
Design and Implementation of a Compiler
for a Fog and IoT Programming Language

Robert Wenger

School of Computer Science
McGill University
Montreal, Canada

December 2018

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Science.

© 2018 Robert Wenger

2018/12/14

i

Abstract

The growing ubiquity of internet-connected devices has led to increased interest in the In-
ternet of Things. As the pace of IoT development accelerates, new paradigms are being
developed that can fully utilize the potential benefits of this new computing trend. One
such paradigm is fog computing, in which data processing is moved toward the edge, allow-
ing more localized devices to handle tasks that would have previously been assigned to the
cloud. In this thesis we introduce JAMScript, a new programming language specifically
designed for fog computing. JAMScript combines the C and JavaScript programming lan-
guages, allowing the ability to leverage the benefits of each language in a single program.
JAMScript takes advantage of this shared language space to provide edge computing op-
timized functionality, such as remote multi-language activities, shared persistent variables,
conditional execution constructs and data stream management. We explain the design and
implementation of the JAMScript compiler and provide details about how applications can
be developed using JAMScript. We then provide example programming patterns where
JAMScript’s unique features allow building complex applications with minimal effort.

ii

Résumé

L’omniprésence croissante des appareils connectés à Internet a suscité un intérêt crois-
sant pour l’Internet des objets. Comme le développement d’IdO s’accélère, de nouveaux
paradigmes en cours de développement peuvent tirer parti des avantages potentiels de cette
nouvelle tendance informatique. L’un de ces paradigmes est l’informatique de brouillard;
Le traitement des données est déplacé vers le bord, ce qui permet aux dispositifs plus local-
isés de gérer les tâches qui auraient été normalement assignées au nuage. Au cours de cette
thèse, nous introduisons un nouveau langage de programmation spécialement conçu pour
l’informatique de brouillard, JAMScript. JAMScript combine les langages de programma-
tion C et JavaScript, permettant la possibilité de tirer parti des avantages de chaque langue
dans un seul programme. JAMScript profite de cet espace total de langage pour fournir des
fonctionnalités optimisées de traitement informatique, telles que les activités multilingues à
distance, les variables permanentes partagées, les utilitaires de construction d’exécution et
la gestion des flux de données. Nous expliquons la conception et la mise en œuvre du com-
pilateur JAMScript et fournissons des détails sur la manière dont les applications peuvent
être développées à l’aide de JAMScript. Nous poursuivrons en présentant quelques exem-
ples de schémas de programmation où les fonctionnalités uniques de JAMScript permettent
de créer des applications complexes avec un effort minimal.

iii

Acknowledgments

I would like to thank Professor Muthucumaru Maheswaran for his mentorship and guidance
during past few years, without who I would not have been able to complete the thesis writing
process.

I would also like to thank David Echomgbe, Jayanth Krishnamurthy, Lilly Jiang, Jian-
hua Li, Owen Li, Carl Liu, Keith Strickling, Rossen Vladimirov, Nicolas Truong and Xiru
Zhu for their contributions to JAMScript.

Lastly, I would like to thank my family for all their support.

iv

Contents

1 Introduction 1
1.1 The JAMScript Language . 2
1.2 Thesis Contribution . 6
1.3 Organization of the Thesis . 6

2 Background Research 8
2.1 Using Ohm Parser Generator . 8
2.2 Example Grammar using Ohm . 15
2.3 Translators in Ohm . 16
2.4 Ometa Programming Language . 20

3 Systems Architecture 24
3.1 Overview . 24
3.2 Components of the Architecture . 24

4 The JAMScript Language 29
4.1 C Activities . 30
4.2 JavaScript Activities . 31
4.3 Asynchronous Activity Callbacks . 32
4.4 Defining Shared Persistent Variables . 33

4.4.1 Saving Data to Memory . 34
4.4.2 Reading Data from Memory . 39
4.4.3 Conditional Execution Constructs 41
4.4.4 Conditionals over Data . 45
4.4.5 Data Visualization and Controls . 46

Contents v

4.4.6 Data Stream Filtering and Transformations 49

5 Design of the Compiler 57
5.1 C Preprocessing . 57
5.2 Ohm Compiler . 58
5.3 Generating Call Graphs . 60
5.4 JavaScript Type Checking . 62
5.5 Generated Files . 64
5.6 Project Directory Layout . 65
5.7 Adding Features to JAMScript . 69
5.8 Sample Compilation . 73

6 Potential Programming Patterns 77
6.1 Patterns for Edge-Oriented Computing . 79
6.2 Function Placement Pattern . 79
6.3 Data Filtering Pattern . 81
6.4 Fog Fail-Over Pattern . 86
6.5 Edge Covering Pattern . 88
6.6 Pipes and Filters at the Edge Pattern . 88

7 Experimental Results 90
7.1 Activity Calls . 90
7.2 Reading and Writing to JData . 94

8 Related Work 95

9 Conclusions and Future Work 100

A JAMScript Grammar in EBNF 102
A.1 C Extension . 102
A.2 JavaScript Extension . 104

References 108

vi

List of Figures

2.1 Performance comparison of Ohm and Ometa 22

3.1 JAMScript system architecture . 25

5.1 Display of a callgraph.html file . 61

6.1 JAMScript Sample Deployment Layout . 78

7.1 Initial Call Time . 91
7.2 C and JavaScript Call Time . 91
7.3 Sync and Async Call Time . 92
7.4 Jcondition Call Time . 92
7.5 Parallel and Sequential Call Time . 93
7.6 Sync Roundtrip Call Time . 93
7.7 Logger Reaction Time . 94
7.8 Broadcaster Reaction Time . 94

vii

List of Tables

2.1 Built-in Ohm rules . 13
2.2 Ohm generic rules . 18
2.3 Description of Ohm methods used . 19

4.1 JData compatible data types in C and JavaScript 34
4.2 Logger read and write access by specifier 35
4.3 Description of logger methods . 37
4.4 Example of nodes with varying logger contents 38
4.5 Read and write access by specifier . 39
4.6 Description of Flow methods . 54
4.7 Description of Flow actions . 55

5.1 Files generated by the JAMScript compiler 65
5.2 Description of JAMScript compiler files . 65
5.2 Description of JAMScript compiler files . 66
5.2 Description of JAMScript compiler files . 67
5.2 Description of JAMScript compiler files . 68
5.3 Properties used in types.json . 69

1

Chapter 1

Introduction

The Internet of Things (IoT) is ushering in a new paradigm of computing. In this paradigm,
IoT devices generate large volumes of data at very high rates, requiring computations to
be performed in a timely manner to extract intelligence from the data. The extracted
intelligence, along with other contextual information, could be used to control the overall
operation of the IoT. Due to the large volume of data, IoT requires high capacity computing
backends to deal with data processing. One way of satisfying this requirement is to use
cloud computing, which can elastically adjust the computing capacities to precisely match
the computing demands created by the IoT. Although cloud computing is an ideal backend
for many IoT scenarios, it places the computing resources at distant data centers, which
creates long latencies between the IoT devices that generate the data and the eventual
processing nodes. In particular, cloud computing as a computing backend is not suitable
for IoT applications that need to process captured data within a short time delay. To
address the latency issue fog computing has been recently developed. In fog computing the
computing resources are placed at the edge of the Internet such that they are closer to the
IoT devices.

IoT is quite diverse and can be categorized into two major configurations: with and
without mobility. For instance, smart building is an IoT scenario without mobility where
the devices can be connected to a cloud-based computing backend with fog computing
providing low-latency resource pools for computation offloads. Smart cars are IoT where
mobility is a major concern. Smart cars could use fogs for low-latency compute offload,
as well as contextual data sharing so that repeat processing of the same data could be

1 Introduction 2

minimized.
With distributed computing reliability is an important concern. Loss of computational

state due to failures will hinder the forward progress of computations. The traditional
method of implementing reliability in distributed computing systems is performed by repli-
cating the computational state across machines that do not share common modes of fail-
ures. Cloud computing has become a dominant host for many popular applications because
replication-based reliability schemes have succeeded in masking the failures to an accept-
able level. In fog computing, it is not possible to efficiently implement the same core
reliability enhancing mechanisms that are used with cloud computing systems because fogs
are distributed with each site holding a small number of machines. Further, the machines
in a single site could have highly correlated failures because they are deployed close to the
edge, far away from highly redundant and sophisticated installations such as data centers.
Selecting fog machines from different sites for backing up with each other will defeat the
primary purpose of fog computing, to provide low latency processing.

1.1 The JAMScript Language

JAMScript is a language and runtime developed to tackle the challenge of developing re-
silient applications for a collective of devices, fogs, and cloud. JAMScript is heavily inspired
by the recent trend of developing programming language integrated mechanisms for reliable
computing over cloud resources or intermittent computing systems. For example, Resilient
Distributed Datasets (RDDs) [1] are the building blocks of the highly popular Apache Spark
framework. Similarly, Chain [2] is an extension of C and a runtime library for efficiently
harvesting idle cycles from intermittently available computing resources.

JAMScript is expressly designed to meet the following objectives while enabling dis-
tributed computing over a collective of devices, fogs, and cloud:

• Disconnection tolerance: IoT Devices must retain their functionality even when net-
work disconnections occur. One way of meeting this requirement is to ensure that
devices in each network partition have all the necessary components to function. The
JAMScript components remaining in a partition must be able to discover each other
and reorganize themselves into a functioning whole.

• Efficient synchronization and orchestration: IoT often refers to relatively tiny devices

1 Introduction 3

that are more interesting as a collective than taken individually. To control the
operation of IoT as a collective, we need mechanisms that can efficiently synchronize
the collective. Using synchronization, we can launch operations across the collective
at the same time and ensure the devices act on the physical environment at the same
time. Another important aspect of orchestration is partitioning the collective into
subgroups and making the different subgroups perform different actions.

• Reliable state management: Cyber-physical systems such as IoT have unique chal-
lenges with regard to reliable state update. In IoT, the process state can be linked to
the state of the physical device in different ways. When a failure occurs, recovering
the old state and resuming processing will be heavily dependent on the application
scenario. For example, a failed drone in a swarm of drones needs to quickly rejoin the
swarm’s current position after resuming operation instead of continuing its processing
from the point where it failed. Also, in many deployments system-level fault tolerance
measures such as triple modular redundancy could be an issue. If a component insists
on resuming its processing from where it last failed, it will never agree with the rest
of the group because the system state has moved on, ignoring the failed component.

• Node and application scaling: Dealing with a large number of nodes is an impor-
tant requirement for a language and runtime for IoT. The runtime needs to support
scalable collective operations so that the running time does not grow with increasing
number of nodes. In addition to the number of nodes, IoTs can host complex applica-
tions. Complex applications can be decomposed into several interoperating programs
and their coordinated execution should yield a solution for the application scenario.

A JAMScript program has two types of functions: J (written in JavaScript) and C
(written in C). A JAMScript program will be able to run if J type functions are able to
locate and call C type functions and vice-versa. For disconnection-tolerant JAMScript
program deployment, we need to ensure that any partition resulting from a disconnection
has runnable C and J functions. That is, each partition holds J and C type functions
so the nodes in the partition are still able to run the JAMScript program. Although a
JAMScript program can run in the nodes in the disconnected partition, its functionality
could be reduced compared to the functionality the program will have when the system is
in a connected state. In JAMScript functions can be tagged to run only in a connected

1 Introduction 4

state, while others can be tagged to run only in a disconnected state. Running functions
tagged for connected execution from a node in a disconnected partition will result in an
execution error. JAMScript programs can use this feature to detect the disconnection state
and adapt the processing steps.

An instantiation of a JAMScript program follows a hierarchical structure that corre-
sponds to the cloud, fog, and device hierarchy. A device would run both C and J type
functions of the JAMScript program. Because the device is running both types, it is a
self-contained execution of the JAMScript program. If the device is connected to the fog,
the JAMScript program’s components (J and C) running in the device would connect to
the corresponding program running in the fog to create a larger instance of the program.
Similarly, many devices could run the same JAMScript program and all of them will create
a tree formation rooted at the fog. Likewise, if the fog is connected to the cloud and the
cloud is running the same JAMScript program an even larger distributed instance of the
JAMScript program is formed. It should be noted that the program instances across the
machines (cloud, fog, and devices) connect with each other only if they are running in-
stances of the same JAMScript program. This way there are no interoperability problems.
A remote function invocation can be interpreted correctly and unambiguously.

The hierarchical structure created by the running instances of a JAMScript program
can be a tree rooted at the cloud if all devices are fully connected. If a fog disconnects
along with the devices connected to it from the rest of the internet, for example in a moving
system like a train, the fog would form a subtree that is disconnected from the global tree
of JAMScript instances.

Remote function invocations can be either up tree or down tree. Down tree invocations
involve several nodes. For instance, when a fog invokes a remote function all devices
connected to the fog receive the request for execution. We have two modes of remote
function invocations: synchronous and asynchronous. In synchronous remote function
invocations, all connected devices are expected to start their function executions at the
same time. The invoking node waits for all nodes (or a quorum) to complete the execution
before collecting the results and returning it as the outcome of the invocation. In certain
application scenarios, it may be necessary to partition the nodes under the root of the tree
based on some attribute and invoke a given function on a specific partition. Many device
orchestration patterns can be implemented using a combination of synchronous remote
invocations and tree partitioning directives.

1 Introduction 5

Resilient state management to enable fault-tolerant IoT is a major goal of JAMScript
design. The devices can fail, leave, move to another location, or arrive anew. The fogs
can fail, become unresponsive due to overloading, or become non-performant due to device
mobility that increases the distance between the device and fog. The cloud, on the other
hand, is assumed to be elastic and reliable. The devices log necessary state information
to the fogs. JAMScript provides a persistent storage class for logging information to the
fogs. The programmer can use this facility to save important state information to the fogs.
The fogs apply functional transformations to the logged information to compute analytics
and/or reconstruct a restoration state for the devices. The overriding design concern is
not to slow the fog computing operations because fast response times are the primary
motivation for fog computing. Therefore, JAMScript relies on some assumptions. One of
them is that loss of few updates could be tolerated without catastrophic consequences. The
log updates are sent to multiple non-collocated fogs so the impact of common mode failures
can be minimized. Also, the transformations performed by the fogs on the logged data are
functional. Any loss of data computed by applying the transformations can be recovered
by redoing the computations on the logs.

One of the attributes of IoT is the ability to integrate large quantities of devices. There-
fore, scalability is an important concern in developing JAMScript. To address this concern
JAMScript uses a two-level hierarchy. A number of fogs connect to the cloud at the first
level. The fog servers interconnect with the cloud via a publish-subscribe protocol, such
as MQTT. This makes the design friendly to fog disconnections and mobility although
they may not be frequent. The JAMScript programming model does not directly support
fog-to-fog interactions, although the runtime uses such interactions to replicate and restore
data for reliability purposes. The second level of the hierarchy interconnects the devices
to the fogs. There could be a large number of devices underneath a given fog. The de-
vices also connect to a fog via the MQTT publish-subscribe protocol. Because devices can
frequently disconnect from a fog due to either device mobility or fog failure, we have redun-
dant associations between the fog and a device. In fact, the best fog selection for a device
is a challenging problem that needs to be solved in the best possible way to obtain the
greatest performance from fog computing while retaining the necessary consistency levels.
To simplify the programming model, JAMScript exposes a single fog node as a parent per
device; this way the logical model is a tree. However, in the physical realization a device
can have multiple parent fogs for the necessary fault tolerance.

1 Introduction 6

JAMScript is a single-threaded language. Using asynchronous functions that are sup-
ported in the J and C components, many concurrent programming patterns could be im-
plemented. However, for complex concurrent patterns the JAMScript language supports a
distributed inter-application data exchange (IAX) facility. Using IAX, an application can
share data in its JAMScript managed persistent storage with another application. The
data in this storage is created by the devices through data logging or by the computational
transformations applied by the fogs on the accumulated data. Although the simplest data
exchange through IAX could be between two applications, multiple applications can engage
in the data exchange. The data stored in the JAMScript managed persistent storage is im-
mutable. That is, data is appended to a stream when devices write to the store. Similarly,
when the functional transformations (called flows) create new data using existing data,
new streams are created and data is appended to the store. Because IAX allows efficient
data exchange between applications that take place simultaneously at multiple fogs, it is
recommended that complex applications are decomposed into smaller tasks with each task
implemented via a JAMScript program. The tasks use the IAX facility to collaboratively
solve the original application.

1.2 Thesis Contribution

In this thesis we introduce a completed version of JAMScript; a programming designed for
fog computing. We present the syntax for the language and describe its features in depth.
We design and implement a compiler for JAMScript, explain the compiler’s components and
provide a guide on how to add new features. We develop multiple programming patterns
to show the advantages of using JAMScript in different situations. We then demonstrate
the performance of JAMScript through multiple test cases.

1.3 Organization of the Thesis

This document is organized as follows. Chapter 2 provides background research on the
Ohm compiler, including a detailed tutorial. Chapter 3 describes the architecture of the
components related to the JAMScript compiler. Chapter 4 contains a description and
syntax of the features of the JAMScript programming language. Chapter 5 covers the
implementation of the JAMScript compiler, including detailed descriptions of how the

1 Introduction 7

compiler goes from input code to output. In Chapter 6 we detail possible programming
patterns that can be achieved using with JAMScript, including code examples. Chapter 7
presents the results of an examination of the performance of various JAMScript features.
Chapter 8 discusses other works in relation to the challenges of JAMScript.

8

Chapter 2

Background Research

2.1 Using Ohm Parser Generator

The JAMScript compiler is built with the Ohm parser generator [3]. Ohm uses Parsing
Expression Grammars (PEGs) [4], a form of top-down parsing where the first rule to detect
a match is satisfied immediately. Because of this, PEGs cannot have ambiguity errors such
as shift-reduce errors that can happen when writing a Context Free Grammar (CFG), used
by many popular compiler generator tools such as ANTLR [5] and Bison [6]. This presents
different challenges than those normally found when writing a parser, as the ordering of
rules can significantly change the way how an input file is parsed. Different orderings of
rules may even be able to validly parse a given input file but with widely varying outputs.
This could lead to requiring a step by step examination of how the parser parsed the file to
determine why the outputs differ. The design of Ohm allows parser generators to be imple-
mented in many different programming languages, currently there are two implementations:
Ohm/JS [7] in JavaScript and Ohm/S [8] in Smalltalk.

An Ohm parser is composed of two parts: grammar files and semantic actions. The
grammar files are language implementation independent, while the semantic actions are
written in the host language of the implementation. This means that an Ohm grammar
written for a JavaScript-based compiler should be equally valid for a Smalltalk based com-
piler. The JAMScript compiler is written in JavaScript, and this chapter will explain how
to use semantic actions in the context of an Ohm/JS implementation.

2 Background Research 9

Ohm Grammars

Ohm grammars are a series of rules that define a language. Each rule is written as an
equation where the left-hand side is the name of the rule and the right-hand side is a series
of statements that must all be satisfied. Every Ohm grammar begins with a name specified
before opening a block containing the rules for grammar.

grammarName {
SyntacticRule = digit+
lexicalRule = digit+

}

Syntactic Rules

Syntactic rules are rules denoted by beginning their name with an uppercase letter. Syn-
tactic rules ignore whitespace characters between the expressions of a rule. Whitespace
is represented by a predefined rule called space that can be overridden to redefine what a
whitespace character is. In our sample grammar, the rule SyntacticRule would match
with any string that was made up of one or more digits including those with spaces in the
middle:

> 0
> 123
> 12 123 12

Lexical Rules

Lexical rules begin with a lowercase letter. Lexical rules are whitespace sensitive, if there
is a whitespace character (such as a space or new line) in the middle of an input string
then the rule will stop matching when it reaches the whitespace. In our sample grammar,
the rule SyntacticRule would match with any string that was made up consecutive digits
with no spaces:

2
1324

2 Background Research 10

Operators

Ohm supports a number of operators that can be used in conjunction with expressions to
alter their functionality.

expression*

Matches an expression 0 or more times.

rule = letter digit*
> a
> a0
> a123

expression+

Matches an expression 1 or more times.

rule = digit+
> 0
> 1
> 1234

expression?

Matches an expression 0 or 1 time

rule = "-"? digit+
> -1
> 1
> -123
> 123

terminal .. terminal

Range operator that matches between specified characters.

2 Background Research 11

rule = "0" .. "9"
> 0
> 5
> 9

(expression expression)

Groups together multiple expressions

rule = digit+ ("." digit+)?
> 12
> 20.34

expression | expression

Alteration: Match either of two expressions

rule = "true" | "false"
> "true"
> "false"

~expression

Negative lookahead: Match if not equal to the expression

rule = ~"0" digit+
> 100
> 23

The rule would match with any number that did not begin with a zero

&expression

Lookahead: Match if the expression matches, but do not consume it

rule = &"a" letter+
> abc
> aaa

2 Background Research 12

The rule &"a" letter+ will match any character string that begins with an a.
This differs from using "a" letter* as using the lookahead operator will return the

string as one token, which simplifies using it later, while not using the lookahead operator
will generate two tokens.

#expression

Lexification: Matches a syntactic rule as if it were a lexical rule.

AnyDigit = digit+

This rule would match combinations of digits with spaces in the middle. If there are
situations we would like to use a rule but want to exclude whitespace we can reference it
in other rules by using AnyDigit.

Rules Declaration

When creating rules, it is common to group together multiple rules with similar function-
ality into one:

AlphaNum = Letter
| Number

This creates a rule called AlphaNum with two possible paths for matching.

AddExp = AddExp "+" MultExp -- Add
| AddExp "-" MultExp -- Subtract
| Expr

Unnamed branches can only have an arity (number of arguments) greater than one if there
are no named branches. In this example, two branches have an arity of three and one
branch has an arity of one, so we must use inline rule declarations. This allows us to name
each branch and must be done for each branch that has an arity different from the unnamed
branches.

Internally this creates three separate rules for AddExp:

2 Background Research 13

AddExp_Add = AddExp "+" MultExp
AddExp_Subtract = AddExp "-" MultExp
AddExp = AddExp_Add

| AddExp_Subtract
| Expr

This corrects the arity problem, as all branches of AddExp have an arity of one now, while
AddExp_Add and AddExp_Subtract have an arity of two.

Parameterized Rules

Ohm allows writing rules with parameters that take in arguments. For example:

Double<x> = x x

We can then use the parametrized rule by calling it in a rule:

DoublesString = "'" Double<letter>+ "'"

Ohm provides built-in parametrized rules that are available in both lexical and syntactical
versions. The list of built-in syntactical rules is shown in Table 2.1. Each built-in rule is
also available as a lexical rule by changing the first letter to a lower case character.

Table 2.1: Built-in Ohm rules

Rule Description

ListOf<element, separator> Match with any number of elements sepa-
rated by a separator or an empty list.

NonemptyListOf<element, separator> Match with any number of elements sepa-
rated by a separator.

EmptyListOf<element, separator> Empty case generated by ListOf if it does not
match with anything.

2 Background Research 14

Rule Descriptions

Ohm allows rules to have an optional description that is used in error messages. These
descriptions help make error messages easier to read for the end user when parsing fails.

For example, if we have the rule:

alphaNum = "a" .. "z" | "A" .. "Z" | "0" .. "9"

If parsing failed at this rule Ohm would output an error message:

Expected "0".."9", "A".."Z", or "a".."z"

We can add a description to the rule to make the error message more user friendly:

alphaNum (an alphanumerical) = "a" .. "z" | "A" .. "Z" | "0" .. "9"

If parsing failed at this rule, the error message would be:

Expected an alphanumerical

Inheritance

We can extend existing grammars by using inheritance. This is done by using the inheri-
tance operator when naming the grammar:

newGrammar <: parentGrammar {
...

}

In this case, newGrammar will automatically have access to all the rules of parent-
Grammar. A rule inherited from the parent grammar can be mixed and matched with
rules in the current grammar when creating new rules:

newRule = inheritedRule+ expression+

If the name of a new rule you are trying to create already exists in the parent grammar
then this will generate a rule conflict error.

2 Background Research 15

Operators

There are two operators that are exclusive to inherited grammars:

Override

Override a rule in the parent grammar:

rule := expression

Extend

Extend a rule in the parent grammar as a prepended alteration:

rule += expression

This will create a new rule that is equivalent to:

rule = expression | rule

2.2 Example Grammar using Ohm

addingGramar {
Expr = Expr "+" number -- Add

| number

number = digit+
}

In the example above we show a simple valid Ohm grammar. The grammar is named
addingGrammar. The rule number is defined as any combination of one or more digits.
Because the rule starts with a lower-case letter it is a lexical rule, therefore spaces are not
ignored and any spaces between the digits would end the matching before that space. If
the rule was written with a capital then spaces could be entered between the digits and
it would still match as a single number. The rule Expr is defined as either a number or

2 Background Research 16

an Expr followed by the addition of a number. Since this rule is a recursive rule it would
match with any length of numbers with plusses in-between.

Examples of valid input:

> 424
> 13+823
> 1129 + 123 + 654

2.3 Translators in Ohm

Ohm provides a way to generate output code by traversing the tree created by the parser
using actions called attributes and operations. The two perform similar functionality and
are written the same way. Attributes are memoized, for each individual node in the tree
the result is evaluated only once. Operations are not memoized, when you call on a single
node multiple times the result will be evaluated each time.

The Ohm parser generates a Concrete Syntax Tree (CST), which is a complete represen-
tation of the parsed input. The difference between using a CST compared to an Abstract
Syntax Tree (AST) is that the CST contains superfluous information that is not necessary
when translating the parse tree.

Operators

Ohm translators are comprised of a collection of semantic actions that map to each expres-
sion in the parse tree. Actions are stored in a JavaScript object, where for each expression
in the grammar we assign a function to the property with a matching name. The function
must have the same number of arguments (arity) that the expression has. When the func-
tion is called the arguments to the function will contain the child nodes of the expression.

For example, if we wanted to create a translator for a grammar that contained only the
rule:

HelloW = "Hello" "World"

We would then create a new JavaScript object:

2 Background Research 17

var trans = {
HelloW: function(match1, match2) {

return(match1.sourceString + " " + match2.sourceString);
}

}

In this example, the argument match1 would contain information about the characters
of Hello, and the argument match2 would contain information about the characters of
World. Because we don’t need to recursively translate on strings where the value is fixed,
we can call the sourceString property of each child node and get their raw string values.
We can also call a syntax action on the arguments of the expression by calling the current
translator or another translator. For example, if we declared trans as an operation, we
could call match1.translator() to translate further down the tree. If we declare trans
as an attribute, we could call match1.translator to translate further down the tree.
When we have rules that have alternatives, such as:

AddExp = AddExp "+" MultExp -- Add
| AddExp "-" MultExp -- Subtract
| Expr

We must define the translation rule for each alternative separately:

...
AddExp_Add: function(left, plus, mult) {

return left.translator + " + " + mult.translator;
},
AddExp_Subtract: function(left, minus, mult){

return left.translator + " - " + mult.translator;
},
AddExpr: function(expr) {

return expr.translator;
}
...

When traversing through a CST, every item in an expression must be specified as a pa-
rameter of the syntax action function. This includes terminal nodes, which in many cases
are fixed string values and the input contained in them can be safely ignored. This can be
seen in the example above; the plus and minus symbols must have a parameter in the rules

2 Background Research 18

where they are being used. As the value inside the parameter is always fixed we can ignore
the contents of the variable and use a predefined string instead.

If there is no rule with a matching name, then Ohm will attempt to match with a
predefined semantic action. Table 2.2 shows a list and description of the predefined actions.
These rules can be overridden to allow a single function to apply to multiple nodes.

Table 2.2: Ohm generic rules

Rule Description

_iter Used for matching on iteration nodes, such as those pro-
duced by using expression+, if not set return an array
with the result of parsing each iteration node.

_nonterminal Used for matching on nonterminal nodes (nodes with
children), if not set and the node only has one child this
will return the result of parsing the child node.

_terminal Used for matching on terminal nodes, such as string
matches

If a rule does not exist for a node that has only a single child, then the syntax action will
automatically be called recursively on that child. If the node has multiple children and no
matching rule is found, then the compiler will throw an error.

To apply the syntax action as an attribute or an operation we must first create a
semantics object for the grammar.

var grammar = ohm.grammar(ohmGrammarFile);
var semantics.createSemantics();

We can then add to the semantics object with a translator object. Adding an operation or
an attribute both follow the same syntax. The first argument is the name to give to the
syntax action and the second argument is the object that contains the actions.

2 Background Research 19

As an attribute:

semantics.addAttribute('trans', trans);

As an operation:

semantics.addOperation('trans', trans);

Ohm provides an API to help traverse through nodes and get information about them.
Table 2.3 provides a description of the methods used in the JAMScript compiler.

Table 2.3: Description of Ohm methods used

Rule Description

child(x) Function that returns child number x attached to a node
numChildren Property containing the number of children attached to

a node
ctorName Property containing the name of the expression that

generated a node
sourceString Property containing the original source string that

matched with an expression to generate a node

Optionals

When dealing with rules that contain optional nodes, such as:

RuleA = "Hello" "World" "!"?

We can test check if the optional node was filled by using the numChildren property. If a
node has no children then it is an optional node that was not used. If it has one or more
children then it was used.

2 Background Research 20

var actions = {
ruleA: function(hello, world, exclamation) {

if(exclamation.numChildren > 0) {
return "Hello World!";

} else {
return "Hello World";

}
}

}

Lists

If an expression contains a list, such as:

RuleA = ListOf<RuleB, ",">

The child node that contains the list will contain three child nodes. The first node contains
the first element in the list, the second element contains a list of the remaining nodes, and
the third element contains a list of the separators.

var actions = {
RuleA: function(first, rest, separators) {

var output = first.translator;
for(var i = 0; i < rest.length; i++) {

output += seperators.child(i).translator + rest.child(i).translator;
}

}
}

2.4 Ometa Programming Language

In our initial prototype of JAMScript, the compiler was written in Ometa [9]. One of
the features that was well suited to the design of JAMScript was Ometa’s ability to ex-
tend multiple grammars. This allowed us to create standard C and JavaScript parsers
and translators, and then build JAMScript as a language that extended both of these at
once, creating in a unified language. Unfortunately, after completing a prototype of the

2 Background Research 21

JAMScript language in Ometa, we found the implementation was too slow to be usable.
After testing the Ometa parsing speed and looking the results that others have found in
their implementations of Ometa compilers [10], we found that a typical Ometa compiler
(implemented in JavaScript) can parse approximately 100 lines of code per second. This
was not practical for our purposes, as in our pipeline a C program would go through the
preprocessor before being sent to the compiler for parsing. As such, even simple C pro-
grams of less than a hundred lines of code can become thousands of lines long after the
preprocessor includes all the necessary imported code. In our tests an input program of 50
lines could take over 30 seconds to compile, as the compiler was receiving over 3000 lines
to process. We decided that this was creating unacceptably long wait times for compiling
a program, and the problem would only get worse as the programs got more complicated.
This led to switching away from the Ometa implementation and re-designing the compiler
in Ohm, which was able to achieve must faster results.

To illustrate the performance benefits of switching to Ohm from Ometa, we ran a perfor-
mance comparison between the two tools. Each was configured using a similar ECMAScript
5 parser and passed the same JavaScript input file to parse. We progressively increased the
number of lines in the input file and retested the parsing time. We found that for small
input files the performance difference between the two tools was not significant, but as the
lines of code increased the performance of the Ometa parser began to lag behind the Ohm
parser considerably.

We also compared the time to run a pretty printing translator but found that the time
difference between the code generation phases in Ohm and Ometa were not significantly
different. This is likely because they are performing similar tree walking actions to traverse
the parse tree.

Ohm shares an overall similarity with OMeta but there are some significant design
choices that differentiate the two. Like OMeta, Ohm is a PEG parser generator. Unlike in
Ohm, semantic actions are not allowed in the grammar files. This creates a separation of the
pure grammar files and the semantic actions. As Ohm (like OMeta) can be implemented in
different languages, this allows the grammar files to be compatible with all implementations.
This does create some restrictions on the programmer as there are times when it may be
helpful to execute code in the parsing phase, such as collecting symbol definitions. We had
also used the feature in Ometa to extend from multiple grammars at once which would not
be possible in Ohm.

2 Background Research 22

Fig. 2.1 Performance comparison of Ohm and Ometa

Equivalent grammar sample in Ohm and Ometa

Ohm Ometa

L {
number = digit+
AddExpr = AddExpr '+' MulExpr -> Add

| AddExpr '-' MulExpr -> Subtract
| MulExpr

MulExpr = MulExpr '*' PrimExpr -> Multiply
| MulExpr '/' PrimExpr -> Divide
| PrimExpr

PrimExpr = '(' Expr ')' -> Paren
| number

Expr = addExpr
}

ometa L {
number = digit+,
addExpr = addExpr '+' mulExpr

| addExpr '-' mulExpr
| mulExpr,

mulExpr = mulExpr '*' primExpr
| mulExpr '/' primExpr
| primExpr,

primExpr = '(' expr ')'
| number,

expr = addExpr
}

2 Background Research 23

Ohm Ometa

Expr: function(e) {
return e.eval();

},
AddExpr: function(e) {

return e.eval();
},
AddExpr_Add: function(left, op, right) {

return left.eval() + right.eval();
},
AddExpr_Subtract: function(left, op, right) {

return left.eval() - right.eval();
},
MulExpr: function(e) {

return e.eval();
},
MulExpr_Multiply: function(left, op, right) {

return left.eval() * right.eval();
},
MulExpr_Divide: function(left, op, right) {

return left.eval() / right.eval();
},
PrimExp: function(e) {

return e.eval();
},
PrimExp_paren: function(open, exp, close) {

return exp.eval();
},
number: function(chars) {

return parseInt(this.sourceString, 10);
},

ometa L {
number = digit+,
addExpr = addExpr '+' mulExpr

| addExpr '-' mulExpr
| mulExpr,

mulExpr = mulExpr '*' primExpr
| mulExpr '/' primExpr
| primExpr,

primExpr = '(' expr ')'
| number,

expr = addExpr
}

24

Chapter 3

Systems Architecture

3.1 Overview

In this chapter, we detail the systems architecture of the JAMScript compiler. The goal
of our compiler system is to take in the user’s input code files and finish with a running
program. The compiler is made up of several components that work together to create the
runnable JAMScript program. With the exception of the native compilers, all components
of the JAMScript architecture are custom made for JAMScript. The architecture is modular
and components can be swapped out with equivalent components without affecting other
parts of the system. The components related to optimizing the runtime execution are not
yet completed but do not affect the current implementation’s ability to launch complete
applications. This section does not go into detail about the separate architecture that
exists for managing the deployment of a JAMScript application.

3.2 Components of the Architecture

JAMScript Program

The JAMScript architecture begins at the user created program. A program is written
as two separate halves; the C file and the JavaScript file. The design was implemented
this way to maximize the similarity with writing regular C and JavaScript when creating
a program. The ordinary C and JavaScript code are augmented with JAMScript specific
features to enable new functionality, such as activity calls.

3 Systems Architecture 25

Fig. 3.1 JAMScript system architecture

JAMScript Compiler

The JAMScript compiler takes in the JAMScript program files, specified as separate JavaScript
and C files. The compiler will parse through the input files to determine what code needs
to be generated by looking at things such as activities used, JData declarations and jcon-
ditions. The compiler is written in JavaScript and is based on the Ohm parser generator.

Translated Source

The compiler generates translated source code for both JavaScript and C code. The trans-
lated C source code is a valid C program that can be compiled by any Clang compiler,
as long as the necessary libraries are installed. The translated JavaScript code is valid
JavaScript that can be run by any Node.js installation with the correct dependencies in-

3 Systems Architecture 26

stalled. This allows our code to be portable between machines when we compile and execute
it later.

Native Compilers

The translated C source code is sent to Clang to be natively compiled. We make use of the
complete compiler pipeline, from preprocessing to linking. Clang generates an executable
file as output that will run on the local machine.

JAM Middleware

The JAM middleware is a combination of C libraries and JavaScript modules that are used
in a JAMScript application to enable communication between nodes. The C libraries are
used by Clang when compiling the program. The JavaScript modules are bundled with the
NPM installation of JAMScript, enabling the executable to run on any machine that the
JAMScript package is installed on.

Executable

The output of the JAMScript compiler is a JAMScript jxe executable. This file is a zipped
folder containing the C executable file and a runnable JavaScript file. The executable can
also contain additional information files, such as the call graph and jview web pages, if the
program was compiled with additional options specified.

(Re)Loader

The loader is responsible for taking the JXE file and preparing it to run on the local
machine. The loader can change the execution parameters of the program based on the
results of the scheduler to optimize activity calls and JData performance. This can be done
after the program has already launched, reloading the program with better-optimized calls
based on runtime performance.

Run Jam Program

The running JAM program is a combination of the different environments and systems that
the JAMScript program is running on. This can include multiple C executables running on

3 Systems Architecture 27

the device, as well as JavaScript code that is running on the Node.js runtime in the device,
fog or cloud.

Tracer

A tracer could be run on the JAMScript program to provide debug logging information
about the code execution. The tracer would be combined with a compiler flag to output
the executable with tracing utilities generated into the code.

Precedence and Data Flow Graphs

The JAMScript compiler can generate information about the layout of the JAMScript pro-
gram. We generate a visual representation using JavaScript graphing tools and a machine-
readable version using DOT files. The DOT file can be sent to the scheduler to optimize
execution parameters.

Topology and Site Information

JAMScript is able to deploy with no topology information or additional information about
the configuration setup can be supplied by the user. This will enable the scheduler to better
optimize the execution of the program.

Cloud Resource Manager

A cloud resource manager is used to communicate with the function scheduler. This pro-
vides a centralized controller to keep track of the execution properties and modify them if
need be.

Function (Re)Scheduler

We use a function scheduler to optimize the function call timing. This is based on static
analysis using the precedence graph files generated by the compiler and dynamic analysis
performed by a combination of other components of JAMScript.

3 Systems Architecture 28

Data (Re)Scheduler

The data scheduler exists to optimize reads and writes to the JData variables. The data for
these variables are stored on Redis servers located on the devices, the fogs, and the cloud.
The data scheduler will determine the best timing for reading and writing variables to the
database. This is based on the static analysis generated by the compiler in the data-flow
graphs, as well as dynamic analysis.

Execution and Data Schedule

We use the results of the function and data schedulers to modify the execution of the jam
program. The execution and data schedule will be sent to the loader to change the runtime
configuration of the JAM program.

29

Chapter 4

The JAMScript Language

JAMScript programs are written as two halves, comprised of the C portion and the
JavaScript portion, that are integrated together during compilation to make a single exe-
cutable. Activities are special functions that we introduce to the existing language syntaxes
that allow calls to be made between different machines and languages automatically.

JAMScript programs are composed of at least two files, a C file ending with the extension
.c and a JavaScript file ending with the extension .js. This separation of files allows for
developers to specialize in the programming language they are most familiar with. For
example, a software development team can be divided into separate C and JavaScript
teams, with the only requirement for coordination between the two teams is deciding on
the function signatures for JAMScript activities.

Using a combination of C and JavaScript code also allows developers more customiz-
ability in how their code is deployed. By allowing developers to write their own C code,
we allow complete control over pointers and other low-level C facilities. This brings that
advantages of C that may be necessary on low-powered devices, such as performance gains
and a a lightweight runtime. This gives an advantage over running JavaScript directly on
the device or by using ports of JavaScript for embedded devices, such as low.js1, that only
provide a subset of the API of the standard Node.js2, and do not match the performance
of C code.

1https://lowjs.org
2https://nodejs.org

4 The JAMScript Language 30

4.1 C Activities

We use C activities to create functions that are callable to other nodes inside a JAMScript
program. C activities are defined inside of the C input file and written similar to a regular
C function.

Synchronous

Synchronous C activities are identical to regular C functions with the addition of the
keyword jsync before the return type:

jsync return_type activity_name(c parameters) {
// C code body

}

This creates a new synchronous C activity with the name activity_name. Activities can
have a return type of int, float, char, char* or void. Any number of parameters are
accepted of type int, float, char or char*. The body of the activity accepts standard C
code and behaves like a normal function. When this activity is called it will block execution
on the source of the call until the activity returns. Synchronous C activities that are called
from a JavaScript node will return an array containing the result from each node that
completed the activity.

Asynchronous

Asynchronous C activities are similar to the synchronous version, but do not have a return
type:

jasync activity_name(c parameters) {
// C code body

}

This creates a new asynchronous C activity with the name activity_name. The activity
has no return type specified as the activity will not return a value. Since the activity is
asynchronous, when the activity is called execution at the call source is not blocked and
will continue without waiting for a return value. Callback activities can be used to retrieve
results from an asynchronous activity.

4 The JAMScript Language 31

4.2 JavaScript Activities

JavaScript activities are written in the JavaScript input file with a syntax similar to a reg-
ular JavaScript function. When writing JavaScript activities, you must declare a matching
prototype for the activity on the C side. This will give the compiler information about
what the return type and the parameter types of the activity which otherwise could not be
determined statically at compile time for JavaScript programs.

Synchronous

JavaScript:

jsync function activityName(parameters) {
// JavaScript code body

}

C:

return_type activityName(parameter_types);

This will create a new JavaScript synchronous activity with the name activityName. The
body of the activity is standard JavaScript code. When this activity is called it will block
execution of the calling program until the activity returns. The C prototype specifies the
types for the return value and parameters.

Asynchronous

JavaScript:

jasync function activityName(parameters) {
// JavaScript code body

}

C:

void activityName(parameter_types);

This will create a new asynchronous JavaScript activity with the name activityName.
The activity has a return type void specified in the C prototype, as the activity will not

4 The JAMScript Language 32

return a value. Since the activity is asynchronous, when the activity is called execution
at the call source is not blocked and will continue without waiting for a return value. To
retrieve results from an asynchronous activity you must use a callback function.

4.3 Asynchronous Activity Callbacks

JAMScript supports passing asynchronous activities as arguments when calling an asyn-
chronous activity, creating the ability to perform callback calls. This allows a remote
activity to execute code on the node that made the original call to an activity.

jcallback activities can be defined as either JavaScript or C functions. A C function
can be used as a callback activity if it has a return type of void and a single parameter
of type char *. A JavaScript function can be used as a callback activity if it has a single
parameter, which should be treated by the programmer as a String. Activities can take in a
callback function as an argument by declaring a parameter with type jcallback. Activities
declarations can have multiple jcallback parameters, which allows for the program to call
different callbacks depending on the situation.

As an example, we call an asynchronous JavaScript activity from a C node and use a
callback to print the result from the C node:

void remoteActivity(int, jcallback);

void callbackFunc(char * result) {
printf("%s\n", result);

}

int main() {
remoteActivity(0, callbackFunc);

}

On the C side we declare the function callbackFunc that we will use as the callback. The
function takes a single argument of type char * and has a return type void, the function
signature necessary to be used for a jcallback function. We also declare the prototype for
the activity on the JavaScript side, remoteActivity. This activity takes in an int and
a jcallback as arguments. When we call remoteActivity, we put the name of the C
function to use as callback as the argument for the jcallback parameter.

4 The JAMScript Language 33

jasync function remoteActivity(value, finishedCB) {
finishedCB("Hello " + value);

}

We call the callback from the JavaScript activity by using the jcallback variable fin-
ishedCB. A callback function must be called with a String as the lone argument and runs
asynchronously.

4.4 Defining Shared Persistent Variables

JAMScript data storage is performed by JData, a feature for creating shared variables
between multiple nodes. A JData variable can be can be declared as a logger or broadcaster.
Loggers are used to save data upwards to parent nodes, while broadcasters are used to save
data downwards to children nodes.

JData uses Redis [11], an in-memory data structure store, for saving variable contents
and sharing variables between nodes. Each J node automatically runs a separate instance
of a Redis server. Variables saved to JData are written to one or more of the most relevant
Redis servers depending on what the situation requires. JData handles the reading and
writing to multiple Redis servers seamlessly.

JData declarations are done by using a jdata block at the beginning of the JavaScript
file:

jdata {
int x as logger;
char *y as broadcaster;

}

Multiple variables can be defined in a single jdata block. The C data type is specified first,
followed by the variable name and whether it is a logger or a broadcaster.

JData variable declarations must be declared with a C variable type. Table 4.1 shows
the C types that are currently supported in JData and the equivalent JavaScript type.

4 The JAMScript Language 34

Table 4.1: JData compatible data types in C and JavaScript

C JavaScript

int Number
float Number

double Number
char String

char * String
struct Object

JData also supports using structs to group together multiple variables:

jdata {
int x as logger;

struct fruit {
int apple;
float pear;
struct tree {

int leaf;
};

} s as logger;
}

A struct can contain multiple members of any supported JData type, including nested
structs. A structure tag and a structure alias are required at the top level of the struct,
while only the structure tag is used for nested structs. When accessed on the C side the
JData struct behaves similarly to a C struct. When accessed on the JavaScript side the
JData struct becomes an object, with each member of the struct as a property of the object.

4.4.1 Saving Data to Memory

JAMScript provides the ability to store data through the logger JData variable. The logger
stores data from each node as a separate time series. When a node updates the value of
a variable it appends the new value its time series. During declaration, loggers can be
specified to store data on device, fog or cloud. Data can be written from any level at or

4 The JAMScript Language 35

below the one specified, but can only be read from the level specified. This means that a
cloud logger can be read from device, fog or cloud but can only be read from the cloud.
Table 4.2 lists the read and write access for loggers for each specifier.

Table 4.2: Logger read and write access by specifier

Specifier Write Access Read Access

Device Device Device
Fog Device, Fog Fog

Cloud Device, Fog, Cloud Cloud

Loggers are declared in a JData block in the JavaScript code. The default level for a logger
is on device storage:

jdata {
double x as logger;

}

A logger can be defined as on device, fog or cloud by adding a specifier to the declaration:

jdata {
double y as logger(fog);

}

Writing to the logger from a C node is done by assigning to the specified logger variable as
if it were an assignment to a regular variable. This can be done in any function or activity
that contains C code:

int testFunction() {
x = 32.0;

}

Writing to the logger from a J node is done by using the logger object’s method. The log
method takes in a single value to append to the time series:

4 The JAMScript Language 36

function testFunction() {
y.log(24.1);

}

Reading from a logger is done on the J node at the level specified when declaring the
logger. The logger variable on the JavaScript side is represented as an object which provides
methods to read the values. The data is stored as an array of time series’, where each node
writing to the logger is an element of the array. If a device had 4 C nodes writing to the
logger, the JavaScript object would have an array of length 4 with each element containing
a time series.

Structs

Logging to struct must be done in a single operation to ensure that all values in the struct
are pushed to the time series in a single update. There are two ways to write to the logger
from the C side; assigning to all logger struct members at once or using a local struct to
store the values before assigning to the logger. When saving to a struct logger, all members
must have a value assigned or an error will be thrown.

For example, if we had the struct logger point declared:

jdata {
struct cords {

int x;
float y;

} point as logger;
}

One way to save to this logger would be to use tagged structure initialization to assign all
members of the struct at once:

point = {
.x: 5,
.y: 2.0

};

4 The JAMScript Language 37

Another way to save to the logger is to use a struct variable to temporarily store the values
before assigning them to the logger. Declaring a struct in JData will generate a C struct
definition with the same members that can be used to declare a local struct:

struct cords localCord;
localCord.x = 3;
localCord.y = 4.0;
point = localCord;

Logging to the struct from the JavaScript side is done by creating an object with all
properties of the JData struct:

point.log({x: 5, y: 1.0});

Reading from the logger struct is done by accessing the properties of the object on the
JavaScript side:

console.log(point[0].lastValue().x);

Methods

The methods available through the JavaScript interface when reading from a logger’s time
series are described in Table 4.3.

Table 4.3: Description of logger methods

Method Description

size Returns the number of elements in the time series.
data Returns an array containing all data pairs of type (value,

timestamp) for the time series.
values Returns an array containing all values for the time series.
lastData Returns the last data pair (value, timestamp) in the

time series.
lastValue Return the last value in the time series.
dataAfter(Date) Returns an array containing all data pairs of type (value,

timestamp) in the time series that occur after a specified
Date object.

4 The JAMScript Language 38

valuesAfter(Date) Returns an array containing all values in the time series
that occur after a specified Date object.

dataBetween(Date, Date) Returns an array containing all data pairs of type (value,
timestamp) in the time series that occur between two
specified Date objects.

valuesBetween(Date, Date) Returns an array containing all values in the time series
that occur between two specified Date objects.

When loggers are used on multiple nodes each node has a separate data stream. Each data
stream is structured as a time series; when data is logged it is appended to the end of the
series along with the timestamp of the insertion. An array of time series’ is used to store
each node writing to the logger as a separate element. Loggers on different nodes can push
data at different rates, so each time series can have a different length.

In Table 4.4 an example application using a logger is running on 3 C nodes. The logger
will have an array of 3 elements, each containing their own time series. Using the size()
method on the logger object will return the number of elements in the array; the number
of nodes writing to that logger.

Table 4.4: Example of nodes with varying logger contents

Node 1 Node 2 Node 3

(v11, t11) (v12, t12) (v13, t13)
(v21, t21) (v22, t22) (v23, t23)
(v31, t31) (v33, t33)

(v43, t43)

4 The JAMScript Language 39

Individual data stream’s in the logger can be accessed by referring to their element in the
logger array:

jdata {
double x as logger;

}

x[0].lastValue();

4.4.2 Reading Data from Memory

The JData broadcaster variable provides a mechanism for pushing data from a parent node
to its children using a shared memory store. The data is stored at the level specified when
the broadcaster is declared. Any node below the level specified can read values from the
broadcaster but only nodes at the level specified can write a value. Table refbroadcaster-
Access lists the read and write access for broadcasters for each specifier. While the logger
contains multiple streams, each containing many values, the broadcaster only contains a
single value at a time.

Table 4.5: Read and write access by specifier

Specifier Write Access Read Access

Device Device Device
Fog Fog Device, Fog

Cloud Cloud Device, Fog, Cloud

A broadcaster is defined with the broadcaster keyword in a JData declaration:

jdata {
double x as broadcaster;

}

The broadcaster can be written to from fog or cloud nodes. Conditionals can be used to
control where the data originates. For example, the execution of an activity that writes a
value to a broadcaster may be restricted only to fog nodes.

4 The JAMScript Language 40

Below we show broadcaster data that can only originate from a fog node:

jdata {
double x as broadcaster;

}
jcond {

fogonly: sys.type == "fog";
}
jasync {fogonly} function fname() {

x = 2.2;
}

When broadcaster data is read, the latest value is always used. A function referencing a
broadcaster does not execute until the node on which the program runs has received the
latest value of the broadcaster. A condition referencing a broadcaster is always evaluated
using the latest broadcaster value. In order to ensure producer-consumer synchronization,
the JAM runtime performs versioning of the broadcaster values. Example:

jdata {
double pe as broadcaster;

}
jcond {

pickpe: pe < sys.rank; // Evaluated using the latest broadcaster value
}

jasync {pickpe} function fname() {
double y = pe; // Assigns the latest broadcaster value

}

Reading from the broadcaster on a C node is done by assigning the value of the broadcaster
variable to another variable:

void testFunction() {
int localStore;
localStore = x;

}

4 The JAMScript Language 41

Structs

Broadcasting with a struct is similar to logging with a struct. All members of the struct
must have a value specified in the object when broadcasting a new value.

jdata {
struct time{

int hour;
int minute;

} clock as broadcaster;
}

Writing to the broadcaster the object must be in a single statement with all fields specified:

clock.broadcast({hour: 3, minute: 10});

Reading the struct from the C side is done by assigning the value of the broadcaster to a
local struct. The definition for the local struct is provided by the compiler and can be used
to declare struct variables.

struct time localStruct;
localStruct = clock;
printf("%i:%i\n", localStruct.hour, localStruct.minute);

4.4.3 Conditional Execution Constructs

JAMScript provides the ability to limit which nodes an activity executes on by using the
jconditional declaration. Conditionals can be used to limit execution of an activity to only
certain levels, such as on the device, fog or cloud. Conditionals can also restrict execution
based on the attributes of a node or the current value of JData variables.

4 The JAMScript Language 42

Conditional Definitions

Conditionals are defined by using the jcond declaration. A jcond block can contain multiple
named conditional expressions. If the jcond is unnamed then it belongs to the global
namespace by default:

jcond {
ruleA: 1 < 2;
ruleB: 4 > 2;

}

jcond blocks can also be named, creating a namespace for the conditionals contained inside:

jcond name {
ruleA: 1 < 2;
ruleB: 4 > 2;

}

Conditional rules support all JavaScript non-strict comparison operators and logical oper-
ators:

jcond {
ruleA: 1 < 2 && 3 == 3 || 4 >= 2;

}

A conditional rule can also optionally specify a function that will run if the rule evaluates
to false:

jcond {
ruleA: 1 < 2, executeMe;

}

function executeMe() {
// Code to execute

}

4 The JAMScript Language 43

JData logger variables can be used in conditional rules. When the condition is executed,
the latest value saved to the logger will be retrieved and used in the comparison:

jdata {
int temp as logger;

}

jcond {
cold: temp < 0;

}

A JData logger is comprised of many time series’, one for each node writing to the logger.
When a rule referencing a logger variable is used on a JavaScript activity, the latest value
from the time series that was last updated is used. When a rule referencing a logger variable
is used on the C side, the latest value from the current node’s time series is used.

The sys global context object contains information about the system state for each
node. The type property of the sys object will always contain the level that the current
node is running at: device, fog or cloud. By default, a JAMScript activity will execute at
all levels of the JAMScript hierarchy. When a call for a function is initiated by a C node,
then the device, fog and cloud will all receive the call for execution. By using the type
information, we are able to create rules that limit the execution of an activity to specified
levels:

jcond {
deviceOnly: sys.type == "device";
fogOnly: sys.type == "fog";
cloudOnly: sys.type == "cloud";
fogOrCloud: sys.type == "fog" || sys.type == "cloud";

}

Using Conditionals

Conditionals can be assigned to activities by using a tag in the activity declaration:

jasync { limiter } function javaScriptTest() {
// Code to execute

}

4 The JAMScript Language 44

Conditionals are language agnostic, and the same rules can be used on C activities:

jasync { limiter } void cTest() {
// Code to execute

}

Rules inside of namespaces can be used by specifying the namespace:

jasync { namespace.rule } function test() {
// Code to execute

}

Logical operators can be used to join together multiple rules:

jasync { ruleA || ruleB && !ruleC } function test() {
// Code to execute

}

In the following examples we use the same logical operators but at different points to
achieve the same functionality. Our goal is to create an activity that will only run on the
fog or the cloud. One way to achieve is this to create a rule that states the entire condition.
Putting more functionality into a single rule can be useful to show that certain condition
tests should always be done together:

jcond {
fogOrCloud: sys.type == "fog" || sys.type == "cloud";

}

jasync { fogOrCloud } function test() {
// Code to execute

}

4 The JAMScript Language 45

Alternatively, we can achieve the same functionality by writing separate rules and joining
them together at the activity declaration. This allows writing more modular rules that can
be used separately depending on the situation:

jcond {
fogOnly: sys.type == "fog";
cloudOnly: sys.type == "cloud";

}

jasync { fogOnly || cloudOnly } function test() {
// Code to execute

}

4.4.4 Conditionals over Data

Conditionals can contain JData variables to alter which activities will execute during run-
time. This can be data written by the devices or those created through computations, such
as flows. When using time series data in a comparison average values are computed by
default. The user may alternatively use the max, min, sum or std of the time series values.
The average, minimum and max values are computed over a moving window of values of
the time series. When multiple streams, representing multiple devices, are present in a
variable then the window spans all available streams.

jcond {
temp: max(x) < 22.5;

}

The condition temp will be true if the maximum temperature value reported by all devices
is less than 22.5.

4 The JAMScript Language 46

Conditionals can also use JData structs in comparisons by using the aggregate functions
on member fields. In the following example we take the average of a member of the struct:

jdata {
struct temp_reading {

int tempvalue;
int xcoord;
int ycoord;

} readings as logger;
}

jcond {
low_temp: avg(readings.tempvalue) < 22.5;

}

The logger pushes data from the devices towards the cloud through the fogs, while the
broadcaster pushes data from the cloud to the devices. This means that the logger can
have many sources while the broadcaster can only have a single source if it is rooted at
the cloud or many, but few, sources if rooted at the fogs. In all cases, a broadcaster has a
single stream.

4.4.5 Data Visualization and Controls

JAMScript provides a method for displaying and editing JData variables live through a
web browser through with the jview feature. When a jview is declared, a web application
is generated with graphical elements that interact with the data stored in JData. A user
can specify what variables they want to use and how they want the pages configured when
writing the JAMScript application. A website is generated at compile time that can run on
a provided HTTP server. A socket.io3 WebSocket connection from the running JAMScript
application to the HTTP server is used to relay changes in the JData variables. The web
interface is written in ReactJS4 and uses echarts5 [12] for displaying graphs.

The jview declaration is written on the JavaScript side of a JAMScript application.
A jview declaration is comprised of pages, each with their own unique URL. Each page
is made up of a combination of graphical elements, which can be displays or controllers.

3https://socket.io
4https://reactjs.org
5https://ecomfe.github.io/echarts-doc/public/en/index.html

4 The JAMScript Language 47

Displays are used to graph the contents of a JData variable, while controls are used to
change the contents of a JData variable.

Displays are used to visualize the data from JData logger variables, pulling new data au-
tomatically. The currently supported display types are graph, scatter and stackedgraph.
New values are pulled from the JData variable according to a refresh rate that is optionally
set by the user, with a default rate of 500ms. At each refresh, the latest value in the variable
is retrieved and appended to the graph. A title can be specified for labelling the graph in
the web page. The JData variable to retrieve data from is specified using the source tag.

Controls are used to modify the value of a JData broadcaster variable. When the
value in a control element changes, the updated value is sent to the JData variable. A
control’s input type can be set to slider, button or terminal. Each control must have
a JData variable assigned in the sink option, specifying which variable receives data from
the element. The slider controller allows the user to move a slider, automatically sending
the selected value to the sink variable. The button controller creates a clickable button
that toggles the current state between true and false. The sink variable is used to store the
value received from the button, alternating in value as either a one or a zero, corresponding
to true and false states from the button. The terminal type provides the ability to type
text and pass it to the sink variable. A title can be specified for labelling a control element
in the web page.

Below we show an example of declaring a jview. We begin with declaring the following
JData variables that will be used as sources and sinks for jview elements:

jdata {
int posDisplay as logger;
float tempDisplay as logger;
int slideControl as broadcaster;
int buttonControl as broadcaster;

}

We can then use these JData variables inside of a jview declaration. We begin by declaring
two pages with the ids page1 and page2. page1 has three display elements; one display
and two controllers. Using the name option changes the title for the page to Thermostat.
elem1 is a display that will read the latest value from the tempDisplay logger and show
it in a line graph format with a refresh rate of 200ms. elem2 is a slider controller, when the
user moves the slider the selected value will be sent to the JData broadcaster slideControl.

4 The JAMScript Language 48

elem3 is a button controller, clicking on the button will send a value to buttonControl
of either zero or one depending on the state of the button. page2 contains just one display
element and since the page has no name option specified the id page2 will be used as its
name. elem4 is a scatter plot display that will read from the posDisplay logger. As
the refresh rate is not specified for this element, it will default to checking the data in the
variable every 500ms.

jview {
page1 as page {

name: 'Thermostat';
elem1 is display {

type: graph;
title: 'Temperature Display';
source: tempDisplay;
refresh: 200;

}
elem2 is controller {

type: slider;
title: 'Set Temperature';
sink: slideControl;

}
elem3 is controller {

type: button;
title: 'Power';
sink: buttonControl;

}
}
page2 as page {

elem4 is display {
type: scatter;
title: 'Position Display';
source: posDisplay;

}
}

}

4 The JAMScript Language 49

4.4.6 Data Stream Filtering and Transformations

The JAMScript Flow is a data abstraction that allows several operations on JData data
streams, files and data structures. Using Flows allow large collections of data to be pro-
cessed efficiently.

The Flow uses filters and transformations to create a declarable programming style
which allows easy creation of new Flows and to modify existing ones. A Flow allows the
programmer to operate on data in a way similar to SQL commands and queries. Flow oper-
ations can either be methods, transformations or actions. The method and transformation
operations are used to produce new Flows, which can be used in future operations. Action
operations are used to produce a final value and do not produce a Flow.

Sample Flow example in JAMScript

jdata {
double x as logger;
q as flow with <flowFunc> of x;

}

function flowFunc(x) {
return Flow.from(x[0]) // Create a Flow from a data stream

.select((data) => data.log) // Select a part of the data set

.where((data) => data > 25) // Filter for values greater than 25

.limit(100); // Limit to the first 100 elements
}

Every Flow definition must have a JavaScript function associated with it that defines the
operations that will be used to transform the data. A Flow is lazily computed and will
only be processed when an action is called on it.

As an example:

let firstValue = q.findFirst();

Using the findFirst method causes the Flow to be processed and to return the first value
found. Processing stops immediately after a result that satisfies the constraint is found,
saving processing time.

4 The JAMScript Language 50

Flow Creation

A Flow can be created from several JavaScript and JAMScript data structures including:
Array, Set, Map, Object, FileSystem, Generator, JAMDatasource and JAMDatastream.
The last three can be used to produce an infinite stream of data.

As an example, we can create a Flow from a regular JavaScript array:

var array = [1, 0, 5, 13, -1];
var flow = Flow.from(array);

Flow Types

There are four different Flow types: IteratorFlow, OutFlow, InFlow and Flow (the default).
A Flow’s type decides what operations can be performed on it.

• Flow: This is the default Flow that has all the basic operations for data processing.

• IteratorFlow: This Flow is used early on in a Flow chain. When the from method is
called, an IteratorFlow is created. This Flow extends the default Flow and provides
additional operations.

• OutFlow: This Flow is responsible for processing and sending data to other applica-
tions.

• InFlow: This Flow is responsible for receiving data from other applications.

Flow Chain Pipelining

A Flow chain is a linked data structure of different Flow objects. Every Flow is aware of
the previous Flow and the next Flow in the chain. A Flow chain is created when a Flow
method is called on a Flow object.

For example:

var flow = Flow.from(array).skip(2).where((num) => num % 2 == 0);

In the example above, there are three Flow objects in the Flow chain. When an action is
called on the final Flow object in the chain, the data is piped through the Flow chain until
it gets to the last Flow, where the action is computed.

4 The JAMScript Language 51

Flow Push and Pull Models

Flow provides two models for data pipelining; the push model and the pull model. The
pull model is used to request that data be piped from an IteratorFlow to the rest of the
Flow chain. The data is generated from the IteratorFlow on request and sent through the
chain. This model is used by Flow actions to do a final computation on the dataset. In the
push model, data is automatically piped through the Flow chain. The push model is used
in Flow Streaming.

Flow Streaming

For continuous streams of data, Flow provides a data push model that can continuously
pipe data through the Flow chain. This can be useful if the computed data will be sent to
another application for further processing. A Flow pushes processed data to the next Flow
in the chain or if the Flow is the last in the chain to a terminal function. The terminal
function for a Flow can be set using the setTerminalFunction method. Flow streaming
can be used when the Flow is created from a JAMDatastream, a JAMDatasource or a
function that generates continuous data such as a JavaScript Generator.

IteratorFlow

The IteratorFlow is a Flow that creates a unified means of retrieving data from different
data structures. The IteratorFlow turns the data passed to it using the from method into
a JavaScript Iterable by wrapping the data with an iterator implementation that allows
retrieving data by calling the next method on the iterator handle.

The IteratorFlow is the root of the Flow chain and can be accessed from any Flow in
the chain by using the property rootFlow:

var flow = Flow.from(array).skip(2).where((num) => num % 2 == 0);
var iteratorFlow = flow.rootFlow;

For data streaming in Flow, the IteratorFlow listens for changes on the JData variable, if
changes are detected then the new value is retrieved. The retrieved data is then pushed
through the Flow chain until it gets to an OutFlow or the terminal function of the last
Flow object in the chain. To start data streaming in Flow, the startPush method needs to
be called on an IteratorFlow object. To stop the streaming, the stopPush method can be

4 The JAMScript Language 52

called on the IteratorFlow object. When the stopPush method is called the IteratorFlow
stops listening for incoming data on the connected streams.

OutFlow

OutFlow is a specialized Flow that is built for the purpose of sending processed data
to external applications. When an OutFlow is created, a Flow object is supplied as an
argument which the OutFlow links to in order to receive pushed data. OutFlow logs all
received data to Redis.

In the example below, we create a new Outflow p that takes the output of Flow q and
makes it available to other applications:

jdata{
double x as logger;
q as flow with flowFunc of x;
p as outflow of q;

}

var q = flowFunc(Flow.from(x));

In JavaScript, p as outflow of q; becomes:

var p = new OutFlow("p", q).start();

The OutFlow method start calls the startPush method in the IteratorFlow, the first flow
in the chain, and informs the IteratorFlow to start listening for push data from the data
source. This data is continuously pushed and may reach the OutFlow if the constraints of
each Flow object in the chain allow the data to pass through. Once the data arrives at the
OutFlow it is sent to the Redis server.

To stop listening to data streams changes, call the OutFlow stop method on the object
handle, which will in turn call the stopPush method on the IteratorFlow. For example, to
stop our previously declared OutFlow p:

p.stop();

4 The JAMScript Language 53

InFlow

The InFlow is a specialized Flow that is responsible for retrieving data from external
applications and making it available for use inside the current application. The retrieved
data can be processed using Flows before being used. The InFlow listens for new data from
the OutFlow of other applications and retrieves the data using Redis.

As an example:

jdata {
r as inflow of app://app1.p;

}

We can use the data received in a local function immediately:

r.setTerminalFunction(doReceiveData);

We can also use the data in a Flow chain:

var flow = r.select((input) => input.temp).where((t) => t <= 37);

Flow Methods

Flow methods are data transformations on a Flow that produce another Flow. Each Flow
maintains a call tree that keeps a link to the Flow operation before it. Flow methods are
lazily computed and data is continuously piped to the next Flow for further processing.
This can reduce the execution time because some operations can be handled together. The
currently supported methods are listed in Table 4.6.

4 The JAMScript Language 54

Table 4.6: Description of Flow methods

Method Description

limit(Number) Limits the number of results obtained after the previous
operation.
This is a filter operation

skip(Number) Ignores the first specified number of results found after
the previous operation.
This is a filter operation.

select Similar to a map function in MapReduce operations,
selects one or more parts of data from a given dataset.

selectExpand(function) Maps one input to many outputs, as generated by the
function. The collection generated by this function must
be supported by the Flow from method.

selectFlatten Similar to selectExpand, but doesn’t take a function as
an argument. selectFlatten assumes that the input from
the pipe is a collection that is supported by the Flow
from method.

where Performs a filtering operation on the data to match a
constraint.

orderBy Performs a sorting operation on the data based on a
given function. Flow has internal operations to sort us-
ing ascending or descending order of a given key from
the data.

distinct Returns a Flow with unique elements (a set) using the
JavaScript strictly equals operator.

groupBy Returns a new Flow containing several datasets grouped
by a specified key. The value in the key defines the
grouping and the value comparison is done using the
JavaScript strictly equals operator. Another definition
with a given function can cause this method to act as a
partitioner, as in MapReduce, thus the groupings could
be via a range as offered by the provided function.

4 The JAMScript Language 55

merge(data) This method is only available to an object of Iterator-
Flow and is used to merge a supported data structure.

range(from, to) Combines the limit and skip methods, creating a bound
for the data to be used for further processing.

discretize(count, length) This method is only available to the IteratorFlow and
allows processing data streams into windows. count is
the number of data streams to focus on in a window.
length can either be a Number or a function that checks
if it’s the end of the window.

setTerminalFunction(func) Specifies a function to send push data to. This method
can only be used when on a Flow object that is the last
in a Flow chain.

Flow Actions

Flow actions are operations that produce results that are not Flows. When an action is
called on a Flow, the Flow engine begins operating on the data and pipes each produced
data to the next layer until the condition for the action is met. The currently supported
actions are listed in Table 4.7.

Table 4.7: Description of Flow actions

Action Description

count() Returns the total number of datasets left after the last
Flow method.

collect(function) Returns the Flow data as a specified data collection.
The input argument function can be one of three Flow
internal functions: toSet(), toArray() or toMap().
toSet returns a distinct dataset, toArray returns all the
data remaining after the last Flow method as an array.
toMap returns a Map; this can only be used when the
last Flow method operation was groupBy.

4 The JAMScript Language 56

foreach(function) Sends the remaining data from the last Flow in the chain
to the specified function. This is useful when operating
on every data of a Flow outside the context of Flows.

anyMatch(function) Returns a Boolean with the result of checking if any
remaining data in a Flow matches the definition in the
user defined function.

allMatch(function) Similar to anyMatch, checks that all the remaining data
matches the condition defined in the specified function.

noneMatch(function) The inverse of allMatch, checks that none of the remain-
ing data matches the specified function’s condition.

findFirst() Returns the first data found in a Flow.
findLast() Returns the last data found in a Flow.
findAny() Returns any data from the Flow. Returns the same

result as findFirst but can provide addition functionality
in a parallel computing scenario.

reduce(initial, function) Used to reduce a Flow to a single value. Takes in an
initial value for the reduce operation and a function that
defines how the reduction should be performed.

average() Produces an average of the items in a Flow. As this is
restricted to the Number type data, the previous Flow
operation must produce Numbers.

Flow actions are not optimal when working with continuous streams of data because the
data is not finite when the operations are carried out. Using the discretize Flow method to
separate the data into windows is recommended before performing actions on continuous
streams.

57

Chapter 5

Design of the Compiler

The implementation of JAMScript required a custom compiler to be written, which was
done using the Ohm parser generator. Using Ohm allowed us to quickly modify the language
design of JAMScript as we built the language and test how these changes would affect
the usage of the language. One of the advantages of implementing JAMScript as a new
programming language is the ability to perform analysis on the code of variable and function
usage and perform optimizations and scheduling, that will be more beneficial in the future
for JAMScript.

The compiler takes in C and JavaScript files that are augmented with JAMScript struc-
tures and generates a jxe executable file that can then be run by the user. The C code
is generated as standard C99 code that can then be compiled and run on any machine
with an installation of Clang1 and Node.js. The outputted JavaScript code will run on any
machine with an installation of Node.js.

The first step of JAMScript compilation is reading in a JAMScript C file and a JAM-
Script JavaScript file. Both files must be present before the compiler will proceed.

5.1 C Preprocessing

The JAMScript compiler begins by running a preprocessor on the C code. We use a
preprocessor at this stage so that when we parse the C code we can perform a more
thorough code analysis. For example, we can see where the various variables and functions

1https://clang.llvm.org

5 Design of the Compiler 58

were declared. We run the C code through the Clang compiler’s preprocessor and save the
result. We chose to use the Clang preprocessor as we are already using Clang to compile
the final C code to an executable, so we share the use of that dependency to know that we
have the preprocessor already installed on a given machine.

We found that most publicly available C preprocessors make use of C compiler exten-
sions that are not defined in the ANSI/ISO C specifications. The extensions used would
vary from machine to machine, even when using the same preprocessor and input code.
We decided that we could not create a complete parser specification that could handle
all the C extensions. It became too complicated to account for all the unique cases we
encountered when using C preprocessors, and we couldn’t guarantee that the JAMScript
compiler would be compatible with untested machines that could introduce new extensions
we had not seen before.

To solve this problem, we made use of fake C headers. This method works by including
mostly empty C files with filenames that match with the filenames of the headers in the
C standard library. The only information declared in these files is generic typedefs for
most common variable types. The analysis that we wish to perform is not affected as it
is focused on the user-defined declarations and not those in the standard library. When
the user’s input code is first sent to the compiler, we save the original include statements
and then run the preprocessor on the code. When the preprocessor outputs the code, the
code generated can still compile but will not produce a usable executable. We then make
the code usable by removing all the code that was generated from the include statements
and replacing it with the original include statements. To remove the code generated by the
fake headers we use a marker inserted after the include statements in the original source
code. As the code generated by a preprocessor for an include statement will be inserted at
the beginning of the output code, we can safely delete all code before the marker without
removing any of the user’s code. As our analysis is complete at this point, we can use
Clang’s built-in preprocessor to parse the include statements correctly and then send it to
the compiler.

5.2 Ohm Compiler

The next stage of the compilation process is to run the code through our Ohm based
compiler. The JAMScript Ohm compiler is divided into two sub-compilers; a JavaScript

5 Design of the Compiler 59

compiler and a C compiler. The input for the C compiler is the preprocessed C file with
fake headers, and the input for the JavaScript compiler is the unmodified JavaScript file.
Each of the compilers is divided into two portions; a parser and a translator. Ohm does not
allow custom logic inserted into the parsing phase, only building the parse tree is allowed.
Although we are walking through the code twice, once when building the tree and a second
time walking the tree to generate output code, because of this restriction we can only add
custom logic when walking the tree. This creates the same restrictions as if we were using a
single walk compiler, therefore, the order that we perform our compilation matters between
the two languages. The JavaScript compiler is run first because most of the JAMScript
structures, such as JData and jconditional are defined on the JavaScript side.

Ohm Parser

The C parser is based on a modified C95 specification. We support all C95 features as well
as some popular C99 features that we believed most users are accustomed to, such as double
slash single line comments and mixed declarations and statements. We created an Ohm
grammar file jamc that extends from our standard C grammar. This adds the JAMScript
additions that are allowed in the C files, such as activity definitions and jcallbacks.

The JavaScript parser is based on the ECMAScript parser that is distributed with
Ohm. We use an ECMAScript 6 parser that extends from an ECMAScript 5 parser. The
only ECMAScript 6 addition that we currently support is arrow functions. We decided
that most major JavaScript functionality could still be achieved by using ECMAScript 5
features. Similar to the C side, we created a grammar file jamjs that extends from the base
es6 grammar. This grammar has more additions to the language than the C side, as the
JavaScript files contain JAMScript features such as JData declarations and jconditional
declarations.

Ohm Translator

The respective output trees from the two parsers are then sent to separate JavaScript and
C translators. The translators walk through the trees and generate the appropriate output
code. Each translator generates separate C and JavaScript code, which are later merged
together into one output file per language. We use a shared symbol table between the C and
JavaScript compilers that allows us to look up JAMScript symbols that could be shared

5 Design of the Compiler 60

between the different languages, such as JData variables and activities. Local variables
and functions are not stored in the symbol table, so they are not considered when moving
between the JavaScript and C compilers.

Many JAMScript features have a syntax similar to regular C code, therefore we have
to check the user’s input to see if they are trying to use a JAMScript feature and replace
the code with the appropriate function calls. For example, assigning to a JData logger is
similar to assigning to a regular C variable. In order to output the correct code, when we
see an assignment to a variable we check to see if the variable name is in the symbol table
and if it has a JData type. If it does, then we output function calls to save the value to the
JData variable. If the variable name is not in the symbol table as a JData variable, then
we can output the original input code.

5.3 Generating Call Graphs

JAMScript can generate a unified call graph that contains information about all function
and activity calls throughout a JAMScript program. The call graph stores information
about the source language of the call, the arguments, whether it is an activity or function
call, and the target language of the call. The call graph is used internally when compiling
to check the activity matrix, to see if a call is permissible when an activity calls another
activity, and is also used for external analysis. In order to make the information to be the
most relevant, we only put functions that the user defined into the call graph. We do not
include functions that were included by the preprocessor in the C code or calls to global
functions and external functions in JavaScript. The call graph is generated by the compiler
into two separate file types that contain the same information. The first file type is a DOT
graph description file. This file type is a standard for graphs and can be used to represent
directed graphs, such as call graphs. We output the DOT file for future use, as it may be
beneficial for further scheduling and program analysis. We also generate an HTML file for
a visual representation of the call graph. This creates a way to easily read and understand
the call graph without having to run a graphing program on the DOT file. We decided to
customize the display of the file and generate a static website that presents the call graph
in a controllable and easy to understand way. The webpage uses the Cytoscape.js [13]
JavaScript visualization library with the dagre2 directed graph layout engine.

2https://github.com/cytoscape/cytoscape.js-dagre

5 Design of the Compiler 61

Fig. 5.1 Display of a callgraph.html file

In Fig. 5.1 we can see how the callgraph.html file is shown in a web browser. Functions
and activities that are written in JavaScript are placed in the area with a green background,
while those written in C are placed in an area with a blue background. Normal functions
are displayed in rectangles and JAMScript activities are displayed in rounded rectangles.
Arrows represent calls, and by clicking on an arrow a popup menu will display with a list
containing the arguments that were used each time that call appears in the code. Calls
made at the global scope in JavaScript (outside of any function) are labelled as originating
from root, while those declared in the main function in C are labelled as originating from
user_main. In this example, we have a sample program that starts with the user_main
function calling the activity ping on the C side. This starts a loop of ping calling the
activity pong on the JavaScript side, which in turn calls ping on the C side. We can also
see from this chart that there are no functions calls from the JavaScript side originating
from the root, the JavaScript side is waiting for the C side to start before it makes any
calls.

5 Design of the Compiler 62

5.4 JavaScript Type Checking

One of design goals of JAMScript is to keep the JavaScript portion of the user’s code as
close to original JavaScript as possible, such as not forcing type information on all variables,
in order to minimize the amount of learning necessary for ordinary JavaScript developers.
This precluded the use of a typed JavaScript superset language, such as TypeScript, on
the JavaScript code.

In order to bring some of the protections that type checking offers to the JavaScript
code of JAMScript, we integrated the Flow3 static type checking utility into the JAMScript
compiler. While JavaScript is a dynamically typed language, and C has much stricter type
restrictions than the types that exist in JavaScript, we can still perform some type checking
with the help of Flow. For example, if an activity takes has a parameter of type int, we
can check to make sure that the user is not passing in a String or another non-number
type. Flow is designed around the idea of using limited available typing information to
flow down the program, inferring types along the way. We decided that this would be a
good match for JAMScript, as the only type information that we receive is from activity
parameter types and return types.

When we annotate the JavaScript code with Flow type, the code produced is not directly
runnable by Node without stripping out the annotations by using a tool such as Babel. We
decided the simplest way to have type checking and a runnable program was to generate
two versions of the JavaScript code; one that is plain JavaScript that can be run by Node
and a second with Flow type annotations that we use with the type checker. When the
compiler generates the JavaScript output, the regular JavaScript code in the JAMScript
program is placed into both files identically. The code that is generated for activities is
created as two versions; one version that is plain JavaScript code and one that has Flow
type annotations on the activity parameters and return type. The Flow type checker is
then ran on the annotated file, which is then discarded. The non-annotated JavaScript file
is the only JavaScript file that is placed inside the jxe file to be later launched by jamrun.

3https://flow.org

5 Design of the Compiler 63

We can set the type of a variable in Flow by using a special syntax of annotating the code
with types for variables. This prevents the user from assigning anything but a value of that
type to the variable:

var x:number; // Setting the type of variable x to Number;
x = 4;
x = 12.3;
x = "Hello"; // Incompatible type error

We can use Flow to set the type of the parameters and the return value of functions. As
well, Flow can infer, based on the limited type information it has, assumptions about what
is permissible and what is not:

function doubler(input:number): number {
return input * 2;

}

doubler(3);
doubler("Text"); // Incompatible parameter type error

We can combine the information that we are able to ascertain from an activities’ C proto-
type declaration to be able to provide some Flow annotations for our code.

For example, if we had the following C prototype:

char* evenOrOdd(int);

And a JavaScript activity:

jsync function evenOrOdd(x) {
if (x % 2 == 1) {

return "Odd";
} else {

return "Even";
}

}

5 Design of the Compiler 64

We can then annotate the JavaScript code with approximations of the corresponding C
types:

function evenOrOdd(x: number): String {
if (x % 2 == 1) {

return "Odd";
} else {

return "Even";
}

}

By annotating the activity code, we can bring some static analysis type checking into the
JavaScript code. In this example, this would make sure that the user always treats x like a
number and that there is a return statement on all branches with the return type of String.

5.5 Generated Files

When the Ohm portion of the compiler is done generating code, we perform the final two
tasks at the same time. As they are both longer tasks, we use promises to spawn two
shell processes that execute the tasks simultaneously. The first task runs the Flow type
checker on the annotated JavaScript code. This begins with a check to see if the user has
Flow installed, if they do not then we skip the type checking phase and pass the task.
If the user does have Flow installed then we run the type checker and display any errors
that are found. The second task runs the Clang compiler on the generated C code. When
both of these tasks complete successfully, then the compiler has finished and compilation
succeeded. If either does not complete successfully then we end compilation with an error.

The JAMScript compiler generates a jxe executable; a zip file containing the compiled
C code and the runnable JavaScript code. Depending on the options specified when calling
the compiler, additional files can also be generated. Table ?? describes all possible output
files that the compiler can generate.

5 Design of the Compiler 65

Table 5.1 Files generated by the JAMScript compiler

File Description

.jxe File A single executable for the entire program that can be
launched using jamrun.

jamout.c The complete C program file for the client devices. This file is
a standard C file that can be compiled on any machine with
the necessary libraries installed.

a.out The file jamout.c after being compiled using the Clang com-
piler.

jamout.js The complete JavaScript program, this file be run on any ma-
chine with Node.js and the JAMScript npm package installed.

callgraph.dot The call graph in a DOT graph language file. This file is used
for further analysis.

callgraph.html The call graph as an interactive HTML webpage. This file is
used as an easy way to visualize the call graph.

5.6 Project Directory Layout

When jamc is called, the JAMScript compiler launches from the index.js file in the root
project directory. The index.js file imports files from the folder lib/ohm, which contains
every other file used for the JAMScript compiler. The C and ecmascript folders contain
compilers for their respective languages and could operate without the other as a standalone
compiler. The jamscript folder contains the JAMScript compiler which extends from the
other two compilers. A brief description of each file used in the JAMScript compiler is
provided in Table 5.2.

Table 5.2: Description of JAMScript compiler files

File Description

index.js Starting file of the JAMScript compiler. Handles input
argument processing, calling the compiler, writing out-
put files, calling the local Clang C compiler and running
the Flow type checker.

5 Design of the Compiler 66

Table 5.2: Description of JAMScript compiler files

File Description

Folder lib/ohm/C
c The translator for an implementation of a standard C

pretty printer.
c.ohm The Ohm grammar for a standard C parser
pretty.js The runner for the C pretty printer, this file calls c.js
test.c Sample valid C code examples for testing purposes
Folder lib/ohm/ecmascript
es5.js The translator for an implementation of an ECMAScript

5 pretty printer
es5.ohm The Ohm grammar for a pure ES5 parser
es6.js Translator extending the ES5 pretty printer to add ES6

features
es6.ohm Ohm grammar that extends the ES5 grammar to add

some ES6 features
pretty.js Runner for the ECMAScript pretty printer
test.es6 Sample ES6 code examples for testing purposes
test.js Sample ES5 code examples for testing purposes
Folder lib/ohm/jamscript
activities.js Helper file containing code generators for activity calls
activityMatrix.json Contains a JSON matrix of which activity types are al-

lowed to call other activities.
callGraph.js Call graph object and utility functions for collecting

calls, checking if they are valid, and generating the vi-
sualization for the call graph of the program.

jam.js Starting file for the JAMScript compiler; calls the C and
JavaScript JAM translators. Returns the complete out-
put as an object containing both the C and JavaScript
code.

5 Design of the Compiler 67

Table 5.2: Description of JAMScript compiler files

File Description

jamc.ohm Contains the JAMScript extensions of the C parser.
Adds activities to the original C syntax. This file ex-
tends the grammar file from c.ohm.

jamCTranslator.js Translator for the JAMScript C parse tree. This file is
divided into two sections. The first portion is translators
for the new additions to the existing C language, such
as activities and jconditional specifiers. The second por-
tion is modifications to the original C translator, such
as checking if a variable being assigned to is a JData
variable and generating the appropriate code. This file
extends the translator from c.js.

jamjs.ohm Contains JAMScript extensions of the ES5 parser. Adds
activity, JData and jconditional declarations to the orig-
inal syntax. This grammar extends from the ES6 gram-
mar file in es6.ohm, which extends from the grammar in
es5.ohm.

jamJSTranslator.js Translator for the JAMScript JavaScript portion. Sim-
ilar to the jamCTranslator file, this file sets the ac-
tions in the two object variables. jamJSTranslator
contains the extensions to the JavaScript translator
and es5Translator contains modifications to existing
JavaScript translator rules. This file uses the transla-
tor defined in es6.js which extends from the translator
in es5.js

jCondTranslator.js Translator for the jconditional specifiers used in activity
declaration. This translator generates the code for both
the C and JavaScript activities and is inherited in both
jamCTranslator and jamJSTranslator.

jdata.js Used for generating the calls for declaring and assigning
to JData variables.

5 Design of the Compiler 68

Table 5.2: Description of JAMScript compiler files

File Description

symbolTable.js Symbol table object and utility functions. Used for set-
ting and checking identifier declarations. Only JData
variables, functions and activities are saved in the sym-
bol table.

types.js Used for checking if the variable types used in activity
and JData declarations are JAMScript compatible and
retrieve the requested codes from types.json. This file
provides a get method for each possible type of output
code request.

types.json A JSON object that lists the types that are JAMScript
compatible. Each type is specified with output codes
that are used depending on the situation when generat-
ing code.

The following is additional information about files inside of the lib/ohm/jamscript
folder.

activityMatrix.json – This is a JSON object that lists which activity types are allowed
to call other activities types. The file is structured with the following order; for each source
language there is a source activity type, then the destination call language and then the
destination activity type. For example, to see if an asynchronous C activity can call an
synchronous JavaScript activity we check the boolean variable at c.async.js.sync. If set to
true the call is allowed and if set to false the call would be rejected at compile time. We
perform checks on all calls between activities at compile time and if the user is using an
invalid call then the compilation will fail at that point with an error message to the user.

symbolTable.js – Contains the symbol table object that is used to keep track of JData
variables, functions and activities used in a JAMScript program. The symbol table supports
entering and leaving scopes so that symbols using the same name in different scopes will
not interfere with each other.

5 Design of the Compiler 69

types.json – A JSON object containing C variable types that are JAMScript compati-
ble and information that is used when generating code for each type. Table 5.3 describes the
properties that must be defined to allow using a C variable type as a JAMScript compatible
type, as well as an example of the property values to use int as a JAMScript compatible
type.

Table 5.3: Properties used in types.json

Property Description int Example
c_pattern C printf string format pattern "%i"
jamlib Code used in C jamlib for specifying the variable type "ival"
js_type JavaScript approximate of the type "Number"
c_code C shorthand of the type for activity arguments "i"
js_code JavaScript shorthand of the approximate type "n"
caster C function for casting non-string types to string "get_bcast_int"
jbroadcast enum variable for the C type "JBROADCAST_INT"

5.7 Adding Features to JAMScript

In this section we explain how to add a new feature to the JAMScript language with the
goal of better understanding how the different portions of the compiler work. For our
example we will add jconditionals to JAMScript.

Grammar

To begin adding a feature to JAMScript we must first come up with the syntax. The
following is an example of the type of functionality we would like the syntax to be able to
allow:

jcond {
ruleA: x > 3;
ruleB: y < z && node.type == "fog";

}

5 Design of the Compiler 70

We represent that syntax with the following Ohm grammar:

Jconditional = "jcond" identifier? "{" Jcond_entry* "}"

Jcond_entry = identifier ":" NonemptyListOf<Jcond_rule, jcond_logical> ";"

Jcond_rule = MemberExpr jcond_op MemberExpr

MemberExpr = MemberExpr "." identifier -- propRefExp
| identifier
| literal

jcond_op = "==" | ">=" | ">" | "<=" | "<" | "!="

jcond_logical = "&&" | "||"

Jconditional will be the starting point for the jcondition declaration. It is defined by
beginning with the string jcond. This is followed by an optional identifier string (inherited
from the base JavaScript definitions) that will be used for the namespace of the jcondi-
tional. Between two curly brackets we have 0 or more Jcond_entry. Because the rule
Jconditional starts with a capital, the number of spaces between its child rules does not
matter.

Jcond_entry represents a named jcondition rule. It begins with an identifier string,
then a colon, then a NonemptyListof (a feature built into the Ohm language). The list
takes in at least one Jcond_rule, and allows us to chain together multiple Jcond_rules if
they are separated by a jcond_logical.

Jcond_rule is the boolean condition contained in the jconditional entry. This is a
binary operation with a MemberExpr on the left- and right-hand sides with a jcond_op
as the operator in the middle.

MemberExpr specifies what is considered valid expressions in a jconditional. This rule
has three alterations and since one of them has a different arity (number of arguments), we
must name the alteration with an arity greater than one. We name this rule propRefExp
and the rules with only one arity can be left unnamed.

jcond_op is the list of permitted binary comparison operators that we allow in a
jconditional expression.

jcond_logical is the list of boolean logical operators we allow inside of jcondition rules.

5 Design of the Compiler 71

We now need to hook up the jconditional grammar to our existing grammar. Since
jconditional definitions should be inside of our JavaScript files, we add our new grammar
to the jamjs.ohm file inside of lib/ohm/jamscript. Declaring jconditionals should be
done at the top-level of the JavaScript file, so we use the previously overloaded JavaScript
top-level rule Declaration to add support for JAMScript activities:

Declaration += Jconditional
| Activity_def

Translator

With the grammar written we can now write the translator. Inside of jamJSTranslator.js
we have a jamJSTranslator object, each rule in the grammar must have a method with a
matching name and the same number of arguments. We add the following functions to be
able to parse the tree and generate code:

Jcond_rule: function(left, op, right) {
var code = 0;
if(left.sourceString === "sys.type") {

if(op.sourceString === "==") {
if(right.sourceString === '"dev"') {

code = 1;
} else if(right.sourceString === '"fog"') {

code = 2;
} else if(right.sourceString === '"cloud"') {

code = 4;
}

} else if(op.sourceString === "!=") {
if(right.sourceString === '"dev"') {

code = 6;
} else if(right.sourceString === '"fog"') {

code = 5;
} else if(right.sourceString === '"cloud"') {

code = 3;
}

} else {
throw "Operator " + op.sourceString + " not
compatible with sys.type";

}
} else if(left.sourceString === "sys.sync") {

if(op.sourceString === ">=" || op.sourceString
=== "==") {

if(right.child(0).ctorName === "literal" &&
Number(right.sourceString) > 0) {

code = code | 8;
}

}
} else if(left.child(0).ctorName !== "literal" ||
right.child(0).ctorName !== "literal") {

code = code | 16;
}
return {

string: "jcondContext('" + left.sourceString +
"')" + op.sourceString + ' ' +
right.sourceString,
code: code

};
},

5 Design of the Compiler 72

Jcond_entry: function(id, _1, rules, _2) {
var first = rules.child(0).jamJSTranslator;
var seperators = rules.child(1);
var rest = rules.child(2);
var code = first.code;
var string = first.string;
for (var i = 0; i < rest.numChildren; i++) {

string += ' ' +
seperators.child(i).sourceString + ' ' +
rest.child(i).jamJSTranslator.string;
code = code |
rest.child(i).jamJSTranslator.code;

}
return {

name: id.sourceString,
string: string,
code: code

};
},

Jconditional: function(_1, id, _2, entries, _3) {
var output = "";
var namespace = "";
if(id.numChildren > 0) {

namespace = id.sourceString + ".";
}
for(var i = 0; i < entries.numChildren; i++) {

var entry = entries.child(i).jamJSTranslator;
output += "jnode.jcond.set('" + namespace +
entry.name + "', " + "{ source: '" +
entry.string + "', code: " + entry.code + "
});\n";
jCondTranslator.set(namespace + entry.name, {

source: entry.string,
code: entry.code });

}
return output;

}

The methods must have the same number of arguments as the matching rules in the
grammar. Ohm generates a CST when parsing, therefore, any terminal characters that we
use in rules, such as "(" or ")", must also be an argument in the function. A technique for
notating that these variables contain no useful information for code generation is to name
them beginning with an underscore.

Jcond_rule has three arguments, all of which we will use. left and right are both sides
of a boolean equation, while op is the operator for the equation. We do special processing
to determine if the string sys.type appears in the equation, as we will use this information
to generate a bitmap code that is used internally by JAMScript when performing calls. We
then return an object containing the generate source code and the bitmap code.

Jcond_entry has two arguments that we will use during code generation, id and a
NonemptyListOf of JCond_rule using jcond_joiner as separators between each Jcond_rule.
NonemptyListOf is a built-in rule in Ohm that contains three children; the first child is
the first element in the NonemptyListOf, the second child is a list of the separators used
between each node in the NonemptyListOf, and the third child is the list of remaining
children in the NonemptyListOf. We build our output by parsing the first child node and
then using a loop we go through all remaining children and separators in the list. We use
the .jamJSTranslator property on each Jcond_rule. This will continue walking down
the parse tree while performing the action specified in the Jcond_rule function inside of
the jamJSTranslator object. The Jcond_rule function returns an object, so when we use
jamJSTranslator we get an object containing two properties: string and code.

5 Design of the Compiler 73

Jconditional has two arguments that we will use for code generation: id, which is
an optional identifier, and entries, which is zero or more Jcond_entry. To check if id
is specified we check if there is a child; if there is then the id is specified and the child
contains the identifier. As we only need the string of the id, we can use the sourceString
parameter and skip traversing into the child node. We then loop over the Jcond_entry
children, parsing each child to generate output code and setting values in a jCondition
hash map. Parsing a Jcond_entry returns an object and we can access the information
returned by calling its properties. The Jconditional method returns a string containing the
generated code.

We do not need to define translator rules for MemberExpr, jcond_op or jcond_logical
because we are only accessing the string values stored in them. When we are using these
nodes, we can get the necessary information from them by using the sourceString property
instead of recursively calling the jamJSTranslator and having to define an action for each
node.

5.8 Sample Compilation

In this section we go step by step through the process that the jamc compiler takes when
processing a JAMScript program. Our sample program will alternate activity calls between
the C side and the JavaScript side, incrementing a counter that counts the total number of
calls. The program also prints the value of the counter when it returns to the C side and
save the value to a logger.

5 Design of the Compiler 74

JavaScript file:

#include <stdio.h>

void ping(int);

jasync function pong(int count) {
x = count;
printf("%i\n", count);
ping(count+1);
return;

}

int main() {
ping();
return 0;

}

C file:

#include <stdio.h>

void ping(int);

jasync function pong(int count) {
x = count;
printf("%i\n", count);
ping(count+1);
return;

}

int main() {
ping();
return 0;

}

The compiler starts by reading in both the C file and JavaScript files, checking to make
sure both files are specified. The compiler then sends the C input file for preprocessing.
The include statement of stdio.h will be saved in an array and a marker is placed into the
code after the include statements and before the user’s code. The Clang preprocessor is

5 Design of the Compiler 75

then ran on the C input file using fake headers as a replacement for the standard libraries.
This means that no code from the actual stdio.h will be generated into the preprocessed
source file. If there were other libraries used then they would be preprocessed normally
and the appropriate code would be placed into the generated source file.

The JAMScript compiler then calls the Ohm compiler with preprocessed C file and
the original JavaScript input file. The Ohm compiler starts by parsing the JavaScript
file by matching rules and creating a parse tree. The parse tree is then sent into to tree
walker, which walks through the parse tree to generate output code. A symbol table hash
map is used to keep track of JData variables, activities and functions defined by the user.
The tree walker works by checking the name of the rule that was added to the parse tree
and looking for a matching action with the same name. As we walk through the parse
tree, the JData declaration of variable x will be stored in the symbol table with its type
information. The activity declaration of ping will also be stored, but no code for the
activity is generated until we process the C file and see if there is a matching prototype.
Delaying code generation allows us to generate code with the appropriate C data types for
the parameters and return type. Whenever we see a function call we store it in the call
graph object. When we finish walking through the JavaScript tree, we then move onto the
C side. The symbol table is reset so only the activities and JData variables remain and is
then passed to the C walker and call graph. In our example, the symbol table at this point
will only contain the activity ping and the JData variable x.

The preprocessed C input file is then sent to the parser, and the generated parse tree
is walked through to create the output source code. The first statements parsed by the
C translator will be the code generated by the preprocessor; when walking through these
statements we look for the marker that was placed into the code during the preprocessing
step. This marker tells us to reset the code generation output buffer, as we know all code
above the marker is code created by the preprocessor and will be generated again later.
During translation we find a matching prototype for the JavaScript activity ping, so we
generate the C code for the remote activity call and the JavaScript code for the activity.
When we walk through the code we check simple assignments statements, such as as x
= count, to see if the variable on the left-hand side matches a previously declared JData
variable. Since x is a JData variable, we check if it is assignable for its jdata type and source
language. In this case x is a JData variable and a logger on the C side, so we replace the
statement with the code necessary to write to Redis. The function main is renamed as the

5 Design of the Compiler 76

function user_main and a new main method is generated the will perform some automatic
tasks before calling the user_main function to begin the user’s JAMScript program.

When the C compiler finishes, we combine the JavaScript output from the JavaScript
compiler and the JavaScript activity code generated by the C compiler into one JavaScript
file. We then take the C code generated by the C compiler and add back the original
include statements, in this case stdio.h. We then use the Clang to compile the C code.
The final jxe executable is created by zipping the compiled C executable and the generated
JavaScript code file.

77

Chapter 6

Potential Programming Patterns

Using the features that JAMScript provides, we can easily implement many new and in-
teresting design patterns. In this section we discuss a number of potential programming
patterns and show how they can be implemented in JAMScript.

JAMScript is a language designed to program a cloud, fog and device resource stack.
It is designed towards data-intensive applications that involve IoT in large-scale settings,
such as smart cities. In this section, we discuss the different programming patterns that
are enabled by the JAMScript design. The programming patterns show how the built-in
language constructs can be used to achieve the example objectives. In a cloud, fog and
device resource stack, one of the problems to address is function placement. For instance,
by placing function execution closer to the device we could provide better performance or
enable offline processing. One downside of such function placement is the lack of shared
information, in applications such as machine learning sharing training operations would
reduce duplicated computations.

Another concern with data-intensive IoT applications is controlling data flows so that
networks are not inundated by high-rate data updates from the devices. Placing data
transformation functions closer to the data sources can be used to reduce the impact of
high-rate data updates. The JAMScript design allows data reduction transformations to
be applied on the data streams at the device while more processing takes place in the fog
or cloud. The ability to decouple the data reduction transformations from the bulk of the
computations enables the data filtering pattern in JAMScript.

While fogs bring edge-processing to IoT, they also introduce several problems. One

6 Potential Programming Patterns 78

problem is fault tolerance; which determines how devices should reorganize when fogs fail.
In a cloud, fog and device resource stack, failures could occur at any of the three levels. In
this chapter, we consider fog failures only. We assume cloud failures are masked by existing
cloud-specific techniques, such as active state-machine replication approaches. We focus
on the ability to reorganize the device-to-fog associations once a fog failure is detected.
We present a fog fail-over pattern that can be employed by the programs to tolerate fog
failures.

Another problem that is interesting in a cloud, fog and device resource stack is scaling
or modifying device to fog associations as their relative numbers change. Unlike clouds,
fogs are not elastic because they are small-sized resource pools that don’t have much spare
capacity. Therefore, device-to-fog associations need to adapt according to the location of
the devices, such as with mobile devices, and the available number of fogs. The most
important factor to consider when designing for this problem is that devices are served by
the fogs in the best possible manner by taking the fog’s load and location into consideration.

Fig. 6.1 JAMScript Sample Deployment Layout

6 Potential Programming Patterns 79

6.1 Patterns for Edge-Oriented Computing

One of the features designed into JAMScript to support edge-oriented data processing is a
variation of the pipes-and-filter pattern for the edge. The goal is to support many concur-
rent pipe flows at different edge servers where the exchanging applications are co-resident.
The concurrent pipe flows should increase the overall throughput of data exchanged be-
tween the applications, as well as minimize the disruptions in the data exchanges between
applications due to device-fog or fog-cloud disconnections.

Fig. 6.1 shows an example of a JAMScript deployment layout. The controllers represent
the J nodes, workers represent the C nodes and databases are the JData Redis deployments.
A cloud can have multiple fogs connected, and each fog can have multiple devices connected.
For clarity, this diagram shows each device with one J node and one C node but it is possible
for a device to have multiple C nodes.

6.2 Function Placement Pattern

When a controller calls a sub-controller, we could execute the call at any of the possible sub
levels. For example, a call from the cloud could be executed at the fog or device. Similarly,
when a worker calls a controller, we could execute that call in the device, fog, or cloud. The
function placement pattern determines the location level where the call actually executes.

The function placement can be either static or dynamic. With static placement, we
know at compile time where the function is going to run. We have either explicitly specified
the location to run the function on the device, fog or cloud or we have left it as the default
policy. The other option is to determine the location using dynamic rules, which is a data
dependent approach for determining the execution location for a function.

Static

In the static placement pattern, we use the conditional execution structure, jcondition,
to specify at which level functions should run. Knowing where a function will run when
writing the program allows the ability to fine-tune the way the data will be handled, such
as accounting for the different loads and transmission times that will be encountered. In
applications where each J node must be able to respond quickly, it would be beneficial to
force execution at the device and not allow for the function to be executed in the fog or

6 Potential Programming Patterns 80

cloud. For example, in an autonomous vehicle situation where the J node is performing
decisions about what actions the vehicle should make based on the input from C nodes
connected to sensors. In this case, if the J node fails on the device or is overloaded and
not able to keep up in real time anymore it is best for the application to stop the vehicle
instead of trying to rely on the fog or cloud for instructions, as these decisions need to be
made with the smallest delays possible and should not be at risk of network problems.

jcond {
deviceOnly: sys.type == "device";

}

jasync function {deviceOnly} deviceOnlyActivity {
// Code to execute

}

In this example we use a jcondition rule to ensure that the activity will only run on the
device. The rule deviceOnly is defined in the jcond block and then used when defining the
activity. Because activities will always try to execute at the lowest level in the hierarchy as
possible, it is not necessary to explicitly state that an activity should run on the device, the
device will be the default level to run at if no level is specified. This means that having no
jconditions at all would fit the pattern of static function placement, as it can be determined
at compile time what level on the hierarchy each function will run.

Dynamic

We can apply a dynamic function placement pattern by using the logger and broadcaster
to express conditions based on which the function execution location will be decided. An
example where this could be useful is when the user would prefer to have calculations
performed with minimal latency but would accept a delayed result if necessary. The edge
will be able to provide results quicker when the load is low, but when the load on the
edge is high the cloud will be able to dynamically provide the same results. To program
this example a logger variable is set at the fog by pushing the current CPU load and a
broadcaster is set at the cloud to a load threshold. The function to execute would have a
conditional rule to run on the fog if the current load, as reported by the logger, is below a
certain value. If the current load exceeds that value then the request will go to the cloud
for execution.

6 Potential Programming Patterns 81

jcond {
loadCheck: sys.type == "fog" && load < 50;
cloudRun: sys.type == "cloud";
fogRun: sys.type == "fog";

}

jdata {
int load as logger;

}

jasync function {loadCheck || cloudRun} loadBalancedActivity {
// Code to execute

}

jasync function {fogRun} setFogLoad(curLoad) {
load = curLoad;

}

In this code example we use two jcondition rules. The first rule loadCheck will only run on
a fog, and uses the logger variable load to check if the current load is below a threshold. The
load variable can be periodically updated by calling the setFogLoad function, which uses
the condition fogRun to limit execution to the fog. Using the jcondition rule cloudRun
allows the loadCheck activity to run on the cloud. We use a logical or to join the two rules
when defining the function, ensuring the function will always run. Activities attempt to
run on the lowest level of the hierarchy as possible; if the loadCheck condition passes the
activity will run on the fog, and if it fails the activity will run on the cloud.

6.3 Data Filtering Pattern

Data filtering is a pattern for reducing network bandwidth usage by transforming data at
the device or fog. JAMScript provides the logger construct to push data into the network,
this can then be filtered by rewriting the data streams at the device or fog. Data filtering
is performed by application specific functions provided by the programmer.

We can utilize the data filtering pattern to create a database of the temperature values
for a city based on the temperature sensors attached to connected devices. In this situation,
it would be redundant to store the information from every temperature in the city. Data

6 Potential Programming Patterns 82

filtering could be utilized to reduce all the separate readings to a single value. For example,
if we equipped vehicles with multiple temperature sensors, we could have each sensor as an
independent C node writing to a logger. An on-device J node could compare the results
of all sensors and perform a decision about which temperature reading is most likely to be
correct. In our example we will pick the one with the lowest temperature, as this sensor
is likely to be the least affected by sunlight. We can then send this data to the fog, which
would perform a second data filtering. As each fog is responsible for a limited physical space,
it would be redundant to store the temperature readings from each device connected. An
average of all reported temperatures from the devices can be taken, to account for different
calibrations in the sensors, this can then be sent to the cloud for logging.

6 Potential Programming Patterns 83

jdata {
int tempSensors as logger(device);
int vehicleTemps as logger(fog);
int areaAverage as logger(cloud);

}

jcond {
deviceOnly: sys.type == "device";
fogOnly: sys.type == "fog";

}

jasync function {deviceOnly} vehicleTempFinder() {
var connectedDevices = tempSensors.size();
var lowestValue = tempSensors[0].getLastValue();
for(var i = 0; i < connectedDevices; i++) {

var sensorTemp = connectedDevices[i].getLastValue();
if(sensorTemp < lowestValue) {

lowestValue = sensorTemp;
}

}
vehicleTemps = lowestValue;

}

jasync function {fogOnly} areaAverageCalculate() {
var connectedVehicles = vehicleTemps.size();
var sum = 0;
for(var i = 0; i < connectedVehicles; i++) {

sum += vehicleTemps[i].getLastValue();
}
areaAverage = sum / connectedVehicles;

}

Here we show the JavaScript code for the example described above. On the C side, not
shown, we would have each node writing to the device logger tempSensors with the
temperature reading of a sensor in a function. The vehicleTempFinder activity will run
on the device J node because of the deviceOnly jcondition rule. This activity goes through
the last logged state of the tempSensors logger and finds the sensor with the lowest value.
It logs the result to a fog logger vehicleTemps, which stores the lowest value for all the
vehicles in the fog. A fog only activity, areaAverageCalculate, takes the average of all

6 Potential Programming Patterns 84

reported vehicle temperatures for that fog and saves it to the cloud logger areaAverage.
Another form of data filtering is to use the technique of selective logging. Instead of all

data from a node being sent to a parent node to decide what needs to be saved, we could
select which data is important before it is sent and only send that. In this case we decide
at a parent level, such as the cloud, what criteria we are looking for in a device and tell
the device to turn on additional logging. For example, we can create a database of how
weather anomalies can affect engine performance using selective logging. The vehicular
devices would log their current position using GPS coordinates and the cloud would be
connected to a live database of weather anomalies, such as smog. The cloud could then tell
any vehicle that is within the GPS coordinates of a weather anomaly to turn on complete
engine sensor logging.

6 Potential Programming Patterns 85

jdata {
int engineLog as logger(cloud);
struct curPos {

int lat;
int lng;

} as logger(device);
struct anomaly {

int latMin;
int latMax;
int lngMin;
int lngMax;

} as broadcaster;
}

jcond {
deviceOnly: sys.type == "device";
anomalyZone:

curPos.lat > anomaly.latMin && curPos.lat < anomaly.latMax
&& curPos.lng > anomaly.lngMin && curPos.lng < anomaly.lngMax;

cloudOnly: sys.type == "cloud";
}

var currentEngineTemp;

jasync function {deviceOnly && anomalyZone} startLogging() {
setInterval(function() {

engineLog = currentEngineTemp;
}, 500);

}

function broadcastAndLog(newAnomaly) {
anomaly = newAnomaly;
startLogging();

}

In the code example above, we use a logger struct to record the current position of the
vehicles and a broadcaster struct to record the bounding box of an anomaly we want to
track. When an anomaly is detected the function broadcastAndLog is called with an
Object containing the bounding box of the anomaly. The function will broadcast the Object

6 Potential Programming Patterns 86

and then call the startLogging activity. The activity will only run on device, representing
the vehicle, and check if the vehicle’s current position, as recorded into the curPos logger,
is within the anomaly zone by using jcondition comparison. If the location is within the
area, the vehicle will start saving the current engine temperature into the engineLog logger
every 500 milliseconds.

6.4 Fog Fail-Over Pattern

The Fail-Over at the Edge pattern deals with designing applications to handle failures at
the edge to minimize the distribution in the application. When a fog node fails the runtime
will automatically try to connect to a new fog, but if the failed fog was performing an
action for the device then all progress will be lost. In Fig. 6.1, if the fog F1 fails then all
the devices that were previously connected would try to connect to the nearest fog in range
(F2).

We can use the fog fail-over pattern in situations where the device is using the fog to
perform long calculations, in these cases if the fog fails we would like to avoid restarting the
calculations from the beginning. We could handle this by periodically saving the progress
of the calculations in a logger at the fog. If the fog would then crash, the device would
automatically reconnect to a new fog but all progress would be lost. We could use the
cloud to detect that progress has restarted, based on the data being saved to the logger,
and could push out the last saved update from the failed fog to the newly connected fog
using the broadcaster.

6 Potential Programming Patterns 87

jdata {
int saveState as logger;
int recoveryState as broadcaster;

}

jcond {
fogRun: sys.type == "fog";
cloudRun: sys.type == "cloud";

}

var computation;
jasync function {fogRun} fogCompute() {

// computation is assigned to with a progress update

saveState.log(computation);

var oldProgress = recoveryState.getLastValue();
if(oldProgress > computation) {

computation = oldProgress;
}

}

var saveStateLog;
jasync function {cloudRun} cloudCheck() {

var newUpdate = saveState[0].getLastValue();
if(newUpdate) < saveStateLog) {

recoveryState.broadcast(saveStateLog);
} else {

saveStateLog = newUpdate;
}

}

In this code sample we show a simple version of a fog-fail over pattern example. We assume
there is only one device, one fog and one cloud. We use an int as the jdata variable type
to save progress for simplicity in this example, JData would likely need to be a structure
variable to handle more complicated data storage. The fogCompute activity performs a
calculation that is not shown, and saves the result to the cloud logger saveState. The
cloud runs an activity, cloudCheck, that checks if the state of the logger is further along
than the previous result. If the result is less than the previous result then the cloud can

6 Potential Programming Patterns 88

assume that the fog has failed and a new fog was brought in, restarting the computation.
The cloud then broadcasts the last recorded value back to the fog. The fog checks each
time it writes to the log if the cloud has broadcasted a new greater value, showing that
there was a previous fog further along in computation, and replaces its progress with the
broadcasted value. When we add more devices and fogs to this example, we would have
to include an identifier code in the logger so that the cloud would know which fog it is
comparing progress with.

6.5 Edge Covering Pattern

The Edge Covering Pattern represents the method to handle device nodes transitioning
between connected fogs. In Fig. 6.1 this would be a device, such as D3, determining that
it would be more appropriate for it to be connected to fog F2.

For example, the devices could represent moving objects, such as people carrying smart
devices, and the fogs could each represent a room running a fog machine. When the user
carrying a device changes rooms, they might still have a connection to the previous room
even though the current room has a better connection. We could trigger the system to
rearrange in a more optimal layout by periodically disconnecting devices from their fogs.
This would cause the devices to automatically try reconnecting to the best available fog,
and creating a new more optimal layout.

6.6 Pipes and Filters at the Edge Pattern

Using the piping and filtering provided by JData flows, we can have multiple applications
deployed on a single fog node communicating with each other. This allows the applications
to pass data back and forth, creating a pattern that we can utilize. We can separate
functionality into different applications that we can selectively run on different devices,
depending on the required functionality.

For example, we could have an application that runs on smart lighting devices in a room
and a separate application that runs on smartphones. When the user enters the room, the
phone will connect to the same fog that the lighting is connected to, allowing the two
applications to communicate with each other at the fog level using flows. When the user
requests a change of lighting on their phone, the message would be sent to the fog using

6 Potential Programming Patterns 89

a logger. The fog would then use a flow to send a message to the application controlling
the state of the lights, which would use a broadcaster to send a message to all lights in the
room to change their state.

90

Chapter 7

Experimental Results

In this chapter we analyze the runtime performance of various JAMScript components by
focusing on the time delays that occur when using these features. The time measurements
were calculated using the monotonic clock on C, and the JavaScript library posix-clock1 to
access the monotonic clock through a C++ library.

Experimental Setup: All testing was performed on a single computer, simulating a
JavaScript client device and C device nodes. For the purposes of these tests, a single ma-
chine setup was chosen as a way to analyze the peak performance of JAMScript. We have
previously performed experiments with JAMScript in Docker containers and with Rasp-
berry Pis for multi-node experiments, but in this section we are would like to minimize all
possible delays that are not inherent in the JAMScript implementation, such as networking
delays. The machine used for testing had a 2.7 GHz Intel Core i5 dual-core processor and
8 GB of DDR3 RAM.

7.1 Activity Calls

In this section we measure the time delay of executing JAMScript activities, this is the
extra time cost of launching a remote activity compared to running a function locally. All
activity calls in the section are remote function calls between languages. Calls specified as
originating from the C side are calling activities on the JavaScript side, and calls specified
from the JavaScript side are calling activities located on the C side.

1https://github.com/avz/node-posix-clock

7 Experimental Results 91

Fig. 7.1 Initial Call Time Fig. 7.2 C and JavaScript Call Time

Our initial testing found that JAMScript activities have a longer delay before executing
when the program has recently launched and the total number of activities called is low.
This is likely caused by the Just-in-Time compiler that Node.js V8 engine is using; when
code is repeatedly executed it becomes more thoroughly optimized by the compiler. To
account for this in later performance tests we first run 1,000 asynchronous activities and
1,000 synchronous activities before continuing the testing. In Fig. 7.1 we measure the time
between calling an activity and when the code in the activity begins executing for the
first 500 calls of each activity type. Our results show that the time to call an asynchronous
activity will become approximately 5 times faster than at the first execution, taking around
300 calls to reach optimal performance. When we run the synchronous activities after the
asynchronous activity calls complete, it only takes a few calls to reach optimal performance.
This shows that most of the JAMScript library code is shared between the synchronous
and asynchronous activities and that the optimizations made by the compiler are shared
by the different types of activities in JAMScript.

In Fig. 7.2 we compare the time to run 1,000 asynchronous activity calls when launched
from JavaScript to call C code and compare it to the time to run 1,000 asynchronous
activities that are launched from C side to call JavaScript code. The time is measured as the
difference between when the activity was called to when the code inside the activity begins
executing. Our results show that the JAMScript code is slightly faster when launched from
the C side. This is likely due to the fact that there is more processing being performed on
the side that launches an activity call and that C code is, in general, faster than JavaScript.

7 Experimental Results 92

Fig. 7.3 Sync and Async Call Time Fig. 7.4 Jcondition Call Time

In Fig. 7.3 we compare the time to run 1,000 asynchronous activity calls to the time
to run 1,000 synchronous activity calls, with all calls being launched from the C side.
The time is measured as the difference between the activity was called to when the code
inside the activity begins executing. We see that the time to launch an asynchronous
activity is slightly faster than launching a synchronous activity. This is likely be due to
the asynchronous code having less overhead, as the calling code does not need to look for
a return value.

In Fig. 7.4 we compare the time to run an asynchronous activity with and without
a jcondition rule applied. This allows us analyze the additional overhead that running
a jcondition adds to the runtime. The code was launched from the JavaScript side and
we recorded the time it takes for the code inside the activity to begin execution. The
condition tested was a simple binary equation that will always evaluate to true to minimize
the amount of processing that will be done to evaluate the rule. The results show that there
is a slight performance increase when using the jcondition, which may be due to increased
caching.

7 Experimental Results 93

Fig. 7.5 Parallel and Sequential Call
Time Fig. 7.6 Sync Roundtrip Call Time

In Fig. 7.5 we compare the time to run 1,000 asynchronous activities sequentially com-
pared to running them in parallel when launched from a C client. In the sequential test
we launch an activity, wait for activity to complete, and then launch the activity again. In
the parallel test we launch all 1,000 activities without waiting for the previous activity to
finish. We recorded the time for the code inside the activity to begin execution and our
results show that there is a performance advantage to launching activities in parallel.

In Fig. 7.6 we compare the time to start executing code inside of a synchronous activity
and the time for an empty synchronous activity to return a value, when called from a
C client. We see that returning a value from a synchronous activity is faster than twice
the time to launch an activity. This indicates there are performance benefits, due to less
overhead, of using synchronous return values instead of using a separate activity to return
a value.

7 Experimental Results 94

7.2 Reading and Writing to JData

In Fig. 7.7 we compare the performance of a JData logger variable as we increase the
number of C nodes connected. The test was performed by inserting a new value into a
logger variable and recording how long it took for the JavaScript side to register a change
in the variable’s contents and then repeated 1,000 times. We doubled the number of C
clients after each test and then ran the test on each client at the same time. The results
show that as we increase the number of C devices there is a corresponding increase in the
time it takes for the change in variable contents to occur. This likely because each client
is trying to write to a single Redis server at the same time, creating a bottleneck. There
is also an approximately 10 percent chance that the update takes substantially longer time
than ordinary, which could be because of the way we batch and send updates to the Redis
server.

In Fig. 7.8 we compare the performance of the JData broadcaster as we increase the
number of C nodes connected to the J node. Our results show that from 1 to 4 C devices
the performance of the broadcaster does not change significantly but at 8 C devices there
begins to be a performance penalty. This may show that increasing the number of devices
does not decrease the performance of the broadcaster directly, but after a certain number
of devices are connected there is a resource limitation, possibly caused by simulating too
many devices on a single machine.

Fig. 7.7 Logger Reaction Time Fig. 7.8 Broadcaster Reaction Time

95

Chapter 8

Related Work

Software-Defined Programming

Software-defined networking has inspired a host of software-defined programming frame-
works for IoT [14, 15, 16], edge [17], fog [18, 19] and cloud computing [20]. A software-
defined IoT framework encompassing software-defined storage [21] and software-defined
security [22] was developed in [14]. The framework’s model includes the following layers:
the physical layer consisting of the physical devices in the system, the middleware layer
where the IoT and software-defined controllers reside and the application layer. A similar
three-layered architecture was proposed in [15] for smart urban sensing.

MIST [19], a software-defined fog system leveraging software-defined mobility [23] for
real-time surveillance was developed to provide device mobility and change adaptively based
on context. Nodes are classified as being controllers, hosts or switches to enable seamless
execution even in the presence of frequent changes in membership. A runtime framework
for managing software-defined IoT clouds was proposed in [20]. The goal of the framework
is to abstract dynamicity and scalability issues from the management of software-defined
IoT cloud systems. The framework provides an automated and fine-grained central control
and autonomous IoT cloud resources aimed at improving system efficiency.

Cloud Programming

Orleans [24] is a software framework for building scalable and reliable cloud applications.
Orleans uses actor-based distributed components called grains that consist of isolated units.

8 Related Work 96

Grains communicate asynchronously through message passing and use a single-threaded
execution model. In cases of high load and lower system throughput, Orleans creates mul-
tiple instances of a busy grain to handle multiple simultaneous executions. The consistency
model in Orleans is achieved using optimistic and atomic transactions that are isolated.
One of the main design goals of Orleans is that the runtime handles system level attributes
such as scalability, reliability, fault tolerance and durability while application developers
only focus on the application logic.

Dripcast [25] is a Java-based application development framework to integrate smart
devices into cloud computing infrastructure. Further, it is a server-less framework for
storing and processing Java objects in a cloud environment. These Java objects will be
made available on smart things and users can manipulate those objects as if they are local
objects. Dripcast implements transparent Java remote procedure calls and a mechanism
to read, store and process Java objects in a distributed, scalable data store.

IoT Programming

Mobile Fog [26] is a platform as a service programming framework for IoT. An interface with
a single application code is exposed that allows dynamic scaling. A Mobile Fog application
consists of processes that cover defined geographical locations. Processes are connected in
a three-tier hierarchical architecture and are distributed on computing elements such as
cloud, fog and edge devices. Mobile Fog assumes that fog computing infrastructure nodes
are placed in the network and a programming interface is provided by the fog. Mobile
Fog handles scaling by making application developers specify the scaling policy at each
hierarchical level. Load balancing is based on creating on-demand fog instances at the
same level as an over-loaded fog instance.

Calvin [27] is a framework that merges IoT and cloud in a unified programming model.
It is an IoT programming framework, which combines the ideas of actor model and flow-
based computing. To simplify application development, it proposes four phases to be
followed in a sequential fashion: describe, connect, deploy and manage. These phases are
supported by the runtime, APIs and communication protocols. The platform dependent
part of the Calvin runtime manages inter-runtime communication, transport layer support,
abstraction for I/O and sensing mechanisms. The platform-independent runtime provides
an interface for the actors, the scheduler of the Calvin runtime also resides in this layer.

8 Related Work 97

The Calvin runtime supports multi-tenancy, once an application is deployed actors may
share the runtime with actors from other applications.

Simurgh [28] provides a high level-programming framework for IoT application develop-
ment. The framework supports exposing IoT services as RESTful APIs and composing the
IoT services to create various flow patterns in a simplified manner. The overall Simurgh
architecture has two main layers: things layer and platform layer. In the “thing layer” is
the network discovery and registration broker that listens to incoming connection requests
from the devices’ and handles them. The “platform layer” stores information about things
and services, manages flow design and composition and handles requests. An API media-
tor assists programmers to expose their applications through RESTful APIs. The Simurgh
framework provides detailed support to IoT development. Assistance to develop, manage
and reuse flow patterns as provided in this framework is crucial for IoT programmers.

Polyglot Programming

GraalVM [29] supports a system for developing high performance applications in Java with
the ability to use multiple programming languages in one program. Graal applications can
be written in any combination of Java, JavaScript, Python, Ruby, Scala, and all LLVM
compatible languages, such as C, C++ and Rust. GraalVM’s support for multiple lan-
guages is based on earlier work from TruffleVM [30]. TruffleVM allows access to foreign
language functions and objects while keeping the code to use these features to a minimum.
For each supported programming language, TruffleVM uses a language implementation
for translating the input code into a common intermediate representation. The output is
then dynamically compiled by the Graal compiler and executed by GraalVM in the Java
HotSpot Runtime. The TruffleVM polyglot design was later incorporated into GraalVM
with support for more languages by adding additional Truffle implementations. GraalVM
supports all LLVM compatible languages by utilizing Clang to generate LLVM bitcode and
then using the bitcode to dynamically compile the program in the HotSpot VM. GraalVM
can also compile Java code ahead-of-time to run on the custom high performance VM,
SubstrateVM.

8 Related Work 98

Mobile Computing Programming

Odessa [31] proposes a mobile programming model where application developers structure
applications as data flow graphs. Odessa is best suited for streaming applications where
automatic data offloading and parallelism are desired attributes. An edge or connector
in a data flow graph represents data dependencies between the vertices, which represent
different stages of processing. Processing stages in an application operate independently
with no shared states and only communicate through connectors, thus abstracting the pro-
gramming details and complexity of different processing stages from one another. Odessa’s
programming design is based on the Sprout runtime [32] which allows developers to write
parallel and distributed applications while hiding the complexity.

Programming Frameworks for Distributed Systems

EventWave [33] is an event-driven programming framework for writing distributed applica-
tions. EventWave allows a single logical node to be distributed over a number of physical
nodes. The notion of atomic events is introduced, this allows application developers to not
have to focus on elasticity but rather on the application behavior and logic. It assumes
that an application that runs correctly on a few logical nodes will run correctly when the
number of nodes increases or decreases.

The eLinda [34] model extends Linda, a coordination-programming model for writing
parallel and distributed applications. The Linda model supports a shared memory store
called tuple space for communication between the processes of an application. eLinda
provides support for broadcast communication. It proposes the “Programmable Matching
Engine” (PME) that allows program developers to specify a custom matcher that can be
used internally to retrieve tuples from a shared store. The PME has been found to be
advantageous for parsing graphical languages and video-on-demand systems.

Programming Frameworks for Intermittent Systems

DINO [35] was proposed as a programming model for addressing the issues of intermit-
tent (partial or repeated) executions that can result in faulty or wrong outputs and cause
consistency problems. Long-running computations are semantically divided into shorter

8 Related Work 99

tasks through task boundaries inserted by application developers. DINO guarantees that
an applications state at the task boundary is consistent with the finished execution of a
preceding task. Checkpointing and failure recovery are used to track the states of the ex-
ecution of an application. Instructions in DINO are executed as transactions and failures
are handled by resuming execution at the task boundary before the failure.

A similar programming model for intermittent programs called Chain [2] was proposed.
Chain argues that checkpointing as used in [35] is computationally expensive. Therefore,
it uses a control flow that is task-based for failure recovery and a memory model that is
channel-based which allows data exchange among tasks with high consistency guarantees.
A Chain program is a collection of tasks that form a task graph which defines task controls
flows (inflow and outflow).

100

Chapter 9

Conclusions and Future Work

We believe JAMScript is positioned to be an early innovator in the edge computing space.
By building JAMScript on top of a combination of languages that already are popular in
the developer community we can give programmers a quicker learning period for adopting
the language. The learning period of JAMScript for existing C and JavaScript developers
is designed to be as minimal as possible by integrating features into existing language
structures and syntax.

JAMScript has the ability to implement new edge computing design patterns with
minimal effort by taking advantage of built in features. In IoT situations a complex network
of nodes can be deployed easily and reorganized automatically to maximize performance.
Smart cities can deploy large scale JAMScript applications with vehicular devices running
as devices, reconnecting to nearby fogs as they travel between city infrastructure nodes.
Smart devices can run JAMScript applications to control home automation systems in
a home or business, connecting to different fogs depending on their location. Machine
learning applications can potentially benefit from JAMScript as well. Neural Networks
can be created using nodes as neurons, allow a system that can share tasks over multiple
devices and handle failure of individual nodes without having to restart computations.

In this thesis, we covered the design and benefits of JAMScript. We detailed how the
JAMScript compiler works, including background information on how to write an Ohm
grammar and parser. The structure and components of the JAMScript compiler architec-
ture were presented. We explained the syntax of JAMScript and demonstrated how to
write a JAMScript program. We detailed the features of JAMScript, demonstrating how

9 Conclusions and Future Work 101

to make activity calls and use callbacks. We introduced the shared memory store JData,
the conditional execution construct jconditional and the streaming data pipeline of flows.
We show how to modify the compiler using Ohm to add new features to JAMScript. We
created fog computing programming patterns and showed how they can be achieved with
minimal effort using the features that JAMScript provides. Finally, we demonstrated the
performance of JAMScript with experimental testing.

In the future, JAMScript has the potential to improve in many ways, from schedulers
that use call information and machine learning to optimize during runtime to improved
discovery services for automatically finding the best nearby fogs and clouds to connect with.
On the compiler side, a full symbol table implementation would bring many advantages
for static analysis tools that trace the complete usage of a variable through the program.
There would also be benefits for JAMScript to move the compiler away from Ohm to
another compiler builder technology. Ohm was a good choice during early development to
enable rapidly building the grammar and allowing easy expansion of the language when
adding new features. Since then, the limitations of Ohm in terms of compiling speed and
being able to provide helpful error messages when failing during compilation have become
more important.

102

Appendix A

JAMScript Grammar in EBNF

A.1 C Extension

〈program〉 ::= 〈external_decl〉+

〈external_decl〉 ::= 〈activity_def 〉
| 〈prototype〉
| 〈function_def 〉
| 〈variable_decl〉
| 〈preprocessor_line〉

〈type_spec〉 ::= ‘jcallback’
| /* Inherited C types */

〈activity_def 〉 ::= 〈sync_activity〉
| 〈async_activity〉

〈async_activity〉 ::= ‘jasync’ 〈jcond_specifier〉? 〈declarator〉 〈compound_stmt〉

〈sync_activity〉 ::= ‘jsync’ 〈decl_specs〉 〈jcond_specifier〉?
〈declarator〉 〈compound_stmt〉

A JAMScript Grammar in EBNF 103

〈jcond_specifier〉 ::= ‘{’ 〈jcond_expr〉 ‘}’

〈jcond_expr〉 ::= ‘(’ 〈jcond_expr〉 ‘)’
| ‘!’ 〈jcond_expr〉
| 〈jcond_expr〉 〈jcond_expr_op〉 〈Jcond_expr〉
| 〈id〉 ‘.’ 〈id〉
| 〈id〉

〈jcond_expr_op〉 ::= ‘&&’ | ‘||’

〈function_def 〉 ::= /* Inherited from C grammar */

〈variable_decl〉 ::= /* Inherited from C grammar */

〈preprocessor_line〉 ::= /* Inherited from C grammar */

〈compound_stmt〉 ::= /* Inherited from C grammar */

〈declarator〉 ::= /* Inherited from C grammar */

〈decl_specs〉 ::= /* Inherited from C grammar */

〈compound_stmt〉 ::= /* Inherited from C grammar */

〈id〉 ::= /* Inherited from C grammar */

A JAMScript Grammar in EBNF 104

A.2 JavaScript Extension

〈program〉 ::= 〈declaration〉+

〈declaration〉 ::= 〈jconditional〉
| 〈jdataDecl〉
| 〈activityDef 〉
| 〈jviewDecl〉
| 〈declaration〉
| 〈statement〉

〈jconditional〉 ::= ‘jcond’ 〈identifier〉? ‘{’ 〈jcondEntry〉* ‘}’

〈jcondEntry〉 ::= 〈identifier〉 ‘:’ 〈jcondRule〉 〈jcondList〉* ‘;’

〈jcondList〉 ::= 〈jcondJoiner〉 〈jcondRule〉

〈jcondRule〉 ::= 〈memberExpr〉 〈jcondOp〉 〈memberExpr〉 (‘,’ 〈identifier〉)?

〈memberExpr〉 ::= 〈identifier〉 ‘(’ 〈memberExpr〉 ‘)’
| 〈memberExpr〉 ‘.’ 〈identifier〉
| 〈identifier〉
| 〈literal〉

〈jcondJoiner〉 ::= ‘&&’ | ‘||’

〈jcondOp〉 ::= ‘==’ | ‘>=’ | ‘>’ | ‘<=’ | ‘<’ | ‘!=’

〈jdataDecl〉 ::= ‘jdata’ ‘{’ 〈jdataSpec〉* ‘}’

A JAMScript Grammar in EBNF 105

〈jdataSpec〉 ::= 〈cType〉 〈identifier〉 ‘as’ 〈jdataType〉 ‘(’ (‘fog’|‘cloud’) ‘)’ ‘;’
| 〈cType〉 〈identifier〉 ‘as’ 〈jdataType〉 ‘;’
| 〈flow〉 ‘;’

〈jdataType〉 ::= ‘broadcaster’
| ‘logger’

〈cType〉 ::= ‘struct’ 〈identifier〉 ‘{’ 〈structEntry〉* ‘}’
| ‘char’ ‘*’
| ‘char’
| ‘double’
| ‘int’
| ‘float’

〈structEntry〉 ::= 〈cType〉 〈identifier〉 ‘;’

〈flow〉 ::= 〈identifier〉 ‘as’ ‘flow’ ‘with’ 〈identifier〉 ‘of’ 〈identifier〉
| 〈identifier〉 ‘as’ ‘outflow’ ‘of’ 〈identifier〉
| 〈identifier〉 ‘as’ ‘inflow’

〈activityDef 〉 ::= 〈syncActivity〉
| 〈asyncActivity〉

〈asyncActivity〉 ::= ‘jasync’ 〈jcondSpecifier〉? 〈functionDeclaration〉

〈syncActivity〉 ::= ‘jsync’ 〈jcondSpecifier〉? 〈functionDeclaration〉

〈jcondSpecifier〉 ::= ‘{’ 〈jcondExpr〉 ‘}’

A JAMScript Grammar in EBNF 106

〈jcondExpr〉 ::= ‘(’ 〈jcondExpr〉 ‘)’
| ‘!’ 〈jcondExpr〉
| 〈jcondExpr〉 〈jcondExprOp〉 〈jcondExpr〉
| 〈identifier〉 ‘.’ 〈identifier〉
| 〈identifier〉

〈jcondExprOp〉 ::= ‘&&’ | ‘||’

〈JjiewDecl〉 ::= ‘jview’ ‘{’ 〈jviewSpec〉* ‘}’

〈jviewSpec〉 ::= ‘beat’ ‘:’ 〈identifier〉 ‘;’
| 〈jviewPage〉

〈jviewPage〉 ::= 〈identifier〉 ‘as’ ‘page’ ‘{’ 〈pageElem〉+ ‘}’

〈pageElem〉 ::= 〈displayElem〉
| 〈controlElem〉
| 〈pageName〉

〈displayElem〉 ::= 〈identifier〉 ‘is’ ‘display’ ‘{’ 〈dispSpec〉+ ‘}’

〈controlElem〉 ::= 〈identifier〉 ‘is’ ‘controller’ ‘{’ 〈ctrlSpec〉+ ‘}’

〈pageName〉 ::= ‘name’ ‘:’ 〈identifier〉 ‘;’

〈dispSpec〉 ::= ‘type’ ‘:’ 〈displayType〉 ‘;’
| ‘title’ ‘:’ 〈stringLiteral〉 ‘;’
| ‘options’ ‘:’ 〈stringLiteral〉 ‘;’
| ‘source’ ‘:’ 〈identifier〉 ‘;’
| ‘refresh’ ‘:’ 〈decimalIntegerLiteral〉 ‘;’

A JAMScript Grammar in EBNF 107

〈displayType〉 ::= ‘graph’ | ‘scatter’ | ‘stackedgraph’

〈ctrlSpec〉 ::= ‘type’ ‘:’ 〈controlType〉 ‘;’
| ‘title’ ‘:’ 〈stringLiteral〉 ‘;’
| ‘options’ ‘:’ 〈stringLiteral〉 ‘;’
| ‘sink’ ‘:’ 〈identifier〉 ‘;’

〈controlType〉 ::= ‘slider’ | ‘terminal’ | ‘button’

〈declaration〉 ::= /* Inherited from es6 grammar */

〈statement〉 ::= /* Inherited from es6 grammar */

〈functionDeclaration〉 ::= /* Inherited from es6 grammar */

〈identifier〉 ::= /* Inherited from es6 grammar */

〈literal〉 ::= /* Inherited from es6 grammar */

〈stringLiteral〉 ::= /* Inherited from es6 grammar */

〈decimalIntegerLiteral〉 ::= /* Inherited from es6 grammar */

108

References

[1] M. Zaharia, An Architecture for Fast and General Data Processing on Large Clusters.
Morgan & Claypool, 2016.

[2] A. Colin and B. Lucia, “Chain: Tasks and Channels for Reliable Intermittent Pro-
grams,” in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications. ACM, 2016,
pp. 514–530.

[3] A. Warth, P. Dubroy, and T. Garnock-Jones, “Modular Semantic Actions,” in ACM
SIGPLAN Notices, vol. 52, no. 2. ACM, 2016, pp. 108–119.

[4] B. Ford, “Parsing Expression Grammars: A Recognition-Based Syntactic Foundation,”
in ACM SIGPLAN Notices, vol. 39, no. 1. ACM, 2004, pp. 111–122.

[5] T. J. Parr and R. W. Quong, “ANTLR: A Predicated-LL(k) Parser Generator,” Soft-
ware: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[6] R. P. Corbett, “Static Semantics and Compiler Error Recovery,” Ph.D. dissertation,
University of California, Berkeley, 1985.

[7] A. Warth, P. Dubroy, and T. Garnock-Jones, “Ohm/JS repository,” 2014. [Online].
Available: https://github.com/cdglabs/ohm

[8] P. Rein, R. Hirschfeld, and M. Taeumel, “Gramada: Immediacy in Programming
Language Development,” in Proceedings of the 2016 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and Software. ACM,
2016, pp. 165–179.

References 109

[9] A. Warth and I. Piumarta, “OMeta: an Object-Oriented Language for Pattern Match-
ing,” in Proceedings of the 2007 symposium on Dynamic languages. ACM, 2007, pp.
11–19.

[10] N. Heirbaut and T. Van Der Storm, “Two implementation techniques for Domain
Specific Languages compared: OMeta/JS vs. JavaScript,” Master’s thesis, Universiteit
van Amsterdam, 2009.

[11] S. Sanfilippo, “Redis,” 2009. [Online]. Available: https://redis.io

[12] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and W. Chen, “ECharts:
A declarative framework for rapid construction of web-based visualization,” Visual
Informatics, 2018.

[13] M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer, and G. D. Bader, “Cytoscape.js:
A Graph Theory Library for Visualisation and Analysis,” Bioinformatics, vol. 32,
no. 2, pp. 309–311, 2015.

[14] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos et al., “SDIoT: A Soft-
ware Defined Based Internet of Things Framework,” Journal of Ambient Intelligence
and Humanized Computing, vol. 6, no. 4, pp. 453–461, 2015.

[15] J. Liu, Y. Li, M. Chen, W. Dong, and D. Jin, “Software-Defined Internet of Things
for Smart Urban Sensing,” IEEE communications magazine, vol. 53, no. 9, pp. 55–63,
2015.

[16] M. Tortonesi, J. Michaelis, A. Morelli, N. Suri, and M. A. Baker, “SPF: An SDN-based
Middleware Solution to Mitigate the IoT Information Explosion,” in Computers and
Communication (ISCC), 2016 IEEE Symposium on. IEEE, 2016, pp. 435–442.

[17] Y. Jararweh, A. Doulat, A. Darabseh, M. Alsmirat, M. Al-Ayyoub, and E. Benkhelifa,
“SDMEC: Software Defined System for Mobile Edge Computing,” in Cloud Engineer-
ing Workshop (IC2EW), 2016 IEEE International Conference on. IEEE, 2016, pp.
88–93.

[18] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software Defined Networking-
based Vehicular Adhoc Network with Fog Computing,” in Integrated Network Man-

References 110

agement (IM), 2015 IFIP/IEEE International Symposium on. IEEE, 2015, pp. 1202–
1207.

[19] H. Gebre-Amlak, S. Lee, A. M. Jabbari, Y. Chen, B.-Y. Choi, C.-T. Huang, and
S. Song, “MIST: Mobility-Inspired Software-Defined Fog System,” in Consumer Elec-
tronics (ICCE), 2017 IEEE International Conference on. IEEE, 2017, pp. 94–99.

[20] S. Nastic, M. Vögler, C. Inzinger, H.-L. Truong, and S. Dustdar, “rtGovOps: A Run-
time Framework for Governance in Large-scale Software-defined IoT Cloud Systems,”
in Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2015 3rd IEEE
International Conference on. IEEE, 2015, pp. 24–33.

[21] F. Wu and G. Sun, “Software-Defined Storage,” Report, 2013.

[22] M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, A. Rindos et al., “SDSecurity:
A Software Defined Security Experimental Framework,” in Communication Workshop
(ICCW), 2015 IEEE International Conference on. IEEE, 2015, pp. 1871–1876.

[23] L. M. Contreras, L. Cominardi, H. Qian, and C. J. Bernardos, “Software-Defined Mo-
bility Management: Architecture Proposal and Future Directions,” Mobile Networks
and Applications, vol. 21, no. 2, pp. 226–236, 2016.

[24] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin, “Orleans: Cloud
Computing for Everyone,” in Proceedings of the 2nd ACM Symposium on Cloud Com-
puting. ACM, 2011, p. 16.

[25] I. Nakagawa, M. Hiji, and H. Esaki, “Dripcast — Server-less Java Programming Frame-
work for Billions of IoT Devices,” in Computer Software and Applications Conference
Workshops (COMPSACW), 2014 IEEE 38th International. IEEE, 2014, pp. 186–191.

[26] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, and B. Koldehofe, “Mobile
Fog: A Programming Model for Large–Scale Applications on the Internet of Things,”
in Proceedings of the second ACM SIGCOMM workshop on Mobile cloud computing.
ACM, 2013, pp. 15–20.

[27] P. Persson and O. Angelsmark, “Calvin –– Merging Cloud and IoT,” Procedia Com-
puter Science, vol. 52, pp. 210–217, 2015.

References 111

[28] F. Khodadadi, A. V. Dastjerdi, and R. Buyya, “Simurgh: A Framework for Effective
Discovery, Programming, and Integration of Services Exposed in IoT,” in Recent Ad-
vances in Internet of Things (RIoT), 2015 International Conference on. IEEE, 2015,
pp. 1–6.

[29] Oracle, “GraalVM,” 2013. [Online]. Available: https://www.graalvm.org

[30] M. Grimmer, C. Seaton, R. Schatz, T. Würthinger, and H. Mössenböck, “High-
Performance Cross-Language Interoperability in a Multi-language Runtime,” in ACM
SIGPLAN Notices, vol. 51, no. 2. ACM, 2015, pp. 78–90.

[31] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govindan, “Odessa:
Enabling Interactive Perception Applications on Mobile Devices,” in Proceedings of
the 9th international conference on Mobile systems, applications, and services. ACM,
2011, pp. 43–56.

[32] P. S. Pillai, L. B. Mummert, S. W. Schlosser, R. Sukthankar, and C. J. Helfrich,
“SLIPstream: Scalable Low-latency Interactive Perception on Streaming Data,” in
Proceedings of the 18th international workshop on Network and operating systems sup-
port for digital audio and video. ACM, 2009, pp. 43–48.

[33] W.-C. Chuang, B. Sang, S. Yoo, R. Gu, M. Kulkarni, and C. Killian, “EventWave:
Programming Model and Runtime Support for Tightly-Coupled Elastic Cloud Appli-
cations,” in Proceedings of the 4th annual Symposium on Cloud Computing. ACM,
2013, p. 21.

[34] G. Wells, “Coordination Languages: Back to the Future with Linda,” in Proceedings
of the Second International Workshop on Coordination and Adaption Techniques for
Software Entities (WCAT05), 2005, pp. 87–98.

[35] B. Lucia and B. Ransford, “A Simpler, Safer Programming and Execution Model for
Intermittent Systems,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 575–585, 2015.

