
 

M

 

 

 

 

 

 

__
A th

 

 

Micro/N

 

__________
hesis submitt

Nano-Sc

P

Moha

Departmen

___________
ted to McGi

© Moh

cale Lig

Photoni

ammad Ha

nt of Electric
Faculty

McG
M

Jan

__________
ll University
degree of D

hammad Had

 

 

ght Sou

ics on S

 

adi Tavako

 

 
 
 

cal and Com
y of Engineer
Gill Universit

Montreal 
 

 

nuary 2015

___________
y in partial fu

Doctor of Phi
 

di Tavakoli D

urces fo

Silicon 

oli Dastjer

mputer Engin
ring 
ty 

__________
fulfillment of
ilosophy 

Dastjerdi 20

or Integ

rdi 

neering 

___________
f the requirem

015  

grated 

________ 
ments of thee 



 

 

 

To my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

i 

 

Table of Contents 

Table of Contents ..................................................................................................... i 
List of Figures ........................................................................................................ iii 
List of Tables ........................................................................................................ vii 
List of Acronyms ................................................................................................. viii 
Abstract ....................................................................................................................x 
Abrégé .................................................................................................................... xi 
Contribution of Authors ....................................................................................... xiv 
Chapter 1. Introduction ........................................................................................1 

1.1 Optical Interconnects ...................................................................................3 
1.2 Rolled-up Microtubes ..................................................................................4 

1.2.1 Fabrication Principles of Rolled-up Semiconductor Tubes .................4 
1.2.2 Transfer of Rolled-up Tube Structures ................................................7 
1.2.3 Optical Characteristics and Control of the Optical 
            Resonance Modes ................................................................................8 

1.3 FDTD Analysis of Rolled-up Tubes and Dielectricl Planar Waveuide  
        Model    ..…………………………………………………………………12 
1.4 Recent Developments of Microtube-Based Devices .................................14 

1.4.1 Biosensors ..........................................................................................14 
1.4.2 Optical Communications ...................................................................15 
1.4.3 Other Applications .............................................................................15 

1.5 Ultraviolet LEDs ........................................................................................16 
1.5.1 Nanowire LEDs .................................................................................17 

1.6 Organization of the Thesis .........................................................................18 
Chapter 2. Optically-Pumped Quantum Dot/Dash Tube Lasers at Telecom 
Wavelength ...........................................................................................................20 

2.1 Introduction ................................................................................................20 
2.2 InAs/InGaAsP Quantum Dot Tube Lasers at 80 K ....................................20 

2.2.1 Device Design and Fabrication Procedure .........................................20 
2.2.2 Photoluminescence Studies and Discussions .....................................23 

2.3 InAs/InGaAsP Quantum Dash Tube Lasers at Room Temperature ..........27 
2.3.1 Fabrication Procedure and Optimization ...........................................27 
2.3.2 Photoluminescence Studies and Discussions .....................................30 

2.4 Conclusion .................................................................................................34 
Chapter 3. InAs/GaAs Rolled-up Quantum Dot Tube Infrared Photodetector 
Devices…… ...........................................................................................................35 

3.1 Introduction ................................................................................................35 
3.2 Device Design and Fabrication Procedure .................................................36 
3.3 Measurement Results and Discussion ........................................................38 
3.4 Conclusion .................................................................................................41 



 

ii 

 

Chapter 4. Electrically Injected InP/InGaAsP Quantum Well Tube Lasers at 
Telecom Wavelength ............................................................................................42 

4.1 Introduction ................................................................................................42 
4.2 InxGa1-xAs Quantum Well Heterostructure Design ...................................43 
4.3 Fabrication Procedure ................................................................................45 
4.4 Electroluminescence Results and Discussion ............................................48 
4.5 Conclusion .................................................................................................53 

Chapter 5. Deep Ultraviolet AlN Nanowire LEDs ...........................................54 
5.1 Introduction ................................................................................................54 
5.2 AlN nanowire LEDs ..................................................................................55 

5.2.1 Growth of Nanowire LEDs ................................................................55 
5.2.2 Fabrication Procedure and Characterization ......................................56 

5.3 Passivation Polymer Material for UV Nanowire LEDs .............................59 
5.4 Conclusion .................................................................................................62 

Chapter 6. Conclusions and Future Works ......................................................63 
6.1 Conclusions ................................................................................................63 
6.2 Future Works .............................................................................................65 

6.2.1 SiOx Rolled-up Microtubes ...............................................................65 
6.2.2 III-N Rolled-up Tubes ........................................................................68 
6.2.3 Incorporation of Other Active Materials for Microtube Light  
            Sources ...............................................................................................69  
6.2.4    Room temperature electrcially injected rolled-up Lasers and 
            Photodetectors……………………………………………….……...72 

Bibliography .......................................................................................................   74 
 
 

 

 

 

 

 

 



 

iii 

 

List of Figures 

Figure 1.1 Illustration of the rolling mechanism for a strained InAs/GaAs bilayer 
membrane [29] .................................................................................................................... 5 
 
Figure 1.2 Illustration of the fabrication of free-standing semiconductor tube optical 
cavities. (a) Lithographically defined U-shaped mesa. (b) Rolled-up tube resulting from 
the sacrificial etching and release of the U-shaped mesa. (c) Optical microscopy image of 
a rolled-up InGaAsP tube. ................................................................................................... 6 
 
Figure 1.3 (a) Schematic illustration of the transfer method with the use of abruptly 
tapered optical fibers. (b) Optical microscopy image of a semiconductor tube on the tip of 
an abrupt fiber taper. Inset: Scanning electron microscopy image of the transition 
between the glass fiber and the tube [50]. ........................................................................... 8 
 
Figure 1.4 (a) Illustration of the spiral geometry of a rolled-up tube, showing the presence 
of inner and outer notches. (b) SEM image of the free-standing part of a tube device 
showing the presence of surface corrugations for axial mode confinement. ...................... 9 
 
Figure 1.5 (a) Photoluminescence spectrum of a microtube with an average wall 
thickness of ~100 nm. The corresponding mode numbers are identified. Shown in the 
inset are the optical microscopy image of the lithographically defined U-shaped mesa and 
schematic of the electric field of the first few axial modes. (b) Photoluminescence 
spectrum of a microtube with a wall thickness of ~50 nm shown with the corresponding 
mode numbers. Shown in the inset are the optical microscopy image of the U-shaped 
mesa and schematic of the electric field of the first few axial modes. The scale bar 
corresponds to a length of 50 µm in both (a) and (b) [60]. ............................................... 11 
 
Figure 1.6 (a) Calculated resonance mode distribution of a tube cavity using a two-
dimensional finite-difference time-domain algorithm. (b) Calculated electric field 
distribution, plotted using a linear color scale to emphasize the field confinement. The 
black arrow marks the position of the inner rolling edge. Inset: Detail of the marked 
square, using a modified color scale to emphasize the directional emission pattern [50]. 12 
 
Figure 1.7 Cross-section of a tube structure showing different wall thicknesses with inner 
and outer notches in the structure ..................................................................................... 14 
 
Figure 1.8 The epitaxial growth of (a) epilayer, and (b) nanowire structure. Due to the 
lattice mismatched substrate, the epilayer experiences severe strain. However, due to the 
lateral stress relaxation, stress is properly accommodated in nanowire structure. ........... 18 
 
Figure 2.1 (a) Schematic illustration of InAs/InGaAsP quantum dot heterostructures 
grown on InP substrate. (b) Illustration of the U-shaped mesa defined to obtain free-



 

iv 

 

standing tubes. The starting edge, rolling direction, and stopping edge defined by a 
photoresist layer are also shown. (c) Schematic illustration of a free-standing quantum 
dot tube structure............................................................................................................... 22 
 
Figure 2.2 (a) Optical microscopy image of a rolled-up tube. (b) Scanning electron 
microscopy image showing a detailed view of the surface modifications [94]. ............... 23 
 
Figure 2.3 PL spectra of a tube device measured at 82 K. The lower (weaker) spectrum 
corresponds to a small incident pump power of 180 nW, while the upper (stronger) one 
was measured at a high incident pump power of 5.6 µW. The lower intensity spectrum 
has been multiplied by 10 to improve its visibility. The dashed line represents the 
spectrum (multiplied 75 times, for better visibility) of an as-grown quantum dot 
heterostructure measured at the same temperature for reference [94]. ............................. 24 
 
Figure 2.4 Light-light curve (circles) for modes (22,1) (circles) and (22,4) (squares) in 
Fig. 3.3. Mode (22,1) shows a lasing threshold of 1.26 µW pump power. The dashed lines 
are a guide to estimate the threshold power. Mode (22,4) shows no threshold behavior. 
The background emission extracted from the box in Fig. 3 (multiplied by a factor of 5 for 
better visibility) is indicated by the open diamonds. Inset: Full-width half-maximum 
(FWHM) of mode (22,1) as a function of pump power [94]. ........................................... 26 
 
Figure 2.5 (a) Schematic illustration of InAs/InGaAsP quantum dash heterostructures 
grown on InP substrate. (b) Illustration of the U-shaped mesa. (c) Illustration of the 
formation of rolled-up InAs/InGaAsP quantum dot/dash microtubes when the underlying 
InP substrate is selectively etched. (d) Schematic of free-standing microtubes with SiO2 

protective layer covering the side pieces of the U-shaped mesa [60]. .............................. 28 
 
Figure 2.6 (a) SEM image of a free-standing microtube rolled along the [100] crystal 
direction. (b) Optical microscopy image from arrays of rolled-up InAs/InGaAsP tubes 
showing high fabrication yield. (c) SEM image of a microtube illustrating the engineered 
surface corrugations for axial mode confinement. (d) Cross-sectional SEM image of the 
microtube showing multiple turns. (e) SEM image from arrays of rolled-up 
InAs/InGaAsP tubes showing high fabrication yield........................................................ 29 
 
Figure 2.7 (a) Photoluminescence spectrum of a quantum dash microtube measured at 
room temperature with an incident pump power of ~19.9 µW. The measured spectrum of 
the as-grown quantum dash sample is shown as the dashed lines and also in the inset. The 
curves are vertically shifted for display purpose. (b) Integrated intensity vs. pump power 
for the mode (21,2)  and for the background emission extracted from the box shown in 
(a). The inset shows the FWHM of the mode (21,2) measured under various incident 
pump powers [60]. ............................................................................................................ 31 
 
Figure 2.8 Simulated distribution of the resonance mode in a rolled-up InGaAsP 
microtube with a radius of ~2.4 µm and wall thickness of ~100 nm by the two-
dimensional finite-difference time-domain method. The presence of inside and outside 
notches are shown by the arrows [60]............................................................................... 33 



 

v 

 

Figure 3.1 (a) Schematic illustration of the fabrication of InAs quantum dot tube 
photodetectors. The p-i-n junction is defined by selective Si and Be implantation. The 
undoped active region is not drawn to scale. The tube device is formed by selectively 
etching the underlying AlAs sacrificial layer of a U-shaped mesa. The InAs/GaAs 
quantum dot heterostructure is shown in the inset. (b) SEM image of the fabricated InAs 
quantum dot tube photodetector. The arrow indicates the tube rolling direction [72]. .... 37 
 
Figure 3.2 (a) Measured current versus voltage under dark condition. The inset shows the 
I-V under 632.8 nm and 1064 nm excitation at 300 K. (b) Responsivity of the tube 
detector versus the applied bias for 1064 nm excitation at 84 K and 300 K [72]. ............ 39 
 
Figure 4.1 (a) Schematic of coherently strained InGaAs/InGaAsP quantum well 
heterostructures grown on semi-insulating InP substrate. (b) Photoluminescence spectrum 
measured at room temperature [112]. ............................................................................... 44 
 
Figure 4.2 (a) Optical microscopy image of a free-standing rolled up tube device with the 
presence of n- and p-metal contacts on the two side pieces. The yellow arrow shows the 
rolling direction of the tube device. (b) SEM image of the fabricated tube device with n- 
and p-metal contacts. (c) SEM image of the tube device showing the side view of the tube 
cavity. (d) SEM image of the free-standing part of the tube device showing the presence 
of surface corrugations for axial mode confinement [112]. .............................................. 46 
 
Figure 4.3 Schematic flowchart presenting the key device fabrication steps. .................. 47 
 
Figure 4.4 (a) Measured current-voltage characteristic of the device at room temperature. 
(b) Schematic of the electrically injected free-standing rolled-up tube laser on InP 
substrate [112]. .................................................................................................................. 48 
 
Figure 4.5 (a) Electroluminescence spectra of the rolled-up tube device measured at 0.9 
mA (below threshold) and 1.25 mA (above threshold). (b) Integrated intensity versus 
current for the mode (24,1) and for the background emission extracted from the box 
shown in (a). Inset: Full-width-at-half-maximum of the mode (24,1) versus current. (c) 
Resonance mode distribution in a rolled-up InGaAsP tube with a wall thickness of ~140 
nm and diameter of ~ 5µm calculated by the two-dimensional finite-difference time-
domain method. The presence of inside notch is shown by the arrow [112]. ................... 49 
 
Figure 4.6 Schematic of coherently strained InAs/InGaAsP QD heterostructures grown 
on semi-insulating InP substrate. ...................................................................................... 52 
 
Figure 5.1 (a) SEM image of AlN/GaN nanowires grown on Si substrate. (b) PL spectra 
taken from AlN:Mg nanowires at room temperature and low temperature with an 
excitation of 1 mW [119]. ................................................................................................. 56 
 
Figure 5.2 (a) Schematic diagram of the AlN p-i-n LED on GaN template on Si substrate. 
(b) Schematic diagram of the fabricated UV LED. .......................................................... 57 



 

vi 

 

Figure 5.3 (a) The I-V characteristics of AlN LEDs (b) The EL spectra of AlN LEDs 
under different injection levels measured at room temperature with the inset showing the 
output [119]. ...................................................................................................................... 58 
 
Figure 5.4 (a) Variations of the light extraction efficiency with nanowire diameter. (b) 
Variations of the light extraction efficiency with nanowire spacing…………………….59 

 
Figure 5.5 Final thickness of the spin-coated polyisobutylene/toluene solution measured 
on silicon wafer using ellipsometry versus the solution concentration. The solution was 
spin coated for 65 sec at 4000 rpm. .................................................................................. 60 
 
Figure 5.6 Absorption spectrum for spin-coated polyisobutylene/toluene and polyimide 
coatings with ~ 1µm thickness. ......................................................................................... 61 
 
Figure 6.1 SiO/SiO2 rolled-up tube on Si substrate. ........................................................ 66 
 
Figure 6.2 SiO/SiO2 rolled-up tube using InGaAsP sacrificial layer. .............................. 67 
 
Figure 6.3 (a) Schematic of GaN LED and nanotube structure. Snapshot of the time 
domain simulation showing the electrical field pattern of the structure: (b) without 
nanotube and (c) with nanotube [123]. ............................................................................. 69 
 
Figure 6.4 (a) Rolled-up GaAs-based microtubes embedding long InN NWs. The devices 
are mostly broken during rolling due to large dimensions of the NWs. (b) Rolled-up 
GaAs-based microtubes embedding short InN NWs. ....................................................... 71 

 
 

 

 

 

 

 

 

 



 

vii 

 

List of Tables 

Table 4.1 Surface recombination velocities for different semiconductors………………51 

	

	

	

 

 

	

	

	

	

 

 

 

 

 



 

viii 

 

List of Acronyms 

CBE   Chemical Beam Epitaxy 

CMOS                        Complementary Metal-Oxide Semiconductor 

DUV   Deep Ultraviolet 

EL   Electroluminescence 

EQE   External Quantum Efficiency 

FDTD   Finite-Difference Time-Domain 

FSR   Free Spectral Range 

FWHM  Full-Width-at-Half-Maxima 

HF   Hydro-Fluoric 

IR   InfraRed 

LED   Light Emitting Diode 

MBE   Molecular Beam Epitaxy 

MOCVD  Metal-Organic Chemical Vapor Deposition 

MOVPE  Metal-Organic Vapor Phase Epitaxy 

MQW   Multiple Quantum Well 

NC   Nano Crystal 

NIR   Near InfraRed 

PAMBE  Plasma Assisted Molecular Beam Epitaxy 

PD   Photo Detector 



 

ix 

 

PECVD  Plasma-Enhanced Chemical Vapor Deposition 

PL   Photoluminescence 

QCSE   Quantum Confined Stark Effect 

QD   Quantum Dot 

QW   Quantum Well 

RF   Radio Frequency 

RIE   Reactive Ion Etching 

RPM   Revolutions Per Minute 

TE   Transverse Electric 

TM              Transverse Magnetic 

UV   Ultraviolet 

WGM   Whispering Gallery Mode 

 

 

 

 

 

 

 



 

x 

 

Abstract 

In order to achieve highly efficient and compact light sources for chip-level optical 

communications, different types of microcavity structures have been extensively studied. 

Among them, rolled-up III-V semiconductor microtubes exhibit distinct characteristics 

including directional emission and polarization control and can be readily transferred on 

Si substrate. Such tubular structures are formed when a coherently strained 

nanomembrane is selectively released from its native substrate. This dissertation reports 

on the achievement, for the first time, of III-V based optically and electrically pumped 

microtube lasers and also photodetectors operating at telecom wavelength. Furthermore, 

we report on the achievement of the first AlN nanowire LEDs emitting at 210 nm. One of 

the principle advantages of such III-N nanowire structures compared to their planar 

counterparts is their ability to grow dislocation-free crystal on a foreign substrate.  

We have achieved lasing at telecom wavelength region from InAs/InGaAsP quantum 

dot/dash rolled-up tube devices at 80 K and room temperature with extremely low 

threshold values of ~ 1.2 µW and ~ 6 µW, respectively.  

We have also reported InAs/GaAs quantum dot rolled-up photodetector tube devices in 

which the light absorption length and charge carrier transport can be separately 

optimized. At room temperature the devices show a responsivity of ~	0.066 A/W at 1064 

nm, with an external quantum efficiency of ~	8%. 

Through optimizing the design and fabrication, we have demonstrated, for the first time, 

electrically injected InGaAs/InGaAsP quantum well rolled-up tube lasers operating at ~ 

1.5 µm. Such devices present a threshold of ~ 1.05 mA at 80 K. This paves the way for 

the practical implementation of such tubular optical cavities in chip-level optical 

communication systems. 

Furthermore, we have achieved the first nanowire based AlN deep UV p-i-n LEDs with 

emission at ~ 210 nm. These devices exhibit a turn-on voltage of ~ 6 V and a low 

operating voltage (8 V at 20 mA). We have also studied the optical characterization and 

processing of a new polymer to be used as the passivating material for UV nanowire LED 

fabrication. 
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Abrégé 

Afin d'obtenir des sources de lumière très efficaces et compactes pour les 

communications optiques au niveau de la puce, les différents types de structures en 

microcavités ont été largement étudiés. Parmi eux, les microtubes enroulés présentent des 

caractéristiques distinctes, notamment les émissions directionnelles et le contrôle de la 

polarisation. Ils peuvent également être facilement transférés sur un substrat en Si. Ces 

structures tubulaires sont formées quand un nanomembrane cohérentement tendues est 

libéré d’une manière sélective de son substrat d’origine. Cette thèse rend compte de la 

réalisation, pour la première fois, des lasers de microtubes basés sur III-V, pompés 

optiquement et électriquement, ainsi que des photodétecteurs fonctionnant en longueur 

d'onde des télécommunications. En outre, nous présentons la réalisation du premier DEL 

en nanofils AIN émettant à 210 nm.  

L'un des principaux avantages de ces structures de nanofils III-N par rapport à leurs 

homologues planaires est leur capacité à croître du cristal sans dislocation sur un substrat 

étranger. 

Nous avons obtenu un effet laser dans la zone des longueurs d’onde des 

télécommunications à partir des dispositifs de tubes enroulés point/tiret (dot/dash) 

quantique InAs / InGaAsP en 80 k et dans la température ambiante avec des valeurs de 

seuil extrêmement bases de ~ 1.2 µW et ~ 6 µW, respectivement. 

Nous avons également signalé des dispositifs de tubes photodétecteurs enroulés point 

(dot) quantique InAs / InGaAsP dans lesquels la longueur d’absorption de la lumière et le 

transport du support de la charge peuvent être optimisés séparément.  

Dans la température ambiante, les dispositifs montrent une sensibilité de ~ 0,066 A / W à 

1064 nm, avec un rendement quantique externe de ~ 8%. 

En optimisant la conception et la fabrication, nous avons, pour la première fois, démontré 

les lasers de tubes enroulés en puits quantiques InGaAs / InGaAsP électriquement 

injectés fonctionnant à ~ 1,5 µm. Ces dispositifs présentent un seuil de ~ 1,05 mA à 80 K. 

Cela ouvre la voie à la mise en œuvre pratique de ces cavités optiques tubulaires dans les 

systèmes de communication optique au niveau de la puce. 



 

xii 

 

En outre, nous avons obtenu le premier AIN UV p-i-n DEL en base du nanofil émettant à 

~ 210 nm. Ces dispositifs présentent une tension d'allumage de ~ 6 V et une basse tension 

de fonctionnement (8 V à 20 mA). Nous avons également étudié la caractérisation 

optique et le traitement d'un nouveau polymère à utiliser comme matière de passivation 

pour la fabrication des DELs nanofils UV. 
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Chapter 1. Introduction 

Next generation of telecommunications, computing and information processing systems 

requires low power, high speed and small device components [1]. These characteristics 

are critical for keeping up with the exponential reduction of feature sizes on electronics 

chips as ruled by Moore’s law. Although electronics components are still essential for 

processing applications, the fundamental limitations of electrical interconnects are the 

roadblocks to achieve high densities of fast and low power on-chip device components 

[2-7]. A potential approach to address these issues is to use photons instead of electrons 

to transfer the information by employing optoelectronics devices and optical 

interconnects. The result is the hybrid integration of the electronic and optoelectronic 

passive and active components for which silicon (Si) is used as the platform. 

In contrast to III-V materials, Si has an indirect bandgap and therefore cannot be used as 

the active material for light emitting devices such as LEDs and lasers. On the other hand, 

the micromachining and CMOS integration technology of Si is of low cost and very well 

advanced which makes it an interesting substrate material choice. Moreover, when used 

as the substrate material, Si provides a much more efficient heat sink for the integrated 

electronic and optoelectronic components due to the higher thermal conductivity of Si 

compared to III-V materials resulting in less heating effect issues. Therefore, the 

heterogeneous integration of compound III-Vs as the direct band gap, active material on 

silicon substrates is a promising solution which can take advantage the desirable 

characteristics of III-V semiconductors together with the already mature CMOS 

processing and integration.  

In order to complete the integrated photonics toolbox, an on-chip, electrically-injected 

light source is needed. III-V based microcavity lasers are attractive candidates because of 

their small dimensions which allow higher integration densities, higher speed and less 

power consumption. For the goal of achieving emissions at the 1.55 µm, i.e. the 

telecommunication wavelength, InP/InGaAsP material system would be a suitable 

choice. Among different types of III-V based microcavity light sources, we have studied 

the characteristics of a specific type, called rolled-up microtubes [8] in this thesis that 
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will be described in detail in the following sections. These III-V based tube devices can 

be readily transferred to other substrates including Si without the degradation of the 

device performance, which together with their unique characteristics defines them as 

promising candidates for integrated light sources / photodetectors in silicon photonics. 

Also, in this thesis we have studied the fabrication and device passivation of UV LEDs 

based on III-nitride nanowires (AlN) that are grown on Si substrate using MBE. Group 

III-nitride compound semiconductors offer exceptional electrical and optical properties 

required in optoelectronic device applications thanks to their unique characteristics such 

as high electron mobility, large saturation velocity, good thermal conductivity and high 

breakdown electric field [9-11]. One of the great properties of the III-nitride 

semiconductor group materials is their direct bandgap energy that can absorb and emit 

light very efficiently over nearly the entire solar spectrum ranging from infrared (IR) 

range of ~ 0.65 eV (InN) to ultraviolet (UV) range of ~ 6.1 eV (AlN) [9, 11-14].  

Compared to III-nitride planar structures, III-nitride nanowires offer the possibility of 

growing dislocation-free crystals on a foreign substrate and therefore are considered as 

promising candidates for optoelectronic devices such as LEDs and lasers. In this regard, 

we have discussed the device fabrication and device passivation challenges for AlN 

LEDs emitting at the DUV range (~	210 nm). 

The characteristics of optically-pumped InP/InGaAsP quantum dot/dash tube lasers at 80 

K and room temperature, InAs/InGaAs quantum dot tube photodetectors, electrically 

injected InGaAs/InGaAsP quantum well lasers at 80 K and AlN UV nanowire LED 

device fabrication and passivation have been studied in this thesis. 

In this chapter, advantages of optical interconnects and an introduction to rolled-up 

microtube devices followed by a review on some of the recent developments of 

microtube-based devices for different applications will be discussed. Subsequently the 

requirement for UV emitting sources and advantages of UV LEDs over conventional UV 

light sources will be discussed. A brief introduction to nanowire LEDs and their 

advantages compared to planar structures is also presented. 
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1.1 Optical Interconnects 

Optical interconnects have become the interesting alternative to electrical interconnects 

for long distance as well as chip-level communications mainly because electrical 

interconnects do not meet the requirements for high data rates [15-18]. Recently, as the 

consequence of shrinking down the electronic components to reach higher integration 

densities, fundamental limitations of electrical interconnects have become an issue. 

Electrical interconnects have a resistive frequency dependent loss that will be even more 

problematic at very long distances. Because of the interline capacitances, electrical 

interconnects also suffer from cross talk related issues. On the other hand, very short 

carrier wavelengths of optical signals (on the order of ~	 1-1.5 µm or less) make it 

possible for them to use dielectric waveguides which can have very low resistive loss 

compared to conventional copper cables by avoiding the metallic waveguide that is 

required for the confinement of radio-frequency waves associated with electrical 

interconnects [15, 19] . The amount of bit rate for electrical interconnects is limited to a 

value relative to their physical dimensions, i.e. cross section area and the length of the 

wires:  

ܤ                                                     ൏ ଴ሺܤ	
஺

௅మ
 )                                                               (1.1) 

where A and L are the cross section area and the length of the wires, respectively and B0 

is ~ 1016 (b/s) for typical resistive-capacitive lines on chip. Such a limitation on bit rate 

does not apply to optical systems. Thus, photonic information processing can, in 

principle, be faster and require less energy [15, 16, 20, 21]. Although the use of optical 

interconnects for long distance communication has already become dominant by 

employing optical fibers, their dominance on shorter communication distances, namely 

between chips or on chip has not yet occurred. This, to a large extent is due to the lack of 

essential optoelectronics devices, including light sources, that are compatible with the 

low cost CMOS technology. Due to the large dimensions of conventional lasers as well 

as the materials incompatibility with Si, the achievement of highly reliable and densely 

integrated lasers on a CMOS chip has not been possible. Drastically different laser 

technologies are therefore urgently required. In this regard, low threshold, ultrahigh speed 

micro- and nanoscale lasers that can be directly integrated with optoelectronic and 
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electronic components on a CMOS chip are in demand for future chip-level optical 

communications. Among the various semiconductor micro- and nanoscale optical cavities 

that have been investigated, rolled-up semiconductor tube cavities present unique 

characteristics as discussed in detail in the following sections.  

1.2 Rolled-up Microtubes 

As mentioned previously, in order to achieve a low threshold micro- or nanoscale laser 

that can be integrated on a Si platform, different varieties of microcavities have been 

studied over the years. Among them are photonic crystals [22], InGaAs nanopilars [23], 

micro-rings [24], micro-disks [25], and GaAs/InAs quantum dot rolled up microtubes 

[26]. Integration difficulties associated with nanowires, etching process-induced surface 

roughness of micro-disk and rings and the resulting high optical loss, and extensive use 

of electron beam lithography for the fabrication of photonic crystals, make the rolled-up 

microtubes a more desirable option for the purpose of fabricating microcavity lasers. 

Another advantage of microtube devices over other microcavity structures is the 

relatively straight-forward fabrication processing of these devices, as discussed in the 

following section. They also exhibit directional emission and polarization control and can 

be readily transferred onto Si substrate. 

1.2.1 Fabrication Principles of Rolled-up Semiconductor Tubes 

The formation of rolled-up microtubes, first discovered by Prinz [8] and collaborators in 

2000 in the GaAs/InGaAs system, is based on the release of strain in nanomembranes. 

Figure 1.1 shows a schematic of an InAs/GaAs membrane and the related tube formation 

process. Since GaAs has a smaller lattice constant than InAs, the GaAs layer is tensile-

strained after its pseudomorphic deposition on top of the InAs. Rolled-up tubes are 

formed because of the strain relaxation in the membrane when it is released from the 

substrate. As a consequence, the curvature of the rolled-up tube can be controlled by 

adjusting the built-in strain in the bilayer and the respective thicknesses of its constituent 

membranes. With the use of a continuum mechanics model [27], it is possible to predict 

the diameter of the resulting microtube with the following formula, 
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1.2.2 Transfer of Rolled-Up Tube Structures 

To take advantage of the already mature silicon CMOS technology and simultaneously 

benefit from the III-V semiconductor characteristics such as direct bandgap and high 

carrier mobility, it is necessary to use a proper technique to transfer the active III-V 

devices onto silicon substrates. Although special techniques such as wafer bonding [42, 

43] and dry-printing [44-46] have been developed, it is not possible to use them for 

rolled-up microtubes as they tend to break during the transfer process. In this regard, 

certain methods have been demonstrated to effectively transfer the microtubes. In the 

recently reported substrate-on-substrate transfer process [47], the host substrate (GaAs 

wafer), with the presence of free-standing InGaAs/GaAs tubes, is pressed on top of a 

silicon wafer in the presence of a solvent. By removing the GaAs substrate, the tubes 

preferentially stay on the Si substrate due to the gravitational force induced by the solvent 

around the tube structure. Thanks to surface tension forces, the tubes are subsequently 

attached to the Si substrate. Alternatively, rolled-up tube structures can also be 

transferred on foreign substrates by first dispersing them in a solvent solution which is 

then drop-cast on the substrate [28]. A unique fibre-taper assisted transfer process has 

been developed to achieve precise control over the transfer process [48]. In this approach, 

abruptly tapered optical fibers are inserted at one or both ends of the tube structure and 

are used as a handle to pick up the tube from its host substrate. The transfer process is 

schematically illustrated in Fig. 1.3. Subsequently, the tube can be transferred to a foreign 

substrate with precise positioning, compared to other transfer processes. Using this 

transfer technique, direct integration of rolled-up optical tube cavities with silicon-on-

insulator waveguides has been demonstrated [49]. 
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thickness affects the radial mode properties, as well as the polarization of the confined 

photons.  

Additionally, the axial mode profile of the tube cavity can be tailored by changing the 

profile of the averaged refractive index along the tube axis as seen in Fig 1.4(b). This is 

also schematically shown in Fig. 1.2 (a). The axial index profile can be controllably 

varied by defining a pattern around the inner or outer edge of the mesa during the device 

fabrication process. Properly designed patterns will induce confinement along the axial 

direction that can lead to three-dimensionally confined optical modes. Careful tuning of 

the pattern offers detailed control of the separation between these axial modes. As an 

example, the emission spectra for two InGaAsP/InAs quantum dot tubes simultaneously 

fabricated from the same starting bilayer are shown in Fig. 1.5. Shown in Fig. 1.5 (a) and 

(b) are the spectra measured for a 2-turn and 1-turn tube, with an average wall thickness 

of ~100 and 50 nm, respectively. The associated azimuthal (m) and axial (p) mode 

numbers are identified [34]. The spacing between consecutive azimuthal modes is ~27 

meV, consistent with a tube diameter of ~5 µm. It is seen that for the two-turn tube, the 

linewidth is much narrower (~0.9 meV), compared to that (~3 meV) of the 1-turn tube, 

due to the enhanced optical confinement associated with the increased wall thickness. 
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Due to the spiral symmetry of the microtube, it cannot be simply approximated as a two-

dimensional ring resonator. Moreover, the axial mode confinement in the microtube 

structure is provided by surface corrugations that are introduced during the fabrication 

processing. One useful model to calculate the axial modes of a micrtoube structure is a 

dielectric planar waveguide model which considers the microtube as an effective planar 

slab waveguide. As seen in Fig. 1.7, upon rolling, the tube consists of two different wall 

thicknesses. Therefore, the effective planar waveguide is composed of two slabs with 

different thicknesses and a step and can be analyzed using a straight forward method. For 

a tube with a diameter R, at any given z position the equivalent waveguide is composed 

of two parts with Lthick and Lthin so that Lthick+ Lthin= 2πR. The effective indices of the two 

different thicknesses are nthick and nthin which can be computed using the well-known 

solutions for planar slab waveguides. We then consider an average effective index of 

ncirc(z)= Lthick(z)nthick+Lthin (z)nthin for a two-dimensional planar waveguide. Since the 

polarization of the emission in microtubes with thin walls is predominantly along the tube 

wall (the z axis), we can analyze the modes by applying the scalar Helmholtz equation to 

the waveguide: 

                                  
ିଵ

௡೎೔ೝ೎ሺ೥ሻమ
  (

ௗమ

ௗ௭మ
,ሺ݈ܧ	 ሻݖ ൅ ௗమ

ௗ௟మ
,ሺ݈ܧ	 ሻሻݖ ൌ ݇ଶܧሺ݈,  ሻ                         (1.4)ݖ

Where E(l,z) is the electric field and k is the vacuum wavevector. By assuming separation 

of variables we can substitute E(l,z)= Φ(z)exp(iβl) and by considering the azimuthal 

resonance condition of βR= m we obtain: 
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information of molecule layer changes on the tube surface were acquired by measuring 

the changes in the position of the resonant mode of the tubular cavity [62].  Huang et al. 

has demonstrated this concept by measuring the changes in the emission spectrum of 

SiO/SiO2 microtubes as a function of their environment. Measurements taken in air, 

ethanol, water, and a mixture of the last two showed a shift of the resonant mode 

wavelengths to the red, as well as a broadening of the mode peaks, when the medium 

refractive index was increased [50, 63]. The hollow structure of the tube devices makes 

them suitable to be used together with microfluidics, wherein the liquid to be sensed can 

flow through the hollow channel of the rolled-up tube device, providing an interesting 

possibility for realizing an integrated tube-based microfluidic sensing system [50, 64-67].     

1.4.2 Optical Communications 

Previously the advantages of rolled-up microtube devices including their small 

dimensions, tenability, ease of fabrication, directional emission and direct transfer on 

foreign substrates were described, which define them as promising candidates for an 

integrated light source for chip-level optical communications [34]. Zhong et al. have 

demonstrated coupling modulation by thermally tuning the coupling gap between a 

rolled-up micotube and the silicon waveguide which facilitates optical switching and 

modulations of microtubes on photonics integrated circuits [68]. Bhowmick et al. have 

shown an optoelectronic integrated circuit using microtubes both as light source and 

photodetector [69].  Rolled-up tube devices have also been shown to function as add-drop 

filters [49, 70], directional couplers [71] and photodetectors [72]. 

1.4.3 Other Applications 

Apart from their optical applications, rolled-up tubes have been employed in numerous 

other promising applications. For example, it is possible to fabricate rolled-up tube 

capacitors by using a set of strained layers in a conductor-dielectric-conductor 

configuration. Ji et al. have demonstrated a RuO2 microtube supercapacitor with 7 µm 

diameter and 1.0 µF capacitance [73]. Compared to commercial capacitors, these results 

have shown a considerable reduction in size of about two orders of magnitude. In another 

example, Sharma et al. have shown more than 100% of increase in capacitance compared 
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to their planar counterparts by employing high-k oxides such as HfO2 and TiO2 and also 

effectively decrease the occupied device footprint [74]. Rolled-up tubes have also been 

used in bio-related studies. For instance, Xi et al. have encapsulated single living cells 

into transparent SiO/SiO2 tubular nanomembranes and have shown that spatial 

confinement of mitotic cells inside tubular architectures could provide important clues 

into how spatial constraints dictate cellular behavior and function [75]. Huang et al. have 

shown on-chip inductors using SiNx microtubes that can be used in radio frequency 

integrated circuits [76]. Tube structures have also been used as scaffolding for the growth 

of cells [77] where a biocompatible-based rolled-up tube has been employed to guide the 

growth of yeast cells and study their behavior in confined environments.  

In another very interesting development, Solovev et al. have demonstrated a catalytic 

microjet engine [78] in which the tube structure is designed in such a way that it is 

slightly tapered with its inside surface including a catalytic platinum film. When the tube 

is placed in the hydrogen peroxide solution, the catalytic action of the platinum 

decomposes the peroxide in water and oxygen, forming a microbubble which moves 

towards the end of the tube and exits. This will move the tube forward in the fluid 

causing the fresh peroxide to enter and maintain the motion. 

1.5 Ultraviolet LEDs 

There is a huge demand for UV light emitting devices for a great number of applications 

such as medical instrumentation, disinfection and sterilization, water purification and 

biological sensors. However, there are a number of drawbacks associated with currently 

dominant Xenon and mercury lamps. These UV sources are bulky and expensive and are 

very inefficient considering their short lifetime and high voltage operation. Moreover, 

their operating wavelengths are not tunable and they are considered as environmentally 

hazardous due to the presence of mercury [79]. On the other hand, LEDs are much more 

efficient regarding their lifetime and operating voltage. They are also smaller, cheaper 

and free from such polluting materials. In addition, it is possible to tune the emission 

wavelengths of these semiconductor components by engineering their bandgaps ,and their 

market is expected to grow very rapidly within the near future [80, 81]. 
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1.5.1 Nanowire LEDs 

Despite their aforementioned unique electrical and optical properties, III-nitride planar 

structures exhibit high dislocation densities resulting in poor device performance due to 

the lack of native substrates. On the other hand, nanowires can be grown vertically and 

have diameters in submicron range and therefore they show lateral strain relaxation, 

leading to drastically reduced dislocation densities when grown on foreign substrates. Si, 

Sapphire and SiC are the commonly used substrates for III-N materials growth [82]. 

However, all of these substrates have large mismatches in lattice constants and thermal 

conductivities which are critical parameters during growth. Epitaxially grown lattice 

mismatched layers undergo tensile or compressive strain. When the layers grow to above 

a critical thickness, on the order of a few nanometers or less, dislocations start to be 

generated within the structure. The dislocation density of GaN grown on these substrates 

is typically in the range of 108 ~ 1010 cm-2 [83-85]. These dislocations will become non-

radiative recombination centers as they introduce new electronic states in the bandgap, 

leading to severe degradation in the electrical and optical performance of the devices. 

Additionally, strain can cause piezoelectric polarization, considerably degrading the LED 

performance. In this respect and in direct contrast to planar structures, the MBE grown 

nanowire structures with small diameters, offer lateral stress relaxation [86]. This, in turn, 

results in increased critical thickness in the case of nanowires [87] and therefore the 

crystal quality is much higher compared to planar structures. The strain relaxation 

process in thin film and nanowire structure is schematically shown in Fig. 1.8. 
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the deep UV range of the spectrum are also presented. The first demonstrations of 

optically-pumped InP/InGaAsP quantum dot/dash tube lasers, InAs/InGaAs quantum dot 

tube photodetectors, electrically injected InGaAs/InGaAsP quantum well lasers, and AlN 

UV nanowire LEDs emitting at deep UV (210 nm) are presented in this thesis. 

Chapter 1 provides an overview of optical interconnects and their advantages over 

electrical interconnects for future optical communications. A detailed introduction on 

different aspects of rolled-up microtubes as an important class of microcavity structures 

with unique characteristics suitable for integrated photonic devices in optical 

communication systems, together with a review on  recent developments of microtube- 

based devices for different applications are also presented in this chapter. The need for 

UV emitting light sources and suitable properties of III-N semiconductors for such 

applications together with the introduction of nanowires and their advantages over planar 

structures is also discussed in this chapter. 

In chapter 2, the design, fabrication and optical performance of InP-based InAs/InGaAsP 

quantum dot/dash tube laser devices, with emission wavelengths at ~1.5 µm measured at 

low temperature and room temperature are described in detail.  

Chapter 3 is related to the design, fabrication and characterization of novel GaAs-based 

rolled-up InAs quantum dot tube infrared photodetectors. 

In Chapter 4, we have investigated the design, fabrication and characterization of 

electrically injected InP/InGaAsP rolled-up tube light sources wherein multiple InGaAs 

quantum wells are incorporated as the gain media. We have further demonstrated lasing 

from such devices, for the first time, defining them as practical candidates for on-chip 

optical light sources. 

In Chapter 5, the fabrication procedure and electrical characterization of the first UV 

nanowire LEDs emitting at 210 nm are discussed. Such devices show much better 

performance compared to their planar counterparts. Also a new synthetic polymer 

material for the passivation of nanowire UV LEDs is introduced, and the processing and 

optical characterization of the material is presented. 

Finally, summary of this thesis and a guideline to future works are discussed in Chapter 

6. 
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Chapter 2. Optically-Pumped Quantum Dot/Dash 
Tube Lasers at Telecom Wavelength 

2.1 Introduction 

In order to achieve ultralow threshold nanoscale lasers, self-organized quantum dots and 

quantum wells have been incorporated in such tubular cavities as the gain media [26, 34, 

51, 89] with lasing under optical pumping being demonstrated at room-temperature[26, 

90] and 4 K[32], respectively. Due to the superior 3-dimensional carrier confinement and 

the discrete density of states, self-organized quantum dot lasers can exhibit significantly 

reduced threshold and improved temperature stability, compared to quantum well or 

nanowire devices [91]. In addition, their large differential gain enables higher modulation 

frequencies for ultrahigh speed applications. In this chapter the design, fabrication and 

optical performance of InP-based InAs/InGaAsP quantum dot tube laser devices, with 

emission wavelengths at ~1.5 µm measured at low temperature are described in detail. 

Such tubular optical cavities are formed when coherently strained quantum dot/dash 

nanomembrane is selectively released from the host substrate. Subsequently, the 

enhanced fabrication technique resulting in much higher device fabrication yield is 

presented leading to quantum dash tube laser devices operating at room temperature. The 

lasing wavelength of 1.59 µm was reported for the InAs quantum dash tube lasers 

operating at room temperature. 

2.2 InAs/InGaAsP Quantum Dot Tube Lasers at 80 K 

In what follows, the design, fabrication and characterization of InAs/InGaAsP quantum 

dot rolled-up tube lasers are presented and discussed in detail. 

2.2.1 Device Design and Fabrication Procedure 

Device fabrication commences with the growth by CBE of appropriately strained 

nanomembranes. Illustrated in Fig. 2.1(a), coherently strained InGaAsP bilayers 

consisting of 38 nm In0.81Ga0.19As0.41P0.59 and 15 nm In0.68Ga0.32As0.41P0.59 are first grown 

on an InP substrate. The top In0.68Ga0.32As0.41P0.59 layer is tensile-strained, while the 
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underlying In0.81Ga0.19As0.41P0.59 layer is lattice matched to the InP substrate. Two layers 

of self-organized InAs quantum dots, each with a density 3 × 1010 cm-2 and separated by 

12 nm, are incorporated in the In0.81Ga0.19As0.41P0.59 layer as the gain medium [92]. To 

realize free-standing tube cavities [54, 93], a U-shaped mesa (illustrated in Fig. 2.1(b)) is 

first defined by etching through the InGaAsP layers to the InP substrate using a 1:2:1 

solution of concentrated (37%) hydrochloric acid, concentrated (70%) nitric acid, and de-

ionized water. Subsequently, with selective etching of the underlying InP layer performed 

using an HCl:H2O (2:1) solution, the strained mesa can be controllably released from the 

substrate. A layer of photoresist is used to cover the side pieces of the U-shaped mesa, 

illustrated in Fig. 2.1(b), so that the rolling process can take place only at the starting 

edge. The resulting quantum dot nanomembranes then roll-up into tube structures, with a 

reduced strain distribution. 

The strain driven self-rolling process takes place preferentially along the [1 0 0] crystal 

direction, resulting in a tube-like structure, shown in Fig. 2.1(c). Since the substrate (as 

opposed to just a thin sacrificial layer, as discussed in section 1.2.1  [26, 32], is etched to 

release the membrane, the central part of the tube is well separated from the high index 

substrate to drastically reduce optical loss into the substrate. The wall thickness of the 

free-standing quantum dot tubes can be precisely controlled by the width of the strained 

mesa. Moreover, as described previously, the tube surface geometry can be engineered by 

varying the shape of the mesa, which provides an additional dimension for controlling the 

axial optical confinement, compared to conventional microring or microdisk 

resonators[54]. 
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achievement of lasing. As previously discussed, the intrinsic linewidth can be 

substantially smaller, due to the presence of doublet modes [58] related to the spiral 

asymmetry of rolled-up semiconductor tubes. We have further calculated the integrated 

background emission to evaluate its behavior at different pump powers, shown as 

diamonds in Fig. 2.4. We chose a spectral width of ~ 4 nm, separated from the lasing 

peak by 8 nm, such that this spectral range is still approximately within the homogeneous 

broadening limit of the lasing mode. This spectral area is marked by the square box 

shown in Fig. 2.3 It is seen that, at or near the lasing threshold (between 1 and 2 µW), the 

background emission stays nearly constant which is in direct contrast to the sharp 

increase of the intensity for the lasing mode (22,1). This observation is consistent with 

the fact that, for a semiconductor laser, the carrier density above threshold should be 

clamped at that of the threshold, thereby providing unambiguous evidence for the 

achievement of lasing. With further increasing power, the background emission shows a 

very small increase, with a slope more than 100 times smaller than that of the light-light 

curve for mode (22,1). This small increase can be explained by the commonly observed 

hot carrier effect of quantum dot lasers. At large injection conditions, charge carriers are 

thermally distributed into the many available states and can lead to enhanced background 

emission [91]. Also illustrated in Fig. 2.4 as black squares, the light-light characteristics 

of mode (22,4) are examined. The integrated peak area increases linearly with pump 

power, with no appreciable kinks. From this observation, we can conclude that this 

particular mode is not lasing. The fact that this mode does not show lasing behavior rules 

out experimental artifacts during the measurement as the cause of the observed lasing 

behavior of mode (22,1). Detailed analysis (not shown) further confirms that the emission 

at 1454 and 1462 nm, corresponding to modes (22,3) and (22,2), shows weak lasing 

behavior, and the rest of the peaks in the spectrum do not show evidence of lasing. It is 

envisioned that rolled-up semiconductor tube lasers, with multiple emission wavelengths 

and controlled emission characteristics, can be readily achieved using tube cavities with 

improved Q-factors by optimizing wall thicknesses and surface geometry. 
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(Veff is the effective mode volume, while neff is the effective refractive index). With neff ~ 

2.09 for the optical mode (obtained from an equivalent planar waveguide model) and Veff 

~ 8.5 µm3, we derived a Purcell factor of ~4.8. Both the spontaneous emission coupling 

factor and Purcell factor can be drastically improved by optimizing the Q-factors of the 

tube cavity. 

2.3 InAs/InGaAsP Quantum Dash Tube Lasers at Room Temperature 

To achieve room-temperature lasing from rolled-up microtube devices, a substantial 

increase in the total fabrication yield of the tubular microcavities with high Q factors and 

low optical loss was required. Additionally, in the new design, quantum dashes were used 

as the active gain material due to their large saturation gain compared to quantum dots. In 

this regard, some alterations to device fabrication have been made resulting in drastic 

improvement of the device Q factor and optical loss with near-perfect fabrication yield. 

In what follows the fabrication process together with characterization of the lasing tubes 

are presented. The photoluminescence setup to characterize the tubes is the same as the 

previously mentioned. A detailed discussion on the results is also presented. 

2.3.1 Fabrication Procedure and Optimization 

The quantum dot/dash tube device heterostructures were grown on InP substrate by CBE. 

Schematically shown in Fig. 2.5(a), the coherently strained InGaAsP bilayers consist of 

~36 nm In0.81Ga0.19As0.41P0.59 and ~15 nm In0.68Ga0.32As0.41P0.59, which are lattice matched 

to the InP substrate and tensile-strained, respectively. The rolling, depending on the mesa 

shape, generally takes place along <100> crystal directions [30]. Two layers of self-

organized InAs quantum dashes are incorporated in the In0.81Ga0.19As0.41P0.59 layer, 

shown in Fig. 2.5(a). Similar to previously described, a U-shaped mesa, shown in Fig. 

2.5(b), was first defined by etching to the In0.81Ga0.19As0.41P0.59 layer using 

HCl:HNO3:H2O (1:2:10) and with selective etching of the underlying InP substrate, the 

coherently strained InAs/InGaAsP quantum dot/dash heterostructures can roll into micro- 
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2.3.2 Photoluminescence Studies and Discussions 

The same micro-photoluminescence setup as previously described in section 2.3.1 was 

used in order to study the optical performance of the tube devices.  

The emission spectrum measured from the tube at an excitation power of ~19.9 µW is 

shown in Fig. 2.7(a). The corresponding azimuthal and axial mode numbers are 

identified. For comparison, also shown in the figure is the photoluminescence spectrum 

measured from the as-grown InAs quantum dash sample. The optical modes were 

analyzed by fitting them using Lorentzian functions to extract the corresponding 

integrated area and full-width-at-half-maximum (FWHM) at each excitation power level.  

Fig. 2.7(b) shows the integrated intensity vs. pump power for the mode (21,2) (at ~1590 

nm) calculated from the results of power dependent measurements. 
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A clear threshold is observed at ~6 µW excitation power level. Variations of the FWHM 

of this mode vs. pump power are shown in the inset. A reduction of the spectral linewidth 

from ~1.6 nm to 1.25 nm is also measured at the threshold, suggesting the achievement of 

lasing. It may also be noticed that the linewidth showed a small increase with increasing 

power, due to the heating effect of the tube device [49]. To further confirm the lasing 

behavior, we have derived the integrated background emission at different pump powers 

by calculating the integrated area of a spectral width of ~4 nm separated by ~12 nm from 

the mode (21,2) (see the square box in Fig. 2.7(a)). It is seen that the background 

emission is negligibly small and stays nearly constant at or above threshold power, shown 

in Fig. 2.7(b). With further increasing pump power, the background emission is slightly 

enhanced, due to the hot carrier effect commonly observed in quantum dot/dash lasers 

[91].  

Similar analysis was performed for other modes shown in Fig. 2.7(a). However, a clear 

linewidth reduction or threshold behavior in the light-light plot was not measured, 

indicating lasing was not achieved for these modes. The underlying reason has been 

investigated. It is noticed that the mode (22,1) shows weaker emission, compared to the 

mode (21,2), which is in direct contrast to the strong photoluminescence emission from 

the as-grown sample in the wavelength range of ~1540 nm. Additionally, the mode (20,1) 

exhibits comparatively strong intensity in spite of the extremely weak photoluminescence 

emission from the as-grown sample in this wavelength range. This discrepancy is 

explained by the wavelength-dependent cavity Q-factor. Due to the large inhomogeneity 

of InAs quantum dashes, the cavity Q-factors for resonance modes at shorter wavelengths 

suffer severely from the photon absorption by non-resonant quantum dashes with 

relatively small transition energies. The reduction of the Q-factor of rolled-up tube 

optical cavities, due to the optical absorption by the quantum dots/dashes, has been 

further confirmed by the transmission measurements of such structures [97]. 

Additionally, the Q-factor associated with various axial modes can be strongly influenced 

by the shape of the surface geometry during the device fabrication process.  

Compared to an ideal ring resonator, the Q-factor of rolled-up tube cavities is further 

limited by the rapid change in thicknesses at the discontinuous rolling edges, i.e. the 

inside and outside notches, which leads to strong light scattering.  
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2.4 Conclusion 

In summary we have demonstrated optically-pumped InAs/InGaAsP quantum dot tube 

laser devices with emission at telecom wavelength, operating at 80 K. The laser devices 

show a threshold of ~ 1.26 µW with Q-factor of ~ 1400 and estimated Purcell factor of ~ 

4.8. By taking advantage of high saturation gain of quantum dash active material and 

improving the device fabrication, we have demonstrated, for the first time, room-

temperature optically-pumped tube lasers emitting at ~1590 nm. The laser threshold and 

the estimated Purcell factor of the devices were estimated to be ~ 6 µW and of ~ 6.54, 

respectively. The emission wavelengths of such laser devices can be further tuned by 

varying the dot sizes and/or compositions. Moreover, such nanophotonic devices can be 

transferred directly on a foreign substrate and monolithically integrated with Si-

waveguides and other nanophotonic components in a CMOS compatible process, thereby 

leading to integrated nanophotonic circuits on a Si-platform required for the emerging 

chip-level optical communications. 
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Chapter 3. InAs/GaAs Rolled-Up Quantum Dot 
Infrared Photodetector Tube Devices 

3.1 Introduction 

A highly sensitive, nanoscale infrared photodetector that can be directly integrated with 

other electronic and optoelectronic components on a Si-platform is essentially required 

for the emerging chip-level optical interconnects [98]. In this regard, significant progress 

has been made in Ge and III-V based photodetectors grown directly on Si [99, 100]. Flip 

chip integration and bonding techniques have also been used to transfer the active 

InGaAs membrane devices onto Si [101]. The device performance, however, has been 

severely limited by the presence of high densities of dislocations, due to the large lattice 

and thermal mismatch between the device active region and the underlying Si substrate. 

Recently, significantly improved performance has been made by using self-organized 

quantum dot heterostructures grown directly on Si, due to the superior carrier 

confinement and reduced defect densities of the quantum dots [100, 102]. Self-organized 

quantum dot photodetectors can exhibit reduced dark current and high temperature 

operation, and the operation wavelength can be readily tuned by engineering the 

sizes/compositions of the dots.  

In this chapter, we have demonstrated rolled-up InAs quantum dot tube photodetectors 

that can be potentially transferred directly on a Si-platform. The InAs quantum dot tube is 

formed by selectively releasing the coherently strained InAs quantum dot heterostructures 

from the host substrate. The pin diode is defined along the tube axial direction using a 

two-step ion implantation process. In this unique tube photodetector, the light absorption 

length and charge carrier transport can be separately optimized, promising both ultra-

high-speed and high-efficiency operation. At 300 K, the device responsivity is measured 

to be ∼0.066 A/W at 1064 nm, with an external quantum efficiency of ∼8%. 
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3.2 Device Design and Fabrication Procedure 

The coherently strained InAs/GaAs quantum dot heterostructure was first grown on GaAs 

substrate by molecular beam epitaxy. As schematically shown in the inset of Fig. 3.1(a), 

the device heterostructure consists of a 50 nm AlAs sacrificial layer, 20 nm In0.18 

Ga0.82As and 30 nm GaAs with the incorporation of self-organised InAs quantum dots. 

Rolled-up InAs/GaAs quantum dot tubes can be spontaneously formed due to strain 

relaxation as discussed in section 1.2.1. Prior to the tube formation, a two-step ion 

implantation of Si and Be was performed to selectively dope part of the tube to be n- and 

p-type, respectively, shown in Fig. 3.1(a). A SiOx protective layer was used to protect the 

rest of the sample during ion-implantation which was subsequently removed after 

implantation process. The centre region of the tube, with a width of ∼1.5 µm, is 

nominally undoped, which serves as the device active region. The implanted dopant was 

activated by annealing the sample at ∼710°C for 20 s with the use of a suitable SiNx 

capping layer. Ni/Ge/Au (10/20/100 nm) and Pd/Ti/Pd/Au (10/10/40/100 nm) were 

deposited as the n- and p-metal contacts, respectively. The fabrication is continued by 

thermal annealing of the contacts at 400°C for 1 min and then defining the rolling edge 

and the U-shaped mesas using photolithography steps and wet etching. 
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mesa together with the metallic contacts on the doped areas is shown in Fig. 3.1 (a). Fig. 

3.1 (b) shows the SEM image of the microtube together with the ohmic contacts. 

3.3 Measurement Results and Discussion 

The performance of InAs quantum dot tube detectors was studied at 80 K and 300 K. 

Illustrated in Fig. 3.2(a), the tube device exhibits excellent current-voltage characteristics, 

with a relatively low level of dark current (~ 140 nA) at -5 V. Both He-Ne laser (~ 632.8 

nm) and Nd:YAG laser (1064 nm) were used as the optical excitation source. The laser 

beam was focused on the device active region through a 100× objective with a diameter 

of ~ 1 µm. Shown in the inset of Fig. 3.2(a), clear photo-response was measured under 

both 632.8 nm and 1064 nm excitation at 300 K. The incident power is ~ 13 µW. At -5 V, 

the measured photocurrent is ~ 4 µA and ~ 1.6 µA at 632.8 nm and 1064 nm, 

respectively. The larger photocurrent at 632.8 nm excitation is due to the additional 

response of the GaAs layer. 

The responsivity of the InAs quantum dot photodetector was derived by measuring the 

photocurrent under varying excitation intensities at a fixed bias voltage. Fig. 3.2(b) shows 

the responsivity of the device versus applied bias for 1064 nm excitation at 84 K and 300 

K. 
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At V = -5 V, the responsivity was measured to be ~ 0.086 A/W and 0.066 A/W at 84 K 

and 300 K, respectively. Under 632.8 nm excitation, the responsivity was measured to be 

~ 0.2 A/W at -5 V at 300 K. The external quantum efficiency is then calculated by QE(λ) 

= Rሺλሻሺhሻሺc/eλሻ, where QE(λ) is the wavelength dependent external quantum efficiency, 

λ is the wavelength, h is the Plank’s constant, c is the speed of light in vacuum, and e is 

the elementary charge. At -5 V, the external quantum efficiency of the InAs quantum dot 

tube detector is ~ 0.1 and ~ 0.08 at 1064 nm at 84 K and 300 K, respectively. It is 

expected that with increasing the number of InAs quantum dot layers within the structure, 

the responsivity and quantum efficiency of the device can be further enhanced.  
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3.4 Conclusion 

In summary we have demonstrated the first nanoscale tube photodetector, with the use of 

rolled-up InAs quantum dot tubes. The devices can exhibit responsivity of ~ 66 mA/W 

and external quantum efficiency of ~ 8% under 1064 nm excitation at 300 K. 

Additionally, the operating wavelength range of such devices can be readily tuned by 

engineering the sizes/compositions of the embedded quantum dots. Moreover, such 

devices can be further designed as resonantly enhanced photodetectors, leading to both 

ultrahigh efficiency and wavelength selective operation. 
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Chapter 4. Electrically Injected InP/InGaAsP 
Quantum Well Tube Lasers at Telecom 

Wavelength 

4.1 Introduction 

An electrically injected, low threshold micro- or nanoscale laser that can be integrated on 

a Si platform is essentially required for future chip-level optical communications, driven 

by the increasing demand for high data rate and low energy budget [15]. In this regard, 

different types of optical micro-/nano cavities have been intensively studied over the 

years [23, 24, 26, 103-108]. Among them are rolled-up semiconductor tubes, fabricated 

by selectively releasing strained nanomembranes from their host substrates, exhibit 

unique characteristics as described previously in section 1.2.3 including ultra-high Q-

factors, directional emission, and controlled polarization[32, 49, 55, 60]. In addition, an 

exact tailoring of the optical emission characteristics can be achieved using standard 

photolithography process, which is in direct contrast to the extensive use of electron-

beam lithography for the fabrication of photonic crystal, micro-disk, micro-pillar, and 

other micro/nanoscale optical cavities. As discussed in previous chapters, optically 

pumped rolled-up tube lasers incorporating self-organized quantum dots, quantum 

dashes, or quantum wells as the gain media have been demonstrated at both low 

temperature [89, 94] and room-temperature [26, 60, 90]. However, their practical 

application has been severely limited due to the lack of electrically driven types of 

devices. 

The difficulty in achieving electrically injected lasing of rolled-up tubes, or any other 

whispering-gallery-mode based cavities lies in the highly inefficient carrier injection 

process of a conventional vertical p-i-n structure, due to the very thin nanomembranes 

[25, 109-111]. In addition, the optical performance, including the WGM profiles and Q-

factor, can be adversely affected by the presence of electrical contacts and the heating 

effect, due to the large resistance and large surface recombination. In this chapter, we 

have investigated the design, fabrication and characterization of our novel electrically 

injected InP/InGaAsP rolled-up tube lasers, wherein multiple InGaAs quantum wells are 
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incorporated as the gain media. Efficient carrier injection into the device active region is 

achieved using a lateral carrier injection scheme without compromising the optical 

emission characteristics. The device exhibits a relatively low threshold current of ~ 1.05 

mA at 80 K. The Purcell factor is estimated to be ~ 4.3. 

4.2 InxGa1-xAs Quantum Well Heterostructure Design 

The InP-based heterostrcuture of InGaAsP strain-driven tube devices embedding InxGa1-

xAs quantum wells is very similar to the previously discussed InAs/InGaAsP QD material 

layer structure described in chapter 2. However, since the tube formation mechanism and 

its final diameter is sensitively related to the existing and known strain within the 

heterosturcture, the incorporation of InxGa1-xAs quantum well active layers should not 

impose any new strain to the crystalline structure, i.e. the composition of InxGa1-xAs 

active layers must be such that they are lattice matched to their underlying crystalline 

material. Therefore, two layers of ~ 7 nm In0.53Ga0.47As quantum wells were grown on 

top of In0.81Ga0.19As0.41P0.59 layers as shown in Fig. 4.1 (a). Also, the InGaAsP bilayer is 

doped n-type using silicon with the doping level of ~ 2×1017 cm-3. This was done to avoid 

the need for two step ion-implantation for carrier injection during later fabrication steps 

as was performed for the tube photodetector described in Chapter 3. The quantum well 

heterostructures exhibit strong photoluminescence emission, with the peak position at ~ 

1.57 µm at room temperature, illustrated in Fig. 4.1 (b).  
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4.3 Fabrication Procedure  

The fabrication of electrically injected rolled-up tube lasers is similar to the previously 

discussed optically pumped devices and quantum dot tube detectors. To achieve high Q-

factors, it is imperative to develop free-standing microtube structures. This can be 

realized by employing a U-shaped mesa design, wherein the device active region is free-

standing and is supported by the two side pieces, shown in Fig. 4.2(a). To achieve 

electrically injected device, a single step ion-implantation of Be was first performed to 

selectively p-dope part of the U-shaped mesa with a doping level of ~ 2×1019 cm-3. The 

implanted dopant was activated by annealing the sample at ~ 600 °C for 35 seconds. Prior 

to the annealing, the sample was covered by a 40 nm SiNx capping layer to prevent the 

out-diffusion of arsenic and phosphor atoms. Subsequently, Ni/Ge/Au 

(20nm/30nm/100nm) and Pd/Ti/Pd/Au (10nm/40nm/40nm/100nm) were deposited as the 

n- and p-metal contacts, respectively, followed by an annealing at 400 °C for 1 min. The 

U-shaped mesa was defined by photolithography and etching into the top 

In0.81Ga0.19As0.41P0.59 layer using HCl:HNO3:H2O (1:2:10) solution. With appropriate 

protection layers for the metal contacts, the sample was immersed in HCl:H2O (2:1) 

solution to selectively etch the underlying InP layer, which leads to the formation of free-

standing InGaAsP tubes, due to the strain relaxation. Shown in Fig. 4.2(a) is an optical 

microscopy image of a rolled-up microtube with the presence of p- and n-metal contacts 

on the two side pieces. The fabricated devices are ~ 100 µm long and have a wall 

thickness of ~ 140 nm. The scanning electron microscopy image of an electrically 

injected tube device is shown in Fig. 4.2(b). The deeply etched region beneath the rolled-

up device can be clearly identified, which is formed during the sacrificial etching step 

and reduces the leakage of optical modes into the substrate. Illustrated in Fig. 4.2(c), the 

tube devices have diameters of ~ 5 µm, which are largely determined by the relative 

thickness and strain of the InGaAsP bilayer [27]. Shown in Fig. 4.2(d), the presence of 

corrugations on the tube surface can be clearly identified, which provide strong optical 

confinement along the tube axial direction [54]. The controlled surface geometry was 

defined by the corrugations introduced at the inner edge of the U-shaped mesa. Fig. 4.3 

shows a flow-chart illustrating the key device fabrication steps.  
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(24,1) by ~ 8 nm. This spectral area is shown as the square box in Fig. 4.5(a). It is 

observed that, compared to the intensity of the lasing mode, the background emission 

shows a negligible increase at or above the threshold current. This provides further 

evidence for the observed lasing behaviour, as the carrier concentration is clamped at the 

threshold value. By further increasing the current, a small increase in the background 

emission is observed which can be described by hot carrier effect [91]. 

The distribution of the stimulated optical resonance azimuthal mode for a rolled-up tube 

with a wall thickness of ~ 140 nm by the two-dimensional finite-difference time-domain 

method is shown in Fig. 4.5 (c). The scattered light by the inside notch is clearly seen, 

which can be used as the useful output of such devices, leading to controlled directional 

emission. For the rolled-up quantum well tube laser, the maximum Purcell factor is 

estimated by equation (2.1). For the lasing mode (24,1), Q is derived to be ~ 800, and Veff 

and neff are estimated to be ~ 4 µm3 and ~ 2.26, respectively. The Purcell factor is then 

calculated to be ~ 4.3. 

Measurements were also done at higher temperatures but no lasing was observed. This is 

probably due the particularly high surface recombination velocity of InxG1-xAs compared 

to other types of semiconductors as shown in Table 4.1 [113]. Surface recombination 

result in heating of the surface and also reduced luminescence efficiencies associated 

with non-radiative recombination at the surface. 
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Semiconductor Surface recombination velocity (cm/s) 

GaAs 106 

GaN 5 × 104 

InP 103 

Si 101 

 

Table 4.1 Surface recombination velocities for different semiconductors 

 

In addition to the heterostructure with InGaAs QW active material, we had also employed 

another heterostructure with embedded InAs quantum dots similar to the structure in Fig. 

2.1 (a) only with Si-doped InGaAsP bilayer material. The doping level was also similar to 

that of QW structure. The structure is shown in Fig.4.6 with strong and broad PL 

emission very much similar to the as-grown material PL shown in Fig. 2.3. Although the 

fabricated devices show comparable I-V characteristics to QW devices but no EL was 

measured from QD tubes possibly due to their smaller saturation gain compared to 

InGaAs QWs and also the heating effect.  
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4.5 Conclusion 

In summary, we have demonstrated, for the first time, electrically injected rolled-up 
semiconductor tube laser at 80 K with the incorporation of multiple InGaAs quantum 
wells as the gain medium [112]. The lasing threshold was measured to be ~ 1.05 mA 
operating at the telecom wavelength range. Such devices can be readily transferred on 
silicon substrates, enabling the seamless integration with Si-waveguides, modulators, and 
other electronic and photonic components and provide an electrically injected coherent 
light source for applications in chip-level optical communications.     
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Chapter 5. Deep Ultraviolet AlN Nanowire LEDs 

5.1 Introduction 

In addition to microtube light sources, III-nitride nanowire LEDs and lasers are also 

important for applications in Si photonics, as they can be grown on Si and are free of 

dislocations. LEDs and lasers out of III-nitride materials can exhibit emission from DUV 

to NIR and there have been many reports on such III-nitride light emitting devices [82, 

114, 115]. Planar DUV LEDs do not show high performance due to high densities of 

dislocations as a result of the lack of suitable substrates and difficulties in impurity 

doping due to the high activation energy of Mg. In addition, they present very low light 

extraction efficiencies. Due to low defect structure of nanowires, their high surface-to-

volume ratio and low effective index, nanowire LEDs can outperform their planar 

counterparts. In this chapter, the growth, fabrication process, and electrical 

characterization of the first AlN nanowire LEDs emitting at 210 nm are discussed. These 

devices show low turn-on voltage of ~ 6 V which is much lower compared to planar AlN 

LEDs. Also a clear band-edge emission is observed at ~ 210 nm. Our III-nitride 

nanowires are grown on Si substrate by PAMBE, fabricated, and then subsequently 

characterized. The fabrication of UV nanowire LEDs has proven to be challenging due to 

the requirement of a suitable passivation material that is highly transparent in the UV 

range. In what follows, the fabrication procedure of the AlN LEDs and their 

electroluminescence results are presented. Subsequently, the processing and transmission 

characterization of a new passivation and planarization polymer material is described that 

is suitable for UV nanowire light emitting devices. 
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5.2 AlN nanowire LEDs 

In what follows, a brief description of PAMBE system used to grow the III-N nanowires 

together with the fabrication process and characterization of AlN nanowire LEDs is 

presented. With optimized growth parameters and fabrication processing we have 

achieved AlN nanowire LEDs with emission at ~ 210 nm. 

5.2.1 	Growth of Nanowire LEDs 

Our III-nitride nanowires are grown by catalyst-free (PAMBE) under nitrogen rich 

conditions. MBE has the advantage of growing high purity material with atomically 

smooth surfaces. Also, due to the absence of any foreign metal catalyst, catalyst-free 

MBE offers the advantage of increased material purity. In PAMBE [116], RF plasma is 

used to create atomic nitrogen (N) species from nitrogen molecule (N2). The MBE 

growth conditions, such as growth rate, III/V flux ratio and substrate temperature 

determine the final length, diameter and shape of the grown nanowires together with their 

density and uniformity [117, 118].  

The nanowires discussed in this chapter are grown by the Veeco Gen II MBE system 

equipped with a RF plasma assisted nitrogen source. The three main vacuum chambers in 

this MBE system are an introduction chamber, a buffer chamber, and a growth chamber. 

After removing the native oxide on the surface of the silicon wafers in HF acid, they are 

loaded into the introduction chamber and subsequently transferred to the buffer and 

growth chamber upon proper degassing. Group III elements (In, Ga, Al) reside in the 

effusion cells which are thermally evaporated by heating the effusion cells. The nitrogen 

source in the system is provided by plasma assisted radio frequency excitation. The group 

III fluxes and the amount of N plasma are controlled by changing the effusion cell 

temperatures and adjusting the plasma power and nitrogen flow rate, respectively. Once 

the effusion cells are heated, the group III atoms impinge on the substrate surface to react 

with the active nitrogen to create the III-nitride materials. Figure 5.1(a) shows the SEM 

image of the grown nanowires. Also the PL from the grown AlN nanowires is shown in 

Fig. 5.1(b). 
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5.4 Conclusion 

In summary we have achieved, for the first time, AlN p-i-n nanowire LED emitting at ~ 

210 nm with good electrical characteristics. The device has a low turn-on voltage of ~ 6 

V, and a clear band-edge emission is observed at ~ 210 nm which outperforms the planar 

AlN LEDs. We also have introduced a new passivating polymer material with low 

absorption in the 200-350 nm wavelength range which is compatible with light emitting 

devices working in the UV range.  
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Chapter 6. Conclusions and Future Works 

6.1 Conclusions 

In this thesis we have demonstrated InP-based rolled-up microtube lasers at telecom 

wavelength range embedding quantum dots/dashes/wells with both optical and electrical 

pumping. In addition we have shown quantum dot infrared tube photodetectors that can 

be utilized for the emerging Si-based chip-level optical communications. Moreover, we 

have demonstrated the first AlN nanowire UV LED devices with emission at ~ 210 nm 

which outperform their planar structure LED counterparts. The significant findings of this 

thesis are summarized below. 

There is an urgent requirement for a compact and efficient light source to complete the 

toolbox for photonics integrated communication systems. Rolled-up microtubes offer 

unique characteristics such as directional emission and polarization control, relatively 

straightforward fabrication process and the possibility of transferring onto other 

substrates including Si. These properties have defined this class of microcavity structures 

as competitive candidates among different types of microcavities as potential light 

sources for future chip-level optical communication systems. 

In this regard, we have initially achieved the first demonstration of InAs/InGaAsP QD 

tube laser devices that operate at ~ 1470 nm at 80 K [94]. These devices show a threshold 

of ~ 1.26 µW and Purcell factor of ~ 4.8. Subsequently, with further improvement of the 

device fabrication, we demonstrated the first room temperature InAs/InGaAsP quantum 

dash lasers with close to 100% fabrication yield [60]. These lasing devices operate in the 

telecommunication wavelength range with emission at ~ 1590 nm. The measured 

threshold of these devices was ~ 6 µW with the Purcell factor of ~ 6.54. 

Although the demonstrated optically-pumped rolled-up tube lasers show a great leap 

forward towards integrated photonic light sources, their practical utilization in such 

systems may be challenging considering the requirement of another optical pumping 

source. The ideal type of an integrated chip-level light source component would be an 

electrically driven device in which the excitation of the embedded active material is 

triggered by injecting the carriers through on-chip biasing of the device. To this end, we 
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have investigated the design, fabrication and characterization of electrically injected 

InP/InGaAsP quantum well rolled-up tube light sources with embedded InGaAs active 

material. We have further achieved, for the first time in the world, electrically injected 

lasing from such devices operating at ~ 1485 nm measured at 80 K [112]. A lasing 

threshold of ~ 1.05 mA was measured for a rolled-up tube with a diameter of ~ 5µm and 

wall thickness of ~ 140 nm. Such nanoscale devices can be further integrated with Si-

based nanophotonic circuits for applications in ultrahigh-speed, ultralow power chip-level 

optical communications. 

In addition to efficient and compact light sources, the emerging field of chip-level optical 

communications and interconnects also requires highly sensitive, Si-integrated infrared 

photodetectors. The device performance of Ge and III-V based photodetectors grown 

directly on Si has been limited due to incompatibilities in the growth parameters. On the 

other hand, QD photodetectors show unique characteristics such as high temperature 

operation, reduced dark current and tenability of the operation wavelength by engineering 

the size and composition of the QDs. In this thesis, we have demonstrated a novel rolled-

up InAs QD tube photodetectors, wherein the light absorption length and charge carrier 

transport can be separately optimized, promising both ultra-high-speed and high-

efficiency operation [72]. The device responsivity at 300 K is measured to be ∼0.066 

A/W at 1064 nm with an external QE of ∼8%. The QE of such devices can also be 

increased considerably by increasing the number of embedded QD layers in the device 

heterostructure.  

Also, in this thesis we have studied the fabrication and device passivation of UV LEDs 

based on direct bandgap III-nitride nanowires that are grown on Si substrate using MBE. 

Poor crystal quality due to the lack of suitable substrates, difficulties in impurity doping 

and low light extraction efficiency are among the main problems to overcome in order to 

achieve high performance DUV LEDs. Compared to III-nitride planar structures, III-

nitride nanowires offer the possibility of growing dislocation-free crystals on a foreign 

substrate and therefore are considered as promising candidates for optoelectronic devices 

such as LEDs and lasers. By optimizing the growth conditions, we have realized AlN p-i-

n LEDs. We have demonstrated the device fabrication and characterization of such LEDs 
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emitting at DUV range (~	210 nm) which show a low turn-on voltage of ~ 6 V [119] that 

outperform the planar AlN LEDs. Another important challenge in the fabrication of such 

devices is the search for a suitable passivation material that is highly transparent in the 

DUV range. In this regard, we have addressed the problem of passivating the UV 

nanowire LEDs by introducing a new polymer-based synthetic material, polyisobutylene. 

We have performed detailed studies on the processing parameters and transmission 

properties. We have shown that such a polymer material can be used in the fabrication of 

UV nanowire light emitting devices such as LEDs and lasers due to its low optical 

absorption in the 200-350 nm wavelength range. 

6.2 Future Works 

6.2.1 SiOx Rolled-up Microtubes 

As previously described, the resonance modes in WGM resonators with sub-wavelength 

wall thicknesses are highly sensitive to optical perturbations outside their structure such 

as very small changes in the refractive index of their environment. This characteristic 

makes WGM resonators interesting candidates for applications in biosensors. Also for 

integrated biosensor devices in practical applications, Si-based ring resonator sensors are 

preferred due to their compatibility with main stream microelectronics. One interesting 

application of microtube-based biosensors is to detect certain microorganisms such as 

viruses or bacteria. Certain types of large molecules, such as proteins are always present 

on the body of such microorganisms. These types of molecules are referred to as 

antigens. The immune system of human body naturally responds to the presence of any 

type of antigens by producing specific substances called antibodies. For every type of 

antigen there exists a unique type of antibody. Each type of antibody has a unique 

bonding site shape which only locks to the specific shape of its corresponding antigen, 

thereby forming an antigen-antibody complex. To use the microtube bisosensor devices 

to detect certain type of microorganism, the surface of the tube is covered with the 

corresponding type of antibody. This is called the activation step. This type of antibody 

will then attract the target antigen and bind to it which in turn causes the accumulation of 

bound protein on the surface of the microtube and increases the total diameter of the tube. 
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biosensors can be used for the detection of microorganisms due to the assumption that 

forming antigen-antibody complex causes charge disturbance on the surface of the 

activated microtube. Therefore, detection of the microorganism can be done by passing a 

current through the activated tube structure and monitoring the change in the current by 

introducing the corresponding antigen to the system. In contrast to the first method, this 

technique can be used in point-of-care diagnosis. 

6.2.2 III-N Rolled-up Tubes 

Rolled-up microtube devices have been reported out of many semiconductors, including 

dielectrics and polymer materials for different applications [34-37, 39, 94]. However, 

they have not been demonstrated for all types of III-V materials including III-Nitride 

structures. Since emission from different types of III-N materials covers the whole solar 

spectrum from UV to IR, the realization of III-N rolled-up tubes can be interesting for 

LEDs and laser applications. As discussed previously, due to the lack of suitable 

substrates for the growth of III-N materials, the grown epilayers contain a considerable 

number of defects and dislocations. These dislocations act as non-radiative recombination 

centers for optoelectronic devices and lead to degradation of the device’s performance. 

However, if III-N epilayers roll up into tubular structures and thereby leave the host Si 

substrate due to strain release associated with the rolling mechanism, the amount of 

dislocations should decrease. Furthermore, the number of defects could be decreased 

even more through an additional annealing step of the tubular structure. In addition to 

low defect density, rolled-up tubes also offer high integration densities when used as 

electronic devices, thanks to their cylindrical structures and circular cross sections. 

They can also increase the light extraction efficiency of the optoelectronics devices. For 

example, simulation results have been reported [124] that show increase in light 

extraction efficiency of GaN LEDs using GaN nanotube structure placed on top of the 

planar LED structure as shown in Fig. 6.3 (a). The nanotube has a wall thickness that is 

well below the wavelength of the optical mode and therefore has a small refractive index 

that matches the refractive index between bulk GaN and air. This results in enhancement 

of the light extraction from LEDs by coupling the guided modes in the bulk structure into 

the leaky modes of the nanotube as shown in Fig. 6.3 (b) and Fig. 6.3 (c) [124]. 
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polarization control. The incorporation of the active material inside the heterostructure of 

tube devices is usually done during the growth of the material layer structure. However, 

the choice of such embedded active materials is limited by the growth conditions which 

then limit their operating wavelengths. Although some wavelength tuning is possible by 

engineering the size and composition of the active material but it cannot largely change 

the emission wavelength. Thus being able to incorporate other “foreign” active materials 

inside the tube structures to couple with the resonance modes of the microtube is a 

promising solution.  

Injection of active material inside the tubular cavity is one way to achieve this goal. 

Filling a GaAs-based microtube using a micropipet and a syringe with PbS NCs (with 

emission at around 953 nm at 7 K) which were dispersed in a toluene solution has been 

reported [93]. However, this process needs an additional micro positioning system for the 

injection process and therefore is not very practical. 

On the other hand, the rolling nature of tube devices immediately suggests entrapping 

active material during the rolling process which will result in embedding them within the 

microcavity structure. This can include dispersed NW devices such as InxGa1-xN NWs, 

colloidal semiconductor quantum dots or 2-dimensional semiconductor flakes such as 

MoS2 [126], WS2 [127], etc. In contrast to 2-D semiconductor single layer flakes and 

colloidal QDs [128], that practically have negligible thicknesses, incorporation of 

dispersed NWs, can potentially have an adverse effect on the cavity formation, due to  

their comparable length and diameter to the tube’s wall thicknesses. To demonstrate this, 

we have dispersed long (~ 4µm) and short (~ 100 nm) InN nanowires onto GaAs-based 

heterostructures discussed in chapter 3, prior to tube formation. Long InN NWs have 

drastically hindered the tube formation resulting in deformation and breakage of the tube 

device as shown in Fig. 6.4 (a). The effect is less severe for shorter InN NWs seen in Fig. 

6.4 (b). 
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shown in the Fig 6.4 are compatible with InN NWs since this material system does not 

absorb the emission from InN wires with wavelengths of ~ 1.8 µm. However, in the case 

of monolayer two-dimensional materials such as MoS2 and WS2 with emission 

wavelengths of ~ 600-700 nm, the GaAs/InGaAs material system is not suitable. On the 

other hand, SiOx tube systems discussed before will be almost transparent in the visible 

range and could be used.  

6.2.4 Room Temperature Electrically Injected Rolled-up Lasers and 
Photodetectors 

In Chapter 4 we have described the electrically injected InGaAs QW tube lasers at 80 K. 

However, a more practical device should preferably operate at room temperature which 

circumvents the need for cryogenic cooling. As discussed in section 4.4, strong coherent 

emission from electrically-injected tube devices at room temperature is considerably 

limited by large surface recombination velocities associated with GaAs and related 

materials. Also the fabrication yield for these devices is still low and should be enhanced. 

Increasing the number of InGaAs QW active layers in the device heterostructure should 

increase the optical gain and possibly enhance the performance of the devices. 

Moreover, rolled-up tube photodetectors with InGaAs QWs could be used as 

photodetectors in the telecom wavelength range. The fabrication of such devices is 

similar to the described tube laser. Increasing the number of active layers in such devices 

should result in increased absorption of the incoming light and therefore increase the 

responsivity and quantum efficiency of such devices. Considerable increase in the 

quantum efficiency is also expected by increasing the number of QD layers for the InAs-

GaAs QD photodetectors discussed in Chapter 3.  

As discussed in section 1.2.2 successful transferring of our III-V rolled-up tubes has been 

already demonstrated. However, a more interesting and challenging approach would be to 

grow the III-V layers directly on Si. Growth and fabrication of GaAs tubes directly on Si 

has been demonstrated recently [129]. Using a multistep MOCVD growth method a 2 µm 

GaAs metamorphic epilayer was grown on Si as the buffer layer, on top of which AlAs 

sacrificial layer and GaAs/InGaAs strained bilayer were grown subsequently. Being able 

to directly grow such III-V heterostructures on Si would ideally address the integration 
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concerns for such micro/nano scale optoelectronics devices that have been demonstrated 

in this thesis to be practical candidates as light sources and photodetectors for future chip-

level optical communication systems.       
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