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Abstract 
The Finite Element Method (FEM) applied to wave scattering and quasi-static 

vector field problems in the frequency domain leads to sparse, complex-symmetric, 

linear systems of equations. For large problems with complicated geometries, most of 

the computer time and memory used by FEM goes to solving the matrix equation. 

Krylov subspace methods are widely used iterative methods for solving large sparse 

systems. They depend heavily on preconditioning to accelerate convergence. 

However, application of conventional preconditioners to the “curl-curl” operator 

which arises in vector electromagnetics does not result in a satisfactory performance 

and specialized preconditioning techniques are required.  

This thesis presents effective Multilevel and Algebraic Multigrid (AMG) 

preconditioning techniques for p-adaptive FEM analysis. In p-adaption, finite 

elements of different polynomial orders are present in the mesh and the system matrix 

can be structured into blocks corresponding to the orders of the basis functions. The 

new preconditioners are based on a p-type multilevel Schwarz (pMUS) approximate 

inversion of the block structured system. A V-cycle multilevel correction starts by 

applying Gauss-Seidel to the highest block level, then the next level down, and so on. 

On the other side of the V, Gauss-Seidel iterations are applied in the reverse order. At 

the bottom of the cycle is the lowest order system, which is usually solved exactly 

with a direct solver. The proposed alternative is to use Auxiliary Space 

Preconditioning (ASP) at the lowest level and continue the V-cycle downwards, first 

into a set of auxiliary, node-based spaces, then through a series of progressively 

smaller matrices generated by an Algebraic Multigrid (AMG). The algebraic 

coarsening approach is especially useful for problems with fine geometric details, 

requiring a very large mesh in which the bulk of the elements remain at low order.  

In addition, for wave problems, a “shifted Laplace” technique is applied, in which 

part of the ASP/AMG algorithm uses a perturbed, complex frequency. A significant 

convergence acceleration is achieved. The performance of Krylov algorithms is 

further enhanced during p-adaption by incorporation of a deflation technique. This 

projects out from the preconditioned system the eigenvectors corresponding to the 

smallest eigenvalues. The construction of the deflation subspace is based on efficient 

estimation of the eigenvectors from information obtained when solving the first 

problem in a p-adaptive sequence.  
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Extensive numerical experiments have been performed and results are presented 

for both wave and quasi-static problems. The test cases considered are complicated to 

solve and the numerical results show the robustness and efficiency of the new 

preconditioners. Deflated Krylov methods preconditioned with the current 

Multilevel/ASP/AMG approach are always considerably faster than the reference 

methods and speedups of up to 10 are achieved for some test problems.  
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Résumé 

La méthode des éléments finis (FEM) appliquée à la dispersion des ondes et aux 

problèmes de champ de vecteurs quasi-statique dans le domaine fréquentiel mène à 

des systèmes d'équations linéaires rares, symétriques-complexes. Pour de grands 

problèmes ayant des géométries complexes, la plupart du temps et de la mémoire 

d'ordinateur utilisé par FEM va à la résolution de l'équation de la matrice. Les 

méthodes itératives de Krylov sont celles largement utilisées dans la résolution de 

grands systèmes creux. Elles dépendent fortement des préconditionnement qui 

accélèrent la convergence. Toutefois, l'application de préconditionnements 

conventionnels à l'opérateur "rot-rot" qui surgit en électromagnétisme vectoriel 

n'aboutit pas à des résultats satisfaisants et des techniques de préconditionnement 

spécialisés sont exigées. 

Cette thèse présente des techniques de préconditionnement efficaces multiniveau 

et multigrilles algébrique (AMG) pour l'analyse p-adaptative FEM. Dans la p-

adaptation, des éléments finis de différents ordres polynomiaux sont présents dans le 

maillage et la matrice du système peut être structurée en blocs correspondant aux 

ordres des fonctions de base. Les nouveaux préconditionneurs sont basés sur un type 

d'inversion approximative à multiniveau p Schwarz (pMUS) du système structuré de 

bloc. Une correction à niveaux multiples en cycle V débute par l'application de Gauss-

Seidel au niveau du bloc le plus élevé, suivi par le niveau inférieur, et ainsi de suite. 

De l'autre côté du V, des itérations de Gauss-Seidel sont appliquées en ordre inverse. 

Au bas du cycle se trouve le système d'ordre le plus bas, qui est habituellement résolu 

exactement avec un solveur direct. L'alternative proposée est d'utiliser l'espace 

auxiliaire de préconditionnement (ASP) au niveau le plus bas et de poursuivre le cycle 

en V vers le bas, d'abord en un ensemble d'auxiliaires, basé sur les espacements de 

nœuds, à travers une série de plus en plus petites de matrices générées par un 

multigrille algébrique (AMG). L'approche de grossissement algébrique est 

particulièrement utile aux problèmes ayant de fins détails géométriques, nécessitant 

une très grande maille dans laquelle la majeure partie des éléments restent à un niveau 

plus bas. 

En outre, pour des problèmes d'onde, la technique "décalé Laplace" est appliquée, 

dans laquelle une partie de l'algorithme ASP/AMG utilise une fréquence complexe 
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perturbée. Une accélération de la convergence significative est atteinte. La 

performance des algorithmes de Krylov est davantage renforcée au cours du p-

adaptation par l'incorporation d'une technique de déflation. Cette saillie fait dépasser 

hors du système préconditionné, les vecteurs propres correspondants aux plus petites 

valeurs propres. La construction du sous-espace de déflation est basée sur une 

estimation efficace des vecteurs propres à partir d'informations obtenues lors de la 

résolution du premier problème dans une séquence p-adaptatif. 

Des expériences numériques approfondies ont été effectuées et les résultats sont 

présentés à la fois aux problèmes d'onde et quasi-statiques. Les cas de test sont 

considérés comme compliqués à résoudre et les résultats numériques montrent la 

robustesse et l'efficacité des nouveaux préconditionnements. Les méthodes de Krylov 

de déflation préconditionnés par l'approche multiniveaux/ASP/AMG actuelle sont 

toujours considérablement plus rapides que les méthodes de référence et des 

accélérations allant jusqu'à 10 sont atteintes pour certains problèmes de test. 
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CHAPTER 1 

Introduction 

 

 

 

1.1 Background and Motivation  

In many branches of physics and engineering, numerical simulations are used to 

study complex phenomena, either to gain insight or as part of a design process. 

Computational Electromagnetics (CEM) is an important addition to practical 

experiments and analytical descriptions. With the increases in computer power and 

improved algorithms of the last decades, the role of CEM in understanding the 

behaviour of electromagnetic fields in complex structures has become more 

significant.  

The basis for the mathematical analysis and numerical treatment of 

electromagnetic phenomena is Maxwell’s Partial Differential Equations (PDEs). The 

Finite Element Method (FEM) has been established as a powerful tool for the 

numerical solution of PDEs. In this method, based on the variational formulation of 

partial differential equations, the computational domain is discretized into finite 

elements, and the solution is approximated in a function space with finite dimension. 
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The original problem can then be transformed into a finite dimensional problem, and 

the solution can be obtained by solving a matrix equation.  

With the introduction of the Tangential Vector Finite Element Method 

(TVFEM)  [1], the FEM became a standard numerical modeling approach for 3D, 

vector electromagnetic fields in a variety of applications, from power frequencies to 

microwaves, and beyond. The FEM formulation for Maxwell’s ”curl-curl” PDE 

provides great flexibility in dealing with geometrical complexity, varying material 

coefficients and boundary conditions.  

In spite of the great achievements for developing efficient CEM tools around 

FEM, analysis of modern real-life problems can still face great challenges. One main 

difficulty comes from the application of conventional matrix methods in FEM 

modeling of electrically large and geometrically complex components. Large-scale 

simulations impose great challenges for conventional matrix solvers, because of the 

high computational resources required. Consequently, it is of great interest to develop 

more efficient matrix methods for FEM simulation of vector electromagnetic fields. 

1.2 Problem Statement and Outline 

When the materials are linear and the sources time-harmonic, phasor analysis is 

possible. Discretization of the “curl-curl” PDE then gives rise to a linear matrix 

equation in which the matrix is sparse and complex-symmetric (for reciprocal 

materials). For complicated and large problems, commonly a very large number of 

finite elements is needed to achieve the required accuracy and resolution, especially 

for the simulation of wave problems. Therefore, the matrix problems to be solved in 

the simulations are generally very large, and as a consequence expensive to solve. If a 

matrix is large, alternatives to direct solution methods are needed, because the storage 

and speed become limiting factors. Iterative methods for solving linear systems use a 

computationally cheap process to find increasingly better approximations of a 

system’s solution, and are widely used instead of direct methods.  

One popular class of iterative methods builds a subspace, called a Krylov 

subspace, spanned by increasing powers of the matrix applied to a certain vector. The 

solution is extracted from the Krylov subspace. Improving the efficiency of Krylov 
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subspace methods decreases the costs of simulations and is therefore an important 

research area.  

The robustness and efficiency of these methods can be increased using 

preconditioning techniques. Preconditioning is a way to change the linear system so 

that the solution remains the same but it is easier to solve iteratively. Development of 

preconditioners is therefore a very active research area. However, for the curl-curl 

problem, finding appropriate preconditioning techniques is difficult, for reasons given 

in Chapter 3. The main difficulty stems from the non-trivial, large kernel of the curl-

operator and the existence of low-energy nearly irrotational fields in the curl-curl 

problem. This can lead to a very ill-conditioned system of equations that yields poor 

convergence with standard preconditioners.  

In this work, we are concerned with efficient numerical solution of linear systems 

that arise from high-order FE analysis of wave scattering and quasi-static magnetic 

fields, in the frequency domain. Hierarchical high-order elements are popular for 

modeling electromagnetic problems, due to their error convergence rates and their 

block matrix structure  [2]  [3]. In this context, effective Multilevel/Algebraic Multigrid 

preconditioners are proposed for hierarchical systems. The algorithm combines 

correction ideas from p-type multiplicative Schwarz with algebraic multigrid for the 

lowest order system. The chosen problem is solved over different levels of 

representation and separate corrections in each level are computed and then connected 

appropriately to result in a cost-effective overall approximation. In particular, the 

lowest order correction and corresponding space splitting respects the properties of 

the “curl-curl” operator. 

Another specific approach for increasing the efficiency of Krylov subspace 

methods is deflation acceleration. In recent years, this method has been researched 

extensively in combination with the Krylov iterative methods  [4]  [5]. Deflation has 

been shown to be very effective for problems with multiple right-hand sides. In this 

thesis, deflation is instead applied to the sequence of growing problems that arise in 

the p-adaptive solution of electromagnetic problems. To asses this option, the effects 

of deflation on convergence behaviour and overall speed of systems are investigated. 

Several test problems are considered in combination with popular Krylov methods.  
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The structure of this report is as follows. There follows an overview of present 

direct and iterative solution methods. Chapter 2 contains the finite element 

formulations and origin of the linear system of equations when simulating wave 

scattering and quasi-static magnetic field problems, together with a description of 

higher order FE modeling. This is followed by Chapter 3, describing the multilevel 

and algebraic multigrid preconditioning approaches. In Chapter 4, iterative Krylov 

method and some theoretical aspects of deflation are presented. In Chapter 5, the 

results for numerical experiments with several test cases can be found. Chapter 6 

gives the main conclusions and recommendations. 

1.3 Overview of Present Solution Methods 

Discretization of the time-harmonic vector wave equation by the finite element 

(FE) method results in the linear system 

                        (1.1) 

where   is the number of unknowns. The matrix   is sparse, symmetric (    ) 

and, in general, complex. Furthermore, depending on the frequency and the boundary 

conditions, matrix   can be indefinite, meaning that the real part of the eigenvalues of 

  lie in both positive and negative halves of the complex plane. In this section some 

methods for solving the linear system are briefly discussed. There are in general two 

broad classes of methods to solve a linear system: direct and iterative. 

1.3.1 Direct vs. Iterative Methods. 

Direct methods are basically derived from the Gaussian elimination process. They 

are well-known for their robustness in solving general problems. However, Gaussian 

elimination can be unfavourable for sparse linear systems. During the elimination 

process, zero elements in the structure of the sparse matrix may be filled by non-zero 

values. This is called fill-in and gives rise to two complications. The first is extra 

memory required to store the additional non-zero entries, and the second is extra 

computational work during the elimination process. 

During the past few decades, several packages for efficient direct solution of 

sparse linear systems have been introduced. The primary methods used are: left/right 
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looking, frontal and multifrontal. The ordering strategies that are usually applied for 

exploiting the sparsity are: minimum degree and its variants, nested one-way 

dissection, permutation to block triangular form and profile/bandwidth reduction  [6].  

UMFPACK is a set of highly efficient routines for solving sparse linear equations. 

It is based on the Unsymmetric-pattern MultiFrontal method that first finds a column 

pre-ordering for reducing the fill-in. It scales and analyzes the matrix, and then 

automatically selects one of two strategies for pre-ordering the rows and columns: 

unsymmetric and symmetric. Once the strategy is selected, the factorization of the 

matrix is broken down into the factorization of a sequence of dense rectangular frontal 

matrices. The frontal matrices are related to each other by a supernodal column 

elimination tree, in which each node in the tree represents one frontal matrix  [7]  [8]. 

For two dimensional FE problems the work and storage required for direct 

methods grows moderately with   as the number of elements grows, when 

appropriate reordering strategies are applied to exploit the sparsity. In efficient cases, 

the work and storage required are         and         , respectively  [9].  

On the other hand, for three dimensional FE problems, the work and storage 

required by direct methods grow much faster, which makes them less attractive. For 

multifrontal methods, with a nested dissection reordering strategy, the work and 

storage are       and        , respectively  [9]. Therefore, for very large problems 

in the three dimensional case, iterative methods are usually more efficient. 

1.3.2 Iterative Methods and Preconditioning 

Iterative approaches in general and Krylov subspace methods in particular are 

powerful techniques for solving large problems. The solution of the linear system is 

obtained in a series of steps consisting primarily of matrix-vector multiplication, 

starting from a given initial solution. A matrix-vector multiplication is a relatively 

cheap process, requiring only      arithmetic operations per iteration. If the method 

converges after a small enough number of iterations, it is very efficient. 

Krylov methods are widely used for solving linear systems of equations. 

Examples are the Conjugate Gradient (CG) method  [10], the Minimal Residual 

method (MINRES)  [11] and the Generalized Minimal Residual (GMRES) 

method  [12]. The principles of Krylov methods are described in Chapter 4. They 
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require little storage and for well-conditioned problems, converge in a relatively small 

number of iterations compared to  . 

The vector wave (“curl-curl”) equation, on the other hand, is known as a problem 

for which iterative methods typically result in an extremely slow 

convergence  [13]  [14]. In Chapter 3, the main reasons related to the slow convergence 

of the system are explained. However, with a proper remedy, i.e., a good 

preconditioner, an efficient iterative method can be designed. 

The convergence of Krylov iterative methods is closely related to the condition 

number of the matrix  . The convergence then can be accelerated by incorporating 

appropriate preconditioners. The purpose of preconditioning is to improve the 

condition of the coefficient matrix. Suppose that we have a matrix   whose inverse is 

easily computed or approximated. Instead of     , we solve iteratively the 

following equivalent, preconditioned system: 

            (1.2) 

A preconditioned Krylov subspace method can therefore be defined by adding the 

action of     to the original algorithm.  

One important aspect of solving (1.2) is that the convergence rate depends on the 

condition number of     , and not on that of  . Therefore, in order to have an 

improved convergence the preconditioned system must have a smaller condition 

number than  . In general,   should be chosen such that      is close to the 

identity.  

1.3.3 Review of Preconditioning Methods 

Among popular preconditioners, here we mention some of the most widely used. 

Note that the methods described in this section may also be used in a standalone 

iteration for solving (1.1), but the rate at which the solution converges depends greatly 

on the spectrum of the matrix  . Indeed, standalone application of these methods may 

even fail to converge. They are most appropriate when combined with a Krylov solver 

to transform the coefficient matrix into one with a more favourable spectrum.  
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a) Incomplete LU Decomposition 

One frequently used preconditioner for   can be obtained by approximately 

decomposing   into    factors  [15], where   and   are lower and upper triangular 

matrices, respectively. This is achieved by applying an incomplete    (   ) 

factorization to  . The degree of approximation depends on the number of fill-in 

elements allowed in the   and   factors.  

In general, two different approaches are proposed, one in which fill-in is only 

allowed in predetermined locations, and another in which the values of the matrix 

entries are considered. 

The simplest method is       , in which a nonzero entry of   and   is only 

allowed where the original matrix   has a nonzero. This simple approach allows for a 

very efficient implementation  [15]. A more accurate approximation can be obtained 

by increasing the level of fill-in. In one method which is structure oriented, more off-

diagonals are added to the   and   factors. It is denoted as    (     ), which       > 

0 is an integer indicating the number of off-diagonals allowed in the   and   factors. 

For many problems, the size of the elements decreases with the level number and in 

practice the number of levels is kept low. This method results in a structured matrix 

for   and  .  

The second approach, which is value oriented, is to define a drop tolerance for the 

fill-in. If during an    factorization the value of an element falls below a prescribed 

small tolerance, say    , this element is set to zero. This incomplete    

decomposition is usually denoted as    (   ). More detailed discussion on 

incomplete    preconditioners can be found in  [15]. 

Recently, the algebraic multilevel inverse-based     preconditioner was proposed 

for solving indefinite sparse FEM linear systems  [16]. By employing a graph partition 

technique, this method reorders the original FEM matrix into a hierarchical multilevel 

structure. An inverse-based     dropping strategy is adopted to construct a robust 

preconditioner for indefinite systems. 
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b) Basic Relaxation Methods 

Fixed-point iterations are among the basic iterative methods for solving linear 

systems. They can also be used as a simple preconditioning approach. Well-known 

relaxation methods are based on the matrix splitting : 

          (1.3) 

in which   is the diagonal of   ,   its strict lower part, and    its strict upper part. 

After substituting (1.3) into (1.1), we have 

             (1.4) 

Different iteration methods can be distinguished by the way the above splitting is 

reformulated. The forward Gauss-Seidel method can be defined as: 

                   (1.5) 

where    and      are the solution vectors at iteration   and    , respectively. In 

(1.5), a triangular system must be solved, since     is the lower triangular part of  .  

                            (1.6) 

The above Gauss-Seidel sweep is called forward Gauss-Seidel, since the entries 

of the approximate solution      are obtained in forward manner, starting at the 

beginning of the vector. Similarly, a backward Gauss-Seidel iteration can be defined 

as  

                             (1.7) 

Applying only one iteration of the forward or backward relaxations with zero 

initial guess corresponds to the following preconditioning matrix   

                   (1.8) 

and 

                    (1.9) 

Overrelaxation is based on the splitting 

                        (1.10) 

where   is a real number,      , and the corresponding forward Successive Over 

Relaxation (SOR) method is given by the recursion  
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                               (1.11) 

A symmetric SOR, known as SSOR, consists of a forward SOR step followed by 

a backward SOR step. Choosing the relaxation parameter   to be 1, it reduces to 

                                    (1.12) 

The application of SSOR method as a preconditioner can be described by the 

following matrix: 

                             (1.13) 

c) Multigrid Methods 

Multigrid and multilevel methods are well-established approaches for solving 

linear systems and their robustness is proven when applied to elliptic equations with 

self-adjoint operators  [17]. The robustness of multigrid methods for solving the linear 

system comes from efficient interplay of two steps: smoothing and coarse level 

correction.  

The classical relaxation methods described in the previous section have strong 

damping, or smoothing, effects on the high frequency parts of the error, i.e., the errors 

that correspond to large eigenvalues and which, for FE problems, are usually rapidly 

varying in space. The error which is not efficiently reduced by a smoothing operator 

can then be approximated by a coarser system. The basic principle of multigrid is to 

project the remaining errors after smoothing to a coarse system. The projected error 

may contain again high frequency components with respect to the coarser system. A 

multilevel scheme can be used to continue this process to coarser and coarser grids. 

On the coarsest grid a direct solver is usually applied. 

If a hierarchy of nested grids is available, multigrid methods are most effective. 

The method is then known as geometric multigrid (GMG)  [18]  [19]  [20], and it 

exhibits fast convergence independent of grid size    [21]. On the other hand, there are 

situations in which GMG can not be easily applied, e.g., when the FE mesh 

discretization provides no hierarchy of nested meshes, or when the coarsest mesh is 

too big for a direct solver to solve. Algebraic multigrid methods (AMGs) were 

developed to overcome the limitations of GMG and are not constrained in this 

way  [21]  [22]  [23]  [24]  [25]  [26]. AMG operates more on the level of the matrix than 
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of the underlying nested FE meshes. The coarsening process is based on mapping 

operators which are obtained in a purely algebraic way. We restrict ourselves to 

Algebraic Multigrid (AMG); GMG is beyond the scope of this thesis.  

d) Domain Decomposition  

For very large and complicated problems, one major difficulty in solving the 

problem as one large computational domain comes from the multiscale nature of the 

geometry  [33]. The coexistence of electrically large and electrically small fine 

features can result in an ill-conditioned matrix equation. In this case, the 

decomposition of the large problem into smaller ones might make its solution feasible 

and also facilitate computation on a parallel architecture. Domain Decomposition is a 

class of methods based on this idea that makes large-scale computations possible and 

also takes advantage of parallel machine architectures  [30]. It is inherently parallel, an 

important consideration in keeping with current trends in computer architecture.  

In domain decomposition methods (DDMs), the computational domain is 

decomposed into overlapping or nonoverlapping subdomains. The PDE is then 

discretized on each subdomain. At the interfaces between adjacent subdomains, 

proper boundary conditions called transmission conditions are imposed to enforce the 

continuity of the electromagnetic fields. After that, the basic idea in DDM is to find 

the solution by solving each domain, and then exchange the solutions in the interface 

between neighbouring domains. The transmission conditions are imposed iteratively 

and the subdomains communicate with each other until a certain accuracy in the entire 

solution has been achieved. 

DDMs have good parallelization properties since the domain problems can be 

solved separately in parallel. Several classes of DDM are proposed for analyzing 

electromagnetic problems based on overlapping and non-overlapping 

methods  [27]  [28]  [30]  [31]. Some of the early work on DDMs for solving the vector 

wave equation are due to Lee et al.  [29]  [30], using nonoverlapping domains. Memory 

requirement can be greatly reduced for problems with repetitions or symmetries. The 

non-overlapping and non-conforming DDM was introduced in  [30] through the 

introduction of additional surface unknowns at the interface, and extended 

in  [31]  [32]  [33] for further computational efficiency. Meshes at the interfaces are 

allowed to be non-matching, leading to considerable efficiency in mesh generation for 
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complex geometries. The wellposedness is ensured by incorporating the consistency 

condition in the form of the second order transition condition (complex Robin 

condition) at the interfaces.  

When the transmission conditions are properly devised, DDM can become an 

effective preconditioner, especially at the initial stage of reducing the residual. The 

convergence of the algorithm might exhibit slow-down behaviour for small residuals 

or may deteriorate with the increase of the problem size or the number of 

subdomains  [34]. Recently, a global plane wave deflation technique is utilized to 

derive a global coarse grid preconditioner and overcome some of the convergence 

issues for rectangular subdomains  [34]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 2 

The Finite Element Method for 
Maxwell’s Equations 

 

 

 

We begin our discussion in this chapter with an introduction to the Maxwell’s 

partial differential equations (PDEs) in Section 2.1 and derivation of the second order 

vector wave equation in Section 2.2. The type of boundary conditions considered are 

explained in Section 2.3. An introduction to relevant function spaces used in the FEM 

is presented in Section 2.4. The process of replacing the Maxwell’s PDE by its 

discrete formulation and different finite element formulations considered in this thesis 

can be found in Section 2.5. The chapter ends with a discussion of higher order FEM 

modeling and adaptivity for obtaining better accuracy and efficiency. 

2.1 Maxwell’s Equations 

The behaviour of electromagnetic fields is governed by Maxwell's equations. 

These equations consist of pairs of coupled PDEs for the electric and magnetic fields 

that uniquely define them. When the fields are harmonically oscillating in time with a 

single frequency, the equations are reduced to their time-harmonic forms:  
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(2.1) 

(2.2) 

(2.3) 

(2.4) 

where              and              stand for the phasor electric and 

magnetic fields and              and              are the phasor electric and 

magnetic flux densities. Furthermore,   denotes the electric current density, which is 

the summation of the current impressed by an external source    and induced 

conduction currents     ̂  inside the conductor regions, i.e.,        . The 

volume charge density is denoted by   in (2.3). 

The constitutive relations for linear and anisotropic media are: 

    ̂  

   ̂  

    ̂  

(2.5) 

(2.6) 

(2.7) 

where the dielectric permittivity  ̂      ̂, the conductivity  ̂, and the magnetic 

permeability  ̂     ̂  are assumed to be known symmetric tensors. 

2.2 Second Order PDE: the Vector Wave Equation 

Maxwell's equations can be formulated into a second order PDE for the   or   

fields by using (2.1) to (2.4) and the constitutive relations (2.5) to (2.7). The derived 

vector wave equation is often referred to as the curl-curl equation.  

Starting from equations (2.1) and (2.2) and substituting equations (2.5) through 

(2.7) and then taking curl of both sides give  

 
   ̂             

   ̂                ̂   ̂   ̂      

(2.8) 

(2.9) 

The conductivity  ̂ is often included in the complex permittivity parameter  ̂, but 

for the results of this section we avoid this inclusion. The substitution for     in 

(2.8) and     in (2.9) from equations (2.2) and (2.1), respectively, leads to 
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   ̂         ̂     ̂        

   ̂         ̂     ̂   ̂      ̂      

(2.10) 

(2.11) 

For nonconductive regions,  ̂ is zero and equations (2.10) and (2.11) reduce to 

 
   ̂         ̂        

   ̂         ̂      ̂      

(2.12) 

(2.13) 

For source-free problems,    is also zero and the wave equations can be written as 

 
   ̂         ̂    

   ̂         ̂    

(2.14) 

(2.15) 

Equations (2.14) and (2.15) can be cast as a general equation of the form 

    ̂        
  ̂    (2.16) 

where   is a general field denoting either   or  . In the above, the wave number is 

defined as     √          , where    is the free-space wavelength; and  ̂ and 

 ̂ represent the relative material tensors which are different in each case and are 

summarized as follow: 

-   stands for   when  ̂   ̂  and  ̂    ̂. 

-   stands for   when  ̂    ̂ and  ̂   ̂ . 

2.3 Boundary Conditions 

In this section several frequently used boundary conditions for the normal or the 

tangential components of the electromagnetic fields are presented. The boundary 

conditions usually depend on the specific application. Here, the focus is on the 

standard boundary conditions for both   and   fields: Dirichlet and Neumann. As 

well, two specific boundary conditions for the   field are introduced: impedance and 

waveguide port constraints.  

2.3.1 Dirichlet Boundary Condition 

According to this boundary condition, the tangential part of the field on the 

surface is constrained to a defined value. Constraining the tangential part of field   to 
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zero represents a Perfect Electric Conductor (PEC), i.e., we assume      on PEC. 

The PEC condition is in particular suitable for modeling metallic domains. For the 

magnetic field, forcing the tangential component to zero (      represents a Perfect 

Magnetic Conductor (PMC). PMC can model materials with very high permeability, 

where one can assume a vanishing tangential magnetic field. A surface with a 

Dirichlet condition is denoted   .  

2.3.2 Neumann Boundary Condition 

For a surface    on which the Neumann boundary condition holds, the tangential 

part of the curl of the field is zero. The condition is same as Perfect Magnetic 

Conductors (PMC) for the electric field (          ) and PEC for the magnetic 

field (          ). 

2.3.3 Impedance Boundary Condition for the Electric Field  

Reflection of the electric field at an interface can be modeled by impedance 

boundary conditions. These are Robin-type boundary conditions relating the 

tangential magnetic and electric fields by specifying a surface impedance parameter. 

When the impedance is chosen to be the intrinsic impedance of free space, it can be 

interpreted as a simple Absorbing Boundary Condition (ABC)  [35]. It is particularly 

suitable for defining a free-space scattering problem surrounded by a truncation 

surface   . If there is an incident wave whose electric and magnetic fields are    and 

H
 
 respectively, the following condition is applied to the enclosing surface   :  

 
 

    

        
 

  
       

  
 

  
       (2.20) 

where    is the intrinsic impedance of free space and a  is the unit normal outward 

from the domain. The quantity on the left-hand side is proportional to the tangential 

part of the magnetic field and the first term on the right-hand side is proportional to 

the tangential electric field. 

2.3.4 Port Boundary Condition for the Electric Field  

This is the boundary condition for the electric field at a port of an N port 

microwave junction, where it connects to a uniform waveguide or transmission line. 
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The excitation takes the form of a wave in mode   of the waveguide, incident at port 

 . Let the transverse electric and magnetic fields of mode   incident at port   be   
   

, 

  
   

, respectively. The boundary condition on each port surface      is  [36]: 

  

    
 ̂
 
          ∑  

         
   

 

   

       
   

 (2.21) 

Here   
   

 is the normalized voltage of mode  , a linear functional of the transverse 

electric field at the port: 

   
    E  ∫ h 

   
 E  a   

 

    

 (2.22) 

2.4 Function Spaces 

Here the function spaces for the variational formulation of the partial differential 

equations under consideration,       and          , are introduced. These spaces 

will play an important role in finite dimensional approximations of the Maxwell’s 

equation PDEs with the gradient and curl operators, as well as design and analysis of 

preconditioners presented later. Assuming that the Maxwell problems (2.14) and 

(2.15) are posed on a fixed three-dimensional domain     , we define:  

             ∫ | |   
 

 

    (2.23 

to be the space of complex-valued, square integrable scalar fields over  . We also 

denote       [     ]  to be the space of square integrable vector fields over  . In 

addition: 

 

                           

       [     ]  

                                 

 (2.24) 

(2.25) 

(2.26) 

The above Hilbert spaces are equipped with corresponding inner products. For 

(2.24), we define  

 
       ∫        

 

 

        
(2.27) 

 

in which  
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       ∫     

 

 

 
(2.28) 

In these relations, the complex-conjugate transpose of   is denoted by   . We also 

need to define the inner product for           in (2.26) as: 

           ∫          
 

 

        
(2.29) 

 

where  

 
       ∫      

 

 

 
(2.30) 

 

The norms induced by (2.28), (2.27) and (2.29) are denoted by ‖ ‖ , ‖ ‖ , ‖ ‖    , 

respectively. 

In order to construct conforming finite element methods for finding the electric 

field by solving (2.14), the discrete space is chosen as a subspace of  

                                        |    
    (2.31) 

Conforming finite element spaces can be constructed by requiring the tangential 

components are continuous across element interfaces. This ensures that the resulting 

global finite element functions are in          . Note that the normal components of 

functions need not be continuous. 

2.5 Finite Element Formulations 

In this section, the finite element formulations used for solving wave scattering 

problems and quasi-static magnetic field problems are explained in detail.  

2.5.1 Finite Element E formulation for the Wave Equation 

Figure 2.1 shows the domain   of a scattering problem with various types of 

boundary condition, as introduced in Section 2.3. In the framework of FEM, the 

infinite-dimensional space            is replaced by a finite-dimensional subspace, 

which yields the discrete variational problem. In order to apply the FEM, the domain 

is discretized, and the field is represented by basis functions defined on the individual 

elements. A tetrahedral mesh of the domain  , with tetrahedra of maximum edge 

length  , is denoted   .  
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Figure 2.1: Illustration of a typical electric field problem. 

Assuming that the space spanned by the basis functions is   , the Galerkin 

projection method then provides a general technique for construction of the discrete 

approximations to the variational problem. The finite-dimensional weak statement 

corresponding to (2.14) is  [36]: 

                                                     (2.32) 

where  

 

        
 

    
∫      ̂ 

        
     ̂    

 

 

  ∑ ∑  
         

      

 

   

 

   

 
 

  
∫       

 

  

 

(2.33) 

and 

           
        ∫(   

 

  
     )         

 

  

 (2.34) 

Assuming that the domain is discretized into   
 
 tetrahedral elements, within each 

element   the electric field vector can be expanded as 

    ∑  
   

 

  

   

 (2.35) 
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where    is the number of basis functions defined on the element,       is the  th 

basis function and    is the coefficient of the  th basis function, numbered globally 

from 1 to  . Superscript   indicates that the quantities are numbered locally, within 

element  . Choosing   to be each basis function    in turn, (2.32) yields the system 

of equations 

      (2.36) 

where   is an     complex-symmetric matrix and   is a column vector of the 

unknown values   .  

2.5.2 Finite Element     formulation for the Quasi-static Magnetic Field  

A typical quasi-static magnetic field problem is depicted in Figure 2.2. It consists 

of an eddy current region    with nonzero conductivity and a surrounding non-

conducting region   . The entire problem domain is the union of    and   , i.e., 

       . The red arrow in the figure indicates a prescribed net current flow in a 

coil, which is part of   .  

Over the surfaces of  , different boundary conditions of practical importance can 

be applied to the normal component of flux density or tangential component of 

magnetic field intensity. Specifically,      and      are applied on virtual 

boundaries and symmetry planes, respectively. Over the boundary of    the interface 

condition between the conducting and non-conducting regions is imposed.  

 

Figure 2.2: Illustration of a typical quasi-static magnetic field problem. 
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For the conducting region, Maxwell's equations can be written as: 

 
        ̂  

       ̂   ̂  

 (2.37) 

(2.38) 

For the quasi-static problems in which   ̂   ̂, equation (2.37) reduces to  

      ̂   (2.39) 

From that we get   as follows: 

    ̂       (2.40) 

The substitution for   in (2.37) from (2.40) leads to 

    ̂          ̂   (2.41) 

Therefore, the phasor magnetic field,  , solves the following quasi-static 

equations in conducting and non-conducting regions, respectively: 

             ̂    

   ̂    

(2.42) 

(2.43) 

Various formulations of eddy current problems in terms of scalar or vector 

potentials have been proposed  [37]  [38]  [39]  [40]. Edge elements can be used to 

implement the     method  [40]. A substantial reduction in computational effort can 

be achieved by using a magnetic scalar potential,  , in the region free of eddy 

currents. In conducting regions,   is represented as     , where   is an unknown 

vector potential. First-order edge elements, also called Whitney elements, have one 

degree of freedom associated with each edge of the tetrahedron. For gauging the 

decomposition, a tree from the graph of all the edges in the conductors is extracted.   

is represented in each element,  , by the Whitney functions corresponding to the 

element edges that are part of the cotree:  

    ∑   
   

 

 

        

 (2.44) 

Two different means of exciting the field are used in this work. In one case,   is 

set to a nonzero value on some part of the boundary of   . The other method is 

applied when there is a prescribed net current circulating in a coil, as shown in Figure 
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2.2. The coil itself is part of   . To make sure that the path integral of   is correct 

around a loop in the air that encloses the coil current, a “cut” surface is introduced in 

  , spanning the coil. The potential   is made to increase by the appropriate amount 

in crossing the cut surface. This jump in potential drives the field in the problem.  

Using scalar and vector basis functions from an FE space    and following the 

standard Galerkin method, the differential equations governing  , are reduced to an 

algebraic form 

      (2.45) 

2.6 Higher Order Elements, Accuracy and Efficiency 

In the FEM, first-order elements are widely used. However, to improve the 

accuracy and efficiency, a higher order approximation of the field may be desired. 

This can be achieved by employing higher order basis functions. The idea of p-

version finite element methods is to use a fixed triangulation and obtain better 

accuracy by increasing the polynomial order of the basis. Compared to the more 

common first-order elements, higher convergence rates with less numerical dispersion 

can be obtained using higher order degrees of freedom  [3]. The idea has become more 

and more popular during recent years and numerous bases for the curl -conforming 

spaces have been presented in the literature  [41]  [42]  [3]. Bases can be classified into 

two families, interpolatory and hierarchical.  

Using interpolatory basis functions  [41], the order of the bases is uniform within 

the computational domain and the unknown associated with each basis function is 

typically the field at a point associated with the basis function.  

On the other hand, hierarchical basis functions  [2]  [43]  [44] [45]  [3] allow the use 

of different orders within the same computational domain. This property can be 

utilized to adaptively increase the order of the basis functions only in the regions 

where they result in greatest improvement in the accuracy. Hierarchical bases are 

popular for other reasons too, such as efficient error estimation and the simplicity of 

creating multilevel preconditioners to accelerate iterative algorithms  [44]  [47]  [3]. 
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2.6.1 Hierarchical Elements  

The basis functions employed in this thesis are the ones proposed in  [3] for 

tetrahedral elements. The FE space is constructed to provide a good representation of 

the field and its curl.  

If   denotes the complete polynomial order of elements, the optimum choice of 

modeling is to use incomplete orders by removing gradient degrees of freedom and 

keeping the field and its curl complete to order    . In  [3], the basis is provided by 

taking the gradient of conforming scalar functions and then extending the basis to the 

full polynomial space. The basis set is divided into gradients of scalar functions 

(shown here by symbol  ) and vector-valued rotational functions, with non-zero curl 

(shown here by symbol  ). The representation of basis functions in terms of 

barycentric co-ordinates (  ,   ,   ,   ) is given in Table 2.1 and Table 2.2.  

The advantage of the basis functions in Table 2.2 is that the inexact Helmholtz 

decomposition is already fulfilled for the higher order vector basis functions  [46]. 

However, the Whitney space  ̃  is not decomposed: it contains within it the gradient 

space of order zero.  

The basis function space for the element of order   used in this thesis is defined 

by 

      ̃     ̃           (2.46) 
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Table 2.2: Vector basis functions 
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Table 2.1: Scalar basis functions 

  Space Basis Associated with 

1   
     node   

2   
  

      edge    

3 
  

  
             edge    

  
   

     
   face     

4 

  
  

        
          

   face     

  
   

     
  

 face     

  
   

     
   face     

  
    

     
   

 volume      
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2.6.2 Adaptivity 

The usual process of finite element analysis starts from the generation of a mesh 

and element orders. Some experience is required to determine the appropriate mesh 

and orders to achieve the required accuracy. Another approach is costly generation of 

a second solution on a finer mesh and then comparison of the two solutions. 

Adaptive procedures on the other hand try to automatically refine a mesh or adjust 

the orders in an optimal fashion to achieve a solution having a certain accuracy. In 

adaptive finite element methods, the computation typically begins with solving the 

problem at a low level of representation. The error of this solution is then evaluated 

and if it fails to satisfy a prescribed value, adjustments are made. The general goal is 

to obtain the desired accuracy with minimal computational effort. Adaptive finite 

element methods have been studied for many years   [48]  [49]  [50]  [51] and common 

strategies can be classified in to two main categories: 

- Local refinement of the mesh by splitting the elements, know as h-refinement. 

- Locally adding to the polynomial degree of the basis functions, know as p-

refinement. 

The h-refinement approach is a popular way of increasing the convergence rate, 

particularly when singularities are present  [49]  [3].With p-refinement strategy, the 

mesh is not changed but the order of the finite element basis is increased over the 

computation domain. As with h-refinement, continuity of the field at element 

boundaries must be ensured. p-refinement can be powerful with exponential 

convergence rates when solutions are smooth  [52]  [3].The approach is most useful 

with hierarchical bases, since they permit mixing the element orders freely within the 

mesh, without violating continuity requirements of the field. When increasing the 

polynomial degree of the basis, portions of the stiffness and mass matrices and also 

the right hand side vector will remain unchanged. The refinement strategies may be 

also applied in combination, resulting in hp-refinement, where both the element size h 

and the order of the method p are varied. Studies on hp-refinement can be found 

in  [53]  [54]  [55]. 

In order to guide the adaption process, a posteriori error estimation is usually 

employed, i.e., estimation of the error in each element after the solution has been 
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obtained. In this thesis, the following error estimator is used. Suppose that the weak 

form of the problem to be solved is: 

                 (2.47) 

The error estimate for element   is an estimate of the magnitude of 

 |          |, where   is the existing FE solution and    is the new field solution 

when the order of element   is increased by 1. The field    is a linear combination of 

basis functions, and for the p-type hierarchal elements, we can divide it into two parts, 

depending on whether those basis functions were originally present or only added 

when we increased the order of the element, as follows:  

           (2.48) 

When    is not approximate, the following quantities are all exactly the same  

 

            

                    

          

                 

(2.49) 

 (2.50) 

(2.51) 

(2.52) 

However, they will be slightly different when    is approximated, as it must be 

because it is too costly to find exactly. The advantage of (2.52) is that it is insensitive 

to errors in    that lie in the original FE space (in which   was found). Therefore, 

when    is approximated, we don't have to worry about the “lower order” part of it. 

An efficient way of approximating    is given in  [50]. 

In this framework, it is possible to define an error indicator that focuses on a 

parameter of interest, so that the error in the parameter is reduced more rapidly as the 

accuracy of the electric or magnetic field is improved. For example, in analyzing 

microwave components, minimizing the error related to   parameters is a common 

approach. For each element, the error indicator estimates the change in the value of an 

  parameter that would be caused by increasing the order of basis functions over the 

element. For the discrete problem of (2.32), driven by the excitation of port   rather 

than an incoming plane wave, the change in     can be represented in the form  [50] 

     |
 

 
      

 

 
        |   (2.53) 



CHAPTER2. THE FINITE ELEMENT METHOD FOR MAXWELL’S EQUATIONS 

 

26 

 

where    is the field change after increasing the order of element  , as explained in 

(2.48). The individual expressions (2.53) can be computed by considering one 

element at a time and solving relatively inexpensive local problems. The indicator 

then allows us to detect elements in regions where the largest errors in     come 

from. At each adaptive step, the order for a fixed fraction of the elements, those with 

the highest errors, are increased. The adaptive procedure can be terminated after the 

desired accuracy has been achieved.  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

CHAPTER 3 

Multilevel and Algebraic Multigrid 
Preconditioning 

 

 

 

In this chapter, the multilevel and algebraic multigrid method are presented as an 

efficient preconditioner for solving higher order FEM linear systems with Krylov 

solvers. The focus is on solving matrix equations arising from the p-type hierarchical 

finite element method used adaptively and a multilevel preconditioner for this is 

presented in Section 3.1. In Section 3.2, the lowest level correction step in the 

multilevel method is discussed in detail and the requirements for development of 

AMG solutions is considered. This is followed by the topic of Auxiliary Space 

Preconditioning (ASP) and damped operator preconditioning techniques in Section 

3.3 and 3.4 respectively. Several classes of novel ASP/AMG preconditioners for the 

lowest order elements, for the wave equation and the T-   Method, are presented in 

Section 3.5 and 3.6. We then review in Section 3.7 a standard nodal AMG method. 

Finally, the complete multilevel/ASP/AMG preconditioning cycle is presented in 

Section 3.8.  



CHAPTER 3. MULTILEVEL AND ALGEBRAIC MULTIGRID PRECONDITIONING 

 

28 

 

3.1 Multilevel Methods for p-type FEM Systems 

The concept of designing algebraic multilevel preconditioners for p-type FEM 

systems is similar to the multigrid approaches for nested grids  [56]  [57]. In traditional 

multigrid methods, the different levels are associated with different element sizes and 

the basis functions are the same at each level. On the other hand, in the p-type 

multilevel algorithm  [60]  [47]  [58]  [59]  [60]  [61], a single grid with multiple levels of 

basis functions are considered. Each space of basis functions is then treated as a level. 

They are nested since they satisfy the following property  

                (3.1) 

In this thesis, the finite elements used are the tetrahedral, hierarchical, 

incomplete-order, vector elements described in 2.6.1. The order 1 elements are the 

well-known Whitney elements  [35], with 6 unknowns, associated with 6 basis 

functions, which will be referred to as “first order”. The element of order 2 contains 

these 6 basis functions, plus another 14, which are called “second order”. The 

elements of orders 3 and 4 add 25 “third order” and 39 “fourth order” basis functions, 

respectively. Since the elements are hierarchical, different orders can be mixed 

together in the same mesh, as will typically happen after the first iteration of p-

adaption.  

Following discretization of the curl-curl PDE using hierarchical elements and 

assuming that elements of different orders are present (with maximum order  ), the 

resulting linear systems (2.35) and (2.45) can be restated as: 

          (3.2) 

The unknowns are numbered so that those associated with first order basis 

functions come first, then those of second order, and so on. (Note that, for example, a 

first order unknown may belong only to elements of order higher than 1). Numbering 

unknowns in such a way allows us to partition the system matrix   , the unknown 

vector and the right-hand side vector in the following block structured form: 

     [

      

      

    

  
  

           
  
    

] ,     [

  

  

 
  

] ,     [

  

  

 
  

] (3.3) 
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In the following sections of this chapter, multilevel solution of (3.3) is considered. 

Here we note that for the problems that require a very large mesh to model 

geometrical complexity, the bulk of the elements in the above partitioning may remain 

at low order and higher order unknowns may be introduced (adaptively) only in a few 

parts of the mesh. In general, higher order parts give denser matrices and their 

conditioning depends on how the element bases are constructed. The number of 

unknowns per tetrahedron and an estimate of the typical number of nonzero entries 

per row for a regular rectangular grid of p
th

 order elements are given in Table 3.1  [62]. 

As observed, the higher order systems are relatively larger and denser. The sparsity 

pattern of a typical hierarchical FEM matrix with 3 levels (uniform order) is shown in 

figure 3.1 and provides a good indication of the size of the blocks in      

Table 3.1: Number of unknowns and nonzero entries per row for hierarchical FEM. 

Order ( ) 
Number of unknowns  

per tetrahedron 

Number of nonzero  

entries per row 

1 6 26 

2 20 50 

3 45 90 

4 84 149 

 

 

Figure 3.1: The sparsity pattern of         , a typical hierarchical FEM matrix for uniform order 

elements. 
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3.1.1 Abstract Schwarz Theory and Two-level Scheme 

Equation (3.2) can also be written in the following block form 

  [
        

 

       
] [

    

  
]  [

    

  
] (3.4) 

in which 

       [                ] (3.5) 

     
  [   

    
          

 ]
 
 (3.6) 

As shown by (3.4),      appears as the square, upper left, submatrix of    with 

lower right block    . The same hierarchical inclusion is followed for the sequence of 

matrices              . Let      and            be the dimensions of 

     and     respectively. The rewritten FEM matrix in (3.4) can then be factorized: 

    [
        

 

       
]   

[
        

    
  

   
] [

         
    

       

    
] [

     
   

        
] 

(3.7) 

in which      and    are identy matrices of size           and      , 

respectively. According to the multiplicative Schwarz theory and based on the above 

factorization, a two-level preconditioning matrix of    is: 

     [
        

    
  

   
] [

     
    

] [
     

   
        

] (3.8) 

The term          
    

       is called the Schur component of the block    . 

The above preconditioner is obtained by dropping the coupling term     
    

       

from the Schur component. In practice, the hierarchical basis functions are partially 

orthogonalized and the coupling of the different order basis functions is 

weak  [47]  [62]. The detailed theory of Schwarz method is provided in  [63].  

An advantage of the above matrix factorization is that it provides a good 

understanding of the approximation made by   . It is also seen from (3.8) that to 

apply the preconditioner to the vector   , namely           , the inverses of 

     and     are required. However, the overall cost for a preconditioner will be 

kept reasonable only if the number of operations involved remains a small multiple of 
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the number of non-zero elements in      and    . This means that practical two-

level schemes have to rely on an approximate inversion of these matrices, shown 

below as         and  (   ). Usually the approximation consists of a few 

iterations of a standard relaxation method, like Jacobi or Gauss-Seidel, so that rapidly 

varying components of error are effectively reduced. The Gauss-Seidel has long been 

the method of choice within multigrid schemes, because of its effectiveness and 

numerically attractive performance on problems of practical interest. 

In addition, from a practical point of view, the action of applying        should 

be defined implicitly by an algorithm, rather than explicitly by building an 

approximation to       . It can be shown that          can be approximated 

from the following algorithm:  

Algorithm 3.1: The two-level scheme            

1. Approximately solve               (   )   ;      

2. Residual update:           

3. Coarsening:        “coarse” part of    

4. Approximately solve              
                 ;  

5. Prolongating:     prolongation of      

6. Residual update:           

7. Approximately solve               (   )   ;        

In line 3, coarsening means that the representation of the field is coarsened by 

dropping the entries corresponding to order  . Prolongating (line 5) indicates adding 

back these entries and setting their values to zero. The coarsening and prolongation 

operations are the main components of the multilevel approach that make the 

connections between the levels. 

3.1.2 From Two Levels to Multilevel 

The above construction procedure for a two-level hierarchical matrix can be 

extended to all the levels of the multilevel matrix   . The multilevel approach is in 

fact based on the recursive use of the two-level scheme.  

It is known that classical iterative methods like Jacobi and Gauss-Seidel tend to 

eliminate the high-frequency components of the residual error in (3.4) more rapidly 

than the low-frequency components. The multilevel method is based on this property, 

that is, the high-frequency residual components can be eliminated from the higher 
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order unknowns by applying small numbers of relaxation iterations. This step is called 

smoothing and provides a cost-effective approximation to the higher order DOFs in 

(3.4).  

The remaining residual components after applying the smoothing step are 

projected onto a coarser level, in which they now have high frequency part to be 

eliminated by the action of smoother again. A series of steps can be employed based 

on recursive use of the two-level scheme, i.e., the coarser problem is solved 

approximately with another application of the two-level scheme on that level, and so 

on, until the lowest level     is reached, where a more accurate solution is generally 

required. 

 This process computes an improvement in the solution vector and reduces the 

residual accordingly. The process is equivalent to the descending half of a cycle for 

transferring the residual to coarser levels. The correction at the final step is usually 

called the coarse grid correction. When the matrix problem is small enough, the 

coarse grid correction can be handled exactly by a direct method. The ascending half 

is then continued by applying relaxations again and the result is called a V-cycle p-

type multilevel Schwarz (pMUS) algorithem. Figure 3.2 graphically shows the cycle 

for a 4 level pMUS. A solid black circle around a matrix means that it is used in an 

application of a relaxation method, such as one step of backward Gauss-Seidel; a solid 

gray circle means that it is used in an application of a relaxation method that matches 

the one in the descending half, yet may be different from it, to preserve the symmetry 

of the overall preconditioning matrix. The box means an exact solution using this 

matrix.  

 

Figure 3.2: The V-Cycle p-type Multilevel Schwarz Preconditioner.  
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We define a pair of trivial prolongation and coarsening mappings,    and      : 

     [ 
   

 
]
       

,        [     ]        (3.9) 

where      is the           identity matrix.       “coarsens” the representation of 

the field by dropping the entries corresponding to order   and    “prolongates” the 

representation by adding back these entries and setting their values to zero. In 

comparison with multigrid methods, the prolongation and projection here are very 

simple and independent of domain geometry. Also notice that, by using (3.9), it is 

easy to verify that the prolongation and projection satisfy the relation 

                  for         . (3.10) 

Then the V-cycle method for finding            can be described recursively 

as follows: 

Step 1 (Pre-Smoothing): The smoothing operation is applied to the system of 

equations            for the highest order unknowns to obtain an approximate 

solution    , In this step, the high-frequency components in the solution error are 

eliminated. The vector     is placed in the highest order part of  , with the remaining 

entries being set to zero. 

Step 2: The residual vector corresponding to the approximate solution, is calculated  

         .  

Step 3 (Restriction): The residual vector is projected onto a coarser level using the 

restriction matrix:             .  

Step 4: The residual equation                is solved approximately to obtain 

the solution vector      , corresponding to the representation of the problem at the 

coarser level. This step involves solving a smaller problem and takes a shorter time, 

because there is a smaller number of unknowns in      comparing to   .  

Step 5 (Prolongation): The solution of the coarser problem is transferred back to the 

fine level using the prolongation matrix         and the solution obtained in Step 1 is 

corrected using            . 

Step 6: The residual vector corresponding to the recent approximate solution is 

updated:          .  
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Step 7: (Post-Smoothing): The smoothing operation is applied to the equation 

           again to correct the values of higher order unknows in vector  . This 

procedure is called post-smoothing.  

We can now state the standard p-type multilevel V-cycle algorithm as follows: 

Algorithm 3.2: Standard p-type Multilevel Schwarz:               

1. If    : 

2.  Directly Solve order 1:            

3. Else if    : 

4.  Pre-Smoothing:             
 ;       

5.  Residual update:           

6.  Coarsen:               

7.  Solve coarse:                      

8.  Prolongate:           

9.  Residual update:           

10.  Post-Smoothing:               ;         

The iteration matrices         and         used in the algorithm are the Gauss-

Seidel matrices given in (1.8) and (1.9). They act as pre and post smoothers (Step 1 

and 7, respectively) for the diagonal blocks     . For the standard multilevel V-cycle 

method, if the smoother used is symmetric, then the cycle is also a symmetric 

preconditioning method. More generally, if two different smoothers are used, one in 

the descending path, the other in the ascending path, and they are the transpose of 

each other, then the standard multilevel V-cycle method is still symmetric. The 

symmetric smoother assumption in the above discussion is important. Without this 

assumption, the standard multilevel V-cycle scheme may not be applicable for 

preconditioning the Krylov methods that work based on symmetric Lanczos 

orthogonalization (discussed in Chapter 4). 

3.2 Lowest level Correction  

For the multilevel Schwarz method to have satisfactory convergence, the solution 

at the lowest level has to be more accurate than at the other levels  [62] [60]. The 

lowest level correction in Algorithm 3.2 involves solving the following system 

         (3.11) 

In this section, some of the difficulties in solving the above equation for the wave 

problem are explained. To discuss the challenges, we first need to be more specific 
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about the structure of matrix       . The finite element method discretization of 

(2.32) at the Whitney level (     ) leads to the following form for   :  

          
       (3.12) 

in which    is the stiffness matrix,    is the mass matrix and    represents boundary 

(surface mass) terms. The elements of the matrices   ,   and   are given by 

 [  ]    
 

    
∫(      ̂ 

      )  
 

 

 (3.13) 

 [  ]    
  

  
∫(     ̂  )  

 

 

 (3.14) 

 [  ]     ∑ ∑  
          

   
(  )

 

   

 

   

 
 

  
∫         

 

  

 (3.15) 

Assuming that the relative permeability tensor is real (passive materials and no 

magnetic loss), the stiffness matrix    is symmetric positive semidefinite and its 

nullspace is spanned by a set of linearly independent vectors corresponding to 

irrotational fields. The boundary matrix    is symmetric and complex. The mass 

matrix    is symmetric and will be complex for electrically lossy material (complex 

  ̂), with a positive definite real part and a small imaginary part (for small losses). 

Therefore the negative    
  factor in (3.12) characterizes    as an indefinite system, 

meaning that the eigenvalues reside on both right and left sides of the complex plane. 

Moreover, the condition number of the system typically increases with frequency and 

grows as the mesh is refined  [64].  

In order to better characterize the spectral properties of matrix   , we consider 

the following related eigenvalue problem, which governs the natural resonances of the 

closed system (with the boundary terms omitted): 

        
         (3.16) 

Assume that the eigenvalue-eigenvector pair         satisfies this generalized 

eigenvalue problem. The eigenvalues of    with negative real part (“negative” 

eigenvalues) can be classified into two different sets corresponding to physical and 

nonphysical modes of (3.16)  [13] [14]. Nonphysical modes are related to the gradient 

space of     [65]  [66] and are usually denoted by the term “Type A” eigenvalues in the 
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literature  [13]  [14]. Existence of Type A eigenvalues results in serious convergence 

issues for Krylov iterative methods, as investigated in pervious works and also shown 

by the numerical experiments in Chapter 5. 

The other negative eigenvalues of    are associated with physical modes of 

(3.16) and are therefore of “Type B”. However, they are at frequencies    less than the 

operating frequency,   . Therefore, when the operating frequency is close to a 

resonance of the structure, the finite element matrix equation (3.11) can become 

highly ill-conditioned.  

For the Whitney space   , the gradient and rotational spaces are not separated and 

nonphysical negative eigenvalues of the system cannot be easily preconditioned into 

positive eigenvalues  [62]. That is the main reason for the slow convergence exhibited 

by conventional iterative schemes applied to the lowest order block,   , with 

standard preconditioners like incomplete Cholesky (IC) and Gauss-Seidel  [65].  

In the conventional pMUS algorithm,    is decomposed exactly to avoid this 

difficulty. However, many modern problems involve very complex geometries, 

making the number of elements after meshing extremely large. For realistic three 

dimensional problems, a large number of Whitney degrees of freedom can arise after 

discretization and the lowest level linear system is itself often very large. Therefore, 

the decomposition of   , if not impossible to apply, will become the bottleneck. 

Consequently, the efficient, robust (e.g., with respect to the properties of the PDE) 

and fast treatment of the lowest level correction remains a difficulty for the pMUS 

algorithm.  

As possible replacements for the direct treatment, multigrid methods are among 

the most efficient approaches for approximate inversion of large linear systems. They 

follow the same idea as pMUS: damping errors by utilizing multiple resolutions in a 

recursive scheme. High-energy and oscillatory components are effectively reduced 

through a simple smoothing procedure, while the low-energy components are tackled 

using a lower resolution version of the problem (coarse grid). 

For large scale problems, the geometric multigrid (GMG) methods can be used 

for solving (3.11) if we have a nested sequence of meshes  [56]  [57]  [67]. By defining 

appropriate transfer operators, the FE spaces are linked together. Recursive 

application of a two grid process can be applied by performing pre-smoothing steps 
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on the fine system, and then restricting the residual on the coarse mesh. On the 

coarsest level the coarse system is solved (exactly) and the defect is prolongated on 

the fine level. Finally, post-smoothing steps are performed.  

When nested meshes are not available, algebraic multigrid (AMG) methods can 

be used instead. Eliminating the decomposition of    by the application of AMG is 

investigated in this thesis. 

3.2.1 Algebraic Multigrid for the         Problem 

In contrast to GMG, where a grid hierarchy is required explicitly, algebraic 

multigrid (AMG) is able to define the prolongation operators (and construct the 

corresponding matrix) in a pure algebraic way. AMG operates more on the level of 

the matrix than of the underlying nested FE meshes. The crucial point in the 

construction of the algebraic methods is the numerical effort of the coarsening process 

and the construction of appropriate transfer operators. The challenge is to construct an 

AMG method with a good convergence rate but rather low costs in the setup and the 

application. 

Classical algebraic multigrid methods have had a lot of success on Poisson 

problems, obtained from scalar, nodal, basis functions. Nodal AMG methods, also 

known as scalar AMG, simply apply a relaxation scheme to a hierarchy of 

algebraically constructed coarse-grid problems. Efficient implementations of AMG 

have been under intensive research in the last decade and several well-established 

software libraries have been developed  [17].  

However, a unique difficulty in solving (3.11) with AMG arises from the nature 

of the curl-curl operator. Traditional AMG methods are adapted only to the Laplacian 

operator on       and deal badly with the curl-curl operator  [23]  [75]. The first 

serious and practical AMG approach for problems in         was made in 2002 by 

Reitzinger and Schoberl  [23]. The principal idea of their method is to maintain the 

representation of a discrete gradient and its relationship to the discrete curl-curl 

operator on coarse meshes. This can be achieved by creating two multigrid hierarchies 

for the nodes and edges of the mesh and aggregating the edges via nodal aggregation, 

in such a way that necessary conditions on the prolongation operators are imposed. 

After constructing the AMG hierarchy, each coarser version of    has a nullspace 
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spanned by the gradient of a set of linearly independent scalars over the coarse grid. 

The proposed method is easy to compute and has low multigrid operator 

complexity  [68], but the prolongator has poor approximation properties and the 

convergence rates suffer  [25]  [68]. An improved version of  [23] can be found 

in  [69]  [70]  [25], where a better prolongation was proposed, with mesh-independent 

convergence rates. These method however require two coarsening procedures and 

hybrid smoothers at every level to handle nonelliptic discretization problems and 

efficient multigrid methods developed for scalar AMGs are not often directly 

applicable. 

3.3 Auxiliary Space Preconditioning 

Recently, Hiptmair and Xu proposed an innovative approach for solving         

systems, known as HX auxiliary space preconditioning  [72]  [73]. The approach relies 

on a decomposition of Whitney vector fields and employs the framework of the 

auxiliary space method. In contrast to applying coarsening to the edge unknowns, it 

uses “edge to node” projection and solves approximate problems in auxiliary spaces 

defined on the nodes of the original mesh. This property significantly simplifies the 

computations and, more importantly, allows us to makes use of the proven ability of 

scalar AMG for nodal FEM problems.  

The idea of auxiliary space preconditioning (ASP) is to invert approximately the 

curl-curl operator by transferring the problem into subspaces in which scalar AMG 

can be applied. Although this method was proposed for the positive-semidefinite case, 

which occurs in time-domain, quasi-static problems, extensive numerical experiments 

reported in this thesis demonstrate that it is also efficient and robust for the frequency-

domain problems, both quasi-static and full-wave.  

3.3.1 Whitney Space Decomposition 

The present section summarizes the main ingredients used to derive the auxiliary 

space           preconditioner (see  [71]  [72]  [74]  [75] for details). 
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a)  Regular Decomposition  

Let              be the space spanned by the lowest order edge element basis 

functions on a tetrahedral mesh    (the Whitney space). There is an associated space 

        of piecewise linear, scalar functions on the same mesh and it is known 

that    is the irrotational subspace of     [75]  [78].  

It is also known that for every            , there exists a member   in the 

space       [     ]  with the same curl, i.e.          [75]. This suggests 

that functions in    can be represented approximately using functions in   and 

      . With the purpose of defining an auxiliary space preconditioner, we first need 

to define the Nedelec interpolation operator   in order to map vectors of       into 

   as follows: 

     ∑( ∫     

 

      

)  

 

 

 (3.17) 

where    is the Whitney basis function defined in Table 2.2 and    is a vector tangent 

to edge  .  

Suppose now that       . Then it follows that there exists         such 

that             . For such a  , it can be shown that         . It 

follows that: 

               (3.18) 

Therefore,  

              (3.19) 

Since         and has a zero curl, it can be represented by    for some 

   . The following Whitney space decomposition, known as a regular 

decomposition [20], can be achieved:  

          (3.20) 

Assuming that   stands for a constant independent of the mesh size and in 

accordance to the norms defined in Section 2.4, the following inequality holds  [75]: 

  ‖  ‖  ‖  ‖   ‖ ‖  (3.21) 
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b) Hiptmair-Xu Decomposition  

The regular decomposition in (3.20) is in fact semi-discrete, since it involves the 

term         that, in general, is not a finite element function. The challenge is to 

convert (3.19) into a purely discrete decomposition with some stability condition 

similar to (3.21). There are several ways to further approximate the non-discrete 

component  [75]. In the Hiptmair-Xu (HX) decomposition, it is achieved by 

incorporating another high frequency, “small” component. 

For the HX decomposition, we introduce the space of vector “nodal” functions, 

        . These are vector functions that, unlike Whitney basis functions, are 

both normally and tangentially continuous from one element to the next and are fully 

first-order in each element. For any         there exists      that 

satisfies  [75]: 

     ‖   ‖  ‖ ‖   ‖ ‖   (3.22) 

 Defining the small contribution             , we have          to 

be substituted in (3.20). Therefore, the space   , the scalar space and the vector nodal 

space are linked by the following result: for any      there exists      and 

    such that: 

                (3.23) 

and the following stability estimate holds (the proof can be found in  [75]):  

     ‖  ‖  ‖ ‖  ‖  ‖   ‖ ‖     (3.24) 

Table 3.2 summarizes the spaces involved in the HX decomposition and gives a 

graphical representation of the basis functions for the FE spaces.  
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Table 3.2: Spaces involved in the HX decomposition, along with corresponding members and basis 

functions illustration. 

Hilbert Space                       [     ]  

Members                             

FE space 1st order Scalar Space Whitney Space 1st order Vector Space 

Relations                                  

Members               

Basis 

illustration 

  
 

3.3.2 Method of Subspace Correction  

Based on the HX decomposition, we are able to represent the space    as the 

summation of subspaces. This splitting concept also suggests that it might be possible 

to solve the problem approximately by solving related problems on the auxiliary 

spaces   and   . Therefore, the original problem in (3.11) can be split into sub-

problems if we can find appropriate mapping operators between the spaces. The sub-

problems are relatively easier to solve, since they represent smaller problems in nodal 

spaces. Providing that required projection operators to the subspaces are available, 

different components of error can be captured separately by these subspaces. Solution 

components can then be combined in various versions that will be described later. 

To realize the preconditioners for the finite element matrix, the decomposition 

discussed in the previous section should be adapted to a matrix setting too. We use the 

usual nodal, interpolatory basis in   and   , as well as the Whitney edge basis in   . 

Then functions     and      can be represented by column vectors of node and 

edge values, respectively. But first the mapping operators are introduced.  

3.3.3 Mapping Operators  

The matrix representation of the mapping operator from   to    is commonly 

called the discrete gradient matrix, denoted by sparse matrix  . It is simply the node 

to edge mapping matrix with entries of -1 and 1 per row. This matrix is readily 
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available since it describes the edges of the mesh in terms of its vertices. If   is an 

edge from node   to  , then the only two non-zero entries of   in the row 

corresponding to   are  [13]  [75] 

  [ ]    [ ]      (3.25) 

To preserve symmetry, we use the transpose,   , to map backwards from    to 

 . 

For    we use the   basis for each Cartesian component of the vector and 

represent      by a column vector in which nodal values of the  ,   and   

components occupy 3 successive blocks. Then the operator   becomes a sparse 

matrix   which also has a block form: 

    [      ] (3.26) 

Each block has the same dimension and sparsity pattern as  , i.e., two nonzero 

entries per row  [75]. If   is an edge connecting nodes   and  , with coordinates 

           and           , then  

  [  ]    [  ]   
 

 
        (3.27) 

As observed, the two nonzero values for row   of   , are identical. It can be 

shown that their value is also equal to the  th row of the product  

 
   , where 

   [         ]  is a vector containing the   coordinates of the nodes. 

Similarly for    and   : 

  [  ]    [  ]   
 

 
        (3.28) 

and 

  [  ]    [  ]   
 

 
        (3.29) 

We use    to map backwards, from    to   . 

3.3.4 Discretized Operators for the Auxiliary Spaces 

Along with these matrices, we also need discretized operators representing the 

original bilinear form in each auxiliary space. Corresponding to the bilinear form 

(2.32), we introduce the following weak form for the problems defined on auxiliary 

spaces   and   : 
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                                          (3.30) 

                                             (3.31) 

In (3.31),            stands for a modified version of (2.32), in which the 

wavenumber   
  is replaced by         

  in the volume integral only. Setting     

results in exactly the original weak form. The reason for this complexification is 

explained later, in Section 3.5.  

The above problems are equivalent to 

       ̃           ̃   ̃      ̃           ̃    (3.32) 

       ̃             ̃   ̃      ̃           ̃     (3.33) 

We can now rephrase the problem of solving Maxwell’s equations as the 

following:  

       ̃           ̃  ̃      ̃           ̃    (3.34) 

       ̃            ̃  ̃      ̃           ̃     (3.35) 

in which  

     ̃  ̃      ̃   ̃  (3.36) 

     ̃       ̃  (3.37) 

and 

     ̃  ̃       ̃   ̃  (3.38) 

     ̃       ̃  (3.39) 

Following the standard procedure, a set of linearly independent, first-order, nodal 

basis functions              and               can be introduced for expansion 

of  ̃ and  ̃. The above problems may be reduced to the following algebraic matrix 

equations: 

   
      

  (3.40) 

    
  ̃    

  (3.41) 

In which 
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 [  
 ]            ;  [  

 ]         (3.42) 

 [  
 ]            ;  [  

 ]         (3.43) 

Each of the problems (3.42) and (3.43) are in fact equivalent to (3.11), but solved 

in the auxiliary spaces. It can be shown that the square matrices   
  and   

  for the 

auxiliary problems can also be computed by the Galerkin product: 

  

  
        

  
      

   

(3.44) 

(3.45) 

where   
  is the system matrix that is obtained instead of    when            is used 

instead of          . The numerical cost for building each of these is roughly 

equivalent to four matrix-vector products of     [79]. 

3.4 Damped Operator Preconditioning 

It was mentioned in Section 3.2 that the spectral properties of the matrix 

associated with the discretization of the vector wave operator at level 1 makes 

extremely difficult the convergence of iterative solvers applied to the related linear 

system. As explained by equations (3.13) to (3.15), the discretization of (2.32) at the 

Whitney level leads to the following form for   :  

          
       (3.46) 

Referring to the discussion in Section 3.2, the negative    
  factor in relation 

(3.46) makes    indefinite. As the wavenumber increases beyond each physical 

resonance, more negative eigenvalues appear and the indefiniteness of system causes 

slower convergence of iterative solvers. 

Although the linear algebra theory for definite linear systems is well-developed, it 

is not the case for indefinite linear systems. In the last few decades, much effort has 

been directed towards the construction and implementation of robust and efficient 

preconditioners for indefinite linear systems. Particularly in the last few years, 

physics-based preconditioners have attracted the attention of many 

researchers  [80]  [81]  [82]  [83]  [84]. The main idea is to include information related to 

the physical properties of the problem and also the structure of the operators, when 
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trying to build a preconditioner. Among the main contributions, the Shifted Laplace 

Preconditioner (SLP)  [80] has received much attention.  

Essentially, the idea in SLP is to build the preconditioner based on a complex 

version of the original operator. In fact, positive definiteness of the overall system is 

reinforced through the introduction of a fictitious dissipative term into the operator 

from which the preconditioner is derived. The approach has been applied successfully 

by Erlangga et al. to the wave-like problems described by the scalar Helmholtz 

operator  [80]. To the best of our knowledge, it has not previously been applied to the 

curl-curl operator. 

Following the idea of SLP, it would be beneficial to use a preconditioner based on 

a damped operator version of (2.32) by introducing a complex factor in the 

wavenumber. The preconditioner matrix is then obtained from discretization of (2.32), 

in which the complex modification         
  is applied to   

 . The boundary 

conditions are left unchanged, i.e., the preconditioner is built from: 

     
             

       (3.47) 

Since the convergence of Krylov methods is closely related to the spectrum of the 

iteration matrix, the favourable spectrum of the preconditioned matrix (  
 )

  
   

will give some insights into the improved convergence rate. Numerical evidence 

shows that, unlike the spectrum of the unpreconditioned system, the eigenvalues of 

(  
 )

  
   are mapped to a roughly circular pattern in the right-hand half of the 

complex plane. In fact, similar to the positive effects of spectral changes for the 

Helmholtz equation preconditioned by the Shifted Laplace operator  [81], when all the 

eigenvalues of the (  
 )

  
   are located in the right half plane, better convergence 

of an iterative solver can be ensured. In addition, the eigenvalues are mostly shifted 

away from the origin and clustered around 1. This suggests that   
  leads to a better 

preconditioner than   . Adding an artificial dissipative term also implies that 

computing the approximate inverse of   
  can be performed more efficiently using 

multigrid methods  [80].  

According to this analysis, one strategy is to build the complete auxiliary space 

preconditioner from   
  instead of   . That would mean using   

  for the smoothing 

step and for building   
  and   

  in (3.44) and (3.45). However, experiments show 



CHAPTER 3. MULTILEVEL AND ALGEBRAIC MULTIGRID PRECONDITIONING 

 

46 

 

that it is most effective for damping the rotational type errors and using   
  for 

smoothing and for building   
  actually worsens the performance of the 

preconditioner. Therefore, it is used only to build   
  in (3.45). 

The convergence of an iterative Krylov subspace solver applied to the linear 

system with SLP and AMG will be independent of the mesh refinement and 

dependent (but in a weaker way than without the preconditioner) on the wavenumber 

  . The convergence is also clearly affected by the choice of the parameter  . 

Following numerical studies, we propose the choice      , which leads to an 

efficient and robust preconditioning method. 

What is important for the convergence of Krylov subspace methods is that, though 

the spectrum of the preconditioned system is nicely clustered, some eigenvalues still 

lie close to zero. With an increase in the wavenumber, the number of eigenvalues 

around zero appears to increase also.  

3.5 ASP Preconditioners for the Wave Equation 

We can now present efficient methods for approximately solving        using 

ASP. Depending on different ways of connecting the 3 FE spaces involved, the 

following symmetric preconditioners are considered at the lowest level: 

3.5.1. Additive Preconditioner 

In order to approximate         , we can first use an SSOR preconditioner to 

damp small components in (3.23) like   . This takes the form      
     where 

     
       

        
   (see equation (1.13).  

After the smoothing step, we can transfer the residual into each auxiliary space 

and solve the residual equation in each space. Exact inversion of   
  and   

  is 

expensive, but fortunately scalar AMG (which will be defined in Section 3.7) is 

effective in approximately inverting   
  and each of the three diagonal blocks of   

 : 

  

  
    

   
    

  
    

   
    

  
    

   
    

(3.48) 

(3.49) 

(3.50) 



CHAPTER 3. MULTILEVEL AND ALGEBRAIC MULTIGRID PRECONDITIONING 

 

47 

 

We call the approximate inverses of these four matrices   
 ,   

 ,   
  and   

 , 

respectively. Now we can approximately compute         . The main body of the 

resulting preconditioner consists of three components: 

1. Smoothing in the space    using sweeps of SSOR, expressed by 

    
        

    . 

2. Approximate solution in the kernel of    (with a nodal AMG solver), 

expressed by    
     . 

3. Approximate solution in the vector nodal counterpart of    (with nodal AMG 

solver), expressed by     
   

   ,        .  

Based on the framework of auxiliary space correction, solutions from each 

problem are assembled to give a correction in the space   . In the simplest method, 

the four corrections for a given residual can be added, resulting in the following 

additive preconditioner with operations that can be performed in parallel to each 

other: 

    
           

       
        

      ∑     
   

   

 

       

 (3.51) 

The additive preconditioner (3.51) is coded in the following algorithm. The 

approximate inverse of    defined by this algorithm is denoted   
 .  

 Algorithm 3.3: Additive Preconditioner     
    

1.  SSOR:         
       

      

2.  Auxiliary spaces:            
      ∑     

   
    

         

3. Solution update:        

3.5.2. Multiplicative V-cycle Preconditioner 

Another way to assemble the corrections is a multiplicative V-cycle that splits the 

SSOR correction in Algorithm 3.3 into backward and forward Gauss-Seidel iterations 

in the downward and upward sides of a V-cycle. This version performs better than the 

additive approach in general:  
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Algorithm 3.4: Multiplicative V-cycle ASP Preconditioner     
    

1.  Backward GS:         
      

2. Residual update:            ;         

3.  Auxiliary spaces:        
      ∑     

   
    

         

4. Residual update:             ;           

5.  Forward GS:         
     

6. Solution update:        

The approximate inverse of    defined by Algorithm 3.4 is denoted   
 . In an 

alternative approach, one may consider a multiplicative version also for the 4 

auxiliary space corrections by repeating steps 2, 4 and 5 for each nodal correction. 

However, considering the size of problems and the relatively higher cost of Gauss-

Seidel iterations and residual updates for edge DOFs, parallel computation of nodal 

corrections would be numerically more attractive.  

3.5.3. Multiplicative W-cycle Preconditioner 

Since the work done at lines 2-6 of the previous algorithm is relatively 

inexpensive (comparing to higher order smoothing steps in pMUS) and yet important 

to the accuracy of coarse level correction, it is also worth considering the following 

W-cycle alternative. In practice, the best performing preconditioner arises from a 

multiplicative W-cycle. The approximate inverse of    defined by the following 

algorithm is denoted   
 .  

Algorithm 3.5: Multiplicative W-cycle ASP Preconditioner     
    

1.  Backward GS:         
      

2. Residual update:            ;         

3.  Auxiliary spaces:        
      ∑     

   
    

         

4. Residual update:             ;           

5.  Backward GS:         
    

6. Residual update:            ;         

7.  Auxiliary spaces:        
      ∑     

   
    

         

8. Residual update:             ;           

9.  Forward GS:         
       

10. Residual update:            ;           

11.  Auxiliary spaces:        
      ∑     

   
    

         

12. Residual update:             ;           

13.  Forward GS:         
     

14. Solution update:        
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3.6  ASP Preconditioners for the  T-   Method 

The matrix equation of the     formulation (Section 2.5.2) at the lowest level, 

      , is further partitioned into rows and columns corresponding to T and    

basis functions: 

  [
      

      
] {

  

  
}  {

  
  

} (3.52) 

Following the idea behind ASP, the problem is transferred to a number of 

auxiliary function spaces. For the unknown  , represented by Whitney edge elements 

over the edges of the mesh, the same auxiliary spaces   and    are involved. 

Equivalent problems, similar to (3.40) and (3.41) are constructed for the   part of the 

field. However, since this exists only inside the conducting regions and vanishes 

tangentially on the surface, the corresponding auxiliary spaces are defined by just the 

nodes interior to   .  

We define matrices    and   [      ] that map column vectors 

representing functions in   and   , respectively, to column vectors of the same size 

as    that represent     fields of order 1. Specifically, they map to the T partition 

of   , representing functions in the Whitney space inside   . In fact, since there are 

no edge functions for the tree edges in   , they map just to cotree edges, but the 

matrix entries are the same as in (3.25) and (3.27) to (3.29). 

The    part of the field also has to be accomodated and for this we use the 

auxiliary space that is spanned by the piecewise linear scalar functions of the whole 

mesh (not just the mesh in   ). The matrix for this space is   . Like   , it is a 

discrete representation of the gradient operator. 

The matrices   
  ,            , which are the auxiliary space counterparts of 

  , are given by 

    
     

       (3.53) 

Approximate inverses of these five matrices are also denoted   
 ,            . 

We can now construct the ASP algorithms based on V-cycle and W-cycle 

approximation for solving       . The effective multiplicative preconditioners are 

very similar to Algorithm 3.4 and Algorithm 3.5, but with 5 auxiliary space 
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corrections instead of 4. For example, in the multiplicative V-cycle preconditioner, 

line 3 of Algorithm 3.4 is modified as follows:  

        
      ∑     

   
   

 

       

     
   

    (3.54) 

and similarly for the W-cycle approximation in lines 3, 7 and 11.  

3.7 Standard AMG Methods for Poisson Problems: Nodal AMG 

Multigrid methods are well known to be cost effective for elliptic problems. AMG 

is seen by many as one of the most promising methods for solving the large-scale 

problems that arise in this context  [74]  [75]  [77]. Here we present the basic principles 

and techniques for solving nodal problems using AMG. Consider a problem of the 

form 

    
     ,                           (3.55) 

The approximate inverses of these four nodal matrices that were denoted by   
  

(           ) in the additive and multiplicative algorithms are never formed 

explicitly. Instead, the product   
    is found by scalar AMG: 

  (  
 )

  
     

             (      ) (3.56) 

The third argument, 0, is the AMG level number (see below). The central idea in 

scalar AMG is that error components not eliminated by relaxation must be removed 

by coarse-grid correction. Simple relaxations reduce high frequency error components 

efficiently, but they are very slow at removing low energy components. However, the 

error that remains after relaxation can be approximated more accurately on a coarser 

grid. This is done by solving the residual equation on a coarser grid, then interpolating 

the error back to the fine grid and using it to correct the fine-grid approximation. The 

coarse-grid problem itself can be solved by a recursive application of this method. 

One iteration of this process, proceeding through all levels, results in the multigrid 

cycle.  

In AMG the main task is to determine a coarsening process that approximates the 

error that a chosen relaxation cannot reduce. The grid that appropriately represents 

coarse degrees of freedom for the original problem is called a “virtual” finite element 

mesh. In order to construct and connect these virtual grids together, several 
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components are required. Using superscripts to indicate the level number, so that    

correspond to the real tetrahedral mesh, the components that AMG needs are as 

follows:  

1) (virtual) Grids:                . 

2) A relaxation scheme for each level, like Gauss-Seidel iteration.  

3) Grid transfer (prolongation) operators:   
    

,… ,   
   ,   

 , which are sparse, 

rectangular matrices for relating the nodes of a coarse grid to the nodes of a 

finer grid. 

4) Grid operators:   
  

, …   
  ,   

  ,   
 , which are a series of progressively 

smaller, square, sparse matrices. These matrices are defined using the 

prolongation operators: 

  
     (  

 )
 
  

    
                

Once these components are defined, the recursively defined cycle of scalar AMG 

is as follows: 

Algorithm 3.6: scalar AMG                      
   (  

 )
  

  

1. If      (the coarsest level considered): 

2.  Solve exactly:     (  
  )

  
  

3. Else:  

4.  Backward GS:      (  
 )  

5.  Residual update:       
    ;         

6.  Coarsen:    (  
 )

 
  

7.  Coarse solution:                         
8.  Prolongate:      

     
9.  Residual update:       

    ;           

10.  Forward GS:       (  
 )  

11.  Solution update:        

The preparation of the components of AMG is done in a separate setup phase. In 

the setup phase, before the start of the Krylov iteration, the matrices   
  are formed 

explicitly, and then the AMG matrices   
  and   

  . These quantities are used 

repeatedly throughout the iteration. 

Algorithm 3.7: AMG setup Phase 

1. Set       

2. Partition    into disjoint sets    and   . 

3. Set          

4. Define prolongation matrices   
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5. Set   
     (  

 )
 
  

    
  

6. 
If      is small enough for factorizing   

    , set        and stop. 

Otherwise, set       and go to step 2. 

The details of steps 2 and 4 are given in  [17]. 

Adding more levels reduces the memory required for the coarsest level exact 

factorization, but sacrifices the performance if coarsening is too great. Generally, 

adding more levels should be continued provided that the virtual AMG meshes can 

adequately represent field variations on the scale of the wavelength (for wave 

problems). We can estimate the “edge length” on a virtual mesh as     √  
 
   

 
 

, 

where      is the average edge length in the original mesh  

and   
    

  is the ratio of the number of nodes in the original mesh to the number of 

nodes in the virtual mesh. A value of       for the above measure has shown 

satisfactory performance in our numerical results (see Chapter 5). 

3.8 Multilevel and Algebraic Multigrid Cycles: pMUSASP 

In this section, I introduce the Multilevel/ASP/AMG version of the pMUS 

method explained in Algorithm 3.2 for solving (3.2). The approach is called 

        and employs the AMG treatment at the lowest level instead of the direct 

solve. The function                returns an approximation to         , where 

   is a vector of the appropriate length. It involves primarily the application of 

forward and backward Gauss-Seidel (GS). The algorithm                is given 

recursively as follows: 

Algorithm 3.8: Multilevel/Algebraic Multigrid pMUS:                  

1. If    :  
2.  Solve order 1:           

3. Else if    :  
4.  Backward GS:               ;         
5.  Residual update:           
6.  Coarsen:               
7.  Solve coarse:                      
8.  Prolongate:            ;                
9.  Residual update:           
10.  Forward GS:               ;           
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The vectors     and    are blocks of    and   , respectively, corresponding to the 

partitions in (3.2). The operation           is one of the algebraic approximations 

described by Algorithms 3.3 to 3.5, i.e.     
   ,     

    or     
   .  

The call                with           
    (Algorithm 3.4), then, 

initiates the V-cycle shown in Figure 3.3, during which GS is applied to the sequence 

of matrices shown – backward GS on the downward portion, and forward GS on the 

upward portion. This completes the V-cycle approximation of         . The output 

is used in every preconditioning step of a Krylov solver that solves        . 

  

Figure 3.3: The V-cycle version of             . Dashed arrows imply a series of steps with 

decreasing (downward) or increasing (upward) matrix superscripts. 

Since the most computationally intensive part of the preconditioner is pMUS, it 

has been found beneficial to execute the ASP/AMG part more than once in each 

cycle, because this reduces the number of Krylov iterations at relatively small 

additional cost. This gives the extended W-cycle shown in Figure 3.4, in which 

Algorithm 3.5 for           
    is used. Note that the backward and forward GS 

has been arranged to preserve the symmetry of the overall preconditioner. Other 

symmetric arrangements are also possible.  
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Figure 3.4: The W-cycle version of             . 

The Multilevel/ASP/AMG version of pMUS for the     problem is very 

similar to Figure 3.3 and Figure 3.4. The only difference is that the ASP/AMG parts 

involve parallel approximation of five nodal systems instead of four.  



 

 

 

 

 

 

 

 

 

CHAPTER 4 

Krylov Methods and Deflation  

 

 

 

In this chapter, Krylov subspace methods for solving the     complex-

symmetric linear system of the form 

       (4.1) 

are presented. Matrix   and vector   correspond to the adaptive systems (2.36) or 

(2.45) with the block structure pattern defined in (3.3) . Krylov subspace methods are 

extensively used for the iterative solution of large linear systems of equations and in 

particular those arising from discretizations of Maxwell’s equations. We begin our 

discussion in Section 4.1 by introducing the Krylov subspace approach and discussing 

methods based on Lanczos and Arnoldi algorithms. In Section 4.2, preconditioned 

Krylov methods for complex symmetric matrices are presented by extending the 

standard conjugate gradient approach. Next, in Section 4.3 the method of Generalized 

Minimal Residual is explained. Section 4.4 introduces the concept of deflation and 

how it can be used in designing more robust Krylov subspace iterative methods.  
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4.1 Krylov Subspace Methods 

The Krylov subspace iteration methods are based on the construction of a Krylov 

subspace, i.e.  

                        
              (4.2) 

where          is the residual corresponding to the initial guess vector   . The 

dimension of    is equal to   and increases by one at each step of the approximation 

process. 

The idea of designing iterative methods based on the Krylov subspace can be 

outlined as follows. For an initial solution   , approximation    to the solution of 

(4.1) is computed in the  th iteration as 

                     (4.3) 

For this purpose, all the Krylov subspace methods construct the basis vectors 

           where 

     [          ]           (4.4) 

With the residual         , the expression for the solution and residual at 

the  th step can be written as: 

             (4.5) 

             (4.6) 

where      . From (4.5) and (4.6) we observe that Krylov subspace methods rely 

on constructing the basis of    and the vector   . The differences among the various 

algorithms are the ways of computing these vectors. If the components can be selected 

properly, the approximate solution    can be very close to the exact solution for even 

a small number of iterations (   ).  

In order to determine the    subspace, many algorithms have been proposed. In 

general we identify two methods that can be used for constructing the basis: the 

Symmetric Lanczos method and the Arnoldi method. In the following sections, we 

present some Krylov subspace algorithms based on these methods that are used in 

numerical simulations in this thesis. In particular, we discuss the Conjugate Gradient 

(CG) and its extension to the complex systems, Minimal Residual (MINRES) and 

Generalized Minimal Residual (GMRES) algorithms. 
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We end this section by describing some of the notation. For complex vector 

     , the complex-conjugate transpose is denoted by   . By 〈   〉      we 

denote an inner product between the vectors        . In this case, the induced 

vector norm is ‖ ‖  √〈   〉   . We also use a different bilinear functional denoted 

by           which is used to derive a CG-like method for complex symmetric 

matrices. When        , the complex vectors   and   are called conjugate 

orthogonal. The unit vector       is defined by    [       ] . For a vector   

that is partitioned as (3.3), we refer to the first partition as  [ ]  

4.2  The Symmetric Lanczos Process 

Here we assume the matrix   to be Hermitian. Given   and  , the symmetric 

Lanczos process  [15] computes a sequence of Lanczos vectors    and scalars    and    

for         , starting from    ‖  ‖ and         . Defining     , the 

process satisfies the following three-term recurrence: 

                                       (4.7) 

in which 

       
                 (4.8) 

and        chosen such that  

 ‖    ‖                (4.9) 

In exact arithmetic, the vectors    are orthogonal (i.e. 〈     〉    for    ) and 

the process stops when        for some    . In matrix form, for   

       , (4.7) is: 

                     
  (4.10) 

where    [          ] and    is the following tridiagonal matrix: 

  

 

(4.11) 
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An important property of the Lanczos vectors in    is that they lie in the Krylov 

subspace          defined by (4.4). Hence, at iteration  , we look for an 

approximate solution           . The associated residual vector is 

                              (4.12) 

By choosing    in a way to make    small, we can arrive at different iterative 

methods for solving the linear system. Since    is theoretically orthonormal, we can 

find    by solving  

             (4.13) 

Two particular ways of solving (4.11) lead to CG  [85] and MINRES  [85], which 

are established methods for symmetric systems. They both exploit the three-term 

recurrent scheme for delivering an efficient Krylov subspace method for symmetric 

systems, but each method has a different minimization property that suggests a 

particular factorization of   .  

4.2.1 Conjugate Gradients for Complex Symmetric Systems 

The Conjugate Gradient (CG) method was introduced for solving      when   

is Hermitian Positive Definite (HPD). CG iterations are characterized by minimizing 

‖    ‖ , where  

  ‖ ‖  √〈    〉 (4.14) 

The algorithm can be derived directly from its equivalent Lanczos formulation 

that computes the solution of the tridiagonal system           progressively by 

using Gaussian elimination without pivoting  [15]. The    factorization of matrix    

can be written in the form 

  

 

(4.15) 

and the approximate solution at  th step is : 
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         (4.16) 

Letting  

         
   (4.17) 

and 

       
         (4.18) 

then (4.16) is  

             (4.19) 

However, computation of (4.19) can be done progressively, since the last column 

of the matrix   , shown by   , and last entry of vector   , shown by   , can be 

obtained from the previous values following simple updates:  

       
              (4.20) 

             (4.21) 

As a result,    can be updated at each step as 

               (4.22) 

and the residual vector of the approximate solution    is such that 

            
        (4.23) 

The above relations give us an algorithm which is usually called the direct version 

of the Lanczos algorithm  [15]. The residual vectors for this algorithm are orthogonal 

to each other due to equation (4.23) and the vectors    are also  -orthogonal, 

meaning that   
     is a diagonal matrix  [15]. As a consequence, an efficient version 

of the conjugate gradient algorithm (in terms of required storage) can be derived by 

imposing these orthogonalities, in which based on (4.22) the new approximation 

vector      at every iteration is expressed as 

                 (4.24) 

where    is the search direction and 

                 (4.25) 

The residual vectors then satisfy the recurrence 
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                (4.26) 

For all    to be orthogonal, the necessary condition is that 〈       〉   . Thus 

  〈           〉    (4.27) 

Since the next search direction      is a linear combination of      and   , we find 

that 

     
〈     〉

〈      〉
 (4.28) 

Also because 〈        〉   , we have 

     
〈         〉

〈     〉
 (4.29) 

Equations (4.24) to (4.29) completely describe all the necessary calculations at 

every iteration of the CG algorithm. The implementation requires only one product 

    for some vector    and a small amount of computations for computing the vectors 

    ,      and     . If   is HPD, the norm of the residual vector ‖    ‖ also reduces 

monotonically at each iteration, which makes CG highly efficient and preferable. 

However, for non-Hermitian matrices, like the global FE matrix of the vector wave 

equation, the algorithm may not converge. This is because the orthogonality condition 

(4.27) cannot be satisfied in general. 

One simple remedy for complex-symmetric systems (    ) is to replace the 

orthogonality condition by the so-called conjugate orthogonality condition based on 

the following inner product 

.             (4.30) 

In this case, the vectors              also form a basis for         . 

Furthermore, the vectors    are conjugate orthogonal: 

.  (     )    if      (4.31) 

Therefore, solution      can be constructed by requiring the residual      to be 

conjugate orthogonal to         . This results in an algorithm which is similar to 

CG, but with the Hermitian inner product being replaced by (4.30). The algorithm, 

called conjugate orthogonal-conjugate gradient (COCG) is as follows: 
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Algorithm 4.1: Conjugate Orthogonal Conjugate Gradient (COCG) 

1. Set the initial guess:   . Compute         . 

2. Set       

3. for          

4.                    ⁄  

5.                

6.                (Stop if accurate enough) 

7.                       ⁄  

8.                 

9. End  

Algorithm 4.1 also preserves the nice property that it requires only one matrix-

vector multiplication and a few vector updates per each iteration. However, it is no 

longer optimal in a sense that the error at every step is not minimal. This means that 

the error is not monotonically decreasing. The condition      
 is also restrictive in 

that it only allows incorporation of a symmetric preconditioner. 

4.2.2 Preconditioned COCG 

The convergence of Krylov methods like COCG might be very slow for the type 

of equations defined in (4.1), which are generally ill-conditioned systems. A Krylov 

subspace method is usually combined with a preconditioner to reduce the total 

number of iterations. Iterative solutions can be accelerated if well-chosen 

preconditioners are available. Our objective in Chapter 3 was to find appropriate 

(symmetric) preconditioners which can easily be used with Krylov subspace methods 

and also reduce the total number of iterations. 

Suppose that   represents a preconditioner whose inverse is easy to compute 

(like the multilevel/algebraic multigrid in Algorithm 3.8). By employing the 

preconditioner, instead of solving the original linear system (4.1), we solve a better 

conditioned system 

              (4.32) 

Therefore, the preconditioned Krylov subspace method is defined by constructing 

iteration    such that 

                        (4.33) 



CHAPTER 4. KRYLOV METHODS AND DEFLATION 

 

62 

 

One important aspect of incorporating a symmetric preconditioner is that a 

preconditioned version of COCG can be derived in a straightforward way. Supposing 

that   has Cholesky factorization     and by redefining the variables 

.        ,   
       ,   

        (4.34) 

we can directly apply COCG to (4.32), yielding the following algorithm: 

Algorithm 4.2: Preconditioned Conjugate orthogonal Conjugate Gradient (PCOCG) 

1. Set the initial guess:   . Compute          

2.         ,       

3. for          

4.                    ⁄  

5.                

6.                (Stop if accurate enough) 

7.             

8.                       ⁄  

9.                 

10. End  

In fact, the iterates •_produced by the above algorithm and Algorithm 4.1 applied to 

the system               are identical, provided that the same initial guess is 

used. 

If   is very far from the nearest positive definite matrix, Algorithm 4.2 may 

converge slowly. When   is ill-conditioned, the Cholesky factorization of    might 

fail or be numerically unstable. A better approach is to use a more numerically stable 

factorization for solving (4.13).  

4.2.2 Conjugate Orthogonal Minimal Residual, CO-MINRES  

The CG method and the minimal residual method (MINRES) are both Krylov 

subspace techniques for the iterative solution of Hermitian linear equations. While CG 

is commonly used when the matrix   is positive definite, MINRES is generally 

reserved for indefinite systems. MINRES  [11]  [85] is characterized by the following 

minimization: 

     =      where    minimizes ‖       ‖  (4.35) 

Thus, MINRES minimizes ‖  ‖ within the  th Krylov subspace. Since this 

minimization is well-defined regardless of the definiteness of  , MINRES is 
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applicable to both positive definite and indefinite Hermitian systems. It applies the 

process of QR factorization (       ) during iterations to find   . A more in-

depth discussion of its properties is given in  [11].  

In the present case, it is modified to handle complex symmetric  , rather than 

Hermitian  . Direct implication of the conjugate orthogonality concept to the standard 

MINRES method results in an algorithm, called Conjugate Orthogonal Minimal 

Residual (CO-MINRES). Similar to the modification considered for derivation of 

COCG, standard MINRES can also be adapted by replacing every instance of the 

Hermitian operator by a simple transpose  [10]. The preconditioned CO-MINRES 

algorithm based on the MATLAB implementation  [87] is given as follows. 

Algorithm 4.3: Precondtioned Conjugate Orthogonal MINRES  

1. Set the initial guess:   , Compute         . 

2.          

3.   =√       ,      ,     ,    ,    ,      ,     ,     

4. Set:  = ,   = ,      ,       

5. for            

6.             

7.             

8.  If    ,                     

9.      =            

10.                        

11.       ,         

12.             

13.       √          

14.       ,    ,           ,           ,        ,          

15.    √       
 ,       ,         ,  =   ,   =    

16.       ,      

17.                  
   

18.              

19.                  (Stop if residual norm is small enough) 

20. End  

In general, Algorithm 4.3 is more expensive than Algorithm 4.2. However, 

MINRES converges faster and also provides more information: the key components 

of the symmetric Lanczos process, which are the orthogonal vectors      as well as 

scalars      and      defined in Section 4.2, can be extracted easily from lines 6, 9 
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and 13 of the above algorithm. These provide information about the coefficient matrix 

and can be used in modified Krylov methods (explained in Section 4.4).  

4.3 Generalized Minimal Residual, GMRES 

The Generalized Minimal Residual (GMRES) method is an iterative method for 

general non-symmetric matrices (and preconditioners), which minimizes the residual 

norm over the Krylov subspace. The method is based on the Arnoldi approach  [15] for 

full orthogonalization and is given as follows:  

Algorithm 4.4: Generalized Minimal Residual (GMRES) 

1. Set the initial guess:   , Compute          

2. Set   ‖  ‖  and          

3. for          

4.         

5.  for          

6.        〈     〉,             

7.  End 

8.         ‖  ‖  

9.                 

10. End 

11. Compute   , the minimizer of ‖        ‖  and            

12. End  

Lines 1 to 10 of the above algorithm are Arnoldi iterations for creating a fully 

orthogonal subspace, in which every new vector      is orthogonalized to the all 

previous vectors in   . The approximate solution in GMRES is then obtained by 

computing the vector    by a sophisticated version of the QR decomposition of the 

matrix   , such that the 2 norm of the residual             is minimized over 

  . See  [85] for a preconditioned version of GMRES. 

Although the GMRES method has a good convergence performance, it requires 

storing the entire sequence of vectors    and the memory requirement increases as the 

number of iterations increases. If the iteration number   is large, the GMRES 

algorithm becomes impractical because of memory and computational requirements. 

To remedy this problem, the algorithm can be restarted. The restarted GMRES 

follows the idea of the original GMRES, except that after some steps, the algorithm is 

repeated by a new initial guess. 
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4.4 Krylov Deflation  

Incorporation of a good preconditioner is one of the most widely used approaches 

to accelerate the speed of convergence for Krylov methods. By applying the 

preconditioner, the spectrum of   is modified with the general goal of obtaining a 

matrix that is close to the identity matrix. In this section, we consider an approach for 

convergence acceleration that is different from preconditioning, called deflation. Here 

the search space of the Krylov subspace method is enlarged by a suitably chosen 

subspace that contains useful information about the system that is not adequately 

addressed by the action of the preconditioner. 

The need for deflation comes from the fact that the convergence of any Krylov 

subspace method is affected by the spectrum of the matrix  , especially the largest 

and smallest eigenvalues. It is clear that CG methods converge more slowly for a 

matrix that has small eigenvalues, even after applying a preconditioner.  

The Multilevel/ASP/AMG preconditioning cycles described in the previous 

chapter try to capture error components related to the highest and lowest eigenvalues 

successively, by construction of a multilevel hierarchy. This hierarchy was defined by 

transfer operators between the higher order levels and continued with virtual grid 

transfer operators below the Whitney level. The cycle aims to transfer error parts 

invariant to the relaxation to the next lowest (coarser) level. Errors that remain after 

the smoother has been applied and that must be reduced at the next level are called 

“algebraically smooth”. Algebraically smooth components belong to the space of 

eigenvectors of   that have small eigenvalues and for rapid convergence, accurate 

representation of them on the coarser level is needed. The nature of the algebraically 

smooth errors and the near null space of   affect the performance of the 

preconditioned Krylov solver and degrade the convergence. 

A frequently effective remedy for slow convergence is to directly deflate the 

troublesome eigenvalues (eigenvectors) from the problem. This can be done with 

construction of an auxiliary approximation subspace that is specifically designed to 

target the problematic modes. Numerous techniques can be used to remove the 

problematic eigenvectors. Here, the deflated Krylov approach is used. The goal of 

deflated Krylov is to remove from the system the eigenspace corresponding to 

troublesome, algebraically smooth, eigenvectors. As will be shown, it permits the 
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incorporation of existing knowledge about the space of troublesome eigenvectors 

available from a previous calculation, or a nearby problem. 

Deflation is often used for solving one particular matrix with multiple right-hand 

sides vectors. The idea then is to use information from the solution of the first right-

hand side to assist subsequent right-hand sides. Here, the deflation idea is tailored 

specifically to solving a sequence of problems,     , which are generated during 

the p-adaption process. In the next section, a framework on how COCG and CO-

MINRES can be improved based on previously-obtained information is described. 

After that, the case of solving progressively enlarged system of equations during p-

adaption is considered. 

4.4.1 A Framework for Deflated Krylov Methods 

In this section, we describe a general framework for deflation of iterative methods 

based on the Lanczos process, which simultaneously covers implementations of 

several robust Krylov subspace methods. Krylov deflation is in fact a generalization 

of the aforementioned basic techniques, that in some instances greatly extends their 

efficiency and robustness. It appeared for the first time in the paper of Nicolaides  [88] 

and a comparable approach was then proposed in  [4] and  [5]. These techniques glean 

“important” information from past problems to enrich the subspace.  

Let       be the Cholesky factorization of the applied preconditioner in line 7 

of preconditioned COCG or line 12 of preconditioned CO-MINRES. Here, we assume 

that the columns of a matrix   are the “deflation vectors” that approximately span the 

space of slow converging modes of the preconditioned system  ̃ ̃   ̃, where 

 ̃         ,  ̃       and  ̃      . The deflated Lanczos algorithm  [88] starts 

with an initial vector       ‖  ‖ orthogonal to   and builds a sequence of vectors 

                 such that  [4]: 

                           ;  ‖    ‖    (4.36) 

The subspace   
  [          ] can be obtained by applying the standard Lanczos 

procedure to the auxiliary matrix 

   ̂   ̃   ̃  ̃   ̃ (4.37) 



CHAPTER 4. KRYLOV METHODS AND DEFLATION 

 

67 

 

where  ̃  (   ̃ )
  

. If the matrix    ̃  is singular, its pseudo-inverse is 

considered. To satisfy     , the residual vector     ̃   ̃ ̃  should be associated 

with a special initial guess 

   ̃   ̃     ̃  ( ̃   ̃ ̃  )  (4.38) 

for some arbitrary  ̃  . The resulting Krylov subspace at the  th step is denoted by 

  ( ̃     ) and the algorithm seeks an approximate solution          

  ( ̃     ) by requiring that the residual be orthogonal to  ̂  ( ̃     ). 

Therefore, the change to the standard symmetric Lanczos algorithm is minimal and 

can be summarized as follow: 

- Based on a given  , pre-compute  ̃  (   ̃ )
  

 and the initial 

approximation vector using (4.38). 

- Construct a symmetric Lanczos space based on the coefficient matrix  ̂ instead 

of  ̃ by modifying all the matrix-vector products as follows: 

   ̂   ̃   ̃  ̃   ̃    (4.39) 

As with the standard Lanczos algorithm, the scalar computed during the process 

can be stored in a tridiagonal matrix,   , and the resulting vectors satisfy  ̂   

    . The difference here is that since the solution is approximated in the space 

generated by   and   
 , the inclusion is beneficial in accelerating the convergence, 

even when   contains only poor approximations of slow-converging eigenvectors.  

4.4.2 Preconditioned Deflated COCG 

Putting relations (4.36) to (4.39) together and following the similar approach for 

derivation of standard COCG algorithm, the deflated version of COCG that satisfies 

all the recurrence relations can be obtained as follows  [4]. The main difference in 

iterations of preconditioned deflated COCG comparing to COCG is that, the regular 

update of the descent direction vector                is changed to           

              , where      is the preconditioned residual vector. The algorithm 

is as follows: 
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Algorithm 4.5: Preconditioned Deflated COCG 

1. Set the initial guess:    . Compute            

2. 
Define deflation subspace   [          ] and also pre-compute   

         

3. Set starting vector:               . Compute          

4.         ,               

5. for          

6.                    ⁄  

7.                

8.                (Stop if accurate enough) 

9.               

10.                       ⁄  

11.                           

12. End  

In Deflated COCG, we must store   and   in addition to the usual vectors of 

COCG, which means an additional storage. Deflated-COCG also requires extra 

multiplications for pre-computing   and calculation of           at each step. 

However, the cost is much less than that of the preconditioning and the gain in 

decreasing the number of iterations makes it well worthwhile in general.  

4.4.3 Preconditioned Deflated CO-MINRES 

The CO-MINRES algorithm can also be modified by inclusion of the   

subspace. The preconditioned deflated version of this Krylov method is given next, in 

which modifications to Algorithm 4.3 occur on lines 2, 3 and 20. 

Algorithm 4.6: Preconditioend Deflated CO-MINRES  

1. Set the initial guess:    . Compute            

2. 
Define deflation subspace   [          ] and also pre-compute   

         

3. Set starting vector:               . Compute          

4.          

5.   =√       ,      ,     ,    ,    ,      ,     ,     

6. Set:  = ,   = ,      ,       

7. for            

8.             

9.             

10.  If    ,                     

11.      =            
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12.                        

13.       ,         

14.             

15.       √          

16.       ,    ,           ,           ,        ,          

17.    √       
 ,       ,         ,  =   ,   =    

18.       ,      

19.                  
   

20.                      

21.                  (Stop if residual norm is small enough) 

22. End  

4.5 Eigenvector Estimation  

As observed in the algorithms for the deflated Krylov solver, the number of 

desired eigenvectors   must be chosen, along with the eigenvalues to be targeted. In 

particular, small eigenvalues related to the near-null space are the most important ones 

for accelerating the convergence. There are several distinct ways to find approximate 

eigenvectors that are inadequately clustered by the preconditioner and thus, contribute 

to poor convergence  [4]  [5]  [89]  [90]. One approach is to find pairs         such that 

the vector ( ̃     )   is minimized. Different projection techniques can be applied 

for the minimization  [90]. This approach however requires additional costs in advance 

for identifying the eigenvalues of  ̃ that are problematic for convergence.  

A better approach is to get the Ritz vectors by solving a previous and slightly 

different system  [89]. The hierarchical nature of the sequence of linear systems 

     generated by p-adaption suggests that there are similarities between the 

systems. For any higher order system, a considerable portion of the matrix and right-

hand side vector are exactly the same as they are for the previous system. In fact, by 

increasing the orders from step     to  , we can assume that the bulk of the solution 

vector also remains roughly as it was at step     and mainly higher frequency 

variations are represented by the newly added unknowns.  

From the above reasoning, we assume that deflation information about the 

adaptive system can be obtained during the solution of the problem at the first 

adaptive step, when all elements are at their lowest order (     ), and not from a 

prior knowledge about the problem. For this first step, the solution is obtained by a 
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CO-MINRES Krylov subspace solver because this preserves better the orthogonality 

of the Ritz vectors. Determination of approximate eigenvalues to be applied to 

subsequent adaptive steps is achieved by the following harmonic projection 

method  [4] [89]. 

Given subspace    and tridiagonal matrix    from the CO-MINRES iterations, 

the method computes   eigenpairs         by solving the generalized eigenproblem  

           (4.40) 

where  

       
    (4.41) 

       
    

     (4.42) 

Defining    [           ], the problematic modes are expressed in the form 

       . Equation (4.40) can be solved at a low cost by any technique for dense 

generalized eigenvalue problems. For the results in this thesis, the QZ algorithm in 

Matlab  [87] is used. 

4.6 Deflated Krylov for  -Adaption 

Consider now the matrix equation      at the  th
 adaptive step,        , 

with    unknowns. Each matrix   is of the form (3.3), with the same upper left block 

   . For    , the equation can be solved by deflated COCG with deflation vectors 

   obtained from    as follows: 

     [
  

 
]
    

 (4.43) 

In summary, the procedure for solving  -type hierarchical systems using a 

deflated preconditioned Krylov solver is as follows: 

- First-order solution: Set   =  and apply   iterations of CO-MINRES, 

preconditioned with an appropriate preconditioner   (like the ASP/AMG 

algorithm described in Chapter 3), to solve       . This computes the matrix    

that has the Lanczos vectors, and the tridiagonal matrix   .  

- Select  , the number of eigenvectors to be used. 
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- Eigenvector computation: Find    and    using (4.41) and (4.42). Solve (4.40) 

for   eigenvalues and let    be the matrix containing the corresponding vectors. 

Set         and compute      
       

  .  

- Adaption iterations (Algorithm 4.7): for           

Initialize       and then transfer into it values from previous solution, with 

appropriate indexing.  

Set    according to (4.43). 

Solve      by preconditioned deflated COCG with    and from initial 

guess                        . 

From (4.43) we observe that the computational cost of deflation at every iteration 

is limited to finding just the first    values of     and then multiplying by 

        . Algorithm 4.7 presents the efficient way of solving adaptive iteration for 

    in which line 7 to 9 are the required modifications related to deflation for every 

iteration. 

Algorithm 4.7: Preconditioned Deflated COCG for p-adaption system      

1. Initialize     from previous adaption step, Compute             

2. 
Define deflation subspace    [          ] and also pre-compute   

   
       

   

3. 
Set       and     , modify:  [ ]    [ ]       

    [ ]. Compute 

        ,  

4. for          

5.           

6.  If                          ⁄  

7.  for        

8.         [ ]    [ ]        
      [ ] 

9.  End 

10.             

11.                    ⁄  

12.                

13.                (Stop if accurate enough) 

14. End  

 



 

 

 

 

 

 

 

 

 

CHAPTER 5 

Numerical Studies 

 

 

 

This chapter demonstrates the performance of the Multilevel/Algebraic Multigrid 

approach through some numerical examples of practical interest. We also study the 

performance of Krylov subspace solvers equipped with deflation acceleration. The 

reference methods for comparison of the current approach are first introduced in 

Section 5.1. Next, in Section 5.2 numerical results for the electric field wave problems 

are presented. The results for problems involving the quasi-static magnetic field are 

given in Section 5.3.  

5.1 The Methods Tested 

In order to demonstrate the performance of the proposed approach, several 

numerical experiments are considered. In each experiment, we adaptively increase the 

order of the elements and solve the matrix problem at each adaptive step by either 

COCG, CO-MINRES or GMRES, preconditioned with variants of the ASP 

preconditioner described in Chapter 3. Depending on the method used for 

approximating the solution to the lowest-level system,       , the preconditioners 

tested are: 
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- pMUS[ASP(V)] and pMUS[ASP(W)]: The proposed new methods, i.e., pMUS 

(Algorithm 3.8) and ASP correction with V-Cycle AMG (Algorithm 3.4) or the 

W-cycle AMG (Algorithm 3.5)  [97]  [98]  [99].  

- pMUS[A-V]: The lowest-level system is solved by one backward GS step 

followed by one forward GS step, both applied to the vector-scalar potential (A-

V) version of the Whitney system, in compact form  [13]  [92]  [97]. This amounts 

to a SSOR preconditioner applied to the A-V version of the entire matrix. This 

conventional method can be regarded simply as a variant of the V-cycle of 

Algorithm 3.8 combined with a version of Algorithm 3.4 in which the projection 

onto    (line 3) is omitted and the approximate inverse   
  is just another 

application of the SSOR preconditioner. 

- pMUS[SSOR]: Conventional pMUS with SSOR preconditioning at the lowest 

level. This is equivalent to Algorithm 3.8 combined with a version of Algorithm 

3.4 in which the projections onto both    and   are omitted (line 2 to line 4). It is 

also equivalent to direct application of the SSOR preconditioner (1.13) to the 

entire matrix. 

- pMUS[ILU]: Sparse incomplete factorization of     [15]. See Section 1.3.3.  

- pMUS[LU]: Complete LU factorization of    using UMFPACK  [7], which is the 

conventional pMUS approach (Algorithm 3.2). 

The Krylov iterations are terminated when the infinity norm of the residual is 

reduced by a factor of   . For the examples presented below, the value for this 

parameter is set to     , unless otherwise stated. For all calculations, double precision 

arithmetic is used. Simulations are done using Matlab  [87] and performed on a PC 

with a   -bit, 4-core, Intel      GHz processor and    GB of RAM. The geometries 

are modeled and meshed with ElecNet  [91]. 

5.2 Numerical Results for Wave Problems 

For this section, three different kinds of test problem are used. The first involves 

closed domains excited with an incoming waveguide mode in order to find an   

parameter. The second kind concerns plane-wave scattering by metallic structures in 

free space. Finally, free space scattering form complex objects with composite 

materials are presented.  
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5.2.1 Waveguide Cavity Filter: Illustration of the spectrum of the first order 

system and sensitivity to mesh refinement  

The waveguide cavity filter studied in  [3] and  [94] is analyzed. The dimension of 

the filter shown in Figure 5.1 is                  , where    is the free space 

wavelength at 5.86 GHz. At the excitation port, the dominant      waveguide mode 

is incident. Outgoing waveguide modes are absorbed at the other port. The structure is 

discretized with tetrahedral elements and simulations are performed with varying 

element sizes, resulting in discretizations with 18,236 elements in the coarsest mesh to 

853,868 elements in the finest mesh.  

 

Figure 5.1: Waveguide cavity filter. 

Initially, we consider the effects of the spectral properties of the indefinite curl-

curl operator at the lowest level on the convergence behavior of the COCG solver. 

Figure 5.2(a) shows the spectrum of the SSOR-preconditioned matrix 

    
        

     at      GHz, with a matrix dimension 24,285. It can be seen 

that the range of eigenvalues covers both the positive and negative sections of the real 

axis. As explained in Section 3.2, in addition to the Type A  [93] [14]  [93] negative 

eigenvalues related to the null space of the curl operator and associated with 

unphysical modes, there are Type B negative eigenvalues related to physical 

resonances. More of the Type B eigenvalues will become negative as    increases. 

This can lead to a very large condition number for the discrete problem and poor 

convergence of iterative solvers. With this preconditioner COCG converged in 497 

iterations. 

In Figure 5.2(b), the spectrum of the SSOR-preconditioned A-V system is shown. 

From the displaced eigenvalue distribution, it is apparent that many of the negative 

eigenvalues, presumably Type A, can be removed by incorporation of the mapping to  
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Figure 5.2: Eigenvalue spectrum for preconditioned matrix of cavity filter, 

(a) SSOR, (b) A-V SSOR. 

the scalar space,  . For this better conditioned system, the COCG solver converged in 

173 iterations. However, we see that there are still eigenvalues close to zero, both 

positive and negative, and this leads to the degradation of the Krylov solver 

performance.  

Finally, the results of employing the additive ASP preconditioner   
  (Algorithm 

3.3 with 1 level AMG approximation,    ) are illustrated in Figure 5.3(a) and (b), 

for the undamped (   ) and damped (     ) matrix (3.45), respectively. The first 

point to notice is the strong clustering around 1 in Figure 5.3(b). Even better, by 

introducing the complex shift factor, the negative imaginary half plane of the 

spectrum is mapped to a roughly circular pattern in the right half plane. The COCG 

iteration counts for the undamped and damped systems are 97 and 43, respectively. 

We see that the preconditioned system with more eigenvalues shifted away from the 

origin and located in the right-hand half of the complex plane can be solved much 

more efficiently with the Krylov solver.  

Table 5.1 compares the corresponding iterations and CPU times required for 

COCG preconditioned with SSOR, A-V and ASP methods with varying mesh size. 

For ASP, the value of   is taken as 1.5 and the AMG levels are increased from 1 to 3 

through the refinement, to avoid the direct solution of a matrix with dimension larger  



CHAPTER 5. NUMERICAL STUDIES  

 

76 

 

 

 

Figure 5.3: Eigenvalue spectrum for preconditioned system of cavity filter,  

(a) ASP with      , (b) ASP with      . 

than 8,000. The convergence of ASP in additive and multiplicative versions is 

superior to the other methods, and the performance is least sensitive to the mesh 

refinement parameter  . In fact, the ASP-preconditioned systems converge in a 

number of iterations that is independent of the mesh size. Among the different 

versions of the ASP preconditioner, the W-cycle gives the lowest number of 

iterations, with roughly same CPU time as the V-cycle, and in the following tests just 

the results with   
  are given. In Figure 5.4, it is shown how the iteration counts and 

CPU time of the preconditioned COCG increase as the total number of unknowns and 

 Table 5.1: Comparison of number of iterations and CPU time (s) for the waveguide cavity filter 

at 5.86 GHz. 

Number of unknowns ( ) 24,285 57,487 121,203 220,753 502,073 1,043,207 

Number of non-zeros ( ) 263,840 750,549 1,598,916 4,034,374 9,935,252 27,914,831 

     ⁄  0.192 0.113 0.069 0.049 0.043 0.031 

SSOR 

Iteration 467 827 1256 1267 1977 2202 

CPU Time 5.58 29.96 98.15 263.95 1109.4 3,609.8 

A-V SSOR 

Iteration 128 168 242 296 376 497 

CPU Time 2.11 7.98 24.70 81.20 270.04 1029.31 

  1 Level AMG 2 Level AMG 3 Level AMG 

ASP-  
  

Setup Time 0.37 1.41 1.86 4.25 9.75 25.55 

Iteration 62 67 63 65 69 69 

CPU Time 1.63 5.67 9.49 24.51 67.45 192.16 

ASP-  
  

Iteration 46 47 46 50 49 48 

CPU Time 1.20 4.11 8.32 22.33 56.25 155.92 

ASP-  
  

Iteration 26 26 23 25 24 24 

CPU Time 1.64 4.32 9.12 24.79 62.39 177.81 



CHAPTER 5. NUMERICAL STUDIES  

 

77 

 

nonzeros entries of    is varied by increasing the number of tetrahedra. From the 

ASP curve, the computational complexity is         , where   is the number of 

nonzeros in   . By contrast, the complexity of A-V is         . The computed 

scattering parameter     versus the frequency of excitation is shown in Figure 5.5 and 

demonstrates very good agreement with reported results in  [94].  

 

 

Figure 5.4: Variation of number of iterations and CPU time for waveguide cavity filter. 

 

 

Figure 5.5: Absolute value of     for waveguide cavity filter. Reference results are taken from  [94]. 
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5.2.2 Scattering from Conducting Sphere: Sensitivity to frequency  

The next test case concerns plane-wave scattering by a metallic PEC sphere with 

a radius of 1 m, with the radius of the spherical ABC boundary set to 4 m. The 

number of unknowns in the finest grid is 1,024,065, and using a three-level AMG 

(i.e.,    ), the size of direct solution on the coarsest grid reduces to 12,508. The 

wavenumber varies from 1 to 5 rads/m in three steps and at the highest frequency the 

average edge length in the mesh is          ;  

We consider the application of two Krylov subspace iterative methods, COCG 

and the GMRES for solving the problem at the lowest level. The number of iterations 

and CPU time required by each of these solvers are given in Table 5.2, where A-V 

SSOR and multiplicative W-cycle ASP preconditioners are employed for convergence 

acceleration. It can be seen that for both solvers the new approach achieves the 

shortest solution times and requires significantly fewer iterations than A-V SSOR. An 

important observation for the PEC sphere scattering problem is that the number of 

iterations and the required CPU time increase with the excitation frequency, showing 

the ill-conditioned nature of the system at higher frequencies. For both problems, the 

use of       rather than     greatly reduces the computation time, and for the 

sphere it can be seen that the reduction increases with frequency.  

The computed co-polarized total electric field | ⃗  | along the   axis at    

         is compared to the analytical Mie solution in Figure 5.6. Once again, a 

good agreement is observed. 

Table 5.2: Comparison of different Krylov solvers for scattering analysis of Metallic PEC 

sphere. 

Solver COCG 

Preconditioner A-V SSOR       
             

          

 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) Wavenumber 

  
    680 00:08:34 96 00:05:14 40 00:02:21 

  
    1991 00:24:44 552 00:25:23 71 00:03:54 

  
     2483 00:30:50 824 00:30:31 127 00:06:45 

 

Solver GMRES 

Preconditioner A-V SSOR       
              

          

 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) Wavenumber 

  
    1534 00:58:38 69 00:06:19 37 00:03:02 

  
    2083 01:31:40 443 00:41:50 118 00:05:22 

  
     2403 02:00:33 702 01:01:21 175 00:09:48 
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Figure 5.6: Magnitude of co-polarized electric field along the propagation direction. 

5.2.3 Metallic Frequency Selective Surface (FSS): Sensitivity to the damping 

parameter   

This test problem concerns scattering from a                      metallic-

grid frequency selective surface (FSS) consisting of rectangular perforations of 

varying size on a metallic screen (Figure 5.7), as described in  [95]. The geometry is 

illuminated with a 10 GHz plane wave. The incident wave is along the   axis. The 

outer truncation ABC boundary is a rectangular box, which is the same shape as the 

target. The distance between the ABC boundary and the target is       . Because of 

the fine details of this non-periodic scatterer, a large number of elements is needed. 

The edge lengths in the mesh range from         to      , with           , and 

there are 2,416,388 unknowns. Once again, a three-level multilevel scheme is used to 

reduce to 30,932 the size of the matrix to which direct solution is applied.  

We consider the effects of the damping parameter   on the performance of COCG 

Krylov subspace method applied to       . The number of iterations and also CPU 

  

Figure 5.7. Metallic frequency selective surface with rectangular perforations. 
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Table 5.3: Comparison of effects of damping parameter   on the 

convergence of Krylov solver for metallic FSS problem. 

Solver COCG 

        
Iter. 

CPU Time 

(hh:mm:ss) Preconditioner 

A-V SSOR 2384 01:01:22 

      
 
          696 01:08:06 

      
 
          466 00:52:20 

      
 
          249 00:27:41 

      
 
          201 00:21:17 

      
 
          173 00:20:48 

      
 
          178 00:20:51 

      
 
          194 00:21:36 

      
 
          217 00:24:15 

      
 
          278 00:29:50 

time for different damping parameters are given in Table 5.3, where multiplicative W-

cycle ASP preconditioners and A-V SSOR are employed for convergence 

acceleration. It can be seen that the use of       for shifted Laplacian 

preconditioner achieves the shortest solution times and requires significantly fewer 

iterations than A-V SSOR. Figure 5.8 demonstrates the convergence behavior of the 

preconditioned system. Clearly, the iterative solvers preconditioned with ASP exhibit 

a robust and fast convergence for the first order problem. The computed electric field 

over the    plane, 0.5 cm from the scatterer, is shown in Figure 5.9.  

 

Figure 5.8: Convergence history of preconditioned Krylov solver for FSS scattering analysis. 

 

Figure 5.9: Scattering from metallic FSS; magnitude of the electric field. (a) Ex, (b) Ey, (c) Ez. 



CHAPTER 5. NUMERICAL STUDIES  

 

81 

 

5.2.4 SRR Loaded rectangular Waveguide: p-adaption and deflation 

The next example is a rectangular metallic waveguide loaded with split ring 

resonators (SRRs). This configuration has attracted extensive attention  [100] [101], 

since it provides the realization of negative index metamaterials and novel methods to 

miniaturize waveguide-based devices. The geometry is directly taken from  [100], 

proposed for the creation of a stopband above the ordinary waveguide cutoff 

frequency. The geometry, showing the excitation port A and absorption port B, is 

presented in Figure 5.10.  

SRR elements can be found in  [100], noting that printed elements on the middle 

and left lateral wall slabs are a factor of     smaller than the elements on the right 

(a) 

 

(b) 

 

 (c) 

 

Figure 5.10: (a) The geometry of SRR loaded waveguide filter along with the excitation and absorption 

ports. (b) The mesh discretization. (c) Intensity distribution of electric field strength within the loaded 

waveguide. 
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Table 5.4: Solution Details For the SRR loaded waveguide problem. 

Adaption Step           

DOFs 1,050,016 2,353,671 

Preconditioner (+ Deflation) Iter. 
CPU Time 

(hh:mm:ss) 

Memory 

(MB) 
Iter. 

CPU Time 

(hh:mm:ss) 

Memory 

(MB) 

pMUS[ASP]+Def[50%] 947 00:36:25 955 916 01:43:21 8,803 

pMUS[A-V] 4,056 01:25:46 834 6,201 03:35:04 1,724 

Computed                                          

   

Adaption Step           

DOFs 3,967,045 5,994,104 

Preconditioner (+ Deflation) Iter. 
CPU Time 

(hh:mm:ss) 

Memory 

(MB) 
Iter. 

CPU Time 

(hh:mm:ss) 

Memory 

(MB) 

pMUS[ASP]+Def[50%] 1,551 03:57:10 10,416 2,084 08:11:28 13,023 

pMUS[A-V] 9,033 10:35:38 3,176 10,115 22:04:29 5,942 

Computed                                           

side. The entire composite domain is discretized with         tetrahedra elements, 

resulting in edge lengths             , and           . Adaption was used to 

compute the reflection coefficient at port A,    , and the results are given in Table 

5.4.  

The convergence of deflated Krylov preconditioned with pMUS and 3 level AMG 

is clearly superior to pMUS[A-V] in terms of iterations and CPU time. The 

importance of deflating the Krylov solver from hampering eigenvectors and its effects 

on the cumulative CPU time is shown in Figure 5.11. While the required time to 

accurately solve the problem in   adaption steps is around    hours with pMUS[A-

V], pMUS[ASP] reduces that to    hours and with deflation it is less than      hours. 

The magnitude of the electric field intensity at the mid-plane passing through the 

geometry is plotted in Figure 5.10 (c). It is apparent that energy propagation toward 

the output port is suppressed by the ring resonator elements.  

 

Figure 5.11: Cumulative CPU time versus adaption steps for the SRR loaded waveguide filter. 
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5.2.5 Conducting Sphere Surrounded by 60-Node Buckyball: Sensitivity to 

the size of the deflation subspace  

This test case concerns free space scattering from a conducting sphere surrounded 

by a polyhedral, 60-node “buckyball”, acting as a metallic frame to reduce the 

backscattered wave from the sphere at    MHz  [102]. The problem is shown in 

Figure 5.12. The diameter of the internal solid sphere is   m and the external 

polyhedral conducting frame has diameter of    m with an edge width and thickness 

of         m and         m, respectively. An ABC is applied over a spherical 

surface   m away from the buckyball. The mesh obtained after discretization consists 

of         nodes and         elements with minimum and maximum edge lengths 

of          and         , respectively. In this computation, the number of 

unknowns increases from         to           in   adaptive steps.  

 

Figure 5.12: Geometry of 6 m metal sphere surrounded with a 10m spherical polyhedral frame. 

The detailed computational information is listed in Table 5.5. For pMUS[ASP], 3 

AMG levels are used, with        ,        and       DOFs, respectively.  

Table 5.5: Solution Details For the buckyball scattering problem. 

Adaption Step           

DOFs 810,595 2,319,586 

Preconditioner (+ Deflation) Iter. 
CPU Time 

(hh:mm:ss) 

Memory 

(MB) 
Iter. 

CPU Time 

(hh:mm:ss) 

Memory 

(MB) 

pMUS[ASP]+Def[50%] 108 00:03:58 928 124 00:08:39 2,635 

pMUS[A-V] 2,058 00:21:10 686 2,173 01:19:52 1,767 

   

Adaption Step           

DOFs 3,716,547 5,710,953 

Preconditioner (+ Deflation) Iter. 
CPU Time 

(hh:mm:ss) 

Memory 

(MB) 
Iter. 

CPU Time 

(hh:mm:ss) 

Memory 

(MB) 

pMUS[ASP]+Def[50%] 130 00:12:50 3,621 157 00:25:30 5,895 

pMUS[A-V] 2,138 02:18:15 2,673 2,188 04:19:25 4,908 
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As indicated in the table, the run time required by pMUS[ASP] with 57 deflation 

vectors (50%) is much less than with pMUS[A-V] at each adaption step.  

Next we consider the effect of varying the dimension,  , of the deflation subspace 

from 0 (no deflation) to       (     deflation). Figures 5.13 (a-c) compare the 

number of iterations, computation time and memory usage for several choices of  . 

Increasing   leads to fewer iterations, but at the cost of more memory usage. We also 

see that increasing   beyond about 50% does not bring much further reduction in 

computation time. Towards the end of the adaption,     deflation leads to a     

reduction in cumulative computation time and a     reduction in Krylov iterations.  

 

 

 

Figure 5.13: Comparison of effects of deflation on: (a) Krylov iterations, (b) CPU time and (c) memory 

usage, for the buckyball problem. 
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5.2.3 Jerusalem Cross Screens FSS: Illustration of matrix dimensions in 

multilevel hierarchy 

For the final experiment related to wave problems, results obtained from the 

scattering analysis of a finite, noncommensurate, frequency selective surface (FSS) 

are presented. The device, shown in Figure 5.14, consists of two dissimilar Jerusalem 

cross screens (dimensions taken from  [103]) printed on opposite sides of a         

                dielectric slab, where    is the free space wavelength at 3 GHz. 

The dielectric relative permittivity is            . Such composite and multi-

layer structures with different periodicities are difficult to handle rigorously using 

periodic boundary conditions  [103]  [104] and analysis of the entire system is usually 

needed.  

For the computational domain truncation, the geometry is enclosed in a box at 

least        away from any point on the FSS and the ABC is applied. The structure is 

illuminated normally (   direction) with an  -polarized plane wave. The mesh 

consists of           tetrahedra. As observed in Figure 5.14, the mesh is highly 

nonuniform, with an average element size of            and sizes ranging from 

       around the metallic regions to      near the truncation boundary.  

 

  

Figure 5.14: Geometry of a Jerusalem cross noncommenserate FSS 

(a) Side view. (b) Top view showing the 7 7 upper screen.  

(c) Bottom view showing the 5 5 lower screen. 
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Table 5.6: Solution details for the noncommenserate FSS scattering problem. 

  DOFs Nonzeros Iter. 
CPU Time 

(hh:mm:ss) 

Memory 

(MB) 

1 2,261,319 36,824,307 533 00:54:28 2,314 

2 5,482,526 188,871,828 626 02:07:01 11,241 

3 8,909,294 370,550,000 683 03:18:42 14,347 

4 12,264,629 626,152,411 594 03:45:56 17,424 

A summary of computational statistics for 4 steps of p-adaption, using 

pMUS[ASP]+Def[50%], is given in Table 5.6 (       ). In this case pMUS[A-V] 

failed at each adaptive step to reduce the residual by a factor of      after      

iterations. The column labeled “Nonzeros” gives the number of nonzero entries in the 

matrix. Note that the matrices become denser as the adaption proceeds, which is 

characteristic of p-adaption. Here, as in the previous examples, the number of 

iterations is relatively stable, despite the growth in the size of the matrix. At step 4, a 

complex valued system with almost      million unknowns and      billion nonzeros 

is solved on a PC in reasonable time. 

Table 5.7 gives, for the matrix    (4
th

 adaptive step), the matrices    used in its 

preconditioner. Since there are some 4
th

 order elements present at this step, the largest 

matrix is    (which is just    itself). Four levels of AMG are used (i.e.,    ), so 

the smallest matrix is    . 

The residual history in solving the    system is shown in Figure 5.15. Removing 

the accelerations provided by deflation results in an increase of     and     in 

Krylov iterations and run time respectively, as well as     reduction in memory 

usage. Figure 5.16 shows the computed electric field over two cross-sections, both 

passing through the center of the structure. 

Table 5.7: Matrix Hierarchy Details For the noncommenserate  

FSS scattering problem at the 4th adaption step. 

Matrix DOFs Nonzeros 

   12,264,629 626,152,411 

   12,051,413 525,271,225 

   10,794,234 416,843,750 

   2,261,319 36,824,307 

   259,089 3,487,890 

    90,448 1,236,772 

    34,162 480,396 

    20,174 287,358 
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Figure 5.15: Residual history of (deflated) preconditioned COCG method  

for the noncommenserate FSS scattering at 4th adaption step.  

 

(a) 

 

 

(b) 

Figure 5.16: Visualization of electric field for the noncommenserate FSS  

(a)    over plane    . (b)    over plane    . 

5.3 Numerical Results for the Quasi-static Magnetic Field 

Problems 

In this section, numerical results related to quasi-static magnetic field problems 

are presented. The performance of the current method (pMUS and ASP approach 

introduced in Section 3.6) is compared to a standard preconditioner for three 

examples. 
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5.3.3 Shielding Inside a Metallic Cube: V cycle vs. W cycle  

For the first example, a hollow, conducting cube placed in a uniform field is 

considered. The geometry and the mesh are shown in Figure 5.17. The permeability 

and the conductivity of the conductor are      and                

respectively. The skin depth at the excitation frequency,       , is          . 

The length of the cube is     and the wall thickness is   . The computational 

domain,  , is a cube of side     . The scalar potential is constrained on two opposite 

surfaces of   to produce a magnetic field,   , that would be uniform in the absence 

of the conducting cube. The domain is discretized with           tetrahedra, 

resulting in         scalar and           vector unknowns at the lowest order. 

Three steps of p-adaption are applied. The matrix problems are solved by the 

preconditioned COCG method  [86]. 

Table 5.8 presents the number of unknowns, the number of COCG iterations and 

the corresponding CPU times for solving the matrix problem with the accuracy of      

        at each adaptive step. For the ASP method, scalar AMG employs a 

hierarchy of three levels with        ,         and        unknowns. The 

comparison shows the superior iteration count and run time of ASP at each adaptive 

step. The experiments also indicate that a significant improvement can be achieved for 

higher order systems if a better algebraic solver, like ASP(W-Cycle), is used at the 

first order. The cumulative CPU time for solving the problem with three p-adaptive 

steps using pMUS[ASP(W-cycle)] is 3.4 times less than that required by SSOR and 

for step 3 the CPU time is 4 times less.  

 

Figure 5.17: Illustration of geometry and discretization for the conducting  

cube problem. 
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Table 5.8: Solution Details For the conducting Cube Problem.  

 Step 1 Step 2 Step 3 

Unknowns 2,875,868 8,578,954 13,345,009 

Nonzeros 66,707,982   350,799,470   615,703,547 

Preconditioner Iter. 
CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 

pMUS[SSOR] 608 00:23:49 652 01:41:55 654 03:03:14 

pMUS[ILU(0)] 741 00:28:13 685 01:57:35 628 02:51:45 

pMUS[ASP(V-Cycle)] 150 00:12:28 205 00:39:09 206 01:08:05 

pMUS[ASP(W-Cycle)] 60 00:13:23 88 00:28:19 94 00:45:55 

The convergence history of COCG at step 3 is shown in Figure 5.18. It is 

observed that while the convergence rates for SSOR and pMUS[ILU(0)] are nearly 

the same, pMUS[ASP(W-cycle)] is able to reduce the number of iterations by a factor 

of almost  . Results for the computed | | over a cross-section and field penetration 

inside the conducting cube are shown in Figure 5.19. 

 

Figure 5.18: Convergence history of COCG with different preconditioners  

for solving the conducting cube problem at p-adaptive step 3. 

 

 

Figure 5.19: Variation of the normalized magnetic field strength  

      | | |  |⁄   over a cross section passing through the cube center. 
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5.3.1 Benchmark TEAM Problem No. 7: Scalability by p-refinement  

For the second example, the benchmark TEAM problem no. 7 is 

analyzed  [105] [106]. It consists of a conducting aluminum plate with a hole, above 

which a racetrack coil with a time-harmonic driving current is placed. The aluminum 

plate has a conductivity of                   and the sinusoidal driving current 

of the coil is      AT. The frequency is       . In order to employ the     

formulation, the hole is treated as a conductor with very low conductivity    

          . 

The computational domain is restricted to a cube of   m edge length with the 

boundary condition           over its surfaces. For the discretization,           

tetrahedra are used and the resulting mesh consists of         nodes and           

edges. The geometry of the problem (without the surrounding box) and its 

discretization in the conducting region can be seen in Figure 5.20 (a). Note that the 

mesh is well refined on the surface of the conductor regions.  

The problem is analyzed p-adaptively in 6 steps with        . In Table 5.9, the 

performance of the COCG method for different adaption steps and different 

preconditioning algorithms are shown. For the ASP method, 2 level AMG is 

employed for approximating the vector nodal systems and the number of unknowns at 

the lowest level is       . From the experiment, it can be seen that using ASP for the 

lowest order correction results in a greatly reduced number of iterations. 

 
 

(a) (b) 

Figure 5.20: (a) Mesh discretization for the TEAM 7 benchmark problem,  

(b) Magnetic field (     ) at the cut plane        . 
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Table 5.9: Solution details for the TEAM problem no. 7 

Preconditioner 
PMUS[SSOR] pMUS[ILU(0)] 

pMUS 

[ASP(W-Cycle)] Speed up 

(SSOR/ASP) Step DOFs ( ) 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 

1 623,613 622 00:05:34 480 00:03:42 63 00:01:48 3.1 

2 1,526,157 494 00:13:24 494 00:13:50 64 00:03:01 4.3 

3 3,050,178 498 00:33:59 495 00:36:30 75 00:06:52 4.8 

4 4,592,119 496 01:04:32 475 00:59:38 87 00:11:54 5.4 

5 5,624,662 463 01:07:24 468 01:18:15 70 00:12:58 5.6 

6 7,014,699 454 01:31:59 487 01:26:34 71 00:16:39 5.8 

More significant than the number of iterations is the CPU time. The reduction in 

iterations results in fewer time-consuming smoothing steps for the higher order blocks 

of the matrix. Figure 5.21 compares the time in minutes to solve the eddy current 

problem at each adaption step. Here we see that pMUS[ASP] works very well and is 

always faster than SSOR and pMUS[ILU(0)]. The cumulative CPU time for all 6 

steps using ASP is more than 5 times less than when using SSOR. For the last 4 points 

of the ASP curve, the CPU time grows roughly as     . The computed magnetic field 

at step 6 over the specified cut plane is displayed in Figure 5.20 (b). The problem has 

measured results as well  [106]. Figure 5.22 compares the numerical values of the 

vertical magnetic flux density          with measured values along a pre-defined 

line of the TEAM 7 benchmark problem. 

 

Figure 5.21: CPU time versus number of unknowns for different adaption steps of TEAM 7 problem. 

 

Figure 5.22: Computed    along a pre-defined line of the TEAM 7 problem (       ,        , 

and           ) compared with measured values. 
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5.3.2 Benchmark TEAM problem No. 21b 

For the last test case, eddy current analysis of TEAM workshop problem 21-

b  [107], shown in Figure 5.23, is carried out. The numbers of tetrahedral elements, 

scalar and vector DOFs are          ,         and         respectively. In Table 

5.10, the computation time and iteration counts of pMUS[ASP(W-Cycle)] with 2 level 

AMG are compared to those obtained with the standard SSOR preconditioner, for 

COCG with convergence tolerance        . Although the number of iterations 

increases in each step, a good speed up is obtained by using pMUS[ASP].  

 

Figure 5.23: TEAM workshop problem 21-b. 

 

Table 5.10: Solution Details For the TEAM problem no. 21-b 

Preconditioner SSOR 
pMUS 

[ASP(W-Cycle)] 
Speed up 

Step DOFs ( ) Nnz ( ) Iter. 
CPU Time 

(hh:mm:ss) 
Iter. 

CPU Time 

(hh:mm:ss) 

1 660,956 15,276,046 461 00:03:38 34 00:01:31 2.4 

2 1,604,034 63,375,974 562  0:15:13 61 00:03:51 3.9 

3 3,177,209 220,372,167 558 00:40:57 92 0:10:53 3.8 

4 5,368,881 533,765,377 559 01:27:27 107 00:22:21 3.9 

 



 

 

 

 

 

 

 

 

 

CHAPTER 6 

Conclusions  

 

 

 

6.1 Summary 

The finite element discretization of the vector curl-curl equation leads to a sparse 

and complex-symmetric linear system of equations. In high frequency simulation of 

the electric field inside complex structures the linear system is generally large, highly 

indefinite and extremely ill-conditioned. These properties make solution of the linear 

system a challenging step, especially when direct methods are out of reach. 

Application of Krylov iterative methods preconditioned with standard 

preconditioners, like SSOR or incomplete LU factorization, does not result in a 

satisfactory convergence. Specialized preconditioning techniques are required.  

In this thesis, an effective iterative method to solve the discrete curl-curl equation 

with p-adaptive finite element analysis has been proposed. The method is a 

preconditioned Krylov subspace iteration, with a p-type Multilevel and Algebraic 

Multigrid cycle serving as the preconditioner for the block structured system. For the 

lowest order system at the bottom of the V-cycle, performance of different correction 

approaches has been tested, which are denoted by pMUS[method] in this work. 

Effects of different lowest level correction on the convergence rate are shown and 
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incorporation of a successful ASP/AMG algorithm has been carried out as a 

replacement for the commonly used direct solve. The success of the algebraic solver 

is in fact based on proper choice of multigrid components with respect to the 

characteristics of the underlying PDEs.  

The construction of coarsening operators in nodal AMG is based on robust nodal 

aggregation algorithms  [17] which allows for fast, automated coarse space 

construction, without the need to build a hierarchy of nested finite-element meshes. 

The coarse grid operators are also created in an algebraic fashion using the Galerkin 

coarse grid approximation which allows the coarse sub-problems to be constructed 

quickly without discretization. This results in an overall fast setup phase with reduced 

time compared to the iteration phase. The performance of the algebraic solver also 

depends on the accuracy of nodal AMGs for discrete second-order elliptic equations 

and improvements in this area can provide further robustness of the proposed 

preconditioning approach. 

Extensive numerical experiments have been performed and results are presented 

for both wave and quasi-static problems. The test cases used are complicated 

problems to solve and the promising numerical results have shown the robustness and 

efficiency of the new preconditioner. The well-known A-V SSOR preconditioning 

approach is used as an efficient reference method. Krylov methods like COCG, CO-

MINRES and GMRES preconditioned with the current approach were always 

considerably faster than A-V for the test problems considered. The performance of 

Krylov algorithms is even further enhanced during the p-adaption analysis by 

construction of a Deflation sub-space and removing the contribution of smallest 

eigenvalues from the preconditioned system.  

6.2 Contributions 

The main contributions of this thesis are summarized as below:  

 Application of multilevel Schwarz preconditioning to adaptive FEM systems:  

This work extends the solution idea of p-type multilevel Schwarz (pMUS) for 

uniform order systems  [60]  [47] to the linear systems that arise in p-adaption. By a 
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suitable numbering of the high order DOFs, a block structured matrix is obtained 

which can be approximately inverted by a V-cycle, as with conventional pMUS.  

 Development of an ASP/AMG correction for the wave equation: 

I applied the Auxiliary Space Preconditioning approach for Whitney elements, 

which was only tested before on quasi-static problems, to wave-scattering 

problems. Design of several preconditioning algorithms has been carried out and 

development of a fully algebraic correction based on symmetric V-cycle and W-

cycle multigrid approximations has been achieved. The results shows that a 

ASP/AMG correction combined with a Krylov iteration is an effective technique 

for wave problems that are analyzed with large numbers of Whitney finite 

elements. As the mesh density increases, the number of Krylov iterations is 

constant and the CPU time grows linearly with the number of matrix nonzeros. 

 Development of an ASP/AMG correction for the T-   method: 

An efficient algebraic multigrid algorithm for the solution of quasi-static problems 

by the     formulation is developed. Similar algebraic methods have been 

applied previously to the matrices arising from purely vector formulations, using 

Whitney edge elements  [23]  [74]  [75]. However, the method in this thesis is 

different in that it works with the     method, which involves both scalar and 

vector unknowns. For the assembled matrix equation at level one, a partitioning is 

considered into vector unknowns (defined over the cotree edges of conductors) 

and scalar unknowns (defined over the whole mesh). Corresponding auxiliary 

space problems are then constructed for the separate treatment of the error related 

to the vector and scalar DOFs. The first order residual in this case is transferred 

into five auxiliary space problems: four equivalent nodal problems inside the 

conducting regions and one nodal problem for the whole mesh. Corrections are 

then connected in symmetric V and W cycles to result in an efficient 

preconditioner for the Krylov methods. 

 Incorporation of the ASP/AMG method for the first order problem into 

the pMUS algorithm:  

Complete matrix factorization of the lowest level matrix in pMUS is not 

applicable to large scale discrete PDEs. Considering the promising performance of 

the proposed ASP/AMG approaches for Whitney elements, I combined 
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corrections of high-order, hierarchical DOFs in pMUS with the new ASP 

corrections at level one into a symmetric preconditioner, which allows pMUS to 

be applied even when the matrix at lowest order is too big for direct solution. The 

algebraic lowest level correction is especially useful for problems with fine 

geometric details, requiring a very large mesh in which the bulk of the elements 

remain at low order. pMUS with ASP/AMG treatment has shown to be always 

faster than pMUS[A-V] and in some cases 10 times faster.  

 Application of “shifted Laplace” preconditioning to the curl-curl wave 

equation:  

For wave problems, the ASP/AMG algorithm is tailored to use a modified bilinear 

form. This is similar to the “shifted Laplace” technique that was developed for the 

scalar Helmholtz equation. Rather than being applied to the original bilinear form, 

corrections of the vector nodal part in the algorithm are applied to a shifted 

version, which can be thought of as the original operator with a complex 

perturbation. This is shown to provide a satisfactory multigrid inverse 

approximation and a significant convergence acceleration for the Krylov subspace 

methods, because of the improved spectral properties of the preconditioned linear 

system.  

 Development of a deflated Krylov scheme for faster solution of adaptive FEM 

systems:  

For problems with strong ill-conditioning, some eigenvalues may lie very close to 

zero and by proper treatment of these small eigenvalues further acceleration of 

Krylov methods can be achieved. The so-called deflation technique is used in this 

work to project out smallest eigenvalues from the preconditioned system, such 

that their contribution is removed from the residual. Rather than using expensive 

eigenvector computation, the construction of the deflation sub-space is, for the 

first time, based on an estimation of eigenvectors from information obtained when 

solving the first problem in a p-adaptive sequence. Numerical experiments show 

that the deflated Krylov solver provides additional reduction in run time time 

(20% to 40%), at the expense of a greater memory requirement (10% to 35%). 
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6.3 Recommendations  

Suggestions for future research include:  

 Parallelization of solver components:  

Some parallel implementation of the proposed method would be possible for very 

large scale applications. In particular, the correction steps involved in handling 

each of the four or five nodal sub-problems in ASP (from the finest grid to the 

coarsest grid) are separate and can be executed in parallel. The setup phase and 

some steps of the deflated Krylov solvers can also be implemented on a parallel 

machine. 

 Combination with multilevel-based incomplete LU methods 

For the current approach, adding more levels in the nodal AMG algorithm can be 

continued as long as the virtual AMG meshes can adequately represent field 

variations on the scale of the wavelength (for wave problems). If this limit is 

exceeded, the preconditioner quality suffers and the Krylov solver takes longer to 

converge, or may even fail to converge. Therefore, for problems which are 

electrically very large, the coarsest nodal problem may still be too large to 

factorize. In this case, one alternative approach for continuing the same algebraic 

concept at the bottom of the algorithm is to use a recently proposed inverse-based 

multilevel incomplete factorization  [108]. In contrast to conventional     

methods, the fully algebraic and symmetric multilevel inverse-based     

preconditioner may exhibit good efficiency (especially in terms of fill-in) for 

solving the coarsest nodal systems by employing a graph partition technique and 

reordering into a hierarchical multilevel structure.  

 Combination with domain decomposition as a local solver  

For solving very large and multiscale electromagnetic scattering problems, the 

finite element based nonoverlapping domain decomposition methods (DDM) have 

been exploited recently that enable each subdomain to be discretized and solved 

independently on one processing unit. Of particular interest would be the 

combination of the proposed approach with currently developed DDM algorithms. 

One may employ the pMUS/ASP algorithm as an effective local solver in every 

subdomain. This would allow larger subdomains, which would result in better 

performance.  
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 Non-symmetric multigrid components  

In this work, I have focused on the complex-symmetric property of the systems in 

order to choose multigrid components. Aside from requiring less storage, the 

symmetric property of the linear system allows us to use efficient Krylov subspace 

algorithms resulting from three term recurrences and based on the specialized 

conjugate orthogonality condition. All the preconditioning cycles in this work are 

substantially designed to exploit the symmetry in order to maximize the 

performance of solvers. However, by using some components that do not use 

symmetry, we might be able to develop better multigrid algorithms. For instance, 

recently some strategies have been proposed to use a non-symmetric GMRES 

smoother as an alternative  [109]  [110]. Outer iterations related to the Krylov 

methods can also be modified by using novel approaches, such as generalized 

conjugate residual method  [111].  
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