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ABSTRACT 

Affect has an impact on learning by influencing various cognitive, psychomotor and 

motivational processes. This research aims to understand the role of affect in aviation training. 

We examined participants’ (N = 19) affect in simulated aviation training while they perform ten 

aviation tasks designed to their skill level. Performance was graded with a rubric provided by our 

collaborator, CAE Inc. Affective states were inferred from two biometric measurements 

(electrodermal activity, facial expression) and one ‘ground truth’ measurement (experiential self-

report). Convergent results were found among all the data channels: Arousal from facial 

expression and electrodermal activity correlated positively with each other; Correlations between 

biometrically inferred affect and self-reported affect correlates (workload, fatigue, effort, 

perceived control and value) were found and were consistent with past research. These 

convergent findings support the validity of the measurements. Furthermore, we found that 

arousal (inferred from electrodermal activity) positively predicted performance in low difficulty 

task, and that mental workload (as measured from self-report) negatively predicted performance 

in medium and difficult tasks. We found that emotions did not vary significantly by how well a 

task was performed.  

This research adds empirical evidence on the impact of affective states on aviation 

training performance. Furthermore it addresses a gap in the literature regarding mechanisms to 

demonstrate convergence between multimodal affect data. This research is a preliminary step to 

a comprehensive assessment of affect in aviation training, which could eventually help training 

instructors to allocate appropriate scaffolding to pilots where needed, thereby improving the 

overall training experience and pilot performance.  
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RÉSUMÉ 

L'affect a un impact sur l'apprentissage en influençant divers processus cognitifs, 

psychomoteurs et motivationnels. Cette recherche vise à concevoir une évaluation multimodale 

de l'affect et à comprendre le rôle de l'affect dans la formation aéronautique. Nous avons 

examiné l’effet des participants (N = 19) dans une formation simulée en aviation alors qu’ils 

effectuent dix tâches aéronautiques conçues en fonction de leur niveau de compétence. La 

performance a été notée à l'aide de rubriques fournies par notre collaborateur, CAE Inc. Les états 

affectifs ont été déduits de deux mesures biométriques (activité électrodermique, expression 

faciale) et d'une mesure de «vérité fondée» (auto-évaluation expérientielle). Nous avons trouvé 

des résultats convergents parmi tous les canaux de données: l'excitation de l'expression faciale et 

l'activité électrodermique sont en corrélation positive les unes avec les autres; Des corrélations 

cohérentes avec les recherches antérieures se trouvent entre l'affect inféré biométriquement et les 

corrélats d'affect autodéclarés (charge de travail, fatigue, effort, contrôle perçu et valeur). Ces 

résultats confirment la validité des mesures. De plus, nous avons constaté que l'excitation 

(déduite de l'activité électrodermique) prédisait positivement les performances dans les tâches de 

faible difficulté, et que la charge de travail mental (mesurée à partir de l'auto-évaluation) 

prédisait négativement les performances dans les tâches moyennes et difficiles. Nous avons 

constaté que les émotions ne variaient pas de façon significative selon la qualité de l'exécution 

d'une tâche. 

Cette recherche comble le manque dans la littérature concernant les mécanismes pour 

démontrer la convergence entre les données d'affect multimodales. Nous ajoutons des preuves 

empiriques sur l'impact des états affectifs sur la performance de la formation en aviation. Cette 

recherche est une étape empirique vers une évaluation complète de l'affect dans la formation 
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aéronautique, qui pourrait éventuellement aider les instructeurs à répartir les échafaudages 

appropriés en cas de besoin, améliorant ainsi l'expérience et l'efficacité globales de la formation. 
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CHAPTER 1: INTRODUCTION 

Affect is a complex psychological construct that can be defined as emotional states, stress 

responses and moods (Gross, 2015). It has an important yet complex role in cognitive, 

psychomotor and motivational processes, influencing human thought and action (Mandler, 

1989). Affect embodies the information of appraisal, which is one’s valuation over the object of 

focus. Therefore, affect can alter the way we think about and perceive the object, leading to 

differences in cognitive, motivational and behavioral outcomes (Storbeck & Clore, 2008).  

The complex interplay between affect and other cognitive, motivational and behavioral 

processes suggests that affect can have a strong impact on learning. Education researchers have 

demonstrated the influence of affect on learner’s current and future learning outcomes. For 

instance, negative emotions experienced during mathematics homework sessions negatively 

predict students effort and mathematics achievement (Dettmers et al., 2011); similar functions of 

negative emotions are found in science problem solving, whereas positive emotions such as 

happiness facilitates problem-solving events (D’Mello, Lehman, Pekrun & Graesser, 2012; 

Lehman, D’Mello & Graesser, 2012). Furthermore, in second language learning, positive 

emotions and emotion regulation improves motivation and adaptive interaction with peers 

(Dewaele, 2011).  

Although the examples above demonstrate consensus on the role of affect in different 

fields, verifying these findings in other contexts is important as affect is domain-specific (e.g. 

Mathematics) and task specific (e.g. algebra, geometry) (Pekrun & Perry, 2014). As students’ 

valuation system and self-concept differ for each subject or task, their affective experience also 

differs (Storbeck & Clore, 2008). Affect is time-sensitive because it changes dynamically and 

thus can vary based on the moment of assessment (Pekrun & Perry, 2014). Therefore, it is 
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important to understand students’ task-related, domain specific affect in real time to determine 

the relationship between affect and learning.  

A critical goal in educational psychology research is to find ways to support learning by 

accurately assessing the influence of affect in the learning process. Affect’s role is especially 

pertinent in aviation training, during which trainees are required to execute proper psychomotor 

skills and make decisions under stressful situations (Kaempf & Klein, 2017). In current training 

programs, affect is only assessed subjectively by pilot instructors who are simultaneously tasked 

with giving appropriate instructions, scaffolding trainees and evaluating their performance. 

Hence, there is a great need for an appropriate methodology to measure affect dynamically 

during aviation training. 

The recent surge of affective computing technologies brings alternatives to the traditional 

self-report measurement of affect, even providing the option to interpret affective states in real 

time. These affective computing technologies target different aspects of affect. One measurement 

could be more sensitive to a certain aspect of affect than another. For instance, facial expression 

analysis infers emotional states from behavioral changes manifested in facial expression, 

whereas electrodermal activity (EDA) and heart rate variability (HRV) simply assess the 

physiological arousal of the participant. Facial expression analysis is more sensitive to the 

valence dimension of affect, whereas EDA is more sensitive to the arousal aspect. However, 

affective states, particularly emotions are manifested through behavior, physiological changes 

and experiences (Gross, 2015). To choose only one of these methods would lead to partial and 

incomplete inferences of affective states. Multimodal measurements align with the definition of 

affect as it. However, multimodal measurements need to be carefully chosen to reduce costs and 
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time incurred in data collection and analyses. Furthermore, multimodal data should be aligned 

and converged to generate reliable and interpretable results.  

In this study, students’ affect in a simulated aviation training setting was examined. 

Considering the multi-componential manifestations of affect and its situation-specificity (Gross, 

2002, 2015), this research aims to develop a multimodal protocol for assessing affect in the 

context of simulated aviation training. This protocol includes measures of physiological, 

behavioral and experiential affective states in a simulated aviation context. Affect is 

operationalized as stress responses inferred from physiological measurement (electrodermal 

activity), basic emotional states inferred from facial expression analysis and experiential 

feedback measured through self-reports. Emotions and stress are of our research interest 

particularly because they are among the most common causes of fatal accidents in aviation, and 

they are fast-changing reaction to specific objects of focus (Jensen, 2017). Results from the 

various data channels are interpreted and synthesized through convergence analysis.  

This research is conducted in collaboration with CAE Inc., a world leader in producing 

aviation simulation and training programs. We conducted an experiment using flying tasks in X-

plane, a flight simulation software commonly employed for pilot training.  

This research addresses the gap in the literature regarding mechanisms to demonstrate 

convergence between multimodal affect data. The protocol developed could be used for future 

aviation training. A comprehensive assessment of affect could help aviation training instructors 

to allocate appropriate scaffolding to pilots where needed, thereby improve the overall training 

experience and effectiveness.  
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CHAPTER 2: LITERATURE REVIEW 

In an effort to ground the current research on affect in an aviation context, a literature 

review conducted in 3 parts: (a) theoretical background on affect; (b) methdological approaches 

to studying affect; and (c) exisitng research on affect in aviation.   

Theoretical Background on Affect 

Following Gross (2015), this thesis will use affect as an umbrella term for stress 

responses, moods and emotional states. Emotional states and stress responses often involve 

whole-body reactions to a specific object of focus, while moods are the overarching affective 

‘climate’ which do not necessarily have a specific object of focus (Gross, 2015). Emotional 

states can be described in two dimensions: valence and arousal. Valence is the positivity of the 

affective experience, ranging from negative, such as anger, to positive, such as happy. Positive 

valence, such as the experience of pleasantness, could lead to motivational and cognitive 

changes, eventually influencing learning experience positively (Pekrun & Linnenbrink-Garcia, 

2014a). Arousal is the activation of the sympathetic nervous system. Coupled with various 

physiological changes, arousal has also been proven to influence psychomotor function, 

temporarily altering the limit of how fast and accurately one could react to stimuli. Therefore, 

psychomotor function could be compromised under excessive or insufficient arousal (Duffy, 

1957, 1962). Stress responses are reaction to a highly-taxing circumstances. They are often 

considered as negative in valence (Gross, 2015). In particular, emotional states and stress 

responses have attracted much research interest in the field of experimental psychology because 

they are fast to vary with the changes in on the object of focus (Gross, 2015). Therefore, this 

thesis focuses on the discussion of emotions and stress among all affective states as they are 

among the most common causes of fatal accidents in aviation (Jensen, 2017). 



MULTIMODAL AFFECT  16 

Some researchers have studied affect in the valence and arousal dimensions separately or 

emphasized one over another (Lazarus, 1991; Ortony et al., 1988), while others argue for the 

importance of incorporating both to understand affect more fully (Barrett, 1998; Russell et al., 

1989). Although positive affect is pleasant to experience, valence of affect alone does not 

determine the desirability of its impact. For instance, confusion, which has a negative valence, 

could motivate thinking and problem solving (D’Mello & Graesser, 2012a). On the other hand, 

relief and relaxation are pleasant states to experience, but their effect on motivation and learning 

could be complex and ambivalent (Pekrun & Linnenbrink-Garcia, 2014a). 

Theories on discrete emotions offer the frameworks to examine affective states along two 

dimensions: discrete emotions are distinguishable by their embodied valence and arousal, and 

hence can be mapped on a two-dimensional scale, as demonstrated below in Figure 1. 

Figure 1 

Discrete Emotions Mapped on Valence and Arousal Scales (Hussain et al., 2011) 

 



MULTIMODAL AFFECT  17 

Other theorists describe discrete emotions as part of more complex systems that carry 

additional information on appraisal. For instance, as demonstrated in Figure 2, the Geneva 

Emotion Wheel (GEW) incorporates appraisal to the structure of discrete emotions, resulting in 

two additional dimensions: coping potential (power or control) and goal conduciveness (whether 

the situation help or hinder goal attainment) (Scherer, 2005). The GEW also emphasizes the 

importance of evaluating emotions by their intensity.  

Figure 2 

Geneva Emotion Wheel (Scherer, 2005) 

 

In the next section, we further review the role of the appraisal process in experiencing 

emotions.  

Appraisal Theories of Affect 

Emotions arise from an appraisal process, which is an evaluation process of the context 

and how it relates to one’s own goals, values, interests and needs (Arnold, 1960; Jarrell, 2015). 

As discussed previously, the appraisal process provides valuable information about the function 

of affect, potentially addressing why individuals could react differently to the same situation. 

Decades of research have established abundant empirical evidence on the strong reciprocal 
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relationship between appraisal, affect and performance (Davis et al., 2008; Hembree, 1988; 

Zeidner, 1998). The control-value theory of acheievement emotions (Pekrun & Perry, 2014) 

provides explanatory power for how appraisal and affect relate to performance and learning.  

Control-Value Theory of Achievement Emotions 

The control-value theory (CVT) is a prominent framework of affect and appraisal in the 

context of learning (Pekrun & Perry, 2014). It explains how affective responses can be activated 

by achievement activities, which relate to performance, competency and evaluation. These 

affective responses are categorized as achievement emotions. Enjoyment, pride, anxiety, 

boredom and anger are some examples of achievement emotions. The CVT provides a 

conceptual structure of the origin, situational specificity, functions and regulation of 

achievement-related affective states. In addition to the two dimensions of emotion (valence and 

arousal) as mentioned previously, the CVT proposes a three-dimensional taxonomy of emotions 

by integrating the dimension of object of focus (prospective, activity, retrospective). For 

instance, anxiety is a prospective negative activating emotion instigated by the expectation of 

low controllability of an activity that one values highly. The perceived controllability and value 

of the situation are components of appraisal (one’s subjective perception of the object of focus). 

This CVT proposes that perceived control and value are of primary importance in understanding 

the antecedent of affect because other factors of appraisal (e.g., goal structure, gender, culture) 

indirectly influence affect by influencing control and value first.  

The CVT addresses how affect influences achievement or performance through various 

cognitive and motivational processes. Specifically, enjoyment of the achievement activity helps 

to focus attention, support motivation and prevents forgetting of coherent material and promotes 

flexible and deep cognitive strategies (Csikszentmihalyi, 1997); whereas anxiety and boredom 
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reduces attention on the activity, undermines motivation and promotes rigid memory retrieval 

and superficial information processing (Bäuml & Kuhbandner, 2007; Pekrun et al., 2010; Pekrun 

& Perry, 2014). 

The CVT acknowledges that the relationship across environment, appraisal, emotion and 

achievement is reciprocal. Therefore, performance feedbacks strengthen the relationship across 

appraisal, affect and performance due to the cumulative effect of appraisal. The CVT is pertinent 

to the analysis of aviation training and performance as aviation tasks are achievement activities. 

During a flying task, pilots in-command execute actions based on their skill, knowledge and 

judgement to achieve well-defined goals (e.g. land at the destination airport safely). Pilots 

constantly receive feedback from the aircraft system (the altitude meter, the compass etc.) about 

whether their actions contribute to achieving their goals (Endsley, 1995). For instance, when 

pilots are required to perform a sharp turn, they might experience a low sense of control if they 

expect the situation to be difficult to manage. A feeling of anxiety and stress could be induced by 

low perceived control, and will be intensified if the outcome is of high value (e.g. safety 

concerns for themselves and others). Anxiety, is a negative activating emotion that could 

exacerbate the situation by reducing pilots’ deep-thinking ability and hampering their 

psychomotor functions (Panganiban et al., 2011b; Barrett et al., 2019; Duffy, 1962). Thus, 

trainees’ affect should be interpreted from an appraisal perspective to promote training efficiency 

and wellbeing in aviation.  

Theories and definitions of affect have demonstrated that reliable affect measurements 

are needed to account for the multi-facetted nature of affect. Information on appraisal contributes 

to making appropriate inferences about affect, which is especially important when conducting 

multimodal experiments (Arnold, 1960; Jarrell, 2015). In the next section, we review the various 
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methodologies to measure affect to inform our design of a multimodal affect assessment in 

aviation. 

Methodological Approaches to Studying Affect  

Affect is a multi-faceted construct coupled with behavioral changes, physiological 

responses and subjective experience (Gross, 2002, 2015). Measurement of affect could be 

operationalized by measuring its multiple manifestations. As the field of computer science 

advances, various affective computing technologies have been invented to infer affect through its 

manifestations. However, measuring an affect from a single facet will result in partial inferences, 

as cues manifested in other ways would be overlooked. An impartial measure of affect should 

account for affective cues expressed in all three dimensions (behavioral, physiological and 

experiential). A valid and trustworthy inference of affect should be a result of convergence 

analysis and triangulation across multiple sources. The following sections review the design of 

several common measurements of affect and data convergence procedures. 

Behavioral Measurement of Affect: Facial Expression 

Facial expression analysis is a common behavioral assessment technique for affect 

detection (Cohn, 2006; Niedenthal et al., 2000). There are cross-cultural similarities in some 

emotional facial expressions either involuntarily elicited by emotions or deliberately displayed to 

reflect emotions (Ekman, 1997). These facial expressions are associated with six universal 

emotions: fear, anger, disgust, sadness, enjoyment or joy, surprise or startle. Ekman postulated 

an empirically validated guide for coding universal facial expressions: Facial Action Coding 

System (FACS) (1997). The FACS describes visually distinguishable facial expressions in terms 

of 44 action units. An action unit is the contraction and relaxation of one or a group of facial 

muscles, e.g. inner-brow raiser. The FACS also provides Ekman’s interpretation of some facial 
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expressions, which indicates six basic emotions. This comprehensive guide allows coders to 

distinguish facial expressions by manually grading 44 action units on 5-point intensity scales. 

This guide also distinguishes some involuntary and voluntarily posed facial expression, e.g. a 

sincere smile of joy versus a fake smile. The FACS has been widely used in many applied 

contexts for both clinical and experimental purposes. It also pushed the development of affective 

computing software to automate facial expression recognition. For instance, FaceReader (Den 

Uyl & Van Kuilenburg, 2005) is a commercial software made to automatically detect facial 

action units and produce interpretations of basic emotions. It has been validated with other affect 

measurements such as electromyography and has been used in various empirical studies 

(D'Arcey, 2013; Lewinski et al., 2014; Terzis et al., 2010). 

Physiological Measurement of Affect: Electrodermal Activity 

Although facial expression has become a common indicator of affect, not all affective 

states of all intensity are distinguishable visually. Ekman et al. (1997) found that the sub-visible 

emotions are detectable physiologically through electromyography (EMG). This finding is 

consistent with the theoretical definition of affect and its physiological manifestation. The 

arousal dimension of affect can be reflected physiologically. The physiological component of 

affect has been measured through EMG, heart rate variability (HRV) and electro-dermal activity 

(EDA). However, EMG and HRV are rather laborious to obtain and intrusive to measure due to 

the sensor placements. Furthermore, muscle movements and parasympathetic nervous system 

could corrupt the inference of the reaction for the sympathetic nervous system reactions. 

Electrodermal activity (EDA) is a common, non-invasive method to measure the 

physiological expression of arousal. Changes in arousal is manifested in the change of the 

moisture level of the skin. The change in moisture leads to fluctuations of skin’s electrical 
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conductivity. EDA recording tracks the magnitude of the electrical current between two points 

on the skin (Braithwaite, Watson et al. 2013, Harley 2016). Hence, one’s arousal state could be 

inferred by analyzing the EDA data. This method is superior to other physiological measures of 

arousal such as heart rate variability for its short latency time and independence from 

contamination of parasympathetic nervous system activities (Braithwaite, Watson et al. 2013).   

To eliminate the confounding effect of individual and environmental differences on skin 

conductivity, EDA could be processed into two elements: skin conductance level (SCL) and skin 

conductance response (SCR). Skin conductance level is a smooth, ever-changing baseline of skin 

conductivity, whereas SCR is the rapid changes in skin conductivity that is most probably caused 

by fluctuation in arousal level. Each significant increase of skin conductivity from SCL is a SCR 

peak. SCR peak frequency and amplitude are both common indicators of arousal level 

(Braithwaite, Watson et al. 2013). More frequent SCR peaks are observed when arousal level 

increases. An SCR peak with high amplitude indicates a sudden surge of stress. 

Experiential Measurement of Affect: Self-reports as the ‘Ground truth’ 

Self-reports assess affect in the experiential dimension, which reflects the subjective 

experience of the participant. Experiential measures include questionnaires and interviews. Some 

questionnaires may assess affect by directly asking the participant to rate his or her experience of 

every affective states of interest. The Achievement Emotion Questionnaire is one of the common 

affect questionnaires used in educational psychology. For instance, enjoyment is assessed 

through items such as ‘I enjoy acquiring knowledge’ (Pekrun et al., 2011). 

Other relevant self-report measures of affect could be questionnaires on the correlates of 

affect, such as appraisal and mental workload. Appraisal has a direct, reciprocal relationship with 

affective experience (Pekrun & Perry, 2014). As discussed previously in Appraisal Theories of 



MULTIMODAL AFFECT  23 

Affect, affect embodies information of the valuation system and the perceived control over the 

object of focus. Perceived control and perceived value are two components of appraisal, which 

could be measured by the Motivated Strategies for Learning Questionnaire (Pintrich, 1991). It 

measures three types of value: utility, relevance and interest. For instance, an item to assess 

interest value is ‘I feel interested in this activity’. 

In addition to capturing the experiential dimension of affect, self-reports are often 

employed for data convergence and alignment in multimodal studies which involves multiple 

data channels. The following section explains the importance and the procedure of data 

convergence. 

Multimodal Data Convergence 

Although behavioral and physiological measurements of affect complement each other in 

capturing the biometrics cues of affect, it is challenging to empirically converge them and 

generate a valid understanding of the affective states at the time of measurement. As each data 

channel reflects a single manifestation of affect, our inference on affect only becomes impartial 

through triangulation and convergence among data channels. For instance, by simply observing 

raw multimodal data, we might find that the facial expression of anger occurs in absence of any 

concurrent rise of raw EDA. This observation is inconsistent with theories of affect which 

suggest anger as an activating emotion should be coupled with an increase in physiological 

arousal. To generate accurate inference and resolve conflicts between data channels, several 

steps are involved in converging multiple sources of affective data. First, data need to be 

accurately aligned based on time. Latency time should be considered for each mode of 

measurement. Facial expression is considered as an instant-onset behavioral cue of affect. 

However, latency of electro-dermal activities is close to one second. This means that a change in 
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EDA only happens approximately one second after the onset of the stimulus. Aligning facial 

expression inference and EDA without consideration of latency will result in conflicts and 

inaccurate interpretation of the affective states at the time point.  

Second, the object of focus should be the same among all modes of measurements to 

converge the data. During experimentation, it is essential to control the experimental condition to 

help participants focus on the stimuli or the experimental task. We can then assume that the 

object of focus of the affective states we detect are regarding the concurrent feeling of 

performing our experimental tasks. Some researchers may choose to increase the difficulty or 

mental demand of the task to enhance engagement (Jensen, 1965; Kane et al., 2007). Such 

experiment designs include incrementing requirements (e.g. an inclination versus an inclination 

with a fixed pitch-up angle) and setting time limit. Other studies may use immersive 

technologies and set up the experiment in an immersive, simulated environment with little 

distraction (Freina & Ott, 2015). For instance, trainees may be more focused when they are 

immersed in a full simulation lab that creates an illusion or a real flight than in a classroom. 

These two steps could reduce the presence of noise in affective data. 

After the process of data convergence, internal validity is created if there are few 

conflicts among the data sources and the affective states. For instance, by definition, anger is an 

activating emotion, hence it is expected to be associated with higher arousal and higher SCR. If 

multimodal data shows that anger as observed in facial expression and the data align with low 

SCR, then a conflict is found across data sources. To practice caution in interpretation, such 

conflicts would require examination of the protocol, the video recording of the experiment and 

the ‘ground truth’. 
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A ‘ground truth’ is crucial in multimodal assessments to validate the other modalities of 

data, especially in the phase of protocol or data analysis. Ground truth refers to a chosen source 

of data, typically video recording or self-report. Other sources of data in a multimodal study is 

often compared to the ‘ground truth’ for convergence assessment and conflict resolution. A 

ground truth could be instrumental to interpret and resolve conflicts occurred during data 

convergence. As human affect experience could be complex, even neatly controlled experiments 

could have unforeseen conflicts during convergence of data sources. Therefore, a ground truth 

could provide the additional context needed for researcher to interpret affect data. Self-reports, 

interviews and qualitative video analysis are often chosen as ‘ground truths’ in multimodal 

studies (Harley, 2016). 

In sum, the process of data convergence is an essential step in multi-channel data 

analysis. Data alignment enhances accuracy of affect interpretation in comparison to single-

sourced experiment. The integration of ‘ground truth’ in multimodal experiments provides 

resolutions to conflicts across data channels and validates measurements in novel or exploratory 

experiment protocols. In the next section, we review the extent to wheich multimodal protocol 

design and existing theoretical frameworks and assessments of affect, have been conducted in 

aviation contexts. 

Affect in Aviation 

In the field of aviation, negative affect can have a detrimental effect on performance. 

Stress and emotions are among the six main causes for fatal accidents in aviation (Jensen, 2017). 

There is a consensus that to safely control a dynamic environment in and around the aircraft, 

pilots need to be aware of the situation and execute effective decisions with minimal risk 

(Jensen, 1997; Murray & Martin, 2012). Such pilot-related factors have been studied in the 
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context of aviation through human factor (ergonomics) perspectives, which is the application of 

psychological or physiological theories to the analysis of products, processes or systems 

(Wickens et al., 2009). Two of the most influential models that examine essential human factors 

for flight safety are the Model of Situation Control and the Aeronautic Decision-Making Model. 

These models are reviewed to examine how the role of affect is defined in the aviation decision 

making and pilot performance.  

Model of Situation Control in Aviation 

In aviation, pilots in command must be aware of the environment, the goal and the 

dilemma presented to them. The model of situation control (Figure 3) outlines the essential 

intrinsic factors for pilots in command to manage a flight path safely and effectively (Murray & 

Martin, 2012). Pilots need to be aware of the situation, which includes the aircraft environment, 

the outer environment (wind, weather etc.), the goal (targeted flight path) and any dilemma or 

challenge (e.g. encountering unexpected turbulence during landing). In addition to sufficient 

technical skills, pilots also need to engage their metacognitive skills (planning) and interpersonal 

skills to communicate with the flight crew and the Air Traffic Control Center. As shown in 

Figure 3, situation awareness is a prerequisite for further steps to achieve flight path 

management. Therefore situation awareness influences threat management, decision making and 

flight system management. Although affect management and regulation is not explicitly listed as 

a factor of situation awareness, it could be interpreted that affect and affect regulation has an 

overarching effect on many factors in the Model of Situation Control: it is implicit that stress 

management is needed for flight management, as stress has a strong impact on workload and 

vigilance (Warm et al., 2018). Furthermore, affective states such as boredom and anxiety can 
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influence situation awareness and threat management by impacting workload management and 

vigilance (Panganiban et al., 2011a; Sawin & Scerbo, 1995). 

Figure 3  

Situation Control Model (Murray & Martin, 2012) 

 

The model of Situation Control focuses on the factors influencing situation awareness as 

it stems from the Situation Awareness Model. The concept of situation control builds on 

situation awareness by integrating other factors such as decision making and threat management. 

In particular, decision making is a complex process that require further dissemination (Starcke & 

Brand, 2012). The Aeronautic Decision-Making Model is reviewed in the following section to 

examine the role of affect in pilots’ decision-making process. 

Aeronautic Decision-Making Model 

Factors influencing the decision-making process of a pilot in command is structured in 

the Aeronautic Decision-Making Model (Figure 4). The expert aeronautic decision-making 

process involves five elements, stable intrinsic characters (intelligence and personality), aviation 

experience, risk management, dynamic problem-solving, crew resource management and 

attention control to make an aeronautic decision (see Figure 4) (Kochan et al., 1997). This model 

addresses some affective correlates such as motivation and attitude in terms of how these factors 
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influence attention control. However, like the Model of Situation Control, affect and affect 

regulation are not explicitly discussed in the model. 

Figure 4 

Aeronautic Decision-Making Model (Jensen, 1997) 

 

A common criticism of human factor frameworks in aviation is that they operate with the 

assumption that the expert-like decision making process should be independent of affect (Soll et 

al., 2016). On the other hand, the broader literature in psychology stipulates that affect could 

arise in various processes of decision making (Lerner et al., 2015). The ability and willingness to 

regulate these affective states are essential to maximize decision making efficiency. For instance, 

in problem solving, maladaptive affect often couples with reduced cognitive resources and task 

disengagement, which lead to failure in problem solving (D’Mello & Graesser, 2012a). In crew-

resource management, maintaining a positive social-emotional environment is crucial for the 

team to work towards the same goal effectively (Bakhtiar et al., 2018). A theoretical framework 

that reconsiders the role of affect in the aviation context is lacking. There is a demand for 

systematic studies on affect in aviation to build a better understanding of how affect influences 

pilots’ expertise. To empirically study the effect of affective states in aviation, a valid and 

feasible measure of affect is needed. The design and selection of affect measures should also be 
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compatible with the aviation context. As aviation training takes place in simulators of various 

fidelity levels, often involving whole body motion in tight spaces, affect measures need to be 

non-invasive with minimal effect on the aviation training context, and non-disruptive of the 

training process (Lee, 2017). The next section presents relevant literature on the use of 

biometrics measures of affect in aviation contexts. 

Biometrics Measures of Affect in Aviation 

Biometrics are commonly referred to as the technology to identify people by measuring 

physiological and behavioral traits (Li, 2009). Popular biometrics technologies include facial 

expression analysis, voice analysis, fingerprint matching etc. Many of the biometrics 

technologies have been adapted to use in affective computing. In comparison to traditional self-

report measure of affect measurements, biometrics measurements have the advantage of being 

non-disruptive of task performance (Conati et al., 2003; Jones & Troen, 2007). Therefore, 

researchers could use biometrics measures of affect concurrently with task performance. To 

determine which biometrics measures of affect would be feasible and effective in aviation 

training setting, the existing uses of biometrics measurements in aviation context are reviewed. 

 Due to the inter-disciplinary nature of this project, this part of the literature review was 

performed using two databases, Scopus (Burnham, 2006) and PsycINFO, to thoroughly examine 

the relevant research conducted both within and beyond the field of psychology. Scopus is an 

interdisciplinary database providing access to over 14,000 journal articles from over 4,000 

publishers. The literature review in the Scopus database was conducted to examine the 

interdisciplinary research that used biometrics assessments in aviation contexts. This literature 

review was done to inform the experiment design and measurement selection. Keywords were 

chosen in the three dimensions of interest for this project. First, for the dimension of aviation 
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context, phrases ‘aircraft pilot’ and ‘airplane pilot’ were entered in the search. For the purpose of 

reviewing research in similar task context, the word ‘driver’ was included, although eventually 

very few papers were identified with this keyword. Secondly, for the multimodal dimension of 

the project, search phrases ‘Face reader’, ‘facial expression analysis’, ‘voice analysis’, ‘galvanic 

skin response’, ‘electrodermal assessment’, ‘heart rate’, ‘eye fixation’, ‘visual attention’, ‘gaze 

behavior’, ‘visual tracking’, eye tracking’, ‘pupil dilation’, ‘posture analysis’ were included in 

the search.  

Although Scopus provides access to articles in various domains, ranging from health 

sciences to social sciences, it does not guarantee complete inclusion of all articles published in 

these fields. Articles from certain publishers may be included in more specialized databases 

instead. Therefore, the same search is conducted in a database specialized in psychology 

research, PsycINFO. PsycINFO database is a robust academic database for psychology related 

literature (Leininger, 2000). The joint search yielded 228 peer-reviewed papers from scopus and 

71 from PsycINFO. Due to the small amount of search results, the search results were not 

narrowed down to papers reporting affect-related research. Alternatively, the title and abstract of 

these articles were manually scanned to screen for relevant papers that used biometrics measures 

to infer affect and its correlates (attitude, mental state or performance) in the aviation or driving 

contexts. Finally, 120 papers were selected from Scopus and 22 are selected from PsycINFO. 

The review affirms that research on affect in aviation is still in its infancy and that affective 

computing and biometrics measurement has yet to be more integrated more fully into research 

that sheds light on the role of affect in aviation training. 

The review of selected papers from the two databases revealed that physiological 

measures such as heart rate variability, electro-dermal activity and blood pressure, are the most 
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frequently used measures in aviation research on affect:  (a) 74 papers (69 from Scopus, 4 from 

PsycINFO) employed physiological measures (e.g. Hormeño-Holgado & Clemente-Suárez, 

2019; Mansikka et al., 2018), (b) 47 papers (39 from Scopus, 8 from PsycINFO) used behavioral 

measures including speech analysis, eye-tracking and posture analysis (e.g. Kuroda et al., 1976; 

Tole et al., 1982) and; (c) 9 papers used the neurological measure, electro-encephalogram (EEG) 

(e.g. Saproo et al., 2016) . However, of all these papers only 17 of these papers (10 from Scopus, 

7 from PsycINFO) examined affect through biometrics measures (e.g. (Hannula et al., 2008; 

Kuroda et al., 1976)). Among them, 16 papers measured stress (10 from Scopus and 6 from 

PsycINFO) (e.g. Doorey et al., 2011; Main et al., 2017; Regula et al., 2014). These statistics 

inform us that research on the use of biometrics measures to infer affective states in pilot training 

is still rare, especially in the measurement of emotional states that are relevant in learning 

context (see Figure 5). Furthermore, there is a lack of exploration using multimodal protocols to 

address the changes of multiple components of affect (behavioral, physiological and experiential) 

in aviation tasks. 

Figure 5 

Diagram of Comparison of the Number of Peer-reviewed Articles on Biometrics Measures in 

Aviation Context 
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However, from the selected measures, cognitive load is a construct that is assessed 

frequently in the aviation context. Thirty papers (29 from Scopus, 1 from PsycINFO) out of 142 

measured task load or cognitive load (e.g. Diaz-Piedra et al., 2019; Mansikka et al., 2018). This 

construct is considered as one of the most important human factors in aviation. The research 

demonstrates that cognitive overload is associated with poor performance and learning of the 

aviation tasks as insufficient cognitive resources are available for the respective tasks (van Erp et 

al., 2007). Although in the aviation context, several terms such as task load, cognitive workload, 

engagement and stress seem to be taken as equivalent or interchangeable (Flin et al., 2003), there 

is a commonly used measure for them: NASA task load index (NASA TLX) (Hart, 2006). 

NASA TLX is a validated indicator of cognitive load, physical workload and temporal workload 

in aviation tasks. It is frequently used in aviation research that pertains to pilot decision making 

and performance. As reviewed previously, workload has a strong association with affective 

states, particularly stress (Warm et al., 2018). Consequently, NASA TLX could be a valuable 

measurement to include in multimodal assessment of affect as it is a validated indicator of an 

affect correlate. 

In conclusion, this chapter reviewed the recent findings on the importance of multimodal 

assessment for affect and the need for affect assessment in aviation context. This literature 

review serves to inform the design of the current multimodal protocol, to define the research 

questions and to establish evidence-based hypotheses. 
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Research Questions and Hypotheses 

This thesis addresses the gap in both psychology and affective computing literature on 

how to measure affect through multiple data channels. To acknowledge the demand on 

theoretical and empirical understanding of the role of affect in aircraft pilot training, this study 

aims to use multimodal assessment to examine affect in aviation training context and to 

understand the role of affect in aviation training performance. This thesis examines the role of 

affect in terms of the valence-arousal dimensions and the occurrence of discrete emotions. A 

series of three research questions are answered regarding the validity of the protocol, the 

predictive value of affect for aviation performance, and the differences between high and low 

performers in terms of their discrete emotion profiles. Each question is outlined below with its 

corresponding hypotheses.  

Research Question 1 

The first research question is: can affective inferences obtained from physiological 

indicators, behavioral cues and subjective self-report align with each other in an aviation training 

context? In other words, do these multimodal indicators of affect show convergence? This 

research question was answered by exploring the data collected using a multimodal protocol 

designed based on the multi-faceted definition of affect. In this protocol, the physiological aspect 

of affect was measured through electrodermal activity. The behavioral dimension was inferred 

from facial expression analysis. The affective experience was examined through self-report 

questionnaires on affect correlates (workload, effort, fatigue, perceived control and value). Three 

sub-questions were posed to determine if the protocol described above demonstrates converging 

evidence of affect inferences in aviation training. These sub-questions pertain to the correlations 

among arousal inference from EDA, discrete emotion inferred from facial expression and affect 
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correlates inferred from self-reports. The three sub-questions and their corresponding hypotheses 

are described in the following sections. 

Research Question 1A  

The following research question is posed: does arousal inferred from EDA correlate with 

arousal analyzed from facial expression? This question aims to investigate if EDA and facial 

expression analysis generate agreeing inferences on arousal responses during aviation training. 

Agreement across data channels with overlapping constructs of interest is one of the indicators of 

data convergence (Harley et al., 2015). In the current multimodal protocol, the arousal dimension 

of affect could be inferred both physiologically through EDA and behaviorally through facial 

expression. Therefore, a correlation analysis was conducted between arousal inferred from EDA 

and that inferred from facial expression.  

Hypothesis 1A 

As previously mentioned in Chapter 2, high SCR (high SCR peak amplitude, high SCR 

peak frequency and high phasic EDA) indicates elevated arousal. From facial expression, arousal 

level could also be inferred from the arousal dimension of the discrete emotions identified in 

facial expressions (i.e. facial expressions of anger indicate higher arousal than facial expressions 

of sadness). Therefore, the hypothesis is that tasks with high SCR will demonstrate activating 

emotions through facial expression. The opposite result is expected for tasks demonstrating low 

SCR.  

Research Question 1B 

The second sub-question is posed: is there correlation between the self-reported affect 

correlates (workload, effort, fatigue, perceived control and value) and physiological arousal 

inferred from SCR during aviation tasks? Self-reported affect correlates serve as the ‘ground 
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truth’ of this multimodal protocol. A ‘ground truth’ measurement is often included in multimodal 

protocols to assess data convergence and alignment (Harley, 2016). As the ‘ground truth’ is a 

validated measurement, other measurements could be validated if they provide results that are 

consistent with existing theories or empirical research and align with the ‘ground truth’.  

Hypothesis 1B 

According to previous research on task load in aviation, arousal increase is coupled with 

workload, fatigue and effort increases (Nittala et al., 2018; Shiomi et al., 2012). Therefore, it is 

expected that arousal inferred from SCR increases as the subjective ratings on the 

aforementioned affect correlates increase. 

Research Question 1C 

The third sub-question is: are there correlations between the discrete emotions inferred 

from facial expression (happy, surprised, angry, sad, scared, disgusted) and the self-reported 

affect correlates (workload, effort, fatigue, perceived control and value)? This question examines 

the data convergence between facial expression analysis and the ‘ground truth’. We also aim to 

provide evidence on affect data convergence along the valence dimension inferred from facial 

expression analysis of discrete emotions.  

Hypothesis 1C 

Based on previous research, it is expected that facial expressions indicating negative, 

activating emotions appear more frequently as self-reported workload, fatigue and effort 

increases (Nittala et al., 2018; Shiomi et al., 2012). A negative relationship is expected between 

negative activating emotions and perceived control and value. Opposite trends are expected for 

positive emotions (Causse et al., 2013; D’Mello & Graesser, 2012b; Pekrun & Linnenbrink-

Garcia, 2014b). It is expected that the facial expression of the negative deactivating emotion in 
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this study (sad) becomes more frequent as perceived control decreases (Pekrun & Perry, 2014). I 

take an exploratory stand on the relationship between negative deactivating emotion and 

workload, fatigue and effort as it is not systematically studied in the aviation context. 

Research Question 2 

The second research question asks: How do affective valence, arousal and workload 

during aviation training together and separately influence performance?  

The role of affect in learning and performance outcomes (e.g. examination grades) have 

been explored in various contexts (D’Mello & Graesser, 2012a; Dettmers et al., 2011). Theories 

suggest that emotions should be studied along two dimensions: valence (positive to negative) and 

arousal (activating to deactivating) (Lazarus, 1991; Ortony et al., 1988; Russell et al., 1989). This 

research question is posed to examine if the existing theoretical and empirical evidence on the 

functions of affect is generalizable to the aviation training context. Moreover, this research aims 

to add empirical evidence regarding the relationship between aviation training performance and 

workload, an important determinant of performance based on previous research in aviation 

psychology (Hart, 2006; Mansikka et al., 2018; Roscoe, 1978; Wickens et al., 2002).  

Hypothesis 2 

Based on previous research (D’Mello & Graesser, 2012a; Dettmers et al., 2011), it is 

expected that positivity of overall affective valence during the task is associated with 

performance excellence. An exploratory stand is taken on the relationship between arousal and 

performance as there are mixed findings on the directionality of this relationship in the aviation 

psychology literature (Stokes & Kite, 2017). According to existing evidence on the hampering 

effect of cognitive overload on performance (Mansikka et al., 2018; Roscoe, 1978; Wickens et 

al., 2002), it is expected that workload predicts performance negatively. 
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Research Question 3 

The third research question is: are there differences between the basic emotions expressed 

(happy, sad, angry, disgusted, surprised, scared) during high performance and that of low 

performance?  

According to educational psychology theories and human factors models in aviation 

(Knecht et al., 2016; Pekrun & Linnenbrink-Garcia, 2014a; Pekrun et al., 2017), knowledge, skill 

execution as well as emotion competency and regulation should be considered in tandem to 

determine their effects on learning and performance. This research question is posed with the 

long-term goal to help instructors to identify disruptive emotional profiles in pilot trainees and 

allocate sufficient emotional regulation training and support for these trainees. Affective states 

can be structured along dimensions of valence and arousal, but they also embody intricate 

cognitive information such as appraisal, resulting in different discrete emotions (i.e. anger, 

sadness). Each discrete emotion has a unique set of parameters that pertain to arousal, valence 

and appraisal (Barrett, 1998; Hussain et al., 2011; Scherer, 2005). Therefore, in addition to 

studying the role of affect by its arousal and valence dimension, this research aims to examine if 

discrete emotions are associated with differences in performance.  

Hypothesis 3 

Based on previous research on affect in other learning contexts, it is expected that happy 

occurs more in high performance, and sad, angry, disgusted, scared are expressed more often in 

low performance (D’Mello & Graesser, 2012a; Dettmers et al., 2011; Pekrun & Linnenbrink-

Garcia, 2014a). I take an exploratory stand on surprise due to the mixed findings on its function 

in various context (Mauss & Robinson, 2009; Muis et al., 2015). 
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CHAPTER 3: METHODOLOGY 

The experimental environment and tasks were designed in collaboration with subject-

matter experts from CAE Inc. We conducted an experiment using flight tasks in X-Plane ®, 

flight simulation software that is commonly employed for pilot training. X-Plane aviation tasks 

were adapted to the beginner pilot trainee level by subject-matter experts from CAE Inc. to fit 

the skill level of our participants. X-Plane was loaded on Dell computers. Our data collection 

protocol included three-modality features: (a) physiological arousal was inferred from electro-

dermal activity (EDA) recorded with BioNomadix® system; (b) The behavioral cues of affect 

were collected using Microsoft Lifecam HD cameras mounted on the computer screens to 

capture facial expressions during training and analyzed through facial expression inferences from 

FaceReader 6.0®; and (c) The experiential manifestation of affect was assessed through a self-

report questionnaire administrated on a laptop. Self-reports also served as the ‘ground truth’ 

measure for the convergence analysis. These measures are described in the Measurements 

section. This study received IRB approval from Concordia University and was accepted by 

McGill University based on the CREPUQ inter-institutional agreement. 

Participants 

A total of 19 participants (11 females) were recruited from the undergraduate and 

graduate student population at McGill University with an age range from 19 to 35. The sample 

included several ethnic backgrounds: 5 Asians, 6 Caucausians, 2 Hispanics and 5 from other 

ethnicities. The current data collection was used to serve as a baseline for the larger pilot project 

and thus participants were selected who had limited to no aviation-related experience (private 

pilot license, aviation simulation gaming experience etc.), similar to beginner trainees. The 
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simulation interface (X-Plane) and flying tasks are adapted to beginner level. Each participant 

was compensated ten dollars per hour for their participation.  

Procedure 

Figure 6 documents the experimental procedure. The duration of the experiment ranges 

from forty minutes to ninety minutes depending on the time required for the participants to 

complete training and tasks. Prior to the start of the experiment, participants were first given a 

briefing on the task and objectives of the experiment. Afterwards, participants provided consent 

and completed a demographic questionnaire. Next, they received instructions on how to use the 

X-Plane interface and the joystick for the flying tasks in this experiment. Subsequently, they 

went through a training session (approximately fifteen to forty minutes long) in which they 

practiced the flying maneuvers involved in the experiment (making turns, pitch up or down etc.). 

Once participants managed to return to the baseline parameters after making all the maneuvers, 

experimenters put BioNomadix EDA bracelets on participants, adjust the camera used for facial 

expression recording and perform calibration for both BioNomadix EDA bracelets and 

FaceReader software. Afterwards, the experimental tasks would start, while facial expression, 

EDA and X-Plane log file for performance analysis were recorded concurrently. There were ten 

tasks in total, including eight tasks of increasing difficulty and two tasks with minimal difficulty 

as baseline (see Figure 6). During each task, an experimenter read the instructions for the task to 

the participant. The instructions provided the specific requirements for the maneuver to be 

performed. For instance, task 2 is ‘maintain speed and altitude, make a right turn of 15-degree 

banking to the heading 0.’  Participants performed eight tasks grouped in pairs. Within each 

pair, both tasks had the same difficulty level with the second task being the reversal task. For 

instance, task 3 is the reversal task of task 2, hence task 3 requires the participant to make a left 
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turn (instead of a right turn) with the same banking angle. A self-report questionnaire pertaining 

to affect appraisal and taskload constructs was administered 6 times (see figure 6) to capture 

perceived affect correlates throughout the study. Full questionnaires used in this experiment can 

be found in the appendix. After each task, participants took a break if they requested one. 

Figure 6 

Experimental Procedure 

 

Experimental Setup 

This experiment requires participants to perform aviation tasks on a computer-based 

flight simulation software by controlling a joystick with their dominant hand. A BioNomadix 
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bracelet for EDA recording was placed on the non-dominant hand of the participants. Video 

recording of facial expression was capture by an external camera placed on top of the computer 

screen where X-Plane was displayed. A demonstration of this setup can be found in Figure 11. 

Participants performed the experimental tasks individually in a closed room with no external 

noise. One experimenter sat next to the participant to provide training and give verbal instruction 

at the start and end of tasks. Another experimenter monitored the recordings of video and EDA 

from another computer station, further away from the participant. 

Figure 7 

Experiment Set-up 

 

Experimental Tasks 

The experimental tasks in this study were administrated on X-Plane, a computer-based 

aviation simulation with realistic simulation of aircrafts. It is a training environment often 

employed for trainees in the early phase of their training. The X-Plane tasks selected for this 

study challenges participants on maintaining and manipulating three basic variables of aircraft 

flying: altitude, heading (direction) and speed. The easiest task (level 1) requires no 
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manipulation: participants were simply required to maintaine a course by holding the joystick 

steadily and observing the values as labeled in Figure 12. According to subject-matter experts in 

CAE Inc., the more variables to manipulate, the higher mental resources are required, as 

participants need to focus on all the variables simultaneously by cross-checking and making 

timely adjustments. A change of one variable might affect another: if any variable is overlooked 

for too long, the aircraft will ‘drift’ on that variable. For instance, to making a turn, the aircraft 

need to be tilted. A simultaneous drift in altitude will occur if it is not controlled as the aircraft 

turns. The task difficulty increases as the number of dimensions to manipulate increase. For 

instance, a task on changing altitude and making a turn is more difficult than a task with just a 

turn. Changes of speed is commonly deemed as more difficult than any other single variable 

change, as there are multiple ways to achieve it (by adjusting the engine power or by 

manipulating altitude in various pitch angles), and it destabilizes the aircraft. A detailed list of 

the ten tasks created by pilot instructors from CAE Inc. can be found in appendix v. 

Figure 8 

X-Plane Interface 
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Measurements 

Demographic Questionnaire  

The demographic questionnaire was administed after the briefing and includes items on 

gender, ethnicity, age and past related experience. The items of this questionnaire are presented 

in the appendix i. 

Physiological Arousal: Electro-dermal Activity and BioPac®  

Electrodermal activity was measured by BioNomadix® EDA module (Braithwaite, 

Watson et al. 2013) with sampling rate set as 1000 Hz. As demonstrated in Figure 7, a bracelet 

was placed on the wrist of the participant’s non-dominant hand. Two electrodes are placed on the 

inner palm and the wrist of the hand. Electrical current flowing between these two points were 

recorded. 

Figure 9 

BioNomadix EDA Sensor and Bracelet Placement 
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Normalized skin conductance response features (SCR) and skin conductance level were 

extracted through Makowski’s algorithm for EDA processing, implemented in a python-based 

toolkit, Neurokit (Makowski 2016). Figure 8 demonstrates a plot of the extracted features by 

time. SCR, otherwise referred to as phasic EDA, is the rapid changes of the electrical 

conductivity of the skin. It is a product of the fluctuation of the sympathetic arousal level 

(Boucsein, 2012; Braithwaite et al., 2013). The SCR features we extracted are mean level of 

SCR per task (phasic), total number of SCR peaks (significant increases of skin conductance) per 

task, and mean amplitude of SCR peaks per task. The frequency of SCR peaks per minute was 

computed by the formula below. 

Frequency of SCR peaks per minute in task 1= 
SCR peak count in task 1

duration of task 1 (s)
× 60 

Figure 10 

Diagram of Raw and Processed EDA Signal by Time, Generated by Neurokit 

 

Behavioral Cues: Facial Expression and FaceReader 6.0® 

Facial expression was recorded by a Microsoft LifeCam hd5000® camera during the 

experiment with frame rate at 30 Hz. The recording was processed using commercial software 
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FaceReader 6.0® (Den Uyl & Van Kuilenburg, 2005) every second frame (sampling rate 15 Hz). 

For each participant, at each task the proportion of each basic emotion (happy, surprised, neutral, 

sad, angry, scared and disgusted) was analyzed along with the overall intensity of valence and 

that of arousal (described below). Figure 9 demonstrates the FaceReader interface as a video is 

processed and analyzed. A significant emotion state is recorded when the intensity of one 

emotion is consistently higher than all other emotions for more than 5 seconds. The proportions 

of significant emotions in each video analysis are automatically generated by FaceReader. To 

obtain the proportion of each emotion in each task, we processed a detailed FaceReader logfile 

segmented by task. The procedure of by-task segmentation is explained in section of data 

alignment. The proportion of each emotion was calculated by the count of this emotion divided 

by the total count of all emotions in this task, as illustrated in the formula below. 

proportion of emotion A in task 1 =  
𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑒𝑚𝑜𝑡𝑖𝑜𝑛 𝐴 𝑖𝑛 𝑡𝑎𝑠𝑘 1

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡𝑎𝑠𝑘 1
 

A valence intensity is calculated in FaceReader at each frame by the sum of intensities of 

all positive emotions subtracting that of all negative emotions. An arousal intensity is calculated 

by FaceReader at each frame by the sum of intensities of all activating emotions subtracting that 

of all deactivating emotions. A mean valence and mean arousal per frame are calculated for each 

participant at each task. For instance, in the case where the intensity of ‘Happy’, ‘Sad’, ‘Angry’,

‘Scared’ and ‘Disgusted’ are 0.8, 0.1, 0.0, 0.05 and 0.05 respectively, the valence. is 0.7 (Noldus 

FaceReader 6.0, 2015). 
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Figure 11 

FaceReader 6.0 Video Analysis Interface 

 

Experiential Measurement: Subjective Self-reports as ‘Ground Truth’ 

Subjective self-reports assess affect from its experiential dimension. The subjective self-

reports in this study include two parts: 1) an appraisal questionnaire on perceived control (Perry 

et al., 2005) and value (Wigfield & Eccles, 2000a) of the task 2) NASA Task Load Index (NASA 

TLX). Both the appraisal questionnaire and the NASA TLX are completed between tasks.  

To assess appraisal, questionnaire items on perceived value were adapted from Wigfield 

and Eccles’ expectancy-value theory of achievement motivation (2000b). Two items were used 

for each of the three dimensions of perceived value: utility value, interest and importance. Items 

on perceived control are adapted from the Perceived Control Scale (Perry et al., 2005). Two 

items were used to assess perceived control. The questionnaire items used in this study are listed 

in the appendix ii.  
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The NASA TLX is a questionnaire established to assess the subjective experience of 

workload related elements such as mental workload and fatigue. It is especially adapted to the 

aviation context where both physical and mental tasks are required (Hart, 2006). For our 

experiment, we included mental workload, physical workload, fatigue and effort. The item on 

temporal workload is not used for this study as there was no time limit for the experimental 

tasks. NASA TLX includes one item per construct with explanations, definitions and rephrases 

of each item attached. The items included in this study could be found in the appendix iii. 

Self-reports are used as the ‘ground truth’ measurement in this study to converge and 

validate output from EDA and facial expression analysis. All self-report questionnaires are 

administrated online on a laptop during the experiment as demonstrated in Figure 10. The 

participants rate their experience using 5-point Likert scales on relevant activities such as 

aviation simulation, driving and video games involving joysticks. All questionnaires can be 

found in the appendices i - iii. 

Figure 12 

Example of a Question Administrated in Online Questionnaire 
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Performance Measurement 

Performance is scored based on a rubric developed by subject-matter experts from CAE 

Inc. to evaluate beginner trainees, as attached in appendix iv. In aviation training, two 

dimensions of performance are often evaluated: 1. Management of the aircraft environment 

throughout the task. 2. Accuracy and timeliness of task completion. Currently, there is no 

automated evaluation system for aviation training. The management dimension is often scored 

based on professional instructor’s overall impression throughout out the practice. Instructors 

score the accuracy dimension by assessing the final altitude, heading and speed and how much 

they differ from the targets. Hence, we developed a data mining protocol that only scores the 

performance accuracy of aviation task performance: First, the altitude, heading and speed at the 

end of each task was extracted from X-Plane log files.  No time limit was set for each task to 

isolate task difficulty as the stressor or stimuli of affective changes in the experiment. A task was 

considered complete when the participants were satisfied with their metrics or when they gave up 

on the task. Since it is very difficult to achieve the exact value of altitude, heading and speed as 

instructed, performance accuracy was evaluated as the only measure of performance in this 

experiment. Participants’ metrics (altitude, heading, speed) at the end of each task were 

compared with the targeted metrics to obtain performance accuracy on each metric. A test rubric 

provided by subject matter experts from CAE Inc. was used to grade performance accuracy. The 

overall performance accuracy score was calculated by averaging the accuracy grade on all three 

metrics.  

Data Alignment and Processing 

As the analyses in this thesis requires by-task comparisons, data output from each 

channel was aligned by time and segmented by task. As participants were instructed to press a 
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‘timer’ button on the joystick each time they start and finish a task, the start and end time for 

each task was logged in X-Plane. Using the timer logs and the timestamps generated 

automatically during video and EDA recording, I aligned and segmented the FaceReader output 

and raw EDA output by task. It is particularly important to segment the EDA recordings before 

the analysis, because there is a high level of irrelevant noise (movements, thought wanders…) 

between tasks and these noises may skew the feature extraction result. All questionnaires were 

pre-labeled by sequence as demonstrated in the procedure in Figure 6. 
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CHAPTER 4: RESULTS 

This chapter presents in sequence the experimental results regarding the three research 

questions listed in Chapter Three.  

Data Convergence 

Research Question 1: Can affective inferences obtained from physiological indicators, 

behavioral cues and subjective self-report align with each other in an aviation training context? 

We aim to investigate whether affective inferences obtained from physiological indicators, 

behavioral cues and subjective self-report align with each other in an aviation training context. 

This question is answered by assessing data convergence of experimental data collected with a 

multimodal affect assessment designed based on the three-dimensional characteristic of affect 

manifestation (behavioral, physiological, experiential). Data convergence across measurements 

are examined by analyses regarding three sub-questions: a) relationship between physiologically 

inferred arousal and behaviorally inferred arousal b) relationship between physiologically 

inferred arousal and self-reported affect correlates c) relationship between behaviorally inferred 

discrete emotions and self-reported affect correlates. Data from all channels (EDA, facial 

expression and self-reports) are analyzed across 19 participants and 6 tasks (N = 114). Only tasks 

with corresponding questionnaires are analyzed (6 out of 10 tasks are analyzed) at this stage, as 

the other tasks were performed for future analyses which are out of the scope of this thesis. 

Outliers from all variables among all data channels with standardized value greater than 3.29 or 

smaller than -3.29 were excluded in this analysis. Descriptive statistics are demonstrated in Table 

1. 
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Table 1  

Descriptive Statistics of Facial Expression Variables, EDA features and Questionnaire Responses 

Channel Variable N Missing Mean Std. Deviation Skewness Kurtosis Min Max 

Facial 

expression 

Happy 113 1 .08 .11 1.80 3.22 0 .50 

Angry 114 0 .27 .21 .11 -1.13 0 .80 

Sad 111 3 .02 .06 4.55 22.77 0 .39 

Surprised 113 1 .07 .12 1.65 1.60 0 .44 

Scared 109 5 .01 .02 4.62 22.60 0 .13 

Disgusted 113 1 .07 .11 1.80 2.63 0 .47 

Valence 114 0 -.34 .30 -.18 -.38 -.97 .34 

Arousal 112 2 .31 .06 -.34 .97 .13 .49 

EDA 

SCR peak 

amplitude 

(μS) 

112 2 3.87 10.03 4.34 19.87 .02 59.20 

Phasic 

EDA (μS) 

112 2 2.79 4.77 2.64 7.85 -5.33 26.47 

SCR peak 

frequency 

(normalize

d) 

112 2 2.63 .84 .04 -.35 .69 4.42 

SCR peak 

amplitude 

(normalize

d) 

113 1 -.00 1.56 .83 1.25 -3.93 5.52 

Phasic 

EDA 

(normalize

d) 

113 1 .05 1.62 .14 -.18 -3.97 4.32 

SCR peak 

frequency 

(per min) 

 

112 2 24.31 166.48 10.56 111.66 0 1769.

13 

Self-report 

Mental 

workload 

114 0 3.44 1.16 -.40 -.81 1 5 

Physical 

workload 

114 0 2.80 1.22 .49 -.94 1 5 

Effort 114 0 3.46 1.12 -.38 -.82 1 5 

Fatigue 114 0 3.23 1.14 -.06 -1.17 1 5 

Perceived 

value 

114 0 3.56 1.01 -.64 -.26 1 5 

Perceived 

control 

114 0 3.77 .85 -.42 -.84 2 5 

 

Convergence between Behavioral and Physiological Dimensions of Affect 

In this study, arousal can be inferred both from physiological changes and behavioral 

cues. EDA is a commonly used measure for physiological arousal. Discrete emotions inferred 
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from behavioral cues such as facial expressions also contain information on arousal. Therefore, 

arousal as the overlapping construct across data channels is examined. Regarding to Research 

Question 1A, bivariate correlational analyses were conducted between means of arousal for 

seven facial expressions variables (overall arousal, proportion of happy, angry, sad, surprise, 

scared, disgusted faces) and the mean arousal inferred from EDA features (SCR peak frequency 

and phasic EDA). Consistent with the methodology of past research, we only examined 

valenced, activating or deactivating emotions (Lajoie et al., 2019; Russell, 1980). Neutral is a 

non-valenced emotion with medium arousal and therefore was not of research interest. As 

demonstrated in Table 2, significant positive correlations are found between arousal inferred 

from facial expression and two EDA features, namely SCR peak amplitude (r = .188, p < .05) 

and phasic EDA (r = .279, p < .01). This suggests that arousal expressed behaviorally (facial 

expression) increases as arousal inferred from physiology (EDA) increases. Consistent with 

Hypothesis 1A, this finding supports data convergence between facial expression analysis and 

EDA.  Sad is positively correlated with SCR peak amplitude (r = .280, p < .01) and phasic EDA 

(r = .297, p < .01).  

Table 2  

Bivariate Correlation between EDA Features and Facial Expression Variables 

 

 SCR peak amplitude 

Phasic 

EDA 

SCR peak 

frequency 

Happy Pearson Correlation -.001 -.097 -.072 

Sig(2-tailed) .995 .311 .454 

N 111 111 111 

Angry Pearson Correlation -.062 -.022 -.115 

Sig(2-tailed) .517 .819 .229 

N 112 112 112 

Sad Pearson Correlation .280** .297** -.030 

Sig(2-tailed) .003 .002 .754 
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N 109 109 109 

Surprised Pearson Correlation -.031 .028 -.060 

Sig(2-tailed) .747 .769 .534 

N 111 111 111 

Scared Pearson Correlation -.017 -.032 -.030 

Sig(2-tailed) .861 .746 .759 

N 107 107 107 

Disgusted Pearson Correlation -.018 -.070 -.056 

Sig(2-tailed) .849 .463 .560 

N 111 111 111 

Arousal Pearson Correlation .188* .279** .030 

Sig(2-tailed) .048 .003 .758 

N 111 110 110 

** Correlation is significant at 0.01 level (2-tailed) 

*Correlation is significant at 0.05 level (2-tailed) 

 

Convergence between Physiological Arousal and Experiential Self-reports 

To answer Research Question 1B, bivariate correlations between EDA features and self-

reported affect correlates were performed to assess the data convergence of physiological arousal 

indicated from EDA and the ‘ground truth’ of affective experience. As demonstrated in Table 3, 

marginally significant negative correlation is found between perceived value and SCR peak 

frequency (r = -.185, p = .05). This result suggests that as perceived value increases, 

physiological arousal decreases. However, as the result is only marginally significant, it should 

be interpreted with caution. 

Table 3  

Bivariate Correlation between Physiological Arousal and Self-reported Affect Correlates 

 

SCR Peak 

Frequency 

SCR Peak 

Amplitude Phasic EDA 

Mental Workload Pearson 

Correlation 

-.130 .117 .129 

Sig(2-tailed) .171 .218 .175 

N 112 112 112 

Physical Workload Pearson 

Correlation 

-.072 .090 .045 
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Sig(2-tailed) .452 .345 .636 

N 112 112 112 

Effort Pearson 

Correlation 

-.138 .160 .150 

Sig(2-tailed) .147 .092 .115 

N 112 112 112 

Fatigue Pearson 

Correlation 

-.107 .115 -.027 

Sig(2-tailed) .260 .229 .775 

N 112 112 112 

Perceived Value Pearson 

Correlation 

-.185* -.015 -.085 

Sig(2-tailed) .050 .879 .372 

N 112 112 112 

Perceived Control Pearson 

Correlation 

.069 -.127 -.152 

Sig(2-tailed) .472 .181 .109 

N 112 112 112 

*Correlation is significant at 0.05 level (2-tailed) 

Convergence between Facial Expression and Experiential Self-report 

To address Research Question 1C, bivariate correlational analysis between the emotions 

inferred from facial expression and the self-reported affect correlates. As demonstrated in Table 

4, happy positively correlates with mental workload (r = .292, p <.01), physical workload (r 

= .185, p = .05) and effort (r = .238, p < .05). This suggest that participants invest more physical 

and mental effort in accomplishing the task as they feel more joy through the task. Furthermore, 

scared is negatively correlated with perceived control (r = -.221, p < .05). Arousal intensity from 

facial expression is positively correlated with fatigue (r = .218, p < .05) and negatively with 

value (r = -.224, p < .017). 

Table 4  

Bivariate Correlation between Behavioral Cues and Self-reported Affect Correlates 

 Happy Angry Sad Surprised Scared Disgusted Valence Arousal 

Mental 

Workload 

r .292** -.116 -.06

5 

.011 .055 .128 -.058 .008 

Sig .002 .220 .496 .910 .572 .177 .543 .935 

N 113 114 111 113 109 113 114 112 

Physical 

Workload 

r .185* .008 .100 -.017 .136 .096 -.040 -.040 

Sig .050 .933 .298 .858 .160 .311 .675 .676 

N 113 114 111 113 109 113 114 112 
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Effort r .236* -.113 .055 -.011 .079 .172 -.113 .109 

Sig .012 .232 .569 .904 .416 .068 .230 .255 

N 113 114 111 113 109 113 114 112 

Fatigue r .125 .036 .050 -.172 .026 -.071 -.156 .218* 

Sig .187 .702 .604 .069 .792 .456 .097 .021 

N 113 114 111 113 109 113 114 112 

Perceived 

value 

r .114 -.139 -.02

9 

.108 -.167 .015 .044 -.224* 

Sig .229 .141 .761 .257 .082 .871 .641 .017 

N 113 114 111 113 109 113 114 112 

Perceived 

Control 

r .034 -.020 -.02

6 

-.053 -.221* .136 .127 -.073 

Sig .722 .832 .788 .577 .021 .151 .179 .446 

N 113 114 111 113 109 113 114 112 

** Correlation is significant at 0.01 level (2-tailed) 

*Correlation is significant at 0.05 level (2-tailed) 

 

The results from the three correlation analyses indicate alignment among the 

physiological, behavioral and subjective channels of affect measurement. The correlations are 

consistent with our hypotheses, which is grounded on previous research and theories. Therefore, 

these results support the validity of EDA and facial expression analysis as measurements for 

affect in aviation context.  

Relationships between Affect, Workload and Performance 

Research Question 2 is: How do affective valence, arousal and workload during aviation 

training together and separately influence performance? Multiple regression analyses were 

conducted to examine how affective valence, arousal and mental workload predict aviation task 

performance at different difficulty levels. One hierarchical multiple regression was performed for 

each difficulty level (easy to hard: level 1 to level 5). Valence as inferred from facial expression, 

arousal as inferred from phasic EDA and mental workload as reported in questionnaire were each 

entered as a separate step in the regression model to investigate the incremental effect each 

dimension on predicting performance. Conforming to the multicollinearity assumption of 
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multiple regression, only one feature was chosen from each data channel enter the regression 

model: Phasic component of EDA was chosen to enter the regression models as it is an overall 

indicator of physiological arousal. A natural log transformation was performed on phasic EDA to 

adjust positive skewness of the data; Valence inferred from facial expression was chosen as the 

behavioral indicator of affect. The selection of predictors followed the two-dimensional (valence, 

arousal) definition of emotion. Mental workload was included in the predictive model as it 

represents the experiential dimension of cognitive and affective experience. Past research also 

demonstrated significant impact of it on performance (Hart, 2006). Assumption checks on 

outliers, multicollinearity, normality and homogeneity of variance were performed and these 

assumptions of multiple regression are fulfilled by the current dataset. It is expected that the 

physiological arousal, emotional valence and mental workload each have a significant 

incremental contribution to predicting performance.  

No significant regression model was found for the baseline level tasks. For level 2 task, 

phasic EDA was a significant predictor of performance, F (1, 17) = 7.408, p < .05, std β = .551, 

accounting for 30.4% of the variance in performance. Therefore, for the level 2 task, every unit 

of change of phasic EDA led to .55 unit of change in performance. However, addition of valence 

and mental workload to this regression model did not bring any significant incremental 

improvement of the model.  

For level 3 task, phasic EDA and emotional valence were not significant predictors. 

However, mental workload brought a significant incremental contribution to the model: F (1, 15) 

= 4.598, p <.05, std β = -.539, accounting for 22.1% of variance in performance, controlling for 

valence and phasic EDA. In a further analysis valence and phasic EDA were removed from the 

model and the regression model was improved: F (1, 18) = 6.517, p < .05, std β = -.526, with 
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mental workload accounting for 22.7% of variance in performance. Therefore, for each unit of 

increase in mental workload, performance was compromised by .526 unit.  

For the level 4 task (medium difficulty), valence and phasic EDA were not significant 

predictors either. Mental workload contributed to a significant incremental improvement of the 

model, F (1, 15) = 12.85, p < .01, std β = -.728, accounting for 43.3% of the variance in 

performance, controlling for valence and phasic EDA. In follow-up analysis, valence and phasic 

EDA were removed from the model. The model of mental workload regressing on performance 

yielded F (1,18) = 16.232, p < .01, std β = -.699. This time mental workload accounts for 48.8% 

of the variance in performance. Each unit of increase of mental workload led to .699 unit of 

compromise on performance. No significant predictive models were found for level 5 task. 

Differences in Emotions Expressed during High versus Low Performance 

Research Question 3 asks: Do high and low performers differ in emotional profiles? Chi-

square tests of independence were conducted to identify if there were differences between the 

emotions experienced by high performers versus low performers.  

Low and high performance are determined by the overall performance (mean score of 

altitude, speed and heading) in each task. Tasks with below median scores were grouped as low 

performance, while tasks with above median scores were grouped as high performance. To 

identify potential differences in emotion profiles across performance levels, a chi-square analysis 

of independence was conducted on the count of dominance for discrete emotions in high 

(performance score above median) and low (performance score below median) performance 

across 19 participants and 6 tasks (N = 114). Based on facial expression analysis output, the most 

frequently occurring emotion in each task was denoted as the dominant emotion of the task. Sad, 

disgusted and scared occurred seldomly across tasks and participants. To fulfill the assumption 
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of chi-square that each case has at least five observations, these three rare emotions were 

excluded in the analysis. The counts of dominance for each discrete emotion during two 

performance levels are shown in Table 5. Pearson chi-square analysis yielded non-significant 

differences on emotion occurrence during high (pass) and low performance (fail): χ2 (3,114) = 

6.848, p = .077. However, as this analysis showed medium effect (Cramer’s V = .245, p = .077) 

and the p value is close to marginal significance, the differences of discrete emotions across 

performance levels should be examined with caution as shown in Figure 13. 

Figure 13  

Bar Chart Comparison of the Dominant Occurrence of Discrete Emotions (Angry, Happy, 

Surprised) during High and Low Performance 

 

Table 5  

Table of Observed and Expected Counts for Discrete Emotions Exhibited during High and Low 

Performance 

 Performance Total 

fail pass 

d 
Angry 

Count 34a 31a 65 

Expected Count 35.4 29.6 65.0 
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Happy 
Count 10a 13a 23 

Expected Count 12.5 10.5 23.0 

Surprised 
Count 6a 6a 12 

Expected Count 6.5 5.5 12.0 

Each subscript letter denotes a subset of performance categories whose 

column proportions do not differ significantly from each other at the .05 

level. 

 

Happy more frequently emerged as the dominant emotion during high performance than 

in low performance. More angry dominance could be observed in low-performance tasks than in 

high-performance tasks. Equal dominance of surprised was observed across two performance 

levels. 
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CHAPTER 5: DISCUSSION AND CONCLUSION 

The previous chapter presented the empirical results regarding the three research 

questions on the data convergence in multimodal protocol, the association between performance 

and affect (valence and arousal dimensions) and the difference in discrete emotions expressed 

between high and low performance. This chapter discuss the results by comparing them to the 

corresponding hypotheses and the past literature. Implications and limitations of this research are 

discussed in this chapter.  

Data Convergence in a Multimodal Affect Assessment  

This research addresses the gap in the literature about the role of affect in aviation. In 

particular, it first proposes a multimodal protocol for assessing affect during aviation training. 

More specifically, an experiment was conducted to test this multimodal affect assessment while 

participants performed simulated aviation tasks. By using a combination of behavioral, 

physiological, and self-report measures, data convergence is demonstrated in three folds. First, 

agreement was found between EDA and facial expression data on their overlapping construct, 

arousal. Positive correlations are discovered overall arousal from facial expression and EDA 

(SCR peak amplitude and phasic EDA). This is expected as an affective experience is coupled 

with expressions in physiology, behavior, and subjective feeling (Gross, 2015). For instance, the 

same feeling of anger or frustration experienced when participants repeatedly fail to achieve the 

altitude, heading and speed goals of the task could be expressed in the facial expression of 

frowning and jaw tensing (Ekman, 1992) and in the surge of SCR (Braithwaite et al., 2013). 

Alignment between these two data channels supports the construct validity of using EDA and 

facial expression as affect indicators while trainees interact with flight simulation. In other 

words, our result suggests that EDA and facial expression analysis are valid measurements for 
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assessing affective arousal in aviation training context, as the results found in the physiological 

component were supported by the inferences from the behavioral data channel. Conflicting 

correlations are found for the sad facial expression and EDA: sad is positively correlated with 

SCR peak amplitude and phasic EDA. The directionality of this relationship is unexpected as 

past research categorize sad as a deactivating emotion (Pekrun & Linnenbrink-Garcia, 2014a; 

Scherer, 2005). Such conflicts between data channels are one of the greatest challenges in 

multimodal research (Harley et al., 2015). A potential explanation to these conflicts is that there 

is some variability of sensitivity across modalities to different dimensions of emotions. For 

instance, facial expression analysis is more sensitive to valence, whereas physiological channels 

such as EDA are more sensitive to arousal (Harley et al., 2015). Furthermore, alignment between 

data modalities is higher for some emotions (e.g. happy) than others (e.g. sad) (Mauss et al., 

2005). Therefore, inferences from different data channels should be compared with the ‘ground 

truth’ of the experiment. 

A ‘ground truth’ measurement is instrumental in multimodal studies as it can be used to 

examine alignment of other data channels and resolve conflicts among them. In this study, self-

reports of workload (workload, effort fatigue) and appraisal (control and value) are chosen as the 

‘ground truth’. These self-reports are validated measurements of correlates of affect. Therefore, 

by converging the correlation between other data channels and the ‘ground truth’, consistency of 

the current results with existing literature can be established. In this study, Research Question 1B 

and Research Question 1C aimed to examine the convergence of the biometrics data channels 

(EDA and facial expression) with the ‘ground truth’. SCR peak frequency correlateed negatively 

with perceived value, indicating that a physiological arousal increase was associated with a drop 

in perceived value. The same correlation was found between arousal as inferred from facial 
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expression and perceived value. These converging findings suggest that the more activation is 

experienced, the less the task is valued. This correlation seems to contradict the control-value 

theory, which states that perceived value intensifies all achievement-related affects except 

boredom (Pekrun & Linnenbrink-Garcia, 2014a). However, the design of the protocol and the 

cyclic relationship between appraisal and affect could explain this correlation. As the control-

value questionnaires were administrated after each task and the facial expressions were captured 

during each task, the measured perceived value of the aviation task could only be a consequence 

of the affects experienced during the tasks. Negative activating emotions such as anger and 

frustration could undermine intrinsic interest of the task, lead to disengagement and lower 

perceived value (D’Mello & Graesser, 2012). In the future, we would examine the relationship 

between appraisal of a task and the affect experienced in the following task to investigate the role 

of appraisal as antecedents of affect. We also hope to examine the type of values involved to 

further uncover the rationale behind the directionality of this relationship, further demonstrating 

the convergence between EDA and facial expression analysis.  

Behaviorally inferred arousal was also positively correlated with fatigue. This is 

consistent with previous research demonstrating that prolonged stress could lead to fatigue 

(Shiomi et al., 2012). Furthermore, consistent with previous research (Pekrun & Perry, 2014), a 

scared state has a significant negative correlation with perceived control. However, happy is 

positively correlated with mental workload, physical workload and effort. As mentioned, the 

self-reports of workload, effort and fatigue were completed after each task. Hence, the task-

related emotion could influence how participants engage in the task through motivational and 

cognitive changes. Positive activating emotions are associated with positive motivational and 

cognitive changes in learning. The feeling of happiness fosters the motivation to engage in the 
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task of focus, supports attention allocation on the task performance (Pekrun & Linnenbrink-

Garcia, 2014a). Therefore, participants could invest more effort and engage in higher workload 

as they are motivated and supported by the feeling of happiness. Although it is beyond the scope 

of this thesis, future research could analyze if perceived value mediates this relationship between 

happy and workload or effort. Our results failed to confirm our hypothesis 1C on the relationship 

between anger and the ‘ground truth’. It was expected that anger would correlate negatively with 

workload, perceived value and perceived control (Pekrun & Linnenbrink-Garcia, 2014a). The 

conflicting results were not a result of low occurrence of anger in the current experimental 

context as anger was the most frequently experienced emotion (M = .26). A possible explanation 

is that negative emotions coupled with cognitive disequilibrium could sometimes motivate 

students to resolve an impasse (D’Mello & Graesser, 2012). To investigate if this is the case for 

anger, we have sought advice from FaceReader developers regarding this intriguing result. 

Through our communication with the FaceReader developers, we understood that a face of 

intense focus (e.g. frowning) can be coded as anger in FaceReader due to the similarity of the 

facial expression. As our experimental tasks are attention-drawing, a proportion of the ‘anger’ 

output could be interpreted as focus. Angry is a negative emotion, which could have the same 

effect as frustration, while focus simply gives information on attention and effort. The mixing of 

these two behaviors could lead to a non-significant result in this analysis. Future research should 

test other facial expression analysis algorithm which could identify the difference between anger 

and focus.  

This study developed a multimodal protocol to measure affect in aviation. This 

mutltimodal methodology resulted in a validated, concurrent objective measurements of affect 

(facial expression, EDA) that addresses the shortcomings of traditional affect measurement in 



MULTIMODAL AFFECT  64 

aviation (questionnaire, instructor evaluation). Facial expression and EDA analysis captures 

affective cues in aviation without disrupting training and overtasking instructors. Our findings 

could inform aviation instructors on how to infer trainees’ workload and level of fatigue from 

biometrics measurement (e.g. high arousal inferred from EDA features suggests that trainees are 

having high workload and will experience higher fatigue). Such information could help 

instructors to design more effective training activities, reducing burnout and boredom. 

Furthermore, the current analysis attempts to generalize broad educational psychology theories 

such as the control-value theory to aviation training context. Despite some unexpected results, 

the current findings and the methodology could encourage aviation instructors to understand 

trainees’ affective responses from the appraisal standpoint. Integration of appraisal theories of 

affect in aviation context could increase instructors’ awareness of the motivational implication of 

trainees’ affect and performance. Instructors could help trainees to reduce fatigue and boredom 

during training by balancing perceived control and challenge.  

Predicting Aviation Performance with Affect Inferences 

The previous section discussed our findings regarding data convergence across modalities 

of a multimodal affect assessment. Equally important in the field of aviation is how performance 

is influenced by affect. This section discusses the results obtained regarding the second research 

question: How do affective valence, arousal and workload during aviation training together and 

separately influence performance? As discussed in the aviation literature, affect could lead to 

detrimental results, such as fatal accidents. However, there is a lack of research on the role of 

affective states (except stress) in aviation training performance. In this study, this gap in affect 

research in aviation is addressed by examining the predictive value of affect in aviation training 

performance. Both physiological and behavioral data variables were included in the multiple 
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regression analysis to account for the multiple expressions of affect. Phasic EDA is chosen as the 

overall indicator of physiological arousal. Overall valence from facial expressions is chosen as 

the indicator of affective valence. The choice of predictors also complies with two assumptions 

of multiple regression: (a) Multicollinearity: the independent variables cannot be highly 

associated with each other, and (b) power of the analysis is reduced if too many variables are 

included in the predictive model with a small degree of freedom.  

No significant models were found for the baseline tasks with minimal difficulty. This 

might indicate that limited amount of mental workload and affective responses were experienced 

during easier tasks. Phasic EDA is a significant predictor of performance for the low difficulty 

task, positively predicting performance. This is consistent with past research as deactivating 

emotions such as boredom reduces attention, motivation and strategic efforts in problem solving 

(Noble, 2002; Pekrun et al., 2010; Pekrun et al., 2014). Furthermore, insufficient arousal could 

reduce the efficiency of psychomotor functions, resulting in poorer performance (Duffy, 1962). 

From the instructional standpoint, this result suggests that EDA could be a measure to identify 

disruptive emotional responses in training. Information on physiological arousal could help 

instructors to identify the potential causes for poor performance. For instance, as our results 

suggested, low performance in a low difficulty task could be due to lack of focus and boredom, 

instead of insufficient technical skills. Instructors could integrate arousal inferences from EDA to 

their decisions on instructional methods and training task design. 

For medium to hard tasks, valence and phasic EDA do not significantly predict 

performance. The limitation of FaceReader in differentiating the expression of anger and deep 

focus could account for the non-significance of valence. Anger as a negative, activating emotion 

could hamper performance in difficult tasks as it reduces deep information processing and 
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distracts attention from the task. However, in cases where FaceReader identified the expression 

of deep focus as anger, participants could achieve high performance as a result of focused 

attention and deep thinking (Pekrun & Perry, 2014). Furthermore, participants might have 

demonstrated a variety of cognitive and affective trajectories which are not accounted for by the 

current measures. For participants who are advanced in learning the experimental tasks, they 

could be fully engaged in strategical thinking and enter a state of flow, which is a positive, high 

arousal state (Hussain et al., 2011). In this case, arousal positively predicted performance. 

However, for those who were confused about how to interpret information from the simulation 

environment and did not know how to anticipate changes in parameters as they execute actions, 

high arousal might be an indicator of fear, confusion and stress (D’Mello & Graesser, 2012a). 

Coupling with negative valence, high arousal might negatively predict their performance. 

Although it is beyond the scope of the current thesis, future research could incorporate 

qualitative interviews in between experimental tasks to verify these interpretations obtained from 

quantitative biometrics measures. Furthermore, in the future we could explore the fit of dynamic 

predictive models such as dynamic Bayesian models to account for the differences in learning 

paths. Mental workload negatively predicted performance in medium to hard level tasks. This is 

consistent with previous theory and empirical research on mental workload. Cognitive overload 

is coupled with poor performance as it indicates insufficient cognitive resources for the current 

task (Itoh et al., 1990; Mansikka et al., 2018). 

These findings support existing theories on arousal, valence and affective correlates and 

specifically demonstrate how affect influences aviation training. The design of the current 

analysis opens the discussion of using concurrent biometric measures to infer affect and 

workload and eventually predict performance. Our findings could inform aviation instructors on 
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the causes of poor performance: in easy to medium tasks, boredom and low workload could lead 

to lack of attention and poor performance; whereas in harder tasks, poor performance could be a 

result of cognitive overload. In the next step of the bigger project on pilot training, we hope to 

replicate the current experiment design with pilot trainees as participants. 

Differences in Discrete Emotions between High and Low Performance 

As demonstrated in the previous section, affective states can be studied based on their 

positions on the valence and arousal dimensions. However, for arousal only has significant 

effects on performance in easy tasks and on workload in easy to medium level tasks. One way to 

explain the nonsignificant results in harder tasks is that some nuances of affect may not be fully 

expressed in terms of valence and arousal. This section further explores the relationship between 

affect and performance by discussing the results regarding the differences in discrete emotion 

expressed between high and low performance.  

Discrete emotions carry additional complexities on appraisal of the situation (Barrett, 

1998). Past research demonstrates that discrete emotions that arise in achievement activities and 

are closely associated with perfromance outcomes. Prospective emotions such as hope and 

anxiety are instigated by perceived control of the achievement activities where as retrospective 

emotions such as joy, anger and sadness are induced by perceived performance feedback  

(D’Mello & Graesser, 2012a; Dettmers et al., 2011; Pekrun & Linnenbrink-Garcia, 2014a). 

Furthermore, these emotions influence various cognitive processes that lead to performance 

consequences. For instance, enjoyment facilitates working memory and helps to focus attention 

on an achievement task, while anxiety has the opposite effect. In addition, discrete emotions are 

reactions or responses to feedback, indicating perception or appraisal of performance (Pekrun & 

Linnenbrink-Garcia, 2014a) 
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In our study chi-square test of independence is conducted to uncover potential 

associations between basic discrete emotions (happy, surprise, angry, sad, disgusted, scared) and 

performance. Close to significant differences are found: Angry occurred more in tasks with low 

performance than tasks with high performance. Happy was more frequently observed in tasks 

with high performance than in low performance. Same level of surprise was observed in both 

performance levels. These results are consistent with previous research on problem solving 

(D’Mello & Graesser, 2012): A state of cognitive disequilibrium and frustration is more likely to 

occur when an impasse is not efficiently resolved, which could be the case in low performance. 

In addition, this result could be interpreted together with the previous discussion on the 

correlation between anger and workload and appraisal. In the previous section (Data 

Convergence in a Multimodal Affect Assessment), one of the explanations for the correlation 

between the expression of anger and workload, perceived value and control is the similarity 

between the face of anger and the face of deep focus. Both deep focus and anger couple with 

cognitive disequilibrium, high workload and unresolved impasse, which could explain the 

association with low performance in the current task. However, future research on affective 

computing is needed to distinguish these two similar facial expressions, as they could lead to 

different learning outcomes in the long term: Deep focus, increased control and value could lead 

to adaptive achievement emotions and motivations and favorable learning outcomes in the long 

term (Pekrun et al., 2014), whereas anger and frustration could lead to disengagement from the 

task (D’Mello & Graesser, 2012). These findings add a perspective to the interpretation of low 

performance in a single task.  

The effect of happy is consistent with past research as well: Once the impasse is resolved, 

cognitive equilibrium and a positive emotional state is restored (D’Mello & Graesser, 2012). 
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Therefore, it is within expectation that happiness is observed in high performance. In addition to 

co-occurring with cognitive states and performance outcomes, these discrete emotions could 

have an impact on performance by influencing motivational and cognitive processes. Positive 

activating emotions such as happiness could facilitate task performance by fostering deep 

cognitive processes, adaptive attention allocation and motivation towards the task (Pekrun & 

Linnenbrink-Garcia, 2014a). Hence, in this study, the feeling of happiness could have promoted 

task performance.  

Limitations 

This study is a pilot study for a large-scale project, which aims to examine a larger 

variety of potential biometrics assessments of affect and its correlates, such as workload, using 

experienced pilots and trainees as participants in a simulator with higher fidelity. The large scale 

project is still in progress and can not be reported on at this time. Although several of the  

hypotheses for this thesis were supported, it is acknowledged that there are limitations which 

could explain some unexpected results.  

Firstly, one of the limitations is the facial expression recognition algorithm. It was 

noticed that angry is the most frequently experienced emotion for many of the participants. 

However, through retrospective interviews with the participants, qualitative information 

demonstrated that a lot of the participants did not experience anger related emotions. Some 

participants reported frustration and confusion at certain tasks. However, the majority of the 

participants reported being only slightly stressed and highly focused throughout. FaceReader 

developers have responded to my inquiry that there is high resemblance between a face of anger 

and a face of intense focus. The context of the experimental tasks in this study is highly complex 

and focus-eliciting. For some participants who struggle with certain maneuvers, the tasks might 
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be anger-eliciting as well. In the current sample, there might be both cases. It would be 

meaningful to identify the difference between these two facial expressions in facial expression 

analysis. Although it is a limitation of the FaceReader algorithm, it is also a justification for 

using multimodal measurement for the current context. Combining and converging information 

gathered through different affect measurement channels not only captures various manifestations 

of affect, but also allows various data channels to complement each other on the information that 

current affective computing technologies cannot access individually.  

Secondly, the analysis regarding the second research question used valence inferred from 

FaceReader, arousal inferred from EDA, and mental workload inferred from NASA TLX to 

predict performance. The number of variables included in the predictive model is limited by the 

multicollinearity assumption of multiple regression and the sample size. To avoid having highly 

correlated variables in the same model and to maximize the power of the analysis, the 

relationship between affect and performance is examined in both the two-dimensional 

perspective of affect and in terms of discrete emotions. In future studies, a larger sample size and 

less restricted predictive models could be explored. Machine learning algorithms could be 

implemented to further examine rich multimodal data as well. Future research should also 

explore the mediation effect of other constructs, such as goal structure. The frequently occurred 

emotions should be studied more systematically in aviation training context. For instance, 

specialized facial detection algorithm could be trained to identify differences between anger and 

focus in terms of facial expression.  

Conclusion  

In sum, this thesis presents a non-invasive, multimodal affect assessment protocol which 

could be potentially implemented in aviation training. This research contributes to the empirical 
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methodology of aligning and converging multimodal data of affect. Using validated 

questionnaires, the validity of EDA and facial expression analysis as measurements of affect in 

aviation training context is supported. Our investigation on the association between affect 

(valence, arousal and discrete emotions) and performance addresses the gap in affect research in 

the aviation context. Through triangulation across data channels, we extend the generalizability 

of psychology theories on achievement emotions and appraisal to the aviation context. We 

provide empirical evidence on how these frameworks could be used to enhance our 

understanding of affect in the aviation context.  

Our findings are consistent with past research in broader contexts: poor performance is 

associated with negative emotions (e.g. anger) and low activation. By establishing the connection 

between affect and performance in aviation training, this research confirms the importance of 

affect assessment and regulation to ameliorate training efficiency. Our results could inform 

instructors to allocate training resources efficiently by balancing trainees’ perceived challenge 

and sense of control. Therefore, this research contributes to enhancing aviation training 

efficiency and ultimately improving flight safety 
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APPENDICES 

 

Appendix i: Demographic Questionnaire 

1. How experienced are you at similar tasks? (rate 1 - 5) 

Flying aircrafts 

Driving  

Driving games 

Flying games 

Other video games with joysticks 

Other: (please specify) 

2. Gender:  

Female, male, other 

3. Age:  

4. Ethnicity: 

5. ___ year in ___ (Master, PhD, undergraduate or pilot training program) program OR 

profession 
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Appendix ii: Control-Value Questionnaire  

Control 

Adapted from Wigfield & Eccles (2000) 

Rate from 1 – 5 (strongly disagree to strongly agree) 

- I have a great deal of control over this flying task I just did. 

- I feel like the more effort I put in, the better I did at this flying task 

- No matter what how hard I tried, I could not have done this task better 

Value  

Rate from 1 – 5 (strongly disagree to strongly agree) 

Adapted from MSLQ (Pintrich, 1991) 

Utility value 

- I think I can use what I learnt from doing this flying task to other things in other situations 

- Comparing to other things you are learning, how useful is this task 

Interest 

- I had fun doing this task. 

- I find the task interesting. 

Importance 

- Comparing to other things you learn, how important is it for you to learn this flying task? 

- how important is being good at this task for you? 
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Appendix iii: NASA TLX 

The following questions are adapted from NASA Task Load Index 

Mental load 

Description: the amount of thinking, deciding, remembering, looking one needs to do; how 

challenging or complex is the task. 

- How mentally demanding was the previous flying task? Rate 1-5 

Physical load 

Description: how much physical activity is required for the task (controlling, moving etc.); 

how physically challenging or laborious the task is. 

How physically demanding was the previous flying task? Rate 1-5 

Effort  

Description: how hard you have worked (mentally and physically) to accomplish your level 

of performance in the task 

How hard did you have to work to complete this flying task? Rate 1- 5 

Fatigue 

How tired were you (physically and mentally) doing the previous flying task? Rate 1-5 
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Appendix iv: Test Rubrics (Beginner Level) 

Prepared by Hugh Grenier and Alain Bourgon, CAE Inc. 

Grading Scale: 

The following assessment guidelines are based on AQP scoring on a scale of 1 to 4. The 

emphasis of this study is to measure the “flying” performance.  Threat and Error Management of 

CRM will not be assessed in this case. 

Assessment of the resulting performance parameters applicable to the fields of Heading, 

Altitude, Airspeed and VSI: 

Score Definition Description Comments 

4 Excellent Achieves and maintains 

target parameters accurately.  

Very few minor deviations. 

Exemplary. 

3 Standard Small deviations from 

target parameters occur but are 

corrected rapidly.  No large 

deviation. 

Safe and 

effective. 

2 Acceptable Frequent and / or large 

deviations from target 

parameters.  Attempts are still 

made to return to target 

parameters. 

Margin of safety 

is reduced. 

1 Unsatisfactory Large errors occur and are 

not corrected in a timely 

fashion.  Target parameters are 

not achieved. 

Safety of flight is 

jeopardized. 

Control Description Score 

 

 

1 2 3 4 

Heading Variations 

in degrees of 

direction from 

the target 

heading. 

 

>30 ≤30 ≤20 ≤10 

Altitude Variations 

in feet from the 

target altitude. 

 

>1000 ≤1000 ≤500 ≤200 
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Airspeed Auto-thrust 

(Speed mode) 

will be used 

during 

experiments with 

ab-initio 

candidates on the 

Marinvent 

simulator.   

N/A 

VSI Variations 

in feet per 

minute from the 

target VSI. 

 

>1500 ≤1500 ≤1000 ≤300 
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Appendix v: Experimental Tasks and Instruction 

Sequence Difficulty Task details 

   

1 1 Maintain baseline for 30 seconds: altitude 10.0, speed 247, 

Survey 1  heading 001.5 

2 2 Maintain airspeed and altitude, turn L at 15 degree bank 

  angle to the heading of 330 

 3  2 Reverse  back  to  001.5  heading,  maintain  altitude  

(10.0), speed (247) 

Survey2   

   

4 3 Ascend to 11.0 by doing a 3 degree pitch up, once stabilized, 

turn L at 30 degree bank angle to heading of 330 

 5 

 

Survey3 

3 

Reverse back to 001.5 heading by 30 degree bank to the right, 

stabilize, then descend to 10.0 altitude 

6 3/4 
Maintain bank and altitude, increase airspeed to 270 and 

stabilize 

7 3/4 Change speed back to 247 

Survey4   

   

 8  5 Ascend to an altitude of 11.0, stabilize, adjust airspeed to 230, 

stabilize. Then turn L to heading 330 with 30 degree bank angle, 

stabilize. 

 9  5 Descend to 10.0 feet, stabilize, adjust speed to 247, stabilize, 

turn R to heading 001.5 with bank angle 30 and stabilize. 

Survey5   

 10  1 Maintain altitude, bank and speed, fly for 60 seconds 

Survey6   
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Appendix vi: Consent Form 

CONSENT FORM FOR PARTICIPATION IN THE EXPERIMENT ON PILOT 

TRAINING 

 

Study Title: Inferring pilot trainee’s affective and cognitive states from biometric data during 

the training processes 

Researcher: Tianshu Li, Susanne Lajoie 

Researcher’s Contact Information: tianshu.li@mail.mcgill.ca 

Faculty Supervisor: Susanne Lajoie 

Faculty Supervisor’s Contact Information: susanne.lajoie@mcgill.ca 

 

You are being invited to participate in the research study mentioned above. This form provides 

information about what participating would mean. Please read it carefully before deciding if you 

want to participate or not. If there is anything you do not understand, or if you want more 

information, please ask the researcher.  

 

A. PURPOSE 

The purpose of the research is to develop biometric methods to infer pilot trainee’s affective 

and cognitive states during the training process.  

 

B. PROCEDURES 

Before and after the experiment starts, you may be asked to fill in a questionnaire related to 

the training task. We may interview you for more information. The interview will be video-taped. 

The experiments will be divided into two kinds: one is in a controlled lab, where some basic 

and general (may not be necessarily flight related) training activities will be conducted while your 

physiological and neurological signals will be recorded; the other will be conducted in a flight 

simulator located at Concordia or at CAE, where a session of flight training will be conducted 

while your physiological and neurological signals will be recorded. The training will follow a 

protocol provided by CAE. You may be asked to participate one of the two or both experiments, 

depends on the availability of the devices and the instructors. 

In the beginning of the experiment, you will be asked to rest with eyes closed. Then, you will 

be starting the training specified above. Before the experiment ends, you will be asked to rest again 

with eyes closed. The following data will be recorded during the experiment: 

• Electroencephalogram (EEG): electrical activity of the brain.  

• Electrocardiogram (ECG): electrical activity of the heart. From ECG, heart rate and heart 

rate variability can be inferred.  

• Eye tracking data such as eye movement, blinking frequency and pupil diameter. 

• Galvanic skin response: change in electrical conductance of the skin. 

• Respiration rate: the number of breaths per minute. 
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• Video and audio data: including body movements, gestures and facial expressions. 

• Your learning behavior will be recorded in the training devices that you will use (a 

computer or a simulator). 

 

C. RISKS 

There is no risk participating in this experiment. 

 

D. CONFIDENTIALITY 

By participating, you agree to let the researchers capture your EEG, ECG, eye tracking data, 

galvanic skin response, respiration rate, video and audio data. You also agree to fill in the 

questionnaire, and conduct the pre- and post-experiment interviews. We will not allow anyone to 

access the information, except the researchers directly involved in conducting the research, and 

except as described in this form. We will only use the information for the purposes of the research 

described in this form. The information gathered will be coded. That means that the information 

will be identified by a code. The researcher will have a list that links the code to your name. 

 

We intend to publish the results of the research. However, it will not be possible to identify 

you in the published results. 

 

E. CONDITIONS OF PARTICIPATION 

In order to be eligible for this experiment, you must not have any pre-existing mental disorder 

or must not be under prescribed medication for mental or psychological problems. 

 

If you are eligible and do participate, you can stop at any time. You can also ask that the 

information you provided not be used, and your choice will be respected.  If you decide that you 

don’t want us to use your information, you must tell the researcher within TWO WEEKS after the 

experiment. 

 

There are no negative consequences for not participating, stopping in the middle, or asking us 

not to use your information.  

 

F. PARTICIPANT’S DECLARATION 

I have read and understood this form. I have had the chance to ask questions and any questions 

have been answered. I  agree/ do not agree to participate in this research under the conditions 

described. 

 

NAME (please print)______________________________________________ 

SIGNATURE____________________________________________________ 

DATE_________________________________________________________ 
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If you have questions about the scientific or scholarly aspects of this research, please contact 

the researcher. Their contact information is on page 1. You may also contact their faculty 

supervisor. If you have concerns about ethical issues in this research, please contact the Manager, 

Research Ethics, Concordia University, 514.848.2424 ex. 7481 or oor.ethics@concordia.ca. 

 

  

mailto:oor.ethics@concordia.ca
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Appendix vii: Briefing Script 

Overview  

• 'x-plane is a flight simulation software/game. This research project aims to develop an 

emotion assessment method for pilot trainees during simulated flight trainings. This 

method will help us to understand the role of affect in aviation training, hence to develop 

more effective and multi-dimensional aviation training' 

• 'you are going to use only the joystick to control three meters on the instrument screen:  

altitude, speed and direction 

• Altitude is controled by pitch angle (ascend and descend) 

• Speed is controlled by pitch angle and power 

• Direction is controlled by heading 

Joystick Introduction  

• Thrust: the handle on the bottom of the joystick 

• Trim: a button around the top of the joystick, you could gently massage it almost. We can 

play with trim to make different levels of difficulty as well, since a very well trimed plane 

would need little effort and control of the joystick to maintain baseline 

• Baseline: put the two triangles together, one or two degrees above the horizon 

The bank heading: 060, could be read at zero six zero, or sixty, or six. Whichever is 

understandable for the participant. Maybe sixty is the easiest for people with zero experience. 

 
  

Terms and Instruction Language 

• Thrust: the level of energy used by the plane 

• Trim: establish baseline and achieve a like-autopilot condition (if let loose of the joystick, 

the plane will stay in baseline) 

• Baseline: maintain altitude, speed and direction  

• Bank: direction 

• Initiate what degree bank turn, to which heading 

• Roll in roll out: initiate a turn and stop a turn 


