
1+1 National Ubrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellinglon Street 395. rue Wellington
Ottawa, Ontario Ottawa (Ontario)
K1A ON4 K1A ON4

NOTICE AVIS

The quality of this microform !s
heavily dependent upon the
quality of the original thesis
submi~ed for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Sorne pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C·30, and
subsequent amendments.

am d,·,, a a

La quaiité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C·30, et
ses amendements subséquents.

•

•

•

Computational Geometry in Two and a Ralf .

Dimensions

Binhai Zhu

School of Computer Science

McGill University

Montreal, Canada

April 1994

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Copyright @1994 by Binhai Zhu

.+. National Ubrary
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliographie Services Branch des services bibliographiques

395 Wellinglon Street J95. rue Wellington
Ottawa. Ontario Onawa (Ontario)
K1AON4 K1AON4

TIIE AUTIIOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSJ.VE
LICENCE ALLOWING TIIE NATIONAL
LmRARY OF CANADA TO
REPRODUCE, LOAN, DlSTRmUTE OR
SELL COPIES OF mS/HER TIIESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING TmS TIIESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTIIOR RETAINS OWNERSmP
OF TIIE COPYRIGHT IN mSIHER
TIIESIS. NEITIIER TIIE TIIESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTIIERWISE
REPRODUCED WITHOUT mSIHER
PERMISSION.

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETIANT A LA BmLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
TIIESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METIRE DES EXEMPLAIRES DE
CETTE TIIESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA TIIESE. NI LA TIIESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE­
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-00150-4

Canad~

•

•

•

Abstract

ln this thesis, we study computational geometty in two and a half dimensions. These

so-called polyhedral terrains have many applications in practice: computer graph­

ics, navigation and motion planning, CAD/CAM military surveillance, forest fire

monitoring, etc.

We investigate a series of fundamental problems regarding polyhedral terrains

and present efficient algorithms to solve them. We propose an O(n) time algorithm

to decide whether or not a geometric object is a terrain and an O(nlogn) time

algorithm to compute the shortest watchtower of a polyhedral terrain. We study the

terrain guarding problem, obtain tight bounds for vertex and edge guards and O(n)

algorithms to place these guards. We study the tetrahedralization of certain simple

and non-simple polyhedra (which include sorne special classes of solid terrains) and

present efficient algorithms to tetrahedralize them. We also investigate the problem

of computing the a-hull of a ter,ain. Finally, we present efficient algorithms for the

intersection detection and computation of Manhattan terrains.

i

•
Résumé

Dans cette thèse, nous étudions la géométrie algorithmique en 2.5 dimensions. Ces

terrains polyhédraux ont plusieurs applications en pratique: le graphisme assisté par

ordinateur, ia navigation et la planification de mouvement, CAD/CAM, la surveil­

lance militaire, la monitorisation des feux de forêt, etc. Nous investigons une série de

problèmes fondamentaux concernant les terrains polyllédraux et nous présentons des

algorithmes efficaces pour les résoudre. Nous proposons un algorithme de temps O(n)

pour décider si un objet géométrique est un terrain et un algorithme de temps O(n

log n) pour calculer la tour de guêt la plus courte pour un terrain polyhédral. Nous

étudions le problème de garder un terrain, obtenons des bornes justes pour les gardes

de sommets et d'arêtes et des algorithmes de temps O(n) pour placer ces gardes.

Nous étudions la tétrahédralization de certains polyhèdres simples et non-simples

(qui incluent certaines classes spéciales de terrains solides) et nous présentons des al-

• gorithmes efficaces pour les tétrahédralizer. Nous investigons également le problème

de calculer la coquille-a d'un terrain. Finalement, nous présentons des algorithmes'

efficaces pour détecter et calculer les intersections de terrains de type Manhattan.

•
ii

•

•

•

Statement of Originality

All the results, except for basic definitions and the review of certalll previous results

(which will be indicated in the text), should be considered as original contributions

to knowledge. Section 2.1 is a joint work with Zhenyu Li; Section 2.2 is a joint work

with Boudewjin Asberg, Gregoria Blanco, Prosenjit Bose, Jesus Garcia-Lopez, Mark

Overmars, Godfried Toussaint and Gordon Wilfong; Chapter 4 is joint work with

Godfricd Toussaint, Clark Verbruggè and Caoan Wang; Section 6.2 is a joint work

with Prosenjit Bose, Thomas Shermer anù Godfried Toussaint. All the other results

are independently obtained by the author.

Hi

•
Acknowledgments

First of a11, 1 wish to express my gratitude to my supervisor, Godfried Toussaint,

for his advice, encouragement, criticism, support, and most of all, for introducing

me to this topic. 1 also wish to thank all the other professors in the computational

geometry group: David Avis, Luc Devroye, Hcssam ElGindy and Sue Whitesides,

who have taught me a lot during the last three years.

1 would also like to thank all my officemates for numerous conversations while

the thesis was in progress: Jit Bose, Xiaowell Chang, David Eu, Eric Guevremont,

and Elsa Omana-Pulido. 1have also benefited from talking with Marc van Kreveld,

which triggered the work of Chapter 7. Thank you, Marc! Special thanks are due

to Eric Guevremont for helping me to translate the abstract into French and to Pal!l

Kruszewski for his careful reading and com111ents of an early version of this thesis.

Many other friends outside of McGill should receive sorne special thanks: Zhenyu

• Li, Jim Ruppert, Tom Shermer, T.S. Tan, Takeshi Tokuyama and Caoan Wang.

1 would also like to thank my supervisor at York University, Andy Mirzaian, who

introduced me to the field of computational geometry and taught me a lot about how

to do research seriously and elegantly.

1thank all my other friends for making my three-year stay in Montreal an exciting,

unforgetable one. Finally l would like to thank my parents and my uncle for their

constant love and encouragement.

•
iv

•

Contents

•

1 Introduction

2 Testing if a polyhedral object is a terrain

2.1 Testing if a polyhedral surface is a polyhedral terrain

2.2 Testing if a simple polyhedron is a solid terrain

3 The a-hull and related prob1ems of a terrain

3.1 Preliminary , .

3.2 Computing the exact and approximate a-hulls of a terrain

4 Tetrahedralizing special classes of soUd terrains

4.1 Tetrahedralizing simple and non-simple slabs .

4.2 Tetrahedralizing special classes of solid Manhattan terrains

4.3 Tetrahedralizing the union of convex polyhedra

4.4 Sorne remarks

1

7

7

9

17

18

21

28

32

38

49
56

5 The shortest watchtower and related problems 58

5.1 Introduction............................... 58

5.2 Computing the shortest watchtower of a terrain in O(nlogn) time . 59

5.2.1 Preliminary ,............ 59

5.2.2 The hierarchical representation of a convex polyhedron and its

extension 60

5.3 Computing the shortest vertical distance between two convex terrains 70

• 5.4 Sorne remarks .. 76

v

•

•

•

6 Guarding polyhedral terrains 77

6.1 Minimum edge guarding a polyhedral terrain is NP-complete. 78

6.2 Guarding polyhedral terrains. '. . 34

6.2.1 Guards on a terrain. 84

6.2.2 Algorithms for placing terrain guards 89

6.2.3 Conclusions.............. 91

7 Intersection detection and computation for Manhattan terrains 93

7.1 Preliminary . 95

7.2 Detecting the intersection of two Manhattan terrains . 98

7.3 Computing the intersection of two Manhattan terrains 105

7.4 Sorne remarks . 107

8 Conclusions 108

vi

•

List of Figures

2.1 Stereolithography............................. 10

2.2 Objects can and can not be manufactured by stereolithography. .. 11

2.3 Only a strictly acute face and its adjacent faces cau be valid bases. 13

2.4 A terrain has at most six valid bases. . . . 14

•
3.1 The a-hull of a set of points in the plane..

3.2 An example of three-axis NC-machining. .

3.3 The offsets of edges and faces.

3.4 Computing the mesh of a triangular face..

3.5 II1ustration for the proof of Lemma 3.7..

3.6 II1ustration for the proof of Lemma 3.8..

19

20

22

23

24

26

4.1 Schoenhardt's counterexample. 29

4.2 Bagemihl's counterexample. 29

4.3 A solid terrain can not be tetrahedralized. 30

4.4 A solid terrain can not be tetrahedralized (top view). 31

4.5 Two coincident diagonals in a prism. 33

4.6 Three type-3 prisms share cutting diagona16 a1ternatively. . 35

4.7 Tetrahedralizing a slab (top view). 35

4.8 A type-l box. 38

4.9 A type-2 box. 39

4.10 II1ustration for the proof of Theorem 4.4. 41

4.11 Illustration for the proof of Theorem 4.5. 42

• 4.12 A tetrahedralization of CH(P UQ) - P - Q can have 0(712) tetrahedra. 44

vii

•
4.13 The cap of a peQ vertex. 45

4.14 A U(2) polyhedron and the illustration for a convex cap. 49

4.15 An interlocked U(3) polyhedron.. 50

4.16 Illustration for the computation of a crown. 53

4.17 Illustration for the proof of Theorem 4.14. 54

4.18 The Schoenhardt polyhedron can he decomposed into 4 disjoint convex

polyhedra. .. 54

4.19 The Schoenhardt polyhedron can he decomposed into 4 disjoint convex

polyhedra (top view). 56

5.1

5.2

5.3

5.4

• 5.5

6.1

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

7.5

•

The shortest watchtower of a po!yhedral terrain. . 59

Illustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 1). 63

Illustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 2). 64

The topological relationship hetween two convex polyhedra. 72

Illustration for the proof of Lemma 5.10. 74

A view of the pits in a row. 80

The pit can only he guarded by the edges on its rim (or inside it). 81

A terrain for the formula F = (Xl VX2 Vxa) A (Xl VX2 Vxa VX4) 82

A seven-vertex terrain. 85

A six-vertex terrain which needs two edge guards. 88

A segment tree of four line segments. 97

A Manhattan terrain and its two-Iayer segment tree. 99

An array A and its Symmetric Order Heap. 101

The pointers used for fractional cascading. 103

Computing the intersections of a line with a Manhattan terrain. 105

viii

•

Chapter 1

Introduction

After more than two decades of development, computational geometry has reached a

new, sophisticated level. Whereas most of the basic problems in two dimensions (2D)

have already found satisfactory solutions, many of the problems in three dimensions

• (3D) remain to be solved efficiently. Progress on solving 3D problems is relatively

slow, mainly because these problems are typically much harder both computationally

and combinatorially than their 2D counterparts. For example, although the planar

point location problem has optimal solutions with O(log n) query time after O(n)

time and space preprocessing [Kir83, EGS86, Col86, ST86], the best result known

for the 3D counterpart has only O(lolf n) query time after O(n lolf n) time and space

preprocessing [PT92].

In this thesis, we will study computational geometry in two and a half dimensions

(2.5D), Le., geometric problems regarding the so-called polyhedral terrains. First,

since a polyhedral terrain is a special geometric object in 3D, efficient solutions on

polyhedral terrains might shed sorne light on the diflicult problems in 3D and the

computational difficulty (intractability) of geometric problems regarding polyhedral

terrains implies the computational difliculty of the corresponding problems in 3D.

Second, polyhedral terrains themselves have many applications in practice: computer

graphies, navigation and motion planning, military surveillance, forest tire monitor­

ing, locations of radio transmission stations, etc. They are the main objects studied

• in the fields of geographical information systems (GIS) [Bur86] and spatial databases

1

•

•

•

[GS91, A093J. Unlike GIS and spatial database researchers, who are mainly con­

cerned with the practical performance of their algorithms, as geometers we study

polyhedral terrains in a more formaI manner by giving efficient algorithms and/or

proving the computational difficulty (intractability) for the terrain-related problems.

Of course, the ultimate objective is to give better practical algorithms rather than

to obtain only theoretical results. We show that most of the algorithms proposed in

this thesis are practical enough to be implemented efficiently.

We begin by giving the definitions for the geometric objects to be studied in this

thesis.

A polyhedral temlin T (terrain for short) with n vertices is a connected 3D polyhe­

dral surface such that for each point v =(x, y, z) on the surface, z =:F(x, y) for some

linear function :F 1. In other words, any verticalline intersects a terrain at most once

and the orthogonal projection of a terrain on the XY-plane is a (bounded) planar

subdivision. In general, we say a polyhedral surface Sis a terrain along a direction ci
if the intersection of S and any line parallel to ci in 3D is either empty or a point. A

plane H with norm ci is called a projection plane of S. A line segment in 3D is called

rectilinearifit is perpendicular to either the XY-, XZ- or the YZ-plane. A polyhedral

object A is called rectilinear if and only if every edge of A is rectilinear. A Manhattan

temlin M with n vertices is a connected 3D rectilinear polyhedral surface such that

the intersection of any verticalline with M is either empty, a point, or a verticalline

segment. Since a polyhedral terrain (or a Manhattan terrain) is essentially a planar

graph, it can be represented using the Double Connected Edge List (DCEL) [PS85)

data structure. Throughout this thesis, we assume that once a polyhedral terrain (or

a Manhattan terrain) is given, the corresponding DCEL representation is also given.

A solid temlin T 2 is a simple polyhedron such that there exista a face f of T and

the intersection of T with any liDe perpendicular to f is either empty, a point, or a

line segment with one endpoint Iying on f. A solid Manhattan terrain Misa simple

rectilinear polyhedron such that there exists a face f of M and the intersection of M

with any line perpeDdicular to f is either empty, or a line segment with one endpoint

1Hence wby many people tend to cali a polybedra1 terrain a 2.5D geometric object.
2We will use T to denote either a terrain or a solid terrain and we will use M to deDot. either a

Manhattan terrain or a solid Manhattan terrain in tbis thesiB.

2

•
lying on f. We call f a valid base of T (and M).

Since this thesis mostly deals with the complexity of solving geometric problems

it is essential to define the models of computation and to specify the primitive oper­

ations allowed to be executed. We adopt a random access machine (RAM) similar

to that described in [AHU74], but each storage location can hold a single real num­

ber. The primitive operations include: (1) the arithmetic operations (+, -, x, I)j (2)

comparisons between two real numbers «,~, =, f,;:::, »j (3) indirect addressing of

memoryj and (4) k-th toot, trigonometric functions, EXP and LOG. In [PS85] this

model is referred to as the roal RAM.

Throughout this thesis, we assume the reader is familiar with the following basic

notations: 0, n, 0 and e. We also assume the reader is familiar with sorne basic

concepts in computational geometry (for example, convex hull, Voronoi Diagram).

For more information regarding these definitions, the readers may refer to [PS85]

(particularly Chapter 1).

• In Chapter 2 we consider two elementary problems regarding polyhedral terrains.

First, all previous polyhedral terrain research assumes that a polyhedral terrain is

already given. Thus we consider the elementary problem: given a polyhedral surface

in 3D, how fast can one test whether or not it is a polyhedral terrain? We show that

this can be answered in linear time via linear programming. Second, by a non-trivial

extension of the above result we present a linear time algorithm to test whether or

not a given simple polyhedron is a solid terrain. It turns out that a solid terrain is

a geometric object which can be manufactured by stereolithography. Earlier versions

of the above results are partially presented in [LZ93] and [ABB+93] respectively.

ln Chapter 3 we investigate the problem of computing the a-hull, a generalization

of the convex hull of a solid terrain, which is closely related to the problem of manu­

facturing a solid terrain by NC-machining. It turns out that by computing the upper

envelope of a set of surface patches in 3D the a-hull of a solid terrain can be com­

puted deterministically in O(n3) time, and it can be computed using a randomized

algorithm with expected running time of 0(n2+') (for any E > 0). Since in practice

we are not able to produce the a-hull of a terrain with a NC-machine we obtain an

• algorithm to compute an approximate a-hull. The complexity of our algorithm is

3

•
inversely related to the error, defined as the Hausdorff distance between the exact

and approximate a-hulls.

In Chapter 4 we consider the problem of tetrahedralizing certain special classes of

solid terrains. The general problem of deciding whether or not a simple polyhedron

in 3D can be tetrahedralized is known to be NP-complete [RS92). Nevertheless, sorne

special classes of simple and non-simple polyhedra can be tetrahedralized efliciently

[GP88, Ber93]. We show that an arbitrary solid terrain does not always admit a

tetrahedralization. We extend the classes of tetrahedralizable polyhedra, which in­

clude several classes of solid terrains. In particular we show that the following classes

of simple and non-simple polyhedra can always be tetrahedralized: simple slab (with

or without holes), subdivision slab, a box with fixed depth rectilinear holes and a

box with linearly ordered rectangular holes. The first two classes can be considered

as generalized solid terrains, while the latter two classes belong to the class of solid

Manhattan terrains [TVWZ93]. We also discuss the problem of tetrahedralizing the

• class of polyhedra which are the union of k convex polyhedra. We show that for k=2

and 3 the resulting polyhedra can be efliciently tetrahedralized; however, for k ;:: 4,

the polyhedra do not always admit a tetrahedralization.

In Chapter 5 we consider the shortest watchtower and related problems for a

polyhedral terrain. The shortest watchtower is defined to be the shortest vertical

line segment erected on the terrain such that the top of the tower can see the whole

terrain. Sharir gave an O(n loi n) time algorithm for solving this problem and posed

as an open problem the computation ofsuch a watchtower in O(nlogn) time [ShaB8).

By extending the hierarchical representation of a convex polyhedron of Dobkin and

Kirkpatrick [DK85), we solve the above open problem in O(nlogn) time. Such an

extension on the hierarchical representation also extends the previous result regarding

the intersection detection between àline (or line segment) e and a preprocessed convex

polyhedron P. If line e does not intersect P then we can report in logarithmic time

the shortest distance between them along a given direction. In other words, we can

report the shortest distance along the direction at which e and P will collide if either

of them is moved along the fixed direction. Again with this extension, we show that

• the shortest vertical distance between two convex polyhedra can be computed in

4

•

•

•

\incar time. Furthermore, such a data structure also solves the intersection detcction

problem betwcen two convex polyhedra in o(loi n) time after O(n) time and space

preprocessing [Zhu92, Zhu93]. This achieves the same complexity as the best known

algorithms [CoI86, DK90J.

In Chapter 6 we consider the problem of guarding polyhedral terrains, i.e., placing

a set of guards on a terrain such that the whole terrain is collectively covered by these

guards. Cole and Sharir showed that computing the minimum number of vertex

guards to cover the surface of a terrain is NP-complete [CS89]. By modifying their

proof we first show that the problem of finding the minimum number of edge guards

to covcr a terrain is also NP-complete. We show that l~J vertex guards are always

sufficient and sometimes necessary to guard an n-vertex terrain. We also present a

\inear time algorithm for placing l3S" J vertex guards to cover a terrain. W':th respect

to edge guards, Everett and Rivera-Campo showed that l~J edge guards are always

sufficient [ERC92). We show that l (4~tlJ edge guards are sometimes nccessary to

guard the surface of an n-vertex terrain. Finally, we present a \inear time algorithm

for placing l2;J edge guarcls to cover a polyhedral terrain [BSTZ92, BSTZ93].

In Chapter 7 we study the problems of intersection detection and computation of

Manhattan terrains. These problems arise very offten in practice since the surfaces of

many modern buildings can be thought of as Manhattan terrains. We show that after

O(n log n) time and space preprocessing, the intersection of a rectilinear \ine segment

(ray or \ine) with a Manhattan terrain can be detected in O(logn) time. Furthermore,

if no intersection occurs, we can then report the shortest vertical distance between

the rectilinear \ine segment and the Manhattan terrain within the same time bound.

We achieve this by building a two-layer hybrid segment tree with the second layer

as symmetric order heaps (HT84] and applying the fractional cascading technique

[CG86]. With these results, we show that given two Manhattan terrains with a total

of O(Il) vertices, we can either compute the shortest vertical distance between them or

report thcir intersection in O(n log n) time. The genera\ized version of this problem,

computing the shortest vertical distance between two non-intersecting polyhedral

terrains, is more difficult and has been studied recently. A randomized algorithm with

time complcxity O(n4/ 3+') (for any € > 0) is obtained by Chazelle et al. [CEGS89).

5

•

•

•

Finally, we show that given two Manhattan terrains with a total of O(n) vertices, we

can compute their intersection (upper envelope) in O(nlogn + K) time, where K is

the combinatorial complexity of the envelope. The generalized problem of computing

the intersection of two polyhedral terrains is solved with a randomized algorithm with

time O(n4/3+' + K 1/ 3nl+' + Klog2 n) (for any f > 0), where K is the size of output

[PeI93].

In Chapter 8 we conclude the thesis by summarizing the main results and posing

a related set of open problems.

6

•

•

•

Chapter 2

Testing if a polyhedral object is a

terrain

Since we are studying computational geometry in 2.5D, it is not unreasonable to

assume that the input for these problems consists of polyhedral terrains. However,

in many applications we may not know in advance whether or not a given polyhedral

surface is a terrain. Therefore, a question which arises naturally is how fast one

can decide if a given polyhedral surface is a polyhedral terrain. Similarly, given a

simple polyhedron how fast cao one decide if it is a solid terrain? In this chapter we

show that we cao answer both of these two questions in linear time. In Section 2.1

we present a linear time algorithm by linear programming to test whether or not a

polyhedral surface is a terrain. By a non-trivial extension of this algorithm in Section

2.1, in Section 2.2 we present a linear tir:le algorithm to test if a simple polyhedron

is a soUd terrain.

2.1 Testing if a polyhedral surface is a polyhedral

terrain

In recent years there has been much research conducted involving polyhedral terrains

in the areas of geographical information systems (GIS), spatial databases, computer

7

•

•

•

graphics and computational geometry [dFP+86, ShaB8, RS88, CS89, CEGS89, LeeSl),

[PV92, AS93]. Common to all of this research is the assumption that a polyhedral

terrain is given as input. We consider a different problem that asks given a connected

3D polyhedral surface S if there is a projection plane N with norm n =< Xl, X2, Xa >
such that the orthogonal projection of Son N is a planar subdivision. In other words,

does there exist a direction n =< Xl, X2, Xa > such that S is a terrain along n? In 2D

a related problem of testing whether or not a simple polygon is monotone is solved

by Preparata and Supowit [PS8l].

We show how this problem can be formulated as a !inear programming problem.

Let the outer nurm of the plane containing the face fi of S be ni =< ai, b;, Ci >. We

start with the fol1owing result.

Lemma 2.1: A connected polyhedral surface S is a terrain if and only if there exists

n =< Xl, X2, Xa > such that all the dot products of ni • n (= aiXI +biX2 +CiXa) are

greater than zero.

Proof: If S is a terrain then there exists a direction n =< Xi> X2, Xa > such that

any directed !ine 1along this direction intersects S at most once. This immediately

imp!ies that the angles between 1and the norres of the faces of S are less than 'Ir/2,

i.e., all ni • n are greater than zero.

If there exists n=< Xi> X2, Xa > such that for all i, ni •n> 0 then we show that

S must be a terrain along n. If this is not the case, then there exists a directed !ine

1along n such that 1 intersects S at least twice. Without loss of generality, assume

1 intersects S consecutively at faces with norms ni, nk. Since S is connected, one of

the angles between fi and ni, n and nk must be greater than 'Ir/2. This immediately

imp!ies that either ni •n< 0 or nk •n< O. 0

With the above lemma, we can formulate the problem as fol1ows.

Minimize Xl + X2 + Xa (or any objective function of Xi> X2, xa)

subject to

aiXI + biX2 +CiXa > 0
for i =l, ..., m (m is the number offaces of S and m S 2n - 4)•

8

•
By applying Meggido's algorithm [Meg84], which solves a linear programming

problcm in !inear time when the dimension is lixed, we can decidc in !inear time

whethcr or not a feasible solution exists. A feasible solution gives us a projection

plane. This algorithm can actually be extended 1.0 determining whether there exists

a d-hyperplane (d ;:: 1) for which a d-dimensional surface is monotone. Again by

Meggido's algorithm, this extension still runs in !inear time for lixed d. Therefore, we

have the following theorem.

Theorem 2.2: Given a, connected polyhedrlù surface S with n vertices in 3D, one

can dccide in !inear time whether il. is a terrain. If the answer is YES, one can also

give a projection plane for which S is a terrain.

•
II. should be noted that the above algorithm solves in !inear time the problem of

determining if there is a hemisphere which contains a given set of points on a sphere

[DRSOJ. We can apply the above algorithm 1.0 test whether or not an n-vertex simple

polyhcdron is a so!id terrain in O(n2) time. The test can be performed as follows.

Each time we lix a face and test if the remaining polyhedral surface is a terrain with

respect 1.0 this face in !inear time. It is easy 1.0 se~ that this can be done in O(n2)

time. Nevertheless, we show in the uext section that this can actually be done in

O(n) time.

2.2 Testing if a simple polyhedron is a soUd ter-
•raln

Before presenting a !inear time algorithm 1.0 test if a simple polyhedron is a so!id

terrain, we discuss briefly the relationship between a so!id terrain and a CAO/CAM

system developed aue!. patented by 3D Systems of Sylmar, CA that employs a manu­

facturing process called stereolithogmphy (see Figure 2.1).

Stereo!ithography employs a vat of !iquid photocurable plastic, a computer con­

trolled table T on a stand S that can be moved up and down in the vat and a laser

L above the vat that can shine on the surface of the !iquid plastic and can move in a

• horizontal plane. The system works as follows. At the lirst step the table is just below

9

•
Laser

L A ""---r" 1----;>'

•

•

L..--j--,-r;--/T

s

)
Figure 2.1: Stereolithography.

the surface of the plastic and the laser is controlled to move about so that the light

shines on the surface of the plastic and draws the bottom-most cross-section of the

object A being built. When the iaser light contacts the plastic, the plastic solidifies

and so the first cross-section of the object is formed and r(!8ts on the table. At the

next step the table is lowered a small amount to allow liquid to cover the hardened

layer and the laser then draws the next cross-section of the object. The light from

the laser penetrates the liquid just deep enough so that this cross-section is welded to

the lower cross-section produced at the previous step. This process is repreated until

the entire object is formed. The direction given by a normal to the table pointing to

the laser is called the direction of formation for the object.

There are some objects that can be formed only if the direction of formation is

10

•
direction of formation

(a)

s

(b)

L

•

•

Figure 2.2: übjects can and can not be manufactured by stereolithography.

chosen correctly. For example, in Figure 2.2, the object (a) can be formed in the

position shown. However, if the object is formed in the opposite direction as in

Figure 2.2 object (b) then stereolithography fails. Consider what occurs when the

cross-section is reached where the surface S lies. The surface S is not supported below

and sa as it is formed it sinks to the level of the table. Naturally, there are sorne

objects that can not be formed using stereolithography regardless of the direction of

formation chosen.

From the above description of stereolithography, it is clear that an object (modeled

as a polyhedron) can be constructed using stereolithography if and only if it is a solid

terrain. Furthermore, the direction of formation corresponds to the direction for the

object to be a solid terrain. Consequently, a linear time algorithm to decide whether

a simple polyhedron is a solid terrain would imply a linear time algorithm to decide

whether or not an object can be constructed using stereolithography.

Now we give the necessary detail to decide if a simple polyhedron is a solid terrain.

Suppose we are given a simple polyhedron A in 3D and we want to either find a face

f of A that is a valid base or determine that A is not a solid terrain.

In this section we use the following notation. Let A be a polyhedron with n

11

•

•

•

vertices. For each face 1 of A, let 1(1),/(2), ,/(k,) be the fàces of A that share at

least one edge with 1. Let l(l),d(1),dé2), ,d(k,) be the corresponding unit norms

of these faces. Let A, be the plane containing the face 1. Let 9;(1) be the angle

interior to A between the plane A, and the plane pei) containing I(i) about the line

of intersection of A, and pei). If 9iC!) ::; 'Ir/2 for all i, 1 ::; i ::; k" then 1 is called

acute. If 1 is acute and for some i, 9i (l) < 'Ir/2, then 1 is said to be strict!y acute.

We show several properties regarding A that will give rise to a linear time feasibility

testing algorithm. Without loss of generality, let dl/) = < 0,0, -1 >. We have the

following observation.

Observation 2.3: If face 1 is a valid base for polyhedron A then 1 is acute. Fur­

thermore, if A is a convex polyhedron then face 1 is a valid base if and only if 1 is

acute.

Thus if A is known to be convex we cau decide in linear time whether or not

A is a solid terrain. We now turn our attention to polyhedral objects that are not

necessarily convex. We show that if the polyhedral object A has a strict1y acute face

l, then either 1 or one of its adjacent faces must be a valid base if A is a solid terrain.

Lemma 2.4: Ifpolyhedron A is a solid terrain and 1 is strictly acute then 1,/(1), ... ,

or I(k,) is a valid base.

Proof: If 1 is a valid face then the lemma is proved. Suppose 1 is not a valid face

and the valid face V does not belong to 1(1), ... , I(k,). Let d(V) be the unit norm

of V. Since 1 is strictly acute, the angle between -dU), d(i)(l ::; i ::; k,) is less than

'Ir/2 and consequent1y all déi)(l ::; i ::; k,) are above the plane Z =O.

Let us now compute the convex hull of d(i) (1 ::; i::; k,), which is an infinite cone

C starting at the origin. C contains -dé/; since 1 is a simple polygon (see Figure

2.3). If -d(V) lies above the plane Z =0 then the angle between dé/) and -déV) is

greater than 'Ir/2 which implies that V can not be a valid base. If -déV) lies below

the plane Z =0 then the angle between -dé/) and -déV) is greater than 'Ir/2. Since

-dé/) is contained in C at least one angle between d(i),-déV) is greater than 'Ir/2

and again V cau not be a valid base. CI

12

•
-d(f)

-d(V)

•

•

d(f)

Figure 2.3: Only a strictly acute face and its adjacent faces can be valid bases.

Assume that 1 is not strictly acute, we define I,op as follows. If there is more than

one face with norm -rÏ(f), then l,op is empty (there does not exist a valid base with

norm -d(f)); otherwise, we use l,op to denote that face.

Lemma 2.5: If polyhedron A is a solid terrain and 1 is an acute (but not strictly

acute) face then 1,/(1), ... ,1(kt) or l,op is a valid base.

Proof: Follows from Lemma 2.4 and the definition of l,op' 0

Unfortunately, in 3D an acute face 1may have D(n) adjacent faces. Therefore even

if we already have an acute face 1 we still need to test D(n) candidate bases, which

will imply an D(n2) time algorithm. Nevertheless, we have the following theorem.

Theorem 2.6: Polyhedr.:ln A is a solid terrain if and only if.4 contains a acute face

1 and at least one of l, l,op (if it exists) and at most four faces adjacent to 1 is a

valid base of A.

Proof: The "if' part is trivial. We need only show the "only if' part. Following

from Lemmas 2.4 and 2.5, if .4 is a solid terrain and A contains an acute face 1
then either 1,1(1), ... ,/(kt) or l,op is a valid base. Now we only need to show that

arnong 1(1), ... ,I(kt) there are at most four faces which can be valid bases of A. Let

Ci = tJ;V;:j:'i be the edge of 1 which is adjacent with I(i). We show that if I(i) is a

13

•

V i+1 =(0,0,0)

y

V j: 1 =(O,b,O)
---4"""'''';;;;;;;''''''---- -'X

Figure 2.4: A terrain has at most six valid bases.

•

•

valid base of A then ei has the fol1owing properties:

(1) ei is on the convex hull f, and

(2) the two inner angles of Vi and Vi+l within f are at most 'Ir/2.

It is clear that the first property has to be correct. If ei is not on the convex

hull of f then the line through ei intersects the interior of f and therefore the plane

through f(i) intersects the interior of f. This contradicts the assumption that f(i)

is a valid base. Now we prove the second property. Without 1055 of generality, let

the plane containing f(i) be the plane Z = °and let ei = ViVi+! be on the X­

axis such that Vi = (a,O,O) and Vi+l = (d,O,O) (d > a > 0). Furthermore, let

Vi-l = (0, b, c)(b, c > 0) be on the plane X =°and V;_l be the vertical projection of

Vi_Ion Z =O. As Figure 2.4 shows, the interior angle of Vi within f is greater than

'Ir/2. It tums out that the plane through the triangle ~ViVi_IV;_1 is bX+a(Y -b) = °
while the plane through f (i.e., through ~ViVi_IO) is -cY + bZ = O. The norms of

the two planes are ni =< b, a,°> and n2 =< 0, -c, b > respectively. Consequently

the angle between the two planes is greater than 'Ir/2 sinee nie n2 = -ac < O. Sinee

f is acute, the angle between f and f(j) (f(j) shares Vi-IVi with f) is less than or

equal to 'Ir/2. Consequently f(j) lies below f, whieh implies that f(i) ean not be a

valid base. We ean show similarly that if the inner angle of Vi+! is greater than 'Ir/2

then f(i) ean not be a valid base.

Now assume we have already eomputed in linear time the eonvex hull of f, CH(f).

14

•

•

•

Wc show that there are at most four edges of CHU) satisfying property (2).

Given a convex polygon C with K edges, if an edge ej (1 S; j S; K) has the

property that B(ej_l,ej) S; 'Ir/2,B(ej,eHl) S; 'Ir/2 then ej is called a valid base of C.

Suppose there are L angles less than or equal to 'Ir/2 in C. Since

wc have

f'lr + (I(- L)'Ir 2: (K - 2)'Ir,

which implies L S; 4.

Therefore, there are at most four edges of CHU) which satisfy this property. This

implies that there can be at most four faces among f(i) (1 S; i S; kJ) which can be a

valid base of A. 0

Thus in O(n) time, where n is the number of vertices in polyhedron A, the number

of possible valid bases can be reduced to at most six. By Theorem 2.2, deciding if

a face f of polyhedron A is a valid base can be done in O(n) time, where n is the

number of vertices of A. Therefore we can test whether .4 is a solid terrain and find

a valid base (if it is) in O(n) time. Consequently, we have the following theorem.

Theorem 2.7: Given a simple polyhedron with n vertices one can test in O(n) time

whether or not it is a solid terrain and if it is a solid terrain one can identify ail valid

bases with the same time complexity.

Wc have thus obtained an optimal O(n) time algorithm to decide if a polyhedral

surface is a terrain and an optimal O(n) time algorithm to test if a given polyhedron

is a solid terrain. A further question would be decomposing an arbitrary polyhedral

surface into minimum number of terrains. The related 2D problem of decomposing

the boundary of a simple polygon into minimum number of monotone chains has been

solved with optimallinear time algorithms [CRS92, RR92, LZ93]. However this 3D

problem seems much more difficult. We feel strongly that it is NP-complete, but no

progrcss has been made in this direction. Thus we pose this as an open problem to

conclude this chapter:

15

•

•

•

Open Problem 1: What is the complexity· of decomposing a 3D polyhedral surface

S into the minimum number of terrains (along different directions) if S is not a

terrain?

16

•
Chapter 3

The a-hull and related problems of

a terrain

In Chapter 2 we presented linear time algorithms to test if a polyhedral surface and

• a simple polyhedron is a terrain. This in hand, we may start to consider the convex

hull problem, whose raie in computational geometry is known to be that of sorting

in algorithms. Although there are several optimal 0(n log n) (0(n)) time algorithms

known for computing the convex hull of a set of points (a simple polygon) in 2D

[PS85], the only known optimal algorithm for computing the convex hull of a set of

points in 3D is the divide-and-conquer algorithm by Preparata and Hong [PH77].

With this result we can compute the convex hull of a polyhedral terrain in O(n log n)

time.

The a-hull is a generalization of convex hull of a set of points in 2D and 3D and

was proposed a decade aga [EKS83]. It was originally proposed to extract the shape

of a set of points. Recently it was found that a-hulls can be applied to NC-machining

[WCC+93]. In this chapter we consider the problem of eomputing the a-hull of a

terrain. It tums out that the a-hull of a terrain can be eomputed in deterministie

O(n3) time by first eomputing the oJJsets of the vertices, edges and faces of the terrain,

whieh are a set of O(n) simple surface patehes in 3D. Then we obtain the a-hull by

applying the trivial eubie algorithm for computing the upper enve/ope of n simple

• surface patehes in 3D. With the reeent results of eomputing the upper envelope of

17

•
n surface patches in 3D [HS93, Sha93a, Sha93b], it can be computed in randomized .

D(n2+') time (for any E > 0). Since in practice we are not able to manufacture the

a-hull of a terrain with a NC-machine we use discrete approximation to obtain an

D«N + n)2) time algorithm to compute an approximate a-hull of a solid terrain

T, where N is the number of sample points chosen to approximate the surface of

T. We also show that N is inversely proportional to the elTOr, which is defined as

the Hausdorff distance, between the exact and the approximate a-hulls of T. Sorne

simple, elegant and practical ideas are implemented in the algorithm. We hope the

algorithm and the related ideas will be useful in the NC-machining industry.

3.1 Preliminary

We just mention that the convex hull of a polyhedral terrain can be computed in

D(n log n) time. A natural generalization of the convex hull problem is to compute the

• a-hull of a (solid) terrain. It turns out that in theory the a-hull of a solid terrain T is

the resulting object manufactured by NC-machining [Bez72, PW79, FP79, BFK84, DJSH89],

with T being the target.

We first give a brief introduction of the definition and related results regarding

a-hulls [EKS83]. Given a real a, a generalized dise of radius 1/':1 is defined as follows:

(i) if a > 0, it is a (standard) dise of radius l/a;

(ii) if a < 0, it is the complement of a dise ofradius l/a; and

(iii) if a =0, it is a half plane.

The a-hull of a set of n points S in the plane is defined to be the intersection

of all generalized dises of radius 1/a that eontain all of the points in S. Figure 3.1

shows the a-hull of a set of points in the plane where a < O. The eonvex hull of S

is precisely the a-hull of S when a is equal to zero. Edelsbrunner et al. [EKS83]

developed optimal algorithms to compute the a-hull of a set of points S by first

computing the nearest and furthest point Voronoi Diagrams of S.

The definition of a-hull and the eorresponding algorithms ean be generalized to

a set of n points in 3D. However, because the Voronoi Diagram of a set of n points

• in 3D has quadratie size, the time eomplexity of eomputing the Il-hull is O(n2
). The

18

•

•

Figure 3.1: The a-hull of a set of points in the plane.

following theorem summarizes the main results of [EKS83, EM94J.

Theorem 3.1 [EKS83, EM94]: The a-hull of a set S of n points in the plane can be

computed in time 8(n logn) using O(n) space. The a-hull of a set S of n points in

3D can be computed in time O(n2) using O(n2) space.

Next we give a brief introduction of NC-machining, Le., machining a polyhedral

object on a numerically controlled (NC) machine. The machining of sculptured sur­

faces with numerical control (NC) is a common practice in industry. Sculptured

surfaces arise in design and manufacture of automobile bodies, ship hulls, aircraft,

etc. Often when a computer is used to control the NC machine, polyhedral approxi­

mations of thes~ objects are usually used instead. A three-axis NC machine (X,Y,Z

Cartesian movements, see Figure 3.2) with a bali-end cutter is the most common

machine used in practice. Two types of cutting errors can occur: gouging and excess

material. Decreasing the size of the cutter radius often solves these problems, however

a smaller cutter will cut more slowly, break more often and wear faster. Determining

the optimal taol size as weil as simulation, detection and elimination of the errors

• in NC machining have been studied for quite a long time and many approximation

19

•

•

•

Figure 3.2: An example of three-axis NC-machining.

algorithms, simulation methods and practical systems have been proposed.

We see that in theory the a-hull of a solid terrain T is exactly the resulting abject

produced by a NC-machine with a cutter of radius lIa, with T being the target.

We now give the formal definition of the a-hull of a solid terrain. Given a real a, a

generalized bail of radius l/a is defined as follows:

(i) if a> 0, it is a (standard) ball of radius lIa;

(ii) if a < 0, it is the complement of a ball of radius 1/a; and

(iii) if a = 0, it is a half space in 3D.

The a-hull of a solid terrain T with n vertices is defined ta be the intersection of all

generalized balls of radius 1/a that contain all of the points on the surface of T. The

convex hull of T is precisely the a-hull of T when a =O. When a > 0 the a-hull of

T is of no practical interest to us although it can be computed exactly in O(n2) time

with the result of [EKS83, EM94). We only considcr the case when a < O. It should

be noted that when a < 0 the a-hull of T is ditrerent from the a-hull of the vertices

ofT.

20

•

•

•

3.2 Computing the exact and approximate a-hulls

of a terrain

In this section we discuss the problem of computing the exact and approximate a­

hulls of a terrain. For the corresponding 2D problem, Woo et al. propose a linear

time algorithm to compute the a-hull of a monotone chain [WCC+93]. In addition,

two trivial O(nlogn) time algorithms are mentioned to compute the a-hull of a

monotone chain: the Constrained Voronoi Diagram method [LD81, Yap87, Che89],

and the upper enve/ope method [Her89]. Correspondingly, we might generalize these

methods to 3D to compute the a-hull of T. However, as for the Constrained Voronoi

Diagram in 3D, it is only known that if the polyhedral obstacles (Le., points, line

segments and faces) satisfy certain axioms then the Constrained Voronoi Diagram

exists and no algorithm is known to compute such a Constrained Voronoi Diagram

in 3D [Sti91]. It turns out that the upper enve/ope method can be generalized to 3D

to compute the a-hull of a terrain.

The upper enve/ope of a set of n simple surface patches is defined as a polyhedral

surface S such that the Z-coordinates of every point of S is the pointwise maximum

of the n surface patches. By first computing the offsets of the vertices, edges and

faces of T, which are ail simple surface patches (see Figure 3.3)1, then computing the

upper envelope ofthese offsets we can obtain the a-hull ofT. The upper envelope of n

simple surface patches in 3D can be computed in O(n3) time since there could be !l(n3)

intersections between these n patches. There are a series of results for computing the

upper envelope of n simple surface patches in 3D [HS93, Sha93a, Sha93b]. It tums

out that the upper envelope of n surface patches can be computed in randomized

O(n2+') time (for any E > 0). Consequently the a-hull of a solid terrain can be

computed within the same time.

Observation 3.2: Given a solid terrain T with n vertices, the a-hull of T can

be computed deterministically in O(n3) time and with a randomized algorithm in
1In Figure 3.3, ft only show an illustration of the oft'set of an edge and a face. The oft'set of a

vertex can be computed by computing the intersection of the surface of the bail centered at that
vertex with ail the oft'sets of its adjacent edges and faces.

21

•

•

•

Figure 3.3: The offsets of edges and faces.

O(n2+<) expected time (for any E > 0).

However, in practice we are not able to produce the exact a-hull of a terrain

with a NC-machine even if the terrain is a prism! Whenever wetranslate the ball­

end cutter on the top triangle the corresponding trajectory on the top triangle is

a !ine segment (which is of area zero). Therefore, to produce the exact a-hull of

a terrain with a NC-machine we might have to move the cutter infinitely. With

this consideration, we use discrete approximation to obtain an O((N + n)2) time

algorithm to compute an approximate a-hull of a solid terrain T. The basic idea

is to replace the exact representation of a solid terrain by carefully chosen sample

points in space. This idea is not new in NC-machining and there are several works in

NC-machining using such a method [Cha83, Hoo86, WW86, DJSH89]. Intuitively,

the more sample points chosen, the more accurate the simulation will be. However,

in practice a huge amount of sample points would make the computation infeasible.

Therefore an acceptable amount of sample points must be chosen carefully 50 that

the errors of simulation are bounded. We show that an approximate a·hull of a 50lid

terrain T can be computed in O((N + n)2) time, where N denotes the number of

sample points chosen to approximate the surface of T and is closely related to the

accuracy between the approximate and the exact a·hulls of T.
First of all, we define a function to characterize the quality of an approximation.

Let SI be the set of points on the a-hull of T and 52 he the set of points on an

approximate a-hull of T. Let 68(511 Sû (the Hausdorff distance) be defined as

22

•

Figure 3.4: Computing the mesh of a triangular face.

6H (51,52) = max{mllXaesl millbes, d(a,b),ma.Xbes, min.es. d(a,b)},

• where d(a, b) is the Euclidean distance between a and b. We also say that ôH(51l 52)

is the error between the exact and approximate a-hulls of T.

We DOW start to present the details of our algorithm. First we obtain a triangula­

tion of each face F ofT by choosing a set of sampie points on F and then triangulating

F with these sample points together the vertices of F. The resulting triangulation is

usually called the mesh genemtion of T. The criteria here are (1) each edge in the

mesh generatiou of T is not greater than a given value d, and (2) no obtuse triangles

exist in the .,..~b generation. To make things easy we just generate the mesh by

equilateral triangles with edge length d. As shown in Figure 3.4 there can be obtuse

triangles near the boundary of F. We simply transform each obtuse triangle into

two acute triangles such that the edge length of each acute triangle is no more than

d. The complexity of computing such a mesh generation of T is proportional to the

number of sample points used, since such a mesh generation is a planar straight Hne

graph.

There are two kinds of errors induced when we use a mesh of triangles to approx­

imate T and compute the corresponding a-hull. The first error arises when a ball

• protrudes through a supporting plane, and is characterized by the following lemma.

23

•
B

o
H

•

•

Figure 3.5: Illustration for the proof of Lemma 3.7.

Lemma 3.3: Let B be a ball with radius r and center 0, t::.xyz be a regular triangle

(with edge length d) inscribed in B, C be the circumcircle of t::.xyz with center c, H

be the plane through C, and (J be the angle between ox and oc. Then the Hausdorff

distance between H and the spherical cap cut off by H is bounded by

el = r - rcos(J,

where sin (J = fa•.
Proof: (Refer to Figure 3.5) Following the Pythagorean theorem, we have

el = r -loci = r - r cos (J,

where sin(J = fa•. By Taylor's theorem,

el =r - rcos(J =r - r(l- ~~ + O((J4)) '" ~' ,asO -+ O.

It should be noted that the above bound regarding this type of error is in fact the

worst case. The reason is that if the triangle is an acute triangle with edge length at

most d then the radius of the largest circumcircle of the triangle is at most fa. In

other words, if t::.xyz is not a regular triangle then sin(J < fa•. [J

24

•

•

•

The underlying idea behind this lemma is that if we take H as a face of T and we

choose x, y, z as the sample points then the error between the exact and approximate

a-hulls regarding H is bounded by el. In practice, to manufacture an object efficiently

(by cutting off excessive materials) with a NC-machine the angle (} can not be too

small. At the same time, el has to be bounded. The above lemma shows that these

objectives can be achieved within certain error range. For example, if (} = r2 = 15°

then el :::::: O.04r, which is usually satisfactory.

As for the second kind of error, the careful reader might have already noticed that

there could be another kind of protrusion, that is, the ball is supported by the two

endpoints of the nearest edge together with two vertices which can or can not be the

vertices of a triangle in the mesh generation.

Lemma 3.4: Let B be a ball with radius r and center 0, xy be the closest edge to

0, OZ be the distance between 0 and xy (w is the midpoint of xy), H be the plane

through xy such that OUi is also the distance between 0 and H, a, b be the two other

vertices supporting Band (3 be the angle between ox and OUi. The maximum distance

between H and the spherical cap cut off by H is

D =r - rcos(3,

where sin (3 ~ ;,.. Consequently, the Hausdorff distance between B and the exact

a-hull of T is bounded by

ProoC: (Refer to Figure 3.6) Following the Pythagorean theorem, we have

D =r -Iowl =r -rcos(3,

and since the length of xy is at most d, sin (3 ~ ~ = ;. (note that el> D).

As for the Hausdorff distance between B and the exact a-hull of T, we could see

that B may also protrude the faces adjacent to a and b by an amount of at most

D. This implies that the center of B is translated three times to reach the current

position; consequently, the Hausdorff distance between B and the exact a-hull of T

is boullded by

25

•
a

y

o

b

Figure 3.6: Illustration for the proof of Lemma 3.8.

• 0Our algorithm is essentially based on the above two lemmas. Suppose a solid

terrain T, a, and the allowed approximation error e are already given. Since

{
.1.(1 - cose) where sine ::; ~e ;:: max(ei, e2) =max ;
;;(1 - cosP) where sinp::; d;,

we have

If e ::; 2~~ then the maximallength d of the equilateral triangles in the mesh genera­

tion is determined by

Therefore we have the following theorem.

Theorem 3.5: Let T be a solid terrain and B be a ball with radius l/a. The

approximate a-hull of T can be computed in O((N + n)2) time, where N is the•
d = max {

26

•

•

•

number of vertices added in the mesh and is inversely proportional to the accuracy

of the approximation.

Praof: We first compute the maximum edge length in the mesh generation given a

and the allowable error ê. Then we obtain a mesh generation with the ma.XÏmum edge

length d. This creates N new vertices and we can run the algorithm of Edelsbrunner

et al. [EKS83, EM94] in O((N +n)2) to obtain the approximate a-hull with error at

most ê. N is related not only to the area of the surface of T but also to the shape

of the faces of T. In practice most of the objects to be machined are well-shaped,

therefore we could give a bound on N, Le., N = O(~~~~~~%) =O(ar~~m). When ê
is small, N = O(arer-Tl). 0

It should be noted that the a-hull ofT can never protrude any face ofT. With this

property, we can smooth sorne part of sorne faces of T so that there is no protrusion

below this part. For example, if a face f of T is large and fiat then we can smooth

sorne part of f. Although this procedure does not decrease the error between the

approximate and exact a-hull, it does so for that specifie part. It is eoneeivable that

this procedure is useful in practice sinee many produets of NC-machining are not

general terrains and usually have many fiat faces.

One of the main open questions in this regard is to improve the O(n3) upper

bound for eomputing the a-hull of a terrain.

Open Problem 2: Is it possible to improve the 0(113) upper bound for computing

the a-hull of a terrain?

27

•

Chapter 4

Tetrahedralizing special classes of

solid terrains

Decomposing a geometric object into simpler parts is one of the most fundamental

• problems in computational geometry [CD85, Kei85]. This decomposition is employed

in such applications as graphies, pattern recognition, solid modeling and mesh gen­

eration for finite element methods.

It is weil known that any simple polygon can be triangulated [Lenll). The prob­

lem of triangulating a simple polygon in linear time has been one of the main re­

search problems in computational geometry for nearly two decades. Recently Chazelle

showed that a simple polygon can be triangulated in linear time [Cha91). The problem

of tetrahedralizing a~jhlple polyhedron in 3D without adding new vertices (Steiner

points) is significantly more diflicult than its 2D counterpart. Schoenhardt gave a

counterexample (see the 6-vertex twisted prism in Figure 4.1) which shows that it

is not always possible to tetrahedralize a simple polyhedron [Sch28). Bagemihl ex­

tended Schoenhardt's result by showing that there exist n-vertex simple polyhedra

which can not be tetrahedralized [Bag48] (Figure 4.2). Seidel gave a counterexample

to show that not all simple rectilinear (isothetic) polyhedra can be tetrahedralized

(Chapter 10 of [O'R87)). Recently Ruppert and Seidel showed that it is NP-complete

to decide if a simple polyhedron cau be tetrahedralized [RS92). Nevertheless Chazelle

• and Pa1ios showed that if O(r2) Steiner points are allowed, a simple polyhedron cau

28

•

•

•

Figure 4.1: Schoenhardt's counterexample.

Figure 4.2: Bagemihl's counterexample.

29

•
c F-----t-i---..:,. b

a

•

•

Figure 4.3: A so!id terrain can not be tetrahedralized.

be tetrahedralized into a !inear number of tetrahedra in O(n log n + r) time, where

r is the number of reflex edges of the given polyhedron (CP90]. (Given an arbitrarY

polyhedron A in 3D, we assume that every edge of A is determined by two of its

faces. An edge of A is called a reflex edge if the outer dihedral angle of the two faces

defining that edge is less than 11", it is called a flat (cop/anar) edge if the angle is equal

to 11", otherwise it is called a convex edge. A vertex is called reflex if it is adjacent to

at least one reflex edge.)

We first give a counterexample to show that a sa!id terrain is not always tetra­

hedralizable. The example (see Figure 4.3) is essentially based on the Schoenhardt

polyhedron. The coordinates of the vertices on the bottom face are a =(0, -~,O),

b = (2, 2f, 0) and c = (-2, 2f, 0). Initially we have a regular frastum such that the

coordinates of the vertices on the top faces are (0, -2f,2), (1, ~,2) and (-1, ~,2).

We rotate the upper face, a regular triangle, in counterclockwise order around its

center by a small angle fJ. We have the coordinates of the vertices of the new top face

as follows: d =(-2fcos(i - fJ), 2fsin(i - fJ),2), e = (2fsin(fJ),-2fcos(fJ),2)

and f = (2f cos(i + fJ), 2f sin(i + fJ), 2) (see Figure 4.4).

The outer norm of the face ~ace is

ni =< -4v'3,-4,4sinfJ- !fcosfJ+ sf >,
while the outer norm of the face ~cde is

30

•

•

•

a

Figure 4.4: A solid terrain can not be tetrahedralized (top vicw).

02 =< -4f(coS9 +sin(~ - 9)),

-4f(sin9 +cos(~ - 9)),

~[sin9sin(~ - 9) - sin9 + v'3sin(~ - 9) - cos9cos(~ - 9) - cos(~ - 9) +
v'3cos9J > .

If 9 is very small, the polyhedron we obtain is clearly not tetrahedralizable since

all the vertices are reflex (edges ce, al and bd are all reflex) (compare Figures 4.3

and 4.4). We only need to show that when 9 is very small, there exists 0=< 0,0, 1 >
such that 0 e Di > 0 for ali .he faces (with norm ni) except ~abc. By symmetry it

suffices to show that for i = 1,2.

In fact we have

lims_o ne ni = 4f > 0 and

1· ~~ ~ 01I110_0 nen2= 3 >.
Consequently the polyhedron formed by a, b, c, d, e, 1 is a solid terrain which does not

admit a tetrahedralization. Thereiore, we have the following theorem.

31

•

•

•

Theorem 4.1: A solid terrain does not always admit a tetrahedralization.

Although it seems that tetrahedralizing a general simple polyhedron in 3D is an

intractable problem, there are some results known regarding tetrahedralizing special

classes of simple and non-simple polyhedra. It is weil known that a convex polyhedron

in 3D can always be tetrahedralized in linear time. Recently Goodman and Pach

[GP88) proved that the class of simple polyhedra defined by CH(P U Q) - P - Q

(CH(P U Q) is the convex hull of P and Q), sucb that P and Q are both convex

polyhedra and P n Q=0, can always be tetrahedralized. They also showed that the

class of non-simple polyhedra defined by P - Q, sucb that P and Q are both convex

polyhedra and Q C P (we cali sucb a polyhedron a convex annulus henceforth), can

always be tetrahedralized. Both of these two algorithms have a time complexity of

O(n2). Bem showed that the first algorithm is optimal and he proposed an O(nlogn)

time algorithm to improve the second one [Ber93).

Although we have just presented a count~rexample to show that not all solid

terrains can be tetrahedralized, we show in this cbapter that the following classes of

simple and non-simple polyhedra can always be tetrahedralized: simple slab (with

or without holes), subdivision slab, a box with fixed-depth rectilinear holes (a type­

1 box henceforth) and a box with linearly ordered rectangular holes (a type-2 box

henceforth). The first two classes of polyhedra can be considered as generalized solid

terrains, while the latter two classes of boxes belong to the class of solid Manhattan

terrains. We also discuss the problem of tetrahedralizing the class of polyhedra whicb

are the union of a collection of convex polyhedra.

4.1 Tetrahedralizing simple and non-simple slabs

We begin by giving some elementary definitions. A simple slab S is a simple poly­

hedron defined by translating a simple polygon F with m vertices until it reaches

another identical polygonal face F' such that both F and F' are faces of S and all

other faces defined by ab e F, aib' e F' are parallelograms. If F is a triangle, S is

called a prism. If F is a simple polygon with k holes we cali the resulting non-simple

polyhedron a slab with k holes. In a prism we say that two diagonals are coincident if

32

•
a'

b
Figure 4.5: Two coincident diagonals in a prisrr..

they meet at a vertex (see Figure 4.5). Note that if a prism has two coincident diag­

onals then we can tetrahedralize the prism in two dift'erent ways: we can triangulate

• the untriangulated face (free face henceforth) by inserting a diagonal arbitrarily. The

dual of a triangulated simple polygon is defined as the graph such that the vertices

of the graph corresp'lnd to the triangles in the triangulated polygon and there is an

edge between two vertices in the graph if and only if the two corresponding triangles

in the triangulated polygon share a diagonal. It is known that the dual of a simple

polygon with n vertices is a tree with n - 2 vertices and n - 3 edgesj furthermore,

once the polygon is triangulated its dual can be computed in linear time (O'R87). We

propose the following algorithm to show that an n-vertex slab with k holes can be

tetrahedralized.

Aigorithm 4.1

BEGIN
(1) Triangulate the two polygons with holes F, F' sucb that they have the same

triangulation.

(2) Construct a graph G with k +1 vertices sucb that each vertex corresponds to

a hole or the outermost polygon. Any diagonal whicb connects two holes or

connects a hole with the outermost polygon defines the edge between the two

• corresponding vertices in G, if such an edge is not defined yet. This yields

33

•
a connected graph G. Compute a spanning tree of G. Label the k diagonals

which correspond to the k edges of this spanning tree cutting diagonals

and double these cutting diagonals. This gives us a triangulated polygon

(with no holes).

(3) Visit every prism whose top has one cutting diagonal and insert coincident

diagonals on the faces of the prism opposite to the face whose top edge is the

cutting diagonal (this makes the face a free face). These prisms are labelled

constrained prisms because if one of the inserted diagonals is later f1ipped

then so is its neighbor in order to preserve coincidence and the resulting

freedom for its cutting diagonal face.

(4) Visit every prism whose top has two cutting diagonals and insert coincident

diagonals on the faces of the prism containing the cutting diagonals. If more

than one triangle each containing two cutting diagonals have these cutting

diagonals anchored on the same vertex then ail inserted diagonals are made

• coincident on this vertex. If a set of triangles each containing two cutting

diagonals share cutting diagonals alternatively then ail inserted diagonals

are made alternatively coincident to the vertices of P and p' on which two

connecting two cutting diagonals are anchored (refer to Figure 4.6). These

prisms are labelled frozen prisms because these diagonals will Hever be changed.

(5) Compute the dual tree of the triangulation obtained at Step (2).

(6) Starting with any leaf perform a depth-first search of the dual tree to visit

all prisms. Triangulate ail prisms except frozen ones. If a prism is ordinary it

can be triangulated arbitrarily. If the prism is constrained then coincidence

should be respected.

END
Proof of Correctness:

As shown in Figure 4.7, the possible conflicts arise when we run the depth-first

search and triangulate the relevant prisms; furthermore, conflicts can only arise at

prisms which contain cutting diagonals where we must make sure that the prisms on

both sides of the cutting diagonals contain matching diagonals. We know that there

• can not be any face in the triangulation of the upper face with three cutting diagona1s,

34

•

•

•

Figure 4.6: Three type-3 prisms share cutting diagonals alternatively.

Figure 4.7: Tetrahedralizing a slab (top view).

35

•
since the existence of such a face implies that the spanning tree we obtain in Step

(2) has a cycle. Consequently, a prism can contain at most two cutting diagonals.

We cali a prism corresponding to a leaf in the dual tree whose upper face contains

one cutting diagonal a type-l prism; a prism corresponding to a degree two node in

the dual tree whose upper face contains one cutting diagonal a type-2 prism and a

prism corresponding to a lea! in the dual tree whose upper face contains two cutting

diagonals a type.3 prism.

Now we eonsider the following cases:

(1) A type-l prism or a type-2 prism shares the free face with another type-l

prism or another type-2 prism. Aceording to Step (3), the top edge of the free face is

a cutting diagonal and the free face can be triangulated arbitrarily. We just need to

choose one triangulation to make the tetrahedralization of the two prisms consistent.

(II) A type-l prism or a type-2 prism shares its free face with a type-3 prism.

According to Step (4), this face is a face of the type-3 prism and is already triangulated

• by inserting a coincident diagonal. This gives us a triangulation of the free face (hence

a tetrahedralization of the two prisms).

(III) A type-3 prism shares a cutting diagonal face with another type-3 prism.

Again according to Step (4), the face of a type-3 prism whose top edge is not a

cutting diagonal is a free face. If the two (or more) prisms have their cutting diagonals

anchored on the same vertex then ail inserted diagonals are incident to this vertex

therefore the face separating the two prisms has a consistent triangulation; otherwise

we insert coincident diagonals on the non-free faces of one prism, then according to

the triangulation of the face separating the two prisms we insert coincident diagonals

on the non-free faces of the other prism (sec Figure 4.6). For both of these two

subcases any triangulation of the free faces gives us a tetrahedralization of the Iwo

prisms. Cl

Complexity Analysis of Algorithm 4.1:

Step (1) takes O(nlogn) time and space [AAP86]. Each of the remaining steps

takes O(n) time and space. Since a triangulated polygon with n vertices has O(n)

edges and faces, the graph G we build at Step (2) has at most O(n) edges. Conse-

• quently, a spanning tree of G can be computed in O(n) time [AHU83]. With a similar

36

•

•

•

argument, we can show that each of Steps (3)-(6) takes O(n) time. Therefore the al­

gorithm runs in O(n log n) time and linear space. Furthermore this is optimal since

any tetrahedralization of a polyhedron must triangulate all the faces of the polyhe­

dron and triangulating a polygon with holes with a total of O(n) vertices (i.e., F,F')

has a lower bound of n(n log n) in the algebraic computation tree model [AAP86). If

F is a simple polygon with no holes, then Step (1) takes O(n) time and so does the

whole algorithm. We therefore have the following theorem.

Theorem 4.2: An n-vertex polygonal slab with holes can be tetrahedralized in opti­

mal O(n log n) time and linear space and a simple n-vertex slab can be tetrahedralized

in optimal O(n) time.

Now we generalize Aigorithm 4.1 to obtain an algorithm for tetrahedralizing a

(bounded) subdivision slab with n vertices. A (bounded) subdivision slab is built

by translating a planar subdivision to a different plane (without loss of generality,

assume the two planes are parallel to the XY-plane) such that every face which is not

parallel to the XY-plane is a parallelogram.

The correctness proof is sufliciently similar to that for Aigorithm 4.1 to be omitted.

We only show how to change the problem such that we can apply Aigorithm 4.1

directly.

Aigorithm 4.2:

BEGIN
(1) Triangulate the upper and lower faces of the subdivision slab.

(2) Compute a spanning tree of the dual graph of the triangulation. If an edge

of the dual graph is not an edge of the spanning tree, then double the edge

in the triangulation which corresponds to that dual grapb edge. This yields a

triangulated polygon. To make the terminology consistent with what we used

in Aigorithm 4.1, we cali these edges which are doubled cutting diagonals.

(3) Run Steps (3)-(6) of Aigoritbm 4.1.

END
Complexity Analysis of Aigorithm 4.2:

Step (1) has a time complexity of O(n logn) since the face of a planar subdivision is

37

•

H

•

•

Figure 4.8: A type-! box.

a polygon with holes and triangulating a polygon with hales with O(n) vertices takes

e(n log n) time [AAP86]. Step (2) takes O(n) time since the size of the triangulated

subdivision is O(n) (so is its dual) and a spanning tree of a graph with O(n) edges ean

be computed in linear time [AHU83]. The remaining steps take a total of O(n) time

following the analysis of Aigorithm 4.1. Therefore Aigoritiun 4.2 l'Uns in O(n logn)

time and linear space. We have consequently established the following theorem.

. Theorem 4.3: An n-vertex subdivision slab can be tetrahedralized in O(Il log n)

time and linear space.

4.2 Tetrahedralizing special classes of solid Man­

hattan terrains

We mention early in this chapter that it is not always possible to tetrahedralize a

simple rectilinear polyhedron. However we strongly believe that any solid Manhattan

terrain admits a tetrahedralization, although we have not found a proof yet. In this

section we show that certain special classes of solid Manhattan terrains can always

be tetrahedralized.

We first give a definition of the two special classes of solid Manhattan terrains to

be studied in the fol1owing context. A type-l box is defined as follows (see Figure

38

•

H

•

•

Figure 4.9: A type-2 box.

4.8): given a 3D rectilinear box with height H, dig a set of non.intersectingrectilinear

holes at the top of the box such that each of these holes has a unique depth h < H,

we calI the resulting simple rectilinear polyhedron a type-l box. A type·2 box is

defined similarly (see Figure 4.9): given a 3D rectilinear box with height H, dig a set

of nonintersecting rectangular holes on the top of the surface of the box such that

the heights of the holes hi < H (for ail il, and the holes are Iinearly ordered along

a direction 1 on F (i.e., the orthogonal projections of the holes onto 1 form a set

of disjoint line segments on 1 and the sorted order of these line segments along 1 is

already known).

Since the algorithms in this section rely heavily on the algorithms by Goodman

and Pach [GP88] and Sem [Ber93), we give below a detailed description of these

algorithms.

Goodman and Pach's algorithms

Assume P, Q are two convex polytopes in d·dimension, in [GP88) it was shown

that the polytopes CH(PUQ) - P - Qwhere pnQ =0 and P -Q where Q C P ail

admit a cell decomposition whose maximal cells are openly disjoint convex polytopes.

Goodman and Pach first proved the following theorem as a prelude.

39

•

•

•

Theorem 4.4 [GP88]: Let H be a hyperplane crossing a d-dimensional convex poly­

tope P. Assume that H does not contain any vertex of P, and let H+ and H- be the

two halfspaces determined by H. Then P admits a cell decomposition whose ma:cimal

cells are openly disjoint convex polytopes QI. Q2"" such that each Qi = CH(FiUGi),

where (a) Fi C H+, G i C H- are proper faces of P and (b) dim Fi + dim Gi =d-1.

We only give a sketch of the proof. The proof can be thought of as "bending a

polytope about a hyperplane". It consists essentially of projecting the vertices of the

polytope P onto a wedge in (d+1)-dimension formed by two d-dimensional halfspaces

meeting along H, then computing the convex hull p' of the new set of vertices in

(d + 1)-dimension, and finally projecting the facets of the "upper" boundary of p'

back into the original d-space (see Figure 4.10). A face Q' of p' is called an "upper"

facet if Q' can be "seen" from the +00 of the (d + 1)st coordinate axis.! This results

in a cell decomposition of P which is transverse to H.

In Figure 4.10 we present a 2D convex polytope P with seven vertices and a

hyperplane H crossing P but does not contain any vertex of P. Following Goodman

and Pach's proof we project the vertices of P cnte the 3D wedge defined by H, then

we compute the convex hull p' of the projected vertices in 3D and finally we project

the upper hull of p' back to 2D. This results in a triangulation of P such that the

vertices of each internai diagonal do not lie on the same side of H.

In 3D the above theorem implies that if P is a convex polyhedron, H is a plane

cutting through P and H does not contain any vertex of P then there exists a tetra­

hedralization of P such that each tetrahedron has the property that the vertices of

the tetrahedron do not all belong to one of the two halfspaces H+, H-.
By modifying the proof for the above theorem slightly, Goodman and Pach showed

the following two theorems relevant to this thesis. As the above proof, these proofs

are all constructive; consequently, Goodman and Pach have implicitly proposed the

algorithms to compute the cell decompositions of the two classes of polytopes CH(PU

Q) - P - Q and P - Q. Furthermore, since the core of their algorithms is to compute

!Mathematically, this means that there exist (s,t) e Rd+l (B e Rd, t > 0) and a real a such that
aff Q' = {(z, 1/) e Rd+' : B U +tll = a} and p' C {(Z,II) e Rd+' : .. z +tll Sa}.
Here aff Q denotes the affine subspace of Rd+l spanned by the points of Q' .

40

•

•
1

•

Figure 4.10: Illustration for the proof of Theorem 4.4.

41

•

a
p

H
4

~ro5

• 6 3 / 9

2 8 a11p
1 7

Figure 4.11: Illustration for the proof of Theorem 4.5.

the convex hull of n points in (d +1)-dimensions, both of these two algorithms takes

O(nl!}lJ) time, with the recent optimal convex hull algorithm by Chazelle [Cha93].

Clearly both algorithms run in O(n2) time when d = 3. Now we introduce the

following theorem for compute the cell decomposition of the polytope CH(P UQ)­

P - Q where P n Q =0.

•
Theorem 4.5 [GP88]: Let P and Q be two disjoint d-dimensiollal convex polytopes.

Then CH(PUQ)-P-Q admits a cell decomposition whose maximalcells are openly

disjoint convex polytopes Qb Q2"" such that each Qi = CH(Fi U Gi), where Fi and

Gi are proper faces of P and Q, respectively, and dim Fi + dim G j = d - 1.

42

•

•

•

Again we only give a sketch of the proof. Interested readeris encouraged to refer.

to [GP88] for the details of the proof. Let H be a hyperplane strictly separating P

from Q. Goodman and Pach's proof consists essentially of projecting the vertices of

the polytopes P, Qonto a wedge in (d+ I)-dimension formed by two d-dimensional

halfspaces meeting along H, then computing the convex hull p' of the new set of

vertices in (d+ I)-dimension, and finally projecting the facets of the "lower" boundary

of p' back into the original d-space (see Figure 4.11). A face s' of p' is called "lower"

facet if 5' can be "seen" from the -00 of the (d + I)st coordinate axis.2 This results

in a cell decomposition of P which is transverse to H.

In Figure 4.11 we show two disjoint convex polytopes P and Q and a hyperplane

H strictlyseparating P from Q. Following their proof we project the vertices of P

onto the 3D wedge defined by H, then we compute the convex hull p' of the projected

vertices in 3D and finally we project the lower hull of p' back to 2D. This results in

a triangulation of the simple polygon CH(P U Q) - P - Q such that the vertices of

each internal diagonal of CH(P U Q) - P - Q do not lie on the same side of H.

In 3D the above theorem implies that if P and Qare two disjoint convex polyhedra

then the polyhedron CH(P U Q) - P - Q admits a tetrahedralization. Finally we

introduce the following theorem for compute the cell decomposition of the polytope

P-Q (Q CP).

Theorem 4.6 [GP88]: Let P and Q be two d-dimensional convex polytopes and

Q C P. Then P - Q admits a cell decomposition whose maximal cells are openly

disjoint convex polytopes Qh Q2"" such that each Qi =CH(Fi UGi), where F; and

G i are proper faces of P and Q, respectively, and dim Fi + dim Gi =d-1.

The proof of this theorem is made again by modifying that of Theorem 4.4. In

this case H is a d-hyperplane at infinity and the wedge is defined by a pair of parallel

halfspaces in (d + I)-dimensions. We first project the vertices of P, Q onto the

two parallel halfspaces respectively, then we compute the convex hulls p', Q' of the

projected vertices and finally we project the convex hulls of p', Q' back to d-space.

This results in acell decompositionof P-Q which is transverse to H. In 3D Theorem

'Matbematically, tbis rneans tbat tbere exist (s,t) e Rd+! (8 e Rd, t < 0) and a real a sucb tbat
air S· = {(Z,If) e Rd+! : se z + tif = a} and p' C {(Z,If) e Rd+! : se z + tif Sa}.

43

•

•

•

c

ff--~tpa
d ~J

b

Figure 4.12: A tetrahedralization of CH(P UQ) - P - Q can have rl(n2) tetrahedl'a.

4.6 implies that if P, Q are two convex polyhedra such that Q C P then P - Q admits

a tetrahedralization. Recently Bern have proposed an O(n log n) time algorithm to

tetrahedralize P - Q, which will he presented in the fol1owing paragraphs.

Bern's algorithm

Bern [Ber93) showed that algorithm of Goodman and Pach for tetrahedralizing

the class of polyhedra CH(P U Q) - P - Q is optimal 3 and pl'oposed an O(nlogn)

time algorithm to improve their algorithm for tetrahedralizing the class of polyhedra

P-Q.

Theorem 4.7 [Ber93): Let P,Q he two disjoint convex polyhedl'a in 3D. rl(n2)

tetrahedra are necessary to tetrahedralize CH(P U Q) - P - Q.

3However, Bern left out some crucial details in the abstract and from what he presented in that
abstract his proof was not convincing although his idea was correct. He constructed two bands of
triangles, one oriented vertically and the other horizontally. He claimed that each tetrahedron has
volume 0(1) and if the volume of the polyhedron is 0(n2) then any tetrahedralization must have
0(n2) tetrahedra. But it is not convincing that the polyhedron constructed by Bern has volume
0(n2), eVen if the two original bands are parallel. The reasan is that there is no exact formula to
compute the volume hounded by two parallel convex polygons unless the sectional area function of
the resulting polyhedron is given explicitly (See Chapter 8 of [IŒ38]) .

44

•

•

•

v

Figure 4.13: The cap of a peQ vertex.

Proof 4: We construèt a regular tetrahedron R such that the length of each edge

of the tetrahedron is n. It is clear that the volume of the tetrahedron is 0(n3). We

choose two non-adjacent edges, ab and cd, of the tetrahedron R and we plot two

convex polygonal curves with size O(n) on the two faces /l,/2 incident to ab. These

two convex polygonal curves, together with ab, define a convex polyhedron P. We

can choose these two convex polygonal curves such that they are very close to ab;

furthermore, we can also plot O(n) vertices on the surfaces of P bounded by /l,/2
such that all the edges of P, except ab, are of length of 0(1) (see Figure 4.12). We

construct Q similarly based on cd. The tetrahedra that lie in CH(PUQ) -P-Q use

either a small triangular face from one convex polygon and a vertex from the other,

or two edges from the two different convex polyhedra. In either case, the volume of

such a tetrahedron is O(n). The volume of CH(P U Q) - P - Q is very close to

the original tetrahedron R hence is also 0(n3); therefore, any tetrahedralization of

CH(P U Q) - P - Q has at least rl(n2) tetrahedra. [J

Given a simple polyhedron A and a convex vertex u of A, let cap(u) be the

polyhedron that is the closure of the difference of A and the convex hull of all the

4This proof, with full details, is a modification to the original proof by Bern [Ber93).

45

•
vertices of of A except u. It is known that cap(u) is a star-shaped polyhedron and u

lies in its kemel; consequently, cap(u) can he tetrahedralized in time linear of its size

[CP90].

The basic idea of Beru's algorithm for tetrahedraling P-Q is to remove iteratively

a cap(v) of P - (1. Each vertex of cap(v) is either a vertex of P adjacent to v, or

is a vertex of Q lying outside CH(P - v). After the removal of cap(v), P shrink to

a smaller convex polyhedron, with vertex set equal to all the remaining vertices of

P and some vertices of Q. We say these vertices of Q pop up, i.e., first appear on

P after the removal of cap(v) (Figure 4.13). We calI a vertex u a peQ vertex if u

belongs to P but not Q. If time complexity is not of conceru, we can keep on deleting

the cap of a peQ vertex u until all the vertices of Q have popped up. Computing

cap(u) takes O(n log n) time since computing the convex hull of O(n) points in 3D

takes 6(n log n) time [PS85]. Therefore by deleting (and tetrahedralizing) the caps

of PeQ vertices consecutively it takes 0(n2 10gn) time to tetrahedralize P - Q.
• Therefore this tetrahedralization produces O(n2) tetrahedra.

To improve the complexity of the above procedure, we delete an independent

set of peQ vertices (and their caps). Such an independent set J can be computed

in O(n: time and enables the removal of O(n) tetrahedra. The total number of

iterations of such removals is O(Iogn) [l<ir83J, [DI<85] (see also Chapter 4 about

the construction of independent sets). The harder part is to compute the caps of

vertices in J. To accomplish this, we first compute p', the convex hull of the vertices

of P - J. This can be done in linear time by filling the "holes" resulting from the

deletions of independent vertices, using a brute-force method (since each hole has

0(1) size). We then compute the convex hull of p' and Q in linear time. Computing

the convex hull of the union of two convex polyhedra can be solved using geometric

duality: transform the vertices of the polyhedra into faces of dual polyhedra and

then compute the intersection of the dual polyhedra. Points interior to both dual

polyhedra dualize to planes exterior to both old polyhedra. Therefore CH(P' UQ)

can be computed in O(n) time using Chazelle's linear time algorithm for interseeting

two convex polyhedra [Cha92]. Since there are O(logn) iterations and as we have

• just shown, each iteration can be accomplished in O(n) time, the total time and space

46

•

•

•

complexity for tetrahedralizing P - Q is O(nlogn). Consequent1y Bem has shown

the following theorem.

Theorem 4.8 [Ber93]: Let P, Q be two convex polyhedra in 3D such that Q c P.

The (non-simple) polyhedron P - Q can be tetrahedralized in O(nlogn) time and

space.

We now present an algorithm to tetraheC1ralize a type-l box. The underlying idea

is to partition a type-l box into disjoint parts such that each part can be tetrahedral­

ized with a known algorithm.

Aigorithm 4.3

BEGIN
(1) Compute the convex hull of the rectilinear holes. Since the holes have the

same depth, we obtain a slab with holes and height h.

(2) Run Algorithm 4.1 to tetrahedralize the slab obtained in Step (1). Remove all

tetrahedra and triangulate the bottoms of those holes. We are left with a box

with a hole E such that the bottom of E is a planar triangulation.

(3) Run the algorithm by Bern to tetrahedralize the polyhedron we obtain in

Step (2).

END
Proof of Correctness:

According the algorithm, after Step (1) and (2) we have a rectilinear box with a

hole such that there are coplanar edges on the hole. We can think of this as a special

convex annulus such that the outer polyhedron is a 8-vertex rectilinear polyhedron

and the inner polyhedron is a convex polyhedron (with coplanar edges). We will show

that by running a simplied version of Bern's algorithm, this special convex annulus

can be tetrabedralized in O(n log n) time.

From the above discussion on Bern's algorithm, we can notice that in the whole

process of deleting caps, no edge is ever added between two vertices of Q. Therefore

as long as there is no vertex o(p coplanar with a face of Q, the above algorithm

works for the case when Q has coplanar vertices and edges.

The convex annulus we have is also special in the sense that P has only 8 vertices.

47

•
Therefore we only need to delete and tetrahedralize 8 caps, Le., we do not have to

compute and delete the independent vertices of P as in [Ber93]. Thus this step takes

O(n log n) time following the above discussion. 0

Complexity Analysis of Algorithm 4.3:

Step (1) takes O(nlogn) time since it involves computing the convex hull of a set

of reetilinear polygons. Step (2) takes O(n log n) time following Theorem 4.2. We

have just showed that Step (3) also takes O(n logn) time. Therefore Algorithm 4.3

l'uns in O(n log n) time and !inear space. We have therefol"C obtained the following

theorem.

Theorem 4.9: An n-vertex type-1 box can be tetrahedl'a!ized in O(nlogn) time and

!inear space.

•
Now we propose a quadratic time algorithm to tetrahedl'a!ize an n-vertex type­

2 box with k !ineariy ordered holes: p(1),p(2), ..., ,p(k). Although the holes have

a !inear order along l, if we tetrahedl'alize them incrementally we simply obtain an

O(n3) time algorithm. This is because that an incremental algorithm takes O(n)

step and each step involves tetrahedralizing a CH(PU Q) - P - Q alike polyhedron,

which takes l1(n2) time followingTheorem 4.7. We use a divide-and-conquer method

to obtain an O(n2) time algorithm.

Algorithm 4.4

BEGIN
(1) Tetrahedralize the region bounded by the holes by a divide-and-conquer lllethod,

Le., recursively tetrahedralize the regions formed by the lirst k/2 holes

and by the last k/2 holes, then combine the result by running Goodman

and Pach's algorithm.

(2) Run the algorithm of Bern to tetrahedralize the convex annulus we obtain in

Step (1).

END
Proof of Correctness:

The only thing we nccd to show is that Step (1) always works. The crucial

• point is that the holes are lineariy ordered. The lirst iteration will tetrahedralize

48

•

Figure 4.14: A U(2) polyhedron and the illustration for a convex cap.

the regions formed by CH(p(1),p(2)) - p(1) - p(2); CH(P(3),p(4)) - p(3) - p(4); ":;

CH(p(k - 1),p(k)) - p(k - 1) - p(k) (assume k is even). After the first iteration we

have k/2 convex holes which are stilllinearly ordered along 1. This property holds

• after any iteration. Therefore we can continue this recursive procedure until we end

up with only one convex hole. Step (2) is correct following the correctness proof of

Algorithm 4.3. [J

Complexity Analysis of Aigorithm 4.4:

The analysis of Aigorithm 4.4 is as follows: Step (2) runs in O(nlo~n) time

fol1owing Theorem 4.8. The complexity of Step (1) can he measured by the fol1owing

recurrence relation:

T(n) =2T(n/2) +O(n2
) =O(n2).

Therefore the time complexity of Aigorithm 4.4 is O(n2) and we have the following

theorem.

Theorem 4.10: An n-vertex type-2 box can he tetrahedralized in O(n2) time.

•
4.3 Tetrahedralizing the union of convex polyhe­

dra

49

•

•

•

/
C3

\
\

12 13

\
/

\

C2 -- "-
"-

C1
11

Figure 4.15: An interlocked U(3) polyhcdron.

In this section we investigate the tetrahedralization of a class of polyhedra which arc

the union of a set of convex polyhedra. A polyhedl'on is called a U(k) polyhedron

(U(k) for short) ifit is the union of k convex polyhedra. Thel'efore triviaIly, U(I) can

always be tetrahedralized. We will show that a U(2), U(3) polyhedron can always be

tetrahedralized, but a U(k) polyhedron (for k :::: 4) can not always be tetrahedralizcd.

Let P and Q be two convex poiyhedra such that P n Q is not empty. In order

to simplify the analysis of our algorithms in this section, we will not consider the

cases when P and Q do not have proper intersections, i.e., when P n Q is only

a point, a line segment or a polygonal face. Let ÔP, ôQ be the surfaces of P, Q

respectively. Let C, which will be called a crown hellceforth, be a simple closed

polygonal chain of ôP n ôQ. C separates ôP into two parts ôPil ÔP2 such that.

C = aPI n ap2• Let Sil 52 denote aIl the vertices on aPI, ôp2 respectively. We call

any one of CH(5d - CH(C), CH(52) - CH(C) a convex cap (with respect to Q) and

denote it by C(P, Q) (see Figure 4.14). We first show that a U(2) polyhedron can be

tetrahedralized in linear time.

Theorem 4.11: An n-vertex U(2) polyhedron can be tetrahedralized in lincar time.

50

•

•

•

ProoC: Suppose we are given a U(2) polyhedron which is the union of two convex

polyhedra (The two convex polyhedra P, Q do not have to be given explicitly). If

the given U(2) polyhedron is convex, then it is clear that it can be tetrahedralized.

Otherwise we know that there is at least one reflex edge. Choose a reflex vertex v

of the U(2) polyhedron. Since P, Q are ail convex v has to be a vertex of a crown

of P, Q, Le., v E ap, v E aQ. Therefore v can see the whole interior of P and Q,
hence the U(2) polyhedron given is a star-shaped polyhedron with v in its kernel.

Consequently, the U(2) polyhedron can be tetrahedralized in linear time. C

Now we start to show that a U(3) polyhedron can always be tetrahedralized.

Unlike for a U(2) polyhedron, we assume that the three convex polyhedra are also

given. The reason for attaching this condition is that our algorithm needs to identify

all the crowns of the given U(3) polyhedron. It is easy to see that a U(3) polyhedron

does not have to be simple. A U(3) polyhedron Pu Q URis called interlocked if and

only pnQnR = 0 while pnQ #: 0, PnR #: 0 and QnR #: 0 (see Figure 4.15). For

the following two lemmas, we assume that all the crowns have already been identified.

Lemma 4.12: An n-vertex convex cap can be tetrahedralized in O(nlogn) time.

ProoC: (Refer to Figure 4.14) By the definition, a crown C separates the surface of P

into two parts apI! ap2such that C = aPI n ap2. Therefore C c aPI. Consequently

CH(C) C CH(SI)' which immediately implies that CH(Sl) - CH(C) defines a

convex annulus. We know already that a convex annulus can be tetrahedralized in

O(n log n) time [Ber93]. Therefore this lemma is proved. C

Lemma 4.13: An n-vertex interlocked U(3) polyhedron can be tetrahedralized in

O(n logn) tim<J.

ProoC: (Refer to Figure 4.15) First of all, following Lemma 4.12 we can tetrahedralize

and remove all the convex caps (if any) in a total of O(n logn) time. Let 1 denote an

interlocked U(3) polyhedron with 110 convex cap, and let CI! C2 and Ca be its three

crowns. Then CH(CI),CH(C2) and CH(Ca) separate 1 into three disjoint parts,

1.,12 and la. Each ofCH(ldUCH(C2), CH(12)UCH(Ca) and CH(Ia)UCH(CI) is

a convex cap which can be tetrahedralized in O(n logn) time following Lemma 4.12.

C

51

•
We now present the following algorithm to tetrahedralize a U(3) polyhedron.

There are several cases of a U(3) polyhedron resulting from three conYex polyhedra.

The following tetrahedralization algorithm deals with each of these cases separately.

Aigorithm 4.5

BEGIN

(1) Test whether the given U(3) polyhedron is convex by traversing all the edges

of the polyhedron. If it is convex, tetrahedralize it directly and exit.

(2) Test whether there is a reflex vertex which is adjacent \Vith three reflex edges.

If there is such a vertex v then tetrahedralize U(3) by adding diagonals

(and consequently faces) from v to ail other vertices which are not adjacent

with v and then exit.

(3) Compute all the crowns as follows. Start with a reflex edge e = Vl'V2 and

identify the two faces h, 12 adjacent with e such that hEP, 12 E Q.

An edge of a crown is always determined by a face hEP and a face 12 E Q,

• therefore always keep hEP and 12 E Q that determine the current crown

edge. If el EPis adjacent with h and VI = el n h. then keep the face of P

which shares el with h as the new ft. If e2 E Q is adjacent with 12 and

VI = e2 n h, then keep the face of Q which shares e2 \Vith 12 as the

new 12 (see Figure 4.16).

Repeat this operation until V2 is reached, thus one crown has been computed.

Continue the above procedure until ail the reflex edges are traversed.

Consequently all the crowns have been computed.

(4) Remove and tetrahedralize ail the convex caps determined by the crowns

computed in Step (3) (using the results of Lemma 4.12).

(5) If the remainder is a convex polyhedron, then tetrahedralize it directly.

Otherwise, the remainder is an interlocked U(3) polyhedron. Use the

method in Lemma 4.13 to tetrahedralize it.

END

Proof of Correctness:
If a U(3) polyhedron is convex, then Step (1) identifies it and tetrahcdralizcs it

• directly in linear time. Ifthere exists a reflex vertex v of the U(3) polyhedron PUQUR

52

•

•

•

Figure 4.16: Illustration for the computation of a crown.

such that v E P, v E Q, and vER, then it is clear that the given Ua polyhedron is

st,ar-shaped hence can be tetrahedralized in linear time (see Figure 4.17). We know

that the union of auy two convex polyhedra cau only result in vertices which are

adjacent to at most two reflex edges. Therefore, if there exists a reflex vertex which

is adjacent with three reflex edges then such a vertex must belong to BP n BQ nBR.
Step (2) identifies this case aud tetrahedralize it in linear time.

After Step (2), if the algorithm does not stop then we know that every vertex of

the U(3) polyhedron belongs to at most two original polyhedra. In this case no two

crowns intersect each other. Step (3) identifies all the crowns. Following Lemma 4.12,

ail the convex caps of P,Q,R cau be tetrahedralized in O(nlogn) time. In Step (4),

ail the convex caps (if auy) are removed aud tetrahedralized. The remainder is either

a convex polyhedron (case (a)), which cau be tetrahedralized easily; or an interlocked

U(3) polyhedron with no convex cap (case (b)), which cau be tetrahedralized in

O(n log n) time following Lemma 4.13. Cl

Therefore we have established the following theorem.

Theorem 4.14: An n-vertex U(3) polyhedron cau be tetrahedralized in O(nlogn)

time.

Finally we give a counterexample to show that a U(4) polyhedroD does not always

53

•

(a)

Figure 4.17: Illustration for the proof of Theorem 4.14.

• d

c

•

a

Figure 4.18: The Schoenhardt polyhedron can be decomposed into 4 disjoint convex
polyhedra.

54

•
admit a tetrahedralization. The example is essentially based on 'the Schoenhardt poly­

hedron, which can be decomposed into four disjoint convex polyhedra: P(c, e, d, 11),
P(a, e, l, il, P(b, d, g, f) and P(a, b, c, g, h, i) (no two convex polyhedra intersect ex-. .
cept on their surface) (see Figure 4.18).

The detail of this example is given as follows. The coordinates of the vertices on

the bottom face are a = (0,_2?,O), b = (l,~,O) and c = (-1,4,0). Initially

we have a regular triangular prism such that the coordinates of the vertices on the

top faces are (0, -2f,2), (1,4,2) and (-1,~, 2). The Schoenhardt polyhedron is

obtained by rotating the upper face, which is a regular triangle, around its center by

a small angle 8 (see Figure 4.19). We have the coordinates of the vertices of the new

face as follows:

d - (_M cos(!. - 8) M sin(:!. - 8) 2)
- 36 '36 "

e = ef sin(8), -2f cos(8), 2) and

1= ef cos(i +8), 2f sin(i +8),2).

• We extend the plane HI through a, c, e, the plane H2 through a, b, 1 and the plane

H3 through b, c, d. We need to show that the common intersection of the half-pianes

Hï 1 Hi and Hi, together with plane Z 2: °and Z ::; 2, gives us a convex polyhedron

P(a, b, c, g, h, il. In fact we only need to show that the intersections ofHï with Z = 2,
Hi with Z =2 and Hi with Z = 2 are not empty.

Suppose that HI intersects with Z = 2 at line eh' such that h' is a point on dl,
H2 intersects with Z = 2 at line li' such that i' is a point on de and H3 intersects

with Z = 2 at line dg' such that g' is a point on el. We can show that the coordinate

of h' is

x =[2v'3sin(8)(cos(i +8) + cos(i - 8» - 2sin(i +8) cos(i -11)

-2cos(I1)(cos(i +11) +cos(i -11» - 2cos(i + l1)sin(i +11)]

/[3cos(i -11) +3cos(i +8) - v'3sin(i -11) + v'3sin(i +11)],

y =[2v'3sin(8)(sin(i + 11) - sin(i -11» - 2v'3sin(i + l1)cos(i -11)

-2cos(I1)(sin(i +11) - sin(i -11» +2v'3cos(i +11) sin(i -11»)

/[3 cos(i -11) +3cos(f +11) - v'3sin(f -11) + v'3sin(f + 11»).
Furthermore when 11 < 'Ir/6, h' always lies to the left of the perpendicular bi-

• sector of dl. Symmetrically, this holds for g' and i'. Therefore when we rotate the

55

•

Figure 4.19: The Schoenhardt polyhedron can be decomposed into 4 disjoint convex
polyhedra (top view).

•
upper face by an angle no greater than 1r/6 the intersection of Hï with Z = 2,

Hi with Z = 2 and Hij with Z = 2 is not empty; furthermore, this intersection

defines exactly the convex polyhedron P(a, b, c, g, h, il. Similarly we can show that

P(c, e, d, h), P(a, e,f, i) and P(b, d, g, J) are the intersections of certain half-planes

hence are ail convex polyhedra (Figure 4.18).

We have thus shown that the Schoenhardt polyhedron is the union of four convex

polyhedra. Therefore, we have the following theorem.

Theorem 4.15: A U(4) polyhedron does not always admit a tetrahedralization.

4.4 Some remarks

We followed in the footsteps of Goodman and Pach [GP8S] as weil as Bern [Ber93] by

showing in this chapter that certain special classes of simple and non-simple polyhedra

can always be tetrahedralized. We also provided efficient aigorithms for obtaining

• tetrahedralizations of polyhedra belonging to these classes. For the general problem

56

•

•

•

of deciding whether a solid terrain can be tetrahedralized, we are ncither able to

obtain a polynomial time algorithm, nor able to prove its NP-completeness. We list

it as an open problem.

Open Problem 3: What is the complexity of deciding whether a solid terrain can

he tetrahedralized?

Although we have presented a counterexample to show that a solid terrain can not

always he tetrahedralized, we are not able to present sucb an example for the c1ass

of solid Manhattan teIf~ins. We strongly believe the following conjecture is true:

4. Conjecture: Ali solid Manhattan terrains can he tetrahedralized without using

Steiner points.

We show in this chapter that a U(3) polyhedron can always be tetrahedralized

on the condition that the three convex polyhedra are also given. It would be "'!)ry

illteresting to know whether this latter condition can be removed or not.

Open Problem 5: Can a U(3) polyhedron always be tetrahedralized?

57

•
Chapter 5

The shortest watchtower and

related problems

The problem of computing the shortest watchtower of a given terrain, Le., a shortest

vertical line segment erected on the terrain such that the top of the line segment can

sel' l'very point on the surface (sel' Figure 5.1), was posed by deFloriani, Falcidieno and

Nagy [Sha88]. Sharir gave an O(n 10lf n) algorithm for solving the pl'Oblem [Sha88]

(n is the number of vertices of the terrain). He also posed the problem of computing

the shortest watchtower in O(n log n) time and made the conjecture that either the

fractiona/ cascading [CG86] or the hierarchica/l'epl'esentation [DK85J technique might

give us the solution.

In this chapter we show that we can solve the pl'Oblem in O(n log n) time by

storing additional information on Dobkin-Kirkpatrick's hierarchical l'l'presentation of

a convex polyhedron. In Section 5.2, we give the details of our algorithm. In Section

5.3, we discuss a variation of the shortest watchtower problem: computing the shortest

vertical distance between two convex, non-intersecting terrains. In Section 5.4, we

pose a set of closely related open problems for future research.

•

•

5.1 Introduction

58

•

•

•

v

Figure 5.1: The shortest watchtower of a polyhedral terrain.

5.2 Computing the shortest watchtower of a ter­

rain in O(nlogn) time

5.2.1 Preliminary

We begin by making the following definition. Given two line segments SI and S2 in

3D, if there is a verticalline 1such that SI ni ,p 0, s2nl ,p 0, then the vertical distance

between SI and S2 (denoted by d(s\, S2)) is the difference between the Z-coordinates

of SI ni and S2 n 1. Otherwise the vertical distance between the two segments is

defined to be infinity.

First we follow [ShaB8] to reformulate the original problem. Let h, ...,Jm be the

planar faces of S, and let 11'\, ••• ,1I'm be the planes containing these faces, a point v can

see the entire surface of S if and only if it lies above every 1I'j (m is the number of faces

of S and m ::; 2n - 4). It tum out that the intersection of all halfspaces defined by 1I'j's

is an unbounded convex polyhedron, and by using Muller and Preparata's algorithm

[MP79], it can be computed in O(nlogn) time (we denote it as L). Now the problem

59

•
is reduced to computing the shortest vertical distance between a polyhedral terrain S

with O(n) faces and another convex polyhedral terrain L with O(n) faces lying above

S. The shortest verticalline segment ü'iJ, with U E S, v E L, must satisfy one of the

following properties:

(1) v is a vertex of L;

(2) u is a vertex of Sj

(3) u lies on an edge of S and v lies on an edge of L.

The first two cases can be done in a total of O(n log n) time by applying any

O(log n) planar point location algorithm [Kir83, ST86]. The third case can be solved

by using a nested binary search, which has a running time of O(log2 n), to compute the

shortest vertical distance between a line segment e and an arbitrary convex polyhedron

P (assume that e and P does not intersect) [Sha88]. We improve this bound to

O(logn), thus improving the overall bound to O(nlogn).

Throughout this chapter, we use P(q) to denote a point on P (q is the vertical

• projection of P(q) on the plane Z =0). We use e to denote a line (line segment) on

the plane Z =0 and its vertical projection on Pis denoted by P(e). (Similarly we

use e(q) to denote a point on a line e.) Assume P is an n-vertex convex polyhedron

and its vertical projection is R, which is a bounded planar subdivision. Let e = ab

be an edge of S, e(t) be any point on e and P(t) is the point (on the lower hull) of P

lying directly above e(t). Let

F:(t) =d(P(t), e(t)).

We have the following observation:

Observation 5.1: F:(t) is a piecewise linear convex function.

5.2.2 The hierarchical representation of a convex polyhe­

dron and its extension

•
Now we give a brief description of Dobkin-Kirkpatrick's hierarchical representation

of a convex polyhedron [DK85]. Let P be a polyhedron in 3D with vertex set V(P),

60

•

•

•

edge set E(P) (IV(P)I, IE(P)I E O(n)). A sequence ofpolyhedra, H(P) =Pb ... , Pk, .

is said to be a hierarchical representation of P if

(i) PI = P and Pk is a 3-simplex (Le., a convex polyhedron whose size is constant)j

(ii) Pi+1 C Ph for 1 :s; i < kj

(iii) V(Pi+d C V(Pi)j and

(iv) the vertices ofV(Pi)-V(Pi+!) form an independent set (i.e., are non-adjacent)

in Pi.

Furthermore, as shown in [DK85), there exists a constant c = 11 such that for

a convex polyhedron P in 3D there exists a hierarchical representation of degree

at most c, O(log n) height, and O(n) size and such li. hierarchical representation

can be constructed in O(n) time. We show briefiy in the following paragraphs the

procedure to construct such a hierarchical representation. Further details can be

found in [Kir83, DK85].

Suppose the faces of P have already be triangulated. Since the surface of P can be

represented as a planar graph, P has at most 3n - 6 edges (fo11owing Euler's formula).

The idea is as fo11ows, each time we delete a constant factor of the number of vertices

in the current convex polyhedron to obtain a coarser one. We obtain k =O(log n)

convex polyhedra (Po, Pb ..., Pk), such that,

(1) Po is the given convex polyhedron P.

(2) PHI is obtained from Pi such that the number of vertices in Pi+! is at most a

constant fraction of that in Pi (we show later that this constant is 23/24).

(3) Each face of Pi+! intersects at most a constant c offaces in 1>;.

We use the independent set idea to achieve our goal. A set of vertices is inde­

pendent if no two vertices of the set are adjacent. We show how to find a suitable

independent set of Pas fo11ows (one which has at least n/24 vertices). Since P has

at most 3n - 6 edges the sum of all the vertex degrees is at most 6n - 12. Then the

average vertex degree has to be less than 6. By the pigeon-hole principle, there are

at least n/2 vertices whose degree is no more than 11. We lump these vertices into

a set ca11ed Ill, We pick a vertex VI in the set Ill. by the definition of independent

set, all of its neighbors (which is at most 11) can not be in the independent set. This

means that for every 12 vertices in Ill. we can obtain at least 1 vertex that is not

61

•
adjacent to another vertex in Ill, Therefore, we can find an independent set 1 with

size 1/12 that of III or at least n/24 in size.

By eliminating the n/24 vertices of 1 from the current convex polyhedron (and all

the edges incident at those vertices) and computing the convex hulls of the "holes"

resulting from the deletion of these independent vertices, we can reduce the total

number of vertices by a constant factor of 1/24 to have the next coarser convex

poiyhedron. The independent set of n/24 vertices from P can be found in 0(11) time;

furthermore, computing the convex hull of the "holes" resulting from the deletion

of the independent vertices takes O(n) time (since each convex hull has a constant

number of faces).

The total time and space complexity of constructing a hierarchicalrcpresentation

of P is therefore:

o (n + ~~n + on2n + (~n3 n +) =0 C_n#) =0(2411) =0(11).

• Because each time we extract a constant factor of vertices out of the previous convex

polyhedron, the number of levels of this hierarchical structure is O(log II). From this

construction we have the following observation.

Observation 5.2: There are at most 11 edges of Pi intersecting any supporting plane

of PHI'

Suppose we already have the (reverse) hierarchical representation Pk, ...,Pi+l ,

Pi, ..., Pl (Pl = P) for P. The shortest vertical distance between Pi and an arbitrary

!ine segment e = ab (denoted by dmin(ab, Pi)) is defined as the minimum vertical

distance between ab and rs over ail ï'S E Pi.

Suppose Pi+! and an edge xy of Pi+! are given such that d(ab, xy) is a breakpoint

(I.e., a vertex) of the distance function F:;+I, then two neighboring breakpoints of

d(ab,xy) must be d(el, ab) and d(e2, ab) where el is an edge of one triangular face

along xy and e2 is an edge of the other triangulaI' face along xy. In Figure 5.2,

el = XW, e2 =]jE. We say that such a pair (eh e2) is a local pair of xy. We first show

the fol1owing lemma.

• Lemma 5.3: Assume (xw, yz) is a local pair of xy in Pi+!' Then it is not a local

62

•

•
w

b

•

Figure 5.2: Illustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 1).

63

•

•

•

a

b

Figure 5.3: ll1ustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 2).

pair of xy in Pi if and only if there is a p' E V(Pi) - V(Pi+d such that both p' x and

p'y belong to E(Pi).

Proof: When we construct the hierarchical representation of PHI from Pi we keep

deleting independent vertices with degree at most 11. The deletion of such a vertex

r gives us a hole and we then compute the convex hull of the hole (actually a part of

the convex hull which conforms to the convexity of Pi. wc will cali it lower llull of r

and denote it by H(r) henceforth). Now we are actually reversing this order.

If there is ap' E V(Pi) - V(Pi+d such that both p'x and p'y belong to E(Pi) then

we have the following two cases (without loss of generality we refer to Figure 5.2 and

suppose we only add p' back to PHI):

(1) xy is a boundary edge of H(p').

(2) xy is not a boundary edge of H(p').

In the first case z has to be on the boundary as weil, therefore the face t::.xyz can not

be a face of Pi. This implies that neither xz nor yz can be a neighboring breakpoint

64

•

•

•

of xy for the distance function between e and Pi. In the second case if we add p' to

PHI then both of the faces t:.xyz and t:.xyw do not belong to Pi. Hence xy is not an

edge of Pi and the result trivially holds (see Figure 5.3).

If there is no such p' E V(Pi) - V(PHd sucb that both p'x and p'y belong to

E(Pi) then both of the faces t:.xyz and t:.xyw are faces of Pi. Hence < xw, yz >
remains a local pair of xy in Pi. 0

With this result we proceed to prove the following lemma.

Lemma 5.4: Assume the function F!;+1 (t) achieves its minimum at edge xy of P;+h

then dmin(ab, Pi) is either equal to dmin(ab, Pi+!) or the shortest vertical distance

between ab and pq such that p E V(Pi) - V(Pi+d, q E V(Pi+d, pq E E(Pi) - E(Pi+l)

and fJj!,jJfl E E(Pi) - E(Pi+d, if such p, q exist.

Praof: Note that we have two important prop!lrties here:

(1) the distance function F!;+I(t) is convex, and

(2) if we add a vertex p' E V(Pi) - V(Pi+d (along with its adjacent edges and

faces) to P i+!, the resulting polyhedron is still convex. (By adding all these

vertices we finally obtain Pi.)

We prove Lemma 5.4 by contradiction. It is obvious that if dmin(ab, Pi) is not equal to

dmin(ab, PHI) then dmin(ab, Pi) < dmin(ab, Pi+!) and dmin(ab, P;) must be the vertical

distance between ab and a line segment pq such that p E V(Pi)- V(Pi+!), q E V(Pi+l)

and jJ7j E E(Pi) - E(Pi+d. The crucial point is that if such p, q exist then both px

and PiJ belong to E(Pi) - E(Pi+!).

Suppose our claim is false, i.e., dmin(ab, Pi) < dmin(ab, P;+d and it achieves the

minimum at p'q' E E(Pi) - E(PHd such that p' E V(Pi) - V(Pi+I), q' E V(Pi+!)

and at leastone of p'x and p'y Il E(Pi) - E(Pi+!).

Assume we add only p' (and the corresponding edges adjacent to it) to Pi+!.

According to the above discussion the resulting polyhedron p' is still convex. Since

we only add p' to Pi+! and at most one of p'x and p'y belongs to E(Pi) - E(Pi+!),- - ,. .
at most one of p'x and p'y belongs to E(P). By Lemma 5.3 the two faces t:.xyz

and t:.xyw along the edge ~ are faces of Pi (hence are faces of p') (Figure 5.3).

Now let us consider the distance function between e =ab and p'. It has two local

65

•

•

•

minima: d(ab, xy) (this is equal to dmin(ab, Pi+!), since -6.xyz and -6.xyw are faces

of p', d(ab,xy) is a local minimum), and d(ab,p'q') (this is the global minimum by

assumption). However this contradicts Observation 5.1. 0

Lemma 5.4 enables us to check only a small number of edges of Pi when computing

dmin(ab, P;). We show in the following lemma that this numbcr is actually a. constant.

Lemma 5.5: If dmin(ab, Pi+d is known, then to compute dmin(ab, Pi) we nced only

check at most 22 edges in E(Pi) - E(Pi+!) in constant time.

Proof: Following Lemma 5.4, in order to compute dmin(ab, Pi) we need to find ail

p E V(Pi) - V(Pi+1) such that both px and py belong to E(Pi) - E(Pi+d. It turns

out that there are at most two such p's. We have two cases: (1) xy E Pi and (2)

xy 1/. Pi.

In Case (1) we might have such a p' to the right of the !ine xy and a pli to the left

of the !ine xy such that ail edges incident upon p' in E(Pi) interseet the supporting

plane -6.xyz and all the edges incident upon pli in E(Pi) intersect the supporting

plane -6.xyw. By Observation 5.2, there are at most 11 edges incident to p' (P").

Therefore in total we have at most 22 candidate edges. To compute dmin(ab, Pi) we

simply compute the minimum vertical distance bctween ab and these 22 edges and

choose the smaller of this minimum and dmin(ab, Pi+!). This gives us dmill(ab, Pi). It

is clear that dmin(ab, Pi) is computed in 0(1) time.

In Case (2) we have fewer candidates, since there is only one such p. Ali of the

edges incident to p (including px,py) belong to E(Pi) and they ail intersect with

any supporting plane through xy. Again by Observation 5.2, there are at most

11 candidate edges. Consequently we can compute dmin(ab, Pi) by computing the

minimum vertical distance between ab and these 11 edges in O(1) time.

Although we know that at most two such p's exist from the above discussion, in

order to design an efficient algorithm, we need to find out p E V(Pi) - V(Pi+d in

constant time. We can clarify this by storing additional information in the hierar­

chical representation of P without increasing the overall time and space bound when

computing the hierarchical representation of P. In the process of deleting r E V(Pi)

to obtain P i+b we compute the H(r). For each edge of H(r) we assign a parent node

66

•

•

•

(r, i) to it. In this process, no edge can have more than two level-i parent nodes (a

boundary edge of the hull can have two such parent node since it can be a boundary

edge of two lower hulls). Therefore given xy E E(Pi+1) we can retrieve its level-i

parent nodes in V(Pi) - V(Pi+!) in 0(1) time. From these parent nodes (at most 2),

we can Hst the edges (at most 22) incident to them in E(Pi) in constant time. 0

Lemma 5.4 and Lemma 5.5 enable us to design an algorithm for an arbitrary edge

e and a convex polyhedron P such that the algorithm returns the shortest vertical

distance between e and P in O(log n) time. We first give a revised algorithm for

computing the hierarchical representation of a convex polyhedron by storing i-level

parents for all edges in 1';+!.

Aigorithm Revised-Hiemrchical-Representation(P);

BEGIN

FOR i = 1 to k UNTIL lPk+d = 3 DO

(1) Compute the hierarchical representation from Pt to Pi+! using the independent

vertex deletion of Kirkpatrick [Kir83) and Dobkin-Kirkpatrick [DK85].

(2) For eoch vertex r being deleted in V(Pi), compute H(r).

(3) Associate r with every edge of H(r), these are the level-i parent vertex

for these edges in E(Pi+d.

END

Suppose we already have a revised version of the hierarchical representation of a

convex polyhedron P. The following algorithm computes the shortest vertical distance

between P and an arbitrary Hne segment (or Hne) e in O(log n) time. For simpHcity

we assume that e does not intersect with P and the vertical distance between e and P

is not infinity at this stage. It is known that whether a Hne or a Hne segment intersects

with a convex polyhedron P or not can be detected in O(logn) time [DK90). And we

can test whether the vertical distance between e and P is infinity in O(logn) time by

detecting the intersection of the planar projection of P, which is a convex polygon,

with the planar projection of e. In foct we can generalize the definition of the distance

between two Hne segments in 3D such that the following algorithm can also detect

the intersection of e and P, i.e., we do not have to make the assumption that Pis

67

•

•

•

above e. The generalization is given after the following algorithm.

Algorithm 8hortest- Vertical-Distance(e, PJ;
BEGIN

(1) Set i = k.

(2) Compute dmin(e, Pi+d, suppose it is equal to d(e, XV) for some xy E PHI'

(3) List ail the edges incident to the level-i parent nodes of xv. These are the

candidate edges of Pi for computing dmin(e, Pi)' Compute the minimum

vertical distance between e and all of these edges. Compare it with

dmin(e,Pi+l) = d(e,xy), the smaller of the two is dmin(e,Pi). Record the

new xv.
(4) Continue (3) until dmin(e, Pd is obtained, output dmi..(e, Pd.

END

The correctness of the above algorithm directly follows from Lemma 5.4 and

Lemma 5.5. We now show how to generalize the distance between two line seg­

ments in 3D and how to modify the above algorithm to make it work for the case

when e and P intersect. Given two line segments sand e in 3D, if there is a vertical

line 1such that sni is higher than en 1i: 0, then the signed vertical distance between

sand e is defined as D(s, e) = d(s, el, otherwise D(s, e) = -d(s, el. With this new

definition, even if e and P intersects Observation 5.1 still holds (without loss of gen­

erality we only consider the case when e intersects with the lower convex hull of P or

it lies below the lower convex hull of Pl. With Observation 5.1, we can use Lem1l1as

5.4 and 5.5 to obtain a witness of the intersection of e and P. If the shortest vertical

distance between e and PHI is positive and at the next step the shortest vertical

distance between e and Pi becomes non-positive, then we stop and report the point

of Pi (which achieves the shortest vertical distance between e and Pi) as a witness of

the intersection of e and P. Consequently we have the following theorem.

Theorem 5.6: After an O(n) time and space preprocessing on P, we can either

report the intersection of P with a line segment (or a line) e by giving a witness, or

report that the vertical distance between e and P is infinity, or compute the shortest

vertical distance between e and P in O(log n) time.

68

•

•

•

We can further generalize the above algorithm to compute the shortest distance

between a convex polyhedron and a line segment (or a line) along a given direction

d =< a, {J, "{ > where aZ + {Jz + "{Z = 1. In this sense the shortest vertical distance

is the special case when d =< 0,0,1 >. We need o~ly perform an orthogonal trans­

formation to obtain a new coordinate system < X', y' ,Z' > such that in the new

system d' =< 0,0,1 >. This is done as follows, we have

A
~ Jx=x,

and we know that Xl =< 0,0, 0>, x'l=< 0,0, 0> and xz~< a, {J, "{ >, x'z=< 0,0,1 >

satisfy the above equation. But since A is a 3x 3 orthogonal matrix containing nine

variables, with these information we have an infinite number of such orthogonal ma­

trices A. To simplify things we set ë =< -{J,a,O >, which is perpendicular to d, as

the unit vertor along X'. Then xa =< -(J,a,O >, x'a =< 1,0,0> also satisfy the

above equation. With this information, we have a unique orthogonal matrix A.

Now we obtain a representation of the convex polyhedron P and the line seg­

ment e in the new coordinate system by performing the orthogonal transformation

A. We represent them as PA and eA respectively in the new system. Then we run

the 8hortest- Vertical·Distance algorithm to compute the shortest vertical distance be­

tween PA and eA. This gives us the shortest distance of P and e along the direction

d =< a,{J,"{ >. Therefore we have the followingtheorem.

Theorem 5.7: After O(n) time and space preprocessing on P, we can either report

the intersection of P with a line segment (or a line) e by giving a witness, or report

that the distance between e and P along a given direction d =< a, {J, "(> is infinity,

or compute the shortest distance between e and P along Ci in O(logn) time.

Finally we give an O(n log n) time algorithm for solving the shortest watchtower

problem.

69

•

•

•

Algorithm Shortest- Watchtower(S);

BEGIN

(1) Compute the intersection of the halfspaces defined by each face of the terrain

by using Muller and Preparata's algorithm [MPi9J. This gives us the

unbounded convex polyhedron L.

(2) Compute the revised hierarchical representation of L.

(3) For every vertex v of S, perform a point location to compute ail the vertical

distances üV such that v is a vertex of S. Compute the minimum

(with the location) among ail of these distances,

(4) For every vertex u of L, perform a point location to compute ail the vertical

distances uv such that u is a vertex of L. Compute the minimum

(with the location) among ail of these distances.

(5) For every edge e in S, IUn Compute-Shortest-Distance(e,L); compute

the minimum (with the location) among ail of these distances.

(6) Among the three minima obtained in Steps (3), (4) and (5) choose the

minimum (with the corresponding location). Output it as the shortest

watchtower of S.

END

Therefore we have the main result of this chapter.

Theorem 5.8: Aigorithm Shortest· Watchtower(S) computes the shortest watchtower

of a polyhedral terrain S with n vertices in O(nlog n) time.

5.3 Computing the shortest vertical distance be­

tween two convex terrains

A variation of the shortest watchtower problem, pointed out by Sharir, is to com­

pute the shortest vertical distance between two arbitrary, non-intet'secting polyhedral

terrains. Using a technique called generalized point location, Chazelle and Sharir

obtained an O(n1.999878) algorithm for the problem, which beat the trivial O(n2) time

bound [CS90]. Chazelle et al. [CEGS89] also gave a randomized algorithm witb time

70

•

•

O(n4/ 3+') (for any E > 0) for solving this problem. It is very interesting whether we

can obtain a faster, deterministic algorithm.

The second problem we are interested in is the problem of computing the short­

est vertical vertical distance between two non-intersecting convex polyhedra (or two·

convcx terrains which are convex in opposite direction). We show that if the revised

hierarchical representation of the two convex polyhedra is known, we can compute

the shortest vertical distance between the two convex polyhedra in O(loi n) time.

By generalizing the distance function, we can detect the intersection of two convex

polyhedra in O(log2 n) time (after O(n) time and space preprocessing). This achieves

the same bound as Cole's similar list method [CoI86], and Dobkin and Kirkpatrick's

hierarchical representation method [OK85, OK90].

The underlying idea of our method is to apply the revised hierarchical representa­

tion of a convex polyhedron. It is known that the vertical distance.function between

two convex polyhedra is convex [Roc70]. With this property we show that when the

shortest vertical distance between Pi and Qi is known, we need only check the shortest

vertical distan.ce between at most 22 edges E E(Pi_1) - E(Pi) and Qi, which can be

done in O(logn) time by Algorithm Shortest- Vertical-Distance(e, Pl. Consequently,

we have shown that the shortest vertical distance between two preprocessed convex·

polyhedra P, Q can be computed in O(loi n) time. By generalizing the definition of

the vertical distance function, we also solve the version when P, Q intersect.

We first list a topological relationship between two given convex polyhedra P, Q

in 30 (Figure 5.4). Cases (1) and (2) can be detected easily and are thus i.gnored.

Without loss of generality, we only consider case (3) (hence (4) and (5)). For simplic­

ity, we only consider the lower hull of P and the upper hull of Q and still use P and

Q to represent them henceforth.

We first follow Section 5.1 and define certain distance functious between a convex

polyhedron and a given convex polyhedron. Let Ptt) be any point on the surface of

P and Q(t) be the (vertical) projection of Ptt) on the surface Q. We define

FJ'(t) = d(P(t), Q(t)),

• as the distance function between P and Q. By a well-known result in convex analysis

71

•

•

Case (1)

Case (3) The lower hull of P is above

the upper hull of a.

Case (2)

p

Case (4) The lower hull of P intersects

the upper hull of a.

•

Case (5) The lower hull of P is below the upper hullef a.

Figure 5.4: The topological relationship betwecn two convcx polyhcdra.

72

.',..,

•

•

•

[Roc70] we have the following lemma.

Lemma 5.9 [Roc70]: FG(t) is a piecewise !inear convex function over t.

Suppose we already have the (reverse) hierarchical representation Pk, , P;+1l

Pi, , PI (PI = P) for P and the (reverse) hierarchical representation Qm' , Q;+1l

Qj, , QI (QI = Q) for Q. Without loss of generality we also assume that k :::; m.

The minimum vertical distance between Pi and Qj (denoted by d(Pi,Qj» is defined

as the minimum vertical distance between

(1) ab E Pi and TS E Qj over all ab E Pi and TS E Qj; or

(2) a vertex Vi E Pi and a face li E Qj; cr

(3) a vertex Vj E Qj and a face fi EPi.

The idea of our algorithm is to essentially start with i = k and compute the

shortest vertical distance between Pi and Qi. Then we reach the step of Pi- 1 and

Qi-I in two substeps: < Pi, Qi > => < Pi-Il Qi > => < Pi-Il Qi-I > (i.e., alternatively

decreasing the indices Pi and Qi). We show that each of these two substeps takes

O(log n) time. Without loss of generality, we only give a detailed description of the

fi!'5t substep. Given Pi and Qi, suppose d(ab,xy) is the shortest distance between

Pi and Qi such that ab E Pi and xy E Qi. Furthermore, assume Pi(o) E ab and

Qi(O) E xy realize the shortest vertical distance between Pi and Qi, the two vertices

adjacent to ab is c, d and the two vertices adjacent to xy is z, w.

Lemma 5.10: Suppose d(ab,xy) is the shortest vertical distance hetween Pi and

Qi such that ab E Pi and xy E Qj. Then ~he shortest vertical distance between

Pi-l and Qi is either equal to d(ab, xy) or the shortest vertical distance hetween

Qi and pq E E(Pi - l) - E(P;) such that p E V(Pi- 1) - V(Pi), q E V(Pi), and

pa,pb E E(Pi-d - E(Pi), if such p, q exist.

Proof: Note that we have two important properties here:

(1) the distance function FC: (t) is convex; and

(2) if we add a vertex p' E V(Pi_l) - V(Pi) (along with its adjacent edges

and faces) to P;, the resulting polyhedron is still convex. (By adding all these

vertices we finally obtain Pi-I.)

Now we prove Lemma 5.10 by contradiction.

73

•
0'

a

y

Figure 5.5: Illustration for the proof of Lemma 5.10.

• It is obvious that if d(Pi- 1, Qi) is not equal to d(Pi,Qi) then d(Pi- b Qi) < d(Pi,Qi)

and d(Pi - b Qi) must be the vertical distance between an edge of Qi and an edge

pq E E(Pi- 1) - E(Pi) such that p E V(Pi-d - V(Pi), q E V(Pi). The crucial point

is that if such p, q exist then both pa and pb belong to E(Pi-d - E(Pi)'

Suppose our daim is false, Le., d(Pi-l, Qi) < d(Pio Qi) and it achieves the mini­

mum at p' q' E E(Pi-d - E(Pi) such that p' E V(Pi-d - V(P;), q' E V(P;) and at

least one of p' a and p'b ~ E(Pi-d - E(Pi)'

Assume we add only p' (and the corresponding edges adjacent to it) to Pi. Ac­

cording to the above discussion the resulting polyhedron p' is still convex. Since we

only add p' to Pi and at most one of p' a and p'b belongs to E(Pi- d - E(Pi), at most

one of p' a and p'b belongs to E(P'). Because of that the faces of Pi incident to ëi1i,
Aabd and Aabe, are faces of p' (see Figure 5.5). Assume p' (0') E p' and Qi(O') E Qi

realize the shortest vertical distance between p' and Qi.

Now let us consider the distance function bctween p' (00') and Qi. It has two local

minima: d(ab,xy) (this is equal to d(Pi, Qi), since Aabe and Aabd are faces of p',

d(ab,xy) is a local minimum), and d(P'(O'),Qi(O')) (this is the global minimum by

• assumption). But this contradicts the fact that the shortest vertical distance function

74

•
between two convex polyhedra is always convex. 0

•

Lemma 5.11: Given d(P;, Qi), to compute d(P;_i> Q;) it is sulficient to check the

shortest vertical distance between at most 22 edges.in E(P;-l) - E(P;) and Q;. Fur­

thermore, this can be done in O(log n) time.

Proof: In Lemma 5.10 we clarify the (relatively hard) case when d(P;, Q;) is realized

by a pair of edges of P; and Q;. If d(P;, Qi) is realized by a vertex V; E P; and a face

fi E Q;, then in O(logn) time we can find the polyhedron (with at most 11 edges

of E(Pi-tl- E(P;)) which is below ft, where ft is the supporting plane of P; which

is parallel to f; [DK90). Thus d(Pi-i> Qi) is equal to either d(v;'/i) or the shortest

vertical distance between the 11 edges of E(P;-l) - E(P;) below ft (if exist) and Q;.

The case when d(Pi, Q;) is realized by a vertex V; E Qi anl \ " face f; E 1'; can be

clarified symmetrically. Following Lemma 5.5 and Theorem 5.6, O(log n) time sulfices

to compute d(Pi-h Q;). 0

Lemmas 5.10 and 5.11 enable us to design an algorithm for computing the shortest

vertical distance between two preprocessed convex polyhedra P and Q in O(lol? n)

time. We simply start from Pk and Qk until we reach Pl and Qi> using O(logn)

steps, each taking O(logn) time. Similar to what we have done in SEction 5.2; we

can adopt the generalized vertical distance function (which is also convex) and apply

Lemmas 5.10 and 5.11. Therefore we can also deal with the case when P, Q intersects.

Consequently we have the following theorem.

Theorem 5.12: ACter O(n) time and space preprocessing on P,Q, one can either

report the intersection of P with Q by giving a witness, or report that the vertical

distance between P and Q is infinity, or report the shortest vertical distance between

P and Q in O(log2 n) time.

We can generalize the above algorithm further to compute the shortest distance

between two convex polyhedra along a given direction. The details, being identical

to those of Theorem 5.7, are therefore omitted.

Corollary 5.13: ACter an O(n) time and space preprocessing on P,Q, one can either

• report the intersection of P with Q by giving a witness, or report that the distance

75

•

•

•

between P and Q along a given direction cl = < a, (J, 'Y > is infinity, or report the

shortest distance between P and Q along cl in O(lolf n) time. [J

5.4 Some remarks

Although we have successfully solved the shortest watchtower problem in O(nlogn)

time, there are nonetheless sorne related problems remaining.

Open Problem 6: What is the lower bound for computing the shortest watchtower

of a polyhedral terrain? Does the information that L is a special convex polyhedron

help improving the O(nlogn) upper bound? We strongly be!ieve that l1(nlogn) is

the lower bound since in our algorithm there are two steps with an l1(n log n) lower

bound (Le., computing the intersection of n half spaces, locating n points in a plaDllr

triangulation). Proving the l1(nlogn) lower bound or giving an o(nlogn) time algo­

rithm remains to be an open problem. On the other hand, another related problem of

computing the lowest watchtower of a polyhedral terrain, Le., a !ine segment erected

on the terrain 81lch that the top of the watchtower can see the V/hole terrain and the

Z-coordinate of the top is minimized, can be formulated as a linenr programming

problem and can thus be solved in !inear time.

Open Problem 7: For the problem of computing the shortest vertical distance

between two non-intersecting terrains, is it possible to obtain a faster, detenninistic

algorithm?

Open Problem 8: For the problem of intersection detection between two convex

polyhedra, is it possible to obtain an o(10g2 n) query bound (even at the cost of

increasing preprocessing time and space)? This is one of the fundamental problems

in intersection detection. It is very interesting that no o(lolf n) query bound has

been achieved although three different methods have been tried. Is 11(lolf n) a lower

bound for this problem?

76

•

•

•

Chapter 6

Guarding polyhedral terrains

Victor Klee posed the problem of determining the minimum number of guards sufli­

cient to cover the interior of an n-sided art gallery (polygon) in 1973. Chvatal showed

that l~J guards are suflicient and somztimes necessary to cover the interior of an n­

sided art gallery using a lengthy combinatorial argument [Chv75]. Subsequently Fisk

(Fis78] gave a concise and elegant proof using the fact that the vertices of a triangu­

lated polygon may be three-colored. Avis and Toussaint [AT8l] used Fisk's proof to

design an O(n logn) algorithm for placing the guards. Recently, Kooshesh and Moret

[KM92] showed that the guards can be placed in linear time. Although many similar

problems have been studied in computational geometry [D'R87, She89, She92], little

is known about guarding an object in three dimensions. In this chapter we present

some results on guarding the surface of a polyhedral terrain.

The problem of guarding a polyhedral terrain was first investigated by deFloriani,

et al. [dFP+86]. They showed that finding the minimum number of vertex guards

could be done using a set covering algorithm. Cole and Sharir (CS89] showed thaf

the problem was NP-complete.

In this chapter, we first show that the problem of findiI!J the minimum number of

edge guards for a polyhedral terrain is NP-complete. Then we show that liJ vertex

guards are always suflicient and sometimes necessary to guard an n-vertex terrain. We

also present a linear time algorithm for placing l3SR Jvertex guards to cover a terrain.

With respect to edge guards, we establish that l (4~;4)J edge guards are sometimes

77

•
necessary to guard the surface of an n-vertex terrain. The sufficiency result of L~J

edge guards is proved by Everett and Rivera-Campo (ERC92). Finally, we present a

linear time algorithm for placing L2;J edge guards to coyer a polyhedral terrain. Re­

ducing the gap between sufficiency and neccssity for edge guards and finding efficient,

practical algorithms to achieve the known bounds remain open problems.

We begin by reviewing sorne of the terminology used throughout this chapter.

Recall that a polyhedral terrain (or terrain) T is a connected polyhedral surface

in R3 with n vertices such that the intersection of T with every verticalline is either

a point or it is empty. This immediately implies that there exists a planar guph T'
associated with the terrain whose embedding is the orthogonal projection of T on

the XY-plane. Consequently, evel")' component x (a vertex, edge or a face) of T has

a corresponding component x' in T'. Two points a, b on or above T are said to be

visible if the line segment ab does not intersect any point strictly below T.

Throughout this chapter, we only consider problems conceming vertex and edge

• guards. A vertex guard is a guard that is only allowed to be placed at the vertices of

T. An edge guard is a guard that is only allowed to be placed on the edges of T. A

point x on T is said to be visible to an edge if there exists a point y on the edge such

that x and y are visible.

6.1 Minimum edge guarding a polyhedral terrain

is NP-complete

In this section we show that the problem of deciding wheiùer or not a set of edge

guards (including two endpoints) can coyer the surface of a terrain is NP-complete.

The NP-hard proof is achieved by modifying the proof of Cole and Sharir for proving

the NP-completeness of the minimum vertex guarding a polyhedral terrain prob­

lem, which uses a reduction from SATISFIABILITY, a famous NP-complete problem

[Co071).

•
78

•

•

•

SATISFIABILITY

INSTANCE: A set of variables Xl, ••• , X n and a CNF formula F with clauses

CI, ... , Cm over XI> ••• , X n.

QUESTION: Is there a truth assignment of F?

Essentially we first follow [CS89] to construct a polyhedral terrain. Then we

modify the construction of pits to prove our result. Start with a horizontal plane,

erect n - 1 walls and dig sorne pits. The n - 1 parallel walls separate the plane

into n rows, where each row corresponds a variable. The pits all lie within rows.

There are 2m pits per row and they are arranged in a circular fashion (see Figure 6.1

(a), which displays the view of a row from the above). The upper rims of the pits

are ail the same, and the rims of each pair of adjacent pits in the same row have a

cornmon vertex, which we cali a peak vertex. The modification is to first construet

the pits differently such that the rims of each pair of adjacent pits in the same row

have a common edge, which we cali a peak edge (peak for short) (see Figure 6.1 (b)).

We create m columns, perpendicular to the rows, one per clause. Each column cuts

through ail of the walls. The idea is that only from a peak edge are the interiors of

the two adjacent pits completely visible, and only from the boundary or interior of

a pit can we see the whole pit. This can be achieved by making the pit very deep

relative to the height of the walls (see Figure 6.2). The rest of the construction is

exactly the same as that of Cole and Sharir [CS89].

In order to see the 2m bottoms of all the pits in a row, at least m edge guards

will have to be needed. Moreover, let el, ... , e2m be the peak edges in some row. Then

to be able to view ail the pits in this row with exactly 2m edges, they will have

to be placed at every other peak edge (i.e., either at the odd-numbered peaks or at

the even-numbered peaks of that row). Assume row r corresponds to variable X"

the choice of even peak edges for the guarding edges in r will correspond to setting

x. = true, while the choice of odd peak edges will correspond to setting X. = false.

If clause Cj of formula F does not contain X. or x., then the peaks P2j-bP2j in row

rare placed outside of any column; if Cj contains X. (resp. x.), then peak edge P2j

(resp. P2j-l) is placed inside the jth column while P2j-1 (resp. P2j) is placed outside

of any column. We can arrange this by varying the lengths of the pits in the rth row.

79

•

(a)

peak edge

/~j:. ~

peak vertex

I~

•

(b)

Figure 6.1: A view of the pits in a row.

•
80

•
pit

L----,

wall wall

•

•

Figure 6.2: The pit can only be guarded by the edges on its rim (or inside it).

A wall has a triangular cross-section (parallel to columns). Thus a side of a wall

can be seen entirely from any peak edge in either of the adjacent rows. Therefore, no

additional edge guards are required for viewing the sides of the walls parallel to the

rows. We show in Figure 6.3 a terrain for the following formula

Thus the reduction results in a polyhedral terrain 0 with O(mn) faces which requires

at least mn edge guards to see all of it. Moreover, if exactly this number of edge

guards is used, all of them must be placed at peaks in the manner described above.

Furthermore, we must have at least one edge guard per column. This occurs if

and only if formula F is satisfiable. We have thus shown that SATISFIABILITY is

reducible to the problem of determining whether a polyhedral terrain can be guarded

from a given number of edge guards in polynomial time. Therefore the latter problem

is NP-hard.

However, unlike the problem of minimum vertex guardillg a terrain, the problem of

minimum edge guarding a terrain is not clearly in NP. We present below a polynomial

time algorithm to decide whether a polyhedral terrain can be guarded by a set of k

edges. Without 1055 of generality we triangulate all the faces of the terrain so that

all the faces are triangular.

81

•

• Figure 6.3: A terrain for the formula F = (Xl VX2 Vxa) A (Xl VX2 Vxa VX4)

82

•

•

•

Aigorithm 6.1

BEGIN
(1) Remove ail of the faces which are adjacent ta the endpoints of the k edges.

These faces can be guarded by the edge guards. If no face is left then

report YES and exit.

(2) For each face left decide if it can be strongly guarded by an edge guard.

If the answer is positive then report YES and exit; otherwise, decide if

these faces can be guarded collectively by the k edge guards, if the answer

is positive then report YES and exit, otherwise report NO and exit.

END

Notice that we have left out some details in Step (2). Testing if a face can be

strongly guarded by an edge, Le., the face can be guarded by every point on that edge,

can be done by deciding whether or not the convex hull of the face and the edge is

empty, which can be accomplished in linear time. Sillce there could be O(n) faces

left after Step (1) and for each face we need ta test if it can be strongly guarded by

one of the k edge guards the total complexity of this procedure is O(n2k) = O(n3
)

time. The problem of testing whether or not a face F can be collectively guarded by

the k edge guards is much more difficult. We must apply the results of [BDEG94]

ta compute the part of F visible from an edge in O(n5) time and O(n4) space.1

Therefore, decide whether or not F can be guarded collectively by the k edge guards

can be accomplished in O(n7) time and O(n6) space. Again, since there could be

O(n) faces left after Step (1) the total time complexity for this procedure is O(n8)

time.

Therefore, the problem of minimum edge guarding a polyhedral terrain is in NP.

Consequelltly we have shawn the following theorem.

Theorem 6.1: It is NP-complete to determine, for a given polyhedral terrain with

O(n) faces and a given integer k, whether there exist k edge guards on the terrain

which collectively see the entire surface of the terrain.

lThis visible part is the union of the arrangement of "ltyper"-plalles, defined by 0(n2) parabola
and Unes, dms ltas combinatorial complexity of 0("<). More delails can be found in [BDEG94J.

83

•
6.2 Guarding polyhedral terrains

A set of guards covers a terrain if every point on the terrain is visible from at least

one guard in the set. The vertex guarding problem we study is the following: what

is the number of vertex guards which is always sufficient and sometimes necessary to

cover any polyhedral terrain? Similarly, the edge guarding problem is to determine

the number of edge guards which is always sufficient and sometimes necessary to cover

any polyhedral terrain.

The combinatorial counterparts of these terrain guarding problems can be ex­

pressed as guarding problems on the planar triangulated graph derived from the ter­

rain. A vertex guard on the graph can only guard the faces adjacent to that vertex,

and an edge guard on the graph can only guard the faces adjacent to the endpoints

of the edge. The following theorem shows that we can restrict our investigation to

guarding problems on the derived planar triangulated graph.

• Theorem 6.2: In the worst case, the guarding problem on a polyhedral terrain is

equivalent to the combinatorial guarding problem on the planar triangulated graph

derived from the terrain.

Proof: Suppose a vertex on a polyhedral terrain could not guard one of the faces

aàjacent to it. This would imply that sorne other face was obstructing its vision, but

that would violate the property that the intersection with a vertical !ine must be a

single point. Thus a guarding of the planar triangulated graph imp!ies a guarding of

the polyhedral terrain.

On the other hand, given any planar triangulated graph embedded in the plane

T' , we can construct a terrain T based on T' by projecting it on the upper half of a

sphere containing the planar triangulated graph. In this case, a vertex (edge) guard

x of T can only see the faces adjacent to it. 0

6.2.1 Guards on a terrain

•
In this section we show that L~J vertex guards are always sufficient and sametimes

necessary ta guard a palyhedral terrain. We also show that L(4~34lJedge gual'ds are

84

•

•

•

y.~--",....

Figure 6.4: A seven-vertex terrain.

sometimes necessary to guard a polyhedral terrain.

Vertex guards

Lemma 6.3: The seven-vertex graph shown in Figure 6.4 needs at least tllfee vertex

guards. Furthermore, if three vertex guards are used to cover it, then at most olle of

the three guards can be an exterior vertex.

Proof: Suppose that two vertices suffice. One of the inner four verticcs must be

chosen to cover the inner triangles. If the central vertex is chosen, then the remaining

unguarded (outer layer) triangles can not be covered by one guard, as the triangles

A and B do not share a vertex. Therefore, one of the three middle vertices mllst be

chosen. Without loss of generality, suppose vertex z is chosen. Then, the unguarded

triangles (A and the three tri&ngles adjacent to A) arc not coverable by one vertex

guard.

Now we show that at most one vertex guard can be an exterior vertex. If ail three

were exterior vertices, then the middle three triangles would be unguarded. Suppose

that at least two of the vertex guards are exterior vertices. Without loss of gencrality,

let them be the bottom two. We now have A and the three central triangles (directly

below A) unguarded. These triangles can not be guarded with one additional guard.

Cl

85

•
From the graph in Figure 6.4, we construct a series of planar subdivisions Sb . .. ,Sk,

where SI is the graph of Figure 6.4 and SHI is obtained from Sk in the following

manner: let Sk+! be the graph of Figure 6.4 with one of the central triangles replaced

by a copy of Sk (without loss of generality, suppose it is the one below face A). We

show the following property about Sk:

Lemma 6.4: Sk is triangulated, has nk = 4k - 1 vertices and needs Yk = 2k - 1

guards. If Sk is covered by exactly 2k - 1 guards, then at most one guard is on the

exterior face.

Proof: By induction on k.

Basis: k = 1. Follows from Lemma 6.3.

Inductive Hypothesis: For all k ~ t, t ~ 1, Sk is triangulated, has nk = 4k - 1

vertices and needs Yk =2k - 1 guards. Furthermore, if it is covered by exactly 2k - 1

guards, then at most one guard is on the exterior face.

Inductive Step: k = t + 1. St+! is triangula.ted by construction. It has nt +4 =
• (4t - 1) + 4 = 4(t + 1) - 1 vertices. We now only need to show that it requires

2(t+1) - 1 =2t +1 guards, and that if it uses that few, then only one exterior vertex

is a guard.

In St+b there is a copy of St. By induction, this copy of St must use at least 2t-1

guards. We consider cases based on how many guards this copy of S, uses as follows.

Case 1: The copv of St uses exactly 2t - 1 guards. Then the copy of S, has at

most one guard on one of its exterior vertices. There are 4 subcases: no guard is

placed on the exterior of St, left vertex (y) is a guard, right vertex (z) is a guard, and

the lower vertex (w) is a guard.

1.1: No guard is placed on the exterior of S,. Since St is already covered, two

guards suffice to cover the remainder of S,+!. We have that Yt+! = (2t - 1) + 2 =

2(t + 1) - 1. If exactly 2 guards are used, then at most one of them can be on the

exterior of St+!.

1.2: A guard is placed at y. This configuration requires at least two guards.

If covered with exactly two guards ((2t -1) +2 =2t + 1 guards total), then at most

one is on the exterior face.

• 1.3: A guard is placed at z. This subcase is symmetric to subcase 1.2.

86

•

•

•

1.4: A guard is placed at w. There is a ring of six triangles that requires two

guards and at most one of these guards is on the exterior face.

Case 2: The copy of St uses exactly 2t guards. Then the copy of St may have

guards on aH three of it~ exterior vertices (Le., x, y, z). However, l\lis stillleaves one

face (B) uncovered, so one more guard is required. If only one more guard (2t+1

total) is used, then only that guard may be on the exterior face.

Case 3: The copy of St uses more than 2t guards. Then the induction hypothesis

is true. 0

Therefore we have the following theorems.

Theorem 6.5: There exists a terrain on n vertices, for any 1! =3 mod 4 that requircs

Ln/2J vertex guards.

Proof: This follows directly from Lemma 6.4. For that terrain, we have: 9k =2k - 1

and nk = 4k - 1, therefore

gk = 2«nk + 1)/4) -1 = (nk + 1)/2 -1 = (nk -1)/2 = Lnk/2J. 0

Theorem 6.6: Ln/2J vertex guards are always sufficient and sometimes necessary to

guard the surface of an arbitrary terrain T with n vertices.

Proof: First 4-color the vertices of T. This can always be done since T is a planar

graph [AH77]. By the pigeon hole principle, among the 4 colo~s there must be 2 colors

such that no more than Ln /2J vertices are colored by these two colors. Furthermore,

these Ln/2J vertices are sufficient to guard all of the faces of T' (because every triangle

must have at least one vertex colored with one of these 2 colors). Necessity follows

from Theorem 6.5. 0

Edge guards

We now commence our investigation on edge guards.

Lemma 6.7: The terrain in Figure 6.5 needs at least two edge guards. Furthermore,

if a mixture of edge guards and vertex guards are allowed, then one edge guard and

one vertex guard suffice.

Proof: Suppose one edge guard suffices. We then have the following cases.

87

•

Figure 6.5: A six-vertex terrain which needs two edge guards.

Case 1. ab, üë, bc do not cover triangle(x, y, z).

Case 2. ay, iiX do not cover triangle(b, c, z).

• Case 3. xz does not cover triangle(a, y, c).

Ali other cases follow by symmetry. Therefore we need at least two edge guards

for the terrain in Figure 6.5 (edges ab and yz suffice). For ail the cases above the

unguarded faces can be covered by one vertex guard. 0

Theorem 6.8: There is a planar triangulation that needs at least (4n -- 4)/13 edge

guards.

Proof: Such a planar triangulation is derived from an arbitrary triangulated convex

polygon P with v vertices and v - 2 internai triangular face~.

We put a copy of Figure 6.5 in each face of P and along each edge of the boundary

of P. Then we triangulate the untriangulated faces. (In total we add v + (v - 2) =
2v - 2 such copies to P.) Suppose. the triangulation we obtain is P' and it needs g.

edge guards. Because guards can not be shared between any copi~ of Figure 6.5, P'

requires at least g. =2(2v - 2) =4v - 4 edge guards and has Vp. =v +6(2v - 2) =
13v - 12 vertices. Substituting Vp. by n, we have: g. = (4n - 4)/13. 0

•
88

•
6.2.2 Algorithms for placing terrain guards

In this section, we present sorne practical, efficient algorithms for placing the vertex

and edge guards. Since establishing the number of vertex guards and the number of

edge guards sufficient to cover a terrain required the use of the four color theorem,

finding a practical efficient algorithm to place the guards seems unlikely unless a

deeper understanding of the problem is achieved. To this end, we present practical

algorithms for guard placement which approximate the upper bounds.

Placing vertex guards

•

Observation 6.9: Given a five coloring of the vertices of any terrain, any set of tluee

color classes provides a vertex guarding of the terrain since every face of the terrain

is a triangle except possibly the outer face (which need not be guarded).

Based on this observation, a simple linear time algorithm follows:

Algorithm 6.2:

BEGIN

(1) Five-color the vertices of the planar triangulation graph.

(2) Among the five colors, choose three colors which are minimally used.

END

By [CNS8l], Step (1) takes D(n) time. Clearly, D(n) time also suffices for Step

(2). Therefore, the complexity of Algorithm 6.2 is D(n).

Edge guard placement

We extend sorne of the elegant ideas of Everett and Rivera-Campo [ERC92] in order

to develop a linear time algorithm for placing 2; edge guards to cover a polyhedral

terrain. We use the following lemma.

Lemma 6.10: Given a finite collection of R real numbecs there exists an element of

R that must be less than or equal to average.

Proof: Let k be the average of the collection R. Suppose that there were no elements

of R that were less than or equal to k. This implies that ail of the elements are greater

• than k. But then k could not be the average. 0

89

•

•

Our edge guard algorithm proceeds as follows. The lirst step in the algorithm is.

to live color the vertices. Let the live colors he: l, 2, 3, 4, 5.

Let Matching(a, b,c) denotes a maximalmatching (which is not necessarilya max·

imum matching) on the graph induced by the vertices in the three color classes a,

band c. Although Matching(a,b,c) does not provide a set ofedges that guards the

whole terrain, if we take all the edges in Matching(a, b, c) as well as one edge from

each of the remaining unmatched vertices of color a, b, and c then we guard the whole

terrain by Observation 6.9. Let Guard(a, b, c) represent the size ofa set ofedge guards

obtained in this way. Also, let 5ize(a, b, c) represent the number of vertices of the three

color classes a, b, and c. We have the following relation:' Guard(a, b, c) = 5ize(a, b, c)

• Matching(a, b, c). This relation holds because for each edge of the matching, we

reduce the number of unmatched vertices by 2 which results in a reduction of the size

of Guard by 1.

Thf..i'e are 10 ;Jossible combinations of three color classes resulting from the live

coloring of the graph. We list them here in lexicographical order for reference: 123,

124, 125, 134, 135, 145, 234, 235, 245, 345. Let Ci represent the i1h combination in

lexicographical order. Notice that each color class appears in 6 combinations. Thus,

10

2: 5ize(c;) = 6n.
•=1

Therefore we have the following lemma.

Lemma 6.11 If L1~1 Matching(c;) ~ 2n, then there exists a guarding of size :5 L2SRJ
Prao!: The average size of Guard =

L1~1 5ize(c;) - E;~I Matching(c;) < 6n - 2n = 2n
10 - 10 5

Therefore, one of the combinations provides a Guarding of size :5 2; by Lémma 6.10.

D

When L;~I Matching(c;) :5 2n, we have the fol1owing lemma.

Lemma 6.12 One of the following pairs of Matchings provides a set of edges that

• guards the whole terrain: Matching(1,2,3) and Matching(1,4,5), Matching(1,2,5)

90

•

•

•

and Matching(2,3,4), Matching(l, 2,4) and Matching(3, 4,5), Matching(1,3,4) and

Matching(2, 3, 5), Matching(l, 3, 5) and Matching(2, 4, 5).

Proof: Let us first consider the first pair of matchings. Suppose there is a triangle

which is not guarded. This mel1.US that all three vertices of the triangle must be

unmatched. Clearly, the triangle cau not contain edges whose endpoints have colors

: {l, 2}, {l, 3}, {l, 4}, {l, 5}, {2, 3}, {4, 5}, because ifit did, we could add an extra

edge to one of the Matchings contradicting the fact that it is ma.ximal. So it must

contain one of: {2, 4}, {2, 5}, {3, 4}, {3, 5}. Suppose it containec! {2, 4}. Weil the

third vertex must have color: l, 3, or 5. Thus, the triangle contains an edge which

must be guarded. If it clid not we could add an extra edge to one of the two matchings

contradicting the fact that they are maximal. The argument is similar for the other

three {2, 5}, {3, 4}, {3, 5}. The argument for the other four matching pairs is also

similar. 0

The average size of a matching pair = E)~l Matcl~ing(c;) ::; 2; (note that the

average is taken over five since there are five matching pairs). Thus, one of the pairs

of matchings prao/ides a guarding with the desired size by Lemma 6.10.

Computing a maximal matching on a graph induced by the three chosen colors

can be done in !inear time in the number of edges in the graph. Thus 0(11) time

suffices to compute ail of the matchings induced by ail 10 combinations of three color

classes. Once all of the matchings are comput.ed, Lemmas 6.10 and 6.11 guarantee

that either a guarding or a pair of matchings will have size less than or equal to 2;.
Since there are only 10 different guardings and 5 pairs of matchings, the appropriate

set can be found in only !inear time. Therefore, we have the following theorem.

Theorem 6.13: Given a polyhedral terrain on Il vertices, 0(11) time is sufficient to

find a set S of edges to guard the terrain, where II Sil ::; L2sn J.

6.2.3 Conclusions

The following table summarizes the results of guarding polyhedral terrains.

91

•

•

•

Sufficiency Necessity Aigorithmic Bounds

Vertex Guards Ln/2j Ln/2J L3n/5J

Edge Guards Ln/3J L(4n - 4)/13J L2n/5J

There are some open problems related to this chapter and we summarize them as

follows.

Open Problem 9: Is it possible to reduce the gap between sufficiency and neces­

sity for edge guards? Are there practical efficient algorithms that match the known

bounds?

Note: We have tried to use computer to find whether tbere is a 9-vertex planar

triangulation which needs 3 edge guards. Recently with the help of David Avis and

Komei Fukuda (they showed [and generated) that there are 78 non-isomorphic trian­

gulations for a set of 9 planar points), we showed that there is no such triangulation

which needs 3 edges (by checking ail the 78 triangulations). (If there were one, we

could immediately improve the lower bound on edge guards ta (6n - 6)/19.)

92

•

•

•

Chapter 7

Intersection detection and

computation for Manhattan

terrains

Intersection detection and computation is one of the fundamental prohlems in com­

putational geometry. This problem finds applications in motion planning, collision

detection and avoidance, computer graphies, CAD and Vi,SI [PS85]. Typical previous

known results regarding intersection detection are as follows: detecting the intersec­

tion of a line or a Hne segment with a convex polygon [CD87], with a f,imple polygon

[CG89]j detecting the intersection between two simple polygons [Mou92, Ama93J;

detecting the intersection of a line, a plane, or a convex polyhedron wüh a convex

polyhedron [DK83, CD87, DK90J. For the general intersection detection problem

regarding lIon-convex polyhedra in 3D, a few results are only kJlown very recl'nt1y.

With the results of ray-shooting [dB92J, de Berg shows that the intersection de­

tection query of a line (a ray or a line segment) with an arbitrary polyhedron can be

answered in O(log n) time and the data structure can be constructed in O(n4+·) (for

any € > 0) time and space. Furthermore, the intersection of a rectilinear line (a ray

or a line segment) with an axis-parallel polyhedron can be detected in O(log n) time

with O(nl+') (for any € > 0) time and space preprocessing. If the space complexity is

of more concern, then he shows that the query can be answered in O(log n(log log n)2)

93

•

•

•

time and the data structure can be constructed in O(n log n) time and space. Since

a Manhattan terrain is a special axis-para11el polyhedron which arises frequently in

practice we would !ike to ask: if the object is a Manhattan terrain instead of an ar­

bitrary axis-parallel polyhedron, can the rcctilinear ray shooting be penorrned more

efficiently? We show in this chapter that this question can be answered positively..

There are many more results regarding intersection computation and we are un­

able to !ist ail of them. Most of these results before 1988 can be found in Chapter 7 of

[PS85] (the second edition). Two ofthe most famous results of intersection computa­

tion after 1988 are the optimal!inear time algorithm for computing the intersection

of two conv'.'"(polyhedra by Chaze11e [Cha92] and the optimal O(n log n + K) time

algorithm for computing the intersection of n !ine segments [CE92).

The known results regarding the intersection detection and computation of poly­

hedral terrains are as follows. The problem of computing the shortest vertical distance

between two non-intersecting polyhedral terrains (two sets of !ines or line segments in

3D) has been solved with a randomized algorithm with time 0(n4/3+<) (for any € > 0);

consequently, the problem of detection the intersection between two polyhedral ter­

rains can be solved with the same bound [CEGS89). The problem of computing the

longest vertical distp.nce between two polyhedral terrains (two sets of lines or line

segments in 3D) has also been solved with a randomized with time 0(n4/ 3+') (for

any € > 0) [GP92]. (Note: The corresponding problem of computing the shortest Of
longest distance between two sets of rectilinear lines in 3D can be reduced to comput­

ing the red/blue closest pair and further!'st pair between two sets of reals and can be

solved easily in S(n logn) and S(n) time respectively. However, the corresponding

problem of computing the shortest or longest distance between two sets of rectilinear

line segments in 3D can not be solved in this way.) The problem of computing the

intersection (upper envelope) of two polyhedral terrains one of which is convex has

been solved in optimal O(nlogn +K) time [Shall8j. The problem of computing the

intersection of two polyhedral terrains has been solved with a randomized algorithm

with time 0(n4/ 3+' + Kl/3nJ+' + Klo!? n) (for any € > 0), where K is the size of

output [PeI93).

In this chapter we consider the intersection detection and computation probletns

94

•

•

•

for Manhattan terrains (so!id Manhattan terrains). We ~how that after O(lllogn)

time and space preprocessing, the intersection of a rectilinear line segment (ray, or

!ine) with a Manhattan terrain can be detected in O(log Il) time. For the dynamic

version of this problem, we show that there exists a dynamic chta strncture with a

query and update of O(loi Il) time and O(Il log Il) space. With these results, we are

able to show that:

(1) Given two Manhattan terrains with a total of O(n) vertices, we can either

compute the shortest vertical distan"'~ between them or œport their intersection in

O(n log n) time. Equivalently, given two sets ofrectilinear !ine segments, the shortcst

distance between them can be computed in O(n log n) time.

(2) Given two Manhattan terrains (or two sets of rectilinear line segments) with

a total of O(n) vertices, the longest vertical distance between them can be computed

in O(n log n) time.

(3) Given two Manhattan terrains with a total of O(n) vertices, we can compute

their intersection (upper envelope) in O(n logn + K) time, where K is the combina­

toria1 complexity of the envelope.

The techniques and data structures we use include: multi-layer tree, segment tree

[Benn, VW82], symmetric orcIer heap [HT84], lractional cascading [CG86] and any

one of the techniques and data structures snpporting planar point location queries

in O(log n) time with O(n) time and space preprocessing [Kir83, EGS86, ST86]. In

order to support the dynamic version of the above problems, we also use the 2D

dynamic point location algorithm of Preparata and Tamassia [PT89].

7.1 Preliminary

We begin by recalling sorne elementary definitions. A Manhattan terrain M with n

vertices is a connected 3D rectilinear polyhedral surface such that the intersection of

any verticalline with M is either empty, a point, or a vertical line segment. A solid

Manhattan terrain M is a simple rectilinear polyhedron such that there exists a face

1 of M and the intersection of M with any !ine perpendicular to 1 is either e;npty,

or a line segment with one endpoint lying on 1.

95

•

•

A segment tree is a data structure that is used to store a set of intervais on the

realline. Segment trees are introduced by Bentley in 1977 iBen77). Since then, they

have found many applications, especially for axis-parallel and c-oriented geometric

objects [PS85).

Let S be a set of n possibly overlapping half-open intervals Ii's on the realline, i.e.,

S = {h, ... ,In}. Let Ii =[Xi, X} The m ~ 2n different endpoints of Ii's partition the

realline into m+ 1 half-open elementary interva/s. The segment tree that stores S is

a balanced binary tree with m + 1 leaves, which correspond tu the m + 1 elementary

intervals. Each internal node v of T has an interval associated with it that is the

union of the intervals associated with its two children. In other words, each node v of

T has an interval associated with it that is the union of all elementary intervaileaves

of T(v). We denote this interval by Iv. An interval Ii E S is stored at those nodes v

such that Iv ç Ii, but lparenl(v) ~ Ii' One can check that Ii is precisely the disjoint

union of al1 the intervals Iv over aB node v where Ii is stored.

We give a procedure for building a segment tree by inserting intervais one after

another [VW82]. Assume we have already built a tree T based on the m+1elementary

intervals (the root r ofT corresponds to the realline), we want to store a line segment

lin T.

Aigorithm Insertion(T(r),I);

BEGIN
(1) If Ir ç l, then add l to the node list of r.

(2) If Ir ~ l, then at least one of the fol1owing hold.

(2.1) If l'e/I(r) n l i: 0, then Insertion(T(left(r»,I)j

(2.2) If Ir;ght(r) nI i: 0, then Insertion(T(right(r»,I).

END

From the above insertion procedure we can see that l can be stored with at most

two nodes at each level of T. Therefore an intervai is stored at most O(logn) times

in T, which implies that the space for storing T is O(nlogn). We denote the subset

of intervais that are stored at sorne node v by L(v), and cali L(v) the associated list

of V. Consequently we have the fol1owing theorem [VW82).

• Theorem 7.1 [VW82]: A segment t.lee T for a set S of n interva1s can be constructed

96

•
~.13 13

O~cl 11 j l1D 0 14

1 1 1

~ 13
~

11 ~
~

\2
\4

Figure 7.1: A segment tree of four line segments.

• in O(n log n) time and space. The query of reporting aIl intervals that contain a query

point x can be answered in O(log n + k) time, where k is the number of intervals

reported. Furthermore, the set of intervals that contain x is the union of aIl associated

lists L(v) of aIl v on the search path of x in T.

In Figure 7.1, we show a segment tree storing four segments. In practice, to solve

more complex problems we might need to store each associated list as sorne other data

structure instead of a linked list. This gives us multi-layer data structures. Willard

and Leuker [WL85) showed the foIlowing result:

Theorem 7.2 [WL85]: Suppose that the associated Iists L(v) in a segment tree

are stored in data structures that can be built in O(N(IL(v)i) time and space with

O(U(IL(v)i) query and update time. Then the total time and space for constructing

this multi-Iayer date structure is O(N(IL(v)l)logn), the query and update time is

O(u(IL(v)1) log n).

The intersection detection problem for Manhattan terrains is to design data struc­

tures to support efficient queries about the intersection between a preprocessed Man-

• hattan terrain M and an arbitrary rectilinear line segment or another Manhattan

97

•

•

•

terrain. We also consider the dynamic version of the above pr6blems, i.e., when only.

a constant number of changes occurred on the vertices, edges and faces of M. (In the

worst case, adding or deleting a new face to M can cause linear number of changes

on vertices, edges and faces of M.)

7.2 Detecting the intersection of two Manhattan

terrains

In this section we show how to detect the intersection between two Manhattan terrains

in O(n log n) time. We first show how to report the intersection between a Manhattan

terrain M and a query rectilinear line segment in O(log n) time after O(n log n) time

and space preprocessing. Recall that a line segment is rectilinear if it is perpendicular

to either the XY-, or YZ- or XZ-planes.

Distance Definition 1: Given two rectilinear line segments tl and t2 in 3-0, ifthere

is a verticalline 1such that tl nI ::j; 0, t2n 1::j; 0, then the vertical distance between tl

and t2 (denoted by à(tl, t2)) is the difference between the Z-coordinate of tl nI and

t2 n1. Otherwise the vertical distance between the two rectilinear segments is infinity.

Unless specified otherwise, we use the above definition of distance. We first show

how to compute the shortest vertical distance between a Manhattan terrain M and a

rectilinear line segment after preprocessing M. We then show how to generalize this

procedure to answer the intersection detection query.

We first give an O(log2 n) solution to compute the shortest vertical distance be­

tween a rectilinear line segment ab and a Manhattan terrain M. The shortest vertical

line segment U'U, with v E ab, U E M, must satisfy one of the following properties:

(1) v is either a or b;

(2) u lies on an edge of M and v lies on ab.

The first case can be dealt with using planar point location (for this reason, we

will ignore the case when ab is a verticalline segment, i.e., it is perpendicular to the

XV-plane). For the second case we just consider the case when ab is perpendicular

to the YZ-plane. Without loss of generality, assume a = (xa , y), b = (Xb. y).

98

•

1

1 1
2 3

4 5 6
7

~a

•

•

Figure 7.2: A Manhattan terrain and its two-Iayer segment tree.

The idea is to construct a two-layer tree such that the first layer is a segment tree

and the second layer is a balanced binary search tree. We first build a segment tree T

for all of the edges of M which are vertical to the XZ-plane (Figure 7.2). A node v in

T has a certain y-intervallv associated with it. Node v can he considered to represellt

the horizontal slab [-00, +00] x Iv. When considering a verticalline segment inside

the horizontal slab corresponding to v, we always restrict our attention to the part of

the verticalHne segment inside the slab corresponding to v. A search with y in T gives

us O(log n) associated lists L(v) such that the shortest vertical distance between ab

and M is equal to the shortest vertical distance between ab and one of the clements

in these lists.

We fix a plane 'P parallel to the XY-plane which is above M. Wc store each

associated list L(v) in a balanced search tree Tv according to the X -coordinates of

these O(n) Hne segments such that a leaf corresponds to a line segment in L(v) and

each Ieaf store its distance to the plane P; furthermore, the parent of two nodes

is the one whose distance to P is smaller. With such a Tv, we can compute the

shortest vertical distance between P and those segments between X = x., X = Xb,

which is equal to the distance between P and the nearest-common-ancestor of X.

99

•

•

•

and Xb (denoted by nca(xa,xb», in the time proportional to the height of Tv (which

is O(log n». Then the shortest vertical distance between ab and these segments

can be computed in an extra 0(1) time: it is equal to d('P,nca(xa,xb» - d('P, ab),

if ab is below 'P; otherwise, it is equal to d('P, nca(xa, Xb» + d('P, ab). In total, we

have O(1og n) associated lists for an elementary interval (which are the associated lists

stored at the nodes on the path from the root to the leaf representing that elementary

interval). For each of these L(v) (and the corresponding Tv) it takes O(logn) time to

compute the shortest vertical distance between ab and nca(xa, Xb) in Tv. Therefore

the complexity for answerivg such a query is O(IOlf n) and the preprocessing time

and space is O(nlogn). Consequently we have the following theorem.

Theorem 7.3: After O(n log n) time and space preprocessing, the shortest vertical

distance between a Manhattan terrain M and a rectilinear query line segment can

be answered in 0(log2n) time.

Note: Throughout this chapter, all the results regarding computing the shortest

vertical distance can be generalized to computing the longest vertical distance. What

we need to do is to construct a T" corresponding to L(v) sucb that the leaves of T"
correspond to the line segments in L(v) and each leaf store its distance to the plane 'P;

furthermore, the parent of two nodes is the one whose distance to 'P is larger. With

such a data structure we search the longest distance between M and a rectilinear line

segment in the multi-Iayer tree with the sarne time complexity.

Moreover, the above data structure also solves the dynarnic version of the problem.

The point is that the second layer is a balanced binary search tree which supports

an O(logn) time update [TarS31. Combining this with the results of Preparata and

Tarnassia [PTS9] (which supports O(logz n) time for a query or an update after O(n)

time and space preprocessing), we have the following corollary.

Corollary 7.4: After O(n log n) time and space preprocessing, the shortest (longest)

vertical distance between a Manhattan terrain M and a rectilinear query line segment

can be solved in 0(log2 n) time. A Manhattan terrain of constant size can be inserted

into or deleted from the structure representing M in O(logz n) time.

100

•
A:

•

•

5~
9 3

Figure 703: An array A and its Symmetric Order Heapo

We show that for the static version of the problem, we can improve the query time

to O(log n) without increasing the time and space for preprocessingo The crucial point

is that instead of storing a balanced binary tree for L(v), we can store a special data

structure called symmetric order heap [HT84), such that the nearest-common-ancestor

of two nodes in the heap can be answered in O(1) time. We call the resulting data

structure a two-layer hybrid segment treeo

Let A[l..n] be an array of n real numberso A Symmetric Order Heap (SIl) is a

binary tree that holds the entries of A[l..n]o SH has n nodes and each A[i] appears

in only one node of SHo Ifwe denote the node that holds A[i] by Wj, then SHhas the

following properties:

1. SH is a heap, Le., if Wi is the parent of Wj then A[i] ~ A[j).

20 The symmetric order (inorder) traversai of nodes of SH is Wl, W2, "0' W n , Le.,

nodes in symmetric order contain A[l), A[2], ..o,A[n].

The following theorem is established in [HT84]:

101

•

•

•

Theorem 7.5 [HT84]: A symmetric order heap can be constructed in linear time

and after an additional linear time preprocessing on the heap we can answer the

nearest-common-ancestor query in 0(1) time.

Let val(i) = d(P, Wi) be the shortest vertical distance between Wi and 1', where

Wj E L(v). We can use the val(i) information for each Wi to construct a SHfor every

associated list. Then by Theorem 7.5, we can answer the nearest-COIrmon-ancestor

query between any Wk and w; in 0(1) time such that Wk is the leftmost interval inter­

secting with (the XV-projection of) aD and w; is the rightmost interva! intersecting

with (the XV-projection of) ab. However, there are 0(10~lf) associated lists for an

elementary interval and for each associated list L(v) finding the leftmost (rightmost)

interval intersecting with ab by binary search takes O(logn) time. Consequently the

total time complexity could be O(lo/f n), which is no better than the binary tree

implementation. Nevertheless we can apply the fractional cascading technique of

Chazelle and Guibas (CG86] to improve the bound to O(logn).

Suppose L(v) is the associated list of interva! v in the segment tree T, and let

L(left(v)) be the associated Iist of intervalleft(v) in T. The basic observation is that

the position of x. in L(v) will give us information about its position in the associated

lists of its two children (for simplicity we only discuss L(left(v))). What we do is

to first add two new pointers from each element in L(v) to the smallest (largest)

element which is at least as large (small) in L(left(v)). With these pointers, for the

example shown in Figure7.4 we can find in 0(1) time the leftmost (rightmost) interva!

in L(left(v)) intersecting the query line segment ab once we know the the leftmost

(rightmost) interval in L(v) intersecting ab. However, we are rarely in this fortunate

situation since in general there could be O(n) interva!s in L(left(v)) between interva!

1 and 2 (see Figure7.4). This problem can be overcome by copying certain elements

of L(left(v)) into L(v) and vice versa (CG86). It turns out that the copying can be

donc in such a way that the search in L(left(v)) can be done in constant time if

we already know the position the query value in L(v)j furthermore, the asymptotic

preprocessing time and space is not affected. We summarize the result of (CG86) as

follows.

102

a b

6 7 8 9

•
1 2 3 4 5

L(v)

L(left(v»

1

6

2

7

3 4 5

J\J~
1

8 9

•

Figure 7.4: The pointers used for fractional cascading.

Theorem 7.6 [CG86]: Let T be a binary tree with 0(71) nodes, and suppose that each

node v in T stores an ordered list L(v). Fractional ca.ccading al10ws us to compute

the position of a query value in L(left(v)) in 0(1) time if we know the position of

the query value in L(v). The time needed to set up the fractional cascading structure

is O(n +EveT IL(v)i).

Consequently we perform a binary search in the associated list which is stored

at the root of the tree T, and then we can do the searches in the lists stored at the

remaining nodes on the search path in 0(1) time per list. (We can also say that

the amortized time for this search is 0(1) per list). Therefore we have the fol1owing

theorem.

Theorem 7.7: After O(nlogn) time and space preprocessing, the shortest vertical

distance between a Manhattan terrain M and a rectilinear query line segment can

be computed in O(log n) time.

l'roof: The query is essential1y the ~ame as the one we perform for Theorem 7.3.

The difference is that we can find the shortest vertical distance between ab and the

elements in an associated Hst in O(1) time with the result of Theorems 7.5 and

7.6. An elementary interval have O(log n) associated subsets, therefore in total we

can find the shortest vertical distance between ab and ail the elements in ail these

subsets in 0(logn)0(1) = O(logn) time. The time and space for preprocessing is

• still O(nlogn). 0

103

•

•

•

With this result we can proceed to obtain the following theorem.

Theorem 7.8: The shortest vertical distance problem between two non-intersecting

Manhattan terrains with a total of O(n) vertices can.be computed in O(n logn) time.

Proof: As we have discussed above the shortest distance between ab E Ml and M2

can ~ither be the shortest distance between a (b) and M 2 or the shortest distance

between iib and M2' The former can be solved using point location in O(log n) time

and the latter can be solved in O(logn) time by Theorem 7.7. For every edge in M 2 ,

we can perform the above procedures symmetrically. Since there are O(n) edges in

Ml! M 2 , the total time complexity is O(n logn). D

Now we show how to generalize the above result to ~.nswer the intersection detec­

tion queries of a rectilinear line segment and a preprocessed Manhattan terrain. In

fact we can simply generalize the definition of the shortes'; vertical distance between

an edge xy of M and ab as follows:

Distance Definition 2: If ab is above xy, then D(ab,xy) = d(ab,xy), otherwise

D(iib,xy) = -d(ab,xy).

With this definition, we can see that ab intersects with M ifand only if the shortest

vertical distance between ab and M is negative. Then we can follow Theorem 7.7 to

obtain the following result (the only difference is that we store D(ab, Vi) instead of

d(ab, Vi) in va/Ci)).

Theorem 7.9: After O(n log n) time and space preprocessing, we can either report

the intersection of iib (or a rectilinear line) and M (by giving a witness), or return

the shortest vertical distance between ab and a Manhattan terrain M, or report this

distance is infinity in O(log n) time.

Consequently we have the following result which is symmetric to Theorem 7.8.

Theorem 7.10: Given two Manhattan terrains with a total of O(n) vertices we can

either report their intersection (by giving a witness) or retum the shortest vertical

distance between them in O(nlogn) time.

104

•
SH of L(v)

Figure 7.5: Computing the intersections of a Hne with a Manhattan terrain.

•
7.3 Computing the intersection of two Manhat­

tan terrains

Following the second distance definition and Theorem 7.9, we can compute the inter­

section of a Manhattan terrain M and a query Hne segment ab in O(log n +k.b) time,

where k.b is the combinatorial complexity of the intersection of M and ab. With this

result we can compute all the edge/face intersections between the two Manhattan

terrains. Consequently, the intersection (upper envelope) of two Manhattan terrains

cau be computed in O(nlogn +K) time, where [(is the combinatorial complexity

of the envelope.

Theorem 7.11: The iLtersection of M and a query !ine segment ab can be computed

in O(logn + k.b) time, where k.b is the combinatorial complexity of the intersection

of ab and M.

Proof: We preprocess Mas we have done in Theorem 7.7, that is, the second layer

is a set of SEs. Once we locate the position of x. and Xb in L(v) (which is stored as a

syrnmetric order heap, each node has additional pointers to its next level for fractional

cascading), we can compute the nearest-common-ancestor of them, nca(x., Xb), in

• 0(1) time. Then we start a preorder traversal at the subtree rooted at nca(x.,xb).

105

•
During the traversai, if anode w representing cd is traversed such that D(ab, cd) > 0

then discard the subtree rooted at w (since ail these nodes rooted at w are below ab

and there is no intersection between ab and ail these nodes).

Suppose there are ki intersections between ab and the edges stored in (the sym­

metric order heap of) L(v). Since the number ofleaves in a tree is at most the number

of internai nodes plus one, it is clear that we visit at most 2ki + 1 nodes in L(v) to

compute ail the intersections between ab and the edges stored in L(v) (see Figure 7.5).

Consequently it takes EI::;i::;logn(2kj +1) = O(log n +2 EI::;i::;logn ki) = O(log n + kob)

time to compute ail the intersections between ab and M. CJ

With this result, we can solve the foUowing problem. Given two Manhattan

terrains Mt.M2' compute the upper envelope of Mt.M2 (i.e., viewing Mt.M2 as

two functions z = Ii(x, y) and z = h(x,y) l, the upper envelope of Mt.M2 is the

graph of the pointwise maximum of li, 12). Clearly each vertex of the upper envelope

is either:

• (1) a vertex of MI Iying below M2' or

(2) a vertex of M 2 Iying below Mt. or

(3) an intersection of an edge of MI with a face of M 2 • or

(4) an intersection of an edg:l of M2 with a face of MI,
The first two types of vertices can be found in 0 (n log n) time using planar point

location. The last two types of vertices can be found in O(nlogn + K) time by

Theorem 7.11. After aU these vertices have been computed, we have the foUowing

theorem:

•

Theorem 7.12: The upper envelcpe oftwo Manhattan terrains can be computed in

O(n log n +K) time, where K is the combinatorial complexity of the upper envelope.

Proof: We have just shown how tocompute the vertices of the envelope in O(n log n+

K) time. To list the envelope as a planar graph, we need to list the edges and faces

adjacent with these vertices. This can be done without affecting the asymptotic time

and space complexity. For the first two types ofvertices this is straightforward as we

1For a point (.1', u) on the XZ-plane or the yZ.plane, /1 (f2) is defined as the maximallength
vertioalline segment on MI (M2) suoh that the lower endpoint or the line segment is (.1', u).

106

•

•

•

already have the DCEL representations of the two Manhattan terrains. For a vertex

v of the envelope such that v = el n 12 such that el is an edge of MI and 12 is a face

of M2. The faces of the envelope which are adjacent to v are exactly the parts of

those faces adjacent to el in MI and a part of 12. Again since we already have the

DCEL representations of Ml and M2' the faces which are adjacent with the last two

types of vertices can be listed in O(n log n + I<) time. 0

Similady, given two solid Manhattan terrains such that their valid bases are on

the same plane we can compute their intersection or union in O(n log n + I<) time.

7.4 Some remarks

ln this chapter, we have shown that the rectilinear ray shooting problem for a Man­

hattan terrain can be solved more efficiently than that for an arbitrary axis-parallel

polyhedron. However, our data structure for a Manhattan terrain does not support

efficient ray shooting queries for an :J.rbitrary ray. We list this as an open problem.

Open Problem 10: Is it possible to solve the intersection detection (ray shooting)

problem of a Manhattan terrain with an arbitrary line in 3D in O(log n) time >vith

o(n2) time and space preprocessing?

Chazelle et al. [CEGS89] have an O(log2 n) time solution to solve the ray shooting

problem between a polyhedral terrain and an arbitrary Hne with O(n2+') time and

space preprocessing. de Berg [dB92] has an O(log n) time solution to solve the ray

shooting problem between a 3D axis-parallel polyhedron and an arbitrary line with

O(n2+') time and space preprocessing. de Berg's result gives us a better solution to

the above problem. But can we do even better? (Note that a Manhattan terrain is a

special polyhedral terrain as weil as a special 3D axis-parallel polyhedron.)

107

•

•

•

Chapter 8

Conclusions

In this thesis, we have studied a series of problems regarding polyhedral terrains.

These problems include the problem of testing if a polyhedral object is a terrain,

computing the shortest watchtower of a terrain, guarding a polyhedral terrain with

a number of guards which is provably always suflicient and sometimes necessary,

detecting and computing the intersection between Manhattan terrains to the problem

of tetrahedralizing several classes of simple and non-simple polyhedra, which include

some special classes of solid terrains. These results, ail of which are both practical

and implementable, have applications in computer graphies, CAO/CAM, military

surveillance, forest fire monitoring, locations of radio transmission stations and the

emerging areas of geographical information systems and spatial databases. In this

final chapter, we summarize the most representative results of this thesis and mention

some related open problems.

In Chapter 2 the problems ofdeciding if a polyhedral surface is a polyhedral terrain

and if a simple polyhedron is a solid terrain have been investigated. It turns out that

the lat.ter problem is closely related to the problem of deciding whether or not a

polyhedral object can be manufactured by stereolithography. Optimal, practical and

straightforward linear time algorithms have been obtained to solve these problems.

In Chapter 3 we consider a zeneralization of the convex hull, i.e., the a-hull of

a terrain and obtain algorithms to compute the exact and approximate a-hulls of'

a terrain. This problem is closely related to the problemof manufacturing a solid

lOS

•

••

•

terrain using NC-machining.

In Chapter 4 the problem of tetrahedralizing simple and non-simple polyhedra,

which include sorne special classes of solid terrains, is studied. Although it is known

that not all polyhedra admit a tetrahedralization and it is NP-complete to decide

whether a simple polyhedron can be tetrahedralized, there are sorne results known

about tetrahedralizing sorne special classes of simple and non-simple polyhedra by

Goodman and Pach [GP88], and Bern [Ber93]. In Chapter 4 we extend the set of

tetrahedralizable simple and non-simple polyhe(1.ra by showing thr.t certain classes of

simple and non-simple polyhedra, which include sorne special classes of solid terrains,

admit a tetrahedralization and can be tetralledralized efficiently. We also show that

an arbitrary solid terrain does not always admit a tetrahedralization.

In Chapter 5 the problem of computing the shortest watchtower is studied. The

first known O(n log n) algorithm to compute the shortest watchtower of a polyhedral

terrain is proposed. This settles an open problem posed six years ago by Sharir

[ShaB8] .

In Chapter 6 the problems of guarding polyhedral terrains with vertex and edge

guards are studied. Although the problems of locating the minimum number of

vertex and edge guards to guard the whole surface of a polyhedral terrain are aU

NP-complete, it has been shown in Chapter 6 that Ln/2J vertex guards are always

sufficient and sometimes necessary to guard the surface of an arbitrary polyhedral

terrain and l(4n - 4)/13J edge guards are sometimes nccessary to guard the surface

of a polyhedral terrain, which is the best known lower bcund in contrast to the Ln/3J

upper bound by Everett and Rivera-Campo [ERC92]. Although these results are not

practical due to the employment of the four-color theorem in the proof, practical

linear time algorithms have been obtained to gu'\rd a polyhedral terrain.

In Chapter 7 the problems of detecting and computing the intersection of Man­

hattan terrains have been studied. Although the same problems regarding arbitrary

polyhedral terrains have been investigated in recent years and fast randomized al­

gorithms have been proposed, we are able to show that these algorithms can be

improved significantly if the terrains are rectilinear (Manhattan terrains). A data

structure, which is obtained by marrying the standard segment tree with the special

109

•
symmetric order heap, is proposed to represent a Manhattan terrain and is at the.

core of these algorithms.

Although we have studied a series of elementary problems involving polyhedral

terrains and have obtained many new results in this thesis, there are many problems

which remain to be solved efficiently, many of them have been mentioned in the thesis.

Below we give a list to summarize these problems for future research.

(1) What is the complexity of decomposing a 3D polyhedral surface S into the

minimum number of terrains (along different directions) if S is not a terrain?

(2) Is it possible to improve the D(n3) upper bound for computing the

Q-hull of a terrain?

(3) What is the complexity of deciding if a solid ter~ain can be tetrahedralized?

(4) Conjecture: Ali solid Manhattan terrains can be tetrahedralized without

using Steiner points.

(5) Can a U(3) polyhedron always be tetrahedralized?

• (6) What is the lower bound for computing the shortest watchtower of a polyhedral

terrain? Or, is it possible to obtain an o(n log n) time algorithm ta solve it?

(1) For the problem of computing the shortest vertical distance between two

non-intersecting terrains, is it possible to obtain a faster, deterministic

algorithm?

(8) For the problem of intersection detection between two convex polyhedra,

is it possible to obtain an o(log2 n) query bound (even at the cost of

increasing preprocessiug time and space)?

(9) ls it possible to reduce the gap between sufficiency and necessity for edge

guards in Chapter 6? Are there practical, efficient algorithms that match the

known bounds for vertex and edge guards?

(10) ls it possible to solve the intersection detection (ray shooting) problem for

a Manhattan terrain with an arbitrary line in 3D in D(logn) time with o(n2)

time and space preprocessing?

Besides all these theoretical problems, a further direction of research is ta apply

these recently developed algorithms to the fields of geographical information systems

• and spatial databases to obtain better GIS and spatial database software products.

110

•

•

•

Very recently there have been several results in this field, for example, applying plane

sweep to obtain efficient intersection queries in spatial databases [GS91]. It will be

very interesting to see how additional geometric algorithms can be applied directly

in GIS and spatial databases.

III

•

•

•

Bibliography

[AAP86] T. Asano, T. Asano, and R. Pinter. Polygon triangulation: efficiency and

minimality. J. A/gorithms, 7:221-231, 1986.

[ABB+93] B. Asberg, G. Blanco, P. Bose, J. Garcia-Lopez, M. Overmars, G. Tous­

saint, G. Wilfong, and B. Zhu. Feasibility of design in stereolithography.

In Proc. FSTTCS'93, India., volume 761 of Lecture Notes in Computer

Science, pages 228-237. Springer-Verlag, 1993.

[AH77] K. Appel and W. Haken. Every planar map is 4-colorable. ni Journa/ of

Mathematics, 21:429 - 567, 1977.

[AHU74) A.V. Aho, J.E. Hopcroft, and J.O. Ullman. The design and ana/ysis

of computer a/gorithms. Addison-Wesley Publishing Company, Reading,

MA., 1974.

[AHU83] A.V. Aho, J.E. Hopcroft, and J.O. Ullman. Data structures and algo­

rithms. Addison-Wesley Publishing Company, Reading, MA., 1983.

[Ama93] N. M. Amato. An optimal algorithm for finding the separation of simple

polygons. In Proc. 3rd Workshop A/gorithms Data Struct., volume 709 of

Lecture Notes in Computer Science, pages 48-59. Springer-Verlag, 1993.

[A093] D. Abel and B. C. Ooi. Advances in Spatial Databases: Third IntI. Sym­

pas., SSD'93, volume 692 of Lecture Notes in Computer Science. Springer­

Verlag, 1993.

112

•
[AS93]

[AT81]

[Bag48]

P. Agarwal and M. Sharir. On th!' number ofviews ofpolyhedral terrains.

In Pme. 5th Canadian CG Conf., pages 55-60, 1993.

D. Avis and G.T. Toussaint. An efficient algorithm for decomposing a

polygon into star-shaped polygons. Pattern Recognition, 13(6):395-398,

1981.

F. Bagemihl. On indecomposable polyhedra. American Mathematical

Monthly, pages 411-413, 1948.

[BDEG94] M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility with a

moving point of view. Algorithmica, 11:360-378, 1994.

•
[Benn]

[Ber93]

J. Bentley. Aigorithms for Klee's rectangle problems. unpublished

manuscript, Departhlent of Computer Science, Carnegie-Mellon Univer­

sity, 1977.

M. Bern. Compatible tetrahedralizations. In Proc. 9th ACM Computa.

tional Geometry Conf., pages 281-288,1993.

•

[Bez72] P. Bezier. Numerical Control-Mathematics and applications. John WH­

ley and Sons, London, 1972.

[BFK84] W. Boem, G. Fagin, and J. Kahmann. A survey of curve and surface

methods in CAGD. Computer-Aided Geometrie Design, 1:1-60, 1984.

[BSTZ92] P. Bose, T. Shermer, G. Toussaint, and B. Zhu. Guarding polyhedral

terrains. In Pme. 30th Allerton Conf., pages 402-404, 1992.

[BSTZ93] P. Bose, T. Shermer, G. Toussaint, and B. Zhu. Guarding polyhedral ter·

rains. Submitted to: Computational Geometry: Theory and Applications

(also as Technical Report SOCS 92.20, McGil/ University),1993.

[Bur86] P.A. Burrough. Principles of geographical infonnation systems for land

resources assessment. Clarendon Press, Oxford, UK, 1986.

113

•
[CD85] B. Chazelle and D.P. Dobkin. Optimal convex decompositions. In

G. T. Toussaint, editor, Computational Geometry, pages 63-133. North­

Holland, Amsterdam, Netherlands, 1985.

[CD87) B. Chazelle and D. Dobkin. Intersection of convex objects in two and

three dimensions. J. ACM, 34(1):1-27, 1987.

[CE92] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting

line segments in the plane. J. ACM, 39:1-54, 1992.

[CEGS89] B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Lines in space­

combinatorics, algorithms and applications. In Proc. 21st STOC, pages

382-393, 1989.

[CG86] B. Chazelle and L. Guibas. Fractional cascading, Part 1: A data structur­

ing technique. Algorithmiea, 1(3):133-162, 1986.

• [CG89] B. Chazelle and L. Guibas. Visibility and intersection problems in planar

geometry. Dise. Comp. Geom., 4(6):551-581, 1989.

•

[Cha83) I. Chappe!. The use of vectors to simu1ate material removed by numeri­

cally controlled milling. CAD, 15(3):156-158, 1983.

(Cha91] B. Chazelle. Triangùlating a simple polygon in linear time. Dise. Comp.

Geom., 6(5):485-524, 1991.

[Cha92] B. Chazelle. An optimal algorithm for intersecting three-dimensional con­

vex polyhedra. SIAM J. Comput., 21(4):671-696, 1992.

(Cha93] B. Chazelle. An optimal convex hull algorithm in any fixed dimension.

Dise. Comp. Geom., 10(4):377-409, 1993.

(Che89] L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97­

108, 1989.

(Chv75] V. Chvatal. A combinatorial ùeorem in plane geometry. J. Comb. Theory

Ser. B, 18:39-41, 1975.

114

•
(CNS81] N. Chiba, T. Nishizeki, and N. Saito. A linear 5-coloring algorithm for

planar graphs. J. Algorithms, 2:317-327, 1981.

[CoI86] R. Cole. Searching and sorting similar lists. J. Algorithms, 7(3):202-220,

1986.

[Coo71] S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd

STOC, pages 151-158, 1971.

[CP90] B. Chazelle and L. Palios. Triangulating a nonconvex polytope. Dise.

Comp. Geom., 5:505-526, 1990.

(CRS92] V. Chandru, V. T. Rajan, and R. Swaminathan. Monotone pieces of

chains. ORSA Journal on Computing, 4(4):439-446, 1992.

[CS90] B. Chazelle and M. Sharir. An algorithm for generalized point location

and its application. J. Symbolic Computation, 10(3):281-309,1990.
•

[CS89] R. Cole and M. Sharir. Visibility problems for polyhedral terrains. J.

Symbolic Computation, 7:11-30, 1989.

(dB92J M. de Berg. Efficient algorithms for my shooting and hidden surface re­

moval. PhD thesis, Department of Computer Science, Utrecht University,

1992.

[dFP+86] L. deFloriani, B. Falcidieno, C. Pienovi, D. Allen, and G. Nagy. A

visibility-based model for terrain features. In Proc. 2nd International

Symp. on Spatial Data Handling, pages 235-250,1986.

(DJSH89] R. L. Drysdale, III, R. B. Jerard, B. Schaudt, and K Hauck. Discrete

simulation of NC machining. Algorithmica, 4:33-60, 1989.

•
(DK83] D.P. Dobkin and D.G. Kirkpatrick. Fast detection of of polyhedral inter­

section. Theoret. Comput. Sei., 27(5):241-253, 1983.

115

•
[DK85] D.P. Dobkin and D.G. Kirkpatrick. A linear timè algorithm for deter- .

mining the separation of convex polyhedra. J. Algorithms, 6(4):381-392,

1985.

[DK90) D.P. Dobkin and D.G. Kirkpatrick. Determining the separation of pre­

processed polyhedra-a unified approach. In Proc. 17th ICALP, pages

400-413, July, 1990.

[DR80] D. P. Dobkin and S. P. Reiss. The complexity of linear programming.

Theoret. Comput. Sei., 11:1-18, 1980.

[EGS86) H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal point location in a

monotone subdivision. SIAM J. Comput., 15:317-340, 1986.

[EKS83] H. Edelsbrunner, D.G. Kirkpatrick, and R. Seidel. On the shape of a set

of points in the plane. IEEE 7fans. Inform. Theory, IT-29:551-559, 1983.

• [EM94] H. Edelsbrunner and E. Muecke. Three-dimensional Alpha Shapes. ACM

7fans. on Graphies, (to appear), 1994.

[ERC92) H. Everett and E. Rivera-Campo. Edge guarding a polyhedral terrain.

unpublished manuscript, Department of Computer Science, University of

Quebec at Montreal, 1992.

[Fis78] S. Fisk. A short proo!of Chvatal's watchman theorem. J. Combin. Theory

Ser. B, 24:374, 1978.

[FP79) tD. Faux and M.J. Pratt. Computational Geometry for design and man·

ufacture. Ellis Horwood, Chichester, UK, 1979.

[GP88) J. Goodman and J. Pach. Cell decomposition of polytopes by bending.

Israel J. Mathematics, 64(2):129-138, 1988.

•
[GP92) L. Guibas and M. Pellegrini. New algorithmic results for lines-in-3-spa.ce

problems. Technical Report TR-92-005, International Computer Science

Institute, 1992.

116

•
[GS91]

[Her89]

O. Guenther and H.J. Schek. Advances in Spatial Databases: Second

Inti. Sympos., SSD'91, volume 525 of Lecture Notes in Computer Science.

Springer-Verlag, 1991.

J. Hershberger. Finding the upper envelope of n line segments in

O(nlogn) time. Inform. Pracess. Lett., 33:169-174, 1989.

[Ho086] T. Van Hook. Real time shaded Ne milling display. ACM SIGGRAPH,

20(4):15-20,1986.

[HS93] D. Halperin and M. Sharir. New bounds ior lower envelopes in three

dimensions, with applications to visibility in terrains. In Prac. 9th ACM

Symp. Comput. Geom., pages 11-18, 1993.

[HT84] D. Harel and R. Tarjan. Fast algorithm for finding nearest common an­

cestors. SIAM J. Comput., 13(2):338-355, 1984.

•

•

[KB38)

[Kei85]

[Kir83]

[KM92)

[LD81]

[Lee91]

[Len11]

W. Kern and J. Bland. Solid Mensuration with praofs. John Willey and

Sons, NY, 1938.

J .M. Keil. Decomposing a simple polygon into simpler components. SIAM

J. Comput., 14:799-817,1985.

D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Com­

put., 12(1):28-35, 1983.

A. Kooshesh and B. Moret. Three-coloring the vertices of a triangulated

simple polygon. Pattern Recognition, 25(4):443-444, 1992.

D.T. Lee and R.L. Drysdale. Generalization of Voronoi Diagrams in the

plane. SIAM J. Comput., 10(1):73-87, 1981.

J. Lee. Analyses of visibility sites on topographie surfaces. [nt. J. GIS.,

5:413-429, 1991.

N. Lennes. Theorems on the simple finite polygon and polyhedron. Amer­

ican Journal of Mathematics, 33:37-62, 1911.

117

•
[LZ93] Z. Li and B. Zhu. On the monotonicity of polygons and polyhedral ter­

rains. In Pme. lCYCS '93, Beijing, China, pages 629--632, 1993.

[Meg84) N. Megiddo. Linear programming in linear time when the dimension is

fixed. J. ACM, 31:114-127,1984.

[Mou92) D. Mount. Intersection detection and separators for simple polygons. In

Pme. 9th ACM Symp. on Computational Geometry, pages 303-311, 1992.

[MP79) D. Muller and F. Preparata. Finding the intersection of n half-spaces in

time O(n log n). Theoret. Comput. Sei., 8(4):45-55, 1979.

[O'R87] J. O'&··~lrke. Art Gallery Theorems and Algorithms. Oxford University

Press, 1987.

•

•

[PeI93]

[PH77]

[PS81]

[PS85]

[PT89]

[PT92)

[PV92j

M. Pellegrini. On lines missing polyhedral sets in 3-s'pace. In Pme. 9th

ACM Symp. on Computational Geometry, pages 19-28, 1993.

F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in

two and three dimensions. Commun. ACM, 20:87-93, 1977.

F.P. Preparata and K. Supowit. Testing a simple polygon for monotonic­

ity. In/ofTTl. Pmeess. Lett., 12(4):161-164, 1981.

F.P. Preparata and M.I. Shamos. Computational Geometry: An Intro­

duction. Springer-Verlag, 1985.

F. Preparata and R. Tamassia. Fully dynamic point location in a mono­

tone subdivision. SIAM J. Comput., 18(4):811-830,1989.

F. Preparata and R. Tamassia. Efficient point location in a convex spatial

cell-complex. SIAM J. Comput., 21(2):267-280, 1992.

F. P. Preparata and J. S. Vitter. A simplified technique for hidden-Une

eUmination in terrains. In Proc. 9th Symp. Theoret. Aspects Comput.

Sci., volume 577 of Lecture Notes in Computer Science, pages 135-146.

Springer-Verlag~1992.

118

•

•

[PW79]

[Roc70]

[RR92]

[RS88]

[RS92]

[Sch28]

R. Pressman and J. Williams. Numerical Control and computer aided

manufacturing. John Willey and Sons, NY, 1979.

R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton,

NJ,1970.

A. Rosenbloom and D. Rappaport. Moldable and castable polygons. In

Proc. 4th Canadian CG ConJ., pages 322-327, 1992.

J. H. Reif and S. Sen. An efficient output-sensitive hidden-surface re­

moval algorithms and its paralleiization. In Proc. 4th ACM Symp. on

Computatiûnal Geometry, pages 193-200, 1988.·

J. Ruppert and R. Seidel. On the difficulty of triangulating three­

dimensional polyhedra. Dise. Comp. Geom., 7:227-253, 1992.

E. Schoenhardt. Uber die zerlegung von dreieckspolyedern in tetraeder.

Mathematische Annalen, 98:309-312, 1928.

•

[ShaB8] M. Sharir. The shortest watchtower and related problems for polyhedral

terrains. Inform. Process. Lett., 29(5):265-270, 1988.

[Sha93a] M. Sharir. Almost tight upper bounds for lower envelopes in higher di­

mensions. In Proc. 94th IEEE Symp. Found. Comput. Sei. (FOCS 99),

pages 498-507, 1993.

[Sha93b] M. Sharir. Arrangements of surfaces in higher dimensions: Envelopes,

single cel1s, and other recent developments. In Proc. 5th Canad. Conf.

Comput. Geom., pages 181-186, Waterloo, Canada, 1993.

[She89] T. Shermer. Visibility properties of polygons. PhD thesis, School of Com­

puter Science, McGill University, Montreal, Canada, 1989.

[She92] T. C. Shermer. Recent results in art gal1eries. Proc. IEEE, 80(9):1384­

1399, 1992.

119

•
[ST86]

[Sti91]

[Tar83]

N. Sarnak and R.E. Tarjan. Planar point location using persistent search

trees. Comm. ACM, 29:669-679, 1986.

S. Stifter. An axiomatic approach to Vor~noi-diagramsin 3D. J. Comput.

Syst. Sei., 43:361-374, 1991.

R.E. Tarjan. Data Structures and Network Aigorithms. SIAM monograph,

Philadelphia, PA, 1983.

[TVWZ93) G. Toussaint, C. Verbrugge, C. Wang, and B. Zhu. Tetrahedralization

of simple and non-simple polyhedra. In Prpc. 5th Canadian CG Conf,

pages 24-29, 1993.

[VW82] V. Vaishnavi and D. Wood. Rectilinear line segment intersection, layered

segmentation, and dynamization. J. Aigorithms., 3(2).:160-176, 1982.

[WCC+93) T. Woo, S-Y Chou, L-L Chen, K. Tang, and S. Y. Shin. Scallop hull and

• its offset for a monotone chain in linear time. manuscript, Department of

Industrial and Operations Engineering, University of Michigan, 1993.

[WL85) D. Willard and G. Lueker. Adding range restriction capability to dynamic

data structures. J. ACM, 32:597-617,1985.

[WW86) W.P. Wang and K.K. Wang. Geometrie modeling for swept volume of

moving solids. IEEE Computer Graphics and Applications, 6(12):8-17,

1986.

[Yap87] C. K. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of

simple curve segments. Disc. Comput. Geom., 2:365-393, 1987.

[Zhu92) B. Zhu. Improved a.!gorithms for computing the shortest watchtower of

polyhedral terrains. In Proc. ~th Canadian CG Conf., pages 286-291,

1992.

•
[Zhu93) B. Zhu. Computing the shortest watchtower of a polyhedral terrain in

O(n log n) time. Computational Geometry: Theory and Applications (sub­

mitted), 1993.

120

•

•

•

