
Cosmological Constraints from the

South Pole Telescope

Galaxy Cluster Survey

Tijmen de Haan

Department of Physics

McGill University

Montréal, Québec

Canada

September 9, 2014

A Thesis submitted to McGill University

in partial fulĄllment of the requirements of the degree of

Doctor of Philosophy

c⃝ Tijmen de Haan, 2014









Contents

Abstract xiii

Résumé xiv

Contributions of Authors xv

Acknowledgments xvi

1 Introduction 1
1.1 Introductory Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Derivation of the Spatially Flat FRW Metric . . . . . . . . . . 2
1.1.2 Reformulating into Observational Jargon . . . . . . . . . . . . 4
1.1.3 Deviations from the FRW metric . . . . . . . . . . . . . . . . 5

1.2 Measuring Cosmological Parameters with Cluster Counts . . . . . . . 6
1.2.1 The Sunyaev-Zel’Dovich Efect . . . . . . . . . . . . . . . . . 8

1.3 The South Pole Telescope . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 SPTpol and SPT-3G . . . . . . . . . . . . . . . . . . . . . . . 12

2 Frequency Multiplexed Readout 13
2.1 Digital Active Nulling . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Improvements due to DAN . . . . . . . . . . . . . . . . . . . . 20

2.2 Digitally Enhanced Voltage Bias . . . . . . . . . . . . . . . . . . . . . 21
2.2.1 Preliminary Implementation . . . . . . . . . . . . . . . . . . . 22
2.2.2 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Future Prospects for DEVB . . . . . . . . . . . . . . . . . . . 24

3 SPT Data Analysis 27
3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Data processing and mapmaking . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Cluster Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Simulations of the Millimeter-Wave Sky 38
4.1 CMB and Point source realizations . . . . . . . . . . . . . . . . . . . 39
4.2 SZ Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Shaw Semi-Analytic Gas Model . . . . . . . . . . . . . . . . . 39
4.2.2 Arnaud ProĄle Simulations using DES Mocks . . . . . . . . . 40
4.2.3 Hydrodynamical Simulations . . . . . . . . . . . . . . . . . . . 40

v



vi Contents

4.3 SZ-Mass Scaling Relation from Simulations . . . . . . . . . . . . . . . 40
4.4 Field Scaling Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 False Detection Rate Simulations . . . . . . . . . . . . . . . . . . . . 47

5 The Cluster Selection Function 52
5.1 Mass Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Selection Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Computation of the Total Cluster Number . . . . . . . . . . . 55
5.3 Posterior Mass Estimation . . . . . . . . . . . . . . . . . . . . . . . . 60

6 SPT Cosmological Cluster Likelihood 64
6.1 Likelihood Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Analytic SimpliĄcation and Monte-Carlo Integration . . . . . 67

7 Results 70
7.1 Yx-Mass Scaling Relation Parameterization . . . . . . . . . . . . . . . 70
7.2 Cosmological Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 ΛCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.2.2 Constraints on the Neutrino Sector . . . . . . . . . . . . . . . 76
7.2.3 Error Budget and Future Prospects . . . . . . . . . . . . . . . 83
7.2.4 wCDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8 Conclusion 89

A Stability criterion for series impedance to the TES 91

B Glossary 92

Bibliography 95



List of Figures

1.1 The spectral shape of the thermal SZ efect. Below roughly 220 GHz,
the thermal SZ efect causes a characteristic Ćux decrement primary.
The primary CMB and the kinetic SZ efect are as shown dotted and
dashed lines, respectively. Figure adapted from Carlstrom et al. (2002). 8

1.2 The 10-m South Pole Telescope in the austral summer of 2012-2013.
Photograph by Ryan Keisler. . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 The three spectral bandpasses used in the SPT-SZ experiment. The
red, green and blue bandpasses are denoted as the 90 GHz, 150 GHz
and 220 GHz channels in this dissertation. Overplotted is the expected
atmospheric transmission at the south pole. Note that the major tel-
luric lines are avoided, allowing for a low-loading, low-opacity measure-
ment of the background astrophysical sky. Figure by Brad Benson. . 11

2.1 SimpliĄed schematic showing the voltage biased, frequency multiplexed
bolometer readout system. The digitized carrier waveform provides
strong voltage bias to each TES at its respective resonant frequency, as
set by the series LC Ąlter. The SQUID provides a current measurement,
which is ampliĄed, digitized and demodulated. In classic operation, the
digitized nuller signals provided static sinusoidal feedback, in addition
to broadband feedback from the shunt feedback. The latter, shown
dashed, is omitted in DAN operation, where the nuller signal actively
zeroes the SQUID current across the bolometer bandwidth. The thick
lines highlight the main sources of series impedance to the bolometer. 15

2.2 Schematic diagram showing the Ąrmware implementation of the DAN
algorithm signal path. Data rates are shown in green. Both readout
paths are shown. The residual readout path can be used to characterize
the properties of the loop, though as long as the loop is operating
correctly, the DAN readout alone respresents the bolometer current. . 17

2.3 Left: The broadband closed loop response of DAN. At 16 arbitrarily
chosen bias frequencies where DAN is operating, the transfer function
of an injected signal dips to zero i.e. the signal is nulled. Right:
Zoom on the network analysis near one bias frequency for a variety
of gain settings. The efective bandwidth of the nulling loop is shown
to increase with G, a commanded gain parameter proportional to the
open loop gain of the DAN feedback loop. . . . . . . . . . . . . . . . 18

vii



viii List of Figures

2.4 Histogram comparing the white noise level for 15 DAN channels op-
erating on a SQUID, with DAN enabled and DAN disabled. The two
distributions appear statistically consistent, conĄrming our expecta-
tion that the DAN operation does not alter the noise properties of the
readout system appreciably. . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Firmware diagram showing the DEVB signal path. Data rates are
shown in green. The complex current measurement and output voltage
amplitude are read out simultaneously. . . . . . . . . . . . . . . . . . 23

2.6 TES transition shown as the provided voltage is slowly decreased with
DEVB enabled and disabled. The TES latches into a superconducting
state when it reaches 60% of its normal resistance with DEVB enabled,
compared to latching at 90% of its normal resistance with DEVB dis-
abled. The left panel shows the raw data, whereas the right panel
shows the data once the stray series impedance is subtracted of. The
arrows are used to show the latching event, which occurs faster than
the data rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 An approximate representation of the noise and signal terms resulting
the SPT matched Ąlter, shown in the 1-D spatial Fourier domain. . . 33

3.2 The SPT matched Ąlter for θc = 0.25′ is shown in the 1-D spatial
Fourier domain. The Ąlter approaches zero for low kx modes, since
those are contaminated by sources of noise that vary slowly during
the scan, such as the atmospheric power and cryogenic stage drifts.
The ripple present in the 150 GHz contribution to the Ąlter is due to
the contributions of primary CMB Ćuctuations to the total noise PSD.
Figure from Bleem et al. (2014). . . . . . . . . . . . . . . . . . . . . . 35

3.3 The SPT matched Ąlter shown in the map domain. Convolving the
map with this Ąlter maximizes the signal-to-noise of a cluster with
the assumed proĄle in the presence of the measured noise PSD N and
transfer function B. Note the Ąlter goes negative to the left and right
of the main lobe in order to suppress large angular scale noise in the
scan direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 This region of simulated SZ sky was created by pasting Arnaud proĄles
onto halos identiĄed in a large N-body simulation. Note the azimuthal
symmetry of each individual halo. . . . . . . . . . . . . . . . . . . . . 41

4.2 In this SZ simulation, the Bode gas model is computed for each halo
identiĄed in the N-body simulation, and pasted onto this map. Note
that the individual halo gas models are truncated. . . . . . . . . . . . 42

4.3 This simulation was performed using smoothed particle hydrodynam-
ics. This realization of the simulated SZ sky does not rely on identifying
individual halos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures ix

4.4 The result of 25 realizations of simulations of the relation between ⟨ξ⟩
and ζ. The quadratic diference between measured ζ and ⟨ξ⟩ is binned
and plotted against a wide range of ζ. These data are consistent with
⟨ξ⟩2 = ζ2 + 3, with χ2 = 27 for 23 degrees of freedom. Figure taken
from Vanderlinde et al. (2010). . . . . . . . . . . . . . . . . . . . . . . 45

4.5 The number of false detections found per square degree of simulated
sky for each of the 19 SPT Ąelds. . . . . . . . . . . . . . . . . . . . . 49

5.1 The Tinker mass function for some Ąducial choice of cosmological pa-
rameters is shown in black. The colored curves show the contributions
from diferent redshift ranges. Note the cluster abundance for the high-
est masses is sourced primarily by the lowest redshifts, due to growth
of structure. The lower mass range is dominated by higher redshifts,
due to the increased surveyed volume. . . . . . . . . . . . . . . . . . . 54

5.2 The Tinker mass function for the same choice of cosmological param-
eters as in Figure 5.1 is shown on a linear abundance scale. Here
the mass function, integrated over several choices of redshift range, is
shown as dashed curves. The solid curves show the same mass function
multiplied by the SPT selection function. Note that the majority of
SPT-selected clusters come from the region where the SPT sample is
not 100% complete, highlighting the importance of rigorous statistical
treatment of the selection function. . . . . . . . . . . . . . . . . . . . 56

7.1 The cluster abundance as measured in the SPT-SZ 2500 square degree
survey. The predicted abundances given either the Planck or WMAP9
constraints on the ΛCDM cosmology is shown in the gray bands. Here,
we assume the nominal scaling relation parameters from the AGN8.0
simulation. Note the strong discrepancy between the measured and
predicted cluster abundances when using the Planck constraints. . . . 74

7.2 Comparison of the cosmological constraints presented in this work to
those presented in previous SPT publications. B13 presented 18 SZ-
selected clusters, 14 of which had X-ray data. R13 expanded the cluster
catalog to 100 cluster candidates, keeping the amount of X-ray clusters
to 14. This work presents a 375-cluster catalog, 83 of which have X-ray
YX data. Note the σ8-ΩM contours become signiĄcantly smaller. . . . 75

7.3 The 68% and 95% conĄdence intervals in the σ8-ΩM plane from the
SPT cluster abundance measurement presented in this work are shown
in blue. The WMAP7 bandpowers from Larson et al. (2011) combined
with the SPT bandpowers from Story et al. (2012a) are shown in gray,
where the red contours show the constraints implied from the Planck
CMB power spectrum with WMAP polarization information (Planck
Collaboration et al., 2013a). The black curves show the primary con-
straint coming from the cluster abundance measurement. . . . . . . . 77



x List of Figures

7.4 The one-dimensional primary constraint implied by the SPT cluster
abundance measurements in concert with the measurements of the
observable-to-mass scaling relations are shown in comparison to the
CMB constraints given the ΛCDM model. Note that there is tension
with the Planck+WP-implied parameters. . . . . . . . . . . . . . . . 78

7.5 Cosmological constraints in the ΛCDM+Σmν cosmological model. The
combination of the Planck+WP CMB powerspectrum data with the
SPT cluster abundance measurement is shown in blue. This combina-
tion of datasets and cosmological parameters yields a 3.3σ detection of
non-zero neutrino mass. . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.6 Cosmological constraints in the ΛCDM+Σmν cosmological model. The
horizontal lines denote the ± 1σ constraints from the BAO DR11
CMASS constraints, whereas the direct H0 measurement is shown as
vertical lines. While the free neutrino mass parameter reduces ten-
sion between the cluster abundance information and Planck+WP, this
comes at the cost of being discrepant with BAO and H0 measurements. 80

7.7 Cosmological constraints in the ΛCDM+Σmν+Neff cosmological model.
Note that the tension between SPTCL+Planck and BAO+H0 is signif-
icantly reduced by allowing Neff > 3.046. . . . . . . . . . . . . . . . . 81

7.8 The constraints on the sum of neutrino masses Σmν and efective num-
ber of relativistic species Neff are shown for various combinations of
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.9 ΛCDM constraints when placing twice as conservative a prior on the
normalization of the YX-M relation AX . Note the constraints degrade
only slightly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.10 Constraints on σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1
, the primary parameter mea-

sured using cluster abundance, is plotted against AX . The blue con-
tours shows the nominal constraints, where for the red contours we
have increased the assumed uncertainty on the normalization of the
YX-M relation by a factor of two. The black lines show the 68% conĄ-
dence region for Planck+WP. Note that the tension is not signiĄcantly
relieved by doubling the width of the prior. . . . . . . . . . . . . . . . 84

7.11 The degeneracies between key scaling relation parameters and cosmo-

logical parameters are shown. The constraints on σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1

are relatively independent of the additional cosmological data assumed.
However, the constraints on σ8 and ΩM difer signiĄcantly depending
on the choice of external dataset. Note that improved knowledge of the
redshift evolution scaling relation parameter CSZ will break the σ8-ΩM

degeneracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



List of Figures xi

7.12 Constraints on the wCDM model when assuming the nominal values
for the mass-observable relation. The cluster abundance measurement
is able to constrain the Ąve-parameter model with higher precision than
either the H0+BAO or Planck+WP datasets. . . . . . . . . . . . . . 88



List of Tables

1.1 Commonly used components of the stress-energy tensor Tµν and their
equation of state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The parameters of the ΛCDM cosmological model. . . . . . . . . . . 6

3.1 The noise level as deĄned in Schafer et al. (2011) for the 2500 square
degree SPT-SZ survey in each of the three frequency bands. . . . . . 27

4.1 The SPT-SZ scaling relation parameters extracted from SZ simula-
tions. The nominal simulation is shown in bold. . . . . . . . . . . . . 47

4.2 Field scaling factors for the 19 SPT-SZ Ąelds. These are used to rescale
the ζ-mass relation for each Ąeld. . . . . . . . . . . . . . . . . . . . . 48

4.3 False detection rate parameters for the 19 SPT-SZ Ąelds. . . . . . . . 50

5.1 The power-law scaling of cluster abundance with changes in σ8. The
last row shows the abundance integrated over the SPT selection func-
tion in mass and redshift i.e. the total number of clusters measured in
an SPT-like survey is proportional to σ6.1

8 . Note that, at Ąxed number
count, measuring cluster abundance at high redshift is a more powerful
probe of σ8 than a low-redshift measurement. . . . . . . . . . . . . . 53

7.1 The parameters that are varied in the joint cosmological and scaling
relation Ąt. The extension parameters are only varied where mentioned. 71

xii



Abstract

The South Pole Telescope (SPT) is a 10 m telescope located at the geographic south

pole. From February of 2007 to November of 2011, we used the SPT to perform a Ąve

year survey of 2500 square degrees of the southern sky in millimeter waves. In this

thesis, we describe work on the SPT project, such as digital feedback techniques for

bolometer readout that are enabling next-generation instruments, including an im-

plementation that is currently in use on the SPT. We discuss the 2500 square degree

dataset, how to Ąlter the data, generate maps, and extract a catalog of galaxy clusters.

Using this list of hundreds of SPT-selected galaxy clusters we constrain cosmologi-

cal parameters, noting that the scale of underlying cluster masses is the dominant

systematic error. We present a novel Bayesian method for jointly Ątting cosmolog-

ical parameters as well as an arbitrary number of observable-mass scaling relations,

in a computationally eicient way. Using this method, we compute constraints on

cosmological models.

xiii



Résumé

Le Télescope du pôle Sud (SPT) est un télescope de 10 mètres de diamètre situé

au pôle Sud géographique. De février 2007 à novembre 2011, nous avons utilisé le

SPT aĄn de mener une enquête de cinq ans sur les quelque 2500 degrés carré carrés

du ciel austral en ondes millimétriques. Dans cette thèse nous décrivons le travail

accompli dans ce projet du SPT tel que les techniques de rétroaction numérique

pour la lecture de bolomètres; ces techniques nous ayant permis de mettre à niveau

des instrumentations comme celles déployées et présentement utilisées sur le SPT.

Nous examinons l’ensemble des données obtenues, leur Ąltration, la production des

cartes, puis l’extraction d’un catalogue d’amas de galaxies. En utilisant cette liste

comprenant des centaines de galaxies sélectionnées par le SPT, nous contraignons les

paramètres cosmologiques, ce qui nous amène à noter que l’échelle de masse d’amas

de galaxies sous-jacente est l’erreur systématique dominante. Nous présentons une

nouvelle méthode bayésienne pour contraindre les paramètres cosmologiques conjoin-

tement avec un nombre arbitraire de relations entre les observables et la masse, d’une

manière eicace. En utilisant cette méthode, nous calculons les contraintes sur les

modèles cosmologiques.
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1

Introduction

In this chapter, we will brieĆy introduce some of the basic concepts of our current

knowledge of cosmology. The concepts and variables deĄned here form the underpin-

ning of our (remarkable) understanding of cosmology today. We will introduce the

concept of galaxy clusters, including their historical signiĄcance for the Ąeld of cos-

mology, and explain how the South Pole Telescope (SPT) can contribute to precision

cosmology by counting their abundance on the sky. As a cosmological probe of the

growth of structure over cosmic time, this galaxy cluster abundance measurement

will be analyzed in the context of cosmological parameters, some of which will be

measured, some conĄrmed, and some more precisely constrained than before in the

literature.

1.1 Introductory Cosmology

Physics on large scales is well-described by the theory of general relativity (GR).

Published in 1915 by Albert Einstein, GR is a geometric description of gravity, the

dominating force on cosmological scales. Here we will brieĆy derive the theoretical

framework that is required for the cosmological analysis using the galaxy cluster data

obtained with the SPT. We will place particular importance on the assumptions that

are made.

1



2 1 Introduction

1.1.1 Derivation of the Spatially Flat FRW Metric

The fundamental assumption underlying modern cosmology is known as the Cosmo-

logical Principle. It states that the universe is isotropic and homogeneous on large

scales. The universe is relatively smooth, and the tiny Ćuctuations we see can be

described statistically in a way that doesn’t have preferred directions or preferred

locations. The reason that we do see structure around us today can be explained by

those tiny seeds of structure growing over time due to gravity, and on relatively small

length scales (such as that of a galaxy cluster or smaller) due to other fundamental

forces. Restricting ourselves to gravitional efects only for the moment, GR can be

compactly summarized with the Einstein equation

Gµν =
8πG
c4

Tµν . (1.1)

On the left hand side we have the Einstein tensor Gµν , a rank 2 tensor that can be

derived from the metric gµν which describes the curvature of spacetime. On the right

hand side, we have the energy-momentum tensor. The Einstein equation implies

the fact that locally, the curvature of spacetime is sourced by components of the

stress-energy tensor: energy, momentum, pressure, and shear.

For the remainder of this introduction to physical cosmology, we will have to

make several simplifying assumptions about both the spacetime metric, as well as the

stress-energy tensor. We would like to stress that these assumptions are paramount to

deriving the rest of our understanding of cosmology. They are a good Ąt to available

data, and while many alternatives have been falsiĄed through observations, they are

in no way fundamental.

First, we will assume the simplifying functional form for the metric

g00 = −c2

gii = a(t)2
(1.2)
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Type of energy density equation of state W
radiation −1/3

matter 0
cosmological constant −1
constant dark energy w
arbitrary dark energy w(a)

Table 1.1 Commonly used components of the stress-energy tensor Tµν and their equa-
tion of state.

with the other elements zero. This is simply the Minkowski metric with a time-

dependent Şscale factorŤ a(t) in front of the spatial components. This is the spatially

Ćat case of what is known as the Friedmann-Robertson-Walker (FRW) metric.

Secondly, we will parameterize the stress-energy tensor using terms of the form

T 00 = ρ

T ii = p = Wρc2
(1.3)

again with the other elements zero. Here ρ describes the energy density of the compo-

nent in question, p describes its pressure, which is directly related to density through

the equation of state parameter W . Table 1.1 shows some of the relevant components

of the stress-energy tensor we will use later on.

In order to evaluate the Einstein equation, we expand the Einstein tensor as fol-

lows:

Gµν = (δγ
µδ

ζ
ν − 1

2
gµνg

γζ)(∂ϵΓ
ϵ
γζ − ∂ζΓϵ

γϵ + Γϵ
ϵσΓσ

γζ − Γϵ
ζσΓσ

ϵγ) . (1.4)

The Christofel symbols (Γαβγ = 1
2

(∂βgαγ + ∂γgαβ − ∂αgβγ)) are

Γ0
ii = aȧ

c2

Γi
0i = ȧ

a

(1.5)
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which gives the Einstein tensor. Writing out the Einstein equation in matrix form:





















3


ȧ
a

2
0 0 0

0 − 1
c2 (2äa+ ȧ2) 0 0

0 0 − 1
c2 (2äa+ ȧ2) 0

0 0 0 − 1
c2 (2äa+ ȧ2)





















=
8πG
c4





















c4

i ρi 0 0 0

0 c2

i Wiρi 0 0

0 0 c2

i Wiρi 0

0 0 0 c2

i Wiρi





















.

(1.6)

These are called the Friedmann equations. They describe the evolution of the scale

factor given a set of energy density contributions. Rewriting, the 0th element states

that


ȧ

a

2

=
8πG

3



i

ρi , (1.7)

and the trace states that

ä

a
= −4πG

3



i

ρi (1 + 3Wi) . (1.8)

These equations, describing the background evolution of the scale factor, are more

often seen using diferent parameters which will be described now.

1.1.2 Reformulating into Observational Jargon

Much of the purpose of this thesis is to make experimental contributions to

1. testing the assumptions stated above.

2. determining the free parameters in the Friedmann equations.

3. measuring deviations from the Friedmann equations on smaller scales, where

the cosmological principle is insufficient.
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In order to more easily compare the Friedmann equations to observable quantities,

we will introduce several variables. We refer the reader to Appendix B for a summary

of all commonly used variables in this dissertation.

First, the Hubble parameter H is deĄned as H = ȧ/a and its value today (by

convention, a = 1 at present) is denoted with H0. Its numerical value has been

measured to be on the order of 0.1 Gyr−1 or 100 km/s/Mpc. Secondly, we will

reparameterize the density parameters ρi in terms of the critical density

ρc =
3H2

8πG
, (1.9)

by deĄning Ωi = ρi/ρc. Finally, we introduce redshift z = 1/a− 1.

Substituting this new parameterization reduces the Friedmann equations to



i

Ωi = 1 , (1.10)

and
H2

H2
0

=


i

Ωi,0(1 + z)−(1+3Wi) . (1.11)

Assuming that the only relevant contributions to the stress-energy tensor are from

matter, radiation, and a cosmological constant (w = −1) denoted by Λ, this equation

becomes

H(z) = H0



Ωγ(1 + z)4 + ΩM(1 + z)3 + ΩΛ . (1.12)

This equation succinctly describes the expansion rate as a function of redshift.

1.1.3 Deviations from the FRW metric

As alluded to earlier, the FRW metric is meant to describe physics on the largest

scales. On smaller scales, there is clearly structure in the matter density as a function

of spatial position. This structure has largely grown gravitationally, starting as minute

Ćuctuations in a highly homogenous, hot, early universe. Perhaps the most compelling
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Symbol Parameter description
As Normalization of spectrum of primordial Ćuctuations
ns Power law slope of primordial Ćuctuations
Ωc Energy density of cold dark matter today
Ωb Energy density of baryonic matter today
θs Characteristic angular scale of primary CMB Ćuctuations

Table 1.2 The parameters of the ΛCDM cosmological model.

evidence for this comes from the primary CMB Ćuctuations, where the maximum

excursions are O(10−4) on top of a highly uniform background density.

The way structure forms on few-Mpc scales is remarkably well-understood. Mod-

ern cosmological measurements corroberate that this structure can be predicted from

purely gravitational simulations using only Ąve parameters, shown in Table 1.2.

This cosmological model with vaccuum energy Λ, cold dark matter, and no spatial

curvature is called ΛCDM.

1.2 Measuring Cosmological Parameters with Cluster Counts

Galaxy clusters are the largest gravitationally collapsed structures in the universe.

They are the tracers of extreme peaks in the matter density Ąeld on few Mpc scales and

their abundance is a strong function of the aforementioned cosmological parameters.

They consist of ∼ 88% dark matter. The remainder of the mass is largely made up of

a difuse, ∼ 107 K plasma, while stars only make up a few percent of the total mass.

The Ąrst mention of clusters of galaxies in the literature is in 1784, by Charles

Messier. He found that galaxies cluster on the sky, though they were then called

ŞnebulaeŤ, since their extragalactic origin was not known. Clusters have since been

rich laboratories of physics on Mpc scales. Perhaps most notably, Fritz Zwicky used

the virial theorem on the Coma cluster to infer the existence of dark matter in 1933,

opening a new area of physics. Observations of the Bullet cluster (1E 0657-558)

performed in the late 1990s show that most of the mass in a cluster-cluster merger is

collisionless, providing almost indisputable evidence for dark matter.
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Today, since dark matter is by far the dominant component in the dynamics of

clusters, the non-linear gravitational process of cluster formation can be understood

to great accuracy using numerical simulations. These so-called ŞN-bodyŤ simulations

only need to include basic gravitational physics of Lagrangian test particles in an

FRW metric.

The key observables predicted by such theory are the mass and redshift distribu-

tion of clusters. Therefore, in order to place constraints on cosmological parameters,

one must accurately determine the mass and redshift of each of the detected clusters.

Finding the cluster redshift is typically done using optical techniques, either through

galaxy photometry, or the location of spectral lines using spectroscopy. X-ray spec-

troscopy, namely the identiĄcation of the 7 keV iron line, is another useful method

for determining cluster redshift.

Mass determination will be the topic of much of this dissertation. Finding an

accurate systematic mass scale for a given cluster sample has proven to be the domi-

nant systematic error on cosmological parameter determination. The statistical tech-

niques required to turn abundance measurements into cosmological constraints are

non-trivial, primarily due to the fact that the theoretical abundance falls steeply

with underlying cluster mass. In real data, this steep population function is in-

evitably sampled using a noisy proxy, leading to Eddington bias (see Chapter 5). A

correct treatment of abundance-based constraints, as well as incorporating realistic

uncertainties on the (critical) knowledge of the overall mass scale, will be presented

in Chapter 6.

Since clusters are overdensities in the continuum matter density Ąeld, one must

choose a deĄnition of halo mass. Connecting measured mass estimates to theoretical

predictions can be diicult when these deĄnitions are not identical. In this work, we

use M500, the mass enclosed in a sphere that contains an average matter density Ąve

hundred times greater than the critical density of the universe.
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1.2.1 The Sunyaev-Zel’Dovich Efect

The thermal Sunyaev-Zel’dovich (SZ) efect is the inverse Compton scattering of

CMB photons of the hot electrons in the intracluster medium (ICM). Due to the fact

that this is a scattering process, increasing the mean photon energy while preserving

photon number, the SZ efect manifests as a spatial Ćux decrement below the null

frequency of ∼ 220 GHz. This is shown in Figure 1.1.

Figure 1.1 The spectral shape of the thermal SZ efect. Below roughly 220 GHz, the
thermal SZ efect causes a characteristic Ćux decrement primary. The primary CMB
and the kinetic SZ efect are as shown dotted and dashed lines, respectively. Figure
adapted from Carlstrom et al. (2002).
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The amplitude of the efect is proportional to the density of hot electrons present

in the ICM, and proportional to their temperature

∆T
TCMB

∝


dlneTe , (1.13)

where the integral runs along the line of sight. The thermal SZ efect is independent

of redshift, allowing an SZ survey to select clusters out to high redshift, only limited

by the time it takes for clusters to form.

Beyond the thermal SZ efect, there are related and complementary concepts such

as relativistic corrections to the thermal SZ efect, the non-thermal SZ efect due to a

possible ultra-relativistic non-thermal electron population, and the kinetic Sunyaev-

Zel’dovich efect (kSZ) due to the proper motion of hot electrons relative to the CMB

rest frame. For a detailed review of both the tSZ efect and these related concepts,

see Carlstrom et al. (2002).

1.3 The South Pole Telescope

The SPT is a 10-meter diameter telescope located at the geographic South Pole. With

a mirror surface accuracy of better than 20 µm RMS, it is capable of performing

in the sub-mm waveband, though the Ąrst three generations of cameras observe in

the millimetre-wave band. The 10-m diameter and millimeter waveband result in a

∼ 1 arcminute beam, which was chosen for the primary science goal: the discovery and

abundance measurement of hundreds of massive galaxy clusters (Ruhl et al., 2004),

which have a characteristic scale of one arcminute at redshifts beyond z = 0.25. For

this purpose, the three-band (see Figure 1.3) SPT-SZ camera was installed and saw

Ąrst light in 2007, surveying 2500 square degrees of southern sky during Ąve years.

Roughly simultaneously, similar surveys were performed with the ground-based ACT

experiment and the Planck satellite.
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Figure 1.2 The 10-m South Pole Telescope in the austral summer of 2012-2013. Pho-
tograph by Ryan Keisler.
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Figure 1.3 The three spectral bandpasses used in the SPT-SZ experiment. The red,
green and blue bandpasses are denoted as the 90 GHz, 150 GHz and 220 GHz chan-
nels in this dissertation. Overplotted is the expected atmospheric transmission at
the south pole. Note that the major telluric lines are avoided, allowing for a low-
loading, low-opacity measurement of the background astrophysical sky. Figure by
Brad Benson.
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1.3.1 SPTpol and SPT-3G

In November of 2011, we installed the next-generation SPT camera: SPTpol. As

its name suggests, the camera is polarization-sensitive. The focal plane is populated

with seven 150 GHz detector modules and 180 dual-polarization 90 GHz detectors.

Its primary science goal is to measure the odd-parity patterns (B-modes) in the

polarization of the CMB, which are sourced by both gravitational lensing due to large

scale structure, and primordial gravitational waves. The galaxy clusters discovered

through the SZ efect also provide a wealth of cosmologically and astrophysically

interesting information, though analysis of this sample is beyond the scope of this

work. We will, however, discuss the advances in detector readout technology, which

are implemented on SPTpol, in ğ2. These technological advances will be critical for

the development of SPT-3G, the third generation camera planned to be installed on

the SPT in 2016.

The remainder of this dissertation will describe the SPT experiment in greater

detail, including contributions to readout electronics, low-level data analysis, and

an optimal cluster Ąnding algorithm. A new Bayesian method for computationally

eiciently computing the cosmological likelihood of the SPT sample will be presented,

followed by the cosmological constraints inferred from this measurement.
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Frequency Multiplexed Readout

The SPT is one of a large number of mm-wave astrophysics experiments (Schwan

et al., 2011; Reichborn-Kjennerud et al., 2010; The Polarbear Collaboration et al.,

2010) that employ frequency multiplexed, voltage biased transition edge sensor (TES)

bolometers to convert the incident radiation power into a current, which is measured

by superconducting quantum interference devices (SQUIDs). TES bolometers are

exquisitely sensitive power measurement devices. To achieve such high sensitivities,

they are kept at cryogenic temperatures, limiting the number of wires that can be

used for their readout. For that reason, multiplexing is necessary in order to achieve

large pixel-count cameras.

The SPT-SZ instrument, with which the cluster data presented in this work was

obtained uses an analog implementation of frequency multiplexed TES bolometer

readout. This system is presented in Dobbs et al. (2011). The current SPTpol camera

uses a digital implementation known as the McGill digital frequency multiplexing

(DfMux) platform (Dobbs et al., 2008). This modern version is more compact, lower

in cost and power consumption, improves the low-frequency noise performance of

the experiment, and allows for a multiplexing factor greater than the analog system

(which ran at 7x). In addition, it easily allows for extensions to the readout scheme,

which is the topic of this chapter. A simpliĄed schematic of this readout scheme is

shown in Figure 2.1.

Due to the steep total power-resistance relation of the TES, a voltage bias results

in strong electrothermal feedback (ETF) (Irwin, 1995). In essence, the sum of optical

13
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and electrical power deposited on the bolometer is kept constant at the level dictated

by the ETF loop gain. Series impedances to the TES spoil ETF and decrease stability,

as we further explore in ğ2.2.2. The main sources of series impedance are the input

impedance of the SQUID and the inductance of the cryogenic wiring.

In addition, the SQUID has a highly non-linear response and has limited dynamic

range. Providing negative feedback to the SQUID linearizes it and suppresses its

efective input impedance. This negative feedback was previously provided broadband

using a SQUID Ćux locked loop shunt feedback (Dobbs et al., 2011, 2012) (hereafter

referred to as shunt feedback). It is shown as the dashed part of Figure 2.1. However,

the shunt feedback has several issues. First, it needs to provide strong negative

feedback over the entire bandwidth, while maintaining stability. Managing phase

shifts and rolling of the open loop gain to maintain the stability of this loop is a

challenge. Due to details not relevant to this work (see e.g. Lueker (2011)), this

requirement currently limits the usable bandwidth for frequency multiplexing to ∼
1.3 MHz and restricts wiring lengths. In addition, the presence of a superconducting

leg in the LCR comb (i.e. a latched TES) can cause the shunt feedback to go unstable

(Lueker, 2011).

Here we describe an alternative feedback scheme known as Digital Active Nulling

(DAN), which does not sufer from these limitations, allowing a higher multiplexing

factor, reduction of device parameter requirements, and improved stability. DAN is

therefore a key technology for enabling multi-kilopixel bolometer arrays, for future

ground-based, balloon-borne, and satellite applications. SPTpol is using this system

for part of the focal plane as well as for signiĄcant speed gains during the setup and

tuning of the SQUIDs and bolometer array. The previous mode of operation that did

not use DAN will be referred to as ŞclassicŤ operation.

DAN is similar to baseband feedback (den Hartog et al., 2011, 2012; Takei et al.,

2009) (BBFB), except for the electrical injection of the nulling signal, whereas BBFB

is applied directly to the SQUID through a separate feedback coil. If the coupling
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constant (deĄned as the ratio of mutual inductance to the geometric mean of self

inductances) of the input coil to the feedback coil were unity, this would be equivalent

to DAN as far as the feedback loop is concerned. However, BBFB applications have

so far had a small mutual inductance of the feedback coil to the input coil, in which

case the increased linearity and dynamic range are preserved, but the SQUID input

impedance suppression is equal to the coupling constant.

Furthermore, in ğ2.2 we present a novel method of suppressing the efect of impedance

in series with the TES known as Digitally Enhanced Voltage Bias (DEVB). Here, we

once again take advantage of the small bandwidth of the TES and digitally correct

for the voltage drop across the stray impedance; efectively providing strong voltage

bias at each TES bias frequency separately.
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Figure 2.1 SimpliĄed schematic showing the voltage biased, frequency multiplexed
bolometer readout system. The digitized carrier waveform provides strong voltage
bias to each TES at its respective resonant frequency, as set by the series LC Ąlter.
The SQUID provides a current measurement, which is ampliĄed, digitized and de-
modulated. In classic operation, the digitized nuller signals provided static sinusoidal
feedback, in addition to broadband feedback from the shunt feedback. The latter,
shown dashed, is omitted in DAN operation, where the nuller signal actively zeroes
the SQUID current across the bolometer bandwidth. The thick lines highlight the
main sources of series impedance to the bolometer.
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Series impedances spoil the voltage bias. In the extreme limit where the series

impedance dominates the total impedance, the TES is efectively current biased and

is unstable to perturbations. An increase in current causes an increase in electrical

power and hence in resistance, leading to an instability. As shown in Appendix A,

for an efective series complex impedance zs and TES resistance RTES, the stability

criterion is given by
d log VTES

d logRTES

≤ ♣zs♣
♣zs +RTES♣ . (2.1)

Once the logarithmic slope of the transition exceeds the fractional efective series

impedance, the TES will latch into a superconducting state, such that it is no longer

useful as a detector. In ğ2.2.2, we show that DEVB allows for stable operation in this

regime.

2.1 Digital Active Nulling

We have implemented DAN on the DfMux platform, with the Ćowchart shown in

Figure 2.2. Each circuit board provides 8 digital-to-analog converters, 4 analog-to-

digital converters, and a Xilinx Virtex-4 Field-Programmable Gate Array (FPGA)

for signal processing tasks. Each digital-to-analog converter synthesizes a ŞcombŤ

waveform at 25 MSPS, consisting of 16 sinusoidal terms with independent amplitude,

phase, and frequency controls. The DfMux also provides 64 complex demodulator

channels, and streams data from each of them over Ethernet at a programmable

sampling rate which, for this work, we set to 191 Hz. The software stack consists

of an embedded Linux system, running C code and controlled remotely with a user-

friendly python API (Smecher et al., 2012; Story et al., 2012b).

DAN is implemented as a separate discrete time integral control loop at each bias

frequency. For one such bias frequency, the feedback loop is shown in Figure 2.2.

We choose integral control for its desirable property of having an efective loop gain

proportional to 1/δf , where δf denotes the frequency separation of the signal from

the bias frequency. This implies that it has inĄnite gain at δf = 0, where the bulk of
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the signal (the bias voltage) resides. For stability, we require that the open loop gain

falls below unity at 180◦ of phase shift, such that no poles of the closed loop transfer

function have a positive real component. The phase shift is dominated by digital

time delays, which, in our implementation, range from 5.5 µs - 10.6 µs depending on

the bias channel. Thus, we can easily achieve stability by letting the open loop gain

fall below unity at ∼ 10 kHz, which implies that at the highest bandwidth that may

be required for science, say 100 Hz, we still have a loop gain of 100 and hence 99%

efective nulling.

DAN Gain

Discrete-time Integrator

Nuller
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191 Hz
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Figure 2.2 Schematic diagram showing the Ąrmware implementation of the DAN
algorithm signal path. Data rates are shown in green. Both readout paths are shown.
The residual readout path can be used to characterize the properties of the loop,
though as long as the loop is operating correctly, the DAN readout alone respresents
the bolometer current.

2.1.1 Experimental Results

We initially characterized our implementation of DAN by bypassing the cryogenic

components of the readout system and using a warm resistive network that has a

similar transfer function to that of the cryogenic components. A measurement of the
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residual signal at the current sensor as a function of frequency (hereafter referred to

as a network analysis) of DAN in this characterization setup reveals the closed loop

transfer function shown in Figure 2.3.
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Figure 2.3 Left: The broadband closed loop response of DAN. At 16 arbitrarily chosen
bias frequencies where DAN is operating, the transfer function of an injected signal
dips to zero i.e. the signal is nulled. Right: Zoom on the network analysis near one
bias frequency for a variety of gain settings. The efective bandwidth of the nulling
loop is shown to increase with G, a commanded gain parameter proportional to the
open loop gain of the DAN feedback loop.

We then operated DAN with cryogenic bolometers, including the SQUID readout.

In contrast to classic operation, we found that one advantage of the DAN mode of

operation is that the time required to map out the TES transition is reduced to the

trivial exercise of stepping in bias amplitude while recording the DAN output. This

mapping is performed after each cryogenic cycle on the SPTpol experiment. Using

DAN decreases this tuning time (which previously took tens of minutes) by an order

of magnitude, while simultaneously measuring the voltage-resistance characteristic

at a much higher resolution. This speedup, simpliĄcation and improvement of the

bolometer tuning algorithm has been implemented and is currently one of the uses

of DAN occurring daily on SPTpol, and was used for the Ąrst science Ćight of the

EBEX balloon-borne experiment (Reichborn-Kjennerud et al., 2010).

In the cryogenic test setup, we veriĄed that the loop is operating correctly by

streaming the residual demodulator signal and seeing a highly suppressed white noise

level that increases with frequency in the manner expected from the integral control
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loop. We also veriĄed that the DAN signal is the same as the demodulator signal

when the gain parameter is set to zero. In particular, we provide a small sinusoidal

test signal, which applies time varying power to the TES. The resulting demodu-

lated current measurement(Lueker et al., 2009) is found to be identical between the

cases where DAN is enabled and where it is disabled. In addition, we compare the

white noise level between these two modes of operation and Ąnd that they agree. A

histogram of the white noise levels for a cryogenic SQUID without TES bolometers

attached is shown in Figure 2.4.
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Figure 2.4 Histogram comparing the white noise level for 15 DAN channels operating
on a SQUID, with DAN enabled and DAN disabled. The two distributions appear
statistically consistent, conĄrming our expectation that the DAN operation does not
alter the noise properties of the readout system appreciably.
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2.1.2 Improvements due to DAN

Operating the system in DAN mode has several advantages. First, the strongly

reduced efective SQUID input impedance results in a stifer voltage bias, improving

TES stability.

DAN nulls the SQUID current near bias frequencies, improving SQUID linearity

and stability due to the large reduction of the total signal amplitude at the SQUID in-

put. Similarly, improved nulling reduces the dynamic range requirement on the ADC,

avoiding overloads in the case of unstable bolometers or changes in the bolometer op-

erating point.

Removal of the shunt feedback improves system stability, allowing longer wire

lengths between the 4K SQUID and room temperature electronics, and increasing the

allowed bandwidth. Additionally, the shunt feedback instability to a single supercon-

ducting leg in the comb is eliminated. DAN does not interact across bias frequencies,

so any instabilities are localized to one TES, instead of the whole comb. We have

experimentally veriĄed this by allowing various numbers of individual bolometers to

go superconducting and found no measurable efect on the noise level of the remaining

bolometers on the same comb. This is in stark contrast to classic operation.

The increase in usable bandwidth, removal of sensitivity to single misbehaving

bolometers, and reduced usage of SQUID dynamic range, all enable a higher multi-

plexing factor. This higher multiplexing factor and the longer allowed wiring length

are key for reducing heat load on cold stages such that it falls within the capabilities

of available space cryogenics, as well as enabling lower cost, higher pixel count ground

based experiments.

Both increasing wiring lengths and moving the bolometer channels to higher fre-

quency causes an increase in the wiring inductance (bolded in Figure 2.1), which is

a source of series impedance to the TES. We note that the presence of this induc-

tance also shifts the optimal bias frequency and that, at this new bias frequency,

the resulting efective impedance in series with the TES is smaller than jωLwiring.
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The amplitude and phase of the efective complex series impedance are non-trivially

related to the details of the LCR network, though an analytic calculation is possible.

The series impedance due to wiring can be mitigated by moving this wiring in-

side the DAN feedback loop, suppressing it in a manner similar to the SQUID in-

put impedance suppression. This involves increasing the number of wires from each

SQUID to a cryogenic stage near the detectors from two to six. An alternate scheme

to mitigate this wiring inductance is DEVB, which we discuss in ğ2.2.

2.2 Digitally Enhanced Voltage Bias

While the SQUID input impedance is strongly suppressed by DAN, residual series

impedance (e.g. from wiring inductance, capacitor ESR, or magnetic coupling to lossy

material) can limit TES stability. This series complex impedance can be measured

to good accuracy by tuning the bolometers into their transition, cooling them below

their superconducting temperature, and stepping down the bias voltage until the TES

latches into its superconducting state. At this point, the current is proportional to the

applied voltage (as we have experimentally veriĄed), giving a measure of the residual

complex impedance, which is typically ∼10-30% of the bolometer normal resistance.

We will show how this impedance can be used to dynamically adjust the voltage bias

such as to keep the TES voltage constant.

TES bolometers respond to incident power with a time constant τ0 = C/G where

C is the heat capacity of the TES and G is the thermal conductance to the heat sink.

Under voltage bias, this time constant is sped up by the loop gain of electrothermal

feedback L (e.g. Richards (1994)) as

τeff =
τ0

1 + L . (2.2)

DEVB actively controls the voltage across the TES on time scales faster than τeff , pro-

viding a constant voltage bias across the TES while strongly suppressing the efective

series complex impedance.
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We denote this series impedance as zs = Rs + jXs. Given values of Rs and Xs,

a constant voltage bias to the TES denoted VTES can be provided by measuring the

current through the bolometer and providing the voltage

VOUT =


(VTES +RsI)2 +X2
s I

2 , (2.3)

where I denotes the magnitude of the measured current and VTES is the programmable

voltage set-point. Since, as with DAN, there are digital delays between measuring I

and providing VOUT, we perform this computation at a Ąxed loop gain below unity

in order to introduce an efective DEVB time constant and ensure stability of the

feedback loop. The DEVB time constant is discussed further in ğ2.2.1.

In addition to providing improved TES stability, the enhanced voltage bias across

the LCR comb suppresses cross-talk due to that same series impedance. In the case

of an inductive series impedance, this term is proportional to the ratio of the stray

inductance to the inductance of the LC resonator(Dobbs et al., 2011). With DEVB,

this efect is suppressed by the DEVB loop gain.

2.2.1 Preliminary Implementation

A hardware prototype of DEVB has been implemented based on a customized version

of the DfMux Ąrmware(Smecher et al., 2010), outlined in Figure 2.5. This Ąrmware

supports 64 bias and nuller channels, as well as 68 single phase demodulator chan-

nels. The DEVB feedback loop is implemented on one of those bias channels, using

two of the demodulator channels, aligned 90◦ out-of-phase to provide I and Q cur-

rent measurements at the bias frequency. The resulting signals are fed to a DEVB

module, which calculates an output amplitude for the synthesizer block by explicitly

computing Equation 2.3, using the quadrature sum of the I and Q measurements as

the current amplitude. The synthesizer modulates the amplitude of the bias sinusoid

using this output. The input to, and the output from, the DEVB module are further

decimated to 191 Hz and streamed across the network for setup and analysis.
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Figure 2.5 Firmware diagram showing the DEVB signal path. Data rates are shown
in green. The complex current measurement and output voltage amplitude are read
out simultaneously.

Figure 2.5 shows the computation within the DEVB module. At the input to

this module, Ąxed-point signals from the demodulator are converted into Ćoating-

point numbers for computation. The algorithm itself is separated into two parts:

calculation of a target amplitude, and a control element generating the feedback

signal by stepping the current amplitude a fraction towards the target amplitude.

We denote this fraction the DEVB gain. The control signal generated by these blocks

is Ąnally converted back into Ąxed-point numbers suitable for the synthesizer block.

We run the control loop at 12 kHz and set the DEVB gain to 1/3, yielding an

approximate DEVB time constant of 4 kHz; much faster than the ∼ 100 Hz time

constant of a typical TES.

2.2.2 Measurements

In order to demonstrate the enhanced performance of TES detectors under DEVB,

we test the stability of a detector in the presence of a large stray impedance as given

in Equation 2.1. SpeciĄcally, we apply a large carrier voltage to a single detector
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in an LC resonance, designed to allow for frequency multiplexing. By setting the

frequency of this voltage signiĄcantly away from the LC resonance we create an

efective additional impedance in series with the bolometer. In this case we set the

series impedance to 1.4 j Ω, while the normal TES resistance is ∼ 0.9 Ω. We then

reduce the applied voltage, dropping the TES into its transition. The TES is lowered

through its transition until it latches and becomes superconducting. The resulting

total impedance as a function of applied voltage and the resistance of the TES alone

as a function of the voltage across the TES alone are shown in Figure 2.6. This test,

performed with DEVB enabled and DEVB disabled, shows that the use of DEVB

lowers the point at which the TES latches, demonstrating that DEVB allows the

TES to drop much lower into its transition in the presence of large series impedance.

Enabling this mode of operation relaxes design constraints on many elements of the

readout system.
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Figure 2.6 TES transition shown as the provided voltage is slowly decreased with
DEVB enabled and disabled. The TES latches into a superconducting state when it
reaches 60% of its normal resistance with DEVB enabled, compared to latching at
90% of its normal resistance with DEVB disabled. The left panel shows the raw data,
whereas the right panel shows the data once the stray series impedance is subtracted
of. The arrows are used to show the latching event, which occurs faster than the
data rate.

2.2.3 Future Prospects for DEVB

While we have demonstrated the concept of DEVB, extending this feedback mecha-

nism to an array of bolometers requires several improvements to the Ąrmware, as well
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as the readout scheme and feedback mechanism.

Equation 2.3, as well as the computation of the magnitude of the complex demod-

ulated current, contains a square root operation, which is challenging to implement

eiciently on an FPGA. An alternate DEVB scheme would involve controlling both

the I and Q components of the bias voltage VOUT rather than controlling only its

amplitude. The set point for VOUT would then become

V I
OUT = V I

TES + IIRs − IQXs

V Q
OUT = V Q

TES + IQRs + IIXs .
(2.4)

This complex DEVB scheme, when implemented in Ąxed-point logic, would be

easily scalable to the full 64 bias and complex demodulation channels using the current

Xilinx Virtex-4 FPGA.

The current implementation of DEVB does not support DAN. In future versions

of DEVB, we would implement both the DEVB and DAN modules simultaneously.

We would choose to run DAN at a signiĄcantly faster efective time constant than

the DEVB control loop, such that the SQUID current is nulled, regardless of the

changes in VOUT made by the DEVB module. This approach would allow us to

employ the beneĄts of DAN, such as the higher usable bandwidth and reduced SQUID

dynamic range requirement, while retaining the suppressed series impedance from

wiring inductance without needing to increase the heat load from the 4K stage to the

millikelvin stage by increasing the wire count.

Finally, it is possible to implement DEVB with frequency-dependent coeicients

such that a frequency-dependent series impedance could be suppressed. This would

allow narrower LC Ąlters to be used, reducing channel spacing and hence increasing

the multiplexing factor for a given usable bandwidth and constraint on electrical

cross-talk.
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We have introduced DAN, a method of keeping the current through the sensing

portion of the readout system very close to zero at frequencies near the TES bias

frequencies. This digital feedback mechanism increases stability and linearity of the

SQUIDs, while suppressing their efective input impedance. We have demonstrated

a fully implemented version of DAN including stability results and nominal noise

performance, and described its use on the SPTpol experiment.

While this technique is similar to BBFB, the suppression of series impedance is

unique to DAN. Removing the shunt feedback from the readout system increases the

usable bandwidth for frequency multiplexing, enabling higher multiplexing factors

and reducing wiring length constraints. Hence, DAN is a key technology for applying

frequency multiplexed readout to satellite applications, which generally require long

wiring lengths.

However, the use of higher bias frequencies increases the series impedance due to

wiring. This efect can be mitigated by increasing the number of wires per multi-

plexing module from the 4 K SQUID to (close to) the millikelvin stage from two to

six.

We also described DEVB, a digital feedback technique which suppresses series

impedances to the TES by measuring them and providing the actively controlled bias

voltage required to hold the TES at a constant potential. This technique has been

demonstrated to increase TES stability, despite large (zs ≳ RTES) complex series

impedances, without increasing wire count.
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SPT Data Analysis

3.1 Observations

The cosmological constraints presented in this dissertation are based on observations

performed with the SPT from 2007-2011. With this Ąve-year survey, we mapped the

region 20h < RA < 7h, −65◦ ≤ dec ≤ −40◦, totalling 2500 square degrees of the

southern sky. The depths to which this area was mapped are shown in Table 3.1.

The full deĄnition of map depth can be found in Schafer et al. (2011).

Here, we consider only the 95 GHz and 150 GHz data. The 220 GHz data is signif-

icantly less deep and the observations were contaminated by atmospheric Ćuctuations

at large angular scales where they could be useful for removing CMB Ćuctuations.

The addition of this frequency band does not signiĄcantly improve the eiciency of

cluster detections. For robustness, we therefore choose to leave it out of the analysis

presented here.

The 2500 square-degree survey was performed in sections that are rectangular in

right ascension and declination. These subregions are referred to as fields. The Ąelds

are denoted by their approximate centers e.g. ra23h30dec-55. Each of the 19 Ąelds

Frequency (GHz) Noise Level (µK-arcmin)
95 40
150 18
220 70

Table 3.1 The noise level as deĄned in Schafer et al. (2011) for the 2500 square degree
SPT-SZ survey in each of the three frequency bands.
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was scanned in the following manner. The telescope is swept in azimuth at a constant

velocity (∼ 0.25◦/s) from one end of the Ąeld to the other, and back. This is followed

by a step in telescope elevation, and repeated until the Ąeld is covered vertically. This

scan strategy allows the entire SPT focal plane to cover the Ąeld and is referred to as

an observation. Observations are repeated for several months until the approximate

depth of 18 µK at 150 GHz is reached.

The scan strategy difers for several Ąelds. For some Ąelds, the azimuth scans cover

only one half of the Ąeld in right ascension at any one time. When half the Ąeld has

been scanned, the other half is immediately started, with the duration of each half be-

ing exactly half the right-ascension extent of the Ąeld measured in hours. Due to the

fact that the SPT is at a latitude of -90◦, this results in the two halves of the Ąeld trac-

ing out an identical scan pattern with respect to the ground. The observations using

this approach are called Şlead-trailŤ observations. For one other Ąeld (ra21hdec-60),

the telescope azimuth drive was under investigation, so approximately 75% of the

data was taken by moving the telescope in elevation from the highest declination to

the lowest declination, only changing telescope azimuth in between observations.

3.2 Data processing and mapmaking

The time-ordered data from each detector was Ąltered in several steps, enumerated

below.

1. The bolometers have intrinsic optical time constants that difer between de-

tectors. In order to homogenize the frequency response between detectors, we

divide the Fourier-space representation of the timestream of a particular detec-

tor by its best-Ąt single-pole Ąlter. In order to avoid aliasing when binning into

maps, we also apply a Fourier-space Ąlter that is a low-pass Ąlter of the form

H(ω) =











1 ω < ω0

e−(ω/ω0)6
ω ≥ ω0

, (3.1)
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where ω0 is chosen to correspond to 25 Hz for all detectors.

2. The very lowest frequency components of the bolometer timestreams are con-

taminated by instrumental factors such as cryogenic stage temperature drifts,

readout noise, and atmospheric Ćuctuation power. Since these sources of signal

overlap with a region of the sky power spectrum dominated by primary CMB

Ćuctuations, rather than cluster signal, we can remove these efects by applying

a high-pass Ąlter to the data. When applying a high-pass Ąlter, bright point

sources must be masked to minimize their efect on the rest of the map. The

algorithm we developed for doing so uses linear least-squares to Ąt and subtracts

a series of basis functions as follows. BrieĆy, the data is organized as a matrix

X containing the bolometer timestreams, i.e. it is (Ntod × Nbolometers). This is

then multiplied by unity, minus the linear least squares operator as follows

X = X − V


V⊤V
−1

V⊤X , (3.2)

where V is the Vandermonde matrix in the case of polynomial Ąltering. In our

case, we keep the Ąrst two polynomials (mean and slope), but replace the other

rows of the Vandermonde matrix by sine and cosine functions, approximating a

Fourier-domain hard high pass Ąlter. While less computationally eicient than

an FFT-based method, this explicit linear least-squares method conveniently

allows for masking of the brightest mm-wave sources, which otherwise would

cause Ąltering artifacts in the map domain. We Ąrst go through a preliminary

iteration of this data analysis procedure without masking, in order to determine

the locations of these brightest sources. We then use the measured positions

in the second and Ąnal iteration of the map-making procedure as the mask

locations.

3. Similar to the temporal high-pass Ąlter, we apply a Ąlter at each time sample but

across all bolometers. This step is performed identically to the high-pass Ąlter
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applied to the time ordered data for each bolometer, except that X is replaced

by its transpose and we use a Vandermonde matrix where each row contains a

constant for bolometers in a given detector module, and zero otherwise. This

results in a (masked) subtraction of the average signal across each detector

module.

4. The time-ordered data is calibrated according to the procedure outlined in

ğ3.2.1.

5. The Ąltered and calibrated time-ordered data is combined with the recon-

structed pointing and binned into a map by simple inverse-variance-weighted

binning and averaging.

We performed this process on simulated timestreams, and compared the resulting

maps to an approximate Fourier-domain Ąlter which will be described in ğ3.3. The

resulting maps were tested by performing a galaxy cluster search, and the resulting

cluster signiĄcances difered by ∼ 1%. This implies that the Ąltering procedure de-

scribed above can be well-approximated by a Fourier-domain Ąlter. SpeciĄcally, one

with an isotropic 0.5◦ high-pass Ąlter and a 1◦ high-pass Ąlter in the scan direction.

Based on comparisons of radio source positions derived from SPT maps and po-

sitions of those sources in the AT20G catalog (Murphy et al., 2010), we Ąnd a small

overall astrometry correction on the order of ∼ 5′′ on the sky. Since this is small com-

pared to the angular extent of the galaxy clusters, we do not apply this correction in

this work.

3.2.1 Calibration

The relative and absolute calibration of the detector response (i.e. the size of the sig-

nal measured for a given Ćuctuation on the sky) is computed using a tiered approach.

There are several issues to keep in mind when designing, implementing or evaluat-

ing a calibration strategy. The calibration of a bolometer may drift with time, and is
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expected to change with weather and especially after a cryogenic cycle. The diferent

bolometers also have a diferent calibration relative to each other.

A modulated thermal source is installed behind the secondary mirror, with a shut-

ter in place. This source illuminates the focal plane with a 6 Hz square wave. This

system would be suicient to calibrate the focal plane if it weren’t for the following

issues. First, its illumination of the focal plane is non-uniform. Secondly, the atmo-

spheric opacity can change over time, altering the relation between power received by

the bolometer and the true power on the sky. Thirdly, the source is known to slowly

dim over time, eventually burning out and needing to be replaced. Lastly, the overall

absolute intensity of the source is not known to suicient accuracy.

In order to address the non-uniform illumination, opacity and dimming over time,

we use another calibration: frequent observations of the galactic HII source RCW38.

The emission from RCW38 is suiciently bright in all three spectral bands to yield

a signal-to-noise ratio (SNR) of several for most bolometers in a ∼ 15 minute scan,

while not being too bright to cause non-linear response of the detectors. The RCW38

response is averaged over an entire observing season to yield a relative calibration

for each detector, which is used as a correction for the non-uniform illumination of

the calibrator. The atmospheric opacity correction is computed by averaging the

daily RCW38 response of each focal plane module. Finally, note that the opacity

correction also automatically corrects for slow changes in the temperature of the

modulated thermal source.

The absolute Ćux of RCW38 is known at the ∼ 10% level (Coble et al., 2003).

Analysis of Planck satellite data (Planck Collaboration et al., 2013c) has resulted in

an absolute calibration of better than 1% through measuring the Doppler modulation

of the 2.7 K CMB monopole. This modulation is caused by both the orbit of the

satellite around L2, and the orbit of the earth around the sun, both of which are

known to much better than 1%. Since the SPT data has excellent overlap with the

Planck data over an intermediate range of angular scales (ℓ ∈ [670, 1170]), comparing
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transfer function-deconvolved bandpowers gives an overall calibration that is more

than suicient for the analysis presented here.

3.3 Cluster Extraction

Seeing galaxy clusters in the raw SPT maps by eye is fairly diicult. In addition, char-

acterizing the selection function would be extremely diicult. Therefore, we choose

to implement a numerical algorithm to extract the cluster sample. Furthermore,

based on the work of Haehnelt and Tegmark (1996); Herranz et al. (2002a,b); Melin

et al. (2006), if the cluster proĄle, transfer function and noise power spectrum are

known, the optimal Ąlter can be constructed. For details of the deĄnition of the term

ŞoptimalŤ, see Melin et al. (2006).

For the cluster proĄle, we choose to use a projected spherical isothermal β-model:

∆T = ∆T0(1 + θ2/θ2
c )− 3

2
β+ 1

2 ,

where the amplitude ∆T0 is chosen to normalize the proĄle and the core radius θc is

a free parameter. We choose β = 1. After extensively checking the cluster extraction

procedure, we Ąnd a negligible dependence on the choice of functional form for the

assumed cluster proĄle. For instance, using an Arnaud proĄle (Arnaud et al., 2010),

a Nagai proĄle (Nagai et al., 2007), or a Gaussian proĄle (with the width a free

parameter) results in a very similar cluster catalog, which has no signiĄcant impact

on the results presented here.

Heuristically, this can be seen in Figure 3.1. The total noise power spectrum

is steeply falling at large angular scales due to contributions from primary CMB

Ćuctuations. At small angular scales, noise power becomes increasingly important.

In the range of angular scales where the SZ signal is well-measured with the SPT, the

cluster proĄle is typically quite Ćat, yielding little dependence on the exact details of

the assumed proĄle.

As mentioned in 3.2, the transfer function was initially computed from time-
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Figure 3.1 An approximate representation of the noise and signal terms resulting the
SPT matched Ąlter, shown in the 1-D spatial Fourier domain.
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domain simulations. However, to make the choice of transfer function robust and

computationally simple, we choose the analytic transfer function described there.

For a particular subset of the SPT data (the ra5h30dec-55 Ąeld), we veriĄed the

efect of switching to the Fourier-equivalent of time-domain simulations and Ąnd no

appreciable change in the resulting cluster catalog.

The noise PSD is estimated from ŞjackknivesŤ: the repeated co-adding of the single

observation maps while randomly multiplying half the maps by minus one. This

causes any power which is stationary on the sky and hence coherent between any

subsets of the data, to cancel. Noise power is incoherent on long timescales and acts

such that the sign Ćip does not alter its relevant stochastic properties. The jackknife

maps are transformed into the spatial Fourier domain, squared and averaged. This

results in a noise PSD that accurately describes the SPT noise in the approximation

it is gaussian. This approximation has been veriĄed to be suiciently accurate in the

simulations described in 4.5.

With these data products in hand, the SPT maps were Ąltered with a spatial

matched Ąlter of the form

ψ(kx, ky) =
B(kx, ky)S(♣⃗k♣)

B(kx, ky)2Nastro(♣⃗k♣) +Nnoise(kx, ky)

where ψ is the matched Ąlter, B is the transfer function, S is the assumed source

template, and the relevant noise power has been broken into astrophysical (Nastro)

and noise (Nnoise) components, all in the spatial Fourier domain.

The astrophysical sources of noise (for this measurement) Nastro include contri-

butions from power from primary and (a gaussian approximation to) lensed CMB

Ćuctuations, an SZ background, and point sources. These components are the same

as those used for the cluster simulations, which are described in detail in Chapter 4.

The marginalization over the cluster proĄle core radius θc was performed numeri-

cally. We choose twelve core radii evenly spaced between 0.25′ to 3.0′. The resulting
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Figure 3.2 The SPT matched Ąlter for θc = 0.25′ is shown in the 1-D spatial Fourier
domain. The Ąlter approaches zero for low kx modes, since those are contaminated
by sources of noise that vary slowly during the scan, such as the atmospheric power
and cryogenic stage drifts. The ripple present in the 150 GHz contribution to the
Ąlter is due to the contributions of primary CMB Ćuctuations to the total noise PSD.
Figure from Bleem et al. (2014).
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cluster lists are cross-matched and, for each candidate, we choose the value of θc that

maximizes the cluster detection signiĄcance. The 150 GHz matched Ąlter for θc = 1′

is shown in Figure 3.2.

Figure 3.3 The SPT matched Ąlter shown in the map domain. Convolving the map
with this Ąlter maximizes the signal-to-noise of a cluster with the assumed proĄle in
the presence of the measured noise PSD N and transfer function B. Note the Ąlter
goes negative to the left and right of the main lobe in order to suppress large angular
scale noise in the scan direction.

The candidates are found in the Ąltered map using a (negative) peak detection

algorithm similar to SExtractor (Bertin and Arnouts, 1996). The signal-to-noise or

detection signiĄcance, which we denote with ξ, is determined as the amplitude of

the Ąltered map at the candidate location, divided by its standard deviation in the

nearest 90 arcminute strip in declination. For the majority of this work, we only

consider candidates with ξ > 5. In ğ4.5, this choice will be shown to lead to a low

false detection rate of ∼ 5%, while still yielding a large cluster sample.

Because the matched Ąlter supresses power on large scales, the real-space Ąlter

will qualitatively show ŞringingŤ. An example of the SPT real-space matched Ąlter is

shown in Figure 3.3. Bright point sources, once convolved with this matched Ąlter,

show signiĄcant decrements due to ringing. To avoid spurious detections of cluster
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candidates from the wings of these bright point sources, all positive sources above a

given Ćux (roughly 6 mJy, or 5σ in a version of the map Ąltered to optimize point-

source signal-to-noise) were masked to a radius of 4′ before the matched Ąlter was

applied. Roughly 150 sources were masked in each Ąeld, of which 90-95% are radio

sources. Furthermore, we have also found some spurious detections near very high

signiĄcance SZ clusters. For this reason, we also exclude candidates within a 10

arcminutes of ξ > 20 candidates. The masked area corresponds to ∼ 5% of the total

survey area, so any possible decrease in the measured abundance due to point source-

cluster correlation (either through association or lensing efects) is negligible for this

work.

We have presented the low-level data analysis used to reduce the raw SPT data

into maps. To good approximation, these maps are related to the true mm-wave sky

with a 2D Fourier-domain transfer function, and a 2D Fourier-domain noise power

spectral density. Using this, we have used a matched Ąlter approach in order to

efectively extract cluster candidates.
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Simulations of the Millimeter-Wave Sky

An accurate sky model of the mm-wave sky is required for understanding the selection

function of the SPT galaxy cluster survey. Observed with SPT at 95, 150, and 220

GHz, the SPT-SZ maps can be modeled as a sum of several stochastic components,

including

• thermal Sunyaev-Zel’dovich efect from hot gas in galaxy clusters and groups.

• primary CMB Ćuctuations.

• Poisson-distributed emissive point sources, with various spectral indices.

• clustered emissive point sources.

• realizations of the instrument noise using random signal-free combinations of

SPT data. This includes any sources that are incoherent in time and uncorre-

lated with the CMB sky, such as atmospheric Ćuctuations.

The goal of this chapter is to reproduce realizations of the SPT sky that have

statistical properties as close as possible to the real SPT-SZ observations. The model

for non-SZ sources of mm-wave anisotropy were presented in ğ3.3. Here we will

describe how the SZ sky is simulated and how these simulations are used as inputs

for the cluster likelihood code presented in ğ6.1. In addition, we describe the use of

these mm-wave sky simulations to obtain the Ąeld-to-Ąeld variation in the SPT-SZ

survey of the efective cluster selection function, as well as the false detection rate.

38
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4.1 CMB and Point source realizations

The simulated CMB skies are generated as Gaussian random Ąelds, using the power

spectrum from the best-Ąt WMAP7 ΛCDM model. The point source realizations are

also generated as Gaussian random Ąelds. The simulated radio population follows

the results of De Zotti et al. (2005); Vieira et al. (2010) and Reichardt et al. (2012).

We assume 100% correlation between the bands, a spectral index of α = −0.53

and, at 150 GHz, an amplitude of Dℓ = ℓ(ℓ + 1)Cℓ = 1.28µK2 at ℓ = 3000. The

amplitudes and spectral indices of the DSFG contributions are also constrained by

recent SPT measurements (Reichardt et al., 2012). At 150 GHz and ℓ = 3000 the

Poisson contribution has amplitude Dℓ = 7.54µK2 and the clustered contribution

Dℓ = 6.25µK2; we use α=3.6 for both contributions.

4.2 SZ Simulations

The SZ sky is sourced by hot (≲ 108 K) plasma. Using the SPT-SZ survey, the SZ

efect has been detected in individual massive clusters, detected statistically in the

power spectrum (Lueker et al., 2010; Shirokof et al., 2011; Reichardt et al., 2012), as

well as a detection of tSZ signal in the bispectrum (Crawford et al., 2013), which is

the Fourier-domain equivalent of the three-point correlation function.

SZ skies can be simulated using several techniques. Here we show several of these

techniques and motivate using the most sophisticated and up-to-date SZ model as an

input to the cosmological likelihood analysis that is central to this dissertation.

4.2.1 Shaw Semi-Analytic Gas Model

Shaw et al. (2008) use a semi-analytic technique to paste gas models onto halos

identiĄed in purely gravitational N-body simulations (Ostriker et al., 2005; Bode

et al., 2007). Loosely, the algorithm solves the equation of hydrostatic equilibrium

for the halo snapshot in the N-body simulation, adds the appropriate gas, computes

the comptonization, and integrates along the line of sight. The resulting 2-D image
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is pasted into 100 square degree maps. Once all halos are treated this way, the result

is a sky map, an example of which is shown in Figure 4.2.

4.2.2 Arnaud ProĄle Simulations using DES Mocks

Another rudimentary way to simulate an SZ sky is to assume an analytic gas model for

each halo. We chose the model from Arnaud et al. (2010), which has been calibrated

by local X-ray observations. We then used the 5000 square degree DES Aardvark 0.2

simulation, pasting on the relevant proĄle for each halo, given its mass and redshift.

A typical resulting simulated SZ map is shown in Figure 4.1.

4.2.3 Hydrodynamical Simulations

The OverWhelmingly Large Simulation project (OWLS) is a large smoothed particle

hydrodynamical simulation. It contains prescriptions for non-gravitational physics

such as star formation and AGN feedback (McCarthy et al., 2013; Le Brun et al.,

2013; Schaye et al., 2010). It is therefore expected to be a more realistic SZ sky,

albeit over a smaller area.

4.3 SZ-Mass Scaling Relation from Simulations

In ğ3.3, we introduced the cluster signiĄcance ξ, which is simply the peak height of

the Ąltered synthesized SZ map, divided by the RMS of this map. This is the SZ

observable used in this work. Because the observable allows for a very well under-

stood selection function, and cosmological constraints are dominated by the unknown

normalization of the scaling relation, we Ąnd no advantage to going to a diferent SZ

observable such as the re-extracted YSZ .

Here, we introduce another SZ parameter related to the cluster detection process.

This second parameter is the unbiased signiĄcance ζ. It is deĄned as the value of ξ that

would be found in the absence of instrumental noise and astrophysical contaminants.

Due to the fact that ξ is determined by maximizing the signiĄcance after searching in

two-dimensional position space and source template size, the average ξ found across
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Figure 4.1 This region of simulated SZ sky was created by pasting Arnaud proĄles
onto halos identiĄed in a large N-body simulation. Note the azimuthal symmetry of
each individual halo.
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Figure 4.2 In this SZ simulation, the Bode gas model is computed for each halo iden-
tiĄed in the N-body simulation, and pasted onto this map. Note that the individual
halo gas models are truncated.
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Figure 4.3 This simulation was performed using smoothed particle hydrodynamics.
This realization of the simulated SZ sky does not rely on identifying individual halos.
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many noise realizations is given by:

⟨ξ⟩2 = ζ2 + 3. (4.1)

Loosely, ξ2 can be considered as the χ2 away from the null hypothesis. Due to the fact

that there are three independent nuisance parameters that are being marginalized over

in the case of ⟨ξ⟩ (and none in the case of ζ2) we expected three degrees of freedom

to bias the efective χ2 by 3 on average. This has been veriĄed in simulations (see

Figure 4.4). Since this relation cannot hold down to very low ζ, we only model this

maximization bias for ζ > 2. We Ąnd that changing the location of this cutof to

ζ > 1.5 or ζ > 2.5 has negligible impact on the results presented in this work. Due to

the deĄnition of ξ, and the fact that the astrophysical contaminants and instrument

noise are Gaussian to a high degree, it is related to ⟨ξ⟩2 by a Gaussian of unit width.

We then parameterize the ζ - M scaling relation as

ζ = ASZ



M

3 × 1014M⊙h−1

BSZ


E(z)
E(0.6)

CSZ

, (4.2)

with an additional log-normal intrinsic scatter parameter σln ζ .

In order to obtain a ζ-mass relation from the simulated SZ sky, we run a modiĄed

version of the matched Ąlter algorithm that takes both a simulated map containing

all the components mentioned in ğ4, as well as a pure SZ map. The SZ map is used

to identify candidates, while the full map is used to normalize the detection.

The position and ζ for each detection is then used to cross-match with the simu-

lation catalog in order to Ąnd the true position, redshift and mass for each cluster.

We use a simple cross-matching algorithm that searches for the nearest cluster above

a minimum mass threshold. In order to screen out false associations we use two

statistics: the positional diference between the matched Ąlter detection and the dis-

tance away from a typical zeta-mass relation. We reject outliers with a threshold in

positional diference chosen from manual inspection. For the scaling-relation based
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Figure 4.4 The result of 25 realizations of simulations of the relation between ⟨ξ⟩ and
ζ. The quadratic diference between measured ζ and ⟨ξ⟩ is binned and plotted against
a wide range of ζ. These data are consistent with ⟨ξ⟩2 = ζ2 + 3, with χ2 = 27 for 23
degrees of freedom. Figure taken from Vanderlinde et al. (2010).
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threshold, we compute the quantity ζ
(M500)1.3 , which should be fairly constant for all

clusters, we then Ąt a Gaussian to the histogram of those values and reject outliers

that are outside ±3 σ.

We then cut the cluster catalog for M500 > 1×1014M⊙/h and Ąt a scaling relation

with the functional form given in Equation 4.2. The Ąt is performed by minimizing the

mean absolute deviation from the scaling relation. We have checked that a linear least-

squares method gives negligibly diferent results. When using the robust statistic, we

Ąnd that the details of the method used for rejecting false associations have little to

no impact on the Ąnal scaling relation results.

The results from the SZ simulations described in ğ4.2 are shown in Table 4.1.

Note that in the Arnaud model, since any two halos of a given mass and redshift are

assigned the same gas proĄle, the halo-to-halo scatter is expected to be zero. The fact

that we measure σln ζ = 0.05 is due to the deviations from the power law evolution

parameterization assumed with both mass and redshift in 4.2.

For the cosmological analysis carried out in this work, we choose nominal simu-

lation to be from the OWLS simulation, with AGN feedback model 8.0, because it

reproduces the global X-ray, tSZ, optical, and black hole scaling relations (Le Brun

et al., 2013), as well as the observed pressure proĄles of the local group and cluster

population. In order to encapsulate residual uncertainty in how faithfully the SZ

properties are represented in this simulation, we adopt conservative priors of 30%,

20%, 100%, and 100% on ASZ , BSZ , CSZ , and σln ζ , respectively. As we will show in

ğ7.2, these priors, while not entirely uninformative, do not dominate the constraints

on the scaling relation. Rather, the inclusion of follow-up observations in the X-ray

provide the bulk of the constraining power.

4.4 Field Scaling Factors

The SPT-SZ Ąelds have somewhat diferent noise levels. This adds a systematic

ofset to the ζ-mass relation for each Ąeld. Ignoring this ofset would increase the
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Scaling
Relation
Parameter

Shaw09
WMAP5
highfb2

OWLS

AGN8.0

OWLS
AGN8.5

OWLS
AGN8.7

OWLS NO-
COOL_UVB

OWLS
REF

Arnaud

ASZ 6.24 5.38 4.36 3.28 6.05 4.69 6.20
BSZ 1.33 1.34 1.39 1.42 1.22 1.27 1.37
CSZ 0.83 0.49 0.72 0.81 -0.07 0.33 0.34
σln ζ 0.24 0.13 0.12 0.14 0.16 0.14 0.05

Table 4.1 The SPT-SZ scaling relation parameters extracted from SZ simulations.
The nominal simulation is shown in bold.

inferred intrinsic scatter in the relation. Therefore, we choose to simulate the zeta-

mass relation for each field separately. We find that the change in BSZ , CSZ , and σln ζ

is small i.e. adds negligible scatter to the overall ζ-mass relation when ignored. We

therefore choose only to rescale the overall normalization (ASZ) per field. For the ith

field, we rescale as Ai
SZ,eff = FSF iASZ . Normalized to the 2008 observations of the

ra5h30dec-55 field, the field scaling factors (FSF) are shown in Table 4.2. We have

checked the simulations by adding known cluster profiles to the real maps, applying

the cluster-finding algorithm and checking the recovered unbiased significance. This

semi-analytic test agrees well with the results of the simulations.

4.5 False Detection Rate Simulations

For the ξ > 5 cut used in this work, the number of false detections due to noise fluc-

tuations is significantly greater than one in the 2500 square degree SPT-SZ survey. If

the number of expected false detections is of the same order as the Poisson uncertainty

on the total number of detected clusters, it needs to be taken into account in analysis.

In order to simulate the false detection rate (FDR), we repeat the FSF simulations

with the SZ component omitted. Any detections are then false by definition.

The result of the FDR simulations is shown in Figure 4.5. The total number of

expected false detections is 18.5 for the full 2500 square degree survey at ξ > 5. We
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Field Name Field Scaling Factor
ra5h30dec-55 1.33
ra23h30dec-55 1.39
ra21hdec-60 1.29
ra3h30dec-60 1.25
ra21hdec-50 1.11
ra4h10dec-50 1.27
ra0h50dec-50 1.14
ra2h30dec-50 1.19
ra1hdec-60 1.18

ra5h30dec-45 1.08
ra6h30dec-55 1.16

ra3h30dec-42.5 1.20
ra23hdec-62.5 1.18
ra21hdec-42.5 1.15
ra1hdec-42.5 1.19
ra22h30dec-55 1.13
ra23hdec-45 1.19
ra6h30dec-45 1.16
ra6hdec-62.5 1.18

Table 4.2 Field scaling factors for the 19 SPT-SZ Ąelds. These are used to rescale the
ζ-mass relation for each Ąeld.
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Figure 4.5 The number of false detections found per square degree of simulated sky
for each of the 19 SPT Ąelds.
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Field Name α β
ra5h30dec-55 16.8 4.6
ra23h30dec-55 17.6 4.0
ra21hdec-60 25.6 4.1
ra3h30dec-60 20.5 4.7
ra21hdec-50 25.3 4.1
ra4h10dec-50 16.8 5.5
ra0h50dec-50 20.8 5.1
ra2h30dec-50 15.0 4.8
ra1hdec-60 17.2 5.4

ra5h30dec-45 15.9 4.8
ra6h30dec-55 17.8 4.6

ra3h30dec-42.5 16.8 4.3
ra23hdec-62.5 14.9 4.9
ra21hdec-42.5 17.1 4.5
ra1hdec-42.5 18.4 5.6
ra22h30dec-55 16.5 5.2
ra23hdec-45 17.0 5.2
ra6h30dec-45 14.8 4.2
ra6hdec-62.5 16.5 4.7

Table 4.3 False detection rate parameters for the 19 SPT-SZ Ąelds.
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Ąt a model of the form

N(> ξ) = α exp (−β(ξ − 5)) , (4.3)

where N(> ξ) is deĄned as the number of false detections expected over the full survey

area if the full survey had the same statistical properties as the Ąeld in question. For

each Ąeld, the resulting values of α and β are shown in Table 4.3.

In this chapter, we have presented simulation work required as inputs to the cos-

mological results central to this dissertation. We have shown a variety of cluster

simulations ranging from a simple spherically symmetric functional form per cluster

to full hydrodynamical N-body simulations. These simulations provide a consistent

picture of the cluster scaling relation and motivate priors on the scaling relation pa-

rameters. In addition, the simulations are combined with a full sky model to estimate

the false detection rate (FDR) and scaling relation re-normalization factors between

SPT Ąelds (Ąeld scaling factor, or FSF).



5

The Cluster Selection Function

In this chapter, we will outline a crucial point for cluster cosmology; many aspects will

be widely applicable to any statistical analysis relying on objects selected from a non-

uniform population distribution. When samples are selected from a steeply falling

underlying population function using a noisy measurement, the resulting statistical

properties of the sample can be counter-intuitive. For instance, a cluster of a slightly

lower mass is more likely to scatter up into an SZ-selected sample than a higher mass

cluster scattering down out of the sample, simply because there are more low mass

clusters in the underlying population. In observational astronomy, this efect on the

measured population is known as Eddington bias.

Here, we will present a discussion of the cluster mass function, selection function

and how to perform posterior mass estimates in the context of the SPT-SZ survey.

5.1 Mass Function

As explained in 1.2, the cluster mass function describes the abundance of clusters as

a function of mass and redshift, or dN/dMdz. This is the quantity that is predicted

from N-body simulations, and allows cluster abundance measurements such as the

one presented in this dissertation to place constraints on the underlying theoretical

model.

We use the Ątting functions from the work of Tinker et al. (2008) to calculate the

cluster mass function based on the cosmological parameters and associated matter

power spectra estimated using the standard software package CAMB (Lewis et al.,

52
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M500, z ∂ ln dN
∂ ln σ8

z = 0.0,M500 = 1014M⊙ 1.9
z = 0.5,M500 = 1014M⊙ 2.8
z = 1.0,M500 = 1014M⊙ 4.5
z = 0.0,M500 = 1015M⊙ 7.4
z = 0.5,M500 = 1015M⊙ 10.2
z = 1.0,M500 = 1015M⊙ 15.4


dMdz sfSPT(M, z) 6.1

Table 5.1 The power-law scaling of cluster abundance with changes in σ8. The last row
shows the abundance integrated over the SPT selection function in mass and redshift
i.e. the total number of clusters measured in an SPT-like survey is proportional to
σ6.1

8 . Note that, at Ąxed number count, measuring cluster abundance at high redshift
is a more powerful probe of σ8 than a low-redshift measurement.

2000). The Tinker mass function is derived from large purely gravitational N-body

simulations that are expected to be accurate to better than 5% (Jenkins et al., 2001;

Warren et al., 2006; Bhattacharya et al., 2011), which is a subdominant source of

uncertainty for the work presented here.

Figure 5.1 shows a typical mass function, which can be seen to be very steep. In

addition to being steep with mass, the cluster abundance also scales steeply with

cosmological parameters. Table 5.1 shows the scaling of the cluster abundance with

σ8, the normalization of the matter power spectrum. Clearly, this steepness implies

that measurements of the cluster mass function are a statistically powerful way of

probing cosmological parameters.

5.2 Selection Function

The SPT selection function used in this work is z > 0.25, and cluster signiĄcance

ξ > 5. The choice of selection on ξ as a variable is natural, since this is simply

choosing a cutof in the list of SPT cluster candidates sorted by detection signiĄcance,

as found using the method described in ğ3.3. The numerical choice of cutof was

mostly based on the false detection rate described in ğ4.5. For a ∼ 400 cluster sample

(approximately the size of the SPT sample with ξ > 5), we expect on the order
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Figure 5.1 The Tinker mass function for some Ąducial choice of cosmological param-
eters is shown in black. The colored curves show the contributions from diferent
redshift ranges. Note the cluster abundance for the highest masses is sourced pri-
marily by the lowest redshifts, due to growth of structure. The lower mass range is
dominated by higher redshifts, due to the increased surveyed volume.
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of 20 false detections, equal to the Poisson error of
√

400 = 20. This means that,

as long as the false detection rate is relatively well-understood, it is a subdominant

source of error. In addition, uncertainty in the ⟨ξ⟩-ζ relation (Equation 4.1) at low

ξ was another driver for us to choose the conservative ξ > 5 cutof. If the dominant

systematic uncertainty in the cosmological analysis (the SZ-mass scaling relation) can

be reduced to be similar to the statistical (Poisson) uncertainty, we would consider

using a more aggressive ξ cut, substantially increasing the number of total SPT-

detected clusters and hence reducing the Poisson uncertainty.

The redshift cutof was chosen due to the breakdown of power-law behaviour in the

ζ - M simulations we presented in ğ4.2. Heuristically, the power law behaviour of mass

in the redshift variable E(z) has a soft index because the SZ efect is independent of

redshift and the ℓ-space proĄles of the clusters are relatively insensitive to the angular

diameter distance to the cluster over the range 0.25 ≲ z ≲ 2. At lower redshift, the

angular diameter distance rapidly decreases and the ℓ-space proĄle shifts to lower

ℓ. In combination with the extremely red power spectrum of the total noise power

spectral density N due to the primary CMB Ćuctuations, this causes a break in the

redshift dependence of the M -ζ relation. We therefore choose to perform this analysis

for z > 0.25 clusters. The intrinsic mass function dN/dMdz is not very steep in z

around z = 0.25, so any errors in redshift determination (clusters with ztrue > 0.25

and zmeasured < 0.25 or vice versa) have negligible impact on the parameter constraints

presented in this work.

5.2.1 Computation of the Total Cluster Number

Here we outline several algorithms for computing the total theoretically expected

number of clusters using a given point in cosmological and scaling relation parameter

space for the SPT cluster cosmology model. This quantity will be denoted by Nclust.

Not only is this computation necessary in the likelihood expression that will be de-

veloped in ğ6.1, the diferent methods provide a pedagogical introduction to concepts
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Figure 5.2 The Tinker mass function for the same choice of cosmological parameters as
in Figure 5.1 is shown on a linear abundance scale. Here the mass function, integrated
over several choices of redshift range, is shown as dashed curves. The solid curves
show the same mass function multiplied by the SPT selection function. Note that
the majority of SPT-selected clusters come from the region where the SPT sample is
not 100% complete, highlighting the importance of rigorous statistical treatment of
the selection function.
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that are paramount to unbiased and self-consistent estimates of similar quantities like

the mass of an individual cluster (ğ5.3).

In ğ5.2.1.1, we will present a computationally intensive, but highly robust Monte-

Carlo method for computing the total number of expected clusters. We then present a

diferent grid-based method in ğ5.2.1.2, which was used in earlier versions of this clus-

ter likelihood analysis (Vanderlinde et al., 2010; Benson et al., 2013; Reichardt et al.,

2013). The grid-based method resulted in a ∼ 10% bias in the estimated number of

clusters, mildly afecting implications about cosmological parameters. We will there-

fore introduce a highly accurate, computationally inexpensive, reverse propagation-

based algorithm in ğ5.2.1.3. This algorithm will be used in the likelihood algorithm

introduced in ğ6.

5.2.1.1 Monte-Carlo Method

This method draws mass, redshift pairs (¶M, z♢) from the mass function according to

Poisson statistics. From each of these ¶M, z♢ pairs, we generate a set of observables

according to the scaling relation described in 4.3. We now have a set of ¶ξ, z♢ pairs.

We then choose all pairs with ξ and z above their respective thresholds. Since this

procedure relies purely on forward modeling using a Monte-Carlo method, without

any implicit applications of Bayes’ theorem, it is the simplest algorithm presented

here.

However, this method has an intrinsic ±
√
Nclust error for every time it is run.

One way of computing the underlying value of Nclust is to run this M number of

times such that that error is reduced by a factor of 1/
√
M . However, making this

numerical error subdominant to typical statistical uncertainties for an SPT-SZ-like

survey takes approximately one minute on a single CPU, which is too slow to use

for the cluster likelihood that will be described in ğ6.1. Due to its simplicity, the

Monte-Carlo method does turn out to be a valuable benchmark for comparing the

numerical accuracy of alternative algorithms.
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5.2.1.2 Observable-Space Grid Method

In the observable-space grid method, we generate a two-dimensional grid in (ξ, z) and

integrate it numerically. The algorithm for doing so is as follows.

• We construct a two-dimensional grid of the number of clusters as a function of

redshift and mass by multiplying the Tinker et al. (2008) mass function by the

comoving volume element. The gridding is set to be very Ąne in both mass and

redshift, with ∆z = 0.01 and the mass binning set so that ∆ζ < 0.0025 (see

below). The grids are constructed to extend beyond the sensitivity range of

SPT, 0.01 < z < 3.00 and 0.1 < ζ < 50. Extending the upper limits was found

not to impact cosmological results, as predicted number counts have dropped

to negligible levels above those thresholds.

• The parameterized scaling relation (ğ4.3) is used to convert the mass for each

bin to unbiased signiĄcance ζ for assumed values of ASZ , BSZ , and CSZ .

• We convolve this grid of number counts (in ζ-z space) with a Gaussian in ln ζ

with width set by the assumed intrinsic log-normal scatter σln ζ in the scaling

relation.

• The unbiased signiĄcance ζ of each bin is converted to an ensemble-averaged

signiĄcance ⟨ξ⟩ using Equation 4.1.

• We then convolve this grid with a unit-width Gaussian in ξ to account for

noise and astrophysical contaminants, with the resulting grid in the native SPT

catalog space, ξ-z.

• Using the lower limits in ξ and z as described in 5.2 as lower bounds, we perform

a numerical integral using a spline-interpolation technique together with the

trapezoid rule. The choice of numerical integration technique is found to be

adequate for our choice of gridding density (σNclust
≲ 1).
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This method relies on forward-propagating the mass function into observable

space, hence not using implicit applications of Bayes’ theorem. However, the frequent

use of change of variables does require several Jacobians to be computed carefully or,

in other words, the changing bin sizes to be taken into account. Furthermore, the

numerical error due to Ąnite gridding converges slowly, so increasing numerical pre-

cision causes rapid growth in the required number of computational operations. Our

implementation of this method was found not to agree with the expectation from the

Monte Carlo method at the 10% level. It is currently unclear whether this is due to

an implementation error or a fundamental problem with this algorithm.

5.2.1.3 Reverse-Propagation of the Selection Function

Like the observable-space grid method, this method also starts with a (M, z) grid.

For each value of z, we compute the efective selection function in M . To do so, we

use the Bayesian prescription for handling missing data; we explicitly start with the

relevant indicator function I(ξ) = Θ(ξ − ξmin) where Θ denotes the Heaviside step

function. This is modiĄed by the ξ − ⟨ξ⟩ relation, which is a Gaussian of unit width,

denoted here with P (⟨ξ⟩♣ξ). The selection function (denoted sf) becomes:

sf(⟨ξ⟩) =


dξI(ξ)P (⟨ξ⟩♣ξ) =
1
2

×


1 + erf



⟨ξ⟩ − ξmin√
2



. (5.1)

Using the ζ-⟨ξ⟩ relation from Equation 4.1 and the scaling relation from 4.2, we can

convert this to the relevant selection function in mass. The total number of clusters

is then computed using

Nclust =


i

 ∞

0
sf(M500)

dN

dM500dz











z=zi

dM500 × (∆z) . (5.2)

This method can be performed rapidly (0.2 seconds in our implementation) and yields

results consistent with the Monte Carlo method to much higher accuracy than re-

quired in this work.
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5.2.1.4 Discussion

The three methods presented above are canonical examples of how to handle the

cluster selection function. The Monte Carlo method demonstrates a simple example

from the class of algorithms using a brute-force Monte Carlo method. The model for

the cluster population is written down as a set of the stochastic processes which are

directly simulated in such a method, without having to write down the explicit prob-

abilistic distributions which describe them. The use of forward-propagation means

applications of Bayes’ Theorem (and hence details of choosing priors or determining

normalization constants) are avoided. Given their simplicity, such methods should

always be implemented as a golden standard that should be used to cross-check more

complicated methods, since selection efects in cluster population analysis can be

counter-intuitive and subtle.

Our implementation of the observable-space grid method is found to disagree with

the brute-force method at the ∼ 10% level. While this is acceptable for the previously

published works Benson et al. (2013) and Reichardt et al. (2013), this work has

Poisson uncertainty comparable to that systematic. We therefore choose not to use

this method for the results in Chapter 7.

Reverse-propagation of the selection function is an example of modelling a data-

space operation into theory space. In this case, the data-space operation is the indica-

tor function requiring that a cluster property exceed a minimum observable value to

be included in the cluster sample. This operation can be computed in mass-space, by

applying a series of changes of variable, and integrating over the relevant probabilistic

distributions relating variables.

5.3 Posterior Mass Estimation

Given an ensemble of clusters at Ąxed mass and redshift, the scaling relations describe

the distribution of clusters as a function of the observables. Considering a Ąxed

redshift, and only the SZ (selection) observable ξ, this distribution is denoted with



5.3 Posterior Mass Estimation 61

P (ξ♣M) (the probability of observing some cluster signiĄcance, given a mass). In this

section, we describe how to obtain P (M ♣ξ), or the posterior mass estimate associated

with a cluster.

First, we consider an unbiased posterior distribution estimating the true underlying

cluster mass for a single given cluster. Here, we apply Bayes’ theorem. The maximum

entropy Bayesian prior is to weight each member of the underlying population equally

i.e. to set the prior equal to the population function. This gives

P (M ♣ξ, z) ∝ P (M ♣z)P (ξ♣M, z) , (5.3)

where P (M ♣z) = dN/dM ♣z describes the mass function for that slice in redshift,

P (ξ♣M, z) is simply the scaling relation described in ğ4.3, including the ζ-M relation,

the log-normal intrinsic scatter, the efects of maximization boosting and the unit

Gaussian scatter due to measurement noise and astrophysical contaminants.

When including multiple simultaneous mass proxies that may be correlated with

the selection observable, this becomes

P (M ♣ξ, ξ1, ξ2, ..., z) ∝ P (M ♣z)P (ξ, ξ1, ξ2, ..., ♣M, z) , (5.4)

where the likelihood factors as P (ξ, ξ1, ξ2, ..., ♣M, z) = P (ξ♣M, z)P (ξ1♣M, z)P (ξ2♣M, z)...

in the case of uncorrelated observables.

A commonly assumed simpliĄcation (Mortonson et al., 2011; Harrison and Hotchkiss,

2013) is to linearly expand the mass function to (locally) be a power law, while taking

the likelihood P (ξ♣M, z) to be log-normal with a variance that is small compared to

the range over which γ changes. At Ąxed redshift, the mass function is written as

dN

dM
∝ Mγ (5.5)

where γ is the relevant power law index of the mass function (of order a few for clusters
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considered in this work). Let Mobs denote the value of M obtained by substituting ξ

into the scaling relation and let σ2
ln M deĄne the variance of the log-normal distribution

used to approximate the width of the M -Mobs relation. The posterior estimate then

becomes
P (M ♣ξ, z) ∝ Mγ 1

Mobs
exp



−1
2

(ln M−ln Mobs)2

σ2
ln M



∝ exp


−1
2

ln(M)2−2 ln M ln Mobs−2σ2
ln M γ ln M

σ2
ln M



∝ exp









−1
2



ln(Mobs)2−(ln M(1+
γσ2

ln M
ln Mobs

))2



σ2
ln M









.

(5.6)

Taking the Ąrst two moments gives a simple prescription for estimating the mean and

variance of this type of posterior mass estimate as

lnM = lnMobs + γσ2
ln Mobs

σ2
ln M = σ2

ln Mobs
.

(5.7)

While this estimate is relevant for estimating the posterior mass of a single cluster,

another type of mass estimate is relevant for population studies, such as estimating

the ŞrarenessŤ of a given cluster. This is a mass estimate performed at constant

number density, such that

dN

dMdz











M,z

=
dN

dMdz











Mobs,z

. (5.8)

Writing these expressions explicitly and solving for the Ąrst two moments in a fashion

identical to that performed above yields a prescription for estimating this type of

posterior mass estimate:

lnM = lnMobs + 1
2
γσ2

σ2
ln M = σ2

ln Mobs
.

(5.9)

Note that the correction factor for the mass estimate relevant to population studies

(constant number density) is only half that compared to the mass estimates where
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the probabilities are set equal.

In this chapter, we have presented the theoretical abundance of clusters as a func-

tion of mass and redshift (the mass function), and shown how this translates to ob-

servable abundances. The process is non-trivial due to the selection of objects from

a steeply falling population using a noisy proxy. We present numerical techniques

for computing the total number of expected clusters and Ąnd that this number scales

as σ6.1
8 for the SPT survey. The closely related inverse problem of computing unbi-

ased cluster mass estimates is also solved to linear order. As previously mentioned in

Mortonson et al. (2011), we derive the surprising fact that the diference between the

mass one measures and the underlying true mass difers by a factor of two depending

on whether probability or number density is held constant.
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SPT Cosmological Cluster Likelihood

This chapter focuses on evaluating the cosmological likelihood of the SPT-SZ clus-

ter sample. Starting from basic Poisson statistics, we derive a naive method and

show why it is computationally intractable. We then introduce a newly developed

method using Bayesian statistics and Monte-Carlo sampling to estimate the cosmo-

logical likelihood, self-consistently marginalizing over an arbitrary number of mass

tracers.

6.1 Likelihood Evaluation

In this dissertation we develop a diferent numerical technique that allows for a large

number of simultaneous follow-up mass observables.

We start with the usual binned Poisson statistic. In order to keep the likelihood

evaluation computationally tractable, we forward-model the theoretical cluster mass

function onto observable space x⃗, and use the Poisson statistic. For a given observable-

space bin xi, the probability of observing n events, with expectation value y(xi) is

Pi =
e−y(xi)y(xi)n

n!
. (6.1)

We choose to take the limit of small bins where y becomes arbitrarily small at all xi,

and n is zero except at the locations of xi where clusters have been observed. If we

64
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let xj denote the bin that contains the jth cluster, we obtain

ln L = ln


i

Pi =


i

lnPi = −


i

y(xi) +


j

ln y(xj). (6.2)

In this case, we will treat the observable space as being x⃗ = [z, ξ, YX,MWL], though

this method fully (and eiciently) generalizes to a larger number of observables.

Writing the model expectation value y(xi) = N(zi, ξi, YX,i,MWL,i). Going to one-

dimensional indices gives

ln L = −


i1,i2,i3,i4

N(zi1 , ξi2 , YX,i3 ,MWL,i4) +


j

lnN(zj, ξj, YX,j,MWL,j), (6.3)

where the i1, i2, i3, i4 sums again run over all possible values and j only runs over

the bins where clusters were detected. Going to the continuous limit would result

in a divergent likelihood expression. This can be understood by the fact that the

model is increasingly unlikely to produce our particular realization of the cluster

catalog as we go to Ąner binning. The divergence can be removed by simply adding

− ln ∆z∆ξ∆YX∆MWL to Equation 6.3. This quantity depends only on bin size, so

that ∆ ln L for diferent values of cosmological or scaling relation parameters remains

meaningful. We then obtain the expression

ln L = −


dzdξdYXdMWL
dN(z, ξ, YX,MWL)
dzdξdYXdMWL

+


j

ln
dN(zj, ξj, YX,j,MWL,j)

dzdξdYXdMWL

. (6.4)

Vanderlinde et al. (2010) and Benson et al. (2013) evaluated this expression on a

two-dimensional and three-dimensional uniformly spaced grid, respectively. Each

dimension was gridded into several hundred points, such that the computational cost

rises exponentially with the number of mass observables. The computational cost

was trivial for V10, challenging for B11, and likely untractable in the case of four

observables.

Instead of computing Equation 6.4 on a uniformly spaced grid, we use the following
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numerical techniques.

Firstly, we note that the follow-up mass observables immediately integrate out of

the Ąrst term, since the selection function is purely in ξ and z. Therefore, we only

need to perform a two-dimensional integral

−


dzdξdYXdMWL
dN(z, ξ, YX,MWL)
dzdξdYXdMWL

= −
 ∞

zcut

dz
 ∞

ξcut

dξ
dN

dzdξ
. (6.5)

We evaluate this expression with

 ∞

zcut

dz
 ∞

ξcut

dξ
dN

dzdξ
=
 ∞

zcut

dz
 ∞

0
dM

dN

dzdM
P (ξ > ξcut♣M), (6.6)

where P (ξ > ξcut♣M) is simply the signiĄcance cut modelled through the scaling

relation as described in ğ4.3.

The second term of Equation 6.4 is more challenging to evaluate. Going back to

more compact notation with x⃗ being a general set of mass observables (previously

[ξ, YX,MWL]), we start by writing the expectation density as an integral over the mass

function,

dN(x⃗j)
dx⃗

=


d lnM ′

i



dx′
iP (xi,j♣x′

i)P (x⃗′♣z, lnM ′)
dN

dzd lnM ′ . (6.7)

The probability density functions P (xi,j♣x′
i) describe the measurement error of the ith

observable. The P (x⃗′♣z, lnM ′) describe the joint scaling relations, implemented with

multi-dimensional log-normal intrinsic scatter. In this case of three mass observables

(ξ, YX, MWL), this is implemented with 6 parameters: three parameters describing

the variance and three correlation coeicients, each of which is marginalized over in

this work. The xi integrals must be evaluated in the vicinity of every cluster, for every

value of mass, at every step of the global Markov Chain Monte Carlo (MCMC). While

this appears computationally challenging, we will now present an eicient numeric

method.
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6.1.1 Analytic SimpliĄcation and Monte-Carlo Integration

The computational bottleneck for evaluating the cluster likelihood in the presence

of several mass observables lies in evaluating Equation 6.7. Considering a slice in

redshift, we have to perform an (Nobs +1)-dimensional integral. To do so, we perform

Monte-Carlo integration, randomly sampling the mass function dN
d ln M ′

with points

drawn from the probability distribution


i P (xi,j♣x′
i)P (x⃗′♣ lnM ′). Let ln m⃗′ denote the

integration variable cluster mass observables (i.e. x⃗′ substituted into the observable-

mass scaling relations). We can then write

P (ln m⃗′♣ lnM ′) =
1



(2π)Nobs♣C♣
exp



−1
2

((ln m⃗′ − lnM ′)⊤ C−1 (ln m⃗′ − lnM ′)


,

(6.8)

where C is the mass observable covariance matrix containing the intrinsic scatter and

correlation coeicient parameters introduced in ğ7.1 such that Ckl = ⟨(mi −M)(mj −M)⟩kl.

Now, we wish to obtain samples of the integration variable lnM ′, given the bin at

which we are attempting to evaluate dN(x⃗j)/dx⃗. We thus apply Bayes’ theorem

P (lnM ′♣x⃗j) =



i P (xi,j♣x′
i)P (x⃗′♣ lnM ′)dx⃗′




i P (xi,j♣x′
i)P (x⃗′♣ lnM ′)d lnM ′



i

P (xi,j♣x′
i)P (x⃗′♣ lnM ′). (6.9)

It can be shown that the prefactor is unity when the probabilities involved are either

Gaussian or log-normal. However, this condition does not hold due to the treatment

of maximization bias in ğ4.3. Instead, the two integrals become




i P (xi,j♣x′
i)P (x⃗′♣ lnM ′)dx⃗′ =



exp


−1
2

(⟨ξ⟩ − ζ)2


exp



− 1
2

(ln M′
−ln mζ (ζ))2

(FSZ /BSZ)2



ζ
dζ

= 1√
2π(FSZ/BSZ)2

√
2π




i P (xi,j♣x′
i)P (x⃗′♣ lnM ′)d ln M⃗ ′ =



exp


−1
2

(⟨ξ⟩ − ζ)2


exp



− 1
2

(ln M′
−ln mζ (ζ))2

(FSZ /BSZ)2



ζ
d lnM ′

= 1√
2π(FSZ/BSZ)2



exp


−1
2

(⟨ξ⟩ − ζ)2


1
ζ
dζ,

(6.10)
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such that the prefactor becomes the computationally simple one-dimensional integral




i P (xi,j♣x′
i)P (x⃗′♣ lnM ′)dx⃗′




i P (xi,j♣x′
i)P (x⃗′♣ lnM ′)d lnM ′ =

1√
2π



exp


−1
2

(⟨ξ⟩ − ζ)2
 1
ζ
dζ, (6.11)

which we evaluate using the trapezoid rule. In order to eiciently draw samples from

Equation 6.9 we Ąrst, for each i, draw samples from the measurement error P (xi,j♣x′
i),

which is assumed to be independent for each i. We then substitute these values into

the scaling relations to obtain an ensemble of ln m⃗′. The remaining task is then to

draw random deviates lnM ′ that follow the probability distribution explicitly shown

in Equation 6.8, given each value of ln m⃗′. To do so, we Ąrst deĄne

Ψ = (ln m⃗′ − lnM ′)⊤ C−1 (ln m⃗′ − lnM ′)

= Σij(lnm′
i − lnM ′)(lnm′

j − lnM ′)(C−1)ij.
(6.12)

We proceed to complete the square

Ψ = Σij lnm′
i lnm′

j(C−1)ij − 2 lnM ′Σi lnm′
iΣj(C−1)ij + lnM ′2Σij(C−1)ij

= T0 − 2T1 lnM ′ + T2 lnM ′2

= (ln M ′−T1/T2)2

(1/
√

T2)
+ T0 − T 2

1

T2
,

(6.13)

where T0 = Σij lnm′
i lnm′

j(C−1)ij, T1 = Σi lnm′
iΣj(C−1)ij and T2 = Σij(C−1)ij. which

is quadratic in lnM ′, such that Equation 6.8 is a log-normal distribution in M ′ with

a known mean, width and normalization. We compute T0, T1 and T2 explicitly and

sample from the resulting distribution.

Having obtained samples of lnM ′, we average the mass function dN/d lnM ′ and

combine with Equation 6.11 to obtain an unbiased estimator for Equation 6.7. Our

implementation of this estimator has been demonstrated to be unbiased through

extensive simulations. These simulations involve drawing samples from the mass

function and forward-modeling them into a catalog of mock SZ-selected clusters, with

all appropriate observables.
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The Ąt to the simulated catalogs recovers the input parameters with well-behaved

residuals. The error on the mean is found to decrease as the inverse square root of

the number of deviates drawn. In practice, for three mass observables and several

hundred clusters, we draw 5000 deviates per cluster, resulting in RMS noise on the

likelihood surface of ∆χ2 ≲ 0.1, with an approximate execution time of one second

on a single CPU thread for the 2500 square-degree SPT-SZ sample used in this work.

This likelihood module is implemented in IDL and integrated into CosmoMC

(Lewis et al., 2000) using Callable IDL.

In this chapter, we have presented a novel statistical technique for simultaneously

constraining cosmological parameters and scaling relation parameters. The method

is computationally inexpensive, even in the presence of a large number of mass ob-

servables.



7

Results

In this chapter, we use the cluster abundance measurement from the 2500 square

degree SPT-SZ survey to constrain cosmological parameters. The uncertainties are

dominated by systematics: in particular the SZ-mass scaling relation presented in

ğ4.3. Here we assume the Gaussian priors described there, corresponding to con-

servative widths centered on the results from the AGN8.0 OWLS simulation (Le

Brun et al., 2013; McCarthy et al., 2013). In addition, we incorporate Chandra X-ray

information to improve knowledge of the scaling relation.

7.1 Yx-Mass Scaling Relation Parameterization

The follow-up mass observable used in this work builds on the work of Vikhlinin

et al. (2009), Benson et al. (2013), and Reichardt et al. (2013). We use YX as a proxy

for total cluster mass, as described in McDonald et al. (2013). We write the scaling

relation as

M500

1014M⊙/h
=


AXh
3/2




YX

3 × 1014M⊙ keV

BX

E(z)CX , (7.1)

where the parameters AX, BX, CX describe the normalization, mass evolution and red-

shift evolution of the relation, respectively. We introduce the parameter σln YX
which

models a log-normal intrinsic scatter in the YX-M relation, as well as a correlation

coeicient ρζ,YX
.

In addition to the SZ-mass scaling relation, this means we marginalize over a total

70
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Parameter Parameter description
As Normalization of spectrum of primordial Ćuctuations
ns Power law slope of primordial Ćuctuations
Ωc Energy density of cold dark matter today
Ωb Energy density of baryonic matter today
θs Characteristic angular scale of primary CMB Ćuctuations
τ Optical depth to reionization
ASZ Normalization of the SZ - mass scaling relation
BSZ Mass evolution of the SZ - mass scaling relation
CSZ Redshift evolution of the SZ - mass scaling relation
σln ζ Intrinsic scatter in the SZ - mass scaling relation
AX Normalization of the X-ray - mass scaling relation
BX Mass evolution of the X-ray - mass scaling relation
CX Redshift evolution of the X-ray - mass scaling relation
σln YX

Intrinsic scatter in the X-ray - mass scaling relation
ρζ,YX

Correlation coeicient for the intrinsic scatter in the scaling relations
Extension Parameters:
Σmν Sum of the neutrino masses
Neff Efective number of relativistic species
w Dark energy equation of state parameter

Table 7.1 The parameters that are varied in the joint cosmological and scaling relation
Ąt. The extension parameters are only varied where mentioned.

of nine scaling relation parameters in order to extract cosmological parameters. These

parameters, along with the cosmological parameters we use, are shown in Table 7.1.

7.2 Cosmological Constraints

The cluster catalog provides constraints on cosmological parameters through sev-

eral mechanisms. The number of clusters found, averaged over the surveyed vol-

ume, strongly depends on the amplitude of the matter power spectrum. Given

the median redshift of z ∼ 0.5, the parameter combination that is constrained is

σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1
. Note that this well-constrained parameter combination

has a slightly weaker dependence on ΩM than low redshift cluster probes. For in-

stance, Vikhlinin et al. (2009) Ąnd the optimally constrained parameter combination

to be σ8



ΩM

0.27

0.41
.
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In addition to total cluster counts, the scaling relations described in ğ4.3 and ğ7.1

depend diferently on cosmological parameters. SpeciĄcally, while the mass estimate

inferred from the ζ-M relation depends weakly on redshift, the mass estimate inferred

from the YX- M scaling relation depends strongly on the angular diameter distance

to the cluster, and hence the redshift. The self-consistency conditions implicit to

the likelihood expression described in ğ6.1 therefore provide some constraint on the

angular diameter distance to each cluster for which Chandra data is available. These

constraints will be published in Benson et al. (in prep).

Furthermore, the power law slope and shape of the mass function changes with

mass scale. In principle, the observed counts therefore provide independent informa-

tion on the normalization of the ζ-M relation. This is not an important efect in the

constraints presented in this chapter, mainly due to the fact that we marginalize over

a large range in scaling relation parameters, as listed in ğ4.3.

Finally, the redshift dependence of the cluster abundance contains information on

the growth function, as well as a dependence on the cosmic volume surveyed. The

Nclust clusters presented in this work provide a large enough statistical sample to

signĄcantly constrain cosmological parameters by measuring the evolution of cluster

abundance. Note however, that this efect is driven by the systematic uncertainty

on the scaling relation, as parameterized with power-law redshift evolution of the

observable-mass scaling relations. This is further discussed in the context of dark

energy in ğ7.2.4.

7.2.1 ΛCDM

Cosmological probes other than cluster counts have been extremely successful in nar-

rowing down the cosmological parameter space. As mentioned in Chapter 1.1, one

commonly used parameterization that Ąts the majority of experimental data is the

ΛCDM model. This model has six degrees of freedom: a comoving cosmological

baryon density Ωbh
2, cold dark matter density Ωch

2, angular scale to the sound hori-
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zon θs and optical depth to reionization τ . The density Ćuctuations are parameterized

using a power-law scalar primordial power spectrum with amplitude As and power

law index (ns − 1).

The six-parameter ΛCDM model is not well constrained by cluster counts alone.

The cluster likelihood is Ćat in the optical depth due to reionization τ as well as

the primordial scalar spectrum power law index ns, once an appropriate pivot point

is chosen. Therefore, when discussing cluster constraints without the inclusion of

CMB data, we Ąx these parameters to the PlanckXVI best-Ąt values. We choose

to marginalize over Ωbh
2 = 0.022 ± 0.002, a BBN prior on the baryon density from

measurements of the abundances of deuterium (Kirkman et al., 2003). We Ąnd that

the cluster likelihood is very Ćat over this range, meaning that the cluster constraints

do not strongly depend on the details of this prior.

The remaining three degrees of freedom in the ΛCDM model that are relevant to

the cluster likelihood are H0, ΩM and σ8, though in exploring the likelihood surface

we actually vary the base parameters Ωbh
2, Ωch

2, ln 1010As and 100θMC .

Using the likelihood algorithm presented in ğ6 and the ΛCDM cosmological model,

we measure

σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1

= 0.74 ± 0.02 (7.2)

Compared to the Planck constraints (Planck Collaboration et al., 2013a) (with

the low-ell polarization powerspectrum as measured by WMAP, denoted as WP),

the cluster-based measurement of σ8 is quite low. In order to visualize this directly

in data space, we plot the number of SPT-selected clusters expected as a function

of redshift, marginalizing over the Planck-allowed ΛCDM cosmology. We use the

nominal scaling relation parameters from the AGN8.0 model discussed in 4.2.3. This

is shown in Figure 7.1. The measured abundance in combination with the AGN8.0

scaling relation is clearly discrepant with the predicted abundance from Planck under

a ΛCDM cosmology.

While this visualization in data space is enlightening, it is necessary to marginalize
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Figure 7.1 The cluster abundance as measured in the SPT-SZ 2500 square degree
survey. The predicted abundances given either the Planck or WMAP9 constraints
on the ΛCDM cosmology is shown in the gray bands. Here, we assume the nominal
scaling relation parameters from the AGN8.0 simulation. Note the strong discrep-
ancy between the measured and predicted cluster abundances when using the Planck
constraints.
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0.2 0.3 0.4 0.5 0.6
Ωm
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SPTCL(B13)+H0+BBN

SPTCL(R13)+H0+BBN

SPTCL(2500d_9)+H0+BBN

Figure 7.2 Comparison of the cosmological constraints presented in this work to those
presented in previous SPT publications. B13 presented 18 SZ-selected clusters, 14 of
which had X-ray data. R13 expanded the cluster catalog to 100 cluster candidates,
keeping the amount of X-ray clusters to 14. This work presents a 375-cluster catalog,
83 of which have X-ray YX data. Note the σ8-ΩM contours become signiĄcantly
smaller.
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over scaling relation parameters in order to obtain proper parameter constraints. In

order to visualize this constraint on the combination of three cosmological parameters

directly, we can apply a prior on one of these parameters. Here, we choose the local

measurement of H0 = 73.8 ± 2.4 km/s/Mpc by Riess et al. (2011) and show the

resulting constraints in the σ8-ΩM plane in Figure 7.2. The same analysis is shown in

previous SPT works, which were based on smaller subsamples of the cluster sample

and X-ray follow-up data. We also compare this constraint to measurements of the

primary CMB power spectrum in Figure 7.3. We Ąnd that datasets are consistent

when comparing to WMAP9, though there is ≳ 2 σ tension between the Planck+WP

and SPTCL+H0 datasets. The tension between Planck CMB powerspectrum and

cluster-based results was also found by the Planck team in Planck Collaboration

et al. (2013b).

The constraint on the combined parameter σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1
is the pri-

mary ΛCDM result in this work. A direct comparison to CMB datasets is shown in

Figure 7.4. Upon investigating swapping in and out the HST prior, the BAO prior

and the conservative CMB-based prior on θs, we Ąnd that this cluster constraint is

remarkably robust to these priors. We do not show constraints without any exter-

nal datasets since the ΛCDM model cannot be constrained to physically reasonable

values with clusters alone.

7.2.2 Constraints on the Neutrino Sector

In order to reconcile the Planck data with the SPT cluster abundance, we can extend

the cosmological parameter space. A reasonable extension to ΛCDM is to allow

neutrinos to have mass. Neutrino mass diferences from terrestrial measurements

imply a minimum sum of neutrino masses of Σmν ≈ 0.06 eV. See Gonzalez-Garcia

et al. (2012) for a review of recent terrestrial measurements of the neutrino sector.

Neutrino mass has negligible impact at the surface of last scattering (z ∼ 1100), since

they remain relativistic then. At z ≲ 1, where cluster abundance is measured with
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Figure 7.3 The 68% and 95% conĄdence intervals in the σ8-ΩM plane from the SPT
cluster abundance measurement presented in this work are shown in blue. The
WMAP7 bandpowers from Larson et al. (2011) combined with the SPT bandpow-
ers from Story et al. (2012a) are shown in gray, where the red contours show the
constraints implied from the Planck CMB power spectrum with WMAP polarization
information (Planck Collaboration et al., 2013a). The black curves show the primary
constraint coming from the cluster abundance measurement.
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0.64 0.72 0.80 0.88 0.96

σ8

(
ΩM

0.27

)
0.3

(
h

0.71

)−0.1

Planck+WP

WMAP9+S12

SPTCL(2500d_9)+H0+BBN

SPTCL(2500d_9)+θ+BAO+BBN

Figure 7.4 The one-dimensional primary constraint implied by the SPT cluster abun-
dance measurements in concert with the measurements of the observable-to-mass
scaling relations are shown in comparison to the CMB constraints given the ΛCDM
model. Note that there is tension with the Planck+WP-implied parameters.
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SPT, assigning a signiĄcant rest mass to neutrinos suppresses structure formation,

since neutrinos act as warm dark matter.

0.00 0.25 0.50 0.75 1.00 1.25
Σmν [eV]

0.60

0.66

0.72

0.78

0.84

0.90

σ
8

WMAP9+S12

Planck+WP

SPTCL(2500d_9)+WMAP9+S12

SPTCL(2500d_9)+Planck+WP

Figure 7.5 Cosmological constraints in the ΛCDM+Σmν cosmological model. The
combination of the Planck+WP CMB powerspectrum data with the SPT cluster
abundance measurement is shown in blue. This combination of datasets and cosmo-
logical parameters yields a 3.3σ detection of non-zero neutrino mass.

Figure 7.5 shows the Planck+WP constraints in the σ8-Σmν plane, and the efect

of combining with the cluster abundance measurement. This nominally implies a

detection of non-zero neutrino mass at 3.3σ. However, the combination of the CMB

powerspectrum with the SPT cluster data in this ΛCDM + Σmν cosmology does not

agree with either direct H0 measurements or measurements of the baryon acoustic

scale rdrag/DV at z = 0.57. We therefore disfavor this way of resolving the apparent

Planck-SPTCL discrepancy.
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Figure 7.6 Cosmological constraints in the ΛCDM+Σmν cosmological model. The
horizontal lines denote the ± 1σ constraints from the BAO DR11 CMASS constraints,
whereas the direct H0 measurement is shown as vertical lines. While the free neu-
trino mass parameter reduces tension between the cluster abundance information and
Planck+WP, this comes at the cost of being discrepant with BAO and H0 measure-
ments.
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One way to resolve the tension with the direct H0 and BAO measurements is to

free the efective number of relativistic species Neff together with the sum of neutrino

masses. This parameterization allows for new particle physics such as an additional

sterile neutrino, as explored in Dvorkin et al. (2014), though this parameter need

not be near an integer (e.g. Garcia-Cely et al. (2014)). When freeing Neff , the

joint Planck+WP+SPTCL likelihood includes the parameter space allowed by direct

measurements of H0 and BAO, as shown in Figure 7.7. We show the likelihood

contours in the Neff -Σmν plane in Figure 7.8.

65 70 75 80 85
H0
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SPTCL(2500d_9)+Planck+WP+BAO

Figure 7.7 Cosmological constraints in the ΛCDM+Σmν+Neff cosmological model.
Note that the tension between SPTCL+Planck and BAO+H0 is signiĄcantly reduced
by allowing Neff > 3.046.
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Figure 7.8 The constraints on the sum of neutrino masses Σmν and efective number
of relativistic species Neff are shown for various combinations of datasets.
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7.2.3 Error Budget and Future Prospects

The most important systematic uncertainty driving the cosmological constraints from

cluster abundance is knowledge of the overall mass scale. In this work, the parameter

AX captures this dominant systematic. Figure 7.9 shows the efect of doubling the

assumed AX uncertainty on the SPTCL+θ+BAO constraints. The nominal X-ray

based assumed uncertainty on cluster mass scale is approximately 15% when averaged

over the SPT redshift range. Doubling the assumed AX uncertainty changes this to

be ∼ 22%. This is comparable to the assumed prior on ASZ of 30% in ζ. Therefore,

the resulting uncertainty on cosmological parameters does not double when doubling

the assumed value for the 1σ Gaussian prior width on AX .

0.270 0.285 0.300 0.315 0.330 0.345
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SPTCL(2500d_9)+θ+BAO+BBN

Figure 7.9 ΛCDM constraints when placing twice as conservative a prior on the nor-
malization of the YX-M relation AX . Note the constraints degrade only slightly.
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A more cosmological prior-independent statement can be made by looking at how

the σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1
constraint depends on AX . This is shown in Figure

7.10. Note the degeneracy is strong, implying improvement in our knowledge of the

overall mass scale of the SPT cluster sample would greatly improve the cluster-based

cosmological constraints.
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Figure 7.10 Constraints on σ8


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71 km/s/Mpc

−0.1
, the primary parameter mea-

sured using cluster abundance, is plotted against AX . The blue contours shows the
nominal constraints, where for the red contours we have increased the assumed un-
certainty on the normalization of the YX-M relation by a factor of two. The black
lines show the 68% conĄdence region for Planck+WP. Note that the tension is not
signiĄcantly relieved by doubling the width of the prior.

Changes in ΩM and σ8 afect the matter power spectrum (and hence the cluster

mass function) diferently as a function of redshift. Therefore, measuring the cluster

abundance in more than one redshift bin can break the σ8-ΩM degeneracy. However,



7.2 Cosmological Constraints 85

this redshift trend in abundance is degenerate with evolution in the observable-mass

scaling relation. This can be seen in the CSZ column of Figure 7.11.

This improvement in our knowledge of the mass scale of the SPT sample is expected

soon. The SPT team has obtained high-Ądelity weak lensing data for dozens of

SPT-selected clusters. The analysis is currently ongoing and expected to result in

signiĄcant improvements to the constraints presented in this dissertation.

7.2.4 wCDM

The local energy density of dark energy was assumed to be constant in 1.1.3. This

assumption has little theoretical foundation, so testing it is important. We follow

the standard notation and substitute an arbitrary dark energy component in 1.8 to

obtain

H(z) = H0



Ωγ(1 + z)4 + ΩM(1 + z)3 + ΩΛ(1 + z)3(1+w) . (7.3)

The cluster abundance is sensitive to the dark energy equation of state parameter

w through several mechanisms. First, the epoch when the dark energy density starts

to dominate the global energy density (ΩM(z) ∼ ΩΛ(z)) is afected. The growth of

structure is also altered by dark energy. Finally, the angular diameter distance as a

function of redshift changes, which afects the X-ray and SZ observables diferently.

Since we require clusters to only have one true mass in the likelihood expression

(Equation 6.4), having independent information on the absolute calibration of the

X-ray and SZ mass proxies provides information on dark energy.

In this work, the prior knowledge on the normalization of the SZ-mass relation

is taken very conservatively, such that dark energy is not signiĄcantly constrained

by the angular diameter distance. In addition, the dark energy equation of state

parameter w is highly degenerate with both H0 and the redshift evolution in the SZ-

mass scaling relation. Without adding more cosmological datasets, we are therefore

unable to extract meaningful constraints when extending the ΛCDM model by the
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Figure 7.11 The degeneracies between key scaling relation parameters and cosmo-

logical parameters are shown. The constraints on σ8
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are

relatively independent of the additional cosmological data assumed. However, the
constraints on σ8 and ΩM difer signiĄcantly depending on the choice of external
dataset. Note that improved knowledge of the redshift evolution scaling relation
parameter CSZ will break the σ8-ΩM degeneracy.
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parameter w. However, to highlight the potential constraining power of the cluster

abundance measurement, we adopt the nominal values of the mass-observable scaling

relations and Ąnd the cosmological parameters to be strongly constrained, as shown

in Figure 7.12. We Ąnd w = −1.010 ± 0.038 given this assumption.

In this chapter, we have presented cosmological constraints using cluster abun-

dance measurements from the SPT-SZ survey. When applying conservative scaling

relation priors, we Ąnd signiĄcant tension with Planck measurements of the primary

CMB anisotropy, in a ΛCDM cosmology. The neutrino sector can help resolve this

tension. Allowing the sum of the neutrino masses to be ∼ 0.5 eV rather than the

assumed 0.06 eV in ΛCDM brings the cluster abundance measurement in agreement

with Planck. However, the resulting parameter space has signiĄcant tension with mea-

surements of BAO and direct measurements of H0. Allowing the efective number of

relativistic species Neff to be a free parameter brings these datasets into agreement.

Replacing the Planck CMB data with the state-of-the-art results from before the

Planck publications (WMAP9+S12) does not show signiĄcant tension with cluster

abundance. However, when combined with local probes, the preference for neutrino

physics beyond ΛCDM remains.
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for the mass-observable relation. The cluster abundance measurement is able to
constrain the Ąve-parameter model with higher precision than either the H0+BAO
or Planck+WP datasets.
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Conclusion

In this dissertation, we have presented several results. New results require new techno-

logical advances. We have developed DAN, a digital algorithm for providing feedback

to the SQUID ampliĄer at relevant frequencies, enhancing the capability of the fre-

quency domain multiplexed readout to read more channels over a single wire. DAN

is fully implemented, tested, and is used in the operation of the South Pole Tele-

scope. In addition, both DEVB and its resistance-feedback counterpart are digital

algorithms to enhance bolometer stability, linearity, and ease of calibration. These

algorithms are still under development.

We also presented constraints on cosmological parameters from galaxy cluster num-

ber counts, as measured with the SPT. We designed and implemented a computation-

ally eicient method of obtaining the cluster likelihood in the presence of an arbitrary

number of mass-observables, while allowing each mass proxy to follow an arbitrary

dependence on cosmological parameters, have an arbitrary uncorrelated probability

distribution in addition to a log-normal scatter with true mass. The log-normal com-

ponents of the scatter in the observable-mass relations can be arbitrarily correlated

between mass proxies, and these correlation coeicients can be marginalized over.

Using the likelihood code we developed, we used the 2500 square-degree SPT-SZ

cluster catalog, which consists of 375 galaxy cluster candidates above the selection

threshold of z = 0.25 and a detection signiĄcance exceeding Ąve. All but 18 clus-

ters have measured optical/near infrared redshifts, where we show that we expect

∼18.5 cluster candidates to be false from simulations. The cluster catalog is com-
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bined with 82 observations from the Chandra X-ray telescope, providing a follow-up

mass proxy. We Ąnd that, given the mass-observable relations, Ąnding only 375

clusters in this area, with our noise level, is surprising. Using the ΛCDM model

as constrained by data from the Planck satellite, we might rather expect to have

found ∼ 1000 clusters. This manifests in tension, most prominently in the parameter

σ8



ΩM

0.27

0.3 
H0

71 km/s/Mpc

−0.1
. We show that the tension with the Planck data can be

resolved by allowing the sum of neutrino masses to be ∼ 0.5 eV. This comes at the

cost of tension with the BAO and H0 datasets, which in turn can be resolved by

extending the model with a free parameter for the efective number of relativistic

species Neff .

Ongoing observations and analysis of weak gravitational lensing data should pro-

vide more insight in the dominant systematic for this work: the cluster mass scale.

With this data in hand, we should be able to reduce the uncertainties on the cos-

mological parameters discussed in this work. The 2500d SPT-SZ cluster abundance

measurement is a powerful cosmological dataset. We show that, once the observable-

mass scaling relation parameter uncertainties are known, the sample is able to place

tight constraints on the wCDM model, measuring the dark energy equation of state

parameter w to ∼ 3.8%.
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Stability criterion for series impedance to the TES

The left hand panel of Figure 2.6 shows that the reason for the TES latching due

to series impedance is well understood. The total impedance is seen to have a zero

derivative with respect to the total voltage, so further lowering the total bias voltage

causes the voltage across the TES to fall in a runaway manner. This instability occurs

when
d♣zs +RTES♣

dVOUT

= 0 . (A.1)

We substitute Equation 2.3 which describes the model, and assume that RTES is a

monotonically decreasing function of VTES. We Ąnd that this condition is met when

d log VTES

d logRTES

=
♣zs♣

♣zs +RTES♣ (A.2)

and conclude that the TES will latch due to series impedance when the fractional

stray impedance exceeds the logarithmic slope of the TES transition.
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Glossary

The following terms were used throughout, and are again deĄned here for your con-

venience:

• AGN8.0: The nominal hydrodynamic SZ sky simulation using feedback from

Active Galactic Nuclei, version 8.0.

• CMB: Cosmic Microwave Background. The radiation emitted when the uni-

verse cooled suiciently for neutral hydrogen to form.

• DAN: Digital Active Nulling. A method in frequency multiplexed readout to

keep the SQUID ampliĄer nuller at bolometer resonant frequencies.

• DEVB: Digitally Enhanced Voltage Bias. A method in frequency multiplexed

bolometer readout where the bias carrier voltage amplitude is modulated digi-

tally in order to keep the voltage drop across the TES constant, despite parasitic

stray impedance.

• ETF: Electrothermal Feedback. The process whereby a voltage-biased TES

bolometer is resistant to changes in incident optical power due to strong negative

feedback in the joint electrical-thermal system.

• FDR: False Detection Rate. The expected number of false positive cluster

candidates per unit area.
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• FRW metric: Friedman-Robertson-Walker metric. An exact solution to the

Einstein equation describing a homogeneous, isotropic universe that may be

expanding or contracting.

• FSF: Field Scaling Factor. The numerical correction factor that is used to

compensate for the slightly diferent noise levels of the 19 SPT-SZ survey Ąelds.

• H0: The present-day value of the Hubble constant. Measured in km/s/Mpc,

this encodes the rate at which objects in the ŞHubble ĆowŤ are receding as a

function of their distance.

• ΛCDM: The cosmological model where the universe is assumed to be spatially

Ćat, and consist of a cosmological constant, cold dark matter, and baryons. The

abundances of cold dark matter and baryons, in addition to the amplitude and

power-law slope of the primordial density Ćuctuations, and the angular scale

to the sound horizon are the Ąve parameters that describe the model. A sixth

parameter, the optical depth to reionization, may be added when CMB data is

considered.

• MCMC: Markov chain Monte Carlo. A popular numerical algorithm for ob-

taining a sample of points drawn from an unknown probability distribution.

The method is computationally inexpensive, particularly for high dimensional

likelihood surfaces.

• Noise PSD: Noise Power Spectral Density. Used in this work for the two-

dimensional expected Fourier-domain amplitudes which model the noise in SPT

maps.

• ΩM : The present-day value of the sum of energy density of all pressureless

components. Typically ΩM is modelled as a baryonic component (value around

5%) and cold dark matter (value around 30%).
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• Planck: Modern CMB experiment on a satellite platform. The data used in

this paper is from the Ąrst year-release (March 2013).

• RCW38: A mm-wave bright galactic H-II source used for SPT calibration.

• σ8: The present-day amplitude of the matter power spectrum on 8 Mpc scales.

• SPT: South Pole Telescope. The 10-m mm-wave telescope located at the geo-

graphic south pole which is at the focus of this dissertation.

• SPT-SZ: The Ąrst generation camera deployed on the SPT.

• SPTpol: The second generation camera deployed on the SPT. The number

of detectors approximately doubled relative to SPT-SZ and the experiment is

polarization-sensitive.

• SQUID: Superconducting Quantum Interference Device. An extremely sensi-

tive magnetometer based on superconducting loops and Josephson junctions.

Used as a low-input impedance low-noise ampliĄer.

• SZ: Sunyaev-Zel’dovich. The SZ efect described the upscattering of CMB

photons as they travel through a hot plasma and is used to detect and study

galaxy clusters.

• TES: Transition Edge Sensor. A superconducor held at the edge of supercon-

ductivity, where small changes in temperature lead to large changes in resis-

tance. This results in a very sensitive thermometer.

• WMAP: Wilkinson Microwave Anisotropy Probe. Satellite designed to mea-

sure the properties of the CMB. Took data in the period 2001-2010.

• ξ: The symbol denoting the signiĄcance of an SPT cluster candidate using the

matched Ąlter technique from ğ3.3.
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• ζ: The unbiased signiĄcance of an SPT cluster candidate. This is typically

measured using the matched Ąlter in the absence of non-SZ sources of mm-wave

anisotropy or noise.
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