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INTRODUCTION.

When Hamilton had invented quaternions, the guestion arose
whether they could be used to advantage in mathematical physics.
However, the world then only had three dimensions, and so the
scalar part of the quaternion was suppressed, the resulting
entity being called a vector. The relation between vector-
analysis and quaternion algebra is well known, and need not
be entered into here.

With the theory of relativity also came the fourth dimension.
Although Minkowski himself rejected the quaternionic calculus
as "toc narrow and clumsy for the purpose in question®”,
Silberstein has strongly advocated the cause of quaternions.

He used quaternions with imaginary scaler parts to designate

the position of points or events in space;time. This was
necessary, since the metric in Minkowskl space is not given by

a positive definite quadratic form. We achieve the same result
by making the vector part imaginary, in which case we obtain a
Hermitian matrix representation of the position quaternion.
Professor Dirac believes (as stated by him in conversation) that,
some day, Hamiltonian quaternions, as opposed to Hermitian
quaternions, will re-assert themselves in relativity theory;

but I do not see how this can be.

To each point P of llinkowskl space we assign a Hermitian
quaternion S(P). The function S is called a special coordinate
system. Given S, a physical entity will in general be measured

by a function FS which associated a biquaternion FS(P) with each






point P. However, it is the correspondence S—aFS, here called
a vectorfield, which really represents the physical entity,
independently of any particular coordinate system (within the
frame-work of special relativity). It must be postulated that,
in some way, FS does not loose its identity as we transform the
coordinate system. That is, as we pass from S to S', the
transformation carrying FS into FS' shall be of a rather simple
nature. In the language of Van der Waerden: The latter trans-
formation shall be a representation of the former.

In a relativistic treatment of classical physics, such as

Silberstein's (see bibliography), we find five types of vector-
fields: One invariant, two four-vectors, and two six-vectors.
If we also use the guaternionic method in discussing relativistic
guantum-mechanics, fcur more vectorfields arise, which have been
called wave-vectors (or spinors). Thus nine types of vectorfields
can be found a posteriori. In part II, I shall define the concept
of vectorfield, and try to discover whether other types than the
above nine exist. I shall also extend this notion from functions
to operators.

Unfortunately, when working on this problem, I was not aware
of the theory of representations of the Lorentz Group, as
developed by Van der Waerden, whose work is based on that of
G. Frobenius, I. Schur, and H. Weyl. Roughly speaking, the results
of part II are implied by those of Van der Waerden (see bibliography)
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To be more specific: He determines all differentiable represent-
ations of the Lorentz Group as linear transformations of
n-dimensional vector space, but states in a footnote (§17) that
it would suffice to demand continuity instead of differentiabilit)
In this thesis, I have determined all continuous representations
(here called transformation schemes) of the Lorentz Group as
orthogonal transformations of biquaternion space, i.e. Euclidian
space with four complex dimensions. The problem solved here 1is
therefore not quite the same as the problem solved by Van der
Waerden, but loses in importance owing to his work. His method is
more elegant and more general than mine, but less elementary, as
he makes use of infinitesimal transformations.

Part I contains a discussion of special coordinate transform-
ations in Minkowski space and biquaternion space. ¥ectors are
regarded as labels of points, as in the theory of relativity,
and not as points, as is customary in algebra. It is proved that
Lorentz transformations can be expressed by quaternions, a fact
which is assumed, or rather postulated, by Sil%erctein. The proof
given here is long; but an attempt to shorten it (for instance
by using an exponential parametrization) might sacrifice its
elementary character.

In part I1I,I have obtained explicitly all continuous
homomorphisms of the Lorentz group on itself or part of itself,
but I do not know whether there exist discontinuous ones.
Dieudonné, in his book on classical groups (see bibliography),

sroves that the Lorentz group 1s simple, i.e. that all such






homomorphisms map ti.e whole group either into itself or into
unity. The result of part III would be implied by this, if it
were known that 211 automorphisms of the Lorentz group are little
more than inner automorphi.ns.

In this introduction reference has been made to physical
theory. Nonetheless, the problem will be posed and solved in
pur~lv mathematical terms. I had i:tended to add an appendix
with physical applications, especially to Dirac's relativistic
equation of the electron, but was dissuaded from doing so, owing
to the recent publication of a paper by A.W. Conway on thirc
viry subliect (see bibliography).

On the whole, the present paper has been worked out in the
spirit of Silberstei=n anc Conway, and no sttempt has been made
to assimilate 1%tz results to the terminology of Van der Wadrden

and Dieudonné.






Part I.

t is customary to define quaternions through their rules
of multiplication, and to show that the resul’ting system 1is
an algebra. By means of a well known theorem, a matrix
representation of guaternions is then obtained. To simplify
matters we shall reverse the usual procedure here. A matrix

a -31 -32 -&3

a, as a, -2y

8z -a, a; a
wita complex elementsvan (nip,1,2,3) will be callied a bi-
quaternion. Ve can write azg;anin, where the in are certain
matrices all of whose elements are 0, 1, or -1. In particular,
io is tne identity matrix, and we shall write i0=1. Further-
more in2=-1 for n=1,2,3 , and 1112=15=-i2i1 , etc. Since
matrix multiplication is associative and distributive, and
since O and 1 are biquaternions, the latter will form an

algebra. This is however not commutative, for 1112—1211=213

#0 ; ncr is it a division algebra, as (1+ii1)(1-ii1)=0.

The transpose aT of a is formed by interchanging rows and

columns in (i), thus aTzao-a1i1-a2iz-a313 . The conjugate a’






of a is formed from (i) by replacing each element by its

complex conjugate. Among other obvious relationships we have:
aTT=a=aCC, aTczaCT, (ab)c=acbc, (ab)szTaT.

If aT=a cr -a, we speak of scalars or vectors respectively.

a will be real or purely imaginary, according as acza or -a.

Real biquaternions are of course Hamiltonian quaternions. As

in the theory of matrices, we shall consider Hermitian or

L

m
skew-liermitian matrices, fcr which a’*=a or -a respectively.

It asand b are two biquaternions, their inner product
(a,b)zg;anbn=(1/2)(abT+baT) is clearly a scalar. Inner
multiplication is distributive and commutative, but not
associative. N(a)z(a,a)zaaTzaTa is called the norm of &, its

square being the determinant of (i). WWe have X(ab)=N(a)KN(b),

but -

N(atb)-1(a)-%(b) = £2(a,b) . oo (i1)

Let B be a set of points, over which there is defined a
function J, associating a complex number J(.,.') with each
pair of goints 4, (' of B. Furthermore let there exist a one
to cne correspondence 5: (y, between the set B and the set
of bicquaternions y such that J(Q,;')2=N(y-y’). Then B will
be called & biquaternion space. It is of cocurse merely a four-
dimensional space with Tuclidian metric and compiex coordinates.
5 is czlled g special coordinate system of B. Ve shall write
y=5(%). If S' is another special coordinate system,

v

and if y'=5'(L), then we can write y'=T(y), where T=S'S’1.






T is called a special coordinate transforration. It is

-1 _~-'-i

characterized by the existence of T =53 and by the
J J
SauETIOn: N (r(y)-T(y =i (y-y') cer (111)

which must hold for all biquaternions y, y'. Since with
S, S', and S'' the correspondence ss" Vg1 will also be
a specilal coordinate system, it follows that the set of
all special coordinzte systems of B is a group, its unit

element being the identical transfcrmation I=SS 1.

Theorem 1 :If T 1s any special coordinate transformation

of bigquaternion space, then either T(y)=pyg+b or T(y)=pqu+b
for all bigquaternionsy y, wuere b, p, g a2re biquaternions,
and N(p)=l(gq)=1.

Proof : Ve shall call that point O for which 5(0)=0

the origin of S. Now any special coordinate transformation
can be expressed as the product of z translation T(y)=y+b,
and zn orthogonal transformation whicn leaves the origin
invariant.

If T is an orthogonal trsnsformation of B, we thus have
T(D)=0. Hence by (iii) NT(y)=N(y). In view of (ii) therefore

(T(y),T(y"))=(y,¥5")

for all biquaternions y, y'. Hence
(1(y) i )=(y,57 (i))= Zy (1,775 ))= Zy (T(1),1,)=Cy T(1),1_
for n=0,1,2,3. Thus T(y) Eiy T(i ), as the n-th components

of botn sides are ecual.






Instegd of y'=T(y) we may therefore write y ~§Etmnyn ’
(m=0,1,2,3). In view of the invazriance of N(y)= E:yn , it
follows tzatlgg*mK — (k,n=0,1,2,3). If we introduce
the matrix t:(tmn), this can be written t*t=1. Kence

det t = det tT =1 or -1. tiow the orthogonal transformation

T(y):yT is easily seen to have determinant -1, and any

orthogonal transformation with negative determinant can bhe

written as the product of this particular transformction

and one whose determinant is positive. Te may thus limit our

enquiry to the case det t =1 .

¥e shall assume at first that det(1+t)£0. Consider

s=(1+) T (1-t)=(1-t) (1+t) "1, ... (iv)

the two expressions on the right being equal, since

(1-t) (T+t)=1-t=(1+t) (1-1) .

Ve find that sT=-s, so that s is skew-symmetric, whence

O -31 -32 -53
S & -s! s!

S = 1 3 2 e oo (V)
52 S 3 0 -S 1

Let s' be obtained from s by interchanging tlie S, and the s'n

in (v), then E:s s', is a scalar. ow (1¢s)t=1-s.
fultiplying both sides of this by (1+s') on the left, we get
(1+S'S#S'+S)t = (1"5'8*5"'3)0 o 0o (Vi)

= ! =] -3~ : = +9! - R | - ~
Let u =1+s's , v =1-3-8 5 u=s 48"y , v =s -s' , (n=1,2,3).






3
if y'm=,;tmnyn’ (x=0,1,2,3), the above implies that
Yo Hq Uz tUs\ ¥, o Vi V2 V3| /36
T Wy Mz} YT} Ve Yo V3 V2| iVl )
Uy Ug Uy -ug Yo Vo V3 Vo Vil Yz
Uz -Uy, Uy u f\y's Vi Vg -V, VQ/ Y=

which, in quaternion notation, becomes simply uy'syv.
A calculation will show that s and s' have the same
characteristic equation. Now 1+s=2(1+t)-1, so that
det(1+s',=det(1+s)£0. We may therefore write y':u'1yv .
“ince W(y) is invarient, N(u)=N(v), and we have without
loss of generality y'=pyqg , where both p and g esre of
norm 1.

We have assumed above that det(1+t)£0. If det(1-t)£0,
we cculd have ovtained the sawe result, by vriting instead

T (1v) s={1-)"1(1et)=(1et) (1-t)"1,

and proceeding in a similar fasiion. It remains to con-
sider the exce; tional case: det(l1+t)=det{1-t)=0.
Let X be a scalar variable, then f(x)=det(x-t) is a

scalar polynomial in x of degree 4, witnh ieading coefficient

1. Low x4f(1/x)=det(1-xt)zdet(t)det(tT-x):det(t-x)zf(x).

By ele.entary figebra ii foilows that the equation f(x)=0

nas roots a,1/a,b,1/b. But 1 2und -1 are given roots, so thst
f(x):(x2-1)2. Since every m=atrix satisfies its own character-

2

r T
istic eguation, f(t)=(t“-1)“=0, whence (t-t")“=0, and

conseguently (t—tT)‘z(t-tT)¢+2(ttl+tTt)=4.






. T T x .
Let us put r=(1/2)(t+t"), s=(1/4)(t+tl)(t-tT). Ciecxly r is
Symmetric, and s is slew-symuetric. Loreover it fcllows from the

fo oir nat < P91
regoirg that t=r(1+s), r°=1, s°=0 . e (viii)

If we can show that t yields a transformation y'=pyq, N{p)=i(g)=1,
in the two special cases t=r and t=1+s, it will follow that
t=r(1+s) alsc gives such a transformation, since the latter
clearly form a group.

Yirst assume that t=1+s. Ifzs is expressed as in (v), the
condition s£°=0 implies thatgg:snzzo and s =fs' . If s' is
iefined =s in (vi), this means that s's=0 and s=%is', Vhen
s=s', t=1¢s is a biquaternion of ncrm 1, and our transformation
tecomes y'=py , N(p)=1. Simi_erly, when s'=-s, a glance at (vii)
will convince us that we have the transformation y'=yq, §(q)=1.

Ve may thus confine attention to tie cese t=r, i.e. we may
acsume that t is symmetric and, in view of (viii), tnat t2=1.
w€ also 35till rave trat the determinant of t is 1, since the
omitted factor (1+s) cleariy has determinant 1. We may exclude
from coasidéeration the trivial cases t=1 and t=-1. Under those
circums tances it can then be shown by algebra tlhat there exist

four column vectors z (n=0,1,c,3) suck that

tz =2

0=%0? tz1=—z1, t22=22, t23=—23

and furthermore zmTzn=1 when m=n, =0 when mZn. If we put

s:(z1zzT-z321T), it follows that s is skew-symmetric. A simple
~

calculation will show that, in the notation of (vi),
s'=(zoz2T-z2on). By (ix), st=-s, s't=s', whence (s'+s)t=s'-s.
Let u =v,=0; Uy=sp+sy , Vy=s -sy , (n=1,2,3), then as in (vii)
we obtain the transformation uy'syv. Now u=s'4s so that

- 2__ 12 ’
DV(U)=-(S"'S) =S _szzzz

Z2yz,T=1. Hence y'=u”'yv=pya, N(p)=N(q)=1.

QQEOD.
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Let il be a set of points over whici tnere is defined
& function J associsting a complex number J(P,P') with
each pair of points P, P' of i. Furthermore let there
exist a one to one correspondence S: Px , between li
and the set of Hermitian biguaternions x , such that

J(P,?')° = N(x-x') .

Then i will be called a Minkowski space. Ve notice that
J(P,P')2 is always rea1,4but it can be negative or zero.

£s iIn the case of bigquaternion space we define special

coordinate systems and transformations.

As above, any special coordinate transformation T
can be factored, and we need only consider the translation

X'=x+a, where a must now be Hermitian, the transformation

X'=XT, and the transformation x'=pxqg, where N(p)=k(g)=1.

However now p and q will have to be restricted in some

way, so that pxq will be Hermitian for any Hermitian x.

Thus x°T=x should imply that qCTxpCT=(pxq)CT=pxq .

rutting u=qcp s, we thus obtain for all Hermitian x,

C ~s * > CT
Xu T=ux . Zince x=1 1is Hermitian, uv”"=u , whence xu=ux .

Since x=iin (n=1,2,3) is Hermitian, inuzuin . But this
implies that u is a scalar, as 1s easily shown. Clearly

N(u)=1 ) whence u::‘l and q :_.‘tpT:rT

y say. Therefore
pXxg= rerT. %e thus have the following

Theorem 2 : If T is any special coordinate transformation

of liinkowski space, then T(x):trx<T)rCT‘+a , K(x)=1 ,

a and r being biguaternions, a Heimitian.






Part I1I.

Let So, S'O Be two given special coordinate systems of

lw and B respectively. From now on we shall confine ourselves
to coordinate systems S=TS  and S'=T'S'  , where T(x):rerT
and T'(y)=pyq , p,q, and r being biquaternions of norm 1.
e shall speak of restricted coordinate systems and trans-
formations.

Consider a correspondence F from M to B: Q=F(¥). If
x=S(P) and y=5'(Q), this can be written: y=S'F§'1(x). Let
a correspondence S—S' be given. For any given S we may
then consider the quaternion function S'ES'1 instead of the
roint function F. Here however we shall be interested in
the function FS=S'F , which associates & biquaternion y
with any point P of ilinkowski space. We then have Fp =T'Fq ,
where T'=('I.‘S)'S"'1 is some restricted coordinate trans-
formation of B, depending on T, and perhaps on S.

Suppose now that FTS(P) can be calculated if only FS(P)
and T are known. We shall not considerably strengthen this
condition if we stipulate that T' is independent of S. Then

1

e =1 - - ey -
(T1T5) ' =(T4T58) 15" T =(TyT53) ' (Tp8) 1 T (Tp8) '8 7=ty

1 *2
A correspondence T—T' which is multiplicative in this
sense will be callied a transformation scheme from M to B.

We shall attempt to find all such transformation schemes,
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Let T2T' be a given transformstion scheme. We may write

cn

T(x)=rxr“*, T'(y)=pyq, where p, q, and r are biguaternions

of norm 1, and p=P(r), q:Q(rCT). In virtue of the multi-
plicative property
P(r)P(r)ye(r' 1) Q(x®T)=p(rr")yq(zr' “Tx%%)
for all biguaternions y. If we abbreviate
a=P(rr')°1P(r)P(r'), b=';z(r’CTrCT)Q(rCT)"1;;(r'CT)"1

H
this becomes: ay=yb, for all y. Futting y=1, we find that
a=b, and putting y=i (n=1,2,3), we show that their common
value is a scalar. Now N(a)=1, hence a=b=1 or -1. We hzave

thus proved

Theorem 3 ¢ If T—>T' is a transformation scheme from

i to B, with T(X)=IXICT, then there exist functions P and

Q, such that T'(y)=P(r)yQ(x°T), with the property that
P(rr')=22(r)P(r') and Q(r'CTrCT)=1Q(r'CT)Q(rFT) , the sign

being the same in both cases, but perhaps depending on r, r'.

We may of course replace the P and Q of tneorem 3 by
P' and Q', where T'(r)=D(r)P(r), @' (x’T)=D(2)q(z’"), ana
D(r)=%1. To indicate the devendence of the sign in theorem
3 onr and r', let us call it E(r,r'). The cuestion arises,
can we select the function D in such a way that T(rr')=
E(r,r')D(x)D(r') ? For thes, if the equations of theorem 3
are restated in terms of ?' and Q', the ambigity in sign

o

will disapvear, in fact P' and {' will be multiplicative

functions, and our problem will be greatly simslified.






A celculation shows that P and ¢ can be rejlaced by

multiplicative functions if and only if P(s)2=P(s’)2P(s")z

for all biguaternions s,s',s'' of norm 1 such that 8228,25,,2.
It ic difficult to iiazgine what can be done with this
condition. Perhaps it is safer *o0 realize at this stage

that our original aim, namely to find all transformation

schemes, was too smbitious.

1f it so happens that the functions T and'Q of theorem 3

-y

can be chiczen to be continuous functions (i.e. continuous

in tie fomr cocplex components of r) , we shall call T—T'

& continuous transformation scheme. "e shall limit our

engquiry to continuous transfermation schemes from M to B.
Ve may then assume that P(r) is a continuous func:iicn

of r. Hence for given r', E(xr,x')=P(rx')/(2(x)F{r')) is

a continuous fuunction of r. STimilarly, for giver r, it is

a continuous function of r'. Its value being always 1 or -1,

it is therefore & constant, namely 1 or -1. ¥Without loss of

generality, we need only consider the positive case, whence

P(rr',;=P(xr)P(r'), 2 similar equation holiding Tor G. For if

we had the mirus sign, we could write P'=-p, ('=-(, and

botn T' and Q' wculd be multiplicative. Taus

Theorern 3' :+ If T-$T' is a continuous transformation

. C CT . .
scheme from M to B, with T(x)=rxx~ ", tren there exist
continuous multiplicative functious P and , wnich map the

set of all biguaternions of rcrm 1 on itself or part of

itself, such that T'(y):f(r)yQ(rCT).
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To go on frow here we need a lemma, which, for the sake
Of continuity, will only be proved in part III.

Iemma : If F is any continuous and multiplicative function
wiich maps the set of all biquaternions of norm 1 on itself
Oor part of itself, then F is one of the three functions:

T c.T

F(r)=1 , F(r)=uru® , F(r)=ur‘u- ’

u being a constant biquaternion of norm 1.

In view of this lemma znd theorem 3', we imrediately have

Theorem 4 : If TT' is a continuous transformation scheme

frow M to B, with T(x):rerT , then T' 1s one of the following

nine types of functions:

(C)TVT (C)TVT

T'(y)=y , =ur(c)uTy y =yvr , =ur(c)uTyvr

’

where u and v are constant biguaternions of norm 1.

0f particular interest will be those cases in which the u
and v of the abtove theorem are 1, and then we shall say that
the transformation scheme 1is principal. Hence any principal
continuous transformation schewme is determined by the fact
that T'(y) is one 0f the following nine expressions:

v, ry , rCy , er , erT , rer . rCer , rerT , rCerT .

Any continucus transformation scheme can be reduced to a
principal one, by means of a fixed orthogonal transforrztion

of determinant 1 of biguaternion space. For by theorem 4 we

have: T'(y):uP(r)uTva(rT)vT, where P(r)=1,r, or rc, and

Q(rT)=1,rT, or rCT. Hence uTT‘(y)VzP(r)(uTyv)Q(rT) .






If we write y'=U(y)=u’yv , tuis becomes: GT'U” (y')=P(x)y'c(z~) .
Here U is an orthogonal transforwation of determinantH of B,

and the transformation scherne T—-?UCE"U_1 is principal.

Let © be a restricted cocrdinate system of ii. To each such
S let there correspond a function FS which assigns a bi-
quaternion y=FS(P) to each point P of M. The correspondence
S-ﬁFs will bhe called 2 vectorfield, provided there exists

a continuous transformation scheme T—T' such that F S---T'F

T S*

In virtue of theorem 4, we thus have

Theorer 4' : The correspondence S-ﬁFS is a vectorfield,

vrovided, when T(x):rerT

(C)..T

where P(r)=1 or =ur‘~‘u", and Q(rCT)=1 or =vr(C)Tv

M3

v being fixed biquaternions of norm 1.

If the transformation scheme belonging to the vectorfield
is principal, we shall also say that the vectorfield is
principal. e note in particular that the identical correspond-
ence - —S 1is a principal vectorfield with transformation
scheme T—T"'.

“e shall state and prove a numter of simple properties
of vectorfields. F'or convenience, the transformation scheme

of thecrem 4' will be denoted by (P(r);Q(rCT)).
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C and

(1) If 599F. is a vectorfield, its conjugate S—F..
N e}
transpose S'*FST are also vectorfields, with respective

transformation schemes (P(r)C;Q(rCT)C) and (Q(rCT)T;P(r)T) .

(2) Ir S9F; and SG, are two vectorfields with the same
transformation scheme, then their sum S—a(FS+GS) is also a
vectorfield, still having the same transformstion scheme.

(3) If S—9F; and S—F'_ are two vectorfields, such that

P'(r):@(rCI)i, then their product S-ﬁ(FQF'S) is also a vector-

field, with transformation scheme (P(r);Q'(rCT))

(4) A vectorfield is called an invariant if its transform-
ation scheme is (1;1). Each component S—-?(FS)n (n=0,1,2,3)

of an inverient vectorfield is itself an invarient.

(5) Every vectorfield can be expressed as a principal
vectorfield, multiplied on both sides by constant invarients
of ncriw 1. For suppose FTS(P)zupuTFS(P)quT , where
p=1,r,rc, and q=1,rT,rCT. Put FS(P)=uGS(P)VT, then the above
becomes GTS(P)szS(P)q , hence S—G. is & principal vector-

- -~ T [ .
f:eld. lioreover S—u and S—v  are constant invariants.

(6) If = vectorfield is transformed by (p;pCT), its
nermitisn and skew-hermitian parts zre also vectorfields

witl the same transformation schemes. This follows from

(1) and (2). The two parts are called four-vectors in physics.
Of particular interest are the principal vectorfields trans-

formed by (r;rCT) or (rC;rT).






- 12 -

(1) If a vectorfield is transfeormred by (p;pT), then its scalar
and vector parts are also vectorfields wit. the szre transform-
ation scheme. Again ‘this follows from (1) and (2). The scalar
part is easily seen to be an invariant, and the vector part is
wi.at the phyeicist calls a six-vector. Of particular interest

are the principal vectorfields transforming by (r;rT) or (rc;rCT)

Presumably the converses of (4), (6), and (7) are also true;
but it would be beycnd the scope of our present exposition to
attempt their proofs. At any rate, they would read as follows:
A scalar vectorfield is an invariant; a Hermitian vectorfield
is a four-vector or an invariant; a vector vectorfield is a
six-vector or an invarient. 1t is difficult to say to what

extent converses of (2) and (3) might hold.

In a way, a vectorfield is a function plus the manner in which
it transforms. We shall now try to generalize the concept of
vectorfield from functions to operators. But first we need the
quaternion analogue of linear operators.

Consider a corresponaence A: (F,G)—H, where F,G,H are functions
that assign biquaternions to all points of liinkowski space.

We shall write H=(FAG). A will be called an operator biquaternion
in M, provided the following tihree postulates are satisfied:

(1) (FAG)=(AFG) whenever F is a scalar function.

(11) ((F+@)AH)=(FAE)+(GAH) ; (FA(GHH))=(FAG)+(FAH) .

(11I) (2FiCb)=a(FAG)b, for all constant a and b.
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It is easily; seen that the above three postulates
constitute necessary and sufficient conditions in order
3
that it should be possible to write A=J A i_ , the A
vl ¢ o n
being linear operators in the usual sense. Thus, in a way,
an operator biquaternion is merely a biguaternion whose
components are linear operators.
Suppose for each restricted coordinate system S of M

we have an operator biquaternion A Such a correspondence

S.
S~#AS will be called an operator vectorfield, provided,
whenever S-’FS and S--?GS are any two vectorfields with
given transforration schemes, then S'*(FSASGS) is again
a vectorfield.
Let (p';q9') , (p'';q'') be the two given transformation
schemes, and (p;q¢) the resulting one. Then
(p'FSq'ATSp"GSq") = p(FSASGS)q . ces (i)
If we replace Fo by aFg and Gg by Ggb in (1), then in
virtue of (III):
- , -1 . .
p'ap' 1(p'FSq'ATSp"GSq")q" bq"=pa(FSASGS)bq e soo(dii)
From (i) and (ii) we obtain
- ey -1 ‘s
prap' " p(FAcGo)aa’ ' T ba' " = pa(FAgGe)ba « ... (i11)
We snall assume that the norm of (FQASGS) is not identically
zero. Taking b=1, we therefore find that p'ap"1p=pa ’
i.e. p'1p'a=ap-1p' . Hence p'1p' commutes with all bi-
guaternions, 1t is therefore a scalar. But its norm is 1,

herce p'=p or -p. Now p' and p are both functions of r,






and if we take r=1, bota will reduce to 1. Thus the minus
sign is excluded, hence p'=p, and siwilarly q''=q. In view
of (III), we may therefore cancel p' against p on the left,

and q'' against q on the right of (i). Thus (th'ATQp"GS)z

(FSASGS), or in operator notation Q'Apcp''=Ag, that is
Apc=a'"Ap''T. e might say that S—A; transforms by the
transformation scheme (q'T;p"T).

If N(FAG)(P)=0 for all points P of M and all functions
F, G, for which A is defined, we shall say that A is
singular. Singular operator biguaternions are not of
sufficient interest to us to deserve special consideration

here. We shall therefore be satisfied with

Theorem 5 : If S—#AS is a non-singular operator vectorfield,

m
°T implies AmszP(r)ASQ(rCT), where P(r)=1 oY =ur(C)u‘,

then T(x)=rxr
and Q(rCT)=1 or =vr(C)TvT, u and v being biquaternions of
norm 1.

A function F which assigns a bigquaternion y=F(P) to each
point P of liinkowski space may itself be regarded as an
operator biquaternion over M, if we write (GFH)(P)=G(P)F(P)H(P).
Under this interpretation, a vectorfield is an operator
vectorfield, and instead of FTS(P)=pFS(P)q we may write,
in operator notation, FTS=pF5q (which is what we have done

anyway in the proof of theorem 5, for reasons of conciseness).,
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Conjugate, transpoce, and sum of operator bhiquzternions
may be cdefined in the obvious manner, thus:

(FA%3)=(5%a60)C, (vaTe)=(cTar™)T, (F(a43)0)=(FAG)+(¥BG) .
The above definitions clearly become identities if tre
operators are replaced by functions. lioreover it is easily
verified that AC, AT, A+B satisfy postulates I to III, and
are therefore in fact operator biquaternions.

There seems to be no obvious way of defining the product
AB of any two operator biguaternions A and B. However, in
some special cases no difficulties are met. For instance,
if we abbreviate (1AF) as (AF), we can also write
(ABF)=(A(ZF)).

The results waich we ¢ stated about vectorfields above,
with the exception of (%), also hold about operatcr vector-
fields. (3) nust of course be omitted here, owing to the

absence of a product of operator biquaternions.






rd
N
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Part I11.

wemma ¢ If F iz any continuous aund multipiicative fa.ction
whiecn maps the set of =11 biquatermions of norm 1 on itself
Oor part of itself, tien F is one of the three furctions:
F(r)=1 , F(r)zuruT , F(r):urcuT .

u being a constent biquaternion of norm 1.

Proof : We want to find &1l functions F such that
(1) ¥(r) is defined for all biquaternions r of norm 1,
(ii1) #(xr) ic a biquaternion of rorm 1,
(1ii) F is multiplicative, i.e. F(rr')=F(xr)F(r') for all bi-
quaternions r, r' of norm 1,
(iv) F(r) is a continuous function of the four complex com-
ponents of r.

We shall derive & number of propositions from these four

assumptions, without referring explicitly to the latter.

(1) F(1)=1 . Tor F(1)F(xr)=F(1.r)=F(r) .
(2) 5(xr)T=F(z%) . For F(xr)F(r)T=NF(zr)=1=F(1)=Fii(r)=F(rr)=F(r)F(xT).
(3) F(-1)=1 or -1 . For F(-1)T=F(-1) by (27, so that F(-1) is

a scalar. ijoreover F(-1)2=F(1)=1, whence (3).
According to (3) we shall consider two cases.

Case A : ¥(-1)=1 .
(4) If r is a vector, then F(r)=1 or -1 .
For let ri=-r, then F(r)T=F(xT)=F(-r)=F(-1)F(r)=F(r) , so that

7(r) is a scalar. But NF(r)=1, whence (4).
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(5) If r is any biquaternion of norm 1, then there exist

three complex scalars a, (n=1,2,3) zuch that

3
r=1](cosan+1ns1nan) .

For let tan2a3=2(rors-r1r2)/(r02+r12-r22-r32) , and

put s=r(cosa3-iBSina3} . Then
sosa~s152=cos2a3(ror3-r1r2)-sin2a3(r02+r12-r22—r32)/2 = 0.

Let tana1=s1/so , tanaz=52/so , then tana1tana2=s152/502=33/so.

Hence secza.,seczazzN(s)/sozzi‘i’(r)/sozﬂ/so2 , So that, without

loss of generality, COS&a,C088,=85 Thus ,

s:cosa1cosaz(1+i1tana1+iztana2+13tana1tanaz)=zzkcosan—insinan) .

Hence r=s(cosa2+iBSina3) can be factored as desired.
~

(6) F(cosan+insinan)=1 or -1 « This follows from (4), since
cosan-t-irsinan is the product of two vectors of norm 1; for

instance cosa1+i1sina1=12(133ina1—izcosa1) .

(7) F(cosan+insinan)=1 . Ve merely apply (6) to cos(an/2)+
insin(an/Q) , and note tnst the square of this expression

. . ina .
1S COS&n'l'lnSl n

(8) If F(-1)=+1, then F(r)=1 identically. This is a direct
consequence of (5), (7), and the multiplicative property.

Having completed case A, we shall now consider

Cace B : F(-1)=-1 .
(9) If r is a vector, so is F(r) .
For let rT=-r, then F(r)T=F(rT)=E(-r)=F(-1)F(r)=_F(r) ]

(10) 1 F(1)=j_» (0=1,2,3) , then j =1, j jo=jo=-j, i, etc.






T ﬁ

For by (9) i, 1 a vector, so tuat Jy =-3,» whence j_ —-N(jn)=-1.

Also 3132=F(i1)F(iz)zF(i112)=I'(15)=j3 , etc.

(11) There exist three functions b=f (a) modulo 2w, (n=1,2,3),
such that F(cosa+insina)=cosb+jnsinb.

For let r=cosa+i sina, w#0,n , then (r,im)zo, that is imr;erim
But then ij(r)zF(r)ij, that is (F(r),j )=0, whence F(r)=k+j 1,

2

k and 1 being scalars. Now k2+l =NF(r)=1, hence we may write

k=cosb , l=sinb , which proves (11) .

(12) fn(a+b)=fn(a)+fn(b) and fnﬁn/2)=m/2, modulo 27,

The first of these equations follows from the multiplicativity
of F and de Woivre's theorem, the second one from the fact
that F(in)=jn. As an obvious corollary we have fn(ka)=kfn(a)

for integral k.

(13) £,(a)=f,(a)=f;(a)=£(a), say.

Let c be any complex number, a ~c/2, a = (- c)/2, az= =1/4,
If r—TT(cosan+’ sina ), then F(r)= 77(cosb otd sind ), where
b = fn(an)’ by (11). How r -7Téosa -77;1na -(1//—3005(a +a2)-0.
Lence r is a vector, and therefore F(r) is a vector, by (9).
Thus—rrcosb —77élnb =0. But 3= (2a3)=f,(n/2)=ﬂ/2, modulo 27,
so that 51nb3—cosb3 t1//2. Therefore cos(b +b ) 0, whence
f1(c)+f2(w-c):2f(a1)+2f(a2)=2(b1+b2)=ﬂ3 modulo 2w, by (12).
But fz(c)+f2(ﬂ>c)=f2(a)=2f202/2)=n; which, together with the
above, gives f1(c)=f2(c). Similarly this equals fs(c), hence (13),






(14) If f£(a)=0, modulo 2rt, then a=0, modulo 27T
Since F(r) is a continuous function of r, it follows that
f(a) is a continuous function of a, modulo 27. Thus, for every
€20, there exists ad» 0, such that lf(a)4R4=/f(a)-fUtﬁéé,
modulo 2r, whenever [a-TU/4¢d modulo 2m.
Let us assume that f(a)=0. Unless a is of the form a=2rp/q,
p integral, g odd, we can find an integer k such that |ka-m/<d,
modulo 2n. (If a is a rational multiple ofs , this is trivial:
Otherwise we refer to Kronecker's theorem.) Hence, by continuity,
[f(ka)-m/<€. This contradicts the assumption that f(ka)=kf(a)=0.
Therefore f(a)=0 implies that a=2rp/q, p integral, g odd.
Wwithout loss of generality we may ascume that p and g are
relatively prime, hence there exist integers p' and q' such
that p'p-q'q=1. Then f(2r/q)=f(p'a-2rq')=f(p'a)=p'f(a)=0, med 2r.
Suppose there is an increasing sequence of odd numbers
q,=2p, -1, sucl that f(2r¢q )=0 for n=1,2,... . Then 2wp /7T
Hence, by continuity, f(7)=0, which contradicts the fact that
f()=2f(r/2)=7. Thus there exists a largest g fcr which f(2~/q)=0;
and it is an easy matter to show that, whenever f(a)=0, then
a=27tp/q, modulo 27.
e shall assume that g#1. Let a, be any irrational multiple
of 7z, then f(4a,)#0 mod 27. Let a “a/q, then f(2a,)=0 mod 27,
Let cota3-tana1taaag, then 7-7-'cos=sa -77g1na n=0» 80 that

—TTcosa +i sina ) is a vector. But then, by (9), F(r) is also
nz|
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a vector, whenceI:[cosf(an)—Jj;inf(an)=0. Since 4f(a1)=f(4a1)#0a
therefore cosf(a,)£0. Lince 2f(a2)=f(2a2)=0, therefore
sinf(a2)=0. It follows that cosf(a3)=0, 50 that f(m~2a3)=
W-zf(a3)=o mod 27. HenceTr-2a3 iz an integral multiplie of 2n/q,
so that a3=m/2-ng/q- Thus

tana1=cotaB/tana2=tan@tp/q)/tanOn/q) .
If g#1 , this assmes ét most denuuwerably many values, coutrary
to the fact that 2, is an arbitrary irrational multiple of 7r.

Thus q=1.

Hence f(a)=0 implies that a=2«p, p integral. This proves (14).

(15) If g(b):tanf(tan-1b), b being any complex number, then g
is a single valued function.

For let b=tana, so that tan'1b=a+nﬂ3 n integral. Then
2f(a+nn)=f(2a+2nn)=~F(2a)+f(2nm)=2f(a) modulo 27, and therefore

g(b)=tanf(a+nn)=tanf(a).

(16) 1If g(b)=0, then b=0.
For suppocse g(b)=0. Then f(2a)=2f(a)=0 mod 27, and therefore,

v, (14), 2a=0 mod 2W. Hence b=tana=0.

(17) For finite b, g(b) is finite.

For supgose g(b)=tanf(a) is not finite. Then f(2a)=2f(a)=n=F@1),
modulo 27m, so that f(2a-7)=0 mocd 2%, and therefore, by (14),
2a=Tr, modulo 27. Hence b=tana would not be finite either,

contrary to hypothesis.
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(18) g(b1b2)=g(b1)g(b2) .

tince g(0)=tanf(0)=tan0=0, this is trivially true if either
by or b, vanishes. Hence we may assume that b1, -#0. Let
b1-tana1 b2-tqn32, b1b2-cotaﬂ . 1hen11-51nan=T7;csa .
But, by (9), if r is a vector, so is F(r), hence

3 L)
13—s1n f(an) =_[Icos f(an) . .o (1)

Since bn=tanan£0 (n=1,2), therefore 2an#0, mod 2. In view of
(14), 2f(an):f(2an)£0, modulo 2r, whence cosf(an)#o (n=1,2).
Cicrilarly sinf(aB)#O, whence, by (i), tanf(a1)tanf(a2)=cotf(a3)
Thus g(b1b2)=g(cota3)=g(tan(@;/2)-33))=tanf(Un/Z)-a3)=
tan(OZ/2)—f(aB))=cotf(a3)=tanf(a1)tanf(a2)=g(b1)g(bz) , as

was to be shown.

(19) g(b1+b2)=(g-(b1 )"'g(bz) )8(1"b1b2)/(1"8(b1b2))

For g((b1+b2)/(1'b1b2)) = g(tan(a1+a2))

= tanf(a,+a,) =(g(by)+&(b,))/(1-5(by)e(b,
sdultiply both sides of this equation by g(1—b1b2) , then (19)
follows in virtue of (18).
(20) g(1)=1 . For by (16) there exists a number b such that
g(b)£0. But, by (18), g(b)=g{b)g(1), whence (20).
(21) g(-1)=-1 . For, by (18) and (19), we have
£(2)g(1)=g(21)=g(i+1)=28(1)g(1-1°)/(1-g(1%))

=2g(i)g(2)/(1-g(-1)) .

In virtue of (16), we may cancel, therefore 1-g(-1)=2, whence (21),






(22) There exists a constant k, such that g(b+c)=k(g(b)+gl(c))
whenever b,c#0.

Put d“=bc, so that 40, and therefore g(d)#0, by (16). Hence,
by (18) and (19), g(1-d°)/(1-g(a?))=g(24)/(2g(d))=g(2)/2=k, say.
Again by (19)

g(v4c)=(g(b)+&(c))g(1-d%)/(1-g(a%))=k(g(b)+&(c)) ,

as was to be shown.

623) g(bte) = g(b)+gle) .
If either b or ¢ vanishes, this is trivially true. Otherwise

we must show that k in (2z) is 1. Let b,cZ0. e can find a

num-er d#0, such that neither b+d nor d+c will vanish. Then by (22)
g((b+d)+c)=k°g(b) +k°g(d) 4ke(c) ,
g(b+(d+c))=kg(b)+k°g(d) +k°g(c) .

The associative law of addition therefore gives

k(k-1)(g(b)-g(c))=0 .
If we take for instance b=1, c=-1, it follows that k(k-1)=0.
By (15), k=g(2)/2#0 , hence k=1. This completes the proof of (23).

(24) Either g(b)=b, or g(b)=b" identically.

It is well known (and can easily be proved) that these are
the only complex functions, not identically zero, which
satisfy the functional eguations: g(bc)=g(b)g(c) and g(bec)=
g(b)+g(c) , proved in (18) and (23) respectively.

(25) Either f(a)=a, or f(a):aC modulo 27,
For tanf(a/2)=g(tan(a/2))=tan(a/2) or =tan(a®/2), by (24).

C
Hence f(a)=2f(a/2)=a or =a’, modulo 27,






(25) If F{-1)=-1, then F(r).--uruT for all biquaternions r of

C.T
norm 1, or F(r)=ur u~, u being a constant biquaternion of

norm 1.

1t follows from (%), (11), and (13) that
T e ’
Y = ml(cosan+1n51nan) , F(r) =IJ'(cosf(an)+jnsinf(an)) .
3
Hence by (25) | 3 (c) . . (c)
b(r).-]:r(cosan tJ,sina ) .
Upon multiplying this out, we have, in virtue of (10) :

Zonn,F(r) 23 (0,

where io=3 =1 . Corresponding to y—jiyn n °? let us put

nao

G(y)= 5iyn « The function G is tinus defined for all bi-
quaternions y. Obviously G(y-y')=G(y)-G(y'), and NG(y)=k(y) .
Hence G(y) is an orthogonal transformation, and, by theorem 1,
G(y):py(T)q, where N(p)=N(g)=1. Since F(r):G(r(C)), it follows

that G(yy')=G(y)G(y'), whenever N(y)=N(y')=1. In this case

therefore fp(yy q=py yy") (T)=y

If we put x=1, this shows ti.at gp=*1. Hence =tpT, so that

() T (1) (T)

G(y)=py'“'p~, and (yy')(T)=y y whenever y and y' have

T

norm 1. However (1112)?£11T121, hence G(y)=pyp~, and therefore

F(r):G(r(C))zpy(c)pT, as was to be shown.

This completes case B. In virtue of (3), (&), and (26),

we have now proved the lemma.






SUMMARY .

2

==]1
n

3
A biguaternion is of the form a:Za

where i =1, 1
h=O o

nin’
(n=l,2,3), 1112=is=-i211 ete., the a. being complex numbers.

C

By the conjugate a” of a we mean the complex conjugate, whereas

the transpose is aizao"alil'a2i2"a313' The norm of a is N(a):aaTo

a2 i1s Hermitian whenever ac=aT°

Biquaternion space B requires (a) a set of points Q, (b) a
complex distance function J(Q,Q'), (c) a one to one correspondence
S with the set of biguaternions y=S({) such that J(Q,Q')2=N(y-y‘).
S is called a special ccordinate system, and if S' is another,
T=S'S-l is called a special coordinate transformation. It is
always of the form T(y)zpy(T)q+b, where p,q, and b are bigquatern-
ions, the first two of norm 1. In particular, T(y)=py3 is called
restricted.

Minkowski space M is defined in the same way except that we

require a one to one correspondence S: P«?x between all points
P of M and all Hermitian biquaternions x=3(P). Any special
(T)rCT+a,

coordinate transformation T of M is of the form T(x)=%rx

where r is a biguaternion of norm 1, and a is a Hermitian

CT

biquaternion. In particular, T(x)=xrxxr is called restricted.
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If T and T' are restricted coordinate transformations of M
and B respectively, the correspondence T-T' is called a trans-
formation scheme whenever (T1T2)'=T 'T,'. It follows that

1l "2
CT CT T
induces T'(y)=P(r)yQ(r~*), where P(rr')=*r(r)P(r'),

T(x)=rxr
a similar equation holding for Q. If P and Q can be taken to be
continuous functions, we also call the transformation scheme

continuous.

If T5ST' is a continuous transformation scheme from M to B,

CT (C)uT

then T(x)=rxr~~ induces T'(y)=pyq, where p=1 or ur , and

q=1 or vr(C)TvT

y U and v being biquaternions of norm 1. This
transformation scheme is denoted by (p;q). It is called principal
if u=v=l. For all practical purposes only principal continuous
transformation schemes need be considered,

Let S be obtained from a given coordinate system of M by
means of a restricted coordinate transformation. We define a
vectorfield as a correspondence SﬁFS, where FS is a function which

assigns a biguaternion FS(P) to each point P of M, such that

FTS=T'FS’ T-T' being a continuous transformation scheme from

M to B. If S7Fg 1s a vectorfield with transformation scheme (p;q)

then Foq(P)=pFg(F)a.






The conjugate and transpose of a vectorfield with
transformation scheme (p;q) give vectorfields with transformation
schemes (pC;qC) and (qT;pT) respectively. Two vectorfields with
identical transformation schemes can be added to give a vector-
field. The product of two vectorfields with transformation
schemes (p;s) and (sT;q) is a vectorfield with transformation

scheme (p;q). Corresponding to the principal transformation

°T) DINCAHEIO N

schemes (1;1) ; (r;r , (rc;rT) ;s (s
(r;l),(rc;l),(l;rT), and (l;rCT) we have nine principal
vectorfields , namely one invarient, two four-vectors, two
six-vectors, and four wave-vectors.

Roughly spesking, an operator biquaternion is a
biguaternion whose components are linear operators in the usual
sense. We say that SvAg is an operator vectorfield if S*(FASGS)
is a vectorfield for all vectorfields SﬁFS and S52Gg of given
transformation schemes. Unless N(FSASGS)(P)=O identically,
we can write ATS=pASq’ (p;q) being a continuous transformation

scheme. With the exception of the rule for multiplication, the

above results for vectorfields still hold for operator

vectorfields.
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1« Introduction.

A semigroup is a set of elements which is closed under an

associative operation, usually called multiplication. When

can a semigroup be embedded in & group, i.e. under what
condition is it isomorphic to a subset of a group? A
necessary condition for immersibility is clearly the so called

cancellation law:

(C) If ax=ay or xb=yb, then x=y.

It i1s well known that a finite semigroup with cancellation law

is a group, also that an Abelian semigroup (one in which multi-
plication is commutative) can be embedded in a group if and only
if the cancellation law holds. In general however the cancellation
law is not sufficient for immersibility, as was shown by A. Malvev
in 1936. He also discovered necessary and sufficient conditions,

which he maintained were too complicated for publication.

It is in fact not difficult to find such conditions. They
state that certain systems of equations are not independent.
This means that if all but one of the equations are giver, the
remaining equation can be deduced. However, as soon as we wish
to give verbal utterance to these conditions, it becomes desirable
to label the eguations :£d the variebles contained in them. This
is where things begin to get involved. I uave tried to covercome

this complication by using parts of a polyhedron, rather than
natural numbers, for labelling the equations and variables of any

such system. In defining the term polyhedron I shall follow the

book on topology by Seifert and Threlfall.






A face (abstract polygon) is a division of the unit circle
into two or more arcs, called sides, by an eqgual number of points,
which we will term angles. An abstract polyhedron is a system
of F faces, containing together 2E sides,\such that every side
is mapped t0p010gica11y on exactly one other. We may assume that
the midpoint of one side is always mapped into the mridpoint of
another. A pair of sides’thus mapped into each other is called
an edge. Hence every edge has two sides. We may speak about the

midpoint of an edge, which divides the edge into two half-edges.

A set of angles which correspond to one another under the mapping
is called a vertex. Every edge has two vertices. To every edge

there belong four angles, which may be classified by pairs in two
different ways: angles at the same vertex of the edge, and angles
on the same side of the edge. Every half-edge has one vertex, two

sides and two angles. The polyhedron is called Eukerian if the

total number of vertices is V such that V4F-E=2. This is also a
necessary and sufficient condition for the surface defined by the
polyhedron to be homeomorphic (i.e. topologically equivalent) to
the sphere. Throughout the present paper we shall always mean

abstract Eulerian polyhedron when we say "polyhedron".

Given a semigroup H, we shall understand by polyhedral

condition the following statement:

(P) If the elements of H are assigned to all sides and angles
of any Eulerian polyhedron, such that to each half-edge there

corresponds an equation xa=yb, where X and y have been assigned
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to the sides, a and b to the corresponding angles of the half-
edge, then these 2E equations are interdependent, i.e. any one
of them can be derived from the totality of all others. (See

figure 1.)

The application of this condition to two polyhedra which are
topologically equivalent will of course give the same result.
We shall prove that (P) 1s a necessary and sufficient condition
for immersibility of a semigroup H with cancellation law into

a group. This will establisl. the following

THECREL: A semigroup can be embedded in a group if and only if
the cancellation law {(C) and the polyhedral condition (F) are

satisfied.
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2. Necessity of polyhedral condition.

Let the semigroup H be contained in a group G, so that
elements of H possess inverses in G. Assi;n elements of H to
the sides and angles of a given polyhedron. Assume that the
equations helongiag to all but one half-edge are true, the

remaining equation is to be deduced.

An oriented triangulation of tne polyhedron is obtained as

follows: Directed radil are drawn from the center of each Tace
to the angles of the face. (It will be reirembered that faces are
circles, and that by angles we understsnd points on the
circumference.) Directed radii are drawn fron the midpoints of
all sides to the center of the face. Fach helf-edge of the
original polyhedron is given a direction from the midpoint of the
edge towards the vertex. The half-edges thus oriented as well as

the directed radii will be the oriented edges of the triangulation

The equation xa=yb, corresponding to any half-edge of the
polyhedron, can be replaced by the two equations xa=p and yb=p,
corresponding to two triangles of the triangvlation. The variables
occuring in tlLese equations are assignec to tie edges of the
triangulation: namely x and y to the radii from the midpoinut,

s anéd b to the radil towarcs the vertex, and p to the half-edge

jtself. (See figure 2.)
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If the equation xa=yb was to be inferred, we may now add

yb=p to the given equations, and leave only xa=p to be deduced.
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Thus, corresponding to each oriented triansle, we hove an
eguation; for instance xa=p and yb=p correspond to two of the
four triangles on figure 2. 0F *these 4E equations all but one

are given, and one is to he derived.

Consider any path wade up entirely of edges of the
triansulation. Corresponding to such a path we form a product
in the Tollowing wsy: If the element x of I has been assignel to
tre n-th edge of the path, then trc n-th term of the product is
X or x“1, depending on whether tiis edge has been traversed in
tr.e right or in the wrons Jdivection. For irstance, tiere are six
cifferent closed paths by means of which the perimeter of the
upper left triangle of figure 2 can be once described. Correspond-
inglv we may obtain one of the six products:

(i) xap-1 , ap'1x, P Xa ; pa'1x'1, a“1x'1p, )c'1pa"1 .

As long as xa=p , each of tlhese products has the value 1; and

conversely, if any one of the six products (i) is 1, then xa=p.

Consider now a closed path consicting of edges of the triangul-
ation, and surrounding only triangles for which the corresponding
equations are given. We prove by induction that the product
corresgonding to this path will be unity. We have shown szbove
that this is indeed so, if ithe path surrounds only one triangle.
Otherwise we may decompoce the clozed path into two paths Q¢ and R
traversed in succession, such that there will exist a path P,
lying entirely inside the closed path, and joining the endpoint
cf Q to the endpoint of R. Let p' be the path P traversed in

opposite direction. If f(P) denotes the product associated with P,
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then f£(P)f(P')=1. Hence f(Q)Lf(R)=f(Q)f(B)Lf(s')f(k)=1, since
(L (P)=£(P')f(R)=1, by induction hypothesis.

Suppose now the upper left triangle of figure 2 is the one
for which the corresponding equation is to be derived. Since
the surface defined by our polyhedron is homeomorphic to the
sphere, the perimeter of this triangle divides tne whole surface
into two siwply connected regions. Let us describe a closed psth
along this periceter, and call the outside of the triangle the
inside of the path. Corresponding tc this path we obtain one of
the six products (i), whose value will be unity, in virtue of the
above. Hence xa=p, as was to be deduced. We have thus shown the

necessity of the polyhedral condition.
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2., Ratios.

In preparation for the sufficiency proof of the polyhedral
condition, we shall consider a semigrour H satisfying (C) and
(F). It is our intention to introduce ratios, in more or less
the same way as is usually done when H is the set of natural

numbers,

Let a2 and b be any two elements of H. We shall designate
by &/b the set of pairs of elements x,y such that xa=yb.
If &/b is nct the expty set we shall call it a ratio. Sinilarly
we define I, (a), (a)-1 as sets of pairs x,y such that x=y ,
xa=y , X= ya, respectively. With the help of the cancellation

law, we can easily show that they are also ratios. In fact
(1) eoe I=t/t , (a)=at/t , (a)'1=t/at ,
where t is an arbitrary element of H. we also note that
(2) ... (2)=(b) if and only if a=b.
When can we say that two ratios are equal? We will prove:

(3) .. 8/b = ¢c/d if ani only if there exist x and y belonging
to H such that xa=yb and xc=yd . (It is assumed here that a/b

is in fact a ratio, and therefore not empty.)

The necessity of this cordition follows directly from the
definition or ratios. To prove its sufficiency, let us assume
that the condition of the theorem holds, and also that us=vb.
Let us now apply the polyhedral condition to a simple polyhedron

consisting of two edges, two faces, and two vertices (figure 3).






The equations corresponding to three of the nalf-edges of tiis
polyhedron are true by assumption, consequently the fourth must
hold, viz. ve=vd . This argument works both ways, hence ua=vb

if and only if uc=vd, and therefore a/b = ¢/d , by definition.
X u Fig 3

—— . I3 ] [ C
We define multiplication of ratios as follows:

(4) «oo (3/d)(d/b) = a/b .

Thus two ratios may be multiplied to give another ratio, provided

they can be written in the form a/d and d4/b respectively such

that a/b is a ratio. Is the product of two ratios unique, if it

exists®? To answer this in the affirmative we must show:

(5) o0 e If a/d = a-./d' and d/b = d'/b' ’ tklen a/b = a'/b' .

We may assume that xa=yd, xa'=yd' , zd=wb, zd'swb' , ua'=vb' ,

and wish to prove that ua=vb. The result follows jmmediately if

we consider the polyhedron consisting of two vertices, three face

and three edges. (See figure 4.)

I is the unit element under multiplication. For

(a/2)I = (a/b)(b/b) = a/b
by (1) and (4). The same applies to multiplication by I on the

left. We note the existence of inverses; thus, by (1) and (4),






(a/b)(b/a) = a/a = 1 .

In particular we see from (1) that (a)“1 is the inverse of (a),

as was anticipzted by our notation. We find that
(a) (b)=(abt/bt)(bt/t) = abt/t = (ab) .

Hence, in view of (2), the correspondence a—(a) maps H

isomorphically on a subset of the set of ratios.

We have embedded H in the set of ratios. The latter has all
properties of a group, except that it is not closed under
multiplication, and associativity has not yet been shown to
hold. We shall embed it in a larger set, in which multiplication
1s always defined and associative. It may be worth noting that,

if H iz an Avelian semigroup, the ratios do form a group already.
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4. Associativity.

Ire set of ratios almost form a group, except that it is
not closed under multiplication, so that also the associative
law, as usually stated, has no meaning. With some care however
it is possible to enunciate an associative law even here. If we
can bracket a sequence of ratios in such & way that they can be
multiplied out to give a single ratio, then this "product™ shall
be urigue. To be more precise: we shall say that a finite sequence
of rotios (e..,a/b,b/c,...) contracts into the sequence
(eeesa/Croae). If a sequence of ratios reduces to a single ratio
by iterated contraction, we will ca2ll this ratio its vroduct.

The associative law then states:
(6) «.. If a sequence of ratios has a product, then it is unique.

Tc prove (€£), consider a servence S(C) of n+1 ratios. This
contracts to S(¥1), comnsisting of n ratios, whick in turn contract:
to S(*2), and so on, until we obtain a single ratio S(*n). If
the plus sigrn is chosen, we have one method of iterated contractior
if the minus sign is chosen, we have znother. We must zkow that
S(+n)=5S(-n).

If k¥ is an integer between O and n, we write i=*k, and note
that S(i) has n+1¥k places or terms. Represent the j-th place
of S(i) by the point (i,j) in the Cartesian plane. If k#£0,
all but two terwms of S(*k3i1) reappear in S(*k): Join the
corresponding points by straight lines. 3ut two consecutive

terms, say a;/c; and c¢y/b; are contracted into ai/Bi :
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Join the two former points by straighi lines to the lztter,
viiich will be called a vertex. Also join the two points (or
vertices) (*xn,1) to the point at infinity, along the line y=1.

A broken line joining two vertices, even if it passes through
the point at infinity, will be called an edge. There are three
edges meeting at every vertex. The siuply connected regions into
which the edges divide the plane will be called faces. Since the
plane can be mapped on a sphere by an inverse stereographic
pfrojection, we obtain a concrete representation of an Zulerian
polyhedron. We may also verify independently that V=2n, F=n+2,
and E=3n, so that V+F-E=2. A simple case, for which n=2, is

illustratec by figure 5.

consider the vertex corresponding to the contraction of
s(t;m)=(,..,ai/ci,ci/bi,...) into S(i‘k)z(...,ai/bi,...). To the
three angles formed at this vertex we assign a;,cy, and b, in
this order, going from top to bottom, as shown in figure 5.
By -our construction, if a and b have been assigned to the upper,
respectively lower angle at one end of any finite edge, and

if this edge pasSses through any integral lattice point (i,j),

then the j-th term of 5(i) is a/b. But in the same way, we find






that this term is c¢/d, where ¢ and d correspond to the two
angles at the other end of the edge. Thus, for any finite edge,
we have a "proportion" a/b=c/d. We will prove that such a
broportion also rolds for the edge passing through the point

at infiﬁity.

In view of (3), the above proportion may be replaced by the
two equations xa=yb and xc=yd. Here x and y m2y be conveniently
assigned to the two sides of the edge (see figure 6), and the
twe eguations ziy be said to correspond to the two half-edges.
Consider now the edge joining (n,1) and (-n,1) through the point
at infinity. An appropriate transformation will bring the point
at infinity into the finite part of the plane. Since a~n/b-n is
a ratio, by definition, there exist elerents u and v of H such
th=t ua _=vb n ° We may assism u and v to the upper, respectivelys
iower side of the edge depicted in figure 7, and the given equation
will corresrond to the left half of this edge. With the help of
the polyhedral condition, we deduce the remaining eguation uanzvbn.
It follows from (3) that a_ /b_ =a /b , i.e. s(-n)=S(+n). This

concludes the proof of the associative law.
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2. _Sufficiency of polyhedral condition.

Two finlte sequences of ratios, U and VvV, will be calied
Similar, if there 1s a sequence W from which both can be obtained

by repeated contraction. We will prove the following result :

(7} «.. If both U and V reduce to S by iterated contraction, then
the; are similar.

First, suppose U contracts to S, so that U=(P,a/c,c/b,Q) and
S=(P,a/b,Q), where P and Q may be emplty sequences. 3Since V reduces
to S, we may put V=(%,Y,Z), where X, Y, and Z reduce to P, a/b,

and Q respectivelyr, by iterated contraction. It is easily seen that
W=(X,Y,b/c,c/b,Z2) can be reduced to both U and V by rere-ted
contrection, so that U and V are sinilar. Hence (7) holds when

U reduces to S in one =tz2p.,.

Next, suppose U reduces to S in n steps, n>1. Then U contracts
to U' which reduces to 5 in n-1 steps. By induction hypothesis,
there exists a sequence W' which reduces to U' and V by iterated
contraction. Since U reduces to U' in only one step,by the above,
there exists a sequence W which reduces to both U and ¥' and
therefore V. Hence U and V are siwmilar, as was to be proved.

(See figure 8 for an illustration of the second part of this proof.,)

we are now in a position to show that similarity of sequences

of ratios is an equivalence relation in the uzual sense.
(8) oo. cimpilarity is symmetric, reflexive, and iransitive.

Symmetry is obvious. Reflexivity follows from the fact that (S,I)

contracts to S. To prove transitivity, let us assume that R is
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Similar to S ang S 1s similar to T. Hence there exists a sequence
U which reduces to both R and S, and a seguence V which reduces tc
both S and T (see Tisure 9). Since beth U and V reduce to 5, by
(7) they can both be obtained fron a sequence v by repeated
contraction. Now W reduces to R via U and to T via V, hience R is

Similar to T, as was to be proved.

" W
S N / \

fe g U\ Ny u V
S u\\S/// é/'\\sz/ \\T

In this connection we may also state:

Fig, 9

(9) «.. If 5 is similar to S* and T is similar to T', then

(5,T) is similar to (S',T').

For, by repeated contraction, we obtain S and S' from U, T and T

from V, hence (S5,T) and (S5',T') from (U,V).

A4 ratio may be regarded as a sequence of ratics with one term.

When =zre two ratics similar?
(1C) +.. Two ratios are similar if and only if they are equal.

Because of reflexivity we know that equal ratios are similar.
Conversely, let two ratios be similar. By definition, this means
that both can be derived from the same sequence W by repeated

contraction. From (6) we deduce that they are equal.

Let us denote by S* the class of all sequences which zre similar
to 5, so that $*=T* 1if and only if S and T are similar, in view

of (8). We define multiplication of similarity claicses as follows:;

(11) ov» S'T=(5,17 &
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From (9) we know that the product thus éofined is unigue.
Associativity becomes apparent if we write both (S*T")U" and
S*(T°U*) as (S,T,U) . The unit element under multiplication is
I”, since both (S,I) and (I,S) are similar to 3; fcr both are
obtained by contracting (I,5,I). If T contains the reciproczls

of tie ratios of S in reverse order, then both (5,T) and (T,5)
reduce to and are *tierefore similar to I; thus T* may be regarded
as the inverse of S* under multiplication. We have thus proved
that the similarity classes form s group G, with multiplicaticn

Jefined by (11).

The correspondence a/b—(a/b)” is a homomorphic mspping of

the set of ratios on a subset of G. For, by (11) and (4),
(a/0) (b/e) =(a/b,b/c)y =(a/c)*=((a/b)(b/c) ).

More than this, the mapping is isomorphic. For if (a/b)*=(c/a)"
then a/b and c/d are similar, hence a/b=c/d, by (10). The
correspondence a/b—>(a/b)” therefore embeds the set of ratios
in G. But the correspondence a—{a) embeds the semigroup H

in the set of ratios, as we have shown in section 3. Hence the
correspondence a—(a)‘ embeds H in G. This establishes the

sufficiency of the polyhedral condition.
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6. Application to Abelian semigroups.

Let H be an Abelian semigroup with cancellation law. Although it
1s not difficult to show directly that H is immersible in a group
(namely the set of ratios), we shall test the usefulness of the
bPolyhedral condition, by showing ind-pendently that the latter

holds in H.

Let eclements of H be assigred to all angles and sides of any
given polyhedron. Of the eguations corresponding to the half-edges
we will assume that all but one hcld, and we wish to deduce the
remeining equation. As in the necessity proof of the polyredral
condition, we Introduce a triangulation and reglace each equation
Xa=yb by two eqguations xa=p and yb=p corresponding to triangles. Ve
may assume then that a2ll but two of these latter ecuations are
given.

If the triangulation is regarded as a network, each vertex is
seen to te an even noce, i.e. has an even number of edges meeting
at it. Hence there is an Tuler line, i.e. the entire network can
be traced in one single closed curve which Cces not pass through
ary voimt twice. Since the »olyhedron was homeouorrhic to the
sphere, this Euler line will divide the trizuagles into two clas:ces,
so trat triangles with a common edge do not belong to the same
clasc. Ve will write the equation corresponding to a triangle of
the first class as xa=p and the equation corresgonding to a triangle
of the gsecond class as p=yb, making a careful distinction hetween
the tvo sides of each equation. Now multiply all 4E-2 given

equations together, after tleir sides have been thus arrenged. It

will be observed that the four varicbles belonging to the helf-edge
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whose equation is to be deduced occur once in thne rrodurt
€quation. All other variables occur twice, once on esch side

Oof the product equation, and may therefore be cancelled, by (C).
There results an equation contsiniry fcur varishles, and ‘t is
€asily seen that this is in fact tic ccquation we wished to

d€duce. Hence the polyhedral condition is saticficd, as was to

be oroved.






7. Summary and Conclusions.

A semigroup is a group without inversece unler multinsliceation.
It is proved that a semigroup K can be emredded in (or is
isomorphic to a subset of) a group if and only if the cancellation
law (C) znd thue pclyhedral condition (1) hold. Here (C) means
that ax=bx or xa=xb should always imply that a=b, fcr any elements
a, b, x o E. (r) states: If :lements of II are assigncd to the
angles and sides (i.e. sides of edges) of any Eulerian polyhedron
(a polyhedron whose surface is homeomorphic to the sphere), so
tnat to each half-edge there correcsponds an ecuaticn xa=rb, where
X and y have teen assigned tc the two sides, a and b *tc the
corresconding two angles of the half-edge, then these equations
are interdependent, i.e. any one of them can be deduced from the

totality of all others.

We have spoken above of the polyhedral cordition. We might
equally well say that there are as many different conditions as
there are topologicsally inequivalent poiyhedra, namely an enumer-
able infinitude. Even worse, the number of equations entering any
such concition, being twice the number of edges of the polyhedron,
is unbounded as we vaxry the latter. The number of conditions can
be reduced to some cxtent: it suf’ices to consider only such
polylhedra as can be cut up into two trees; moreover we may restrict
the number of edges meeting at any vertex to three. However it
remains an open question whether a finite number of conditions

may not do. I conjecture that this question is to he ansmarea in

the negative.
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