amplitudes My, and Eg refer to



transitions initiated by magnetic and electric radiations
respectively, leading to final states of orbital angular

momentum £ and total angular momentum L% 3.

2.2 Basic Formulae for Pion Photoproduction

Let A Ao ,A_ and AY denote

]
N1 N2 T

the helicities of the incident nucleon, the outgoing nucleon,

the produced pion and the incident photon respectively. We

shall denote the s-channel helicity amplitudes by ful vhere

us= ANz- A“ and A= ANl- AY .
The relations between the qu's
énd the amplitudes Fi's introduced in eqn.(2.10) are(la) :
£ == -1 gin ® Cos E(F +F, )
a5 5 °% 3 3 "y
2%2
BS : ;
fll = V2 Cos ;— {F2 - Fyt 1(1- Cos GS)(Fa-Fu)}
2’2
(2.13)
es
P - 1 Sin 6s Sin — (F3 _ Fu)
-1,2 0 o
2 2
f Gs
_ = VY2 S8in —— {F1 + F, + (1-Cos es)(F3+ Fu)}

In terms of the f A'S’ the

. u
differential cross-sections for pion production by photons
polarised perpendicular and parallel to the plane of production

are ( see Appendix II for more details) :
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do, _1 a 2 2
— - + + -
a fx L, f-i_l.l If_l.i L
2°%2 2°%2 2°%2 2°2
(2.14)
doy _1 q 2 2
='=-132 7 - f + |f + f
a "k rlfig 1! 11 __l.ilj
2% 222 232 22
so that
4 _ ;8a . dowy _3 g 2 2 2 2
ae s Hamra) the U, I%le | 1%+l AR E N
2°2 2°72 Z°72 732
(2.15)

The recoil nucleon polarisation (in the direction ﬁxa) is

P()=- L — 21— mm (s _£* _+e  £* ) (2.16)
k ao L3 _13 1. 11
—_— 2°2 2°%2 2°2 22
an

The polarised photon asymmetry is defined as

z(e) = dg , do.
ae " aQ

and is given by

z(9) =-% — 2  Re (f * - f £* ) (2.17)
do 13 .11 1113
-a—g 272 272 272 2°2
do.

And finally, if we denote by %g* and Fo) ,the differential

cross-sections for target nucleons polarised 'up' and 'down'



11

in the direction kXq , then the polarised target asymmetry

is defined as

ag _ do.
_ an aq
T(8)= dg . do.
asn 4aQ
and is expressed as
()= 2 Im (£ £° + f £ )
k ao 13 11 T R U
—_— k] ’, > LD
FI9) 2’2 272 222 2°%2 (2.18)

We shall now give the expressions
for the asymptotic forward and backward cross-sections and
other relevant quantities in terms of the CGLN invariants.,

Here we shall only outline the method of obtaining these
expressions, leaving the algebraic details for Appendix IT,
For.this_purpose, we remember that to the leading order in s,

for s+» , t fixed (small angles, forwaxrd direction)

Cos 8_» 1+ 2t (2.192)

" and for s+» , u fixed (large angles, backward direction)

2u
Cos es+ -;- - . (2.19b)

Imposing these limits in Eqn. (2.11), the asymptotic relation-
ships between the Fi’s and the Ai's can be obtained. These,
in turn, relate the CGLN invariants to the s-channel helicity

amplitudes fuk's (SHA) through egqn. (?.13). From these,
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using egn. (2.14), we immediately obtain

do, _ 1 2 2
T ° Tem rlal* -¢|p]*3

s>, t fixed (2.20)

don _ _1 2 2
It = 15T [ |a+tB|2-t]|cC]| 2]

and

49 _ _1 _ri2MA+s(C+D)+(M2+u)(C-D)|2-ku|A+M(C-D)]|?]

du 64 Ts
s+o, u fixed (2.21)

E" = _1_ 2_ _ 2_ - 2
2 = ool |2MArs (C+D)+(M?-u) (C-D) [ *-bu[A-sB|*]

It should be noted here that the asymptotic forward cross-
section is dominated by exchanges in the t-channel, while the

backward cross-section is dominated by exchanges in the u-

channel.

In terms of the Ai's, we have in

the forward direction

P(6) =- 3£5i7§;—— Im [A*(c+D)+tB*C] (2.22)
i6m -a-‘E

and

7(0) == L=2——  1m [a™(c-D)+tB7C] (2.23)
16m —

dt
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2.3 Parity Conserving t-channel Helicity Amplitudes and

Analyticity Constraints

The singularity free parity

conserving t-channel helicity amplitudes (PCTHA) would be

~0,0
denoted by £, _5 (s,t),
N F .

Y

)J is the normality

where 0=P(-

of the exchanged system and 0c=C(-)J. The reason for considering

o and O, in the PCTHA is that in any reaction with an initieal

or final t-channel state of equal mass particles, say m,=m, ,

3 =+
and with Al _12

, both o0 and 0 _ of the asymptotically dominant
c

exchanges are well specified.

The method of constructing parity

conserving helicity amplitudes has been described by Gell-Mann

et al(l3) and the relations between the singularity free

PCTHA for photoproduction and the CGLN amplitudes have been

derived by Diu and Le-Bellac(lh). These are:
A= - —2 [uEtY +E £
£-LhM? 11 01
p o=l 3t e A (ETT 4 B FT))
t ot t-hM2 11 01 ( ¥
2.2
c =3t
%f11
D =- —2 rett o+ met T
£_hM2 11 01

The inverse relations are



1k

5;15 A+tB . tTt= _a+2MD
(2.25)
7= 2c . o o '
11 11 2

Since the invariant amplitudes
are analytic at t=0, we immediately see from the expression

of B in (2.24),that B would have a pole at t=0 , unless

Pt % rwmEtt 4 % Pty =z o at =0
01 4_)y2 11 01
or
Tt (s,0) = Mf T(s,0) (2.26)
11 01
) + pE

This is also evident from the expressions for E;l and f11
in eqn. (2.25). When in later chapters we shall write down
explicit expressions for the invariant amplitudes, we shall

have to satisfy this kinematic ( or analyticity) constraint.

2.4 Regge Exchanges in the t-channel (Fig. 2)

With the isospin decomposition

of CGLN, it follows that 2'*), which does not contribute to

i
(0)

charged pion production, corresponds to I=0; Ag—) and Ai , which

do contribute, have I=1l. If we consider neutral pion production,

we see that the isovector part of the photon has positive

G parity, while the outgoing neutral pion has negative G parity.

(+)

This means that the isoscalar exchange Ai has negative G

parity and hence negative C. Similarly, Aﬁo) has G=+ and C=-.
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If we now consider the two charged pion photoproduction

(-) (0)

processes, we also see that Ai and Ai have opposite

charge conjugation. So A£+) receives contributions from
(-)

A§0) from p and B, and Ai from w ,

w (and ¢) exchange,

A1 and A2 exchanges.

In view of the fact that in

these reactions, 0 and Gc of the asymptotically dominant

exchanges are well specified, it is clear that };j will be
dominated by the exchange of trajectories 7 and B, f:: and

E:: by p, w {and ¢) and A, and }:: by A, . On the basis of

these observations we have constructed Table 2.1.

There 1s a well known theoren

due to Stichel(lS) which states that for pseudoscalar mesons,

the differential cross-section with photons polarised perpen-

dicular to the plane of production is dominated by natural

parity exchanges, while the differential cross-section with

photons polarised parallel to the plane of production is

dominated by unnatural parity exchanges. This implies that,

for example in egn. (2.20), %%' essentially receives contributions
don ‘

from w (and ¢),p and A2, wvhile T receives contributions

from m, B and A1 .

So far , we have only considered
the exchange of Regge poles. In addition to these poles in
the complex angular momentum plane, branch cuts may also exist.

(16,17)

The theoretical basis of Regge cuts is already well known .
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In this work we consider cuts generated by tHe simultaneous
exchange of a Regge pole (R) and n Pomerons(P). Since the
Pomeron has vacuum gquantum numbers, cuts corresponding to R-
will contribute to exactly the same amplitudes. Moreover, the
cut contribution will also have to obey the analyticity
constraint (2.26). There is however one important difference.
Unlike a Regge pole, a Regge cut has no definite normality.
Hence at t=0, & certain cut may give non-zero contributions

to both gjj and };: of (2.26), implying non-zero contributions

ag, 4o,

(and of comparable magnitude) to both it and =¥ . This is

the case with the p-Pomeron and the w-Pomeron cuts of this work.



Table 2.1 t-channel Exchanges, Quantum Numbers and PCTHA's

Regge Spin of lowest | Parity | Charge I-spin g oc I-spin | PCTHA receiving
trajectory | particle P conjugation I =P(-) =C(-) index leading
J C contribution
e T4+
w(9) 1 - - 0 * * ™) fors f11
. T+ T4+
) 1 - - 1 + + ) f01, fll
P L e 2
) 2 * * 1 * * =) fo10 f11
. 0 - + 1 - + -) E(‘);
. e
B 1 + - 1 - + 0) £01
A 1 + + 1 - - ) £

11

LT



CHAPTER 3

A BRIEF REVIEW OF EXISTING REGGE CUT MODELS

In this chapter, we shall briefly
review the basic principles of the two principal Regge cut
models - the Weak Cut Model (WCM)(l-h) and the Strong Cut
Reggeized Absorption Model (SCRAM)(5i7). ‘The guiding philoso-
phy behind the calculation of Regge cut contributions will
also be discussed. Detailed mathematical derivations for
Regge cut contributions, as calculated in this thesis, will
be given in Appendix I. The predictions of both the WCM and
the SCRAM with respect to some specific reactions and their
agreements and disagreements with experimentally observed
characteristics will be pointed out. We shall also discuss
very briefly a third model, the Peripheral Model (PM)(ls’lg),

and point out its similarities and dissimilarities to the

WCM and the SCRAM.

3.1 Some commonly used Methods for the Calculation of Regge Cuts

As in § 2.1, for the two-body
reaction 1+2+3+4 (Fig. 3) we denote by'fux(s,t) the s-channel
helicity amplitudes, where u=ku— Aa . A=X2— Al and kl,kz,ka
and Ru are the helicities of the particles 1,2,3 and U4

respectively. In the impact parameter representation, we can

write
- 2 ®
fw‘(s,t)- 2k { b ab g (bg) ‘fM(s,b)_ (3.1}

18
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where n=]A-u|= total helicity change, b= impact parameter,
k= C.M. momentum and q=v=t = momentum transfer. The inverse
transformation is given by

! ©
fu.,\(s,b)- ;{ q dg Jn(bq) fM(s,t) (3.2)

We shall be concernea with Regge cuts generated by the
simultaneous non-planar exchange of a Reggeon (R) and n Pomerons
(P) and shall calculate the corresponding contributions through
the absorption prescription.

This prescription is motivated

By the well known peripheral model with absorption(zo), in which

(B)

A (s,b) n(s,b) (3.3)

ful(s,b) = f

f(B)(s b) is the transform of a proper elementary particle

Born term) and n(s,b) (the so-called 'absorption

exchange (
function') has the form shown in Fig.4. Then the contribution
to fuk(s’t) from the part b 3 b, of the integral in (3.1) is
essentially the same as the contribution of the Born term,
but the contribution for b < b0 will be effectively depleted,
in particular at b= 0,
In the Regge phenomenology,

fﬁB)(s,b) is replaced by the transform fﬁi)(s,b) of the

A
corresponding Regge pole exchange:
(R)

(R) o1 w
qu (s,b)= —;;;— { q dgq Jn(bq) ful.(S,t) (3.4)
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Thus

(-]

fu)\(s,‘t) =2k [/ b ab J (ba) n (s,b) fég)(s,b) (3.5)

0

With appropriate choice of the absorption function p (s,b),

it follows that the asymptotic behaviour of the difference

fux(s,t)-fii)(s,t) has & number of properties(h) in common
with multi-Regge exchange models leading to moving branch points

in the complex angular momentum plane. Thus we can write

£a(sst) = ffj;)(s,t) . I‘L;Ut)(S,t) (3.6)

We shall now describe very
briefly the two most commonly used methods of calculating the
absorption function p (s,b). Henyey et al(S) (Michigan

prescription) have used the Sopkovich approach(el), which can

be seen to introduce a Regge cut corresponding to Reggeon-.

single Pomeron exchange. In the impact parameter representation

this method gives

o iy(b) .(R)
fu)\(s,t) = 2k?2 {bdb J, (bq) eix( fu)\ (s,b) (3.7)

where y (b) is the phase shift due to elastic scattering ( ié

Pomeron exchange part), and is given by

eix(b)= 1+ iz {wq dq Jo(bq)' f(P)(S,t) (3.8)

f(P)(s,t) is the elastic scattering amplitude, which is

empirically fitted in the forward direction by
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2
Gtk

f(P)(S,t) = i e ° (3.9)
har

Ot is the total elastic cross-section of the relevant proceés

and A is determined by fitting the corresponding diffraction

peak. From (3.8) and (3.9),

b? b2
ix(v) Ot -V} Y Y
e =1 = — e = 1 -Ce : (3.10)
hoa
where
g
¢ =—2 (3.11)
hoa

So the Michigan prescription corresponds to the absorption

function

o’
[XY

n (s,p) =1 -2Ce (3.12)

N
=g

This is easily seen to be of the form of Fig.h.

Another commonly used prescription
is due to Arnold(l). This prescription uses the full eikonal

representation and obtains

-2 ] 2
fux(s,t) = 2k? [~ v av g (ba) [ 1 - eix(s,0%) (3.13)
whefe
2y _ i o (R)
x(s,b?) = —;;2{ q dg Jn‘bq) £ (s,t) (3.1h4)

Eqn. (3.13) gives

- 2 (@ . ]
fux(s,t) = 2k { b ab J (bq) (-ix) [1 + T TR
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The first term inside the parenthesis can be taken to
represent single scattering and corresponds to the Regge pole
exchange part. Then the sécond and higher order terms
represent second and higher order (ié multiple) scattering
and cor?espond to the absorption correction. If we only

consider the first order cuts, then
o~ 2 it -1 1_X.
fux(s’t) 2x* ["»  av g (pa) (-ix)[1 + 3= ] (3.16)

If, as in the usual absorption prescription, the first order
cut is generated by the simultaneous exchange of a Reggeon
and & Pomeron, then the term -~ x? in (3.16) 1is to be replaced
by XR XP where xR corresponds to Reggeon exchange and XP
to Pomeron exchange. So, the Michigan prescription is
equivalent to the first terms éf the Arnold prescription.

In this thesis, all cut
contributions will be calculated through the Michigan

prescription. From (3.6) and (3.12), we have

-bZ
f&&P)(s,t) = f£§Ut)(s,t) = —2k2{mb ab ¢ e 24 3 (vq) fﬁi)(s,b)

which after some algebra gives

fﬁip)(s’t) = {—m aT fﬁi)(s,T)%C e%A(t+T) In(AV T ) (3.17)

vhere In(x) is the modified Bessel function defined as
_ .1 .
In(x) = {(-1i) Jn(lx)
The integral on the right hand

side of eqn. (3.17) is multiplied by a phenomenological factor
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(5)

X(R) , the so called ' coherent inelastic factor' . We

shall discuss in more detail the reasons for introducing this

factor (§3.3). So the final formula used for calculating the

cut contribution is

l(ll;P)(s t)= 1(11;) {—m at (R)(s r) jo e2A(tTT) 1,(A V&T )
(3.18)

The asctual calculation will be shown in Appendix I.

Notice that the particular form
of n (s,b), as shown in eqn. (3.12), implies that the
attenuation in the helicity amplitudes due to absorption is
negligible for b z/EK. Clearly, R = VETN is the so called
'gbsorption radius' (of typical value 1 fermi). In most
parametrizations of elastic scattering, A is taken to be energy
jndependent or has a weak dependence on s (ié logarithmic).

If the hadronic interaction
under consideration has a range R, then clearly in eqn.(3.1),
all the contribution to fuk(s,t) will come from the part of
the integral corresponding to 05 bs R’ . In the partial wave
decomposition of fuk(s’t)’ the highest partial waves will have
% ~ kR’. The peripherality of the amplitude fuk(s’t) means
that fux(s,t) is essentially dominated by & ~ kR’ partial
waves. The contribiitions from the lower partial waves are
substantially absorbed. In terms of the absorption prescription

this implies that R = R . Also, the t-structure of fu)\(s,t) is
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similar to that of the Bessel function Jn(R v=T) (see egqn.

(3.1)).

3.2 The Weak Cut Model (WCM)

There are different methods of
calculating the cut contribution(l-h) in the Weak Cut Model,
but the general principles involved angd their implications
are similar. In this section, we shall discuss these common

characterisﬁics of the different versions of the WCM.

For our discussion, we shall
use egqn. (3.18). Notice that in the integral in this equation,
at fixed s, both fﬁi)(s,r) and e%AT decrease exponentially
as T becomes more and more negative, so that the integral
receives most of its contributions from the interval 0s-T<1
GeV?

The major differences between
the WCM and the SCRAM ( to be discussed in the next section)
are in the t-structure of the amplitude fﬁi)(s,t) and in the
magnitude of the factor XP§R) . These differences lead to
different relative magnitudes of fﬁi)(s,t) and fﬁip)(s,t), and
thus in general,to different structures of the overall
amplitude qu(s,t).

In the Weak Cut Model, the Regge
pole amplitude fﬁi)(s,t) contains the well known non-sense

wrong signature zeroes (22) (NWSZ). So, if we are considering
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en amplitude which is dominated by vector meson exchange (e.g.
p and W exchanges), then the corresponding Regge pole
contribution fii)(s,t) has a zero at t= -.55 GeV2. More
precisely, at this value of t, Im fﬁi)(s,t) changes sign and
Re fﬁi)(s,t) has & double zero. Therefore the integral in
(3.18) receives, in general, two significant contributions
with opposite sign and the resulting cut contribution is
relatively weak. Moreover, in the WCM, the factor ‘Xéi) is
taken to be unity. Therefore, the cut contribution is not
enhanced in any other way. Thus for p and W exchange fuk(s’t)
is expected to show a dip at t= -.55 GeVZ.

The cut contribution produced by
the convolution of eqn. (3.18) has its shape dependent on n,
the total helicity change in the amplitude. However, since the
total amplitude, in general, 1is dominated by the pole
contribution, the location of & given zero is, roughly, the

same in all helicity amplitudes, and is determined by the

trajectory function and the signature of the exchanged particle.

Also, the real and the imaginary parts of the total amplitude

fuk have, roughly, the same structure as the corresponding

(R) . For f(R) the real part has double
HA LA

quantities for f ,

zeroes at 1tCos ma(t)= 0, and the imaginary part has single

zeroes at Sin moa(t)= 0

We discuss the experimental

situation with regards to the presence oOr absence of dips in
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the differential cross-sections for some of the most important
two-body reactions. The assumption involved in all these cases
is that vector meson exchanges dominate. The experimental
situation regarding the corresponding differential cross-
sections is indicated in the third column of Table 3.1. In
the table, n denotes the total helicity change of the ﬁominant
amplitude. (yp>m'n)-(yn+m'p) is the difference of the
corresponding differential cross-sections. Xw(s,t) is the
isolated w-exchange contribution to the process mN+pN (see
eqn. (5.15)) and is defined as
Xw(s,t)z %%(w+§+p+p) + %%(ﬂ“p+p—p) - %%(ﬂ-p+ p%n)
It is quite clear from the table

thet the WCM has only limited sucess in explaining the dip

structure of the different reactions(*)l Notice that the WCM
seems to succeed usually in reactions dominated by the single
flip amplitudes. This is an important observation and we

shall elaborate further in the next chapter.

Another important failure of
the WCM is in connection with the cross-over phenomena of the

+ +
different elastic scattering cross-sections (e.g. K p>K'p,

(*) The absence of dips in the differential cross-sections

for Yp-ND, mtn>wp and in %%(Yp+ﬂ+n)—%%(Yn+ﬂ—p) has been
explained by adherents to the WCM in terms of a strong B-meson
exchange. There are however important difficulties in this

explanation (see §6.1 and also Ref. (6))
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k4 t . . .

T p*Tm p(23)). Finally the WCM is unable to explaln the polar-
isation data in ﬂ-p+ﬂ°n(2h); however this last failure (even
more prominent in SCRAM) is typical of all Regge cut models

defined in terms of absorption prescription (3.18).

3.3 The Strong Cut Reggeized Absorption Model (SCRAM)(S—T)

. In this model, the cut contri-
bution is again generated through eaqn. (3.18). However, fﬁi)
does not have any NWSZ, and does not vanish in the region
0<-t<1 GeV? . Therefore, the resulting cut is stronger than
that of the WCM. This cut contribution is further enhanced
by choosing a value of i§§)> 1 . It has been argued(S) that
the factor iﬁi) represents the effects of diffractive ‘
dissociation of the initial (or final) particles. The choice
of i£§)> 41 is equivalent to the assumption that the
contributions from the Regge recurrences of the intermediate
states in the diagrams generating the cuts add up coherently,

at least to some extent.

The cuts in this model are at
least as important as the pole contributions. The value of
X(R) is adjusted so that the imaginary (and the real) part

HA

of a particular amplitude fuk(s,t) has a t-structure similar

to that of the Bessel function Jn(R Y~t) where R=1 fermi. In

other words, both the real and the imaginary parts of the

smplitudes are peripheral. The zeroes in the amplitude are
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not correlated at all to the dominant exchanged trajectory
or its signature; rather they are produced by the destructive
jnterference between the pole and the cut terms, and they appear
at about the same values of t as the zeroes of the corresponding
Bessel functions Jn(R v -t). In general, both the real and
the imaginary parts of the helicity non-flip amplitude ( n= 0)
have zeroes at t= -.2 GeV?, while those of the single~flip
amplitude (n= 1) exhibit zeroes at t= -.55 GeVZ .

The SCRAM is quite successful
in explaining the features of the reactions listed in Table

3.1 as well as in explaining the cross-over phenomena. However

+ (23).

it fails in 7 p-nn, ﬂ+p+nA+, K p> K'n and X'n> K°p
In all these reactions, the SCRAM predicts dips at t= -.55

GeV? 3y experimentally, no such dips are observed.

Another serious failure of the
SCRAM is in explaining the polarisation data in n+p and T D
elastic scattering(23). It fares even worse in the case of
m p»n’n polarisation, where it predicts large negative values
around t= -.55 GeVZ(S); experimentally, the polarisation is

(21.+)_

large and positive in this region

(18,19)

We shall use egn. (3.5) in
discussing the Peripheral Model. ' The fundamental differences

_between the PM on one hand and the WCM and the SCRAM on the

other are
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&) In both the WCM and the SCRAM, the input fl(li)(s,b) in (3.5)
represents the corresponding Regge pole amplitude. In the

PM, this input is replaced by the corresponding Born term
fﬁi)(s,b). This is the séme input as used by Gottfried and
Jackson(zo) in their peripheral model (see eqn. (3.3)). The

Born term gives incorrect energy dependence, except for pion
exchange near the forward direction. This leads directly to

the other fundamental difference between the standard absorption
prescriptions and this model.

b) As we have remarked in § 3.1, in the standard absorption
prescriptions, the absorption radius R is either energy
independent or has a weak dependence on s ( logarithmic). 1In
the PM, the absorption radius R is considered to be strongly
energy dependent. The lack of variation with s in fﬁg)(s,b)

is compensated by the strong energy dependence of the absorption

function n (s,b). The most commonly used n (s,b) is of the

Wood~Saxon form:

= 1 .
T'I (S,b)— 1 + exp[(R—b)/d] (3-19)

wvhere d is the so called width of interaction (Fig. 5). The
energy dependence of R and d are obtained in practice by fitting
the differential cross-section in the charge exchange reaction

T p»>7%n  at different energies.

In spite of the above differences

between the PM and the SCRAM, there are many similarities

between these two models. The objective in each case is to
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make both the real and the imaginary parts of the total
amplitude peripheral (see for example eqn. (D.10) in Ref.
(19)). So, in the PM, both the real and the imaginary narts
of fu)\(s.,t) again behave like Jn(R Y=t). As such, this model
enjoys basically the same successes and has the same failures

as the SCRAM.
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Table 3.1 The Dip Structure in some Important Reactions

Reaction | Allowed Vector | Dip Present 2 Dominant Helicity Amplitude
Exchange at t==.55 GeV n
yN-+1ON wlp) yes 1
m p>in p yes 1
yp>n0p o (w) no- 0,2
+
(yp*n_n)
-(yn>n p) P ne 0,2
+ -
T DHWp P no 0,2
X, (s,t)
for i yes 1

TN>pN




CHAPTER Y4

PHYSICAL PRINCIPLES OF THE DUAL ABSORPTIVE MODEL

In the first part of this
chapter, we shall discuss the physical principles behind the
Dual Absorptive Model (DAM) and point out its similarities
and differences with the WCM and the SCRAM. In the second
part, we shell examine some of the qualitative predictions of
the DAM and compare them with experiment. Since all the
reactions to be considered in this thesis are non-diffractive,
the principles of the DAM shall be explained only for non-

diffractive processes.

(8
4.1 The Physical Principles of the Dual Absorptive Model ZDAM)

Harari made the following
observations and assumptions about non-diffractive two-body
hadronic interactions:

a) The general s-channel helicity amplitude ful(s’t) for any
such process can be described in two different ways. The

first is the t-channel description, when the features of fuk(s’t)
are usually explained on the basis of a few Regge poles and

cuts. The second is the s-channel description, mainly in

terms of resonances. Duality states that these iwo descriptions
are essentially equivalent.

b) From the s-channel point of view, Im fuk(s’t) is considered

to be locally dominated by resonances of mass m-~ s?. Re qu(s,t)

32
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on the other hand, is not determined by nearby resonances
alone. It receives substantial contributions from distant
resonances, including those with s< 0 (u-channel resonances).
So one should apply the concept of duality as stated in part
(a) only to Im fuk(s’t)‘

¢) The t-channel description gives the angular structure of
the amplitude. In most t-channel models, any such structure
occurs at approximately fixed t-values at all energies. Thus,
duality demands that the s-channel description in terms of
resonances should also reproduce the same t-structure. One
possibility is that every single resonance exhibits these
structures, so that their sﬁm also exhibits the same
characteristics. This is a strong assumption, but such a
possibility cannot be ruled out. As a matter of fact, it is
vell known that(ES) in TN scattering, the imaginary part of
the single-flip amplitude has a zero at t= -.55 Gev? , while
that of the non-flip smplitude has a zero at t= -.2 GeVZ. As

(26)

shown by Dolen, Horn and_Schmidt , each of the prominent
N* resonances contributing to this reaction shows zeros at
approximately the same fixed t-values for the corresponding
helicity amplitudes. Another possibility is, of course, that
the resonances do not exhibit individually the required t-
structure, but only the sum of the prominent resonances at

any particular energy does so. However, Harari assumes that

the first alternative is more likely to occur in nature.
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This assumption has an important
consequence. The angle in which & given resonance produces
a zero is dependent on the'spin of the resonance. Also, this
angle is connected to the t-value through the resonance mass
(ié vS). So the assumption of zeroes of resonances at fixed
t-values leads to a relation between the spin of the resonance

and the resonance mass. This is
L = Vs (4.1)

vhere % is the corresponding partial wave. Again, an
examination of the prominent resonances contributing to 7N
scattering shows that they indeed lie.on the curve % .« /5(8).
Now, if k is the C.M. momentum, then k<« vV s . So the condition

is that Im f .(s,t) is dominated by s-channel partial waves

uA
with 2 ~ k.

We can now state the basic
postulates of the DAM:
a) Im fuk(s’t) is dominated by the most peripheral s-channel

partial waves. For total s-channel helicity flip n (=I?-u|)

Im £ ,(s,t) -~ Jn(R/ -t) (4.2)

ul(
where R is the radius of hadronic interaction (~ 1 fermi,
defined in § 3.1). TFor exotic s-channel processes,

Im fux(s,t) ~ 0.

b) Since the real part of ful(s’t) is not locally dominated
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by resonances, it need not be peripheral. At asymptotic energies
a definite phase relationship exists between the real and the
imaginary parts (27—29), so that Re ful(s’t) is determined
uniquely from Im fuk(s’t)‘ However at non-asymptotic energies,
no definite statements can be made about Re qu(s,t).
We can now examine the similarities

and the differences between the DAM and the older models (

WCM and SCRAM). For the WCM, let us again consider amplitudes
dominated by vector (e.g. p and w ) exchanges. In § 3.2, we

saw that the WCM predicts that for the single-flip amplitude
(n= 1), Im fuk(s’t) has a zero at t= -.55 GeV2 . It also
has a kinematic zero at t=0. So, Im qu(s,t) has approximately
the t-structure of JI(R¢:€) with R=1 fermi, and hence is
peripheral. This is in agreement with the DAM requirements.
Hence for the single-flip amplitude, the DAM is very similar to
the WCM, and the corresponding cut contribution is weak. For
the non-flip and the double-flip amplitudes, the DAM requires
that Im fm(s,t) behave l?'.ke JO(R/T{) and J2(R /=t)
respectively. The WCM does not exhibit these characteristics
and the corresponding Im ful(s,t)'s are not peripheral. So,

if the DAM requirements are to be satisfied through the
introduction of Regge cuts, these cut contributions cannot

be small for these amplitudes.

The difference between the DAM

and the SCRAM lies in the fact that the latter demands that
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both the real and the imaginary parts of ful(s’t) be peripheral
while the former only requires the imaginary part to be so.

In particular, as stated for the single-flip (n=1) amplitude,
the DAM is very similar to the WCM. This means that the
amplitude is dominated by the corresponding pole(s) contribu-
tion. Now the real part of the pole_contribution is related

to the imaginary part through the signature of the pole even

at comparatively low energies ( ~ few GeVs). Thus for n=1l,

if Im fux(s,t) ~ Ji(R /=t), then

moft)
Ji(R /-t) tan—3—  (caa signatu:e)
Re fu}\(s,t) ~ (u.3)
Ji(R /=t) cotﬂgéﬁl (even signature)

The SCRAM demands that both Im fux(s,t) and Re fux(s,t) behave
like J1(R /=t) at all energies, so that it definitely violates
the simple phase relationship of (4.3). On the other hand, for
the n=0 (and the n=2) amplitude, the DAM requires the cut
contributions to be quite important, and in this respect it

can be considered in agreement with the SCRAM.

4.2 Some Qualitative Predictions

In this section, we shall enumerate
the qualitative predictions of the DAM with respect to some
important reactions. More detailed discussions on these and

other reactions can be found in Refs. (8) and (23).
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Let us first consider the
differential cross-sections for the reactions 7 p-7m’n, YN->7ON
and the combinations of differential cross-sections Xw(s,t)
for the process TN+pN (see Table 3.1). All these reactions
are dominated by the single-flip (n=1) helicity amplitude,
aqd the dominant t-channel exchanges ﬁre por w . So from

(4.3) we obtain

| J7,(r/=%)|2
%% * lfuklz * 12 mo(t) (h.h)
: Cos —

where o(t) is the p or the w trajectory. With R=1 fermi,

J1(RV—t) has & zero at t= -.55 GeV2. Since Cos? Egéil is

regular and non-zero at this point, all the above mentioned
reactions show & dip in the differential cross-section around
t= -,55 GeV2., As we mentioned before, the WCM and the DAM
are very similar for the n=1 amplitudes. This explains why
the WCM is usually successful for reactions dominated by
single-flip amplitudes.

The reaction T p=nn is again

dominated by the n=lamplitude. The dominant t-channel exchange

is A,. 8o again from (k4.3)
2
Sin? na2

Here the zero of Jl(RV-t) at t= -.55GeV? is cancelled by
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the zero of the denominator at the same point, So the cross-
section should not show a dip at this point; indeed, no dip

is observed experimentally.

We now consider those reactions
of Table 3.1, which are dominated by n=0 and n=2 amplitudes.
The DAM requires the imaginary parts of the corresponding
helicity amplitudes to behave like JO(R/’-T) and J2(R/-—t)
respectively. These do not have any zeroes at t® -.55 GeV? .
So we do not expect (and we do not observe) dips in the cross-~

sections for these processes in this t-region.
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CHAPTER 5

CALCULATIONS WITH THE DUAL ABSORPTIVE MODEL (DAM)

In this part of the thesis, we
shall try to account for the experimental features of the
photoproduction of neutral pseudoscalar mesons. We shall also
extend our analysis to certain quantities in the processes
TN>wN and 7N->pN through the use of vector dominance relations.
In the photoproduction of 7°
and n mesons, the following characteristics are to be noted:
a) The m° Qifferential cross-section shows a dip in the forward
direction at t = ~.55 GeV2 . The n cross-section on the
other hand, does not show this dip. Remembering that a basic
test of any model is its ability to predict the presence or
the absence of dips in the cross-section, it is immediately
seen that a simultaneous study of these rea;tions with any
model will be useful.
b) If s is the totel energy squared,M the mass of the nucleon
and 49 the forward differential cross-section, then the

dat
quantity (s-M2)?2 %%— is approximately constant for all 8

in these two processes.

e¢) The ratio R = %% (Yn>m°n)/ %% (yp>7°p) has been measured
in the forward direction. The error bars are comparatively
large and it is very difficult to make any definite statements
about its t-structure. However one thing to note is that this

ratio is always less than unity (see Fig. 8)

Lo
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1(0)= (339 /(I3 EM

d) The polarised photon asymmetry TR TIA T

(see eqn. (2.17)) for the process yp+7’p has also been

measured (Fig. 7). This shows a small dip at t= -.55 GeVZ .

In the absence of Regge cuts, %%‘ receives leading contribu-
tions from p and W exchanges, while %%' is dominated by B

exchange. At t= -.55 Gev? , the p and the w contributions
venish due to the presence of the non-seﬁse wrong signature
zeroes in the amplitudes. So, if cuts are absent ,Z= - 1
around this point. Since the experimental value is = .5,
we have some evidence for the existence of Regge cuts.
e) The polarised target asymmetry T (defined in eqn. (2.18))
has also been measured for yp»m'p (Fig. 9) at L GeV. The data
show that T is negative in the interval o<|t|s1 GeV2, with a
maximum |T[(~.6) at t= -.55 GeV? . |

In this chapter, we shall present
the DAM calculations. We shall try to obtain the peripherality
of the imaginary parts of the different s-channel helicity
amplitudes as required by the DAM through the introduction
of suitable amounts of Regge cut contributions ( in addition

to the Regge poles), calculated through the absorption

prescription ( egqn. (3.18)).

5.1 General Procedure

From our discussions in chapter

2 ( see Table 2.1 and eqn. (2.8)), we know that for 70
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photoproduction, the important t-channel Regge exchanges are
w, p and B. For all these exchanges, we consider linear

trajectory functions of the form

ozR(t) = aR(o) + Agt (5.1)

wvhere R denotes any of the w, p and B Regge poles.

Most of the present phenomeno-
logical analyées of two-body reactions proceed through the
Reggeization of the s-channel helicity amplitudes of definite
parity. Here we shall proceed through the Rgggeization of
the invariant amplitudes Ai' The main reason for our approach
is the special form of vector meson dominance relations we
adopt, and this will become clear in §5.3. Another important
reason is that we shall be studying charged pion photoproduction
in the framework of the Veneziano model, which neccessarily
involves the Reggeization of the invariant amplitudes.

Certain expressions as well as some important quantities in

both parts B and C are thus related in a straightforward

manner ( see §8.3). The relations between our Regge pole and

cut contributions to the CGLN invariants and the corresponding

contributions to SHA of definite parity will be discussed in
§5.4 and are summarised in Tabie 5.1.

The contribution in the forward
direction to the CGLN invariapt Ai from the Regge pole

trejectory aR(t) is taken as
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__-ima_(t) o (t)-1
AgLR)(s,t): BﬁR)(t) T 1-e R =) R
F[aR(t)] Sin[naR(t)J R
(5.2)
s, is a constant with dimensions of GeV? ( = energy scale);

R
the residues BgR)(t) are smooth functions of t to be discussed

below. It is evident from (5.2) that our Regge pole exchanges

contain NWSZ's.

Since we proceed through the
Reggeization of the invariant amplitudes, we must take special

care to satisfy the analyticity constraint (eqn. (2.26)):

#7F (s,0) = M FT (s,0) (5.3)
11 01

In the case of w° photoproduction, the leading contribution

to E:: comes from the w and the p exchenges, while %;:

receives only non-leading contributions from these exchanges,
One way of satisfying (5.3) would be to make the w and the p

contributions to £ ' proportional to t ( so that they vanish

11
at t= 0), and set the corresponding contributions to E;: (

A + tB) identically equal to zero at all t. Since §T:= MA- % D,

this means that the explicit representation for the CGLN

invariant A must be proportional to t (ié BiR)(t)~ t). The

contribution from the CGLN invariant D to §:+ is explicitly
1

multiplied by t. So we have

ale)
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Here A(p) stands for the contribution to A from p exchange
etc. These observations completely determine the residue
functions B§p)(t) and Bﬁg)(t). The forms we adopt in our
calculations are shown in Table 5.2.

This method of satisfying the
analyticity constraint is known as the evasive solution. For
the B exchange contribution, we shall also proceed with an
evasive solution. As we discuss in Appendix II (eqns. (A.II.3)

and (A.II.L4)), the combination of SHA

f + f ~ A + tB

11 13

2%2 2%2
is dominated by t-channel exchanges of o=-, whereas the
combination
f -t ~ A

11 JR S X

222 2°2
is dominated by o=+. Since the B meson has 0=-, in the

asymptotic limit it only contributes to the CGLN invariant
B. 1In terms of PCTHA, B exchange dominates only the amplitude
f;t (=A+tB). ©So if only the invariant B receives a contribution
from the B exchange, the analyticity constraint (5.3) is =again
satisfied‘by evasion. The form of our B exchange contribution
is also presented in Table 5.2.

In sddition to the p, w and B
Regge poles, we consider p-Pomeron and w-Pomeron Regge cuts.

Their contributions to the SHA £ . ,T L1 and f1 , ere
s I 1,3
2 22

1
2
calculated in detail in Appendix £.2 The cut contributions to
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the doﬁble-flip (n=2) amplitude f |, &ve very small ( unless
. 132
22
multiplied by an unusually large Xuk } and will be neglected.
Appendix I also contains the
explicit representations of our p-P and w-P contributions to

the invariants A and D (denoted by A(pP), D(DP), A(wP) and
D(wP) ). These are related to the corresponding cut contributions
to SHA via eqns. (A.II.2) (see also Tables 5.1 and 5.2)

In our calculations, we use two
different models of Regge cuts: Model Cl and Model 02 (both
defined in Appendix I(*) ). We do not consider Regge cuts

associated with B-meson exchange.

5.2 Formulae for the Photoproduction of m% and n

The photoproduction of neutral

pions involve the isotopic spin combination A§+ ) * Ago)

From Table 2.1, we see that there are no known t-channel
exchanges corresponding to the amplitudes C(+) and C(o).

Accordingly we take

(*) Model C, is jdentical to Model A of Ref.(9). This ref. also
presents a Regge cut model B ( not presented in this thesis).
As we discuss in Appendix I, these cut models differ between
them with respect to non-leading ( in 1n s) terms; these non-

leading terms are important at the energies of interest.
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+ 0
o )(s,t) =0 o )(s,t) = 0 : (5.5)
Then our discussions in the previous section together with

eqn. (2.20) lead to the following expressions for the differen-

tial cross-section in the forward direction for n® photo-

production:

da. L a0 (0012 g p(*)upl0))2;

at 16T
_ (5.6)
23 T%;[IA(NP)i( A(pP)+tB(B)|2]
vhere ALT Jzple) p(wP) 200000 1 00P) (51 n).  The
: 1 1 1 i i i

upper (lower) sign refers to the photoproduction on protons

(neutrons). The differential cross-section and the polarised

photon asymmetry are

do _j do , A% ) R
dt dt

Also from egn. (2.23) ( uéing eqn. (5.5)), the polarised

target asymmetry for Yp+ﬂ°p is given by

n(8)= - /fgc im fa(t)a(0)y* () 5(0)y, (5.7)

1 STT'a—t-

For the photoproduction of n

mesons, eqns. (5.6) are to be modified in the following

AgR) denotes the contributions

i
to the w° amplitude A; from the Regge trajectory R. If AgR)(n)

fashion. 1In our notation,
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denotes the corresponding contribution to n production, then

g
alB ()= R, (B (5.8)
EyaR '
where gYFR denotes the coupling of R to the vy-m vertex,
while gynR is the corresponding coupling to the Yy-n vertex.

Now SU(6) symmetry gives

Eynw Bymp Enp = “Bymw ¢ Bymw ° 3gwp (5.9)

where the w-¢ and the n-¥X mixing has been neglected (30).

So for n photoproduction we have

dg_ _H []A(+)ihA(°)|2 _ tlD(+)ihD(0)|2]

dt~ 16T

(5.10)
%%E 1§W IA(wP)ih(A(pP)+tB(B))|2
where
g g g
H = (gy—"‘u )2 and h = —gﬂ‘-"—-g—Y-”—Q ~ (5.11)
YW ynw Sywp

5.3 Connection with mN-»wN and TN->pN

Starting with the reaction

TN-+WN, we assume that it is dominated by the same t-channel

exchanges, which in § 5.1 determines Yisoscalar' N > ml+N, ié

the p and B Regge poles and the pP cut. We are interested in

the part of TN-»wWN which corresponds to helicity Xw= *1 in
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the t-frame ( or Gottfried-Jackson frame). It will become
clear that the use of certain t-frame quantities allows a
direct determination of the magnitude of the B- exchange at a
physical value of t (t< 0) and independent of the magnitude
and the structure of the pP cut.

We shall use the six invariant
amplitudes Bi(s,t) (i=1,2,3,5,6,8) as used by Diu and Le Bellac
(1) for discussing TN+VN, where V stands for any vector meson.
0ff the mass-shell (ié for k®=m?), the B;'s will be functions
of s,t and k2 . To relate these amplitudes to the photoproduc-
tion invariants Ai's, we assume that Bi(s,t; k%) are smooth in
k2 (=squared vector meson mass); then the following relations
can be shown to be valid at k2=0 ( the photon limit) and

high s:

(5.12)

where q is the four momentum of the pion. In this derivation
we have used an extrapolation in the vector meson mass as done
in Refs. (31-34). Vector meson dominance is a special conse-
quence of egns. (5.12) .

Eqns. (3.1) and (3.4) of Ref.
(14) enable us to express the relations between the CGLN
invariants Ai and the t-channel helicity amplitudes (THA) for

the process TN»>wN., If p;i) denotes the density matrix element



—~
-~

k9

in the t-frame, then it is determined in terms of the THA's.

The combinations (pit)t p(t) ) %% are asymptotically

1 -1
dominated by t-channel exchanges with positive (upper sign)
and negative (lower sign) normalities respectively. We can

express them in terms of the CGLN invariants as:

2y /e )?
(4), (t) .ag _ (BY, (0)y2_, ()2
[p“+p1 _IJR- ——16_11'—[IA I —tlD I ]
(5.13)
(2y, /e )2
pt). o(8) jdo _ _ |(t+m;-u2)A(pP)-t(m;+u2—t)B(3)12
11 1 -1°4dt 16 T2
w
where is the Y-w coupli tant Ei— R m  and
Yy Y oupling constant, == 737 3 © u
are the ®w and the pion masses and
2 _ 2_ _uy2_
T, = Llm +u)*-t10(m -u)*-¢] (5.14)
Now the important point to notice is that at t= -(m;—uz)
=-.59 GeV?, the contribution to[pi?) - pgt)_llg% from the

p-P cut vanishes(3h’35). So a knowledge of this quantity at

this point directly determines the magnitude of the B exchange.
It should be remarked that the point t=-(ma—u2) is in the
physical region of the process TN->wWN, so that this method

of determining the B exchange involves only experimental

quantities and does not rest on assumptions about extrapolation

to t=m; or strong T-B exchange degeneracy.

It is known that vector dominance

relates directly the photoproduction quantities to the density
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matrix elements of 7N-wN { and mN-pN) in the s- ( or helicity)

frame(s). However our determination of the B exchange

contribution is based on the t-frame quantity [p(t) (t)] g: .

11 1 -1

Because of the special form of vector doﬁinance relgstions
shown in egns. (5.12), we have been able to express the t-
frame quantities (t) p(t) J%% directly in terms of the
ﬁhotoproduction quantltles (eqn. (5.13)). These relations
involve invariant ampiitudes for both mN-»>wN and yN-+wN. This
is the main reason we have proceeded in § 5.1 through the
Reggeization of the CGLN invariants.

Forlthe process TN-+pN, isospin
invariance tells us that the w exchange contribution can be
isolated in the following combination of differential cross-

(36),

sections

Xw(s’t) (ﬂ P>p p)+ (7 p+p p)— 9(r p+p°n) (5.15)

It is known that this exchange couples to the T-p system only

vhen the p helicity is +1(37) So it follows that

(t) do
20" T (5.16)

Xw(s,t)=
So the left hand side of eqn. (5.15) is evaluated from the
formulae (5.13) with B=0, and replacing all p and p-P indices

by the corresponding w and w-P indices.
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5.4 Requirements of the Dual Absorptive Model

We shell use the basic reguire-
ment that
In fux(s,t) ~ J (R/-%) 5 BR~1 fermi 3 n= |A-u| (5.17)

of the DAM in order to place restrictions on the t-structure

of the imaginary parts of our SHA, and implicitly, on the
magnitude of our Regge cuts. We shall require that, at any

given energy, the combination of Regge pole and cut contributions
forming our SHA has an imaginary part with approximately the
t-structure (zeroes, maxima,minima) of the corresponding

Bessel function,

We first consider the amplitude
with isospin index (0) (ié p, p-P and B exchange contributions).
Then Table 5.2 and the DAM requirement (5.17) imply that for

the single-flip amplitudes (n=1 ):

1 £$9)(s,t)=1m £ (s,t)="1f%E /= (P 4 PPNy 5 (RVE)
13 L] m 17 (5.18)
2’2 272

Also Table 5.2 implies that for the non-flip emplitude (n=0 )3 (

Im f(°)(s,t)=-f§§— Im(A(p)+2A(pP)+tB<B)) ~ T, (R/=%) (5.19) '
1 1 16 0

s
2’2
and for the double-flip amplitude (n=2)

In f(?) (s,t)=%%§F m (4P 43(®)) L 5 (87D (5.20)

T
22
Next consider the amplitudes
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with isospin index (+] (i¢  and P exchanges), For the
n=1 amplitudes, the requirement corresponding to eqn. (5,18)

is obtained from Table 5.2 as

m £(*) (s,t)=1m £{*) (g )= /25 /=t Im(D(w)+D(wP))~J1(RV:€I

3 ° 16T
2 (5.21)

Nl'—

1
’2
Here the n=0 and the n=2 amplitudes are much smaller in

magnitude (see § 5,5b), 1In any case, the corresponding DAM

requirements can be easily obtained from Table 5.2.

5.5 Fits, Parameter Values and DAM requirements

Our fits to the experimental

data are presented in Figs. 6-14. The Regge pole and the

Regge cut parameters used are given in Tables 5.3 and 5.h,

a) Features of the Fits produced

i) %% for Yp+ﬂ°p: Both our models account fairly well for the
t-structure and the energy variation of the data (Fig. 6).

The expected dip at t=-.55 GeV2 is observed in both the models.
Model C1 consistently éives & slightly stronger dip than what

is actually observed.

ii) Polarised photon asymmetry I for yp+m’p: Both models

reproduce this parameter quite successfully (Fig.T)

iii) The ratio R= %% (Yn+w°n)/%% (yp+7°p): Both the models

are again quite successful in fitting the datsa (Fig. 8).
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Model 01 gives a flat t-structure, while Model 02 shows a dip
at t=-.55 GeV2. This ratio is quite sensitive to the relative
magnitudes of the isovector and the isoscalgr photon
contributions, and in general, quite difficult to obtain

correctly.

iv) Polarised target asymmetry T for Yp+ﬂ°p: Both Models 01
and C2 are unsuccessful in fitting the data for T, in parti-
cular at |t]<.5 GeV?, where they predict T>0 (Fig.9). They

also predict.a change of sign in T at t=-.5 GeV?, not supported
by the present data. However, another set of parameters in

the framework of the model 01 (called C; in Tebles 5.3 and
5.4) éroduces better results; at small [t], T is still positive,
but at larger lt|v, reasonsble agreement is obtained. This
model also gives large negative T (=-.42) at t=-.6 GeV2?, in
agreément with experiment (Fig. 9, cross-dashed curve). With
these particular parameters certain other quantities (e.g. the
ratio of maximum to minimum value of %% (yp»m’p, Fig. 6 at 9
GeV) are in less satisfactory agreement. However most of the
éredictions are qualitatively the same as of Model C, (see
bolarised photon asymmetry I at 6 GeV, Fig. T7; the yp-np
differential cross-section at 6 GeV, Fig. 10; and the quantity

Xw(s,t) at 8 GeV, Fig. 11).

v) %% for yp>nNp: Model C, shows a shoulder at t=-.55 GeV?
(Fig. 10). This feature is not supported (but also not definitely
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excluded) by the present data. Model C2 on the other hand,

shows no such shoulder or dip.

vi) . Xw(s,t) for mN+pN: From the @ and the w-Pomeron
contribution to m’ photoproduction, we can obtain Xw(s,t)
(eqn. (5.15)) by using vector dominance. As we see'in Fig.

11, both the models 01 and C2 fit the existing data quite

well.

. ey (t) do (t) (t) do
vii) The quantities p1 , 3t [pl . P, ~1] T and

[p(t)+p(t) ] dg for w*n»wp: Comparisons with experimental

1 1 1 1”4t
data are shown in Figs. 12,13 and 1b. Model 02 semms to fit

the data for the first two quantities quite well. Model 01 shows
(t)+p(t) ]

11 1 =1

a dip at t=-.55 GeV? for pgf) %% . For the quantity [p
%%, the experimental information is quite imprecise and
precludes any definitive statements about the presence or the
absence of dips at t =-.55 GeV?. Model C1 again shows a dip,

while Model C,exhibits no such dip. At smaller |t|, Model c,

2
seems to fit the data better.

b) Values of Constants

In both the models, the pNN
coupling is dominantly s-helicity flip ( see value of G&p)/Ggp)
in Table 5.3). The wNN coupling on the other hand is by far

dominantly non-flip ( see value of Ggm)/Ggw)). We need
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Giw)/Gﬁw) >0 to fit the data. Theoretical considerations(ls)
give & small negative value for this ratio. Notice that other
high energy models(6’18) ‘have also been forced to use positive
( and rather large) values for this ratio in order to fit the
data. In our fits, the required Giw)/Gém) (= .1 ~.05) is
quite small. Also YN-+w°N is dominated by w exchange ( as seen
from the values of the ratio Ggp)/Giw) used in our fits) . The
expected values of the constants Gip) and Géw) have been
calculated in terms of the pNN and wNN couplings and the decay
widths T (p»my) and T(w>my). However, these are only order
of magnitude estimates, and our fitted values compare well
with them. (see also Table 8.2).

In the n photoproduction fits,

ve see that SU(6) predictions compare favouragly with our

: Y
parameters values. The values of E% and E% as determi-

ned from our fits of Xw(s,t) for mN+pN and the t-~frame density

matrix elements for w+n+wp are also quite consistent with

the experimentally determined magnitudes of these quantities.
The trajectories p, w and B are

constrained to pass through the magses of the corresponding

particles. A; is taken to be = .7 GeV %2 , so that the B

trajectory becomes exchange degenerate to the pion trajectory.

To account for the t-variation of the experimental [pitz—pgt)]

do

res for ﬂ+n+wp, we were forced to introduce an extra t-
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dependence in the B meson residue (BéB)= GéB) est). So

the exchange degeneracy 1is weak.

c¢) Requirements of the DAM

As we discussed in §5.4, the

Dual Absorptive Model requires that the imaginary parts of the

single-flip amplitudes f(?)l and fioz behave like J (R/-%),

with R=21 fermi. This meaﬁézthat inzégdition to vanishing at

t= 0, each of them has a zero near t= -.55 GeV?2. Fig. 15

shows that this requirement is well satisfied for both the p

and the W exchanges in both our models. Since vector exchanges
are involved, we expect from our discussions in chapter 4 that

the corresponding cut contributions are weak. This is indeed
1 (p),(w)
Al 3’ ).
273
As discussed in the third section

of this chapter, the non-flip amplitude fioz

T
. So, the imaginary

the case as seen from Table 5.3 ( values of

is proportional

to the combination [A(p)+2A(pP)+tB(B)]

part of this combination should behave like JO(R/:E), having

a first zero at t= -.2 GeV?, a local maximum at t=-.6 GeV?

and a seéond zero at t= -1.2 GeV? . As shown in Fig. 16, both
models show the first zero around t= -.15 GeV? , but the
maximum and the second zero are displaced towards smaller ltl.

This tendency is more evident for Model 02 .

Similarly the combination
[-A(p)+tB(B)J is proportional to the double-flip amplitude

f(?> . Hence its imaginary part is proportional to J2(R¢—t),

vfw

T
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and consequently it has zeroes at t=0 and t=-1 GeV2. Model

C2 satisfies this requirement quite well (Fig. 17), but Model

C1 has its second zero at a smaller value of ‘t[ .

Since the wNF coupling is
(+) ana f
S

(+)

dominantly non-flip, the w contribution to f .
2’2 22
are quite small. So we do not discuss the DAM requirements

for these two helicity amplitudes. Again, in view of our
discussions of chapter 4, we expect the corresponding cut
contributions to be quite large. This is again seen from

Table 5.3 ( values of 3593’(“) ).

11
272 The real parts of the correspo-

nding s-channel helicity amplitudes are also shown in Figs.

18 and 19. The real parts of both f(?)l and f(:)l' (Fig.
27 3
18) look alike in both models 01 and 02 . These amplitudes

show structures somewhat resembling Jl(RV—t) but with the
(o)
1

zero shifted towards small Itl . For Re fl
2°2 .
twvo models give anything resembling JO(RV-t) (Fig. 19). For

» none of the

, » Re f(°)3 looks like J,(R/=%) (Fig. 19), but
292
Model C1 gives a different structure. Of course, the DAM

Model C

does not impose any constraints on the real parts of the

amplitudes.
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Table 5.1 Combinations of SHA with Definite Normality *)

Normality o + v - ry —
A 5ty y E i3 Ep iy
Isospin x (-81/VZs) | x (-8n/VZs) x (-81//7s) x (~81/Y75)
™) —/—_t(D(“’)+D(wP)) 0 RO O A(mP)
w-1like
(© e ®)ap®P) 0 1), , (0P) AGP), (B
(p+B)-1like ’

(*) This table is directly obtained from equations (A.IL.3) and (A.II.4).

8%




Table 5.2 Residue Functions and Contributions to s-channel Helicity Amplitudes

(R)

Contributions to s-channel helicity

Residue functions 81 (t) e den o ey
Exchanges | Bi(t) | B,(0) | By(e) | B(e) | £33=% 3 £ 3 £33

. 6® | ) o | 6@ | ama® | W ®

w —cci“’) Gi‘”) 0 Gle) /=t p@ S AW

B 0 c(B) bt 0 0 0 3 (® 3 (®
p~Pomeron -/=¢ p°®) 24 (°P) negligible
w-Pomeron /ot pWE) | gaWP) negligible

6S



Table 5.3 Fitted and Expected Values

Fitted Values Expected
Parameters C, (0AY) | ¢, WeH) | C, (DA C,(Wem) | Cj(0AM) | Values (*) References
Gf“") wlcev2y | o7 79 118 118 94 95 (18) (40) (41)

’ (42) and SU(6)

c{w) -1
—J(m—) Gevh) | 0.1 0.03 0.05 0.05 0.05 -0.07 (18) (39) (42)
Gy
c® -1 _ :
—1(w—) Gev' ) | 0.39 0.45 0.25 0.25 0.25 0.225 (18) (40) (41)
G, (42) and SU(6)
G(p)v
b (V) 0.35 0.24 0.45 0.45 0.45 0.50 (18) (38)
G lp (39) (42)
g W 1
yme o Z -4.54 -3.22 -4.0 -2.96 -3.86 -3.0 SU(6)
Eyno VH
8y muByn
LN A1 9.0 8.87 9.0 9.0 9.0 9.0 -SU(6)
gYnng“O
szllm 5.4 5.2 5.4 10.1 4.9 3.7:0.65 | (43)
szllm 0.45 0.55 0.6 0.6 1.5 0.520.03 | (43)

(*) See discussions at the end of §8.3(c)

and Table 8.2.

09
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Table 5.4 Other Parameters

Parameters Cl (DAM) Cl (ﬁCM) C 2 (DAM) 02 (weM) | ¢ i (DAM)
A=, ©ev )| 0.86 0.88 0.90 0.90 0.90
rg GevD) | 0.68 0.70 0.70 0.70 0.70
Ap (Gevh) | 0,40 0.39 0.30 0.30 0.10
50, @) | 131 149 [@)™ (@) o)™
5y, (GeV) | 0.83 0.63 o™t o™ oy
s @V | 080 oes  fopT [opTt lap
s;p (GeVZ) sop S0 (Ap )-1 Sop 500
Sc'm) (GeVz) Sow 5 ow Sow Sow Sow
X(TP) 4.1 1.0 3.5 1.0 4.25
X(TP) 3.8 1.0 3.5 1.0 4.25
2§ f) 1.5 1.0 1.0 1.0 1.0

3 (WP) 1.5 1.0 1.0 1.0 1.0
A, (Gev'%) | 2.40 2.35 0 0 4.0
¢® /e -1.62 [ -2.11 | -2.54 | -2.54 | -0.96
b (Gev 2) 4.4 3.79 4.87 4.87 4.4
o, (mb) 2 2 2 24 2




CHAPTER 6

CALCULATIONS WITH THE WCM AND COMPARISON WITH THE DAM RESULTS

In this chapter, we shall
discuss the Weak Cut Model (WCM) results for the same quantities
for which the DAM results were presented in the last chapter.
We shall also suggest some tests for experimentally distinguish-
ing between the DAM and the WCM. We shall also discuss the

implications of our calculations.

6.1 Weak Cut Model

a) Amplitudes in the WCM

The contribution to the CGLN
invariants Ai in the forward direction from the Regge trajectory

R (p, w and B exchanges) is taken to be the same as in the

DAM (eqn. (5.2)) :

-1 (t)
1 - e IWGR ( s 0LR(t)—1

Flag(t)1 Sinlmag(t)] s

AP s,e)= 8{Fle) o -

(6.1)

The explicit forms of the residues BéR)(t) have been shown

in Table 5.1. As usual, Sg is the energy scale.

For the cut contributions, we
remember that (see chapter 3 and Appendix I) the WCM is defined

by taking

—~
=
g

RP) - A = 1.0 (6.2)

N')—av

5 (
1
2

NIH
]
M'a—a

62
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and

Sor - SOR (6.3)

Of course in Cl(WCM) we sake A,=0, while in C2(WCM) we have

A,=0 ( see Appendix I).

It is easy to see that in this
model, the analyticity constraint (5.3) is satisfied exactly

in the same way as in the case of the DAM.

b) Features of Fits produced

The fits to the experimental
dats are shown in Figs. 6-1%. The corresponding Regge pole
and Regge cut parameters have already been given in Tables

5.3 and 5.k,

i) %% for yp»m'p: As in the DAM, both Models C, and C,
account fairly well for both the t-structure and the energy
variation of the data (Fig. 6). However, the WCM always
gives a slightly stronger dip at t=-.55 GeV2 compared with

the corresponding DAM.

ii) Polarised photon asymmetry I for yp»m’p: Again both

models are guite successful in explaining the data (FPig.T).

iii) The ratio R=%%(yn+ﬂ°n)/%%(yp+ﬂ°p): At L GeV, the ratio R

comes out somewhat high. At 8 GeV, the fit is quite good.

iv) Polarised target asymmetry T for Yp*ﬂop: Both models fail
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quite badly. Model C gives & small positive value for this

1
quantity in the small ltl region. T changes sign at t=-.55
GeV?2 , and assumes a small negative and practically constant

value upto |t|<l GeVv? (Fig. 9). Model C, predicts a very small

T for all |t]|<1 GeV? (not shown in Fig. 9).

v)%% for yp> np: Model Ci(WCM) exhibits & shoulder at
2~ ,55 GeV%, just like the corresponding Ci(DAM). Model
c, (WCM), on the other hand, does not exhibit any dip at

~.,55 GeV? and fits the data quite well (Fig. 10)

vi) Xw(s,t) for mN-pN: Both the models fit the data quite
well, The results are very similar to the corresponding DAM

results ( see Fig. 11; the WCM results are not shown) .

. - (t) do (t) (t) do
vii) The quantities °L T C o, N _1] = and
[P(t)+ D(t) ] 4o for w+n+wp: For the first two quantities,

11 1 -1 at

both models show strong dips near t= 0 (Fig. 12 and 13). At

larger values of |t| , both models show reasonably good agree-

ment with the data, although for the quantity pft) %% ,
1

Model Cz(WCM) seems to produce the better fit. For the quantity

[pftz + D(t)lj %% , both the Weak Cut Models prediect strong
1 -

dips around t=-.55 GeV? .
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¢) Values of Constants

Both %% and I for Yp+ﬂ°p and

Xw(s,t) for TN-pN are effectively determined by the single-
flip amplitude which is dominated by ® exchange. Since the
DAM and the WCM are quite similar for single-flip amplitudes
and the parameters used for W exchange corresponding to this
helicity amplitude in both the DAM and the WCM are also similar,
the corresponding results are predictably similar.

In our discussions in § 3.2,

we pointed out that if vector exchanges dominate, then the
WCM should produce an unwanted dip in %% for vyp-np around

~-.55 GeV? . Model C2(WCM) does not give this dip. Model 01
(WCM) produces a shoulder around :this point, but this is
weaker than that produced by Ci(DAM). The reason for this is
that in both the WCM's, we have introduced a relatively large
B contribution. This is also evident from an examination of

() pif“)lj dg (Fig. 13) at t=-.6 GeV2.

the quantity [ ey at

At this point, this quantity is exclusively determined by the
emount of B contribution, and we see that this is somewhat

overestimated in both the WCM's. Moreover, in order to obtain

(¢) do (¢) _ (t) ; do

13 . ¢ do
the proper normalisation for p 3§ » L N I at

(t)+p(t) ] 49 the model CQ(WCM) has to use a value

d
snd [ PP dt ?
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YZ

w
of o7

observed value (Table 5.3).

which is about 3 times larger than the experimentally

6.2 Conclusions and Predictions

The Dual Absorptive Model imposes
the requirement that the imaginary parts of the different
helicity amplitudes be peripheral. It, however, does not
specify how to achieve this objective. 1In this work, we have
introduced suitable amounts of Regge cuts ( Reggeon~Pomeron
cuts to be exact) in addition to the corresponding Regge pole
contributions in order to obtain the required peripherality.
These Regge cut contributions have been calculated through the
absorption prescription (eqn. (3.18)). So, our prineipal
motivation for carrying out this calculation is to examine
whether the absorption prescription‘is e proper tool for

implementing the DAM requirements.

We have seen that both the
models Cl(DAM) and C2(DAM) are in reasonable agreement with
the data ( except with those for the parameter T). It is true
that C,(DAM) predicts shoulders at t ~-,55 GeV2 for the

(t) do (t), (t) do
°1 [px . 1] at  ToT

H s Y

quantities %%(Yp+np) and X

+ . .
7 n+wp. No dips are experimentally observed for these at
this point. However, the corresponding date contain large

errors ( in particular for the last quantity). So the presence
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of a small shoulder cannot be ruled out. _

Both models C,(DAM) and C,(DAM)
seem to be in disagreement with the present data on the
polarised target asymmetry T. Parameters corresponding to -
Model Q&(DAM) give better numerical results, but the t-
dependence remains basically the seme. It should be
pointed out here that other Regge cut model calculations
through the absorption prescription, as carried out by Gault
et al(s) and Worden(hh) as well as the WCM (see §6.1), also
give similar results. ©So far, the parameter T has been
measured only at one energy, and the data contain large errors.
If more precise and thorough measurements confirm the present
data, then the conclusion will be that the absorption prescrip-
tion is not a suitable method for calculating the Regge cut
corrections to reggeized vector exchanges.

We can speculate here about the
reasons for the seeming failure of the absorption prescrip£ion.
It is true that we have imposed the DAM requirements on the
imaginary parts of the hélicity amplitudes in a reasonably
satisfacfory manner. It should be remembered that these
requirements are to be satisfied irrespective of the particular
method chosen to calculate the Regge cut contributions.
However, for the corresponding real parts, only for the n=1
amplitudes does the DAM implicitiy predict any definite t-

behaviour (egn. (4.3)). For the n=0 ( and the n=2) amplitudes,
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these real parts are determined in a model dependent way

( in this case, the absorption prescription). Since of all
the quantities we have tried to fit, T is the most sensitive
to the real fafts of the amplitudes, the shapes of the real
parts of n=0 and n=2 amplitudes in our models should be blamed
for the disagreement with “he data. Notice that Re ffoz

2 2
(Fig. 19) of our models do not look at all like the real part
of the n=0 amplitude of Halzen-Michael and Kelly(QS) analyses.

It is also possible that the
DAM requirements should not be imbosed through the introduction
.of Regge cuts iIn the first place, However, the theoretical
basis of the existence of these cuts have been well established
(16’17). So, such a possibility demands a ﬁroper gvaluation
of the relative importance of Regge cuts for different
hadronic interactions.

Another motivation for doing
this work is as follows. If we accept that, at least in
photoproduction, the absorption prescription is suitable for
calculating Regge cut contributions, we would like to see if we
can experimentally distinguish between the DAM and the WCM on
the basis of the existing data or from some yet unmeasured

quantities.

The present data on %% and
for Yp+ﬂ°p and the corresponding ratio R do not really prefer

one model over the other. The same is true for the differential
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cross-section for Yp»nNp. The predictions for the polarised
photon asymmetry I for n production for all models at 4 GevV
are shown in Fig. 20. We see that the WCM ( both c, and 02)
predicts a strong dip in I at t=-.5 GeV?, and, in general,
this quantity should show a strong t-dependence, while the
DAM (again both c, and C, ) gives only a small shoulder at
that point. So an_accu¥ate measurement of this quantity will
help in distinguishing between the DAM and the WCM. The ratio
R= %%(Yn+nn)/%%(yp+np) is also shown in Fig. 20. The predic-
tions are very similar in both the models.

A more precise determination

of the small t-behaviour (t~0) of the quantities pfti %%

and [piti-pit)ll %% for ﬂ+n+wp will be very useful for our

purpose. The WCM gives strong dips near t=0, a feature not
predicted by the DAM. But the most clear distinction can be

(), (%) ]

obtained from the behaviour of the quantity [p1 1+p1 .

dg
dat
near t=-.55 GeV2. The WCM predicts a strong dip at this point,
while the DAM does not give this dip, or at best produces a
small shoulder. Unfortunately, due to the inaccuracy of the

present data, definite conclusions about the presence or the

absence of this dip cannot be made.
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CHAPTER T

REVIEW OF EXISTING MODELS

In this part of the thesis, we

shall discuss different aspects of photoproduction of 7t and

™ . The important features observed in the case of charged
pion photoproduction are:

a) Both ﬂ+ and T cross-sections show sharp forward peaks of
width ~p?(u = pion mass).

b) The ratio R= %%(Yn+n—p)/%%(yp+n+n) has a value R=1 in the
forward direction (t=0) and then drops rapidly and shows a
broad dip around t=-.lk GeV? .

e¢) Unlike w° photoproduction, charged pion photoproduction
does not show any dip around t=-.55 GeV? .

d) The polarised photon asymmetry I ( defined in eqn. (2.17))
for both m' and T ,rises rapidly from I=0 at t=0 to I~1 at
t.-p%. After this initial increase, £ drops for both ni , the
drop for m being faster than that for m .

e) The polarised target asymmetry T (defined in eqn. (2.18))
has been measured for the process yp+w+n. The date show that
T, starting from zero at t=0, becomes large negative with
increasing [t|. For |t]|=2.5GeV?, T decreases in absolute value.
f) In the backward direction, the mt differential cross-
section drops smoothly with increasing Iul, and exhibits no

dip structure. There is yet no experimental information for

backward Yn+ﬂ—p.

Tl
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The photoproduction of charged

pions involves the isotopic spin combinations A§—)tA§°)

The Regge exchanges in the t-channel corresponding to these
amplitudes are shown in Table 2.1. The asymptotic expressions
for the forward and the backward cross-sections in terms of

the CGLN invariants are given in eqns. (2.20) and (2.21)

respectively.

Pion exchange dominates the
cross-section in the extreme forward direction (t~0) and this
is demonstrated by the sharp forward peak of width~p2. We
shall now proceed with a brief review of the most important
theoretical models advanced for the understanding and the

description of charged pion photoproduction.

7.1 BElectric Born Model

The forward structure of charged
pion photoproduction can be explained on the basis of a gauge
invariant perturbation theory model (Electric Born Model).

This consists of an elementary pion exchange in the t-channel
and nucleon contributions in the s; and u-channels; the nucleon
anomalous magnetic moment is ignored. The corresponding
Feynman diagrams for Yp+w+n are shown in Figs. 21 a,b,c. The
elementary pion exchange alone (Fig. 20a) is not gauge
invariant; the nucleon exchange diagrams (b) and (c¢) must in
addition be considered in order to obtain a gauge invariant

contribution.
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If we only consider the electric
eand the normal magnetic moment couplings between the photon
and the nucleon, then elementary Feynman diagram calculations

give the following contributions to the different CGLN

amplitudes:
A(+)=A(O)=%eg r L o+ 11 A(_)=%eg L -1
s-M? u-M2 s-M2 u-M2
(1.1)
a(+).p(0) ¢, 1 R G s-u
(s-M2)(u-M?) (s-M2) (u-M*) (t-p?)
In the asymptotic limit s-,
"t small, it is clear from (7.1) that the amplitudes A(—) and

B(-)dominate over A(o) and B(O). So for small [t| we can write

dg 1l g, (-)i2, da, 1 () p(-)y2 40 4 4G 40k .
e PO Rt~ LA L M R el A (7.2)

Thus at t=0

dga _ 4o
ey d{ (7.3)

This condition is essentially a restatement of the analyticity

constraint eaqn. (2.26).
Form (7.1), we see that A(-)

increases very slowly with |t|, and so %%‘ is almost constant

in the forward direction. So the t-structure of %% is to
explained solely on the variation of %% with t. For

calculating %%' , we note that the Electric Born Model gives
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Al Ves() o e il _tru? (T.%)
(s-M2)(u-M?) t-p?

doy

It starts from

This shows that

a finite value (= 49ty gt =0 and drops off to zero at t=-u?

at
. . . - (X1} do do
and then rises again. The quantities 3t at and T

are plotted in Fig. 22. The Electric Born Model qualitatively

reproduces the forward peak in %% . However for |t|>u2 . E%

as calculated from this model, starts inereasing again, in
total disagreement with the experimental data, which show a
smooth decrease, more in tune with conventional Regge behaviour.
Quantitativelﬁ; the Flectric Born Model agrees reasonably well
with the experimental cross-section in the region |t|5u2

From (7.3) and (7.4), it is also

evident that the polarised photon asymmetry I rises from =0

ot £20 ( where & = 3% 45 1=1 at t=-p*(where d%. o). A1so

at  dt dt
since the amplitudes A§O) are small compared to Aé-) , the

ratio R=1 at t~0 as experimentally observed. All versions of
the pion exchange model ( including pion parity doublet and
Regge cut models , and not just the Electric Born model)
explain the forward structure of %% , L and R in a similar

way. The change in 4o comes almost entirely from the rapid

dt
(o1

t-variation of %% , while %f is essentially constant in t.

7.2 Regge Cut (Absorption) Model

The analyticity properties of the

CGLN amplitudes lead to the requirement that at t=0, the
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singularity free PCTHA's must satisfy (eqn. (2.26))

=+t - --t
i““(s,o) = Mf“(s,O) | (7.5)

While discussing the photoproduction of m° and n mesons, we

showed (§ 5.1) how the p and B trajectories satisfy this
condition (by evasion). In the present case, we have two

+(~)

additional trajectories, T and A2, which contribute to f;l

and f::(-) respectively ( the superscript (~) denotes the
i-spin index). As in the case of the p trajectory, A2 gives

a contribution that vanishes at t=0 ( %::(A2) (s,t) » 0, as

t+0; evasive solution).

The simplest possibility is that
the pion as well gives a contribution that vanishes at t=0,ié

which at small |t| behaves as:

"""l'('ﬂ') . £ s aﬂ(t)-i
f°1 (IS,t) = B“(t) T2 (—S-a) (7.6)

where Bﬂ(t) is a smoothly varying function of t (BW(O)=O).
However, as already mentioned, there is a sharp forward peak

in the differential cross-section for charged pion production,
end this peak has a width ~p? and should presumably be
explained on the basis of pion exchange. A pion contribution
vanishing at t=0 will give a dip instead of a peak. So, we have
to have some additional non-vanishing contribution at t=0.

This can be done by generating through the Bessel transform

of eqn. (3.18) a pion-Pomeron Regge cut, like the p-Pomeron
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and the w-Pomeron cuts of chapter 5. This cut‘( having no
definite normality o ) contributes to both ?;: and Ej:

with contributions

M §-+(ﬂP)(s 0) = f++(ﬂP)(s 0)
Jo1 ’ 11 >

thus satisfying the constraint (7.5). So, we have

§-+(s,t) §_+(ﬂ)(s,t) + §-+(ﬂP)(s,t)
01 01 01 '

(7.7)

%::(“P)(s,t)

(s ,t)
11

(leaving out contributions from other exchanges like A2 etc.)

01

The sign of ?;:(NP) is so
chosen that it interferes destructively with §-+(ﬂ) . This

destructive interference produces the sharp forward peak as

shown in Fig. 23.

Notice that such a picture is

in complete agreement with elementary pion exchange plus

absorption corrections(eo). At small|t| , Regge and elementary

pions are practically indistinguishable; and the effect of

of the Regge cuts is very much the same as that of the
. ’

.absorption corrections.

“Models based on the above Regge

4

cut mechanism account éuite well for the experimental situatioen

(5)

in charged pion photoproduction
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7.3 Pion Parity Doublet Model

This model does not use any Regge

cuts. ?;:(-) receives its entire contribution from the

exchange of the pion Regge trajectory, and this contribution

is non-vanishing in the forward direction. In order to satisfy
the analyticity constraint (7.5), the existence of another
trajectory a“,(t), which has positive parity, but has all

other quantum numbers the same as those of the pion trajectory
( 'parity doublet conspiracy'), is assumed. a",(t) contributes

-++ . _ o1
to fll(s,t), and if aﬂ(o)- “w'(O) and s“(o)- i B“,(o) (=0),

(wvhere Bﬂ(t) and‘Bn,(t) are the residue functions of the 7'

and T' contributions to f;: and f?: respectively), then (7.5)
is satisfied. Also, both ?;:(s,t) and Ef:(s,t) give finite

contributions to the differential cross-section at t=0. Good
fits were obtained by Ball, Frazer and Jacob(hS) to charged
pion photoproduction usi#g such a model., Similar mechanisms
(46,47)
2

were also used to explain the forward structure of np-pn

where similar problems with analyticity constraints arise as

well.

For quite some time, this model
received much attention, because the existence of such a parity
doublet was predicted in the Toller classification of Regge

trajectories. Particle theorists were initially led to this
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(L8.49)

classification by group theoretical methods , and later
by means of analyticity and factorisation(so). However,
certain serious difficulties in connection with factorisation
and the forward structure of the reaction w+p+p°A++(51’52)
end with the soft pion limit(53), as well as the fact that the
existence of particles corresponding to quantum’numberé of m

has not been unambiguously established, made this model rather

unpopular.

7.4 Pseudomodel SH)

Both the model with a pion
parity doublet conspiracy and the model with an evasive pion
and pion absorption cut are consistent with Finite Energy (FE)
and Continuous Moment (CM) sum rules, as the works of Bietti

et al(55) DiVecchia et al(ss) and Jackson and Quigg(sh)

s
indicate. This suggeste that one can attempt to explain the
forward structure of this reaction essentially on the basis

of its low energy featurgs and the sum rules, without postulating

any specific high energy model . This approach(sh) leads to

quite successful fits to the differential cross-section and

the polarised photon asymmetry I for |t|<.45GeV2('pseudomodel').
Sum rules are applied by Jackson

and Quigg to the t-channel helicity amplitudes Hi(i=l,h), which

0.0
are related to the PCTHA fu; ®(s,t) of §2.3 as follows:
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Y2H .
2, Pt 1 ; F7 7= _2/2 H (7.8)
t-u? 11 /5 3 11 4

§++= V2H 5 §—+=
01 1 01
The contributions of the trajectories W,B,p,A2 and A1 to the
Hi's can be easily deduced from (7.8) and Table 2.1, In the
forward direction, the contributions from p,B and A1 are

negligible, and we consider only contributions from T and A2,

both of which have even signature.

Now if ¢i denotes the low energy
side of the sum rule for the amplitude Hi’ then the Yth'

CMSR is given by

v Y 1
b; (Ysvp ot)= - B £omEE ey ( > ) Im 722 g, (v,8)]
max
(7.9)
2
where v= %—%— = incident photon energy in the lab frame.

Eqns. (7.8) and (7.9) establish

the connection between the ¢i's(y,vmax,t) and the H.'s. These

in turn relate the ¢i's to the CGLN invariants Ai's through
(2.24). Some algebra gives (using eqn. (2.20)), in the

forward direction (t~0): "

(s-M2)2 8@ _ _1__ . [67 ]2 - |47 |23
dt yarp? 8 1 (7.10)
2 ¢, ]2
(s-u?)? %%‘ - Mz C - 2y2 I¢L|2]
TH (t-u?)
where ¢1 = %ig ¢i(Y=O,vmax,t)

The ¢;'s in (7.10) are completely

supplied by low energy data. Eqns. (7.10) were obtained
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without using any specific model for the Hi's in the right hand

side of egn. (7.9). This model fits the differential cross-

section of nt photoprodugtion quite well upto t=-.45 GeVZ .

Its predictions for polarised photon asymmetry L also agree

with the experimental data quantitatively upto t ~-u? and

qualitatively upto t=-.k45 GeV?2 (Sh).

T.5 The Veneziano Model

We have seen that the gauge
invariant Electric Born Model is quite successful in explaining
the features of charged pion photoproduction in the extreme
forward direction. However, as we mentioned in §T7.1, for
|t|>nu? , this model predicts a differential cross-section %%
increasing with [t|, while the experimental %% decreases
smoothly, and is compatible with conventional Regge behaviour.
It is of interest to formulate a model which will be compatible
with the Electric Born Model at small |t| , while giving the

desired Regge behaviour at large ltl.

The Veneziano representation 1is
one framework, through which this objective can be achieved. In
the next chapter, we shall explicitly build up a Veneziano
model with W,Az,p and A1 exchanges in the t-channel and Na s
N and A exchanges in the s- and u-channels, and shall try
to mccount for the different features of charged pion photo-
production. In the limit s+®, t small, the Veneziano model

for any particular CGLN invariant amplitude will give an
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energy dependence ~ sm(t)_1 , where a(t) is the Regge trajec-

tory dominating the amplitude. At small |t|, where the pion
contribution dominates, the corresponding amplitudes will have

a“(d)-1
a power behaviour -~ s

~ s as a,"(O)2 0. If we look
at the Born expression (T7.4), we seethat at t~0, A(_)+tB(-)
has the same power behaviour ~s-1 . To_ensure that the
Veneziano model also produces the Electric Born results
quantitatively, we shall impose the constraints that the
residues of the Veneziano model expression for the amplitudes
A(-)+tB(-) at the pion and the nucleon poles be the same as
those obtained from the Electric Born model at the same points.
There are two other advantages
of using the Veneziano model. Firstly being a dual model, it
satisfies FESR's, at least approximately(57). Secondly, being
crossing symmetric, it can be used, at least in princible, to
describe charged pion photoproduction in both the forward and

the backward directions. The application of the model to

backward Yp+ﬂ+n will be taken up in §8.5.



CHAPTER 8

CALCULATIONS WITH THE VENEZIANO MODEL

In this chapter, we shall formulate
a Veneziano model for the different CGLN invariant amplitudes
and apply this model to explain the various features of charged
pion photoproduction in both forward and backward directions.

In the last chapter, we discussed
the pseudomodel of Jackson and Quigg. We saw that as far as
the explanation of the forward peak in “i photoproduction is
concerned,the pion parity doublet model and the evasive pion
model with absorptive pion-Pomeron cuts are equivalent. The
incorporation of absorptive corrections in a crossing symmetric
(Veneziano type) framework is quite a complicated problem,
while the pion parity doublet model can be formulated in a
straight forward and simple way. So in our formulation of the
Veneziano model, we shall adopt. the pion parity doublet

gpproach.

The parity partner of the pion,

m' , will contribute to the singularity free PCTHA ?::(-)(s,t).

Now, ftr(-)(s,t) also receives contributions from A, exchange
in the t-channel and from baryon resonances in the s- and u-
channels. If only a finite number of resonances are considered,
then in the high s limit, the corresponding contribution has
the behaviour T++(—)~ g s-n, where n is an integer. In the

11

82
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Veneziano approach, the number of resonances are infinite,
and the corresponding infinite sum can be considered to give

..++(_) a.n.l(t)'i
& contribution fll» (s,t) ~ s , where an'(t) denotes

the Regge trajectory of w' (conspirator).

In the second portion of this

thesis, when we were considering m° and n photoproduction, we

used a substantial B meson (0=-) contribution to the amplitude

B(O) This contribution is evasive, ié it vanishes at t=0.

In the extreme forward direction (t~0), pion exchange (o=-)

dominates charged pion photoproduction ( contribution to B(-))

s
and is taken to be non-evasive. An analysis by Diebold
the experimental data shows that the combinations (w*B) which
contribute to ni photoproduction, are essentially dominated
by the pion contribution in the forward direction. Sipce the
presenf analysis will be confined to small |t]|, we shall
construct our Veneziano amplitudes simply by neglecting the

B exchange.

8.1 Parity Doublets, Walker Residues

Near an s-channel resonance,
say at s3s, each of the CGLN invariants Ai has a behaviour

g(l)(t)
. $=%0
If the highest spin of all resonant states at s=s is J, then

of the form where g(l)(t) is a polynomial in t.

the degree of g(l)(t) in t is related to J. We consider the case
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that the highest spin J resonance has a definite normality
c(:P(—)J), and we ‘denote by Agl) the coefficients of the

leading terms of g(l)(t}.A Then it can be shown that'20);

3
Res. A = A £ | Res. B = B, £9°2
3(8.1)

. J-1 . J-3
Res. (C+D) = (CJ+DJ) t ; Res. (C-D) = (cJ DJ) t
The symbol = means we are only considering the leading t-
behaviour. Then from egns. (2.11), which connect the amplitudes
Fi's to Ai's, we obtain the degrees of Fi's as

1 2 -3
AL P op o477 yp o~ 472 (8.2)
Now the s-channel regularised

heliecity amplitudes Euk (i=1,4) are related to the Fi's as

follows (see eqn. (2.13)):

3 - 1_ - - 1 - -
I, /3 {F3+Fu} ; #L L V2 {F2 F1+5(1 Cos es)(F3 Fu)}
222 2°2
(8.3)
s = Lep . 7 = 1
f-l 5 " /5{F3 Fu} ; f_l . V2 {F2+F1+2(1+Cos es)(F3+Fu)}
2272 _ 2°2
Then it can be shown thattlo)
T = gf s F ~ gf (8.14)
1 3 L3 11 11
2°2 2°2 2°32 2°2

From (8.3), this implies that
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(o=+) (8.5)

R
o

F,= 0 2F1+Fu+Cos 95

(o=-) (8.6)

R
o

F =0 2F2+F3+Cos Gsv

These two equations, coupled with (8.2), give

(o=+) (8.7)

[+

1]
o

F 0 3 F

3

F, =0 3 F,=0 (o=-) (8.8)

Using the relationship between the F.'s and the A.'s (egn.

(2.11)), we immediately obtain from (8.7) and (8.8)

(W—M)BJ + (CJ-DJ) =0

(o=+) (8.9)
2A;+ By + (W—M)(?J+DJ) =0
and
(w+M)B; - (C;=D;) = 0 o
(o=-) (8.10)
2A;+ By - (W+M)(CJ+DJ) 0
Notice that if W<—>-W, eqns. (8.9)«—(8.10). This is an
explicit statement of the MacDowell symmetry(sg).

These last two eqns. are satisfied
when the resonance with spin J has a definite normality. If a
resonance with spin J has 0=+ [ - ] and does not satisfy eqn.
(8.9) [(8.10)] , then it means that it recieves contributions
from a resonance at the same s(=so) and with spin J, but with
opposite normality; then we have a parity doublet. Since
the evidence for the presence of parity doublets is very scanty,

in our construction of the Veneziano amplitudes, we shall
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eliminate parity doublets, at least from the experimentally

known (lower mass) baryon states.

(12)

Walker has calculated the

residue functions at various baryon poles in the s-channel

from the low energy photoproduction data. For a given resonance
of spin J, the residues AJ and BJ can be calculated from
Walker's data in a straightforward manner (see Appendix III).
Then if the resonance has o=+ [-], we can use eqn. (8.9)
[(8.10)] to calculate CJ and DJ. This automatically eliminates
any contribution from the parity partners(lo). The corresbdnding
results are shown in Table 8.1. So, we shall construct our

Veneziano amplitudes in such a way that they reproduce the

Walker residues of the low spin baryon resonances.

8.2 Explicit Veneziano Representations for the CGLN Invariants
1

While considering the baryon
exchanges in the s- and the u-channels, we shall assume an exchange
degenerate Na-NY(60’6l) trajectory, but a non-degenerate A6
trajectory. The pion, its parity partner ﬂﬁAi and A2 all
couple to the isovector part of the photon, and as such, the
corresponding exchanges in the s- and the u-channels will
include all three baryon trajectories - Na ,I\I,Y and AG' On the
other hand, p couples to the isoscalar part of the photon,
and so only the Na and N_ trajectories are allowed in the

crossed channels.
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The pion exchange in the

t-channel and Na , N and AG exchanges in the s~ and u-

¥
channels contribute to the combination A(_)+tB(-) (o=-),
and the simplest form(62) for such a contribution is

B[’" (t)s%- ( )]
PAGRIVENC PP “n e ki (s<—u)}

Y 3ea (8)-0y(s)]

(8.11)
+ 8, {B[i—a“(t),%—aA(s)] - (s+—u)}

+ B, {B[%-aN(s),%-aA(u)J - (s+—u)}

where B(x’y) = MLY')
T'(x+y)
The trajectory aﬂ,(t) contributes
- t e .
to f (=MA - > D). The analyticity constraint (egn.(2.26))

11
involves frj(s,o). This means that, in terms of CGLN invariants,
only the 7' contribution to A(-) (o0=+) is to be adjusted in
order to satisfy eqn. (2.26). TFor simplicity, we assume that
m contributes only to A(-). A(—) (0=+) also receives

contributions from A,. A satisfies (2.26) by evasion, which

2
implies that the contribution of A2 to A(-) must vanish as
t-0. So we can write the following Veneziano expression

for A(-):
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A(-)=;§; @ {301e, (8), F -oy(s)] = (semou))
+ ai {3[1-0(.,", (t), % -QN(S)] - (sHu)} (8.12)
+ a, {Bl[1-0, (%), 2= a,(s)1 - (s<—u)}
+oag {B[3- ay(s), 2 ~ay(u)] - (s«—u)}

For the amplitudes C(-)

(=)

(receiving contribution from Ay in the t-channel) and D

(receiving contributions from A2 in the t-channel), we

have to remember (see eqn. (A.II.12)) that in the asymptotie

limit s=%*, u fixed

a(u)-3 a(u)-}
C+D~ s 3 C-D~ s (8.13)

(-) (-)

Also, the models for amplitudes C and D have to be so

constructed that the residues of the low baryon resonances

as given by Walker (see Table 8.1) are correctly accounted

for. We simply take

C(-) = c,{ Bti—aAi(t), - aN(s)J + (s<—u)}
v eyl Bli-gy (v), 2 -og(s)1 + (s+>u)}
3 , 4 (8.1L)
+ eyl B[l-aAl(t), 5 = a,(s)] + (s+—u)}
3
2

+ oy BIF —oy(s), 5 - ou(u)]l +  (s«—u)}

and
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o) s a0 aiama, (0,3 - my(e)] - (o))
3
o a,d B[i-aAg(t),§ -‘aN(s)J - (s+—u)} (8.15)
+oagl 3[1-aA2(t);§ - 0y(s)1 - (se—u)}
+oa, 0 BIY —oy(s)ig - g (w)] - (se—w)]

For the p exchange contribution,
we again remember that p satisfies eqn. (2.26) by evasion,
(0)

and hence the contribution from p to A goes to zero as

t+0. So we write

a0 B o {0 Bli-a (8), F - ay(s)] + (se—uw))

2 M 2 (8.16)

TL(2k-1)/2- aN(s)] rr(2k-1)/2- aN(u)]

3
+ I Yi
k=1 T [ k- og(s) - ay(u)l
The contributions from the exchange degenerate Nu—NY trajectories
have been written in this particular form, because we want our
model to correctly reproduce the Walker residues for Na(938),

Ny(1519) and Na(l672) resonances (see next section).

There are no known t-channel
Regge exchanges contributing to C(O). lThe corresponding
residue at the nucleon pole is proportional to (up+un) and is
very small. (uP and un are the anomalous magnetic moments of

the proton and the neutron respectively). Residues of other

baryon resonances are also very small. So we take

c(0) = o (8.17)
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For constructing a model for

3
(o) . o(w-3 5(0)

0), we note that since C(o)+ D s ,

p¢
cannot receive any contribution from the nucleon pole. So
(0) is

the simplest representation for D
(o), 5
D*7/= a { B[l—ozp(t), 5 =ay ()1 +  (s«—>u)} (8.18)

This contributes only to the lower daughters of aN(s).

8.3 Determination of Constants

The constants in the Veneziano

amplitudes written down in the previous section are

determined through the following requirements:

a) Exchange non-degeneracy of A6

The A6 trajectory has a definite

signature EA given by
EA = 1 - e

If we calculate the A exchange contributions to the amplitudes
A0 ) hen(-) R A('), ¢{") ana p¢-) (eqns. (8.11), (8.12) ,

(8.14) and (8.15)) in the asymptotic limit s-»», u fixed,

then it is easily seen that in order to obtain the correct

signature factor, we must have

d.= -d (8-19)
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(=), 5(=)

in the backward direction

b) Asymptotic Behaviour of C' ‘4D

In the asymptotic limit s-= ,

(=) a(u)- %

(-) ~ s (see eqn. (A.IT.12)). Imposing

u fixed, C +D

this condition on eqns. (8.14) and (8.15), one immediately

obtains

e, = d . ,. (8.20)

c) Comparison with Elementary Particle exchanges in the t-channel

In our model, we have t-channel
exchanges of mw,7’', Al’ A2 and p Regge trajectories. We
require that the residues at the poles (physical particles)
are given in terms of the (approximately known) couplings of

the exchanged and the external particles.

i) Pion exchange: The results of the elementary pion exchange
in the t~-channel have already been considered in the Electric
Born model ( §7.1). Comparing the residue at t=p? given by the

Electric Born model with that obtained from (8.11), we have

By= -3 ulee (8.21)
ii) p exchange: An elementary p exchange in the t-channel
gives the following contributions(lo);
g

= I e : (8.22)

P mD t-m?

P
g

D(O) - g(i) YTP 1 (5.23)
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and

al0)p(0) _

mp is the mass of the p meson, gYﬂP is the p coupling to the

YT vertex and is related to the width T'(p+7y) in the following

fashion:
Bvmp . gy ot u? -3 ) 8.2
am- = 2 m 1 - —;; T'(p+my (8.2L)

o
where we have considered an interaction of the form

g

YO . KA M LY
m - SkapvEpy ¥ ©

gél) and g(z) are the pNN couplings defined through the vertex

function

(1), .1 _(2)

_ . - L v
<92|Juvlp1>- u(p2)(gp Yt 5w & oqu ) u(pi)

where Q is the four momentum of p.

Comparing the residues at t=m;
obtained from eqns. (8.16) and (8.18) with those obtained

from (8.22) and (8.23), we have

A (2)
c =2 g g (8.25)
mp Ymp °p .
A (1)
d = _E;p gyw? g, (8.26)

iii) A2 exchange: An elementary A2 exchange in the t-channel

gives the following contributions (10):
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Ve eg
- Ll
A( ) = - —2%— g!(\.2) Y AQ S (8.27)
2 u t—mi
2
- eg
D( ) - g‘[(\j‘) YTAp, S (8.28)
2 t-m2
Lo 3
and
A(‘)+t3(') = 0
Again , mA2 is the mass of the A2, gY“Ag is the coupling
of the A2 meson to the YT vertex. This is again related to
the width F(A2+ny)(2) as
2 2
gYﬂAee M2 5
r(agsmy) = —=— 2 x
yo T p?

where k is the C.M. momentum in the Ty system, and the

interaction used for the YﬂA2 vertex is of the form(lo);
L =8 e A59 kM gV k% &
- YﬂA2 KAUV A2 Y

The couplings gii) and giz) are the A2NN couplings defined
2 ' 2

from the vertex function

(2)y-2¢ p BaTha
QZ

< . = c1 _L 2 _
P2|Juv|P1>—u(P2)[ egAQ WPy-3 P (3uv )}

Q
-;<g§;’+g§§’> Wy R Ry § (P gy =i )

where Q is the four momentum of A, and P:%(p1+p2)
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Again, comparison of the residues at t=m§ of eqns. (8.12)
2

and (8.1k4) with (8.27) ana (8.28) gives

r. M (2)

8,% 2u egywA &, (8.29)
2 2
_ 1 (1)

d1 + d2 + d3 == E ng'"Aa gAp (8.30)

The value of the constants

g(l), g(2), g(l), g(2) and of the decay rates I'(p~»wy),

P P Ay 7 A
P(A24ﬂy) used in our calculations are Presented in Table 8.2
(second column). This table also presents the expected values
of the same quantities, as determined experimentally or in
certain phenomenological analyses (third column).

We want to point out here that the
(2)

constants gél), g and gywp are related to the residue

constants Gip) and Ggp) of part B (Table 5.3) as follows:

A g(Q) e A g
o) . o 8 >ymop eP) o o (1) Byqp (8.31)
1 27w ¢ y 2 & "mp '

Then we easily verify the consistency between the expected
values of Tables 5.3 and 8,2. The value of géi)/gé2)= 0.27
corresponds to Gip)/Gip)= 0.5 GeV. Also, T(p>my)= 0.2 MeV
leads through eqn. (8.24) ana Gip)/Gﬁw)= 0.225 GeV™! to

1 -
Giw)= 95 pb? gev™2,

d) Comparison with Walker Residues at low baryon resonances

We again require that our model
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be consistent with the residues for low baryon resonances as
calculated by Walker (Table 8.1).

i) Nucleon Residue: Comparing the residue of A(_)+tB(_)

(egqn. (8.11)) at nucleon pole (s=M2) with that obtained from

the Electric Born model ( §7.1) and using eqn. (8.21), we have
B,= 1leg (8.32)

Eqns. (8.21) and (8.32) ensure that our Veneziano model for
pion exchange becomes identical to the Electriec Born model at
small Ttl . |

Requiring the correct residue

at the nucleon pole in C(—) ( or D(-)) gives

U - M
= = b n
cl-d1 = 5T Aeg (8.33)
A similar requirement for the amplitude A(o) gives
Y, =32eg (8.34)
ii) Other Baryon Resonances: Consistency with Walker residues

for Ny(1519) and Na(1672) in c(’)-D(") give

[aA (0)-aA (0)]+c2-d2+c +d,=-0.31 eg (8.35)

(o]
1 2 3

1

¢ la, (0)-a, (0)1+c,-d,-c -d,=-0.78 eg ' (8.36)
1 2

Y, and v, (in A(o)) are also determined from the Walker

residues at NY(1519) and Na(l672).
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Consideration of A(1236)
(-)_ D(-)

residues in A(_) (eqn. (8.12)) and C give

8, ==0.29 eg ' (8.37)

¢ -dgy =0.99Aeg (8.38)

Notice that in our model, the entire contribution of A1
to C(—) is completely determined without involving any free

parameters for the unknown AlNﬁ coupling.

e) Analyticity Constraint

The analyticity constraint

(2.26) together with eqns. (8.11) and (8.12) give

a ta, = -3leg (8.39)

In Table 8.1, we have given the
Walker residues for different amplitudes., The residue; marked
with asterisks have been used in this section to evaluate the
constants of our Veneziano model. For the other residues,
we show two values. The values outside the brackets are those
given bylWalker, while those inside the brackets are those

calculated by our model.

8.4 The Forward Direction

The asymptotic limit in the
forward direction is given by s-»®, t fixed. If we denote by

Ti(s,t) this asymptotic limit of the left hand side of eagns.
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(8.11), (8.12), (8.1%), (8.15), (8.16)»and (8.18), then we have

: . k k
T, (s,6)= 2 By (t) Tri-o®(¢)1012e71™ (8)=17 (4 e (t)-2 (g \ 5,

wvhere k denotes the sum over the different Regge trajéctories

contributing to Ti' The B?'s are completely specified in

terms of the constants evaluated in the last section. The

residues Bli‘"(t) are shown in Table 8.3(without curly brackets).
Using these asymptotic expressions

in formulae (2.18), (2.15), (2.21) and (2.8), we calculate

the differential cross-sections, the polarised photon asymmetry

L , the target asymmetry o gng the ratio R= %%(Yn+ﬂ-p)/%%(Yp+ﬂ+n).

The results of this calculation have been shown in Figs. 24,25,
26 and 27. 1In section 8.1, we remarked that 7' can have a
contribution to D(—) as well. This can be introduced without
affecting the leading baryon resonances. (ié without making
changes in eqns. (8.32) to (8.38) to fit the Walker residues).
Such a contribution, which was taken to be of the same order
of magnitude as the contribution of 7 to A(-), has been |
incorporated in our calculation (see Table 8.3).

The important points to notice

Are the following:

a) The forward.peak (of width~pu2) is due to non-evasive pion
exchange. This peak is produced by a sharp variation of

A(-)+tB(_) (0=-) near t=0.
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b) The experimentally observed rapid drop of the ratio R

with increasing |t| is explained on the basis of a significant
p exchange ta A(O) and D(O), which contributes with opposite
signs to yp»T'n and yn+T p (eqn. (2.8). An evasive p exchange

also means that at t=0 thére is no p contribution, and R=1.
¢) The rapid rise of Z(7") from I=0 at =0 to I=1 at [t |=u?
is again explained by the fact that %%’ varies smoothly at
small Itl, while 4, » which is dominated by the pion exchange,

dt
drops very fast for 0s-t<p? ( see discussion in the last

paragraph of 7.1).

d) The faster drop of E(w-) compared to the drop for z(nh)
for |t|>uzis again explained on the basis of an increasing
p exchange whichvinterferes destructively with the other

0=+ contributions in %%(Yn+ﬂ_p).

e) The calculated values of the polarised target asymmetry T
agree quite well with the experimental values for [t|sp?. For
Itlzuz, the magnitude of T drops off much faster than what is

*
indicated by the datsa ( ).

(¥) It should be remarked that the experimental data on T
(Yp+w+n) became known to us after the completion of all the
work reported in this part of this thesis ( and published in
Ref. (10) ). Thus our results (Fig. 27) actually constitute

a prediction of the Veneziano model under discussion,
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£) At |t]2.35 GeV? , the present model is inadequate. Our
exchange has a NWSZ (Chapter 3), and this will produce an
unwarranted dip in the cross-section around t=-,55 GeV? .
Unless we have significant p-Pomeron Regge cuts (and/or strong
B meson exchange), we cannot eliminate this dip. This also
explains why the agreement with different experimental
quantities like Z(ﬂt) , R, T gets poorer at larger |t| values.
g) The pion contribution in the Veneziano model has been
adjusted so that it reproduces the Electric Born results at
small |t| . However, the Electric Born model gives differential
cross-sections slightly lower than the actuslly observed ones.
In order to fit the forward ecross—-section more accurately,

we can add a sateilite term of the form

g, { Bli-a (), 3 -ay(s)] - (s+—u)} (8.41)

to the amplitude A(’)+tB(‘) of (8.11). This does not affect
the residues of the poles at t=u? and the leading baryon
resonances. The contribution of m™ to A(-), or, more precisely,
eqn. (8.39) has to be modified accordingly so that ean. (2.26)
can still be satisfied. The modified residues are also given

in Table 8.3 inside brackets. We see that the fits of the

resulting cross-sections and the asymmetry ratios improve

immediately.

8.5 The Backward Direction

The asymptotic 1imit in the
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backward direction is given by s-»», u fixed. The formulsae
for the differential cross-sections in this 1imit are given

in eqns. (2.21). For yp+j+n, these involve the combinations

(A(')+A(°)) ; s(B(-)+B(O)) ;s(C(—)+C(O)+D(-)+D(o)

) and
(C(-)+C(o)_D(-)_D(o))
Let us then introduce the quantities X(l) as follows:

(1) 4=, ,(0) s x(2)s s (a()up(0)y ' (8.42)

03 aag (el ael04p ()45 00)) 1 () g (o) 4cl0) p (=) pl0),

Now using egns. (8.11)-(8.18) it is quite straight forward

to show that

for i=1,2
(1) (1) (i);2 ap(u)-2
X'/ (s,u)= & {xg T[%-aB(u)]+xB P[g-aB(u)]}EB(u)(As)
N ,N
o’y
. a,(u)-3
+oxl Il eay () 35, (w) (s) 8 (8.43)
1 ‘
and for i=3
~ o, (u)-3
x((s,u)e 3 {0 —ag(u)Ig,(u) (As) © (8.44)
N,,N_,A 2 ‘
oy
and for i=u
o, (u)-3
xX(s,0)= ) Tl-ay(u)IE () (As) 2 (8.15)
Na’NY 1
where
-imlag(u)-31]
te is the signature factor of the

Eglu)= 1
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corresponding baryon trajectory.

(i)

The constants xp 's in the
k

above expressions are again completely specified in term; of
the constants evaluated in §8.3. These are shown in Table 8.l
(inside parenthesis). Thus no free parameters are used and the
xéi)'s are consistent with the Walker residues.

With these expressions we can
estimate the differential cross-sections as well as the
residues of some higher baryon resonances. The differential
eross~section in the backward direction consistently comes

out to be one order of magnitude larger than the experimentally

observed value. The main reason for this was found to be an

excessive A contribution to X(3), ié a very large x£3) .
2
Relatively large contributions from xéu) {connected to the
1 .
nucleon pole) and xéz) are also observed.

1
In order to obtain & fit to the

differential cross-section, while correctly accounting for the

Walker residues, we use a Veneziano model with satellite terms.

We write
(i) (i) (i)o-3 ag(u)-2
X s,t)= T {xg P[%-aB(u)J+xB PEE-aB(u)J}éB(u)(As)
N_,N_ "1 2
e’y
+ g x(i)I‘[2k-1 -a,(u)l & (u)(ks)aA(u)—%
k=1 Dk 2 a A (8.46)

This shows that we are adding
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one or two satellites to each baryon trajectory. Some of

the xél)'s are again determined from the Walker residues. We

k .
treat the other xél)'s as free parameters and vary them in
X )
order to obtain the best fit. These values have also been

shown in Table 8.4 (without parenthesis). The fit to the
differential cross-section obtained in this fashion is shown

in Fig. 28. This has x%=35.5 for 32 data points.



Table 8.1 Coefficients of the Leading Powers of't of the Residues at _the lowest Baryon

Resonances
Residues in units of eg.X(proper power of GeV)
Baryon
Resonance p .
. »*» * * *
1+ 1 - - - ~u2y~1
N (5T, 938) -3 | t=ur)"l | Bpm¥a 0 = Hotuy 0
) 2M Lee- 2y=1;| T 2H
2t [0}
* * *
N (3t 1672) | -0.72 1.06 0.26 0.097 -0
a‘2 °* -0.78 -0.06 [o] 0
[-0.64])]| [0.76] [0.50]. = [0.06]
3- . . * *
NY(E » 1519) | ~0.39 0.53 '0.22 ) 0.03 0.05 ~0.017
- S -0.31 -0.05 . : o
[-0.31]1|[-0.194] [0.982] [0.05] {0} .[0]
3 £} : * ‘
Lo : 0 0 0 0
A(%*. 1236) 0.91 -0.056 :
-0.58 1.98 .
[0l o [0l [0] (01 (o3

€0T
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Table 8.2 Used and Expected Values

References

Parameters | Values used in calculations | Expected
of Chapter 8 values

g, g 0.86g 88 (8 )69

g, (1)/gp(2) 0.24 0.27 (18) (42)

I (p->my) 0.2 MeV <.5 MeV |(40)

By g, ¥ e, |eaao

85 /2l2) g/ ? eD1g P | 22) 10y
0.15 Mev 0.5 MevV | (63)




Table 8.3 Residue Functions B?(t)ls of eqn. (8.L40)

Meson trajectories used: aw(t)=-u2+t=aﬂxt)=aA'(t);a

p(t)=.h15+t;aA2(t)=.3s+t

1 :
Residue functions Bﬁ(t)
%
% (units egx (proper power of GeV))
ol
o Regge
ur
% Exchange A A + tB ¢ D
e
F el
2
u + 0.5 aﬂ(t)
-0_(t)
T : m
u? + 0.6 a (t)
—a“(t)A

A2 0.386¢t -0.174
(=)

A 0.96

1
0.5 .
-n’l 1'0
{0.6}

(o) o -0.722¢t

0.325

SOT



Table 8.4

The parameters X

k

él)'s of eqn.(8.46) in units of eg.

Baryon trajectories used:

Oy (s)=0tN (s)EaN(s)=—.59+s ;aA(s)=-.0277+s

o Y
(L) (1) (1) (1) (1) (1) (i)
X X X X X X X
N, 1 N,2 NYl NYZ Al A2 A3
(1) .0 ~-.3362 -.6124 ~-.4433 .1458 L1422 .1oai
X ) : _
(.0) (-.33@?) (.0) (.1691) | (.0) (.288) |(.0)
(2) .0 .4285 -.0052 -.2502 L0141 -.4437 172
X
(.0) (.4285) (.0) (-.245) (.0) (-.4578)|(.0)
.0 .4890 .5579 4179 -.1091 .8909 |-.5783
x(3)
(.0) (.4890) (.0) (-.14) (.0) (1.0) (.0)
4) 1.022 + 2545 .2922 L4530 .2006 .1446]-.3306
X : _
(1.022) | (.2545) (.0) (.1608)| (.0) (-.056) |(.0)

90T
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CHAPTER 9

CONCLUSIONS

In the last chapter, we used
the Veneziano model, a crossing-symmetric dual model, to study
charged pion photoproduction both in the forward ahd back-
ward directions. The model we have formulated essentially
does not involve any free parameters. The coefficients of
8ll the leading terms were determined in terms of the known
couplings of the t-channel exchanges to the N¥ and YT
vertices and some of the experimentally known residues (
Walker residues (12)) of the low energy resonaﬁces contri-
buting to pion photoproduction. The Veneziano model so
formulated makes definite predictions about residues of other
resonances. Comparison with the other Walker residues shows that

these are in good agreement.

In the forward direction we
separately consider two distinet t-regions: the region
05|t15ﬁ2 and the regicn around t=-.55 GeV2. The dominating
contribution in the first region comes from the pion exchange.
The principal feature in this domain 1is the sharp forward
peak in the differential cross-section. As we have discussed,
this forward peak is usually explained on the basis of the
rgpid t-variation of 49u in the extreme forward direction.

at

Our model also employs this mechanism to explain this peak.

107
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Since all other experimental features ( e.g. structure of the
do -
polarised photon asymmetry I , the ratio R= ——(yn>7 p)/
dt

%%—(Yp+ﬂ+n)) are strongly‘related to the t-behaviour of the
differential cross-section, our model justifiably produces
good fits for the parameters I ,T and R in this region.

In the other important t-
region (t=-.55 GeV?), charged pion production data do not
exhibit any dip in the differential cross-section. The
dominating contribution in this region comes from the p and
the A, exchanges. Since the p contribution in our model has
a NWSZ at t=-.55 GeV?, detailed calculations give a dip at
this point. From our discussions of n photoproduction and
of the process TN-»wN in the second part of this thesis, we
expect that a substantial p-Pomeron cut will be required to
get rid of this unwarranted dip. A reasonable B contribution
( which we have neglected in this case) will also help. The
unsuitability of a pure pole model with NWSZ's in this region
is mlso clearly demonstrated by the worsening agreement
between our results and the experimental data for the parameters
I ,T and R as |t| gradually increases. However,as we stated
in the beginning of Chapter 8, we did not waﬁt to go into the
complication of introducing Regge cuts in the framework of a
simple Veneziano model, and exclusively devoted ourselves to

explain the experimental features in the very small It 1(<p?)

region.
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In the backward direction,'ﬂ+
photoproduction recieves leading contributions from No Ny and

do

A§ exchanges in the u-channel. No dip is exhibited in —
du

at u=-.2 GeVz, which corresponds to a non-sense Wrong signature
point for the Ny trajectory. The absence of this dip is
explained in our model through strong Na”NY exchange degeneracy.
These same three exchanges contribute to backward ﬂ+p scatter-
ing. The differential cross-section in this case, however,
shows a dip around u=-.2 GeVZ, and this is attributed to the
NWSZ of the Ny trajectory. These two explanations might seem
contradictory. However, there are two important differences
between Yp+nﬂ+ and ﬂ+p+pﬂ+. In the case of photoproduqtion of
éions, four independent helicity amplitudes (one non-flip,
two single-flips and one double-flip) are involved, while N
scattering is described in terms of two independent helicity
amplitudes (one single-flip, one non-flip). Also photo-
production demands that gauge invariance be satisfied, a
requirement which has no parallel in hadronic processes like

mN scattering. It has been shown by Roy(60)that gauge
ijnvariance and duality require tha£ the contributions of the
N, and the Ny trajectories to the particular combination of

the two single-flip amplitudes proportional to the CGLN
invariant B be strongly exchange degenerate. It has also been

pointed out(6h) that the elastic couplings of the resonant

states NY(1520) end D;s(1670) are known from phase shift
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analyses, and these are roughly sbout 3 of those of Ny (938)
and Ag(1236). 1If similar large residue functions are
considered in the physical region of TN backward scattering
( negative u values), the pronounced dip in %% in backward
ﬂ+p would be considerably smaller. So, it is the presence
of the strong dip in backward mtp scattering which really
needs a better explanation.

The other important point to
notice is that the Veneziano model, which reproduces the
extreme forward cross-sections and the Walker residues so well,
gives backward cross-sections which exceed the experimentally
observed ones by about one order of magnitude. For TN-+>TN, the
Veneziano approach encounters exactly the same difficultiegss).
To solve this problem, we added certain satellite terms
involving several free parameters while taking care not to
disturb the agreement with Walker residues. The free parameters

were adjusted to obtain the best fit to 99— . We notice that

du
the best fit values of these free parameters are, roughly, of
the same order of magnitude as the Walker residues. Moreover,
they imply definite predictions about residues of higher 7N .

resonances contributing to photoproduction. No experimental

information is presently available to check these predictions.,
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APPENDIX I

Tn this appendix, we shall calculate

explicitly the contributions from the p-Pomeron and the

w-Pomeron Regge cuts. We shall start with eqn. (3.18), which

states

fiﬁp)(s,t) = iﬁi) [""at fﬁi)(s,r)%Ce%A(t+T) I (a/%T)  (4.I.1)

where R stands for the p or the w.

We take the Pomeron contribution in the forward direction as

o At 9. At
t 0" (omzim s P (A.I.2)

fP(s,t)=
iem So

where the Pomeron trajectory

aP(t)=1+ Apt (A.I.3)

0 is the energy scale. AO is directly determined by

fitting the elastic scattering data (essentially mN elastiec

and s

scattering in this case). Comparing (A.I.2) with eqn.(3.9),

we immediately obtain

- s _1:
A = 2A+ 2 AP(ln 5, 1im) (A.I.4)
Also
O
C= ey as in (3.11)

The exact Regge pole exchange

expressions for the CGLN invariants Ai have been written
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down in §5.1. 1In order that the integral in (A.I.1) can be
evaluated analytically, we shall use a simplified version of

these expressions and take’

(e-%iﬂ 5 aR‘(‘t)_1
o

al®) - B () ag (t) (A.I.5)

vhere BéR)(t) are given in Table 5.2. This simplification
is a reasonably good approximation of (5.2) in the range of
importance (0<|t|<1 GeVv? ).

Let us now define the following

quantities:

B(s’ )= 1n (2, )-3im 3 Db2=24+AB x=_1A_b_ V-t (A.1.6)

o : 1 2
R(s,s’;t)=—1--gE (e'%ln E,)G(O)’i g2At-x (A.T.7)

Wi(s,s';t)= —1 L a(O)Lg(xz)- —§%Lg(x2)] (4.1.8)
[g +AB]2 b

Wy(ssst38)= —A—— rao)ng(x?)- 22 1l(x2)) (4.1.9)
(4 4ap72 b
2

Lg(y) are the generalised Laguerre polynomials(66) defined as

follows:

o _n n-a (=y)"

L (y) = E ( pop ) -y (A.I.10)

m=0



11k

It is now easy to show that (A.I.1) leads to (66) the

following results

?iRi)zg ;iRi BiR) [- 352/5 1 Wy (s,s,5t) R(s,s 3t) (A.T.11)
222 222
(rRP) _.(RP)_ y(R) o(R) /2 ) .

f-i 1 -fL 5T vy AL s 84 67 Ve Wu(s,so,t) R(S’SO’t)
2%2 2°2 222

(a.1.12)

Notice that the exact calculations give the same scale 5o

for both W1,u and R.

Also from Table 5.2, we obtain

alFP). gp 161y o(RP) (A.1.13)
a5 4l
p(RP)_ 16 7 .(RP) (A.I.1k)

1 (P
V=t  V/2s >3
There are two important
observations about (A.I.11) and (A.I.12). TIn most important
models leading to dranch points in complex angular momentum
. . . (67) . (16)
Plane, including those studied by Mandelstanm s Polkinghorne

(68)

and Gribov et al » & Reggeon-Pomeron cut contribution has
an energy dependence of the form (apart from 1ln s terms)

ac(t)-i AAP
s s, Where ac(t)= a(0)+ T_X; t . However, from eqn.

(A.I.7), we see that our Regge cut expressions contain the
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factor
(TR s)a(o)-ie%At-xz

Substituting the values of A and x2 , we obtain the corresponding

energy dependence as

1
(s e-ﬁlw)a(o)+x't-1 (A.I.15)
where
Ao
Mp [+ —x Tin(s/s4)-31m)
At = . (A.I.16)

0
MAPLIt X ATn(s7s,)-317) ]

We see that in the limit ln(s/so)+°° (ié extremely high s)

AA
P
At > I
A+AP

However for energies of interest a(0)+Art# ac(t)

Furthermore, when the energy

. a (t)-1
dependence of the cut is s ¢ , well known applications of

g-u crossing and of Phragmen-Lindelhoff theorem(27_29) demand

that the phase of the leading contribution be determined by

—%iﬂ[ac(t)—ll
a factor of the form e ( = the cut signature

factor). With egn. (A.I.16), the phase is determined by the

-1 14—
factor e glﬂ[a(0)+k t-11 , which again reduces to

~3inla (£)-13
e only at extremely high s.
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Nevertheless, we notice that if

in our model of the Pomeron contribution, we take A0=0, then

AA
P .
=
A TTT; s, so that even at relatively low s, the
ac(t)-i
energy dependence becomes s and the phase is controlled

by e-%i“ [ac(t)-lj

Thus in view of the uncertainties
concerning the features of the Pomeron contribution and of
the great importance of nonleading terms at energies of interest,

we carry out calculations with two different Regge cut models:

i) Model C, : Here we use the exact formulae (A.I.11) and

(A.I.12) with A #0.

ii) Model C, : Here we take A =0. However we allow different

energy scales 59 and sb for the functions R and W1 urespecti-
9

vely . Again, this is easily seen to leave unaffected the

leading (in powers of 1n s) contributions of the Regge cuts,
but does affect the non-leading contributions.,
The preceding discussions make

it clear that to the very leading order in s and 1ln s, both

a (t)-1
our cut models have the correct asymptotic (~ s ¢ /(1n s)n)

behaviour and the correct asymptotic phase, as required by

s-u crossing and the Phragmen-Lindelhoff theorem.



APPENDIX II

In this appendix, we shall give
& brief outline of the derivation of the formulae k2.20),
(2.21), (2.22) and (2.23) and shall also obtain the asymptotic
behaviour of the CGLN invariants Ai' We follow the notation

of Chapter 2.

For this purpose, some useful

relations are

2
E1+M= (—/-;_+M.)_ H E2+M= (G+M+U)(E+M-U) 3 \)1= :—M[s+u-2M2]
2vs 2 Vs

Using these relations in (2.11), the following limits are

obtained in the forward direction (s+o, t fixed):

- _S . Foop = YS
FytFo= gm D 5 Fy-Fo= o= A ,
(A.TT.1)
s svVs
F,+F & —— (C-D) ; F_-F = 5¥S 3
37" Tew 37T
So from (2.13), we immediately obtain
5 V2 V2
T /-ts (C-D) ; £ - TEm Vs (2A+tB)
s 27
272 : (A.1I.2)

f 2 o /2 /s tB ; f ~ %g# vY=ts (C+D)

The following combinations of SHA are known(lz) to be dominated

by t-channel exchanges of o=-
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f - f LS fz V-ts C
13 -1 1 8w
2! k]
2 2 (A.II.3)
f 4 f = /— Vs (A+tB) '
11 . -1
22 2°%2
while exchanges of o=+ dominates the combinations:
' V2
f% Lt £, F=/-%s D |
27 s
22 (A.II.b)
f - f o /_ Vs A
11 -1 3
2°2 2°2
Since according to Stichel's theorem(lS)( §2.4), do"(do'")

is dominated by exchanges with 0=- (+), we immediately see

that (see eqn. (2.1k4)):

d 0'. 2 2
e r - f + +
ol 13 Z11 | lfl 1 f-i‘il

2372 i T2 2°2

(A.II.S)

do,
&~ |f + 2+ - f 2
o 13 i | l?i 1 Y 1'

222 22 2?2 2°%2

The substitution of (A.II.2), (A.II.3) and (A.II.%) in (2.1k),
(2.16) and (2.18) gives egns. (2.20), (2.22) and (2.23)

respectively.

Similerly in the backward

direction (s», u fixed)

~ 1 2 . - :___1 -
F_ +F_ = IEEE2MA+S(C+D) (u+M2)(c-D)1] 3F,-F, 16ﬂ[2A+2M(C D) ]

(A.II.6)

~ ._;]'__ . - o~ —
F_+F, = [c-D] ; F3 F,= 161T[B+ (c-D)]



f « Y2 u(¢c-p)  f = {%% Y=u  [2A+sB-M(C-D)]

1 3 16w 11

2 2z (A.II.T)
. V2 Jz o \

f-l 2 * TET V-u [sB+M(C-D)1J; f_l L% Tew [2MA+s(C+D)+M2(C-D) ]

ze 222

Eqn. (2.21) follows immediately.

For ascertaining the asymptotic
behaviour of the Ai’s, we remember that according to Regge

pole theory

solt)-2 . ~ g (u)-2 (A.11.8)

f ~ uA

uA

So from (2.11),

~oolt) o o alt)-3
F2+F1 s ,F2 F1 s
t fixed (A.I1.9)
P16 5 o(t)+3
F3+F4 s ,F3 Fu ~ 8
and
Jeolu)-3 o~ _a(u)
F +F,~s sFy-Fy ~ s
u fixed (A.II1.10)
a(u)+d - o(u)
F +F ~s sFy-F, ~ s
Combining (A.II.9) with (A.II.1),
A~ 2(B)-1 o alt)-1 ;
for s+® , t fixed. (A.I1.11)

(c-p)~ s2(t)-1. (¢ip)~ g2(t)-1
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Similarly from (A.II.10) and (A.II.6),

A~ s“(u)‘% ; B ~ s“(u)'%
> : s+» ,u fixed (A.I1.12)

1 3
(c-D) ~ sct(u)--2- . (C+D) ~ su(u)-5



APPENDIX III

In this appendix, we shall give

an outline of the determination of the residues corresponding

to A_ and B ( §8.1) from Walker's residues (Table III of

J J
Ref. (12)).

The angular dependence of the

emplitudes F, (see eqn.(2.11)) has been given in terms of
electric and magnetic transition amplitudes Eii and M, . In

his paper, Walker has given the relations between the quantities
Ez: and MQi and the partial helicity amplitudes Azi and BZi .

These are

Eot™hos 3 My =4

and for 221

I - . =1 -1

E(ge1)-=" TorlA(gr1)-"2C8t20Beg 0y T sMep gy Sl - 258 (ge1)- ]
B, =1 [A, + 8B,.1 3 M, =—[A, -3(2+2)B, ]

L+ L¥L TR+ L+ : L+ LF1-04+ 2 L+

(A.III.1)
If the leading term in Pz(x) is given by
n
o (2001 % (A.11I.2)

P,(x)= T =

then using (A.III.1) in (2.12),we obtain for
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i) a resonance with o=+ , J=%-}

o~ 1 _ _t yh-2
Res Fy = [A, +3(2+1)B, ] (2-1) Tg_yq (2kq)
~ 1(0_ _t (2-1
Res F, = [A, +3(% 1)B, 1 2 T, (2kq)
(A.I11.3)
- - - bt y&-3
Res Fy = By (2-1)(2-2) 1, _, (qu)
Res F, = -B, 2(%-1) 1, (xi=)?72
4 %- 2 ‘2kq
and for
ii) a resonance with o=- , J=2+}
Res F, = (A, ,-38B,,) (2+1) 7 (o) ®
1 L+ 04 2+1 "2kq
~ _1 t 2;'1
Res F, = [A,, §(Z+2)B2+] LTy 553) (A.111.1)
. t \8-1
Res F, = B, 2(+1) Toet (EEE)
. ) t y2-2
Res F, = -B,_ 2(2-1) T, (2kq)
If we now define the quantity A as follows
1 .
A = BT (A.TII.5)
/so-M /(E1+M)(E2+M)

then , substituting (A.III. ) end (A.III. ) in (2.11) we have

at & resonance at s=so

i)0'=-.f- s dJd=8-3



Res

Res

and

Res

Res

-1

-1
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E2+M -2+1

L ———(2kq)

E, +M .

1 -4+1
A 3 (2kq) 2(2+1) Toy

L(2-1) T

1

2

B

B

2+

2-

ay= t¥ A (2xq) 7P (e1) 1, (/§0+M)[A£+-%2(1-%%—)B£+J

s

Rty (V5y-M)[A, +3(8-1)(1422)B, ]

]

(A.III.6)

(A.III.T)
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FIGURE CAPTIONS

Fig. 1. The process Y(k)+N(p1) > ﬂ(q)+N(p2) . The quantities

PUSEEEREE

inside the brackets denote the four momenta of the corresponding
particles.

Fig. 2. t-channel Regge exchanges for Y+N = T+N

Fig. 3. The process 142 = 3+bh. ki denotes the helicity of

the ith particle (i=1,4). \

=3

l

2

=

Fig. 4. Absorption function n(s,b)= 1-C e [eqn.(B.lQﬂ

Fig. 5 Wood-Saxon type absorption function

) 1
n(s,b)= J7e%p T(R-)/&J

In Figs. 6-20, the following; notation will be maintained:

Solid curve : Model Cl(DAM)

________ : Dashed curve : Model Cz(DAM)
‘“)<—“><'-)<‘- :Cross-dashed curve : Model C;(DAM)
ee¢ems—¢—o— :Dot-dashed curve : Model Ci(WCM)

sts ertst sttt Dotted curve : Model Cé(WCM)
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Fig. 6. Differential Cross-sections for vyp-»7’p at 6,9,

12 and 15 GeV. Data as in Ref. (69) and .(70). The data points

are as follows:

} % : data from Ref. (70)
{ : data from Ref. (J9)

Fig. 7. Polarised photom asymmetry I for yp»7’p at 3 and 6

GeV. Data as in Ref. (71).
Fig. 8. The ratio R= %%(Yn+ﬂ°n)/%%(Yp+W°p) at 4 and 8 GeV.
Data as in Ref. (T72).

Fig. 9. Polarised target asymmetry T for Yp+ﬂ°p at 4 GevV.

Data as in Ref. (T73).

Fig. 10. Differential Cross--sections for yp»np at 4, 6 and

9 GeV. Data as in Ref. (69) and (T4). The data points are

as follows
% f : data from Ref. (Tk)
} : data from Ref. (69)

Fig. 11. The quantity Xw(s,t) for mN+>pN at 4, 6 and 8 GeV.

—

Data as in Ref. (36) and (75).
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12. The quantity p(t) do for ﬂ+n+wp at 4.2, 5.1

Flg. 11 E?

and 6.95 GeV. Data as in Ref. (76) and (77).

Fig. 13. The quantity [pitz —pit)lj %% for ﬂ+n+wp at

——

4.2, 5.1 and 6.95 GeV. Data as in Ref. (76) and (77).

Fig. 14. The quantity I pftz + pit)ll %% for W+n+wp at

5.1 and 6.95 GeV. Data as in Ref. (77).

) at 5.1 GeV.

Fig. 15. Imaginary parts of f(:) and f .
2

Fig. 16. Imaginary parts of ffoz at 5.1 and 12 GeV.
‘ T

Fig. 17. Imaginary parts of f ) at 5.1 and 12 GeV.

-1 3
’2
Fig. 18. Real parts of f(:)l and f(?)l at 5.1 GeV.
. “22 202
. (0) (0)
Fig. 19. Real parts of f and T at 5.1 GeV.
_ 11 -1 3
2%2 2%2

FPig. 20. Predictions for the polarised photon asymmetry I ,

and the ratio R= %%(Yn+nn)/%%(yp+np) at 4 and 9 GeV.
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Fig. 21. Feynman diagrams for the gauge invariant pion

contribution to the process yp4w+n. The corresponding four
momenta of each part of each Feynman diagram are shown inside

brackets. ¢ 1is the polarisation vector of the photon and

Q=q-k 3 P=p1+k H P':k—p2 .

. dg; doy, do *
Fig. 22. Plots of I ° TE and T 8s calculated by Electric

Born Model for the process yp+w+n showing sharp forward peak
of width ~p?

Fig. 23. Sharp forward peak of width ~pu?for the process

yp+w+n produced through the absorption model.

In Figs. 2L4-26, the following notation will be maintained:

S0lid curve : Veneziano Model with

the term given in eqn. (8.41).

Dashed curve: Veneziano Model

— — —— — — — —

without this term-

Fig. 2b. Forward differential cross-section for yp+w+n
at 3.4,5,8 and 16 GeV. Data as in Ref. (78). The source

of the data points are explained inside the diagram.

Fig. 25. Polarised photon asymmetry I for processes

yp+n'n and ynsnp at 3.4 GeV. Data as in Ref. (79).
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Fig. 26. The ratio R=%%(Yn+w-p)/%%(yp+w+n) at 3.4,5, 8
and 16 GeV. Data as in Ref. (78).

Fig. 2T. Polarised target asymmetry T for Yp+w+n at 5 and 16

GeV. Data as in Ref. (80). Data points are as follows:

]
¢ 5 GeV _ 16 GeV
4

All calculations done with the term in eqn. (8.41). The two curves

are as follows:

__________ ¢ Dashed curve : 5 GeV

: Solid curve : 16 GeV

Fig. 28. Backward differential cross-sections for Yp+n+n
at 4.3,5,9.5 and 14.9 GeV. Parameters used for this calculation

correspond to numbers witho it parenthesis in Table 8.4. Data

as in Ref. (81).
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