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Abstract 
 
Air pollution from household solid fuel burning is a significant source of air pollution and health 

burden. Nearly half the global population and millions of households in China burn solid fuel as 

their primary domestic energy source. Policies promoting household transition to cleaner-

burning fuels have been implemented in several countries including China, yet few studies have 

empirically evaluated their real-world impacts. My thesis aims to address knowledge gaps in the 

understanding of impacts of residential solid fuel use on personal exposures and to evaluate 

the impacts of a large-scale coal-to-clean energy policy on local outdoor air quality and 

incidence of cardiovascular disease. 

 

In Objective 1, I obtained over 2000 measurement-days of personal exposure to fine particles 

(PM2.5) and black carbon (BC) in a multi-provincial study of 787 Chinese adults in Beijing, 

Guangxi, and Shanxi and conducted a series of mixed effects models to investigate within- and 

between-participant variance components and determinants of exposures. Outdoor PM2.5 was 

the dominant variable explaining within-participant variability in PM2.5 (16%). Between-

participant variability was partly explained by household fuel use (PM2.5: 8%; BC: 10%) and 

smoking status (PM2.5: 27%; BC: 5%). Both indoor sources (solid fuel stoves, tobacco smoking) 

and outdoor PM2.5 were associated with higher exposure. My results indicate that repeated 

measurements of daily exposure are likely needed to capture longer-term averages, even 

within a single season, and that measurably reducing exposures in such settings will likely 

require reductions in emissions from both indoor and outdoor sources, which have different 

mitigation strategies. 

 

For Objective 2, I used a spatiotemporal model to evaluate association between small area-

level exposure to the coal-to-clean energy policy and outdoor PM2.5 across Beijing. I obtained 

satellite-derived ~1x1km PM2.5 data from Dec. 2013 to Dec. 2019 (n=17,361 grid cells across 

Beijing) and developed a geolocated dataset of villages in Beijing that identified villages 

participating in the policy and the year of entry. Grid cells were defined as exposure to the 

policy if any villages in the grid cells were participating in the policy. Though regional air quality 
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in Beijing improved during the study period, I did not find an effect of exposure the policy on 

local outdoor PM2.5, a result which conflicts with previous studies at higher spatial resolution. It 

is possible that an indoor intervention has limited measurable effects on outdoor PM2.5, or that 

high outdoor PM2.5 from other sources combined with my use of spatially-smoothed outdoor 

PM2.5 data limited my ability to capture small local changes in air pollution attributable to a 

single, source-specific intervention. 

 

In Objective 3 I used a multiple-time point difference-in-difference approach to estimate the 

effect of the coal-to-clean energy program on acute myocardial infarction (AMI) rates in Beijing 

townships (n=151). I obtained township AMI incidence for 2013 to 2019 for all adults and 

separately for sex-age groups. Townships were defined as treated when over 50% of their 

villages were treated by the policy. Among treated townships there was an average reduction 

of -5.5% (95% CI: -11.8%, 1.3%) in AMI incidence per 100,000 population in the post-treatment 

period compared with the pre-treatment period. The largest effects of treatment were among 

women (-12.1%, 95% CI: -21.2%,-2.0%) and older adults (-12.6%, 95% CI: -20.8%,-3.8%). In men, 

I only observed effects in the over 65y+ age-group (-9.6%, 95% CI: -17.5%,-1.2%). 

 

My thesis indicates that exposures to air pollution in settings of solid fuel burning are high, 

variable, and impacted by both indoor and outdoor sources. I observed a cardiovascular benefit 

in Beijing townships treated by large-scale clean energy policy compared with untreated 

townships, though I did not observe an effect of exposure to the policy on local air quality. 
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Abrégé 
 
À l'échelle mondiale, la combustion domestique de combustibles solides est un risque sanitaire 

courant et important. Cependant, peu de politiques favorisant la transition des ménages vers 

des combustibles plus propres ont vu leurs impacts évalués. Ma thèse vise à combler les 

lacunes dans la compréhension des impacts de l'utilisation résidentielle de combustibles solides 

sur les expositions personnelles et à évaluer les impacts d'une politique à grande échelle de 

conversion du charbon en énergie propre sur la qualité de l'air extérieur local et l'incidence des 

maladies cardiovasculaires. 

 

Dans l'Objectif 1, j'ai obtenu plus de 2000 jours de mesure d'exposition personnelle aux 

particules fines (PM2,5) et au noir de carbone (BC) dans une étude multiprovinciale de 787 

adultes chinois. J'ai mené une série de modèles à effets mixtes pour étudier les caractéristiques 

de la variance entre et dans les participants et les déterminants des expositions. 

. Les PM2,5 extérieures étaient la variable dominante expliquant la variabilité intra-participant 

des PM2,5 (16%). La variabilité entre les participants s'expliquait en partie par l'utilisation 

domestique de combustible (PM2,5: 8%; BC: 10%) et le statut tabagique (PM2,5 27%; BC: 5%). 

Mes résultats indiquent que des mesures répétées de l'exposition quotidienne sont 

probablement nécessaires pour capturer l'exposition à long terme et une réduction mesurable 

des expositions dans de tels contextes nécessitera probablement des réductions des sources 

d'émissions intérieures et extérieures. 

 

Pour l'objectif 2, j'ai utilisé un modèle spatio-temporel pour évaluer l'association entre 

l'exposition au niveau d'une petite zone à la politique d'énergie propre du charbon et les PM2,5 

à l'extérieur à Pékin. J'ai obtenu des données satellitaires sur les PM2,5 des cellules de grille 

d'environ 1x1km de déc. 2013 à déc. 2019. Les cellules de grille ont été définies comme une 

exposition à la politique si des villages dans les cellules de grille participaient à la politique. Bien 

que la qualité de l'air régional à Pékin se soit améliorée au cours de la période d'étude, je n'ai 

pas trouvé d'effet d'exposition à la politique sur les PM2,5 extérieures locales. Il est possible 

qu'une intervention intérieure ait des effets mesurables limités sur les PM2,5 extérieures, ou 
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que des PM2,5 extérieures élevées provenant d'autres sources combinées à mon utilisation de 

données de PM2,5 extérieures lissées dans l'espace aient limité ma capacité à capturer de 

petits changements locaux dans la pollution d'air attribuée à une seule intervention. 

 

Dans l'Objectif 3, j'ai utilisé une approche de différence dans la différence à plusieurs points 

dans le temps pour estimer l'effet de la politique d'énergie du charbon vers l'énergie propre sur 

les taux d'infarctus aigu du myocarde (IAM) dans les cantons de Pékin. J'ai obtenu le taux d'AMI 

du canton de 2013 à 2019 pour tous les adultes et les groupes d'âge et de sexe séparés. Les 

cantons ont été définis comme traités lorsque plus de 50 % de leurs villages ont été traités par 

la politique. Parmi les cantons traités, il y a eu une réduction moyenne de -5,5% (IC à 95%: -

11,8%, 1,3%) de l'incidence des IAM pour 100 000 habitants. Les effets les plus importants du 

traitement ont été observés chez les femmes (-12,1%, IC à 95% : -21,2%, -2,0%) et les 

personnes âgées (-12,6%, IC à 95% : -20,8%, -3,8%). Chez les hommes, je n'ai observé des effets 

que dans le groupe d'âge des plus de 65 ans (-9,6%, IC à 95% : -17,5 %, -1,2%). 

 

Ma thèse indique que les expositions à la pollution de l'air dans les environnements de 

combustion de combustibles solides sont élevées, variables et influencées par des sources 

intérieures et extérieures. J'ai observé un bénéfice cardiovasculaire dans les cantons de Pékin 

traités par une politique d'énergie propre à grande échelle par rapport aux cantons non traités, 

bien que je n'aie pas observé d'effet de l'exposition à la politique sur la qualité de l'air local. 
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PM2.5 and black carbon in a multiprovincial study of older Chinese adults. The goal was to 

understand the determinants of both variability and levels of exposure. This is one of very few 

studies to conduct repeated daily measures of exposure to PM2.5 and black carbon in settings of 

household solid fuel burning. The study is unique in its inclusion of both men and women and 

of exclusive clean fuel users living in the same communities as solid fuel users. It informs 

exposure assessment strategies for future epidemiologic and intervention studies and 

facilitates for more realistic estimation of the potential air quality and health benefits of clean 

energy interventions in future risk assessments. 

 

Objective 2: Household energy use is an important contributor to air pollution and adverse 

health outcomes in Beijing. This objective evaluates the association between changes in local 

outdoor satellite derived PM2.5 and exposure to the coal-to-clean-energy policy in Beijing. This 

policy is one of the largest clean energy policies to date, but evaluation of its impacts on air 

quality are limited to risk assessments, small cross-sectional field studies, or empirical 

assessments conducted at large spatial scales (e.g., districts or municipalities). My prospective 

study is the first to empirically assess the air quality impacts of the coal-to-clean energy policy 

for all of Beijing at a local-level (~1km1km) and my analytical approach is unique in capturing 

the complex spatial and temporal correlation through the inclusion of a latent (unobservable) 

structure. This approach prevents a bias structure within the residuals and incorrect accounting 

of uncertainty of the point estimates, which is an important methodological strength compared 

with previous studies evaluating the air quality impacts of household energy policies. 

 

Objective 3: Cardiovascular disease is the leading cause of death in China, and identifying 

population interventions to reduce cardiovascular disease burden is a national priority. This 

objective examines the impact of the coal-to-clean-energy policy on township incidence of 

acute myocardial infarction (AMI) in all adults and for different age-sex demographic groups 

using a pre-post policy design with a control (untreated) group. This is the first study to 
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empirically assess the health effects of the coal-to-clean energy policy and one of very few 

studies globally to evaluate the population health impacts of a clean energy policy. 
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Chapter 1: Introduction 
 
1.1 Preface  
 
My thesis focuses on household energy use and energy transition and their impacts on air 

pollution exposures and cardiovascular disease in China. My first objective focuses on 

measurement and modeling of personal exposure to air pollution (PM2.5 and black carbon) 

among adults enrolled into the INTERMAP China Prospective study. These detailed air pollution 

exposure data were collected by local research staff as part of the larger INTERMAP China 

Prospective study which also conducted measurements of subclinical cardiovascular outcomes 

and other variables in 2015-2016. Follow-up measurements were planned for 2020-2021 and 

were intended to form the basis for my last two thesis objectives. However, due to travel 

restrictions during the COVID-19 pandemic, data collection planned for 2020-2021 was 

suspended and I shifted my original thesis aims. The second and third objectives still focus on 

household energy use and its air pollution and health impacts but use existing satellite-derived 

air quality data and administrative data on acute myocardial infarction (AMI) data from China 

that did not require primary data collection (Objectives 2 and 3). The overall focus of my thesis 

on household energy use and its air pollution and cardiovascular impacts remained the same, 

however the data and questions shifted to accommodate the travel and field data collection 

restrictions during the pandemic.   

 
1.2 Thesis Outline 
 
This thesis contains six chapters. The first chapter introduces my research objectives and the 

key knowledge gaps that my thesis aims to address. Chapter 2 provides a review of the 

literature that motivated this thesis. It focuses on the magnitude of exposure to air pollution in 

settings of household solid fuel use both globally and in China, the burden of disease from 

cardiovascular outcomes and air pollution exposure, previous household energy policies, and 

the air quality polices in Beijing. Chapters 3-5 describe the research conducted for each of the 

three individual objectives in my thesis. Chapter 6 contains the concluding statements about 

the outputs of my research and includes a synthesis of the overall research findings, the 
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strengths and limitations of this work, and a proposal for future research to move this work 

forward. 

 
1.3 Knowledge Gaps 
 
Air pollution is a ubiquitous environmental exposure that is emitted from range of indoor and 

outdoor sources, including motor vehicles, industry, and tobacco smoking. Residential solid fuel 

burning for heating and cooking is another important source of household (indoor) and outdoor 

air pollution, especially in low- and middle-income countries (LMICs) (1). Over 3.8 billon people 

globally and 508 million people in China (36% of the population) primarily burn solid fuel for 

cooking, heating, lighting or other household tasks (1). The practice is most common among 

populations living in rural and peri-urban areas where wood fuel is more commonly available 

and thus easily harvested, though it persists in many urban communities in LMICs. Most 

households burn solid fuel in rudimentary stoves (e.g., three-stone fires) that are inefficient and 

emit high levels of air pollution into homes and communities. Emissions from solid fuel (e.g., 

crop residues, wood, raw coal, and coal briquettes) are 4-25 times higher than those from 

liquefied petroleum gas (LPG) (2). 

 

Incomplete combustion of solid fuel emits many health-damaging air pollutants, including 

carbon monoxide, nitrogen oxides, and fine particles less than 2.5 microns in aerodynamic 

diameter (PM2.5). PM2.5 is microscopic in size and is the air pollutant most strongly associated 

with a range of health impacts (1, 3). Thus PM2.5 is a commonly regulated and monitored air 

pollutant globally (4). Use of solid fuel stoves and the resulting exposure to PM2.5 is recognized 

as being associated with a number of adverse health outcomes in adults and children, including 

cardio-respiratory diseases and early mortality, poor maternal and birth outcomes, and 

neurocognitive impacts (1, 5, 6), and contribute to a substantial portion (35%) of the estimated 

global burden of disease attributable to air pollution (1, 6). However, several key knowledge 

gaps limit epidemiologic studies and intervention evaluation to inform policy. 
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First, despite household solid fuel being among the most prevalent environmental exposures, 

there are relatively few studies with field data on personal exposure to PM2.5 in such settings 

(7), and even fewer with multiple days of measurement (8-12) or that assess exposure among 

men (11, 13, 14). Measurements of PM2.5 exposures in exclusive clean fuel users relative to 

users of solid fuel in the same setting are also rare (7, 14). Estimating the health burden of 

household air pollution and the potential benefits of a transitioning from solid fuel stoves to 

clean fuel requires a realistic understanding of the levels and source contributors to personal 

exposures.  

 

Second, there is limited evidence on the air quality and health benefits of household energy 

interventions and policies aimed at reducing household solid fuel use through the promotion of 

clean fuels like gas or electricity. Smaller-scale randomized trials of cookstove interventions 

found that other air pollution sources like industry, road traffic, or neighbor’s solid fuel use can 

mask the air quality benefits of a household stove intervention with air pollutant levels 

remaining well above World Health Organization’s (WHO) health-based guideline (15, 16). 

Though a number of countries are implementing national or regional household energy 

interventions or policies, impact evaluations of the effects are rare because it can be difficult to 

match the timelines for evaluation with that of intervention implementation and because it is 

challenging to account for background trends in health and air pollution levels (17). 

 

My thesis directly fills these knowledge gaps by 1) providing new information on the relative 

contribution of indoor versus outdoor sources on personal air pollution exposures in a complex 

air pollution setting where household solid fuel use is common; and by 2) evaluating the 

impacts of a large-scale clean residential energy policy on air quality and cardiovascular 

outcomes in Beijing.  
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1.4 Research Objectives 
 
My thesis investigates the indoor and outdoor source contributors to personal exposures in 

settings of household solid fuel use and leverages the stepped implementation of the Beijing 

coal-to-clean energy policy to estimate its impacts, with the following objectives:   

 

Objective 1: Estimate the within- and between-participant variance components and source 

determinants of personal exposure to PM2.5 and black carbon in a multiprovincial study of 

Chinese adults using solid fuel stoves. 

 

I used field-collected data to conduct a panel study with up to four days of repeated measures 

of ‘gold standard’ measurement of personal exposure to PM2.5 and black carbon in 787 men 

and women (ages 40–79) living in rural and peri-urban villages in northern (Beijing and Shanxi) 

and southern (Guangxi) China. Outdoor PM2.5 and questionnaire data on sociodemographic 

characteristics and indoor pollution sources including tobacco smoking and solid fuel stove use 

were simultaneously collected. The resulting over 2000 days of personal exposure 

measurements were used in a series of linear mixed effect models to estimate the within- and 

between-individual variability in exposure and to identify the determinants of both variability 

and levels of exposure. 

 

Objective 2: Estimate whether exposure to the coal-to-clean-energy program is associated with 

changes in outdoor satellite-derived PM2.5 in Beijing. 

 

I obtained satellite-derived air pollution data for heating season months between December 

2014 to December 2019 at the small area level (~1x1km grid cells) for Beijing. To estimate area 

exposure the coal-to-clean energy policy, I developed a geolocated dataset of all villages in 

Beijing that included information on whether the village participated in the policy and year of 

entry. I then used a spatiotemporal model to estimate whether exposure to the policy, defined 

as having a village in the grid cell exposed to the policy, was associated with changes in 

satellite-derived PM2.5 after adjusting for covariates.   
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Objective 3: Assess the effect of treatment by the coal-to-clean-energy program on incidence 

of acute myocardial infarction (AMI) in Beijing townships. 

 

I leveraged township data from Beijing on acute myocardial infarction and participation in the 

coal-to-clean energy policy from 2013 to 2019 and conducted a multiple time point difference-

in-difference analyses to assess whether treatment by the policy, defined as having more than 

50% of villages in the township treated, affected incidence of AMI for all adults and separately 

for different sex and age groups. The analyses included multiple treatment periods, allowing me 

to assess the cardiovascular effects of the policy for townships treated longer versus shorter.  
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Chapter 2: Literature Review 
 
In this section I will review literature that is relevant to the objectives of this thesis: air pollution 

(outdoor and household), household solid fuel use, acute myocardial infarction (AMI), and the 

interventions and policies aimed at mitigating and reducing exposure to air pollution. I review 

the global and China-specific literature in these areas as they pertain to this thesis.  

  
2.1 Air Pollution 
 
Air pollution is a ubiquitous environmental exposure that varies spatially and temporally and is 

causally associated with a number of adverse health outcomes, including the development of 

cardiovascular disease (1). The objectives in my thesis stem from this understanding with air 

pollution being central in each of the three objectives.  

 

Air pollution is any air contaminate of the indoor (household) or outdoor environment by a 

chemical, physical or biological agent that modifies the natural characteristics of the 

atmosphere (4). This broad definition of air pollution encompasses many gaseous and 

particulate pollutants including ozone, carbon monoxide, sulfur dioxide, nitrous oxides, volatile 

organic compounds, methane, particulates, and pollen. Air pollution comes from both 

anthropogenic (e.g., solid fuel burning, industry emissions) and natural sources (e.g., dust, sea 

salt, volcanic eruptions, wildfires). Though the particulate matter emissions from different 

combustion sources share many of the same chemical components, the overall chemical 

composition varies by fuel type and combustion efficiency.  Due to the vast number of 

pollutants, generally single or a few pollutants are used to define overall air quality and 

estimate the health risks posed by air pollution. An air pollutant of high importance to human 

health is fine particulate matter less than 2.5 microns in aerodynamic diameter (PM2.5), which is 

widely monitored and regulated because it is the pollutant size most strongly associated with 

adverse health outcomes (4, 18, 19). Within this thesis, I thus focus on PM2.5 and its household 

(indoor) and outdoor sources as they determine personal exposure in settings of household 

biomass and coal burning. 
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2.1.1 PM2.5 and black carbon 
 
Fine particles (PM2.5) are emitted from a range of sources including industry, motor vehicles, 

agriculture, household solid fuel burning, and forest fires. They persist in the atmosphere and 

can be transported long distances because of their smaller size. PM2.5 has an atmospheric half-

life of days to weeks compared with the minutes or days for coarse particulates (2.5 to 10 

microns in aerodynamic diameter) (20). By persisting in the atmosphere for longer, they can 

pose a health hazard far downwind and weeks after their emission into the environment in 

addition to their immediate source region. 

 

Measurement of PM2.5 is typically represented as a mass-based concentration, specifically 

micrograms (μg) of particles per cubic meter (m3) of air. Particles are emitted from a range of 

combustion (transportation, industry, wildfires, solid fuel combustion) and non-combustion 

sources (e.g., dust, sea salt) (21, 22). Incomplete combustion occurs when there is insufficient 

oxygen supplied to a combustion reaction. Instead of the complete production of only CO2 and 

water, particulate matter and gases are also released. 

 

The total mass of PM2.5 comprises different chemical components including sulfates, nitrates, 

ammonium, elemental and organic aerosols, metals, and salts. The chemical composition of 

PM2.5 varies depending on several factors including the emissions source, combustion 

conditions, meteorology, and time in the environment (23-25). Due to their small size, PM2.5 

can penetrate deep into the lungs (into the secondary bronchial area passage) and into the 

bloodstream (26, 27). They have been shown to affect multiple organ systems and impact 

health across the life course. For these reasons, PM2.5 is the pollutant most commonly 

monitored by countries and the World Health Organization (WHO) for air quality standards and 

guidelines (4, 28).  

 

Black carbon is the soot component of PM2.5 and a more specific pollutant marker of emissions 

from incomplete combustion of sources such as fossil fuel, wood, coal, and other fuels (29). 

Black carbon and elemental carbon are operationally defined by their measurement method 
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(e.g., optical versus chemical measurement, respectively), although the terms are often used 

interchangeably because they are both measuring light-absorbing particles (29). Previous 

studies of outdoor (ambient) and household air pollution indicate that combustion-related air 

pollution, when measured by black or elemental carbon, may be more strongly associated with 

adverse cardiovascular impacts of air pollution than the total mass of PM2.5 (30, 31).   

 
2.1.2 Sources of air pollution 

 
A common distinction when studying air pollution is to divide its sources into categories of 

outdoor and household/indoor. This distinction is largely because the mitigation strategies for 

indoor versus outdoor sources differ considerably, even though the two influence each other 

through indoor-outdoor air exchange of air (32). Outdoor sources of air pollution including 

transportation, industry, and agricultural burning have generally been better studied (33-35). 

Household/indoor sources, particularly of particulate matter, include tobacco smoking and 

household use of solid fuel stoves for cooking and heating. Surveys conducted in Canada (36), 

China (37), Germany (38), and the United States (U.S.) (39) indicate that people spend an 

average of 80-90% of their time indoors which makes the indoor environment an important 

source of exposure, potentially more relevant than outdoor (1, 40). Due to lower volumes of air 

for dispersal and the close proximity to sources, the indoor concentrations of pollutants can be 

much higher than outdoors (41). Understanding the sources of air pollution also allows for 

targeted interventions aimed at reducing air pollution emissions and population exposures. 

 
 2.2 Measuring and Modelling Exposure to PM2.5 
 

2.2.1 Technologies for measuring exposure to PM2.5  
 

Integrated gravimetric measurement of PM2.5 
 
The gold standard for measurement of PM2.5 is gravimetric sampling where air is pulled through 

a filter at a known and carefully regulated flow rate. The flow paths and flow rates of the 

gravimetric samplers are designed to capture particulate matter greater than 2.5 microns in 

aerodynamic diameter before they reach the filter so that only PM2.5 is sampled (42). The filters 

are weighed in a temperature and humidity-controlled environment before and after sampling, 
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and the change in weight is then divided by the volume of air sampled. This concentration 

represents the integrated (average) mass of PM2.5 during the entire sampling period, after 

subtracting for a blank filter (control) concentration.  

 

Gravimetric measurements are typically integrated over daily, monthly, or annual time periods 

to estimate ‘usual concentration’ for exposure, epidemiology, and intervention studies and for 

comparison with the WHO or country-specific standards and guidelines (43, 44). The 

gravimetric method is non-destructive such that the filter-based samples can be further 

analysed for their optical and chemical composition, which provides information on the relative 

contribution of different sources to the total mass of PM2.5.  

 

There are several limitations of gravimetric PM2.5 sampling for large-scale epidemiologic 

studies, especially in LMICs where population exposure to air pollution is generally 

understudied compared with Europe, North America, and urban China (42, 44-46). First, 

integrated gravimetric assessment provides the average PM2.5 mass concentration for the 

sampling period but does not provide temporal information like periods of high concentrations. 

This information can be used to identify activities associated with higher concentrations, for 

example changes during commuting times or during certain types of household energy events. 

Second, gravimetric instruments tend to be bulky, expensive, have limited battery life, and their 

operation requires trained staff and frequent maintenance. Scaling up these measurements to 

achieve a large sample size is resource-intensive and wearing the monitors is burdensome to 

participants, especially for high-risk populations like infants and children, pregnant women, and 

the elderly. Further, the laboratory measurement of mass requires a very accurate and sensitive 

microbalance that is housed in a climate-controlled setting which are rare in many places in the 

world (47). Finally, in high pollution settings, the measurement itself can be challenging 

because the filters can overload (i.e., accumulate so much mass that the flow rate is affected or 

the sampler stops working), which affects the accuracy and comparability of the measurement.  

 

 



 28 

Alternatives to integrated gravimetric measurement of PM2.5 
 

Several reference-grade technologies offer advantages over the more labour-intensive manual 

gravimetric methods in terms of their measurement time resolution and operating costs, but 

they are still very expensive and lack portability. Continuous Aerosol Mass Monitors (CAMMs) 

or Tapered Element Oscillating Microbalance (TEOMs) are commonly used monitors that apply 

gravimetric principles to measure real-time PM2.5. CAMMs compare pressure differences 

between air channels containing a filter with sampled PM2.5 and a reference channel that 

contains a clean filter and TEOMs measure changes in the oscillation frequency of tapered 

oscillating glass rod on which the sampled PM2.5 is deposited (48, 49).  

 

Another commonly used measurement approach is the optical measurement of particles which, 

like gravimetric sampling, uses a pump to pull air through the monitor but estimates mass using 

optical characteristics. Two commonly used optical methods are light scattering or beta-

attenuation (50, 51). Light scattering sensors measure light (generally infrared or red light) 

scattered by the particles as they pass through the sensors using assumptions of particle shape 

and refractive index (51). Beta-attenuation monitors (BAMs), one of the most widely used 

reference monitors (48, 52), measure the reduction in beta-ray intensity after passing through a 

medium that collect the PM2.5. Built-in reference conversion factors convert these optical 

measures to estimated PM2.5 mass (48). The outputs still need to be empirically calibrated 

against a reference gravimeter sampler or a very high-cost reference grade optical sensor 

because PM2.5 varies in its chemical composition over time and space so the reference 

conversion factor varies.  

 

Though not a focus of this thesis, it is important to note that the enormous development of 

low-cost optical sensors in the last decade. These sensors provide less accurate measurement 

than the reference quality monitors described above, especially at very low and very high 

concentrations, but are a less expensive option for providing time-real measurements of PM2.5 

at a larger number of locations (53, 54). Most low-cost sensors use light scattering technology 

to estimate PM2.5 mass (50, 51). These sensors enable spatially dense, high temporal resolution 
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measurements of air quality that would be logistically infeasible and cost-prohibitive with 

traditional reference monitors. Low-cost PM sensors are especially beneficial for achieving 

great spatial and temporal resolution of air pollution measurements in LMIC settings where 

few, if any, reference grade measurements exist and in areas where air pollutants have large 

spatial gradients.  

 

Aerosol Optical Depth (AOD) measurements are also used to estimate outdoor ground level 

PM2.5 measurements through modelling or semi-empirical approaches. Like optical sensors, 

these measurements are most accurate when corrected using ground-level PM2.5 monitors (55). 

Meteorological variables and chemical transport/dispersion modelling can also be integrated to 

increase accuracy (55, 56). The AOD is a quantitative measure of the extinction of a ray of light 

as it passes through the atmosphere. It is used as a surrogate measure of PM2.5 since the 

extinction of light results from particulate matter in the atmosphere. AOD can be retrieved 

from various satellites, e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS) on 

the Terra and Aqua satellites. While this surrogate measurement facilitates much greater 

temporal and spatial coverage and resolution than traditional methods of air quality 

measurement, satellite-derived PM2.5 estimates are less accurate than field measurements for 

ambient air pollution and they are less able to capture the contribution of local sources to 

outdoor PM2.5 (57). 

 
2.2.2 Scale of measurement  

 
Air samplers (e.g. gravimetric or optical) can be used to gather personal (e.g., portable samplers 

in attached to an individual), household (indoor), or outdoor/ambient air pollution 

measurements (e.g., samplers placed in homes or at community sites). Outdoor regulatory 

monitors are limited in their spatial resolution since they are stationary and can only provide 

discrete measurement at locations where the samplers are placed. To provide better spatial 

coverage, some studies implement dense networks of air monitors and sensors or mobile 

monitoring (generally sensors installed on vehicles), though these are largely limited to urban 

settings and do not directly capture indoor sources, which, in settings of household solid fuel 
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burning, are a major contributor to human exposures and the primary focus of clean energy 

intervention. Long-term outdoor pollution monitoring typically requires substantial upfront and 

ongoing investment in technology, operation and maintenance, and staff, and are typically 

operated by government agencies or universities.  

 

Household (indoor) measurements are stationary measurements collected inside homes, 

generally in the kitchen, bedroom, or living areas where occupants tend to spend the most 

time. They better capture indoor sources like solid fuel emissions, environmental tobacco 

smoke, or incense burning, but like outdoor monitors they might not capture the full profile of 

air pollution exposures since people move between the indoor and outdoor environments. 

Long-term measurements of indoor air pollution are uncommon due to participant burden and 

power requirements, though recent improvements in battery technology and electrification in 

households in LMICs has facilitated longer-term measurements in more recent studies (44). 

 

Direct personal exposure measurement using portable instruments provides a more accurate 

measure of human exposure, but the samplers are still bulky, burdensome for participants, and 

have limited battery life which limits long-term measurements beyond 1-3 days. This limits their 

usefulness for epidemiologic and intervention studies which are most interested in long-term 

(‘usual’) exposure measurements that are most relevant to health (1, 4, 58). In Chapter 3 of this 

thesis, I report on a study that measured personal exposure to PM2.5 for 787 participants for up 

to 4 days in two seasons, which is still only a snapshot for a time-varying exposure like air 

pollution but is still one of the largest and most comprehensive personal exposure studies 

conducted in a setting of household solid fuel burning.  

 
2.2.3 Methods for assigning PM2.5 exposure 

 
To estimate population exposures to PM2.5 at high spatial and temporal resolution, many 

studies generate continuous outdoor PM2.5 exposure surfaces at high spatial and/or temporal 

resolution through various statistical or other modeling approaches, including land-use 

regression modelling, satellite AOD, or a combination of multiple approaches, and assign these 
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estimated values to study participants  (59, 60). The simplest methods involve assigning air 

pollution exposures based on the concentrations recorded by the nearest stationary outdoor 

monitor (59). Regression models using spatial predictors trained on dense networks of ground 

level PM2.5 monitors are more computationally complex but are a commonly used population-

based exposure assessment tool for epidemiologic studies where participants’ exposures are 

assigned based on residential location (59, 60). These continuous surfaces can also utilize 

satellite AOD data or data collected through mobile monitoring. Satellite-derived PM2.5 is the 

most commonly used data source for estimating population exposures to air pollution for 

LMICs, for which spatially-resolved measurements of air pollution data are lacking (55, 61).  

 

In most urban settings, estimates of outdoor PM2.5, generated through these indirect methods 

are assigned as the exposure to pollution based on an individual’s city of residence, postal code, 

or home address. These group-level averages are logistically much easier than personal 

exposure assessment, but do not fully capture the between-individual variability in exposures 

that are driven by local and indoor sources and human behaviors (62). In settings of residential 

solid fuel burning, where indoor sources contribute substantially to personal exposure, 

measurement of outdoor PM2.5 does not accurately capture the differences in exposure 

between individual attributable to solid fuel burning. For example, in a recent systematic 

review of 140 personal exposure studies conducted in 40 countries, Lim et al. (2022) found that 

personal exposures to PM2.5 tended to be only slightly higher than outdoor PM2.5 in urban 

settings but where much higher in rural areas in LMICs (44). In rural areas in low-and low-

middle-income countries the ratio of personal exposure to ambient exposure was 1.5 (44). In 

upper-middle-income countries including China, this ratio was 5.1, meaning the use of ambient 

concentrations as a proxy for personal exposure would significantly underestimate actual 

exposure (44). 

 
2.3 Global Air Pollution Exposure  
 
The majority of the world’s population (~99%) lives in places where outdoor air pollution is 

estimated to exceed the WHO annual guideline for PM2.5 of 5 μg/m3 (63). The guideline was 
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lowered from 10 to 5 μg/m3 in 2021 due to convincing evidence of health effects at low 

exposures (64). Air pollution is a global concern but its risk it not equally distributed. 

Populations in LMICs face the greatest risk of exposure as outdoor air pollution is high and 

household solid fuel use contributes to high levels of household air pollution (1). 

Concentrations in cities in LMICs are on average 17 times higher than cities in the USA, Canada, 

and Europe (65). In 2019, for example, Beijing was estimated to have city-wide average annual 

population-weighted PM2.5 of 55 μg/m3, while Montreal was estimated to have an average of 9 

μg/m3 (35). 

 

Use of solid fuels is higher in LMICs and particularly common in sub-Saharan Africa and parts of 

Asia (1). While less than 1% of Canada’s population primarily uses solid fuel for cooking, nearly 

the entire population of the Central African Republic cooks with solid fuel (1). Household solid 

fuel burning is a major source of air pollution exposure. A systematic review of studies 

conducted from LMICs (43), found daily average PM2.5 personal exposure ranged from 40 to 

186 μg/m3 in settings of household solid fuel burning (65), which is considerably higher than the 

WHO’s ambient guidelines of 5 μg/m3 (annual) and 15 μg/m3 (24-hour) (4). Transitioning to 

cleaner burning fuels or stove technologies has been the focus of a number of initiatives to 

improve air quality and population health (66). 

 
2.3.1 Air pollution exposure from household solid fuel burning 

 
The use of solid fuels (e.g., coal, biomass, and dung) for cooking, heating, and other domestic 

tasks (e.g., water boiling, lighting) is a common source of global exposure to air pollution. An 

estimated 3.8 billion people burn solid fuel as their primary cooking fuel (1). Use of solid fuel is 

more prevalent in LMICs as these fuels are generally inexpensive or free, except for harvesting 

costs, and can be more readily available compared with electricity and gas which have higher 

cost and require a certain level of infrastructure for delivery (1, 67). This infrastructure is not 

consistently available in many resource-poor settings .There also can be traditional and cultural 

values attached to using traditional stoves and fuels which can further disincentivize transition 

to higher-cost clean fuel (67, 68). 
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The proportion of the world’s population primarily using solid fuel for cooking has decreased 

from 53% to 36% between 1990 and 2020,  driven largely by shifts in China and India where 

aggressive clean energy policies were implemented and where large segments of their 

populations moved into cities (1). Yet the absolute number of solid fuel users has remained 

relatively consistent due to population growth, particularly in low-income countries and rural 

areas of middle -income countries (1, 69). Thus, it is anticipated that household use of solid fuel 

will persist for many decades in the absence of major shifts in clean energy.   

 

Solid fuels are typically burned in open fires or rudimentary stoves with low energy efficiency, 

resulting in incomplete combustion and high emissions of air pollution into homes, 

communities, and the environment (70, 71). Household coal stoves have higher particle-phase 

emissions than coal burned in the industrial and power sectors. This is due to less efficient 

combustion and a lack of after-treatment controls, which has resulted in residential stove 

emission factors that are two orders of magnitude higher than industrial burners (70). A large 

multi-country study of household PM2.5 in 2541 households in Bangladesh, Chile, China, 

Colombia, India, Pakistan, Tanzania, and Zimbabwe found that households primarily cooking 

with gas or electric stoves had the lowest average concentrations (45 and 53 μg/m3, 

respectively) compared with households primarily using coal or wood (68 μg/m3 and 109 

μg/m3, respectively) (14). 

 

Household solid fuel burning is also estimated to be an important source of outdoor PM2.5. 

While the proportion of ambient PM2.5 from household solid fuel stoves varies regionally and 

seasonally (14), a 2008 study (72) estimated that household solid fuel stoves accounts for one-

fifth of the yearly global average (population weighted) of outdoor PM2.5.  

 
2.3.2 Outdoor and household air pollution in China 

 
Following its adoption of major economic reforms in the late 1970s, China’s rapid economic 

development and urbanization resulted in a large-scale expansion of its energy and industrial 
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sectors (73).  These changes increased economic development but also resulted in widespread 

environment impacts, which is illustrated by the development strategy of ‘pollute first, clean up 

later’ taken by the government over several decades (73, 74). High and increasing levels of air 

pollution were a ubiquitous environmental challenge across China by the early 1990s (75), 

which motivated the implementation of air quality guidelines in 1996. These were accompanied 

by some increases in air pollution monitoring but there was little enforcement (75, 76). China 

subsequently implemented a number of industrial pollution controls between 2000 and 2007 

(77) which slowed the increase in PM2.5 concentrations (77, 78), but the largest reductions 

occurred after 2013 when the government introduced an ambitious and multi-sectoral Air 

Pollution Prevention and Control Action Plan. The plan introduced new reduction targets for a 

number of pollutants including PM2.5 and rigorously implemented and enforced new air 

pollution controls including industrial emissions regulations and the phasing out of older 

industrial boilers, improving gasoline and diesel quality, and encouraging industrial and 

residential shifts from coal to gas and electricity (77). Ambient levels of PM2.5 in across China 

decrease by ~3 μg/m3 per year between 2013 and 2018 (77). Large reductions in PM2.5 (34-49%) 

were observed in the target regions of Beijing-Tianjin-Hebei, the Yangtze River Delta, the Pearl 

River Dealt, the Sichuan Basin, and the Xi’an during this same period (79). In 2019, China’s 

annual estimated population-weighted PM2.5 was 48 μg/m3 (1), which is close to the China 

standard of 35 μg/m3  but still well above the WHO annual guideline of 5 μg/m3 (63). 

 

Residential solid fuel burning for cooking, heating and other households tasks remains a 

common practice in China, especially in more rural and peri-urban areas, though the proportion 

of the Chinese households primarily using solid fuel has reduced considerably over the last 

decade, from 54% in 2010 to 36% in 2019 (1). This trend is partly attributable to rapid 

urbanization but also because rural and more remote areas of the country gained access to 

clean fuels through increasing incomes and advances in rural electrification and supply chains 

for LPG. Policies aimed at promoting household energy transition such as the coal-to-clean 

energy policy evaluated in Objectives 2 and 3 of this thesis have also played a role in clean 

energy transition (1). China decreased its residential coal consumption by about ~40% between 
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1990 and 2014 (80) though progress fluctuated with changes in price and availability impacting 

household coal use in northern China (80, 81). A multiprovincial cohort study (n=753) in China 

found that 35% of participants had transitioned from coal-to-clean energy for cooking whereas 

only 17% of households stopped use of coal for heating between the mid 1990s to the mid 

2010s (82). Uptake of clean fuels was not always paired with a suspension of solid fuel use, and 

complete transition to clean energy was more common for cooking than for heating. 

 
2.4 Cardiovascular Disease and Acute Myocardial Infarction  
 
Cardiovascular disease is the leading cause of death globally, responsible for an estimated 20 

million premature deaths in 2021 (44, 83), and is anticipated to increase as the global 

population ages (84). Cardiovascular disease refers to disease of the heart or blood vessels. 

Ischemic heart disease and stroke are the leading causes of cardiovascular death (83). Many 

cardiovascular diseases are the results of atherosclerosis, the accumulation of plaque in an 

individual’s arteries, which decreases the flow of blood and stiffen the walls of the blood vessel 

(85). This leads to inadequate blood flow and oxygen to the heart or brain. If blood flow to the 

heart is blocked or greatly inhibited, generally due to an atherosclerotic plaque rapture, a 

myocardial infarction event occurs.  

 

Acute myocardial infarction (AMI) is a type of acute coronary syndrome that occurs with 

sudden or short-term changes in blood flow to the heart. It accounts for one third of annual 

deaths in developed nations (86). Fatality rates from an AMI event are high, even in high-

income settings with access to health care. For example, a muti-country surveillance study in 

New South Wales (Australia), Ontario (Canada), New Zealand and England observed fatality 

rates of 19 to 37% for AMI events in 2015 (87). Between 2013 and 2019, fatal AMI events 

comprised 34% of all AMI events in Beijing, a relatively wealthy province where residents have 

access to some of the best cardiovascular hospitals in China (88). 

 

Efforts to reduce cardiovascular disease and related mortality include various primary and 

secondary prevention efforts. Primary prevention focused on lower risk factors associated with 
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onset of cardiovascular disease such as lifestyle (e.g. diet, smoking and inactivity) or 

environmental (e.g.  air pollution, low or high temperatures) risk factors. Secondary prevention 

is focused on reducing the adverse health impacts of the disease by limiting progression and 

damage. This can include lowering the same risk factors as in primary prevention, treatment 

(like statins or β-blocker), and early detection (89). These efforts are visible in the WHO’s Global 

Action Plan for the prevention and control of noncommunicable diseases: 2013-2020 (90) which 

aims to reduce the global burden from noncommunicable diseases. In China, its ambitious 

Healthy China 2030 Plan aims to reduce the 2015 rate of premature mortality from 

cardiovascular disease by 30% through primary prevention and enhanced screening and 

treatment (91, 92).  

 
2.4.1 The burden of cardiovascular disease and acute myocardial infarction in China 

 
Cardiovascular disease is the leading cause of death in China (93), accounting for an estimated 5 

million deaths (47% of deaths) in 2019 (94). Stroke (2.40 million deaths in 2019) and ischemic 

heart disease (2.06 million deaths in 2019) are the leading cause of cardiovascular disease 

deaths accounting for ~87% of China’s cardiovascular disease deaths in 2019 (94). While the 

crude mortality rates from cardiovascular disease are still increasing in China, its age-

standardized rates have decreased in recent years. For example, between 2015 and 2019 there 

was an increase of 7.4% in cardiovascular deaths but a 7.4% decrease in age-standardized death 

rates (95). 

 

Rates of cardiovascular disease are higher in males than female (388 and 341 per 100,000 

population in 2019, respectively) (95), with similar trends in ischemic heart disease and stroke, 

though these gender differences appear to be converging (96). Rural populations and those in 

northern China are also at higher risk (95, 97, 98), which are associated with geographic 

differences in dietary sodium intake, hypertension and hypertension-treated, smoking, and 

other behavioral factors (95). Rural areas in China experienced large increases in AMI mortality 

in the last decade with rates increasing from 11.3 per 100,00 population in 2005 to 74.7 in 2016 

(97), and are now higher than in urban areas.  
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The large and increasing burden of cardiovascular disease appears to be due to a number of 

factors. This includes the 1) aging population, 2) high prevalence of risk factors, and 3) 

suboptimal prevention. The rapid aging of the Chinese population is at least partly responsible 

for the increase in incidence of and mortality from cardiovascular disease over the last decade 

(99-101). The percentage of the Chinese population over 60 years old increased from 10.5% in 

2000 to 18.9% in 2021 (102). Rural areas are aging faster than the urban population, having a 

larger proportion of their populations above 60 years old (103). The high, and in some cases 

growing, prevalence of different lifestyle and environmental risk factors, such as obesity, high-

salt diets, smoking, air pollution, and inactivity have increased cardiovascular risk in the Chinese 

population (97). Suboptimal levels of prevention of cardiovascular events due to 

underdiagnosed and undertreatment for early stage of cardiovascular conditions (e.g. 

hypertension) and suboptimal use of secondary prevention drugs also contribute to these 

trends (98, 104). In a nationally-representative health survey in China, one-third of the study 

had hypertension but only ~30% of them had been diagnosed (105). Of those diagnosed with 

hypertension only about half had been treated and of those treated, only 30% had their 

hypertension under control (105).  

 
2.5 Estimated Global Burden of Disease from Air Pollution 
 
Strong and consistent evidence from many countries associate air pollution with a wide range 

of health impacts across the life course including adverse birth outcomes and an increased 

incidence of cardio-respiratory diseases and – more recently – neurological diseases (1, 4, 27, 

63). In 2019, air pollution (i.e., outdoor PM2.5 and O3 and indoor solid fuel use) was estimated to 

be the 4th leading contributor of premature death globally, responsible for an estimated 6.67 

million deaths (1). Of these, 2.2 million deaths were attributed to household air pollution from 

indoor solid fuel use.  

 

The estimated disease burden of air pollution is highly unequal, with the majority of estimated 

air pollution-related deaths occurring in LMICs (1, 106). This inequality persists after accounting 
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for population aging and size, with age-standardized deaths per 100,000 being 5 to 12 times 

higher in LMICs compared with high-income countries (1). Global disparities in the estimated air 

pollution-related disease burden is growing in many LMICs, including India and China, as their 

populations age and are more susceptible to the chronic disease impacts of exposure to air 

pollution (1, 84, 107). From 1990 to 2019, the rate of age-standardized deaths attributed to 

outdoor PM2.5 decreased in high-income countries (37 to 14 per 100,000 population) whereas 

deaths in LMICs increased during the same period. In low-and lower-middle income counties 

the rate of age-standardized deaths increased from 25 to 37 per 100,000 and 54 to 81 per 

100,000, respectively (1). Age-standardized, air pollution-attributable mortality rates have 

decreased slightly  in upper-middle income countries, but remain 4.5 times higher than in high-

income countries (1).  

 
2.5.1 Estimated burden of disease from air pollution in China 

 
In 2019, an estimated 1.4 million deaths in China were attributed to ambient PM2.5 and 0.4 

million were attributed to household solid fuel use (1). While the rate of age-standardized 

deaths has decreased in China from 96.4 per 100,000 population in 2010 to 81.3 per 100,000 

population in 2019, the absolute number of deaths due to ambient PM2.5 have increased over 

the same period with population growth. Forty-three percent of China’s air pollution-related 

deaths are attributed to cardiovascular disease and 24% of deaths are attributed to ischemic 

heart disease (95). 

 
2.6 Air Pollution, Household Solid Fuel Use, and Cardiovascular Disease  

Strong and consistent epidemiological and toxicological evidence indicates that exposure to 

PM2.5 can increase the risk of developing cardiovascular disease including stroke and ischemic 

heart disease (108-110). While the proportional cardiovascular disease risks of air pollution are 

much lower than those of behavioral risk factors (e.g., tobacco use and inactivity) the 

population impacts of air pollution are enormous given the number of people exposed (1, 111, 

112). Short-term (acute) exposure to elevated levels of PM2.5 is associated with an increased 

incidence of myocardial infarction and stroke (26, 109, 110) and long-term exposure to PM2.5 
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over many years can increase cardiovascular risk by an even larger magnitude (26, 113). Even in 

low pollution settings such as Canada, increases in PM2.5 from 5 and 10 μg/m3 are associated 

with progression in coronary calcification (114), increased risk of ischemic heart disease (115, 

116), and cardiovascular mortality (115). 

Most longitudinal studies of air pollution and cardiovascular disease were conducted in Europe 

and North America, though an increasing number of recent studies were conducted in China 

(117). In a recent systematic review of studies conducted in LMICs, long-term exposure to PM2.5 

was positively associated with cardiovascular mortality (effect estimate range: 0.2–6.1% per 

10 μg/m3) and with cardiovascular-related hospitalizations and emergency room visits (effect 

estimate range: 0.3–19.6% per 10 μg/m3) (117). 

Several studies separately evaluated the cardiovascular impacts of solid fuel stove use, which 

was measured through household surveys (5, 118-120). In China, use of solid fuel stoves was 

associated with a greater risk of cardiovascular mortality compared with gas users (range of 

hazard ratios (HRs): 1.20–1.29) (119). Most recently, a multi-country cohort study observed an 

increased risk of cardiovascular hospitalizations, fatal and non-fatal events, and cardiovascular 

mortality (range of HRs: 1.04–1.10) among users of solid fuel cookstoves (5). These studies are 

supported by studies of subclinical cardiovascular endpoints showing higher levels of 

inflammatory markers, blood pressure, and arterial stiffness in women using solid fuel stoves 

and with higher PM2.5 exposures (118, 121-123).  

Adding to this evidence are a growing number of randomized and non-randomized intervention 

studies that evaluated whether switching from solid fuel to less polluting electric or gas stoves 

could reduce cardiovascular risk. A 2019 systematic review concluded that shifting from 

biomass to gas stoves was associated with blood pressure reductions (124), though a more 

recent multi-country randomized trial observed a small increase in blood pressure among 

younger women assigned a gas stove compared with women who continued using solid fuel 

stoves (125). 
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The biological mechanisms connecting exposure to air pollution and cardiovascular disease risk 

are not entirely understood, through oxidative stress and inflammation are thought to play 

important roles (108, 126, 127). PM2.5 is small enough that it can translocate from the lungs 

into the circulatory system after inhalation. Exposure to PM2.5 can induce inflammatory and 

oxidative stress responses, which are underlying mechanisms for cardiovascular disease and 

other chronic diseases (26, 113). Short-term exposure to high air pollution can lead to acute 

ischaemic (when blood and therefore oxygen flow is restricted) events and therefore AMI 

events by increasing systolic blood pressure leading to plaque ruptures in individuals already at 

risk of AMI. Long-term exposure increases the probability of a rupture by leading to the plaque 

build-up and affecting stability of the plaque that is deposited.  

 
2.7 A Brief History of Household Energy Policies and Programs 
 
A number of countries including China, India, Ecuador, and Rwanda have implemented clean 

energy policies to reduce air pollution and health impacts (128). The policies vary considerably 

in the technology and/or fuel being promoted and implementation, but generally have the 

shared goal of motivating a shift from traditional solid fuel stoves to more efficient household 

stoves (e.g., improved combustion solid fuel stoves) or to cleaner burning fuels (e.g. gas and 

electricity). Clean energy transition has implications beyond pollution and health, with potential 

co-benefits including less time spent harvesting fuel (a burden often borne by women and girls) 

and reductions in deforestation and biodiversity loss from solid fuel extraction (129, 130).  

 

Early clean energy programs in the 1980s and 1990s focused on the implementation of more 

efficient versions of solid fuel stoves, usually distributed through development projects. The 

stoves were primarily designed to burn less wood and thus yield reductions in fuelwood 

extraction from local forests (131). For example, in response to widespread deforestation and 

rural biomass shortages in China in the 1980s, the Chinese government organized the world’s 

largest publicly-financed initiative to improve stove function -- the National Improved Stove 

Program (NISP). The program provided over 130 million rural households with more efficient 

biomass stoves and, later, new coal stoves. The new stoves were generally well-used and liked 
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by households (132). Many rural Chinese households still use versions of these biomass stoves 

at present. While the biomass stoves did provide a small reduction in household PM2.5 

compared with open fires, they still emitted high levels of pollution and the new coal stoves 

actually increased emissions (133). In other countries, the improved biomass stoves were 

quickly abandoned by many households because they were not sufficiently robust for daily use, 

did not sufficient meet cooking or heating needs, or required households to do additional 

preparation like chop fuelwood into very small pieces (134). 

 

More recent energy policies promote cleaner-burning fuels (e.g., gas and electric-fueled stove 

technologies).  For example, the Ecuadorian Programa de Cocción Eficiente aims to transition 

3.5 million households from cooking with LPG to electric induction stoves by 2023 through a 

voluntary financial program (128) and Rwanda’s Energy Sector Strategic Plan includes plans to 

provide electricity to over 2 million households along with various clean cooking options (128, 

135). Some of these energy policies include regulatory elements, such as banning use of solid 

fuel; awareness campaign; financial incentives; and infrastructure investments (e.g. increasing 

the electric grid capacity).  

 

The adoption of these policies has been mixed. In Ecuador, the policy failed to recruit its target 

of 3.5 million households by 2018, recruiting just 740,000 households (136). Satisfaction with 

the new stoves was also low (136). The Ujjwala program in India has promoted LPG in low-

income households in rural India through financial support to help cover the LPG connection 

(LPG stove and registration) (137). This program has led to an increase in households with an 

LPG connection but not a large increase in LPG sales suggesting continued use of solid fuels 

(137). LPG has a positive perception and is widely used in India but cost is still a limiting factor 

in its adoption and exclusive and long-term use (138). 

 
2.8 The Beijing Coal-to-Clean Energy Program  
 
Recognizing the population health impacts of air pollution, the national and provincial-level 

governments in China implemented several policies across multiple sectors that were aimed at 
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reducing air pollution, most ambitiously after 2013, as described in Section 2.3.2. Reducing coal 

burning in the industrial and residential (household) sectors has been a large component of 

these action plans (Table 1) (1, 66, 139).   

 
Table 1: Recent policies aimed at reducing residential coal burning affecting Beijing 

Policy Year enacted Aim 

Air Pollution Prevention 
and Control Action Plan 

2013 Created high-quality coal distribution 
centers and increased the accessibility of 
natural gas and electricity in rural areas 
through infrastructure improvements 

Strengthening Measures 
for Jing-Jin-Ji Air 
Pollution Prevention 
(2016–2017) 

2016 Banned coal in defined areas and aimed to 
eliminate coal use in the plains region by 
2017 

Work Plan for the 
Control of Greenhouse 
Gas Emissions during the 
13th Five-Year Period 

2016 Accelerated the expansion of the 
residential coal-to-clean energy policy to 
more rural and remote areas  

Work Plan for Air 
Pollution Prevention and 
Control in Jing-Jin-Ji and 
Surrounding Areas in 
2017 

2017 Targeted 50,000–100,000 peri-urban and 
rural households to transition from coal to 
gas or electric powered heaters. New 
residential homes had to accommodate 
clean fuel use 

Notice of the National 
Energy Administration 
(NEA) on the 
Implementation of the 
Central Financial Support 
for the Winter Clean 
Heating in Northern 
Region 

2017 Provided financial support for 
municipalities to assist households in 
starting to use clean heating fuels through 
subsidies for new stoves and electricity 

Action Plan of 
Comprehensive 
Management of Air 
Pollution for Jing-Jin-Ji 
and Surrounding Areas in 
the Autumn and Winter 
of 2017–2018 

2017 Targeted 3 million peri-urban and rural 
households to transition from coal to 
electric and/or gas heaters by 2017 and 
promoted higher-quality coal in areas that 
could not participate in the coal-to-clean 
energy policy 

Clean Warm Winter 
Planning in the Northern 
Region (2017–2021) 

2017 Set clean energy targets for northern 
China. By 2019 and 2021, 50% and 70%, 
respectively, of households should 
transition to gas or electric heaters 
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Notice on Expanding the 
Central Financial Support 
for the Winter Clean 
Heating Pilot City in the 
Northern Region 

2018 Provides financial support to 
municipalities to support residential coal-
to-clean energy transition through 
subsidies for new stoves and electricity 

Three-year action plan 
for Winning the Blue-Sky 
Defense War 

2018 Transition to clean energy should be 
completed earlier (by 2020) and proposes 
enforcement of use of high quality coal in 
areas not using gas and electric heaters 

Action Plan of 
Comprehensive 
Management of Air 
Pollution for Jing-Jin-Ji 
and Surrounding Areas in 
the Autumn and Winter 
of 2018–2019 

2018 Planning for continued use of gas and 
electric heaters amidst anticipated gas 
shortages while avoiding to inadequate 
heating and enforces bans on low-quality 
coal  

Note: This table is adapted from a table in Wu et al. (2020) (139) 

 
Starting in 2016, the Beijing government began the large-scale transition of rural and peri-urban 

households from coal-to-clean burning fuels including electricity and gas (140)1, which was in 

line with national and regional mandates. The coal-to-clean energy policy was first 

implemented in areas with better infrastructure including updated electrical grids and gas lines. 

The policy banned the use of coal and to motivate this transition, the government instituted a 

subsidy program for the purchase and installation of electric or natural gas-powered heaters 

and provided rural areas with access to subsidized electricity prices (same as urban users) and 

subsidized gas prices for up to three years (140, 141). The overarching goal of this transition 

was to reduce air pollution while meeting the indoor heating demands of the rural populations. 

A further benefit of these programs may be an increase in indoor household temperature 

during winter (141) though other studies indicate the this benefit is limited to wealthier 

households (139).  

 
 
 
 

 
1 This is outlined in the policy documents: Beijing 2016 Implementation Plan for “Coal to Clean Energy and Coal 

Reduction and Replacement” in Rural Areas and Beijing 2016−2020 Work Plan for Accelerating the Promotion of 

Clean Energy Replacement of Civilian Coal 
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2.9 The Need for Impact Evaluation of Household Energy Policies   
 
Clean energy policies and interventions are generally assumed to improve environment and 

health, but empirical assessments are rare. Most evaluations are limited to randomized trials or 

non-randomized (but investigator-driven) intervention evaluations that include several hundred 

households (142). While improved biomass stoves and clean fuel have generally resulted in 

some indoor air quality improvement (16, 143, 144) the health benefits are less clear. A recent 

multi-country randomized trial found an increase in gestational blood pressure (systolic: 0.69 

mmHg; diastolic: 0.62 mmHg) in women in household receiving an LPG stove compared with 

women using traditional biomass stoves (125), despite a large decrease in median 24-h 

personal exposure to PM2.5 among women in the intervention arm (from 84 to 24 g/m3).  

 

Impact assessments (also referred to as accountability studies) are empirical studies that 

estimate the impact of an invention by comparing the air quality or health outcome from pre 

and post invention periods and/or control groups. When well-conducted, these studies can 

provide rigorous evidence of the effectiveness of an intervention and are the closest to a 

controlled experimental study. Systematic reviews by Burns et al. (2020) and Rich (2017) and 

my own search of the literature identified only a handful of impact assessments that empirically 

assessed the environmental and health impacts of such policies (45, 145), nearly all of which 

were conducted in high-income countries.  

 

Most of these studies were evaluating residential clean energy policies in high-income countries 

(Table 2), including a series of coal bans in Ireland in the 1990s and 2000s (45, 146), a wood-

burning stove exchange program in Central Launceston, Australia (147), an air quality-

dependent wood burning ban in the San Joaquin Valley Air Basin, USA (148), a ban on solid fuel 

burners and open fires paired with a residential clean heater replacement program in 

Christchurch and Timaru, New Zealand (149), and a policy subsidizing LPG in Ecuador (150). 

These studies compared the pre and post levels of air pollution and/or health outcomes. While 

these studies generally provide evidence of air quality improvements, the evidence for health 

benefits of the policies was limited. 
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Objectives 2 and 3 of my thesis evaluate the air quality and cardiovascular impacts of the coal-

to-clean energy program in Beijing. Large-scale clean energy policies like this one in Beijing 

provide the opportunity for evaluation to better understand whether these policies are 

successful in achieving their intended benefits.  
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Table 2: Large-scale residential clean energy policies and their effects on air pollution and health 

Location Population and 
time period 

Invention Outcomes Results 

Ireland 
  Dockery et al. (2013) 

Populations of 
Dublin and 11 
other Irish cities 
from 1981 to 
2004 

Coal ban • Black smoke and total 
gaseous acidity 

• All-cause mortality 

• Cardiovascular mortality 

• Respiratory mortality 

Black smoke concentrations 
decreased by 45-70% but there was 
no observable change in total gaseous 
acidity 
 
No reduction was found in all-cause 
or cardiovascular mortality 
 
A 17% reduction was seen in 
respiratory mortality with the ban in 
Dublin but this impact was much 
reduced in other cities that entered 
the ban 

Central 
Launceston, 
Australia 
  Johnston et al. 
(2013) 

Population of 
Launceston from 
1994-2000 (pre) 
and 2001-2007 
(post) 

Wood-burning 
stove exchange 
program 

• PM10 

• All-cause mortality 

• Cardiovascular mortality 

• Respiratory mortality 

Mean daily wintertime PM10 
concentrations decreased by ~40% 
 
Large and significant reduction in all-
cause, cardiovascular, and respiratory 
were only seen in males with 
reductions of -11%, 18%, and 23% 
respectively 

Christchurch and 
Timaru, New 
Zealand (149) 
  Scott and Scarrott 
(2011) 

Populations in 
Christchurch and 
Timar from 2001 
to 2009 

Ban on solid fuel 
burners and open 
fires paired with a 
residential clean 
heater 
replacement 
program 

• PM10 
 

35% and 26% decrease in winter 
mean and median PM10 respectively 
in Christchurch  
 
11% and 3% decrease in winter mean 
and median PM10 respectively in 
Timaru 
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San Joaquin 
Valley Air Basin, 
USA (148) 
  Yap and Garcia 
(2015) 

   

Adults living in 
the San Joaquin 
Valley Air Basin 
divided into two 
age groups 45–
64y and 65y+ 
from 2000-2003 
(pre) and 2003-
2006 (post) 

Air quality-
dependent wood 
burning ban 

• PM2.5 and PM10 

• Cardiovascular disease 
hospital admissions 

• Ischemic heart disease 
hospital admissions 

• Chronic obstructive 
pulmonary disease (COPD) 
hospital admissions 

Decrease of 12% and 8% in PM2.5 and 
PM10 

 
Hospital admissions for cardiovascular 
disease and ischemic heart disease 
decreased by 7% and 16% in adults 
65y+ 
 
There was no clear change in COPD 
admissions or cardiovascular disease 
and ischemic heart disease hospital 
admissions for adults aged 45-64y 

Ecuador (150) 
  Gould et al. (2023) 

Nationally 
population  
divided in 167 
cantons across 
four time 
periods: 1988-
1992, 1999-2003, 
2008-2012, and 
2015-2019  

Subsidized LPG 
program 

• Under-5 lower 
respiratory infection 
mortality 

20% decrease in under-5 lower 
respiratory infection mortality during 
study period (28 to 7 per 100,000) 
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Chapter 3: Objective 1 
  
3.1 Preface 
 
This chapter contains the first objective of my thesis. This multi-provincial study examines 1) 

the seasonal variation and levels of personal exposure in men and women living in rural and 

peri-urban China, 2) the within- and between-individual variability in daily personal exposure to 

air pollution, and 3) the associations of socio-demographic factors and different indoor and 

outdoor sources, like residual fuel use and outdoor air quality, with personal exposure. In this 

study, we conducted repeated measurements of daily personal exposure to PM2.5 and black 

carbon in 787 men and women (ages 40–79) living in rural and peri-urban villages in northern 

(Beijing and Shanxi) and southern (Guangxi) China, with up to 4 days of repeated measures for 

each participant. We simultaneously measured outdoor PM2.5 and collected questionnaire data 

on sociodemographic characteristics and indoor pollution sources including tobacco smoking 

and solid fuel stove use. These data were used in a series of linear mixed effect models to 

estimate the within- and between-individual variability in exposure and the variables associated 

with both variability and levels of exposure. 

 

This objective adds to the theme of this thesis showing the challenge of measuring exposure to 

household air pollution for epidemiologic and intervention studies given the high within-

individual variability in daily exposure. It provides an understanding of the impact of residual 

fuel use type on personal exposure to air pollution in the Chinese context of high outdoor air 

pollution and high smoking rates. Estimating the benefits of different air pollution mitigation 

strategies requires an understanding of the source contributors to personal exposure as the air 

quality benefits of clean energy transition may be masked by the large contributions of other 

proximal air pollution sources. This manuscript is peer-reviewed and published in Environment 

International.  

Citation: Lee M, Carter E, Yan L, Chan Q, Elliott P, Ezzati M, Kelly F, Schauer JJ, Wu Y, Yang X, 
Zhao L, Baumgartner J. Determinants of personal exposure to PM2.5 and black carbon in Chinese 
adults: A repeated-measures study in villages using solid fuel energy. Environ Int. 2021 
Jan;146:106297. doi: 10.1016/j.envint.2020.106297. Epub 2020 Dec 8. PMID: 33395942; 
PMCID: PMC7762838. 
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3.2 Determinants of Personal Exposure to PM2.5 and Black Carbon in Chinese Adults: A 
Repeated-Measures Study in Villages Using Solid Fuel Energy  
 
Abstract  
 
Exposure to air pollution is a leading health risk factor. The variance components and 

contributions of indoor versus outdoor source determinants of personal exposure to air 

pollution are poorly understood, especially in settings of household solid fuel use. We 

conducted a panel study with up to 4 days of repeated measures of integrated gravimetric 

personal exposure to PM2.5 and black carbon in 787 men and women (ages 40-79) living in peri-

urban villages in northern (Beijing and Shanxi) and southern (Guangxi) China. We 

simultaneously measured outdoor PM2.5 and collected questionnaire data on sociodemographic 

characteristics and indoor pollution sources including tobacco smoking and solid fuel stove use. 

We obtained over 2000 days of personal exposure monitoring which showed higher exposures 

in the heating season (geometric mean (GM): 108 versus 65 µg/m3 in the non-heating season 

for PM2.5) and among northern participants (GM: 90 versus 59 µg/m3 in southern China in the 

non-heating season for PM2.5). We used mixed-effects models to estimate within- and between-

participant variance components and to assess the determinants of exposures. Within-

participant variance in exposure dominated the total variability (68-95%). Outdoor PM2.5 was 

the dominant variable for explaining within-participant variance in exposure to PM2.5 (16%). 

Household fuel use (PM2.5: 8%; black carbon: 10%) and smoking status (PM2.5: 27%; black 

carbon: 5%) explained the most between-participant variance. Indoor sources (solid fuel stoves, 

tobacco smoking) were associated with 13-30% higher exposures to air pollution and each 10 

µg/m3 increase in outdoor PM2.5 was associated with 6-8% higher exposure. Our findings 

indicate that repeated measurements of daily exposure are likely needed to capture longer-

term exposures in settings of household solid fuel use, even within a single season, and that 

reducing air pollution from both outdoor and indoor sources is likely needed to achieve 

measurable reductions in exposures to air pollution.    
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Introduction 
 
Air pollution is a leading global concern for human health (66). Exposure to fine particulate 

matter (PM2.5) air pollution is independently associated with the development of cardio-

respiratory diseases and other adverse health outcomes throughout the life course including 

low birth weight and neurocognitive outcomes (66, 151). Air pollution ranks as the 5th leading 

risk factor for global mortality, responsible for an estimated 4.9 million premature deaths in 

2017 (66). Low- and middle-income countries comprise a substantial share of this burden, 

accounting for over 90% of PM2.5-attributable deaths (66). 

 

The source contributors to air pollution are diverse, even in rural and peri-urban settings (152). 

Outdoor emissions sources like traffic, industry, and agricultural burning are large contributors 

to PM2.5 in these settings (33, 34). Indoor sources like tobacco smoking and household use of 

solid fuel stoves (used in 47% of homes globally for cooking) emit high levels of PM2.5 into 

homes and communities (66). The relative contribution of indoor versus outdoor sources to 

exposures to PM2.5 is poorly understood, particularly in low and middle-income countries, in 

large part due to the relatively few studies with measured personal exposures (43). 

Understanding the determinants of exposure has important implications for air pollution 

interventions and policies. Recent intervention studies, for example, hypothesized that 

pollution from traffic and poor outdoor air quality limited the effectiveness of household stove 

interventions in measurably reducing exposures to PM2.5 (16, 152-155).  

 

Although an increasing number of studies have measured personal exposures to PM2.5 in 

settings of solid fuel burning (7), very few have included repeated measures of exposure (8-12). 

Instead, most studies involved a single short-term (24- or 48-h) measurement (43) and focused 

on PM2.5 mass but were unable to evaluate specific components of PM that could indicate its 

toxicity (e.g., black carbon). This limits our understanding of how to best assess ‘usual’ exposure 

to air pollution in settings of household solid fuel use, which is the metric most relevant for 

epidemiologic and intervention studies. There is also a lack of air pollution exposure data for 

important population subgroups. Men, for example, account for nearly half of the modelled 
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disease burden attributable to household air pollution (156), but few studies have measured 

men’s exposure to PM2.5 in a setting where solid fuel stoves were used (11, 13, 14). 

Measurements of PM2.5 exposures in exclusive clean fuel users relative to users of solid fuel in 

the same setting are rare, which is important for more realistically estimating the potential air 

quality and health benefits of clean energy interventions (7, 14).  

 

Leveraging 2246 measurement days of personal exposure to PM2.5 and black carbon from 787 

participants enrolled in the INTERMAP China Prospective (ICP) study, this study aims to 1) 

characterize the levels and seasonal patterns of air pollution exposures for men and women 

living in northern and southern China, 2) describe the variability in exposures within- and 

between-participants, and 3) evaluate the contribution of indoor and outdoor sources of air 

pollution to personal exposures.  

 
Methods 
 
Study design and population 
 
The ICP study design and population are described in detail elsewhere (157). In brief, 787 adults 

(ages 40-79, 55% female) from 17 villages in three provinces in northern (Beijing, Shanxi) and 

southern (Guangxi) China were enrolled into the study in 2015 and 2016 (Figure S1). These 

regions were selected for study because of their diversity in geography and environmental risk 

factors for disease, including household fuel use. Coal fuel is commonly used for residential 

heating in northern China and is a large contributor to household and outdoor air pollution (34, 

66), whereas the southern province of Guangxi is sub-tropical and does not have a distinct 

heating season. Biomass (i.e., wood and crop residues) stoves are used for cooking in all three 

sites, often alongside low-polluting electric and gas-powered stoves. Detailed information on 

household energy use practices in our study homes is published elsewhere (82). 

 

Most ICP study participants were originally enrolled into the International Study of 

Macro/Micronutrients and Blood Pressure (INTERMAP), a cross-sectional study which randomly 

selected households in the study villages between 1995 and 1997, and then randomly selected 
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one adult from each household to participate. We re-enrolled 575 of the 680 surviving 

INTERMAP participants (85% participation rate) into the ICP study (ages 60-79; 53% female), in 

addition to 212 adults (88% participate rate) ages 40-59 that were randomly selected from the 

same villages to evaluate cohort differences in environmental risk factors over time. We 

obtained written informed consent from all participants. Ethical approvals were obtained from 

all investigator institutions (McGill: #A08-M37-16B; Fu Wai Hospital: #2015–650; Imperial: 

#15IC3095, Peking: #00001052-15017, Tsinghua: #20140077).  

 
Data collection  
 
Measurement campaigns were conducted in Shanxi in August 2015 and November 2015; 

Beijing in December 2015 and September 2016; and in Guangxi in November 2016. We 

conducted two campaigns in the northern sites to capture the heating and non-heating 

seasons, which can impact household energy use and air pollution exposures (43). 

 

For data collection, participants travelled to clinics that were centrally located in their villages, 

typically by foot or electric bicycle. Trained staff carried out the study measurements using the 

same standardized procedures across all sites (157). At the first clinic visit in each campaign, 

participants were fitted with personal air monitors and completed questionnaires on individual 

and household characteristics including energy use. Participants returned to the clinic after 24-

h to exchange the air monitors for new ones and returned again after a second 24-h period to 

return their monitors. Staff conducted home visits if participants was unable to travel to the 

clinics. Outdoor air quality and ambient temperature were measured throughout the 

campaigns. Descriptions of these study measurements are summarized below and detailed 

information is published elsewhere (157).  

 
          Personal exposure to PM2.5  
 
We obtained 2246 measurements of integrated 24-h exposure to PM2.5 using Harvard Personal 

Exposure Monitors (H-PEM) (Mesa Labs, USA) that housed ZefluorTM 37mm PTFE filters (Pall Life 

Sciences, USA) and were attached downstream from a personal sampling pumps (Apex Pro and 
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TUFF™, Casella Inc; USA) operated at 1.8 L/min (158). Air monitors were placed inside 

waistpacks that participants were asked to wear at all times possible and to keep within 2 m 

while sleeping, sitting, or bathing (Figure S2). In a subsample of exposure measurements 

(n=1595, 76% of all measurements), we added a pedometer (HJ-321 Tri-Axis, Omron; Japan) to 

the waistpack to monitor compliance in wearing them. Participants with 24-h step counts of 

<500 steps were considered potentially non-compliant in wearing the air monitor on that day 

(n=47, 3%). 

 

Pump flow rates were measured at the start and end of each sampling period using a 

rotameter that was field calibrated at the beginning and middle of each measurement 

campaign using a primary gas flow standard (mini-BUCK Calibrator M-5; A.P. Buck Inc.; Orlando, 

FL, USA). For quality control and to address potential contamination, we collected ~7% field 

blank filters that were placed inside identical H-PEMs and cyclones, subject to the same field 

conditions, and analyzed using the same protocol as the filter samples.   

 
          Outdoor PM2.5  
 
We obtained real-time outdoor PM2.5 measurements for our study period from nearby 

government air monitoring stations equipped with reference-quality monitors (i.e., tapered 

element oscillating microbalance (TEOM); (http://beijingair.sinaapp.com). Hourly data from all 

stations within 50 km of the village centers were inverse distance weighted (power function of 

1) to calculate a mean hourly concentration for each study village. We then calculated 24-h 

average outdoor PM2.5 values that corresponded with the date and time of the personal 24-h 

exposure measurements. Personal exposure measurements generally started at 10:00am and 

ended at 10:00am of the next day so outdoor PM2.5 averages ran from 10:00am to 10:00am of 

the next day. We also measured village-level integrated gravimetric PM2.5 during one data 

collection campaign at each study site. The gravimetric monitors were positioned at least 4 

meters from the ground in a location that was 1) central to each village, 2) at least 30 meters 

from a household chimney, and 3) at least 100 meters from other PM2.5 emission sources 

including local industry and major roadways. We placed PTFE filters into either H-PEMs or 

http://beijingair.sinaapp.com/
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cyclones (Mesa Laboratories, USA) that were attached to sampling pumps with flow rates of 1.8 

or 3.5 lpm, respectively. The filters were collected every 24-h and replaced with new ones. 

Village-level measurements of PM2.5 were highly correlated with values estimated from 

government sensors on the same day (n=42 days of paired observations; Pearson r=0.87; RMSE 

= 45.4) (Figure S3). To quantify outdoor PM2.5, we used the village-level measurements when 

available (34% of study days) and used the estimated PM2.5 values for the remaining days. 

 
          Laboratory analysis of PTFE filters for PM2.5 and black carbon 
 
Gravimetric analysis was used to determine the PM2.5 mass on filter samples and blanks. 

Following at least 24-h of conditioning in a temperature and humidity-controlled environment 

at the Wisconsin State Hygiene Laboratory (Madison, WI), the filters were weighed in duplicate 

using a microbalance (MX-5; Mettler-Toledo, Columbus, OH, USA). If the difference between 

the first two weights exceeded 15µg, a third measurement was obtained, and the two closest 

weights were averaged for statistical analysis. The microbalance’s zero and span were checked 

after every batch of 10 filters. Pre-sampling filter weights were subtracted from the post-

sampling weights. The filter mass (µg) was divided by the volume of air (m3) pulled through the 

filter during sampling to calculate the PM2.5 concentration.  

 

Black carbon was measured on filters using an Aethalometer (SootScanTM Model OT21 

Transmissometer, Magee Scientific; USA). Black carbon is a component of PM2.5 and a product 

of incomplete combustion that may more strongly associated with adverse health outcomes 

than the mass of PM2.5 (30, 159). The optical method estimates black carbon by evaluating the 

attenuation of light through the sample and blank PTFE filters compared with that of a 

reference filter. To equate the optical black carbon measurements to elemental carbon, we 

applied the U.S. EPA sigma of 4.2 and used an empirical correction factor based on the black 

carbon-elemental carbon associations in previous air pollution campaigns in rural China that 

used the same filter media (123). Specifically, we applied the linear correction factor of 0.092 

with adjusted observed values ranging from 0.0085 – 11.4 µg/m3. The corrected black carbon 

mass loadings (µg/cm2) were converted to concentration (µg/m3) by multiplying the mass 
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loading (µg/cm2) by the area of each filter (9.03 cm2), and then dividing the mass by the volume 

of air sampled (m3). 

 

Season-specific blank values for PM2.5 and black carbon were calculated for each study site and 

subtracted from the net filter weights and attenuated infrared values, respectively. We 

replaced negative blank-corrected values (PM2.5: n=15 filters, <0.01%; black carbon: n=33 

filters, <1%) by randomly assigning a value between 0 and half the limit of detection, which was 

4 µg for PM2.5 and 0.22 µg/m3 for black carbon. We excluded filters from the statistical analysis 

if they were damaged (n=3 for PM2.5 and n=1 for black carbon; <0.01% of filter samples); could 

not be matched to a participant due to data entry errors (n=21; <0.01%); had net weights that 

exceeded a realistic 24-h mass, indicating infiltration of larger-sized particles onto the filter, 

filters being switched, or unseen filter damage (n=7; <0.01%); or failed to capture at least 10-h 

of the 24-hr target due to pump failure (n=108; 4.8%). An unrealistic weight was defined as net 

weights less than 0 µg or over 2500 µg. Filters exceeding these weights were flagged and 

assessed for any abnormalities (e.g., filter damage or visible dust). For the main analysis, we 

used a 10-h cut-off for completeness because this time period captured most of the daytime 

hours. Of the 148 samples that ran for less than 23 hours but more than 10 hours, 70 ran for 10 

to 19.2 hours (19.2 hours = 80% of the 24-h sampling time), and 78 samples ran between 19.2 

and 23 hours. The remaining filter-based measurements were considered ‘complete’ and 

included in the statistical analysis.  

 
          Meteorological data 
 
We obtained real-time temperature and dew point temperature data from the U.S. National 

Oceanic and Atmospheric Administration (https://www.ncdc.noaa.gov/isd/products). Relative 

humidity was estimated based on the temperature and dew point temperature the using the 

weathermetrics package in R (160). We used inverse distance weighting (power function of 1) 

from all meteorological stations within 100 km of each study village to estimate the daily 

temperature and relative humidity. To evaluate the accuracy to these data, we compared them 

to the outdoor temperatures measured during the participants clinic visits using local 

https://www.ncdc.noaa.gov/isd/products
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meteorological stations (157) (n=99 days; Pearson r=0.97; RMSE = 4.5) (Figure S4). We used the 

estimated temperatures for statistical analysis because they were highly correlated with 

measured temperature and also allowed us to more accurately time-match meteorological data 

with air pollution exposure measurements.  

 
          Questionnaires   
 
Staff administered questionnaires in Mandarin-Chinese to collect information on variables 

potentially related to energy use and exposures to air pollution including age, gender, ethnicity, 

education, occupation, marital status, tobacco smoking, and household income. We drew 

questions from the INTERMAP study that were re-tested with local residents to ensure that 

questions were being interpreted as intended (157). We also collected comprehensive 

information on household fuels, energy devices, and ventilation using an image-based 

questionnaire that included pictures of all stoves and fuels used in the region. Detailed 

information on the energy questionnaire is provided elsewhere (82). Briefly, respondents 

indicated whether they were currently using a given energy device or fuel and, if so, described 

the frequency and purpose of use. Energy devices that burned coal, wood, and/or agricultural 

residues were categorized as ‘solid fuel’ stoves, while stoves powered by gas or electricity were 

considered ‘clean fuel’ stoves. All devices were classified into one of the following categories: 

solid fuel cookstoves, clean fuel cookstoves, solid fuel heating stoves, and clean fuel heating 

stove. Participants were categorized as ‘exclusive clean cooking fuel’ users if they reported 

using clean fuel regularly and reported no use or rare use (i.e., holidays or when hosting guests) 

of solid fuel. The remaining participants were classified as users of solid fuel for cooking. Solid 

fuel stove use was further divided into any indoor use or only outdoor use. Heating fuel 

included the same categories as cooking with the addition of a fourth category to indicate no 

heating or cooling-specific device in the home.  For cooking fuel, outdoor-only solid fuel use and 

indoor solid fuel use were combined into a single category due to a small sample size. 

 
Statistical analysis 
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Air pollution summary statistics were calculated by season, study site, gender, and energy use. 

Pollution exposures exhibited positive skewness, whereas the corresponding natural log-

transformed values were approximately normally distributed and were thus used for statistical 

analyses. We evaluated whether measurement sequence may have systematically impacted 

exposure using scatterplots and paired t-tests that compared the first and second 

measurement day for each season and site.   

 
          Estimating with-individual and between-individual exposure variability  
 
We used a series of mixed-effects regression models to leverage the repeated measures of air 

pollution and partition the total variance in exposure into its within-individual and between-

individual components. We started with the following base (intercept-only) model: 

 
ln(𝑌𝑖𝑘) = 𝛽0 + 𝑏𝑖 + 𝜀𝑖𝑘  

 
where ln(Yik) is the kth measurement of log-transformed pollution (PM2.5 or black carbon) for 

participant i, bi is the participant random effect and ik is the remaining error with variance 

components of σb
2 and σ

2, respectively. These can be roughly interpreted as the variance 

between-individuals (σb
2) and the variance within-individuals (σ

2). We estimated the intraclass 

correlation coefficient (ICC; i.e., the proportion of total variability in exposure attributed to 

between-individual differences) by: σb
2/(σb

2+ σ
2). These models assume that the bi and the 𝜀𝑖𝑘 

are independent and normally distributed with variances of σb
2 and σ

2, respectively, and have a 

compound symmetry correlation structure.  

 
          Explaining variability in exposure to PM2.5 and black carbon 
 
We evaluated the proportion of each variance component explained by indoor and outdoor 

sources of air pollution and by other socio-demographic and environmental variables by 

comparing the base (intercept-only) model to a set of models containing an increasing number 

of independent variables. We evaluated variables that were determined a priori to be 

associated with exposure to air pollution in past studies (see variables listed in Table 1) (12, 

161). We imputed missing data on yearly income for 93 participants (12%) using multiple 
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imputation with the MICE package in R (162). Separate models were conducted for exposure to 

PM2.5 and black carbon. 

 

To assess the models’ explanatory power and the fit of data, the proportion of within-individual 

variance explained (R2
within) was calculated by subtracting from 1 the ratio of residual within-

individual variance under each alternative mixed model to that of the base model, as described 

elsewhere Xu (163). Between-individual variance explained (R2
between) was calculated in an 

analogous way. To evaluate the prediction accuracy of these models, we excluded a random 

20% subsample of observations to create the appearance of missing data. The remaining data 

were used to estimate the full model with all covariates and then predict the excluded 

observations. We ran each model 100 times, each run dropping a different random 20% subset 

of the data. For each model run, we calculated the root mean square error (RMSE) and 

Spearman correlation between predicted and measured exposures. The final estimates are the 

averages of 100 model runs. 

 

The linear mixed-effects regression models were conducted in R (R Core Team, 2013, version 

3.4.2) using the lme function from the nlme package (164).  Collinearity among the independent 

variables was investigated using Pearson correlation matrices and variance inflation factors, 

and the assumptions of normality of residual errors and homoscedasticity were evaluated by 

graphical analysis of the residuals. To assess assumptions of linearity for continuous 

independent variables, we generated response functions using natural cubic spline models with 

2 and 3 degrees of freedom (165), (166). All response functions were consistent with a linear 

association and thus replaced by linear functions. Marginal and conditional R2 values (167) were 

calculated to compare the results from the PM2.5 and black carbon prediction models. 

 

We conducted a number of sensitivity analyses for the PM2.5 modelling. We conducted separate 

models by gender and season and also limited the analysis to exposure observations where the 

measurement duration was within ±10% of the 24-h target (n=1969; 95% of observations). To 

assess whether use of outdoor PM2.5 from the government monitors versus village-level 
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measurements impacted our results, we restricted the regression analyses to exposure 

measurements taken on the same day as village-level outdoor PM2.5 (n=619; 30% of 

observations), and compared those results to models including outdoor PM2.5 from government 

monitors. To assess potential non-compliance in wearing the personal samplers, we restricted 

the regression analyses to samples with associated step counts greater than 500 steps. 

 
Results 
 
Characteristic of the study participants  
 
Participants ranged in age from 40 to 79 years (mean: 63) and were 55% female (Table 1). Most 

participants in the north (Beijing, Shanxi) were subsistence farmers (76%), while most 

participants in Guangxi were either retired or not working (73%). Exclusive use of clean fuel for 

cooking (48%) was more common than exclusive use of clean fuel for heating (38% among 

those reporting space heating). Nearly half (49%) of men were tobacco smokers. Very few 

women smoked (2%), though 45% of non-smoking women lived with at least one smoker.  

 
Table 1: Characteristics of study participants by study site [n (n%) or mean (standard deviation, 
sd)] 

Characteristic Guangxi 
(n=239) 

Beijing 
(n=258) 

Shanxi 
(n=290) 

Age (years), mean (sd) 63.4 (9.4) 63.6 (7.6) 62.0 (8.7) 
Gender 
   female 
   male 
   missing 

 
128 (53.6) 
107 (44.8) 
4 (1.7) 

 
149 (57.8) 
108 (41.9) 
1 (0.4) 

 
157 (54.1) 
133 (45.9) 
0 

Ethnicity  
   Han 
   Zhuang 
   other 
   missing 

 
122 (51.0) 
113 (47.3) 
0 
4 (1.7) 

 
255 (98.8) 
0 
2 (0.8) 
1 (0.4) 

 
290 (100.0) 
0 
0 
0 

Occupation  
   subsistence farming 
   other work outside the home 
   not working outside the homea 

   missing 

 
34 (14.2) 
30 (12.6) 
171 (71.5) 
4 (1.7) 

 
200 (77.5) 
15 (5.8) 
42 (16.3) 
1 (0.4) 

 
213 (73.4) 
21 (7.2) 
56 (19.3) 
0 

Martial status 
   married/cohabitation 
   widowed 
   divorce/separated/unmarried 
   missing 

 
175 (73.2) 
51 (21.3) 
9 (3.8) 
4 (1.7) 

 
229 (88.8) 
24 (9.3) 
4 (1.6) 
1 (0.4) 

 
255 (87.9) 
31 (10.7) 
4 (1.4) 
0 
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Household income in the past year  
   <2000 yuan 
   ≥2000 yuan 
   missing 

 
29 (12.1) 
206 (86.2) 
4 (1.7) 

 
135 (52.3) 
122 (47.3) 
1 (0.4) 

 
199 (68.6) 
91 (31.4) 
0 

Highest education attained 
   no formal education 
   primary school 
   early high school/college 
   missing 

 
29 (12.1) 
101 (42.3) 
105 (43.9) 
4 (1.7) 

 
61 (23.6) 
86 (33.3) 
110 (42.6) 
1 (0.4) 

 
30 (10.3) 
137 (47.2) 
123 (42.4) 
0 

Tobacco smoking 
   current smoker 
   non-smoker w/ household smoker 
   non-smoker w/o household smoker 
   missing 

 
40 (16.7) 
59 (24.7) 
136 (56.9) 
4 (1.7) 

 
56 (21.7) 
77 (29.8) 
125 (48.4) 
0 

 
85 (29.3) 
72 (24.8) 
133 (45.9) 
0 

Fuel used for cookingb 

   exclusive clean fuel  

   solid fuel, indoor 

   solid fuel, outdoor only 

   missing 

 
69 (28.9) 
154 (64.4) 
1 (0.4) 
15 (2.1) 

 
163 (63.2) 
81 (31.4) 
1 (0.4) 
13 (5.0) 

 
129 (44.5) 
155 (53.4) 
0 
6 (2.1) 

Fuel used for space heatingb 

   exclusive clean fuel 

   solid fuel, indoor 

   solid fuel, outdoor only 
   no device 

   missing 

 
70 (29.3) 
0 
0 
154 (64.4) 
15 (2.1) 

 
61 (23.6) 
170 (65.9) 
11 (4.3) 
3 (1.2) 
13 (5.0) 

 
88 (30.3) 
151 (52.1) 
29 (10.0) 
16 (5.5) 
6 (2.1) 

a Includes housekeeping, retired, and unemployed 
b     Clean fuel includes natural gas, liquified petroleum gas (LPG), and electricity; solid fuel includes coal and 
biomass. For cooking fuel use, participants were assigned to the following categories: (1) exclusive clean fuel (i.e., 
use of gas or electricity and no or only rare use of solid fuel (i.e., holidays or when hosting guests); (2) solid fuel, 
indoor stove (i.e., use of at least 1 solid fuel stove indoors), or (3) solid fuel, outdoor only (i.e., use of solid fuel 
stove but only outdoors). For heating, we added the additional category of “no device” (i.e., no heating-specific 
devices in the home). 

 
Personal exposures to PM2.5 and black carbon 
 
We obtained 2073 complete 24-h measurements of personal exposure to PM2.5 (92% of 

attempted), of which 1291 were collected in the non-heating season and 782 in the heating 

season. Of the 787 study participants, 778 of the 787 participants had at least 1 complete PM2.5 

measurement and 703 had 2 complete measurements. In the northern sites with 2 seasons of 

measurements, 370 participants had 3 complete measurements and 223 had 4 complete 

measurements. Most (97%) post-sampling pump flow rates were within ±10% of the target flow 

rate.   
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Daily (24-h) exposures to PM2.5 and black carbon ranged from 0.01-1528 and 0.00-12 µg/m3, 

respectively. Overall, 92% of 24-h PM2.5 exposure measurements were higher than the World 

Health Organization (WHO) guideline of 25 µg/m3 (88% in Guangxi; 90% in Beijing; 96% in 

Shanxi), and 79% of exposure measurements were higher than outdoor PM2.5 on the same day 

(68% in Guangxi; 74% in Beijing; 90% in Shanxi). We found low to moderate correlations 

between exposures to PM2.5 and black carbon on the same day (r=0.49) and between the same 

pollutant on the first and second measurement days (r=0.44 for PM2.5; r=0.40 for black carbon), 

with little difference by season (Figure S5). The correlation between daily personal exposure 

and outdoor air pollution concentrations from the same day was low (r = 0.33 for PM2.5; r=0.40 

for black carbon). 

 

In the northern sites (Beijing and Shanxi), air pollution exposures were similar in the heating 

season but higher in Shanxi in the non-heating season (Figure 1). Guangxi participants had the 

lowest exposures to PM2.5, however, their exposures to black carbon were similar to or higher 

than northern participants in the same season (Table 1). Air pollution exposures were higher 

among men (Table 2), though this gender difference was largely eliminated after accounting for 

active tobacco smoking (Figure S6). Participants exclusively using clean fuel for cooking, 

heating, or all energy use had exposures that were similar to users of solid fuel (Table 2).  
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Figure 3: Distributions of average 24-h exposures to A) PM2.5 and B) black carbon in peri-urban 
Chinese adults (n = 787), by season and study sitea  

 
The red line indicates the World Health Organization’s 24-h PM2.5 guideline of 25 µg/m3 

aWe averaged repeat exposure samples from the same season so that each participant only contributed one 
measurement per season. The y-axis for PM2.5 was limited to 650 µg/m3 to facilitate visual comparison, which 
excluded 3 observations (710, 838, and 1241 µg/m3). 
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Table 2: Geometric mean [and 95% confidence intervals] personal exposures to PM2.5 and black carbon (µg/m3) in peri-urban 
Chinese adults by season, gender, and household fuel use 

 Heating seasona Non-heating seasona 

Exposure group Nparticipants 
(Nfilters) 

PM2.5 Black carbon Nparticipants 
(Nfilters) 

PM2.5 Black carbon 

  All participants  443 (785) 108 [100,116] 1.7 [1.6,1.8] 738 (1291) 65 [62,68]   1.1 [1.0,1.1] 
  Men  201 (340) 122 [110,135] 1.7 [1.5,2.0] 320 (566) 72 [67,77]   1.1 [1.0,1.2] 
  Women  241 (444) 98 [88,108] 1.6 [1.5,1.8] 412 (723) 61 [58,64] 1.0 [1.0,1.1] 
  Exclusive use of clean fuelb     
     for cooking  

 
238 (431) 

 
101 [91,113] 

 
1.8 [1.6,2.0] 

 
336 (584) 

 
64 [60,69] 

 
1.0 [0.9,1.1] 

  Use of solid fuelb for cooking 197 (344) 113 [103,124] 1.6 [1.4,1.7] 376 (672) 67 [63,71] 1.2 [1.1,1.3] 
  Exclusive use of clean fuel  
      for heating 

 
116 (208) 

 
108 [95,122] 

 
1.7 [1.5,2.0] 

 
205 (363) 

 
67 [62,73] 

 
1.2 [1.1,1.4] 

  Use of solid fuel for heating,  
      indoor stoves 

 
271 (482) 

 
109 [100,119] 

 
1.7 [1.5,1.9] 

 
301 (522) 

 
71 [65,76] 

 
0.9 [0.8,1.0] 

  Use of solid fuel for heating,  
      outdoor stoves 

 
35 (60) 

 
86 [54,137] 

 
1.4 [1.0,1.9] 

 
33 (55) 

 
71 [57,88] 

 
0.8 [0.6,1.1] 

  Exclusive use of clean fuel 
      for cooking and heating 

 
73 (134) 

 
114 [97,133] 

 
1.9 [1.6,2.2] 

 
165 (286) 

 
66 [61,72] 

 
1.3 [1.2,1.4] 

  Use of solid fuel for cooking  
      and/or heating 

 
362 (641) 

 
105 [97,114] 

 
1.6 [1.5,1.8] 

 
547 (970) 

 
66 [62,69]   

 
1.0 [0.9,1.1] 

PM, particulate matter 
a Heating season includes measurements from northern sites only; non-heating season includes measurements from all 3 sites. The 2 24-h measurements were 
averaged to estimate ‘daily’ within-season exposure for each participant. We used the single 24-h measurement if 2 complete measurements were not 
available. 
b Clean fuel refers to gas and/or electricity and solid fuel refers to use of biomass and/or coal.   
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Outdoor PM2.5  

 
Daily outdoor PM2.5 (from government monitors) ranged from 6 to 407 µg/m3 (geometric mean 

(GM): 67) (Figure S7). In the heating season, Beijing and Shanxi had similar outdoor PM2.5 (GM: 

55 and 54 µg/m3, respectively). In the non-heating season, Shanxi had the lowest outdoor PM2.5 

(GM: 22 µg/m3 compared with 38 µg/m3 in Guangxi and 45 µg/m3 in Beijing). Average (GM) 

personal exposures were consistently higher than average outdoor PM2.5 in the same season 

(+38 µg/m3 in Beijing heating season; +49 µg/m3 in Shanxi heating season; +17 µg/m3 higher in 

Guangxi non-heating season; +17 µg/m3 in Beijing non-heating season; and +59 µg/m3 in Shanxi 

non-heating season).  

 
Variance components of personal exposure to PM2.5 and black carbon 
 
In the base intercept-only models, the proportion of total variability in air pollution exposure 

attributed to between-individual differences was low to moderate (range of ICCs: 0.05-0.32), 

with consistently greater within-individual variability than between-individual variability (Table 

3). Compared with models including all observations, the ICCs were similar for gender-specific 

models (range: 0.05-0.14) but higher in season-specific models (0.29-031), indicating that day-

to-day measurements within the same season are more similar than measurements for the 

same individual in different seasons.  The ranges of ICCs were similar for models predicting 

PM2.5 (0.08-0.29) versus black carbon (0.07-0.32). 

 
Table 3: Estimates of between-individual and within-individual components of variance of 24-h 
measurements of personal exposure to PM2.5 and black carbon from random intercept-only 
models 

 Models predicting PM2.5  Models predicting black carbon 

 All obs Women  Men Heating  Non-
heating 

 All obs Women Men Heating Non-
heating  

Mean 
(ln(µg/m3);  
95% CI 

4.3 
4.2-4.3 

4.2 
4.1-4.2 

4.4 
4.3-4.4 

4.6 
4.5-4.6 

4.1 
4.1-4.1 

 
0.1 
0.1-0.2 

0.1 
0.0-0.1 

0.2 
0.1-0.2 

0.4 
0.3-0.5 

-0.1 
-0.1-0.0 

Between-
individual 
variance (σb

2) 
0.10 0.07 0.12 0.35 0.21  0.10 0.12 0.07 0.35 0.33 
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CI, confidence interval; ICC, intraclass correlation coefficient; obs, observations; PM, particulate matter 
Note: The ICC is the proportion of total variability in exposure attributed to between-individual differences.  

 
Model Fit and Performance 
 
The within-individual variance remained much larger than the between-individual variance, 

even after including outdoor air quality and other time-varying variables in the models (σ 2 = 

0.65-1.11; σb
2 = 0.05-0.13) (Table 4). Outdoor PM2.5 explained the largest proportion of within-

individual variance relative to the PM2.5 intercept-only model (+16%). The addition of other 

time-varying variables including season, outdoor temperature, and relative humidity had 

limited additional explanatory power (+2% for PM2.5 and +5% for black carbon).  Indoor sources 

(smoking status and household fuel type) and study site explained the largest proportion of 

between-individual variability in PM2.5, while outdoor PM2.5 had little impact. Adding indoor 

sources and other time-invariant variables into the black carbon models had little impact on the 

explained between-individual variance. Socio-demographic variables including age, gender, 

occupation, marital status, education, and income had little to no explanatory power. 

Compared with the intercept-only models, the full models explained an additional 20% and 5% 

of within-individual variance and an additional 46% and 11% of between-individual variance in 

exposure to PM2.5 and black carbon, respectively.   

 

The RMSE between the natural logged-transformed predicted and measured air pollution 

exposures decreased as covariates were successively added into the models (from 0.86 to 0.77 

for PM2.5 and from 1.02 to 0.92 for black carbon when comparing the base and full models, 

respectively), indicating small increases in predictive validity (Table 4). We also observed small 

increases in the Spearman correlation (from 0.60 to 0.66 for PM2.5 and from 0.55 to 0.60 for 

black carbon).  

Within-
individual 
variance (σ 2) 

0.80 0.83 0.77 0.76 0.48  1.10 1.04 1.19 0.85 0.80 

ICC 0.11 0.07 0.14 0.32 0.31  0.08 0.10 0.05 0.29 0.29 
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Table 4: Model prediction and fit of linear mixed effect models predicting personal exposure to PM2.5 and black carbon (BC) in peri-
urban Chinese adults 

  Prediction Fit 

  Within-
individual 
variance (σe

2) 

Between-
individual 
variance (σb

2) 

R2
within

a R2
between

b
 

 
ICC 
(ρ)* 

RMSE Spearman 
correlation 

Base random intercept model  
   𝑙𝑛(𝑌𝑖𝑘) = 𝛽0 + 𝑏𝑖 + 𝜀𝑖𝑘 

PM2.5 0.81 0.10 Ref Ref 0.11 0.86 0.60 
BC 1.11 0.09 Ref Ref 0.07 1.02 0.55 

Base + outdoor PM2.5   

   ln(𝑌𝑖𝑘) = 𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟 )𝑖 + 𝑏𝑖 + 𝜀𝑖𝑘  
PM2.5 0.68 0.13 0.16 -0.32 0.16 0.78 0.66 
BC 0.95 0.10 0.00 0.00 0.10 0.94 0.62 

Base + outdoor PM2.5 + temp. + RH 

   ln(𝑌𝑖𝑘) = 𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟 )𝑖 + 𝛽2(𝑡𝑒𝑚𝑝. )𝑖

+  𝛽3(𝑅𝐻)𝑖 + 𝑏𝑖 + 𝜀𝑖𝑘  

PM2.5 0.68 0.13 0.17 -0.36 0.16 0.77 0.67 
BC 0.94 0.12 0.01 -0.11 0.11 0.93 0.63 

Base + outdoor PM2.5 + temp. + RH + season 

ln(𝑌𝑖𝑘) = 𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟)𝑖 + 𝛽2(𝑡𝑒𝑚𝑝. )𝑖

+  𝛽3(𝑅𝐻)𝑖 + 𝛽2(𝑠𝑒𝑎𝑠𝑜𝑛)𝑖𝑘 + 𝑏𝑖

+ 𝜀𝑖𝑘 

PM2.5 0.66 0.10 0.18 -0.01 0.13 0.77 0.65 
BC 0.91 0.11 0.05 -0.06 0.11 0.91 0.64 

Base + outdoor PM2.5 + temp. + RH + season + fuelc 

   𝑙𝑛(𝑌𝑖𝑘) =  𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟)𝑖 + 𝛽2(𝑡𝑒𝑚𝑝. )𝑖

+  𝛽3(𝑅𝐻)𝑖 +  𝛽4(𝑠𝑒𝑎𝑠𝑜𝑛)𝑖

+  𝛽5(𝑓𝑢𝑒𝑙)𝑖𝑘 + 𝑏𝑖 + 𝜀𝑖𝑘  

PM2.5 0.66 0.09 0.19 0.07 0.12 0.77 0.65 
BC 0.91 0.10 0.05 0.05 0.10 0.91 0.61 

Base + outdoor PM2.5 + temp. + RH + season + fuelc 
+ smoke 
   𝑙𝑛(𝑌𝑖𝑘) =  𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟)𝑖 + 𝛽2(𝑡𝑒𝑚𝑝. )𝑖

+  𝛽3(𝑅𝐻)𝑖 +  𝛽4(𝑠𝑒𝑎𝑠𝑜𝑛)𝑖

+  𝛽5(𝑓𝑢𝑒𝑙)𝑖𝑘 + 𝛽6(𝑠𝑚𝑜𝑘𝑒)𝑖𝑘

+ 𝑏𝑖 + 𝜀𝑖𝑘  

PM2.5 0.66 0.06 0.19 0.35 0.09 0.78 0.64 
BC 0.91 0.09 0.05 0.10 0.09 0.92 0.61 

Base + outdoor PM2.5 + temp. + RH + season + fuelc 
+ smoke + site 
   𝑙𝑙𝑛(𝑌𝑖𝑘) =  𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟)𝑖 + 𝛽2(𝑡𝑒𝑚𝑝. )𝑖

+  𝛽3(𝑅𝐻)𝑖 +  𝛽4(𝑠𝑒𝑎𝑠𝑜𝑛)𝑖

+  𝛽5(𝑓𝑢𝑒𝑙)𝑖𝑘 + 𝛽6(𝑠𝑚𝑜𝑘𝑒)𝑖𝑘

+ 𝛽7(𝑠𝑖𝑡𝑒)𝑖𝑘 + 𝑏𝑖 + 𝜀𝑖𝑘  

PM2.5 0.65 0.05 0.20 0.46 0.07 0.78 0.66 
BC 0.91 0.09 0.05 0.11 0.09 0.92 0.60 

Full model: Base + outdoor PM2.5 + temp. + RH + 
season + fuelc + smoke + site + all other covariatesd 

PM2.5 0.65 0.05 0.20 0.46 0.07 0.77 0.66 
BC 0.91 0.09 0.04 0.11 0.09 0.92 0.60 
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PM, particulate matter; BC, black carbon; ICC, intraclass correlation; R2, coefficient of determination; temp, temperature; RH, relative humidity 
a Within-individual variance explained relative to the intercept-only model.  
b Between-individual variance explained relative to the intercept-only model. 
c Variables for cooking and heating fuel were added separately into the models. 
d Includes participant age, gender, occupation, marital status, education, and income 

   𝑙𝑛(𝑌𝑖𝑘) =  𝛽0 + 𝛽1(𝑜𝑢𝑡𝑑𝑜𝑜𝑟)𝑖 + 𝛽2(𝑡𝑒𝑚𝑝. )𝑖

+  𝛽3(𝑅𝐻)𝑖 +  𝛽4(𝑠𝑒𝑎𝑠𝑜𝑛)𝑖

+  𝛽5(𝑓𝑢𝑒𝑙)𝑖𝑘 + 𝛽6(𝑠𝑚𝑜𝑘𝑒)𝑖𝑘

+ 𝛽7(𝑠𝑖𝑡𝑒)𝑖𝑘 + 𝛽8(𝑋)𝑖𝑘 + 𝑏𝑖 + 𝜀𝑖𝑘 
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We continued to observe strong seasonal and regional patterns in pollution exposures in the 

multivariable models (Table 5). Exposures to PM2.5 and black carbon in the non-heating season 

were 63% lower (95% CI: -72%, -51%) and 78% lower (95% CI: -84%, -69%) than in the heating 

season, respectively, even after accounting for outdoor air quality, temperature, and humidity. 

Participants in Beijing and Shanxi had 38% and 70% higher exposure to PM2.5 than participants 

in Guangxi, respectively, though the opposite trend was observed for black carbon (compared 

with Guangxi, black carbon exposures were 13% and 18% lower in Beijing and Shanxi, 

respectively). 

 

Indoor sources including household fuel type and smoking patterns were strongly associated 

with exposures. Participants exclusively cooking with gas and electric stoves had 15% lower 

exposure to PM2.5 and black carbon than users of solid fuel stoves. Compared with participants 

using solid fuel heating stoves indoors, participants with outdoor stoves had 25% lower (95% CI: 

-37%, -10%) exposure to PM2.5 and 20% lower (95% CI: -35%, -0.5%) exposure to black carbon, 

though no differences were observed for users of clean fuel heating stoves or without heating-

specific stoves.  Poor outdoor air quality was associated with higher exposure [6% higher PM2.5 

(95% CI: 5%, 7%) and 8% higher black carbon (95% CI: 7%, 9%) per 10 µg/m3 increase in outdoor 

PM2.5]. Participants that were male, had lower household incomes, or that worked outside of 

the home had 2-14% higher exposures to air pollution, though the differences were not 

statistically significant. 

 

The gender-specific models were very similar to the full models with the exception of outdoor 

solid fuel heating stove use which, compared with use of indoor solid fuel heating stoves, was 

associated with lower exposures in women (-37%; 95% CI: -51%, -20%) but not in men (Table 

S3).  Season-specific models suggest that outdoor air quality may have a larger impact on 

exposure in the non-heating season than the heating season (10% versus 4% higher exposure 

per 10 µg/m3 increase in outdoor PM2.5). We did not observe any qualitative differences in our 

results after excluding observations that did not capture ±10% of the target 24-h sampling time, 
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or when comparing results from models with measurement versus estimated outdoor PM2.5 

(Table S4).  

 

Table 5: Associations between personal exposures to air pollution and selected 
sociodemographic, energy use, and environmental variablesa 
 

 Percent (%) change in 
PM2.5 based on log 
regression* (95% CI) 
(n = 2022 filters) 

Percent (%) change in 
black carbon based on log 
regression* (95% CI) 
(n = 2026 filters) 

Age, per year -0.2 [-0.8,0.4] 0.0 [-0.7, 0.8] 
Gender 
   male (ref: female)  

 
4.6 [-6.1, 16.5] 

 
6.5 [-6.5, 21.4] 

Occupation 
   agriculture (ref) 
   other work outside the home 
not working outside the home 

 
 
5.9 [-10.3, 24.9] 
-3.2 [-13.1, 7.8] 

 
 
14.1 [-6.6, 39.3] 
-6.1 [-17.6, 7.0] 

Annual household income 
 (yuan) 
 <20000 (ref: ≥20000) 

 
 
3.1 [-5.9, 13.0] 

 
 
1.6 [-9.1, 13.6] 

Education 
   college/high (ref) 
primary    
no school    

 
 
0.4 [-8.7, 10.5] 
-5.4 [-17.2, 8.1] 

 
 
4.5 [-6.9, 17.3] 
7.2 [-8.8, 26.1] 

Smoking status 
   smoker (ref) 
   non-smoker w/ household 
smoker 
   non-smoker w/o household 
smoker 

 
 
-26.2 [-36.3, -14.4]*** 
-30.4 [-38.0, -21.8]*** 

 
 
-1.3 [-17.5, 8.2] 
-12.8 [-24.2, 0.3]* 

Cooking fuel 
clean fuel use (ref: any solid fuel) 

 
-15.4 [-22.3, -8.0]*** 

 
-14.8 [-23.1, -5.6]*** 

Heating fuel 
   indoor solid fuel (ref) 
outdoor solid fuel use 
   only clean fuel 
   no devices 

 
 
-24.6 [-36.98, -9.8]*** 
-2.8 [-12.3, 7.7] 
-1.6 [-16.6, 16.3] 

 
 
-19.9 [-35.0, -0.5]** 
5.6 [-6.7, 19.6] 
2.1 [-16.5, 24.8] 

Season 
  non-heating (ref: heating) 

 
-62.8 [-71.8, -50.9]*** 

 
-78.0 [-84.2, -69.3]*** 

Outdoor PM2.5, per 10 µg/m3 5.8 [4.7, 6.9]*** 7.9 [6.6, 9.2]*** 
Ambient RH, per 1% 0.8 [0.5, 1.1]*** 0.0 [-0.3, 0.4] 
Ambient temperature, per 1°C 3.4 [2.2, 4.6]*** 5.5 [4.1, 7.0]*** 
Site 
Guangxi (ref) 
Beijing 
Shanxi 

 
 
37.9 [15.0, 65.3]*** 
69.9 [43.1, 101.6]*** 

 
 
-12.8 [30.0, 8.5] 
-18.4 [-33.7, 0.3]* 

Marginal R2 0.24 0.17 
Conditional R2 0.29 0.24 
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*p-value <0.10; **p-value <0.05; ***p-value<0.001; obs, observations 
a Regression of log-air pollution exposure can be converted to the percent (%) change in exposure using the 
equation ([expβ – 1]x 100), where β is the change in log-transformed pollution exposure associated with a one-unit 
change in the independent variable.   

 
 
Discussion 
 
We conducted one of the largest and most comprehensive household air pollution exposure 

studies to date, which included over 2073 measurements of 24-h personal exposures to PM2.5 

and black carbon from 778 participants. By conducting repeated measurements across seasons, 

we were able to describe the levels and variability in PM2.5 exposures in peri-urban men and 

women living in 3 diverse provinces of China and also assess the explanatory contribution of 

indoor and outdoor sources to variability and levels of personal exposures.  

 

Personal exposures to PM2.5 in our study were within the range of exposures observed among 

non-smoking women cooking with biomass stoves in southwestern China (range of GMs: 47-91 

µg/m3 in summer and 107-201 µg/m3 in winter)(10, 159, 161) but were higher than exposures 

among urban Chinese (range of means: 33-93 µg/m3)(168-170).  Outdoor PM2.5 was high in our 

study settings, exceeding the WHO’s 24-h Air Quality Guideline on 56% of study measurement 

days.  Though our finding that personal exposures were consistently higher than outdoor air 

pollution, particularly in northern China, highlights the contribution of indoor sources to 

exposures in settings with poor outdoor air quality.    

 

Large and consistent differences in outdoor air quality and exposures were observed by 

geographic region. Of our 3 study sites, Guangxi participants (southern China) had the lowest 

exposures to PM2.5 in the non-heating season but the highest exposures to black carbon. This 

result may be in part due to the higher proportion of Guangxi participants exclusively using 

clean fuel stoves (31% versus 19% in the northern sites) and their more common use of 

biomass stoves which can emit proportionally higher levels of black carbon compared with coal 

stoves (171, 172). Guangxi participants also lived in homes that were closer to major roadways 

(3-11 km) and secondary roads, which may also have influenced their exposures to black carbon 
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(173, 174). Planned chemical analysis of a sub-sample of PTFE filters from the study will provide 

a better understanding of the source-specific contributors to exposures in our study.   

 

In northern China, air pollution exposures were twice as high in the heating season than the 

non-heating season, a result that is likely in part attributable to space heating stove emissions 

and potentially due to less time spent outside the home. The role of these very high seasonal 

exposures on health, particularly for cardiovascular diseases, should be further investigated. 

Seasonal variability of cardiovascular diseases is well-documented in China and elsewhere, 

showing mostly a peak in winter months (175, 176). The exact causes of these seasonal 

differences are not fully understood, though environmental factors like air pollution are 

strongly associated with cardiovascular outcomes and thus may play some role (175). Replacing 

traditional coal and biomass space heating stoves with electric or gas appliances may therefore 

benefit both outdoor and indoor air quality and population health in northern China (141). 

 

Both active smoking and environmental tobacco smoke were important contributors to 

exposure, with the former impacting men and the latter impacting women. Men in our study 

had higher exposures than women, on average, though exposures among non-smoking women 

and men were similar. Policy organizations including the WHO consistently highlight the high 

levels of household air pollution exposures among women and children (177), but very few 

studies have measured exposure in men (7, 178, 179). The gender-specific results from our 

study align with measurements of PM2.5 exposure in largely non-smoking men in peri-urban 

India, which were similar to women (55 versus 58 µg/m3). By comparison, women in a small 

exposure study conducted in rural Ethiopia and Uganda had exposures to PM2.5 that were 5-6 

times higher than men in the same villages. Women in our study sites were usually the primary 

cooks, though men can be in close proximity to cooking stoves even if they are not cooking 

themselves. Men also participated in other household energy tasks. For example, men were 

often responsible for operating space heating stoves where they can be episodically exposed to 

high levels of pollution during fuel loading. This practice is reflected in our gender-specific 

models, where use of an outdoor solid fuel heating stove (compared with an indoor solid fuel 
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stove) was associated with proportionally lower exposure in women (-37%; 95% CI: -51, -20) 

than in men (-10%; 95% CI:-31, -18), likely because men were still highly exposed to outdoor 

stove emissions during re-fueling. 

 

Participants living in homes without smokers had considerably lower exposures than smokers 

(30% lower for PM2.5 and 13% lower black carbon). The proportionally larger difference for 

PM2.5 may be due to the large organic fraction in tobacco smoke (180) which contributes to 

higher PM2.5 but not higher black carbon. A somewhat surprising finding in the crude 

(unadjusted) analysis was that participants in homes exclusively cooking or heating with clean 

fuel stoves still had high exposures to PM2.5 (GM: 76 µg/m3; range: 11 – 392 µg/m3) that were 

similar to participants using solid fuel stoves (GM: 81 µg/m3; range: 3 – 838 µg/m3). After 

statistically accounting for outdoor air quality and other variables, exclusive users of clean fuel 

cookstoves and heating stoves had only modestly lower exposures than indoor solid fuel users 

(-3 to -15% for PM2.5). These results provide further empirical evidence that poor outdoor air 

quality and other behavioral factors can mask the benefit of clean energy use, but also highlight 

the importance of evaluating all major sources of air pollution in intervention studies to better 

understand their relative contributions to exposures and also have more realistic expectations 

of the air pollution exposure benefits of a clean stove intervention in settings where other 

sources are also present.  

 

We observed high within-individual variability in 24-h exposure across seasons and within the 

same season, particularly when compared with between-individual variance. Based on our 

mixed-effects models, we partly attribute this finding to the high day-to-day variability in 

outdoor air quality, though a large portion of within-individual variance remained unexplained 

in the full models. The ICCs in our base and covariate-adjusted models (PM2.5: 0.11-0.16; black 

carbon: 0.08-0.11) were lower than those observed for carbon monoxide exposure among 

children in The Gambia (ICC=0.33)(181), but overlapped with those among adults in Guatemala 

(carbon monoxide ICC: 0.11-0.33)(8) and peri-urban India (PM2.5 ICC: 0.0-0.22)(11). As expected, 

the ICCs in our study were higher in the season-specific models, but still indicated poor 
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reliability (range: 0.29-0.32). Overall, our results indicate that a single day of measured 

exposure is not likely representative of longer-term exposure, which is the exposure metric 

most relevant for many chronic health outcomes including cardiovascular diseases (66, 117). 

They also highlight the challenges of identifying the impact of any given source on personal 

exposure in these complex air pollution settings where behaviors like time spent in different 

locations or doing certain activities are likely important determinants of exposure that are not 

easily captured by traditional survey methods and measurements (182). 

 

Notable strengths of this study include the comprehensive dataset of over 48,000 hours of 

personal exposure monitoring in 3 diverse provinces of China which includes measurements of 

exposure among men and exclusive clean fuel users in villages using solid fuel energy. Despite 

the considerable practical and logistical challenges of conducting large panel studies of 

exposure in these settings (183), we were able to obtain at least 2 days of measured air 

pollution exposures for 90% of participants and 4 days for 60% of northern China participants, 

which allowed us to evaluate the within-individual and between-individual variance in daily 

exposure. These results contribute to the very limited evidence on representativeness of short-

term measurement of exposure for longer-term exposure estimation in field studies of 

household air pollution. Further, the additional assessment of very detailed energy use and 

outdoor PM2.5 allowed us to evaluate the influence of indoor versus outdoor sources to 

personal exposures, which are contributions to exposures that remain poorly understood in 

many settings, especially relative to one another. 

 

Our study is not without limitations. Though we achieved high compliance in wearing the air 

monitors (98% in participants randomly selected for compliance monitoring with a pedometer), 

it is possible that some participants altered their daily activity patterns while wearing them. We 

also cannot rule out the possibility that wearing the monitors or visiting the clinics may have 

changed participants’ behaviors. We were unable to account for time-varying behaviors which 

are likely important determinants of exposure in our study participants such as stove use on the 

measurement days or time-activity patterns. Combined use of GPS monitors or Bluetooth signal 
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receivers can track participant location during measurement and allow investigators to better 

assess activity patterns in field studies(184), though the required data processing and analysis 

can be time-intensive in large studies like this one. We were limited to 2 days of measurement 

per season due to study logistics and participant burden in wearing the monitors, which limited 

our ability to assess ‘long-term” exposure over weeks or months. The recent development of 

quiet and less bulky PM2.5 monitors may ease some of the logistical and participant burdens of 

longer-term measurements. In addition to the detailed fuel and stove use data collection in this 

study, future studies could also collect information on home ventilation which was not 

collected in this study. 

 
Conclusion 
 
Personal exposures to PM2.5 across all seasons and study sites were, on average, higher than 

the WHO’s 24-h PM2.5 air quality guideline and higher than the relatively high levels of outdoor 

PM2.5. Our repeated measures show that within-individual variance dominated the total 

variability in personal exposures across all study sites, genders, and seasons. Repeated daily 

measurements of exposure are thus needed to capture ‘usual’ daily exposure for 

epidemiological and intervention studies in these settings, even within a single season. Our 

results also indicate that measurably reducing air pollution exposures in these study settings 

will likely require reductions in emissions from both indoor and outdoor air pollution, which are 

linked to different air pollution mitigation policies and interventions. 
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3.3 Supplementary Material 
 
Figure S1: Location of study sites in the INTERMAP China Prospective (ICP) Study  
 
 

Shanxi 
(villages = 6) 

Beijing 
(villages = 8) 

Guangxi 
(villages = 3) 
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Figure S2: Setup of the Harvard Personal Exposure Monitor within waistpacks (Photo credit: 
Ellison Carter) 
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Figure S3: Scatterplot of outdoor 24-h average PM2.5 estimated from government monitors using inverse distance weighting versus 
measured outdoor PM2.5 collected in the study villages 
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Figure S4: Scatterplot of outdoor 24-h average temperature estimated from government monitors using inverse distance weighting 
versus measured outdoor temperatures in centrally-located clinics in each study village 
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Figure S5: Pearson correlations between (A) exposures to PM2.5 and black carbon (BC) on the same day for all participants and 
between (B) PM2.5 and (C) black carbon exposures on subsequent sampling days for the same participants 

 
 
 
 
 
 
 
 

r = 0.44 r = 0.49 r = 0.40 
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Figure S6: Personal exposure to PM2.5 by study site and gender in the heating (A) and non-heating (B) seasons 

 
Personal exposures consisted of at least one observation per participant, but if the participant had two measurements from that season, they were both averaged. To facilitate 
better visual comparison of the data, this Figure excludes one high exposure observation from the heating season (838 g/m3 – a male non-smoker with no household smokers from 

Shanxi) and two high exposure observations from the non-heating season (710 g/m3 – a male non-smoker with no household smokers from Beijing and 1241 g/m3 – a male 
smoker from Shanxi).  

 
 

 

  

              A Heating season 

 

              B Non-heating season 

 
Personal exposures consisted of at least one observation per participant, but if the participant had two measurements from that season, they were both averaged. To facilitate 
better visual comparison of the data, this Figure excludes one high exposure observation from the heating season (838 µg/m3 – a male non-smoker with no household smokers from 
Shanxi) and two high exposure observations from the non-heating season (710 µg/m3 – a male non-smoker with no household smokers from Beijing and 1241 µg/m3 – a male 

smoker from Shanxi).  
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Figure S7. Distributions of average 24-h outdoor PM2.5 (estimated from government monitors) in the heating and non-heating 
seasons at our study sites 

 
Note: The red line indicates the World Health Organization 24-h guideline for outdoor PM2.5 at the time of publication (25 g/m3) (64) 
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Table S1: Personal exposures to PM2.5 and black carbon (BC) in peri-urban Chinese adults by socio-demographic and energy use 

variables (geometric means [95% CI]) in g/m3) 
 Guangxi Beijing Shanxi 

 Non-heating Non-heating Heating Non-heating Heating 
 PM2.5 BC PM2.5 BC PM2.5 BC PM2.5 BC PM2.5 BC 

# of participants (# of 
filters) 
 

238 (442) 238 (441) 228 (383) 228 (384) 237 (432) 237 (433) 269 (467) 270 (468) 205 (350) 206 (352) 

All samples 51[48, 55] 1.2 [1.1,1.3] 
 

59.4 [54,65] 1.0 [0.9,1.1] 103 [94,112] 1.8 [1.6,2.0] 88 [82,94] 1.0 [0.9,1.1] 114 [101,128] 1.6 [1.4,1.74] 

Age 
   40 – 49 
   50 – 59 
   60 – 69  
   70 – 79 
    

 
59 [50,69] 
51 [44,60] 
51 [46,57] 
49 [42,56] 

 
1.2 [0.9,1.5] 
1.1 [0.9,1.5] 
1.2 [1.1,1.4] 
1.3 [1.0,1.6] 

 
54 [31,95] 
71 [59,84] 
55 [49,63] 
57 [47,68] 

 
0.7 [0.2,2.8] 
1.1 [0.9,1.4] 
0.8 [0.7,1.0] 
1.0 [0.8,1.2] 

 
70 [53,92]   
72 [61,86]   
122 [107,139] 
128 [108,153] 
 

 
1.9 [1.3,2.6] 
1.3 [1.1,1.6] 
1.9 [1.6,2.3] 
2.3 [1.9,2.8] 

 
79 [66,94] 
97 [84,111] 
88 [80,97] 
81 [72,90] 

 
0.7 [0.4,1.0] 
1.0 [0.9,1.3] 
1.1 [1.0,1.3] 
1.1 [0.9,1.3] 

 
66 [32,138] 
129 [110,151] 
118 [101,137] 
118 [92,151] 

 
1.4 [0.9,2.4] 
1.8 [1.6,2.2] 
1.5 [1.3,1.8] 
1.4 [1.1,1.8] 

Gender 
   male 
   female  
 

 
56 [50,62]   
48 [44,52] 

 
1.4 [1.2,1.6] 
1.1 [1.0,1.3] 

 
67 [58,77] 
55 [49,61] 

 
1.0 [0.8,1.2] 
0.9 [0.8,1.1] 

 
110 [95,128] 
98 [87,110] 

 
1.7 [1.4,2.1] 
1.9 [1.7,2.1] 

 
95 [85,107] 
82 [77,88] 

 
1.0 [0.8,1.2] 
1.1 [1.0,1.2] 

 
135 [117,157] 
97 [82,116] 

 
1.8 [1.6,2.1] 
1.4 [1.2,1.6] 

Ethnicity  
   Han 
   Zhuang 
   other 

 
49 [44,54]   
54 [49,60]   
- 
 

 
1.2 [1.0,1.4] 
1.3 [1.1,1.5] 
- 

 
60 [55,65] 
- 
33 [14,78] 

 
1.0 [0.9,1.1] 
- 
0.5 [0.0,23.5] 

 
103 [94,113] 
- 
105 [100,109] 

 
1.8 [1.6,2.0] 
- 
1.6 [0.0,387] 

 
88 [82,94]   
- 
- 

 
1.0 [0.9,1.1] 
- 
- 

 
114 [101,128] 
- 
- 

 
1.6 [1.4,1.7] 
- 
- 

Current occupation 
   agriculture 
   other work outside the  
     home 
   not working outside the  
     home 
    

 
55 [50,61]   
58 [46,73]   
 
49 [46,54]   

 
1.4 [1.2,1.7] 
1.2 [0.8,1.7] 
 
1.2 [1.0,1.3] 

 
60 [54,66] 
70 [48,102] 
 
55 [42,72] 

 
1.0 [0.9,1.1] 
0.9 [0.5,1.8] 
 
0.9 [0.7,1.2] 

 
100 [90,111] 
110 [82,147] 
 
122 [99,152] 

 
1.7 [1.5,2.0] 
1.9 [1.2,3.1] 
 
2.3 [1.8,3.0] 

 
87 [82,94] 
133 [90,198] 
 
79 [68,91] 

 
1.1 [0.9,1.2] 
1.6 [1.1,2.5] 
 
0.8 [0.6,1.1] 

 
118 [102,136] 
122 [76,193] 
 
99 [79,122] 

 
1.6 [1.4,1.8] 
1.9 [1.3,2.8] 
 
1.4 [1.2,1.7] 

Household income 
   <20000 RMB 

   ≥20000 RMB 

 
52 [48,56] 
48 [41,57] 

 
1.2 [1.1,1.4] 
1.1 [0.9,1.5] 

 
62 [54,71] 
58 [51,65] 
 

 
1.1 [0.9,1.3] 
0.9 [0.7,1.0] 

 
97 [85,110] 
110 [96,124] 

 
1.8 [1.5,2.0] 
1.8 [1.5,2.2] 

 
87 [78,97]  
88 [82,95] 

 
0.9 [0.8,1.1] 
1.1 [1.0,1.2] 

 
101 [83,122] 
120 [104,140] 

 
1.3 [1.1,1.6] 
1.7 [1.5,1.9] 

Highest education 
attained 
   no formal   
     education 
   primary school 
  early high school  

 
 
47 [38,59] 
51 [46,56] 
53 [48,59] 
 

 
 
1.1 [1.0,1.4] 
1.2 [0.9,1.6] 
1.3 [1.1,1.5] 

 
 
49 [40,59] 
62 [53,72] 
64 [56,74] 

 
 
0.9 [0.8,1.1] 
0.9 [0.7,1.1] 
1.0 [0.8,1.2] 

 
 
112 [95,131] 
116 [97,138] 
91 [79,104] 

 
 
1.7 [1.5,2.0] 
2.1 [1.7,2.6] 
1.8 [1.4,2.2] 

 
 
87 [70,107] 
88 [80,96] 
88 [80,97] 

 
 
0.9 [0.7,1.0] 
1.3 [1.0,1.7] 
1.1 [1.0,1.3] 

 
 
111 [82,148] 
114 [98,132] 
114 [91,142] 

 
 
1.7 [1.4,2.0] 
1.6 [1.2,2.2] 
1.5 [1.3,1.7] 
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    or college 
 
Smoke 
   current smoker 
   not current w/  
     household smoker 
   not current w/o     
     household smoker 

 

 
68 [58,80] 
49 [43,56] 
 
48 [44,53] 

 
1.6 [1.3,2.0] 
1.1 [1.0,1.4] 
 
1.2 [1.0,1.3] 

 
74 [62,88] 
57 [47,69] 
 
56 [50,63]   

 
1.0 [0.8,1.3] 
1.1 [0.9,1.3] 
 
0.9 [0.8,1.0] 

 
119 [95,148] 
104 [89,120] 
 
95 [83,109] 

 
1.6 [1.1,2.2] 
2.1 [1.8,2.4] 
 
1.7 [1.5,2.0] 

 
118 [103,135] 

83 [75,92] 
 
 
77 [71,84]   

 
1.1 [0.9,1.4] 
1.1 [0.9,1.3] 
 
1.0 [0.8,1.1] 

 
155 [128,187] 
100 [72,140] 
 
99 [86,114] 

 
1.9 [1.5,2.3] 
1.5 [1.1,1.9] 
 
1.5 [1.3,1.7] 

Cooking fuel 
   exclusive clean 
   solid fuel 
 

 
53 [47, 60] 
51 [47, 56] 

 
1.3 [1.1, 1.5] 
1.2 [1.1, 1.4] 

 
57 [51, 64] 
63 [55, 73] 

 
0.9 [0.8, 1.1] 
1.0 [0.9, 1.2] 

 
93 [82, 105] 
119 [105, 135] 

 
1.7 [1.4, 1.9] 
2.0 [1.7, 2.3] 
 

 
84 [76, 92] 
91 [84, 100] 

 
0.9 [0.7, 1.0] 
1.2 [1.0, 1.3] 

 
118 [95, 146] 
109 [95, 124] 

 
1.9 [1.6, 2.2] 
1.3 [1.2, 1.5] 

Heating fuel 
   no device 
   exclusive clean 
   solid fuel (indoor) 
   solid fuel (only outdoor) 
 

 
53 [48, 58]   
49 [44, 55] 
- 
- 
 

 
1.2 [1.1, 1.4] 
1.3 [1.1, 1.5] 
- 
- 
 
 

 
82 [30,222] 
69 [57, 83]   
56 [50, 63] 
58 [36, 94] 

 
1.2[0.1, 10.1] 
1.2 [1.0, 1.4] 
0.9 [0.8, 1.0] 
1.1 [0.7, 1.6] 

 
70 [-,-] 
100 [85, 118] 
102 [90, 114] 
108 [78, 150] 

 
0.6 [-,-] 
1.8 [1.5, 2.1] 
1.7 [1.5, 2.0] 
2.3 [1.5, 3.8] 

 
94 [70, 125] 
86 [78, 95] 
90 [82, 98] 
77 [39,152] 

 
1.6 [1.1, 2.4] 
1.3 [1.1, 1.5] 
0.9 [0.8, 1.1] 
0.7 [0.4, 1.1] 

 
116 [74,184] 
115 [95, 139] 
121 [107, 137] 
78 [60, 100] 

 
1.7 [1.2, 2.5] 
1.6 [1.3, 2.0] 
1.6 [1.4, 1.9] 
1.1 [0.7, 1.7] 

Outdoor PM2.5 

   0-49 g/m3 

   50-99 g/m3 

   100-149 g/m3 

   > 150 g/m3 

 
44 [41,47] 
56 [50,64] 
- 
- 

 
1.0 [0.8,1.1] 
1.2 [1.0,1.4] 
- 
- 

 
36 [31,42] 
76 [68,84] 
96 [85,108] 
132 [114,153] 

 
0.6 [0.5,0.7] 
1.3 [1.1,1.5] 
1.1 [0.8,1.5] 
1.9 [1.1,3.5] 

 
63 [57,70] 
147 [130,165] 
159 [140,180] 
214 [192,237] 

 
1.1 [0.9,1.2] 
2.5 [2.3,2.8] 
3.1 [2.7,3.5] 
3.0 [2.2,4.1] 

 
83 [78,88] 
113 [87,147] 
- 
- 

 
0.9 [0.9,1.0] 
2.2 [1.7,2.8] 
- 
- 

 
78 [66,93] 
- 
147 [121,179] 
125 [101,155] 

 
1.0 [0.9,1.2] 
- 
2.4 [2.1,2.7] 
2.3 [2.1,2.7] 
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Table S2: Comparison of outdoor PM2.5 (g/m3) measured by village monitors and estimated 
from data provided by nearly government monitoring stations, averaged across study sites 

  Nfilters Heating season Non-heating season 

Outdoor       

  PM2.5
 (estimated from        

  nearby government 
monitors)a 

Mean [95% CI] 
Geo Mean [95% CI] 
Range 

NA 93 [62,124] 
55 [39,76] 
6 – 407 

42 [35,50] 
33 [28,39] 
8 – 151 

  PM2.5
  

  (village 
measurement)b 

Mean [95% CI] 
Geo Mean [95% CI] 
Range 

33 76 [48,105] 
47 [29,77] 
2 – 267 

58 [42,73] 
54 [39,75] 
21 – 90 

Geo mean, geometric mean; PM=particulate matter 
a Estimated from daily outdoor PM2.5 measurements obtained from nearby government air monitoring stations. The heating 
season includes measurements from northern sites only, while the non-heating season includes measurements from all 3 sites 
b Filter-based measurements of village PM2.5 were collected during 1 season at each study site. In the heating season, village 
measurements were collected in Beijing and Shanxi. In the non-heating season, samples were collected in Guangxi. 
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Table S3: Associations between personal PM2.5 exposure and selected sociodemographic, energy use, and environmental variables 
by gender and season, expressed as % change in exposure [95% CI]a 

 
 

Nparticipants (Nfilters) 

All Participants 
 

746 (2022) 

Females  
 

413 (1137)  

Males  
 

885 (333) 

Heating season  
 

771 (433) 

Non-heating season  
 

1251(709) 

Age, per year -0.2 [-0.8,0.4] -0.1 [-0.9, 0.7] -0.4 [-1.3, 0.5] 0.6 [-0.5, 1.8] -0.4 [-1.1, 0.2] 
Gender 

   male (ref: female)  

 
4.6 [-6.1, 16.5] 

 
- 

 
- 

 
16.2 [-5.0, 42.0] 

 
-1.3 [-12.2, 10.9] 

Occupation 
   agriculture (ref) 

   other work outside the 
home 

not working outside the 
home 

 
 

5.9 [-10.3, 24.9] 
-3.2 [-13.1, 7.8] 

 
 

-12.3 [-35.6, 19.4] 
-7.0 [-18.2, 5.9] 

 
 

11.7 [-9.4, 37.6] 
0.3 [-18.4, 23.4] 

 
 

15.6 [-16.1, 59.2] 
-4.0 [-21.0, 16.7] 

 

 
 

-2.5 [-18.5, 16.6] 
-4.0 [-14.9, 8.1] 

Annual household income 
 (yuan) 

 <20000 (ref: ≥20000) 

 
 

3.1 [-5.9, 13.0] 

 
 

4.2 [-7.5, 17.3] 

 
 

0.0 [-13.9, 16.1] 

 
 

4.7 [-10.4, 22.2] 

 
 

6.0 [-4.6, 17.7] 
Education 

   college/high (ref) 
   primary 
no school 

 
 

0.4 [-8.7, 10.5] 
-5.4 [-17.2, 8.1] 

 
 

-5.4 [-17.7, 8.8] 
7.6 [-21.7, 9.0] 

 
 

7.9 [-5.9, 23.7] 
-6.3 [-29.0, 23.6] 

 
 

-2.5 [-17.9, 15.8] 
-6.9 [-25.7, 16.7] 

 
 

3.3 [-7.0, 14.8] 
-3.5 [-17.2, 12.3] 

Smoking status 
   smoker (ref) 

   non-smoker w/ household 
smoker 

   non-smoker w/o household 
smoker 

 

 
 

-26.2 [-36.3, -14.4]*** 
 

-30.4 [-38.0, -21.8]*** 

 
 

-24.7 [-49.2, 11.6] 
 

-30.0 [-52.6, 3.2]* 

 
 

-33.6 [-54.3, -3.4]** 
 

-29.2 [-37.7, -19.6]*** 

 
 

-16.3 [-36.1, 9.6] 
 

-30.3 [-43.2, -14.5]*** 

 
 

-30.5 [-41.0, -18.2]*** 
 

-29.0 [-37.6, -19.2]*** 

Cooking fuel 
clean fuel use (ref: solid fuel) 

 
-15.4 [-22.3, -8.0]*** 

 
-12.7 [-22.1, -2.1]** 

 
-19.0 [-28.9, -7.8]*** 

 
-17.4 [-29.2, -3.6]** 

 
-11.3 [-19.2, -2.7]** 

Heating fuel 
   indoor solid fuel (ref) 

   outdoor solid fuel use 
   only clean fuel 

   no devices 

 
 

-24.6 [-36.9, -9.8]*** 
-2.8 [-12.3, 7.7] 

-1.6 [-16.6, 16.3] 

 
 

-37.3 [-51.1, -19.6]*** 
-8.1 [-19.5, 4.9] 
0.6 [-19.0, 24.9] 

 
 

-9.9 [-31.0, 17.7] 
5.0 [-11.1, 24.0] 
3.7 [-26.1, 25.3] 

 
 

-37.8 [-52.7, -18.0]*** 

-8.1 [-22.1, 8.4] 
0.7 [-33.5, 52.4] 

 
 
- 

Season 
   non-heating (ref: heating) 

 
-62.8 [-71.8, -50.9]*** 

 
-67.7 [-77.6, -53.5]*** 

 
-55.0 [-71.0, -30.3]*** 

 
- 

 
- 

Outdoor concentrations  5.8 [4.7, 6.9]*** 6.0 [4.6, 7.4]*** 5.5 [3.8, 7.1]*** 3.5 [2.0, 5.1]*** 9.8 [8.0, 11.6]*** 



 86 

per 10 g/m3* 

Ambient relative humidity, 
per % 

0.8 [0.5, 1.1]*** 0.8 [0.4, 1.2]*** 0.7 [0.3, 1.1]*** 1.5 [1.1, 2.0]*** 0.8 [0.3, 1.2]*** 

Ambient temperature, per C 
 

3.4 [2.2, 4.6]*** 4.3 [2.7, 5.9]*** 2.1 [0.3, 4.0]** 6.0 [3.1, 8.9]*** 1.9 [0.7, 3.1]*** 

Site 
Guangxi (ref) 

Beijing 
Shanxi 

 
 

37.9 [15.0, 65.3]*** 
69.9 [43.1, 101.6]*** 

 
 

45.1 [14.3, 84.2]*** 
71.8 [36.7, 115.9]*** 

 
 

26.8 [-4.9, 69.2] 
65.7 [26.7, 116.7]*** 

 
 

(ref) 
-25.6 [-37.5, -11.5]*** 

 
 

5.5 [-8.8, 22.1] 
120.9 [89.3, 157.7]*** 

Marginal R2 0.24 0.23 0.25 0.25 0.25 
Conditional R2 0.29 0.29 0.33 0.38 0.35 

*p-value <0.10; **p-value <0.05; ***p-value<0.001 
a Regression of log-air pollution exposure can be converted to the percent (%) change in exposure using the equation ([expβ – 1]x 100), where β is the change in log-transformed 
pollution exposure associated with a one-unit change in the independent variable.   
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Table S4: Sensitivity analysis of associations between personal PM2.5 exposure and selected sociodemographic, energy use, and 
environmental variables, expressed as % change in exposure [95% CI]a 

 
 
 
 
 
 
 
 
 
 

Nparticipants (Nfilters) 

Main analysis PM2.5 model 
(all observations) 

 
 
 
 
 
 
 
 

746 (2022) 

(1) Analysis limited to PM2.5 
exposure samples within 

±10% of 24-h target 
 
 
 
 
 
 
 

744 (1913) 

(2) Analysis limited to 
PM2.5 exposure samples 
that could be matched 

with village-level 
outdoor PM2.5 
measurements 

(village-level outdoor 
PM2.5) 

 
 

418 (606) 

(3) Analysis limited to 
PM2.5 exposure 

samples that could be 
matched with village-

level outdoor PM2.5 
measurements 
(Outdoor PM2.5 
estimated from 

government monitors) 
 

418 (606) 

(4) Analysis limited to 
PM2.5 exposure 
samples with no 
potentially non-

compliant samples 
(<500 steps) 

 
 
 
 

742 (1978) 

Age per year -0.2 [-0.8,0.4] 0.0 [-0.6, 0.6] 0.1 [-0.9, 1.2] 0.2 [-0.9, 1.3] -0.2 [-0.8, 0.4] 
Gender 

   male (ref: female)  
 

4.6 [-6.1, 16.5] 
 

3.3 [-7.2, 15.0] 
 

21.4 [-0.5, 48.2]* 
 

19.8 [-1.7, 46.0]* 
 

5.6 [-5.2, 17.6] 
Occupation 

   agriculture (ref) 
   other work outside the 

home 
not working outside the 

home 

 
 

5.9 [-10.3, 24.9] 
-3.2 [-13.1, 7.8] 

 
 

7.6 [-8.6, 26.8] 
-4.6 [-14.4, 6.2] 

 
 

-7.1 [-28,1, 20.0] 
-1.0 [-17.8, 19.2] 

 
 

-7.5 [-28.2, 19.3] 
-2.8 [-19.1, 16.9] 

 
 

7.4 [-8.9, 26.8] 
-1.3 [-11.4, 10] 

Annual household income 
(yuan) 

 <20000 (ref: ≥20000) 

 
 

3.1 [-5.9, 13.0] 

 
 

2.3 [-6.6, 12.1] 

 
 

-0.5 [-15.2, 16.8] 

 
 

-1.5 [-16.0, 15.4] 

 
 

3.4 [-5.6, 13.4] 
Education 

   college/high (ref) 
   primary 

   no school 

 
 

0.4 [-8.7, 10.5] 
-5.4 [-17.2, 8.1] 

 
 

0.5 [-8.6, 10.5] 
-6.2 [-17.7, 7.0] 

 
 

-8.0 [-22.6, 9.3] 
-13.7 [-31.2, 8.2] 

 
 

-8.8 [-23.2, 8.3] 
-13.6 [-31.0, 8.2] 

 
 

2.0 [-7.3, 12.1] 
-6.0 [-17.7, 7.4] 

Smoker 
   smoker (ref) 

   non-smoker w/ household 
smoker 

   non-smoker w/o household 
smoker 

 
 

-26.2 [-36.3, -14.4]*** 
 

-30.4 [-38.0, -21.8]*** 

 
 

-27.2 [-37.2, -15.6]*** 
 

-32.4 [-39.7, -24.1]*** 

 
 

-3.4 [-26.0, 26.2] 
 

-28.1 [-41.3, -11.8]*** 

 
 

-3.9 [-26.3, 25.3] 
 

-28.2 [-41.4, -12.1]*** 

 
 

-27.2 [-37.2, -15.5]*** 
 

-31.7 [-39.1, -23.3]*** 
 

Cooking fuel 
   clean fuel use (ref:solid 

fuel) 

 
-15.4 [-22.3, -8.0]*** 

 
-15.0 [-21.8, -7.5]*** 

 
-1.1 [-14.8, 14.8] 

 
-1.9 [-15.5, 13.8] 

 
-15.4 [-22.3, -8.0]*** 

Heating fuel 
   indoor solid fuel (ref) 

   outdoor solid fuel use 

 
 

-24.6 [-36.9, -9.8]*** 

 
 

-24.2 [-36.5, -9.6]*** 

 
 

-10.5 [-36.7, 26.6] 

 
 

-11.1 [-37.0, 25.4] 

 
 

-26.1 [-38.3, -11.5]*** 
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   only clean fuel 
   no devices 

-2.8 [-12.3, 7.7] 
-1.6 [-16.6, 16.3] 

0.1 [-9.6, 10.8] 
0.1 [-15.2, 18.1] 

-1.1 [-17.9, 19.0]* 
4.9 [-21.1, 39.4] 

-4.1 [-20.3, 15.5]* 
2.3 [-23.0, 35.8] 

-1.9 [-11.4, 8.7] 
2.0 [-13.7, 20.5] 

Seasonb 

   non-heating (ref:heating) 
 

-62.8 [-71.8, -50.9]*** 
 

-62.3 [-71.4, -50.4]*** 
 
- 

 
- 

 
-63.2 [-72.1, -51.4]*** 

Outdoor concentrations 

PM2.5 per 10 g/m3* 
 

5.8 [4.7, 6.9]*** 5.7 [4.6, 6.8]*** 3.4 [1.7, 5.0]*** 2.4 [1.3, 3.5]*** 5.7 [4.7, 6.9]*** 

Ambient RH per % 0.8 [0.5, 1.1]*** 0.8 [0.5, 1.1]*** 1.0 [0.4, 1.6]*** 0.7 [0.0, 1.4]*** 0.8 [0.5, 1.1]*** 

Ambient temperature per C 3.4 [2.2, 4.6]*** 3.4 [2.2, 4.6]*** 2.2 [-1.0, 5.5] 2.4 [-0.7, 5.7] 3.5 [2.3, 4.7]*** 

Site 
Guangxi (ref) 

Beijing 
Shanxi 

 
 

37.9 [15.0, 65.3]*** 
69.9 [43.1, 101.6]*** 

 
 

42.2 [18.7, 70.3]*** 
71.8 [44.8, 103.9]*** 

 
 

293.4 [103.1, 662.2]*** 
208.3 [66.3, 471.7]*** 

 
 

254.6 [81.6, 592.7]*** 
187.7 [54.7, 435.0]*** 

 
 

46.2 [22, 75.4]*** 
78.7 [50.5, 112.2]*** 

Marginal R2 0.24 0.25 0.31 0.31 0.25 
Conditional R2 0.29 0.30 0.46 0.46 0.31 

*p-value <0.10; **p-value <0.05; ***p-value<0.001 
a Regression of log-air pollution exposure can be converted to the percent (%) change in exposure using the equation ([expβ – 1]x 100), where β is the change in log-transformed 
pollution exposure associated with a one-unit change in the independent variable.   
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Chapter 4: Objective 2 
  
4.1 Preface 
 
In Objective 1, I focused on personal exposure to air pollution in the Chinese adults living in 

rural areas: the levels of exposure; the variation within and between participants; and the 

energy, housing, and sociodemographic predictors of exposure. For Objective 2 I investigate 

whether exposure to the residential coal-to-clean-energy program is associated with changes in 

satellite-derived outdoor PM2.5 in Beijing using a Bayesian spatiotemporal model to evaluate 

the association between monthly average satellite-derived air pollution for heating season 

months (December to February) between December 2014 to December 2019 at the ~11km 

grid cell spatial resolution and participation of these grid cells in the residential coal-to-clean 

policy. Participation was characterized using a binary variable indicating any villages in the grid 

cell was participating in the policy. A variable estimating the number of households enrolled in 

the policy in each grid cell was also created for an interaction term. 

 

This chapter contributes to the overarching theme of household energy and its impacts on air 

pollution and health in this thesis by contributing to the limited empirical evidence on the 

impacts of household energy policies on air pollution. This study evaluates the air pollution 

impacts of a large-scale residential coal-to-clean energy policy across the large geographic 

regions of Beijing, China. Therefore, it has a benefit informing policy makers on the potential 

impacts of such a policy. 

 

This manuscript is in progress and has not yet been submitted to a journal. 
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4.2 Effects of the Coal-to-Clean Energy Policy on Local Satellite-Derived Air Pollution in Beijing, 
China 

Abstract  
 
Beijing has implemented many policies aimed at improving regional air quality over the past 

decade, including the residential coal-to-clean energy policy which banned residential coal 

burning and subsidized the cost of replacement gas and electric heaters and electricity in rural 

and peri-urban areas. We conducted a longitudinal study from December 2014 to December 

2019 to assess whether area-level exposure to the policy is associated with changes in local 

outdoor PM2.5 during the heating season. We obtained monthly satellite-derived PM2.5 at high 

spatial resolution (0.01°0.01° grid cells) for Beijing from December to February (heating 

season months). For each spatial unit and time point, we developed an area-level measure of 

exposure to coal-to-clean energy policy, defined as any villages in the area participating in the 

policy at that time point. We modeled the relationship between PM2.5 and exposure to the 

policy using a hierarchical spatiotemporal model that accounts for the complex spatial and 

temporal structure of the data. Inference followed the Bayesian paradigm where we used an 

integrated nested Laplace approximation (INLA) with Stochastic Partial Differential Equation 

method. Of the 3030 rural and peri-urban grid cells in Beijing with villages, 2032 (67%) had at 

least one village exposed to the policy by December 2019. Though regional air pollution across 

Beijing decreased during the study period, we did not find evidence that local exposure to the 

coal-to clean-energy policy influenced outdoor satellite-derived PM2.5, a result that contrasts 

with other field and modeling studies.  

 
Introduction 
 
The Beijing region has historically been characterized by poor air quality, especially in the 

winter heating season, due to local emissions of air pollutants, stagnant meteorological 

conditions, and its regional geography (185). The residential sector is an important source of 

PM2.5 in Beijing and throughout China where hundreds of millions of households burn biomass 

and coal for cooking and space heating (186, 187). Household coal stoves have higher emission 

factors than coal burned in the industrial and power sectors due to less efficient combustion 
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(70). In 2015, household coal stoves contributed nearly half of wintertime outdoor PM2.5 in 

northern China (188) and an estimated ~30% of the outdoor PM2.5-attributable premature 

deaths (189). Regional modeling studies estimated that large-scale household energy transition 

from coal to electricity or gas could reduce outdoor PM2.5 in Beijing by 11-17% (190, 191), a 

result supported by cross-sectional field studies that measured lower indoor PM2.5 in villages 

that had recently transitioned to gas or electric stoves compared with nearby villages using coal 

heaters (141, 192). 

 

To mitigate the air quality and health burdens of residential heating, Beijing implemented a 

residential coal-to-clean energy policy2 in peri-urban and rural villages as part of its national Air 

Pollution Prevention and Control Action Plan (185). The policy required villages to stop using 

coal-fueled heaters and, to ease this transition, provided subsidies for the purchase and 

installation of electric or gas-powered heaters and the cost of electricity and gas for three years 

(141, 193). The policy was piloted for several years with large-scale implementation starting in 

2016 (140, 194), where villages closer to central (urban) Beijing entered the policy earlier and 

those in more remote and mountainous regions of Beijing entered into the policy later. Villages 

did not know if and when they would be enrolled in the policy, as some were required to enter 

whereas others applied to the policy and were selected by the government (185). The type of 

fuel (e.g., electricity or gas) was determined by local infrastructure, with the majority of villages 

shifting to electricity (140, 141). 

 

The effectiveness of large-scale household energy programs in achieving air quality 

improvements has rarely been empirically investigated, especially at sub-city resolutions. Thus 

whether large-scale household energy transition improves outdoor air quality has not reached 

consensus. In Ireland a series of county-level residential coal bans in the 1990s were associated 

with 40-70% decreases in black smoke concentrations in ban-affected areas (146). In Central 

Launceston in Australia, a wood-burning stove exchange was associated decrease in average 

 
2 This policy is referred to by different names including the ‘clean winter heating plan(北方地

区冬季清洁取暖规划)and the “clean energy for rural heating” plan (农村采暖用能清洁化) 
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daily wintertime coarse particular matter (PM10) from 44 µg/m3 to 27 µg/m3 (147) and clean 

energy policies in Christchurch and Timaru, New Zealand were also associated with reductions 

in wintertime PM10 (36% and 11% respectively) (149). Studies of the coal-to-clean energy policy 

at the municipal- or prefecture-level in northern China observed smaller decreases in PM2.5 (2.4 

-7 μg/m3) in regions exposed to the policy compared with neighboring municipalities or regions 

not exposed to the policy (195-197).   

 

We aimed to evaluate the effect of exposure to the coal-to-clean energy policy on outdoor 

PM2.5 at fine spatial resolution (~1 × 1 km) in Beijing. To our knowledge, no previous studies 

have evaluated the very local effects of this policy on PM2.5 across Beijing, which are less likely 

to be impacted by other air quality policies, or statistically accounted for spatial correlation in 

air pollution. Quantifying the local air pollution impacts of this large-scale clean energy program 

is timely for decision-makers as they consider further expansion of the program across China 

and to other regions of the world where residential emissions are important contributors to 

local and regional air pollution.  

 
Methods 
 
Study area 
 
Our study was conducted in Beijing, an area of ~16,400 km2 that has long served as the political, 

cultural, and educational center of China. Beijing comprises 16 districts and has a population of 

~21 million. Its densely-populated urban core is surrounded by several satellite towns and peri-

urban and rural villages in the periphery (198). Beijing winters begin in late October and tend to 

be cold, dry, and windy, with the lowest outdoor temperatures usually occurring in January 

(−3.0°C on average) (199). Residential space heating is common and coal-fuelled heaters have 

historically been used to heat homes (186). 

 
Study design 
 
We conducted a longitudinal study to assess whether local outdoor PM2.5 in Beijing was 

impacted in areas where villages participated in the coal-to-clean energy policy. To capture the 
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time period when air quality is likely most impacted by a winter heating policy, we restricted 

our study period to the months of December, January, and February which fall fully within the 

winter heating season that is generally from November 15 to March 15 (200).  

 
          Satellite-derived local PM2.5 

 
We obtained monthly 0.01° × 0.01°(~1 × 1km) resolution surfaces of PM2.5 concentrations from 

the Atmospheric Composition Analysis Group at the University of Washington in St. Louis (201). 

Detailed information on the methods used to generate these surfaces can be found elsewhere 

(56). Briefly, ground-level PM2.5 was estimated by combining aerosol optical depth (AOD) 

retrievals from remote sensing products (Moderate Resolution Imaging Spectroradiometer 

[MODIS] Dark Target, MODIS and Sea-Viewing Wide Field-of-View Sensor [SeaWiFS] Deep Blue, 

MODIS Multiangle Implementation of Atmospheric Correction [MAIAC], Multiangle Imaging 

Spectroradiometer [MISR]) with a GEOS-Chem chemical transport model. The estimates were 

calibrated with ground-based measurements from China’s national air quality monitoring 

network, which includes 35 reference-quality PM2.5 monitors in Beijing, using a geographically 

weighted regression. Globally, when comparing the hybrid model to measurements from the 

World Health Organization’s Ambient Air Quality database, including the majority of monitors 

in China, the mean R2 ranged from 0.81 to 0.86, with the highest correlation in January (56). 

 

We extracted monthly average PM2.5 estimates for each 0.01° × 0.01° grid cell in Beijing for the 

heating season months (December, January, and February) from December 2014 to December 

2019, resulting in dataset of 277,776 observations for 17,361 grid cells over 16 winter months 

(Figure S1). The values for 68 missing grid cells were imputed based on the mean of the 

neighboring eight grid cells.  

 
          Geolocating villages in Beijing  
 
We used Baidu Maps (202) to geolocate a list of 7,168 administrative villages and communities 

in Beijing in 2019 that was obtained from China’s National Bureau of Statistics (203) using the 

village or community, township, and district names. A second list of 2,544 villages that entered 
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the coal-to-clean energy policy between 2015 and 2019 (i.e., exposed villages) which included 

the district, township, administrative village name, and year of entry was obtained from the 

College of Urban and Environmental Sciences at Peking University. We removed duplicate 

villages (n=25) and matched the list of villages exposed to the policy with the geolocated 

dataset of Beijing villages and communities using their village, township, and district names 

while also considering similar names or alternative spellings in the same township or a 

neighboring township using Baidu Maps (202) and Baike (204). Ten villages listed as enrolled in 

the policy were excluded from the analysis because they either could not be geolocated (n=5) 

or were no longer independent administrative villages by 2019 (n=5). Nineteen villages listed as 

enrolled in the policy were not listed in the government database of villages and communities 

and were added to our administrative dataset after identifying their locations on Baidu Maps 

(202) and verifying their presence on Baike (204). 

 

Our final dataset of villages contained 2,509 villages exposed to the coal-to-clean energy policy 

out of 7,187 villages and communities in Beijing. Most villages were listed as having entered the 

policy in one year, but some entered the policy over two (n = 718), three (n = 141), or four (n = 

5) years. For this analysis, we considered villages as exposed to the policy in their first year of 

entry with the conservative assumption that most households could be participating in the 

policy at this time. Though villages in Beijing continued to join the policy past 2019, we did not 

have data on village participation after December 2019.   

 

We transformed the final village dataset into a raster with grid cells to match the same 

0.01° × 0.01° spatial resolution as PM2.5. For each grid cell and study month, we calculated the 

total number of villages in each grid cell (median: 0; range: 0-12) and the number of villages 

exposed to the policy in each grid cell (median: 0, range: 0-8). 

 
          Estimating exposure to the coal-to-clean energy policy  
 
Exposure to the policy was characterized for each study month and grid cell for the statistical 

analysis. We generated a binary variable where grid cells were considered exposed to the policy 
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if they had a village participating in the policy in that month and year, and otherwise as 

unexposed. Since it was assumed most villages transitioned during the non-heating months 

(141), we considered villages exposed into the policy starting in December of the year they 

were enrolled. We chose a dichotomous exposure rather than using proportion of the grid cell 

treated because most grid cells only had one village and only a small proportion of grid cells 

(0.7%) had percentage of villages exposed that was not 0 or 100% (Figure S1). We did not 

define exposure by households enrolled in the policy due to the zero inflated distribution, lack 

of data on spatial variation on village size throughout Beijing, and concerns of residual 

confounding between the exposure and PM2.5 as areas with more households entering into the 

policy would likely have more emissions. 

 
          Covariates 
 
We obtained or derived spatial-temporal variables that could be plausibly associated with the 

emission, dispersion, or attenuation of local PM2.5 and with the likelihood of being exposed by 

the coal-to-clean energy policy. Covariate selection was guided the by literature on air pollution 

in northern China (205, 206) and observations of the policy’s implementation (140, 141).  

 

Detailed information on covariates is provided in Table 1. We included an indicator variable to 

identify urban grid cells that were likely already connected to the public heating system in 2015 

and thus not eligible for the policy. Grid cells were considered urban if 1) located within the 

boundary of the 5th Ring Road, which is a commonly used landmark to distinguish Beijing’s 

urban core from its less-developed periphery (207, 208); 2) the majority of villages in the grid 

cell were formally designated as urban by the government, or 3) the population density of the 

grid cell was over 8258 persons/km2, which is the 97th percentile for exposed grid cells (209). 

The number of villages in the grid cell was included in the model to adjust for the total 

population in the grid cell. 

 

We included elevation because lower elevation areas tend to be more developed, have higher 

levels of PM2.5 and were also more likely to participate in the policy than more remote regions. 
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Impervious surface indicated a greater presence of anthropogenic activities which can impact 

levels of air pollution but also indicated a greater presence of infrastructure that facilitated 

selection into the policy (205). Local meteorological conditions and weather patterns can affect 

outdoor PM2.5 (210, 211) and may also influence energy patterns and preferences and thus 

village application to the policy. Relative humidity was calculated from temperature and dew 

point temperature using the August-Roche-Magnus approximation method (212). We 

calculated monthly averages of the meteorological data to match the temporal resolution of 

the PM2.5 data for statistical analysis. Population density was only used for the sensitivity 

analysis. 

Table 1: Description of covariates included in the spatial-temporal model  
Variable  
(type) 

Level of 
variables 

Units Temporal 
resolution 
in model 

Spatial 
resolution 
in source 
data 

Source  

Number of 
villages 
(raster)  

0 to 12 Villages 
 

Annual  
(from 2019) 

- National Bureau of 
Statistics of China 
(203) 
Baidu Maps (202)  

Urban 
(raster) 
 

0 or 1 0 = peri-urban 
or rural grid cell 
1 = urban grid 
cell 
classification 
 

- - National Bureau of 
Statistics of China 
(203) 
NASA Socioeconomic 
Data and 
Applications Center 

(209) 

Global Man-
made 
Impervious 
Surface (GMIS)  
(raster) 
 

0 to 100 Percent 
impervious 
surface 
 

Annual 
(from 2010) 

30m x 30m 
 
 

NASA Socioeconomic 
Data and 
Applications Center 
(213, 214) 

Population 
Density 
(raster) 
 

0 to 92,900 Population per 
km2 

 

Averaged 
from 2015 
and 2020 
 

~1km x 1km 
 
 

NASA Socioeconomic 
Data and 
Applications Center 
(215) 

Elevation 
above sea-level 
(raster) 
 

8 to 2065 Meters - Zoom 11 
54m x 54m 
(at 45°) 

Mapzen and Amazon 
Web Services Terrain 
Tiles accessed via 
elevatr package 
(version 0.4.2) (216) 
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Surface 
temperature 
(2m) 
(raster) 
 

-14 to 2 Celsius 

Monthly (averaged from hourly data) 
30km x 30km 

ERA5 reanalysis from the European Center for 

Medium-Ranged Weather Forecasts (217) 
 

Relative 
humidity 
(raster) 
 

26 to 66 Percentage 

Total 
precipitation 
(raster) 
 

0 to 0.0003 Meters (of 
water 
equivalent per 
hour) 

U wind 
(raster) 

-0.3 to 3 Meters per 
second 

V wind 
(raster) 
 

-2 to 0.2 Meters per 
second  

Note: All covariate data were in raster format. The values for each observation were extracted at the midpoint of 
each 0.01° × 0.01° grid cell.  

 
Proposed spatiotemporal model 
 
We used a model-based approach tError! Bookmark not defined.o investigate whether area-

level exposure to the coal-to-clean energy policy is associated with the levels of outdoor PM2.5. 

The observed PM2.5 measurements are derived from satellite images and chemical-transport 

models and considered at the grid cell level. As these observations are highly correlated across 

space and time, we used a hierarchical spatiotemporal model that assumes: 

 

𝑃𝑀2.5𝑖𝑡
= 𝛽0  + 𝛽1𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑖𝑡 + ∑ 𝛽𝑚𝑥𝑚𝑖𝑡

𝑀

𝑚=2

+ 𝜔𝑖𝑡 

 
where 𝑖 is the location unit (i.e., grid cell of the observation), 𝑡 is the time unit (i.e., heating 

season month from Dec 2014 to Dec 2019), 𝛽0 is the intercept, 𝛽1 is exposure to the policy for 

unit i and time t, 𝛽2, … , 𝛽𝑚 are the covariates (e.g., elevation, land use, and meteorological 

variables) 𝑥2, … , 𝑥𝑚, and 𝜔𝑖𝑡 is a latent spatiotemporal effect which is added to capture any 

remaining spatial structure after accounting for covariates (i.e. not captured by the fixed 

effects). By accounting for spatial autocorrelation in the latent effect we remove random spatial 

variations from the general association between exposure to the policy and outdoor PM2.5 
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while also accounting for background temporal trends to remove structure of temporal 

dependence between time points. This latent component is modelled using a local 

autoregressive structure, more specifically, 

 
𝜔𝑖𝑡 = 𝑎𝜔𝑖(𝑡−1) + 𝜉𝑖𝑡 

 
where 𝑎 is an autoregressive parameter with |a| < 1 which results in a temporally stationary 

process, and 𝜔𝑖1 is assumed to follow a stationary distribution of Normal(0,𝜎2∕(1 – a2)), 𝜉𝑖𝑡 is a 

zero-mean Gaussian process that is temporally independent and spatially structured with a 

Matérn covariance function (218). All the continuous covariates (elevation, land use, and 

meteorological variables), except for number of villages, were scaled (centred and then 

standardized) for analysis.  

 

We followed the Bayesian paradigm to estimate the parameters of the model, which means 

that model specification is complete after assigning a prior distribution to the parameter vector. 

We assume prior independence among the model parameters. Regardless of the prior 

specification, the resultant posterior distribution is unknown. Because of our high-dimensional 

data, we used an Integrated Nested Laplace Approximation (INLA) to obtain estimates of the 

resultant posterior distributions. In particular, the Gaussian process 𝜉𝑖𝑡 was approximated using 

the stochastic partial differential partial equation (SPDE), as described in detail elsewhere (218). 

The SPDE approach, together with INLA, is implemented in the R-INLA package (4). Weakly 

informative priors were used in this study, the defaults of the R-INLA package (4). For all fixed 

effects, we assigned a zero-mean Gaussian distribution with precision equal to 0.001. We used 

penalized complexity priors for the Matérn field hyperparameters because this penalized 

deviation from the base model priors can reduce over-fitting (5, 6). The precision parameters 

were assigned a gamma prior with both shape and rate set to 0.01. 

 

All areas of Beijing were included in the analysis including those considered not eligible for the 

policy (e.g., without villages or designated as urban) because the model has a spatial 

component and removing ineligible grid cells would leave gaps in the surface used to estimate 
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the continuous spatial autocorrelation effect and prevent the model from correctly estimating 

the coefficients.   

 

As sensitivity analyses, we conducted our analysis 1) only considering grid cells as exposed to 

the policy when all villages in the grid cell were participating (n =1,894 grid cells by December 

2019); 2) at a larger-spatial resolution (n = 2800 grid cells at 0.1° × 0.1°, or ~11km × 11km) using 

less-resolved PM2.5 surfaces from the Atmospheric Composition Analysis Group at the 

University of Washington in St. Louis (201); and 3) adjusting for population density, which may 

better account for population and possibly the presence of other air pollution sources than 

number of villages but is estimated from lower-spatial resolution population data with a high-

degree of error and is spatial misaligned with our village dataset.  

 

All analyses were done in R (version 4.0.3) (8) using the R-INLA package (4). 

 
Results 
 
The study region was characterized by high concentrations of PM2.5 throughout the study 

period (Figure S2). Mean PM2.5 across all grid cells and study years was 65 µg/m3 (median: 64; 

min/max: 17/114). The urban core had the highest PM2.5 with a strong regional gradient in the 

peri-urban and rural areas characterised by lower PM2.5 in northern and northwestern Beijing 

and higher concentrations in the southern and eastern regions (Figure S1). Areas of 

northwestern Beijing most often met the Chinese national standard for annual PM2.5 of 35 

µg/m3 (64). Wintertime PM2.5 generally decreased across Beijing over the study period, through 

the decreases were not spatially or temporally uniform. There were small increases in PM2.5 

over time in the southwest and, across the province, PM2.5 levels in January 2019 were higher 

than the December or February of the same year but lower than Januarys in earlier years.  

 

Of the 3030 rural and peri-urban grid cells in Beijing with villages, 2032 (67%) had at least one 

village exposed to the policy by December 2019.  Villages in peri-urban and rural areas near the 
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urban core and in the southeast of Beijing were more likely to be exposed to the policy than 

villages in the more remote, northwestern areas (Figure 1).  
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Figure 4: Map of the study area in Beijing showing grid cells where at least one village was 
exposed to the policy by December 2019 

 
Note: Grid cells were defined as urban if: 1) located within the boundary of the 5th Ring Road, 2) the majority of 
villages were formal designated as urban by the Beijing government, or 3) the population density of the grid cell 
was over 8258 persons/km2. 
 
Grid cells exposed to the coal-to-clean energy policy had, on average, higher pre-policy levels of 

PM2.5 (61.9 µg/m3) than unexposed grid cells (57.7µg/m3) (Table 2). Grid cells exposed to the 

policy tended to be more developed, at lower elevation, and have warmer wintertime outdoor 

temperature than unexposed grid cells, though meteorological conditions were similar. These 

differences reflect the implementation patterns of the policy which started in the more 

developed areas in the plains region that was closer to central Beijing.  

 

Any village in policy

No villages present

No villages in the policy

Urban
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Table 2: Pre-policy air quality, land use, and meteorological characteristics (mean [standard 
deviation] or n [%]), by exposure group. Grid cells with a village participating in the coal-to-
clean energy policy by 2019 are classified as ‘exposed’ and otherwise as ‘unexposed’ 

Characteristics Exposed  
(n=2122 grid cells) 

Unexposed  
(n=15239 grid cells) 

Satellite-derived outdoor PM2.5 (µg/m3) 
mean [sd] 

61.9 [9.4] 57.7 [11.6] 

Number of villages 
   mean [sd] 

1.3 [0.8] 0.3 [0.9] 

Classified as ‘urban’  
   n [%] 

90 [4.2] 1235 [8.1] 

Impervious surface (%) 
   mean [sd] 

18.9 [28.7] 12.3 [26.4] 

Elevation (m) 
   mean [sd] 

126 [182] 402 [360] 

Outdoor temperature (°C – monthly) 
   mean [sd] 

-2.6 [1.5] -3.8 [2.0] 

Relative humidity (% – monthly) 
   mean [sd] 

36.0 [1.2] 36.6 [1.6] 

Total precipitation (m of water 
equivalent per hour – monthly)  
   mean [sd] 

2.6e-6 [8.2e-7] 2.6e-6 [8.3e-7] 

U wind (m per second – monthly) 
   mean [sd] 

1.1 [0.5] 1.3 [0.6] 

V wind (m per second – monthly) 
   mean [sd] 

-1.0 [0.3] -1.1 [0.3] 

Note: Percentages were calculated as column percentages, with the number of grid cells of that exposure group as 
the denominator.   

 
In our multivariable analysis, we did not find evidence that exposure to the policy had an effect 

on satellite-derived outdoor PM2.5 (Table 3). Exposure to the policy, as defined as a village in 

the grid cell participating in the policy, was associated with a very small decrease of -0.01 µg/m3 

[95% CrInt: -0.05, 0.03] in PM2.5 and credible intervals included the null. The results of our 

sensitivity analyses were generally consistent with the main analysis (Table S1, except for the 

analysis at a higher spatial resolution which showed a small positive association between 

exposure to the policy and PM2.5, though the credible intervals also included the null (0.097 

[95% CrInt: -0.178, 0.372]). 
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Table 3: Effects of area-level (~1x1 km grid cell) exposure to coal-to-clean energy policy, defined 
as a village in the grid cell participating in the policy, on local satellite-derived PM2.5 (µg/m3) in 
Beijing and 95% credible intervals.  

Variable Coef. [95% credible intervals] 

Exposure to the coal-to-clean energy policy -0.010 [-0.046, 0.026] 

Urban grid cell 0.047 [-0.002, 0.096] 
Number of villages 
    (per 1 village) 

0.005 [-0.006, 0.015] 

Relative humidity  
    (per 1 SD increase) 

-0.156 [-0.347,0.035] 

Outdoor temperature 
    (per 1 SD increase) 

-0.340 [-0.436,-0.243] 

Elevation 
    (per 1 SD increase) 

-0.022 [-0.047,0.003] 

Impervious surface 
    (per 1 SD increase) 

0.023 [0.013,0.034] 

Total precipitation 
    (per 1 SD increase) 

-0.130 [-0.280,0.020] 

V wind component 
    (per 1 SD increase) 

-0.015 [-0.090,0.059] 

U wind component 
    (per 1 SD increase) 

-0.279 [-0.347,-0.211] 

SD, standard deviation 
Continuous covariates (relative humidity, outdoor temperature, elevation, imperious surface, total 
precipitation, and wind components) were scaled (centred and then standardized) for analysis. Their 
coefficients represent the associated change in PM2.5 for a one standard deviation increase from the 
mean.  

 
The latent effects (unobserved heterogeneity) accounting for the spatiotemporal effects were 

similar across models in the main and sensitivity analyses. Mirroring what we observed for 

PM2.5, the latent effects also decreased over the study period (Figure 2) and were, on average, 

largest in January and smallest in February. By the end of the study period, the latent effects 

were near zero or negative across all of Beijing. Generally, we observed a strong northwest to 

southeast gradient from low to high.  
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Figure 2: Monthly posterior mean of the latent spatiotemporal effects with exposure defined as 
having a village in the grid cell participating in the policy during the study period in Beijing 
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Discussion 
 
In this Beijing-wide study of the coal-to-clean energy policy, we did not find evidence that 

exposure to the policy reduced satellite-derived outdoor PM2.5 at the small area-level, though 

we did observe a considerable regional decrease in PM2.5 over the study period. The estimated 

decrease in PM2.5 associated with the coal-to-clean energy policy was a very small, 0.01 µg/m3, 

and the credible intervals included the null.  

 

Important strengths of our study are its highly spatially resolved data and our ability to account 

for both spatial and temporal correlation of area-level PM2.5 by fitting a hierarchical 

spatiotemporal model. Previous empirical studies of the policy are mostly limited to much 

larger-scale estimation at regional or municipal-scales, which are highly subject to influence by 

other air quality policies or development impacts. By comparison, our study was conducted at 

the small-area level to capture local levels of PM2.5 and participation in the policy. This may 

reduce the potential influence of other air quality policies (e.g. regional reductions in industrial 

coal burning). Further, our spatiotemporal model does not assume spatial independence and is 

better able to quantify the uncertainty parameters of the model by correctly accounting for the 

complex spatial structure of the data. 

 

Our findings contrast with the relatively large decreases in outdoor air pollution associated with 

residential fuel use inventions in the previous studies, though most were conducted at a much 

larger spatial resolution than our analysis. A residential coal ban in Ireland was associated with 

a 40 to 70% decrease in black smoke in exposed counties (146). The wood-burning stove 

exchange program in Launceston, Australia was associated average daily wintertime ambient 

PM10 decrease from 44 µg/m3 to 27 µg/m3 within the city (147). An air quality-dependent wood 

burning ban in the San Joaquin Valley Air Basin was associated with a 12% decrease in regional 

PM2.5 (148), and a ban on solid fuel burning and open fires paired with a residential clean 

heater replacement program in Christchurch, New Zealand was associated with a 41% 

reduction in ambient PM10 within the city (149). These studies suggest that clean energy policy 

can provide an air quality benefit based on measurements from a small number (n=1-6) of local 
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monitoring sites in each city or region conducted before and after the policy, but most lacked a 

control (comparison) group and none accounted for latent spatiotemporal effects. Thus, the 

estimates are subject to influence by other unmeasured temporal changes that could affect air 

quality (e.g., other air quality policies, urban development, or land-use changes). 

 

Our results also contrast with a recent district-level panel study in Beijing by Lui et al. (2020) 

that estimated a 12% annual decrease in PM2.5 throughout Beijing between 2014 and 2018 

(219) based on measurements of PM2.5 from the government monitoring network. These 

measurements of PM2.5 are more accurate than our satellite-derived PM2.5 estimates but 

limited in their spatial coverage and, along their statistical methods, less able to account for 

spatial autocorrection than our methods. There was an overall regional decrease in outdoor 

PM2.5 throughout the study period but this reduction was not uniform throughout Beijing. It is 

possible by accounting for joint spatial and temporal autocorrection, our method adjusted for 

regional trends, potentially the results of other clean air policies in Beijing or in up wind regions, 

and correctly removed this noise from the general association between policy exposure and 

outdoor PM2.5.  

 

The lack of impact on outdoor PM2.5 in our study may be due to the challenges of identifying 

the outdoor air quality benefit of an indoor intervention. It is also possible that any small local 

air quality benefit was masked by relatively high levels of outdoor PM2.5 and the complex 

mixture of regional pollution and local emission sources. 

 

Spillover effects could have further obscured our ability to measure an effect of the policy on 

air quality. Areas with villages participating in the program could be impacted by coal burning 

from upwind in villages that have not transitioned, and areas without villages participating in 

the policy could benefit from lower pollution from nearby areas exposed the policy. This should 

result in regional decreases in air pollution, as observed in a previous study (219), but the local 

decreases would be more obscured. We tried to account for some spillover effects by 
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implementing a statistical model that accounts for spatial autocorrelation, though this does not 

completely remove the effect. 

 

Incomplete adherence to new stoves and continued use of solid fuel stoves in exposed villages 

could also reduce the outdoor air quality impacts of the policy. Two recent field studies 

observed continued use of coal in some villages participating in the policy due to a range of 

factors including the relatively high costs of gas and electricity, reduced energy delivered, and 

familiarity of coal stoves (140, 220).  Another field study of the policy found that, while clean 

energy use was higher in villages participating in the policy compared with nearby villages not 

yet participating, lower-income villages continued using their coal stoves (141). In December 

2017, the government allowed for temporary coal burning in households enrolled in the policy 

due to cold weather and incomplete implementation of new heating technologies in some 

villages participating in the policy, which could also affect the policy’s air quality benefit (58, 

221).   

 

Our study has several important limitations that could also impact our findings and could be 

considered in future analyses. First, we relied on satellite-derived PM2.5 because high-resolution 

measurements were not available for all of Beijing. While an advantage of using these highly-

resolved satellite-derived data is that they provided continuous surface of PM2.5 for the large 

geographic region of Beijing, the data are spatially-smoothed through modeling and thus less 

able to capture local variability including the contribution of local sources like household solid 

fuel burning (201, 222). This may inhibit our ability to observe small local changes in PM2.5. 

Second our area-level exposure variable assumes that village size is consistent which almost 

certainly introduce measurement error. We did not have data on village area and thus assigned 

an entire village to a grid cell based on its central coordinate. It is possible that village 

geographic boundaries crossed multiple grid cells. This error would most likely result be non-

differential and lead to an underestimation of the air quality impacts of the policy. Finally, we 

did not assess the potential impact of spatial confounding, which occurs when the latent 
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spatiotemporal effects are correlated with covariates. If present, it can affect the estimation of 

the fixed effects (223). 

 
Conclusion 
  
In this study of satellite-derived outdoor PM2.5 in Beijing, we observed a notable regional 

reduction in PM2.5 between 2015 and 2019 but did not find evidence that exposure to the coal-

to-clean energy policy was associated with changes in outdoor PM2.5 at the small area-level. 
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4.3 Supplementary Information 
 
Figure S1: Histogram of proportion of villages in a grid cell exposed to the coal-to-clean energy 
policy in December 2019. Analysis limited to grid cells with at least one village 
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Figure S2: Plots of monthly satellite-derived outdoor PM2.5 in Beijing during the study period. 
Data are from the Atmospheric Composition Analysis Group at the University of Washington in 
St. Louis. White color indicates that PM2.5 levels meet China’s national standard for maximum 
annual PM2.5 (35 µg/m3); blue shading indicates areas where monthly average PM2.5 is below 
the annual standard and red indicates grid cells where monthly average PM2.5 is higher than the 
standard 
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Table S1: Sensitivity analyses of the effects of area-level exposure to the coal-to-clean energy policy on local satellite-derived PM2.5 
[with 95% credible intervals]  

Variable Main Analysis (i) 100% of villages in 
the grid cell 

participating in the 
policy 

(ii) A village in the 

0.1°0.1° (~1111km) 
grid cell participating 

in the policy 

(iii) A village in the grid 
cell participating in the 

policy adjusting for 
population density 

Exposure to the coal-to-
clean energy policy 

-0.010 [-0.046, 0.026] -0.013 [-0.05,0.025] 0.097 [-0.178,0.372] -0.004 [-0.039,0.030] 

Urban grid cell 0.047 [-0.002, 0.096] 0.047 [-0.002,0.096] -0.352 [-0.692,-0.011] 0.054 [0.008,0.099] 
Number of villages 
    (per 1 village) 

0.005 [-0.006, 0.015] 0.004 [-0.006,0.015] 0.001 [-0.002,0.004] 0.009 [-0.005,0.022] 

Relative humidity  
    (per 1 SD increase) 

-0.156 [-0.347,0.035] -0.153 [-0.344,0.038] -0.565 [-1.591,0.460] -0.153 [-0.344,0.038] 

Outdoor temperature 
    (per 1 SD increase) 

-0.340 [-0.436,-0.243] -0.339 [-0.435,-0.242] -0.846 [-1.456,-0.235] -0.338 [-0.434,-0.241] 

Elevation 
    (per 1 SD increase) 

-0.022 [-0.047,0.003] -0.022 [-0.047,0.003] -0.440 [-0.63,-0.251] -0.022 [-0.047,0.003] 

Impervious surface 
    (per 1 SD increase) 

0.023 [0.013,0.034] 0.0230 [0.013,0.034] -0.150 [-0.254,-0.046] 0.023 [0.013,0.034] 

Total precipitation 
    (per 1 SD increase) 

-0.130 [-0.280,0.020] -0.130 [-0.2800,0.02] 0.121 [-0.626,0.869] -0.129 [-0.279,0.021] 

V wind component 
    (per 1 SD increase) 

-0.015 [-0.090,0.059] -0.015 [-0.090,0.059] 0.124 [-0.311,0.559] -0.015 [-0.089,0.059] 

U wind component 
    (per 1 SD increase) 

-0.279 [-0.347,-0.211] -0.280 [-0.348,-0.212] -0.774 [-1.176,-0.372] -0.278 [-0.346,-0.210] 

SD, standard deviation  
Note: Continuous covariates (relative humidity, outdoor temperature, elevation, imperious surface, total precipitation, and wind components) were scaled 
(centred and then standardized) for the analysis. Their coefficients represent the associated change in PM2.5 for a one standard deviation increase from the 
mean.  
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Chapter 5: Objective 3 
 
5.1 Preface 
 
In Objective 3, I continued to evaluate the impacts of the Beijing residential coal-to-clean-

energy policy by evaluating the impacts of the policy on health. I assessed the effect of 

treatment by the coal-to-clean-energy policy on incidence of acute myocardial infarction (AMI) 

in Beijing townships. I leveraged township-level data from Beijing on AMI and participation in 

the coal-to-clean energy policy from 2013 to 2019, and conducted a multiple time point 

difference-in-difference analysis to assess whether treatment by the policy affected township 

incidence of AMI for all adults and separately for different sex and age groups. Township AMI 

incidence rates for all adults and for separate sex- and age-groups were estimated over one- 

and two-year periods by a co-first author in China using routinely and systematically collected 

hospital admissions and mortality data. I defined township-level participation in the coal-to-

clean energy policy (treatment) as more than 50% of the villages in the township enrolled in the 

policy. These analyses included three time points: pre-treatment period (2013-2014), a first 

post-treatment period (2016-2017), and a second post-treatment period (2018-2019). 

 

This chapter adds to the overarching theme of the thesis by adding to the limited body of 

evidence on the health impacts of clean energy policies. This study provides stronger casual 

evidence than a traditional observational study due to its pre-post policy design and inclusion of 

both treated and untreated townships, and can inform decision makers about the potential 

cardiovascular benefits of clean energy intervention. 

 

This manuscript is in progress and has not yet been submitted to a journal. 

 

I did not have access to the individual-level data used in this study. The AMI data were accessed 

and analyzed at Beijing Centers for Disease Control by the other co-first author who is based on 

China. The study investigators at AnZhen Hospital also obtained approvals from their ethnical 

review committee and from the Ministry of Science and Technology in China to collaborate with 

McGill University on this study. I developed the R scripts for descriptive summary statistics, the 
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statistical analysis, and data visualisation in collaboration with the co-first author who 

conducted the data analysis in China. 
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5.2 Effect of China’s Coal-to-Clean Energy Policy on Acute Myocardial Infarction in Beijing: A 
Difference-in-Difference Analysis  
 
Abstract 
 
Background: In 2015 the Chinese government launched an ambitious coal-to-clean energy 

policy that banned residential coal burning and provided subsidies for clean heating 

technologies and electricity in northern China. The health impacts of this policy have not been 

empirically assessed. 

 

Objectives: This study aimed to estimate the effects of treatment by the coal-to-clean energy 

policy on incidence of acute myocardial infarction (AMI) in Beijing townships using data from 

2013 to 2019.    

 

Methods: We used a quasi-experimental multiple time-point difference-in-difference approach 

to estimate the effect of the coal-to-clean energy policy on AMI rates in Beijing townships 

(n=151). Township-level incidence of AMI was calculated for rural and peri-urban townships 

from 2013 to 2019 for all adult and separated sex-age groups. Townships were considered as 

treated in the policy in years when more than 50% of their villages were participating in the 

policy. 

 

Results and Discussion: We observed an average reduction of -5.5% (95% CI: -11.8%, 1.3%) in 

AMI incidence per 100,000 population in the post-treatment period compared with the pre-

treatment period in the townships treated by the policy relative to untreated townships. The 

largest effects of treatment were observed among women (-12.1%, 95% CI: -21.2%, -2.0%) and 

older adults (-12.6%, 95% CI: -20.8%, -3.8%). While estimates for older men show an impact -

9.6% (95% CI: -17.5%, -1.2%) these effects disappeared when looking at all men where the 

estimates included the null and were close to zero. As household energy programs and policies 

are being scaled up globally, our results provide among the first empirical evidence of 

cardiovascular benefits attributable to a large-scale clean energy policy. Our results may help to 

motivate continued investment in such clean energy. 
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Introduction 
 
Cardiovascular disease is the leading cause of death in China, accounting for approximately 40% 

of deaths in 2019 (224). Acute myocardial infarction (AMI) is a common and serious form of 

cardiovascular disease that is often fatal (88, 225). Mortality from AMI has increased sharply 

over the last decade in China as its population ages (224), making prevention of AMI a policy 

priority (226). 

 

Recent studies demonstrate convincing associations between incident AMI and environmental 

exposures like air pollution (151), and that mitigating air pollution may have cardiovascular 

benefits. In Beijing, air quality control measures during the 2008 Olympics were associated with 

decreased cardiovascular mortality (227), and smoking bans in public places lowered hospital 

admissions for AMI by an average of 5% (228).  

 

In 2015 the Chinese government launched a coal-to-clean energy policy3 to reduce air pollution 

from household coal burning, which was the primary heating source for many households 

especially in Northern China (229). Residential coal burning emits high levels of air pollution 

into homes and contributed to an estimated 30% of wintertime ambient PM2.5 in Beijing prior 

to 2016 (230). The coal-to-clean energy policy aimed to progressively transition up to 70% of 

coal-burning households in northern China to electric or gas-powered heating by 2021 by 

banning residential coal burning and subsidizing the costs of electric or natural gas-powered 

heaters and energy (electricity or gas) (141). Villages were either assigned into the policy or 

applied to a selection process, and the new heaters were typically installed between March and 

November (194). By 2020, an estimated 25 million households in the Beijing-Tianjin-Hebei 

region were participating in the policy (231).  

 

Whether the coal-to-clean energy policy has yielded health benefits has not been empirically 

investigated. We studied the effects of the policy on incidence of AMI in Beijing townships using 

 
3 This policy is referred to by several names including the “clean winter heating plan for northern China”(北方地区

冬季清洁取暖规划)and the “clean energy for rural heating plan” (农村采暖用能清洁化) 
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data from 2013 to 2019. The results of this study can inform the potential health benefits of 

ongoing and planned clean household energy policies in China and globally.  

 
Methods 
 
Study area 
 
Beijing (pop. 21.9 million in 2020) is China’s political, cultural, and technical innovation capital. 

It covers a large geographic area (16,410 km2) which is administratively divided into six urban 

districts at its core and ten outlying peri-urban and rural districts. Districts are further divided 

into townships that contain communities and villages. Beijing winters are cold and dry, with the 

lowest temperatures occurring in January (average: -3.0°C) (199), thus requiring space heating. 

Most urban areas of Beijing are connected to the central heating grid that supply heat from 

central locations whereas rural areas rely on individual space heating units that, prior to 2015, 

were mostly fuelled by coal (232).  

 
Study design and sample 
 
We conducted a quasi-experimental study to measure the effect of the coal-to-clean energy 

policy on incidence of AMI in Beijing townships, which is the most resolved spatial resolution 

for AMI data available. Of the 307 townships in Beijing in 2013, we excluded 156 townships 

comprised of mostly urban or developed suburban communities with access to centralized 

heating that were ineligible for the policy. Details on eligibility criteria are described in the SI. 

Our final sample of 151 peri-urban and rural townships included 29%, or 5.7 million, of the 

Beijing population, based on the 2010 census.  

 

The study protocol was approved by the ethics review committee at Beijing AnZhen Hospital, 

Capital Medical University. 

 
Incidence of acute myocardial infarction 
 
Our outcome was incidence of AMI (calculated as the number of AMI events per 100,000 

population) among adult permanent residents in Beijing. The AMI data were extracted for 2007 
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to 2019 from the Beijing Cardiovascular Disease Surveillance System, which records all 

secondary- and tertiary- level hospital admissions and deaths for AMI along with patient age, 

sex, date of onset, and township of residence. Diagnosis was based on principal discharge 

diagnoses or underlying cause of death with codes I21–I22 (acute myocardial infarction and 

subsequent myocardial infarction) in the International Classification of Diseases, Tenth Revision 

(ICD-10). Population data were obtained from district statistical yearbooks. Age-sex 

standardized rates were calculated using the 2010 Beijing population as reference. 

 

We fitted Bayesian spatial models for township AMI incidence for all adults and separate sex-

age groups (35–64y, 65y+, 65-79y, 80y+, stratified based on AMI risk), using methods described 

elsewhere (233). We pooled AMI events over two-year periods before (2013-2014) and after 

(2016-2017 and 2018-2019) the policy to create more stable estimates for smaller townships 

and age-by-sex groups. We excluded 2015 because it was a pilot year for the policy where only 

a small number (n=18) of geographically dispersed villages were treated. For use in sensitivity 

analyses, we also estimated 1) single-year township AMI incidence for adults ages 65y+, which 

are less stable due to a smaller number of events but may better temporally align with timing of 

treatment, and 2) sex-age specific incidence for two-year time periods starting in November, 

which is the start of the heating season (234).  

 
Treatment by the coal-to-clean energy policy  
 
We exploited geographic variation in treatment by the coal-to-clean energy policy over time to 

estimate the effect of treatment on AMI. Detailed information is provided in the SI. Briefly, we 

obtained a list of villages (n=2509) treated by the policy between 2015 and 2019 along with 

year of treatment from the College of Urban and Environmental Sciences at Peking University, 

which we combined with a geolocated database of communities and villages in Beijing from the 

China National Bureau of Statistics in 2019 (203). We calculated the proportion of treated 

villages in each township and study period and created a binary treatment variable that 

considered eligible townships as ‘treated’ when more than 50% of their villages were 

participating in the policy, and otherwise as ‘untreated’ (Figure 1). 
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Figure 1: Study timeline 

 
Note: Boxes illustrate the pre- and post-treatment periods for which we estimated township incidence of AMI 
(events per 100,000 population) and treatment by the coal-to-clean energy policy. 

 
Covariates 
 
We assembled a database of covariates that are established risk factors for AMI (224, 235-237). 

Pre-treatment socioeconomic variables from the 2010 national census included the proportion 

of population in the township 1) working in agriculture, 2) having completed secondary school 

education or higher, and 3) unemployed at the time of the census (236). We also obtained 

time-varying data for cardiovascular risk factors including township rates of current tobacco 

smoking, obesity (BMI ≥28kg/m2), hypercholesterolemia (total cholesterol ≥6.22 mmol/L), 

wintertime average outdoor temperature, and access to health care in each township, defined 

as the estimated number of secondary and tertiary hospital beds per 1000 population. Details 

on the data sources and measurement of each covariate are provided in the SI. 

 
Statistical analysis 
 
We summarized and graphically presented the means, medians, and interquartile ranges (IQR) 

of AMI incidence and covariates for treatment groups over time. We used difference-in-

difference (DiD) estimation with multiple time periods and variations in treatment timing (238) 

to estimate the effect of treatment by the policy on AMI incidence. This approach compares 

multiple treatment groups over multiple time periods to estimate 1) average treatment effects 

across different lengths of treatment and 2) global effects that combines the weighted averages 

of the group-time effects (238).  

 

Eligible townships
Treated: 0

Untreated: 151

Staggered roll-out of the coal-to-clean energy policy in Beijing

December 
31, 2013

December 
31, 2019

December 
31, 2012

December 
31, 2015

December 
31, 2014

December 
31, 2016

December 
31, 2017

December 
31, 2018

Pre-treatment First post-treatment Second post-treatment

Treated: 88
Untreated: 63

Treated: 92
Untreated: 59

Treated: 75
Untreated: 76

Treated: 11
Untreated: 140

Treated: 0
Untreated: 151
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We conducted linear univariate and multivariable regression models for all adults and separate 

sex-age groups. We used doubly robust estimations that combine outcome regression with 

inverse probability weighting by propensity scores to balance covariates between treated and 

untreated townships and thus reduce the likelihood of confounding (239). Township incidence 

of AMI was log-transformed to improve the normality of the model residuals.  

 

We presented the global effect of treatment on AMI incidence as well as the dynamic 

treatment effects, which represents the effect of treatment on AMI at 0-2 years and 3-4 years 

post-treatment. Point estimates for the average treatment effect on the treated (ATT) were 

calculated using the finalized AMI rates from the fitted Bayesian spatial models (233). To 

incorporate the uncertainty from use of modelled AMI incidence as our outcome variable, to 

calculate the 95% confidence intervals (CI) we conducted the statistical models 6000 times 

using the 6000 random draws generated from the posterior distributions of the Bayesian model 

for AMI estimation. We reported the medians of the distributions of the upper and lower 95% 

CIs values calculated from these 6000 model runs. 

 
Sensitivity analyses and robustness checks 
 
We conducted several alternate specifications of the models to evaluate the robustness of our 

results, with details provided in the SI. First, we tested the impact of estimating the outcome in 

three different ways: age-standardization with smaller age groups (35-49y, 50-64y, 65-79y, 

80y+) and using different time periods including (i) two-year incidence of AMI starting in 

November, which coincides with the start of the heating season, and (ii) single-year incidence of 

AMI for adults 65y+, to potentially better temporally align with treatment. Second, we assessed 

the influence of outliers by excluding two townships with especially high incidence of AMI that 

were visually identified using boxplots. Third, we evaluated the impacts of township inclusion 

criteria by additionally excluding six untreated townships that were eligible for the study based 

on our criteria but geographically surrounded by ineligible townships. The proportion of villages 

and communities enrolled in the policy in these six townships ranged from 0 to 50% and their 

central location, indicated that a large proportion of villages in these townships likely had 
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access to central heating. Fourthly, we included hypercholesterolemia as a covariate. 

Hypercholesterolemia could be a potential confounder or at least a predictor of AMI events but 

it could also be along the casual path as there is some evidence of a casual association between 

PM2.5 and hypercholesterolemia (240). Finally, we used a more distinct treatment specification 

that defined ‘treated’ as >70% of villages treated and defined ‘untreated’ as <30% of villages 

treated, excluding 60 townships with 30-70% of villages treated from the analysis. 

 

All analyses were conducted in R, version 4.2.2, and the ‘did’ package (R Foundation for 

Statistical Computing, Vienna, Austria).  

 
Results 
 
Among eligible townships, the median proportion of villages treated was 65% (IQR: 30-89%) by 

December 2019 (Figure S1). Using our township treatment definition of more than 50% of 

villages treated, 75 and 92 townships were treated by the end of 2017 and 2019, respectively 

(Figure 2). Townships near the urban core and in the southeast were more likely to be treated 

than townships in more remote northern and western areas of Beijing.  

 
Figure 2: Township treatment by the coal-to-clean energy policy in Beijing.  
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Note: Eligible townships were considered treated if more than 50% of villages and communities were participating 
in the policy. Townships comprised of mostly urban communities connected to central heating were considered 
ineligible for this study.  

 
Mean and median township AMI incidence in all adults and sex-age groups followed similar 

temporal trends for different treatment groups in the eight years prior to the start of the policy 

(Figure S2). In the 2013-2014 pre-treatment period, median incidence of AMI was highest in 

townships treated in 2016-2017, followed by untreated townships and those treated in 2018-

2019 (Table 1). The distributions of pre-treatment covariates were similar across treatment 

groups, though untreated townships tended to have lower wintertime ambient temperature, 

less access to health care, and lower educational attainment. Township time-varying covariates 

followed similar trends over time, except for the proportion population with obesity and that 

smoked where differences between treatment groups converged (Figure S3-S4).  

 

Table 1: Township characteristics (median [interquartile range, IQR]) in the pre-treatment 
period (2013-2014), by treatment group 

Characteristic Untreated 
(n=59) 

Treated in 2016-2017 
(n=75) 

Treated in 2018-2019 
(n=17) 

Incidence of acute myocardial infarction  
(events per 100,000 pop) 
    All adults 266 [225, 350] 325 [277, 383] 248 [224, 286] 

        Men  327 [280, 438.6] 406 [356, 487] 309 [291, 380] 

        Women  192 [161, 247] 226 [198, 283] 177 [158, 223] 

    Adults 65y+ 854 [694, 1064] 1034 [878, 1267] 798 [728, 1015] 

        Men  890 [773, 1053] 1147 [927, 1382] 907 [673, 1026] 

        Women  836 [641, 1086] 939 [829, 1262] 794 [652, 1006] 

Population working in  
  agriculture (%) 

81 [70, 88] 78 [73, 83] 79 [65, 82] 

Population unemployed (%) 4 [4, 6] 4 [4, 4] 4 [4, 4] 

Population with secondary school 
education or higher (%) 

24 [19, 29] 27 [24, 32] 28 [23, 47] 

Population current smokers (%) 25 [22, 32] 24 [21, 28] 31 [20, 32] 

Population with obesity (%) 23 [21, 25] 21 [18, 25] 23 [21, 24] 

Access to health care (number of 
hospital beds per  
  1000 population) 

1.4 [0.3, 3.0] 2.4 [1.7, 3.1] 1.9 [1.2, 3.5] 

Outdoor temperature    
  (heating season average (°C) 

-3.9 [-5.2, -2.8] -2.7 [-3.3, -2.3] -3.6 [-5.5, -3.3] 

Population with 
hypercholesterolemia (%) 

8 [5, 8] 7 [6, 8] 8 [4, 8] 

Note: A township was considered treated if more than 50% of its villages and communities were participating in 
the coal-to-clean energy policy. Means and standard deviations of township AMI incidence and covariates are 
provided in Table S1. Obesity was defined as having a BMI ≥28kg/m2. Access to health care is defined to the 



 122 

number of secondary and tertiary hospital beds per 1000 population. Heating season refers to the months of 
December, January, and February. Hypercholesterolemia was defined as total cholesterol ≥6.22 mmol/L. 
 

The distributions of the confidence intervals from all 6000 iterations of the statistical models 

generally followed a normal distribution (Figures S5-S6), indicating that our presentation of the 

median confidence intervals represent the central tendencies of the range of possible ATT 

values.  

 

In the multivariable models with all adults, we observed an overall -5.5% reduction (95% CI: -

11.8%, 1.3%) in the township incidence of AMI in the post-treatment period compared with the 

pre-treatment period in the townships treated by the policy relative to untreated townships 

(Figure 3). Treatment by the policy had larger effects on AMI incidence among women (-12.1%, 

95% CI: -21.2%, -2.0%) and older adults (-12.6%, 95% CI: -20.8%, -3.8%). We did not find an 

effect of the policy on AMI in models that included men of all ages, though we did observe an 

effect in the sub-group analysis with men ages 65y and older (-9.6% 95% CI: -17.5%, -1.2%). 

 
Figure 3: Overall global weighted average treatment effect on the treated (ATT) per 100,000 
population and 95% CI of the coal-to-clean energy policy on incidence of acute myocardial 
infarction in Beijing townships, by sex and age group. Results from univariate and multivariable 
multiple time-point models difference-in-difference models 
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Note: Dichotomous treatment representing townships with more than 50% of villages treated by the policy. Effect 
estimates are presented as the percent change in the incidence of AMI, calculated as (exp(coef)-1)*100 to account 
for the log-transformed outcome. 
 

The dynamic treatment effect specification showed a general trend of in greater reduction in 

township AMI incidence for townships treated longer (3-4y) versus shorter (0-2y). (Figure 4).  

 

Figure 4: Dynamic aggregate group-time average treatment effect on the treated (ATT) per 
100,000 population and 95% CI of the coal-to-clean energy policy on incidence of AMI in Beijing 
townships by sex and age-group. Results from multivariable models. Coefficients represent the 
ATT after 0-2 years of treatment and after 3-4 years of treatment 
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Note: Townships considered treated when more than 50% of villages in the township were treated by the policy 
and otherwise as untreated. Relative ATT estimates are presented as percent change in AMI, calculated as 
(exp(coef)-1)*100 to account for log-transformed AMI rates  

 

The results from our sensitivity analyses were consistent with findings from the main analysis, 

which indicated a benefit of the policy on township AMI incidence (Tables S2), with several 

notable differences. The use of single-year AMI rates as the outcome in models limited to older 

adults produced smaller point estimates than in main analysis. Using more conservative 

treatment and untreated thresholds resulted in larger estimated effects of the policy on AMI in 

older adults and in men. Additionally adjusting for hypercholesterolemia also resulted in slightly 

larger estimated reductions in AMI than what we observed in the main analysis.   

 
Discussion 
 
In this quasi-experimental study, we found a 5.5% overall reduction in the incidence of AMI per 

100,000 population in townships where more than 50% of villages were participating in the 

policy, indicating a cardiovascular benefit of the coal-to-clean energy policy. We observed 

larger reductions in AMI incidence in population subgroups including women and older age 
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adults and in townships considered treated for longer. The estimated AMI benefits of treatment 

by the policy persisted in extensive sensitivity analyses.  

 

Strengths of our study are the population-based assessment of a large-scale energy policy using 

a quasi-experimental design and adjustment for covariates. To the best of our knowledge, this 

is the first study to empirically evaluate the health impacts of the coal-to-clean energy policy, 

though our results are supported by several risk assessments that estimated a range of reduced 

health impacts based on the modeled emissions reductions in shifting from coal-to-clean 

energy. One risk assessment estimated that, by 2030, the policy would avoid 0.78 million 

morbidities and 0.01 million deaths in the Beijing-Tianjin-Hebei region (241), and another study 

estimated a 32% reduction in premature deaths attributed to residential fuel burning  in 

northern-China (242).  

 

Only a small number of studies mostly conducted in high-income countries have empirically 

assessed the health impacts of household energy policies (45), with the majority indicating 

some level of health benefit. In Ireland, coal bans implemented in 1990s were associated with 

reductions in respiratory mortality in ban-affected counties compared with neighboring 

counties not affected by bans, though they did not observe reduction in cardiovascular 

mortality (146). A wood-burning stove exchange program in Central Launceston (Australia) was 

associated with lower wintertime cardiovascular (−19.6%) and respiratory (−27.9%) mortality in 

the intervention communities but not a nearby control city that did not participate in the 

program (147). In California’s San Joaquin Valley Air, an air quality-dependent wood burning 

ban was associated with a decrease in cardiovascular (-7%) and specifically ischemic heart 

disease (-16%) hospitalizations in adults 65y+ but not in younger adults (148).  A policy 

subsidizing LPG in Ecuador saw a 20% decrease in lower respiratory infection mortality in those 

under 5 yeads old (150). 

 

Randomized trials of less polluting cookstoves further support the cardiovascular benefits of 

clean energy observed in our study. In Guatemala, a chimney stove intervention lowered 
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exposure to air pollution and reduced the occurrence of nonspecific ST-segment depression in 

older women (243). That trial and others in Nigeria and Ghana observed reductions in blood 

pressure (-1.3 to -3.7 mmHg) in women assigned gas, ethanol, or improved combustion biomass 

stoves (244-246), and are supported by non-randomized intervention studies in Nicaragua and 

Bolivia (-1.5 to -5.5 mmHg lower mean systolic blood pressure in the intervention group) (247, 

248). In contrast, a multi-country randomized trial observed small increases in gestational blood 

pressure (systolic/diastolic: 0.69/0.62 mmHg) in mothers assigned gas cookstoves (125), though 

mean participant age was younger (mean age: 25y) than the other intervention studies that 

showed cardiovascular benefit of intervention (mean ages: 28 to 53y).  

 

We were unable to investigate the mechanisms though which the policy reduces AMI in this 

province-wide study. The introduction of a new heating stove likely has direct implications for 

indoor air pollution and indoor temperature, both of which are well-established risk factors for 

AMI (151, 249). A cross-sectional study in Beijing observed lower indoor air pollution (mean 

difference: 130 µg/m3) and warmer indoor temperatures (mean difference: 1.4°C) in villages 

treated by the coal-to-clean energy policy compared with similar households in similar 

untreated villages located in the same region (141). Still, household energy is central to daily 

life, and it is possible that the policy could affect other mechanisms including behavioral change 

(e.g., physical activity and diet) that may impact incidence of AMI and forms a potential 

opportunity for investigation in future studies.  

 

We observed larger effects of the policy on AMI events in older adults which is similar to 

previous findings in the San Joaquin Valley (U.S.) where the cardiovascular benefits of exposure 

to a wood-burning ban were limited to older adults (148). The larger effect in older residents of 

Beijing may be attributable to several factors. Older adults are at higher risk of experiencing an 

AMI event, which suggests they may also benefit more from interventions. Previous studies 

show that older adults are more likely to experience cardiovascular impacts of changes in 

temperature (250, 251) and air pollution, including in settings of household coal and biomass 

use (148, 252). Older adults are also more likely to stay at home during the day than younger 
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adults (37), which would impact their exposure to a household heating intervention and any 

environmental, behavioral, or social benefits that it provides. 

 

We also found consistently larger AMI benefits of the policy among women compared with 

men. This may be attributable to over twenty-fold higher rates of tobacco smoking among 

Chinese men versus women (50.8 and 1.9%, repectively) (253). This may mask the 

comparatively small air quality benefit of a new heater. In contrast with our results, a wood 

stove change-out in Australia was associated with reductions in cardiovascular mortality in men 

(−17.9%, 95%CI: −30.6, -2.8) but not women (147). Smoking rates for men and women in 

Australia are similar (13% and 11%, respectively) (254).  

 

Reductions in AMI incidence were greater in townships that were considered as treated longer 

by the policy in our study. Studies of outdoor air pollution observed that long-term exposure to 

PM2.5 over years can increase cardiovascular disease risk by an even larger magnitude than 

short-term exposures over days to months, suggesting that the cardiovascular benefits of 

intervention may accumulate over time (113). It is also possible that these time-varying effects 

are an artifact of our township-level treatment variable, where the percentage of villages 

treated in a township can only increase over time and the larger AMI benefits in townships 

treated longer may simply reflect the higher proportion of villages treated in those townships. 

For example, among townships considered treated by 2016-17 in our study, we observed a 5% 

annual average increase in the proportion of villages treated for the remaining two years of 

study. Additionally, use of 2-year rates starting in January meant AMI rates from the first period 

the townships were treated contained AMI events from before the townships was treated 

which would likely increase the AMI rates in the first treatment period. 

 

Our DiD analysis is subject to several assumptions. Our analysis assumes that treatment by the 

policy is not differentially anticipated by those treated versus not. It was generally known that 

roll-out of the policy was starting in areas closer to the urban core with upgraded electricity 

grids and would then move into other plains regions and later into more mountainous areas. 
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Outside of those geographical parameters, some villages with sufficient existing infrastructure 

were assigned into the policy whereas others applied, but villages were generally unaware if 

and when they would be treated (141). We cannot entirely rule out the possibility that other 

policies may have differentially affected AMI rates by treatment group, which could lead to 

over-or under-estimation of the treatment effect. Beijing implemented numerous rural 

development (255) and air quality policies over the past two decades (241), though we are not 

aware of any policies that followed the same spatial distribution as the coal-to-clean energy 

policy. Finally, our analysis was based on the assumption that, in the absence of the policy, the 

trends in AMI incidence in our treated and untreated townships would have remained the same 

over time (i.e., parallel trends). We observed similar trends in AMI incidence in the pre-

treatment period from 2007- 2014 and also conducted our analysis using a combination of 

regression adjustment and inverse probability weights, which improve the plausibility of the 

conditional parallel trend assumption holding true for townships with similar characteristics.  

 

Our study has several limitations to consider for future analyses. First, the policy was 

implemented at the village-level, but we defined treatment at the township level to match the 

smallest available geographic resolution of AMI data for Beijing. Townships considered treated 

in our analysis (i.e. >50% of villages treated) thus included untreated villages and visa versa, 

which would most likely be non-differential misclassification of treatment and bias the effect of 

treatment towards the null. Applying a more conservative cut-off to define treated (>70% 

villages treated) and untreated (<30% villages treated) townships produced estimates that 

generally suggesting a larger impact on AMI rates. Second, spillover health benefits of the 

policy are also possible. A benefit of our township-level treatment variable is that it may 

capture some of the potential village-level spillover effects of the policy. Still, modeling studies 

indicate improved regional air quality from the policy whereby untreated townships could also 

experience air quality benefits of the policy (190), which would likely bias our results toward 

the null. Finally, our main analysis defined treatment status for the two-year calendar periods 

during which AMI rates were estimated, which likely introduces some misclassification in 

exposure. New heating stoves were typically installed between March and November, meaning 
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that length of time treated differs across villages that joined the policy in the same calendar 

year. We assessed this potential bias by conducting models with two-year AMI rates estimated 

for November to October and, for older adults, with single-year AMI estimation, which yielded 

results showing an overall AMI benefit of the policy.   

 
Conclusion 
 
Household energy programs and policies are being scaled up in China and around the world due 

to widespread programmatic and policy efforts by governments and other organizations. Using 

data on AMI incidence and treatment by the policy in Beijing’s rural and peri-urban townships, 

our results provide among the first empirical evidence of cardiovascular benefits attributable to 

a large-scale clean energy policy. Our results may help to motivate continued investment in 

clean energy in China and in other regions that are developing and implementing household 

energy policies.  
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5.3 Supplementary Information 
 

1. Determining township eligibility for treatment by the coal-to-clean energy policy  
 
Urban communities and villages in Beijing were ineligible for treatment by the coal-to-clean 

energy policy because they were already connected to district heating systems that supply heat 

from central locations. We did not have access to village-level data on centralized heating, and 

therefore needed to identify townships in which communities and villages were mostly 

connected to centralized heating and ineligible for the policy. We first excluded 151 townships 

in which the majority of their smallest administrative units with the urban designation of 

community (社区) which are usually connected to centralized heating and thus ineligible for 

treatment by the policy. We additionally excluded one township with an urban designation in 

its name (街道) rather than 镇 or 乡 and excluded four townships in the city center with less 

than 10% of villages and communities enrolled in the policy, suggesting that the majority of 

villages in those townships had centralized heating. Prior to categorizing a township as 

ineligible, we also visually assessed satellite images of the township for urban build (e.g., high 

rise apartment buildings) up that indicates access to centralized heating.  In total, 156 of the 

307 townships were considered ineligible and excluded from the main analysis.  

 
2. Age and sex-standardization of AMI incidence rates 

 
Age- and sex-standardized AMI incidence rates (AMI events per 100,000 population) were 

calculated by the direct standardization method using the Beijing population from the 2010 

national population census as the reference. For the main analysis, age and sex categories for 

standardization included men and women aged 35 to 64 and ≥65 years with corresponding 

weights of 43.1% and 8.0% for the two age groups in men, and 39.8% and 9.1% for those in 

women, respectively. 

 
3. Geolocating villages treated by the coal-to-clean energy policy 

 
 

After excluding a small number of duplicate village entries (n=25), the 2519 villages listed as 

enrolled into the coal-to-clean energy policy by 2019 were matched with villages in a complete 
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administrative dataset of villages obtained from the Chinese National Bureau of Statistics in 

2019 (n = 7168) (203). We matched villages using their village, township and district names 

while considering similar names or alternative spellings in the same township or a neighboring 

township and by also searching Baidu Maps (202) and Baidu Baike (204). Ten of the 2519 

villages treated by the policy were excluded from the dataset because they could not be 

identified in any townships (n=5) or were no longer independent administrative villages by 2019 

(n=5) according to the National Bureau of Statistics (203). Nineteen villages listed as enrolled in 

the policy were not listed in the administrative villages and communities data but were added 

to our administrative dataset after identifying their location on Baidu Maps (202) and verify 

their existence on Baike (204). The final village dataset contained 7187 villages, of which 2519 

were treated by the policy by 2019. Most villages (n=864) were listed as entering the policy in a 

single year, though others entered into the policy over a period of 2 (n = 718), 3 (n = 141), or 4 

(n = 5) years. For this study we considered villages as treated by the policy in the first year of 

entry.  
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4. Covariate descriptions and data sources 
 
Table of covariates definitions and sources 

Covariates Definition Spatial resolution Years with data 
available 

Source 

Population with secondary 
school education or higher 
(%) 

Population with high 
school over higher 
educational attainment 
divided by the 
population ages 6y and 
older 
 

Township 2010 
 
 
 
 

2010 national 
population census (256) 
 
 
 
 

Population working in  
agriculture (%) 

Population working in 
agriculture and related 
industries minus those 
working in agricultural 
services (tertiary 
industry) divided by 
total population  
 

Township 

Population unemployed 
(%) 
 

Individuals ages 16 
years and older who are 
not employed but able 
to and seeking work 
divided by the 
economically active 
population (population 
16 years and older able 
and wanting to work) 
 

District 
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Population current smokers 
(%) 

Current smokers were 
defined as individuals 
that currently smoke 

District 2014 and 2017 Beijing Chronic Disease 
and Risk Factors 
Surveillance (257, 258) 
 
 

 
Population with obesity (%) 

 
Body mass index (BMI) 
≥28kg/m2 

 

Population with 
hypercholesterolemia (%) 

Total cholesterol ≥6.22 
mmol/L 
 

Access to health care  
 

Number of secondary 
and tertiary hospital 
beds per 1000 
population measured 
using an enhanced 2-
step floating catchment 
area method based on 
a Gaussian function 
 

Township 2013-2019 Chang et al. (2023) (259) 

Outdoor temperature (°C) Average outdoor 
temperature for the 
months of December, 
January, and February 
calculated from hourly 
temperature data 

Township 2013-2019 ERA5 hourly data on 
single levels from 1940 
to present (260) 
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Figure S1: Spatial distribution of the proportion of villages and communities in Beijing townships participating in the coal-to-clean 
energy policy by the end of A) 2017 and B) 2019 

 
Note: Eligible townships were considered treated if more than 50% of villages and communities were participating in the policy. Townships comprised of 
mostly urban communities connected to central heating were considered ineligible for this study.  
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Figure S2: Temporal trends in mean and median of log-transformed incidence of acute myocardial infarction (AMI) among adults in 
eligible Beijing townships from 2007 to 2019 

 
Note: Eligible townships were considered treated if more than 50% of villages and communities were participating in the policy. Townships comprised of 
mostly urban communities connected to central heating were considered ineligible for this study.  
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Figure S3: Temporal trends in median age-standardized incidence of acute myocardial 
infarction (AMI) for Beijing townships by sex and age-group and treatment group for (A) all 
adults and (B) older adults 

 
Note: Townships were considered treated when more than 50% of village and communities in the township were 
participating in the coal-to-clean energy program in that time period. 
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Figure S4: Temporal trends in median outdoor temperature and access to health care in eligible 
Beijing townships. Township averages are presented for the pre- and post-treatment periods 
and by treatment group. Townships were considered treated when more than 50% of village 
and communities in the township were participating in the coal-to-clean energy program in that 
year 

 
Note: Access to health care is estimated based on the number of hospital beds per 1,000 population. Outdoor 
temperature is averaged over the winter months (November – January). Values for the second post-treatment 
period for obesity and smoking prevalence were not included as they are the same and the first post-treatment 
period. We only had data from 2017 for the post-treatment period. 
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Table S1: Township characteristics (mean and standard deviation) in the pre-treatment period 
(2013-2014), by treatment group 

Characteristic Untreated 
(n=59) 

Treated in 2016-2017 
(n=75) 

Treated in 2018-2019 
(n=17) 

Incidence of acute myocardial infarction  
(events per 100,000 pop) 
    All adults 286 (88.9) 344 (97.3) 276 (98.4) 
    Men  366 (130) 432 (125) 344 (109) 
    Women  201 (60.0) 250 (80.2) 203 (92.4) 
    Adults 65y+ 904 (278) 1140 (381) 909 (339) 
    Men 65y+ 939 (296) 1200 (392) 931 (298) 
    Women 65y+ 872 (297) 1090 (406) 889 (411) 
Population working in  
  agriculture (%) 

75.7 (17.4) 76.1 (9.7) 72.4 (14.5) 

Population unemployed (%) 4.8 (1.6) 4.3 (0.9) 4.3 (0.5) 
Population with high school   
  education or higher (%) 

25.7 (10.2) 28.7 (6.5) 33.6 (12.1) 

Population current smokers 
(%) 

29.6 (9.2) 25.9 (6.9) 30.6 (11.0) 

Population with obesity (%) 24.4 (4.8) 22.4 (4.6) 23.4 (4.0) 
Access to health care 
(number of hospital beds per  
  1000 population) 

1.9 (1.8) 2.5 (1.0) 2.2 (1.2) 

Average ambient 
temperature    
  in the heating season (°C) 

-4.1 (1.5) -2.9 (0.9) -4.2 (1.5) 

Population with 
hypercholesterolemia (%) 6.8 (2.6) 7.3 (1.9) 7.0 (2.4) 

Note: A township was considered treated if more than 50% of its villages and communities were participating in 
the coal-to-clean energy policy. Means and standard deviations of township AMI incidence and covariates are 
provided in Table S1. Obesity was defined as having a BMI ≥28kg/m2. Access to health care was defined based on 
the number of secondary and tertiary hospital beds per 1000 population. Heating season refers to the months of 
December, January, and February. Hypercholesterolemia was defined as total cholesterol ≥6.22 mmol/L. 
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Figure S5: Histograms of all 6000 lower 95% CI estimates of average treatment effect on the 
treated (ATT) per 100,000 population generated from the 6000 runs of the multiple time point 
different-in-difference used to generate the confidence intervals for the main analysis 
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Figure S6: Histograms of all 6000 upper 95% CI estimates of average treatment effect on the 
treated (ATT) per 100,000 population generated from the 6000 runs of the multiple time point 
different-in-difference used to generate the confidence intervals for the main analysis 
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Table S2: Average treatment effect on the treated (ATT) of the clean energy program on acute myocardial infarction (AMI) incidence 
(events per 100,000) in Beijing townships [with 95% confidence intervals]: results from a staggered difference-in-difference analysis 
adjusted for covariates 

Age-group 
and sex 
category  

Results 
from the 
main 
analysis 

Two-year 
AMI rates 
estimated 
for Nov to 
Oct 

1-year AMI 
rates 

Two-year AMI 
rates 
standardized 
using four age 
groups (35-
49y, 50-64y, 
65-79y, and 
80y+)  

Excluding two 
outlier 
townships  

Treatment 
defined 
as >70% of 
villages in the 
townships 
treated by the 
policy. 
Untreated is 
defined as 
<30% 

Removal of 
potentially ineligible 
townships 

Including 
hypercholesterolemia 
as covariate 

All adults  -5.5  
[-11.8, 1.3] 

-5.7  
[-11.1, -0.2] 

- -6.1 
[-12.4, 0.6] 

-5.6  
[-11.9, 1.1] 

-7.1 
[-16.1, 2.6] 

-4.6  
[-12.3, 3.5] 

-7.0 
[-13.2, -0.5] 

Men  -1.1  
[-7.6, 6.0] 

-3.1  
[-8.9, 3.3] 

- - -1.3  
[-7.7, 5.7] 

-2.8  
[-12.8, 8.2] 

-1.7 
[-10.8, 8.3] 

-2.2  
[-8.7, 4.8] 

Women  -12.1  
[-21.2, -2.0] 

-8.9  
[-18.1, 1.6] 

- - -12.1  
[-21.3, -1.9] 

-13.4  
[-25.8, 1.0] 

-6.7 
[-15.1, 2.4] 

-14.4  
[-22.9, -5.1] 

65y+  -12.6  
[-20.8, -3.8] 

-10.1  
[-17.9, -1.6] 

-6.0  
[-15.2, 4.1] 

12.5  
[20.6, -3.7] 

-12.6  
[-20.9, -3.8] 

-14.5  
[-25.6, -2.2] 

-10.7 
[-18.8, -2.1] 

-14.3  
[-22.1, -6.0] 

Men 65y+ -9.6  
[-17.5, -1.2] 

-8.7  
[-16.8, 0.3] 

-3.3 
[-13.4, 8.2] 

- -9.6  
[-17.4, -1.2] 

-14.8  
[-25.2, -3.8] 

-9.3  
[-18.1, 0.0] 

-10.4  
[-18.2, -2.2] 

Women 
65y+ 

-14.9  
[-25.9, -2.4] 

-11.2  
[-22.3, 1.7] 

-7.8  
[-18.3, 3.7] 

- -15.1  
[-26.2, -2.4] 

-13.3  
[-29.2, 5.8] 

-10.7 
[-20.9, 0.5] 

-17.6  
[-27.7, -6.2] 

65-79y -10.4  
[-19.0, -1.0] 

- - 
 

- -10.4  
[-18.9, -1.1] 

-15.2  
[-27.1, -2.2] 

-9.0 
[-18.4, 1.2] 

-12.4  
[-20.7, -3.5] 

80y+ -13.3  
[-25.1, 0.0] 

- - - -13.3  
[-25.2, 0.2] 

-10.9  
[-28.4, 10.8] 

-10.6 
[-23.2, 3.9] 

-14.7  
[-26.0, -2.0] 

Note: Townships considered treated when more than 50% of villages and communities in the township were treated by the policy. Effect estimates are 
presented as the percent change in AMI, calculated as (exp(coef)-1)*100 to account for log transformed AMI rates. 
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Chapter 6: Discussion 
 
6.1 Summary of Findings 
 
This thesis examined the impacts of household solid fuel use on exposure to air pollution, and 

assessed whether a real-world policy aimed at reducing solid fuel use and promoting clean 

energy transition can provide air quality and health benefits. My thesis adds to the current 

literature by using novel field data to describe the levels and variability in exposures to air 

pollution in a complex air pollution exposure setting and assessing the explanatory 

contributions of indoor and outdoor sources to variability and levels of personal exposures. It 

also provides among of the first empirical assessments of the air quality and health impacts of a 

large-scale clean energy policy. 

 

Objective 1 (Chapter 3) of the thesis focused on the measurement and modelling of personal 

exposure of PM2.5 and black carbon in older Chinese adults in three provinces in China, with an 

aim of estimating ‘usual exposure’ using repeated measurements of air pollution across 

seasons. The study benefited from over 48,000 hours of measurement of personal exposure to 

PM2.5 and black carbon from 787 men and women (ages 40-79) in northern (Beijing and Shanxi) 

and southern (Guangxi) China. I found that personal exposures to PM2.5 across all seasons and 

study sites were, on average, higher than the World Health Organization’s (WHO) 24-h PM2.5 Air 

Quality Guideline and exceeded the relatively high levels of outdoor PM2.5. The repeated 

measures in this study show that within-individual variance, relative to between-individual 

variability, dominated the total variability in exposures across all study sites, genders, and 

seasons. In future epidemiologic and intervention studies, repeated daily measurements of 

exposure are likely needed to capture ‘usual’ daily exposure in these settings, even within a 

single season. My results also indicate that measurably reducing air pollution exposures in 

these study settings will likely require reductions in emissions from both indoor and outdoor 

sources, which are linked to different mitigation strategies. 

 

In Objective 2 (Chapter 4), I moved from an individual-level to small area-level analysis to assess 

whether exposure to the coal-to-clean energy policy in Beijing was associated with changes in 
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local outdoor satellite-derived PM2.5. In this study, I did not find an association between 

satellite-derived PM2.5 and exposure to the policy in Beijing. It is possible that an indoor 

intervention like a new heating stove has little measurable effect on ambient PM2.5. This 

combined with spillover effects from areas not exposed to the policy, continued use of coal 

stoves, and other air pollution sources could also mask the air quality benefits of the policy. 

Further, the satellite-derived PM2.5 data used in this study are spatially smoothed and limit our 

ability to accurately measure local PM2.5. This may limit my ability to observe local changes over 

time, especially since other environmental policies were simultaneously implemented in Beijing 

during the same time period.  

 

For Objective 3 (Chapter 5), I conducted a township-level analysis and estimated the effect of 

the coal-to-clean energy policy on the incidence of acute myocardial infarction (AMI) in Beijing 

between 2013 and 2019. This study is among the first to empirically examine the relationship of 

a large-scale clean household energy policy and cardiovascular disease.  There was an observed 

reduction in AMI incidence in Beijing townships treated by the coal-to-clean energy policy 

compared with untreated townships. The effects were largest in women and older adults 

(65y+), which is the age group most susceptible to AMI. Our results were robust to multiple 

sensitivity analyses and may help to motivate continued investment in clean energy in China 

and in other regions that are developing and implementing household energy policies.  

 
6.2 Strengths and Limitations 
 
This thesis has a number of strengths compared with the previous studies on these topics. All 

three objectives make important substantive contributions to the field of epidemiology and 

household energy policy by filling important knowledge gaps which were identified as priority 

research areas by international organizations like the Health Effects Institute and the U.S. 

Environmental Protection Agency, and by numerous systematic and scoping reviews (17, 44, 

261-263).  
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Objective 1 examines an important assumption about representativeness of short-term (24- or 

48-hour) measurement of personal exposure to PM2.5, which has been the commonly used as 

the exposure measurement in studies of household air pollution as a surrogate of ‘usual’ long-

term exposure (44). Despite the considerable practical and logistical challenges of conducting 

large panel studies of exposure in rural and remote study settings (183), we collected up to four 

days of exposure measurements for a large group of participants which allowed me to evaluate 

both the within-individual and between-individual variability in exposure. My study was one of 

the first to assess personal exposures and its determinants in men in a setting of household air 

pollution, showing that their exposures were similar to women after accounting for smoking. 

Policy organizations and global and national risk assessments, including those conducted by the 

WHO (177), have generally assumed that men including those in China experience lower 

exposure to household air pollution than women due to traditional gender roles around 

cooking. My study contributes to the very limited evidence on exposure among men (264, 265), 

and can used to inform future epidemiologic studies and risk assessments, especially those that 

include China.  

 

Objectives 2 and 3 fill important empirical knowledge gaps about the impacts of clean energy 

policies on local outdoor air quality and health. Most previous studies use risk assessments that 

model the air quality and health benefits based on the estimated or predicted changes in air 

pollution emissions from a policy or intervention. Impact assessments like mine can be 

especially useful for exposure science or epidemiology as they can provide direct evidence of 

the effectiveness of an intervention and are the closest ‘real world’ alternative to a controlled 

experimental study. Further strengths are my population-based assessment of a large-scale 

energy policy, Chapter 5, using a quasi-experimental design, and adjustment for covariates. 

 

My thesis also has a number of methodological strengths. In Objective 1, key strengths include 

gold-standard (gravimetric) measurement of personal exposure to PM2.5 for up to four days and 

across two seasons (over 48,000 hours of measurements). I also obtained measurements of 

outdoor PM2.5 and many important environmental, housing, and socio-demographic variables 
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for 787 adults from three geographically diverse provinces in China. Another strength of this 

study was the photo-based assessment of household fuel use at the time of survey and in the 

previous 20 years. By capturing all stoves and fuels used, the study’s exposure variable is less 

prone to measurement error than the more commonly use metric of ‘primary fuel’ type. This 

metric does not adequately capture the complexity of modern-day energy environments where 

use of multiple stoves and fuels is needed to meet the diversity of household energy tasks. 

These detailed field data and repeated measures enabled me to implement mixed effects 

models to estimate the within- and between-participant variance components of personal 

exposure and to assess the determinants of exposures. 

 

In Objective 2, I was able to leverage high-resolution geospatial data on air pollution, exposure 

to the residential coal-to-clean energy policy, and other local land-use and meteorological 

conditions for all of Beijing to evaluate whether exposure to the policy impacted local satellite-

derived PM2.5. The spatial attributes of these data allowed me to empirically estimate the 

associations at the small-area level. Previous studies were limited to district-level analyses or 

risk assessments (190, 230). My study additionally accounted for spatial autocorrelation in 

PM2.5. Though I did not observe an effect of the policy on PM2.5, my approach and methods can 

be used in future studies on these topics. 

 

The largest methodological strength of Objective 3 is my quasi-experimental design which 

provides stronger casual evidence of the impacts of the coal-to-clean energy policy on AMI, 

assuming that our model assumptions are met (e.g., parallel trends in outcomes between 

treatment groups in the absence of treatment; treated townships remain treated over time). 

The staggered rollout of the policy over time combined with use of a multiple timepoint DiD 

approach allowed me to examine the cardiovascular effects of shorter versus longer-term 

exposure to the policy. Further, while use of a DID analysis should reduce the potential impact 

of time-invariant confounders, I also selected a methodological approach that accounts for 

differences in covariates by treatment groups (266). Another strength of my study is the 

inclusion of all townships in rural and peri-urban Beijing, thus capturing the range of income 
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levels and economic development across the province.  Finally, through a collaboration with 

Anzhen hospital in Beijing, I obtained small-area (township) estimates of AMI incidence for over 

a decade, the smallest spatial resolution available, which are collected through a world-class 

cardiovascular disease surveillance system.  

 

My thesis also has a number of limitations that can be considered in the design and 

implementation of future studies on these topics.  

 

In Objective 1, I was unable to account for differences in time-activity patterns (e.g., via global 

positioning systems (GPS)) which are likely important determinants of exposure. To avoid 

excessive participant burden, we were also limited measurement to two days per season which, 

while longer than previous studies, limited our ability to accurately assess long-term personal 

exposure. This limitation is further supported by our results showing large and mostly 

unexplained within-individual variability in exposure. Newer sensors like the Ultrasonic 

Personal Air Sampler (UPAS) (267) include GPS and are lightweight and virtually silent but were 

not available at the time of data collection for this study. It is possible that some participants 

may have altered their daily activity patterns due to wearing the monitors or attending clinic 

visits which could bias our estimates of their ‘usual’ exposure. It is difficult to anticipate the 

direction of such potential bias. Cooking and heating with solid fuel are generally core features 

to daily life and not viewed as socially undesirable, which makes it less likely that participants 

would intentionally reduce their exposures because of sampling.  

 

In Objective 2 one of the main limitations is our use of satellite-derived estimates of PM2.5 as 

our air quality outcome. This data allowed us to capture air quality for all of Beijing but likely 

introduced considerable measurement error. Satellite-derived data are less likely to capture the 

local air quality impacts of a household-level intervention than indoor- or village level field 

measurements. The error is most likely independent of exposure to the policy and would 

increase our standard errors. My study is also subject to misclassification in small area-level 

exposure to the policy. I estimated exposure at the ~1km × 1km grid cell level using a 
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geolocated list of villages, where each village was spatially allocated as a coordinate point to a 

single grid cell, though the exact geographic boundaries of villages were unknown. Likely the 

geographic boundaries of some villages spanned more than one grid-cell. Spillover effects of 

the air pollution policy are also possible but challenging to statistically account for in the 

analysis. Areas without villages enrolled in the policy could have benefited from reductions in 

local air pollution from upwind villages exposed to the policy. I attempted to account for these 

spatial spillover effects by choosing a spatiotemporal model that accounts for spatial 

autocorrelation by modeling spatial random effects using Gaussian Markov random fields 

within the SPDE framework. Though, while this method is effective for capturing spatial 

dependencies, it may not completely capture spatial spillover. 

 

In Objective 3 my approach to estimating the casual effects of the coal-to-clean energy policy 

on AMI incidence relies on a set of strong and largely unverifiable assumptions. Though these 

are not necessarily limitations of my study, it is important to nonetheless evaluate the 

likelihood that these assumptions hold for my analysis. Perhaps most importantly, I assumed 

that the AMI outcomes of the treated and untreated groups would have evolved similarly over 

time in the absence of the policy. Supporting this assumption is that I observed similar trends in 

AMI rates in the pretreatment period between treatment groups. I also implemented a doubly 

robust estimation which specifies the DiD regression models for both the outcome and the 

treatment as a function of covariates. Second, I could not entirely rule out the possibility that 

other policies may have differentially affected AMI rates by treatment group, which could lead 

to over-or under-estimation of the treatment effect. Beijing implemented numerous rural 

development (255) and air quality policies (139) over the past two decades that could in theory 

also impact cardiovascular health (241), though my collaborators and I am not aware of any 

policies that followed the same spatial distribution as the coal-to-clean energy policy.  

 

Objective 3 has several limitations to consider for future analyses. First, the policy was 

implemented at the village-level, but I defined treatment at the township-level to match the 

smallest available geographic resolution of AMI data for Beijing. Townships considered treated 
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in the analysis (i.e. >50% of villages treated) thus included untreated villages and visa versa, 

which would most likely be non-differential misclassification of treatment and bias my 

estimates towards the null. This is supported by results from my sensitivity analysis where 

applying a more conservative cut-off to define treated townships (>70% villages treated) and 

untreated townships (<30% villages treated) produced estimates that suggest an even larger 

benefit of the policy on AMI incidence. Second, spillover health benefits of the policy are also 

possible. A benefit of our township-level treatment variable is that it may capture some of the 

potential village-level spillover effects of the policy. Still, modeling studies indicate improved 

regional air quality from the policy whereby untreated townships could also experience air 

quality benefits of the policy (190), which would likely bias our results toward the null. Finally, 

the main analysis defined treatment status for the two-year calendar periods during which AMI 

rates were estimated, which likely introduces some misclassification in exposure. New heating 

stoves were typically installed between March and November, meaning that AMI incidence 

rates included events from villages before they were treated. I assessed this potential bias by 

conducting models with two-year AMI rates estimated for November to October and, for older 

adults, with single-year AMI estimation, which overall yielded similar results showing an overall 

AMI benefit of the policy.   

 
6.3 Epidemiology Significance and Policy Relevance 
 
Household air pollution from solid fuel burning is a significant global health risk factor, 

especially in low-and middle-income countries (LMICs) which also experience some of the 

highest global levels of outdoor air pollution (1). Yet household air pollution remains woefully 

understudied compared with outdoor air pollution in high-income countries despite comprising 

a much larger portion of the estimated global burden of disease (44, 268, 269). As described in 

Chapter 2 and in the individual objectives, key knowledge gaps in the field are the limited 

understanding of how to best measure exposure for epidemiologic and intervention studies and 

the very few empirical studies that assess the air quality and health impacts of real-world clean 

energy policies. This thesis aims to directly address both knowledge gaps. 
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There are also several important policy contexts that motivated my thesis. First, the important 

role of clean energy access in development is recognized as a priority area in the Sustainable 

Development Goal 7 (SDG-7)) which aim to “ensure access to affordable, reliable, sustainable 

and modern energy for all’ by 2030 (270, 271). Yet the 2019 SDG 7 tracking report indicated 

that global progress on transitioning to clean energy has been too slow, with an estimated 2.2 

billion people predicted to still primarily rely on solid fuel energy by the target year even when 

just considering cooking (271). Most previous clean energy programs were limited to hundreds 

or several thousands of homes (67) and it is increasingly recognized that ambitious and large-

scale clean energy policies like the coal-to-clean energy program are required to achieve SDG-7. 

Studies like my Objectives 2 and 3 that assess the air quality and health impacts of clean energy 

policies can be used to inform and possibly motivate future policies and programs. 

 

Second, air pollution is recognized as global risk factor resulting in millions of premature deaths 

per year (1), and reducing exposures to air pollution, both outdoor and household, is a policy 

priority for many nations, including China (139). Air quality policies in China and other countries 

are implemented with the primary goal of improving population health but the limited 

knowledge of the determinants of exposure and the effectiveness of past policies in achieving 

their air pollution goals form a barrier to intervention design and development. My studies fill 

these evidence gaps by providing evidence on the levels and determinants of personal 

exposures to air pollution in settings where residential solid fuel burning is common and by 

evaluating the air quality and health impacts of a real-world clean energy policy that was 

implemented in millions of households in China. 

 

Finally, in 2016, the Chinese government approved the Healthy China 2030 plan (jiànkāng 

zhōngguó 2030), the first long-term health planning document that represented an ideological 

shift from focusing mostly on economic development to a “health-centered coordinated 

development of economy and ecology” (272). Cardiovascular disease is the leading cause of 

death in China and increasing with population aging (224), making the prevention of 

cardiovascular disease vital to achieving this plan. My thesis results provide among the first 
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empirical evidence of cardiovascular benefits from investment in clean heating energy policy 

and may help to motivate continued process in clean energy transition in China and in other 

regions that are developing and implementing household energy policies.   

 
6.4 Future Research 
 
Household air pollution and energy policy are large and interdisciplinary fields with multiple 

areas for further research that are relevant to improving environmental quality and population 

health. Given the high within-individual variability in daily personal exposure to PM2.5 that I 

observed in Objective 1, my research calls into question whether the current standard of 

practice of 24-48h measurement of exposure can sufficiently capture long-term ‘usual’ 

exposure. A follow-up question is whether a combination of long-term household (indoor) and 

outdoor measurement might be combined to more accurately measure long-term exposure. At 

the time of data collection for Objective 1, a single air monitor ranged in cost from $750 to 

$3000 which limited the ability to conduct many long-term measurements in homes and 

villages. However, the emergence of high-performing low-cost air pollution sensors over the 

last decade provides new opportunities for larger-scale measurement campaigns. To better 

measure the impact of the clean energy policy on air pollution, for example, future studies 

could leverage low-cost sensing technologies to conduct measurements in homes and 

communities at a larger-scale than what was previously possible. These could be combined with 

data from ground-level monitors, when available, and satellite-derived air quality to more 

comprehensively measure air pollution.  

 

In Objective 3, I conducted my analysis at the township level because this was the smallest 

resolution available. Village data are theoretically collected by the Beijing Cardiovascular 

Disease Surveillance System but were not available at the time of this study. Future research 

could assess the accuracy and completion of village-level information for AMI hospitalizations 

and deaths and re-conduct this analysis using village-level treatment. A further analysis would 

be to differentiate between fatal versus non-fatal AMI, which we were unable to do in this 

analysis because the smaller number of fatal AMI cases resulted in unstable township-level 
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estimates. Further, field studies could be used to investigate the potential mechanisms though 

which the coal-to-clean energy policy impacted AMI rates, including possible changes in air 

pollution, indoor temperature or other behavioral changes with the introduction of a new 

heating technology.  

 

Finally, future studies could leverage the measurements and methods used in this study to 

assess the air quality and health impacts other large-scale clean energy policies, for example 

the expansion of LPG in rural India (128, 273, 274), or Rwanda’s Energy Sector Strategic Plan 

which includes plans to provide electricity to over 2 million households and provide clean 

cooking options (128, 135).  

 
6.5 Conclusion 
 
Household energy programs and policies are being scaled up in China and globally due to 

widespread efforts by governments and other organizations (128). Overall, this thesis provides 

a more nuanced understanding of the indoor and outdoor source contributors to personal 

exposures in settings of household solid fuel burning which can inform the design and 

development of interventions but also sets more realistic expectations of the air quality 

benefits that are achievable with a single, source-specific intervention in complex air pollution 

settings. My study provides empirical evidence of cardiovascular benefits from a large-scale 

clean energy policy in a place with a large and growing cardiovascular disease burden, though I 

did not observe local outdoor air quality impacts of the same policy. Together, these results 

may help to motivate continued investment in clean energy in China and in other regions that 

are developing and implementing household energy policies and provide a blueprint for the 

evaluation of clean energy policies on air quality and health.  
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