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ABSTRACT 
 

There is evidence suggesting that acquisition of developmental competence in 

bovine oocytes may be linked to the expression profile of genes in the mural granulosa 

cells (GC). To gain insight into the potential molecular changes occurring within GCs 

during the acquisition of oocyte competence, we have performed bi-weekly laparoscopic 

ovum pick-ups (LOPU) and collected cumulus-oocyte-complexes (COC) and mural GCs 

from 2-10mm follicles in 12 Holstein heifers from 2-6 months of age. While 3 heifers 

remained untreated (control) for the duration of the experiment, 9 received varying 

follicle stimulating hormone treatments (FSH-treated) to mimic an active hypothalamus-

pituitary-ovarian axis. Adult GCs were collected from 8 FSH-treated adult cows. The 

COCs from prepubertal animals were matured, fertilized and cultured in vitro to assess 

development to the blastocyst stage. The relative mRNA abundance of FSHR, STAR, 

CYP19A1, 3β-HSD, CX43, FOXO1, CALM, AKT1, and XIAP in GCs were quantified by 

RT-qPCR. The mRNA abundances of FSHR, CYP19A1, 3β-HSD, and XIAP were 

significantly decreased, and STAR and 3β-HSD were significantly increased in 

prepubertal control samples compared to adult and prepubertal FSH groups. When 

comparing the mRNA abundance at 3 prepubertal ages (<100, 100-130, and >130 days), 

we observed significantly higher expression of STAR (all ages), 3β-HSD (≤130 days), and 

FOXO1 (>130 days) in control calves, and significantly higher expression of FSHR 

(≤130 days), CYP19A1 (100-130 days), and XIAP (>100 days) in FSH-treated calves. 

Increasing the FSH treatment duration from 2 to 4 days lead to a significant decrease in 

the mRNA abundance of STAR, 3β-HSD, and CALM in prepubertal animals. LHR mRNA 

was detected in a significantly higher number of GC samples from animals treated with 

longer FSH protocols. Lastly, we observed significantly lower 3β-HSD and CX43 

mRNA, and significantly higher FOXO1 mRNA in samples from animals that resulted in 

above median cleavage (>70%) and blastocyst (>15%) rates, respectively. These findings 

revealed that GCs of prepubertal animals respond to FSH treatment by increasing mRNA 

levels of genes promoting estradiol synthesis and follicular growth, and by decreasing 

mRNA levels of genes promoting progesterone production and follicular atresia. We also 

observed that the relative mRNA abundance of 3β-HSD, CX43, and FOXO1 in GCs is 

correlated with embryo cleavage and development in prepubertal heifers. 
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RÉSUMÉ 
 

Il existe des études suggérant que l’acquisition de la compétence au 

développement des ovocytes bovins peut être reliée au profil d’expression de gènes dans 

les cellules de la granulosa murale (CG). Pour mieux comprendre les potentiels 

changements moléculaires se produisant dans les CGs pendant l’acquisition de 

compétence des ovocytes, nous avons performé des prélèvements de complexes 

ovocytes-cumulus (COC) et de cellules de la granulosa murale. Ces cellules ont été 

prélevées de follicules mesurant entre 2-10mm par laparoscopie (LOPU) aux deux 

semaines sur 12 génisses Holstein âgées de 2-6 mois. Tandis que 3 taures sont resté non-

traitées (contrôle), 9 taures ont reçu des montants variants d’hormone folliculo-stimulante 

(traitée-FSH) afin d’imiter un axe hypothalamo-pituito-ovarien actif. De plus, des CGs 

adultes ont été prélevées de 8 vaches Holstein traitées par injection de FSH. Les COCs 

des animaux prépubères ont été mis en maturation, fécondés, et culturés in vitro afin de 

déterminer leur potentiel de développement au stage de blastocyste. L’abondance relative 

de mARN de FSHR, STAR, CYP19A1, 3β-HSD, CX43, FOXO1, CALM, AKT1 et XIAP 

dans les CGs a été quantifiée par la méthode du RT-qPCR. L’abondance de mARN de 

FSHR, CYP19A1, 3β-HSD et XIAP était significativement réduite, et celle de STAR et 3β-

HSD était significativement plus élevée dans les échantillons de CGs prépubères 

contrôles à comparér aux échantillons adultes et prépubères provenant d’animaux traités 

par injection de FSH. Lors de la comparison de l’abondance de mARN aux 3 âges 

prépubères (<100, 100-130 et >130 jours), des expressions significativement plus élevées 

dans les gènes de STAR (touts les âges), 3β-HSD (≤130 jours) et FOXO1 (>130 jours) ont 

été observée dans les taures contrôles, et des expressions significativement plus élevées 

de FSHR (≤130 jours), CYP19A1 (100-130 jours) et XIAP (>100 jours) dans le groupe 

prépubère FSH. L’augmentation de la durée du traitement de FSH de 2 à 4 jours a mené à 

une réduction des mARN de STAR, 3β-HSD et CALM dans les animaux prépubères. Le 

mARN de LHR a été détecté dans un nombre significativement plus élevé de 

d’échantillons de CGs d’animaux qui ont reçu un long traitement de FSH. Les quantités 

de mARN des gènes 3β-HSD et CX43 étaient significativement réduites, et celles de 

FOXO1 augmentent chez les échantillons qui ont mené à des taux de clivage (>70%) et 

de blastocystes (>15%) supérieures à la médiane, respectivement. Ces découvertes ont 
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révélé que les CGs d’animaux prépubères répondent aux traitements de FSH par 

l’augmentation des niveaux de mARN de gènes promouvant la production d’estrogène et 

la croissance folliculaire, et par la réduction des niveaux de mARN de gènes promouvant 

la production de progestérone et d’atrésie folliculaire. Nous avons aussi observé que 

l’abondance relative de mARN de 3β-HSD, CX43 et FOXO1 dans les CGs est corrélée 

avec le clivage et le développement embryonnaire dans les génisses prépubères. 
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CHAPTER 1: INTRODUCTION 
 

Canada has become an international leader in dairy genetics through the 

development of genetic markers for the detection of high milk production. As a result, it 

is no longer necessary for a producer to wait until a cow’s first lactation to evaluate that 

animal’s production capabilities. These genetic advances are not only profitable for the 

producer, but also for the dairy industry: one that contributes over $6 billion annually to 

the Canadian economy [1]. 

Genomic tools, like single-nucleotide polymorphism (SNP) analyses, are 

currently available to predict which offspring will have a higher probability of inheriting 

a specific genotype leading to a desired phenotype [2]. Assisted reproductive 

technologies (ARTs) are regularly applied in the field of animal production to decrease 

the intergeneration interval of animals of high genetic value [3]. These technologies 

consist of in vitro oocyte collection from prepubertal females by laparoscopic ovum pick-

up (LOPU), followed by in vitro embryo production (IVEP). However, in cattle, it has 

been reported that oocytes collected from prepubertal donors yielded lower rates of 

cleavage and blastocyst development when compared to their adult counterparts [4-6]. 

The latter has been associated with lower oocyte competence at the time of follicular 

aspiration [7].  

Prior to ovulation, oocytes require the materials exchanged during bi-directional 

communication with the follicle’s somatic cells to grow and mature, to ultimately, 

acquire developmental competence. When this communication is interrupted or 

incomplete, the oocyte does not reach its full developmental potential leading to lower 

blastocyst development following fertilization [8, 9].  

 The focus of this research was to determine if the prepubertal follicular 

microenvironment lacks important factors involved in oocyte competence. This was 

achieved by evaluating how prepubertal calf oocytes respond to different gonadotropin-

stimulation protocols. These protocols aimed at mimicking an active adult hypothalamus-

pituitary-ovary (HPO) axis and at improving the acquisition of competence during the 

last stages of oogenesis. The mRNA abundance of genes expressed in mural granulosa 

cells involved in these processes were measured and compared between prepubertal and 
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mature cows to determine the molecular conditions associated with higher quality 

oocytes. 

This thesis is organized in chapters that present background information about 

ovarian development and signalling within the ovary, followed by an article presenting 

experimental design, analyzed results, and discussion. 
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CHAPTER 2: REVIEW OF THE LITERATURE 

  

            2.1 The beginning: Primordial germ cell migration 

 Primordial germ cells (PGC) are the germline founders, also known as the sex cell 

precursors, and the only cells of the body to undergo meiosis following mitotic 

proliferation [10]. Mammalian PCGs are derived from the embryonic inner cell mass, 

more specifically, the epiblast [11]. In early embryonic life, PGCs migrate from an 

extraembryonic site into XX or XY gonadal/genital ridges, which will later develop into 

the two embryonic gonads on either side of the dorsal wall of the abdomen. Together, the 

germ and somatic cells assemble in order to form the backbone to functioning 

reproductive organs [12]. In the bovine model, PCGs are first observed within the caudal 

wall of the proximal yolk sac of a trilaminar (endoderm, mesoderm, ectoderm) embryo 

on embryonic d18. Through morphological folding of the trilaminar disc between d18-

d23, creating a cylindrical embryonic body, the PGCs relocate into the embryonic hind- 

and mid-gut. From d23-d25, PGCs are predominantly housed within the embryonic 

mesonephros. Around d27, the mesonephros develops into the gonadal ridge and 

consequently houses the PGCs. Finally, from d27-d39, the germ cells become unevenly 

distributed within the sexually indifferent gonadal fold [13]. 

Successful migration of these stem-cell like cells is made possible by the 

expression of set genes, by the utilization of their filopodia [14] and integrins [15], and 

by guidance from the extracellular matrix (fibronectin) [16] and chemoattractants leading 

to the genital ridges. PGCs make their way into the bipotential gonadal ridge. Following a 

few rounds of cell proliferation, PCGs enter a proliferative arrest. Male PGCs, expressing 

the SRY gene on the Y chromosome, will remain arrested in the primitive testes in mitosis 

until puberty while female PGCs, not expressing SRY, will undergo meiosis and become 

oocytes in the primitive ovaries [10].  

 

2.1.1 Gametogenesis 

 Gametogenesis is defined by the Oxford Dictionaries as the process in which 

diploid cells undergo meiosis to form gametes, also known as mature haploid germ cells. 

There are many contrasting differences in the gametogenic processes of males and 
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females to produce spermatozoa and oocytes, respectively, and even more so between 

species [17]. Most interestingly, in males, four gametes can be produced by meiotic cycle 

and meiosis is continuously initiated in a mitotically dividing stem cell population. On 

the other hand, in females, only a single gamete is produced per meiosis and meiosis is 

initiated only once after the establishment of a finite population of cells within the ovaries 

[18]. In addition, sperm itself only contains a haploid nucleus compared to the oocyte’s 

cytoplasm, which carries all the necessary equipment (haploid nucleus, mRNAs, 

cytoplasmic enzymes, metabolic substrates, and organelles) for initiation and 

maintenance of embryo metabolism and development [17]. 

 

2.1.2 Oogenesis 

In the mammalian female, the PGCs develop into oogonia, which are self-

renewing stem cells. These cells remain with the animal for their lifetime. Oogonia 

further divide into a restricted number of egg precursor cells known as primary oocytes. 

These diploid cells undergo a first meiotic division, however, arresting in the diplotene 

stage of prophase 1. This arrest is maintained for different periods of time between 

oocytes, however, it is observed at least until puberty [17].	   In addition, oocyte 

chromosome decondensation and transcription is observed during this time lapse, 

resulting in the enormous growth of the oocytes [19].	   The combination of hormonal 

influences and the onset of estrus cycles after puberty lead to the random recruitment of 

oocytes to resume meiosis. As a result, secondary oocytes containing the majority of 

cytoplasmic content and first polar bodies are yielded. Both these haploid entities further 

divide. Although the first polar bodies divide into 2 new polar bodies, the secondary 

oocytes undergo another meiotic division, however, arresting in metaphase. Only once 

fertilization occurs will meiosis II resume and lead to the extrusion of the second polar 

body. In summary, the maturation of a single oogonium produces four progeny; 3 polar 

bodies and 1 mature fertilizable egg [17].	  

 

2.1.3 The ovary 

The mammalian ovary (“ovary” derived from the Latin word “ovum”, or egg) is 

the female reproductive gland and product of bipotential gonad differentiation during 
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embryonic life [12, 13]. It is also a paired intra-abdominal and dynamic organ essential in 

reproduction [20]. The ovary is involved in the production of steroid hormones (estradiol 

(E2) and progesterone (P4)), in follicular growth and development, in the coordination of 

cellular events leading to the development of fertilizable oocytes, and lastly, ovulation 

[12].  

 

2.1.4 Ovarian anatomy 

The ovary is composed of an inner and outer zone, the medulla and cortex, 

respectively, and of a surface epithelium found enveloping the cortex. Early embryonic 

migration of primordial germ cells (PGCs), or oogonia, occurs from extraembryonic sites 

into the genital ridges, followed by a meiotic division, allowing for the establishment of a 

finite population of oocytes within the ovary [13, 17]. Each oocyte is swallowed up by a 

primary follicle and rests within the peripheral and avascular cortical tissues awaiting 

recruitment. On the other hand, growing and atretic follicles can be observed in the 

cortical medullary border due to its rich vascularization. Stromal cells, blood vessels, 

branches of the autonomic nervous system, lymphatic drains, and embryological 

remnants can also be observed in the amygdaloid-shaped reproductive organ [20].  

 
 

2.1.5 Folliculogenesis 

 At birth, females possess a select number of oocytes in each ovary making up 

their ovarian reserve or follicular pool [21]. In cattle, this fetal reserve is estimated 

around 130,000 healthy oocytes, varying between individuals and breeds [22, 23]. 

Throughout reproductive life, follicles are cyclically recruited to grow and to mature 

oocytes for fertilization, although the greater part of the follicular pool will never reach a 

preovulatory status and will undergo atresia [21, 24]. Endocrine and paracrine factors 

determine each follicle’s fate [25]. Until ovulation, oocytes housed within primordial 

follicles are maintained dormant and in meiotic arrest in the diplotene stage of prophase 1 

[26-28]. The primordial follicles then develop into primary, secondary, antral, and finally, 

Graafian/pre-ovulatory follicles. Mature oocyte(s) are expulsed from pre-ovulatory 

follicles at ovulation and are then capable of spontaneously resuming meiosis [17, 29, 

30]. Organized and coordinated signalling events, from the hypothalamus to the anterior 
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pituitary, and finally to the ovary (Hypothalamus-Pituitary-Ovarian axis (HPO axis)), 

must occur to enable the release of a fertilizable oocyte [31]. 

 During folliculogenesis, development, growth and maturation of ovarian follicles 

are achieved predominantly by somatic cell proliferation and differentiation [32]. 

Folliculogenesis is a three-step process: recruitment, selection, and dominance. In the 

first step, dormant primordial follicles undergo continuous recruitment and are enlisted 

into the growing follicle pool [24]. From the primordial follicle onwards, ovarian 

crosstalk via gap junctions and paracrine factors between somatic cells (granulosa and 

theca cells) and the oocyte is essential for the progression of folliculogenesis [33]. Next, 

follicles from the growing pool are further selected based on their ability to escape 

apoptosis and continue their development [24]. Lastly, subordinate follicles become 

suppressed by the rapid development of the dominant follicle(s) [32].  

In addition, folliculogenesis can also be separated into two phases: the 

gonadotropin-independent (GI) and gonadotropin-dependent (GD) phases [34]. GI 

development is observed in germ cells, and primordial, primary and secondary follicle 

stages. As germ cell nests breakdown, individual germ cells become surrounded by a 

single layer of squamous pre-granulosa cells and together known as the primordial 

follicle. Next, the pre-granulosa cells observed in the primordial stage become cuboidal 

shaped granulosa cells, and together with the oocyte, form the primary follicle. Lastly, 

the secondary follicle is defined by acquiring two or more layers of cuboidal granulosa 

cells covered by a basement membrane that will in turn become enveloped by a layer of 

theca cells [12]. On the other hand, antral follicles and ovulation are dependent on 

gonadotropins [35]. Antral follicles are characterized by the development of fluid-filled 

spaces between the granulosa cells and the oocyte. Next, these spaces merge to become 

the larger antrum of the preovulatory or Graafian follicle. Two distinct types of granulosa 

cells are observed in the Graafian follicle: the mural granulosa cells which lie right 

beneath the basement membrane and the cumulus cells which directly surround the 

oocyte. Cumulus cells and the oocyte form the intricate cumulus-oocyte-complex (COC). 

In addition, two or more layers of theca cells are observed surrounding the basement 

membrane [20]. Gonadotropins, being follicle stimulating hormone (FSH) and luteinizing 

hormone (LH), are secreted into circulation from the anterior pituitary gland following 
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stimulation from hypothalamic hormone gonadotropin-releasing hormone (GnRH). Both 

FSH and LH target ovarian cells and heavily contribute to follicular growth and 

steroidogenesis, oocyte competence, and ovulation [34, 35]. The ovulating follicle(s) 

undergoes luteinization and a progesterone-producing corpus luteum  (CL) is formed 

[36].  

 Regarding mammalian females, individual reproductive life spans are determined 

by the number of primordial follicles in their finite pools of oocytes. As many developing 

follicles undergo recruitment, the majority undergo atresia, contributing to the slow 

depletion of the oocyte ovarian reserve leading to reproductive senescence [12]. 

 

2.1.6 Preparing the oocyte: Bi-directional cell communication 

Female fertility is dependent on the coordinated development of oocytes and their 

ovarian follicular environments [8]. During folliculogenesis, the latter is accomplished 

through bi-directional signalling, or ovarian cross-talk, between the oocyte and somatic 

cells (cumulus, mural granulosa, and theca cells), Figure 1 [9, 37]. Intrafollicular 

communication is most commonly achieved by the dynamic exchange of small molecules 

through specialized gap junctions and by receptor-mediated paracrine signalling [9]. 

These processes are observed from primordial follicular stages up to ovulation [38].  

In addition, previous studies have linked the developmental competence of bovine 

oocytes with gene expression patterns of follicles’ mural granulosa cells [39]. Similar 

findings have been reported in rats [40] and in humans [41]. A competent oocyte is set 

apart from an incompetent counterpart partly based on the differential expression of 

specific gene markers in granulosa cells associated with oocyte developmental 

competence. However, the underlying mechanisms allowing for the synchronous 

maturation of ovarian follicles and the oocytes housed within leading to oocyte 

competency are not completely understood [39].  
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Figure 1: Antral follicle displaying bi-directional communication between the 

oocyte and cumulus cells (Arrow 1), and between the cumulus and mural granulosa cells 

(Arrow 2). Together, they allow for exchange of materials between oocyte and mural 

granulosa cells contributing to oocyte competence. 

  

2.1.7 Oocyte Competence  

An oocyte is deemed competent when possessing the ability to undergo meiosis, 

be fertilized, and produce a healthy embryo [9]. Individual oocyte quality varies 

tremendously and not all develop to an embryo stage [39, 42]. The latter may be 

associated with poor oocyte maturation throughout folliculogenesis [39]. However, it is 

unknown which mechanisms are at play in order for oocytes to gain developmental 

competence during follicular maturation [43]. Literature suggests that the developmental 

competence of mammalian oocytes is highly dependent on intercellular communications 

between oocytes and surrounding follicular cells. More specifically, due to their close 

association, granulosa cells (GC) are thought to reflect the degree of maturation of the 

oocyte they support [9, 38, 43]. Consequently, oocyte developmental failure is most 

commonly associated with the interruption of these communications [44]. In addition, it 

has been shown that individual oocytes’ protein profiles do not influence developmental 
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competence implying that other factors are responsible for the latter [45]. For example, in 

bovines, ovarian follicular size [46] have been reported to affect oocyte competence. In 

addition, oocytes’ fates depend on the development undergone within the ever-changing 

follicular microenvironments to which they are exposed [47].  

 

2.1.8 Follicular Size  

It has been well established that oocyte quality is affected by the oocyte’s 

follicular environment [42]. In cattle, ovarian follicles measuring <4mm, 4-8, and >8mm 

in diameter are classified as small, medium and large, respectively [39]. Positive 

correlations between follicular size and oocyte competence have been made. More 

specifically, it has been shown that oocytes collected from larger follicles are more 

competent to reach the blastocyst stage compared to those collected from smaller follicles 

[48, 49]. In regards to follicular size, oocytes recovered from follicles <2mm in diameter 

have been found to be less meiotically competent and less able to achieve the blastocyst 

stage. On the other hand, the majority of oocytes collected from 3-8mm follicles were 

meiotically competent, which, following in vitro maturation, fertilization and 

development, lead to blastocyst rates up to 30% [46, 49, 50]. In addition, oocytes matured 

in vivo have yielded far more competent oocytes, leading to normal embryo development 

rates, compared to ones matured in vitro [51, 52]. It has also been shown that oocyte 

quality can be improved in a time-regulated manner through the gonadotropin-pre-

treatment of ovaries [53-55]. 

 

2.1.9 Physiological differences: Prepubertal versus adult cattle 

A first ovulation marks the beginning of puberty in heifers and many other female 

animals [56]. Prepuberty, on the other hand, is the physiological period spanning from 

birth to puberty where ovarian follicles grow in the same wavelike patterns observed in 

adult animals, however, regressing at a preovulatory stage [57, 58]. Holstein females are 

considered prepubertal from birth to 9 months of age and hit puberty between 9-10 

months old, although inter-animal variability is often observed [56, 59]. These same 

animals will only be breed after reaching sexual maturity around 14-15 months old [56]. 
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Poor developmental competence of oocytes retrieved from prepubertal animals 

has been identified in a variety of species, including cows [6], mice [60], goats [61], 

sheep [62], and pigs [63]. In cattle, prepubertal donor oocytes have been reported to yield 

10-15% of viable blastocyst on average compared with adult donor oocytes yielding 

closer to 30% [7, 64]. Research groups have identified multiple potential causes for the 

decrease in embryo development observed with prepubertal oocytes: incomplete 

cytoplasmic maturation, decreased oocyte size, modified protein synthesis, and reduced 

metabolism [49, 65-67]. It has also been proposed that variations in the expression 

patterns of specific genes in prepubertal and mature GCs directly affects oocyte 

competence, which is highly dependent on the constant communication between these 

two cell types during follicular and oocyte maturation [39, 40].  

 

2.1.10 Ovarian steroidogenesis 

Steroidogenesis is the production of active steroid hormones from a cholesterol 

precursor. In the mammalian ovary, a variety of physiological processes require 

steroidogenesis and the ensuing steroid-mediated cell signalling for normal function [68]. 

More specifically, follicular growth, oocyte maturation, and ovulation depend heavily on 

gonadotropins, androgens, estrogens, and progestins [69].  

The two main somatic cell types involved in steroidogenesis in the ovary are the 

theca cells and mural granulosa cells. First, high- and low-density lipoproteins, i.e. 

cholesterol (Chol), are sequestered from the circulation and bind to their respective 

receptors on the surface of theca cells and then undergo receptor-mediated endocytosis 

[70]. Once Chol has entered the theca cell, it is transported from the outer to the inner 

membrane of mitochondrion by steroidogenic acute regulatory protein (STAR). Since 

most of the steroidogenic enzymes are located within the mitochondrion, STAR protein is 

the rate-limiting regulator of steroidogenesis [68, 71]. Within the mitochondrion, 

cholesterol is converted to pregnenolone (P5) by enzyme Cytochrome P450 Family 11, 

Subfamily A, Member 1 (CYP11A1). Next, P5 exits the mitochondrion and enters the 

cytosol where it is converted either into dehydroepiandrosterone (DHEA) by enzyme 

Cytochrome P450, Family 17, Subfamily A, Polypeptide 1 (CYP17A1) or into 

progesterone (P4) by enzyme 3-Beta-hydroxysteroid dehydrogenase (3β-HSD). DHEA 
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and P4 are then converted into androstenedione (A4) by enzymes 3β-HSD and 

CYP17A1, respectively. Lastly in the theca cell, a portion of A4 is converted into 

testosterone (T) by enzyme 17-Beta Hydroxysteroid Dehydrogenase (17β-HSD).  

Similarly to theca cells, mural granulosa cells also express Chol receptors on their 

surface and also endocytose the steroid hormone precursor found in circulation. Chol is 

converted to P5 by CYP11A1, and subsequently, P5 is converted to P4 by 3β-HSD. Since 

granulosa cells lack CYP17A1, steroid hormone production ceases at the latter stage. 

However, steroid products synthesized in the theca cells, being A4 and T, diffuse past the 

basement membrane and enter the mural granulosa cell layer [72]. Within individual 

cells, A4 and T are converted to estrone (E1) and estradiol (E2), respectively, by enzyme 

aromatase (CYP19A1). E2 then diffuses into the antral space (i.e. follicular fluid) and 

will prove itself crucial to follicle health and survival [73]. It has been shown that in 

cattle, E2 stimulates the proliferation of granulosa cells and elevates granulosa cell 

survival through resistance to apoptosis [74] Figure 2.  

Important features present primarily on the surface of theca and granulosa cells, 

respectively, are luteinizing hormone receptors (LHR) and follicle stimulating hormone 

receptors (FSHR). Both these G protein-coupled receptors are triggered by the binding of 

their specific gonadotropin and induce second messengers. These messengers help 

regulate STAR expression and therefore, steroidogenesis. More specifically, the binding 

of luteinizing hormone (LH) and follicle stimulating hormone (FSH) to their receptors 

stimulates adenylyl cyclase, which induces an important elevation of cyclic adenosine 

monophosphate (cAMP) in both theca cells and mural granulosa cells. In turn, cAMP 

activates protein kinase A (PKA), which upregulates the expression of STAR by 

phosphorylating serine 195. In addition, cAMP plays an important role in androgen and 

estrogen production by regulating CYP17A1 and CYP19A1’s enzymatic activities in 

theca cells and mural granulosa cells, respectively [68, 75]. 
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Figure 2: Steroidogenesis within the ovarian follicle. During follicular 

development, androstenedione is translocated from the theca cell layer into granulosa 

cells, and is ultimately converted into estradiol by enzyme aromatase (CYP19A1). During 

follicular atresia, cholesterol is sequestered into granulosa cells from the blood and binds 

STAR on the mitochondrial membrane to be later internalized in this same organelle. 

Cholesterol is converted to pregnenolone, and later into progesterone by enzyme 3β-

HSD. Both estradiol and progesterone have the ability to diffuse into the follicular 

antrum. 

 

2.1.11 Hypothalamus-pituitary-ovarian axis in ruminants 

The mammalian hypothalamus-pituitary-ovarian (HPO) axis interconnects the 
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hypothalamus, the anterior pituitary gland and the ovaries via endocrine communications 

fuelled by feedback mechanisms, both stimulatory and inhibitory, Figure 3. One of the 

most important players in this signalling cascade is a peptide known as kisspeptin, 

encoded by gene kiss1. In ruminants (sheep, goats, and cattle), kisspeptin neurons, which 

release kisspeptin, are located in the arcuate nucleus (ARC) of the brain [76]. These 

kisspeptin neurons are involved in both positive and negative feedback mechanisms, 

being the regulation of GnRH at the preovulatory LH surge and the forwarding of signals 

for the regulation of GnRH secretion, respectively. Kisspeptins mediate their effects by 

binding their G-protein coupled-receptors, encoded by genes GPR54 or kiss1r, expressed 

on gonadotropin releasing hormone (GnRH) neurons. The latter are located in the 

preoptic area (POA) and in the median eminence (ME) of the brain. GnRH neurons do 

not express receptors for estrogen or progesterone as opposed to kisspeptin neurons, 

which do. As a result, fluctuating levels of circulating estrogen regulate key steroidogenic 

functions by inhibiting kisseptin expression (negative feedback on GnRH pulse 

generator) or stimulating it (positive feedback) in the ARC [77].  

The binding of kisspeptins to their receptors on GnRH neurons in the ARC leads 

to a pulsatile release of GnRH into the blood where the hormone will then leave the 

hypothalamus and travel to the anterior pituitary via the pituitary hypophyseal portal 

veins. GnRH binds to receptors gonadotrope cells in the anterior pituitary gland allowing 

for the release of luteinizing hormone (LH) and follicle stimulating hormone (FSH) into 

circulation. These two gonadotropins target the ovary, ultimately resulting in the 

activation of downstream steroidogenic pathways leading to estradiol and progesterone 

synthesis necessary for successful folliculogenesis and preparing the uterus for 

embryonic implantation, respectively [78, 79].  

For the majority of the prepubertal stage, the dominant neuronal presence in the 

hypothalamus is the Kiss1 neuron population that responds negatively to estrogen 

(negative feedback). Although it is still not fully understood in ruminants, hypotheses 

suggest that the onset of puberty coincides with body growth and development, and with 

the activation of estrogen-reactive kisspeptin neurons (positive feedback) in the ARC. 

This hypothalamic activation is linked with the secretion of endogenous estrogen in 

response to ovarian activation [80, 81]. The latter acts to increase Kiss1/kisspeptin 
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mRNA/peptide levels in the ARC, the number of projections spanning from the 

kisspeptin to GnRH neurons, GPR54’s sensitivity to kisspeptins, and to increase GPR54 

expression [82, 83]. The root cause for lack of ovulation in prepubertal animals is the 

negative feedbacks within the HPO axis. Low doses of circulating estrogen produced in 

the ovary from non-ovulation-yielding follicular waves bind to receptors in the 

hypothalamus and inhibit the release on LH, preventing ovulation, or the rupture of the 

follicular wall. It has also been shown that the number of estrogen receptors in the 

hypothalamus decreases closer to puberty, and the frequency of LH pulses increases 

ultimately leading to ovulations [84]. 

Figure 3: The HPO axis in ruminants. A) Prior to the onset of puberty, low levels 

of circulating estrogen inhibit GnRH secretion and downstream pathways, B) At puberty, 

endogenous estrogen binds kisspeptin neurons in the ARC leading to the release of 

kisspeptin. Kisspepting then binbs GPR54 on GnRH neurons in the POA, which causes 

the release of GnRH. GnRH binds its receptors in the anterior pituitary gland and leads to 

the release of FSH and LH. FSH and LH target the ovary, promote steroidogenesis and 

folliculogenesis, and cause ovulations. Adapted from [82, 83]. 
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2.1.12 Ovulation 

Ovulation is a physiological event, which occurs every estrus cycle. Some 

mammalian species ovulate a single oocyte per estrus cycle (mono-ovulatory, e.g. cows, 

humans, and horses) compared to others, which ovulate many (poly-ovulatory, e.g. pigs, 

mice) [42, 85]. In response to an LH surge, downstream events are activated in the 

ovulatory cascade and the release of a fertilizable oocyte from a dominant, or Graafian 

follicle, is achieved [86, 87]. In cattle specifically, the LH receptor (LHr) gene is 

expressed on the plasma membrane of granulosa and theca cells from antral follicles 

>7mm in diameter [88-91]. In addition, antral follicles >8mm require gonadotropin 

support in order to reach a preovulatory stage [92]. As the dominant follicle(s) continues 

to grow, the levels of synthesized E2 increase proportionally. E2 in circulation positively 

feedbacks to the hypothalamus and stimulates the release of GnRH. The latter binds to its 

receptors in the pituitary leading to the release of an LH surge. Once LH binds its own 

receptors, the activation of the mitogen-activated protein kinase (MAPK) pathway occurs 

and the oocyte(s) secretes paracrine factors. In turn, the oocyte(s) resumes meiosis, 

cumulus cells expand, follicle(s) rupture, and lastly, theca and granulosa cells undergo 

luteinzation to form an active CL [12]. 

 As previously mentioned, the lack of gonadotropin stimulation in prepubertal 

animals prevents the growth and maturation of follicles past the gonadotropin-

independent (GI) development, and consequently prevents ovulation [84]. 

 

2.1.13 The bovine estrous cycle  

Estrous cycles are hormone-dependent periods of dynamic ovarian and follicular 

development resulting in ovulation(s), or the release of a fertilizable oocyte [93]. The first 

cycle experienced by a mammalian female signifies the onset of puberty and the 

beginning of her reproductive life. In a normally cycling cow, a single estrous cycle last 

approximately 21 days. However, this length can vary anywhere between 17 to 24 days 

[94]. Cows are a polyestrus species meaning that, throughout the year, they have a 

uniform distribution of estrous cycles [95]. Ultimately, dairy herd profitability is highly 

dependent on estrus detection and reproductive efficiency [93]. 
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One estrous cycle can be divided into three separate phases (estrus, luteal phase 

and follicular phase).  The estrous cycle begins with estrus, or standing heat, which is the 

period of time prior to ovulation when a cow is sexually receptive and allows to be 

mounted by potential mates [95]. The latter can be a reliable sign indicating that the 

female is ready to be bred when the use of assisted reproductive technologies (ART) is 

involved [96]. The average duration of estrus in cattle is 15 hours, although ranges less 

than 6 hours to 24 hours have been reported. Ovulation can be observed between 24 and 

32 hours after the initiation of estrus [95]. The oocyte, or egg, is expelled from its follicle 

and travels from the infundibulum into the uterine horn where it will be available for 

fertilization [97]. Cows are a monotocous, or mono-ovulatory, species implying that a 

single dominant follicle will ovulate each estrus cycle [98].  

Following ovulation, the luteal phase is initated and typically last from days 1-17 

of the cycle [94]. The ovulatory follicle undergoes luteinisation and a corpus 

hemorrhagicum (CH) structure is first formed. As its contained blood clot is absorbed, 

the CH becomes the corpus luteum (CL). Mural granulosa and theca lutein cells within 

the CL begin to produce progesterone (P4) in order to prepare the uterus and support a 

pregnancy if fertilization occurs [99].  

The follicular phase, the last part of the estrus cycle lasting approximately 4 days 

(days 18-21), is defined by follicular development in a wave-like pattern. During each 

wave, a select number of primordial follicles are recruited from their finite pool under the 

influence of follicle stimulating hormone (FSH) [94]. These follicles are then selected 

and continue to grow and develop by luteinizing hormone (LH) stimulation. From the 

growing pool, a single follicle will become dominant, subsequently causing the death of 

other recruited follicles. However, when levels of progesterone produced by corpus 

luteum (CL) of the previous ovulation are high, ovulation of the new dominant follicle is 

inhibited and this same follicle undergoes atresia [99]. In the cow, it takes up to the 

duration of two or three follicular waves before levels of progesterone begin to drop in 

response to a lack of maternal recognition of pregnancy [100]. Uterine prostaglandins are 

responsible for the degradation of the CL, yielding a corpus albicans (CA), and 

ultimately, decreasing the levels of progesterone in circulation and allowing a new wave 

of primordial follicles to be initiated [101]. Although low levels of estradiol (E2), 
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produced by the granulosa cells, are inhibitory to gonadotropin-releasing hormone 

(GnRH) secretion, high E2 levels are stimulatory and cause the release of GnRH [102]. 

GnRH then stimulates the release of FSH, which in turn, recruits a new wave of follicles. 

GnRH then causes the pre-ovulatory LH surge, which leads to the release of a fertilizable 

oocyte from the dominant follicle and the beginning of another estrous cycle [103].  

On the other hand, when the CL is intact and progesterone is produced due to 

maternal recognition of pregnancy, the dominant follicle of any subsequent follicular 

wave will not lead to ovulation [104].  

 

2.1.14 Anestrus in bovine 

 Anestrus is a period of acyclicity, which is observed at two specific time points in 

a cow’s reproductive life. Heifers and cows experience anestrus prior to the onset of 

puberty and post-parturition, respectively [105, 106]. Since estrus and ovulation are 

lacking during anestrus, neither heifers nor cows can be impregnated during that time. 

However, it has been found that since early follicular development is unaffected, oocytes 

can still be collected by follicular aspiration in prepubertal and pubertal heifers, and 

sexually mature cows [107].  

 

2.1.15 Laparoscopic ovum pick-up (LOPU) 

 In 1974, Snyder and Dukelow first developed a technique for follicular aspiration 

and oocyte recovery in vivo by laparoscopic observation in a sheep model [108]. 

However, laparoscopic ovum pick-up (LOPU), a reliable technique for the collection of 

oocytes and their supportive cells from developing ovarian follicles, was established later 

on [109]. In cattle, the collection of ova by laparoscopy was first performed in 1980 

[110]. It wasn’t until 1994, that laparoscopy through the vaginal fornix was used as 

means of repeated aspiration of follicular oocytes in cows [111].  

When knowledge of the health status of research animals is beneficial, LOPU is 

often chosen over classical oocyte collection by follicular aspiration from slaughterhouse 

ovaries [109]. Another technique commonly considered is ovum pick-up (OPU). As 

opposed to LOPU, OPU is performed transvaginally and guided by ultrasound. A Dutch 

team, in 1988, first established the use OPU in cattle [112]. Although both techniques 
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have been proven successful in oocyte recovery, the resulting choice of technique used 

can be strongly dependant on the site of least desired trauma; OPU is less traumatic on 

the vagina, fornix and abdominal organs, and LOPU is less traumatic on the ovaries 

[113]. In addition, the animal’s anatomical size is an important factor to consider and that 

is why LOPU is performed in smaller animals. For larger animals, OPU is the practical 

and efficient, as it does not require general anaesthesia.  

Nowadays, LOPU performed in animals, small ruminants for example, is 

primarily performed through the abdominal cavity [114]. Animals are restrained in dorsal 

recumbency and placed under general anaesthesia [109]. Three small incisions are made 

in the abdominal cavity and a laparoscope and two ‘second puncture’ trocars are inserted. 

In order to increase visualisation of reproductive structures, filtered air is inserted into the 

cavity. A telescope, an atraumatic grasping forceps, and a puncture pipette are inserted 

into the appropriate trocars. After successful visualization of the ovaries, follicles are 

punctured and the follicular content, i.e. follicular fluid, oocytes and supportive cells, is 

aspirated under vacuum [114]. In the majority of in vivo studies requiring the retrieval of 

zygotes and matured oocytes from small animals, LOPU is favoured over the surgically 

invasive alternative, a laparotomy [109].  

 

2.1.16 In vitro embryo production (IVEP) 

The oocytes, more specifically the cumulus-oocyte-complexes (COC), collected 

by LOPU are commonly used for in vitro embryo production (IVEP). This is achieved by 

placing the COCs in in vitro maturation (IVM), followed by in vitro fertilization (IVF), 

and lastly in in vitro culture (IVC) to a transferable/freezable stage of development. 

Cleavage rates, being the percentage of early embryos completing a first mitotic division 

and achieving the 2-cell stage, and blastocyst rates, being the percentage of embryos 

demonstrating an inner cell mass, a trophoblast layer, and a blastocoele, are typically 

determined on Day 2 and 7 of embryo culture, respectively [115, 116]. It has been shown 

that embryos cleaving early (Day 2) are more competent and of higher quality than those 

cleaving late (Day 3). In addition, it has also been demonstrated that early cleaving 

embryos correlate with higher rates of pregnancy/transfer, implantation, and birth [117].  
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IVEP is most commonly performed in valuable animals. These valuable embryos 

are then transferred into recipient females [3]. In all, LOPU allows for a valuable donor 

animal to undergo multiple oocyte recoveries, overcoming the primary limitation of IVEP 

in livestock [118]. The early propagation of animals has been proposed by performing 

LOPU followed by IVM/IVF in oocytes collected from prepubertal animals [109]. This 

assisted reproductive technology is of economic interest as it provides great promise for 

the shortening of intergeneration intervals of animals of high genetic gain in the animal 

production industry. 

 
2.2 Genetic targets  

The complete gene expression profile within bovine granulosa cells involved in 

follicular growth, oocyte maturation and competence is not yet fully understood. In 

addition, it has been suggested that the expression profile of some of these genes is age-

dependent. As a result, determining which expression profile in GCs is the most 

favourable for increased oocyte competence is of great interest in the field of artificial 

reproductive technologies (ARTs) involving prepubertal cattle.  

 

2.2.1 Follicle Stimulating Hormone Receptor 

Follicular maturation, estradiol synthesis, and granulosa cell differentiation and 

proliferation are gonadotropin-dependent [38]. As follicles are recruited and begin to 

grow, they become increasingly vascularized. This exposure to circulating blood allows 

for the interaction of gonadotropins with their ovarian targets. More specifically, follicle 

stimulating hormone (FSH) becomes one of the key hormones regulating ovarian 

folliculogenesis [119]. FSH must bind its receptor, follicle stimulating hormone receptor 

FSHR, which is found exclusively on the surface of granulosa cells in order to mediate its 

effects [120]. However, FSHR expression is dependent on follicular stage in many 

species including bovine. In addition, FSH itself, members of the transforming growth 

factor β family (TFG-β) and epidermal growth factor (EGF) are factors that control FSHR 

expression [120].  However, follicle maturation brings on an increase in the expression of 

LHR on the granulosa cell layer, and ultimately, a decrease in the expression of FSHR in 

order to prepare the follicle for ovulation [89]. 
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2.2.2 Luteinizing Hormone Receptor 

Luteinizing hormone (LH), a gonadotropin produced in the anterior pituitary, 

enters in circulation and binds to its receptor, luteinizing hormone receptor (LHR), on the 

plasma membrane of the somatic cells within ovarian follicles [121]. LH signalling is 

required for folliculogenesis, oocyte maturation, ovulation and for the transition of theca 

and granulosa cells into their luteal counterparts in order to produce a functional 

progesterone-producing corpus luteum [122, 123]. In addition, LHR expression is 

temporal. Specifically, it has been reported that in mural granulosa cells, this expression 

is increased when approaching the preovulatory LH surge compared to theca cells which 

acquire these receptors in the early follicular growth phase [124], which allows these 

cells to commence testosterone synthesis [125]. LHR, however, is not expressed in 

cumulus cells reinforcing the concept that a physical distance does not prevent 

intercellular communications [124, 126]. In cattle, LHR mRNA was detected in granulosa 

cells of ovarian follicles between 3-7mm [43], and ≥8mm [90, 125, 127].  

 

2.2.3 Protein Kinase B 

Protein kinase B, or AKT, controls a variety of cellular functions and acts as an 

important regulator of physiology. AKT is involved in cell growth, proliferation, 

metabolism, and survival. More specifically, AKT1, an AKT isoform, is involved in 

cellular growth, and embryonic development and survival. AKT1 is an active player in the 

PI3K/AKT pathway in GCs. AKT1 phosphorylates FOXO1 deeming it inactive and, as a 

result, promotes GC steroidogenesis and proliferation [128]. 

 

2.2.4 Forkhead Box Protein O1 

Forkhead box protein O1, or FOXO1, is a FOXO family member and acts via the 

phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway [129]. FSH and LH 

utilise the PI3K/AKT pathway to activate FOXO1 and control its mRNA expression 

levels [130]. FOXO1 mRNA levels regulate the downstream expression of genes 

involved in GC metabolism and development. Therefore, FOXO1 expression tends to 

increase in granulosa cells of growing follicles. In addition, active nuclear FOXO1 in 

GCs negatively impacts the cholesterol biosynthethic pathway by causing the absence of 
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cyclin D2, CYP19A1, FSHR, LHR, and steroidogenic enzymes [129]. As a result, 

FOXO1, in early stages of folliculogenesis, is thought to inhibit abundant steroidognesis 

in GCs [130]. FOXO1 protein has been reported in high abundance in the cytoplasm of 

GCs and TCs of antral follicles. The nuclei of GCs from atretic follicles, on the other 

hand, have been found to contain the highest FOXO1 protein levels. In all, FOXO1 is 

known to negatively regulate steroidogenesis and proliferation [131].  

 

2.2.5 FSH and PI3K/AKT signalling pathways 

FSH signalling is indispensable for GC differentiation and follicular growth 

[129]. In addition, the PI3K/AKT signalling pathway is critical for oogenesis as it tightly 

regulates follicular growth, differentiation, and survival [132]. Together, these signalling 

pathways promote female fertility. 

FSH begins signalling through follicle stimulating hormone receptor (FSHR), a 

G-protein coupled receptor (GPCR) expressed on granulosa cells’ plasma membranes 

during the gonadotropin-dependent stage of folliculogenesis. This GPCR’s stimulatory G 

protein (GS) then activates adenyl cyclase (AC), which converts adenosine triphosphate 

(ATP) to cyclic adenosine monophosphate (cAMP) [133]. cAMP then activates exchange 

proteins directly activated by cAMP (EPACs), which in turn, activate rat sarcoma (RAS). 

RAS targets, activates, and phosphorylates proto-oncogene tyrosine-protein kinase Src  

(c-Src) and subsequently epidermal growth factor receptor (EGFR) [134]. The 

phosphorylation of both c-Src and EGFR induces the binding of the catalytic and 

regulatory subunits of phosphoinositide 3-kinase (PI3K). PI3K phosphorylates 

phosphatidylinositol di-phosphates (PIP2) into phosphatidylinositol tri-phosphate (PIP3). 

PIP3 then binds pyruvate dehydrogenase kinase 1 (PDK1), and PDK1 phosphorylates 

AKT1 [135]. AKT1 targets and phosphorylates FOXO1, which promotes its translocation 

from the cell’s cytoplasm to its nucleus for degradation [136]. As a result, the FSH and 

PI3K/AKT pathways lead to FOXO1 degradation, increased steroidogenesis, and GC 

proliferation and differentiation [130] Figure 4. These events have proven indispensable 

in the reproduction of bovines. 
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Figure 4: FSH and PI3K/Akt signalling pathways in granulosa cells of ovarian 

follicles. Adapted from [133, 135].  

 

2.2.6 Steroidogenic Acute Regulatory Protein  

Steroidogenic acute regulatory protein, STAR, is necessary for the synthesis of 

steroid hormones [137]. This mitochondrial protein is responsible for the transfer of 

extracellular cholesterol from the outer to the inner mitochondrial membrane [138]. The 

latter mobilization of cholesterol is the rate-limiting step of steroidogenesis [139]. In 

bovine granulosa cells, STAR expression is dependent on the stage, gonadotropin 

independent or dependent, of follicular development. Specifically, bovine granulosa cells 

cultured with FSH have been found to express significantly higher STAR mRNA levels 

compared to controls [125]. Similarly in mice, STAR is used as a marker of granulosa 

cells maturation since it has been reported that its expression is higher in mature GCs 

[140].  

 

2.2.7 Cytochrome P450, Family 19, Subfamily A, Polypeptide 1 

Cytochrome P450, Family 19, Subfamily A, Polypeptide 1, CYP19A1, is a gene 

encoding the enzyme aromatase. Aromatase is required for ovarian steroidogenesis, more 

specifically; it is the rate-limiting step in the biosynthesis of estradiol from a testosterone 

precursor [141]. Ovarian localization of CYP19A1 occurs mainly in the granulosa cell 
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layer of developing follicles transitioning from preantral to preovulatory [142]. 

CYP19A1’s expression patterns have been found to change significantly throughout 

bovine follicular growth, plateau, and atresia. More specifically, this genes’s mRNA 

abundance was significantly higher in healthy compared to atretic follicles. 

Consequently, this enzyme has proven to be a successful marker of follicular growth 

[143].  

 

2.2.8 3β -Hydroxysteroid Dehydrogenase 

3β-hydroxysteroid dehydrogenase (3β-HSD) is an important enzyme involved the 

steroidogenic casdades occurring within ovarian follicles; it is responsible for catalyzing 

the conversion of pregnenolone into progesterone within granulosa cells [144]. As a 

result, 3β-HSD controls androgen production and its expression is commonly associated 

with LHR expression near ovulation [90]. In mono-ovulatory species, if the dominant 

follicle produces high concentrations of progesterone, it will enter atresia instead of 

following an ovulatory fate [145]. In bovine follicles, it has also been reported that basal 

atretic follicles <5mm express higher levels of 3β-HSD and produce elevated levels of 

progesterone [146].  

 

2.2.9 Connexin 43 

Follicle cells have been found to directly influence oocyte growth and 

development through the supply of nutrients these cells provide it [147]. In vivo and in 

vitro communication between neighbouring ovarian cells is made possible through gap 

junctions [148]. More specifically, gap junctions are individually composed of two 

symmetrical connexons, one located on each of the neighboring cells, and which can be 

further divided into six connexin (CX) protein subunits [149]. These channels allow the 

direct exchange of ions, small molecules (<1kDa), and electrical impulses between 

adjoining cells [150-152]. In female reproductive tissues, these junctions play vital roles 

in folliculogenesis, steroidogenesis, oogenesis, and in corpus lutuem formation [153]. 

Connexin 43, CX43, is the predominant transmembrane protein in the 

granulosa/granulosa cell gap junction make-up [154].  
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Gonadotropins/cyclic adenosine monophosphate (cAMP) [155] and 

glucocorticoids [156] have been reported to regulate the expression of CX43 in granulosa 

cells throughout folliculogenesis. cAMP is one of the main molecules exchanged between 

granulosa cells, and even with the oocyte, through gap junctions in order to maintain 

oocyte meiotic arrest prior to fertilization [157]. Furthermore, elevated concentrations of 

serum FSH or in vitro FSH treatments have been found to increase the amount of mRNA 

encoding CX43 in large antral follicles [155, 158]. On the other hand, short in vitro 

exposures to LH (immediate response) have been associated with CX43 phosphorylation 

and ubiquitination, and longer exposures to LH (late response) and preovulatory LH 

surges have led to the decrease in CX43 mRNA abundance and to the elimination of 

CX43 protein [158, 159] Figure 5. In addition, previous mammalian studies have 

correlated oocyte and embryo competence with granulosa cell CX43 expression [160, 

161]. Taken together, CX43 has been found to play a critical role in the end stages of 

folliculogenesis and oogenesis [162].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Gonadotropin-dependent gap junction protein CX43 presence on antral 

follicles’ granulosa cell plasma membranes. Adapted from [123].  
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2.2.10 X-linked Inhibitor of Apoptosis Protein 

Apoptosis, or programmed cell death, in a normal physiological process, which 

readily occurs in the mammalian ovary due to its cyclical development. In addition, 

constant communication between pro-apoptotic and pro-survival molecules aid in the 

decisions of life or death of a cell. Autocrine and paracrine signalling between ovarian 

cells and involving growth factors are indispensable during follicular development. X-

linked inhibitor of apoptosis protein, XIAP, is one of the important growth factors.  [163]. 

XIAP frequently regulates early development and receptor-mediated intracellular 

signalling although its main function is to inhibit endogenous caspase activity terminating 

apoptotic signalling [164, 165]. Such activity is reported in many ovarian cell types: 

stromal cells, ovarian surface epithelium (OSE), granulosa cells, theca cells, oocytes, and 

luteal cells [166-170]. Although, oocytes undergo the highest rates of apoptosis during 

fetal development, adult life brings a marked increase in apoptosis of the granulosa cells 

of secondary and antral follicles. Granulosa cell apoptosis has been linked to meiotic 

anomalies, decreased survivial factors, and as a method of self-sacrifice [163]. In hopes 

of counteracting high rates of apoptosis, granulosa cells have been found to upregulate 

XIAP [164]. In addition, gonadotropin-induced XIAP expression has been linked to cell 

survival and control of follicular atresia in cow and rat granulosa cells [166, 171]. 
 

2.2.11 Calmodulin  

Calmodulin, or the CALM gene, is known as the calcium-dependent regulatory 

protein.  The binding of gonadotropins to their respective membrane receptors is said to 

promote the uptake of calcium into granulosa cells [172]. Cytoplasmic calcium ions 

(Ca2+) become available to bind to calmodulin following their release from organelles, 

and together, the calcium/calmodulin complex activates numerous enzymes: one of 

which is calcium/calmodulin-dependent protein kinase II (CaMKII) [173]. CaMKII has 

been linked to cell cycle resumption and cortical granule (CG) exocytosis following 

parthenogenic activation or fertilization [174, 175]. Due to the latter, it has been 

hypothesized that calcium/calmodulin and CaMKII may play a key role in establishing 

the membrane block to polyspermy [176]. However, calf oocytes have found to have a 

decreased ability for migration and dispersal of CGs following ooplasmic calcium 
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oscillations. These organelles reportedly failed to disperse evenly below the plasma 

membrane and instead remained associated in aggregates [177]. Lastly, previous studies 

have also shown that the calcium/calmodulin complex plays a critical role in 

steroidogenesis in granulosa cells, independently of their stage of differentiation, by 

regulating the concentration of cellular cyclic adenosine monophosphate (cAMP) [178, 

179].  
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CHAPTER 3: RATIONALE, HYPOTHESIS AND OBJECTIVES 
 

Literature suggests that lower embryo development rates are observed from 

oocytes collected from prepubertal compared to mature animals [6, 64, 180]. Similarly, 

successful embryo development has been positively correlated with oocyte 

developmental competence. An oocyte’s acquisition of competence occurs partially 

through the bi-directional communication between the oocyte and granulosa cells with 

ovarian follicles prior to ovulation [37]. Therefore, genes involved in steroidogenesis 

[38], apoptosis [164], cell-to-cell communication [160], and calcium metabolism [176] 

within ovarian follicles are being studied for their importance in follicular growth and 

oocyte maturation leading to improved embryo development in adults. Taken together, 

we hypothesized that genes involved in the acquisition of oocyte competence are 

defectively regulated in the mural granulosa cells of prepubertal compared to mature 

Holstein cows. The objectives of this study were to:  

1. Evaluate the effect of different ovarian stimulation protocols on granulosa 

cell gene expression in prepubertal Holstein heifers. 

2. Determine the effect of age on granulosa cell gene expression in 

prepubertal Holstein heifers. 

3. Assess if the developmental competence of the oocytes is correlated with the 

expression profile of genes in granulosa cells. 

Using a prepubertal bovine model, we determined the gene expression pattern of 

mural granulosa cells involved in follicle maturation and oocyte competence at a very 

young age. The understanding gained from these studies may lead to the development of 

protocols for improved embryo development rates in prepubertal heifers, allowing the 

shortening of the generation intervals in production animals with desired characteristics, 

and contribute to the successful use of assisted reproductive technologies (ARTs) in 

prepubertal animals. 

 
 
 

 
 
 



	   40 

CHAPTER 4 
 

 
 

Manuscript in preparation for submission to the Journal of Ovarian Research 
 
 
 

Gonadotropin treatment increases the expression of genes involved in follicular 
growth and oocyte maturation in granulosa cells of prepubertal Holstein heifers 

 

Laura Michalovic, Luke Currin, Karina Gutierrez, Werner G. Glanzner, Yasmin 

Schuermann, Rodrigo C. Bohrer, Rafael G. Mondadori, Naomi Dicks, Paulo Antunes da 

Rosa, Matheus Pedrotti De Cesaro, Rosalba Lopez, Fernando Altamura, Paula Lunardelli, 

Mariana Priotto de Macedo, Milena Taibi, Ejimedo Madogwe, Audrey St-Yves, Denyse 

Laurin, Jim Gourdon, Hernan Baldassarre, and Vilceu Bordignon* 

 

Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, QC, H9X 

3V9 

 

In collaboration with L’Alliance Boviteq. 

 

*Corresponding author: vilceu.bordignon@mcgill.ca; Tel: 1-514-398-7793 

 

 

Short title: Genetic markers in prepubertal bovine granulosa cells 

 

Keywords: Cattle, prepubertal, granulosa cells, gene expression, mRNA, follicular 

growth, oocyte competence, embryo development. 

 

Grant Support: This work was supported by the Natural Science and Research Council 

of Canada Collaborative Research and Development Grant – to VB. 

 
 
 



	   41 

4.1 ABSTRACT 

There is evidence suggesting that acquisition of developmental competence in 

bovine oocytes may be linked to the expression profile of genes in the mural granulosa 

cells (GC). To gain insight into the potential molecular changes occurring within GCs 

during the acquisition of oocyte competence, we have performed bi-weekly laparoscopic 

ovum pick-ups (LOPU) and collected cumulus-oocyte-complexes (COC) and mural GCs 

from 2-10mm follicles in 12 Holstein heifers from 2-6 months of age. While 3 heifers 

remained untreated (control) for the duration of the experiment, 9 received varying 

follicle stimulating hormone treatments (FSH-treated) to mimic an active hypothalamus-

pituitary-ovarian axis. Adult GCs were collected from 8 FSH-treated adult cows. The 

COCs from prepubertal animals were matured, fertilized and cultured in vitro to assess 

development to the blastocyst stage. The relative mRNA abundance of FSHR, STAR, 

CYP19A1, 3β-HSD, CX43, FOXO1, CALM, AKT1, and XIAP in GCs were quantified by 

RT-qPCR. mRNA abundance of FSHR, CYP19A1, 3β-HSD, and XIAP were significantly 

decreased, and STAR and 3β-HSD were significantly increased in prepubertal control 

samples compared to adult and prepubertal FSH groups. When comparing the mRNA 

abundance at 3 prepubertal ages (<100, 100-130, and >130 days), we observed 

significantly higher expression of STAR (all ages), 3β-HSD (≤130 days), and FOXO1 

(>130 days) in control calves, and significantly higher expression of FSHR (≤130 days), 

CYP19A1 (100-130 days), and XIAP (>100 days) in FSH-treated calves. Increasing the 

FSH treatment duration from 2 to 4 days lead to a significant decrease in the mRNA 

abundance of STAR, 3β-HSD, and CALM in prepubertal animals. LHR mRNA was 

detected in a significantly higher number of GC samples from animals treated with longer 

FSH protocols. Lastly, we observed significantly lower 3β-HSD and CX43 mRNA, and 

significantly higher FOXO1 mRNA in samples from animals that resulted in above 

median cleavage (>70%) and blastocyst (>15%) rates, respectively. These findings 

revealed that GCs of prepubertal animals respond to FSH treatment by increasing mRNA 

levels of genes promoting estradiol synthesis and follicular growth, and by decreasing 

mRNA levels of genes promoting progesterone production and follicular atresia. We also 

observed that the relative mRNA abundance of 3β-HSD, CX43, and FOXO1 in GCs is 

correlated with embryo cleavage and development in prepubertal heifers. 
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4.2 INTRODUCTION 

Modern genomic tools are being readily paired with assisted reproductive 

technologies (ART) in the animal production industry [181]. These technologies are 

essential as there is a growing interest in producing genetically superior offspring at 

prepubertal ages. However, it has been reported that in cattle oocytes collected from 

prepubertal animals yield lower rates of development when compared to their adult 

counterparts [4-6]. This has been associated with lower oocyte competence at the time of 

follicular aspiration [7].   

Biology normally dictates that ovarian development occurs in prepubertal 

animals, although, follicular growth and maturation is limited to the gonadotropin-

independent stages since animals at this age still have an inactive hypothalamus-pituitary-

ovarian (HPO) axis [82]. In addition, granulosa cell (GC) mRNA patterns have been 

linked to the developmental competence of bovine oocytes [39], due to intra-follicular bi-

directional communications occurring between these cell types [9].  

Gonadotropin treatments have been tested to induce follicular growth in 

prepubertal heifers, but their effects on follicular cells were not systematically 

investigated. In order to evaluate the response at the molecular level to exogenous FSH 

treatments, the abundance of transcripts encoding steroidogenic (FSHR, STAR, CYP19A1, 

3β-HSD, FOXO1, and AKT1) [120, 125, 128, 131, 143, 146], cell-to-cell communication 

(CX43) [162], apoptosis  (XIAP) [166], and calcium metabolism (CALM) [176] regulators 

were investigated in mural GCs recovered from prepubertal heifers. The objectives of this 

study were to: i) evaluate the effect of different ovarian stimulation protocols on gene 

expression in GCs of prepubertal heifers; ii) determine if the effect of gonadotropin 

treatment on gene expression in GCs is affected by the age of the prepubertal heifers; and 

iii) assess if the expression profile of genes in GCs is correlated with the developmental 

competence of the oocytes in prepubertal heifers.  

 

4.3 MATERIALS AND METHODS 

 4.3.1 Animals 

All experimental procedures using cattle were approved by the Animal Care and 

Use Committee of McGill University. Twelve Holstein calves aged between 2 and 4 



	   43 

weeks and weighing approximately 45kg were purchased from various dairy farms in 

Québec. The calves were housed at the Large Animal Research Unit of McGill 

University. They were provided water and second-cut hay ad libitum, and were fed milk 

replacer (Optivia, Shur-Gain, Brossard, QC, Canada) until two months of age and slowly 

weaned onto grain (Optivia), which was later fed twice daily. Eight mature Holstein cows 

between 17 and 22 months of age were used as positive control animals and were housed 

and cared for at L’Alliance Boviteq (St-Hyacinthe, QC, Canada). 

  

 4.3.2 Ovarian stimulation 

 Two groups of 6 calves were used in this study. The first group consisted strictly 

of gonadotropin-stimulated animals (n=6). The 6 calves from the second group were 

selected at random and placed into 2 different treatment groups: control (n=3) and 

gonadotropin-stimulated (n=3). A total of 8 (group 1) and 7 (group 2) LOPUs were 

performed every two weeks in the same animals. Prior to the LOPUs, the animals 

received either a short or long stimulation protocol. Short stimulation protocols consisted 

of FSH (Folltropin-V; Bioniche Animal Health, Belleville, ON, Canada) at 12-hour 

intervals starting 2 days prior to LOPU (FSH dose range: 60-128mg) combined or not 

with a single shot dose (200-400IU) of equine chorionic gonadotropin (eCG – Folligon; 

Intervet Canada Corporation, QC, Canada) given 36h prior to LOPU. Long stimulation 

protocols consisted of FSH at 12-hour intervals over 3 to 4 days prior to LOPU (FSH 

dose: 140mg). All injections were administered intra-muscularly (IM). A controlled 

internal drug release (0.3g progesterone/Eazi-Breed CIDR, Zoetis, MI, USA) was 

vaginally inserted in all animals 5 days prior to LOPU to prevent ovulations during the 

stimulation period. The mature cows (positive controls, n=8) were administered FSH 

(180mg total dose) every 12h for 3 days prior to ovum pick-up (OPU). Stimulation 

protocols were adjusted from one LOPU to another based on follicular response, oocyte 

recovery rates, and embryo development. 

 

4.3.3 Laparoscopic ovum pick-up (LOPU) 

Laparoscopic observation was used to recover cumulus-oocyte-complexes 

(COCs) and mural granulosa cells by aspiration of follicular contents under vacuum using 
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a 20-gauge hypodermic needle. The COCs and GCs were received in a collection tube 

containing 0.5mL of aspiration media. This aspiration medium (Vetoquinol, Lavaltrie, 

QC, Canada), was supplemented with 10U/mL of heparin (Fresenius Kabi Canada Ltd., 

Richmond Hill, ON, Canada), and 25µg/mL of gentamicin (Sigma-Aldrich, Saint Louis, 

MO, USA). LOPU was repeated up to 8 times in the same prepubertal animals 

throughout this study. Protocol adapted from [182].  

 

4.3.4 In vitro embryo production (IVEP) procedures 

The COCs from each animal were placed in HEPES-buffered TLH solution 

(supplemented with 0.3% bovine serum albumin, 0.2mM pyruvate, and 50mg/mL 

gentamicin) and washed three times to separate them from follicular fluid. COCs having 

homogenous cytoplasm and surrounded by more than 1 layer of non-expanded cumulus 

cells were placed in 50µL droplets of maturation medium under mineral oil. Maturation 

medium was composed of TCM199 (Gibco 1150059, Invitrogen Life Technologies), 

10% fetal bovine serum (Wisent Bioproducts), 0.2mM pyruvate, 50mg/mL gentamycin, 

0.5mg/ml FSH (Folltropin-V, Bioniche), 5mg/mL luteinizing hormone (Lutropin, 

Bioniche), and 1mg/mL prostaglandin E2. Maturation droplets were incubated for 24 

hours at 38.5°C with 5% CO2 in 100% humidity.  

Following in vitro maturation (IVM), the COCs were collected and washed twice 

in TLH medium before being transferred to 48µL droplets under mineral oil. The droplets 

consisted of modified Tyrode’s lactate medium supplemented with fatty acid-free BSA 

(0.6% w:v), pyruvic acid (0.2mM), heparin (2µg/mL), and gentamicin (50µg/mL). 

Fifteen minutes prior to adding the semen, the oocytes were transferred under mineral oil. 

To enhance sperm motility, penicillamin (2µL), hypotaurine (1mM), and epinephrine 

(250mM) were added to each droplet. Selected spermatozoa (Semex, Canada) stored in 

liquid nitrogen were thawed for 1 minute in 35.8°C water, laid on a discontinuous 

gradient (45% over 90%) of BoviPure (Nidacon Laboratories AB, Göthenborg, Sweden) 

and centrifuged at 600 x g for 5 minutes. The supernantant containing the cryoprotector 

and dead spermatozoa was discarded, and the pellet was then resuspended in 1mL of 

modified Tyrode’s lactate and centrifuged at 300 x g for 2 minutes. The resuspended 

spermatozoa were counted on a hemocytometer and diluted with in vitro fertilization 
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(IVF) medium to obtain final concentrations ranging between 0.5-1 x 106 sperm cells/mL. 

Lastly, 2µL of sperm suspension were added to the droplets containing the matured 

COCs. The fertilization medium was incubated at 38.5°C in a humid atmosphere of 

94.5% air and 5.5% CO2 for 18 to 22 hours.  
Embryos from individual calves from Group 1 were cultured together in vitro 

(IVC) while embryos from calves from Group 2 that received the same ovarian 

stimulation protocol prior to LOPU were pooled and cultured together in 10µL droplets 

of modified synthetic oviduct fluid (mSOF) with nonessential amino acids, 3mM EDTA, 

and 0.4% fatty acid-free BSA (ICP bio, Auckland, New Zealand) under embryo-tested 

mineral oil. The embryo culture dishes were incubated at 38.5°C with 6.5% CO2, 5% O2, 

and 88.5% N2 in 100% humidity. Embryos were transferred to new 10µL droplets of 

mSOF containing nonessential and essential amino acids 72 hours after fertilization. At 

120 hours post-fertilization, embryos were transferred to 20µL droplets of mSOF 

containing nonessential and essential amino acids to prevent toxicity due to ammonium 

concentration and nutrient depletion caused, respectively, by amino acid degradation and 

embryo metabolism. Embryos were analyzed for cleavage on day 2, and blastocyst 

development on day 7 after fertilization. Rates of development were recorded. Adapted 

from [183]. 

  

4.3.5 Granulosa Cell Isolation 

Granulosa cells from prepubertal animals were collected from follicles aspirated 

during LOPU. Under a stereomicroscope, granulosa cells from each individual calf per 

LOPU were separated from the follicular content and aspiration media using a 200µL 

pipette. The cells were placed in an eppendorf tube containing 600µL of phosphate 

buffered saline (PBS) (Life Technologies, Grand Island, NY, USA) and centrifuged for 

1.5 minutes at 1300 x g. The supernatant was removed and the cells were rinsed again 

with PBS and centrifuged for 1.5 minutes at 1300 x g to yield the final granulosa cell 

pellet. Samples were immediately placed on dry ice and stored at -80°C until RNA 

extraction. In vivo granulosa cell collections from the mature cows were performed by 

transvaginal ultrasound-guided ovum pick-up (OPU). Granulosa cells were isolated and 

stored as mentioned above.  
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4.3.6 RNA extraction and Real Time PCR (qPCR) 

Trizol was used to extract RNA from granulosa cell samples as per 

manufacturer’s Mini-Trizol protocol. The quality and quantity of RNA from each sample 

was measured using the Nanodrop 2000 (Thermo Scientific). The 260/280 ratio for all 

samples was within a range close to 2.0. cDNA was synthesized from 250ng of total 

RNA using the iScript cDNA Synthesis kit (1708891, Bio-Rad, Mississauga, ON, 

Canada). All primers were purchased from Integrated DNA Technologies (Table 1) 

(Skokie, U.S.A.). The qPCR assays were performed according to the MIQE guidelines 

[184] (Bio-Rad). The following conditions were used for mRNA analysis: an initial 

denaturation at 95°C for 5 minutes followed by 39 cycles of 95°C for 15 seconds, 58°C 

for 30 seconds for annealing and 95°C for 10 seconds. Each primer sets were optimized 

so that the efficiency was between 85 and 115% and the correlation coefficient was 

between 0.99 and 1.00. Transcript abundance for a gene of interest in each sample was 

determined by taking starting quantity (SQ) values, as displayed in CFX manager TM 

software (Bio-Rad). Relative transcript abundance for each gene of interest was 

calculated by dividing their respective SQ values by the mean SQ values of two reference 

genes (Beta-actin and Cyclophilin). 

 

 4.3.7 Statistical Analyses 

Data analyses were performed using JMP software (Cary, North Carolina, USA). 

The significance level employed for all experiments was P<0.05. The relative mRNA 

abundance between animal groups was checked for normality using the Shapiro-Wilk 

test. Sample groups not passing this normality test were further checked for normality 

using a log or ranks averaged transformation. Following normalization, experiments were 

analysed with Student’s t-test or the Least Squares Means Student’s t-test. The following 

model was used for analysis: Yij = µ + Treatmenti + eij, where Yij represents the value for 

normalized mRNA abundance from the ith treatment of the jth animal, µ is the overall 

mean, Treatmenti is the effect of the ith treatment on mRNA abundance, and lastly, eij is 

the random residual effect of the jth animal in the ith parameter (age, development rate or 

average aspirated follicular size). The proportion of LHR-positive samples was compared 

between groups using the Chi-Square test.  
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4.4 RESULTS 

4.4.1 Effect of gonadotropin treatment on mRNA levels.  

The relative mRNA abundance of FSHR, STAR, CYP19A1, 3β-HSD, CX43, 

FOXO1, CALM, AKT1, and XIAP was determined in granulosa cells of control and FSH-

treated prepubertal heifers and compared with FSH-treated adult cows. Significantly 

higher levels of FSHR mRNA were detected in adult cows compared to prepubertal 

heifers. Samples from the prepubertal control group had higher STAR and lower 

CYP19A1 mRNA than adult and prepubertal FSH-treated groups (P<0.05; Fig. 1). In 

addition, samples from the prepubertal control group had higher 3β-HSD and lower XIAP 

mRNA than FSH-treated calves (P<0.05; Fig. 1). There were no statistical differences 

between groups in mRNA abudance of CX43, FOXO1, CALM, and AKT1 (P>0.05; Fig. 

1). The average follicle size was significantly different (P<0.05) between adult FSH 

(9.38mm), prepubertal FSH (4.01mm), and prepubertal control (1.94mm) animals.  

 

4.4.2 Effect of calf age and treatment on mRNA levels.  

The relative mRNA abundance of FSHR, CYP19A1, CX43, and XIAP was higher 

in FSH-treated compared to control calves at <130 days, 100-130 days, 100-130 days, 

and at >100 days of age, respectively (P<0.05; Fig. 2). On the other hand, STAR, 3β-

HSD, and FOXO1 mRNA was higher in prepubertal control animals at the three different 

ages, <130 days, and at >130 days, respectively (P<0.05; Fig. 2). There were no 

significant differences in the mRNA abundance of CALM and AKT1 in granulosa cells 

across treatment groups at all ages (P>0.05; Fig. 2). The average follicle size was 

significantly higher in FSH-treated and control calves at ages of 100-130 days (4.93mm 

vs. 1.63mm, P<0.05) and of >130 days (3.39mm vs. 1.94mm, P<0.05). 

 

4.4.3 Effect of gonadotropin stimulation duration on mRNA levels. 

The relative mRNA abundance of 3β-HSD and CALM was higher in animals 

treated for 2 days with FSH (P<0.05; Fig. 3). On the other hand, STAR mRNA was lower 

in animals treated with FSH for 4 days prior to LOPU (P<0.05; Fig. 3). There were no 

significant differences in the mRNA abundance of FSHR, CYP19A1, CX43, FOXO1, 

AKT1, and XIAP in granulosa cells across treatment groups tested (P>0.05; Fig. 3). The 
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average follicle size between the animals receiving 2 (3.31mm), 3 (3.9mm) or 4 days 

(4.3mm) of FSH treatment was not significantly different (P>0.05).  

 

4.4.4 mRNA levels in samples with superior cleavage and blastocyst rates. 

The mRNA abundance of 3β-HSD and CX43 was higher in samples that resulted 

in below median cleavage (≤70%) compared to above median cleavage (P<0.05; Fig. 4). 

On the other hand, the mRNA abundance of FOXO1 was higher in samples that produced 

above median blastocysts (>15%) compared to below median development (P<0.05; Fig. 

4). No significant differences were observed in the mRNA abundance of FSHR, STAR, 

CYP19A1, CALM, AKT1, and XIAP (P>0.05; Fig. 4) between samples of above and 

below median cleavage and blastocyst rates. There were no significant differences in the 

average follicle size when comparing the lower and higher groups of cleavage (3.54mm 

vs. 3.75mm, P>0.05) and blastocyst development (3.52mm vs. 3.83mm, P>0.05). 

 

 4.4.5 Effect of treatment on expression of LHR mRNA. 

 Presence of LHR mRNA was determined in GC samples of prepubertal control 

and FSH-treated animals. Significantly higher numbers of LHR positive samples were 

found in calves treated with FSH for 3 or 4 days compared to those treated for only 2 

days and controls (Table 2; P<0.05).  

 

4.5 DISCUSSION  

The bi-directional mechanisms occurring between the mural granulosa cells and 

the oocyte in follicles leading to successful follicular growth and oocyte developmental 

competence are not fully understood.  There is evidence from studies in adult cows that 

these events are influenced by genes expressed in mural granulosa cells [39]. However, it 

has not been demonstrated if granulosa cells of prepubertal heifers are able to regulate the 

same molecular mechanisms. Shedding light on critical genes controlling follicular 

growth and oocyte developmental competence could help improve the success of assisted 

reproductive technologies, including in vitro embryo production, in young genetically 

valuable animals. In the present study, relative levels of FSHR, LHR, STAR, CYP19A1, 

3β-HSD, CX43, FOXO1, CALM, AKT1, and XIAP mRNA in mural granulosa cells were 
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measured in control and FSH-treated prepubertal heifers, and FSH-treated adult cows. 

These genes were chosen based on their critical roles in the regulation of steroidogenesis 

[120, 125, 128, 131, 143, 146], cell-to-cell communication [162], apoptosis [166], and 

calcium metabolism [176].  

Findings from this study first revealed that mRNA levels of FSHR, STAR, 

CYP19A1, 3β-HSD, and XIAP were altered in prepubertal control compared FSH-treated 

prepubertal and/or adult samples. This indicates that expression of genes involved in 

steroidogenesis and cell survival is altered in prepubertal heifers, but prepubertal 

granulosa cells are capable to regulate these genes in response to gonadotropin treatment. 

As expected, given their inactive hypothalamus-pituitary-ovarian (HPO) axis, prepubertal 

control animals have altered mRNA levels of genes encoding steroidogenic enzymes, 

which were evidenced by the lower abundance of CYP19A1 and higher abundance of 

STAR and 3β-HSD. It is possible that, by lacking the gonadotropins necessary to support 

follicular growth, a proportion of aspirated follicular pools in the control group had 

already begun to undergo atresia and switched from estradiol to progesterone production 

[185-187]. The fact that the mRNA expression of the apoptosis suppressor factor XIAP 

was lower in the control compared to FSH-treated samples, further suggests that more 

cells in the control group were committed to apoptosis [166].  

Findings in this study revealed that exogenous gonadotropin treatment of 

prepubertal animals might mimic an active HPO axis and stimulate follicular 

development and granulosa cell functions as in adult cows. Indeed, mRNA levels of 

FSHR, CYP19A1, and XIAP were increased, and mRNA levels STAR and 3β-HSD 

decreased in granulosa cells of FSH-treated compared to control prepubertal heifers, 

indicating less apoptosis and higher estradiol production in the follicles of the treated 

animals. It has been shown by previous studies that healthy ovarian follicles contain 

higher concentrations of estradiol compared to higher levels of progesterone and 

androgens in follicles undergoing atresia [185-187]. In this study, lower FSHR and 3β-

HSD mRNA levels were the only differences observed in samples from FSH-treated 

prepubertal compared to adult animals, which is likely due to the significant difference in 

the follicular size between these groups. 
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This study also showed that the age of the prepubertal heifers was not a 

determining factor affecting the response of granulosa cells to gonadotropin stimulation. 

Indeed, differences in mRNA abundance between control and FSH-treated animals were 

observed at different prepubertal ages: i.e., <100, 100-130, and >130 days. However, 

granulosa cells of treated and control calves older than 130 days had similar mRNA 

levels of FSHR, CYP19A1, and 3β-HSD, which suggests that the HPO axis is more 

developed compared to young ages [89, 90, 144].  

This study also revealed that extending the gonadotropin treatment from 2 to 4 

days decreased the mRNA levels of STAR and 3β-HSD, which suggests that more than 2 

days of FSH treatment is necessary to select follicles with higher estradiol than 

progesterone production capacity. It is also possible that the number of follicles 

committed to atresia was reduced in the longer treatment. The numerically higher size of 

follicles in the longer compared to the short treatment further supports this hypothesis. 

CALM mRNA was also progressively decreased by extending the gonadotropin 

treatment. Calmodulin becomes activated by binding cytosolic calcium ions, and 

together, the calcium/calmodulin complex activates important enzymatic pathways [176]. 

Our findings suggest that longer gonadotropin treatment is required to modulate the 

calcium/calmodulin pathways in granulosa cells of prepubertal heifers. Extended FSH 

treatment from 2 to 3-4 days resulted in LHR expression in GCs of prepubertal heifers, 

which is likely due to the larger size of aspirated follicles in the longer treatments. LHR is 

an indicator of follicular maturation and ovulatory potential [89], and is normally 

detected in bovine granulosa cells from follicles >8mm in diameter [125].  

Next, this study showed lower mRNA levels of 3β-HSD and CX43 in the higher 

cleavage group and higher FOXO1 mRNA levels in the higher blastocyst group. 

Together, these results suggest that steroidogenic and cell-to-cell communication targets 

may play a critical role in yielding the lower rates of cleavage observed from oocytes 

retrieved from prepubertal compared to postpubertal animals [4-6, 188, 189].  

Lastly, in this study, strictly the mRNA abundance of genes was evaluated. 

However, since mRNA abundance is not always reflective of protein abundance [190], 

performing follow-up studies to evaluate protein abundance of these same genes by 

Western blot would be of value [191]. The immunoblotting results may contribute to our 
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overall understanding of the roles of granulosa cells in the promotion of follicular 

development in prepubertal Holstein heifers in response to gonadotropin treatment.  
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4.7 FIGURES AND FIGURE LEGENDS 
 

 

 

 

Figure 1: Effect of gonadotropin treatment on mRNA levels. Quantitative-PCR was 

performed to quantify the relative mRNA levels of genes (FSHR, STAR, CYP19A1, 3β-

HSD, CX43, FOXO1, CALM, AKT1, and XIAP) in granulosa cells from non-treated and 

FSH-treated prebubertal heifers, and adult FSH-treated cows (N=8-33/treatment). Data 

were normalized to control genes Beta-actin and Cyclophilin and are expressed as a mean 

SEM (+/-). Lower case letters denote significant differences (P<0.05). 
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Figure 2: Effect of calf age and treatment on mRNA levels. Quantitative-PCR was 

performed to quantify the relative mRNA levels of genes (FSHR, STAR, CYP19A1, 3β-

HSD, CX43, FOXO1, CALM, AKT1, and XIAP) in granulosa cells of prepubertal animals 

receiving no treatment or a FSH treatment at the following ages: <100, 100-130, and 

>130 days old (N=5-17/treatment). Data were normalized to control genes Beta-actin and 

Cyclophilin and are expressed as a mean SEM (+/-). * denotes significant differences 

(P<0.05) between ages and lower case letters denote P<0.05 between stimulation 

protocols. 
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Figure 3: Effect of gonadotropin stimulation length on mRNA levels. Quantitative-

PCR was performed to quantify the relative mRNA of genes (FSHR, STAR, CYP19A1, 

3β-HSD, CX43, FOXO1, CALM, AKT1, and XIAP) in granulosa cells of prepubertal 

animals treated with FSH for 2, 3 or 4 days prior to LOPU at the following ages: <100, 

100-130, and >130 days old (N=9-33/treatment). Data were normalized to control genes 

Beta-actin and Cyclophilin and are expressed as a mean SEM (+/-). Lower case letters 

denote significant differences (P<0.05). 
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Figure 4: mRNA levels in samples with superior cleavage and blastocyst rates. 

Quantitative-PCR was performed in prepubertal FSH-treated animal granulosa cell 

samples to quantify the relative mRNA abundance of FSHR, STAR, CYP19A1, 3β-HSD, 

CX43, FOXO1, CALM, AKT1, and XIAP correlating with embryos of lower (≤70%) and 

higher (>70%) cleavage rates (N=29-37), and with embryos of lower (≤15%) and higher 

(>15%) blastocyst development (N=30-36). Data were normalized to control genes Beta-

actin and Cyclophilin and are expressed as a mean SEM (+/-). * denotes significant 

differences (P<0.05). 
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4.8 TABLES 
 
Table 1: Bovine primer pairs used in Real-Time qPCR experiments. 

 

Table 2: Effect of treatment on follicular size and expression of LHR mRNA in 

prepubertal animals. Quantitative-PCR was performed with prepubertal control and 

FSH-treated animal granulosa cell samples to quantify the relative mRNA abundance of 

LHR. Data were normalized to control genes Beta-actin and Cyclophilin. Data are 

expressed as ratios between groups or sums. Lower case letters (a,b) denote significant 

differences (P<0.05).  

 

 

 
 
 

Gene name Forward Primer Reverse Primer 
ACTB TGTGGATCAGCAAGCAGGAGTA TGCGCAAGTTAGGTTTTGTCA 
CYCLO ACAGTCAAGGCAGAGAACGG CCAGCATCACCCCACTTGAT 
FSHR AGCCCCTTGTCACAACTCTATGTC GTTCCTCACCGTGAGGTAGATGT 
STAR GAGATGGCTGGAAGAAGGTG GCCAGATAACCCCATCTCAA 
CYP19A1 GTGTCCGAAGTTGTGCCTATT GGAACCTGCAGTGGGAAATGA 
3β-HSD GCTAATGGGTGGGCTCTGAA TGATTGGTCAGGATGCCGTT 
CX43 GGGTGACTGGAGTGCCTTAG GTCCCCAGTAGCAGGATTCG 
FOXO1 CGCAGATTTACGAGTGGATGG CACTCTTGCCTCCCTCTGG 
CALM GAGGTCTCTTGGGCAGAATCC GCGGAGCTCTGCTGCACTAA 
AKT1 GATTCTTCGCCAGCATCGTG GGCCGTGAACTCCTCATCAA 
XIAP GGACGTGGATGTACTCCGTT AGCATGTTGTTCCCAAGGGT 
LHR GCACAGCAAGGAGACCAAATAA TTGGGTAAGCAGAAACCATAGTCA 

 

Treatments 

Number of 

 LHR-positive GC 

samples 

Number and size (mm) of aspirated follicles 

where LHR was detected in GCs 

 

Small (<3) Medium (3-5) Large (>5) 

Prepubertal Control 1/21 (4.8%)b 13 0 1 

2 Days FSH  1/33 (3.0%)b 4 0 17 

3-4 Days FSH 7/33 (21.2%)a 8 59 77 
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CHAPTER 5: CONCLUSION 
 

 In conclusion, there is a growing interest in producing offspring from genetically 

superior animals at prepubertal ages. However, oocytes recovered from prepubertal 

heifers are known to be less developmentally competent than those recovered from adult 

cows [6, 7]. This study investigated the expression patterns of genes involved in follicular 

growth and acquisition of oocyte developmental competence in granulosa cells of 

prepubertal Holstein heifers. Findings from this study revealed that: i) prepubertal ovaries 

are capable of responding to exogenous FSH with follicular development; ii) prepubertal 

control animals have increased mRNA levels of genes promoting progesterone 

production and follicular atresia; iii) prepubertal FSH treatments lead to the increased 

mRNA levels of genes promoting estradiol synthesis and follicular growth; and, iv) FSH 

treatments lead to an increased ability to inhibit granulosa cell apoptosis and follicular 

atresia. 
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