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Abstract

This thesis considers simplified decoding for a type of full-rate non-orthogonal complex space-
time block codes (STBCs) over Rayleigh fading channels. More precisely, we propose a decision
feedback symbol-by-symbol decoding algorithm for the Quasi-Orthogonal code family, that com-
prises the Quasi-Orthogonal code and the Improved Quasi-Orthogonal code, by using the QR de-
composition. Compared to optimal joint decoding, this algorithm significantly reduces complex-
ity. For performance evaluations of the simplified decoding algorithm for the Quasi-Orthogonal
code family over Rayleigh fading channels, we derive upper and lower bounds for symbol error
rate. Furthermore, by using high SNR asymptotics we investigate the diversity orders provided
by different decoding algorithms. The analysis shows that because of the relative constellation
rotation, the diversity order provided by optimal decoding for the Improved Quasi-Orthogonal
code is 4. Also, because of the error propagation in the decision feedback, the diversity order
provided by the simplified decoding for the Improved Quasi-Orthogonal code is reduced to 2.
All analytical results match well the associated computer simulations. Finally, we compare the
performances of the simplified and optimal decoding for the Improved Quasi-Orthogonal code
over correlated Rayleigh fading channels by using the “one-ring” channel model. Through com-
puter simulations we show that the relative performance loss between the simplified and optimal
decoding decreases as channel correlation increases. Therefore, the simplified decoding algo-

rithm is suitable for highly spatially correlated Rayleigh fading channels.
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Sommaire

Le sujet proposé dans cette thése concerne le décodage simplifi¢ d’un type de codes spatio-
temporels en bloc pour des canaux a évanouissements de Rayleigh. Les codes spatio-temporels
en considération sont complexes, a rendement plein (“full rate”) et non orthogonaux. Plus
précisément, nous proposons un algorithme de décodage symbole-par-symbole de rétroaction
de décision pour la famille de codes quasi-orthogonaux comprenant le code quasi-orthogonal
et le code quasi-orthogonal amélioré, et ce en utilisant une décomposition QR. Comparé a un
décodage conjoint optimal, cet algorithme résulte en une réduction significative de complexité.
Afin d’évaluer la performance de I’algorithme de décodage simplifié pour la famille de codes
quasi-orthogonaux pour des canaux a évanouissements de Rayleigh, nous dérivons des bornes
inférieures et supérieures pour le taux d’erreur par symbole. En outre, nous présentons une
analyse des ordres de diversité fournis par les différents algorithmes de décodage moyennant
une étude asymptotique avec un rapport signal-sur-bruit élevé. L’analyse des résultats montre
qu’a cause de la rotation relative de la constellation, I’ordre de diversité obtenu par décodage
optimal du code quasi-orthogonal amélioré est de 4. Par ailleurs, a cause de la propagation
d’erreur dans la rétroaction de décision, 1’ordre de diversité obtenu par décodage simplifié du
code quasi-orthogonal amélioré se réduit & 2. La totalité des résultats analytiques coincident bien
avec ceux obtenus par simulations numériques. Finalement, nous comparons la performance des
algorithmes de décodage simplifié et optimal pour codes quasi-orthogonaux améliorés pour des
canaux a évanouissements de Rayleigh corrélés utilisant un modéle de canal “one-ring”. Les sim-
ulations numériques montrent que la perte de performance relative entre le décodage simplifié
et optimal diminue lorsque le niveau de corrélations dans le canal augmente. Par conséquent,
’algorithme de décodage simplifié est approprié pour les canaux a évanouissements de Rayleigh

ayant un niveau élevé de corrélations spatiales.
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Notation

The following notation is used throughout the thesis.

j=v1L

e z* is the complex conjugate of the variable x
e x* is the complex conjugate of the vector x

e X* is the complex conjugate of the matrix X
e Re(x) is the real part of the variable =

e Im(x) is the imaginary part of the variable

e X7 is the transpose of the matrix X

o x7T is the transpose of the vector x

e X# is the conjugate transpose of the matrix X
e x* is the conjugate transpose of the vector x
o I is the identity matrix

0 is the zero matrix
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Chapter 1

Introduction

1.1 Literature Review

In the past years, the world witnessed a significant progress in wireless communication tech-
nologies [1]-[9]. Among these technologies, space-time coding [5] [7], which provides reliable
communications over fading channels by using multiple antennas, attracted much research inter-
est [10]-[15]. It has been shown by Telatar [16], Foschini and Gans [17] that in rich scattering
environments, the capacity of a multi-antenna communication system increases linearly with
the minimum number of transmit and receive antennas when the signal to noise ratio (SNR) is
sufficiently large. This indicates the possibility of significant capacity gains for multi-antenna
systems, when compared to single-antenna systems. Furthermore, it provides the reason for ex-
ploring new channel coding schemes for multi-antenna systems.

Generally speaking, there are two types of space-time coding schemes, which are termed as
space-time trellis coding (STTC) [5] and space-time block coding (STBC) [7]. In [5], Tarokh
et al proposed STTC as an effective anti-fading technique for Rayleigh and Rician fading chan-
nels. Performance criteria, coding and diversity gain, for designing STTC over slow fading and

frequency non-selective channels were derived in [5]. Alamouti [18] introduced a remarkable
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simple coding scheme that employs two transmit antennas, and not only achieves full diversity
gain, but also allows simple symbol-by-symbol maximum likelihood (ML) decoding. A general-
ization of Alamouti’s scheme in form of STBCs were presented later in [7]. Using the theory of
orthogonal designs [19] for code constructions of STBCs, Tarokh et al [7] proposed orthogonal
STBCs for more than two transmit antennas. For orthogonal STBCs, the transmitted symbols
can be decoded independently, thus the decoding complexity is comparable to un-coded sys-
tem. For STTCs, the transmitted symbols are estimated jointly at the decoder, which leads to a
higher decoding complexity when compared to un-coded system. Because of the lower decoding
complexity at the mobile, we are more interested in code designs of orthogonal STBCs.

Two classes of orthogonal STBCs have been proposed: real orthogonal STBCs and com-
plex orthogonal STBCs [7]. Real orthogonal STBCs are based on real orthogonal designs. The
code matrices of real orthogonal STBCs are order N orthogonal designs with entries {£s;, i =
1,..., N} taken from real ( one dimensional) constellations such as PAM and BPSK. Complex
orthogonal STBCs are based on complex orthogonal designs. The code matrices of complex or-
thogonal STBCs are order N orthogonal designs with entries {0, +s;, i = 1,..., N} taken from
complex (two dimensional) constellations such as QAM and MPSK (M > 2) or their conjugates
{£s!, i = 1,..., N} and products of these indeterminates with j = /—1. As illustrated in
[7], orthogonal STBCs have the advantages of providing full code rate, full diversity order and
simple symbol-by-symbol ML decoding. As far as bandwidth efficiency is concerned, complex
orthogonal STBCs are more efficient than real STBCs. We define code rate as the ratio of the
number of information bearing symbols in a codeword to the number of channel usages required
to transmit a codeword. Complex orthogonal STBCs achieve higher bandwidth efficiency than
real orthogonal STBCs assuming they have the same code rate. In modern wireless communi-
cations, we are seeking bandwidth efficient technologies, and hence we are more interested in
complex orthogonal STBCs.

The existence of code designs for orthogonal STBCs was considered in [7] by using Radon
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and Hurwitz theorem [21]. According to the theory of existence of complex orthogonal designs,
a complex orthogonal STBC exists if and only if (iff) the order of the code matrix is 2. In
other words, Alamouti’s scheme is the unique complex orthogonal STBC. In order to explore
new complex orthogonal STBCs, Tarokh et a/ [7] introduced coding schemes allowing linear
processing, with which the entries of code matrix may be the linear combinations of {s;, s} ¢ =
1,..., N} or products of these indeterminates with j = /—1. Later, Ganesan and Stoica [23]
connected the complex orthogonal STBC designs with the theory of amicable orthogonal designs.

As proved by [7], a complex orthogonal STBC exists iff the order of code matrix is 2, i.e., only
Alamouti’s scheme exists. In the design of complex STBC other than Alamouti’s scheme, we can
not satisfy the requirements of full code rate and full orthogonality (which results in full diver-
sity and symbol-by-symbol ML decoding) at the same time. In [24], Tirkkonen et al presented
novel constructions for STBCs based on multi-modulation techniques that increase bandwidth
efficiency. Such STBCs were then used as components in concatenated schemes. In [7], Tarokh
et al introduced generalized complex orthogonal designs, which allow non-square code matrices.
Furthermore, Tarokh et al [7] extended generalized complex orthogonal designs to generalized
complex linear processing orthogonal designs, which allow the entries of code matrix to be linear
combination of {s;, s} 7 = 1, ..., N} or products of these indeterminates with j = /—1. It has
been proved by Tarokh et al [7] that there exists full code rate generalized complex linear pro-
cessing orthogonal designs for two transmit antennas. But whether or not there exists full code
rate generalized complex linear processing orthogonal designs for more than two transmit anten-
nas was unknown. In [25], Liang proved the nonexistence of full code rate complex orthogonal
designs for more than two transmit antennas. Later, Liang and Xia [26] further demonstrated that
no such full code rate generalized complex linear processing orthogonal designs exists for more
than two transmit antennas. Through examples, Tarokh et al [7] proved that for any number of
transmit antennas code rate 0.5 can be achieved with generalized complex orthogonal designs.

In [7], by using generalized complex linear processing orthogonal designs, coding schemes for
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3 and 4 transmit antennas that achieve code rate 3/4 were proposed. Later in [23], Ganesan
and Stoica, presented another coding scheme achieving code rate 3/4 by employing amicable
orthogonal designs.

As aforementioned, if we are going to ensure full code rate in a complex STBC design,
besides Alamouti’s scheme, the feature of full orthogonality must be sacrificed. In an effort
of keeping full code rate, Tirkkonen et al [27] and Jafarkhani [28] proposed two types of full-
rate and order-four non-orthogonal complex STBCs independently. Both of these two codes use
Alamouti’s scheme as construction blocks and provide diversity order of two in the one receive
antenna system with ML decoding. Recently, Sharma and Papadias [29] improved the Quasi-
Orthogonal code [28] through constellation rotations for some transmitted symbols. With this
improvement, the diversity order provided by the code with ML decoding increases to four for
one receive antenna.

Because of the loss of full orthogonality, optimal decoding of non-orthogonal complex STBCs
can not be as simple as symbol-by-symbol decoding. Therefore, reduced-complexity decoding
schemes for non-orthogonal complex STBCs are worth being developed. In [27], Tirkkonen et al
proposed an easily implementable decoding scheme. This decoding scheme is based on iterative
interference cancellation between parts of the code. The decoding scheme also employs a least
minimum mean square error (LMMSE) technique when it constructs the decorrelation matrix
inside the decoder. In [30], the sphere decoding algorithm was first introduced as a method for
finding lattice vectors of short length. In [31], sphere decoding was presented as a near optimum
method for space-time coded system. In this thesis, we will focus on the decoding of full-rate
non-orthogonal complex STBC. A technique for simplified decoder will be proposed and the

corresponding error performance will be analyzed.
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1.2 Outline and Main Contributions of This Thesis

The remainder of this thesis is organized as follows.

Chapter 2 presents the background and rationale of space-time block coding. The system
model, the decoding scheme and diversity criteria, the application of orthogonal designs to space-
time block coding and the existence of complex orthogonal STBCs are addressed in this chapter.
In chapter 3, we present a simplified decoding scheme for the Quasi-Orthogonal code family [28]
[29]. Performances of the simplified and optimal decoding are evaluated analytically and are
verified by computer simulations. In chapter 4, we consider the performances of the simplified
decoding scheme over spatial-correlated channels by using the one-ring channel model [42].
We compare the performances of different decoding schemes over the channels with different
correlation coefficients by computer simulations. Finally in chapter 5, we present conclusions.
The main contributions of this thesis are:

1. We propose a simplified decoding scheme for Quasi-Orthogonal STBC family. By the
use of the QR decomposition, this simplified decoding scheme realizes symbol-by-symbol with
decision feedback decoding. The complexity of the simplified decoding, which is measured in
terms of number of comparisons over all possible values after linear combinations, increases
linearly with the size of modulation constellation size.

2. We evaluate the performances of simplified and optimal decoding over independent Rayleigh
fading channels though mathematical analysis and computer simulations. By using asymptoti-
cal mathematical analysis, we proved that the diversity orders provided by optimal decoding of
Quasi-Orthogonal and Improved Quasi-Orthogonal code are 2 and 4, respectively. The diversity
orders provided by simplified decoding of Quasi-Orthogonal and Improved Quasi-Orthogonal
code are both 2.

3. We compare the performances of different decoding schemes over spatially correlated

channels by using the “one-ring” channel model [42]. It is shown that the performance gap
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between optimal and simplified decoding decreases as channel correlation increases. Based on

the comparisons, we conclude that the simplified decoding scheme is more suitable for the highly

correlated channels.



Chapter 2

Space-Time Block Coding: Background

and Rationale

2.1 Space-Time Block Coding

2.1.1 System Model and Coding Scheme

The system model of the STBC system proposed by Tarokh et al [7] is presented in Fig.2.1.
All the descriptions and the analysis in the following chapters are based on this model unless

specified. As shown in Fig.2.1, the transmitter is equipped with N antennas and the receiver is

: Y Receiver [
CNt /
\ Mt

Fig. 2.1 Space-Time Block Coding

Space-Time Encoder

Information

Source
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equipped with M antennas. We assume the duration of each codeword is D channel uses and the
constellation employed by the space-time encoder is of size 2¥. We also assume each codeword
is made up of K symbols {s, ..., sk}, which can be real or complex. The coding scheme is
expressed as follows. In each period of D time slots, K'Y bits enter the space-time encoder and
select symbols {s;, ..., sk } from the constellation. Using these selected symbols, the space-time

encoder generates an N x D code matrix

i G2 ... QD \
Ca1 C2 ... C2pD
C= @2.1)
\ CN,1 CN’Q ... CND

For real STBC, the entries of the code matrix of (2.1) are linear combinations of zero and the real
symbols {s1, ..., sk }. For complex STBC, the entries of the code matrix (2.1) are linear combina-
tions of zero and complex symbols {sy, ..., sk, 5%, ..., sk } or products of these with j = v/—1. At
the t® (¢ = 1,..., D) slot, the entries ¢;; ’s (i = 1, ..., N) of (2.1) are transmitted simultaneously
from antennas 1, ..., N. The code rate is defined as (Information Symbols)/(Channel Uses).

The transmission environment of space-time block codes is modeled as a quasi-static and flat

fading wireless channel [7]. As shown in Fig.2.2, the whole system is described by

R=AC+N 2.2)

In(2.2), R, A, C and N denote the received signal, the channel coefficients, the code matrix and
the noise over D time slots corresponding to a frame, respectively. The i™ row of C represents the

symbols transmitted from the i* transmit antenna and the t® column of C represents the symbols
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Tx 1 Rx1
Ci,t Ti,t
Tx 2 ' / Rx 2
Cat T2,
Tx N i Rx M
CN ¢t = @ "Mt
M N
Fig. 2.2 Transmission Model of Space-Time Block Codes
transmitted at the ¢ time slot. The channel coefficient matrix A is defined as
/ Q11 Q12 e N \
Qg1 Q32 .. Qo N
A= (2.3)
\ apm1 CGp2 - OM N )

where a;; (j = 1,..., M; i = 1, ..., N) denotes the channel fading coefficient from the i transmit

antenna to the ;% receive antenna. The wireless channel is assumed to be quasi-static, i.e., the

channel fading coefficients remain constant over a frame of length D and vary independently from

one frame to another. The channel fading coefficients are modeled as i.i.d circularly symmetric

complex Gaussian with zero mean and variance 0.5 for each component.

According to the previous definitions , we conclude that the received signal matrix R is an
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M x D matrix
( 11 2 .. T1.D \
R = 7"2-71 T2.72 TQ.,D (24)
\ ™1 TMmz2 - TM,D /

where the (5, #) element of R. represents the signal received by the 5 antenna at the #* time slot
and it is given by

N
Tjt = E QiCiy + Ny (2.5)
=1

In (2.5), n;; denotes the (4,¢)" (j = 1,..., M; t=1,..., D) element of the noise matrix

( nini Nia2 ... T1pD \
TLQ’l n2’2 ... TMap
N = 2.6)
\TLM,l ’I’LM’Q TLM’D )

and it represents the additive noise affecting the j® receive antenna at the ¢ time slot. The
elements of N are modeled as independent samples of circularly symmetric complex Gaussian

random variables with zero mean and variance N, /2 for each component.

2.1.2 Decoding Scheme with Known Channel

Assuming that the channel state information is available, i.e., the receiver knows o ; (i =

1,2, 3,4), by using ML decoding, the decoder computes the decision metric [7]

2
2.7)

D M
IR-ACIP=3"3

t=1 j=1

N
T5t— E :aj,ici,t
=1
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over all possible codewords C and decides in favor of codeword C that minimizes 2.7).

2.1.3 Diversity Advantage and Coding Advantage

When channel coefficients o ; (¢ = 1,2, 3,4) are known at the receiver, the probability that the
transmitted codeword C is decoded as C, where C # C, overa Rayleigh channel is bounded by
[5]
o oM
PC—GC£O) < (JTN)  (B/aNg) ™ (2.8)
=1

In (2.8), R is the rank of the matrix (C — C)(C — C)” and {)\;; i = 1,..., R} are none-zero
eigenvalues of the matrix (C — C)(C — C)¥. By taking the logarithm on both sides of (2.8), we

get
R

log P(C— C;C #C) < —RM{ log (4%0) +log ([T M)~
i=1

-

} 2.9)

R

In (2.9), RM is defined as diversity advantage and (H )\i) ~& is defined as coding advantage
=1

[5]. Assuming Ry, is the minimum rank of C — C over any pair of distinct codewords, then

from (2.9), the STBC achieves a diversity of M R,,;,. From (2.9), we know that if we plot the

decoding error probability curve in logarithm scale versus SNR (in dB). The slope of the curve

indicates the diversity advantage and horizonal shift indicates the coding advantage.

2.2 Orthogonal Designs and Space-Time Block Codes

2.2.1 Definitions of Orthogonal Designs

A real orthogonal design [19] of order N and type 4, ..., %1, where t;’s are positive integers, is

an N x N matrix Xg with entries from {0, +s;, ..., s } satisfying

L
XpXp" =X "Xg = () _t:is))I (2.10)
i=1
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Alternatively, each row or each column of Xy has ¢; entries of +s; and the rows or columns are
orthogonal under the Euclidean inner product.

A complex orthogonal design X¢ of order N and type ¢4, ...,£1 1s an N X N matrix from
{%sy, ..., £s1}, and their conjugates {=£s7, ..., £s}} or products of these indeterminates with
§ = +/—1 satisfying .

XcXc? =X Xc = (Z ti|si)*)X (2.11)

i=1
In the following discussions, we will take full code rate orthogonal designs, i.e. L = N, as

examples unless specified.

2.2.2 Constructions of Real Orthogonal Designs

Let {X;; ¢ =1,..,N}beasetof N x N real matrices and let {s;; i =1,..., N} be asetof N

real scalars, then we seek to represent a real orthogonal design Xg as
N
Xp =) Xis (2.12)
=1

by deriving the required properties of {X;; ¢ = 1, ..., N} to enable such a representation. From

(2.10) and (2.12), we have

N T N N N
(insi) (les,) =3 XTXisis = (O tis?)l 2.13)
=1 =1 =1

il=1

and
N N

(Z Xisi) (Z X,31>T - i XX s;8, = (i e | (2.14)
=1

i=1 =1 i l=1
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For (2.13) and (2.14) to hold, the X; ’s (i = 1, ..., N) in (2.12) must satisfy
X, X' = and X7X; = (2.15)
=X, XTI, Vil ~XTX;; Vi#l

In other words, if we can find a group of X, ’s satisfying the constraints listed in (2.15), we can
easily construct a real orthogonal design by using (2.12). The existence of X; ’s will be discussed

lately by using theorem of Radon.

2.2.3 Constructions of Complex Orthogonal Designs

Let Ay sand B, s (k = 1, ..., N) be complex N x N matrices satisfying the requirements that

will be derived later, we seek to represent a complex orthogonal design X as

N N
Xc =Y Awsp+ Y Bisi (2.16)
k=1 k=1
According to the definition, a complex orthogonal design X satisfies
N
X Xe = XXt = (Ztk[3k|2)1 2.17)
k=1

From (2.16) and (2.17), we have

M=

XoFXo = (

N H N N
Apsy + ZB]CSZ) (Z Ajs) + Z BZSZ()
1 k=1 =1 =1

N N
(AY A +BBy)sisi+ > AfBisisi + > Bf Ay,
kl=1 k=1

b

Il Il
Fx}\z M=z

tk|8k|2)1 (2.18)

E
[l

1
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and

NE

XcXH = (

N N N H
Aksk + Z BkSZ) (Z AlSl + Z B187>
1 k=1 =1 =1

N N
(AkA{I + BlBkI_I)SkSZk + Z AkBlHSkSl + Z BkA{ISZSZ‘
k,i=1 k=1

I
MZT,”

Pyl
o

I
-
2 -

tk|5k|2)1 (2.19)

b
[}

For (2.18) and (2.19) to hold, A}, ’s and By, ’s in (2.16) must satisfy the following constrains

APA +BEB, =t,1 AMAF+BBf =t,1 Vk=1 (2.20)
APA +BfB, =0 AMAF+BBf =0 Vk#I (2.21)
AfB, = —AfB VK, (2.22)

B.Af = -BAY VE,I (2.23)

If we have A;, ’s and By, ’s satisfying the constraints listed in (2.20)-(2.23), we can construct a

complex orthogonal design by using (2.16).

2.2.4 Application of Orthogonal Designs to STBCs

In [7], Tarokh et al applied orthogonal designs to the constructions of STBCs. In this application,
the code matrix (2.1) is an orthogonal matrix of order N with entries from {+s;, ..., sy } for real
orthogonal STBC, or an orthogonal matrix of order N with entries from {+s1, ..., £sy; £s}, ..., £si }
or products of these with +j for complex orthogonal STBC. Furthermore, all the types ¢;’s were
assumed to be equal to ¢.

In describing the decoding algorithms of orthogonal STBCs, we consider a system with N

transmit and one receive antenna for simplicity. In the decoding of real orthogonal STBCs,
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according to (2.2) and (2.12), the received sample vector corresponding to the transmission of

codeword C is given by

aTX1
N
7 = a’C+n’ = E s;a? X; +nT = (sq,...,5n)
=1
aTXN

= sTH+n?

where

aTX1

aTXN

By taking conjugates of both sides of (2.24), we get
v — sTH* + n¥
From(2.24) and (2.26), we have
r"H? + r"HT = §s"(HHY + H*H") + n"HY + n"H”

We can write (2.27) in the form

where

#7 =rTH? + r"HT

H=HH" + H'H

(2.24)

(2.25)

(2.26)

2.27)

(2.28)

(2.29)

(2.30)
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and

n? =nTH¥ + nfHT 2.31)

The purpose of the operations in (2.27) is to make a preparation for symbol-by-symbol de-
coding. As we will prove later, the realization of symbol-by-symbol decoding depends on the
construction features of real orthogonal designs as listed in (2.15). According to (2.15), (2.30)

and (2.31), when the channel coefficients o, ’s (n = 1,2, 3,4) are known, the (7, 7)™ element

1%

of H is

H(i,j) = a’X;(a"X;)" +a"X;(a"X;)" =a" (X;X] +X;X])a*

N
2 lonal’ Vi=j
n=1

= (2.32)
0; Y i#].
and the covariance matrix of the noise 1 is
E{(nTHH + nHHT)H(nTHH + nHHT)} o, n=1,.., N}
= HE{n*nT}HH + H*E{nnH}HT + H*E{nnT}HH + HE{n*nH}HT
(2.33)

We know that the real and the imaginary parts of the elements in n are modeled as independent

samples of zero-mean Gaussian with variance o2 per complex dimension, so

E{nnT} = E{n*nH} =0 (2.34)
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From (2.33) and (2.34), we have

E{ (nTHH +nHHT)H(nTHH —I—nHHT)‘ . n=1, ...,N}

— HE{n*nT}HH + H*E{nnH}HT

0;

N
40% ) onal Vi=j
n=1

(2.35)

Y i .

which is a diagonal matrix with identical diagonal elements. So the elements of n are i.i.d com-

plex Gaussian. From (2.32) and (2.35), ML decoding of real orthogonal STBCs can be decoupled

into symbol-by-symbol decoding. In decoding the symbol s; (i = 1, ..., N), the receiver chooses

the value for §; that minimizes

For complex orthogonal STBCs, we have from (2.2) and (2.16)

where

al’C +n?

N N
§ T E : T T

S;a A1+ s:a B,—I—l’l - (81,...,81\])
i=1 i=1

sTHA + s"Hg +n”

N
2
For— 2t Y Joaal’S; (2.36)
n=1
aTA1 aTB1
+ (s, ..y SN) +nT
aTAN aTBN
(2.37)
aTA1
- : (2.38)

aTAN
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and
a’B,
Hg = : (2.39)
a’By
By conjugating both sides of (2.37), we get
r? = sTHg*+s"Hp* +n” (2.40)

From (2.37) and (2.40), we let

7 = r"Hpa" +r"Hp"
= sT(HAHAY + Hg*Hg") + s? (HgHAY + HA*HgT) + n"HA " + nHp”

= sTH¢ +s"Hp +nc’ (2.41)
From (2.20)-(2.23) and (2.41), the (4, 7)™ element of Hc is

Hc(i,5) = aTAi(aTAj)H + aHBf(aTBj)T = aT(AiAf + BjBf{)a*
N

£y loaal’ Vi=j
n=1

0; YV i# 7.

(2.42)

and the (7, 7)™ element of Hp is

HD (Z,]) - aTB,-(aTA,-)H + aHA;f‘(aTBj)T = aT(BlAf -+ B]Af{)a*

= 0 Y i, j (2.43)
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Also, the covariance matrix of nc 1s

E{(nTHAH + nHHBT)H(nTHAH + nHHBT)’ o, n=1, ...,N}
_ HAE{n*nT}HAH + HB*E{nnH}HBT

N
202t Jonnl’ Vi=j
n=1 (2.44)

0; YV i#j.

which is a diagonal matrix with identical diagonal elements, so the elements of n¢ are i.i.d
complex Gaussian. From (2.42)-(2.44), ML decoding of complex orthogonal STBCs can be
decoupled into symbol-by-symbol decoding. In the decoding of symbol s; (i = 1,..., N), the

receiver chooses the value for 5; that minimizes

2

i1 —ti | |8 (2.45)
n=1

as the decoding result. It will be proven later that for complex orthogonal STBCs, the symbol-
by-symbol decoding algorithm presented above is optimal. The analysis of real orthogonal code
is similar and simpler, and therefore will be omitted.

Theorem: For Complex Orthogonal STBCs, the Symbol-by-Symbol Decoding Algorithm is
Optimal

Proof: We take the STBC with entries {s;, s7; ¢ = 1,..., N} or products of these indeterminates
with j = +/—1. Assuming the transmitted codeword is C, from (2.7), an ML receiver selects

value for C over all possible codewords that minimizes

|| —aTC||’ (2.46)
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‘We know that

[r” —a"C||* = ||la"(C ~ C) +n"||"

= a'(C-C)(C-C)a*+n"n* +af(C—-C)n* +nT(C - C)a* (247
From (2.17), we have

aT(C — O)(C — O)Ha* = (t ﬁ: |a1,n|2) (i I5p — st|2) (2.48)

From (2.37), we have
al(C - C)n* = [(s —§)THs + (s — g)HHB]n* (2.49)
and
n?(C — C)#a* = (aT(C — C)n*)# = n? [HAH(S —§)* +Hp(s - 5)] (2.50)

Combining (2.48), (2.49) and (2.50) results in

(t ﬁ: |a1,n|2) (ﬁ: s — s~k|2) +nTn* + [(s —§)THu + (s — g)HHB] n'

+n” [HAH(S —§)* +Hp(s - g)] 2.51)

According to (2.45), for complex orthogonal codes, symbol-by-symbol decoding can be con-
sidered as taking the vector § made up of symbols s (k = 1,..., N) for § that minimizes the

metric

llrc” — 8"Hc|* = ||(s — §)"Hc + nc”|? 2.52)
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as the decoding result. Because

ll(s —8)"Hc +nc|?
= (( ~8)THc + nCT) (HCH(S — §)* - nc*>

= (t) |awal?) Z]sk~sk| +tZ|a1n|2nTn*+tZ|oqn| nc’ (s —8)* + (s —§)"nc*)
1

= (¢ |041,n|2) Z|sk—sk| —I—tZ|a1n|2nTn*+tZ|a1n| ([s—é)THA

Mz

n=1 k=1
+(s—§)HHB]n +n [HA (s—3)* + Hg (s—§)D
= tXN: |a17n|2<[|rT - aTé|[2) (2.53)
n=1

so minimizing the metric (2.52) is equivalent to minimizing the metric (2.46). Then we conclude
that for complex orthogonal codes, the results obtained from symbol-by-symbol decoding are
optimal. Q.E.D.

According to the diversity criterion mentioned in section 2.1.3, in order to achieve maximal
diversity over the Rayleigh fading channel, the difference matrix of orthogonal design X from
two distinct groups of symbols as (s, ..., sy) and (sy, ..., sy) should be non-singular. Because
X($1, ..., sw) — X(s1, ..., 5n) = X(§1 — 81,.., S8 — sn) [7] , where X($7 — sq, ..., SN — SN)
is constructed from X by replacing s; with §; — s; for all <. From the definition of orthogonal

designs,

det(XXH)1/2 = (Zt |s,|2) (2.54)

Accordingly,
1/2 /2
det (X(é'l 81y ey S — 58)X(81 — 51, 000y SN — SN) ) (Zt 15, — s ) (2.55)

which is non-zero. That means X(§7 — 1, ..., Sy — $n) is nonsingular and the maximum diversity
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order is achieved.

2.2.5 Alamouti’s Scheme: A Brief Review

In [18], Alamouti proposed a remarkable coding scheme which has been cited frequently for
its simplicity and good performance. Here, we take a brief review of Alamouti’s scheme as an
example of complex orthogonal STBC.
Alamouti’s scheme employs two transmit antennas and the code matrix is presented as
sy —8;
2 (2.56)

52 Sl
This scheme also assumes that the channel is quasi-static, i.e., the channel fading coefficients
remain constant over 2 time slots. We assume that the receiver employs one antenna. The result

can be easily extended to a multiple receiver antenna system. From (2.2), the system model is

written as
s1 —s5
ra’ = (7"1,1 7”1,2) = (041,1 011,2) + (n1,1 nl’g)
S2 8]
a1 0 . . 0 a1 9
= (81 $2) +(s] s5) + (n1,1 n1,2)
ayy 0 0 —ais
= s'Hg +s?Hg +n” (2.57)
where
11 0
Hg = (2.58)

Q1.2 0
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and
0 aip
Hy = (2.59)
0 —Q1,1
By conjugating both sides of (2.57), we have
* * O aTYQ * * a]"l 0 * *
ra = (Tl,l T1,2) = (51 s2) + (51 83) + (“1,1 Ny 2)
O —Oéil a?{)2 0
(2.60)
Then
2
I‘ATHEH + I'AHHFT = (Z |O[1’i|2)(51 52) + (ailnl,l + 051,271{2 a’{gnl,l — al,ln’{’z)
=1
2
= Z logi?sT + npT (2.61)
i=1
The covariance matrix of np is
2
E(nana®) =20 "oy’ (2.62)
i=1

which means the elements of n, are i.i.d complex Gaussian. From (2.61) and (2.62), we define
ra =raTHg® + ra¥Hg T (2.63)

and re-write (2.61) as

2
> ol 0 s n

. 1 Al]l

=| = 2 + (2.64)
T421 0 Z |041,i|2 8o NA21

i=1

Ta1,1
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From (2.64), we have

2
TA11l = Z |a1,i|231 +na11 (2.65)

i=1

and
2

Tao1l = Z |041,i|282 +"N4a21 (2.66)

i=1

By using ML decoding for s;, the receiver chooses the value for s that minimizes
d*(Fa11,81) (2.67)
In decoding s,, the receiver chooses the value for $; that minimizes

d*(Fa91,82) (2.68)

2.3 Existence of Full Code Rate Orthogonal Designs

In discussing the existence of full code rate orthogonal designs, we introduce Hurwitz-Radon
numbers p(N) defined as follows.

If N = 2%(2b+ 1) and a = 4c + d, where a, b, ¢, and d are integers with 0 < d < 4, then
p(N) = 8c + 2%. The equivalent and more convenient way to describe Hurwitz-Radon numbers
is: )

2a+1; ifa = 0(mod4)
2a; if a = 1(mod4)
p(N) = p[2°(2b+ 1)] = 4 (2.69)
2a; if a = 2(mod4)

2a +2; ifa = 3(mod4)

\

We denote a set of N x N matrices {M;|¢ = 1,..., K} have the property that the linear
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combinations

/€1M1 + KZQMQ + ...+ K,KMK (270)

with real coefficients «; are nonsingular matrices except when all coefficients «; are zeros. We
also denote R(N) and C(V) as the maximum K for which there exists such a real or complex
matrix set with the above property, respectively.

The following Adams-Lax-Philips Theorem [20] determines the number for R(N) and C(N)
by using Hurwitz-Radon numbers.

Adams-Lax-Philips Theorem: We have
R(N) = p(N) @)

C(N)=C[2*(2b+1)] =2a+2 (2.72)

From Adams-Lax-Philips Theorem, we can get the maximal order of real and complex or-
thogonal designs that achieve full code rate. Actually, Adams-Lax-Philips Theorem is based on
the corollaries obtained by Radon[21] and Hurwitz [22] by using a detail matrix analysis.
Corollary 1]21]: The maximum number L with the property that the N x N real matrix expressed

by

L
Xe =Y Xis; 2.73)
=1

where X;’s are order N real matrices, satisfies (2.10) is R(N) = p(N).
Corollary 2[22]: The maximum number L with the property that the NV x N complex matrix

expressed by
L L
Xc=)Y Aisi+ Y Bis (2.74)
=1 i=1

where A;’s and B;’s are order NV complex matrices, satisfies (2.11) is C(N)/2 = a + 1.

From Corollaries 1 and 2, we can see that the nonsingularity, implied by the orthogonality,
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determines the maximum number L in the real and complex orthogonal designs of order V.
With the aid of Corollaries 1 and 2, we generate the table illustrating the relationship among

N, R(N), and C(N) as the following. From Table.2.1, we can conclude that the full code rate

N|RN)=p(N)|a|b|c|d|CN)/2=a+1
2 2 110011 2
4 4 2107012 3
8 8 310(0]3 4
16 9 4(0(1]0 5
Table 2.1 Relationship Among N, R(N) and C(N)

real orthogonal design exists when the matrix order is 2, 4 and 8. The full code rate complex

orthogonal design exists if and only if the matrix order is 2.
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Chapter 3

Simplified Decoding for a Family of
Quasi-Orthogonal Codes

As we showed previously in section 2.3, a complex orthogonal design of order IV exists if and
only if N = 2. In other words, Alamouti’s scheme is the unique complex orthogonal STBC.
Besides Alamouti’s STBC scheme, full code rate and full orthogonality can not be satisfied at the
same time. If we choose to keep full code rate, full orthogonality has to be sacrificed. In [28],
a Quasi-Orthogonal code was introduced as a full-rate, non-orthogonal complex STBC. In [29],
another full-rate, non-orthogonal complex STBC named Improved Quasi-Orthogonal code was
presented. The code matrix construction of Improved Quasi-Orthogonal code is the same as that
of Quasi-Orthogonal code. By employing rotated signal constellations, as will be shown later,
the Improved Quasi-Orthogonal code provides diversity order of 4 compared to the diversity
order of 2 provided by the Quasi-Orthogonal code in one receive antenna system employing
ML decoding. As a result of the loss of full orthogonality, ML decoding of these two codes
cannot be as simple as symbol-by-symbol decoding. We measure the complexity of decoding
in terms of the number of comparisons among the possible values in the ML detector. Here,

we consider the decoding of an order four full-rate STBC with MPSK modulation as example.
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If it is an orthogonal STBC, ML decoding is decoupled into symbol-by-symbol decoding. The

decoder selects one of the M possible symbols in the MPSK constellation that minimizes the

decoding metric. Totally, there are 4M comparisons in decoding each codeword. If it is a non-

orthogonal STBC such as Quasi-Orthogonal code or Improved Quasi-Orthogonal code, by using

ML algorithm, the four information bearing symbols from a codeword are decoded jointly instead

of independently. Therefore, the number of comparisons in the ML detector is M* compared to

4M comparisons for the orthogonal code. This indicates the need of reducing the decoding

complexity of non-orthogonal STBC. In the following sections, we will propose a simplified

decoding algorithm for the family of Quasi-Orthogonal and Improved Quasi-Orthogonal codes.

The corresponding performance will be evaluated as well.

3.1 Code Constructions and Signal Constellations for the

Quasi-Orthogonal Code Family

Let

s1 —85 S3 —8,

C12 = and C34 =
S2 5{ S84 8;

and The code matrix of the Quasi-Orthogonal code family is constructed as

(31 —85 —83 54\

C= C]Q —034 . S92 ST —SZ —S3
C34 CIZ S3 —SZ ST —S89

\34 53 55 31)

G.1)

(3.2)

The difference between the Quasi-Orthogonal code and the Improved Quasi-Orthogonal code
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lies in the choice of the signal constellations. For the Quasi-Orthogonal code, all symbols are

O QPSK Constellation

@ Rotated QPSK Constellation

Fig. 3.1 QPSK and Rotated QPSK Constellations

taken from a QPSK constellation. For the Improved Quasi-Orthogonal code, s;, s; are taken
from a QPSK constellation and s3, s4 are taken from a rotated QPSK constellation specified in

Fig.3.1, where 8 = % denotes the relative rotation angle between the two constellations.

3.2 Simplified Decoding Algorithm for the Quasi-Orthogonal Code Family

3.2.1 Step One: Symbol Pair Joint Decoding

For the Quasi-Orthogonal code family, from (2.2), the one receive antenna system model is de-

scribed by
/31 —85 —83 S84 \
Sy 8T —8; —83
T T T 1 4
r =a " C+n = (041,1, ay2,013, Oé1,4) + (nl,b N1,2,M1,3, n1,4)
S3 —S8; 87 —S2

\34 53 83 51)

(3.3)
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From section 2.1.2, when the channel state is known, the receiver calculates the decision

metric
2

(3.4)

4 4
7 —aTCIE =7 |re— D anacie
t=1 i=1

over all possible codewords C and decides in favorite of the codeword C that minimizes (3.4).

By complex conjugating the second and the third elements of r” in (3.3), we obtain
rp” = (ri1,710,77 5,71

* *
(O‘l,l Qg 9 Qq3 Q14 \

3 3

Q12 —0p; 04 T3

) ) ’

- (81; S92, 83784) + (nl,lan’{,Qani&nl,lL)

*
Q13 Qyy4 —Oq —0O12

) )

*
\0‘1,4 —Q13 T 01

— s"H+np” (3.5)

where

* *
(al,l Q2 Q3 Q14 \

Q12 —0, Oy 013
H= ’ ’ 3.6)
Q13 Qry  —Qy; —Qg2

) h)

*
\0‘1,4 —Q13 T 051,1)

It is shown in Appendix A.1 that
lep” —8TH|® = ||t — a"C|? (.7)

and therefore an equivalent ML algorithm to select the codeword matrix C that minimizes (3.4)
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is to select the vector s made up of $3, ss, S5 and s, that minimizes
|lrp” — §TH||? (3.8)

The representation (3.5) leads to symbol pair joint decoding shown later. From (3.6), we have

(4 0o o B)
. 0 A -B 0

HH? = (3.9)
0 -B A 0

\B 0 0 A

where
(1 0 0 0\ (a’{,l\
4 0100 *
A= Z |O‘1,i|2 = (1,012,013, 014) *.2 (3.10)
i=1 0 010 o 3
\0 0 0 1) \oj,
and

(000 0 1Y) (o)

N N 0 0 -1 0 O 2%
B = 2Re(a1,10] 4 — 01,204 3) = (a1, 012, 01 3, 01,4 (3.11)
0 -1 0 0 Q1 3%

\1 0 0 0/ \aa*)




3 Simplified Decoding for a Family of Quasi-Orthogonal Codes

32

The determinant of HH is

(A— BY(A+ B)?

[(Re(a,1) +Re(cu4))? + (Im(an 1) + Im(en 4))
(Re(a,2) — Re(a,3))? + (Im(au 2) — Im(an )%
)
)2 +

+
+ [(Re(on,1) — Re(enq))? + (Im(ay 1) — Im(ay 4))?
+

(Re(al 2) + Re(a1 3) (Im(Oélvg) -+ Im(alyg))2]2

From (3.12), the determinant of HH? is equal to zero iff

[(Re(an 1) + Re(an 4))? + (Im(a 1) + Im(as 4))°

+ (Re(ayz) — Re(ar3))? + (Ima; 5) — Im(ay3))*? =0

and

[(Re(on 1) —Re(ar ) + (Im(a,1) — Im(ay 4))°

+ (Re(Oél,z) + Re(alyg))2 + (Im(al,z) + Im(a1,3))2]2 =0
(3.13) and (3.14) can be satisfied iff

Re(a,1) + Re(ar4) = Re(ag) —Re(agq) = 0 = Re(aq,1) =Re(azqe) =0
Im(al,l) -+ Im(am) = Im(al,l) — Im(a1,4) =0= Im(al,l) = Im(ozm) =0

Re(ay2) + Re(ay3) = Re(ay2) — Re(as 3) = 0 = Re(ag2) = Re(ag3) =0

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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and
Im(ozl,z) + Im(aLg) = Im(al,z) — Im(a1’3) =0= Im(am) = Im(()[173) =0 (318)

or we can say that the determinant of HH* is equal to zero iff all the channel coefficients 01,’S
(t = 1,2,3,4) are equal to zero. From the transmission model, we know that the real parts and
the imaginary parts of the channel coefficients are continuous Gaussian random variables. The
probability that at least one of these random variables is non-zero is 1. Therefore, HH is a

non-singular matrix with probability 1. By multiplying both sides of (3.5) by H? we get

Ty7H T H Ty H T H T
ru’ = (Tg11,7w21,7H31,TH41) =Tp H' =s HH" +np"H” =s"HH" + ny

(4 0 o B)

0 A —-B 0
= (81,82, S3,54) + (NE 1,1, M 21, M 3,1, R 4,1)
0 -B A 0

\B 0 0 A)
(3.19)

We can naturally decouple (3.19) into

TH11 | _ A B 51 N NH1,1 (3.20)
TH41 B A S4 NH4,.1
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and

TH21 _ A -B S2 n Nga1 (3.21)
TH31 -B A S3 NH31
From (3.20) and (3.21), we see that the decoding of s; and s is independent from the decoding of
s9 and s3. The joint decoding of symbols s, s2, 53 and s4 1s equivalent to pairwise joint decoding

of s1, s4 and s,, s3. The pairwise decoding scheme in each group is described as follows. From

(3.19), the covariance matrix of ny is

Co = E{ngny”} = 20°HH" (3.22)

Correspondingly, the correlation matrix of ny 1 and ng 4 is

A B
C, = 202 (3.23)
B A
and the correlation matrix of ng 21 and ng g, is
A -B
C, = 20? (3.24)
-B A

where 202 is the variance of the complex Gaussian noise samples n; ;; (i = 1,2, 3,4) in(3.3). In

order to de-correlate the noise in (3.20) and (3.21), we make the following operations. We denote
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1
the Hermitian root of matrix C; as C?, which is defined by

C, = CiC? (3.25)
From (3.25), we re-write (3.20) and (3.21) as
TH1,1 _ A B S1 n CI% np1,1 (3.26)
TH41 B A S4 np 4
and
TH21 | _ A -B 51 N Cz% np21 (3.27)
TH3,1 —-B A S4 Nnp3i

where np1,1,7p 4,1, D 2,1, "p 3,1 are i.i.d circularly symmetric complex Gaussian with zero mean
_1 _1
and unit variance. By multiplying both sides of (3.20) and (3.21) with C, ? and C,, * respectively,

we de-correlated the noise in (3.20) and (3.21). The results of the operation are expressed as

S1 Npi11
+ (3.28)

S4 Npaa

o
NI vV
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and

TH21 _ A -B 81 npai

C,

INJE
I
0
[\
[STE

(3.29)
TH3,1 —-B A 5S4 Npsxy

With ML decoding for s; and s4, the decoder chooses the values for s; and s4 that minimize

r A B s
H11l | 1 ] (3.30)

TH 4,1 B A S4

[ TH1,2 A B 8~1 C_l
1

TH4,1 B A S4

Also, when it decodes s, and s3, the decoder chooses the values for $; and $3 that minimize

[ TH21 A -B S~2

TH31 -B A S3

TH21 A -B §2 ]
TH3,1 -B A S3
(3.31)

Theorem: For Quasi-Orthogonal Code Family, the Symbeol Pair Joint Decoding is Optimal

Proof: An optimal decoder based on (3.19) selects the value for § that minimizes
(rg” — sTHH?)C (rg” — sTHHM®)A (3.32)
According to (3.7) and (3.22),

(ru” — & HHA)C; (rg” — THHY )
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= = ra’ — SSHH?)(HHY) Y (rgT — sTHHAH
202
1 3 . ] ) ) ]

= pa(re’ ~STHJHI(HHT) " H(re” —STHT)T = & 5 (rp” —8"H)(rp" —&"HT)Y
1 T _ =TE712 Lo T A2

= 55llee” —SH|P = " —a" Q| (3.33)

where rp and ry are defined in (3.5) and (3.19), respectively.
We see that minimizing (3.32) is equivalent to minimizing (3.4). So the decoding result that

minimizes (3.32) is optimal. In (3.32)

0 0 —-B
c-1 1 A B 0 3.34
\—B 0 0 A )
We define
d” = (di1, day, dsq, dag) =rE’ —§ HHY (3.35)

then by combining (3.34) and (3.35), (3.32) is re-written as
(rg” — sTHH")C; (ry” — sTHH®)?

B

0 0
_ 1 7 0 A B 0 &
20%(A? — B?) 0 B A 0

\-B 0 0 A
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1 A -—-B dy 1
= m(dip dy 1)
g -B A dyq
1 L da 1
+202(A2 — Bg)(dZ,l’ d3,1) ds
- H -
[ TH11 A S1 1 TH1,21 A B 51 }
= — C] —
TH4,1 B A 54 TH4,1 B A §4
A -B A A -B 3
+[ TH21 _ - 52 C;l TH21 _ - S2 ]
TH31 -B A 8~3 TH3,1 -B A S~3
(3.36)

According to (3.36), we see that the optimal decoding of sy, s2, s3, s4 can be decoupled into the
pair-wise decoding of the group made up of s, s4 and the group made up of s3, s3. Q.E.D
Assuming that symbol pair joint decoding algorithm described in section 3.2.1 and MPSK
modulation are employed, in the decoding of the symbol pair s; and s4, the decoder chooses the
pair of values over M? pairs of values that minimize the metric (3.30). Also, in the decoding of the
symbol pair s, and s3, the decoder chooses the pair of values over M? pair of values that minimize
the metric (3.31). In decoding a codeword, the decoder makes 2M? comparisons totally, which
increases quadratically with M. Compared to the decoding algorithm which makes joint decision
of 51, S, s3 and s, and makes comparisons among M* possible values, the complexity of the
symbol pair joint decoding is much lower. When compared to the complexity of symbol-by-

symbol decoding, which increases linearly with M, there is still the need to reduce the decoding
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complexity. In order to reduce the decoding complexity further, we propose a symbol-by-symbol
with decision feedback decoding as described in the following. In decoding each pair of symbols,
one of the two is decoded by using ML algorithm first and the decoding result is carried back to
the detection of the second symbol. Then the second symbol is decoded by using ML algorithm.

This decoding technique requires the QR decomposition [32].

3.2.2 Step Two: QR-Decomposition

OR-decomposition: A square matrix A can be factorized in the form [32]

Wy W2 tig ti2

A=WT= o (3.37)
Wa1 Wa2 0 a2

where W is a unitary matrix and T is an upper triangular matrix.

We write (3.28) and (3.29) in the form

ry = Hys + ny (3.38)

In order to realize symbol-by-symbol with decision feedback decoding we need to put (3.38) into

the form

r, = Hys +n, (3.39)

where H,, is an upper-triangular matrix and the elements of the noise vector ny are independent
complex Gaussian. In order to get the upper-triangular matrix, we employ QR decomposition.

From (3.37), after making a QR decomposition of H,. we have

ry = WHys + n, (3.40)
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where W' is unitary and H,, is the upper-triangular matrix from (3.39). By comparing (3.40)
with (3.39), we find the difference between (3.40) and (3.39) is the existence of W'. In order to

remove W', we multiply both sides of (3.40) by W' ~! and resulting in

W ~lr, =Hys + W ~ln, (3.41)

Let
r, =W 'r, (3.42)

and
n, =W ~'n, (3.43)

then (3.41) has the same form as (3.39). We know that W' is a unitary matrix and multiplying
both sides of (3.40) with W' ~* will not change the distribution of the noise. So, the elements of
ny in (3.43) are independent. Based on previous description, the requirements of the symbol-by-
symbol with decision feedback decoding are satisfied.

For applying symbol-by-symbol with decision feedback decoding for the Quasi-Orthogonal
code family, we re-write (3.28) and (3.29) in the form of (3.38) as

I‘DI = Hlsl -+ nD/ (344)
and

I‘DH = HZS” -+ IlD” (345)
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respectively, where
1
2
H C_% A B 1 A B
1 = prmd
"\B a] V2P| B oa
B 1 VA+B+vVA-B VA+B-+A-B hii1 hiig
2v20? VA+B—-+\A-B JA+B++A-B hii2 hiip
(3.46)
3
i C_% A -B 1 A -B
2 = =
" \-B 4 V20 \ _B A
B 1 vVA+B++vA-B VA-B—-+A+B ha11 h212
2v20? VA-B—-+A+B A+B++A-B hai12 haia
(3.47)
Applying the QR decomposition on H; and H,, we get
a b
H=WiT = (i wi) (3.48)
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and

d &
H; = W,T, = <W2 Wg) . (349)
0 f

where W1 and W, are unitary matrices and

G = vV hi 11+ hi 1,2 (3.50)

z) _ 2hl 1,1\ hl 1,2 (351)

a

b b
&= \/(m 12— 3l 101) + (hiag — ghm)"' (3.52)

d= \/ h3 11+ h3 1,2 (3.53)

s 2ha11 haio

y (3.54)

f = \/(hZ 1,2 — C%hz 1,1)2 -+ (h2 1,1 — %hz 1’2)2 (355)

Since W, and W, are unitary matrices, multiplying both sides of (3.28) and (3.29) with W!
and W' will not change the distribution of the noise. We multiply both sides of (3.28) by W;*

and both sides of (3.29) by W, which are the same operations as shown in (3.41), and get

_1 | raq, TU1, a b s ny1,
Wl_lcl 5 1,1 _ 1,1 _ 1 + 1,1 (356)

TH 4,1 TU 4,1 0 ¢ S4 ny 41
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and

TH21 Tu21 d e S2 Ny 21

W;'C,? = = . + (3.57)
TH3,1 TU 3,1 0 f 83 ny a1

I

Then ny 1,1, 2,1, Nus,1, Nua,a are 1.1.d complex Gaussian with zero mean and unit variance.

3.2.3 Step Three: Joint Decoding vs Symbol-by-Symbol with Decision Feedback Decoding

After the QR-decomposition, we have two options for decoding, either joint decoding or symbol-
by-symbol with decision feedback decoding.
Joint Decoding Scheme: From (3.56) and (3.57), in decoding s; and s,4, the receiver chooses

values for §; and §; that minimize

N ~ H <) ~
|: TU 11 B a b $1 ] [ rU1,1 B a b §1 ] (3.58)

Tu4, 0 ¢ S4 T4 0 ¢ S~4

In decoding s; and s3, the receiver chooses values for $; and $3 that minimize

N « - H N N ~
l ruan | d ¢ Sy ] l Tu21 | d e Sy } (3.59)

Tu s 0 f 53 Tusa 0 f S3

Assuming MPSK modulation, from (3.58) and (3.59), in decoding each pair of symbols, the
decoder makes comparisons among M? pairs of possible values. Totally, the decoder makes 2M?
comparisons. So, the joint decoding algorithm after QR decompositions has the same complexity

as that of pair-wise decoding algorithm and its decoding results are optimal.
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Theorem: Decoding Results Obtained from QR Decomposition with Joint Decoding are
Optimal
We take the decoding for s, and s, as an example. The analysis of the decoding for s, and s

is similar. We re-write (3.28) as

p _1 TH11 S1 Npi11 / /
rv =C;°* =H, + = H;s +np (3.60)

THa41 S4 Npa

. ’ oo . . . . .
where the elements in np are i.i.d complex Gaussian with zero mean and unit variance. By using

ML algorithm, the receiver chooses values for s; and s, which are elements of §, that minimize
v — H,8'||? (3.61)
After making a QR-decomposition, we get
H, = QiR (3.62)
where Q) is unitary and R, is an upper triangular matrix, correspondingly, (3.60) changes to
rv = Q:Ris +np’ (3.63)
We multiply both sides of (3.63) with Q;* and get
rqg = Qi'ry' =Rys +ng (3.64)

Because Q) is unitary, multiplying np’ with Q' does not change the distribution of the ele-

ments in np . If we choose QR decomposition with joint decision decoding algorithm, by ML
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algorithm, the decoder chooses value for § that minimizes
lrq — R4S || (3.63)
Because

Irq" — Ri ||> = [(Qr'rv)Y — §¥RY] [Qr'r, — RiF]
= [rVIHQl - §IHR{{} [Q{Irvl - R1§/}
= I'VIHI“V, - él(QlRl)Hrvl - I'V’HQ1R1§’ + ng(QlRl)H(QlRl)gl

= ryfry —§Hry —ry'7H§ + §7HIH S = ||ry — H{§|? (3.66)

which is equivalent to (3.61). According to the analysis, the decoding result obtained from the
QR decomposition and joint decision is optimal.

Symbol-by-Symbol with Decision Feedback Decoding Scheme: As we have mentioned, the
complexity of symbol-by-symbol with decision feedback decoding increases linearly with respect
to the size of modulation constellation. The corresponding decoding algorithm is described in the
followings. Based on (3.56) and (3.57), in decoding s4 and s3, the decoder first chooses values
for §; and $3 that minimize

|TU4,1 — é§4|2 (367)

and

lrus1 — f8~312 (3.68)

Then the decoder carries the decoding results s, and s3 back to the decoding of s; and s,. It

chooses the values for $; and $, that minimize

|TU 1,1 — B§4 — d§1 2 (369)
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and

ry 2,1 — €83 — CZS~2|2 (3.70)

Before compare the error performance of symbol pair joint decoding scheme and symbol-by-
symbol with decision feedback decoding scheme by computer simulations, we present the general
simulation settings.

General Computer Simulation Settings: In the computer simulations of different decoding
schemes, we have the general simulation setting as the following unless specified. The signal to
noise ratio (SNR) is defined as

Fy

NR = — 3.71
SNR No (3.71)

where E, stands for signal energy per bit and N, stands for the variance of the independent
samples of additive complex Gaussian noise. We assume the received symbol energy to be one
and QPSK modulation is employed, then

B, = (3.72)

1
2
By choosing different values for the variance of the additive complex Gaussian noise, which is

denoted as 202 = Ny, we get the different SNR/bit. The relation between o and SNR/bit (in dB)

is expressed as
SNR/bit

S (s
4

o

(3.73)

which is also shown in Appendix B.1.3.

As presented in Appendix B.1.1, information is produced by a binary integer random gener-
ator. By using Gray mapping shown in Fig.3.2, the information bits are mapped to transmitted
symbols. Then the information-carried symbols are transmitted through a four transmit and one
receive antenna quasi-static channel simulated by four independent zero-mean and unit variance

complex Gaussian random generators described in Appendix B.1.2. The additive noise at the
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receiver is produced by a complex Gaussian random generator with zero-mean and variance 202,
where o2 is calculated by (3.73). The error performance is measured in terms of bit error rate
(BER), symbol error rate (SER) or frame error rate (FER) as required. When FER 1is evaluated,

each frame contains 256 information bits. The error performances of the symbol pair joint de-

A A
z 00
zy 01 z1 00
2y 01
> >
2 11 2 10 7 10
zy 11

Fig. 3.2 Gray Mapping for QPSK and Rotated QPSK Constellations

coding scheme and symbol-by-symbol with decision feedback decoding scheme are shown in
Fig.3.3 and Fig.3.4. The error performance curves are plotted based on the computer simulations
over 2.24 x 10° information bits, i.e. 8.75 x 10° frames. As illustrated in Fig.3.3 and Fig.3.4,
the error performance curves of two decoding schemes are parallel with when SNR is sufficiently
large. The parallelism between the curves indicates that the diversity orders provided by the two
decoding schemes are exactly the same. Besides this, there is a 1 dB degradation of the symbol-
by-symbol with decision feedback decoding scheme related to the symbol pair joint decoding

scheme. In the following section, we are going to evaluate the performance analytically.
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Fig. 3.3 Different Decoding Algorithms for the Quasi-Orthogonal code: Bit Error
Rate
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3.3 Performance Evaluations of the Quasi-Orthogonal Code Family with

Different Decoding Schemes

In the performance evaluation of the decoding of Quasi-Orthogonal code family, we will take
the decoding of s; and s, as an example. The analysis for the decoding of s, and s3 is similar.
In order to keep the summation of the received symbol energy to be one in the four transmit
antennas system, we set the symbol energy from each transmit antenna to %. Also, we assume the
constellations shown in Fig.3.1 are employed, then the value of s; is chosen from iﬁ +3 % and
the value of s, is chosen from (:l:% £ %)e’ﬂ , where (3 is the relative rotation angle as indicated

in Fig.3.1. For Quasi-Orthogonal code, 3 is equal to zero.

3.3.1 Mathematical Preliminaries

Craig’s Formula[40]: The Gaussian probability function Q)(z), which is defined as

1 +o0 II?Q
Qz) = E/x exp ( — E—) dzx 3.74)
can be calculated also by
1 (3 z?
= = —_ df .
Qz) = — /0 exp ( o 9) (3.75)

when 2 > 0.
Joint Moment Generating Function of Random Variables in Quadratic Forms

Lemma [34]: Let x be an N-tuple random vector and

% = E(x) (3.76)
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the covariance matrix

L=E{(x-%)(x-%x)7} (3.77)

Then the joint moment generating function of the quadratic forms

v =x8Qx i=1,....M (3.78)
where Q;’s are Hermitian, is
M’U1 ..... ’l}M(t].?"‘?tM)
M

B M
™ exp {-=L - (1= 3t x} (3.79)
=1

Average Error Probability for Symbol Detection with MPSK Modulation
When MPSK modulation is employed, from [37] (pp.198), the average symbol error probability

is

(M-1)=w
. 1 M Es gresk
P = — - = do .
(8#5) == /0 eXp( Mo 9) (3.80)
where
g T
gpsg = S1III°” — (381)

M

For QPSK modulation, the average symbol error rate is evaluated by

3

. 1 [+ E, 1

or by [37] (pp.197)

P(s#s) = 2@(\/%)—622( %)

z E 1 E
B yap-= — ) 4o (3.83
/0 exp 2N, o), 7r /0 exp ( 2N, snzg) 90 689

3
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Evaluation of Definite Integrals of the Form
1 [, sin®6 m
- ———) df 3.84
7r /0 (Sin2 0+ c) (3:84)

From the derivation included in Appendix bA of [37] (pp.129-131), we can evaluate the definite

integrals (3.84) in close form as

6 T p 2k)
T a\ 1+ c (k 41+ c)]
2 3 (%) (=1)7**_sin[(2k — 2)1]
T\ 1+ c ==\ A1+ 2k—25
0<¢ (3.85)
where
1 1 s 1+ sgnD
T = tan +§[1 _ ( - )sgnN] (3.86)
with
N =2y/c(l+c)sin2¢; D= (142c)cos2¢—1 (3.87)

Lebesgue’s Dominated Convergence Theorem [38]
Suppose that {f,,} is a sequence of measurable functions, that f, — f, asn — oo, and that
| fn] < g for all n, where g is integrable. Then f is integrable, and

lim frndp= / fdu (3.88)

n—oo
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3.3.2 Error Performance of Optimal Decoding for the Quasi-Orthogonal Code Family

From (3.46) and (3.60), we have

Tvia 51 D1

Tv 4,1 Sa nNpa

V2 | VA¥B+VvVA-B VA+B-+VA-B O B N

VA+B-VA-B VJA+B++JVA-B 84 np 4,1
(3.89)

where npq11 and np4, are ii.d complex Gaussian with zero mean and variance 0.5 in each
complex dimension. From(3.60), when the channel coefficients are known, the receiver decodes
the transmitted symbol vector s; erroneously as §; if and only if the Euclidian distance between
rv' and H;§; is less than the Euclidian distance between ry' and H;§;, where §; = s;. So the

pair-wise error probability of optimal decoding is

P(8;—8; i#j | oun n=12,34)
= P(|lrv' —Hagj|]> < |jrv’ —Hi8)?)

= P(|[Hi(8;—8,) +np'|I” — |Inp'[|*) < 0) (3.90)

We denote the difference between §; and é; as

e, = =8 -8 = (3.91)
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then (3.90) changes to
P(|Hies +np'|* - |np'|* <0) = P(|[Hies||* +2Re(es"Hf'np’) < 0) (3.92)

We denote by

!

nz = 2Re(e,"Hnp ') (3.93)

which is shown in Appendix A.2 to be a Gaussian random variable with zero mean and variance

2||H;eq||?. Therefore:

P(8;—8;i#j)=E{P(8 —8;i#j|a, n=1234)}

— B{P(nz < -|Hel?)} = E{Q(22)} (399)

where E denotes expectation with respect to channel coefficients {1 ,; n = 1,2, 3,4}.

By using Craig’s formula, (3.94) changes to

5/0% E{ exp ( _ IIHlest)}dQ (3.95)

T 4sin® 6

Let Q = ||H;e4||? = e,“HIH, e,, where

(3.96)
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then
1 A B e
Q= e"Hi'Hies = 55 (¢}, ¢}) 1
g B A €4
1 *
= 53 | Alllea]? + lleal®) + B{2Re(es€})} (3.97)
Let
a = lon1, 012,018 014" (3.98)
then
a = E(a) =10,0,0,0]" (3.99)
and the covariance matrix
L=E(aa”)=1 (3.100)

By substituting for A and B from (3.10) and (3.11) we re-write €2 in quadratic form as

(||e1||2 + ||ea|? 0 0 2Re(e1€}) \
1 0 el + |les|? —2Re(eie 0
ooarl sl + el (er6) A
o 0 —2Re(ere]) ||| + |leal|? 0
\ 2Re(eqe}) 0 0 lleal|? + H64H2)

(3.101)
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where
(e + e 0 0 Re(ere;)
1 0 el + |les]|?  —2Re(eqe 0
N a4 leal (ere) 100
g 0 —2Re(ere})  |leal]® + [lesl? 0
\ 2Re(e;e}) 0 0 |lea|? + ||64H2/

As derived in Appendix A.3, the eigenvalues of A are

1
)\i\ = )\é\ = ﬁlel + 64‘2 (3103)
AA:AA:iLe — ey)? (3.104)
3 4 552 161 4 .

From (3.79), the moment generating function of {2 is

4

Bo(s) = [J(1 — A (3.105)

=1

From (3.95) and (3.105)

o e L [f? |[Hies|[? 1/%
P(s, - = — E — ) df = — P do
(SI—>SJ,’L7Q‘7) 7_(_/0 {exp( 4Sin29 )} T J, Q(S) S=—Filn-2—€
T 4 s . .
1 1 2 2 29 2
_ _/2 [t — sty do= —/2 ( sin GAA) ( s AA) df (3.106)
TJo 4 $=" TenZo T Jo Sin29—|—74L sin20+~43—

3.3.3 Diversity Order Provided by Optimal Decoding for the Quasi-Orthogonal Code

Family: Asymptotical Approach

For the Quasi-Orthogonal code, both s; and s4 are taken from the QPSK constellation shown in

Fig.3.1. For any distinct pair of §; and §;., either e; or e4 in (3.91) could be zero, but they could
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not be zeros simultaneously. From (3.103), A2 and A% are zeros if and only if e; = ¢4 = 0.
So, we conclude that either A2 or A3 could be zero, but they could not be both zeros. Assuming

A = 0and M\ # 0, as the SNR approaches infinity, i.e., % approaches zero, (3.106) changes to

ENIE]

/ / 1
. ~ A Y T -
lim P(§; — 8;;1# j, A3 -—0)—01%§07r i

( sin% @

) le1+ea|?
sin® 0 + g7

)2 49 (3.107)

In the calculations of (3.107) and some of the following equations, by using Lebesgue’s Domi-
nated Convergence Theorem presented in section 3.3.1, we switch the sequence of integral and

limitation. In (3.107), we know that

in26 2 2 2
lim () = (Lg) sin® 0 (3.108)
02—0 \gin? § + —'e]‘;;“l ler + e4]
and
. 2 e 2
}( s ) <1 (3.109)
sin? § 4 leated®

802

which is integrable. Therefore using the Lebesgue’s Dominated Convergence Theorem,

lim P(8; —8;i#j, M =0)

02—0 x
1 [2 in @ 2 852 \21 (2

_ _/2 lim ( — o |2) 49 = (%) —/2sin49d9 (3.110)
T 0 o2—0 Sin 9+% |61+e4| T 0

By taking logarithm on both sides of (3.110), when o2 — 0,

b 1 8 21 [2
N A . A _ L . 4
log P(8, = 8;;i# 7, \3 =0) = 210g—02 —i—log{(—|e1 e4|2) 7r/0 sin 0d0} (3.111)

According to (3.111), if we plot the error probability curve in logarithm scale versus SNR (in dB),

the slope of the curve is —2. From section 2.1.3, we know that the slope of error performance
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curve in the high SNR range indicates the diversity order, thus the diversity order provided by
optimal decoding of Quasi-Orthogonal code is 2. We know from (3.103) and (3.104) that A%

and M\ are zeros if and only if e; = —e,. Also, A} and A} are zeros if and only if e; = ey.

0
10 NN R RN R R N N AR RN BE N RN U RN R R AR, S L N AN E R ;|

—— Quasi-Orthogonal code |
——- Improved Quasi-Orthogonal code |

0 5 10 15 20 25 30
SNR/Bit in dB

Fig. 3.5 Optimal Decoding for Quasi-Orthogonal code Family: Bit Error Rate

For Improved Quasi-Orthogonal code, s, is taken from the rotated QPSK constellation and s; is
taken from QPSK constellation as given in Fig.3.1. For any distinct pair of §; and §, e; # e,
because of the relative rotation of signal constellations. So, none of the eigenvalues A\?’s could

be zero. As SNR approaches infinity, i.e., o2 approaches zero, by using Lebesgue’s Dominated
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—»— Quasi—-Orthogonal code
| =6~ Improved Qua_si—OrthogonaI code

|||||||||||||||||||||||||||||||||

e

0 5 10 15 20 25 30
SNR/Bit in dB

Fig. 3.6 Optimal Decoding for Quasi-Orthogonal code Family: Symbol Error Rate
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Convergence Theorem, (3.106) changes to

! ’ 1 z 3 29 2 . 20 9
lim P(éi—’§~;i$éj7)= lim — 2( sin ) ( sin ) &0

J . 2 ) o1—eal?
020 a2=0 7T Jo \gin26 + lelé;d sin? 6 + | 180'624|

) o )
- - 1m
T Jo 020 Sin20—|— |€18'f('7€24|2 Sin29+ |818_0624|2

- () (- )zl/fsmme (3.112)

ler +eq|2/ \|e1 —eqf?/ «

By taking logarithm on both sides of (3.112), when 02 — 0,

g P, — 831 24, ) = —41 L oo {( 64 >21/%S. 89d9}
. — S = - ) T -
og S; S;3t7F s 08 o2 g |el -+ 64|2|€1 — 64!2 T Jo

(3.113)

According to (3.113), if we plot the error probability curve in logarithm scale versus SNR (in dB),
the slope of the curve is —4. From section 2.1.3, we know that that the slope of error performance
curve in the high SNR range indicates the associated diversity order, thus the diversity order
provided by optimal decoding of Improved Quasi-Orthogonal code is 4.

Computer simulations of optimal decoding of the Quasi-Orthogonal code and the Improved
Quasi-Orthogonal code are illustrated in Fig.3.5 and Fig.3.6. The settings of the simulations have
been presented in section 3.2.3 and the error performance curves are plotted based the computer
simulations over 2.24 x 10% information bits. As we know, the slopes of the performance curves in
the high SNR range indicate the diversity orders provided by the corresponding coding-decoding
schemes. From Fig.3.5 and Fig.3.6, we see that the diversity orders provided by optimal decoding
of Improved Quasi-Orthogonal code and Quasi-Orthogonal are 4 and 2 respectively, which have

been proven by the analysis previously.



3 Simplified Decoding for a Family of Quasi-Orthogonal Codes 61

3.3.4 Error Performance for Simplified Decoding of the Quasi-Orthogonal Code Family
Error Performance of Decoding s,

For decoding s4, we have from (3.56),

Tval = é34 + ny 4,1 (31 14)

From (3.82) and (3.114), when the channel coefficients are known and with QPSK modulation,

the symbol error probability (SEP) in decoding s4 is

3n
1 (% 2
P(4 # s4 ’ Qipin=1,234) = _7;/4 exp ( - 88;20) df (3.115)
0

By taking expectation with respect to ¢, the symbol error probability in decoding sy is

3z 2
P($4 # s4) =E{P(§4¢s4|a1,n; ;n:1,2,3,4)}:1/ E{ exp ( )}de
0
(3.116)

From (3.46) and (3.52), we have

. A B2

where A and B are defined in (3.10) and (3.11). We substitute (3.117) into (3.116) and get

3

ke =1 [Fo{on (- - S))e cu

where E' denotes the expectation with respect to A and B.
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Joint PDF of Random Variables A and B

From (3.10), (3.11) and (3.98), we re-write A and B as quadratic forms

01 0 0
A=a"0,a=af « (3.119)

0010

\0 0 0 1

and

(0 0 0 1

0 0 -1 0
B =o"0a = a” ! (3.120)

0 -1 0 0

\1 0 0 0

From (3.79), we get the joint characteristic function of A and B as

Q4 p(wi,ws) = Map(t,ts

) |t1=jw1,t2=jw2

= [1—j(w —w2)]?[1 = jlwr + ws)] 2 (3.121)

We take the inverse Fourier transform of ® 4 g(w:,w2) as shown in Appendix A.4 to get the joint

probability density function (pdf) of A and B as

fap(a,b) = _1( ® 4 p(wr,ws) )

f

%(a—l—b)(a—b)e_%__be‘%b; a+b>0anda—b>0

- (3.122)
0 otherwise
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Upper and Lower Bounds for Error Performance of Decoding s,

In practice, it is hard to evaluate (3.118), and as an alternative, we calculate upper and lower

bounds. Let

= (3.123)

then

2

1 B>\ (A+B)A-B) UV
(A"I) - 24 S U+V (3.124)

From the joint pdf of A and B given in (3.122), we have the joint pdf of U and V' as derived in
Appendix A.5, which is expressed as

16 z2; u>0andv >0
fov(u,v) = (3.125)

0; otherwise.

1 _u
—=Uve 2€

and the probability distribution functions of U and V' are

fu(u) = /0 ) foyv(u,v)dv = (3.126)

0; otherwise

and

o lvemz; v>0
fv(v) = /0 Jov(u,v)du = (3.127)

0; otherwise
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respectively. Since U and V' are non-negative, we have

UV ST
o = UU+VV < min(U, V) (3.128)
v < v =U
We also have
e > v U<V o> L U<V oy 1
= :>U+V>§m1n( V)
o > A iU >V e > % ifU>V
(3.129)
By combining (3.128) and (3.129), we get
1
§min(U, V)< UU+VV < min(U, V) (3.130)
Let W = min(U, V). From Appendix A.6, we have
1 —w 1 2 —w
fw(w) = Jwe + e w> 0 (3.131)

So the moment generating functions of W, which is calculated in Appendix A.7, is
1 .1 3
Dy (s) = 5(1 —8) %+ 5(1 —3) (3.132)

By using (3.118), (3.124) and (3.130), we get

3

L Bl (- o) o< Pl £ < 2 [ o (- o) o
(3.133)
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that can be put in the form

3m 3

%/OT By (s) d0 < P($4 # s4) < = /T Pw(s)

S g2 002 T Jo
From (3.132) and (3.134), the lower bound of the symbol error rate in decoding s, is given by

a9 .  (3.134)

— 1
5= 16 sin2 002

3

PS4 #84) = l/OT Py (s)

™

de
1

Y P

8sin“ fo

3r

1 T( sin? 6 )2 1 %< sin® 6

— ) do+ — —_—
Sir129+8(%2 s.in2(9—+—80i2

3
>d9 (3.135)
27T 0

27 Jo

and the upper bound of the symbol error rate in decoding s, is given by

3x

Posits) = 3 [ owly

de
T 1

== 16sin2 902

3n

_ L[ (.-_Ei—nzi_)z)dw—l-/% (_3_111_259__)3% (3.136)
0

Y <2 1 ) 1
2 Jo sin“ 0 + 55 27 sin“ 0 + £

Numerical Evaluations for the Lower and Upper Bounds of Symbol Error Probability of
Decoding s,
Each of the two integrals in (3.135) and (3.136) has the form shown by (3.84) multiplied by scalar
%. The difference between evaluations of upper and lower bounds is the value of ¢ in (3.84), which
is # for the lower bound and 16% for the upper bound. The relation between o2 and SNR/bit
(in dB) is given by (3.73). With the aid of (3.85)-(3.87), we plot in Fig.3.7 the upper and lower
bounds for SEP of decoding s, by using the Matlab routine in Program C.1.1 in Appendix C.1.
From Fig.3.7, we can see the upper bound is parallel to the lower bound and there is a 3 dB
gap between two bounds. Both lower bound and upper bound show a diversity order of 2. The
simulation result and the lower bound converge at high SNR, and the simulation result and upper

bound converge at lower SNR. The simulation result of decoding s, in Fig.3.7 is obtained from

computer simulations over 2.24 x 10° information bits.
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Analytlcal Upper Bound
) Analytical Lower Bound
) Simulation Result

SNR/Bit in dB

Fig. 3.7 Error Performance of Decoding s,
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Error Performance of Decoding s; Assuming s, Has Been Decoded Correctly

We consider the decoding of s; assuming s4 has been decoded correctly. From (3.56), we have
ro1 = sy +bsq + (3.137)
Assuming s, has been decoded correctly, which means s = sy, then
7";]1,1 = Tyl — bsy = ry 1,1 — bsy = as; + ny 1,1 (3.138)

where ny 11 1s a zero-mean and unit-variance complex Gaussian. From (3.80), the symbol error
rate of decoding s; assuming s; has been decoded correctly and the channel coefficients are

known is

3

P(s 5, 1,2,3,4 L[ @’ dd (3.139
(317&51 S4 = 84; Q1,0 = 1, ,37) = ;/0 eXP(‘m) (3.139)

By taking expectation with respect to a, the SEP in decoding s; assuming s4 is known is

P(§1# s |S1=854) = E{P(§1# 51 |S1=84; un,n=123,4)}
_ %/_ exp ( 85‘:‘;2 )} do (3.140)
From (3.46) and (3.50), we have
5 2% (3.141)

where A is defined by (3.10). Substituting (3.141) into (3.140), we get

3n

) 1 A
P($1 # 51 54_34)_;/0 E(exp{—m})cw (3.142)
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where the expectation is with respect to A. We write A in quadratic form as given by (3.119).

According to (3.79), the moment generating function of the random variable A is
Da(s)=(1—-5)"" (3.143)

Accordingly, the symbol error rate in decoding s; assuming s, has been decoded correctly is

3r

P51 £ | 6a=s81) = l/: B a(s)

3x
1 (% in%6 4
[T
Q 'S:—lﬁsin bo T 0 SIn 0+ 1602

(3.144)

Numerical Evaluations for the Lower and Upper Bounds of Symbol Error Probability of
Decoding s,
(3.144) and (3.136) has the form shown by (3.84) with ¢, m and c are replaced by 37”, 4 and #
respectively. The relation between o2 and SNR/bit (in dB) is given by (3.73). With the aid of
(3.85)-(3.87), we plot in Fig.3.8 the exact SEP of decoding s, assuming s4 has been decoded cor-
rectly by using the Matlab routine in Program C.2.1 in Appendix C.2. The associated computer
simulation over 2.24 x 10° information bits is also included in Fig 3.8. From Fig.3.8, we see
that the simulation result matches the analytical result exactly and the diversity order provided by
decoding s; assuming has been decoded correctly is 4.

As the SNR approaches infinity, i.e., 2 approaches 0, by using Lebesgue’s Dominated Con-
vergence Theorem, (3.135) changes to

1 (7 in20 2 & .2 3
Hm Pr(sy #s4) = lim_/4 ( sin )d¢9+lim——1~ ( sin 01 ) &0
0

a2—0 20 27 Sil’lz 0 + 1 20 27 0 Sil’l2 0 + 5.2

802
3n 3z
1 [7 in? 2 1 [7 in? 6 3
= — [ " im (o 1)d9+-/4 lim () df
2w Jo  o*—0 \sin" 0+ g 2w Jo =0 \sin®0 + g

3 3
1

T 1 T
. 2\2 o 233 : .6
= o (80%) /0 sin® 6 df + _27r(80 ) /0 sin® 8 df (3.145)
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and (3.136) changes to

3r 3r
I sinf 2 1 [% sing 3
lim Py(s. = lim — (—) do + li ——/ (————) do
250 0(8s 7 54) 020 2 /0 sin® 6 + 1610_2 * 0200 270 0 sin? 0 + 16102
3m .. 9 9 3m ) 3
= (2 Yo L [T (=2 )
21 Jo  o?—0 \8in" 0 + 21 Jo 020 \8in® 0 + 55—
3 3
1 £ 1 4
- —(1602)2/4 sin49d0+—(1602)3/4 sin® 9 d (3.146)
2m 0 2m 0
Also (3.144) changes to
1 T
P(s1 # s1 ’ Sa=54) = —(1602)4/ sin® 6 df oc o (3.147)
m 0

Because as o2 approaches 0, the values of (3.145) and (3.146) are dominated by the first items,
which are proportional to 0. If we plot the upper and lower bounds in logarithm scale to SNR (in
dB). The slopes of the curves are —2. According to section 2.1.3, the diversity orders provided
by the upper and lower bounds of simplified decoding of Quasi Orthogonal code family are 2.
So the diversity order provided by the simplified decoding of Quasi Orthogonal code family is 2.
For the same reason, from (3.147), we see that the diversity order of decoding s, assuming s4 has

been decoded correctly is 4. This matches the simulation result indicated in Fig. 3.8.

Error Performance of Decoding s; When s is Obtained From Decision Feedback

Now, we consider the performance of decoding s; when sy is obtained from decision feedback.
We assume the transmitted symbol for s, is z; illustrated in Fig.3.2. When we take the symmet-

rical property of the constellations in Fig.3.2 into account, the error probability of decoding s; is
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Fig. 3.8 Error Performance of Decoding s; Assuming sy, Has Been Decoded Cor-

rectly
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given as

P(§1 7&81) :P(SAI %81|S4:Z’1)
= P(si#s1| 6= 2384 = 2)P(84 = 2, | S4=2,)
+ P(s1 # 51 | Sy = z;;s4 = zi)P(sﬁl = z; I 54 = le)

+P(§17é81|§4:Z;;S4:Z;)P(§4:Z; 84:le)

+P($1 # 81 | 4= 25580 = 2))P(Sa = 2, | 54 = 2) (3.148)

where z;’s and 2,’s (i = 1,2, 3, 4) are indicated in Fig.3.2.
Next we investigate the diversity order of decoding s; when s, is obtained from decision
feedback as SNR approaches infinity, i.e., 02 approaches 0. Based on the calculations included

in Appendix A.8, as SNR approaches infinity, (3.148) changes to

P($1 # s | $4= 2081 = 2,)
= P(Si#s1|s= 284 = 2,) + P(a+ V3b < 0)P(s; = 2, | S4=2,)
+ {1—Pa+ (1+V3)b> 0]} P($s = 25 | 84 =2;) + P(a+ V3b < 0)P($1 = 2 | 84 = 2,)

(3.149)

Because
0<1-Pa+(1+v3)b>01<1 and 0< P(a++3b<0)<1 (3.150)
we can form lower and upper bounds to (3.149) as

P(SA17£8118A4:Z;;84=251)
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VAN

IA

+min{l — P[a+ (1+v3)b>0]; P(a+V3b < 0)}P(s1= 2| 54 = 2,)
+min{l — Pa+ (1+v3)b > 0]; P(a+vV3b < 0)}P($1 =25 | 4 = 2,)
+min{l — P+ (1 +v3)b> 0]; P(a+v3b < 0)}P(ss = 2 | sa = 21)

P(SA17'£31‘84:Z/1)

!

P(s) # 51 | Sy = z;;s4 = zl) + P(sy = z; Sq = z;)

+P(Ss =23 | sa=2) + P($s =2, | 54 = 2,) (3.151)

or in the form

P(SA17481|SA4=S4)
+min{l — P*[a+ (1 +V3)b > 0]; P(a+v/3b < 0)}P(s4 # 54)

A

(
P(§17é31|s4=z’1)

IA

P(1# 51 | 4 = 5) + P(84 # 54) (3.152)

From the evaluation in Appendix A.9, we have that min{1— P2[a+(1++v/3)b > 0]; P(a++/3b <

0)} = 0.1151. We have already derived the analytical upper and lower bounds for decoding s,

which is denoted as P(s; # s4) in (3.152). We also have derived the analytical result for decoding

s assuming s4 has been decoded correctly, which is denoted as P(s; # s; | §4 = 84) in (3.152).

According to (3.152), we plot the analytical lower bound expressed as

P(s1 # 51| $1 = s4) + 0.1151P1 (4 # s4) (3.153)

and the analytical upper bound expressed as

P(s1 # s l§4=34)+PU(§47é34) (3.154)
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in Fig.3.9, as well as the analytical approximation expressed as

P(SAl 76 S1 | SA4 — 54) + PL(SA4 75 84) (3155)

and the result from computer simulations over 2.24 x 10° information bits in Fig.3.9. From the

|||||||||||||||||||||||||||||||||||||||||||||||||
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

| —t— Pe(s1) Analytical Upper Bound
— Pe(s1) Analytical Lower Bound
] — Pe(s1) Analytical Approximation
| -~ P_(s,) Simulation Resuit '

|||||||||||||| [ e

SNR/Bit in dB

Fig. 3.9 Error Performance of Decoding s; When §y is From Decision Feedback

previous analysis in this section we know that the diversity order provided by decoding s, is 2 and
the diversity order provided by decoding s, assuming s, has been decoded correctly is 4. From the

expression of (3.152), we conclude that if min{1— P2[a+(14++v/3)b < 0]; P(a++/3b > 0)} # 0,



3 Simplified Decoding for a Family of Quasi-Orthogonal Codes 74

which has been proven to be true in Appendix A.9, the diversity order of decoding s; assuming
s4 1s from the decision feedback is decided by the diversity order provided by decoding s4, which
is 2 (3.135) (3.136). From Fig.3.9, we find that the simulation result and upper and lower bounds
are parallel with slope —2 when SNR is sufficiently large, which implies the diversity order
of decoding s; when s, is from decision feedback is 2. This confirms the conclusion that the

diversity order of decoding s; when s, is from decision feedback is 2 based on (3.152).

3.3.5 Analysis of Diversity Loss in the Simplified Decoding for the Improved Quasi
Orthogonal code

From (3.112), the diversity order provided by the optimal decoding of Improved Quasi-Orthogonal
code is 4. However, from section 3.3.4 and the simulation results based on the evaluation over
2.24 x 10° information bits illustrated in Fig.3.10 and Fig.3.11, we see that when the simplified
decoding is employed, the diversity order provided by Improved Quasi-Orthogonal code is 2. In
the following, we analyze this diversity order loss. Assuming MPSK modulation, from (3.80)

and (3.118), the average symbol error rate in decoding s, is

(M-1)m )

1 7 sin® = B?
P(s = = M A
(81 7 s4) T Jo E{ exp 802 sin® 0 4 A ) ydo
M-1)= . 9
1 7 sin“=— . (A+ B)(A— B)
= - E - M do
7r/0 {exp( 402sin29[(A+B)+(A——B)])}
M-1)n
= l/ Y M (aimya-s) (t) sz 4O (3.156)
T Jo (AT B)+(A=B) t:—ZETsi}]]%‘é

- - - (A+B)(A-B)
where M (hemam) (t) denotes the moment generating function of random variable (ATBY(A=B)"

From the previous derivation given by (3.126) and (3.127), we know that U = A + B and

V = A — B are non-negative. So

(A+ B)(A - B)
(A+B)+(A—B)

1
smin(A— B, A+ B) < < min(A — B, A+ B) (3.157)
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We combine (3.156) and (3.157) and have the lower bound of error probability in decoding s4 as

(M—-1)=

1 M
3 = = Miinga— ! ‘ e 1
Pr(84 # s4) 7T/0 (A-B,A+B)(t) e do (3.158)
We write A, B in the generalized Hermitian quadratic form as
(al \
Ao H
A=al a=a"0;x (3.159)
as
\ )
( b
H by H
B=a a=oa 0 a (3.160)
bs
\b /
where « is defined by (3.98) and
a1:a2=a3:a4=b1:b4:1; b2=b3:—1 (3161)

According to (3.79), the joint moment generating function of A and B is

1
M i1,
A,B( 1, 2) |I—t1@3 —t2@4|
B 1
[(1 — altl)(l — a4t1) — b1b4tg} [(1 - agtl)(l — a3t1) - bzbgt%]
(3.162)
Because

My, p(t) = My p(t1,t2) (3.163)

to=t1=t
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and

Ma-p(t) = Ma,p(t1,t2) (3.164)

t1=t,lp=—1t

By combining (3.162), (3.163) and (3.164), we have

Mayp(t) = Ma_p(t)
1
[(1 - alt)(l - a4t) - b1b4t2] [(1 - G,Qt)(l - agt) — b2b3t2]

(3.165)

If we take a; = a4, by = by, as = a3 and by, = b3 as indicated in (3.161), then (3.165) changes to

1
M t) = My p(t)=
a+5(0) a-5(1) [1—(ay —b1)t][1 — (a1 + b1)t] [1 — (a2 — b2)t] [1 — (a2 + ba)t]
(3.166)
From (3.158) and (3.166), when SNR approaches infinity,
(M-1)=w
: . 1 M
01213) Pr(Sy # 84) = 0121130 =) M in(a-B,A+B) (t)’t:_ snzigw 9 do

M-r

1

lim 1

oo /0 020 [1 = (a1 — b)t] [1 — (a1 + b1)t] [1 — (ap — b)t] [1 — (az + by)t]
_ 1 /W (402 sin? §)*
7 Jo (a1 + b1)(a1 — b1)(az + b2)(az — bp) sin® &

From (3.167), if we plot P (sS4 # s4) in logarithm scale versus SNR (in dB), the slope of the curve
is —4. From section 2.1.3, we know that the lower bound of error probability in decoding s, is 4.
However, for Improved Quasi-Orthogonal code, we should take a; — b; = 0 and ay + by = 0 as

indicated in (3.161) into consideration as well. So, when SNR approaches infinity, we evaluate

sin2

t=— 402 sinZ %]

o  o® (3.167)
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the lower bound of error probability in decoding s, differently as

(M-1)=x

. . o1 M
01213130 Pr(8y # s4) = 012111)10 =/ Min(a-B,4+B) (t)tt-———‘jnzmﬁ% : do
(M-1)~m
1 M . 1
= = / lim wn2 . 0
T Jo o2=0 [1 — (a1 — by)t] [1 = (a1 + b2)t] [1 = (as — bo)t] [1 — (ag + bo)t] le=— s
1 (M;ll)w . 1
= -_ llIIl sin2 [ d9
T Jo 020 []_ - (a1 + bl)tj| [1 - (a2 - bg)t} tz—ng—g
e (40?2 sin® 9)2
- _/ —df x o (3.168)
™ Jo (al + bl)(az — bz) Sin 7\%

From (3.168), if we plot P;(sy # s4) in logarithm scale versus SNR (in dB), the slope of the
curve is —2. From section 2.1.3, we know that the actual lower bound of error probability in
decoding s, is 2. So, the error probability in decoding s, is 2 at most. By comparing (3.167) and
(3.168), we know that because of a; — b; = 0 and as + by = 0, the diversity order provided by
Improved Quasi-Orthogonal code in decoding s, is reduced from 4 to 2 as shown in Fig.3.10 and

Fig.3.11.
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Chapter 4

Performance over Spatially Correlated

Rayleigh Fading Channels

Up to this point, we have only considered the transmissions over independent Rayleigh fading
channels described in section 2.1.1. However, in real propagation environments, the fading coef-
ficients from different channels are not necessarily independent. For example, in order to realize
independent fading channels for downlinks, a separation of a few wavelengths is required be-
tween two adjacent antennas. In the implementation, this requirement can not be satisfied all
the time. Insufficient spacing between the transmit antennas results in spatially correlated fading
channels. It is interesting to investigate the performances of the decoding schemes described
in chapter 3 over correlated Rayleigh fading channels. In this chapter, we consider the perfor-
mances of decoding schemes over correlated Rayleigh fading channels by using the “one-ring”

model [41] [42].

4.1 One Ring Model

The one-ring model, which was first mentioned in [41] and extended in [42], is employed to

determine the correlation coefficients between different fading channels. One-ring model is an
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appropriate abstract model of the communication system when transmit antennas are elevated
and unobstructed by local scatters. In the one-ring model, the receive antenna is assumed to be

surrounded by local scatters. We denote
e ) as the wavelength;
e D as the distance between base station and mobile station;
e R as the radius of scatters around mobile station;
e d as the distance between two transmit antennas;

as indicated in the Fig.4.1.

D

Fig. 4.1 One-ring Model

From [42], the correlation coefficient between the fading processes associated with the two

transmit antennas is given by

v = Jo(arcsin (%)%d) 4.1

In (4.1), J, stands for the first kind Bessel function of the zeroth order. From (4.1), we find that

the value of the correlation coefficient depends on two factors: d/A and R/D. The factor d/) is
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determined by the carrier frequency and the antenna array topology of a wireless communication
system. Once the system is set up, seldom does the ratio d/\ change. The factor of R/ D reflects
the working environment close to the mobile, which can change with the movement of the mobile.
Typical values of the distance between base station and mobile station are listed in Table 4.1 and

the typical value of the radius of the scatters ranges from 100\ to 200).

Suburban Macro Cell | Urban Macro Cell | Urban Micro Cell
D 1500m 1500m 500m

Table 4.1 Typical Values of the Distance Between BS and MS

From (4.1), we calculate the correlation coefficients based on different combinations of the

ratio d/)\ and the ratio R/D. The results are listed in Table 4.2. From Table4.2, we have the

a/x 0.5 2 5 10 20
R/D
D = 1500m
0.0111 0.9997 0.9951 | 0.9698 | 0.8818 0.5689
0.0139 0.9995 09924 | 09530 | 0.8185 0.3717
0.0167 0.9993 0.9891 | 00326 | 0.7440 0.1697
0.0194 0.9991 0.9851 | 09089 | 0.6602 | —0.0200
0.0222 0.9988 0.9806 | 08818 | 0.5688 | —0.1821
D = 500m
0.0333 0.9973 0.9566 | 0.7440 | 0.1696 | —0.3780
0.0417 0.9957 0.9326 | 06152 | —0.1056 | —0.0974
0.0500 0.9938 0.9036 | 04716 | —0.3046 | 0.2208
0.0583 0.9916 0.8700 | 03204 | —0.3972 | 0.2852
0.0667 0.9890 0.8319 | 0.1689 | —0.3777 | 0.0735

Table 4.2 Correlation Coefficients Between the Adjacent Antennas f =
1.8GHz R = 100X ~ 200X

following observations.
1. Considering any row we see that the correlation coefficient decreases as d/\ increases. In

the implementation, when the carrier frequency is fixed, we can decrease the correlation between
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channels by increasing the distance between transmit antennas.

2. When d/\ and R are fixed, the correlation coefficient decreases as the distance between
base station (BS) and mobile station (MS) decreases. In the implementation, when carrier fre-
quency and the distance between antennas are fixed, we can decrease the correlation between

channels by decreasing the distance between BS and MS.

4.2 Realization of Spatially Correlated Rayleigh Fading Channels in

Computer Simulations

In the following sections, we investigate the influence of spatially correlation on the performances
of the optimal and the simplified decoding schemes discussed in chapter 3 by the use of computer
simulations.

The general settings of simulations are exactly the same as those described in section 3.2.3
except the realization of spatially correlated Rayleigh fading channels. The method employed to
implement the spatially correlated Rayleigh fading channels is presented in the following. The
correlations among different transmission paths of a four transmit antennas to one receive antenna
wireless communication system can be described by a 4 x 4 symmetric matrix C;. The (7, 7)®
and the (5,7)® (1 < 4,5 < 4) elements of C, denote the correlation coefficient between the
channel from the i transmit antenna and the channel from the j® transmit antenna. Assuming
that the transmit antennas form an equally-spaced linear array. From (4.1), the (i, 7)™ and (5, 7)™
element of C; are calculated by

C.(4,5) = Cs(4,) = Jo(arcsin (%)27% ~ j|d) (4.2)

where d denotes the distance between the adjacent antennas. We denote by Cy the Hermitian
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root of Cg, which means
Cs =Cgr - Cr 4.3)
We also denote

a= (a1,1 ai2 413 (11,4)T 4.4)

as the independent channel fading coefficients, where a;; (1 < j < 4) denotes the channel
fading coefficient from the j™ transmit antenna to the receive antenna. The coefficients a; ;’s are
modeled as i.i.d complex Gaussian distributed with zero-mean and variance 0.5 in each complex
dimension. In order to generate the channel coefficients with correlation matrix Cg, which is

denoted as a’, we left-multiply a with Cg,
a = (al1,1 a/1,2 all,3 a11,4)T = Cra 4.5)

We have

’

E{a'a’ ¥} = CxE{aa®}Cr" = C, (4.6)

From (4.2), we know that the diagonal elements of Cs are equal to 1. So, we can conclude that

generating the channel coefficients by using (4.5) does not change the SNR of the system model.

4.3 Performance over Spatially Correlated Channels

We choose several typical values of correlation coefficients from Table 4.2 corresponding to
different level of correlation for the computer simulations. The settings of the computation simu-

lations have been presented in section 3.2.3 and section 4.2. The performances of the optimal de-
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coding and the simplified decoding of the Improve Quasi-Orthogonal code over correlated chan-
nels based on the experiments of 2.24 x 10° information bits are shown in Fig.4.2 and Fig.4.3.
The performances of the optimal decoding and the simplified decoding of the Improve Quasi-
Orthogonal code over independent channels are also included as the baseline of comparisons.

As we discussed previously, the slopes of the error performance curves in the high SNR range
indicate the diversity orders provided by corresponding coding-decoding schemes. For example,
as shown in Fig.4.2 and Fig.4.3, the diversity orders provided by the optimal and the simplified
decoding schemes of the Improved Quasi-Orthogonal code over independent channels (v = 0)
are 4 and 2, respectively. These are also backed up by the mathematical analysis included in
chapter 3. As indicated in Fig.4.2 and Fig.4.3, the slopes of the performance curves decrease as
the correlation coefficient, which is denoted as -, increases. When v = 0.9993, the slopes of the
curves decrease to the values close to 1. In other words, the diversity gains brought by STBC
schemes are reduced because of the correlations among the channels.

The other phenomenon we are interested in is the change of the performance gaps between
the optimal and the simplified decoding schemes of the Improved Quasi-Orthogonal code. We
take the measurements in terms of bit error rate shown in Fig.4.2 as example. For the BER at
10~ level, the performance gap between the optimal and the simplified decoding schemes over
independent channels is about 3.5 dB. When v = 0.7440, the gap decreases to 2.5 dB. As v
increases to 0.9993, which is corresponding to highly correlated channels, the gap is less than 0.5
dB. Therefore, the performance gaps between the optimal and the simplified decoding schemes of

the Improved Quasi-Orthogonal code decrease as the correlations among the channels increase.

4.4 Conclusion

In designing a wireless communication system, we seek a technique that achieves better perfor-

mance and lower complexity. When the requirements of performance and complexity can not be
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Fig. 4.2 Different Decoding Algorithms for the Improved Quasi-Orthogonal code
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satisfied at the same time, we are going to satisfy either performance or complexity with respect
to different transmission models.

As we discussed in chapter 3, the diversity orders provided by the optimal and the simplified
decoding schemes of the Improved Quasi-Orthogonal code over independent channels are 4 and
2, respectively. The performance gap between two decoding schemes increases significantly as
SNR increases. So, over space uncorrelated channels, the simplified decoding scheme is not
desirable though it provides lower decoding complexity.

The situation in space correlated channels is different. As we discussed in section 4.3, the
performance gaps between the optimal and the simplified decoding schemes of the Improved
Quasi-Orthogonal code decrease as the correlations among the channel increase. When the gaps
are smaller than a certain amount, the simplified decoding scheme is suitable because of its

relative lower decoding complexity and tolerable performance loss.
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Chapter 5

Conclusion

In this thesis, we considered simplified and optimal decoding algorithms for the Quasi-Orthogonal
STBC family that comprises the Quasi-Orthogonal code [28] and the Improved Quasi-Orthogonal
code [29] over Rayleigh fading channels. A symbol-by-symbol decision feedback decoding al-
gorithm was proposed. The associated performances were evaluated by mathematical analysis
and were verified through computer simulations.

A complex orthogonal STBC exists iff the order of the code matrix is 2 [7], which is Alam-
outi’s scheme [18]. For the complex STBCs other than Alamouti’s scheme, full rate and full
orthogonality (which results in full diversity and symbol-by-symbol ML decoding) can not be
satisfied at the same time. The Quasi-Orthogonal code family [28] [29] is made up of two types
of full code rate non-orthogonal STBCs. Because the loss of orthogonality, the ML decoding of
Quasi-Orthogonal code family can not be as simple as symbol-by-symbol decoding. This thesis
introduced a simplified decoding algorithm for such codes. This simplified decoding decouples
four information bearing symbols into two groups. In decoding each pair of symbols, by using
QR decomposition, one of the symbols is decoded first, then the decoding result is carried back
to the decoding of the second symbol. The decoding complexity, which is measured in terms of

number of comparisons over all possible linear combinations of transmitted symbols, increases
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linearly with the size of modulation constellation size, and it is much lower than the decoding
complexity of optimal decoding, which increases quadratically with the size of modulation con-
stellation. Compared to sphere decoding, there is no need for the simplified decoding algorithm to
find a initial sphere radius, which contributes to the complexity of the sphere decoding algorithm.

In addressing the performances of different decoding schemes for the Quasi-Orthogonal code
family, we provided a mathematical analysis as well as computer simulation results. Through
mathematical analysis, we showed that

1. The diversity orders provided by optimal decodings of the Improved Quasi-Orthogonal
code and the Quasi-Orthogonal code are 4 and 2, respectively.

2. For the simplified decoding of the Improved Quasi-Orthogonal code, the diversity order
provided by the decoding of the first symbol in each symbol pair is 2. The diversity order pro-
vided by the decoding of the second symbol in the same symbol pair assuming the first symbol
has been decoded correctly is 4. However, due to the decoding errors of the first symbol, the
actual diversity order provided by the decoding of the second symbol in the same symbol pair is
employed is 2. Therefore the simplified decoding of the Improved Quasi-Orthogonal code yields
diversity order of 2.

Finally, we presented the performances of the simplified decoding and optimal decoding over
correlated Rayleigh fading channels by using the one-ring” channel model [42]. Through com-
puter simulations, we showed that relative performance loss of the simplified decoding to optimal
decoding decreases as channel correlation increases. Therefore, the simplified decoding scheme

is suitable for highly spatially correlated Rayleigh fading channels.
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Appendix A

Proofs and Calculations

A.1 Proof of Equation (3.7)

From (3.3) and (3.5), we have

ItT — aTC|]? = ||aT(C — C) + n7||> = [aT(C — C) + n7][(C — C)”a* + n"|

= aT(C—-C)(C - C)"a* + 2Re[nT(C — C)a*] + n"n* (A.1)
and
llrp”T —8TH|? = ||(s — 8)TH + npT|> = [(s — §)"H + np”|[H” (s — §)* + np*|
= (s—35)THH" (s — §)* + 2Re[np"H”(s — §)*] + np " np* (A.2)

According to (3.3) and (3.5), we have

aT(C - C)(C - C)fa* = (s — 5)"HH (s — §)*

= AZ ||Sz - <§z|]2 + 2B (Re[(Sl — §1)(S4 — S~4)*] — Re[(52 — S~2)(S3 — S~3)*]) (A3)

=1
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and
4
n“n* = np'np* = Z ||ma]|? (A4)
i=1
and

Re[n”(C — C)¥a*] = Re[npTH (s — 5)]
"o yni(sy — 82)" 4 o g a (83 — 83)" + o ynaa(sa — Sa)”
4+ a1ani (81— §1) + a1an] (52 — §2) + augnd (83 — §3) + a1an 1 (sS4 — S4)

+ ozl,gn”{,Q(sl — 8~1)* - al,gnI’2(84 — 8~4)* + 041’477;’{’2(83 — S~3)*

( )
( )
( )
— of ma(s2 — 82) + o yaa(s1 — 81) — A 3n12(84 — Su) + A 4 2(83 — S3)
( )" — an2m] 5(s4 — 5a)" + arani z(s1 — §1)" + onan 5(s2 — 5)°
( )
( )

+ OZTJ?’LTA(SLL — §4) - 041’271,14(83 — $~3) - al’gni4(82 - 8~2) -+ 01’471;,4(51 — 51) (AS)

in (A.3), A and B are defined by (3.10) and (3.11), respectively. By combing (A.1)-(A.5), we
have

lep” — 8"H||> = ||r" — a" C|? (A.6)

QED

A.2 Variance of nz in (3.93)

We denote

en = Hies = epr + jent (A7)
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where eyr and ey denotes the real and imaginary part of ey, respectively. We also denote
np’ = npr + jopr (A.8)
where npr’ and np;’ denotes the real part and imaginary part of np’. So
es " Hinp' = exf'np = (enn? — jent?)(npr + jnpy)
= ewr Npr + e Npy + j(enrNpI — €nNpR ) (A.9)
From the definition of nz in (3.93), we know that
ny = 2Re(esHH{1nD') = 2(ehRTnDRI + ehITnDII) (A.10)
Accordingly, the mean of nz is
E(nz) = E{2(enr"npr + enr’ Npr )} (A.11)
and the variance of nyz is
Var(nz) = E{(ng — 1iz)*} = 4E{(enr“npr + ent’np; — 1iz)*} (A.12)

where 717 denotes the mean of nz. From (A.10) and section 3.3.2, we know that nz is a linear

combination of 1.i.d Gaussian random variables with zero mean. So

E(nz) =

(A.13)
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and
Var(nz) = 4E{(enr"npr + ent’ npr )%}
= 4{epr” E(npr npr T)enr + enr” E(Npr Dp1 © )ent
+ent’ E(npr npr 7)enr + e’ E(npr nipy *)enr}
= 2(ehRTehR + ehITehI) = 2||eh||2 = 2||H185H2 (A14)

A.3 Eigenvalues of A

We denote by A2 s as the eigenvalues of A. From [32], all A2 °s satisfy det(AA — A) =0, i.e.,

(A — lelfteat? 0 0 _Relae)
| 0 r . ||e1||22+ye4||2 Re(erc}) 0
et g o
0 Re(ezc) A — llealHleal 0
o 1 20
| e Ry
A — lealPleall” Re(ere]) 0
1 20 g
A H€1||2+||€4H2 erer e1]]2+||eq][?
(Ai _ T) det Re(es<}) A llrll e 0
0 0 Ap — lealled®
0 0 _Re(;;e )
LCCE PR PR
Re(er€}) A\A lex][?+]leal]? 0
0?2 % 202
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A leall?+leall® Re(eie})
(ya el lleal]? 2 AR — R —or
207 Re(erc) \A Ll tlled?
o? % 202
e]12+]||es||? ere}
Re(ere})\ 2 A — lleall el ? relyed)
(Relaciy
o Re(e1e}) A\ lexl[?+|leal(?
o2 ] 202
~ Tya el +lleal® 2 Re(ere}) 212
= [(/\i B — _(—05““)] =0 (A.15)

By solving (A.15), we have the eigenvalues of A as the following

1
)\i“ = )\é\ = 5;'61 + €4|2 (A16)
M=)\ = i|el — eq]? (A.17)
3 202

A.4 Joint Probability Density Function of A and B

From (3.121), we know that the joint characteristic function of A and B is given as
®4p(w,wa) = [1 = jwr — wa)] 7?1 — jwr +w2)] 2 (A.18)
So the joint pdf of A and B is the inverse Fourier Fourier transform of (A.18) and given as

fap(a,b) = F (D4 p(wr,w))

2 o (1= (w1 —w2)P[1 = jlwr + wg)]?

(A.19)
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We make the transformation as
W3 =Wy — Wy
(A.20)
Wg = W1 + Wy
then (A.19) changes to
fapla,b) = FH(®4p(wi,w))
13\2 Foo exp|—j(awr + bws)]
N dw, d
(5) | ] Tt — Pl =30 T %
_ 1 L)z /+oo epljwa(*3)] | / e explojus(()]
2\2r/) J_oo [l = jws)? coo (1= jwa]?
(A.21)
From the equations (3.382-6) and (3.382-7) listed in [39].
a—b
+oo i ra=b mla—ble"z; a—b>0
/ 2Pl iws ] 4, (A22)
—© [1 - jLU3] .
0 otherwise
_ath
o exp[—jwa(*F2)] d matbjemFs atb>0
— Wy = (A.23)
—oo [1 - ](4)4] .
0 otherwise
By using (A.22) and (A.23), in (A.21) we have
La+b)(a—beFe*; a+b>0anda—b>0
fap(ab) = (A.29)

0 otherwise
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A.5 Joint Probability Density Function of U and V'

From (3.123), we have the Jacobian as

J=det | P | =_2 (A.25)
v Qv
da ob

From (3.122) and (3.123), we have the joint pdf of U and V' is

1 Luve ze 2; uw>0andv >0

foy(u,v) = — fa,p(a,b) = (A.26)

|| a= 4y p=rge
0; otherwise.

A.6 Probability Distribution Function of W

From [36] (pp.195), we have that the probability distribution function of W = min(U, V) is

given by

fw(w) = fu(w) + fv(w) — fu(w)Fv(w) — Fy(w) fv(w) (A.27)

From (3.126) and (3.127), we have that the cumulative probability distribution functions of U

and V are given by

u 4—4e% —ue”z; u>0,
Fu(w = [ fuludu = (A.28)
0

0; otherwise
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and

v 4 —4e3 —2’06_%; v >0,
Fy(v) = / fr(v)dv
0

0; otherwise

(A.29)

respectively. By substituting (3.126), (3.127), (A.28) and (A.29) into (A.27), we have the the

probability distribution function of W as

fw(w) = zwe™ + —w?e™™; w>0

A.7 Moment Generating Function of W

We take the Fourier transform of (3.131)

1 1 .
—we™™ + ~wie™)e! ! dw

Vo) = Flwl) = [ Guer+]

+o0 1 ) 1 ) )
= / (§we"“’+]“"*’1 + ¥ g~ WHIwW) dy
0

From equations (3.351-3) listed in [39], we have the characteristic function of W as

2

1 o 1 Lo
= 5(1—3001) 2"“2‘(1—]%) 3

Bl | ) 1 .
Oy (wq) = / (—we‘w(l“”’l) + sze_w(l_”’l)) dw
0

and the moment generating function of W is

Dy (s) = Py (w1)] = 1(1—5)_2—%—%(1—3)"3

jwi=s 2

(A.30)

(A31)
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A.8 Calculations Associated with Bounds of Decoding s; When s, is From

Decision Feedback

A.8.1 Evaluation of P(s; = 2, | s, = z;) When o Approaches 0

As evaluated in (3.145) and (3.146), when o2 approaches 0, P($; = z | 84 = z,) is upper
bounded by

lgmo Py(sy = 7 | 4= z) = lzimo[l —Pr($a#s4)]=1- lz'un0 Pr($4 # s4)
3r 3r

o Loa o [F o 1 ZS/T-S
=1 27r(80 ) /0 sin® 6 df 27r(80) i sin” 6 df (A32)
and lower bounded by

12im0 PL(§4 = le ‘ 84 = le) = 121m0[1 - PU(§4 7é 84)] =1- 12111’10 PU(§4 7é 84)
3r 3r

_ .1 aye [ 54 1 ZB/T-G
=1 27r(160)/0 sin® 6 df 27T(160) i sin® 0 d@ (A.33)

By combining (A.32) and (A.33), we conclude that when o2 approaches 0, P(s, = z, | 54=2,)

approaches 1.

A.8.2 Evaluation of P($) # s | §; = Zp;84 = 2z;) and P(§1 # s, | §; = Z4; 84 = 2,) When o2

Approaches 0

From (3.56), we have

il = dSl + 2984 “+ ny 1,1 (A34)
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When s, has been decoded as sy, then

1

’T’U 1,1 = Ty 1,1 — 2)54 = ELSl + 27(84 - §4) + Ny 1,1 (A35)

where ng 1 is circularly symmetric complex Gaussian with zero mean and unit variance as

mentioned in section 3.2.2. So

P(s 7451|s4—z2,s4—z1,oz“; i—1,2,3 4)

= 1- (\/_ \/\/__+Re(nU11) 0)P (\f \/_+Im(nUl1)>0)
= 1—{P(\/_+§+Re(nun > 0a + v/3b > 0) P(a + v/3b > 0)
+P(% %jLRe(nU11 > 0|a+ v/3b < 0) P (a+fb<0)}
x{P(% % m(ng 1) > 0l +b > 0)P(a+b > 0)
(%+%+Im(nm,l)>0|d+B<O)P(d+?)<O)}
~ {[1 Q(( +2*/§B))]P(a+\/§2>>o)+@(iwz—f?@)P(a+¢§b<0)}><
x{[l-Q((d;i)))]P(d+?)>O)+Q(:@§+—E))P(d+?)<O)} (A.36)

and similarly,

(sl7ésl|s4_z2,s4_z1,a“,z'_1234)
_ v3b
= 1—P(\/§+%+Im(mj11)>0) (\/_ \/_

+Re(nU1 1) > 0)

= ]_—{ (\/_+\/\;_Z)+Im(nU11 >O|a+\/_b>0) (EL+\/§2)>O)
+P(%+\/j—;+lm(n(]11 > 0la+v3b < 0)P (d+\/§i)<0)}x

X{P(——+—+Re(nU1,1) > 0|(\1+B> O)P(d+b> 0)
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(\/_ \/_+Re(nU11 >O|a+b<0) (d+b<0)}
- 1_{[1_Q(————(a+2\/§b))] P(a+V3b > 0) + Q(— (a+\/_b)) (d+\/§b<0)}x
x{[1—Q(@)]P(aﬁw0)+Q(@)P(a+b<0)} (A.37)

From (3.46), (3.50) and (3.51), we have

A+B
VA

Pa+b>0)=P| 12(\/Z+£)>0]:P( > 0) (A38)

VA

According to (3.126), we get U = A + B is non-negative with probability 1. And from the
definition of A in (3.10), A > 0. Also A = 0 iff all the channel coefficients o ;’s (i = 1,2, 3, 4)
are equal to zero. From channel model given in section 2.1.1, the real and complex parts of iy ;’s,
(1=1,2,3,4) are continuous Gaussian random variables. The probability that at least one of these

values is not equal to zero is one. Accordingly, A is positive with probability one. Then from

(A.38)
Pa+b>0)=1 (A.39)
According to (A.36), (A.37) and (A.39), by using Craig’s formula, we have

P($1 # 51 | $4= 2y 84 = 2500 1 =1,2,3,4)
= P(§17481|§4=z;;54=z’1;a1i;1l=1234)
ks
3

= 1- (a+\/_b>0)+2P(a+\/_b>O)1/ exp(—w) df

0 8 Sin2 9

S S 3 (a + b)?
P 3b — -~ dd
(& + /3 >O)7r/0 exp ( Py 79)

+[1—2P(€L+\/§Z)>O)]%/%exp(— (a+ v3b)” ) dGW/%exp(— ((‘z+i))2) dv

8sin’ @ 8 sin? ¥
1 [3 (&4 v/3b)?
- - df
7r/0 exp ( 8sin? @ )
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- 1- (a+\/—b>0)+2P(a+\/_b>O)1/%exp[—16102(\/28;2%)2} do
\ b VA+Z
P(d+\/§b>0);1r—/OQeXp[—16102( — )]dﬂ . B
- 2P@+ V3> 0)]%//0% eXp{— 16102 ((\/Zsi;e%)2 * (\/::—i;?)z)] do di
T V3

where A and B are defined by (3.10) and (3.11), respectively. We know that

P(s1 # 51 | Sy = z;;54 = zi) = E{P(sfl # 8 | Sy = z;; 54 = zll;alyi; 1= 1,2,3,4)}

(A.41)

and

P($1 # s1 | Sy = z;;s4 = zi) = E{P(§1 # 51 | Sy = zzl;s4 = z;;alyi; 1= 1,2,3,4)}

(A.42)
where E denotes the expectation with respect to oy ;; ¢ = 1, 2, 3, 4. From (A.40)-(A.42), we have

P($A17é31|5'A4=Z/2;S4:Z;):P(SA17£SIISA4=2:;;54:Z;)
= 1—P(a+v3b>0)
Fid V3b\2
N 1 +oo 2 1 a+—a
+2P(a+x/§b>0)—// / exp _1 (Va+7) ]fA,B(a,b) dOdadb

602  sin?6
i | (it %)
+P(3 4+ /3> 0)= / / / eXp — e ] Fap(a,b) dddadb
+[1 — 2P(a + V3b > 0)]x
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x%//—:o//fexp[——ll ((\/a+—%)2—|—(\/a+%)2)]fA,B(a,b)d0d19dadb

602 sin? @ sin? 9

_% / /_ :X’ /0 : exp[_ 11 (\/EJF%V] Fas(a,b) dddadb (A43)

602 sin @

In (A.43), fa s(a,b) denotes the joint pdf of A and B. Because

1 (Va+ ¥y

Hm, {exe | - 1602 sin’ 6 ]f 45(0,0)} =0 (A4D
Ao, { P [ - 16102 (\/in; ?2] fan(a, b)} =0 (A45)

and
V/3b\2 b \2
. 1 (\/a + 'ﬁ) (\/a + %)
¢712H—I+10 { P [ B 1602 ( sjn2 0 Sil’l2 9 )] fA,B(a’ b)} =0 (A46)
Also,
V3b\2
1 (Ve+¥2)
’ exp | T [fasta. b)‘ < fap(a;b) (A.47)
1 (Va+
‘ P [ T 1602 sin? ﬁf ]f 48(a b)‘ < fap(a,b) (A.48)
and

L (AR Wit g
1602 sin? 6 sin? ¢

‘eXp [_ )] fapla, b)] | < fa,B(a,b) (A.49)
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where f4 p(a,b) is integrable. According to Lebesgue’s Dominated Convergence Theorem, as

o approaches zero, we switch the sequence of integration and limitation and have

lzimOP(s} # 8y | §4 = z;;s4 = zi) = 12im0 P(s$1 # s | Sy = z;;s4 = zll)
= 1—P(a+\/§b>o)
too 3 1 (Va+ L)y
+2P(a+v/3b > 0)= hm // /2 exp ] Vo ]fAB(a,b) dfdadb

7T 0250 602 sin® 6

too % a+ 2)?
+ (a—l—\/_b>0—hm// / exp 11 a v2) ]fAB(a,b) dddadb

T 020 602  sin?d

+[1 = 2P(a+ v/3b > 0)]—><
e [ [ [F o[- i (VB VBB ot

020 602 sin? 6 sin®

V/3b\2
- hm// / eXp 11 (f, /) ]fA,B(a,b) dfdadb

T 6250 602  sin’6
= 1—P(a++3b>0)

v3b\2
+00 a+ pArY
+2P(& 4 V3b > 0)= // / lim exp 1 (Ve ‘/E) ]fA,B(a,b) dfdadb

020 "~ 1602 sin?6
oo 1 (Va+ %)
+P(a 4 v/3b > 0)= // / ahr—{lo exp EETT IR ]fA,B(a, b) dddadb

+1—2P(a+\/_b>0
/ / N / / lm exp [ - oo ((\/a'+ e %)2)]&,3(@ b)dfdddadb

720 " 1602 sin” 6 sin® ¥
40 1 (\/a 4 %)2
T // / 0-1211_1}0 eXp 160-2 Sin2 0 ]fA,B (CL, b) deCLdb
= 1—P(a++/3b>0) = P(a+/3b < 0) (A.50)

A.8.3 Evaluation of P($; # s1 | Sy = z3; 54 = z;) When o2 Approaches 0

According to (A.35)

~ “ ’ ’ .
P($1# 81| $4= 25580 = 215011 =1,2,3,4)
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—+

a  (14+3)b a  (1++/3)b
7 \/_\/_+RC(HU11)>O)P(%+ \/—8—
B a (1++v3)b ol 3 . 5 N

1 {\(f % +Re(ny11) > 0a+ (1+v3)b > 0)P(a + (1 +v3)b > 0)
\/§+( \/\gﬂ +Re(ny1y) > 0a+ 1+\/—)b<0)P(d+(1+\/§)?3\<0)}2
1= {[1- (YOI po 14 VB> ) 4 o~ LEVIR),
xP(a+(1+x/§)i)<0)}2

1— P2(a+ (1+v3)b>0) — 2P+ (1 +V3)b > 0) — 4P2(a + (1 4+ V3)b > 0)] x

XQ((a+(12+\/§)b)) a+(1;\/§)b))

1— .P( + Im(nU 1,1) > 0)

+P(

—[1=2P@+ (1+vV3)b> 0)]2Q2((

(A.51)

From (A.51), by using Craig’s formula, we have

then

P($1 # 81 | $1 = 23581 = 2,)

1—p2ﬂ(a+(1+\/§)b> 0) — [2P(a + (14 v3)b > 0) — 4P*(a + (1 + V/3)b > 0)] x

1 (@ + (1+ v/3)b)>
— — db
X T /0 P ( 8sin? )

ris

- 2P+ 1+ V3> 0)]2% /Z oxp (— B VBDY

8sin% 4
1— P22+ (1+V3)b> 0)—

™ V3)B\2
\ R 1 (VA+ &8
2P (& + (1 — 4P2(; = - L
2P(a+ (1 +V3)h > 0) (a+(1+\/§)b>0)]ﬂ/0 exp [~ oy A ] g
s V3)B\2
\ 1 (1 1 (VA+ U128
_ 5 2 o VA
[1-2P@+(1+V3)b > 0)— /0 exp[ TR ] do (A.52)

P(s1 # 5 | Si=2z3;84=2) = E{P(§1 # 81 | Sy = 23,84 = 21501, 1 = 1,2,3,4)}
1— P*(a+ (14 v3)b>0)
2P (a4 (1+v/3)b > 0) — 4P (2 + (1 + v/3)b > 0)]
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X%E{ /5 P [_ 16102 S %)Q] dg}
0

sin® 4
x Iy V3)B\2
. 1 73 1 (VA+ Gt )
— — 0 2_ - \/—_A'
[1—2P(a+ (1+ v3)b> 0)] WE{ /0 exp[ 160>  sin’ ] de}

- 1—P2(d+(1+\/§)5>0)—[2P(d+(1+\/§)5>0)—4P2(a+(1+\/§);)>0)]%x
+oo 7 1+ (1+V3)by2
// / exp 11 (f+ 2ﬁ ) ]fA,B(Cl,b) dfdadb

602 sin” 6
— [1—2P(@+ (1+v3)b>0)?x
+v3)b

]. ] (1 2
4 a+—
X—// 0o / l: (\/— . 2\/— ) ]fA,B( ,E) d?dadb
— 00 0 ]_ a

602 sin” @

(A.53)

From (A.53), by using similar analysis in Appendix A.8.2, according to Lebesgue’s Dominated

Convergence Theorem, we switch the sequence of integration and limitation and have

I%mOP(§1 7é S1 | §4 = 23;84 = Zl)
X . . 1
= 1-PHa+ 1 +V3)b>0) - [2P(d+(1+\/§)b>0)—P2(d+(1+\/§)b>0)];><

(1+v3)by2
+o0 1 a+_a
x lim// / exp (va __Va )]fAB(a,b)deadb
1602 ’

0250 sin® #

— [1—2P(a+ (1+V3)b )]2><
x (1+v3)by2
oo 0% a+ Gk
x lim = // / exp (va __Va )]fAB(a,b) dfdadb
16(72 ’

o250 T sin® 4

= 1—P2(a+(1+\/—b>0) [2P(a+(1+\/—)b>0) PQ(d+(1+\/§)b>0)];1r-x
oo g 4 (+V3)by2
//+ / G eXp 1 (\/_+~ /e )]fA,B(a,b) dfdadb

620 1602 sin? 6

- [-2P@+(1+v3)> >] -
/ / N / L, exp | I Lt )Z]fA,B(a,b) dfdadb

0250 1602 sin® @
= 1—Pa+ (1+3)b> 0] (A.54)
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A.9 Evaluation of min{1 — P?[a 4 (1 +v/3)b > 0]; P(& +/3b < 0)}
A.9.1 Mathematical Preliminaries
Consider a random variable G expressed in quadratic form as

G =a"’Qga (A.55)

where « is defined by (3.98) and Q¢ is Hermitian. From (3.79), (3.99) and (3.100), we have the

characteristic function of GG as

1 1

Po(w) = Pga(s o= : = - A.56
o) =20l = T70Qa] ~ W@ —7h) 0
where A\;’s (1 = 1,2, ..., I) are eigenvalues of Qg. We know that
0
PG<0)= [ falo)dg (AST)

where fz(g) denotes the pdf of G. Since fz(g) is the inverse Fourier transform of @ (w), (A.57)

changes to

1 +ootje Q)G(W) o — 1 +oo0+je 1

P(G<0)=-— - .
( ) —oo+je w I2T J —cortje Hf:l(l — JwAi)w

— dv  (A.58)
j2m
In (A.58), a small positive number ¢ is inserted to avoid the evaluation of integration at the

singularity point w = 0. With the substitution x = jw, (A.58) changes to

—e+joo 1 1 —€+jo0

dx = ~Tom e g(z)dx (A.59)

1
P(G<0)=——
( ) 727 J_ oo H{Zl(l —z\)z
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where

1
CNL (1 —zh)z

g9(z) (A.60)

We calculate (A.59) with the aid of the residue theorem [43]. By choosing a counter-clockwise

contour C' as shown in Fig.A.1, (A.59) changes to

$ 1

\ ]

Re

Fig. A.1 Contour of Integration

P(G < 0) = —j% g(x)dz = — 3 Reslg(x) (A61)
c c

where Z means that only the residues at the poles lying inside the contour C' are taken into
c
account. According to [43], for the Laurels series of a function f(z)

by by
zZ =2z + (2 — 29)?

f(z) = Zan(z —2)" + + ... (A.62)
n=0
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the coefficient b; of the term ;_—1;5 is called the residue at z = z,. For a pole of order M, the

residue at z = z; is given by

Resz:zo [f(Z)] = (_]-w——l:i—)"[ }anlo {-(sz—_—l[(z - ZO)Mf(Z)]} (A.63)

Here we only consider the special case we encountered in this thesis. For this case, g(x) has two

distinct double poles. We re-write g(z) defined in (A.60) in the form

@ - 1 e
K= A=)l —zh)2z (@ (T = 5)e
Ry Ry g Ry Bs
- x—i+(x—L)2+x—i+(z—‘L)2+? e
A1 A1 A3 A3

mo= m oo -1} - —?af_% Af (A.65)
and
By = Jim e e s e (A66)
A.9.2 Calculation of P[& + (1 +v/3)b < 0] and P(a + /3b < 0)
From (3.46), (3.50) and (3.51), we know that
(1++/3)B

Pla+(1+v3)b<0] = [ (x/“+(1+f)\/_) o] = P( = <0)

1+V3)B < 0] (A.67)
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and

Pla++v3b<0] = P[\/Q%?(VZJF%) <0 :P(A—J“@ <0)

= P[A+V3B <0 (A.68)

According to (3.10) and (3.11), we write A 4 (1 + +/3)B and A + /3B in quadratic forms

A+ (1+v3)B=a'Qai (A.69)
and
A+V3B = a’Qgsax (A.70)
where
[ 1 0 0 1++3
Qa1 = 0 1 —(1+v3) 0 (A1)
0 —(1++3) 1 0
\1+3 0 0 1
and

Qg2 = (A.72)

Vel
S oo e
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The eigenvalues of Qg and Qgo are
M=X=v3 M=\=2+V3 (A.73)

and

M =XA=1-v3 X=X=1+V3 (A.74)

respectively. In the calculation of P[A + (1 4+ v/3)B < 0] and P[A + /3B < 0], we only

consider the residues at the poles lying inside the contour indicated in Fig.A.1, which are

3AsAZ — A2
R =——————— = -0.2377 A.75
1 ()\3 _ Al)?’ ( )
and
/ 32— N3
R =-2%21 1 — 01151 A.76
N PP (A70)
respectively. According to (A.61),
P[A+ (1++3)B < 0] =0.2377 (A.77)
and
P[A+ 3B < 0] =0.1151 (A.78)
So

min{1 — P*[a + (1 +v3)b > 0] ; P(a+V3b < 0)}

= min{l — (1 —0.2377); 0.1151} = 0.1151 (A.79)
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Appendix B

Computer Simulations Software

In this chapter, we present the software used for computer simulations associated with this thesis.

The parameters required for simulations are:
o the length of information bit sequence;
e the frame length;
o the SNR range for simulation;
For the spatially correlated channels, further parameters need be specified.
e the wavelength of carrier A;
o the distance between base station and mobile R;
e the radius of scatters around mobile D;

e the distance between adjacent transmit antennas d .
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B.1 Simulation Steps

B.1.1 Information Source and Encoder

The input of the simulation is a sequence of information bits generated by Matlab function
randint(). By using Gray mapping illustrated in Fig.3.2, every two bits are mapped to an
information-bearing symbol. With the employment of Quasi-Orthogonal [28] or Improved Quasi-
Orthogonal coding scheme [29], we get the a sequence of codewords with the code matrix (3.2),

which is denoted as mat_InputQuOr in the routine.

program B.1.1 Information Source, Gray Mapping and Encoder
Constellations for Improved Quasi-Orthogonal code

Symbol Energy is 1/4 ; Gray Mapping

vec Costl=[1+3,-1+3,1-j,-1-31./(2%sqrt(2));
vec_CostlRot=[1+3,-1+j,1-3,-1-j].*exp(j*pi/6) ./ (2+sqrt(2));
For Quasi-Orthogonal code
vec_CostlRot=[1+],-1+j,1-3,-1-7]./(2+xsqrt(2));

[}
)
[}
&

o° o°

oL

Information Bits Sequence
num_real=2+randint (1,num length,2)-1;
num_Imag=2+«randint (1,num_length,2)-1;
num_Sent (1:2:2xnum_length-1)=num real;
num_Sent (2:2:2+num_length) =num_Imag;

% Index of Symbols in Gray Mapping
num_SentDec=num_real+num_Imag./2+2.5;
% Sequence of Information Bearing Symbols

num_Input (1:4:num length-3)=vec_ Costl (num SentDec(l:4:num_length-3)};
num_Input (2:4:num_length-2)=vec_ Costl (num_SentDec (2:4:num_length-2));
num_Input(3:4:num_length-1)=vec_CostlRot (num_SentDec(3:4:num_length-1));
num_Input(4:4:num_length-0)=vec_CostlRot (num_SentDec(4:4:num_length-0));

% Improved Quasi-Orthogonal Encoder
% Row 1

mat InputQuOr(l,l:4:num_length-3)=num_Input (1:4:num_length-3);

mat InputQuOr(1l,2:4:num_length-2)=-conj (num_Input (2:4:num length-2));
mat InputQuOr(l,3:4:num length-1)=-conj (num_ Input (3:4:num_length-1));
mat InputQuOr(l,4:4:num_ length-0)=num Input(4:4:num_length-0) ;

% Row 2 ... Row 3 Row 4 ... (Omitted)
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B.1.2 Independent and Spatially Correlated Rayleigh Fading Channels

In this work we consider two types of fading channels: independent and spatially correlated
Rayleigh fading channels.

For independent Rayleigh fading channels described in section 2.1.1, the real parts and the
imaginary parts of the elements in channel coefficient matrix, which is denoted as mat_FadingG
in the routine, are simulated by Matlab function randn() with zero mean and variance 0.5.

In the realization of spatially correlated channels discussed in the chapter 4, we need more
steps. By using (4.2), we get the correlation matrix among four channels, which is denoted
as mat_Correlation in the routine. By calling Matlab function sqrtm(), we get the root of
mat_Correlation, which is denoted as mat_RootCorrl in the routine. The product of mat_RootCorrl
and mat_FadingG, denoted as mat_CorFading, represents the spatially correlated channels we

simulate.

B.1.3 Additive Complex Gaussian Noise

The real part and imaginary part of additive complex Gaussian noise at the receiver are simulated
by Matlab function randn() with zero mean and variance o2. The relationship between o2 and

SNR/bit (in dB) is expressed by (3.73).

B.1.4 Independence Among the Random Generators

We know that the Matlab random generators produce pseudo-random numbers, where the se-
quence of numbers generated is determined by the state of the generator. Since Matlab resets the
state at start-up, the sequence of numbers generated will be the same unless the state is changed.
We also notice that in the implementation of computer simulations, all the random generators
are independent. In order to realize the independence among the random generators, a command

rand( ’state’ , sum (100 * clock)) is employed to reset the state each time.
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program B.1.2 Independent and Correlated Fading Channels

% 4 Tx antennas

int NumberOfTx=4;

% Distance Between Adjacent Antennas is 5 Lambda
int DistanceBetTx=5;

% asin(R/D)

int Delta=asin(100+3/18/500) ;

Q

% Matrix Cs
mat Correlation=zeros(4,4);
for iRow=1l:int_ NumberOfTx
for iCol=1:int NumberOfTx
mat Correlation(iRow,iCol)=bessel] (0,int_Delta*2xpix
abs (iRow-iCol) *xint DistanceBetTx) ;
end
end

% Root of Cs

mat RootCorrl=sgrtm(mat Correlation) ;

For Independent Channels CR is Identical Matrix as
mat_RootCorrl=eye (4) ;

o° o

o\

Fading Channel
mat FadingG=randn (4,num length/4)/sqrt(2)
+(randn(4,num_length/4) /sqrt (2)) .xj;

mat_ CorFading(l,1l:num length/4)=mat RootCorrl(l,1)=x
mat FadingG(1l,l:num length/4)+mat_RootCorrl(l,2)=x
mat FadingG(2,1l:num length/4)+mat RootCorrl(l,3)=*
mat_FadingG(3,1l:num length/4)+mat_RootCorrl(l,4)=x
mat_FadingG (4, 1:num_length/4);

(Omitted)

% quasi-static
mat_Fading=reshape (repmat (mat_CorFading, 4,1),4,num_length);

program B.1.3 Additive Complex Gaussian Noise

% Additive Complex Gaussian Noise

% Relation Between Variance and SNR

num_Var= (10" (-GAMAbforAll (iSNR) /20))/2;

mat_Received=mat_SumAfterFading+num Varxrandn{(l,num_length)
+num_Varsrandn (1,num_ length) .xj;
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B.1.5 Optimal Decoding

From section 3.2.1, optimal decoding can be decoupled into symbol pair joint decoding. In
decoding symbol pair s; and s4, the decoder chooses the values for s; and s, that minimize
the metric mat_Dis14 in the implementation. In decoding symbol pair s, and s3, the decoder
chooses the values for s, and $3 that minimize the metric mat_Dis23 in the implementation. The
associated routine is included in the program B.1.4. In the program, the Matlab function min() is

employed to return the index of the pair of symbols that minimize metrics (3.30) and (3.31).

B.1.6 Simplified Decoding

Simplified decoding consists of the following steps:

Noise Decorrelation: The associated operations have be presented in (3.28) and (3.29). The
implementation is included in program B.1.5.

QR Decomposition: The associated operations have be presented in (3.48) — (3.55). The
implementation is included in program B.1.6.

Symbol-by-Symbel with Decision Feedback Decoding: The implementation is included in
program B.1.7. The Matlab function min() is employed to return the indexes of the symbols that

minimize metrics (3.67)-(3.70).

B.2 Complete Computer Simulation Program

The complete computer simulation program associated with this thesis is included in the program

B.2.1.
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program B.1.4 Optimal Decoder
% mat Di Corresponds to rH_i,1 in the Thesis
mat Dl=mat Received(l:4:num_length-3)
.+ (conj (mat_Fading(1l,1:4:num_length-3))})
+(conj (mat_Received(2:4:num length-2)))
.+mat_ Fading(2,1:4:num length-3)
+(conj (mat_Received(3:4:num length-1)))
.+mat_Fading(3,1:4:num_length-3)
+mat_Received(4:4:num length-0)
.+ (conj (mat_Fading(4,1l:4:num_length-3)));
mat D2=...
mat D3=...
mat D4=... (Omitted)

for iHex=1:16
%D1-AS1-BS4
mat Ml4= mat Dl-mat A.smat Symbollé6 (1,iHex)-mat_B.smat_Symbollé6 (2,iHex) ;
$D4-BS1-AS4
mat N14= mat D4-mat_B.smat_Symbollé (1,iHex)-mat_A.sxmat_Symbollé (2, iHex) ;
mat Disl4 (iHex, :)=(1/2/(num_Var) "2)+(mat_C14N_11.* (abs(mat_M14)."2
+abs (mat _N14).72)+2+mat_C14N _12.=*real (conj (mat_M14) .* (mat_N14)));
% D1-AS2+BS3
mat M23= mat D2-mat A.smat_ Symbollé (1,iHex)+mat_B.xmat_Symbollé (2, iHex) ;
% D4+BS2-AS3
mat N23= mat D3+mat B.smat Symbollé6 (1l,iHex)-mat_A.smat_Symbollé (2,iHex) ;
mat Dis23 (iHex, :)=(1/2/(num Var) "2) » (mat_C1l4N_11.x (abs(mat_M23) .72
+abs (mat_N23).72) -2+mat_C14N_12.xreal(conj (mat_M23) .+ (mat_N23)));
end

% Index of the Symbol Pair that Minimizes the Metric
[K,mat Minl4]l=min(mat Disl4, [],1);
[K,mat_Min23]=min(mat_Dis23, [],1);

% Convert Index to Information Bit
mat_Resultl4=(2x(fliplr(de2bi(mat_Minli4-1)))-1).";
mat Result23=(2 (fliplr (de2bi (mat_Min23-1)))~1).’;




B Computer Simulations Software 118

program B.1.5 Noise Decorrelation
% Calculation of C17{-1/2} and C2~{-1/2}
%$ A and B
mat A=(abs(mat_Fading(l,1:4:num length-3)))."2
+ (abs (mat_Fading(2,1:4:num_length-3)))."2
+(abs (mat_Fading(3,1:4:num_length-3)})."2
+ (abs (mat_Fading(4,1:4:num_length-3)))."2;
mat_B=2+real (mat_Fading(1l,1:4:num_length-3)
.xconj (mat_Fading(4,1:4:num_length-3))
-mat_Fading(2,1:4:num_length-3)
.+xconj (mat_Fading(3,1:4:num_length-3)});

$A"2-B"2
mat_Mo=mat A."2-mat_B."2;

%Before Considering Variance
mat C14N ll=mat A./mat Mo;
mat_ Cl4N_12=-mat_B./mat_Mo;

% lambdal” (-1/2)
mat Lambdal=((mat_A-mat_ B).* (2xnum Var~2))."  (-1/2);
% lambda2” (-1/2)
mat_Lambda2=((mat_A+mat B) . (2+num Var~2))." (-1/2);

% Elements of C17(-1/2) <C11, C22
mat Cll=(mat_ Lambdal+mat_ Lambdaz2) .=*(1/2);
% Elements of C17(-1/2) <C12, C21
mat_Cl2=(mat_Lambda2-mat_Lambdal) .*(1/2);

% Elements of C27(-1/2) (€211, C222
mat C2ll=mat Cl1;
% Elements of C27°(-1/2) (€212, C221
mat_ C212=-mat_ Cl1l2;

% Elements of HI1
mat_hl=mat_ Cl1l.smat_A+mat_Cl2.s+mat_B;
mat_h2=mat_Cl2.smat_A+mat_ Cll.xmat_B; %% h2

% Elements of H2
mat h3=mat C211l.smat A-mat_ C212.xmat_B;
mat h4=mat C212.smat A-mat C211.smat_B;

nz
w

o o
o o

jng
'S

[

% Decorrelation

mat Dlp=mat Cll.xmat Dl+mat Cl2.xmat_ D4;
mat D4p=mat Cl2.xmat Dl+mat_ Cll.xmat D4;
mat D2p=mat C211.xmat D2+mat_C212.xmat_D3;
mat D3p=mat C212.xmat_ D2+mat_C211.xmat_D3;
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program B.1.6 QR Decomposition

% QR Decomposition

mat_a=sqgrt ((mat_hl."2+mat_h2.72));

mat_b=(mat_hl.smat_h2) .x2./mat_a;

mat_c=sqgrt((mat_h2- (mat _b./(mat_a)).+mat_hl)."2
+{(mat_hl-(mat_b./(mat_a)).+mat_h2).72);

mat W1(l,1:2:num length/2-1)=mat_hl./mat_a;
mat W1(2,1:2:num_length/2-1)=mat_h2./mat_a;
mat W1l(1,2:2:num_length/2-0)=(mat_h2-(mat_b./(mat_a)).*mat_hl)./mat_c;
mat W1(2,2:2:num_length/2-0)=(mat_hl- (mat_b./(mat_a)) .+mat_h2)./mat_c;

o,

% QR Decomposition

mat_ d=sqgrt ((mat_h3."2+mat _h4.72));
mat_e=(mat_h3.smat_h4) .+2./mat d;

mat f=sqrt ((mat h4- (mat_e./(mat_d)).+mat_h3)."2
+(mat_h3-(mat_e./(mat_d)) .+mat_h4) ."2);

mat W2(1l,1:2:num_length/2-1)=mat_h3./mat_d;
mat W2(2,1:2:num_length/2-1)=mat_h4./mat_d;
mat W2 (1,2:2:num_length/2-0)=(mat_h4- (mat_e./(mat_d)).*mat_h3)./mat_£;
mat W2(2,2:2:num_length/2-0)=(mat_h3- (mat_e./(mat_d)).+mat_h4) ./mat_f;

program B.1.7 Symbol-by-Symbol with Decision Feedback Decoding

for iQ34=1:4

mat Distance4 (iQ34, :)=abs(mat_D4ppp-mat_Symbol4 34 (1,iQ34)*mat_c)."2;
mat Distance3 (iQ34, :)=abs(mat_D3ppp-mat_Symbol4_34(1,iQ34)*mat_f)." 2;
end

[K,mat_Min4] =min (mat_Distance4, [],1);
[K,mat Min3]=min(mat_Distance3, [],1);

for iQl2=1:4

mat Distancel(iQl2, :)=abs (mat_Dlppp-mat_b.smat_Symbol4 34 (1,mat_Min4)
-mat_Symbol4_12(1,iQl2)s*mat_a)."2;

mat Distance2 (iQl2,:)=abs(mat_D2ppp-mat_e.+mat_ Symbol4_ 34 (1,mat_Min3)
-mat_Symbol4 12(1,iQ12)s*mat_d)."2;

end

[K,mat_Minl]=min{mat Distancel, [],1);
[K,mat_Min2]=min (mat_Distance2, [],1);
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program B.2.1 Complete Computer Simulation Program
clear all;

% 128 Symbols/Frame

framelength=128;

% Number of Symbols for Inner-most Iteration
num_length=framelength+1000;
GAMAbforAll={0:2:301;

num_ Tx=4;

num Rx=1;

Constellations for Improved Quasi-Orthogonal code

Symbol Energy is 1/4

Gray Mapping

vec Costl=[1+3,-1+j,1-3,-1-J]1./(2+sqrt(2));

vec CostlRot=[1+7,-1+3,1-F,-1-J].+«exp(j*pi/6) ./ (2+sqgrt(2));

o o° o

mat Symbol4 12=[1+j,-1+j,1-3,-1-j]./(2xsqrt(2));
mat Symbol4 34=[1+j,-1+7j,1-J,-1-j].xexp(j*pi/6)./(2+xsqrt(2));

%% All Pogsible combination for two symbols
mat Bin(l:16,1:4)=fliplr((de2bi(0:15)));
mat_Symbollé (1, :)=vec_Costl(mat_Bin(l:16,1)*2+mat_Bin(1l:16,2)+1);
mat_Symbollé (2, :)=vec_CostlRot (mat_Bin(1:16,3)*2+mat_Bin(1l:16,4)+1);
clear mat_Bin;
% 4 Tx Antennas
int NumberOfTx=4;
% Distance Between Adjacent Antennas is 5 Lambda
int_DistanceBetTx=5;
% asin(R/D)
int Delta=asin(100+3/18/500) ;
% Matrix Cg
mat Correlation=zeros(4,4); for iRow=1l:int NumberOfTx
for iCol=1:int NumberOfTx
mat Correlation(iRow,iCol)=besselj (0, int_Delta*2+pixabs (iRow-1iCol)
*int DistanceBetTx) ;
end
end
% Root of Cs

mat RootCorrl=sqgrtm(mat Correlation); mat RootCorrl=eye (4);

for m=1:1le6
for n=1:50
rand(’state’,sum{(100*xclock)) ;

)

% Information Bits Sequence
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num_real=2+randint (1,num length,2)-1;
num_Imag=2+randint (1,num length,2)-1;
num_ Sent (1:2:2+num_length-1)=num_real;
num_Sent (2:2:2+num_length)=num_Imag;
% Index of Symbols in Gray Mapping
num_SentDec=num _real+num_Imag./2+2.5;

% Sequence of Information Bearing Symbols
num_Input(l:4:num_length-3)=vec_Costl (num_SentDec (1:4:num length-3));

num_Input (2:4:num_length-2)=vec Costl (num_SentDec(2:4:num_length-2));
num_Input(3:4:num_length-1)=vec_CostlRot (num_SentDec(3:4:num_length-1));
num_Input (4:4:num_length-0)=vec_CostlRot (num SentDec (4:4:num_length-0))

’

% Improved Quasi-Orthogonal Encoder
% Row 1

mat_ InputQuOr (1,1:4:num_length-3)=num Input(l:4:num_length-3);

mat_ InputQuOr(l,2:4:num_ length-2)=-conj (num_ Input(2:4:num_length-2));
mat InputQuOr(l,3:4:num length-1)=-conj (num Input(3:4:num length-1));
mat_InputQuOr(l,4:4:num_ length-0)=num Input(4:4:num_length-0);

% Row 2

mat InputQuOr (2,1:4:num length-3)=num Input(2:4:num_ length-2);

mat InputQuOr(2,2:4:num length-2)=conj (num Input(l:4:num length-3))};
mat_ InputQuOr(2,3:4:num_ length-1)=-conj (num Input(4:4:num length-0));
mat_InputQulOr(2,4:4:num_length-0)=-num Input (3:4:num_length-1);

% Row 3

mat_InputQulOr (3,1:4:num_length-3)=num Input(3:4:num_length-1);
mat_InputQuOr (3,2:4:num_length-2)=-conj (num_Input (4:4:num_length-0));
mat InputQulr(3,3:4:num_length-1)=conj (num_ Input (l:4:num length-3));
mat InputQulOr(3,4:4:num length-0)=-num Input(2:4:num length-2);

% Row 4

mat_ InputQuOr (4,1:4:num length-3)=num Input(4:4:num length-0);
mat_InputQuOr(4,2:4:num_length-2)=conj (num_Input (3:4:num_length-1));
mat_InputQuOr (4,3:4:num_length-1)=conj (num_Input (2:4:num_length-2));
mat_InputQulOr(4,4:4:num_length-0)=num Input(l:4:num length-3);

o

% Fading Channel
mat FadingG=randn(4,num length/4) /sqgrt(2)

+(randn (4,num_length/4) /sqrt(2)) .+3;
mat_CorFading (1, :)=mat_RootCorrl(l,1)+mat_ FadingG (1, :
+mat_RootCorrl (1,2)+mat_FadingG(2, :
+mat RootCorrl(1l,3)*mat FadingG(3, :
+mat RootCorrl(l,4)+mat FadingG(4, :

S .
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mat CorFading(2, :)=mat RootCorrl (2, 1)s*mat_FadingG(1, :
+mat RootCorrl (2, 2)*mat_FadingG (2, :
+mat_RootCorrl (2, 3)*mat_FadingG(3, :
+mat_RootCorrl(2,4)*mat FadingG(4, :

mat CorFading (3, :)=mat_RootCorrl (3,1)*mat_FadingG(Ll, :
+mat_ RootCorrl (3,2)+mat_FadingG (2, :
+mat RootCorrl (3,3)*mat FadingG(3, :
+mat_ RootCorrl (3,4} mat_FadingG(4, :

mat CorFading (4, :)=mat_ RootCorrl (4,1) *mat_FadingG(Ll, :
+mat RootCorrl (4,2)+mat FadingG(2, :
+mat_RootCorrl (4, 3) »mat_FadingG (3, :
+mat RootCorrl (4,4)*mat FadingG(4,:);

mat Fading=reshape (repmat (mat_CorFading, 4,1),4,num_length);

~e

~

[}

% Fading

mat_ AfterFading=mat InputQuOr.smat_ Fading;

mat SumAfterFading=mat AfterFading(1l, :)+mat AfterFading(2, :)
+mat AfterFading(3,:)+mat_AfterFading(4, :);

% Calculation of C1°{-1/2} and C2"{-1/2}
% A and B
mat_A=(abs(mat_Fading(1l,1l:4:num length-3))).
+(abs (mat_Fading(2,1:4:num length-3))).
+ (abs (mat_Fading(3,1:4:num length-3))).
+(abs (mat_Fading(4,1:4:num_length-3)}).
mat B=2sreal (mat Fading(l,1l:4:num length-3)
.+xconj (mat Fading(4,1:4:num length-3))
-mat Fading(2,1:4:num_length-3)
.xconj (mat_Fading(3,1:4:num _length-3}));
mat_Mo=mat_A."2-mat_B."2;

>

>

>

>
NN

$Before Considering Variance
mat_ C14N_1ll=mat_A./mat_Mo;
mat_C14N_12=-mat_B./mat_Mo;

for iSNR=1:length (GAMAbforAll)

% Additive Complex Gaussian Noise

% Relation Between Variance and SNR

num Var= (10" (-GAMAbforAll (iSNR) /20))/2;

mat_Received=mat_SumAfterFading+num Varxrandn (1l,num_length)
+num Varxrandn (1,num length).xj;
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% mat _Di Corresponds to rH_i,1 in the Thesis
mat Dl=mat Received(l:4:num_length-3)
.*{conj (mat Fading(1l,1:4:num_length-3)})
+(conj (mat_Received(2:4:num_length-2)))
.*+mat Fading(2,1:4:num length-3)
+ (conj (mat_Received({(3:4:num length-1)})
.+*mat_Fading(3,1:4:num_length-3)
+mat_Received(4:4:num_length-0)
.* (conj (mat_Fading(4,1:4:num length-3)));
mat_D2=mat_Received(l:4:num length-3)
.+ (conj (mat Fading(2,1:4:num_length-3)))
- {(conj (mat_Received(2:4:num_length-2)))
.*mat_Fading(1l,1:4:num_length-3)
+ (conj (mat_Received(3:4:num length-1)))
.+mat Fading(4,1:4:num_ length-3)
-mat_Received(4:4:num length-0)
.* (conj (mat_Fading(3,1:4:num length-3)));
mat D3=mat Received(l:4:num length-3)
.* (conj (mat_Fading(3,1:4:num length-3)))
+ (conj (mat_Received(2:4:num_length-2)})
.*mat Fading(4,1:4:num_length-3)
- (conj (mat_Received(3:4:num length-1))})
.+mat_ Fading(1l,1:4:num length-3)
-mat_ Received(4:4:num_length-0)
.* (conj (mat_Fading(2,1:4:num_length-3)));
mat D4=mat Received(l:4:num length-3)
.+ (conj (mat_ Fading(4,1:4:num_length-3)))
- (conj (mat_Received(2:4:num_length-2)))
.*mat Fading(3,1:4:num length-3)
- (conj (mat_Received(3:4:num_length-1)))
.*»mat_Fading(2,1:4:num_length-3)
+mat Received(4:4:num length-0)
.+ (conj (mat_Fading(1l,1:4:num_length-3)));

for iHex=1:16
%D1-AS1-BS4
mat_Ml4=mat_Dl-mat_A.smat_Symbollé (1, iHex)
-mat_B.s*mat_Symbollé6 (2, iHex) ;
%D4-BS1-AS4
mat Nl4=mat_ D4-mat_ B.s*mat_Symbollé (1, iHex)
-mat_ A.xmat_Symbollé6 (2, iHex) ;
mat Disl4 (iHex, :)=(1/2/(num_Var) "2) * (mat_C1l4N_11
.* (abs (mat_M14) . " 2+abs(mat_N14) ."2)
+2+mat C14N 12.xreal (conj(mat_MI14).x (mat_N14)));
%¥D1-AS2+BS3
mat M23=mat D2-mat_A.xmat_Symbollé (1,iHex)
+mat_B.+mat_Symbollé (2, 1Hex) ;
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$D4+BS2-AS3
mat N23=mat D3+mat_B.+mat_Symbollé (1, iHex)
-mat_ A.smat Symbollé6 (2, iHex) ;
mat Dis23 (iHex, :)=(1/2/(num _Var) "2) « (mat_C14N_11.x* (abs(mat_M23) .72
+abs (mat N23) .72)-2+mat_C14N_12.+real (conj (mat_M23) .x (mat_N23)));
end

clear mat M14 mat N14 mat M23 mat_N23 iHex

% Index of the Symbol Pair that Minimizes the Metric
[K,mat Minl4]=min(mat Disl4, [],1);

[K,mat Min23]=min(mat Dis23, [],1);

clear mat_Disl4 mat Dis23

)

% Convert Index to Information Bit
mat Resultl4=(2+(fliplr (de2bi(mat_Minl4-1)))-1).';
mat Result23=(2+(fliplr(de2bi (mat_Min23-1)))-1).’;

mat_ Lastl234=reshape([mat_Resultl4(1:2,:);mat Result23
;mat Resultl4(3:4,:)],1,2+num_length);
clear mat Resultl4 mat Result23
BERNIQOOpPtN (nn, iSNR) =sum( (num_Sent-mat Last1234)."72)/4/2/num length;
SERNIQOOptN (nn, 1SNR) =sum (sum(reshape ( ( (num_Sent-mat Last1234).72)
,2,num_length), 1) 7=0,2)/ (num_length) ;
FERNIQOOpPtN (n, iSNR) =sum (sum(reshape ( ( {(num_Sent-mat_ Last1234).72)
,2+framelength,num length/framelength),1) =0, 2)
/ (num_length/framelength) ;

% Lambdal” (-1/2)
mat Lambdal=((mat_A-mat_ B) .* (2+num Var~2))." (-1/2);
% lambda2” (-1/2)
mat Lambda2=((mat_A+mat B) .+ (2+xnum Var~2))." (-1/2);

% Elements of C1°(-1/2) C11, C22
mat Cll=(mat_Lambdal+mat_ Lambda2) .*(1/2);
% Elements of C1”°(-1/2) €12, C21
mat Cl2=(mat Lambda2-mat Lambdal) .= (1/2);

% Elements of C27(-1/2) Cc211, C222
mat_ C2ll=mat C11;
% Elements of C27(-1/2) C212, C221
mat_C212=-mat_C12;

% Elements of H1
mat hl=mat Cll.xmat A+mat Cl2.smat_B;
mat h2=mat Cl2.+mat A+mat Cll.smat_B; %% h2
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% Elements of H2
mat h3=mat C21l.xmat A-mat C212.smat B;
mat_h4=mat_ C212.smat_A-mat_C211.smat_ B;

o° o°
ey
> W

o° o°

)

% Decorrelation

mat Dlp=mat_ Cll.xmat_Dl+mat Cl2.xmat_D4;
mat D4p=mat Cl2.+mat_ Dl+mat Cll.xmat D4;
mat D2p=mat C21l.xmat_D2+mat_ C212.xmat_D3;
mat D3p=mat_ C212.smat D2+mat C211.imat_D3;

mat_a=sqgrt ((mat_hl. 2+mat_h2.72));

mat b=(mat_hl.smat h2).x2./mat_a;

mat c=sqgrt((mat _h2-(mat_b./(mat_a)).*mat_hl)."2
+(mat_hl- (mat _b./(mat_a)).*mat_h2).72);

mat W1(1l,1l:2:num length/2-1)=mat_hl./mat_a;
mat W1(2,1:2:num _length/2-1)=mat _h2./mat_a;
mat W1 (1l,2:2:num length/2-0)=(mat_h2-(mat_b./(mat_a)).+mat_hl)./mat_c;
mat W1(2,2:2:num length/2-0)=(mat_hl-(mat b./(mat_a)).xmat_h2)./mat_c;

[

% Inverse of W1
mat WlDet (l:num length/4)=mat_W1(1,1:2:num_length/2-1)
.+mat_W1(2,2:2:num_length/2-0)
-mat W1 (1l,2:2:num_length/2-0)
.+#mat W1(2,1:2:num length/2-1);
mat WlInv(l,1l:2:num length/2-1)=mat W1(2,2:2:num length/2-0)
./mat_WlDet (1:num_length/4);
mat_WlInv(2,1:2:num _length/2-1)=-mat W1 (2,1:2:num_length/2-1)
./mat_WlDet (1:num_length/4) ;
mat_W1lInv(l,2:2:num_length/2-0)=-mat_W1(1l,2:2:num_length/2-0)
./mat_WlDet (1:num_length/4) ;
mat_WlInv(2,2:2:num_length/2-0)=mat W1 (1l,1:2:num length/2-1)
./mat_WlDet (1:num length/4) ;

mat_d=sqgrt ((mat_h3."2+mat_h4."2));

mat _e=(mat_h3.smat _h4) .x2./mat_d;

mat_f=sqrt ((mat_h4- (mat e./(mat_d)).+mat_h3)." 2
+(mat_h3-(mat_e./(mat_d)).+mat_h4)."2);

mat W2 (1,1:2:num length/2-1)=mat _h3./mat d;
mat W2(2,1:2:num length/2-1)=mat _h4./mat_d;
mat_W2(1,2:2:num_length/2-0)=(mat_h4- (mat_e./(mat_d)) .+mat_h3)./mat_f;
mat_W2(2,2:2:num_length/2-0)=(mat_h3- (mat_e./(mat_d)).+mat_h4)./mat_f;

)

% Inverse of W2

mat W2Det (l:num_length/4)=mat W2 (1,1:2:num_length/2-1)
.xmat W2(2,2:2:num_length/2-0)
-mat_W2(1,2:2:num_length/2-0)
.xmat_W2(2,1:2:num_length/2-1);
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mat W2Inv(l,1:2:num _length/2-1)=mat_W2(2,2:2:num length/2-0)
./mat_W2Det (1:num_length/4);
mat W2Inv(2,1l:2:num_length/2-1)=-mat_W2(2,1:2:num length/2-1)
./mat_W2Det (1:num_ length/4) ;
mat W2Inv(l,2:2:num length/2-0)=-mat_W2(1,2:2:num_length/2-0)
./mat_W2Det (1:num_length/4);
mat W2Inv(2,2:2:num length/2-0)=mat_W2(1,1:2:num length/2-1)
./mat_W2Det (1l:num length/4) ;

% Cancellation of W1 W2
mat Dlppp=mat WlInv(l,1l:2:num _length/2-1) .+mat_Dlp
+mat W1lInv(l,2:2:num_length/2-0) .+mat_D4p;
mat D4ppp=mat W1Inv(2,1:2:num length/2-1) .+mat_Dlp
+mat_W1lInv(2,2:2:num_length/2-0) .+mat_D4p;
mat D2ppp=mat W2Inv(l,l:2:num length/2-1) .+mat D2p
+mat_W2Inv(1l,2:2:num_length/2-0) .+mat_D3p;
mat D3ppp=mat W2Inv(2,1:2:num_length/2-1).xmat_D2p
+mat_W2Inv(2,2:2:num_length/2-0) .+mat_D3p;

for iQ34=1:4

mat Distance4 (iQ34, :)=abs(mat_ D4ppp-mat Symbol4 34 (1,iQ34)s*mat c)."2;
mat Distance3 (iQ34, :)=abs(mat D3ppp-mat_ Symbol4 34 (1,iQ34)+mat_£f)."2;
end

[K,mat_Min4] =min(mat_Distance4, [],1};
[K,mat Min3]=min(mat Distance3, [],1);

mat Min4Temp=num_SentDec (4:4:num_length) ;
mat_Min3Temp=num_SentDec(3:4:num_length-1) ;

S4ERNImprQuaOrSubOpt (n, 1SNR) =sum( (mat Min4Temp-mat Min4) "=0)
/ (num_length/4) ;

S3ERNImprQuaOrSubOpt (n, 1SNR) =sum{( (mat_Min3Temp-mat Min3) "=0)
/ (num_length/4) ;

for iQl12=1:4

mat_Distancel (iQ1l2, :)=abs(mat_Dlppp-mat_b.+mat_Symbol4 34 (1,mat_Min4)
-mat_Symbol4_12(1,iQ12)+mat_a) . 2;

mat Distance2 (iQl2, :)=abs (mat_D2ppp-mat_e.*mat_Symbol4 34 (1,mat_Min3)
-mat_Symbol4 12(1,iQl2)s+mat_d)."2;

end

[K,mat Minl]=min(mat_ Distancel, [],1);
[K,mat_Min2] =min(mat_Distance2, [],1);

mat MinlTemp=num SentDec (1l:4:num length-3);
mat Min2Temp=num_SentDec(2:4:num_length-2) ;
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S1ERNImprQuaOrSubOpt (n, 1SNR) =sum ( (mat MinlTemp-mat Minl) "=0)
/ (num_length/4) ;
S2ERNImprQualOrSubOpt (n, 1SNR) =sum( (mat Min2Temp-mat_Min2) ~=0)
/ (num_length/4) ;
% When s 4 s_3 is Known
for iQl2p=1:4
mat Distancelp(iQi2p, :)=abs(mat_Dlppp-mat_b
.+xmat_Symbol4 34 (1,mat Min4Temp)
-mat_Symbol4_ 12(1,iQl2p)*mat_a)."2;
mat Distance2p(iQl2p, :)=abs(mat_D2ppp-mat_e
.+xmat_Symbol4 34 (1,mat_Min3Temp)
-mat Symbol4 12(1,1iQ12p)+mat_d)."2;
end

[K,mat Minlp]=min(mat Distancelp, [1,1);
[K,mat_Min2pl=min(mat_Distance2p, [],1);

S1pERNImprQualrSubOpt (n, iSNR) =sum( (mat MinlTemp-mat Minlp) "=0)
/ (num_length/4) ;

S2pERNImprQuaOrSubOpt (n, 1SNR) =sum( (mat Min2Temp-mat_Min2p) ~=0)
/ (num_length/4);

mat QRResultl234=2+reshape (fliplr (de2bi ([mat_Minl;
mat Min2;mat Min3;mat_Min4]-1)).’,
1,2+num_length)-1;
BERNImprQuaOrSubOpt (n,iSNR)=sum( (num Sent-mat QRResultl234}.72)
/8/num_length;
SERNImprQuaOrSubOpt (n, 1SNR} =sum (sum (reshape ( ( (num_Sent
-mat QRResultl234).72),2,num_length),1l)
~=0,2)/ (num_length) ;
FERNImprQuaOrSubOpt (nn, 1SNR) =sum (sum (reshape ( ( (num_Sent
-mat QRResultl234).72),2xframelength,
num_length/framelength),1) “=0,2)
/ (num_length/framelength) ;
end
end
BERNIQOOptM (m, :) =sum (BERNIQOOpPtN, 1) /n;
SERNIQOOpPtM (m, :) =sum (SERNIQOOpPtN, 1) /n;
FERNIQOOptM (m, : ) =sum (FERNIQOOptN, 1) /n;

S4ERM (m, :) =sum (S4ERNImprQuaOrSubOpt) /n;
S3ERM (m, :) =sum (S3ERNImprQualOrSubOpt) /n;
S2ERM (m, :) =sum (S2ERNImprQuaOrSubOpt) /n;
S1ERM (m, :)=sum (S1ERNImprQualOrsSubOpt) /n;

S2pERM (m, :) =sum (S2pERNImprQualrSubOpt) /n;
S1pERM(m, : ) =sum (S1pERNImprQuaOrSubOpt) /n;
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BERMSub (m, :) =sum (BERNImprQuaOrSubOpt, 1) /n;
SERMSub (m, :) =sum (SERNImprQuaOrSubOpt, 1) /n;
FERMSub (m, :) =sum (FERNImprQuaOrSubOpt, 1) /n;

save rsimul0ll9.mat m n BERNIQOOptM SERNIQOOptM FERNIQOOptM
S1ERM S2ERM S3ERM S4ERM S2pERM S1pERM BERMSub
SERMSub FERMSub GAMAbforAll mat_RootCorrl

end BERNIQOOpt=sum(BERNIQOOptM, 1) /m;

SERNIQOOpt=sum (SERNIQOOptM, 1) /m; FERNIQOOpt=sum (FERNIQOOptM, 1) /m;

BERImprQuaOrSubOpt=gsum (BERMSub, 1) /m;
SERImprQualOrSubOpt=sum (SERMSub, 1) /m;
FERImprQuaOrSubOpt=sum (FERMSub, 1) /m;

SERS1p=sum(S1pERM, 1) /m; SERS2p=sum(S2pERM, 1) /m;
SERS1=sum(S1ERM, 1) /m; SERS2=sum(S2ERM,1)/m; SERS4=sum(S4ERM,1)/m;
SERS3=sum(S3ERM, 1) /m;
% Plot
semilogy (GAMAbforAll, BERNIQOOpt, ‘¥’ ,GAMAbforAll, BERImprQuaOrSubOpt, ‘'r’,
GAMAbforAll, FERNIQOOpt, 'b’ ,GAMAbforAll, FERImprQuaOrSubOpt, 'b’,
GAMAbforAll, SERNIQOOpt, 'k’ ,GAMAbforAll, SERImprQualdrSubOpt, 'k’) ;
figure; semilogy (GAMAbforAll, SERS1, 'r’,GAMAbforAll,SERS2,'b’,
GAMAbforAll, SERS3, 'k’ ,GAMAbforAll, SERS4,’'g’,
GAMAbforAll, SERSlp, 'c’,GAMAbforAll, SERS2p, ‘'m’)
grid
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Appendix C

Numerical Evaluation Software

C.1 Numerical Evaluation of Error Probability of Decoding s,

program C.1.1 Numerical Evaluation of Error Probability of Decoding s4

clear all;
GAMAb=[0:2:30]; %SNR Range

% Upper Bound
for iSNR=1:length (GAMAD)

M=2;

phi=pi/2; $Phi

partl=phi/pi;

part2=0;

part3=0;

var= (10" (-GAMADb (iSNR) /10) ) /4; %$sigma”2
c=1/(l6xvar) ; % c
N=2*sqgrt (c* (1l+c) ) *sin(2+phi); % N
D=(1+2«c)+cos (2xphi)-1; % D

T=0.5xatan (N/D) + (pi/2) * (1- ((1+sign(D) ) /2) *sign(N)); %T
for k1=0:M-1

part2=part2

+ (factorial (2+k1l) /factorial (k1) /factorial(kl))/ ((4+4xc) (k1)) ;

end
part2=part2+T+sqrt (c/(1+c)) /pi;
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for k2=1:M-1
for j=0:k2-1
part3=part3+ (factorial (2«xk2)/factorial (2+k2-3j) /factorial (j))
*(-1) " (k2+]j) *sin (2+T* (k2-3)) / ((4+4+c) " (k1)) / (2xk2-2%7) ;
end
end
part3=part3*2xsqrt(c/ (1+c))/pi;
EQ(iSNR) =partl-part2-part3;
SER11 (iSNR) =-EQ(iSNR) . "2+2*EQ (iSNR) ;
end
for i8NR=1:length (GAMAD)
M=3;
phi=pi/2; %$Phi
partl=phi/pi;
part2=0;
part3=0;
var= (10" (-GAMADb (iSNR) /10)) /4;
c=1/(1l6xvar) ;
N=2#+sqgrt (c+ (1+c) ) *sin (2+phi) ; N
D= (1+2*c)+cos (2+phi) -1; D
T=0.5%atan(N/D)+ (pi/2) » (1- ((L+sign (D)) /2) *sign(N)); 5T
for kl1=0:M-1
part2=part2
+ (factorial (2+kl) /factorial (kl) /factorial (k1)) / ((4+4xc)” (k1)) ;

o\

gsigma”2
c

o° oP

o°

end
part2=part2+Txsqrt (c/ (1+c)) /pi;
for k2=1:M-1
for j=0:k2-1
part3=part3+ (factorial (2+k2) /factorial (2+k2-3j) /factorial(j))
* (-1) " (k2+) *sin (2+T* (k2-7) ) / ((4+4xc) " (k1)) / (2%k2-2%7) ;
end
end
part3=part3*2+sqrt (c/(1+c)) /pi;
EQ(iSNR) =partl-part2-part3;
SER12 (iSNR)=-EQ(1iSNR) . "2+2+EQ (1iSNR) ;
end SER1=(SER11+SER12)/2;

% Lower Bound
for iSNR=1:length (GAMAD)

M=2 ;

phi=pi/2; %Phi
partl=phi/pi;
part2=0;
part3=0;

var= (10" (-GAMADb (iSNR) /10)) /4; %sigma”2
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c=1/(8xvar) ; s o
N=2+sqrt (c+ (1+c))*sin(2+phi); % N
D= (1+2%c)*cos (2*phi) -1; e D

T=0.5%atan (N/D)+(pi/2) » (1- ((L+sign(D))/2)*sign(N)); 3T
for k1=0:M-1
part2=part2
+ (factorial (2+k1l) /factorial (k1) /factorial (kl) )/ ((4+4xc) " (k1)) ;
end
part2=part2+T+sqrt (c/(1+c)) /pi;
for k2=1:M-1
for j=0:k2-1
part3=part3+(factorial (2+k2) /factorial (2+k2-3j) /factorial (j))
* (-1) " (k2+7) *sin (2xTx (k2-3))/ ((4+4=*c) " (k1)) /(2+xk2-2x7) ;
end
end
part3=part3x2xsqrt (c¢/ (1+c)) /pi;
EQ(iSNR) =partl-part2-part3;
SER21 (iSNR)=-EQ (iSNR) . "2+2*EQ(iSNR) ;
end for i1SNR=1:length (GAMADb)

M=3;

phi=pi/2; $Phi

partl=phi/pi;

part2=0;

part3=0;

var=(10" (-GAMAb (iSNR) /10)) /4; %$sigma”2
c=1/(8*var) ; % ¢
N=2xsqgrt (cx (1+c) ) *sin(2xphi); % N
D=(1+2%c)+cos (2«phi)-1; % D

T=0.5+atan (N/D) + (pi/2) * (1- ((1+sign(D))/2) *+sign(N)); %T
for k1=0:M-1
part2=part2
+ (factorial (2«kl) /factorial (k1) /factorial(kl) )/ ((4+4xc)” (k1)) ;
end
part2=part2*T+sqrt {(c/ (1+c)) /pi;
for k2=1:M-1
for j=0:k2-1
part3=part3+ (factorial (2+k2) /factorial (2+k2-7j) /factorial (j))
*(-1) " (k2+]) *sin (2+T* (k2-7) )/ ((4+4xc) " (k1)) / (2xk2-2*7) ;
end
end
part3=part3+2+sqrt (c/ (1+c)) /pi;
EQ(iSNR) =partl-part2-part3;
SER22 (iSNR) =-EQ (iSNR) ."2+2+EQ (iSNR) ;
end SER2=(SER21+SER22)/2;
%Plot
semilogy (GAMADb, SER1, GAMADb, SER2) grid




C Numerical Evaluation Software 132

C.2 Numerical Evaluation of Error Probability of Decoding s; Assuming

s4 Has Been Decoded Correctly

program C.2.1 Numerical Evaluation of Error Probability of Decoding s; Assuming s4 Has
Been Decoded Correctly
clear all; M=4;
GAMAL=[0:2:30]; %SNR Range
for i8SNR=1:length (GAMAD)
phi=pi/2; $Phi
partl=phi/pi;
part2=0;
part3=0;
var=(10" (-GAMADb (iSNR) /10)) /4;
c=1/(lé6xvar) ; c
N=2xsgrt(c* (1+c) ) *xsin(2+phi) ; N
D=(1+2%c) xcos (2+phi) -1; D
T=0.5+atan(N/D)+ (pi/2) » (1- ((1+sign (D)) /2) xsign(N)); %T
for k1=0:M-1
part2=part2+
(factorial (2+kl) /factorial (k1) /factorial(kl))/((4+4xc) " (k1)) ;

o

sigma”2

o® o°

o°

end
part2=part2«T+sqrt (c/(1+c)) /pi;
for k2=1:M-1
for j=0:k2-1
part3=part3+ (factorial (2+k2)/factorial (2+k2-3)
/factorial (7)) *(-1)" (k2+3)
*8in (2+Tx (k2-3)) / ((4+4%c) " (k1)) /(2xk2-2%7);
end
end
part3=part3*2*sqrt(c/(1+c))/pi;
EQ(1iSNR) =partl-part2-part3;
SER (1iSNR) =-EQ (i8NR) . "2+2+EQ(iSNR) ;
end Plot semilogy (GAMAD, SER, ‘k’) grid
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