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Abstract

This research develops an analytical method for predicting the hydrodynamic
force experienced by a long slender solid body of arbitrary cross-scectional shape and
body centreline configuration, subjected to an unbounded uniform fluid flow. It is
assumed the slenderness parameter, « (the ratio of the body cross-scctional length scale
to the body length) is small (<€ 1), the body centreline radius of curvature is everywhere
large (of order body length), the cross-sectional shape varies slowly along the body
length, and the Reynolds number R,, based on the body length is of order unity.

The inner flow solution for an arbitrary cross-section is illustrated by applying
the complex variable method for a body with an elliptical cross-section, which is
extendable to any cross-sectional shape. The results agree with those obtained by
Batchelor (1970) with the use of the elliptic cylinder coordinates.

By the method of matched asymptotic expansion, the force per unit length the
fluid exerts on the body, is obtained as a solution of an integral equation which is correct
to order «. By neglecting the inertia effects, and for special case of body with a circular
cross-section, the force integral equation reduces to that obtained by Johnson (1980) (for
uniform flow) with a completely different approach.

The iterative solution of the force integral equation is illustrated by applying it to
a long straight cylindrical body, with an arbitrary cross-sectional shape, at rest in a fluid
with uniform velocity. The first two terms of the expansion of the force in a power series
of (1/inx) is explicitly determined and found to be in accordance with previous work
[Khayat & Cox (1989)].

The exact solution of the force integral equation for certain symmetric bodies is
illustrated by applying it to a slender torus of arbitrary cross-sectional shape, which is
constant along the body centreline, settling along its axis in an unbounded fluid at rest.
The radial and axial components of the force per unit length are explicitly determined up
to an error term of O (x). It is found that, for a particular case of a torus with a circular
cross-section, as well as in the limit as R, — 0, the axial component of the force (the
only non-zero one) reduces to the results obtained by Johnson & Wu (1979) and Johnson
(1980).

The novelty of this research is the improvement of the approximation of the force
per unit length in slender body theory when inertia effects are not negligibly small.



Condensé

Cette recherche développe une méthode analytique pour prédire les forces
hydrodynamiques causées par un long solide mince, ayant une forme de coupe
transversale et une configuration arbitraire, soumis a un écoulement fluide uniforme sans
bornes. Nous supposons que le paramétre de minceur, K (le ratio de la coupe
transversale du corps 2 sa longueur) est petit (< 1), que le rayon de courbature de la
ligne centrale du corps est grand, que la forme de la coupe transversale varie lentement
sur ]a longueur du corps, et que le nombre de Reynolds Re, basé sur la longueur du
corps est d’ordre unitaire.

La solution de lécoulement interne pour une coupe transversale arbitraire peut étre
démontrée en applicant la méthode de variable complexe pour un corps de coupe
transversale elliptique, Cette dernigre s'applique 3 n’importe quelle forme ou coupe
transversale. Les résuitats obtenus vont de paire avec ceux de Batchelor (1970) avec
I’aide d’un systdme de coordonnées cylindrique elliptique.

Par la méthode d’association d’expansion asymptotique, la force par unité de
longueur que le fluide exerce sur le corps est obtenu comme solution d’équation intégrale
qui est correcte 2 I'ordre k. En négligeant les effets d’inertie, ainsi que les cas spéciaux
de corps ayant une coupe transversale circulaire, 1’équation intégrale de force se réduit
a celle obtenue par Johnson (1980) (pour écoulement uniforme) et ce, en utilisant une
approche completement différente.

La solution itérative de 1’équation intégrale de force est illustrée en 1’appliquant
a un long corps cylindrique droit, qui est stationnaire dans un fluide 2 vélocité uniforme.
Les 2 premiers termes de 1’expansion de la force dans une série de puissance (1/Ink) sont
explicitement décidés et sont en accord avec les travaux précédents [Khayat et Cox,
(1989)].

La solution exacte de 1'équation de force intégrale pour certains corps
symmétriques est illustrée en I'appliquant & un mince torus dont la forme de la coupe
transversale est arbitraire, qui est constante le long de ’axe central du corps, dans un
fluide aux délimitations trés éloignées. Les composantes radiales et axiales de la force
par unité de longueur sont explicitement dcterminées jusqu’a un terme d’erreur de 0 (k).
Nous trouvons, pour un cas particulier de torus 2 coupe transversale circulaire, de méme
que dans l2 limite R— 0, que la composante axiale de 1a force (la seule dans la
littérature) se réduit aux résultats obtenus par Johnson et Wu (1979) et Johnson (1980).

La nouveauté de cette recherche est 1'amélioration de 1’approximation de la force
par unité de longueur dans 1a théorie de corps minces quand les effets de I’inertie sont
pris en considérations.



Acknowledgements

I would like to express my sincere gratitude to the late Prof. Raymond G. Cox
for his constant ercouragement and dedicated supervision. My privatc communications
with him, particularly with respect to Chapters 3 and 5, were invaluable.

My thanks alse go to Prof. T. G. M. van de Ven, director of the Pulp and Paper
Research Centre McGill, who acted as my interim supervisor during Prof. Cox’s illness.
I am most grateful to him for painstakingly proof-reading the final version of the thesis
during his vacation.

I should also like to thank Prof. S. B. Savage, Dr. Hogan Antia, Ms. Susan
MacNeil and Mr. Simon Dejardins for their invaluable advice concerning the writing of
this report.

Financial assistance provided by the Ministry of Culture and Higher Education
of the Islamic Republic of Iran is gratefully acknowledged, as is further financial support
from teaching and research assistantships provided by the Dépt. of Civil Engineering and
Applied Mechanics.

Finally, I would like to express my deepest gratitude to my parents, my wife and
my friends for their moral supports and encouragement.

oas



Table of Contents

ADSEEACL. « o v o et e e e e e i
Condensé . . . . . . ittt e e e e e e e e e e e e e ii
Acknowledgments. . . . ... ..... ... ... ... ... iii
Listof Figures. . . . ... ... ... ... . it vi
CHAPTER 1

LI1Introduction. . . . ... ...t it it it ittt it it 1

L2 HESEOTY.e « o o ot e e e e e et e e e e e e e 3
CHAPTER 2

2-Thegeneralproblem. . . .. ........... ... ... . oo n 15
CHAPTER 3

3-0uter expansion. . .. .......u0ueeceennntaoraaecnne oo 23
CHAPTER 4

4 - Inner flow field - Matched Asymptoticexpansion. . . ... ......... 45

4.1 - Longitudinal motion for elliptical cross-section. . ... ........ .46

4.2 - Transverse motion for elliptical cross-section. . . ... .......... 3 1

4.3 - General cross-section - Longitudinal metion. . . . .. ........... 63

4.4 - General cross-section - Transversemotion. . ... ............. 65



CHAPTER 5

5-Forceintegralequation. . . . ........................... 72
CHAPTER 6

6 - Straight long selenderbody. . . . ....... .. .. ... .......... 34
CHAPTER 7

7-Slender torus. . . ... ... e e 97
Appendix A

Solution of biharmonic equation. . . ... .............0 ..., Al
References. . ... ... ... i e i



2.1

2.2

3.1

3.3

3.4

4.1

List of Figures

Long slender body being at rest in the fluid undergoing an undisturbed uniform

Outer region in which lengths are made dimensionless by /. In the limit as  tends

to zero, the body becomes a line singularity. . .. . ... ... ... ..... 22

The system of axes at the general point P on the line singularity with unit base

vectors i, i,, i, showing the unit vector e lying in the (x, 2)-plane. . . . . .. .. 41

The velocity «, at position X in the (x, y)-plane due to the acting of the point

force F'(§)ds at position X’ on the line singularity r = R(@$).. ... ....... 42

The rang of integration in which as p — 0 the integrands in H’ and J’; become

K114 | 1 43
The position of the general point p in the (x, y)-plane with respect to the (r,, r,,
r.)-axes which is taken to be parallel to the local coordinate system at point § =

e i it o it ittt aa s ettt et e e 44

Transformation of elliptical cross-section in Z-plane onto 2 unit circle in £-plane.

Position of the elliptical cross-section in general axes (x®, y™). ... ... ... ..69



4.3

1.4

6.1

7.1

7.2

A3

Components of force F(s) in the (x", y*)-coordinate system. . ., . ... ..... 70
General cross-sectional shape in the dimensionat local polar coordinate (o', O at
Straight long slender body with arbitrary cross-section being at rest in {luid under
goinguniform velocity U, . . . .. ..o 96
Coordinate systems showing the torus settling along its axis with uniform velocity
(x;. x,)-plane showing the relationship between the rectangular Cartesian

coordinate system and the cylindrical polarone. . . .. .............. 123

Cartesian and cylindrical components of the force at the point under consideration

Position of a general point P on the body centreline. . . .. ........... 125

Torus with elliptical cross-section showing the position of the ellipse with respect

to unit base vector in the direction of velocity U “%). . . . .. .......... 126
(x, y)-plane showing the componentsof velocity &2. . . . .. ........... Al3

Z-plane showing the components of the unit vector normal tc the element ds. ..

Z and £ piane schematically showing the transformation of curve AB in Z-plane
ontocurve A'B in &-plane. . . ... ...t e e AlS

vii



CHAPTER 1

1.1 - Introduction

The hydrodynamics of low and intermediate Reynolds number, R,, flows has
numerous applications in physical and biological science, medicine, and engineering,
including the study of pulp, asbestos, and wool fibre transport in streams, fibrous filter
solid-liquid separation, micro-organism locomotion, rheology of blood circulation,
wastewater treatment suspension sedimentation, and equipment lubrication.

The typical value of Reynolds number for these flow phenomenon based on the
length of the body, kinematic viscosity of the liquid and the velocity of propulsion is of
order 10° to 10 for small microscopic organisms (for example 10? for the size of
spermatozoa) and of order unity for the larger ones of the size of nematodes, or for the
sand-size particles settling in the water (as for a specified example, Re = 1.17 based on
the length of a red cell in ascending aorta vessel). The common feature of the particles
involved in these phenomena is that they possess irregular shapes and in many cases a
slender body shape. So it is desirable to obtain the exact solution for this type of flows.

For low R, flows, even though the standard Navier-Stokes equation is simplified
to the Stokes equations as a first approximation, obtaining the solution for arbitrary body
shapes is still difficult, and hence not many exact or even approximate solutions are
known, except for the simplest of body shapes.

Non-zero Reynolds number flows, because of the difficulty in dealing with non-lirear
inertia terms in the Navier-Stokes equation, are usually studied by numerical methods.
However, it is of interest to investigate the flow around a class of bodies of irregular shape
for which one may solve analytically the equations of motion including inertia effects.
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The present study develops an effective method by which a number of exact
solutions can be determined for various long slender particles subject to uniform flow
incident upon the body. Although, it can easily be extended to the any prescribed flow
(steady or unsteady) for flexible slender bodies, far from the scope of this study, the exact
solution for naturally occurring particles is desirable and hence further investigations are
required.

However, a brief discussion of the background of the problem is presented under
the title of history. The general problem is described in detail in Chapter 2. Chapter 3
deals with the outer expansion. By using the solution of the Greens function for Oseen’s
equation the asymptotic form of both pressure and velocity for a general point of the outer
region as it approaches the body centreline (singularity line), is determined. The inner flow
field is presented in Chapter 4. By applying the complex variable method, the inner flow
field in the vicinity of a general point of the body centreline for a slender body of an
elliptical cross-section is analyzed in detail in 4.1 and 4.2. The problem is then generalized
by adopting Batchelor's solution for a general cross-sectional shape in 4.3 and 4.4, In both
cases the asymptotic solution of the inner expansion of both pressure and velocity fields
is expressed in terms of outer variables, and then the inner body conditions for the outer
flow fields are matched onto those obtained, in Chapter 3, for the outer region near the
line singularity. From results of matched asymptotic expansion the force integral equation
is derived in Chapter 5. Chapter 5 also includes the iterative solution of the force integral
equation together with a determination of its integrand. Chapters 6 and 7 contain examples
of a long straight slender body and a slender torus, respectively. Consequently the forces
per unit length experienced by the bodies are obtained with the error term of O(Inx)? and
O (x) for the former and latter, respectively.

Throughout this research we tried to present the material in a relatively self-
contained way with relatively simple mathematical procedures, which contain most details
of the calculations, and whenever it was felt needed, a figure accompanies the material.
Figures are located at the end of each Chapter. Finally, appendix A contains the solution
of the biharmonic equation which is employed extensively in Chapter 4.



. 1.2 - History

The problem of determination of the force on fixed bodies in a slow uniform flow
of viscous incompressible fluid is an old one. Stokes (1851) was the first one who paid
attentior to it. The problem originally considered by Stokes was flow past a sphere, for
which, by neglecting completely the inertia of the fluid, he obtained a solution as F =
6waul (where F is the drag force, U free-stream velocity at infinity, u the dynamic
viscosity of the fluid and a the radius of the sphere)® which is the well-known Stokes
drag formula. However, in the case of a circular cylinder Stokes equations failed to give
any solution. The non-existence of a Stokes solution for any two dimensional body fixed
in unbounded flow is usually referred to as Stokes’ paradox.

Oberbeck (1876) considered a spheroid with semi-axis a and b with ¢ measured
along the symmetry axis, by neglecting the inertia effects too. leading to a value for the

force F (also along the symmetry axis) of magnitude

5 A5 ()
F=16nubll-—2/ . _\b] 1 \b) |

-
]
—

,_\
o R
S
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—
-

- (1.2.1)
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which for small b/a (i.e. for slender spheroid), reduces to

F = 4rxpal 1 _ . 0(2)
-05

()= oaa
— 1.2.
a a a
af2?)

Whitehead (1889) attempted to develop the Stokes solution for a sphere by
obtaining higher order approximations to the flow when the Reynolds number is not
negligibly small. The method proposed by Whitehead was an iterative procedure to take

' Throughout this section F, U, u and » denote the drag force, uniform velocity at infinity,
. the dynamic and the kinematic viscosity of the fluid, respectively, unless otherwise stated.
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the inertia effects into account. As noted by Proudman & Pearson (1957)" the particular
difficulty encountered by Whitehead was that the second approximation to the velocity
of flow past a sphere remains finite at infinity in a way which is incompatible with the
uniform-stream condition. ... This mathematical phenomenon appears to be common to
all problems of uniform streaming past a bodies of finite length scale and is sometimes
referred to as Whitehead's paradox. "

The paradox was resolved by Oseen (1910). Oseen pointed out its physical origin
and a mathematical device for overcoming the associated difficulties with Whitehead's
paradox. Oseen showed the determination of a uniformly valid first approximation to the
velocity and all its derivatives is itself a linear problem which can be solved analytically
and hence resulted the famous Oseen's equation. In contrast to Stokes equations, Oseen’s
equation provided a uniformly valid approximation to the velocity and all its derivatives in
the two dimensional flow past an infinite cylinder of finite cross-sectional length scale. The
first such solution to be obtained was that for an infinite circular cylinder placed
perpendicular to the uniform flow (Lamp 1911), for which Lamp retained some of the
"inertia terms” but omitted the others in his solution. Oseen himself gave a solution for

flow past 2 sphere of radius 2 and an infinite circular cylinder of radius &, respectively, as
F = Gz':an(l +%Ra) (1.2.3)

and

- ArzplU
2In2-InR, -y +%’

(1.2.4)

where R, and R, are the Reynolds number based on the characteristic length of a and &
respectively, defined by

R=-2Y awa ¥ (1.2.5)

v v

and where » is the kinematic viscosity defined by » = u/p (p being the density of the
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fluid) and « is Euler's constant the value of which is

Y = 05772 (1.2.6)

Equation (1.2.3.4) are well-known as Oscen drag formulas for a sphere and an infinite
circular cylinder, respectively.

Burgers (1938) attempted to obtain directly the formula (1.2.2), obtained from
Oberbeck’s drag formula, for a long slender ellipsoid of revolution. He assumed the
disturbance produced by the ellipsoid was like that which would be produced by a line

of force of magnitude

D) = Ay + Aol + Al i |z] < a, } .27
f) =0 otherwise ,
acting along the symmetry axis, where z is the distance along the symmetry axis
measured from the centre of the ellipsoid and 4, 4,4, are constants. By minimizing the
mean value of velocity on the body surface, he obtained the force on the ellipsoid exactly
the same as equation (1.2.2). Burgers also applied his method to determine the force
acting on a circular cylinder of finite length fixed in a uniform stream flowing in the
direction of its symmetry axis. For this case, he obtained the total force acting on the

cylinder as
F= 4ruall 28
? 1.2.
mz—: 072 128

where a and b are respectively the semi-length and the cross-sectional radius of the
cylinder.

It seems the problem had remained unnoticed for many years after Burgers work,
until a paper\by Lagerstorm & Cole appeared in the literature in 1955. Lagerstorm &
Cole (1955) gltroduced Oseen and Stokes variables and obtained Oseen and Stokes
expansions }vhich followed naturally from the limit processes they adopted.

A'well-known paper by Proudman & Pearson (1957) considered the problem in
more details giving an intensive theoretical study of the subject. Proudman & Pearson

5



(1957) and also Kaplun & Lagerstorm (1957) demonstrated that it is possible to obtain
higher order approximations to the flow past a sphere and a circular cylinder by applying
the method of Stokes and Oseen expansions, the so-called marched asymprotic expansion
technique. Proundman & Pearson (1957)’s studies led to improving the approximation
of the drag force, obtained by Oseen, acting on a sphere and on an infinite circular
cylinder, respectively, as

F= Gzran[l +%Ra +%RflnR¢ +0(Rj)] (1.2.9)

and

+0 }.(1.2.10)

2 3
= -4;;'#[] 1 + 1 y+l-21n2 ——"'"1
R, |IR, 2 InR,

Although, by the aid of the binomial theorem, equation (1.2.10) leads to the Oseen drag
formula given by (1.2.4), Proudman & Pearson’s method is capable of yielding higher
order approximations.

Broersma (1960) improved the method used by Burgers (1938). He took the
disturbance produced by the cylindrical body as being that due to a line of force of
magnitude

f2) = By+ B, + B@a)* + - if |z] <a, } a.2.11)
fA=0 otherwise ,

where B,, B,, B, ... are an infinite set of constants to be determined. Broersma computed

the values of these constants numerically for the case of a circular cylinder of finite semi-

length (@) and cross-sectional radius b being fixed in a fluid with uniform velocity U

flowing in the direction of the symmetry axis, and obtained the force on the cylinder as

F= 4zual

> 1.2.12
1n3b£ -081 (1-2.12)

which is a rather different result than that obtained by Burgers given by (1.2.8).
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However, the slender-body theory, in more general form, has been revived and
considerably developed by Tuck (1964, 1970): Taylor (1967,1969); Cox (1970, 1971);
Tillet (1970), and Batchelor (1970). All these authors neglect the inertia effects
completely, i.e, they assumed that R, = 0 and R, = 0 [where R, and R, are the Reynolds
number based on the characteristic length of the body length (a) and cross-section (),
respectively, defined by (1.2.5)].

Tuck (1964) investigated the translational resistance force on slender bodies by
the use of spheroidal coordinates. Taylor (19€7) illustrated that if the Reynolds number
is very small, a slender body of revolution falls twice as fast axially as it does
transversely, though, he had made a mistake in the sign of a term in his solution which
was pointed out by Tillet (1970). Taylor (1969) also gave a theoretical study of the
problem. Consequently, he formulated approximate integral equations for the stokeslet
distributions (force density) in the two cases of axial and transverse flow.

Cox (1970) considered a curved slender body of a circular cross-section with,
length / and with the characteristic dimension of the body cross-section &, expanding the
solution directly in powers of 1/Ink (where « is the slenderness parameter defined by «
= b/l). He obtained a solution for force per unit length, on the body, correct up to the
order ( 1/inx ) as

J+(U-UYm 2

Fis) _|U-U" | A _[_t_i_gﬂ_?_ll
2x Inx {In x)? ds ds (1.2.13)
+ —1/2(U_U.) [BQQ —21] + 0 ! ],
(mxp | ds ds oy

where 5 (0< 5 < +1) is the dimensionless arch length of the body centreline measured
from one end of the body; R is dimensionless vector function of s, representing the body
centreline relative to a fixed dimensionless coordinate system; here U is the fluid velocity
function of position: U is the velocity of the body centreline: I is the idemfactor; A(s)
is dimensionless function of s, representing the radius of the cross-section at the point

under consideration (s); ¢ is an arbitrary constant much smaller than unity and where J



is a vector given by

J(s) = %

l _[R-RJ,[R-R},

IR-R| |R-R|’ (1.2.13)
5, - LIRARA oy as

X | O ;d—-é'- [ (R) - k(S)] §,

where § is the integration variable: R is the value of R at point s = §. Cox (1970)
applied his theory (1.2.13-14) to examples involving bodies having a curved centreline.
He obtained the force experienced by a long slender body, with its centreline bent in an
arc of a circle of radius 4, fixed in a fluid undergoing a uniform velocity U (U lying in

the plane contains the body centerline) as

F, = 2npU + B LoiL ] (1.2.15)
lnlc (lng)z (an)3

where F, is the component of the force per unit length acting on the body in the direction

of velocity ¥ and where
A = sin?0 -2 (1.2.16)
and
B - i(sinze ~2){2In[tan¥a(8 - B,) tan¥(8, - 8)] - sin 8 sin %(8 + 8,)
~sin®, sin%3(0 +8,) + 12In2 +2 +25in?0 - 4In % }
-%sinecose{sin B oS ¥2(8 + 8;) +sin 8, cos %(8 + 8,) - sin 28} + sin?8 .

(1.2.17)

where 6, is the angle between the radius passing from one end of the body and the
direction of the velocity U and where (6, - 8, is the angle of the sector, the arch of
which is the body centreline, hence 6, < # < 8, [see also Cox (1970) p. 807]. He also
obtained the component of the total force by integration of (1.2.15-17). For the special



case of a slender torus of constant circular cross-section (i.e. A = 1), his studies results

in a total force, experienced by the torus, of magnitude

- 6x2pall 1
F % -~ In[(Y4)x] - Inx * O[(]nx)s}'

(1.2.18)

Tillet (1970) used the integral equations obtained by Tuck (1970) for axial flow
and solved them iteratively by the aid of the method suggested by Tuck (1964).
Consequently, he obtained a few terms of the expansion of the force in powers of (1/Ing)
(where e is the slenderness parameter), in addition to the recurrence relation for
determination of the higher order terms. Whilst in the case of transverse flow, he only
obtained the drag force correct up to order (in£)?. In the special case of a spheroid his
results agree with those obtained by Lamb (1932) (solving the Stokes equations by the
method of separation of variables).

Batchelor (1970) adopted the slender body theory to a straight non-axisymmetric
body. From an investigation of the local inner flow field in the vicinity of a section of
the body, and the conditior that it should join smoothly with the outer flow which is
determined by the body as a whole, Batchelor found that a given shape and size of the
local cross-section is equivalent, in all cases of transverse relative motion, to an ellipse
of certain dimensions and orientatibn, and, in all cases of longitudinal relative motion,
to a circle of certain radius. As noted by Batchelor (1970) and is illustrated in the present
study (Chapter 4), the equivalent circle and the equivalent ellipse (characteristic tensor)
of the cross-sectional shape may be found from certain boundary-value problems by
solving the harmonic and biharmonic equations, respectively.

Chwang & Wu presented a series of theoretical studies concerned with low
Reynolds number flow in general. They (1974) neglected inertia effects and considered
a viscous flow generated by pure rotation of an axisymmetric body having an arbitrary
prolate form. Consequently, they obtained exact solution in closed form for a number of
body shapes. In another paper [Chwang & Wu (1975)], they considered the singularity
method for Stokes flows and obtained exact solution also in closed form for prolate
spheroids, spheres and circular cylinders. Chwang & Wu (1976) took inertia effects into

9



account and obtained the drag force on a spheroid (with semi-major and minor axis a and
b, respectively) placed perpendicular to the flow for arbitrary R, and small R, [where R,
and R, are the Reynolds number based on the length a and b, respectively, defined by
(1.2.5)]. For a small R, their result reduces to the Oberbeck drag formula given by
(1.2.1). When a tends to infinity (i.e. for slender spheroid) and hence R, tends to
infinity. their result leads to the Oseen drag formula for an infinite circular cylinder
given by (1.2.4-6). However, as pointed out by Khayat & Cox (1989) their result, for
intermediate R, (order unity); b/a<¢ 1 and R, < 1, is not valid because in their solution
they made the incorrect assumption that the drag force is independent of the position
along the body axis and consequently, they performed the matching at only one point on
the body axis (i.e. the centre of the body).

The slender body theory also received attention and was further developed by
Keller & Rubinow (1976), Geer (1976), Johnson & Wu (1979), Jhonson (1980) and
Khayat & Cox (1989).

Keller & Rubincw (1976), by neglecting inertia effects, analyzed a curved slender
body of circular cross-section capable of translating, twisting, stretching and dilating.
Using the method of matched asymptotic expansion, they obtained an integral equation
to determine the force per unit length experienced by the body, where the first
approximation to its solution agrees with Cox’s result given by (1.2.13,14).

Geer (1976) completed the method proposed by Tuck (1964) and Tillet (1970).
He considered ihe disturbance flow due the presence of a slender body of revolution in
Stokes flow, being that of produced by the superposition of three types of singularity,
with unknown densities, distributed inside and along the body axis. By applying the no
slip boundary condition, he obtained three pairs of linear integral equations for the
density of the singularities, by solution of which he determined the drag, total force and
torque experienced by the body. However, instead of applying the usual procedure of the
inner and outer expansions, he obtained a uniform expansion for the asymptotic solution
of the integral equations.

Johnson & Wu (1979) considered the Stokes flow passing a slender torus of
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circular cross-section. By the method of distribution of singularities (stokeslets, doublets,
rotlets, sources, stresslets and quadruppoles) on the body centreline, they satisfied the no
slip boundary condition on the body surface, in closed form, up to an error of O(&ine)
(¢ is the semi-slenderness parameter), and hence they obtained force (correct up to order
&) and/or torque the torus experienced for the individual cases of the broadwise
translation (motion along the longitudinal axis), translation normal to the longitudinal
axis, rotation of a torus on its edge, spinning and expanding of a torus. For the case of
axially translation of a torus with the cross-sectional radius b and the body centreline
radius g, their studies results in

4xulU

In— +
e

F=- + 0(),

(1.2.19)

(SIS

where £ = b/a, and F is the axial component of the force per unit length acting on the
torus. For the case of transverse motion perpendicular to the torus axis, they obtained
the total drag force as

(31n§-ﬂ]
e 2

R

where by neglecting terms of order (1/Ine)’® this leads to Cox’s result given by (1.2.18).

Johnson (1980) extended the method used by Johnson & Wu (1979) (singularity
method), for flow past slender bodies of finite centreline curvature. He considered a
flexible slender body of circular cross-section with arbitrary prescribed motion (function
of time and position). By neglecting inertia effects, he obtained an integral equation for
a curved slender prolate spheroid and slender bodies of arbitrary longitudinal cross-
sections (with prolate-spheroid ends) which may be written in dimensioniess form
[quantities made dimensionless by the characteristic length / (! being half length of the
body function of time i.e., a body with extensible arc length) velocity U (U being an
appropriate characteristic velocity) and u (viscosity of the fluid)] as

F = 27%pal + 0(e?), (1.2.20)
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Visn) = coasnL, + o= [ MK Ri@dss (v =snb) (122D

where (there is no summation convention on the repeated index)

L0, 2E0 R 2GED (a2
% R =71

K,(Ry;a) =

s'(-1s 5" < +1) is the arch length along the body centreline measured from the midpoint
of the centreline; - 5, and + s, are the values of s’ corresponding to the two ends of the
body excluding the prolate-spheroidal ends; ¢ is time; € = b/ (where b is the typical
transverse cross-sectional radius); V,(s, £) and «,(s, £) are, respectively, the dimensionless
components of the prescribed velocity and force per unit length at the point under
consideration (s’ = s) [¥ = (5, n, b) where 5, n, b as subscripts of a variable denotc the
components of that variable in the direction tangent, normal and binormal to the body
centreline at the point s’ = s, respectively J; L, = 2QL-1); L, = L, = 2L + 1 [where
L is defined by

\ .
L=1n2 (forslender spheroid), or L =In 2=5)" (¢or arbitrary longitudinal cross-section),
e e

(1.2.23)
&n(s) being function of s, representing the body transverse cross-sectional radius at point
s'=s5);D,=D,=1;D, =2, and - R, is a vector, representing the position of a
general point on the body centreline (s") with respect to the point s. The dimensionless
force per unit length on the body, ofs, #), is determined by iterative solution of the
integral equation (1.2.21-23), the recurrence relation of which is given by Johnson as

¥ (sp) = Li{sszms.:) - Dnfs)ay(st) - [ K, (Rga®) ds'} (1.2.24)

 J

where ,® is the kth iteration of a,; fis) = (1 - s)/7°(s); and here L = In (2/e) in L,.
The first term of the force per unit length (,') in a power series of (1/Ly) is determined
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by letting &,"” = 0 in (1.2.24). Johnson applied his method (1.2.24) to examples such
as translation of a toroidal ring along its symmetry axis. and translation of a partial
spheroidal torus in its own plane. For the former he obtained an infinite numbper of
iterations the summation of which is exact the same as that obtained by Johnson & Wu
(1979) in a direct fashion given by (1.2.19). For the latter he obtained the first two terms
of the expansion of the force in a power series of (1/L,), where by expanding 1/L, in
terms of 1/ing and neglecting terms of order (1/Iney, his results reduces to Cox’s results
given by (1.2.15-17).

Khayat & Cox (1989) took inertia effects into account and adopted the Batchelor
results for a non-axisymmetric body [Batchelor (1970)] to Cox’s theory [Cox (1570)].
They assumed the Reynolds number R, based on the body length is arbitrary and obtained
the force per unit length on a curved slender body of arbitrary transverse cross-section
(at rest in unbounded fluid undergoing undisturbed uniform velocity U) in terms of
slenderness parameter, x, correct up to order (1//n«y. They applied the force equation
to the uniform flow past a long straight slender body of arbitrary cross-section, and
obtained the force per unit length experienced by the body, f(s), as

f@_ (L 2¢) + LV [ ~(2 - cos 8 + cos?
T (n{x)(“’seﬂ 2e) (lnx] {4[2(:0594: (2 -cos B +cos*8) B

1- e-‘hk,(! ~cos@)(1 +35)

-1
2R, (1 -cos0) (1 +5)

[2cos6e - (2 +cos6 +cos*8) B]

x

1
4
1 -e -%R,(1 +«cos0)(1 -3)

1 S )
x R, (1 +<os8) (1 -5) 1] E(COSGB-'.’.e){E,[/zR,(I cosB) (1 +s)]

+ In (1 -cos0)} -%(cose 1] -2e){E,[‘/zR‘(1 +cosB)(1 -s)] +In(1 +cosﬂ)}

- - [ + _l. +2 ~we+de-K+ - L]s
(cosO B -e)ly [n(4R¢R,)] 2c:osel.’v e+2eK cosBBan} O(]mc ,
(1.2.25)

where x = b/a (b being the characteristic length of the cross-sectional shape and « is the
half length of the body); 8 is a unit vector, representing the direction of the body

centreline: e is the unit vector in the direction of velocity U; 0 is the angle between the
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unit vectors e and 8 (i.e. § = e.8): ¥ is Euler’s constant defined by (1.2.6): R, is the
Reynolds number based on the body half-length (a): R, is the radius of the cquivalent
circle of the cross-section at the point under consideration, s {where s (<1< 5 < +1) is
the arch length along the body centreline measured from the midpoint of the centreline);
K is the characteristic tensor of the transverse cross-sectional shape; X is a dimensionless

constant which depends on the cross-sectional shape, and where E,(x) is the exponential

integral defined by

E(x) = f:"‘T"dc. (1.2.26)

They obtained the total force, by integration of (1.2.25), and also the torque experienced
by the body. While they applied the theory to an infinite straight slender body, with
large R,, they realized that it fails to give a uniform valid solution, and hence a minor
modification is needed. They gave a theoretical reason for this violation and pointed out
that for an infinite slender body together with large R, the force should be expanded in
(inR,)"! (R, being the Reynolds number based on the characteristic length of the cross-
sectional shape) instead of (Inx)"! and lengths. in the outer region, should be made
dimensionless by (»/U) (» being the kinematic viscosity of the fluid) rather than g (half
length of the body). By this modification, their research for special case of an infinite
straight cylinder of constant circular cross-section, placed perpendicular to uniform flow,
leads to the Proudman & Pearson’s result given by (1.2.10).

14



CHAPTER 2

2 - The general problem

In this research we consider an isolated long slender body with arbitrary cross-
section being at rest in an unbounded fluid undergoing a uniform velocity, U. We are
interested in obtaining the hydrodynamic force per unit length which the fluid exerts on
the body. The length of the body is / and the characteristic dimension of the cross-
sectional shape is r,, where r, is an arbitrary Iength chosen to be representative in some
way of the value of the radius of the equivalent circle of the cross-section. For example,
2xr, might be the perimeter of the cross-section at a typical point on the body centreline.
It is assumed that the body centreline may be bent in any manner whatsoever so long as
the radius of such a bending is at all points of order the body length (/). The arc length
of the body centreline measured from one end is 5’ (see figure 2.1). A dimensionless

quantity 5 is defined by

s = fi,- 2.1

so that, the value of s is bounded by zero and one, corresponding to two ends of the
body. The body centreline itself is given by

r' = IR(s) @-2)

where ' is a position vector of a general point relative to a fixed set of rectangular
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Cartesian axes (r',, r'., r';) with origin at O. as shown in figure 2.1, and R(s) is a
dimensionless vector function of s.

At a general point P on the body centreline we introduce a set of local Cartesian
axes {x’, y’, z") with origin at P and the z’ axis tangent to the body centreling. Therefore
the relationship between the fixed Cartesian coordinate system (r’,, 7', r',) and the local

coordinate system (x’, ¥, ') may be written as
X' =r' - IR, 2.3)

where X' is the position vector of a general point relative to the local Cartesian system
(x', ¥'. z') and R, is the value of R(s) at point P, the origin of the local Cartesian
system. Associated with the rectangular Cartesian axes (x’, y’, =7 is a set of local
cylindrical polar coordinates (o', 0, 2"), as shown in figure 2.2, so that the relationship

between these two coordinates is given by
x’ = peos8, y’ = p'sind . 2.4)

The cross sectional shape might vary along the body centreline, hence it may be given
in terms of local polar coordinates (p°, 8) as

p’ = rya(s,0) 2-9)

where A is a dimensionless function of 5 and 6.

It is assumed that the slenderness parameter, x, defined by
x =20 (2.6)

is much smaller than unity; that is, the body is slender.
We assume the Reynolds number R, based on the body length defined by

R =% 2.7

¢ v

is of order unity, where U = | U | is the magnitude of the uniform velocity, U, and »
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is the kinematic viscosity of the fluid. Then as « tends to zero the Reynolds number R
based on the characteristic length of the body transverse cross-section (r,) defined by

R = 2= = Qx2 = xR 2.8)

tends to zero.

It is in terms of the parameter « that we make expansions of the velocity and
pressure fields to obtain the force per unit length on the body in the limit as « tends to
zero. However, this type of expansion must be singular because the flow locally around
the long slender body must be very nearly the flow around an infinite cylinder at zero
Reynolds number R (see 2.8), and it is well known from the Stokes’ paradox that it is
impossible for such a flow field to satisfy the flow equations and simultaneously to
satisfy both the no slip boundary condition on the body surface and uniform flow at
infinity.

We use dimensionless quantities based on the body length, /, the fluid viscosity,
#, and the characteristic velocity U, hence the dimensionless position vectors rand X ,
velocity u and pressure p may be written as

-r =X - e 9
r=T 7 ¥ P Ak 2.9)

where the primed variables correspond to the dimensional forms of the unprimed
variables.

It is assumed that the fluid is incompressible, hence the dimensionless governing
equations of motion and continuity may be written as

RuVu=Vu-Vp; V=0 (2.10)
The boundary conditions associated with equations (2.10) may be expressed as
u - e as r=lr] - = 2.11)

and
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u - 0 on the body surface, @2.12)

where e = U/U is a unit vector in the direction of the uniform undisturbed flow.

In order to solve equations (2.10) together with boundary conditions (2.11,12),
one should obtain a solution as an outer expansion in x, valid in outer region [i.e., the
uniform flow at infinity (2.11) being satisfied], where r is of order unity. Thus, in this
region lengths are made dimensionless by I, and hence as x tends to zero {see (2.6)], the
body cross-sectional radius tends to zero. Therefore, in the limit as x — 0, the body
becomes very much like a line, as shown in figure 2.3. For reason later on apparent, we
call it line singularity.

In the outer region, we write X = (x, y, 2) = (p, 8, 2), where the x, y, zand p
are respectively x’, y’, z’ and p’ made dimensionless by /.

At each point P of the body centreline determined by r = R, we may introduce
a local inner expansion in x for which X" is used as the independent variable and 4™ and
p™ as dependent variables, where X”, u® and p” are defined by

b’y u’ TP’
X(‘):_, mﬁ—. mﬂ—. (2-13)
T “ v’ P pU
Here we use variables labelled by the superscript () to denote the inner variables. Hence,
the dimensionless coordinates (x”, y¥, z¥) and (0%, 6, z") are respectively the local
coordinates (x’, y', z') and (p’, 8, z") made dimensionless by r,. Thus, the relationship
between the outer variables and inner variables may be written as [see (2.3,9,13)]

x(‘)=r-R}‘.

, o pP =L g0 -y PO - p, (2.14)
x x

In the inner expansion corresponding to each point P of the body centreline we made
length dimensionless by r, so that, as « tends to zero, the body becomes very much like
an infinite cylinder with non circular cross-section. In fact there are an infinite number
of local inner expansions corresponding to each point of the line singularity representing
the body in the outer region. However, we use the same procedure as used by Cox and
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Khayat [Cox (1970) and Khayat & Cox (1989)]. That is, we develop an inner expansion
at a general point P of the line singularity in order to consider all such inner expansions
simultaneously. Then the inner expansion obtained for such a point will be matched onto

the asymptotic solution of the outer expansion near the line singularity for the same

point.



Figure 2.1 : Long slender body being at rest in the fluid undergoing an undisturbed

uniform flow U.
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Figure 2.2 ; Local cylindrical coordinate system (p',0 , z') showing the local

cross-sectional shape.
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Figure 2.3 : The outer region in which lengths are made dimensionless by /.

In the limit as ¥ —a 0 the body becomes a line singularity.



CHAPTER 3

3 - Quter expansion

In the outer region the velocity # and pressure p may be written as

u=e+ux (3.1)

and
P = P09, (3.2)

where e represents the free stream velocity and [u,(x), p,(x)] are the disturbance velocity
and pressure due to the presence of the body S. In equation (3.2) the constant pressure
associated with the free stream velocity e, without loss of generality, is taken to be zero.
In the limit as « tends to zero the body cross- sectional area shrinks to zero hence the
effects of the disturbed velocity and pressure on the flow field (u, p) will diminish so we

require

(u1 ,P;) - (0, 0) . as x - 0. (3.3)

In order to analyze these flow fields, at a general point P on the line singularity we take
a set of rectangular Cartesian axes with unit base vectors £, £ and i, which lie in the

same direction as the (x, y, 2)-axes defined in chapter 2. Thus Z lies in the direction of
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the tangent to the body centreline. r = R(s), at P,

From the form of « as one approaches the centreline we see that the flow is due

to a force of magnitude
FUs) = 4zB(x,s)i, + 4aD(xs)i, - 2rA(K,s)i,. (3.4)

This will be explicitly verified in the inner expansion. Since the x and y axes are
arbitrary, it is convenient to take i, to lie in the plane containing i, and the velocity vector

e, as shown in figure 3.1. Thus the unit vectors i, £, and i, may be determined by

- _e-[I-tt)]’ . txe . 3.5
SR TR P T A e e T e

where
(s) = % (3.6)

is a unit vector in the tangent direction of the line r = R(s) at the general point P(s) and

I is the idemfactor. Therefore F'(s) may be expressed as

2B(x,s)e- (I -~ tt) + 2D(x,s)t x e

F’ =2
(s) ] (1 etf)"

- A(x,s)t 3.7

In order to make velocity « tend to be uniform at infinity we require

u -0 a5 rew (3.8)

so that u, is the flow due to the distribution of the force density F'(s) on the line r =
R(s).
The substitution of velocity u and pressure p (3.1,2) in the dimensionless forms

of the Navier-Stokes and continuity equations given by (2.10) yields
R,(e-Vu, + u-Vu)) = Vu, - Vp,, Ve-u =0. G.9)

Since in the outer region the non-linear term u, - Vi, is much smaller than e - Vu,, as
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a first approximation, we can neglect such a small term, and hence (3.9) may be written

as

3.10
R.e-Vu, = Viu, - Vp; Veu, =0, ©.10)

which is known as Oseen’s equation for uniform flow in the direction e, It has a solution
for u, and p, at location X due to the acting of a point force f' = (', f',, f';) on the
fluid at the origin given by [see Happel and Brenner (1970); Khayat & Cox (1989)]

1 '
), (X) = =g, ()] (3.11)
and
.1 XX (3.12)
P(X) ym —-}-{-5-.

where X is the radial distance from the origin defined by
X=X = (X’j}{j)“'2 (3.13)
and g; is a symmetric tensor defined by
gAX) = 8,7°¥(X) - T,(X). (3.14)

Here the summation convention is imposed on the repeated index, unless otherwise
stated. In relationship (3.14) ¥(X) is given by

1
2] - e (3.15)
T =& A —— |da,
and the delta Kronecker 6; and ¥.,; are respectively defined by
5, =4 Pr e (3.16)
0, for i=j
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and

*F

wau = s
aX, X,

(3.17)

Thus, the velocity u, and pressure p, at location X due to action of a point force f' on

the fluid at location X’ may be written as

)0 = o=[g,(X - X (3.18)
and
= L (X; - xi’)f}! (3.19)
P(X) = = XX

Therefore, the flow field (u,, p,) at a general point on the plane (x, y) with position
vector X = (x, y, 0), as shown in figure 3.2, produced by the whole line distribution of
the force density F'(§) may be determined by

@0 = o [lg,l7 - ROIF/©ds (3.20)

o1l -RA (3.21)
pI(X) = . omf'}(ﬂd&' -

In equations (3.20,21) the values of (X - X) and f;’ of equations (3.18,19) are
respectively replaced by their equivalent values [r - R(5)] and F’(35)d5 (see figure 3.2) and
since equation (3.10) for u, and p, is linear we superimpose the velocity and pressure
produced by all individual point forces F'(5)ds on the line singularity r = R(5) by taking
the integration over the line 0 < § < 1.

In order to maich the value of velocity # and pressure p given by (3.1.2).
respectively, onto those which will be obtained in the inner expansion we are required
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to determine the asymptotic behaviour of u, and p; near the line singularity r = R(s).
Since the integrands of «, in (3.20) and p, in (3.21) become singular on this line we

divide u, and p, into two parts as

(), =J, + J," (3.22)
and

p, = H+H, (3.23)

where J', and A’ are the integrals taken over the interval (s - ¢ , s + &), whilst J, and H
are the integrals taken over the remaining interval. It is assumed that ¢ is an arbitrary
constant, independent of « and very much smaller than unity. Thus J,, J';, H and H’

may be expressed as

1 S-C -1 N .~ ra
56 = {7 [ Deytr-RENF Gas, (3.24)
5O = 5= [ g, lr- ROIF/@)as, (3.25)
- _]__ swe [ [r! 'Rj(j)] Irax ga 2
1 = AL r-r@P O o0
and
H(s) = — “‘wﬁf@)dg . (.27

4nlse |r - RE)P

We intend to obtain the asymptotic forms of u, and p, as X or its equivalent value
p tends to zero; that is, as r tends to R(s), the origin of local coordinate system (x , y,
2) (see figure 3.3). Since the integrands in (3.24-27) only become singularat § = sif r
lies on R(s), it can be concluded that the integral J; and H have integrands with no
singularity , although their values will tend to infinity as £ tends to zero. Hence letting
r = R(s), the relationships (3.24) and (3.26) may be written as
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56 = o770 [ )s RG) - ROIF; ds (3.28)

and

- L s-:+ .1 [RI(S) - R](S.)] tpay pa 3.29
= A R “ROP O o

Since £ < 1, the integral J,' and A’ may be simplified if one notes that F'(5) =

F'(s) in the range of the integration, that is, s - £< § <s + &: so that we can write

’ 1 !
and
TR G
H = F/6)], 3.31)

where [; and J; are respectively defined by

see e s (3.32)
Iy = [g,lr-R®1ds

and

I = j:::—-—[r" 127 (3.33)
|r - RGS)|

For fixed but small ¢, as one approaches the singularity line, 7 = R(s), i.c. in the limit

as p tends to zero, the flow approaches that due to a line of constant force F'(s) acting

on the z axis.

In order to obtain the asymptotic forms of [, and /, for o tends to zero it is
convenient to take the fixed rectangular Cartesian axes (7, , 7, , r;) to be parallel to the
local coordinates set (z, x, y) at point § = 5; so that the r;, r, and r, axis respectively
coincide with the z , x and y axis, respectively, as shown in figure 3.4. Thus the
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relationship between the position vector r and the vector R(s) representing the body

centreline at point § = y may be written as (see figure 3.4)
r, = R/
ry = Ry(s) + pcos® (3.349)

ry = Ry(s) + psin®

The expansion of the components of R(§) around s by Taylor’s series results in:

R d*R
R@ = R » DDy L 1ERO o,
=
R,
R - Rys) + Do L L 1ERG o e 639)
2 ds?
" dRy(s) . 1d7R(s) .,
R3(S) = R3(s) + S (s - E P ($§ - 5)* +

Since | §-5 | < ¢ <« 1 the errors in these relationships are of order ¢*4, so they tend
to zero much faster than ¢ does. But, since the r, axis is parallel to the tangent direction
of the centreline R(5) at § = 5, dR(s)/ds = t [see (3.6)], hence

dR. (s)
‘;s = rl = 6“ (3-36)

which indicates that dr/ds = dry/ds = 0, therefore, (3.35) may be simplified as

1 d2R,(s) y

R(EB)=Ri(s) +(§-5)+= = - 5)* +
ds-
R(E) = Ras) + 'R”("( ECI (3.37)
ds*
d*R,
3(3) =R ( } + _'(S) - s)z +
ds*

Thus, by the relationships (3.34) and (3.37), the components of the vector [ - R(5)] may
be expressed as



N l daRl - -
-(§ -5 - :;[T(S)](S -8 -
. s-

)

[r - R(®)],

It

R,
(r - R®); = + pCosb - 1[d =®1($ - 8)* - - (3.3%)
2 ds?

-

n - 1 R3 - 2
[r - R$)]; = + peosb ~ ~[— (@)} - 5)° - -
& ds-
But dR/ds = t is a unit vector, hence
dR dR _ | (3.39)

ds ds

Differentiating (3.39) with respect to s results in :

dR &R _, . 4RIR (3.40)
s ds? ds ds*?

Since dr/ds = &, it follows that d°R,/ds* = 0, so that (3.38) may be written as

[r-RE], =-(§-5)-0( -5 -~
) d’R, X )
[r - R@$)], = + peos® - —[ 5 &N - 5)° - - (3.41)
ds
R
[r - R($)]; = + peosB - [ &I - 5 -
das

Hence the square magnitude of vector [r - R(5)] may be expressed as

lr - RE)|* = [($ - 5)* + p?] + O[(F - 5 p(§ - s

(-5* 9(5-3,2”0-42)
(-sY+p? (5-97+p?

=[(s -5+ p=]{1 -0

Therefore by the aid of the binomial theorem the term in the dominator of / may be
determined by
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-3
Ir - R = [(5 - 5)* + p%] 2

3.43
(5 - 5)* p($ - 5)? ” G439

><1+O )
(§ - 5%+ p (§-5)?%+p?

The substitution of relationships (3.41) and (3.43) in J; defined by (3.33) results in:

I, - f‘{ “(§-8) . o[ (- sy

e [(3 - 802+ R (16 -9 ¢ PP 3agy
(§ - s p(s - s ds
[(8 - ) + P2 [($ = )7 + 2P
I, - f' pcos .ol—pB -
¢ [[($ - 5)* + p? [(§ - 5 + p*)7 (3.45)
p2(5 - s5)? (5 - s)? .
(8 - ) + p?P2 (8 - s + p?PR]]
and
I, - f” psind .0 p(s - s)* ,
s-¢ [ [(§ - 3)2 + p2]3}2 [ - s)z + pZ]SR (3.46)

p2(§ - 5)? (§ - sP?
[(5 - 5)2 + p?I” [(§ - 5) + p*I*"

-

In order to evaluate I, it is convenient to introduce a new variable x defined by

) (3.47)

§-5=px,
so that /, in terms of variable x may be written as

31



-rlp -X
I = —_—
1 f-g)‘p {p(l + xZ)Jf-’

(3.48)
3 5 3
+ 0 pxq , pxg ‘ X - dx.
(1 +x3)3 (1 + 23R (1 + xR
I =f*:!p{ cosB
: -ef 1,32
Ple(l +x%) (3.49)
4 2 2
+ 0 pxa . d —_— u - dx,
(1 + 2257 (1 » xR (1 +x%7
and
+efp sin8
I =f {___
-ef 2332
Plp(l + x7) (3.50)
4 2 2
+ O px , x n , x - dx .
(1 +x3) (1 +x?)% (1 + xR

It can be seen that al] the integrals in /, possess the property of symmetry, so that

I -0 as p - 0. (3.51)

For fixed ¢ as p tends to zero the integrals in I, and I; may be evaluated as follows :

f’tlp dx _-f"' dx - fmn"tlpcosede
o (x2 e 1) Jem (22 4 12wl (3.52)
= |sin@| %5 = +2,
-g 2 - - * *r
f o__x7dx |-x(x2 « TR o fin[x + (x2 + DRI

-efp (x‘..’ - 1)3[2 -clp

2 - 2, e,
_23[8_,1] qn[(e p)" - ]

Pl p? (e2 + p?)? - ¢ |

"

or
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f»:lp x?dx p v In
-e 2 . 1\ -112 2
(2 + 1) £+_1(a_2] . “%.9_”-5 (3.53)
p 2 pZ e
-2 21n(3£J :
P
sefp x%dx | x,.» 3 (ot 1 el dx
f-—zlp 2, y” ""3'(" * D - 3 elp (42 32
(x% + 1) AP (x* = 1) (3.59)
= ——L -
3 g2 3
and
f—m x4dx _ -x_S(xz . 1) e + f""’_"z‘i"
el (x? + 1) 3 e P (2% + 1YR (3.55)
= »E + 2111(2_8) .
3 P

The substitution of (3.52-55) in I, and I; given respectively by (3.49-50) gives

2
I, - 2p7'cos® + O p,pln(.e_),[i’_],po,m(i)] (3.56)
p)le? P
and
2
13 - 2p"sin3 + 0[[3,91!1(3),[-‘:,—;],;)0,111[2)]. (3-57)
P £~ p

As ¢ tends to zero the largest error in these relationships is of order p°. Therefore H’
defined by relationship (3.31) is obtained by

" - 2—1’:-9'1[ cos8F,/(s) + snBF,(s) 1 + O( p°) (3.58)
Thus. p, given by relationship (3.23) may be determined by
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p, - H + %p"[ cosOF,'(s) + sinbFy'(s) | + G(1) (3.59)

where H is defined by relationship (3.29). Therefore as p tends to zero. the asymptotic

form of pressure p [see (3.2)] can be expressed as

p - 51;,:.-'[ cosOF,'(s) + SO Fy'(s) |
(3.60)

L qpsme, g [RS) - R,
+ 4n {fo Lve} IR(s) - R(3) IJF, ($)ds + O(1) .

In order to obtain the asymptotic behaviour of /, near the line singularity r = R($)

one should obtain the asymptotic form of g;, defined by [see (3.14)]
g,(X") = 8, V}E(X") - ¥, (X"), (3.61)

where X" = X - X’ = r - R(5) (see figures 3.2,3), as both p and ¢ tend to zero. But p
= X and as ¢ tends to zero, X' the magnitude of the position vector of the point force,
will tend to zero. Therefore as both p and € tend to zero, X" the magnitude of vector X",

will also tend to zero. Since the integral variable, «, in ¥(X"), defined by [see (3.15)]

Lrx--exyf 1 _ ,-a
P(x") = 2= [ 1 - e\, (3.62)
R0 o

will tend to zero, if X" tends to zero we require to determine the asymptotic behaviour
of ¥(X™) for e« — 0, hence in this case the integrand of ¥(X") may be simplified as

«?
1-(1-a+E -5,
R TR T
. - _ (3.63)
o ﬂz
= - ey P mm— = e
2! 3!

Thus as X" tends to zero ¥(X") is obtained by
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IR (X" -eX")
T(X") ~ -;-foz (1 - % . ...]da

= i|a - 4a? + '"!:;IZR'({"W) (3.64)
R

(X" - eX") = ZR(X" - eX') + -

The ¥.,; and V*¥ in g, may be determined as follows :

Xﬂ' 1 ”'-
¥, (X") - X”; B ZRe(X” - ekxnk)(? - ei] *oen (3.65)
Thus
" 5:} X[”Xj"
Tu’j(x ) - (F = _X"_’
1 , 60 Xinxjﬂ \Xj" Xi"
- =R |(X" - ¢X,"})| — - —=— —- - -
4 c( "k )(Xn ¥ + X" ej X el +
(3.66)
Hence
3 1 1 . w3 1 X/ X/
oy - (}T T X J-ZR‘ (X" - ek, )(P 'F) * (};" _ei][xin -ef]] o
=i -.lR z-zekxk +1-2x‘ i + 1 + -
X 4 b ¢f X
(3.67)
Therefore
ve-w -2 _gli- ek |, (3.68)
Xﬂ 4 X”

Thus g; given by (3.61) may be determined by
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26 exu 6 X-"X-" e X"6
gU(X") - T"U- - Re(l - ]6U + [--—'-‘-t + _L_J.] . lR«‘(éU" KTk i

X" X" X":’l 4 X"

i Xi,,xj, . ekxk”xinxj" . xinxj» i ejxin ) e‘xjn . ee\ ..

X2 X3 X" X" X" a

_ ﬁ . w . lR 235 . 3ekxk"au.=ekX,‘annx/,

X Xﬂ3 ¢ i X" X"3

- efxl' - eij + e‘e] +
X" Xn i
(3.69)

We see the term in R,* is bounded [i.e. it is independent of X" = r - R(§)], so it is
independent of §, hence it gives a contribution to I, [see (3.32)] of order ¢*! and so it
tends to zero as £ does. After being substituted X" by [r-R(5)], the term in R,° gives

glr - R(3)] ~ S, [0 RO - RO,

_ (3.70)
lr = R($)| |r - R($)|?
Substituting relationships (3.41) and (3.43) in g; results in :
1 (§ - s)?
&n - — + - P 3.7
[ -5+ 1" [ -s)+p'P"
251 - L, __plcs® G712
(5 - 5P+ 1  [B~sP+p PR
.2
253 - L L p'sin’® 3.73)
[(5 - 5P+ p* 1R [ -s) + p?PR
e - __($-5)pcos® 3.74
812 = 8 (G -5 - pi" + -, (3.74)
81 = gy ~ - (§ - s)psin0 .- (3.75)

[($ - s + P17

and
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p’sinBcos® . (3.76)
(-7« p PR '

823 83 ™ ¥

Therefore, /, defined by (3.32) may be determined by

- EAd 2(5 - S)z - p2 .

L~ [ G o o ds 3.7
_ see(§ - 5)® + p? + pPcos?O .

Ly~ [T T (3.78)
L [5e(S - s) + o + pPsin0 .

Iy = [ TR ds , (3.79)
- _ s+ (5 -s)pcosH R

Ly =Ly~ =[7 e 4 (3.80)
= _ _[=c__ (S -s)psinB . (3.81)

ha =l L e

and
123 = _[32 ~ +f3*t p-SineCOSe ds . (3.82)

A (S b 4

Or I; may be expressed in terms of the variable x defined by (3.47) as

. 72 .
Iy~ [P g [P, (3.83)
-elp (x2 + 1)R cip (x2 + 1)
" 2 . 2
Iy - [ o X° . i ol + cos’® ;.. (3.84)
- -cfp (xz + 1):”2 -clp (xz + 1)3f2
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sefp x* /o 1 + sin*@
L.~ — =  d —_— — dx . 3.85
33 f-:lp (x* « 1R x f-e!p (x* + l)Jndx ( )

- _ _[*e  XxcosD
l, = I, f-:;p PR I)mdx, (3.86)

- o~ _ (e xsin8
1, = I, f_m PR l)mdx. (3.87)

and

_ _ [*ee sinBcosH
L, =1, f,e,p T 1)3,2dx. (3.88)

Therefore, as p tends to zero [i.e, r —= R(s) see figure 3.4], /, may be determined by
[see (3.52-55)]

2¢
I, ~2[-2+ 21n(T)] + 2 4

(3.89)
~ -4Inp +{4lne - 2 + 4In2} + -,
2e 2
I, = -2 +2In(==) + 2(1 + cos?@) + - (3.90)
- i
- -2lnp +{2Ine + 2In2 +2cos’B} ~ -,
2¢ . 2
I, - =2+ 2ln(?) *+2(1 » sin“@) + - (3.91)
- -2lnp +{2Ine + 2In2 +2sin’8} + -,
I, = I, - cos| (x? + 1)17|:% 3.92)

-0,

similarly



Iy=1, -0, (3.93)

and

Iy, = I, ~ 2sinBcos® + - . (3.94)

The substitution of /; into J*, defined by [see (3.30)]

J - slnu,lz:,’(s) + IF(s) + I,F,(9)] (3.95)

gives

I - -é-l;{-étlnp +[4In(2e) - 2] + - VF(s) (3.96)

Jy - 8iﬂ{{ “2Inp + [2In(2¢) + 2c05°6] + ~JF'y(s) + 2sinBCOSOFY, + -} ,

(3.97)

1

Sn{{—zlnp + [2In(2¢) + 2sin?8] + }F';(s) + 2sinBcosBF, + ...} )

(3.98)
Thus as p tends to zero (i), defined by (3.22) may be determined by

(), = ~5=F'(ap + {f;[ 2In(2¢) - 1 IF/,(s) +Jl<s)} + s (3.99)

(), = 5= Fiy(s)lnp
. {-1—[ In(2e) + cos?® 1F'y(s) + ——sinBeosBF’;(s) + Jy(s) } -
4 4 -

(3.100)
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and

1 o
(u1)3 = 'HF3(3)lnp

+ {l[ In(2¢) + sin*@ I1F'(s) + L sinBeose F, (s) + J.(5) } S
4z an 2 3

(3.101)

Hence by (3.1) the asymptotic form of the velocity #, when p tends to zero may be
obtained by

u, - —%F’,(s)lnp . {e1 . 11;[ 2In(2e) - 1 JF'(s) + J,(s)} ¢ (3.102)

1 .,
u, ~ -EFZ(S)Inp
. {ez + - [In(2e) +cos?B]F,(s) + ——sinBeosBF,(s) + J,(s) } , o
4 4n -
(3.103)
and
- ——I-F' (s)lnp
iy a3
+ {e3 +4—1n-[1n(23) +sinZB]F'3(s) + Il;r-sinecosBF'z(s) +J3(s)} o,
(3.104)
where J; is defined by (3.28) as

1 s-c -1 - rrn .
Ji(s) = E;?{fo -f. "}gij[R(s)-R(s)]F:f $5)ds . (3.105)

The relationships (3.103,104) may be combined and written in indices notation as

F : XX
u, - f(s) (5'1)1112 s/ S e, + J(s) + ~ (3.106)
47 p |:)2

where (, ) =2, 3; X, =xand X, = y.



Figure 3.1 : The system of axes at the general point P on the line singularity with
unit base vectors i, i, i, showing the unit vector ¢ lying in the (x, 2)-

plane.
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F'(§)ds

Figure 3.2 : The velocity u, at position X in the ( x-y }-plane due to the acting of the

point force F'(S)dS at position X ' on the line singularity r= R (§).
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w>
Il
o

Figure 3.3 : The range of integration in which as p . 0 the integrands in H' and T,

become singular.
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Figure 3.4 : The position of the general point P in the (x-y )-plane with respect to
the (r,, 1., r,)-axes which is taken to be parellel to the local coordinate

system at point $=s.



CHAPTER 4

4 - Inner flow field - Matched asymptotic expansior

In this chapter we consider the cylindrical flow in the neighbourhood of a general
point on the body centreline (i.e. at P). The inner expansion of the flow fields (u®”, p*)
should be determined by solving the governing equations (2.10) expressed in inner

variables as [see (2.8)]
xR u® -0y - gy _ gipo . g0 .0 =g . @.1)
e * 4 .

subject to the boundary condition
u® =0  on the body surface , 4.2)

where V@ is the gradient operator with respect to the (x”, y%, z¥)-coordinates. Since the
boundary condition at far distances from the body has been considered in the outer
expansion, in inner flow field we only exert the no slip boundary condition on the body

surface [i.e. (4.2)). Thus. neglecting term of order «, equations (4.1) may be written as
V(f)zutl) - v(ﬂp = 0 : v(i). u(ﬂ = Q. (4.3)

which is Stokes equations.

It is assumed the cross-sectional shape varies sufficiently slowly along the body
centreline. and we recall that the curvature of the body centreline is assumed to be large
everywhere, so we can neglect the dependence of the local flow fields on the z-axis.
Thus. the problem is simplified to two dimensional flow fields in the plane-(x, y*).
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Since terms. which have significant values in the region near the body surface,
such as those of order p” to some negative power. when converted to the outer
variable.[see (2.14) (i.e.. p = xp™)]. will turn into terms of order x o some positive
power, to the approXimation being considered [i.e., O(x)]. we are not concerned with
such terms. Therefore. it suffices to obtain the inner flow ficld valid at far distarces from
the body in the inner region.

To the approximation being considered the cases of transverse motion and
longitudinal one involve only the transverse and longitudinal components of F'(s).
respectively, and since the corresponding inner flow fields have slightly different
characters we consider them separately. Thus, we decompose the flow tields (u®, p™)
in u® = (u,%, 0, 0), which is parallel to the body centreline, together with constant
pressure and in u = (0, u.”, u,"), which is held in the cross-sectional plane (x®, y),
along with pressure p”. This separation of the cylindrical flow will be explicitly verified
to be in accordance with the exact solution of the problem.

First the flow field for a long cylindrical body with an elliptical cross-section is
analyzed by the complex variable method and the problem is then generalized by the use
of the inner flow field solution for a body with an arbitrary cross-section. In both cases
the corresponding solutions will be expressed in terms of outer variables and then will
be matched onto those obtained for the outer expansion at the same point.

4.1 - Longitudinal motion for elliptical cross-section

Now we may consider a cylindrical body with an elliptical cross-section, the semi-
diameters of which are given by rya(s) and r, b(s), where a > b. The dimensioniess
equation of the cross-sectional shape may be written as

2 b2 (4.1.1)

where x” and y " are dimensionless axes. chosen to coincide with the larger semi-diameter
a and the shorter one b. respectively. Associated with the rectangular coordinate system
(x", y") is a dimensionless polar coordinate system (o', ¢), as shown in figure 4.1, so
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. that the relationship between these two coordinate systems is given by
x" = pPcosd and y" = p¥sing . 4.1.2)

In the (x”, y")-plane, which is called Z-plane. the dimensionless, equations of
motion and boundary condition may be written as

v = 0; Veu =0 (4.1.3)
and
"2 3
M _ * . =
wo=0 om oo =l (4.1.4)
where «," = u,"(x”, y") and V" is the gradient operator with respect to (x", y")-

coordinates. In equation (4.13) pressure p does not appear because it is constant and
hence V"p = 0. The continuity equation is automatically satisfied, that is, du,/dz = 0,
which is one of the assumptions of the problem for the inner flow field. In order to

. impose the no slip boundary condition (4.1.4) on the body surface, it is convenient to
transform the cross sectional shape onto a circle. Hence, the transformation

Z = w(E) =[“*”)E +(“;b

3 ]5" ; 4.1.5)

transforms the ellipse defined by (4.1.1) in the Z-plane onto a unit circle, ¢, in the -
plane as shown in figure 4.1. Solving the relationship (4.1.5) for ¢ results in

Z +y2Z* - (ZZ -5 (4.1.6)
a +

€ =f(2) =

In the derivation of the relationship (4.1.6) the root with positive sign is chosen in order
not only to make a one to one' mapping, but also to map the exterior-region of the
ellipse in the Z-plane onto the exterior-region of the unit circle in the ¢-plane. Since f (Z)
is analytic. it is conformal too. so that the harmonic function x, (x”. ¥”) remains

. ! Here we consider the principal value of the complex variable, unless otherwise stated.
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harmonic under the change of variables arising from the conformal transformation.
Therefore. in the £-plane. we have

V"zulm = 0, ulm = ulm( w, W)

_ (4.1.7a.b)
u,m =0 on r* =1,

where (w,”. w,") and r” are, respectively, the dimensionless coordinate system and radial

distance from the origin in the £-plane. as shown in figure 4.1, and where the gradient

operator V" refers to (w,”, w,")-coordinates. Letting g(§) = P + [ Q be analytic

function of £ = w,” + iw,” = r"e® (i.e. V°P = V"3Q = 0), u," may be written as

u = P = R(g(®)], (4.1.8)

where Rt denotes the real part of the complex variable. The general solution of equation
(4.1.7a) is

u = (ap+ pYA'Inr" + B') + i (€', + D" r*“)(E’ cosnd + F" ,sinng).(4.1.9;
n=}

where all the coefficients are real constants and n is an integer number. But, the term a¢
can not appear in the solution since it is not periodic, neither can the terms of order [p"]"
(n being positive) since they would have to match onto the terms of the order x to some
negative power [see (2.14)] in the outer expansion, whereas no such term exists [see
(3.102)]. In other words, at far distances from the body the velocity is finite or, strictly
speaking, it is only logarithmic infinite. Therefore, (4.1.9a) may be written as

u; = Alnr” +B + ¥ r""™(E cosn¢ + F,sinng). (4.1.9b)
n=|
Imposing the boundary condition (4.1.7b) in (4.1.9b) results in:
0 = Alnl +B + ¥ (E,cosng + F,sinng). (4.1.9c)

A=l

Since the relationship (4.1.9¢) must be held for any value of &, it follows that, the only
nonr-zero coefficient is A. Thus [see (4.1.8)]
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u = Alnr"

Rig€)] = R(Aing). (4.1.10)

n

In the derivation of the equation (4.1.10), it was noted that inf = In(r"e¢®) = inr" + i¢.
However, by the aid (4.1.6), we have

E — PRla+h)]Z a1 — . 4.1.11)

Therefore, at far distances from the boundary velocity «®,,, is determined by!

u® - | Am[2Z
a+b

)
- Aln(2p ]

4.1.12)

Since p = xp™ and u, = u," [see (2.14)] the velocity «,”, in terms of outer variables,
may be written as

u, ~Aln[-——2" ] o[_] 4.1.13)
x(a+b)

where 7 is some positive integer. Because «, is independent of ¢, it possesses the same
form under any rotation of the axes (x", y"). Hence by neglecting the terms of order «
the inner body condition for the outer flow field also in terms of dimensionless polar
coordinates (p, 6) is determined by

u, ~Alnp - Aln{x(a+b)2). 4.1.14)

Matching the velocity &, onto that obtained by (3.102) for the outer expansion requires

4.1.15
A = -[1J2m)) F,'(s) ¢ )

and

'Here the dependent variables labelled by the sign o denotes the values of those
variables at far distances from the boundary.
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k(a+b)
e

-Aln[ ] e ﬁ[Zln(?.s) SUFS () » J(s).

Substituting A = - F,’/(2x) results in

, 4e 1.1 ) 4.1.16)
Fl (S){Z]n[ml 1} = 41![ €, Jl(S) ].

Next. let us examine the force which the fluid exerts on the body. Following Batchelor
(1970) in the cylindrical flow tield F,(s). the force per unit length which the fuid exerts
on the body. may be determined by

F, = (—)ds" ' 4.1.17

where n and s” represent distance normal and along to any closed curve in the cross-
sectional plane at point s by which the body is surrounded. This equation can be easily
derived by the use the relationships (A.35.36) (see appendix A) and (4.1.10). However,
by choosing the curve as a circle with radius o for which equation (4.1.12) holds, F,

may be obtained as [see (4.1.15)]

0]
2=

du,.
Fi) = | — L) pVdd
o

f:uAd‘b
2n4 = -F/(s). (4.1.18)

which was expected.

4.2 - Transverse motion for elliptical cross-section

We may now consider the flow fields «® = (0, u®,, ")) together with pressure
p“ in the plane (x”, y"). The governing dimensionless equations of motion and boundary
condition, in the Z-plane. may be written as
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v”zu“) - v’p“) = 0; ch = 0 (4.2.1)

and

u (- 0 on x"z yn2 (4.2.2)

where u? = u%x", y"). Equation (4.2.1) may be expressed in terms of the stream
function ¥ as [see Appendix A, (A.12)]
vy = 0, 4.2.3)

which is the biharmonic equation. It possesses the solution for ¥ in terms of the
complex variables as (see appendix A)

¥ =R(ZO + x), (A.27)

where ¢ and yx are analytic functions of Z whose functions will be determined by using
the boundary conditions; Z" is the conjugate of Z, thatis Z~ = x - iy.!

In transverse flow. as in longitudinal flow, the velocity at far distances from the
boundary is logarithmic infinite. In fact, it was this singularity in space that didn't allow
Stokss to satisfy the uniform flow condition at infinity, and hence caused the Stokes’

paradox. Therefore, in the Z-plane, as p tends to infinity, ¥_ , corresponding to the
velocities 4, and «,”,, has the following form:

P_ - (CpPnp? + DpP)cosd + (EpPInp® - FpP)sind. (43 4y
letting
®_=(A" +iB')nZ

and

'As far as the complex variable is considered the variable Iabe:lled by an asterisk
denotes the conjugate of that vanable.
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X. =(C" +iD")ZInZ + (E' ~ iF'}Z,

where A°, B'. C', D', E’ and F' are real constants, '¥_ may be btained by
Y_= R[pPe (A +iB)(Inp® +id)
(C +iDYpWe®(Inp® « i) + (E + iF')piet®)
= [(A' *~ C)pPlnp® + E' p"] cosd
+[(B" -D)YpPInp® - F p@sind ~ (B + D')pdcosod. 4.2.5)

Equating the equivalent terms of equations (4.2.4) and (4.2.5) to each other, results in:
A' = C' ='C,

B' = -D' = %E,

E =D and F' = -F.
Hence, in Z-plane, . and x. may be written as
o_ = (E + ,‘E)]nz
2 2
and

Xe = (-g - i%)Zan +(D-iF)Z.

But [see (4.1.3)] as p —> o0; Z —= (a + b)E/2 . Therefore, in the £-plane, &, and x..
may be expressed as

REREINES

and



Thus. one should take the general forms of & and x as

o =(£ 4.,"_5)1,1[“”’5] . TG £ (4.2.6)
2 2 2 nel
and
_(C _ E)(a+b ) (a+b ) _.pa+b
y=l=-iZ E |ln El+(D - iF) §
(2 2\ 2 2 4.2.7)
+IE'Ing + L H E",

where G,, I and H, are complex constants; n is an integer.
The first term of relationship (4.2.6) and the first two terms of relationship (4.2.7}
correspond to ®,, and x.,,, respectively, and the remainders are complementary terms,
the values of which become significant in the region near the body surface and which
functions are determined by imposing the no slip boundary condition on the body surface,
that is, 4 = 0 on unit circle £ = e®,

In the #-plane, velocity u® is given by (see appendix A)

i(u® - iu?) = [ﬂ]"'“ﬂ " - ﬂ]’ . {ﬂ]} (A.49)
i Y dE dE dE de| [

where w is defined by (4.1.3) as

a+b

w(&) = ( >

. a-»b -1
)13 (—-—---2 e

Hence

iiﬂ a+b a-5%
dE 2 2

From relationships (4.2.6-7) [d®/£]1” and [dx/E]” are determined by
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and

ﬂ'=(9+;£]“*b
dE 2 2 2
I'(l - mEYe“" - TnH

n
ne=l

We require u,” = 4, = Qon ¢ = e, hence by substituting w, [dw/dx]’, &, ([db/dE]"
and [dx/dt]" in equation (A.49) and letting £ = e, the no slip boundary condition can

be expressed as
(252 - #5200 (§ - §)m(252) - B
2 2 2 2 net

2
d*b ,¢+a-be-,-¢ E
2

In
:E] e't - ZnG e‘(”‘”"]
2 nej

(_+ E] { (a+be“'°)+1}+{_D+iF)“*b

2 2
fI°(1 + ig)e® - T nH el = .

nw]

This relationship must hold for any value of ¢, hence it must be independent of ¢.
Therefore, equating the coefficient of (i¢)?e® to zero results in:

a-b(C +,‘£)¢['=o,

.
ibesit,. - =
¢ 2 2 2

2 2 2
e : a+bh £+z£ ma+b+a-b(£_i_E_]
2 (2 '2) 2 2 (2 2
AL iEVarb (it L)L (D im0,
2 '2) 72 2 2

and the other coefficients are equal to zero. Upon solving these equations simultaneously,
the coefficients /, H,, D and F are determined by
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2 a+b
and
F=-E Ina*-b L b
a+

2 a+b a+b 2
. E(a-a-blna+b)+i£[b a-blna+b] £t
2 2 2 2 2 2
4.2.9)
and
¥_- -p®(Ccosd + Esing)ln 328 - p“’(c‘”"’s"’ > E”s"“"’].(4.2.10)
2 ot a+b

We may now consider the elliptical cross-section in the general axes (x”, y¥) such
that the direction of the larger principal of the ellipse (2a) is given by the unit vector
B(s). For this case the x "-axis is obtained by the rotation of x“-axis within the (x*, y®)-
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plane by an angie A in the counter-clockwise sense. as shown in figure 4.2, where

B, = cosa and By = sinA.
Hence. the relationship between 6 the polar angle associated with the (v, y™-coordinate
system and ¢ is determined by (see figure 4.2)

¢ =06-21.

Thus, ¥_ may also be expressed in terms of polar coordinates (0, ) as

a+b

P (pP8) -~ -p¥[Ccos(B-2) ~ Esin(8-A)]In (
2pY

- p® Cacos(0-1) + Ebsin(8-1)
a+b

or ¥_ in terms of (x, y™)-coordinates may be written as

T (x0,y0) ~ ~[(CP, - EB,)x? + (CB, + EB,)y® JIn —322

24/x® & ym’

_ (CaB, - EbB,)x? + (CaB, + EbB,)y?

a+b

At far distances from the boundary the velocities 4,”,, and «,", may directly be obtained

from the stream function ¥_ as

o - C + Eb
o = 222 _(cp, + Epymal . T2 T
ay") - 29(0 a+b
(03]
+ [(CB, - EB;)x® + (CB, + EB, )y®] 2=

p(r)z

and



avF. C - Eb
W« - 22 - ccp, - £pymatl . T T 20
ox®

2 p(i) a+b
® wq X
- [(CB, - EB;)x® + (CBy + EB)y¥] <.
p(l)
Thus, the inner body conditions for the outer flow field are determined by [see (2.14)]

a+b )_Caﬁ3+Eb[32

a+b

uy ~ =( CPBy + EB, ) In(

+ (CB, - EB, )sinBcosB + ( CB, + EB, )sin®0 + O(X)
pﬂ

and

. CaB, - Eb
uy ~ = (CB, - 553)111(“9 ”K) . Lab, - EbP,

a+b

- (CB, + EP,)sinBcos® - (CB, - EB;)cos?8 + 0(X2),
p”

where n is some positive integer.
Matching the inner expansion onto the outer expansion obtained by (3.103,104)

at order Inp requires

Cp, + EB, = --I—F,'(S) 4.2.12)
’ - 4z -
and
CB, - EB, = 1 F,'(s). (4.2.13)
’ ‘r T

Solving these equations simultaneously for C and E results in:

B,

4z

C=22F') - ﬁ’F(s)

and



— ﬁ:’ + - BZ '
E = —4—1;F_,(s) ZT:-F:(S).

Thus «, and 1, may be expressed as

1 a+b . n ap::t*'bb-z.-
U, ~ —In kK| -sin"f + ——=

* 4z 2p a+b Fy()
- -b
+ [sine cosB - w——)]}“a’(s)
a+b
and
-+ - 3 + b 2
u3 ~ i[ln(a bx] - cos-0 + a—P;_B“ F_"(s)
4x 2p a+b ;
o - b
. [sinecose _ BaPy(a )]F..’(s).
a+b <
Matching at order p° requires
2 2
_ a+bh apy « bp;y |
41‘[82 +J:(S)] = [IR[TSK) -1+ T]Fz(S)
B.Bs(a - b) _,
R
and
2 2
+b 052 + st
4 - J =|1n| & -1 + ———|F'
[ e - Jy(s) ] [ ( e x] s 5 (8)
-b
- EM_)F;(S),

a+b
These relationships may be combined and written in indices notation as
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dxfe, + Ji(s)] = {6,1

-4z ”M,}F ®)
a+
(4.2.14)

where (i, /) = 2 or 3.
In the Z-plane, pressure p* is given by (see appendix A)

do ‘
W= _4], o (A.30)
P m( dzZ ] Po

where /m denotes the imaginary part of the complex variable. But, in the Z-plane, $ may
be obtained by the aid of (4.2.8) and (4.1.6) as

2 _ 2 _ K2
¢=(£+i§]lnz*‘/z (a”-57),
2 2

2 2
Hence
dd (C E] 1
== |5 *i5 .
dzZ 2 - zz_(az_b:)
Thus

p? = _41,,,{(% f)[zz - (a -b*)] } + pg.

Upon expanding the bracket by the binomial theorem, the asymptotic form of the
pressure may be determined as follows:

p® - ~2Imi(C + iE) l o ot (a?-5%) s = |}« p®
22’

J

-idy
- =21 C +iEY| — + a -—b + e . p?
m {( iE) pm 20 m,( ) Po
_ 2Csin¢ - 2Ecosd | Csm(3d>) -Ecos(3d) (a p(”
p(ﬂ p(.)’ 0

or p" can be expressed in terms of polar coordinates (o*, 6) as
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2Csin(0-21) - 2Ecos(0-2)
pt
., Csin(36-34) -Ecos(36-31)
pm’

p(l) -

(a: _b:) N P(;’}-l

Upon substitution p” = xp, p," = kp, and p” = p/x [see (2.14)] the inner body
condition for the outer flow tield of pressure p is determined by

pP- %[C(s'mecosl -cosBsind) - E(cosOcosA +sinOsind)] + p, + O(-—K:s)
p

or by (4.2.11) p may be written as

p- %I-(Cﬁ, + EP;)cos@ + (CP, - EB,)sin6] + p, + O( ).
P

Matching inner expansion onto the outer expansion obtained by (3.60) at order p*
requires

CB, + EB, = -4—‘“:1-;(.:) 4.2.15)
and
CB, - EB, = — F,'(s).
4n

which agree with the matching obtained by the expansions of the velocity given by
(4.2.12.13). Matching at order o requires

S qpee ) IR - RO L) e 4.2.17)
Po = 4 {L Lo:} iR(S) - R(5) |3F; ($)ds - O(D).

The force per unit length which the fluid exerts on the body, F{(s), is determined
by letting £ = e* in the following equation: (see appendix A)

[ (e - {22l 2]

-

Fx" - iFy =2 (A-50)

where Fx” and Fy" are respectively the components of F(s) in the direction of the x " and
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y"-axis and where A’ and B’ correspond to ¢ = 0 and ¢ = 2w, respectively. From
(4.1.3) and(4.2.8-9) [dw/dE]’, [db/dE]” and [dx/dE]" are obtained as

i‘_‘.’.="‘b-""bg"- d_‘b-:(g_if e
dE 2 2 ' dE 2 2
and

dy C .Ela-~+b a+b .. a+b a

—_= g | =+ - 1 + 11 =-1Cl1 -

& (5-15)5 [“( 326 ) -] [ (n%5* - 35

+b b Yla+b (a-bYC .E)..:

- lna * - _— - - -
'E( 2 a*b] 2 ( 2 (2 '2)E (1-Ing)
_ _C_(a_a-blna+b)_,£(b*a-blna+b)]a.
2 2 2 2 2 2

~

=0
g2i¢
aln

or

Therefore

Fx" = 4nE and Fy" = -4anC.
But the components of F(s) in the (x¥, y*)-coordinate svstem are determined by (see
figure 4.3)
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Fy(s) = .7x"cos A - 7¥"sind  and  Fys) = Zx"sinA + Fy"cos k.

Theretore, by the aid of (4.2.11-13) F, may be written as

Fy(s) = 4x (CP, + EB.) = -F.,'(5) (4.2.18)

and

Fy(s) = 4n (EB; - CB,) = - F,'(s), (4.2.19)

which relations verify the solution. It should be noted that F’, in (4.1.18) and (F', , F’)
in (4.2.18.19) have come from the outer expansion, that is. they have satisfied the
equations of motion (Oseen’s equation) together with the uniform flow condition at infinity,
whilst F,, F, and F; has been derived in the inner expansion by the use of equations
(4.1.12) and (A.50) (completely independent of the outer expansion). in other words, they
have satisfied Stokes equations along with the no slip boundary condition on the body
surface. Therefore, the solution may be verified to be in complete agreement with the exact
solution of the problem {that is. (F = - F"} [obtained by the matched asymptotic expansion
i.e.. by the aid of (4.1.10) and (4.2.11-13)] simultaneously satisfies the equations of motion
and both boundary conditions}. if and only if the assumption of the independence of the
local flow field on the z-axis is satisfied (i.e., the curvature of the body centreline being
large enough everywhere. as well as the cross-sectional shape varying sufficiently slowly).
In addition. it has been assumed that the governing equations for the inner region are the
Stokes equations. in other words. [see (4.1.3)] the term xRu¥u in the Navier-Stokes
equation is assumed to be negligibly small. Therefore, (since R, is of order unity) the
slenderness parameter (x) has to be small enough to satisfy the validity of this assumption.

4.3 - General cross-section - Longitudinal motion

We may now consider a body with arbitrary cross-section, cross-sectional shape of which
is given by (2.5) as

p’ = rol(s,e),
where A is a dimensionless function of s and @ (see figure 4.4).
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The governing vorticity equation for longitudinal motion . &’ = («,’, 0, 0), by

neglecting the dependence on the z-axis is given by (see Appendix A)

+ =0, 4.3.1)

where[see (A.8)] @ = (0, du,'/dy’, - du,’'/dx"), is the fluid vorticity. Batchelor obtained

a solution for the velocity valid in the region at far distances from the boundary as [see

Batchelor (1970))
’ f]’(s}{ln{ Ols] . Q . O{rol’”’
2np p’ p’

where u',, and f*, are the corresponding dimensional form of u,,, and F’,. respectively,

“

and where Q is a dimensionless constant whose value depends on cross-sectional shape,
although it might vary along the body length, and 7, A, is the radius of the circle of the
equivalent cross-section i.e. 2xr, A, is the perimeter of the local cross-section at point §=
s. Upon using quantities made dimensionless by the r,, U and u the velocity may be

expressed in dimensionless form as

o _ 7'
u,' i 21:

" A,
;"_’+Q+o[p“’]

Thus. the inner body condition for the outer flow field may be determined by [see (2.14)]

. - F(s)[m_+0] (u-]x}‘
2z P p

Letting Q = In q and neglecting terms of order x, &, may be written as

F/(s) [qz., ]
u, = In xl.
2=z p

Matching velocity u; onto that obtained for the outer expansion given by (3.102) is

straight forw:... \.{ we choose



! q ql.'
Fl (S) 2 ?K + 1

=47 ["1 + JI (S) ] . (4.3.2)

Upon comparing relationship (4.3.2) with that obtained for a body with elliptical cross-
section (4.1.16), we see that for an elliptical cross-section with semi-diameters @ and b,

the value of g, is determined by

qi, = =(a+b),

1
2
and on choosing a = b = A, i.e. for a body with a circular cross-section, the value of
q is equal to unity. Comparing the result (4.3.2) with that obtained for a circular cross-
section. gr A, can be regarded as the radius of a circle which is equivalent to this cross-
section in the sense that a given ctal longitudinal force at the surface of the circular
cylinder of this radius produces the same flow field in the region at far distances from
the body surface [Batchelor (1970)]. This conclusion is consistent with that obtained in
section 4.1 for an elliptical cross-section. It is clearly shown that the velocity is
independent of any rotation of the axes - a property of the circular cross-section. In
addition, since relationship {(4.1.10) is valid for any cross-section, it follows that this

conclusion is held for any cross-sectional shape.

4.4 - General cross-section - Transverse motion

The vorticity equation associated with the components of velocity #” = {&. «,’,

u,’) and force f'(s) = (0. f’, f;") in the cross-sectional plane, (x’, y), is again of

Laplacian form which is by neglecting the dependence on the z-axis is given by (4.5.1),
although the vorticity vector is now w = (w,, 0, 0), where [see (A.9)]

du, du,

W = -

ox y
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Batchelor gave a solution for flow fields (u', p') at far distances from boundary as

N ron X'X' r i
uf:- = fll 5,»,(111 ﬂ'.s - _’l;] + { . - QU . O[ n'.r]
4y P 2 p* P
and
, f! [
P.= : J:'s * p'o’
2np'c

where (i, ) = 2o0r3:X, = x'; X,/ = y and Q, is a constant dimensionless symmetric
tensor whose magnitude depends on cross- sectional shape, although strictly speaking it,
like g. might vary along the body length. Again using quantities maae dimensionless by

ro. U, and p, the dimensionless forms of the velocity and pressure may be written as

: @y ®
u‘(f = F_f 6,).[1;1_%; - _1.] . X +Qy+ o(ﬁ] 4.4.1)
4m p 2 o™ p®
and
0} Fj'(s) xim 4] 4.4.2
Pu = —m—— + 0 - ( L] )

21 pm’
Thus. the inner body conditions for the outer flow field are determined by [see (2.14)]

e
“° Tam

KA, ) l} . X,Xj

o (ln
Y P

and

_ F:’cosB + F3'si113

2zp

Matching the pressure onto that obtained for the cuter expansion given by (3.60) is

65



straightforward if we choose

- _1_ e ol [RJ(S) - RI(S)] -

which is the same as that obtained for the elliptical cross-section (4.2.17).

Matching the velocity onto that obtained for the outer expansion given by (3. 106)

results in :
, KA, 1
AOIEY 1n~27 "ot Qi =4nle + J(s)]. (4.4.3)
Hence
F'(s)’lnxl"-l+"Q + 2F( = 8xnfe, + JL(5)]
2| ein== 2Qa | * 2FV(9)Qy; = 8xle, + Lyl 4.4.9)
and
XA,
F)(s)|21n 5% -1 +2Qy;| + 2F)(5)Q,; = 8nle;, + Ji(9)]. (4.4.5)

Upon comparing (4.4.3) with the results obtained for an elliptical cross-section givan by
(4.2.14) the value of Q, for an elliptical cross-section with semi-diameters @ and b,

whose direction of the larger diameter (2a) given by the unit vector 8, is determined by

_ a+b  _a-b _ a-b
Q"'-G""[ln 23, 2(a+b)] Ocers (4.4.6)

where 2zr, A, is the perimeter of the local cross-section. Hence A, is determined by

A, = (E]El l 1-b_2,£} 4.4.7)
k14 az 2

where E(K,%/2) is the complete elliptic integral of the second kind defined by
the numerical values of which for various values of K = (1 - &/a’)* are available in

tables. For a circular cross-section (i.e.. @ = &), Q, is equal to zero. The @, obtained
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Ek.Z] = [/T-Kisig do. “.4.9

by (4.4.6) agrees with the result obtained by the use of elliptic cylinder coordinates [see
Batchelor (1970)). In general, Since Q, is a symmetric tensor and @, = 0, it follows that
it has only three independent components and four non-zero ones. And since the
geometry of an ellipse is completely determined by only three scalars (i.e., a. b and \),
Batchelor concluded that any cross-sectional shape. for transverse motion. can be
regarded as an equivalent ellipse with certain dimensions and orientation.

However, the advantage of the complex variable method, which is used in the
present study is that it can easily be extended to any cross-sectional shape. That is, the
values of ¢ and @, for a specified cross-sectional shape can be determined explicitly by
applying the same procedure as that applied for the elliptical cross-section in 4.1-2.
Moreover, for determination of the @, it is worth noting that, since the pressure is
directly independent of the cross-sectional shape [see (4.4.2) and (3.60)] and is
determined via the complex variable by the imaginary part of the derivation of the

analytic function ¢ with respect to Z [see (A.30)], it follows that ®(Z) possesses the
same function of Z, for any cross-sectional shape. And we recall that the relationship

(4.1.10) is aiso held for any cross-sectional shape. Therefore, for the determination of
q and Q,, it only remains to determine the function x(Z) . in addition to the

determination of the transformation function.



Z-plane E-plane

b(s)

Figure 4.1 : Transformation of elliptical cross-section in Z-plane onto a unit circle

in &-plane.



Figure 4.2 : Position of the elliptical cross-section in general axes ( x®, y*).
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Figure 4.3 : The components of force F(s) in the (x”, y*)-coordinate system.
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Figure 4.4 : General cross-sectional shape in the dimensional
local polar Coordinate (p’, ©) at point P.



CHAPTER 5

5 - Force integral equation

We now return to the question of the determination of the function F(s)
representing the force density which the fluid exerts ¢n the body. The results of the
matching given by relationships (4.3.2) and (4.4.4.5) in the inner expansion provide a
basis to determine the force integral equation. However, the force density which the fluid
exerts on the body, F(s). has the same magnitude as F'(s) but with the opposite direction.

Thus substituting F,” = - F, into the relationships (4.3.2) and (4.4.4.5) results in :

o

—

FI(S)(Z::IKQA: - l] = _41:[81 -+ Jl(s)]‘ 5.1)

ot _ .20l -2 R 5.2)
F(s)|21n 5 1 +20Q,, 2F,(5)Qs, 8xfe, + J(s)]

and

2 K_}.’ - 2 + 2 = - - (5-3)
Fys)[2In P 1+ 20, 2F,(s)Q,, 8nley; ~ Ji(s)].

where J, defined by (3.105) may be written in terms of F, as
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J(s) = 'slﬂ{fo“fl }gU[R—R(.s'-)]F}(.s")d.s‘. (5.4)

Relationships (5.1-3) may be written as

qa,
F.l2In
I.[ 2¢

- 1 -t .l PR e
) 1] + 2F,(1+ Ing) = 'i(fo f’_ﬂ)gu(R R)Fds - dane,,

(5.5)

Kl" L=t +1 - - -
F.,[?. In—* - 1) + 2(QyyFy + QuyFy) = (fo +_[M)g2,.(R -R)F,ds - 8ne,

(5.6)

and

Kl - -] - - -
Fs(ZIn-Z-’- - 1) + 2(QyyF; + QyuF,) = (f: *f,‘. )g3j(R-R)Fjds - 8me,,

(5.7

where R and F; are respectively the values of R and F; at point s = §. But, since

-e . as - ds . ds
(f; *L.I=)|g-s§| -5 5 *f,.l,j_ss
| -ln(s-$) |57 « In(5-5) .}, (5.8)

-lng + Ins +In(1-5) -Ine
-2Ing + In[s(l-5)],

o

Ine may be determined by

s Yoo (g e

Thus, the relationships (5.5-7) may be written as
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qA’( l - +1 a 2F
Fl|2ln———— -1 |+2F (Il +Ing) = = - R-RYF - ! Jd."
LN (oo - () L'a){””( sl
- 41:e!.
(5.10)
F“ 2In_f.l_'._-l +2(Q_,,,F_‘+Q_.3FJ) = (j',-t*f.l)g, (R-R‘)F" FZ ]d§
2T e I P s -3
- 8ne,
5.1D)
and

F. 21n—ff'-’—-1]+2(o F,+Q.F) - f"'+f")[g (R-R)F - 5 ]ds‘
3 2m 3 R | 3242 ( 0 sor 3n- J -

Is -3]

- 8n:e3.

(5.12)

However, from (3.71-76) for p = 0 and § # s the value of g, is determined by

2 1

Te-ay &= 80

gll = |S

——— g, =0 for i ¢j. (513
s - 3]

Thus, as R(§) ——= R(s), that is; p = 0 and § — s (see figure 3.3), the integrands
in (5.10-12) may be evaluated as

2F(s) 2R 2F()

|s=-§| |s-3| |s-8|
[f Jpl

= - ()

8, (R-R)F/$) -

(s-58) + - (5.149)

|s-$§|

dF,(s)

=2 sgn(s-35) « O(e),
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. F.(s F. (s F.
g‘.’j(R'R)Fj(S.) - - ) = .(&-) - 2(5)

[s=-81 |s-5] |s =8|
dfF, | .
” =(s) tS“S)*----} (5.15)
- ds
|s -3
dF,(s)

FE sgn(s-35) + O(e),

and, similarly.

F,(s) dF,(s)
|s-5| ds

ng(R'R)F}(S‘) - sgn(s-§) + O(s). (5.16)

We see as R(§) —— R(s), all integrals in (5.10-12) are finite, therefore, they
corverge as ¢ —— 0. Thus (5.10-12) may be written as

g, 1 r1 . . 2F, l .

F.l2In -1|+2F (1 +Ing) = = [ |g, (R-R)F,- — |d§ ~4xne,;
’[ 2/5(1=5) ' 2 )s [8 7 s-3| '
(5.17)
F '71n__L-1\+‘)(Q F,+Qy,F) =f‘[g (R-R)F, - F }d.s‘-Sn:e'
U 2609 EEOTET LT -4
(5.18)

Flam—t +2(Qy,F, + Qu, Fo) f‘ (R-BF ik ]d‘ 8
- - + 2) = g - , - - S —one,.
(5.19)

Letting i, . ¢, and i, be unit vectors along the /, 2 and 3 directions. respectively, where

. dR 5.2
l — — - s -.0
ds t( ) ’ ( )

the relationships (5.17-19) may be combined and written in a unique equation as
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(Fi4y + Fyly + Fy) (2In

-1) +2(1 +Ing)F,i, + 2(Q5.F, +Q,,F.
2‘/5_(5__3_) ) ( qQ)F,i, (Qz 2 Qz; Wik

+ 2(Q0F3 + QP = [{{[8(R - R)lh + [y (R - RO, + [y (R - Rl } £,

Fil.'-Fiz.ng 1 1 u )
-1 ls!_gl 3 }d§ -E"; mxj(R-R)]ﬁjlldg'sn(elil+e=l2+¢39 *4"“:11

(5.21)
But
8yFyh + 8Fjk + 8y F by =g -F = F-g. (5.22)
and, similarly,’
(QuaF+ QuFy) b + (QuFy+ @y F3)hy = QuF b + QuFjly = Q-F = F-Q. (5.23)

Therefore, the force equation (5.21) may be written as

F()(2hn -1) +2(1+Ing)}F(s)e(s)t(s) +2F(s)- = 4 e-t(s)¢
)2l Zots - 1) 2201 *ROFE) KNS +2F)-QE) = dre-KH)
“8re+ L‘{s[nc)-xcsn-ﬁ@ ‘s’}d 1[40 81RE -RO1F KIS
(5.24)
or
1 Y
P [2m—=2 1)1 +2(1+ lng)ets)ets) +2Q0)
)
- -Sne-[r--:(s)zcs)] o[l {[I-—t(s)t(s)] 2 IR()-R(S] (S - !” ";I
(5.25)

where I is the idemfactor. Equation (5.25) may be expiessed in dimensional form as

It is noted that O, = 0; g, and Q, are symmetric tensors, since, in general, the dot
product of a tensor with a vector depends on which unit vector of the tensor being
operated, that is, vector g.F = g, f; i; would not be equel to vector F.g = g, j; i,-
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F*(s) { 31,,"_"-' - 1]1 +2(1+Ing)t(s)e(s) +2Q(s)} =
pU 2/s(s-5)

-8ne- {I' -t(s)t(s)] {[I-—t(s)t(s)] -g[R(s) -R(H]F* () - F* (S)}

ls-3]

or

F*(s) -{[2!:1—:1’— - 1]1 +2(1+Ing)e(s)¢(s) +20(s)} =

2J/s(s-5)
F*(s)

*g[R(5) -R(H]-F~(5) - —=
|5 -5

1 1 i
-8npu U-[I- Et(s)t(s)} + L {{I- Et(s)t(s) }d

(5.26)

where F(s) is the corresponding dimensional form of the force density F(s). Similarly

(5.5-7) may be writien as

A
F‘(s)-[[Zlnl:-—‘ - l]I + 2(1 +Ing)2(s)t(s) + 20(3)} =
Py 4
- snw-[r - -,%rcsms)] +[I- Lo t(s)]-( [ ) st -RO1-F- @ as.
.27

The force integral equation (5.27) is a Fredholm equation of the third kind which
reduces to an algebraic equation for certain symmetric bodies and as shown by the
relationships (5.9-19), its weak singularity on Ine cancels from both sides of the equation.
Hence. its solution is independent of &. It can also be solved for F¢s) reiterstively as a
power series in (I/lnx) correct to the order « as follows :

Letting

F*(s) = I AT AC TR 2 OJ
Ink  (lex)®  (lox)*"!  (lnx)*? (5-28)




the force integral equation (5.27) may be expressed as

LS LG L) fiud [[ Ay 1) ]
- s + we =l 1 +InL -=1|F+(1+ $) + 5
I A—: ] ak+lnz>-2 (1 +Ing)t(s}t(s) + Q(s)

- - 4::,:::1-[1-%:@):@] . %(fo’“+f:“c){[1-%r(s):(s)}-gm(s)-::(m-

[ RO KO LO  fa® s
Ink  (Inx)’ (Inx)*"'  (lnx)**? l

(5.29)
Thus the term of order unity gives
fos) = —dmplU + 2 ul-t(s)L(s). (5.30)
The term of order 1/ink gives
. . A, 1
J1 ) + £ () '[[ln— -;]I + (1 +Ing)2(s)t(s) + Q(S)}
2e 2 (5.31)

) ‘q)[!- %r(s)r(s)]-gm(s-kml o ds.

The recurrence formula for determination of the higher order terms is obtaine:l by

A
AR +f;(S)-{[ln2—; - ;I)I + (1 +ing)e(s)e(s) + Q) } =J.(5) . (5.32)
where J, is defined by
- . 1 s-e 1 _l . . . " g=
1,0 =+ Z{ [, ){1 2:(s)r(s)] gIR()~R( £, ds. (5.33)

It is readily seen that the leading term in the expansion of the force F (s) is
independent of the cross-sectional shape. But, since the unit vector ¢ which is involved
in the leading term {see (5.30)], is a function of the position of the point under
consideration [see (5.20)], it follows that the leading term is a function of the shape of
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the body centreline. However, the force density depends not only on the uniform
undisturbed flow, the viscosity of the fluid, the body centreline configuration and
transverse cross-sectional shape and hence R,, but also on «, the slenderness parameter
of the body S. That is, a more slender body causes less force per unit length on the
body.

It remains to determine the value of g, appears in the integrand of the force

integral equatica defined by (see 3.61,62)

g,'j(x) = éuwskk(x) - T91}'(4") ’

where X = R - R(5) and

1
_ i ER'(X eX)] - 70
T(X) 5 fo de.

o

Differentiating ¥ with respect to X, may be written as

¥, =, ¥

where
@, = a_a and ?‘ = ‘_3.2_
! aX, “ de
Thus
Y’U = Q'.,UIF,E + a,, ‘F,”- . (534)

But

1

¢ = =R, (X-eX)

2

and
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--R(x eX)
;4 =£[__1"-"“)=i e *
" R\ o« R X-eX '

Hence
X.
a‘l’ = lRt[ l ei]‘
2 X
5 x - S%
1 i X
= —R¢
2 X2
= lR & - _.x‘xf
2 91X x3
and
T’uj = a‘jw’nc
R _,_e]_z_ ge "-lre”
2(X )R o
[lx(x X+ 1]e TP
=K, -g- + e - -
NEMIE |
X J

:: RY (X -e-X)?

Therefore, ¥, given by (5.34) may be written as

a,.j XX, ! RO |y \(x,

— + =|—=-e||==>-e}x
X3 (X e-X) R\X ‘N\x !

2
R
--R,(x-rx)
-R (X -e-X)+ IJ -1

(X -e-X)?

,U =

Lening i = j



“Lrx-ex)
g .2 8 XX\i1-e? ‘ .2 xixi_zeixl”:e y
JT Re X x; (X “C‘X) R, X2 X i
1 LR x-ex)
ER‘(X-e-X)+l]e 3 -1
R.(X - e-X)?
( . 1 -drx-ex)
Lrx-en ZR(X-eX)+1le ? -1
_4{l-¢e ~ 4 ¢
=2 cEx-ex)
X{ R(X-eX) X R,(X -e-X)*
Hence ¥,,, is obtained by
- 5 ~ix-ex
vy = =€ ° .
Therefore, g, (X) is determined by
-1p(x-ex)
o . 2y koD (8, XX Il-e 2 %)%
SU( )"_e = - 3 2 - —‘e! ——"ej
X X X )| R(X-eX) X X
1 -%R,(X-e-X)
[ERC(X-e-X)+1]e -1
x k]
R(X-e-X)

or

-%R,(X-c-.\’)

1-¢
g,X) =2
v R (X - ¢-X)?

X, X, (8, XX
(5o 3] or-em (333

dpexece
e SRAX - 2(X -e-X)8,; [X, X ]1
* “l—=-¢li=-el|i.
X-eX X x lx 7 J

(5.35)

Thus the value of g; [R(s) - R($] is obtained by
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-%R,{[R-Rl-r-lR-R]} ‘[R-R]i
R-E|
5, _[R-R][R-R],

|[R-R| |IR-R|®

2{|R-R| -e-[R-R]}},

|R-R|

1-¢

[R-R, ]
" T C‘ -¢
R{|R-R|-e-[R-RI}

|R-R|

g,IR-R] =2

} (5. 36)

- {|R-R| - e-{R-R1}

-3R,(IR-Ri- e [R-RD

R

|[R-R| -e-[R-R]
[R-R], _ [R-m,._e]
|R-R| |R-R|

+

€;

where R is the value of R at point s = §.

However, in the limit as R, — 0 the value of g, may be determined by

Re - 5
Jl_{l_‘_z_{“z_}”-e-[R-R]}"""J [R-R] [R—F.(]
[ i_e‘l ] _ej]

g,[R-R) =2 ~ — - -
R{|R-R|-e-[R-R}} |[R-R| IR-R|
-{IR-Rl-cqn-RH[ 5 _ _[R-RIIR-R), }
|IR-R| |R-R[’

\

R, . .
\ '?{lR.‘RI -e'[R-R]*'-"} 2“R'RA| 'e'[R'jé]}bu

|[R-R|-e-[R-R] IR-R|
(R-R), ) IR-A], ]
- — - g, — -¢
|R-R| . {R-R|
or
g, [R-R| - 2 —~ + [RHR]‘[F-R]’ . G.37)
|R-R| |R-RJ?

It is not difficult to see that the force integral equation (5.27) or its equivalent
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dimensionless components given by (5.17-19) together with the relationship (5.37) (i.e.
for R, = 0) for a body with a circular cross-section (i.c. ¢ = 1 and @, = 0) reduces to
that obtained by Johnson (for uniform flow) with a completely different approach, given

by (1.2.21-23), excluding the prolate-spheroid ends.



CHAPTER 6

6 - Long straight cylinder

In this chapter we consider a long slender body with arbitrary cross section, but
with a straight centreline being at rest in a fluid undergoing a uniform velocity, U. We
intend to apply the force integral equation obtained in the previous chapter and solve it
to determine explicitly the hydrodynamic force per unit length on the body.

It is convenient to use a set of fixed dimensionless rectangular axes (x,, x,, X,)
with origin at the midpoint of the body centreline, x, being parallel to the body centreline
and e, the unit vector in the direction of the velocity U, lying in the (x,. x.)-plane, as
shown in figure 6.1.

Thus, s = x; 4+ 1/2; e = (e,, €,, 0): and the body centerline may be written as
R (x) = x,t, where -1/2 < x;, < 1/2 and ¢ is the unit base vector parallel io the body

centreline. Thus, the body centreline in terms of the variable s is given by
R(s) = (s-—;-)t. (6.1)

The expansion of the force F'(s) given by (5.28) may be written as

_F L 4G LO | La® gy
[JU Inx (lmc)z (lnlc)ﬂq (lmc)"'z ,

F(s)

where the uniabeiled variables correspond to the dimensionless forms of the variabies
labelled by superscript (*). Hence, the coefficient of the leading term, f,, may be readily
determined by [see (5.30)]



£(8) = -4ne « 2ne 1)) 6.3)

The coefficient of the second term. f, ., may be determined by [see (5.31))

A
fi(8) + fo(s)-[(lno—: —%]l + (1 +Ing)t(s)e(s) + Q(s)] = J,, (6.4a)

where J, is defined by

_ 1/ fs-c ! 1 . DN f e Ja
Jy =+ E(fo f)[r Er(s):(s)] g[R(s)-RE)]-f,(Hds. (6.4b)
Relationship (6.4b) may be expressed in index notation as

Iy =+ (1-5,,)“‘”[ )8/ RO-ROV©d@. 65

But, since f; is independent of 5, J, may be written as

1

1
J.o=+« =|1-
0¢ 2(

;6,,]1;11,,, (6.6)

where I, is defined by

l- ([ L Jtre ko1 e

By the aid of the relationships (5.36) and (6.1), g; [R(s) - R($)] may be determined by

3R [1s-3) - ey(s-9) . i
N 1-e 2° 6,,(s~5) 6,](3-3)
g,;[R-R]1=2 [( ‘ -e][ -¢

R.[|s-5| - e,(s-5)]? |s-$| |s-$§]

--R,[l.r 2| -e,(s-3)]
8y 6“6”” e’ (6.8)
|s-§| |s-$§| |s-$| - e,(5-5)

x [ 2[Is-3| -, (s-$)18;, _ [6”(3-5) -c,)[w -e;)].

|s-5| |s~§| [s-5]

- [Is-$] - e,(s-5)]
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s~-5§=W

and noting that e = (e,, ¢,, 0), the components of g, may be determined by

-.;. ’(|W|-e,wﬂ e-.;. L(|W] - e, W)

1-¢ w 2
8 © 2 Bl
R(IW|-e, W) JLIWI W] -

[ )

| W] \ W]

,|1- e'- (W) - W) W e e-% (| W] = e, W)
= = -e [(-e) +
812 ¥ 8 (IW['f-'lW) W] 1] 2 (W] -e,W
[l -a)ee)
W I LRIy e-% (W=, %)
= e, -e || -2
2('W'[ 1] (|W|-e|W) |W|~e,W
813 =8, =0,
, . |Wl-eW

R(IW] -elW)z

, R (1W| -, W)
-e -
822 T & [(ez) -

| W]

21 -
e 2 (W] W)[ 2(|W|-81W)

|W] -e, W |W]
83 =82=0,

.,.lwl e
I-e ( ) {Wi-e, W

- ("2)2‘ g

|

1
--;(IW’-!
e “ ( ) | %] - e,

»

= -2
833"~
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(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)
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By the aid of the relationship (6.9), [; defined by (6.7) may be written as

Iy =- (f,‘t*f:‘l)g.-;(w)dW. (6.16)

where W = R(s) - R($) = (s - §)t. Noting that the limits of the first integral are
positive and those of the second one are negative, /; may be determined by

c l-e-% (1 -0 W e--;:k,(t-el)w
I, =-[|2 — s (1+e) AW
%R,(l*e,)w -,’.,R,(loe,)w
- [ 2| Ak - (1-¢)| ¢ aw (6.17)
-t Rewz W
( 1 1
. l-e-i ,(I-el)W e--z- .(l-e,)W
hp =5y = 'f, “ '2\ R(1-e,)W? " W aw
. ( l_e%R,(hel)W % (1> o)W
_f_ &2 — |+ € — aw, (6.18)
« T R(1re)W
1 (1
c Lot (- e)W NP (1- e )W
Ly=-["[2(e;-1+e +(2 - 2¢, - &) | Emo—— | |[dW
we et R (1- &)W B2l e
IR ee)w Ir,(eegw
s=1|n7 2 1-¢2 nle?
[ 2(ez-1-¢)) | 2e- &) S |lAW
) R(1+e)W L (1+e)
1 1
] f= , e (1-e)W 2 (1- e )W
< -[*l2e, s (1-e)| e ||aw
: R (1-e,)W? w
1 1
1R (1ee)w 1reeyw
- —e2 2
-f’ ! -2e, 1-¢ -1 +el)(-———-——-—e ] dw, (6.19)
- R,(1+e,)W? W
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and

L3 = 1y, = Ly
But
| -%n-.,)w 14.6"‘:-'("")” c
f.:'e_wz'_"dwzl W .
=L+ %R,a -]
and
- L
iz Do

=L - %R¢(1+el)1’,

where L, I, L’ and I" are respectively defined by

R¢
- ‘3‘(1 ve)

o " HR(1 - )

L="1*
W

= f: g R ~epw dW

s

'kR,(l *e) w

L=

-1 +e¢
W

I = fs-le'/ax,(toe,)w ﬂ

-t

R,
‘?(l -e,)W

¢ L
itk e))f] S

R,
7(1 * tl)W

f-lc-s 5.—W— dw

s=1

Thus the components of I; given by (6.17- 21) may be simplified as
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6.21)

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

6.27)



¢

2 o)
I, = —R;[L + ZR,(1- el)I]— (1ve)l- -;-[Lh IR+ el)I’]+ (L-epr’
"3 2

s -2 L)-2(1-1), (6.28)
Rﬂ
2e,L 2e,L’ , ,
I, =15, =+ . +e, ] -e,l - - eI’ - e,l
- thl 'el) R (1 ea) B
) 23&( L L ] (6.29)
R \1l-e 1l+e
2e,L 2e, L’ , ,
Ly=~——t" e l-(1-e)[+—'" - l'+(1+e)]
2" "R(1-e) R(l+e,)
L Y SR A BT (6.30)
R | 1-¢ 1+e ’
/
Ly=—2k sr-2r. 2 _plap
R(1-¢) R,(1+e)
Y Y S A A SN (6.31)
Rl1-e 1+e

and the other components are equal to zero. Hence, by the aid of relationships (6.28-31),
the components of J, given by (6.6) may be determined by

1
Jor = z(f;):Il: + Johia * Joshis)

!
=-£eI(L+L’)+1tel(I-I’)-2—ne2[ L L )

2
Re l-eI I-'-el

{[eI =2(1+¢€)]L + [¢, +2(1 -et)]L’} +me(l-1)

[_(2 ve)L + (2- el)L’] + me(1-1),

sla xa =

(6.32)
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1
Joz = E(f:nlz: * Joahaa * foalzs)

/ /
= -gﬁelez L - L +f—£ele_, L - L +2‘1‘C(I-[’)
R l-e, 1l+e,)] R, "~ “|1-e 1+eg

L4

2n { L L’

¢

= ——g e -
R l~2 1+e,

4

]+21:(1-I’)

and
1
Joa = "Z'(f;)ll‘.%l *Joaksa + Joadss) = 0.

The integral 7 defined by (6.25) may be evaluated as

-%R‘,(l e )W

= {*e
I f = aw
iR (1-epw

([ [y

- - e =T
= fl - fl dt
ER'G -e)s ER'(I —e)e| T

- El[%Re(l -e,)s] - EI[%R‘(I -e,)e],

where E,(x) is the exponential integral defined by
E@ = [~
I(I) = fx T dz.

But as x tends to zero [see Bender & Orszag (1978), p. 252],

El(x) ~-~lax ~y +x+ O(xz)’

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

where v is the Euler constant. Hence as ¢ tends to zero, I may be expressed as

I-= E,[%R,u -el)s] . m[-;-R,(l -el)e] +y + 0().

20

(6.38)



Similarly I’ defined by (6.27) may be written as

1ri1eepw

f—:c‘l N W aw

1
-SR,(1ee)W
f"’ ¢ - dw
e w

-EI[%R,(I +e, )1 -s)] - m[%&(l *eoe] - Y+ 0G).

1!

(6.39)

Thus, I - I' is determined by

1
—Rec|+2
2" °) Y
(6.40)
The value of L defined by (6.24) may be determined by
1 [ ]
=R (1 -2,yw
L =|zlre 2 )
W E
“drr-eye - -lr-e
clee R(1-a) D iee ZRe(1 o)
£ s
1 2
_ -1+1 -ER'(I -e)e +0(e) e +ew%R,(1-c,)s
£ s
-%R‘,(l-q)s
_ "I‘Re(l e + 1-¢ + O(e). (6.41)
2 s
Similarly L’ defined by (6.26) may be obtained by
1R teepe -RA 1=
p=|zlre =-3R,(1 e + l-¢ +O(e) (6.42)
4 1-3 2 1-s

Therefore, as ¢ — 0, the components of J, given by (6.32-34) may be written as
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-e

-% 1 -e,)s]

S

Iy, = % - (e, +2)

L4

1 1
- SR(1-e)~

= (21"2)

-%R'(l . e )1 -s)]

1 1-¢
-=R (l+e)+
2 (1ve) 1-s

1 .1 1
- ne,{Ez[E R,(1- e,)s] + EIIZERC(I +e ) 1- s)] + ZIn(EReeze] . 2-{}

1
~=R,(1-¢)s
el+ve, -2 (2+e)(l-e 2" ) el-e -2

2 R s 2

-1r,(1 e -s)
(2-¢)(1-e °
+

R(1-s)

+ me, {Ei[%}e,(l - e,)s]

. Ei[-;-Re(I +e)(1 -s)] . 2111(-;-R¢e28] +2y}

--;R,(l s -%R,(l ve)(1-3)

l-¢ -e 1
= -1- - +Ei|=R (1-¢e)s
T R.s R(1-5) [2 (1-¢) ]

. Ei[%Rc(l +e —s)] . 21n(-;-R,e2a] +2y }

~LRct-eps -iR (1ot -
+2n_1-e' J1-e ~
Rs R(1-5) 6.43)
/
-IR(1-es iR ~1)
=2’“132_,1R+1—e2 J1p _1-e?
2 R | 2° (d-e)s 2°° (1+e)}1-9)

2 E'R‘l— EiR‘I 1 ZlnR' 2
+2ne, x?( e,)s ?( e)(1-5) -é—eze +2y

or



Joz2=

R

ra- “drsena -
21: elez 1 —e ) ‘(l f;)’ 1 e 2R.(1 'I)(l l)
. (1~e¢)s (1+e,)(1-5)

+2x EiR'(l— )s‘]+Ei£‘-(1+e)(1- +2In R, +2.
1] i ISR 2 ({1 -5) 8| T4 (6.44)
Js = 0. (6.45)

Hence, notin that e = e,i; + &, (Where i; = t and i, is the unit vector in the direction
of x, axis), J, may be written as

-lktl-els 2
2 2
+ el +el+ [_lR (1 +el)
S

N l-e
-—R,(1-¢)+
[2‘( X l+ve, | 2 ¢

2 & 1 1-¢
] t+ ? 1 [-ERe(l-el)+

(] -el

-éx,(x —e)s
s

- SR +e)(1-s)

- _1 l1-e _1
1+c:[ =R, (1+¢,)) + I=s ] 4 +21:(e 2elt)

€

2
x El[%necl -cl)s] +El[%1e,(1 +e)(1 -s)] +1n[%R3(1 -e,’)é] +2y}

-Lra- Lraeeya-a
_ % "312"’31'2‘1-e 2T 312*¢1+2]1-e g et
- R -elRe"' +
[

1-e, s 1+e | 1-5

4

1 1, .
-LR,(1-¢))s drieer-s
_,_2“‘1[1--4!2 1-¢ 2°

- e+ 21t(¢ - —1-6 t)
R | (1-¢)s (1+¢)(1-5) 2"
X El[%Re(l -el)s] +El[-;-R‘(1 +e,)(1 "s)] +]n[%R,2(l - elz)ez] +2‘y}.

Substituting J, and £, (6.3) in relationship (6.42) and noting that @, = 0 results in
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A
fi = 2n(2e - elt)-[(ln—z—i —%JI*-(I +Ing)t(s)¢(s) +Q(s)l

1 1
2 “=R,(1 -2.)s ] =Rl +e X1 -3
u: -el"'el-?']l"e: e ve +2|]-¢ 2
+ —_— -eIRe+ + 1
R, v l-e J s 1 +e l-s
1 i
~=R,(1-¢)s ~=R,(1+e}{1-5)
2ne1-¢ 2 l 1-¢ 2 l 1
+ - e + 2| e - —et
R, (1-e)s (1+e)(1-5) 2

R(I e)s]+£[—R(1+e)(l s)]+1n[—R (1- e,)e]*«zv}
1

= 2ni(2e-¢ t){

1 ei+e -2 |1 “3RL-es
. - - ., 3
[ 1

R,
+—1n(I el)+— [—R(l e,)s]+-y-§

1
~=R(1+¢,)(1-3)
812 +e, +2 2 !
Hlraer—s—!

l~e 1+ e

(6.46)

Upon substitution of f, given by (6.3) and f; into the expansion of the force density given
by (6.2). the force per unit length on the straight long cylindrical body, correct to order
(1/1n«)*, may be determined by

F(s) _{ 1 oyl LYo, _ AR, 121
2mpl (hnc)(e‘t %) (lnx) {(Ze e“){h s antredrrog

-1r(1-eps
+LE R(I e)s]+-1-£ ZR(1+e)(1- s)] 1-e ’
2 72 ! R(l-e)s

LR teel-9
1-e 2

R,(1+e,)(1~5)

+ (..1. +[nq)e t+2e-Q®¢ + O(L)s
2 t Inx )’

x[ele-%(ef-e,+2)t]- {ele-%(ef+el+2)t
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or

F*(s) _
2apl

2 A
(-I—n-};](cosﬁt-ze) +(_1;11_1<] {(Ze-coset){ln 'f‘ +Insing +y - %

| ~-;R,(l - conths
Ll-e

R (1 -cos@)s

+ -21-51[-%12‘(1 ~cosB)s

+ -;-El[—iR‘( 1 +cosB)(1 -5)

-

-1R,01 ccont)(1 -5)

x cosee-l(coszﬁ-cosﬂﬂ)t]- L-e” x
2 R, (1 +cosB) (1 -s)

3
cosBe-l(cosze+cosﬁ+2)t + l*-lnq cosOt +2e-Q()} +O L .
2 2 Inx

(6.47)

where @ is the angle between the unit vector ¢ and the unit base vector £, as shown in
figure 6.1, and where v is the Euler constant the value of which is given by (1.2.6) and
E (x) is the exponential integral given by (6.36) as

-p~t
E = | ert.

The force equation (6.47) agrees with that obtained by Khayat & Cox (1989) given by
(1.2.25). However. the recurrence formula given by (5.32,33) can be applied to obtaine
the higher order terms.

It is worth noting that the only component of the force normal to the plane
containing velocity U and the body centreline comes from the term e.Q. In other words,
it is due to the effect of the cross-sectional shape on the flow field and hence for a body

with a circular cross-section this component vanishes.
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Figure 6.1 : Straight long slender body with arbitrary cross-section being at rest in

fluid undergoing uniform velocity U.
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CHAPTER 7

7 - Slender torus

In this chapter. as an example of a curved symmetric slender body, we consider
a torus with an arbitrary cross-section but which is constant along the body centreline,
settling along its axes in an unbounded fluid with constant velocity - U. However, the
problem is equivalent to that of a torus being at rest in a fluid undergoing a urdiform
velocity U in the direction normal to the plane containing the torus centreline (see figure
7.1).

It is assumed that the slenderness parameter x defined by (2.6) is much smaller
than unity, i.e, the radius of the torus is much larger than the characteristic length of the
body cross-sectional shape (r,) .

We intend to apply the force integral equation given by [see (5.27)]

F*(s) [(ZIn;—l’ - I]I +2(1 +Ing)t(s)e(s) + 20(5)1 = -8::;15’-[! - %t(s)t(s}] +J(s),
e

7.1

where
= —_1 - ,-=+ 1 - «-F* 3 2
J(s) = [I 2r(s) t(s)] (fo f,.,) glR(s)-R(S)]-F (s)ds, (7.2)

to obtain the force per unit length the fluid exerts on the body. Since the torus is
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axisymmetric, in order to determine the vector J in (7.2), it is convenient to take a
cylindrical polar coordinate system (p, 8, z) with the origin at the centre of the torus and
the z-axis being parallel to the torus axis, as shown in figure 7.1, Associated with the
cylindrical polar coordinate system is a set of rectangular Cartesian axes (x,, x,, x,) with
unit base vectors i, i, and i, which coincide with the x,, x. and x, axis. respectively, and
iy lying in the direction of velocity U (see figure 7.1). Thus, the relationship between

these two coordinate systems may be written as (see figure 7.2)

x, = pcosf , x, = psinband x =z (7.3)

and

iy =i, cos@ -iysin@; & =i sin@+ijcos8; =i (7.4)

or

i, = cos@i, +sin@i; iy = -sin@i + cosbi, and i =i, (7.5

where i, i, and i, are the cylindrical unit base vectors, corresponding to the p, 6 and 2
coordinates, respectively, as shown in figure 7.1.

From the symmetric properties of the torus, it follows that the magnitude of the
cylindrical components of the force density F' (s) = (F,’, F,, F.) are constant along the
body length and since there is no variation on polar angle 8, F,” is equal to zero.
Therefore, it is sufficient to determine the cylindrical components of the force at a
specified point on the body centreline and for convenience, we take it at the point § =
0. Thus, the relationship between the cylindrical and the Cartesian components of the

force at the point under consideration (§ = 0) may be written as (see figure 7.3)
F/(0) =F,; F,(0)=F, and F;(0) = F,, (7.6)

where F,"(0). F,(0) and F,’(0) are the Cartesian components of the force per unit length
at the point & = 0 . coinciding with the x,. X, and x; axis, respectively.
The arc length of the body s is measured from the point § = = in the counter-
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clockwise sense, as shown in figure 7.4. Hence, the relationship between the polar angle

§ and s may be written as
s=(n+8)r, )

where r is the radius of the torus. But the dimensionless length of the body centreline is

equal to unity, therefore, the radius of the torus may be obtained by

2nr =1 or r:L_
2w

Thus, (7.7) may be expressed as

1
= — 4+ -8
5 (e TE), (J )

so that, the point & = 0 on the body centreline corresponds to the point s = 1/2,

The body centreline may be written as (see figure 7.4)

R(©) = (rcos@)i; + (rsin®)i,

1]

ﬁ[(cos 0)i, + (sin®)4)]. (1.9)

Hence, vector [R - ﬁ] in (7.2) may be determined by

R - RE®) = [ (cos0 - cosB)i, + (sin®-sind)i]. (710,

where @ is the integration variable, or for the point § = 0, (7.10) may be written as



[R(0) - R(8)]

%[(I-cosé)i, - (siné)iz]

11, ..8.. . B 8. .
-1 SIN" - - (sSm-—-—cos—)1i1,].
- (sin 2)tl ( > 2)1_] (7.11)

Thus

|R(©) - R(®)]

(7.12)

The force integral equation given by (7.1,2), for the point under consideration,
may be expressed as

XA

> : - 1)I+2(1 +Ing)£(0)¢(0) + zo} = -8np U-[I- %:(0):(0)]««1(0),

€

F‘(O)-[[2ln
(7.13)

where, by the aid of (7.8.9), #(0) (the unit vector parallel to the tangent of the body
centreline at point # = 0) and J(0) may respectively be obtained by

') = 4RO |

ds sl
d9 dr
ds d@

0=0

_ 1 Cavi . .
-27:5[(-5m6)11 (cose)lz]e-o
=+ (7.14)

and
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® JO) = —21;[!—%t(O)t(O)]-(f_f“»«L:c)g[R(O)-R(é)]-F'(é)dé. (7.15)

We intend to determine the vector J(0) in cylindrical polar coordinates (o, 0, z). hence

relationship (7.15) may be written as [see (7.5,14)]
J(O) = [f - %iu(O)io(O)]-( [+[] e lR©-R@N-F (@) b, (7.16)

where i, (0) is the value of the unit base vector i, at the point 8 = 0 [see (7.5.14)],

However, as ¢ — O;

U N TR Sl O Sy

’
= 4| Insin -Incos = - Insin =& +Incos £
\ 4 4 2 2

_ 2 3 2!

-~ -4lnZ - 4mne
2

or

-1
-2F" @ = 2F° O 2 +%F'(0)(f_':"+f2::)(sing] dé. (1.17)

Hence, as ¢ — 0; the force equation may be expressed as [see (7.13-15)]
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A
F'(O)'[[Zln%f -1]1+2(1 +Ing)iyi, +20] = -87p U'[I"%iziz]"""(o)’ (7.18)

where J' (0) is defined by

e 1 2me I e . _praviepecay . TF°0)] ;A

J'(0) '5—([ N )[I 5.0(0)10(0)} g[R(0) -R(8))-F*(8) —|48.(7.19)

|sin— |

2

Relationship (7.19) may be written in index notation as
1 -2re f=m 1 . ‘(O) -
=11 I ("§5se]8uﬁ- -— |8 (7.20)
|Sinal

Noting that F; is constant along the body centreline and F*; (0) = §; F'; [ see (7.6) ], J,
may be simplified as

J, = Fl,, (7.21)
where [; is defined by
_ 1 =2ne 7:6;} -
ij -2_('[ fz:::) [ ]gu Isi ) a8. (7.22)
sin --
2

The components of g[R(0) - R(8)] in cylindrical polar coordinate system
(p, 6, 2) with the unit base vectors i,, i, and i, may be determined as follows :

£= gPP PP gpelplo gp-l +geplﬁlp *gee’o‘e "'36:‘6'.: +g:p':zp +3=e‘z'n +g::zzlz

=8uihidy * Brabyke + 8yalyiy * Gy ly + 8anlaly + 8aghaly + 8y iy + 83y + 8351,
(7.23)

where the term on the right hand side of the second equality contains the components
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. of g[R -R] with respect 10 the rectangular Cartesian coordinate system (x;. x.. x)).

But [see (7.4)]

i =i,cos0 -iysin@; i =i sind+ijcos®; iy=i,

where 6 is the integration variable. Therefore, (7.23) may be written as

g”ipip +8o0ipln * 8pziok, * 8opdoi, * Boodoin * Bozioi: * 8:pbeip * Beplyip * 8oodydy =
811(i,cos8 - izsin 8)(i cos 8 - iysin 8) + g, (i, cos B - iysin 8) (i sin 8 + icos 6)
+ 8,5(i,c08 8 - igsin B)i_ + g,, (i sin 8 + iycos B)(i,cos B - i,sin 6)
+ gzz(ipsiné + aCOS é)(ipsin 8 +iycos é) + gzs(ipsin 8 + iycos é)iz
+ 83,8,(1,c08 8 - igsin ) + g, (i, sin 8 +iycos B) + gy5i i, =
g,,(cos?Bi i, - sin B cos Bi, i, - sin Bcos Bigi, + sin® Biyiy) + g,,(sinBeos Bi i,
+cos? B io - sin® Biyi, - sin Ocos Biyiy) + £,4(cos 61, - sin Oiyi,)
+ g;,(sinBcos 8i i, - sin® B iy + cos® Biyi, - sin Beos Biyiy ) + 8,,(sin’Bi, i,

+sin Bcos 81 i, + sin Bcos Bigi, + cos® Bigi, ) + g,5(sinbi, i, + cos biyi, )

+gsl(cos éizip -sinéizia) + 323(sin éi:ip + COS éizie) + 8usi ..

(7.24)

Hence, the cylindrical components of g[R(0) - R(8)] may be obtained by

8y, = 81605°8 +2g,,sinBcos B + g, sin? B ; (7.25)

8oe = 8ep = -g“sinécosé +8,5(cos’8 ) + 8,55in Beos8; (7.26)
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8y = 8:p = B13€08 0 +gyysin; 7.27)

Zop © §y,5n>6 -2g,,sinBcos B +g,,cos’6; (7.28)
Bo: = 8o = 81558 + g, cos B (7.29)

and
8.: = 83 (7.30)

The Cartesian components of g may be determined by the aid of

relationship (5.36) given in Chapter 5 as

[R-R),
|R-R|

[R-R], ]
- —-€;
IR-R| ’

|

l1-¢

g,IR-R} = 2

-SRAIR-R| - e-[R-A1} {
i

R{|R-R|-e-[R-R}}

5, [R-R],[R-R],

|R-R| |R-Rf’

2{|R-R| - e-[R-R]}5,
IR-R|

~{|R-R| -e-[R-R]}

-%R.(Ik-ﬁl -e-[R-RD)
(4

|R~R| -e-{R-R]
[R-R], [R-R),

— "¢ el
[R-R| |R-R]

-

where [R(0) - R(8], and | R(0) - R(8) | are respectively given by [see (7.11,12)]

57 - 1 .2 8. _B7 =
(R-R], = Zsin cos2; [R-R], =0 7.31)

2| o
|

; [R-R], = -=sin
T

and
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s _ 1 8
|IR-R| = —|sin3 (7.32)
Noting that e = (0. 0. I). g, may be determined by the following calculations
'—Relsmgl dgin28 ]
_oll-e - T 2 1.
8,=2 > - -——|sm;| X
1,. 8 Lsn8y| & 0°
Re —_— ISmEI - 2
2 \2] s \2
~ 0 Yy . B 1 - 0
— SN~ - == lsin= | —sin*—
1 (rr 2] .| € 2 s ® 2 (6.33)
. \3 A A
— | sin— 1 3] l SIDE l Sing
jsin| (;,m? sin2 ]| | Lisind]
1 é 2 :
o =5-Risinz| 7|2 - sin b
~2n%cosf| 1-e ¢ ° 2 [ ] - =R, lsin 2|
= - + - e R
28 R, 8
sin® — | sin—
2 2
-%R.lsmgl lsmz--e-] ~Lain8cos R
l1-e “© = 2 T 2 2 1,. 8
812 = & 2 2 2 [sm— X
R . T 2
1,. 6 1,. 80
R, ——|s1n;l = ;I
7 2 7 2
(1 =9](_1 2,,.05_6_] el (1 2)[ ! in B cos
T 2 2 2 L .| € & T 2 n 2
1,.8) Lisi E.’| 1. 8)Y
~|sin= —ism= —~|sin—
[n' 2 ) Jy= 2 (n' 2']
1 . 8
v ‘,]sm—l - . B
- 2x%sinf| 1-¢ 2* 2 nsind 'g';ﬂ.l"n;l
- R - A4
smz..e_ e 2[5111g
2
(7.34)
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71| —sin 3 e'z—R.Isingl %sng
813=831 =2 —= (-1)+ - 3 (-1)
R{i,smﬁ ] Lisind | Lisin2) | Lisin|
T 2
1 ]
21.:2 1- e-ﬁk"lsmil -%R,[sin—l
= =- - R + e 4 ,
|sm2 ‘
2
(7.35)
/ 2
_ --;—R,!singl -lsingccnsE
l1-e Tt 2 2 1 3] 1
81 = 2 Y ";I E 1 "
1 3] = |sin— = |sin—
R«(;'”EJ | L Lisin2 |
/ 2] A \2
——smgcosg- -——R,| EI -ismgcos-El ]
x 2 2)|{.|e? 2 = 2
2\ - + - 2_ e
1,..8 1in8 1ign8
[;|Sm§ ] ey sin
4)
1 . 8 : zé .
2n2cos l-e-gx'lm-ii] n(1+sm E) -g- Rl
- -+ g =%
A R A - i (7.36)
si2 2 ¢ Isin-g
2 2

LR tsnd -lsxngcosE
T 2 2| |e 2= 2 x 2 2
1,. 6 1 smg 1ign8 1 isin 8
R{;,mil) Lisin2 | jsin
2n2cos 2 [ Laiswd)]  roosd -l jsnd
= 2 I-C “ - *R'I 2
- - R -
@l R cin
2 2 2

(7.37)
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]

1 .
-ER'l’mEI

- - =R, |sin= |
- T -
g, = 2|18 1- = sin 2 || —1—1+| €
‘\ m 2 < T 2 (7.38)
- -;l;R,hingi
= + —e .
|sin |

Thus, the cylindrical components of g may be obtained by [see (7.25-30,33-38)]

1 +cos28 Ry 1-cos2b
8pp = SII[T] +glzsm26 4.322[_.%’.3_]

22 | 1 o] 1+cos26
=< |2~°¢ -cosé[jg-s-m]—sinésin2é
2e Re 2
2
. - LR, jsin2 | ) )
sl 1-cos28 |l me *= 2 1+cosB| 1 +cos28
+cosf - ~ 1+
2 ;) 2 2
| sin —
2

+lsin{:lsin29+ 1 +1 -cosO|[ 1 -cos20
2 2 2

~sLR,lsind |
272 |1-e ¥ : (

~2cosBeos28 - 2sinBsin26 ]

2
LR sl . ..
L Re 2= 2 {+ 2 +2cosBcos26 - 2sinOsin26
. B 4
|sin— |

(7.39)
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1
[ ]
A
|5
—
—
1
n

1 )
" 35 Reling s
(cos®sin26 - sinBcos28)
- "é Re
sin® —
2
Llr '.Q| . . . .
+—I g 2 s -icosesin26+lsin8cos26]
. 8 2 2
| sin—
2
22sin® l-ce-?l-jre'lm-gE nsin® s d |
= o - R - - ZR 2 : (7.40)
sng d 2|sm2

'_Rfldngl - -
22 ]-¢ 2 2[ 8 8 ]

. B,. 6 R,
sin— |sin— |
2 53
'foil"é' A - A -
e TN G 8 st - cos Dsind
. 9 2 2
sln—
2
-Lrfeind) Lo
2 2% 02 -LR lsind
- 21:- 1-e —ne 2= ""‘z[; (7.41)
|sin2 R
2
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1 -cos2 . 1+cos28
T gn{""_-,"'—] - 8,,5in26 *‘S::(“"‘.,_)

Ll -

LI P
~ 2 - in 2 . _ A . . . A
2% |l-e -cosd| 1 cos2 cos2© +sinBsin28 r cos| 1160528 * cos20
Y R 2 2
sin® —~ i
2
T 'L"rl’i“% 1+cosB|f1-cos26) 1. - R
- —e 2t e+ - —sinBsin 0
.0 2 2 2
|sin - |
2

1-cosO |[ 1+cos28
+]1+
2 2

-o-R,Isinz| _ - . .
22 |1-¢ 2 [2cosBcosZB+2.sinBsin2B]

sinz_é_ Re 2
2
) - - n -
L_m Rl 1+cosecosze+sinesinze]
N 2
151115[
_l ;] _ ‘Ié
2n2cosB| 1-¢ 2 ! n(z cos” ] ,Lk,lsingl
= — R -+~ - e .
sin? > ; |sin2 |
2
(7.42)
8oz = 80 -gISSiné + 8,050
Ll .,ﬁ,é,]
2 - 2 T2 A . A .
= _27: " 1-¢ [smg i 6+cosgc050]
8,. 6 R,
sin — | sin—
2 2
- 1 erm‘él A -
r=_e 2 2| -si -q-sme-cosgcosB]
a8
2

or
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2ntcos 0

1 ) ;
- « =R, |sin= | T COS =~ 1 N
2 -e 2 2 -—R,[s:n:l.,’
Bp: = 80 T - A B = ¢ 8 ) (7.43)
. 0,. 8 R, . 8
sin—= {sin— | s~
2 2
and
gzr. = 83
-Lr il
= T e 2r 7 2 ) (7-44)
. B
|Sm’2']

Thus, by the aid of (7.39-41) I, defined by (7.22) may be obtained as follows:

ey
2z (2 S E %R,sing 1 .
- - Sl 2.2 _|dd
2 9 R¢ - B - e
sin* — sin— sin—
2 2 2
” é 1 [} . é
21:(1 -Zsm--m][ “sRRsng [2-sm2—] 1 ]
+% | 2 l-e}; . 2),z="""3__1 |4
2=ec A A A
aw® U R nd n
2 2 2
21:(1 —ZSm'E][ -LRrsind [2—511122] 1. 8
= l-¢ =% = ~soRsasg 1 .
=-[2 - - l R -+ - (4 <% - — de
ne
sin?2 ‘ sin2 sin2
2 2

or
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1 ]
R L
_ _?.1! = l-e =% 2 o, e —-_‘-;R,mns
e " ? f:u: .0 de - ‘.'n:de -fzne
sin'?
) (7.45)
- —R, sin- . lR 8 nel
=F < e ~g=Rpsins | [ .
+2 " e—.de I singe 2 248 _j‘ sm-e- 46 .
2ne . 8 ine 2 e )
SN -~
2
But
-E S % d '-—L-R,ﬂn-?-
fﬂ i-e _ dé:fw——e'_-'fﬂ e : dé
2xc . .0 2re 2] 2re )
sin® — sin2 2 cin 8
2 2 >
" : -_R'Si“g " . 0 -—R,.un..q
2cos 5 2cos~e ¢ ° R cos’ e * 2
e =l 4" -—=[ - dé}
- . 8 21 J2re .9
sin— sin 2 sin®
2 2 2
2rc 2re

) -t rsnd
-%R,sin(u:) 1 -sin22le 2= >
_ 2cos(me) _ 2cos(ne)e °" R rx

= 2 dé
sin(we) sin(me) 2m Y 2ne . B
sm_
2
R R Y an2
[2cos(ne) ][ 1-—=sin(ne) + [—'] sin(xe) |
_2cos(ne) _ 2% 2n 2! .
sin(ne) sin(me)
A -Regnd
R [I'S"‘zg]e " Eoa s -Fegad
_efu 2 do=—=<)" £ do- [ sinle T 2ab+2
27/ 2xe é 21 P2re é 2xe ’
sin— sin—
2 2
(7.46)
so that,
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Rand | . -trand |
b - [ sinde T 2ah o2 w27 208
2ne re 2ne

sin—
-_R,sml—_? é R inb - \=1
x " e 2 oA 8 "Rz . pn | 8
2|63, ]+2f2“ do _sin—e de fm{smz] dd
sin =
2
(7.47)
However, as ¢ — 0
) 2 sin? 2
-%R,sing 1-.5‘.5111_ +(.§£] |2 +
fn e . 1_dé=f” 2n 2 2.11: 2! _ l_dé
2ne . 8 . 8 2ne . B . 0
sin — Sin = sin— sin—
2 2 2 2|
- | R R Y .
=f S5 L1 = m..e..+ do;
e | 2w 2\ 2n 2
(7.48)
hence, as expected, there is no singularity in (7.47). Therefore,
as ¢ — 0 , I may be written as

in the limit

4w  4n
= A + -3 4, -2, (7.49)
PP : Rr ReA:
where 4, and A, are respectively defined by
-lRmé
2r 2 1 N
A1=f: - |d8; (7.50)
. B . 0
sin— sin—
2 2
and
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0
-—-Rmn- v
f e o7 140, (7.5

By the aid of (7.40-44,50,51), the other cylindrical components of [, in the limit

as ¢ — 0, may be determined by the following calculations

_ _ 1 -2ne =% -
IPG B IBP - ﬂ(f—x +f2m)gpede
]
-:—-R |sine= | . A 1 8
_ -1_ f -2re f 2nsind| 1-¢ " 2 _ __sin@ e--l—uk'mnil dé
B 2( 21::) , 8 R )
sin®— ¢ 2 |sin—
2
—Run- . oA -LRsing-
- %f -2me 21rsm6 . sme. e 2l4@
2sind
2
--—R -g . = R tsin
27 28 2sin2
2 2
4 2 )
) -LRrsind . 1 )
_1lpnx| 2nsin61-e T2 , _sin® e'i’ER"i"E dé
2J2ne sian | R, ) ZSinE
2 2
( ~Lrsind ) )
J1px|2nsinBl1-e 2 2|  sin@ %34
2J2ne s R :
sinzg L e / ZSinE
2 2
=0,
(7.52)
_ 1 -2xe =
IP: - I:P - ?‘I;(f'“ +f21c)gp:dé'
hence
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z_lR"i“% L g sind
o1, - | 2 e ]
pr " e " ) 5l R
sin— ¢
2
-—I-R,sin, 1 B
+l x 2n 1-¢ 2z 2 _e-ER"mE dé
272me| é R
sin — ¢
2
-—IR,sin-é- &
2 J2=ne e R
sin— ¢
2
-%R,s'm: - =R, sin—
+lﬂ 21':. 1-e ~ -e"""’dé
2 J2re Sing Re
2
LR, 1 é
- f" 21: 1 e 2n 2 -e'-z—x-R'mE dé
2ne 0 Rc
2
=24 -4y, (7.53)

N -1
2ne I e
(f Lm) Egee (| EI] ae
s :I;R.mg [2-(:052-6-] 1 é
- lf--u xcos.e 1-e _ .2 g2 0T, 1 d6
2% | . R, . 6 ]
smn” — 2sin— sin —
| 2 2
[1mmet] resd) o
LA ncos? 1-e . 2/, = A3 1 dbé
252 L R, . @ . 0
0 2sin— sin—
2 2 2

or
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0 .28
Rsin< 1+sin*— 1 )
_ 1 " 2z 2 [ ~] -E!.R'lmi l
108 = ELJ‘I: é R + - e = é dé
sin® = ¢ 2sin— sin—
2 2
2n[1-2sin=§) - Rsnd {1+sin2-;] )
+% ; . l-eR + _2e"""' - l_dé
Sinzg ‘ 2Sitl2 sin_B.
2 2
-Lrgind 1 | )
2 : - L] § ~5=R ing . x  ~“5=Raes
A A R Y N T S e 2T Ty
R‘ 27 |¥ 2re . é 2rne 2 2ne
Sin —
2
-Lrsnd
2 T 2n 2 . 3 2 TR ST A
+2 ® de] i € - de - _l.f Singe In d _f!l d_é.
2ne 2 J2xne . 6 2 J2ne 2 e g
sm— sin—
2 2
2
4 -2 L2, ,
1 R¢ Re
(7.54)
_ 1 -2me  fn 2
Io: = Izo = -i;t-(f'ﬂ +f2,u)go:d9
[ ) 1 ] 8
2ncos— 5o Resin= cos— ]
-2xe —pl 2 —R'smz
= ..l—f 2 - - ¢ i - ‘282" -~ dé
2 sin2 2 k. 1
2 2
2mcos— -lR.mé cos— )
+.lf= . -e 2 - .ze-gk'mi de‘
2 J2ne sin2§ Re sing
2 2

or
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8 ;]
~==Rsinz COoS — 1 )
21 _ 1-¢ 2n 2 . ze-ﬁk,ma dé
z : 24 2ne R
sin e sin—
2
2Tcos— -lein-é cc>sE )
1 w -€ 2x 2 -_l'R"‘in_ -
> - - e 2n 2 a6
242t . 28 R’ .
siny sin—
2 2
=0 (7.55)
and
. \-1 ]
1 -2re  rm _ . 8 .
I, = E(f-n +f2“) 8., n[]sma [] ‘de
e [ 1, .8
- - g™ -s—Rsn— -
__f G Ml WSS o SR U 7R _2 L2 _1 igg
- $:14
sind sm-g sind sind
2 | 2 2
Lpe| 1 -mkasd 1 mRad ]
=—f ~—e " 2. _ldf+— —e ® 2 dé
2J2re . 0 . e 2 2re;  §
sm— sin— sm?z- Sin—
.8
-—-R -
2. 1146
2xe . O
s|in—
2
iy (7.56)
=4y

But, vector J'(0) defined by (7.19-22) may be expressed as [ see (7.4,6) ]
J0) = FLi 0 = (F,
+(F L+ FoL,

= (F,1,,

oo Fo Lo+ Fo L Ji(0) + (F, I, + Fq I+ F. I }in(0)
+F.1}i 0)

+ Fol o+ F.L Jiy +(Fyly + Folyo+ Foly )iy + (Fol + Fal o+ FIL )iy,
(7.57)
that, by the aid of (7.49-56), the Cartesian components of J’ may be obtained by
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J',0) = F;[Al -%Az LA 2] -F.'[%"Al +A2],

) R' ‘| R, (7.58)
J,0) = Fgl|A + 2—ﬂ:A,— an” 1 (7.59)
- Rt ; RC
and

J,0) = -F‘[z—"A +A, + ”]+F'A (7.60)

3 p| g 1T T 24y :

[
However, the force equation (7.18) may be written in indices notation as
. KA, . 1 ,

F;|2ln 2 -1{+2F, (1+Ing)8,, +2F,Q,= -8::;1[!,(1-5612) +Je (7.6

Thus, noting that Q,, = 0 [see section 4.4] and U = (0, 0, U), the Cartesian components
of the force equation, for the point under consideration (§ = 0), may be expressed as
[see (7.6)]

. TRA . . . 4 4x? (2%
FP(ZIn ’-1]+2(F,Q”+F=Q,3)=F,,(Al-7;5,42+ ; -2]-}-': [?A,mz)
[ 4 [ 4 (]
(7.62)
Folom e 1|e2ri (e ng) = Fola, « 254, - 25 L
0 2 o { q) = Fy|4, R7TR (7.63)
and

. KA, . . 2% .
F/|2ln—= -1 +2{F,Q,y+ F.Qy;)= -8nuU-F, A A FAL e

e

As expected, relationship (7.63) is consistent with F,” being zero. Relationships
(7.62.64) may be written as
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4z 4z KA
Al"-—R-—-Az*’-R—-l"”ln :‘2Q“
F, = £ 5 < F,
T
?Ax *4,+2Q,
and
2 TKA,
Fp ?A, +A, +2Q,,| + F | -4, +2InT -1+2Q,,} = -8mul.
Therefore
Fp-_ - - 87:# Ul
1
A,-3%4 3% o 0g
2r Re Re 4 T:le
}'A:*Az"an* o -A1+21n—4- -1+2Q;;
‘ 7{A1+Az+20u.
2r
~8rulU ?AI +A, +20Q,
2n i 4x,  4x? TKA wKA
[EAﬁAz“"zQu] *[AI"EAz"' R, -1-2In 2 =-2Q, | -4,-1+2In 2 =+2Q3,
(7.65)
and
2 ki
-8rpUla, - 254, + 2 om0,
. R R 4

2

2 4z 42 KA TRA
(EA1+A2+2QI3] +[A1-EA2+ R -1-2In 2 "-ZQH]{-AI-I-#Zln 2 "+2033]

(7.66)

Relationships (7.65.66) are correct up to order x which is the approximation under which
the force integral equation (7.1,2) was derived. Thus, the force per unit length may be

written as
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2
-8xp U[%A, * Ay + 2013]

F'= e
p . .
2n N 4n , 4=’ KA, KA,
[EAl-rAz-rZQUJ +(A]-E:A2+ 3 -1-2In " -ZQ“][-A‘-I-'QIXI 2 +2033J
+ O(x)
(7.67)
and
| 2 TXA
-87r,uU[Al-47'::‘1..4-47c -1-2In "-20”]
* Re i e 4
Fl=
2 2 4n . 4l na Y KA,
(EA‘*-AZ-PZQB) +[A1-EA2+-E¢—-1-21n-—4—”20"](-Al-1+2In : +2Q,,]
+ O,
(7.68)

where A4, and A, are function of R, defined by (7.50-51) as

-_lksmé
_rnfe 2r ¢ 2 1
A 5 Al
sin — sin—
2 2
and
.8
-=—Rsnz .
A, =f:e 2= ""-de.

For a torus with circular cross-section the components of the characteristic tensor
of the cross-sectional shape, @, in (7.67,68) vanish. For an elliptical cross-section with
semi-diameters a and b (where a > b) with the direction of the larger principal axis
(2a) given by unit vector 8, (see figure 7.5), Q; is determined by [see (4.4.6)]

a+b a-b
() = In M + COSZJ,,, (7.69
n 24 2(a +b) )

£
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and

a-b

013 = -msuﬂ}.
b a-b
Q.. = a 2. cos2 A,
3 2h, 2(a+b)

(7.70)

(7.71)

where, here, A is the angle between the unit vector 8 and the unit base vector £, the unit

base vector in the direction of uniform velocity U (i.e, cosh = f.i,), as shown in figure

7.5, and where A, is the radius of its equivalent circle the value of which is given by
(4.4.7.8).

and

However as R, — 0O the value of 4, and 4, may be respectively determined by

-ﬁf"dé + O(R?) = _R
2r 40 2

A2=foe2“' dé=f:
-1+ OR) .

120

-:sinzg
l—ﬁsmg +[£f.] 2
fx 2% 2 2x 21 1
0 . 8 N
sin— sin —
2 2|
+ O(Rf);
2sm2§
1—...R_' mn — & 2 +
2 2 2n 2!




Thus the radial and axial components of the force in the limit as R, — 0 may be

obtained by

-SerURf(2Q”)

& A A Tow

207 - [1+2n 288 v20 [ -1+21m 252 .20

( 13) 4 11 4 =3

and
KA
+87sz[l+21n 4"+2Q“]

F= + O,

207 - | 1+2m %% 120, -1 +2m 222 420

(2Qy5) et Rl <&

where for a torus of circular cross-section (i.e. @; = 0; A, = 1) the only non-zero
component (F,) reduces to those obtained by Johnson & Wu (1979) and Johnson (1980)
given by (1.2.19).

However, the error terms in the present results is of order « (the slenderness
parameter), whereas for those obtained by Johnson & Wu (1979) and Johnson (1980) the
error was of order & (where £ = 2=« is the semi-slenderness parameter), which opens
a new question " Why are exactly the same values obtained with a different level of

accuracy ? "

121



4

torus axis
of v

Figure 7.1 : Coordinate systems showing the torus settling along its axis with uniform

velocity - U.
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i, = sin® i+ cosB i,

.
-~ H

p cos O 0

. > | —COSQi-SiI‘lei

lz A 1 P ]
ot
p -

g xl

p

Figure 7.2 : Plane (x, x,) showing the relationship between the rectangular

Cartesian coordinate system and the cylidrical polar one.
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Figure 7.3 : Cartesian and cylindrical components of the force at the point under

consideration (€ = 0).
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Figure 7.4 : Position of a general point P on the body centreline.
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UT 'Torus axis

I N
S
\ |

Figure 7.5 : Torus with elliptical Cross-section showing the position of the ellipse

with respect to i,, the unit base vector in the direction of velocity U.
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Appendix A

A - Solution of biharmonic equation

In this Appendix, we consider a planar (two dimensional) flow field in a
dimensionless' plane (x, y), which is called the Z-plane (see figure A.1), applying the
complex variable method to derive the equations used in Chapter 4.,

In the absence of the body forces, and for zero Reynolds number the governing

equations for an incompressible fluid may be written as
Vi - Vp = 0 (A1)
and

V-u = 0, (A.2)
where for two dimensional flow field V and V? are respectively defined by

Vei—+i— (A.3)

and

'Throughout this appendix we use dimensionless quantities.

o A



2 2
v-yy-9_ .9 (A.4)
dx2  dy?

Equations (A.1,2) are linear for 4 and p and arc well-known as the creeping flow or

Stokes cquations. Taking the divergence of equation (A.1) results in

Vi{(V-u) - V3p = 0.
But V-u = 0 , hence

v =0, (A.5)
which is Laplace’s equation. Thus, for creeping flow. the pressure is harmonic.
Taking the curl of equation (A.1) results in
Viw - V(Vxp) = 0. (A.6)
where « is the fluid vorticity defined by

w =Vxu.

But pressure p is a scalar, hence V X p = 0. Thus, (A.6) may be written as

Ve =0, (A7)

which is the vorticity equaticn for the creeping flow (zero Reynolds number flow). The
fluid vorticity for two dimensional flow fields u(x, y) = (u, 0, 0) and u(x, y) =

(0. u,, u)) may respectively be determined by

-

® =Vxu

o gl
°g|w

3
dz

u:

ou, Ju,
dy

— -] = (A.8)

g 7 ox



and

A N
d & &
w=Vxu = 3= o -é-;
0 u u,
d d
] ,-_[ﬁ ] _) (A9)
*\ ox dy

where u, and u, are the components of velocity & in the x and y direction. respectively,
as shown in figure A.1, and where u. is the component of the velocity in the direction

normal to the (x, y)-plane. But, for the flow field # = (0, «, ). the stream

function, ¥ , is defined by

u =22 ond oy - -9 (A.10)
dy Y dx

so that, by the aid of relationships (A.9,10) equation (A.7) may be expressed in terms
of the stream function as

Vie =i V2 % _ 9%
N ox dy
2 2
-2 2]
=i, V¥(-V¥) = 0.
Thus, the biharmonic equation
V'Y =0, (A.12)

where V* is defined by {see (A.4)]

v4=v2v2
4 L3
_8 L3 @

ax* 9x23y?  dy*’

satisfies the creeping flow equation. An immediate consequence of (A.l1) is

A3



that -V?¥ is the component and the only component of the vorticity in the direction

normal to the plane (x, y). Thus the vorticity equation may be written as

Ve =0, (A.13)
where
w = -V, (A.14)

Therefore, vorticity w and pressure p in (A.5) are conjugate harmonic functions. and

hence, they represent the real and imaginary parts of an analytic function of Z = x +
iy.
Let us define

. 1
@ = f&.y + gy = - [4(Ddz, (A.15)
where g(Z) is an analytic function of Z the real and imaginary parts of which are the fluid
vorticity and pressure, respectively, i.e,

g(Z) = o +ip. (A.16)

Since g(Z) is analytic ¥(Z) is analytic too. Hence, f and g satisfy the Cauchy-Reiman

equations, that is.

of .98 g O __2%2 (A.17)
dx dy dy ax

and. as a consequence of (A.17),

sz = v2g =0. (A.IS)

Further let

Ad



Flx,») = W(x.») - xf(x.») - vglx.y. (A.19)

Then. V°F may be determined by

VIF = V*¥ - V3(xf) - Vi{yg). (A.20)
But [see (A.3.4)]
VHUV) = V- [V(UV)]
= V-(UVV + ¥YVU) (A.2D)
= UV3V + 2VU-VV + VYU,

Hence [see (A.17-21)],

ViF

VY - xV3f-2Vx - Vf+fV3x - yVig-2Vy-Vg -gV3y
- vy —viﬁ'[ifiu‘ af} - 2i ay-[i§§+i9£]

“wax \Fax  ay vay \ "3y 3y (A.22)
-vey -2 208 Ly s Y
ox dy ox
However, [see (A.14-16)]
Q:(Z):g_dlz)_zi'f_‘q-i.a_g:-lq
dZ ox dx 4 (A.23)
1 1. 1., 1.
= - - —ip = =V2F - =
a® 3P 3 i
or
—a.‘Z = lVZ‘P‘
ox 4

so that [see (A.22)] V°F = 0. Let x(Z) be an analytic function of Z the real and the
imaginary parts of which being F (x, y) and G (x, y), respectively, where G is the
conjugate function of F, so that

x(Z) = F(x,y) + iG(x,y) (A.24)

and



VZF = VzG = 0’ -.a_F_ = E and ﬂ‘ = -a_(.;_. (A.ZS)
ox dy dy dx
Then, relationship (A.19) may be expressed as
F(x,3) = xf(x,y) + ygx,») + R[x(@)], (A.26)

where 9t denotes the real part of the complex variable.But®

Rz°e@)] = R (x-iy)(f+ig) ]

xf+yg,

o

so that, the relationship (A.26) may be written as

¥(x,y) = R[{Z"®2) + x(2)]. (A.27)

Therefore, we have ¥ (x,y) expressed interms of a pair of complex potentials $(Z) and

x(Z).

The components of the velocity # (x, y) = (0, 4, ©,) may be expressed directly

in terms of the stream function as [see (A.10)]

i{u,+iu) = -u +iu, = %—‘f + i%.

Thus by the aid of (A.26.24.17,25), the velocity may be expressed as

[ +7 =+g+a_g.+a_.F+' +_a£+$£
iy« in)) =f xax yax dx z(g xay y6y+ay
=(f+;g)+x(§£-i§§.)+iy(§£-i2§. +£-ia_G.. (A.28)
dx dx dx ox) Jx dx
= +ipY+(x +] g-'.a—g- iG_-'E
feie) o wein( -1 - (157

or [see (A.15.23.29)]

*Here. the complex variable labelled by an asterisk denotes the conjugate of that variable.
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i, + ) = O(2) « z[j_;”]' . [;'_;] (A.29)

Pressure p may be obtained by relationships (A.23) as

dd
= -4Im| — |,
? [dZ

where Im denotes the imaginary part of the complex variable. But, as usual, an additive

constant in pressure is irrelevant., so that the pressure p may be expressed as

_ ad
P = ‘4[”1[3 * Py (A.30)

where p, is a real constant.

Let us examine the pressure p and the velocity u obtained by (A.29.30),
respectively. By the aid of the relationship (A.28), the components of the velocity may

be written as

a_i-o-yif—ﬁ and uy: —f—xif—ygg.-g_ (A.Sl)

U =g-x
==& d dx 9Jx dx " dx Ox

The substitution of «, in the x- component of the creeping flow equation given by
(A.1) results in [see (A.18.25.21)]

a_P=v2 g—xig.d- a—‘f—gg]
dx ox dx OJx
= —vz x%] -~ vz(yé.'f
ox dx
- -2vx-vE Loy v
dx ox
2 2
- 298 L, 8f
ox? dxdy
- -2.5_.(2 9 ]
dxidx dy

or [see (A.17)]
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p = -2(% _ia_f..-] +k0,v)

ox '
Thus,
4% | 9k (A.33)
dy dxdy dy

But from the y-component of the creeping flow dp/dy may be determined by [see (A.31)]

@ = -Vz(f+x_a.-): +y£+£)

dy ox dx OJx
MEME
ox dx
- -2vx-v - 2vy-vE
dx dx
or [see (A.17)]
8 _ _,9%f _,%%
dy ax® dxdy
.28 (o, %] (A.34)
dx\dx dy
2
- 498
dxdy

Hence, from (A.33.34), it follows that k(y) is a constant, say p,, so that, [see (A.32,23)]

do
= -4Im| — ,
p m oz } * Py
which is the same as the equation (A.30) obtained directly by the relationships (A.23).
Next we consider the force fluid exerts on a line element of length ds in the Z-

plane. as shown in figure A.2. The components of the force per unit length, F;, may be
determined by



M, (A3

where #, is the component of the unit vector normal to the element ds and where o, is

the stress tensor defined by

ou, ou,
g.= =-pb,. + e + —1, A.36)
Y POy dx ax, (

Thus the x-component of the force per unit length may be written as

F=o“n‘+o n,

[ du, ] (au du, ] (A.37)
=1~-p+ 2 no+|—+—|n.
dx dy ox
But (see figure A.2)
n = -sine = -2 and n, = cose = 4%, (A.38)
ds 4 ds

so that the x-component of the force on element ds may be determined by

Fds = (o“nx + On )ds
[ 5 au ]d (aux au,]d 39
= ~-|-p+2— + x. .
P dx Y dy dx (A.39)

However, [see (A.30.10,23.31,17)]

du d
=P "‘2-é—- =4Im (d¢] -Z—u--

x dz dy

ig_ - (f xaf ag +8_F)
dx ox ax ox

=—4af 2 [f+xaf ag-o-ﬂ.]

dy dx ax dx

d af dg dF

=2 = + — A.40
ay( Ve ax) (A.40)

and [see (A.31,17,25)]



au't+...a.ﬂ =a_(g-x._~_.+y-§:.f-.a_g.]-o-.a_[-f—xng-y.gg-g]
dy dx Oy dx "~ dx dx dx dx dx
=@_xazg Lo L Bf PG _ (fuaf ag+£)
dy Odxdy dx ~dxdy oJxdy ox ox 8x dx
S O N VA N N
dx dx® Ox dx® ox? dx dax dx dx

_26_[

Fex af+y6g aF)
ox

dx dx oJx

(A.41)

In relationship (A.40) the constant pressure p, does rot appear since it acts equally in all

orientations of the element and hence it doesn’t contribute to the force on the immersed

body in the fluid. Thus by the aid of (A.40,41), the x-component of the force may be

expressed as

, 3 3
F.ds = - 29 (_fox9f
43 ay( ax Y ox ox ax[ ax

d( f+xaf ag+£).
dx dx ox

fexdf L 0% aF)dy s

Similarly, the y-component of the force may be obtained by

d d d
F‘yds = [ -p + 2 u ]dx - (j + ux]dy_

dy
But [see (A.30,10,23.31)]

du d
p+22% C4m (‘”’] 2 S
dy dz ox
=4_6£_26 gxgyaf oG
ox ax dx dx Ox
=29

g+x-—-- if-'-.a_q.]
ox ax " ax ox

and [see (A.31.17.25)]

Al0

rrxoy

.a_g+£ dx
dx OJx

(A.42)

(A.43)

&)

(A.44)



3]
o TL TR " RN g
dx dy dx ~ox Odx dy ox Y ox ox
..-a_f-_taz_g-_ag.+ a_zf_-a:G +a_[ -t_aﬁro-va_f-ﬁ
dx dydx dy ~dyox dydx dy\" "~ dx ~ax oOx
_-?_a_g.-xé:_g_+ g-o-ya-f ]- G +a_(-xi&+v§£—ﬁ]
dy dyédx \dx ~ dydx] dydx dy dx ~dx Odx
. g”ag of , oG
ox ’ax ox

so that, the y-component of the force may be written as

F'yci:::Z‘;3 (g+x yaf aG]a’x +2— 9 (g+x%-y_a£+£)dy
x

ax dx ox dy dx “dx ox
- od(g .x38 _,9f, 3G (A.45)
6x ax ox

Relationships (A.42,45) may be expressed in complex variable form as

(F, +iF,)ds (f+x—f+yag aF) 2id(g+ % . aG]

dx ox dx Jdx

Zd{(fﬂg -(x+ly(a': ax)-(%—i%]

or [see (A.15,23,24)]

. dol”  ldx|
F +iF\)ds = 2d{®2) - Z|—| - |-=]| ¢.
Farif)es { “ dZ] [dz'” (A49)
Thus, the force on curve AB, as shown in figure A.3, may be determined by

Fx+iFy = [!(F +iF,)ds

spzef o 2]

o] 2]

where #x and y are the components of the force the fluid exerts on the curve 4B,

’ (A.47)
B

All



coinciding with the x and y axis, respectively.

Next consider the transformation function

A

w(§)

(A.48)

mapping the Z-plane onto the £-plane (see, figure A.3). Thus the components of the

velocity in (A.29) and the force on curve AB in (A.47), in the £-plane. may respectively

be expressed as

i(ux+iuy)

and
Fx+iFy =2
=2

[§8 ]

®2Z) + Z

dw]”

dg

%

dw

=) - [#]

.

d(w) +w 22]. [d_E]‘ + [ﬂ]- [ﬂ].
dE dw dE| |dw
QL".J'q, . w{ﬂ]‘ . [ﬂ” (A.49)
di dE di
L ] - A
o421 (8
dz| |dz| |,
L3 . r . - A’
oo 81
dt | |dw| |dE | |aw] |,
- - - A'
ﬂ] ® -w[ﬂ] ] za] } A0
de ae | |ag| ||,

|

Bl

dE

where A’ and B’ are the two ends of the curve A'B’ which is obtained by the mapping

of curve AB onto the £-plane, corresponding to the points 4 and B, respectively, as

shown in figure A.3.
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2

Z-plane

01 :u(x.y)

Figure A.1: (x, y )-plane showing the components of velocity u.
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Z-plane

n,=-sin i,

Figure A.2 : Z-plane showing the components of the unit vector normal to element

ds.
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Fizure A.3 : Z and & planes schematically showing the transformation of curve AB

in Z-plane onto curve A'B' in the E~plane.
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