ND: A RULE-BASED IMPLEMENTATION OF NATURAL DEDUCTION
- & .~ . _ -

v . -

» L4

- === DESIGN OF THE THEOREM-PROVER AND 'I'UTO‘RlING SYSTEM =

4

REEEIOT - Frangois Dongier “ i
School of Computer ,Science ;
McGill University E

oo March 1988 !

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements for the

degree of Masters of Science

v

(c) Francois Dongier: 1988

IR o
‘

=
N
A

Permission has been granted
to the National Library of
Canada to microfilm this
thesis and to lend or sell
copies of the film. \

The author (copyright owner)
has reserved other
publication rights, and
neither the thesis nor
extensive extracts from ‘it
may be printed or otherwise
reproduced without his/her
written permission.

‘e ’ ' -

L'autorisation a été& accordée
3 la Bibliothéque nationale
du Canada de microfilmer
cette thése et de préter ou
de vendre des exemplaires du
film. .

L'auteur (titulaire du droit
d'auteur) se réserve les
autres droits de publication;
ni la thése ni de 1longs
extraits de celle-ci ne
doivent @&tre imprimés ou
autrement reproduits sans son
autorisation écrite.

; ' ISEN 0-315-46033-4 - . !

£ B
- . 0 . 1 e
. . P
3 4 o v ‘ R
s -~ + a ,:’c

- 3 ! - * ‘5

- 5 e -
T S : .
o -] * < M v ’ ¢ -
‘ PR - - “ "
- A4 - . -
PR D ABSTRACT S s LAy
] ‘ ' : " ' * \ 40‘ T."(
. i . 4 : , nr)'\:,—) . 40
N . - - N ' B . }(:‘::\ :- P =
- lluvﬂlv ;.“‘:; »
) Natural deduction provides an elegant technighe' for® 0
N "n : 2F - ;
w. -4

~ JoL 2=
the tenstruction and representation of proofs. This thesds des~
cribes ND, a Lisp program implementing a Fitch-style pgtu:aivfhl

. deduction theorem-prover for sentential logic. A set.of produc-

B

s

tion rules is used to decide, at any-stage in the construction °

@ o

of the prbof,'what rule of inference should be applied next.

The extension of ND into STEL, a tutoring system for proofs in

1)

natural deduction, is-also discussed, as well as some advan- .

»

tages of using natural deduction‘kheorem-prSViﬁg in artificial

intelligence applicatioﬂs.

a
t 4 ¢ v : i
.
' 0 7 .
- N . v .
) A
. ' .
° N Ky
N .
R 5
o - N
~ 4 :
5
\
i} . .
- ~ '
. ! 9
* ‘
. * ;«"’ -~
’ — : -
;" ¥
. .
-
. .
- 1
- s & -
-
~ r
. 1 - '
4 R i @
e 1]
!
\ . ¥
- Y \ \ .
- -
v @
~ 3
; .
- .
! . €
.

RESUME

1

R

-

La déduction ngturelle permet une représentation

_claire et intuitive de la preuve de la validité d'un raisonne-
ment. Cette thése décrit l'implémentation en Lisp du systéme

. ND, un démonstrateur de théorémes en logique des propositions

’ L basé sur la méthode de déduction naturelle telle que formulee
.. .
par Frederic B. Fitch. Un ensemble de reégles de production est

°

utilisé pour. décider, & toute étape de la preuve, guelle régle

d'inférence utilisger. Aprés la description de ce systéme de

y - régles, on trouvera une discussion de 1'extension du démonstra-

’ teur de théorémes au systéme tutoriel STEL, ainsi que'dé la
.
pertinence de la déduction naturelle & certains problemes liés

au raisonnement automatique en intelligence artificielle.

! ' ’ v
]
- \ .

ACKNOWLEDGEMENTS

N

B4
L
-

* Warm thanks are due to'the-superyisor of this the-

v,

v

si{, Professor G. Hahn. I feel strongly indebted, foexr their
g , "y

help, comments‘and encouragement at various stages of the pro-
4

ject, to a number of students and Faculty members of the Schoal
of Computer Science at McGill, in particular to Jean-Francois

Cloutier, John Kirkpatrick, Professor T. Merrett, Professor C.

S
- .

Paige and Professor S. Whitesides.

’
-

. The extension of the theorem-prover into a tutoring

system was done in collaboration with Michel Paguette.and
L'
+
Gaston Gour, who teach philosophy. ~ and in particular, logic -

at Colleége de Maisonneuve in Montréal. Sincere thanks h@ both
. ’) . ' ya
6f them for the long’discussions that, I hope, are reflected in

the final product.,f also want to thank Ulrich Aylwin, direé-
» ‘ .

teur des services pédagogiques at College de Maisonneuve and

®

Claude Seguin, responsable de :projets at Direction générale- de
1'Enseignement Collégial, Ministére de la Science et de

1'Enseignement Supérieur, Gouvernement du Québec, who provided

financial support to the tutorial project.. .

/) ,?*’;
S 7 S
/ ﬁ ,
o~ // » . Y] g R e
/ ’ I\ v iv
' /// “g “r N \:,Eq]
. TABLE OF GQONTENTS
3 ' : hoos .
bBSTRACT...Q-.\OQO'........‘]Tl.............‘.....'......1\
= v e
RESIIME; --------- a...c.....-.‘.—’.-'..C.’-o..-...oc-..: --------- - = 11
ACmowLEDGEMENTS * @ & ® ¢ ° 9 % & >80 e .—.‘. . e o9 f - o ® * & & & 86 .'. - o s 0 e o) ; LN -i\ii '
. 0 ’
i T - - a‘
’ INTRODUCTION ¢ o 0o s 00 0 0 e s e P o0 ..-‘on--c'ooco-.%c.’-oooo:l.1
. s]\" ‘ - N -
I . ELEV‘EN INFERENCE RULES * & o o & & & 9> o0 0.‘\0 * 0 » .’. & & 6 & 5 & & & 5 & 0 " 0 & & 8 ‘ L2 4
, II. NATURAL DEDUCTION VS OTHER PROOF-TECHNIQUESc.cc0000. 8
Y - -
-+ 1. Alternative proof-techniquesc.eeeeene. f.. cececenes 8
[Y . .
) 2. Natural deduction i cseeecerecencersceocnsecacrrsonccnses 12
r N » '/ \ l
') ’ III. OBJECTIVES OF THE THESIS AND JUSTIFICATION OF THE CHOSEN
— - " APPROACH (PRODUCTION RULES) AND DOMAIN (SENTENTIAL
LOGIC)-.---.--: ® o ® 2 000 e @ 2 9 % ¢ o # 8 0. 3 16
) 4 N ° '
’ 1. Objectives of the theorem—pProverce.. teesasssee 16
R . .
N 2. Justification of a rule-based SYSteM....eevveeeeoesss 20
- . ’ ‘ '
' 3. Limitation to sentential.logic......... tescsrsesessnss 22
A IV. DESIGN OF ND (THE THEOREM~PROVER)eunesenenesoonns. 24
' a
¢ Al. What is a "good" Proof? «..eeeeueeens e reecreeeeaanaaee. 24
v 2. Use of production rules to capture knowledge about
"elegance of Proofs ... it ittt c ittt cee 26
3. Rules of inference vs héuristic rules... cpeer e . 27' .
4. Basic Strategy .cee ereeeoreerecccaonsvoones e s sere s anea . 30
.) 5. Fprward and backward reasoning must be implemented... 32
- 6. A forward-chaining inference engine generates both
, forward and backward reasoning «c.veeeveveeens ... 32
‘ ' . 7. The main data-structures of ND...... checr e st eeeenane 34
. -)‘ ¥ .
- S i

. v
[-
V. EXTENSION OF ND INTO STEL (A TUTOg). A ¥ | i
1. MotMvation and objective; of the tutor..... . Y A
. * . -
2. STEL in the perspective of current ICAT.............. 38
3. STEL, & modest tutor ... ettt inrececencoponsasnenss 43
H é . . ’ -
4. New data-structures - .
Student-model and bank of exercises......... eesoes 45
) S.EExplahation system “r
Enrichment Of the' ‘e StrUCture ¢ 5 0 0 0.9 5 a5 w. e s s & 00 00 45
~ - a
' 6. Remarks on the implementation of the tutor........... 47
7. Experiggntation of the program . .
. and possible future extensions ceme.. 49
VI. RELEVANCE OF NATURAL DEDUCé&ON
g nTO ARTIFICIAL INTELLIGENCE......... s et se s s esacsnnece 5,0
1. Natural deduction allows an intuitive explanation .
L of the reasonings embodied in tHe proofs........ 50 .
‘ 2. Poss{bility to give a'sketch of the proof
§ Vo~ .+ or a partial explanation in case of failure....s 51
5 3. A natural way.of implementing richer reasonings (
than sentential logic reasonings crenesss 52
4. Conclusion........... T -1 ¢
" APPENDIX 1 : ,
Rules used in the first-version of the theorem-prover... 61
' APPENDIX 2 -] - - ‘
’ Listing of a first implementation @f the theorem-prover. 63
APPENDIX 3 X .
W Rules used in the IQ-Lisp version .
» of the theorem-pProvercooeeereeceeeen v... 83
The vocabulary -0f rules: . :
primitive predicates and functions 83 ’
Rules used 4in forward reaSOoning ceoeeeeeeeeceoeeneees 85
Rules used in backward {(goal-directed) reasoning.... 88

Rules used when the goal is tq prove a contradiction,95

. APPENDIX 4
Screen dumps taken frém the Stel tutorial

ooooooooooo

v .
ry 3

BIBLwGRAPHY......:..;.....Dl.‘...l“...:......l........-..' 110

<

- . : o

.- ' INTRODUCTION S ,

i

’ The natural deduction technique is used for
constructing proofs in formal systems and for representing

these p}oofs in a clear and intuitive manner. It is typically

e - . ' . - . .
used to present the derivation of a theorem or, in a system of:

logic, to show that a sentence is logically true; it can also

¢

be applied to establish that an argument is valid or that a set

.

of sentences is ihcénsistentq
4]
Historically, the method originated in the work of

Gentzen [10] and Jaskowski [11] who devised a cdomplete set of =«
N rules for natural deduction derivations. The standard form for

expressing the rules and formatting the proofs was formulgte&

4

4 by Fitch [9].

D

¢ ' Any natural deduction system is based on a set of

"natural" rules of inference that can be applied in reasonings.

LS

' "X These rules specify. what inferences are permitted in the do-

main. It is in fact the "naturalness" of natural deduction that

constitutes its main advantage when compared to other, more

.
(

syntax-oriented, proof-techniqueSﬂ a natural deduction proof is

‘ - & - »
easier to understand because: it is based on an intuitive set of

N {
rules of inference; each step of the proof can be seen to fol-

I low from one or more earlier steps by the application of a rule
[> - /‘\

Y

» " of inference. : ,

)
A

©

ot

Natural deduction systems have been constructed for
various 16gics, e.g., sentential.logic (the logic of truth-

functional connectives), prediéateﬂlogic ({the logic of quanti-

. 7
fication), and richer sorts of logics (in which, for instance,

’

relevance connectives or modal operators are present).

,
3
4 . -

The present thesis reports on ND, a Lisp implemen-
tation of a Fitch-style natural deduction theorem-prover for
sén;ential logic. The rule-based implement;tion of xhis

. theorem-prover allowed thé extension of the program into the
STEL tutboring system, aimed at teachiné students the rudiments
of logic and the basics of the art of consfruct%ng proofs in

,

natural deduction.’

-

-

Section I lists the inference rules that define the
domain of the proofs that. the theorem-prover should be able to
construct. Section II compares natural deduction with two other

well-known proof-techniques for sentential logic (truth-tables

and truth-trees). . : o .
/. . :

Section III presents the objectives-of the thesis

and discusses the major design chioices made in this implementa-
* +

Fion (limitation to senteneial logic, use of production-rules).

Section IV focuses on the strategies used by the theorem—-prover

in the construction of the proofs. Section V describes the de-

sign principles adopted in the implememtation of the tutor.

Section VI discusses the relevance of using natural deduction

thecorem-proving in AI applications.

<

£~ The rules used ?n the first implementation. of. the -

= - a

theorem-prover (written ianganz Lisb on a Vax) are %}sted in

e

appendix 1. Appendix 2 contains a partial listing of this pro-

L] ~ .

o
' v gram. For the implementation of the tutor, the program was

\
)) transported to anDIBM—PC (first in Mu-Lisp, then in IQ-Lisp).
) I 4 N :

. The extended vocabulary that was made availdble to.the rules in

| : ' this second version of the theorem-prover is described in ap-

~ M] . *
pendix 3, where a listing of the new set ofig%}es may also be -

4 t

found. Appendix 4 contains a dump of .a few screens taken from

‘

the tutorial, showingrtypical interaction between the program

>
k4 1

' and the student. ,

¢ “ o /

. - N Wi
. = 10 N [
s 2’;;;.1 Lo
- ' a ~ .
o - .
! t
L]
ot v
D -
- i
-
v
' L)
a
L] \
‘
. ~ i ————— -
- 0
i
4
o - @
.
®
3
\
»
v a
N
“
. >
. 3] -
\
'S I o [
2
- S
’
LN
- S
<]
7]
a a A

2

[

n\"

" {the grammar of the language) specify how well-formed compound

i

& ,I. ELEVEN INFERENCE RULES

- S
[4

e : . : {

Formulas of sentential logic are either atomic

- L]
(e.g., P, Q,...7 or compound: the rules of sentence formation >

-

A]

l

formulas may;be@genérated by grouping simpler ones with connec-'

b}

tives. There are 5 connectives : &, V, =, =>, <=>, and the
rules, of sentence formation say that, if X is a well-formed
formula, so is (- X); if X and Y are well-formed formulas, so)

are (3 &Y), XV YY), (X =>Y) and (X <=> Y). The five connec- °

-

tives are interpreted respectively as AND, OR, NOT,(IF...THEN,

and IF AND ONLY IF.

A proof in patural deduction is §%5equepce of for-
mulas, each of which "has a justificaéion". A formala can be

justified .either as a premiss, as a hypothesis, or as the re- N/
Ky : O R
sult ®f the application of a rule of'inference on one or more

earlier formulas in" the proof.

[]
-

Intuitively; rules of inference\may be thought Sf

i

as truth-preserving tools that guarantee saﬁe deductions. Math-

<

: ematically speaking, an inference rule is nothing but a mapping

3

v ES
that, whgh appligd to a set of theorems, yields a new set of R

, v “ a -
theorems!. As such, it is purely syntactic and, therefore, to-

! In "monotonic logics", the application of* inference rules may

_only increase the set of theorems.

-

[N .
g

. tally independent of the interpretation that may be given to

the symbols occurring in the formulas on which it is applied.?

0
Two rules of inference are associated with each

connective, one for the "elimination” of the connective (e.g.,

"&Clim") fﬁa‘one for its "introduction" (e.g., "=>Intro"). This

gives the following ten rules (m, n, and o stand for line-num-
bers; vertical dots represe?xt an arbitrary number of interme-

. diary steps that are not relevant to the rule being defined).

4

\ ' INTRODUCTION RULES ELIMINATION RULES -
m| X 4 .+ om] (X & Y)
. n| Y : X &Elim,m
(X &.Y) &Intro,m,n m| (X & ¥)) ‘
- \\ : Y &Elim,m °
. 1t
) m] X m| (X V Y)
(X V Y) Vintfo,m ~ n| (~ X) '
- ’ * w‘& 1
Y "VElim,m,n ¢
‘ﬂ.]
L] - o t
) . 2 However, as we will see in the next section, it is a crucial
‘ - characteristic of elegant natural deduction proofs that they

cannot be constructed without reference 'to the ordinary meaning
of the connectives. It is the parallel. - { that such proofs have
with ordinary intuitive reasoning that makes them more interes-
ting than other types of proofs.

’
b4 v

¥ See page 13
b

uged here

for a description and

b
"

-

] , 6 "
N)
- v R
[
bl R — .
m| Y m| (X V Y)
(X v v) VIiIntro,m .nl (- Y) ’
X ° VElim,m.n ,
m] X m] ‘-l X)
n Y . n Y) ’
o A YD) o (5 Y)
(- X) sIntro,m,n,o X -Elim,m,n,o0
m| X
m X .
. n{ (X =>Y)
n Y . .
(X =>Y) =>Intro,m=-n Y, =>Elim,.m,n
m] (X => Y) ml (X ¢<=> Y) ‘
nl (Y => %) n| x°
v v : _ o - (*)
! (X <=> V) {=>Intro,m,n Y <=>Elim,m,n
'y
» ~
[4]

use, of the notation
1

&

To be complete, the system needs an additional -
{eleventh) derivation rule, the rule of reiteration, that mere-

i)
ly allows the derivation of a sentence from itself?:

ot

»
-

P sReit m

3

This gives a total of eleven rules, esach of which

)

caﬁ clearly be 'seen (gpd proved) to be truth-preserving. It is.

one. arong several alternative! sets of rules of inference for
4 -
Fitch-style natural deduction proofs in sentential logic: other

\ —_—

-formulations of the rules also yield sound and complete systems

(systems that can prove all valid, and only valid formulas of

sentential logic).

<

’

3 This rule may seem trivial. Its presence in Fitch's system is
justified by what it excludes: some formulas are reiterable

while some are not; restrictions on reiteration forbid, in par-
ticular, the‘rsi}gration of a formula derived under a hypothe-

sis that has been ‘discarded.

4 'Such alternative s&stems of natural deduction for sentential
logic differ in particular in the expression of the rules for
negation and disjunction elimination.

ad

-

4

II. NATURAL DEDUCTION VS OTHER PROOF-TECHNIQUES

l.. Alternative proof-techniques , LD
~ Two other reputed theorem-proving techniques, name-
ly truth-tables and truth-trees ~ it is this second technique,
incidentally, that lies at the fougdation of the resolution
method - have a significant advantage over qftu;al deducPion:
they are mechaﬁical decision procedures that will always esta-

blish, after a finite number of steps, whether an argument is

logica%gly valid, whether a set of sentences is logically

consistent, or whether a sentehce is logically true. No imagi-
nation or foresight is required for either of these methods to
apply its test. The natural deduction technique does not pro-

vide such ‘a guarantee that a proof will be found, if it exists;:

furthermore, it does not specify in a unique way how the proof

is to be constructéE:’Why, then, do people bother using natural-

deduction rather than truth-tables or trees? What advantages
may compensate for the fact that natural deduction proofs are

not mechanical? To answer these questions, let us first look at

an example to see how each method solves the validity question.

4

S
ad 4

.
A [

Consider the following argument, taken f%om'g typi~

cal real-life piece of reasoning:

3
|) . . :
\

If the kids didn't clean up their mess, then if Mom saw
‘ it, she was not happy.

Surely Mom saw it i¥ the kids didn't clean up their
mess.

But she was happy.

So they must have cledned up their mess. K

- -
«

-+ . A
. N) 4

L 33

J _ Using the language of .sentential (also cglled pro-

positional) logic,.the argument franslates1 into:

» ?

' -k => (S => =H) 3 ifunot K, then if S then not H
wE => § . ~+ " ; if not K, then 5 - g)
H Cov i H o . .
S - .+ thérefore)
K ‘ i K ’ ' :

The truth-table? gives us a straight-forward way of

2

. showing that this argument is valid: after building - véry

mechanically - the whole table, we observe that there is no
4

! In what follows, some liberty is being taken with syntactic
correctness (e.g., parentheses) so as to make the formulas

easier to read.

II . 2 petails of the syntax of this language and the different
proof-techniques discussed in this -section can be found in in-
troduction to logic manuals such as Leblanc & Wisdom [13], or

Bergmann, Moor & Nelson [3]. y

!
,\ ~
1

! _.;;.\
.

S
O i
RN Sarc

o,

% i 2
truth-value assignment to the atomic wvariables K, S, H thgt

makes the premisses of the argument true and the conclusion

‘false at the same time.

©
\,

K [H K -H S=>-H -K=> (S=>-H) -“K=>S
o T T F - F T T .
T T F F T - T T T
T F T F F T T \ T
T .F F’ F T T T % T
F T T T F F F T
‘5 F T F T T T T T
F F T T F -T T F
F- _F F T T LT T - F
Concl . Prem3 ’) Preml Prem2

"
. There are 2" ro6ws in i truth-table, where n is the
o - . .. ‘ ‘
number of atomic variables occurring im the argument. In the

! ‘ e " - » 3 v v
case of-the argument that we are now considering, n = 3, so

’

fhat the t}utg-tablescontains on1¥/8 rows - an acceptable size.

However,’as the size of the table jumps exponentially with n,

the starndard truth-table technique is a rather uninteresting

tool for evaluating real-life arguments;

« \

There exists a short-cut truth~table method, based

on the followingeprinciple: instead of constructing the whole

. N
truth-table, one tries to construct a row which shows the argu--
ment jnvalid, i.e a row in which the premisses are all true and
o the -onclusion false. If this fails, then the argument is va-

“ ‘ 1id. In our example, we try to f£ind a truth-value assignment to

"

ke

sion false:

a0

%
i v

assignments

i

K, S, and H that: will make the premisses true and the conclu-

o

LY S

" A simple and mechanical procedure quickly shows

that S should be assighed the truth-value false for the first

premiss to be true and the truth-value true for the second pre-

miss to be true. This is iﬁpossible, hence the argument is va-

<

The tree technique applies basically the same stral

tegy as the short-cut truth-table technique: to prove an argu-

¢ - | _ .
Starting with the assignm
. Pl (===
P2 (===
: P3 (===
LN
C ===
we immédiately get the
' H (===
. ¢
. i K (===
A . 3
\\\iid.
. ment {P1,...,Pn}

C valid is to show that the set

{P1,...,Pn, =C} is inconsistent. A set of sente@ces is shown to

be inconsistent if all branches of the tree representing the]

) L 3 .) 3
‘ _set clo?‘e (i.e contain ar{j explicit contr-asilctlon).

&-I

wn

Here is the tree corresponding to our argument.

» From the point of view of an intuitive representation of the

proof, it does improve over the truth-table (a first step in

the right direction).

[Premiss 1] C - K => (S => - H)
[Premiss 2] . . 2K => 5]
[Premiss 3] v © H
[Negation of conclusion] '
] //////’” ‘\\\\\\
[Expansion3? of 1st premiss] K © (s => ‘

——— \

. /.\
\

(Underlined terminals: indicate branches that are

[Expanéion of 2nd premiss]

© -

.-

"closed", in the sense that they contain an explicit contra-

diction) - ' !

-2. _Natural deduction -

» ‘

. Nathral'deduction proofs.are also called deriva-

I3

tions: instead of showing that all ways of putting together the

k]

" premisses and the negation of the conc¢lusion yield)inconsistent

sets (as is donggwith the tree method), the ND proof shows how

5
the conclusion can be derived (as it were, constructed) from

the premisses via a series of "obvious" steps. Each step

-
¢

consists of a sentence S together with a justification for it.

1

- i
Y

3 For - K => (s => - H) to be true, either K must be -true or
(S => -5 H) must be true. e

A
3

-

The Jjustification of S states explicitely

4

- What rule. of inference was used in deriving S (unless

of course it is a premiss or hypothesis, in which case

4

it needs no further justification).

A

- The position in the proof of earlier steps froﬁ which

S was immediately derived.

I

N °

Here is the ND version of .the messy kidé argument:

v A . h v

1 (-~ K => (S => - H)) Premiss , 3
X 2 (« K =>8) . ¢ Premiss "
U ' . h
3 H . . Premiss
4 N 4 - K Hypothesis
g 5 S = - H =>Elim 1,4
6. S =>Elim 2,4
5 X
‘o 7 ‘a9 H =>Elim 5,6 N
- 8 J B ‘ Repetition 3
9 .| K - " SElim 4,7,8
.- .. P
\ ' .
4 ND derivations allow the making of hypotheses: .you

can make a hypothesis anywhere in the proof and see what fol~-

lows from it. In a Fitch-style ND proof, a vertical line start--

“ -
ing at step n jndicates that the sentence at n{is a hypothesis;
’ /

.y
.

‘ the hypothesized sentence is also underlined.

«t

° 14
We can see by looking at the proof that
r
’ —_—
. . line 4 is & hypothesis,, .
. line 5 is justified by the rule "arrow-elimination"
o

{modus ponens) from linesyl and 4,

. line 8 is a repetition of_line 3,

.. the conclusion appears as the last line of the proof -.
aﬁé is justified by "negation elimination" (a form

of reductio ad absurdum). N ’

-
«

. The positiog'of a se ce with respect gto the ver-

tical lines is also very informativ showinj precisely under
what hypotheses it was derived (heye, =H was derived under hy-
potheées 1, 2, 3, 4, while-K logically follows from 1, 2, 3

alone). ’

The key advantage a natural deduction proof has to
offer is its- "naturalness”, i.e., its similitude - to a large
extent - to our informal, ordinary human way of reasoning. Un-

like resolution and truth-tables, natural deduction allows a

mixture of top-down and bottom-up reasoning, as well as a mix-

A .

ture of direct and iﬂdirect reasoning: just like human reason-
ings, natural deduction proofs can grow forwards (top-down) or
backwards (bottom-up), and use. reductio ad absurdum only when
no other, more direct way of progressing towards the conclusiopn

i

is available. A comparison of the resolution and natural deduc-

.

v

&

tion proofs of a relatively very éimple argument will illus-

trate this last point.

Dolphins have lungs and are warm-bloodea.'

If dolphins have lunﬁg, thien they are not fish. _

Hence dolphins are warm-blooded and are not fish. A
Proof of validity of the argument by the tree method: .
- * . . (L & W)
) (L =) = F) -
[Négabion of conclusion] i\(w & - F)
L &

s
'

)) . W “
, [Expansion~of premggk/Z] - a1 \\Ti:>\\

-

F
[Expansion of negated conclusion] _;;ﬁ:j///// F

»

i

4
% *

- ,
Natural deduction proof of the same psoblem .

. R
y | , .
1] (L & W) Premiss
2| (L = = F) Premiss
. 3w q emdm1
) ¢l L ' &Elim 1
" 5[- F =>Elin 2,4 '
] 6| (W & - F) &Intro 3,5

»

proofs that would compete in

.tion method does not provide a mechanical, deterministic proce-

1

16

ITI: OBJECTIVES OF THESIS AND JUSTIFICATIOR

OF THE.CHOSEN APPROACH (PRODUCTION ﬁULES)

a) AND QOMAIN (éENTENTIAL ﬁbGIC)~

s
- PR

' 4
1.‘Obieq;ives of the theorem-prover ,

| -
In the design of this theorem-prover, two antago-

nisficlobjectives had to be takeﬁ“jnto dccount: the simplicity
of the algorithm on the one hand, and its ability on the other
-

hand to construct sufficiently elegant proofs. A choice-had to
. /

be made between a theorem-prover with relatively simple strate-

s

gies, and a more sophisticated algorithm capable of writing

S - .
elegance with hand-~written ones.

-

Unlike other proof-t%chnidues, the natural deduc-
dure specifying&how proofs are to bélconstructed. When ‘
constructiné the truth-table or the tree corresponding to an°
argument, one never has to make a choice: at any step of the
procedure, what comes next is forced. On the other hand, there
is always anainfinity of leéal things to do! at gny step o¥ a
natural deduction proof. This freedom implies the danger that

the proof process will follow a wrong direction without ever

reaching the goal (the conclusion). But it also allows the

<y

. \
! From &, one can derive (A V B), (A V C), etc...
From nothing (an empty set of premisses), an infinite number of
tautologies can be generated via the rules of inference of na-
tural deduction. ‘ .

[y

A

’ i 17
-t " g .
construction of concise proofs (without unnecessary steps) that .

‘ a

lead from the premisses to the conclusion.in a natural (because

goal-directed) way.

7 There are more rules of inference in natural deduc--
tion than in the other- two methods. There is a direct link
hefwéen the number of rules of inference and the similarity of
the p}oofs to‘ordinary huﬁan reasoning. However, the morelap—

v - plicable rules of iﬂferenée there are at a given step in the

proof, the more "intel%iggnce" is required in the theorenm--

prover- to decide what is the optimal rule to apply.

v - The objective of t]p‘theorem-prover pres@nted here

A

is not at all to come as close as possible to a decision-

procedure. Had this been an objective, thenla transformation

' into some sort of hormal form together with a relatively simple
L4
3
strategy would have been appropriate the trick (e.g., putting
. F] v

, all premisses and the conclusion in disjunctive normal form and
s

appl}ing repetitively the rule of disjunction elimination).

" What is wanted on the contrary is loyalty to the spirit of na-
% tural deductibq proofs, i.e., loyalty to the principle of
. .

constructing "nice" proofs that look as similar as possible to

proofs written by human provers.

% ' - Similarity to human-written p}oofs was wanted not
o . only in the final output (i.e., the completed proof) byt also
‘ - in the way the .proof was constructed. It is'for instance an em-
, 11

pirical fact that, in‘the construction of a proof, an expe--
\ e, '

rienced KHuman prover very rarely has to use backtracking. In-

"
.

4 —_—

-

v,

i8

stead of relying on exrensive~search and failure-directed back-
tracking, hhman provers tend to take the time to "observe" a

lot of things in the-premisses and the conclusion. They do a

[I3

lot of pattern analysis, that can be described as "premiss-—

interpretation" (forward reasoning), "comparison" between pre-

misses (seeing common sub-formulas), "goal-analysis" (backward

L3 12 ! . o) »
reasoning, examining the main connective of the conclusiom),
e

M

etc... The same tyﬁe of approach was expected from the tgeorem-
. - .

prover. , .

3
a
’ <

Actually, a backtracking procedure was present in

©

the design-of an early prototype of the system. It was discard-
ed on the basis that human reasoners only exceptionally rely on

backtracking. Hence a program with the appropriate knowledge

3

should also be able to do without it. Backtracking - and
éxtensive search - is probably much easier to do for a machine
than it is for a human being, but search is expensive (as far

as elegance is concerned) and it is better if possible to avoid

L]

it altogether. This decision to avoid backtracking as much as
possible made the theorem-prover more complex than it could
have been: instead of letting the system try a %rong route énd

then backtrack, failure of chdosing the right routefgirst was

i

interpreted as a symptom of not enough intelligence.'Such in-

correct behaviour was therefore corrected by the addition of a
2

new rule-to the database.) .

The first and main reason to build a more ambitious

-
2

theorem-prover was therefore to be faithful to the spirit of

19

o

natural deauction prqbfs. Another reason was that the ,theorem-

prover was meant. from thg begihning to evolve into a tutoring,

system able to guidé a student in thé construction of proofs.

¢ ~

Now the aim of teaching natural deduction to students is

clearly not to give them a mechanical procedure for construct-

@

ing proofs, but rather to give them a tool to use ?n the form-

~

alisation of their own reasonings.

‘ . ¢

This point will be expanded in.section IV.4 with a

2

desc;iption of the:way students are taught to do pr&gfs in na-
tural deduction. Basically, the idea is that it,seemE\ﬁrgfer-
able, pedagogically speaking, to give the student as much know- °
ledge as .possible about- the relgwagt patterns that‘he/éhe

should QF able to expect and deteét in the statement of a prob-

lem, rather than a- universal recipe based on failure-directed

v

backtracking. @ -
L & C . St
B . e

We may "therefore summarize as follows the objec-

~

tives of the theorem-prover:

=3

[4 [

-

- construct dbt onlyoéorrect but good-looking natural

°

v

deduction proofs s

M/\ 'An obvious objective in the construction of the

proofs is mathematical elejance. Major objective of

this prbver: minimizé the length of proofs. - ¢

’

: . . . - Y
20
- facilitate the implementa;ion of a tutor able to
teach natural deduction.
In other words, the system shoﬁld be able not only to
ceonstruct the proofs but also to explain how they

were found.

- minimize backtracking)
he—

More generally, t construction of the proof itself

(not just the proof) should be as similar as possible

to a lhuman way of doing gt.

- s »

- keepwas sSimple as possible'fhe strategies used by , -

the theorem“prover

This should be done while preserving optimality as

far as correctness, elegance of proofs and speed of
) . ‘

proof construction are concerned. .

2. Justification of a rule-based systenm

A rule-based system was chosen to implement the

theorem-prover's strategies, so fs to allow a simple evolution

.

of the system towards more elegance and‘similituge to human

reasoning.

In the coming sections, we will see in more details

" what these heuristic rules do and how they are used. It is suf-

ficient to say at this point that all rules have a pattern si-

mila:: to:

If the actual goal has such and such property,

then add this or that subgoal to the goal-list.

21

If a formula with such or such property has already
A Y

EN

been derived, ' .

then apply this or thgt rule of inference.

The rule-based approach perfiits an easy experiment-—
ation with the content of the knowledge-base available to “the
mgin program (whose t;skT~at'any step of the proof; is to de-
cide what to do next). The major advantage of production rules
is the relative ease o? addition, modification and re-ordering
oﬁ rules. It is this property that mgkes production rules- popu-
lar in the construction of "quick prototypes". Another signifi-

cant advantage of a rule-based program is the ease of generat-

-~
§

-ing explanations describing the progxam's behavior. In the pre-
sent case, the same rules that are used b} the theorem-provef

’ ‘to decide "what to do next” are also used by the tutor -to exp-

lain a step of the proof or.to justify the choice of a specific

action. g
. 4
. It remains true that building a system based on
| . : .
0 - heuristic-rules, instead of on a clear-cut algorithm, makes it

q ~
quasi impossible to prove anything about the completeness or

the adequacy of the chosen set of rules. Actually, no claim is
h being made to the effect that an optimal theoxem-prover (;s far
as reliability as well as speed are concerned) should remain
‘) rule-based. On the contrary, it seems most likely that a consi-

derably more efficient version of the present theorem-prover

! e e e "i'”*'”»;sf"rf\‘?:ﬁ,;'?
‘ y
¥ s e

- 22

-

° Y

for natural deduction could be rewritten using something like a

decision-tree. - -) .

3, Limitation t tential logi , .

Bledsoe [5] has emphasized the advantages of natu-

ral deduction over other (more syntax-oriented) theorem-proving ™
ﬂtechniques, identifying the crucial feature of non~resolution

theorem-proving to be the importance
1

domain-dependent knowledge in the construction of the proof.

given to heuristic,

Proof-checkers and theorem-provers using natural deduction have
been applied successfully to various domains such as set-

theory, the theory of types, non—stanaér&>ana1ysis, elementary
Vo * _

numbgyr theory?, and the like. . ‘ o

™~
, The scope of the preseﬁt project hgs been delib-
erately restricted to sentential logic .proofs, not because na-
tural deduction cannot be applied to other‘richer logics, biut
so as téﬁkeep the!domain of proofs rélatively:small. The
theorem—prover‘presentea here is only "knowledgeable" about the

logic of truth-functional connectives. It is'not expected, due

to this restriction, to invent or even to prove any interesting

o .

-

? Significant work in this direction has been pursued at Edin-
burgl' and Cambridge University. See for instance Lawrence C.
Paulson [17]. See also Xuhua, L. & Zhan, C. [26].

The system implemented by Xuhua and Zhan constructs natural de-
duction proofs in elementary number theory. Peano's axioms are
expressed in first-order predicate logic. The "relative prin-
ciple” states that the proof of a theorem should be domain
dependent and problem dependent.

t

>

S

&

(ability of the system to explain what it does and why). Future

new theo>em (actually, very few theorems of sentential logic

can be viewed as interesting). .,

-

Again, the focus of this theorem-prover was on the

"aesthetics of proofs rather than on their intrinsic usefulness,

The idea was to gibe the system sufficient information to
construct "nice" proofs in a restricted domain. Sentential lo-
gic actually turned out to be a sufficiently large domain to

experiment with the objectives of elegance and auto-explanation

%
enhancements on the theorem-prover may include the addition_of i
i

more efficient inference-rules for sentent1a1 reasoning (e.g.,
addition of de Morgan's laws, that would drastically shorten ;

the derivations), or extension towards predicate logic or “other

.

logics. .

N }

’ ¥
-~ N - 1
.g i Tyl . . \ 24

IV. DESIGN OF THE THEOREM-PROVER

In section III, the central objective of the

° ‘theorem—prover was dtated a; the emulation of proof-
construction as done by human reasoners. The main difficulty in
this task essentially lies in the fact that there is no avail-
able theo;g éf what the art of constructing nice (or ;eiegant")

t

proofs amounts to.

4
1. what is a "good” proof?

: « Before going into ' ;jfcture 6f‘the program it-
self, we must therefore ask ourselved, first what is thi; |

! ' "niceﬁess", what is "elegance" in the coﬂtext of prbofs, and

. second how production rules can help }eaching it..In the domain

of proofs, the concepts of "elegance" and "niceness" are prob-

ably as ill-defined and vague as when used in descriptions of
%

{

.are without sigﬁificative content, but only thét their meaq;ng
tolerates some imprecision. : _ /

, There are in fact a few criteria of evaluation of
proofs (beyond correctness, which is relatively trivia;) that
are easy to specify: we are able to tell a good ("elegant")
proof from a bad one by checking whether it contains redundan-

. : cies, or steps that are irrelevant to the anl, and whether the

the proof makes "good sense” with res-

ordering of the steps

pect to the overall s rh the proof. Among the most ob-

-

art objects. This is not equivalent to say that these concepts%g,

25

¢ .
.

jectively measurable criteria of elegance is the shprtness; of

-

the ﬁroof~(a consequence of the elimination™of redundancies and
off-the-track attempts éo prove the goa})z. So we are able to

say of a particular proof that it is correct, but non-elegant,

]

-

by relying to some extent upon such objective criteria. Yet it

is important to notice that

a) it is easy to find counter-examples t6 any pro-
posed set of suéh criteria: for instance, it is Jjust not true
that in the intended sense of eleganceﬁthe Eest proof is always
the shortest one; in the intended sense, a!proof is elegant
just in case it parallels "good thinking":

. %

and
4* + b) even if we were satisfied with some set of cri-

teria for evaluating the elegance of proofs, it would not pro-

vide us with a mechanical, method for the construction of such

I jcand

 proofs.

s

1 When a clear-cut definition of mathematical elegance is need-
ed, people often appeal to a reduction of that concept to that
of the size of the proof.

2 In the present case, the size of the proofs had to be taken
seriously, if only for reasons of screen size on micro-compu-
ters that sets the maximum length S8f all proofs to about 20
lines. This is however (most of the time) sufficient for our
purposes if proofs are constructed "elegantly"”.

4 1]

¥

'»r\h‘.‘
- v T
o R

8

26

2. YUse of production rules thMg_e_eb_oMA,&me

Heuristics are useful when a problem cannot be sol-
ved with a deterministic algorithm. The theorem-prover there-
fore uses a set of heuristics4 expressed as "production rules"”,
that are meant to encapsulate specific as well as general know-
ledge about the ert of eonstructing not Jjust correct, but

elegant proofs:

-~

Hduristic rules are essentially incomplete and. im-
perfect. They can yield good solutiops most of .the time, but do
not guarantee that such good solutions will always be found. A§,
eny rule-based system, the theoreA:;yover of ND was 5esigned toH
evolve in time towards more elegance and completeness. The

first prototype of the theorem-prover had a relaklvely limited

set of rules and was able to do mostly simple proofs. The cur-

=

rent version is much more powerful: for instance, rules have

been added that can help in ehoosing what contradiction te look .
for in a redugtio ad absurdum. Other rules have been added }hatfm
look at the internal structure of newly derived theorems (e.g.j
when a hipothesis is madeé): these rules are likely to be acti-
vated if the goal is a sub-formula of one of these new theo-

rems.

Seme of the rules were actually written by relying
on a prior{Dbelief that they would work, but.many rules were
discovered empirically, by finding problems that the theoreq-
prover was unable to solve appropriately with the preﬁiodg set

'
1

of rules. The evolution of the system'was therefore not based

i o

on precise evaluation criteria (such as size, redundancy,

etc...), but on a rather subjective evaluation of the quality
of proofs. Whenever the program solved a prqblem differently
-than what I wouldghéve done, it was interpreted as a symptom

that a rule was incorrect or missing. .

The order in which rules are consulted has been
modified many times, again empirically, as a function of the
corpus of gxercises. Iﬁprovement of the system was therefore
achieved through the addition, modification and reordering of

these heuristic rules3.
&

3. _Rules of inference vs proof-strategies (heuristic rules):

’ -what is permitted vs what should be done.

- It is perhapg appropriate at this point to empha-

4

size that the set of heuristic rules should not be confused

ﬁith the set of inference rules as defined in section I.
— 5 X

The 11 rules described in sectiJﬁ I are inference

t rules: together, they specify the set of valid (legal) infer-~

ences that can be made over a given set of sentences. For inst-

" ance, if sentence A has already been derived, then it is-legal

i a

- . . o

3 In the spirit of such empirical development of an appropriate
set of rules, a module for automatic generation of exercises
was consizgred but has so far not been implemented (it is in
the agenda for future development). Such a module would be use-
ful to exhaustively test the program's current set of rules and
evaluate its ability to solve any proof. This generator could
also find interesting applications in the tutorial (e.g.,
construct an exercise “that, would take the student model iato

‘ account, instead of merely selecting an exercise in a pre-esta-
blished bank of exercises). ¢

- FTATYY
- N ! N ’u‘gp,‘
. . 14%
P

p3s
tedd
v

e
\‘,«;

.28

. to write (A V B) under it and justify it by the rule of R
V-Introduction. Rules of inference map theorems to theorems. .

They specify what it is permitted to infer. They can be thought
* _/) -
of as the declarative part of logicignd’say nothing about when

3 -

a parficular rule should be used. .

To make the system efficient, and able to produce

human-like reasonings, a set of strategy rules is used, that

4

specify when and in what order the inference rules should be

<2

applied. Instead of mappin§ theorems to theorems, a strategy
rule can most of the time be tbpught of as mapping goals to
subgpals. In other words, strategy .rules concern the control

part of proof-construction. They .can be thought of as heuris-

v

tics or hints about what one should do to find a proof.

,

¢ ®
.

Hence the set of stretegy rules is an attempt to
refine the strategy that would consist in deriving whatever is

legally derivable. ‘We can eaﬁily‘zﬁégine how a "dumb" theorem-

P

prover could, without some sort of control from above, spend

its time using the inference rules to generate new theorens .

from the premisses until one of the derived formulas matched

B

the goal formula (the cfonclusion). Tqis of gourse would clearly

J

2 be quite impractical since, as was already mentioned, the in-
ference rules allow an infinity of things to be derived from
any number of premisses.

<

A\

PR e
< - B ’ ¢ - . TR

. ® '%".)

¢ °) f ‘ 29

A
R
]

- Yo
We have seen in section I the conditions of applic-~
ation of each of the 11 rules of inference. Looking a this
list, it appears clearly that some of the inference rules (in

particular the introduction rules) have very weak conditions of

application. For instance, the rule of disjunction introduction
- X

can be applied on any sentence whatsoever: it says that from
9 PY -

o

any sentence S it is permitted to derive (S V §'), for any S°'.

°

-The-condition of application of the rule of conjunction intro-
duction is‘alsé extremely weak: it says.that frpm any pair of
sentences S aﬁd S', it is permitted to derive -the new sentence’
S & S'). Ith;ould not therefore be feasible to take the rules
of inference themselves as productioh rules and to activate a

rule of inference whenever its conditions of application were -

satisfied: this would allow the derivation of too many sen-
- ' 1} - ’ d ») &
tences, most of which without any relation w1é¥ the.goal.”

L d

It is therefore the application of introduction

¢ rules that must be most carefully controlled by goal-directed

)

strategies. It appears, on the other hand, that ‘successive ap-

lications of eliminatfon rules are not likely to create pro-

-

biems.havin? to do with the. undirectedness of the search*. But

. the concern with elegance of tHe proof forbids tﬂé simplest ap-

. »
'

3 -

[

.
L] / i . .,

r 7

‘ ' .4 This has to do with the fact that the application of elimina-’
‘tion rules may only generate sub-formulas - hence shorter
formulas. o) " .

gn
&

4. Basic strategy

- “d
4 - -

’ ;
l

e

(\. proach that would consist in writing on the screen all sen-’

tences that are derivable via some eliminatibon rule.

When students learn natural deduction theorem-
proving, they are usually told to use the folléhing three prin-

ciples, that should be applied in order: 2

? °

a) Work from the bottom_ up, igasmuch as possible. .-,
In other words, try to apply the introduction rule for the main .

connective of the statement you are trying to pfoye:kneterﬁine

which sentences, if you could'derive théh} would enable you to

« M 1
derive the conclusion. Deriving these sentences becomes your

new goal.
¢

?

{Backward reasoning).

b) See what immediately follows from the premisses
and what you have derived so far. That is, if yodu can't work

from the bottom up, do some top. down thinkiné.

« —_—

. (Forward reasoning). _ .

") If nothing else works, use RAA (reductio ad
absurdum), i.e., assume the contrary of what you are trying to -

} O - . ' . .
prove, and derive a contradiction.

X P

v [e . - - - . ’
Although relatively simple and incomplete, this ba-

A . ¢ “

sic strategy is sufficiently strong to lead to a solution in

ve o 3

b

quite a large number of proofs. Beyond thigwéenéral advice how-
ever, the student is told to "use his[her brain" in the task of
determining what should be done in particular}éituations. In
the construﬁtion of non-trivial proofs, "usiné one's brain"”
essintially amounts to being able to observe certain patterns
or,pioperties in the premisses agd the conclusion, and to de-
duce from theée observations ;hat subgoal is likely to be a

useful Intermediary step, what hypothesis is likely to have an

interesting consequence that will somehow contribute to the

‘proof, etc... Basicélly, the student is asked to refine for .

.

‘himself the basic strategy (the three principles Tisted above)

as he/she tries =to solve new gxerciées. To’do~§o, he/she is as-
ked to use in;uiéions about vali& inferences in 'sentential 107
gic (i.e., about the;ordinary interpretation of the connectives
used‘in'sén;engial fogic). Indeed, beyond the .general strategy

described above, the construction of proofs in natural deduct-

. s
ion is téyﬁht more as an exercise about the meaning of ordinary

»
"words used for reasoning (IF, AND, OR, NOT) than as a symbol-

4

pushing mechanical procedure. ¢

-
*

In the process of refining the basic strategy, the
student is expected to master the technique of goal decomposi-
’

tion into subgoals; in particular the use of subproofs to prove

1

N

™~

RS/

1 -
e
o

- certain t&pesedf goals (the use of subproofs should be restric--

)

s
IR A

Y

ted to proofs of implications and proofs by RAAY.

' 5. Forward and backward .:Q&Mhe theorem~prover

The theorem-prover mimicks the human way of
coﬁstructing a proof in natural deduction, using both forward
and backward reasoning: the search is done both in a fofward
direction from the premissés towards the conciusion (from the
top of the proof to the bottom), and in a’backwarq direction
(from the bottdm up) . The strategy rules are therefore divided

into two subsets. The first set is concerned with the question

of what can be ihferred'"immediatély“ from what is already
§

knqyn; the second set with' what ﬁpst be proved in order -to

reach the conclusion.
k)

;m
bh
T
=
o)
o
i"é‘
o
N
Q,

(=}

L

Lliqrw rd reasoning are implemented in a

,fo;wg_;d_qlza;,nq, g rule- basedﬁ.y_stem

'S Any rule-based system conslsts of a set of rules of

tﬁe form IF <X> THEN <Y>, together with an "inference engine" .y
that operates on the set of rules to make deductions. Whatever -
form the data may take in Ehe system (ordinary data-struptures,

or- sentences), the <X> and <Y> of the last seﬁtence alway%°

refer to conditions and actions on the database. It is the in-

ference engine's responsability to specify how the rules are go

be used to consulf, and eventually modify, the database.

a4

Kl

In a forward chaining system, antecedents of ruleg

7 .
‘are considered first and the firing (activation) of a particu-

\ > 33
q LY

-3

lar rule eventually modifies the context so 35 to make ‘true the,

anfécedéﬁt of another rule. It is*therefo;etappropriate ig this

4 -

case to talk of rules being chained in the forward directién.

: o _— :
In a backward chaining system, it is the conse-

s

quenté of the rules that are examined first. This allows the °

.

identification of which subgoals should be pursued so as to

make the firing of the rule possible.

1
a

It is important that forward and backward chaining
may be applied on the same heuristic rule. They are just two

different ways of using the information contained within the

a

same rule. In the present theorém—prover, oﬁly forward chaining
is used (i.e., the rule precondition is always examined first

and if satisfied, causes the rule to fire), although certain

/ . !
rules have as objective the implementation of a form of back- ,

’
~

[) “

ward reasoning.
\

a

' The implementation:of mixed-chaining systems (that—-

©~

use rules sometimes in a forward and sometimes in a backward

\)

diréction) '‘calls for complex inference engines that are typical

of sophisticated rule-based systems. In the present case, the

a

7 ’
inference engine is extremely simple: rules are consulted in a

pre-deferminéi order and the first rule whose pre-condition is

~~

satisfied fires. -

I v
.

. . b ; ’ A ‘ , ' 5 Y

B

ALK
1 1 s
b1
g T
R H
. B
Y
. P

N

.
hH

34
o

7. The main data-structures of ND
Backward reasoning - the decomposition of goals
into subgoals - is therefore implemented as a set of rules that

is used in the same way (forward chaining) as the rules that

are meant to be used in forward reasoning - the derivation of
re «

the consequences of a sentence or set of sentences. The major

difference is that backward reasoning rules act upon a struc-

v N
ture thpt keeps track of the evolution of the goals (GOAL_LIST)
EX .

while }he forward reasoning rules update a structure that keéps

up to date the set of:available theorems (AVAILABLE).

’

A dynamic structure is used to store the output of

forward reasohing - the array AVAILABLE. Actual action on the

3 .

screen is goal-directed. When something is sent to the screen,

the structures ONSCREEN and PROOF are also updated. -
/

GOAL_LIST is implemented as a stack of goals. When-
1
ever a "backward-reasoning" rule fires, one-or two new new

goals are defined and added on fop of the stack. Whenevet a

goal is achieved, it is popped off the stack. A new goal may be

~ a formula (e.g., if goal.has the form X & ¥, add

o

goals X and Y on top Jof GOAL_LIST), . .

~ a subproof (e.g., if goal sy the form X_=>'Y, add as

a new goal the proof of Y under the hypothesis X), ,f

“ ~f‘1§‘:€,§"§§:

!

- a subﬁroof leading to a contradiction (e.g., if the) .

current goal is the negation of the antecedent of a

theorem in AVAILABLE, use reductio ad absurdum, i.e.
a try to derive a contradiction under the hypothesis‘of

the negation of the goal). (

Note that GOAL_LIST may contain.fully specified

.

goals (e.g., prove forﬁulq X, or prove formula X under hypothe-
sis Y), as well as goalg that are only partially determined

(e.g., find a contradiction under hypothesis X).

— Ih the course of a derivation, whenever a new sen-
tence 'appears in AVAILABLE, either as a hygothesis or via
fdrward—reésoning, this new sentehce itself is "forwarded"?,
i.e., its immediate consequences are derived, stored into
AVAILABLE: and forwarded. At all time;, the structure AVAILABLE

therefore .contains the premisses, the hypothegés that are still

active, as well as all the sentences that have been derived

earlier in the proof and have not yet been discarded.

,) e A?entence occupies on\ly the first part of a slot

of AVAILABLE. Actually, AVAILABLE is an array of lists each of

which consists of

‘ .a sentence,

E— .

.the rule of inference used to derive it,

‘ T 5 Words in bald type are names of functions or premates used
by the theorem-prover. Data-structures are in capital letters.

~

4

LY

'5éfuﬂ

.the position in AVAILABLE of ﬁye sentence(s) from
{

b t

which it was derived

e.g., (AVAILABLE 7) might be (A HYP) 7

(AVAILABLE 9) might be ((C => A) =)E 4 7)

So, AVAILABLE stores not oﬁly sentences but also

\

the1r orzgln. Not all sentences that appear at some point or

\\

another in AVAILABLE will actually be used in the proof. But
when a sentence is needed, it may be fetched from AVAILABLE
with all the information needed to justify it. The informatio?
stored inwAVAILABLEDmakes it possible to define the functiog
(path x) which returns a sequence of steps from which x was

derived.

Care must be taken with the management of AVAIL-
ABLE, in particular when a hypothesis is discarded, since what-
ever was derived on the basis of this hypothesis should no

Jdonger be\availabIeG.

-]

The production rules of Nﬁ are therefore divided
into three sets (one for top-down reaso@ing, one for boitom—up
reasoning, one to guide the search of a cont;adiction). The
context decides what group-should be consulted. A detailed lis-

ting of these rules is given in appendices 1 and 3.

Ll

o>

-

i

6 The functlons delete and dlscard are\responsible for this
elementary "truth-maintenance- system".

>

v

¢
€

V. EXTENDING:THE THEOREM-PROVER INTO A TUTOR

9

‘1. Motivation and objectives of tutor: o
& Even at an early stage of development, the theorem-

¢

prover appeared to be easily ;;bandable into a compé%%r-assis-
ted logic course (natural aeduction constitutes theacore of the
typical introduction to logic course). The idea was that on top
of a rule-based program capable to do the proofs in a natural
manner, it should not take too long to build a program able to
teach someone h6w to do them: the strategic rules used by thé.'
theorem-prover could be made available to & tutor that would

use this "knowledge" to give advice about the construction of

4
)

proofs.

- L g
At the time, no micro-computer program was avail-
~

able on the markei to teach natural deduction. A team from

¢

Stanford University. headed by Frederic Suppest!, had devéioppedq
a computeriz;d’logic course (Berty), containing among other

thiags natural deduction exercises. Bt; Berty ran only on main-

frames with lots of virtual memory. Also, it had actually been

o

designed from the start to act.as a proof-checker .and ‘did not

have the ability to construct proofs autonomously. It

-

= 14

t Ssuppes, P. and Slheehan, J., "CAI course in axiomatic set-
theory”, in [23]. S .

t '

Y

©
»

. ‘- 38

therefore not well-suited to be extended into an "intelligent"

tutorial.

2. STEL? in the perspective of current ICAI: k i
The first generation of computer-assisted courses
offered relatively little interactivity with the student: the
computer's role was essentially limited to presenting the stu-
dent with questions or exercises for whieh the correct answer
or solution had been prerecorded. The recent evolution in the
last few years of éomputer-assisted instruction has followed
two major grends: the first towards sophisticated "micro-
worlds"”, that provide the student with rich environments to
explore; the second towards so-célled "intelligent tutoring

systems".

In such systems, a progr;m (the ﬁt@tor" or "coach") °
attemptsréb»emﬁlate the pedagogical‘Qunctions of a‘human teach-
er. Beyo;é’;ongratulationS'and error:messages, a tutor is exp-
ected to provide intelligent guidance, i.e., to come up with
approprigée remarks and explanations that are relevant to the
student'é progress. The ideal computerized tutor is often pic-
tured as ausilent observe; who watches patiently over tﬁ; stu-
dent's shoulder and occasionally‘gekides to intervene, giving a

hint when the student hesitates or ... suggesting further read-

ing when the student seems interested,

Pl @ . I's \j

.

2 STEL (Systéme tutoribkl pour l'enseignement de la logique)] is
the name of the tutoring system that was developped on top of
the theqrem-prover. i

39

To be sure, a lot remains to be done in that direc-
tion before the dream of a truly human-like tutor is actually
implemgnted./Some programs, however,‘already exhibif impressive
features. At the present time, we are still at an darly explor-
atory stage of the possibilities of computgrized tutoring. It
is, however, universally accepted that intelligent tutoring is
possible only if the tutoring program has enough domain know-
ledge to solve the e;e;cises by himselff Beyond that, tﬁere is
also widespread agreement over th; idea that intelligent tutor-
ing needs sophisticated student modelling: not surprisingly, it

appears that the most difficult part of all ambitious tutors

_ has to-do with diagnosing accurately the student's behaviour.

. E;
Thewtutor implemented in Stel, as we will see, is

relatively modest and shares only a few characteristics with
the most ambi%ious tutorials. To put it in the perspective of
the current technology, let ds 1look at two of the most signifi-

cant tutoring systems, Buggy and Proust.

Buggy, one of the earlier AI pro?jams in edutation,
has put Fforward the idea that, whenever a student makes some
mistake in attempting to solve a given exercise, this mistake
is not to b; interpreted as mer; "lack of understanding” or ir-
ratiénality on his/her part, but rather as the consequence of a
wrong theory concerning the subject; matter. Buggy therefore
tries to identify the "bug” in the student's head and then to

explain to the student what the bug is and how it relates to

the correct theory. ?he domain in which puggy specializes is

I

&
subtractions in arithmet%g. Th? domain knowledge contains a set

of correct rules as well as a set of "malrules"3, about the
construction of subtractions. The first set represents correct
strategies, while the second_contains variants (misconceptions)
of these strategies that lead to common mistakes. When the stu-

/ dent makes a mistake, the program is thereby able to base its

‘[Jf///' diagnosis on the identificgtigpfbf which "malrule” was applied

by the student.

o

The £ as?biliéy of this approach depends‘of course
on the possibilifty to predict a ﬁriori all the possible learn-
ing)diﬁficuigiéé((learning bugs) that any student may encoun-
ter. This approach did not seem d@ppropriate in the implementa-

LY

tion of a tutor for natural deduction proofs which belong to

the class of non-deterministic problems (problems fdJr .which

there is no mechanical procedure for reaching the solution).

Among other problem-solving domains (in education)
—belonging to the same class are intuitive geometry, analytic
geometry, transformations of equations in elementary calcuius,
transformations of trigonometric expressions into other ex—,
pressions, etc... In problems belonging to such domains, it is
much harder to diagnose whether what the student is doing
§hould be acEepted as progress towards the solution. In natural

deduction, identifying strategic mistakes is not straight-

forward and isolating the bug may be rather tricky when a mis-
LI

’

3 See Sleeman, D., "Assessing aspects of competence in basic
algebra", in Sleeman & Brown [22].

«

-

41

& -

take is/detected. Sometimes students make mistakes because they

have a wrong (i.e:, buggy) interpretation of how a rule of
inference should be applied. But some students just have wrongl

logic51 intuitions, believing for instance that the formula (A

or B) implies A in the same ;iX’EB§£ (A and B) does.

The Proust program*, another classic in ICAI (in- /
) telligent computer—assistéd instruction) was designed to/;/
_‘help students in debugglng non-syntactic errors in Pascal pro—/
grams. Unlike subtractlng, programming surely belongs to the
category of non-deterministic problem domains (there ceytalnly

is more than one way of writing a program that satistiss a

/
\kg given set of specifications). Proust incorporates a/problem-

. » I4

description language that allows detailed expression of program

specifications. The tutor's expertise is based upon sgecific

'

knowledge about selected problem tokens. It knows enough about

1

progragming_to write these particular programs,_ and this know-

ledge is used by the tutor to decide what errors are to be ex-
N

e

pected in the student's behaviour.

”{) ‘ - This makes Proust one of the most serious tutoring

a4

systems available today Its knowledge allows it not only to
predlct what are the most likely mistakes that a student will
make in attemptlng to solve the problem, but also to identify

»
«

the student's intentions and to base its comments on reasoning

4 PROUST (PROgram Understander for STudents); see Johnson, W.
‘/- L. and Soloway, E., "Proust: an Automatic Debugger for Pascal
Programs", in Kearsley [12], and "Proust: Knowledge-Based Pro-

gram Understanding, in Rich and Waters [19].

oS

i

N

42

3
©

over these intentions. The originality’bf the prograh consists

in its ability to determine what the student is trying to do.

- Proust attempts - successfully, according to its

authors - something that does indeed seem very ambitious: to be
able not only to decide what the student should be attempting
to do (this only requires expertise about solving the prob-
lems), but also what the student actually is trying to do
{(which requires sophisticated reasoning over ifftentions).

}

1

- ' We may summarize the current state of the art by

listing a numﬁer of desirable fegturés - many of which seem

dictefed by common sense - that characterize diagnostic tutors.
a) It is impdrtght for the system to have knowledge of the

domain it teaches: in order to be able to explain something,

the program must be able to solve the problems without external

help. . JX

Pd
b) In a non-deterministic kind of problem-solving, it is
important to give the student the feeling that he-is not just’
following a mechanical procgdure bu; that he or she has to

think about what the problem means. Students in fact do ténd to

tasks are solvable by following a

t

expect (wrongly) that a

2

5 §e§ Sleeman, D., "Micro-Search: A 'Shell' for Building Sys-
tems to Help Students Solve Non-deterministic Tasks", pp. 69~
81, in Kearsley [12].

,

~

" teacher's language. .-

/ L . : .
d) Students often learn bet?gf by being given access to a
+ rich environment that they may}explore freely, than by being

constantly guided by a tutor. It certainly apﬁears reasonable

&

for the program to vary its teaching strategies.
: o ¢
e) Ideally, (the system sggyld know about typical patterns

of errors that students are liﬁely to make.

£) Reasoning over the student's intentions is useful: in

»

order to give useful hints) the program must know what the stu-

dent is trying to do. - . //

) 3. A modest tutor

Due to time limitations, the ambitions of the Stel
- o . . -
tutor have been deifberately tied down. -In its current state,

the student model is nothing but a purely quantitative struc-

\ -

‘ture that registers student successes and failures' in the comp-

letion of proofs. It would certainly be an interesting conti;

@ -
nuation af the project to work on a reasonably ambitious
student-model with qualitative evaluation of student’rggpoﬂ%es,

. A .
somewhat along the lines suggestfd by progréms such as Proust.

' _The implementation of a tutor on tap of the

R theorem-prover was achieved mainly through the addition of a
module able to check the student's proofs @nd to generate hints
when appfopriéfe. The student and the tutor do the proof in pa-
rallel. At any step 9f the proof, the student is gi&en the 6b-
tién to ask“for a hint if he/she doesn't know what to do. The

‘ tutor attempts no analysis of how the student's strategy dif-
o

%
&
i

. A

PO) ¢

fers from its own, but intervenes only when inference rules are

incorrectly applied. ‘ . ‘

~

Unlike the tutors of Buggy or Proust, the tutor in

Stel does not pretend to be able to diagnose the bug in the

~étudent's*head. To be sure, a lot of psychology would have to

. : 0 : .
be involyed in a sophisticated tutor able to diagnose accurate- .
\ o

ly the foundation of student's mistakes. No analysis .0of the N

AN
~student's intentions is attempted in Stel. On the other-hand, |,

"while Buggy specializes in a deterministic domain, and while

. ot
Proust is able to Suide students in only a pre-seleé&ted sét of

-

programming exercises, Stel is able to take any exercise in na-

[ta
.)

turalqéeductibn (restricted to sentential logiﬁZ:zcomplete the

proof, éxplain any step of the proof, and event ly guide a

student in the construction of the proof.-

Along the lines of the "microworld" concept, a mo~-

' > u &«
dule made available by Stel allows the student to explores

© K}

freely and at his/her own pace the world of concepts that are %\T

3

used in natural deduction proofzﬂ fhe concepts are structured

into five trees that cover:

~

- the different types of formulas {conjunctions, implica-
tions, etc...) . o ° .

:f the names of the parts of compound formulas (antecedent;

L3

conjunct, etec...).

(- the structure of a.proof (premisses, subproofs,, justifi-

{
v

cxamr

& Screen- dumps taken from this module may be found at the end
of appendlx 4.

'

cations, etc...) .

{

- the 11 inference?rules

@

- strategy-related concepts (top-down, bottom-up, goal’ de-

»

<

~comppsition, thé role of hypotheses, etc...)

B
2 * LY

b —
4. new data-structures: student-model and bank of exercises

The evaluation of the student's progress with. res-
pect to” t&e natural deduction technique is recorded in a strug~

ture, the "sﬁudent model”. This structure contains slots *for
k] 5 R

[}

ea(ﬁ\gf the eleven iﬁference_rules as well as fbr a number of

concepts and technigues that the student is expecteé/to master

(e.g., use of hypotheses, restrictions on feiteratio . etec...).

The student model specifies, for ‘each rule of inference and

Q

each major concept, how many mistakes the student haé\made and

: \
how many_correct answers he has given. At the end of each ses-
st
4 I

sion, the student model structure ig recorded on e student's

\

ﬁ}oppy-disk to be re-read at the beginning of the nejxt session.

.

Another module is .responsible for choosing the next
) (LY

" exercise - tqned to the student's level - from a bank of exer-

. The exercises are divided

cises and submit it to the studen
: -«

into subgroups according to their oYerall difficulty (simple,

intermediate, hard) and, within egfh subgroup, with respect to

the rﬁles of inference that mus™wbe applied to solve them.

5. explapation system: enrichment of the rule structure

In the thgorem—prover, rules were used to decide

what to do at any step in’the construétion of the ﬂroof. The

“-

46

' extension of the theorem~proveér into a tutorial implied the
{
addition of enough structure to the rules to allow them to be
. v

» accessed by three new modules: '

- \
.

.

- - an explanation module

»
-

To each rule is attached a "mesSagerschema"_that

is used to generate a message éppropriate"to ‘the

N .context?

-\ . -

! -

.- an error-message generating module ¢

—
¢

To the property-list of each rule of inference is

attaqhedea condition of application.

. ., <
An error-message schema is attached to each rule

i

‘and used to explain why, in the given context,

the‘condition of application is not satisfied.

¥ 5 ¢ -

L4 »

- the student model updating module ‘

—~

R . B | - ° .
To each of the production (strategy) rules is at-

o !) " tached an inference rule, and, in some cases, a
concept: a correct application of the rule in-
N G
* creases the student model's score for that

concept as well as for the rule of inference. l

)

A list of recent e?fors is also updated
. ' constantly and is consulted at the time of
i selecting the ﬁg&t exgrgise.~ . .
o B , x

‘Qﬂ See screen-dumps in appendix 4. A)

I
S

g
' .4

| 6. Remarks on 'the jmplementation of the tutor "
Altogetpef, most of the extension of the tpeorem—l o
prover into a tutorial has been a fascinating project to worﬁ
on. Howevgr: it certainly took much more Eime than was first
expected, mostly because of the necessity of a‘simple to use
and clean user interface®. The overall quality of use%—
interfaces ha; improved greatly in recent years-with the multi-
plication of micro-computer softw@re tdrgeted to naive users.

Stel was written in a relatively elementary Lisp that did not

e

” °

include many of the primitive low-level functions available in

more popular languages such as Pascal or Basic. But beyond

these user-interface functions, I would like to mentiég br?efly

o]

two other unexpected ;problFms“ tha; contributed to take the
time devoted to the implementation of thps tutor far beyond my

first expectations. ‘

-
3

, First of all, it soon begame manifest that the
product would not b; usable by sStudents witgopt a module ex-
plaining 'all terms used by the tutor. This evolved into a quasi
lcgic;course, defiqing all the logical concepts used in natural
deduction; a lot of time and energy hadvthérefore fb be invest-

ed in a necessary part of the proiect'that had very little do

do with aftificiai‘intelligence: decidindnwbat concepts shoudd

©

o S

° * % *

. . -
-

©

8 If I had to get invoi&ed again- in a program meant to be ac-
- tually used by students, I would probably think gwice about
itn.. h b -

" ?

“Ww

- ! e s RO N T P . N Pt -

) < . - . = « i N - 13 toy
. 4 { g 48
'

and which should not be included in the directory,qclassifying

. them and then finding the right words to explain them. I

A second unexpected difficulty in the:implementa-
tion of the tutorial came from the late realization that there
was no way.to aveid backtracking? when the program was doing
the prégf in parallel with the student. It is indeed hot real-
istic, for obvious pedagogical r;asons, to forbid the students
to go in completely wild directions: if a student wants to de-
).> rive something tpé% ié 1ega11§ obtainable by one of the 'rules
of inference, he or she should be allowed to do it; the program
is in fact totally lenient with respect to the choice of all
subgoals. Some control is mhde over the choiée of hypotheses!?®
because it is part of the fiatural deduction general strategy
that hypotheses should not be made gratuit_ously, but always (
with some particular subgoal in mind. This necessitated more .
complex internal structures (e.g., the new structure ONSCREEN
can ldgpse formulas if the student erases them). It also changed
significantly the management of the structure AVAILABLE (since

backtracking as well as discarding hypotheses could now make a

theorem unavailable).

fvg)
"

9 Backtracking was considered undesirable in the theorem-prover

/ for reasons discussed in section IXI.1.

@ ne |
10 See screen-dumps in appendix 4.

’ {

An earliy version of Stel was tested successfully

v>with two groups of philosophy students at College de Maison-

neuve. The student response was satisfactory although of course
not as enthusiastic as we would have hoped. Version 1 of the

product is now in the p;rocess of being distributed to all Que-~
o

bec colleges. After spending some time away from the intrica-
4 & [] P [3 -
cies of user-interfaces, it is ve¥y likely that a second

improved version will be rewritten in the near future, probably
o)

in Common Lisp.

" VI. RELEVANCE OF NATURAL DEDUCTION

TO- ARTIFICIAL INTELLIGENCE

Py H

J._,:,;Ls_.iﬁ_immé;,g_n_t_: or a theorem-prover to be able to explain
its own reasoning. This is easiexr to realize in a natural de-
guction system.

Leaving aside the realm of education, let us try
now to evaluate the potential benefit of using natural deduc-
tion as a tool for actual theorem-proving. In some situations,
we may be interestef to use the deiuctive.ability of a theorem

prover only in order ?b)estabiish whether some beliefs are lo-

- |
gically entailed by the set of beliefs stored'in a given

knowledge-base. In this kind of situa%ion, some version of A"‘F

resolution-based reasoning may be an appropriate choice. If, on
the other hand, we are interested ifi the theorem-prover's abil-
ity to explain, in Qrdinafy intuitive terms, how it was able to

derive a statement from other statemen;s, then natural deduc-

1 tion presents the obvious advantage that its proofs are

constructed in a way that is similar to human proofs.

In mathematics, people often care more for unders-

tanding why something is a theorem than for testing whether it

.1s one. In the field of deductive databases, people will not

(or should not) accept reasoning-based (i.e., non-trivial)
conulusions from a computer without knowing how they were

reached. On the one hand, a conclusion is more convincing if

o R . g h RN
. - ~d ";f;ﬂ
- towid

o

v k ' - B

what supports it is made explicit. On the other hand, it is un-
]

realistie/;p/hope for bug-free databases, @s soon as they are

e

relatively large: it is clearly a significant advantage for de-

AY

bugging if the system is able not only to deduce'thiﬂgs but

also to explain how its conclusions were reached. This suggests

' that sogﬁiéticated‘theorem—provers ought to be'cqmplex rule-

based systems rather than simple axiomatic generator%.

L)
3

2. Natural deduction ' allows the possibility to give §m§g§tcn-o£

the proof or to give partial exp 1.@11,5;1, n_in the case of fajilure

in the search of the proof

The structure of a natural deduction proof makes it

extremely simple for the system to give a sketch of a proof,
instead of the complete proof. This feature could be taken ad-
vantage of whenever a quick explanation is wanted. (How/would a

resolution theorem-prover summarize its proof?)

L 4

In the case of failure of finding a proof for a
formula, the program could give useful comments. There should

be no difficulty in producing reports such as the following:

"You asked me to examine whether it is true that P =>
(Q & R). I was able to show that' P => Q but, as far as
I can see, P does not imply R. Actually, P & -~ R is

consistent with all integrity constraints of the pre-

¢

sent database. - .

From the hypothesis P & - R, I havevderived‘the follow-

)

ing: A, B, C, etc..."

3. Richer logics than sentential logic or first-order. logic

- Resolution theorem-proving uses only one rule of
inference. For this reason, it can be praised as a very simple
and thereby "elegant"! technique. But this simplicity is patho- :
logical: because it is so simple, the resolution technique is
hard to modify?. The naturalness (i.e., inherent complexity and
rgdunéancy) of natural deduction makes it more amenable tbhmod-
ifications. Heré are a few example; of what modifying a natural

deduction system amounts to.

v

Natﬁral deduction permits a simple definition of
new connectives. Indeed, there are a number of applications to
which natural deduction can be tuned. This, again, is due to
the close resemblgnce between a natural deduction proof and or-
dinary human rgasoning. The addition of such new connectives to

the language makes it possible to express reasonings that were
. . N .

not expressible beforg. It is important to realize that senten-

“ N

tial logic, is limited to reasonings over connectives such as

]

/ ,
AND, OR, NOT and IF THEN. Sentential logic is therefore able' to

b

account for the validity of only a very small number of intui-

tively valid arguments®. As-soon as we want to go beyond these

1 At least in the mathematical sense, not in the intuitive
sense of "elegance".

2 As far as I know, resolution stops at the level of first-
order predicate calculus, in the hierarchy of existing logics.

3 The fact that the first expert systems (Mycin, Prospector)
used a set of production~rules limited to sentential logic (no
variables or quantifiers in the rules) simply shows that these
systems were primitive. The fact that they were useful and
produced significant results (in such fields as medical diagno-

53
\&

reasonings, we must enrich the language and the logic that goes

with it.

. Predicate logic, with the introduction of variables
and quantifiers, is able to do significaﬁtly better: it?édéé
’the expressive power of the words ALL and SOME to the 1énguage.
To apply ﬁﬁe present NDltheorem-prover to proofs in predicate
logic, the syntax of the language has to be modified (i.e., the
function that tests whether a string of symbols is a well-
formed formula must of course be changed), and the introduction
and elimination rules for the quantifiers have to be added.
Quantifiers usu _ally introduce a number of difficulties (subs-
titution is difficult to formalize, free variables must be
skolemized, ...). But these diffiéulties are now relatively

well-understood and may be captured b& restrictions on the ap-

plication of rules in natural deduction.

., 4

Extension to predicate 1ogic is an addition to the
language of classical sentential logic. In some cases however, .
the formalization of certain reasonings calls for restrictions
to classical logic: there are indeed certain‘kinds of arguments

]

that classical logic validates and that ordinary language finds
unacceptable. It is, for instanqe, generally accepted that no
truih—fﬁnctional‘ connective can capture the "real" sense of

the English "IF..THEN".

sis and oil prospection) indicates, however, that very simple
logical mechanisms may generate non-trivial reasonings.

4 A connective is truth-functional if the truth-value of the
compound formula obtained by using this connective only depends
on the truth-values of the formula's components.

id

o

Consider for instance the sentence
"If Napoleon had won the battle of Waterloo, Englénd would now
be a province of France.”

Given your understanding of the megning of the word IF, you may

[

or you may not agree with what this sentence says, depending on

your beliefs about Napoleon's intentions, the pride of the En-

glish people, etc...

. However, if we formalize the sentence using classical logic, it

turns out to be true, since the antecedent of the implication

is false. : : _—

!
Classical loéic is truth-functional and validates,
among other things, sentences such as - A =$ (A => B) and A
=> (B => A) which are intuitively valid only if the arrow is
interpretéd in a way that diverges strongly from the ordinary

. - LS
language meaning of "IF...THEN". -

, If we want the language ﬁo,be able to express the
real if...then relation, i.e, to express not just material im-
plicatioﬂ} but also such things as causal implications and hy-
pothetical or counterfactual conditionals, then & new, non

truth-functional connective, must be added to the alphébet.

This is precisely what relevance logic is about. In fact, it
was designed essentially to forbid inferences such as 4,
therefore B implies A (the so-called Pparadq;es of implica-
tion") thqt were inherent to classical loéic. ‘

o

+

55
N

~

The Pittsburg team of logicians [1], who developggj/
in the 1970's various systems -of relevance logics, had adapted
natural deduction to do ﬁroofs in relevance logic much before
they had agreed about an axiomatization for it. ®¥he innovation
was essentiéily the attachment of a subscript to each sentence

of the proof, together with a number of subscripts-related res-

trictions on reiteration.

The abiiiiz to obey‘tﬁe rest?ictio?slof‘relevance
logic cou&d be used in the development of systems able to do
different things, such as ; —

- generating comments when the defivétioﬁ of a theorem.
violates relevance principles'(i.e., when an inference
is made that shares something with the paradoxes of im-
plication). | .

N
- intelligept reasoninghin the presence of cohtradic-
tory information. Take a distributed database. Someone
feeds A at site 1 and someone feeds NOT-A at site 2. If
;the system uses a theorem-prover that conforms to the
rules of classical logic, it will be able t6 prove just
about ahything (since, in classicalslogic, anything
‘follows from a conéradiction). In classical logic, as
Belnap puts i, a contradiction "pollxtes" all the

data. Relevance logic, on the contrary, does not vali-

date (A & -~ A) => B. N

’

It seems therefore worth sFressing that formal
languages - and the logics that are used to evaluate reasonings
_ gxpressed in those languages =- are made to be extended o;
amended. When we want to modify a theorem-prover kbe it to make
it more powerful or to -forbid certain inferences that we don't

like), we have to use our intuitions about validity. Ideally,

we should be able to use these intuitions to say:

A

"If T have this kind .of thing and that kind of
thing in my premisses, I want the system to be able to derive
this." [This corresponds exactly to an eliminétion rule in na-

tural deducéicn] .. ///V

2

or

N .
+ "I want tc introduce a new connective, or operator,

that should behave like this: ..."

i

1

If the structure of the theorem-prover consists of

a set of Intuitive rules of inference, the .job will be easier.

%

~

As was mentioned above, the language of sentential

1

logic may be extended into predicate logic with variables and
quantifie%s. But there are still a lot of modes of reasoning
that are used in natural language and that .predicate logic is

unable to capture: these are expressed for instance with

intensional or modal operators. ~y

57

A

)

Using modalities, one may introduce in the language
the concepts of necessity and possibility (with"the addition of
two operators respectively interp;eted as "it islnecessary
that" and "it is possible that"). Such concepté_éllow the lan-
guage to distinguish between contingent and necessary fruths.
Tense logics (that use operators such as "it will be the case

¢

that"”) also belong to the claés of modal logics.

: ; . E + .
Applications of such,logicé to real-life computer
. goul a
%
science are obvious: reasoning over time i% typical of systems

whose task is to schedule or plan a sequence of operations.

Certain sentences, such as, for instance, the integrity-

constraints of a database (e.g., "No part can be- delivered to a

i company more than 200 miles away from Montreal”), can be given,
' @::r via modalnoperators, a particular logical status. The rest of

: the database would store sentences %hat just hapben to be true,

without being necessary (e.g, "All bolts used in part X are

7

red").

- AN

A more ambitious - I think not so far-fetched -
application of natural deduction is in the implementation of

- odefault-reasoning. In everyaay thinking, we often infer things

for which we do not have an absolutely certain proof. The clas-

N .
sical example is Tweety's: knowing that Tweety is a bird, and
- nothing else about Tweety, we will infer that Tweety can fly,
not because we believe that all birds can fly (we of course
‘) » never believe false things!) but because we know tl/ggt, if some-

thing is a bird, then we may assume’ that it °can £ly, unless we

2 M
e

A

Yy T Lo) - R
. Ay * . ﬁ 58
[N

2

ohave a good reason to think otherwise. Precisely, the reasoning

involved is the following: assume that Tweety can'fly and try
to derive a contradiction. If you don't f£ind one, then you may

assert that Tweety can fly.

- If it is known in the database that Tweety happens

. to be a penguin, and that penguins don't fly, then a contradic-

o tion will be derived from the hypothesis that Tweety can fly

and the inference that Tweety can fly will be blocked.

Most cases of default-reasoning are auto-epistemic,
i.e., refer implicitely to one's knowledge. We reason "auto-

epistemically" when we say things iike: "I would know it if X
were false. Hence X must be true." Here again, an implicit
reductio ad absurdum is attempted and failure to find a

i
contradiction suffices to justify a new belief.

This)kind of meta-reason@ng is extremely powerful,
leven though its overall validity may be questioned. It could be
.used to answer queries expressed by sentences that are neither
provaglé nor disprovab¥e by means of standard natural deduc-
tion. It is tempting to say, that much default reasoning (which
is esséhtially meta-theoretical, i.e., épto-epistemic) is
achieved-in people's minds via a failure of finding a contra-
diction in a RAA (reductio ad ébsurdﬁm). The natural deduction

technique is geared towards an efficient (goal-directed) usage

" of RAA in ordinary proofs. In the ordinary use of natural de-

Ve !
duction, RAA is used only to refute an assufjribn by showirg

that it leads to a contradiction. In default¥reasoning, people

- ’ 8
.//’//\;:3)elimigg;ion rule wou¥d look like this:

59

use RAA for a completely different purpose (i.e., not to refute

a belief, but to justify it by showing that it is consistent

with the other beliefs). Natural deduction could, I think with- !

out too much work, be tuned so as to make a siq&lar usage of

its ability to .apply RAA intelligently. (’ b

If we want a language with defaults, we may decide

to modify tge syntax 'so as to accept sentences (not just rules)

J

of the form> . \ ‘

[

(b : Ma) / a . \ . ,

the intended interpretation being:

If b is true, then if it is consistent to assume a, ‘then
o L {? - — -

assert a.

?

o

0?1 ¢

5 This notation is due to R.Reiter [18]. ‘ 5

- ‘ s
AN 4 L [}
s

m| b=>Ma/ a . y
n| b : : .
) | a’
e s .) ,
g ‘e . g ' ' Y.
p No contradiction .
a (default elim, .m,n,o,p)

"

(Y

of Intuitions about what should .and what should not be provable

20,

Theorem-proving, whether it is done by a computer

]

A"
or a human being, is a mechanical activity. It has to be

formalized in syntactic terms. Natural deduction, like all -

v

theorem—proving techniques, must rely on syntactic rules of in-
ference. But it is for semantic reasons that we use theorem-

proving. The point of formal systems is to allow the expression

«

>
N

in the system. The advantage of intuitive formal syétems such

v »
.

as natu;al‘deduction is that they make it easy to express such

»
intuitions as unambiguocus rules of inference.

.

.

o

3
-

: APPENDIX 1: RULES USED IN THE FIRST VERSION
' OF THE THEOREM-PROVER:
[Try strategy 1 (backward reasoning).]

Rule 1: If goal is an:implication, en assume aritecedent aﬁd

try to prove consequent. Appiy =>1, N
&

° Rule 2: If goal ;s an equivalence statement; prove both corres-

ponding implications $2nd apply <=>I.
° {

]
Rule 3: If goal is a conjunction, prove both conjuncts and

L] . @
-

apply &I.

Rule 4: If goal is a disjunction, and if one of the disjuncts

]

is already a theorem, apply VI.

'[?ry strategy 2 (forward reasoning).]) »

Rule 5: If goal is a theorem, return the path to the goal.

Ly

+ _ -Rule 6: If a disjunction is a theorem, apply VE, i:e., prove

goal from each disjunct separaté} .
. ¢ / ‘

Rule 7: If an implication is/ﬁ/theorem, try to prove antecedent
' and apply =>E. N)
.Rule 8: If the negation of a disjunction is a thegorem, derive
% -
» the negation of both disjuncts and return (proof goal).
[. f- p

‘ ' [TPYy Strategy 3 (RAA).]) .

g
.
-
r &
'
+ v

B) e ’ . ’ ' f
. 62

o,
Rule 9: If no other rule applicable, apply RAA, i.e., assume .

the negation of what you are trying to prove and try to derive

a contradiction. . . . o

Rules to find contradictions

Rule 10: If goal is a disjunction, assume negation of goal,

P derive negation of both disjuncts and look for a contradiction.

Rule 11: When looking for a contradiction, try to prove the

“- negation of a theorem.

Rule 12: Don't use RAA on a goal that you are already trying to

prove with R2A.

w

Rule 13: If sentence is the antecedent of some theorem, apply

=>E.

Rule 14: If sentence is atomic (contains no connectives), no-

‘

thing else can be ‘done with it. .

’ Rule 15: If sentence is a conjunction, apply &E.

Jst -

Rule 16: If sentence is an implication and some theorem is the

- antecedent of seﬁﬁence, appiy-=5E.

Rule 17: If sentencé ts an equivalence statement, then if some

theorem is the antecedent or the consequent of sentence, then
- i S o
apply’'<=>E. . .

Rule 18: If sentence is a double néga%iqn, apply -E.

i

.t

—

- 1

AT AR

63 -

APPENDIX 2: LISTING OF THE FIRST IMPLEMENTATION

OF TﬂE THEOREM-PROVER (IN FRANZ;LISP)
t - : L

6.1. Program listing. .
(def do (lambda (x y) ’
(princ ' |premisses: |) .
(princ x) .
(terprl) " '
(princ |ccnc1u51onm |)
(princ y)
(terpri) (terpri)
(tabulate (prove X y))

(terpri] ~

: (I) FORMATTING FUNCTIONS
;print out proof in tabular form: the proof now consists of a
;list,the. first ellement of which is the set of premisses or the
;hypothesis, and the last element the conclusion. Tabulate is a
;formatting routine' that converts the proof in réadable form.
;Each element of the proof has a level. Subproofs may be
;embedded. "o
(def tabulate (lambda (x)

(init)

(format x]

_{defun. init ()

(setq line 1)
(setq tabnum 1]

&]

(def format + : ®)
;Input: a proof or a subproof,stored as a 1list.
;output: a formatted proof. ‘ “

{lambda ‘(result)

{pprms (car result))

; print premisses - or, in the case of a

; subproof, the hypothesis.

(underline) _ -
(printsteps (center result)) -- ;print proof
(pconc result))) \\\ ;print- conclusion

Bt

{defun hyé_ify (x) ,
(mapcar 'hyp_thisprem x] - ’ i

{defun hyp_thisprem (x) \ ’ /7
(cons (list x line) hypotheses] }

;FUNCT;ONS PRINTING PREMISSES AND HYPOTHESES
(def pprms ;
(lambda (x) .
{cond
{(wff x) (printprem x))
(t (mapcar 'printprem x]

(defun printprem (x) " 4
{print_line)
(tabs)
(princ x)
(justify 'HYP)
(terpri)
(setq line (addl llne]

(defun justify (x)
(princ 'J ()
(princ x

LI

;FUNCTIONS PRINTING INTERMEDIARY STEPS OF PROOF

<

(def center :
;returns a list containing all elements of argument except
;first and last. In other words, returns' the proof part of the -
;argument. !
(lambda (x) ~ . . ‘
{cond ((lessp (length x) 3) n11)
(Tequal {length (cdr x)) 2) (list (cadr x)))
(t (append (list (cadr x)) (center (cdr x)))))))

‘' w

(defun subproof (x)
(and i
(listp x) . »
(equal (length x) 1) ‘
'(listp (car x))
(not (wff (car x] . ;(car x) must have at least 2 elements.

¢

(defun subprint (x) ,
(setqg tabnum (addl tabnum)) '] i
(format (car x)) i
(setq tabnum (subl tabnum] ‘

(defun printsteps (x)

(mapcar 'print_step x]

L}

RS S A U R AR ,..‘;x:?@gw.:.;@!?%
- R
s ~%

(defun print_step (x)
, ;a step in the proof is either a wff or a subproof,
; or a sequence of steps.
- {cond o
' ({null x) nil) .
((subproof x) (subprint x))
((wff x) (print_line)
? (tabs)
(princ x)
(setq line (addl line))
(terpri))
< (t (printsteps x]

; FUNCTION PRINTING CONCLUSION OF A PROOF OR SUBPROOF

(def pconc (lambda (x)
;prints conclusion with tabbing correspondlng to
;the level of the- subproof.
(cond
((null (car (last x))) nil)
(t
{(print_line)
(tabs)
(prin¢ (car (last x)))
. (setq line (addl 1line))
. @ (terpri]

/ ’ ; FUNCTIONS FOR PRINTING TABS AND UNDERLINING HYPOTHESES

(defun print_line ()

{(cond - -
((lessp line 10) (princ | 1)) o
{princ line]

o (def tab (lambda nil (princ "I []))) d
. ~ ’
(def tabs . ’)
o - ;number of tabs printed must correspond to the
C : ;depth of the step being printed.
(lambda nil
(prog (temp)
(setq temp tabnum) ‘ . .
loop (tab) !
(cond ((egqual temp 1) (return t)) .
T (t (setq temp (subl temp)) (go loop))))))

(def underline (lambda nil

(princ '| l) . .
(tabS) 3

- (princ '--—-)
c - (terpril] _ ~

>

§

i (IXI) FUNCTIONS TESTING FOR WELL-FORMEDNESS OF PREMISSES AND
; CONCLUSION .

(def wff A4 |
(lambda (x) . N

{or (atomic_wff x)
(compound_wff-x)
(negation xV)))

(def atomic_wfE
(lambda (x))
Ymember x '(abecdpgqr Xy z]

(def compound_wff

(lambda (x)

(and (listp x)
(member (cadr x) '(& V => <(=>))
(wEf (car x)))
(WwEf (caddr x)))))

(def negation
(lambda (x)

(and (listp x) (equal (car x) '=) (wff (cadr x)s)))

: (III) GIVEN A LIST OF PREMISSES X AND A CONCLUSION Y,'
H RETURN A PROOF.

(def prove (lambda (x y)
(init_lists x)
(forward)

(list x (proof y) yl

(defun init_lists (x)
(setq newinfo nil)
(setq premlist x)
(setq disjunctions nil)
(setq’ neg_disjs nil)
(setq hyps nil) ~
(setq forbidden nil) -
(thq attempted nil)
(setq proof_hints nil)
(setq discarded nil)
(init_array),
(setq goals nil)
(setq last_goals nil}

67

(def- proof
(lambda (goal)
(cond ({null goal) nil)
((member goal premlist) nil)
(t (change goill)))))
{
(def change
;will return a rule to apply immediately to z,
;or a hint(about something that can be proved
;given the present theorems,or that would be
;juseful if it were proved, given te goal.

(lambda (z) ’
(setq last_goals (cons z last goals))
(cond ((equal (find_main_conn 2) '=>) (=>I z))
((equal (find_main_conn z) '&) (&I z))
((equal (find_main_conn z) '<=>) (<=>I z))
((theorem z) (path (theorem 2z)))
((VI z)) ;if trying to prove (a V b), then if a
' ;or b is a theorem, you are done.
! ((setq disjunction (car dlsJunctlons))
(VE disjunction 2z)))
((hintl 2)) X) . v
((hint2 z))
{(not (member z forbldden)) (raa z]

(def find_main_conn -’)
(lambda (x)
(cond ((atom x) nil)
({equal (car x) '-) '=)
(t (cadr x)))))

;FUNCTIONS THAT DERIVE CONSEQUENCES OF PREMISSES AND HYPOTHESES

(defun init_array ()
(array available t 30)
- (setq next_slot 1) &
' (mapcar 'load_prem premlist]

(defun load_prem (x)
(setq newinfo (cons next_slot new1nfo))
(insert (list x 'H] "

(defun insert (x) \ B ' . ¢
(store (available next slot) X)
(setq next_slot (addl bext_slot]

(def forward L o : ’
(lambda () : "

“ {mapcar 'forwards (reve;gse newinfo] '

Ml

!

(def forwards. ;x : a slot number \
(lambda (x) : —
(setq sent (car (available x))) ‘ \
(cond ((member sent (antecedents)) {(modus sent)))
(cond ((atom sent) t)
((equal (cadr sent) 'V) ~ '
(setq disjunctions (cons sent disjunctions)))
(lequal (cadr sent) '&) (&E x))
({equal (cadr sent) '=>) (=>E x)) .
{({equal (cadr sent) '<=>) (<=>E X))
({and {(equal (car sent) 'a)
(not (atomic_wff (cadr sent)))) -
(sE x)))))

! »

i

(defun modus (thisprem) ;thisprem is in antinfo
;so, get all slot-numbers n such that
;: 1. (theorem (car (available n)))
;i 2. {caar (available n)) = (caar (available x))
;examine consequences of these.
(mapcar 'store_consequent
(elim_nil (mapcar 'find_compound (theorems]
(def find_compound
;x = (A n)
;if A = (z =>y), then cadar x = =>, cadr x = n
(lambda (x) S
(cond ((atom (car x)) nil) :
((and (equal (cadar x) '=>) (equal (caar x) thisprem))
(cadr x] o

(def elim_nil Qx

Y

(1ambda (1) Lia
(cond ((null 1) nll)
({null (car 1)) (elim_nil (cdr 1)))
({listp (car 1)) (elim:nil (car 1)))
{t (cons (car 1) (elim_nil (cdr 1]

(def store 'consequent %¥z: a slot-number |

(lambda (z) \
~ {insert (list (caddar {available z)) '=>E z (this_slot)))

(fo:wards}(this_slot)))%

(defun this_slot ¢) 7 _
. {subl next_slot]

¢,

k]

'Y

‘(defun prove_antecedents ()

»
g
= ﬂ;é‘

PR 2 P &

69

HINTS functions

-y %

(defun hintl (x) L
; (hints x) checks whether a hint is applicable

;.to present situation and, if so, takes appropriate action.
:HINT 1 = try to prove antecedents of available theorems.

"+HINT 2 = if a theorem is the negation of a disjunction, derive

;negation of both disjuncts, (using RAA) and then go back to
present goal. .-
; (hints x) returns nil iff

'no hint is applicable

;and (list (proof z) z (proof x)), for some z

;s.t. 1. ((proof z) z) is in proofhints

: 2,]- X

{cond ((and (prove_antecedents) (theorem x))
(setq forbidden nil)
(setq attempted nil)
(car proof_hints]

(defun hint2 (x)
{cond T . '
(neg_disjs
(setq neg_disj ‘
(car (available (car neg_disjs))))
: (setq neg_disjs (cdr neg_disjs))
. . {list (raa (caadr neg_disj))
(neg (caadr neg_disj))
(raa (caddadr neg_disj))
(neg (caddadr neg_disj))
(proof x]

;denies permission to use RAA
~;and stores, for each antecedent
iproved, its proof in proof hints

» (setqg forbidden
(elim_dupl (append (antecedents) forbidden)))

,(elim_nil (mapcar 'prove_ant (antecedents]

(defun elim_dupl (x)
(cond ,
((null x) nil)
((member (car x) (cdr x)) (elim_dupl (cdr x)))

(t (cons (car x) (elim_dupl (cdr x]
é

(defun prove ant (x)
:x is a wff. If x is provable, store
; ((proof x) x) into proof_hints
;else, nil.

(cond oY~
({member x attempted) nil) :
(t

(setq attempted (cons x attempted))
(cond

((setg thisproof (proof x))
:if x is provable
(setq proof_hints
" {cons (list thisproof x) proof_hints))
(insert (list x !proofant))
(forwards (this_slot]

-

=

: .AVAIL functions

(defun theorems ()
;should return a®list of pairs, e.g., ((a 1) (a 6)..
(prog (result) ; ‘
(setq result nil)) =
{setq position 1) !
T+ loop
(cond
{ (member position discarded)
({setq position (addl p051t10n))
. (go loop))
({null (available position}))
} (return (reverse result)))
(t ;
' (setqg result
. , {cons (list
‘ (car (available p051t10n))
position) -
result)) {
(setq posztion {addl p051t1%n)) - \S
(go loop] -

(defun theorem (x) g
;should return the slot-number correspondlng to x
:in AVAILABLE, nil otherwise. x is a wff
(prog (th)) .
(setg th (theorems))
loop (cond ((null th) nil)
({equal x (caar th)) (return (cadar th)))
(t {setq th (cdr th)) v { .
(go loop] 1 2 i

70

T ey

(defun avail ()
(prog (result))
(setq result nil) ‘
{setq position 1) .
loop ,
(cond)
((null (available position)) (return (reverse result)))
(t (setq result (cons (available position) result))
(setq position (addl position)) r
(go loopl])

'(defun 1mp11cat10ns () ' /
(mapcar 'implication (theoremﬂﬂ '

(defun implication (x))
{cond -
((atomic_wff (car x)) nil) -
((equal (cadar x) '=>) (cadr x] p

(defun antecedents ()
(mapcar ' (lambda’ (x)
{cond
((null x) nil)
(t (caar (available x)))))
{implications] _
(defun consequents () _ \
(mapcar '(lambda (x) (caddar (available-x))) (implications]

(defun path (x) ;X should be a slot-number in available
- (sety sentence {available x))
(mapcar get step (reverse (llst steps (cddr sentence]

(defun’ get_step (x)
(car (available x]

(defun list_steps (x) .
(elim_nil (mapcar 'origin x]

(defun ofigin (x) N

(cond .
{(equal (cadr (available x)) 'H) nil)
{(equal (cadr (available x)) 'proofant) x)

(t (cons x (list_steps (cddr (available x]

s

iRAA functions

(def raa
(lambda (x) . i 4 -
(prog (A B) -

(setq A nil) v
{setgq B nil)
(newhyp (neg x)) Tﬁ(-
(cond . . e
((disj x)
(setq A
(list (raa (neg (car x)))
(neg (car x)))
(raa (neg (caddr x))) o
(neg {caddr x)))) .
{(setq B (list (neg (car x)) (neg (caddr x))))
(insert (list (neg (car x)) 'H))
(insert (list (neg (caddr x)) 'H})))
(cond ((setqg c (contra (theorems)))
(return : , _
(list ‘ :) .
(list (neg x) .
(append A (prove_ ‘contra c))

, (discard (car hyps))

PO))))

(t (setq forbldden (cons x forbidden))

(cond C
({setq ¢ (flnd_contra (append B premlist)))
(setq forbidden (cdr forbidden))
(return
(list
(list (neg x)
(append' A (prove_contra c¢))
(discard (car hyps]

(defun disj (x) - ’ . “/
(cC Dnd ' " Q ! u ~
({atom %) nil) N ‘ ’ ’
. {{equal .(cadr x) "V) t]

(def find_contra -
(lambda (x)
(comd ((null x) nil) .
((and (not (member (neg-(car x)) forbidden))
(proof (neg (car x)))) T B
(theorem (car x))) - y '
At (find_contra (cdr x)))))) iy

*

yWJQME

S

.
‘—.u.
B

24

. 3, .
(def contra

(def newhyp

73

(defun neg (x)
{cond
((atomic_wEf x) (list '~ X)) .
((equal (car x) '-) (cadr x))
(t (list '= x] : ' .

<
-

;returns slot-number of a- theorem the negation _
;of whlch is also a theorem.
(lambda (x)
(cond ((null x) nil)
((theorem (neg (caar x)}) (cadar x)). ..
(t (contra (Cdi‘ﬁ))))))

(def prove_contra,
,should return, for some X
: (list Lproof x) x (proof (neg x)) (neg x))
.So, look if there is a contra available in
;theorems If so, produce it; else, take each
<;theorem in turn, and try to prove its negation,
;without belng allowed to use RAA immediately.

o - B
§

(iambd; {x)
(setqg s (car (available x)))
(1ist (proof s) s (proof {neg s)) (neg s))))

A}

v, N . w ' LY
; FUNCTIONS USED TO INTRODUCE AND DISCARD HYPOTHESES N

o

(lambda (%)
(setq hyps (cons next_slot hyps))

(load_prem x)

, e

(forwards (this_slot)) u ' .
(setq premlist (cons X premlist)) . -
nil]

(defun discard (x)
X is a slot-aumber in avail

K , idiscarded is a list of discarded slots in AVAILABLE.
- (setq premlist (cdr premlist)) ‘
(setq hyps (cdr hyps)) ¥ ’
(setq discarded’ (append dlscarded (consequences x))) nil)
(defun consequences (x) . _ - ¢
(prog (result index)
(setq index x) .
(setq result nil) a
- loop {cond 'Y

{(equal index next_slot) (return result))

(t (setq result (qons index result))

. {setq index (addl index)) s
(go loop]

CL
s
" T . R
; INTRO, BUNCTIONS
(def =>I Nt RO
(lambda (x) * ° .. -
. (setq goals (cons (list x_ '=>I) gdals))
bj (newhyp (car x® C
(list .{list (car x) Co ®
= “(proof (caddr x)) . , ’
. (discard (¢ar hyps)) . .
, (caddr x]) SR
(def <=>I (lambda (x) .
) (setq goals (cons (list x '<=>I) goals)) . . . o "
{1ist (=>I x).(=>I (reverse x))))) s .
(def &I {lambda (x) " . o . RTE
(setq goalts (cons (list x‘é&I) goals)) ; £ ’ ‘
{list (proof (car x))) \
. . {(car x) - . .) °
Aproof (caddr x))
o ‘(caddr x)))) A
(def .-I-(lambda (x) Aﬂ B ' . |

(setq goals (cons (list x '-I) goals))
(list (115t (cadr 'x) (prove_contral))))). . ’

(defun VI’ (x) . . . ’
* {cond
({atomic_wff x) ndil)- .
({equal (cadr x} 'V) , . T
(cond ‘

~+(({theorem (car x))
(list (path (theorem (car x))),
T \ (cdr x))) Dl
"((theorem (caddr x)) -
{list (path (theorem (caddr x)))
Tt (caddr x] - . .

- -
~
o 5
! ’

" ;ELIM FUNCTIONS ¢ . ‘ ’ .
(defun =>E {(x) . » . -
(cond . . T
. {(theorem (caar (aydilable x))). :
" {insert (11 addar (available. x))
. '=>E Lo ' .
x . ’

. B

(theorem (caar (avallable x))))) o
(forwards (this slotI

-~
. .
- N .
. .
. .
Ll
°

.
0 - . ¢

(def <=>E ‘ 2,

(lambda (x) ' '
¢ (cond -)
((theorem {caar (available x)))
(insert
(list (caddar (avallable x))
, '¢(=>E
i " x
(theorem (caar (avallable x)))))
(forwards (this _slot))) -
({theorem (caddar (available x))) °)
} (insert
(list (caar (available x))
'¢=>E ’
x

({theorem (Eaddar {available x)9)))
(forwards (this_slot))))))

(def &E , 4 .
(lambda (x)) e . . .
(insert (llist (caar (available x)) '&E x)) ~

-

"* (forwards \(this_slot)) \
(insert (list~ (caddar (available X)) '&E x))°
(forwards (this_slot]

(dEf -E ’
(lambda (x)
(cond . .
({equal (cadar (available X)) '=)
" (insert (list (cddar (available x)) '=E x))
(forwards (this _slet))):
, ({equal (car (cdadar (available x))) 'V)
; h ' * (setq neg_disjs (cons x neg_disjs] .
I _
(def W& . R
\ (lLambda (d x)] ' -
) . (setq disjunctions {(cdr disjunctions)) ¢ :
; . (list (path (theorem d))
d
¥ o ‘ (list
Vo A ~ (list (disl 4)
‘ , ' (newhyp (disl. 4))
+ {proof x)
(discard (car hyps))
~ X))
* " (list e

(1ist (dis2 4) ‘ ' ‘
(newhyp (dis2 d))
. (proof x).
‘ ‘ ' \ (discard (car hyps)) .

o) / ‘ | . |
.~‘\,‘ .) . '))

. ,
My e

g

~
] . -

' (defun disl (%) (car x))
.(defun dis2 (x) (caddr x))

%TESTS

(setq p nil)

(setq
(setq

(setq
{ (setqg

(setq
(setq

(setqg
(setq

(setq
(setqg

(setq
(setqg

(setqg
(setq

(setq
(setqg

(setq
{setq

(setqg
(setq
(setqg
(setq

{setg
(setq

(setg
(setq

(setq
(setq

(setq
(setq

pl
cl

p2

c2

p3
c3
p4
cd

pb
c5

pb
ch

p7
c7

p8
c8

p9
c9

plo0
cl0

pll
cll
plé
cl?

pl3
cl3

pld
cl4

pl5
N R-)

*(a))

] a‘)

" (a)) - a L
*(a'V b)) -

'{a (a => b)))
*la=> (b => a)))

(b (b => a)))
'{a & b))

"(la =3 b) a ({a & b) => ¢)))
'(b'=> ¢)) :

'{{{a V'b) => c) bl
'c) '

nil) ‘
'{a => (b => (c => (d => a]

i

*({a V b) (a => ¢) (5 => cJ]
lc) B

"({a => b]
'{(- b) => (-~ 31

‘{(a => b]
' (- (a & (ﬁ b]

'{{a & b) (b => c]
(¢ V 4]

."{{a Vb) (c => (- a)) €]
_'b). . \

'({a V b) (= a]
!b)

"((p=>q (rV (aq)) (=r]
|(q p] . .

"{{p => q) (g => (rV s]
"(p => (r V s]

xm ‘

Y

P
T D R
RS

(setq pl6 '((p V (q => r)) V {= p)) (= q)

(setq cl6 ‘(g => r]
(setq p17 '((r => q) = p)u(p => s5) (= s]
(setq cl17 ' (= r]

kY

(setq p18 '({p => q) (g =>)} (pV (- s)) (ar]

(setq ¢18 ' (- s]

(setq c20 '((p => q) => -((« q) => (= p]
(setqg ¢21 '({p => (@ & (-~ q@))) => (= p]

(setq c22 "((pV (a2 p)) V (r & s]

.(setq €23 '(p V (= p] o

6;20 .

_ Tests of the program

6.2.1.
Command file

L4

-(load 'project) " . o : S
(do p -¢3))
(do p4 c4) ‘ ‘ .

" (do p5 ¢5) . '
{do p7 c7)

(do P9 c9) -

{do pl10 ¢10) R
(do pl2 c12) -

{(do pl4 cl14)

(do- p16 c16) -

(do. p17 ¢cl17) - X

(do p18 c18)

6.2.2.
Output of test

Franz Lisp, Opus 36

St N
-> premisses: nil .
copclusion: (a => (b => a))
1] . HYP !
2 . b HYP ')
3 ‘ a . ‘
4 ’ (b => a) . - i! /
5 {a=> (b=> a)) - "
nil . :
. v
W

q
->
nil .
-> premisseg® (b (b => a)) :
conclusion: (a & b)
1 b HYP :
2 (b => a) HYP
3 a
4 b
5 {a & b)
nil) .
_> .
nil
'-> premisses: ({a => b) a ((a.& b) => ¢)) - . - =°
conclusion: (b => ¢} ’
1 (a => b) . HYP .
2 a _ HYP K ‘
3 ({a & b) => ¢) . HYP
'y b HYP
5 a
6 b .
7 (a, & b)
‘8 ’ c o o
9’ (b => c)-
nil .)
-) AN ,

>

s premiéses: nil
conclusion: (a => (b => (c => (d => a))))

] -

1 a HYP
2 Ib " HYP
3 c HYP
4 , \ T HYP
5 - §‘ ¢
6 . . (d => a)
7 v (e => (d => a))
8 (b => (¢ => (d => a)))
9 (a => (b => (c=> (d=>a)))) :

nil ' £ \ ' ~ R

-> premisses: ((a => b)) ‘
, conclusion: ((=~ b) => (4 a))

1 {a => b) - HYP
/ - 2 (-~ b) HYP)
: 3 S a _ HYP
q{ 4 (- b) N .-
5 b
L " *) R (-~ a)
! 7‘ {{~ D) =>.(~ a)) N %
nil 8
..-) \
) : nil
’) -> premisses: ((a => b))
. conclusion: (- (a & (- b)))
T\ 1 (a => b) HYP . B
) 2 . (a & (-~ b)) HYP
\ ' . ———— - ’
) : 3 a
4 b)
s 5 (-1 b)
’ . 6 (-~ (a & (- Db))) .
nil .
->
k ,nil - -
O
o . ‘
, \
. : A
g ‘ \
- .) LA
- : ’) ¢ N \‘
o N . ') J
- 8 - i N ’ .

L

nil
->
nil

-> premisses: ((a V b) (e => (= a)) ¢)

i

conclusion: b

(a V b) .HYP
(¢ => (~ a)) HYP
¢ HYP
(a V b)
a HYP
(- b) \ EYP
(ﬂ a)
a
b ~
b HYP R
b
b

+
5

-> premisses: ((p => q) (£ V (= q))

conclusion: (- p)
1 *1p => q)
2 (r Vv (- q)
3 (ﬁ r)
- o
4 (r Vv (= q)
5 r
6
7
8 H
9 ‘ (= p)
10 (- Q)
11
12
13
14 (ﬂ R]
15 (ﬂ P)

HYP
) HYP
HYP

)

HYP
P HYP
(- ri
r

. F Hyp
P HYP
e 4
(~ Q)t
q

(- r))

80

ERTEA
A AT A

R

~ Ay T

IS

& .

\ -

&‘.‘ LW N
ey ol Lt ael T

-> premisses: ((p V (g => 1)) (g V (= P)) (= q))

conclusion: (q => r)

.ll
12
“ 3

o n

10
11
12
13

14.
15

16
17

18
19
20
21
22

nil
-
nil

-> premisses: ((r => q) (q => p) (p => s) (=~ 's))

0~

(p V(@ =>r)) | HYP
(q V (-7p)) B HYP
{~ qQ) HYP
q HYP
(q V (= p))
: Rl-n - HYP
(p Vv (@ =>r)) ;
P HYP
(- r) HYP
(ﬂ Q)
q
r
(@ => r) - ‘ HYP
r .
1 , A
(- p) HYP
(- r) HYP
(= q)
q .
r
r
(@ =>7r))

conclusion: (= r)

OWooJ3Io

nil

(8] = W

(r => q) HYP
(q => p) HYP
(p => s) JHYP
(-1 S) HYP
r T HYP
. (ﬂ S)
q i
s"‘:p
S,
(- Jr)""”;i
%f
]]

81

Y

-2
nil

@) (= 1) (PV b 8)) (=1))

~> premisses: ((p =>
conclusion: (=~ s)

1. (p => q) HYP

2 (@ => r) HYP .

3 (p V (- 8)) . HYP

4 (=~ 1) HYP

5 (p V (= s))
i -} P HYP

7 s HYP

8 (-),

9 q rw
.10 r

11 ("\ S) R
12 (= s) HYP
13" (= s) . 3
14 (-1 S) B
nil

‘:’

i

82

-
+ Y

- N
- Lo Dl
B STt
4T S LI :

k!

3 ' APPEND)(\:‘ 3:

4
RULES USED IN THE IQ-LISP VERSION

-:OF THE THEOREM-PROVER:

4

: *
The vocabulary of rules: primitive predicates and functions

* 2 number of primitive functions and predicates have

been defined and used in rules. Beyond a number of syntactic

N

pr%dicates and functions (that check whether a sentence is a

conjunction, a well-formed formula, etc...), there are a number
, e .

-+

of functions for:

)
—r . examining a goal to decide whﬁ;her it is likely to

s

.be provable, before actﬁally tfyipg to prove it

tattempt!) oo

. \

/ . deciding when a boal ought to be proved by RAA or

’ by a more direct method . .

. selecting 'the contradiction that is most likely tg

"

be provable in a reductio ad absurdum
y 3

. aeciding what to print on the screen and where t5\

!

print it
- goals: printgoal

- paths leading to formulas: printpath

‘, ’ ! Function and predicate names are in bold while data struc-
tures are in capital letters

L
)
}:‘n I

83

84

- éubpréofs (vertical lines, hypotheses, sub—ﬁ

\

goals)

- - cations

adding facts to fhe database

. checking what is available and identifying justifi-

-
s

LY
. a

’

Theorem: checks whether something is avail-

able
& .

Justified: the PROOF structure keeps track

of whatevér ‘has been proved so far

0

Column, Above, above+: verify that a sen-

L3

‘tence really belongs to the PROOF and that

‘it is repeatable

‘ ' ?
Origin: find from what line a sentence is

derived

Repetable: verify that a sentence satisfies
Ahe restrictions on reiteration®

¢ 4

Inserta, insert, ...: maintain AVAILABLE

_ (truth-maintenanoce system)"

Inserthyp: Hypotheses are to be inserted_‘
' »

into the structure AVAILABLE, even if this

-

is only temporary

. removiTg hypotheses and their consequences

A crucial feature of natural deduction is the pos-~

sibility to make hypotheses. And hypotheses, at some point, -~

m‘-

B

Ses
=

RERIR &

-7
- e

85

have to be discarded. Whenever a hypothesis is discarded, it is
attached, as well as all of its consequences (i.e., all sen-

tences in AVAILABLE following it) to the 1list D&SCARDED.

Something is w theorem iff it is in AVAILABLE, but
not in discarded. (For programming convenience, the fikﬁtion
(theorem sentence) does not returp a boolean vaiue but rather a

number indicating the position of sentence in AVAILABLE.

Discard: discarding a hypothesis

Delete: Procedure for discarding hypothesis

-~

’ . Validation of student's proposal
Validhyp: Vaiida.e hypothesis
Validbut: Verify that a goal is a legiti-

mate one : - \

Rules used in forward rea soning (application of elimi nation

rules of inference)

. These rules are consulted whgnever forward reason-

ing is necessary, i.e., in the beginning| of the proof construc-

A

tion over the set of premisses; and then whenever a new sen-

tence is derived or when a hypothesis is made.

- : The variable FOQUS is set to the formula that is

being currently considered for forward reasoning. By successive-

-
0

application of relevant elimination rules, the consequences of-
'FOCUS are derived. .
If a conjunction is under focus, . , 3

&
insert,its first conjunct in AVAILABLE

/

If a conjunction is under focus, . .)

- ‘- >, v
‘

5

4

insert its second conjunct in AVAILABLE

If an implication is under focus

check if antecedent is available and if so, add conse-
quent in AVAILABLE, with the justification of E=); add

focus to the list IMPLICATIONS-

/ -

-

If an equivalence is under focus and its antecedegt is a

theorem, !

d

insert its consequent in 'AVAILABLE

N

{

\
If an equivalence is under focus and its consequeﬁt is a
theorem, §

ihsert its antecedent in AVAILKBLE’

- Il

87

If a disjunction is uhder focus, and the negation of-its

first disjunct is a theorem,) .- ‘o

insert the second disjunct in AVAILABLE
¢ - ..

\

If a disjuncti‘on is under focus, and the negativn of its

second disjunct is a theorem, - -' -- - -

insert the first disjunct in AVAILABLE

If a disjunction is undér focus

- o

add it to the list’ DISJONCTIONS
. t/) a

.
D3

B »

If the formula under focus is the antecedent of some im-

plications in the list IMPLICATIONS &

‘

’

add the appropriate consequents to AVAILABLE

P

If the formula under focus is the antecedent of some.

egquivalences in EQUIV ”

N . -
3

add the appropriate gonsequents to AVAILABLE

If the formula under focus is the consequent 'o; an equiva-

lence in EQUIV

add the appropriate antecedents to AVAILABLE)

°3

L3

If the formula under focus is the negation of the first

disjunct %f some disjunctiops in DISJONCTIONS

add the corresponding second disjuncts to AyAILABLEf
/‘ | - ‘- . !
. 3 - g

ES

If the formula under focus 1is the negation'of'the second

2
* -

disjunct of a disjunction “in DISJONCTIONS

add the corresponding firstrdisﬁuncts to AVAILABLE

A
- &

YO P . . .

o '

.

ZRules used in. b ackward (geoal-directed) reasoning (%/' .

[(7 ur
' If goal already has a Justification

1

Write this justification and suppress this goal from

¢

GOAL_LIST.

- K
-2 ° L]

If goal is an inmplication .)

-
-

>

Create appropriate subproof,/write justification for

goal and add subproof to 1 of goals~
4 .-7,1 -

w

If goal is repeatable

Justify goal with rule REP and suppress the go;l from

GOAL_LIST. : .

1 LR - s ¢ i - T
" ey - ¥ ‘ S L Wl g WED B A EP A g e 1
B P VR IR B e ET Y

- T

b .? ., '
‘ , ’ If a contradiction.is available o
o T

¢ :) print justification for goal (appropriate RAA rule,

i.e., =Intro or -Elim) and add the @ppropriate subproof.

‘ ‘ ‘ N
- . to the list of goals (i.e., ‘prove contradiction under

the negation of the goal). - 4 .

9 S .

[Tt -

If goal is a conjunctioﬁ

Print apprdpriats"subgoals above the goal {(i.e., each

—)) ; conjunct that is not already printed; justify the goal

P)_ .
‘ _ 'with I&; and add appropriate .subgoals to GOAL_LIST (one

A ~
or two dis3junéts). : (<

) h e

-

If goal is an equivalence

ue £

I3

'pgint boTﬁ"app}opriaté‘imﬁIications above goal; add’

- ' T them to GOAL_LLéT: and justify goalwwith IEquiv
TS T AT T e

r'd

N N v
N B -
’- . .

If goal is a tﬁeorem; .

>

print the Path that leads to it, as well as the goal,
» g ~
fetching the)appropriate justifications from the truth-

maintenance monitor.

S T A A R ¢
¢

) ' A
. '

*s

If géal is a disjunction and one of disjuncts .is already

pbroved

[y

@
-

Insert goal in(AVAILABLE; Justify goal w%th Iv

. 1 4 ’ |
.

Construct INTS = list of newly availableﬁformulas (via

! .

elimination rules)

~

~

and INT = list of formulas in INTS that Jave the goal-

'
|

as a sub-formula %

|
|
. , |
|
|

If nothing is in INT

£

_add (RAAGOAL) to GOAL_LIST ,
- I

cs ’ | ‘

'If. goal is the consequent of.an implicatiom~in INT

{

- " justify the goal with E-implic and add the antecedent

of this implication to GOAL_LIST.
o &

< L4 !

-t a . . \
* £ q -

' . 8 . R l
If goal is a conjunctfin Td conjunctdon that is), the conse-

%

quent of an impfiication in INT \

Prove this/implication; then try to prove thé antece-

A -

dent of this implicatfbﬂ géo as to get the conjunction

by E-implic and the goal by E&).

v o
o
.)
l “0
'

Ly

A

£

o g SRS
BN

If goal is the fi{st disjunct of ‘a newly'available disjunc-

i §
tion - o

-

print the proof of this disjunction, and then Ery to

prove the Qoal by EV, that is-by adding to GOAL_LIST °

“

the negation of the second disjunct.

¢
~at o
~ . N . K " '. » ’
If goal is the second disjunct of a newly available dis-

%
1

Junction

’

/
prove it by EV, adding the negation of the first dis-
))

junct to GOAL_LIST.

N t N . s
v v
[

If goal is the consequent of an equivalence in INT

Ead to GOAL_LIST the antecedent of this equivalence and

use E-equiv to justify the goal. *

-

& : i

o

If goal is the antgcedenttof an equivalence in INT .

> [P
L]

A Y .
add to GOAL_LIST the consequeht of this equivalence and

use E-equiv to justify the goal. N

=
-~

- L tsereaegs - - . B
() R g T <
. . \ R . , "
o 92 i
A “

\ L

I - . -
1
\ i

: L e If goal is the secdhd conjunct in the cgnsequent of an

equivalence in INT S

T, ‘add to GOAL_LIST the antecedent of this equivaleﬁce;)
- 17 (it Qill then be possible to use E-equiv to get the)
j o conjunction that will lead to the goal.
“] '0\’
If goal is the first conjunct in the consequent of an '
‘equivalenceg, in INT fw. A - ’
, ! ' ‘ add to GO@L_LIST the consequent-of.this equivalence; ‘
- . . (;t will then be possible to use#E-equiv.to get the - .
o ‘ conjunction th;t will lead to the goal. « . .
. | ° ;0 — e
» . If goél is a Qisjunction and‘éné ;f its disjuncts is a ‘
‘ - theorem , e ' g
- Co .
y Insert the goal in RVAILABLE: print, the.proof to the

provable disjunct: justify the goal’with Iv.

o .

4

If a disjunction is available as a theorem

2

prove goal by RAA

o

e
~ ¥

°

" i
e t ’

l'/r);v ,

If the goal i3 a dlSJuncﬁzon and one of its dlSJunCtS is

provable (via ATTEMPT)

y . ‘ N 2. "
add this disjunct to GOAL_LIS@, intending to prove the

goal by the rule IV. E 1} ‘ . ;

If thqrnegption of the goal is fbp antecedenf@df an ayail-'

able implication) W,

3

Prove.the, goal by RAA

M

-~ - ¥
- L]

i ‘) » 5 ¢ °
If the goal is the consequent of an available implication

Try to®prove it by E=>: add to GOAL_EIST the antecedent

® 2

of thds implilation ‘

4

If. thexe 1s in. avallable an 1mp11catlon of wh;ch ‘the ante-

ce\\\? has not yet beén praved . : o

a 3

’ l N
Try to prove this antecedent so as to get the conse-

qupni T . . ;
1. \
AT

If the negation of the goal is not a theorem

try to prove the goal by RAA.

v

AY

-

&

%\ ..
b

Al

)

LY

-If there is an.available equivalence‘suéb that —

- the negation of its antecedent is a theorenm

Q) B [y
<& . — the negation of its consequent is not already a

goal or a theorem. w

Add to GOAL_LiST the negation of the consequent .

1T e
’
g \
»

i

If there is .an available eduivalence‘such that
0 \‘1‘
- the negation of its consequent is a thedérenm

- thé'negation of its antecedent is not already a
! J 2 < . b e) o . /
qgoal or a theoren [

Add to GOAL_LIST the negation of the antecedent.‘ﬁ\g

~ .

s

If t@e goal is a disjunction and the negation of the-goal

N .
-

]

is g theorem
N

o
3

Add to GOAL_LIST the meggtion of the disjunction's

s

first disjunct.

Otherwise,

Give up with the proof; .print failyre message

-

Rulgg_gggdnﬂnén_;hg_gggl_iﬁngﬂpxgxs_ﬁ_éggsngéiggibn

7" 95

[

N

, R W, .
If a contradiction has been found, byt not yet been ;&Jrlnt-

.

ed in a Eub—proof by reductio

'
L
a

Pi‘int the contradiction; jusﬁif/y‘\the goal with the ap-

. propriate RAA rule (I~ or E-) - -

.) . ’ ' & .
If the first 'disjunqt of an available disjunction is the

ia I
. &

negat:ion of a ‘theofem '

(.

-

Add the negation of the fi

4

f disjunct to GOAL_LIST

\ L *

If the negation of & theorem is provable via attempt

ot
-

add (tnis,, negation to GOAL_LIST ' f .

{ = ; ° N,
? L .
P L_.\« N ‘ . s .
If .the negation of a disjunction is a theorem and the first
. ' ¥ . ’ p ,
disjunct of this disjunction is not already a goal -

- A}
Adci the negation of this disjunct to GOAL_LIST ““

LY

"If the negation of a disjunction is a theorem and the nega-
.) T
. tion of the first disjunct of this disjunction is a theorem

’

but the negation of the second disjunct of the cbd.isjunction

{

is not a goal

Add the negation of the second disjunct to GOAL_LIST

£ oy 0
Ve

SN .
)
-

-

Ry e e

0" !, '

v T ' 96
n >

»

7

o} 8

Construct CANDIS, containing all available implica-
. [:‘ R -

tions such that the neg‘gtion' of their consequent is a theorenm,

a

-

while the negation of their antecedent is not a theorem.

g . -
i
1\ ‘ - \

il -

If an implication is‘:a 1113mber of CANDIS and the negation of
s \‘» _

. its conseque\‘ht ds no\}: just a theorem but alrgady proved

<

" ‘('gv&) A : ¢)
dbove the goal, select that one; otherwise, select the
‘ 4
1]
“o - Y 4

first element of CANDIS

. 4
Q

) ¢ ' L]
and add to "GOA_L_LIST the negation of the antecedent of
w .) a L]

this implication

+
’

If it is possible to select the first likely candidate for

reductio, via GETCANDIS.
; . ’ |

’ .
\ - .
“ e

" Add this candidate on top of GOAL_LIST

£y
[

If an equivaience is available o

add the negation of the antecedent to GOAL_LIéT o

L4

Otherwise

* &
give up and print failure message ; -

) : ')

IS
~

N
[
- -
.
-
.
Al
A
- *
? t
s
4
\
- »
.
.
)
a
b4 .
& . - *
L
,
- e ’
- \
70 N -
Ll
&
.
- LY
» .
.
.
-
>
)
AV .
o L i
B i
s
. .
~
1 4
s
n
.
.
7 1
- ’
.
.
\

4

+ . ~
f
-
-)
- S Fl &
‘ - , TR
- et
)
v
= . .
L
-
.

: SCREEN DUMPS '.l“A‘KENQ FROM THE

13
.-) -
V !
L]
.)
.
-~
& .)
- B q .
N 2 -7
5 »

-
.
a
Q‘
[
“
.
%
5
, -
i .
@ .
. .
.
N
.
-~
N »
)
1 o .
1 ¥
f
. H
]
« i ‘
\ 4
¢
.
- .
.
.
- « .
N
.
. T v
.
\
- oy
¢
.
-
Y . . \
' -
a
- o« 5
. ’ '
\
L .
. + \
[
-
’ ! N .
- - N
7 -
s
t . . '
k]
4 \ -
Y R ’ . -
“r N
’ .
. & o
s
« *»
.
- . -~ » !
s
s i

97

“ -
:
o ~
b ¥
. o
‘
1 1
3
.
®
"
.
.
[N
8
LA -
+
.

& f
- i

v .

EXERCICE N* 29 |—(facile)— Bigle & ELIMINATION DE LA CONJONCTION.

3
Schéma a compléter Interprétation de ce schéma
| - -
1 ! . ’ ' ¢
A, egﬂ oul
A T e
DONC, g
BouCl '
« / .
. g 1
- ”)
- o
¥ Changer -« Explorer ‘
i . @ ¢ lés :
exercice - exercice .. concepts
¢ * ¥
. ;
A} o . .
\\ ¢ Y j H
] " ’
I . Y -
At {
\\, .
Sl . - . \ .
L3 \\ oA
. v
.o . \ ‘
P .
. |
] DA .
! ®

A]

O =3O U1 o BN e

e
(=~

N

b ok bl b b fod el h el

(B =+ A)
((~ B) = (- C))
c) .

-~

. L
g
’

- PREM
PREM
PREM

+ = INDICE SUPBLBENTAIEE

* Bsc = RETOUR AU HENU PRECEDENT

*
il qmm

- On veﬁt prouver
f a la ligne 19 .

—

On peut noter que A
est 1e CONSEQUENT de
la prémisse 1 .. "

(]

“““““

e

‘. . -
SRINEY B e PREM : ‘ S .
(z ((2 BY = {~ C)) ‘ PREM « -
it B P C . . PREM PREUVE PaR L’ ABSURDE
4 S ‘ ‘ ELIMINATION DE LA -,
5 : NEGATION
4 ! . : ‘
? , ",
. 8] 0 - : S (%) -
9‘ V ' z °
18 .) g - .
11 ' ¢ . R ¢
12 w “ Y CONTRg-
3 , e , ‘ b
14 R o ‘ . | G0 4+ DIcTIoN .
15 . Xy
o1 ¢ . . T Cy
¥ 1? . . — '
18 |3 79 —
, 19 1A ~ - B=r 1,18 . : -
% {(hEO) . It 3,19
1 ‘ ° ’ -
:] : ~
- ‘ < ll . (y ,
;T . - ~ ’
| ¢ 4 ' c
: 1 \13_
9 - r(\/I‘ -
- o !~J
¢ :
. '(- ~‘
’ .

Y ; ~ !
A B (O3 R - MM m————t——
AV - (- q) U P))[ElN By ' Onveut prowvkr-ume . -

g 3 (= #) : wp contradiction gpus . .-
4 1.] ¢ ' . e I'hypothése - -~ =~ -~
§ Y A CR(CNIR'S)) I
6 ’ (" (('\ h) U B)) _‘ ‘ ot REP 2 £, £l :——

7 (-GAVD) i3 = On peut prouver
8 s T « ~ A UBR .)

. 9 A s+ E13,67 ™ et sa NEGATION.” '

. 18 . e &
11 p ° v ‘
2|\ T

.13 o - o
14 0 ' LA ’ ‘:::3\ ’
15 ” s ‘ . : %9
1 a ‘ P ,‘
17 ° W " .
" 18, N oo o " '
19 -t

% . T
) Desirez-vous wvoir 1'etape suivante? — [0/N] -~ . -

) I .v: , . ' ' . . .i
, . _ 1 e 102

\ .
. \
1 |th=B) . PRE . , :
2 - WP | On veut prouver une
3 (~ &) e DISJONCTION 3 la ligne
4 ' “ 18,
5 “ . .
b (CHCCH: YRR)) B REP 2 Dans le cas présent, on
[(GAVBRB w3- peut prouver un des
8 r CoY deux DISJOINTS.
9 ﬁ E" 3; 6!?
18 - On utilisera ensuite la
1 , régle d' INTRODUCTION -de
12 R - * la DISJONCTION (IV),
13 v .
14
15 _ 5
16
1?
18 ((-A)UD) ‘ ©m ~
19 ‘
20 j((~4)VB) ' Ea?
8 ¢t

= INDICE SUPPLEMENTAIRE @

Esc = RETOUR AU MENU PRECEDENT

R

O 0D mI O M i LY DN

s
A W -
(CE&G-BY °
Lt
.
\
((CONTRADICTION))
(B=D)

PRIM
PREM
HYP

|-

m

Non: dams ce cas—ci, il~
ne faut pas chercher a°
prouver que 1’ hypothese
B est absurde.

On veut prouver que
(B = D) o
I:faut donc prouver
D sous l'hypothése B

S

[

. NMHM!—D'D—'HMH!-#H\O&'\I@LH&&NH
e AR R O U Wi N D

] -
(C& (- 1)

PRI
PREM
HyP

Bonne stratégie
(regle 1=)

Ioe

W O0 =3 O U ol L3 BN

[T T T G W Wy
W00 3O U)N =,

[t
[~ <]

A

(C& (- B)

""'\-“(‘“:\i‘__ EU -
Y

PRIM
PREM
HYP
- .M
I= 3,19

= INDICE SUPPLEMENTAIRE

Esc = RETOUR AU MENU PRECEDENT

N

On veut frouver

D 3 la ligne 19 .
m’w
I1 y a une CONTRADICTION
(explicite ou cachée)
dans ce qui précéde.

On peut donc utiliser
une. preuve par L' ABSURDE

W O3 =3 O L B G D e

BN e s pnlh fds P ke e e b b
WD CO ~JO0 N ot LWINV =00

a -
(C& (- B))

(2 {8=r D))

(CCONTRADICTION>> -

. PR
PREM
HYP
HyP

;-

m
I=+ 3,19

106

n n'y a pas de raison
. apparente de faire

I’ hypothese (- (B =+ D)) -
i ce stade-ci de ‘ .
la preuve. -

,_
WLyl
VAl

A3
°

Les differents types de formules

. . Now des parties &'une formule composée

. Structure d’une preuve §

11 reégles d' inférence

" 4 ~ : \
~ Stratégie: Coament construire une”prewve -
) . ’

L4

~ .
I Esc = Retour aux exercices I

At

—y

PR

I

FRES
jn’

.1
1

-

‘
- |
.
)

Sous—Preuve

Etape simple

@

et
- . . ‘,b;‘
0 Q@
Prémisses Etapes Conclusion
Intermédiaires

]
Contradiction

“Formule Justification Hyiaufchése Etapes Sous-hg
Intermédiaires
f
Formule
) ' L fsc = Table des watitres

[
PRARN

108

‘ \ . , - . 109

o 4 -
4 < - .
) ' -

- J .
*)
. [

¢ 7) 4 [2ge .
; o= Etapes intermediaires == o
2 . L

Les étapes intermédiaires 4’ une preuve sont des
étapes siwples ou des sous—preuves . 3

~.

1L.P=q Prén, ‘ | | -
2, (- Q) Prén. La sous-preuve qui occupe les lignes 3 i 6

3| P Hyp. est une étape interwédiaire .

4, |P=> QReép. 1 ‘

5. |9 =34 A I’ intérieur de cette sous-prewve, les lignes oo
6. J(~ @ Rép. 2 '

4 et 5 sont aussi des étapes intermédiaires .
7. ('l P)- 11 3;5:6 '

Ry

N\
‘Détails:

Lt

-

o

: ~ BIBLIOGRAPHY:

[1] Anderson, A. and Belnap, N., Entailment, Pittsburg Univer-

Lo* sity Press, 1972.

¥ 4

o [2] Barr, A. and“Feigepbaum, E. A., eds., The Haqdbook of Arti-
ficial Intelligence, Vols 1,2,3, William Kaufmann, Los

x ' Altos, Calif., 1981.

'[3] Bergmann, M., Moor, J. and Nelson, J., Thé Logic Book, New

York: Random House, 1980.

(4] Bledsce, W. W. and Loveland, D. W., Automated Theorem ?
H‘ 1 ' Proving: After 25 Years, American Mathematical Society

A L]

Press, 1984.

" [5] Bledsoe, W. W., Non-resolution Theorem Proving, in Artifi-

€

e cial Intelligence 9, 1977, pp.1-35.
\ v ’ y
- [6] Bledsoe, W. W., Splitting ahd reduction ‘heuristics in auto-

matic theorem proving, in Artificial Intelligence, 2,

] ¥ .
<. 1971, pp. 55-77-
N {7) Boyer, R. S. and Moore, J. S., A Computational Logic, Aca-
demic Press, New York, 1979. ' ' «

. %
18] Chang, €. and Lee, R. C., Symboléc Logic and Mechanical

e] Theorem Proving, Academic Press, New York, 1973.

. - ' * & «
.

~N{

111

0

—— ‘

[9] Fitch, F. B., Symbolic Logic: An Introduction, Ronald, New-

York, 1952.

[10] Gentzen, G., "Untersuchungen uber das logische
Schliessen", Mathematische Zeitschrift, 39 (1934-1935),
‘ ——

176-210, 405-431.
* ’ i ~/’
[11] Jaskowski, S., ""On the Rules of Supposition in Formal Lo-

gic", Studia Logica, 1 (1934), pp.5~32. N

[lzfAG.'Kearsley, ed, Artificial Intelligence &lInstruction:
N . v

s

Applications and Methodé, Addison-Wesley, 1987.

‘

[13] Leblanc, H. and Wisdom, W., Deductive Logic, Boston: Allyn
. ' . /

& Baéon, 1872. N

/

[14] Loveland, D. W., Automatic Theorem Proving: A ngical Ba-

sis, North-Holland, 1977.

[15] Manna, Z. and WaldingeY, R., The Logical Basis for Compu-

ter Programming, Volume Addiéon—Wesley, 1985. -

[16] Paulson, L. C., Lessghs learned from LCF: A Survey of Na-
tural Deduction Proofs, in The Computer Journal, vol 28,

no 5, 1985, pp. 474-479.

{17] Paulson, C. L., Natural deduction as higher-order resolu-
tion, in The Journal of Logic Programming, 1986, no 3,

pp. 237-258. .

[18]'Reiter, R., "A logic for default réasoniﬂg", Artificial

Intelligence 13 (1980), 81-132. -

(19}

[20]

[21)

[22]

[23]

[24].

[25]

(26]

- 1981, ‘\/‘"’

‘ ‘ + 112

»

.
? . T

Riéh, C., and Waters, R. C., eds, Re&adings in Artificial
Intelligence and Software Engineering, Morgan Kaufmann,

Los Altos, California, 1986.

3

Robinson, J.A., Logic: Form and Function, Edinburgh U.P.

1979.

Schank, R., and Abelson, R., Scripts, Plans, Goals, and

Understanding, Eribaum, Hillsdale, NJ, 1977.) .

N ¢ »

Sleeman, D. and Brown, J. S., eds, Intelligent Tutoring

Systems, -Academic Press, g;w York, 1982.

Suppes, P., ed, Uhiversitj-level computer—assi;%;d ins-

truction at Stanford: 1968-1980, Stanford University,
{ N

e

AN

a

Tennant, N., Natural Logic, Edinburgh:U.P., 1978.
4]

Weyrauch, R., Prolegomena to a mechanized theory of formal
reasoning, in Artificial Intelligence, 13, 1980, pp. 133-

170.

Xuhua, L. and Zhan, C., A natural deduction theorem \
1]
proving system =-- An implementa%ion for elementary number

theory, in Proceedings of the International Symposium on

New Directions in Comﬁuting, IEEE, 1985, pp.66-71.

>

