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Abstract 

The waveform relaxation method is a very efficient and reliable method, it has been 

widely used in sever al fields including circuit theory, for solving large systems of 

ordinary differential equations as weIl as partial differential equations. The con­

vergence rate of the dassical wavdorm relaxation approach is not uniform over 

the time interval for which the equations are integrated. A new approach called 

the optimized waveform relaxation approach was proposed with a remarkable and 

great improvement in the convergence behavior by introducing new transmission 

conditions. Here, we continue the work done on the optimized waveform relaxation 

by extending previous results and trying to get a better performance as well as a 

more general optimized waveform relaxation approach. We use two Re circuits to 

illustrate the theory and the performance obtained by improving the convergence 

behavior of the new algorithm. 



Résumé 

La méthode de relaxation d'ondes est une approche très efficace et fiable: elle est 

utilisée avec succès dans plusieurs domaines (comme en théorie des circuits par 

exemple) pour résoudre des systèmes d'équations différentielles ordinaires, ou aux 

dérivées partielles, de grandes dimensions. Le taux de convergence de la méthode de 

relaxation d'ondes dite classique n'est pas uniforme sur l'interval de temps sur lequel 

les équations sont intégrées. Une nouvelle approche, appelée relaxation d'ondes op­

timisée, a été proposée qui améliore de façon remarquable les propriétés de con­

vergence en introduisant ce qu'on appelle des conditions de transmission. Ici, nous 

continuons le travail accomplit sur la relaxation d'ondes optimisée, en ayant pour but 

d'obtenir une meilleure convergence ainsi qu'un algorithme plus général. Nous util­

isons deux exemples de circuits électriques Re pour illustrer la théorie et démontrer 

l'amélioration de la performance. 
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Introduction 

Usually in reailife applications we have very large systems of Ordinary Differential 

Equations (ODEs) and Partial Differentiai Equations (PDEs), such as those large 

systems which we obtain from large circuits. Applying traditional numerical tech­

niques to such systems can be quite time consuming. In the circuit domain, many 

circuit solver methods were introduced [6, 26] but the circuit simulation using these 

methods takes tao much CPU time and tao much st orage to analyze a circuit. Pi­

card discussed in a paper published in 1893, [23], iteration methods ta study Initial 

Value Problems (IVPs) for systems of Ordinary DifferentiaI Equations, and Lindelof 

showed in a paper that was published in 1894, [14], the super-linear convergence on 

an finite time intervals of the iteration methods that were discussed by Picard. In 

the que st for improving the efficiency of the numerical techniques and ta speed up 

the solution of these large systems, the waveform relaxation methods (WR) were 

proposed to first use some continuous-time iterations (Picard-Lindelof iterations) to 

decouple the large system and then discretize the resulting subsystems. 

The Waveform Relaxation methods were first introduced by Lelarasmee [10] 

and Lelarasmee, Ruehli and Sangiovanni-Vincentelli [11] for time-domain analysis 

of non-linear dynamical systems, in particular, large-scale integrated circuits. The 

basic idea in these new methods is to apply relaxation such as the Gauss-Seidel 

and the Gauss-Jacobi relaxations [22] directly to the system of non-linear differen­

tial equations describing the circuit. As a consequence, the system is decomposed 

into decoupled subsystems of differential equations corresponding to decoupled dy­

namical sub-circuits. Each decoup~ed sub-circuit is then analyzed for the entire 
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simulation time interva,l by integration methods, like the backward Euler method, 

to obtain subsystems of llon-linear algebraic equations and Newton-Raphson itera-

tions to linearize the subsystems of the non-linear algebraic equations. The solutions 

to the sub-circuits are used to update the solutions of neighboring sub-circuits in an 

iterative fashion. 

For instance, if we consider the initial value problem for systems of ordinary 

differential equations 

{ 

y(t) = f(t, y(t)), 

y(to) = Yo, 

t 2: to, 

then the continuous-time Waveform Relaxation iterations using the Gauss-Jacobi 

relaxation is 

iJ7+1(t) = fi(t, y~(t), ... ,Y7-1 (t), Y7+l(t), y~+l (t), ... ,y~(t)), 

Y7+l(to) = YO,i' 

i = 1,2, ... ,m, t E [tOl T] , k = 0,1, ... 

A good study and survey of this technique with emphasis on simulation of 

large-scale electrical circuits was written by White, Sangiovanni-Vincentelli, Odeh 

and Ruehli [28]. Many circuit solvers and experimental solvers have been built based 

on the Waveform Relaxation technique e.g. [1, 27J. 

In practice one is interested in the best way of subdivisions which yields 

fast convergence for the iterations. Depending on the way of partitioning, most of 

the work on the Waveform Relaxation methods was concerned with convergence, 

error estimation, acceleration of the convergence of iterations and implementation 

advantages in a parallel computing environment. 

The convergence of the Waveform Relaxation methods was analyzed in [11] l 

it was shown that the Waveforrn Relaxation would converge in the continuous-time 

domain from an arbitrary initial guess if every no de was connected by a capacitor 

to ground. Later, weaker requirements for convergence of the Waveforrn Relaxation 

methods were found by Zukowski [29J and by Desai [2]. The convergence theory of 

the \Vaveform Relaxation methods was fOlli'1ded on a rnathernatical basis by Neval1-
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linna and his co-workers [15, 16, 17, 18, 19], and related results were a1so found by 

and Bkalin [B]. A new method for analysis of the convergence properties of 

the Waveform Relaxation methods was derived by Gristede, Ruehli and Zukowski 

[5] with new sufficient conditions for the convergence which are less restrictive than 

those of [2, 11, 29]. 

In this work we will continue the work on the vVaveform Relaxation meth­

ods in the circuit domain that was do ne by Gander and Ruehli [4} in which a new 

class of methods was introduced which improves the performance over the class'ical 

WR algorithm with litt le computational overhead. These methods aIe called Opti­

mized vVaveform Relaxation algorithms since they include an optimization process. 

The optimization concerns the tmnsmission conditions from each subsystem to its 

neighbor subsystems. It was shown [3] that the convergence would be much faster if 

additional derivative information is exchanged in the transmission conditions. Bince 

the classical ~Taveform Relaxation algorithm exchanges only nodal voltage values 

in the transmission conditions from each subsystem to its neighbor subsystems, the 

resulting convergence can be very slow and is non-uniform over the time interval for 

which the equations are integrated. Gander and Ruehli [4J proposed new transmis­

sion conditions which transmit a combinat ion of voltages and currents. By these 

new transmission conditions the method becomes faster and the overall convergence 

becomes much more uniform in few iterations which means a faster and nicer con­

vergence over the whole time interval. 

Here, we follow the same approach as in [4] i.e., we exemplify the application 

of the new approach to the RC circuits but we extend the results by introducing 

first order transmission conditions to get a faster convergence than in [4J. Also, we 

prove the optimality of the constant transmission conditions proposed in [4]. The 

analysis of the small RC circuit shown in Figure 1.1 is the first part in this work 

and in the second part, we analyze the large circuit shown in Figure 2.1, which leads 

to larger subsystems corresponding to larger sub-circuits and shows that the size of 

the circuit does not affect the convergence of the optimized Waveform Relaxation 
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algorithm. 

It is worth saying thaL the convergence of the classical Waveform Relaxation 

methods for RC type circuits was shown bl' Nevanlinna [20J and this type of circuits 

has been investigated for the classical Waveform Relaxation algorithm by several 

researchers e.g. [5, 7, 8, 9]. 

This thesis is organized as follows. Chapter l describes the small RC circuit, 

contains some analysis and results for the convergence of the classical VVR and the 

optimized vVR as well as a detailed derivation of the exact conditions for the best 

convergence of the optinlÎzed WR and ends with a numerical experiment. Chapter 

2, similar to the small circuit, describes the large RC circuit, includes sorne analysis 

and results for the convergence of the classical vVR and the optimized WR as well 

as a detailed derivation of higher or der transmission conditions for the optirnized 

WR for a better convergence. We end this chapter also by a nurnerical experirnent. 

Finally, we give the conclusions. 
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Chapter 1 

A Small RC Circuit Model 

Problem 

The equations for the small RC circuit, Figure 1.1, can be derived as follows [21]. 

The relationship between the current, l, and the voltage, v, through a resistance, R, 

is given by l = *, which is known as Ohm's law. The current through a capacitor, 

C, is given by l = C~~ where ~~ is the derivative of the voltage with respect to the 

time, t. At each node in the circuit, the algebraic sum of aU the currents equals 

zero, Le., we have L Ij = 0 which is equivalent to L (entering currents) = 

L (leaving currents) , and this is known as Kirchhoff's current law, where the 

voltage is measured in volts, the current in amperes, the capacitor in farads, the 

resistance in ohms and the time in seconds. For example, at the first node Xl we 

have 

Figure 1.1: A small example RC circuit. 
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after borne calculations 

and at the second node we have 

which implies 

The equations at the other nodes can be found in a similar way, hence the circuit 

equations are of the forrn 

b1 Cl 

al b2 C2 
x+f· x= (1.1) 

a2 b3 C3 

a3 b4 

The entries in the tridiagonal matrix are given by 

1 
- Ri-ICi' i=4 

where the resistor values Rand Rs and the capacitors Ci are strictly positive con­

stants. The source term on the right hand side is given by f = (Is(t)/C1 , 0, 0, of 
for sorne source function Is(t) and we are also given the initial voltage values 

x(O) = (v?, vg, vR, v~f at the tirne t = O. 

1.1 The Classical WR algorithm 

We partition the circuit into two sub-circuits or subsystems and we caU the unknown 

voltages in subsystem one u(t) and in subsystern two w(t). So the two subsystem 
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solutions satisfy 

u 

(1.2) 

w 

The transmission conditions for the classical waveform relaxation are 

By relaxing those transmission conditions ,ve get the classical vVR algorithm, 

(1.3) 

with corresponding initial conditions uk+l(O) = (v?, vgf and wk+l(O) = (v~, v2)T. 

To start the vVR iteration, we need to specify two initial waveforms ug(t)) and w?(t) 

for t E [0, T], where T is the end of the transient analysis interval. The Laplace 

transform is used for the convergence study of the linear circuits. Actually, the 

Laplace transform plays a significant theoretical role in applied problems because 

of its versatility. It is often possible to find a desired information about a problem 

from the Laplace transform without finding the solution. The Laplace transform 

leads to a better understanding of a problem or an easier method of solution, it is 

used as a tool to solve (ODEs) as well as (PDEs). The Laplace transform for x will 

be denoted by 5; : 5;(s) = Jooo e-stx(t)dt, sEC. The Laplace transform of i: is given 

by L(i:) = sx - Xo where Xo = x(O), and more generally, the Laplace transform of 

,x(n) is givel1 by L(x(n)) = snx - sn-lxo - sn-2i:o - . , . - x~n-l). The analysis of the 

Classical WR algorithm is discussed in (4], it was shown that Û~k = (Pcla)k ûg and 

iùrk = (Pda)k iù? with the convergence rate Pela 

s = u+i0J. (1.4) 

7 



0.7,--

1 

1 

06~ I~ 05~ 
1 1 \ 

"'r 1 \ 1 

1 

::r \ • 

",f j 
0 
-20 -15 -10 -5 5 10 15 20 

Figure 1.2: Convergence rate as a function of w for the classical vVR algorithm 

applied to the small RC circuit. 

For convergence we need that IPela(s, a, b, c)1 < 1 for ~(s) > 0 and for fast conver­

gence the modulus of Pela should be mu ch smaller than 1, IPela 1 < < 1. But Pela lS a 

fixed function of the circuit parameters in the classical WR algorithm as lS evident 

from (1.4). Thus the algorithm does not have any adjustable parameters like the 

optimized WR algorithm below. The convergence rate is different for different val­

ues of sEC in the frequency domain, and the classical WR algorithm converges at 

different rates with different values of the time t. An example for the convergence 

rate as a function of w is given in Figure 1.2. 

1.2 The Optimal WR algorithm 

For the optimized WR algorithm Gander and Ruehli proposed the transmission 

conditions 

(U~+l_U~+l)+ŒU~+l = (wî-W~)+ŒWî, (Wî+l_W~+l)+t3w~+l = (u~-u~)+t3u~. 

(1.5) 
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These new transmission conditions are more sophisticated since thcy attempt to 

match the interface voltages as weIl as the currents at the interface between the 

subsystems already during the iteration. The voltages U3 and 'Wo are exchanged 

and they are multiplied with weighting factors Œ and /3, respectively, the voltage 

differences between the nodal voltages (U3 - U2) and ('Wl - 'Wo) insure that the 

currents are also taken into account in the transmission conditions since we could 

write the currents as 0:-1(U3 - U2) and ,.6-1 ('Wl - wo) wheTC 0: and /3 can be viewed 

as resistors. It is shown in [4] that the new transmission conditions lead to the 

correct converged solution of the fundamental circuit equations. Together with the 

subsystems in (1.2) we get the optimized WR algorithm 

(1.6) 

where the values u~ and w~ are determined by the transmission conditions (1.5). 

Hence, the parameters 0: and ,6 enter the WR equations. It was shown in [4] as 

before that Û~k = (PaPtl ûg and 'ÛJîk = (PaPtl w~ where the convergence rate Papt is 

given by 

Papt(3, a, b, c, 0:, (3) -
C2(3 - b1)(/3 - 1) + (3 - b1)(3 - b2 ) - alCl 

((3 - b3)(3 - b4) - a3C3) (/3 -1) + a2(S - b4) 
-a2(S - 64 )(0: + 1) + (S - b3)(s - b4) - a3C3 

( (S - b1) (3 - b2) - al Cl) (0: + 1) + C2 (hl - S)" 

Further, it was shown that the best weighting factors 0: and /3 in the transmission 

conditions (1.5) are given by functions of s, namely 

sEte. (1.7) 

[4], an approximation of these best possible transmission conditions was pro­

posed, because 0: and (3 are not polynomials in sand hence are symbols of non-local 

operators in time. approximation of 0: and (3 by a constant was chosen, which 
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leads to a very practical algorithm with rema.rkable improvement in magnitude and 

uniformity for the convergence in comparison with the classical vVR method. Here, 

we will use the optimal choicc (1. 7) for the parameters, and not an approximation. 

which willlead to the optimal VVR algorithm for the small Re circuit that converges 

exactly in two iterations. The Laplace transform for s E <C of (1.5) is given by 

(1.8) 

If we substitute the values for a and fJ from (1.7) ln (1.8) we get for the first 

transmission condition 

and for the second transmission condition we have 

(W~+I_W~+1)+( aici _ s-b2 +1) ÛJ~+l = (û~-û~)+( aici _ s-b2 +1) û~. 
(s-b1 )C2 C2 (s-b1 )C2 C2 

(1.10) 

By multiplying (1.9) by a2(s - b4 ) and (1.10) by -C2(S - b1), we find after sorne 

algebra, 

S2W~+1 - (bl + b2)SW~+1 - C2SW~+1 - (alcl - hb2)ÛJ~+1 + c2bl'Û!~+1 
= S2Û~ - (b1 + b2)SÛ~ - C2SÛ~ - (al Cl - blb2)Û~ + C2b(Û~. 

(1.11) 

(1.12) 

Since a multiplication with s in the frequency domain corresponds to a time deriva-

tive, equations (1.11) and (1.12) become, respectively 

(1.13) 

(1.14) 
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and thus the non-local parameters in (1. 7) can stilllead to local transmission condi­

tions in the optimal \VR algorithm in this casc. Substituting Ù~+l and tuî+1 from the 

first and second subsystems (1.2) in .13) and (1. 

we a'et b 

respectively, and simplifying 

(1.15) 

w~+l = (b1 + b2)W~+1 + (aici - b1b2 + a2c2)w~+1 (C2bl - c2b.3)w~+l + C2C3W~+1 

(1.16) 

Equations (1.15) and (1.16) are second order ordinary differential equations which 

can be written as two systems of two first or der ordinary differential equations. We 

get for the first equation, equation (1.15), 

(1.17) 

and similarly for the second equation, equation (1.16), 

'k+l Wo 
':k+l 

Wo 

-k+l Wo , 

"k+l 
Wo 

(1.18) 

The system (1.17) which corresponds to the first transmission condition together 

with the first subsystem in (1.2), implies 

'k+l 
ul b1 

ùk+l 
2 al 

Ùk+1 
.3 0 

':k+l u 3 a2a l 

fI 

12 
+ 

0 

a212 

Cl 0 0 uk+l 
1 

b2 C2 0 uk+l 
2 

0 0 1 U~+l 

a2b2- a 2b4 a3C3 +a2c2 - b4b3 b3+b4 
-k+l 
U3 

+ 

0 

0 

0 

w} - (b.3+b4)W~ -a2'ÙJ~+(b4b3 -a3c3)w~+a2b4w~ 
(1.19) 
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with initial voltage values 

and the system (1.18) which corresponds to the second transmission condition to­

gether with the second subsystem in (1.2), implies 

.. 
C2 C3 l ~k-Ll 

bl +b2 alCl-b1b2+a2C2 C2 b3 -C2bl 
-k+l 'Wo ' ~ W o 

'k+l 1 0 0 0 W k+1 
W o 0 

. k+1 0 a2 b.3 C3 W k+1 
W 1 l 

. k+1 0 0 a:3 b4 
wk+l W 2 2 

cd3 ü~ - (bl +b2)Ù~ -C2Ù~ - (alcl -blb2)V.~+C2blU~ 

0 0 
+ + 

h 0 

14 0 

(1.20) 

with initial voltage values 

Sinee at step k 2: 1, 

w~ = w~) w} = a2w~ + b3w} + C3W~ + h, and 

wî' = a2w~ + b3a2w~ + (b§ + C3a3)W} + c3(b3 + b4)W~ + b3h + c3f4 + j3' 

we have 

(1.21) 

SimilarlYl at step k 2: 1, since 

ù~ = ut ù~ = alv.~ + b2n~ + C2V.~ + h, and 

ü~ = al(b1 + b2)ut + (alcl + b~)v.~ + b2C2V.~ + C2U~ + bd2 + alfI + j21 

we have 

(1.22) 
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By substituting from (1.21) and (1.22) in (1.19) and (1.20) respectively, we get the 

following two decoupled systems 

·k+l 

r hl 
Cl 0 0 l 'U k+ 1 

11.1 l 

,//+1 al b2 C2 0 k+l 
~2 11,2 

t"k+l 0 0 0 1 'U k+ 1 
'1'3 

l a2a l 

3 

{tk+l a2 b2 - a2b4 a3C3 + a2C2 - b4 b:3 b3 + b4 J -k+l 
:3 11.3 

h 

h 
+ 

0 

a2h + Cd4 - b4 h + h 
(1.23) 

and 

~k+l 
W o b1 + b2 alcl - b1b2 + a2C2 C2b3 - C2 b1 C2C3 -k+l 

W o 

'''+1 1 0 0 Q Wk+1 
Wo 0 

'Wk+1 1 0 a2 b3 C3 W k+ 1 
1 

'k+l 0 0 a3 b4 Wk+ 1 
W2 2 

C2h + ad1 - bd2 + h 
0 

+ 
h 

14 
(1.24) 

For the convergence study and analysis we do not want to flnd the solution for 

the non-homogeneous problem but we are looking for the convergence rate of the 

problem to see how fast and uniform the problem will converge to the solution. It 

is convenient and sufficient by linearity to consider the homogeneous problem or 

system of (ODEs) where the initial conditions, Uk+l(O) = wk+1(0) = (0,0,0, of, as 

well as the source terms, f(t) = (0,0,0, of, are zero for the convergence study, the 

reasOIl why we can do so is that the homogeneous equations are the error equations 

themselves, for instance, studying the iterative method Mxk+l = Nx k + b for the 
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system Ax = b, where A = M - N, we use the fact that lVlx = N x + b, take the 

differenC8 with the iteration and find M(x - Xk+1) = N(x - xie). Denoting by é+l 

the error, é = x - xk. one has the iteration Mek+l = N eh and the vector b is 

not present any more. So instaed of introducing e, we couid have studied directly 

MXk+l = Nxk, setting b = 0 in the iteration. The homogeneous problem of (1.23) 

and (1.24) is given by 

b1 Cl 0 0 

ü k+1 = 
al b2 C2 0 

U k+ l , 

0 0 0 1 

0,20,1 a2b2 - 0,264 a3C3 + a2C2 - b4 63 63 + b4 
(1.25) 

b1 + b2 alCl - b162 + O,2C2 C2 63 -- C2bl C2 C3 

'Û/+1 = 
1 0 0 0 k+l W , 
0 0,2 b3 C3 

0 0 a3 64 

with initial conditions, Uk+l(O) = 0, and wk+l(O) = O. Since the coefficients in the 

above homogeneous linear systems are constant, by using the matrix exponential 

function exp(At), we can write the solution of the homogeneous problem, 

Ük+l = AUk+1, u k+1(O) = 0, 

Wk+l = Bwk+l, w k+1(O) = 0, 

where A, and B are the matrices for the first and second equations in (1.25), re­

spectively, in the form 

Uk+l = uk+l(O) exp(At) , 

Wk+l = w k+1(O) exp(Bt), 

and sinee, Uk+l(O) = 0, wk+l(O) = 0, we get 

Lemma 1 The optimized WR algorithm (1.19), (1.20) converges in two iterations 

if 

14 



independently of the initial waveforms u G and wo. 

Proof The systems (1.23) and (1.24) which we get at step k 2: 1 do not depend on 

the guess for the initial waveforms, which means that from the second iteration the 

systems (1.19) and (1.20) will converge to the exact solution whatever the guess for 

the initial waveforms will be. Further, sinee Uk+1 = 0 and Wk+1 = 0, for k 2: 1, we 

have u 2 and w 2 are identically zero, independently of u O and wo. III 

We ended up here with solving t,yO systems of four unknowns each whereas we 

have origillally only one system of four unknowns which could also have been solved 

directly, but we did the analysis for the small system to gain a better understanding 

and to show that in this case one can use the optimal transmission conditions using 

a simple transformation to make them local. 

1.3 Numerical Experiments 

In this section we give a numerical example that shows the results we found in the 

. previous section. vVe assume the circuit parameters 

R - 1 
s - 2' RI = ~, R2 =~, R3 =~, 

C 63 
1 = 100' 

63 
C2 = 100' 

C 63 
3 = 100' 

C 63 
4 = 100' 

for the small circuit in Figure 1.1. We use for the numerical computations the for­

ward Euler method with a time step !:::,t = 160' We start with zero initial waveforms 

as well as zero initial conditions and use an input step function with an amplitude of 

Is = 1 and arise time of 1 time unit. We approximate the second or der derivatives 

by a centered finite differenee, 

j = 1,2, ... ,1000, 

and we use at j = 0, iù~ = a2wà+b3a2w~+(b~+c3a1)w~+c3(b3+b4)W~+b3h+C3h+ j3, 

and ü~ = a1(b1 + b2)U~ + (alc1 + b§)u~ + b2C2U~ + C2Ù~ + bd2 + adl + j2' sinee uk(O) 

15 
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Figure 1.3: Results for Small Circuit. 

and wk(O) do not depend on k, they are given by the initial condoition. We assume 

at j = 1000, wtj+l = Wtj-l' and U~j+l 

order derivatives by forward difference, 

k _ w~.i+l-1U~i 
wO j - Dot 

U~j_l' Also, we approximate the first 

j = 0,1, ... ,1000, 

and we again assume at j = 1000, W&j+l = W~j_l' W~j+l = W}j_l' U~j+l = U~j_l' 

and U~j+l = U~j_l' The above discretization depends on the time step, we assume 

symmetry around the right end point of the time interval, and it might not be the 

proper discretization to approximate the derivatives in the subsystems. There are 

four waveforms which ,'le do not care about, U3, wo, 1..L3 and wo. We need four 

waveforms to be our solution for the original system which are the first two of the 
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Figure 1.4: Convergence rates of classical versus optimal WR. 

first subsystem and the last two of the second subsystem. We give the results for 

the classical WR and optimal WR algorithms together with the exact solution in 

Figure 1.3. The difference in convergence between the classical and the optimal WR 

algorithms is illustrated in Figure 1.4, which shows the error as a function of the 

iteration. The solution obtained by using the optimal WR algorithm is the same 

after the second iteration, and hence the error is the same which shows that the 

optimal WR algorithm converges in two iterations. In the optimal WR algorithm 

we use the second order transmission conditions which are the best possible ones 

that lead to the remarkable improvement of the optimized WR algorithm over the 

classical one and that is evident from the comparison in Figure 1.4. On the negative 

side, one has to think about the best discretization of the second order transmission 

conditions, which is not clear, to get a much better solution. 
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Chapter 2 

The Large RC Circuit 

Vve analyze in this chapter an infinitely long RC circuit and its infinite size system 

of equations, as is indicated in Figure 2.1, to show what the impact of the system 

size is on the convergence properties of the waveform relaxation algorithms. The 

equations for the infinitely large circuit matrix, Figure 2.1, are 

abc 
x= x+f· (2.1) 

abc 

The entries in the tridiagonal matrix are given by 

1 
c= -- = a 

RC ' 

where the circuit elements, Rand C are assumed to be strictly positive and con­

stant. The source term on the right hand side is given by the vector of func­

tions f(t) = ( ... , f-l(t), fo(t), h(t), ... ? and we need an initial condition x(O) = 

R R R R 

Figure 2.1: An infinitely long RC circuit chain. 
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(, .. , v~ l' , V~, ... ) T. Since the circuit is infinitely large, we have to as~ume that R11 

voltage values stay bounded as we move toward the infinite ends of the circuit to 

have a well posed problem. 

2.1 The Classical \\TR Algorithm for the Large 

Circuit 

vVe partition the system in (2.1) into the following two subsystems 

u 

r 
a b a u+ f-1 + 0 

b fo L a mL1 
(2.2) 

b a h awo 

w a b a w+ h + 0 

with the initial conditions u(O) = ( ... 1 V~l' vgf and w(O) ( 0 ,0 )T 
VI' '1,21' •• • The 

transmission conditions for the classical waveform relaxation are 

N ow relaxing those transmission conditions we get the waveform relaxation algo­

rithm 

Ük+l - a b a u k+1 + f-1 + 0 

a b fo awt 
(2.3) 

b a h auk 
0 

'ÙJk+l a b a Wk+l + h + 0 

with the initial conditions uk+l(O) = ( ... , V~I' vgf and Wk+l(O) = (v~, v~, ... )T. 

To start the classical WR iteration, we use sorne initial waveforms UO(t) and WO(t). 
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The analysis for the classical \iVR is discussed in [4]. For the convergence study, as 

for the sma11 circuit. it suffices to analyze the homogeneous prohlem, f(t) = 0 with 

zero initial conditions x(O) = O. The Laplace transform yields in the .9 E CC domain 

A k+l 
b 

A k+l 
0 .su a a u + 

a b a'ÛJi' 
(2.4) 

b a aù~ 
swk+l a b a wk+l + 0 

Solving the first system of equations for Û;+l corresponds to solving the recurrence 

relation 

auAk+l + (b - S)UAk+1 + auAk+1 = 0 J' 0 1 2 J-1 J J+1' =, - ,- , ... 

which has the general solution 

where À± are the roots of the characteristic polynomial of the recurrence relation, 

s - b ± V (s - b)2 - 4a2 
À± = ------~------------

2a 
(2.5) 

It was shown in [4] that 

where the convergence rate Pela is given by 

a2 1 
Pcla(s,a,b) = (aX;:l+b-s)(aÀ_+b-s) Àr (2.6) 

As in the small circuit case, the convergence rate depends on s E <C, the parameter 

in the Laplace transform. Results may be obtained in the nodal formulation in the 

time domain, but they are obtained more easily by using Laplace transformation 

because of the power of the Laplace transform approach which is in its versatility. 

The classical WR, as is evident from (2.6), always converges for a large number of 

iter","tions since IÀ+I > 1, but convergence might be very slow. 
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2.2 The Optimal WR Algorithm 

The two subsystems (2.2) with the new transmission conditions, 

- U~;+l) + ŒU~+l = (wî - w~) + 

('u,k+l _ Wk+1) 1 13v.;,k+l - ('uk _ u k) + t3uk 
'] 0 T / 0 - 1 0 ' 0' 

(2.7) 

which are similar ta what we have used for the small circuit, will give the subsystems 

a b a u k+1 + f-1 + o 
a b + a~l fo 

b - (J~l a h 
a b fi W

H1 + h + 

(2.8) 

together with the transmission conditions (2.7) which define the values ut and w~. 

In [4] it was shown that 

where the convergence rate Poptl, is given by 

(Œ + 1) - À+ 
Poptl(s,a,b,Œ,p) = (Œ+ l)À+ -1 

((3 - 1) + À+ 

((3 - l)À+ + l' (2.9) 

Theorem 1 (Optimal Convergence) The optimized WR algorithm (2.8) con­

verges in two iterations for the choice of parameters 

Œ := ),+ - 1, f3:= -À+ + 1 (2.10) 

independenûy of the guess for the initial waveforms. 

Proof The convergence rate vanishes if we insert (2.10) into Poptl given by (2.9). 

Hence, û6 and wI are identically zero, independent of ûg and w~. • 
For the large circuit, similar to the small circuit, the parameters in (2.10) are not 
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polynomials in 3 and hence are symbols of non-local operators in time. In the small 

circuit case, it is shown that the non-local parameters in (1.7) can le ad to local 

transmission conditions in the optimal WR algorithm, by transforming them into 

polynomials, but in the large circuit case, the symbols contain square roots and 

hence there is no simple manipulation to transform them into polynomials. Again, 

in [4], an approximation of 0; and ,8 by a constant was chosen. The best constant for 

the algorithm was found, which is not as good as the optimal conditions with the 

square root, but leads to a very practical algorithm which is already much better 

than the classical vVR algorithm. In the next sections, we prove the optimality of 

the constants chosen for the transmission conditions in [4], and we introduce first 

order transmission conditions to get a faster convergence rate than in [4]. 

2.3 The Optimized WR Algorithm with Constant 

Transmission Conditions 

The maximum principle for complex analytic functions is used in the optimization 

process for the large circuit. 

Theorem 2 Let R be the region consisting of C and its interior, and let f(8) be 

regular and not identically constant in R. Then the maximum value of If(8)1 in R 

occurs on the boundary C. If f (s) has no zero in R, 1 f (s)! also attains its minimum 

in R on boundary C. 

Proof See [12] for the proof. 

The optimization pro cess for the WR algorithm allows us to reduce the large Pela (w) 

of the classical WR and make it more uniform so that the overall convergence is 

improved. Mathematically, we want !Poptl! < < 1. 

Lemma 2 The convergence rate Poptl in (2.9) is an analytic function in the right 
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ha~f of the complex plane, S = (J + iw with (J > 0, if 0:, (3 E IR; 

b < 0, a > 0, 2a S -b, 

0: > 0, fJ < 0, 

Proof See [4] for the pro of. 

(2.11) 

(2.12) 

• 
The maximum principle can be used and the maximum of !Poptl(S)! for S = (J + iw, 

(J > ° is attained on the boundary at (J = O. That yields the optimization problem 

min ( m~x !Poptl('iw, a, b, 0:, ,6)!) 
0:>0,;3<0 Wmin<IWi<Wmax 

(2.13) 

where the frequency range was truncated by a minimal and maximal frequency 

relevant for the problem. The estimate for the lowest frequency occurring in the 

transient analysis depends on the length of the time interval [0, T]. The signal was 

expanded in a Fourier series sin(k1rtIT) for k = 1,2, .... Hence, the minimal rel­

evant frequency can be estimated by Wmin = 7r IT. The highest frequency depends 

again on the resolution of the discretization in time, and as before the maximal 

relevant frequency can be estimated by W max = 7r l!:J.t which isthe highest possible 

oscillation on a grid with spacing !:J.t. The subsystems in the large circuit are be­

having identically on both sides of the partition, so we assume, for simplicity, that 

(3 = -0:, although this might not give the best possible solution. We define a new 

parameter 1 as 1 = 0: + 1. Also, À+ given in (2.5) with s = iw, w E [Wmin, W max], 

will be written as À+ = X + iy, where the real part, :T, is given by 

and the imaginary part, y, is given by 

W ..)2V(;.)4 + 2w2b2 + 8w2o,2 + b4 - 8b2o,2 + 160,4 + 2w2 - 2b2 + 8a2 

y = Y(w) = -20, + ------------4-0,-----------

The modulus of the convergence rate Poptl in (2.9), will be 

.cl n· ) _ 1 1 _1 (r - x) - iy 1
2 

.J ,x, y, 1 - Poptl - ( 1) , . 
IX - T 'l/y 
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where f is a function of two variables :I:, :y E IR, 1 is our parameter. know from 

befme that 0: > 0 which implies 1 > 1, -b 2 2a which gives x > 1. We set 

a = Land b = -2c2
, for c 2 l, to eliminate one parameter, which is equivalent to 

a time scaling . The real and imaginary parts of the path, À+, become then 

X(w, c) = c2 + ~J2)w4 + 8w2ci1 + 8w2 + 16c<' - 32c'J + 16 - 2w2 + 8c4 - 8, 

Y(w, c) = %w + âJ2)w4 + 8W 2C4 + 8w2 + 16c8 - 32c/1 + 16 + 2w2 - 8c4 + 8. 
(2.15) 

Solving x = X(w, c) for w(x, c) gives 

Since we have w > 0, we require 

(2.16) 

which implies 
-(2xc2 - 1 - x 2 ) 2 

w(x, c) = -2· ? 2 (c - x) > O. 
2xc~ - x 

(2.17) 

With those conditions on c and x in (2.16), the second solution is ignored sinee it 

implies w < O. Inserting the value for w(x, c) from (2.17) into Y(w, c), the second 

equation in (2.15), implies 

Y(x, c) = -
-(2XC2 -x2 -1) 

2xc2 _x2 X 

Since (-c4 + 4X2
C

4 
- 4x3c2 + x 4

) < 0, for c and x satisfying the conditions (2.16), 

we have 

This implies 

Y(x, c) = -
-(2xc2 - x 2 - 1) ,1 0 

2 2 2 X'-2 Y L. xc - X 
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Simplifying more, we get 

-(2xc2 - .1: 2 - 1) 
Y(x, c) = . x (2.18) 2xc2 - X2 .. 

find in what range ;E can vary, we nnd the limits in .T = X(w, as w goes to zero 

and infinity, 

:Tmin = limw-+o X(w, c) = c2 + J c4 - 1) 

Xmo.x = limw-+oo X (w) c) = 2c2. 

Inserting y = Y(x, c) from equation (2.18) into the fUllction fer, y; 1) implies 

(2.19) 

for which we minimize the maximum for x E [Xl) X2], where Xmin < :r1 = X(Wmin) c) 

and X2 = X(wmo.x ) c) < Xmo.x· The derivative Fx(x, c; 1) is 

Solving Fx; = 0 for x, we get two roots, namely, 

(2.21) 

Sinee c2 2: 1, we have r + > 1, and since r _ < Xmin, and X 2: Xl > Xmin, r _ is 

ignored. For the study of the sign of Fx(x, c; 1), we will use the fact that, if we have 

a quadratic polynomial, p( x) = ax2 + bx + c, with two real zeros then the sign of the 

polynomial for those values of x lying between the zeros is different from the sign of 

the coefficient of X2, i.e.) a, and has the same sign as a everywhere else. 

Lemma 3 If r+ :s:: Xl < X2 then the function F(x, c; 1) attains its maxim'um value 

at x = X2; and minimum value at x = Xl- If Xl < r + < X2 then the function attains 

its maximum value either at X = Xl or X = X2) and minimum value at .1: = r +. If 

Xl < X2 :s:: r + then the maximum is atiained at X = Xl, and the minim1J,m is attained 

at.1: = X2 . 
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Proof In the clerivative F7;(X, c; ÎI) given in (2.20), the coefficient of :[;2 is 2(2,:> -

21 ) > 0, and hence the sign of for the values of x lying between two roots of 

= 0 is negative. The denominator does not affect the sign, since it is squared. By 

using basic cakulus, if r + ::; Xl < :1:2, then F~;(x, c; 1) > 0 for X E , X2), and hence 

the function Fer, c; 1) is increasing in the whole interval and has a m~ximum value 

at X = X2 and Ct minimum value at x = Xl' If Xl < r + < X2, then Fr(x, c; 1) < 0 

for x E (Xl, r+], and Fx(x, c; 1) > 0 for X E (r +, X2), so the function is decreasing 

for x E (Xl, r +], and increasing for X E (r +, X2), hence there is a minimum value at 

X = r+, and the function F(x, c; 1) attains its maximum value either at x = Xl or 

X = X2. Finally, if Xl < :1:2 ::; r +, then Fx(X, c; 1) < 0 for X E (Xl, X2), and hence the 

function F(x, c; 1) is decreasing in the whole interval and has a maximum value at 

X = Xl and a minimum value at X = X2. 

Solving r+(c, l) = Xl, where r+(c'I) is given in (2.21), for 1 implies 

2c4 + xI - 2XlC2 + V(xI - c2 - 2XIC2 + 2c4 ) (xI + c2 - 2XIC2 + 2c4 ) 
~~= 2 . 

c 
(2.22) 

Sinee, by the conditions (2.16), -1 < xi - 2XIC2 < 0, and we know that c2 > 1 

which implies (2c2 
- 1) > 1, we have 

Similarly, solving r+(c,l) = X2, for 1 gives 

[max 
2c4 + x§ - 2X2C2 + V(x§ - c2 - 2X2C2 + 2C4)(X~ + c2 - 2X2C2 + 2c4) 

c2 

(2.23) 

Lemma 4 The function r +(c, ~() in (2.21), is an increasing function of l' Further, 

Imin in (2.22) is strictly less than Imax in (2.23). 
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Proof The derivative of 'r+(c, ~() with respect to " 

has two zeros, -1 and 1, the sign of the derivative for, > 1 1S positive, since the 

coefficient of ,2 in the derivative is positive. Hence, the function r'+ (c, () is increas­

ing for "'f > 1. Moreover, since :rl < X2 and T+ (c, ,) is increasing for 1 > l, we have 

,min < 'max' III 

Lemma 5 If ~( E (1, Imin], then the maximnm of the fnnction F(x, c; ,) is attained 

at x = X2. If, E bmin) ,max) then the function attains its maximum Val1Le eitheT at 

x = Xl or x = X2. If, E [!max) 00), then the maximum valne is attœined at x = Xl' 

Proof The proof follows directly from Lemma 3 and Lemma 4. III 

Lemma 6 There exists ,* E bmin' ,max) under the conditions (2.16), such that, 

Proof Solving the equation F(Xl, c; ,) = F(X2' c; ,) for 1 implies 

(2.24) 

We know that Xl < X2, and ,min < l'max. Sinee 

Xl (X2 -Xl) -C
2

(X2 -.Tl) 

- (Xl - C
2

)(X2 - Xl) 

> 0, 

we have (xi - 2XIC2 - c2 + 2c4 ) < (XIX2 - XIC2 - c2 2c4 - X2C2) which implies 

(XI X 2 - XIC
2 

- c2 + 2c4 
- X2C2) > ° and hence, 
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This also implies Îmin < . Sirnilarly, sinC8 

X2(X2 - Xl) -C
2

(X2 - J: 1) 

(:r2 - C2)(J;2 - Xl) 

> 0, 

Î* < "imax· Hence, the existence of Î* E (Îminl Îmax) has been assured, under the 

conditions (2.16). 

Theorem 3 Let Poptl (iw 1 a, b, Œ, /3) be the convergence rate of the optimized WR al­

gorithm (2.8) with constant transmission conditions, then the global optimal solution 

of the min-max pmblem 

min ( max IPoPtl(iw, a, b, Œ, ml) , 
0<>0,,6<0 Wmin<lwl<wmax 

is obtained at Œ* = Î* - 1 and {3* = -a*, where 

Proof The proof follows directly from the above Lemmas. 

For the numerical example in section 2.5, with Wmin = 'if /T and W max = 'if /!:lt we 

find, by using the formula in (2.24), Î* = 1.73455, and hence the optimal constant 

is a* = 0.73455, which is the same as what was found in [4] without a proof of 

optimality. The solution for the min-max problem given in (2.13), and the optimality 

of the constant transmission conditions proposed in [4] has now been proved, which 

is one of the key contributions of this thesis. 

2.4 The Optimized \\lR Algorithm with First Or-

der Transmission conditions 

Since the optimal parameters, a and {3 in (2.10) are functions of sE C, we may 

approximate them as, a = ao + aIS, and {3 = -ao - al S, for some constants ao and 
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(YI. We assume (3 = -0, for simplicity. \Vhen QI = 0 we get the simple st expansion 

for the parameters and constant transmission conditions, which was done [4) and 

we have analyzed the optimal choice of that constant in section 2.3. In this section 

we will use the first order expansion for 0: to get faster convergence. Taking the 

Laplace transform for the transmission conditions in (2.7), with ,6 = -0:, and using 

the first order expansion for 0:, we get 

(Ù~+l - Û~+l) + O:OÙ~+l + 0:18Ù~+1 

( 
~k+l Ak+l) Ak+1 Ak+l w1 - W o - O:owo - QI SWo 

(2.25) 

Since a multiplication by 8 in the frequency domain corresponds to a time derivative, 

by substituting 

from the subsystems in (2.2), assuming QI =1 0, we have 

(2.26) 

The ordinary differential equations which are found from the transmission conditions 

in (2.26) together with the subsystems in (2.2) will imply the following two decoupled 

subsystems, 

a b a U k+1 
-1 

1 
f-1 

T 

a b a k+1 
Uo fa 

l -(0:0+1) U k+1 fI (>1 0:1 1 
(2.27) 

0 

+ 
o 
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and 

'ûi+1 \ r -(ao+1) l 
0 al al 

,u,k+l 
, 1 a b a 

v,k+l 
'2 a b a 

\ (2.28) 

o 
+ 

o 

with the initial conditions u k+1 (0) = ( ... ,V~l' vg, vf)T and wk+l(O) = (vg, vf, v~, ... f, 
respectively. To st art the WR Iteration, some initial waveforms UO(t) and WOU) are 

used. As before, for the convergence study, it is sufficient to analyze the homo­

geneous problem, f(t) = 0 with zero initial conditions x(O) = O. The Laplace 

transform yields in the sEC domain 

o 

SÛ
k+1 = 

a b a 
Ûk+l 

+ 
a b a 0 

..L --(a0+1) (ala-l) Ak+(l+O:O+O:lb) Ak+ Ak 
al al -a-1 -WO aJ W 1 aW2 

--(ao+l) 1 Ak + (l+O:O+O:lb) A/c+ (ala-l) Ak 
al al aU_1 al U o 0:1 U 1 

a b a 
ûl+1 0 

+ 
a b a 

o 
(2.29) 

Solving the first subsystem of equations for ûj+l, analogous to what is done for the 

classical \VR, corresponds to solving the recurrence relation 

ao'lk+l + (b - S)uAk+1 + auAk+~ = 0 J' 1 0 1 2 '"'J-1 J ;+1' =" - ,- , ... 

with the general solution 
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where /\± are the roots of the characteristic polynomial of the recurrenC8 relation. 

To determine the constants AH1 and BI.:+1 for the general solution, we will use that 

the solutions stay bounded at infinity as \vell as the 1ast equation at the interface. 

have 
s - b + V Cs - b)2 - 4a2 

2a 

which can be simplified to 

-b s ~s2-2sb+b2-4a2 
.-\, =-+-+-------

T 2a 2a 2a 

For -b 2: 2a and s = () + iw with () > 0, we get 1.-\+1 > 1, since Isi > O. Since 

.-\+.-\_ = 1, we have 1.-\+11.-\_1 = l which implies 1.-\_1 < 1, by knowing that 1.-\+1 > l. 

By using the fact that 1.-\-1 < l, 1.-\+ 1 > 1 and the boundedness condition we obtaill 

Bk+l = O.Further, we can determine AHl from the last equation at the interface, 

which implies 

and hence 

Ak+l = (aal - l)w~ + (1 + 000 + badtût + aalw~ 
.-\+(1+ao+a1 s)-1 . 

(2.30) 

Similarly, solving the second subsystem foi wj+1 we obtain as a general solution 

W~ k+l = Bk+l d-l . 0 1 2 3 
J A_ , J = , , ,', ... 

and to determine BHl we again use the equation at the interface, 

which gives 
B k +1 = (aal - l)ût + (1 + 000 + bal)û~ + aal'Ü~l 

.-\=1(1 + 000 + aIS) - l 

31 
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By inserting general solution for the second subsystem in equatioll (2.30) and 

the general solution for the first subsystem in equation (2.31) at step k:, we obtain 

AH1 = (an} - 1)).=1 + 1 + 0'0 + bal + aO'l).- Bk 

).+ (1 + 0'0 + 0' 1 s) - 1 . 

B H1 = (aO'! - 1)~+ + 1 + 0:0 + bO:I + aO:lXt:] A k . 

).= (1 + 0:0 + aIs) - 1 

Applying the second relation at step k to the first one, we find 

~k+l (b ) ~k-l Uo = Popt2 s, a, ) 0'0, o:} Uo , 

where the convergence rate Popt2, using that À+ = , is given by 

Since À+ + À_ = s:b, we get 

Therefore, the convergence rate Popt2 is given by 

(2.32) 

The same relation a1so holds for the other subsystem and by induction we find 

û5k = (PoPt2)k ûg and wîk = (Popt2/ w~. Similar to the optimized WR algorithm 

with constant transmission conditions, we discuss in this section an optimization 

process for the WR algorithm with first order transmission conditions, which we 

find by expanding 0: as 0: = 0:0 + 0:1 sand (3 = -0' to get the best performance of 

the new WR algorithm. Mathematically, we again want IPopt21 « 1. 

Lemma 7 The convergence mte Popt2 in (2.32) is, 1.mder the conditions 

b < 0, a > 0, 2a::; -b, (2.33) 

ao 2: 0, al > 0, (2.34) 

an analytic function in the right half of the complex plane, s = ()" + iw with ()" > O. 
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Proof À+ is an analytic function in the right half plane, sinee the argument under 

the square root avoids the negative real axis un der conditions (2.33). Hence, 

it is sufficient to show that the denominator does not have zeros. Assume there 

is a zero, (00 + O'lS + 1) - 1 = 0, this gives À+ = l+no
1
+c'ls' which implies 

IÀ+12 = (1+ ' l )~+ 2 C} < 1, that is a contradiction to the fact that IÀ+I > 1. 
aOiOq a'" w aï 

Hence, poles are excluded and the denominator has no zeros. III 

Sinee Popt2 is analytic we can agaill apply the maximum principle to find the maxi­

mum of IPopt2(S) 1 for S = (J + iw, (J > 0 on the boundary at (J = O. This yields the 

optimization problem 

min ( max IPopt2(iw, a, b, 0:0, 0:1)1) , 
ao2:0,011 >0 Wmin <JwJ<wmax 

(2.35) 

where we again truncated the frequency range by a minimal and maximal frequency 

relevant for our problem. For our particular example in section 2.5 where we take 

Wmin = ;0 and W max = 201f, we find that the optimal solution for the min-max 

problem (2.35) is o:~ = 0.1757 and ai = 0.6557, by using a multidimensional un­

constrained nonlinear minimization routine (Nelder-Mead). The Nelder-Mead algo­

rit hm was first published in 1965, it is a very popular direct search method for mul-

tidimensional unconstrained nonlinear minimization, it minimizes a scalar-valued 

nonlinear function of n real variables using only function values, without any deriva­

tive information. One can find more details about this method in many references, 

e.g. [24,25]. We compare the convergence rates for the classical WR, optimized WR 

with a* = 0.73455 and optimized WR with o:~ = 0.1757, o:i = 0.6557; we can see 

that the best method is the optimized WR with first order transmission conditions, 

Le., with ao and Œl, Figure 2.2. The optimized convergence rate, Ipopt2(0:~,ai,w)1, 

takes the smallest values which means a faster convergence in eom.parison with the 

classical "\VR and the optimized WR with 0:* algorithms. In addition, the conver­

gence rate is mueh more uniform. 
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Figure 2.3: Convergence rates of classical versus optimized WR. 

2.5 Numerical Experiments 

For the large circuit we give a numerical example for a circuit with 10 nodes which 

can be extended to any number of nodes with the same parameters as we did for 

the small circuit, 

1 
Rs = 2' 

1 
Ri = 2' i = l, ... ,9; 0-= 63 

t 100' i = 1, ... , 10. 

We use again for the numerical computations the forward Euler method and our 

time is t E [0,20] with a time step t:.t = 2
1
0' We start with zero initial waveforms 

as weIl as zero initial conditions and use an input step function with an amplitude 

of ls = 1 and arise time of 1 time unit. The difference in convergence between 

the classical, the optimized WR with a* = 0.73455, and the optimized WR with 

a~, ai algorithms is illustrated in Figure 2.3, which shows the error as a functioll 

of the iteration. In Figure 2.4 we varied 000 and al and computed the error aftel' 

4 iterations of the new optimized V\lR algorithm. We can see that the analytical 
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Figure 2.4: Numerical and analytical optima compared. 

parameters obtained from the optimization pro cess in section 2.4 are close to the 

optimal numerical ones. 
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Conclusions 

The optimized waveform relaxation algorithm has a very uniform convergence in 

very few iterations, which is the key advantage of this new algorithm over the clas­

sical waveform relaxation algorithm which has a slow and non-uniform convergence 

over the time interval for which the equatiolls are integrated. This remarkable 

improvement and great performance is achieved by new transmission conditions re­

sponsible for the exchange of both voltages and currents, or derivatives between the 

sub-circuits rather than just voltages as in the classical waveform relaxation algo­

rithm. The optimized waveform relaxation algorithm is not complicated and can 

easily be implemented by only changing the few hnes in the waveform relaxation 

code responsible for the transmission conditions. By considering the infinitely large 

circuit, we have shown that the size of the circuit do es not have a major impact on 

the convergence of the optimized waveform relaxation method. In the sman circuit 

case, the optimal waveform relaxation converges to the solution in two iterations, 

and in the large circuit case, a faster and more uniform convergence is obtained by 

taking a higher order expansion for the optimal parameters in the new transmis­

sion conditions. A numerical experiment for each case lS given which confirms the 

theoretical results. 

Future work will involve analyzing and proving the optimality of the con­

stants, ŒO and Œl, in the first order transmission conditions, Re circuits connected 

in two dimensions, transmission Une type circuits, and mixed circuits. 
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