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N~tural deduction provides "an el~gant t~chn:'t~qk~~~'for"~' ,_ 
r -\1" \. ~[)~;g _"'f:,,l~'I) ... ,,,,:> "', " 

the e.nstruction and representation -of proofs. "I:his thes~'s> pè-s_.~ .\:~' 
If ,\. 

cribes ND, a L.isp program implementing a Fitch-1tyle 'naturai~;-~., 
• "~ ... l {' 

,deduction theotem-prover for sentential logic., A set, of proQuc-

tion rules is used to decide, at any-stage in the construction J 

--. 
of the proof, what rule of inference should be,applied next. 

The extension of,ND into STEL, a tutoring system for proofs in . ' 

natural deduction, iSo'also t!iscussed, "as 'well as' some adva~­

tages of using natural deduction ~heorem-pro~i~g in artificial 
-

intelligence applications. 
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R!SUM! 

La dé.duction nêturelle permet, une représentation 

-claire et intuitive de la preuve de la validité d'un raisonne-

ment. Cette thèse décr.i t l'implémentation en Lisp du système 

ND, u,n démonstrateur de théorèmes en logique des propositions 

basé sur ~a méthode de déduction naturelle t~11e que ~ormulée 
,l 

par Frederic B. Fitch. Un ensemble de règles de producti~n est 

utilisé pour, décideF' à toute étape de la preuve, quelle règle 

d'inférenc~ utiliser. Après la description de ce système de 

règles, on trouvera \lne discussion de l'extension du démonstra-

teur de théorèmes aù système tutoriel STEL, ainsi que de la 

" ' pertinence de la déduction naturelle à ceFt'ain-s problèmes liés 

au raisonnement automatique en intelligence artificielle. 
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INTRODUCTION 

The natural deduction technique is used for 

constructing pr~ofs in formal'sjstems an~ for representing 
. 

these proofs in a clear and intuitive manner. It is typically 

1 

used' to present the derivation of a theorem or, in a system of~ 

logic, to show that a sentence is loqically truei it can aIse 

be applied te establish that an argument is valid or that a set 
. 

of sentences is inc6nsistent f 

.q 

Historically, the method originated in the work of 

Gentzen [10] and Jaskowski [11] who devised a 60mplete set of k 

rules for natural deduction derivatiohs. The ~tandard form for 

expiessihg the rules and formatting the proofs was formulate~ 
1 

by Fitch [9J. 

. 
Any natural deduction system is based on a set of 

"natural" rules of inference that can be applied in reasonings. 

-. These ru1es specif~ what inferences are permitted in the do-

main. It is in fact the "naturaln'ess" of natural deduction that 

constitutes its main advantage when compa~ed to other, more 

syntax-oriented, proof-techniques: a natural deduction proof is 
1 

él 

easier to understand because, it is based on an intuitive set of .. 
rules of inference; each step of the proof can be seen to fol-

low from one or more earlier steps by the application of a rule 
, ~ 

of inference. , , 

, 
h 
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,Natural deduction systems have been constructed for 

various logics, e.g., sentential.logic (the logic of truth-
o • 

func~ional connectives), predi~ate'logic (the logic of quanti-. , , . , 
fication), and ric~er sorts of logics (in which, for instance, 

. 
relevance connectiv~s or modal opera tors are present). 

J, .. 
The present thesis reports on ND, a Lisp implemen-

tatio~ of a Fitch-style natural deduction theorem-prover for . 

sentential logic. The rule-based implementation of ~his . 

" th~eorem-p~over allowed the extension of the program into the 

STEL tutoring system, aimed at teaching students th~ rudiments 

v 
of logic and tne basics of the art of constructing proofs in 

natural deduction1~ 
, , 

Section l lists the inference rules that define the 

donain of the proofs tha~ the theorem-prover should be able to 

construct. Section II compares naturaa deduction· with two other 

well-known proof-techniques for sentential logic (truth-tables 

and truth-trees). 
.~ 

Section III presents the objectives'of the thesis 
, 

and discusses the major design chOices made in this implementa-

~ion (limitation to sentential logic, use of production-rule~). 

Section IV focuses on the strategies used by the theorem-prover 

in the construction of the proofs. Section V describes the·de-

sign principles adopted in the impleme~tation of the tutor. 

Section VI discusses the relevance of usipg natural deduction 

theorem-proving in AI applications • 

• 



7,'" 
o/~_ 

" , 
" ", tl-

" 

., 

.' 

" , 
"~" \ ~l"'!..~~. h ,_ r ,. 

• 3 

The rules used ih the first, irnplementation. of, the . , 

theorem-prover (wri~ten in,F~anz Lisp on a Vax) are l}sted in 

appendix 1. Appendix 2 contains a partial listing of this pro-

'1) • 1 ,"'.- f h ' gram. For the J.mp ernen tatJ.on 0 t.Le tutor, the program was 
-<"..; 

t.ransported to an IBM-PC (first in Mu-Lisp, then in IQ-T,isp). 
_ '1) '" _ r' 

.. The extended vocabulary that was made availible tO,1:he rules in 

l 

) 

thi~ second version of the theorem-prover is describe~ in ap-

pendix 3, where a listing of 

found. Appendix 4 co~tains a 

J 0'11' ' 

the new set of, r'r}es may aiso, be 
1 <J tJ ~ 1 

dump of ~ few screens taken from 

the tutorial, showingCtypical interaction between the program 

, and the student. 1) 

) , .. o 
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II. ELEVEN INFERENCE RULE$ ,. 

Formulas of sentential logie are eit~er 'atomie .. 
{e.g., P, Q~ ... , or eompou~d: the raIes of sentence formation 

, (the grammar of the" langua.Qe), specify how well-formed compound '" 

formulas may, be't-Igenèrated by grouping simpler ones wi th connec--

tives. There are 5 connectives: &, V, ~, =>, <=>, and the 
.,. . . 

rulesQof sentence formation say that, if X is a well-formed 
l 

formula, so is (-, X); if X and y are well-formed formulas, so 

are Dt & y) 1 (X V y), (X =) y) and (X <=> y). The five connec-. 
" , ' 

tives are int~rpreted respectively as AND, OR, N01"lIF ... THEN, 

and IF AND ONLY IF. 

A proof in patural deduction is ~equence of for-
. 

mulas, each of which "has a justification". A formnla can be 

" 
justifie~ .ei ther as a premiss, as a hypothesis, or as the r,e-

<) -
suIt of the application of a rule of'inference on one or more 

e'arlier formulas in" the proof. 

, 
_IntuitivelYi rules of inference\may be thought of 

as truth-preserving tools that guarantee sa~e deductions. ~ath-

, ematically speaking, an i'nferen~e- rule is' no<thing but a rnapping 

that, wh~n appl~~d to q set of theorerns, yielos a new set of , 
'" ~ !) ~ 

theorems 1 • Ks such, l t is purely syntactic and, therefore, to-

1 In "monotonie logics", the application- o:fi'-'- inferenee rules may 
only i~crease the set of theorems. 

1 
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\ 
tally independent of the interpretation that ~ay be given to 

the symbèls occ~rring in the formu~as on which it is applied. 2 

Two rules of inference are associated with each 

connective, one for the ~elimination" of the connective (e.g., 

"&!:l:lm'~) an-d, one for its '!introçiuction" (e.g., "=>Intro"). This 

gives the following ten rules (m, n" and 0 stand for line-num-
le bers; vertical dots represent an arbitrary number of interme-

diary steps that are not relevant to the rule being defined) . 

~ 

J 

INTRODUCTION RULES ELIMINATION RULES-

m X m '(X &: y) 

n Y x &:Elim,m 

(X &: .Y) &Intro,m, n m (X &: y) 

&:El!m,m 
1 

m X m (X V y) . -
(X V y) Vltffro,m n (-, X) 

" '\t>~ 

Y 'VE~im,m,n c 

o 

2 However, as we will see in the next section, it is a crucial 
characteristic of elegant natural deduction proofs that they 
cannot be constructed without reference 'to the ordinary meaning 
of the connectives. It is the paralleL', f that such proofs have 
with ordinary intuitive reasoning that makes them more interes­
tin~ than other types of proofs. 
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In Y m 

. \) 

(X v y) Vlntro,m '" . n 

~ 

.. " 

In X m 
. -

n Y n 

0 , (.., y) 0 

(.., X) ..,Introtm,n,o 

m 

m 

J 
X 

n 

n Y 
=> y) => Intro, m-n 

In (X => y) m 

~ 

p (y => X) n 

(X <=) y) . <=>Intro,m,n 

"-

(X v y) 
• 

(.., y) 

x 1) 

A 

(.., Xl 
J 

Y 

. 
('.., y) 

X 

. 
X 

· (X => y) 

t 

Y, 

(X <=> y) 

· ,. 

· " X 

y 

',. ' . ' "C "W'I \ "I~~. 
1. 

1 i,' 0,' .. -~~ 
6 

. ~,~i?: 

'J 
-1 , 

VElim,m)n 

-

..,Elim,m,n,o 

=>Elim,rn,n 

,~, 

<=>Elim,m,n 
(*) 

* See, page 1) for a description and (tuse r of the notation 
used here $ . 
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To be complete, the system needs an addi tional ' 

~(eleventh) derivation rule, the rule of reiteration, that mere­

ly allows the derivati6n of a sentence from itself3 : • 

m P 

p ~Reit m 

This gives a total of eleven rules, each of wnich 

can clearly be 'seen (and proved) to be truth-pr.ese~rving. It is. 
" 

on~ among sever al alternative4 sets of rules of inference for 

Fitch-style natural deduction proots in sentential logic: other 
, , 

'formulat}on~ ôf tne rules also yield sound and complete systems 
" 

(systems that can prove al1 valid, an'd only valid formulas of 

sententiallogic). 

... 

~ ~his rule may see~ tri~ial. Its presence in Fitch's system is 
justified by what it excludes: some formulas are reiterable 
whi1e sorne are not; restrictions on reiteration forbid, in par­
ticular, t~e'r~ration of a formula derived under a hypothe­
sis that has been'discard~d. 

.. , 

oC 'Such al ternative systems of natural deduction for sentential 
logic differ in particular in the expression of the rules for 
rtegation and d~sjunction elimination. 

, , 
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II. NATURAL DEDUCTION VS OTHER PROOF-TECHNIQUES 

Two other reputed theorem-proving techniques, narne-

ly truth-tables and truth-trees - it is this sec9nd technique, 

incidËmtally, tha,t lies at the foundation of the reso'lution 

rnethod - have a significant 'advantage over natural deduc~on: 
~ . 

they are mechanical decision procœdures that will always esta-

blish, after a finite ,nurnber of steps, whether an argument is 

logic~ly valid, whether a set of sentences is logically 
, 

consistent, or whether œ sentehce is logically true. No imagi-

nation or foresight is required for either of these methods to 
1 ' • 

apply its te.t. The natural deduction technique does not pro-

vide such'a guarantee that a proof will be found, if it existsi' 

furthermore, it does not specify in a unique way how the proof 

is to be constructed. Why, then, do people bother using natural-
, 

deduction rather than trtith-tables or trees? What advantages 
. 

may compensate for the fact that natural deduction proofs are 

not mechanical? To answer these questions, let us first look at 

an example to see how each rnethod solves the validity question . 

D ! 
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Consider the following argument, taken frGm"~ typi-
, Il 

cal real-life piece of reasoning: 

, 
If the kids d}.dn' t clean up their mess, th en if Hom saw 

it, she was not happy. 

Surely Mom saw it if the kids didn't elean up their 

mess. 

But she was happy. 

So they must have cleâned up their mess. 

Using the language of.sentential (also c~11ed pro-

positional) logic,.the argument translat~sl into: 

, .,K => (S => .,H) ; if not Kt then if S then not H 

'"IR: => S . if not K, tpen S r' , 

H H 
. 

t 

,...:_-'----------- therefore 

K . K , g 

The truth-table~ gives us a straight-forward way of 

showing that this argument is valid: after building - very 

mechanically - the whole table, we observe that there is no 
-J 

1 In what follows, some liberty is being taken with syntactic 
correctness (e.g.", parentheses) so as to make the formulas 
easier to réad. 

2 Details of the syntax of this language and the different 
proof-techniques discussed in this ~ection can he found in 
troduction te legic manuals su ch as Leblanc & Wisdom [13], 

1 

Bergmann, Moor & Nelso~ [,3]. 

( 

',' 

in­
or 

',' 

Cl 
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truth-value assignment to the atomic variables K, S, H that 

rnakes the premisses of the argumept true and the conclusion 

"fa1se at the saIne time .. 

' ... 
K' S H ..,K=> (S=>.,H) ..,K=>S 

T T 
T T 
T F 
T ,F 
F T 
F T 
F F 
F ' F 

--f- -
Conc1 . 

number of 

T 
F 
T 
F" 
T 
F 
T 
F 

T 
Prern3 

F 
F 
F 
F 
T 
T 
T 
T 

~. 

T 
F 

, T 
F 
T 
F 
T 

F 
T 
T 
T 
F 
T 

·T 
.T 

. 

T 
T 
T 
T 
F r 

T 
T 
T 

T 
Pr-eml 

T 
T 
T 
T 
T 
T 
F 
F 

Î 
Prern2 

T~ere are 2D rows in, ~~~th-tab~e, where n is the 

atomic variables occurring in the arg~ment. In the 
, . 

f ....» .. • 
case of,..·the argument that we are now considering,' n = 3, so 

r' i" 

that the truth-tab1e,contains on1y 8 rows - an acceptable size. ) 1 __ 

However, Jas the size of the table jumps exponentia11y with n, 

the standard truth-tab1e teéhnique is a rather uninteresting 

too1 for evaluating rea1-1ife argum&nts. 
~ . 

~here exists a short-eut truth-tab1e method, based 

on the fo11owingo principle: instead of constr~cting the whole , 

. \ 
truth-tab1e, one tries to construct a row wh~ch, shows the argu-' 

ment ~nva1id, i.e a row in which the premisses are a11 true and 

the ~onclusion false. If this fails, then the argument is va-
, 

lido rn our example, we try to find a truth-va1ue assignrnent to 

.. 
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K, S,' and 'H tha~ will make the premisses true and the conclu-

sion fa}.se: 

4 . 

1 • 

'. 

• • Q 

Starting with the assignments 

~Pl (=== T 

~ t. • -, P~ <=== T 

. P3 <=== T 
~ 

C <=== F, ~? 

we immédiately get the assignments 

H <=== T \ . 
K' -<=== F " . 

A simple and mechanical procedure quickly shows 

that S should be assigned the truth-value false for the first 

premiss to be true and the truth-value true for the second pre-

miss to be true. This is impossible, hence the argument is va-

~id. 

The tree technique applies basically the same stra t 

tegy as the short-eut truth-table technique: to prove an argu-

ment [Pl, .c •• ,Pnl /:: C valid is to show that the set 

(Pl, ••. ,Pn, ~CI is inconsistent. A set of sente~ces is shown to 

be inconsistent if aIl ~anche$ of the tree representing the 
1 

SElt cloho (i. e contélin aJ explici t contr-adiction) . 
• 

>. 
" 
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Here is the tree corresponding to our argument. 

From the point, of view of an intuitive representation of the ' 
, 

proof, it does improve over the truth-table (a first step in 

the right direction). 

[Yremiss 1] 

[Premiss 2] 

[premiss 3] 

[Negation of conclusion] 

[Expansion3 of lst premiss] 

. 
[Expansion of 2nd' premiss] 

~ K =) (S =) ~ H) 

~ K =) ~ 

H 

(Underlined terminals:indicate bràncnes that are 

"closed", in the sense that they contain an explici t ,contra-
'" . 

diction) .. 

\ . 
Natural'deduction proofs are also called deriva-

tions: instead of showing that aIl ways of putting together the 

premisses and the negation of the conclusion yie14 J inconsistent 
\ 

sets (as is dO~~( with the tree method), the ND proof shows ~~w 

t~e conclusion can be derived (as it were, constructed) from 
. 

tha premisses via a series of "obvious" steps. Each step 
. 

con~ists of a sentence S together with a justification for it. 
1 . \' 

3 For.., K => (S => ... H) to be t~ue, ei th:er K must be -true or 
(S =) .., H) must be true. 
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The justification of S states exp~icitely 

- What rule, of inference was used in deriving S (unless • 
of course it is a premiss or hypothesis, in ~hich case 

it needs no further justification). 

, 
The position in the proof of ea~lier steps from which 

S was imme'diately derived. 

,,;. . 

ND derivations allow the making of hypotheses: .you 

can make a hypothesis anywhere in the proof and see what fol-
~ 

lows from i t. In a Fi tch-sty;Le ND proof, a vertical line start--' 

"" 

•• '. 

~ ing at step n ~nd~cates that the sentence at nf~s a hypothesisi 

the hypothesi~ed sentence is also underlined. . , 
) 



• 

• 

\ . 

We can see by looking at the proof that 
r 

, 
line 4 is a hypothesis" 

line 5 is just~fied by the rule "arrow-elimination" 

(modus ponens) from lines 1 and 4, 

line 8 is a repetition of_li~e 3; 

0, the conclusion appears as the last line of the proof" 
JI 

and is justifie~_by "negation elimination" (a forro 

of reductio ad absurdum) ° 

.. 

14 

ticàl lines is a1so very informativ Showin) precise1y undei , 

what hy~otheses it was derived (h~ e, ~H was derived under hy-

potheses 1, 2, 3, 4, while-K logica follows from 1, 2, 3 

alone) • 

The key advantage a natural deduction proof has to 

offer is i ts - "natura1ness", i. e., i ts . simili tude - to a -large -

extent - to our informaI, ordinary human way of reasoning. Un-

like resolution ~nd truth-tables, natura! deduction allows a 
1 

mixture of top-down and bottom-up reasoning, as weIl as a mix-

ture of direct and indirect reasoning: just like human reas~n-

, f ings, natural deduction proofs can grow forwards {top-down} or 
.~ 

backwards (bottom-up), and us~ reductio ad absurdum only when 

no other, more direct way of progressing towards the conclusiop 

i9 available. A comparison of the resolution and natural deduc-

\ 
• 1 
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tion proofs of a ,relatively very simple argument will illus-

trate this last point. 

'\ 

Dolphins have lungs and are warm-blooded.' 

If dolphin~ hav~ lun~~, then they are Dot fish. _ 
, 

Bence dolphins are warm-blooded and are not fish. 

~ro~f of vali9i.ty.of the argumen1-Qy the tree met~ 

. 
[Negabion of conclusion) 

(L &: W) 

(L => .., F) 

t (W &: .., FJ 

L 

[Expansion of'negated conclusion] 

t -" 

/ Natural ~duction prQ..Qf of the s a.ID..L.PMP...lê.IJ! 
~) 

• r' 

l (L &: W) Premiss 

2 (L => .., F) premiss 

3 W • l • &:FJ.J.m ~ q 

4 L &:Elim l 
, 
5 .., F =>Elim, 2,4 

.,' 

6 (W &: .., F) &Intro 3,5 

.. 

\ 

, 
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III: OBJECTIVES OF THESIS AND JUSTIFICATION 

OF THE.CHOSEN APPROACH (PRODUCTION RULES) 
\ 

AND DOMAIN (SENT-ENTIAL Î:OGIC). 
q, . 

( 

l.......:..Q);û.ec:-t..:i.. veL.9.-LJ;h~_t;.p_eor_~m~v e..r. 
L 

In the design of this ~heorem-prover, two antago-
; 

nis'tic 'objectives had to be taken".into account: the simplicity 

ot the algorithm on the one hand, and its ability on the other 

hand to construct sufficiently elegant proofs. A choice·had to 
) 

be made between a theorem-prover with relatively simple strate-

gies, and a more sophisticated algoritllm capable of ~riting 
\, 

,proofs that would compete in elegance with hand-written ones . 

Unlike other proof-techniques, the natural deduc-... 

,tion method does not provide a mechanical', deterministic proce-
-

dure specifying how proofs are to be construct~d. When 
c 

constructing the truth-table or the'tiee corresponding to an' 

argument, one ne ver has to rnake a choice: at any step of the 

procedure, what comes next is forced. On the other hand, there 

is always an~infinity of legal things to dOl at ~ny step o~ a 
~ 

'" naturel deduction proof. This freedom implies the danger that 

the proof process will follow a wrong di+ection without ever 

reaching the goal (the conclusion). But it also allows the 

\ 

1 From A, one can derive (A V B), (A V Cl, e~c ... 
From nothing (an empty set of premisses), an infinite number of 
tautologies can be generated via the rules of inference of na­
tural deduction. 

\ 

• q 

J 

Q 
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construction of concise proofs (without unnecessary steps) that 

lead from -the premisse$ to the conclusion, in a natural (because 

goal-directed) way. 

There are more rules 0 of inference in natur'al deduc-

tion thari in the other-two metnods. There is a direct link 

~etwèen the number.o~ rules of inference and the similarity of 
< > 

the proofs to ,ordinary human reasoning. How~ver, the more ap-

plicable rules of inference there are at a given s~ep in the 

proof, the more "intelligence" is required in the theorem-' 
~ ~ ~ 

prover· to decide what is the optimal rule tQ apply. 

" T~ objective of t. 'theoram-prover presented here 

is not at all to come as close'as possible to a decision-

procedure. Had this been an objective, then~a transformation 
. 

into some sort of normal form together with a relatively simple 
j' 

strategy would have been appropriate the trick (e.g., putting 
Q' 

a~l premisses and the conclusion in disjunctive normal form and 

apPl,ing repeti~ivelY the rule of disjunction elimination). 

What is wanted on the contrary is loyalty to the spirit of na-

tural deductio~ proofs,- i.e., loyalty to the principle of 

c'onstructing "nice" proofs that look as similar as possible to 

proofs writt&n by human provers. 

Similarity to human-written proofs was wanted not 

only in the final output (i.e., the completed proof) b~t also 

in the way the -proof was constructed. It is'for instance an em­

pirical fact that, in\the construction of a preof, an expe-, 
n\, _ 

rienced 'numan prover very rarely has te use backtracking. In-

o , 
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stead of ~elying on ex~en~ive search and failure-directed back-
v 

tracking, hl1-man provers tend ~o take the tirne to "observe" a 

lot of things in the-premiss~s and tpe conclusion. They do a 
1 0 

lot of pattern analysis, that can be described as "prerniss-

<!:I interpretation" (forward- reasoning), "comparisGn" between pr~e-

misses (seeing common ?iub-formulas), "goal-analysis" (backward 
1 

reasoning, examining the main connective of the conclusion), 
1:.\ 0 ~ 

, 
etc .. ~ The same type of approach was expected from the t;eorern-

prover. 

( o 

Actually, a backtracking procedure was prese,nt in 

the design~of an early prototype of the system. It was discard­

ed on the basis that human reasoners only exceptionally rely on 

backtracking. Hence a program with the app~opriate knowledge 

should also be able to do without it.' Backtracking - and 

extensive search - is probably much easie~ to do for a machine 

th an it is for a human be~ng, but search is expensive (as far 

aS elegance is concern~d) and it is better if possible ~o avoid 
a 

it altogether. This'decision to avoid backtracking as much as 

possible made th~ theorem-proyer more complex than it could 
. . 

have been: instead of letting the system try a wrong route and 

th en backtrack, failure of ch60sing the right route#tirst was 
o , • ~ f 

interpreted as a symptom of not ,enough intelligence.' Such in-

correct behaviour was therefore corrected,by the addition of a 

new rule-to the database. 

The first and ,main r~ason tQ build a more ambitious 
~ . 

theorem-prover was therefore to be faithful to the spirit of 

" ~ f~:'~ 
" '1 

: 
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. , . 
natu+al deduction proofs. Another reason was that the,theorem-

• 6 

prover w\s me~nt" from th:'beg~hning to evolve into a tutori~g. 
, . 

system able to guiQe a st~dept in thé construction of proofs. 
ù 

Now the aim of teaching natural deduction to students is 

clearly not to give the~ a mechanical procedure for construct­

ing preofs,. but rather to give them a tool to use fn the form-

alisatïon ot their own reasonings. 

This point will be expanded in.section IV.4 with a 
o 0 Ci 

descr~ption of the-way students are taught to do proofs in na-

tural deduction. Basically, the idea is that it. seem~er­

abl~, pedagogically speaking, te giv~ the student as much know- . 

ledge as _possible about· the relev:a7;lt patterns that -he/sh.e 

should be able to expect and detect in the sta~ement of a prob-
o 

lem, rather than aouniversal re~ipe based on failure-directed 

baOcktracking. 
. . 

We rnay'therefore summarize as follows the objec-

tives of the theorem-prover: , 

cônstruct not only éorrect but good-looking natural 
o 

deduction proofs . 
. 

An obvious objectiv~ in the construction 0+ the 

proofs is mathe~atical elegance. Major objective of 

this prover: minimizè the length of proofs •. 
b • 

o 
, . 

. . 
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- facili tate 'the implementation of a tutor able to 

teaah natural deduation. 

In other words, the, system should be able not only to 

CQnstruct the proofs but also to explain h~w they 

were found. 

- minimize backtr;cking ) 

More generally, t~construction of the proof itself 

(not 3ust ~hevproof) should he as similar as possible 

to • ~ lh~màn way of doing ~t. 

kee~s simple as possible the strategies used by • 

the theoremQ.prover 

This should be done while preserving optimality as 

far as correctness, elegance of proofs and speed of 
o 

proof construction are concerned. 

A rule-based system was chosen to implement the 

theorem-prover's strategies, so as to allow a simple evolution 
o 

of the system towards more elegance and 'similitude to human 

~easoning. In the cominif-se~tions, we will see in more qetails 

1 what these heuristic rules do and how they are used. It is suf-

ficient to say ~t this point that all.rules have a pattern si-

mil a;" to: 

If the actual goal has such and such property, 
. , 

then add this or that suhgoal to the goal-list. 

o 

Q 
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., 
r or 

, 
If a formula with such or such property has already 

'\ 

been derived, 

then apply this ?r th~t rule of 

The rule-based approach pe an easy experiment-

ation with the content of the kn~wledge-base available to-the 

main program (whose task, at' any step of the proof, is to de­

cide what to d9 next). The major advantage of production rules 

is the _relative ease of addition, modi'fication antl re-ordering 

of rules. _It is this property t~at ,m~kes product.ion rules' popu­

lar in the construction of "quick: prototypes". Anot;her signifi­

cant advantage of a rule-based program is the ~ase of generat-.. 
ing explanations describing the prog~am's behavior. In the pre-

, . 
sent case, the same rules that are used by the theorem-prover 

-to decide "wha t to do next Il are al 50 used by the tutor ·to exp-

Iain a step of the proof or.to justify the choiee of a specific 

action. 

, 

~ ~ 
It remains true that buildi~g a system based on 

1 
heuristic"rules, instead of on a clear-cut algorithrn, rnakes it 

J) 

quasi impossible to prove an~thing about the cornpleteness or 

the adequacy of the chosen set of rules. Actually, no claim is 
., 

being made to thé effect that an optimal theblf~m-prover (as far 

as reliability as weIl as speed are concerned) should remain 
'. 

rule-based. On the contrary, it seems most likely that a consi-

derably more efficient version of the present theorem-prover 
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-
for natural deduction could be rewritten using something like a 

decision,-tree. --

3. ~imitation to sentential logic 

Bledsoe [5] has emphasized the advantages of natu-

ral deduction over other (more syntax-oriented) theorem-proving -'li 

techniques, identifying the crucial feature of non-resolution 

theorem-proving to be the importance given to heuristic, 
1/\ 1 .... 

domain-dependent knowledge in the constr~ction of the proof. 
, . 

Proof-checkers and iheorem-provers using patural deduction have 

been applied successfully to various domains such as set-

theory, the theorr of ,types, non-st~n'dar~ analysis, elementary 

numb~ theory2, and the like. ~ 

The scope of the present project has been delib-
", 

erately restricted to sentential logic ,proofs, not because na­

tural deduction cannot be applied to other ri cher logics, but 
~. ,-

50 as to keep the domain of proofs relatively:small. The 

theorem-prover presented here is- only "knowledgeable" about the 
_ 0 

logic of truth-functional connectives. It is not expected, due 

to this restriction, to invent or even to prove any interesting 

2 Significant work in this direction has been pursued at Edin-• burgl' and Cambridge Uni versi ty. See for instance Lawrenc:e C. 
Paulson [17]. See also Xuhua, L. & Zhan, C. [26] • 
The system implemented by Xuhua and Zhan constructs natural de­
duction proofs in elernentary number theary. Peano's axioms are 
expressed in first-order predicate logic. The "relative prin­
ciple" states ~hat the proof of a theorem should be domain 
dependent and problem dependent. 
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new theO)em (actually, very few theorems of sen~ential logic 

can be viewed as interesting). 
.f 

' .. 

Again, the focus of this theorem-prover was on the 

+aesthetics of p~ofs rather than on their inttinsic usefulness . 
. 

'l'he ide.a was to give the system sufficient information to 

construct "nice" proofs in a restricted domaine Sententia1 10-

gic actua11y turne~ out to be a sUfficient1y large domain to 

~ experiment with the objectives of elegance and auto-exp1anation 

(ability of the system to exp1ain what it does and why). Future 
j) 

enhancements on the theorem~prover may include the addition of 

more efficient inference-ru1es for .s~ntentia1 reasoning (e.g., 

addition 9f de Morgan's laws, th~t wou1d drastica11y shorten 

€he d~riva~ions), or extension towards predicate logic or-other 

logiç:s. 1 \, 

" 

l ' 

. ' 
• 

.. .'~, 

J' 
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IV. DESIGN OF THE THEOREM-PROVER 

In section III, the central objective of the 

theorem-prover was ~tated as th~ emulation of proof-

l construc~ion as clone by human reasoners. The main difficu1ty in 

this task essentially lies in the fact that there is no avai1-
.' , 

able theory of what the art of constructing niee (or "elegant") 

proofs amounts to. 

o l-L- WhgUs a ":o_Q..~...r..Q.o~ , 

, Before going in~~~ucture of the program it­

self, we must therefore ask ours~lve~, first what is this 

"niceness", what is "e1egance~ in the context of pr6ofs, and 

second how production rules can help reaching it. In the domain 

of proo~s, the concepts of "e1egance,II and "nicenes's" are prob-

ably as ill-defined and vague as when used ~n descriptions of 
\ 

art objects. This i9 not.equiva1ent to say tha~ these concePts~, 
, 

are without significative content, but on1y that their meaning 

to1erates sorne im~recision. 
( 

, There are in f~ct a few criteria of evaluation of 

proofs (beyond correctness, which is relatively trivial) that 

are easy to specify: we are able to tell a good (" elegant") 

proof from a bad one by checking whether it contains redundan-

cies, 
"t .. 

or steps that are irrelevant to the goal, and whether the 

ordering of 

pect to the 

the ste~s the proof makes "good sense" with res­
, \ 

overall s r~ ure the proof. Among the most ob-
~/ 

~ 
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4· \ 

jectively measurable criteria of elegance is the sh9rtness1 of 

l'V the proof' {a consequence of the elimination7··of redundancies and 

off-the-track attempts to prove the goar-) 2. So we are able to, 

say of a particular proof that it is correct, but non-elegant, 
~ 

by relying to sorne extent upon such objective criteria. Yet it 

··"ft!ii 
, "'. I~ 

-,'-

'1 

r 
'\ 

. \, 
counter-ex~mples to any pro- ~ 

is important to notice tha~ 

a) it is easy to find 

posed set of such criteria: for instance, it is just not true 

that in the intended sense of elegance the best proef is always 

the shortest one; in the intended sense, a-proof is elegant 

just in case it paral~els "good thin~ing". 

and 

'" b} even if we were satisfied wit~"some set of cri-

J 
teria [or evaluating the elegance of preofs, it would not pro-

.~ 
" , 

vide us with a mechanical. method for the construction of sueh 

proofs. 
.. 

~ 

. t ) ~ .. 

~ 
' ... 

1 When a clear-cut definition of mathematical elegance is need­
ed, people often appeal to a reductien of, that concept to that 

- of the size ef the preof . 

2 In the present case, the size of the proofs had to be taken 
seriously, if only for reasons of screen size on micro-compu­
ters that sets the maximum length df aIl preofs to about 20 
lines.'This is however (most of the time) sufficient for our 
purposes if proofs are constructed "elegantly". 

• 1 
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\ 

2. Vse of production ru1es to capture knowlg~~~~~~~ 

Heuristics are usefu1 when a problem cannot be sol-

ved with a deterministic algorithm. The theorem-prover there­

fore .uses a set of heuristics!expressed as "production rules", 

that are meant to encapsulate specifie as-weIl as general know­

leage about the art of constructing not Just correct, but 

elegant proofs~ 

Hduristic rules are essentially incomplete and,im­

perfecto They can'yield good solutions most of ~he tirne, but do 

not guaran'tee that such good solutions will always be found. As . ' 
any rule-based system, the theore~ov~r of ND wa~ d~signed to 

e~olve in time towards more elegance and completenes~. The 

first prototype of the theorem-prover had a rela1ivel~ limited 
.. - t 

set of rules and was able to do mos~ly simple proofs. The cur-

rent version is much more powerful: for instance, rules have 

been added that can help in choosing what contradiction to look 

for in a re[tio ad absurdurn. Other rules have been added that~>. 

look at the internal structure of newly-derived theorems (e.g., 

when a hypothesis i5 made): these rules are likely to be acti-

vated if the goal is a sub-formula of one of these new theo-

rems. 

Sorne of the rules were actually written by relying 

on a prior! belief tha t they would work, but ,many rules were 

discovered empirically, by finding problems that the theorem­

prover was unable to solve appropriatel~ with the pre;iou~ seb 

of rules. The evolution of the system\was therefore not based 



l 
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on precise evaluation criteria (such as size, redundancy, 

~ etc ••• ), but on a rather subjective evaluation of the quality 

of proofs_. Whenever the program solved a problem differently 

:than what l woul~ have done, it was interpreted as a symptom 

that a rule was incorrec,t or missing. 

The order in which rules are consulted has been 

m6dified many times, again empirically, as a function of the 

corpus of exercises. Improvement of the system was therefore . 
achieved th_rough the addition, modification and reordering of, 

these heuristic rules 3 • 

3~ll~és of'inference vs proof-.~rategi~euri;tic rule~ 

-Wb.Ç.Lt_i..L.P_e..r.m.itte...à vs what' sho\J.l_~_q.9~-L 

It is perhaps appropriate at this point to empha­

size that the set of heuristic, rul€s should not be confused 

with the set of inference rules as defined in section I. 

The 11 rules described in sectiJh lare inference 

rules: together, they specify the 'set of valid (legal) infer-

ences that can be made over a given set of sentences. For inst-

ance, if sentence A has already been derived, then it is~egal 
1 

3 In the spirit of such empirical development of an appropriate 
set of ru~es, a module for automatic generation of exerci,ses 
was consilered but has so far not been implemented (it is in 
the agenda for future developrnent). Such a module would be use­
fuI to exhaustively test the prograrn's current set of rules and 
evaluate its ability to solve any preef. This generator could 
also find interesting applications in the tutorial (e.g., 
construct an exercise Qth~~would take the st~dent model into 
account, instead of merely selecting an exercise in a pre-esta­
blished bank of exercises). 
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to write CA V B) under it and justify it by the rule of 

V-Introduction. Rules of inference map theorems to theorems. 

They speqify what it i? permitt~d to infer. They ean be thought 
j • 

of as the declarative part of logic and-say nothing about when 
il 

a part~cular rule should be used. ) , 

To make the system efficient, and abl~ to produce 

human-like reasonings, a set of strategy rules_is ,used, that 
( 

specify when and in what order the inference rules should be 

applied. Instead of mapping theorems to theorems, a strategy 

rule can MOSt of the time be thought of as mapping goals to 

su~goals. In other words, strategy.r~les concern the' control 
1 

part of proof-construction. They :can be thought of as heuris-

tics or hints about what one should do to find a proof. 
~ ?~, 

.r 
Renee the set of· str~tegy rules is an atte~pt to .. 

refine the strategy that would consist in deriving wh~tever is 

legally derivable. ~-We can ea'5i1y ~gine how a ':dumb" theorem-

proyer could, without sorne sort of control from above, spend 
,.-' 

\ 

its time using"the inference rules to generate new theorems \ 

from the premisses until one of the derived formulas matched , 
the goal formula (the'eonclusion). This of ~ourse would cleer1y 

l, .. 

J 4 be qUite impractical sinee, as was already mentione~, the in-

ferenee rules a~low an infinity of things to be derived from 

any number of premisses. 

\ 

/ 

1. 
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We have seen in. section l the conditions of applic-

ation- of èach of the 11 rules of inferen~ce: Looking a tnis 

list, it appears clearly that sorne of the inference rules (in 

particular the introduction rules) have very weak conditions of 

application. For instance, the rule of disjunction introduction 

can be applied on any sentence whatsoever: it says that from " . -

any sentence S it is permi~ted to derive (S V S'), for any S'. 

-The~condition of application of the rule of conjunction intro-

.duétion is' also extremely weak: it says that from any pair of . 
sentences S and S', it is permitted to der ive -the new sentence· 

~(S & S'). It would not therefore be fèasible to take the rules 
"L 

of inference themselves as productio~ rules and to activate a 

rule of inference whenever its conditions of application were-

satisfied: t~is would allow the derivation of too many sen-
! 

tenèes, most o~ whfch without any. relation wit\ the"goal;'i' 
,. 

It is therefore the appl;cation of introduction 

rules th~t must be most carefully contro~led hy goàl~directed 

strategies. It appears, on the other hand, ~hat ~uccessive ,p-
" . 

lications of elimination rules are not likely to create ~ro-

. , bl~~s.havinF to do with-the. undirectedness of the search4 • But 

\ 

; 

the cenc~rn with elegance of tne preof forbids the simplest ap-, 
. ., 

J 

4 This has to do wi'th the fact th-at the applic~tion of elimina-' 
-'tion rules may, only generate sub-formulas - hence shorter 
formulas. ,1' '" 

, 
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30 , 
proach that would consist in writing on the screen aIl sen-' , 

tences that are derivable via some elimination rule. 

When students learn natural deduction theorem­

proving, they are usually told to use the fOI'lowing three prin-

ciples, that/should be epplied in order: & . 
a) Work from the bottom, up, inasmuch as possible.," " 

In other words, try to apply the introduction rul~ for the main 

connective·of·th~ statem;nt you are trying to prove: Dete;mine 
" , 

, V 
Which senten~es, if you could'derive them, would enable you to 

. ) 

derive the conclusion. Deriving these sentences becomes your 

new goal. 

(Backward reasoning). 

b) See wha~ i~~ediately fol~ows from the premisses 

and what you have derived so far. That is, lif yeu can't work , 

from the bottom up, do sorne top, down thinking. 

(F'orward- reasoning) . 

. ~) If nothing else work~, use RAA (reductio ad 

absurdum), 1. e., assume the èontrary of what you are trying to 
~ . , 

prove, and der ive a contradiction . .. 
" , 

L.-

l ,AIJ:.hough- relati vely simple and incomplete ',' this ba-
'- r 

sic strategy is sUfficiently strong to lead to a solution in 

/1 

_D-.:,-..-J 
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1 
quite a large number of proofs. Beyond this general advice how-

ever, the student is told to "use his(her brain" in the task of 

determining what should be done in parttcular situations. In 

the construction of non-trivial proofs, "using one's brain" 

essentially amounts to being able te observe certain patterns .. 
or,properties in the premisses and the conclusion, and to de-

, . 
duce" frO"m these observatiO'îls what subgoal is likely ~ be a 

use fuI fntermediary step, what hypothesis is likely to have an 

intèresting consequence that will semehow contribute to the 
-, 

'proof, etc ... Basically, the student is asked to refine for 
o 

'. 
himself the basic strategy (the three principles listed above) 

as he/she tries ·::to solve new exerci·ses. To' do 'so, he/she is. as-- .' 

,ked to use intuitions ~bout valii inferences in 'sentential 10- . 

gic (i.e., about the" ordinary interpretation of the connectives 
. . 

~sed 'in 'sentential logic). Indeed, beyond the .general strategy . . 

described above, the construction of. proofs in natur~l deduct-

" ion is ta~ht more as an exercise about the meaning of ordinary 
i' 

words used for reasoning (IF, AND, OR, NOT) than as a symbol-

pushing rnechanical proc~dure. 
t 

In the process of refining the basic strategy, the 

student is expected to mas ter the technique of goal decomposi­
,. 

tion into subgoalsi in particular the use of subproofs to prove 

• 1 
\~ . 

0 

, . 
,{f 
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, 
certain types.of goals (the use of subproofs should he restric-' 

, 
ted to proofs of implications and proofs by RAA). 

\ 

.- .s. ForwSl.rd and backli~Ù'd rea~ng in the theorem-pt:QYe;t: 

The theorem-prover mirnicks the human way of 
-~ 

constructing a proof in natural dèduction, using both forward 

and backward reasoning: the se arch is done both in a forward 

direction from the premisses towards the conclusion (from the 

top of the proof to the bottom), and in a' backward direction 
\ 

(from the bottèm up). The strategy rules are therefore divided . 
into tw~ subsets. The first set is concer~ed with the question 

of what can be i'nferred' "immediat!~ly" from what is already , 
1 . 

. kn~n; the second set with' what must be proved in orde!" -to 

rêach the conclusion. , 

- P...J'_&:!itlL.,ba_ç$XÇi,7:"'p auLt or:E!1rd rSJ4 $P);I.:tOg_ëLJ::JLi.1llP-l..eJn.e.n :t_e_d_i.J1_éi 
(t 

Any rule-based system con$ists of a set of rules of 
< • 

the form IF <X> TH EN <Y>, together with an "inference engine" 

that operates on the set of rules to make deductions. Whatever 
. . 

form the data may take in tpe system (ordinary data-structures, 

or· sentences), the <X> and <y> of the last sentence always 
-

refer to conditions and actions on the database. It is the in-

ference engine's responsabilit~ to specify how the rules are to 
~ 

be,used to consutt , and eventually modify, the database. 
\ ' ~ 

In a fQrward .chaining system, antecedents of rules 
;/ " 

'are considered first and the firing (activation) of a parti cu-

,:. -.. - '. 

, -
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33 ., 
lar rule eventually modifi~s the context so.s to make'true the 

an~eced~nt Qf another rule. It is'therefo;e appropriate in this , \ 

case to talk of rules being chained in the forward directi~ • 
1;) U 

In a backward chaining system, it is the conse-
, -

quents of the rules that are examined first. This allows the ~ 

identification of which subgoals should b~ pursued so as to 

make thé firing of the rule possible. 

It is important that forward and backward chaining 

may be applied on the sa~e heuristic rule. They are just two 
• ~ 0 

different ways of using the information contained within the 
, , 

same rule. In the present theorem-prover, only forw~ra chaining 

is used (i.e., the rule precondition is always examined f~rst 
a 

and if satisfied, çauses the rule to fire), although certain 
l , 

rules have as objective the implementation of a form of back- ~ 
.. 

ward reasoning. 
\ 

The implementation<of mixed-chaining systems (tha~~~ 

use rules sometimes in a forw~rd and sometimes in a backward , 
dirèction~ 'calls for complex inference engines that are typical 

of sophisticated rule-based systems~ In the present case, the 

inf~rence engine is extremely simple? rules ~r~ consulted in a' 

pre-determinè~ order and the first rule whose pre-condition is 

satisfied fires • 

. \ 

.... ~.~~"\ 

.:' 
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7. The~ain data-struc~res'of ND 

Backward reasoning - the decomposition of goals 

into subgoals - is therefore implemented as a set of rules that 

is used in the same way (forward c,haining) as the, rules thàt 
o 

are meant to be used in forward reasoning - the derivation of 
J'W fIP 

the consequences of a se~tence or set of sent~nces. The major 

difference is that backward reasoning rules act upon a struc-
~ 

ture t~t keeps track of the evolution of the goals (GOAL_LIST) 
"', 

1 while ~he forward reasoning rules update a structure that keeps 

up to date the set of\avaiiable theorems (AVAILABLE). , 
A dynamic structure is us~d to store the output of 

o )foorward reasoning - the array AVAILABLE. Actual action on the 

screen is goal-directed. When something is sent to the screen, 

the structures ONSCREEN and PROOF are' also updated. 
1 

GOAL LIS~ is implemented as a stack of goals. When-
.- "t 

ever a "backward-reasoning" rule fires, one"or two new new 

goals are defined and added on top of the stack. Whenevet: a 

goal is achieved, it is popped off the stack. A new goal may be 

- a formula {e~g., if goal~as the form X & Y, add 

goals X and'y O? top {Of GOAL_LISTl/ • • 

~ , ~(~;;: 

\ J'.,I 

- a subproof (e. g., if goal ~ the form X_ =:=.>.', Y, add as 

a new goal the PFoof of Y under the hypothesis X') , , J 
1 

o 
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D 

- a subproof leading to a contradiction (e.g., if th,e 

current goal is the negatiQn of the antecedent of a 

theorem in AVAILABLE, use reductio ad absurdum, i.e. 

try t~derive a contradiction under the hypothesis of 

the negation of the goal). l 
Note that GOAL_LIST rnay contain·fully specified 

goals (e.g., prove formul~ X, or prove formùla X unde~ hypothe­

·sis Y), as weIl as goaJ41 that are only partially determined 

(e.g., find a contradiction under hypothesis, X) • . 

lh the cours~ of a derivation, whenever a new sen­

tence 'appe~rs in AVAILABLE .. ei~her aS a hy~othesis or via 

fcirward-reasoning, this new sentebce itself is "forwarded"', 

i.e., its irnmediate consequences are derived, stored into 
. 

AVAILABLE, and forwarde~. At all tirnes, the structure AVAILABLE 
-

therefore.contains the premisses, the hypotheses that are still 

active, as well as aIl the sentences that have been derived 

e~rlier in the proof and have not yet been discarded. 

"-
Atentence occupies only the first part of a slot 

of AVAILABLE. Actually, AVAlLABLE is an array of lists each of 

whic~ consists of 

. a sentence, 

.the rule of inference used to derive it, 
0, 

5 Words in bald type are narnes of functions or pre~ates used 
by the theorem-prover. Data-structures are in capital letters. 

t 
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.the posi-tion in AVAILABLE of ~he sentence(s) from 

which it was derived 

e.g., (AVAILABLE 7) might be (A HYP) 

(AVAILABLE 9) m~ght be «C =) A) =>E 4 7) 

A 
50, AVAILABLE stqres not only sentences but also 

their origine Not all sentences that appear at some point or . '--, 

anot~er in AVAILABLE will actually he used in the proof. But 

when a sentence is needed, it may he fetched from AVAILABLE 

with all the information needed to justify it. The information 
~ 

o 
stored in-AVAILABLE makes it possible to define the function 

(path x) which returns a sequence of steps from which x was 

derived. 

Care must be taken with the m~nagemèn~ of AVAIL­

ABLE, in particular when a hypothesis is discard~d, since'what-

ever was derived on the hasis of this hypothesis should no 

...longer be availab!e6 • 

\.. 
o 

o 

The production rules of ND are therefore divided 

into three sets (one for-top-down reasoning, one for hottom-up 

reasoning, one to guide the search of a contradiction). The 

oontext deoides what group'should be consulted. A detailed lis-

ting of these rules is given in appendices 1 and 3. 

• The functions delete an~discard ar~iesponSible 
elementary "truth-maintenance-system". . 

for this 

. ... 
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v. EXTENDING'THE THEOREM-PROVER INTO, A TUTOR 

1. Motivation and ~~~~ of tytori 

~ Even at an early stage of development, tpfo theorem-
~ ~~ .. 

prover appeared to be easily ex~andable into a compuëèr-assis-
Q 

ted logic course (natural deduction constitutes the core of the 

typical introduction to logic course). The idea was-that on top 

of a rule-based program capable to do the proofs in a natural 
, ' 

manner, it should not take too long to build a program able to 

teach ~omeone how to do them: the strategie rules used by the. 

theorem-prover co~ld be made available to a tutor"that would 

use this "knowledge" te give advice about the censttuction of 

proofs. 

- . 
At the time, no micro-computer program was avail-

able on the market to teach natural deduction. A team from 

Stanford University, headed by Frederic Suppes1 , had developped 

à computerizrd- logic course (Bert y), containin'g arnong other 
>? 

thi~gs natural deduetion exercises. ~t Bert y ran only on main-

frames with lots of virtual memory. A~~, it had actually been 
" 

qesigned from the start ta act .as a proof-checker -and 'did not 

have the ability te construct proofs autonomously. 

1 Suppes, P. and S~eehan, J., "CAl course in ~xiomatic 
theory", in [23]. 
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therefore not well-suited to be extended into an "intelligent" 

tutorial. 

~~M2 in the,perspective of current ICAI; 

The first generation of computer-assisted courses 

offered relatively little interaetivity with th~ student: the 

computer's role was essentially limited to presenting the'stu-

dent with questions or exereises for which the correct answer 

or solution had been prereeorded. The recent evolution in the 

last few years' of domputer-assisted instructipn has followed . 
two major trends: the firs1: towards sophistieated "micro-

worlds;, that provide the student with rich environments to 

explore: the second towa-rds so-ca'lled "intelligent tutoring 

systems" .-

In such systems, a program (the "tutor" or "coach") 
. 

attempts to emulate the pedagogieal funetions of a human teach-. , J,", _____ 

er~ Beyond congratulations'and error'messages, a tutor is exp-

ected to proyide intelligent guidance, i.e., to come up with 

appropriate remal:-'ks and explanations ~hat are relevant to the 
. 

student's progresse The ideal cpmputerized tutor is often pic-

tured as a silent observer who watches patiently over the stu-

dent's shou1der and oecasionally pecides to intervene, giving a 

hint when the student hesitates or ••• suggesting further read-. 
ing when the student seems interested. 

2 STEL (Système' tutoribl 
the name of the tutoring 
the the~em-prover. 

pour l'enseignement de la logique)] 1"s 
sy~tem that was develOi'\. on top of 
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To he sure, 'a lot remains to be done in that direc-

tion before the dream of a truly human-like tut or is actually 

implemented.~Some programs, however, already eXhibil impressive 

features. At the present time, we are, stil~ at an iarlY explor­

atory stage of the possibilities of computerized tutoring. It 

i5, however, universally accepted that intelligent tutoring is 

possible only if the tutoring program has enough domain know-
. . 

ledge to solve the exercises by himself:' Beyond that, there is 

also widespread agreement over the idea tha~ intelligent tut or­

ing ne~ds sophisticated student modealing: not surprisingly, it 

appears that the most difficult part of all ambitious tutor~ 

has to-do with diagnosing accurately the student's behaviour. 

-; 

The .... t.utor implemented in stel, as we will see, is 

relatively modest a~d shares only a few characteristics with 

the most ambitious tutorials. To put it in the perspective of 
. . 

the current technology, le~ Js look at two of the mose signifi-

cant tutoring systems, B.uggy and Proust. 

',_ Buggy, one of the earlier AI pro~s in edu'cation, 

.1 has put forward the idea that, whenever a student makes sorne 

mistake in attempting to solve a given exercise, this rnistake 
- ~ 

is not to be interpreted as me~e "lack of understanding" or ir-

rationality on his/her part, but rather as the consequence of a 

wrong theory concerning the subjec~ matter. Buggy therefore 

tries to identify the "bug" in the student's he ad and th en to 

explain to the student what the bug is and how it relates to 

the correct theory. The domain in which Buggy specializes is 
\ ~ . ' 

l , 

.,: 
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1) 

subtractions in arithmetic. The domain knowledge contains a set 
/' \ 

of correct rules as weIl as a set of "rnalrbles"3, about the 

èonstruction of subtractions. The first set represents correct 

strategies, while the second contains variants (rnisconceptions) 
-

of these strategies that lead to comrnon mistakes. When the stu-

f dent rnakes a mistake, the program is thereby able to base its 

,~ diagnosis on the identificati~of which "malrule" was applied 

by the student. 
.-

on the 

The fias 1bili ~y of this approach depends of cours'e 

POSSibiliJy to ~redict a pr10ri aIl the possible learn-
~ .. ~- ~ ... ~ 

ing difficulties (learning bugs) that any student rnay encoun-
• 

ter. This approach did not seem appropriate in the implementa­

tion of a tutor for natural deduction proofs which belong to 

the class of non-deterministic problems (problems fé~,which 

there is no rnechanical procedure for reaching the solution). 

Among other problem-solving domains (in education) 

belonging to the same class are intuitive geometry, analytic 

geometry, transformations of equations in elementary c~lculus, 

transformations of trigonometric expressions into ot'her ex-

pressions, etc ... In problems belonging to such domains, it is 

~uch harder to diagnose whether what the student is doing 

should be acbepted as progress towards the solution. In natural . 
deduction, identifying strategie mistakes is not str~ight-

forward and isolating the bug may be rather tricky when a mis­

-~ -

3 See Sleeman, D., "Assessing as'pects of competence ~n basic 
algebra", in Sleeman & Brown [22]. 
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take is/detected. Sornetimes students make mistakes because they 

have a wrong (i.e., buggy) interpretation of h~w a rule of 

inference should be applied. But some,students just have wrong l 
. 

logical intuitions, believing for instance that the formula (A 

or Bl implies A in the same ~. lA and Dl does. 

The Proust program4 , another classic in ICA! (in-

telligent compu~er-assiste'd instr~ction) was .designed to ,/ 
/ 

/ 
help students in debugging non-syntactic errors in Pascal pr6~ 

/ 
. / 

grams. Unlike subtracting, programming surely belongs to t)l'e 

category of non-deterministic problem domains (there cepfainlY 

is mor~ th an one way of writing a p'rogram that satisfles a . / 

gi ven set of specifie a tions). prqus t inco:r:pora tes a/ problem-
( 

description language that allows deta~led expression Qf program 

specifications. The tut or 's expertise' is based upon s~ecific 
, 

knowledge about selected problem tokens. It knows enough about 

programming to write these particulâr programs,.and this ~now-
( . 

ledge is used by the tutor to decide what errors a~e to be ex-

pected in the student's behaviour. 

-This makes Proust one of the most -serious' tutoring 
. 

systems availab1e today. Its knowledge allows it not only to . . 
'), 

predict what are the most likely mistakes that a student will 

make in attempting to solve the problem, but a1so to identify 

the student's intentions and to base its comments on reasoning 

4 PROUST (PROgram Understander for STudents); see Johns'on, W. 
L. and Soloway, E., "Proust: an Automatic Debugger for Pascal 
Programs", in Kearsley [12], and "Proust: Knowledge-Based Pro­
gram Understanding, in Rich and Waters [19]. 

" 

/ 
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over these intentions. The originality-of the program consists 

in its ability to determine what the student is trying to do. 

Proust attempts - successfully, according to its 

authors - something that does indeed seem very ambitious: to be 

able not only to decide what the student should be atternpting 

to do (this only requires expertise about solving the prob-

lems), but also what the student actually is trying to do 

(which requires' sophisticated reason~ng over iîftentions). 

1 

We may summarize the current state of the art by 

listing a number of desirable fe~turés - many of which seern 

dic~~d by common sense - that characterize diagnostic tuto~. 

a) It is important for the system to have knowledge of the 
1 

domain it teaches: in order to be able .to expl~in something, 
-

the program must be able to solve the proolems without external 

help. '\ -" --

", 

b) In a non-determi~istic kind of problem-solving, it is 

important to give the student the feeling that he·is not just' 

following a mechanical procedure but that he or she has to 

think about what tne problem means. Studen~s in fact do tènd to 

well-defre 

~) T'he, 

tasks are solvable by follo~ing a 

should have the ability to emulate a hurnan 

li ,Se'e Sleernan, D., "Micro-Se arch :- A 'Shell' for Building Sys­
t;,e'rns to Help. Students Solve Non-deterrninistic Tasks", pp. 69-
gl, in Kearsley [12]. 

Jr~. "~i"\:~ 
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-
teacher' s language. l" 

d) Student. of~eL ~earn bet1~ by being given aeees. to a 

1 rich environment that they may explore freely, th an by being 
1 

constantly guided by a tutor. It certainly appears reasonable 

for the program to vary its teaching strategies. 
lt 

e) Ideally, (the system s~ld know about typical patterns 

. '" of errors that students are l1kely to make.-
.. 

f) Reasoning over the student's intentions is useful: in 

or,der to give useful hints ~ the program must know what the stu-

dent is trying to do. / 
LJ_l!lRJ1~s t tu t..ru;: 

Due to time limitatiobs, the ambitions of the Stel 

tutor have been deii'berately tied down. -In its cur~ent state, 
, . 

the studel'lt model' is nothing but a pu'rely quantftative struc-

ture that registers student successes and failures" in the comp-- , 

letiôn of proofs. It would certainly be an interesting conti-
+' . - ' / 

nuation Qf the project to work on a reasonably ambitious 

student-model with qualitative éval~atio~ of student'r~sporr~es, 
f -. 11 somewhat along the lines suggested by programs such as Prous't. 

1 

The implementation of a tutor on top of the, 

theorem-prover was achieved mainly through the addition of a 

modu~e able to check the student's proofs and to generate hints 
\ 

when appropriate. The student and the tut or do the proof in, pa-
-

rallel. At any step of the proof, the student is given the op-

tion to ask for a hint if he/she doesn't know what to do. The 

tutor attempts no analysis of how the student's strategy dif­
p 

1 



• fers from its own, but intervenes only when inference rules are 

incorreétly applied. 

Unli~e the· tutors of Buggy or Proust, the tutor !~ 

Stel does not pretend to be able to diagnose the bug in the 

·student's head. Tc be sure, a lot of psychology would' have to 

, " 1 be involved in a sophisticated tutor able to diagnose accu~ate-, , 
ly the founc1ation of" student' S mistakes. No analysis ,of the 

\ 
student's intentio~s is attempted in Stel. On the other-hand, 

while Buggy specializes in a deterministic demain, and while 
'. ~ 

'. 

o , ri' 
Proust is able to guide students in only a pre-seleëted sét of 

. 
progràmming exercises, Stfol is abl~ to take any exercise in na-. 
tura~,»ieduction (restricted to sentential logi~ ~omplete the 

proef, explain any step of the proof, and event~ly guide a 

stud'ent in the construction of the proof.· '" 

Along the lines of the "microworld" concept, a mo-
, " 

dule made available by Stel allows the student to explore6 

,freely and at his/her own pace the world of concepts that are 

used in natural deduction proOfr: The concepts ar~ ,stru_c,tured 

into five trees that cover: ) 

the different types 'of -formulas (conjunctions, 'ünplica-

tions, etc •.. ) 

\. 

~ the names of the parts of compound formulas (antecedent; 

conjunct, etc •.• )-

- .. the structure of a. proof ,(premisses,. subproofs't! justifi-

, 
...... ~ .. '" , 

6 Screen-durnps taken from this module may be found at the end 
of append~x 4. . 

( 

... 
1 
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,cations, et~ ••• ) 

the 11 inference' rules 

- strategy-rel~ted concepts (top-down, bottom-up, goal'de-

comppsition, the role of hypotheses, etc •.• ) 

The evaluation of the student's progress with·res­

pect to~ tte natural deduction technique is recorded in a struG-

ture, the "student model". This structure contains slots ~or , 

e~~f the eleven i~ference. rules as well as fbr a number of 

concept~ and techniques t~at the student iS, expected/to maste~ 

(e.g., use of hypothes~s, restrictions on teiteratiot, ~tc ... ). 

The student model specifies, for :each rule of inferetce and' 

each major concept" how m~ny mistakes the ,student haS'm~.de an~ 
\ 

how, many .... correct answers he has g;iven'. At the end of eacl'~ ses-
cr-.-' 

a j 1-' ~ 
sion, the student mode1 'structure i~ i'ecorded on ~ student' s 

OOPPY-disk to be re-read at the beginning of the ne~t ~essio~. 

Another'module iS"responsible'for choosing the next 
... 

exercise - tuned to the student's level - !rom a bank of exer-

cises and submit it to the studen • The ~xercises are di~ided 
~ 

into subgroups according o erall difficultY'(simp1e, 

intermediate, hard) and, ~ subgroup, with respect to 

the r~les of inference that mus app~ie,d to solve them. 

~elC-p"l a!HLti_91L~y,~j;;J;U1~eJ)~_:i,.Ç,hInJ;Jlt_QLt.h.~ ru1 e s truc.tyJ.r...~ 

In the theorem-prover, rule~ were used to decide 

what to do at any step inJthe construction of the l'roof. The 

.. 

... 

.. 
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. 
extension of the ~heorem-provér into a t~torial implied the 

( 

addi~ion of enough structure to the rules to al10w them to be 
1Y 

accessed by three new modules: 

- an explanation module 

-

46 

To each rule is attached a Itmessage.-schema" that 

is ~sed to gen~rate a message appropriate-to ~h~ 

:,,: _ context7 

, .. 

. \ ' -

- an error-message generating module 

-
To the property-list of each rule of inference is 

~ ~ 

attaqhed a condition of application. 

l " An "error-message sclie-mà is attached to each rule 
: 

'and used to explain why', in the given context, 

the' condition of application is not satisfied. 

- the student model updating module 
'R' 

To eaoh of -the production (strategy) rules is at-
-tached an inference rule, and, in sorne cases~ a 

concept: a correct application of the rule in-, ~ 

'"' 
creases the student model's score for that 

concept as well as for' the rule of inference. 

A.list of recent errors is also updated 

constantly and is consulted at the time of 

selecting the ~~t exerçis€.-

'--

, -

.. 8 See screen-;dumps in appendix 4. tt.-

'-. , 

) 
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. ~ 

§. Rem~~ntation of the tutQr. 
-

Altogether, mos~ of the extension of the theorem-, 

proyer in~o a tutorial has heen a 'fascinating project to work 
1 

on. However, it certain1y took 'much more time th an was first 
, • 0 

expected, mostly because of the necessity of a simple to use 
• Q. 1 and clean user 1nterface8 • The overall qua11ty of user-

l 

interfaces has improved greatly in recent years-with the multi-

, plication of micro-computer softw'a.re targeted to nai ve users. 

Stel was written in ~ relatively elementary Lisp that did pot 
n 0 

~nclude many of th~ primitive low-leve1 functions available in 

more popu~ar languages such as Pascal or Basic. But beyond 

these user-interfacè functions, l wou1d like to mention brjefly 
. ........ 

~ - -
t~o other unexpected .;'problfms n t!la} contributed to take the 

time ~evoted to the imp1ementation of t~ tutor far beyond my 

first expectations. 

First of a11, it soon became manifest that the 

product would not be usable by studen~s without a module ~x-, ' 

p1aining :al1 terms used by the tut9r. This evolved into a quasi 
, , 

lagic-coùrse, defi~ing aIl the logical concepts used in natural 

deduction; a lot of time and energy had therefore to be invest-.... 
o , 

ed in a necessary part bf the proJect that had very 1ittle do 
. , 

do with artificial\inte1ligence: deciding w~at concepts shouad 

" 

• 
8 If l had to get involv~d again- in a prograrn meant to be ac­
tually used by students', l would probably think 1i-wice abou-t 
i t ... 

l 
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and which should not be included in the directory, classifying 

them and then finding the right words to explain them. 

A second unexpected difficulty in the împlementa-

" tion of the tutorial came from the late realization that there 

was 'nO, way to avoid backtracking9 when the program was doing 
'1 

the proof in parallel with the stu~ent. It is indeed not real-
, 

istic, for obvious pedagogical reasons, to forbid the students 

to go in completely wi1d directions: if a student'wants to de­

rive something t~t is legal1y pbtainable by one of the'ru1es 

of inference, he or she should be a~lowed to do it; the program 

is ~n fact total1y lenient with respect to the choice of a11 

subgoals. Sorne control is ~de ov:er" the choi~e of hypotheses10 

because it is part of the ~atural deduction general strategy 

that hypotheses sho~ld not be made gratuit~ously, but always 

with sorne particular subgoal in mind. This necessitated more 

comp1ex interna1 structures (e.g., the new structure ONSCREEN 

can lqose formulas if the student erases them). It also changed 

significant1y the management of the structure AVAILABLE (since 

backtracking as well as discarding hypotheses could now make a 

theorem unavailable). 

~--~----------------

9 Bac~tracking was ~onsidered undesirable in the theorem-prover 
{ for reasons discussed in section III.l . 
~~, ' 

10 See scre'en-dumps in appendix 4. , 

, , , 
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An early version of Stel was tested successfully 
'1. • 

) with two groups of philosophy students at College dé Maison-

neuve. The student response was satisfactory although of course 

not as enthusiastic as we would have hoped. Version 1 of the 

product is now in the process of being distributed to aIl Que· 
o 

bec colleges. After spending sorne time away.from the intrica­

ci es of user-in'terfaces, it i5 vetf"likely' that a second 

improved version ,.will be rewritten in the near future, probably 
~-:'I 

in Cornmon Li sp. 

o 

'. 

... ~~~{~ 
4' l' 

'. 
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VI. ,REL,EVANCE OF NATURAL DEDUCTION 

TO- ART:IFIC.:IAL INTELLIGENCE 

• 
" 

1-1-I.LJ.jL.im~JUl.Lfg_L9~Eto.r..e..m.:.P.rQver to l2..e~_j:!~hl1;} 

il.L9.:wJl.--1:eMgJJ..i.p~Thi..Li~nier to realize ~'L1lgtur_q.l_(te-

~.J.tç1;Ào_n_s"'ys t_!tm_~ 

Leaving aside the realm of education, let us try 

now to evaluate the potential benefit of ~sing natural deduc­

tion as a too1 for actua1 theorem-proving. In sorne situations, 

we may be interestet to use the deductive.abi1ity of a theorem 

prover 'OnlY in order ~ estab1'ish :hether sorne be1iefs are 10-
1 

gically e~tai1ed by the set of beliefs stored~in a given 

knowledge-base. In this kind of situ~tion, sorne version of 

resolution-based reasoning may be an appropriate choice. If, on 

the other hand, we are interested ift the theorern-prover'~ abi1-

i ty to explain, in ordinafY in tui t,i ve terms, how i t was able to 

deriv~ a staternent from other statements, then nàtural deduc-

tion presents the obvious advantage that its proofs are 

constructed in a way that is sirnilar to human,proofs. 

:In mathernatics, people often care more for unders-

~ tanding why sornething is a theorern than for testing whether i t 

, is one. In the field of deductive databases, people will not 

(or should not) accept reasoning-based (i.e., non-trivial) 

com:lusions frQm a computer wi thout . knowing how they were 

reached. On the one hand, a conclusion is more convincing if 

, f 
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what supports it is made explicite On the other hand, it is un­
I 

realistic~ope for bug-free databases, ~s soon as they are 

relatively large: it is c1early a significant advantage for de-
\ 
\ 

bugging if the system is able not only to deduce'things but 

also to explain how its conclusions were reached. This suggests 
D 

\ that sophi~ticated theorem-provers ought to b~ cq~p1ex ru1e­. ' 

i ' based systems rather than simple axiomatic generators. 

/ ~J:'yra1 deductio~l..lows the.JlossiQi.ti ty tQ....gi ve iL,.§.k..etch 'of 

the-Pj"....9,Q.LQ;:_t_o~iYJL.p_9,;r_t_iJ~1_~.P-l.!\n(l_ti.Q.IL.in the ca~~i_t~~ 

i.ll_tnJL_$eq;:.ch of t,he pro..Qf 

The structure of a natural deduction proof makes it 

extremely simple for the system to give a sketch of a proof, 

instead of 

vantage of 

resolution 

the complete proof. This feature cou1d be taken ad­

whenever a qUick explanation is wanted. (H[3w would a 

theorem-prover summarize its proof?) 
, 

In,the case of fai1ure of finding a proof for a 

formula, the program could give use fuI comments. There shou1d 

be no difficulty in producing reports such as the fo11owing: 

"You asked me to examine whether iÇ is true that P => 

(Q & R). l was able to show that' P => ~ but, as far as 

l can see, P does not imply R. Actual1y, P & ~ R is 

consistent with aIl integrity constraints of the pre-

sent database. 

From the hypothesis ,p & ~ R, l have -derived the fol1ow-

ing: A, B, C, etc ••. '11 
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- Resolution theorem-proving uses only one rule of 

inference. For this reason, it can be praised as a very simple 

and thereby "elegant"l technique. But this simplicity is patho-

logic~l: because it is so simple, the resolution technique is 

Àard to modify2. The naturalness (i.e., inherent complexity and 
1 " 

redundancy) of natural deduction makes it more amenable to mod-

ifications. Here are a few examples of what modifying a natural 

deduction system amounts to. 
". 

Natural deduction permits a simple definition of 

new connectives. Indeed, there are a number of applications to 

which natural deduction"can be tuned. This, again, ~s due to 

the close resemblance between a natural deduc~ion proof and or-

dinary human reasoning. The addition ~f such new connectives to 

the language makes it possible to express reasonings that were 
, 

not expressible hefor7• It is important to realize that sent en-

tial logi~ is limited to reasonings over connectives such as 
1 

AND, OR, NOT and IF THEN. Sentential logic is therefo~e able'to, 

account for the validity of only a very small number of in~ui-

tively valid arguments~. As' soon as we want to go beyond these 

-------------
1 At least ~n the mathematical sense, not in the intuitive 
sense of "elegance" . 

2 As far as l know, resolution stops at the level of first-
order predicate calculus, in the hierarchy of existing logics. 

3 Th~ fact that the first expert systems (Mycin, Prospector) 
used a set of production-rules lirnited to sentential logic (no 
variables or quantifiers in the rules) simply shows that these 
systernd were primitive. The fact that they were use fuI and 
produced significant results (in such fields as medieal di agno-

, 
1" .. 
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\~ 
reasonings, we mùst enrich the language and the logic that goes 

with it." 

Predicate logic, with the introduction of variables 

and quantifiers, is ab~e to do significantly better: i t':'îld'à'~ 

the expressive power of the words ALL and SOME to the language. 
,~ 

To apply the present ND theorem-prover to proofs in predicate 
. , 

logic, the syntax. of the language has to be modified (i.e., the 

function that tests whether a string of symbols is a well­

formed formula must of course be changed), and the'introduction 
, 

and elimination rules for the quantifier$ have to be added. 
" 

Qua~ti~ier~ usuvPl1y introduce a num~er of dif~iculties (subs­

titution is difficult to formalize, free variables must be 

skolemized, ... ). But these difficulties are now relatively 

well-understood and may be captured by restrictions on the ap- ' 
r 

plication of rules in natural deduction. 

Extension to predicate l6gic is an addition to the 

la~guage of classical sentential logic. In some cases howeve~, 

the formalization of certain reasonings calls for restrictions 

to classical logic: there are indeed certain kinds of arguments 

that ~lassical logic validates and that ordinary language finds 

< unacceptàble. It is, for instance, generally accepted thàt no 

tru~h-functional~ connective can capture the "real" sense of 

the English "IF .. THEN"; 

sis and oil prospection) indicates, however, that very simple 
logical mechanisms may generate non-trivial reasonings. 

~ A connective is truth-functional if the truth-value of the 
compound formula obtained by using this connective only depends 
on the truth-values of the formula's components. 



• 

• 

Consider for instance the sentence 
-

ItIf Napoleon had won the battle of Waterloo, Eng1and would rrow 

be a province of France. 1t 

G . 

Given your understanding of the me~ning of the word IF, you may 
. 

or you may not agree with what this sentence says, depending on 

your beliefs about Napoleon's intentions,. the pride of the En­

glish people, etc .•• 

However, if we formalize the sentence using classical logic, it 

turns out to be true, since the antecedent of the implication 

is false. . , 

Classical logic is truth-functional and validates, 

among other things, sentences sudh as -, A => (A => B) and A 

=> (B =) A) which are intuitively valid only 'if the arrow is 

interpre~ in a way that diverges st'rOnglY~ from the ordinary 

language meaning of "IF ..• THEN". 

If we want the language to be able to exprèss the 

real if ... then relation, i.e, to express not just material im-
,. 

plication, but also such things as causal implications and hy-

pothetical or counterfactual conditionals, then a new, non 
. 

truth-functional- connective, must be added to the alphabet. 

This is precisely what relevance logic is about. In fact, it 

was designed essentially to forbid inferences such as A! 

tberefore ~ implies A (the so-called .ltparadoxes of implica-
" 

tiOI:") that were inherent' to classical logic • 

-\ 
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The Pittsburg team of logicians [1], who 
;f; 

develoP~ 
in the 1970 ' s various systems ·of relevance logics" had adapte,d 

natural deduction to do proofs in relevance logic much before 

they had agreed about an a~iomatization for it. ~he innovation 

was essentially the attachment of a suhscript to each sentence 

of the proof, together with a number of subscripts-related res-

trictions on~ reiteration. 

The ability to obey'the restrictions of relevance ...... 
logic could he used in the development of systems able to do 

different things, such as • 

, 
- generating comments when the derivation of a theorem_ 

violates relevance principles (i~e., when an inference 

is made that shares sornething with the paradoxes of im-

plication) • 

1_\ 
\ 

intelligent reasoning in the presence of contradic-

tory information. Take a distributed database. Someone 
, 

feeds A at site 1 and someone'feeds NOT-A at site 2. If 

the system uses a theorem-prover that conforms to the 

rules of cla'ssical J,ogic 1 it will be able to I?rove just 

about anything (since, in classical~ogic, anything 

follows frorn a contradiction). In classic~l logic, as 

Belnap puts ib, a contradiction "pollutes" all the 
'-1\ • 

data. Re~evance logic, on the contrary, does not vali-
! 

date (A & ~ A) => B. 
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It seems therefore worth stressing that formaI 

languages - and the logics that are used to evaluate reasonings 

expressed in those languages - are made to be extended or 

amended. When we want to modify a theorem-prover (be it to make 

it more power fuI or to"forbid 'certain inferences that we don'é 

like), we have to use our intuitions about validity. Ideally, 

we should be able td use these intuitions to say: 

"If l have this kind.of thing and that kind of 

thing in my premisses, l want the system to be able to derive 
. 

this. 1I [This corresponds exactly to an elimination rule in na-

tural deduction] 

or 

"" "I want to introduce a new connective, or operator, 

that should behave like this: ft 

If the structure of the theorem-pro~er consists of 

a set of intuitive rules of inference, the ,job will be easier. 

As was mentidned above, the language of sentential 

10gic rnay be extended into predicate logic with variables and 

qUantifie} •. But the.e are still a lot of modes of reasoning 

that are used"in natu~al language and that-predicate' logic is 

unable to capture: these are expressed for instance with 
') 

iritensional or mOdal operators. ~ 

/ 

1 
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Using rnodalities, one rnay introduce in the language 

the concepts of necessity and possibility (with the addition of 

two ·operators respectively interp.reted as "it is necessary 

that" and "it is possible that"). Such concepts allow the lan-

guage to distinguish between co~tingent and necessary truths. 

Tense logics (that use operators such as "it wi'll be the case 

that") also belong to the class of modal Iogics. 

• \' • ' 4-

Applications of such. logics to reàl-life computer 
1> ~ - , 

science are obvious: reasoning ov~r time ~ typical of systems 

whose task is to schedule or plan a sequence of operation~. 

Certai~ sentences, such as, for instance, the integrity-

constraints of a database (e.g., ~No part can be-delivered to a 

co::r.pany more th an 200 miles away from Montr-eal"), can be gi ven, • 

via mOdal,operators, a particular logical status. The rest of 

the database would store sentences ~hat just hap~e~ to be true, 

without being necessary (e.g, "AlI bolts used in part X are 

red" ) • 

A more ambitious - l think not so far-fetched -

application of natural deduction is in the implementation of 

odefault-reasoning. In everyday thinking, we often in1er things 

for which we do not have an absolutely certain proof. The clas-

sical example is Tweety's: knowing that Tweety is a bird, and 

nothing else about Tweety, we will infer that Tweety can fly, 
r 

not because we believe that aIl bird~ can fly (we of course 

never believe false things!) but because we know th~t, if some-
? 

thing is a bird, th en we may assume~ that it ·can fly, unless we 
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<) 
have a good reason to thin~ otherwise. Precisely, the reasoning 

involved is the following: assume that Tweety can fly and try 

to derive a contradiction. If you don't find one, then you may 

assert tha~ Tweety can fly. 

, If it is known in the database that Tweety happens 

_ to be a penguin, and that penguins don't fly, then a contradic-

tion will be derived from the hypothes1s that Tweety can fly 

and the inferencè that Tweety can fly will be blocked. 

Most cases of default-reasoning ,are auto~epistemic, 
o 

i. e. , refer implicitely to one's knowledge. We reason "auto-

epistemicalli" when we say things like: "1 would know it if X 

were false. Hs.n.ce X must b~ true." Here again, an iml'licit 

reductio ,ad absurdum is attempted and failure to find a 

contradiction suff~ces to justify a new belief. 

This kind of me~a-reasoning is extremely powerful, 

even though its overall validity may be questioned. It could be 

.used to answer queries expressed by sentences that are neither 

provable nOr disprovabl-e by means of standard natural deduc-

tion. It is tempting ~o say~ that much default reasoning (which 

is essentially meta-theoretical, i.e., auto-epistemlc) is 

achievedoin people's minds via a failure of finding a contra-

diction in a RAA (reductio ad absurdum). the natural deduction 

technique is geared towards an efficient (goal-directed) usage 

of RAA in ordinary proofs. In the ordinary use of natural de-
~ . 

duction, RAA is used only to refute an assump~n b~ showing 

that it leads ~o a contradiction. In defaul~easoning, people 

• 

)~~1 
,1 
"" 
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. " 

use RAA for a completely diffe~ent purpose (i.e., not to refute 

a belief, but to justify it by showing that it is consistent 

with the other beliefs). Natural deduction could r l thinlt with":' 

out too muèh work# be tuned so as to malte a si~lar usage of 

its ability to ,a~ply RAA intelligently. r_ 

If we want a language with defaults, we may decide 

to modify the syntax'so as to accept sentences (not just rules) 

6f th~ form~ 4 

(b Ma) / a 1 __ 

the intended interpretation being: 

If' b is true, th en if ,i t is consistent to a§sume a, -t-hen 
e 

assert a. 

0"" • 

ID b => Ma / a 
'1\ 

n b 

0 1 a 

" , ' 

.. 

No contradiction fi p 

a (default él im 1 • m, ni 0; P ) 

, This notation i5 due to R.Reiter [18]. 

. . . 
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Thèorem-proving, whether it is dOI}e· by a computer .. 

" or a human being, is a mechanical activity. It has to be 

formalized in synt'actic terms. Natural dedu~tion, like aIl 

theorem-proving techniques~ must rely on syntact~c rules of ~-
. 

feretc • But it is for semantic reasons,' that we use theorem- _ 

prov ng. The poin~ of for~al systems is to allow the expression 
1 

of ntuitlons about what'sho~ld_and,what should not be prova~le 

in the system. The advantage of intuitive formaI systems such 

as naturar deduction is that they rnake it easy to express such 
... 

intuitions as unambiguous rules of inference • 

., 
A 
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APPENDIX 1: RULES.USED IN THE FIRST VERSION 

OF THE THEOREM-PROVER: 

'\ 
[Try'strategy 1 (bac~ward reasoning).l 

R ul el: 'If goal' is an· impl i ca ti on, Co as ... ~me ,.rit ecéden 1; 

try to prÇ>ve consequent. Apply =>1.0 ' \ 

" 
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o 

and 

Rule 2: If goa~ ~s an equivalence statement, prove both corres­

ponding implications ~nd apply <=>1. 

l , 

Rule, 3: If goal is a conjunction, prove b'oth conjuncts and 

apply &I. 

Rule 4: If goal is a disjunction, and, if one of the disjuncts 

is already a theorem, app+y' VI. 

['Fry strategy 2 (forward reasoning) . J 
. 

Rule 5: If goal is a theorem, return the path to ~he goal. 

'Rule 6:. If a disjunct iop is a' theo/rem, 

goal from each disjunct separ,ate1~' 
/" / J 

1 

apply VE, i; e ., prove 

'Rule 7: If an implica tio? is l' theorem, try to prove antecedent 

and apply =>E. 
, 

" , 
" ., 

.. 

.Rule 8: If the negation of a disjunction is a th,ecrem, derive 

"the negâtion of both disjuncts an,d return (proof goal). 

[~trategy 3 (RAA).l 

" 



~ 
Rule 9: If no other rule applic~ble, apply RAA, i.e., assume 

• -
the negation of what you are trying to prove and try to der ive 

a contradiction. 

" \ 

Rules to find ~ontradictions 

Rp-:te '10: If goal is a disjunctio~, assume nega tion of goal, 

der ive negation of both disjuncts and look for a contradiction. 

Rule 11: When lèoking for a contradiction, try to prove the 

negation of a theorem. 

Rule 12: Don t t use RAA on a goal that you are already trying te 

prove with RAA. 

Rule 13: If ~entence is the antecedent of some theore~J apply 

=>E. 

Rule 14: If sentence is atomic (contains no.connectives), no-

thing else can be °done wi th i t. 

i Rule 15: If sentence is a conjunction, apply &E. 

Rule 16: If sentence is an implication a~d some- theorem is the 
" . 

antecedent of sen,tence, apply· ::')E. 

Rule 17: If sentenc~~ an equivalence statement, then if sorne 
." 

,theorem is the antecedent or the_ consequent· of sentence,' then-

apply' <'=>E. 

Rule 18: If sentence' is ~ double ne-gaOtiqn, apply .,E'-
- " 

o " 

"/ 

/ 
" 

/ 

1 
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APPEHDIX 2: LISTING OF THE FIRST IMPLEMENTATION 

OF THE THEOREM-PROVER (IN FRANZ~LISP) 
i 

.. 
6.1. Program listing. _ 

(def do (lambda (x y) 
(princ 1 1 premisses: 1) 
(princ x) 
(terpri) ,~ \.,.:; 
(princ 1 1 conclusièn~, 1) 
(prin~ y) 
(terpri) (terpri) 
(tabulate (prove x y» 
(terpri] 

i (I) FORMATT~G'FUNCTIONS : . . 

;print out proof on tabular form:· the preef now consists of a 
;list/the~ first e. e:nent of which is the set of premisses or the 

. ;hypothesis, and ~he last elernent the conclusion. Tabulate is a 
;formatting routi~e' that converts the proof in réadable forme 
;E~eh element of the proof has,a level. Subproofs may be 
; embedded. 

(def tabulate (lambda (x) 
(init) 
{format xl 

(defun. ini t () . . 
(setq line 1) 

(setq tabnum 1] 
" 

(def format 

<r 

i.lnput: a proof or a subproof, stored as a 'list. 
; output.: a formatt~ proof. 

(lambda' (resul t) 
{pprms (car result» 

i print premisses - or, in the case of a 
; subproof, the hypothesis. 

(underline) _ 
(printsteps (center result» 
(peone resul t) ) ) \ 

;print proof 
iprint:conclusion 
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(defun hyp_ify (x) 
(mapcar 'hyp_thisprem xl 

(defun hyp_thisprem (x) 
(cons (list x line) hypotheses] 

;FUNCT~ONS PRINTING PREMISSES AND HYPOTHESES . 
1 

(def pprms 
(l"ambda (x) 

(con,d 
-{ (wff x) (printprem x» 
(t (mapcar 'printprem x] 

(defun printprem (x) 
(print_Iine) 
(tabs) 
(princ xl 
(justify 'HYP) 
(terpri) 
(setq line (add1 1ine] 

(defun justi~y (x) 
(princ '1 P 
(princ xl 

• • 

; FUNCTIONS PRINTING IUTERMEDIARY STEPS OF PROOF 

(def center 

,- r .... 

;returns a list containing aIl elements of- argume~t except 

64 

; first 'and Iast. In other words, returns' the proof part of the" 
iargument. 1 

(lambda (x) -
(cond « Iessp (length, x) 3) nil) , 

{<equal (Iength ('cdr x» 2l (list (cadr x)')} 
Ct (append (list (cadr x» (center (cdr x»»») 

(defun subproof (x) 
(and 

(listp x) 
(equal (length x) 1) 

'(listp (car x) ) 
\' 

d 

(not (wff (car x] ; (car Xl must have at "least 2 elements. 

(defun sUbprint (x) 
(setq tabnum (addl tabnum» 
(format (car x» 
(setq tabnum (suhl tabnum] 

{defun printsteps (x) 
{mapcar 'print_step x] 

! " 
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(defun print_step (X) 

i8 step in the proof is either ~ wff or a subproof, 
; or 8 sequence of.st~ps. 0 

(cond 
«null x) nil) . 
( (subproof x) (subprint x» 
«wff x) (print_line) 

(tabs) 
(princ x) 
(setq line (addf ~ine» 
(terpri) ) , 

(t (printsteps xl 

;FUNCTION PRINTING CONCLUSION OF A PROOF OR SUBPROOF 

{def peone (lambda (x) 
;prints con'elusion with tabbing corresponding to 
;the level of the·subproof. 

(cond 
«null (car (last x») nil) 
(t 
(print_line) 
(tabs) 
(princ (car (last x») 
(setQ"line (addl line» 
(terpri] 

; FUNCTIONS FOR PRINTING TABS AND UNDERLINUlG' HYPOTHESES 

(defun print_line () 
(cond 

«lessp line 10) (princ '1 1») 
(princ line] 

(def tab (lambda nil (prine 'l' ri») 
(def tabs 

o ;number of tabs printed must correspond to the 
idepth of the step being printed . 

(lambda nil 
(prog (temp) 

(setq temp tabnum) 
looi> (tab) 

(cond «equal temp 1) (return t» 
(t (setq temp (subl-temp») (go loop»»» 

(def underline (lambda nil 
(princ '1 1) 
(tabs) 
(princ '----) 
(terpri] _ 
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; (II) FONCTIONS TESTING FOR WELL-FORMEDNESS O~ PREMISSES MID 
: CONCLUSION 

(def wff -1-

(lambda (x) 
{or (atomic wff x) 

d (compoünd wf x) 
(negation x ») 

(def atomic wff 
(lambda (x) 
~ member x '( abc d p q r 

(def compound_wff 
{lambda (x) 
!.and (listp x) 

x y z] 

(member (cadr x) '(& V => <=») 
(wff' (car x» 
(wff (caddr x»)}) 

(def negation 
(lambda (x) 

{and (listp x) (equal {car x) '.,) (wff (cadrx»») 

(III) GIVEN A LIST OF PREMISSES X AND A CONCLUSION Y, 
RETURN A PROOF. 

(def prove (lambda (x y) 
(init_lists x) 
(fQrward) 
(list x (proof y) yJ 

(defun init_lists (x) 
(setq newinfo nil) 
(setq premlist x) 
(setq disjunctions nil) 
(set~neg_disjs nil) 
(setq hyps nil) 
(setq forbidden ni1) 
(sitq attempted ni1) 
(setq proof_hints nil) 
(setq discarded ni1) 
(ini t_array); 
(setq goals nil) 
{setq 1ast_goals ni1J 

/ " " 

1. 
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(defwproof 
{lambda (goal) 

(cond «null goal) nil) 
«member'goal premlistt ni1) 
(t (change 9011»») 1 

(def change 
;wi11 return a ru1e to apply immediate1y to z, 
;or a hint(about something that can be proved 
;given the present theorems,or that wou1d be 
;useful if,it were proved, given te goal. 

(lambda (z) . " 
(setq 1ast_goals (cons z last_goals» 
(cond «equal (find_main_conn z) '=» (=>1 z) 

( (equal (find_main_conn z) '&) (&1 z» 
( (equal (find_main_conn z) 1 <=» «=> l z» 
( (theorem z) (pa th (theorem z») 
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«VI z» j if trying to prove (a V b)} th en if a 
;or b is a theorem, you are done. 

«setq disjunction (car disjunctions» 
(VE disjunction z» 

«hintl z» 
«hint2 z» 
«not (member z forbidden'» (raa z] 

(def find_main conn' 
(lambda (x) 
(cbnd «atom ~) ~il) 

«equal (car x) '.,) '..,) 
(t (c_adr x) ) ) ) ) 

; FUNCTIONS THAT DERIVE CONSEQUENCES OF PREMISSES AND HYPOTHESES 

(defun ini t_array () 
(array available t 30) 
(setq next_slot 1) 
(mapcar 'load-prem prernlist] 

(defun load-prem (x) 
(setq newinfo (cons next_slot newinfo» 
finsert (li~t x 'Hl ~ 

(defun insert (x) '1 , 
(store (available next_slot)' x) 
(setq next_slot (addl ~ext_slotl .. " 

(def forward t 

(lambda () 
(mapcar 1 for,wards (reve-rse newinfol 

l ' , , 

._'j' 
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(def forwards, tX: a slot number 
(lambda (x) 
(setq sent (car (available x») 
(cond «member sent (ante'cedents» (modus sent») 
(cond «atom sent) t) 

({equal (cadr sent) 'V) " 
(setq disjunctions (cons sent disjunctions»} 

«equal (cadr sent) '&) (&E'x» " 
«equal (cadr sent) '=» (=>E x» 
«equal (cadr sent) '<=» «=>E'x» 
«and (equal (car sent) '.,) 

o 
(not (atomic_wff (cadr sent»») 

(.,E x»») 

(defun modus (thisprarn) ;thisprem is in antinfo 
;so, get ~ll slot-numbers n such that 

1. (theorem (car (available n») 
; 2. {caar (available n» = (caar (available x» 
; examine consequences of these. , 

(mapcar 'store_consequent 
{e1im_nil (mapcar 'find_compound (theoremsJ 

(def find_compou~d 
;x = (A n) 
;if A = (z =>, y), then cadar x = =>, cadr x = n 

(lambda (x) 
(cond «atom (car x» nil) 

«and (equal (cadar x) '=» (equa1 (caar x) thisprem» 
(cadr xl 

(def e1im_n~1 , 
(-1 ambda ( 1 ) 
(cond «null 1) nil) 

({null (car 1» (elim nil (cdr 1») 
«listp (car 1» (e1im.:..,nil (car 1») 
~ t (cons (car 1) (e1im_nil (cdr 1] 

, < 

(def store~consequent 12~ a slot-number 
(lambda (z) 

--Cinsert (list (caddar .( available z» 
(f or:w.ards l' (this_s,lot') } ) ) \ 

" (defun this_slot t r 
. (suhl next_slot] 

( ! 

,\ , 

\ .' "'" 
., 

'=>E z 
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: HINTS functions . , 
(defun hintl (X) . 
; (hints x) checks whether a hint is applicable 
i,to present situation' and, if so, takes appropriate action. 
iHINT 1 = 'try to prove antecedents of available theorems . 

1 , 

. iHINT 2 = if a theorem is the negation of a disjunction, derive 
;negation of both disjuncts, (using RAA) and th en go back to 
present goal. 

; (hints x) returns nil iff 
;no hint is applicable 

r iand (list (proof z) z (proof x», for sorne z 
iS.t. 1. (proof z1 z) is in proofhints 

~; 2. z J- x ' 

(cond « and (prove_antecedents) (theorem x) ) 
(setq forbidden nil), 
(setq atternpted nil) 

(car proof_hintsl 

{defun hin·t2 (x) 
(cond' 

(neg_disjs 
(setq neg_disj 

(car {available (car ne9_disjs»» 
{setq neg_disjs (cdr neg~disjs» 

(list (raa (caadr neg_disj» 
(neg (caadr neg_disj» 
(raa (caddadr neg_disj» 
(ne~ (caddadr neg_disj» 
{prbof xl 

1 

. (defun prove_antecedents () 
;denies permission to use RAA 
;and stores, for each antecedent 
;proved, its proof in proof_hints 

(setq forbi'tlden 
(elim_dupl (append (antecedents) forbidden») 

. (elirn_nil (mapcar 'prove_ant (antecedents] 
\ 

(defun elim_dupl (x) 
(cond 

{(null x)' nil) 
«rnernber (car x) (cdr x» (elim dupl (cdr x») 
(t (cons (car x) (elirn_dupl (cdr xl 

~ , 

\ 

1 
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(defun prove_ant (x) 
iX is a wff. If x is provable, store 

; ((proof x) x) into proof_hints 
:elsè, nil .. 

(cond 
«member x attempted) pil) 
(t 
(setq attempted (cons x attempted» 
(cond 

«setq thisproof (proof x» 
;if x is provable 

(setq proof_hinta 
- (cons (list thisproof x) proof_hints» 

(insert (list x ~proofant» 
(forwards (this_slot] 

; .AVAIL functions 

(defun theorems () 
ishould return a~list of 

(prog (resul t) 
.p a i,r s , e. g • , «al) (a6) ... ) 

(setq result nil) 
'setq position 1) 

.-. ..,. loop 

/ 

~. 
, 

(cond 
«member position discarded) 

(setq position (add1 position» 
(go loop» . 

«null (available position» 
(return (reverse result») 

1 (t 

(setq re-sul t 
(cons (list , 

(car (availabl'e 
posi,tion) 

posi tion) ) 

result» t 
(setq position (addl Positi~n» 

(go l~op] 

(defun theorem (x) 
ishould return the slot-numberocorresponding~to x 
iih AVAILA~LE, nil otherwise. x is a wff 

(prog (th) 
(setq th (theorems» 

loop (cond «null th) nil) 
{{equa~ x (caar th» (return (cadar th})} 
Ct (setq th (cdr th» 

{go loop] 

\, 
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(defun avail () 
(prog (resul t) 
(sëtq result'nil) 
(setq position 1) 

loop 
(cond 

. ,·t rI··· .... -, ~ . 

«null (available position» (return (reverse result») 
(t (setq result (cons (available position) result» 

(setq position (add-1 position» . 
(go loop] 

'(defun implications () 
- (mapcar 'implication (theoremGc . , 

(defun implication (x) 
(cond 

((atomic wff (car x» nil) 
( (equal (cadar x) '=» (cadr xl 

(defun antecedents () 
(~apcar '( lambda' (x) 

(cond 
«null x) nil) 

( 

(t (caar (available x»») 
(implications] 

(defun consequents () _ 

/ 
,/ 

{mapcar '(lambda (x) (caddar (available -x-)-» (implications] 

Q 

(defun path (~) ;x should be a slot-number in available 
, (settI sentence (available x) r 
(~apcar 'get_step (reverse (list_steps (cddr sentence] 

(defun' get_step (x) 
{car (available xl 

(defun list_steps (x) . 
(elim_nil (mapcar 'origin xl 

(defun origin (x) 
(cond 

«(equal (cadr (available x» 'H) nil) 
«equal (cadr (available x» 'proofant) x) 
(t (cons x (list_steps (cddr (available xl 

o \ , 

r~ 
1 
1 
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'; RAA functions 

... 

(def raa 
(lambda (x) , 
(prog (A B) 

(setq A nil) 
«setq B n(il) ») ~~. 
newhyp neg.x . " 

(cond t 

(disj x) 
(setq A 

(list (~aa (neg (car x») 
(neg (car x)} 
{raa (neg (caddr x») 
(neg (caddr x»)} 

(setq B (list (neg (car x» (neg (caddr x»» 
(insert (list (neg (car x» 'H» 
(insert (list (neg (caddr x» 'K)) 

(~ond «setq c (contra (theorems)) 
(return 
Clist 
{list (neg x) _ 

(append A (prove~contra cl) 
(discard (car hyps» 

, » » 
(t (seiq forbidden (cons x forbidden» 

!cond L. 

«setq c (find_contra (append B premlist») 
(setq forbidden (cdr forbidden» 
(return 
(list 
{list (nèg x) 

(append' A (prove_contra cl) 
(discard (car hyps] 

(defun disj (x) 
(co'nd ' 

( (atom x), nil) 
, {(equal .(cadr x) 

(def find_contra 
(lambda (x) 

" \, 

"V) t] 

(con~ «null x) nil) 
«and (not (mernber (neg·(car x» 

(proof (neg (car x»» 
{theorem (car x») 

,Ct (find_contra (cdr x»»» 
: 
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(defun neg (x) 
{cond 

«atomic_wff x) (list '., x» 
«equal (car x) '.,) (cadrx» 
(t (list '., xl ! 

\ . 
(def contra 

73 

;returns slot-number oÏ a'theorem the negation ~ 
;of which is also a theorem. . 

(lambda (x) .' 
(cond' «null x) nil) .. 

«theorem (neg (caar"x)).) (cadar x»._ 
(t (contra (cdr x»»» 

)-

(def prov~~coptra" 0 

;should ~eturn,for some x 
r ; (list (~roof x) x (l'roof (neg x» (neg x» 

;. So, look if there is' a contra available in 
;theorems. If so, produce iti else, take each 
~;theorem in turn, and try to prove its negation, 
;without being "allowed to us'e RAA irnmediately • 

. 
(lambda (x) 

{setq s (car (available x}» 
(list' (proof s) s (proof (neg s» (neg s»}} 

.' i' 

tP , 
; FUNCTIONS USED TO Il1TRODUCE AI'1D DISCARD HY'POTHESES 

a 

(qef newhyp 
(lambda (fo) 

(setq hyps (cons next_slot hyp~ f> " 
(loadyrem x) 
(forwards (this_slot» 
(setq premlist (cons ~ premlist» 
nil] 

(defun discard (x) . 

, ' 

"'" 

'" 

iX is a slot-fiumber in avail ~ 
\ idiscarded is a list of discarded slots in AVAILABLE. 

(setq premlist (cdr premlist» 
(setq hyps (cdr hyps» ~ 
(setq discarded' (append disc:arded (consequences x») nil) 

(defun consequences (x) 
(prog (result index) 

(setq index x) 
(setq result nil) • 

loop (cond • 
{(equal index next_slot) (ret~rn result.). 
(t (setq result (~ons index result» 

(setq index (addl index» 
(go loop] 

1 

" 
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; INTRO/ IJUNC,?IONS 

(def =:=>I 
, 
" 

, , 

(laJnbda (X) <7 _ • 

(setq goals (eons (~~st x '=>I) goals» 

(def 

.. . 
(def, 

(newhyp (car x~ , 0-

O(list < {list (car x) 
c::::- .J>(proof (caddr x) ) 

',(discard (çar hyps» 
.(caddr xl 

1 

<=>I (~ambda (x) ~ 
(setq goals (cons (list x '<=> I) goais» 
(list (=>I x) , {=>I. (reverse x»») , 

&I (lambda (x) 
(setq goa~s (cons (list 
(list (proof (car x» 

. {car x) .' ... -

,(proof (caddr 
'(cadc!r x}») 

. " 

t, 
x ;&I) goals» 

x) ) 

(def .~I ·(l~mbda (x) ~ 

• 0 

(setq goals (cons (list x '~I) goals) 
(Iist (Iist (çadr 'x) (prove_eontra»» t 

{defun VI' (x) 
'" (cond 

c-tatomic_wff 'x) nil), 
(tequal (cadr ~) 'V) 

(cond 
/,' • ({the'orem (car x» 

\ 
r 

.. 

. , 

.. 

- (li,stu(path (theorem (carx»)~ 
. ) -' (-c e!r x) ) ) " . 

. { (theorem (caddr x» 

• 

{list {path (~heor~m 
(caddr xl ' 

(caddr x») 

; ELUt FUNCTIONS 
• 

(deiun =>QE (x) (;h". , ".' 
tcond 

, ( (theorem (caar a iJ.abl'e x) ) }. .' 
linsert (li addéfr (avail'able. x') r 

'=>E ~ " 
x . 
(theorem (caar (availabl~.~»») 

(forwards (this 'slotI 
- 0' 

. ~ 

J . " 

,b , 

" 

.. 

i' , 

0'. 
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(def <=>E 
flambda (~). 

(cond 
«theorem {csar (available x») 

(insert 
(list (caddar (available x» 

'<=>E 
x 

. (theorem (caar (available 
(forwards (this_slot») (. 

«th~orem (caddar (available x») 
(insert , 
(list (caa~ (available x» 

'<=>E 
x _ 

x) ) ) ) ) 

(theorem (caddar (available xli»~) 
(forwards (this_slot»»» 

(def &:E , 
{lambda (Xj tlI , 

(insert ( ist (caar 'Cavailable x» '&E x» 
r (forwards (this slot» 

(insert Cl1st-{caddar (available x» '&:E x»~ 
Cforwards {this_slot] 

(def -.E l 

(def 
\ 

(lambda (x) 
{cond . . 

VIE . 

«equal (cadar (availablé x» '..,) 
, (insert (list (cddar (available x» 

(forwards Ùhis_slGt'»· . 
{(equal {car (cdadar (available x») 

(s'etq neg_disjs (cons x neg_disjs] 

(lambda Cd x) 
'(setq disjunctions {cdr disjunctions» 
(list (l'ath (theorem dl) 

-/ 

d 
(list 
(list (disl d) 

(newhyp (dis 1. d»' 
(proof x) 
(discard (car hyps» 

,. x) ) 

(list .. , 
(lfst, (dis2 d) i 

(newhyp (dis2 d» 
(proof x). 
(discard (car hyps» 
x»») /' 

'..,E x) ) 

'V) 

. -

1.5 

'. 

.. 
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. • . 
(defun disl (X) (car X» 

, (defun dis2 (x) ~(cad.dr x» 
.' 

~ 

'''iTESTS 
' , 

0 

'(il 

(setq p nil) 
o:l ,1' 

(setq pl ' (a) ) 
(setq cl ' a,) 

'" 

(setq p2 • (a) ) 
\ (setq 'c2 • (a' V b) ) 

{setq p3 ' (a (a ::) b») 
{setq c3 ' (a =) (b =) a) ) ) 

~ 

(setq p4 ' (b (b =) a) ) ) 
(setq c4 '(a & b» 

(setq pS ' «a => b) a ( (a & b) =) c) ) ) 
(setq cS ' (b' '=> c) ) 

" 
(setq p6 • ( { (a V'b) => c) b] 

\) 

(setq c~ 1 c) , 

(setq p7 nil) 
(setq c7 • (a => (b ... > (c => (d => al '. 

(setq p8 • ( (a V b) (a =) c) (b => cl ", 
(setq cS ' c) 

(setq, p9 ' ( (a => bl 
(setq c9 ' ( ('.., b) =) (., a: l. 

(setq plO ' ( (a => b] 
{ set'q clO ' {.., (a Ct (.., bl 

'" 
(setq pll '({a & b) (b =) c] 
{setq cll '(c V dl 

{setq p12." ({a V b) (c ::) (., a) ) cl 
(setq c12, 'b). , 
{setq p13 ' { (a V b) (.., al 
'(setq c13 'b) 

(setq p14 ' {(p => q) Cr V (.., q» (.., rl 
(setq c14 '{.., p] 

' . • ' (setq p15 1 «p => q) (q => (r V s] 
(setq c15 '(p => {r V s] 

'. \ 

"- . , 





'. 
-'" 

--

\ 

• 

-) 

nil 
.-) premiss.e§'! (b 
conclusion: (a & 

1 b 
2 (b =). a) 

3 a 
4 b 
5 (a & b) 

nil 
0 

._) 

nil 

(b=).a» 
b) 

HYP 
HYP 

a 

, \ 

'-) premiss~s: {(a=>b) a «a,,&,b).=r>. c»·.' ,.,," 
conclusion:' (b => c) 

nil 
-> 
nil 

nil 

l (a =) b) HYP 
2 a HYP .' 

3 ( (à & b) => c) HYP 

4 1;> HYP 

5 a 
6 b 
7 Ca. & b) 

'S c Q 

9' Cb => c) . 

'\ ~~ : 

) 

-> premisses: nil 
"conclusion: (a => (b => (c => (d => a») r 

1 

2 

3 

4 

5 
6 
7 
's 
9 

, ----
a 

b 

\ 

HY~ 

. HYP 

c 

d 

~ 
(d => a) 

HYP 

.. '(c => (d"=) a» 
(b=> (c=> (d=>à») 

(a :: > (b =.> (c = > (d = > 'a»» 

l' , 

HYP 

"78 
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-) , 

nil- -

-) premisse'S: «a =) b» 
conclusion: «~ b) =) (~ a» 

1 (a =) h) HYP -.---
2 (~ h) HYP 

3 a HYP 

4 h h) , 
5 b 
'6 (., a) 
7 {(.,'b) => -(., a) ) ~ 

nil ~ 
-) 

nil 

nil 
-) 

,nil 

-) premisses.: «a => bH 
conclusion: (., (a & (., b») 

y 

1 

2 

3 
4 

• 5 
6 

(a =) b) . HYP· 

(a & (., b» 
a 
b 
(-, b) 

(-, {a & (., bU) .. 

. , 

HYP 

'", -
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...r 

• -) premisses: «a V b) {c =:,> (.., a» c) t 
~-- ~ 

conclusion: b ,,-
1 (a V b) ,HYP 
2 (c =) (., a) ) HYP 
3 c HYP 

·4 (a V b) 

• 5 a HYP 

6 
, , (., b) HYP 

7 (., a) 
8 a 
9 b "" 10 b HYP '''-, -\ 

11 b 
12 b 

• nil 
-) 

" 
nil \ 

.. 
-) premisses: ( (p =) q} (r V (.., q) ) h r» 
conclusion: (-, p) 

1 (p =) q) HYP 
2 (r V (-, q» HYP 
3 (-, r) HYP 

, ---- .. 
4 (r V (-, q» 
5 r HYP 

6 P HYP 
Cl 

7 (., r) 
8 ~ r 
9 (-, p) 

r-- HYP 10 (, q) 
-

11 p HYP r ----
12 (., q) .. 
13 q 
14 h p) 

"-
~9 15, (., p) " ", 

J 
nil .. 
-) 

nil ' ~'" r ", . 

-0 
/~ 

\ 
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... 
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nil 
-> 
nil 

nil 

-> pr~misses: «p v (q => r) ) ("'l"V (., pl) (., q) ) 

conclusion: (Cl => r) 

1 (p V (Cl => r» HYP 
~ 2 (q V (., 'p) ) HYP 

3 (., q) HYP 
-----

4 Cl HYP 

5 (Cl V (., p) ) 

6 q HYP 

7 (p V (q => r) ) 
8. p HYP 

9 (., r) HYP 

la (., q) 

il q 
12 r 
13 (q =) r) ~ HYP 

14· r 
15 'r 
16 (., p) HYP 

17 ('., r) lJ,yp 

18 h q) 
19 q 
20 r 
21 r 
22 (.q => ~r) 

... i) premisses: (Cr =) q) (q => p) Cp =) s) (.,'s» 
conclusion: (., r) 

1 
2' 
3 
4 

5 

(r => q) 
(q => p) 
(1' => s) 
("' s) 

r 

HYP 
HYP 
~HYP 

HYP 

HYP 

'. 

Î 

~ ,:-" ~ ~ ".~.; 
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.> 
" 

0 
-) 

'l"ô 
, -

nil , ' 

~ 

-') premisses: ( (p => q) (q => r) (p V ~., s» (., r» "', 

conclusion: (., s) • 
-'" l (p => q) HYP 

2 (q => r) HYP 
3 (p V (., s» " HYP 
4 (., r) HYP 

~ " 

5 (p V'<" 5» 
., 

, "6 ~-I- HYP 
>tr 

7 5 HYP \,\ "-

8 (-, r) 

1 " 9 q 
.10 r 
11 (., 5) 

~ ~. 

12 (...; 5) HYP '\, \' 
---- , 

13' (., 5) j 

14 (., s) 
nil 

V 

,1 
, 

(J 

.. 
\ 

\ 

\ 
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APPEND:Pt' 3: ' 

RULES USED IN THE 'IQ-LI-fSP VF;RSION 

OF ~HE THEOREM-PROVER~ 

. ~ 

The ~ocaJ'..Yl...~u-of rules: pr1~redicat~~çtil()n~ 

83 

r A n~rnber of primitive functions "and predicates ha~e 

been defined and used in- ru1es. Beyond a number of syntact~s 

pr~dicates and functions (that check whether a sentence i5 a 

conjunction, a we11-formed formula, etc.:.), there are a npmber 
1: Q 

of fu~ctions for: 

~) ) 
· examining a goal to d~cid~ wh\ther it i5 1ike1y to 

~ ............... , 
.be provable, beÏore actually tryi~g to prove it 

(-attempt1 ) 

, 
deciding when a goal ought to be proved by RAA or 

by a more direct method . 

· selecting 'the contradiction that is most 1ike1y to 
• • 

be pro~able in a ~eductio ad absurdurn 
4 

\.~" 0 

· deciding what to print on the screen and where t~'" 

print it 

- goals: printgoal 

paths 1eading to formulas: printpath 

1 Function and predicate names are in bo1d whi1e,data'struc­
tures are in capital letters 

\ 
.' -

\ , 



• 

, , 

• 

. , 

, , 

, -
- subproofs (vertica-l lines, hypotheses, sub- .. , 

goals) 

. checking what ïs available and identifying justifi-

cations 

Theorem: checks whether something is avail-

able _ 
~ 

Justified: the PROOF structure keeps track 

of whatever bas been p~oved so far 

. -
Column, 'Above, above+: verify that a sen-

"ll..- . 

tence really belongs to the PROOF ~nd that 

i t is repeat~ble. 
{ 

Origin: find from what line a sentence is 

derived 

Repetablë: verify that a sentence satisfies 

~he' restrictions on reiteration' 

o 
. adding facts to the database . 

Inserta, insert, ... : mainta'in AVAILABLE 

. (truth-maintenanCle system)' 

,:rnserthyp: Hy~otheses -are to be inserted 
fi 

into the structure AVAILABL,E, even if this 

is only temporary 

• removl\9 hypotheses and their consequences 

A crucial feature of natural deduction is the p~-

sibility to make hypotheses. And hypotheses, at sorne point, 
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~ave to' be discarded. Whenever a hypothesis is discarded, it is 

at~ached, as weIl as aIl of its consequences (i.e., aIl sen-
1 

tences in AVAILABLE fOllowing it) to the 'list DïsCARDED. 

Some\thing is " theorem iff i t is in AVAILABLE, but 

not in discl!rde~,. (For programming conv.enience, the f~iO~ 
(theorem sentence) does not return a boolean valUe but rather a 

J 

number indicating the 'position of sentence in AVAILABLE. 

Discard: discarding a hypothësis 

Delete: Procedure for discardiog hypothesis 

~ Validation df student'S'~roposal 

Validhyp: Valida~ hypothesis 

Validbut: Verif~~hat a goal is a legiti-

mate one 

, -, 

R\il._~:LJ,,l.s_'~LcLin.J.orJ_{g):"..9 __ re~s_oIli.p9.-lëW.Pij..Ç_ëi.t:_;1,..Q.n_Q..f_§!_liIJtirU!j;~Ij 

;cul..e_$~t..J..n..f eJ:.~Dm 

, These rules are consulted wh~never forward reason­

ing 'is necessary, i. e., in the beginningi of the proof cons"truc-
. 

tion over the set of premisses; and then' whenever a new'sèri~ 

tence ois derived or when a hypothesis is made. 

The variab~e FOÇUS is set to the formula ~hat is 

being currently considered for forward reasoning. By successive-



1 • 

o 

.. 

'. 

application of relevant elimination rules, the consequences of-

FOCUS are derivëd. 

IE a conjunction is under Eocus, 

(J 

insert its first conjunct in AVAILABLE 
.' 

1 
If a conjunction is _under Eocus, ... 

insert its second conjunct in AVAILABLE 

IE an implication is under Eocus 

check if antecedent is available and if so, add conse­

quent in AVAILABLE, with the jus±if{cation of E=~; add 

fo6us ~o the lis~ IMPLICATIONS' 

If an equivalence is under Eocus and its antecedent is a 
1 

theorem, 

insert its consequent in 'AVAILABLE 

1 

\ ' 

IE an equivalencé is under Eocus and its consequeht is a 
... 

theor:em, 

l { 
insert its antecedent in AVAILABLE' 

\ 



,te 
oc , , 

~~' 
r 

'. 

/ 

"'.,.. ... P ... 

If a dl.sjunction is u{lder focus, and the negation of'its 
" 

first disjunct is a theorem, 

insert the second disjunct in AVAILABLE 

If a disjunction is under focup, and the negation of its 

~econd disjunct is a theorem, 
G 

insert the first disjunct in AVAILABLE 

If a disjunction i5 undèr focu5 

t" , 

1 

1 

add it to the listODISJONCTIONS ',. 
"} 

() 

If the formula un der focus is the antecedent 'of some im-

plications in tbe list IMPLICATIONS ~ 

add the appropriate consequents to AVAILABLE 

If the formula' under Eoc,!s is the antecedent of some, 
" 

equivalences j.n EQUIt; 

add the' appropriate ,onsequen.ts to AVAILABLE 

87 

" 

If the formul~ un der focus is the conseque!lt of an equiva-
, ' 

lence in EQUIV 

add the âpp~opriate antecedents to AVAILABLE 

"'1 \ 



• 

1 • 

! 

( 
l' 

1 1 

• 

If the formula under'focus is the negation of the first 

disjunct ~ some disjunptiops in DISJONCTIONS 

add the corresponding second disjuncts to AVAILABLE: 
" 

If the formula under focus is the negation' of·the seoond 

disjunct of a disjunction ~in DISJONCTIONS , ~ 

add the corresponding first rdisjuncts to AVA,ILABLE 
\.. -

,. 

, . 
'f{ u 1~~1J.~_f: q_iJ)..~·12.êJ;'.~.w ~r.9 ( go a 1-d i ~~J;..tJiAL.r~..9..S Qn.~ng u 

~: 1_ 

, \ 

~ 
.. If goal' 

::-

already has a just;i.fication . \ 

.. 
\ . 

J 

: ' Write this justification and suppreS$ this gpal fr.om 

If ~oal "iS an implication.. j' . " 
create a~~opr;~te subProof./writejUstificati~n for 

goal ...,d add SUbPr~05". ;0,. ~~t of .. ~oals. 
. , 1/ .... 

if gq~l is repeatab~e 
'0 . . 

~ustify goal wit~ rule' REP and suppress the goal from 

GOALL-L l ST . 
.. 

\ . 

, 

'~ 
-l't,} 
,'" 

S8 " , 



,. 

• 
'. 

\ 

-
\ 
,p 

Î 

• 

. ' 

.. 

If a con~radiction.is available 
, 0 .. 

print justification for ~oa1 (appropriate RAA ru1e, 

i.e., ~Intro or ~E1im) and add the ~ppropriate subproof, 

" te the list of_goals Ci.e., 'prova c9ntradict~on under 

the nega ti on of the goal). . 

If goal is a conjunction, 

, ,.rI> 
, 

Print appropriate"subgoals above the goal (i.e., each ... 
. 

conjunct that is not alr~ady printed; justify the goal 
1 

'with I&; and add appropriate .subgoals to GOAL LIST (one -
... ~.J" \ ~ 

or ,two disjun~ts)-. , 
..t • 

- 1 .. 
. 

If gôal is an equ;ivalence 
, " 

-' 'l' 

-, 
If goal is a theorem; 

.. 
print tpe ~ath, that leads to it, as well as the goal, 

1- 11 

fetching the) appropr~ate justifications from ·the truth-

mairitenance monitor.: 

" ' 
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"'~ , "" , ....... c • 

, 
"" . 

'1" .. - ',,- ,- --, C,-

'. 

~~:,' , ' \:, ' 

.. r- ~u 

( 

\ . 

If goal is a disjuncti on and one of disjunct's .is already 

pr;oved 

I~sert goal in AVAILABLE; justify goal with IV 
1 

Construct IUTS = list of newly availablelformulas (via 
1 

elimination rules) 
, 

and IUT = list of formulas in IUTS that the goal·' 

as a sub-~ormula 

If nothing is in INT ( 

add (RAAGOAL) to GOAL LIST - . 

" 
'ILgopl is the consequent of~an impli~atio~ 

. . 

• J 

i 
. justify tlle goal wi th E-iIpplic and add the 

of this i~Plication to GOAL_LIST. l 

-

, . ~ \ ' 

1 

INT 

antecedent 

• ,,"" • .. i 
If goal is a conjunct: in (1a" cpnjunc·tftion that ~s) .. t~e conse-

1 

quen t of an im~ i cation' in INT \ 

Prove this implication: th en try to prove thé antece-
. 

dent of this implica ti~n ~so as to get the conjunc::tion 

" by ;e:-implic and the goal by E&). , 

...1 

.. \ 

• 1 
1 



• 

\ 

'. J 

o 

" - - , 
" 

If goal is the fiFst disjunct of a newly available dis junc-
~ 

tion '. 
, 

, 
print the proof of this' disjunction, and then tr~ to 

prove the goal by EV, that is-by adding to GOAL_LIST 

the neg~tion of the second disjunct . 
... ~ a 

If goal is the second disjunct of a newly available dis~ 

junction 
1 

prove it by EV, adding tpe negation ol the first dis-
• 

junct to GOAL_~IST. 

\ 

If goal is the consequen t of an equi val'ence in INT 

âdd to GOAL_LIST the antecedent of this equi vafence and 

use E-equiv to justify the goal. ~ , 

If goal is the an teceden t lof an equi valence in INT 
' .. .. ' " .. 1 

add to GOAL~LIST th~ con~equeht of this equivalence and 

USe E-equiv to justify the goal. ,- , 

ON 

1 

, c 
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el 
.f; 

!:' '1~ , '~,:~~~ r.. l~.\ ,"f, 

, " 

. , 
, 

, 

, . .,. 
,0 If goal is the second conjunct in the consequent of an 

'(! 

J • 

. 
equivalence in INT 

add to GOAL_LIST the antecedent of this equivalencei 
., 

{it will then be possible to use E-equiv to' get the 

conjunction that will 1ead to the gpa1. 

If goal is the first conjunct in the consequent of an 

'~q,u:(valenc;,L-in INT 
; " 

add to GOAL LI~T the èonsequent of .this equivàlence; . -
(it will then be possiblë to us~~-equiv to get the 

ponjunction -that will lea~ to the goal. 

\s l--

If goal is a disjunction ana' ~n~ of its disjuncts is a 

tiheorem " 

Insert the goal in AVAILABLE, prin~ the proof to the 
~ 

provable disjunct; justify the goal with IV. 

If a àisjunction is available as a theorem 

prove goal by RAA 

". 

. , 
"\ 

.... "';" ~~ .. t"'~~ 
, • W

j {,~ 1 : : f, r 
9'2 
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• 
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• 

. ~, 

. . 

0' 

, . 

." 

, " 
( .~ 

, 
i. pÇb 1/\-

~ g- l{V • /l 

If the goal is a 
t:- J (' 1 

disjun(Ù~i.on 

proval?le (via ATTEMPT) 

goal by the rule IV. 

'\, 0 

~ " '~J 

,J , 
Il ,-<' 

" ' 
<~ 

a!Jd one, of i ts di,sjuncts is 

f' , 
, ' 

~, 
~ 
~ 

" ' 

,­, 

If the ne~ation of the g,?al is tbp antecedent:<of an ayail-

able impliaafion 

Prove.the, goal by RAA , -

'. 

JI ' 

'0 " , , 
<'u' 

If the g~al is the consequent of an available implication .. 

Try to·prove it by E=>: add to GOAL~LIST the antecedent 

of th~s ~mPli~a~io~ 

, 
If. theJ;e is in .available an implication of wh.i.~h :the ante-

..... 'ce~ has no t ye.t beèn proved ' 

Try to pr.ove this antecedent so aS to get the conse-

quent , ., .. ' 

If. the negation of tue goal is not a theorem 

try to prove the goal by RAA. 

, . .. 

( 

:;!», 'J 
~~~ 

~ 
1 , , 

1 

" 
, 

l , '-

. " .. ' ... 
, 

1 

p 

.. 
i 
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., 

'- , . 
'IÏ there is 

\ 
an· ilvailable equivalence' such that 

- the negation' oÏ i ts an teceden t is a theorem 
Q , 

(}) - the negation' oÏ its consequent is not already. a , 

goal or a theorem, 

'--'-
Add to GOA~_LIST the negation of the consequent 

, " 

If t:here is ,an available equivalence such that 
,~ 

the negation of i ts ~onse~uent is a th§ôrem . 
, , 

the negation of i ts antecedent is not alreadLa 

: "'1 .Jl.~al o~ a the~reJn " 

Aod to GOAL~LIST the negation of the antecedent. 
" 

If t~e goal is a disjunction and the negation of the:goal 

is a theorem 

,Add to GOAL_LIST ,the. ileg~tic:::>n of the dis~unction 1 s 
.... ~ . .. .. 

first disjunct. 

Otherwise, 

" 
Giv!= up with th'e" proof; 'print fail/re message 

• . -
1 
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;"~" 

" 
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.. 
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R.ul..ej'il_\l~~_Llib_~t;lt~~_qLi.~ to P.t:.ov~ cont~Ji;)..n)..QD 

~ . \ 

. -.. 

• 

"-

, 

~ If a contradiction has' been founa, blJ...t not yet been 

eà in a ~ub-proof by reductib 

print­
l 

P~int the contradiction; jus!ify' the goal with the ap-
~ .r''' 

propriate R~A rule (I~' or E~) 

If the first 'c#sjunct of an àisjutJction is the 

negation of a .theorem 

Add the negation of the fi 

, 
If the negation of ao theorem is provable via attempt 

.' 
add this negation to GOAL_LIST 
,- ~ ,~ 

" 

, 

i 
'\ 

\. 

" ----- ~ . 
If .the' ne'gatiqn of a àisjunction i!i~ a theorem and "the first 

, ,:; • 4 

disjunct of this disjunction is not already a goal, 

" Add the negation of this disjunct to GOAL_LIST ~ 

':f~ the negation of a àisjunction is a th,eorerr. and the neg,a-'" 
; 

tion of the f.irst àisjunct of this disjunction is a tbeorem 
<> 

but the nega tion of the second disjunct of th.e disjuncti on 

is not a goal 

Add the negation of the second disjunct to GOAL_LIST 

, 

." 
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)J 

c 

, . 
J 

Construct CANDIS~ containing a11 availabfe implica-

tions such 
ri .r 

that the n,;g:ië!ltion' of the,ir consequent is a theorem, . 
.. I~, 

Q 

~hile the' negation of their antecedent is not a theorem. 

. r\, 
Il, 

If an implication i5 ',a ~ber of CANDIS and the negation 

, i ts conseque),t' ,as nJ 'j~st El theorem but alr~ady proved. 

of 

" ;~, 

/!J'bove the goal, selee,t that one; otherwise, select the' 
\ t 

' ... , 

, ~ 

first element of CANDIS 

and add \~ ~OAL_LIST 
this implication 

the negation of t~e antecedent of . 

• 
, -

If i t is p(Jss.ible to seletlct the first likely candidate for 
. 

reductio, via GETCANDIS. 

Add this candidate on top of GOAL_LIST 

If an equiva1ence is availabl'e 

f' add the n~ation of the antecedent to GOAL_LIST 

give up and print fai1ure message 

" , , 

" 

'" '" 

.. ~. - • -< 

, . 

00 
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• 
Interprétation de ce schéDa 

. 1 
, l 

A, eb B ou C 
• 

.. 
DONC, 
B ou C 

1 

Il r· 

. , 
~ 

.. 
, 

Changer -4 Explorer 
d' lès , 

.'. concepts exercice 

) 
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\ 
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'02 
. 3 

4 
5 
6 
7 
8 
9 
18 

"\ 11 
12 
13· 
14 
15 
16 
17 
lB: 
19 
28 

" 

0 
. 

" 

L-

"t..... ~\ r ,.'" - , li . ':' -,t~ .., . 

O' 

(B =+ .U '" PRit * q============== 
«, B) =t (, Cl) PRDI . - On veut prouver 
C 

A 
(A & C) 

1 

!( 

.PRut 
- . 

• <II 

... : 

?'1'1 

il" 3,19 

. := ltiDICE SUPPLEMENTAIRE 

A à I~ ligne 19 • 

~n peut noter que A 
, est. 'le COHSEQUEHT de \ 

la préMisse 1 •. a-

. . 

. ' 

) 
'. , - - - -

1 
, . , , -

- - --

Esc := 'RETOUR AU MENU PRECEDENT 
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contrad iction j9,~~ , 
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." 
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1 
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3 
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S 
6 
7 
8 
9 
18 -
11 
12 
13 
14 
1S 
1G 
17 
18 
19 
28 

c, 
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J , 

\ 
. (A =+ B) 

Co 

h (h ill U B» 
(h Al U B) 

A 

«,A1UB) 

(h A) U B) 

,-' 

" 

'. 

PRD1 
triP O\n veut prouver 'une 
HYl nSJOHCfIOH à la 1 igne 

18. 

REP l .Dans ie CilS pré~entJ on 
IV 3 0 pellt prDliver un des 

deux DISJOIIn'S. 
E, 3,6,? 

On uti lisera ensuite la 
règle d' 1 HTRODUCTI OH -de 

.r la DISJOHCJ'IOH (lU) . 

'-

'1?? ~ ... 
E,? 

/ 

, 1 
:: 1 NDI CE SUPPLEMEtITAl RE _ 

1 Esc;;; RETOUR AU MENU PRECEDENT 
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1· 
i 
3 
4 
5 
6 
? 
B. 
9 
18 
11 

ft~ 
14 
15 
16 
17 
18 
19 . 
2B 

«COtn'RADI en OH» 
(B =+ D) 

, , 

Plm 1_ 
PHm 
triP 

'1'1'1 ... 

~, .. 

"on: dans ce cas-ci, il­
ne faut pas chercher à ' 
prouver que l' lIypathèse 
B est absurde. 

On veut prouver que 
CD =+ D) <> 

Il· faut donc prouver 
D soùs l' hypotllèse B 

1 
Apputlcl" SUT' Ise Four annu 1er cette hypotllèse . - . t 

~ 

() 

o 

.. ,. .,;- .,. \ J-

l' 

10) 

• 

. ',~ 

'-, 
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7 
8 ' 
9 
18 
11' 
12 
13 
H_ 
IS 
16 
17 
18 
19 
28 

J~ J,\,' 

A • 
(c a h B» 

D 
(B =+ D) 

1 

.. 

. 'BEn 
,PKUi . 
INP 

1=+ 3,19 

• 

Bonne stratés ie 
(règle 1*) 

/
- - --

Appuyer :sur ~.J -Four .tonti nuer _ 
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1 
. 2 

3 
4 
5 
6 

'7 
a 
9 
18 
11-
1Z 
13 
14 
15 
16 
17 
18 
19 
28 

.l 

A 
(c a h B» 

D 

D 
CD ~ Dj 

h Hl=.- j))) 

. , ... ' 

«COKrRADI tTION» , 

. . .' 

_ PRD1 
PHm 
HYP 
H':lP 

( 

??? ... 

; 

1 

Il n'y a pas d~ raison 
apparente de Eaire 
l' hypothèse h {B =+ D» -
à ce stade-ci de 
la preuve. 

- -
Appuyer sur 'Ise pour annuler cette hypothèse 

1 
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LES CONCEPTS DE LA DEDUCTIOn NATURELLE 

Les différents types de fOrlules 

"on ies parties d'une for.ule cOMposée 

Structure d'·une preuve 

11 règles d'inférence 

Stratégie: Ooooent constrnire ~pr .. ve 
.) " . '\ 

1 Esc = Betour aux exercices 1 
. 

., 

.. 

,L 

r 

,.. 
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PréMisses 

1 
Etape.si.ple 

~'Fol'llu 1 e' Just if icat ion 

/1 

) 

. : 
~ 

Etapes 
Intel'lédiaires 

1 
1 

Sous-Preuve 

. 

• • 

1 
Conclusion 

" 

Hypo~hèse Etapes Sous-blll 
Intel'llédiaires lq 

FOrlule Con trad i cti on 

Êsc = Table des .~tières 

lOS 

1 
1 
, t 
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o 

o 

" 

, . 

. , [' 
; 

) 

Étapes i ntel'llé4 iaires __' 

Les étapes interMéaiaires d'une preuve sont des 
étapes si.ples, ou des sous-preuves • 

l.P=tq 
2. h Q) 

PréM. 
Pré.. 

3. P Hyp. 
4. P ~ q llép.' 1 
5. Q E=t 3,4 
6. - (~Q) Rép. Z 

" , 

La sous-preuve qui occupe les lignes 3 à 6 

~st une étape interlédiair~ . 

~ l'intérieur de cette sous-preuve, le~ lignes 

4 et 5 sont aussi des étapes ,inter.édiaires . 

"\ 
"Détails: J 

. . 

.. 

, . 
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