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The waveform relaxation method is a very efficient and reliable method, it has been
widely used in several fields including circuit theory, for solving large systems of
ordinary differential equations as well as partial differential equations. The con-
vergence rate of the classical waveform relaxation approach is not uniform over
the time interval for which the equations are integrated. A new approach called
the optimized waveform relaxation approach was proposed with a remarkable and
great improvement in the convergence behavior by introducing new transmission
conditions. Here, we continue the work done on the optimized waveform relaxation
by extending previous results and trying to get a better performance as well as a
more general optimized waveform relaxation approach. We use two RC circuits to
illustrate the theory and the performance obtained by improving the convergence

behavior of the new algorithm.



La méthode de relaxation d’ondes est une approche trés efficace et fiable: elle est
utilisée avec succes dans plusieurs domaines (comme en théorie des circuits par
exemple) pour résoudre des systémes d’équations différentielles ordinaires, ou aux
dérivées partielles, de grandes dimensions. Le taux de convergence de la méthode de
relaxation d’ondes dite classique n’est pas uniforme sur Vinterval de temps sur lequel
les équations sont intégrées. Une nouvelle approche, appelée relaxation d’ondes op-
timisée, a été proposée qui améliore de fagon remarquable les propriétés de con-
vergence en introduisant ce qu’on appelle des conditions de transmission. Ici, nous
continuons le travail accomplit sur la relaxation d’ondes optimisée, en ayant pour but
d’obtenir une meilleure convergence ainsi qu’un algorithme plus général. Nous util-
isons deux exemples de circuits électriques RC pour illustrer la théorie et démontrer

Pamélioration de la performance.

i



First T would like to thank my supervisor, Prof. Martin Gander, for his help, guid-
ance and advice during the work on this thesis. Without his contribution and insight,
this humble work would not have been done. I wish to express also my gratitude to
Prof. Nilima Nigam and Paul Tupper who provided the encouragement and sugges-
tions. I am thankful to all professors, staff and students in the department. Special
thanks to my friends, Martin Caberlin, Charles Fortin, Olivier Dubois, Mohammad
Al-Odat, Evridiki Efstathiou, Ronia Bitar and Juan-Manuel Perez-Abarca for their
valuable discussions. Many thanks to my pafents, brothers and sisters from whom

I have been away during my study, for their support and encouragement.

il



Abstract i

Résumé il
Acknowledgments iii
Introduction 1
1 A Small RC Circuit Model Problem 5
1.1 The Classical WR algorithm . . . . . . ... .. ... ... .. ... 6
1.2 The Optimal WR algorithm . . . . ... ... ... ... ... .... 8
1.3 Numerical Experiments . . . . . . . . ... .. .. 15
2 The Large RC Circuit ’ 18
2.1 The Classical WR Algorithm for the Large Circuit . . . . . . . . . .. 19
2.2 The Optimal WR Algorithm . . . . . . .. ... ... ... ... ... 21

2.3 The Optimized WR Algorithm with Constant Transmission Conditions 22
2.4  The Optimized WR Algorithm with First Order Transmission condi-

2.5 Numerical Experiments . . . . . . . . . ... Lo 35

Conclusions 27



Usually in real life applications we have very large systems of Ordinary Differential
Equations (ODEs) and Partial Differential Equations (PDEs), such as those large
systems which we obtain from large circuits. Applying traditional numerical tech-
niques to such systems can be quite time consuming. In the circuit domain, many
circuit solver methods were introduced [6, 26] but the circuit simulation using these
methods takes too much CPU time and too much storage to analyze a circuit. Pi-
card discussed in a paper published in >1893, [23], iteration methods to study Initial
Value Problems (IVPs) for systems of Ordinary Differential Equations, and Lindelof
showed in a paper that was published in 1894, [14], the super-linear convergence on
all finite time intervals of the iteration methods that were discussed by Picard. In
the quest for improving the efficiency of the numerical techniques and to speed up
the solution of these large systems, the waveform relaxation methods (WR) were
proposed to first use some continuous-time iterations (Picard-Lindel6f iterations) to
decouple the large system and then discretize the resulting subsystems.

The Waveform Relaxation methods were first introduced by Lelarasmee [10]
and Lelarasmee, Ruehli and Sangiovanui-Vincentelli [11] for time-domain analysis
of non-linear dynamical systems, in particular, large-scale integrated circuits. The
basic idea in these new methods is to apply relaxation such as the Gauss-Seidel
and the Gauss-Jacobi relaxations [22] directly to the system of non-linear differen-
tial equations describing the circuit. As a consequence, the system is decomposed
into decoupled subsystems of differential equations corresponding to decoupled dy-

namical sub-circuits. Each decoupied sub-circuit is then analyzed for the entire



simulation time interval by integration methods, like the backward Euler method,
to obtain subsystems of non-linear algebraic equations and Newton-Raphson itera-
tions to linearize the subsystems of the non-linear algebraic equations. The solutions
to the sub-circuits are used to update the solutions of neighboring sub-circults in an
iterative fashion.

For instance, if we consider the initial value problem for systems of ordinary
differential equations

y(t) = Ft,y(t), ©=to,
y(to) = Yo,
then the continuous-time Waveform Relaxation iterations using the Gauss-Jacobi
relaxation is
Yt () = Filt i (1), -y @, 37 (0, wEa (), un(),
yf“(ti)) = Yo,i>
1=1,2,...,m, t€lt,T], k=0,1,...

A good study and survey of this technique with emphasis on simulation of
Jarge-scale electrical circuits was written by White, Sangiovanni-Vincentelli, Odeh
and Ruehli [28]. Many circuit solvers and experimental solvers have been built based
on the Waveform Relaxation technique e.g. [1, 27].

In practice one is interested in the best way of subdivisions which yields
fast convergence for the iterations. Depending on the way of partitioning, most of
the work on the Waveform Relaxation methods was concerned with convergence,
error estimation, acceleration of the convergence of iterations and implementation
advantages in a parallel computing environment.

The convergence of the Waveform Relaxation methods was analyzed in [11},
it was shown that the Waveform Relaxation would converge in the continuous-time
domain from an arbitrary initial guess if every node was connected by a capacitor
to ground. Later, weaker requirements for convergence of the Waveform Relaxation
methods were found by Zukowski [29] and by Desal [2]. The convergence theory of

the Waveform Relaxation methods was founded on a mathematical basis by Nevan-



linna and his co-workers [15, 16, 17, 18, 19], and related results were also found by
Lie and Skalin {13]. A new method for the analysis of the convergence properties of
the Waveform Relaxation methods was derived by Gristede, Ruehli and Zukowski
[5] with new sufficient conditions for the convergence which are less restrictive than
those of [2, 11, 29].

In this work we will continue the work on the Waveform Relaxation meth-
ods in the circuit domain that was done by Gander and Ruehli [4] in which a new
class of methods was introduced which improves the performance over the classical
WR algorithm with little computational overhead. These methods are called Opti-
mized Waveform Relaxation algorithms since they include an optimization process.
The optimization concerns the transmission conditions from each subsystem to its
neighbor subsystems. It was shown [3] that the convergence would be much faster if
additional derivative information is exchanged in the transmission conditions. Since
the classical Waveform Relaxation algorithm exchanges only nodal voltage values
in the transmission conditions from each subsystem to its neighbor subsystems, the
resulting convergence can be very slow and is non-uniform over the time interval for
which the equations are integrated. Gander and Ruehli [4] proposed new transmis-
sion conditions which transmit a combination of voltages and currents. By these
new transmission conditions the method becomes faster and the overall convergence
becomes much more uniform in few iterations which means a faster and nicer con-

vergence over the whole time interval.

Here, we follow the same approach as in [4] i.e., we exemplify the application
of the new approach to the RC circuits but we extend the results by introducing
first order transmission conditions to get a faster convergence than in [4]. Also, we
prove the optimality of the constant transmission conditions proposed in [4]. The
analysis of the small RC circuit shown in Figure 1.1 is the first part in this work
and in the second part, we analyze the large circuit shown in Figure 2.1, which leads
to larger subsystems correspondihg to larger sub-circuits and shows that the size of

the circuit does not affect the convergence of the optimized Waveform Relaxation
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algorithm.

It is worth saying that, the convergence of the classical Waveform Relaxation
methods for RC type circuits was shown by Nevanlinna [20] and this type of circuits
has been investigated for the classical Waveform Relaxation algorithm by several
researchers e.g. [5, 7, 8, 9l.

This thesis is organized as follows. Chapter 1 describes the small RC circuit,
contains some analysis and results for the convergence of the classical WR and the
optimized WR. as well as a detailed derivation of the exact conditions for the best
convergence of the optimized WR and ends with a numerical experiment. Chapter
2, similar to the small circuit, describes the large RC circuit, includes some analysis
and results for the convergence of the classical WR and the optimized WR as well
as a detailed derivation of higher order transmission conditions for the optimized
WR for a better convergence. We end this chapter also by a numerical experiment.

Finally, we give the conclusions.



The equations for the small RC circuit, Figure 1.1, can be derived as follows [21].
The relationship between the current, 7, and the voltage, v, through a resistance, R,

is given by I = %, which is known as Ohm’s law. The current through a capacitor,

dv

. B . QH
C, is given by I = C% where

is the derivative of the voltage with respect to the
time, #. At each node in the circuit, the algebraic sum of all the currents equals
zero, i.e., we have » I; = 0 which is equivalent to )_ (entering currents) =
5" (leaving currents), and this is known as Kirchhoff’s current law, where the
voltage is measured in volts, the current in amperes, the capacitor in farads, the

resistance in ohms and the time in seconds. For example, at the first node z; we

have

. Zy (m —502)
I, =Cz — 4 ——
171 + R + 7

X1 Rl X2 R2 X3 R3 X4

I. TR VWAV TTWAN WA
¢¢%!C1lC2]C3IC4

Figure 1.1: A small example RC circuit.



after some calculations

VRIS NS I B
— j—F —
T RIGT T RO

5

Ty = ok

and at the second node we have

(zg — 1) N (22 — x3)

Cotg = 0,
I R,
which implies
. 1 ( 1 i ) 1 4 1
X T — Ta.
ORI R TR G OR”

The equations at the other nodes can be found in a similar way, hence the circuit

equations are of the form

b
a; by ¢
g=| 0 7 xz+ f. (1.1)
ay b3 c3
a3 b4

The entries in the tridiagonal matrix are given by

where the resistor values R; and R, and the capacitors (] are strictly positive con-
stants. The source term on the right hand side is given by f = (I.(t)/C1,0,0,0)"
for some source function I,(¢) and we are also given the initial voltage values

x(0) = (29, 03,23, v§)T at the time ¢t = 0.

1.1 The Classical

algorithm

We partition the circuit into two sub-circuits or subsystems and we call the unknown

voltages in subsystem one u(t) and in subsystem two w(?). So the two subsystem

6



solutions satisfy

N
. bi f G
% = 2 - -+ ,
K by | J2 Cotiy (1.2)
by e3 /3 oWy
w o= w + +
R by | fa \ 0

The transmission conditions for the classical waveform relaxation are
U3 = Wy, Wo = Uy.

By relaxing those transmission conditions we get the classical WR algorithm,

aftt = b a wkt! 4 fi + 0 ’

@ by | fo 021011; (1.3)
Wt = by cs wh+l L fs N ’

L as b4 | f4 0

with corresponding initial conditions w*1(0) = (¢9,29)T and w*+1(0) = (v9,0))".
To start the WR iteration, we need to specify two initial waveforms u3(¢)) and w?(t)
for t € [0,T], where T is the end of the transient analysis interval. The Laplace
transform is used for the convergence study of the linear circuits. Actually, the
Laplace transform plays a significant theoretical role in applied problems because
of its versatility. It is often possible to find a desired information about a problem
from the Laplace transform without finding the solution. The Laplace transform
leads to a better understanding of a problem or an easier method of solution, it is
used as a tool to solve (ODEs) as well as (PDEs). The Laplace transform for z will
be denoted by & : #(s) = f;° e *z(t)dt, s € C. The Laplace transform of & is given
by L(2) = s& — z¢ where zo = z(0), and more generally, the Laplace transform of
20 is given by L(z™) = s"% — s7 'z — s" 2 — ... —x ). The analysis of the
Classical WR algorithm is discussed in [4], it was shown that 42 = (pg.)" 43 and
sk

E ~o
W = (pa,)" W] with the convergence rate puq

co(s — by) ' as(s — by)
5 — bl)(S — bg) — Q1C1 (5’ - bg)(s — b4) — CLgCg’

Pea(s,a,b,c) = ( 5 =o+iw. (1.4)

7



Figure 1.2: Convergence rate as a function of w for the classical WR algorithm

applied to the small RC circuit.

For convergence we need that |pu.(s, a,b, )| < 1 for R(s) > 0 and for fast conver-
gence the modulus of py, should be much smaller than 1, |pg.| << 1. But pg, is a
fixed function of the circuit parameters in the classical WR algorithm as is evident
from (1.4). Thus the algorithm does not have any adjustable parameters like the -
optimized WR algorithm below. The convergence rate is different for different val-
ues of s € C in the frequency domain, and the classical WR algorithm converges at
different rates with different values of the time . An example for the convergence

rate as a function of w is given in Figure 1.2.

1.2 The

)ptimal algorith

For the optimized WR algorithm Gander and Ruehli proposed the transmission

conditions

(U — b f ot = (WF ) +aw®, (@ -k 4 B = (uf b))+ Buk.

(1.5)



These new transmission conditions are more sophisticated since they attempt to
match the interface voltages as well as the currents at the interface between the
subsystems already during the iteration. The voltages us and wg are exchanged
and they are multiplied with weighting factors a and 3, respectively, the voltage
differences between the nodal voltages (ug — ug) and (w; — wg) insure that the
currents are also taken into account in the transmission conditions since we could
write the currents as o (us — uy) and 7 (w; — wp) where o and 3 can be viewed
as resistors. It is shown in [4] that the new transmission conditions lead to the
correct converged solution of the fundamental circuit equations. Together with the

subsystems in (1.2) we get the optimized WR algorithm

bl Cy fl 0
uk—i—l — uk+1 + + . . :
o o
L ar byt o1 f2 L e ) (1 6)
b3 R L C3 fS a2uk + as uk
A — 2 —1%3
Wt = A-1 w4 4 A1 7
as by Ja 0

where the values uf and wf are determined by the transmission conditions (1.5).

Hence, the parameters o and 3 enter the WR equations. It was shown in [4] as
before that 425 = (pope)" 40 and 2 = (pop)" 09 where the convergence rate pop: is
given by

CQ(S — bl)(ﬁ - 1) -+ (8 - bl)(S - 02) — G1Cy
((S e bg)(s - b4> - 0,363) (ﬁ e 1) -+ CLQ(S - 64)

] —CLQ(S — b4)(0£ -+ 1> + (S - bg)(S - b4) — Q3C3
((S - bl)(S - bg) - alcl) (0.’ -+ 1) + 62(51 - S).

popt(87 @, b; C,Q, ﬁ) =

Further, it was shown that the best weighting factors o and 8 in the transmission

conditions (1.5) are given by functions of s, namely

. —03C3 +S—b3~17 8= G101 QS“bQ
(S b b4)(l,2 a9 (S — bl)CQ Co

+1, seC. (1.7

In [4], an approximation of these best possible transmission conditions was pro-
posed, because o and (3 are not polynomials in s and hence are symbols of non-local

operators iu time. An approximation of « and [ by a constant was chosen, which

9



leads to a very practical algorithm with remarkable improvement in magnitude and
uniformity for the convergence in compa‘fiéon with the classical WR method. Here,
we will use the optimal choice (1.7) for the parameters, and not an approximation,
which will lead to the optimal WR algorithm for the small RC circuit that converges

exactly in two iterations. The Laplace transform for s € C of (1.5) is given by

(a5 =05t ) +odf ™ = (0f — @) +oadf, (@ -ag )+ Aagtt = (a5 —a5) + Al

(1.8)
If we substitute the values for o and § from (1.7) in (1.8) we get for the first
transmission condition

kbl o~k —G3C3 s—by R k ~k —aszCs 5—bs ~k
o U 41 - + -1 = (W5 —wg )+ -+ —1 w7,
( 3 2 ) ((é—“b,;)(lg as 2 ( 1 0) (S—‘b4)a2 as 1

and for the second transmission condition we have

k+1 k41 a1ty s—by ~ktl _ (nk sk aicy 5—bsy ~k
+ — 21 — — 1 ,
(3 ™) <(5“b1)62 ) > = (l—ia)+ (s—bi)ca ¢ )

(1.10)
By multiplying (1.9) by as(s — bs) and (1.10) by —ca(s — b1), we find after some
algebra,
SQﬂ}?fH (bs + b4>5713 - CL?.SkaHL + (babs — 0363) b gobyil Ak*l (1.11)
= 5% If (bs + by)s0h — agsdf + (babs — ascs)Wr + abyf, '
821”]5%1 (b + bQ)ka g sw’f“L — (a161 — blb2)w0 + e3by wk+1 (1.12)

- 52u2 (bl -+ bQ)SU2 - czsu’§ ((1101 — blbg)’aQ ~+ Cgbl’l:',é.

Since a multiplication with s in the frequency domain corresponds to a time deriva-

tive, equations (1.11) and (1.12) become, respectively

GETL — (b + by )ikt — st + (babs — ascs)ul T + ashy vy (1.13)
— 5} — (b + baYibk — ayiih + (buby — asea)uwl + agbyu, |
wé_H (b + bg) k+1 Cz@’§+l _ <alcl — blbg)w§+1 + Clewllﬂ_l <i 14)

= ”LLQ — ({7)1 + bg) — Czﬂig — (am — blbg)ug -+ Cleug,

10



and thus the non-local parameters in (1.7) can still lead to local transmission condi-
tions in the optimal WR algorithm in this case. Substituting 45" and t'ulf“ from the

first and second subsystems (1.2) in {1.13) and (1.14) respectively, and simplifying

we get
?.J',f‘;—l—l = (bg + b4)’tl§+l - (b4bg — (43Cg — CLQCQ}‘U§+1 — (a2b4 - (lgbg)ug_l-l -+ agalulfi
+agfy + Wk — (bs -+ bo)w¥ — gk + (bgbs — a,gcg)w’f + aghswf,
(1.15)
ii;’g+1 = (bl -+ bz)w§+1 —+ (&101 - blbg + LLQCQ>1U§+1 - (C‘le - C‘ng)wlf+l -+ 0283w§+1
+cofs 4 1k — (by 4+ by)UE — exith — (aycy — bibo)ul + cobyub.
(1.16)

Equations (1.15) and (1.16) are second order ordinary differential equations which
can be written as two systems of two first order ordinary differential equations. We

get for the first equation, equation (1.15),

,ugf—i*l — ,algf-{—l

N ’ (1.17)
G = gt

and similarly for the second equation, equation (1.16),

S k1
W = wg,

. ’ (1.18)
witt = it

The system (1.17) which corresponds to the first transmission condition together

with the first subsystem in (1.2), implies

| by cy 0 0 ]
_ a1 by Co 0
o 0 0 1
aol:  Gobo—agby ascytagco—bsbs byt+by i

fi 0

fo 0

0 0 |
as f2 W — (by+by)F —agrif+ (bybs —azes )wh +agbyw

(119

11



with initial voltage values
(ﬂ’]f+1 <O>7 u}2€+1 (0> ugﬂLl(O) ﬂl?:_h(O))T = (42'7(1)7 1"3: @gv C"?l"g + 531’?? + C3U§1)>T7

and the system (1.18) which corresponds to the second transmission condition to-

gether with the second subsystem in (1.2), implies

bi+by aici—bibotascy cobz—caby  cacs
1 0 0 0
0 o b C3

0 ag b4

Y
0
0

(1.20)

with initial voltage values
(a6 (0), wh ™ (0), wit(0), wh(0))T = (@] + bavh + 205,05, v3, 3)"

Since at step k > 1,
Wwh = 0f, W = agwk + bywt + czwh + f5, and
WF = a9 + bsagwh + (b2 + caas)wf + c3(bs + baywh + bsfs + cafs + fa,

we have
WF — (by + ba)b¥ — agtf + (babs — ascs)w + asbgwl = cafs —bafs + f5. (1.21)
Similarly, at step k > 1, since

. uk = ayuf + byub + couf + fo,  and

ik = a1 (b + ba)uf + (asc1 + b3l + bacyul + orllk + bafo + a1 fi + fo,
we have
ué - (bl —+ bg)ug - Cgﬂg - (@1(11 - blbg)u’; -+ Cleug == alfl - blfg -+ fg. (122)

12



By substituting from (1.21) and (1.22) in (1.19) and (1.20) respectively, we get the

following two decoupled systems

] by Cy 0 0 ]
B a ba Co 0
IR 0 0 1

| aza1 aoby — agbs  azcs + asco — byby by 4+ by

fi
2
0 )
arfo+cafs—bafs + fo
(1.23)
and
| b1 + by aicr — bibo 4+ agey  coby — by cocs ]
B 1 0 0 0
- 0 ao b C3
0 0 as by |

" cafs+aifi —bifo+ fo
0
f3
Ja

(1.24)
For the convergence study and analysis we do not want to find the solution for
the non-homogeneous problem but we are looking for the convergence rate of the
problem to see how fast and uniform the problem will converge to the solution. It
is convenient and sufficient by linearity to consider the homogeneous problem or
system of (ODEs) where the initial conditions, w**1(0) = w*™1(0) = (0,0,0,0)7, as
well as the source terms, f(t) = (0,0,0,0)7, are zero for the convergence study, the
reason why we can do so is that the homogeneous equations are the error equations

themselves, for instance, studying the iterative method Mx**! = Nz* + b for the

13



systemm Az = b, where A = M — N, we use the fact that Ma = Nz + b, take the
difference with the iteration and find M(z — 2**1) = N(z — z*). Denoting by e**!

k k

the error, €* = & — z*, one has the iteration Me*+!

= Ne* and the vector b is
not present any more. So instaed of introducing e, we could have studied directly
Maz"*! = Nz¥, setting b = 0 in the iteration. The homogeneous problem of (1.23)

and (1.24) is given by

bl C1 0 0
g a: b c 0
N ! 2 2 as)
0 0 0 1
i GoQy  Goby — anby ascy + aocy — bybs b3 + by | (1.25)
b1 + bQ aic; — blbg + a9Co Cgbg - Cgbl Coly
wk‘*‘l — 1 0 0 0 'U]k+17
0 o D3 C3
0 0 as by

with initial conditions, »*+*(0) = 0, and w**+(0) = 0. Since the coefficients in the
above homogeneous linear systems are constant, by using the matrix exponential
function exp(At), we can write the solution of the homogeneous problem,
WP = ARt wb(0) = 0,
W = Bwktl,  whtl(0) =0,
where A, and B are the matrices for the first and second equations in (1.25), re-
spectively, in the form
w1l = w5 1(0) exp(At),
wh ! = w*+1(0) exp(Bt),

and since, u**1(0) = 0, w*1(0) = 0, we get
utt =0, wt=0.

Lemma 1 The optimized WR algorithm (1.19), (1.20) converges in two iterations
if

—{3C3 5 — 63 a31Cq 8 — bg
o = + -1, p:= o +1,
(S — b4)CLQ ag (S - b})CQ Co

14



independently of the initial waveforms v’ and w®.

Proof The systems (1.23) and (1.24) which we get at step k£ > 1 do not depend on
the guess for the initial waveforms, which means that from the second iteration the
systems (1.19) and (1.20) will converge to the exact solution whatever the guess for

the initial waveforms will be. Further, since ©**! = 0 and w**' =0, for k > 1, we

have u? and w? are identically zero, independently of u® and w".
We ended up here with sclving two systems of four unknowns each whereas we
have originally only one system of four unknowns which could also have been solved
directly, but we did the analysis for the small system to gain a better understanding
and to show that in this case one can use the optimal transmission conditions using

a simple transformation to make them local.

1.3 Numerical Experiments

In this section we give a numerical example that shows the results we found in the

. previous section. We assume the circuit parameters

1 1 1 1
RS_§> Rl‘“§7 R2~§7 R3—'§7
_ 83 83 63 _ &

Ci=15 Cr=15 Ci=15 Ci=15

for the small circuit in Figure 1.1. We use for the numerical computations the for-
ward Euler method with a time step At = 1—(1)0‘ We start with zero initial waveforms
as well as zero initial conditions and use an input step function with an amplitude of

. = 1 and a rise time of 1 time unit. We approximate the second order derivatives

by a centered finite difference,

wk . = PR R T
1j (At)? ’
. k k ke
[ u2j+l-2u2j+u2j_1 .
5, = L ., 7=1,2,...,1000,

and weuse at § = 0, w{“ = CLQINUS-{—bg@gW’é—i—(b%—}—Cgaq)wf—l—Cg (bg+b4)w§+bgf3+03f-4+fg,

and 45 = a1 (by + ba)uf + (@101 + B3k + bacoul + colf + bofo +arfr + fa, since u*(0)

15



heration two

0.5 0.5

0.4 0.4
5 0.3 5 0.3
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Figure 1.3: Results for Small Circuit.

and w*(0) do not depend on k, they are given by the initial condoition. We assume

k

o koo k k
at j = 1000, wy; ., = wyi;_,, and (I

= us; ;. Also, we approximate the first

order derivatives by forward difference,

w'k W64
05 — At L
. k k
k W11y
Wy At )
° uk. —-u.k.
uk 24+1 724
23 At )
. k
k “3i+17 485 -
u3; 5 , 3=101,...,1000,

. . I P ’
and we again assume at j = 1000, wg. , = wffjjﬂl, w’fj+1 = w’fj_l, u’;jH = ugjul,

and u5, , = u5, ;. The above discretization depends on the time step, we assume
symmetry around the right end point of the time interval, and it might not be the
proper discretization to approximate the derivatives in the subsystems. There are

four waveforms which we do not care about, @3, W, uz and wg. We need four

waveforms to be our solution for the original system which are the first two of the
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Figure 1.4: Convergence rates of classical versus optimal WR.

first subsystem and the last two of the second subsystem. We give the results for
the classical WR and optimal WR algorithms together with the exact solution in
Figure 1.3. The difference in convergence between the classical and the optimal WR
algorithms is illustrated in Figure 1.4, which shows the error as a function of the
iteration. The solution obtained by using the optimal WR algorithm is the same
after the second iteration, and hence the error is the same which shows that the
optimal WR algorithm converges in two iterations. In the optimal WR algorithm
we use the second order transmission conditions which are the best possible ones
that lead to the remarkable improvement of the optimized WR algorithm over the
classical one and that is evident from the comparison in Figure 1.4. On the negative

side, one has to think about the best discretization of the second order transmission

conditions, which is not clear, to get a much better solution.
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We analyze in this chapter an infinitely long RC circuit and its infinite size system
of equations, as is indicated in Figure 2.1, to show what the impact of the system
size is on the convergence properties of the waveform relaxation algorithms. The

equations for the infinitely large circuit matrix, Figure 2.1, are

. -

The entries in the tridiagonal matrix are given by
. 1 b 2\ 1 1 ‘
poeend ———’ = — —-—-7 T e T a‘7
RC R/ C RC
where the circuit elements, R and C are assumed to be strictly positive and con-

stant. The source term on the right hand side is given by the vector of func-

tions F(t) = (..., f_1(t), fo(t), f1(2),.. )T and we need an initial condition z(0) =

R

| R R
Lo L
It I*

R
T I L
TCTICTIC

Figure 2.1: An infinitely long RC circuit chain.
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(..,v°,, 05, 67,.. )7, Since the circuit is infinitely large, we have to assume that all

voltage values stay bounded as we move toward the infinite ends of the circuit to

have a well posed problem.

2.1 The Classical

Algorithm for the Large
Circuit |

We partition the system in (2.1) into the following two subsystems

u = a b alu-t f1 + 0 )
a b au
I . fo ' (2.2)
b a fi awy
w = a b a w+ | fy |+ 0

with the initial conditions w(0) = (...,v%,,v9)” and w(0) = (¥2,49,...)F. The
1, %o 1, U2

transmission conditions for the classical waveform relaxation are
Uy = Wi, wWo = Ug.
Now relaxing those transmission conditions we get the waveform relaxation algo-

rithm

-+l ;
W = a b a uk+1+

(2.3)

with the initial conditions «**1(0) = (..., 0%, v))T and w1 (0) = (v],09,...)7.

To start the classical WR iteration, we use some initial waveforms ©°(t) and w°(t).
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The analysis for the classical WR is discussed in [4]. For the convergence study, as
for the small circuit, it suffices to analyze the homogeneous problem, f(t) = 0 with

zero initial conditions z(0) = 0. The Laplace transform yields in the s € C domain

Sit’k‘}—l — a b a ‘iLk+1 + G
a b awt
= - ’ (2.4)
b a atg
s = a b a w4 0

Solving the first system of equations for &?“ corresponds to solving the recurrence

relation
aﬁ?fll + (b — s)ﬁ?“ + a'&?ﬁ =0, j=0-1,-2,...

which has the general solution
At = AR, 4 BMN

where Ay are the roots of the characteristic polynomial of the recurrence relation,

s —b+ /(s —b)?— 4a?

Ay = 50 (2.5)
It was shown in [4] that
5 = (paa)* 83, 01 = (paa)" Y,
where the convergence rate pg, is given by
Petals,0,b) = < ! (2.6)

(aXT' +b—s)(ah_ +b—s) - _/\—2;
As in the small circuit case, the convergence rate depends on s € C, the parameter
in the Laplace transform. Results may be obtained in the nodal formulation in the
time domain, but they are obtained more easily by using Laplace transformation
because of the power of the Laplace transform approach which is in its versatility.
The classical WR, as is evident from (2.6), always converges for a large number of

iterations since |Ay| > 1, but convergence might be very slow.
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2.2 The Optimal WR Algorithm

The two subsystems (2.2) with the new transmission conditions,

(i =g ™)+ o™ = (W] = wg) + ot

(Wt —with) + Bt = (uf — uf) + Bug,

which are similar to what we have nsed for the small circuit, will give the subsystems

k1
@ = a b a wt o+ 0 ,
) a ke a k
] o b+ 7 | fo awy — =S5 W
a k a k
b— -1 ¢ S Qg + 31
- k1 k+1
w't = a b a w A L+ 0

(2.8)
together with the transmission conditions (2.7) which define the values uf and wk.

In [4] it was shown that

k ~0

o = (poptl) Wy,

5" = (popn)" 5,

where the convergence rate poy1, is given by

e+ -2y (B-1+A
a+DA -1 (B—Dx,+1

popt1(57a7b7a7 ﬁ) = ( (29)

Theorem 1 (Optimal Convergence) The optimized WR algorithm (2.8) con-

verges in two tterations for the choice of parameters
a:=x—1, B:=-2+1 (2.10)
independently of the guess for the initial waveforms.

Proof The convergence rate vanishes if we insert (2.10) into p,m1 given by (2.9).

Hence. 42 and @? are identically zero, independent of 43 and @9,
5 g 1 3 O 1

For the large circuit, similar to the small circuit, the parameters in (2.10) are not
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polynomials in s and hence are symbols of non-local operators in time. In the small
circuit case, it is shown that the non-local parameters in (1.7) can lead to local
transmission conditions in the optimal WR algorithm, by transforming them into
polynomials, but in the large circuit case, the symbols contain square roots and
hence there is no simple manipulation to transform them into polynomials. Again.
in [4], an approximation of @ and § by a constant was chosen. The best constant for
the algorithm was found, which is not as good as the optimal conditions with the
square root, but leads to a very practical algorithm which is already mmuch better
than the classical WR algorithm. In the next sections, we prove the optimality of
the constants chosen for the transmission conditions in [4], and we introduce first

order transmission conditions to get a faster convergence rate than in [4].

2.3 The Optimized WR Algorithm with Constant

Transmission Conditions

The maximum principle for complex analytic functions is used in the optimization

process for the large circuit.

Theorem 2 Let R be the region consisting of C and its interior, and let f(s) be
regular and not identically constant in R. Then the mazimum value of | f(s)] in R
occurs on the boundary C. If f(s) has no zero in R, |f(s)| also attains its minimum

in R on boundary C.

Proof See [12] for the proof.
The optimization process for the WR algorithm allows us to reduce the large puq(w)
of the classical WR and make it more uniform so that the overall convergence is

improved. Mathematically, we want |pepn| << 1.

Lemma 2 The convergence rate pon in (2.9) is an analytic function in the right

22



half of the complex plane, s = o +iw with o > 0, if o, B € R,

b<0, a>0, 2a<-b, (2.11)

a>0, 0<0, (2.12)

Proof See [4] for the proof.
The maximum principle can be used and the maximum of |pypi(s)| for s = o + iw,

o > ( is attained on the boundary at ¢ = 0. That yields the optimization problem

min ( max | (iw, a, b, o, 6’)[) (2.13)

a>0,8<0 Wmin <iw‘{<wmax

where the frequency range was truncated by a minimal and maximal frequency
relevant for the problem. The estimate for the lowest frequency occurring in the
transient analysis depends on the length of the time interval [0,7]. The signal was
expanded in a Fourier series sin(knt/T) for k = 1,2,.... Hence, the minimal rel-
evant frequency can be estimated by wi,i, = 7/T. The highest frequency depends
again on the resolution of the discretization in time, and as before the maximal
relevant frequency can be estimated by wpe, = 7/At which is the highest possible
oscillation on a grid with spacing A¢. The subsystems in the large circuit are be-
having identically on both sides of the partition, so we assume, for simplicity, that
3 = —a, although this might not give the best possible solution. We define a new
parameter v as 7 = o + 1. Also, A, given in (2.5) with s = tw, w € [Wmin, Wmaz)s

will be written as A\, = x + iy, where the real part, x, is given by

_ _—_lz N \/5\/;}4 + 2w2h? + 8w2a? + b* — 8b%a? + 16a* — 2w? + 2b2 — 8a?
" 2a 4a '

z = X(w)

and the imaginary part, y, is given by

w V2Vl + 20282 + 8w2a? + bt — 8b%a2 + 160t + 2w? — 202 + 8a?
y=Y(w) = 0t . :

The modulus of the convergence rate pop,; in (2.9), will be

£
J

flz, ;) = |poprn] = {(

(y—x) — 1y r: (2 =7 +9°

, 2.14
ye—1)+ivy|  (ye =12+ (214)
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where f is a function of two variables z, y € R, v is our parameter. We know from
before that « > 0 which implies v > 1, and —b > 2a which gives x > 1. We set
a =1, and b= —2¢2, for ¢ > 1, to eliminate one parameter, which is equivalent to

a time scaling . The real and imaginary parts of the path, AL, become then

X{w, ) = A+ 1v/2v/wh + 8%t + 82 + 16¢° — 32¢" + 16 — 2w? + 8¢t — 8,

Y(w,e) = 1w+ /20T £ 8w2ch + 8w? + 1668 — 32c4 + 16 + 2w? — 8c4 + 8.

(2.15)
Solving = = X(w, ¢) for w(z, ¢) gives
—zx{2¢c°—T rCe—i—x -z
w1(33,c) = “2\/ (27 ;(fczigzl a1 >7
—z(2c?—2)(2xc? —1—x2)(? —x
wo(z,€) = 2\/ (27 ;i‘)c2j:1:21 ez
Since we have w > 0, we require
0 < 2zc® —2° <1, (2.16)
which implies
—(2zc? —-1—122), ,
= D o — : 1
w(z,c) 2\/ ST R (¢*—1x)>0 (2.17)

With those conditions on ¢ and  in (2.16), the second solution is ignored since it
implies w < 0. Inserting the value for w(z, ¢) from (2.17) into Y (w, ¢), the second
equation in (2.15), implies
—(2zc2 22— —{(2xc? —x?~
Y(zo) = —f Gt + /2552
» —ctiaz2c4 42322 424)2

+%V§V/ )

Qe —x2

—dxcB84-6x2ct — 4Bl fctzt

Since (—c* + 42?c* — 4232 + z*) < 0, for ¢ and z satisfying the conditions (2.16),

we have

V=t + 422t — da3e 4+ 24?2 = —(—ct + 4Pt — 4P + 1Y),

This implies

Y(z,c) = _\/_(23302 —z% - 1)Cg+\/“(2$(12 —z2-1) x+%\/—2—\/2€4 + 2x2¢t — 49506.

2xc? — 12 2xc? — 22 2xc? — x?
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Simplifying more, we get

. —(2zc? — 2?2 — 1)
Yz, ) = \/ SRR (2.18)

To find in what range = can vary, we find the limits in © = X{w, ¢) as w goes to zero

and infinity,

Tomin = 10 X (w,¢) = & + Vel =1,

Lmaz = hmw_)oc X((U, C) = 262.
Inserting v = Y (z, ¢) from equation (2.18) into the function f(z,y;~) implies

2v2c? — N2g — dyzc? + 2yp® 4 x
—dyzc? + 2yz? + 22 — x + P

Flz,c;7) = (2.19)

1
¥

for which we minimize the maximum for = € [z, 3], where Tmin < 71 = X (Whin, c)

and o = X (Wnaz, €) < Tymaz- Lhe derivative F(z,¢;y) is

(27° — 27)2? + (4yc® — 473c)z + & — dyct — Al + 43¢t

Fz, c;v) =2 2.20
(7, 67) (=2vx? + (dye? + 1 — 72z — 2¢%)? (2:20)
Solving F, = 0 for z, we get two roots, namely,

ry =ct+ %J——Zv@vc? —72-1), (29 —-+*-1)<0. (2.21)

Since ¢ > 1, we have r; > 1, and since r_ < Zpin, and T > Ty > Tyin, T- IS
ignored. For the study of the sign of F,(z, ¢;y), we will use the fact that, if we have
a quadratic polynomial, p(z) = az®+ bz + ¢, with two real zeros then the sign of the
polynomial for those values of = lying between the zeros is different from the sign of

the coeficient of z°, i.e., @, and has the same sign as a everywhere else.

Lemma 3 If ry < z; < zo then the function F(x,c;v) attains its mazimum value
at © = Ty, and minimum vaelue at T = x1. If 11 < v < zy then the function attains
its mazimum value either at T = T or T = I, and minimum value at © = ry. If
1 < 29 < vy then the mammum is attained at © = xy, and the minimum is attained

at T = Ty .
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Proof In the derivative Fy(z, ¢;v) given in (2.20), the coefficient of 27 is 2(27* —
2) > 0, and hence the sign of F, for the values of z lying between the two roots of
F. = 0 is negative. The denominator does not affect the sign, since it is squared. By
using basic calculus, if 7, < 2y < zq, then F.(z,¢;7v) > 0 for z € (1, %2), and hence
the function F'{x,c;v) is increasing in the whole interval and has a maximum value
at £ = 29 and a minimum value at = z,. 2y < 1y < @, then F(z,¢7) <0
for z € (z1,ry], and Fy(x,¢;v) > 0 for z € (ry,z2), so the function is decreasing
for x € (x1,74], and increasing for z € (ry,z,), hence there is a minimum value at
x = r,, and the function F(z,¢;y) attains its maximum value either at z = x; or
z = 29. Finally, if z1 < 29 < 71y, then F.(x,¢;v) < 0 for z € (x1,z9), and hence the
function F(z,c;~) is decreasing in the whole interval and has a maximum value at
z = z; and a minimum value at z = zs. ]

Solving 7, (c,v) = x1, where r(c,7) is given in (2.21), for v implies

2c* + 22 — 20,2 + (2} — 2 — 2202 + 2¢%) (22 + 2 — 2217 + 2c*)

Ymin = .

CQ
(2.22)

Since, by the conditions (2.16), —1 < 2% — 22;¢* < 0, and we know that ¢ > 1

which implies (2¢ — 1) > 1, we have
(22 — ? — 22167 + 2¢*) = (2% — 2m1¢%) + * (22 — 1) > 0,
and clearly, 0 < (22 — 2 — 2212 + 2¢*) < (22 + ¢ — 2212 + 2¢*). Hence,
(22— ? — 20,2 + 2N (22 + 2 — 222 + 2¢%) > 0.

Similarly, solving r(c,v) = xo, for v gives

C2ct+2f = 230 + /(a8 — @ — 2390 4+ 20 (5] + 2 — 2wpc? + 2¢Y)

’\/ma.ac -

?

(2.23)

2

where again, (23 — ¢ — 229¢% + 2¢*) (2] + * — 222 + 2¢*) > 0.

Lemma 4 The function v {(c,7) in (2.21), is an increasing function of y. Further,

Vrmin 11 (2.22) is strictly less than Yme in (2.23).
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Proof The derivative of 7, (¢, v) with respect to -,

cv2(y* - 1)
dy/—y 2y =P = 1)

has two zeros, —1 and 1, the sign of the derivative for v > 1 is positive, since the

riy(e,y) =

coefficient of % in the derivative is positive. Hence, the function r (¢, v) is increas-

ing for v > 1. Moreover, since o7 < z and 7;.(c,y) is increasing for v > 1, we have

Ymin < Yrmaz-

Lemma 5 If v € (1, Vmin), then the mazimum of the function F(z,c;y) is attained
at T = To. If ¥ € (Ymin, Ymae), then the function attains its mazimum value either at

T =121 07 = To. If ¥ € [Vimaz, 00), then the mazimum value is attained ol x = 1.

Proof The proof follows directly from Lemma 3 and Lemma 4. i

Lemma 6 There exists v* € (Yimin, Ymaz ), under the conditions (2.16), such that,
F(z1,¢7") = F(z2,¢7").

Proof Solving the equation F(z1,¢;v) = F(ze, ¢;7y) for v implies

_ 11x2+2c4~12c2—11c2+\/(a¢112—:r1c2—c2+264~x262)(x1m2—w162+62+2c4——:c262) (2 24)
pm——wy 2 M s
¢

We know that 27 < z9, and Ymin < Vmaz- Si0ice

(2139 —11 =2 +2¢% —29¢%) — (22— 21,2~ P+ 2¢Y) = 7 (29—71)— (T2~ 171)
= (21— )z — 1)
> 0,

we have (z? — 22:¢% — 2 + 2¢*) < (@129 — z1¢% — 2 + 2¢* — z9c?) which implies

(3179 — 7162 — % + 2¢* — 29¢®) > 0 and hence,
(2172 — 2162 — 2 + 26" — 2P (w11 — 2P + 2+ 2t — zoc?) > 0.
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This also implies Vpm < . Similarly, since
?

2 2_ 2
(22— 220c* — P +2ch) — (m120— 11 P — P+ 2 ~32c”) = oz

Y < Ymaz- Hence, the existence of v* € (Vmin, Ymaz) has been assured, under the

conditions (2.16).

Theorem 3 Let pop (iw, a,b, «, 3) be the convergence rate of the optimized WR al-
gorithm (2.8) with constant transmission conditions, then the global optimal solution

of the min-mag problem

a>0,8<0 wmin<]w]<wmax

min ( max {popn (’W, a,b,a, 5)‘) ?

is obtained at o =~* — 1 and " = —a, where

" z1za+2ct—z9c? —:c1c2+\/(:cla:g—-x1 22 42ct —x9c) (w123~ 21 62 +c2 42t ~zac?)

=
Proof The proof follows directly from the above Lemmas. ]
For the numerical example in section 2.5, with wp,;, = n/T aﬂd Winaz = T/ AL we
find, by using the formula in (2.24), v* = 1.73455, and hence the optimal constant
is o = 0.73455, which is the same as what was found in [4] without a proof of
optimality. The solution for the min-max problem given in (2.13), and the optimality
of the constant transmission conditions proposed in [4] has now been proved, which

is one of the key contributions of this thesis.

der

Since the optimal parameters, o and § in (2.10) are functions of s € C, we may

approximate them as, o = ag+ @18, and 3 = —ap — a8, for some constants «g and
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a,. We assume [ = —a, for simplicity. When oy = 0 we get the simplest expansion
for the parameters and constant transmission conditions, which was done in [4] and
we have analyzed the optimal choice of that constant in section 2.3. In this section
we will use the first order expansion for a to get faster convergence. Taking the
Laplace transform for the transmission conditions in (2.7), with § = —«, and using

the first order expansion for o, we get

NS RN S okt Skl ek ok ok ~k
(07T — U5 ) + aply T+ a8 = (W§ —05) + aplf + a;suy, (2.25)
Skl ke s} Bl ko ok Sk S -
(AT — gt — ey T —aqswy T = (0] — dg) — colly — a8,

Since a multiplication by s in the frequency domain corresponds to a time derivative,

by substituting
Wk = bwf + awh + awf + f1,
uk = au® | + buf + auk + fo,

from the subsystems in (2.2), assuming «a; # 0, we have

kel 1kl (ao) k+1 , (I4eodoab) ko (cae—1) ok k

(0 = Uy —rup b o, Wi+ o wg +aws + f1, (2.26)
kel 1kl (I4e0)  k+1l | (I+aotesb) ko, (a-D) k '
W o= Swp - Wy U T ur Haul + fo.

The ordinary differential equations which are found from the transmission conditions
in (2.26) together with the subsystems in (2.2) will imply the following two decoupled

subsystems,

a ) a
a b a
1 —{eo+l)

: ZECI (2.27)
0
?
0
(e1a—1) & {(1+ap+aib) [k k
o Wo + o wy + awsy
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and

kTl \ —leotl) 1
Y] ' o1 (a5}
Wit a b a
yEE
I a b a
- - - b, (2.28)
{ QOTGLJ k \@La
au® N o o+ o 1
0
0

with the initial conditions w*+1(0) = (..., 0%, 49, v)T and w*+(0) = (], 0], 23,.. )7,
respectively. To start the WR iteration, some initial waveforms u°(t) and w(t) are
used. As before, for the convergence study, it is sufficient to analyze the homo-
geneous problem, f(t) = 0 with zero initial conditions (0) = 0. The Laplace

transform yields in the s € C domain

0 \
a b a
S ottt 4
a b a 0
] _0711. —(o;c:%l) (alai—l) uyg +<1+acr:a1b) - +aw2
4<Zc:+1) 1 ailh +(1+am1b) k +(a1a~1)u1f \
a a 0
a b a
K 0

) (2.29)
Solving the first subsystem of equations for ukJrl analogous to what is done for the

classical WR, corresponds to solving the recurrence relation

a@“l%—(b s)i k“%—afﬁ =0, 57=10-1 -2 ...

with the general solution
1 pk+iyg k4137
= A" 4 BTN,
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where Ay are the roots of the characteristic polynomial of the recurrence relation.
To determine the constants A**! and B**! for the general solution, we will use that
the solutions stay bounded at infinity as well as the last equation at the interface.

We have

s—b+ /(s —b)? — 4a?
)‘*{* 2%, ’

which can be simplified to

)\+_—b+i+\/52—255+bz~4a2
20 2a 2a

For —b > 2a and s = o + iw with ¢ > 0, we get |A;| > 1, since |s| > 0. Since
AA- = 1, we have [\, []A_| = 1 which implies [A_| < 1, by knowing that |A,] > 1.
By using the fact that [A_| < 1, [A1] > 1 and the boundedness condition we obtain

B**1 = (. Further, we can determine A**! from the last equation at the interface,
(14 ap+ ons)a ™t — b = (acy — 1D)@f + (1 + ag + by )@F + acydf,
which implies
AR OL (1 + ag + aq8) — 1) = (aay — Dk + (1 + ag + bag )0f + acy il

and hence

AR+ (acy — 1)k + (1 4 ap + bon )F + acqh

Av(l+ap+ags) —1

(2.30)

+1

Similarly, solving the second subsystem for 'w'” we obtain as a general solution

W =BMINTY 1=0,1,2,3,...
and to determine B*T! we again use the equation at the interface,
(14 o + )™ — 08 = (aay — DEF + (1 + ap + bay)af + acydt? 4,
which gives

(acy — 1)'&1 (1 + g + boy ok + acn @tk y

Bk-H —
AT+ g+ ags) — 1

(2.31)
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By inserting the general solution for the second subsystem in equation (2.30) and

the general solution for the first subsystem in equation (2.31) at step k, we obtain

A (acy — 1))@‘1 + 1 g+ bay + aai A Bt
A(l+ag+ags) -1
e (a; — DAy + 1+ ap + bay + acy A7 na
/\:1(1 -+ g + 0518) —1

Applying the second relation at step k to the first one, we find

~k41 ~ k-1
Uy - poth (37 a, bn Qo, & )u() 9

where the convergence rate pono, using that Ay = X1 is given by

2
(ac1 —~ ) A4 +1+ao+boi+ac A;l >

ool S, @, b, ag, o) =
foptz(, Yy 05 1) ( Ap{14-aotais)—1

Since Ay + A = f—g—é, we get
(CLCH - 1))\+ + 14 ay+boy +ami=ap+ays+1— AL
Therefore, the convergence rate pop is given by

2
popt2(87a7b7 0507011) = ( %ﬁ ) . (232)

The same relation also holds for the other subsystem and by induction we find

62k = (poptz)k @) and W = (Pazm)lC @9. Similar to the optimized WR algorithm

with constant transmission conditions, we discuss in this section an optimization
process for the WR algorithm with first order transmission conditions, which we
find by expanding « as @ = ap + aqs and § = —a to get the best performance of

the new WR algorithm. Mathematically, we again want |popn| << 1.

Lemma 7 The convergence rate poms in (2.82) is, under the conditions
b<0, a>0, 2a<-b, (2.33)

ag >0, o >0, (234)

an unalytic function in the right half of the complex plane, s = o +iw with o > 0.
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Proof X is an analytic function in the right half plane, since the argument under
the square root avoids the negative real axis under the conditions (2.33). Hence,

it is sufficient to show that the denominator does not have zeros. Assuine there

— i
1+ap+as’

2 o i P P - M : 4 Y
D = TraTmairorar < 1, that is a contradiction to the fact that [\, > L

is a zero, Ap{og + s+ 1) — 1 = 0, this gives A, = which implies

Hence, poles are excluded and the denominator has no zeros.
Since pops is analytic we can again apply the maximum principle to find the maxi-
mum of |pope(8)] for s = o + 4w, o > 0 on the boundary at o = 0. This yields the

optimization problem

min ( max | pepra(iw, a, b, a, al)]> , (2.35)

o> 0,001 >0 Winin <|w|<wWmax

where we again truncated the frequency range by a minimal and maximal frequency
relevant for our problem. For our particular example in section 2.5 where we take
Wrnin = % and Wye, = 20w, we find that the optimal solution for the min-max
problem (2.35) is af = 0.1757 and o] = 0.6557, by using a multidimensional un-
constrained nonlinear minimization routine (Nelder-Mead). The Nelder-Mead algo-
rithm was first published in 1965, it is a very popular direct search method for mul-
tidimensional unconstrained nonlinear minimization, it minimizes a scalar-valued
nonlinear function of n real variables using only function values, without any deriva-
tive information. One can find more details about this method in many references,
e.g. |24, 25]. We compare the convergence rates for the classical WR, optimized WR
with «* = 0.73455 and optimized WR with of = 0.1757, a] = 0.6557; we can see
that the best method is the optimized WR with first order transmission conditions,
i.e., with ap and ay, Figure 2.2. The optimized convergence rate, |poma{af, of, w)l,
takes the smallest values which means a faster convergence in comparison with the
classical WR and the optimized WR with o* algorithms. In addition, the conver-

gence rate is much more uniform.
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Figure 2.3: Convergence rates of classical versus optimized WR.

2.5 Numerical Experiments

For the large circuit we give a numerical example for a circuit with 10 nodes which
can be extended to any number of nodes with the same parameters as we did for

the small circuit,

1 63
i = =, ’21,‘.., ; P T, = g ey .
R 2 7 9 C 100 =1 10

We use again for the numerical computations the forward Euler method and our
time is ¢ € [0,20] with a time step At = . We start with zero initial waveforms
as well as zero initial conditions and use an input step function with an amplitude
of I, = 1 and a rise time of 1 time unit. The difference in convergence between
the classical, the optimized WR with «* = 0.73455, and the optimized WR with
of, of algorithms is illustrated in Figure 2.3, which shows the error as a function
of the iteration. In Figure 2.4 we varied oy and oy and computed the error after

4 iterations of the new optimized WR algorithm. We can see that the analytical
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’ Figure 2.4: Numerical and analytical optima compared.

parameters obtained from the optimization process in section 2.4 are close to the

optimal numerical ones.
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The optimized waveform relaxation algorithm has a very uniform convergence in
very few iterations, which is the key advantage of this new algorithm over the clas-
sical waveform relaxation algorithm which has a slow and non-uniform convergence
over the time interval for which the equations are integrated. This remarkable
improvement and great performance is achieved by new transmission conditions re-
sponsible for the exchange of both voltages and currents, or derivatives between the
sub-circuits rather than just voltages as in the classical waveform relaxation algo-
rithm. The optimized waveform relaxation algorithm is not complicated and can
easily be implemented by only changing the few lines in the waveform relaxation
code responsible for the transmission conditions. By considering the infinitely large
circuit, we have shown that the size of the circuit does not have a major impact on
the convergence of the optimized waveform relaxation method. In the small circuit
case, the optimal waveform relaxation converges to the solution in two iterations,
and in the large circuit case, a faster and more uniform convergence is obtained by
taking a higher order expansion for the optimal parameters in the new transmis-
sion conditions. A numerical experiment for each case is given which confirms the
theoretical results.

Future work will involve analyzing and proving the optimality of the con-
stants, ag and a;, in the first order transmission conditions, RC circuits connected

in two dimensions, transmission line type circuits, and mixed circuits.
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