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ABSTRACT
The Finite Element Gaussian Belief Propagation (FGaBP) method is an iterative algorithm with abun-
dant parallelism making it an alternative for the traditional Finite Element Method (FEM), especially
for large multi-physics problems. In this paper, we extend the FGaBP method to solve the coupled
electrical-thermal problem that emerges in the modeling of radiofrequency ablation (RFA) of hepatic
tumors. The strongest form of coupling algorithms, which is the Newton-Raphson (NR) method, is
implemented in parallel using the localized computations of FGaBP. The parallel scalability of the
FGaBP method is retained in the proposed algorithm by calculating local Jacobian matrices for each
element and then updating the solutions for both electrical and thermal problems accordingly at each
NR iteration.

1. Introduction
In general, finite element method (FEM) implementa-

tions consist of two computationally expensive stages which
are the sparse matrix assembly stage, and the solving stage
of the linear system using iterative solvers. These two stages
are even more expensive for non-linear applications. While
for certain cases, the assembly needs to be done only once
and, therefore, its cost can be tolerated, for non-linear prob-
lems, such as multi-physics applications, the assembly stage
can dominate the solving stage. This is especially so for a
pure Newton-Raphson (NR) method, when the construction
of a Jacobian matrix at each linearizing iteration could be
prohibitively expensive for large scale problems.

The Jacobian-free Newton-Krylov (JFNK) method is the
most widely used inexact solver for the NR algorithm. This
method employs a Krylov-based iterative solver in which the
Jacobian matrix does not have to be explicitly formed, and in
this way, JFNK bypasses the main obstacle associated with
the assembly stage of the NR method. On the other hand,
in the solving stage, the efficiency of JFNK depends criti-
cally on preconditioning the inner Krylov subspace method.
It is in this area that the Jacobian-free appeal of JFNK must
yield to the construction and use of a preconditioning matrix
which require the execution of a number of global algebraic
operations in each JFNK iteration, such as a Sparse Matrix-
Vector Multiplication (SMVM). The SMVM operation, in
particular, can strongly limit the acceleration of the solving
stage using parallel processing due to its dependency on the
underlying sparse data-structure [10]. In addition, the ap-
proximation error associated with the Jacobian-vector mul-
tiplication represents the greatest disadvantage of JFNK, es-
pecially when variables associated with different physics be-
ing coupled in a multi-physics application differ by orders of
magnitude.
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The Gaussian belief propagation (GaBP) method is a re-
cursivemessage passing algorithm that offers distributed com-
putation providing potential to parallelize FEM applications
[11]. This work presents a NR reformulation of GaBP in or-
der to exploit its localized computations and message pass-
ing scheme for solving multi-physics problems in parallel.
Similar to the JFNK, GaBP does not need to explicitly form a
global Jacobian matrix, instead, local computations are per-
formed to calculate local Jacobian matrices for each element
in parallel. This provides a NR algorithm amicable to differ-
ent parallel computing architectures. On the other hand, in
contrast to the JFNK, there is no approximation associated
with the local Jacobian matrices which makes the novel NR
method more accurate than the JFNK method.

As a multi-physics application, the new method is ap-
plied to the coupled electrical-thermal phenomenon that ap-
pears in radiofrequency ablation (RFA) of liver tumors. RFA
delivers electrical currents to biological tissues to thermally
damage a tumor by raising its temperature for a certain dura-
tion. The purpose of an effective RFA is the entire ablation
of the tumor with a safety margin of destroyed healthy tis-
sue in its vicinity, which in turn relies on the extent of the
ablation zone. However for treating tumors in the liver, the
hepatic blood vessels dissipate heat and change the size and
shape of the lesion zone [3]. Recently, computational mod-
els of RFA have gained attention as a tool for studying the
heat distribution inside the tissue [15, 27]. To investigate
the capabilities of our NR method, the coupled electrical-
thermal phenomenon in a simplified model of RFA is simu-
lated in this paper.

The paper is organized as follows. In Section 2, a sum-
mary of the coupled phenomena in RFA is provided. In
Section 3, we present the GaBP formulation for the coupled
electrical-thermal problem in RFA, and a parallel NR for-
mulation based on the GaBP representation of the problem.
Finally, in Sections 5 and 6, we present the results and con-
cluding remarks, respectively.
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2. The multi-physics phenomena in RFA
RFA probes operate between 460– 550 kHz. At these

frequencies, the wavelength is several orders of magnitude
larger than the size of the ablation electrode. Thus, the dis-
placement current is neglected and a quasi-static electrical
conduction model is assumed, which allows us to solve the
electric potential around the probe by using Laplace’s equa-
tion:
∇ ⋅ (�(T )∇v) = 0, (1)
where �(T ) is the temperature-dependent electrical conduc-
tivity (S/m), and v is the electric potential (V). In the lit-
erature, �(T ) is usually introduced by mathematical func-
tions which reflect its dependence on temperature. Accord-
ing to [28], the most commonly used mathematical function
for �(T ) is a piecewise function which uses different mathe-
matical expressions according to the temperature range. At
temperatures below 100 oC, �(T ) increases with temperature
with a rate from 1.5%∕oC to 2%∕oC, either linearly or expo-
nentially [28]. At temperatures above 100 oC, a rapid drop
of �(T ) occurs due to vaporisation. However, the computer
simulation of RFA could be ended when the maximum tem-
perature in the tissue reaches 100 oC [8], considering the fact
that the RF clinical power delivery protocol is usually based
on varying the voltage applied between electrodes to keep
the temperature at the electrode tip set to 80–90 oC [20].

Solving Laplace’s equation has a high computational cost
since it requires a fine volumemesh on the surface of the very
thin probe tips. Thus, Audigier et al [3] model the electrical
heating with a Dirichlet boundary condition on a sphere with
a pre-determined radius around the probe tip. Another ap-
proach to approximate the Joule heating is proposed by [18]
and used in later RFA simulation frameworks [17], [29] and
[23]. In this approach, the power deposition is estimated us-
ing a Gaussian distribution around the probe tip. However,
these approximations are, potentially, too much of a simpli-
fication as it has been shown by [14] that electrical parame-
ters are critical in models of hepatic RFA. In addition, none
of these approaches consider the temperature dependency of
� and the coupling between the electrical problem and the
thermal problem. The most commonly used model for heat
transfer in the tissue is the Pennes model [19]:

�ticti
)T
)t

= Q + ∇ ⋅ (d∇T ) +H(Tbl − T ), (2)

where T is the temperature (K), cti is the special heat ca-
pacity of tissue (J/kg/K), �ti is the tissue density (kg∕m3),
d is the thermal conductivity (W/m/K),H is the convective
transfer coefficient (W∕m3∕K) and Tbl is the baseline phys-iological blood temperature taken to be 310 K. On the right
hand side of (2), Q = �|∇v|2 is the heat source (W∕m3)
which depends on the electric potential. On the other hand,
in the electrical problem � is changing with the tempera-
ture. As a result, the electrical and thermal problems are
coupled to each other and amulti-physics approach is needed
to model this phenomenon.

In the Pennes model, the blood temperature is assumed
constant, which is only valid within and close to large ves-
sels [3]. For this reason, Payne et al [18] proposes a multi-
physicsmodel for computing heat diffusion in the liver, where
each elementary volume is assumed to comprise both tissue
and blood with a certain fraction:
(1 − �)�ticti

)Tti
)t

= (1 − �)Q + (1 − �)∇ ⋅ (d∇Tti) (3a)
+H(Tbl − Tti),

��blcbl(
)Tbl
)t

+ v.∇Tbl) = �Q + �∇ ⋅ (d∇Tbl) (3b)
−H(Tbl − Tti).

In theses two coupled equations, � stands for blood volume
fraction (fraction of blood volume over total volume), v is
the blood velocity (m/s) , and subscripts ‘ti’ and ‘bl’ refer to
tissue and blood phase respectively. Most RFA theoretical
models have used a constant value for d, probably due to the
fact that changes in d with temperature are not so marked as
in � [25]. The numerical values of the electrical and thermal
model parameters used in the literature are provided in Ta-
ble 1. Because if its high computational cost, the electrical
problem and its coupling to the thermal problem has often
been over-simplified in the recent literature. This paper tries
to develop an efficient multi-physics solver and applies it to
the coupled electrical-thermal problem in RFA.

Table 1
Values of electrical and thermal model parameters used in the
literature.

Parameter Value Ref

Baseline liver electrical conductivity, �ti (S/m) 0.33 [9]
Probe electrical conductivity, �probe (S/m) 108 [9]
Convective transfer coefficient, H (W(m3 K)−1) 24.4×105 [3]
Liver density, �ti (kg/m3) 1060 [18]
Liver heat capacity, cti (J/kg⋅ K) 3600 [18]
Baseline liver thermal conductivity, dti (W/m⋅ K) 0.512 [18]
Blood density, �bl (kg/m3) 1000 [9]
Blood heat capacity, cbl (J/kg⋅ K) 4180 [18]
Probe density, �probe (kg/m3) 6450 [9]
Probe heat capacity, cprobe (J/kg⋅ K) 840 [9]
Probe thermal conductivity, dprobe (W/m⋅ K) 18 [9]

3. Parallel formulation of the coupled
electrical-thermal problem
As explained in Section 2, the focus of this paper is on

the coupled electrical-thermal problem. For this reason, the
coupling between the tissue temperature and the blood tem-
perature, i.e., (3) is neglected and the thermal problem is
modeled by (2). If the theta-scheme [26] is used for time
discretization of (2), and similar FEM mesh for both (1) and
(2), we will have the following set of coupled discrete equa-
tions:
[

Mv(T )
] {

v
}

= 0 (4a)
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Figure 1: (Left): Sample FEM mesh of two second order tri-
angles. (Right): Two types of nodes in the factor graph rep-
resentation.

[

MT + �t � ST
] {

T
}n+1 =

[

MT − �t (1 − �)ST
] {

T
}n

(4b)
+ �t

{

(1 − �)
{

f(v)
}n + �

{

f(v)
}n+1}

where Mv,ij(T ) = ∫ �(T )⃖⃖⃗∇Ni ⋅ ⃖⃖⃗∇Nj dV depends on the
temperature, fj(v) = ∫ (HTbl + �(T )|∇v|2)Nj dV depends
on the potential, MT ,ij = (�cti + �tH) ∫ NiNj dV and
ST ,ij = d ∫ ⃖⃖⃗∇Ni ⋅ ⃖⃖⃗∇Nj dV . Note that Ni and Nj are FEMscalar basis functions, n is the time step number, �t is the
time step value and 0 ≤ � ≤ 1 is the parameter of the theta-
scheme time discretization. Because of straightforward im-
plementation, successive substitution is often the first route
to a multi-physics simulation. This approach, which is con-
sidered a weak-coupling model iterates over the uni-physics
problems, solving the first equation for the first unknown,
given the second unknown, and the second equation for the
second unknown, given the first. The main advantage of
successive substitution is making use of the existing codes
for the uni-physics problems; however, it may ignore strong
couplings between physics and give a false sense of com-
pletion [16]. If a solver code that goes beyond the weak-
coupling is needed, the NRmethod is the simplest algorithm.
This section provides an efficient FEM-based NR algorithm
for solving the coupled electrical-thermal problem of (4) in
a strong coupling manner. For this purpose, a parallel FEM
formulation based on GaBP algorithm introduced by [10]
is modified for solving multi-physics problems. The FEM-
based GaBP (FGaBP) method was tested on simple electro-
static problems showing good parallel scalability compared
to other parallel algorithms [10]. This paper extends FGaBP
to deal with a multi-physics scheme.

The main idea of FGaBP is to reformulate FEM into an
inference problem over a factor graph, which may be solved
applying the Gaussian belief propagation rules. As shown
in Fig. 1, FGaBP turns the FEM mesh into a factor graph.
Two different types of nodes are then introduced in the factor
graph: variable nodes (VN, nodes of unknowns) represented
by circles, and factor nodes (FNs) represented by squares.
The solution at each VN is considered a random variable
with a Gaussian distribution whose shape is defined by two
parameters, � and �, where � is the reciprocal of the variance
and �∕� is the mean. By passing messages between each FN
and all its connected VNs, the GaBP algorithm tries to find
the values of � and � for each VN. A message, mai, is sentfrom factor node a (FNa) to the connected variable node i
(VNi) and represents the most probable solution value at i,

as observed from FNa. In return, VNi sends a message back
to FNa representing observations from other connected FNs.
The following is the formulation of the FGaBP algorithm
update rules[10]:

1. t = 0: Initialize all messages �(0) = 0 and �(0) = 1.
2. Iterate: t = 1, 2, ... and t∗ ≤ t.

(a) For each VNi, compute messages �ia and �ia toeach connected FNa (a ∈ (i)) as follows:
�(t∗)i =

∑

k∈ (i)
�(t∗)ki , �(t)ia = �

(t∗)
i − �(t∗)ai (5)

�(t∗)i =
∑

k∈ (i)
�(t∗)ki , �(t)ia = �

(t∗)
i − �(t∗)ai (6)

where (i) is the neighborhood set of node i.
(b) For each FNa:

i. receive messages �(t)ia and �(t)ia where i ∈
 (a).

ii. Assume(t∗) is a diagonal matrix of incom-
ing �(t∗)ia messages, and (t∗) is a vector of
incoming �(t∗)ia messages, then define matrix
W and vector K as follows:
W(t∗) =M +(t∗) (7)

K(t∗) = B + (t∗) (8)
whereM and B are element a characteristic
matrix and source vector respectively.

iii. Partition W(t∗) and K(t∗) as follows:

W(t∗) =

[

W (t∗)
(i) VT

V W̄(t∗)

]

(9)

K(t∗) =

[

K (t∗)
(i)

K̄(t∗)

]

(10)

where (i) is the local index corresponding
to the global variable node i.

iv. Compute and partition (W (t∗))−1 as follows:

(W(t∗))−1 =
[

W̃(i) C̃T

C̃ W̃

]

. (11)

v. Compute and send new FNa messages �(t)ai
and �(t)ai to each VNi as follows:

�(t)ai =
1

W̃(i)
− �(t∗)ia . (12)

�(t)ai = B(i) +
1

W̃(i)
(K̄(t∗))T C̃T . (13)
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Figure 2: (Left): A message mai is sent from FNa to VNi.
(Right): A message mia is sent back from VNi to FNa.

Figure 3: (Left): A message mai,v (mai,T ) is sent from FNa to
VNi in the electrical (thermal) problem . (Right): A message
mia,v (mia,T ) is sent back from VNi to FNa in the electrical
(thermal) problem.

3. At message convergence, the mean of the VNs, or so-
lutions, can be obtained by:

u(t)i =
�(t)i
�(t)i

(14)

where
�i =

∑

k∈N(i)
�ki, �i =

∑

k∈N(i)
�ki . (15)

The message passing scheme of FGaBP is shown graphi-
cally by Fig. 2. In a uni-physics problem, each message
contains information about the value of the unknown param-
eter at each node. For example, in Fig. 2, left, the message
mai in the electrical problem carries information on the po-
tential at node i, vi. On the other hand, the different physicsinvolved in a multi-physics problem need to exchange in-
formation with each other; if a strong coupling approach is
needed, the exchanged messages between different physics
must contain information about their sensitivity with respect
to each other, besides information about their values. Figure
3 shows the message passing scheme in a multi-physics sce-
nario. Here, a massage mai,v (mai,T ) sent in the electrical
(thermal) problem carries information about vi (Ti) and also
dvi∕dTj (dTi∕dvj).When the update rules of (12) and (13) are applied to the
coupled electrical-thermal problem, it should be noted that

according to (4), in the electrical problem, element a char-
acteristic matrix, Mv, depends on the temperature values at
nodes i when i ∈  (a). On the other hand, in the thermal
problem, element a source vector, BT , depends on the elec-
tric potential values at nodes i where i ∈ (a). As a result,
equations (11) and (12) can be rewritten as:

�(t)ai,v =
1

W̃(i),v(Tj)
− �(t∗)ia,v , (16a)

�(t)ai,v = B(i),v +
1

W̃(i),v(Tj)
(K̄v

(t∗)(vj))T C̃v(Tj) , (16b)

�(t)ai,T =
1

W̃(i),T
− �(t∗)ia,T , (16c)

�(t)ai,T = B(i),T (vj) +
1

W̃(i),T
(K̄T

(t∗)(vj , Tj))T C̃T , (16d)

where (�ai,v, �ai,v) are messages in the electrical problem,
(�ai,T , �ai,T ) are messages in the thermal problem and i, j ∈
 (a). Equations (16a) to (16d) present a coupled system of
equations at each FGaBP iteration inside FNa. The rest of
this section provides a parallel strong coupling algorithm to
solve these coupled equations. According to (16c), � mes-
sages in the thermal problem are independent of the poten-
tial values; as a result we only consider the coupling between
(16a), (16b) and (16d):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�(t)ai,v =
1

W̃(i),v(Tj )
− �(t∗)ia,v ,

�(t)ai,v = B(i),v +
1

W̃(i),v(Tj )
(K̄v

(t∗)(vj))T C̃v(Tj),

�(t)ai,T = B(i),T (vj) +
1

W̃(i),T
(K̄T

(t∗)(vj , Tj))T C̃T .

(17)

In general, a multi-dimensional zero-finding problem could
be written as:
F (x) = 0, (18)
where F (x) = (f1(x), f2(x), ..., fn(x))T is a system of n cou-
pled equations and each fi(x) maps the vector of unknowns
x = (x1, x2, ..., xn)T with dimension n into a scalar. The
NR method solves such a non-linear system by solving lin-
ear systems successively, that is:
J (x(m))Δx(m) = −F (x(m)), (19)
where Δx is called the update vector, J (x) is an n-by-n Ja-
cobian matrix of F (x), i.e., Jij(x) = )Fi∕)xj , and m is the
iteration number. The update vector is then used in order to
obtain the solution vector x for the next iteration:
x(m+1) = x(m) + Δx(m). (20)
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Solving a linear system of equations at each iteration can
make NR method prohibitively expensive for a large n. This
section tries to alleviate this problem by applying the NR
method at the element-level equations in (17). Suppose k =
(i) and l = (j) are the local indices corresponding to
global VNs i and j, respectively. Since both FGaBP and
NR are iterative, we will have two nested iterations at each
time step. If we are at iteration t (or t∗ ≤ t) of FGaBP and it-
eration m of NR, then we will have the following non-linear
residuals for FNa:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

�(m,t)ak,v − fk(v
(m,t∗)
l , T (m−1)l ) = 0

�(m,t)ak,v − gk(v
(m,t∗)
l , T (m−1)l ) = 0

�(m,t)ak,T − ℎk(v
(m−1)
l , T (m,t∗)l ) = 0 ,

(21)

where fk, gk and ℎk are the right-hand-sides of the equationsin (17), respectively. At each FGaBP iteration, the sensi-
tivities )�ak,v∕)Tl, )�ak,v∕)Tl, )�ak,v∕)vl, )�ak,T ∕)vl, and
)�ak,T ∕)Tl are calculated and sent to the neighboring nodesof FNa. After FGaBP iterations have converged, the non-
linear system of (17) can be solved with a pure NR method,
using local data for each FN. A local Jacobian matrix is con-
structed for FNa based on (17) and the sensitivities calcu-
lated during FGaBP as follows:
Ja =

[

I2nc×2nc Ja,v
Ja,T Inc×nc

]

3nc×3nc
, (22)

where nc is the number of nodes per cell, and I is the iden-
tity matrix. The details on the calculation of the off-diagonal
elements of Ja are provided in the appendix. The calculationof Ja,v and Ja,T entries needs the partial derivatives of local
scalars and vectors with respect to the temperature values at
the nodes in the neighborhood of FNa; As a result, the Ja-
cobian matrix associated with FNa, Ja, is only dependent onthe local data structure of FNa, containing a dense matrix
Ma, vector Ba and messages (�ai, �ai). After FGaBP iter-
ations converge and the local Jacobian is formed for FNa,in accordance with (19), �ak,v, �ak,v, and �ak,T updates are
computed as:
⎧

⎪

⎨

⎪

⎩

{

Δ�ak,v
}

nc×1
{

Δ�ak,v
}

nc×1
{

Δ�ak,T
}

nc×1

⎫

⎪

⎬

⎪

⎭

(m)

=
[

J−1a
](m)

⋅

⎧

⎪

⎨

⎪

⎩

{

fk − �ak,v
}

nc×1
{

gk − �ak,v
}

nc×1
{

ℎk − �ak,T
}

nc×1

⎫

⎪

⎬

⎪

⎭

(m)

.

(23)
Finally, at the end of the current NR iteration, the messages
�ak,v, �ak,v, and �ak,T are updated using the results from (23):
⎧

⎪

⎨

⎪

⎩

{

�ak,v
}

{

�ak,v
}

{

�ak,T
}

⎫

⎪

⎬

⎪

⎭

(m+1)

=

⎧

⎪

⎨

⎪

⎩

{

�ak,v
}

{

�ak,v
}

{

�ak,T
}

⎫

⎪

⎬

⎪

⎭

(m)

+

⎧

⎪

⎨

⎪

⎩

{

Δ�ak,v
}

{

Δ�ak,v
}

{

Δ�ak,T
}

⎫

⎪

⎬

⎪

⎭

(m)

. (24)

The updated messages are then used in the next NR itera-
tion in the current time step. After the NR iterations have
converged, we proceed to the next time step. Figure 4 shows
these three nested iterations graphically.

Initialize messages in both problems

Calculate local vectors and matrices

Solve using FGaBP iterations

Calculate local Jacobian matrices

Update the messages

NR Iterations
A
llsteps

done
in

parallel

R
ep
ea
t
fo
r
ea
ch

ti
m
e
st
ep

Figure 4: The parallel NR algorithm.

Figure 5: (Left): The geometry of the test case in two dimen-
sions. (Right): Structured quadrilateral mesh containing four
colors.

4. Implementation
In this section, the parallel NR algorithm is applied to

the coupled equations in (1) and (2) in both two dimensional
(2D) and three dimensional (3D) geometries. As shown in
Fig. 5, left, tissue surrounding the probe tip is modeled by
a 8.0 cm by 8.0 cm square (8.0 cm by 8.0 cm by 8.0 cm cu-
bic) domain in 2D (3D), when the 16 V source voltage is
modeled as a Dirichlet boundary condition on the probe lo-
cated at the center of the domain. The outer boundaries of
the domain serve as a return ground electrode. In the ther-
mal problem, the normal body temperature, i.e., 37 oC is the
initial value of the temperature, and a Neumann boundary
condition is applied to the outer boundary. The electrical
and thermal parameters in (1) and (2) are chosen according
to Table 1. In addition, the electrical conductivity increases
with the temperature with a linear rate of 2%∕oC. The algo-
rithm is implemented using the open-source FEM software
deal.II [7].

An element-based coloring message schedule is imple-
mented in order to avoid any race conditions when parallel
processing is used. The race condition might happen when
two different elements, e.g., elements a and b in Fig.3, left,
try to update the same global node j. If elements a and b
belong to two different threads, then we need to make sure
that the messages maj,v and mbj,v do not try to update the
voltage value at node j at the same time. One solution is
to schedule the messages based on element coloring. The
mesh elements are colored so that no two adjacent elements
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have the same color symbol. In this way, the messages in
each color group can be computed and safely communicated
in parallel, since elements that belong to the same group do
not share any global nodes. A mesh coloring diagram in 2D
is illustrated in Fig. 5, right, using a quadrilateral mesh.
1 Start timer;
2 Import problem geometry and mesh;
3 # pragma omp parallel;
4 for NR iteration m = 1, 2,… do
5 for each level in the mesh hierarchy do
6 # pragma omp for;
7 for cell a = 1, 2,… do
8 for node i ∈ (a) do
9 Initialize messages mai,(v,T );

10 end
11 Calculate local vector f and local

matricesMv,T inside cell a, i.e., (4).
12 end
13 end
14 for cycles = 1, 2,… in the V-cycle do
15 for Mesh levels from fine to coarse do
16 Execute v1 iterations of Algorithm 2;
17 Restrict;
18 end
19 Execute Algorithm 2 on the coarsest level;
20 for Mesh levels from coarse to fine do
21 Execute v2 iterations of Algorithm 2;
22 Prolongate;
23 end
24 # pragma omp single;
25 if global tolerance < tolerance then
26 break;
27 end
28 end
29 Execute Algorithm 3 on the finest level;
30 # pragma omp single;
31 if global residual < NR tolerance then
32 break;
33 end
34 end
35 End timer;
36 Plot output;
Algorithm 1: Parallel NR pseudo-code in each time
step.

Mesh refinement is conduced in 2D (3D) by splitting
each quadrilateral (hexahedral) cell into four (eight) smaller
cells successively. In this parent-child scheme, we start by a
coarse mesh and continue mesh refinement until a fine mesh
is achieved. In order to accelerate the FGaBP iterations, in-
formation from the coarse mesh (Parent) are transferred to
the next fine mesh (Child). The transferred information are
the local messages, mai,v and mai,T calculated for each ele-
ment a and node i ∈  (a). In our multi-physics scheme,
these messages contain the so called beliefs regarding the
temperature and potential values at each node, as well as the

1 for FGaBP iteration t = 1, 2,… do
2 for color c = 1, 2,… do
3 # pragma omp for;
4 for cell a in color c do
5 for node i ∈ (a) do
6 Calculate mai(v,T ), i.e., (5) to (13);
7 Calculate Ja, i.e., (22) ;
8 Update vi and Ti, i.e., (14) ;
9 Calculate local message tolerance;

10 end
11 end
12 # pragma omp critical;
13 Update global message tolerance;
14 end
15 # pragma omp single;
16 if global tolerance < FGaBP tolerance then
17 return(global tolerance);
18 break;
19 end
20 end
Algorithm 2: FGaBP with local Jacobian calculation

1 for color c = 1, 2,… do
2 # pragma omp for;
3 for cell a in color c do
4 Update mai,(v,T ), i.e., (23), (24);
5 Update vi and Ti, i.e., (14);
6 Calculate local NR residual;
7 Calculate local vector f and local matrices

Mv,T inside cell a, i.e., (4).
8 end
9 # pragma omp critical;

10 Update global NR residual;
11 end

Algorithm 3: NR parallel update

sensitivity of these values with respect to their neighboring
nodes. The transfer of information between different refine-
ment levels is conducted in a multi-grid scheme. Algorithm
1 presents a pseudo-code for the parallel NR method with
OpenMP directives. Lines 14 to 28 indicate the multi-grid
scheme implemented as a V-Cycle. Algorithms 2 and 3 exe-
cute FGaBP iterations and the application of local Jacobian
matrices to update the messages, respectively. Although the
sensitivity information is carried on by the messages, only
the potential and temperature values are considered in the
prolongation and restriction; as a result, these two steps are
implemented in parallel exactly as proposed by [12] and are
not described here.

5. Results
The numerical results of the newNR formulation are ver-

ified using COMSOL Multiphysics software. The tempera-
ture obtained from COMSOL and the newmulti-physics NR
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Figure 6: Temperature values over time at a specific point,
i.e., x = 1 cm and y = 1 cm, when the probe tip is at the
center of the domain. The time step size �t is equal to 0.5 s.

algorithm at a specific location during oneminute of ablation
are shown in Fig. 6. Quantitatively, the Root-Mean-Square
(RMS) error between these two simulations is 0.028 oC, which
validates our method. To test the parallel scalability proper-
ties of themethod, a CPU implementationwithmulti-threading
(OpenMP) is provided. As indicated in Algorithm 1, the
CPU time calculation includes all the steps except for the
output of results. All runs are executed on aCompute Canada
cluster node. The node contains 2 × 20-core Intel Gold 6148
Skylake 2.4 GHz CPUs with 186 GB DRAM. When the pa-
rameters v1 = 1 and v2 = 5 in Algorithm 1, the V-Cycle
required 5 iterations for all 2D and 7 iterations for all 3D
runs. This is independent of the number of unknowns in
the finest level which is in agreement with the findings re-
ported by [12]. Note that the number of iterations in the in-
ner FGaBP execution, i.e., line 19 in Algorithm1, remains
proportional to the problem size in the coarsest level. In
the electrical problem, we start by a mesh size of 400 cells
in 2D (8000 cells in 3D) which takes 380 (430) inner it-
erations to reach a message residual of 10−8. The thermal
problem converges faster in both 2D and and 3D implemen-
tations. Figure 7 shows the speedup for a fixed problem size
of 4,173,281 unknowns in 3D with respect to the number
of processors (strong scaling). A curve is fitted to the plot
based onAmdah’s law [24], fromwhich the ratio of the serial
part of the algorithm (s) is obtained as 0.032. Weak scaling
is performed by running the algorithm with different num-
bers of threads and with a correspondingly scaled problem
size in 2D. The problem size is changed from 410,881 to
13,148,192 unknowns. The scaled speedup data and a linear
curve fitted to it based on Gustafson’s law [13] are depicted
in Fig. 8. The fitted value for s is 0.12which is different from
that given by Amdah’s law and strong scaling. The discrep-
ancy in s can be due to the approximations in both Amdah’s
and Gustafson’s laws, i.e., the serial part is assumed to re-
main constant, and the parallel part is assumed to be scaled
up in proportion to the number of threads.

In our strong and weak scaling studies, no scheduling
type is specified for the parallel loops, i.e., OpenMP uses its
default scheduling type. In Fig. 9 a comparison between
static and dynamic scheduling with different chunk sizes is
provided. The number of threads is chosen to be 12 and 16,

Figure 7: Strong scaling of the multi-physics NR method in
terms of speedup with respect to 1 core implementation. The
dashed line is the fitted curve based on Amdah’s law.

Figure 8: Weak scaling of the multi-physics NR method in
terms of scaled speedup with respect to 1 core implementation.
The dashed line is the fitted curve based on Gustafson’s law

Figure 9: Speedup of the parallel NR method in terms of
OpenMP for loop’s scheduling type and chunk size when the
number of threads = 12 and 16.

when the problem size is the same as that of strong scaling,
i.e., 4,173,281 unknowns in 3D.According to Fig. 9, the best
performance observed is similar to that delivered by the de-
fault scheduling in Fig. 7. Also, for reasonably large chunk
sizes, the difference between static and dynamic scheduling
is insignificant, which is due to the fact that the iterations of
the parallel loops in the code have almost the same compu-
tational work.

We compare our OpenMP NR algorithm to a parallel
implementation of the traditional NR method provided by
the optimized library PETSc (Portable, Extensible Toolkit
for Scientific Computation)[4, 5, 6]. PETSc employs the
Message Passing Interface (MPI) standard for communica-
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Figure 10: Execution times using 16 cores.

tion between parallel tasks. The PETSc implementation is
tested on a single cluster node with total 40 number of cores,
where one MPI task is defined per core. The Jacobian ma-
trix is formed at each NR iteration, when the assembly of
the Jacobian is done in parallel using deal.II’s WorkStream
shared-memory model. For the solving stage, PETSc pro-
vides an interface to a variety of iterative and direct solvers,
fromwhich theMUltifrontalMassively Parallel sparse direct
Solver (MUMPS) [2, 1] is selected here. Figure10 shows
the average execution times per time step for our OpenMP
NR code with 16 threads, and the PETSc implementation
with 16 threads for the assembly and 16 MPI tasks for the
solution, respectively. Problem sizes change from 500K to
33M unknowns in 3D. The Parallel NR demonstrated faster
execution time while preserving linear scalability with the
number of unknowns. As the problem size increases, the
overhead due to PETSc’s MPI calls reduces resulting in im-
proved efficiency for larger problems.

Finally, the convergence plot of the parallel NR method
is depicted and compared to that of a Gauss-Seidel algorithm
when applied to the same electrical-thermal problem in Fig.
11. As for the NR approach, in the early iterations, changes
of the residual norm are almost linear; however, when we get
sufficiently close to the solution, the quadratic convergence
can be observed in the last three iterations until the conver-
gence criterion, i.e., a residual norm smaller than 10−10, is
achieved.

6. Conclusions
The message passing properties of the Belief Propaga-

tion algorithm on a graphical model are exploited for the
first time to compute and distribute local sensitivities instead
of forming a large Jacobian matrix in a multi-physics sce-
nario. This approach provides a highly parallel NR algo-
rithm for solving the coupled electrical-thermal problem in
RFAmodeling. This problem has often been over-simplified
in the literature because of its high computational cost. A
simplified model of the coupled problem that is solved with
the new NR algorithm. In order to verify the correctness
of the algorithm, obtained results are compared with COM-
SOL multiphysics simulation, showing good fidelity. The
parallel scalability of the FGaBP method is retained in the
new multi-physics version proposed here. Our results show

Figure 11: The convergence plot of the parallel NR algorithm
compared to that of a Gauss-Seidel algorithm.

speedups of sixteen times with respect to one CPU core.
Shared-memory implementation of our algorithms showed
faster run time against highly optimized open-source library
PETSc. Future work should include comparison against an
optimized multi-threaded solver such as Parallel Sparse Di-
rect Solver (PARDISO) [21, 22], distributed-memory imple-
mentation based on MPI on cluster architectures, compari-
sonwith parallel implementations of inexact Newton’smeth-
ods including JFNKmethods, and the application of the pro-
posed method to more realistic models of RFA.
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A. Appendix
A local Jacobian matrix is constructed for FNa, based onthe sensitivities calculated during FGaBP:

J(m)a =

[

I2nc×2nc J(m)a,v
J(m)a,T Inc×nc .

]

(25)

The off-diagonal elements of the local Jacobin matrix are
updated during FGaBP iterations; inside iterationm of New-
ton’s method and iteration t of FGaBP we have:

J(m,t)a,v (k, l) =
)�(m,t)ak,v

)�(m−1)al,T

=
)�(m,t)ak,v

)T (m−1)l

)T (m−1)l

)�(m−1)al,T

= 1
�(m−1)l,T

)�(m,t)ak,v

)T (m−1)l

,

(26)
for 0 ≤ k < nc, and:

J(m,t)a,v (k, l) =
)�(m,t)ak,v

)�(m−1)al,T

=
)�(m,t)ak,v

)T (m−1)l

)T (m−1)l

)�(m−1)al,T

= 1
�(m−1)l,T

)�(m,t)ak,v

)T (m−1)l

,

(27)
for nc ≤ k < 2nc. Here the chain rule and also the fact that
based on (13) we can write )Tl∕)�al,T = 1∕�l,T are used.
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Now, based on (21) the elements of the sub-matrix J(m,t)a,v are
updated as:

J(m,t)a,v (k, l) =
1

�(m−1)l,T

)fk
)T (m−1)l

, (28)

for 0 ≤ k < nc, and:

J(m,t)a,v (k, l) =
1

�(m−1)l,T

( )gk
)T (m−1)l

+
∑

l′∈ (a)

)gk
)v(m,t∗)

l′

)v(m,t∗)
l′

)T (m−1)l

)

,

(29)
for nc ≤ k < 2nc, where:
)fk

)T (m−1)l

= −1
W̃ 2

k,v

)W̃k,v

)T (m−1)l

, (30)

)gk
)T (m−1)l

= −1
W̃ 2

k,v
(K̄v

(m,t∗))T ⋅ C̃v
)W̃k,v

)T (m−1)l

+

(K̄v
(m,t∗))T

W̃k,v
⋅

)C̃v
)T (m−1)l

, (31)

and

)gk
)v(m,t∗)

l′

=

⎧

⎪

⎨

⎪

⎩

0 k = l′

1
W̃k,v(Tl)

)
(

K̄v
(m,t∗)

)T

)v(m,t∗)
l′

⋅ C̃v(Tl) k ≠ l′ .
(32)

Finally, the partial derivatives in 30 to 32 are calculated an-
alytically based on (6) to (10).

Following a similar approach, the elements of the sub-
matrix J(m,t)a,T can be calculated as follows:

J(m,t)a,T (k, l) =
)�(m,t)ak,T

)�(m−1)al,v

=
)�(m,t)ak,T

)v(m−1)l

)v(m−1)l

)�(m−1)al,v

= 1
�(m−1)l,v

)�(m,t)ak,T

)v(m−1)l

= 1
�(m−1)l,v

( )ℎk
)v(m−1)l

+
∑

l′∈ (a)

)ℎk
)T (m)

l′

)T (m)
l′

)v(m−1)l

)

,

(33)
for 0 ≤ l < nc, and:

J(m,t)a,T (k, l) =
)�(m,t)ak,T

)�(m−1)al,v

=
)�(m,t)ak,T

)v(m−1)l

)v(m−1)l

)�(m−1)al,v

=
−�(m−1)l,v

[�(m−1)l,v ]2

)�(m,t)ak,T

)v(m−1)l

=
−�(m−1)l,v

[�(m−1)l,v ]2
( )ℎk
)v(m−1)l

+
∑

l′∈ (a)

)ℎk
)T (m)

l′

)T (m)
l′

)v(m−1)l

)

,

(34)
for for nc ≤ l < 2nc. Here, the chain rule and the following
relation are used:
vl =

�l,v
�l,v

= 1
�l,v

∑

a′∈ (l)

�a′ l,v , (35)

whichmeans )vl∕)�al,v = 1∕�l,v and )vl∕)�al,v = −�l,v∕�2l,v.Similar to 30 to 32, the sensitivities )ℎk∕)Tl′ and )ℎk∕)vlare calculated as follows:

)ℎk
)T (m)

l′

=

⎧

⎪

⎨

⎪

⎩

0 k = l′

1
W̃k,v

)
(

K̄T
(m,t∗)

)T

)T (m)
l′

⋅ C̃T k ≠ l
, (36)

)ℎk
)v(m−1)l

=
)Bk,T
)v(m−1)l

+ 1
W̃k,v

)
(

K̄T
(t∗))T

)v(m−1)l

C̃T , (37)

in which the partial derivatives are calculated analytically
based on (6) to (10).
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