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INTRODUCTION. 

When Hamilton had invented quaternions, the question arose 

whether they could be used to advantage in mathematical physics. 

However, the world then only had three dimensions, and so the 

scalar part of the quaternion was suppressed, the resulting 

entity being called a vector. The relation between vector-

analysis and quaternion algebra is well known, and need not 

be entered into here. 

With the theory of relativity also came the fourth dimension. 

Although Minkov;ski himself rejected the quaternionic calculus 

as "too narrow and clumsy for the purpose in question", 

Silberstein has strongly advocated the cause of quaternions. 

He used quaternions with imaginar;y acaltr parts to designate 

the position of points or events in space-time. This was 

necessary, since the metric in Minkowski space is not given by 

a positive definite quadratic form. We achieve the same result 

by making the vector part imaginary, in which case we obtain a 

Hermitian matrix representation of the position quaternion. 

Professor Dirac believes (as stated by him in conversation) that, 

some day, Hamiltonian quaternions, as opposed to Hermitian 

quaternions, will re-assert themselves in relativity theory; 

but I do not see how this can be. 

To each point P of Minkowski space we assign a Hermitian 

quaternion S(P). The function S is called a special coordinate 

system. Given S, a physical entity will in general be measured 

by a function Fg which associated a biquaternion F^CP) with each 
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point P. However, it is the correspondence S—;>F2, here called 

a vectorfield, which really represents the physical entity, 

independently of any particular coordinate system (within the 

frame-work of special relativity). It must be postulated that, 

in some way, Fg does not loose its identity as we transform the 

coordinate system. That is, as we pass from S to S', the 

transformation carrying F^ into Fo, shall be of a rather simple 

nature. In the language of Van der Waerden: The latter trans

formation shall be a representation of the former. 

In a relativistic treatment of classical physics, such as 

Silberstein's (see bibliography), we find five types of vector-

fields: One invariant, two four-vectors, and two six-vectors. 

If we also use the quaternionic method in discussing relativistic 

quantum-mechanics, four more vectorfields arise, which have been 

called wave-vectors (or spinors). Thus nine types of vectorfields 

can be found a posteriori. In part II, I shall define the concept 

of vectorfield, and try to discover whether other types than the 

above nine exist. I shall also extend this notion from functions 

to operatoi3. 

Unfortunately, when working on this problem, I was not aware 

of the theory of representations of the Lorentz Group, as 

developed by Van der Waerden, whose work is based on that of 

G. Frobenius, I. Schur, and H. Weyl. Roughly speaking, the results 

of part II are implied by those of Van der Y/aerden (see bibliography) 
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To be more specific: He determines all differentiable represent

ations of the Lorentz Group as linear transformations of 

n-dimensional vector space, but states in a footnote (§17) that 

it would suffice to demand continuity instead of differentiability 

In this thesis, I have determined all continuous representations 

(here called transformation schemes) of the Lorentz Group as 

orthogonal transformations of biquaternion space, i.e. Euclidian 

space with four complex dimensions. The problem solved here is 

therefore not quite the same as the problem solved by Van der 

Waerden, but loses in importance owing to his work. His method is 

more elegant and more general than mine, but less elementary, as 

he makes use of infinitesimal transformations. 

Part I contains a discussion of special coordinate transform

ations in Minkowski space and biquaternion space. ¥ectors are 

regarded as labels of points, as in the theory of relativity, 

and not as points, as is customary in algebra. It is proved that 

Lorentz transformations can be expressed by quaternions, a fact 

which is assumed, or rather postulated, by Silfeerstein. The proof 

given here is long; but an attempt to shorten it (for instance 

by using an exponential parametrization) might sacrifice its 

elementary character. 

In part III,I have obtained explicitly all continuous 

homomorphisms of the Lorentz group on itself or part of itself, 

but I do not know whether there exist discontinuous ones. 

Dieudonne, in his book on classical groups (see bibliography), 

proves that the Lorentz group is simple, i.e. that all such 
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homomorphisms map the whole group either into Itself or into 

unity. The result of part III would be implied by this, if it 

were knowr. that all automorphisms of the Lorentz group are little 

more than inner automorphioms. 

In this introduction reference has been made to physical 

theory. Nonetheless, the problem will be posed and solved in 

purely mathematical terms. I had intended to add an appendix 

with physical applications, especially to Dirac's relativistic 

equation of the electron, but was dissuaded from doing so, owing 

to the recent publication of a paper by A.W. Conway on thir 

vc-xy subject (see bibliography)-

On the whole, the present paper has been worked out in the 

spirit of Silberstein and Conway, and no attempt has been made 

to assimilate ite results to the ter^r'nology of Van <5er Waerden 

and Dieudonne. 
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Part I. 

It is customary to define quaternions through their rules 

of multiplication, and to shov̂  that the resulting system is 

an algebra. By mesms of a well known theorem, a matrix 

representation of quaternions is then obtained. To simplify 

matters we shall reverse the usual procedure here. A matrix 

/ % -̂ 1 "^2 "^3\ 

... (i) a = 
I o 5 ^ 

a r-\ a-2 a. _ — a ̂ 
<; 3 o I 

^3 ~^2 1̂ ^o/ 

witn complex elements a (n=0,1,2,3) will be called a bi-
^ 3 

Quaternion. We can w^rite a=2_a^i^, where the i^ are c e r t a i n 
f^tQ n n n 

matrices all of whose elements are 0, 1, or -1. In particular, 

i is the identity matrix, and we shall write i^=1. Further-0 •/ » o 
2 

more i =-1 for n=1,2,3 » and i-i^=i^=-ioi-, , etc. Since 

matrix multiplication is associative and distributive, and 

since 0 and 1 are biquaternions, the latter will form an 

algebra. This is however not commutative, for 1^12-12^-1=21, 

/O ; nor is it a division algebra, as (.1-j-iî) (1-ii^ )=0. 

T The transpose a of a is formed by interchanging rows and 

T C 

columns in (i), thus a =a -a^±^'a2^2^^'5^'5 ' ^^^ conjugate a 
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of a is formed from (i) by replacing each element by its 

complex conjugate. Among other obvious relationships we have: 

a'̂ =̂a=â '̂ , â '̂ =â ,̂ (ab)'^=a^b^, (ab)^=b"a^'. 

T If a =a or -a, we speak of scalars or vectors respectively. 

a will be real or purely imaginary, according as a =a or -a. 

Real biquaternions are of course Hamiltonian quaternions. As 

in the theory of matrices, we shall consider Hermitian or 

8Kew-Hermitian matrices, fcr which a/"̂ =a or -a respectively. 

If a and b are tv/o biquaternions, their inner product 
3 

(a,b)=2^a b =(1/2)(ab +ba ) is clearly a scalar. Inner 

multiplication is distributive and commutative, but not 

T T associative. N(a)=(a,a)=aa =a a is called the norm of a, its 

square being the determinant of (i). We have N(ab)=N(a)K(b), 

^^^ N(a:fcb).N(a)-N(b) = i2(a,b) . ... (ii) 

Let B be a set of points, over which there is defined a 

function J, associating a complex num.ber J(Q,W') with each 

pair of points Q, Q' of B. Furthermore let there exist a one 

to one correspondence S: Q̂ -*y, between the set B and the set 

of biquaternions y such that J(Q,:t*) =N(y-y'). Then B will 

be called a biquaternion space. It is of course merely a four-

dimensional 8pace vvith Euclidian metric and complex coordinates. 

5 is called a special coordinate system of B. V/e shall write 

y==S(Q). If S* is another special coordinate system, 

and if y'=S'(Q), then we can write y'=T(y), where T=S'S"'' 
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T is called a special coordinate transfonration. It is 

1 ' 1 
characterized by the existence of T'^SS " and by the 

equation: N(T(y)-T(y'))=N(y-y') , ... (iii) 

which must hold for all biquaternions y, y'. Since with 

S, S', and S'' the correspondence GS'~ S'' will also be 

a special coordinate system, it follows that the set of 

all special coordinate systems of B is a group, its unit 

element being the identical transformation I=SS 

Theorem 1 :If T is any special coordinate transformation 

T of biquaternion space, then either T(y)=pyq+b or T(y)=py q̂-b 

for all biquaternionsy y, where b, p, q are biquaternions, 

and N(p)=N(q)=1. 

Proof : V.e shall call that point 0 for which S(0)=:0 

the origin of S. Nov/ any special coordinate transformation 

can be expressed as the product of a translation T(y)=yy-b, 

and an orthogonal transformation which lea/es the origin 

invariant. 

If T is an orthogonal transformation of B, we thus have 

T(0)=0. Hence by (iii) NT(y)=N(y). In view of (ii) therefore 

(T(y),i(y'))=(y,y') 

for all biqiiaternions y, y*. Hence 

(T(y),iJ = (y.T-^i^))=ty^l^,T-\v) = IyJl(iP'^; = (/jm̂ (V.in 
for n=0,1,2,3. Thus T(y)=Xy T(i^), as the n-th components 

of both sides are euual. 
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Instead of y'=T(y) we may therefore write ŷ Î'̂ m̂n'̂ 'n ' 
3 " 2 

(m=0,1,2,3). In view of the invariance of K(y) = 5Iy^ , it 

follows that Sit -, t =i, (k,n=0,1 ,2,3) . If wc introduce 
m:o mk mn x/l ̂  ' > » J -̂  / 

the matrix t=(t ), this can be written t'̂ t=1 . Hence 
mn ' 

T det t = det t =1 or -1 . iiOw the orthogonal transformation T T(y)=y is easily seen to have determinant -1, and any 

orthogonal transformation with negative determinant can be 

written as the product of this particular transformation 

and one whose determinant is positive. Ve may thus limit our 

enquiry to the case det t = 1 . 

We shall assume at first that det(1+t)3^0. Consider 

s=(Ut)'''(1-t) = (l-t)(Ut)"'^ , ... (iv) 

the two expressions on the right being equal, since 

(1-t)(1^t)=1-t^=(1+t)(1-t) . 

T Y/e f i n d t h a t s = - s , so t h a t s i s skew-symmetric , whence 

-s^ -So -s . 

V — S -̂  S Q 

s = I 
s ' 0 - s ' ^ 

1 '^2 "^3 \ 

(v) 

— S »~> •^ jt \j 

Let s* be obtained from s by interchanging the s and the s* 
3 ^ 

in (v) , then s's=-Z-S s' is a scalar. Now (1fs)t=1-s. 

Multiplying both sides of this by (1-̂ s') on the left, we get 

(1+s's + sWs)t = (1-s's*s'-s). ... (vi) 
Let u^=Us's , v^=1.3-s J %=s^4s'^ , v^_=s^.s'^ , (n=1,2,3). 
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If y'm=?*mri^n' ('==0,1 ,2,3) , the above implies that 

^o -̂ 1 -^2 -^3\ /^o 

U- ^0 -^3 U, 

"2 "3 ""o -"l 

"3 -"2 "l % 

y ' 2 

V^ V„ V^ -Vo 
1 0 :; ic? 

^2 -^3 ^o "̂1 

V^ Vo -V^ V 

(vii) 

' / 

which, in quaternion notation, becomes simply uy'=yv. 

A calculation will show that s and s' have the same 

characteristic equation. Now 1fs=2(lft) , so that 
-1 det (1+s ' ;=det(1+s)/^0. 'Ve may therefore write y'=u"' yv . 

cince K(y) is invarient, N(u)=N(v), and we have without 

loss of generality y'=pyq » where both p and q ere of 

norm 1. 

n'e have assumed above that det(1+t)tO. If det(1-t)/0, 

w<̂- cculd ha/e obtained the same result, by vriting instead 

)f (iv) s=('|.t)"''(Ut)=:(Ut)(1-t)"^ , 

and proceeding in a similar fashion. It remains to con

sider the exceptional case: det (1 •»-t)=det (1-t)-0 . 

Let X be a scalar variable, then f(x)=det(x-t) is a 

scalar polynomial in x of degree 4, with leading coefficient 

1 . Kow x^f(1/x)=detn-xt)=detU}det(t^-x)-:let(t-x)=f(x). 

By ele-'entary r l̂ jebra it follows that the equation f(x)=0 

rias roots a,1/a,b,1/b. But 1 and -1 are given roots, so that 
P p 

f(x)^(x -1) . Since every matrix satisfies its own character-

2 2 ^̂  '̂  
istic equation, f(t)=(t -1) =0, whence (t-t")^^0, and 

rp -- T 2 ~ rp 
consequently (t-t )''=(t-t ) 42(tt" + t t)=4. 
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Let as put r-(l/2)(t4.t^), s=(1/4) (t^t^) (t-t'̂ ) . Cieĉ rly r is 

symmetric, and s is si:ew-symn.etric. Moreover it fellows from the 

foregoirg that t=r(Us), r^=1, 3^=0 . (vixi) 

If we can show that t yields a transformation y*^pyq, N(p)=N(q)=l> 

in the two special cases t=r and t=1+s, it will follow that 

t=r(1+s) also gives such a transformation, since the latter 

clearly form a group. 

i'irst assume that t^1fs. If s is expressed as in (v), the 

condition £^=0 implies that I> s =0 and s =-s' . If s* is 
^ a--/ n n n 

defined as in (vi), this means that s*s=0 and s=is*. h'hen 

s=s*, t=1'̂ s is a biquaternion of norm 1, and our transformation 

becomes y'=py , N(p)=1. Similarly, when s*=-s, a glance at (vii) 

v̂ill convince us that we have the transformation y'=yq, N(q)=1. 
We may thus confine attention to the case t=r, i.e. we may 

2 
assume that t is s,ymmetric and, in view of (viii), that t =1 . 
.;e also still have tx..at the determinant of t is 1 , since the 

omitted factor (1+s) clearly has determinant 1. We may exclude 

from consideration the trivial cases t=1 and t=-1. Under those 

circumstances it can then be shown by algebra that there exist 

four column vectors 2,. (n=0,1,^,3) such that 
i-j. 

T 
and furthermore z z =1 when m=n, =0 when m/n. If we put 

m rr m n 

s=(z-,z^ -z^z^ ), it follovî s that s is skew-symmetric. A simple 

calculation will show that, in the notation of (vi), 

s'=(z Z2^-Z2ZQ ). By (ix), st=-s, s't=s', whence (s*+s)t=s'-s. 
Let UQ=VQ=05 ^n'^n^^n ' '^n'^nr^k ' (n=1,2,3), then as in (vii) 
we obtain the transformation uy'=yv. Now u=s'ts so that 

K(u) = -(8'.s)2=-s-^.32 | , ^ ^ j ^ , ^ Hence y'=u-V=Pyq. N(p)=K(q) = l . 

Q.E.D. 
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Let M be a set of points over which there is defined 

a function J associating a complex number J(P,P*; with 

each pair of points P, P' of iJI. Furthermore let there 

exist a one to one correspondence S: P<r̂ x , between M 

and the set of Hermitian biquaternions x , such that 

J(P,?')^ = N(x-x') . 

Then 1̂ will be called a Minkowski space. We notice that 

«J(P,P')^ is always real, but it can be negative or zero. 

As in the case of biquaternion space we define special 

coordinate systems and transformations. 

As above, any special coordinate transfoxmation T 

can be factored, and we need only consider the translation 

x'=x+a, where a must now be Hermitian, the transformation 
m 

x*=x , and the transformation x*=pxq, vjhere N(p)=N(q)=1 . 

Hovyever now p and q will have to be restricted in some 

way, so that pxq will be Hermitian for any Hermitian x. 
CT C T C T CT 

Thus X =x should imply that q xp =(pxq) =pxq • 
_ C 
r'utting u=q p , we thus obtain for all Hermitian x, 
CT CT 

xu =ux . Since x=1 is Hermitian, u =u , whence xu=ux . 
Since x=ii (n=1,2,3) is Hermitian, in̂ -="̂ ivi • ̂ "̂̂  this 
implies that u is a scalar, as is easily shown. Clearly 

C T T N(u)=1 , whence u=-l and q =-tp =r , say. Therefore 
CT pxq= rxr . We thus have the following 

Thiorem 2 : If T is any special coordinate transformation 

of Minkowski space, then T(x)=irx(T)rCT 4.a , N(r)=1 , 

a and r being biquaternions, a Heimitian. 
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Part II. 

Let S , S' Be two given special coordinate systems of 

Li and B respectively. From now on we shall confine ourselves 

CT 
to coordinate systems S=TS and S'=T'S' , where T(x)=rxr 

and T*(y)=pyq , p,q, and r being biquaternions of norm 1. 

We shall speak of restricted coordinate systems and trans

formations. 

Consider a correspondence F from M to B: Q-F(P). If 

x=S(P) and y=S'(Q), this can be written: y=S'FS'"'̂  (x). Let 

a correspondence S->S' be given. For any given S we may 

then consider the quaternion function S'iS instead of the 

point function F. Here however we shall be interested in 

the function Fo=S*F , which associates a biquaternion y 

with any point P of Minkowski space. Vve then have Fmj,=T'Fo , 

where T' = (TS)*£* is som.e restricted coordinate trans

formation of B, depending on T, and perhaps on S. 

Suppose now that Ffng(P) can be calculated if only Fc.(P) 

and T are known. We shall not considerably strengthen this 

condition if we stipulate that T' is independent of S. Then 

(T^T2)' = (T^T2S)»S'"^ = (T^T23)'(T2£)'"''(T2S)»S''"''=T^»T2' . 

A correspondence T-*T* which is multiplicative in this 

sense will be called a transformation scheme from M to B. 

We shall attempt to find all such transformation schemes. 
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Let T->T' be a given transformation scheme. We may write 

T(x)=rxr ^, T'(y)=pyq, where p, q, and r are biquaternions 

of norm 1, and p=P(r), q=Q(r^^). In virtue of the multi

plicative property 

P(r)P(r')yQ(r'^^)Q(r^^)=P(rr')yQ(r»^V") 

for all biquaternions y. If we abbreviate 

a=:P(rr»)-''p(r)P(r'), b=Q(r'^ V^')Q(r^^')'"''Q(r*^^)-'' , 

this becomes: ay=yb, for all y- Putting y=1, we find that 

a=b, and putting y=i (n=1,2,3), we show that their common 

value is a scalar. Now N(a)=1, hence a=b=1 or -1. We have 

thus proved 

Theorem 3 : If T-^T' is a transformation scheme from 

CT 2L to B, with T(x)=rxr , then there exist functions P and 

CT Q, such that T'(y)=P(r)yQ(r ), vi/ith the property that 

P(rr')=-?(r)P(r') and Q(r»̂ '̂ r'̂ )̂=iQ(r'̂ '̂ )Q(rP̂ ) , the sign 

being the same in both cases, but perhaps depending on r, r*. 

We may of course replace the P and Q of theorem 3 by 

P' and Q', where F'(r)=:D(r)P(r) , Q'(r^^)-D(r)Q(r^'^'), and 

D(r) = -1 . To indicate the dependence of the sign in theorem 

3 on r and r', let us call it E(r,r'). The question arises, 

can we select the function D in such a way that D(rr*)= 

E(r,r')D(r)L(rO ? For the.-i, if the equations of theorem 3 

are restated in terms of F' and Q* , the ambî -̂ ity in sign 

will disappear, in fact P' and Q* will be multiplicative 

functions, and our problem will be greatly simplified. 
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A caD.culation show? that P and Q can be replaced by 

multiplicative functions if and only if ?(s)^=F(s')^P(s'')^ 
o o G 

for all biquaternions s,s',s** of norm 1 such that s'̂ ŝ' s'' 

It is difficult to ii/agine what can be done with this 

condition. Perhaps it is safer ^o realize at this stage 

that our original aim, namely to find all transformation 

schemes, was too ambitious. 

If it so happens that the functions F and Q of theorem 3 

can be chcsen to be continuous functions (i.e. continuous 

in the four couplex components of r) , we shall call T—?T' 

a continuous transformation scheme. We shall limit our 

enquiry to continuous transformation schemes from M to B. 

We may then assume that P(r) is a continuous function 

of r. Hence for given r', E(r,r')=P(rr')/(F(r)P(r')) is 

a continuous function of r. Similarly, lor given r, it is 

a continuous function of r*. Its value being always 1 or -1 , 

it is therefore a constant, namely 1 or -1. Without loss of 

generality, .̂̂e need only consider the positive case, whence 

P(rr* )=^(^)^(3^') > 3- similar equation holding for Q. For if 

we had the minus sign, we could write P'=-?, Ct' = -Q, and 

both F' and Q* v̂ /ould be multiplicative. Tnus 
Theorem 3' : If T-4T' is a continuous transformation 

CT scheme from M to B, with l(x)=rxr , tnen there exist 

continuous multiplicative functions P and ^, which map the 

set of all biquaternions of norm 1 on itself or part of 

itself, such that T'(y)=P(r)yQ(r''-'). 
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To go on from here we need a lemma, which, for the sake 

of continuity, will only be proved in part III. 

^^^^^ * If F is any continuous and multiplicative function 

which maps the set of all biquaternions of norm 1 on itself 

or part of itself, then F is one of the three functions: 

F(r)=l , F(r)=uru^ , F(r)=urV ' 

u being a constant biquaternion of norm 1. 

In view of this lemma and theorem 3' , we imm.ediately have 

Theorem 4 : If TH>T* is a continuous transformation scheme 

froip M to B, with T(x)=rxr^^ , then T' is one of the following 

nine types of functions: 

T»(y)=y , =ur^'^^u^y , =yvr^^^'^v^ , ^ur^^^u^yvr^^^^^ , 

where u and v are constant biquaternions of norm 1 . 

Of particular interest will be those cases in which the u 

and V of the above theorem are 1, and then we shall say that 

the transformation scheme is principal. Hence any principal 

continuous transformation scheme is determined by the fact 

that T'(y) is one Of the following nine expressions: 

y , ry , r ^ , yr^ , yr̂ "̂  , ryr^ , r^yr^ , ryr^" , r^yr^^ . 

Any continuous transformation scheme can be reduced to a 

principal one, by means of a fixed orthogonal transfornation 

of determinant 1 of biquaternion space. For by theorem 4 we 

have: T'(y)=uP(r)u^yvQ(r^)v^, where P(r)=1,r, or r^, and 

Q(r^)=1,r'^, or r^^. Hence u'̂ T» (y)v=P(r) (u^yv)Q(r'^) . 
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If we write v'=::U(y)=û yv , this becomes: UT'U"''(y')=P(r)y' Q(r'̂ ) . 

Here U is an orthogonal transforination of determinant^ of B, 

and the transformation scheme T->U1'U' is principal. 

Let S be a restricted coordinate system of Ii. To each such 

S let there correspond a function Fg which assigns a bi

quaternion y=Fg(P) to each point P of M. The correspondence 

S~>F will be called a vectorfield, provided there exists 

a continuous transformation scheme T-^T' such that Fme=1'Fo. 

In virtue of theorem 4, we thus have 

Theorem 4* : The correspondence S—>Fc is a vectorfield, 

provided, when T(x)=rxr^'^, then F^2(P)=P(r)Fg(P)Q(r^^) , 
CfjArn pm (C^TT 

where P(r)=1 or =ur^ 'u , and Q(r )=1 or -vr^ ^ v , u and 

V being fixed biquaternions of norm 1. 

If the transformation scheme belonging to the vectorfield 

is principal, we shall also say that the vectorfield is 

principal. V,'e note in particular that the identical correspond

ence S—>S is a principal vectorfield with transformation 

scheme T->T* . 

We shall state and prove a number of simple properties 

of vectorfields. For convenience, the transformation scheme 

of theorem 4* will be denoted by (P(r); Q(r̂ -')) . 
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(1) If S-^Fc is a vectorfield, its conjugate S-^F,,^ and 

T 
transpose S-^Fg are also vectorfields, with respective 

transformation schemes (P(r)^;Q(r^^)^) and (Q(r^^)^;P(r)^) . 

(2) If S-^Fe and S-*Gc, are two vectorfields with the same 

transformation scheme, then their sum S-^(F..-KGC) is also a 

vectorfield, still having the same transformation scheme. 

(3) If S—^Fg and S-^FV- are two vectorfields, such that 

CT 1 
P'(r)=C^(r ) , then their product S->(FeF* ) is also a vector-

CT field, with transformation scheme (P(r);Q*(r )) . 

(4) A vectorfield is called an invariant if its transform

ation scheme is (1;1). Each component S-->(Fe) (n=0,1,2,3) 

of an invariant vectorfield is itself an invarient. 

(5) Every vectorfield can be expressed as a principal 

vectorfield, multiplied on both sides by constant invariants 

T T 
of ncrm 1 . For suppose Fn..o(î )=î PU Fg(P)vqv , where 

p=1,r,r^, and q=1,r'^,r^^. Put Fg(?)=:uGg(P)v^, then the above 

becomes Gmr.(P)=pO^(P)q , hence S-^Gc is a principal vector-

T field. Jioreover S-^u and S-?v are constant invariants. 

CT 

(6) If a vectorfield is transformed by (p;p ), its 

hermitian and skew-hermitian parts are also vectorfields 

with the same transformation schemes. This follows from 

(1) and (2). The two parts are called four-vectors in physics. 

Of particular interest are the principal vectorfields trans

formed by (r;r^^) or (r^;r ). 
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(7) If a vectorfield is transformed by (p;p ), then its scalar 

and vector parts are also vectorfields wit̂ a the sane transr̂ orm-

ation scheme. Again'this follows from (1) and (2). The scalar 

part is easily seen to be an invariant, and the vector part is 

what the phyoicist calls a six-vector. Of particular interest 
T G CT are the principal vectorfields transforming by (r;r ) or (r ,r ). 

Presum.ably the converses of (4), (6), and (7) are also true; 

but it would be beyond the scope of our present exposition to 

attempt their proofs. At any rate, they v̂ ôuld read as follows: 

A scalar vectorfield is an invariant; a Hermitian vectorfield 

is a four-vector or an invariant; a vector vectorfield is a 

six-vector or an invariant. It is difficult to say to what 

extent converses of (2) and (3) might hold. 

In a way, a vectorfield is a function plus the manner in which 

it transforms. We shall now try to generalize the concept of 

vectorfield from functions to operators. But first we need the 

quaternion analogue of linear operators. 

Consider a correspondence A: (F,G)—^H, where F,G,H are functions 

that assign biquaternions to all points of Minkowski space. 

We shall write H=(FAG). A will be called an operator biquaternion 

in M, provided the following three postulates are satisfied: 

(I) (FAG)=(AFG) whenever F is a scalar function. 

(II) ((F+0)iiH) = (FAE)4(GAH) ; (FA(G+H) ) = (FAG)+(FAH) • 

(III) (aFAGb)=a(FAG)b, for all constant a and b. 
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It is easily seen that the above three postulates 

constitute necessary and sufficient conditions in order 

that it should be possible to v/rite A=2IA i , the A 
(liff n n n 

being linear operators in the usual sense. Thus, in a way, 

an operator biquaternion is merely a biquaternion vhose 

components are linear operators. 

Suppose for each restricted coordinate system S of M 

we have an operator biquaternion Ao. Such a correspondence 

S~-)A2 will be called an operator vectorfield, provided, 

whenever S-^Fg and S-̂ G.-. are any two vectorfields with 

given transform.ation schemes, then S—*(Fc.AeGc) is again 
O o tD 

a vectorfield. 

Let (p*;q*) , (p*';q'') be the two given transformation 

schemes, and (p;q) the resulting one. Then 

(p'Fgq'A^gP'^Geq*') = p(F3A3Gg)q . ... (i) 

If we replace Y' by aFe and G^ by Ggb in (i), then in 
virtue of (III): 

p'ap*"''(p»F3q^A^gp"G3q")q""''bq"=pa(F3A3Gg)bq . ...(ii) 

From (i) and (ii) we obtain 

p'ap»**''p(F3A3Ge)qq'''''bq»' = pa(F3A3G2)bq . ... (iii) 

We shall assume that the norm of (̂ '̂ 3̂̂ 3) is not identically 

zero. Taking b=1, we therefore find that p*ap* p=pa , 

1 1 -1 

i.e. p" p*a=ap p' . Hence p p* commutes with all bi

quaternions, it is therefore a scalar. But its norm is 1, 

hence p*=P or -p. Now p* and p are both functions of r, 
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and if we take r=1 , both v/ill reduce to 1 . Thus the minus 

sign is excluded, hence p'=p, and sindlarly q''=q. In view 

of (III), we may therefore cancel p* against p on the left, 

and q" against q on the right of (i) . Thus (F^q'A^,,p' ' Gc,) = 

(FgAgGg), or in operator notation q*Aj3p''=A3, that is 
T I 

Â .3=q' Agp'* . V.e might say that S-tAg transforms by the 
T T 

transformation scheme (q* ,p** ). 

If N(FAG)(P)=0 for all points P of M and all functions 

F, G, for which A is defined, we shall say that A is 

singular. Singular operator biquaternions are not of 

sufficient interest to us to deserve special consideration 

here. We shall therefore be satisfied with 

Theorem 3 : If S—̂ Â . is a non-singular operator vectorfield, 

then T(x)=rxr^^ implies A^,3=P(r)A3Q(r^^), where P(r) = 1 or =ur^^^u'^, 
/CT (C^TT 

and Q(r )=1 or =vr^ ' v , u and v being biquaternions of 

norm 1. 

A function F which assigns a biquaternion y=F(P) to each 

point P of Minkowski space may itself be regarded as an 

operator biquaternion over M, if we write (GFH)(P)=G(P)F(P)H(P). 

Under this interpretation, a vectorfield is an operator 
vectorfield, and instead of F,j.,3(P)=pF3(P)q we may write, 
in operator notation, r̂pĉ P̂ QQ. (which is what we have done 
anyway in the proof of theorem 5, for reasons of conciseness). 
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Conjugate, transpose, and sum of operator biquaternions 

may be defined in the obvious manner, thus: 

(FA^G) = (F^AG^)^, (FA^G) = (Ĝ .AF̂ )̂ ', (F(A+3) G) = (FAG) + (FBG) . 

The above definitions clearly become identities if the 

operators are replaced by functions- Iv̂ oreover it is easily 

verified that A^, A*̂ , A+B satisfy postulates I to III, and 

are therefore in fact operator biquaternions. 

There seems to be no obvious way of defining the product 

AB of any tv/o operator biquaternions A and B. However, in 

some special cases no difficulties are met. For instance, 

if we abbreviate (1AF) as (AF), we can also write 

(ABF)=(A(BF)). 

The results which we e stated about vectorfields above, 

with the exception of (3), also hold about operator vector-

fields. (3) must of course be omitted here, owing to the 

absence of a product of operator biquaternions. 
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Part III. 

^emma : If F is anv continuous aud multiplicative fa..ction 

which ma>..s the set of all biquaternions of norm 1 on itself 

or part of itself, then F is one of the three functions: 

F(r)=1 , F(r)=uru^ , F(r)=ur^u^ , 

u being a constant biquaternion of norm 1 • 

Proof : We want to find all functions F such that 

(i) F(r) is defined for all biquaternions r of norm 1, 

(ii) i(r) is a biquaternion of norm 1, 

(iii) F is multiplicative, i.e. F(rr')=F(r)F(r») for all bi

quaternions r, r* of norm 1, 

(iv) F(r) is a continuous function of the four complex com

ponents of r. 

We shall derive a number of propositions from these four 

assumptions, without referring explicitly to the latter. 

(1) F(1)=1 . For F(l)F(,r)=F(1.r)=F(r) . 

(2) F(r)'̂ =F(r-̂ ) . For F(r)F(r)^=NF(r)=1=F(1 )=F'ry(r)=F(rr'̂ )=F(r)F(r'̂ ). 

(3) F(-1)=:1 or -1 . For F(-1)^=F(-1) by (2), so that F(-1) is 

a scalar, rĵ oreover F(-1) =:F(1)=1, whence (3). 

According to (3) we shall consider two cases. 

Case A : F(-1)-1 . 

(4) If r is a vector, then F(r)=1 or -1 . 

For let r^=-r, then F(r)^=F(r^)=F(-r)=F(-1)F(r)=F(r) , so that 

F(r) is a scalar. But NF(r)=1, whence (4). 
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(5) If r is any biquaternion of norm 1, then there exist 

three complex scalars a^ (n=1,2,3) such that 

r=]T(cosa^+i^sina^) . K-i n n n' 

For let tan2a^=2(r^r^-r^r2)/(r^^+r^^.r2^-r^^) , and 

put s=r(cosa^-i^sina.^) . Then 

^o^3^^1^2=^^^2^3^^o^3"^1^2)'^^^^^3(^o^'^^1^'*^2^*"^3^^/^ = ̂ -

Let tanâ =s-j/s , tana2=S2/s , then tana^ tana<̂ ,=ŝ  S2/S =sy^s . 

Hence sec^a^sec a2=N(s)/s^ =N(r)/s^=l/s^ , so that, without 

loss of generality, cosa^cosa2=s . Thus 

s=cosa^ cosa^(l t-î  tana-, 4iotanâ +i.,tana-, tanao)= //(cosa_-i_sina_) 

Hence r=s(cosa,-fi-sina-.) can be factored as desired. 

(6) F(cosa_+i sina )=1 or -1 • This follows from (4), since 

cosa_-j-i_sina_ is the product of two vectors of norm 1; for n n n ^ ' 

instance cosâ , 4i^ sina-,=i2(i-zSina-j-ipcosa-.) . 

(7) F(cosa 4i sina )=1 . We merely apply (6) to cos(a^2) + 

i sin(a /2) , and note that the square of this expression 

is cosa_+i_sina^. n n n 

(8) If F(-1) =+1, then F(r)=1 identically. This is a direct 

consequence of (5), (7), and the multiplicative property. 

Having completed case A, we shall now consider 

Case B : F(-1)=-1 • 

(9) If r is a vector, so is F(r) . 

For let r^=-r, then F(r)^=F(r^)=l(-r)=F(-1)F(r)=-F(r) . 

(10) I^ F(i^)=j^, (n=1,2,3) , then 0^2^-1, j^ J2=J3=-^2^1 ̂ "̂ -̂
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For by (9) j^ is a vector, so that jĵ '̂ =-ĵ , whence j^^=-N(j^) = -1 . 

Also ^^:i2^I{±^)F{l.^)=.F{l\i2)=F{l^) = ^,^ , etc. 

(11) There exist three functions b=f^(a) modulo 2it, (n=1,2,3), 

such that F(cosa+i^sina)=cosb+j sinb. 

For let r=cosa4i^^sina, m;̂ 0,n , then (r,i^)-0, that is i^r =r^i . 

But then JQjF(r)=F(r)^j^, that is (F(r),j^)=0, whence F(r)=kfj^l, 

k and 1 being scalars. Now k^4'l^=NF(r)=1 , hence we may write 

k=cosb , l=sinb , which proves (11) . 

(12) fj^(a+b)=f^(a)4-f^(b) and f^(rt/2)=V2, modulo 2rt, 

The first of these equations follows from the multiplicativity 

of F and de Moivre's theorem, the second one from the fact 

that F(i^)=:j^. As an obvious corollary we have f (ka)=kf (a) 

for integral k. 

(13) f^(a)=f2(a)=f^(a)=f(a), say. 

Let c be any complex number, a-.=c/2, a2=('^-c)/2, a^=^/4. 
' 3 3 

If r=]T(cosa^+i^sina„) , then F(r) = 77"(cosb„+|^sinb^J , where fi-i n n n n-t , n n n 

b =f (a ), by (11). Now r^=7Tcosa^-^sina^=(l//2')cos(ai 4ao)=0. 

hence r is a vector, and therefore F(r) is a vector, by (9). 

ThusTTcosb -77sinb^=0. But 2b-,=f^(2a,)=f, (/r/2)=V2, modulo 2?i:, 
*5/ n /js/ n J J J J 

so that sinb-r=cosb̂ =*l/i/2'. Therefore cos(b^fb2)=0, Vvhence 

f^(c)+f2(^-c)=2f(a^)f2f(a2)=2(b^-fb2)=?t, modulo 27r, by (12). 

But f2(c)^f2(^-c)=f2(^)=2f2(V2)=^, which, together with the 

above, gives f-j (c)=f2(c). Similarly this equals f^(c), hence (13). 
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(14) If f(a)=0, modulo 2%, then a=0, modulo 2fC. 

Since F(r) is a continuous function of r, it follows that 

f(a) is a continuous function of a, modulo 2rt* Thus, for every 

e>0, there exists a<S>0, such that If (a)-7r/=/f (a)-f (a)fe£ , 

modulo 2ity whenever la-TtUcT modulo 2rr. 

Let us assume that f(a)=0. Unless a is of the form a=27tp/q, 

p integral, q odd, we can find an integer k such that /ka-tr/̂ ĉ , 

modulo 2ft. (If a is a rational multiple ofn , this is trivial; 

otherwise we refer to Kronecker's theorem.) Hence, by continuity. 

If(ka)-^:/^^. This contradicts the assumption that f(ka)=kf(a)=0. 

Therefore f(a)=0 implies that a=2ftp/q, p integral, q odd. 

?/ithout loss of generality we may assume that p and q are 

relatively prime, hence there exist integers p* and q* such 

that p'p-q*q=1. Then f (2fT/q)=f (p*a-2aq')=f (p ' 9)=p» f (a)=0, mod 2rt^ 

Suppose there is an increasing sequence of odd numbers 

q^=2p^-1 , such that f(2n^^q^)=0 for n=1,2,... , Then 2rrp^q^-^7r« 

Hence, by continuity, f('/f)=0, which contradicts the fact that 

f(f̂ )=2f(rr/2) = '/t: Thus there exists a largest q fcr which f(2/r/q)=0; 

and it is an easy matter to show that, whenever f(a)=0, then 

a=27rp/q, modulo 2ft. 

We shall assume that q/̂1 . Let â  be any irrational multiple 

of rr, then f(4a. )/0 mod 2/r. Let ap=J^q, then f(2ap)=0 mod 2^. 

Let cota3=tana^tana2, then ̂ ^cosa^-TTsina^^^O, so that 

r=JT(cosa +i sina^) is a vector. But then, by (9), F(r) is also 
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9 i 

a vector, whence I cosf(a^)-lTsinf(a )=0. Since 4f(a,)=f(4aJ/^O, 
"• ' n ml n I I 

therefore cosf(a^);^0. hince 2f(a2)=f(2a2)=0, therefore 

sinf(a2)=C. It follows that cosf(a^)=0, so that f(7r-2a^) = 

n:-2f(a^)=0 mod 2/r. Kence7r-2a, is an integral multiple of 2fr/q, 

so that a^=7Z/2-?^/q. Thus 

tana^=cota^/tana2=tan(rrp/q)/tan(7r'/q) . 

If qJ^^ , this assumes at most denumerably many values, contrary 

to the fact that a^ is an arbitrary irrational multiple of ft» 

Thus q=1. 

Hence f(a)=0 implies that a=27tp, p integral. This proves (14). 

(15) If g(b)=tanf(tan" b), b being any complex number, then g 

is a single valued function. 

For let b=tana, so that tan~ bsa-̂ -nTt, n integral. Then 

2f(a+nTt)=f(2a4.2nfr)=f(2a)ff(2n'/c)=2f(a) modulo 2/r, and therefore 

g(b) = tanf (a+n7t)=tanf(a). 

(16) If g(b)=0, then b=0. 

For suppose g(b)=0. Then f(2a)=2f(a)=0 mod 2rr, and therefore, 

V ('Ĵ )* 2a=0 mod 27r. Hence b=tana-0. 

(17) For finite b, g(b) is finite. 

For suppose g(b)=tanf(a) is not finite. Then f (2a)-2f (a)=7r=f (^), 

modulo 27r, so that f(2a-^)=0 mod 2% and therefore, by (14), 

2a=^, modulo 2'̂ . Hence b=tana would not be finite either, 

contrary to hypothesis. 
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(16) g(b^b2)=g(b^)g(&2) . 

Since g(0)=tanf(0)=tanO=0, this is trivially true if either 

b̂  or b2 vanishes. Hence we may assume that b-j,b2/0. Let 

b-=tana., bp=tana5, bibo=cota^ • ThenTT sina ='n^csa . 

But, by (9), if r is a vector, so is F(r), hence 

TTsin f(a^) =TTcos f(a^) . ... (i) 

Since b^=tana^O (n=1,2), therefore 2a^0, mod 2?̂ . In view of 

(14), 2f(a^)=f(2a^)/0, modulo 2TC, whence cosf(a^)/0 (n=1,2). 

Similarly sinf(a,);^0, whence, by (i), tanf (a^)tanf (a2)=cotf (a^) . 

Thus g(b^b2)=g(cota,)=g(tan((rr/2)-a^))=tanf((rr/2)-a^) = 

tan((rr/2)-f(a^))=cotf(a^)=tanf(a-j)tanf(a2)=g(b^)g(b2) , as 

was to be shown• 

(19) g(b^+b2) = (g(b^)4g(b2))g(1-b-,b2)/(1-g(b^b2)) • 

^°^ g((tl-^b2)/(1-b^b2)) = g(tan(a-,4a2)) 

= tanf(a^4a2) =(g(b^)+g(b2) )/(1-g(b^)g(b2 

idultiply both sides of this equation by g(1-b^b2) , then (19) 

follov/s in virtue of (18). 

(20) g(1)=1 • For by (16) there exists a number b such that 

g(b)/0. But, by (18), g(b)=g(b)g(1), whence (20). 

(21) g(-1)=-1 . For, by (18) and (19), we have 

g(2)g(i)=g(2i)=g(i+i)=2g(i)g(1.i^)/(1-g(i^)) 

=2g(i)g(2)/(1-g(-1)) . 

In virtue of (16), we may cancel, therefore 1-g(~1)=2, whence (21), 
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(22) There exists a constant k, such that g(b+c)=:k(g(b)+g(c)) , 

whenever b,c/0. 

Put d'̂ =bc, so that d/̂ 0, and therefore g(d)/^0, by (16). Hence, 

by (18) and (19), sd-d^)/(1 >g(d2) )=g(2d)/(2g(d) )=g(2)/2=k, say^ 

Again by (19) 

g(b+c)=(g(b)+g(c))g(1-d^)/(1-g(d^))=k(g(b)+g(c)) , 

as was to be shown. 

623) g(bfc) = g(b)4-g(c) . 

If either b or c vanishes, this is trivially true. Otherwise 

we must show that k in (22) is 1. Let b,c/̂ 0. We can find a 

number d/̂ 0, such that neither b+d nor dfc will vanish. Then by (22) 

g((b+d)^c)=k^g(b)+k^g(d)4kg(c) , 

g(b+(d+c))=kg(b)4k^g(d)+k"g(c) . 

The associative law of addition therefore gives 

k(k-1)(g(b).g(c))=0 • 

If we take for instance b=1 , c=:-1 , it follows that k(k-1)=0. 

By (16), k=g(2)/2/0 , hence k=1 . This completes the proof of (23). 

(24) Either g(b)=b, or g(b)=b^ identically. 

It is well known (and can easily be proved) that these are 

the only complex functions, not identically zero, which 

satisfy the functional equations: g(bc)=g(b)g(c) and g(bfc)= 

g(b)+g(c) , proved in (18) and (23) respectively. 

(25) Either f(a)=a, or f(a)=a^ modulo 27r. 

For tanf(a/2)=g(tan(a/2))=tan(a/2) or =tan(aV2), by (24). 

Hence f (a)=2f (a/2)=a or =a^, modulo 2rr. 
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(2b) If F(-1) = -1, then F(r)=uru^ for all biquaternions r of 
C T 

norm 1, or F(r)=ur u , u being a constant biquaternion of 

norm 1 . 

It follows from (5), (11), and (13) that 

"̂  = l-M^°^^n*V^^^n) ' ^^^) =TT (cosf(a^)4j^sinf(a^)) . 

Hence by (25) --,/ N T T / (C) (C) . 
^ '^ F(r) = I I (cosâ '̂ ^̂ fi sina^^^^) . 

Upon multiplying this out, we have, in virtue of (10) : 

r = îv,̂ v, > F(r) = r J r ^^) , QÎ  n n ' ^ ' n̂o *̂n n ' 

where io=Jo='' • Corresponding to y=^y„i„ , let us put 

t v u ĵ̂  n n 

ŷ i . The function G is thus defined for all bi-

quaternions y. Obviously G(y-y*)=G(y)-G(y*), and NG(y)=N(y) . 

Hence G(y) is an orthogonal transformation, and, by theorem 1, 
G(y)=py^^''q, where N(p)=N(q)=1. Since F(r)=G(r^^^), it follows 
that G(yy*)=G(y)G(y'), whenever N(y)=N(y')=1 • In this case 

therefore ^p(yy') ̂ ^̂ q=pŷ '̂̂ qpy * ̂ ^̂ q , i.e. ̂ (yy*) ̂ "̂ =̂7̂ ^̂  qpy*^^^. 
T If y/e put x=1 , this shows that qp=-1 . Hence q=-p , so that 

/" m N m (T) ^T) TT^ 

G(y)=py p , and {^Y') -j\^:y' ', whenever y and y* have 
m m m rri 

norm 1. However (i-|i2) ̂^1 ^2 ' î ^̂ ce G(y)=pyp , and therefore 

F(r)=G(r^^^)=py p", as was to be shown. 

This completes case B. In virtue of (3), (8), and (26), 

we have now proved the lemma. 
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SUMMARY. 

3 

A biquaternion i s of the form a ^ ^ a ^ i , where i =1, i ^—1 
f)=0 

(n=l,2,3), i-ĵ i2=î =-i2î  etc., the a^ being complex numbers. 

By the conjugate a of a we mean the complex conjugate, whereas 

the transpose is a'̂ =â -â î -a2i2'-&3i3. The norm of a is N(a)=aa^* 

a is Hermitian whenever â =a"̂ . 

Biquaternion space B requires (a) a set of points Q, (b) a 

complex distance function J(Q,Q'), (c) a one to one correspondenos 

S with the set of biquaternions y=S(Q) such that J(Q,Q*)^=N(y-y*)• 

S is called a special coordinate system, and if S' is another, 

TsS'S" is called a special coordinate transformation. It is 

always of the form T(y)=py^ q+̂ > where p,q, and b are biquatern

ions, the first two of norm 1. In particular, T(y)=pyq is called 

restricted. 

Minkowski space M is defined in the same way except that we 

require a one to one correspondence S: P4->x between all points 

P of M and all Hermitian biquaternions x=S(P). Any special 

/• rnX p m 

coordinate transformation T of M is of the form T(x)=*rx^ *x^^^a^ 

where r is a biquaternion of norm 1, and a is a Hermitian 

CT biquaternion. In particular, T(x)=rxr is called restricted. 
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If T and T* are restricted coordinate transformations of M 

and B respectively, the correspondence T-̂ T' is called a trans

formation scheme whenever (T^T2) *=T-,'T^'. It follows that 

T(x)=:rxr̂ '̂  induces T» (y)=P(r)yQ(r^^), where P(rr» )=iP(r)P(r»), 

a similar equation holding for Q. If p and Q can be taken to be 

continuous functions, we also call the transformation scheme 

continuous. 

If T-^* is a continuous transformation scheme from M to B, 

CT (C) T 
then T(x)=rxr induces T'(y)=pyq, where p=l or ur^ ''u , and 

(C) T T q=l or vr^ ' v , u and v being biquaternions of norm 1. This 

transformation scheme is denoted by (p;q). It is called principal 

if u=v=l. For all practical purposes only principal continuous 

transformation schemes need be considered. 

Let S be obtained from a given coordinate system of M by 

means of a restricted coordinate transformation. We define a 

vectorfield as a correspondence S->Fg, where F3 is a function which 

assigns a biquaternion ^^i'^) to each point P of M, such that 

F -T*F , T-*T' being a continuous transformation scheme from 
TS^ o 

M to B. If S-^FQ is a vectorfield with transformation scheme (p;q) 

then F2j3(P)=pF3(P)q. 
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The conjugate and transpose of a vectorfield with 

transformation scheme (p;q) give vectorfields with transformation 

schemes (p ;q ) and (q ;p'̂ ) respectively. Two vectorfields with 

identical transformation schemes can be added to give a vector-

field. The product of two vectorfields with transformation 

schemes (p;s) and (s'̂ ;q) is a vectorfield with transformation 

scheme (p;q). Corresponding to the principal transformation 

schemes (l;l) ; (r;r^^) , (r^;r^) ; (r;r^) , (r^;r^^) ; 

(r;l),(r ;l),(l;r ), and (l;r ) we have nine principal 

vectorfields , namely one invarient, two four-vectors, two 

six-vectors, and four wave-vectors. 

Roughly speaking, an operator biquaternion is a 

biquaternion whose components are linear operators in the usual 

sense. We say that S-̂ Ag is an operator vectorfield if S-^CFgAgGg) 

is a vectorfield for all vectorfields S-̂ Fg and S-̂ Gg of given 

transformation schemes. Unless N(F3A3G3)(P)=0 identically, 

we can write Arj,3=pA3q, (p;q) being a continuous transformation 

scheme. With the exception of the rule for multiplication, the 

above results for vectorfields still hold for operator 

vectorfields. 
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1 • Introduction. 

A semigroup is a set of elements which is closed under an 

associative operation, usually called multiplication. When 

can a semigroup be embedded in a group, i.e. under what 

c3ndition is it isomorphic to a subset of a group? A 

necessary condition for immersibility is clearly the so called 

cancellation law: 

(C) If ax=ay or xb=yb, then x=y. 

It is well known that a finite semigroup with cancellation law 

is a group, also that an Abelian semigroup (one in which multi

plication is commutative) can be embedded in a group if and only 

if the cancellation law holds. In general however the cancellation 

law is not sufficient for immersibility, as was shown by A. Malcev 

in 1936. He also discovered necessary and sufficient conditions, 

which he maintained were too complicated for publication. 

It is in fact not difficult to find such conditions. They 

state that certain systems of equations are not independent. 

This means that if all but one of the equations are given, the 

remaining equation can be deduced. However, as soon as we wish 

to give verbal utterance to these conditions, it becomes desirable 

to label the equations LA^ the variables contained in them. This 

is where things begin to get involved. I nave tried to overcome 

this complication by using parts of a polyhedron, rather than 

natural numbers, for labelling the equations and variables of any 

such system. In defining the term polyhedron I shall follow the 

book on topology by Seifert and Threlfall. 
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A face, (abstract polygon) is a division of the unit circle 

into two or more arcs, called sides, by an equal number of points, 

which we will term angles. An abstract polyhedron is a system 

of F faces, containing together 2E sides, such that every side 

is mapped topologically on exactly one other. We may assume that 

the midpoint of one side is always mapped into the midpoint of 

another. A pair of sides thus mapped into each other is called 

an ed^e. Hence every edge has two sides. We may speak about the 

midpoint of an edge, which divides the edge into two half-edges. 

A set of angles which correspond to one another under the mapping 

is called a vertex. Every edge has tv/o vertices. To every edge 

there belong four angles, which may be classified by pairs in two 

different ways: angles at the same vertex of the edge, and angles 

on the same side of the edge. Every half-edge has one vertex, two 

sides and two angles. The polyhedron is called Eufl̂ erian if the 

total number of vertices is V such that V-fF-E=2. This is also a 

necessary and sufficient condition for the surface defined by the 

polyhedron to be homeomorphic (i.e. topologically equivalent) to 

the sphere. Throughout the present paper we shall always mean 

abstract Eulerian polyhedron when we say "polyhedron"• 

Given a semigroup H, we shall understand by polyhedral 

condition the following statement: 

(P) If the elements of H are assigned to all sides and angles 

of any Eulerian polyhedron, such that to each half-edge there 

corresponds an equation xa=yb, where x and y have been assigned 
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to the sides, a and b to the corresponding angles of the half-

edge, then these 2E equations are interdependent, i.e. any one 

of them can be derived from the totality of all others. (See 

figure 1.) 

The application of this condition to two polyhedra which are 

topologically equivalent will of course give the same result. 

We shall prove that (P) is a necessary and sufficient condition 

for immersibility of a semigroup H with cancellation law into 

a group. This will establish the following 

THEOREM: A semigroup can be embedded in a group if and only if 

the cancellation law (C) and the polyhedral condition (P) are 

satisfied. 

Via 1 
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2. Necessity of polyhedral condition. 

Let the semigroup H be contained in a group G, so that 

elements of H possess inverses in G. Assign elements of H to 

the sides and angles of a given polyhedron. Assume that the 

equations belonging to all but one half-edge are true, the 

remaining equation is to be deduced. 

An oriented triangulation of the polyhedron is obtained as 

follows: Directed radii are drawn from the center of each face 

to the angles of the face. (It will be rei-einbered that faces are 

circles, and that by angles we understand points on the 

circumference.) Directed radii are drawn from the midpoints of 

all sides to the center of the face. Each half-edge of the 

original polyhedron is given a direction from the rridpoint of the 

edge tov'.ards th'̂  vertex. The half-edges thus oriented as well as 

the directed radii will be the oriented edges of the triangulation 

The equation xa=yb, corresponding to any half-edge of the 

polyhedron, can be replaced by the two equations xa=p and yb=p, 

corresponding to two triangles of the triangulation. The variables 

occuring in these equations are assigned to tie edge 3 of the 

triangulation: namely x and y to the radii from the midpoint, 

a and b to the radii towards the vertex, and p to the half-edge 

itself. (See figure 2.) 
a 

,''\ 

• ? • - ' 

Fia 2 

If the equation xa=yb was to be inferred, we may now add 

yb=p to the given equations, and leave only xa=p to be deduced. 





Thus,' corresponding to each oriented triangle, we have an 

equation; for instance xa=p and yb=p correspond to two of the 

four triangles on figure 2. Of these 4E equations all but one 

are given, and one is to be derived. 

Consider any path made up entirely of edfes of the 

triangulation. Corresponding to such a path we form a product 

in the following way: If the element x of II has been assi>-ne5 to 

the n-th edge of the path, then the n-th term of the product is 

X or X , depending on whether this edge has been traversed in 

the right or in the wrong direction. For instance, tuere are six 

different closed paths by m.eans of which the perimeter of the 

upper left triangle of figure 2 can be once described. Correspond

ingly we may obtain one of the six products: 

(i) xap~ , ap" X, p' xa ; pa"" x" , a" x~ p, x" pa" » 

As long as xa=p , each of these products has the value 1; and 

conversely, if any one of the six products (i) is 1, then xa=p. 

Consider nov« a closed path consisting of edges of the triangul

ation, and surrounding only triangles for which the corresponding-

equations are given. We prove by induction that the product 

corresx^onding to this path will be unity. We have shown above 

that this is indeed so, if the path surrounds only one triangle. 

Otherwise we may decompose the closed path into two paths Q and R 

traversed in succession, such that there will exist a path P, 

lying entirely inside the closed path, and joining the endpoint 

of Q to the endpoint of R. Let P' be the path P traversed in 

opposite direction. If f(p) denotes the product associated writh P, 
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then f(P)f(P')=''. Hence f (Q)f (R)=f (Q)f (P)f (r' )f (R)=1 , since 

f'(w)f(P)=f(P*)f(R)=1 , by induction hypothesis. 

Suppose now the upper left triangle of figure 2 is the one 

for mhich the corresponding equation is to be derived. Since 

the surface defined by our polyhedron is homeomorphic to the 

sphere, the perimeter of this triangle divides the v/hole surface 

into two sinply connected regions. Let us describe a closed path 

along this perin.eter, and call the oiitside of the triangle the 

inside of the path. Corresponding tc this path we obtain one of 

the six products (i), whose value will be unity, in virtue of the 

above. Hence xa=p, as was to be deduced. We have thus shown the 

necessity of the polyhedral condition. 
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3» Ratios 

In preparation for the sufficiency proof of the polyhedral 

condition, we shall consider a semigroup H satisfying (C) and 

(P). It is our intention to introduce ratios, in more or less 

the same way as is usually done when H is the set of natural 

numbers, 

Let a and b be any two elements of H. We shall designate 

by a/b the set of pairs of elements x,y such that xa;=yb. 

If a/b is not the empty set we shall call it a ratio. Sidlarly 

we define I, (a), (a)" as sets of pairs x,y such that x=y , 

xa=y , x= ya, respectively. With the help of the cancellation 

law, we can easily show that they are also ratios. In fact 

(1) ... I=t/t , (a)=at/t , (a)'''̂ =t/at , 

where t is an arbitrary element of H. We also note that 

(2) ... (a)=(b) if and only if a=b. 

When can we say that two ratios are equal? We will prove: 

(3) ... a/b = c/d if and only if there exist x and y belonging 

to K such that xa=yb and xc=yd . (It is assumed here that a/b 

is in fact a ratio, and therefore not empty.) 

The necessity of this condition follows directly from the 

definition of ratios. To prove its sufficiency, let us assume 

that the condition of the theorem holds, and also that ua=vb. 

Let us now apply the polyhedral condition to a simple polyhedron 

consisting of two edges, two faces, and two vertices (figure 3). 
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The equations corresponding to three of the half-edges of this 

polyhedron are true by assumption, consequently the fourth must 

hold, viz. uc=vd . This argument works both ways, hence ua=vb 

if and only if uc=vd, and therefore a/b = c/d , by definition. 

^U V w 

We define multiplication of ratios as follows: 

(4) ... (a/d)(d/b) = a/b . 

Thus two ratios may be multiplied to give another ratio, provided 

they can be written in the form a/d and d/b respectively such 

that a/b is a ratio. Is the product of two ratios unique, if it 

exists? To answer this in the affirmative we must show: 

(5) ... If a/d = a»/d» and d/b = d'/̂ * , then a/b = a'/h' . 

We may assume that xa=yd, xa*=yd* , zd=wb, zd'=wb* , ua*=vb' , 

and wish to prove that ua=:vb. The result follows immediately if 

we consider the polyhedron consisting of two vertices, three face 

and three edges. (See figure 4.) 

a 

I is the unit element under multiplication. For 

(a/b)I = (a/b)(b/b) = a/b 

by (1) and (4). The same applies to multiplication by 1 on the 

left. W'e note the existence of inverses; thus, by (1) and (4), 
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(a/b)(b/a) = a/a = I . 

In particular we see from (1) that (a)~ is the inverse of (a), 

as was anticipated by our notation. We find that 

(a) (b)=(abt/bt)(bt/t) = abt/t = (ab) . 

Hence, in view of (2), the correspondence a—?(a) maps H 

isomorphically on a subset of the set of ratios. 

We have embedded H in the set of ratios. The latter has all 

properties of a group, except that it is not closed under 

multiplication, and associativity has not yet been shovm to 

hold. We shall embed it in a larger set, in which multiplication 

is always defined and associative. It may be worth noting that, 

if H is an Abelian semigroup, the ratios do form a group already. 
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4o Associativityo 

The set of ratios almost form a group, except that it is 

not closed under multiplication, so that also the associative 

law, as usually stated, has no meaning. With some care hov;ever 

It is possible to enunciate an associative law evexi here. If we 

can bracket a sequence of ratios in such a way that they can be 

multiplied out to give a single ratio, then this "product" shall 

be unique. To be more precise: v;e shall say that a finite sequence 

of ratios (•..,a/b,b/c,...) contracts into the sequence 

(...,a/c , 9..). If a sequence of ratios reduces to a single ratio 

by iterated contraction, we v̂ -ill call this ratio its product. 

The associative law then states: 

(6) ... If a sequence of ratios has a product, then it is unique. 

Tc prove (c), consider a sequence S(C) of n-i-1 ratios. This 

contracts to S(-1}, consisting of n ratios, which in turn contracti 

to S(-2), and so on, until we obtain a single ratio S(i n). If 

the plus sign is chosen, we have one method of iterated contractior 

if the minus sign is chosen, we have another. We must stow that 

S(i-n)=S(-n). 

If k is an integer betv/een 0 and n, we write i=ik, and note 

that S(i) has n+1?k places or terms. Represent the j-th place 

of S(i) by the point (i,j) in the Cartesian plane. If k̂ Ô, 

all but two terms of 3(tk';1) reappear in S(ik) : Join the 

corresponding points by straight lines. But two consecutive 

terms, say â ĵ /cj. and o^/t. are contracted into a./Bi : 
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Join the two former points by straight lines to the letter, 

which will be called a vertex. Also join the two points (or 

vertices) (-n,1) to the point at infinity, along the line y=1. 

A broken line joining two vertices, even if it passes through 

the point at infinity, will be called an edge. There are three 

edges meeting at every vertex. The siir̂ ply connected regions into 

which the edges divide the plane will be called faces. Since the 

plane can be mapped on a sphere by an inverse stereographic 

Xrojection, we obtain a concrete representation of an Eulerian 

polyhedron. We may also verify independently that V=2n, F=nv2, 

and S=3n, so that V+F-E=2. A simple case, for which n=2, is 

illustrated by figure 5«. 

0-

Consider the vertex corresponding to the contraction of 

S(i^7l)-(,..,a^/Cj, ,c^/bj^,...) into S(^ k) = (..., a^/b^,... ) . To the 

three angles formed at this vertex we assign aĵ ,ĉ , and b^, in 

this order, going from top to bottom, as shown ID figure 5. 

By -our construction, if a and b have been assigned to the upper, 

respectively lower angle at one end of any finite edge, and 

if this edge passes through any integral lattice point (i,j), 

then the j-th term of S(i) is a/b. But in the same way, we find 
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that this term is c/d, where c and d correspond to the two 

Singles at the other end of the edge. Thus, for any finite edge, 

Vve have a "proportion" a/b=c/d. We will prove that such a 

proportion also holds for the edge passing through the point 

at infinity. 

In vle^:j of (3), the above proportion may be replaced by the 

two equations xa=yb and xc=yd. Here x and y may be conveniently 

assigned to the two sides of the edge (see figure 6), and the 

twc equations KL^y be said to correspond to the two half-edges. 

Censider noŵ  the edge joining (n,1) and (-n,1) through the point 

at infinity. An appropriate transformation v\/ill bring the point 

at infinity into the finite oart of the plane. Since a /b is 
" -n -n 

a ratio, by definition, there exist eleirents u and v of H such 

that â̂ ^̂ =vb , We may assign u and v to the upper, respectively 

lower side of the edge depicted in figure 7, and the given equation 

will correspond to the left half of this edge. With the help of 

the polyhedral condition, we deduce the remaining equation ua =vb • 

It follows from (3) that a^^/b^^«=a^/b^, i.e. S(-n) = S(+n). This 

concludes the proof of the associative law. 

a-n u 

•n 

Th 





- 13 -

5» Sufficiency of polyhedral condition. 

Two finite sequences of ratios, U and V, will be called 

.similar, if there is a sequence W from which both can be obtained 

by repeated contraction. We will prove the following result : 

(7) o.o If both U and V reduce to S by iterated contraction, then 

they are similar. 

First, suppose U contracts to S, so that U=(P,a/c,c/b,Q) and 

S=(P,a/b,Q), where P and Q may be empty sequences. Since V reduces 

to S, we may put V=(l,Y,Z), where i, Y, and Z reduce to P, a/b, 

and Q respectively, by iterated contraction. It is easily seen that 

W=(i:,Y,b/c,c/b,Z) can be reduced to both U and V by repeated 

contraction, so that U and V are six̂ îlar. Hence (7) holds when 

U reduces to S in one ct3p.. 

Next, suppose U reduces to S in n steps, n>1. Then U contracts 

to U' which reduces to 3 in n-1 steps. By induction hypothesis, 

there exists a sequence W' which reduces to U* and V by iterated 

contraction- Since U reduces to U' in only one step,by the above, 

there exists a sequence 1/ which reduces to both U and W* and 

therefore Vo Hence U and V are similar, as was to be proved. 

(See figure 8 for an illustration of the second part of this proof.) 

We are now in a position to show that similarity of sequences 

of ratios is an equivalence relation in the usual sense. 

(8) o«. Similarity is symmetric, reflexive, and transitive. 

Symmetry is obvious. Reflexivity follows from the fact that (3,1) 

contracts to S. To prove transitivity, let us assum.e that R is 
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Similar to S and S is similar to T. Hence there exists a seovence 

U which reduces to both R and S, and a sê paence V which reduces tc 

both S and T (see figure 9). Since both U and V reduce to S, by 

K i) they can both be obtained froin a sequence '^ by repeated 

contraction. Now W reduces to R via U and to T via V, hence R is 

similar to T, as was to be proved. 

/ > ' / \ 

In this connection we may also state: 

(9) ... If S is similar to 3* and T is similar to T', then 

(S,I) is similar to (S',T'). 

For, by repeated contraction, we obtain S and S* from U, T and T' 

from V, hence (S,T) and (S',T') from (U,V). 

A ratio may be regarded as a sequence of ratios with one term. 

When are two ratios similar? 

(10) o.. Two ratios are similar if and only if they are equal. 

Because of reflexivity we know that equal ratios are similar. 

Conversely, let two ratios be similar. Bŷ  definition, this means 

that both can be derived from the same sequence W by repeated 

contraction. From (6) we deduce that they are equal. 

Let us denote by S^ the class of all sequences which are similar 

to S, so that S''=T'̂  if and only if S and T are similar, in view 

of (8). We define multiplication of similarity classes as follows.-

(11) . . . s^r=(s,Tr . 
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From (9) we know that the product thuo defined is unique. 

Associativity becomes apparent if we write both (S''T'̂ )U'' and 

S''(T'Û ) as (S,T,uy' . The unit element under multiplication is 

I \ since both (S,I) and (l,S) are similar to 5; fcr both are 

obtained by contracting (I,S,I). If T contains the reciprocals 

of the ratios of S in reverse order, then both (S,T) and (T,S) 

reduce to and are therefore similar to I; thus T'̂  may be regarded 

as the inverse of S^ under multiplication. We have thus proved 

that the similarity classes form a group G, with multiplication 

defined by (11). 

The correspondence a/b—^(a/b)"* is a homomorphic mapping of 

the set of ratios on a subset of G. For, by (11) and (4), 

(a/b)^ (Vc)^=(a/b,b/c)^ = (a/c)^ = ((a/b)(b/c))^. 

Mare than this, the mapping is isomorphic. For if (a/b)'' = (c/d)'' 

then a/b and c/d are similar, hence a/b=c/d, by (10). The 

correspondence a/b—>(a/b)'^ therefore embeds the set of ratios 

in G. But the correspondence a-7'(a) embeds the semigroup H 

in the set of ratios, as we have shown in section 3* Hence the 

correspondence a^7'(a)^ em.beds H in G. This establishes the 

sufficiency of the polyhedral condition-
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6. Application to Abelian semigroups. 

l̂ et H be an Abelian semigroup with cancellation law. Although it 

is not difficult to show directly that H is immersible in a group 

(namely the set of ratios), we shall test the usefulness of the 

polyhedral condition, by showing independently that the latter 

holds in H. 

Let elements of H be assigned to all angles and sides of any 

given polyhedron. Of the equations corresponding to the half-edges 

we will assume that all but one hold, and we wish to deduce the 

remaining equation. As in the necessity proof of the polyhedral 

condition, we introduce a triangulation and replace each equation 

xa=yb by two equations xa=p and yb=p corresponding to triangles, le 

may assum.e then that all but two of these latter equations are 

given. 

If the triangulation is regarded as a network, each vertex is 

seen to be an even node, i.e. has an even number of edges meeting 

at ito Hence there is an Suler line, i.e. the entire network can 

be traced in one single closed curve vî hich does not pass through 

an'- point t¥/ice. Since the polyhedron was homeo^Lorphic to the 

sphere, this Euler line will divide the triaagles into two classes, 

so that triangles with a common edge do not belong to the same 

class. We will write the equation corresponding to a triangle of 

the first class as xa=p and the equation corresponding to a triangle 

of the second class as p«yb, making a careful distinction between 

the tvo sides of each equation. Now multiply all 4E-2 given 

equations together, after their sides have been thus arranged. It 

will be observed that the four variables belonging to the half-edge 
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whose equation is to be deduced occur once in trie produot 

equation. All other variables occur twice, once on each side 

of the product equation, and may therefore be cancelled, by (C) 

There results an equation containing four variables, and .̂ t is 

easily seen that this is in fact the: equation we wished to 

de A 
auce. Hence the polyhedral condition is eati^fioi, as was to 

be proved. 
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7o Summary and Conclusions. 

A semigroup is a group without inverses unltr multiplication. 

It is proved that a semigroup H can be embedded in (or is 

isomorphic to a subset of) a group if and only if the cancellation 

law (C) and the polyhedral condition (i) hold. Here (G) means 

that ax=bx or xa=xb should always imply that a=b, for any elements 

a, b, X of E. (l) states: If clerijents of H are assigned to the 

angles and sides (i.e. sides of edges) of any Eulerian polyhedron 

(a polyhedron whose surface is homeomorphic to the sphere), so 

that to each half-edge there corresponds an equation xa=yb, ŵ here 

X and y have been assigned to the two sl-ler, a and b tc the 

corresponding two angles of the half-edge, then these equations 

are interdependent, i.e. any one of them can be deduced from the 

totalitv of all others. 

We have spoken above of the polyhedral condition. We might 

equally well say that there are as many different conditions as 

there are topologically inequivalent po3yhedra, namely an enumer

able infinitude. Even worse, the number of equations entering any 

such condition, being twice the number of edges of the polyhedron, 

is unbounded as we vary the latter. The number of conditions can 

be reduced to some t;xtent: it suf rices to consider only such 

polyhedra as can be cut up into two trees; moreover we may restrict 

the number of edges meeting at any vertex to three. However it 

remains an open question whether a finite number of conditions 

may not do. I conjecture that this question is to be Rnŝ rerea in 

the negative. 
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vol. 113, p. 687. 

SEIFERT,fi. & THRELFALL,W : Lehrbuch der Topologic. 

Kew York, Chelsea I'ublishing Company, 1947• 









McGiLL UNIVERSITY LIBRARY 

¥ 

UNACC. 






