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ABSTRACT

Inelastic scattering of protons by deuterons has been
investigatéd at 100 MeV incident proton energy. Experiments were
carried out by the technique of detecting the two outgoing protons
in coincidence, and energy data were collected with a two-parameter
pulse-height analyzer. Attention was paid to those angular config-
urations of detectors where the mean energies of the undetecte&
neutrons were small, and where final state interactions between two
of the three final-state nucleons were expected. The spectator model
is able to reproduce the shape and describe qualitatively those
spectra which correspond to small mean neutron energies. For those
spectra in which peaks due to the formation of the virtual (singlet)
deuteron state were observed, predictions based on the use of the

generalized density-of-states function were less successful.
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CHAPTER 1. INTRODUCTION

The scattering reaction between a deuteron and a nucleon
has long been a subject of interest because it is the simplest
reaction involving three nucleons. In the last few years new experi-
mental techniques have made possible more detailed studies of few-
nucleon systems. The three-nucleon system has received special
attention; it is hoped that a more complete study of.its structure,
and the interactions of its components may shed more light on the
behaviour of the simpler two-nucleon system. Since no free neutron
target exists, our knowledge of the neutron-neutron system is scanty.
Because monochromatic neutron beams of high intensity are difficult

to produce, even the neutron-proton system is harder to study experi-

mentally than the proton-proton system. Because of these difficulties,

physicists have searched for alternative indirect methods. The
deuteron is a simplé system with its two nucleons only loosely bound
to each other; one might hope that the presence of one of the two
could be ignored so that the nucleon-nucleon system could be investi-
gated through nucleon-deuteron reaction experiments.

In the past, most of the experiments done on the deuteron-
nucleon system have involved only single counter measurements. The
interpretation of the experimental results were difficult, because
for a system with three particles in the final state the kinematic
variables associated with the system cannot be completely determined

by knowing only the momentum - vector of the particle detected. (See



section IV-1). Furthermore the extraction of the necessary experi-
mental data from the background caused by both nucleon-deuteron
elastic scattering, and nucleon-nucleon elastic scattering due to the
impurity of the targets used in some of these experiments was paine
fully difficult, and estimates were then introduced (e.g. KS-60).
Two parameter multichannel analyzers have only recently been available,
and have been used in a few nucleon-deuteron scatﬁering experiments.
With this facility, we are able to detect two outgoing particles in
coincidence and can completely determine - more exactly, over-determine
- thé kinematics of the nucleoggdeuteron reaction, and go avoid the
complications caused by e1astié~scattering except in a few cases.

In the theoretical work on nucleon-deuteron scattering,
many approximations have been proposéd. In the early stages, the
modified Born approximation (GB-51, WA-48) was used, but could not
reproduce spectra for 46 MeV incident proton energy. (SVR-66).
Frank and Gammel (FG-54) proposed the zero-range approximation for
nuclear forces and adopted the impulse approximation (C-50) to deal
with the inelastic scattering. Even though it accurately predicted
the reaction yield at low incident energies, the shape of the neutron
energy spectra at small angles could not be reproduced by the theory
(Cs-59). A refined method taking into account the interaction
between a pair of three final state particles (HM-58) gave the correct
shape and position of part of the energy spectra observed, but gave
incorrect absolute cross-sections (WA-59) for incident proton energies

below 15 MevV. Komarov and Popava (KP-60) performed a calculation



of neutron spectra for the d + p—» 2p + n reaction by taking account
of nuclear pair interactions, and included the interaction between
the pair and the third particle by the Born approximation. This
calculation reproduced the shape of the whole neutron spectrum at

0° satisfactorily (VK-60). -

In treating a nucleon in a deuteron as free,.Kuckes et al.
proposed the spectator model (KWC-61) based on the simple impulse
approximation. They considered the neutron of the deuteron as an
innocent bystander whose presence under some experimental conditions
during the collision is negligible from kinematic considerations,
and compared the results of the quasi-elastic p-p scattering with
those of free p-p scattering at 145 MeV. Their results agreed well
with the predictions, and an extrapolation procedure suggested by
Chew and Low (CH-59) (to be described more completely in section V-1)
can relate their experimental results. However other similar experi-
ments performed at intermediate beam energies yield contradictory
results. Those at 50 MeV (GK-64), and 31 MeV (BKF-65) failed to
agree with the Chew-Low extrapolation procedure and the spectator
model, while an experiment at 40 MeV (Ca-65) agreed with them.

In this situation we felt the need to study the D(p,2p)n
reaction at 100 MeV incident proton energy in the hope of clarifying
the relation between quasi-elastic p~p scattering and free p-p scatter-
ing, and to search for effects due to the final state interaction of
nucleon pairs at high energy. The experiment was done by detecting

the two outgoing protons by two NaI(Tl) scintillators. One of the



two counters was fixed at a chosen angle, and the other was movable
in order to record spectra corresponding to different mean recoil
neutron energy, and to carry out a search for final state interaction
peaks. The results agreed with the Chew-Low extrapolation procedure
within the experimental uncertainty. Peaks due to the formation of

the virtual singlet deuteron state were observed.



CHAPTER II INSTRUMENTATION

II-1. MECHANICAL PART

I1 - la. Scattering Chamber.

A cylindrical scattering chamber (Fig. 1) was made to house
two NaI(Tl) detectors and their photomultipliers. The axis of the
chamber is horizontal, ana the scattering plane is vertical. The proton
beam enters and leaves the chamber through.2" diameter holes cut on
opposite sides of the cylinder. Beam alignment is checked by means of
two fluorescent screens, one in the chamber, and another in an exit
screen compartment. They are viewed through lucite windows.

The detectors are mounted on opposite lids of the chamber,
with each 1lid free to rotate to any desired angle. Angular graduations
are engraved in degrees on the circumference of each lid; detectors
can be lbcated at desired angles within + 0.2 degree. A target
holder centered on one cover is a rectangular frame which slides axially
in the proton beam. The fluorescent screen mentioned previously is

mounted at an angle of 45° at the end of the target holder.

IT - 1b. Detector Assembly
(i) E detector assembly.
The two detectors used are Harshaw NaI(Tl) standard integral
line scintillation crystals. Cylindrical clamps were designed to fix

the photomultipliers and their detectors with respect to the lids of

the chamber.
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FIGURE 1



FIGURE 1
A section of the scattering chamber. There is
only one of the two detector holder assemblies
shown on the diagram; the detector holder assem-

bly attached to lid 2 is not shown here.
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Each detector with its photomultiplier slides into a steel
can-shaped detector-holder; this holder projects into the chamber,
and is bolted to the lid. At one side of the can a 0.5" diameter hole
was drilled through the steel, and a circular piece of 0.003" thick
copper was soft soldered on the can as an entry for protons. A well-
type lead radiation shield surrounds the detector holder. A 0.5"
diameter holg was drilled through the part of.the lead shield which
faces the copper window to provide a socket for installation of a
brass collimator.

The brass collimator has a tapered hole along its axis which
defines the solid angle accepted by the detector. The holes at the
front ends of the collimators, i.e. the solid angle defining apertures,
are 0.253" + 0.002" in diameter. When the collimators are inserted
into the sockets of the lead radiation shields in the chamber, the
distances between the center of the chamber and the centers of the
solid angle defining apertures were 4.0" (+ 2%). The solid angles sub-
tended by these two collimators are then 3.34 (+ 5.6%) millisteradian,

and the angular openings are 1.89 (+ 2.6%) degrees.

(ii) AE detector assembly.

A Simtec totally depleted silicon AE detector was used. This
has a 100 mm2 active area with a 200 micron depletion depth. The front
and back windows have thicknesses of 75 and 125 micrograms/cm2 respect-
ively. The detector was used at room temperature.

A AE detector holder consisting of a collimator and adapting



ring was designed so that it could be mounted in front of one of the two
E detectors whenever it was needed to reduce the ratio of chance to
true coincidences. The front window of the detector was about 1 cm

in front of the solid angle defining aperture of the collimator for

the E detector.

II - lc. Faraday Cup

Two Faraday cups were used for reaction cross-section measure-
ments. A cup designed by W.T. Link (G-67) was the main one. Another
cup was used to check the beam monitor calibration for every run. It

was calibrated against the main cup by comparing proton-proton elastic

scattering cross-sections obtained by use of these two cups at the
same scattering angles. They agreed within 27%.

The second monitor cup was much the same as the main one in
design except that it does not contain magnets. There is no entrance
window, and it could be connected directly to the scattering chamber

behind the exit~screen compartment. The cup was partially filled with

epoxy to suppress back scattering of particles.

I1 - 2. ELECTRONICS

The normally pulsed cyclotron beam and its newly furnished
debunched beam were used in this experiment. The electronic system
described below was that used with the debunched beam. Some modifica-

tions for pulsed beam counting are also described.



II - 2a. Double Coincidence Circuit.

For studying the D(p,2p)n reaction at different pairs of
detector angles, a double coincidence method was used to accumilate
energy spectra. In one case a triple coincidence circuit was required.
A block diagram of the electronic circuits of the double coincidence
method for experiments using the debunched proton beam is shown in
Fig 2.

Energy pulses were taken from the seventh dynodes of the
NaI(Tl) detectors, and sent via conventional White cathode followers
to the input terminals of two identical Ortec multimode amplifiers
(Model 410) in the cyclotron control room. These input signals to ‘the
amplifiers haw rise-times of about 300 nanoseconds, and decay-times of
about 150 microseconds. The output double-delay-line-clipped pulses
from each amplifier were fed into the two sections of a dual linear
gate (Sturrup Model 1450), which had been modified to reject intense
pile-up spikes present in the debunched beam. A more complete descrip-
tion of the spike-rejecting system will be given later. The output
signals from the two gates were fed into Cosmic coincidence circuit
units 1 and 2 for selecting all coincident events, and they were also
fed in parallel to Cosmic circuit units 3 and 4 for selecting only
chance coincident events. The chance coincident output pulses were
registered by a scaler, while the coincident output of units 1 and 2
were branched into two paths. One was used to turn on a second dual

linear gate. Another was registered by a scaler as a check on the
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FIGURE 2



FIGURE 2

Double coincidence circuitry.
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total number of counts stored in the pulse-height analyser mentioned
below. This dual linear gate also accepted input pulses from the
" output of the modified dual linear gate, but after they had been
delayed by about 2 microseconds to match the arrival time of the gating
pulses. This gate was Operated in its coincidence mode so that only
coincident pulses from the two NaI detectors could pass through and
be stored in a 64 x 64 channel two-parameter pulse-height analyzer.
Output signals from Cosmic discriminator unit 1 were féd through its
corresponding SCA into a scaler; this provided a means for monitoring
beam current. The trailing edge mode of operation was used for the
Cosmic coincidence units for reasons given in Chapter III.
The cyclotron beam was not perfectly debunched. Pulses could

not be stored in a pulse-height analyzer during the period when the

intense beam spike preceding each debunched beam burst was present. The
modified linear gate accepted signals from the gating output of a type
547 oscilloscope. The gate width was controlled by the duration of
the oscilloscope signals. The "Main Time Base (B)" of the oscillo-
scope was triggered by the ion source trigger pulse from the cyclotron
trigger unit. The output gating pulse from the oscilloscope could be
controlled in length and observed on the screen. Signal pulses
appearing during the spike were rejected by these gates set in their
"anti-coincidence" gating mode. To see the rejected portion of the
beam, the pulses from a beam monitor were displayed on one input channel

of the C.R.O. One could then adjust a Delay-Time Multiplier knob on
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the oscilloscope to make the duration of the gate signal cover the

spike of the beam monitor spectrum displayed.

II - 2b. Triple Coincidence Circuit

A block diagram of the electronmic circuit for the triple
coincidence method is shown in Fig. 3. It is essentially the same as
that of Fig. 2 except that a AE detector and its associated electronics
have been added.

Signals from the AE detector were sent through a low noisé
preamplifier (Tennelec Model 100) into a selectable active filter
amplifier (Ortec Model 440). The pulses appearing at the 2 micro-
second delay bipolar output terminal possessed almost the same pulse
width (~1 microsecond) and roughly the same pulse-height range as
those of the E pulses from the Ortec multimode amplifiers. The modi-
fied dual 1inéar gates now accepted signals of the AE detector and
detector El' v Triple coincidences were obtained by feeding pulses of
the AE detector and the E1 and E2 pulses into discriminators 1, 2, and
3, of the Cosmic unit. Chance coincidence pulses were selected by
Cosmic units 4 and 5. The rest of the system was just the same as

that shown in Fig. 2.

II - 2c. Current Integrator

The Faraday cup current was measured by a picoammeter. The
voltage drop across the feedback resistors of the electrometer circuit
was the input for a voltage-to-frequency converter, whose output was

then scaled. Whenever the scaler overflowed, it sent out a pulse to
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FIGURE 3



FIGURE 3

Triple coincidence circuitry.
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a mechanical register. The total incident proton charge was thus

recorded.

II - 3. TARGET

Two kinds of deuterated hydrocarbons and their corresponding
hydrogen compounds were used as target material for the experiment.
They were deuterated polyethylene (CDZ)n’ and deuterated dotriacontane
(C32D66)n’ and the corresponding hydrogen compounds (CHZ)n and
(032H66)n' As their physical properties differ slightly, different
techniques were used to make suitable targets. For calibration of the

scattering chamber, commercial polyethylene foil was used.

IT - 3a. Polyethylene

The polyethylene éowder was molded into targets in a heated
die under pressure. A steel die for producing 3/4'" diameter circular
foils was designed. It was a cylinder of 3.75" height and 2" diameter,
enclosing two 3/4" diameter pistons with the powder between them.
Four rod type immersion heaters were placed in holes drilled parallel
to the axis close to the wall of the cylinder. Power was available
from a Variac, which controlled the rate of heating of the die. A
thermistor probe could be placed in an opening near the target material
to measure temperature. A hydraulic press applied pressure to the
upper piston during heating, and the die could be cooled by compressed
air circulation.

The temperature chosen depended on the pressure and the

target thickness required. If the pressure was kept at 1000 lb/inz,
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for avtarget about 30 mil thick, the optimum equilibrium temperature
was found to be 115°¢C. For the experiment targets about 0.040"

thick were used and their unevenness was less than 1.5%. The quantit&
needed for a certain thickness of poﬁder was pre-calculated. The
densities of ordinary and deuterated polyethylene were taken as

0.963 g/cm? and 0.975 g/cm3, respectively. The main isotopic
contamination in CZD4 is CZDSH; estimates of the amount of this contam-

ination by the supplier agreed roughly with a mass analysis done by a

pyrolysis method. The hydrogen contamination was approximately 3%.

II - 3b. Dotriacontane

Dotriacontane is a soap-like crystal (CH3(CH2)BOCH3—+C32H66)
with a melting point of about 75°C. The deuterated sample used
consisted of 83.8% C32D66 and 16.2% 032D65H, so the hydrogen contamina-
tion was 0.25%. The density of CyoHce was 0.755 g/cm;, and that of
the deuterated sample was 0.888 g/cm3.

An aluminum ring with an inner diameter of 3/4" and height
about 0.030" was made as a moulding frame. It was placed on a clean
glass plate in an oven. Ordinary or deuterated dotriacontane was put
in a 1 ce. beaker in the oven, which was then warmed to a few degrees
above the melting point of dotriacontane. This was then poured onto
the glass plate inside the ring. Another thin glass plate pre-heated
in the oven was placed on the ring as a cover to flatten the upper
surface of the melted dotriacontane. Care was taken fo ensure that no
air was trapped between these glass plates. The target thickness was

accurate to within 0.5%.
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CHAPTER III. EXPERIMENTAL METHOD AND PROCEDURE

ITII-1l. CHAMBER ALIGNMENT

III - la. Preliminary Alignment

A telescope was used to locate the intersection of the beam
axis of the chamber with the fluorescent screens. Two lucite plafeé
each marked with a cross indicated the centres of the entrance and
exit holes of the chamber. With the fluorescent screen on the target
frame out of the way, fhe chamber position was adjusted until the
centres of these crosses were aligned with the telescope cross-hair.
The target-screen and the exit-screen were then pushed into place to
be marked at the point which coincided with the centres of the three
crosses.

The positions of the collimators for the E detectors were
aligned in the same way. With each detector at its zero angle, the
lead radiation shield was moved horizontally until the centre of the
collimator was observed at the cross-hair. Such a method is capable

of 0.5 mm. accuracy in alignment.

III - 1b. Proton Beam Alignment

So that the chamber could be aligned with the proton beam,
it was attached to the external beam pipe. The proton beam was
deflected in the desired direction by the steering magnets of the
external beam transport system, and passed through the centres of the

two quadrupole-magnet sets into the scattering chamber. The height of
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the chamber and its azimuth were adjusted until the beam hit the marked
points of the térget-screen and the exit-screen.

For every run the beam was focused at the marked point of
the target-screen and its direction was checked by observing its .
position on the exit-screen. When reaction events were accumulating,
the beam position could be checked by the use of screens in the view
Poxes of the beam transport system and the exit-screen, so that no

disturbance to the experiment was introduced.

III - 2. E AND AE SINGLE COUNTER SPECTRA

III- 2a. E Single Counter Spectra

(i) Energy and Angular Resolution of Counter System

The operating voltage and the bias of the focusing electrodes
for the phototubes were determined by detecting particles scattered
from (CHZ)n at 30°. The pulse height of protons scattered elastically
from carbon was plotted against the anode voltage to determine the
region of this curve where saturation began. The best peak to vglley
ratio and the smallest full-width-half-maximum of the 120 elastic
scattering peak determined the optimum setting of the focusing electrode.

In order to check the energy resolution of a counter system,
any kinematic broadening effect on an energy spectrum should be avoided.
The cyclotron delivers a few protons per second with its ion source
switched off, and this beam was run directly into each of the two

Nal detectors set at Oo. The full-width-half-maximum of this 100 MeV
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proton pulse height distribution indicated 0.8% (~800 keV) energy
resolution for one of the counter systems, and 0.84% for the other.
The energy resolution thus measured consisted of the energy spread
of the incident protons, uncertainty in the energy loss due to the
copper windows and the aluminum housings of the detector assemblies,
spread due to scintillators and phototubes (NB-65), and the pulse
height spread of the associated electronic systems. It did not,
however, include the energy spread due to target thickness. A
typical spectrum at 30° iis shown in Fig. 4.

In order to measure the angular resolution of the counter
systems, one detector was fixed at 400, and the other detector was
moved in the angular range around 48° on the other side of the beam
direction. A profile of the coincident counts versus the angular

position of the movable detector was plotted for a (CH target.

2)n
The full-width-half-maximum of the profile was 3.5°.
(ii) Energy Calibration

No attempt was made to linearize the input pulse height to
a pulse-height analyzer with respect to particle energy. The energy
scale for the spectrum of a counter system was calibrated by the
proton-proton elastic scattering peak and the protons elastically
scattered from carbon at a number of suitable angles. Two body
kinematics provides accurate values for energies of these proton peaks.

Results indicated slight deviation from linearity. Since

Eby and Jentschke observed that the fluorescent response of Nal varies
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FIGURE 4



FIGURE 4
Energy spectrum at 30° from a (CHZ)n target. The
97.7 MeV peak is due to elastically scattered pro-
tons from 120, and the 74.0 MeV peak is that from
lﬂ. Peaks lying between these two indicate the

1 . . .
excited states of 2C. Their excitation energies

are indicated on the diagram.
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linearly with proton and deuteron energies up to 18 MeV (EJ-54), the

associated electronics systems and the effect of window absorption

should account for the deviation.

(i1ii) Scattering Angle Calibration

As the zero degree of the angular graduation for a detector
need not exactly coincide with the actual zero degree of scattering,

a scattering angle calibration was carried out by determining the
actual zero angles of the two detectors separately. The principle of
the method used is the comparison of yields of a detector at positive
angles with those at the correspdnding negative angles.

A graphite target (82.69 mg/cm?) with less than 0.1% impurity
was used to obtain clean spectra. At forward angles the elastic
scattering peak contributes the largest part of the total yield; hence
the angular région where the elastic scattering cross section changes
most rapidly with angle is desired. Proton scattering experiments
at 100 MeV (Ma-65) indicate that the range from 20° to 30° in the
centre-of-mass system is favorable, corresponding to 21.8° to 32.6°
in the laboratory system. A typical result using detector 1 is shown

in Fig. 5. The mean horizontal difference between the two curves

is 2A0

0.95° + 0.10°. The actual zero scattering angle is then+
(0.48o + 0.050) of nominal angle, for the positive angles have a higher
yield than the negative angles at the corresponding absolute nominal
angles. A similar result was obtained for detector 2, whose zero angle

setting is +(0.46 + 0.050). Brief checks on yields of two positive
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FIGURE 5



FIGURE 5
Zero scattering angle calibration curve of.de—
tector 1. A © is the difference between the
nominal angle and the actual angle. The purely
statistical error bars are not larger than the

size of the experimental points.
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angles and one negative angle show that they differed from run to run
within + 0.10° indicating a change in the vertical position of the
proton beam. The small variation of zero angle is due to the fact that
the scattering piane of the chamber is vertical, and as long as the
incident beam passes through the centres of the quadrupole magnets

of the beam transport system, current drifts in the switching and

bending magnets have little effect on the vertical position of the

beam.

III - 2b. AE Spectra

The operating detector bias of the AE detector was determined
by the pulse-height distribution of the output of the active filter
amplifier for an alpha source. The source was located about 1 cm in
front of the AE detector in the scattering chamber under vacuum,
Optimum bias settings between 460 to +70 volts produced preamplifier
output pulses of 1OQ nanoseconds rise time and 5.5 microseconds decay

time.

As the AE detector was needed in triple coincidence with the

El and E2 detectors, the coincident spectrum of the AE and E, detectors

1
should reproduce essentially the .same spectrum as observed by the El
detector alone, with only the low energy part affected. Diagrams of
a AE Vv.s. E1 coincidence spectrum and part of the energy distribution
of the E, detector alone (which is in coincidence with the AE spectrum,)
from a (CH2)n target are shown on Figure 6a and 6b. The high energy

portion of Fig. 6a shows slightly worse energy resolution due to the
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FIGURES 6a AND 6b



FIGURE 6a
A spectrum of AE v.s. El' The AE axis points
toward the right, and the E; axis runs down~
ward to provide a convenient view of the spec-
trum. The most prominent curve is due to
protons, the middle one is due to deuterons,

and the barely visible locus belongs to tritons.

FIGURE 6b
The high energy part of the spectrum in figure

6b integrated over the AE axis at 35°.
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straggling effect of the AE detector. This effecﬁ is more clearly

shown on the AE energy spread of Fig. 6a.

ITT-3. CALIBRATION OF APPARATUS AND TREATMENT OF DATA

The complete experimental system was calibrated by measgring
proton-proton elastic scattering cross sections at different scattering
angles and comparing them with published data of inci&ent proton energy
close to 100 MeV. The experimental results, data reduction and
discussion of errors are presented in the following éections. The

experiment was carried out with the pulsed proton beam.

ITI - 3a. Experimental Procedure
(i) Angular Range

The measurement was done by detecting the scattered proﬁons
and recoil protons in coincidence. For 100 MeV incident protons,
because of the relativistic effect, the angle between the momenta of
two outgoing particles of equal mass undergoing an elastic collision
is ~88.5° instead of 90° in the laboratory system as predicted by
non-relativistic mechanics. More specifically, this angle varies from
90° to,88.51o as the scattering angle in the centre of mass system
changes from 0% to 90°. The minimum detector angle in the laboratory
system which could be reached without.blocking the exit beam path by
the radiation shield was about 250; this restricted the range of
usable angle of scattered protons for a coincidence experiment. Another

limitation was introduced by the maximum acceptance solid angle of a
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detector. In the coincidenge,experiment one detector must be able to
accept all the recoil protons whose associated scattered protons were
collected by the other detector. Taking these three factors into

1

consideration the usable angles for detecting scattered protons ranged

from 310 to 650.’

(ii) Total Coincidgnce

A double coincidénce circuit sends:ogt;g signal whenever two
input pulses arrive within thevresolving-fimé of the circuit, The :
variable delays of the coincidence circuit must bé‘béope;ly ad justed-
to compensate for different lengths of the two signal cables. In
the actual experiment, i.e. D(p,2p)n, the proton energies measured
ranged from the low energy éutoff caused by material between‘the
target and detector to the maximum energy allowed by three-body kine-
matics. The leading edge triggering mode of the coincidence circuit
Ncaﬁnot handle such a wide'energy range without losing pulses; there-
fore the trailing edge triggering mode was used. Under these conditions
inferior resolving time could not be avoided (B-66). Tﬁe apparatus
was calibrated under the same experimental conditions. In order to
determine the required resqlving time and the relative variable delay
settings, the detectors were set at suitable anglés for accept;ng tw§
elastically scattered protons. The discriminator of Cosmic unit 1
(Fig. 2) was set to reject low energy gamma rays. With the resolving
time set at the minimum and delay 1 set at the middle of its range, a

plot of the ratio of coincident counting rate to the counting rate of
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discriminator 1 against the setting of delay 2 is shown in Fig. 7a.
The full-width-half-maximuﬁ of the plateau shows a resolving time of
24.6 nanoseconds. The same procedure was then repeated for increasing
fesolving time until the‘height of the plateau stayed constant, indicat-
ing no coincidence loss due to too short a resolving time. The final
result is shown in Fig. 7b. The delay 2 knob was therefore set at the
centre of the plateau whose full-width-half-maximum revealed a resolving
time of 58.5 nanoseconds.

Because the range of particle energies changed with detector
angle, the procedure above was carried out for each pair of angles.
The circuit shown in Fig. 2 was employed for these runs except that
the gate mode switches of the modified dual linear gate were flipped
to '"gate out™ positions because the normal pulsed beam was used. This

produced no observable change in pulse height.

(iii) Chance Coincidence

The debunched beam structure is diffuse, and when it was used
chance coincidences were monitored simply by inserting either of the
fixed 400 nanosecond delay lines of units 3 and 4 (Fig. 2). However,
with the normal pulsed beam a variable delay setting corresponding to
2 R.F. cycles was switched in. |

The pulsed beam has a duty cycle of ~250 with a pulse length
of about 10 microseconds for each beam burst. Within a beam burst the
R.F. fine structure is periodic with é 47 nanosecond interval. The

variable delays of Cosmic units 3 and 4 were first adjusted to accept
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FIGURES 7a. AND 7b.



- FIGURES 7a. AND 7b.
Delay curves for delay 1 set at the center of
its range for p-p elastic scattering. In 7a
the resolving time is 24.6 nanoseconds, and in

7b its value is 58.5 nanoseconds.
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mainly true coincident events; then an extra delay time of about

2 x 47 nanoseconds was added to one unit with respect to the other.

(iv) Current Integrator Calibration
The Faraday cup current was integrated by the picoammeter
which was usually calibrated by a picoampere source. The current
source was in turn calibrated by generating a known current I = C %%
by means of a standard capacitor and a linearly rising voltage ramp.

' Details of the calibration have been described by Portner (P-67).

III - 3b. Data Reduction and Error Assignment

The equation used to calculate the experimental p-p elastic

scattering cross-section is

ds _ N Cs® (1)

where N = Total number of coincidence events after correction.

®

The angle between the normal to the target and the incident

beam direction.

n = Total number of incident protons.
NT = Number of target nuclei per unit area.
dQ = Solid angle subtended by the collimator.

In the following paragraphs, the errors in each of these quantities and

their corrections are discussed.

(i) Correction for N

It is necessary to correct for dead time losses in the Cosmic
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discriminator, Cosmic coincidence unit, and the kicksorter itself.
The results indicated that the dead time of the Cosmic unit restricted
the counting rate of each detector, and that the dead time losses of
the kicksorter (TMC400) were negligible. In fact the total number of
coincident events stored in a fast scaler was the same as that in the
kicksorter.

The analytical correction of dead time loss is based essentially
on that given by Cormack (C-62) for counting with pulsed beams. However,
since the intensity distribution within one beam burst duration res-
embles a triangle (0-64), a constant "k" was introduced to take account
of this intensity distribution. The value of k was determined empirically.

For a fixed collected charge from the incident beam the total
coincident counts of é-p elastic scattering events were plotted against‘
the coincident counting rate and extrapolated to zero counting rate.

This extrapolated number of coincidences Nex represented the actual

tr.

coincident counts with no dead time loss. The value of Nextr was

inserted into the following equation for the determination of the value

of k (Cr-66).
Nobs.
Noxtr [1- kner. (1= Z) ] [1- k (e ma) 750 F] ®
where Nobs. = The observed total number of coincidences at a certain
coincidence rate after chance coincidences were
subtracted.
n = The corresponding coincidence rate.
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n,, n, = The instantaneous counting rates of discriminators 1,

2, respectively.

T = 10 psec. i.e. the duration of one beam burst.
T T = Dead time of the discriminators and coincidence unit,
respectively.

" The averaged value of k for a set of Nobs was 1,67. It is close to

1.33 for the distribution of an isosceles triangle.

The chance coincidences recorded by a fast scaler were sub-
tracted directly from the raﬁ coincidence counts. Counts due to pile
up were negligible when only runs with dead time.corrections of about
5% or less were accepted. Some of the particles detected underwent
nucléar iﬁteraction in the target, in the detector itself, or in pass-
ing through the material between the target and the detector, Although
these particles appeared as a tail of the elastic scattering peak,
they caused no problem, since the whole coincidence spectrum was taken
into account for the cross-section calculationi

The formula derived by Willmes (W-66) ﬁas used to correct N
for the effect of the finite sizes of target, detector, and the angular
spread of the incident beam. As the beam angular spread was always less

than 1° and for ®-= 00, this correction is less than 0.5% for all the

detector angles involved.

(ii) Correction for ®

In this experiment () was always set to 0°. Allowing an

error of + 10° to ® , the error of Cos® was then + 1.57%.
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(iii) Correction for n
'In every run the Faraday cup reading was normalized by.the
picoampere source. The error associated with n was then that associated
with the calibration of the current source, which.was 1.4%. Further-~

more the zero drift of the electrometer caused less than 2% error. The

r.m.s. error was then 2.47%.

(iv) Correction for NT

" The (CHZ)n targets were weighed to determine their thickness.
The result was checked by a micrometer which measured down to 0.0001
inch. Weighing gave the average thickness as 4.30 x 10-3 inch (4 2.0%).
Only the measurement of the target area contributed to the + 27 error,
for the error associated with weighing by an electronic balance was
0.056%, which was negligible. The micrometer also gave a value of
4.3 x 107> inch (+ 2.3%).

) Correction for dQ

The solid angle was measured to be 3.34 x 10_3 steradian with

a + 5.6% error. See Section II-1b.

III - 3c. Conclusion

The final error for each variable of equation (1) was taken
as the r.m.s. value of all the errors associated with the variable. The
total error for the cross-section equals the sum of all these r.m.s.
values. Table III-1 gives the r.m.s. values and Table III-2(i) lists
differential cross-sections for various angles at 100 MeV. These

values were first compared with those by Taylor et al. (TWB-60) at
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98 MeV proton energy which are listed in Table IITI~2(ii). Values of
differential cross-sections at various angles for P-P elasﬁic scattering
at 98.8 MeV have very recently been published (WB-68) and some of them,
which fall into the angular range of those of the present work at
100 MeV, are given in Table III-2(iii). The results at 98 MeV are in
general smaller than those at 98.8 MeV. The smallness of the results
of Taylor et al. have also been pointed out by Palmieri et al. kPC-SS)
who made measurements at 95 MeV incident proton energy.

In Table ITI-2(i) the last columm lists the relative uncertainty,
which is the sum of the statistical uncertainty, the uncertainty of N
and those of Cos® and n. The relative uncertainty therefore refers
to the uncertainty in differential cross-section caused by factors

which can change from run to run with the same experimental set-up.

TABLE IIT - 1

Summary of systematic uncertainties of differential cross-section in %

N 0.5
Cos ® 1.57
n 2.4
Ny 2.3
dQ 5.6

Total uncertainty = + 12.47
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TABLE III - 2

(i) Summary of differential cross-sections at 100 MeV proton energy

Lab. angle E%%L Uncertainty due Relative
-1 to counting uncert-
(degree) (Lab) (mb sr ) statistics (4%) ainty (%)
35.5 14.86 1.06 5.53
40.5 13.84 1.10 5.57
45.5 12.76 1.16 5.63
50.5 11.68 1.23 5.70
55.5 10.04 1.33 5.80
60.5 8.56 1.43 5.90

(ii) Summary of differential cross-sections at 98 MeV proton energy

-1 _%ak
Lab. angle (degree) %%; (Lab.) (mb sr 1) a*b
35.0 14.87
40.0 13.56
*c
45.0 12.41
*c
50.0 11.18
55.0™¢ 10.05
60.0"C 8.67
*a The systematic uncertainty of + 5% is not included.

*b The solid angle transformation is described in Appendix A.
*c These values are taken by assuming that the angular distribution

of %5; in C.M, system is symmetric with respect to 90°.
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TABLE III-2

(iii) Summary of differential cross-sections at 98.8 MeV proton energy.

Lab. angle (degree) -%g; (Lab. ) (mb Sr-l)
| 35.0 : 15,28
37.5 14,64
40.0 ' | 13.97
42,5 13.50
45.0 12.85
4.5 12,31

The contents of Tables III-2(i) and III-2(iii) are plotted in Fig. 8
It is evident that our experimental values and those of Wigan et al.

(WB-68) are in excellent agreement. We therefore felt confident of the

performance of the apparatus.

III- 4. EXPERIMENTAL PROCEDURE FOR THE D(p,2p)n REACTION AND TREAT-

MENT OF DATA.

IIT - 4a. Experimental Procedure

The procedure for the D(p,2p)n reaction does not differ much from

that for p-p elastic scattering. The following will describe the part

that is different.

(1) SCA monitor calibration
The debunched proton beam was used for the actual spectrum
accumulation. Since the beam spike was rejected during counting (see

section III-2a), the Faraday cup could not be used as a direct monitor
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FIGURE 8



FIGURE 8
Proton-proton differential elastic scattering
cross section at various laboratory angles for
pProton beam energies of 98.8 MeV and 100 MeV.
The 98.8 MeV data is taken from reference (WB-68).
The error bars associated with the experimental
points represent the relative uncertainties in

Table III-2(i) and those reported in (WB-68).



G

%’Q-‘ (mb, sr-!)

i0

A— Wigan et al
- x— Present .work

- \
N\
N\
\
N\
\N
. N\
N\
N\
N\
N
N\
- N |
\ Y
| l L 1 B l
35 40 45 50 55 60

SCATTERING ANGLE (LAB DEGREES)




-36=

of incident proton charge. A single channel analyzer receiving output
pulses from the spike-rejection gate (Fig.2) was used as a debunched
beam monitor. It was calibrated by the Faréday cup integrator using
the pulsed beam with current low enough to eliminate dead time error.
The SCA accepted all pulses with heights larger than the
discriminator setting, The total number of counts was recorded for a
certain incident proton charge régistered by the Faraday cup. The
same procedure was repeated at least five times fof the same incident
charge, so that the average charge per monitor count was determined.
The cup was then removed and the debunched beam experiment took place.

The effective incident beam charge was then monitored by the SCA

monitor.

(ii) Energy Calibration

The 64 x 64 two-parameter kicksorter stored coincident
energy spectra from the two detectors. Their energy scales were cali-
brated by detecting the scattered and recoil protons of p-p elastic
scattering at suitable angles. One of the typical calibration curves
is shown in Fig. 9.

Since the photomultiplier gain depends on the counting rate
(GV-67), the counting rate of each detector was made approximately
equal to the average counting rates for the D(p,2p)n reaction when

energy calibrations were performed.
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FIGURE 9



FIGURE 9

Typical energy calibration curves for the
64 x 64 channel two parameter pulse height

analyzer.
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(iii) Double and Triple Coincidence Circuits

- .The electronic set-ups are those shown in Figs. 2 and 3. The
method of arranging the delay settings and resolwing time resembles that
described in Sec;III-3. However for the chance coincidence unit, the

built in 400 nanosecond fixed delay was used instead of the variable

delay.

(iv) Hydrogen Contamination Subtraction

The deuterated dotriacontane target is not 100% free from
hydrogen contamination. At a pair of detector angles whose sum is
close to 900, the elastic scattering events introduced by the hydro-
gen contamination contributes to the two-parameter energy spectrum.
Because the exact quantity of the contamination is known, a subtraction
of its contribution is possible. To do this a spectrum was run with
normal dotriacontane (c32H66) under the same experimental conditions
as in the run with a c32D66 target; it was especially important to
match the counting rate of each detector with those of the C32D66 Tun
to avoid any shift in photomultiplier gain. Section III-4b. will

present details of the subtraction.

III-4b. Data Reduction and Error Assignment

The 64 x 64 chanmel kicksorter displays spectra of T1 V.S.
T2. Each channel of the 64 x 64 format stores events with energies
from.T1 to Tl + dT1 and T2 to T2 + dTZ. In order to compare these

spectra with the theoretical predictions (which are expressed in terms
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d3g-

Qldﬂ &T ), the spectra have to be integrated along the T2 axis.

The differential cross section formula for the integrated spectrum is

d*s _ N Gos® 3)
where N = Integrated number of counts which correspond to events

with kinetic energiles between.’l‘1 and T1 + dTl'

® = The angle between the normal to the target and the

incident beam direction.

n = Incident proton number.
NT = Numbef of effective target nuclei per unit area.
dQl,dn2 = Solid angle subtended by detector 1, 2, respectively
dTl = Energy interval of each channel along the Tl»axis.

In the following sections, the errors and corrections involved will be

discussed separately.

(i) Reduction of N

Only those counts falling on the kinematic locus of the
D(p,2p)n reaction for a given pair of angles were taken into account.
Chance counts were subtracted for each slice of channels parallel to
the T2 axis from the total counts by extrapolating the background through
the locus. The chance to total coincidence rétio ranged from 5% to
~ 14% for all pairs of angles except the pair of 40.5° - 63.50,
40.5° - 72.50, and 35.5° - 72.5°. The ratios for these three pairs of

angles were 18.6%, 25.0%, and 35.0% respectively, due to considerably

smaller differential cross sections. An uncertainty of 2% is assigned
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to the method of chance coincidence subtraction for those spectra with
less than 147, chance to total coincidence rate; 2.5%, 3.3%, and 4.7%
are assigned to those with 18.6%, 25.0%, and 35.0% chance to total
coincidence rate, respectively.

Because of nuclear interactions in the sodium iodide scintil-
lators, some particles detected lose energy during the interaction and
are "lost" from their normal channel in the kicksorter. The 64 x 64
channel kicksorter accumulates coincident events in the two detectors,
so if either of the two outgoing protons from the D(p,2p)n reaction
loses part of its energy through Nal interaction, the coincident signal
can no longer appear on the kinematic locus. This loss has to be
corrected, as its magnitude .(~5%) is significant. Since the correct-
ion is energy dependent, each of the two signals has its own correct-
ion factor aﬁd the r.m.s. value of these factors is responsible for the
correction to the coincident counts on the locus.

Measday has measured and calculated the tail to peak ratio
in NaI crystals for protons with energies as high as 160 MeV (M-65).
The calculated values were smaller than the measured ones due to the
approximation applied. Felvinci's measurement (F-65) gave a result
which is slightly lower than Measday's calculated curve from 60 MeV
up. A check at 100 MeV was then performed by swinging a detector to
the zero degree position to be bombarded directly by 100 MeV protons
of greatly reduced intensity. The tail to peak ratio thus obtained was
(11.13 + 0.66)%, which fell on Measday's experimental curve and was

higher than Felvinci's value of 9.2%. More precisely, the combined
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interactions in the 68.05 mg/cm2 copper window, in the 109.69 mg/cm?
aluminum detector housing, and in the scintiliator itself caused the
11.13% ratio. Since the contribution from the copper window and the
aluminum housing was small in comparison with the total ratio, Measday's
experimental curve was used for data correction and an uncertainty of
2% is assigned to it. 1In working out the correction, energy disper-
sion due to the finite size of the detector aperture, etc., was neg-
lected, and this introduced a maximum uncertainty of 0.5%.

For the sake of convenience, the 40.5° - 48.1° and the
35.5° - 53.1° spectra will be called spectrum 1 and 7, respectively,
according to Table IV-l1 in Sec. IV-2. In these spectra, yields due
to hydrogen contamination of the C32H66 target were subtracted. The
C32H66 run was normalized to the same total incident proton charge and
the same target thickness as the actual 032D66 run (See section III-4a.),

and then 0.25% of the yield in each channel of the C two para-

32t66
meter spectrum was subtracted from the yield of the corrésponding
channel of the 032D66 run., A cross-section which will be introduced
2
later (Section V-1) in the analysis of results is L . This
dQldQ2

involves only the total number of counts, so only the uncertainty in
the total number of counts of a D(p,2p)n spectrum will be discussed.
Due to the uncertainty of 1;¢% for each of the two incident charge
measurements, 0.5% for the two target thicknesses, and 4% for the

percentage contamination determination, there is a total error of

7.8% to the normalization factor for both spectra. However the ratio
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of‘the total number of counts actually subtracted to the total number
of counts of the spectra were 11.6% and 11.7% for spectrum I, and 7,
respectively, giving final errofs of 0.90% and 0.917% respectively.

No correction was applied to the spectrum of 35.5° - 84.59,
as the dead time correction to the AE detector was unknown. The dead
time correction to the Cosmic unit for all other spectra was negligible.
This is true because any deadtime loss of discriminator 1 was compen-
sated by the SCA monitor, and the counting rate of counter 2 was kept
below 600 counts per second, which was free from any dead time
correction for tﬁe debunched beam. Besidesthis, the coincidence rate
was low enough ( <180 counts/minute), to make coincidence losses
negligible.

In short, the overall r.m.s. uncertainty in the determination
of the total number of events on ;he kinematic locus is 2.9% except
for spectra 1 and 2, and spectra 12, 13, and 14. An uncertainty of
3.0% should be allowed for spectra 1, and 2, and 3.2%, 3.9% and 5.1%

allowed for spectra 12, 13, and 14, respectively.

(ii) Corrections to n, N, and cos®

T
During the SCA monitor calibration, the electrometer zero
drift caused less than 1% error over short counting periods. Many
effects such as electrometer drifting, the drifting of beam position,
and the presence of high energy y-rays can affect the monitor calibra-

tion. Combining all kinds of effects the monitor calibration could be

reproduced within 2%. Together with the 1l.4% uncertainty due to the
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picoampere source calibration, the r.m.s. error imn "n" was 2.4%.

A 0,0310" C4,D. ¢ target and a 0.0416" CD, target were used,
so the uncertainties of their corresponding NT were + 0.47% and + 1.5%
respectively (See section II-3).

For almost all the spectra, @ was set to zero with 1.6%

uncertainty of cos® (See section III-3b.). The exceptional cases

were spectra 13 and 14, for which ® = 20° with about 7% uncertainty.

(iii) Vvalues of dQl, dQ, , and dT1

The solid angles subtended by the two brass collimators are
identical to 0.2%, and are quoted as 3.34 xllo-3 steradians with 5.6%
uncertainty. (See section III-3b.).

The wvalue of dT1 and its uncertainty are functions of particle
energy. However for the part of the spectrum with the highest yield,
a.2% inaccuracy was typical, except for those spéctra in which low

energy protons detected by detector 1 predominated. For those three

spectra 5% had to be allowed.

III - 4c. Conclusion

Since the cross-section equation in section III-4b. is energy

dependent, a review of the systematic uncertainties presented in the
2
d
last section will only apply to 'E—Tfi—' which is in fact the
449,
quantity needed for a Chew-Low plot. They are listed in Table III-3

for those spectra involved in the Chew-Low plot, i.e. spectra 1-12.
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TABLE TIII-3

Summary of systematic uncertainties in % of

N 2.9 (3.0)"2
cos@® 1.6
n 2.4
N, 0.4 (L.5)"P
dQ1 5.6
sz 5.6
18.5
*a The 3.0% is for spectra 1 and 7 only.
*b For spectra 2-6, 1.5% is appropriate;

for spectra 7-11 and 1 0.4% should be

quoted.
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CHAPTER IV. REACTION MECHANISM AND EXPERIMENTAL DATA

IV - 1 REACTION MECHANISM

A nuclear reaction is characterized by the reaction mechanism
through which it takes place and its dynamic properties. For three-
body reactions there have been experiments indicating enhanced reaction
cross-sections at particular internal energies or certain values of
momentum transfer variables. Typically the former is due to the sequen-
tial process of the reaction, and the latter is seen in quasi-free
processes. For the D(p,2p)n reaction one expects the following possible

reaction channels:

p+D —— p+D ¢5)
—> ©p+p+n (2)

2 %
— p+H —> p+p+n 3)
— n + 2He —> p+p+n (4)

Equation (1) represents elastic scattering, and ejuation (2) the simul-
taneous break-up of a deuteron by a proton. Equations (3) and (4)
take place via a virtual deuteron state, and a di-proton state, res-
pectively. It is the purpose of this section to investigate the

kinematics of the reaction channels with three particles in the final

state.

IV - la. Simultaneous Break-up

There are nine degrees of freedom associated with an isolated
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system of three particles. Fortunately not all of them are independent
variables. The laws of momentum conservation and energy conservation
provide four equations relating the variables, so that five of them
are independent. In the laboratory system it is convenient to choose
the polar and azimuthal angles of two of the three particles and the
energy of one of these two as the independent variables, and constraints
are then imposed on them. However, mathemétically there are two
possible solutions for the dependent variables from the given values
of the five independent ones. This will be described in more detail
in the following section. 1In order to clarify this situation an
extra variable, the energy of the other particle, was also measured in
the experiments.

The non-relativistic three body kinematics has been well
documented (e.g. DKZ-64, AGK-66). Though the relativistic case is

more complicated, it is straigh+tforward. Applying the comservation

of momentum and energy

3

P +B, = € T, (5)
0 T i1 i
E +E = g E
0 T i=1 i

where ?0(po,eo,f;) and E0 are the momentum and total energy respectively
3 - - '

of the incident particle, PT(pT,eT, ?T) and ET are for the target

nucleus, and f;, Ei are those of the outgoing ith particle, one can

solve for the dependent variables. For a coplanar reaction the solu-
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tion of E2 is given below in terms of Fortran notation; the incident

beam direction is the Z axis.

g - "¢ ¢* - 4Fm
2 (6)
2F ~
F = 4A2 - DZ, G =-2CD, and H = -(4A2M§ + CZ)
A =--Po Cos 92 + Pl Cos (91 + 92)
2 2 2
B = P_+P + Mj-2PP Cos®
2

(@]
]

2
M2+(MT+E°-E1) - B

D ==2 (MT+EO-E1)

The velocity of light, c,has been taken as unity in the equations
above. The values of P3, 93 and ‘PS can then be obtained by substit-
uting eq. (6) into (5). It is obvious from (6) that there are two
possible solutioms. Only those values which satisfy the law of energy
conservation are acceptable. The unacceptable values of E2 come from
negative values of momentum aléng the same direction as that of the
positive ones.

In the laboratory‘two detectors are set at a pair of angles
to detect two of the three outgoing particles. If one plots the energy
spectrum of a detector vs. that of the other detector, there will be
six loci on the graph when all three particles have different masses.
1f two of the three are particles of equal mass, there will be two loci,
and if all particles are of the same mass, there will be only one locus
even if the outgoing neutron could be detected. Fig. 10 shows the loci

11
for different proton energies in the D(p,2p)n and the 12C(p,2p) B
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FIGURE 10



FIGURE 10

Kinematic loci for the reactions D(p,2p)n, and

12C(p,2p)llB for different incident proton

energies. T1 and T2 are the proton energies
detected by two detectors set at 40° with

respect to the beam direction.
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reactions.

IV - 1b. Sequential Break-up

Reaction (3) and (4) on page 45 are two step reaction
channels; nevertheless the momenta and energies of the outgoing part-
icles of these channels are still the same as those of the simuditaneous
break-up. When the reaction takes place through one of these channels,
there will be an enhanced yield on a particular portion of the kine-
matic locus which corresponds to the appropriate internal energy of
the two particles which are left behind to form a short-lived inter-
mediate state, such as ZH* of the reaction channel (3).

The analytical relations between the internal energies of
various intermediate states and the basic kinematic variables could be
found from the conservation of energy and momentum. Consider a break-

up process which proceeds through two steps such as

a+b —s i+ (ik) (7a)

i+ (jk) — i+ j+k (7b)

where the values of i, j, and k are any permutation of 1, 2, and 3.
For example if i =1, j = 2, and k = 3, (7) indicates that the
particle detected by detector 1 is the first outgoing particle, and
the particle detected by detector 2 and the undetected particle (which
is labelled as 3) are left to interact for a longer time. Eq. (7b)

represents the decay of the composite system. In the D(p,2p)n

reaction, the outgoing neutron will not be detected. From the laws of
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momentum and energy conservation,

P +% = F +F
B, +P = B+ TP,

. (8)
Eo + ET = Ei + Ejk + Ejk

one can easily write down the analytical form of the internal energy

of the (jk) system, E?k’ for coplanar reactions,

I y— 3
By = E, - E ,/Pi + B - 22 B, Cos @ + My + My (9)

. -t
In this notation ij (ij, ij, ?jk) and Ejk represent the momentum
and the total energy excluding E?k of the composite system (jk),

respectively, and Mjk’ME are the masses of (jk) and the target. Because
of the two solutions discussed in section IV-la., E{3 aﬁd E{Z will be
double-valued, while E§3 is single vaiued. From eq. (9) it is also
clear that every point on a kinematic locus corresponds to certain
values of the internal energies for different composite systems.

If one knows the internal energy of a certain composite system,
one can predict through eq. (9) the kinematic conditions undef which
the composite system can be observed most conveniently if the reaction
does take place via the reaction channel of this composite system. It
is expected, for example, that the internal energy of a virtual deuteron
is about 50 keV. To examine an experiment in which one of the two
detectors is set at a fixed angular position, and the other detector
is set ;t various angles on the (coplanar) reaction plane, a curve of

Tf, the particle energy detected by the fixed detector, versus em
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the movable counter angle for a definite internal energy of the virtual
deuteron can be plotted. On such a graph, Tf will be constant when the
first outgoing particle enters the fixed detector; otherwise Tf varies

‘with em. In Figs.ll and 12 such graphs are shown for the reaction

D(p,2p)n at To = 100 MeV and 'Qf = 40.5 © and 35.50, respectively.

IV - 2. EXPERIMENTAL DATA

The experimental results are divided into two categories.
One of them includes D(p,2p)n reactions with small mean neutron energies;
the other contains spectra of low internal energies of the singlet (n,p)
system. |

The first category consists of two sets of data. 1Imn the
first set are six coincidence spectra taken with one detector angle
fixed at 40.5° and the other detector set to various angles between
30° to 50° on the other side of the beam axis. In the second are five
coincidence spectra taken with one detector angle fixed at 35.5° while
the opposite detector was moved from about 35° to 55°. The angles
between the two detectors were thus always less than 900, so that the
p-D elastic scattering did not contribute to the spectra and yet for
every pair of detector angles the mean energy of the undetected neutrons
was close to zero, as desired. Both detectors have a low energy cut-
off because of the materials which particles have to pass through in
order to reach the sodium iodide. These cut off energies affect only
the two spectra with detectors at 40.5° - 30;50, and 40.5° - 32.5°,
The portion of these spectra which corresponds to low energy protons

detected by the fixed detector and high energy protons by the movable
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detector is still disﬁinguishable from thg background, and the spectra
are chopped off at about 15 MeV in agreement with a cdlculation based
on the range-energy relation (RM-54). Series of these two-pafameter
spectra are shown in Figs..13.and 14 with corresponding energy curves
for the undetected neutron. It is apparent that the D(p,2p)n reaction
proceeds preferentially at small momentum tramsfer to the neutron, at
least for those angular configurations shown.

In order to predict kinematic conditions favouring the
formation of a virtual deuteron one has to consult Figs. 11 and 12 for
0y = 40.5° and 35.5° respectively. Fig. 11 shows that @_ = 60° and
the angular raﬁge 66°< emf:72° should be kinematically favewable for
observation. However, due to the finite apertures of the detectors
it is unfortunately not possible to separate the low energy tail of the
p-D elastic peak and part of the 3-body kinematic locus for the deuteron
break-up reaction, and the part of the locus obscured by the tail due
to Nal interactions in the detector is just where one expects the
singlet (np) system to be observed. Moreover on account of the angular
resolution of 3.5° at FWHM, only spectra at @ = 63.5° and e, = 75.5°

were taken for ef = 40.50. The situation for 0, = 35.5° is the same;

£
spectra at @ = 72.50, o = 84.5° were accumulated. They-are shown
on Figs. 15a, b, c, d, which include the internal energy curves as well
as the energy curves of the outgoing neutron.

All the spectra of Fig. 15 have a general feature: each is

composed of two peaks, one centering aroundthe portion of the locus

where the (n,p) intermediate system with low internal energy is
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FIGURES 11 AND 12



FIGURES 11 AND 12

These are plots showing the regions of interest
in the study of the D(p,2p)n reaction at 100 MeV.
The curves labelled TM(MAX), Tf(MAX) show the
maximum proton energies allowed by the 3-body
kinematics in the movable detector and the fixed
detector, respectively. The marked points in
the diagrams are the locations of two body elas-

tic scattering.
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expected, and the other part has an enhanced cross-section associated
with small neutron energy.
In Table IV-1 all the spectra are listed and a reference

number is assigned to each. .

TABLE IV - 1
Spectrum Number Detector Angle 1 Detector Angle 2
1 40.5° 48.1°
2 40.5° 42.5°
3 40.5° 39.5°
4 40.5° 36.5°
5 40.5° 32.5°
6 40.5° 30.5°
7 35.5° 53.1°
8 35.5° 48.5°
9 35.5° 44, 5°
10 35.5° 39.5°
11 35.5° 34.5°
12 40.5° 63.5°
13 40.5° 75.5°
14 35.5° 72.5°
15 35.5° 84.5°
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- FIGURE 13 (a,b,c,d,e,f)



FIGURE 13 (a,b,c,d,e,f)

Two parameter spectra for the D(p,2p)n re-
action at 100 MeV with detector 1 fixed at
40.5°. The curves labelled E3 represent the
kinetic energy of the undetected particle,
(neutron), vs. E1 which is the kinetic energy
of a proton detected by the fixed detector 1.

The solid curves passing through the loci

are calculated from 3-body kinematics.
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FIGURE 14 (a,b,c,d,e)



~ FIGURE 14 (a,b,c,d,e)
Plots similar to those of Figure 13, but with
detector 1 fixed at 35.5°, See the caption of

Figure 13.
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FIGURE 15 (a,b,c,d)



FIGURE 15 (a,b,c,d)

Two-parameter spectra for the D(p,2p)ﬁ reaction at 100 MeV.
The curves labelled E3 are the same as those in Figure 13, and
14. The curves labelled E§3-represent values for the internal
energy of the (23) system when the particle detected by the
fixed detector 1 is the first emitted particle. Similarly the
curves labelled E{B represent values for the internal energy of
the (13) system when the first emitted particle is detected by
detector 2, and the E{Z curves correspond to that of the (12)
system when the first emitted particle is the undetected neutron.

On each of diagrams l5c and d, there are two 3-body kine-
matic loci; one belongs to the reaction D(p,2p)n and the less

12

prominent one belongs to the C(p,Zp)llB reaction. Parts of

the two loci on diagram 15d cannot be separated.
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CHAPTER V. THEORETICAL ASPECTS

V - 1. IMPULSE APPROXIMATION AND SPECTATOR MODEL

V - la. Introduction.

In treating the scattering of a fast nucleon by a deuteron
Chew (Ch;50) applied an approximation which has since been generalized
to the scattering of an elementary pérticle by a complex nucleus (CG-52).
This approximation is called the impulse approximation. However, in
all the early papers it was used in a more specific sense, in that
muitiple scattering processes wefe omitted wheh the apﬁroximation was
appliéd. For the analysis of the experimental data of proton-deuteron
inelastic ﬁsattering at 145 MeV, Kuckes and his co-workers used fhe
Born approximation to calculate the cross-section derived from the
specific impulse approximation, and obtained a simple analytical expres-
sion for the differential cross-section (KWC-61). The Chew-Low
extrapolation was then applied (CL-59)..-This procedure will here be
called the spectator model. 1In the paragraphs following, a brief
description of the impulse approximation and the spectator model will
be given. The original derivations, and details of the approximation
can be found in a series of papers contributed by Chew, Wick, Ashkin,
Goldberger and Kuckes et al. (Ch-50, Ch-51, CW-52, AW-52, CG-52,

KWC-61).

V - 1b., Formalism

Let the total Hamiltonian of the (p,D) system be H, and let
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H_ be the "unperturbed" Hamiltonian i.e. the sum of K, the total

kinetic energy operator of the system and U, the muclear potential

energy. Mathematically

H

H +V
(o]

H

K+U

where V represents the interaction between the incident proton and the

target. Adopting the Lippmann and Schwinger formalism (Ls-50), Fa

the exact solution of the equation

can be written as

Vo= &a + Ed-»-i.l'(_Ho Vi, (Mo, T20)

where &, 1is the exact solution of

More specifically &, is the product of an incident plane wave in the
incident particle's coordinates and a bound state function in the

target coordinates. The matrix element of the well known T operator

is given by

Tba=(ébgvid)=(§bs’r§i) (2)

between the initial state a and final state b. Its square is essent-

ially the transition probability of interest. From (1) it is evident
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that

1
T=V+VE+11_H,-T 3)
a [o]

and with some algebraic manipulation of operators, (3) becomes

1

T = V+V ; _ '
E, + i -H

Similarly for the free two body scattering

(K+V) V¥, = En\I',,

the exact solution Y, is

En + i - K VP

th = Xn +

where Xn is an eigenfunction of the kinetic operator T. The corres-

ponding t operator and its matrix are

1
E, + i -k-V

t = V+V v

and ot = C Xms V)

The impulse approximation says that T in (2) is replaced by

t, or ¥Ya is replaced by Q; » L.e. the transition matrix element becomes

Méz) = (é},:téa)
and

© -5 % (A, B) @
because

U = F Am twn (Xn, 2a) = VeV (%..8)
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The physical meaning of the approximated wave function '_-[; is very
clear: it represents the scattering of an incident wave by a wave
packet of the free target particle, which possesses the same momentum
distribution as it does when bound in the deuteron. Under such an
approximation, the other particle left in the deuteron behaves as a

"spectator". If the neutron of the deuteron is a spectator, we can

more explicitly write

i = 4R, 4F R Bt BB ¢l (% R)

where ) .
G.(F.%) = ﬂdﬁ 4P e-f%(i.r,.-r BeTy) ¢, (F-%)
+é’a(ﬁ,fl) represents the free p-p scat;tering.
?.,%’;.,ﬁ are the momenta of the incident proton, the target
proton and the neutron, respec‘tively.
A is the deuteron ground state wave function.
Kuckes et al. used plane waves to stand for k]):;??;(ﬁ’ﬁ) and é; ; the

Q ¢

matrix element therefore was written as
M = [ffexp £ (-3 -F-B)-% dR VR -R)$R)

The cross-section in the laboratory system is then

s _ am p 2 7 > A
Prery e (—J—-;N,R) [l |V (R-B)] e iia @

which are the eq. (2) and (4) of the reference, (KWC-61). The final

analytic expression for the differential cross-section was expressed

by them as
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& _ 4z [ET (ErE) 1 B BT e cn 6)*
dbdladb T (Br28, ) (Bs+ 25)" oE, 2JE, -[E Gsb +/E 6.

where El’ E2’ E3 are the kinetic energies of the outgoing particles.

E_ is the kinetic energy of the incident proton.

o

Ea = 2.226 MeV (the binding energy of the deuteron).
= 59.8 MeV.

s

(d¢'

an free cm = free p-p differential scattering cross-section in the

CM system.

Equation (6) was derived by use of the Hulthén wave function and was

done non-relativistically.

V - lc. Assumptions

Chew and Goldberger were able to separate the T operator into
three terms: the first one is the operator t, the second term vanishes
when U vanishes, and the third term is independent of U (CG-52). The
third term vanishes when there is only one target particle instead of
two for the case of the deuteron. It is clear that multiple scattering
is involved in the third term. The replacement of T by t means that
the second and third terms are neglected, and this omission corresponds
to three assumptions. The omission of the second term requires an
assumption that the binding force has a negligible effect when the
incident particle interacts strongly with the target system. The
omission of the third term requires two further assumptions:

I, the incident particle interacts strongly with only
one of the two target particles at the same time, and

* This expression contained misprints in the original publication;
these have been corrected here.
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1I, the amplitude of the incident particle is not
-appreciably perturbed by the presence of the target particle other than
the one which interacts strongly with the incident particle.

Roughly the validity of the assumption concerning the binding
force depends on the short "collision" time. This means that the ratio
of the collision time to the period of the deuteron must be small. As
a rough estimate of this ratio, one could treat the high energy nucleon-
nucleon total scattering‘cross-section as "geometrical' to define the
scattering ramnge, £ , by fp'= ™ . For g TM = 4 x 10-'26cm2
the ratio is about 1/10 at 100 MeV incident proton energy. Assumption
I holds when i, the average distance between the two nucleons of the

deuteron is large compared to £ . For the deuteron R = 3.2 x 10-13 cm

which is considerably larger than P=Ll.1lx 10-13cm. The wave length
of the incident proton at 100 MeV ( %= 4.2 x 10-14cm) is also small

compared to R; assumption II is then appropriate for a deuteron

target.

V - 1d. Chew-~Low Extrapolation

In studying how to extract information of the scattering
cross-section for a collision between an incident particle and a
particle which is contained in a complex target system, Chew and Low
(CL~59) pointed out that there is a second order pole of eq. (6) at
E3 = - ;Q . In this unphysical situation there is no binding effect

- —_ 2
so that there is no uncertainty in the replacement of IV(Po - Pl)l

by the corresponding free proton-proton scattering potential. They
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proposed to plotlthe ratio of experimental differential crst-section
to that of eq. (6) .vs. EB’ and then extrapolate the curve to

E3 = -Eg in the‘unﬁhysical region. The ratio there should be unity.
They suggested keeping the scattering angle in the center of mass
system constant. As.this cannot be easily carried out experimentally,
the laboratory angle 91 was keét constant instead for the experiment.

Moreover the counting statistics are not good enough to perform an
' 3

-
extrapolation on —d4 7 » 8o the procedure was carried out for
dE dQl aQ
2 1 2
——do
dQl sz 3
d e

The theoretical value of aﬁz—aﬁi—aﬁz first must be integrated
over the finite solid angles subtended by the two collimators of the

detector assemblies; then the area under the theoretical curve was

d%r

dﬂl dﬂz

taken as The ratio desired, R, is then the value of

) theor.
2 .

de g& ')theor- divided by the area under the experimental curve of
1 752

————QEE;—— ) Mathematically
AE1 AQI AQZ exp.

d*s
/f I dP,d'JZ,J/l:-)ﬁear. dE d12.d2:

R _ E, an, ajl,

3
43¢ ) AZ
£ AL 40, A% ] exp.

d36'

1 9% 49, ) theor.

a weighting factor. The extrapolation was then performed by extending
. E

the curve R v.s. ﬁ3 = - Eg-. It is evident that to make the

procedure feasible, the values of ES must be as close to zero as

The average value of E3 was obtained by using a5 as

possible. The effect caused by folding in the finite solid angles is
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significant to spectra of a pair of angles whose sum is close to 90°,

vV - 2, THE GENERALIZED DENSITY OF STATES FUNCTION

V - 2a. Introduction

As mentioned in section IV - 1, there are two possible types
of reaction mechanism (simultaneous, and-sequential) through which a
complei target system can be broken up by an incident particle.
Besides the transition matrix element, effects caused by the reaction
mechanism also contribute to the reaction cross-section. For the

purpose of interpreting experimental data their effects should be well

understood.

V - 2b. Phase Space

Suppose that the probability of simultaneous break-up is
proportional to the total phase space available. The phase space
problem has been studied in some respects in detail (B-56, BO-58).
Here the differential phase space volume apprppriate to our exﬁerimental
set up will be given. Details are shown in Appendix B.

The relativistic total phase space integral for three particles

in the final state is proportional to
//S(Eo *Ep - B - By - By 5@, B -F, “Py) b 9P, dp;
where Eo’ ET are the total energies of the incident particle and the
target, respectively.

E.> E2, E3 are the total energies of the outgoing particle 1, 2,

and 3, respectively and Py» Py, Py are their corresponding momenta.
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The integrand may be integrated over 33 and the magnitude of'ﬁé, giving
the following result:
The probability of detecting particle l.in the differ-
ential solid Anglednl with abmomentum between p, and
Py + dpl’ while particle 2 is accepted witﬁin the

differential solid angle dﬂz is proportional to

F« E:. ES -FI ?2.
— p—y -
(E‘z‘l‘E;)’* Ez( i "?F:)’Fa. )

All the variables in eq. (7) are expressed in the laboratory system,
and are relativistically exéct. When eq. (7) is used in the analysis
of experimentalldata, it is integrated over the finite solid angles
subtended by the collimators of the detector assemblies. However,

it was found that the general features of a phase space curve are not

changed by this integration.

V - 2c. Sequential Break-up and Density-of-States Function

Details of this section can be found in a number of refer-
ences (S-65, PGB-60,APGB-61, SJP-67). Only a brief outline will be
given here. The notations of (S-65) are adopted here.

Consider the following reaction, which proceeds in different

ways, sequentially:

*
A+B—»N—>C+ (D,E) — C+ D+ E (8)
~— D+ (C,LE) —» C +D + E 9)

— E+ (C,bD) —> C+D + E (10)
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The systems (D,E), (C,E), and (C,D) represent localized states of

radius ays 3y, a, respeétively, with ipternal energies El’ EZ’ and

E3, respectively. Phillips and his co-workers wrote down the cross
section for reaction (8) as

rr(E.,a.); _Mafe ke

afle.
4T* R Ky

COB)+C, E|H| A+B,Ead| (5. 20

where £ (El, al) is the generalized density-of-states function. For

systems which have only sharp particle-bound stategsof eigenvalues En’

ﬂ reduces to
% S (E - E'n)

For systems which possess a continuum state as well, they argued that
the probability for the first emission of C, to produce a continuum
state (D,E) is proportional to the probability that D and E be localized
within a .m.xclear volume of radius a- The generalized density-of-

states function.is defined as

pE,a) = L E)N E)

where N(El) is the normalization constant of the wave function Y (the

final state wave function of the relative motion for the (D,E) system)
U, ym w) w
¥ = N(E) ..-—Y'v—Y1 My, &)
and A, -_—_-% is the usual density-of-states function. R is the
¢

radius of normalization for ¥ . After \P has been properly renormal-

ized, the general form of the GDS function for the Qﬂ‘ particle wave
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2A1
2
is P (Foa)= L2 T4 (5t B) -4 (4 -2 Sim 2(s514)
_ o'y 8 oM \o. >
TG R LI BN N )
vhere A = Ff + Gi with F (E;, &) and GX(El’ a;) being the

regular and irregular wave solutions to the scattering equation of the
(D,E) system, and 9& is the hard core phase shift. For a neutron-

_proton system with U(r £ al) being independent of the energy

- 2Mpd, s 2(Sarkih)
& (Elldl) -ﬂ-ﬁz ?2 Klr.
where } = U!(El"al)

When the complications of kinematics due to three equal mass
particles in the final state and of different systems of reference are

taken into account, the differential cross-section of interest is

written as

d!
alﬂJl}r\;dE b f AR (8, )"’%-—R(DEHCE.IHIMB Ef,)(:r

+ AP, @, a=>ﬁﬁ%k%ﬁzl< €E)+n Eal ol MB BT, (1)

+ A3 f (B335 MaMeKe "» Me KE \((CD)+E B Hs| pB Ep) I}T
where the angular distributions in the recoil two-nucleon system are
1 . .
taken to be m — i-e isotropic. .. Jl’ J2, and J3 are the Jacobians
- for transformation from the two-nucleon recoil center-of-mass system
(RCM) to the total center-of-mass system, (SCM) and JL is the trans-
2 2

formation Jacobian from the SCM to the laboratory system. Al’ A2, A3

are the angular distributions in the SCM system.
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The description above has ignored the interference between
the various mechanisms and that between different ways of the same

mechanism, i.e. the sequential mechanism.

V - 2d. Numerical Calculation

The generalized density-of-states functions were calculated
for the singlet and triplet neutron-proton systems'for relative
energies below 2.5 MeV. Thef are shown in Fig. 15, and 16. The
phase shift needed was calculated from the effective range theory
(Be-49). For an actual experimental spectrum there is always some
portion where the corresponding internal energies of an (n,p) system
are too high to apply the effective range theory. As some of the latest
data on singlet and triplet nucleon-nucleon phase shifts (Pe~-67, Ho-67,
KLJ-67, Br-67) égree with those of Yale's YRBI search'(BHLP-60) énd
Yale's YLAN3 search (HLRB-61), the latter were used for high internal
energies and extrapolated back to the low energy region to match with
the phase shifts calculated by the effective range theory.

The explicit forms for the Jacobians in eq. (ll1) are written
below

) !
Tz—.s A?zc'f ‘Ec Cosef,_

T o B2y, Re23 Shs) M
v < pe e T My
S 125, N%) 2

= 2 (.Ez-[;l 22-13 ,.Q\-s) = _ﬂ TIC ?;< i
2zS,ncnf) M Rz FP R8s

(12)

J 2 (E;_,, ,ﬂs—zl,-nz-|) _ __M_ < (P;‘)z |
= - <
? s, agnf) M B Ry g, (MRS poCes6a)

5 . 2ESRL D) BTE)T ARHRS ol
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mo+m,
m )

2

where A

M= ml + m2 + m3

?C—jk is the momentum of the first outgoing ith particle with
respect to the recoil center of mass system of (i,k);
(ijk) = permutation of (123)

?)—K is the relative momentum of the (j,k) system in their
center of mass system.

Ei-jk and Ej_kare the corresponding kinetic energies of P

i- ik and Pj-k
TS is the momentum of the ith particle in the total center-
of-mass system.
’?? is the momentum of the ith particle in the laboratory

system.

0.2 is the sum of the scattering angles of particle 1 and 2
in their total center-of-mass system.

6. is that corresponding to e;z, but in the laboratory

system.

More details of (12) will be given in Appendix C. 1In deriving eq. ( 12)

some basic formula were used from (0h-~65).
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FIGURE 16



FIGURE 16
Density~of-states for the singlet neutron-proton
system. The parameters used are shown in the

diagram.
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FIGURE 17



FIGURE 17
Density-of-states function for the triplet
neutron-proton system. The parameters used are

indicated on the diagram.
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CHAPTER VI. RESULTS AND CONCLUSION

All the spectra shown in Figs. 13 and 14 must be integrated
over E2 to compare the experimental results with the theoretical spec-‘
tator model predictions. The integrated spectra are shown in Figs.

18 and 19, The theoretical curves have also been normalized to the
same peak height of the experimental curves so that their shape can
be compared with those of the experimental results. It is clear that
the spectator model based on the simple impulse approximation cannot
reproduce the differential cross-section. The shapes of the theoret-
ical and the experimental curve are much alike, except for a few pairs
of angles, and the positions of the maximum wvalues of the cross-
sections do not exactly coincide. The shifts of the peaks are about

2 to 3 MeV. In Table VI-1, the values of the full-width at half-
maximum of the theoretical curves and the experimental curves are listed
for comparison. It is obvious that the experimental FWHM is always
smaller than or equal to the theoretical FWHM.

At first sight one might think that the energy shift of the
experimental peak with respect to the theoretical one is probably due
to gain shifts of the photomultiplier tubes and associated electronic
circuits. If this had been the case, a larger experimental FWHM would
have been expected rather than a smaller one for those spectra of
smaller cross-sections. In fact the widths of the theoretical curves
listed in Table VI-1 are smaller than they should be, because the

experimental energy resolution caused by factors other than finite solid
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FIGURE 18



FIGURE 18

The two parameter spectra on Fig. 13 are pro-
jected on the E1 axis and shown here. Detector

1 is fixed at 40.50, and 6,, the angles of the

’
movable detector areée labelied on the diagrams.
The solid lines are the spectator model predic-
tions into which energy resolution due to the fi-
nite solid angles of detection have been folded.
The dotted lines show the theoretical curves
normalized to the same peak height as the experi-
mental results. The error bars indicate only
the relative uncertainty in cross-section - i.e.
the error contributed by those variables which
can differ from run to run with the same experi-

mental arrangement.
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FIGURE 19



FIGURE 19
See the caption of Figure 18. In these experi-

ments, detector 1 is fixed at 35.5°,
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angles of the detectors has not been folded into the theoretical curves.
The lack of agreement in theoretical and experimental peak .positions
was observed for the D{p,2p)n reaction at 18.2 MeV, 46 MeV, and 50 MeV
incident proton energies (W—63, SV-66, GK-64). The differential
cross-sections at 18.2 MeV are at least 4 times smaller than the
prediction of the spectator model; those at 46 MeV and 50 MeV are about
2 to 3 times smaller; in the present work and that at 145 MeV (KWC-61)
the experimental values are closer to the predicted ones - i.e. less
than a factor of 2 smaller.

As mentioned in section V-1d, the Chew-Low extrapolation

2 3

d o d g
—-———— instead of —————————m . With this
dnl sz dEl dﬂl dﬂz

method we have better counting statistics, and the inaccuracies

will be applied to

associated with the quantity dE1 are eliminated. The ratios of the

ds
dQl dgz to the theoretical ones, R, are

listed in Table VI-l. The extrapolations for 91 = 40.50, and

experimental values of

61 = 35.5o are shown in Figs. 20-a and 20-b. Both curves can be
extrapolated back to R =1 at E3 = 1.1 MeV within the experimental
error, though the extrapolations are difficult due to the relatively

long extrapolation distance compared to t he experimentally feasible

range of EB'
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FIGURES:20a, b.



FIGURES 20 a, b.
Diagram a shows the Chew-Low extrapolation for
detector 1 held at 40.50, while diagram b is
for 35.5°. The error bars indicate only rel-

ative uncertainty (as in Figure 18).
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TABLE VI - 1
a¥
Values of R and widths of energy distribution for —-——mS0
dE, da, da,
91 92 R FWHM (theor.) FWHM (exp.)
degree degree (MevV) (MeV)
[o] (o]
40.5 48.0 0.666 12.7 12.0 + 0.5
42.5° 0.618 13.5 13.6 + 0.5
39.5° 0.589 16.3 15.6 + 0.5
36.5° 10.550 19.0 18.4 + 0.8
32,5° 0.539 21.2 18.8 + 1.0
30.5° 0.526 25.0 25.0 + 1.4
35.5° 53.1° 0.737 12.5 12.5 + 0.5
48.6° 0.671 13.6 13.7 + 0.5
44.5° 0.666 16.2 14.8 + 0.8
39.5° 0.607 20.5 20.1 4+ 1.0
34.5° 0.588 26.3 22.3 + 0.7

In the two-parameter spectra of Fig. 15 (a,b,c,d) enhanced

yields are apparent on the portions of the kinematic locus where the

values of E3 are small, and where the internal energies between the

neutron-proton pair are low (See Fig. 15 a,b,c,d,).

After integration

over E, they are shown in Figs. 2la, 22a, 23a, and 24a. 1In order to

exclude the effect due to the available phase space, the differential

cross-sections or the number of counts are divided by the calculated
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phase space, and the results shown in Figs. 21b, 22b, 23b, and 24b,
together with their phase space curves. Though the ratios thus
obtained suppress the high energy peaks and elevate the low energy
peaks correéponding to the (n,p) system with low internal energies, the
peaks are definitely not wholly caused bythe phase space effect.

The predictions of the spectator model can only roughly
reproduce the shape of the higher energy peaks on Figs. 2la, 22a,
and 23a. The higher energy peak in Fig. 24a is due to two different
reactions: 12C(p,2p)11B and D(p,2p)n. From the disagreement in the
prediction of position and shape of the peak and the experimental
result, it is very likely that the 12C(p,Zp)llB reaction 1is the main
contribution to the peak. Though the theoretical prediction of differ-
ential cross-section is not accurate, the general trend of its depend-
ence on the movable detector angle is qualitatively reliable. The
maximum value of the spectator model prediction for spectrum 15
(Fig. 24a) is about one sixth ~ that of spectrum 14 (Fig. 23a). There-
fore the high energy peak of spectrum 15 is éssentially due to the
reaction 12C(p,Zp)llB.

The theory of the genefalized density-of-states function
developed by Phillips and his co-workers was also applied to these
spectra (See section V-2c). It is not surprising that the theory
cannot reproduce the higher energy peak for each spectrum at all,
because in the calculation the effect of quasi-free scattering has not

been taken into consideration by Phillips et al. Besides this the
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assumption of isotropic angular distribution of first emission invthé.

total center of mass system is obviously unrealistic because the first

emitted particle favours the forward direction in the RCM system. The
predictions of the generalized density-of-states function shown in

Figs. 22-24 are purely idealized célculations, for the experimentél

energy resolutions have not been folded iﬁto the theoretical curves.

Except for spectrﬁm 14 (Fig. 23) all the theoretical peaks occur at

lower energies than those of the experimentalkones, and all of them

show peaks much narrower than the experimental ones ﬁhich correspond
to low internal eﬁergies of the (n,p) system. The differences in the

FWHM of the peaks could be lessened By taking the experimental energy

resolution into account, but it is doubtful if the difference in the

peak positions could be improved significantly by the same procedure.
In summary the study shoﬁs

(1) The spectator model can reproduce the shape of the spectra
at forward angles. Quantitatively the prediction of the
spectator model is higher than the experimental values of
cross section.'

(ii) - Final state interactions between a neutron and a proton were
observed for an incident proton energy of 100 MeV. The
theory of the generalized density-of-states function does
not successfully reproduce the spectra where final state

interactions were observed.

However through this experiment the mechanism of the D(p,2p)n reaction
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for various incidént energies is clear. Since both the spectra
featuring the spectator effect, and those showing the effects of final
state interactions are observed at high and low incident particle
energies (e.g. KWC-61, SJP-67, and this work), whether the reaction
proceeds through quasi-free or quasi-sequential processes does not
depend much on the incident particle energy, but is essentially
determined by the reaction kinematics.
Besides the theories applied to the experimental results or

the modified Born approximation (GB-51,WA-48), the final state inter-
action theory of Watson and Migdal has also been extensively applied.
Except for the high energy polarization experiments (e.g. CS-57, TW-61)
all of them have gained little success in the explanation of related
information such as the scattering length of the two nucleon system
(e.g. BA-67, BW-68, MG-68). Such a situation indicates plainly that
three-particle systems are too complicated to be dealt with by physical
intuition. One should turn to some more mathematically exact theories
of these ' systems. Recently two methods of this kind of theory have
been developed. They are the method of summation of non-relativistic
diagrams (e.g. KP-65) and the Faddeev-Lovelace method. (e.g. Fa-60,
L0-64). However further calculations must be carried out, and

applications to scattering experiments still await investigation.
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FIGURES 21, 22, 23, AND 24.



FIGURES 21, 22, 23, and 24.

Diagram (a)

Energy distributions of the differential cross-sections
are shown. The broken curves are the pfedictions of the spectator
model normalized to the height of the high energy peaks of the
experimental curves. The solid lines are the predictions of the
theory 6f the generalized density-of-state function normalized
to the height of the low energy peaks of the experimental curves.
In the calculation of the GDS function the following assumptions
have been used:
€9 The radius of the volume of nuclear interaction was taken

as 2.5 x 10-13 cm.

(2) Only the singlet interaction of the (n,p) system is con-
sidered since the value of the GDS function is signific-
antly smaller for the triplet state than for the singlet.

3) The singlet scattering length was taken as -23.68 x 10-13
cm and the effective range taken as 2.7 x 10-13cm.

(4) The distribution in the two-nucleon ceénter-of-mass system
was taken as isotropic.

(5) The distribution of the first emitted pérticle in the to-
tal center-of-mass system was taken as isotropic.

(6) Thé matrix element of the reactions were taken as energy-

independent.

The energy resolution has not been folded into the predictions of
the GDS theory.

Diagram (b)
The phase space available (/ﬂ » broken line) is shown,
together with the ratio of the differential cross-section on

diagram (a) to the phase space, (solid line).
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APPENDIX A

RELATIVISTIC DIFFERENTIAL CROSS-SECTION TRANSFORMATION FOR A TWO-BODY

SYSTEM.

The relation between differential cross-sections in a center-
of-mass system and tb.se in a laboratory system has been discussed by
many authors (e.g. WY-63). Though the derivation of the transformation
relation is straightforward, many have arrived at an incorrect expres-
sion for it. In the following the transfornmtién Jacobian J, in eq.
(1) will be expressed in terms of kinematic variables of the center-
of-mass system and of the laboratory system.

-1

doo . _ o _ dQ d¢
@ - T (& aw 1

The method of the reference (WY-63) will be adopted here. All the

"bar" variables are in the center-of-mass system; those without "bar"
are in the laboratory system. The velocity of light, ¢, is taken as
1. Eq. (1) is then the relation between a differential cross-section

in the center-of-mass system and that of the laboratory system with

_ 4@ _  ad o) SE
T =3 = s t 3 39 (22)
-1 aQ a0 29 2 E
= = = — _— 2
J an 56 t 3% 5o (2b)

where E and E are the total energies of the scattered particle in the
CM system and the LAB system, respectively. Because in the CM system

E does not depend on the scattering angle 6 , it 1s more convenient



to work on eq. (2b) rather than eq. (2a). Eq. (2b) then becomes

gg - 29 - d Cos O (3)
dQ a0 d Cos ©

If eq.- (2a) is preferred, onme must not drop the second term of eq. (2a)
because E is a function of 8; this is the point most often overlooked.

The law of conservation of momentum states that

=t — ' = -

Pp + Bp = 0 = P + P (42)
—_ —_ — - —% -

B, + Py = P, = P + P (4b)

where ”f;, ?%, ?t'f' are the momenta of the projectile, the target,
the scattered particle, and the recoil residual particle
in the LAB system, respectively.

E; is defined by (4b) and its corresponding total energy is

Eo

o
—

—_ P

vV = 5 (5)
o

The direction of'§; is chosen as the x-axis, so that the transverse
direction is y-axis, for this is the coplanar problem. The Lorentz
transformations of momentum and energy between the two coordinate

systems are

Px = vy (Px - VE)

P = P 6
y y ©)
E =

Yy (E - VB))



Px = vy (Px + VE)
P = P_
y Py (7)
E = y((E + VP)
with Yy = L
1 -v

(1) Express J in terms of variables in the CM system.

By the use of eq. (7)

Px

Cos @ = P
=_Px_ ) y(Px+VE) |
52 2(% =32
B+ E) ij + Y2(B_+ VE)

;Y(Cosé + V E/P)

Join? &+ 2@ B ¢ Rh, VERD WAE/E)

_Cos 8+ P withf=l;’ , U=
Jl + 2 f Cos +f2 - v’s1n%
-G8 B4F  inEa142F cos §+ 7P Vsindd
JA
(8)

Substitute (8) into (3)

J'l - i{_l = SIT — u_'i' L > _ where pn = Cos ©
an dn 1 + 2Fn +£° + v2(1-n?)
L+ap

2 - 372 €))
v2 132

=t v



The explicit expression of (1) in terms of variables in the CM system
is then

d¢ do Y 113/2 do

ErR T wr T o (10)

(ii) Express J in terms of variables in the LAB system,

Similarly by using eq. (6).

- 1-ax P
Cos 6 = —— with V= -E"
P, + By Y
f‘ v
- Gos e -f A= 1-2pCos © +f2 - v?side
[a
(11)
-f = z—]_ = —Y—E— = --'f-—(l-Vu’ Cos 9) . (12)
v  fayr [a
- _ - .2 2 2.
B= 1+2pCosd+p°-v sin” 8
_a-vh?
A
= -%_ | (13)
Y A

Substituting equations (11), (12) and (13) into (9), one obtains

Fl_de _ l1+ap
T de 2-3/2
Y A
v? a2 (1- p cos o) (14)
J = L (15)
y2 Al/2 (1- P Cos ©)

The explicit expression of (1) in terms of variables in the LAB system

is then

(=N

1
v a2 (1. p cos 0
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APPENDIX B

RELATIVISTIC PHASE-SPACE CALCULATION

The following notations will be adopted for this appendix

EO,ET = Total energy of the projectile and the target, respectively.
'4;,?% = The 3- momentum of the projectile and the target, respectively.

E1 3 = Total energy of the outgoing particle 1, 2, 3, respectively.

E
T1 TZ 3._.KJ.netl.c energy of the particle 1, 2, 3, respectively.

?1 P2,P3=-The 3- momentum of particle 1, 2, 3, respectively.

The velocity of light, c, is taken to be 1. All the variables above

are subject to the laws of total energy and momentum conservation.

1) ) t
Total phase space 0260((E0 +E, - E -E, - E, )x
— ,_.s! ey | N | -l . } —t
(®, -P; - 7, - F,) B, dF, dF, (1)

] o, 45y - B <y - [ @, ) B2 +al)ab) @, (@
J o[z@p] @p? ar) ao, @)? e an

’ _ ] [ ] - -t p—y 2 2 (3)
where f(PZ) = Eo + ET_- E1 - E2 - 4/(P°- Pl- Pz) + m,
By use of the relation
] {(Pé = Pz)
8£(2,) = E i [ %)
dP& P,

eq. (2) becomes

)
///] F2 (2)) dP'dQl(P ) dP'dQé'
P£+Pi Cos 912-P Cos GZ!
E, 7, (5)

P!
D2
E




Whenever -f'z = ?2 the laws of total energy conservation and momentum

conservation should be satisfied, and the total phase space integral

can be written as

_///j’(rl, Q, 9,) dp, da, 4 2 | (6)

where 2 2
: Pl P2
(P Q,) = - )
f 1? Q1’ 2 3% . P2 +1’l Cos 912 Po Cos 62
E, Ey
E
P & ) = 5 B 8 8y)
_ El E2 E3 Pl P2 8
= T T
(E2+ E3)+E2 1 ; 2
Py

Equation (8) is the differential phase space needed in section v-2.

In order to compare the shape with the experimeni:al data f(Tl,Ql,Qz)
has to be integrated over the energy increment ATl and the finite solid
angles AQ]_ and AQZ, i.e.

A{ AﬁlAfg ﬁ'(Tl, Ql’ 92) dT1 dﬂl sz | ¢))
1 2



APPENDIX C

DERIVATION OF KINEMATIC JACOBIANS

Consider a two-step reaction non-relativistically

a+b —> 1+ (Jk)—> i+ j+k

in two kinds of coordinate frame: a coordinate system (abbreviated

as the U system) which moves uniformly, and a coordinate system called
the recoil center-of-mass system (RCM) which is the relative cbordinate
system more appropriate for the reaction above - i.e. the ith particle
is first emitted. The notation (i, j, k) stands for any permutation
of 1, 2, and 3. The schematic representations of the U and RCM

systems are shown below for the case of (1, 2, 3).

] J
A= )
v ]
K A K Yk “
RCM systenm U system

Some of the relations between the two systems are

m,?.-+ ?
B = Ty - i +mk £ (la)
] 5 mk .
S - Y- (1b)



m, (n, +
I W M _
_ ui-jk = M - , M—mi-i-mj+mk (lc)
m .
T 3
B, _ = : (14d)
j-k mj+mk

where m, My, and m, are the masses of the three particles, and

ui-jk’ uj-k are the reduced masses.

In particular there are two different coordinate systems
which belong to the category of the U system. They are the total
center-of-mass system, (SCM),and the laboratory system (LAB). For

these P = 0, and P =5 , respectively,

T
T =% +8,+%, = P + P, with?D, = Ty (2
P =P +P)+P; = P 4 Py with P, =m, ¢ (2)

where '1?0 and 'ITT are the momenta of the projectile and the target,

respectively.
In section B-2c (eq.ll) the laboratory differential cross-
section is derived from that in the RCM system:
3
L d°¢
'y = - D (3)

RCM dE; g 49, o 40T

Following the notation in section V-2c, Ji (1=1, 2, 3) is the
Jacobian which transforms G.R((I;I) to the SCM system, i.e.:

e

= =g (@)
c [ c J (4)
SCM dE1 dQl dQZ RCM i




More explicitly

B J' a2 (Ei-23, a3, .Qz.-s) - D(Ez—ls,ﬂz-ls,-no-s) Te 3(53—21,123—;:,-[22-&
' e, NS, N3, T2 AE NS, AT) 4 F EcaS RE)
and JL is the Jacobian which transforms (réCM to U;AB
) = a’c J
LAB dE{ dQ{ dd; L (5a)

c c c
_ ‘Z(E1 R 91 s 92 )

J‘L N ] 3 '] (5b)
2@, o, 0))

For the case in which the particle detected by detector 1 is
first emitted, the Jacobian J which transforms Réé& to a U system is
derived in the following way:

From (la) and (1b), one obtains

—
ds B B
- _ 1-23 _ M.232 Propz o o
Piias = B3 —qr = m P m, Fa, (B, + ;)  (6a)
ds.
- _ 2-3 _ Pz = Py 3
Prez T By3 o < m, Py - m, Ps (6b)
and then
— — . § —
a8, ,3 dP, , = dB) dP, (7a)
i.e Po 5 4B . d@ . p2  dp, . da, . = p2ap do p2dp.dg. (7b)
-e. 1-23 “F1-23 @423 Fouz dPy_5 48, 4 = PydP dQ PodP,dQ,

By use of the relations

P23 9Py _p3 = W53 dEp o4

Py 4Py =m dE,
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one obtains

7= 2Eims s ) . MERR dRa @
9(1::,_!2. Na) Mi-23 ?)-2—3]3;3 dTz-3

From the sqdare of (eq. 6b)

?2‘3 dﬁ's - I_'. W 2. (Tl‘?)'?z (9)
?2 A‘Fz mz+M3 Tzz..
then
M 7% ! , Moz
- M with A= (10)
3- M2 Tl"ls E-; H?z"’ ?ICOSen, —?6591 A Mg,
If the U system is the SCM system (f'- 0)
I= -J;= a(El—ES, QI-ZS,-‘QZ'S)= _f‘:’_ (’ch> - I . - (11)
S(E,c,.ﬂ.c,-flz) . By AR “+ T, Cose,,
where eiz is the angle between the momenta of particles 1 and 2.
If the U system is the LAB system
’ Q(E(—)_g’ﬂl-l$lﬂz—s) _ﬂ. ’ﬂg (Pz’)z' l
3= 3= 1 nd sty T m Ty X — (2
o (El 7 RI I'nl ) 2 -ﬁ’ls B—_’ A PZ TP”&SGP_--E]'(’OSBZ
then
_ o Ec,ﬂf,ﬂzc)= s (ES, ﬁ.‘,-ﬂ;) O (Li-as, Nv2s. 2-3)
LT oA at,al) S(Ei-23 fUas, py) 2C(EL TR, 2210)
Il D AR+ RS GosBra 3
T &)* AR+ ‘Punase‘?,_ ~ B Cos®)}

Similarly for the case in which the particle detected by detector 2 is

first emitted:

From the relations

- — mz-ﬁ
P2-13 = P2 e (14a)



£ T+ —L B
1-3 17 mmy 2
dP, 13 9By 3 = dP, dP,
one can write
m PJ (P‘Z’)2 ar; .
J = With P = 0
2 P pZ dp
2-13 “1-3 H2-13 1-3
C C
= 1 P2 M 1
P m, c
1-3 2 1 c c
-A- P2 -+ Pl Cos 912

For the case

in which the undetected particle is first emitted:

From the relations

P31 = M Pe(B + Py
3, L @3 )
= m, - m
2-1 m1 + m2 1 72 2 1
P .. d dp. 4%,
dP3_5; 9Py P, 4B,
one is able to write
c 2 c c
;- (PZ) Ppom ’ sz -
= Z TN
3 P31 Pa_pp Polp 4Py
c c. 2
o B @ .
T m c 1 c c c
3 P3 Pz-l ml—*'mz (mlPZ - m2P1 Cos 8

12

(14b)

(15)

(16)

(17a)

(17b)

(18)

(19



APPENDIX D

COMPUTER PROGRAMME FOR CALCULATION OF G.D.S. FUNCTION

The computer programme presented below is for the calculation

of the prediction of the generalized density of states function. It

consists of a main programme and five subroutines. Their functions

are listed here:

Main Controlling the input and out information
Subroutine KINEM3 Three body kinematics

Subroutine INTENG Internal energy curves calculation
Subroutine LABCMT Kinematic variables transformed from the LAB

system to the SCM and RCM systems.'

Subroutine J2J1, Calculation of the Jacobiaﬁ JZJL in Appendix C
Subroutine DOSPN Calculation of the function /’ in Section V-2

The meaning of the input variables and some of the output

variables will be given below:

ZMOA Mass of projectile in AMU

ZMTA Mass of target in AMU

ZM1A Mass of the particle detected by detector 1
ZM2A Mass of the particle detected by detector 2
ZM3A Mass of the undetected particle

TO Kinetic énergy of the projectile

AMUGM The ratio of gram to AMU

AMUMEV The ratio of MEV to AMU

ERGMEV The ratio of MEV to erg.

HBAR +



D-2

AG1D The angle of detector 1 in degrees

AG2D The angle of detector 2 in degrees -

EX The excitation energy of the residual nucleus

RPSPN Effective range of the singlet (n,p) system

ROSPP - Effective range of the singlet (p,p) system

ASPN . Scattering length of the singlet (n,p) systeﬁ

ASPP Scattering length of the singlet (p,p) system -

A1lPN, AlPP Radius of nuclear interaction volume

E1PNS Internal energy of the singlet (n,p) system

ELPNT Internal enérgy of the triplet (n,p) systan-

ELPPS Internal energy of the singlet (p,p) system

T1 Kinetic energy of the particle detected by detector 1
DELT n,p scattering phase shift-

T2+ The two solutions of the kinetic energy of the particle
T impinging on detectorlz

T§+ The two solutibns for the kinetic energy of the

T3-

undetected particle

E123 Internal energy of the (2,3) system
E113+ The two solutions of the internal energy of the (1,3)
E113-

system
E112+ The two solutions of the internal energy of the (1,2)
E112-

system
AG3+ The two solutions of the angle of the undetected
AG3- .

particle
XN+ Two branches of prediction of the differential cross-
m-

section by the Generalized density+of-states function

in arbitrary units.



1, Mdbiiﬁf”

AN IV E LEVEL

.1,*3(511.P1C(51).511,
& 4DEL1(100),PUZNC(5

f 1000
101

102

163

5 COMMON R2N

i=§zQ4(513,05(s1)
73010151),011(5w

:'5F2P(51)}F2N(”

. 7,CC,DELTR,EIZB,EIIBP,EIL‘N,EIlZP,XNZh(lOO),AB,ﬁlln

6,X6(51),x7(5*)

5E1PNT,E1PPS,XMUPNG,XMU,S

69DEL 3 VO PUD y XN2N's PUZNC 5 THOX '7;JZJLn'Elffzp,EZN.E3””'”

1P2C3P PZCBN,QIOQPUIC)V3NC'R2P952P9U2P’J2JLP9C21C : ﬂry l_mg\d"
2,C1,C4,C3,FI,Gl,FZP,FZN,GZP.GZN,Xl,XZ,XB,X4,X5,X6,X7_“ ﬁ  ﬂ'@
3,F3P 4F2N,G3P363N . SRR ‘
READ (57101,ZMUAvZMTA1ZN1AQZV2A12M3A1TC
FURMAT(5F12-91F8.3, L
READ (59102)AMLGM9AMUMEVQERGNEV)HBAR . :
FURMAT(DIZ.4110X1F7.3110X9011.4110X,911 4)
READ (5,103)AG101AGZD'EX ‘ :
FORMAT(2F8, 31F10.3’ ;

ZMO=ZMOA*AMUMEYV

ZMT=ZMTA*AMUMEV

IM1=ZM1A*AMUMEYV

ZM2=ZM2AXAMUME YV

IM2=ZM3ARAMUMEYV

ZMOG=ZMOA*AMUGNM

IMTG=ZMTAXAMUGM

IM1G=2ZM1A*AMUGM

IM2G=ZM2A%AMUGM

LM3G=ZM3AX*AMLGM

ZMGOT=ZMOG+2ZMTG

IM13=ZNM1+ZM3

IM23=72M2+7ZM3

ZM12=ZM1+ZM2

EC=TC+2ZMO

PO=DSQRT(ED**2-ZM3%*%2)

VO=P0/ZMGG - -




;ZMUAG'

READ (53;105)ASPNyASPP"
FORMATA(D1143,9X3011e3)
. READ {59106V ALPNALPP ._15;53“‘.;
“FORMAT (910.3,1qx.010.3) R
_READ. (5,107)1N N{_';ﬁ e

TI(I)=040

- SQP3P(1)=0e0
 BASE3P(I1)=040
“BPHI3P(1)=0s0

CIN(I)=0.0
C3P(1)=00

(ZMDG/!ZMD +Zp

*ORMAf 010.3,1ox,01o.3)__

FGRMAT(ZIS)
DO 7C0 1= 1,IN

P2P(1)=C.0

PZNLI)_0.0;»
SQP3N(I)=0eC
BASE3N(I)=040
BPHI3N(I)=0.0"
C2(I)20e 0

C1P(1)=0.0

C3N{I)=0Ce0

- P3P(I)=0.0

EI123(1)=0.0
T2P(1)=0,0
EIL3P{I)=0.C
EI12P(I)=0.0
AG3DP (1)=0.0
T2N(I }=Ce C
EI13N(I)=C.C
EI12N(I)=0s,C
AG2DN{I)=0.0
T3P(1)=0.0
T3N(I )=C0e0C
P2PC{I)=0.0
P1C3N{I)=C.0
AGIRC(I)=Cs 0O
AG2RNC{I}=0a0
PUZNC (I )=C.C
P1(1)=0.0
Ql2(I)=0.0
Ql(I)=06C




7C0
1C8
112

-i"AGBRN II) *0s 0
"ff:}Qé(I)-OQG
o Q?(I) 0.0

PN = c.o‘fﬁﬂff”%
. QlO(1)=040
QLI )=0a0

F2P(1)=0.C
,GZP(I)-O.Q_‘ff |

PZNC(1)=0.0 -

- G3N(I)=0.0

PUlC(I)~O.
VBNC(I)-O.
F1(I)=0s0"
G1(1)=0.0

F2N(I1=0e0
G2N(I)=Ce 0

F2N(L)=Cs 0
F3P(I1=0a 0

G3P(1)=0e0 =
R2N(I)=0e0
S2N(I)=04 0
U2N(T)20.C
J2JLN(I) =040

" R2P(I)=0.0

S2P(1)=0e0

U2P(1)=0.0

J2JLP(1)=0.0

THO(I)=0.0

DELTR({I)=0.0

P({I)=0aC

ELAB(I)=0.0

DEL(1)=040

PD(I)=0s.0

XNZ2N(I)=C0sC

DD(1)=0.0

CONTINUE

READ {(5,108)(T1(I) 4I=1,IN)
FORMAT( 10F7.2)

READ (59112)(DELT(I) sI=1,4N)
FORMAT(10F7.2)
C=2,967%3D1¢C
AA=DSQRTL{( TO+ ZMQO) %%2—-ZM0%*%2)
V=AA/(TQ+ZMO+2ZMT)

VCM=V&(C




‘]3610 CONTINUE-

 .612 FORMAT(1H ,F8. 3,9(19013.5))
611 CONTINUE -

vli? FORMAT{1H ,7HTHETA2=pF6 215X,16HIATERNAL ENERGY—vF? 3y5H(MEV)1Y

118 FORMAT(I6X:2HT1rBX,4HE123’6X,3HT28,7X,5HEII3815X,5HE112&,5X,4EAC3:

OGVFORMAT(IH 1F§

wRITE(eabosi

"”7509 FURMAT(1H1,21H11,cz,c1p.c1N,cap.c3N,16H,sz ;g&géaé;y N)

DO 611:1=1,4IN
“CALL INTENG
CWRITE (6, 612)1-(L

IP3P(I)4P3N(I).

1C2(I),CIP(I)’CIN(I)9C3P(Il,CBN(I),PZP(I)yPZ.

hRITE(eglib)AGID,EX r'_.-{.' A S 3
116 FORMAT(IHI,7HTHETA1-,F6.2,5X, R 5x,3H5x-,F8.4,sx,8Hn(p.zP)N)
WRITE (6511 7VAG2D sE1L’

WRITE(65118)"

' 1,6X,3HT2—,7X,5HE113-,5X15HE112-95X:4HA63-95X’3HT35,7X,3HT3—’-
DO 119 I=1,IN ' :
IF (RODT(I))IZO:lZlylZl

120 WRITE(6,122) T1(I) ‘

122 FORMAT(10X9F10.3,9(6X,4HINAG))

GO 70 11s

121 NRITE(6,123)T1(I)vEIZB(I)1T2P(I),E113P(I) EIIZP(I) AGBDP(I),TZN(I)

11E113N(I),EIIZN(I),AG30N(I)vT3P(I)vT3N(I)

123 FORMAT (10Xy12F10.3}

116 CONTINUE .
NRITE(6,124)ZMT,ZNG,ZN11ZM29ZM31TC .

124 FORMAT (1H 94HZMT=3F12e5 96 X94HZMC=4F12.5 6X,4HZM1‘:F12 5g6Xy4HZM2"
1yF12.596X94HZM3=,F12, 596X43HTC=3F1243)
WRITE(6,4131)

121 FDRMAT(1H1139H111P2PC,PICBNqAGlRCyAGZRhCyPU2NC:P11P2N)
WRITE(64613)

613 FORMAT(1H ,5X,42HC121Q1,QZ9AGZRPC,QB,Q4 AG3RPC,yAG3RNC+Q5yQ6 )
WRITE (64614)

614 FORMAT(1H 410X944HQ7+C8+9Q9, PlC3P,P2C3P9P2C3N70101Q11 PU1C,sV3NC )
WRITE(6,4619)

€61S FORMAT(1H ,30HFL sG1 4F2PF2N,G2P+G2NsF2P,P2NC)
WRITE(64621)

€21 FORMAT(1H y15HF3N,F3P yG3N,G3F)
DO 130 I=1,IN




16 FBRMAT(IH .ax.xo
L WRITE(69620)F1(L1) 561 (1
‘fFORMAT(lH"Bx 8(1 012;4)
iy WRITE{6622)F3N(L
622 FORM TOH ,ex,4(1polz
© 130, CONTINUE *
S WRITE(65617) =
617 FORMAT (1H .8Hc1,C4,ca)
L WRITE(65618)C14C4,C3
€18 FORMAT(1H,3(1PD13. i ey |
L WRITE (64133) - . i ERaR
X 133]FORMAT(1H1,38H11,RZNgSZN,UZN.JZJLN,RZP,SZP,UZP,JZJ
0 DO-134°1=1,IN RGO

”“).GBP(I) “

») :)

.,gCALL J2dL. L R R ,
uwRITE(6,135)T1(I)oRZN(I),SZN(I{“UZN(I),JZJLN(I)yRZP(IJ szpc
ALY J2JLPHIY N

-.a13= FORMAT(1H ,Fs.a,atlpola.s))

134 CONTINUE
"RO=ROSPN

_*;AB—ASPN

- A1=AIPN :
E11=E11%ERGMEV
XMU=XMUPNG ‘ RTINS
HRITE(6'605)XMUPNG,XNU,ZMIG ZN3G,AMUGM . ' SR

605 FORMAT(1H ,7HXNUPNG—91P013.5,5Xo4HXNU—,DIB s,sx.SHzM1G-,013.5,5x,~
: 15HZM’G—,DIB.5,5X96HAMUGM—1013 5) _ |

WRITE(€,127) '

127 FORMAT(1H1 410HEI13~ (MEV);ZX:IOHTHO(I/MEV), 2x:13HDELTA(RADIAN),3Xv
111HPHI(RADIAN), 2X,9HELAB(NEV),7Xy10HDELTA(DEG)aSX,BHPHI(DEG),12Xv‘
23HXN= 312X, 3HXNE)

CONST2=( ZMUAG / ((2. ODO*PI)**B*HBAR)J*(ZNUZG/HBAR)

DO 115 I=1,IN

CALL DOSPN _

XNZP(I)-CONSTZ*(PUZPC(I)/PUO)*JZJLP(I)*THGX(I) ,
XNZN(I )=CONST2%(PU2NC (1) /PUO) *J2 JLN(I ) #T HOX ( I)
wRITE(6,129)EII3N(I)'THG(I)aDELTR(I),P(I)1ELAB(I),DEL(I)yPD(i),
1XN2N(I),XN2P(I) '

129 FORMAT(1H yF6e345X91PD10e392Xy1PD13.5 ,zx,1PD13.s,zx,OPFa.a,sx,1Po1
136593X9D 136590160 692X 4D1666) : L

115 CONTINUE

WRITE(6,125)R04AB,Al ,CCNST2, PUO ‘

125 FORMAT(1H 3HRG=31PD12e4 y4H(CN) 35X,2HA=,1PD12, 4:4H(CM),5X,3HA1‘,1P !

1D126494H{CM) 45X, THCONST2=, D135 45X 94HPUC=, D13¢5)
WRITE(€,126) ZM2A JHBAR yCC 9 ZKZI
126 FORMAT(LH ,5HZM2A=9F1148,5H{AMU) 45X ySHHBAR= 3 1PD11e4y 9H( ERG=SEC ), 5X-




IV 6 CEVEL

5x SHZKZI=,D11s4)

S MRITE(6.604 Mu,e11 G S
604 FORMAT (1H' ,4HxMU-,1pD13.5;4HE11=, PD13+5) |
G DO 60 I=lyIN ¢ SRR
. WRITE (6,600)0D(I) -
600 FORMAT(1H. 911?015.5))
601 CONTINUE - |
4 60 701000 -
CEND

AL MEMDRY REQUIREMENTS 002‘*‘32 BYTES




,;; fe,x6(s1),x7(51
 T9F3PA5L) F3N(S

 12R,P2p(51) P2N (51
g i2.T2N(51),T3P{5Ll

01/01/14

B DOUBLE PRECISION AG,ElvAG ¢A(51 8(51)1C(,1'
1T1,ZMO,ZMT,ZM1yZMZ,ZMB,EX,EO PG,RCUT,PI,AGM‘_A‘W;
~ZZMlG,ZMZG,ZMBG,ZMGQT,TG,TZP,T2N1T3P'T3N1VC" G
3P2NC +P1C9E1Ll.y:'Z9PI 4ROy Al,LEy" XMUSEI13 Ny ERGME

: BARj EL
~ 4PUD JELAB  THOX y J2JLN+CC s THO3P5 POy DEL,DELTR,AB; M13,ZM2352M12,
SI12P+EI12N,EIL3Py . . HI51) 4E2PoSQP3P .- yE3P,E2N,SQP3N" |, i
6R2N'SZN1U2N7ZMUIG.ZMUZGyZMUBG,ZKZIyDDsZKlleyPII'DELT 14ZMOG.
A DOUBLE PRECISION Ql12,Q1- 9029Q39Q4705,C“61079Q89Q91P2C3P1P2.C3N’QIO:
»1Q11,Pu1c,v3Nc.Rzpy<2P,u2P,JZJLP,cz,c1p,c1N.c39,c3N o 2
2,C1,C4,C3, F1,s1,FzP,FZN.GZP,GZN,x1,xz,x3.X4,x5,xe,x7,xa.X9,x10

34F3P4F3N,G3P ,G3N,PL2PC o

EL(I)=T1(I)+2ZM] "

PL{I)=DSQRT(EL (I)#*%2~ ZMI**Z) _
A(I)=P1l(I)*DCGS(AG)~-PC*DCAS(AG2R)

B(I)= PD**2+P1(I)**2+ZN3**2—2.0DO*PO*P1(I)*DCGS(AGIR)

CUI)=ZM2%*2+ (ZNT+EC-EL (I )}—EX) **2-B(I)

D(I)=-2,0D0* (ZMNT+EC~EL (I )—-EX)

FUI)=4eCDO%A (I)%*%2~D (I)%%2

G(I)=—2,0D0%C{I}*D{I) = =

HOI)==44 0D O%A (1) #%2%ZM2%42-C (1) #42

ROOTUI) =G (1) #%2=4q OXF (I *H (1)

IF (ROCT(I))1424+2 '

E2P (1) =(- G(I)+DSQRT(G(I)**2-4.0DO*F(I)*H(I)))/(2 0DO*F{ 1))
T2P(1)=E2P(1)=-ZM2

IF (T2P{1))3244,4 Co

P2P (1)=DSQRT(E2P () %%2~ZM2#%2) :

SQP3P (I )=PO**2+PL (1)**2+P2P (1) *%2~2,0D0%P0%*(PL{ I)*DCOS(AGIR)+P ZP (I
1)%DCOS(AG2R ) )+ 24 0%DO*PL (1) %P2P (1) #DCOS ( AG)

P2P(1)=DSQRT(SQP3P(I))

E3P(I)=DSQRT(SQP3P (I)+ZM3%*%2)

T3P(1)=E3P(I)-ZM3

BASE3P(1)= =SNGL ((PC-P1 (I)*DCOS (AGLR)~P2P(I)*DCOS(AG2R) }/P3P( 1))

IF (ABS(BASE3P(I1)-1+0)545,6

AG3RP (I)=ARCCS(BASE3P(I))




AL MEMORY REQUIREMENTS 001A2A BYTES

.PZN(I)**Z-Z.ODO*PG*(Pl(I)*BCOS(
)*PZN(I)*DCCS(AG) e

‘5,'P3N(I)~DSQRT(SQP3h(I) e
. E3N(T)=DSQRT(SQP3NAT )+ Z¥3%42 L |
U UTINCIV=E3N(T)—2M3 SO S G
%BASEBN(I)—<NGL((PG—P1(I)*DCGS(AGIR) PZN(I)*DCDS(AGZR))/P
I (ABS(BASESN(I))-1,019,9,00
NAI)=ARCOS(BASE3N(I))

A { “AGBRN(I)*57.2957795 e o ‘ '
‘BPHIBN(I) =SNG L (- P1(I)*DSIN(AGIR)+P2N(I)*DSIN(AGZR))/(PBN(I)*DSIN(
: 1DBLE(AG3RN(I))))D S :
10 IF (ABS(BPHI3NII))~ 1-0)11111:1
11 PHIBRN(I)-ARSIN(BPHIBN(I)) T
~ PHI3DN(I)= PHIBRN(I)*57.2957795

1 RETURN

END




U 3(51),P1E(51) 5
4DELT(100)5PU2NC

3 f6EI13P(511iETl2Pl51135r12N(h..;,, : e
~ TAGLD,AG2D yAG3RP(51) yAG3RN(511 5 AGIRC (51
. BAG3DP (51) yAG3DN(51),,BASE3P(51) yBASES N
 9AG'2RPC ( 5]):5AG |
- DOUBLE PREC:

2ZM2G yZM3G'yZMGO T, 1
3PL1C,ELls ZyPIsROy . Al,

'1ch39,P2c3N;Q1osRuLc;v3~c;azp,szp;u Py J2ULP, Py C G2
__”2:C1,C4:C3,FLoGI,F2P152N5GZP,GZN7X13X2i¥338§bX5jX6,XJjXB1X9ixlﬂ

. 1R,P2P(511,P2N
T r29T2NU5L) T

I 14

P15

5P{51)§PDl§l)hDEL(51)§Dﬁ (51)9AG

51)4E1(51) ,E2

3; 3RNCf5IlﬁIIN?LN}Iﬂi
meQNfCZQQ:@chRQ~ R .
.zlﬂiiEXyEﬂ}PﬁiRQU;magg,$-:,. f P9 P2Ny P3P, P3Ny ZM 16
-M69311G512P3T2N3T3P5T3N3VCN MGy PLC3P,yP2PCy.P1C3N, P 2NC;
. Z,PLaRO, ALy XMU,ELL3N, ERGNEV; HBARs DELT, PUSNG, v B0
AELAB,THOX1J2JLNICC3THO 184 PD DEL y DELT Ry AByZML3,7M23, ZM12,AEs -
CRa2iEI12PaETLANSEIL3PACIN = C3P - JC3N . ,EL,E2P, E2N,E3P)

1ZMTyZML.5ZM;

Caun L ENaU2N s ZHULG  ZMU26 ¢ ZMU3G 1 ZKZI,DD4ZK14D1,PL1, DELTAL, ZMOG -
DOUBLE PRECISIGN SQP3P,SQP3N+Q124Q11,0Q1,0Q29Q3,Q4,Q5,Q6, Q75285 Q5

U2P9J2ULPy (2, CLPy CINy C3P,G3N .

3+1F3P,F3N;G3P,G3N,PL2PC. =
IF (ROOT(I))20421,21

X1(I)=PL(I)**2+PO¥%2 S

X2(1)=2,0D0*PO*P1 (1) *DCGS(AGIR).

"C2(I)=DSQRT(XIII)4X2(I)+ZM23#*21

20

X3(I)=PO%*2+P2P (])**2
X441)=2,0D0%P0*P2P (1)*LCOS(AG2R)
ClP{I)=DSQRT(X3(I)=X&4(I)+2Nl 3%%2)
XS5(1 )=PO%*%2+P2N(I) *%2
X6(1)=2,0D0%PO%*P2N(1)*DCCOS(AG2R)
CIN(I}=DSQRT(X5{1)=X6(I)+ZN] 3%%2)
XT(I)=P3P () *%2+pPO**2 ,
XE(I )=240D0%PO*P3P(I)*CCS (AGIRP(I))
C3P(I1)=DSQRT(XT{I)=X8(I)+ZML2%%*2)
XG(I)=P3N(I)*%2+pPO**2
X10(I)=2.,0D0%PC0*P3N(I)*CCS(AG3RN(I))
C3N(I)=DSQRTIXS{I)-XLO(I)+ZM12%%2)
EI23(Y1)=EQ-EL1(I)-C2(I)+2ZMT
EIL13P(1)=EOQ-E2P(I)-CLlP(I)+ZMT
EIL3N(I)=EQ-E2N(I)~CLN(I)+2ZNT
EI12P(I1)=EC-E3P(I)=C3P(I)+2ZMT
EIL2N(I)=EC~E3N(I)=C3N(I)+ZMT

RE TURN

END




. uAgSP(SI)1PD(51)QDEL(51190ELTR(51)QAGy CIMIBZ M2 ylMlZl 9
.,Ef6EIl3P(51)1E112P(51),EIIZN(SI)yE1(513vEZP(51):EZN(51) 3p
i ﬂ7AGlD,AGZD,A63RP(51)aAGBRN(Sl)1AGIRC(51)1AGZRPC(51’QAGZRNC'. D2

f*iSAGBDP(Sl’,AGBDN(SI)’BASEBP(SI)QBASE3N(51)QBPHIBP(51”BPHI3N(

. 9AGBRPC(51)’AG3RNC(51)QIIN$IN,I

~ .- DIMENSION AGIDC(51)1AGZDPC(51),AGZDNC(51)1

Rt 1AGBDPC(51),AG3DNC(51)

. 21C3N,P2C3N’ 9P2C3P ,':PICZP(SI),PlCZN(BllvVIC(Sl)oPUIC 1E + 
,3yAG1R,AGZR,P2P,P2N,P3P P3N+ZM1G+ZMN26G,ZM3GyZMGOT 9T 0, TZP,TZNoTBPyT3N 
4yVCMyZMG4P1C3P ,P2PCy P1C3NyP2NCyPLCyELLly Z,PI4RG; AlleqXMUyEIIBNyght

‘*2.72N151),739(51).13 (51

3P 51)yP3N(51)vZMlG,ZMZ

,puo;ELAststi}THt

DOUBLE: PRECISIUN C19C49C39F1 : 1F2P“ﬂU1F2N : w‘h
162N . gF3P. - 3 F3N - 7 9G3P . 363N 9P3PC(51)9P3NC(5

:,SERGMEV,HBAR,DELT,PUZNC,VG,PUC,ELAB,THGX'JZJLN,CC,TPD.P,PD,DEL,

SDELTR, . ZM13,ZM23,ZM12, . EI23,E112PyET12N,EIL3P;V2PCI51), VNCISL ©

7)9PU2PC ",1V3PC(51),V3NC [ .9PU3PCI51)yPUBNCI51)5GL . ,Q1 X

BZMOQZMT ZMI92M21ZM31EXQE01PC1RCCT1P11AB,EBN E1052P952N1E3P,Q2
9Q39Q4’Q57Q69Q77Q8’Q91010’Q11

?

DOUBLE PRECISION R2N,S2N,U2N,Ql2 .zwu1e.zuuzs.znu3c,zle,uo,ZK1 
lleyPll,DELTAl,SQPBPvSQPBN,RZP,SZP,UZP,JZJLP,CZ,ClP,ClN,CBP,CBN

"29X19X29X3 9 X4 9X59X6 9XT 9 X8 9X9 9 X10 o ZMGG

21

E4

g3

[SVIIN)
N

[

16

C1=DSQRT(ZM1G)*D SQRT(ZMGG*TQ) /ZMGCT
C4=DSQRT{ZM2G)*D SQRT (ZMOG*TC) /ZMGCT
CB‘DSQRT(ZMBG)*DSQRT(ZMGG*TG)/ZMGCT
IF (ROOT(11)3C,31,31
FLOI)=DSQRT(TL(I))*DCCS{AGLR)-C1

Ql2(1)=T1(1)-2, ODG*CI*DSQRT(TI(I))*DCUS(AGIR)+C1**2
IF(QLl2(I))83,83,¢84 .

GL(II=DSQRT(Q12(I))
AGIRC(I)‘ARCUS(SNGL(FI(I)/Gl(I)))
AGLIDC(I)=AGI1RC(I)*57.,2957795

F2P(1)=DSQRT{T2P (I)) *DCGS (AG2R)-C4& ‘
F2N(I)=DSQRT(T2N(I))*DCOS(AG2R)~C4%

QL{I)=T2P (I)~2,0D0*C4*DSQRT(T2P (1)) *DCCS (AG2R)+C&*%2
IF(Q1(I))32,33,33

G2P(I)=DSQRT(QL{I))

Q2(1)=T2N(I)- 2.0DO*C4*DSQRT(T2N(I))*DCCS(AGZR)+C4**2
IF(Q2(I))34,435,35

G2N(I)=DSQRT(Q2(I))

IF(G2P(I)) 75,175,176
AG2RPC(I)=ARCOS(SNGL(F2P(I)/G2P(I)))




___-»,,,‘:‘-,G:RNC(I)‘ARCU A4S "GL(FBN(I)IGBN( aR}

80 AG3DPCI(I )-—AGBRPC (1)%5742957795 _
- "AGBDNC(I) =AG3RNCUI)*5742957795 - R E

. _05(1) (Plil)*Z)**Z*’(ZMIG*VCM)**Z—Z.ODO*PI(I)*l*ZMl *VCM*DCGS

o 1F(Q5(I))60y61,61 - v o
"61 PlC(I)”DSQRT(QS(I)) B ' ‘ Tl T
€60 Qe(l)= (PZP(I)*Z)**2+(ZMZG*VCN)**Z-Z.ODO#PZP(I)*Z*ZMZG*V
CAR) ; , S
| IF(Qe(I))ez,ea,ea . R |
63 PZPC(I)'DSQRT(QZ(I)) S ' . s RN
€2 07(1) (PZN(I)*Z)**2+(ZNZG*VCN)**2—2 ODO*PZN(I)*Z*ZMZG*VCM*DC_'””} g
o IR) g€
1F(Q7(1»;e4,65.65 , i o
65 P2NC(I)-DSQRT(Q7(I)) S L ' S
64 Q8(1)= (P3P(I)*Z)**Z*(ZNBG*VCP)**Z-Z ODO*PBP(I)*Z*ZMBG*VCM*DBLE(CDS{’?
1(AG3RP(I)}) _ , _ TR e
IF(Q8(1)) 66567467 : D
67 P3PC(I)=DSQRT(CB(I)) ' R ' '
66 Q9(I)= (P3N(I)*Z)**2+(ZN3G*VCN)**2—2 ODO*PBN(I)*Z*ZMBG*VCM*DBLE(COS ,
1(AGBRN(I))) . o
IF(QS(1))€8465,66 ‘ ,
6S P3NC{I)=DSQRT{QS(I)) : SR
68 P1C3P(I)—DSQRT(PIC(I)**2+(ZN1G*PZPC(I)/(ZMIG+ZMZG))**2+2.0DO*P1C(I
L)*%P2PC(1)%* (ZM1G/(ZM2G+ZMLG)) *DCOS (AGLRC( I)+CBLE{ AGZRPC( 1))} ).
P1C3N(I)-DSQRT(PIC(I)**2+(ZMIG*PZNC(I)/(ZM1G+ZMZG))**2+2.0DO*P1C(I
1)%¥P2NC(1)* (ZM1G/(ZNM2G+ZM1G)) *DCOS (AGLRC(I)+CBLE(AG2RNC(I))Y)
P2C3P(1)=DSQRT(P2PC(I)*%2+(ZN2G*P1C(I)/ (ZM2G+ZM3G) )% *242,0D0%P 1C{ I
L)*P2PC(I)*(ZNM2G/(ZM2G+ZM3G)) *DCOS (AGLRC(I)+DBLE(AG2RPC(1))9) o
P2C3N(I)=DSQR Y(P2NCAI)*%2+ (ZN2G*P1C(I)/(ZM2G+IM3G))%**242,0D0%P1C(1
1)%P2NC{T)%* (ZM2G/(ZM2G+ZM3G) ) #DCOS (AGLRC(I)+CBLE(AG2RNC(I)))) =
QLO(I)=ZMI1G*%2%P2PC (1) %*2+ZM2G**2*%P1C( 1) *%2~ 2.0DO*ZM16*ZMZG*P2PC(IQ
1)*P1C(I)*DCOS{AGLRC(I)+DBLE(AG2RPC(I)))
IF(QLO(I))7C,71,71
71 P1C2P(1)=(1.0DC/(ZN1G+ZN2G) ) *DSCRT(QLO(1))
70 QLI(I)=ZMLIG*%2%P2NC (1) *%2+ ZM2G**%2%P1C (1) *%2-2, ODO*ZMIG*ZMZG*PZNC(I-
1)*P1C{I)*DCOS(AGLRC(I)+DBLE (AG2RNC(I)))
IF(QL1(I))72,73,73
73 PLC2N(I)=(1.CDC/(2ZM1G+2ZM2G) ) *DSCRT(CLL(I))
‘ 72 VIC(I)=P1C(I)/ZM1G




AN - IV c LEVEL 1y MDD 1 - LABCMT.
..iPu1c«1) zuuxe*"
L V2PC (T)=P2P IM26
%‘eVZNC(I)-PZNC(I}IZMZG;
“ PU2PC (1)=ZMU2G*V2PCH
7. PUNCII)=IMU2G*V2NC
1 /VEPC(I)=P3PCAIN/INIG = - -
“V3NC(I)=P3NC(L)/ZIM3G = -

 PU3PC (I)=V3PC (1N EZMU3G

| ;4ﬂ:;;PUBNC(I)-VBNC(I)*ZMUBG
. 30 ,RETIRN
RN

AL MEMGRY REQUIREMENTS OOZAFC BYTES :_'




. 3Q10(51),011451)5PU
. 4),C2(51) ,CIP(51);CY

 64X6(51)4XT(5L)5X8(
. 14F3P(51) 4F3N(51).,6

" 12R 4P2P (51) 4P2N(!

'”9AG3RPC(51),AGSRNC(SI),IIN,INgI

”SUBROUTINE J2aL
27 COMMON ‘R2N(51) 5S2N
" 1D14P11,DELTAL,5QP3
- 2Q4(51)4Q51(51) ,Q

S5F2P(51) yF2N(51) 4G2P (5

" COMMON TL(51)y2ZMC

. 29T2NL51) 4T3P(51)
3(51)1P1C(51’9511’A
4DELT(100) y PUZNC(51);
5P(51) ,PD(51) 4DEL (5L
6EI13P(51),EI12P(51) ‘ ; : E3PL5 :
,7A610,A620,A63R9451J, GBRN(SI).AGIRC(BI) AGZRPC ',J,Aszanctsli,
8AGBDP(51)vAGBDN(SlI&BASEBP(SI),BASEBN(BI),BPHIBR(Sl),BPHIBN(51)

DOUBLE PRECISIGN QZZ'RZP,SZP;ZME,ZMTsEyv Fa o .
,'1ZM1,znz,zna.Ex,Eo.Pc,RnoT,Pl,AGlR,AGzR,PzP,PzN,Pap,93N,1M1e,znzg,d;ﬁn
- 2ZM3G+ZMGOT 1 TO» T2P s T2Ns T3P yT3INVCM4Z MG,y PLC3P yP2PC,P1C3Ns P2NCyPLC,

3Z4P14R0sALIELL, XMU,EI13N;ERGMEV yHBAR , DELT, PUZNC,V 07 PUDSELABS THOX, -

&4J2JLN9CC,THD,P9PD’DEL10ELTRyA692N13yZMZB,ZMIZyE1231E113995112P1T1,4£5
.5E112N1AB,EIyEZP,E2N9E3P9E3N1U2P,J2JLP' o iy
]6R2N152N1U2N,ZMUIG,ZMUZG’ZPU3G1ZKZI9DDvZK1101splloDELTAl ' Coan

DOUBLE PRECISION: SQP3P9$QP3N,Q12le1QZvQ31Q41Q51Q61Q79Q89Q91P2C3Pqﬂ”
1P2C3N1Q10yQ1199U1C V3NC1CZyClP,Clh,C3P,C3N,X1,X2,X3,X4,X5,X6,X7,
ZXB’XQ'XIOQCI 1C4 ,C3 ,F]. 2G1 1F2P aFZN'GZP,GZN,ZMUC S
39F3P 4F3N+G3P»G3N »PU2PC

IF (ROOT(I))40141941

41 Q22=IMG/IM2G A
- R2P(1)= (PI(I)*Z/PICBP(I))*((PZP(I)*Z)**Z/PZPC(I))

R2ZN(I)=(PL(I)*Z/PLC3N(I))*((P2N{I)*Z)%**2/P2NC(1))

S2P(I)= (((ZM2G+ZM3G)/ZMZG)*PZPC(I)+P1C(I)*DCGS(DBLE(AGIRC(I)+AGZRP
1CLINNN Y/
2PC (1)) )) :

SZN(I)=(((ZM2G+ZN3G)/ZMZG)*PZNC(I)+P1C(I)*DCUS(DBLE(AGIRC(I)*AGZRN
1C(I))) )/ ((ZMLG/ (ZM1G+ZM3G) ) *P2NC(TI)+P1C{I)*CCOS(DBLE(AGLIRC{ I)+AG2R
2NC(TI))))

o uz2p(1l) =1, ODOI((((ZNZG+ZM3G)/ZNZG)*P2P(I)*Pl(I)*DCGS(AC1R+AG2R)-PO*
IDCOS(AG2R) )*2)

U2N(I)= 1.000/((((ZNZG+ZMBG)/ZN2G)*PZN(I)*Pl(I)*DCOS(ACIR*AGZR) -PO*
1DCOS(AG2R) )#%2)

J2JLF(I)= R2P(I)*S2P (1) *U2P(1)*Q22
J2JLN(I) = RZN(I ) *S2N (1) *U2N(1) *Q22
40 RE TURN -

END

AL MEMORY REQUIREMENTS Q0C51A BYTES

((ZMIG/(ZMIG+ZMBG))*PZPC(I)+P1C(I)*DCOS(DBLE(AGIRC(I)+AGZR' |



_4JzJLN.cc THO,PyPD}DEL,DELTR,A 2M1392M23Q2ﬁ12,EIZB;EIIB@,EZ“Z
" SEIL2P,ZK(SL), ' E1,E2P.E2NGE3P,E3N,E4AG,D0, '
| 6R2NyS2N:UZN, ZMULG » ZMU26 5 ZMU3G 4Z HCG

" DOUBLE PRECISION sqpap,sop3N,o1z.c11,o1,c2,03.04.05,06,Q7,Qa,09,*inQ
1P2C3P yP2C3N3Q10,PULC s VBNC yR2P 9 S2P U2 Py J2JL Py C2,y CLPy CINy C3P5 CIN -

'2,X1,X2,X3yX4,X5'X6gX7,X8gX9,XIO9Cl,C49C3,F1,Gl,FZPyFZN,CZP,GZN

34F2PyF3N,63PG3N,PU2PC

L ZK1= (DSQRT(Z.ODO*XMU*EII))IHEAR

Dl=-1, ODOIAB+5.0D—1*RO*ZK1**2
DELTA1=DATAN(ZK1/Dl)

- P1l1=ZK1*Al

52
51

ZKZI-DSQRT(Z.ODO/AI)*DSIN(DELTA1+P11) -
cC= (Z.ODOIPI)*(XMU/HBAR)*(Al/ZKZI)*(I.ODOIHBAR)*(l.ODOIZKZI)
IF (ROOT(1))50452,52 , |

IF(E(1)=0s8D1)51 453,53 |
ZK(1)=(DSQRT (2, 0DO*XMU*E (1) *ERGMEV) ) /HBAR

DD (I)=—1,0D0/AB+5, 0D-1%RO*ZK (1) *%2
DELTR(I)=DATAN(ZK(I)/DD(I))

PUI)=ZK(I)*Al

THOX(I)=CC* (DSIN(DELTR(I)I+P(L)) ) %*2/P (1)

THO{I)=THOX(I ) *ERGMEV ‘

ELAB(I)=24C0DO*E(1)

DEL(I)=DELTR(I)*54 7255779501

PD(I)=P(I)*5,72957795D1

G0 TO 50 |
ZK(I)=(DSQRT (2, 0D C*XNMUXE (1) *ERGMEV) )/ HEAR

PI)=ZK(I)*Al

J=E(1)

IF(SNGL(E (1)) -FLOAT (J) =00 5)54 955,55

KK=E (1) -

GO TO Sé




AN IV G LEVEL 11 MOD 1

f55 KK E(I)

':6,DELTR(IJ—DELT(KKJ*I.745220—2
- DEL(T)=DELT(KK) . = -
i THOX(1)=CC* (DS .(DELTR(I)+P(I)))**2/
 THO(IV=THOX{I)*ERGMEV ,
C ELAB(I)=2.0DO%E(I). =~ -
v'f»;&~PD(I)-P(I)*5.72957795D1 o
/50 RETURN" AT i
 ’uEND B

AL MEMORY REQUIREMENTS 000798 BYTE<
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