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Abstract

This research develops an analytical method for predicting the hydrodynamic

force experienced by a long slender solid body of arbitrary cross-sectional shape and

body centreline configuration, subjected to an unboundcd uniform fluid flow. It is

assumed the slendemess parameter, K (the ratio of the body cross-scctional length scale

te the body length) is smail (<c 1), the body centreline radius of curvature is everywhere

large (of order body length), the cross-sectional shape varies slowly along the body

length, and the Reynolds number R" based on the body length is of order unity.

The inner flow solution for an arbitrary cross-section is illustrated by applying

the complex variable method for a body with an elliptical cross-section, which is

extendable to any cross-sectional shape. The results agree with those obtained by

Batehelor (1970) with the use of the elliptic cylinder coordinates.

By the method of matehed asymptotic expansion, the force per unit length the

fluid exerts on the body, is obtained as a solution ofan integral equation which is correct

te order K. By neglecting the inertia effects, and for special case of body with a circular

cross-section, the force integral equation reduces to that obtained by Johnson (1980) (for

uniform flow) with a completely different approach.

The iterative solution of the force integral equation is illustrated by applying it to

a long straight cylindrical body, with an arbitrary cross-sectional shape, at rest in a fluid

with uniform velocity. The tirst IWO terms of the expansion of the force in a power series

of (1IInK) is explicitly determined and found to be in accordance with previous work

[Khayat & Cox (1989)].

The exact solution of the force integral equation for certain symmetric bodies is

illustrated by applying it te a slender torus of arbitrary cross-sectional shape, which is

constant along the body centreline, settling along its axis in an unbounded fluid at rest.

The radial and axial components of the force per unit length are explicitly determined up

te an errer term of 0 (K). It is found that, for a particular case of a toros with a circular

cross-section, as well as in the limit as R. - 0, the axial component of the force (the

only non-zero one) reduces to the results obtained by Johnson & Wu (1979) and Johnson

(1980).

The novelty of this research is the improvement of the approximation of the force

per unit length in slender body theory when inertia effects are not negligibly small•
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Condensé
Cette recherche développe une méthode analytique pour prédire les forces

hydrodynamiques causées par un long solide mince, ayant une forme de coupe

transversale et une configuration arbitraire, soumis à un écoulement fluide uniforme sans

bornes. Nous supposons que le paramétre de minceur, K (le ratio de la coupe

transversale du corps à sa longueur) est petit (-e 1), que le rayon de courbature de la

ligne centrale du corps est grand, que la forme de la coupe transversale varie lentement

sur la longueur du corps, et que le nombre de Reynolds Re, basé sur la longueur du

corps est d'ordre unitaire.
La solution de lécoulement interne pour une coupe transversale arbitraire peut être

démontrée en applicant la méthode de variable complexe pour un corps de coupe

transversale elliptique. Cette dernière s'applique à n'importe quelle forme ou coupe

transversale. Les résultats obtenus vont de paire avec ceux de Batehelor (1970) avec

l'aide d'un système de coordonnées cylindrique elliptique.

Par la méthode d'association d'expansion asymptotique, la force par unité de

longueur que le fluide exerce sur le corps est obtenu comme solution d'équation intégrale

qui est correcte à l'ordre le. En négligeant les effets d'inertie, ainsi que les cas spéciaux

de corps ayant une coupe transversale circulaire, l'équation intégrale de force se réduit

à celle obtenue par Johnson (1980) (pour écoulement uniforme) et ce, en utilisant une

approche complètement différente.

La solution itérative de l'équation intégrale de force est illustrée en l'appliquant

à un long corps cylindrique droit, qui est stationnaire dans un fluide à vélocité uniforme.

Les 2 premiers termes de l'expansion de la force dans une~e de puissance (lllnk) sont

explicitement décidés et sont en accord avec les travaux précédents [Khayat et Cox,

(1989)].

La solution exacte de l'équation de force intégrale pour certains corps

symmétriques est illustrée en l'appliquant à un mince torus dont la forme de la coupe

transversale est arbitraire, qui est constante le long de l'axe central du corps, dans un

fluide aux délimitations très éloignées. Les composantes radiales et axiales de la force

par unité de longueur sont explicitement dcterminées jusqu'à un terme d'erreur de 0 (k).

Nous trouvons, pour un cas particulier de torus à coupe transversale circulaire, de même

que dans la limite R.- 0, que la composante axiale de la force (la seule dans la
littérature) se réduit aux résultats obtenus par Johnson et Wu (1979) et Johnson (1980).

La nouveauté de cette recherche est l'amélioration de l'approximation de la force

par unité de longueur dans la théorie de corps minces quand les effets de l'inertie sont

pris en considérations•
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CHAPTERI

1.1 - Introduction

The hydrodynamics of low and intermediate Reynolds number, R.. flows bas

numerous applications in physical and biological science, medicine, and engineering,

including the study of pulp, asbestos, and wool fibre transport in streams, fibrous fùter

solid-liquid separation, micro-organism locomotion, rheology of blood circulation,

wastewater treatment suspension sedimentation, and equipment lubrication.

The typical value of Reynolds number for these flow phenomenon based on the

length of the body, kinematic viscosity of the liquid and the velocity of propulsion is of

order IQ"l to 10.2 for small microscopic organisms (for example 10"3 for the size of

spermatozoa) and of order unity for the larger ones of the size of nematodes, or for the

sand-size particles settling in the water (as for a specified example, Re = 1.17 based on

the length of a red cell in ascending aorta vessel). The common feature of the particles

involved in these phenomena is that they possess irregular shapes and in many cases a

slender body shape. 50 it is desirable to obtain the exact solution for this type of flows.

For low R. flows, even though the standard Navier-Stokes equation is simplified

to the Stokes equations as a first approximation, obtaining the solution for arbitrary body

shapes is still difficult, and hence not many exact or even approximate solutions are

known, except for the simplest of body shapes.

Non-zero Reynolds number flows, because of the difficulty in dealing with non-linear

inertia terms in the Navier-5tokes equation, are usually studied by numerical methods.

However, it is of inlerest to investigate the flow around a class ofbodies of irregular shape

for which one may solve analytically the equations of motion including inertia effects.

1
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The present study develops an effective method by which a number of exact

solutions tan be determined for various long slender particles subject to uniform flow

incident upon the body. Although, it tan easily be extended to the any prescribed flow

(steady or unsteady) for flexible slender bodies, far from the scope of this study, the exact

solution for naturally occurring particles is desirable and hence further investigations are

required.

However, a brief discussion of the background of the problem is presented under

the title of hislOry. The general problem is described in detail in Chapter 2. Chapter 3

deals with the outer expansion. By using the solution of the Greens function for Oseen's

equation the asymptotic form of bath pressure and velocity for a general point of the outer

region as it approaches the body centre\ine (singularity \ine), is determined. The inner f10w

field is presented in Chapter 4. By applying the complex variable method, the inner flow

field in the vicinity of a general point of the body centre\ine for a slender body of an

elliptical cross-section is anaIyzed in detail in 4.1 and 4.2. The problem is then genera\ized

by adopting Batehelor's solution for a genera\ cross-sectional shape in 4.3 and 4.4. In bath

cases the asymptotic solution of the inner expansion of bath pressure and velocity fields

is expressed in terms of outer variables, and then the inner body conditions for the outer

f10w fields are matehed onto those obtained, in Chapter 3, for the outer region near the

\ine singularity. From results of matehed asymptotic expansion the force integral equation

is derived in Chapter S. Chapter 5 also incliJdes the iterative solution of the force integral

equation lOgether with a determination of its integrand. Chapters 6 and 7 contain examples

of a long straight slender body and a slender lOrus, respectively. Consequently the forces

per unit length experienced by the bodies are obtained with the errer term of O(lmc)'] and

o (/C) for the former and latter, respectively.

Throughout this research we tried te present the material in a relatively self­

contained way with relatively simple mathematical procedures, which contain most details

of the calculations, and whenever it was felt needed, a figure accompanies the material.

Figures are located at the end of cach Chapter. Finally, appendix A contains the solution

of the biharmonic equation which is employed extensively in Chapter 4•

2



• 1.2 - History

The problem of determination of the force on fixed bodies in a slow uniform tlow

of viscous incompressible tluid is an old one. Stokes (1851) was the first one who paid

auendor to it. The problem originally considered by Stokes was tlow past a sphere. for

which. by neglecting completely the inertia of the tluid. he obtained a solution as F =
67rap.U (where F is the drag force. U free·stream velocity at infinity. p. the dynamic

viscosity of the tluid and a the radius of the sphere), which is the well·known Stokes

drag formula. However. in the case of a circular cylinder Stokes equations failed to give

any solution. The non.existence of a Stokes solution for any two dimensional body tixed

in unbounded tlow is usually referred to as Stokes' paradoxe

Oberbeck (1876) considered a spheroid with semi-axis a and b with a measured

along the symmetry axis. by neglecting the inertia effects too. leading to a value for the

force F (also along the symmetry axis) of magnitude

F = 16n:pbU (1.2.1)

which for small b/a (Le. for slender spheroid). reduces to

as (:) - o. (1.2.2)

•

Whitehead (1889) ancmpted ta develop the Stokes solution for a sphere by

obtaining higher order approximations to the flow when the Reynolds number is not

negligibly small. The method proposed by Whitehead was an iterative procedure to take

1 Throughout this section F. U. p and" denote the drag force. unifonn velocity al infmity.
the dynamic and the kinematic viscosity of rhe flaid, respectively, unless otherwise stated.

3



• the inertia effects into account. As noted by Proudman & Pearson (1957)" the particular

difficulty encountered by Whitehead was that the second approximation to the vclocity

of flow past a sphere remains finite at infinity in a way which is incompatible with the

unifonn-stream condition. . .. This mathematical phenomenon appears to be common to

an problems of unifonn streaming past a bodies of finite length scale and is sometimes

referred to as Whitehead's paradox. ..

The paradox was resolved by Oseen (1910). Oseen pointed out its physical origin

and a mathematical device for overcoming the associated difficulties with Whitehead's

paradox. Oseen showed the detennination of a unifonnly valid first approximation to the

velocity and an its derivatives is itself a linear problem which can be solved analytically

and hence resulted the famous Oseen's cquation. In contrast to Stokcs equations. Oseen's

equation provided a unifonnly valid approximation tO the velocity and an its derivatives in

the two dimensiona1 flow past an infinite cylinder of finite cross-sectionallength scale. The

first such solution to be obtained was that for an infinite circular cylinder placed

perpendicular to the uniform flow (Lamp 1911). for which Lamp retained sorne of the

"inertia terms" but omitted the others in his solution. Oseen himself gave a solution for

flow past a sphere of radius a and an infinite circular cylinder of radius b, respectively, as

(1.2.3)

and

(1.2.4)

where Ra and Rb are the Reynolds number based on the characteristic length of a and b

respectively. defmed by

R = aU
a V

and (1.2.5)

and where V is the kinematic viscosity defmed by v = plp Cp being the density of the

4



• fluid) and "Y is Euler's constant the value of which is

y = 0.5772-·· (1.2.6)

Equation (1.2.3,4) are well-known as Oseen drag formulas for a sphere and an infinite

circular cylinder, rcspectively.

Burgers (1938) attempted to obtain dircctly the formula (1.2.2), obtained from

Oberbcck's drag formula, for a long slender ellipsoid of revolution. He assumed the

disturbance produced by the ellipsoid was like that which would be produced by a line

of force of magnitude

j{z) = Ao +A2(z/a)2 +A4(z/a)4

fil.) = 0
if Il.l<a,}
otherwise,

(1.2.7)

acting along the symmetry axis, where l. is the distance along the symmetry axis

measured from the centre of the ellipsoid and A/)o Az,A. are constants. By minimizing the

mean value of velocity on the body surface, he ob!ained the force on the ellipsoid exactly

the same as equation (1.2.2). Burgers a1so applied his methoc! to determine the force

acting on a circular cylinder of finite length fixed in a uniform stream flowing in the

direction of its symmetry axis. For this case, he obtained the total force acting on the

cylinder as

F= 4 TrlJaU ,
ln 2a - 0.72

b

(1.2.8)

•

where a and b are respectively the serni-Iength and the cross-sectionaI radius of the

cylinder.

It seems the problem had remained unnoticed for many years after Burgers work.

until a paPêrfY Lagerstorm & Cole appeared in the Iiœrature in 1955. Lagerstorm &

Cole (1955) mtroduced Oseen and Stokes variables and obtained Oseen and Stokes,

expansions which followed naturally from the lirnit processes they adopted.

A'weIl-known paper by Proudman & Pearson (1957) considered the problem in

more details giving an intensive theoretical study of the subject. Proudman & Pearson

5



• (1957) and also Kaplun & Lagerstorm (1957) demonstrated that it is possible to obtain

higher order approximations to the flow past a sphere and a circular cylinder by applying

the method of Stokes and Oseen expansions, the SI>-Ca1led malched asymploric expansion

technique. Proundman & Pearson (1957)'s studies led to improving the approximation

of the drag force, obtained by Oseen, acting on a sphere and on an infinite circular

cylinder, respective1y, as

(1.2.9)

•

and

Although, by the aid of the binomial theorem, equation (1.2.10) leads to the Oseen drag

formula given by (1.2.4), Proudman & Pearson's method is capable of yie1ding higher

order approximations.

Broersma (1960) improved the method used by Burgers (1938). He took the

disturbance produced by the cylindrical body as being that due to a line of force of

magnitude

j(z.) =Bo + B,.(lia)2 + B4(lia)4 + ­

j(z.) = 0
if 1z.I<a,}
otherwise,

(1.2.11)

where BD> B2, B• ••• are an infinite set ofconstants ta be determined. Broersma computed

the values of these constants numerically for the case ofa circular cylinder of finite semi­

length (a) and cross-sectional radius b being fixed in a fluid with uniform ve10city U

flowing in the direction of the symmetry axis, and obtained the force on the cylinder as

6

which is a rather different result than that obtained by Burgers given by (1.2.8).

•

F = 41rlJaU •

ln 2a -081b .
(1.2.12)



• However. the slender-body theory. in more general form. has been revived and

considerably developed by Tuck (1964. 1970): Taylor (1967.1969); Cox (1970. 1971):

Tillet (1970). and Batchelor (1970). Ali these authors neglect the inertia effeclS

completely. Le. they assumed that Rn =0 and Rb =0 [where Rn and Rb are the Reynolds

number based on the characteristic length of the body length (a) and cross-section (b).

respectively. defined by (1.2.5)].

Tuck (1964) investigated the translational resistance force on slender bodies by

the use of spheroidal coordinates. Taylor (1967) illustrated that if the Reynolds number

is very small. a slender body of revolution falls twice as fast axially as it does

transversely. though. he had made a mistake in the sign of a term in his solution which

was pointed out by Tillet (1970). Taylor (1969) also gave a theoretical study of the

problem. Consequently, he formulated approximate integral equations for the stokeslet

distributions (force density) in the IWO cases of axial and transverse flow.

Cox (1970) considered a curved slender body of a circular cross-section with.

length 1and with the characteristic dimension of the body cross-section b, expanding the

solution directly in powers of 1/In" (where " is the slendemess parameter defined by "

= b/l). He obtained a solution for force per unit length, on the body, correct up to the

order ( 1/In" )3 as

[

J + ( U - U O
) ln 2e ]

F(s) = U-U' + À .[dR dR -21]
2lt ln li: (ln l<f ds ds

+ '!2(U-~O) '[3 dRdR -21] + 0[_1_],
(ln li:)- ds ds (ln li:)3

(1.2.13)

where s (0~ s ~ +1) is the dimensionless arch length of the body centreline measured

from one end of the body; R is dimensionless vector function of s, representing the body

centreline relative to a fIXed dimensionless coordinate system; here U is the fluid velocity

function of position: cr is the velocity of the body centreline: 1 is the idemfactor: }..(s)

is dimensionless function of s, representing the radius of the cross-section at the point

under consideration (s); e is an arbittary constant much smaller !han unity and where J

7



• is a vector given by

(1.2.14)

where s is the integration variable: il. is the value of R at point s = s. Cox (1970)

applied his theory (1.2.13-14) to examples involving bodies having a curved ccntrelinc.

He obtained the force experienced by a long slender body. with its centrelinc bent in an

arc of a circle of radius a. fixed in a fluid undergoing a uniform veloeity U (U lying in

the plane contains the body centerline) as

(1.2.15)

where FI is the component of the force per unit length acting on the body in the direction

of velocity U and where

(1.2.16)

and

B = i(sin25 -2){2ln[tan'l.(5 - 50)tan%(51 - 5)] - sin 50 sin '12(5 + 50)

- sin 51 sin '12(5 + 51) + 12ln 2 + 2 + 2sin2 5 - 4ln À }

-isin 5 cos 5 {sin 50 cos '12(5 + 50) + sin 51 cos '12(5 + 51) - sin 25} + sin2 5 .

(1.2.17)

where eo is the angle between the radius passing from one end of the body and the

direction of the veloeity U and where (el - eO) is the angle of the sector. the arch of

which is the body centreline. henee 80 S 8 S 8, [see also Cox (1970) p. 807). He also

obtained the component of the total foree by integration of (1.2.15-17). For the special

8



(1.2.18)

•

•

•

case of a slender torus of constant circular cross-section (i.e. À = 1), his studies results

in a total force, experienced by the torus, of magnitude

F = 6lr
2
#aU + o[ 1 J.

'I.l - ln [('A) lt] - ln K (lu)3

Tillet (1970) used the integral equations obtained by Tuck (1970) for axial flow

and solved them iteratively by the aid of the method suggested by Tuck (1964).

Consequently, he obtained a few terms of the expansion of the force in powers of (lIlne)

(where e is the slendemess parameter), in addition to the recurrence relation for

determination of the higher order terms. Whilst in the case of transverse flow, he only

obtained the drag force correct up to order (lne)"3. In the special case of a spheroid bis

results agree with those obtained by Lamb (1932) (solving the Stokes equations by the

method of separation of variables).

Batehelor (1970) adopted the slender body theory to a straight non-axisymmetric

body. From an investigation of the local inner flow field in the vicinity of a section of

the body, and the conditior. that it should join smoothly with the outer flow wbich is

determined by the body as a whole, Batehelor found that a given shape and size of the

local cross-section is equivalent, in aIl cases of transverse relative motion, to an ellipse

of certain dimensions and orientation, and, in aIl cases of longitudinal relative motion,

to a circle of certain radius. As noted by Batehelor (1970) and is illustrated in the present

study (Chapter 4), the equivalent circle and the equivalent ellipse (charaeteristic tensor)

of the cross-sectional shape may be found from certain boundary-value problems by

solving the harmonic and biharmonic equations, respectively.

Chwang & Wu presented a series of theoretical studies concerned with low

Reynolds number flow in general. They (1974) neglected inertia effects and considered

a viscous flow generated by pure rotation of an axisymmetric body having an arbitrary

prolate form. Consequently, they obtained exact solution in closed form for a number of

body shapes. In another paper [Chwang & Wu (1975)], they considered the singularity

method for Stokes flows and obtained exact solution also in closed form for prolate

spheroids, spheres and circuhu- Cylinders: Chwang & Wu (1976) took inertia effects into

9



• account and obtained the drag force on a spheroid (with semi-major and minor axis a and

b. respectively) placed perpendicular to the flow for arbitrary Rn and small Rh [where R"

and Rh are the Reynolds number based on the length a and b. respectively. defined by

(1.2.5)]. For a small Rn their result reduces to the Oberbeck drag formula given by

(1.2.1). When a tends to infinity (Le. for slender spheroid) and hence Rn tends 10

infinity. their result leads to the Oseen drag formula for an infinite circular cylinder

given by (1.2.4-6). However. as pointed out by Khayat & Cox (1989) their result. for

intermediate Rn (order unity); b/a<t; 1 and Rb <t; 1. is not valid because in their solution

they made the incorrect assumption that the drag force is independent of the position

along the body axis and consequently. they performed the matching at only one point on

the body axis (Le. the centre of the body).

The slender body theory also received attention and was funher developed by

Keller & Rubinow (1976), Geer (1976). Johnson & Wu (1979), Jhonson (1980) and

Khayat & Cox (1989).

Keller & Rubinc.w (1976). by neglecting inenia effects. analyzed a curved slender

body of circular cross-section capable of translating. twisting, stretehing and dilating.

Using the method of matched asymptotic expansion. they obtained an integral equation

to determine the force per unit length experienced by the body, where the first

approximation to its solution agrees with Cox's result given by (1.2.13.14).

Geer (1976) completed the method proposed by Tuck (1964) and Tillet (1970).

He considered i.he disturbance flow due the presence of a slender body of revolution in

Stokes f1ow. being that of produced by the superposition of three types of singularity.

with unknown densities. distributed inside and along the body axis. By applying the no

slip boundary condition. he obtained three pairs of linear integral equations for the

density of the singularities, by solution of which he determined the drag. total force and

torque experienced by the body. However. instead ofapplying the usual procedure of the

inner and outer expansions. he obtained a uniform expansion for the asymptotic solution

of the integrai equations.

Johnson & Wu (1979) considered the Stokes flow passing a slender torus of

10



• circular cross-section. By the method ofdistribution ofsingularities (stokeslets, doublets,

rotlets, sources, stresslets and quadruppoles) on the body centreline, they satisfied the no

slip boundary condition on the body surface, in closed form, up to an error of O(illne)

(1: is the semi-slenderness parameter), and hence they obtained force (correct up to order

il) and/or torque the torus experienced for the individual cases of the broadwise

translation (motion along the longitudinal axis), translation normal to the longitudinal

axis, rotation of a torus on its edge, spinning and expanding of a torus. For the case of

axially translation of a torus with the cross-sectional radius b and the body centre1ine

radius a, their studies results in

(1.2.19)

•

•

where 1: =bla, and Fis the axial component of the force pa unit length acting on the

torus. For the case of transverse motion perpendicular to the torus axis, they obtained

the total drag force as

(1.2.20)

where by neglecting terms of orcier (l/lne'f this leads to Cox's result given by (1.2.18).

Johnson (1980) extended the method used by Johnson & Wu (1979) (singularity

method), for flow past slender bodies of finite centre1ine curvature. He considered a

flexible slender body of circular cross-section with arbitrary prescribed motion (function

of time and position). By neglecting inertia effects, he obtained an integraI equation for

a curved slender prolate spheroid and slender bodies of arbitrary longitudinal cross­

sections (with prolate-spheroid ends) which may be written in dimensionless form

[quantities made dimensionless by the characteristic length 1 (1 being half length of the

body function of time i.e., a body with extensJ.ole arc length) veIocity U (U being an

appropriate characteristic veIocity) and /10 (viscosity of the fluid)] as

11



• Y ( 1 1 J'" ,• s,t) = -".(s,t)L. + - K.(Ro;œ)ds;
8x 8x -'.

(v = s, n, b) (1.2.21)

where (there is no summation convcntion on the repeated index)

".(s',t) [œ(s',t)-RolRo., D.".(s,t)
K" (Ro; œ) - ---'-:Ro:-- + --RQ-=-3";:"""= - 1s - s· 1 ; (1.2.22)

•

•

s' (-1 S s' S +1) is the arch length aIong the body eentreline measured from the midpoint

of the eentreline; - s, and + s, are the vaIues of s' corresponding to the two ends of the

body excluding the prolate-spheroidal ends; t is time; e = b/l (whcre b is the typical

transverse cross-sectional radius); V,(s, t) and a,(s, t) are, respectively, the dimensionless

components of the prescribed velocity and foree per unit length at the point under

consideration (s' = s) [v = (s. n, b) where s. n, bas subscripts of a variable denote the

components of that variable in the direction tangent, normal and binormal to the body

eentreline at the point s' = s, respectively ]; L, = 2(2L - 1); L. = Lb = 2L + 1 [where

L is defined by

L -In~ (forslmderspberoid). or L -In 2(1-t't' (for arbitmy longitudinal cross-section),
c c~

(1.2.23)

I:ll(s) being function ofs, representing the body transverse cross-sectional radius at point

s' = s ]; D. = Db = 1; D, = 2, and - Ro is a vector, representing the position of a

general point on the body eentreline (s') with respect 10 the point s. The dimensionless

force per unit length on the body, a(s, t), is determined by iterative solution of the

integral equation (1.2.21-23), the recurrenee relation of which is given by Johnson as

where a,11Il is the kth iteration of a,; j{s) = (1 - i'-)1't/2(S); and here L = ln (2Ie) in L,.

The first term of the foree per unit length (a.') in a power series of (1ILv) is determined

12



• by letting a,"" = 0 in (1.2.24). Johnson applied his method (1.2.24) to examples such

as translation of a toroidal ring along ilS symmetry axis. and translation of a partial

spheroidal torus in its own plane. For the former he obtained an infinite number of

iterations the summation of which is exact the same as that obtained by Johnson & Wu

(1979) in a direct fashion given by (1.2.19). For the latter he obtained the first two terms

of the expansion of the force in a power series of (IlL,). where by expanding IlL, in

terms of l/lne and neglecting terms of order (I/lne'T. his results reduces to Cox's resullS

given by (1.2.15-17).

Khayat & Cox (1989) took inertia effects into account and adopted the Batchelor

results for a non-axisymmetric body [Batchelor (1970)] to Cox's theory [Cox (1970)].

They assumed the Reynolds number R, based on the body length is arbitrary and obtained

the force per unit length on a curved slender body of arbitrary transverse cross-section

(at rest in unbounded fluid undergoing undisturbed uniform velocity Cl) in terms of

slendemess parameter, K, correct up to order (1I1nK'Y. They applied the force equation

to the uniform flow past a long straight slender body of arbitrary cross-section. and

obtained the force per unit length experienced by the body. f(s). as

I(s) = (_1_) (cos ep -2e) + (_1_)2 f.!.[2cosee -(2 -cose +cos2 e) p]
21fIJU ln le ln le 14

1 -'hR,(1 -cos6)(1 -$) 1 1
x -e -1 --[2cosee-(2+cose+cos2e)p]

lhR. (1 - cos e)( 1 +s) 4

1 - e -'hR,CI -cos6)(I-$) ] 1
x -1 --(cose p -2e){Et[1JzR.(I-cose)(1 +s)]

1JzR.(l +cose)(l-s) 2

+ ln (l-cose)} - ~(cose p -2e){Et [lhR.(1 +cose)(l-s)] +ln(l +cose)}

-(cose p -2e)[y +ln(~R.R$)]+icosep -e+2e-K+cose Pln~+O(~l\J
(1.2.25)

where K = bla (b being the charaeteristic length of the cross-sectionaJ shape and a is the

balf length of the body); {J is a unit vector. representing the direction of the body

centICline; e is the unit vector in the direction of velocity U; 8 is the angle berween the

13



• unit vectors e and {J (i.e. f) = e.{3): r is Euler's constant dclined by (1.2.6): R, is the

Reynolds numbcr based on the body half-length (a): R, is the radius of the equiv:lIent

circle of the cross-section at the point under consideration. s [where s (-I:S s :S +1) is

the arch length along the body centreline mcasurcd l'rom the midpoint of the centreline:1:

K is the characteristic tensor of the transverse cross-sectional shape:: K is a dimensionless

constant w"ich depends on the cross-sectional shape:. and where E/(.t) is the e:xponential

integral defined by

(1.2.26)

•

They obtained the total force. by integration of (1.2.25). and also the torque experienced

by the body. While they applied the theory to an infinite straight slendcr body. with

large R,. they realized that it l'ails to give a uniform valid solution. and hence a minor

modification is needed. They gave a theoretical reason for this violation and pointed out

that for an infinite slender body together with large R, the force should be expanded in

(lnRb)'! (Rb being the Reynolds number based on the characteristic Ie:ngth of the cross­

sectional shape) instead of (ln,,)'! and lengths. in the outer region. should he made

dimensionless by (1I1U) (11 being the kinematic viscosity of the fluid) rather than a (hall'

length of the body). By this modification. their research for special case of an infinite

straight cylinder of constant circular cross-section. placed perpendicular to uniform flow.

leads to the Proudman & Pearson's result given by (1.2.10).

14



•
CHAPTER2

2 - The general problem

In this research we consider an isolated long slender body with arbitrary cross­

section being at rest in an unbounded fluid undergoing a uniforrn velocity, U. We are

intcrested in obtaining the hydrodynamic force per unit length which the fluid exerts on

the body. The length of the body is 1 and the characteristic dimension of the cross­

sectional shape is ra, where ra is an arbitrary length chosen to be representative in sorne

way of the value of the radius of the equivalent circle of the cross-section. For example,

21l'ramight be the perimeter of the cross-section at a typical point on the body centreline.

It is assumed that the body centreline may be bent in any manner whatsoeVer so long as

the radius of such a bending is at ail points of order the body length (l). The arc length

of the body centrcline measured from one end is s' (sec figure 2.1). A dimensionless

quantity s is defined by

S'
S =-

1
(2.1)

so that, the value of s is bounded by zero and one, corresponding to two ends of the

body. The body centreline itself is given by

r' = IR(s) (2.2)

•
where r' is a position vector of a general point relative to a flXed set of ru:tangular

IS



• Canesian axes (r'" r':. r'J) with origin at O. as shown in ligure 2.1. and R(s) is a

dimensionless vector function of s.

At a general point P on the body ccntreline wc introduce a set of local Canesian

axes (x '. y'. z') with origin at P and the z' axis tangent to the body ccntreline. Therefore

the relationship betwcen the fixed Canesian coordinate system (r',. r':, r'J) and the local

coordinate system (x'. y', z') may be written as

X' = r' - IRp (2.3)

where X' is the position vector of a general point relative to the local Canesian system

(x', y'. z') and RI' is the value of R(s) at point P, the origin of the local Canesian

system. Associated with the rectangular Canesian axes (x', y', :: ') is a set of local

cylindrical polar coordinates (p', 0, z'). as shown in figure 2.2. so that the relationship

between these two coordinates is given by

x' = p'cos6. y' = p'sin6 . (2.4)

The cross scctional shape might vary along the body centreline, hence it may be given

in terms oflocal polar coordinates (P'. 8) as

(2.5)

where h is a dimensionless function of s and 8.

It is assumed that the slenderness parameter, K, defined by

is much smaller than unity; !hat is, the body is slender.

We assume the Reynolds number R, based on the body length defined by

(2.6)

R = lU
• v

(2.7)

•
is of order unity. where U = 1Ulis the magnitude of the uniform velocity. U, and "

16



• is the kinematic viscosity of the fluid. Then as K tends to zero the Reynolds number R

based on the characteristic length of the body transverse cross-section (ral defined by

roU ro lU
R = - = -x- = KR

v 1 v •
(2.8)

•

tends to zero.

It is in terms of the parameter K that we make expansions of the velocity and

pressure fields to obtain the force per unit length on the body in the limit as K tends to

zero. However, this type of expansion must be singular because the flow locally around

the long slender body must be very nearly the flow around an infinite cylinder at zero

Reynolds number R (sec 2.8), and it is weIl known from the Stokes' paradox that it is

impossible for such a flow field to satisfy the flow equations and simultaneously to

satisfy both the no slip boundary condition on the body surface and uniform flow at

infinity.

We use dimensionless quantities based on the body length, l, the fluid viscosity.

p., and the characteristic velocity U, hence the dimensionless position vectors r and X ,

velocity u and pressure p may be written as

r'
T =­

1'
X'

X=­
1 '

u'u =-,
U

Ip'
p = j1U' (2.9)

where the primed variables correspond to the dimensional forms of the unprimed

variables.

It is assumed that the fluid is incompressible, hence the dimensionless governing

equations of motion and continuity may be written as

R.u.Vu =V" - Vp; V.u =0

The boundary conditions associated with equations (2.10) may be expressed as

(2.10)

•
and

u - e as

17
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• " - 0 on the body surface, (2.12)

where e = UIU is a unit vector in the direction of the unifonn undisturbed flow.

In order to solve equations (2.10) together with boundary conditions (2.11,12),

one should obtain a solution as an outer expansion in K, valid in outer region [i.e., the

unifonn flow at infinity (2.11) being satisfied], where ris of order unity. Thus, in this

region lengths are made dimensionless by 1, and hence as IC tends ta zero [sec (2.6)], the

body cross-sectional radius tends to zero. Therefore, in the limit as IC - 0, the body

becomes very much like a line, as shown in figure 2.3. For reason later on apparent, wc

call it line singularity.

In the outer region, we write X = (x, y, z) = (p, 8, z), where the x, y, Z and p

are respectively x', y', z' and p' made dimensionless by 1.

At each point P of the body centreline determined by r = Rp we may introduce

a local inner expansion in K for which X!') is used as the independent variable and "fi) and

pfl) as dependent variables, where X!'), ,,~) and p~) are defined by

• X'xOO = _,
ro

,,'"Ill = _
U'

raP'pOO =_
Il U

(2.13)

Here we use variables labelled by the superscript (i) to denote the inner variables. Hence,

the dimensionless coordinates (ri), ~), t'J) and (p~), 8, t'J) are respectively the local

coordinates (x', y', z') and (P', 8, z') made dimensionless by ro- Thus, the relationship

between the outer variables and inner variables may be writtcn as [sec (2.3,9,13)]

'" r - RpXYI = __.:.,
!C

pCI) = .e., ,,(/) = ", p(/) = !Cp •
!C

(2.14)

•

In the inner expansion corresponding ta each point P of the body centreline we made

length dimensionless by ro50 that, as K tends ta zero, the body becomcs very much like

an infinite cylinder with non circular cross-section. In fact there are an infinite number

oflocal inner expansions corresponding ta each point of the line singularity represe!1ting

the body in the outer region. However, we use the same procedure as used by Cox and

18



•

•

•

Khayat [Cox (1970) and Khayat & Cox (1989)]. That is, we develop an inner expansion

at a general point P of the line singularity in order to consider all such inner expansions

simultaneously. Then the inner expansion obtained for such a point will be matched onto

the asymptotic solution of the outer expansion near the line singularity for the same

point.
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•

s' = 0

)-
s' 1

Figure 2.1 : Long slender body being at rest in the fluid undergoing an undisturbed

unifonn flow U.
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• z'

J'T"'-
----- : /\--i.-.

p r--------- y'

Zl

•

P'

Xl

Figure 2.2: Local cylindrical coordinate system (pl, e, z') showing the local

cross-seetional shape.
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•

s=1

x

\
p \

1
Il

y

s=o

Figure 2.3 : The outer region in which lengths are made dimensionlcss by 1.

In the limit as le - 0 the body becomes a line singularity.
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•
CHAPTER3

3 - Outer expansion

In the outer region the velocity u and pressure P may be wrinen as

(3.1)

and

(3.2)

where e represents the free stream velocity and [U1(K). Pl(K)] are the disturbance velocity

and pressure due to the presence of the body S. In equation (3.2) the constant pressure

associated with the free stream velocity e. without loss of generality. is taken to be zero.

In the limit as K tends to zero the body cross- sectional area shrinks to zero hence the

effects of the disturbed velocity and pressure on the flow field (u. p) will diminish so we

require

("t ' PI) - (0, 0) , as le - O. (3.3)

•
In order to analyze these fIow fields. at a general point P on the line singularity we take

a set of rectangular Cartesian axes with unit base vectors i., ~ and i: which lie in the

same direction as the (x. y. z)-axes defmed in chapter 2. Thus i. lies in the direction of

23



• the tangent to the body centreline. r = R(s). at P.

From the form of u as one approaches the centreline we see that the 110w is clue

to a force of magnitude

F'(s) =4rrB(IC,s)i% + 4rrD(/c's)iy - 2rrA(IC,s)i:. (3.4)

This will be explicitly verified in the inner expansion. Since the x and y axes are

arbitrary, it is convenient to take i% to lie in the plane containing i: and the velocity vector

e, as shown in figure 3.1. Thus the unit vectors ~. i% and i, may be determined by

where

i = t
: '

tes) = dR(s)
ds

(3.5)

(3.6)

is a unit vector in the tangent direction of the line r =R(s) at the general point P(s) and

[ is the idemfactor. Therefore F'(s) may be expressed as

F'(s) = 21t[2B(K,S)e. ([ - tt) + 2D(K,S)t x e _ A(K,S)t] (3.7)
(1 - Je otf)I/2

In order to make velocity u tend to be uniform at infinity we require

u - 01 as r - 00, (3.8)

50 that U1 is the flow due to the distribution of the force density F'(s) on the line r =
R(s).

The substitution of velocity U and pressure p (3.1,2) in the dimensionless forms

of the Navier-Stokes and continuity equations given by (2.10) yields

(3.9)

Since in the outer region the non-linear term u1 0 VU1 is much smaller !han e 0 Vul , as
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• a first approximation. we can neglect such a smaII tenn. and hence (3.9) may be written

as

R e'Vu = V2U - Vp'
~ 1 l '

(3.10)

which is known as Oseen's equation for unifonn flow in the direction e. It has a solution

for ul and PI at location X due to the acting of a point force!, = if'l' J'2' f'J) on the

fluid at the origin given by [see Happel and Brenner (1970); Khayat & Cox (1989)]

and

1 XXP (X) = __1_1,
1 4n: X3

where X is the radial distance from the origin defmed by

and Cij is a symmetric tensor defined by

(3.11)

(3.12)

(3.13)

(3.14)

Here the summation convention is imposed on the repeated index, uniess otherwise

stated, ln relationship (3.14) i'(X) is given by

2Ir1RJ.X-"Xl(1 - e-œ
)'I(X) = - 2 da.

R 0 '• a.

and the delta Kronecker ôij and '1' 'ij are respectively defmed by

(3.15)

{

l,
iS lJ =

o ,

25
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• and

a2'P
'P =~-::--

'iJ ax ax
1 j

(3.17)

Thus. the velocity u, and pressure P, at location X due to action of a point force f' on

the fluid at location X' may be written as

and

1 (X. - ;(')1.'
P (X) = - 1 J J

1 41t IX -X'13

(3.18)

(3.19)

Therefore. the flow field (u,• P,) at a general point on the plane (x. y) with position

vector X = (x. y. (J). as shown in figure 3.2. produced by the whole line distribution of

the force density F'(S) may be determined by

(3.20)

(3.21)

and

(X) - 1 ri [Ij - RJ(S») F'("'d-
PI - -J, J SI S.

41t 0 Ir - R(S) 13

In equations (3.20.21) the values of (X - X') and f/ of equations (3.18.19) are

respectively replaced by their equivalent values [r- R(S») and F~(S)dS (sec figure 3.2) and

sincc equation (3.10) for ", and P, is linear we superimpose the velocity and pressure

produced by ail individual point forces F'(S)d.S on the line singularity r = R(S) by taking

the integration over the line 0 S s S 1.

In order to match the value of velocity U and pressure P given by (3.1.2).

respectively. onto those which will be obtained in the inner expansion wc are rcquired
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• to determine the asymptotic behaviour of ul and Pl near the line singularity r = R(s).

Since the integrands of ul in (3.20) and Pl in (3.21) become singular on this line we

divide ul and Pl into two parts as

and

PI = H + H',

(3.22)

(3.23)

where 1'i and H' are the integrals taken over the interval (s - e • s + e). whilst J, and H

are the integrals taken over the remaining imerval. It is assumed that e is an arbittary

constant. independem of " and very much smaller !han unity. Thus J, • 1'i • H and H'

may be expressed as

and

J/(s) =_1_ (.-tgIJ[r-R(s)]F/(s)ds.
8lt J.-t

H(s) = _1{(.-t + (-\} [rJ - RJ(s)] F' (s)ds
4lt Jo J._. Ir _R(s) 13 J

H'(s) =_1_ ('-' [ri - ~(s)] F'(s)ds .
4lt J._. Ir _R(s) 13 J

(3.24)

(3.25)

(3.26)

(3.27)

We intend to obtain the asymptotic forms of Uz and Pl as X or its equivalent value

p tends to zero; that is. as r tends to R(s). the origin of local coordinate system (x • y.

;:) (sec figure 3.3). Since the integrands in (3.24-27) only become singular at s = s if r

lies on R(s). it can be concluded that the integral J; and H have integrands with no

singularity • :tlthough their values will tend ta infinity as e tends to zero. Hence letting

r = R(s). the relationships (3.24) and (3.26) may be written as
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•
and

1 {f.'. c J'I}JI(S) = - + Slj[R(s)-R(s)]Fj'(s)ds
81t 0 .'·c

(3.28)

H(s) = _1 {f.'. c
+J'I} [Rj(s) - RP)] F' (s)ds. (3.29)

41t 0 .• ·c 1R(s) - R(s) 13 j

Since e <li 1 . the integral JI' and H' may be simplified if one notes that F'(S) =
F'(s) in the range of the integration. that is. s • eS s S s + e: so that we can write

and

H' = _1F' (s)1.
41t J "

where ~j and ~ are respectively defmed by

/ .. = J•.•S[T-R(s)]ds
'1 :1-( '/

and

r.0C [TI' - RJ(s)] •
/ = ds.
J ,-c IT _R(s) 13

(3.30)

(3.31)

(3.32)

(3.33)

•

For fIXed but sman e, as one approaches the singularity line. r = R(s), i.e. in the limit

as p tends to zero. the flow approaches that due to a line of constant force F'(s) acting

on the z axis.

In order to obtain the asymptotic forms of I,j and ~ for p tends to zero it is

conveniont to take the fIXed rectangular Cartesian axes (TI' Tz • TJ) to be para1lel to the

local coordinates set (z. x. y) at point.s = s; so that the Tl • Tz and TJ axis respectively

coincide with the z • x and y axis. respectively, as shown in figure 3.4. TItus the
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• relationship between the position vector r and the vector R(s) representing the body

centreline al point S = s may be written as (sec figure 3.4)

• ri =R1(s)

rz =Rz(s) + pcos6 (3.34)

r3 =R3(s) + psin6

The expansion of the components of R(s) around s by Taylor's series results in:

(3.35)

Since 1 s-sis e <Il 1 the errors in these relationships are of order e+J, so they tend

to zero much faster than e does. But. since the rI axis is parallel to the tangent direction

of the centreline R(S) at S = s. dR(s)/ds = t [see (3.6)]. hence

(3.36)

•
•

which indicates that dr!ds = drlds = O. therefore, (3.35) may be simplified as

(3.37)

Thus. by the relationships (3.34) and (3.37). the components of the vector [r - R(S)] may

he expressed as
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•
•

1 d 2R1 • ,
[r - R(s)]1 = -Cs - s) - - [--(s)](s - s)- - ...

2 ds 2

1 d 2R, ,
[r - R(s)h = + pcose - -[---(s)](S - s)- - ...

2 ds 2

1 d 2R] ,
[r - R(s)]) = + p cose - - [--'(s)](s - s)- - ...

2 ds 2

But dR/ds = t is a unit vector. hence

dR dR
-'- = 1.
ds ds

Differentiating (3.39) with respect to s results in :

(3.38)

(3.39)

or
dR. d 2R
-'--' = O.
ds ds2

(3.40)

•
•

Since drlds = ou. it follows that d2R/tJs2 = o. 50 that (3.38) may be wrillen as

[r - R(s)]1 = - (s - s) - O(s - s») - ...

1 d 2R2 ,
[r - R(S)]2 = + pcose - -[--(s)](s - s)- - ." (3.41)

2 ds 2

1 d 2R
[r - R(s)] = + pcose - _[__3(S)](s - S)2 - ...

) 2 ds 2

Hence the square magnitude of vector [r - R(S)] may be expressed as

Ir - R(s) 12 = [Cs - S)2 + p2] + Ores - s)4, p(s - sf]
, , { [(S - S)4 p (s - S)2]} (3.42)=[(s-s)-+p-ll+O • .

(s-S)2+ p2 (S_S)2+ p2

Therefore by the aid of the binomial theorem the term in the dominator of ~ may he

determined by
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•
(3.43)

The substitution of relationships (3.41) and (3.43) in ~ defined by (3.33) results in:

(3.44)

(3.45)

and

(3.46)

In orcier to evaluate ~. it is convenient to introduce a new variable x defmed by

s - s = px,

50 that ~ in tenns of variable x may be written as
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•
•

and

(3.48)

(3.49)

1 = J"/P{ sin6
3 -'ip P (1 ... X 2 )3/2

... o[ (1 :::)5/2 ·-(-I-...-X-~-2)-5-/2' (l

(3.50)

It can be seen that ail the integrals in II possess the property of symmetry. 50 that

1 - 01 as p - o. (3.51)

•
•

For fixed e as p tends to zero the integrals in 12 and I J may be evaluated as follows :

J"iP dx - J'w dx = J -"iPcos6d6
-'ip (x 2 ... 1)3/2 _w (x2 ... 1)3/2 - -l'ip (3.52)

= Isin61::~ = ... 2 •

or
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•

f ·e/p x2dx = 1--=(x2 + l)-3/21::'P + lf·e/p dx
.I:/p (X 2 + 1)5/2 3 /p 3 -e/p (x 2 + 1)3/2

2 p2 2
::: --- + -

3 e2 3

and

4 3 ·t/p 2

f ·e/p x dx = __x (X2 + 1)-3/2 f+C
/ P x dx

-e/p (x:!. + 1)S/2 3 -e/p + -e/p (x 2 + 1)3/2

::: _ ~ + 2ln( 2
p
t:) .

The substitution of (3.52-55) in 12 and IJ given respectively by (3.49-50) gives

(3.53)

(3.54)

(3.55)

and

l, - 2 p·'sin6 • o[P. PIn(: ).( ~:} pO.ln(:)]. (3.57)

As e tends to zero the largest error in these relationships is of order pO. Therefore H'

defined by relationship (3.31) is obtained by

•
Thus. Pl given by relationship (3.23) may be deœrmined by
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• (3.59)

where H is defined by relationship (3.29). Therefore as p tends to zero. the asymptotic

fonn of pressure p [see (3.2)] can be expressed as

(3.60)
+ _1 {(s.c + (.1} [RI(s) - RJ(s)] F'(s)ds + 0(1) .

411: Jo Js + c 1R(s) _ R(s) 13 J

In order to obtain the asymptotic behaviour of I;j near the line singularity r = R(S)

one should obtain the asymptotic fonn of K'j' defined by [see (3.14)]

(3.61)

where X" = X - X' = r - R(S) (see figures 3.2,3), as both p and l: tend to zero. But p

= X and as e tends to zero, X' the magnitude of the position vector of the point force.

will tend to zero. Therefore as both p and e tend ta zero, X" the magnitude of vector X".

will also tend to zero. Since the integral variable, a, in '!'(X"), defined by [see (3.15)]

2 f*R.(r -~'r)( 1 - e-11)
lf'(X") =- • da.,

R 0 Ct
t

(3.62)

will tend ta zero, if X" tends ta zero we require ta detennine the asymptotic bchaviour

of 'Ir(X") for a - 0, hence in this case the integrand of 'l'(Xj may he simplificd as

Ct 2 Ct 31-(1-Ct+---+·.. )
21 31

Ct

Ct Ct 2=1--+---
21 31

(3.63)

•
Thus as X" tends ta zero 'l'(X") is obtained by
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• 2 .!.R,ex•-"X')( /% )'P(X") - _f2 1 - - + ". d/%
R.Ja 2!
2 1 2 1!/2R,ex' -"X')

=-/%-4/% +'''10
R.

= (X" - e'X") - .!.R (X" - e·X")2 + .•.
8 •

The '1' 'il and V2'1' in gv may be determined as follows :

(3.64)

Thus

X"
'P (X") - _1 - e.

'i X" r (
X" )- .!.R (X" - ekX" )_1 - e + ".4 • k X" 1

(3.65)

(Ii X"X")'P, ..(X") - ....!1. _ 1 J
IJ X" X"3

1 [ (Ii X"X") (X" )(x." )]- -R (X" - ekXk") ....!1. - 1 J + _J_ - e -'- - e + ...
4 • X" X"3 X" J X" 1

(3.66)

Hence

'P _ (2... __1 )-.!.R[(X"-eY")(2...-_1) + (XI" _e.)(Xt -e.)] + •••
'/1 X" X" 4' k"k X" X" X" 1 X" 1

2 1 (ekx/ xtek )= - - -R 2 - 2-- + 1 .. 2-- + 1 + ...
X" 4' r r

(3.67)

Therefore

• 2 ( e~/)V-'P = 'P - - - R 1 - -- + ...
'u X· • X·

Thus gij given by (3.61) may be determined by

3S

(3.68)



• " 2 ô ll ( ekX,/, ] (au X/X/, ] 1 ( ekX,." aijg (X ) - - - R 1 - -- a ... - - -+- -+- - R a - --.;...~..;:.
If X" t X" iJ X" X,,3 4 t If X"

X," X J eX" X." X," X," X." eX" eX" ,
_ 1 J ... kt 1 J ... 1 J __f_/ __I_J_+eeJ+'"

X,,2 X,,3 X,,2 X" X" 1 j

(

Ôlj X/' X/' ] 1 ( ekX,:" Ôjj eJcXJc" X/, X/'= -... ... -R -3ô + 3 =---~
X" X,,3 4 t If X" X,,3

X" X" ]eJ i ei j----+ee ......
X" X" / i

(3.69)

We see the term in R,+/ is bounded [i.e. it is independent of X" =, -R(S)]. so it is

independent of S. hence it gives a contribution to li) [see (3.32)] of order c+ 1 and so it

tends to zero as G does. After being substituted X" by {r-R(S)]. the terro in R/ gives

~ ôl} l'i - R/(s)ll'j - Rf(s)}8 [r - Res)] - ... - -- . + .•.

ii Ir - R(s) 1 1r - R(s) 13

Substimting relationships (3.41) and (3.43) in Ki) results in :

1 (s - S)2
811 - + + .....

[Cs - S)2 + p2)1/2 [Cs - S)2 + p2)312

1 p2cosle
8 22 - ... + ... t

[Cs - s)2 ... p2]1/2 [Cs - S)2 + p2]3/2

1 p2sin2e
833 - ... ......

[Cs - S)2 ... p2]1f2 [Cs - S)2 ... p2]312

(3.70)

(3.71)

(3.72)

(3.73)

•
and

812 = 8u
(s - s) pcose

[(s - si + p2f~f2

(S - $) psinB

[(s - S)2 + p2]3/2
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• + ... (3.76)

Therefore. l,} defined by (3.32) may be determined by

J, =J, _ _ (S-' (s -s)pcos8 ds,
1. .1 Js-. [(s _ S)2 + p2]3/2

J = J _ _ (S-' (s -s)psin8 ds
13 31 Js -. [l' )2 2]3/2 '\s - S + p

and

Or Jij may he expressed in terms of the variable x defmed by (3.47) as
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(3.80)

(3.81)

(3.82)
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•

and

/ = / - -f ../p xsinS dx
13 31 -./p (X2 ... 1)3/2 •

/ = / - f"/P sinScosS d
~3 ~~ X •
- . - -./p (X 2 ... 1)3/2

(3.85)

(3.86)

(3.87)

(3.88)

Therefore. as p tends to zero [Le. r - R(s) see figure 3.4]. 1" may he determined by

[see (3.52-55)]

•
similarly

?e
/Il - 2[-2 ... 2ln(=-)] ... 2 ......

p
- -4lnp "'14lne - 2 ... 41n2} ......

?e •
/22 - -2 + 2ln(=-) + 2(1 + cos-S) + ...

p
- -2lnp +12lne ... 21n2 "'2cos2S) ......

2e
/33 - -2 + 2ln(-) + 2(1 ... sin2S) ......

P
- -2lnp +(2lne + 2ln2 +2sin2S) + ...•

- 0 ,
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•
and

/23 = /n - 2sin8cos8 + 0.0 0

The substitution of /ij into J'; defined by [see (3030)]

gives

(3093)

(3094)

(3.95)

J'l - _1{-4lnp + [4ln(2c) - 2] + ..0 IF'I(S) • (3.96)
8n:

J'2 - _1_{{ -2lnp + [2ln(2c) + 2cos2 8] + ..0}F'2(S) + 2sin8cos8F'3 + ..o} •
8n:

(3.97)

and

J'3 - _1_{{ -2lnp + [2ln(2c) + 2sin28] + ...}F'3(S) + 2sin8cos8F'2 + -} •
8n:

(3.98)

Thus as p tends to zero (uI ); defined by (3.22) may be detennined by

1
(U\)2 - --F',(s)lnp

4n:. •

+ {_1_[ ln(2c) + cos28 ]F'2(S) + _1-sin8cos8F'3(s) + J,(s) } + -
4n: 4n: •

(3.100)

39



• and

(Ill)' - __l_ F',(S)lnp
4lt

+ {_1 [ ln(2e} + sinz6 ]F',(s} + _1 sin6cos6F',(s} + J,(s) } + ....
4lt 4lt" .

(3.101)

Hence by (3.1) the asymptotic fonn of the velocity IIi when p tends to zero may be

obtained by

U: - __1 F'2(S}lnp
4lt

+ {e2 + _1 [ln(2e} +c0s26]F'2(s} + _1-sin6cos6F\(s) +Jz(s) } + ...
4lt 4lt

(3.103)

and

u, - __1 F'3(S}lnp
4lt

+ {e3 +_1_[ln(2e} +sinz6]F'3(S} + _1-sin6cos6F',(s} +J,(S}} + ...•
4lt 4lt"

(3.104)

where Ji is defmed by (3.28) as

JI(s} = _1{fs
-, +f"l}glj[R(S} -R(s}]F/(s}ds .

8lt Jo S"'
(3. lOS}

The relationships (3.103.104) may he combined and written in indices notation as

F' (S)[ 2e XX]Il - j (olj}ln- + _I_j + el + JI(s) + ...
1 4lt P p2

where (i. J) = 2. 3; X2 =x and XJ = y.
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•

•

x

r 1

Figure 3.1 : The system ofaxes at the general point P on the line singularity with

unit base vectors i)4 il' i: showing the unit vector e lying in the (x. z)­

plane.

41



•
X
1

F'(s)ds

•

,. ~__- __~ s= 1

/
7\-,xc'--=:::r~~L-~=-------'-

/ /?,s=s -----z
;'

S =0

Figure 3.2: The velocity Ut at position X in the (x-y )-plane due to the acting ofthe

point force F'(S)dS at position X ' on the Une singularity r = R (5).

42



•

/\
s=o

/\s=s+e /\
:> S = 1

z

•

Figure 3.3 : The range of integration in which as p _ 0 the integrands in H' and fI

become singular.
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5 = 0

'" - 1s -

"":"":'"'-.,,;--"'-----~ Z

•

Figure 3.4: The position of the general point P in the (x-y )-plane with respect to

the (fl~ f~ f))-axes which is taken to be parenel to the local coordinate

. "'-system at pornt s = s.
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CHAPTER4

4 - Inner flow field - Matched asymptotic expansion

In this chapter we consider the cylindrical flow in the neighbourhood of a general

point on the body centreline (i.e. at P). The inner expansion of the flow fields (u(/). pM)

should be deterrnined by solving the governing equations (2.10) expressed in inner

variables as [see (2.8)]

• subject to the boundary condition

(4.1)

u lO = 0 on the body surface , (4.2)

where vtQ is the gradient operator with respect to the (ri'. ym. z(il)-coordinates. Since the

boundary condition al far distances from the body bas been considered in the outer

expansion. in inner flow field we ooly exen the no slip boundary condition on the body

surface [i.e. (4.2)]. Thus. neglecting terrn of order K. equations (4.1) may be wriucn as

(4.3)

•

which is Stokes equations.

It is assumed the cross-sectional shape varies sufficiently slowly along the body

centreline. and we recall that the curvarure of the body centreline is assumed to be large

everywherc. so we cao neglect the dependence of the local flow fields on the z-axïs.

Thus. the pl'obl~ is simplified to two dimensional flow fields in the plane-(ril• yli').
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•

Since tenns. which have significant values in the region near the body surface.

such as those of order p(i) to sorne negative power. when converted to the outer

variable.[see (2.14) (i.e.. p = Kp(il)]. will turn into [enns of order K [0 sorne positive

power. to the approximation being considered [i.e.• O(K)]. we arc not concerned with

such tenns. Therefore. it suffices to obtain the inner now tield valid at far distances from

the body in the inner region.

To the approximation being considered the cases of transverse motion and

longitudinal one involve only the transverse and longitudinal components of F'(s).

respectively, and since the corresponding inner flow fields have slightly different

characters we consider them separately. Thus. we decompose the flow fields (u(/), p(I))

in u(/) = (u/' , O. 0). which is parallel to the body centreline, together with constant

pressure and in U(I) = (O. u/", ul'), which is held in the cross-sectional plane (x(/). y(/)).

along with pressure p(/). This separation of the cylindrical flow will be explicitly verified

to be in accordance with the exact solution of the problem.

First the flow field for a long cylindrical body with an elliptical cross-section is

analyzed by the complex variable method and the problem is then generalized by the use

of the inner flow field solution for a body with an arbitrary cross-section. In both cases

the corresponding solutions will be expressed in tenns of outer variables and then will

be matched onto those obtained for the outer expansion at the same point.

4.1 - Longitudinal motion for ellipticaI cross-section

Now we may consider a cylindrical body with an elliptical cross-section. the semi­

diameters of which are given by roa(s) and rob(s), where a > b. The dimensionless

equation of the cross-sectional shape may be written as

(4.1.1)

•
where x" and y" are dimensionless axes. chosen to coïncide with the larger semi-diameter

a and the shorter one b. respectively. Associated with the rectangular coordinate system

(x". y") is a dimensionless polar coordinate system (P(;). <f», as shown in figure 4.1.50
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that the rclationship between these two coordinate systems is given by

and (4.1.2)

ln the (x". y")-plane. which is calIed Z-plane. the dimensionless. equations of

motion and boundary condition may be written as

and

V'U = 0 (4.1.3)

on (4.1.4)

where u/J = u/o(x". yj and V" is the gradient operator with respect to (x". yj­

coordinates. In equation (4.13) pressure p does not appear because it is constant and

hence V"p = O. The continuity equation is automatically satisfied. that is. au/az = O.

which is one of the assumptions of the problem for the inner flow field. In order to

impose the no slip boundary condition (4.1.4) on the body surface, it is convenient to

transform the cross sectional shape onto a circle. Hence. the transfonnation

(4.1.5)

transforms the ellipse defined by (4.1.1) in the Z-plane onto a unit circle. e Î<>, in the ~­

plane as shown in figure 4.1. Solving the relationship (4.1.5) for ~ results in

(4.1.6)

In the derivation of the relationship (4.1.6) the root with positive: sign is chosen in order

not only to make a one to onel mapping. but also to map the exterior-region of the

ellipse in the Z-plane onto the exterior-region of the unit circle in the ~-plane. Sincef (2)

is analytic. it is conformaI too. 50 that the harmonic function Ur (x". yj rernains

1 Here we consider the principal value of the complex variable. unIess otherwise stated.
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• harmonie under the change of variables arising l'rom the conformai transformation.

Therefore. in the ~·plane. we have

U,(I) = u(/)( IV H I~ H )
t 1 t Z

(1) = 0U1 0'1
(4.1.7a,b)

where (IV,", IV:") and ," are. respectively. the dimensionless coordinate system and radial

distance l'rom the origin in the ~·plane. as shown in figure 4.1. and where the gradient

operator VH refers to (IV! ", IV:")-coordinates. Letting g(~) = P + i Q be analytic

function of ~ = IV/ + i IV:" = r"eio (i.e. VH~p = VH~Q = 0 ). u/' may be written as

u:o = p = m[g(~)l. (4.1.8)

•
where :R denotes the real part of the complex variable. The general solution of equation

(4.1.7a) is

-
u~o = (at/J + P)(A'In,H + B'l + L (C' 0",1'0) + D'o,H(-OI)(E ocosnt/J + F' osinnt/Jl.(4.1.9a:

0-1

where ail the coefficients are real constants and n is an integer number. But. the term CttP
can not appear in the solution since it is not periodic. neither can the terms of order [plillo

(n being positive) since they would have to match onto the lerms of the order K to some

negative power [see (2.14)] in the outer expansion. whereas no such term exists [see

(3.102)]. In other words. at far distances l'rom the body the velocity is finite or. strictly

speaking. it is only logarithmic infmite. Therefore. (4.1.9a) may be written as

-
u:o = Aln," + B + L ,H(.OI(Eocosnt/J + Fosinnt/Jl'

0-1

Imposing the boundary condition (4.1.7b) in (4.1.9b) results in:

o = Ain 1 + B + L (Eocosnt/J + Fosinnt/Jl'
0-1

(4.1.9b)

(4.1.9c)

•
Since the relationship (4.1.9c) must be held for any value of <P. it folJows that. the only

noc·zero coefficient is A. Thus [see (4.1.8)]
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u:') ;:: A lnr"
;:: m[g(e)] ;:: m(Alnç). (4.1.10)

ln the derivation of the equation (4.1.10). it was notcd that in~ = in(r"e") = inr" + ÎetJ.
Howevcr. by the aid (4.1.6). wc have

ç - [2/(a'" b)]Z as (4.1.11)

Therefore. at far distances from the boundary velocity uWJca is detennined byl

u:~ - m[Aln(a2:b)]
_ A ln ( 2 pli) ).

a·b

(4.1.12)

Since p = "pm and u/ = u/) [see (2.14)] the velocity u/), in tenns of outer variables.

may be written as

[
., P ] ( K

ft
)u-Aln - +0-

1 le (a'" b) pft
(4.1.13)

where n is sorne positive integer. Because uJ is independent of 4>. it possesses the same

fonn under any rotation of the axes (x", y'J. Hence by neglecting the tenns of order "
the inner body condition for the outer flow field also in tenns of dimensionless polar

coordinates (P. 8) is determined by

u. - A ln p - A In[ le (a + b)/2]. (4.1.14)

Matching the velocity uJ onto that obtained by (3.102) for the outer expansion requires

(4.1.15)

and

lHere the dependent variables labelled by the sign 00 denotes the values of those
variables at far distances frorn the boundary.
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• _Aln[K(a+b)] = et + _1 [21n(2c) - I]Fl'(s) + Jl(s).
2 411

Substituting A = - Fr'1(27r:) results in

F1'(s) {21n[ 4c ] -1} = -411[e t +Jl(s)].
K(a +b)

(4.1.16)

Next. let us examine the force which the tluid exerts on thc body. Following Batchelor
(1970) in the cylindrical tlow tield F,(s). the force per unit length which the lluid exens

on the body. may be determined by

(4.1.17)

•
where n and s" represent distance normal and along to any closed curve in the cross­

sectional plane at point s by which the body is surrounded. This equation can be easily
derived by the use the relationships (A.35.36) (see appendix A) and (4.1.10). However.
by choosing the curve as a circle with radius pl;) for which equation (4.1.12) holds. F,

may be obtained as [see (4.1.15)]

(4.1.18)

•

which was expected.

4.2 - Transverse motion for elliptical cross-section

We may now consider the tlow fields rllJ = (0, U(i}l' u(i}J) together with pressure

pllJ in the plane (x", y"). The goveming dimensionless equations of motion and boundary

condition. in the Z-plane. may he wrinen as
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and

V'U = 0 (4.2.1)

U(/) := 0 on (4.2.2)

where U(I) = u(l)(x", y"). Equation (4.2.1) may be exprcssed in terms of the stream

function 'P as [see Appendix A. (A.12)]

(4.2.3)

which is the biharmonic equation. It possesses the solution for 'P in terms of the

complex variables as (see appendix A)

(A.21)

where c) and X are analytic functions of Z whose functions will be detennined by using

the boundary conditions; Z· is the conjugate of Z. that is Z· = x - iy.1

ln transverse flow. as in longitudinal flow. the velocity at far distances from the

boundary is logarithmic infinite. In facto it was this singularity in space that didn't allow

Stok:s to satisfy the unifonn flow condition at infmity. and hence caused the Stokes t

paradox. Therefore. in the Z-plane. as pei) tends to infmity. 'P. • corresponding to the

velocities ulc. and ul',.. has the following fonn:

letting

«1>. = (A' + iB')lnZ

and

1As far as the complex variable is considered the variable lab~lled by an asterisk
denotes the conjugale of that variable.
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• x. = (C' .. iD')ZInZ .. (E' .. iF')Z.

where A', B', C', D', E' and F' are real constants. 'i'. may be btained by

= [(A' .. C') p(1) In plI] .. E' pli)] cos<l>

-+ [( B' - D') plI) In plI) - F' plI)] sin <l> - (B' .. D') plI] <l> cos <l> ' (4.2.5)

Equating the equivaIent terms of equations (4,2.4) and (4.2.5) to each other. results in:

A' = C' = 'hC.

B' = - D' = '12 E.

Hence. in Z-pIane. 4>.. and x.. may be written as

~ =(C+iE)InZ
• 2 2

• E' = D and F' = -F.

•

and

.., = (C _ i E)ZInZ -+ (D - iF)Z.
"-- 2 2

But [see (4.1.3)] as p - 00; Z - (a + b)~/2 . Therefore. in the ~-pIane. 4>.. and x..

may be expressed as

( c .E)(a-+b)~- = "2" 1"2 In -2- ç

and
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•
Thus. one should takc the general forms of <1> and X as

and

( c .E) (a+b )cI> = 2' + 12' ln -2- ç
-

+ ~ G C·•• -1

(4.2.6)

-+ [ç-I\nç + r. H.ç"·,
• -1

(4.2.7)

•
where G., [and H. are complex constants; n is an integer.

The first term of relationship (4.2.6) and the first two terms of relationship (4.2.7)

correspond to cl>.. and X.. , respectively, and the remainders are complementary terms,

the values of which become significant in the region near the body surface and which

functions are determined by imposing the no slip boundary condition on the body surface,

that is. uri) = 0 on unit circle ~ = e i<>.

In the ~-plane. velocity uCi) is given by (see appendix A)

•

.( (i) • (1)) _ [dW]'" {[dW]' do [dcI>]' [dX]'}1 U + lU - - - ..... + W - +-
, y dç dç dç dç'

where IV is defined by (4.1.3) as

w(ç) =(0 + b)ç + (0 - bH -1•
2 2

Hence

dw = 0 + b _ 0 - b ç-2.
dç 2 2

From relationships (4.2.6-7) [dcl>/~r and [dX/~r are determined by
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•

•

and

[~~r=(~ + i ~ ) a ; b [ ln ( a ; b ç' ) + 1] + ( D + iF) a ; b

+ /"( 1 - ln ç') ç'('" - r: nH; ç' ("".
n'I

We require u/i = ul = 0 on ~ = ei", hence by substilUting w, [dw/dXr. <1>. [d<I>/d~r

and [dx/d~r in equation (A.49) and letting ~ = e i", the no slip boundary condition can
be expressed as

(
a + b a - b 2i~ )l(C . E ) ln ( a + b i~ ) ;. G .in~ j-- - --e - + 1- --e + /:..; e

2 2 2 2 2 n'\ n

(
a+b i~ a-b -i~)[( C .E) i~ ;. G' i(n'I)~]+ --e +--e --1- e - Lon e

2 2 2 2 n-\ n

(
C . E ) a ... b [ ln ( a + b -iol» 1 ] (D .F) a ... b+ -+l--- --e + + +1 --
2 2, 2 2 . 2-

+ /"(1 ... icjl)e2i~ - E nH:ei(.'I)~ = O.
• ·1

This relationship must hold for any value of cP. hence it must be inclependent of $.
Therefore. equating the coefficient of (it/JVeU14> to zero results in:

a-b C E
---(-+i-)+/"=O.

2 2 2

_ a - b ( C+ i E ) ln a ... b + a ... b (C _i E) + r - H; = O.
2222222

a + b (C + i E ) ln a ... b + a - b (C -i E)
2222222

( c .E)C;"'b( a"'b) . a+b... - + 1 - -- ln -- + 1 + (D ... 1F)--
2 2 2 2 2

= O.

•
and the other coefficients are equal to zero. Upon solving these equations simultaneously,

the coefficients J. Hr• D and F are determined by
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•
H =a C +ib E _ a-b(C _iE)ln a +b
12 2222 2'

(
a+b a)D=-C In--+--,

2 a+b

and

(
a+b b)F = -E ln-- + - •

2 a +

Thus. (cI>. X) and 'i'. given by (4.2.6.7) and (4.2.4). respectively. may be written as

•
x - (C _i E) a + bçln(~ ç) + a - b(C _i E) ç-Iln ç

222 2 222

_[C(ln~ + _a ) _ iE(ln~ + _b)]~ ç
2 a+b 2 a+b 2

[
C ( a - b 1 a + b ) . E ( b a - b ln a + b )] c-I... - a---n-- +l- +-- ..
2 2 2 2 2 2

(4.2.8)

•

(4.2.9)

and

'i'. _ - pl') (Ccoslj> + Esin<l»ln a +b _ pl') ( Ca cos <1> + Ebsin<l> ).(4.2.10)
2 pl') a + b

We may now consider th!: elliptical cross-section in the general axes (.ii!, yliJ) such

that the direction of the larger principal of the ellipse (20) is given by the unit vector

fJ(s). For this case the x "-axis is obtained by the rotation of .ii!-axis within the (xli), y"l)-
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• plane by an angle À in the counter-clockwise sense. as shown in ligure 4.2. wherc

and P, = sin À.

Hencc. the relationship bctwccn 0 thc polar ;mglc associatcd with thc (.1"". ,v'''),cllurdinatc

system and cil is determincd by (SCC ligurc 4.2)

Thus. 'P_ may also be expressed in terms of polar coordinates (pli). 0) as

'P.< p(l).e) - - ptl) [C cos (e - À) ... Esin (e - À)] ln a ... b
2 pl')

_ p(l) [ Ca cos ( e - À) + E bsin( e - À) ]

a+b

•

•

or 'P_ in terms of (Xiii, y(i))-eoordinates may be written as

(CaP2 - EbP,)x(1) (Cap, ... EbP2)y(l)

a b

At far distances from the boundary the velociùes u/I
œ and utœ may directly he obtained

from the stream funcùon 'P_ as

and
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• (i)u --3- -
a'P.
-- - (CP

aX(') 2

+O(lé')
p"

Thus. the inner body conditions lor the outer tlow field are deterrnined by [see (2.14»)

_( Cp + Ep. )ln( a + b K ) _ CaP3 + EbP2
3 - 2p a+b

+ ( CP2 - EP3 )sinecose + ( CP3 + EP2 )sin2e

and

where n is sorne positive integer.

Matching the inner expansion onto the outer expansion obtained by (3.103.104)

at arder lnp requires

•

•

(
+b) Cap-Ebp

+ (Cp. - EP
3
)ln _a_ K + 2 3

- 2p a+b

- (CP3 + EP2)sinecose - (Cp! - EP3)c0s2e

1
CP3_ + EP•• = --F,'(s)

41t -

and

Solving these equations sirnultaneously for C and E results in:

C = P2 F'(s) - ~F,'(s)
41t 3 41t-

and
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•

•

E = -~ F '(s) - ~2 F.'(s).
4lt) 4lt·

Thus 112 and 1/.1 may be expressed as

( . .)1 a + b . • a ~i + b ~~
Il. - - In(--II:) - sm·a +' • F.'(s)
• 4lt 2 p a + b •

(
~.~, (a - b) )

+ sin a cosa - •. F)'(s)
a+b

and

1 (ln(a+ b) •a a~; + b~; )F'( )u - - --II: - cos" + S
) 4lt 2p a + b )

( . a a ~.~) (a - b») F'( )+ Stncos - - .,s.
a+b •

Malching al order pO requires

4lt [e2 + J2 (s)] = (In( a
4
+&b K) - 1 + a~:: :~; ) F2'(s)

_ ~2~)(a - b) F '(s)
a + b )

and

=(ln(a + b K) _1 + a ~i + b ~; ) F '(s)
4& a + b )

• These relationships rnay he combined and wrinen in indices notation as
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• 41t [c • J. Cs) 1 ~ {ô [In ( a • b le) - .! •,. '1 4e 2
a-b ] a-b }'

2(a+b) - a.bP/PI ~(s)

(4.2.14 )

where (i, J) = 2 or 3.

In the Z-plane. pressure plO is given by (see appendix A)

p (1) ~ _ 4lm ( ~~ ) + p~i) • (A.30)

•

where lm denotes the imaginary part of the eomplex variable. But. in the Z-plane. cI> may

he obtained by the aid of (4.2.8) and (4.1.6) as

Henee

Thus

Upon expanding the braeket by the binomial theorem. the asymptotie fonn of the

pressure may he detennined as follows:

(0• Po •

• or pt" can he expressed in terms of polar eoordinates (plO. 8) as
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• pl') _ 2Csin( 6 - À) - 2Ecos( 6 - À)
pl')

• Csin(36-n) -Ecos(36-n)(a~_b~)

(0'p

t pU)o •

Upon substitution pM = Kp. PoM = KPo and p'" = p/K [see (2.14)1 the inner body

condition for the outer tlow tield of pressure p is detennined by

p - ~ [C(sin6cosÀ - cos6sinÀ) - E(cos6cosÀ • sin6sinÀ)] • Po • 0 ( ~ )
p p'

or by (4.2.11) P may be written as

Matching inner expansion omo the outer expansion obtained by (3.60) at order p.1

requires

•
and

1 •
CI}, + El}, = - - F,(s)

- 4lt-

CI}, - El}, = _1 F;(s).
- . 47t'

(4.2.15)

which agree with the matching obtained by the expansions of the vc:locity given by

(4.2.12.13). Matching at order pO requires

p, = _1 {r'-C +f.'I} [R/s) - R/nl F'(s)ds • 0 (1).
o 4lt Jo "C IR(s) _ R(s) l' J

(4.2.11)

•

The force per unit length which the tluid exerts on the body. F(s). is detennined

by letting ~ = e" in the following equation: (see appendix A)

(A.50)

where .9"xw and !7Y are respectively the components ofF(s) in the direction of thex W and
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• y"-axis and where A' and B' correspond 10 <P = 0 and <p = 2'11". respeclively. From

(4.1.3) and(4.2.8-9) [dw/d~r. [d4>/d~r and [dx/d~r are obtaincd as

[dW]' = a+b _a-b ~".
d~ 2 2 •

•

and

[dX)' (C .E)a+b[ (a+b.) J [ (a+b a)d~ • '2 + 1 2 -2- ln -2- ~ + 1 - C ln -2- + a +b

+iE(ln a+b+_b_)Ja+b +(a-b)(C +iE)~"'(l-ln~')
2 a+b 2 2 2 2

[C( a-bl a+b) .E(b a-bl a+b)] •..,- - a - -- n-- - 1- + -- n-- ~

2 2 2 2 2 2

Thus ..7x" + i.;ry" on ~ = e'~ is equallo

2 1(a+b a-b 2.. )-I{(a+b a-b 2i.)(C .E)(lna+b .... )-----e -----t! -+1- --+1..,
22 22 222

(a+ b.. a-b -i.)( C . E).. a+ b(C . E)- --e + --t! - - 1- t! - -- - + 1-
2 2 22 222

( a+b .) a+b[ ( a+b a)x In-- + 1 -.lcI> + -- C In-- + --
2 2 2 a+b

. ( a + b b)] a - b(C . E) . '1.+ lE In-- + -- - -- - + 1- (1 + IcI»e-
2 a+b 2 2 2

}[

OO
C . E a - b C . E a + b 2i.

+ [a 0;:; - Ibo;:; - -., (0;:; + Io;:;)ln-., Je
- .. .. .. .... -:!1f

or

~x·. i~y·

Therefore

.E)2 .
• 1 2 ltl

.9"x· = 4lt E and ~y. = -4lt C.

•
But the components of F(s) in the (rJ • y('I)-coordinale system are deterrnined by (see

figure 4.3)
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• F:(s) D .:7X" COS}. - .;y sin}. and F)(s)' :7.t" sin}. • :J;v" cos }. .

Therefore. by the aid of (4.2.11-13) F; may De written as

(4.2.18)

and

(4.2.19)

•

•

which relations verify the solution. lt should be noted that F'I in (4.1.18) and (F': • F',,)

in (4.2.18.19) have come from the outer expansion. that is. they have: satisfied the:

equations of motion (Oseen's e:quation) togethe:r with the: unifonn 110w condition at infinity.

whilst FI' F: and FJ has been derived in the inner e:xpansion by the: use: of e:quations

(4.1.12) and (A.50) (completc:ly independent of the outer expansion). in other words. they

have satisfied Stokes equations along with the no slip boundary condition on the body

surface. Therefore. the solution may be verified to be in complete agree:me:nt with the exact

solution of the problem {!hat is. (F = - F') [obtained by the matched asymptotic expansion

Le.. by the aid of (4.1.10) and (4.2.11-13)] simultaneously satisfie:s the equations of motion

and both boundary conditions}. if and only if the assumption of the independence of the

local f10w field on the z-axÏs is satisfied (i.e.. the curvarure of the body centreline being

large enough everywhere. as well as the cross-sectional shape varying sufficie:ntly slowly).

In addition. it has been assumed !hat the governing equations for the inner re:gion are the

Stokes equations. in other words. [sec (4.1.3)] the tenn KR.u~u in the Navier-Stokes

equation is assumed to be negligibly small. Therefore. (since R, is of order unity) the

slendemess pararneter (IC) bas to be small enough to satisfy the validity of this assumption.

4.3 - General cross-section - Longitudinal motion

We may now consider a body with arbiuary cross-section. cross-sectional shape of which

is given by (2.5) as

where À is a dimensionless function of sand 8 (sec figure 4.4).
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• The goveming vorticity equation for longitudinal motion. u' = (u/' 0, 0), by

neglecting the dcpendence on the z-axis is given by (see Appendix A)

+ (4.3.1)

•

•

where[see (A.8)] (,) = (D, au//ay', - au//ax'), is the fluid vorticity. Batchelor obtained

a solution for the velocity valid in the region at far distances from the boundary as [see

Batchelor (1970)]

f, ,,~,r frÂ) (r:Â)]
u '. = 1 \'>'llnl..!....! + Q + O..!....! •

1 21'q.L p' p'

where U' 'œ andl'J are the corresponding dimensional form of ulœ and F'I' respectively.

and where Q is a dimensionless constant whose value depends on cross-sectional shape.

although it might vary along the body length. and rD À, is the radius of the circle of the

equivalent cross-section i.e. 21rroÀ, is the perimeter of the local cross-section at point s=

s. Upon using quantities made dimensionless by the rD. U and p. the velocity may be

expressed in dimensionless form as

Thus. the inner body condition for the outer flow field may he determined by [see (2.14)]

Lening Q = ln q and neglecting terms of order /c. ul may he wrinen as

Matching velocity ul onto that obtained for the outer expansion given by (3.102) is

straight forw;",': ~: we choose
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• (4.3.2)

•

•

Upon comparing relationship (4.3.2) with that obtained for a body with elliptical cross­

section (4.1.16). we see that for an elliptical cross-section with semi-diamelers a and b,

the value of qÀ, is determined by

1
q}". = ï(a +b),

and on choosing a = b = À, Le. for a body with a circular cross-section, the value of

q is equal to unity. Comparing the result (4.3.2) with that obtained for a circular cross­

section. qrJ." can be regarded ~s the radius of a circle which is equivalent 10 this cross­

section in the sense that a given l.:;~~l longitudinal force at the surface of the circular

cylinder of this radius produces the same flow field in the region at far distances l'rom

the body surface [Batchelor (1970)]. This conclusion is consistent with that obtained in

section 4.1 for an elliptical cross-section. It is clearly shown that the velocity is

independent of any rotation of the axes - a property of the circular cross-section. In

addition. since relationship (4.1.10) is valid for any cross-S':ction. it follows that this

conclusion is held for any cross-sectional shape.

4.4 - General cross-section - Transverse motion

The vorticity equation associated with the components of velocity u' = (0.. uz',

u/) and force f' (s) = (0, h', 1/) in the cross-sectional plane. (x', y'), is again of

Laplacian form which is by neglecting the depend;;nce on the ;:-axis is given by (4.3.1),

although the vorticity vector is now '" = ("'/' O. 0). where [sec (A.9)]

o~
w =-

1 o;c'
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• Batchclor gave a solution for tlow fields (u'. p ') at far distances from boundary as

and

u' =
1 -

.iL [ô (ln roi., _ .!.) +
4lt I! Il p' 2

X'X'_'_1-
p':!

P'. =
f,'X'
1 ) + p'

, 0 '21t p'.

where (i, J) = 2 or 3 ; Xz' = x' ; XJ' = y' and Qij is a constant dimensionless symmetric

tensor whose magnitude dcpends on cross- sectional shape, although strictly speaking it.

Iike q. might vary along the body length. Again using quantities maoe dimensionless by

ra, U. and p.. the dimensionless fonns of the velociry and pressure may be written as

• and

(1) Fj' [ ( À, 1 )"1 = - ô .. ln- - - +• 41t IJ pil) 2 + Q.. + o(~)]
IJ plI)

(4.4.1)

F.'(s) XlI)
J J

21t p(l)'

+ p(l)o • (4.4.2)

Thus. the inner body conditions for the outer tlow field are detennined by [see (2.14)]

_ Fj'(s) [ ( l'l, 1 ) XIX) ] ( KJ..,Fj' )" - -- ô ln- - - + -- + Q + 0
1 4lt Il P 2 p2 1) p'

and

P =
F2' cos e + F)' sin e

21t p + Po'

• Matching the pressure onto that obtained for the outer expansion given by (3.60) is
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• straightforward if we choose

Po = _1 (r···· + r' l
} [R/s) - R/s)] F.'(s)ds + 0(1),

4,. Jo J, •• IR(s) _ R(s) Il 1

which is the same as that obtained for the elliptical cross-section (4.2.17).

Matching the velocity onto that obtained for the outer expan.~ion givcn by (3.106)

results in :

(4.4.3)

Hence

(4.4.4)

•
and

(4.4.5)

Upon comparing (4.4.3) with the results obtained for an elliptical cross-section given by

(4.2.14) the value of Q,! for an elliptical cross-section with semi-diameters a and b.

whose direction of the larger diameter (2a) given by the unit vector Il. is determined by

(4.4.6)

where 21l"roh, is the perimeter of the local cross-section. Hence h, is determined by

(4.4.7)

•
where E(K.1O/2) is the complete elliptic integral of the second kind defined by

the numerical values of which for various values of K = (l - Ii/tr")'" are available in

tables. For a circular cross-section (i.e.. a = b). Q,/ is cqual to zero. The Qy obtained
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• (4.4.8)

•

•

by (4.4.6) agrees with the result obtained by the use of elliptic cylinder coordinates [see

Batchelor (1970»). In general. Since Q" is a symmetric tensor and Qli = O. it follows that

it has only three independent components and four non-zero ones. And since the

geometry of an ellipse is completely determined by only three scalars (i.e.. a. b and À).

Batchelor concluded that any cross-sectional shape. for transverse motion. can be

regarded as an equivalent ellipse with certain dimensions and orientation.

However. the advantage of the complex variable method. which is used in the

present study is that it can easily be extended to any cross-sectional shape. That is. the

values of q and Q" for a specified cross-sec:ional shape can be determined explicitly by

applying the same procedure as that applied for the eIIiptica1 cross-section in 4.1-2.

Moreover. for determination of the Qii' it is worth noting that. since the pressure is

directly independent of the cross-sec:ional shape [see (4.4.2) and (3.60)] and is

determined via the complex variable by the imaginary part of the derivation of the

analytic function c%> with respect to Z [see (A.30)]. it follows that c%> (2) possesses the

same function of Z. for any cross-sectional shape. And we recall that the relado:lShip

(4.1.10) is also held for any cross-sectional shape. Therefore. for the determination of

q and Qii' it only remains to determine the function X(2) • in addition to the

determination of the transformation function.
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•
Z-plane ;-planc

W:,"

p

b(s)

w"1

/

/'1>_+-- ~---L--~-_+-X"
a(s)

Figure 4.1 : Transfonnation ofelliptical cross-section in Z-plane onto a unit circle

inç-plane.
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•

/

___--.-;./ ~~u.:u.-~-~---- XCi)

Figure 4.2 : Position ofthe elliptical cross-seetion in general axes ( x(i)~ }J.il ) •
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Figure 4.4 : General cross-sectional shape in the dimensional

local polar Coordinate (P', S) at point P.
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•
CHAPTER 5

5 - Force integral equation

We now retum to the question of the detennination of the function F(s)

represenüng the force densit"j which the lluid exerts en the body. The results of the

matching given by relationships (4.3.2) and (4.4.4.5) in the inner expansion provide a

basis to detennine the force integral equation. However. the force density which the lluid

exerts on the body. F(s). bas the saIne magnitude as F'(s) but with the opoosite direction.

Thus <ubstituting ~. = -~ into the relationships (4.3.2) and (4.4.4.5) rcsults in :

(5.1)

(5.2)

and

where J, defined by (3.105) may be written in terms of ~ as
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• JI(s) = __1 { (-'-C +J'I }glj[R-R(s)]F/S)ds.
81t Jo .'·c

Rclationships (5.1-3) may bc wriuen as

(5.4)

FI ( 2 ln q À
s

- 1) + 2FI( 1+ ln q )
. 2e

(5.5)

(5.6)

and

(
!CÀs ) (f.s., f-I) - . -F3 21n 2e - 1 + 2 (Q33F3 + QnF:) = 0 + s., g3j(R-R)Fj ds - 81te3'

(5.7)

where R. and Fj are respectively the values of R and Fj at point s = s. But. since

(f.S
•

C f'l) ds
o ... s-c Is-sl

lm: may be determined by

f.s-. ds fol ds
= --+ --

o s-s S-'s-s

= 1-In(s -s) I~·· ... !In(s -s) I;~.

= -Ine ... Ins + In(I -s) - Ine
= -2Ine ... In[s(I -s)],

(5.8)

•

1 { (f.s -. J-1) ds }Ine = - In[s(I -s)] - + _.
2 0 s·, 1s -s 1

Thus. the relationships (5.5-7) may be wriuen as
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• ( qÀ') \(fc,·r J'I)[ " 2Ft ]F I 21n . -\ +2FI (l +lnq) : - . + 8Ij(R-R)F - -,--"":"" d.~
2Js(l-s) 2 0 .,., J Is-si

(5.10)

(5.11)

and

(5.12)

However. from (3.71-76) for p = 0 and S ~ s the value of gv is delermined by

Thus. as R(S) - R(s). that is; p = 0 and s- s (sec figure 3.3), the integrands

in (5.10-12) may be eva1uated as

2Ft (S) 2Ft (s)
=....,.........;~

Is-si Is-si

fr ~J:~ t: ---.\ (s)(s - s) + ...

= -.li i~;. .
\s -s 1

dF. (s)
=2 t san(s-s)-O(&).ds 0
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•

and. similarly.

(5.15)

F3(s) dF (s)
1 • = 3. sgn (s - s) + 0 (e) .
s -s 1 ds

(5.16)

We see as R(S) - R(s). ail integrals in (5.10-12) are finite. therefore. they

converge as e - O. Thus (5.10-12) may be wrinen as

(
qÀ) 1 j, 1 [ •• 2F\]FI 2ln s -1 +2F\(1 +lnq) = - g\j(R-R)Fj-"'-I-=''-:-1 ds-4n:e1 ;

2{S( I-s) 2 0 s-s

(5.17)

( \ [ ]leÀ. 1 _ _ F,
F. 2ln -1 J+ 2 (Q••F. + Q'3 F .;> = r g'j(R-R)F - -'- ds - 8n:e.;

• 2';s(l-s) •••• Jo' J Is-si •

(5.18)

Lelling il' i! and iJ he unit vectors along the 1 • 2 and 3 directions. respectively. where
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the relationships (5.17-19) may he combined and wrinen in a unique equation as

•
. dR ( );=ds=ts. (5.20)



x:'-
(FI i:t + F1i: + F,I,) (2ln 1 - 1) + 2( 1 + lnq)FI ~ + 2(Q::F1 + Q:,F,) i:

2ys(s-S)

+ 2(Q'3F3 + Q'1F1)~ • fo1
{ {1'g1J(R - R)]i:t + 1'g2J(R - R)]~ + (g3J(R - Rn,,} FJ

FI i" + F1i, + F3,,} 1 ri . -A.
- ls-of 1 dof - 2 Jo l'gIJ(R-R)]l'J'ldof-87t(e1'l +e:i:+e,ii) + 47ttl 'l

(5.21)

But

(5.22)

1

and, similarly,1

Therefore, the force equation (5.21) may be written as

x:À
F(s)(2ln 1 -1) +2(1+1nq)F(s)-t(.s)t(.s) +2F(.s)-Q(s) = 47te-t(s)t(.s)

2ys(s-of)

-87tl + r1
Jo[R(.s) -R(~] -P(§) - ~(s) l"of -! ri tes) -g[R(s) -R(§)] -P(.f)t(s)dof

Jo l iS-of 1r 2 Jo
(5.24)

or

F(s) .{(2ln leÀ" -1)1 + 2(1 + lnq)t(.s)t(.s) + 2Q (S)}
ZVs(s-of)

=- 81tl.[r- !t(.s)t(.s)] + rl{[r- .!.t(.s)t(S)] -g[R(.s) -R(S)] -P(§) - P(.s) l".f,
2 Jo 2 !s-ofl f'

(5.25)

where 1 is the idemfactor. Equation (5.25) may be cxp'.-essed in dimensional fonn as

It is noted that QIJ = 0; gi and Qq are symmetric tensors, ~.ncc, in general, the dot
produet G! a tcnsor with a vector depends on which uni.: vector of the tcnsor being
operdted, that is, vector g.F =gfjt ~ would not be equal 10 vector F_g = gj4!J i,.
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•

r(s) '{(Zln Id., _ 1)1 + 2( 1 + Inq)t(s)t(s) + 2Q (S)} =
/J u 2/ses -s)

- 81t e' [/- .!.t(S)t(S)] + _1_ ri Ir[/_ 1. tes) t(S)] •g[R(s) - R(S)]·r (S) _ F· (~) }ds
2 /JuJo ~ 2 Is-si

or

r(s) • {(Zl:l !CÀ, - 1)/ + 2(1 + Inq) t(s) t(s) + 2Q (S)} =
2Js(s -s)

- 81r /J U' [/- .!.t(S)t(S)] + ri Ir1- 1. t(S)t(S)] •g[R(s) - R(S)]·r (s) - F· (~) }dS'
2 Jo~ 2 [s-sl

(5.26)

where F'(s) is the corresponding dimensional form of the force density F(s). Similarly

(5.5-7) may be wri!:en as

r(s)'{(ZIn ~~., -1)1 + Z( 1+lnq)t(s)t(s) + 2Q (S)} =

-8Tt /J U' [1 - .~t(S)t(S) ] + [1 - it(S) t(s) ].U;-c +tel g[R(s) -R(S)]·r(S) ds.

(5.27)

The force integral equation (5.27) is a Fredholm equation of the third kind which

reduces to an algebraic equation for certain symmetric bodies and as shown by the

relationships (5.9-19). its weak singularity on lm: cancels from both sides of the equation.

Hence. its solution is independent of e. It can also be solved for F{s) reite·~tively as a

power series in (lIlme) correct to the order K as foUows :

Lening

(5.28)
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• the force integral equation (5.27) may be expressed as

(5.29)

Thus the term of order unity gives

10° (s) = - 41r Il U + 21r Il U· t(s)t(s) .

The teml of order l/lnK gives

It" (s) + loo(s) .[(ln ~: -1)1 + (1 + Inq)t(s)t(s) + Q(s) ]

1((S" fI )[1] ° •= + ï Jo + so, l- ï t(s)t(S) ·g[R(s)-R(S)]·/o(S)ds.

(5.30)

(5.31)

The recurrence formula for determination of the higher order terms is obtaine:l by

I:.\(s) + InO(S)'[( ln;; -1)r + (1 + Inq) t(s) t(s) + Q(s) 1= Jn(s), (5.32)

where J. is defined by

l(f.SO'fl)[ 1] .J (s) = + - + 1 - - t(s)t(s) •g [R(s) - R(S)] 'f. (S) ds.
n 2 0 s., 2 n

(5.33)

•

It is readily secn !hat the leading term in the expansion of the force F (s) is

independent of the cross-sectional shape. But, since the unit vector t which is involved

in the leading term [see (5.30)], is a function of the position of the point under

consideration [sec (5.20)], it follows that the leading term is a function of the shape of

78



• the body ccntreline. Howevcr. the force density depends not only on the unifonn

undisturbed llow. the viscosity of the lluid. the body centreline configuration and

transverse cross-sectional shape and hence R,. but aIso on K. the sIenderness parameter

of the body S. That is. a more slender body causes less force per unit Iength on the

body.

It rcmains to detennine the value of 8,), appears in the integrand of the force

integraI cquatic·n defined by (see 3.61,62)

where X = R - R(s) and

., 1. lN.IX - "Xl( 1 - e -.)'l'(X) = -=- 2 da..
R 0 a.•

Differentiating 'Ir with respect to X, may be written as

lJ.'~i = cx" lf'li '

where

Thus

aa.
cc"; = -

aXj

and 'l',.
a'l'

=-aa.

•

But

and

1a. = -R (X-e-X)2 •
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• '1' "_2( 1 - c -.) " _4 ( 1 _ c -~ R.<X - ".n )
'. R • ------ .,ex R- X - C'X,

Hence

1 (X )ex "-R .....!-e., 2 ~ Xl'

and

Tf, tlj = a.'1 11''u Cl

= R, (Xj _ e ) 2 ( ex e -. - 1 + e -. )
2 X j R, exZ

111 ]--R(X-.·X)

= (X
j

_ e,) '2 R. (X - e 'X) + 1 e Z • -1

X J .!. RZ(X _ e -X)2
4 '

Therefore, '1'ij given by (5.34) may he written as

{

'!R(X-.·X) }
_ 2 (Ô ij XiXj ) 1 - e Z • 2 (Xi ) ( Xj )'1' .. - - - - -- + - - - e. - - C· X

'fJ R X X3 (X - e 'X) R X f X J. ,

I II1 --R(X-.-X)12 R.(X - e -K) + 1] e 2 • - 1 .
(X-e-X)2

Lening i = j
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•

2(6/1 X/XI){I_e-~R'(X-"X)} 2 (X/X/ e,X, )
'l' =---- +----2-+ee x

'/1 R X X3 (X-e'X) R X2 X 1/, ,

1
1)1 --R(X-,'X)

j'2R,(X-e.X) ... 1Je 2' - 1

R,(X -e'X)2

j
r ].lR (X·,·X) )

_ 4\I-e -~R'(X-"X») 4'2R,(X-e'X)'" 1 e 2 • -1
- - + - (X - e 'X) .

X R,(X - e 'X) X R,(X - e 'X)2

Hence i'. i.t is obtained by

2 .lR(X',·X)••'l',u = -e .
X

Therefore. Cij (X) is determined by

1 1 _lR.(X.,.X»)
_ 26,} 'iR,(x",X) ( Ô,) X,X}) 1- e 2 (XI) (X) )g(X) - -e -2 --- -2 --e --e.

I} X X X3 R,(X-e.X)2 X 1 X J

1
1\

1 --R(X-,'X)
x J'2 R,(X - e 'X) ... 1Je 2 ' - 1 •

R,(X - e'X)2

or

. [ 1 ]g.(X) =2 l_e'
iR

,(X-,'X) [(XI_e)(X}_e.) _(x_e.X)(Ôi}_XIX})]
.} R (X - e .X)2 X 1 X J X X3,

1

e'iR,(X"'X) [ 2(X-e'X)61} (XI )(X) )'
+ - - -e - -e j

X - e 'X X X 1 X j •

(5.35)

Thus the v~Jue of gij [R(s) - R(S)] is obtained by
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•

where R is the value of R at point s = s.

However. in the Iimit as R, - 0 the value of gij may be determined by

!1-{1- R'lIR-RI-e'[R-R]}+Jj{( " 1 " )• _ 2 ~ [R-R]j [R-R]j
glj[R-R] -2 " " 2 " -el • -ej

R.lIR-RI-e·[R-R]} IR-RI IR-RI

l " "}r ô" [R-R].[R-R].)}_ IR-RI-I;'[R-R] IJ" _ '" J

\ IR-RI IR-RI 3

R'll" "}1-- R-RI-e·[R-R]+.·· [li "1 "}? 2 R-R -e'[R-R] ô
+ - ~

IR-RI-e'[R-R] IR-RI

- ([R-~]I -e)[ [R-~]j -e))
IR-RI 1 .IR-RI j

or

[R-Rl;lR-R]j
+ •

IR-RI 3
(5.37)

•
It is not difficult to see that the force integral equation (5.27) or its equivalent
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•

dimcnsionless components given by (5.17-19) together with the relationship (5.37) (Le.

for R, =0) for a body with a circular cross-section (Le. q = 1 and Q'J =0) reduces to

that obtaincd hy Johnson (for uniform t1ow) with a complete!y different approach. given

by (1.2.21-23). excluding the prolate-spheroid ends.
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CHAPTER 6

6 - Long straight cylinder

In this chapter we consider a long slender body with arbitrary cross section. but

with a straight centreline being at rest in a fluid undergoing a unifonn velocity. U. We

intend to apply the force integral equation obtained in the previous chapter and solve it

to detennine explicitly the hydrodynamic force per unit length on the body.

It is convenient to use a set of fIXed dirnensionless rectangular axes (XI' xz• xJ)

with origin at the midpoint of the body centreline. XI being parallel to the body centreline

and e. the unit vector in the direction of the velocity U. lying in the (XI' xz)-plane. as

shown in figure 6.1.

Thus. s =XI + 1/2; e = (el' ez• 0); and the body centerline may be wrinen as

R (XI) =xlt. where -1/2 ::; XI ::; 1/2 and t is the unit base vector parallel tn the body

centreline. Thus. the body centreline in terms of the variable s is given by

1R(s) = (s--)t.
2

The expansion of the force r(s) given by (5.28) may be wrinen as

(6.1)

(6.2)

•
where the unlabelled variables correspond to the dirnensionless forms of the variables

labelled by superscript (*). Hence. the coefficient of the leading term.Jo. may be readily

detennined by [sec (5.30»)
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• foCs) = -41lC + 21lC ·t(s)t(s).

The coefficicnt of the second tenn. f,. may bc dctcnnincd by [scc (5.31»)

(6.3)

where Jo is defined by

Relationship (6.4b) may be expressed in index notation as

But. since f~ is independent of S. J()j may be written as

where IIJ is defined by

(r·-· fI) .lij = Jo + ••• gij[R(s)-R(S)jds.

(6.6)

(6.7)

By the aid of the relationships (5.36) and (6.1), g'j [R(s) - R(S)] may be detennined by

•
Lening
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• s - s = w

and noting that e = (el' e2• 0). the components of Ku may be determined by

(6.9)

(6.10)

g13 =g31 =0, (6.12)

g23 = g32 = 0,

(6.13)

(6.14)
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• By the aid of the relationship (6.9), li) defined by (6.7) may be written as

(6.16)

where W = R(s) - R(S) = (s - s)t. Noting that the limits of the tirst integral are

positive and those of the second one are negative, II) may be determined by

(6.17)

(6.18)

•
(6.19)
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• and

But

and

where L. l, L' and rare respectively C:efined by

+ e -lhR.(l -l!'.)w eL = 1.-_1 1

(6.21)

(6.22)

(6.23)

(6.24)
w s

thR (l+l!' )W s-l
-1 + e • 1

L' =1-------1

(6.25)

(6.26)
w -r:

•
Thus the components of ~j given by (6.17· 21) may be simplified as
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• 1 : - 2 [L + l.R (1 - e )/] - (1 + e )/- 2 [L'-l.R (1 + e )/'] + (1- e )/'
Il R .,' 1 1 R ." 1 1

t - t -

: - ~ (L + L') - 2(I - l'), (6.28)
,

2e L 2e L'
1,_,_ : - 1 - el/- (1 - el)1 + 1 - el l' + ( 1 + el )1'

R,(1 - el) R,(1 + el)

: _ 2el ( L _~) _ (I - l'),
R, I-e l l+el

(6.29)

(6.30)

•

1
33

= 2L + 1 _ 21 + 2L' - l' + 21'
R,(1 - el) R.(1 + el)

= 2(_L_ + ~) _ (l-I') (6.31)
R. 1 - el 1 + el

and the other components are equal to zero. Hence, by the aid of relationships (6.28-31),

the components of lOi given by (6.6) may he determined by
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•
and

The integral 1 defined by (6.25) may be evaluated as

where EJ(x) is the exponential integral defined by

But as x tends to zero [see Bender & Orszag (1978), p. 252],

(6.33)

(6.34)

(6.35)

(6.36)

(6.37)

where "f is the Euler constant. Hence as e tends to zero, 1 may be expressed as

(6.38)



• Similarly l' defined by (6.27) may be written as

(6.39)

Thus. 1 - [' is detennined by

1 - l' =El[~R~(l-et)s] + Et[~R~(l +et)(l-S)] + In[ ~R;(l-e~)t:!] + 2y

=Et[~Re(l-et)s] ... Et[~R~(l +et)(l-S)] + 2ln( ~R~e:!c) + 2y.

(6.40)

The value of L defined by (6.24) may be detennined by

1 l
--R~(l -el)w

1 + e 2
L =1--------w

=------ . -1
1--R(l-e)s2 ~ 1

+ e

=

t
--:;R~(l-tl)s

-1 +e •

s
1

- -R~(l - e,).f
1 1 - e 2

= --R (l-e) + ----- + O(c).
2 e 1 S

Similarly L' defmed by (6.26) may he obtained by

(6.41)

•

1 c 1
--:;R~(l·e,)w 1 --2R~(l. ",)(1 -.1')

-l"'e - 1 eL' =1------1 = --Re(l +e1) + - +0(&)(6.42)
W I-.f 2 l-s

Therefore. as e - 0, the components of Jo; given by (6.32-34) may he written as
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•

or

92

(6.43)



•
(6.45)

•

•

Henee, notin that e = elil + l:zi: (where il = t and i: is the unit vector in the direction

of x: axis), JD may be written as

Substituting JD andfo (6.3) in relationship (6.4a) and noting that Qu = 0 results in

93



•

Upon substitution ofJo given by (6.3) andfi into the expansion of the force density given

by (6.2). the force per unit length on the straight long cylindrical body. correct to order

(l/IIlK)3. may be determined by
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• or

F"(s) =(_1_)(COs6t-:2e) +(_1_)2{(2e-Cos6t){ln À..R. +lnsin6 + y _.!.
:2~IlU lnl<: lnl<: 4 :2

+.!.E1[.!.RP-COS6)S]+ .!.E
1
[.!.R.(l+COS6)(1 -S)]} + _1 e_·_~_R._(l_-'_...o_).

2 2 2 :2 R.(1-cos6)s

-.!.R (1·,...0)(1-.)

x [cos6e - .!.(cos26 -cos6 +2)t] _ 1 - e 2 • x
2 R.(1+cos6)(1 -s)

[cas6e - ~(cos26 +cos6 +2)t] ... (~+lnq )COs6t +:2e' Q(S)} +o(~J.
(6.47)

where e is the angle between the unit vector e and the unit base vector t. as shown in

figure 6.1, and where 'Y is the Euler constant the value of which is given by (1.2.6) and

E1(x) is the exponential integral given by (6.36) as

J
-e- t

E (x) = -d't.
1 z 't

The force equation (6.47) agrees with that obtained by Khayat & Cox (1989) given by

(1.2.25). However. the recurrence formula given by (5.32.33) can be applied to obtaine

the higher order terms.

It is worth noting that the ooly component of the force normal to the plane

containing velocity U and the body centreline cornes from the term e.Q. In other words.

it is due to the effect of the cross-sectional shape on the flow field and hence for a body

with a circu1ar cross-section this component vanishes.
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•

~
u

Figure 6.1 : Straight long slender body with arbitrary cross-section being at rest in

fluid undergoing uniform velocity U•
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•

CHAPTER 7

7 - 8Jender torus

In this chapter. as an example of a curved symmetric slender body. we consider

a torus with an arbitrary cross-section but which is constant along the body ccntreline.

settling along its axes in an unbounded fluid with constant velocity - U. Howcver. the

problem is equivalent to that of a to~s being at rest in a fluid undergoing a Ulliform

velocity U in the direction normal to the plane containing the torus centreline (see figure

7.1).

It is assumed that the slendemess parameter K defined by (2.6) is much smal1er

than unity. i.e. the radius of the torus is much larger than the characteristic length of the

body cross-sectional shape (r,;) .

We intend to apply the force integral equation given by [sec (5.27))

r(s) -[(2ln :~ -++ 2(1 + Inq) t(s) t(s) + 2Q(s) ] = -SlrPU-[I - ~t(S)t(S)l +1(s) •

(7.1)

where

to obtain the force per unit length the fluid exerts on the body. Since the torus is
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• axisymmctric. in ordcr to dctcrmine the vcctor J in (7.2). it is convcnient to take a

cylindrical polar coordinate system (P. O. z) with the origin atthe centre of the torus and

the z-axis being parallel to the torus axis. as shown in figure 7.1. Associated with the

cylindrical polar coordinate system is a set of rectangular Cartesian axes (XI' xz• XJ) with

unit base vectors il' i1and iJ which coincide with the XI' Xz and XJ axis. respectively. and

iJ Iying in the direction of velocity U (see figure 7.1). Thus. the relationship between

these two coordinate systems may be written as (see figure 7.2)

and

XI = pcose , .%2 = psine and (7.3)

or

i., = i sine + iocos e ;• p i = i3 :
(7.4)

i p =cose il + sine Ïz; io = - sine il + cose Ïz and i: =~, (7.5)

where i•• i, and i: are the cylindrical unit base vectors. corresponding to the P. 0 and z
coordinates. respectively, as shown in figure 7.1.

From the symmetric propenies of the torus, it follows !hat the magnitude of the

cylindrical components of the force density F (s) = (F;. F;. F;) are constant a10ng the

body length and since there is no variation on polar angle 0, F; is equal to zero.

Therefore. it is sufficient to detennine the cylindrica1 components of the force at a

specified point on the body centreline and for convenience, we take it at the point 0 =

O. Thus. the relationship between the cylindrica1 and the Cartesian components of the

force at the point under consideration (0 = 0) may be written as (see figure 7.3)

(7.6)

where F/(O). Fz'(O) and F;(O) are the Cartesian components of the force per unit length

at the point 0 = 0 • coinciding with the XI' Xz and xJ axis. respectively.

The arc length of the body s is measured from the point 0 = 11' in the counter·
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• clockwise sense. as shown in figure 7.4. Hencc. the relationship between the polar angle

oand s may be written a~

S=(ll+e)r, (7.7)

where r is the radius of the torus. But the dimensionless length of the body centreline is

equal to unity, therefore. the radius of the torus may be obtained by

211 r = 1

Thus, (7.7) may be expressed as

or 1r =-.
211

1
S=-(e+ll),

211
(7.8)

so that. the point 0 = 0 on the body centreline corresponds to the point S = 112.

The body centreline may be wrinen as (see figure 7.4)

R(e) = (rcos e) il + (rsin e)i:

= _1[(cose)i1 + (sine)i:].
211

Renee. vector [R - R] in (7.2) may he determined by

R(B~ - R(ê) = 2~[(cosB -cosê)i1 + (sinB -sinê)i:].

(7.9)

(7.10)

where ê is the integration variable. or for the point 0 = O. (7.10) may he wrinen as
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•
Thus

[R(O) - R(ê)1 : _1_ [ ( 1 - cos ê ) il - (sin ê ) i:]
2:t

1[(o'ê)o (oê ê)o]: - sm- - II - sm - cos - 1, 0

:t 2 2 2·
(7011)

IR(O) - R(ê) 1 : ...!.. (Sin4ê + sir,: ê cos2 ê )~
:t 2 2 2

[ ( ' , )]11 "6' .,6 _,6 ï= -; sm- sm- 2 + cos- 2

1 . ê
=- sm- (7.12)

:t 2

The force integral equation given by (7.1.2). for the point under consideration.

may be expressed as

F"(0)'[(2ln ~~ -1)1+2(1 + Inq) t(O) t(O) +2 Q ] = -8:t/lU'[I- ~t(O)t(O)]+J(O).
(7.13)

where. by the aid of (7.8.9), t«(J) (the unit vector parallel to the tangent of the body

centreline at point 0 = 0) and J«(J) may respectively be obtained by

t(O) = dR(s) 1
fis 1

s"-:

d8 dRI
= ds d8 0-0

= 2:t_
1

[( -sin6)i. + (cos6)Ïz]
2:t 0-0

= + Ïz (7.14)

and
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• J(O) = _1 [r-.!.t(O)t(O)]·(f-
2
"'+f' )g[R(O)-R(ê)]'FO(ê)dê.

2lt 2 -, 2",
(7.15)

•

We intend to determine the vector J(O) in cylindrical polar coordinates (P. O. z). hence

relationship (7.15) may be written as [see (7.5.14)]

J(O) = [r-.!.io(O)io(o)]·(f-
2
"'+f' )g[R(O)-R(ê)]'F"(ê)dê. (7.16)

2 -~ 2~e

where i, (0) is the value of the unit base vector i, at the point 0 = 0 [sec (7.5.14)].

However. as t - 0:

or

-2F"(O)ln& =2F O (O)ln2:. +.!.F"(O)(f-2'<+f' )(sin ê)-ld8. (7.17)
2 2 -, 2", 2

Hencc. as t - 0; the force equation may he cxprcsscd as [sec (7.13-15)]
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• PO(O)' [(2In ":À., -++ 2(1 + Inq)i,;, + 2Q1= -8,,1' U'[1 - ~;,;,] + J'(O) , (7.18)

where J' (0) is defined by

Relationship (7.19) may be written in index notation as

J'i=_l (f-2TtI:+fTt ){(l-.!ô.)g F.o- 1fF;~O)}dé. (7.20)
2n: -'1'1: 2Ttl: 2 10 Il J e

1sin"2 1

Noting that r j is constant along the body centreline and ri (0) = ôij r j [ see (7.6) ].1'1

may he simplified as

where lij is defmed by

1.. =_1 (f-2Tt I: +f'l'l: ) (1 -1.ô. ) .. - 1fÔII dé.
IJ 2n: -Tt 2Ttl: 2 lB C'J é

Isin-I
2

(7.21)

(1.22)

•

The components of g[R(O) - R(é)] in cylindrical polar coordinate system

(p, 8. z) with the unit base vectors ip> i, and Ï: may he determined as follows :

=gu~ ï,. + g12~Ï: + g13~ i:J + g21Ïz~ + C2ZÏz.Ï: + g23Ïz.i:J + g31 i:Jï,. + g32~Ï: + g33i.3i.3 7

(/.23)

where the tenn on the right band side of the second equality contains the componencs
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• of g [R - R] with respect to the rectangular Cartesian coordinale system (XI • X~. Xl)'

But [see (7.4)]

where ê is the integration variable. Therefore. (7.23) may be written as

gppipip +gpoipio +Cp,ipi, +gOpioip+Cooioio +Co,ioi, +g,pi,ip+g,oi,io +C"i,i, =

gl1(ipcosê - iilsin ê)(ipcos ê - iosin ê) +Cl2(ipcos ê - iosin ê)(ipsin ê + iocos ê)

+g13(ïpcosê -iosinê)i, +g21(ïpsinê +iocosê)(ipcosê -iosinê)

+g22(ipsin ê + iocos ê )(ipsin ê + iocos ê) +g23(ipsin ê + iocos ê li,

+g31i,(ipcosê -iosinê) +g]2i,(ipsinê + iocosê) +g33i,i, =

gl1( c0s2êipip - sin êcos êipio - sin êcos êioip+sin2êioio) + gd sin êcos êipip

+ c0s2 êipio - sin2êioip- sin ecos eioio) + g13( cos êipi, - sin êioi,)

+ g21 (sin êcos êipip- sin2êipio + c0s2 êioip - sin êcos êioio) + g22( sin2êipip

+sin êcos êipio +sin êcos êioip+ c0s2 êioio) + g23( sinêipi, + cos êioi,)

+g31(cosêi,ip -sinêi,io) + g23(sinêi,ip+cos êi,io) + g33i,i,.

(7.24)

Hence. the cylindrical components of g[R(O) - R(ê)] may he obtained by

(7.25)

(7.26)
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•

and

The Cartesian componenlS of g may be detennined by the aid of

relationship (5.36) given in Chapter 5 as

[

II' '}]{--R, IR-Ri-"[R-R) • •• 1-e 2 [R-R]; [R-R]j
g [R-R] = 2 -e -e.
;j R.{IR-RI-eo[R-R]}2 (IR-RI 1IR-RI J)

_ {IR-RI-eo[R-R]}( ô/j • _ [R-R]/[~-R]j)}
IR-RI IR-RI3

1 • •

+ e-2R'~IR-RI-'-[R-~J)[ 2{IR-RI-e o.[R-R]}Ô;j

IR-RI-eo[R-R] IR-RI

_([R-~]/_e)([R-~]j -e.)].
IR-RI / IR-RI J

(7.27)

(7.28)

(7.29)

(7.30)

where [R(O) -R(ê]; and jR(O) -R(ê) 1 are respectively given by [sec (7.11.12)]

and
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• 1 ·1 1. êR-R = - Sln-
1t 2

Noting that e = (O. O. 1). Ki} may be detennined by the following calculations

(7.32)

-..!..R Isin~ 1., , .,
1 - e _n -

gl1"'21------

R (.!.ISin ê 1]2
~ 1t 2

• 2
1 . ., e-sm--
1t 2

1 1 . ë 1- sm-
1t 2

1 1 . ê 1- - sm- x
1t 2

1

1 1 . al- sm-
1t 2

1 . ., ê)2 [ R. il] 1 ,., ê 2-sm-- --t,in-I -sm--
1t 2 e 2n 2 1t 2

~~-..-;;~, I} + 2 -

(
1 ë)3 11' ê l Il' al

-;lsin21 -; sm 2 -; sm2

2 • [ --2
1 R,lsin~ 1] 1t[2 - sin2a2·) _.,~ R,ll1U1' !., 1__ -21t co.sa 1 - e 11: - + _...:.....__--'- ..... e· .. ,

sin2 e R~ 1sin~ 1

2 2

(6.33)

•

1 -< - ,~R.I"~ 1 (~Sin'~)( -~sin~cos~L!.'sin ê lx
g12 '" 821 = 2 -R-(-l-Ism-'-ë-[-)2 (.!. 1sin ê 1)2 1t 2

~ 1t 2 1t 2

( 1 , ., ê)( 1 . ê ê] [ 1 . ê] (1 . 2 ê]( 1 . ê ê-sm-- --sm-cos- --R,IIUl-1 -sm - --sm-cos-
1t 2 1t 2 2 e 211: 2 1t 2 1t 2 2

- + -~_--=:..!...l..""':':'_~_.;;;;;.t..

(~ IsinN ~ lsin~ 1 (~ lsin ~ 1)'

22 • e· [1 -2~R'lsin!21] , e· -..!..R l.... !1= _ 1t su: -e ~ + 1tsm e 2'11: ' _. 2

• 2 e R~ 21 sin ê 1
sm 2 2

(7.34)
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• 1 li 1. 2 à 1 ê
--R Illin-i -sm - --R Isin-I

1 - e 211' 2 1t _2 (_ 1) + e 2ll:' 2

813=831=2 {_]2 1 à
R 1.[sin~ 1 : ]sin 2

6
1 -Isin-I

1t 2 ,. 1t 2

[

-...!..R Isin~ 1] 1 Il21t2 1 - e 2'1'1:' 2 -':lR,lsin-1= _ + 1te _IC 2

1
. à 1 R~ •sm-

2

1 _ '" 6
-sm--
1t ~ (-1)

1 1 . 6 1- sm-
1t 2

(7.35)

-..!..R Isin!j
1 - e 211' 2

R (1.1 sin à 1]2
~ 1t 2

( . .]21 . 6 6--sm-cos-
1t 2 2

(~Isin:lr

1 . à à 2
--sm-cos-

1t 2 2

1. 1sin à 1
1t 2

_llsinêl 1
1t 2 1

1
• à [- sm­

1t 2

1 . ê ê 21
--sm-cos-

:: 2 2

llsinêl
1t 2

2 -( --2
IR

,lsin.!2 1] 1t[I+Sin
2ê

]_...!..RI-"-!1__ 2 1t cos.6 1 - e II + 2 "':r' ,.... 2---=---.-.:..e .' •
sin2! R~ 1sin! 1

2 2

(7.36)

and
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1 . à ê-sm-cos-
1t 2 2

1 1 . ê 1- Sln-
1t 2

(7.37)

1 . ê ê--sm-cos-
1t 2 2

llsin ê 1
1t 2

-..!..R lsin! 11e 2ll:' 2
+----

1 1· ê 1- sm-
1t 2

ê
1tCOS- l

R1
, è

l2 -îi' SIn'2--.-e
. 6sm-

2

-...!..R Isin! 1'" , .,1- e·lI: -

823 = 831 =2 { A ]2
R 1 [sin! 1

1t 2

2 2 ê 1. Il)1t cos- --R,lsm-;I
2 1- e 211 -

=----1-----
. ê 1 . ê 1 R~sm- sm-

2 2

•



•
(7.38)

Thus. the cylindrical components of g may be obtained by [see (7.25·30.33-38)]

_ (1 +COS2ê) . 2ê + (1-COS2ê)
gPP - gll 2 + gl2sm g22 2

[
'..!.R ISin!I][ ( )2 2 1 Zn' 2 1 26'-::..;,.--:- - e 6' +cos . 6' . 26'=- -cos -sm sm

• 2 ê R. 2
sm -

2

( )]
-..!.R lsin! 1 [ ( )

+cosê l-C~2ê + ,.el:~12 1+ 1+~osê 1+C;S2ê

2

+ ~ sinêsin2ê+ (1 + 1 - ~osê)( 1 - C;s2ê)]

2 [ -,!-R"sin~'l( . . . . )= 2,.. l-e·: • -2cos6cos26 -2sinasin2a

'2 a ~ 2sm -
2

'..!.R.lsin.! 1( ,...)
+ ,. e 2:, 2 1 + 2 +2cosa COS2: - 2sinasin26

lsin~ 1
2

(

1. tl l] (2 ., ê)--R 1=- ,. - sm-- 1 tl= -2,.2cosê 1 - e 2:' 2 + 2 e -r.R.1sin2"1
• R •

-2 a • "alsm - sm- (7.39)
2 2
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•

gp: = g:p = gl3COS ê + g23Sin ê

(
-..!.R lsin! ,]( )2'\t2 1 - e 2'" 2 0 ê· ê 0 •

= --=..::...-- - sm- cose + COS -sme
oê1oê, R. 2 2sm- sm-

2 2

IR1·ê,(. ')'\t -:;-, SUl- e· e·
+ --e·" 2 sin-cose - cos-sine

• 2 2
o esm­

2

[

•..!.R lsin! 1] 1 ê2'\t2 1-e 2,,' 2 --R,lsin-1
= --=;,;,;..._ - '\t e 2" 2 • (7.41)

1sin ê 1 R. '
2
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• gee = gll( l-C;S2è) -gl2sin2è +g22( I+C;S2è)

[
-J..R I.jn.!! Il[ () )]2lt2 1 - e 2.' 2 e" 1 - cos2 è . e- . "e- e" (1 • cos2 è=-- -cos +sm sm_ +cos

- R " ". ., e ~ - -sm--
2

1t -2~R.I'in*I[(1 1 +cosè)( l-COS2è) l'e- - "e"+ e + - -sm sm_
- "" 2

I
·e 1 --sm-

2

+(1+ 1-~osè)(I+C;S2è)]

[
-J..R 1.;n!I]( )= 21t2• 1 - e 2.' 2 2cosècos2è +2sinèsin2è

• 2 e R. 2
sm -

2

+ l
RI

'è l( """")1t" e-~ • SUl'2 2 _ 1 +cosecos2e +sinesin2e

lsin~1 2
2

=

•• ( -+R"sin~'11t(2-Cœ22è) -J..RISUl'!1= 21t·cos.e 1 - e •• • ... e 2.' 2
--'---.-"...!. •

sin2~ R. lsin~ 1
2 2

(7.42)

gez = gze = -gl~ê +g23cosê

[

.J..R lsin! 1'( )21t2 1 - e 2.' 2 1 • ê . . ê"

J
sm-sme ... cos-cose

•• R 2 2.e,.e, •sm- sm-
2 2

1 l'è l(· .)1t -,R, SUl, e· e·
... --e -" - -sin-sine - cos-cose

• 2 2. 6sm-
2

or
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• ë
11 COS- 1 RI' Ù

1
'2 -2;;' lin,,:; .r

. e
. e

sm-
2

(7.43)

and

Thus. by the aid of (7.39-41) Ipp defined by (7.22) may be obtained as follows:

(7.44)

or
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•
1 R • Ù

- - ,sln- "1 . t'l ("1- 1

f 11: e 2n 2. f'll . e -~ R,'1ft ':;. fil. e .
+2 d8 - stn-e·ft ·d8 - sm- da.

211:~ • è 2ft~ 2 2n~ 2
sm-

2

(7.45)

But

• ...!...Rsin!

f
1l: 1 - e 2n' 2
-----dè

2n~ " ., a
sm*-

2
• 1 R . n.. e --:;- ,'In ':;

Cos"' - t'''x •

R, fX 2 dê
- 2'lt 2n~ ---.-a---

sm-
2

. êsm­.,-

• IR,a n

a .- Slft-.. , ..
2cos-e·n ..

2

2nc

-.J-R,SÙJ(X~) (1 _sin! è e - 2~ R,sin~
2cos(-'lte)e *X R, f'll: 2 •
--.;........;...---- + - de

sin('lte) 2'lt 2x~ • ê
sm­

2

R~ ( R,12
sin2(1te)[2cos(1tc)] l--sin(n:c) + - + ...

21t 21t 2!____..... ......._:....- ---<l+

sin('ltc)

2nc

. è
5m-

2

• xa2cos-
2

~ 6 1--ÀII- • R, . a
211: 2 ·-lIUl-

n e • dê -flt sin ae 2ll: 2dê+2,
2U • a 2lU 2

sm-
2

(7.46)

2cos('lte)
'= -----sin('ltc)

=

•
50 mat•

III



• 1 R • Ü
·~~m- ., Ô

2n RI' fil e·1l 2. fn • a --:;;R..~ln,:;, •
1 - -- - da - stn-e· -da

PP R 2n 2nc é 2ltc 2
l' 5in-

2
1 R . Ô •

-ï;.$m,:;, • IRlo (.]-'- 21 é I;nc ] + 2fn e ~. dé - fn sin~e -2'n .~n2dê- fit sin~ dé.
2ltc • a 2nc 2 2ltc 2

sm-
2

(7.47)

However. as E - 0

[

IR' Il 1-- '10-

f
il e 211' 2 1 •
------- da

2ltc • ê . ê
sm- 5m-

2 2

R ]2 sin
2êRI' • ê l' 2

l--sm-+ -- ......fil __2_1t__2_........2_'lt........_2_1__ - -l... dé
= 2ll:C • ê . ê

sm- sm-
2 2

f ll: [ RI' 1( Rt']2. ê ].
= 2111: - 21t + 2 2n sm 2 ...... da;

(7.48)

hence. as expected. there is no singularity in (7.47). Therefore. ln the limit

as c - 0 • [pp MaY be written as

where AI and Az arc respectively defined by

(7.49)

•
and

A = rit
t Jo

. ...!..R.! ]'t ' ~e·2"I: .. 1 -.
---.- - ----:- da;

. a . 6
Sln- sm-

2 2

lU

(7.50)



• 1 R ' "

J.
Tt - ":i""'" ,l'ln,,:;, ..

A. = e·' . da.
- 0

(7.51)

By the aid of (7.40-44.50.51). the other cylindrical components of Iv. in the Iimil

as c - 0, may be delermined by the following calculations

lpa - 1 - 1(f-2" r) dê- - - + gap 2lt _. 2tt. pa

( -~".!,] sinê
1 Il

=1. (f-2" +r )2lts~ê l-e 2.' 2 --R llin-i
d8e 2ft' 2-

2 -. 2.. .• a R,
21sin

ê lsm--
2 2

[ ,· '] 1 R ' "
.. - ,!un-

sinê=1. ["2"
2lt~a l-e 2' 2 - Illn-"n' ., dB+ e- •

2 -. • 2 a R, 2' êsm - sm-
2 2[ -~.•!] -..!..R l.in~1Ir 2lt~ê l-e 2.' 2 sinê 2n" 2. dB+- e

2 2.. · • a R, 2' êsm-- sm-
2 2

( "]
1 Il--R sin-Ir _ 2lt~ê 1-e 2.' 2 sinê --Rsin-

2'ft:" 2. d8= '2 2..
+ e

• 2 a R, ., . ê
sm - _sm-

2 2( -~.•!] • IR'"Ir 2lt~ê l-e 2
" 2_ sina -2,; ,Illlï dB+- e

2 2.. • 2 a R, 2' êsm - sm-
2 2

=0,
(7.52)

1 (f-2•• Itt ) JI1 =1 = - + g do,
p: :p 2lt ott 2.. p:

hence
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dê

• [
IR' fl] .'2 ,.m'ï 1 R ln 0:: 1. f -21:1: _~ 1 - e 1: _ e'2; ,s 'ï

2 -lt • ê RI!
sm-

2

[

IR' il] "
2 1

- '2; ,.m2 -.l.R sin ~
1J'Il: ~ - e _e 21:' l

+ "2 21:1: • ê RI!
sm­

2

[
IR'Il] Il-- sm- 1

1{It 27t
A

1 - e 21t' 2 _ e -ï,;'R,sin'ï
:: 2 lit 1: • e RI!

sm-
2

[
IR' il] .2 1 - "lit ,'lJ12 -.l.R sin..!!.

1J'Il: 7t - e - "'Il:' "l+- -- - e· ...
2 2ltl: • ê R~

sm-
2

[
IR'Ô] .-- llUI- 1 e

2 1 21:' 2 --R sin-
f~ _1t_ -e - e 2lt' 2 d ê

= 21:1: • â R~
sm-

2

-_ - 27t A - A
R 1 2~
~

dê

dê

dO

(7.53)

• or

1 = 2... (f-2
lt1:+ f lt )[ 1.gee - 1t(ISin ê 1)-1 ]dê

00 27t -1: J2u 2 2

[

..!..R sin! ] (2 -c0g2â)) 1 ë
:: ..!. [-21:1: 7tCOSâ 1 - e l'lt' 1. _~ e'iiR,.siD'ï + _l_A dé

2 -lt • "l â RI! 2' 8 . e
~- stn- sm-

2 2 2

[

1. ê] l:1)--'-â) .'1.~-R,sm- - Cos-- 1. 0

+1. fIC 'l'tcosâ 1 -e 2lt 2 + A2 e -ï,;'R,JUl'ï __l_A de
2 2111: .., â RI! 2' e . 6

sm-- sm- stn-
2 2 2
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" 1 R . li
1 Ill: . a --:;: ,5m-::;da"+ - sm-e •.. •
2 2ll:1: 2

• (1 2· "êJ[ 1. fi] 1 . "êJ11: - sm- - . -:;- R.'ln ";" + sm- - l ,6
1 fll: 2 1 - e _ll: - 2 --:;;-R.'U1";" 1 dé

lee = + e - - --
2 2ll:1: e" R a" "." ~.,. .asm-- ...SIn- 5m-

2 2 2

211: (1 - 2sin
2êl[ -~R'lIin~] 1+ sin

2êJ 1 li1Ill: 2 1 - e _ll: - 2 --:;-R,sin-::; 1
+- + e·~ - - - dé

2 2ll:1: ê R ê ê
sin2 _ ~ 2sin- sin-

2 2 2

[

-.!.R,sin~ 1 Il] 1 êR 2ll: 2 e" --R,.In- --R ,in-
n: ~ fll: e da" fll:· "n" da- ., "f n

2~' 2 de"= - -- - sm-e· - + ... +... e
Re 211: 2ll:1: • ê 2ll:1: 2 1~1:

SUl­
2

1 R . li-- 5m-
+2fll: dé] + lflt e 2ll:' 2dê

2ll:1: 2 1ll:1: . ê
SUl­

2

(7.54)

= lf-2ll:1:
2 -ll:

•

1 =1 = _1 ([-1ltl:+f1: )g dé
9: :9 21t -1: 2u 9:

2 ê( IR.a]n: cos- - ,5m-
2 1 - e Ilt 2---

. 1 ê Re
sm: -

2

2 ê[ lR.
ii

]n:cos- -- ,sm-
1 fT( 2 1 - e 2: 2

+ 2 JIu ê Rsin2 _ e

2

or
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ê
cos- 1 R . è

2 1T( ,SID Z- --e
. ê

5tn-
2

a
cos- 1 R . Il2 -- sm­_ --e 2:' 2

. ê
5tn-

2

dé

dé



1fit+-
2 2ltt

• 21tcos ê [ ~.l.R ,in! ]
1fit 2 1 - e 21t ~ 2.

/ =/ =- ----
n~ :0 2 211:t ê R

sin2- t

2

21tcOS ê [ -.l.RSIn.!]2 1 - e 21t ~ 2---
.2 ê Rtsm -

2

= 0

and

ê
cos- 1 R . à2 -- SUI-

+ --e 21'1' 2 de
. êsm-

2
e

cos- l R sin ê2 --:;-, -
- --e Mit 2 de

. êsm-
2

(7.55)

lu = 2~ (J.:"•J,:.)[ g" - ,,[ 1sin ~ 1r]dê

t .à IR·à
_ If-2ltt -1 2lt R~'2 1 dé Iflt 1 - 2ll: "m'2 1 de~-- -e +-- +- -e ---

2 -lt • ê . ê 2 2u • ê . ê
stn- SlD- sm- sm-

2 2 2 2
tR·à l R ·à

_ 1fll: 1 -Z; ~'2 1 dA 1fll: 1 - 21t "m'2 1 de-- -e --- 0+- --e ---
2 2ltt • ê . ê 2 2ll:t • ê . ê

Stn- Stn- Stn- sm-
2 2 2 2

1 R . Il
1 -- SUI­--e 2lt r 2.

. êsm-
2

1---
. ê

Sln-
2

de

(7.56)

•

But. vector J'(O) defmed by (7.19-22) may he expressed as [ see (7.4,6) ]

J'(O) =Fi !;Ji,{O) = (F; 11'1' + F;11'0 + F;- IpJip{O) + (F; loI' + F;106 + F:.-10Jie{O)

+ (F; 1:.1' + F; 1:0 + F::.· 1ji:.(O)

=(F;lpp + F;lp6 + F;-lpJ~ + (F;lop + F;Ieo + F;loJiz + (F;I::.p+ Fo-l:o+ F::.-lj~,

(7.57)

50 that, by the aid of (7.49-56), the Cartesian components of J' may he obtained by
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•
•

and

J' (0) = F'(A - 41t A, + 41t
2

- 2) - F:(21t A + A)
1 pl R - R • RI 2'

t t t

J',(O) = F;(A 1 + 21t A, _ 21t
2

+ 1)
• R - R

t t

(7.58)

(7.59)

(7.60)

However. the force equation (7.18) may be written in indices notation as

(7.61)

Thus. noting that Qi2 = 0 [see section 4.4) and U = (0, 0, U), the Cartesian components

of the force equation. for the point under consideration (0 = 0), may be expressed as

[see (7.6»)

'( 1tlCl. ) (' ') '( 41t 41t
2

2) '(21t )Fp 2In-
4

- -1 +2 FpQIJ +F:QI3 =Fp Al - R. A2 + R. - -F: R. AI +A2

(7.62)

(7.63)

•
•

and

(3.64)

As expected, relationship (7.63) is consistent with F; being zero. Relationships

(7.62.64) may be wrinen as
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•
and

F =,

41t 41tz 1tK"',
A --·A +--1-21n---2Q

t R z R 4 11
f! f! F-

21t p
-Al + AZ + 2Q13
R,

Therefore

(
_21t-At+Az+2QI3)Z +(At __4_1tAz+_41t_

Z
_1_21n_

1t
_
d

_, -2Qn)(-At -l+21n-
1t

-:"'-, +2Q33)
R, R, R, 4

(7.65)

and

(
41t 41t2 1td, )-8lr"UA __ A +--1-21n---2Q

r- t R ''Z R 4 11

Relationships (7.65.66) are correct up to order lC which is the approximation under which

the force integral equation (7.1.2) was derived. Thus. the force per unit length may bc

written as

118



•
(7.67)

and

[
4'1t 41tz me;" J- 81rJl U A - -A.. + - -1 -2ln--" -2Q

1 R- R 4 11

(7.68)

where AJ and Az are function of R~ defined by (7.50-51) as

and

A = r1r

1 Jo
-..!.R sin! ]2 ~ ..e II: - 1 ~

------ de
. ê . ê

sm- sm-
2 2

1 R . ër -- SID-
Az = Jof( e 211:' Z dê .

For a torus with circular cross-section the components of the characteristic tensor

of the cross-sectional shape. Qij' in (7.67.68) vanish. For an elliptical cross-section with

semi-diameters a and b (where a > b) with the direction of the Jarger principal axis

(2a) given by unit vector fI. (sec figure 7.5). Qi} is detennined by [sec (4.4.6)]

•
Q _ Ina + b a - b 2 '

11- -+ COS",.
2À,s 2(a + b)
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•
and

a - b 5in2Â
2(a + b)

a+b a-b
Q33 = ln-- - cos2 Â •

V.s 2(a + b)

(7.70)

(7.71)

where. here. À is the angle between the unit vector {J and the unit base vector iJ • the unit

base vector in the direction of uniform velocity U (i.e. cosÀ = (J.iJ). as shown in figure

7.5. and where À1 is the radius of its equivalent circle the value of which is given by

(4.4.7.8).

However as R~ - 0 the value of AI and A2 May be respectively detennined by

R ~ (R]2 sin
2

ê

[

-.l..R !lin! ] 1 _ _ e sin.!!. + -!. 2 + ...

fr
it e 21f ~. 2 1 ~ J:1t 21t 2 21t 2! 1

Al = - -- dB = -........;..---.:...-~---- - --o • ~ 0 • •
.B .B .B.Bsm- sm- sm- sm-

2 2 2 2

rit [ Re 1( R~]2. ÊI ] ~= Jo - 21t + 2 2x sm 2' + ... de

Re rit· (2) R ( 2)= - -.., JfO de + 0 R~ = - -!.. + 0 Re ;
_1t 2

and

1 R . Ô

fr
it - ':) ,sm:; •

A., = e _lt -de
- 0
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• Thus the radial and axial components of the force in the limit as R, -. 0 may be

obtained by

and

F'p + 0(..)

+ 0 (1') •

where for a torus of circular cross-section (i.e. Qij = 0; À, = 1) the only non-zero

component (F,) reduces to those obtained by Johnson & Wu (1979) and Johnson (1980)

given by (1.2.19).

However. the error terms in the present results is of order K (the slendemess

parameter). whereas for those obtained by Johnson & Wu (1979) and Johnson (1980) the

error was of order i- (where e = 27rK is the semi-slendemess parameter). which opens

a new question " Why are exactly the same values obtained with a different levcl of

accuracy? "
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/

toros axis

/

•

Figure 7.1 : Coordinatt' systems showing the toms settling along its axis with uniform

velocity - U•
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•

•

x.

Figure 7.2 : Plane (x,. x:) showing the relarionship between the rectangular

Cartesian coordinate system and the cylidrical polar one.
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Figure 7.3 : Cartesian and cylindrical components of the force at the point under

consideration (6 = 0).
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Figure 7.4 : Position of a general point P on the body centreline.
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TONS axis
/

(
"

•

Figure 7.5: Toros with elliptica1 Cross-section showing the position ofthe ellipse

with respect to i3, the unit base vector in the direction ofvelocity u.
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Appendix A

A - Solution of biharmonic equation

In this Appendix. we consider a planar (two dimensional) tlow field in a

dimensionless l plane (x. y). which is called the Z-plane (see figure A.l). applying the

complex variable method to derive the equations used in Chapter 4.

In the absence of the body forces. and for zero Reynolds number the goveming

equations for an incompressible fluid may be written as

(A.l)

and

where for (Wo dimensional flow field V and V2 are respectively defined by

(A.2)

and

v = i 2-
% ax

. a
+ 1 -, ay (A.3)

• lThroughOut this appendix we use dimensionless quantities.

Al



• (A.4)

Equations (A.l.2) arc linear for u and p and are well-known as the ereeping tlow or

Stokes cquations. Taking the divergence of equation (A.!) results in

But V'U = 0 ,hence

whieh is Laplace's equation. Thus. for creeping flow. the pressure is harmonie.

Taking the eurt of equation (A.l) results in

\72 (,) - V(Vxp) = O.

where w is the fluid vorticity defined by

(,) = Vxu.

But pressure p is a scalar. henee V x p = O. Thus, (A.6) may be written as

(A.S)

(A.6)

(A.7)

which is the vorticity equaticn for the erecping flow (zero Reynolds number flow). The

fluid vorticity for two dimensional flow fields u(x. y) = ('40 O. 0) and u(x. y) =
(O. "c' u,) may respeaively be detennined by

• A2

ir i,
a a
ax ay
o 0

au.
-i~

:Jax
(A.8)



<.)=Vxu=

• and

i: ix iy
a a a
a:. ax ay
o Uor uy

= i, (::' - :;').
(A.9)

where u.r and uyare the components of velocity u in the x and y direction. respectively.

as shown in figure A.l. and where u: is the component of the velocity in the direction

normal to the (x, y)-plane. But. for the flow field u = (O. uJ ' u)')' the stream

function. '1' • is defined by

a'1'u =-
.r ay and a'1'

u =
y - ax · (A. 10)

50 that, by the aid of relationships (A.9.10) equation (A.7) may be expressed in tenns

of the stream function as

(A. 11)

TItus. the bihannonic equation

(A. 12)

•

where \74 is defined by [see (A.4)]

v4 = V2 V2

a4 a4

= - +2---ax4 ax2ay2

satisfies the creeping flow equation. An immediate consequence of (A. 11) is

A3



• that - "12 '1' is the component and the only component of the vorticity in the direction

normal to the plane (x, y). Thus the vorticity equation may be written as

(A. 13)

where

(A. 14)

Therefore. vorticity w and pressure p in (A.5) are conjugate harmonie functions. and

hence. they represent the real and imaginary parts of an analytic function of Z = x +
iy.

Let us define

<t>(Z) =f(x. y) + ig(x. y) = - ±fq(Z)dZ, (A. 15)

where q(Z) is an analytic function ofZ the real and imaginary parts of which are the fluid

vorticity and pressure. respectively. Le.

q(Z) = w +ip. (A. 16)

Since q(Z) is analytic <I>(Z) is analytic too. Hence. f and g satisfy the Cauchy-Reiman

equations. that is.

af = ag and af =
ax ay ay

and. as a consequence of (A.1?).

Further let

A4

_ ag
ax

(A. 11)

(A. 18)



• F(x,y) = 'l'(x,y) - xf(x,y) - yg(x,y).

Then. y~F may be derermined by

But [see (A.3A)]

y2( UV) = V'[V( UV)]
=V'(UVV + VVU)
=UV2 V + 2VU'VV + VV 2 U.

Hence [see (A.17-21)].

However, [see (A.I4-16)]

4l'(Z) = d~(Z) = af + i ag = _.!.q
dZ ax ax 4

= -.!.(,) - .!.ip = .!.V2'l' - .!.ip
4 4 4 4

or

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

50 that [see (A.22)] y 2F = O. Let X(Z) bc an analytic function of Z the real and the

imaginary parts of which being F (x. y) and G (x. y), respectively. where G is the

conjugate function of F. 50 that

and

x(Z) = F(x,y) + iG(x.y)

AS

(A.24)



• and aF aG=--
ay ax

(A.25)

Then. relationship (A.19) may be expressed as

'{I(x.y) = xf(x,y) + yg(x,y) + m[x(z)],

where mdenotes the real pan of the complex variable.Buf!

m[z.4» (Z)] = m ( (x - i y) if + i g) ]
:: xl + yg,

so that. the relationship (A.26) may be written as

'{I(x,y) = m[z·4»(Z) + x(Z)].

(A.26)

(A.27)

Therefore. we have 'f(x,y) exprel\sed in tenns ofa pair of complexpotentials cI>(Z) and

x(Z)·

The components of the velocity u (x. y) = (O. uX' u,J may be expressed directly

in terms of the stream function as [see (A. ID)]

'( ') . a"l' .a'f1 U + lU = - U + lU = - + 1-.
~ y y % ax ay

Thus by the aid of (A.26.24.17.2S). the velocity may be expressed as

al ag aF.( al ag aF)=I+x- +y- +- + 1 g+x- +y- +-
ax ax ax ay ay ay

II' ') (af .ag ) . (al .ag ) aF .aG=v+lg +x --z- +IY --1- +--1-
ax ax ax ax ax ax

if ') ( ') (af . ag ) ( aG . aG)= +lg + X+lY --1- + --1-
ax ax ax ax

(A.28)

•
or [see (A. 15.23.24)]

:Here. the complex variable labelled by an asterisk denotes the conjugale of that variable.
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• (A.29)

Pressure p may be obtained by re1ationships (A.23) as

where lm denotes the imaginary part of the complex variable. But. as usual. an additive

constant in pressure is irrelevant. so that the pressure p may be expressed as

(A.30)

where Po is a reaI constant.

Let us examine the pressure p and the velocity U obtained by (A.29.30).

respectively. By the aid of the relationship (A.28). the components of the velocity may

he written as

ag af aG af ag aFu =g-x-+y--- and u = -f-x--y---.
% ax ax ax y ax ax ax

(A.3I)

The substitution of u, in the x- component of the creeping flow equation given by

(A.l) results in [see (A. 18.25.21)]

or [sec (A. 11)]
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•
Thus.

p = _2 (al? _ al) + k(y)
ax ay

ag= -4- + k(y).ax

(A.32)

ak
+ -ay

(A.33)

But from the y-component of the creeping f10w ôp/ôy may be determined by [see (A.31)]

or [see (A.17)]

ap = _ 2 a21 _2 a2g
ay ax2 axay

= _2~( al + ag)
ax ax ay

= _4
a2g

.
axay

(A.34)

Hence. from (A.33.34). it foIIows that k(y) is a constant. say Po' so that. [see (A.32.23)]

which is the same as the equation (A.3D) obtained directly by the relationships (A.23).

Next we consider the force f1uid exerts on a line element of length ds in the Z­

plane. as shown in figure A.2. The components of the force per unit length. F;. may be

determined by

AS



• (A.35)

where nj is the component of the unit vector normal ta the clement ds and where (1,) is

the stress tensor defined by

Vi} =
au

-pô .. + -'
') éJxj

au.
+ -)

aXj

(A.36)

Thus the x-component of the force per unit length may be written as

au )+ _.V n.ax y

(A.37)

But (see figure A.2)

n = -sina: = - dy and n =casa: _ dx
Z ds y - ds'

sa that the x-component of the force on element ds may be determined by

(A.38)

au )+ -y dx.
ax (A.39)

However. [see (A.30.10.23.31.17»)

_p + Z au, =4Im(d<P) _ 2 auy
ax dz ay

= 4 ag + ZÈ....-(f+xaf +yag
+ aF)

ax ay ax ax ax
= -4 af + zÈ....-(f+x af +yag + aF)

ay ay l ax ax ax
=ZÈ....-(-f+ X af +yag

+ aF).
ay ax ax ax

and [see (A.31.17,25)]

A9
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•
(A.4l)

In relationship (A.40) the constant pressure Po does r.ot appear since it acts equally in ail

orientations of the element and hence it doesn't contribute to the force on the immersed

body in the fluid. Thus by the aid of (A.40,41). the x-component of the force may be

expressed as

(A.42)

Similarly. the y-component of the force may be obtained by

'.

Fyds = (_p .. 2 aUY)dX _(auy .. aUX)dY •
. ay ax ay

But [see (A.30.10.23.3l)]

and [sec (A.31.17.25)]

AlO

(A.43)

(A.44)



•

so that. the y-component of the force may be wrilten as

a ( ag al aG) a ( ag al aG)F ds=2- g+x- -y- +- dx+2- g +x- -y- +- dy
y ax ax ax ax ay ax ax ax

=2d(g+Xag _yal + aG). (A.4S)
ax ax ax

Relationships (A.42AS) may be expressed in complex variable form as

. (al ag aF) . ( ag al aG)(F +IF)ds= -2d -I+x-+y-+- +21d g+x--y-+-
% y ax ax ax ax ax ax

=2d[(f+ig ) - (X+iY)( al _iag) _ (aF _iaG)]
ax ax ax ax

or [see (A.IS.23.24)]

(A.46)

Thus. the force on curve AB. as shown in figure A.3. may be determined by

(A.47)

where fTx and fTy are the components of the force the f1uid exerts on the curve AB.

AlI



• coinciding with the x and y axis, respectively .

Next consider the transformation function

Z = w(ç) (A.4S)

mapping the Z-plane onto the ~-plane (see. figure A.3). Thus the components of the

velocity in (A.29) and the force on curve AB in (A.47), in the ~-plane. may respectively

he expressed as

and

[ dcf> J' [d
Xl'i( "x ... i","= cI> (Z) ... Z - ...-

dZ dZ

[dc'bJ' [dÇ l' [d J' [d~ ]'= cf>(w) ... w dç dwJ + d~ dw

·[~;r {[~;r ~ + w[~:r ·[~~n (A.49)

= 2

=2 (A.50)

•

where A' and B' are the two ends of the curve A 'B' which is obtained by the mapping

of curve AB onto the ~-plane. corresponding to the points A and B. respectively. as

shown in figure A.3.
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•

y

Z-plane

u,.~U(X'Y)

li,.

o

Figure A.l: (x, y )-plane showing the components ofvelocity u•
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• y

n Dy =COS ex. iy
Z-planc

n =- sin ex iw w

01
x

•

Figure A.2 : Z-plane showing the components ofthe unit vector normal to element

ds.
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~X

•
Z-planc

B

,
(

1
1

D -

A

A'

l;-planc

B'

•

F!gure A.3 : Z and ~ planes schematically showing the transformation ofcurve AB

in Z-plane enta curve A'B' in the ~-plane .
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