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Abstract

The nonlinear optical response of materials is of great interest for optoelectronic applications.

In particular, it is important to be able to spatially resolve variations in the nonlinear proper-

ties of a material. This can be achieved by ultrafast atomic force microscopy (AFM), though

there are spatial resolution limitations to previous implementations of this experimental

technique as the measurement takes a long time. This work aims to show improvements to

measuring nonlinear optical properties with ultrafast AFM using noise measurements. Such

measurements allow for a faster characterization of the nonlinear properties with better

spatial resolution.
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Resumé

La réponse optique non linéaire des matériaux présente un grand intérêt pour les applications

optoélectroniques. En particulier, il est important de pouvoir résoudre spatialement les

variations des propriétés non linéaires d’un matériel. Ceci peut être réalisé par microscopie

à force atomique (AFM) ultrarapide. Cependant, les mises en œuvre précédentes de cette

technique expérimentale présentent des limites en termes de résolution spatiale, car la mesure

prend beaucoup de temps. Ce travail vise à montrer les améliorations apportées à la mesure

des propriétés optiques non linéaires avec l’AFM ultrarapide grâce à l’utilisation de mesures

de bruit. De telles mesures permettent une caractérisation plus rapide des propriétés non

linéaires avec une meilleure résolution spatiale.
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Chapter 1

Introduction

1.1 Scanning Probe Microscopy

Since the invention of the transistor in the 1950’s, technology miniaturization has exploded in

popularity, sparking the development of the field of nanotechnology. Developing smaller scale

electronics, especially transistors, allows for the production of more dense electronic circuits

with lower energy consumption and high computational power. An important field that was

important in the development of nanotechnology was that of material science, especially

surface science, as being able to accurately control the growth of materials is necessary in

the production of nanoscale electronics. While the method of growing pure crystals was

already well established with the Czochralski method [1], deposition of additional materials

on a clean crystal surface was conducted to build nanoscale systems. Imaging these systems

was routinely done by the well established electron microscope [2, 3]. However, the electron

microscope was not able to image surfaces at the atomic scale, which eventually was deemed

necessary to understand the precise structure of surfaces, such as 7×7 surface reconstruction

of Si(111).

The scanning tunneling microscope (STM) was invented in the early 1981 by Binnig

and Rohrer, making atomic resolution imaging possible and paving the road to atomic-scale
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CHAPTER 1. INTRODUCTION

surface science [4]. STM relies on placing an ultra-sharp tip close to the sample surface to

induce a tunneling current, and being able to move the tip very precisely. The technology

needed to make the STM was known for quite a while before it was finally put together

in the 1980’s. The tunneling effect was already known in the 1920’s, first being applied

in understanding the theory of molecular spectra [5]. Piezoelectric mechanics, which are

used for moving the STM tip, were experimentally confirmed by the Curie brothers in the

1880’s [6]. The control systems needed, a function generator and feedback control, were

also well understood in the early 20th century due to the development of aircraft and other

technologies needed for World War 1 [7]. The closest anyone got to inventing the STM

(before the actual invention) was in 1972, with the invention of the topografiner [8]. Even

at that time the inventors of the topografiner noted that higher resolution could be achieved

if it used the tunneling effect to image the surface.

Measuring the tunneling current over the surface can give much more insight into the

physics of the sample than just the topography of the surface. Scanning the tip across the

surface can also map out the density of states (DOS) of the sample’s surface, giving insight

into the electronic nature of the surface. However, given that this method relies on tunneling

current, it does not work with insulating samples and is limited to metal and semiconductor

samples. To conquer this problem, atomic force microscopy (AFM) was invented as an

alternative method that could study insulating materials as well [9].

AFM works on the principle of detecting forces in close proximity to the sample surface.

These forces include short range (a few nm) chemical forces and long range (∼100 nm) van

der Waals, electrostatic, and magnetic forces [10]. The AFM probe is also sharp like the

STM probe, but is instead mounted on a flexible cantilever. In the early days of AFM, the

cantilever was kept static and was only subject to deflections due to the surface forces. The

challenge with the static mode operation was that the cantilever could easily be excited into

an oscillation mode (for example, due to thermal excitation), and introduced significant noise

to the measurement. To tackle this, dynamic AFM was developed where the cantilever was
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CHAPTER 1. INTRODUCTION

intentionally driven near the fundamental frequency f0. Dynamic AFM can be performed

via two basic methods: amplitude modulated (AM) and frequency modulated (FM) AFM.

In AM-AFM, the cantilever is driven at a constant amplitude Adrive and frequency fdrive

close to f0 [11]. Forces acting on the tip lead to a change in the cantilever amplitude, which

can be used as an imaging signal, as well as a feedback signal to keep Adrive constant. In

FM-AFM, changes in the oscillation frequency are instead used as an imaging and feedback

signal [12].

1.2 Ultrafast STM and AFM

The invention of ultrafast pulsed lasers was an important development that allowed for

measuring ultrafast events. The 1999 Nobel Prize in chemistry was awarded to Ahmed

Zewail for application of ultrafast pulses to study chemical reactions at the femtosecond

scale [13, 14]. The coupling of ultrafast lasers with scanning probe microscopy (SPM) allows

for the observation of temporal events in a material, as well as other optical and electronic

properties, with spatial resolution. This forms the field of ultrafast SPM.

There have been many different ways of creating ultrafast SPM with various applications.

Carrier life times in materials are typically studied with pump-probe experiments, where a

“pump” pulse excites carriers in the material, and a “probe” pulse is used to study the

changes in the material at various time intervals after the initial excitation by the pump.

Pump-probe experiments have been done by STM [15, 16, 17] and AFM [18, 19]. There are

other properties other than carrier dynamics that can be studied with such ultrafast SPM

setups. For example, one can measure photovoltaic properties of a material [20] or molecular

resonances induced by pulsed illumination [21].
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CHAPTER 1. INTRODUCTION

1.3 Measuring Nonlinear Optics with Ultrafast AFM

The material property that is of interest in this work is the second-order electric susceptibility

χ(2). It has been found that materials with nonzero χ(2) can be used for half harmonic

generation (HHG), in which the material produces two entangled photons with frequency

ω/2 for every absorbed photon of frequency ω, as well as for second harmonic generation

(SHG), in which the material combines two photons of frequency ω to produce one photon of

frequency 2ω [22, 23]. Such properties would be beneficial for quantum device applications

where entangled photons are needed [24].

Nonlinear optical properties were first measured by ultrafast AFM by Jahng et al. [18].

This ultrafast AFM technique is known as photo induced force microscopy (PIFM), and it

detects the induced dipoles in the tip and sample. The challenge with this technique is that

it is limited to detecting forces in the near field. A development to measuring nonlinear

optical properties with ultrafast AFM was demonstrated by Schumacher et al. [25]. In this

method, laser pulse pairs are directed onto the sample to induce a polarization that can be

detected by the AFM. By controlling the time delay between subsequent laser pulses, one

can perform an interferometric autocorrelation and characterize χ(2) of the sample surface,

as χ(2) is proportional to the amplitude of the interferometric autocorrelation signal. The

details of this measurement will be discussed in chapter 3.

The challenge with this method is that performing interferometric autocorrelations is a

slow process, often on the order of minutes This limits the spatial resolution one can achieve

in a single image. For example, if one autocorrelation took 5 minutes at a single point on

the sample, it would take about 2 weeks of continuous measurements to create a measly

64 × 64 pixel χ(2) map. This is rather poor resolution compared to the standard 512 × 512

or 1024× 1024 pixel images made with AFM.

It has been observed by Spiegelberg [26] that the noise in the AFM measurement depends

on the intensity of the induced polarization, which changes with light intensity during the

autocorrelation. As mentioned above, χ(2) is proportional to the amplitude of the autocor-
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CHAPTER 1. INTRODUCTION

relation, and hence also to the noise amplitude. This provides a new way to characterize

χ(2). Since it is much faster to perform a noise measurement (on the order of seconds) than

an autocorrelation (on the order of minutes), one could characterize χ(2) with higher spatial

resolution in less time, allowing for the correlation of nonlinear optical properties of surface

defects to their structure.

This work aims to demonstrate how one can characterize χ(2) spatially via noise measure-

ments with ultrafast AFM. Chapter 2 will begin by explaining the scientific foundation of

this project, such as how AFM and interferometric autocorrelation measurements work, as

well as how AFM can measure the nonlinear polarization induced in the sample by ultrafast

pulses. In chapter 3, details of the experimental setups of the optics table and the AFM,

and how they are coupled together, will be discussed. In chapter 4, noise measurements that

are conducted with this experimental setup will be shown.
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Chapter 2

Background

The work conducted in this thesis is based on several different experimental techniques,

mostly involving the combination of atomic force microscopy (AFM) and ultrafast optical

experiments. This chapter aims to provide a theoretical overview of these techniques, starting

with the fundamentals of AFM and nonlinear optics, and then describing how these can

be combined to form the technique of ultrafast AFM and how it can be used to measure

nonlinear optical properties of materials with spatial resolution. Data analysis methods used

to analyze the ultrafast AFM signal will also be discussed.

2.1 Atomic Force Microscopy

Atomic force microscopy (AFM) is a type of scanning probe microscopy (SPM) that uses a

sharp tip placed on the end of a flexible cantilever to measure interactions between the tip

and the sample [9]. A detector is used to measure the deflection of the cantilever, which can

be used to determine the force exerted on the tip by the sample. By raster scanning the

surface, one can map out features of the sample.

To improve the signal to noise ratio, one can conduct frequency modulated AFM (FM-

AFM) where the cantilever oscillates and the changes in the cantilever frequency are detected

rather than the changes of the cantilever amplitude (as in amplitude modulated AFM) or
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CHAPTER 2. BACKGROUND

static deflection [12]. To understand the dynamics of the cantilever, one can assume that

the tip of mass m is mounted on the end of the massless cantilever and treat it as a damped-

driven harmonic oscillator. The dynamics of such a system are described by the equation

mz̈ +
mω0

Q
ż + kz = Fd cos (ωdt) + Fts (z) , (2.1)

where z is the tip-sample separation, ω0 =
√

k
m

is the resonant frequency of the cantilever,

Q is the quality factor, k is the spring constant of the cantilever, Fd is the amplitude of the

applied driving force, ωd is the driving frequency, and Fts is the tip-sample interaction force.

The cantilever is first calibrated at a distance far from the sample where Fts ≈ 0, allowing

for ω0 and Q to be determined by sweeping through a range of driving frequencies ωd and

finding the resonant frequency ω0 where the oscillation amplitude is the largest.

Once ω0 is known, the tip is approached to the sample until the frequency shift reaches

the frequency shift setpoint ∆ω. A feedback loop (usually a phase-lock loop (PLL)) is used

to maintain the setpoint ∆ω by adjusting the tip height above the sample.

To relate Fts to ∆ω, one can analyze equation 2.1. Since the driving force is used to

compensate any damping the cantilever might experience (given by the ż term in equation

2.1), we can equate the damping and driving terms [27]. Making this simplification, and

using m = k
ω2
0

, equation 2.1 becomes:

k

ω2
0

z̈ + kz = Fts (z) . (2.2)

One may rewrite Fts(z) as a Taylor series about the equilibrium tip-sample separation z0:

Fts(z) = Fts (z0) +
dFts (z0)

dz
(z − z0) + . . . . (2.3)

At small oscillation amplitudes, the first two terms of the series are sufficient to approximate

Fts(z). Substituting this into equation 2.2, and defining the effective spring constant keff =
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CHAPTER 2. BACKGROUND

k − dFts(z0)/dz:
k

ω2
0

z̈ + keffz = Fts (z0)−
dFts (z0)

dz
z0. (2.4)

This new effective spring constant keff results in a new resonant frequency ωeff =
√

keff/m.

The change in angular frequency, ∆ω = ωeff − ω0, may thus be expressed as

∆ω =

√

k

m

[

√

1−
1

k

dFts

dz
− 1

]

≈ −
ω0

2k

dFts (z0)

dz
, (2.5)

where it was assumed that dFts/dz ≪ k. Equation 2.5 indicates that the z-feedback loop

that maintains a constant ∆ω is adjusting the tip height z to maintain a constant tip-sample

force gradient dFts(z0)/dz.

The essence of FM-AFM is now established. The following sections will introduce some

fundamentals of nonlinear optics, and how FM-AFM can be used to characterize nonlinear

optical effects that take place in the sample.

2.2 Second-Order Polarization P (2) and Susceptibility

χ(2)

This thesis discusses how AFM can be used to characterize nonlinear optical effects in a

sample, in particular second-order optical effects. When making these characterizations, the

AFM measures parts of the second-order polarization P (2). This section will introduce some

fundamentals of nonlinear optics and explain what P (2) is, largely following the discussion

presented in chapter 1 of Boyd’s Nonlinear Optics [23].

In linear optics, when a material is placed in an electric field E, the induced polarization

P in the material is given by

P (t) = ϵ0χ
(1)E(t), (2.6)

where ϵ0 is the permittivity of free space and χ(1) is the linear electric susceptibility of the

8



CHAPTER 2. BACKGROUND

material [28]. For simplicity, we are considering P and E to be scalars. When E(t) becomes

sufficiently large, such as that of a laser, new phenomena take place within the material

that lead to nonlinear contributions to the induced polarization P (t). This is the regime of

nonlinear optics, where P (t) may be written as a power series in E(t):

P (t) = ϵ0
(

χ(1)E(t) + χ(2)E(t)2 + χ(3)E(t)3 + . . .
)

, (2.7)

where χ(2,3)are the second and third order optical susceptibilities. One can write P (t) as a

sum of polarizations that correspond to each term in equation 2.7:

P (t) = P (1)(t) + P (2)(t) + P (3)(t) + . . . , (2.8)

where the second-order polarization is

P (2)(t) = ϵ0χ
(2)E(t)2. (2.9)

Suppose the electric field is that of a laser pulse, given by

Ẽ(t) = E(t)e−iωt + c.c., (2.10)

where c.c. is the complex conjugate part of the previous terms, in this case E∗(t)eiωt, E(t)

is the temporal profile of the beam (such as a pulse), and ω is the carrier frequency of the

beam. If this beam is incident on a nonlinear optical material, then the induced P (2)(t) will

be

P (2)(t) = 2ϵ0χ
(2)E(t)E(t)∗ +

(

ϵ0χ
(2)E(t)2e−i2ωt + c.c.

)

. (2.11)

The first term of P (2)(t) in equation 2.11 has a zero frequency term and forms the process

known as optical rectification (OR). The second term has a frequency of 2ω and leads to

second-harmonic generation (SHG), which is the process of generating radiation of frequency

9



CHAPTER 2. BACKGROUND

2ω.

It will be shown later in this work that the polarization is induced by a pair of laser pulses.

In the case of two laser pulses delayed by time τ , with electric fields Ẽ(t) and Ẽ(t+ τ), the

resulting second-order polarization P (2)(t, τ) is given by

P (2)(t, τ) = 2ϵ0χ
(2)

(

|E(t)|2 + |E(t + τ)|2
)

(OR) (2.12)

+ ϵ0χ
(2)[E(t)2e−2iω0t + E(t+ τ)2e−2iω0t (SHG) (2.13)

+ 2E(t)E(t + τ)e−2iω0te−iω0τ (SFG) (2.14)

+ 2E(t)E∗(t+ τ)eiω0τ + c.c.] (DFG), (2.15)

where OR is optical rectification, SHG is second harmonic generation, SFG is sum frequency

generation, and DFG is difference frequency generation.

Materials must have a non-centrosymmetric crystal structure to have a non-zero χ(2)

[23, 29]. A non-centrosymmetric crystal structure is one that has no central point about

which the crystal pattern is symmetric. There may be an axis in the crystal structure that

has the greatest asymmetric potential. If using linearly polarized light to induce P (2) in the

material, it is best to align the light polarization along this axis to maximize the induced

P (2). It is also important to direct the light along an optimal crystal axis through a process

called phase matching [30]. Phase matching is important as the index of refraction may vary

with the wavelength of light. This is important if one wants to optimize the second order

process such as SHG. In such a case, phase matching ensures that newly generated second

harmonic light will constructively interfere with the already existing second harmonic, thus

optimizing the output. Fortunately, the case of detecting second order processes at a surface

with AFM avoids these challenges. All surfaces have a broken symmetry and thus have a

non-zero χ(2) and exhibit second order processes. Additionally, the phase matching condition

only becomes important when the light is propagating over larger distances (on the order

of several wavelengths). The probe area of the AFM is much smaller than this so one does

10
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not need to worry about phase matching to detect second order processes with AFM. The

specifics of AFM detection of second order effects will be discussed in section 2.4.

Now we understand the nature of the components of the second-order polarization P (2)(t).

This will be necessary when discussing what can and cannot be detected with the experi-

mental setup used in this work.

2.3 Autocorrelation of Ultrafast Laser Pulses

A big part of this work is measuring χ(2) by performing an interferometric autocorrelation

measurement of an ultrafast laser pulse. In this section I will begin by discussing the nature

of ultrafast pulses and what is an autocorrelation. I will then show how a SHG crystal can be

used in an autocorrelation to perform an interferometric autocorrelation and characterize the

χ(2) of the SHG crystal. A large part of the discussion of ultrafast pulses and autocorrelations

presented here follows that of chapter 17 of Hooker and Webb’s Laser Physics [31].

An ultrafast pulse is typically considered to be a pulse of electromagnetic radiation that

has a duration of less than a picosecond. The electric field of an ultrafast pulse is given by

Ẽ(t) = E(t)e−iω0t + c.c. = g(t)eiφ(t)e−iω0t + c.c., (2.16)

where E(t) describes the envelope of the laser pulse, ω0 is the carrier frequency of the pulse,

g(t) = |E(t)|, and φ(t) = arg(E(t)) is the phase of the field amplitude [31]. Figure 2.1a

shows the electric field of a 100 fs ultrafast pulse with a gaussian envelope and a carrier

frequency corresponding to 780 nm light.

An autocorrelation measurement measures the intensity of two overlapped ultrafast laser

pulses as a function of the delay time τ between the pulses. In practice, this is done by

sending one pulse into an interferometer and varying τ by varying the position of one of the

mirrors in the interferometer. The intensity IF (τ) of the pulses delayed by τ is measured by
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Figure 2.1: An ideal autocorrelation of a 780 nm 100 fs gaussian pulse. (a) A field
autocorrelation of the laser pulse. (b) An interferometric autocorrelation of the laser pulse.

a photodetector, and is given by

IF (τ) =

∫

∞

−∞

|E(t) + E(t+ τ)|2 dt. (2.17)

This is known as the field autocorrelation, and a theoretical example is shown in figure 2.1a.

One can also pass the pulses through a SHG crystal to perform an interferometric au-

tocorrelation. When the pulses are subsequently passed through a filter to only select the

second harmonic light, the signal S(τ) measured by the photodetector is given by

S(τ) ∝

∫

∞

−∞

(

|E(t) + E(t+ τ)|2
)2

dt. (2.18)

The interferometric autocorrelation is plotted in figure 2.1b.

One can rewrite the interferometric autocorrelation signal in terms of light intensities

using equation 2.16 by substituting

|E(t) + E(t+ τ)|2 = I(t) + I(t+ τ) + 2
√

I(t)I(t+ τ) cos (ω0τ − δφ) , (2.19)

12



CHAPTER 2. BACKGROUND

where the first two terms are the intensities due to the individual pulses, and the third term

describes the interference and δφ = φ(t+ τ)− φ(t) being the phase difference of the pulses.

Substituting this into equation 2.18:

S(τ) ∝

∫

∞

−∞

I(t)2 + 2I(t)I(t+ τ)dt (2.20)

+

∫

∞

−∞

I(t)I(t+ τ) cos [2 (ω0τ − δφ)] dt (2.21)

+ 2

∫

∞

−∞

(I(t) + I(t+ τ))
√

I(t)I(t+ τ) cos (ω0τ − δφ) dt. (2.22)

Comparing the amplitude of the signal at the peak of the interferometric autocorrelation at

τ = 0 to the signal at no overlap at τ → ∞, we find that

S(τ = 0)

S(τ → ∞)
=

8
∫

∞

−∞
I(t)2dt

∫

∞

−∞
I(t)2dt

= 8, (2.23)

which explains the well known 8:1 amplitude ratio observed in interferometric autocorrela-

tions, seen in figure 2.1b.

2.4 Measuring Optical Nonlinearity with Ultrafast AFM

Here we will consider what the AFM detects when a pair of pulses induce a polarization in

the sample. This discussion is inspired by that presented in 1.2.2 of [23], as well as [25].

Recall from section 2.2 that the second-order polarization P (2) induced by a pair of pulses

delayed by time τ is given by

P (2)(t, τ) = 2ϵ0χ
(2)

(

|E(t)|2 + |E(t + τ)|2
)

(OR) (2.24)

+ ϵ0χ
(2)[E(t)2e−2iω0t + E(t+ τ)2e−2iω0t (SHG) (2.25)

+ 2E(t)E(t + τ)e−2iω0te−iω0τ (SFG) (2.26)

+ 2E(t)E∗(t+ τ)eiω0τ + c.c.] (DFG). (2.27)

13
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The driving angular frequency ωd of the cantilever (with a frequency on the order of several

hundred kilohertz) is much smaller than the carrier angular frequency ω0 of the ultrafast

pulses (with a frequency on the order of several hundred terahertz). Hence only the OR

and DFG terms of P (2)(t, τ), given in equations 2.24 and 2.27, can be detected by AFM.

This is because the OR has no oscillations and the DFG term only oscillates as τ is varied.

The SHG and SFG terms oscillate with frequency 2ω0, which cannot be detected by the

much slower cantilever. The OR term of P (2)(t, τ), denoted by P (2)
OR(t), manifests itself as

a constant offset in the autocorrelation signal, while the DFG term, denoted by P (2)
DFG(t, τ),

oscillates as τ is varied.

The electric potentials induced by the polarizations P (2)
OR(t) and P (2)

DFG(t, τ) are denoted by

φOR(t) and φDFG(t, τ), respectively. These can be added into a common potential φpol(t, τ) =

φOR(t) + φDFG(t, τ) arising from the induced polarization. The resulting electrostatic force

that the AFM detects is given by

Felec(t, τ) =
1

2

dC

dz
(VCPD − VDC − φpol(t, τ))

2 , (2.28)

with C being the tip-sample capacitance, z the tip-sample distance, VCPD the contact poten-

tial difference between the tip and the sample, and VDC the applied bias to the tip [32, 33].

One should note that [25] uses φpol to denote the electric potential energy rather than the

electric potential, and thus includes an extra factor of 1/e in the last term of equation

2.28, with e being the elementary charge. Since φOR(t) manifests itself as a constant offset,

equation 2.28 may be rewritten as

Felec(t, τ) =
1

2

dC

dz
(VBG − φDFG(t, τ))

2 , (2.29)

where VBG = VCPD − VDC − φOR(t) is the electrostatic background.

In frequency modulated AFM (FM-AFM), which was discussed in section 2.1, the fre-

quency shift ∆f ∝ dF/dz is detected. So the FM-AFM signal measured when probing the
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electrostatic force given by equation 2.29 is

∆f ∝ (VBG − φDFG(t, τ))
2 . (2.30)

Since φDFG(t, τ) ∝ P (2)
DFG(t, τ) ∝ χ(2) (using equation 2.15), the magnitude of the oscillations

of the ∆f signal as τ is varied is proportional to χ(2)2. Also, the magnitude of the oscillations

of ∆f has a quadratic dependence on the intensity of the laser. One should note that the

shape of the autocorrelation measured with FM-AFM depends on the relative magnitudes

between VBG and φDFG, and will often result in a different shape than that presented in

figure 2.1b, which would be measured by a photodiode. An example of how variations in the

relative magnitudes between VBG and φDFG can affect the symmetry of AFM autocorrelations

is shown in figure 2.2. These autocorrelation measurements were conducted on periodically

poled lithium niobate (PPLN) and on monolayer MoSe2, and were plotted using data from

[25].
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Figure 2.2: AFM autocorrelations on PPLN (left) and on monolayer MoSe2 (right). The
autocorrelation on PPLN has a symmetric shape about the baseline while on MoSe2 it is
asymmetric. This is caused by variations in the relative strengths of VBG and φDFG in
equation 2.30. This figure was generated using data from [25].

It is also worth considering the effects of the polarization terms beyond the second-order

term shown in equation 2.7. Let us consider for example the third-order polarization P (3)
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induced by a pair of ultrafast pulses Ẽ1 and Ẽ2, each with carrier frequency ω0:

P (3)(t, τ) = ε0χ
(3)

(

Ẽ1 + Ẽ2

)3

= ε0χ
(3)

(

Ẽ3
1 + Ẽ3

2 + 3Ẽ1Ẽ
2
2 + 3Ẽ2

1Ẽ2

)

. (2.31)

Each of these terms oscillates with frequency 2ω0 or 3ω0, and thus cannot be detected by

AFM. Expanding this consideration to further order terms, one sees that only even ordered

polarization terms will have static and quasi-static (only oscillates with τ) that can be

detected by AFM, while odd ordered terms will not have these terms and are not detectable

by AFM.

2.5 Extracting the Autocorrelation Amplitude

The information that this work is interested in extracting from an autocorrelation measure-

ment is the amplitude at the zero time delay in order to characterize the magnitude of χ(2)

at the location of the measurement. There are two main methods that have been used in

this work. The first method applies to extracting the amplitude from an autocorrelation

that has been conducted over a large range of time delay values τ . This method works by

identifying the fringe peaks in the autocorrelation signal and fitting a gaussian to them. The

amplitude of the gaussian may then be used to determine the amplitude of the autocorrela-

tion signal. The challenge here is to accurately identify the fringe peaks in a noisy signal.

The second method applies to autocorrelation measurements conducted close to the zero

time delay τ = 0. This method assumes that there is little variation in the envelope of the

signal and is approximately sinusoidal. The amplitude is extracted by fitting a sinusoid to

the signal.

2.5.1 Gaussian Fitting

To fit a gaussian to the envelope of an autocorrelation signal, one must identify the fringe

maxima and minima in the signal. One method to do this is to identify the zero crossings of
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the first derivative of the signal. These are the locations of the extrema in the signal. One

may then check if the second derivative is positive or negative to determine if the extrema

belong to the lower or upper envelope: negative second derivative belongs to the upper

envelope, positive belongs to the lower envelope. Gaussians may then be fitted using the

method of least squares to the upper and lower extrema to determine the autocorrelation

amplitude. Since the two gaussian envelopes share the same baseline, the amplitude of the

autocorrelation signal is given by the sum of the amplitudes of the two gaussian envelopes.

An example of this method on a modeled autocorrelation signal is presented in figure 2.3.
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Figure 2.3: Gaussian envelope fit to a model autocorrelation signal. A gaussian was
fit separately for the top and the bottom envelopes. While the bottom envelope is not a
gaussian, the fitted gaussian can determine the amplitude of the background.
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2.5.2 Sine Fitting

The second method applies to autocorrelation measurements that have been conducted over

a small range of time delay values near τ = 0. One may assume such a signal to have a

constant amplitude, as there is little change in the envelope, and thus may be approximated

by a sinusoid of the form

A sin(ω0τ + φ) + c, (2.32)

where ω0 is the carrier angular frequency of the pulses, A is the signal amplitude, φ is the

phase, and c is a background offset. Fitting a sinusoid of the form given in equation 2.32

allows one to determine the amplitude A of the autocorrelation.

It was shown in figure 2.2 that an AFM autocorrelation may have a symmetric or asym-

metric shape. To show that the sine fitting method can work for both the symmetric and

asymmetric cases, figure 2.4 shows a sine fit to a modelled autocorrelation in each of these

cases. The symmetric autocorrelation is of the form

S(τ) ∝

∫

∞

−∞

|E(t) + E(t+ τ)|2 dt, (2.33)

while the asymmetric autocorrelation is of the form

S(τ) ∝

∫

∞

−∞

(

|E(t) + E(t+ τ)|2
)2

dt, (2.34)

as given in equation 2.18. In reality, it may be assumed that an AFM autocorrelation

measurement will be some linear combination of these two cases. Figure 2.4 shows a sine

fit to the most asymmetric case given by equation 2.34. Although there is a significant

residual, the amplitude of the fit is 0.98, indicating that even in the most asymmetric case

the amplitude can be accurately determined with the sine fit method.
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Figure 2.4: Sine fitted (dashed red curve) to an autocorrelation (solid blue curve) close to
the zero time delay. The plot on the top left is the symmetric case described by equation
2.33, while the one on the top right is the most asymmetric case described by equation 2.34.
The plots on the bottom show the residuals of the respective fits.

2.6 Noise Analysis

There are two advantages to the sine fitting method presented in section 2.5.2. One is that

the autocorrelation measurement can be conducted more quickly due to the shorter delay

time sweep. The other advantage is that one can measure the noise in the signal from the

residuals of the sine fitting. This is useful as it allows one to correlate the noise present in the

signal to the autocorrelation amplitude. In this section, autocorrelations will be modelled

with noise proportional to
√

S(τ), S(τ), and S(τ)2, where S(τ) is the signal, and it will be

demonstrated that the sine fitting method is capable of extracting information about the

noise.

To model a noisy autocorrelation signal, noise was added to modelled signals like those

shown in figure 2.4. To generate the noise, a random number is added to each data point in
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the signal, where the random number is of the form

α |S(τ)|p x, (2.35)

where x is a random number sampled from a standard normal distribution (mean 0 and

variance 1), p is the power of S(τ) which the noise is proportional to, and α is a constant

that can be used to set the signal to noise ratio. To extract the noise level from the noisy
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Figure 2.5: Residual σ of sines fit to noisy theoretical autocorrelations for varying auto-
correlation amplitudes. Blue dots correspond to extracted σ, while red curves correspond to
expected trends. The top row corresponds to the symmetric autocorrelation case, while the
bottom row corresponds to the asymmetric autocorrelation case. Each column corresponds
to a different power of S(τ) which the noise is proportional to. The x and y axes were
normalized to range from 0 to 1.

signal, a sine was fit to the signal near τ = 0, and the standard deviation σ of the residuals

was calculated to quantify the noise level. Figure 2.5 shows how the extracted σ (blue dots)

scales with increasing amplitude of the signal S(τ), with p = 0.5, 1, and 2. The top row
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of figure 2.5 was done for the symmetric autocorrelation described by equation 2.33, while

the bottom row was done for the asymmetric autocorrelation described by equation 2.34.

Comparing the extracted σ to the red curves in figure 2.5 shows that the sine fitting method

can accurately quantify the noise level in a noisy autocorrelation signal. The deviation of the
√

S(τ) extracted noise from the expected curve in the asymmetric case may be explained

by the relatively large residual shown in figure 2.4, which introduces a linear component to

the trend.

One might argue that the source of the noise measured in the AFM may not be due to

a sample effect. There are two other sources that must be considered: laser fluctuations

and instabilities in the time delay τ between the laser pulses. Laser fluctuations are easily

accounted for by normalizing the AFM signal with respect to the signal measured by the

photodiode. The next chapter will go into more detail to show that these two signals are

collected simultaneously in the experiment.

Instabilities in the time delay contribute noise to the measurement that have a different

nature than noise related to the magnitude of the signal. To demonstrate this, an auto-

correlation was modelled with fluctuations in the time delay, and fitted with a sine. The

distribution of the residual is shown in figure 2.6a. The time delay noise distribution follows

a more lorentzian distribution than a gaussian one, while the amplitude noise distribution

is best fitted by a gaussian. The precise reasoning for this should still be investigated, but

this shows that one can verify that the noise measured by AFM is not dominated by time

delay instabilities by checking what the distribution looks like.

2.7 Samples Investigated

Two samples were investigated in this work. The first sample was a thin film of merocyanine

dye HB238 on a glass substrate via spin coating, while the second sample was a WS2 mono-

layer deposited on a sapphire substrate by chemical vapour deposition (CVD). The HB238
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( (

Figure 2.6: Noise distributions due to (a) time delay instability and (b) amplitude noise.
Both distribution were fitted with a gaussian and lorentzian. A residual sum of squares
test was performed to determine which fit was better in each case. The time delay noise
distribution is better fitted by a lorentzian, while the amplitude noise is better fitted by a
gaussian.

sample was manufactured by Professor Meerholz’s group at the University of Cologne, and

the WS2 sample was manufactured by Dr. Goh’s group at A*STAR.

Merocyanine dye HB238 is an organic compound with a non-centrosymmetric structure

[34, 35]. The HB238 sample used here was previously studied by Spiegelberg, who showed

that it has a nonlinear response when probed by ultrafast AFM [26]. This sample was used

in this work to reproduce previous results and to demonstrate that the experimental method

works. The HB238 sample was manufactured by spin-coating a 24 nm layer of the dye onto

a glass substrate, and then annealed at 150◦C. The annealing process aligns the HB238

molecules and results in the film having a greater optical response [36].

The HB238 sample used here was initially manufactured in 2022. To verify that the

sample has not degraded over time, ultraviolet-visible (UV-vis) spectroscopy was conducted

and compared to reported spectra of new samples manufactured by the same group, as shown

in figure 2.7 [36]. The alignment of the measured UV-vis peak of the old sample with the

reported peak of a new sample in [36] indicates that old sample has remained intact and is

likely to still have a strong nonlinear response detectable by ultrafast AFM. The ultrafast

AFM measurements will be shown in chapter 4.
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Figure 2.7: UV-vis spectra of spin-coated HB238 films on glass substrates. The UV-vis
spectrum that was measured on the old sample (dashed red line) was overlayed on the spectra
reported by [36] (solid blue lines), showing that the main peak is at the same energy. The
inset shows the structure of the HB238 molecule. Figure adapted from [36].

Monolayer WS2 was also studied as it also has a strong nonlinear optical response, with

χ(2) on the order of 1 nm/V [37, 38]. This is an extremely large χ(2), as χ(2) values of mate-

rials typically used for SHG, such as beta barium borate (BBO), are on the order of 1 pm/V

[23]. The WS2 sample used in this work was grown on a sapphire substrate via CVD, and

was grown to form islands of monolayer WS2 rather than a uniform coverage. A nonuni-

form sample like this is important to show the spatial correlation between autocorrelation

amplitude and noise measurements with ultrafast AFM, as one can compare measurements

conducted on the WS2 flakes with those done on the substrate. Such a spatial measurement

will be shown in chapter 4.
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Chapter 3

Experimental Methods

Ultrafast atomic force microscopy (AFM) for nonlinear optical measurements relies on the

coupling of an ultrafast laser system and an AFM. In this chapter the well understood

commercial AFM system will be briefly discussed, and the remainder of the chapter will

discuss the optical system and how it is coupled to the AFM. The characterization of the

signal measured by AFM will be discussed at the end.

3.1 The AFM System

The AFM used in this work is a room temperature modified commercial JEOL JSPM-4500A

ultra-high vacuum (UHV) system. The UHV system consists of three chambers: a loadlock

for transferring tips and samples in and out of vacuum, a preparation chamber for sam-

ple processing (such as annealing, cleaving, or molecular evaporation), and a measurement

chamber which houses the AFM.

The base pressures of the preparation and measurement chambers is on the order of 10−11

mbar. This pressure is primarily maintained by ion pumps (one connected to each chamber),

which ionize unwanted gas molecules and subsequently accelerate the molecules through an

electric field towards a cathode. The molecules strike the cathode and become buried within

it, resulting in a lower pressure in the chamber.
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The AFM used in this system works on the basis of frequency modulated (FM) AFM, as

discussed in chapter 2. The cantilevers used in this work are metal-coated silicon cantilevers

from Nanosensors (PPP-NCHPt). These cantilevers have a resonance frequency of about

250-300 kHz, a spring constant of about 30-50 N/m, and a Q factor of around 20 000 in

UHV. These values vary from cantilever to cantilever, but are well known for each one. The

metal coating of the tip enhances its electrical conductivity. The cantilever is oscillated

by a piezo, and the deflection is measured by beam deflection system including a 670 nm

laser and a four-quadrant photodiode setup. An optical bandpass filter is placed over the

photodiode to prevent signal contamination by ambient light or the ultrafast laser used for

optical measurements. The cantilever oscillations are controlled via a phase-lock loop (PLL)

in a Nanonis scanning probe microscopy (SPM) controller.

The sample in the AFM is placed in a piezo-driven stage that has a scan range of about

4.5 × 4.5 µm in the xy-plane. Additionally, the stage may be moved with coarse motors

over an area of 2 × 2 mm in the xy-plane. The AFM tip is brought into proximity with the

sample surface with a combination of a coarse and a piezo motor until the frequency shift

setpoint is detected.

3.2 Optical System

To generate laser pulses, a Toptica FemtoFibre pro near-infrared laser system is used. The

system consists of an erbium fibre laser to generate 100 fs pulses at 1560 nm, with a repetition

rate of 80 MHz at an average power of 350 mW. A second harmonic generation unit is used

to also output 100 fs pulses at 780 nm with an average power of 140 mW. Unless otherwise

specified, all experiments here are done with the 780 nm output.

A Mach-Zehnder interferometer is used to control the delay time between subsequent

pulses, as shown in figure 3.1 [39, 40]. In the interferometer, the output beam from the

laser system is passed through a beam splitter into two beams. One of the beams has a

25



CHAPTER 3. EXPERIMENTAL METHODS

780 nm 100 fs Pulsed Laser

Pol.

Chopper

Mach-Zehnder Interferometer

BBO

Delay Stage

390 nm
BP Filter

PD

/2 Sample

Rotating 
Mirror

AFM Cantilever

Periscope

UHV Chamber

/2

Figure 3.1: Schematic of the optical setup used for measuring nonlinear optics with AFM.
A Toptica FemtoFibre Pro NIR laser system is used to generate 100 fs pulses with a carrier
wavelength of 780 nm at a repetition rate of 80 MHz. The intensity of the laser is controlled
via a half-wave plate and polarizer setup, where the polarizer is fixed and the wave plate is
rotated. A Mach-Zehnder interferometer is used to control the delay time between subsequent
pulses. The delay stage used is a Thorlabs DDS220 linear translation stage, which has a
minimal incremental movement of 0.1 µm (0.33 fs). The two arms of the interferometer are
recombined colinearly. One output of the interferometer gets focused onto a BBO crystal, and
the second harmonic light is detected via a photodiode. The photodiode is used to monitor
the alignment of the beams and laser fluctuations. The second output of the interferometer
is fed into the UHV chamber with a periscope. A half-wave plate is used to control the
polarization of the beam. The beam is focused onto the sample, and a rotating mirror is
used to direct the beam into the AFM tip-sample junction. Note: Figure not to scale.

corner reflector mounted on a ThorLabs DDS220 translation stage to control the time delay

between the pulse copies. The two beams from the interferometer are recombined at a

second beam splitter, where one copy of the pulses (known as the photodiode branch) is

sent through a β-barium borate (BBO) crystal and into a photodiode, while the other copy

(known as the AFM branch) is sent into the UHV-AFM system where it is aligned with the

sample. The main purpose of the photodiode branch is for interferometer alignment and to

have a reference signal which the AFM signal is compared to. The photodiode is also able to

monitor any laser fluctuations. The BBO crystal in the photodiode branch is used for second

harmonic generation [41]. The photodiode used is a reverse biased silicon photodiode, and
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the current signal is amplified by a Femto DLPCA-200 low noise transimpedance amplifier.

The output voltage signal from the amplifier is recorded by the Nanonis SPM control system.

3.2.1 Beam Alignment

As was discussed in section 2.3, an interferometric autocorrelation measurement has an 8:1

ratio. When aligning the interferometer, autocorrelation measurements with the photodiode

branch were conducted to check the accuracy of the alignment. The general procedure to

align the interferometer is as follows:

1. Align both interferometer beams to pass through the irises on the photodiode branch.

For good overlap of the two beams, it is critical that the beams pass through the irises

with equal intensity.

2. Insert a convex lens after the first iris. Then place the BBO crystal in the focal point

after the lens. One can move the BBO crystal by hand along the beam path until the

photodiode signal is maximized. Once the best position is found, adjust the angle of

the BBO crystal in the plane normal to the beam path until the photodiode signal is

maximized.

3. Make very fine adjustments to the interferometer mirrors until an 8:1 ratio is achieved

in the photodiode autocorrelation measurement.

The following paragraphs detail how misalignments will influence the amplitude ratio of the

autocorrelation measurement.

Uneven Beam Intensities

If one attempts an interferometric autocorrelation with beams of uneven intensities, the re-

sulting autocorrelation will not have an 8:1 ratio. This might happen if one of the beams is

passing through a dirty optical element or gets clipped at the edge of an optical element. To
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demonstrate how significant of an effect this can have on the autocorrelation ratio, autocor-

relations were modelled with one of the pulses attenuated. Figure 3.2 shows the resulting

autocorrelation ratios as a function of the beam intensity ratios. The autocorrelation ratio
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Figure 3.2: Effect of uneven beam intensities on interferometric autocorrelation ratio. To
achieve the desired 8:1 ratio of an interferometric autocorrelation, one must ensure that the
two beams of the interferometer are similar in intensity. If the ratio of the intensities is
around 0.85 or greater, then a good autocorrelation ratio will be achieved. Once the ratio
of the intensities falls below 0.8, then the autocorrelation ratio will quickly decrease.

is not significantly affected if the ratio of the beam intensities is greater than about 0.85,

but it starts to deteriorate quickly below 0.8.

BBO Crystal Angle Tuning

As discussed in chapter 2, phase matching is critical for efficient generation of second har-

monic light in a nonlinear optical crystal. Phase matching refers to matching the phase

velocity of the fundamental beam (the input beam with frequency ω) to that of the gener-

ated second harmonic beam. When the phase velocities are perfectly matched, the second

harmonic beam will constructively interfere with newly produced second harmonic light as it
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travels in phase with the fundamental beam through the crystal, resulting in amplification of

the second harmonic beam. If the phase velocities are not matched, the second harmonic will

interfere deconstructively with newly produced second harmonic light, ultimately resulting

in a low intensity of second harmonic light [23].

Phase matching, or angle tuning, is done by adjusting the angle between the propagation

axis of the fundamental beam and the optical axis of the crystal. In this setup, a thin (< 100

µm) BBO crystal is used to generate second harmonic light. The BBO crystal was polished

so that incident 780 nm light normal to the surface is already phase matched.

In the case of linearly polarized light, as is the case in this work, the orientation of the

BBO about the propagation axis of the fundamental beam must also be tuned to maximize

SHG. Here, the BBO was mounted in a rotation stage allowing rotation in the plane normal

to the propagation axis. The stage was incrementally rotated until the second harmonic

light detected by the photodiode was maximized.

First Harmonic Leakage

An interferometric autocorrelation requires only the second harmonic light to be passed into

the photodiode. Thus, a bandpass filter is placed after the BBO crystal to filter out the

first harmonic light. In this setup, the first harmonic light has a wavelength of 780 nm, and

the second harmonic has a wavelength of 390 nm. A ThorLabs FBH390-10 bandpass filter

was used, which ThorLabs reports has a 0.0001% transmission of 780 nm light and a 94.7%

transmission of 390 nm light. Although the transmission of 780 nm light is extremely small,

the first harmonic beam has much greater intensity than the second harmonic beam, leading

to first harmonic leakage that is significant enough to affect the measured interferometric

autocorrelation. It was found that placing a second bandpass filter improves the ratio of

the interferometric autocorrelation. Figure 3.3 shows that placing a second bandpass filter

improves the autocorrelation ratio from 6.7 to 7.9.

While a second filter can help reduce direct leakage of the first harmonic, there may be
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Figure 3.3: Normalized interferometric autocorrelations with one and two bandpass filters.
An autocorrelation conducted with some first harmonic leakage will produce a signal below
the desired 8:1 ratio, as seen in the dark blue signal, which has a ratio of 6.7. Using two
bandpass filters improves the ratio to 7.9, as seen in the light blue signal. The envelopes of
the signals were fitted with a gaussian to accurately determine the ratio. Some of the fringes
of the autocorrelations are missing because the delay step was slightly larger than the width
of the fringe.

some background scattering of first harmonic light that finds its way into the photodiode,

such as by reflecting off the backside of the bandpass filter. To prevent any stray light hitting

the photodiode, a tube was placed between the photodiode and second bandpass filter, so

that the only light hitting the photodiode was passed through the filter.

An accurate measurement of the interferometric autocorrelation is important for mon-

itoring the alignment of the interferometer beams and laser fluctuations. Minimizing first

harmonic leakage into the photodiode ensures a more accurate interferometric autocorrela-

tion measurement.
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3.2.2 Polarization Rotation in Periscope

It is known that p-polarized light relative to the plane of the sample in the AFM maximizes

the nonlinear optical signal detected by AFM [25]. The output polarization of the laser is

s-polarized with respect to the plane of incidence of the optical table (parallel to the optical

table plane). Considering that in this system the plane of the sample is perpendicular to the

plane of the optical table, one might assume that these two polarizations are in the same

plane. However, one must carefully consider what happens to the polarization of the beam

as it is directed into the AFM.

When the laser beam reflects from a mirror, the polarization relative to the plane of

incidence remains constant. If the beam is reflected by two consecutive mirrors that do

not share the same plane of incidence, the polarization of the beam may rotate into a

different plane than that of the initial beam. Such is the case when the beam passes through

the second periscope that guides the beam into the UHV chamber, as the top mirror is

rotated 90◦ relative to the bottom mirror. Figure 3.4a illustrates what happens to the

Figure 3.4: The effect of a periscope on laser beam polarization. (a) A 90◦ periscope will
rotate the beam polarization. (b) A straight periscope with an additional mirror maintains
the polarization parallel to that of the input beam.

polarization as the beam passes through a 90◦ periscope. It is possible to avoid this problem

by adding an additional mirror as illustrated in figure 3.4b, but various constraints may
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prohibit this. Alternatively, as was done in this setup, a half-wave plate may be used to

rotate the polarization back as desired.

3.3 Ultrafast AFM

The Mach-Zehnder interferometer has two output beam lines: one directed to the photo-

diode, and the other directed into the UHV chamber, where the beam is focused with an

achromatic doublet lens into the tip-sample junction at an angle of about 80◦. The spot

size on the sample is estimated to be 900 by 200 µm. To align the laser beam with the

tip-sample junction, a rotating mirror moved by piezo motors inside the UHV chamber is

used to control the beam direction. The beam spot location is known by first looking into the

chamber with cameras. Once the beam is close to the AFM cantilever, the chopper in one of

the Mach-Zehnder interferometer arms is turned on. The final adjustments of the alignment

are done by maximizing the chopper frequency peak in the power spectral density (PSD)

of the frequency shift channel of the AFM. The peak is a result of thermal fluctuations in

the cantilever induced by the chopping of the beam. The beam is directly aligned with the

cantilever when this peak is maximized. The rotating mirror is then finely rotated to direct

the beam at the sample below the AFM tip. The mirror is rotated until the chopper peak

disappears from the frequency shift PSD.

While the laser used in the experiments presented here is primarily directed towards

the sample area around the tip-sample junction to minimize thermal driving of the AFM

cantilever, it is inevitable that some of the laser will be incident on the cantilever and tip.

The thermal effects of a laser incident on an AFM tip are discussed in depth by Milner et al.

(2010) in [42]. They show that the thermal effects induced on the tip is heavily dependent

on the alignment of the laser with the cantilever/tip. For example, they showed that in two

different laser alignments the laser power varied by a factor of 2, while the tip temperature

was the same. Hence what matters in such thermal considerations is the laser fluence rather

32



CHAPTER 3. EXPERIMENTAL METHODS

than the total laser power.

One can verify that the signal measured by the AFM during a delay sweep is a surface

effect rather than a thermal effect by comparing sweeps in approached and retracted tip

positions. Figure 3.5 shows AFM autocorrelation amplitudes at various intensities, at both

the approached and retracted tip positions. The z-feedback was turned off for each mea-

surement so that the autocorrelation signal is measured in the frequency shift channel. The
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Figure 3.5: Autocorrelation measurements with approached and retracted AFM tip posi-
tions at full laser intensity. The background frequency shift was subtracted from the data.

approached measurement was done on a CVD grown WS2 flake on a sapphire substrate.

Measurements on this sample will be discussed in greater detail in the next chapter. The au-

tocorrelation in the approached position has a much larger signal than that in the retracted

position, indicating that the measured signal is indeed due to surface effects rather than a

thermal effect. One should note that the approached and retracted positions are less than 1

µm apart, so the tip is not moving in and out of the laser beam when moving between these

positions.
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3.3.1 Verifying Nonlinear Optical Effects

Once the beam is aligned with the tip-sample junction, one must determine if the measured

signal is a nonlinear effect or not. A nonlinear process will have a nonlinear dependence on

the laser power. To demonstrate that a nonlinear process is indeed being measured with the

AFM during an autocorrelation, measurements were conducted at various laser intensities

at a constant tip height (z-feedback off for all measurements), shown in figure 3.6. This

measurement was done with the merocyanide dye HB238 sample discussed in section 2.7

in order to verify that the experimental setup was working. The intensity is varied with a

rotating half-wave plate and a fixed polarizer, which works on the basis of Malus’ law:

I = I0 cos
2 θ, (3.1)

where I0 and I are the initial and final intensities, respectively, and θ is the angle of the

polarizer axis relative to the polarization of the initial beam. The laser intensities used in

this measurement were first recorded with the photodiode with the bandpass filter removed.

In order to prevent possible tip height changes due to thermal effects, the laser intensity

was not varied in a monotonous fashion. Instead, the initial intensity was set to be around

the average of the desired intensity range. Subsequent intensities were alternated below and

above the initial intensity in order to minimize compounding thermal effects on the tip.

The top plot in figure 3.6 shows the autocorrelation amplitudes at various laser intensities.

The blue data points were done with the tip approached over a CVD grown WS2 flake. The

blue data points have a quadratic trend, indicating nonlinear optical effects are measured at

the surface. To show that thermal effects do not contribute to any nonlinear measurements,

the measurements were repeated with the tip retracted and the laser fully aligned with the

cantilever to maximize thermal effects, shown in the red data in figure 3.6. Not only does the

thermal effect here have a smaller magnitude than the surface effects at higher intensities,

but these measurements also have a linear trend, indicating that they do not contribute
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to any nonlinear effects. The thermal contributions to the autocorrelation amplitude are

likely due to thermal expansion of the cantilever dimensions. The spring constant k of the

cantilever are dependent on the cantilever dimensions, thus any changes to the dimensions

will result in changes to k and also the resonance frequency [43].

3.3.2 Measuring Nonlinear Optics with Noise

The bottom plot of figure 3.6 shows the noise extracted from the measurements shown in

the top plot. As discussed in chapter 2, the noise was extracted by fitting a sinusoid to the

autocorrelation measurement close to zero time delay and finding the standard deviation

of the residuals. To verify that the residuals are a good indicator of the noise present,

histograms of the residuals were plotted for each autocorrelation measurement and fitted

with a gaussian. An example of this is shown in figure 3.7. For each histogram, it was

verified that the residuals had a gaussian distribution, and that the distribution was centred

at zero. This indicates that the noise is not biased, and that it is not a result of time delay

fluctuations as was discussed in section 2.6.

In figure 3.6, the noise of the approached measurements scales quadratically with laser

intensity, just like the amplitudes. This means that the noise is proportional to the amplitude,

and it can be used to characterize the second order susceptibility χ(2) just like the amplitude.

The benefit of using noise to characterize χ(2) is that it can be measured much quicker than

the autocorrelation amplitude. Each autocorrelation measurement shown in figure 3.6 took

about 8 seconds. Noise, on the other hand, could be measured via a simple frequency shift

time trace in a fraction of a second.

The next chapter will demonstrate how these measurements are conducted spatially over

a sample, and will aim to show that noise measurements can be used to characterize local

χ(2) just like full autocorrelation measurements.
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Figure 3.6: AFM autocorrelation measurements with varying laser intensity. The top plot
shows the amplitudes of autocorrelations done with the tip approached over the HB238 film
(blue dots) and retracted (red squares). The retracted data points were collected with the
laser fully aligned with the cantilever to show the behaviour of thermal effects with varying
laser intensity. The bottom plot shows how the noise scales during the measurements shown
in the top plot. The noise here is the standard deviation of the residues of the sine fit of
the autocorrelation measurement close to the zero time delay. The uncertainties in the noise
were found via a statistical bootstrapping scheme. All of the data sets were fitted with a
second order polynomial.
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Figure 3.7: Histogram of residuals of a sine fit to an autocorrelation measurement. The
residuals have a gaussian distribution centred at zero, as indicated by the gaussian fit,
indicating that the residuals are a good indicator of the noise in the signal. The noise
level in the signal may be quantified by the standard distribution of the residuals. Here, the
bin heights of the residual counts were normalized to form a probability density. A lorentzian
fit is also plotted to show that the source of the noise is not due to time delay fluctuation as
was shown in section 2.6.
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Ultrafast AFM Measurements

The samples that were investigated in this work were merocyanine dye HB238 and CVD

grown WS2 flakes on sapphire, as was discussed in section 2.7. The HB238 sample was used

in section 3.3.1 to reproduce results reported by Spiegelberg [26] and demonstrate that the

experimental setup was indeed measuring nonlinear effects.

Now that it was confirmed that the setup was working, spatial measurements can be

performed on the WS2 sample, which will be discussed in this chapter.

4.1 Monolayer WS2 on Sapphire Substrate

As mentioned in the first chapter of this work, 2-dimensional transition metal dichalcogenides

(2D TMDs) exhibit second harmonic generation (SHG) properties. Sapphire is a centrosym-

metric crystal, hence it does not cause SHG in the bulk. However, SHG can occur at the

sapphire surface where the centrosymmetric geometry is broken, especially on r-cut sapphire

[44]. Thus, one must carefully conduct measurements on WS2 grown on sapphire to be able

to distinguish between the flake and the substrate signals. Figure 4.1 shows the topography

and bias channels of a KPFM scan taken of a WS2 flake from this sample. As will be shown

in section 4.1.1, the amplitude of the autocorrelation measured by AFM is dependent on the

tip-sample separation. Thus it is necessary to ensure constant tip-sample separation when

38



CHAPTER 4. ULTRAFAST AFM MEASUREMENTS

(b)(a) 

(c) (d)

WS2

Sapphire

Figure 4.1: KPFM scan of a WS2 flake on a sapphire substrate with no incident laser. (a)
Topography and (b) bias channels of a KPFM scan taken of a WS2 flake. (c-d) Line profiles
shown in the topography and bias channels, respectively. These profiles are averaged over
the width of the regions indicated by the bars in (a) and (b). The topography profile shows
that the “inland” region of the WS2 flake is approximately 0.7 nm higher than the sapphire
substrate.

conducting spatially resolved nonlinear optical measurements. The topographical line profile

in figure 4.1c shows that the surface of the WS2 flake is approximately 0.7 nm higher than

the sapphire substrate, which is consistent with reported monolayer WS2 thicknesses [45].

Additionally, there is a significant difference in CPD values over the two regions, as shown

in figure 4.1b, d.
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4.1.1 Autocorrelation Amplitude vs Tip Height

The AFM autocorrelation signal is of electrostatic nature as was discussed in section 2.4,

and thus is dependent on the tip-sample separation. Hudlet states the electrostatic force

Felec acting on the AFM tip is dependent on the tip-sample separation z via

Felec = πε0V
2

[

R2

z[z +R]
+ . . .

]

, (4.1)

where V = Vcpd − Vdc is the difference between the contact potential difference Vcpd

and the applied bias Vdc, R is the tip radius, and z is the tip-sample separation [46]. The

frequency shift ∆f measured by FM-AFM given in equation 2.5 is

∆f ≈ −
ω0

4πk

dFts

dz
, (4.2)

with Fts being the tip-sample force. Inserting Felec from equation 4.1 results in the frequency

shift to be approximately

∆f ∝ πε0V
2

[

R2(R + 2z)

z2(z +R)2

]

. (4.3)

Figure 4.2 shows the AFM autocorrelation amplitude and the amplitude uncertainty as a

function of z on both the WS2 flake and the sapphire substrate. The z values were recorded

from the z piezo position. Since the z piezo position is only a relative value rather than

an absolute measurement of the tip-sample separation, the z variable in equation 4.3 was

redefined to be z − z0, where z is the piezo position and z0 is the position of the surface.

The electrostatic model that was fitted to the AFM autocorrelation z spectra is

∆f = A

[

R2 (R + 2 (z − z0))

(z − z0) 2 (z − z0 +R) 2

]

, (4.4)

with the proportionality constant A and the surface position z0 being fitted parameters.

The PPP-NCHPt cantilevers from Nanosensors used in this measurement have a reported
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Figure 4.2: z spectra of autocorrelation amplitude and noise over WS2 and sapphire. The
spectra were fitted with Hudlet’s electrostatic model [46]. The x axis of the plots corresponds
to the tip-sample separation predicted by the model.

tip radius of curvature of R = 25 nm. Since the position of the surface did not change

between these two z spectra, z0 was shifted to zero for both fittings, so that the x-axis in

figure 4.2 corresponds to the tip-sample separation.

4.1.2 Autocorrelation Amplitude and Noise vs Laser Power

To confirm that the signal measured with ultrafast AFM is of nonlinear nature, intensity

measurements were conducted as discussed in section 3.3.1. Such measurements were con-

ducted both on the WS2 flakes and on the sapphire substrate, as shown in figure 4.3. As it

was discussed in the previous section, it is critical to maintain a constant tip-sample separa-

tion when conducting nonlinear ultrafast measurements in different locations on the sample.
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Figure 4.3: AFM autocorrelation amplitude and noise as a function of intensity over WS2

and sapphire. All data sets were fitted with a second-order polynomial.

The CPD was compensated at the two locations in which the intensity measurements were

conducted to get as close to the same tip-sample separation as possible. All other parameters,

such as the frequency shift setpoint, remained the same.

The intensity measurements shown in figure 4.3 are very similar on both the sapphire

substrate as well as the WS2 flake. Both of the measurements were fitted with a second-order

polynomial of the form Ax2 + Bx + C, and the A parameter is proportional to χ(2). The
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fitted A values for the intensity measurements were found to be

AWS2

Amplitude = 2.0± 0.2, (4.5)

ASapphire
Amplitude = 2.3± 0.2, (4.6)

AWS2

Noise = 1.3± 0.2, (4.7)

ASapphire
Noise = 1.2± 0.2. (4.8)

The units in these parameters are not important, as only the relative comparisons between

the A values for the different materials are what signify the relative differences in χ(2).

Clearly, there is very little difference in χ(2) between the two locations on the sample as the

values of A in the two measurements overlap with each other in error. This will be further

verified by the spatial measurement in the next section, and a possible explanation will be

discussed.

4.1.3 Spatial Measurement

Here, a spatial measurement was conducted at a constant intensity, and is shown in figure

4.4. The spatial measurement was conducted in a straight line that began on the sapphire

substrate and moved onto the WS2 flake in 20 nm steps. At each step, the CPD was com-

pensated to ensure constant tip-sample separation. While the z and CPD values changed

from one material to the other in a way that was consistent with the KPFM scan shown

in figure 4.1, there was very little contrast in the autocorrelation amplitude and noise mea-

surements. This is consistent with what was shown in the intensity measurements in the

previous section.

While it is expected for any surface to have a nonzero χ(2), it would be surprising for a

clean sapphire surface to have a χ(2) that is comparable to the massive χ(2) of WS2. Sapphire

is not typically used for second-order optical processes, and even materials that are typically

used, like BBO, only have χ(2) on the order of 1 pm/V [23], much smaller than reported
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values on the order of 1 nm/V for monolayer WS2 [37, 38]. A possible explanation for why

the nonlinear measurements on the sapphire substrate used here are comparable to that of

the WS2 flakes is that it is not a completely clean sapphire surface. Indeed, one can see that

the topography of the sapphire substrate in figures 4.1a, c is very rough, and may contain

significant amounts of the precursors used in the CVD process that did not aggregate into

larger flakes. It is possible that these precursors are contributing to the nonlinear signal

measured by AFM.

Despite the lack of contrast between the sapphire and the WS2 in the nonlinear measure-

ments, the measurements discussed in this chapter have shown a clear correlation between

the autocorrelation and noise measurements. To show a better contrast between the flake

and the substrate, the measurements should be done on exfoliated flakes on a less responsive

substrate such as SiO2.
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Figure 4.4: A line measurement conducted over the sapphire (0-100 nm) and WS2 flake
(100-220 nm).
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Conclusion and Outlook

This work has demonstrated the correlation between autocorrelation amplitude and noise

measurements of χ(2). This correlation has been demonstrated with laser intensity and also

AFM tip distance measurements on merocyanine dye HB238 and on CVD grown WS2 on

sapphire. A spatial measurement was attempted on the WS2 sample, but there was very

little contrast between the measurements on the flake and on the substrate. A WS2 flake, or

any TMD flake, on a SiO2 substrate would likely be a better candidate, as SiO2 has a very

small nonlinear response and the signal from the TMD flake should dominate.

Despite an inconclusive result in the spatial measurement that has been shown in this

work, the correlation between the autocorrelation amplitude and noise shows a very promis-

ing development in nonlinear optical measurements with ultrafast AFM that will allow for

much finer spatial characterization of χ(2) in less time. One interesting study in which this

could be applied in is in understanding how defect structure affects χ(2). This could be

applied to both manufactured defects as well as intrinsic defects that are already present

in the material. There have been numerous studies with AFM that have shown how one

can characterize the structure of defects, such as that of SiO2 as well as MoSe2[47, 48].

The location of defects can be conducted with AFM dissipation scans, which maps out the

driving energy of the cantilever. In such scans, the tip is brought close to the surface to
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induce band bending. When the tip comes close to a defect, the bands will align with the

energy levels of the defect and allow for tunneling of electrons between the defect and the

bulk material, resulting in energy losses in the cantilever and showing up as a bright spot in

the dissipation scan. A raster scan of the dissipation will show bright rings centered around

defects in the material. An example of such a dissipation scan is shown in figure 5.1, which

was done over SiO2. The rings in figure 5.1 correspond to the locations of defects in the

interface between the bulk Si and the oxide overgrowth, and the size of the rings correspond

to the energy levels of the defects [47]. An ultrafast AFM noise measurement conducted over

a region with defects can show the correlation between the defect structure and their local

χ(2). Once this correlation is understood, it would be interesting to develop materials with

a high density of defects with large χ(2) that could be made into devices that emit entangled

photon pairs through half harmonic generation. Such photon pair emitters would be very

useful in quantum applications. Such correlation of χ(2) to defect structure could also be

important in minimizing optically active defects that are detrimental to a device, as was

demonstrated on the SiC/SiO2 interface [49]. The precise understanding of defects in TMD

materials has been shown to be an important topic of study [50, 51].

There are still unanswered questions about measuring nonlinear optical effects with ul-

trafast AFM. For example, how much of the material does ultrafast AFM probe? If the

material of interest is deposited on a substrate (like glass in the HB238 sample, or sapphire

in the WS2 sample), how much does the sample-substrate interface contribute to the nonlin-

ear response of the AFM? After all, the interface does have a non-centrosymmetric crystal

structure and thus has a nonzero contribution to the nonlinear response. One way these

questions could be answered is by studying HB238 thin film samples of various thicknesses

with ultrafast AFM. This will show how the signal (and noise) vary as a function of sample

thickness, and provide insight into how deep the ultrafast AFM technique probes the sample,

and how the sample-substrate interface contributes to the nonlinear response of the AFM.

Further characterizations of the noise measurement of χ(2) should be done. In particular,
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Figure 5.1: Dissipation scan of a SiO2 surface with a 3 nm oxide overgrowth. The light blue
rings indicate the locations of defects in the Si/SiO2 interface, and their radii correspond to
the energy levels of the defects.

what kind of noise is being measured and how does it depend on the sampling rate of the

signal? Understanding the colour of the noise will provide insight into the mechanics that

generate the noise.
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