
Abstractness of the Nu-Calculus in
Quasi-Borel Spaces at First-Order

Types

Michael Wolman

Department of Mathematics and Statistics
McGill University, Montreal

August 2020

A thesis submitted to McGill University in partial fulfillment of the
requirements of the degree of Master of Science in Mathematics

© Michael Wolman 2020

To Dov, Karen and Esther

ii

Abstract
The nu-calculus is a simply typed, higher-order, call-by-value language that models fresh
name generation [PS93]. In this language, names can be checked for equality and newly
generated names are guaranteed to be distinct from all others.

In this thesis, we show that we can interpret names to be elements of a probability
space, modelling fresh name generation as sampling names from a continuous measure.
Specifically, we show that the nu-calculus can be soundly interpreted in the category of
quasi-Borel spaces, a recent construction providing a model of higher-order probabilistic
programming [Heu+17].

We then provide a novel analysis of higher-order functions in both the nu-calculus and
the category of quasi-Borel spaces. In the nu-calculus, we construct a normal form for
terms at first-order types eliminating the use of private names. We then analyze the
structure of higher-order quasi-Borel spaces to prove that our semantics are abstract at
first-order types.

iii

Résumé
Le nu-calcul est un langage simplement typé, d’ordre supérieur, appel par valeur qui
modélise la génération de noms frais [PS93]. Dans ce langage, l’égalité des noms peut être
vérifié et les noms nouvellement générés sont garantis d’être distincts de tous les autres.

Dans cette thèse, nous montrons que nous pouvons interpréter les noms comme des
éléments d’un espace de probabilité, modélisant la génération de noms frais comme
échantillonnage de noms à partir d’une mesure continue. Plus précisément, nous mon-
trons que le nu-calcul peut être correctement interprété dans la catégorie d’espaces
quasi-boréliennes, une construction récente fournissant un modèle de programmation
probabiliste d’ordre supérieure [Heu+17].

Nous fournissons ensuite une nouvelle analyse de fonctions d’ordre supérieur, à la
fois dans le nu-calcul et dans la catégorie des espaces quasi-boréliennes. Dans le nu-
calcul, nous construisons une forme normale pour les termes de types de premier ordre,
éliminant l’utilisation de noms privés. Nous analysons ensuite la structure des espaces
quasi-boréliennes d’ordre supérieur pour prouver que notre sémantique est abstraite aux
types du premier ordre.

iv

Acknowledgements
First, I would like to thank my supervisors Marcin and Prakash for supporting my
research and the preparation of this thesis; Marcin, Prakash and McGill’s Department
of Mathematics and Statistics for their financial support; and the Fonds de Recherche
du Québec for supporting me with a master’s research scholarship. I would also like to
thank Ohad Kammar for reviewing this thesis and for his detailed and insightful feedback
and suggestions.

Marcin and Prakash, you have been incredible mentors throughout my studies and I
cannot thank you enough for all of your time, patience, guidance and support.

Mom and dad, thank you for an endless supply of love and encouragement. You
empower me to pursue my passions.

Esther, thank you for your love, energy and support, and for always being there for
me when I need you.

Audrey, Harry, Amit, Aram, Jean — you guys are cool I guess.
Finally, thank you to my siblings, grandparents and the rest of my family, as well as

all of the friends who have made my time at McGill special (you know who you are).

v

Contribution of Authors
The topic of this thesis was suggested by Sam Staton and Dario Stein, and this research
has been conducted jointly with Marcin Sabok, Sam Staton and Dario Stein [Sab+20].
This work was done under the supervision of Prakash Panangaden and Marcin Sabok.
The original material in this document consists of the work in Section 5.5 and Chapter 6,
in particular the normal forms of Section 6.2.2 and our main result Theorem 6.31. The
proof of Proposition 6.4 given in this document was suggested by Marcin Sabok, although
a different proof was independently communicated to Sam Staton and Dario Stein by
Alexander Kechris.

vi

Contents
Abstract iii

Résumé iv

Acknowledgements v

Contribution of Authors vi

1 Introduction 1
1.1 Organization of the Thesis . 2

2 Nu-Calculus 3
2.1 Syntax . 3
2.2 Operational Semantics . 5
2.3 Observational Equivalence . 7
2.4 Logical Relations . 8

3 Categorical Models of the Nu-Calculus 10
3.1 The Metalanguage . 10
3.2 Interpreting the Nu-Calculus in the Metalanguage 12
3.3 Categorical Models . 15

3.3.1 Cartesian Closed Categories and Strong Monads 16
3.3.2 Categorical Models for the Nu-Calculus 17
3.3.3 Adequacy and Abstractness of Categorical Models 21

4 Descriptive Set Theory 23
4.1 Measurable Spaces and Measures . 23
4.2 Standard Borel Spaces . 25
4.3 Groups with Invariant Probability Measures 26
4.4 Borel on Borel Sets . 27

5 Quasi-Borel Spaces 29
5.1 The Category QBS . 29
5.2 Measures and Integration . 31
5.3 Function Spaces . 31
5.4 Probability Spaces . 32
5.5 Interpreting the Nu-Calculus in QBS . 34

vii

Contents

6 Abstractness at First-Order Types 38
6.1 The Privacy Equation . 38
6.2 A Normal Form for Logical Relations . 40

6.2.1 η-Normal Forms . 40
6.2.2 Construction of the Normal Form 43

6.3 Abstractness at First-Order in QBS . 48

7 Conclusion 54

Bibliography 55

viii

1 Introduction
The nu-calculus is a programming language constructed by Pitts and Stark to model
fresh name generation [PS93]. A name is an atomic object, containing no information
other than its identity. They can be compared for equality, and passed as arguments
between functions. This language also includes the ability to generate fresh names, which
are names that are guaranteed to be distinct from all other names. The desire to generate
fresh names is not new, as can be seen for example in α-renaming for capture-avoiding
substitution, and can be used to model memory allocation, for example, or the gensym
metaprogramming macro in LISP.

The nu-calculus supports higher-order functions, an essential feature of functional
programming. However, most of the challenges that arise in the analysis of fresh name
generation occur at higher-order types. This is because it is possible to have terms with
private names, names that are generated and used but do not affect the operational
semantics of the term. It is therefore desirable to obtain models of the nu-calculus that
identify terms with the same operational semantics. We call such models abstract.

There is also an analogy between the nu-calculus and probability. Fresh name generation
behaves identically to sampling from continuous probability measures, for which the
probability of sampling the same name twice is zero. There is therefore a desire to
formalize this and construct a probabilistic model of the nu-calculus.

In order to construct a probabilistic model of the nu-calculus that allows us to reason
about private names, we therefore need a category suitable for interpreting probability
theory that supports the existence of function types. Unfortunately, a result of Aumann
shows that the category of measurable spaces is not cartesian closed, so an alternative
category must be considered [Aum61].

Quasi-Borel spaces, a recent development in the field of probabilistic programming,
provides just what we want: a cartesian closed category with a suitable interpretation
of probability theory [Heu+17]. In this work, we consider the category of quasi-Borel
spaces and show that it soundly interprets the nu-calculus, letting names be elements of a
standard Borel space and fresh name generation be sampling from a continuous measure.

We then analyze the higher-order features of both the nu-calculus and quasi-Borel
spaces. In the nu-calculus, we construct a normal form for terms of first-order type,
avoiding the difficulties presented by private names. We also use results of descriptive
set theory to analyze the Borel structure of higher-order quasi-Borel spaces. Combining
this analysis and the construction of our normal forms, we prove that quasi-Borel spaces
are an abstract model of the nu-calculus at first-order types.

1

1 Introduction

1.1 Organization of the Thesis
This thesis is split into five chapters, along with an introduction and a conclusion.
Chapter 2 defines the nu-calculus and its operational semantics. It also defines logical
relations, which will be featured heavily in the construction of our normal forms. Chapter 3
defines what it means to be a categorical model of the nu-calculus. Chapter 4 describes
some basic results of descriptive set theory, along with an analysis of Borel on Borel sets
and measures on the space 2R of Borel measurable functions R → 2. In Chapter 5, we
define the category of quasi-Borel spaces, and prove that it is a sound categorical model
of the nu-calculus. Finally, Chapter 6 contains our construction of nu-calculus normal
forms for terms at first-order type, as well as our proof of abstractness.

2

2 Nu-Calculus
The nu-calculus is an extension of the simply-typed lambda-calculus constructed by Pitts
and Stark to model fresh name generation [PS93]. In this chapter, we will define the
syntax, specify big-step call-by-value operational semantics, and define observational
equivalence for the nu-calculus. We will also define logical relations between terms, which
will provide another, more convenient way to prove observational equivalences.

2.1 Syntax
The syntax of the nu-calculus is based off of the syntax of the simply-typed lambda-
calculus and is given in Fig. 2.1. There are two ground types, the type B of Booleans
and the type N of names, and the only type constructor is that of function type σ → σ.
The terms are an extension of the lambda-calculus, to which we add names and name
generation, equality checks for names, truth values and conditionals.

Note that variables and names are different, and that λx : σ.M binds the variable x of
type σ in M whereas νn.M binds the name n in M . We define a closed term M to be
one with no free variables, and note that a closed term may still have free names.

We will adopt the convention of denoting variables by x, y, z, names by n,m, and sets
of names by s, t, u, v.

The term νn.M is intended to denote a program that generates a “new”, or “fresh”,
name n, and then evaluates and returns the expression M which may refer to this new
name. We will refer to this as fresh name generation, and this will be captured in the
semantics of Section 2.2 by taking disjoint unions of sets of names. The term νn.n, for
example, is to be interpreted as an expression that generates a new name and returns it

Type σ := B | N | σ → σ

Term M := x variables
| λx : σ.M | MM function abstraction and application
| n names
| M = M equality checks for names
| νn.M name generation
| true | false truth values
| if M then M else M conditionals

Figure 2.1: Syntax of the nu-calculus

3

2 Nu-Calculus

x : σ ∈ Γ
s,Γ ⊢ x : σ

n ∈ s
s,Γ ⊢ n : N s,Γ ⊢ true : B s,Γ ⊢ false : B

s,Γ ⊔ {x : σ} ⊢ M : τ
s,Γ ⊢ λx : σ.M : σ → τ

s,Γ ⊢ M : σ → τ s,Γ ⊢ N : σ
s,Γ ⊢ MN : τ

s,Γ ⊢ M : N s,Γ ⊢ N : N
s,Γ ⊢ M = N : B

s ⊔ {n},Γ ⊢ M : σ
s,Γ ⊢ νn.M : σ

s,Γ ⊢ B : B s,Γ ⊢ MT : σ s,Γ ⊢ MF : σ
s,Γ ⊢ if B then MT else MF : σ

Figure 2.2: Typing rules of the nu-calculus

immediately. This is an important term, and we abbreviate it new.

Notation 2.1. If s = {n1, . . . , nk} is a set of names and M is a term, we will let νs.M
denote νn1 . . . νnk.M .

As usual, we identify terms up to α-equivalence, i.e. up to the renaming of bound
variables. This is necessary in order to define substitution, but will also be necessary
to define the semantics of fresh name generation. We let M [N/x] and M [N/n] denote
the capture-avoiding substitution of N for the free variable x or free name n in M .
Capture-avoiding substitution means that no free variable or name in N is bound in M ,
which is always possible as we can freely rename the bound variables in M .

We define the order of a type by induction on its structure: Ord(σ) = 0 for ground
types σ ∈ {B,N}, and otherwise

Ord(σ → τ) = max{Ord(σ) + 1,Ord(τ)}.

In particular, we will be considering first-order types, which are the types of the form
σ1 → · · · → σn with each σi ∈ {B,N} a ground type. Note that we adopt the convention
that → is right-associative, so that σ1 → · · · → σn−1 → σn means σ1 → (· · · → (σn−1 →
σn)).

We interpret the typing relation s,Γ ⊢ M : σ to mean that the term M , with free
variables in Γ and free names in s, has type σ. Here Γ is a finite context of typed variables,
and s a finite set of names. The typing rules are given in Fig. 2.2.

Here, we let Γ ⊔ {x : σ} and s ⊔ {n} denote disjoint unions of contexts and names. It
is always possible to do this by possibly renaming x or n to avoid taking variables or
names that already exist in Γ and s.

Notation 2.2. We let
Expσ(s,Γ) = {M | s,Γ ⊢ M : σ}

4

2 Nu-Calculus

denote the set of expressions of type σ with free variables and names in s,Γ. We say
that a term is in canonical form if it is a name, a variable, a truth value or a lambda
abstraction, and we denote these

Canσ(s,Γ) ⊂ Expσ(s,Γ).

If Γ is empty, we may omit it and write instead s ⊢ M : σ, Expσ(s) and Canσ(s).
Similarly, we may omit s if it is empty as well.

2.2 Operational Semantics
We define big-step operational semantics for the nu-calculus by the evaluation relation

s ⊢ M ⇓σ (t)C. (2.1)

Here, s, t are disjoint sets of names, M ∈ Expσ(s), and C ∈ Canσ(s⊔ t). If t is empty, we
also write s ⊢ M ⇓σ C. This is to be interpreted as the assertion that M , an expression
with free names in s, evaluates to the canonical term C, and in doing so generates new,
or fresh, names t. This relation is defined inductively on the structure of the term M in
Fig. 2.3.

As mentioned in Section 2.1, the fact that s, t are disjoint sets of names in (2.1) is crucial
in correctly interpreting fresh name generation. For example, recall that new = νn.n is
supposed to generate a “new” name n and return it immediately. As such, we would
expect that ⊢ (νn.n = νn.n) ⇓B (t) false for some set of names t. This is enforced in the
insistence on distinct names and disjoint unions in the semantics. Indeed, we may be
tempted to write

n ⊢ νn.n ⇓N (n)n
in order to conclude that ⊢ (νn.n = νn.n) ⇓B (n, n) true. However this derivation is
invalid as we are forced to create distinct names in the LOCAL rule. Instead, we must
rename one of the names to correctly derive

⊢ νn.n ⇓N (n)n n ⊢ νn′.n′ ⇓N (n′)n′ n ̸= n′

⊢ (νn.n = νn′.n′) ⇓B (n, n′) false
.

Additionally, we note that these semantics are call-by-value, so that for example ⊢ (λx :
N.x = x)new ⇓B true, because we evaluate new before applying it to to (λx : N.x = x):

⊢ new ⇓N (n)n n ⊢ (n = n) ⇓B true
⊢ (λx : N.x = x)new ⇓N true APP.

These operational semantics are nice, as it can be shown that evaluation always
terminates:

Theorem 2.3 (Termination [PS93]). For all M ∈ Expσ(s), there are some names t
disjoint from s and a term C ∈ Canσ(s ⊔ t) such that s ⊢ M ⇓σ (t)C. Moreover, this is
unique up to renaming of bound variables and names in t.

5

2 Nu-Calculus

C ∈ Canσ(s)
s ⊢ C ⇓σ C

CAN

s ⊢ B ⇓B (t1) true s ⊔ t1 ⊢ MT ⇓σ (t2)C
s ⊢ if B then MT else MF ⇓σ (t1 ⊔ t2)C

CONDT

s ⊢ B ⇓B (t1) false s ⊔ t1 ⊢ MF ⇓σ (t2)C
s ⊢ if B then MT else MF ⇓σ (t1 ⊔ t2)C

CONDF

s ⊢ M ⇓B (t1)n s ⊔ t1 ⊢ N ⇓B (t2)n n ∈ s

s ⊢ (M = N) ⇓B (t1 ⊔ t2) true EQ

s ⊢ M ⇓B (t1)n s ⊔ t1 ⊢ N ⇓B (t2)m m ̸= n

s ⊢ (M = N) ⇓B (t1 ⊔ t2) false NEQ

s ⊔ {n} ⊢ M ⇓σ (t)C n /∈ s ⊔ t

s ⊢ νn.M ⇓σ (t ⊔ {n})C LOCAL

s ⊢ M ⇓σ→τ (t1)λx : σ.M ′ s ⊔ t1 ⊢ N ⇓τ (t2)C ′

s ⊔ t1 ⊔ t2 ⊢ M ′[C ′/x] ⇓τ (t3)C
s ⊢ MN ⇓τ (t1 ⊔ t2 ⊔ t3)C

APP

Figure 2.3: Operational semantics of the nu-calculus

6

2 Nu-Calculus

2.3 Observational Equivalence
Now that we know how programs are executed, we would like to identify expressions that
behave the same way.
Example 2.4. Consider the term

νn.λx : N.x = n.

This term generates a fresh name n, and then returns the function λx : N.x = n. Since
this name is fresh, we would expect that it cannot occur anywhere else in a program,
and so we expect that it is always the case when calling this function that x ̸= n. Thus,
we would expect this function to behave identically to the constant function λx : N. false.

To capture this idea, we define the notion of observational equivalence between terms.
Here, we consider a program context to be an expression P [−] with a hole in it, denoted
by −, and we let P [M] represent replacing all occurrences of the hole − in P with the
term M , possibly capturing its free variables and names.

Definition 2.5 (Observational Equivalence). If M1,M2 ∈ Expσ(s), we say that M1 and
M2 are observationally equivalent, written s ⊢ M1 ≈σ M2, if for all program contexts
P [−] and all b ∈ B, we have

∃t1 (s ⊢ P [M1] ⇓B (t1)b) ⇐⇒ ∃t2 (s ⊢ P [M2] ⇓B (t2)b)

whenever this makes sense (i.e. whenever P [Mi] is a well-formed expression of type B).

This formally captures the idea above, that we want to identify expressions that behave
the same way, as we are saying that M1,M2 are equivalent if they result in the same
behaviour when used in any program. For example, we will establish in the next section
that

λx : N. false ≈N→B νn.λx : N.x = n. (2.2)

The Context Lemma gives a simpler formulation of observational equivalence. It states
that in order to establish the observational equivalence of the closed terms M1 and M2,
it suffices to check that they agree when applied to simple functions in Canσ→B(s).

Lemma 2.6 (Context Lemma [Sta96]). If M1,M2 ∈ Expσ(s), then s ⊢ M1 ≈σ M2 iff
for all b ∈ B and all λx : σ.N ∈ Canσ→B(s),

∃t1 (s ⊢ (λx : σ.N)M1 ⇓B (t1)b) ⇐⇒ ∃t2 (s ⊢ (λx : σ.N)M2 ⇓B (t2)b) .

Lemma 2.7 ([PS93, Corollary 6]). We have the following facts about observational
equivalence:

1. If M ∈ Expσ(s) and n /∈ s, then s ⊢ νn.M ≈σ M .

2. If M ∈ Expσ(s ⊔ {n, n′}) then s ⊢ νn.νn′.M ≈σ νn
′.νn.M .

7

2 Nu-Calculus

3. If s ⊢ M ⇓σ (t)C, then s ⊢ M ≈σ νt.C.

4. If s, x : σ ⊢ M : τ and C ∈ Canσ(s), then s ⊢ (λx : σ.M)C ≈τ M [C/x].

Proving observational equivalence between expressions of the nu-calculus is in general
difficult, as it is hard to reason about the effects of fresh name generation and predicting
where these names can end up.
Example 2.8. Stark provides examples in [Sta96] of some of the difficulties one can
encounter reasoning about observational equivalence.

For example, in a call-by-value language line the nu-calculus, a function application
(λx.M)N may not be observationally equivalent to the term M [N/x], substituting x for
N in M , if N is not a canonical term. This is exemplified by the non-equivalence

(λx : N.x = x)new ̸≈B new = new,

which holds because the left-hand-side evaluates to true whereas the right-hand-side
evaluates to false.

Another challenge is that ν and λ don’t commute. For example, the test function F
given by λf : B → N.(f true = f true) witnesses that

νn.λx : B.n ̸≈B→N λx : B.νn.n.

The problem here is that in the first term the name n is generated once and bound to
the closure of λx : B.n, while the second term generates a fresh name every time it is
called. Thus, F (νn.λx : B.n) ⇓B true, whereas F (λx : B.νn.n) ⇓B false.

2.4 Logical Relations
In general it is difficult to reason about observational equivalence. We will now define log-
ical relations, which provide us with a convenient way to prove observational equivalences
such as (2.2).

Notation 2.9. Given sets of names s1, s2 and a relation R ⊆ s1×s2, we write R : s1 ⇌ s2
to mean that R is a partial bijection between s1 and s2. If s ⊆ t are sets of names, we
let Ids : t⇌ t be the identity on s.

Definition 2.10 (Logical Relations [PS93]). For all types σ, sets of names s1, s2, and
partial bijections R : s1 ⇌ s2, we will define the relations

Rcan
σ ⊆ Canσ(s1) × Canσ(s2),
Rexp

σ ⊆ Expσ(s1) × Expσ(s2)

8

2 Nu-Calculus

by induction on σ as follows:

b1 R
can
B b2 ⇐⇒ b1 = b2

n1 R
can
N n2 ⇐⇒ n1 Rn2

(λx : σ.M1)Rcan
σ→τ (λx : σ.M2) ⇐⇒ ∀R′ : t1 ⇌ t2, Ci ∈ Canσ(si ⊔ ti), C1 (R ⊔R′)can

σ C2

we have M1[C1/x] (R ⊔R′)exp
τ M2[C2/x]

M1 R
exp
σ M2 ⇐⇒ ∃R′ : t1 ⇌ t2, Ci ∈ Canσ(si ⊔ ti), C1 (R ⊔R′)can

σ C2

such that s1 ⊢ M1 ⇓σ (t1)C1 and s2 ⊢ M2 ⇓σ (t2)C2

Notation 2.11. Note that Rexp
σ coincides with Rcan

σ when restricted to canonical terms.
We will therefore write M1 Rσ M2 unambiguously.

Remark 2.12. We note that if M ∈ Expσ(s) is any expression, then it is clear that
s ⊢ M ≈σ M and M (Ids)σ M .

The following proposition will be useful in establishing logical relations between terms:

Proposition 2.13 ([PS93, Proposition 21]). Suppose Ci ∈ Canσ→τ (si) and R : s1 ⇌ s2.

1. If σ = B, then C1 Rσ→τ C2 if and only if for b = true, false we have C1bRτ C2b.

2. If σ = N, then C1Rσ→τC2 if and only if for all (m,n) ∈ R we have C1mRτ C2n
and for n /∈ s1 ∪ s2 we have C1n (R ⊔ Id{n})τ C2n.

We offer the following intuitive explanation of the logical relations. Suppose that
M1 ∈ Expσ(s1),M2 ∈ Expσ(s2), R : s1 ⇌ s2 and M1 Rσ M2. The names in s1 \ Dom(R)
represent names that are not leaked to the environment provided it does not already know
about these names, and similarly for s2 \ Cod(R). On the other hand, R : Dom(R) →
Cod(R) represents a way to rename the names in M1 to get a term that is observationally
equivalent to M2.

Thus, logical relations serve as witnesses to observational equivalence and provide
a convenient way to prove equivalences such as (2.2). They do not in general capture
observational equivalence, but they do at first-order.

Theorem 2.14 ([PS93, Theorems 14, 22]). Suppose that M1,M2 ∈ Expσ(s). Then

M1 (Ids)σ M2 =⇒ s ⊢ M1 ≈σ M2.

Moreover, if σ is a first-order type, the converse holds:

s ⊢ M1 ≈σ M2 =⇒ M1 (Ids)σ M2.

Example 2.15. We are now able to prove the equivalence in (2.2). To prove this, it suffices
to show that

(λx : N. false) ∅N→B (λx : N.x = n),
where ∅ : ∅ ⇌ {n} is the empty relation. This in turn follows from the assertion that

false (Id{m})B (m = n)

for any name m ̸= n, which is clear as the right-hand-side evaluates to false.

9

3 Categorical Models of the
Nu-Calculus

We would like to provide denotational semantics for the nu-calculus, as this will provide
another way to reason about observational equivalence. In this chapter, we will outline
Stark’s framework for constructing categorical models of the nu-calculus [Sta96]. In order
to construct these models, it is necessary to distinguish between expressions, which may
generate fresh names, and canonical terms, which are the results of computations. To do
this, we will explicitly distinguish between values of a type σ and computations that result
in a value of type σ by first interpreting the nu-calculus in a metalanguage suitable for
making this distinction. We will then interpret this metalanguage in a suitable category,
following Moggi’s monadic interpretation of computation [Mog91].

3.1 The Metalanguage
The metalanguage Stark introduced is similar to the nu-calculus and is given in Fig. 3.1
[Sta96]. We have the same basic types of Booleans and Names, as well as the function
type constructor. However, we add a new type constructor T , so that if A is a type, TA
is to be interpreted as the type of computations of type A.

Similarly, we add to the syntax the term constructor [a], which is to be interpreted as
the trivial computation returning the value a, and let-expressions to model sequential
computation: (let x ⇐ a in b) is interpreted as computing a, letting the value of this
computation be x, and returning the computation b(x). We also add the constant
new : TName. This will be interpreted as the computation returning a fresh name,
corresponding to the term νn.n in the nu-calculus.

The typing rules are given in Fig. 3.2, where we let Γ, x : A denote the disjoint union
Γ ⊔ {x : A}. Note that unlike for the nu-calculus, the metalanguage does not distinguish
between variables and names, and this is reflected both in the syntax and typing rules, as
the typing relation relies only on a context Γ and not on an additional set of free names.

We also introduce an equational logic to reason about the equality of terms. As we
plan to interpret the metalanguage in a category, this will allow us to reason about the
equality of objects in this category equationally, instead of through diagrams.

In this logic, we will make assertions of the form Γ ⊢ a = a′ where Γ ⊢ a, a′ : A. More
generally, if Φ is a set of equations in context Γ, we will reason about sequents of the
form Γ; Φ ⊢ a = a′.

10

3 Categorical Models of the Nu-Calculus

Type A := Bool | Name | A → A
| TA computations

Term a := x variables
| λx : A.a | aa function abstraction and application
| true | false truth values
| cond(a, a, a) conditionals
| eq(a, a) equality of names
| new name generation
| [a] trivial computation
| let x ⇐ a in a sequential computation

Figure 3.1: Syntax of the metalanguage

x : A ∈ Γ
Γ ⊢ x : A Γ ⊢ new : TName Γ ⊢ true : Bool Γ ⊢ false : Bool

Γ ⊢ n : Name Γ ⊢ m : Name
Γ ⊢ eq(n,m) : Bool

Γ ⊢ b : Bool Γ ⊢ a : A Γ ⊢ a′ : A
Γ ⊢ cond(b, a, a′) : A

Γ, x : A ⊢ a : B
Γ ⊢ λx : A.a : A → B

Γ ⊢ f : A → B Γ ⊢ a : A
Γ ⊢ fa : B

Γ ⊢ a : A
Γ ⊢ [a] : TA

Γ ⊢ e : TA Γ, x : A ⊢ e′ : TB
Γ ⊢ let x ⇐ e in e′ : TB

Figure 3.2: Typing rules of the metalanguage

11

3 Categorical Models of the Nu-Calculus

The axioms for this equational logic consist of the basic axioms
φ ∈ Φ

Γ; Φ ⊢ φ

Γ; Φ ⊢ φ Γ; Ψ, φ ⊢ ψ

Γ; Φ ∪ Ψ ⊢ ψ
,

axioms asserting that equality is an equivalence relation, axioms asserting that equality
is preserved by the term forming rules of Fig. 3.1, and the rules given in Fig. 3.3.

These rules consist of basic rules for Booleans, names, functions and computations, the
MONO rule for ground types, and the rules DROP, SWAP and FRESH. The FRESH rule
asserts that new names are distinct, and the DROP and SWAP rules assert, respectively,
that generating unused names and swapping the order of generated names doesn’t matter.
Alternative formulations of these rules are discussed in [Sta96, p. 12]. Note that while
FRESH asserts the freshness of a new name with respect to a single other name, it
implies freshness of new names with respect to any finite set of other names (cf. [Sta94,
Lemma 3.2]). The MONO rule asserts that the map a ↦→ [a] is injective. While both
Moggi and Stark require that this holds in general, a more modern approach — and the
one we will take in this thesis — is to require injectivity only for terms at ground types.

3.2 Interpreting the Nu-Calculus in the
Metalanguage

The translation of types, terms, and contexts from nu-calculus to the metalanguage
is defined in Fig. 3.4. Here we define a function C ↦→ |C| from canonical terms of
the nu-calculus to the metalanguage, as well as functions σ ↦→ JσK, M ↦→ JMK and
s,Γ ↦→ Js,ΓK mapping the types, expressions and contexts of the nu-calculus to the types,
terms and contexts of the metalanguage, respectively. Note that viewed through this
translation functions return computations. Additionally we see that for canonical terms
C we have both the interpretation |C| of C as a value and an interpretation JCK = [|C|]
of C as a computation returning |C|.

Lemma 3.1 ([Sta96, lemma 1]). For any nu-calculus canonical term C and expression
M ,

s,Γ ⊢ C : σ ⇐⇒ Js,ΓK ⊢ |C| : JσK ,
s,Γ ⊢ M : σ ⇐⇒ Js,ΓK ⊢ JMK : T JσK .

This interpretation of the nu-calculus in the metalanguage is sound, meaning that
equality is preserved by the operational semantics of the nu-calculus.

Notation 3.2. If s = {n1, . . . , nk} is a set of distinct names, we let

(̸= s) = {eq(ni, nj) = false | i ̸= j}

be the set of formulas in the metalanguage asserting that the names in s are distinct,
and we let let s ⇐ new in e be an abbreviation for the term

let n1 ⇐ new in . . . let nk ⇐ new in e.

12

3 Categorical Models of the Nu-Calculus

Functions:
Γ, x : A ⊢ b : B Γ ⊢ a : A
Γ ⊢ (λx : A.b)a = b[a/x] β

Γ ⊢ f : A → B

Γ ⊢ f = λx : A.fx
η

Computations:

Γ ⊢ e : TA
Γ ⊢ let x ⇐ e in [x] = e

Γ ⊢ a, a′ : A A ∈ {Name,Bool}
Γ; [a] = [a′] ⊢ a = a′ MONO

Γ ⊢ a : A Γ, x : A ⊢ e : TB
Γ ⊢ let x ⇐ [a] in e = e[a/x]

Γ ⊢ e : TA Γ, x : A ⊢ e′ : TB Γ, x′ : B ⊢ e′′ : TC
Γ ⊢ let x′ ⇐ (let x ⇐ e in e′) in e′′ = let x ⇐ e in (let x′ ⇐ e′ in e′′)

Booleans:
Γ; Φ, b = true ⊢ φ Γ; Φ, b = false ⊢ φ

Γ; Φ ⊢ φ

Γ; Φ ⊢ true = false
Γ; Φ ⊢ φ

Γ ⊢ a, a′ : A
Γ ⊢ cond(true, a, a′) = a

Γ ⊢ a, a′ : A
Γ ⊢ cond(false, a, a′) = a′

Testing names:

Γ ⊢ n : Name
Γ ⊢ eq(n, n) = true

Γ ⊢ n, n′ : Name
Γ; eq(n, n′) = true ⊢ n = n′

Generating names:

Γ ⊢ e : TA n : Name /∈ Γ
Γ ⊢ e = let n ⇐ new in e DROP

Γ, n : Name, n′ : Name ⊢ e : TA
Γ ⊢ let n ⇐ new in let n′ ⇐ new in e = let n′ ⇐ new in let n ⇐ new in e SWAP

Γ ⊢ n : Name Γ, n′ : Name; Φ, eq(n, n′) = false ⊢ e = e′

Γ; Φ ⊢ let n′ ⇐ new in e = let n′ ⇐ new in e′ FRESH

Figure 3.3: Logic of the metalanguage

13

3 Categorical Models of the Nu-Calculus

Types:
JBK = Bool

JNK = Name

Jσ → τK = JσK → T JτK
Canonical terms:

|x| = x

|n| = n

| true | = true
| false | = false

|λx : σ.M | = λx : JσK . JMK
Expressions:

JCK = [|C|] C canonical
Jif B then MT else MF K = let b ⇐ JBK in cond(b, JMT K , JMF K)

JM = NK = let m ⇐ JMK in let n ⇐ JNK in [eq(m,n)]
Jνn.MK = let n ⇐ new in JMK
JFMK = let f ⇐ JF K in let m ⇐ JMK in fm

Contexts:
Js,ΓK = n1 : Name, . . . , nk : Name, x1 : Jσ1K , . . . , xl : JσlK

where s = {n1, . . . , nk}
Γ = {x1 : σ1, . . . , xl : σl}

Figure 3.4: Translating nu-calculus to the metalanguage

14

3 Categorical Models of the Nu-Calculus

Theorem 3.3 (Soundness [Sta96]). Let M ∈ Expσ(s). If s ⊢ M ⇓σ (t)C for C ∈
Canσ(s ⊔ t), then

JsK ; (̸= s) ⊢ JMK = let t ⇐ new in JCK

is provable in the metalanguage.

We also have that the metalanguage is adequate, meaning that if two terms have equal
denotations then they are observationally equivalent. It is also abstract at ground types,
meaning that if two terms of ground type are observationally equivalent, then they have
equal denotations.

Theorem 3.4 (Adequacy [Sta96]). For all M1,M2 ∈ Expσ(s), if

JsK ; (̸= s) ⊢ JM1K = JM2K

is provable in the metalanguage, then s ⊢ M1 ≈σ M2.

Theorem 3.5 (Abstractness at Ground Types [Sta96]). Let σ be a ground type. For all
M1,M2 ∈ Expσ(s), if s ⊢ M1 ≈σ M2, then

JsK ; (̸= s) ⊢ JM1K = JM2K

is provable in the metalanguage.

3.3 Categorical Models
We will now give Stark’s construction of categorical models of the nu-calculus [Sta96]. To
do this, we interpret the metalanguage in a suitable category C. The standard method of
doing this is by interpreting types in the metalanguage as objects in C, and expressions of
the metalanguage as arrows in C. Thus, we need, for each way of constructing types and
terms in the metalanguage, a corresponding way to construct objects and arrows in C.

Specifically, we will need an object corresponding to the Boolean type B, an object
corresponding to the name type N, and “object constructors” corresponding to the type
constructors → and T . More precisely, if X,Y are objects of C corresponding to the
types A,B, we need to be able to find objects Y X and TX in C to correspond to the
types A → B and TA respectively. Similarly, we will need to be able to construct
maps corresponding to let-expressions, lambda abstraction, true, false, new, [·], eq(·, ·), and
cond(·, ·, ·).

Of course, all of these objects and maps should be able to soundly interpret the
metalanguage, including the equational reasoning described in Fig. 3.3. In order to do
this, we will consider cartesian closed categories, which are categories with a suitable
notion of function spaces, and strong monads, which can be used to soundly interpret
computations in a category (cf. [Mog91]). Finally, we will list the additional conditions
a category must satisfy to soundly interpret names, Booleans and new.

15

3 Categorical Models of the Nu-Calculus

3.3.1 Cartesian Closed Categories and Strong Monads
We begin by defining function spaces in a category, in order to interpret function types.

Definition 3.6. A category C with finite products and a terminal object is cartesian
closed if for all objects X,Y , there is an exponential object Y X and an evaluation map
ev : Y X × X → Y such that for any function f : Z × X → Y , there is a unique map
curry(f) : Z → Y X such that the following diagram commutes:

Z ×X

Y X ×X Y

fcurry(f)×id

ev

Example 3.7. The category of sets is cartesian closed, as we can take Y X to be the set of
set-theoretic functions X → Y , ev the usual evaluation map, and let curry correspond
to currying: curry(f)(z)(x) = f(z, x).

Next, we want to define a structure on C that will allow us to interpret the types of
computations TA present in the metalanguage. Therefore, for a given object X, we must
have a corresponding object TX which should serve as an object of “computations” of
object X.

In addition to this corresponding object TX, we need a map X → TX that should
soundly interpret the term constructor [·] of the trivial computation.

We also need a way to encode let-expressions. A metalanguage expression of the form
x : A ⊢ e′ : TB should correspond to an arrow X → TY in C. However, the expression
(let x ⇐ e in e′) is a function taking e : TA to a term of type TB, and so we need to be
able to lift our arrow X → TY to an arrow TX → TY .

Such a structure T on C is called a monad. The monad laws, which we present below,
are motivated by the program logic (cf. Computations, Fig. 3.3) that we wish to model.

Definition 3.8. A monad on a category C is a functor T : C → C, maps ηX : X → TX
for all objects X, and a lift operation (f : X → TY) ↦→ (f ∗ : TX → TY) satisfying

• η∗
X = idT X ,

• f ∗ ◦ ηX = f for f : X → TY , and

• g∗ ◦ f ∗ = (g∗ ◦ f)∗ for f : X → TY and g : Y → TZ.

Example 3.9. If we take a set X and let X∗ denote the free monoid on X, then the map
X ↦→ X∗ defines a monad on the category of sets, where η(x) = x, and if f : X → Y ∗,
then f ∗ : X∗ → Y ∗ is given by concatenation:

f ∗(x1x2 · · ·xn) = f(x1)f(x2) · · · f(xn).

Given a monad, η will correspond to the term constructor [·] of the trivial computation
and the lift will correspond to let-expressions.

It turns out that in order to properly interpret contexts, we need the stronger require-
ment that T is a strong monad, as explained in [Mog91, remark 3.1].

16

3 Categorical Models of the Nu-Calculus

Notation 3.10. We use πX , πY to denote the projections X × Y → X and X × Y → Y ,
respectively. If f : X → X ′, g : Y → Y ′, we let f × g denote the corresponding map
X × Y → X ′ × Y ′. If f : X → Y, g : X → Z, we let ⟨f, g⟩ denote the corresponding map
X → Y × Z.

Definition 3.11. A strong monad T on a cartesian closed category C is a functor
T : C → C, maps ηX : X → TX for all objects X, and a strengthened lift operation
(f : X × Y → TZ) ↦→ (f ∗ : X × TY → TZ) satisfying

• (ηY ◦ πY)∗ = πT Y ,

• f ∗ ◦ (idX × ηY) = f for f : X × Y → TZ, and

• g∗ ◦ ⟨πX , f
∗⟩ = (g∗ ◦ ⟨πX , f⟩)∗ for f : X × Y → TZ and g : X × Z → TZ ′.

Example 3.12. The free monoid monad (cf. Example 3.9) is strong: given f : X×Y → Z∗,
we define

f ∗(x, y1y2 · · · yn) = f(x, y1)f(x, y2) · · · f(x, yn).
More generally, every monad on the category of sets is strong, as the strengthened lift
can be constructed from the normal lift TZY → TZT Y of the monad by currying.

We note that monads over an arbitrary category C may not always be strong, even if
C is cartesian closed, as the lift TZY → TZT Y need not be a morphism in the category.

3.3.2 Categorical Models for the Nu-Calculus
We are now ready to show how to interpret the metalanguage in a category C. We will
give a translation from types in the metalanguage to objects in C, and terms in the
metalanguage to arrows in C.

In order to soundly interpret function types A → B and types of computations TA
we require that C is a cartesian closed category with a strong monad T , following the
reasoning of Section 3.3.1. If A,B are types that map to objects X,Y in C, we will map
the type A → B to the object BA, and the type TA to the object TX.

We interpret the types Bool and Name as follows. Let 1 denote the terminal object
of C. We ask that the coproduct 1 + 1 of 1 with itself exists, and we map the type Bool
to this coproduct 1 + 1. For Name, we will choose a distinguished object N in C, and
we will map the type Name to N .

We now give the translation of terms of the metalanguage to arrows in C. The terms
true and false will denote the two inclusions

1 1

1 + 1
true false

of the coproduct 1 + 1. We choose a distinguished arrow 1 → TN to correspond to the
term new. Additionally, we ask that there is a distinguished function eq : N ×N → 1 + 1,
and we let this correspond to the term eq(·, ·).

17

3 Categorical Models of the Nu-Calculus

Finally, for every object X in C, we can define the function condX : 2 ×X ×X → X
by the composition

(1 + 1) ×X ×X X(X×X) ×X ×X X.
[π1,π2]×idX×X ev

Here π1, π2 correspond respectively to the left and right projections X × X → X,
so in particular condX(true) = π1 and condX(false) = π2. We will then map the term
cond(·, ·, ·) to the arrows condX in C, where X depends on the type of the term containing
cond(·, ·, ·).

The interpretations of lambda abstraction, function application, [·] and let-expressions
in C are given by currying, composition of arrows and the η maps and lift operation of
the monad, as described in Section 3.3.1.

Now that we have defined the translation of the basic terms and term constructors, we
let the full translation of the metalanguage to C be given by induction on the structure
of terms. The details of this translation are given in Fig. 3.5. In this figure, we take
expressions of the form

φ1 . . . φn

ψ ↦→
f1 . . . fn

g

to mean that if ψ is derived from the sequents φ1, . . . , φn in the metalanguage and
f1, . . . , fn are the arrows in C corresponding to φ1, . . . , φn, which we have already con-
structed by induction, then g is the arrow corresponding to ψ.

The last thing we need in order to translate the metalanguage to the category C is
an object corresponding to contexts of distinct names. That is, if s is a set of names
and N |s| = N × · · · ×N the corresponding object in C, we would like to construct the
subobject (̸= s) of N |s| corresponding to the |s|-tuples of distinct names in N . To do
this, for any set s of names and 1 ≤ i < j ≤ |s|, we let πi : N |s| → N be the projection
onto the i-th coordinate and we take eqi,j : N |s| → 1 + 1 be the map

N |s| N2 1 + 1⟨πi,πj⟩ eq

checking if the i-th and j-th coordinates of vectors in N |s| are equal. We then ask that
the limit (̸= s) → N |s| of all of the maps

(̸= s) N |s| 1 + 1, i ̸= j
eqi,j

false

exists, and we take (̸= s) to be the object of distinct names in s.
We have now interpreted the nu-calculus in the metalanguage and the metalanguage

in C. Composing these, we obtain an interpretation of the nu-calculus in C. Specifically,
if σ is a type of the nu-calculus we get an object JσK in C, and if C ∈ Canσ(s,Γ) and
M ∈ Expσ(s,Γ) we get maps

|C| :N |s| × JΓK → JσK

JMK :N |s| × JΓK → T JσK

18

3 Categorical Models of the Nu-Calculus

x : A ∈ Γ
Γ ⊢ x : A ↦−→ πA : Γ → A

Γ ⊢ new : TName ↦−→ Γ → 1 new−−→ TN

Γ ⊢ true : Bool ↦−→ Γ → 1 true−−→ 2

Γ ⊢ false : Bool ↦−→ Γ → 1 false−−→ 2

Γ ⊢ n : Name Γ ⊢ m : Name
Γ ⊢ eq(n,m) : Bool ↦−→

n : Γ → N m : Γ → N

Γ ⟨n,m⟩−−−→ N ×N
eq−→ 2

Γ ⊢ b : Bool Γ ⊢ a : A Γ ⊢ a′ : A
Γ ⊢ cond(b, a, a′) : A ↦−→

b : Γ → 2 a : Γ → A a′ : Γ → A

Γ ⟨b,a,a′⟩−−−−→ 2 × A× A
condA−−−→ A

Γ, x : A ⊢ a : B
Γ ⊢ λx : A.a : A → B ↦−→

b : Γ × A → B

curry(b) : Γ → BA

Γ ⊢ f : A → B Γ ⊢ a : A
Γ ⊢ fa : B ↦−→

f : Γ → BA a : Γ → A

Γ ⟨f,a⟩−−→ BA × A
ev−→ B

Γ ⊢ a : A
Γ ⊢ [a] : TA ↦−→

a : Γ → A

Γ a−→ A
ηA−→ TA

Γ ⊢ e : TA Γ, x : A ⊢ e′ : TB
Γ ⊢ let x ⇐ e in e′ : TB ↦−→

e : Γ → TA e′ : Γ × A → TB

Γ ⟨1,e⟩−−→ Γ × TA
(e′)∗

−−→ TB

Figure 3.5: Translating the metalanguage to maps in C

19

3 Categorical Models of the Nu-Calculus

in C. In order to soundly model the distinctness of the names in s, we restrict these maps
to the object of distinct names (̸= s) to get the maps

|C|Γ, ̸=s : (̸= s) × Γ N |s| × Γ JσK

JMKΓ, ̸=s : (̸= s) × Γ N |s| × Γ T JσK .

|C|

JMK

If Γ is empty we omit it and write |C |̸=s and JMK ̸=s. If s is empty then the equalizer
diagram is empty and (̸= s) ∼= 1, so we omit it and write |C|Γ, JMKΓ.

In order for C to be a sound and adequate model of the nu-calculus, that is in order for
C to satisfy properties analogous to those of Theorems 3.3 and 3.4 of the metalanguage,
Stark imposes additional requirements on the distinguished objects 1 + 1, N , the monad
T and the arrows true, false, eq and new [Sta96]. These requirements correspond directly
to the rules of the metalanguage that should be satisfied in C.

The MONO rule of the metalanguage at ground types corresponds to the assertion
that the maps ηN , η2 of the monad are monomorphisms. To capture the Boolean rules
that true, false are the only truth values, we add some requirements to the coproduct
1 + 1. In order to soundly interpret the equality of names, we add some conditions to
N and eq. Finally, in order to model the DROP, SWAP and FRESH rules for fresh
name generation, we add three additional requirements that must be satisfied by the
distinguished map new : 1 → TN .

Definition 3.13. Let C be a category with terminal object 1 and initial object 0, and
suppose that the coproduct 1 + 1 exists in C. Let true, false be the left and right inclusion
maps 1 → 1 + 1, as specified above. We say that 1 + 1 is disjoint if the following diagram
is a pullback.

0 1

1 1 + 1
false

true

Now suppose that N is an object in C. We say that N is decidable if there is a map
eq : N ×N → 1 + 1 such that following diagram is a pullback. Here, ∆ : N → N ×N is
the diagonal map.

N N ×N

1 1 + 1

∆

eq

true

Definition 3.14. Let C be a cartesian closed category with a strong monad T . Suppose
that C has initial and terminal objects 0, 1, and that the coproduct 1 + 1 exists and is
disjoint. Let N be a distinguished object in C that is decidable with equality decided by
the map eq : N ×N → 1 + 1, and suppose that the equalizers (̸= s) → N |s| ⇒ 1 + 1 exist

20

3 Categorical Models of the Nu-Calculus

for all finite sets s, in the sense described above. Additionally, suppose that the maps
ηN , η1+1 are monomorphisms. Finally, let new : 1 → TN be a distinguished map in C.

We say that C, along with the data T,N, new, is a categorical model of the nu-calculus
provided that the following properties are satisfied by new.

1. For any map f : X → TY , we have f(x) = (λn.f(x))∗(new).

2. For any map g : X ×N ×N → TY , we have

(λn.(λn′.g(x, n, n′))∗(new))∗(new) = (λn′.(λn.g(x, n, n′))∗(new))∗(new).

3. For any map h : X × (1 + 1) ×N ×N → TY , we have

(λn′.h(x, eq(n, n′), n, n′))∗(new) = (λn′.h(x, false, n, n′))∗(new).

These conditions on new correspond respectively to the DROP, SWAP and FRESH
rules of the metalanguage.

By construction, categorical models of the nu-calculus are exactly those that soundly
model the metalanguage (cf. [Sta96]). In particular, we have the following:

Proposition 3.15. Let C be a categorical model of the nu-calculus. If

Js,ΓK ; (̸= s) ⊢ JM1K = JM2K

in the metalanguage, then JM1K̸=s = JM2K̸=s in C.

Proof. The conditions for a category to be a model of the nu-calculus correspond to the
axioms of the metalanguage. We can therefore interpret any proof in the metalanguage
soundly in our category.

3.3.3 Adequacy and Abstractness of Categorical Models
Categorical models were created both to provide semantics for the nu-calculus and to
reason about observational equivalence in the nu-calculus. As discussed in Section 2.3, it
is difficult to reason about observational equivalences in general. However, a model that
satisfies adequacy and abstractness properties analogous to those of the metalanguage (cf.
Theorems 3.4 and 3.5) provides a new environment in which we can study observational
equivalence.

In general, categorical models of the nu-calculus are sound, adequate and abstract at
ground types (cf. Proposition 3.15).

Theorem 3.16 (Soundness [Sta96]). Let C be a categorical model of the nu-calculus. Let
M ∈ Expσ(s). If s ⊢ M ⇓σ (t)C for C ∈ Canσ(s ⊔ t), then

JMK ̸=s = Jνt.CK ̸=s .

Definition 3.17. We say a cartesian closed category C is non-degenerate if it contains
two non-isomorphic objects.

21

3 Categorical Models of the Nu-Calculus

Theorem 3.18 (Adequacy [Sta96]). Let C be a categorical model of the nu-calculus.
Suppose that C is non-degenerate. For all M1,M2 ∈ Expσ(s),

JM1K̸=s = JM2K̸=s =⇒ s ⊢ M1 ≈σ M2.

Theorem 3.19 (Abstractness at Ground Types [Sta96]). Let C be a categorical model
of the nu-calculus. Let σ be a ground type. For all M1,M2 ∈ Expσ(s),

s ⊢ M1 ≈σ M2 =⇒ JM1K̸=s = JM2K ̸=s .

The adequacy of categorical models means we can use these models to prove observa-
tional equivalences. Conversely, abstractness means we can use these models to prove
that terms are not observationally equivalent.

In general, categorical models do not satisfy abstractness for types more complex than
ground types. We can therefore ask, given a model C, at what types abstractness holds
in C. We say that a model is fully abstract if it is abstract for all types σ. More modestly,
we say that a model is abstract at first-order types if it is abstract for all first-order
types σ. In Chapter 6 we will prove that probabilistic semantics provide a model of the
nu-calculus that is abstract at first-order types.

22

4 Descriptive Set Theory
In this chapter we will define measurable spaces, measures, probability spaces and spaces
of measures, and we will show that the latter form a monad on the category of measurable
spaces. We will also state a result of Aumann [Aum61] showing that the category of
measurable spaces is not cartesian closed. This will motivate the construction of quasi-
Borel spaces in Chapter 5, as we need a cartesian closed category in order to model the
nu-calculus categorically.

We will then define the standard Borel spaces, a particularly nice class of measurable
spaces. We will show that standard Borel spaces admit measure preserving group
structures, which we will use in Chapter 6 to prove the abstractness of our model of the
nu-calculus.

Finally we will define the Borel on Borel families of sets, and we will establish some
basic properties of these families using the existence of Borel inseparable sets. This will
be used in Chapter 6 to prove that the privacy equation holds in our model.

4.1 Measurable Spaces and Measures
Definition 4.1. A measurable space is a set X equipped with a σ-algebra ΣX of subsets
of X. We say a subset B ⊆ X is measurable if B ∈ ΣX . If (X,ΣX) and (Y,ΣY) are
measurable spaces, we say a function f : X → Y is a measurable function if for all B ⊆ Y
measurable in Y , f−1(B) is measurable in X.

The collection of measurable spaces and measurable functions forms the category
Meas.

Example 4.2. Any set X can be turned into a measurable space by taking the σ-algebra
ΣX to be the collection of all subsets of X. We call this the discrete σ-algebra on X.
With this σ-algebra, any function f : X → Y for a measurable space Y is measurable.
Example 4.3. If (X,ΣX) is a measurable space and Y ⊆ X, then Y forms a measurable
space under the subset algebra ΣY = {Y ∩B | B ∈ ΣX}. With the subset algebra, the
inclusion Y → X is measurable.
Example 4.4. If X is any topological space, we can define the Borel σ-algebra on X to be
the smallest σ-algebra containing the open subsets of X. If X,Y are topological spaces,
then any continuous function f : X → Y is measurable when X,Y are equipped with
their Borel algebras.

Notation 4.5. If X is a topological space, we will always assume that it is a measurable
space equipped with its Borel algebra, which we denote B(X). We call the elements of
B(X) Borel sets.

23

4 Descriptive Set Theory

Proposition 4.6. The category of measurable spaces has products and equalizers, and is
therefore complete:

• If {Xi}i∈I are measurable spaces, then the product of these spaces is given by
(X,ΣX), where X = ∏︁

i∈I Xi and ΣX is the smallest σ-algebra on X making the
projections measurable.

• If f, g : X → Y are measurable functions, then the set Z = {x ∈ X | f(x) =
g(x)} ⊆ X with the subset algebra serves as the equalizer of f, g.

However, the following result due to Aumann shows that Meas is not cartesian closed.

Notation 4.7. Let R be a measurable space with the Borel algebra B(R) and let 2 be
a two-point space with the discrete algebra. We let 2R denote the set of measurable
functions R → 2.

Remark 4.8. We can identify B(R) and 2R by letting a Borel set correspond to its
characteristic function. When considering these sets as measurable spaces (with any
σ-algebra), we will denote them by 2R (cf. Theorem 4.9 and Proposition 4.38). This
notation is related to the function spaces we will define in Chapter 5.

Theorem 4.9 (Aumann [Aum61]). There is no σ-algebra on the space 2R of measurable
functions R → 2 such that the evaluation map ev : 2R × R → 2 is measurable.

Definition 4.10. A measure µ on a measurable space (X,ΣX) is a function µ : ΣX →
[0,∞] such that µ(∅) = 0 and µ is σ-additive, meaning that if {Bn | n ∈ ω} ⊆ ΣX is a
countable disjoint family of measurable sets then

µ

(︄⋃︂
n

Bn

)︄
=
∑︂

n

µ(Bn).

If µ(X) = 1, we call µ a probability measure.

Example 4.11. Let R be the space of real numbers with the Borel algebra. The Lebesgue
measure is the unique measure m on R such that m ((a, b)) = b− a for all intervals (a, b)
and such that m is translation invariant: if B ∈ B(R) and r ∈ R,

m(B) = m(B + r).

If we restrict this measure to the interval [0, 1] then m is a probability measure.
Example 4.12. Let (X,ΣX) be any measurable space. For any x ∈ X, we can take δx to
be the map taking B ∈ ΣX to 1 if x ∈ B and 0 otherwise. This is a probability measure
on X called the Dirac measure at x.

Definition 4.13. If X is a measurable space and µ a probability measure on X, we call
the pair (X,µ) a probability space.

Notation 4.14. If µ is a measure on X and f : X → [0,∞], we let
∫︁

X fdµ denote the
usual Lebesgue integral of f with respect to µ.

24

4 Descriptive Set Theory

Definition 4.15. Let (X,ΣX) be a measurable space. We let P(X) be the set of
probability measures on X, and we equip P(X) with the smallest σ-algebra such that
the maps µ ↦→ µ(B) are measurable maps P(X) → [0, 1] for all B ∈ ΣX . We call this
the space of probability measures on X.
Theorem 4.16 (The Giry Monad [Gir82]). Let X,Y by measurable spaces, f : X → P(Y)
a measurable function and µ ∈ P(X) a probability measure on X. For B ⊆ Y measurable,
let

f ∗(µ)(B) =
∫︂

X
f(x)(B)dµ(x).

This gives a probability measure f ∗(µ) ∈ P(Y), and the data (P , δ, (−)∗) defines a strong
monad on Meas. This is called the Giry monad.

4.2 Standard Borel Spaces
We are particularly interested in the standard Borel spaces, which are the measurable
spaces that arise from the Borel algebras on Polish spaces.
Definition 4.17. A Polish space is a separable, completely metrizable topological space.
A standard Borel space is a measurable space that is measurably isomorphic to a Polish
space equipped with its Borel algebra.
Example 4.18. Any countable discrete space is Polish and forms a discrete measurable
space. Thus, all countable discrete measurable spaces are standard Borel.
Example 4.19. The space R of real numbers is Polish so it is a standard Borel space when
equipped with its Borel algebra. So are the unit interval [0, 1], the Cantor space C = 2ω

and the Baire space N = ωω (cf. Proposition 4.21).
Remark 4.20. The space R is not a standard Borel space when equipped with the σ-
algebra of Lebesgue measurable sets. We will always consider R to be equipped with the
Borel algebra B(R). In general, if X is a measurable space and f : (R,B(R)) → X is
measurable, we will say that f is Borel measurable to avoid ambiguity.

The collection of standard Borel spaces satisfies many convenient properties:
Proposition 4.21 ([Kec95, 12.B]). The countable product of standard Borel spaces is
standard Borel.
Theorem 4.22 ([Kec95, 13.4]). If X is standard Borel and B ⊆ X is Borel, then B is
standard Borel with its subset algebra.

The following theorem is interesting in its own right, although we will not need it to
prove our results.
Theorem 4.23 ([Kec95, 17.23]). If X is a standard Borel space, so is P(X).

Finally, we have the following structure theorem for standard Borel spaces.
Theorem 4.24 (Isomorphism Theorem for Standard Borel Spaces [Kec95, 15.6]). If
X,Y are standard Borel spaces with the same cardinality, then X,Y are isomorphic.

In fact, every standard Borel space is either countable and discrete or isomorphic to R.

25

4 Descriptive Set Theory

4.3 Groups with Invariant Probability Measures
Let (X,µ) be a probability space. We would like to find a measure preserving group
structure on X compatible with its measurable structure.
Example 4.25. The Lebesgue measure m is a translation invariant measure on R. Re-
stricting m to the unit interval [0, 1] we get a probability measure. [0, 1] forms a group
under addition mod 1, and because m is translation invariant this is a measure preserving
group structure. The group structure is compatible with the Borel structure of [0, 1]
because addition and subtraction are measurable operations.

More generally, the isomorphism theorem for standard Borel spaces (Theorem 4.24)
can be extended to account for measures, so that if X is a standard Borel space and µ
a continuous measure on X we can construct a measure preserving group structure on
(X,µ) by transferring the structure of [0, 1] onto X.

Definition 4.26. Let X be a measurable space such that for all x ∈ X, the singleton
{x} is measurable. A measure µ on X is continuous if µ({x}) = 0 for all x ∈ X.

Definition 4.27. Let f : X → Y be measurable and let µ be a measure on X. We
define the measure f∗µ on Y by letting

f∗µ(B) = µ(f−1(B))

for all B ⊆ Y measurable. We call this the pushforward measure of µ along f .

Theorem 4.28 (The Isomorphism Theorem for Measures [Kec95, 17.41]). Let (X,µ) be
a standard Borel probability space and suppose µ is continuous. Let m be the Lebesgue
measure on [0, 1]. There is a Borel measurable isomorphism f : [0, 1] → X such that
f∗m = µ.

Definition 4.29. Let G be a measurable space and a group. We say G is a measurable
group, or that the group structure is compatible with the measurable structure of G, if the
map (g, h) ↦→ g · h−1 is a measurable map G×G → G.

Remark 4.30. Note that if G is a measurable group, g ∈ G and B ⊆ G is measurable,
then g ·B is measurable as well.

Definition 4.31. Let (G,µ) be a probability space. We say a group structure on G is
probability measure preserving if it is compatible with the measurable structure of G and
for all B ⊆ G measurable and g ∈ G we have µ(g ·B) = µ(B).

Proposition 4.32. Let (X,µ) be a standard Borel probability space. If µ is continuous,
there is an abelian probability measure preserving group structure on X.

Proof. By Theorem 4.28 there is a Borel measurable isomorphism f : [0, 1] → X such
that µ = f∗m. For x, y ∈ X, we define

x+X y = f(f−1(x) + f−1(y)),

26

4 Descriptive Set Theory

where + is the usual addition mod 1 in [0, 1]. Because f is a Borel isomorphism, this turns
X into a measurable group. It is abelian because [0, 1] is abelian, and it is probability
measure preserving because + is m-preserving:

µ(x+X B) = m(f−1(x) + f−1(B)) = m(f−1(B)) = µ(B).

Measure preserving groups also behave nicely with respect to the lift of the Giry
monad.

Proposition 4.33. Let (G,µ) be a probability space with a probability measure preserving
group structure. Let f : G → P(Y) be a measurable map, and for g ∈ G, write
fg(x) = f(g · x). Then f ∗(µ) = f ∗

g (µ) for all g ∈ G.

Proof. Let B ⊆ Y be measurable. Then

f ∗
g (µ)(B) =

∫︂
X
f(g · x)(B)dµ(x) =

∫︂
X
f(x)(B)dµ(x) = f ∗(µ)(B).

4.4 Borel on Borel Sets
Consider the set 2R of measurable functions R → 2. We have seen in Theorem 4.9 that
there is no σ-algebra on 2R such that the evaluation map is measurable. This space,
however, will be important in our study of quasi-Borel spaces. Of particular interest will
be the σ-algebra of Borel on Borel sets.

Notation 4.34. If X is a set and B ⊆ X × Y , then for any x ∈ X, the x-section of B
is the set Bx = {y ∈ Y | (x, y) ∈ B}.

Definition 4.35. Let X be a standard Borel space. A collection F ⊆ B(X) of Borel
subsets of X is Borel on Borel if for any standard Borel space Y and all Borel sets
B ⊆ Y ×X, {y ∈ Y | By ∈ F} is Borel.

Remark 4.36. Because every standard Borel space is either discrete or isomorphic to R,
we only need to consider a single uncountable standard Borel space Y .

Notation 4.37. We let Σ2R be the collection of Borel on Borel subsets of B(R) = 2R.

Proposition 4.38. The collection Σ2R is a σ-algebra on 2R.

Proof. This follows from the fact that B(R) is a σ-algebra. For example, if {Fn}n∈ω is a
countable collection of Borel on Borel subsets of R, then F = ⋃︁

n Fn is Borel on Borel,
because for any B ⊆ Y × R Borel, we have

{y ∈ Y | By ∈ F} =
⋃︂
n

{y ∈ Y | By ∈ Fn},

which is Borel as the countable union of Borel sets.

27

4 Descriptive Set Theory

We will now consider the probability measures on the measurable space (2R,Σ2R).

Lemma 4.39. Let B ⊆ R × R be Borel. Then the map x ↦→ Bx is a Borel measurable
map R → 2R.

Proof. The preimage of a Borel on Borel set F under this map is

{x ∈ R | Bx ∈ F},

which is Borel because F is Borel on Borel.

Let µ be any continuous probability measure on R, and let f : R → 2R be the Borel
measurable map f(x) = {x} (we see f is measurable by applying Lemma 4.39 to the
diagonal). We are interested in the probability measures δ∅ and f∗µ on 2R. Here, δ∅ is
the Dirac measure at the empty set, and f∗µ measures “how many” singletons are in a
Borel on Borel set F :

f∗µ(F) = µ{x | {x} ∈ F}.
Surprisingly, it turns out that these describe the same measure. That is, in some sense,
the Borel on Borel sets cannot distinguish the empty set from a random singleton.

Theorem 4.40. Let F ⊆ 2R be Borel on Borel. Then ∅ /∈ F if and only if {x} /∈ F for
all but countably many x ∈ R.

To prove this, we use the existence of certain Borel inseparable sets.

Definition 4.41. Let X be a standard Borel space and let A,A′ ⊆ X. We say that A,A′

are Borel separable if there is a Borel set B ∈ B(X) such that A ⊆ B and A′ ∩B = ∅. If
A,A′ are not Borel separable, we say they are Borel inseparable.

Notation 4.42. Let X,Y be sets and F ⊆ X × Y . For any n ∈ ω, we let F n = {x ∈
X | |Fx| = n}.

Theorem 4.43 ([Kec95, 35.2]). Let N = ωω be the Baire space. There is a closed set
F ⊆ N × N such that F 0 and F 1 are Borel inseparable.

Corollary 4.44. If X is a standard Borel space and B ⊆ X is an uncountable Borel set
in X, then there is a Borel set F ⊆ X ×B such that F 0, F 1 are Borel inseparable.

Proof. By Theorems 4.22 and 4.24 we can assume that X = B = N , so this follows from
Theorem 4.43.

We can now prove Theorem 4.40.

Proof of Theorem 4.40. Suppose ∅ /∈ F and let B = {x | {x} ∈ F}. Because F is Borel
on Borel, B is Borel. Now for any F ⊆ R×B, F 0 ⊆ {x | Fx /∈ F} and F 1 ⊆ {x | Fx ∈ F}
so that F 0, F 1 are Borel separable. By Corollary 4.44, B must be countable.

The converse follows by replacing F with F c, which is also Borel on Borel.

As a consequence, for any Borel on Borel set F we have that δ∅(F) = 0 if and only if
f∗µ(F) = 0. By considering F c, which is also Borel on Borel, we have that δ∅(F) = 1 if
and only if f∗µ(F) = 1. It follows that these measures are indeed equal.

28

5 Quasi-Borel Spaces
Probability theory provides a tempting framework in which to interpret the nu-calculus.
For example, we may consider taking R to be our set of names and model fresh name
generation as sampling from a continuous distribution, such as a Gaussian. Intuitively,
this should adequately model fresh name generation as it is improbable to sample the
same number twice.

Unfortunately, we are unable to interpret the nu-calculus in the category of measurable
spaces, as we have seen that this category is not cartesian closed. In fact, we are not
even able to restrict ourselves to spaces of interest, as we have seen in Theorem 4.9 that
once we include the standard Borel spaces there is no exponential object 2R. Thus, if
one wants to interpret a programming language in a category suitable for probabilistic
reasoning, one needs to find an alternative to the category of measurable spaces.

Recently, the category of quasi-Borel spaces has been constructed with the intention
of providing a category suitable for both interpreting a typed lambda-calculus and for
probabilistic reasoning [Heu+17]. Although the intention is to use quasi-Borel spaces
to model probabilistic programming languages, we will use it to construct a model of
the nu-calculus, letting fresh name generation correspond to sampling from a continuous
distribution on R.

In this chapter, we will define the category QBS of quasi-Borel spaces, a cartesian
closed category that includes the standard Borel spaces. We will see that it supports
probabilistic reasoning, as it has both a notion of integration and a probability monad.

We will then prove that quasi-Borel spaces form a categorical model of the nu-calculus,
letting R be the space of names and fresh name generation correspond to sampling from
a continuous distribution.

5.1 The Category QBS
The central object in the study of measurable spaces is the σ-algebra. We then define
measurable functions in terms of σ-algebras on sets. Quasi-Borel spaces, on the other
hand, take as primitive the measurable functions [Heu+17]. We therefore fix a sample
space R and define a quasi-Borel structure on a set X to be a collection of functions
R → X, which we interpret to be the measurable functions.

Definition 5.1. A quasi-Borel space X is a set X equipped with a collection MX of
functions R → X satisfying the following:

• the constant functions are in MX ;

• if α ∈ MX and f : R → R is Borel measurable then α ◦ f ∈ MX ;

29

5 Quasi-Borel Spaces

• if {αn | n ∈ ω} ⊆ MX and {Bn | n ∈ ω} is a countable disjoint cover of R by Borel
sets, then ⋃︁n αn ↾Bn∈ MX .

Notation 5.2. If x ∈ X, let λr.x denote the constant function R → X taking value x.

Definition 5.3. Given two quasi-Borel spaces (X,MX), (Y,MY), a function f : X → Y
is a quasi-Borel map if for all α ∈ MX , we have f ◦ α ∈ MY .

These definitions turn the collection of quasi-Borel spaces and maps into a category,
which we denote QBS. If X,Y are quasi-Borel spaces, we let QBS(X,Y) denote the set
of all quasi-Borel maps X → Y .
Example 5.4. Let (X,ΣX) be a measurable space. We can turn this into a quasi-Borel
space (X,MΣX

) by letting MΣX
be the set of Borel measurable functions R → X.

Similarly, given a quasi-Borel space (X,MX), we can form the measurable space
(X,ΣMX

) by taking ΣMX
to be the largest σ-algebra on X such that the functions in

MX are Borel measurable.
We shall take R to be the quasi-Borel space equipped with the quasi-Borel structure

MR = MB(R) consisting of the Borel measurable functions R → R. This implies that
if (X,MX) is a quasi-Borel space, then MX = QBS(R, X) is exactly the collection of
quasi-Borel maps R → X.

The construction of Example 5.4 provides a nice correspondence between the category
Meas of measurable spaces and QBS.

Theorem 5.5 ([Heu+17, Proposition 15]). Let (Y,ΣY) be a measurable space.

• If (X,MX) is a quasi-Borel space, then f : X → Y is a measurable function
(X,ΣMX

) → (Y,ΣY) if and only if it is a quasi-Borel map (X,MX) → (Y,MΣY
).

• If (X,ΣX) is a standard Borel space, then f : X → Y is a quasi-Borel map
(X,MΣX

) → (Y,MΣY
) if and only if it is a measurable map (X,ΣX) → (Y,ΣY).

Corollary 5.6. The functor (X,ΣX) ↦→ (X,MΣX
) is right adjoint to the functor

(X,MX) ↦→ (X,ΣMX
). In particular, this functor preserves limits.

Proof. The fact that this is an adjunction is exactly the first part of Theorem 5.5. This
functor therefore preserves limits because right adjoints preserve limits.

Corollary 5.7. If (X,ΣX) is a standard Borel space, then

ΣMΣX
= ΣX .

In particular, ΣMR = B(R) is the usual Borel algebra on R.

We will therefore refer to standard Borel spaces such as 2,R and [0,∞] unambiguously
as both measurable spaces and quasi-Borel spaces.

30

5 Quasi-Borel Spaces

5.2 Measures and Integration
As R was chosen to be the principal sample space of QBS, it is natural to choose R to
be the source of randomness as well. Therefore, we take measures on R as fundamental,
and define quasi-Borel measures in general to be the pushforwards of measures on R
[Heu+17].
Definition 5.8. A probability measure on a quasi-Borel space (X,MX) is a pair (α, µ),
where µ is a probability measure on R and α ∈ MX = QBS(R, X).

The pair (α, µ) of a probability measure on a quasi-Borel space X can be seen as the
pushforward measure α∗µ. Indeed, by definition α : R → (X,ΣMX

) is Borel measurable,
and so α∗µ is a probability measure on (X,ΣMX

).
More generally, if f : X → Y is a quasi-Borel map and (α, µ) a measure on X, then

(f ◦ α, µ) is a measure on Y , and so we can push forward measures between arbitrary
quasi-Borel spaces.

We can then reduce integration over general quasi-Borel spaces to integration over R:
Definition 5.9. If f : X → [0,∞] is a quasi-Borel map and (α, µ) is a measure on X,
then we can define the integral of f with respect to (α, µ) to be∫︂

fd(α, µ) =
∫︂
R
(f ◦ α)dµ,

where the integral on the right-hand-side is the usual Lebesgue integral.
By Theorem 5.5 the map f ◦ α : R → [0,∞] is Borel measurable, so this definition

makes sense.

5.3 Function Spaces
We will now provide the construction of product spaces and function spaces in QBS,
showing that it is cartesian closed. Note that the one-point space 1 serves trivially as
terminal object.
Proposition 5.10 (Products [Heu+17, proposition 16]). Let (Xi,MXi

)i∈I be a collection
of quasi-Borel spaces. Then (X,MX) is a quasi-Borel space, where X = ∏︁

I Xi is the
set-theoretic product and

MX = {f : R → X | ∀i ∈ I (πi ◦ f ∈ MXi
)}.

The space X, together with the set-theoretic projections πi : X → Xi, form the categorical
product of (Xi,MXi

) in QBS.
Proposition 5.11 (Function Spaces [Heu+17, proposition 18]). Let (X,MX), (Y,MY)
be quasi-Borel spaces. Then (Y X ,MY X) is a quasi-Borel space, where Y X = QBS(X,Y)
and

MY X = {α : R → Y X | uncurry(α) ∈ QBS(R ×X,Y)}.
Here, uncurry(α)(r, x) = α(r)(x). This makes the evaluation map Y X × X → Y a
quasi-Borel morphism, and exhibits QBS as cartesian closed.

31

5 Quasi-Borel Spaces

If X,Y are standard Borel spaces, then QBS(X,Y) = Meas(X,Y) by Theorem 5.5.
Therefore, the set Y X is the set of measurable functions X → Y . As we have seen in
Theorem 4.9 this set does not admit a nice measurable structure making evaluation
measurable. It does, however, admit a nice quasi-Borel structure.
Example 5.12. Consider the quasi-Borel space 2R. We identify the set 2R with the
collection B(R) of Borel subsets of R. A function f : R → 2R is quasi-Borel if and only
if uncurry(f) : R × R → 2 is Borel measurable. This means that there is a Borel set
B ⊆ R × R such that f(r) = Br for all r ∈ R.

Given such a B, we see that for F ⊆ 2R we have

f−1(F) = {r ∈ R | Br ∈ F}.

Therefore, a set F ⊆ 2R is in the induced σ-algebra Σ2R if and only if for all B ⊆ R × R
Borel, {r ∈ R | Br ∈ F} is Borel, and so Σ2R consists exactly of the Borel on Borel
families of subsets of R.
Remark 5.13. The Borel on Borel σ-algebra on 2R induced from the quasi-Borel structure
on 2R does not contradict Theorem 4.9, as it does not make the evaluation map 2R×R → 2
measurable in Meas. This is because in general, the functor QBS → Meas does not
preserve limits, and so the σ-algebra Σ2R×R on 2R×R induced by the quasi-Borel structure
may be strictly larger than the product σ-algebra Σ2R × B(R) on 2R × R.

5.4 Probability Spaces
Given a quasi-Borel space X we can construct the space of probability measures on X.
This will form a monad on QBS just as it does in Meas.

As with the basic construction of quasi-Borel spaces and integration, the quasi-Borel
structure on the space of measures will be derived from the structure of the Giry monad
on the space P(R) of probability measures on R.
Remark 5.14. At the moment, we have defined probability measures on a quasi-Borel
space intensionally. For example, let f : R → 2R be the map f(x) = {x} and µ be a
continuous probability measure on R. We can then form the distinct quasi-Borel measures
(λr.∅, µ) and (f, µ) on 2R.

However, we have seen in Section 4.4 that these describe the same pushforward measures
on 2R. Therefore, despite having distinct descriptions, these measures behave identically.
We will choose to identify measures that behave the same, and will define the space of
probability measures extensionally.

Definition 5.15. Let X be a quasi-Borel space and (α, µ), (β, ν) be measures on X. We
identify these two measures and write (α, µ) ∼ (β, ν) if for all f ∈ QBS(X, [0,∞]),∫︂

fd(α, µ) =
∫︂
fd(β, ν).

If (α, µ) is a measure on X, we denote its equivalence class by [α, µ]∼.

32

5 Quasi-Borel Spaces

Remark 5.16. By Theorem 5.5, a function f : X → [0,∞] is a quasi-Borel map (X,MX) →
[0,∞] if and only if it is a measurable map (X,ΣMX

) → [0,∞]. Therefore, if (α, µ), (β, ν)
are measures on X, we have that (α, µ) ∼ (β, ν) if and only if α∗µ = β∗ν as measures on
(X,ΣMX

).

Definition 5.17. Let (X,MX) be a quasi-Borel space. We define the set of probability
measures on X to be the quotient

P (X) = {(α, µ) | α ∈ MX , µ ∈ P(R)}/ ∼ .

We let P (X) be the quasi-Borel space whose quasi-Borel structure is given by

MP (X) = {β : R → P (X) | ∃α ∈ MX , g : R → P(R) measurable s.t. β(r) = [α, g(r)]∼}.

Note that in this definition, the map g : R → P(R) is a Borel measurable map
R → P(R), which we have already defined independently of quasi-Borel spaces, and so
this definition is not circular.

We will now define a probability monad for QBS analogous to the Giry monad.

Definition 5.18. LetX be a quasi-Borel space. For x ∈ X, we let δx = [λr.x, µ]∼ ∈ P (X)
be the Dirac measure at x on X, where µ is any probability measure on R. This is a
measure on X because the constant functions are always quasi-Borel maps.

Now suppose that f : X → P (Y) for quasi-Borel spaces X,Y . We would like to define
a lift operator f ∗ : P (X) → P (Y). To do this, consider [α, µ]∼ ∈ P (X). The map
f ◦α : R → P (Y) is a quasi-Borel map, and so f ◦α ∈ QBS(R, P (Y)) = MP (Y). We can
therefore find β ∈ MY and g : R → P(R) Borel measurable such that f ◦α(r) = [β, g(r)]∼.
We then define

f ∗([α, µ]∼) = [β, g∗(µ)]∼,
where g∗(µ) is the lift of the Giry monad.

Theorem 5.19 ([Heu+17, Theorem 21, Proposition 22]). The structure (P, δ, (−)∗)
forms a strong monad on QBS. Additionally, the monad P corresponds to the functor
on QBS taking f : X → Y to P (f) : P (X) → P (Y), defined by

P (f)([α, µ]∼) = [f ◦ α, µ]∼.

The monad P is commutative, meaning that if p ∈ P (X), q ∈ P (Y) and f : X × Y →
P (Z), then

(λx.(λy.f(x, y))∗(q))∗ (p) = (λy.(λx.f(x, y))∗(p))∗ (q).
If (X,ΣX) is a standard Borel space and we construct the space (P (X),MP (X)) by

considering (X,MΣX
) to be a quasi-Borel space, then the measurable space (P (X),ΣMP (X))

we obtain from this is isomorphic to the standard Borel space P(X). In particular, we
can identify P (R) and P(R).

The commutativity of this monad corresponds to the commutativity of integration, i.e.
Fubini’s Theorem.

33

5 Quasi-Borel Spaces

5.5 Interpreting the Nu-Calculus in QBS
Let ν be a continuous measure on R. We will now show that by letting R be the set of
names and new consist of sampling from ν, QBS is a categorical model of the nu-calculus,

Lemma 5.20. The initial object 0 in QBS is the empty set. The coproduct 1 + 1 in
QBS is the standard Borel space 2, and this coproduct is disjoint.

Proof. That the empty set is the initial object and the terminal object is the one-point
set 1 = {∗} is clear. Write 2 = {T, F} and let true, false : 1 → 2 be the two inclusions.
To see that this turns 2 into the coproduct 1 + 1, we must show that if x, y ∈ X for any
quasi-Borel space X, then the map T ↦→ x, F ↦→ y is a quasi-Borel map 2 → X, which is
clear as we have chosen 2 to have the standard Borel structure.

To see that this coproduct is disjoint, we must show that if we have the following
commuting diagram

X

0 1

1 2

f

g
false

true

then f, g factor through a unique map X → 0. But this is clear because if this diagram
commutes then for all x ∈ X, T = (true ◦g)(x) = (false ◦f)(x) = F , so X must itself be
empty.

Lemma 5.21. The space R is decidable.

Proof. We first check this in Meas. The equality map eq : R × R → 2 is clearly Borel
measurable. It remains to check that the square

R R × R

1 2

∆

eq

true

is a pullback. To see this, we must show that if g : X → R × R is a Borel measurable
map and g(X) ⊆ ∆ = {(r, r) | r ∈ R}, then there is a unique h : X → R such that
g(x) = (h(x), h(x)). But this is clear, as we are forced to take h = π ◦ g.

Now products and pullbacks are limits, and the spaces 1, 2,R,R × R are all standard
Borel spaces. Therefore by Theorem 5.5 and Corollary 5.6 this is a pullback in QBS.

Lemma 5.22. The equalizer R ̸=s → R|s| of the maps

R|s| 2
eq◦⟨πi,πj⟩

false

for 1 ≤ i < j ≤ |s| exists for all finite sets s.

34

5 Quasi-Borel Spaces

Proof. Again we first check this in Meas. In this case, this is clear as we can take R̸=s to
be the subset of R|s| consisting of the |s|-tuples with distinct coordinates along with the
inclusion map into R|s|. Now equalizers are limits and by Theorem 4.22 R̸=s is standard
Borel, so by Theorem 5.5 and Corollary 5.6 this is an equalizer in QBS.

We have now seen that QBS is a cartesian closed category with a strong monad.
The coproduct 2 is disjoint, R is decidable, and the appropriate equalizers exist. In
order to show that QBS is indeed a categorical model of the nu-calculus, it remains to
show that sampling from ν satisfies the DROP, SWAP and FRESH rules as specified in
Definition 3.14.

That these rules hold under our probabilistic interpretation is not surprising. The
DROP rule says that

∫︁
R adν = a for any constant a, which holds because we have chosen

ν to be a probability measure. The SWAP rule is an application of the Fubini theorem,
saying that we can swap the order of integration when integrating with respect to ν twice.
The FRESH rule says that we can ignore singletons when integrating: for any a ∈ R,∫︂

R
f(r)dν(r) =

∫︂
R\{a}

f(r)dν(r).

This condition holds because we chose ν to be a continuous measure, so singletons have
measure zero. This is why we chose ν to be a continuous probability measure on R.

Lemma 5.23. The measure ν satisfies the conditions on new of Definition 3.14:

1. For any map f : X → P (Y), we have f(x) = (λr.f(x))∗(ν).

2. For any map g : X × R × R → P (Y), we have

(λr.(λr′.g(x, r, r′))∗(ν))∗(ν) = (λr′.(λr.g(x, r, r′))∗(ν))∗(ν).

3. For any map h : X × 2 × R × R → P (Y), we have

(λr′.h(x, eq(r, r′), r, r′))∗(ν) = (λr′.h(x, false, r, r′))∗(ν).

Proof. 1. Let f : X → P (Y). For any x ∈ X, we can write f(x) = [α, µ]∼ ∈ P (Y).
Now we can compute from the Giry monad that

(λr.µ)∗(ν) =
∫︂
R
µdν(r) = µ

because µ is a constant. Therefore,

(λr.[α, µ]∼)∗(ν) = [α, (λr.µ)∗(ν)]∼ = [α, µ]∼,

and so (λr.f(x))∗(ν) = f(x).

2. This is exactly the commutativity of the monad P applied to ν (cf. Theorem 5.19).

35

5 Quasi-Borel Spaces

3. Let r ∈ R, let f : R → P (R×2) be the map f(y) = δ(y,r=y) and let g : R → P (R×2)
be the map g(y) = δ(y,false). We claim that f ∗(ν) = g∗(ν).
To see this, note that R,R × 2 are standard Borel spaces, so by Corollary 5.6
and Theorem 5.19 we can consider f, g to be Borel measurable maps R → P(R× 2)
and we must show that f ∗(ν) = g∗(ν) in terms of the Giry monad.
Because ν is a continuous measure, f = g almost everywhere, so f ∗(ν) = g∗(ν).
Specifically, if B ⊆ R × 2 then

f ∗(ν)(B) =
∫︂
R\{r}

δ(y,r=y)(B)dν(y) =
∫︂
R\{r}

δ(y,false)(B)dν(y) = g∗(ν)(B).

Now let h : X × 2 × R × R → P (Y) be a quasi-Borel map, and fix x ∈ X, r ∈ R.
Let h1(y) = h(x, r = y, r, y) and let h2(y) = h(x, false, r, y). Then

h∗
1(ν) =

∫︂
R×2

h(x, b, r, y)df ∗(ν)(y, b) =
∫︂
R×2

h(x, b, r, y)dg∗(ν)(y, b) = h∗
2(ν),

as desired.

Theorem 5.24. QBS with the probability monad and any continuous probability measure
on R interpreting new is a categorical model of the nu-calculus.

Proof. We have shown that QBS is a cartesian closed category with a strong monad.
The maps δR : R → P (R) and δ2 : 2 → P (2) are clearly injective (as they are injective in
Meas), validating the MONO rule at ground types. Lemmas 5.20 to 5.23 show that QBS
satisfies all of the remaining requirements to be a categorical model of the nu-calculus,
letting R be the set of names and new = ν be a continuous probability measure on R.

As QBS with the probability monad is a categorical model of the nu-calculus, it
is sound, adequate and abstract at ground types (cf. Theorems 3.16, 3.18 and 3.19).
Additionally, the metalanguage of the nu-calculus translates directly to terms in QBS.
We include an explicit translation in Fig. 5.1 for convenience (cf. Fig. 3.5). We note in
particular that the trivial computation [a] corresponds to the Dirac measure δa at a, and
that let expressions translate to averaging measures via the lift of the monad.
Remark 5.25. In general, there is nothing special about our choice of R as the fundamental
sample space of QBS. By the isomorphism theorem for standard Borel spaces, we could
instead have chosen any uncountable standard Borel space [Heu+17, Propositions 9, 13,
23].

Similarly, the proofs in this section that QBS is a categorical model of the nu-calculus
do not depend on our choice of uncountable standard Borel space X and continuous
probability measure ν on X.

36

5 Quasi-Borel Spaces

x : A ∈ Γ
Γ ⊢ x : A ↦−→ πA : Γ → A

Γ ⊢ new : TName ↦−→ Γ → 1 ν−→ P (R)

Γ ⊢ true : Bool ↦−→ Γ → 1 true−−→ 2

Γ ⊢ false : Bool ↦−→ Γ → 1 false−−→ 2

Γ ⊢ n : Name Γ ⊢ m : Name
Γ ⊢ eq(n,m) : Bool ↦−→

n : Γ → R m : Γ → R
Γ ⟨n,m⟩−−−→ R × R eq−→ 2

Γ ⊢ b : Bool Γ ⊢ a : A Γ ⊢ a′ : A
Γ ⊢ cond(b, a, a′) : A ↦−→

b : Γ → 2 a : Γ → A a′ : Γ → A

Γ ⟨b,a,a′⟩−−−−→ 2 × A× A
condA−−−→ A

Γ, x : A ⊢ a : B
Γ ⊢ λx : A.a : A → B ↦−→

b : Γ × A → B

curry(b) : Γ → BA

Γ ⊢ f : A → B Γ ⊢ a : A
Γ ⊢ fa : B ↦−→

f : Γ → BA a : Γ → A

Γ ⟨f,a⟩−−→ BA × A
ev−→ B

Γ ⊢ a : A
Γ ⊢ [a] : TA ↦−→

a : Γ → A

Γ a−→ A
δ−→ P (A)

Γ ⊢ e : TA Γ, x : A ⊢ e′ : TB
Γ ⊢ let x ⇐ e in e′ : TB ↦−→

e : Γ → P (A) e′ : Γ × A → P (B)

Γ ⟨1,e⟩−−→ Γ × P (A) (e′)∗

−−→ P (B)

Figure 5.1: Translating the metalanguage to maps in QBS

37

6 Abstractness at First-Order Types
Fix a continuous probability measure ν on R. We have shown that by interpreting new to
be this measure, quasi-Borel spaces provide a categorical model of the nu-calculus. In this
chapter we will prove that QBS is abstract at first-order types under this interpretation,
meaning that if σ is a first-order type and M1,M2 ∈ Expσ(s), then

s ⊢ M1 ≈σ M2 =⇒ JM1K̸=s = JM2K ̸=s .

In order to do this, we will first introduce the privacy equation, which will serve as a
basic test for higher-order abstractness. We will show that QBS satisfies the privacy
equation, introducing techniques that will be essential in our general proof of abstractness.

We will then construct a normal form for logical relations at first-order types. We will
show that in order to prove abstractness at first-order types, it is both necessary and
sufficient to show that passing to these normal forms preserves denotational equality.

Using the probability measure preserving group structure of Section 4.3 we will prove
that normal forms preserve equality in QBS, completing our proof of abstractness. Our
proof will use the ideas introduced in the proof of the privacy equation, along with an
inductive construction on the structure of terms and their normal forms.

6.1 The Privacy Equation
The following well-known higher-order observational equivalence, established in Exam-
ple 2.15 using the logical relations, is hard to model:

λx : N. false ≈N→B νn.λx : N.x = n. (6.1)

This equivalence states, essentially, that a fixed freshly generated name will never coincide
with any other name. When proving higher-order abstractness of a categorical model of
the nu-calculus, this equation, which we will call the privacy equation, is a good initial
equivalence to consider.

In this section, we will show that QBS satisfies the privacy equation. This will serve
both as an indication that QBS validates some amount of higher-order abstractness, as
well as the base for our proof of abstractness in Section 6.3.
Remark 6.1. The equivalence of (6.1) states that a fixed freshly generated name will
never coincide with any other name. This is similar to but distinct from the FRESH rule
of the metalanguage, which asserts that any given name will not coincide with a fresh
one. The difference is the order in which the name is given and the fresh name generated,
and the distinction is related to the fact that ν and λ don’t commute (cf. Example 2.8).

38

6 Abstractness at First-Order Types

Specifically, the freshness criterion implies that

Jλx : N.νn.x = nK = Jλx : N. falseK ,

should hold in an abstract categorical model. In fact, it is easy to prove this holds in
any model by abstractness at ground types. On the other hand, the equivalence of (6.1)
asserts that we should be able to prove

Jνn.λx : N.x = nK = Jλx : N. falseK .

We will show that this equality holds in QBS, although this need not be the case in
general models.

Definition 6.2. Let C be a categorical model of the nu-calculus. We say that C satisfies
the privacy equation if the following equality holds in C:

Jνn.λx : N.x = nK = Jλx : N. falseK .

This equation is about the equality of elements of T (N → T (1 + 1)). Specifically, if
we translate this into an equation in our category (cf. Fig. 3.4), this asserts that

let n ⇐ new in [λx.[x = n]] = [λx.[false]].

In order to show that privacy holds in QBS we will first prove a similar — but distinct
— equality in QBS (Proposition 6.4). This equality can be interpreted as the privacy
equation of the metalanguage, and will be instrumental to our proofs of privacy and of
abstractness at first-order.
Remark 6.3. Recall that we can identify the set 2R with the collection B(R) of Borel
subsets of R. In particular, this means that the evaluation map ev : 2R × R → 2 is the
“inclusion check” (B, x) ↦→ x ∈ B.

Proposition 6.4. The following equality holds between elements of P (2R) in QBS:∫︂
[{n}]dν = [∅].

Proof. These terms correspond to the measures (λr.∅, ν) and (λr.{r}, δx)∗(ν) = (λr.{r}, ν)
on 2R. We must therefore show that these are equal as pushforward measures on 2R

equipped with the Borel on Borel algebra:

(λr.∅)∗(ν) = (λr.{r})∗(ν).

This was established in Section 4.4 as a consequence of Theorem 4.40.

We can now prove that privacy holds in QBS.

Theorem 6.5 (Privacy in QBS). The privacy equation holds in QBS.

39

6 Abstractness at First-Order Types

Proof. Define a function h : P (2R) → P (P (2)R) by

h(µ) =
∫︂

2R
[λx.[x ∈ B]]dµ(B).

This is a quasi-Borel morphism as it is definable in the metalanguage. We verify using
the rules of the metalanguage that

h([∅]) = [λx.[false]],

h
(︃∫︂

{n}dν
)︃

=
∫︂

[λx.[x = n]]dν.

By Proposition 6.4, we have that

Jλx : N. falseK = h([∅]) = h
(︃∫︂

[{n}]dν
)︃

= Jνn.λx : N.x = nK .

6.2 A Normal Form for Logical Relations
In this section we will construct a normal form that preserves logical relations, and
therefore observational equivalence. We will then show that logically related terms
have the same normal forms, providing a convenient way to reason about observational
equivalence and abstractness.

Everything in this section will be done only for terms of first-order type.

6.2.1 η-Normal Forms
In order to construct the normal forms for logical relations, we need an η-normal form
for canonical terms at first-order types. We will show that converting a term to η-normal
form preserves both logical relations and equality in the metalanguage, so that we are
able to assume all canonical terms are of this form, whether reasoning about observational
equivalence or proving denotational equalities in categorical models (cf. Proposition 3.15).

Notation 6.6. Let s = {n1, . . . , nk} be a set of k distinct names. We let the nu-calculus
term

case x ∈ s then Mx else M0

denote the expression

if x = n1 then Mn1 else (if x = n2 then Mn2 else (· · · (if x = nk then Mnk
else M0) · · ·)).

Definition 6.7 (η-Normal Forms). Let σ be a first-order type and let C ∈ Canσ(s). We
construct the normal form D ∈ Canσ(s) for C by induction on σ.

If σ is a ground type, we let D = C. Otherwise, we consider the cases where σ = B → τ
and σ = N → τ separately.

40

6 Abstractness at First-Order Types

Suppose σ = B → τ and write C = λx : B.M for M ∈ Expτ (s, {x : B}). By
Termination (Theorem 2.3), we can find sets of names t0, t1 and canonical terms Ci ∈
Canτ (s ⊔ ti) such that

s ⊢ M [true /x] ⇓τ (t1)C1 and s ⊢ M [false /x] ⇓τ (t0)C0.

As τ is a smaller type than σ, we have already constructed η-normal forms D0, D1 for
C0, C1. We then let

D = λx : B.if x = true then νt1.D1 else νt0.D0.

Now suppose that σ = N → τ and write C = λx : N.M for M ∈ Expτ (s, {x : N}). By
Termination, for each n ∈ s we can find a set of names tn and a term Cn ∈ Canτ (s ⊔ tn)
such that s ⊢ M [n/x] ⇓τ (tn)Cn. Also by Termination we can find names t0 and a term
C0 ∈ Canτ (s ⊔ {x} ⊔ t0) such that s ⊔ {x} ⊢ M ⇓τ (t0)C0. As τ is a smaller type than σ,
we have already constructed η-normal forms Dn for Cn (n ∈ s) and D0 for C0. We then
let

D = λx : N.case x ∈ s then νtx.Dx else νt0.D0.

We will now show that passing to η-normal form preserves equality in the metalanguage,
and hence that terms are logically related to their η-normal forms.
Lemma 6.8. If M ∈ Expσ(s,Γ ⊔ {x : N}), then for all n ∈ s,

Js,Γ ⊔ {x : N}K ; (̸= s), x = n ⊢ JMK = JM [n/x]K

is provable in the metalanguage. Similarly, if M ∈ Expσ(s,Γ ⊔ {x : B}), then for
b = true, false the metalanguage proves

Js,Γ ⊔ {x : B}K ; (̸= s), x = b ⊢ JMK = JM [b/x]K .

Proof. This is a simple proof by induction on the structure of M , using the fact that
equality is preserved by the formation of terms.
Lemma 6.9. If the metalanguage proves

Js, x : NK ; (̸= s ⊔ {x}) ⊢ a = b and Js, x : NK ; (̸= s), x = n ⊢ a = b

for all n ∈ s, then
Js, x : NK ; (̸= s) ⊢ a = b

is also provable in the metalanguage.
Proof. Let s = {n1, . . . , nk} and let Φi = {x ̸= n1, . . . , x ̸= ni} for i ≤ k. We argue by
induction on (k − i) that Js ⊔ {x}K ; (̸= s),Φi ⊢ a = b. The case i = k is given. Now
suppose we have shown this for i+ 1. Using the equational rule for Booleans, we see that

Js ⊔ {x}K ; (̸= s),Φi+1 ⊢ a = b Js ⊔ {x}K ; (̸= s),Φi, x = ni+1 ⊢ a = b

Js ⊔ {x}K ; (̸= s),Φi ⊢ a = b
,

so it suffices to show that

Js ⊔ {x}K ; (̸= s),Φi, x = ni+1 ⊢ a = b,

which follows because Js ⊔ {x}K ; (̸= s), x = ni+1 ⊢ a = b.

41

6 Abstractness at First-Order Types

Proposition 6.10. Let σ be a first-order type and C ∈ Canσ(s), and suppose that D is
the η-normal form for C. Then JsK ; (̸= s) ⊢ |C| = |D| is provable in the metalanguage.

In particular, the metalanguage proves JsK ; (̸= s) ⊢ JCK = JDK, and JCK ̸=s = JDK̸=s in
all categorical models of the nu-calculus.

Proof. We prove this by induction on σ. If σ is a ground type this is obvious. Now
consider C = λx.M .

Suppose that σ = B → τ and that we have already proven this for canonical terms of
type τ . Then we have sets of names t0, t1 and canonical terms Ci ∈ Canτ (s ⊔ ti) such
that

s ⊢ M [true /x] ⇓τ (t1)C1 and s ⊢ M [false /x] ⇓τ (t0)C0.

Letting D0, D1 be the η-normal forms for C0, C1, we have that

D = λx : B.if x = true then νt1.D1 else νt0.D0.

By our inductive hypothesis and the FRESH rule, JsK ; (̸= s) ⊢ Jνti.CiK = Jνti.DiK. By
Soundness (Theorem 3.3),

JsK ; (̸= s) ⊢ Jνt1.C1K = JM [true /x]K and JsK ; (̸= s) ⊢ Jνt0.C0K = JM [false /x]K .

Therefore, it suffices to show

Js, x : BK ; (̸= s), x = true ⊢ JMK = JM [true /x]K ,
Js, x : BK ; (̸= s), x = false ⊢ JMK = JM [false /x]K ,

which follow by Lemma 6.8.
Now suppose that σ = N → τ and that we have already proven this for canonical terms

of type τ . We have, for n ∈ s, a set of names tn and a canonical term Cn ∈ Canτ (s ⊔ tn)
such that s ⊢ M [n/x] ⇓τ (tn)Cn, and we have a set of names t0 and a canonical term
M0 ∈ Canτ (s ⊔ {x} ⊔ t0) such that s ⊔ {x} ⊢ M ⇓τ (t0)C0. Letting Dn, D0 be the
corresponding η-normal forms, we have that

D = λx : N.case x ∈ s then νtx.Dx else νt0.D0.

By our inductive hypothesis and the FRESH rule,

JsK ; (̸= s) ⊢ Jνtn.CnK = Jνtn.DnK and Js ⊔ {x}K ; (̸= s ⊔ x) ⊢ Jνt0.C0K = Jνt0.D0K .

By Soundness,

JsK ; (̸= s) ⊢ Jνtn.CnK = JM [n/x]K and Js ⊔ {x}K ; (̸= s ⊔ {x}) ⊢ Jνt0.C0K = JMK .

If follows by Lemmas 6.8 and 6.9 that

Js, x : NK ; (̸= s) ⊢ JMK = Jcase x ∈ s then νtx.Dx else νt0.D0K ,

so that JsK ; (̸= s) ⊢ |C| = |D|.
This of course implies that JsK ; (̸= s) ⊢ JCK = JDK, and so so by Proposition 3.15 the

analogous statement holds in all categorical models of the nu-calculus.

42

6 Abstractness at First-Order Types

Proposition 6.11. Let C ∈ Canσ(s) for a first-order type σ and let D be the η-normal
form for C. Then C (Ids)σ D.

Proof. This follows by an easy induction on the structure of the terms. Alternatively, by
Proposition 6.10 and Theorem 3.4 we have s ⊢ C ≈σ D, so by Theorem 2.14 we have
C (Ids)σ D.

By Proposition 6.10, when reasoning in categorical models of the nu-calculus — in
particular QBS — we can always assume canonical terms are in η-normal form. Similarly,
by Proposition 6.11, when reasoning about logical relations and observational equivalence
we may always assume canonical terms are in η-normal form.

We also note that the η-normal form is well-defined:

Proposition 6.12. Let σ be a first-order type and C ∈ Canσ(s), and suppose that D is
an η-normal form for C. Then D is well-defined up to the renaming of bound variables
and names.

Proof. This follows from the assertion in Theorem 2.3 that expressions of the nu-calculus
evaluate to unique canonical terms.

6.2.2 Construction of the Normal Form
We will now construct a normal form for terms of first-order type. To do this we will use
logical relations, which coincide with observational equivalence at first-order types.
Example 6.13. Consider the term νn.λx : N.x = n. In Example 2.15 we showed using
logical relations that it is observationally equivalent to the term λx : N. false, which omits
the name n.
Example 6.14. Consider the term

C = λx : N.if x = a then b else if x = b then a else x.

Given names a, b, this is a function that swaps a and b and is otherwise the identity.
If we let s = {a, b}, it is clear that s ⊢ C ≈N→N C, so that C (Ids)N→N C. It is also

easy to verify that the relation C ∅N→N C holds — intuitively, this is because for C to
return a one must know b and to return b one must know a, and we are not given either
of them.

We then eliminate a, b by defining N = (λx : N.x). Because C ∅N→N C, it is clear that
C ∅N→N N . Therefore we have νa.νb.C ∅N→N N , which implies that νa.νb.C ≈N→N N .
Thus, N is a term that is equivalent to νa.νb.C, eliminating the names a, b.

As we can see in this example, the choice of partial bijection in the logical relations
is not unique, leading to many possible choices of names to exclude. Therefore, in our
construction of the normal form, we will consider the minimal partial bijections that
satisfy the logical relation.

43

6 Abstractness at First-Order Types

Lemma 6.15. The logical relations are transitive at first-order types σ. This means that
if Mi ∈ Expσ(si) for i = 0, 1, 2 and R : s0 ⇌ s1, S : s1 ⇌ s2 are partial bijections such
that M0 Rσ M1 and M1 Sσ M2, then M0 (R ◦ S)σ M2. Here R ◦ S denotes composition of
relations, meaning that m (R ◦ S)n iff there is some z such that mRz and z S n.

Proof. We prove this by induction on the structure of our terms. We first consider the
case that Mi = Ci are canonical. If σ is a ground type, then this is clear. Otherwise,
σ = B → τ or σ = N → τ for some first-order type τ , and we assume by induction that
we have already shown that logical relations are transitive for expressions of type τ .

If σ = B → τ , then by Proposition 2.13 we need to show that for b = true, false we
have C0b (R ◦ S)τ C2b. By assumption, C0bRτ C1b and C1b Sτ C2b, so this follows by
transitivity at type τ .

If σ = N → τ , then by Proposition 2.13 we need to show that for (m,n) ∈ R ◦ S we
have C0m (R ◦ S)τ C2n, and for n /∈ s0 ∪ s2 we have C0n

(︂
(R ◦ S) ⊔ Id{n}

)︂
τ
C2n. In the

first case, there is some z ∈ s1 such that mRz and z S n. By assumption, C0mRτ C1z
and C1z Sτ C2n, so this follows by transitivity at type τ . In the second case, we note that
(R ◦ S) ⊔ Id{n} = (R⊔ Id{n}) ◦ (S ⊔ Id{n}), so this again follows by transitivity at type τ .

Now consider the case of expressions and suppose we have proven transitivity for
canonical terms of type σ. Let Ci ∈ Canσ(si ⊔ ti) be chosen such that si ⊢ Mi ⇓σ (ti)Ci.
Because M0 Rσ M1 and M1 Sσ M2, there are partial bijections R′ : t0 ⇌ t1 and S ′ : t1 ⇌ t2
such that C0 (R⊔R′)σ C1 and C1 (S⊔S ′)σ C2. Note that (R⊔R′)◦(S⊔S ′) = (R◦S)⊔(R′◦
S ′), so by transitivity for canonical terms of type σ we have C0 ((R ◦ S) ⊔ (R′ ◦ S ′))σ C2
and so M0 (R ◦ S)σ M2.

Proposition 6.16. Let σ be a first-order type and M ∈ Expσ(s ⊔ t). There is a unique
minimal s ⊆ u ⊆ s ⊔ t such that M (Idu)σ M .

Proof. If s ⊆ u0, u1 ⊆ s⊔t, M (Idu0)σ M and M (Idu1)σ M , then Idu0 ◦Idu1 = Id(u0∩u1) so
by Lemma 6.15 we have M (Id(u0∩u1))σ M . We can therefore take u to be the intersection
of all such sets.

Remark 6.17. The minimal u in Proposition 6.16 depends on the choice of s. In general,
if we were to partition the names differently, letting s ⊔ t = s′ ⊔ t′, then the minimal
s′ ⊆ u′ such that M (Idu′)σ M need not be the same as u.

Corollary 6.18. Let σ be a first-order type. Let Mi ∈ Expσ(s ⊔ ti) and suppose there
is some R : t1 ⇌ t2 such that M1 (Ids ⊔ R)σ M2. Let ui ⊆ ti be the minimal set such
that Mi (Ids⊔ui

)σ Mi. Then after possibly renaming names in ui we have u1 = u2 = u,
Idu ⊆ R and M1 (Ids⊔u)σ M2.

Proof. We know that R ◦R−1 = IdDom(R), so M1 (Ids⊔Dom(R))σ M1 by Lemma 6.15. By
minimality, u1 ⊆ Dom(R).

Now consider the restriction R ↾u1 of R to u1. Because R ↾u1= Idu1 ◦R, we have by
Lemma 6.15 that M1 (Ids ⊔R ↾u1)σ M2.

A symmetric argument shows that u2 is contained in the range of R ↾u1 . By minimality
of u1, this must be a bijection. Therefore, after renaming names, we can assume that
u1 = u2 = u and R ↾u= Idu.

44

6 Abstractness at First-Order Types

We are now ready to define the normal form for logical relations.

Definition 6.19 (Normal Form for Logical Relations). Let σ be a first-order type.
Let M ∈ Expσ(s ⊔ t) and suppose that M (Ids)σ M . We define the normal form
⟨M, s⟩ ∈ Expσ(s); in the case that M = C ∈ Canσ(s ⊔ t), the term ⟨C, s⟩ will be
canonical as well. We construct this by induction on the type σ, and we break this up
into four cases: canonical terms of ground type, canonical terms of type B → τ , canonical
terms of type N → τ and expressions.

Ground case: If σ is a ground type and C is canonical, then we let ⟨C, s⟩ = C.
Function case B → τ : Suppose C is a canonical term of type B → τ and that we

have already constructed normal forms for expressions of type τ . Let D be the η-normal
form of C, so that

D = λx : B.if x = true then M1 else M0

for someM1,M0 ∈ Expτ (s⊔t). By Proposition 6.11 we have C (Ids)σ D, so by Lemma 6.15
we have D (Ids)σ D. This implies that M1 (Ids)τ M1 and M0 (Ids)τ M0. We then define

⟨C, s⟩ = λx : B.if x = true then ⟨M1, s⟩ else ⟨M0, s⟩.

Function case N → τ : Suppose that C is a canonical term of type N → τ and that we
have already constructed normal forms for expressions of type τ . Let D be the η-normal
form of C, so that

D = λx : N.case x ∈ s ⊔ t then Mx else M0

for some Mn ∈ Expτ (s ⊔ t) (n ∈ s ⊔ t) and M0 ∈ Expτ (s ⊔ t ⊔ {x}). By Proposi-
tion 6.11 we have C (Ids)σ D, so by Lemma 6.15 we have D (Ids)σ D. This implies that
M0 (Ids⊕{x})τ M0 and Mn (Ids)τ Mn for all n ∈ s. We then define

⟨C, s⟩ = λx : N.case x ∈ s then ⟨Mx, s⟩ else ⟨M0, s ⊔ {x}⟩.

Expression case: Suppose that we have constructed normal forms for canonical
terms of type σ. Because M (Ids)σ M , there is some C ∈ Canσ(s ⊔ t ⊔ u ⊔ w) such that
s ⊔ t ⊢ M ⇓σ (u ⊔ w)C and C (Ids⊔u)σ C. By Proposition 6.16, we can assume that u is
the unique minimal subset of u⊕ w such that this holds. We then define

⟨M, s⟩ = νu. ⟨C, s ⊔ u⟩ .

Notation 6.20. If s = ∅, we will write ⟨M⟩ to denote the normal form of (M, ∅).

Example 6.21. We can compute the following normal forms:

1. ⟨νn.λx : N.x = n⟩ = λx : N. false. To see this, note that

νn.λx : N.x = n ⇓N→B (n)λx : N.x = n and (λx : N.x = n) ∅N→B (λx : N.x = n).

The term x = n is an abbreviation for if x ∈ {n} then true else false, so that

⟨νn.λx : N.x = n⟩ = ⟨λx : N.x = n⟩ = λx : N. false .

45

6 Abstractness at First-Order Types

2. ⟨νa.νb.λx : N.if x = a then b else if x = b then a else x⟩ = λx : N.x. This follows as
in the previous example (cf. Example 6.14).

3. We also have

⟨νa.λx : N.νb.λy : N.if x = b then a else b⟩ = λx : N.νb.λy : N.b.

Intuitively, this is because b is generated after x is specified, so they can never be
equal and we can ignore this case. To show this is the normal form, we first verify
that

(λx : N.νb.λy : N.if x = b then a else b)
∅N→N→N (λx : N.νb.λy : N.if x = b then a else b),

so that

⟨νa.λx : N.νb.λy : N.if x = b then a else b⟩
= ⟨λx : N.νb.λy : N.if x = b then a else b⟩ .

Next, we check that

(λy : N.if x = b then a else b) (Id{x})N→N (λy : N.if x = b then a else b)

fails to hold, so that

⟨νb.λy : N.if x = b then a else b, {x}⟩ = νb. ⟨λy : N.if x = b then a else b, {x, b}⟩ .

Finally, it is clear that {x, y, a, b} ⊢ if x = b then a else b ⇓N b, so that

⟨νa.λx : N.νb.λy : N.if x = b then a else b⟩
= ⟨λx : N.νb.λy : N.if x = b then a else b⟩
= λx : N. ⟨νb.λy : N.if x = b then a else b, {x}⟩
= λx : N.νb. ⟨λy : N.if x = b then a else b, {x, b}⟩
= λx : N.νb.λy : N. ⟨if x = b then a else b, {x, y, b}⟩
= λx : N.νb.λy : N.b.

Remark 6.22. This construction differs from the η-normal forms in the case of expressions
and canonical terms of type N → τ . In the case of expressions, we restrict ν to range
only over the minimal set u of freshly generated names instead of all generated names.
In the case of canonical terms of type N → τ , we allow x to range over only the names
in s, while the η-normal form allows x to range over the names in both s and t.

The logical relation is needed to keep track of names we can remove without affecting
the semantics of our terms. In the base case, when C ∈ CanN(s ⊔ t), the logical relation
ensures that C = ⟨C, s⟩ /∈ t so that we are in fact omitting the names in t. The recursive
nature of the logical relations captures the interactions between names generated at
different points in the term, and these ensure that we are able to consistently eliminate
names in the inductive steps of our construction.

46

6 Abstractness at First-Order Types

Proposition 6.23. Let σ be a first-order type. Let M ∈ Expσ(s ⊔ t) and suppose that
M (Ids)σ M . The normal form ⟨M, s⟩ is well-defined up to renaming bound variables
and names.

Proof. We argue by induction on our construction of the normal form ⟨M, s⟩. In the case
of canonical terms, this follows by Proposition 6.12 and the inductive hypothesis. In the
case of expressions, this follows because by Proposition 6.16 there is a canonical choice
of minimal u in our construction.

Proposition 6.24. The normal forms preserve logical relations: if σ is a first-order
type, M ∈ Expσ(s ⊔ t) and M (Ids)σ M , then M (Ids)σ ⟨M, s⟩.

Proof. We argue by induction on our construction of the normal form ⟨M, s⟩. In the case
of expressions, this follows directly from the inductive hypothesis. By Proposition 6.11
and Lemma 6.15, we only need to consider canonical terms in η-normal form. In the case
that σ = N → τ , we write

C = λx : N.case x ∈ s ⊔ t then Mx else M0.

By Proposition 2.13 we only need to verify that M0 (Ids⊔{x})τ ⟨M0, s ⊔ {x}⟩ and that
Mn (Ids)τ ⟨Mn, s⟩ for n ∈ s, which follows by the inductive hypothesis. The case that
σ = B → τ is handled similarly.

We can now equate the problem of checking if two terms are logically related to one of
verifying the equality of their normal forms.

Theorem 6.25. Let σ be a first-order type and let Mi ∈ Expσ(s ⊔ ti) for i = 1, 2. The
following are equivalent:

1. M1 (Ids)σ M2.

2. Mi (Ids)σ Mi and ⟨M1, s⟩ = ⟨M2, s⟩ after possibly renaming bound variables and
names.

Proof. If Mi (Ids)σ Mi and ⟨M1, s⟩ = ⟨M2, s⟩, then ⟨M1, s⟩ (Ids)σ ⟨M2, s⟩ and so by
Proposition 6.24 and Lemma 6.15 we have M1 (Ids)σ M2 .

For the converse, suppose that M1 (Ids)σ M2. Note that by Lemma 6.15, it is clear that
Mi (Ids)σ Mi. To show that ⟨M1, s⟩ = ⟨M2, s⟩, we argue by induction on the construction
of the normal forms. The base case is clear. For the inductive step at canonical terms, by
Proposition 6.11 and Lemma 6.15, we only need to consider canonical terms in η-normal
form. In the case that σ = N → τ , we write

Ci = λx : N.case x ∈ s ⊔ ti then M i
x else M i

0.

By definition of logical relations, because C1 (Ids)σ C2, we have M1
0 (Ids⊔{x})σ M

2
0 and

M1
n (Ids)σ M

2
n for n ∈ s. By our inductive hypothesis, this means that ⟨M1

0 , s ⊔ {x}⟩ =
⟨M2

0 , s ⊔ {x}⟩ and ⟨M1
n, s⟩ = ⟨M2

n, s⟩ for n ∈ s. It follows that ⟨C1, s⟩ = ⟨C2, s⟩. The
case that σ = B → τ is the same.

47

6 Abstractness at First-Order Types

In the case of expressions, let Ci ∈ Canσ(s ⊔ ti ⊔ t′i) be the canonical terms such
that s ⊔ ti ⊢ Mi ⇓ (t′i)Ci. We have minimal ui ⊆ t′i such that Ci (Ids⊔ui

)σ Ci, and we
have defined ⟨Mi, s⟩ = νui. ⟨Ci, s ⊔ ui⟩. We know that M1 (Ids)σ M2, so there is some
R : t′1 ⇌ t′2 such that C1 (Ids ⊔R)σ C2. By Corollary 6.18, after possibly renaming names
we have u1 = u2 = u and C1 (Ids⊔u)σ C2. We therefore have ⟨C1, s ⊔ u⟩ = ⟨C2, s ⊔ u⟩ by
our inductive hypothesis and so ⟨M1, s⟩ = ⟨M2, s⟩.

6.3 Abstractness at First-Order in QBS
We will now show that at first-order types, eliminating names is enough to prove
abstractness. Specifically, we will show that if C is a categorical model of the nu-calculus
and passing to normal forms preserves equality in C, then C is abstract at first-order
types.

Theorem 6.26. Let C be a categorical model of the nu-calculus. C is abstract at first-order
types if and only if for all first-order types σ and all M ∈ Expσ(s) we have

JM K̸=s = J⟨M, s⟩K̸=s .

Proof. By Proposition 6.24 and Theorem 2.14 it is clear that this is necessary. To see
that it is sufficient, let σ be a first-order type and let M1,M2 ∈ Expσ(s). We need to
show that

s ⊢ M1 ≈σ M2 =⇒ JM1K̸=s = JM2K ̸=s .

So suppose that s ⊢ M1 ≈σ M2. By the completeness of logical relations at first-order
types (Theorem 2.14), we know that M1 (Ids)σ M2. By Theorem 6.25, it follows that
⟨M1, s⟩ = ⟨M2, s⟩. Using our assumption, we see that

JM1K̸=s = J⟨M1, s⟩K̸=s = J⟨M2, s⟩K̸=s = JM2K̸=s .

We will now show that passing to normal forms for logical relations preserves equality
in QBS. In order to do this, we will we will argue as we did in the proof of Theorem 6.5,
showing that equality between terms and their normal forms reduces to the statement of
Proposition 6.4. By Theorem 6.26, this will complete our proof that quasi-Borel spaces
are an abstract model of the nu-calculus at first-order types.

To build this reduction, we will use a probability measure preserving group structure
on R. By Proposition 4.32, there is an abelian probability measure preserving group
structure + on R, which we will fix for the remainder of this section. Note that by
Theorem 5.5 and Corollary 5.6 the map R×R → R, (x, y) ↦→ x− y is a quasi-Borel map,
so this group structure is compatible with the quasi-Borel structure on R as well.
Example 6.27. Consider the term M = νn.λx : N.x = n. We have seen in Example 6.21
that its normal form is ⟨M⟩ = λx : N. false, and we proved in Theorem 6.5 using

48

6 Abstractness at First-Order Types

Proposition 6.4 that JMK = J⟨M⟩K. Unpacking this proof, we see that it consists of one
key ingredient: a function f : 2R → P (2)R satisfying

f(∅) = λx.[false] and f({n}) = λx.[x = n].

Given such a function, we can take h(x) = [f(x)] : 2R → P (P (2)R) so that

h∗([∅]) = [λx.[false]] = J⟨M⟩K and h∗
(︃∫︂

[{n}]dν
)︃

=
∫︂

[λx.[x = n]]dν = JMK .

Proposition 6.4 asserts that [∅] =
∫︁
[{n}]dν, so that

J⟨M⟩K = h∗([∅]) = h∗
(︃∫︂

[{n}]dν
)︃

= JMK .

We note that we defined f by f(B) = λx.[x ∈ B], which is a quasi-Borel map as the
inclusion check is quasi-Borel.
Example 6.28. Consider the term

M = νa.νb.λx : N.if x = a then b else if x = b then a else x.

We have seen in Example 6.21 that the normal form for this term is the identity map
⟨M⟩ = λx : N.x. We would like to prove that JMK = J⟨M⟩K, meaning that

[λx.[x]] =
∫︂∫︂

[λx.[if x = a then b else if x = b then a else x]]dν(a)dν(b).

We define a function f : 2R × R × R → P (R)R by

f(B, a, b) = λx : R.

⎧⎪⎪⎨⎪⎪⎩
[(x− a) + b] if x ∈ B + a,

[(x− b) + a] else if x ∈ B + b,

[x] otherwise.

When B = ∅, this gives the map λx.[x]. On the other hand, when B = {n} is a singleton,
we have

f({n}, a, b) = λx.if x = n+ a then n+ b else if x = n+ b then n+ a else x.

Because the group structure is compatible with the quasi-Borel structure on R, the
map f is quasi-Borel.

We now prove that JMK = J⟨M⟩K. We define g : 2R → P (P (R)R) by

g(B) =
∫︂∫︂

[f(B, a, b)]dν(a)dν(b).

It follows that g(∅) = [λx.[x]] = J⟨M⟩K, and because we have chosen a ν preserving group
structure we have

g({n}) =
∫︂∫︂

[λx.[if x = n+ a then n+ b else if x = n+ b then n+ a else x]]dν(a)dν(b)

=
∫︂∫︂

[λx.[if x = a then b else if x = b then a else x]]dν(a)dν(b) = JMK

as in Proposition 4.33. Proposition 6.4 then implies that

J⟨M⟩K = g∗([∅]) = g∗
(︃∫︂

[{n}]dν
)︃

=
∫︂
g({n})dν = JMK .

49

6 Abstractness at First-Order Types

Notation 6.29. If r ∈ R and (n1, . . . , nk) ∈ Rk, we let

r + (n1, . . . , nk) = (r + n1, . . . , r + nk).

Now suppose that σ is a first-order type and M ∈ Expσ(s). We will prove that
JMK = J⟨M, s⟩K by constructing a function f : 2R × R ̸=s → P (JσK) satisfying

f(∅,−) = J⟨M, s⟩K ̸=s (−) and f({n}) = JMK ̸=s (−),

as we did in the previous example, and applying Proposition 6.4.
We will construct this f inductively, parallel to the construction of the normal forms. In

order to do this, we will provide a more general, parametrized version of this construction:
given M ∈ Expσ(s ⊔ t) with M (Ids)σ M , we will construct a function f : 2R × R̸=s⊔t →
P (JσK) such that

f(∅,−, t⃗) = J⟨M, s⟩K ̸=s (−) and f({n},−, t⃗) = JM K̸=s (−, n+ t⃗).

We will use this parametrized version in the inductive step of our proof.
The construction of f itself is somewhat high-level, and is analogous to the difference

between the η-normal form of a term and its normal form. It takes as arguments a set
of name-permutations B, a sequence s of potentially leaked names, and a sequence of
names t that are guaranteed to remain private. It then identifies the redundant parts of
the η-normal form — where we compare against a private name ti — and instead checks
whether the name matches one of the names in B + ti.

By selecting B to be a fresh permutation t⃗ ↔ t′⃗, we recover the semantics of the
η-normal form. On the other hand, by letting B be the empty set we skip redundant
comparisons against private names, recovering the semantics of the normal form. We
can then use the privacy equation to equate these two denotations, proving that each
term is denotationally equivalent to its normal form.

Theorem 6.30. Let σ be a first-order type and M ∈ Expσ(s ⊔ t). If M (Ids)σ M , then
there is a quasi-Borel map

f : 2R × R̸=s⊔t → P (JσK)

such that

f(∅, s⃗, t⃗) = J⟨M, s⟩K̸=s (s⃗) and f({r}, s⃗, t⃗) = JM K̸=s⊔t (s⃗, r + t⃗)

whenever (s⃗, r + t⃗) ∈ R ̸=s⊔t.
In the case that M = C ∈ Canσ(s⊔ t) is a canonical term, we can write f(−) = [g(−)]

for a quasi-Borel map
g : 2R × R ̸=s⊔t → JσK

such that
g(∅, s⃗, t⃗) = |⟨C, s⟩| (s⃗) and g({r}, s⃗, t⃗) = |C|(s⃗, r + t⃗)

whenever (s⃗, r + t⃗) ∈ R ̸=s⊔t.

50

6 Abstractness at First-Order Types

Abstractness at first-order types follows immediately:

Theorem 6.31. QBS is abstract at first-order types. This means that for all first-order
types σ and all M1,M2 ∈ Expσ(s),

s ⊢ M1 ≈σ M2 =⇒ JM1K̸=s = JM2K ̸=s .

Proof. We argue via Theorem 6.26 and show that normal forms preserve equality.
Let σ be a first-order type and let M ∈ Expσ(s). It is clear (cf. Remark 2.12) that

M (Ids)σ M . By Theorem 6.30, there is a function

f : 2R × R ̸=s → P (JσK)

such that
f(∅, s⃗) = J⟨M, s⟩K̸=s (s⃗) and f({r}, s⃗) = JM K̸=s (s⃗)

for all s⃗ ∈ R ̸=s. For any fixed s⃗, we have

f ∗([∅], s⃗) = J⟨M, s⟩K ̸=s (s⃗) and f ∗
(︃∫︂

[{n}]dν, s⃗
)︃

=
∫︂

JM K̸=s (s⃗)dν = JMK ̸=s (s⃗).

Thus, by Proposition 6.4,

J⟨M, s⟩K ̸=s (s⃗) = f ∗([∅], s⃗) = f ∗
(︃∫︂

[{n}]dν, s⃗
)︃

= JMK ̸=s (s⃗).

Proof of Theorem 6.30. We construct f inductively, in parallel to the construction of the
normal forms.

Ground case: If σ is a ground type and C is canonical, then ⟨C, s⟩ = C so we simply
take g = |C| and let f = [g].

Function case B → τ : Suppose that C is a canonical term of type B → τ and that we
have already constructed these functions for expressions of type τ . By Proposition 6.10
we may assume without loss of generality that C is in η-normal form, so that

C = λx : B.if x = true then M1 else M0.

By definition of logical relations and the normal form we have M1 (Ids)τ M1, M0 (Ids)τ M0
and

⟨C, s⟩ = λx : B.if x = true then ⟨M1, s⟩ else ⟨M0, s⟩.

By our inductive hypothesis, we have functions

fi : 2R × R̸=s⊔t → P (JτK)

such that

fi(∅, s⃗, t⃗) = J⟨Mi, s⟩K ̸=s (s⃗) and fi({r}, s⃗, t⃗) = JMiK̸=s⊔t (s⃗, r + t⃗)

51

6 Abstractness at First-Order Types

whenever (s⃗, r + t⃗) ∈ R̸=s⊔t. We then define g : 2R × R̸=s⊔t → JσK by

g(B, s⃗, t⃗) = λx : B.if x = true then f1(B, s⃗, t⃗) else f0(B, s⃗, t⃗).

It is clear that g(∅, s⃗, t⃗) = |⟨C, s⟩| (s⃗) and g({r}, s⃗, t⃗) = |C|(s⃗, r + t⃗), so f = [g] is the
function we want.

Function case N → τ : Suppose that C is a canonical term of type N → τ and that we
have already constructed these functions for expressions of type τ . By Proposition 6.10
we may assume without loss of generality that C is in η-normal form, so that

C = λx : N.case x ∈ s ⊔ t then Mx else M0.

By definition of logical relations and the normal form we have Mn (Ids)τ Mn for n ∈ s,
M0 (Ids⊕{x})τ M0 and

⟨C, s⟩ = λx : N.case x ∈ s then ⟨Mx, s⟩ else ⟨M0, s ⊔ {x}⟩.

By our inductive hypothesis, we have functions

fn : 2R × R̸=s⊔t → P (JτK), n ∈ s and f0 : 2R × R̸=s⊔t⊔{x} → P (JτK)

such that

fn(∅, s⃗, t⃗) = J⟨Mn, s⟩K̸=s (s⃗), fn({r}, s⃗, t⃗) = JMnK̸=s⊔t (s⃗, r + t⃗),
f0(∅, s⃗, t⃗, x) = J⟨M0, s ⊔ {x}⟩K̸=s⊔{x} (s⃗, x), f0({r}, s⃗, t⃗, x) = JM0K̸=s⊔t⊔{x} (s⃗, r + t⃗, x)

whenever (s⃗, r + t⃗) ∈ R̸=s⊔t and (s⃗, r + t⃗, x) ∈ R ̸=s⊔t⊔{x}. Writing t = (t1, . . . , tk), we
define g : 2R × R̸=s⊔t → JσK by

g(B, s⃗, t⃗) = λx.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

fx(B, s⃗, t⃗) if x ∈ s⃗,

JMt1K (s⃗, (x− t1) + t⃗) else if x ∈ B + t1,

. . .

JMtk
K (s⃗, (x− tk) + t⃗) else if x ∈ B + tk,

f0(B, s⃗, t⃗, x) otherwise.

Note that g is quasi-Borel because the group structure is compatible with the quasi-Borel
structure of R.

We now verify that

g(∅, s⃗, t⃗) = λx.

⎧⎨⎩J⟨Mx, s⟩K̸=s (s⃗) if x ∈ s⃗,

J⟨M0, s ⊔ {x}⟩K̸=s⊔{x} (s⃗, x) otherwise

⎫⎬⎭ = |⟨C, s⟩| (s⃗)

and

g({r}, s⃗, t⃗) = λx.

⎧⎪⎪⎨⎪⎪⎩
JMxK ̸=s⊔t (s⃗, r + t⃗) if x ∈ s⃗,

JMxK ̸=s⊔t (s⃗, r + t⃗) if x ∈ r + t⃗,

JM0K̸=s⊔t⊔{x} (s⃗, r + t⃗, x) otherwise

⎫⎪⎪⎬⎪⎪⎭ = |C|(s⃗, r + t⃗)

52

6 Abstractness at First-Order Types

whenever (s⃗, r + t⃗) ∈ R̸=s⊔t. Therefore f = [g] is the function we want.
Expression case: Suppose that we have constructed these reductions for canonical

terms of type τ . We have M (Ids)σ M , so by definition of logical relations and the normal
form there is some C ∈ Canτ (s ⊔ t ⊔ u ⊔ w) such that s ⊔ t ⊢ M ⇓τ (u ⊔ w)C and u is
minimal such that C (Ids⊕u)τ C, and we have defined ⟨M, s⟩ = νu. ⟨C, s ⊔ u⟩.

By our inductive hypothesis, there is a function

fC : 2R × R̸=s⊔t⊔u⊔w → P (JσK)

such that

fC(∅, s⃗, t⃗, u⃗, w⃗) = J⟨C, s ⊔ u⟩K̸=s⊔u (s⃗, u⃗),
fC({r}, s⃗, t⃗, u⃗, w⃗) = JC K̸=s⊔t⊔u⊔w (s⃗, r + t⃗, u⃗, r + w⃗)

whenever (s⃗, r + t⃗, u⃗, r + w⃗) ∈ R̸=s⊔t⊔u⊔w. We then define f : 2R × R ̸=s⊔t → P (JσK) by

f(B, s⃗, t⃗) =
∫︂∫︂

fC(B, s⃗, t⃗, u⃗, w⃗)dν(u⃗)dν(w⃗).

Because the group structure is measure preserving and by soundness (Proposition 4.33
and Theorem 3.16) we have

f({r}, s⃗, t⃗) =
∫︂∫︂

JC K̸=s⊔t⊔u⊔w (s⃗, r + t⃗, u⃗, r + w⃗)dν(u⃗)dν(w⃗)

=
∫︂∫︂

JC K̸=s⊔t⊔u⊔w (s⃗, r + t⃗, u⃗, w⃗)dν(u⃗)dν(w⃗)

= Jνu.νw.C K̸=s⊔t (s⃗, r + t⃗)
= JM K̸=s⊔t (s⃗, r + t⃗)

whenever (s⃗, r + t⃗) ∈ R̸=s⊔t. Similarly, we have f(∅, s⃗, t⃗) = J⟨M, s⟩K̸=s (s⃗), as desired.

53

7 Conclusion
We have shown that quasi-Borel spaces provide an abstract categorical model of the
nu-calculus at first-order types. To do this, we have constructed a novel normal form for
nu-calculus terms at first-order types. We also explored higher-order quasi-Borel spaces
using results of descriptive set theory.

Our work suggests that there is a concrete connection between fresh name generation
and higher-order probability theory. An interesting direction for further research would
be to explore the implications of this connection, both for the nu-calculus and for
probabilistic programming. For example, one may ask how a ν-invariant group structure
on the set of names should be interpreted in terms of freshness and privacy. One may also
ask if the nu-calculus can be soundly interpreted in all models of higher-order probabilistic
programming featuring continuous measures, and at what levels of abstractness.

Our work also shows that there is a connection between quasi-Borel spaces and
descriptive set theory, suggesting that a set-theoretic analysis of other models of higher-
order probability theory extending the standard Borel spaces may be fruitful.

54

Bibliography
[Aum61] Robert J. Aumann. “Borel structures for function spaces”. In: Illinois Journal

of Mathematics 5.4 (Dec. 1961), pp. 614–630. doi: 10.1215/ijm/1255631584
(cit. on pp. 1, 23, 24).

[Gir82] Michèle Giry. “A categorical approach to probability theory”. In: Lecture
Notes in Mathematics. Springer Berlin Heidelberg, 1982, pp. 68–85. doi:
10.1007/bfb0092872 (cit. on p. 25).

[Heu+17] Chris Heunen et al. “A convenient category for higher-order probability
theory”. In: 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS). IEEE, June 2017. doi: 10.1109/lics.2017.8005137 (cit. on
pp. iii, iv, 1, 29–31, 33, 36).

[Kec95] Alexander S. Kechris. Classical Descriptive Set Theory. Springer New York,
1995. doi: 10.1007/978-1-4612-4190-4 (cit. on pp. 25, 26, 28).

[Mog91] Eugenio Moggi. “Notions of computation and monads”. In: Information and
Computation 93.1 (July 1991), pp. 55–92. doi: 10.1016/0890-5401(91)
90052-4 (cit. on pp. 10, 15, 16).

[PS93] Andrew M. Pitts and Ian Stark. “Observable Properties of Higher Order
Functions that Dynamically Create Local Names, or: What’s new?” In:
Mathematical Foundations of Computer Science: Proceedings of the 18th
International Symposium MFCS ’93. Lecture Notes in Computer Science 711.
Springer-Verlag, 1993, pp. 122–141 (cit. on pp. iii, iv, 1, 3, 5, 7–9).

[Sab+20] Marcin Sabok et al. Probabilistic Programming Semantics for Name Genera-
tion. 2020. arXiv: 2007.08638 [cs.PL] (cit. on p. vi).

[Sta94] Ian Stark. “Names and Higher-Order Functions”. PhD thesis. University of
Cambridge, Dec. 1994. doi: 10/cgnm (cit. on p. 12).

[Sta96] Ian Stark. “Categorical Models for Local Names”. In: LISP and Symbolic
Computation 9.1 (Feb. 1996), pp. 77–107 (cit. on pp. 7, 8, 10, 12, 15, 20–22).

55

https://doi.org/10.1215/ijm/1255631584
https://doi.org/10.1007/bfb0092872
https://doi.org/10.1109/lics.2017.8005137
https://doi.org/10.1007/978-1-4612-4190-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://arxiv.org/abs/2007.08638
https://doi.org/10/cgnm

	Abstract
	Résumé
	Acknowledgements
	Contribution of Authors
	Introduction
	Organization of the Thesis

	Nu-Calculus
	Syntax
	Operational Semantics
	Observational Equivalence
	Logical Relations

	Categorical Models of the Nu-Calculus
	The Metalanguage
	Interpreting the Nu-Calculus in the Metalanguage
	Categorical Models
	Cartesian Closed Categories and Strong Monads
	Categorical Models for the Nu-Calculus
	Adequacy and Abstractness of Categorical Models

	Descriptive Set Theory
	Measurable Spaces and Measures
	Standard Borel Spaces
	Groups with Invariant Probability Measures
	Borel on Borel Sets

	Quasi-Borel Spaces
	The Category QBS
	Measures and Integration
	Function Spaces
	Probability Spaces
	Interpreting the Nu-Calculus in QBS

	Abstractness at First-Order Types
	The Privacy Equation
	A Normal Form for Logical Relations
	Eta-Normal Forms
	Construction of the Normal Form

	Abstractness at First-Order in QBS

	Conclusion
	Bibliography

