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Abstract

AdS/CFT is today our best understanding of quantum gravity and its holographic na-

ture. In the past decade, understanding the role of quantum entanglement in the emergence

of a classical spacetime from a UV complete theory of quantum gravity has become a very

important goal. Through the Ryu and Takayanagi formula relating complicated boundary

quantum information measures to simple geometric objects in the bulk, we have refined the

dictionary of the AdS/CFT correspondence and made several important steps towards deep-

ening our understanding of the emergence of spacetime. The goal of this thesis is to study

the importance of quantum information measures such as (charged) Rényi entropies in the

AdS/CFT dictionary as well as understanding their phase structure and what it can teach

us about entanglement.

Abrégé

La dualité AdS/CFT est aujourd’hui notre meilleur atout pour comprendre la gravité

quantique et sa nature holographique. Depuis une dizaine d’années, l’importance de l’intrication

dans l’émergence d’un espace-temps classique à partir d’une théorie de gravité quantique est

devenue claire. Au travers de la formule proposée par Ryu et Takayanagi reliant une mesure

compliquée d’intrication en théorie des champs à un objet géométrique simple dans la théorie

gravitationelle, nous avons approfondi notre compréhension du dictionnaire d’AdS/CFT et

avons franchi plusieurs étapes cruciales pour comprendre l’émergence de l’espace-temps. Le

but de cette thèse est d’étudier l’importance de mesures d’information telles que les entropies

(chargées) de Rényi dans le dictionnaire d’AdS/CFT ainsi que de comprendre leurs phases

et ce qu’elles nous enseignent sur l’intrication.
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Notation

This thesis will be using the mostly + convention for the metric, where for example the

Minkowski metric is written as ηµν = diag (−1, 1, 1, 1). Most of the text will also use natural

units where ~ = c = 1.
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Chapter 1

Introduction

1.1 The puzzle of quantum gravity

Since the introduction of quantum mechanics in physics, understanding the fundamental

interactions at the quantum level of all particles in our universe has been one of the most

important goals of physics. For some time now, it has become clear that the Standard Model,

a quantum field theory with matter and a SU(3)× SU(2)×U(1) gauge group describes the

electro-magnetic, strong and weak interactions admirably well at the quantum level [1].

The recent discovery of the Higgs boson at the LHC comforts our feeling of having a deep

understanding of three of the four fundamental interactions in physics.

However, gravity remains a far more difficult beast to tame. As explained by Einstein

almost a hundred years ago in his theory of General Relativity, gravity is geometry. The

presence of matter deforms spacetime and this curved geometry is gravity. Indeed, Einstein’s

equations couple the stress tensor of matter Tµν to the Einstein tensor Gµν , a tensor built

from the Riemann tensor which encodes the curvature of spacetime:

Gµν = 8πGNTµν , (1.1)

where GN is Newton’s constant. This theory generalizing Newton’s law has been tested to

extremely good accuracy and is used daily in a random person’s life. Nowadays, rare are

those who leave home without their smart phone and these electronic devices all have a built-
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in GPS. But GPS technology could never work to such great accuracy without accounting

for corrections coming from General Relativity.

It is perhaps shocking to admit that although we understand classical gravity very well, we

know very little about the way it must be embedded in its quantum counterpart. If quantum

mechanics is correct, which is believed by the vast majority of the community, one must be

able to merge General Relativity and quantum mechanics. In fact quantum corrections are

somehow needed in General Relativity. Simple solutions of Einstein’s equations such as black

holes or cosmologies admit curvature singularities, for instance the Schwarzschild metric

ds2 = −
(

1− 2GNM

r

)
dt2 +

dr2

1− 2GNM
r

+ r2dΩ2
2 , (1.2)

has a curvature singularity at r = 0. But singularities are not physical, they merely indicate

that the theory we are considering breaks down and some new theory comes into play.

Typically, quantum gravity effects are expected to appear at length scales of order the

Planck length

`p =
√
~GN/c3 ∼ 10−35 m . (1.3)

At this scale, we expect quantum gravity effects to become important and (hopefully) cure

the singularity problem. Such scales are however hard to experiment in a lab as the energy

scale one would need to achieve to probe such degrees of freedom is roughly the Planck mass

mP ∼ 1019 GeV, many orders of magnitude above the energy present in the LHC collisions.

But quantum field theory has been the object of so much study over the past decades,

why not use the path integral formulation that works so well for the Standard Model and

apply it to General Relativity? Indeed, Einstein’s equations (1.1) can be derived by the

variational method from the Einstein-Hilbert action:

S =
1

16πGN

∫
d4x
√
−gR + Smatter . (1.4)

Is it not possible to write the partition function as a path integral over the degrees of freedom

of gravity, namely the metric gµν? Indeed, one can formally write

Z =

∫
DgDφ exp

i

~
S . (1.5)
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However, we do not know how to perform this path integral over metrics in full general-

ity1. It would for one probably require dividing the integration over metrics in a sum over

topologies, which are not classified in a general dimension. Furthermore, even a perturbative

approach to quantum gravity fails: simple dimensional analysis shows that General Rela-

tivity is a non-renormalizable theory. These rather dramatic issues were quite discouraging

for understanding quantum gravity, which remains today without doubt one of the greatest

challenges of modern physics.

Nonetheless, the 1970s saw some great breakthroughs in the field. First in 1972, Beken-

stein proposed that black holes should have entropy given by the area measured in Planck

units [3, 4, 5]. This was confirmed by Hawking’s calculation of the radiation emitted by a

black hole: Hawking radiation [6, 7]. These results strongly suggested the relation between

black holes and thermodynamics, where the black hole is seen as a finite temperature object

whose entropy is given by the Bekenstein-Hawking formula:

SBH =
kBc

3A

4~GN

, (1.6)

This formula is without doubt one of the most remarkable equations in physics. First of

all, it involves many different fields of physics: c is the ambassador of special relativity, ~

its quantum mechanics counterpart, kB represents statistical mechanics and GN of course

involves gravity. More surprisingly, the entropy scales with the area of the black hole, not

its volume. This was a quite dramatic result as any undergraduate in physics is taught that

entropy is an extensive quantity that must scale with the volume of a system. This was the

first clue that gravity is holographic and that somehow its degrees of freedom live not in the

volume of a region but on the boundary that encloses it.

The Bekenstein-Hawking entropy should be counting microstates of the quantum gravity

degrees of freedom of the black hole. The Bekenstein-Hawking entropy of Sagittarius A*,

the supermassive black hole at the center of the Milky Way is

SSag.A∗ ∼ 2.69× 1067 [J/K] (1.7)

1In a particular simple setting, this has been studied in [2]
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which is more than twenty orders of magnitude bigger than the thermodynamical entropy of

the sun. Black holes should thus have an enormous degeneracy of quantum states. This is

quite surprising as from a classical point of view, uniqueness theorems stipulate that a black

hole is uniquely determined by its mass and charges. Finally, another puzzle coming from the

merger of quantum mechanics and gravity was formulated by Hawking in the information

loss paradox. A black hole formed from collapse of a pure state should evaporate in an

essentially thermal state violating the unitarity of quantum mechanics.

String Theory has brought much insight in the previously stated puzzles of quantum

gravity. First of all, string theory is a great candidate for a theory of quantum gravity as

it is a quantum theory that contains, amongst other ingredients, gravity in its spectrum.

Furthermore, singularities such as orbifold singularities can be resolved in String Theory

and quantum stringy corrections to classically singular gravitational solutions were shown to

play an important role in [8]. But perhaps the biggest breakthrough came from Strominger

and Vafa’s result on the matching of black hole entropy and a counting of BPS states [9].

This was the first understanding of the nature of black hole microstates and was in fact the

first signs of a much deeper connection involving quantum gravity and holography, which

will be the subject of the following section. We should however emphasize that the black

hole information paradox and related questions are still the object of much debate today [10,

11, 12, 13, 14, 15]. A fully consistent merger of quantum mechanics and General Relativity

consistent with a semi-classical limit remains to be found.

1.2 Holography and the AdS/CFT correspondence

Our best understanding today of quantum gravity is through the AdS/CFT correspondence,

conjectured by Maldacena in 1997 [16]. Although unproven, this conjecture has passed a

great number of non-trivial checks in the extensive literature that followed after Maldacena’s

original proposal, see for instance [17, 18]. Maldacena’s original conjecture was that the

partition function of N = 4 SYM with SU(N) gauge group, a superconformal field theory

in 4 spacetime dimensions was dual - in the sense that it has an equivalent description - to

14



that of type IIB string theory on AdS5 × S5:

ZAdS = ZCFT . (1.8)

From the point of view of the conformal field theory, the partition function is viewed as the

generating function for all correlators of the theory. This remarkable conjecture was the first

precise proposal of the holographic nature of gravity: a theory of quantum gravity is dual

to a standard quantum field theory (i.e. without gravity) in one less dimension: the field

theory lives on the boundary of the space described by the gravitational theory.

Anti-de Sitter space is a negatively curved manifold satisfying Einstein’s equation with

a negative cosmological constant

Gµν + Λgµν = 0 , (1.9)

with Λ < 0. The metric on global AdSd+1 is given by

ds2

`2
AdS

= − cosh2 ρdt2 + dρ2 + sinh2 ρdΩ2
d−1 . (1.10)

with Λ = − (d−1)(d−2)

2`2AdS
. Note that we will in fact consider the universal cover of AdS space

where we have unwrapped the time cycle do avoid having closed timelike curves. AdS space

is often represented as a solid cylinder and the conformal boundary R× Sd−1 can be viewed

as the space on which the dual conformal field theory ”lives”, as drawn in Fig. 1.1.

Maldacena’s conjecture comes in various forms but one often refers to the ”weak” form

of the conjecture where the field theory is taken to have N large and the ’t Hooft coupling

λ = g2
YMN large so it is strongly coupled. This theory is dual to classical supergravity

on AdS5 × S5, a rather simple theory with which one can compute quite easily complicated

objects from the point of view of the strongly coupled field theory. In fact, one often refers to

AdS/CFT as a dictionary: an object on the boundary has an interpretation in the bulk and

vice versa. For example, correlations functions of the boundary theory can be calculated

by Witten diagrams involving bulk interactions, as shown in Fig. 1.2. Other examples

include for instance Wilson lines in the CFT given by bulk minimal surfaces who end on the

boundary Wilson lines.
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Figure 1.1: AdS3 is represented as a solid cylinder with conformal boundary S1 × Rt. The

vertical direction is the time direction and the boundary cylinder is the space on which the

CFT lives. The thick dark circle represents a fixed time slice of the boundary spacetime: a

circle.

Naturally, black holes also play an important role in the AdS/CFT duality. At sufficiently

high temperature, thermal states on the boundary are dual to AdS black holes. At low tem-

peratures, the dominant geometry is thermal AdS and the Hawking-Page phase transition

responsible for the switch of the dominant gravitational saddle also has a natural interpreta-

tion in the boundary theory: it is related to the confinement/deconfinement phase transition

[19]. In this holographic setting, it is natural that the black hole entropy be proportional

to the area as it is given by a thermal entropy of a local quantum field theory in one less

dimension. For instance, modular invariance and the Cardy formula [20] for two-dimensional

CFTs naturally reproduce the entropy of the BTZ black hole [21].
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Figure 1.2: The 4 point function of a CFT is calculated by a sum over Bulk Feynman

diagrams. The diagrams that appear in the bulk depend on the interactions of the gravity

theory.

The AdS/CFT conjecture was originally introduced in a very stringy context starting

from a stack of N D3-branes in flat space. It was generalized to many other brane construc-

tions such as for example a stack of D-branes at the tip of the conifold in [22] or to the

AdS4/CFT3 version of the duality relating ABJM theory and M2-branes [23]. It is however

widely believed to be based on deeper principles and to extend in more general settings. For

example, a version of the holographic duality exists for higher spin theories of gravity, known

as Vasiliev theories [24], both in AdS3/CFT2 [25, 26] and in AdS4/CFT3 [27, 28, 29, 30].

AdS/CFT has played an important role in understanding quantum gravity but has an

incredibly wide range of applications, going from QCD and heavy ion collisions (see for

instance [31]) to condensed matter [32, 33], passing through quantum information [34] and

many more. The focus of the next section will be to explore the importance of quantum

entanglement in the AdS/CFT correspondence, which also has ties to a wide range of fields,

including naturally quantum information but perhaps more surprisingly condensed matter

physics [35, 36, 37] and quantum gravity [38, 39, 40, 41, 42].
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1.3 Holographic Entanglement Entropy and the Ryu

and Takayanagi Formula

1.3.1 Entanglement Entropy in quantum mechanics and quantum

field theory

Entanglement is an astonishing property of quantum mechanical systems that is completely

absent classically. It teaches us the extent to which a state (or density) cannot be written

as a direct product of states (or densities) living in sub-Hilbert spaces. Consider the Hilbert

space of a quantum mechanical system H and consider a state |ψ〉 living in that Hilbert

space. We consider an arbitrary splitting of the Hilbert space as

H = HA ⊗HB (1.11)

and entangling describes the failure of the state of being a direct product, such that if the

state |ψ〉 is entangled

|ψ〉 6= |ψA〉 ⊗ |ψB〉 |ψA〉 ∈ HA, |ψB〉 ∈ HB . (1.12)

One can consider different measures of entanglement and a standard example is the

entanglement entropy. One first computes the reduced density matrix from the density

matrix ρ describing our state, by tracing over the Hilbert space HB

ρA = trHBρ . (1.13)

The entanglement entropy is then given by the Von Neumann entropy of the reduced density

matrix

SA = −trρA log ρA . (1.14)

For a pure state SA = SB. A standard example is the system of two qubits in an EPR pair

|ψ〉 =
1√
2

(|↑A〉 ⊗ |↑B〉+ |↓A〉 ⊗ |↓B〉) . (1.15)

18



The reduced density matrix is the maximally mixed state ρA = diag
(

1
2
, 1

2

)
which gives

SA = log 2 , (1.16)

namely there is one bit of information in the entanglement between the A and B spins. Note

that there is some clear correlation between the outcome of measures on A and B: if A is

measured being |↑〉, then so is B. However, correlation is not enough to determine wether

the state is entangled or not, some correlations are just classical and are not related to

quantum entanglement. This can occur for example in mixed states. Entanglement entropy

may also not be a good measure of entanglement for mixed states as is clearly illustrated in

the following example: consider the state

ρ = diag(1/2, 1/2)A ⊗ diag(1, 0)B , (1.17)

which is clearly a direct product state. The entanglement entropy SA gives again log 2, which

is the same answer as the one obtained for the EPR pair. For a general density matrix, there

is no clear way to quantify entanglement, although measures such as distillable entanglement

- a measure of the number of EPR pairs that can be extracted from a state - try to quantify

this more precisely. Nevertheless, we will be mostly interested in entanglement of pure states

in which case entanglement entropy is a good measure of separability.

Of course, we have so far only considered entanglement entropy in quantum mechanics

with finite dimensional Hilbert spaces. We are really interested in understanding entangle-

ment entropy in quantum field theory (or CFTs) which is a much more complicated task,

as they have an infinite number of freedom per unit volume. Some early attempts, also

relating this work to black hole entropy and the information loss paradox, go back to the

1990s by Wilczek et. al [43, 44] and Kabat and Strassler [45]. In principle, there is no

issue in computing the reduced density matrix and entanglement entropy in a quantum field

theory using the path integral formalism. We will consider the vacuum state to simplify the

following steps but excited states can be considered by a different contour of integration in

the path integral. One might worry that the vacuum state is too simple and doesn’t contain

much information. Indeed, this is true in momentum space where for free theories, the Fock
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vacuum is a direct product state and is not entangled. However, there is a lot of information

contained in position space entanglement, even in low energy states such as the vacuum.

The entanglement entropy we consider is then spatial entanglement entropy, quantifying

entanglement between the Hilbert spaces associated with two spatial regions. This is done

by fixing a time slice (for example t = 0) and separating the spatial slices into two regions

A and B. We can consider for example splitting space in half as showed in Fig. 1.3.

Figure 1.3: Space is separated into two regions A (x > 0) and B (x < 0). The boundary

conditions in the path integral fix ψA and ψ′A which compute a particular matrix element of

the reduced density matrix. ψB however is not fixed and is integrated over.

A natural basis to chose for the degrees of freedom in region A are ψA(x), the field con-

figurations in region A. One can then write a matrix element of the reduced density matrix

by path integrating over the fields with boundary conditions in region A and appropriate

fall off of the fields at t→ ±∞:

〈ψA|ρ|ψ′A〉 =
1

Z

∫
ψ(t=0−,x>0)=ψA
ψ(t=0+,x>0)=ψ′

A

Dψ e−SE . (1.18)

One then computes entanglement entropy with equation (1.14). Although one can write down

formal expressions, actual computations are extremely difficult for several reasons. First of

all, the entanglement entropy in a QFT has a UV divergence coming from high entanglement

of modes close to the entangling surface separating A and B. One must introduce a UV cutoff

to regularize the entanglement entropy, or consider special combinations of entanglement

entropy (such as for example mutual information or other quantum information measures)

20



that are built in a UV-finite way. For the rest of this thesis, we will not worry about

the UV divergence and take it to be regularized by a UV cutoff. However, even when

regularized actually computing entanglement entropy is a difficult task and can rarely be

done analytically. Simple examples such as free field theories enable more explicit calculations

but in general, a direct computation is almost impossible.

The trick often used to compute entanglement entropies is called the replica trick. It

involves calculating the Rényi entropies defined as

Sn =
1

1− n
log trρnA (1.19)

for integer n. It is important to note that the Rényi entropies are the eigenvalue moments of

the reduced density matrix and thus form the most complete basis independent description of

the reduced density matrix. They encode far more information than that obtained just from

the entanglement entropy and are of great interest outside of their use in the replica trick.

The replica trick consists in calculating the Rényi entropies for integer n, which reduces to

a calculation of the partition function of the original theory on a multisheeted cover of the

initial geometry, see Fig 1.4. This can also be viewed as inserting twist operators at the

entangling surface to ”jump” to the next sheet. Then, by assuming analyticity of the Rényi

entropies in n, one continues n to real values and takes the limit

SA = lim
n→1

Sn , (1.20)

and recovers the entanglement entropy [47, 48, 46]. Although quite difficult as well, this is

in general easier than a direct computation of the entanglement entropy.

One important point that will be of crucial importance for this thesis is the analyticity

assumption used in the replica trick. Carlson’s theorem states that there is a unique con-

tinuation to real values provided the function satisfies some exponential boundedness for

large n ∈ R and grows slowly enough as n → 1 ± i∞. For finite dimensional systems, the

Rényi entropies are analytic but they are ill-defined without a UV cutoff ε in quantum field

theories. Wether the limits ε→ 0 and n→ 1 commute is still the object of some debate and

this question will be investigated in more details in Chapter 2.
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Figure 1.4: A plot of the appropriate manifold for computing S3 in a 2d field theory [46].

The region connected by the purple stripes is region A. The twist operators are inserted

at the entangling surface, where a conical singularity lives. Everytime we go around the

entangling surface, we move up a sheet.

Although the replica trick and potential direct calculations of entanglement entropy exist,

they are quite complicated as argued above. A remarkable breakthrough in the field came

in 2006 when Ryu and Takayanagi proposed a simple way to calculate entanglement entropy

holographically by the means of a geometrical object: a minimal surface [49]. This directly

connects quantum information on the boundary to geometry in the bulk. We now turn to

the Ryu and Takayanagi formula and explain its importance in AdS/CFT.

1.3.2 Holographic Entanglement Entropy and the RT formula

In 2006, Ryu and Takayanagi proposed a simple formula to calculate entanglement entropy

in AdS/CFT. The entanglement entropy of a subregion of the boundary CFT A is given by

a minimal surface extending in the bulk

SA = min
γ∼A

Aγ
4GN

. (1.21)
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The minimalization procedure is over all bulk surfaces that are homologous to A and end on

∂A. This is represented in Fig. 1.5.

Figure 1.5: A fixed time slice of the AdS3 geometry. The boundary spatial circle is separated

into two regions A and B. The red line is the Ryu and Takayanagi minimal surface (in this

case a geodesic) extending into the bulk. Its length measures the entanglement in the CFT

between regions A and B.

This exciting proposal reproduced the well known universal result of a 2D CFT [44, 47, 46]

SA =
c

3
log

(
L

πε
sin

(
πl

L

))
, (1.22)

where c is the central charge, L the total size of the boundary circle and l the size of region

A. Perhaps just as amazingly, this formula resembled the Bekenstein Hawking formula for

black hole entropy. One can view the minimal surface as a type of horizon, a holographic

screen for an observer that only has access to region A on the boundary. Entanglement

entropy also plays an important role in quantum corrections to the semi-classical area law

for black hole entropy [45, 50, 51] and some proposals even try to completely characterize

black hole entropy as entanglement entropy [52, 53]. If one considers the thermofield double

state - a maximally entangled state between two non-interacting CFTs - dual to the eternal

AdS black hole [54], the entanglement entropy between the two conformal field theories is

again given by the RT formula, which matches with the black hole entropy which is quite

remarkable.
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The RT formula can also be used to compute entanglement entropy of subsystems of

thermal states in which case the homology constraint becomes important2. There must be a

smooth manifold that interpolates between the RT surface and the boundary region A such

that the entanglement entropies SA and SB are not equal in the case of a black hole as can

be seen in Fig. 1.6. Indeed, a black hole is dual to a thermal state so they need not agree.

Figure 1.6: A fixed time slice of the BTZ black hole geometry. The boundary spatial circle

is separated into two regions A and B. The red lines show the Ryu and Takayanagi minimal

surfaces homologous to A and B. In this case they are different.

Many generalizations of the RT formula have been proposed since. The area of the RT

surface gives the leading large N contribution to entanglement entropy and quantum 1/N

corrections were proposed to be given by bulk entanglement entropy through the RT surface

[56] (see also [57]). Stringy α′ corrections corresponding to higher derivative corrections

were also considered in [58]. But the RT proposal has also fuelled a much broader program

of relating the emergence of spacetime to entanglement. It has played a central role in

understanding how a classical geometry emerges from the dual boundary theory and fine

tuning our understanding of the UV/IR relation of AdS/CFT [38, 39, 59, 42, 60, 61, 62, 63].

Perhaps the most interesting discovery in this context is the fact that the linearized Einstein

equations in the bulk can be determined through properties of the entanglement entropy in

2Recent developments on the homology constraint have been made in [55].
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the boundary theory [64, 65]. While it is not a complete proof, it is a solid first step in

understanding the emergence of spacetime from quantum entanglement.

Although the Ryu and Takayanagi formula is not proven in full generality, it has been

proven when the replica trick is valid in [66] and for spherical entangling surfaces in [67].

In fact, the framework proposed by Casini, Huerta and Myers extends past the Ryu and

Takayanagi formula and plays an essential role in this thesis so the goal of the following

section is to summarize the results of [67].

1.4 Holographic Entanglement Entropy for Spherical

Regions

We will be interested in computing the entanglement entropy of the vacuum state of a CFTd.

We will separate the t = 0 spatial slice into two regions, the inside and outside of a Sd−2 of

radius L as shown in Fig 1.7.

Figure 1.7: The t = 0 slice of the boundary region is separated into the inside of a sphere of

radius L (region A) and the outside (region B). The cone represents the causal development

of region A, the set of all points in causal contact only with region A at t = 0.
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Let us call region A the inside of the sphere and consider the causal development of that

region, namely the set of spacetime points that are only causally connected to region A at

t = 0. Casini, Huerta and Myers showed that one can perform a conformal transformation

to map this region to Hd−1 × Rt. Let us start with the metric on Rd−1,1

ds2 = −dt2 + dr2 + r2dΩ2
d−2 , (1.23)

We do the following coordinate transformation

t = L
sinh(τ/L)

coshu+ cosh(τ/L)
, r = L

sinhu

coshu+ cosh(τ/L)
. (1.24)

The metric becomes

ds2 = Ω2[−dτ 2 + L2(du2 + sinh2 udΩ2
d−2)] (1.25)

with Ω = (coshu + cosh(τ/L))−1 One can then remove the factor of Ω2 by a conformal

transformation and we are left with the metric on hyperbolic space times time. Casini, Huerta

and Myers showed that one obtains a thermal state on hyperbolic space with temperature

T = 1/2πL, which can be seen by the fact that the τ coordinate is periodic in imaginary

time in (1.25). The reduced density matrix ρA is positive semi-definite and hermitian so it

can always be written as

ρA = e−2πLHE (1.26)

where HE is called the entanglement or modular hamiltonian. For generic states and/or

entangling surfaces, HE is in principle a complicated and non-local operator but Casini,

Huerta and Myers showed that for the case of the vacuum state and spherical entangling

surfaces, the symmetries at hand make HE a local operator with a geometric interpretation:

it is the generator of time translations (the standard hamiltonian) on hyperbolic space. As

we perform the conformal transformation, the reduced density matrix does get conjugated

by a unitary operator implementing the conformal transformation but these cancel out upon

taking the trace for calculating entanglement entropy. The conformal transformation has

thus mapped the problem of calculating entanglement entropy to that of calculating thermal

entropy on hyperbolic space.
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So far, these considerations only concern the boundary/CFT side of the story but as-

suming that the CFT is holographic and has a classical gravity dual, one can go further

and prove the Ryu and Takayanagi formula. The thermal state on hyperbolic space should

be dual to a black hole in the bulk and one can indeed find a black hole with the right

temperature and boundary metric: the massless hyperbolic black hole with metric

ds2 = −f(r)dτ 2 +
dr2

f(r)
+ r2dH2

d−1 , (1.27)

where

f(r) =
r2

L2
− 1 . (1.28)

Note that this ”black hole” is in fact simply AdS in Rindler coordinates and that L here is

the AdS radius. The thermal entropy on the boundary is calculated by the area of the black

hole which was shown to agree with the Ryu and Takayanagi proposal: the minimal surface

is mapped to the Rindler horizon of AdS. Notice that the area of the hyperbolic black hole

is IR divergent coming from the infinite volume of hyperbolic space, which translates into

the UV divergence of entanglement entropy [67].

This exciting result can in fact be pushed even further to include calculations of all Rényi

entropies as was done in [68]. The observation is basically that Rényi entropies involve

calculating trρnA. But ρnA = e−2πLnHE looks in fact like the density matrix of a CFT on

hyperbolic space at temperature 1/2πLn. By using simple thermodynamical properties one

can rewrite the Rényi entropies as

Sn =
n

n− 1

1

T0

∫ T0

T0/n

Stherm(T )dT . (1.29)

Note that here n can in fact be any real number, this is due to the fact that the high

symmetries of the entangling surface promote the usual Zn symmetry of the replica space to a

U(1) symmetry. Hung et. al showed that one can also calculate these entropies in the bulk by

areas of hyperbolic black holes. One needs to find bulk solutions that have hyperbolic horizon

but temperature 1/2πLn, generalizing the metric (1.27) to any temperature. These solutions

exist and are called massive hyperbolic black holes with metric (1.27) and blackening factor
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replaced by

f(r) =
r2

L2
− 1− m

rd−2
. (1.30)

One can then calculate all Rényi entropies and get a deeper understanding of the spectrum

of the reduced density matrix [68] as well as properties of the generalized twist operators

located at the entangling surface [69]. The general framework described in this section will

be the starting point of this thesis, where we will inquire about analytic properties of Sn and

also generalize it to understand the dependence of entanglement on charge distribution, as

explained in the following section.
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Analyticity properties of Rényi entropies

The analytic properties of Sn as a function of the Rényi parameter n are still an obscure

subject in the context of CFTs and holography and it would be of great interest to find

a framework where we can test the analyticity explicitly. In some cases, Rényi entropies

were shown to have interesting phase structures including possible phase transitions [70, 71].

Finding a similar example in a holographic context would be of great interest and would

address potential issues in the use of the replica trick and the validity of Carlson’s theorem.

The subject of Chap. 2 will be to explore the phase structure of Rényi entropies in a

holographic setting and we will indeed find that they can be non analytic in n. This will

occur if the CFT has a sufficiently low dimensional operator, which is the case for N = 4

SYM or other canonical examples of AdS/CFT. The mechanism behind this phase transition

is the instability of hyperbolic black holes at low temperature in the presence of a light scalar

field. The phase transition as a function of temperature relates to a non-analyticity of Sn as

a function of n. We explore the phase structure of Rényi entropies in this context and its

importance in holography.
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Chapter 2

Holograhpic Phases of Rényi

Entropies

Alexandre Belin, Alexander Maloney and Shunji Matsuura

Departments of Physics and Mathematics, McGill University, Montréal, Québec, Canada

Abstract

We consider Rényi entropies Sn = 1
1−n log Tr ρn of conformal field theories in flat space, with

the entangling surface being a sphere. The AdS/CFT correspondence relates this Rényi

entropy to that of a black hole with hyperbolic horizon; as the Rényi parameter n increases

the temperature of the black hole decreases. If the CFT possesses a sufficiently low dimension

scalar operator the black hole will be unstable to the development of hair. Thus, as n is

varied, the Rényi entropies will exhibit a phase transition at a critical value of n. The

location of the phase transition, along with the spectrum of the reduced density matrix ρ,

depends on the dimension of the lowest dimension non-trivial scalar operator in the theory.

Published in Journal of High Energy Physics 1312, 050 (2013)
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2.1 Introduction

Entanglement entropies characterize the degree of entanglement present in a given quantum

state, and in doing so probe interesting features of strongly coupled quantum systems. In

conformal field theories, certain entanglement entropies are related to conformal anomaly

coefficients (see [47, 46] for a review) and play an important role in conjectured holographic

duals of conformal field theories [49, 72, 73]. In the condensed matter literature they have,

for example, been used to characterize topological order [37, 35] and fractional quantum

Hall edge states [36]. The goal of the present paper is to understand the extent to which

entanglement entropies encode other interesting features of conformal field theories.

To define an entanglement entropy one starts by considering a quantum system which

can be divided into two subsystems, A and B, with associated Hilbert spaces HA and HB.

The state of the system is given by a density operator ρAB acting on the tensor product

Hilbert space HA ⊗HB. The degree of entanglement between A and B is characterized by

the reduced density matrix ρ = TrHB ρAB. We are interested in basis independent quantities,

so will consider the moments of the eigenvalue distribution of ρ:

Sn =
1

1− n
log Tr[ρn]. (2.1)

These are the Rényi entropies, and n is the Rényi parameter. In the limit n→ 1, Sn becomes

the entanglement (von Neumann) entropy SEE = −Tr ρ log ρ. These Rényi entropies have

been considered in a variety of contexts [74, 75, 76, 77, 71, 78, 79, 80, 66, 81].

The computation of the reduced density matrix ρ, and of the entanglement entropy

SEE, for an interacting quantum system is in general difficult. We will consider the case

of a d-dimensional CFT in flat space, with A and B separated by a sphere. In this case

conformal invariance relates the Rényi entropy Sn of the ground state to the thermodynamic

entropy of the CFT on hyperbolic space Hd−1 at temperature T = T0/n (as described in

[67, 68, 82]). Here T0 is a temperature related to the length scale of the hyperbolic space.

The computation of this thermodynamic entropy is still in general quite difficult. We will

therefore focus on CFTs with gravity duals, where the AdS/CFT correspondence relates this
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thermodynamic entropy to the entropy of a black hole in d+ 1 dimensional AdS space with

hyperbolic horizon. This allows us to compute Rényi entropies explicitly.

Solutions of Einstein gravity in AdS describing black holes with hyperbolic horizon are

easy to construct; they are hyperbolic versions of the Schwarzchild solution with a cosmolog-

ical constant. However, black holes of this type are sometimes unstable [83]. As the Hawking

temperature T → 0 (i.e. Rényi parameter n → ∞) they typically become more unstable.

Such an instability would lead to a non-analyticity in the Rényi entropies, regarded as a

function of n. We find that this instability will occur for CFTs with a sufficiently low di-

mension scalar operator. The reason is that a low dimension operator corresponds to a light

scalar field in AdS. If the field is too light, then at a finite, critical value of n the scalar field

will condense in the vicinity of the horizon. The dominant solution is now a ”hairy” black

hole, with non-trivial scalar profile.1

One advantage of this result is that it provides a clear dictionary relating properties

of the Rényi entropies (i.e. the eigenvalue distribution of the reduced density matrix) and

natural CFT quantities. For example, we will see that for a four dimensional CFT with a

single scalar operator of dimension ∆ < 3 the second derivative of Sn with respect to n will

be discontinuous at a value of n which depends on ∆. We expect similar results for large

N CFTs with more complicated spectra of light operators. It is interesting to note that a

similar result was found in the O(N) model using a direct field theory analysis [70] (see also

[71]). In this case the Rényi entropy was found to be non-analytic at n = 7/4. Presumably

our results are the bulk gravity version of this phase transition.2

Many approaches to entanglement entropy in quantum field theory – such as the replica

method – implicitly assume that the Rényi entropies are analytic in n. We find that, for

large N field theories with a small gap, this assumption is not necessarily valid. Thus the

1Similar phase transitions occur in applications of AdS/CFT to condensed matter physics, most famously

in the holographic superconductor [84, 85, 86].
2One subtlety is that the O(N) model is apparently dual not to general relativity with a light scalar, but

to a higher spin theory of gravity [27]. We expect that the transition at n = 7/4 is related to an instability

of a hyperbolic black hole in Vasiliev theory, but without a better understanding of the Vasiliev equations

of motion it is difficult to make a precise statement .
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replica trick must be applied with care. We note, however, that our phase transitions always

occur at values of n which are strictly larger than 1. Thus the Rényi entropy is analytic in a

neighbourhood of n = 1, at which point it equals the entanglement entropy. We do not see

any indication of non-analyticity near n = 1, except in rather exotic circumstances which we

will comment on in section 4.

Our paper is organized as follows. In section 2.2, we review Rényi quantities and their

computations in quantum field theory. In section 2.3, we review the holographic computation

of the Rényi entropy [68]. We analyze the near horizon limit of the extremal black hole, which

allows us to determine which black holes should be unstable in the T → 0 limit. This allows

us to determine which conformal field theories will have Rényi phase transitions.

In the last two sections we will present numerical results which verify the existence of

this phase transition. In section 2.4 we begin with a simplified model (following closely work

of [83]) in which the scalar mode which is constant on the hyperboloid condenses. This is

a particularly tractable case, as it preserves the hyperbolic symmetries. This allows us to

explicitly find the hairy black hole solution, which is used to compute Rényi entropies and

the spectrum of ρ. However, the constant mode presented in this section is non-normalizable.

We therefore continue in section 2.5 to discuss normalizable modes. Again, we demonstrate

that the hyperbolic black holes of Einstein gravity are unstable, so that the Rényi entropies

will exhibit a phase transition. The numerics are somewhat more difficult, as the modes no

longer preserve the hyperbolic symmetry. We therefore present a linearized analysis – which

is sufficient to demonstrate that a phase transition will occur – but leave the investigation

of the hairy black hole for future work.

2.2 Rényi entropy in Conformal Field Theory

In the following, we review the computation of Rényi entropies for a relativistic (Lorentz

invariant) quantum field theory. Consider a field ψ in d dimensional flat space. The Euclidean

signature metric is

ds2 = dt2 + dx2 + d~y2
⊥ (2.2)
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with ~y = (y1,⊥, · · · , yd−2,⊥). Before considering the slightly more complicated problem of

A and B being separated by a sphere, we will warm up by computing the entanglement

entropy between the region x > 0 (subsystem A) and the region x < 0 (subsystem B). The

entangling surface is the plane x = 0. We will take the system to be in its ground state.

A convenient basis for HA are the states |ψA〉, where ψA = ψA(x) is a function on A.

The matrix elements of the reduced density matrix ρA are given by the Euclidean signature

functional integral:

〈ψA|ρ|ψ′A〉 =
1

Z

∫
ψ(t=0−,x>0)=ψA
ψ(t=0+,x>0)=ψ′

A

Dψ e−SE (2.3)

where Z is a normalization factor. The boundary conditions set ψ to equal ψA (ψ′A) on either

side of the cut at t = 0, x > 0. ψ is required to fall off as t → ±∞; this puts the system in

its ground state.

We can also study the system in polar coordinates

ds2 = z2dθ2 + dz2 + d~y2
⊥, (2.4)

where θ has periodicity 2π. The boundary conditions in the path integral (2.3) are enforced

on either side of the ray θ = 0. Thus we can interpret ρA as an operator which rotates by

an angle 2π in the θ direction [45]

ρ =
1

Z
e−2πHE (2.5)

where HE = i ∂
∂θ

is the Euclidean rotation operator. If HE is regarded as a physical Hamilto-

nian (an “entanglement Hamiltonian”) this is precisely a thermal density matrix at tempera-

ture T = 1/2π; the normalization factor Z is the usual finite temperature partition function

Tr e−2πHE . In Lorentzian signature HE becomes the Rindler Hamiltonian which generates

Lorentz boosts in the (x, t) plane, and the origin z = 0 is the Rindler horizon associated to

an accelerating observer.

Let us now specialize to conformal field theories. This implies that, under a conformal

rescaling of the metric, ρA will change by conjugation a unitary operator; this is a trivial

change of basis which we will suppress. We can conformally rescale the metric (2.4) by a
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factor of z2/L2 to obtain

ds2
scaled = dθ̃2 + L2dz

2 + d~y2
⊥

z2
(2.6)

where θ̃ = Lθ is periodic with period 2πL. This metric is a product of a circle times

hyperbolic space Hd−1; the size of the circle, and the size of the hyperbolic space, are set by

the parameter L. The reduced density matrix is

ρA =
e−H̃E/T0

Z(T0)
(2.7)

where T0 = 1
2πL

and H̃E = i ∂
∂θ̃

generates translations in the θ̃ direction. We note that H̃E is

the Hamiltonian describing time evolution for a CFT on Hd−1 × Rt. Z(T0) = Tr[e−H̃E/T0 ] is

the finite temperature partition of the theory in hyperbolic space. Note that the conformal

transformation has mapped the entangling surface to the boundary of hyperbolic space.

Once we consider a conformal field theory many other mappings are possible. For ex-

ample, the reduced density matrix for a CFT on a sphere, with entangling surface at the

equator, can also be put in the form (2.7). So can the CFT on a flat space with entangling

surface equal to a sphere. These are all related by conformal transformations (as described in

e.g. [67]). More generally, any time the entangling surface is the locus of fixed points of some

conformal transformation, one can interpret the entanglement Hamiltonian as the generator

of that conformal transformation (in the same way that the point z = 0 above is the fixed

point of the rotation ∂
∂θ

). A conformal rescaling then turns this into the Hamiltonian on

hyperbolic space.

In the following sections, we will consider the entangling surface to be a sphere of radius

L, following [67, 68]. We take the flat space-time metric to be

ds2 = −dt2 + dr2 + r2dΩ2
d−2 , (2.8)

with region A being the inside of the sphere r = L. We now map the causal development of

A to hyperbolic space times time by the following coordinate transformation:

t = L
sinh(τ/L)

coshu+ cosh(τ/L)
, r = L

sinhu

coshu+ cosh(τ/L)
. (2.9)
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The metric becomes

ds2 = Ω2[−dτ 2 + L2(du2 + sinh2 udΩ2
d−2)] (2.10)

with Ω = (coshu + cosh(τ/L))−1. This is conformally equivalent to hyperbolic space times

time, i.e. to the metric (2.6). The temperature as well as the curvature of hyperbolic space

are fixed by the radius of the sphere L. Conformal transformations act as unitary operators

on the Hilbert space of the theory. Thus the reduced density matrix is simply given by (2.7),

except conjugated by some Unitary operator U :

ρA = U
e−H̃E/T0

Z(T0)
U−1. (2.11)

We can now use the equivalence between the reduced density matrix and the thermal

density matrix on the hyperbolic space to relate the entanglement entropy and Rényi entropy

to the thermal entropy in hyperbolic space. The entanglement entropy SEE and the Rényi

entropy Sn are defined as

SEE = −TrAρ log ρ, (2.12)

and

Sn =
1

1− n
log Tr[ρn]. (2.13)

We call n the Rényi parameter. If Sn is analytic near n = 1, then SEE = limn→1 Sn. The

trace of the n-th power of ρ is then given by thermal partition function on a hyperbolic space

with radius L at temperature T = 1/2πLn:

Tr[ρn] =
Tr[e−nHE/T0 ]

Z(T0)n
=
Z(T0/n)

Z(T0)n
. (2.14)

Thus the Rényi entropy is

Sn =
n

1− n
1

T0

[F (T0)− F (T0/n)]. (2.15)

where F (T ) = −T logZ(T ) is the free energy of a CFT on Hd−1. This can be written as

Sn =
n

n− 1

1

T0

∫ T0

T0/n

Stherm(T )dT. (2.16)

where

Stherm(T ) = −∂F (T )/∂T (2.17)
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is the usual thermal entropy on Hd−1.

We are interested in computing the entanglement spectrum (i.e. the eigenvalue spectrum

of the reduced density matrix). In general this will have both a discrete and continuous part.

In the basis that diagonalizes the reduced density matrix, the Rényi entropy is

Sn =
1

1− n
log

[∑
i

d̄iλ
n
i +

∫ 1

0

dλd(λ)λn

]
(2.18)

where λi are the eigenvalues of ρA with λ1 > λ2 > · · · , and d̄i (d(λ)) are the discrete

(continuous) degeneracies of the eigenvalues λi and λ. Note that the eigenvalues of the

entanglement hamiltonian HE, which we denote hi = − log λi, satisfy h1 < h2 < · · · . Since

λi and λ are equal or smaller than 1, the Rényi entropy is a monotonically decreasing function

of n. Thus, if we expand Sn in powers of n, it will contain only constant terms or negative

powers of n. In the large n limit, only the constant term survives; it gives the largest

eigenvalue λ1:

S∞ = − log λ1. (2.19)

We note that the entanglement entropy in a continuum theory is UV divergent unless one

employs a cutoff near the entangling surface. Likewise, the thermal entropy on hyperbolic

space diverges because of the infinite volume unless one employs an IR cutoff.3 One can show

that these two divergences are essentially the same thing; they are mapped to one another

by the conformal transformation [67].

2.3 Holographic Rényi entropies

We now consider the computation of Rényi entropies in CFTs with bulk gravity duals, where

they are related to entropies of hyperbolic black holes. We will describe the instabilities of

these black holes in section 2.3.2, using a simple near-horizon analysis of the extremal black

hole.

3In general, the theory may also have standard UV divergences which have nothing to do with the entan-

gling surface. We assume that these are regularized in ordinary ways, e.g. via zeta function regularization

or background subtraction.
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2.3.1 Hyperbolic Black Hole

In a CFT, the Rényi entropies Sn are related to the thermal entropies S(T ) of the theory

on hyperbolic space Hd−1 times time. In particular, from equation (2.16), Sn is an integral

of S(T ) from T = T0 = 1/2πL to T = T0/n. Thus we must compute S(T ) for T between 0

and T0.

We will consider CFTs with gravity duals. In this case the thermal entropy S(T ) is equal

to the entropy of a black hole in AdSd+1 with hyperbolic horizon and Hawking temperature

T [67, 68]:

Stherm =
rd−1
H vol(Hd−1)

4GN

(2.20)

Here rH is the value of the radial coordinate at the event horizon. It is straightforward

to construct such solutions in Einstein gravity with a negative cosmological constant. The

metric is

ds2 = −f(r)dθ2 +
dr2

f(r)
+ r2dH2

d−1. (2.21)

where

f(r) =
r2

L2
− 1− m

rd−2
, (2.22)

and m is the black hole mass. The AdS metric (in Rindler-like coordinates) is recovered by

setting m = 0. The horizon location rH is determined by

f(rH) = 0. (2.23)

The black hole temperature is

T =
f ′(rH)

4π
=

1

2πL

(
rH
L

+
d− 2

2

mL

rd−2
H

)
(2.24)

Asymptotically, the black hole metric becomes

ds2 ∼
(
r2

L2

)(
−dθ2 + L2dH2

d−1

)
as r →∞ (2.25)

Thus the black hole is dual to the CFT on R × Hd−1 at temperature T given by (2.24).

The black hole entropy therefore computes the thermal entropy of the CFT, which is in turn
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related to the Rényi entropy via (2.16). Note that the AdS radius L has been related to the

radius of the entangling surface.

The relation between the Rényi parameter n and the mass m is

n =

(
rH
L

+
d− 2

2

mL

rd−2
H

)−1

(2.26)

For the Rényi parameter n > 1, the black hole mass m needs to take a negative value. The

extremal case is

rext
H =

√
d− 2

d
L < L (2.27)

at which the black hole temperature becomes zero. The black hole exists only for

rH ≥ rext
H . (2.28)

In the extremal limit, the near horizon geometry becomes AdS2 × Hd−1 with AdS2 radius

L/
√
d, and the temperature T → 0.

2.3.2 Phase transitions: Analytic Estimates

So far we have considered only vacuum solutions of Einstein gravity. Let us consider the case

where the CFT contains a scalar operator of dimension ∆, which in the bulk corresponds

to a scalar field of mass µ2L2 = ∆(∆ − d). If ∆ is sufficiently small, then it is possible

for asymptotically AdS black holes to be unstable at low temperature [83, 84, 85, 86]. This

would lead to a phase transition where the scalar field condenses.

In the case of the hyperbolic black holes described above, a similar instability was con-

sidered in [83]. The authors of [83] considered only modes which are constant on the hy-

perboloid, which are normalizable only if the hyperboloid is quotiented to form a compact

space. In the present case the hyperboloid is not quotiented. We will therefore consider

here a more general class of instabilities, where a normalizable mode on the hyperboloid

condenses.

The physics of the problem is easy to understand. Consider a minimally coupled scalar

field Φ with mass µ, which behaves asymptotically as

Φ ∼ a1

r∆+
+

a2

r∆−
+ · · · , ∆± =

d

2
±
√
d2

4
+ µ2L2. (2.29)
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We will consider cases where the mass µ is between the Breitenlohner-Freedman (BF) bound

of AdSd+1 and AdS2,

− d2

4L2
≤ µ2 < − d

4L2
. (2.30)

Let us first consider the case of a mode which is constant on the hyperboloid. In this

case, for sufficiently high temperature black holes – in particular when T > T0 – the scalar

field will always be stable in the black hole background.4 Thus the dominant saddle point

will be the one with a1 = a2 = 0. However, as T → 0 the near horizon geometry becomes

AdS2 and the scalar field is unstable. Thus there is a critical temperature Tc < T0 at which

Φ becomes unstable. Below Tc, either a1 or a2 (depending on which boundary conditions

we choose for the scalar field) will become non-zero. The dominant solution is a hairy black

hole, which must be obtained numerically.

This instability was discussed in [83], who obtained the phase diagram as a function of the

temperature and the scalar’s mass. As expected, for µ at the AdS2 BF bound, the extremal

(T → 0) black hole is unstable. As µ2 is decreased the critical temperature Tc increases until

we reach the AdSd+1 BF bound, which corresponds to the threshold of instability for the

massless black hole (which has T = T0). We note that, as long as the field obeys the AdSd+1

BF bound, the locally AdS solution with T = T0 will be stable. We will reproduce these

results in the next section, where they will be summarized in Fig. 2.5. This condensation

will generate a phase transition in the thermal entropy and from (2.16), a phase transition

in the Rényi entropy.5

4This is easiest to see by noting that the T = T0 black hole is just AdSd+1, which is stable, and that

black holes only become more stable as the temperature is increased.
5These results are for standard (Dirichlet) boundary conditions for the scalar field (a2 = 0). However,

it is also possible to consider non-standard (Neumann, a1 = 0) boundary conditions. In this case the

critical temperature continues to increase as ∆− decreases. In fact, the critical temperature is higher than

that of the massless black hole. The massless black hole is the one which computes the entanglement

entropy. Thus the entanglement entropy would no longer given by the area of the hairless black hole!

Note, however, that this result is true only if we include the (non-normalizable) constant mode. When we

restrict to normalizable modes below, the massless black hole will remain hairless. This emphasizes the

important qualitative differences between the constant and normalizable modes. Related considerations will
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The above analysis, however, is incomplete because it considers a mode which is non-

normalizable on the hyperboloid. Such modes are easy to study, as they preserve the sym-

metries of the hyperboloid. Only normalizable modes, however, will lead to true instabilities

of the black hole. On a hyperboloid Hd−1, normalizable modes can be expanded in eigen-

functions of the hyperbolic laplacian, ∇2
Hd−1

φ = −λφ with λ > (d − 2)2/4. The extremal

black hole has a near horizon region AdS2 ×Hd−1 with radii

LAdS2 =
LAdSd+1√

d
LHd−1

=

√
d− 2

d
LAdSd+1

(2.31)

The full Laplacian is the sum of the AdS2 and Hd−1 Laplacians. Thus, for a mode which is

an eigenfunction of ∇2
Hd−1

, the effective mass of the field in AdS2 is shifted. We therefore

expect an instability when

µ2 +
λ

L2
Hd−1

≤ − 1

4L2
AdS2

(2.32)

where λ is the lowest eigenvalue of the laplacian on Hd−1. This occurs when the scalar masses

are in the following range:

−d
2

4
≤ µ2L2

AdSd+1
≤ −d(d− 1)

4
(2.33)

There will be masses in this range for any dimension d. For example in AdS5 we will find

an instability when

−4 ≤ µ2L2
AdS5
≤ −3 (2.34)

We will now turn to a numerical analysis of this instability.

2.4 The Constant Mode and a Hairy Black Hole

We will now study numerically the instability of the hyperbolic black hole to the development

of scalar hair. We will begin with a discussion of the constant mode on the hyperboloid.

This mode is particularly simple, as it preserves all of the hyperbolic symmetries. Thus

the hairy black hole can be constructed relatively easily using a full non-linear numerical

be discussed in [87].
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method. However, this mode is non-normalizable so will not fluctuate in the gravity theory.

The results of this section can therefore be viewed as a simplified model (one where the hairy

black hole can be constructed explicitly) of the more complicated case considered in the next

section.

We note that, although the constant mode considered in this section is non-normalizable

on the hyperboloid Hd−1, it is normalizable on compact quotients of Hd−1. Moreover, one

may wish to consider entanglement entropies with insertions of operators at the entangling

surface (the boundary of the hyperboloid) which source the scalar field. If these operators

turn on the constant mode of the scalar, then the results of this section would be precisely

correct, rather than just a simplified model.

To present numerical results we focus on the specific case of a scalar field theory coupled

to Einstein gravity in 5 dimensions.6 Our numerical approach follows [83] closely. The action

is

S =
1

16πGN

∫
d5x
√
−g
[
R +

12

L2
− (∇Φ)2 − µ2Φ2

]
(2.35)

where µ is a mass of the scalar field. We use the following metric and scalar field ansatz

ds2 = −f(r)e2χ(r)dt2 +
dr2

f(r)
+ r2dH2

3 , Φ = Φ(r). (2.36)

We are considering only constant modes on the hyperboloid; such modes will not fall off at

the boundary of Hd−1, i.e. the entangling surface.

The equations of motion are

Φ′′(r) +
1

rf(r)

[(
−µ

2

3
r2Φ(r)2 + f(r) +

4r2

L2
− 2

)
Φ′(r)− µ2rΦ(r)

]
= 0, (2.37)

f ′(r) +

(
2

r
+
r

3
Φ′(r)2

)
f(r) +

µ2

3
rΦ(r)2 +

2

r
− 4r

L2
= 0, (2.38)

χ′(r)− r

3
Φ′(r)2 = 0. (2.39)

For an asymptotically AdS5 space-time, the scalar field behaves as (2.29). For a1 = 0, a2

gives the expectation value of conformal dimension ∆− operator, and for a2 = 0, a1 gives

the expectation value of conformal dimension ∆+ operator. In this section, we set a2 = 0;

6We will consider charged black holes in [88].
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this is the “standard” (i.e. Dirichlet) boundary condition, where the mode which falls of

more slowly at r →∞ is set to zero. At the AdS5 BF bound, i.e., µ2L2 = −4 (∆ = 2), ∆±

degenerate and the asymptotic behaviour of the scalar field becomes

Φ(r) ∼ a1

r2
+
a2 log(r)

r2
+ · · · (2.40)

In this case, we set a2 = 0.

The metric functions behave as

f(r →∞) =
r2

L2
− 1 +

r2
0

r2
, χ(r →∞) = O(r−2∆+), (2.41)

and the thermodynamical quantities are

T =
f ′(rH)eχ(rH)

4π
, Stherm =

r3
Hvol(H3)

4GN

, E =
(−3r2

0 + δ2
∆2(a2

1/L
2))vol(H3)

16π
(2.42)

We have numerically investigated hairy black hole solutions. For each value of µ2L2 < −1

we find hairy black holes below a critical temperature Tc. When they exist, the hairy black

holes have lower free energy than the Einstein black hole. Thus the scalar condensate phase

(a1 6= 0) is thermodynamically favoured. When the scalar mass is equal or greater than

the AdS2 BF bound (µ2L2 ≥ −1, ∆ ≥ 2 +
√

3), the Einstein black hole is stable and the

expectation value of the scalar field (a1) is always zero.

Our results are presented in Fig 2.1, which shows the thermal entropy as a function of

the temperature.7 The Einstein black hole is the top curve (red) in Fig. 2.1. We have also

plotted in Fig. 2.1 the entropy of the hairy black hole for a variety of masses below the AdS2

BF bound. The critical temperature Tc at which the scalar condenses is where these curves

meet the Einstein black hole curve. This temperature gets larger as we decreases the scalar

mass. At the AdS5 BF bound (µ2L2 = −4, ∆ = 2), the critical temperature becomes the

Rindler temperature Tc = T0 = 1
2πL

. This is the blue line in Fig. 2.1. Note that the hairy

black hole has smaller thermal entropy, but lower free energy, than the Einstein black hole.

Fig. 2.5 shows the critical temperatures as a function of ∆, the dimension of the lowest

dimension scalar operator.

7In this graph we set L = vol(H3) = 1 (i.e. we plot the entropy density).
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From these thermal entropies we can compute the Rényi entropy, via (2.16)

Sn =
n

n− 1

1

T0

(∫ Tcrit

T0/n

SEStherm(T )dT +

∫ T0

Tcrit

SEtherm(T )dT

)
, (2.43)

where SEStherm(T ) is the entropy of the hairy black hole (the broken phase) and SEtherm(T ) is the

entropy of the Einstein black hole (the unbroken phase). The Rényi entropy as a function

of n is plotted in Fig. 2.2. As the derivative of the thermal entropy with respect to the

temperature is discontinuous, the second derivative with respect to n of the Rényi entropy is

discontinuous (we have integrated once)8. The upper (red) curve is the Einstein black hole.

The other curves describe cases where a scalar field condenses at some value of n. Note that

the Rényi entropy Sn will always approach the Einstein black hole result as n→ 1, because

the massless black hole is stable for any scalar obeying the BF bound. As one decreases the

mass, the critical temperature gets higher and the asymptotic value of the Rényi entropy at

large n gets farther from the Einstein result.

The spectral function d̄i and d(λ) in (2.18) can be obtained from the inverse Laplace

transformation

exp ((1− n)Sn) =
∑
i

d̄iλ
n
i +

∫ λ1

0

dλd(λ)λn. (2.44)

We can now use our numerical results to plot the spectral density d(λ) (including the discrete

part d̄i in d(λ) by allowing a delta function). We will focus on the two simplest cases: µ2L2 =

−1 and µ2L2 = −4, for which the critical temperatures are Tc = 0 and Tc = T0 = 1/2πL.

We first note that, since Renyi entropies are UV divergent, the eigenvalues are exponen-

tially suppressed with the cutoff. For example, as explained in [68], the eigenvalue λ1 scales

as

λ1 ∼ e−const.×CT×A/εd−2

(2.45)

where A and ε are respectively the area of the entangling surface and the UV cutoff. Here

CT is related to the 2-point function of the stress tensor and counts the degrees of freedom

8Just as in the holographic superconductor, the condensation of the scalar field is a second order phase

transition [84, 85, 86]. This translates into the discontinuity of the second derivative of Sn with respect to

n.
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Figure 2.1: Thermal entropy Stherm as a function of the temperature T . The upper

(red) curve is for the unbroken phase (Einstein black hole). The lower (light red, or-

ange, light green, green, blue-green and blue) curves are for hairy black holes with µ2L2 =

−2.2,−3,−3.5,−3.75,−3.9375,−4 (∆ = 3.34, 3, 2 + 1/
√

2, 2.5, 2.25, 2). The critical temper-

atures are Tc = 0.0037, 0.020, 0.045, 0.070, 0.106, 1/2π. Note the lower right (blue) curve

is for the scalar at the AdS5 BF bound, for which the critical temperature is that of the

massless black hole.

of the theory, which is typically taken to be large for gravity to be classical in the bulk.

For even dimensional CFTs, it is related to the A-type trace anomaly. In the bulk gravity

calculation, CT is set by the AdS radius in Planck units (CT ∼ (L/`p)
d−1) and the UV

divergence becomes the volume divergence of the hyperboloid. We may therefore introduce

a UV regulator by taking the volume of the hyperboloid to be finite.

We can now go ahead and compute the spectral densities (2.44) explicitly. To exhibit a

simple numerical answer, we will set VHd−1
= L = GN = 1. Performing an inverse Laplace

transform numerically is a bit tricky, so we expand the left hand side of (2.44) in the large

n limit as

exp ((1− n)Sn) = exp((s0 − s1)− s0n)
(

1 +
g1

n
+
g2

n2
+
g3

n3
+ · · ·

)
. (2.46)

where Sn =
∑∞

i=0 sin
−i and the gi are functions of the si. The inverse Laplace transformation

of the first term gives a delta function and the rest of the terms include the Heaviside step

function and continuous functions. The constant s0 determines both the location of the delta
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Figure 2.2: Rényi entropy as a function of n for µ2L2 = −1,−4,−3.75 and −3.9375. The

phase transition is at ncrit ' 2.28 for µ2L2 = −3.75 and 1.52 for µ2L2 = −3.9375.

function and the Heaviside step function. The result is

d(λ) =
exp(s0 − s1)

λ
(l0δ(λ− λ1) + Θ(λ− λ1)

∑
n=0

ln+1(− log λ)n) (2.47)

where li is a function of si. Note that − log λ is the eigenvalue of the entanglement hamilto-

nian HE (2.7). The numerical result for the spectral density is plotted in Fig.2.3. Of course,

the Rényi entropies are UV-divergent but we are calculating the constant in front of the

divergent piece. Similar arguments can be found in section 5 of [68].

It is worth noting that these results for the spectral density are consistent with those found

by Calabrese and Lefevre [77]. In two dimensional conformal theory, the n dependence of

the Rényi entropy is

Sn ∝
(

1 +
1

n

)
. (2.48)

This is determined by the conformal dimension of the twist operators. By taking the inverse

Laplace transformation, Calabrese and Lefevre obtained a universal scaling behaviour for

the entanglement spectrum. The structure of the spectrum, the delta function at the largest

eigenvalue and the Heaviside step function, depends only on the asymptotic behaviour of

the Rényi entropy at large n. We have found a very similar structure for our 4d CFTs.

For a general mass, it is technically difficult to perform the inverse Laplace transforma-

tion. However, from the asymptotic behaviour of the Rényi entropy, we can see that the
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spectral function has only one delta function which sits between λE1 and λES1 . Fig. 2.4 shows

the relation between the maximum eigenvalue of HE and ∆. Note that as we increase the

dimension of the conformal operator ∆, the maximum eigenvalue λ1 of the entanglement

spectrum monotonically decreases, i.e.

dS∞
d∆
≥ 0 (2.49)

This suggests that the ground state of a CFT with smaller lowest dimension operator is

closer to a pure state. In other words, the ground state of a theory with a large gap is more

mixed than one with a small gap. This result is obtained using black hole thermodynamics,

so is likely to be generic for large N theories. It would be interesting to investigate the

generality of this inequality, and the analytic relation between S∞ and ∆.

0.2 0.4 0.6 0.8 1.0
Λ

0.2

0.4

0.6

0.8
dHΛL

Figure 2.3: The spectral function d(λ) for the cases µ2L2 = −1, where the black hole is

always Einstein, and µ2L2 = −4, where the black hole always has scalar hair. There are delta

functions at the lowest eigenvalues, λE1 = 0.855 for the Einstein (red line) and λES1 = 0.911

for the Einstein-scalar (blue line). For the pure Einstein case and with VH = GN = L = 1,

we obtain the same result as [68].

2.5 Instability for the Normalizable Mode

We now turn our attention to the more physical case of the mode which is normalizable on the

hyperboloid. In this case the condensation of the mode will break the hyperbolic symmetries,
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Figure 2.4: Lowest eigenvalue of ρ as a

function of conformal dimension.
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Figure 2.5: Critical temperature as a

function of conformal dimension.

so the construction of hairy black holes at the non-linear level is considerably more difficult.

We will simply perform the linearized analysis, which is sufficient to demonstrate that an

instability exists and that the Rényi entropies will undergo a phase transition. We leave the

construction of hairy black hole solutions to future work.

In d = 4, the wave equation for a scalar of mass µ is9(
− ω2

f(r)
− λ

r2
− µ2

)
φ(r) +

(
f ′(r) + 3

f(r)

r

)
φ′(r) + f(r)φ′′(r) = 0 (2.50)

where we considered the following ansatz for the field:

Φ(t, r, σi) = eωtφ(r)Y (σi), ∇2
H3
Y (σi) = −λY (σi). (2.51)

The black hole will be unstable if (2.50) has a solution with ω real and positive with the

field satisfying specified boundary conditions at infinity and the horizon. We can put the

wave equation in Schrodinger form by letting ψ(r) = r(d−1)/2φ(r), so(
−
(
f(r)

d

dr

)2

+ V (r)

)
ψ(r) = −ω2ψ(r) (2.52)

with

V (r) =
f(r)

r2

(
λ+ f ′(r)

d− 1

2
r + f(r)

(d− 1)(d− 3)

4
+ µ2r2

)
(2.53)

9Similar equations hold in other dimensions; we focus on d = 4 for simplicity.
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In tortoise coordinates (dr∗ = dr/f(r)), this is the problem of determining whether the

potential V (r∗) has a negative energy bound state. We impose the following boundary

conditions 10

ψ(r+) = 0 ψ′(r+) = 1 ψ(r)|r→∞ →
1

r∆−(d−1)/2
. (2.54)

Note that we consider here both Dirichlet and Neumann boundary conditions.

We can solve (2.52) numerically using a standard shooting method from the horizon. We

find that, for every mass in the range

−d
2

4
≤ µ2L2

AdSd+1
≤ −d(d− 1)

4
(2.55)

there is a temperature T > 0 for which the Einstein black hole is unstable to the development

of scalar hair.11 We have checked this in four and five dimensions. We plot the curve of

marginal stability in Figs. 2.6 and 2.7 for four and five dimensions. Every configuration

in the zone above the curves is unstable. We conclude that Rényi entropies will undergo a

phase transition at values of the Rényi parameters nc which depend on the dimension of the

lowest nontrivial operator.

These results have one important feature which distinguishes them from the instabilities

considered in the previous section. They take place at much lower temperatures (i.e. larger

values of n). It turns out that, for scalars which are non-constant on the hyperboloid,

the AdS2 × Hd−1 instability becomes relevant only very close to extremality. A similar

phenomenon was noted in [83] for a different class of black holes. This suggests that it is

primarily the lowest eigenvalues of the entanglement spectrum which are effected by the

scalar field instability.

10The field should vanish at the horizon as unstable modes behave as φ(r) ∼ (r − r+)ω as r → r+.
11We have also checked this result using the method of trial wave functions, for which we thank G. Salton

for useful discussions.
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Figure 2.6: Log of the critical Rényi param-

eter for instability as a function of confor-

mal dimension in AdS5/CFT4. As ∆ ap-

proaches 3 the instability disappears.
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Figure 2.7: Log of the critical Rényi param-

eter for instability as a function of confor-

mal dimension in AdS4/CFT3. The insta-

bility disappears as ∆→ 3+
√

3
2
≈ 2.37.
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Charged Rényi entropies

It is also interesting to understand the dependence of entanglement on various parameters

that define it such as for example the dependence on the shape of the entangling surface

[89]. Another such interesting example is the dependence on charge distribution of the Rényi

entropies. One can imagine separating charge in the boundary theory and putting charge Q

in region A and charge −Q in region B as in Fig 2.8.

Figure 2.8: The t = 0 slice of the boundary region is separated into the inside of a sphere

(region A) and the outside (region B). Charge is separated and there is a net charge Q in

region A and an opposite charge in region B such that the total charge still vanishes.

Although this is hard to calculate in full generality, we discuss how to calculate it explic-

itly in Chap. 3 for the ground state of CFTs with a global U(1) symmetry and for spherical

entangling surfaces. This is done in the path integral by adding a non trivial Wilson line

around the entangling surface. We define such quantities as charged Rényi entropies and

discuss how to calculate them both for free theories and holographically, by the means of

charged hyperbolic black holes. We also derive properties of the generalized twist opera-

tors located at the entangling surface that encode both the replica n and the Wilson line

characterized by an entangling chemical potential µ.
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Chapter 3

Holographic Charged Rényi Entropies

Alexandre Belina,b, Ling-Yan Hungb, Alexander Maloneya,b, Shunji Matsuuraa,

Robert C. Myersc and Todd Sierensc,d

a Departments of Physics and Mathematics, McGill University, Montréal, Québec, Canada
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c Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada

d Department of Physics & Astronomy and Guelph-Waterloo Physics Institute, University

of Waterloo, Waterloo, Ontario N2L 3G1, Canada

Abstract

We construct a new class of entanglement measures by extending the usual definition of

Rényi entropy to include a chemical potential. These charged Rényi entropies measure the

degree of entanglement in different charge sectors of the theory and are given by Euclidean

path integrals with the insertion of a Wilson line encircling the entangling surface. We

compute these entropies for a spherical entangling surface in CFT’s with holographic duals,

where they are related to entropies of charged black holes with hyperbolic horizons. We also

compute charged Rényi entropies in free field theories.
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3.1 Introduction

Entanglement and Rényi entropies have emerged as diagnostic probes of considerable prac-

tical and formal interest in areas ranging from condensed matter physics, e.g., [37, 47, 48]

to quantum gravity, e.g., [49, 72, 73, 38, 39, 40, 41, 42]. In this paper we will consider a

generalization of these entropies for systems with a conserved global charge.

Consider a quantum system consisting of two components, A and B, in a state described

by the density matrix ρ. We will consider quantum field theories, where A and B are spatial

regions separated by an entangling surface Σ. We then trace over the degrees of freedom in

region B to construct the reduced density matrix ρA = TrB ρ. The latter contains information

about the entanglement between A and B. The Rényi entropies [74, 90, 91, 75]

Sn =
1

1− n
log Tr ρnA , (3.1)

are the moments of this reduced density matrix. The limit n → 1 gives the entanglement

entropy, SEE = limn→1 Sn = −Tr[ρA log ρA].

In this paper, we will consider quantum field theories with a conserved (global) charge.

In this case we can ask whether the entanglement between A and B depends on how charge

is distributed between the two subsystems. This is characterized by the following ‘grand

canonical’ generalization of the Rényi entropy:

Sn(µ) =
1

1− n
log Tr

[
ρA

eµQA

nA(µ)

]n
. (3.2)

Here µ is a chemical potential conjugate to QA, the charge contained in subsystem A. We

have also introduced nA(µ) ≡ Tr
[
ρA e

µQA
]

to ensure that the new density matrix (enclosed

by the square brackets above) is properly normalized with unit trace. The µ-dependence of

these ‘charged’ Rényi entropies Sn(µ) encodes the dependence of the entanglement on the

charge.

We will also be interested in the entropies constructed with an imaginary chemical po-

tential

S̃n(µE) =
1

1− n
log Tr

[
ρA

eiµEQA

ñA(µE)

]n
, (3.3)
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where µE is real and ñA(µ) ≡ Tr
[
ρA e

iµEQA
]
. As we will see below, the analytic continuation

between (3.2) and (3.3) is typically straightforward in the vicinity of the origin µ = 0, but

one typically encounters an interesting structure of singularities along the imaginary µ-axis.

In quantum field theory, Rényi entropies can be evaluated using the replica trick [47, 48],

which relates them to a Euclidean path integral on an n-sheeted geometry. These path

integral calculations of Sn are easily extended to compute our new charged Rényi entropies.

As we will describe below, the key new ingredient is a Wilson line encircling the entangling

surface. This generalizes the twist operator σn appearing in the replica trick to include a

‘magnetic flux’ proportional to µ.

In conformal field theories, these entropies can be studied rather explicitly. A useful

approach was introduced in [67] to evaluate the entanglement entropy across a spherical

entangling surface for an arbitrary d-dimensional CFT in flat space. The latter entropy is

related by a conformal mapping to the thermal entropy of the CFT on a hyperbolic cylinder

R × Hd−1, where the temperature and curvature are fixed by the radius of the original

entangling surface. If the temperature is allowed to vary, the thermal entropy calculates

Rényi entropies [68, 78]. In theories with holographic gravity duals, the thermal entropy is

the horizon entropy of a black hole with Hd−1 horizon. Our charged entropies Sn(µ) can

also be computed for spherical entangling surfaces with a simple extension of this procedure.

The same conformal mapping leads to a grand canonical ensemble with chemical potential µ

for the CFT on the hyperbolic cylinder. In the holographic context, the presence of a global

symmetry in the boundary CFT leads to a gauge field in the dual gravity theory. Sn(µ)

is then related to the entropy of a hyperbolic black hole which is charged under this gauge

field.

This paper is organized as follows: In section 3.2, we will discuss general features of the

charged Rényi entropy and outline its computation in CFT. We also describe the various

properties of the corresponding twist operators. In section 3.3, we compute Sn(µ) in holo-

graphic CFT’s (in spacetime dimensions d ≥ 3) by considering the charged hyperbolic black

holes of the dual Einstein-Maxwell theory. We conclude with a discussion and general com-

ments on the properties of the charge Rényi entropy in section 3.4. Three appendices are also

54



included. Appendix 3.5 describes computations of S̃n(µE) in simple free field theories and

appendix 3.6 gives the holographic computation in AdS3/CFT2. The latter case is notable

in that the dependence of the charged Rényi entropy on n agrees with the free field theory

result. Finally appendix 3.7 contains various details of the holographic calculations, which

are used in section 3.3.

Charged Rényi entropies arose in several recent papers which appeared while this paper

was in preparation. First, they were briefly considered in [66, 92]. Charged Rényi en-

tropies appear in [93], which investigates the dynamical evolution of entanglement entropy

in two-dimensional CFT’s. The supersymmetric Rényi entropies three-dimensional N ≥ 2

superconformal theores calculated in [94] can be cast in the form (3.3) with an imaginary

chemical potential for a circular entangling surface, using the conformal mappings presented

in [67, 68]. In this case, QA corresponds to the R-charge of the underlying theory.

3.2 Charged Rényi entropies for CFT’s

In this section, we begin with some general comments about the charged Rényi entropies

(3.2). We then focus on their computation in conformal field theories, extending the approach

of [67, 68], to relate charged Rényi entropies for spherical entangling surfaces in flat space to

the thermal entropy of the CFT on R×Hd−1 in grand canonical ensemble. We also describe

the calculation of the conformal weight and magnetic response of the corresponding twist

operator. Finally, we describe the computation of these entropies for two-dimensional CFT

using twist operators.

3.2.1 Replica Trick

To begin, let us recall the replica trick [47, 48, 49, 72, 73]. For simplicity, we focus on

entanglements in the ground state of a QFT in d-dimensional flat space. One begins by

introducing an entangling surface Σ which divides the spatial slice at time tE = 0 into two
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regions, A and B.1 Integer powers of the reduced density matrix ρA are represented by a

Euclidean path integral

Tr ρnA = Zn/(Z1)n . (3.4)

Here Zn is the partition function on an n-fold cover of (Euclidean) flat space with cuts

introduced on region A at tE = 0. At the cut, copy n is connected to copy n+1 when

approaching from tE → 0− and to copy n–1 when approaching from tE → 0+. In this

construction, the entangling surface Σ becomes the branch-point of the branch-cut which

separates different copies in the n-fold covering geometry. It is convenient to think of these

boundary conditions as produced by the insertion of a (d–2)-dimensional surface operator

at Σ, i.e., a twist operator σn [47, 48].2 The factors of Z1 appear above to ensure that the

density matrix is properly normalized with Tr [ρA] = 1. With the usual definition (3.1), the

Rényi entropies become

Sn =
1

n− 1
(n logZ1 − logZn) . (3.5)

Of course, one would like to consider an analytic continuation to real values of n to determine

the entanglement entropy with SEE = limn→1 Sn. Similarly, two other interesting limits are

given by n→ 0 and∞, which yield expressions which are known as the Hartley entropy and

the min-entropy, respectively [79]. In particular, one finds S0 = log(d) where d is the number

of nonvanishing eigenvalues of ρA and S∞ = − log(λ1) where λ1 is the largest eigenvalue of

ρA.

We wish to extend these path integral calculations of Sn to compute charged Rényi

entropies. Let us first recall how a chemical potential µ is included in the standard Euclidean

path integral representation of a (grand canonical) thermal ensemble. In this framework, the

chemical potential is represented by a fixed background gauge potential3 Bµ which couples to

the relevant conserved current. Of course, in the ‘thermal’ path integral, the Euclidean time

1Implicitly, an initial step in these calculations is to Wick rotate the time coordinate: tE = it.
2For further discussion of twist operators beyond d = 2, see also [68, 95, 96, 69].
3We use Bµ to distinguish this nondynamical gauge field from the bulk gauge potential Aµ appearing

in our holographic calculations. This background gauge field is imaginary in the Euclidean path integral,

corresponding to a real chemical potential.
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direction is compactified with period ∆tE = 1/T and then the chemical potential appears as

a nontrivial Wilson line on this thermal circle, i.e.,
∮
B = −iµ/T .

To evaluate the charged Rényi entropies (3.2), we must compute a grand canonical version

of eq. (3.4), i.e.,

Tr

[
ρA

eµQA

nA(µ)

]n
=

Zn(µ)

(Z1(µ))n
. (3.6)

with nA(µ) ≡ Tr
[
ρA e

µQA
]
. Here Zn(µ) is computed as above, except with the insertion of

a Wilson line encircling the entangling surface Σ. That is, we introduce a fixed background

gauge field coupling to the conserved current. This background field is such that loops

encircling the entangling surface carry a nontrivial Wilson line,
∮
C B = −inµ.4 Here the

factor n is analogous to the 1/T factor appearing for the thermal ensemble above and arises

here because the loop C circles n times around Σ, passing through all n sheets of the covering

geometry. The Wilson line should be the same on all such curves and so the background

gauge field is flat, i.e., dB = 0, away from the entangling surface. By Stokes’ theorem these

loops enclose a fixed flux, i.e.,
∫
M
dB =

∮
C=∂M B = −inµ for any two-dimensional surface

pierced by Σ. Thus the entangling surface carries a ‘magnetic flux’ −inµ of the background

gauge field. An alternative perspective is that eq. (3.6) defines a generalized class of twist

operators σ̃n(µ), which are constructed by binding to the original twist operators σn, a (d–

2)-dimensional ‘Dirac sheet’ carrying the magnetic flux −inµ. Another noteworthy comment

is that with the above definitions, the chemical potential in our charged Rényi entropy (3.6)

is dimensionless, in contrast to the standard chemical potential in a thermal context, which

carries the units of energy.5 In any event, given the path integral construction describing

eq. (3.6), the charged Rényi entropies (3.2) become

Sn(µ) =
1

n− 1
(n logZ1(µ)− logZn(µ)) . (3.7)

Above, we considered a real chemical potential µ, as would appear in standard ther-

modyanmics. We will also consider analytic continuations of the chemical potential to imag-

4The orientation of the contour will become evident in our examples below.
5In the thermal context, these units have a natural meaning by comparing the chemical potential to the

temperature. In the entanglement context, there is no such natural reference scale with which to compare

µ.
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inary values, as in eq. (3.3). As motivation, we note that working with an imaginary chemical

potential has proven to be a useful way to probe the confinement phase transition in QCD

[97] and to avoid the sign problem in the lattice fermion algorithms [98]. Computations of

the Witten index can also be interpreted in a similar fashion [99]. Replacing µ = iµE in

our analysis above, the Wilson loop of the background gauge field now becomes real with∮
C B = nµE. Further the corresponding magnetic flux carried by the generalized twist opera-

tors is also real. Hence the effect of the imaginary chemical potential is to introduce a simple

phase as a charged operator circles around the entangling surface. Note that the analytic

continuation between real and imaginary values requires care because, as we will see below,

the partition function has an interesting singularity structure in the complex µ-plane. We

will consider both real and imaginary chemical potentials in the following. These two cases

will always be distinguished by the notation µ and µE, respectively.

3.2.2 Spherical entangling surfaces

For the remainder of this section we will focus on computations of charged Rényi entropy in

d-dimensional conformal field theories. We will consider a CFT in flat space in its vacuum

state, and choose the entangling surface to be a sphere of radius R (in a constant time slice).

In this case, the argument of [67] implies that the usual entanglement entropy equals the

thermal entropy of the CFT on a hyperbolic cylinder R×Hd−1, where the temperature and

curvature are fixed by the radius of the original entangling surface. A simple extension of

this approach also allows one to calculate Rényi entropies [68]. We will compute charged

Rényi entropies by further extending the procedure to include a background gauge field. For

simplicity of notation we will use an imaginary chemical potential, but of course the same

construction applies for a real chemical potential.

We begin with a brief review of [67, 68]. First, we write the metric on flat Euclidean

space in terms of a complex coordinate ω = r + itE:

ds2
Rd = dωdω̄ +

(
ω + ω̄

2

)2

dΩ2
d−2 , (3.8)

where tE is the Euclidean time coordinate, r is the radial coordinate on the constant time
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slices and dΩd−2 is a standard round metric on a unit (d− 2)-sphere. The entangling surface

is the sphere at (tE, r) = (0, R).

We will perform a conformal transformation of the above Rd geometry to Hd−1 × S1 as

follows. Introducing a second complex coordinate σ = u + i τE
R

, we perform the coordinate

transformation, which, in terms of the complex coordinate σ defined by

e−σ =
R− ω
R + ω

. (3.9)

the metric (3.8) then takes the form

ds2
Rd = Ω−2R2

[
dσdσ̄ + sinh2

(
σ + σ̄

2

)
dΩ2

d−2

]
, (3.10)

where

Ω =
2R2

|R2 − ω2|
= |1 + cosh σ| . (3.11)

The Ω−2 prefactor can now be removed by a simple Weyl rescaling. Letting σ = u+ i τE
R

, the

resulting conformally transformed metric is

ds2
Hd−1×S1 = Ω2 ds2

Rd = dτ 2
E +R2

(
du2 + sinh2u dΩ2

d−2

)
. (3.12)

This is S1 ×Hd−1; u is the (dimensionless) radial coordinate on the hyperboloid Hd−1 and

τE is the Euclidean time coordinate on S1. The curvature radius of Hd−1 is R, the radius

of the original spherical entangling surface. The periodicity of the τE circle is 2πR. Note

that the original entangling surface has been pushed out to the asymptotic boundary, i.e.,

u→∞, in the conformally transformed geometry (3.12).

The key point is that, under this conformal mapping, the density matrix describing the

CFT vacuum state on the interior of the entangling surface is transformed to a thermal

density matrix with temperature

T0 =
1

2πR
(3.13)

on the new hyperbolic geometry. That is, the reduced density matrix related to the thermal

density matrix as

ρA = U−1 e
−H/T0

Z(T0)
U , (3.14)
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where U is the unitary transformation implementing the conformal transformation. Since

the entropy is insensitive to unitary transformations, the desired entanglement entropy just

equals the thermal entropy in the transformed space. This same conformal mapping can also

be used to evaluate the Rényi entropy. The only difference is that it would be applied to the

n-fold cover of flat space used to evaluate eq. (3.4). In this case the period of τE is 2πRn, so

the corresponding thermal ensemble has a temperature T = T0/n.

We can compute charged Rényi entropies (3.3) by generalizing this approach. First after

having identified the appropriate charge Q, we introduce a (dimensionless) chemical potential

µ and the previous density matrix (3.14) becomes

ρtherm =
e−H/T0+µQ

Z(T0, µ)
. (3.15)

Now, in fact, our discussion is slightly simplified if we consider instead an imaginary chemical

potential µE = −iµ with which the above expression turns into

ρtherm =
e−H/T0+iµEQ

Z(T0, µE)
. (3.16)

As discussed above, this chemical potential is incorporated into the thermal path integral

via a background gauge field with a nontrivial Wilson line on the Euclidean time circle:

µE =

∮
B =

∫ 2πR

0

BτEdτE . (3.17)

In this case the potential is just constant: BτE = µE/(2πR). The background gauge field

is invariant under the conformal transformation mapping between the hyperbolic geometry

and flat space. Therefore in the flat space coordinates, we may express this gauge field as

B =
iR

2π
µE

[
dω

R2 − ω2
− dω̄

R2 − ω̄2

]
= −R

π
µE

2tEr dr + (R2 − r2 + t2E) dtE
(R2 − r2 + t2E)2 + 4t2Er

2
. (3.18)

Now one can readily verify that this background gauge field yields
∮
B = µE for any contour

encircling the entangling surface at (tE, r) = (0, R) in the flat space geometry.6 Of course,

6An interesting exercise to gain better intuition for this background gauge field (3.18) is to expand the

coordinates near the spherical entangling surface: tE = ρ sin θ and r = R + ρ cos θ with ρ � R. To leading

order in ρ/R, one then finds that the potential reduces to B ' µE
2π dθ.
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we also have dB = 0 and so this is precisely the background required to evaluate the charged

Rényi entropy (3.3) in this particular case.

Hence we must simply supplement the conformal mapping approach of [67, 68] with

the background gauge field (3.18) to evaluate the charged Rényi entropy across a spherical

entangling surface for the CFT vacuum in flat space. The effective reduced density matrix

in eq. (3.3) is again simply related to the thermal density matrix (3.16) on the hyperbolic

space:

ρA

eiµEQA

ñA(µE)
= U−1 ρtherm U = U−1 e

−H/T0+iµEQ

Z(T0, µE)
U , (3.19)

where as in eq. (3.14), U is the unitary transformation implementing the conformal transfor-

mation between the two geometries. Given this expression, the charged Rényi entropy (3.3)

can be evaluated in terms of the corresponding thermal partition function for the CFT on

the hyperbolic geometry as

S̃n(µE) =
1

1− n
log

Z(T0/n, µE)

Z(T0, µE)n
. (3.20)

Recall that in evaluating Z(T0/n, µE), the period of τE is extended to 2πRn, however, the

gauge potential remains fixed as BτE = µE/(2πR). Hence the total Wilson line around the

thermal circle increases by a factor of n as desired, i.e.,
∮
B = nµE. Now using the standard

thermodynamic identity for the grand canonical ensemble

Stherm(T, µE) = − ∂F (T, µE)

∂T

∣∣∣∣
µE

=
∂

∂T
(T logZ(T, µE))

∣∣
µE
, (3.21)

one easily derives the following relation between the charged Rényi entropy and the thermal

entropy [68]:

S̃n(µE) =
n

n− 1

1

T0

∫ T0

T0/n

Stherm(T, µE) dT . (3.22)

At this point, we may remind the reader that the above discussion makes no reference to

the AdS/CFT correspondence. In the special case of a holographic CFT, this analysis may be

further extended by evaluating the thermal entropy on the hyperbolic background in terms of

the horizon entropy of a topological black hole in the bulk with a hyperbolic horizon [67, 68]

— see also [100, 101]. In the context of the charged Rényi entropy (3.2), the boundary CFT
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also contains a conserved current corresponding to the charge probed by these entropies and

hence the bulk theory will also include a dual gauge field. The holographic representation of

the grand canonical ensemble considered above will then be a topological black hole which is

charged under this gauge field. We will turn to such holographic calculations in section 3.3.

First, however, we continue below with some further remarks which apply to general CFT’s.

3.2.3 Properties of generalized twist operators

As discussed at the beginning of this section, the calculation of (either ordinary or charged)

Rényi entropies can be viewed as involving the insertion of a twist operator at the entangling

surface. A generalized notion of conformal dimension can be defined for these surface opera-

tors by considering the leading singularity in the correlator 〈Tµν σn〉. This leading singularity

is fixed by symmetry, as well as the tracelessness and conservation of the stress tensor. To

be precise, consider inserting the stress tensor Tµν at a perpendicular distance y from the

twist operator σn, such that y is much smaller than any scales defining the geometry of the

entangling surface Σ. Then the leading singularity takes the following form7

〈Tab σn〉 = −hn
2π

δab
yd

, 〈Tai σn〉 = 0 , (3.23)

〈Tij σn〉 =
hn
2π

(d− 1)δij − dninj
yd

,

where a, b (i, j) denote tangential (normal) directions to the twist operator and ni is the

unit vector directed orthogonally from the twist operator to the Tµν insertion. Thus the

singularity is completely fixed up to the constant hn, which is referred to as the conformal

dimension of σn. The approach reviewed in the previous section can be applied to determine

the value of hn in terms of the thermal energy density E(T, µ) on the hyperbolic cylinder

[68],8

hn(µ) =
2πn

d− 1
Rd
(
E(T0, µ = 0)− E(T0/n, µ)

)
. (3.24)

7These correlators (3.23) should be normalized by dividing by 〈σn〉. However, we leave this implicit to

avoid further clutter.
8Note that in the Euclidean background, E(T, µ) = −〈TτEτE〉. Also observe that we phrase the discussion

in this subsection in terms of a real chemical potential µ.
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The first term above arises because of the anomalous behaviour of the stress tensor under

conformal transformations. Of course, as is implicit above, these remarks apply equally well

for the original twist operators σn and for the generalized twist operators σ̃n(µ) appearing

in the calculation of the charged Rényi entropy. In particular, the arguments of [68] yielding

eq. (3.24) apply without any change in the presence of the background gauge potential.

In the context of the charged Rényi entropies, another operator in the underlying CFT

is the current Jµ, associated with the global charge appearing in eq. (3.2), i.e.,

QA =

∫
A

dd−1x Jt . (3.25)

Again, symmetries and conservation of the current dictate the form of the leading singularity

in the correlator 〈Jµ σ̃n(µ)〉. In this case, the singularity takes the form9

〈Ji σ̃n(µ)〉 =
i kn(µ)

2π

εij n
j

yd−1
, 〈Ja σn〉 = 0 , (3.26)

where εij is the volume form in the two-dimensional space transverse to Σ. This parity-odd

tensor appears in the correlator because of the magnetic flux carried by the generalized twist

operator. We refer to kn as the ‘magnetic response,’ since this parameter characterizes the

response of the current to the magnetic flux.

Following [68], we can determine the value of kn using the conformal mapping in the above

discussion of spherical entangling surfaces. In this case, one begins with the charge density

that appears in the grand canonical ensemble on the hyperbolic cylinder: 〈JτE〉 = −iρ(n, µ).

Now conformally mapping to the n-fold cover of Rd, this expectation value becomes

〈Jµ σ̃n(µ)〉flat = Ωd−2 ∂X
α

∂Y µ
〈Jα〉hyperbolic . (3.27)

The form of the transformation is fixed because the current has conformal dimension d–1.10

Now as indicated on the left-hand side of eq. (3.27), this mapping yields the correlator of

9Note that the correlators here and in eq. (3.23) are implicitly evaluated in the Euclidean path integral.
10One can also verify that this transformation (3.27) ensures that the charge operator (3.25) defined on

the interior of the sphere, i.e., QA = i
∫
tE=0,r<R

dd−1xJtE , is just the conformal transformation of the charge

defined by integrating JτE over the entire hyperbolic plane Hd−1 — as is implicit in our discussions above.
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the current with the spherical twist operator. Further, taking the limit where the current

insertion approaches the twist operator, one recovers the leading singularity in eq. (3.26).

Hence using eqs. (3.9) and (3.11), the magnetic response can be evaluated as

kn(µ) = 2πnRd−1 ρ(n, µ) . (3.28)

Here, the additional factor of n appears because the correlators in eq. (3.26) are understood

to involve the the total current for the entire n-fold replicated CFT whereas eq. (3.27)

corresponds to the insertion of Jµ on a single sheet of the n-fold cover. Hence we must

multiply by an extra factor of n to compare the two expressions.

An interesting universal property of hn was obtained for higher dimensional twist oper-

ators in [68, 69] (see also [102]):

∂nhn|n=1 = 2π
d
2

+1 Γ (d/2)

Γ(d+ 2)
CT . (3.29)

Here CT is the central charge defined by the two-point function of the stress tensor11

〈Tµν(x)Tρσ(0)〉 =
CT
x2d
Iµν,ρσ (3.30)

where

Iµν,ρσ =
1

2
(IµρIνσ + IµσIνρ)−

1

d
δµνδρσ with Iµν(x) = δµν − 2

xµxν

|x|2
. (3.31)

In fact, similar universal properties is also found for higher derivatives of hn in the vicinity

of n = 1.

The above universal behaviour does not immediately extend to the conformal weight of

the generalized twist operators σ̃(µ). Instead, the natural extension involves an expansion

about both n = 1 and µ = 0, as follows:

hn(µ) =
∑
a,b

1

a! b!
hab (n− 1)a µb (3.32)

11Note that our normalization for CT here is a standard one but it is not the same as in [68]. Hence the

numerical factors in eq. (3.29) are slightly different than in that reference.
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where we defined the coefficients

hab ≡ (∂n)a(∂µ)b hn(µ)
∣∣
n=1,µ=0

. (3.33)

Note that the twist operator becomes trivial when n = 1 and µ = 0 and hence the first term

in this expansion vanishes, i.e., h00 = 0. Further h10 = ∂nhn(µ)
∣∣
n=1,µ=0

is precisely the term

appearing in eq. (3.29). Now recall the expression (3.24) for the weight, which we rewrite as

hn(µ) =
2πn

d− 1
Rd
(
〈TτEτE〉

∣∣
T0/n,µ

− 〈TτEτE〉
∣∣
T0,µ=0

)
. (3.34)

in terms of the Euclidean stress tensor. Here both expectation values are in the grand

canonical ensemble on the hyperbolic space. That is, in terms of the thermal density matrix

given in eq. (3.15), the density matrix determining the second expectation value is ρtherm(µ =

0) while that in the first is [ρtherm]n. Now we can produce the same double expansion as in

eq. (3.32) by re-expressing the latter with[
e−H/T0+µQ

]n
= e−H/T0

[
e−(n−1)H/T0+nµQ

]
(3.35)

and expanding the last factor in terms of n − 1 and µ [69, 102]. Here, we note that the

manipulation in eq. (3.35) is valid since Q is a conserved charge and hence [H,Q] = 0. Now

it is straightforward to show that the expansion coefficients hab in eq. (3.33) are given by

hab =
2π

d− 1
Rd(∂n)a(∂µ)b

(
n
Z(T0, µ = 0)

Z(T0/n, µ)
〈TτEτEe−(n−1)H/T0+nµQ〉 − n 〈TτEτE〉

) ∣∣∣
n=1,µ=0

(3.36)

Note that both of the expectation values above are evaluated in the thermal ensemble with

T = T0 and µ = 0. Hence these coefficients can be determined in terms of correlators of the

stress tensor and the conserved current in the thermal bath on the hyperbolic geometry at

temperature T0. However, by applying the conformal transformation, these correlators may

also be evaluated for the CFT vacuum in flat space.

Let us focus here on the corrections to the conformal dimension of the twist operator

coming from a small chemical potential µ at n = 1, i.e.,

h0b =
2π Rd

d− 1
ib〈TτEτE

b∏
i=1

∫
Hd−1

dd−1σi JτE(σi) 〉c (3.37)
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where the subscript c denotes the connected correlator. Again, this correlator is evaluated

in the thermal ensemble on the hyperbolic space with T = T0 and µ = 0. However, as

noted above, it is convenient to transform back to flat space where the correlators will be

evaluated in the CFT vacuum. First, however, we observe that if we evaluate the correlator in

eq. (3.37) with a Euclidean path integral on S1×Hd−1, then the stress tensor maybe inserted

at any position in this background. Hence we choose to place TτEτE at (τE, σ) = (πR, 0)

which the conformal transformation then maps to (tE, r) = (∞, 0) in the corresponding flat

space background. To be precise, with this choice, the conformal transformation yields the

following simple expression:

TτEτE = lim
tE→∞

(
t2E

2R2

)d
TtEtE . (3.38)

and so eq. (3.37) becomes

h0b =
2π Rd

d− 1
ib lim
tE→∞

(
t2E

2R2

)d
〈TtEtE

b∏
i=1

∫
r<R

dd−1xi JtE(xi) 〉c (3.39)

One immediate observation is that in the CFT vacuum in flat space, the two-point correlator

〈TJ〉 will vanish and hence we must have h01 = 0. That is, the linear correction in µ to the

conformal weight of the twist operator vanishes at n = 1.

Hence the leading contribution should appear at order µ2 and is determined by the

three-point correlator 〈TJJ〉. The latter correlation function has a universal form dictated

by conformal symmetry, up to a few constants which are determined by the underlying CFT

[103]. Therefore h02 can be determined entirely in terms of these few parameters. More

explicitly, the 〈TJJ〉 correlator takes the following form in a d-dimensional CFT [103]

〈Tµν(x1) Jγ(x2) Jδ(x3) 〉 =
tµναβ(X23) Iγ

α(x21) Iδ
β(x31)

|x12|d|x13|d|x23|d−2
, (3.40)

where

x12 = x1 − x2, X23 =
x21

|x21|2
− x31

|x31|2
, X̂ =

X

|X|
, (3.41)

where |x| is the norm of the vector. Recall that Iµν(x) was defined in eq. (3.31) and further
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we have

tµνρσ(X) = â h1
µν(X̂) δρσ + b̂ h1

µν(X̂)h1
ρσ(X̂) + ĉ h2

µνρσ(X̂) + ê h3
µνρσ(X̂) ,

h1
µν(X̂) = X̂µX̂ν − 1

d
δµν , (3.42)

h2
µνρσ(X̂) = X̂µX̂ρ δνσ + {µ↔ ν, ρ↔ σ}

−4

d
X̂µX̂νδρσ −

4

d
X̂ρX̂σδµν +

4

d2
δµνδρσ ,

h3
µνρσ(X̂) = δµρδνσ + δµσδνρ −

2

d
δµνδρσ .

The coefficients â, b̂, ĉ, ê are the parameters characterizing the underlying CFT. However,

only two of these constants are independent as they satisfy the following constraints [103]:

d â− 2 b̂+ 2(d− 2) ĉ = 0 , b̂− d(d− 2) ê = 0 . (3.43)

Notice that in the special case d = 2, both â and b̂ vanish.

Now we only need to consider the correlator 〈TtEtE(x1)JtE(x2)JtE(x3)〉 in the limit that

x0
1 ≡ χ→∞, xi1 = 0, while x0

2 = x0
3 = 0 and |x2|, |x3| < R. To leading order in χ, we find

I00 = −1 + · · · , Iij = δij + · · · , Ii0 = O(1/χ) (3.44)

(3.45)

This immediately implies that for µ = ν = γ = δ = 0 in eq. (3.40), we need only consider

t0000 to leading order and further we have

t0000 →
1

d2
(−d â+ b̂+ 4 ĉ+ 2d(d− 1) ê) =

2

d
ĉ+ ê . (3.46)

Then for h02 in eq. (3.39), we are left with

〈T00(x0
1 →∞)

∫
|x2|<R

dd−1x2J0(x2)

∫
|x3|<R

dd−1x3J0(x3)〉

=

∫
|x2|<R

dd−1x2

∫
|x3|<R

dd−1x3

2
d
ĉ+ ê

x2d
1 |x23|d−2

. (3.47)

The integral can be evaluated exactly. Using equation (3.39), we finally arrive at

h02 = − 4πd−1

Γ(d+ 1)

(
2

d
ĉ+ ê

)
. (3.48)
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Now an analogous double expansion about n = 1 and µ = 0 can also be applied to the

magnetic response:

kn(µ) =
∑
a,b

1

a! b!
kab (n− 1)a µb (3.49)

where we defined the coefficients

kab ≡ (∂n)a(∂µ)bkn(µ)
∣∣
n=1,µ=0

. (3.50)

Next we recall the expression (3.28), which we rewrite in terms of the Euclidean current as

kn(µ) = 2πinRd−1 〈JτE〉
∣∣
T0/n,µ

. (3.51)

Again this expectation value is in the grand canonical ensemble on the hyperbolic space.

Now following the same manipulations of the corresponding density matrix as in eq. (3.35),

we arrive at the following expressions for kab

kab = 2πiRd−1 (∂n)a(∂µ)b
(
n
Z(T0, µ = 0)

Z(T0/n, µ)
〈JτEe−(n−1)H/T0+nµQ〉

) ∣∣∣
n=1,µ=0

(3.52)

where the remaining expectation value above is evaluated in the thermal ensemble with

T = T0 and µ = 0. Hence these coefficients can again be determined in terms of correlators of

the stress tensor and the conserved current in the thermal bath on the hyperbolic geometry

at temperature T0. However, by conformally mapping to flat space, the correlators may

alternatively be evaluated in the CFT vacuum.

Let us evaluate a few coefficients for the low order contributions in the expansion (3.49).

First, let us note that the coefficient k10 will determined in terms of the two-point correlator

〈JT 〉 and so upon mapping this correlator back to flat space, we will find a vanishing result,

i.e., k10 = 0. Considering the next two coefficients, eq. (3.52) yields

k01 = 2πiRd−1 〈JτE Q〉c , (3.53)

k11 = −2πiRd−1

(
1

T0

〈JτE QH〉c − 2〈JτE Q〉c
)
, (3.54)

where subscript c again denotes the connected correlators. These correlators can be evaluated

following the approach described above in evaluating h02. In particular, we conformally map
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these expressions back to flat space after making a judicious choice for the position of the

current insertion. The resulting three-point function in eq. (3.54) can be evaluated using

the 〈TJJ〉 correlator given in eq. (3.40). Similarly, the two-point function appearing in both

expressions can be evaluated using the current-current correlator

〈Jµ(x)Jν(0)〉 =
CV

x2(d−1)
Iµν(x) , (3.55)

where Iµν(x) was defined in eq. (3.31). Note that a Ward identity relates the constant CV

to the parameters appearing in the three-point correlator (3.40) with [103]

CV =
2πd/2

Γ
(
d+2

2

) (ĉ+ ê) . (3.56)

Without discussing the calculations in more detail, let us present the following results

〈JτE Q〉c = −i π(d−1)/2

2d−2(d− 1)Γ((d− 1)/2)

CV
Rd−1

,

〈JτE QH〉c = −i 2πd−2

dΓ(d− 1)

1

Rd

(
2

d
ĉ+ ê

)
. (3.57)

Substituting these results (3.57), as well as eq. (3.56), into eqs. (3.53) and (3.54) then yields

k01 =
8πd

Γ(d+ 1)
(ĉ+ ê) , (3.58)

k11 =
8πd

dΓ(d+ 1)
(2ĉ− d(d− 3)ê) . (3.59)

We might re-express the result for k01 in a form similar to that appearing in eq. (3.29) for

the conformal weight, namely,

∂µkn(µ)|n=1,µ=0 = 4πd/2
Γ
(
d+2

2

)
Γ(d+ 1)

CV , (3.60)

where CV is the central charge appearing in the current-current correlator (3.55).

3.2.4 Generalized twist operators in d=2

In this subsection, we compute charged Rényi entropies using twist operators in a simple two-

dimensional CFT.12 In particular, we consider a free massless Dirac fermion ψ on an infinite

12The analysis in this section was first done by T. Takayanagi [104]. We thank him for sharing these

results with us.
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line and we are interested in the Rényi entropy of a subsystem x ∈ [u, v]. In accord with the

review at the beginning of this section, the Rényi entropy can determined by evaluating the

partition function of ψ on an n-sheeted cover of R2, which is equivalent to the correlation

function of twist operators inserted at the entangling surface, i.e., the two points x = u, v

[47, 48]. Let us first review the computation of the free fermion without the Wilson loop, as

in [105, 106, 107]. On a n-fold cover, there is a branch cut connecting x = u and v and each

time we cross the branch cut, we change from one sheet to the next. Let us label the fermion

on k-th sheet as ψk, where k runs from 1 to n. Then the fields on the different sheets are

identified as follows:

ψk(e
2πi(w − u)) = ψk+1(w − u) , ψk(e

2πi(w − v)) = ψk−1(w − v) , (3.61)

where we used the complexified coordinate w = x + itE. These boundary conditions can be

‘diagonalized’ by defining n new fields

ψ̃m =
1

n

n∑
k=1

e2πikm/n ψk (3.62)

for which the boundary conditions (3.61) become

ψ̃m(e2πi(w − u)) = e2πim/nψ̃m(w − u) , ψ̃m(e2πi(w − v)) = e−2πim/nψ̃m(w − v) (3.63)

where m = −(n − 1)/2,−(n − 1)/2 + 1, · · · , (n − 1)/2. The phase shifts in eq. (3.63) are

generated by standard twist operators σm/n, each of which act only on the corresponding ψ̃m

and which have conformal dimension ∆m = 1
2
(m/n)2. The full twist operator σn appearing

in evaluating the Rényi entropy can then be written as σn =
∏
σm/n and hence the desired

correlator of the twist operators σn and σ−n yields:

Zn = 〈σn(u)σ−n(v)〉 =

n−1
2∏

m=−n−1
2

〈σm/n(u)σ−m/n(v)〉 ∼ |u− v|−4∆n , (3.64)

where total conformal dimension ∆n appearing above is given by

∆n =

n−1
2∑

m=−n−1
2

1

2

(m
n

)2

=
1

24

(
n− 1

n

)
. (3.65)
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Then applying eq. (3.5) to evaluate the Rényi entropy, we recover the well-known result

Sn =
1

6

(
1 +

1

n

)
log |u− v| . (3.66)

We now generalize the above discussion to evaluate the charged Rényi entropy. In partic-

ular, the charge, which we consider here, will be that associated with global phase rotations

of the fermion, ψ → eiθψ. If we consider an imaginary chemical potential µE, the effect of

the Wilson loop is easily represented by extending the original boundary conditions (3.61)

to include a additional phase:

ψk(e
2πi(w − u)) = eiµEψk+1(w − u) , ψk(e

2πi(w − v)) = e−iµEψk−1(w − v) (3.67)

Since this additional phase is added uniformly, the ‘diagonal’ fields (3.62) now satisfy

ψ̃m(e2πi(w − u)) = e2πim/n+iµEψ̃m(w − u) ,

ψ̃m(e2πi(w − v)) = e−2πim/n−iµEψ̃m(w − v) . (3.68)

These phase shifts are accomplished by introducing twist operators, σα(m,µE) and σ−α(m,µE),

where

α(m,µE) =
m

n
+
µE

2π
+ `m , (3.69)

where m runs from −n−1
2

to n−1
2

as, before. The conformal dimension of these twist operators

is now

∆α(m,µE) =
1

2
α(m,µE)2 =

1

2

(m
n

+
µE

2π
+ `m

)2

. (3.70)

The constant `m appearing above is an integer which is chosen to minimize the conformal

dimension of the corresponding twist operator. This freedom arises because of the ambiguity

in defining the phase factors in eq. (3.68) modulo 2π. For example, shifting `m from 0 to

1 changes the corresponding phase factor by 2π and so leaves the corresponding boundary

condition in eq. (3.68) unchanged. The conformal dimension (3.70) is always minimized by

choosing `m so that the phase factor generated by the twist operator lies between −π and

π, i.e., such that −1
2
≤ α(m,µE) ≤ 1

2
.

71



When µE is small enough that all of the phase factors lie between −π and π, i.e.,∣∣∣m
n

+
µE

2π

∣∣∣ ≤ 1

2
for m ∈

[
−n− 1

2
,
n− 1

2

]
, (3.71)

we will have `m = 0 for all m. If we assume the latter holds, the conformal dimension of the

generalized twist operator σ̃n =
∏
σ̃α(m,µE) becomes

∆n =
1

24

(
n− 1

n

)
+
n

2

(µE

2π

)2

, (3.72)

and the charged Rényi entropy is given by

S̃n(µE) =
1

6

(
1 +

1

n

)
log |u− v| . (3.73)

That is, for small µE, the charged Rényi entropy is exactly the same as the result in eq. (3.66),

i.e., the Rényi entropy without the Wilson line. As µE increases, we can no longer choose

all of the `m to be zero. The first transition occurs for m = n−1
2

when

n− 1

2n
+
µE

2π
=

1

2
←→ µE =

π

n
(3.74)

beyond which the naive phase factor would be larger than π. Setting `n−1
2

= −1 and using

the appropriate conformal dimension, we find that the charged Rényi entropy within the

range π
n
≤ µE <

3π
n

becomes

S̃n(µE) =

[
1

6

(
1 +

1

n

)
− 4

n− 1

(
µE

2π
− 1

2n

)]
log |u− v| . (3.75)

Further phase transitions occur whenever µE = π
n
(2k + 1). For example, for 3π

n
≤ µE <

5π
n

,

the charged Rényi entropy becomes

S̃n(µE) =

[
1

6

(
1 +

1

n

)
+

4

n− 1

(
µE

2π
− 5

2n

)]
log |u− v| . (3.76)

Of course, it is straightforward to extend these results to all values of µE. As can be antici-

pated from eq. (3.67), the charged Rényi entropy exhibits a periodicity

S̃n(µE) = S̃n(µE + 2π) . (3.77)

Hence within a single period, there will be n separate branches running from µE = π
n
(2k−1)

to π
n
(2k+1) for integer k. The result for n = 3 is shown in figure 3.1. Of course, these results
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show that the charged Rényi entropy is a non-analytic function of µE and n. In particular,

we might note that the apparent singularities at n = 1 in eqs. (3.75) and (3.76) are not

physical. As a final comment, we remark that the results derived here using twist operators

agree with those coming from the heat kernel computations in Appendix 3.5.

-1.0 -0.5 0.5 1.0
ΜE�2Π

-0.4

-0.3

-0.2

-0.1

0.1

0.2

S3HΜEL�S3H0L

Figure 3.1: Charged Rényi entropy with n = 3 for a two-dimensional free fermion as a

function of µE.

3.3 Holographic computations

In this section we calculate holographic Rényi entropies for boundary theories dual to Ein-

stein gravity coupled to a Maxwell gauge field in the bulk. The relevant bulk solutions

are charged topological black holes with hyperbolic horizons. These solutions represent the

grand canonical ensemble of the boundary CFT on the hyperbolic cylinder. We only present

the salient steps in the following calculations and refer the reader to [68] for a detailed
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description of how the holographic Rényi entropies are calculated. We consider boundary

theories in dimension d ≥ 3 here and provide holographic calculations for d = 2 in appendix

3.6.

3.3.1 Charged black hole solution

In d + 1 bulk dimensions, we write the Einstein-Maxwell action with negative cosmological

constant as13

IE−M =
1

2`d−1
P

∫
dd+1x

√
−g
(
d(d− 1)

L2
+R− `2

∗
4
FµνF

µν

)
. (3.78)

For d ≥ 3, the metric for the charged topological black hole takes the form

ds2 = −f(r)
L2

R2
dτ 2 +

dr2

f(r)
+ r2 dΣ2

d−1 , (3.79)

with

f(r) =
r2

L2
− 1− m

rd−2
+

q2

r2d−4
(3.80)

where dΣ2
d−1 = du2 + sinh2u dΩ2

d−2 is the metric on Hd−1 with unit curvature. Note that

the time coordinate is normalized here [67] so that the boundary metric naturally becomes

ds2
CFT = −dτ 2 +R2dΣ2

d−1, i.e., the Minkowski continuation of eq. (3.12). The corresponding

bulk gauge field is

A =

(√
2(d− 1)

(d− 2)

L q

R`∗ rd−2
− µ

2πR

)
dτ , (3.81)

The chemical potential µ is fixed by requiring that the gauge field vanish at the horizon

r = rH , i.e.,

µ = 2π

√
2(d− 1)

(d− 2)

L q

`∗r
d−2
H

. (3.82)

The mass parameter m is related to the horizon radius rH by

m =
rd−2
H

L2
(r2
H − L2) +

q2

rd−2
H

. (3.83)

13The scale `∗ appearing in the prefactor of the Maxwell term should be fixed by the details of the boundary

theory. With this notation, the (d+1)-dimensional gauge coupling becomes g 2
5 = 2`d−1

P /`2∗.
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Hence, we may rewrite the function f(r) (3.80) in terms of the horizon radius rH and the

charge q, giving

f(r) =
r2

L2
− 1 +

q2

r2d−4
−
(rH
r

)d−2
(
r2
H

L2
− 1 +

q2

r2d−4
H

)
. (3.84)

The temperature of this black hole is given by

T =
T0

2
Lf ′(rH) =

T0

2

[
d
rH
L
− (d− 2)

L

rH

(
1 +

d− 2

2(d− 1)

(
µ `∗
2πL

)2
)]

(3.85)

where T0 is the temperature given in eq. (3.13) and the ‘prime’ denotes differentiation with

respect to r. The thermal entropy is given by the Bekenstein-Hawking formula

S =
2π

`d−1
P

VΣ r
d−1
H , (3.86)

where VΣ denotes the regulated (dimensionless) volume of the hyperbolic plane Hd−1, as

described in [68]. Recall that this volume is a function of R/δ, the ratio of the radius of the

entangling sphere to the short-distance cut-off in the boundary theory. Further the leading

contribution takes the form

VΣ '
Ωd−2

d− 2

Rd−2

δd−2
+ · · · , (3.87)

where Ωd−2 = 2π(d−1)/2/Γ((d − 1)/2) is the area of a unit (d–2)-sphere. Hence the corre-

sponding Rényi entropies in the following begin with an area law contribution.

As a final comment, we note that we have presented the Minkowski-signature solution

here with a real chemical potential µ. This gives the holographic representation of the

grand canonical ensemble on the hyperbolic cylinder R × Hd−1. One can easily transform

to Euclidean signature by replacing τ = −iτE to produce the dual of the thermal ensemble

for the boundary CFT on S1 ×Hd−1. In this replacement, the form of the metric function

f(r) is unchanged and as usual, the Euclidean time is made periodic with ∆τE = 1/T to

ensure that the bulk geometry is smooth at r = rH . The gauge field becomes imaginary

for this Euclidean bulk solution. Of course, the latter is in keeping with our discussion

of the Euclidean path integral in section 3.2, where an imaginary background gauge field

was introduced to describe the grand canonical ensemble. Here, this background field in

the boundary theory is simply given by the non-normalizable of the bulk gauge field, i.e.,

Bµ = − limr→∞Aµ.
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3.3.2 Charged Rényi entropies

Applying eq. (3.22) with a real chemical potential, we see that the charged Rényi entropy

for a spherical entangling surface can be expressed as

Sn(µ) =
n

n− 1

1

T0

∫ x1

xn

S(x, µ) ∂xT (x, µ) dx , (3.88)

where x = rH/L and S(x, µ) is the horizon entropy (3.86). Evaluating eq. (3.85) in terms of

x gives

T (x, µ) =
T0

2x

(
dx2 − (d− 2)− (d− 2)2

2(d− 1)

(
µ`∗
2πL

)2
)
. (3.89)

Then xn is the largest solution of T (xn, µ) = T0/n and is given by

xn =
1

dn
+

√
1

d2n2
+
d− 2

d
+

(d− 2)2

2d(d− 1)

(
µ`∗
2πL

)2

. (3.90)

Combining these expressions then yields

Sn(µ) = πVΣ

(
L

`P

)d−1
n

n− 1

[(
1 +

d− 2

2(d− 1)

(
µ`∗
2πL

)2
)

(xd−2
1 − xd−2

n ) + xd1 − xdn

]
.

(3.91)

Note that when `∗ = 0, eqs. (3.90) and (3.91) reduce to the results found in [68].

Expressions for the charged Rényi entropy with specific choices for n are:

lim
n→0

Sn = πVΣ

(
L

`P

)d−1(
2

d

)d
1

nd−1
(3.92)

SEE = lim
n→1

Sn = πVΣ

(
L

`P

)d−1
(d− 2)xd−2

1

dx1 − 1

(
1 +

d− 2

2(d− 1)

(
µ`∗
2πL

)2

+
d x2

1

d− 2

)

S2 = 2πVΣ

(
L

`P

)d−1
((

1 +
d− 2

2(d− 1)

(
µ`∗
2πL

)2
)

(xd−2
1 − xd−2

2 ) + xd1 − xd2

)

lim
n→∞

Sn = πVΣ

(
L

`P

)d−1
((

1 +
d− 2

2(d− 1)

(
µ`∗
2πL

)2
)

(xd−2
1 − xd−2

∞ ) + xd1 − xd∞

)

where

x 2
∞ =

d− 2

d

(
1 +

d− 2

2(d− 1)

(
µ`∗
2πL

)2
)
. (3.93)
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Another interesting limit to consider is holding n fixed while µ→∞, which yields

lim
µ→∞

Sn(µ) = 2πVΣ

(
(d− 2)2

2d(d− 1)

) d−1
2
(
`∗
`P

)d−1 ( µ
2π

)d−1

. (3.94)

Hence we have the curious result that, to leading order in µ, the Rényi entropies are inde-

pendent of n in this limit.
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Figure 3.2: The d = 3 charged Rényi entropy (normalized by (a) S1(0) and (b) S1(µ)) as a

function of µ. The curves correspond to (from top to bottom) n=1,2,3,4,10
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Figure 3.3: The d = 4 charged Rényi entropy (normalized by (a) S1(0) and (b) S1(µ)) as a

function of µ. The curves correspond to (from top to bottom) n=1,2,3,4,10

The results for the charge Rényi entropy (3.91) are illustrated in figures 3.2 and 3.3,

which plot Sn(µ) as a function of µ for various values of n in d = 3 and 4. In these figures,
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it is evident that for fixed µ, the Rényi entropy decreases as n increases. This behaviour is

also shown in figure 3.4a where the charged Rényi entropy in d = 3 is shown as a function

of n. The figure shows very clearly in this example that ∂nSn(µ) < 0. As discussed in [68]

(see also [91]), standard Rényi entropies must satisfy various inequalities:

∂Sn
∂n
≤ 0 ,

∂

∂n

(
n− 1

n
Sn

)
≥ 0 , (3.95)

∂

∂n
((n− 1)Sn) ≥ 0 ,

∂2

∂n2
((n− 1)Sn) ≤ 0 .

By examining plots of the numerical results, e.g., see n−1
n
Sn(µ) in figure 3.4b, we find that

these inequalities still appear to hold in the charged case. The analysis in [68] found that

this result essentially follows from the connection between the Rényi entropies for a spher-

ical entangling surface and the thermal entropy on the hyperbolic cylinder R × Hd−1. In

particular, it follows that these inequalities (3.95) will be satisfied for any CFT, as long as

the corresponding thermal ensemble is stable. Thus we expect that the inequalities (3.95)

will continue to hold for charged Rényi entropies. Of course, the arguments in [68] will not

apply where the Rényi entropies exhibit phase transitions [108], as discussed in section 3.3.4.

As we mentioned above, both real and imaginary chemical potentials are of interest.

Our holographic results are easily analytically continued to imaginary chemical potential

by simply replacing µ = iµE and q = iqE. Note that with this replacement, the root xn

in eq. (3.90) fails to exist if µE becomes too large. The region of validity of analytically

continued solutions is given by

µ2
E ≤

8π2(d− 1)

d− 2

(
L

`∗

)2(
1 +

1

d(d− 2)n2

)
. (3.96)

If µE increases beyond this bound (with fixed n), the event horizon disappears and we are

left with a naked singularity. Typical results for the charged Rényi entropy with imaginary

chemical potential are shown in figure 3.5. In comparing the figures, we see that while

the charged Rényi entropy increases slowly with increasing µ in figures 3.2 and 3.3, S̃n(µE)

decreases, and in a much more dramatic fashion, as µE increases in figure 3.5.
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Figure 3.4: The charged Rényi entropy (normalized by S1(0)) in d = 3 shown function of n

in panel (a). In panel (b), we show n−1
n
Sn(µ) as a function of n. Note that the slope of the

curves is negative in panel (a) and positive in panel (b). In both cases, the curves correspond

to (from top to bottom) µ`∗
2πL

= 1.0, 0.8, 0.6, 0.4, 0.2 and 0.0.
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Figure 3.5: The d = 4 charged Rényi entropy (normalized by (a) S̃1(0) and (b) S̃1(µE)) as

a function of the imaginary chemical potential µE. The curves correspond to (from top to

bottom) n=1,2,3,4,10

3.3.3 Twist operators

In section 3.2.3, we derived various expressions for the conformal weight and the magnetic

response of the twist operators, as well as various expansion coefficients appearing in these.

Here we wish to examine these properties of the twist operators in the boundary CFT dual
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to the Einstein-Maxwell theory (3.78).

To begin, recall eq. (3.24) for the conformal weight of the twist operator,

hn(µ) =
2πn

d− 1
Rd (E(T0, µ = 0)− E(T0/n, µ)) . (3.97)

The details of the holographic calculation of the corresponding energy densities are given in

appendix 3.7.1. Then using eq. (3.208), the desired conformal weight can be written as

hn(µ) = nπ
Ld−1

`d−1
P

(
xd−2
n (1− x2

n)− xd−2
n (d− 2)

2(d− 1)

(
µ`∗
2πL

)2
)
. (3.98)

Here we might note that this result can be expressed entirely in terms of parameters in

the boundary theory using eqs. (3.219) and (3.222), which show that Ld−1/`d−1
P ∼ CT and

`2
∗L

d−3/`d−1
P ∼ CV .

Next we would like to recover eqs. (3.29) and (3.48) for the expansion coefficients of the

above conformal weight. Hence given eq. (3.98), we evaluated the following two coefficients:

h10 = ∂nhn(µ)|n=1,µ=0 =
2π

d− 1

Ld−1

`d−1
P

, (3.99)

h02 = ∂2
µhn(µ)|n=1,µ=0 = −(d− 2)(2d− 3)

4π(d− 1)2

`2
∗ L

d−3

`d−1
P

. (3.100)

At this point, using eq. (3.222), we can substitute for CT in terms of the ratio Ld−1/`d−1
P

in eq. (3.29) and we recover precisely eq. (3.99). Similarly, using eqs. (3.220) and (3.221)

in eq. (3.48), we reproduce exactly the expression in eq. (3.100). We also note that h01 =

∂µhn(µ)|n=1,µ=0 = 0 from eq. (3.98), which is in agreement with our general expectations in

section 3.2.3.

Now we turn our attention to the magnetic response, which was given by eq. (3.28),

kn(µ) = 2πnRd−1ρ(n, µ) . (3.101)

Now in the holographic framework, we know that the charge density, i.e., 〈Jτ 〉 is determined

by the normalizable component of the gauge field (3.81), however, we leave its determination,

including the precise normalization, to appendix 3.7.2. Substituting the holographic result

(3.212) into eq. (3.101), we find the magnetic response in our holographic model is

kn(µ) =
d− 2

2

`2
∗ L

d−3

`d−1
P

nxd−2
n µ . (3.102)
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Again, this result can be expressed entirely in terms of parameters of the boundary CFT

using eq. (3.219). As above, we would like to examine the expansion coefficients of the above

magnetic response and hence we calculate

k01 = ∂µkn(µ)|n=1,µ=0 =
d− 2

2

`2
∗ L

d−3

`d−1
P

, (3.103)

k11 = ∂n∂µkn(µ)|n=1,µ=0 =
d− 2

2(d− 1)

`2
∗ L

d−3

`d−1
P

. (3.104)

These two coefficients can then be compared with eqs. (3.58) and (3.59) using the results in

appendix 3.7.3. As expected, the holographic expression (3.219) of CV yields a precise agree-

ment of eq. (3.103) above with eqs. (3.58) and (3.60) in section 3.2.3. Similarly, eqs. (3.59)

and (3.104) match exactly using eqs. (3.220) and (3.221).

3.3.4 Thermodynamics, stability and phase transitions

It is natural to investigate the thermodynamical properties of the charged hyperbolic black

holes. Thermodynamical instability in some regions of phase space could be responsible for

interesting features in the Rényi entropies. One could also imagine that at low temperatures,

a different geometry would be prefered over the black hole phase, and the system would go

through a Hawking-Page phase transition as the temperature is increased. It turns out none

of these features occur for charged hyperbolic black hole in the grand canonical ensemble.

The Gibbs free energy G = (M −Mc)− TS − µq was calculated in [109]:

G = −VΣ r
d−2
H

2 `d−1
P

(
1 +

(d− 2)

2(d− 1)

(
µ `∗
2π L

)2

+
r2
H

L2
−mc(µ)

)
(3.105)

where mc(µ) is the critical mass at which the temperature vanishes, i.e.,

mc = −2(d− 1)rn−1
c

(
1− (d− 1)r2

c

(d− 2)L2

)
with

r2
c

L2
=
d− 2

d

(
1 +

(d− 2)

2(d− 1)

(
µ `∗
2π L

)2
)

(3.106)

One can check that the Gibbs energy is always negative and equals zero when the black hole

is extremal, excluding any Hawking-Page phase transition. The specific heat was calculated
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in [109] as well:

Cµ = T

(
∂S

∂T

)
µ

=
8π2(d− 1)VΣTr

d
H

(d− 2)`d−1
P

(
1 +

d

d− 2

r2
H

L2
+
d− 2

d− 1

(
µ `∗
2πL

)2
)−1

(3.107)

which is always positive, meaning the black holes are thermodynamically stable.

Before leaving the subject of instabilities, it is interesting to note that the presence of a

light scalar in the bulk would render the black holes unstable at low temperatures. Indeed,

the extremal charged black hole has a AdS2×Hd−1 near horizon geometry, where the relative

radii of the two spaces depends on the charge:

L2
AdS2

=
2L2

AdSd+1

f ′′(rH)
L2
Hd−1 = r2

H (3.108)

with f(r) is the metric function in eq. (3.80) above. For simplicity, let us consider a neutral

scalar. The extremal black hole will develop scalar hair if the mass of the scalar is below

the BF bound of the near-horizon AdS2. We wish to consider normalizable modes and these

must depend on the hyperbolic coordinates, as the volume of the hyperboloid is infinite.

Normalizable modes can be expanded in eigenvalues of the Laplacian as ∇2
Hd−1φ = −λφ

with λ > (d − 2)2/4 and near the horizon, this Laplacian will generate an effective shift of

the mass of the scalar. Thus we exepct an instability if the scalar mass M lies in the range

−d
2

4
< M2L2 < −f

′′(rH)

8
− (d− 2)2

4r2
H

. (3.109)

It turns out the two terms on the right-hand side of this equation combine in such a way

that the answer does not depend on charge:

−d
2

4
< M2L2 < −d(d− 1)

4
(3.110)

found in [108]. It seems that at zero temperature, a neutral scalar will not detect changes in

the geometry induced by charge. Turning our attention to charged scalars, it was noted in

[85] that the effect of the charge will be to induce a shift in the scalar mass. This only makes

things worse and a scalar instability is therefore expected as well. We leave the detailed

analysis of these effects for future work but note that the Rényi entropies should exhibit

phase transitions as n is varied, if light scalars are present in the bulk spectrum.
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3.4 Discussion

We have examined a new class of entanglement measures (3.2) which extend the usual

definition of Rényi entropy to include a chemical potential for a conserved global charge.

These charged Rényi entropies measure the degree of entanglement in different charge sectors

of the theory. As described in section 3.2, the evaluation of these entropies proceeds as usual

with a Euclidean path integral, but with the addition of a (fixed) background gauge field

which introduces a Wilson line, proportional to the chemical potential, around the entangling

surface. The latter can be interpreted as binding a sheet of magnetic flux to the standard

twist operators which appear in evaluating the Rényi entropy.

For the special case of a CFT with a spherical entangling surface, we can apply a con-

formal transformation to map charged Rényi entropies to the thermal entropies of a grand

canonical ensemble, albeit on the hyperbolic cylinder R×Hd−1. This allows us to study the

properties of the generalized twist operators, as discussed in section 3.2.3. In particular, the

conformal weight and the magnetic response of these twist operators are related to the en-

ergy density and the charge density, respectively, in the thermal ensemble on the hyperbolic

cylinder. These two parameters are functions of both n and µ and exhibit certain universal

characteristics when expanded in the vicinity of n = 1 and µ = 0.

In section 3.3, we considered computations of charged Rényi entropies using holography,

where they are related to the thermal entropy of charged black holes with hyperbolic hori-

zons. In addition to determining the charged Rényi entropy, we were able to determine the

conformal weight and magnetic response of the corresponding twist operators in this holo-

graphic model. In a particular, we were able to recover the universal behaviour exhibited by

the expansion coefficients in, e.g., eq. (3.60). In section 3.2.4 and appendix 3.5, we described

the computation of charged Rényi entropies for free field theories. We found the results to

be in qualitative agreement with our holographic calculations. A particularly interesting

point of comparison is d = 2, which was considered in section 3.2.4 for free fermions, and in

appendix 3.6 for holographic models. For free bosons, we observed that the Rényi entropy is

non-analytic at µE = 0. Thus, while there is a range where free fermions can be analytically
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continued to the real chemical potential, free bosons can not be so continued.

We found that the charged Rényi entropy in the holographic model obeyed various in-

equalities (3.95), which were originally established for the standard Rényi entropy without

a chemical potential. Following [68], we argued that the stability of the grand canonical

ensemble on the hyperbolic geometry was sufficient to guarantee these inequalities would

be satisfied by the charged Rényi entropy. However, if one examines the origin of these

inequalities [91], the derivation only relied on the fact that the Rényi entropies are moments

of a probability distribution with pi > 0 and
∑

i pi = 1. The same statement applies for the

charged Rényi entropies (with real chemical potential) and so we can expect that eq. (3.95)

will be satisfied quite broadly for these new entanglement measures. It would be interesting

to explicitly study the validity of these inequalities for more general QFT’s and choices of

entangling surface. At the same time, it would be interesting to investigate whether deriva-

tives of Sn(µ) with respect to µ also satisfy any general properties. For example, in figures

(3.2) and (3.3), it seems that µ∂Sn(µ)
∂µ
≥ 0 for our holographic model. Note that an imaginary

chemical potential does not respect the above inequality. In particular, the Rényi entries and

the free energies can take negative values. The analytic continuation between the imaginary

and the real chemical potentials is non-trivial because of poles and branch cuts. In gravity,

the regular black hole space time ceases to exist for large µE, i.e., eq. (3.96).

There are several natural generalizations of the investigations presented here. For exam-

ple, the holographic computations could be extended to consider bulk theories with higher

derivative interactions (e.g., Gauss-Bonnet or F 4 terms), following [110, 111, 112]. Another

interesting direction would be to connect our holographic calculations to the large-N limit

of super Rényi entropy for the ABJM model in [94].

It may also be of interest to consider a generalization of the Rényi entropy for fixed charge

ensembles (instead of fixing the chemical potential). Here, the holographic computations

may produce some interesting new behaviour. Finally, in the case of a spherical entangling

surface (where the system is rotationally invariant) it is natural to label the states by their

angular momentum and introduce a conjugate chemical potential to produce a ‘rotating

Rényi entropy’ — see also [66]. The corresponding holographic calculations would involve

84



more general classes of spinning hyperbolic black holes. A study of such rotating Rényi

entropies at fixed angular potential, as well as charge, could follow very closely the present

discussion. Results along these lines will be presented in [113].

Acknowledgments

We would like to thank Horacio Casini, Steve Shenker and especially Tadashi Takayanagi

for helpful discussions. Research at Perimeter Institute is supported by the Government of

Canada through Industry Canada and by the Province of Ontario through the Ministry of

Research & Innovation. AM and RCM gratefully acknowledge support from NSERC Discov-

ery grants. Research by RCM is further supported by funding from the Canadian Institute

for Advanced Research. TS acknowledges support from an NSERC Graduate Fellowship.

3.5 Appendix A: Free QFT computations

Here we consider various calculations of charged Rényi entropies for free fields using the heat

kernel methods on hyperbolic spaces, and also by direct summing of appropriate modes on

spheres. These QFT computations are most readily done if the chemical potential takes is

purely imaginary values, i.e., µ = iµE where µE is real. In this case, the chemical potential

produces to a non-trivial boundary condition. As in section 3.2, we are interested in con-

formal theories and hence we consider calculations for a massless conformally coupled and

complex scalar and for a free massless Dirac fermion. In both cases, the global charge is

simply related with phase rotations of the corresponding field.

3.5.1 Heat kernels on S1 ×Hd−1

To begin, we gather a few useful results for heat kernel methods [114, 115, 116, 117, 118].

First, heat kernels on a product manifold factorize, for both fermions and bosons,

KS1×Hd−1({xi}, {yi}, t) = KS1(x1, y1, t)KHd−1(x2,··· ,d, y2,··· ,d, t) (3.111)
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The total free energy in S1 ×Hd−1 is

F = −(−)f

2

∫
ddx

dt

t
e−mc(1−f)tKS1×Hd−1(x, x, t) (3.112)

where f = 1 for spin half Dirac fermions, and f = 0 for scalars. The conformal mass mc in

Hd−1 for the conformally coupled scalar is

mc = −(d− 2)2

4R2
, (3.113)

where R is the radius of Hd−1. For convenience, we will set R = 1 in the following.

We will consider finite temperature and purely imaginary chemical potential µE = iµE for

a U(1) global symmetry. This can be incorporated into the heat kernel by setting appropriate

boundary conditions. For example, with inverse temperature β = 2πn we have the boundary

condition

KS1×Hd−1({x1 + 2πn, · · · , xd}, {y1, · · · , yd}, t) = (−)feinµEKS1×Hd−1({x}, {y}, t). (3.114)

Let us first focus on KS1(x1, y1, t). It is not hard to show that

KR1(x1, y1, t) =
1√
4πt

e−
(x1−y1)

2

4t . (3.115)

Summing over images we find

KS1(x1, y1, t) =
1√
4πt

∑
m∈Z

e
−(y1−x1+2πm)2

4t e(−inµE−iπf)m, (3.116)

which satisfies the boundary condition (3.115). Note that using this method, nµE < 1. The

final result for µEn > 1 should be obtained from µEn < 1 by folding. We therefore expect

discontinuities in the free energies when µEn takes integer values.

In the case where µE = 0 we recover the usual heat kernel at finite temperature β = 2πn.

The S1 circle has radius 2πn.

The heat kernel for massless scalars in HD takes the form

Kb
H2x+1(ρ, t) =

1

(4πt)1/2

(
−1

2πR2 sinh ρ

∂

∂ρ

)n
e−x

2t/R2−ρ2R2/(4t), (3.117)
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for hyperbolic spaces of odd dimensions, and

Kb
H2(x+1)(ρ, t) = e−(2x+1)2t/(4R2)

(
−1

2πR2 sinh ρ

∂

∂ρ

)n
fH2(ρ, t), (3.118)

where x is an integer, and ρ is the geodesic distance between two points x and y. The

function fH2(ρ, t) is defined as

fH2(ρ, t) =

√
2

(4πt)3/2

∫ ∞
ρ

dρ̃
ρ̃e−ρ̃

2/(4t)

√
cosh ρ̃− cosh ρ

(3.119)

For fermions, we have

Kf
H2x+1(ρ, t) = U(x, y) cosh(ρ/2)

(
−1

2π

∂

∂ cosh ρ

)n
cosh(ρ/2)−1 e

−ρ2/(4t)
√

4πt
(3.120)

and

Kf
H2x(ρ, t) = U(x, y) cosh(ρ/2)

(
−1

2π

∂

∂ cosh ρ

)n
cosh(ρ/2)−1kH2(ρ, t) (3.121)

and

KH2(ρ, t) =

√
2 cosh−1(ρ/2)

(4πt)3/2

∫ ∞
ρ

dρ̃
ρ̃ cosh ρ̃/2e−ρ̃

2/(4t)

√
cosh ρ̃− cosh ρ

(3.122)

The matrix U(x, y) has a trace given by 2[d/2], where [· · · ] denotes the integer part. It counts

the dimension of spinor space in d dimensions.

From eq. (3.7), we can write the charged Rényi entropy as

Sn =
F (n, µE)− nF (1, µE)

n− 1
(3.123)

where F (n, µE) ≡ − logZn(µE) is the free energy evaluated at temperature β = 2πn and

chemical potential µE. We are thus ready to compute free energies at different dimensions.

d = 2

At temperature βn = 2πn and finite chemical potential µE, the free energy is

F (n, µE) =
(−)f

2
(2πn)VHd−1

∫
dt

t

∑
m

e−π
2m2/t

√
4πt

e(−inµE−iπf)mKH1(ρ = 0, t). (3.124)

The heat kernel is

KH1(0, t) = KR(0, t) =
1√
4πt

. (3.125)
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The free energy F (n, µE) is divergent due to the m = 0 mode in the S1 heat kernel. For

m = 0 the contribution is linear in n, where n appears as the overall volume factor from S1.

This dependence therefore drops out from Sn. We could therefore rewrite the regulated free

energy F̂ (n, µE) as

F̂ (n, µE) =
(−)f

2
(2πn)VHd−1

∫
dt

t

∑
m∈Z+

e−π
2m2/t

√
4πt

2 cos((nµE + πf)m)KH1(0, t)

=
(−)f

2
VHd−1

∑
m∈Z+

8 cos(nmµE) cos(mπf)

8π2nm2

=
(−)f

4π2n
VHd−1

(
Li2(einµE+iπf ) + Li2(e−inµE−iπf )

)
(3.126)

For 0 ≤Re(x) < 1 and Im(x) ≥ 0, or Re(x) ≥ 1 and Im(x) < 0

Li2(e2πix) + Li2(e−2πix) = −(2πi)2

2
B2(x) = −(2π)2

Γ[2]
ζ(−1, x), (3.127)

where B2 is the Bernoulli polynomial, and ζ(a, b) the Hurwitz zeta function. We are left

with

F̂ (n, µE) =
(−)fVH1

2n
B2

(
nµE

2π
+
f

2

)
=

(−)fVH1

2n

(
1

12
(2− 6f + 3f 2) +

(f − 1)nµE

2π
+
n2µ2

E

4π2

)
.

(3.128)

For fermions, the linear term in µE vanishes, as expected. However, for bosons there is

a linear µE term despite the fact that the sum is explicitly even. This term appears from a

term nµE ln(nµE)− nµE ln(−nµE) in the expansion of the poly-log in µE. This suggests that

we are actually taking the absolute value of the linear term. This can be readily confirmed

by computing the sum numerically. As a result, the free energy has a diverging slope at

µE = 0, suggesting a phase transition there. There are also phase transitions whenever µEn

is an integer, as noted above. At precisely µEn = 1/2, the first derivative w.r.t. µE jumps

from zero to VH1 .

The µ2
E term cancels out in the Rényi entropy (since it is linear in n) for µEn < 1/2. The

result for a Dirac fermion is

Sfn =
c

6
(1 +

1

n
)VH1 (3.129)
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Note that c = 1/2 for a single Majorana fermion, but this should be doubled for a charged

fermion. This reproduces the result obtained via the twist operator method in the main

text.

For bosons we obtain instead

Sbn = c

(
1

6
(1 +

1

n
)− |µE|

2π

)
VH1 , (3.130)

Again, c = 1 for a real boson, which must be doubled for a charged boson. One might worry

that the result for bosons does not appear to agree with that of fermions given that they

are related by bosonization in 1+1 dimensions. We note however that via bosonization of

U(1) charged fermions, the corresponding bosons transform by translation, and thus should

instead satisfy the following boundary condition :φ(τ + 2π) = φ(τ) + nµE. Therefore, our

computation for charged bosons is not related to charged fermions by bosonization. Another

point to note is that with the absolute sign, the bosonic result is not analytic even for

arbitrarily small µE, such that it does not analytically continue to the complex plane, as in

the case for fermions.

d = 4

Let us work out one more example where there is non-trivial µE dependence. At d = 3 + 1,

the main difference is the heat kernel for both bosons and fermions on H3. For bosons, the

equal-point heat kernel is

e−mstKb
H3(0, t) =

1

(4πt)3/2
, (3.131)

where we have substituted in the conformal mass of the scalar. For a Dirac fermion, the

heat kernel is

Kf
H3(0, t) = 4

1

(4πt)3/2
(1 +

t

2
) (3.132)
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Following the same steps as in d = 3 + 1, and again ignoring the m = 0 term, the Rényi

entropy becomes, for bosons :

Sn = tr(1)VH3

∑
m∈Z+

n4 cos(mµE)− cos(mnµE)

8m4π5(n− 1)n3

= − 1

8π5(n− 1)n3

(
− n4(Li4(e−iµE) + Li4(eiµE)) +

Li4(e−inµE) + Li4(einµE)

)
(3.133)

where tr(1) = 2 for a pair of real bosons (which together form a complex U(1) charged

boson ). The above combinations of poly-logs again admit a representation in terms of the

Bernoulli polynomial. Altogether we have

Sbn =
VH3

2π

(
1 + n+ n2 + n3

180n3
− (n+ 1)µ2

E

24π2n
+

µ3
E

24π3

)
(3.134)

Again we are left with a µ3
E term that is odd in µE, and we argue that this term should be

enclosed inside an absolute sign since our summation is even. As a result, once again we lose

analyticity even for arbitrarily small values of µE.

Now let us also look at the corresponding result for fermions. The Rényi entropy is

Sfn = VH3

∑
m∈Z+

(−1)m(2 +m2π2n2) cos(mnµE)

m44π5n3

= VH3

(1 + n)(7 + n2(37− 120µ2
E)

1440πn3
, (3.135)

which interestingly, is again automatically even in µE, and that for purely imaginary µE, is

positive definite. We note that the above expression is not positive definite in µE. We find

that for sufficiently large value of µE while within the interval nµE < 1/2 that the above

expression can turn negative. This is as expected since the trace

trρn = tr(e−n(H−iµEQ)) (3.136)

is not necessarily positive definite quantity. When µE is purely imaginary, we return to the

usual thermodynamic chemical potential and the trace should be positive definite. Note that

the Rényi entropy for the fermions, which admit analytic continuation for small values of

µE, is indeed positive definite when µE is purely imaginary.
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Remark: d = 2 + 1. Here the complication is the more complicated form of the heat kernel

in H2. Because of that, it doesn’t have a neat analytic result, but one can evaluate these

results numerically. We find precise agreement with the calculation obtained on a sphere in

later sections, and we will not repeat the details here.

3.5.2 Wavefunctions on S1 ×Hd−1

We can reproduce the heat kernel results by analyzing the wave functions on the hyperbolic

space. This method was used in [78] to study the Rényi entropy of the free theories with-

out the chemical potential. In this subsection, we generalize [78] to include the chemical

potential.

Free scalar field

We consider a free boson on a S1 ×Hd−1 with Hd−1 radius R

S =

∫
ddr
√
g(|∂µφ|2 +M2|φ|2) (3.137)

where M is the conformal mass. The metric is

ds2 = dθ2 +R2(dη2 + sinh2 ηdΩ2
d−2). (3.138)

The periodicity of the S1 time circle (θ) is 2πn. The Wilson loop changes boundary condition

around the time circle from φ(2πn) = φ(0) to

φ(2πn) = einµEφ(0). (3.139)

The mode function satisfying this boundary condition is

ei(
m
n

+
µE
2π )θ, (3.140)

where m is an integer. The eigenvalue of the Laplace operator −∆−M2 is

λ+
(m
n

+
µE

2π

)2

, λ ≥ 0. (3.141)
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We define the free energy

Fn = Tr log
(
−∆−M2

)
=

∑
m∈Z

∫ ∞
0

dλD(λ) log

(
λ+

(m
n

+
µE

2π

)2
)

(3.142)

=

∫ ∞
0

dλD(λ)
(

2πn
√
λ+ log

(
1− 2 cos(nµE)e−2πn

√
λ + e−4πn

√
λ
))

(3.143)

where D(λ) is the density of states. In the last equation, we used the following formula for

the regularized sum∑
k∈Z

log

(
(k + α)2

n2
+ a2

)
= log[2 cosh(2πn|a|)− 2 cos(2πα)]. (3.144)

In the case of scalar bosons, the density of states D(λ) on Hd−1 is given by [119, 120]

D(λ)dλ =
vol(Hd−1)

(4π)
d−1
2 Γ

(
d−1

2

) |Γ(i
√
λ+ d−2

2
)|2

√
λ|Γ(i

√
λ)|2

dλ. (3.145)

The explicit forms for low dimensions are

d− 1 = 1; D(λ)dλ =
vol(H1)

2π
√
λ
dλ

d− 1 = 2; D(λ)dλ =
vol(H2)

4π
th(π
√
λ)dλ

d− 1 = 3; D(λ)dλ =
vol(H3)

(2π)2

√
λdλ (3.146)

vol(H) is the regularized volume of the hyperbolic space.

The first term in (3.143) is divergent and needs a regularization. However, it will not

contribute to the Rényi entropy since it linearly depends on n. One can show that this

integration reproduces the heat kernel results.

Free Dirac fermion

We also consider a free Fermion

S =

∫
ddx
√
gψ̄(i /D)ψ, (3.147)

The free energy is

Fn = −Tr log(i /D), (3.148)
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In the presence of the Wilson loop, the boundary condition of ψ along the time circle

changes from ψ(2πn) = −ψ(0) to

ψ(2πn) = −einµEψ(0) (3.149)

So the eigenfunction along θ is eimθ/n with

m ∈ Z +
1

2
+
nµE

2π
. (3.150)

The eigenvalue spectrum of (i /D) is

±
√
λ2 +

m2

n2
. (3.151)

The free energy is

Fn = −1

2

∑
m∈Z+ 1

2

∫ ∞
0

dλD(λ) log

(
λ2 +

m2

n2

)
= −1

2

∫ ∞
0

dλD(λ) log (2 cosh(2πnλ) + 2 cos(nµE)) (3.152)

As before, we used (3.144) in the last equation.

The density of states D(λ) in d− 1 dimensions is [119, 120]

D(λ)

vol(Hd−1)
=

(
Γ
(
d−1

2

)
2d−4

π(d−1)/2+1
2[ (d−1)

2 ]

)
24−2(d−1)

(Γ((d− 1)/2))2
cosh(πλ)

∣∣∣∣Γ(iλ+
(d− 1)

2

)∣∣∣∣2 .
(3.153)

Here, D(λ) is normalized so that the spinor ζ-function per unit volume is given by

tr(− /D2
+m2)−s =

∫ ∞
0

(λ2 +m2)−s
D(λ)

vol(Hd−1)
dλ. (3.154)

For odd d− 1, it is

D(λ)

vol(Hd−1)
=

π

22(d−3)(Γ((d− 1)/2))2

(d−3)/2∏
j= 1

2

(λ2 + j2) (3.155)

and for even d− 1

D(λ)

vol(Hd−1)
=

πλ coth(πλ)

22(d−3)(Γ((d− 1)/2))2

(d−3)/2∏
j=1

(λ2 + j2) (3.156)
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The explicit forms for low dimensions are

d− 1 = 1; D(λ)dλ =
vol(H1)

π
dλ

d− 1 = 2; D(λ)dλ =
vol(H2)

π
λ coth(πλ)dλ

d− 1 = 3; D(λ)dλ = vol(H3)

(
λ2 +

1

4

)
dλ (3.157)

The first term in (3.152) diverges and needs a regularization, while the second term

is finite. We can regularize the divergence using zeta function regularization or flat space

subtraction. In any case, it doesn’t contribute to the Rényi entropy since it is linear in

n. The final result agrees with the twist operator computation (Sec 3.2.4), the heat kernel

computation (Appendix 3.5.1) and the wave function computation on a sphere (Appendix

3.5.3)

3.5.3 Wavefunctions on Sd

Another convenient way of computing the Rényi entropy of CFT is to map onto a sphere.

Let us consider a scalar field on S3. The metric is

ds2 = cos2 θdτ 2 + dθ2 + sin2 θdφ2 (3.158)

with 0 ≤ τ < 2πn, 0 ≤ φ < 2π, and 0 ≤ θ < π/2. Because of the periodicity of τ , there

is a conical singularity at cos θ = 0. We can do the heat kernel analysis on the sphere in a

similar way to the hyperbolic case. However, we need to set a regularity condition at the

conical singularity. An alternative way to compute the free energy is to look at the wave

functions and their eigenvalues directly. The analysis below is a generalization of [78] and

we cite several results from their paper.

Free scalar field

The free energy of the free scalar field on the sphere is

Fn = tr log

(
−∆ +

R
8

)
(3.159)
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where R = 6 for 3d case. We assume that the eigenfunction of the Laplacian takes the form

f(θ)eimτ τ+imφφ. The function f(θ) obeys the following equation

f ′′(θ) + 2 cot θf ′(θ)−
(

m2
τ

cos2 θ
+

m2
φ

sin2 θ

)
f(θ) = λf(θ). (3.160)

From the regularity of f(θ), the eigenvalue λ is fixed to

λ = −s(s+ 2), s = |mτ |+ |mφ|+ 2a, a ∈ N (3.161)

The periodicity of φ requires mφ to be quantized in Z. In the presence of the Wilson loop,

the boundary condition of φ becomes

φ(2πn) = einµEφ(0) (3.162)

Therefore, mτ is quantized in Z
n

+ µE
2π

.

Let us denote

mτ =
α

n
+
µE

2π
, mφ = β, (α, β ∈ Z) (3.163)

and

α = kn+ p, k ∈ Z, p ∈ [0, n− 1]. (3.164)

The free energy (3.159) is

Fn =
∞∑

k=−∞

n−1∑
p=0

∞∑
β=−∞

∞∑
a=0

log

(
s(s+ 2) +

3

4

)
(3.165)

with

s =
∣∣∣k +

p

n
+
µE

2π

∣∣∣+ |β|+ 2a. (3.166)

We want to count the degeneracied for a given value of s. Let us first assume that µE satisfies

0 ≤ µE
2π
< 1

q
. Then the degeneracy for

s = m+
p

n
+
µE

2π
, m− p

n
− µE

2π
+ 1 (p ∈ [0, n− 1], m ∈ N), (3.167)
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is

(m+ 1)(m+ 2)

2
. (3.168)

Therefore, the free energy is

Fn =

q∑
p=0

∞∑
m=0

[(m+ 1)(m+ 2)

2

{
log((m+

p

q
+
µE

2π
+ 1)2 − 1

4
) + log((m− p

q
− µE

2π
+ 2)2 − 1

4
)
}]

=

q∑
p=0

a4∑
a=a1

[
−1

2

(
ζ ′(−2, a) + (3− 2a)ζ ′(−1, a) + (a2 − 3a+ 2)ζ ′(0, a)

)]
(3.169)

where ζ ′(s, a) = ∂ζ(s,a)
∂s

and

a1 = (
p

n
+
µE

2π
+

1

2
), a2 = (

p

n
+
µE

2π
+

3

2
), a3 = (−p

n
− µE

2π
+

3

2
), a4 = (−p

n
− µE

2π
+

5

2
). (3.170)

The expansions near µE = 0 are

F1 =
log 2

4
− 3ζ(3)

8π2

− µ2
E

96π2

(
2

(
−12ζ(1,1)

(
−1,

1

2

)
− 24ζ(1,1)

(
−1,

3

2

)
− 12ζ(1,1)

(
−1,

5

2

)
+ 3ζ(1,2)

(
−2,

1

2

)
+6ζ(1,2)

(
−2,

3

2

)
+ 3ζ(1,2)

(
−2,

5

2

)
+ 6ζ(1,2)

(
−1,

1

2

)
− 6ζ(1,2)

(
−1,

5

2

)
+28− 36 log 2 + 6 log 3) + 3π2

)
+O(µ4

E), (3.171)

F2 =
log 2

4
+
ζ(3)

8π2

+
µ2

E

4π2

(
1

12

(
12ζ(1,1)

(
−1,

1

2

)
+ 24ζ(1,1)(−1, 1) + 24ζ(1,1)

(
−1,

3

2

)
+ 24ζ(1,1)(−1, 2)+

12ζ(1,1)

(
−1,

5

2

)
− 3ζ(1,2)

(
−2,

1

2

)
− 6ζ(1,2)(−2, 1)− 6ζ(1,2)

(
−2,

3

2

)
−6ζ(1,2)(−2, 2)− 3ζ(1,2)

(
−2,

5

2

)
− 6ζ(1,2)

(
−1,

1

2

)
− 6ζ(1,2)(−1, 1) + 6ζ(1,2)(−1, 2)

+6ζ(1,2)

(
−1,

5

2

)
− 40− 6 log(3) + 12 log(16π)

)
− π2

8

)
+O(µ4

E). (3.172)

Each of the functions ζ(1,1), ζ(1,2) etc has some subtlety in evaluation. We may always go

back to the expression (3.169) when we evaluate the free energy explicitly. The leading terms

agrees with the results in [78].
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The expression (3.169) is not valid for µE
2π
> 1

n
. In this case, there is a number p1 ≤ n− 1

satisfying

−1 +
p1

n
+
µE

2π
< 0, − 1 +

p1 + 1

n
+
µE

2π
< 0. (3.173)

By using this number, the eigenvalues and their degeneracies become

(m+ 1)(m+ 2)

2
for s = m+

p

n
+
µE

2π
, m− p

n
− µE

2π
+ 2 (p ∈ [0, n− 1]),

(m+ 1) for s = m− p

n
− µE

2π
+ 1 (p ∈ [0, p1]),

(m+ 1) for s = m+
p

n
+
µE

2π
− 1 (p ∈ [p1 + 1, n− 1]). (3.174)

The free energy is

Fn =
n−1∑
p=0

∞∑
m=0

(m+ 1)(m+ 2)

2

(
log((m+

p

n
+
µE

2π
+ 1)2 − 1

4
) + log((m− p

n
− µE

2π
+ 3)2 − 1

4
)
)

+

p1∑
p=0

∞∑
m=0

(m+ 1)
(

log((m− p

n
− µE

2π
+ 2)2 − 1

4
)
)

+
n−1∑

p=p1+1

∞∑
m=0

(m+ 1)
(

log((m+
p

n
+
µE

2π
)2 − 1

4
)
)

=
n∑
p=0

b4∑
a=b1

(−1

2
(ζ ′(−2, a) + (3− 2a)ζ ′(−1, a) + (a2 − 3a+ 2)ζ ′(0, a)))

+

p1∑
p=0

c2∑
a=c1

(−(ζ(−1, a) + (1− a)ζ(0, a))) +
n−1∑

p=p1+1

c4∑
a=c3

(−(ζ(−1, a) + (1− a)ζ(0, a)))(3.175)

where

b1 = (
p

q
+
µE

2π
+

1

2
), b2 = (

p

q
+
µE

2π
+

3

2
), b3 = (−p

q
− µE

2π
+

5

2
), b4 = (−p

q
− µE

2π
+

7

2
), (3.176)

and

c1 = (−p
q
− µE

2π
+

3

2
), c2 = (−p

q
− µE

2π
+

5

2
), c3 = (

p

q
+
µE

2π
− 1

2
), c4 = (

p

q
+
µE

2π
+

1

2
). (3.177)

We show the numerical result in Fig.3.6. It is remarkable that the function is smooth around

µE = 1
n
.
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Figure 3.6: Boson free energy n = 2

Free Dirac fermion

Next, we consider a spinor ψ on S3. It satisfies the Dirac equation

iσµaγ
a

(
∂µψ +

1

4
ωabµ γabψ

)
= λψ. (3.178)

The periodic part of the spinor ψ in τ and φ directions can be written as eimτ τ+imφφ. As

shown in [78], the regularity condition at θ = 0 restricts the allowed eigenvalue λ. There are

four types of eigenvalues :

Two positive λ

Case 1 λ = mτ +mφ +
3

2
+ 2a, mτ ≥ 0, mφ ≥ −

1

2
− a, a ∈ N,

Case 2 λ = −mτ +mφ +
1

2
+ 2a, mτ < 0, mφ ≥

1

2
− a, a ∈ N, (3.179)

and two negative λ

Case 3 λ = −(mτ +mφ +
1

2
+ 2a), mτ ≥ 0, mφ ≥

1

2
− a, a ∈ N,
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Figure 3.7: Boson Renyi entropy n = 2

Case 4 λ = −(−mτ +mφ +
3

2
+ 2a), mτ < 0, mφ ≥ −

1

2
− a, a ∈ N, (3.180)

where

mτ ∈
1

q
(Z +

1

2
+
qµE

2π
), mφ ∈ Z +

1

2
(3.181)

As before, we first consider the case 0 ≤ nµE
2π

< 1
2
. In this case, the eigenvalues and the

degeneracies are

(k + 1)(k + 2)

2
for λ = ±(k +

p

q
+

1

2q
+
µE

2π
+ 1), ± (k +

p

q
+

1

2q
− µE

2π
+ 1) (3.182)

where k ∈ N.

The free energy is

Fn = −2

q−1∑
p=0

∞∑
k=0

(k + 1)(k + 2)

2
log(k + 1 +

p

n
+

1

2n
+
µE

2π
)

−2
n−1∑
p=0

∞∑
k=0

(k + 1)(k + 2)

2
log(k + 1 +

p

n
+

1

2n
− µE

2π
)
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=

q−1∑
p=0

a2∑
a=a1

(ζ ′(−2, a) + (1− 2a)ζ ′(−1, a) + a(a− 1)ζ ′(0, a)) (3.183)

where

a1 = 1 +
p

n
+

1

2n
+
µE

2π
, a1 = 1 +

p

n
+

1

2n
− µE

2π
(3.184)

We show the explicit form of the free energy near µE = 0.

F1 =
log 2

4
+

3ζ(3)

8π2

+

(
− log 8− 4ζ(1,1)(−1,

3

2
) + ζ(1,2)(−2,

3

2
)− 1

4
ζ(1,2)(0,

3

2
)

)
µ2

E

4π2
+O(µ4

E)

F2 =
3ζ(3)

32π2
+

3 log 2

16
+
G

2π

+
(
− 9 log 2 + 2 log 3− 4ζ(1,1)(−1,

5

4
)− 4ζ(1,1)(−1,

7

4
)− ζ(1,1)(0,

5

4
) + ζ(1,1)(0,

7

4
)

+ζ(1,2)(−2,
5

4
) + ζ(1,2)(−2,

7

4
) +

1

2
ζ(1,2)(−1,

5

4
)− 1

2
ζ(1,2)(−1,

7

4
)

− 3

16
ζ(1,2)(0,

5

4
)− 3

16
ζ(1,2)(0,

7

4
)
) µ2

E

4π2
+O(µ4

E) (3.185)

where G is the Catalan constant. Again, the functions ζ(1,1), ζ(1,2) etc are a formal expression

and one may use (3.183) to evaluate the free energy. The leading terms agree with [78].

Notice that only even powers of µE appears in the expansion. The expression (3.183) is not

valid for µE >
1

2n
. In this region there is a number p1 which satisfies

−1 +
p1

n
+

1

2n
+
µE

2π
< 0, − 1 +

p1 + 1

n
+

1

2n
+
µE

2π
≥ 0. (3.186)

Then the eigenvalues, their degeneracies, and the range of p are as follows:

(k + 1)(k + 2)

2
for λ = ±(k + 1 +

p

n
+

1

2n
+
µE

2π
), p ∈ [0, n− 1]

(k + 1)(k + 2)

2
for λ = ±(k + 3− p

n
− 1

2n
− µE

2π
), p ∈ [0, n− 1]

(k + 1) for λ = ±(k + 2− p

n
− 1

2n
− µE

2π
), p ∈ [0, p1]

(k + 1) for λ = ±(k +
p

n
+

1

2n
+
µE

2π
), p ∈ [p1 + 1, n− 1] (3.187)

where k ∈ N.
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The free energy is

Fn =
n−1∑
p=0

a2∑
a=a1

(
ζ ′(−2, a) + (3− 2a)ζ ′(−1, a) + (a2 − 3a+ 2)ζ ′(0, a)

)
+

p1∑
p=0

2(ζ(−1, c1) + (1− c1)ζ(0, c1)) +
n−1∑

p=p1+1

2(ζ(−1, c2) + (1− c2)ζ(0, c2)) (3.188)

with

a1 = 1+
p

q
+

1

2q
+
µE

2π
, a2 = 3−p

q
− 1

2q
−µE

2π
, c1 = 2−p

q
− 1

2q
−µE

2π
, c2 =

p

q
+

1

2q
+
µE

2π
. (3.189)

The numerical result is shown in Fig.3.8. There are phase transitions at µE
2π

= 1
2n

+ Z
n

for

the free energy and µE
2π

= 1
2n

+ Z
n

and 1
2

+ Z for the Rényi entropy.
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Figure 3.8: Fermion free energy n = 2
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Figure 3.9: Fermion Renyi entropy n = 2

3.6 Appendix B: Holographic computations for d = 2

We now compute the holographic charged Rényi entropies for d = 2 using a three-dimensional

bulk dual. In this case there are two interesting bulk duals: Einstein-Maxwell theory and

Einstein-Chern-Simons theory.

3.6.1 Einstein-Maxwell theory

Starting with the Einstein-Maxwell action in a three-dimensional bulk

IE−M =
1

2`P

∫
d3x
√
−g
(

2

L2
+R− `2

∗
4
FµνF

µν

)
. (3.190)

The charged black hole solution analogous to eq. (3.79) for this theory is [121]

ds2 = −f(r)
L2

R2
dt2 +

dr2

f(r)
+ r2dθ2 , (3.191)
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with

f(r) =
r2

L2
−m− q2

2
log

(
r

L
√
m

)
. (3.192)

With the above parametrization, the horizon radius is simply rH = L
√
m. Note that the

geometry is not asymptotically AdS because of the logarithmic term appearing in f(r).

Similar situations were considered in [122, 123, 124] and this logarithmic behaviour is the

signature of broken conformal invariance, even in the UV. The solution for bulk gauge field

is

A = − qL

`∗R
log

(
r

L
√
m

)
dt . (3.193)

The integration constant in eq. (3.193) was chosen to ensure that A = 0 at the horizon.

However, because of the logarithmic running of the bulk gauge field, one can not discern

the chemical potential and the expectation value of the dual charge density as easily as in

section 3.3 for d ≥ 3. Following [123, 124], we arbitrarily chose a renormalization scale which

will be defined by the radius r = rR. Then the chemical potential is given by

µ = −q log
rH
rR

. (3.194)

Hence we find that the chemical potential runs logarithmically with the renormalization

scale.

The temperature of the black hole (3.191) is

T =
Lf ′(rH)

4πR
=

rH
2πRL

(
1− L2 µ2

4r2
H log[rH/rR]2

)

= T0

x− µ2

4x log
(
xL
rR

)2

 , (3.195)

where as before, we have introduced the parameter x = rH/L. The horizon entropy is given

by

S = 2πrH = 2πLx . (3.196)

The charged Rényi entropy for this solution is again determined with eq. (3.88), however, we

note that in this integral, both the chemical potential and the renormalization scale rR are
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held fixed. The endpoints of the integral are again chosen such that T (x1, µ, rR) = T0 and

T (xn, µ, rR) = T0/n. Given the form of eq. (3.195), the xn can only be solved numerically for

given µ (and rR). Combining the previous results, we can write the charged Rényi entropy

as follows:

Sn(µ) =
πL

n− 1

(
2nx1 − 2xn + n(x2

n − x2
1) + µ(

√
nxn(nxn − 1)− n

√
x1(x1 − 1))

)
.

(3.197)
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Figure 3.10: Charged Rényi entropy evaluated for the charged BTZ black hole at various

values of n, setting L = rR = 1.

In figure 3.10, we show the behaviour of the charge Rényi entropy as a function of µ for

various values of n. For large values of µ, all of the Sn(µ) appear to increase linearly. From

figure 3.11, we see that in the limit n→∞, Sn(µ) seems to approach a finite asymptotic value

(which depends on µ), and we have included a plot in figure 3.10. This may be contrasted

with the behaviour in eq. (3.92) for the same limit in higher dimensions. Further, the n→ 0

limit appears to diverge, in agreement with the analogous limit in higher dimensions, as

given in eq. (3.92).
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Figure 3.11: Charged Rényi entropy evaluated for the charged BTZ black hole at various

values of µ, setting L = rR = 1.

It is again interesting to consider imaginary chemical potentials, which is accomplished

here by replacing µ = iµE and q = iqE in the above results. The horizon radius for which

T = T0/n is now given by

xn =
1 +

√
1− n2q2

E

2n
. (3.198)

Clearly, we only have real solutions here when q2
E < 2/n2 and so the charge can only take

values in a finite range. If we re-write eq. (3.198) as

(2nxn − 1)2 + n2q2
E = 1 , (3.199)

we see the horizon radius and the charge can be parameterized by

xn =
1 + cosφ

2n
, qE =

sinφ

n
. (3.200)

This is again reminiscent of the free field calculation where analytic continuation is only

possible within a finite window for µ.
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3.6.2 Einstein-Chern-Simons theory

We first consider the boundary duals of Einstein-Chern-Simons theory. The entropy of the

charged BTZ black hole is (see e.g. (6.17) of [125])

S = 2π

(√
c

6

(
L0 −

c

24
− 1

4
q2

)
+

√
c̃

6

(
L̃0 −

c̃

24
− 1

4
q2

))
. (3.201)

where L0(L̃0) and c(c̃) are the Virasoro generator and the central charge of the left (right)

movers. Here q denotes the charge of the black hole. The expression inside the square root

is independent of spectral flow. In terms of the horizon radius rH ,

L0 −
c

24
− 1

4
q2 =

π r2
H

2`P L
= L̃0 −

c̃

24
− 1

4
q2 . (3.202)

The Hawking temperature of the BTZ black hole is

T =
rH

2πL2
. (3.203)

Using c = 12πL/`P, the entropy is the usual expression

S = 2π2LTc

3
=
πc

3n
. (3.204)

To obtain the Rényi entropy, we integrate S. However, since q cancels out, there is no

dependence on the chemical potential. We note that this is in complete agreement with

the free fermion results at least for sufficiently small µE. To be more precise, the above

statement is as follows: Since the gauge potential does not couple to the metric in Chern-

Simons theory, the solution of the equation of motion is a flat connection, dF = 0, or a

constant gauge potential. Without any source term in the bulk, the gauge potential has

to be zero. The charge q we mentioned above is a charge along the spatial direction θ.

The result suggests that the linear term in the Rényi entropy (3.75) is not protected by a

symmetry or an anomaly.

3.7 Appendix C: Holographic minutiae

In this appendix, we present various useful details of the holographic calculations, which are

used in section 3.3.
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3.7.1 Energy density

To evaluate the conformal weight of the twist operators using eq. (3.97), we need to evaluated

the difference of energy densities: E(T0/n, µ) − E(T0, µ = 0). Now in principle, with the

introduction of appropriate boundary counterterms [126, 127], one can evaluate each of

these energy densities individually. However, since we only need to determine a difference of

energy densities, it is simpler to use ‘background subtraction,’ in which case the counterterms

play no role.

To begin, we will denote the metric of a surface of constant r by γµν = gµν − δµrδνr/grr,

and the boundary hyperbolic metric (3.12) by γ̂. Following [128], we write the boundary

stress tensor

τab =
2√
−γ

δI

δγab
=

1

`d−1
P

(γabK
c
c −Kab), (3.205)

where Kab is the extrinsic curvature taken on a regulator surface at some constant radius r.

To leading order as r →∞,

τ00(T0/n, µ)− τ00(T0, µ = 0) =
(d− 1)Lm

2`d−1
P R2rd−2

, (3.206)

where m is given by (3.83). We can then evaluate the energy density of the boundary field

theory with [129] √
−γ̂γ̂00(Tττ (T0/n, µ)− Tττ (T0, µ = 0))

= lim
r→∞

√
−γγ00(τ00(T0/n, µ)− τ00(T0, µ = 0)).

(3.207)

Now using the notation E = Tττ from the main text, this equation yields the desired difference

of energy densities:

E(T0/n, µ)− E(T0, µ = 0) =
(d− 1)Lm

2`d−1
P Rd

=
(d− 1)

2Rd

Ld−1

`d−1
P

(
x d−2
n (x2

n − 1) +
q2

(L rH)d−2

)
.

(3.208)

3.7.2 Charge density

In order to determine the magnetic response for our holographic model, we must evaluate the

charge density ρ(n, µ) = 〈Jτ 〉 in eq. (3.101). Of course, the standard AdS/CFT dictionary
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indicates this expectation value is given by the normalizable component of the gauge field

(4.21), i.e., 〈Jτ 〉 ∝ q. However, to make precise comparisons with the expansion coefficients

derived in section 3.2.3, we need the exact normalization of the current. We evaluate the

latter here with a simple thermodynamic analysis.

Recall that the first law of thermodynamics of our ensemble is given by

dE = Tds+
µ

2πR
dρ , (3.209)

where E , s and ρ denote the energy, entropy and charge densities respectively. Hence if the

entropy density is held fixed, it follows that

µ

2πR
=

(
∂E
∂ρ

)
s

(3.210)

Now as observed above, we have ρ(n, µ) = α q where α is some numerical factor which we

aim to determine. From eq. (3.86), we can see that holding the entropy density fixed is

equivalent to holding rH constant. Hence it follows that

α =
2πR

µ

(
∂E
∂q

)
rH

=

√
(d− 1)(d− 2)

2

`∗

`d−1
P Rd−1

(3.211)

where up to a constant independent of q, E is given by eq. (3.208). Therefore, our final result

for the charge density is

ρ(n, µ) =
(d− 2)xd−2

n

4π Rd−1

Ld−3`2
∗

`d−1
P

µ . (3.212)

3.7.3 Boundary CFT parameters

Here, we provide the values of various parameters, i.e., CV , ĉ, ê and CT , for the boundary

CFT dual to the Einstein-Maxwell theory (3.78). This allows us to verify various expressions

derived in section 3.2.3 for the expansion coefficients of the twist operator’s conformal weight

and magnetic response within the holographic framework of section 3.3.

To begin, we follow the calculation of [17] to evaluate the two-point correlator of a current

dual to a bulk Maxwell field, however, we will be careful to include all of the numerical factors.
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This allows us to evaluate the constant CV appearing in eq. (3.55) for the Einstein-Maxwell

theory studied in section 3.3. From [17], the bulk solution for the gauge field A, which near

the AdS boundary approaches limz→0A→
∑

iBi(x)dxi, is given by

A(z, x) = N
∫
ddx′

[
zd−2

(z2 + (x− x′)2)d−1
Bi(x

′)dxi − zd−3dz
(x− x′)iBi(x

′)

(z2 + (x− x′)2)d−1

]
, (3.213)

where the normalization constant is given by

N =
Γ(d− 1)

πd/2Γ(d/2− 1)
. (3.214)

This coefficient N is chosen to ensure that

lim
z→0
N zd−2

(z2 + x2)d−1
= δd(x) . (3.215)

Now our (Euclidean) Maxwell action (3.78) is given by

IMax =
`2
∗

8`d−1
P

∫
ddxdz

√
GGACGBD FABFCD , (3.216)

where A,B range over i = 1, · · · d and z. Further, we work in Poincaré coordinates where

GAB = (L2/z2) δAB. To extract the leading boundary contribution, we only need to consider

the terms with z derivatives. That is,

IMax =
`2
∗L

d−3

4`d−1
P

∫
dz ddx

zd−3

[
(∂zAi)

2 − 2∂iAz∂zAi + (∂iAz)
2
]
. (3.217)

Using the bulk equations of motion for Ai, Az and integrating by parts, the above expression

yields a boundary term at z → 0:

IMax = lim
z→0

`2
∗L

d−3

4`d−1
P

∫
ddx

zd−3
[Ai∂zAi − Ai∂iAz]

=
(d− 1)N `2

∗L
d−3

4`d−1
P

∫ ∫
ddx1d

dx2
Bi(x1)Bj(x2)

|x12|2d−2

(
δij − 2

xi12x
j
12

|x12|2

)
, (3.218)

where the second line follows from substituting in eq. (3.213). Finally, we may differentiate

this action twice with respect to the sources Bi(x) to produce the two-point function of the

corresponding current and we see the form matches precisely that given in eq. (3.55). Then
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we may read off the central charge CV in the boundary theory with the normalization of the

bulk Maxwell term given in eq. (3.216):

CV =
(d− 1)N `2

∗L
d−3

2`d−1
P

=
Γ (d)

2πd/2 Γ (d/2− 1)

`2
∗L

d−3

`d−1
P

. (3.219)

Now eq. (3.56) relates this central charge to (ĉ+ ê), the sum of the two CFT parameters

which define the 〈TJJ〉 correlator (3.40). Now for the boundary CFT dual to the Einstein-

Maxwell theory (3.78), this correlator does not take the most general form possible [130, 131],

i.e., ĉ and ê are not independent parameters. Rather one finds that

ĉ = d(d− 2) ê . (3.220)

Combining this constraint with eq. (3.56), we can also evaluate ĉ and ê for our holographic

theory. In particular, we find

ê =
Γ
(
d+2

2

)
2πd/2(d− 1)2

CV =
(d− 2) Γ(d+ 1)

16πd(d− 1)2

`2
∗L

d−3

`d−1
P

(3.221)

and then ĉ follows from eq. (3.220).

Finally, it is convenient to have the central charge CT , which appears in the two-point

correlator of the stress tensor (3.30), for our holographic theory. In this case, the calculation

analogous to that above for the Maxwell field was carried out for the metric in [132]. Hence

we can simply quote the result for CT :

CT =
Γ(d+ 2)

πd/2(d− 1)Γ(d/2)

Ld−1

`d−1
P

. (3.222)
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Phase structure of the Charged Rényi entropies

The goal of Chap. 4 is to discuss the phase structure of the charged Rényi entropies in the

presence of a light charged scalar field in the bulk. The charged hyperbolic black holes can

also become unstable at low temperature and are generally more unstable once charge is

added. Due to the fact that one has additional parameters to tune such as the charge and

mass of the scalar, the entangling chemical potential and n, the phase structure is much

richer. We also connect this work to the subject of holographic superconductors [84, 85].

A CFT with a light charged scalar operator is suppose to have a superconducting phase

transition at finite temperature if the system is put at finite physical chemical potential. In

certain limits, we can learn about the nature of this physical phase transition by studying

the phase structure of the charged Rényi entropies of the ground state.

111



Chapter 4
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b Department of Physics, Harvard University, Cambridge, MA 02138 USA

c Department of Physics, Fudan University, Shanghai, China

112



Abstract

Charged Rényi entropies were recently introduced as a measure of entanglement between

different charge sectors of a theory. We investigate the phase structure of charged Rényi

entropies for CFTs with a light, charged scalar operator. The charged Rényi entropies are

calculated holographically via areas of charged hyperbolic black holes. These black holes

can become unstable to the formation of scalar hair at sufficiently low temperature; this is

the holographic superconducting instability in hyperbolic space. This implies that the Rényi

entropies can be non-analytic in the Rényi parameter n. We find the onset of this instability

as a function of the charge and dimension of the scalar operator. We also comment on

the relation between the phase structure of these entropies and the phase structure of a

holographic superconductor in flat space.

Published in Journal of High Energy Physics 1501, 059 (2015)
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4.1 Introduction

The low energy states of a quantum field theory typically exhibit a high degree of spatial

entanglement. To characterize this entanglement precisely, consider a quantum field theory

in state ρ, with space divided into two parts A∪B. The Rényi entropies Sn are the moments

of the reduced density matrix ρA = TrBρ for subsystem A

Sn =
1

1− n
log Tr[ρnA]. (4.1)

The entanglement entropy SEE is SEE = limn→1 Sn = −TrρA log ρA. These entropies encode

the amount of information stored in correlations between A and B, rather than in A or

B separately. Entanglement entropies have played an important role in condensed matter

physics [37, 35, 133, 47, 48], quantum gravity [45, 49, 72, 73, 134, 38, 39], and quantum

information [135].

In many cases we are interested in theories with a conserved charge Q associated with a

global symmetry, such as particle number. When Q is the integral of a local charge density

one can ask how the entanglement depends on the distribution of charge between A and B.

Very naively, one might expect that the entanglement between A and B should increase as

charge is distributed more and more unequally between A and B. This is because one way

of moving charge (say, particle number) into A from B is to create a particle-antiparticle

pair, placing the particle in region A and the anti-particle in region B; particle-antiparticle

pairs created from the vacuum are naturally entangled, so this process should increase the

entanglement entropy. Of course, whether this naive expectation is true will depend on the

details of the state and the theory.

To address this question we will follow [88] and define the charged Rényi entropy:

Sn(µ) =
1

1− n
log Tr

[
ρA

eµQA

nA(µ)

]n
. (4.2)

The parameter µ is known as an entanglement chemical potential, and QA measures the

amount of charge in subsystem A; it is the integral over A of the local charge density.

nA(µ) ≡ Tr[ρAe
µQA ] is a normalization factor. Applications of charged Rényi entropies
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include the supersymmetric Rényi entropies [94, 136] and the characterization of symmetry

protected topological phases [137].

We emphasize that µ is not the physical chemical potential of the system, but rather is

a formal parameter used to weight the entanglement in different charge sectors. Neverthe-

less, just as thermodynamic entropies can undergo phase transitions as temperatures and

potentials are varied, the entanglement entropies Sn(µ) can undergo phase transitions as

the Rényi parameter n and the entanglement chemical potential µ are varied. These phase

transitions reflect essentially non-analytic features of the spatial entanglement structure of

quantum field theory ground states.

Rényi phase transitions were investigated in [108] in the case µ = 0. The authors con-

sidered large N conformal field theories which are dual to semi-classical Einstein gravity in

Anti-de Sitter space plus matter. When the entangling surface ∂A is a sphere, Sn is related

to the entropy of a black hole with hyperbolic event horizon. They showed that Sn is non-

analytic in n if the dimension ∆ of the lightest scalar operator O in the theory is sufficiently

small. In particular, ∂2
nSn becomes discontinuous at some n = nc, with 1 < nc <∞, if

d− 2

2
< ∆ <

d+
√
d

2
. (4.3)

Here d is the space-time dimensionality of the CFT and the first inequality is the unitarity

bound. The point is that the field φ dual to O will become unstable if the black hole

temperature is sufficiently small. When n < nc, Sn is computed by the entropy of a Einstein

gravity black hole. But when n > nc the Einstein black hole becomes unstable and the scalar

operator gets a non-zero expectation value near the horizon. In this phase the entangling

surface hosts a localized ”impurity” operator with non-vanishing expectation value. We

emphasize that this argument relies crucially on the fact that we are studying theories at

large N .

Similar results have been found in purely QFT analysis [70, 71]. These authors consider

the renormalization group flow of the coupling constants associated to impurity operators

localized on the entangling surface. At a certain value of n, the beta functions for these

couplings change sign and the system undergoes a phase transition. For example, in [70] it
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was argued that the Rényi entropies of the O(N) model are non-analytic at n = 7/4.

One consequence of this is that the replica trick – where one computes SEE by computing

Sn at integer values of n and analytically continuing to n→ 1 – must be treated with care.

However, we emphasize that in the above analysis nc was shown to be always greater than 1,

and approaches 1 only as the dimension ∆ approaches the unitarity bound (at which point

the operator should decouple from the theory). Thus the Rényi entropies are still analytic

in a finite neighbourhood of n = 1. So this result does not invalidate the derivation of the

Ryu-Takayanagi formula by Maldacena and Lewkowycz [66], which relied only on analyticity

near n = 1. Further relations between the Ryu-Takayanagi formula and Rényi entropies at

n 6= 1 were discussed in [79, 81, 138].

In this paper we investigate the phase transitions of charged Rényi entropies. We consider

large N CFTs with global conserved charges that are holographically dual to Einstein-

Maxwell-Scalar theory in AdS. We will be interested in the charged Rényi entropies of the

ground state for spherical entangling surfaces; these Rényi entropies can be computed by

studying the CFT in hyperbolic space at finite temperature and charge density [67, 88]. In

the bulk, the dual states are charged AdS black holes with hyperbolic event horizons [68, 88].

We will therefore study the phase structure of charged, hyperbolic black holes in AdS.

In particular, we will consider instabilities where a charged scalar field – dual to a CFT

operator with global charge q – condenses near the horizon. In this paper, we will find that

charged entropies Sn(µ) will be non-analytic as we vary n and µ, provided the conformal

dimension of the charged operator lies between

d− 2

2
< ∆c(q) <

1

2

(
d+

√
d+

8(d− 2)q2µ2

8π2R2 + (d− 2)µ2

)
. (4.4)

The setup is very similar to that used in the study of holographic superconductors [84, 85,

139], the only difference being that space is hyperbolic. The qualitative features of these

instabilities are similar to those in flat space. In particular, the high temperature and large

chemical potential behaviour is identical to that of the flat-space holographic superconductor;

in these limits the curvature of the hyperbolic spatial slice is irrelevant. Thus, even though

the charged Rényi entropies under consideration probe only properties of the ground state,
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they contain information about the phase structure of physical thermodynamic quantities at

finite temperature. This echoes the results of [36, 140], that entanglement entropies of the

ground state can be used to study phase transitions of the theory involving higher excited

states.

In Section 4.2, we review the relationship between the reduced density matrix for spherical

entangling surfaces and thermal density matrices in hyperbolic space. In section 4.3 we relate

this to black hole entropy using AdS/CFT, and describe the phase transition using both

analytic and numerical techniques. We compute the critical Rényi parameter nc numerically

using a shooting method. In Section 4.4, we discuss these results and relate them to the

phase structure of the holographic superconductor in certain limits.

4.2 From entanglement entropy to thermal entropy

In a relativistic theory, an observer undergoing constant acceleration has causal access only

to part of the space-time, known as the Rindler wedge, which is separated from the rest

of the space-time by an event horizon. This Rindler wedge is the causal development of

half-space, and a Rindler observer is in a thermal state due to the Unruh effect. From this

one concludes that the reduced density matrix associated with the half-space is just the

thermal density matrix on Rindler space [45]. In a conformal theory, this can be generalized

to relate the reduced density matrix for a spherical region and the thermal density matrix

on a hyperbolic space [67, 68]. We will now review this argument.

Consider a quantum field on a d-dimensional flat space in Euclidean signature

ds2
Rd = dt2E + dr2 + r2dΩ2

d−2 (4.5)

where tE is the Euclidean time, dΩd−2 is the volume element of a unit sphere, and r is the

radial coordinate. We are interested in the reduced density matrix of the d− 1 dimensional

ball of radius R centered at the origin. To compute this, we use the fact that flat space

metric is conformal to S1 ×Hd−1:

ds2
Rd = Ω−2ds2

S1×Hd = Ω−2(dτ 2
E +R2(du2 + sinh2 udΩ2

d−2)) (4.6)
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where

Ω =
∣∣∣1 + cosh

(
u+ i

τE
R

)∣∣∣ . (4.7)

and the S1 ×Hd−1 coordinates (τE, u) are defined by

exp
[
−
(
u+ i

τE
R

)]
=
R− (r + itE)

R + (r + itE)
. (4.8)

This conformal map has two important features. First, the τE = 0 slice of the S1 × Hd−1

geometry covers only the interior of the ball (tE = 0, r = R); the entangling surface at

(tE = 0, r = R) has been mapped to the boundary of the hyperbolic space u → ∞. In

Lorentzian signature (taking τE = iτ), this coordinate patch would cover only the interior

of the Causal region associated with the ball (t = 0, r < R). Second, from (4.8) we see that

Euclidean time coordinate τE is periodic with period 2πR. Putting this together, we see that

the reduced density matrix is (up to a unitary transformation which does not enter into the

trace)

ρ =
1

Z1

e−2πRHE (4.9)

Here HE = i ∂
∂τE

is the Hamiltonian which generates translations in τ and Z1 is a normal-

ization factor. Thus the reduced density matrix for a spherical region of radius R is equiv-

alent to the thermal density matrix on a hyperbolic space with radius R and temperature

T0 = 1/2πR. From this, one can show that the Rényi entropy (4.1) is

Sn =
1

n− 1
(n logZ1 − logZn), (4.10)

where Zn is the thermal partition function of the hyperbolic space at T = T0/n.

In a theory with a global conserved charge Q, one can generalize (4.9) to

ρµ =
e−HE/T0+µQ

Z(T0, µ)
. (4.11)

where Z(T, µ) is a partition function evaluated at temperature T and chemical potential µ.

The operator Q measures the charge on hyperbolic space Hd−1, which – from the conformal
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transformations above – simply measures the amount of charge in region A. So (4.11) is the

generalized reduced density matrix introduced in (4.2).

Note that µ can be interpreted as the time component of a background gauge field Bµ

which couples to the charge density, via BτE = µ/2πR 1

µ =

∮
B =

∫ 2πR

0

BτEdτE . (4.12)

Since the τE circle shrinks to zero at the entangling surface, this chemical potential introduces

a magnetic flux localized at the entangling surface [88]. The charged Rényi entropies

Sn(µ) =
1

1− n
log

Z(T0/n, µ)

Z(T0, µ)n
. (4.13)

measure the entanglement in the (flat space, zero charge density) ground state of a theory,

weighted by the charge contained in region A. In fact, using the thermodynamic identity

Stherm(T, µ) = − ∂F (T, µ)

∂T

∣∣∣∣
µ

=
∂

∂T
(T logZ(T, µ))

∣∣
µ
. (4.14)

this can be written in terms of the standard grand canonical ensemble thermal entropy

Stherm(T, µ):

Sn(µ) =
n

n− 1

1

T0

∫ T0

T0/n

Stherm(T, µ) dT . (4.15)

Finally, it is important to mention the cut-off dependence of the Rényi entropy. The Rényi

entropy, as well as the entanglement entropy, are divergent quantities unless we set a UV

cut-off near the entangling surface. On the other hand, the thermal entropy on hyperbolic

space is a divergent quantity as the volume of the hyperboloid is infinite; we must set an IR

cut-off near the boundary of hyperbolic space2. In fact, these divergences are identical: they

can be mapped into one another by the conformal transformation (4.6). We refer the reader

to [67] for more details.

1We denote this background gauge field B to avoid confusion with the bulk dynamical A of the next

section.
2For holographic theories, the black hole entropy of a hyperbolic horizon is also a divergent quantity and

requires an IR cut-off near the boundary of AdS space.

119



4.3 Holographic computations

In this section we calculate charged Rényi entropies for large N CFTs which are dual to

semi-classical Einstein gravity coupled to matter in AdS space. In this case Stherm(T, µ) is

the entropy of a black hole entropy in the bulk with hyperbolic event horizon [67, 68]. The

global conserved current of the boundary theory acts as a source for a bulk gauge field. We

will also assume the existence of a scalar operator in the boundary theory, with dimension

∆ and charge q, which is dual to a charged scalar field in the bulk. We are therefore looking

for charged black holes with hyperbolic event horizons in Einstein-Maxwell-Scalar theory.

These solutions are dual to the grand canonical ensemble of the boundary CFT on R×Hd−1.

We first describe the Einstein-Maxwell solutions and give the Rényi entropies when there is

no scalar condensate. We then look for scalar instabilities for the Einstein-Maxwell black

hole at the linearized level. We perform an analytic analysis of the extremal black hole,

and show that instabilities do occur in this case. We then solve the Klein-Gordon equation

for the scalar in the non-extremal case, using a numerical shooting method starting from

the horizon. This allows us to determine the location of the phase transition in Sn(µ) as a

function of ∆ and q. We focus here on 3-dimensional CFT but a similar phase transition

will occur in any dimension d ≥ 3.

4.3.1 Neutral black holes and scalar instability

Before discussing the charged Rényi entropies and the related charged hyperbolic black holes,

we review a few result concerning uncharged black holes. When the entangling chemical

potential vanishes, the dual gravitational solutions are hyperbolic black holes

ds2 = −f(r)
L2

R2
dτ 2 +

dr2

f(r)
+ r2 dH2

2 , (4.16)

where dH2
2 = du2 + sinh2u dφ2 is the metric on H2 with unit curvature and

f(r) =
r2

L2
− 1− M

r
(4.17)

In the entanglement entropy limit n → 1, we recover the massless hyperbolic black hole,

which is AdS4 in Rindler coordinates. To compute the Rényi entropies, we integrate over a
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range of temperatures (4.15). As n increases, the integral includes lower and lower temper-

atures.

We now consider a scalar field in the bulk of negative mass-squared, which is dual to an

operator of dimension ∆ < 3 in the boundary CFT. In this case the black hole may become

unstable at a certain temperature Tc (or equivalently at a certain nc) at which the black

hole undergoes a second order phase transition. This was shown in [108], although in earlier

work the authors of [83] noted a similar instability for topological black holes with compact

horizon (see also [141]). This effect can be understood as follows. In the extremal limit these

black holes have a AdS2 × H2 near horizon geometry. Scalar fields with masses below the

effective Breitenlohner-Freedman bound for the near-horizon AdS2 (suitably corrected for

the H2 factor) will become unstable at low temperatures. We emphasize that this happens

for uncharged black holes; for AdS black holes with flat or spherical horizons, such instabil-

ities occur only at finite chemical potential. When the scalar field is below this bound the

black hole becomes unstable and will decay to a black hole solution with scalar hair. The

corresponding boundary operator acquires a non-zero expectation value.

This instability implies that Sn has a phase transition as a function of n. The Rényi

entropies are obtained from the thermal entropies by integrating once so ∂2
nSn will become

discontinuous at some critical Rényi parameter nc. In order to determine the precise value

of nc at which this transition occurs, it is necessary to study numerically the scalar wave

equation in the black hole background. The results of [108] (see also [70, 71]) show that

nc > 1 as long ∆ is above the unitarity bound. In particular, if we compute the entanglement

entropy by taking n → 1 then Sn is given by the Einstein black hole with vanishing scalar

field. We will see that this is no longer the case for charged Rényi entropies: when µ 6= 0, it

is possible for nc to be less than one.
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4.3.2 Charged black hole

The Einstein-Maxwell-Scalar action with a negative cosmological constant is3

IE−M =
1

2`2
P

∫
d4x
√
−g
(

6

L2
+R− `2

∗
4
FµνF

µν − V (|φ|)− 1

2
|∇φ− iqAφ|2

)
. (4.18)

We will take the potential to be a mass term V (|φ|) = 1
2
m2|φ|2 which, together with boundary

conditions, fixes the conformal dimension ∆ of the dual CFT operator. We first consider

charged hyperbolic black hole solutions with vanishing scalar field. The metric is

ds2 = −f(r)
L2

R2
dτ 2 +

dr2

f(r)
+ r2 dH2

2 , (4.19)

with

f(r) =
r2

L2
− 1− M

r
+
ρ2

r2
(4.20)

The time coordinate is normalized so that the boundary metric naturally is flat space in

Milne coordinates: ds2
CFT = −dτ 2 +R2dH2

2 [67]. The bulk gauge field is

A =

(
2Lρ

R`∗ r
− µ

2πR

)
dτ . (4.21)

We will chose our gauge so that A vanishes at the horizon r = rH , so that

µ = 4π
Lρ

`∗rH
. (4.22)

The mass parameter M is related to the horizon radius rH by

M =
rH
L2

(r2
H − L2) +

ρ2

rH
. (4.23)

We can rewrite f(r) in terms of the horizon radius rH and the chemical potential µ as

f(r) =
(r − rH)(16π2r(r2 − L2 + rrH + r2

H)− rH(`∗µ)2)

16π2L2r2
. (4.24)

The temperature of this black hole is

T =
T0

2
Lf ′(rH) =

T0

2

[
3
rH
L
− L

rH

(
1 +

(
µ `∗
4πL

)2
)]

(4.25)

3The scale `∗ depends on the details of the theory. With this notation, the 4-dimensional gauge coupling

is g 2
4 = 2`2P/`

2
∗.
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where T0 = 1/2π and prime denotes differentiation with respect to r. The thermal entropy

of the black hole is given by the Bekenstein-Hawking formula:

Stherm =
2π

`2
P

VΣ r
2
H , (4.26)

where VΣ denotes the (appropriately regulated) volume of H2. As noted above, the large-

volume divergence of VΣ is related to a UV divergence in the boundary theory [68]. In

particular, VΣ can be regarded as a function of R/δ, the ratio of the radius of the entangling

sphere to the short-distance cut-off in the boundary theory. The leading term is

VΣ ' 2π
R

δ
+ · · · , (4.27)

Hence the corresponding Rényi entropies begin with an area law contribution. When there is

no scalar condensate, the charged Rényi entropies can be computed from (4.26) and (4.15):

Sn(µ) = πVΣ

(
L

`P

)2
n

n− 1

[(
1 +

1

4

(
µ`∗
2πL

)2
)

(x1 − xn) + x3
1 − x3

n

]
(4.28)

with

xn =
1

3n
+

√
1

9n2
+

1

3
+

1

12

(
µ`∗
2πL

)2

. (4.29)

4.3.3 Scalar instabilities

The Einstein-Maxwell black holes described above may become unstable at sufficiently low

temperature in the presence of a scalar field. We will find the onset of the instability by

solving the wave equation for the scalar on the black hole background. The endpoint of

the instability will be a hairy black hole with a non-zero scalar field in the vicinity of the

horizon. Thus there will be more than one classical gravitational solution that satisfies the

same boundary conditions. We should then compare free energies of these saddle point

configurations and determine which one is thermodynamically preferable. In general, we

expect that the dynamically stable saddle point is thermodynamically preferred [142, 143];

indeed, in the holographic superconductor [85] and the constant mode analysis [108] scalar
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condensate phases were found to be thermodynamically preferable. We expect that in the

present case the dynamical instability analysis will agree with the thermodynamical analysis

as well.

We note that the instability involves a scalar field which is not constant on H2, as the

constant mode on H2 is non-normalizable. Thus the hairy black hole will not have the full

hyperbolic symmetry of the Einstein-Maxwell black hole, making its explicit construction

a technically difficult task. We will therefore leave the construction of hairy black hole

solutions to future work; in the present paper we simply demonstrate that the black holes

are unstable and find the onset of the instability.

To find the instability, we must study the Klein-Gordon equation for a charged (complex)

scalar Φ on the black hole background:

(
(∇µ − iqAµ)(∇µ − iqAµ)−m2

)
Φ = 0 . (4.30)

It is convenient to decompose the field in eigenfunctions of the Laplacian on H2:

Φ =
φ(r)eωτY (σ)

r
(4.31)

where ∇2
H2
Y = −λY . For a normalizable mode on H2, λ > 1/4. The wave equation reduces

to: (
−
(
f(r)

d

dr

)2

+ V (r)

)
φ(r) = 0 (4.32)

with

V (r) =
f(r)

r2

(
λ+ rf ′(r) + r2m2

)
+ (ω + iqAτ )

2 (4.33)

It is convenient to put equation (4.34) in Schrodinger form, by defining the tortoise coordi-

nates r∗ by dr∗ = dr/f(r), so that(
−
(
d

dr∗

)2

+ V (r∗)

)
φ(r∗) = 0 (4.34)

An unstable mode corresponds to a solution of this equation with Reω > 0. We note

that when q = 0, (4.34) is just a one dimension Schrodinger equation with potential V (r),
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although in general V (r) will be complex. We are interested in finding the onset of this

classical instability, i.e. we seek a solution with Re(ω) = 0.

Before performing the numerical analysis of the black hole stability, we can understand

analytically when the black hole should become unstable. In the zero temperature limit, the

black hole (4.19) has an AdS2 ×H2 near horizon geometry. The AdS2 and H2 radii are

L2
AdS2

=
2L2

AdS4

f ′′(rext)
L2
H2

= r2
ext (4.35)

where rext is the horizon radius of the extremal black hole. In addition, there is a constant

electric flux on the near horizon AdS2:

F = − µ

2πRrext
dvolAdS2 (4.36)

In the near horizon region, one can therefore approximate the wave equation (4.34) by[
−
(
ε2f ′′(rext)

2
∂ε

)2

+ ε2
f ′′(rext)

2r2
ext

(λ+ r2
extm

2) +

(
ω − iε qµ

2πRrext

)2
]
φ(ε) = 0 (4.37)

where ε is the near-horizon radial coordinate r = rext + ε. The solutions to (4.37) can be

found analytically, and one can then determine exactly when an instability occurs. In fact,

it is not necessary to even solve (4.37) explicitly to see the instability. We can simply note

that near the asymptotic boundary of the near-horizon AdS2 × H2, solutions to (4.37) will

behave as φ(ε) ∼ ε−∆eff , where

∆eff = 1/2 +
√
m2
effL

2
AdS2

+ 1/2, m2
eff =

f ′′(rext)

2r2
ext

(λ+ r2
extm

2)− q2µ2

4π2R2r2
ext

. (4.38)

Thus φ behaves like a field of mass-squared m2
eff in the near-horizon AdS2. The black hole

will become unstable when the effective mass-squared falls below the AdS2 Breitenlohner-

Freedman bound, m2
effL

2
AdS2

< −1/4, i.e. when ∆eff becomes complex.

We conclude that an instability will occur when

m2L2
AdS4

< −f
′′(rext)

8
− 1

4r2
ext

+
2q2µ2

4π2R2r2
extf

′′(rext)
. (4.39)

The first term on the right hand side is the naive AdS2 BF bound. The second term is a

correction term coming from the fact that the lowest eigenvalue of a normalizable mode on
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H2 has λ = 1/4; this effect makes the scalar more stable. The final term is a correction term

coming from the charge coupling q2AµA
µ; this effect makes the scalar more unstable. Using

the form of the black hole metric, we expect instabilities when

−9

4
< m2L2

AdS4
< −3

2
+

2q2µ2

8π2R2 + µ2
(4.40)

The first inequality is the usual BF bound in AdS4.

It is straightforward to generalize this to arbitrary dimension (we will omit the details

for the sake of brevity). In general, we find an instability when

−d
2

4
< m2L2

AdSd+1
< −d(d− 1)

4
+

2(d− 2)q2µ2

8π2R2 + (d− 2)µ2
. (4.41)

In terms of conformal dimension of dual operators, this gives

∆ <
1

2

(
d+

√
d+

8(d− 2)q2µ2

8π2R2 + (d− 2)µ2

)
≡ ∆c(q) (4.42)

We will now study the stability of the charged hyperbolic black holes by numerically

solving the scalar wave equation4. Normalizability of the modes requires the field to be

regular at the horizon; we can expand perturbatively for the field near the horizon. We then

use a shooting method to obtain desired boundary conditions near the boundary of AdS4,

namely

Φ(r)|r→∞ ∝ r−∆ (4.43)

In Fig. 4.1, we show the results. We show the critical value of the Rényi parameter nc at

which the phase transition occurs, as a function of µ and q for ∆ = 2. We see that increasing

the charge makes the configuration less stable for any µ 6= 0. For large enough q, increasing

µ also renders the black hole less stable. However, for a neutral scalar, as we increase µ we

make the black hole first more stable until some maximum value after which nc decreases

again. We will return to discuss this non-monotonic behaviour in the next section.

In Fig. 4.2, we show the value of nc for µ = 5, varying ∆ and q. As expected, we see

that decreasing ∆ or increasing q makes the configuration less stable. From this graph, we

4For the remainder of this section we set L = R = `∗ = 1
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Figure 4.1: log nc as a function of µ and q for ∆ = 2. Every configuration above this surface

is unstable.

can determine the critical value ∆c (for a given q) at which the instability kicks in. In Fig.

4.3, we plot the curves ∆(q) for different values of nc and show that the curves approach the

analytic value derived in (4.41) as nc →∞. This confirms the effective mass analysis given

above.

In Fig. 4.4, we show the critical chemical potential µc as a function of (∆,q) with

nc = 1. We see that, even when n = 1, it is possible for the Einstein-Maxwell black hole

to be unstable. When µ > µc, the scalar condenses even though the only remaining defect

inserted at the entangling surface is a Wilson line. As we increase q and/or decrease ∆, µc

decreases. We note, however, that µ = 0 is always stable as long as ∆ is above the unitarity

bound, ∆ > 1/2.
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Figure 4.2: The graph of log nc as we vary q and ∆ for µ = 5. Every configuration above

this surface is unstable.

4.4 Discussion

We have shown that the hyperbolic charged black hole can become unstable, and investigated

the onset of the instability as we vary n, µ and ∆. We now comment on our results. First, we

note that for an uncharged scalar (q = 0), the black hole can be unstable for sufficiently small

scalar mass. This is not surprising; for µ 6= 0 this was already noticed in the holographic

superconductor [85] for black holes with flat horizons. However, we have seen that for

hyperbolic black holes increasing the chemical potential first renders the solution more stable

until we reach a peak of stability. Beyond that point, increasing µ renders the black holes

more unstable as can be seen in Fig. 4.6. This is in contrast with flat black holes, where no

condensation can occur for µ = 0.

In addition to the numerical method used above, one can also use a WKB method to
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Figure 4.3: The graph of ∆ as we vary q for µ = 5 and different values of log n. As we

increase n, we get closer and closer to the analytical estimate ∆c(q).

determine when instabilities exist and to approximate the unstable modes. We will study this

in the q = 0 case, and use the WKB analysis to confirm the surprising behaviour described

above. The number of bound states of the Schrodinger potential V (r∗) can be estimated

using the WKB integral:

Nbound states =

∫ √
−V (r∗)dr∗ =

∫ r0

rh

√
−V (r)

f(r)
dr (4.44)

where we integrate from the horizon r = rh up to the zero of the potential V (r0) = 0, with

r0 > rh. The instability appears when Nbound states ∼ 1. Keeping the temperature fixed and

increasing µ, we find Nbound states first decreases and then increases again as we increase µ.

We plot of
∫ √
−V (r∗)dr∗ against µ at ∆ = 2 at 10 different temperatures in Fig. 4.5 below.

One can see that for a given n it decreases with µ before increasing again for sufficiently

large µ, signifying that the system is more stable as µ increases at small µ, but the trend

is reversed for larger values of µ. As a note of caution however, we emphasize that – in the

absence of any small perturbative parameter – this WKB approximation should at best be
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Figure 4.4: The graph of µc as we vary q and ∆ at nc = 1. Every configuration above this

surface is unstable.

taken with a grain of salt, although it does reproduce the qualitative features of the numerics.

Next, we would like to comment on the large µ limit of the charged Rényi entropies.

When µ becomes larger than any other scale in the problem, the critical temperature should

be proportional to µ. One should note however, that the ratio T/µ remains small even in

the scaling regime, meaning that the black hole continues to stay close to extremality, an

observation also noted in the flatly sliced AdS charged black holes [85]. This is indeed the

case as can be seen in Fig. 4.6.

It is interesting to compare the critical temperature5 of the charged hyperbolic black hole

with that of its flat counterpart – the flat holographic superconductor at finite (physical)

chemical potential µ. We find a perfect match for large µ; this is to be expected, since when

µ/R� 1/L the curvature of the horizon is small compared to the scale set by the chemical

potential. This can be seen in Fig. 4.6 as well. We note that, although the gravitational

5We will actually compare nc = 1/2πTc.
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Figure 4.5: Plots of
∫ r0
rh

√
−V (r)/f(r)dr against µ at ∆ = 2 at 10 different temperatures.

computations for flat and hyperbolic black holes are quite similar, these quantities have very

different CFT interpretations. In particular, we see that one can extract information about

physical phase transitions at finite chemical potentials and temperatures (which naturally

involve higher excited states) solely by considering the entanglement of the ground state.

We should comment on the difference between these two phase transitions from the CFT

perspective. The superconductor lives on an infinite flat plane and boundary effects do not

play any important role. However, boundary effects at the entangling surface are crucial

in the phase transitions of the neutral Rényi entropies, as explained in [70]. In the phase

transitions of the charged Rényi entropies, there is a qualitative difference between the neu-

tral and the charged scalar operators. As in the case of the neutral Rényi entropies, neutral

operators can be hosted on the entangling surface without breaking the U(1) symmetry. Be-
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Figure 4.6: The graph of log nc as we vary µ for q = 0 and ∆ = 2. The blue line represents

the critical Rényi parameter and the red line represents the critical temperature for the field

theory on flat space with physical chemical potential µ.

low the critical temperature, these localized operators induce the phase transitions. There is

another instability, which is caused by the entanglement chemical potential term coupling to

the entire subsystem. As in the case of the superconductors, this instability causes the scalar

to condense as well6. These two effects may in principle compete or amplify one another.

On the other hand, charged operators cannot be hosted on the entangling surface unless the

U(1) symmetry is spontaneously broken. Therefore, it is the entanglement chemical poten-

tial effect that causes the phase transition. This could explain the qualitative difference in

the phase transitions between the q = 0 case and the q 6= 0 case (as shown in Fig.4.1). This

would be interesting to investigate from the field theory point of view.

6Neutral scalars may condense if the conformal dimension is small enough

132



Let us comment also on the n = 1 limit. When n = 1 and µ = 0 the conical defect

operator disappears and we obtain the entanglement entropy. On the other hand, if µ is

non-vanishing, then even as n→ 1 a defect operator – the Wilson line – remains. So a phase

transition could occur even at n ≤ 1. One might worry that a phase transition precisely at

n = 1 would make it impossible to compute entanglement entropies as a limit of the charged

Rényi entropies. However, since ∂Sn
∂n

is still continuous (only ∂2Sn
∂n2 is discontinuous) the Rényi

entropies are still smooth enough to give unique and well-defined entanglement entropies as

n→ 1.

We note also that the Wilson line couples to the global current, so at first sight one

might expect it not to effect uncharged operators. We have seen, however, that this is not

the case. While uncharged operators do not directly couple to the Wilson line, they still

experience its presence indirectly via couplings to other charged operators. This is manifested

holographically by the fact that even neutral scalar fields in the bulk can detect changes in

µ at fixed temperature indirectly, via the µ dependence of the metric.

One can also extract information about the largest eigenvalue of the charged reduced

density matrix (4.11) by considering the limit n → ∞. From the definition of the Rényi

entropy (4.2), one can compute the eigenvalues of the charged reduced density matrix (4.11)

once we know the Rényi entropy as a function of the Rényi parameter n;

exp((1− n)Sn) =

∫ λ1

0

dλ d(λ)λn (4.45)

where λ is the eigenvalue and d(λ) is the spectral density. λ1 is the largest eigenvalue. In

general, d(λ) contains delta functions. In fact, if the Rényi entropy decays polynomially as

n→∞, one can show that the spectral function take the following form

d(λ) = δ(λ− λ1)h1(λ) + Θ(λ− λ1)h2(λ), (4.46)

where h1 and h2 are some functions of λ and Θ(λ−λ1) is the Heaviside step function. There

is a simple relation between the largest eigenvalue λ1 and the n → ∞ limit of the Rényi

entropy (called the min-entropy)

S∞ = − log λ1. (4.47)
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Below the critical temperature (when n > nc) the scalar field acquires a non-zero expectation

value. These hairy black holes have smaller thermal entropy than that of non-hairy black

holes of the same temperature and chemical potential. Since the Rényi entropy is given by

the integral of the thermal entropy (4.15), this means that the min-entropy S∞ is always

smaller than that of Einstein-Maxwell black hole

S∞(Einstein-Maxwell) > S∞(Einstein-Maxwell-Scalar) (4.48)

Moreover, the critical temperature increases as one decreases the conformal dimension ∆.

Therefore, as observed in [108],

dS∞(µ,∆)

d∆
> 0. (4.49)

The main difference between the neutral case [108] and the charged case is that (4.49) is

a strict inequality even in the case of nc ≤ 1, while the neutral case is not. Therefore

S∞(µ,∆) is a monotonic function of ∆. The entanglement chemical potential dependence

of the min-entropy is

dS∞(q 6= 0,∆)

dµ
< 0. (4.50)

We close by recalling that the chemical potential in hyperbolic space can be interpreted

as the insertion of a background Wilson line. The insertion of the Wilson line in the imag-

inary time direction has opposite orientation when viewed from region A as opposed to its

complement B. At the same time, the ground state satisfies Sn(A) = Sn(B), for all n, since

the reduced density matrices of A and B have the same eigenvalues. Thus

Sn(µ,A) = Sn(−µ,B). (4.51)

In a theory with charge conjugation invariance, this would additionally imply that Sn(µ,A) =

Sn(−µ,A), i.e. that the charged Rényi entropy is an even function of µ. This is, in particular,

clearly true in the case of holographic dual of Einstein-Maxwell theory.
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Chapter 5

Discussion

In this thesis, we have discussed the analytic properties of Rényi entropies in a holographic

context and showed that phase transitions in gravity translate into certain non-analyticity

of the Rényi entropies in n. This addresses potential issues in the use of the replica trick

and should be taken at the very least as a sign of caution in the general assumption that

Rényi entropies are analytic in n. It would be interesting to understand more precisely the

nature of the phase transition which is the object of some on-going work [144] as well as

understand whether 1/N corrections render the transition smooth as in [145]. It would also

be very interesting to reproduce these results from a boundary field theory calculation.

We have also introduced a new measure of entanglement that measures entanglement

between different charge sectors of a theory. These charged Rényi entropies can be computed

in free field theories and in strongly coupled CFTs that have a holographic dual. In the

presence of a light (un)charged scalar field in the bulk, we have discussed the interesting

phase structure of charged Rényi entropies as we vary the different parameters of the scalar

and the entanglement chemical potential. We have used these measures of entanglement to

learn about physical phase transition of systems behaving like holographic superconductors.

It would be interesting to understand if one can interpret charge Rényi entropies as an

entanglement of some excited state or not [146] and if so, what features does that state

exhibit. It would also be very interesting to understand if one can use charged Rényi entropies
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to determine Maxwell’s equation in the bulk along the lines of [64, 65].
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