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Abstract 

This thesis provides a comprehensive theoretical framework to elucidate the principles and 

mechanisms that govern the formation of periodic nano-structured surfaces in biological and 

synthetic anisotropic soft materials. A new physical model is presented to characterize the interface 

wrinkling in chiral/achiral open and closed liquid crystal surfaces using the Cahn-Hoffman 

capillary vector. A nemato-capillary shape equation is derived using the well-known cellulose 

chiral liquid crystals (LC) material model system that displays the ubiquitous twisted plywood 

architecture. To analyze the origin of periodic surfaces, all possible capillary pressures and 

corresponding surface energies are systematically investigated. A scaling law is formulated to 

derive the explicit relation between the wrinkling’s amplitude to the wave-length ratio as a function 

of the anisotropic surface tension, which is then validated with experimental values. 

Then, the shape equation is applied to investigate the surface structural changes and the 

corresponding color changes in response to humidity. The formation of the water-induced surface 

undulations is investigated through the interaction of anisotropic interfacial tension, swelling 

through hydration, and capillarity at free surfaces. The optical responses of the periodic nano-

structured surfaces are studied through finite difference time domain simulations (FDTD). A novel 

colorimetric humidity sensor model based on the self-assembly formation of the chiral surface 

structures together with the water-induced multiple structural colors is established.  

The model is further extended to include both liquid crystal anisotropy of biological materials, 

bending elasticity of surfactant-like biomolecules, and substrate cholesteric order. The results 

elucidate a natural setting for the creation and control of complex real surface patterns such as 

spatial period-doubling, period-tripling, and quasi-periodicity. A morphology phase diagram is 

presented, which allows us to determine what characteristic pattern will appear on the surface 

based on the interaction of the three primitive shapes (folding, creasing, and flat).  The model is 

shown to be analogous to a driven pendulum, a connection that enables generic pattern 

classification as a function of bending elasticity, liquid crystal chirality and anchoring strength.  

Finally, the model is extended to understand the deformation of closed liquid crystal cell 

membranes. A comprehensive morphological phase diagram of the closed membrane surface 

patterns, in which we classify the characteristic regimes of membrane shapes based on the 

interaction of the three primitive shapes (ellipse, spindle-like shape, and n-fold) is presented. The 
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results indicate that, depending on the bending elasticity of the membrane, the liquid crystal 

anisotropy might be able to deform the cell resulting in anisotropic asymmetric shapes. 

 All these findings provide a foundation to understand the nano-structured surface patterns, and 

corresponding structural color phenomena in Nature. Furthermore, the coupling between the order 

and the curvature of the membrane opens up new opportunities to design novel functional soft 

materials. 
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Résumé 

Cette thèse fournit un cadre théorique approfondi expliquant les principes et mécanismes qui 

régissent la formation des surfaces nanostructurées périodiques dans les matériaux biologiques 

anisotropes. Un nouveau modèle physique qui caractérise les surfaces planes et cylindriques des 

cristaux liquides en utilisant le vecteur de capillarité Cahn-Hoffman est présenté. Une équation 

nemato-capillaire est dérivée en utilisant le modèle de l'architecture des parois cellulaires de 

plantes. Toutes les pressions capillaires et les énergies de surface correspondantes sont 

systématiquement étudiées, afin d’analyser l’origine des surfaces périodiques. Une loi d’échelle 

qui permet d’établir une relation explicite entre l'amplitude et la longueur d'onde des ondulations 

est formulée. Par la suite, cette loi est validée expérimentalement. L’équation de forme est ensuite 

appliquée pour étudier les changements structuraux de surface et les changements de couleurs 

correspondantes en fonction de l’humidité. La formation d’ondulations induite par l'humidité est 

étudiée au travers des interactions de la tension superficielle anisotrope, du gonflement 

d'hydratation, et de l'instabilité capillaire. Les propriétés optiques des surfaces sont étudiées grâce 

aux simulations des différences finies dans le domaine temporel (FDTD : Finite Difference Time 

Domain).  

Le modèle est ensuite étendu pour inclure à la fois les propriétés anisotropes des cristaux liquides, 

les propriétés élastiques des surfactants (OR tensioactifs), et l’ordre cholestérique du substrat. Un 

diagramme de phase morphologique basé sur l’interaction de trois formes primitives (pliage, 

plissage, et plat) OR (‘folding’, ‘creasing’, et ‘flat’) est présenté. Ce diagramme permet de 

déterminer le motif (OR structure) caractéristique qui apparaîtra sur la surface. Le modèle est 

présenté comme l'analogue dynamique du pendule, une connexion qui permet la classification des 

motifs en fonction de l'élasticité des membranes et des propriétés anisotropes des cristaux liquides. 

Enfin, le modèle est étendu pour comprendre la déformation des membranes biologiques 

cylindriques. Un diagramme de phase morphologique basé sur l’interaction de trois formes 

primitives (ellipse, fusiforme, et n-pli) OR (‘ellipse’, ‘spindle-like shape’, et ‘n-fold’) est présenté, 

et permet de déterminer le motif (OR structure) caractéristique qui apparaîtra sur la surface. Les 

résultats montrent que, dépendamment de l’élasticité de la membrane, l’anisotropie du cristal 

liquide pourrait être capable de déformer la cellule, ce qui entrainerait des formes asymétriques 

anisotropes. Tous ces résultats fournissent une base pour comprendre les motifs des surfaces 
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nanostructurées et les couleurs associées (OR les phénomènes de couleur associés) à ces structures 

observées dans la nature. De plus, le couplage entre l’ordre et la courbure des membranes (permet 

d’ouvrir) OR offre de nouvelles opportunités pour construire de nouveaux matériaux fonctionnels.  
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Chapter 1 

1 General Introduction  

1.1 Thesis motivation 

Liquid crystalline phases, found in many biological materials such as collagen, cellulose and 

chitin, are formed through an efficient entropy-driven self-assembly process. Biological liquid 

crystals (BLCs) are functional materials that display several unique important properties such as 

nano-scale surface ultrastructures. Relationships between the architecture of the biological liquid 

crystal materials and surface wrinkling is widely recognized but it is currently poorly understood. 

These surface patterns that form spontaneously on the free surface of BLCs are responsible for 

iridescence and structural colors, observed in some beetles and plants. The study of the formation 

of these surface undulations is fundamental in understanding structural color in nature and can 

inspire the design of optical devices with novel functionalities. Moreover, living systems can 

respond to external environmental changes by adapting their shapes. Lipid vesicles show a wide 

variety of complex topographies and morphological instabilities in response to chemical and 

physical stimuli. There is great interest in industry to efficiently mimic this behavior to develop 

bio-materials in applications such as artificial muscles and drug delivery. This thesis focuses on 

the formation mechanism of surface wrinkling and morphological patterns observed in biological 

materials, and investigates the role of external stimuli such humidity and osmotic pressure in the 

surface deformation patterns and the morphological changes. The integration of anisotropic 

material physics, pattern formation, and differential geometry developed in this thesis yields 

fundamental properties-structure-surface shape relations of wide applicability to biomimetic 

engineering. 

1.2 Liquid crystals 

Liquid crystallinity is an intermediate state between stable crystalline solids and isotropic liquids. 

Hence this state possesses both the mechanical properties of liquid such as fluidity and the 

structural properties of crystalline solids such anisotropic molecular order [1]. Liquid crystals 

(LCs) are anisotropic soft materials formed by calamitic (rod-like), discotic (disc-like), and             

v-shaped molecules/mesogens that possess long-range orientational order and varying degrees of 

positional order. Liquid crystalline phases can be classified on the basis of the controlling self-

assembly driving force (temperature and/or solvents) and average molecular order. When liquid 
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crystals exhibit phase transitions due to temperature changes, it is defined as a thermotropic liquid 

crystal and when the phase transitions occur due to solvent concentration, it is known as lyotropic. 

The phase transition in thermotropic LCs is mainly driven by van der Waals interactions [2]. 

While, the formation mechanism of lyotropic phases is an entropy driven process; the phase 

transition is governed by excluded volume interactions [3]. The lyotropic phase is essentially 

formed in aqueous solutions of amphiphilic molecules such as soaps, detergents, and 

phospholipids which tend to self-assemble to form spherical and cylindrical bilayers, vesicles, and 

micelles. As the concentration of amphiphilic molecules increases, various lyotropic structures can 

be obtained (see Figure 1-1). When the concentration of amphiphile in aqueous solution exceeds 

~10% by weight, the simple spherical and cylindrical micelles undergo conversion to hexagonal, 

cubic and lamellar phases [4]. These LCs are abundant in Nature, specifically in living systems. 

Figure 1-1. Schematics of lyotropic liquid crystals: (a) spherical micelles, (b) cylindrical micelles, 

(c) hexagonal phases, (d) cubic phase (e) lamellar phase. Adapted from ref [5].  

Thermotropic LCs are generally classified based on the average molecular orientation into three 

main phases known as (1) nematics, (2) cholesterics, and (3) smectics (see Figure. 1-2). The 

nematic phase possesses partial orientational order and lack of positional order; in this phase the 

long axes of the molecules are preferably oriented along a particular direction [6]. The preferred 

average molecular orientation known as the "director" is represented by the unit vector n. When 

the molecules are intrinsically chiral, or when a chiral dopant is added to nematic LC phases, the 

nematic phase undergoes a macroscopic helical distortion around an axis perpendicular to the 

director resulting in the cholesteric LC phase,  also known as the twisted nematic phase (N*) [7].  
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Figure 1-2. Schematics of the classification of the liquid crystal mesophases in terms of average 

molecular orientation: (a) nematic, (b) cholesteric, and (c) smectic. n represents the director field 

towards which the molecules show preferred orientation. H is the helix unit vector showing the 

rotation axis of director, and po is the pitch. 

Cholesteric LCs can be portrayed by a multi-layered configuration where the molecules are laid 

down parallel in each layer, whereas the orientation of molecules between layers changes by a 

slight constant angle. The periodic structure can be characterized by a length scale known as the 

pitch P0, which is defined as the distance through which the molecules undergo a 2π rotation. The 

pitch is generally of the order of few micrometres and it is affected by physicochemical factors 

and external stimuli. Smectic phases exhibit both orientational order of long molecular axis and 

translational order which is partial positional order along the vertical axis. In this phase, the 

director n shows the average orientation of the long molecular axes in each layer; the molecules 

are free to move within the plane of each layer. As within each layer a variety of molecular 

arrangement is possible, different types of smectic LCs can be classified e.g. when the average 

orientation of the long axis is perpendicular to the layer plane results in smectic A phase and when 

the average orientation is tilted results in the smectic C phase [8]. This thesis only considers   

cholesteric and nematic liquid crystals.  

1.3 Biological liquid crystals 

Biological liquid crystals (BLCs) are anisotropic structural and functional materials displaying 

long range orientational order and partial positional order [1]. Liquid crystallinity is abundantly 
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found in living systems such as DNA in human cells [9], cellulose in plant cell walls [10], chitin 

in arthropods cuticles [11], and collagen in human compact bones [12]. Some examples of liquid 

crystalline analogues observed in nature are presented in Table 1-1. BLCs can be classified into 

[13]: (i) solid liquid crystal analogues, (ii) in vitro solutions, and (iii) in vivo liquid crystals. 

Biological liquid crystals are generally formed by self-assembly (plant-based plywoods) and/or 

flow processes (silk), exhibit multiple length scales and multifunctionality, are responsive to 

changing environments, and are capable of healing and regeneration [14]. The multiple length 

scale nature of biological materials arises from the typical sequential assembly of molecular 

chains, microfibrils, filaments, and fibers, as found in cellulose, collagen, and chitin. 

Multifunctionality of biological liquid crystals is found by the combination of mechanical and 

optical properties as in insect eye lenses, bird cornea, and certain beetle cuticle optics. The liquid 

crystalline order and topological defects in biological analogues are typically that of  cholesteric 

and hence they are referred as biological helicoidal plywoods, also known as the Bouligand 

structure [15]. Helicoidal plywoods are found in plant cell walls, insect cuticles, bones, corneal 

tissues and eggshells, and are formed by directed self-assembly when the elongated molecules or 

filaments with a high aspect ratio align spontaneously above a critical volume fraction, the Onsager 

threshold [15]. Hence, understanding the self-assembly mechanism through which the biological 

liquid crystalline phases arise in fibrous composites is crucial in unravelling the fundamental 

mechanisms of nature’s material synthesis. The response of biological liquid crystals to 

environmental stimuli includes structure adaptation to changing  in mechanical stress, chemical 

composition, and pH; for example helix pitch in cholesterics is a function of chemical composition 

[14]. Examples of healing and wounding recovery are found in the epidermal lamella where initial 

random collagen fibrils become oriented into a laminated structure [11]. These multi-scale nature 

and multifunctionality in biological liquid crystals are expected to open up novel opportunities for 

biomimetic design of bio-inspired materials and devices. This thesis focuses on biological 

cholesteric liquid crystals (BCLCs) as the representative liquid crystalline analogues in plant cell 

wall and biological nematic liquid crystals (BNLCs) as the representative liquid crystalline 

analogues in living cell membranes. In the following section, the microstructure, properties, and 

functionalities of plant cell wall and biological cell membranes are discussed.  
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Table 1-1. Biological liquid crystals observed in living systems (adapted from ref. [14, 15]). 

Solid Biological Analogues In vitro 

solutions 

In vivo liquid crystals 

Exoskeleton of insects [10, 11, 16, 17]  Collagen [18-20] DNA [21, 22] 

Plant cell wall [23-26] Cellulose [27-29] Spider silk [30-32] 

Bone osteons [11, 12] DNA [33-35] Collagen in egg shell & glands of dog fish [36, 37] 

Epidermis of fish [38, 39] Actin [40, 41] Sickle-Cell hemoglobin [42] 

Membranes of animal eggs [11, 43] Mucin [44, 45] Microtubule [46] 

Cornea [11, 47, 48] Chitin [49-51] Chromosomes of dinoflegallate and bacteria [52] 

 

1.4 Plant cell wall 

The plant cell wall is a stiff and viscoelastic composite, behaves as a supporting structure and 

allows surface expansion [53]. The main components of the cell wall are cellulose, hemicellulose, 

lignin, protein, and pectin. The typical thickness of plant cell walls is about hundred times thinner 

than the cell thickness (0.1 to 0.3 μm). As shown in Figure 1-3 plant cell wall is a layered structure 

with a primary cell wall (p) laid down during growth on the outside and three secondary cell walls 

(S1, S2, S3) that formed when the cell has reached its final size and shape [54]. The primary and 

secondary wall layers differ in detailed chemical composition (cellulose and hemicellulose content 

is greater in secondary walls than primary wall) and structural organization (cellulose microfibril 

(CMF) in primary wall is organized in a loose interwoven texture, while CMF is well oriented in 

secondary layers). But, their basic structure is the same: hemicellulose and lignin matrix reinforced 

by cellulose fibers. The thickness of S2 layer is generally much higher than that of S1, S3, and 

primary layers. Each cellulose fiber has about 3-4 nm diameter and several hundred nanometers 

length. The angle between the cellulose fibers and the cell axis is known as the MFA (microfibril 

angle). Generally, the measurement of MFA for the whole cell wall is based on the approximation 

of MFA in the S2 layer. The MFA usually varies between 0 to 40° in the S2 layer [55]. The cell 

wall structure controls the complex shape of plants and their mechanical behavior [56]. The 

important characteristics of plant cell walls are explained as follows. 
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Figure 1-3. Schematic of multilayered plant cell wall structure. P is primary cell wall; S1, S2, and 

S3 are secondary cell wall layers [54]. 

 

The primary and secondary walls can be regarded as a biological composite with cellulose fibers 

embedded in a matrix of hemicellulose and lignin. In the plant cell wall, CMF in the polysaccharide 

matrix are oriented in strategic directions to form an anisotropic structure, generally a plywood-

like laminated architecture with the goal of attaining good mechanical properties in all directions. 

The twisted plywood structure also known as helicoidal structure is the most abundant architecture 

in living systems. In many skeletal support systems of plants and animals, cellulose, chitin, and 

collagen occur in the form of microfibrils ordered in a chiral nematic fashion (helicoids). In nature, 

the twisted plywood organization can be found in planar and cylindrical configurations. The planar 

twisted plywood structure is characterized by a series of planes with parallel CMF in each layer 

where the CMF direction changes from layer to layer by a regular angle (10° to 20°) as in the stairs 

of a spiral staircase (Figure 1-4a). One of the most distinctive characteristics of the helicoidal 

structure is the series of superimposed nested arcs observed in any oblique cross section (Figure 

1-4b). The helicoidal plywood is a unidirectional periodic structure in which the arced pattern 

repeats over a length P0/2, where P0 is the helix pitch (Figure 1-4c). In the cylindrical twisted 

plywood structure, the parallel and equidistant planes become a set of coaxial cylinders, and fiber 

orientation represented by parallel helices. The fiber orientation slightly changes from one cylinder 

to the next (Figure 1-4d).  
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Figure 1-4. Twisted plywood structure; a) planar twisted plywood structure b) oblique cross 

section c) length scale (pitch) d) cylindrical plywood structure [12]. 

 

Plant cell wall can be considered as an extracellular component that shows complex hierarchical 

organization from the macroscopic scale to the nanometer scale, each level involving of analogous 

molecular components, but giving rise to different and independent functional properties and 

adaptions [57]. At these levels of hierarchy, plants manifest a wide variety of adaptable parameters 

such as cell shape, the orientation of cellulose microfibrils within cell wall, arranging the 

constituents in layers of varied thickness and chemical composition. This organization enables 

plants to structurally adapt with high efficiency on every hierarchical level, because all levels of 

organization are tightly integrated. The hierarchical organization found in a woody tissue is 

depicted in Figure 1-5. Typical magnitudes of the different structures are given based on the 

information from bamboo emphasizing the hierarchical nature found from the molecular scale of 

cellulose fibrils to the micron scale of plywood helicoids found in the plant cell wall, up to the 

millimetre scale of plant cellular structure. This hierarchy makes it possible to extract scientific 

and engineering principles of plant-based biomimetic at different length scales [58]. 
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Figure 1-5. Hierarchical organization in bamboo as a woody tissue [59]. 

The plant cell wall is a multifunctional, dynamics structure that provides mechanical strength to 

the plant tissue, maintains cell shape, controls cell expansion, and regulates transport [54]. Because 

of the limited chemical composition (C, H, O, etc) and processing conditions (low temperature and 

pressure), plants have evolved the water actuation mechanisms that rely on their internal 

heterogeneous architecture. In fact, the sophisticated structure of the plant cell wall is the basis of 

the actuation systems in plants [60]. This actuation system can be divided into two forms: surface 

and bulk actuations. Although, the anisotropic structure of plant cell walls is the source of both 

actuation forms, different mechanisms are involved in each. This thesis deals with surface 

actuation mechanism in plant-based plywoods.   

1.5 Biological and synthetic membranes  

Biological membranes generally contain an oriented bilayer of phospholipids, the 

basic structure of all living cells, such that the hydrophobic tails face each other and the 

hydrophilic phosphate heads the aqueous phase [61]. Although cell membranes including a set of 

proteins, phospholipids, and cholesterols are complex structures, they all share the basic membrane 

structure (see Figure 1-6). Different types of proteins are linked to extracellular or intracellular 

surfaces of the cell membrane, cholesterol is situated among the phospholipids (close to 

hydrophilic heads), and carbohydrates are placed in the outer surface.  

Despite their simple flat configuration, biological membranes can vary to a wide variety of 

complex topographies and display morphological instabilities in response to different physical and 
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chemical conditions [62, 63]. Several membrane models have been presented to study the 

fundamental properties of lipid bilayers such as unilamellar and multilamellar vesicles [64], 

supported bilayers [65], and nano-discs [66]. Lipid bilayers in water (analogous to lyotropic liquid 

crystals) generally form vesicles which are well-known examples of closed biomembranes and act 

as the simple representation of cell membranes. The diameter of vesicles is in a range between 50 

nm to tens of micrometers, and the thickness of the vesicles is a few nanometers [67]. Larger 

vesicles commonly referred to as Giant Unilamellar Vesicles, GUVs) are large enough biomimetic 

models (tens of microns in size) of cellular membranes that have played a prominent role in 

studying biophysical characteristics of living cells. As quantifying the membrane shape variations 

in nucleated cells is experimentally challenging, shape selection of single isolated membranes is 

typically studied in red blood cells (RBCs) and in model systems, typically giant unilamellar 

vesicles (GUVs) [68]. A healthy blood cell typically has a biconcave shape, known as discocyte. 

By changing several system parameters such as osmotic pressure, cholesterol content, and pH, the 

cell shape can be changed into other shapes. Shape variations in red blood cells, known as 

poikilocytosis, can be correlated to pathological conditions and can be used in clinical diagnosis 

of diseases, such as trauma, infections, and cancer [69, 70].  

As the lipid bilayers exhibit long range ordering [71], they might be regarded as liquid crystals. 

Besides, liquid crystalline phase and topological defects are found in numerous biological 

materials, such as DNA [9], cellulose [10], chitin [11], and collagen [12]. Liquid crystallinity not 

only governs most physical aspects of biological morphogenesis, but it also contributes in the 

detailed organization of cells and living tissues [72]. A cell membrane can exhibit anisotropic 

behavior due to lipid tilt, lipid rotation, and chirality [74] or due to external macromolecules like 

proteins [75]. 
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Figure 1-6. The schematic of cell, a phospholipid bilayer with embedded cholesterols, proteins, 

and carbohydrate chains [73]. 

Liquid crystallinity of actin or tubulin polymer networks can also contribute in controlling shape 

deformation in biological cells. Besides, it has been shown that the morphological patterns of some 

lyotropic liquid crystal droplets closely resemble the geometries and symmetries of living tissues 

and cell membranes [76]. Lipid-forming bilayers can be biological or synthetic, and bilayer 

elements are not necessarily always lipids, as new liposomes known as polymersomes can also be 

formed from polymers. Polymersomes are macromolecular synthetic analogs of phospholipids 

nanostructures composed of amphiphilic block copolymers that have a size range between 50 nm 

and 5 µm [77]. Polymersomes exhibit a large variety of morphologies that can be controlled by 

copolymer composition and subsequently respond to chemical or physical stimuli such as pH, 

osmotic pressure, and temperature [78]. Abdelmohsen et al. recently reported the osmotically 

induced shape transformation of spherical poly (ethylene glycol)-b-poly(styrene) (PEGPS) 

polymersomes into stomatocytes through reduction of the inner volume [79]. Polymersomes have 

revealed a great potential in biomedical applications from drug delivery to artificial organelles due 

to their higher stability and membrane integrity compared to liposomes [78]. This thesis presents 

a systematic modeling approach to derive the equations coupling topology, elastic free energy, and 

anchoring conditions that can be used in analyzing the surface morphologies observed in liposomes 

or phospholipid bilayer, surfactant-coated nematic liquid crystal droplet or liquid-crystalline lipid 

monolayers, and polymersomes (see figure 1-7).  
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Figure 1-7. Anisotropic drops with complex coatings. (a) Liposome, (b) surfactant-coated nematic 

liquid crystal droplet, and (c) polymersome.  
 

1.6 Free surface patterns 

Surface ultrastructures are found in many biological materials such as periodic undulations 

observed in films of concentrated collagen [19], silk gland ducts of golden orb-web spider 

Nephilaclavipes [31], exoskeleton of the beetle Chrysinagloriosa [17], and cellulosic materials 

[28, 29]. The interaction of liquid crystal self-assembly and free surface capillarity is manifested 

in beetle exocuticles and spiders duct interfaces. It has been shown that the surface patterns in the 

exoskeleton of beetle Chrysina gloriosa and in the duct of silk secreting glands in spider Nephila 

clavipes closely resemble the atomic force microscopy image of the focal conic domains that 

spontaneously arise on the free surface of cholesteric liquid crystals, CLCs (see Figure 1-8) [17, 

82]. The well-organized near hexagonal packing and spiral structure observed in each cell on the 

beetle exoskeleton correlates nicely with the conical form [17]. The duct of silk secreting glands 

in spider silk has similar surface undulations of periodicity 270 nm, the defect disclinations, and 

fiber orientation close to the surface which are like the defect patterns near the free surface of a 

siloxane oligomer-based cholesteric liquid crystal and the beetle exocuticle [17, 31, 81]. 
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Figure 1-8. Surface patterns in the exoskeleton of beetle Chrysina gloriosa and in the duct of silk 

secreting glands in comparison with the free surface of cholesteric liquid crystals a) SEM image 

shows the nested arcs and a waxy top layer the beetle C. gloriosa b) bright-field TEM images of 

sections taken from the silk gland ducts of N. clavipes c) orientation distribution of cholesteric 

with surface defects. Adapted from  [17, 31, 81]. 

 

Furthermore, the surfaces of plants show a variety of micro/nano periodic structures that can be 

observed on seed, leaf and most frequently on flower petals (Figure 1-9) [83]. These surface 

patterns are responsible for several fascinating mechanical and optical properties observed in some 

plants. They can provide super hydrophobicity and functional support for the cell, and they can act 

as a diffraction grating [84]. The surface wrinkling can be parallel to or perpendicular to the long 

axis of the cell, or can lie in more complex patterns.  
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Figure 1-9. Surface wrinkling in flower petals. (a) Tulip ‘queen of the night’, (b) Scanning electron 

microscope image of the outer (abaxial) epidermis of the tulip, (c) The Venice mallow (Hibiscus 

trionum) flower (d) Scanning electron microscope image of the upper surface of the purple patch, 

(e) The Yunnan rhododendron flower, (f) Scanning electron microscope image of the epidermal 

cells of the petals, (g) The daisy Ursinia calendulifolia flower, (h) Scanning electron microscope 

images. Scale bars: 10 𝜇m. Adapted from [84]. 

 

The surface undulations in living systems are not limited to single-wavelength sinusoidal 

patterns, and a rich variety of multi-scale and complex patterns, such as folding, creasing, spatial 

period-doubling, and quasi-periodicity arise on surfaces of plant tissues, animal organs, and 

spatially confined membranes. Figure 1-10 illustrates some examples of the fascinating 

morphological patterns found in various types of living systems across multiple size scales, such 

as period-doubling spatial patterns in the esophageal mucosa [85], period-doubling spatial patterns 

in the pulmonary airway [86], creases on the cerebral cortex [87], and the multi-lengthscale 

undulations in the tulip “Queen of the Night” [88]. Although the formation of these morphological 

patterns is governed by several complex genetic and biochemical processes, the general formation 

mechanism has been believed to be the growth-induced mechanical instabilities that produced by 

the compressive strain between biological layers with different swelling or shrinking rates [89].  
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Figure 1-10. Complex surface wrinkling in living membranes. (a) a typical ring cut from a bovine 

esophagus b) normal and asthmatic airways, (c) human cerebral cortex d) multi-scale surface 

grating of tulip “Queen of the Night” petals that reflect the double wavelength periodic wrinkling. 

The grating of short wavelength, λ2≃1.2 μm, are superimposed on longer waves of length 

λ1≃29μm. Adapted from [85]. 
 

These patterns can be categorized into wrinkles, folds, creases, and period-doubling (see Figure 

1-11). The type of surface morphological patterns can be associated with pathological and 

physiological conditions of biological tissues and be used in clinical diagnosis of diseases such as 

trauma, asthma, infections, and cancer. For instance, deeper folds have been observed in asthmatic 

airways in comparison with healthy airways [90]. 

In addition to these in vivo observations, concentrated collagen solution (20 mg/ml) forming 

cholesteric films are known to exhibit periodic undulations of similar scales at the free surface 

with amplitude of the order of 150 nm, an order of magnitude smaller than its cholesteric pitch of 

the order of 3.5 μm [19]. Similar surface topography and undulations of the order 500 nm is known 

to arise in 18 wt.% solutions of cellulose [29]. 

Although, considerable efforts have been directed in formulating and validating theoretical 

models that attempt to explain these complex surface wrinkling in biological soft materials, 
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previous studies have been restricted to bilayer elastic models where a stiff film resting on a 

compliant elastic substrate. There are few studies considering other chemical and biological 

mechanisms coupled with the compression-induced elastic deformation contributing to the 

wrinkling behavior in biological surfaces and membranes. One of the objectives of this thesis is to 

develop a physical model that includes liquid crystal anisotropy of biological materials, bending 

elasticity of surfactant-like biomolecules, and substrate helicoidal structure to describe the 

complex real surfaces. 

 

 

Figure 1-11. Schematics of surface wrinkling: (a) wrinkling, (b) folding, (c) double-periodicity, 

and (d) creasing. 

 

1.7 Structural color 

Structural color is widespread in animals and plants. The primary purposes of structural colors 

in Nature are the ability to camouflage against variety of backgrounds, mating and social signaling 

[91]. The helicoidal plywood has been reported as the structure directly responsible for generating 

structural color and iridescence in several plants [92], beetles [17], and fruits [93]. The iridescence 

and structural color in plants are typically associated with diffraction grating, multilayered 

interference, and helicoidal architecture (see Figure 1-12). Structural color in floral plants 

originates mainly from ordered surface diffraction gratings [94]. When the periodicity of the 
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surface undulations is of the same order of the incident light wavelength, the structure has the 

potential to generate iridescence through the diffraction grating mechanism. The ordered surface 

gratings scatter incident light in the plane perpendicular to the direction of the periodic undulations 

based on the grating equation [94]: 

0
i dm (sin si

p
n )

2
      

(1.1) 

where θi and θd are angles of incidence and diffraction which govern the angular locations of the 

principal intensity maxima for the diffracted incident light with wavelength λ, and m is the 

diffraction order. When the incident light is along the surface, mainly first order reflection occurs. 

While, for oblique incidence of light higher order reflections can happen [95]. Considering Eq. 

1.1, for any given value of the angle of incidence θi, each wavelength λ scatters into different 

angular directions. When the incident light is white light, different colors disperse in the 

perpendicular direction of the periodic structure, making the surface iridescent. One of the 

outstanding examples of diffraction grating in flowers is the iridescent purple color of the tulip 

“Queen of the night” [94].   

Structural color in leaves originates mainly from multilayer interference of materials with 

different refractive indexes or from helicoidal structure of the plant cell wall [94]. When incident 

light reflects at each interface between materials with different refractive indices, based on the 

wavelength and the angle of incidence, the reflected beams might have interfered constructively 

or destructively [96]. In fact, the multilayer acts as a filter and reflect a certain wavelength. 

Consider a multilayer made of two materials with thicknesses d1 and d2 and refractive indices n1 

and n2 respectively (see Figure 1-12b). For (n1 > n2), constructive interference occurs when the 

phase difference of a beam traversing both materials is a multiple of the wavelength [96]: 

1 21 1 2 2m n d cos n d cos      (1.2) 

If the phase difference of two beams reflected at the interface between two materials equals to 

(𝑚′ +
1

2
)𝜆 where  𝑚′ < 𝑚, Eq. 1.2 becomes: 
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At a normal incidence of light and 𝑚′ = 0, Eq. 1.3 equals to 𝑛1𝑑1𝑐𝑜𝑠𝜃1 =
𝜆

4
, hence the quarter-
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wave stack is ideal for multilayer interference [96].  

The helicoidal architecture in plant cell wall can also generate iridescent colors. As the 

orientation of the cellulose microfibrils in helicoids changes between layers, the refractive index 

also changes from one layer to the next, which generates the reflection of polarized light in the 

opposite direction of the helix axis [94]. In the case that the difference between the refractive index 

of the cellulose microfibrils and the matrix is insignificant, the maximum reflectivity is obtained 

for 𝜆 = 2𝑛𝑝0, where n is the refractive index of the cellulose microfibrils, and P0 is the helix pitch 

(see Figure 1-12c). One of the outstanding examples of helicoid architecture in producing 

iridescent blue color in leaves happens in the tropical plant “Selaginella willdenowii” [97].  

Numerous efforts have been made to capture the helicoidal architecture in solid films to create 

colored iridescent films [98-100]. In the preparation of a lyotropic cholesteric mesophase, 

Werbowyi and Gray discovered that concentrated aqueous solutions of hydroxypropyl cellulose 

(HPC) displayed iridescent colors that changed with concentration and viewing angle [101]. 

Fernandes et al. fabricated iridescent solid cellulosic films with tunable mechanical and structural 

color properties, which mimic the structures found in the surface of the “Queen of the Night” tulip 

petals [102]. They indicated that the formation and periodicity of the surface structure are governed 

by the helicoidal structure.  

1.7.1 Color change in response to environmental stimuli 

Color change in response to environmental stimuli is ubiquitous in plants and animals. The 

iridescent blue color in the fish Chrysiptera cyanea can change to ultraviolet (see Figure 1-13a) 

by the simultaneous change in spacing of the adjoining reflecting plates [104]. It has also been 

observed that the beetles Dynastes Hercules and Coptocycla can vary their coloration in response 

to humidity [105,106]. The elytra of longhorn beetles Tmesisternus isabellae reacts to water 

absorption by color change, from golden in the dry state to red in the wet state (see Figure 1-13b). 

The factors controlling color change are the swelling of the multilayer pitch (from about 175 nm 

in the dry state to about 190 nm in the fully wet state) and the water infiltration [107]. 
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Figure 1-12. Schematics of three main mechanisms responsible for producing iridescence and 

structural color: (a) diffraction grating (b) multilayer interference (c) helicoidal structure. Adapted 

from [94, 103]. 

 

Structural colors in some plants can also be the result of a response to humidity, light, and touch 

through the change of bulk and surface nanostructures, among other external stimuli. One of the 

interesting examples is a tropical rainforest plant, Selaginella willdenowii that possesses iridescent 

blue leaves that can dynamically respond to hydration and dehydration. It has been shown that the 

iridescent blue color turns to green when the leaves are immersed in water, with  blue color 

reappearing when the leaves are dry [108]. Electron microscopy of iridescent blue leaves show 

that optical effects upon humidity changes are mediated by altering the twisted plywood structure 

(helix pitch) in the plant cell walls (see Figure 1-13c). The reported lamellar spacing in green 

leaves is 268 ± 2.2 nm, which is larger than the lamellar spacing in blue leaves, 141 ± 2.4 nm [92].  
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Figure 1-13. Structural color change in response to environmental stimuli: (a) the iridescent blue 

color and ultraviolet in the fish Chrysiptera cyanea (b) color change in the beetle Tmesisternus 

isabellae from golden in the dry state to red in the wet state (c) color change in the tropical plant 

Selaginella willdenowii from iridescent blue color to green through hydration; scale bars: 0.5 μm. 

Adapted from [104], [107], [108]. 
 

Similar behavior is observed in a hygroscopic liquid crystal polymer film that responds to 

temperature and humidity by changing its color [109]. It has been proved that that when humidity 

is high, the film swelling results in a pitch increase as opposed to the case of low humidity, which 

causes a decrease in the pitch with consequent film shrinkage. Such structural colors observed in 

the animal and plant kingdoms [96] offer an interesting area for biomimetic design of optical 

sensors because of its quite simple mechanism, limited biomaterial resources (cellulose, chitin, 

keratin, and collagen), ambient conditions (low temperature and pressure), and multi-scale domain. 

Understanding the formation of the surface gratings is crucial in understanding structural color in 

nature and can inspire optical devices with novel functionality.  
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1.8 Cylindrical shapes of cell membranes 

Biological membranes exhibit a variety of complex shapes including elliptocyte, discocytes, 

stomatocytes, pear-shaped, echinocyte, and starfish. Figure 1-14 illustrates some of the 

morphological patterns observed in giant vesicles and red blood cell as the typical examples of 

lipid bilayers. By varying the chemical and physical parameters such as osmotic pressure and 

chemical concentration across the membrane, transitions from one configuration to another can be 

observed. Several mechanisms can be considered as the sources of the membrane curvature [75]: 

1) different composition of phospholipids on either side of the bilayer 2) helix insertion 3) shape 

of proteins 4) scaffolding by proteins, and 6) Cytoskeletal proteins. Figure 1-15 shows a number 

of possible examples induces the membrane curvature. 

 
Figure 1-14. Confocal images of giant vesicles (a-e) and red blood cell (f) with the schematic 

vesicle shape configurations: (a) elliptocyte, (b) discocyte, (c) stomatocyte, (d) pear-shaped, (e) 

starfish, and (f) echinocyte. Adapted from [110]. 

As shown in Figure 1-15, the cytoskeleton of the membrane plays a significant role in changing 

membrane tension and resultant curvature. It has been shown that the actin filaments or tubulin 

polymer networks are involved in the generation of high membrane curvature. Moreover, liquid 

crystallinity can be also responsible in controlling shape deformation in cells, vesicles, and liquid 

droplets. For example, spontaneous assembly of phospholipids at the interface between liquid 

crystals and aqueous phases results in dynamic spatial patterns typical of phospholipids [111]. 

Another example of coupling between membrane elasticity and liquid crystal anisotropy 

responsible for the generation of complex surface morphologies, occurs in giant unilamellar 
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vesicles (GUVs) suspended in a liquid crystal [112, 113]. Moreover, the three-dimensional 

architectures of some liquid crystal colloids closely resemble the geometries and symmetries of 

living tissues and cell membranes [114], such as starfish morphology, an instance that confirms 

the analogy that can be drawn between liquid crystal anisotropy and amphiphilic surfactants [115]. 

 
Figure 1-15. Different mechanisms of membrane curvature formation. a) changes in phospholipid 

composition b) shape of membrane proteins c) changes in cytoskeleton of the membrane d) direct 

and indirect scaffolding of the bilayer e) active amphipathic helix insertion. Adapted from [75]. 

 

The morphological patterns are mostly governed by the elastic energy of the membrane, and the 

membrane shape can be characterized by changes in volume and/or changes in area. A systematic 

attempt has been made to identify different configurations of deformable vesicles as a function of 

reduced area and bending energy [116]. Figure 1-16 shows the bending energy of the vesicles 

versus the reduced area for two families of the equilibrium cylindrical shapes (two-lobed and three-

lobed vesicles), together with some representative configurations. It can be noted that the bending 

energy increases with increasing number of lobes and decreasing reduced area. The figure also 

illustrates the fact that the shape of the vesicle can be estimated by the reduced area and the number 

of lobes. The variety of shapes shown in Figure 1-16 can be obtained through changing a single 

physical parameter such as the surface tension. Increasing the surface tension can result in a 

reduction of the vesicle area and correspondingly can buckle the membrane shapes. Increasing the 

surface tension further might result in self-intersecting membrane shapes. 
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Figure 1-16. Bending energy as a function of the reduced area for two-lobed and three-lobed 

vesicles. The bending energy increases with increasing number of lobes and decreasing reduced 

area [116].  

 

1.9 Theoretical background on modelling  

In the previous sections, the general background information for the material model systems, the 

characterization of the surface patterns, and their unique optical properties were described. It is 

now helpful to briefly describe the theoretical background of the modeling approaches adopted in 

this thesis. 

1.9.1 Anisotropic elastic soft matter model for nanostructured free surfaces in biological 

plywoods 

Although, the chiral surface structures are extensively studied by microscopy methods including 

atomic force microscopy (AFM) [117-120], the complementary theoretical analysis of CLC 

surface wrinkling is rarely studied. The formation of the surface undulations in CLC interfaces is 

a complex problem that includes surface tension, anchoring energy and bulk elasticity. In order to 

explore the free surface relief, the total system energy including surface energy and the bulk elastic 

energy should be minimized. All the equations that govern the shape of interfaces coupling bulk 

and surface phases have been presented in [121]. However, the analytical and/or numerical 

solutions of the problem with the usual formalism is very complicated. In this thesis, it is assumed 

that the surface undulations in cellulose-based plywoods formed through modulation in surface 

energy at the anisotropic-air interface and influenced by the chirality of the cellulose fibers. The 

coupling mechanism between the surface geometry and cellulose fiber orientation can be 
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demonstrated through the shape equation that couples the plywood structure with free surface 

capillarity. In the following section, a general framework of the shape equation based on the 

previously used Cahn-Hoffman formalism for anisotropic liquid crystals surfaces is presented. 

Liquid crystals generally exhibit anisotropic interfacial properties which play a significant role 

in capillary instabilities. A capillarity vector thermodynamics for anisotropic materials was first 

developed by Cahn-Hoffman [122], and then was applied to analyze nematic liquid crystalline 

surfaces [123, 124]. The capillarity vector ξ  is a fundamental quantity which provides a direct 

way to take into account the orientation dependences of the surface tension. The capillary vector 

is a function of the surface unit normal k and director n and is defined by the gradient of the scalar 

field rγ. Where r is the distance from the origin in a fixed reference frame and is denoted by the 

surface position vector r=rk. γ is the surface free energy: 

( , ) [ ( , )] ξ n k n kr  (1.4) 

For isotropic interfaces, the capillary vector ξ  reduces to a normal vector ξ k . The 

decomposition of the surface director field into normal and tangential components yields 𝐧⊥ =

𝐤𝐤. 𝐧 and 𝐧∥ = 𝐈𝐬. 𝐧, where Is is the 2×2 unit surface dyadic Is=I-kk, and I is the 3×3 unit 

tensor. Calculating the gradient of the field rγ appearing in Eq. 1.4, using ξ .k =γ(n,k), ξ .dk 

=dγ(n,k), and d(rγ)=(rγ).dr gives: 
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where the normal component ξ  describes the increase in the surface energy through area dilation 

and the tangential component ||ξ  is the change in the surface energy through rotation of the unit 

normal. Assuming that the surface is uniaxial, the total surface free energy can be expressed using 

the Rapinin-Papoular anchoring energy density [125], and the Helfrich free energy [126]: 
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where W is the anchoring coefficient. When W<0 (W>0), the easy axis or preferred orientation is 

normal (tangential) to the interface, and is known as homeotropic (planar) anchoring. γ0 is the 
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surface tension at zero curvature (H =K=0), kc is bending elastic moduli, H0 is the spontaneous 

curvature, 𝑘𝑐
̅̅ ̅ is the torsion elastic moduli, H is the average curvature, K is the Gaussian curvature. 

Substituting Eq. 1.6 into Eq. 1.5 yields the normal and tangential components of the capillarity 

vector:  
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(1.7 a,b) 

where s is the surface arc-length and t is the surface unit tangent. To derive the shape equation, the 

following capillary pressure definition is used: 
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The divergence of the capillary vector yields the capillary shape equation: 
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where  is the pressure jump across the interface and   is the surface curvature. The contribution 

from the normal component of the capillary vector ξ  is from surface area reduction (the classical 

Laplace pressure), and the contribution from the tangential component of the capillary vector ||ξ  

is from surface area rotation (Herring’s pressure). Moreover, as for anisotropic interfaces the 

capillary vector is a function of both the director field n and the unit normal k, an additional 

contribution to the capillary pressure arises from director curvature due to orientation gradients 

(director curvature pressure). By substituting the normal ξ  and tangential ||ξ  components of 

the capillarity vector (Eq. 1.7a,b), the capillary pressure is: 
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This equation shows that the surface shape is the balance between tension, anchoring and bending. 

The anchoring term can drive the surface undulations in helicoidal plywoods where the helix axis 

is along the interface. In fact, for a helicoidal plywood with a fixed fiber orientation the only way 

to minimize the surface energy is to deform the interface to avoid energetically costly mismatch 

between the director and the easy axis. Since the director field is periodic then the surface 

undulations are also periodic. Figure 1-18 shows the simple schematic representing the formation 

mechanism of the surface undulations. Periodic changes in the orientation of director n result in a 

periodic surface energy profile which is the origin of the surface curvature. 

 

Figure 1-17. Surface undulations in planar helicoidal plywood due to the fixed chirality of the 

director n. a) the helicoidal architecture of fibers along the interface b) the periodic anchoring 

energy c) the surface profile. Adapted from [127].  

 

1.9.2 Modeling the cylindrical shapes of biological membranes  

To elucidate the morphological variety of biological membranes, several theoretical studies were 

undertaken with the goal of minimizing membrane-bending energy subjected to area and volume 

constraints (Helfrich model, also known as the spontaneous curvature model) [116, 128-131]. In 

the Helfrich models, the membrane is assumed to exhibit purely elastic behavior and the 

equilibrium shape of membranes is determined by minimizing the elastic bending energy: 
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Here α and β are the Lagrange multipliers corresponding to the constraints of area A and volume 

V. α physically represents the surface tension and β represents the pressure difference between the 
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outer and inner sides of the membrane. Setting Eq. 1.11 to zero, the Euler–Lagrange equation 

which is referred to as the membrane shape equation reads [132]:  

2
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where Δ is the Laplace–Beltrami operator on the surface arclength s. Although Helfrich models 

can well capture numerous cell membrane morphological deformations, they fail to reproduce 

membrane shapes that are asymmetric, such as the echinocyte [70]. While the area-difference-

elastic models (ADE), which minimize the energy associated with the area difference between the 

inner and outer leaflet of the membrane, can represent the top-bottom asymmetric shapes [133, 

134]. In the ADE model, the areas of the inner and outer layers of the membrane are not fixed; 

each layer has a preferred area (A0
inn or A0

out) determined by the number of lipid molecules. This 

adds an extra contribution to the Helfrich model due to the difference between the actual and the 

preferred areas [129]: 
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where km is a material parameter and D is the monolayer thickness. Further, numerical simulations 

such coarse-grained molecular dynamics (CGMD) [135, 136], spherical harmonics 

parameterization (SHP)[137], and dissipative particle dynamics [138] were proposed to provide a 

detailed description of pattern formation occurring in both symmetric and asymmetric 

deformation. Although significant progress has been made in formulating theoretical and 

numerical models that attempt to explore the complex surface morphologies in biological closed 

membranes, previous studies have been restricted to bilayer elastic models. There are few studies 

that consider other chemical and biological mechanisms (such as the presence of multiple 

components or in-plane order) contributing to the formation of top-bottom asymmetric membrane 

shapes [114, 139-141]. Of particular interest of the present thesis is to study the role of liquid 

crystal anisotropy in formation of complex surface patterns observed in biological and synthetic 

membranes.  

1.10  Thesis objectives 

The motivation of this thesis is to present a theoretical model that includes liquid crystal 

anisotropy of biological materials to explain the surface wrinkling and the morphological patterns 
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observed in living systems, to provide a foundation to understand structural color phenomena in 

Nature, and to demonstrate the potential biomimetic mechanism for the design of optical sensor 

devices. The following list summarizes the specific objectives of this thesis: 

1. To derive a non-linear nemato-capillarity shape equation that considers the membrane 

curvature-fiber order contributions and describes the main mechanisms driving nano-scale surface 

undulations in chiral nematic liquid crystals as shown in plant-based plywoods (chapter 2). 

 

2. To present a theoritical scaling law expressing the explicit relation between the surface profile 

amplitude and the model parameters, and to validate the scaling formula with a number of 

experimental values available in literature for surface undulations observed in chiral nematic liquid 

crystals and biological plywoods (chapter 2). 

 

3. To study the role of humidity in deforming the surface undulations through the interaction of 

anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces (chapter 

3). 

 

4. To investigate the optical responses of the surface wrinkling, and to suggest a potential 

biosensor that can respond to different ranges of relative humidity depending on the the 

reflection peak of the surface nanostructure (chapter 3). 

 

5. To propose a physical model that can describe more complex real surfaces such as creasing, 

folding, and period-doubling through interaction of liquid crystal anisotropy of biological 

materials and bending elasticity of surfactant-like biomolecules (chapter 4). 

 

6. To explore the effect of liquid crystal anisotropy in the formation of complex top-bottom 

asymmetric complex topographies observed in biological and synthetic closed membranes 

(chapter 5).  

 

7. To establish a new paradigm for characterizing the morphological patterns in nematic liquid 

crystal closed membranes and to elucidate a natural setting for the creation and control of the 

emerging complex patterns (chapter 5). 

1.11 Methodology and thesis organization 

The thesis organization is shown in Figure 1-18 and a detailed description is presented in the 

following pages. 
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Figure 1-18. Thesis organization chart. Contents in round rectangles represent the models 

developed (chapters 2,3,4,5) in this thesis, the rectangles present the objectives, and the dashed 

line rectangles illustrate the outputs and the key parameters of the models.  
 

Chapter 2: Modeling nanostructured free surfaces in plant-based plywoods driven by chiral 

capillarity 

In this chapter, focusing on the cellulose-base helicoidal plywood, a generalized shape equation 

for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the well-known Rapini-

Papoular anchoring energy is developed. The nemato-capillary shape equation expresses the 

coupling mechanism between the surface geometry and cellulose fiber orientation for CLC/air 

interface in rectangular (x,y,z) coordinates. The key mechanisms that induce and resist the surface 

undulations are identified and discussed. Finally, a theoretical scaling law expressing surface 

profile amplitude as a function of model parameters is presented and validated.  
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Chapter 3: Modeling nano-wrinkling of chiral surfaces in response to humidity: structure 

and diffraction optics  

In this chapter, the nemato-capillary shape equation formulated in chapter 2 is extended to 

investigate the surface wrinkling in plant-based plywoods with water-induced spatially varying 

pitch through interaction of anisotropic interfacial tension and chirality changes through 

hydration. The role of three capillary pressure contributions (surface area change, surface 

area rotation, and director gradient curvature), and bulk stress jump are characterized and 

the impacts of the system parameters on the surface profile are investigated. A scaling law 

for the chirality-humidity driven surface wrinkling expressing the spatially-varying surface 

profile amplitude as a function of model parameters is presented. To investigate the optical 

responses of the surface wrinkling, finite difference simulations in the time domain (FDTD) is 

implemented and the corresponding planar reflection of light is calculated. The optical properties 

of the free surface gratings with water-induced varying pitch and the free surface gratings with 

constant pitch are compared and finally a potential biosensor is presented that can respond to 

different ranges of relative humidity depending on the amplitude and wavelength of the grating 

structure. 

Chapter 4: Multiple-wavelength surface patterns in models of elastic biological chiral liquid 

crystal membranes 

In chapter 4, a novel physical model that includes liquid crystal anisotropy of biological 

materials, bending elasticity of surfactant-like biomolecules, and substrate cholesteric order is 

proposed to study multi-scale complex patterns, such as spatial period-doubling, period-tripling, 

and quasi-periodicity that no longer can be described by the shape equation used in chapter 2 and 

3. Two system length scales and two key dimensionless numbers that control the surface 

morphogenesis are presented. The proposed model is compared and linked to a driven pendulum, 

that connects the ratio of the two system length scales to the winding number used in dynamics of 

elastic pendulums. Moreover, a general morphological phase diagram is presented that allow us to 

characterize the surface patterns based on the interaction of the three primitive shapes (folding, 

creasing, and flat). 
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Chapter 5: Cylindrical shapes of nematic liquid crystal membranes: a model for 2D 

anisotropic biological cells  

In this chapter, the governing shape equation is presented for a nematic liquid crystal closed 

membrane with quite weak homeotropic anchoring where the radius of the membrane is always 

significantly less than the extrapolation length scale, resulting in homogenous director field. The 

role of liquid crystal anisotropy in the formation of anisotropic asymmetric cylindrical shapes is 

established. A comprehensive morphological phase diagram of liquid crystal membrane 

configurations as a function of the system physical parameters is illustrated, which allows us to 

select the membrane shape through the interaction of the three primitive shapes (folded-shape, 

spindle-like, and ellipse). Finally, the system capillary pressures associated with the bending-

anchoring morphological patterns are presented and discussed.  

Chapter 6: General conclusions and original contribution to knowledge 

The key findings of this work are presented in this chapter along with a list of contributions to 

original knowledge. 

 

 

 

 

 

 

 

 

 

 

 



31 

References (Chapter 1) 

[1] Gennes, P.-G.d. & Prost, J. 1995 The physics of liquid crystals. 2nd ed. Oxford New York, 

Clarendon Press ; Oxford University Press; xvi, 597 p. p. 

[2] Cladis, P.E., Palffy-Muhoray, P. & Saupe, A. 1998 Dynamics and defects in liquid crystals : a 

festschrift in honor of Alfred Saupe. Amsterdam, Gordon and Breach Science Pub.; xxiv, 447 p. p. 

[3] Onsager, L. 1949 The Effects of Shape on the Interaction of Colloidal Particles. Annals of the 

New York Academy of Sciences 51, 627-659.  

[4] Jones, R.A.L. 2002 Soft condensed matter. Oxford ; New York, Oxford University Press; x, 

195 p. p. 

[5] 2012 Phase Behavior of Surface-Active Solutes. Technical Brief 6. 

[6] Singh, S. & Dunmur, D.A. 2002 Liquid crystals : fundamentals. Singapore ; New Jersey, World 

Scientific; xvi, 531 p. p. 

[7] Fisch, M.R. 2004 Liquid crystals, laptops and life. River Edge, NJ, World Scientific; xvii, 355 

p. p. 

[8] Gray, G.W. & Goodby, J.W.G. 1984 Smectic liquid crystals : textures and structures. Glasgow, 

Leonard Hill; xxvi, 162 p. 

[9] Livolant, F. & Leforestier, A. 1996 Condensed phases of DNA: Structures and phase 

transitions. Progress in Polymer Science 21, 1115-1164. 

[10] Belamie, E., Mosser, G., Gobeaux, F. & Giraud-Guille, M.M. 2006 Possible transient liquid 

crystal phase during the laying out of connective tissues: alpha-chitin and collagen as models. 

Journal of Physics-Condensed Matter 18, 115-129. 

[11] Neville, A.C. 1993 Biology of fibrous composites : development beyond the cell membrane. 

New York, NY, USA, Cambridge University Press; vii, 214 p. p. 

[12] Giraudguille, M.M. 1988 Twisted Plywood Architecture of Collagen Fibrils in Human 

Compact-Bone Osteons. Calcified Tissue International 42, 167-180. 

[13] Donald, A.M., Windle, A.H. & Hanna, S. 2006 Liquid crystalline polymers. 2nd ed. 

Cambridge, UK ; New York, Cambridge University Press; xiv, 589 p. p. 

[14] Rey, A.D. 2010 Liquid crystal models of biological materials and processes. Soft Matter 6, 

3402-3429. 

[15] Rey, A.D., Herrera-Valencia, E.E. & Murugesan, Y.K. 2014 Structure and dynamics of 

biological liquid crystals. Liquid Crystals 41, 430-451. 

[16] Arwin, H., del Rio, L.F. & Jarrendahl, K. 2014 Comparison and analysis of Mueller-matrix 

spectra from exoskeletons of blue, green and red Cetonia aurata. Thin Solid Films 571, 739-743.  

[17] Sharma, V., Crne, M., Park, J.O. & Srinivasarao, M. 2009 Structural Origin of Circularly 

Polarized Iridescence in Jeweled Beetles. Science 325, 449-451. 

[18] Eglin, D., Mosser, G., Giraud-Guille, M.M., Livage, J. & Coradin, T. 2005 Type I collagen, 

a versatile liquid crystal biological template for silica structuration from nano- to microscopic 

scales. Soft Matter 1, 129-131. 

[19] Kirkwood, J.E. & Fuller, G.G. 2009 Liquid Crystalline Collagen: A Self-Assembled 

Morphology for the Orientation of Mammalian Cells. Langmuir 25, 3200-3206. 

[20] Gobeaux, F., Belamie, E., Mosser, G., Davidson, P., Panine, P. & Giraud-Guille, M.M. 2007 

Cooperative ordering of collagen triple helices in the dense state. Langmuir 23, 6411-6417. 

[21] Bouligand, Y. 1972 Twisted Fibrous Arrangements in Biological-Materials and Cholesteric 

Mesophases. Tissue & Cell 4, 189-190. 

[22] Livolant, F., Levelut, A.M., Doucet, J. & Benoit, J.P. 1989 The Highly Concentrated Liquid-

Crystalline Phase of DNA Is Columnar Hexagonal. Nature 339, 724-726. 



32 

[23] Vignolini, S., Rudall, P.J., Rowland, A.V., Reed, A., Moyroud, E., Faden, R.B., Baumberg, 

J.J., Glover, B.J. & Steiner, U. 2012 Pointillist structural color in Pollia fruit. Proceedings of the 

National Academy of Sciences of the United States of America 109, 15712-15715. 

[24] Roland, J.C., Reis, D., Vian, B., Satiatjeunemaitre, B. & Mosiniak, M. 1987 Morphogenesis 

of Plant-Cell Walls at the Supramolecular Level - Internal Geometry and Versatility of Helicoidal 

Expression. Protoplasma 140, 75-91. 

[25] Strout, G., Russell, S.D., Pulsifer, D.P., Erten, S., Lakhtakia, A. & Lee, D.W. 2013 Silica 

nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb 

Mapania caudata. Annals of Botany 112, 1141-1148. 

[26] Kutschera, U. 2008 The growing outer epidermal wall: Design and physiological role of a 

composite structure. Annals of Botany 101, 615-621. 

[27] Lagerwall, J.P.F., Schutz, C., Salajkova, M., Noh, J., Park, J.H., Scalia, G. & Bergstrom, L. 

2014 Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation 

to multifunctional thin films. Npg Asia Materials 6. 

[28] Mu, X.Y. & Gray, D.G. 2014 Formation of Chiral Nematic Films from Cellulose Nanocrystal 

Suspensions Is a Two-Stage Process. Langmuir 30, 9256-9260. 

[29] Miller, A.F. & Donald, A.M. 2003 Imaging of anisotropic cellulose suspensions using 

environmental scanning electron microscopy. Biomacromolecules 4, 510-517. 

[30] Vollrath, F. & Knight, D.P. 2001 Liquid crystalline spinning of spider silk. Nature 410, 541-

548. 

[31] Willcox, P.J., Gido, S.P., Muller, W. & Kaplan, D.L. 1996 Evidence of a cholesteric liquid 

crystalline phase in natural silk spinning processes. Macromolecules 29, 5106-5110. 

[32] Koh, L.D., Cheng, Y., Teng, C.P., Khin, Y.W., Loh, X.J., Tee, S.Y., Low, M., Ye, E.Y., Yu, 

H.D., Zhang, Y.W., et al. 2015 Structures, mechanical properties and applications of silk fibroin 

materials. Progress in Polymer Science 46, 86-110. 

[33] Livolant, F. 1986 Cholesteric Liquid-Crystalline Phases Given by 3 Helical Biological 

Polymers - DNA, Pblg and Xanthan - a Comparative-Analysis of Their Textures. Journal De 

Physique 47, 1605-1616. 

[34] Livolant, F. & Bouligand, Y. 1986 Liquid-Crystalline Phases Given by Helical Biological 

Polymers (DNA, Pblg and Xanthan) - Columnar Textures. Journal De Physique 47, 1813-1827. 

[35] Strzelecka, T.E., Davidson, M.W. & Rill, R.L. 1988 Multiple Liquid-Crystal Phases of DNA 

at High-Concentrations. Nature 331, 457-460. 

[36] Knight, D.P. & Feng, D. 1994 Some Observations on the Collagen Fibrils of the Egg Capsule 

of the Dogfish, Scyliorhinus-Canicula. Tissue & Cell 26, 385-401. 

[37] Neville, A.C. & Luke, B.M. 1971 Biological System Producing a Self-Assembling 

Cholesteric Protein Liquid Crystal. Journal of Cell Science 8, 93-109. 

[38] Besseau, L. & Bouligand, Y. 1998 The twisted collagen network of the box-fish scutes. Tissue 

& Cell 30, 251-260. 

[39] Le Guellec, D., Morvan-Dubois, G. & Sire, J.Y. 2004 Skin development in bony fish with 

particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). 

International Journal of Developmental Biology 48, 217-231. 

[40] Petrov, A.G. 2002 Flexoelectricity of model and living membranes. Biochimica Et Biophysica 

Acta-Biomembranes 1561, 1-25. 

[41] Kerst, A., Chmielewski, C., Livesay, C., Buxbaum, R.E. & Heidemann, S.R. 1990 Liquid-

Crystal Domains and Thixotropy of Filamentous Actin Suspensions. Proceedings of the National 

Academy of Sciences of the United States of America 87, 4241-4245. 



33 

[42] Adams, M. & Fraden, S. 1998 Phase behavior of mixture's of rods (tobacco mosaic virus) and 

spheres (polyethylene oxide, bovine serum albumin). Biophysical Journal 74, 669-677. 

[43] GiraudGuille, M.M. 1996 Twisted liquid crystalline supramolecular arrangements in 

morphogenesis. International Review of Cytology - a Survey of Cell Biology, Vol 166 166, 59-101. 

[44] Davies, J.M. & Viney, C. 1998 Water-mucin phases: conditions for mucus liquid crystallinity. 

Thermochimica Acta 315, 39-49. 

[45] Bansil, R. & Turner, B.S. 2006 Mucin structure, aggregation, physiological functions and 

biomedical applications. Current Opinion in Colloid & Interface Science 11, 164-170. 

[46] Lydon, J. 2016 Microtubules - nature's universal mesogens. Molecular Crystals and Liquid 

Crystals 632, 29-48. 

[47] Peixoto, P.D., Deniset-Besseau, A., Schmutz, M., Anglo, A., Illoul, C., Schanne-Klein, M.C. 

& Mosser, G. 2013 Achievement of cornea-like organizations in dense collagen I solutions: clues 

to the physico-chemistry of cornea morphogenesis. Soft Matter 9, 11241-11248.  

[48] Tidu, A., Ghoubay-Benallaoua, D., Lynch, B., Haye, B., Illoul, C., Allain, J.M., Borderie, 

V.M. & Mosser, G. 2015 Development of human corneal epithelium on organized fibrillated 

transparent collagen matrices synthesized at high concentration. Acta Biomaterialia 22, 50-58. 

[49] Li, J., Revol, J.F. & Marchessault, R.H. 1996 Rheological properties of aqueous suspensions 

of chitin crystallites. Journal of Colloid and Interface Science 183, 365-373. 

[50] Revol, J.F. & Marchessault, R.H. 1993 In-Vitro Chiral Nematic Ordering of Chitin 

Crystallites. International Journal of Biological Macromolecules 15, 329-335. 

[51] Joao, C.F.C., Echeverria, C., Velhinho, A., Silva, J.C., Godinho, M.H. & Borges, J.P. 2017 

Bio-inspired production of chitosan/chitin films from liquid crystalline suspensions. Carbohydrate 

Polymers 155, 372-381. 

[52] Barry, E., Hensel, Z., Dogic, Z., Shribak, M. & Oldenbourg, R. 2006 Entropy-driven 

formation of a chiral liquid-crystalline phase of helical filaments. Physical Review Letters 96, 

018305.  

[53] Roland, J.C., Reis, D. & Vian, B. 1992 Liquid-Crystal Order and Turbulence in the Planar 

Twist of the Growing Plant-Cell Walls. Tissue Cell 24, 335-345. 

[54] Brett, C.T. & Waldron, K. 1996 Physiology and biochemistry of plant cell walls. 2nd ed. 

London, Chapman & Hall; xiii, 255 p. p. 

[55] Barnett, J.R. & Bonham, V.A. 2004 Cellulose microfibril angle in the cell wall of wood fibres. 

Biol Rev 79, 461-472. 

[56] Niklas, K.J. 1992 Plant biomechanics : an engineering approach to plant form and function. 

Chicago, University of Chicago Press; xiii, 607 p. p. 

[57] Hofstetter, K., Hellmich, C. & Eberhardsteiner, J. 2005 Development and experimental 

validation of a continuum micromechanics model for the elasticity of wood. Eur J Mech a-Solid 

24, 1030-1053. 

[58] Bar-Cohen, Y. 2012 Biomimetics : nature-based innovation. Boca Raton, FL, CRC Press; 

xix, 735 p. 

[59] Wegst, U.G.K., Bai, H., Saiz, E., Tomsia, A.P. & Ritchie, R.O. 2015 Bioinspired structural 

materials. Nature Materials 14, 23-36. 

[60] Fratzl, P. & Barth, F.G. 2009 Biomaterial systems for mechanosensing and actuation. Nature 

462, 442-448. 

[61] Singer, S.J. & Nicolson, G.L. 1972 The Fluid Mosaic Model of the Structure of Cell 

Membranes. Science 175, 720-731. 



34 

[62] Meyer, K.C., Coker, E.N., Bolintineanu, D.S. & Kaehr, B. 2014 Mechanically Encoded 

Cellular Shapes for Synthesis of Anisotropic Mesoporous Particles. Journal of the American 

Chemical Society 136, 13138-13141. 

[63] Mohandas, N. & Gallagher, P.G. 2008 Red cell membrane: past, present, and future. Blood 

112, 3939-3948. 

[64] Winterhalter, M. & Lasic, D.D. 1993 Liposome Stability and Formation - Experimental 

Parameters and Theories on the Size Distribution. Chemistry and Physics of Lipids 64, 35-43.  

[65] Tanaka, M. & Sackmann, E. 2005 Polymer-supported membranes as models of the cell 

surface. Nature 437, 656-663. 

[66] Bayburt, T.H. & Sligar, S.G. 2003 Self-assembly of single integral membrane proteins into 

soluble nanoscale phospholipid bilayers. Protein Science 12, 2476-2481.  

[67] Deseri, L., Piccioni, M.D. & Zurlo, G. 2008 Derivation of a new free energy for biological 

membranes. Continuum Mechanics and Thermodynamics 20, 255-273. 

[68] Monzel, C. & Sengupta, K. 2016 Measuring shape fluctuations in biological membranes. 

Journal of Physics D-Applied Physics 49. 

[69] Diez-Silva, M., Dao, M., Han, J.Y., Lim, C.T. & Suresh, S. 2010 Shape and Biomechanical 

Characteristics of Human Red Blood Cells in Health and Disease. Mrs Bull 35, 382-388. 

[70] Khairy, K., Foo, J. & Howard, J. 2008 Shapes of Red Blood Cells: Comparison of 3D 

Confocal Images with the Bilayer-Couple Model. Cell Mol Bioeng 1, 173-181. 

[71] Tayebi, L., Ma, Y.C., Vashaee, D., Chen, G., Sinha, S.K. & Parikh, A.N. 2012 Long-range 

interlayer alignment of intralayer domains in stacked lipid bilayers. Nature Materials 11, 1074-

1080. 

[72] Bouligand, Y. 2008 Liquid crystals and biological morphogenesis: Ancient and new 

questions. Cr Chim 11, 281-296. 

[73] Karp, G. 2008 Cell and molecular biology : concepts and experiments. 5th ed. Chichester, 

John Wiley; xvii, 776, 767 p. p. 

[74] Sarasij, R.C., Mayor, S. & Rao, M. 2007 Chirality-induced budding: A raft-mediated 

mechanism for endocytosis and morphology of caveolae? Biophys J 92, 3140-3158. 

[75] McMahon, H.T. & Gallop, J.L. 2005 Membrane curvature and mechanisms of dynamic cell 

membrane remodelling. Nature 438, 590-596. 

[76] Nguyen, T.S., Geng, J., Selinger, R.L.B. & Selinger, J.V. 2013 Nematic order on a deformable 

vesicle: theory and simulation. Soft Matter 9, 8314-8326. 

[77] Chang, H.Y., Sheng, Y.J. & Tsao, H.K. 2014 Structural and mechanical characteristics of 

polymersomes. Soft Matter 10, 6373-6381. 

[78] Abdelmohsen, L.K.E.A., Williams, D.S., Pille, J., Ozel, S.G., Rikken, R.S.M., Wilson, D.A. 

& van Hest, J.C.M. 2016 Formation of Well-Defined, Functional Nanotubes via Osmotically 

Induced Shape Transformation of Biodegradable Polymersomes. J Am Chem Soc 138, 9353-9356. 

[79] Abdelmohsen, L.K.E.A., Nijemeisland, M., Pawar, G.M., Janssen, G.J.A., Nolte, R.J.M., van 

Hest, J.C.M. & Wilson, D.A. 2016 Dynamic Loading and Unloading of Proteins in Polymeric 

Stomatocytes: Formation of an Enzyme-Loaded Supramolecular Nanomotor. Acs Nano 10, 2652-

2660. 

[80] Bruggemann, D., Frohnmayer, J.P. & Spatz, J.P. 2014 Model systems for studying cell 

adhesion and biomimetic actin networks. Beilstein J Nanotech 5, 1193-1202. 

[81] Meister, R., Halle, M.A., Dumoulin, H. & Pieranski, P. 1996 Structure of the cholesteric focal 

conic domains at the free surface. Phys Rev E 54, 3771-3782.  



35 

[82] Meister, R., Dumoulin, H., Halle, M.A. & Pieranski, P. 1996 Anchoring of a cholesteric liquid 

crystal at the free surface. Journal De Physique Ii 6, 827-844. 

[83] Koch, K., Bhushan, B. & Barthlott, W. 2009 Multifunctional surface structures of plants: An 

inspiration for biomimetics. Prog Mater Sci 54, 137-178.  

[84] Kourounioti, R.L.A., Band, L.R., Fozard, J.A., Hampstead, A., Lovrics, A., Moyroud, E., 

Vignolini, S., King, J.R., Jensen, O.E. & Glover, B.J. 2013 Buckling as an origin of ordered 

cuticular patterns in flower petals. Journal of the Royal Society Interface 10, 20120847.  

[85] Li, B., Cao, Y.P., Feng, X.Q. & Gao, H.J. 2011 Surface wrinkling of mucosa induced by 

volumetric growth: Theory, simulation and experiment. J Mech Phys Solids 59, 758-774. 

[86] Hogg, J.C. 2004 Pathophysiology of airflow limitation in chronic obstructive pulmonary 

disease. Lancet 364, 709-721. 

[87] Bradbury, J. 2005 Molecular insights into human brain evolution. Plos Biol 3, 367-370. 

[88] Whitney, H.M., Kolle, M., Andrew, P., Chittka, L., Steiner, U. & Glover, B.J. 2009 Floral 

Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science 323, 

130-133. 

[89] Wang, Q.M. & Zhao, X.H. 2015 A three-dimensional phase diagram of growth-induced 

surface instabilities. Sci Rep 5, 8887. 

[90] Huber, H.L. & Koessler, K.K. 1922 The pathology of bronchial asthma. Arch Intern Med 30, 

689-760. 

[91] Stuart-Fox, D. & Moussalli, A. 2008 Selection for social signalling drives the evolution of 

chameleon colour change. Plos Biol 6, 22-29.  

[92] Gould, K.S. & Lee, D.W. 1996 Physical and ultrastructural basis of blue leaf iridescence in 

four Malaysian understory plants. American Journal of Botany 83, 45-50.  

[93] Vignolini, S., Gregory, T., Kolle, M., Lethbridge, A., Moyroud, E., Steiner, U., Glover, B.J., 

Vukusic, P. & Rudall, P.J. 2016 Structural colour from helicoidal cell-wall architecture in fruits of 

Margaritaria nobilis. Journal of the Royal Society Interface 13, 20160645. 

[94] Vignolini, S., Moyroud, E., Glover, B.J. & Steiner, U. 2013 Analysing photonic structures in 

plants. Journal of the Royal Society Interface 10, 20130394.  

[95] Mitov, M. 2012 Cholesteric Liquid Crystals with a Broad Light Reflection Band. Advanced 

Materials 24, 6260-6276. 

[96] Sun, J.Y., Bhushan, B. & Tong, J. 2013 Structural coloration in nature. Rsc Advances 3, 

14862-14889. 

[97] Thomas, K.R., Kolle, M., Whitney, H.M., Glover, B.J. & Steiner, U. 2010 Function of blue 

iridescence in tropical understorey plants. Journal of the Royal Society Interface 7, 1699-1707.  

[98] Yoneyama, H., Kawabata, K., Tsujimoto, A. & Goto, H. 2008 Preparation of iridescent-

reflective poly(furan-co-phenylene)s by electrochemical polymerization in a cholesteric liquid 

crystal medium. Electrochemistry Communications 10, 965-969. 

[99] Arrighi, V., Cowie, J.M.G., Vaqueiro, P. & Prior, K.A. 2002 Fine structure and optical 

properties of cholesteric films prepared from cellulose 4-methylphenyl urethane/N-vinyl 

pyrrolidinone solutions. Macromolecules 35, 7354-7360. 

[100] Zhang, Y.P., Chodavarapu, V.P., Kirk, A.G. & Andrews, M.P. 2013 Structured color 

humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films. 

Sensors and Actuators B-Chemical 176, 692-697. 

[101] Werbowyj, R.S. & Gray, D.G. 1976 Liquid-Crystalline Structure in Aqueous Hydroxypropyl 

Cellulose Solutions. Molecular Crystals and Liquid Crystals 34, 97-103.  



36 

[102] Fernandes, S.N., Geng, Y., Vignolini, S., Glover, B.J., Trindade, A.C., Canejo, J.P., 

Almeida, P.L., Brogueira, P. & Godinho, M.H. 2013 Structural Color and Iridescence in 

Transparent Sheared Cellulosic Films. Macromolecular Chemistry and Physics 214, 25-32.  

[103] Palffy-Muhoray, P. 1998 Liquid crystals - New designs in cholesteric colour. Nature 391, 

745-746. 

[104] Kasukawa, H., Oshima, N. & Fujii, R. 1987 Mechanism of Light-Reflection in Blue 

Damselfish Motile Iridophore. Zoological Science 4, 243-257. 

[105] Hadley, N.F. 1979 Wax Secretion and Color Phases of the Desert Tenebrionid Beetle 

Cryptoglossa-Verrucosa (Leconte). Science 203, 367-369. 

[106] Hinton, H.E. & Jarman, G.M. 1972 Physiological Color Change in Hercules Beetle. Nature 

238, 160-161. 

[107] Liu, F., Dong, B.Q., Liu, X.H., Zheng, Y.M. & Zi, J. 2009 Structural color change in 

longhorn beetles Tmesisternus isabellae. Optics Express 17, 16183-16191. 

[108] Lee, D.W. & Lowry, J.B. 1975 Physical Basis and Ecological Significance of Iridescence in 

Blue Plants. Nature 254, 50-51. 

[109] Herzer, N., Guneysu, H., Davies, D.J.D., Yildirim, D., Vaccaro, A.R., Broer, D.J., 

Bastiaansen, C.W.M. & Schenning, A.P.H.J. 2012 Printable Optical Sensors Based on H-Bonded 

Supramolecular Cholesteric Liquid Crystal Networks. Journal of the American Chemical Society 

134, 7608-7611. 

[110] Sakashita, A., Urakami, N., Ziherl, P. & Imai, M. 2012 Three-dimensional analysis of lipid 

vesicle transformations. Soft Matter 8, 8569-8581. 

[111] Brake, J.M., Daschner, M.K., Luk, Y.Y. & Abbott, N.L. 2003 Biomolecular interactions at 

phospholipid-decorated surfaces of liquid crystals. Science 302, 2094-2097. 

[112] Zhang, R., Zhou, Y., Martinez-Gonzalez, J.A., Hernandez-Ortiz, J.P., Abbott, N.L. & de 

Pablo, J.J. 2016 Controlled deformation of vesicles by flexible structured media. Sci Adv 2, , no. 

8, e1600978.  

[113] Hirst, L.S., Geng, J., Ossowski, A., Fraser, M., Selinger, J.V. & Selinger, R.L.B. 2013 

Morphology Transition in Lipid Vesicles: Interaction of In-Plane Order and Topological Defects. 

Biophys J 104, 83a. 

[114] Gibaud, T., Barry, E., Zakhary, M.J., Henglin, M., Ward, A., Yang, Y.S., Berciu, C., 

Oldenbourg, R., Hagan, M.F., Nicastro, D., et al. 2012 Reconfigurable self-assembly through 

chiral control of interfacial tension. Nature 481, 348-351. 

[115] Safran, S.A. 1994 Statistical thermodynamics of surfaces, interfaces, and membranes. 

Reading, Mass., Addison-Wesley Pub.; xvii, 270 p. p. 

[116] Veerapaneni, S.K., Raj, R., Biros, G. & Purohit, P.K. 2009 Analytical and numerical 

solutions for shapes of quiescent two-dimensional vesicles. International Journal of Non-Linear 

Mechanics 44, 257-262. 

[117] Terris, B.D., Twieg, R.J., Nguyen, C., Sigaud, G. & Nguyen, H.T. 1992 Force Microscopy 

of Chiral Liquid-Crystal Surfaces. Europhysics Letters 19, 85-90. 

[118] Cladis, P.E. & Kleman, M. 1972 Cholesteric Domain Texture. Molecular Crystals and 

Liquid Crystals 16, 1-20. 

[119] Harth, K., Schulz, B., Bahr, C. & Stannarius, R. 2011 Atomic force microscopy of menisci 

of free-standing smectic films. Soft Matter 7, 7103-7111. 

[120] Zhang, C., Edo, S., Ishige, R., Tokita, M. & Watanabe, J. 2008 Regular undulation 

morphology observed on fracture and film surfaces of chiral S-C* polymer. Macromolecules 41, 

5361-5364. 



37 

[121] Rey, A.D. 2007 Capillary models for liquid crystal fibers, membranes, films, and drops. Soft 

Matter 3, 1349-1368. 

[122] Hoffman, D.W. & Cahn, J.W. 1972 Vector Thermodynamics for Anisotropic Surfaces .1. 

Fundamentals and Application to Plane Surface Junctions. Surf Sci 31, 368-388. 

[123] Cheong, A.G. & Rey, A.D. 2002 Cahn-Hoffman capillarity vector thermodynamics for 

curved liquid crystal interfaces with applications to fiber instabilities. J Chem Phys 117, 5062-

5071. 

[124] Rey, A.D. 2005 Mechanics of soft-solid-liquid-crystal interfaces. Phys Rev E 72. 

[125] Papoular, M. & Rapini, A. 1969 Surface Waves in Nematic Liquid Crystals. Solid State 

Commun 7, 1639-1641. 

[126] Kralchevsky, P.A. & Nagayama, K. 2001 Particles at fluids interfaces and membranes 

attachment of colloid particles and proteins to interfaces and formation of two-dimensional arrays. 

In Studies in interface science vol 10 (pp. 1 online resource (xiv, 654 p.). Amsterdam ; New York, 

Elsevier. 

[127] Eelkema, R., Pollard, M.M., Katsonis, N., Vicario, J., Broer, D.J. & Feringa, B.L. 2006 

Rotational reorganization of doped cholesteric liquid crystalline films. J Am Chem Soc 128, 14397-

14407. 

[128] Bostwick, J.B., Miksis, M.J. & Davis, S.H. 2016 Elastic membranes in confinement. Journal 

of the Royal Society Interface 13, 20160408. 

[129] Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv Phys 46, 13-137. 

[130] Giomi, L. 2013 Softly constrained films. Soft Matter 9, 8121-8139. 

[131] Vassilev, V.M., Djondjorov, P.A. & Mladenov, I.M. 2008 Cylindrical equilibrium shapes of 

fluid membranes. J Phys a-Math Theor 41, 435201. 

[132] Zhongcan, O.Y. & Helfrich, W. 1989 Bending Energy of Vesicle Membranes - General 

Expressions for the 1st, 2nd, and 3rd Variation of the Shape Energy and Applications to Spheres 

and Cylinders. Phys Rev A 39, 5280-5288. 

[133] Heinrich, V., Svetina, S. & Zeks, B. 1993 Nonaxisymmetric Vesicle Shapes in a Generalized 

Bilayer-Couple Model and the Transition between Oblate and Prolate Axisymmetrical Shapes. 

Phys Rev E 48, 3112-3123. 

[134] Lim, H.W.G., Wortis, M. & Mukhopadhyay, R. 2002 Stomatocyte-discocyte-echinocyte 

sequence of the human red blood cell: Evidence for the bilayer-couple hypothesis from membrane 

mechanics. P Natl Acad Sci USA 99, 16766-16769. 

[135] Markvoort, A.J., van Santen, R.A. & Hilbers, P.A.J. 2006 Vesicle shapes from molecular 

dynamics simulations. J Phys Chem B 110, 22780-22785. 

[136] Su, J.Y., Yao, Z.W. & de la Cruz, M.O. 2016 Vesicle Geometries Enabled by Dynamically 

Trapped States. Acs Nano 10, 2287-2294. 

[137] Khairy, K. & Howard, J. 2011 Minimum-energy vesicle and cell shapes calculated using 

spherical harmonics parameterization. Soft Matter 7, 2138-2143. 

[138] Li, X.J. 2013 Shape transformations of bilayer vesicles from amphiphilic block copolymers: 

a dissipative particle dynamics simulation study. Soft Matter 9, 11663-11670. 

[139] Hirst, L.S., Ossowski, A., Fraser, M., Geng, J., Selinger, J.V. & Selinger, R.L.B. 2013 

Morphology transition in lipid vesicles due to in-plane order and topological defects. P Natl Acad 

Sci USA 110, 3242-3247. 

[140] Yong, E.H., Nelson, D.R. & Mahadevan, L. 2013 Elastic Platonic Shells. Phys Rev Lett 111, 

177801. 



38 

[141] Vernizzi, G., Sknepnek, R. & de la Cruz, M.O. 2011 Platonic and Archimedean geometries 

in multicomponent elastic membranes. P Natl Acad Sci USA 108, 4292-4296. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

Chapter 2 

2 Modeling Nanostructured Free Surfaces in Plant-Based Plywoods Driven by Chiral 

Capillarity 

2.1 Preface 

In this chapter, focusing on the cellulose-base helicoidal plywood, a generalized shape equation 

for anisotropic interfaces using the Cahn-Hoffman capillarity vector and the well-known Rapini-

Papoular anchoring energy is developed. The key mechanisms that induce and resist the surface 

undulations are identified, and a theoretical scaling law expressing surface profile amplitude as a 

function of model parameters is presented. This chapter is reproduced from two published papers 

with the titles “Nano-scale surface wrinkling in chiral liquid crystals and plant-based plywoods”, 

and “Nanostructured free surfaces in plant-based plywoods driven by chiral capillarity” which are 

co-authored with Prof. Damiano Pasini and Prof. Alejandro. D. Rey; Colloids Interface Sci. 

Commun., 2014, 1, 23–26 and Soft Matter, 2015, 11, 1127–1139. 

 

2.2 Summary 

We present theoretical scaling and computational analysis of nano-structured free surfaces 

formed in chiral liquid crystals (LC) and plant-based twisted plywoods. A nemato-capillary model 

is used to derive a generalized equation that governs the shape of cholesteric free surfaces. It is 

shown that the shape equation includes three distinct contributions to the capillary pressure: area 

dilation, area rotation, and director curvature. To analyze the origin of periodic reliefs in plywood 

surfaces, these three pressure contributions and corresponding surface energies are systematically 

investigated. It is found that for weak homeotropic surface anchoring, the nano-wrinkling is driven 

by the director curvature pressure mechanism. Consequently, the model predicts that for a planar 

surface with a uniform tangential helix vector no surface nano-scale wrinkling can be observed 

since the director curvature pressure is zero. Scaling is used to derive the explicit relation between 

the wrinkling’s amplitude to the wavelength ratio as a function of the anisotropic surface tension, 

which is then validated with experimental values. These new findings can be used to characterize 

plant-based twisted plywoods as well as to inspire the design of biomimetic chiro-optical devices.  

2.3 Introduction 

Biological liquid crystals (BLCs) are anisotropic viscoelastic materials exhibiting long range 

orientational order and partial positional order [1]. The liquid crystalline phase and topological 
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defects in biological analogues are usually those of chiral nematics (cholesteric) and hence they 

are referred to as biological helicoidal plywoods [2,3], also known as the Bouligand architecture 

[4-7]. Helicoidal plywoods are found in many biological materials, such as DNA in human cells 

[8], cellulose in plant cell walls [9], chitin in arthropods cuticles [2], and collagen in human 

compact bones [10]. BLCs are functional materials that display several unique properties [11] such 

as nano-scale surface wrinkling observed in LC DNA [12], cellulose [13], and collagen [14]. 

Cholesteric films of concentrated collagen solutions exhibit periodic undulations at the free surface 

with an amplitude of the order of 150 nm, and a periodicity of the order of 3.5 μm [14]. Undulations 

of similar scales are also observed in silk gland ducts of golden orb-web spider Nephilaclavipes 

[15], the exoskeleton of the beetle Chrysinagloriosa [16], and cellulosic materials [13]. These 

nano-scale structures that formed spontaneously on the free surface of BLC are responsible for 

their particular optical responses resulting in structural colors, observed  in beetles [16], mollusk 

shells [17], and some plants [18]. The study of the formation of these surface undulations is 

fundamental in understanding structural color in nature and can inspire the design of optical 

devices with novel functionalities [19]. 

Photonic structures in many floral plants are associated with the shape and the anatomy of the 

plant surface topography. It has been reported that certain floral plant species, such as Hibiscus 

trionum and Tulipakaufmanniana petals, use ordered striation or ridges to obtain iridescence with 

a striking metallic appearance [20]. Although the formation of these micro- and nanostructures 

during the development of the petals is not well-understood yet, it is believed that cellulosic CLCs 

are responsible for plant surface undulations and iridescent colors. In the preparation of a lyotropic 

cholesteric mesophase, Werbowyi and Gray discovered that concentrated aqueous solutions of 

(hydroxypropyl) cellulose (HPC) displayed iridescent colors that changed with concentration and 

viewing angle [21]. Efforts have been made to trap the CLC structure in solid films to create 

colored iridescent films [22-24]. Fernandes et al. fabricated iridescent solid cellulosic films with 

tunable mechanical and structural color properties, which mimic the structures found in the surface 

of the “Queen of the Night” tulip petals, which display periodic striation of about 1.5 μm, 

responsible for petal iridescence [25]. They indicated that the formation and periodicity of the 

surface structure are governed by the CLC structure. 

Although, the chiral surface structures are extensively studied by microscopy methods including 

atomic force microscopy (AFM) [26-29], the complementary theoretical analysis of CLC surface 
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wrinkling is rarely studied. The formation of surface nanostructures in CLC interfaces is a complex 

phenomenon involving interfacial tension, surface anchoring energy, and LC Frank elasticity [11] 

that requires integrated multi-scale modelling of bulk and surface [30]. In a study of cholesteric 

liquid crystal free surface, Meister et al described the periodic relief of a cholesteric liquid crystal 

interface by minimization of surface free energy composed of the anchoring energy and the surface 

tension [31, 32]. They found that for relatively strong and finite anchoring, the surface deformation 

energy arises due to director surface gradient and elastic constants [31]. The director distributions 

in the distorted region coupled with anchoring energy create nano-scale undulations in the free 

surface. 

The plant cell wall is a multifunctional viscoelastic structure made of cellulose microfibrills 

(CMFs) coated with hemicelluloses and embedded in a matrix of lignin/pectin [33]. Plant cell wall 

includes a primary cell wall (p) laid down during growth on the outside and three secondary cell 

walls (S1, S2, S3) that formed when the cell has reached its final size and shape [34]. Although the 

primary and secondary wall layers differ in the specific chemical composition (cellulose and 

hemicellulose contents are greater in secondary walls than primary walls) and structural 

organization (CMFs in primary layers are organized in a loose interwoven texture, while are well-

oriented in secondary layers). Overall, CMFs in the polysaccharide matrix are oriented in strategic 

directions to form twisted plywood architecture for optimal mechanical efficiency. The proof that 

plant cell wall is formed through a liquid crystalline self-assembly process is the presence of the 

microstructure, textures and defect patterns observed in secondary cell wall of some plan species 

[11, 35, 36]. The plant cell wall helicoidal plywoods can be characterized by the helix axis H, the 

pitch length P0, which is the distance through which the fibers undergo a 2π rotation and 

handedness (sign of P0), and the average fiber orientation n which is normal to H (see Figure 2-1).  

In this chapter, we present the main mechanism that operate in chiral capillarity using a plant-

based plywood as a model material system. We demonstrate a comprehensively analysis of the 

nano-scale structures observed in chiral surfaces in full detail and predict the response of the 

surface structure to chirality and anisotropic tension changes. We restrict our attention to the case 

in which the helix axis remains always parallel to the surface; other complex structures arising 

when the helix axis is tilted are beyond the scope of this study. Focusing on the cellulosic CLCs 

material model, we use the generalized shape equation for anisotropic interfaces using the Cahn-

Hoffman capillarity vector developed for LCs [37] and the well-known Rapini-Papoular anchoring 
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energy [38] for the anisotropic part of the interfacial tension, to analyze periodic nano-wrinkling 

in plant-based plywood free surfaces. The objective of this chapter is to identify the key 

mechanisms that induce and resist nano-wrinkling in CLC, and to formulate nano-wrinkling 

scaling laws of biomimetic utility for the design of optical gratings and as a tool to characterize 

plant-based plywoods.  

The organization of this chapter is as follows. Section 2.4 presents the governing nemato-

capillary shape equation expressing the coupling mechanism between the surface geometry and 

cellulose fiber orientation for CLC/air interface in rectangular (x,y,z) coordinates. The capillary 

shape equation is derived and described in terms of three capillary pressures. Appendix A presents 

the details of the derivation of the Cahn-Hoffman capillary vector thermo-dynamics for CLC 

interfaces. Appendix B derives the generic conditions under which the director curvature pressure 

is zero. Appendix C formulates the capillay shape equation for the splay-bend director field 

relevant to nano-wrinkling. Section 2.5 analyses the effect of model parameters on the surface 

profile. The leading mechanism controlling chiral wrinkling is determined and the generic 

sufficient condition that results in flat and non-flat surfaces is derived. Furthermore, the surface 

energies associated with the CLC interface are presented and discussed. Finally, based on a 

standard order of magnitude analysis, a scaling formula expressing surface profile amplitude as a 

function of model parameters is presented and validated with a number of experimental biological 

CLC surface undulations and with numerical results. Section 2.6 presents the conclusions. 

2.4 Capillary shape equation 

We assume that the surface undulations in plant cell walls are formed through modulation in 

surface energy at the anisotropic-air interface and are influenced by the macroscopic chirality of 

the cellulose fibers. The coupling mechanism between the surface geometry and cellulose fiber 

orientation can be demonstrated through the shape equation. In this section, the capillarity shape 

equation using the capillary vector ξ [39] is presented for the CLC free interfaces in rectangular 

(x,y,z) coordinates and the resulting surface pressures are formulated.  

For isotropic interfaces, the capillary pressure, pc, based on the well-known Young-Laplace 

equation, is proportional to the surface tension γ and vanishes for plane surfaces (∇s. 𝐤 = 0) [40]: 

 

p .c s   k  (2.1) 

where ∇s= 𝐈s. ∇ is the surface gradient, 𝐈s = I − 𝐤𝐤 is the 2×2 unit surface dyadic, and k is the 

surface unit normal. For a cholesteric liquid crystal (CLC) surface, however, the anisotropic 
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surface tension contributes additional modes to the capillary pressure. The interfacial surface 

tension γ for anisotropic surfaces is a function of the surface unit normal k and the director                        

n: γ (k, n) and is given by Rapini and Papoular [38]: 
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     n k n k n k n k  

(2.2) 

where γ0 is the isotropic contribution, γaniso is the anisotropic anchoring energy contribution, and 

W is the anchoring energy coefficient. The anisotropic surface tension appears as the property that 

renormalizes the isotropic component of the interfacial tension and promotes the rotation of the 

interface. The anchoring energy contribution is associated with the director deviations from its 

preferred orientation due to bulk distortions or external fields. The preferred orientation or easy 

axis corresponding to Eq. 2.2 can be parallel to the unit normal k (homeotropic), perpendicular to 

the unit normal k (planar). In the present study, we restrict the discussion to homeotropic anchoring 

(W<0), because for planar surface anchoring (W>0, n.k=0) the helicoidal structure, in which helix 

axis is perpendicular to the surface, will remain undistorted as it is the most stable and lowest 

energy state [41]; the undistorted helix results in a flat surface [31]. 

As the nematic director in CLCs continuously rotates along the helical axis, the helix structures 

(helixes perpendicular (H.k=0) and parallel (H.k=1) to the surface) for strong homeotropic 

anchoring (W<0) is not fully compatible with any uniform aligning surface [42]. As the result, the 

average orientational order is disrupted due the frustration that leads to sub-surface defect 

nucleation, which can be resolved by changing the interface shape. The appearance of inclusions 

and formation of defects in the bulk can change the director orientation in the CLC and results in 

a periodicity at the free surface whose wave length can vary from half helical pitch P0/2 to P0 or 

even greater [27, 43]. Here we assume that the pitch of the distorted region is equal to the bulk P0. 

The effect of n(x) on surface relief of two CLC structures is shown in Figure 2-1. The distorted 

surface layer can be generated by either vertical or tangential helixes in the bulk (note that only a 

horizontal helix alignment H is presented in Figure 2-1). 

The Cahn-Hoffman capillary vector ξ [39] is the fundamental quantity that provides a direct and 

clear way to explain the role of anisotropy in capillary pressure and its role in surface shape 

determination. The capillary vector ξ takes into account the changes in surface energy due to 

surface dilation (change in area) and surface rotation (change in unit normal k) in one single 

vectorial quantity. In this section, the key formulations of the capillary vector thermodynamics are 
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presented. Appendix A gives the details of the derivation of the Cahn-Hoffman capillary vector 

thermodynamics for anisotropic interfaces [37]. The capillary vector ξ for nematic surfaces and 

interfaces has two components: 

s
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(2.3 a,b) 

The normal component  𝝃⊥ describes the increase in surface energy through dilation and the 

tangential component  𝝃∥  is the change in surface energy through rotation of the unit normal. For 

isotropic surfaces, 𝝃∥ = 0  and no rotational effects appear since W=0. It is important to note that 

at the free surface we have two independent fields: the director n and the unit normal k. A soft 

surface describes the case when its shape adapts to a given director orientation, as considered in 

this chapter. 

 

Figure 2-1. Schematic of a cholesteric liquid crystal (plywood architecture) and surface structures. 

H is the helix unit vector, and P0 is the pitch. (a) The surface director has an ideal cholesteric twist 

and the surface is flat. (b) Bend and splay orientation distortions with λ+ disclination [44] for W<0 

create surface undulations. Adapted from ref [31]. Note that the director field is continuous 

everywhere and λ lines are non-singular core. 
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The normal component of the interfacial stress boundary conditions at the CLC/air interface is: 

 

a b

s s: ( ) ( . )    kk T T T k  (2.4) 

where Ta/b is the total stress tensor in the air and cholesteric bulk phase, and Ts is the interface 

stress tensor. The air and bulk stress tensors are given by: 

b b E E Tb
b

f
(p f ) ;   .( )


      


T I T T n

n
 

(2.5) 

 

where p a/b are the hydrostatic pressures, fb is the bulk Frank energy density, and TE is the Ericksen 

stress tensor. The projection of Eq. 2.4 along k results in the shape equation: 
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where SJ is the total normal stress jump and pc is the capillary pressure. The bulk free energy 

density of a cholesteric in the one constant approximation reads: 
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(2.7) 

where K is the Frank elasticity constant, and q0 is the wave vector which is equal to 2π/P0. The 

surface contribution s s( . ). T k  is minus the divergence of the capillary vector decomposed 

naturally as [45]: 
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(2.8) 

where Pdilation is the contribution from the normal component 𝝃⊥ which is the usual Laplace 

pressure and Protation is the contribution from the tangential component  𝝃∥ which is the anisotropic 

pressure due to preferred orientation and is known as Herring’s pressure. The additional 

contribution to the capillary pressure, Pdirector appears from director curvature due to orientation 

gradients. The capillary pressure in CLC free interfaces includes a number of novel interfacial 

effects: i) capillary pressure even for flat surfaces, ii) Laplace-type capillary pressure due to 
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director orientation curvature (i.e. gradients), iii) orientation-dependent renormalization of the 

surface tension coefficients due to anchoring energy [37]. 

For the case under consideration, in the absence of gravitation, semi-infinite media in the vertical 

direction and periodic in the horizontal direction, we take  𝑝𝑎 − 𝑝𝑏 = 0. The remaining 

contribution to SJ, {𝑓𝑏 + 𝐤𝐤: 𝐓E}, is known as the elastic correction in the liquid crystal literature. 

Using Eq. 2.6 and Eq. 2.7 the elastic correction is: 
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(2.9) 

This expression can be greatly simplified. Using the director field of ref. [31], with 

n=(nx(x,y),ny(x),nz(x,y)) and the interfacial torque balance equation, we find that the Ericksen 

stress projection is zero: 
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because  
𝜕𝑛𝑦

𝜕𝑦
= 0. The elastic correction SJ in the present case is then only due to fb. Using Eqs. 

(2.6, 2.9, 2.10) and n=(nx(x,y), ny(x),nz(x,y)) we obtain [46]: 
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(2.11) 

where 𝑘 =
𝑑𝜑

𝑑𝑠
  is the surface curvature, φ is the normal angle, s is the arc-length (Appendix.C, 

Figure C-1) and t is the tangential surface unit vector. For significant anchoring that unravels the 

helix we find that the extrapolation length ex scales as: 

ex o

K
=cP

W
  

(2.12) 

where c is the ratio of the extrapolation length K/W to the cholesteric pitch P0. Thus, the order of 
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magnitude of the stress jump (elastic correction) written in relation to anchoring (i.e. W/Po) gives: 
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(2.13) 

 

For typical cholesteric liquid crystals, the internal length K/γ0 is usually in the range 1nm (an order 

of magnitude estimation of the elastic constant K and the surface tension γ0 gives K ≈ 10-11 J/m 

and γ0≈10-2 J/m2). As the ratio of W/γ0 at the cholesteric-air interface with quite strong anchoring 

lies in the range (B=W/γ0=0.05), the extrapolation length scale K/W is about  

0
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With these values, for a biological cholesteric liquid crystal with a typical pitch  𝑃0~1 𝜇𝑚, the 

value of c is  in order of  
𝐾/W

𝑃0
=

20 [𝑛𝑚]

1000 [𝑛𝑚]
= 0.02. Hence if c is of the order of 0.02, the SJ 

contributes 2% to the shape equation, and the elastic correction to the surface shape is not 

significant and can be neglected to describe nano-scale surface undulations. When Po increases 

beyond 1 μm, the elastic correction essentially vanishes. When the elastic correction is essentially 

negligible, the shape Eq. 2.11, when the director field and geometry are as shown in Figure 2-1, 

reduces to a balance of dilation, rotation, and director pressures: 

director+ dilation rotation
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where B = W/γ0 is the scaled anchoring coefficient. This equation shows that the surface shape 

is the balance between surface tension and anchoring. The anchoring term is the driving force for 

surface undulations and it originates from the fact that this anisotropic surface energy is minimized 

when the director n is aligned along the preferred “easy axis”. For a fixed cholesteric helical 

orientation, the only way to minimize this energy is to deform the interface to avoid energetically 

costly mismatch between the director and the easy axis. Since the director of a cholesteric is 

periodic, then the surface undulations are also periodic. When the director orientation deviates 

from the easy axis and the deviation generates gradients in surface tension, which are comparable 

to the characteristic kinetic energy density, the orientational-driven Marangoni flow may appear 

[47-49]. In this study, we neglect this Marangoni effect and consider the shape instability as driven 
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by elastic effects. One mechanism that may eliminate or reduce viscous effects when the helix is 

tangential to the surface is the high viscosity associated with permeation flow [50-52]. 

For flat planar interfaces (κ=0) the capillary pressure is driven only by director curvature: 

c s sp W(( . )( . ) : )   k n n kn n  (2.16) 

The director curvature pressure, Pdirector is zero when: 

s s s s( . )( . ) : ) 0 . 0 and : 0       k n n kn n n kn n  (2.17) 

In a rectangular (x,y,z) coordinate system, to satisfy the zero director curvature pressure condition 

(Eq. 2.17), we find that the director n must obey one of the following two conditions: 1) nx=0 and 

ny=0 or 2) nxny=constant (the generic conditions under which the director curvature pressure is 

zero are derived in Appendix B). We note that  the surface director field describing a planar surface 

with a uniform tangential helix vector is given by  𝐧(x) = (0, cos qx, sin qx), and since nx=0, the 

director curvature pressure is zero and no surface wrinkling can be observed, as previosuly 

predicted using other approaches [31]. 

To describe 1D surface undulation in a CLC, we use a rectangular coordinate frame (x,y,z), where 

x is the undulation direction, and y the vertical axis (see Figure 2-1). The amplitude of the vertical 

undulation is h(x). For a 1D texture, the surface relief is constant in the z direction. The arc-length 

measure of the undulating surface is “s”.  
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Setting pc=0 and using the above-specified splay-bend director 𝐧(x) = (cos qx, sin qx, 0) and 

surface unit normal k(x) vectors gives the governing nonlinear first order ODE for the normal 

angle φ(x,B,P0), where -2<B<0, 0<P0<100 μm, 0<x<L where L is the given system length in the 

x direction. This nonlinear ODE with periodic coefficients is solved using the well-known AUTO 

nonlinear software [53]. The surface relief is then obtained from h(x) = ∫ cot φ dx′
x

0
. The 

boundary condition at x=0, is φ|x=0 =
π

2
, consistent with the adopted sign of B. 

 

2.5 Results and discussion 

In this section we: (1) establish and quantify the effect of anchoring (B) and chirality (P0) on the 

normal angle φ(x, B, P0) and on the amplitude profile h(x,B,P0), (2) use a pressure-energy analysis 
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to characterize wrinkling, and (3) formulate and validate scaling relations for hmax as a function of 

B and P0.   

2.5.1 Free surface profile  

The generic features of the amplitude profile h(x), its maximum value hmax, and its periodicity 

h(x)=h(x+λ) are the three relevant outputs of the model. The two significant parameters 

influencing h(x) are the scaled anchoring coefficient B and the micron scale length of the pitch P0. 

For the nematic-isotropic interface, the scaled anchoring coefficient B is of the order of magnitude 

of 0.01 [54]. The anchoring strength W at the nematic-air interface is about several orders of 

magnitude larger than the anchoring strength at the nematic-isotropic interface. However, as the 

surface tension at the nematic-air interface is higher than the surface tension at the nematic-

isotropic interface [31],[55], the scaled anchoring coefficient B=W/γ is taken to be in the range       

-0.1<B< -0.01.  

The plots of normal angle φ(x) and the corresponding surface reliefs h(x) as a function of the 

distance “x”, for different B and P0 are shown in Figure 2-2 and Figure 2-3, respectively. As 

expected, the periodicity, λ equals the pitch, P0 and the amplitude are in the nanometer range, 

consistent with experimental findings [26, 56]. Increasing both parameters B and P0 results in 

higher amplitudes. 

 

2.5.2 Pressure-curvature relations 

As at the nematic-air interface, the anchoring strength (W≈10-5 J/m2) is three orders of 

magnitudes smaller than the surface tension (γ≈10-2 J/m2) [54], it would seem that there is no 

driving forces to deform the CLC free interfaces and a flat interface would minimize the free 

surface energy. However, the director pressure curvature is shown here to be a driving force that 

wrinkles the surface under weak anchoring (i.e. small B) and typical values of chirality (i.e P0 in 

the µm range). All pressures are scaled with the isotropic tension γ0 and have units of µm-1. Due 

to the orientational order of CLC interface, the capillary pressure contains three contributions: 

surface area reduction, surface area rotation, and director curvature (Eq. 2.8). 
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Figure 2-2. The numerical solutions φ(x) and h(x) for P0=1.2 μm and different values of 

B=-0.05, -0.1, and -0.2, showing the increase of the normal angle φ and the resultant surface 

amplitude h through increase in the anchoring constant B.  

 

 

Figure 2-3. The numerical solutions φ(x) and h(x) for B=-0.05 and different values of 

P0=0.5,1 and 2 μm, showing the increase of the normal angle φ and the resultant surface.  
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The essential feature of chiral capillarity is the interaction of anisotropy (director n of fibers), 

micron-range chirality (P0), helix direction (H) and free surface topography. When the holesteric 

helix is parallel to a flat surface, frustration driven by the unavoidable (due to periodic n) presence 

of high surface energy drives the surface uncoiling of the helix and the periodic tilting of the 

interface. This is another example of pattern formation by frustration, ubiquitous in mesophases 

[11, 57]. 

A unique feature of liquid crystal surfaces is the presence of Laplace pressure (area dilation), 

Herrings pressure (area rotation), and director orientation gradients pressure, as revealed succinctly 

by the surface gradient of the capillary vector ξ (Eq. 2.15). Herring’s pressure forms the basis of 

anisotropic crystal morphologies and is included here as Protation [37]. As the Herring’s pressure 

depends on curvature, it is only the orientation pressure Pdirector that wrinkles the surface with a 

wavelength that reflects the periodicity of the director field. Extracting the curvature in Eq. 2.15 

clearly shows that it is the ratio of a wrinkling driving force (-Pdirector) to a resistance to wrinkling 

(capillary tension coefficients): 
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(2.19) 

where the capillary tension coefficients are the usual Laplace terms plus the Herring’s coefficient 

given by the second derivative  
∂2γ

∂𝐤𝟐 = 𝐭𝐭: (∂(𝐭𝐭.
∂γ

∂𝐤
) ∂𝐤); the last ratio is obtained by scaling with 

γ0. Clearly as Pdirector = 0 → κ = 0 (see also Appendix C). This is illustrated in Figure 2-4 

through 3-D representation of surface curvature, κ, and associated pressure directors, Pdirector, and 

normal angle, φ, for two anchoring coefficients and three chirality values. Figure 2-4 shows that 

for all values of the anchoring coefficients and chiralities, the zero pressure director results in a 

flat surface (zero curvature). The horizontal diameter corresponds to the zero pressure director 

(Pdirector=0). Using scaling arguments, the Pdirector scales as: 

direc

0

tor orderP
B

P


 
 
 

 (2.20) 

Therefore, from Eq. 2.19 and Eq. 2.20 we see that the maximum curvature will increase with B 

and decrease with P0, in agreement with computations. This dependence is manifested in the 3-D 

plots of the surface curvature for different anchoring coefficients (B=-0.05, and -0.1) and chirality 

(P0=0.5, 1, and 5 µm), as shown in Figure 2-4(a) and Figure 2-4(b) respectively. 
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Figure 2-4. 3-D representation of the surface curvature and associated pressure directors 

Pdirector and normal angle φ. (a) P0=0.5 μm, B=-0.05, -0.1 and (b) B=-0.05, P0=0.5, 1, and 5 

μm, showing the increase of the maximum curvature for higher values of B and lower 

values of P0. The diameter corresponds to the zero pressure director (Pdirector=0). 
 

Figure 2-5 shows the three scaled surface pressures as a function of “x” for two anchoring 

coefficients and P0=0.5µm. The ellipsoids correspond to the director orientation. Pressure 

extrema (and surface relief extrema as in Figure 2-2 and Figure 2-3) occur at planar and 

homeotropic orientation. The Herring’s pressure Protation is always positive and alternates 

its phase along each cycle, such that when the director angle is /4< dilation and 

rotation are in-phase and when <rotation and director curvature are in-phase. 

Dilation and director curvature pressures are always out-of-phase. In addition, its amplitude 

also oscillates. Increasing the anchoring strength increases the magnitude of all pressures. 

The polar plots of the three scaled capillary pressures as a function of anchoring B and 

chirality P0, are shown in Figure 2-6 and Figure 2-7 respectively. The angular coordinate is 

the director field θ. The fourfold symmetry reflects the facts that the pressure extrema are 

at 0, n/2; n={ 1,2,…} and that all pressures vanish at n/4; n={ 1,3…}. The figure shows 

that pressure asymmetry is strongest for the chiral component Protation, but is essentially zero 

for the other two. Figure 2-7 shows polar plots of pressure as a function of P0. Decreasing 

chirality decreases all pressures as the wave-length of the undulation increases. Changing 

P0 does not affect the degree of asymmetry between the lobes of these pressures. 

 
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 Figure 2-5.  Pressure profiles for Pdilation, Protation, and Pdirector as a function of distance “x”.                      

(a) B=-0.05 and P0=0.5 μm and (b) B=-0.1 and P0=0.5 μm. The ellipsoid corresponds to the 

director orientation. The figures display that pressure extrema occur at planar and homeotropic 

orientation. When the director angle is /4< dilation and rotation are in-phase and 

when <rotation and director curvature are in-phase. Dilation and director curvature 

pressures are always out-of-phase. 
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Figure 2-6. Polar plots of the three scaled capillary pressures a) Pdilation(μm-1) b) Protation (μm-1)       

c) Pdirector(μm-1) for B=-0.05 and -0.1, and P0=0.5 μm. The angular coordinate is the director field 

θ. The fourfold symmetry reflects the facts that the pressure extrema are at 0, n/2; n={ 1,2,…} 

and that all pressures vanish at n/4; n={ 1,3…}. 

 

   

Figure 2-7. Polar plots of the three scaled capillary pressures a) Pdilation(μm-1) b) Protation(μm-1)                 

c) Pdirector(μm-1) for P0=0.5& 1 μm and B=-0.5. The fourfold symmetry reflects the facts that the 

pressure extrema are at 0, n/2; n={ 1,2,…} and that all pressures vanish at n/4; n={ 1,3…}. 
 

2.5.3 CLC surface energies 

The total surface energy is defined by Fs = ∫ γ. dA [58], and for an initially flat surface of area 

L2, the total scaled surface energy εT/γ0L2 is: 

isotropic surface tension

L L L L

2T

2 2 2

0 0 0 0 0

anchoring energy

1 1 B 1
 dxdz ( . )  dxdz

L L sin L sin




      n k  
(2.21) 

Figure 2-8 shows the variations of the total surface energy with the two surface energy 

contributions for various B in comparison with the flat surface energy contributions. Figure 2-8(a) 

shows the total scaled surface energy of the wrinkled and flat surfaces as a function of anchoring 

B. Increasing the magnitude of B increases the energy difference between the flat and undulating 





 
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surfaces. The figure demonstrates that the total energy monotonically decreases by increasing the 

magnitude of B. Figure 2-8(b) shows the different contributions of the profiles shown in               

Figure 2-8(a). The undulation is driven by the anisotropic surface energy despite the increase in 

the isotropic energy. Also, the decrease in anisotropic energy is significantly augmented by the 

undulations. 

 

 
Figure 2-8. a) The total surface energy and b) isotropic and anisotropic contributions in 

comparison with flat surface energies for P0=0.5 μm and different values of B=-0.5 to -0.05. The 

system reduces its free energy by decreasing its anisotropic surface energy.  

Figure 2-9 shows the corresponding energy contributions and behavior as a function of chirality. 

The Figure shows that the isotropic surface tension energy and the anchoring energy for a 
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particular value of anchoring (B=-0.05) are almost independent of chirality. Although, the 

undulating surface has a higher isotropic energy compared to the flat surface, the lower anisotropic 

energy yields the undulating surface with a lower total surface energy compared to the flat surface 

reference line (Figure 2-9(a)). 

 

Figure 2-9. a) The total surface energy and b) isotropic and anisotropic contributions in 

comparison with flat surface energies for B=-0.05 and different values of P0=0.5 μm to 10μm, 

showing that the system free energy is almost insensitive to the variations of helix pitch P0. 

 

2.5.4 Undulation scaling law and validation 

Using a standard order of magnitude analysis based on Eq. 2.8, we find a revealing close form 

expression for the maximum amplitude hmax as a function of B and P0: 
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(2.22) 

The numerical results indicate that 𝛿 = 10.71𝐵−1.02. The prediction is that the ratio of 

amplitude/periodicity is essentially a linear function of the scaled anchoring B: 
 ℎ𝑚𝑎𝑥

𝑃0
=

0.085𝐵. 

Since the value of B for the interface between the chiral nematic and the isotropic phase/air usually 

is in the range -0.1<B<-0.01, the estimated amplitude of surface undulation is about one percent 

of the undulation wavelength. The theoretical estimate, based on the shape equation, of the depth-

to-period ratio is consistent with the nano-scale surface structures that have been experimentally 

observed in a variety of polymeric and biological CLC. Periodic surface structures with amplitude 

of the order of hundred nanometers and a periodicity of the order of few micrometers that 

spontaneously appeared from evaporating droplets of collagen solutions on glass substrates were 

detected using an atomic force microscope (AFM) [14]. The periodic surface relief found in his 

work is very similar to the periodic undulations observed  in a collagen film with twisted plywood 

architecture [59]. Besides, the AFM images of sheared nano crystalline cellulose thin films showed 

two periodic gratings with different scales: the primary periodic structure perpendicular to the 

shear direction and a smoother texture characterized by a secondary periodic structure which is 

very similar to the surface modulation found in the Tulip “Queen of the Night” petals [25]. The 

estimated values of the parameter B for several surface nano-undulations of CLC (refs.[14, 25, 26, 

31, 56, 59]) are shown in Table 2-1. The results show that the predicted values of the parameter B 

using the scaling law are consistent with the anchoring energy coefficients for the CLC/air 

interface. 

Table 2-1. Validation of the scaling law (Eq. 2.22 with experimentally observed nano-scale 

surface undulations in CLCs and biological plywoods. 

Experiments h(nm) λ(µm) B 
fitted

 

Chiral polymer [26] 2.5 0.63 0.028 

Collagen solution [59] 100 7.5 0.079 

Liquid crystalline collagen [14] 150 8 0.110 

Cellulosic cholesteric film [25] 5 0.5 0.059 
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2.6 Conclusions 

This study has used a non-linear nemato-capillarity shape equation to describe the main 

mechanisms driving nano-scale surface undulations in chiral nematic liquid crystals as 

shown in plant-based plywoods and various cholesteric liquid crystals. The generalized 

Laplace equation based on the Cahn-Hoffman capillarity vector formalism was formulated 

and used as an efficient tool to analyse surface reliefs in plant-based plywoods. The 

resulting chiral capillary equation admits stable spatially periodic solutions describing 

surface wrinkling, where the amplitude is in the order of few nms and the wave-length is 

in order of µms. The role of three capillary pressure contributions (surface area change, 

surface area rotation, and director curvature) have been elucidated and the influence of 

chirality and surface anchoring has been characterized. The director pressure has been 

identified as the fundamental driving force that generates the surface nano-scale 

undulations. The model predictions show that the director pressure vanishes for a planar 

surface with a uniform tangential helix vector and results in a flat surface. A scaling law 

for the chirality-driven surface wrinkling shows that the ratio of amplitude-to-period is a 

linear function of the ratio of anchoring strength to isotropic surface tension 

(0.085×𝑊/𝛾0). The scaling law is validated with experimental values available in 

literature for surface undulations observed in CLCs and biological plywoods. Since the 

pitch P0 of cholesteric liquid crystals and plywoods is sensitive to temperature, water 

content, pH, and external fields we expect new functional material surfaces that operate 

through the chiral capillarity mechanism described here. Further work is currently in 

progress to characterize water- based surface actuation mechanism through interaction of 

anisotropic interfacial tension and chirality changes through hydration. 
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Chapter 3 

3 Modeling Nano-Wrinkling of Chiral Surfaces in Response to Humidity: Structure and 

Diffraction Optics 

3.1 Preface 

In the previous chapter, a comprehensive shape equation that reflects the membrane curvature-

fiber order contributions was developed and the main mechanisms driving nano-scale surface 

undulations in plant-based plywoods were described. In this chapter, the role of humidity in 

deforming the surface undulations through the interaction of anisotropic interfacial tension, 

swelling through hydration, and capillarity at free surfaces is established. The optical properties of 

the water-induced surface wrinkling are explored and compared with the optical responses of the 

free surface nanostructures presented in the previous chapter. This chapter is reproduced from a 

published paper with the title “Tunable nano-wrinkling of chiral surfaces: Structure and diffraction 

optics”, and co-authored with Prof. Damiano Pasini and Prof. Alejandro. D. Rey; Journal of 

chemical physics, 2015, 143, 114701. 

3.2 Summary 

Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such 

as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface 

ultrastructures are responsible for structural colors observed in some beetles and plants that can 

dynamically respond to external conditions, such as humidity and temperature. In this chapter, the 

formation of the surface undulations is investigated through the interaction of anisotropic 

interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the 

cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for 

anisotropic interfaces using the Cahn-Hoffman capillarity vector and the Rapini-Papoular 

anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free 

surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit 

relations between the undulations’ amplitude expressed as a function of the anchoring strength and 

the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are 

studied through finite difference time domain simulations (FDTD) indicating that CCLC surfaces 

with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with 

constant pitch. This structural color change is controlled by the pitch gradient through hydration. 
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All these findings provide a foundation to understand structural color phenomena in Nature and 

for the design of optical sensor devices. 

3.3 Introduction 

A variety of surface ultrastructures can be found in many biological materials, such as the 

periodic undulations observed in films of concentrated collagen [1], silk gland ducts of the golden 

orb-web spider Nephila clavipes [2], the exoskeleton of the beetle Chrysina gloriosa [3], and other 

cellulosic materials [4,5]. It has been shown that the surface patterns in the exoskeleton of Chrysina 

gloriosa and in the duct of silk secreting glands in Nephila clavipes closely resemble the atomic 

force microscopy image of the focal conic domains that spontaneously arise on the free surface of 

cholesteric liquid crystals, CLCs [3, 6]. Besides, similar periodic patterns have been observed at 

the free surface of a nematic liquid crustal under a magnetic field [7] and a cholesteric under a 

homeotropic alignment [8]. Cholesteric liquid crystal self-assembly has been proposed to explain 

the surface structures of many fibrous composites ranging from plant cell walls to arthropod 

cuticles [9, 10]. Some of these periodic surface structures give rise to structural colors that are 

observed in beetles [3], mollusk shells [11], ostracods [12], large fishes [13], and some plants [14]. 

Although, minor light absorption effects have been reported in CLCs, the absorption of light by 

pigments in some beetle cuticles plays an important role in structural colors. The black melanin 

pigment present in a Japanese jewel beetle cuticle absorbs the light fraction scattered from inner 

layers, which contributes in determining the iridescent color [15]. Furthermore, the single 

iridescent colors observed in some beetles and butterflies result from color mixing of structurally 

different colors. The beetle Calidea panaethiopica shows a metallic green color that originates 

from a multilayer structure generating two different colors mixed to produce the single color [16]. 

Additionally, the complex green color of the butterfly Papilio palinurus results from an additive 

color mixing of yellow and blue [17]. 

Structural color and iridescence in plants are typically associated with diffraction grating, thin 

layered or multilayered interference, and often with contributions from pigmentation as well. 

Structural color in plant’s leaves arises essentially from multilayers of cellulose microfibrils with 

differing orientations in the plant cell walls forming a cholesteric liquid crystal phase [18, 19]. 

Structural color in plant’s flowers arises essentially from surface diffraction gratings. For example, 

the petals of Hibiscus trionum and Tulipa kaufmanniana feature ordered surface striation 

controlling iridescence with a striking metallic appearance [20]. 
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Color change in response to environmental stimuli is ubiquitous in plants and animals. The 

iridescent blue color in the fish Chrysiptera cyanea can change to ultraviolet by the simultaneous 

change in spacing of the adjoining reflecting plates [21]. It has also been observed that the beetles 

Dynastes Hercules and Coptocycla can vary their coloration in response to humidity [22, 23]. The 

elytra of longhorn beetles Tmesisternus isabellae reacts to water absorption by color change, from 

golden in the dry state to red in the wet state. The factors controlling color change are the swelling 

of the multilayer pitch (from about 175 nm in the dry state to about 190 nm in the fully wet state) 

and the water infiltration [24]. Structural colors in some plants can also be the result of a response 

to humidity, light, and touch through the change of bulk and surface nanostructures, among other 

external stimuli. One of the interesting examples is a tropical rainforest plant, Selaginella 

willdenowii that possesses iridescent blue leaves that can dynamically respond to hydration and 

dehydration. It has been shown that the iridescent blue color turns to green when the leaves are 

immersed in water, with  blue color reappearing  when the leaves are dry [25]. Electron microscopy 

of iridescent blue leaves in four Malaysian rain forest understory plants show that optical effects 

upon humidity changes are mediated by altering the twisted plywood structure (helix pitch) in the 

plant cell walls. The reported lamellar spacing in green leaves is 268±2.2 nm, which is larger than 

the lamellar spacing in blue leaves, 141±2.4 nm.[18] Similar behavior is observed in a hygroscopic 

liquid crystal polymer film that responds to temperature and humidity by changing its color [26]. 

It has been proved that that when humidity is high, the film swelling results in a pitch increase as 

opposed to the case of low humidity, which causes a decrease in the pitch with consequent film 

shrinkage. 

Understanding the mechanisms through which plants exhibit specific optical appearances is an 

illustration of "bio-inspiration" for the design of optical devices with novel functionalities [27], 

and as a tool to characterize plant-based plywoods. Although the formation of these surface 

ultrastructures during the plant development is not yet well understood, it is recognized that the 

formation and periodicity of the plant surface undulations are governed by the CCLC structure 

[28]. It has been shown that the change of the orientational order, the fiber orientation at the CCLC 

interface, defined by the average direction of preferred orientation called the director n, and the 

presence of topological defects can cause the undulation on free interfaces through a process of 

surface energy minimization of the surface interface shape [29]. The interaction between the 

interface shape and the director n is a complex phenomenon involving interfacial tension, surface 
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anchoring energy, and LC Frank elasticity, all factors requiring the integration of multi-scale 

modelling for bulk and surface structure properties [30]. In our recent study, we presented the main 

mechanisms driving nanoscale surface undulations in chiral nematic liquid crystals as shown in 

plant-based plywoods and various cholesteric liquid crystals [31, 32]. 

Of particular interest in the present chapter is the study the role of tangential water gradient in 

the formation of plant surface undulations. The insight gained from this study can be used to 

generate surface patterns and nano-scale actuation systems capable to autonomously respond to 

humidity. In this chapter, we seek to characterize the free surface relief of CCLC through the 

interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free 

surfaces. With a focus on the CCLC material model, we consider two-dimensional cholesteric 

films with a free interface subject to a tangential water gradient. To analyze periodic nano-

wrinkling in plant-based plywood free surfaces, we use the generalized shape equation for 

anisotropic interfaces using the Cahn-Hoffman capillarity vector developed for LCs [33], and the 

classical Rapini-Papoular anchoring energy [34] for the anisotropic part of the interfacial tension. 

To investigate the optical responses of the surface wrinkling, we implement finite difference 

simulations in the time domain (FDTD) and calculate the corresponding planar reflection of light. 

The FDTD method is established as an accurate numerical method to solve Maxwell’s equations 

and as an efficient tool for simulation of light propagation in liquid crystals containing complex 

textures [35]. It has been shown that the FDTD method is capable of predicting optical responses 

to textured nematic liquid crystal films containing non-uniform orientation induced by variations 

in surface anchoring [36]. The interaction between the incident light and the nanoscale periodic 

structure shows bistructural color reflection through hydration and dehydration. The wavelength 

of the reflection peak strongly depends on the CCLC helical pitch. The self-assembly formation 

of the CLC surface ultrastructure together with the water-induced multiple structural colors 

suggests a potential mechanism to exploit in the design of colorimetric humidity sensors.  

The organization of this chapter is as follows. Section 3.4 introduces the CCLCs material model 

system with water-induced spatially varying pitch. Section 3.5 presents the interfacial force 

balance equation, and the governing nemato-capillary shape equation expressing the coupling 

mechanism between the surface geometry and cellulose fiber orientation for CCLC/air interface 

in rectangular (x,y,z) coordinates. The capillary shape equation is derived and the unique role of 

the Cahn-Hoffman capillary vector is discussed. Section 3.6 presents the effect of model 



66 

parameters on the surface profile, the capillary pressures associated with the CCLC interface, the 

scaling formula expressing surface profile amplitude as a function of the anchoring strength and 

the water-induced varying helix pitch, and the optical response of the surface relief using the finite 

difference time domain simulation. In section 3.6, the reflection of light affected by the spatially 

varying pitch is also theoretically investigated and compared with the reflection of light at free 

surfaces of CCLCs with constant pitch. The role of key parameters such as the anchoring strength, 

and the helix pitch on the optical properties is discussed. Section 3.7 presents Conclusions. 

3.4 Geometry and structure 

Plant cell walls can be considered as a natural viscoelastic composite reinforced by cellulose 

microfibrills (CMFs) coated with hemicelluloses and embedded in a matrix of lignin/pectin [37]. 

CMFs in the extracellular polysaccharide matrix are oriented in strategic directions to form the 

twisted plywood architecture that provides mechanical strength, controls cell expansion, 

contributes to the morphology at the tissue, and functions in signaling [38]. A plant cell wall 

consists of a primary wall that is a thin layer laid down during cell growth, and three secondary 

walls, which are thick and rigid layers laid down when the cell has reached its final size and shape 

[38]. However, the mechanisms by which the CMFs are oriented in a specific direction are not 

well understood. Based on the microstructural and textural similarities between the plant cell walls 

and chiral liquid crystal phases, it is hypothesized that the formation of plant cell wall 

microstructure arises through liquid crystal self-assembly [39-41]. Plant cell walls can be 

characterized by a multi-layered structure where cellulose fibers are laid down parallel in each 

layer, whereas the CMF orientation between layers changes by a constant angle [10]. Figure 3-

1(a) depicts the schematics of the helicoidal plant cell wall where ellipsoids indicate fiber 

orientation on each parallel layer. The fiber orientation at the interface is defined by the director 

n. The instantaneous axis of rotation is defined by the helix axis H. We assume that the helix axis 

remains parallel to the surface; other complex structures occurring when the helix axis H is 

distorted are beyond the scope of this study. The pitch length P is defined as the distance through 

which the fibers undergo a 2π rotation. The handedness of the CLC in the whole study is assumed 

to be right-handed (P˃0). For rectangular (x,y,z) coordinate system, the surface relief that is 

directed along the x axis can be described by a y(x,z) deviation from the xz plane. The amplitude 

of the vertical undulation is h(x). As the surface relief is constant in the z direction for a linear 

texture, the curvature in the z-direction is zero. The unit tangent, t and the unit normal, k to the 
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surface can be expressed with the normal angle, φ:(𝐱) = (sin φ(x), −cosφ(x), 0), 𝐤(x) =

(cos φ(x), sinφ(x), 0). L is the given system length in the x direction. The arc-length measure 

of the undulating surface is “s”. 

The preferred fiber orientation or easy axis at the interface can be parallel to the unit normal k 

(homeotropic) or perpendicular to the unit normal k (planar). Based on the surface anchoring type 

(planar or homeotropic) of CLCs, the director filed configuration close to the surface can be 

distorted or undistorted to reach the minimum-energy state. In the case of planar anchoring, as the 

helix axis H perpendicular to the surface is the most stable configuration, it will remain undistorted 

[42]. However, in the case of homeotropic anchoring (W<0), either the helix structures parallel to 

the surface or perpendicular to the surface is not fully compatible with any uniform aligning 

surface [43]. Therefore, to adapt the helix axis to uniformly aligning surface, a set of elastic 

distortion and sub-surface defect nucleation results in a disruption of the average orientational 

order and creation of topological defects, need to be formed at the interface. In this chapter, we 

restrict the discussion to homeotropic anchoring (W<0), because the undistorted helicoidal 

structure for planar surface anchoring (W>0, n.k=0) results in a flat surface [6]. It has been 

reported that the presence of elastic distortion near to the CLC interface can change the director 

field and its periodicity at the free surface [44,45]. Here we assume that the periodicity of the 

distorted region is constant and equal to the bulk pitch, P. Usually, the defect dissociates in a bulk 

λ+ and a surface τ- pair. The τ- defect lines disappear for the non-planar surface (see Figure 3-1).  

The present study uses the cholesteric representation of the director field n developed by Meister 

et al. [6]: 

2
(x, y) (cosqx cosqy,  sin qx ,  cosqx sin qy),     q(x)=

P(x)


n  (3.1) 

Topological defects in cholesteric liquid crystals include disclinations and dislocations. 

Disclination is a defect involving discontinuity in the director field, and dislocation is a 

translational defect corresponding to addition or removal of cholesteric layers. Disclinations are 

characterized by core type (singular, τ lines or non-singular, λ lines), where in singular core the 

molecular order deviates from its homogenous value while in the non-singular core it does not. 

The strength of disclination is characterized by sense rotation (sign) and amount of rotation 

(amplitude) [46].  
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Figure 3-1. Schematic of a cholesteric liquid crystal (plywood architecture) and nano-wrinkled 

surface structures. Bend and splay orientation distortions with λ+ disclination for normal anchoring 

(W<0) create surface undulations. Note that the director field is continuous everywhere and the λ+ 

lines have a low energy non-singular core. (a) Surface structure of CCLC surface with constant 

pitch. H is the helix unit vector, and Pdry is the constant pitch. (b) Surface structure of CCLC 

surface with water-induced varying pitch. P(x) is the local pitch which varies linearly over a range 

of x-values: P(x)=Pdry+(Pwet–Pdry) x/L. Adapted with permission from Journal de Physique II,6, 

827-844 (Ref. [6]). Copyright 1996 EDP Sciences.  
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We note that this director field is continuous everywhere and only contains non-singular core λ+ 

disclination lines, and that n𝑦(x) = sin 𝑞𝑥 lacks “y” dependence. The latter is an important factor 

for the bulk normal stresses. The interfacial structure, with an array of λ+ lines at a distance P/4 

from the surface, emerges from a sufficiently strong homeotropic anchoring. Figure 3-2(a) shows 

the director n trajectories on the unit sphere corresponding to Figure 3-1. It has been proved that 

for equal elastic constants, all the trajectories on the unit sphere are geodesic, i.e. circles whose 

plane passes through the center of the sphere. Geodesics are well known energy minimizers for 

liquid crystals [47, 48]. As depicted in Figure 3-2 (b), the continuous director field is the ABCD 

patch on the unit sphere limited by two meridians (pure twist A-B and splay-bend A-D) and the 

equator. The temperature and concentration dependence of the CLC helical pitch has been widely 

reported [7]. Recently Matsuyama [49, 50] showed that the helical pitch of a cholesteric phase is 

a function of the concentration and the orientation order parameter in a mixture of polymer and a 

liquid crystal. In the present study, we assume that the helix pitch changes in response to humidity 

level from the swelling and shrinking of the polysaccharide matrix through water sorption. As the 

stiffness of the crystalline cellulose microfibrils is approximately two orders of magnitude higher 

than the hygroscopic matrix, they do not swell whereas the hygroscopic matrix, which is embedded 

in, does [51]. 

It has been shown that some biological helicoidal structures when exposed to higher humidity, 

result in an increase of the pitch due to the swelling of the multilayer, and when exposed to lower 

humidity they result in a decrease of the pitch due to the shrinkage of the multilayer. Therefore, in 

the presence of the tangential water gradient at the CLC-air interface we consider a spatially 

varying pitch, where the director n rotates non-uniformly along the x-direction. The pitch gradient 

can be described by a power series or an exponential [52, 53]. To meet the objectives and remain 

within the scope of this work, we assume the pitch profile as linear. As shown in Figure 3-1(b), in 

the presence of the tangential water gradient, the pitch is assumed to grow from Pdry to Pwet along 

the x-direction: 

dry dry wet

x
P(x) P (P P )

L
    (3.2) 

3.5 Governing equations 

The formation of the surface undulations in CLC interfaces is a complex multiple-coupling 

problem that includes surface tension, anchoring energy and bulk elasticity. To explore the free 
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surface relief, the total system energy including bulk surface energy and the bulk elastic energy 

should be minimized. All the equations that govern the shape of the interfaces coupling bulk and 

surface phases have been presented in Ref. [30]. However, the analytic solution of the problem 

with the usual formalism is very complicated. In the present study, to elucidate the bulk 

contribution to the shape equation, the interfacial stress boundary conditions at the CLC/air 

interface are considered. The surface undulations in plant cell walls are assumed to be formed 

through a modulation in the surface energy at the anisotropic-air interface.  

 

Figure 3-2. (a) The director field used in this study is continuous everywhere in ABCD; adapted 

with permission from Journal de Physique II,6, 827-844 (Ref. [6]). Copyright 1996 EDP Sciences. 

(b) The corresponding orientation paths (ny(x)) are geodesics, well known energy minimizers 

[47,48]. 

 

The macroscopic chirality of the cellulose fibers emerges as the property that impacts the 

interfacial tension and stimulates the free surface relief. In this section, the coupling mechanism 

between the surface geometry and cellulose fiber orientation is presented through the shape 

equation based on the vector formalism of Cahn-Hoffman capillarity [54] for a cholesteric liquid 

crystal with a spatially varying pitch (Eq. 3.2). 

3.5.1 Cahn-Hoffman capillarity vector 

Cahn and Hoffman formulated the capillary vector 𝛏 [54] to describe interfacial surface energy 

anisotropy, which is known as the capillary vector formulation of interface energies. For 

anisotropic systems, the orientation-dependent surface energy can be categorized by: the director 
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n=n(r), the surface position vector r=rk, and the surface unit normal k. Cahn and Hoffman defined 

the nematic capillarity by the gradient of the scaler field rγ [55]: 

ξ( , ) = [rγ( )]n k k  (3.3) 

For isotropic interfaces, the capillary vector 𝛏 reduces to the form 𝛏 =γk. The decomposition of the 

surface director field into normal and tangential components yields: 𝐧⊥ = 𝐤𝐤. 𝐧 and 𝐧∥ = 𝐈𝐬. 𝐧  

where Is is the 2×2 unit surface dyadic: Is=I-kk, I is the 3×3 unit tensor. Calculating the 

gradient of the field rγ using 𝛏.k=γ (k, n), 𝛏.dk=dγ (k, n), and d(rγ) = ∇(rγ). d𝐫 gives: 

||

s

r dγ dγ
( , ) = [rγ( )] = γ + r = γ + I .

d d






ξ

ξ

ξ n k k k
r r k

 
(3.4) 

where the normal component  𝛏⊥ represents the change in surface energy by contraction of the 

surface unit normal, and the tangential component  𝛏∥ represents the change in surface energy by 

rotation of the surface unit normal. The classical Rapini and Papoular form of surface free energy 

can be used to derive the Cahn-Hoffman capillary vector 𝛏 for cholesteric surfaces [34]: 

2

0 aniso aniso

W
( , ) ( , );   ( , ) ( . )

2
     n k n k n k n k  (3.5) 

where γ0 is the isotropic surface tension, γaniso represents the anisotropic anchoring energy 

contribution due to the director field, and W is the surface anchoring strength. For strong 

anchoring, the director field is fixed as a function of temperature and does not change due to bulk 

distortions or external fields. However, for weak anchoring, the director field can be changed due 

to bulk director fields. As mentioned above, W>0 if the easy axis that is an energetically preferable 

direction for the surface orientation is tangential to the interface (planar), and W<0 if the easy axis 

is normal to the interface (homeotropic). Substituting Eq. 3.5 into Eq. 3.4 yields the following 

normal and tangential components of the capillarity vector: 

2

0

W
( , ) = ( ( . ) )

2
  ξ n k nk k  (3.6) 

2

||( , ) = W( ) - W( ) = W( )( - ( ) )ξ n k n.k n n.k k n.k n n.k k  (3.7) 

3.5.2 Interfacial force balance equation 

In this section, we present the interfacial stress boundary conditions at the interface between air 

and cholesteric liquid crystal, denoted by phase (a) and phase (b) respectively. We assume that the 

system is isothermal, both phases are incompressible, and the interface is elastic. The interfacial 

force balance equation is the balance between interfacial forces and the bulk stress jump [56]: 
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a b

s s.( ) ( . )   k T T T  (3.8) 

where s sI .    is the surface gradient. The surface stress tensor, Ts is given by the sum of normal 

TN, bending TB and distortion stresses TD: 

N B D N B D T

s s s s s

s

; , . , . .( )
 

         
 

T T T T T I T I k T I n
k n

 
(3.9) 

Ta and Tb is the total stress tensor in the air and cholesteric bulk phase respectively. The bulk stress 

tensor in air is pure pressure: 

a ap T I  (3.10) 

The bulk stress tensor in CLC is given by [56]: 

b b E E Tb
b

f
(p f ) ;   .( )


      


T I T T n

n
 (3.11) 

where pb is the hydrostatic pressure, TE is the Ericksen stress tensor, fb is the CLC bulk Frank 

energy density. Substituting Eq. 3.10 and Eq. 3.11 into Eq. 3.8 and project the result along k 

(normal component) results in: 

 a b Tb
b s s

f
p p (f ) : .( ) ( . ).

capillary pressure, p
cbulk normal  stress jump, SJ

 
      

 
 

kk n T k
n

 
(3.12) 

Simply by considering the semi-infinite media in the vertical direction and periodic in the 

horizontal direction neglecting gravity, the hydrostatic term,  a bp p  becomes zero. The 

remaining contribution to SJ, {𝑓𝑏 + 𝐤𝐤: 𝐓E} is known as the elastic correction in the liquid crystal 

literature. The expression for the bulk elastic energy density of a cholesteric is: 

     
2 2 2

b 1 2 3

1 1 1
f K . + K q(x) K

2 2 2
     n n n n n  (3.13) 

where K1, K2, and K3 are the splay, twist, and bend Frank constants. q(x) is the variable wave 

vector equals to 2π/P(x). Considering one constant approximation for the Frank bulk energy and 

the director field expressed by Eq. 3.1, the corresponding Frank energy density fb becomes: 

     
2

2 2 2z z
b x y

n n1 1
f  K  2 q(x)  2 n q(x)  K q(x)  1 n  

2 y y 2

     
              

 (3.14) 

fb is out-of-phase with the surface energy density: when fb increases  decreases and vice versa. 

Using Eq. 3.14, we find the normal projection of the bulk Ericksen stress :kk T
E

: 
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           E: K K         kk T n n n k k n n k n k  (3.15) 

Having established the director field n(x,y), its associated bulk energy fb, and the interfacial surface 

tension γ, we find that the normal projection of the bulk Ericksen stress, : E
kk T  is zero: 

      T
E

y

γ T
: ( ) W n 0

  
          

  
kk T I nn n k n.k

n
 (3.16) 

0 yn  because 
yn  depends only on x ( 

𝜕𝑛𝑦

𝜕𝑦
= 0 ). Therefore, as the elastic correction SJ in the 

present case is only due to fb: 

b s sf ( . ).  T k  (3.17) 

3.5.3 Liquid crystal shape equation 

To derive the capillary shape equation, we use the definition −p𝑐 = −∇𝐬. 𝛏 = −∇𝐬. (𝛏⊥ + 𝛏∥). 

For isotropic surfaces, the contribution from the normal component of the capillary vector  𝛏⊥ is 

the classical Laplace pressure, and the contribution from the tangential component of the capillary 

vector,  𝝃∥ is known as Herring’s pressure. For anisotropic surfaces, since the capillary vector is a 

function of both the director filed, n and the unit normal, k, an additional contribution to the 

capillary pressure arises from director curvature due to orientation gradients. It is worth 

emphasizing that in this formulation the surface unit normal k and surface director n whereas 

independent are coupled, and hence their gradients are associated with different kinds of pressure. 

By substituting the normal 𝛏⊥ and tangential 𝝃∥ components of the capillarity vector (Eq. 

3.6 and Eq. 3.7) we obtain: 

s 0s

W 2 2( . ) W(
d d

( . ). W ( )   :  
ds ds

. )
2

    
       


 

    


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 

n k n t
n n

T k k n t kn t  (3.18) 

Where d / ds    is the surface curvature, s is the arc-length, and t is the tangential surface unit 

vector. Replacing Eq. 3.18 into Eq. 3.17 and using the Frank energy (Eq. 3.14), the governing 

shape equation reads: 

 
2

2

y

0 0 0

0

W W2 21 ( . )
K(q(x))

1 n
2

d d
( )   :

(

 
ds ds

. )
2

W

 
  

   



  

    
      

    

n k n

n n
k n t k

t

n t

 (3.19) 

where K/γ0 represents the elasto-capillary length scale which compares bulk elasticity and surface 

tension, and W/γ0 represents the scaled anchoring coefficient. This equation shows that the surface 
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shape is the result of the balance between Frank elasticity, surface tension and anchoring. The 

anchoring term can derive the surface wrinkling in cholesteric liquid crystals since for a fixed 

director field, the surface energy can only be minimized by distorting the interface. The surface 

shape also depends on the relative importance of the elastic contributions to the capillary pressure. 

The relative importance of elastic contributions compared to anchoring can be evaluated by 

comparing the extrapolation length, ℓ𝑒𝑥 =
𝐾

𝑊
  and the helix pitch P. For biological cholesteric 

liquid crystals with significant anchoring that unravels the helix and with a large enough pitch 

(order of micrometers), the elastic contribution to the shape equation is not significant as the 

extrapolation length is much less than the helix pitch: ℓ𝑒𝑥 < 𝑃. By increasing the helix pitch 

through hydration, the bulk elastic contribution (
𝐾(1+𝑛𝑦

2 )

2𝛾0
) decreases and eventually vanishes. 

Nevertheless, to rigorously determine the surface profile, it is thus essential to consider the bulk 

elastic contribution together with the three surface capillary pressures in the shape equation (Eq. 

3.19).  

3.5.4 Chiral surface shape equation and material parameters 

Considering the specified splay-bend director n(x)=(cos qx, sin qx, 0), surface unit normal 

k(x)=(cos φ(x), sin φ(x), 0), unit tangent t(x)=(sin φ(x), -cosφ (x), 0) and using the definitions: 

dx d d dx d d
sin ,  sin ,  = sin

ds ds dx ds dx dx


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n n n
 (3.20a) 

gives the governing shape equation: 
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 (3.20b) 

The shape equation is a nonlinear first order ODE for the normal angle φ(x, K/γ0, W/γ0, q(x)), 

where the surface length scale L, the elasto-capillary length K/γ0, extrapolation length W/γ0, wave-

vector q and pitch P are: 

0 0

dry wet dry

K W
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 (3.21) 
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The nonlinear ODE with periodic coefficients is solved using the AUTO software [57]. The surface 

relief is then obtained from: 

x

0

h(x) cot  dx '   (3.22) 

The boundary condition at x=0, is φ|x=0 =
π

2
, consistent with the adopted sign of W/γ0. The generic 

features of the amplitude profile h(x) and its periodicity h(x)=h(x+λ) are the important outputs of 

the model. The four significant parameters influencing h(x) are: 

 

(i) the scaled anchoring coefficient: W/γ0 , 

(ii) the elasto-capillary length scale: K/γ0,  

(iii) the micron scale pitch in dry state: Pdry, 

(iv) the hydration-driven pitch gradient: (Pwet–Pdry)/L.  

 

For the nematic-isotropic interface, the scaled anchoring coefficient W/γ0 is of the order of 0.01 

[58]. The anchoring strength W at the nematic-air interface is about several orders of magnitude 

larger than the anchoring strength at the nematic-isotropic interface. However, as the surface 

tension at the nematic-air interface is higher than the surface tension at the nematic-isotropic 

interface [6, 29], the scaled anchoring coefficient W/γ0 is taken to be in the range -0.1< W/γ0< -

0.01. For typical cholesteric liquid crystals, the elasto-capillary length scale K/γ0 is usually in the 

order of few nanometers (an order of magnitude estimation of the elastic constant K and the surface 

tension γ0 gives K ≈ 10-11 J/m and γ0≈10-2 J/m2). So, the elasto-capillary length scale, K/γ0 is taken 

to be in the range 1 nm< K/γ0< 100 nm. The helix deformation through tangential water gradient 

is described by a linear pitch profile so that the pitch increases from Pdry to Pwet along the wave 

propagating direction. Pdry and (Pwet–Pdry)/L are taken to be in the range 0.5µm<Pdry< 3 µm and 

0.1< (Pwet–Pdry)/L<0.3 respectively.  

3.6 Results and discussion 

3.6.1 Free surface profile 

Figure 3-3 shows the amplitude hmax profile for increasingly scaled values of the anchoring W/γ0. 

The amplitude increases with increasing W/γ0. For constant pitch, the periodicity of the undulation 

is constant and equal to the helix pitch P [31]. In the case of a cholesteric with a linearly varying 

pitch P(x), the periodicity increases quadratically along x, due to the integral relation between 

surface relief h(x) and the cotangent of the normal angle φ. The h periodicity is independent of 
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W/γ0. Figure 3-4 shows the corresponding surface profiles h(x) as the elasto-capillary length scale 

K/γ0 increases. The surface amplitude and periodicity remain essentially constant. One can infer 

that for particular values of the anchoring coefficient and the helix pitch, the elastic contribution 

to the surface shape is not significant and can be neglected. Figure 3-5 illustrates the variation of 

the amplitude and periodicity with the initial helix pitch Pdry. The figure shows that higher Pdry 

increases the periodicity. Since this pitch sets the scale of the pattern, increasing the base pitch 

increases the amplitude, which is consistent with the constant pitch case (see Ref. [32] and 

Ref. [31]). The reason behind this fact is that the Laplace pressure scales with h/P2, while 

the balancing director pressure scales with W/P. Figure 3-6 shows the corresponding surface 

profiles h(x) for increasing (Pwet–Pdry)/L. Both amplitude and periodicity increase but the 

effect increases with “x” since it is the gradient factor of the pitch. 

 

Figure 3-3. Surface profile h(x) for K/γ0=1 nm, Pdry=1.2 μm, (Pwet–Pdry)/L=0.2 and different 

values of W/γ0=-0.05, -0.1, and -0.2, showing the increase of the resultant surface amplitude 

h(x) through increase in the anchoring strength W/γ0. 
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Figure 3-4. Surface profile h(x) for W/γ0=-0.05, Pdry=1.2 μm, (Pwet–Pdry)/L=0.2 and different 

values of K/γ0=1 nm, 10 nm, and 100 nm, showing the small shift of the resultant surface amplitude 

h(x) through increase in the elasto-capillary length scale K/γ0. 

 

 

Figure 3-5. Surface profile h(x) for W/γ0=-0.05, k/γ0=1 nm, (Pwet–Pdry)/L=0.2 and different 

values of Pdry=0.6 μm, 1.2 μm, and 2.4 μm, showing the increase of the resultant surface 

amplitude h(x) through increase in the pitch at dry state Pdry. 
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Figure 3-6. Surface profile h(x) for W/γ0=-0.05, k/γ0=1 nm, Pdry=1.2 μm and different 

values of (Pwet–Pdry)/L=0.1, 0.2, and 0.3, showing the increase of the resultant surface 

amplitude h(x) through increase in the pitch gradient rate (Pwet–Pdry)/L. 

 

3.6.2 Pressure-curvature relations 

As mentioned above, the main contributions to the capillary pressure arise from the area 

reduction (Laplace pressure), area rotation (Herrings pressure), director curvature, and bulk stress 

jump [33]. The Laplace capillary pressure, Pdilation is the resistant term (increasing energy with 

increasing area). While, the Herring’s capillary pressure, Protation and the director curvature 

pressure, Pdirector are the driving forces to undulate the interface. 

Rearranging Eq. 3-20b gives the three surface pressures and the bulk stress jump as function of 

“x”: 
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 (3.23) 

where we have introduced the scaled pressures (divided by isotropic tension γ0). The director 

curvature term reflects the anisotropic nature of chiral liquid crystals through the orientation 
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contribution to the surface energy. The director variation in the bulk that contains orientation 

gradient contributions is the origin of the stress jump term.   

Figure 3-7 illustrates the mechanisms behind chiral wrinkling using the three pressures and the 

bulk stress jump. The scaled surface pressure contributions and the stress jump are plotted as 

function of “x” for particular values of K/γ0, W/γ0, Pdry, and (Pwet–Pdry)/L. For an increasing helix 

pitch, the amplitudes of all contributions decrease along x, because the director spatial periodicity 

increases. The Herring’s capillary pressure, Protation and the bulk stress jump, SJ are an order of 

magnitude smaller than the Laplace capillary pressure, Pdilation and the director curvature, Pdirector. 

The figure exhibits that the Herring’s pressure Protation is always positive, the stress jump is always 

negative, and they change their phase along each cycle, such that in the first circle, rotation and 

director curvature are in-phase while dilation and stress jump are out of phase, and in the second 

circle, rotation and dilation are in-phase while director and stress jump are out of phase. The stress 

jump, SJ decays along x, a contribution becoming insignificant when the helix pitch increases due 

to the tangential water gradient. The key observation from these pressure profiles is that dilation 

and director curvature pressures are always out-of-phase, and since dilation (increase area) resists 

wrinkling, the director curvature pressure is the driving force behind nano-wrinkling. 

 
Figure 3-7. Pressure profiles for Pdilation, Protation, Pdirector , and SJ as a function of distance 

“x” for W/γ0=-0.05, k/γ0=1 nm, Pdry=1.2 μm and (Pwet–Pdry)/L=0.2. The figure displays that 

pressure extrema occur at planar and homeotropic orientation. When the director angle is 

/4< dilation and rotation are in-phase and when < rotation and director curvature are 

in-phase. 
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Polar plots of pressure as a function of director angle reveal the intimate connection between 

forces and director orientation. The polar plots of the three scaled capillary pressures and stress 

jump as a function of the anchoring coefficient W/γ0, the elasto-capillary length scale K/γ0 and the 

pitch gradient profile (Pdry, and (Pwet–Pdry)/L) are shown in Figure 3-8 to Figure 3-11 respectively. 

The angular coordinate is the director field θ. Figure 3-8 shows that all surface capillary pressures 

grow as the anchoring increases, while the stress jump remains constant. Changing W/γ0 does not 

affect the degree of asymmetry between the lobes of the three pressures. Figure 3-9 shows that as 

the elasto-capillary length scale K/γ0 increases the Laplace pressure Pdilation, Herring’s pressure 

Protation, and stress jump increase, whereas the director pressure Pdirector remains constant. This is 

due to the fact that the director pressure depends on the anchoring strength and chirality and is 

independent of the elasto-capillary length scale. Varying K/γ0 changes the degree of asymmetry 

between the lobes of the Laplace pressure Pdilation and Herring’s pressure Protation. Figure 3-10 and 

Figure 3-11 illustrate that a decrease in chirality (increasing P(x)) through a raise of either Pdry or 

(Pwet–Pdry)/L, reduces all capillarity pressures and the stress jump as the wave-length of the 

undulation increases. Changing P(x) does not affect the degree of asymmetry between the lobes of 

the pressures and stress jump. 

 

 
Figure 3-8. Polar plots of the three scaled capillary pressures and stress jump a) Pdilation(μm-1),    

b) Protation (μm-1), c) Pdirector(μm-1), d) SJ for two different values of W/γ0=-0.05, -0.1 where K/γ0=1 

nm, Pdry=1.2 μm, and (Pwet–Pdry)/L=0.2. The angular coordinate is the director field θ. 
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Figure 3-9. Polar plots of the three scaled capillary pressures and stress jump a) Pdilation(μm-1), 

b) Protation (μm-1), c) Pdirector(μm-1), d) SJ for two different values of K/γ0=1, 10 nm where W/γ0=-

0.05, Pdry=1.2 μm, and (Pwet–Pdry)/L=0.2. The angular coordinate is the director field θ. 

 
 

 

 
Figure 3-10. Polar plots of the three scaled capillary pressures and stress jump a) Pdilation(μm-1), 

b) Protation (μm-1), c) Pdirector(μm-1), d) SJ for two different values of Pdry=1.2, 2.4μm where K/γ0=1 

nm, W/γ0=-0.05, and (Pwet–Pdry)/L=0.2. The angular coordinate is the director field θ.  

 
 

 
Figure 3-11. Polar plots of the three scaled capillary pressures and stress jump a) Pdilation (μm-1), 

b) Protation (μm-1), c) Pdirector (μm-1), d) SJ for two different values of (Pwet–Pdry)/L=0.1 and 0.3 where 

K/γ0=1 nm, W/γ0=-0.05, and Pdry=1.2 μm. The angular coordinate is the director field θ. 
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3.6.3 Nano-wrinkling scaling law 

For free surface relief of cholesteric liquid crystal with constant pitch, we previously presented a 

theoretical scaling law expressing for the maximum undulation amplitude hmax as a function of 

anchoring strength and chirality [31]: 

o
max

WP

h
WP

1


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
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 (3.24) 

The numerical results indicated that 𝛿 = 10.71(
𝑊

𝛾0
)−1.02. This prediction shows that the 

undulation amplitude is essentially a linear function of the scaled anchoring W/γ0 and the 

helical pitch: ℎ𝑚𝑎𝑥 = 0.085𝑃0(
𝑊

𝛾0
), which is consistent with the nano-scale surface 

structures that have been experimentally observed in a variety of polymeric and biological 

CLC. Recently, Yoshioka et al. [59] showed that the amplitude and the period of interface 

distortions of cholesteric droplets are determined by the helical pitch and independent of the 

droplet size. They stated that the amplitude monotonically increases with the pitch length; we note 

that Bernardino et al. claimed that the cholesteric-isotropic interface undulations scale with square 

root of the pitch [60]. For the periodic surface relief found in cholesteric liquid crystal with 

water-induced varying pitch, we also find a revealing close form expression for the x-dependent 

profile amplitude A (A is the amplitude between the upper and the lower envelope of the periodic 

surface undulations) as a function of the scaled anchoring W/γ0, the helix pitch at dry state Pdry, 

and the pitch gradient (Pwet-Pdry)/L: 
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where α1=-0.07 and α2=0.13, found from numerical simulations. In accordance with the 

scaling law presented for cholesteric liquid crystal with constant pitch (Eq. 3.24), the estimate is 

that the amplitude is essentially a linear function of the scaled anchoring and the variable helix 

pitch. As shown in Figure 3-12, this result is consistent with experimental data from optical 

and scanning force microscopy of free surface of a chiral liquid crystal, for which the ratio of 

period and depth is approximately constant [61]. 
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Figure 3-12. Validation of the scaling law with experimentally observed nano-scale undulations 

at CLCs free surface [61]. 

 

3.6.4 Diffraction grating 

When the periodicity of the surface undulations is of the same order of the incident light 

wavelength, the structure has the potential to generate iridescence and colors through the 

diffraction grating mechanism. Structural color in floral plants originates mainly from ordered 

surface diffraction gratings that scatter incident light in the plane perpendicular to the direction of 

the periodic undulations according to the grating equation [14]: 

0
i dm (sin si

P
n )

2
      (3.26) 

where θi and θd are angles of incidence and diffraction which govern the angular locations of the 

principal intensity maxima for the diffracted incident light with wavelength λ, and m is the 

diffraction order. When the incident light is along the helix axis, mainly first order reflection 

occurs. While, for oblique incidence of light or the distorted helical structures higher order 

reflections can happen [62]. According to Eq. 3.26, for any given value of the angle of incidence 

θi, each wavelength λ scatters into different angular directions. When the incident light is white 

light, different colors disperse in the perpendicular direction of the periodic structure, making the 

surface iridescent. Changing the angle of incidence, θi can yield a variation in the peak wavelength. 

It has been shown that increasing the angle of incidence in a jeweled beetle, Chrysina gloriosa 

causes a red shift in wavelength from 525 nm at normal incidence to 556 nm in oblique 

illumination [3]. Hence Eq. 3.26 provides an important new relation between functionality and 
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structure of nano-wrinkled chiral surfaces of plywoods. In this chapter, the interaction of light with 

the surface nanostructure is computationally investigated with FDTD simulation using the 

OptiFDTD12 software [63] that solves the differential form of Maxwell’s equations by discretizing 

time and space on a finite rectangular grid. Diffraction from periodic nanostructures is simulated 

in two dimensions, while considering “perfectly matched layer”, PML on top and bottom and 

“periodic boundary conditions”, PBC on the sides of the computational domain. The near-zone 

scattered field on the top surface of the simulation domain determines the reflection intensity. We 

considered the refractive index n of the nanostructure scales to be 1.55. To determine the reflection 

and transmission intensity, observation lines are positioned on the top surface and the bottom of 

the diffracting interface (see Figure 3-13(a) and Figure 3-13(b)). For the surface structure with 

constant pitch, we assumed that the grating pitch is 1.2 µm, the grating depth is 20 nm, and the 

film thickness is 200 nm. For the surface structure with varying pitch, we assumed the grating 

pitch to grow from Pdry=1.2µm to Pwet=2.2µm along the x-direction, the grating depth and the film 

thickness is 20 nm and 200 nm, respectively. As shown in Figure 3-13(d) and Figure 3-13(e), the 

scattering patterns in the surface structure with constant pitch and with varying pitch are different. 

It should be noted that the electric field intensity in the surface structure with varying pitch, as 

compared with that in the flat surface structure (Figure 3-13(c)) and in the structure with constant 

pitch (Figure 3-13(d)), becomes weaker.  
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Figure 3-13. Optical FDTD simulations of the surface nanostructures. (a) 2D Schematic of the 

computational domain for air-CCLC interface with constant pitch. (b) 2D Schematic of the 

computational domain for air-CCLC interface with water-induced varying pitch. Perfectly 

matched layers are considered at the top and bottom of the grating structure; periodic boundary 

conditions are used on the left and right side of the structure. Scattered electric field of 480 nm 

normal incident light in the x-y plane for (c) CCLC-air flat surface, (d) CCLC-air surface 

nanostructure with constant pitch, and (e) CCLC-air surface nanostructure with variable pitch, 

illustrating differences in the scattering behavior. 
 

This shows that the helix pitch growth through hydration could decrease light scattering, as the 

reflection energy is distributed over a wide wavelength range. Figure 3-14 shows the simulated 

optical reflectance for the nanostructures with constant and varying pitch as a function of 

wavelength λ for different observation angles θD. The structure with constant helix pitch reflects a 

band of 440-525 nm of the incoming white light (see Figure 3-14(a)). The reflectivity peak red 

shifts at θD= 15º for the nanostructure with constant pitch. The structure with water-induced 

varying pitch, however, shows a red shift for all observation angles (Figure 3-14(b)), and reflects 
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a band of 460-570 nm of the incoming white light. For the structure with the constant pitch the 

reflection increases sharply (around 50%) from θD= 30º to θD= 45º. However, the spectrum of the 

structure with water-induced varying pitch does not move towards the infrared region (IR) and 

undergoes less reduction in the reflected intensity, as observed by a change of the observation 

angle.  

The reflection spectra of the surface nanostructures with constant and water-induced varying 

pitch are plotted in Figure 3-15(a) as a function of the wavelength λ under normal incidence for a 

reflection angle of 45◦. The results show that the reflection peak of the surface nanostructure has 

a red shift at θD= 45º driven by a tangential water gradient (from λ=477 nm to λ=507 nm). It should 

be noted that we assumed that the tangential water gradient would induce non-uniform swelling of 

the multi-layered structure along the helix axis parallel to the surface, leading to the linear 

expansion of the helix pitch along x-direction.  

 

 
Figure 3-14. FDTD simulation results for the reflectivity of the two surface nanostructures with 

constant pitch and varying pitch as a function of the wavelength λ. The reflectance is numerically 

calculated for two different structures by measuring the scattered field power normalized by the 

incident power. Reflectivity as a function of observation angles at 480 nm for the nanostructures 

(a) with constant and (b) varying pitch. For CCLC with constant pitch, the reflectivity peak at 

θD=15º shifts but for CCLC with varying pitch the reflectivity peak does not shift. 
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As shown in Figure 3-15(a), the water-induced varying pitch grating structure displays a broader 

band spectrum and less intense reflection. The varying pitch structure reduces the spectrum by 

44% and shifts 28nm towards IR region in comparison with the constant pitch structure for a 

reflection angle of 45◦. In order to investigate the relation between the helix pitch and the reflection 

peak, the reflection spectra of the surface nanostructure are computed for different constant helix 

pitches. We assumed that the helix pitch swells from about 0.6 µm in the dry state to about 2.4 µm 

in the fully wet state. Figure 3-15(b) shows an almost linear correlation between the reflection 

peaks and the CCLC helix pitch. The visible reflection peak shifts from 460 nm to 520 nm, with a 

raise of the helix pitch from 0.6 µm to 2.4 µm through hydration. We can note that the reflection 

peak of the structure displays a red shift caused by an increase of the helix pitch (corresponding to 

higher levels of humidity), resulting in a structural color change from blue in the dry state to green 

in the wet state. We point out that the surface nanostructure is able to change coloration from blue 

in the dry state to green in the wet state through hydration. The results indicate that the reflection 

wavelength is directly related to the helix pitch P(x) and the structural color can be adjusted by 

controlling the humidity level.  

Figure 3-16 shows the FDTD results for diffraction patterns observed in the reflection of the 

surface nanostructures with constant and water-induced varying pitch. The surface structure with 

constant pitch (dry state) gives rise to the specular reflection whose intensity reduces by moving 

towards longer wavelengths. Moreover, the structure includes the first order blazed diffraction 

grating for angles |sinθ|>0.4 and a weak second order diffraction grating for angles |sinθ|>0.8. Most 

of the diffraction intensity are observed at the wavelengths λ<500 nm, which is in agreement with 

the blue color identified for the structure at dry state (Figure 3-16(a)).  

The diffraction pattern detected for the structure with varying pitch (wet state) shows only the 

specular reflection for all wavelengths. Compared with the surface structure in the dry state, the 

specular reflection is broadened, a phenomenon that correlates with surface undulations with 

increasing periodicity. Therefore, we can infer that the iridescence occurring on the self-assembly 

CCLCs can be extinguished through wetting. The interplay of structure and hydration may also 

add to the functionality of the self-assembly CCLCs that can be used for the design of colorimetric 

biosensors. 
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Figure 3-15. Change of the reflection peaks of the CCLC free surface by humidity-driven helix 

pitch expansion. (a) Comparison of the FDTD simulation results for reflectivity spectrum of the 

surface ultrastructure in the dry and wet states under normal incidence for a reflection angle of 45◦. 

The water-induced varying pitch grating structure shows broader band spectrum and less intense 

reflection (dashed line). The varying pitch reduces the spectrum by 44% and shifts 28nm towards 

IR region for a reflection angle of 45◦. (b) The linear correlation between the reflection peaks and 

the CCLC helix pitch. The color changes from blue at pitch equals to 0.6 µm to green at pitch 

equals to 0.6 µm. 

 

To quantitative investigate the role of key system parameters in the optical responses of the 

surface at dry and wet states; we plot in Figure 3-17 and Figure 3-18 the impact of the anchoring 

strength and the helix pitch profile on the diffracted orders. The influence of the anchoring strength 

on the diffracted orders for a CCLC with a fixed helix pitch (Pdry=1.2 µm) is illustrated in Figure 
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3-17(a). As the surface undulation amplitude grows for increasingly higher values of the anchoring 

strength, the intensity of specular reflection (m=0) slightly decreases, and the first and second 

ordered diffraction gratings rise. We note that the increases of first and second ordered intensity 

do not significantly change with W/γ0<0.1. This means that for the CCLCs with higher anchoring 

coefficients, a structural color may be reinforced as the number of diffraction orders increases, 

whereas the intensity of the specular reflection (m=0) decreases. As shown in Figure 3-17(b), 

similar trends are also observed through increasing the helix pitch. The results show that the 

decrease in the specular reflection intensity for the structures with longer pitches is very significant 

while the increase in first and second ordered diffraction intensities is very limited. It should be 

noted that the specular reflection intensity disappears for helix pitches larger than 0.9 µm.    

 
Figure 3-16. FDTD simulation results for the diffraction patterns as a function of sin (θ) and λ 

observed in transmission of the surface structures with (a) constant pitch and (b) water-induced 

varying pitch. The central band is the signature of specular reflection. The diagonal bands in (a) 

are the first-order diffraction with weak second-order diffraction. 
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The influence of the anchoring strength for a fixed water-induced gradient pitch (Pdry=1.2µm, 

(Pwet–Pdry)/L=0.2) on the diffracted orders is assessed in Figure 3-18(a). As the surface undulation 

amplitude grows for increased anchoring strengths, the intensity of specular reflection (m=0) 

noticeably diminishes in a linear fashion. A similar trend is also observed in Figure 3-18(b) where 

the impacts of the helix pitch profile (Pdry and (Pwet–Pdry)/L) on the distribution of the diffracted 

light are plotted. The results show that the decrease in specular reflection intensity for the structures 

with the higher pitch gradients is very limited.  

 
Figure 3-17. Impact of the anchoring strength (a) and the helix pitch (b) on the light intensity 

distribution for several diffraction orders at λ=490 nm and normal incident light for the surface 

nanostructures with constant pitch (dry state). 

 
Figure 3-18. Impacts of the anchoring strength (a) and the helix pitch profile (b) on the light 

intensity distribution (m=0) at λ=490 nm and normal incident light for the surface nanostructures 

with water induced varying pitch (wet state). 
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3.7 Conclusions 

The formation of free surface nanostructures in cellulosic cholesteric liquid crystals with water-

induced varying pitch has been investigated using a non-linear nemato-capillarity shape 

equation. The generalized Laplace equation based on the Cahn-Hoffman capillarity vector 

formalism was formulated and used as an efficient tool to analyse nano-scale surface reliefs 

in plant-based plywoods with water-driven varying helical pitch through interaction of 

anisotropic interfacial tension and chirality changes through hydration. The spatially 

periodic solutions to the chiral capillary equation describe surface wrinkling, where the 

amplitude is on the order of nanometers and the periodicity is on the order of micrometers. 

The role of three capillary pressure contributions (surface area change, surface area 

rotation, and director gradient curvature), and bulk stress jump have been characterized and 

the impacts of the varying helical pitch, the elasto-capillary length scale, and the surface 

anchoring strength have been established.  

The scaling law for the chirality-humidity driven surface wrinkling showed that the 

spatially-varying surface profile amplitude is mostly a function of the anchoring strength and 

the water-induced helix pitch gradient. Finally, the optical properties of the CCLCs free 

surface nanostructure with water-induced varying pitch have been investigated and compared with 

the CCLCs free surface nanostructure with constant pitch. The results show that the surface 

structure with non-uniform pitch distribution, where the pitch length changes in different 

regions, reflects normal incident light with a bandwidth wider than the constant pitch 

surface structure. The reflection peak of the surface nanostructure can be tuned through the 

change in the humidity level based on the plywood helix pitch expansion. We attributed the 

color transition to the swelling and shrinking of the multi-layered plant cell wall plywood, 

which cause the helicoidal pitch to increase, thereby leading to a red shift in the iridescence. 

In conclusion, plant-based cholesteric liquid crystals are of interest because their optical 

response can be controlled by self-assembly and their colorimetric humidity sensing can 

reduce the sensor cost. The potential biosensors can respond to different ranges of relative 

humidity depending on the amplitude and wavelength of the grating structure. Furthermore, as it 

is expected that the amount of water absorption in CCLC free surface nanostructure depends on 

the temperature, it is essential to consider the temperature-sensitivity of the biosensor response. 
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All these findings provide a foundation to understand structural color phenomena in Nature and 

for the design of optical sensor devices. 
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Chapter 4 

4 Multiple-wavelength Surface Patterns in Models of Elastic Biological Chiral Liquid 

Crystal Membranes 

 

4.1 Preface 

In chapters 2 and 3, the nonlinear nemato-capillarity shape equations that describe the sinusoidal 

nano-scale surface undulations in plant-based plywoods were presented. In this chapter, to explore 

more complex real surfaces such as creasing, folding, and period-doubling, a novel physical model 

that includes liquid crystal anisotropy of biological materials, bending elasticity of surfactant-like 

biomolecules, and substrate cholesteric order is developed. This chapter is reproduced from a 

published paper with the title “Multiple-wavelength surface patterns in models of biological chiral 

liquid crystal membranes”, and co-authored with Prof. Damiano Pasini and Prof. Alejandro. D. 

Rey; Soft Matter, 2017, 13, 541-545. 

4.2 Summary 

We present a model to investigate the formation of surface patterns in biological materials 

through the interaction of anisotropic interfacial tension, bending elasticity, and capillarity at their 

free surfaces. Focusing on the cholesteric liquid crystal (CLC) material model, the generalized 

shape equation for anisotropic interfaces using the Rapini-Papoular anchoring and Helfrich free 

energies is applied to understand the formation of multi-length scale patterns, such as those found 

in floral petals. The chiral liquid crystal-membrane model is shown to be analogous to a driven 

pendulum, a connection that enables generic pattern classification as a function of bending 

elasticity, liquid crystal chirality and anchoring strength. The unique pattern-formation mechanism 

emerging from the model here presented is based on the nonlinear interaction between bending-

driven folding and anchoring-driven creasing. The predictions are shown to capture accurately the 

two-scale wrinkling of certain tulips. These new findings enable not only to establish a new 

paradigm for characterizing surface wrinkling in biological liquid crystals, but also to inspire the 

design of functional surface structures. 

4.3 Introduction 

Chiral liquid crystals (CLCs) have been widely found in Nature and living soft materials, such 

as DNA [1], collagen [2], cellulose and chitin [3].These biological CLCs are functional materials 

that display unique properties [4] and specific geometric features, such as surface wrinkles, mostly 

http://dx.doi.org/10.1039/1744-6848/2005
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with nanoscale amplitudes and microscale single wavelength [5-11]. Chiral capillary pressure, 

known as director pressure [12] that reflects the anisotropic nature of CLC through the orientation 

contribution to the surface energy, has been identified as the fundamental driving force generating 

single-wave length surface wrinkling [12-14]. Similar single wavelength surface patterns are 

observed for elastic Euler buckling caused by external compression, differential swelling or 

constrained growth [15, 16]. In biological membranes, these surface patterns are mostly the result 

of compressive strain in a stiff film resting on a compliant elastic substrate [17, 18]. 

Moreover, surfactant-like biomolecules found in all living cells influence the elastic properties 

of the cell membrane, such as pulmonary surfactant which is essential to lower the surface tension 

in the lung and to facilitate inhalation [19]. In the presence of a layer of surfactant-like 

biomolecules, we expect that both surface bending elasticity and anisotropic energy play a role in 

the evolution of surface morphologies. The objective of this chapter is present a theoretical model 

that combines membrane elasticity and liquid crystal anchoringto explain the multiple-length-scale 

surface wrinkles, which are widely observed in flower petals [10, 20], plant leaves [21, 22], blood 

cells [23], cerebral cortex [24, 25], and several animal living tissues [26-28]. 

Although significant progress has been made in formulating and validating theoretical models 

that attempt to explain the multi-length scale surface wrinkling in biological soft materials, 

previous studies have been restricted to bi-layer elastic models [17, 18, 23, 28]. There are few 

studies taking into account other chemical and biological mechanisms coupled with the 

compression- induced elastic deformation contributing to the wrinkling behavior [29-32] in 

biological surfaces and membranes. Here, to describe more complex real surfaces [10, 20-28], we 

propose a physical model that includes liquid crystal anisotropy of biological materials, bending 

elasticity of surfactant-like biomolecules, and substrate cholesteric order; and for brevity we call 

it cholesteric liquid crystal membrane model (CLC-M). When the anchoring and bending effects 

are comparable, the surface profile may show a rich variety of multi-scale complex patterns, such 

as spatial period-doubling, period-tripling, and quasi-periodicity that no longer can be described 

by a single harmonic. In the absence of liquid crystal anchoring, the CLC-M model converges to 

the classical elastic membrane (M), and in the absence of an interfacial surfactant layer, it 

converges to the liquid crystal interface model (CLC). Table 4-1 lists the system length scales, the 

surface topographies, and main wrinkling mechanisms that are captured in the three models 

discussed below. 
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Table 4-1. Energies, length scales, wrinkling mechanisms, and surface topographies for the three 

models: M, CLC, and CLC-M.  
Model Symbol Energies Wrinkling mechanisms Length 

scales 

Topography 

cholesteric 

surface 

CLC anchoring (W) director pressure [12] P0 sinusoidal 

elastic 

membrane 

M bending (kc) compression stress [15] 
0ck / | T |  sinusoidal 

cholesteric-

elastic 

membrane 

CLC-M anchoring (W)+ 

bending (kc) 

director pressure + 

compression stress 
0ck / | T | , P0 harmonic,  sub-

harmonic, 

chaotic 
 

For a cholesteric of pitch P0, under compression stress T0, with surface anchoring W, and bending 

elasticity kc, we find two length scales, chiral  and mem , and two key dimensionless numbers, ω 

and 𝑊̅, that control the surface morphogenesis: 

0

0 b 0

c
chiral mem

k2 2
P ,   

q q | T |

 
     

(4.1) 

0

00

chiral

mem c

P W
,   W

Tk / | T |
     

(4.2) 

where ω is the winding number and W is the ratio of anchoring to compression, whose magnitudes 

control the pattern formation mechanisms in the CLC-M model. For the limiting CLC and M 

models we have: CLC: ω→ ∞, 𝑊̅̅̅̅=W/γ0, M: ω=0, 𝑊̅=0 and for the CLC-M complete model both 

ω and W  are non-zero and finite; γ0 is the isotropic surface tension.  

4.4 Geometry and structure  

Schematics for the expected surface wrinkling of the CLC model and the CLC-M model are 

shown respectively in Figure 4-1(a) and Figure 4-1(b). In Figure 4-1(a) the cholesteric order of the 

substrate unwinds into a geodesic splay-bend field that interacts with the anchoring, which creates 

a periodic director capillary pressure that is balanced by isotropic capillarity, as reported in [12, 

14]. This results in a single-wave length wrinkle (top left). In this chapter, we focus on the 

phenomenon shown in Figure 4-1(b), where the anchoring/chirality/bending interaction creates 

multiple periodic scales (top right). Unwinding a helix due to surface anchoring was first 

considered in [13]. 
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Figure 4-1. Schematic of a cut of the layered membrane in the absence (a) and presence (b) of 

surfactants at a LC free surface. Bend and splay orientation distortions with λ+ disclination for 

normal anchoring (W<0) create single-wavelength surface undulations [12].The rods in the 

substrate layer denote average fiber (director) orientation, the top surfaces depict the surface 

morphologies, the surfactant molecules are denoted by the polar head and two tails, the cholesteric 

axis H is along the “x” axis, the surface normal is k, the surface tangent is t, the normal angle is φ, 

the λ’s on the top schematics denote wave-lengths, the cholesteric pitch is P0, and the compression 

direction is “x”. 
 

Next, we describe the essential elements of the CLC-M model. Liquid crystal orientation at the 

interface is defined by the director field n. We restrict the discussion to homeotropic anchoring 

(W<0) and a bend and splay director field:      x (cos x ,sin x ,0),  n where the director angle,

0=2 x / P   has a domain of [0,2 ] . It should be noted that the presence of a layer of surfactant-like 

biomolecules can change the preferred surface anchoring, and the director field [33]. The arc-

length measure of the undulating surface is “s”. We assume that the membrane is uniaxially 

compressed along the x direction (see Figure 4-1). Here we consider a single wave-vector and the 

amplitude of the vertical undulation is h(x). The unit tangent, t, and the unit normal, k, to the 

surface can be expressed with the normal angle, φ: (sin , cos ,0),  (cos ,sin ,0)  t k    . 
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4.5 Governing equations 

The interfacial surface tension γ for the cholesteric-elastic membrane (CLC-M) includes the 

anchoring energy given by Rapini and Papoular and the Helfrich free energy that describes the 

elasticity of membranes and surfactant-laden interfaces [34] such that: 

 
0

2c 2k W

2 2
      n k  

(4.3) 

where κ is the surface curvature. The bulk Frank elastic contribution to the shape equation due to 

director gradients close to the surface is assumed to be negligible. The relative importance of the 

bulk elastic contributions compared to anchoring energy can be evaluated by comparing the 

extrapolation length, e K / W, (K being the Frank elastic constant) and the helix pitch P0. For 

CLC-M with quite strong anchoring and large enough pitch (order of micrometers), the Frank 

elastic contribution is not significant as the extrapolation length is much less than the helix pitch: 

e <P0 [35].  

The generalized Cahn-Hoffman capillary vector [34, 36] is the fundamental quantity that includes 

the curvature effects and liquid crystal orientation in one single vectorial quantity. The curvature 

gradient gives rise to the moment tensor, M, and the divergence of the moment tensor ( . ) Ms  

contributes to bending stresses. For curved anisotropic interfaces, the bending moment tensor

( . ) Ms and the changes in surface tilting ( γ( , )/ ) n k k  must be included into a generalized 

capillary vector. As the result, the capillary pressure includes the effects of bending 
2( . ) Ms  and 

liquid crystal orientation ( ( γ( , )/ ))  n k ks [34]. The generalized capillary vector Ξ  for the elastic 

anisotropic interface (CLC-M) has two components [34] and in the 1D model considered here it 

reads: 

 || || ||

d
,   Ξ : ,   Ξ

s d
  

  
             

 

M
Ξ Ξ Ξ Ξ k M tt k Ξ t t tt tt

k
 (4.4) 

The normal component Ξ  describes the increase in the surface energy through dilation and the 

tangential component ||Ξ  is the change in the surface energy through rotation of the unit normal. 

Replacing the 1D Rapini-Papoular-Helfrich surface tension (Eq. 4.3) in (Eq. 4.4) yields: 

    
2 2c

0 || c

kW
,  k W ( )

2 2 s


   
          

  
Ξ n k k Ξ n.k n t t  (4.5) 
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The shape equation is sP ( ) / s      Ξ t Ξ [34] where ΔP  represents the pressure difference 

between the inner and outer sides of the cell membrane and  s  is the surface gradient.The capillary 

pressure has two contributions: 

||
+

s s



  
 

ΞΞ
t Ξ  (4.6) 

For the current case of ΔP=0 , the condition for which the capillary pressure is zero yields Ξ=C, 

where C is a constant vector. Considering the general case 0 ,  / s 0,  =0,       = / 2   at s=0, 

the constant vector is 2
0 c 0 x( (k / 2) )    C δ . Introducing the compression 2

0 0 c 0T ( (k / 2) )     and 

replacing the curvature d / ds   , (Eq. 4.6) yields: 

 
2

c 0

2

k T cos W( ) 0
s

 
   


n.k n t  (4.7) 

which is the equation of equilibrium for an elastica under a uniaxial compressive force T0, and 

external anchoring force  W( ) n.k n t . The limits of kc=0 and W=0 yield the well-known models 

for liquid crystals and membranes, respectively. Our physical model for the elastic liquid crystal 

membrane is given by Eq. 4.7 and the two first order differential equations for the coordinates,

dx / ds sin   and dy / ds cos   , which have to be solved along with the four boundary 

conditions: x=0, y=0, φ=π/2, κ=κ0 at s=0. By scaling Eq. 4.7 with T0, and by replacing the director 

field n as per above we find the origin of Eq. 4.1 and Eq. 4.2. The model output is the height 

function h (x, ω, W ). Considering the infinite length of the membrane with all the boundary 

conditions applied at one point (s=0) is identical with an initial-value problem. γ0 is the Lagrange 

multiplier corresponding to the constraint of inextensibility of the membrane [17]. Here we 

consider local wrinkling in a membrane with infinite length [37]. We are dealing with a quite 

strong anchoring [13, 14], W≃-5×10−5 J/m2, and a relatively small value of the bending elasticity, 

kc≃5×10−18J, which gives a micron-range bending/anchoring length, b/a ck / | W | 0.32    .  

 

4.6 Morphological phase diagram of the surface patterns for a helicoidal plywood 

To include the limiting models (CLC, M), we present in Figure 4-2 the general morphological 

phase diagram of the surface patterns for a helicoidal plywood with a constant pitch, P0=1.2 μm in 

the ternary parametric space (kc, W, γ0). The fundamental surface shapes at the corners of the 

triangle are: crease (top) with zero bending (CLC model), flat (lower right) with zero bending and 
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zero anchoring, and fold (lower left) with zero anchoring (M model). In the triangle’s interior 

(CLC-M model), the LC anisotropy competes with the bending elasticity, creating a range of 

complex surface patterns. In the interior, we can identify two main surface patterns: single 

wavelength and multiple wavelengths. The first is located at the limiting cases of zero 

anchoring/zero bending elasticity. In the absence of anchoring (the base of the triangle), the pattern 

corresponds to the classical compression-induced buckling of an elastic membrane [17]. In the 

absence of bending elasticity (the right side of the triangle), the chirality-driven surface wrinkling 

is a single-wavelength periodic profile whose amplitude increases linearly  with 0/W  [12]. The 

multiple wavelengths pattern is observed in the regions where both bending elasticity and liquid 

crystal anisotropy are present. With the increase of anchoring, the surface profiles gradually 

change into profiles with high wavenumbers, resembling the experimentally observed multi-scale 

surface modulation found in the petals of the “Queen of the Night” tulip [20]. These surface 

patterns also reflect the two-wavelength periodic wrinkling experimentally observed at the free 

surface of cellulosic cholesteric liquid crystal films [10]. The wrinkling of short wavelength, 

λ2≃0.8μm, are superimposed on longer waves of length λ1≃3.5μm. The helix pitch and the 

anisotropic elastic constants of the cellulosic CLC film were suggested as the main parameters 

responsible for the short wavelength patterns, observed experimentally [10]. 

An increase of the bending elasticity kc, increases the periodicity of the smoother wrinkles and 

leads to the lower wavenumber. The greater the value of kc, the greater are the amplitudes of the 

wrinkles. The amplitude, h, can vary from few nanometers to few microns depending on the 

combination of the system parameters; kc, P0 and W. At higher bending elasticity (kc≃10−18J), 

folding may appear. In partial summary, if the effect of the bending elasticity is predominant, the 

profile is a fold. If the effect of anchoring is predominant, the profile is a crease, which mostly 

occurs at the surface of soft materials without hard skins [24]. When both effects are comparable, 

the surface exhibits multiple periodic wrinkles, as illustrated in Figure 4-2(b). 
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Figure 4-2. (a) The ternary phase diagram of wrinkling morphologies. (b) Pattern selection 

depending on anchoring strength W and bending elasticity kc. The folding appears at weak 

anchoring and high bending elasticity and the creasing occurs at strong anchoring and low bending 

elasticity. The multiple wavelengths pattern is observed where both bending elasticity and 

anchoring strength are comparable. MWW denotes multiple wavelength wrinkling. 
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4.7 Pendulum analogy of the chiral elastic membrane  

In this section, we show that the anchoring/bending/chiral model can be gainfully compared with 

a periodic forced pendulum, where the angular velocity of the pendulum is identical to 

the curvature   of the elastic membrane. The natural frequency of the pendulum corresponds to 

the membrane wavenumber, 
0 c2 | T | /k and the frequency of the external force corresponds to 

director wave-vector q0. We first discuss linearized surface patterns in terms of length scales (P0,

mem ) and anchoring (𝑊̅) and then describe the general case in terms of (ω,𝑊̅). In the pure 

membrane and anchoring models, the normal angle can be expressed by a single sinusoid: 

a 1 0

0

2 s
(s) a W p sin( ),

p


  b 2 mem mem(s) a sin(2 s / )   , respectively. In each of those two cases the 

system acts as a simple pendulum, with one degree of freedom (single frequency). In the presence 

of both surfactants and liquid crystals, the system acts as a periodically perturbed pendulum. In 

the presence of both anchoring and elasticity, for small amplitudes of the surface undulations, the 

normal angle can now be described by a linear combination of two sinusoids:

 0 1 0 2 0(s) P a W sin(2 s / P ) (a / )sin( s / P )      . This linear approach valid for quite weak anchoring         

( W 0.1 ) yields the normal angle, φ, of periodic wrinkles as linear combination of two sinusoids 

with wave-lengths scales (P0, P0/ω) and amplitudes  
0 01 2a WP ,  a P / , where a1=0.42, and a2=0.99. 

Since the amplitude ratio of the two modes scales with ω, 𝑊̅ we find that the dimensionless 

numbers that control the surface relief are: h=h(x, W, ). Furthermore, strong h-amplitude 

modulation will be found for o(1)   and two-scale serrated sinusoidal surfaces when o(1)  . 

The system can be completely described in the 3D toroidal phase (φ, κ, θ) space, where φ 

corresponds to the state of the pendulum, κ to the angular velocity, and θ to time. Also, the 

trajectories in 2D phase space (φ, κ) are identical with the pendulum limit cycles. For two different 

values of the helix pitch, Figure 4-3 (a) and Figure 4-3 (c) illustrate the surface profiles 

corresponding to the pure elastic membrane (M) model (no anchoring, no chirality), the 

anchoring/chiral (CLC) model, the anchoring/bending/chiral (CLC-M) model, and the estimated 

profile that is obtained by using the linear combination of the two sinusoids; the latter shows a 

very good agreement with the complete CLC-M model. For the elastic membrane model and the 

CLC model, the phase space is a closed curve, resembling an ellipse. In the presence of both 

elasticity and LC chirality, the phase space ellipse gets distorted. As illustrated in Figure 4-3(b) 



106 

and Figure 4-3(d), for particular values of the helix pitch (P0=1.98 & 0.79 μm), the ellipse splits 

into five and two cycles respectively. The dynamic analogy clearly shows that the surface pattern 

selection depends on the system winding number ω, or ratio between the number of times the 

trajectory rotates around the small cross section, and the large circumference of a torus. 

 

 

Figure 4-3. Periodic surface profiles (a, c) and corresponding limit cycles (b, d) for the pure 

membrane (M), the pure CLC, and the elastic LC (CLC-M) models with W=-10-4J/m2, 

kc=5×10−18J, T0=-5×10-3J/m2 (a, b) P0=1.98μm, ω=10 (c,d) P0= 0.79 μm, ω=4. h is the amplitude 

of the surface wrinkles. The knots above the limits cycles show the 3D (φ, κ, θ) phase portraits of 

the system.  
 

The 3D parametric curves (κ-φ-θ) are the torus knots that illustrate the winding number 

dependence of the surface topographies (Figure 4-4) when W =0.2. For winding numbers, ω=2/3 

and 3/2, the torus knots are the well-known trefoil knots and the (φ – θ) projections of the knots 

are the well-known Lissajous curves whose length depends on the length scales 0Wp  and mem , 

and the ratio of the tangential and vertical lobes indicate the rotation number (Figure 4-4 (b and 
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h)). The curves represent the trajectories of the commensurate anisotropic harmonic pendulum on 

a torus. When both wavenumbers are equal, ω=1, the projection is a geodesic digon. The beating 

pattern is formed due to the interference of two sinusoids with slightly different wavenumbers (see 

Figure 4-4 (k)). The polar projections of the 3D curves are analogous to the rose curves which are 

strongly dependent on the winding number, ω (Figure 4-4 (c, f, and i). If ω is a half-integer, the 

curve is rose-shaped with 4ω petals (ω=3/2) and if ω can be expressed as n/3, the curve will be 

rose-shaped with 2n petals if n is even (ω=2/3). When ω is odd, the entire graph of the rose will 

be traced out exactly once, when the value of the director angle, θ changes from 0 to π (ω=1). At 

this level of anchoring, we observe sensitive amplitude h(x) modulation with changes in ω around 

unity. 
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Figure 4-4. 3D torus knots, its projections on the φ–θ, polar θ–κ planes, and corresponding surface 

profiles for the structure with W =0.2 and ω=2/3 (a, b, c, j), ω=1 (d, e, f, k), and ω=3/2 (g, h, i, l). 

The polar θ-κ planes, typically a cycloid, with the bending wave number (qb) and the LC wave 

number (q0). For ω<1, the inward winding occurs, whereas for ω>1 outward winding appears. For 

o(1)   strong h-profile amplitude modulation is shown. 

 

Figure 4-5(a) is a phase diagram in terms of pitch P0 and bending constant kc, and illustrates the 

boundary lines in which a CLC-M has an integer winding number ω; the actual multiscale periodic 

surface profile is shown on the bottom right. If the winding number is not an integer, the LC elastic 

membrane has a periodic profile but the wrinkles are not perfectly periodic (quasiperiodic). The 

inset clearly shows the geometric impact of increasing ω and confirms the relation between number 

of peaks and P0/2; for ω=3 we have 3 peaks per P0/2 and when ω=6 we find 6 peaks per P0/2. 

Hence the model clearly captures the mechanism of multiple wrinkling scales as a function of the 

magnitude of 0 c 0P / k / | T | . As described above, the surface patterns can be characterized by 

ω and W , and the wrinkling mode can be well characterized by limit cycles. The morphological 

transitions of the surface patterns are depicted in Figure 4-5 (b) with respect to the anchoring 

constant ( W ). When the cholesteric pitch becomes short (compared to the elasticity length scale), 

or the anchoring strength is insignificant, the system changes to an essentially unperturbed system, 

thus resulting in single-wavelength periodic patterns (limit cycle is an ellipse). As the anchoring 

strength tends to increase, the limit cycles expand, the number of rotations decreases, and the 

surface structures transform into single wavelength patterns. For small winding numbers, an 

increase in the anchoring may result in spatial quasi-periodicity and onset of chaotic patterns 

(ω=4). The reason why for ω=3 the quasi-periodic pattern is not formed is attributed to the odd-

even effects described above. Not surprisingly, for weak anchoring the effect of nonlinearity is 

negligible and the limit cycles represent the system winding number. However, as we increase the 

anchoring W , the nonlinearity gradually increases, thereby triggering period doubling, period 

tripling and other unique solutions that no longer represent the system winding number. If we 

increase the anchoring further ( W 0.1 ), nonlinear buckling (chaotic spatial patterns) can appear. 
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Figure 4-5. Limit cycle phase diagram (a) showing the system boundaries in which the integer 

winding number assumes values: ω=3, 4, 5, 6. (b) Surface morphologies depending on the winding 

number ω and the anchoring constant W̅. The periodic patterns on the top of the limit cycles 

represent the surface membrane profile. 

We validate our model with the two-scale surface pattern of the Queen of the Night tulip [20] in 

Figure 4-6, where for this specimen the amplitudes are: h1=1 μm, h2=0.1 μm, and corresponding 

wave-lengths are λ1=29 μm, and λ2=1.2 μm. The corresponding model parameters are:                   

W=-7×10-5 J/m2, P0=58 μm, kc=1.2×10-17 J, To=-3×10-4 J/m2, ω=46, W =0.23; the origin of the 
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relatively large pitch can be rationalized by a pitch dilation process during the self-assembly 

precursor stage [4]. A relatively large pitch value can also be generated by chemical doping [38, 

39]. The high rotation number ω=46 and sufficiently low dimensionless anchoring W  yield a 

serrated sinusoidal surface profile, which is responsible for the tulip iridescence [35]. 

 

 

Figure 4-6. Model validation with 2-scales surface patterns of the queen of the night tulip [20] 

with permission from Science. Copyright 2009 AAAS.   

 

4.8 Conclusions 

This chapter has analyzed the surface pattern formation in elastic LC membranes. We showed 

that the capillary shape equation provides a comprehensive quantitative description of surface 

pattern formation in biological and synthetic liquid crystal membranes. Through the combination 

of elasticity and orientation gradients, we elucidate a natural setting for the creation and control of 

complex surface patterns. Furthermore, the morphology phase diagrams allow us to determine 

what characteristic pattern will appear on the surface based on the interaction of the three primitive 

shapes (folding, creasing, and flat). The observation of similar patterns in biological membranes 

can now be understood in terms of liquid crystal anisotropy and we can conclude that the numerous 

surface patterns observed in living tissues might be formed through LC anisotropy. Design and 

fabrication of surface textures in ordered media is fundamental to the development of advanced 

multi-functional materials such as biosensors and actuators. These results can also provide 

promising techniques to fabricating surface patterns on soft thin film by means of surface 

anisotropy. 
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Chapter 5 

5 Cylindrical Shapes of Nematic Liquid Crystal Membranes: A Model for 2D Anisotropic 

Biological Cells  

5.1 Preface 

In the previous chapter, the formation of complex surface patterns in planar biological materials 

was investigated. A comprehensive morphological phase diagram of the surface patterns for a 

helicoidal plywood was presented. In this chapter, the governing elasto-capillarity equations are 

extended to analyze the surface morphologies in cylindrical nematic liquid crystal elastic 

membranes. This study explores the formation of complex top-bottom asymmetric topographies 

in biological membranes in terms of liquid crystal anisotropy. This chapter is produced from a 

paper, currently in preparation, with the title “Morphology of closed neamtic liquid crystal 

membranes” and co-authored with Prof. Damiano Pasini and Prof. Alejandro. D. Rey. 

5.2 Summary 

Liquid crystalline phases found in many biological materials, such as actin, DNA, cellulose, and 

collagen can be responsible for the deformation of cell membranes. In this chapter, cell membrane 

deformation is investigated through the coupling between liquid crystal anisotropy and membrane 

bending elasticity. The generalized shape equation for anisotropic interfaces, which resort to the 

Cahn-Hoffman capillarity vector, the Rapini-Papoular anchoring energy, and the Helfrich elastic 

energy, is applied to gain insight into the deformation of closed liquid crystal membranes. This 

study presents a general morphological phase diagram of membrane surface patterns, in which two 

characteristic regimes of membrane shapes can be classified with respect to the most dominant 

factor between liquid crystal anisotropy and bending elasticity. The presented results indicate that, 

depending on the bending elasticity of the cell membrane, the liquid crystal might be able to 

deform the cell, thereby resulting in anisotropic asymmetric shapes. As liquid crystal anisotropy 

dominates the bending elasticity, spindle-like or tactoid shapes, which are extensively observed in 

experiments, can be formed. The findings provide a foundational framework to better understand 

membrane topologies in living soft matters. Furthermore, the coupling between order and 

curvature of membranes shed new light into the design of novel functional soft materials.  

5.3 Introduction 

Biological membranes contain an oriented bilayer of phospholipids, the basic structure of all cell 

membranes, such that the hydrophobic tails face each other and the hydrophilic phosphate heads 



114 

the aqueous phase [1]. Although cell membranes including a set of proteins, phospholipids, and 

cholesterols, are complex structures, they all share the basic membrane structure. Despite their 

simple configuration, biological membranes generally show a wide variety of complex 

topographies and morphological instabilities, such as discocyte, stomatocytes, and echinocyte 

shapes observed in red blood cells [2, 3]. Shape variations in red blood cells, known as 

poikilocytosis, can be correlated to pathological conditions and can be used in clinical diagnosis 

of diseases, such as trauma, infections, and cancer [4, 5]. Moreover, the rich set of surface patterns 

formed in biological membranes can inspire the design and fabrication of biomimetic materials 

with novel functionalities [6, 7].   

To elucidate the morphological variety of biological membranes, several theoretical studies were 

undertaken with the goal of minimizing membrane-bending energy subjected to area and volume 

constraints (Helfrich model, also known as the spontaneous curvature model) [8-12]. Although 

Helfrich models can well capture numerous cell membrane morphological deformations, they fail 

to reproduce membrane shapes that are asymmetric, such as the echinocyte [5]. While the area 

difference elastic models (ADE), which minimize the energy associated with the area difference 

between the inner and outer leaflet of the membrane, can represent the top-bottom asymmetric [13, 

14]. Further, numerical simulations such coarse-grained molecular dynamics (CGMD)[15, 16], 

spherical harmonics parameterization (SHP)[17], and dissipative particle dynamics [18] were 

proposed to provide a detailed description of pattern formation occurring in both symmetric and 

asymmetric deformation. Although significant progress has been made in formulating theoretical 

and numerical models that attempt to explore the complex surface morphologies in biological 

closed membranes, previous studies have been restricted to bilayer elastic models. There are few 

studies that consider other chemical and biological mechanisms (such as the presence of multiple 

components or in-plane orders) contributing to the formation of top-bottom asymmetric membrane 

shapes [19-22]. 

As the lipid bilayers exhibit long range ordering [23], they might be regarded as liquid crystals. 

Furthermore, liquid crystalline phase and topological defects are found in numerous biological 

materials, such as DNA [24], cellulose [25], chitin [26], and collagen [27]. Liquid crystallinity not 

only is governed most physical aspects of biological morphogenesis, but it also contributes in the 

detailed organization of cells and living tissues [28]. A cell membrane can exhibit anisotropic 

behavior due to lipid tilt, lipid rotation, and chirality [29] or due to external macromolecules like 
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proteins [30]. Liquid crystallinity of actin or tubulin polymer networks can also contribute in 

controlling shape deformation in biological cells [31]. Besides, the morphological patterns of some 

lyotropic liquid crystal droplets closely resemble the geometries and symmetries of living tissues 

and cell membranes [32]. It is shown that spontaneous assembly of phospholipids at the interface 

between liquid crystals and aqueous phases results in dynamic spatial patterns typical of 

phospholipids [33],[34]. Another example of coupling between membrane elasticity and liquid 

crystal anisotropy responsible for the generation of complex surface morphologies, occurs in giant 

unilamellar vesicles (GUVs) suspended in a liquid crystal [35, 36]. Moreover, the three-

dimensional architectures of some liquid crystal colloids closely resemble the geometries and 

symmetries of living tissues and cell membranes [20], such as starfish morphology, an instance 

that confirms the analogy that can be drawn between liquid crystal anisotropy and amphiphilic 

surfactants [37]. Polymersomes can also exhibit a large variety of morphologies that can be 

controlled by copolymer composition and subsequently respond to chemical or physical stimuli 

such as pH, osmotic pressure, and temperature [38, 39]. This chapter presents a systematic 

modeling approach to derive the equations coupling topology, elastic free energy, and anchoring 

conditions that can be used in analyzing the surface morphologies observed in elastic anisotropic 

drops such as liposomes or phospholipid bilayer, surfactant-coated nematic liquid crystal droplet 

or liquid-crystalline lipid monolayers, and polymersomes (see Figure 5-1). 

Several theoretical and experimental studies have been presented to model the coupling 

mechanism between the orientational order, topological defects, and the curvature in spherical 

vesicles [32, 40-42]. The presented theoretical studies illustrate the deformation of an isotropic 

droplet immersed in a liquid crystal phase [41] and the inverse problem, the deformation of a 

nematic liquid crystal droplet within an isotropic phase [42]. Recent studies have also explored the 

deformation of lyotropic chromonic liquid crystal (LCLC) drops [43] and active nematics [44].  

For spherical nematic droplets, curvature generally drives formation of topological defects and 

disclinations, and correspondingly, defects and disclinations change curvature [36]. But, the 

nematic droplets do not necessarily have a distorted director field. If the droplet size is sufficiently 

small, the director field would be homogenous and the droplet would be defect free, while large 

nematic droplets favor the formation of topological defects. The type of surface anchoring may 

result in the formation of either a hedgehog point defect in the center [45], or a pair of surface 

point defects at the poles of the droplet known as boojums [46]. The results show that the shape of 
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nematic liquid crystal droplet is typically an ellipsoid in which the major axis of the shape lies 

along the director orientation [47]. The spindle-shaped droplet or tactoid have also been observed 

in suspensions where both isotropic and nematic phases exist [35, 41, 42]. 

 
Figure 5-1. Schematic of possible elastic anisotropic drops. (a) Liposome, (b) Surfactant-coated 

nematic liquid crystal droplet, and (c) Polymersome.  

 

Significant progress has been made in developing theoretical models that couple the orientational 

order and curvature for anisotropic elastic interfaces [48-57].  In the previous chapter, it is shown 

that when the liquid crystal anisotropy and bending effects are comparable, the planar anisotropic 

interface may show a rich variety of multi-scale complex patterns, such as spatial period-doubling, 

period-tripling, and quasi-periodicity [56]. In this chapter, we seek to characterize the shape 

deformation of closed liquid crystal membranes through the interaction of anisotropic interfacial 

tension, bending elasticity, and capillarity at free surfaces. We theoretically consider a nematic 

liquid crystal droplet immersed in a passive isotropic phase in the presence of an interfacial layer 

of surfactants, which leads to an additional elastic contribution to the free energy of the system. 

The aim of this work is to develop an exclusive physical model based on the integration of the 

Cahn-Hoffman capillarity vector developed for liquid crystals [50], the classical Rapini-Papoular 

anchoring energy [58] for liquid crystals, and the Helfrich membrane energy [59]. We only 

consider 2D drops, with a constant director field in its interior and with a surface that displays 

bending elasticity and anisotropic surface tension; the outer phase is inert. Of particular interest 

here is to study the role of liquid crystal anisotropy in complex surface pattern formation. 
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Understanding the mechanisms through which biological membranes exhibit specific 

morphologies can be used as an illustration of "bio-inspiration" for the design of novel devices 

such as sensors.  

The specific objectives of this chapter are: (a) to derive and solve a nemato-capillary shape 

equation that describes the surface deformation of an elastic liquid crystal membrane; (b) to 

characterize the possible deformation modes and investigate the effect of the system physical 

parameters on the surface morphologies; (c) to characterize the role of membrane elasticity and 

anisotropic surface tension on the surface deformation mode; and (d) to elucidate the mechanisms 

that drive surface deformations.   

The organization of this chapter is as follows. Section 5.4 introduces the material model system, 

the different contributions to the free energy, and the governing nemato-capillary shape equation 

expressing the coupling mechanism between the surface geometry and director field in rectangular 

(x,y,z) coordinates. In this section, we assume a nematic liquid crystal membrane with quite weak 

homeotropic anchoring where the radius of the membrane is always significantly less than the 

extrapolation length scale, resulting in homogenous director field. Section 5.5 presents a phase 

diagram of liquid crystal membrane configurations as a function of the scaled pressure jump and 

the scaled LC anchoring, the effect of model parameters on the membrane shape. At the end of 

this section, a general morphological phase diagram of the surface patterns for the closed LC elastic 

membrane in the ternary parametric space (bending elasticity, anchoring, surface tension) is 

illustrated, which allows us to select the membrane shape that results from the interaction of the 

three primitive shapes (folded-shape, spindle-like, and ellipse). In section 5.6, we present the 

capillary pressures associated with the bending-anchoring morphological instabilities. Section 5.7 

presents the conclusions.  

5.4 Theory and governing equations 

In this section, we first present the material model system and the basic concepts of the membrane 

geometry. Then, we introduce the governing nemato-capillary equations based on the widely used 

Cahn-Hoffman formalism [44] of capillarity for anisotropic closed membranes expressing the 

coupling mechanism between the surface geometry, membrane bending elasticity, and liquid 

crystal director field.   

5.4.1 Geometry and structure  

The 2D shape of an elastic liquid crystal cell membrane can be characterized by a membrane 

profile with respect to reference coordinates “x-y” (Figure 5-2). For membranes with circular 
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cross-section, the curvature is constant through the surface and equals to R/2, where R is the radius 

of the membrane. As the membrane deviates from that of a circle, the curvature varies around the 

circumference and is a function of the polar angle. In this work, the turning angle of the normal 

vector k is used as a single scalar function φ(s) to characterize the membrane profile in the x-y 

coordinates. s is the surface arc-length and L is the total system length. Knowing φ(𝑠), the 

membrane profile can be obtained by the integrals: 𝑦 = ∫ 𝑐𝑜𝑠 𝜑 𝑑𝑠
𝐿

0
 and 𝑥 = ∫ 𝑠𝑖𝑛 𝜑 𝑑𝑠

𝐿

0
.  

 
Figure 5-2. Schematic of a 2D nematic liquid crystal membrane. The rods denote the nematic 

director field.  The director field is along the vertical “y” axis, the surface normal is k, the surface 

tangent is t, the normal angle is φ, and the total membrane length is L. W denotes the liquid crystal 

anchoring strength, kc denotes the surface bending elasticity, and ∆p=pout-pin represents the 

pressure jump across the membrane. Note that the director field is constant everywhere and for 

this condition to exists the radius of the membrane is much less than the extrapolation length, K/W. 

 

The curvature is defined as the derivative of the normal angle: 𝜅 =
𝑑𝜑

𝑑𝑠
. The area of the plane 

curve, A, can be computed as: 𝐴 = ∫ 𝑥 𝑐𝑜𝑠 𝜑 𝑑𝑠
𝐿

0
. The unit tangent t and the unit normal k to the 

surface can be parametrized with the normal angle, t(𝐱) = (sin φ(x), −cosφ(x)), 𝐤(x) =

(cos φ(x), sinφ(x)). The nematic liquid crystal orientation is defined by the director field n: 𝐧 =

(cosθ, sinθ). The preferred orientation or easy axis at the interface can be parallel to the unit 

normal k (homeotropic) or perpendicular to the unit normal k (planar). It should be noted that the 

presence of surfactant-like biomolecules or phospholipids can change the preferred surface 
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anchoring, and the director field [60]. For nematic liquid crystals immersed in aqueous surfactant 

solutions, it is shown that the anchoring type can depend on the surfactant’s concentration, and 

increasing the surfactant concentration can lead to adsorption-driven orientational transition [61]. 

In this study, and without loss of physical phenomena, we restrict the discussion only to 

homeotropic anchoring (W<0). To determine a closed surface profile for the membrane, a number 

of constraints must be imposed. Firstly, the membrane length L must satisfy the periodicity 

condition: x(0)=x(L) and y(0)=y(L). The smoothness of surface profile implies that (0) = (L) 

=0. As the arc-length varies from 0 to L, the normal angle rotates from 0 to 2π indicating that 

there exists an integer m such that: ∮ 𝑘 𝑑𝑠 = 2𝑚𝜋. 

5.4.2 Governing equations 

The shape deformation of a liquid crystal (LC) membrane is a complex multiple-coupling 

problem that includes anisotropic surface tension, membrane bending elasticity, and Frank bulk 

elasticity [62,63]. To explore the shape selection of a liquid crystal membrane, the total system 

energy including the surface energy and the bulk Frank elastic energy should be minimized. 

However, the analytical solution of the problem with the usual formalism is very complicated. In 

this study, the bulk Frank elastic contribution to the shape equation is assumed to be negligible. 

The relative importance of the bulk elastic contributions compared to the anchoring energy can be 

evaluated by comparing the extrapolation length, le=K/W, (K being the Frank elastic constant) and 

the liquid crystal membrane radius, R. For a liquid crystal membrane with quite weak anchoring 

and small enough radius (R<< le) the Frank elastic contribution is not significant as it scales as R, 

whereas the surface energy scale as R2. Consequently, the elastic energy dominates over the 

anchoring energy for small membranes, and we can assume that the director field is undistorted 

and homogenous [41]. The typical size of biological membranes is about 1μ [8]. Taking typical 

values of Frank elastic constant for nematic liquid crystals (K ≈ 10-12 -10-11 N)[64], the 

extrapolation length scale le is in the range of few micrometers (le≃10 m). Thus, to neglect the 

contribution of the elastic distortion, we should set the size constraint on the membrane (R< 10 

m). In this study, we are dealing with a quite weak anchoring, W≃10-6 J/m2 [65], and a relatively 

small value of the bending elasticity, kc≃10-21-10-18J [66], typical values for biological membranes, 

which gives a micron-range bending/anchoring length. We assume that the interfacial surface 

tension is γ0=10-7–10-5 Nm-1 [8], and the pressure jump across the membrane is Δp≃10-3-10-1 atm 

[67]. 
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Several theoretical models incorporating Helfrich membrane energy were formulated to 

investigate the shape deformation of biological membranes and constrained soft materials [10, 11, 

66, 68]. In this section, we develop a physical model of a nematic liquid crystal membrane where 

the coupling mechanism between surface geometry and liquid crystal order is presented through 

the shape equation that resorts to the vector formalism of Cahn-Hoffman capillarity [69]. The 

presented liquid crystal Laplace–Helfrich shape equation can be employed to predict shape of 

isotropic droplet embedded in a nematic liquid crystal phase or shape of nematic liquid crystal 

embedded in an isotropic phase. 

 

5.4.2.1 Cahn-Hoffman capillarity vector  

The generalized Cahn-Hoffman capillary vector ξ  [69] is the fundamental quantity that includes 

the curvature effects and liquid crystal orientation in one single vectorial quantity. The orientation-

dependent surface energy can be specified by the unit vector or director n=n(r) field, the surface 

position vector r=rk, and the surface unit normal k. Cahn and Hoffman defined the nematic 

capillarity by the gradient of the scalar field rγ:  

 

( , ) [ ( , )] ξ n k n kr  (5.1) 

 

For isotropic interfaces, the capillary vector, ξ  reduces to a normal vector ξ k . The 

decomposition of the surface director field into normal and tangential components yields 𝐧⊥ =

𝐤𝐤. 𝐧 and 𝐧∥ = 𝐈𝐬. 𝐧, where Is is the 2×2 unit surface dyadic Is=I-kk, and I is the 3×3 unit 

tensor. Calculating the gradient of the field rγ appearing in Eq. 5.1, using . ( , )ξ k n k , 

. ( , )ξ k n kd d , and ( ) ( ). rd r r d  gives: 

 

||

( , ) .



  
   

  
ξ

ξ

ξ n k k
r r k

s

r
r I

 
   

(5.2) 

where the normal component ξ  describes the increase in the surface energy through dilation and 

the tangential component ||ξ  is the change in the surface energy through rotation of the unit normal. 

The surface energy that includes anchoring energy given by Rapini and Papoular [58] and the 

Helfrich free energy [59] can be used to derive the Cahn-Hoffman capillary vector ξ  for a 

composite nematic liquid crystal membrane: 
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2 2

0 0

1
2 ( ) ( )

2
     n.kc ck K k H H W   (5.3) 

where 0  is the isotropic surface tension, kc is the membrane bending elastic moduli, H is the 

membrane surface curvature, H0 is the spontaneous curvature of the membrane, 
ck  is the torsion 

elastic moduli of the membrane, and K is Gaussian curvature; based on the Gauss–Bonnet theorem 

[70] for closed membranes without edges the integral over the Gaussian curvature K is a 

topological invariant and it can be ignored [12]. The term 2( ) / 2n.kW  represents the anisotropic 

anchoring energy contribution due to the director field deviations from the preferred “easy axis”, 

and W is the surface anchoring strength. If W>0, the easy axis or preferred orientation is tangential 

to the interface (planar), and if W<0 the easy axis is normal to the interface (homeotropic 

anchoring). When the director field deviates from the preferred orientation, the deviation causes 

gradients in surface tension, and may generate the orientational-driven tangential Marangoni 

elastic forces and as well as normal forces [71, 72]. In this study, this Marangoni effect is 

neglected.  

Substituting Eq. 5.3 into Eq. 5.2 yields the normal and tangential components of the capillarity 

vector:  
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c
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k
s
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
 

 

(5.4 a,b) 

These equations shows that when n.k=1, the surface behaves like an  isotropic membrane and that 

the degree of anisotropy is controlled by n.k. 

 

5.4.2.2 Nemato-capillary shape equation 

To derive the capillary shape equation required to determine the liquid crystal membrane shape, 

we use the capillary pressure definition
||. .( ) .


       



ξ
ξ ξ ξ ts sp

s
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

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
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p

s s

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     

 

ξξ
t ξ  (5.5) 
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By substituting the normal ξ  and tangential ξ  components of the capillarity vector (Eq. 

5.4) we obtain: 

 

2
2 2 2

0 2
 ( ( ) )  ( )
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(5.6) 

In the absence of the liquid crystal order, the contribution from the normal component of the 

capillary vector ξ  is the classical Laplace pressure, and the contribution from the tangential 

component of the capillary vector ||ξ , is known as Herring’s pressure. For liquid crystal 

membranes, since the capillary vector is a function of both the director field, n and the unit normal 

k, an additional contribution to the capillary pressure arises from director curvature due to 

orientation gradients. This equation shows that the membrane shape is the result of the balance 

between the membrane bending elasticity, surface tension, surface anchoring effects, and the 

pressure jump. Both anchoring term and bending elasticity can drive shape deformation of a 

nematic liquid crystal membrane. Rearranging Eq. 5.6, we obtain: 
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(5.7) 

 

For nematic liquid crystal with the fixed director field, the director pressure term, 

    ( ) /   : /    k n t n kn t nW d ds d ds vanishes [73]. Integrating Eq. 5.7 with respect to curvature 

κ, gives: 
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In the absence of liquid crystal order, the integration can be reduced to: 
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interpreting the quantity s as a time and κ as a position, Eq. 5.9 corresponds to the equation of 

motion of a particle with unit mass and kinetic energy T, moving in a potential U and whose total 

energy E is conserved: 
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(5.10) 

 

The anchoring term in Eq. 5.8 acts as the correction term when the mass of the particle changes 

with time. 

Considering the nematic director field n=(cos θ, sin θ), surface unit normal k(s)=(cos φ(s), sin 

φ(s)), unit tangent t(s)=(sinφ(s), -cosφ(s)) and using the definitions: 
dx

sin
ds

  , 

d d dx d d
sin ,  = sin

ds dx ds dx dx


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n n n
 gives the governing shape equation: 

   
33

2 2

3

1
 ( )-  ( )

2 2

 
     

 
n.k n t

c c c

d d p W d W d

ds ds k k ds k ds

   
 (5.11) 

 

The shape equation is a nonlinear third order ODE for the normal angle φ (s, ∆p, kc, W, γ0). In the 

absence of liquid crystal anisotropy, the Eq. 5.11 becomes the classical Euler-Lagrange equation. 

It represents the interfacial force balance between the surface forces and the bulk force, Δpk due 

to the pressure jump across the membrane. The interfacial stress tensor Ts can be expressed in 

terms of the capillary vector ξ [74]: .sT ξ D  where  s sD kI - I k  is the geometric tensor that maps 

the capillary vector into the tangential stress  sξ I  and bending stress ||ξ k . Then, the capillary 

pressure can be simply presented by: ( . ). .   sT k ξsp . 

The dot product of the interface stress tensor, Ts with the unit tangent gives: 

 

s ||     t T ξ t ξ k  (5.12) 

Besides, the normal vector, k can be expressed as an arc-length derivative of a vector field: 

 
d

( ) ( )
ds

   k r t k r k t . Therefore, we can obtain: 
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Thus, the capillary shape equation can be readily found to be: 

   || P     ξ t ξ k r tk kt 0  (5.14) 

Multiplying the Eq. 5.14 by  kt tk  and considering that     tt kk    tk kt kt tk  results in: 

   || P   ξ k ξ t r  (5.15) 

Substituting the normal and tangential components of the capillary vector, Eq. 5.4, we obtain: 
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(5.16) 

Thus, we can further find a notable polar formulation for computing the local radius of the nematic 

liquid crystal membrane: 
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 In the absence of liquid crystal anisotropy (W=0), Eq. 5.17 yields [12]: 
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(5.18) 

Using this equation, we can determine the local radius of the membrane for a known total energy 

E.  

5.5 Results and discussion 

To investigate the effects of the system physical parameters on the membrane shape and to 

characterize the morphological surface patterns, the nonlinear differential equation with periodic 

coefficients is solved using the AUTO software [75]. The reduced area of the membrane, the local 

curvature of the membrane, and the number of membrane folds are the important outputs of the 

model. The two significant parameters influencing the membrane morphology are: (i) the scaled 
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anchoring coefficient, W/γ0 (ii) the bending elasticity number, ∆pR0
3/kc. The scaled anchoring 

coefficient W/γ0 is taken to be in the range 0< |W/γ0|< 2. The bending elasticity number, ∆pR0
3/kc 

is taken to be in the range 0.05< ∆pR0
3/kc < 50.  

Table 5-1 lists the system length scales, the dimensionless numbers, and their definitions and 

physical descriptions, that are captured in the results discussed below.  

 

Table 5-1. System dimensionless numbers, their definitions and physical descriptions. 

Name Symbol Definition Physical description 

 bending elasticity number α ∆pR0
3/kc ratio of the pressure jump and surface bending 

elasticity 

 pressure bending number β γ0R0
2/kc ratio of the surface tension and surface 

bending elasticity 

 anchoring bending number ω WR0
2/kc ratio of the anchoring and surface bending 

elasticity 

 extrapolation length le K/W relative importance of the bulk elasticity to 

anchoring  

 pressure bending length ℓ𝑝𝑏 
√𝑘𝑐

∆𝑝⁄
3

 
relative importance of the surface bending 

elasticity to pressure jump 

 anchoring bending length ℓ𝑎𝑏 
√𝑘𝑐

𝑊⁄
2

 
relative importance of the surface bending 

elasticity to anchoring 

anchoring bending length 𝜏 𝐿/ℓ𝑎𝑏 relative strength of the anchoring to the 

bending elasticity 

 

5.5.1 Shape selection 

To find the shape of a nematic liquid crystal membrane, we first make Eq. 5.11 dimensionless 

by taking =s/R0, α=∆pR0
3/kc (pressure bending number), β=γ0R0

2/kc (tension bending number), 

ω=WR0
2/kc (anchoring bending number), where R0 is the spontaneous radius of the membrane. 

We then have: 
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(5.19) 

For each solution ( ) s   of Eq. 5.19, there is a certain value of the variable s  at which 

2 2/ 0d ds . We choose 2 2/ 0  0 d ds at s . We also select 
00 // | / | s s L Rd ds d ds   that gives 

closed solutions, and φ|s=0 =
π

2
, which is consistent with the homeotropic anchoring. Solving Eq. 

5.19 with the specified boundary conditions, we can investigate the shape selection of the 

membrane based on the three dimensionless parameters: α, β and ω. The spontaneous radius is 

s
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fixed to (R0=0.5μm) and the remaining system parameters are varied to investigate their effect on 

the membrane shape selection.   

To study the effect of the pressure bending number, α and the dimensionless anchoring number 

W/γ0 = ω/β (ratio of the two-other system dimensionless numbers ω/β) on the membrane shapes, 

the values for γ0, and R0 are held fixed. The membrane shape can be characterized by the reduced 

area Ar= 4πA/L2, where A is the membrane area and L is the membrane length and the 

dimensionless bending energy that is scaled by bending energy of the circular configuration, E0, 

with the reduced area (Ar=1). Figure 5-3 illustrates the dimensionless bending energy as a function 

of the reduced area for the n-fold membrane morphologies. For the morphologies shown in the 

beginning of each line (the left side of the lines), the corresponding scaled anchoring, W/γ0 is zero. 

Thus, we can note that in the absence of liquid crystal anisotropy as the pressure bending number, 

α increases from 0.3 to 7, the membrane shape is transformed from 5-fold (starfish) deformation 

mode to 2-fold deformation mode (discocyte), which is energetically less expensive than the 

starfish shape. These membrane shapes can be also obtained by minimizing the Helfrich free 

energy [10, 12], 2

0( )
2

   
c

S S

k
ds pdA  . All the shapes start as a circle for Ar =1 and transform to 

the folded modes as Ar decreases from 1. 

In the presence of liquid crystal order with homeotropic anchoring, rising the dimensionless 

anchoring number, W/γ0, results in deformation modes with increased number of folds and higher 

bending energies. The results show that the anchoring energy can control the surface tension. This 

demonstrates an analogy between the liquid crystal anisotropy and the surface bending elasticity 

that can change the interfacial tension and drive the formation of several polymorphic topologies 

such as   starfish membranes. In fact, the anchoring energy can govern the interfacial energy and 

lessen the energetic cost of creating multi-fold shapes. It should be noted that the shape 

deformation will only be significant for values of the scaled anchoring coefficient, W/γ0 ∼1 where 

the anchoring strength is of the same order, or larger, than the surface tension. For the 

morphologies shown in the beginning of the each line where the liquid crystal anisotropy is absent, 

increasing the surface tension, γo above a threshold results in the self-intersecting membrane 

shapes [76]. For instance, the discocyte shape intersects itself when the reduced area Ar becomes 

less than 0.3 [68]. As the self-intersecting shapes are physically irrelevant [11], they are not 

discussed in the present work. 
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Figure 5-3. The scaled bending energy as a function of the reduced area for four different values 

of the pressure bending dimensionless number α=0.3, 0.5, 1, and 7. Increasing W/γ0 results in 

deformation modes with increase the number of folds. The scaled bending energy increases with 

increasing number of folds. All the drops have a vertical mirror symmetry due to director axis 

orientation. 

 

Figure 5-4 shows the dimensionless bending energy of the membrane shapes corresponding to 

the 2-fold, 3-fold, 4-fold, and 5-fold modes, shown in Figure 5-3 as a function of the total 

dimensionless length: 𝐿/ℓ𝑎𝑏+𝐿/ℓ𝑝𝑏. The numerical results indicate that the bending energy 

of the folded membrane with constant surface tension is essentially a linear function of the 

scaled anchoring bending number, ωL/R0 and the scaled pressure bending number, αL/R0. 
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Figure 5-4. Scaled bending energy as a function of total dimensionless length shows a linear 

scaling for the 2-fold, 3- fold, 4- fold, and 5- fold deformation modes.  

 

5.5.2 Effect of anchoring 

In the presence of the nematic liquid crystal orientation, the surface area might be increased or 

decreased for the case of homeotropic or planar anchoring, respectively. Then, the excess or lack 

of the length might buckle the membrane shape. As an example, Figure 5-5 shows the membrane 

shapes corresponding to the 2-fold, 3-fold, 4-fold, and 5-fold modes in the presence and absence 

of LC anisotropy. To investigate the effect of the liquid crystal anchoring W on the membrane 

shapes, for all the deformation modes the value of the surface tension, γo is fixed. The break in 

top-to-bottom symmetry of the shapes occurred in the membranes with the presence of liquid 

crystal orientation is due to the competition between the bending elasticity of the membrane and 

the anchoring of the nematic liquid crystals.  
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Figure 5-5. Membrane shapes in the presence and absence of liquid crystal anisotropy. (a) 2-fold 

symmetry, (b) 3-fold symmetry, (c) 4-fold symmetry, and (d) 5-fold symmetry. The scaled 

anchoring coefficient is W/γo=1.5. The pressure bending number, α=∆pR0
3/kc and the tension 

bending number, β=γ0R0
2/kc equal to (α=2.5, β=1.25), (α=0.15, β=0.075), (α=0.08, β=0.04), and 

(α=0.05, β=0.025) for figures 4(a) to 4(d), respectively. Adding the liquid crystal anchoring breaks 

the membrane top-to-bottom symmetry and results in high curvature on the top of the membrane 

shape. 

 

It should be noted that adding the anchoring effect results in high curvature on the top of the 

membrane. The figure also illustrates that the 2-fold and 4-fold modes show the effect of greater 

top-to-bottom asymmetry with adding LC anisotropy. As the number of folds increases, the effect 

of anchoring in breaking the symmetry becomes insignificant. The reason is that the more folded 

modes corresponds to the higher bending energies where the anchoring energy has a slight effect 

on the membrane deformation shape. The 2-fold mode in the presence of the LC order shown in 

Figure 5-5a is the known stomatocyte shape observed in red blood cell vesicles [14] that could not 

be obtained using the two-dimensional Helfrich model. So, by combining the two deformation 

mechanisms, bending and anchoring, in theory it would be possible to obtain the novel top-bottom 
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asymmetric membrane shapes (Figure 5-5(a-d), dashed lines), which are not possible 

configurations that can be produced using classical single-layer membrane models. 

5.5.3 Effect of bending elasticity 

To explore the effect of bending elasticity on the membrane shape, we varied the bending number, 

α=∆pR0
3/kc in a broad range from 0.05 to 50. It should be noted that the values for pressure jump 

∆p, and spontaneous radius R0 are held fixed while kc is varied. This range maps out a wide variety 

of   membrane configurations. As shown in Figure 5-6, a large part of the membrane shapes can 

be captured by varying a single parameter, the membrane bending elasticity, kc. As the bending 

elasticity decreases, the number of membrane folds reduces and the morphology changes from 5-

fold to discocyte, ellipsoid, stomatocyte, umbonate, umbilicate, and undulate. In the limit kc→0 

the shape of the membrane adapts to a spindle-like morphology. Table 5-2 lists the standard 

nomenclature of the membrane morphologies. 

Table 5-2. Nomenclature of membrane morphologies. 

 

By decreasing kc the ratio of radius of the membrane curvature to the spontaneous radius, R/R0 

which is also representative of the membrane reduced area, and the scaled bending energy decrease 

until the membrane shape adapts to the ellipsoid. Then, decreasing the bending elasticity further 

results in fixed reduced area (R/R0) and increased scaled bending energy.  Figure 5-6 shows that 



131 

two starkly different classes of membrane deformation modes can be characterized: n-fold 

topographies and 1-fold topographies, respectively, corresponding to the right nearly horizontal 

branch when the bending energy is dominant and the vertical left branch when both anchoring and 

bending contribute in buckling the membrane. The curvature of the liquid crystal membranes 

shown in the left branch can be very well approximated by Airy functions (see Appendix. D). 

Earlier, boundary layer behavior of nematic liquid crystals in shear flows is analytically 

approximated in terms of Airy functions [77]. The results show that when both liquid crystal 

anisotropy and membrane elasticity contribute in the membrane deformation, the anchoring 

strength promotes shape anisotropy and top-to-bottom asymmetry while the membrane elasticity 

promotes symmetric shapes. Thus, the complex morphologies (shown in the left vertical branch of 

Figure 5-6) that emerge in numerous biological membranes can also be explored by another 

mechanism that couples liquid crystal orientational order and membrane elasticity and be well 

described by a fundamental function (Airy) of physics.  

 

 
Figure 5-6.  Bending energy as a function of the ratio of radius of the membrane curvature to the 

spontaneous radius for a wide range of bending number α=0.05-50. The values for pressure jump 

∆p, and spontaneous radius R0 are held fixed while kc is varied.  
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To explore the morphological patterns shown in the left vertical branch of Figure 5-6, we present 

in Figure 5-7 the dimensionless local curvature, r/R0 (see Eq. 5.17) as a function of the scaled 

membrane arclength, s/L for six membrane morphologies with the different values of the 

dimensionless number τ. The dimensionless parameter, 𝜏 is a measure of the relative strength of 

the liquid crystal anchoring to the bending elasticity. As the liquid crystal anisotropy can compete 

with the bending elasticity, a range of multiple wavelengths pattern can form. Through increasing 

the effect of liquid crystal anisotropy, first, the period-doubling pattern corresponding to the 

discocyte shape appears. Then, period-tripling, period-quadrupling, and the high wavenumber 

periodic wrinkling respectively corresponding to the umbonate, umbilicate, undulate appear. As 

the bending elasticity becomes insignificant, the surface undulations disappear and the membrane 

shape adopts the spindle-like morphology.  

 

 
Figure 5-7. The dimensionless local curvature, r/R0 as a function of the scaled membrane 

arclength, s/L for six membrane morphologies with the different values of the dimensionless 

number τ. Through increasing 𝜏, the dimensionless local curvature, r/R0 shows period-doubling, 

period-tripling, period-quadrupling, and the high wavenumber periodic wrinkling of respectively 

corresponding to the discocyte, umbonate, umbilicate, and undulate morphologies (see Table 5-2). 
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An increase of the effect of liquid crystal anisotropy decreases the periodicity of the wrinkles and 

leads to the higher wave-number periodic patterns. The greater the value of   

𝜏, the smaller are the amplitudes and the wavelength of the smooth wrinkles, as shown in          

Figure 5-8.  

 

 
Figure 5-8. Effect of the dimensionless number τ on (a) the scaled amplitude and (b) the scaled 

wavelength of the smooth wrinkles.  

 

5.5.4 Membrane elongation 

The membrane elongation can be characterized by its aspect ratio ε=b/a. The effect of the 

dimensionless number τ on the membrane elongation is shown in Figure 5-9. In the absence of LC 

anisotropy, for quite small bending elasticity the membrane will tend to be close to an ellipsoid so 

as to minimize their interfacial energy. In the presence of liquid crystal anisotropy, when the 

anchoring coefficient is of the same order, or larger than the surface tension, the nematic liquid 

crystal membrane has spindle-like shape. The aspect ratio of the membrane we obtained obeys  

𝑏

𝑎
= 96.06𝜏 if 𝜏<<0.05 and 

𝑏

𝑎
= 1.27𝜏 if 𝜏 >>0.05, which is quite close to the approximate results 

presented by [42].  

In the absence of bending elasticity, the aspect ratio of the nematic liquid crystal droplet predicted 

using the Wulff construction shows a linear relationship, 
𝑏

𝑎
= 1 + W/γ0 if W/γ0<<1 and a power 
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function,  
𝑏

𝑎
= (

W

γ0
)1/2 if W/γ0>1. As we expect that by increasing the dimensionless number, 𝜏, the 

aspect ratio of the membrane becomes a weak function of the dimensionless anchoring. In Figure 

5-9, the dashed black line illustrates the points where the membrane shape has a constant aspect 

ratio, in this case equals to b/a = 2. Regardless of whether the anchoring type is homeotropic or 

planar, the liquid crystal membrane favors elongated shapes.  

 
Figure 5-9. Aspect ratio, b/a of a homogeneous nematic membrane as a function of the of the 

dimensionless number, 𝜏. The aspect ratio of the membrane shows a linear relationship,                          
𝑏

𝑎
= 96.06𝜏 if 𝜏<<0.05 and 

𝑏

𝑎
= 1.27𝜏 if 𝜏 >>0.05. The dashed black line illustrates the points 

where the membrane shape has a constant aspect ratio, b/a = 2. 

 

The elongation follows the liquid crystal director field. Here, as homeotropic anchoring is 

preferred, any deviation from a spherical shape will result in an ellipsoid whose axis is 

perpendicular to the director field. However, in the case of planar anchoring (not treated here), the 

main axis of the membrane is parallel to the director field. Also, it should be noted that for small 

values of the scale anchoring coefficient, W/γ0 where the isotropic surface tension γ0, dominates 

the anisotropic surface tension, the membrane tip becomes rounded. The increase in anisotropic 

surface energy compensates with the shorter total boundary length associated with rounded tips 

[78]. While for sufficiently large values of the scaled anchoring coefficient, W/γ0, the opposite 

condition occurs and the tip becomes sharp. As reported in [41], the aspect ratio of the nematic 

liquid crystal droplet decreases with decreasing the dimensionless parameter, β=γ0 R0
2/kc which is 
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a measure of the relative strength of the surface tension to bending elasticity. For membrane with 

spindle-like shapes, the effect of the membrane elasticity would be to remove the sharp 

discontinuity in curvature, which minimize the curvature energy. In agreement with the earlier 

works [42, 79], the membrane would be spherical if W/γ0≈0, elongated if 0<W/γ0<=1, and 

elongated with sharper ends if W/γ0>1. 

 

5.5.5 Morphological phase diagram 

To obtain a comprehensive atlas of morphological surface patterns, and to predict the membrane 

shapes depending on the system physical parameters, we present in Figure 5-10 the general 

morphological phase diagram of the surface patterns for a liquid crystal membrane with a constant 

pressure jump across the membrane, Δp=10-2 atm, in a ternary parametric shape space (kc, W, γ0).  

The fundamental membrane shapes at the corners of the triangle are: spindle-like shape (top) with 

nearly zero bending elasticity (liquid crystal droplet), ellipse (lower right) with zero bending and 

zero anchoring, and n-fold pattern (lower left) with zero anchoring. In the triangle’s interior, the 

liquid crystal anisotropy competes with the bending elasticity, and promotes formation of surface 

patterns with increased number of folds and higher bending energies. But, for the cases bending 

elasticity is higher than kc>5×10-21J, the effect of liquid crystal anchoring is insignificant, and the 

membrane practically adopts the conventional bending elastic shapes. For the minimum value of 

the bending elasticity, kc=5×10-21J (the right side of the triangle), the both liquid crystal anisotropy 

and membrane elasticity can equally contribute in the membrane deformation. The anchoring 

strength promotes the shape anisotropy and the top-to-bottom asymmetry, and creates the complex 

morphologies such as discocyte, ellipsoid, stomatocyte, umbonate, umbilicate, and undulate. With 

the increase of anchoring, the smooth surface undulations on the top of the membrane disappear 

and the membrane shape adopt the spindle-like morphology. Increasing the surface tension, γ0 

particularly when the anchoring strength is insignificant results in the self-intersecting membrane 

shapes. In general, we can identify two main surface patterns: symmetric and asymmetric. The 

first is located at the limiting cases of zero anchoring/high bending elasticity. 

In the absence of anchoring (the base of the triangle), the surface patterns correspond to the 

classical folded elastic membrane shapes. With the decrease of bending elasticity, the surface 

patterns change into modes with lower number of folds, while for the minimum value of the 

bending elasticity kc=5×10-21J, the membrane in the absence of anchoring forms the ellipse (shown 

in the lower right corner of the ternary phase diagram). As the value of bending elasticity is nearly 
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zero (with kc=0, the shape equation approaches infinity), the membrane shape is not a circle but 

ellipse. In partial summary, if the effect of the bending elasticity is predominant, the membrane 

shape is a n-fold pattern. If the effect of anchoring is predominant, the membrane shape is a 

spindle-like. When both effects are comparable, the membrane exhibits top-bottom asymmetric 

patterns, as illustrated in the right side of the triangle. We can conclude that the morphology phase 

diagram can allow us to determine what characteristic pattern will appear on the surface membrane 

based on the interaction of the three primitive shapes (n-fold, spindle-like shape, and ellipse). We 

can also gainfully compare the fundamental topographies of closed membrane with the three 

primitive surface wrinkling of planar liquid crystal membranes, where the n-fold, spindle-like, and 

ellipse shapes of the closed membrane are identical to folding, creasing, and flat patterns observed 

in the planar liquid crystal elastic membrane, respectively [49].  
 

 
Figure 5-10. The ternary phase diagram (kc, W, γ0) of the membrane surface morphologies. 

Surface pattern selection mostly depends on anchoring strength W and bending elasticity kc. The 

n-fold pattern appears at high bending elasticity and weak anchoring, the spindle-like shape occurs 

at strong anchoring and low bending elasticity. The top-bottom asymmetric pattern is observed 

where both bending elasticity and anchoring strength are comparable.  
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 5.6 Pattern formation mechanism, pressure-curvature relations 

To assign real forces behind shape selection we examine all the acting pressures across the 

surface. Rearranging Eq. 5.19 gives the four scaled surface pressures as function of the scaled 

membrane arc-length, 0/s s R : 
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(5.20) 

The bending elastic pressure, Pbending is the resistant term for surface wrinkling (increasing energy 

with increasing area), while the Herring’s capillary pressure, Protation is the driving force that 

undulates the membrane interface. To identify the mechanisms behind LC-elastic wrinkling, the 

four system scaled pressures: Pbending, Pdilation, Protation, and Pjump are illustrated as function of the 

scaled membrane arc-length, s/L for four membrane morphologies with different dimensionless 

numbers, (√𝑊𝐿2

𝑘𝑐
⁄

2
) (see Figure 5-11).  The figure demonstrates that for the stomatocyte, 

umbilicate, and undulate morphologies, the scaled bending pressure and the scaled dilation 

pressure are quite out-of-phase while the rotation pressure changes its phase along the membrane 

arc-length, such that in some parts Protation and Pbending are in-phase while Protation and Pdilation are out-

of-phase, and in some parts, Protation and Pdilation are in-phase while Protation and Pbending are out-of-

phase. The stress jump pressure is always negative, and as the dimensionless number τ increases, 

its contribution to the surface wrinkling becomes insignificant. The key observation from these 

pressure profiles is that in the middle of the membrane arc-length (s/L=0.5) dilation and rotation 

pressures are always in-phase, and bending pressure are always out-of-phase with the dilation and 

rotation pressures. For the spindle-like shape morphology (Figure 5-11d), where the bending 

pressure is close to zero, the dilation pressure and rotation pressure is always out-of-phase. Figure 

5-11 also illustrates that all surface capillary pressures grow as the dimensionless number τ 

increases, while the stress jump remains constant. Increasing the dimensionless number τ changes 

the degree of asymmetry between the top and bottom of the membrane (where the strong surface 

anchoring, top-bottom asymmetric membrane shapes emerge, and the surface energy increases by 

increasing the surface area) while for the spindle-like morphology, the wrinkles disappear and the 

membrane becomes symmetric. 



138 

 

Figure 5-11. The scaled pressures: Pbending, Pdilation, Protation, and Pjump are illustrated as function of 

the scaled membrane arclength, s/L for four membrane morphologies with the different 

dimensionless numbers, (a) 𝜏 = 14.27, (b) 𝜏 = 38.46, (c) 𝜏 = 110.85, and (d) 𝜏 = 500. 
 

5.7 Conclusions 

In this chapter, we have presented a physical model based on the elasto-capillary shape equations 

to study the surface pattern formation in closed liquid crystal elastic membranes. Using the 

presented model, we can obtain well-defined families of membrane morphologies. Besides, we 

showed that the complex morphologies that emerge in numerous biological membranes can be 

systematically explored by the mechanism that couples liquid crystal orientational order and 

membrane elasticity. The results show that when both liquid crystal anisotropy and membrane 

elasticity contribute in the membrane deformation, the anchoring strength promotes shape 

anisotropy and top-to-bottom asymmetry while membrane elasticity promotes symmetric shapes. 

We presented a general morphological phase diagram of the membrane surface patterns, in which 

we classify two characteristic regimes of membrane shapes based on whether the liquid crystal 

anisotropy or bending elasticity is dominant. The phase diagrams allow us to determine what 



139 

membrane shape will form based on the interaction of the three primitive shapes (ellipse, spindle-

like shape, and n-fold). A one-to-one mapping of this primitive drop shapes with wrinkling-

creasing-flat shape of open surfaces was established. The complex pressure balances behind shape 

selection was demonstrated. The observation of complex top-bottom asymmetric topographies in 

biological membranes can now be understood in terms of liquid crystal anisotropy and we can 

conclude that numerous surface morphologies observed in living cells might be formed through 

coupling between liquid crystal anisotropy and bending elasticity. All these findings provide a 

foundation to understand the pattern formation in biological cell membranes and open up new 

opportunities to design novel anisotropic soft materials with unique functionalities such as optical 

and wetting.  
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Chapter 6 

6 Conclusions and Contributions to Original Knowledge 

6.1 Conclusions 

The purpose of this thesis is to contribute to the evolving understanding of nano-wrinkling in 

biological liquid crystal surfaces. Understanding the mechanisms through which living systems 

exhibit unique surface undulations and specific morphologies can inspire design and fabrication 

of bio-inspired structural and functional materials. This thesis explored the physics of wrinkling 

formation in cholesteric liquid crystal interfaces as the representative analogues in plant cell wall 

and nematic liquid crystal closed membranes as the representative analogues in living cell 

membranes. A compressive physical model using anisotropic soft matter models was developed 

to create new knowledge and principles for studying the role of liquid crystal anisotropy in the 

formation of surface morphologies. In this thesis, a detailed analysis of periodic 

structure formation and surface morphology evolution in liquid crystalline films and cylindrical 

membranes was performed by formulating and solving the governing nemato-capillary equations. 

By taking advantage of geometry and system material constraints, the key geometric and physical 

parameters that affect the formation of the surface morphologies were identified. Using standard 

order of magnitude analysis, the simple scaling law expressing the origin of surface wrinkling 

length scales is presented. Comprehensive phase diagrams of morphological surface patterns were 

illustrated that enable us to predict the surface patterns and membrane shapes depending on the 

system physical parameters. Moreover, potential biomimetic application of the surface 

ultrastructures was demonstrated. The following subsections highlight the main conclusions of 

each chapter in this thesis. 

6.1.1 Modeling nanostructured free surfaces in plant-based plywoods driven by chiral 

capillarity  

The Cahn-Hoffman capillary vector thermodynamics for curved interfaces was adapted to 

develop a nonlinear nemato-capillarity shape equation for plant-based plywoods surfaces. The 

main mechanisms that operate in chiral capillarity for generating nano-scale surface undulations 

in plant-based plywoods as shown in chiral nematic liquid crystals were elucidated. The essential 

feature of chiral capillarity was identified as the interaction of anisotropy (director n of fibers), 

micron-range chirality (po), helix direction (H) and free surface topography. The results presented 

in this chapter indicate that when the plywood helix is parallel to a flat surface, frustration driven 
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by the unavoidable (due to periodic n) presence of high surface energy drives the surface uncoiling 

of the helix and the periodic tilting of the interface. The interfacial anchoring energy renormalizes 

the isotropic surface tension and promotes the rotation of the interface. The developed capillary 

pressure for chiral interfaces contains three main contributions: Laplace pressure (area dilation), 

Herrings pressure (area rotation), and director orientation gradients pressure. The role of the 

capillary pressure contributions was illuminated and the influence of chirality and surface 

anchoring was characterized. Herring’s pressure forms the basis of anisotropic crystal 

morphologies, and depends only on curvature. The director orientation pressure was identified as 

the fundamental driving force that wrinkles the interface with a wavelength that reflects the 

periodicity of the director filed. It is shown that the director orientation vanishes for a planar 

surface with a uniform tangential helix vector and results in a flat surface. The resulting chiral 

capillary equation admits stable spatially periodic solutions describing surface wrinkling, where 

the amplitude is in the order of few nms and the wave-length is in order of µms. The ratio of 

amplitude/period of the chirality-driven surface wrinkling was estimated by a scaling law that 

expresses the ratio as a linear function of the ratio of anchoring strength to isotropic surface 

tension. The scaling law was validated with experimental values available in the literature for 

surface undulations observed in chiral nematic liquid crystals and biological plywoods. Diffraction 

gratings generated by chiral capillarity can be used for the characterization of plant-based 

plywoods and for Nature-inspired optical devices. Since the plywood pitch is sensitive to 

temperature, solvents, pH, and external fields, new functional material surfaces that operate 

through the chiral capillarity mechanism can be designed and fabricated. 

6.1.2 Modeling nano-wrinkling of chiral surfaces in response to humidity: structure and 

diffraction optics 

In this chapter, the formation of free surface nanostructures in plant-based plywoods with water-

induced varying pitch was investigated using a non-linear nemato-capillarity shape equation. 

The generalized Laplace equation based on the Cahn-Hoffman capillarity vector formalism 

was formulated and used as an efficient tool to analyse nano-scale surface reliefs in plant-

based plywoods with water-driven varying helical pitch through interaction of anisotropic 

interfacial tension and chirality changes through hydration. The role of four capillary 

pressure contributions including surface area change, surface area rotation, director 

gradient curvature, and bulk stress jump was characterized. The influence of the varying 
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helical pitch, the elasto-capillary length scale, and the surface anchoring strength on the 

surface wrinkling profile was characterized. Consistent with the scaling law presented in 

chapter 2 for the plywood structure with fixed pitch, it is shown that the spatially-varying 

surface profile amplitude is mostly a function of the anchoring strength and the water-induced 

helix pitch gradient. The optical properties of the plant-based plywood free surface 

nanostructure with water-induced varying pitch was investigated and compared with the plywood 

free surface nanostructure with constant pitch. The results showed that the surface structure 

with non-uniform pitch distribution, where the pitch length changes in different regions, 

reflects normal incident light with a bandwidth wider than the constant pitch surface 

structure. The reflection peak of the surface nanostructure can be altered through the change 

in the humidity level based on the plywood helix pitch expansion. The color transition is 

attributed to the swelling and shrinking of the multi-layered plant cell wall plywood, which 

cause the helicoidal pitch to increase, thereby leading to a red shift in the iridescence. Plant-

based cholesteric liquid crystals are of interest because their optical response can be 

controlled by self-assembly and their colorimetric humidity sensing can reduce the sensor 

cost. The potential biosensors can respond to different ranges of relative humidity depending 

on the amplitude and wavelength of the grating structure. All these findings provide a foundation 

to understand structural color phenomena in Nature and for the design of optical sensor devices. 

6.1.3 Multiple-wavelength surface patterns in models of elastic biological chiral liquid crystal 

membranes 

A novel model that describes surface pattern formation in elastic liquid crystal membranes was 

formulated based on the integration of liquid crystal and membrane physics. The physical model 

combines the liquid crystal anisotropy of biological materials, the bending elasticity of surfactant-

like biomolecules, and the substrate chirality. In the absence of liquid crystal anisotropy, the model 

converged to the classical elastic membrane, and in the absence of surface bending elasticity, the 

model converged to the liquid crystal interface model presented in chapter 2. The system length 

scales and key dimensionless numbers that control the surface morphogenesis are identified. A 

comprehensive morphological phase diagram of the surface patterns for a helicoidal plywood with 

a constant pitch was presented that enable us to determine what characteristic pattern will appear 

on the surface based on the interaction of the three primitive shapes (folding, creasing, and flat). 

Two main surface patterns, single wavelength and multiple wavelengths were classified. The 
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single wavelength patterns were located at the limiting cases of zero anchoring/zero bending 

elasticity. It is shown that in the absence of anchoring the surface patterns correspond to the 

classical compression-induced buckling of an elastic membrane. In the absence of bending 

elasticity, the surface patterns correspond to the chirality-driven surface wrinkling. When the 

effects of liquid crystal anchoring and bending elasticity are comparable, the surface profile shows 

a rich variety of multi-scale complex patterns, such as spatial period-doubling, period-tripling, and 

quasi-periodicity. The presented phase diagram illuminates a natural setting for the creation and 

control of complex surface patterns through the combination of membrane elasticity and 

orientation gradients. Furthermore, the chiral liquid crystal-membrane model was gainfully 

compared with a driven pendulum where the angular velocity of the pendulum is identical to the 

curvature of the membrane. The pendulum analogy demonstrates that the surface pattern selection 

depends on the system winding number, or ratio between the number of times the pendulum 

trajectory rotates around the small cross section, and the large circumference of a torus. Using the 

analogy, the surface patterns were portrayed in terms of the winding number and the liquid crystal 

anchoring, and the wrinkling mode was characterized by the dynamic limit cycles. In this chapter, 

we concluded that the observation of complex surface patterns in biological membranes and living 

tissues can be understood in terms of liquid crystal anisotropy. The coupling between the liquid 

crystal chirality, surface bending elasticity and the curvature of the membranes is fundamental for 

developing advanced multi-functional materials such as biosensors and actuators.  

6.1.4 Cylindrical shapes of nematic liquid crystal membranes: a model for 2D anisotropic 

biological cells 

In this study, a physical model based on the elasto-capillary shape equation that describes the 

surface deformation in closed nematic liquid crystal elastic membranes was derived and solved. It 

is assumed that the nematic liquid crystal membrane has a relatively weak homeotropic anchoring 

where the radius of the membrane is always significantly less than the extrapolation length scale, 

resulting in homogenous internal director field. Using the presented model, the possible families 

of complex membrane morphologies were obtained. It is shown that the complex morphologies 

that emerge in numerous biological membranes can be systematically explored by the mechanism 

that couples liquid crystal orientational order and membrane elasticity. The results showed that 

when both liquid crystal anisotropy and membrane elasticity contribute in the membrane 

deformation, the anchoring strength promotes shape anisotropy and top-to-bottom asymmetry 
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while membrane elasticity promotes symmetric shapes. The role of the system physical parameters 

on the surface morphologies was investigated, and the three key dimensionless numbers that 

control the surface morphogenesis were introduced. A general morphological phase diagram of 

the membrane surface patterns in the ternary parametric space (bending elasticity, anchoring, 

surface tension) was illustrated, in which two characteristic regimes of membrane shapes based on 

whether the liquid crystal anisotropy or bending elasticity is dominant were classified. The phase 

diagram enables us to determine what membrane shape will form based on the interaction of the 

three primitive shapes (ellipse, spindle-like shape, and n-fold). Furthermore, to elucidate the 

mechanisms that drive surface deformations, the complex pressure balances behind shape selection 

was demonstrated. In this chapter, we concluded that the observation of complex top-bottom 

asymmetric topographies in biological membranes can be understood in terms of liquid crystal 

anisotropy and the numerous surface morphologies observed in living cells might be formed 

through coupling between liquid crystal anisotropy and bending elasticity. The predictions of the 

model contribute the current effort to better understand the membrane topologies in living soft 

matters and synthetic phospholipids nanostructures.  

6.2 Contributions to original knowledge 

A summary of the original contributions to knowledge resulting from this thesis work are:  

(1)  A comprehensive nonlinear nemato-capillarity shape equation that reflects the membrane 

curvature-fiber order contributions is developed and the main mechanisms driving nano-scale 

surface undulations in chiral nematic liquid crystals as shown in plant-based plywoods are 

described. 

(2) The possible surface profiles in capillary instabilities of plant-based plywoods are analyzed by 

solving the governing nemato-capillary equations. A theoritical scaling law expressing the explicit 

relation between the surface profile amplitude and the model parameters is presented and validated 

with a number of experimental values available in literature for surface undulations observed in 

chiral nematic liquid crystals and biological plywoods. 

(3) The role of humidity in deforming the surface undulations through the interaction of anisotropic 

interfacial tension, swelling through hydration, and capillarity at free surfaces is establsihed. A 

scaling law for the chirality-humidity driven surface wrinkling is proposed that derives the 

explicit relations between the undulations’ amplitude as a function of the anchoring strength and 
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the spatially varying pitch. 

 (4) The optical properties of the surface wrinkling are explored, and a potential biosensor that 

can respond to different ranges of relative humidity depending on the the reflection peak of the 

surface nanostructure is suggested. The potential biosensor is of interest because its optical 

response can be controlled by self-assembly and its colorimetric humidity sensing can 

reduce the sensor cost. 

(5) A novel physical model that can describe more complex real surfaces such as creasing, folding, 

and period-doubling is developed. The formation of complex surface patterns in biological 

membranes and living tissues is described through interaction of liquid crystal anisotropy of 

biological materials and bending elasticity of surfactant-like biomolecules. 

(6) The elasto-capillary model is extended to cylindrical membranes. The effect of liquid crystal 

anisotropy in the formation of complex top-bottom asymmetric complex topographies observed in 

biological and synthetic closed membranes is explored. The main mechanism that drives the 

formation of complex cylindrical shapes is demonstrated. The morphology formation mechanism 

developed for closed nematic liquid crystal membranes has a remarkably wide range of biological 

and biomimetic relevance and biomedical applications.  

 (7) A new paradigm for characterizing the morphological patterns in biological and synthetic 

closed membranes is established and a natural setting for the creation and control of the emerging 

complex patterns is elucidated. 

 

6.3 Recommendations for future work 

Future research can continue in various directions based on the assumptions used in this thesis, 

the expansions and interests that have come about during the process of completion of this work 

are as follows: 

• The 2D nemato-capillary model for liquid crystal membranes can be extended into a 3D model.  

• The rule of water gradient presence across the membrane on formation of the complex cylindrical 

morphologies can be investigated. An energy density can be introduced that includes a chemical 

potential energy as a function of the water concentration. The water diffusion might be coupled to 

describe the rate of water absorption into the membrane. 
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• One multi-functionality example of biological membranes is flexoelectricity through coupling 

bending curvature and electric fields. The effect of flexoelectricity on formation of the complex 

cylindrical morphologies can be explored. 
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Appendix A: Cahn-Hoffman capillarity vector thermodynamics for CLC interfaces 

The purpose of this Appendix is to derive the Cahn-Hoffman capillarity vector 

formulations for CLC interfaces. The nematic capillarity vector is defined by the gradient 

of the scalar field rγ [1]: 

( , ) = [rγ( )]ξ n k k  (A.1) 

where r is the magnitude of surface position vector r: r=rk. Noting thatd(rγ) = ∇(rγ). d𝐫, 

the gradient of rγ yield: 

s

r dγ dγ
( , ) = [rγ( )] = γ + r = γ + I .

d d





ξ n k k k

r r k
 

(A.2) 

Thus the normal and tangential components of capilarity vector for CLC interfaces are: 

|| s s ||

( , ) = γ

dγ dγ
( , ) = . = ( . ) = γ'

d d( )

ξ n k k

ξ n k I I n n
k n.k

 

(A.3) 

where 𝛾′ =
𝑑𝛾

𝑑(𝒏.𝒌)
  and n//=Is.n is the tangential component of the surface director field. 

Noticing that Is is the 2×2 unit surface dyadic: Is=I-kk where I is the3×3 volumetric unit 

tensor, we have:  

|| s

dγ dγ dγ dγ
( , ) = I . = ( - ). = . - .

d d d d
ξ n k I kk I kk

k k k k
 

(A.4) 

Using the Rapini-Papoular surface free energy γ = γ0 +
W

2
(𝐧. 𝐤)2 [2], we get: 

dγ
= W( )

d
n.k n

k
 

(A.5) 

Substituting Eq. A.5, we obtain the tangential component of the capillarity vector: 

2

||( , ) = W( )n - W( ) k = W( )( - ( ) )ξ n k n.k n.k n.k n n.k k  (A.6) 

Hence the total capillary pressure pc is defined by pc = ∇s. ξ  , the divergence of the capillary vector 

follows the rule [3]: 

     || ||

||p = × = × =  :  + : + :c s s s s s

area size change area rotation director curvature




 
    

  

 k k n

k k n

ξ ξξ
ξ ξ ξ  

(A.7) 

 

Using Eq. A.3, the contribution from the normal component ξ , the area size change contribution 

becomes: 
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s ss: = γI : = -γ




 
k

ξ
k k  (A.8) 

where
s  k tt . According to Eq. A.6, the area rotation contribution becomes: 

   || 2 2

s: = -W ( . ) - ( )




 
k

ξ
k n t n.k  

(A.9) 

The director curvature contribution is found using Eq. A.6, to obtain: 

   ||
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Appendix B: Director curvature pressure 

The purpose of this Appendix is: (i) to derive a general expression of the director curvature 

pressure pN, (ii) to determine generic sufficient condtions under which  pN=0, and (iii) to use (i) 

and (ii) to show that for a planar surface with a uniform tangential helix vector then pN=0 and no 

surface wrinkling can be observed as predcited by [4] using other approaches. 

B.1 General expression for the director curvature pressure (pN) 
 

 Using Eq. 2.8, the director curvature contribution to the capillary pressure, pN appears 

due to orientation gradients: 
 

||

N sp :
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 


ξ
n

n
 

  N s sp W ( ) :     k n n kn n  

(B.1 a,b) 

 

To analyze this expression further we need the covariant surface gradient of the director field
 s n  

(for details see ref.[5]): 
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(B.2) 

where a semicolon denotes covariant differentiation, aα are the two tangential base vectors, aα are 

the two reciprocal base vectors, the director field is 𝐧 = 𝑛𝛽 a
𝛽 + 𝑛⊥𝐤 , and the curvature tensor b 

is:  

s s s s
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where R is the position vector given parametrically by  𝐑 = 𝐑(𝑢𝛼), 𝛼 = 1, 2 and uα are the surface 

coordinates. The average curvature H and the Gaussian or total curvature κ are: 
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where c1 and c2 are the radius of curvature and εs is the dyadic surface unit alternator: 

s s s    
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The surface director gradient 
s n  can then be decomposed into the 2x2 symmetric surface   

gradient tensor A, the 2x2 antisymmetric surface gradient tensor W, and the 2x1 surface gradient 

tensor R: 

s n A + W + R  (B.7a) 
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In addition, the surface divergence of the director is found from Eq. B.2 to be: 

 s , ; s ;n b n : n 2Hn  

             n a n a a I A  (B.8) 

Replacing Eq. B.7 and Eq. B.8 into Eq. B.1b) we find a general and detailed expression for the 

director pressure in terms of director component (𝑛𝛼 , 𝑛𝛼:𝛼, 𝑛⊥,𝑛∥) and curvatures (H, bα,β): 

        N s ,;
p W : W n 2n H n n b n n

      
       n.k I A n R k  

(B.9) 

B.2 Vanishing director curvature pressure (pN=0) 
 

Here we analyze some likely cases of pN=0 for: (a) 2D surfaces and then (b) 1D planar lines.  

(a)  For flat surfaces, Eq. B.9 it simplifies to: 

    N ,;
p W n n n   

  b = 0 n a  (B.10) 

If the director field is homeotropic, n(α;α) = 𝐧. 𝐚𝛂 = 0 and pN=0. If the director is tangential 

,n n 0     and pN=0. 

(b)  For 1D planar lines, the director pressure is: 

   NP W t n k. W t.
s s

    
     

    

n n
n.k  

(B.11) 

where t is the unit tangent, k the unit normal and s the arc-length. For homeotropic and planar 

straight lines we find pN=0. For straight lines with line gradients, using rectangular (x,y,z) 
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coordinates with unit vectors (𝛅x = t, 𝛅y = 𝐤, 𝛅z) and a director filed n=nx𝛅x + ny𝛅y + nz𝛅z, the 

pressure equation (Eq. B.11) becomes: 

 N y x,x x y,xp W n n n n   (B.12) 

which vanishes when nxny = 𝐂 = constant. Hence under planar or homeotropic orientation there 

is no director pressure. Using the unit length of the director n.n=1, no director pressure is generated 

for director field satisfying: 

4 2 2 2 2

y z y yn n n n c 0     (B.13) 

B.3 Proof of zero director curvature pressure for planar surfaces (H=0) with tangential 

cholesteric helix (h=t) 

 

 When the cholesteric helix is tangential to the straight line then 𝐬 = x, 𝐭 = 𝛅x =

constant,  𝛅x. 𝐧 = 0,  𝛅x. (
dn

dx
) = 0.  

 

Using Eq. B.10 we find: 

 

 N y x x y

0
0

d d
p =W ( )   0

dx dx




 
    
             

    
 

n n
n n  

(B.14) 

 

No director pressure is generated because the director gradients and the director components have 

no projection on the x-axis. 
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Appendix C: Derivation of shape and normal angle equations 

The purpose of this Appendix is to formulate the capillay shape equation for the splay-

bend director.  

The geometry of the free interface is characterized by a cylindrical surface such that its curvature 

in the z-direction is zero and focus on the projection x(s) in the x-y plane (Figure C-1). The unit 

tangent t and the unit normal N to the surface are given by: 

2

2

(s) (s) (s)
(s) ;   (s)

s s s

  
   

  

x t x
t k  

(C.1) 

Where κ is the curvature, quantifying the deviation from linearity.  

 

 

Figure C-1. Geometry of the free surface, unit normal k, normal angle φ, unit tangent t, 

and (x,y,z) coordinate system.  

 

Since t is a unit vector it can be expressed with the normal angle: 𝐭(𝐱) =

(sin φ(x), −cosφ(x), 0). In the normal angle parameterization, the curvature is: 𝛋 =  
dφ

ds
. Using 

the definition: 
𝑑𝑥

𝑑𝑠
= sin 𝜑, the director curvature pressure is 

𝑑𝒏

𝑑𝑠
=

d𝐧

dx

dx

ds
=

d𝐧

dx
sin φ, and 𝛋 =

 
dφ

dx
sin φ. By substituting κ and  

𝑑𝑛

𝑑𝑠
 in eqn (5), the shape equation becomes: 

 

   

 

2 2c

o

p B d
1 - +B sin

2 dx

d d
     - B( ) B sin

dx dx

   
    

   

    
         

    

n.k n t

n n
k n t n t k

 

(C.2) 

 

Setting pc=0 and using the splay-bend director distribution n(x): 𝐧(x) = (cos qx, sin qx, 0) 

and surface unit normal k(x): k(x)= (cos φ(x), sinφ(x), 0), gives the governing nonlinear 

first order ODE for the normal angle φ(x, B, q): 
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2 2

0 0 0

2 2

0 0

q Bsin( ){sin ( q x) cos ( q x)}d

Bdx
sin( ){1 cos ( q x) Bsin ( q x)}

2

   


    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(C.3) 
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Appendix D: Airy function 

The Airy functions of the first and second kind, Ai and Bi which commonly appear in physics, 

especially in optics, quantum mechanics are the independent solutions to the homogenous second 

order differential equation, '' 0 y xy [6]: 

3

0

1
( ) cos( )

3



 
z

Ai x xz dz


 
 

(D.1) 

3
3

/3

0

1
( ) [ sin( )]

3



  
z xz z

Bi x e xz dz


 
 

(D.2) 

 

The Airy function Gi is the independent solution to the inhomogeneous second order differential 

equation, 1''   y xy  [6]: 

3

0

1
( ) sin( )

3



 
t

Gi x xt dt


 
 

(D.3) 

The function can be defined based on the homogenous Airy functions: 

0

( ) ( ) ( ) ( ) ( )



  
x

x

Gi x Bi x Ai t dt Ai x Bi t dt   (D.4) 

The general solution can be written as: 

( ) ( ) ( ) ( )  y x aAi x bBi x Gi x   (D.5) 

The shape equation (Eq. 5.19) in terms of curvature can be compared with the second Painleve 

equation, 
3''   y zy by a : 

2 2 30

( )

1
'' [ (cos ( )) (sin ( ))]

2 2


      

c c c c

af s

W W p

k k k k




        

 (D.6) 

The second Painleve equation can be considered as a non-linear generalization of the Airy equation. 

For the case a=1/2, the solution to the equation can expressed with the Airy function. The function 

K(x,y) is introduced as the solution to homogenous Painleve equation, 
3'' 2 y zy y [6]: 

2

( , ) ( ) ( , ) ( ) ( )
2 4 2 2

 
  

   
x x

x y r z s s y
K x y rAi K x z Ai Ai dzds   (D.7) 
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where y x , 1  , and r is a parameter. Under the condition that z , W behaves like the 

Airy function: 

( ; ) ( )y z r rAi z   (D.8) 

Under the condition that 0ck , the shape equation (Eq. 5.26) behaves like an inhomogeneous 

Airy function, ''  y zy a . 

Figure D-1 and Figure D-2 clearly show the comparison between the dimensionless curvature of 

the liquid crystal membranes and the Airy transformations that can be defined as a family of 

functions: 

1 2( ) ( ),    
c cs

s Ai 
  

  (D.9) 

C1 and C2 are coefficient to be determined. We can readily realize that Airy functions are a good 

approximation for the membrane curvature.  

 

 
Figure D-1. Comparison between scaled curvature of a liquid crystal membrane (stomatocyte 

morphology) and the Airy function. 
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Figure D-2. The comparison between scaled curvature of a liquid crystal membrane (undulate 

morphology) and Airy function. 
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