el e

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

305 Wellington Street
Qttawa. Ontario
K1AON4 K1ADN4

NOTICE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submiited for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degrze.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c¢. C-30, and
subsequent amendments.

Canada

395, rue Wellington
Ottawa (Ontario)

Your e Volre rdlivence

Our (i NOlre télorpnce

AVIS

La quaiité de cette microforme
dépend grandement de la qualité
de la thése soumise au
microfiimage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S’il manque des pages, veuillez
communiquer avec ['université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser a
désirer, surtout si les pages
originales ont été
dactylographiées a l'aide d’un
ruban usé ou si 'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, méme partielie,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.

Computational Geometry in Two and a Half
Dimensions
Binhai Zhu
School of Computer Science

McGill University

Montreal, Canada

April 1994

A thesis submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Copyright ©1994 by Binhai Zhu

National Lib
I*l ofaég?ugda rar

Bibliothéque nationale
du Canada

Acquisitions and) Direction des acquisitions et
Bibliographic Services Branch des services bibliographiques
395 Wellington Street 395, rue Wellington

Cttawa, Ontario Ottawa (Ontario)

K1A ON4 K1A ON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OQOWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

Yowr ble Voire reldvence

Qur ble Notre réldeence

L'AUTEUR A ACCORDE UNE LICENCE
IRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA BIBLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERESSEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTEUR QUI PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUBSTANTIELS DE CELLE-
CI NE DOIVENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

ISBN 0-612-0CG150-4

Canadi

Abstract

In this thesis, we study computational geometry in two and a half dimensions. These
so-called polyhedral terrains have many applications in practice: computer graph-
ics, navigation and motion planning, CAD/CAM military surveillance, forest fire
monitoring, etc.

We investigate a series of fundamental problems regarding polyhedral terrains
and present efficient algorithms to solve them. We propose an O(n) time algorithm
to decide whether or not a geometric object is a terrain and an O(nlogn) time
algorithm to compute the shortest watchtower of a polyhedral terrain. We study the
terrain guarding problem, obtain tight bounds for vertex and edge guards and O(n)
algorithms to place these guards. We study the tetrahedralization of certain simple
and non-simple polyhedra (which include some special classes of solid terrains) and
present efficient algorithms to tetrahedralize them. We also investigate the problem
of computing the a-hull of a terzain. Finally, we present eflicient algorithms for the

intersection detection and computation of Manlkattan terrains,

Résumé

Dans cette these, nous étudions la géométrie algorithmique en 2.5 dimensions. Ces
terrains polyhédraux ont plusieurs applications en pratique: le graphisme assisté par
ordinateur, ia navigation et la planification de mouvement, CAL/CAM, la surveil-
lance militaire, la monitorisation des feux de forét, etc. Nous investigons une série de
problémes fondamentaux concernant les terrains polyhiédraux et nous présentons des
algorithmes efficaces pour les résoudre. Nous proposons ua algorithme de temps O(n)
pour décider si un objet géométrique est un terrain et un algorithme de temps O(n
log n) pour calculer la tour de guét la plus courte pour un terrain polyhédral. Nous
étudions le probléme de garder un terrain, obtenons des bornes justes pour les gardes
de sommets et d'arétes et des algorithmes de temps O(n) pour placer ces gardes.
Nous étudions la tétrahédralization de certains polyvhédres simples et non-simples
(qui incluent certaines classes spéciales de terrains solides) et nous présentons des al-
gorithines efficaces pour les tétrahédralizer. Nous investigons également le probléeme
de calculer la coquille-a d'un terrain. Finalement, nous présentons des algorithmes
efficaces pour détecter et calculer les intersections de terrains de type Manhattan.

i

Statement of Originality

All the results, except for basic definitions and the review of certain previous results
(which will be indicated in the ‘ext), should be considered as original contributions
to knowledge. Section 2.1 is a joint work with Zhenyu Li; Section 2.2 is a joint work
with Boudewjin Asberg, Gregoria Blanco, Prosenjit Bose, Jesus Garcia-Lopez, Mark
Overmars, Godfried Toussaint and Gerdon Wilfong; Chapter 4 is joint work with
Godfried Toussaint, Clark Verbrugge and Caoan Wang; Section 6.2 is a joint work
with Prosenjit Bose, Thomas Shermer and Godfried Toussaint. All the other results
are independently obtained by the author.

il

A cknowledgments

First of all, 1 wish to express my gratitude to my supervisor, Godfried Toussa.iht,
for his advice, encouragement, criticism, support, and most of all, for introducing
me to this topic. I also wish to thank all the cther professors in the computational
geometry group: David Avis, Luc Devroye, Hessam ElGindy and Sue Whitesides,
who have taught me a lot during the last three years,

I would also like to thank ali my officemates for numerous conversations while
the thesis was in progress: Jit Bose, Xiaower Chang, David Eu, Eric Guevremont,
and Elsa Omana-Pulido. I have also benefited from talking with Marc van Kreveld,
which triggered the work of Chapter 7. Thank you, Marc! Special thanks are due
to Eric Guevremont for helping me to translate the abstract into French and to Paul
Kruszewski for his careful reading and comments of an early version of this thesis.

Many other friends outside of McGill should receive some special thanks: Zhenyu
Li, Jim Ruppert, Tom Shermer, T.S. Tan, Takeshi Tokuyama and Caoan Wang.
I would also like to thank my supervisor at York University, Andy Mirzaian, who
introduced me to the field of computational geometry and taught me a lot about how
to do research seriously and elegantly.

Ithank all my other friends for making my three-year stay in Montreal! an exciting,
unforgetable one. Finally I would like to thank my parents and my uncle for their
constant love and encouragement.

iv

Contents

Introduction

Testing if a polyhedral object is a terrain
2.1 Testing if a polyhedral surface is a polyhedral terrain
2.2 Testing if a simple polyhedron is a solid terrain

The a-hull and related problems of a terrain
3.1 Preliminary i it e e e e e e e e
3.2 Computing the exact and approximate a-hulls of a ierrain

Tetrahedralizing special classes of solid terrains

4.1 Tetrahedralizing simple and non-simpleslabs
4.2 Tetrahedralizing special classes of solid Manhattan terrains
4.3 Tetrahedralizing the union of convex polyhedra
44 Someremarks e

The shortest watchtower and related problems
51 Intreduction e
5.2 Computing the shortest watchtower of a terrain in O(nlogn) time . .
521 Preliminary e
5.2.2 The hierarchical representation of a convex polyhedron and its
EXEENSION . . & . v i i e e e e e e e e e
5.3 Computing the shortest vertical distance between two convex terrains
54 Someremarks e

17
18
21

28
32
38
49
56

58
68
59
59

60
70

Guarding polyhedral terrains

6.1 Minimum edge guarding a polyhedral terrain is NP-complete
6.2 Guarding polyhedral terrains
6.2.1 Guards on a terrain

6.2.2 Algorithms for placing terrainguards

6.2.3 Conclusions

Intersection detection and computation for Manhattan terrains

7.1 Preliminary .

7.2 Detecting the intersection of two Manhattan terrains

7.3 Computing the intersection of two Manhattan terrains

7.4 Some remarks

Conclusions

...............................

77
78
84
84
89
91

93
95
98
105
107

108

List of Figures

2.1 Stereolithography. L 10
2.2 Objects can and can not be manufactured by stereolithography. . .. 11
2.3 Only a strictly acute face and its adjacent faces can be valid bases. . 13
2.4 A terrain has at most six valid bases. 14
3.1 The a-hull of a set of pointsintheplane.. 19
3.2 An example of three-axis NC-machining. 20
3.3 Theoffsetsof edgesand faces. 22
3.4 Computing the mesh of a triangularface. 23
3.5 Ilustration for the proof of Lemma 3.7. 24
3.6 Illustration for the proofof Lemma 3.8.. 26
4.1 Schoenhardt’s counterexample. 29
4.2 Bagemihl's counterexample. 29
4.3 A solid terrain can not be tetrahedralized. 30
4.4 A solid terrain can not be tetrahedralized (top view). 31
4.5 Two coincident diagonalsinaprism. 33
4.6 Three type-3 prisms share cutting diagonals alternatively. 35
4.7 Tetrahedralizingaslab (topview). 35
48 Atypelbox. i e 38
49 Atype-2Zbox. e e e 39
4.10 Illustration for the proof of Theorem 44. 41
4.11 Illustration for the proof of Theorem 4.5. 42

4.12 A tetrahedralization of CH(P U Q) — P — Q can have Q{(n?) tetrahedra. 44

vii

4.13 Thecapofa Po@Q vertex. e e e e 45

4.14 A U(2) polyhedron and the illustration for a convex cap. 49
4.15 An interlocked U(3) polyhedron. 50
4.16 Tllustration for the computation of a CIOWIL o v v v e e e e 53
4.17 lustration for the proof of Theorem 4.14. 54
4.18 The Schoenhardt polyhedron can be decomposed into 4 disjoint convex
polyhedra. L e e o4
4.19 The Schoenhardt polyhedron can be decomposed into 4 disjoint coavex
polyhedra (top view). e 56
5.1 The shortest watchtower of a polyhedral terrain. 99
5.2 Qlustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 1). .. 63
5.3 Illustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 2). .. o4
5.4 The topological relationship between two convex polyhedra. 72
9.5 Illustration for the proof of Lemma 5.10. 74
6.1 Aviewofthepitsinarow. 80
6.2 The pit can only be guarded by the edges on its rim (or inside it). . . 81
6.3 A terrain for the formula F = (£; VT VEI)A(T) VE, VI3 VE) .. 82
6.4 Aseven-vertex terrain.t 85
6.5 A six-vertex terrain which needs two edge guards, 88
7.1 A segment tree of four linesegments. 97
7.2 A Manhattan terrain and its two-layer segment tree. 99
7.3 An array A and its Symmetric Order Heap. 101
7.4 The pointers used for fractional cascading. 103

7.5 Computing the intersections of a line with a Manhattan terrain. . . . 105

viii

Chapter 1
Introduction

After more than two decades of development, computational geometry has reached a
new, sophisticated level. Whereas most of the basic problems in two dimensions (2D)
have already found satisfactory solutions, many of the problems in three dimensions
(3D) remain to be solved efficiently. Progress on solving 3D problems is relatively
slow, mainly because these problems are typically much harder both computationally
and combinatorially than their 2D counterparts. For example, although the planar
point location problem has optimal solutions with O(logn) query time after O(n)
time and space preprocessing [Kir83, EGS86, Col86, ST86], the best result known
for the 3D counterpart has only O(log® n) query time after O(n log? n) time and space
preprocessing [PT92].

In this thesis, we will study computational geometry in two and a half dimensions
(2.5D), i.e., geometric problems regarding the so-called polyhedral terrains. First,
since a polyhedral terrain is a special geometric object in 3D, efficient solutions on
polyhedral terrains might shed some light on the difficult problems in 3D and the
computational difficulty (intractability) of geometric problems regarding polyhedral
terrains implies the computational difficulty of the corresponding problems in 3D.
Second, polyhedral terrains themselves have many applications in practice: computer
graphics, navigation and motion planning, military surveillance, forest fire monitor-
ing, locations of radio transmission stations, etc. They are the main objects studied
in the fields of geographical information systems (GIS) [Bur86) and spatial databases

[GS91, AO93]. Unlike GIS and spatial database researchers, who are mainly con-
cerned with the practical performance of their algorithms, as geometers we study
polyhedral terrains in a more formal manner by giving efficient algorithms and/or
proving the computational difficulty (intractability). for the terrain-related problems.
Of course, the ultimate objective is to give better practical algorithms rather than
to obtain only theoretical results. We show that most of the algorithms proposed in
this thesis are practical enough to be implemented efficiently.

We begin by giving the definitions for the geometric objects to be studied in this
thesis.

A polyhedral terrain T (terrain for short) with n vertices is a connected 3D polyhe-
dral surface such that for each point v = (z, y, z) on the surface, z = F(z, y) for some
linear function F !. In other words, any vertical line intersects a terrain at most once
and the orthogonal projection of a terrain on the XY-plane is a (bounded) planar
subdivision. In general, we say a polyhedral surface S is a terrain along a direction d
if the intersection of S and any line parallel to d in 3D is either empty or a point. A
plane H with norm d is called a projection plane of S. A line segment in 3D is called
rectilinear if it is perpendicular to either the XY-, XZ- or the YZ-plane. A polyhedral
object A is called rectilinearif and only if every edge of A is rectilinear, A Manhattan
terrain M with n vertices is a connected 3D rectilinear polyhedral surface such that
the intersection of any vertical line with M is either empty, a point, or a vertical line
segment. Since a polyhedral terrain (or a Manhattan terrain) is essentially a planar
graph, it can be represented using the Double Connected Edge List (DCEL) [PS85]
data structure. Throughout this thesis, we assume that once a polyhedral terrain (or
a Manhaitan terrain) is given, the corresponding DCEL representation is also given.

A solid terrain T 2 is a simple polyhedron such that there exists a face f of T and
the intersection of T with any line perpendicular to f is either empty, a point, or a
line segment with one endpoint lying on f. A solid Manhattan terrain M is a simple
rectilinear polyhedron such that there exists a face f of M and the intersection of M
with any line perpendicular to f is either empty, or a line segment with one endpoint

1Hence why many people tend to call a polyhedral terrain a 2.5 geometric object.
2We will use T to denote either a terrain or a solid terrain and we will use M to denote either a
Manhattan terrain or a solid Manhattan terrain in this thesis.

lying on f. We call f a valid base of T (and M).

Since this thesis mostly deals with the complexity of solving geometric problems
it is essential to define the models of computation and to specify the primitive oper-
ations allowed to be executed. We adopt a random access machine (RAM) similar
to that described in [AHUT74], but each storage location can hold a single real num-
ber. The primitive operations include: (1) the arithmetic operations (+, —, X, /); (2)
comparisons between two real numbers (<, <, =,#, 2, >); (3) indirect addressing of
merory; and (4) k-th toot, trigonometric functions, EXP and LOG. In [PS85] this
model is referred to as the real RAM.

Throughout this thesis, we assume the reader is familiar with the following basic
notations: O, €, o and ©. We also assume the reader is familiar with some basic
concepts in computational geometry (for example, convex hull, Voronoi Diagram).
For more information regarding these definitions, the readers may refer to {PS85]
(particularly Chapter 1).

In Chapter 2 we consider two elementary problems regarding polyhedral terrains.
First, all previous polyhedral terrain research assumes that a polyhedral terrain is
already given. Thus we consider the elementary problem: given a polyhedral surface
in 3D, how fast can one test whether or not it is a polyhedral terrain? We show that
this can be answered in linear time via linear programming. Second, by a non-trivial
extension of the above result we present a linear time algorithm to test whether or
not a given simple polyhedron is a solid terrain. It turns out that a solid terrain is
a geometric object which can be manufactured by stereolithography. Earlier versions
of the above results are partially presented in [LZ93] and [ABB+93] respectively.

In Chapter 3 we investigate the problem of computing the a-hull, a generalization
of the convex hull of a solid terrain, which is closely related to the problem of manu-
facturing a solid terrain by NC-machining. It turns out that by computing the upper
envelope of a set of surface patches in 3D the a-hull of a solid terrain can be com-
puted deterministically in O(n®) time, and it can be computed using a randomized
algorithm with expected running time of O(n?**) (for any € > 0). Since in practice
we are not able to produce the a-hull of a terrain with a NC-machine we obtain an
algorithm to compute an approximate a-hull. The complexity of our algorithm is

inversely related to the error, defined as the Hausdorff distance between the exact
and approximate a-hulls.

In Chapter 4 we consider the problem of tetrahedralizing certain special classes of
solid terrains. The general problem of deciding whether or not a simple polyhedron
in 3D can be tetrahedralized is known to be NP-complete [RS92]. Nevertheless, some
special classes of simple and non-simple polyhedra can be tetrahedralized efficiently
[GP88, Ber93]. We show that an arbitrary solid terrain does not always admit a
tetrahedralization. We extend the classes of tetrahedralizable polyhedra, which in-
clude several classes of solid terrains. In particular we show that the following classes
of simple and non-simple polyhedra can always be tetrahedralized: simple slab (with
or without holes), subdivision slab, a box with fixed depth rectilinear holes and a
box with linearly ordered rectangular holes. The first two classes can be considered
as generalized solid terrains, while the latter two classes belong to the class of solid
Manhattan terrains [TVWZ93]. We also discuss the problem of tetrahedralizing the
class of polyhedra which are the union of & convex polyhedra. We show that for k=2
and 3 the resulting polyhedra can be efficiently tetrahedralized; however, for k > 4,
the polyhedra do not always admit a tetrahedralization.

In Chapter 5 we consider the shortest watchtower and related problems for a
polyhedral terrain. The shortest watchtower is defined to be the shortest vertical
line segment erected on the terrain such that the top of the tower can see the whole
terrain. Sharir gave an O(n log? n) time algorithm for solving this problem and posed
as an open problem the computation of such a watchtower in O(n logn) time [Sha88).
By extending the hierarchical representation of a convex polyhedron of Dobkin and
Kirkpatrick [DK85], we solve the above open problem in O(rnlogn) time. Such an
extension on the hierarchical representation also extends the previous result regarding
the intersection detection between a line (or line segment) e and a preprocessed convex
polyhedron P. If line e does not intersect P then we can report in logarithmic time
the shortest distance between them along a given direction. In other words, we can
report the shortest distance along the direction at which e and P will collide if either
of them is moved along the fixed direction. Again with this extension, we show that
the shortest vertical distance between two convex polyhedra can be computed in

linear time. Furthermore, such a data structure also solves the intersection detection
problem between two convex polyhedra in O(log? n) time after O(n) time and space
preprocessing {Zhu92, Zhu93]. This achieves the same complexity as the best known
algorithms [Col86, DK90].

In Chapter 6 we consider the problem of guarding polyhedral terrains, i.e., placing
a set of guards on a terrain such that the whole terrain is collectively covered by these
guards. Cole and Sharir showed that computing the minimum number of vertex
guards to cover the surface of a terrain is NP-complete {CS89]. By modifying their
proof we first show that the problem of finding the minimum number of edge guards
to cover a terrain is also NP-complete. We show that | %] vertex guards are always
sufficient and sometimes necessary to guard an n-vertex terrain. We also present a
linear time algorithm for placing [3] vertex guards to cover a terrain. W'th respect
to edge guards, Everett and Rivera-Campo showed that | 3| edge guards are always
sufficient [ERC92]. We show that I_Q"T;-ﬂ_l edge guards are sometimes nccessary to
guard the surface of an n-vertex terrain. Finally, we present a linear time algorithm
for placing |3*] edge guards to cover a polyhedral terrain [BSTZ92, BSTZ93].

In Chapter 7 we study the problems of intersection detection and computation of
Manhattan terrains. These problems arise very offten in practice since the surfaces of
many modern buildings can be thought of as Manhattan terrains. We show that after
O(nlogn) time and space preprocessing, the intersection of a rectilinear line segment
(ray or line) with a Manhattan terrain can be detected in O(logn) time, Furthermore,
if no intersection occurs, we can then report the shortest vertical distance between
the rectilinear line segment and the Manhattan terrain within the same time bound.
We achieve this by building a two-layer hybrid segment tree with the second layer
as symmetric order heaps [HT84] and applying the fractional cascading technique
[CG86]. With these results, we show that given two Manhattan terrains with a total
of O(n) vertices, we can either compute the shortest vertical distance between them or
report their intersection in O(nlogn) time. The generalized version of this problem,
computing the shortest vertical distance between two non-intersecting polyhedral
terrains, is more difficult and has been studied recently. A randomized algorithm with
time complexity O(n4/3+¢} (for any € > 0) is obtained by Chazelle et al. [CEGS89].

Finally, we show that given two Manhattan terrains with a total of O(n) vertices, we
can compute their intersection (upper envelope) in O(nlogn + K) time, where K is
the combinatorial complexity of the envelope. The generalized problem of computing
the intersection of two polyhedral terrains is solved with a randomized algorithm with
time O(n*/3+< 4 K1/3p1+¢ 4 Klog?n) (for any € > 0), where K is the size of output
[Pel93].

In Chapter 8 we conclude the thesis by summarizing the main results and posing

a related set of open problems.

Chapter 2

Testing if a polyhedral object is a

terrain

Since we are studying computational geometry in 2.5D, it is not unreasonable to
assume that the input for these problems consists of polyhedral terrains. However,
in many applications we may not know in advance whether or not a given polyhedral
surface is a terrain. Therefore, a question which arises naturally is how fast one
can decide if a given polyhedral surface is a polyhedral terrain. Similarly, given a
simple polyhedron how fast can one decide if it is a solid terrain? In this chapter we
show that we can answer both of these two questions in linear time. In Section 2.1
we present a linear time algorithm by linear programming to test whether or not a
polyhedral surface is a terrain. By a non-trivial extension of this algorithm in Section
2.1, in Section 2.2 we present a linear time algorithm to test if a simple polyhedron
is a solid terrain.

2.1 Testingifa poljrhedral surface is a polyhedral

terrain

In recent years there has been much research conducted involving polyhedral terrains
in the areas of geographical information systems (GIS), spatial databases, computer

graphics and computational geometry [dFP*86, Sha88, RS88, CS89, CEGS89, Lee9l],
[PV92, AS93]. Common to al] of this research is the assumption that a polyhedral
terrain is given as input. We consider a different problem that asks given a connected
3D polyhedral surface S if there is a projection plané N with norm 88 =< 1y, 22,23 >
such that the orthogonal projection of S on N is a planar subdivision. In other words,
does there exist a direction =< z;, 23, 3 > such that § is a terrain along ii? In 2D
a related problem of testing whether or not a simple polygon is monotone is solved
by Preparata and Supowit [PS81].

We show how this problem can be formulated as a linear programming problem.
Let the outer nurm of the plane containing the face f; of § be §i; =< a;,b;,¢; >. We
start with the following result.

Lemma 2.1: A connected polyhedral surface S is a terrain if and only if there exists
i =< 11,T,73 > such that all the dot products of @i; ¢ & (= a;x; + bjxs + c;T3) are
greater than zero.
Proof: If § is a terrain then there exists a direction & =< z;,%3,23 > such that
any directed line ! along this direction intersects S at most once. This immediately
implies that the angles between ! and the norrrs of the faces of S are less than /2,
i.e., all 3; o 1 are greater than zero.

If there exists il =< z), 29,23 > such that for all ¢, 1i; i > 0 then we show that
S must be a terrain along @i. If this is not the case, then there exists a directed line
[along @ such that ! intersects S at least twice. Without loss of generality, assume
! intersects S consecutively at faces with norms i;, fi;. Since § is connected, one of
the angles between & and 1i;, fi and i, must be greater than 7/2. This immediately
implies that either i; e i < D or iy ed < 0. O

With the above lemma, we can formulate the problem as follows,

Minimize z; + 7> + z; (or any objective function of z1, za, 23)
subject to
a;2) + by + c;z3 > 0
for i =1,...,m (m is the number of faces of S and m < 2n - 4),

By applying Meggido’s algorithm [Meg84], which solves a linear programming
problem in linear time when the dimension is fixed, we can decide in linear time
whether or not a feasible solution exists. A feasible solution gives us a projection
plane. This algorithm can actually be extended to determining whether there exists
a d-hyperplane {d > 1) for which a d-dimensional surface is monotone. Again by
Meggido’s algorithm, this extension still runs in linear time for fixed d. Therefore, we

have the following theorem.

Theorem 2.2: Given a connected polyhedral surface § with n vertices in 3D, one
can decide in linear time whether it is a terrain. If the answer is YES, one can also

give a projection plane for which S is a terrain.

It should be noted that the above algorithm solves in linear time the problem of
determining if there is a hemisphere which contains a given set of points on a sphere
[DR80]. We can apply the above algorithm to test whether or not an n-vertex simple
polyhedron is a solid terrain in O(n?) time. The test can be performed as follows.
Each time we fix a face and test if the remaining polyhedral surface is a terrain with
respect to this face in linear time. It is easy to ses that this can be done in O(n?)
time., Nevertheless, we show in the next section that this can actually be done in
O(n) time.

2.2 Testing if a simple polyhedron is a solid ter-
rain

Before presenting a linear time algorithm to test if a simple polyhedron is a solid
terrain, we discuss briefly the relationship between a solid terrain and a CAD/CAM
system developed and patented by 3D Systems of Sylmar, CA that employs a manu-
facturing process called stereolithography (see Figure 2.1). |
Stereolithography employs a vat of liquid photocurable plastic, a computer con-
trolled table T on a stand S that can be moved up and down in the vat and a laser
L above the vat that can shine on the surface of the liquid plastic and can move in a
horizontal plane. The system works as follows, At the first step the table is just below

9

O Laser

)

Figure 2.1: Stereolithography.

the surface of the plastic and the laser is controlled to move about so that the light
shines on the surface of the plastic and draws the bottom-most cross-section of the
object A being built. When the iaser light contacts the plastic, the plastic solidifies
and so the first cross-section of the object is formed and rests on the table. At the
next step the table is lowered a small amount to allow liquid to cover the hardened
layer and the laser then draws the next cross-section of the object. The light from
the laser penetrates the liquid just deep enough so that this cross-section is welded to
the lower cross-section produced at the previous step. This process is repreated until
the entire object is formed. The direction given by a normal to the table pointing to
the laser is called the direction of formation for the object.

There are some objects that can be formed only if the direction of formation is

10

direction of formation

v L—

(a) (b)

Figure 2.2: Objects can and can not be manufactured by stereolithography.

chosen correctly. For example, in Figure 2.2, the object (a) can be formed in the
position shown. However, if the object is formed in the opposite direction as in
Figure 2.2 object (b) then stereolithography fails. Consider what occurs when the
cross-section is reached where the surface S lies. The surface S is not supported below
and so as it is formed it sinks to the level of the table. Naturally, there are some
objects that can not be formed using stereolithography regardless of the direction of
formation chosen.

From the above description of stereolithography, it is clear that an object (modeled
as a polyhedron) can be constructed using stereolithography if and only if it is a solid
terrain. Farthermore, the direction of formation corresponds to the direction for the
cbject to be a solid terrain. Consequently, a linear time algorithm to decide whether
a simple polyhedron is a solid terrain would imply a linear time algorithm to decide
whether or not an object can be constructed using stereolithography.

Now we give the necessary detail to decide if a simple polyhedron is a solid terrain.
Suppose we are given a simple polyhedron A in 3D and we want to either find a face
f of A that is a valid base or determine that A is not a solid terrain.

In this section we use the following notation. Let A be a polyhedron with n

11

vertices. For each face f of A, let f(1), f(2),..., f(ks) be the faces of A that share at
least one edge with f. Let d(f),d(1),d(2),...,d(k;) be the corresponding unit norms
of these faces. Let Ay be the plane containing the face f. Let 8;(f) be the angle
interior to A between the plane Ay and the plane P(ij containing f(i) about the line
of intersection of Ay and P(i). X 6;(f) < nf2forall i, 1 < i < ky, then f is called
acute. If f is acute and for some 7, 6;(f) < #/2, then f is said to be stricily acute.
We show several properties regarding A that will give rise to a linear time feasibility
testing algorithm. Without loss of generality, let ff(f) =<0,0,-1>. We have the
following observation.

Observation 2.3: If face f is a valid base for polyhedron A then f is acute. Fur-
thermore, if A is a convex polyhedron then face f is a valid base if and only if f is
acute.

Thus if A is known to be convex we can decide in linear time whether or not
A is a solid terrain. We now turn our attention to polyhedral objects that are not
necessarily convex. We show that if the polyhedral object A has a strictly acute face
f, then either f or one of its adjacent faces must be a valid base if A is a solid terrain.

Lemma 2.4: If polyhedron A is a solid terrain and f is strictly acute then f, f(1),...,
or f(ky) is a valid base.
Proof: If f is a valid face then the lemma is proved. Suppose f is not a valid face
and the valid face V' does not belong to f(1),..., f(ks). Let d(V) be the unit norm
of V. Since f is strictly acute, the angle between —d(£),d(s)(1 < i < ky) is less than
7/2 and consequently all c?(i)(l < i £ ky) are above the plane Z = 0.

Let us now compute the convex hull of d{i) (1 < i < ky), which is an infinite cone
C starting at the origin. C contains -aT(f , since f is a simple polygon (see Figure
2.3). If —d(V') lies above the plane Z = 0 then the angle between d{f) and —d(V) is
greater than 7/2 which implies that V can not be a valid base. If —d{V’) lies below
the plane Z = 0 then the angle between ~d(f) and —-J(V) is greater than 7 /2. Since
—d{f) is contained in C at least one angle between d{i), —d{(V’) is greater than x/2
and again V can not be a valid base. O

12

-d(f)
dfi)

-d(V)

d(f

Figure 2.3: Only a strictly acute face and its adjacent faces can be valid bases.

Assume that f is not strictly acute, we define fi,, as follows. If there is more than
one face with norm —d(f), then frop is empty (there does not exist a valid base with
norm --ci.([)); otherwise, we use f;, to denote that face.

Lemma 2.5: If polyhedron A is a solid terrain and f is an acute (but not strictly
acute} face then f, f(1),..., f(ky) or fiop is a valid base.
Proof: Follows from Lemma 2.4 and the definition of fi,,. O

Unfortunately, in 3D an acute face f may have O(n) adjacent faces. Therefore even
if we already have an acute face f we still need to test O(n) candidate bases, which
will imply an O(n?) time algorithm. Nevertheless, we have the following theorem.

Theorem 2.6: Polyhedron A is a solid terrain if and only if A contains a acute face
[and at least one of f, fi,, (if it exists) and at most four faces adjacent to f is a
valid base of 4.

Proof: The “if’ part is trivial. We need only show the “only if’ part. Following
from Lemmas 2.4 and 2.5, if A is a solid terrain and A contains an acute face f
then either f, f(1),..., f(ks) or fiop is a valid base. Now we only need to show that
among f(1),..., f(ks) there are at most four faces which can be valid bases of A. Let
e; = T;Uj;1 be the edge of f which is adjacent with f(i). We show that if f(i) is a

13

Figure 2.4: A terrain has at most six valid bases.

valid base of A then e; has the following properties:

(1) e; is on the convex hull f, and

(2) the two inner angles of v; and v;,, within f are at most 7 /2.

It is clear that the first property has to be correct. If ¢; is not on the convex
hull of f then the line through e; intersects the interior of f and therefore the plane
through f(7) intersects the interior of f. This contradicts the assumption that f(t)
is a valid base. Now we prove the second property. Without loss of generality, let
the plane containing f(i) be the plane Z = 0 and let ¢, = TT;z7 be on the X-
axis such that v; = (a,0,0) and v;4; = (d,0,0) (d > a > 0). Furthermore, let
-1 = (0,b,¢)(b,c > 0) be on the plane X = 0 and v;_, be the vertical projection of
vi—1 on Z = 0. As Figure 2.4 shows, the interior angle of v; within f is greater than
/2. It turns out that the plane through the triangle Avyv;_;v;_, is bX +a(Y —b) =0
while the plane through f (i.e., through Awvvi-10) is —c¢Y + bZ = 0. The norms of
the two planes are i; =< b,4,0 > and i =< 0, —c, b > respectively. Consequently
the angle between the two planes is greater than 7/2 since ii;e H; = —ac < 0. Since
[is acute, the angle between f and f(j) (f(j) shares T—7%; with f) is less than or
equal to 7/2. Consequently f(j) lies below f, which implies that f(i) can not be a
valid base. We can show similarly that if the inner angle of v;,; is greater than 7/2
then f(i) can not be a valid base.

Now assume we have already computed in linear time the convex hull of f, CH(f).

14

We show that there are at most four edges of C H{ f) satisfying property (2).

Given a convex polygon C with K edges, if an edge ¢; (1 £ j £ K) has the
property that 8(e;—1,e;) < 7/2,8(e;,e541) < 7/2 then e; is called a valid base of C.
Suppose there are L angles less than or equal to 7/2 in C. Since

T 0ei, e1) = (K — 2)m,
we have
%'ir + (K- L)r 2 (K = 2)r,

which implies L < 4.

Therefore, there are at most four edges of C H(f) which satisfy this property. This
implies that there can be at most four faces among f(7) (1 < ¢ £ ky) which can be a
valid base of A. O

Thus in O(n) time, where n is the number of vertices in polyhedron A, the number
of possible valid bases can be reduced to at most six. By Theorem 2.2, deciding if
a face f of polyhedron A is a valid base can be done in O(n) time, where n is the
number of vertices of 4. Therefore we can test whether A is a solid terrain and find
a valid base (if it is) in O(n) time. Consequently, we have the following theorem.

Theorem 2.7: Given a simple polyhedron with n vertices one can test in O(n) time
whether or not it is a solid terrain and if it is a solid terrain one can identify all valid

bases with the same time complexity.

We have thus obtained an optimal O(n) time algorithm to decide if a polyhedral
surface is a terrain and an optimal O(n) time algorithm to test if a given polyhedron
is a solid terrain. A further question would be decomposing an arbitrary polyhedral
surface into minimum number of terrains. The related 2D problem of decomposing
the boundary of a simple polygon into minimum number of monotone chains has been
solved with optimal linear time algorithms [CRS92, RR92, LZ93]. However this 3D
problein seems much more difficult. We feel strongly that it is NP-complete, but no
progress has been made in this direction. Thus we pose this as an open problem to
conclude this chapter:

15

Open Problem 1: What is the complexity of decomposing a 3D polyhedral surface
S into the minimum number of terrains (along different directions) if S is not a
terrain?

16

Chapter 3

The o-hull and related problems of

a terrain

In Chapter 2 we presented linear time algorithms to test if a polyhedral surface and
a simple polyhedron is a terrain. This in hand, we may start to consider the convex
hull problem, whose role in computational geometry is known to be that of sorting
in algorithms. Although there are several optimal ©(nlogn) (©(n)) time algorithms
known for computing the convex hull of a set of points (a simple polygon) in 2D
[PS85), the only known optimal algorithm for computing the convex hull of a set of
points in 3D is the divide-and-conquer algorithm by Preparata and Hong [PHT77).
With this result we can compute the convex hull of a polyhedral terrain in O(nlogn)
time.

The a-bull is a generalization of convex hull of a set of points in 2D and 3D and
was proposed a decade ago [EKS83]. It was originally proposed to extract the shape
of a set of points. Recently it was found that a-hulls can be applied to NC-machining
[WCC*93]. In this chapter we consider the problem of computing the a-hull of a
terrain. It turns out that the a-hull of a terrain can be computed in deterministic
O(n?) time by first computing the offsets of the vertices, edges and faces of the terrain,
which are a set of O(n) simple surface patches in 3D. Then we obtain the a-hull by
applying the trivial cubic algorithm for computing the upper envelope of n simple
surface patches in 3D. With the recent results of computing the upper envelope of

17

n surface patches in 3D [HS93, Sha93a, Shad3b], it can be computed in randomized
O(n?**) time (for any ¢ > 0). Since in practice we are not able to manufacture the

a-hull of a terrain with a NC-machine we use discrete approzimation to obtain an

O((N + n)?) time algorithm to compute an approximate a-hull of a solid terrain

T, where N is the number of sample points chosen to approximate the surface of

T. We also show that N is inversely proportional to the error, which is defined as

the Hausdorff distance, between the exact and the approximate a-hulls of T. Some

simple, elegant and practical ideas are implemented in the algorithm. We hope the

algorithm and the related ideas will be useful in the NC-machining industry.

3.1 Preliminary

We just mention that the convex hull of a polyhedral terrain can be computed in
O(nlogn) time. A natural generalization of the convex hull problem is to compute the

a-hull of a (solid) terrain. It turns out that in theory the a-hull of a solid terrain T is

the resulting object manufactured by NC-machining [Bez72, PW79, FP79, BFK84, DJSH89],
with T being the target.

We first give a brief introduction of the definition and related results regarding
a-hulls {EKS83). Given a real «, a generalized disc of radius 1/~ is defined as follows:
(i) if @ > 0, it is a (standard) disc of radius 1/a;

(ii) if @ < 0, it is the complement of a disc of radius 1/a; and
(iii) if @ = 0, it is a half plane.
The o-hull of a set of n points S in the plane is defined to be the intersection
of all generalized discs of radius 1/a that contain all of the points in S. Figure 3.1
shows the a-hull of a set of points in the plane where & < 0. The convex hull of §
is precisely the a-hull of § when a is equal to zero. Edelsbrunner et al. [EKS83)
developed optimal algorithms to compute the a-hull of a set of points S by first
computing the nearest and furthest point Voronoi Diagrams of S.
The definition of a-hull and the corresponding algorithms can be generalized to
a set of n points in 3D. However, because the Voronoi Diagram of a set of n points
in 3D has quadratic size, the time complexity of computing the a-hull is O(n?). The

18

Figure 3.1: The a-hull of a set of points in the plane.

following theorem summarizes the main results of [EKS83, EM94).

Theorem 3.1 [EKS83, EM94}: The a-hull of a set S of n points in the plane can be
computed in time @(nlogn) using O(n) space. The a-hull of a set S of n points in
3D can be computed in time O(n?) using O(n?) space.

Next we give a brief introduction of NC-machiring, i.e., machining a polyhedral
object on a numerically controlled (NC) machine. The machining of sculptured sur-
faces with numerical control (NC) is a common practice in industry. Sculptured
surfaces arise in design and manufacture of automobile bodies, ship hulls, aircraft,
etc. Often when a computer is used to control the NC machine, polyhedral approxi-
mations of thes> objects are usually used instead. A three-axis NC machine (X,Y,Z
Cartesian movements, see Figure 3.2) with a ball-end cutter is the most common
machine used in practice. Two types of cutting errors can occur: gouging and excess
material. Decreasing the size of the cutter radius often solves these problems, however
a smaller cutter will cut more slowly, break more often and wear faster. Determining
the optimal tool size as well as simulation, detection and elimination of the efrors
in NC machining have been studied for quite a long time and many approximation

19

Figure 3.2: An example of three-axis NC-machining.

algorithms, simulation methods and practical systems have been proposed.

We see that in theory the a-hull of a solid terrain T is exactly the resulting object
produced by a NC-machine with a cutter of radius 1/a, with T being the target.
We now give the formal definition of the a-hull of a solid terrain. Given a real a, a
generalized ball of radius 1/ is defined as follows:

(i) if @ > 0, it is a (standard) ball of radius 1/a;

(ii) if & < 0, it is the complement of a ball of radius 1/«; and

(iii) if & = 0, it is a half space in 3D.
The a-hull of a solid terrain T with n vertices is defined to be the intersection of all
generalized balls of radius 1/a that contain all of the points on the surface of . The
convex hull of T is precisely the a-hull of T when a = 0. When a > 0 the a-hull of
T is of no practical interest to us although it can be computed exactly in O(n?) time
with the result of [EKS83, EM94]. We only consider the case when a < 0. It should
be noted that when o < 0 the a-hull of T is different from the a-hull of the vertices
of T.

20

3.2 Computing the exact and approximate a-hulls

of a terrain

In this section we discuss the problem of computing the exact and approximate a-
hulls of a terrain. For the corresponding 2D problem, Woo et al. propose a linear
time algorithm to compute the a-hull of a monotone chain [WCC*93]. In addition,
two trivial O(nlogn) time algorithms are mentioned to compute the a-hull of a
monotone chain: the Constrained Voronoi Diagram method [LD81, Yap87, Che89),
and the upper envelope method {Her89]. Correspondingly, we might generalize these
methods to 3D to compute the a-hull of T. However, as for the Constrained Voronoi
Diagram in 3D, it is only known that if the polyhedral obstacles (i.e., points, line
segments and faces) satisfy certain axioms then the Constrained Voronoi Diagram
exists and no algorithm is known to compute such a Constrained Voronoi Diagram
in 3D [Sti91). It turns out that the upper envelope method can be generalized to 3D
to compute the a-hull of a terrain.

The upper envelope of a set of n simple surface patches is defined as a polyhedral
surface S such that the Z-coordinates of every point of S is the pointwise maximum
of the n surface patches. By first computing the offsets of the vertices, edges and
faces of T', which are all simple surface patches (see Figure 3.3)!, then computing the
upper envelope of these offsets we can obtain the a-hull of . The upper envelope of n
simple surface patches in 3D can be computed in O(n®) time since there could be (n?)
intersections between these n patches. There are a series of results for computing the
upper envelope of n simple surface patches in 3D [HS93, Sha93a, Sha93b]. It turns
out that the upper envelope of n surface patches can be computed in randomized
O(n**¢) time (for any € > 0). Consequently the a-hull of a solid terrain can be
computed within the same time.

Observation 3.2: Given a solid terrain T with n vertices, the a-hull of T can
be computed deterministically in O(n%) time and with a randomized algorithm in

'In Figure 3.3, we only show an illustration of the offset of an edge and a face. The offset of a
vertex can be computed by computing the intersection of the surface of the ball centered at that
vertex with all the offsets of its adjacent edges and faces.

21

Figure 3.3: The offsets of edges and faces.

O(n?*¢) expected time (for any ¢ > 0).

However, in practice we are not able to produce the exact a-hull of a terrain
with a NC-machine even if the terrain is a prism! Whenever we translate the ball-
end cutter on the top triangle the corresponding trajectory on the top triangle is
a line segment (which is of area zero). Therefore, to produce the exact a-hull of
a terrain with a NC.machine we might have to move the cutter infinitely. With
this consideration, we use discrete approzimation to obtain an O((N + n)?) time
algorithm to compute an approximate a-hull of a solid terrain T. The basic idea
is to replace the exact representation of a solid terrain by carefully chosen sample
points in space. This idea is not new in NC-machining and there are several works in
NC-machining using such a method [Cha83, Hoo86, WW86, DJSH89]. Intuitively,
the more sample points chosen, the more accurate the simulation will be. However,
in practice a huge amount of sample points would make the computation infeasible.
Therefore an acceptable amount of sample points must be chosen carefully so that
the errors of simulation are bounded. We show that an approximate a-hull of a solid
terrain T can be computed in O((N + n)?) time, where N denotes the number of
sample points chosen to approximate the surface of T and is closely related to the
accuracy between the approximate and the exact a-hulls of T. .

First of all, we define a function to characterize the quality of an approximation.
Let S be the set of points on the a-hull of T and S; be the set of points on an
approximate a-hull of T. Let 64(S),S2) (the Hausdorff distance) be defined as

22

BN

Figure 3.4: Computing the mesh of a triangular face.

61 (51, S2) = max{max,egs, minyeg, d(a, b), maxpes, minges, d(a,b)},

where d(a, b) is the Euclidean distance between a and b. We also say that §4(Si, S2)
is the error between the exact and approximate a-hulls of T.

We now start to present the details of our algorithm. First we obtain a triangula-
tion of each face F of T by choosing a set of sample points on F and then triangulating
F with these sample points together the vertices of F. The resulting triangulation is
usually called the mesh generation of T. The criteria here are (1) each edge in the
mesh generation of T is not greater than a given value d, and (2) no obtuse triangles
exist in the ... sb generation. To make things easy we just generate the mesh by
equilateral triangles with edge length d. As shown in Figure 3.4 there can be obtuse
triangles near the boundary of F. We simply transform each obtuse triangle into
two acute triangles such that the edge length of each acute triangle is no more than
d. The complexity of computing such a mesh generation of T is proportional to the
number of sample points used, since such a mesh generation is a planar straight line
graph.

There are two kinds of errors induced when we use a mesh of triangles to approx-
imate T and compute the corresponding a-hull. The first error arises when a ball
protrudes through a supporting plane, and is characterized by the following lemina.

23

Figure 3.5: Illustration for the proof of Lemma 3.7.

Lemma 3.3: Let B be a ball with radius r and center 0, Azyz be a regular triangle
(with edge length d) inscribed in B, C be the circumcircle of Azxyz with center ¢, H
be the plane through C, and @ be the angle between 0T and o¢. Then the Hausdorff
distance between H and the spherical cap cut off by H is bounded by

ey =1 —rcosf,

where sinf = 7%;.
Proof: (Refer to Figure 3.5) Following the Pythagorean theorem, we have

e; =1 —|oc] =r —rcosé,
where sinf = 7%;. By Taylor’s theorem,
eg=r—rcosf=r—r(l- %2!-+o(0‘))~ %’—,asﬂ-—to.

It should be noted that the above bound regarding this type of error is in fact the
worst case. The reason is that if the triangle is an acute triangle with edge length at
most d then the radius of the largest circumcircle of the triangle is at most ;‘7’5. In
other words, if Azyz is not a regular triangle then sin§ < 7‘-:,-;. (m]

24

The underlying idea behind this lemma is that if we take H as a face of T and we
choose z, ¥, z as the sample points then the error between the exact and approximate
a-hulls regarding H is bounded by e;. In practice, to manufacture an object efficiently
(by cutting off excessive materials) with 2 NC-machine the angle # can not be too
small. At the same time, e, has to be bounded. The above lemma shows that these
objectives can be achieved within certain error range. For example, if § = 5 = 15°
then e; = 0.04r, which is usually satisfactory.

As for the second kind of error, the careful reader might have already noticed that
there could be another kind of protrusion, that is, the ball is supported by the two
endpoints of the nearest edge together with two vertices which can or can not be the

vertices of a triangle in the mesh generation.

Lemma 3.4: Let B be a ball with radius r and center o, T7 be the closest edge to
o, 82 be the distance between o and T§ (w is the midpoint of ZT7), H be the plane
through ¥7 such that 5% is also the distance between o and H, a, b be the two other
vertices supporting B and 3 be the angle between F and ow. The maximum distance
between H and the spherical cap cut off by H is
D=r—rcosf,
d

where sin# < . Consequently, the Hausdorff distance between B and the exact
a-hull of T is bounded by

ey < 3D.
Proof: (Refer to Figure 3.6) Following the Pythagorean theorem, we have
D=r—|ow|=r—rcosf,

and since the length of Ty is at most d, sin g < (—? = -25’; (note that e; > D).

As for the Hausdorff distance between B and the exact a-hull of T, we could see
that B may also protrude the faces adjacent to a and b by an amount of at most
D. This implies that the center of B is transiated three times to reach the current
position; consequently, the Hausdorff distance between B and the exact a-hull of T
is bounded by

25

Figure 3.6: Illustration for the proof of Lemma 3.8.

es < 3D.

O
Our algorithm is essentially based on the above two lemmas. Suppose a solid

terrain T', a, and the allowed approximation error £ are already given. Since

1(1—cosf) where sinf < & 7-
3(1-cosfB) wheresinf < %

o

£ > max(ey, e3) = ma.x{

we have

8¢ __ 4£3
da 9

dSmax{ vﬁ_f._;;gz .

If&< 5 then the maximal length d of the equilateral triangles in the mesh genera-
tion is determmed by

d=max{ 3:;2 \/“—‘9-—382<\/_

Therefore we have the following theorem.
Theorem 3.5: Let T be a solid terrain and B be a ball with radius 1/a. The
approximate a-hull of T' can be computed in O((N + n)?) time, where N is the

26

number of vertices added in the mesh and is inversely proportional to the accuracy
of the approximation.

Proof: We first compute the maximum edge length in the mesh generation given o
and the allowable error £. Then we obtain a mesh generation with the maximum edge
length d. This creates N new vertices and we can run the algorithm of Edelsbrunner
et al. [EKS83, EM94] in O((N + n)?) to obtain the approximate a-hull with error at
most £. N is related not only to the area of the surface of T but also to the shape
of the faces of T. In practice most of the objects to be machined are well-shaped,

therefore we could give a bound on NV, ie., N = (a?zgag;z) O(areaﬂ')) When £
is small, N = O(21) g

It should be noted that the a-hull of T' can never protrude any face of T. With this
property, we can smooth some part of some faces of T' so that there is no protrusion
below this part. For example, if a face f of T is large and flat then we can smooth
some part of f. Although this procedure does not decrease the error between the
approximate and exact a-hull, it does so for that specific part. It is conceivable that
this procedure is useful in practice since many products of NC-machining are not
general terrains and usually have many flat faces.

One of the main open questions in this regard is to improve the O(n®) upper
bound for computing the a-hull of a terrain.

Open Problem 2: Is it possible to improve the O(n®) upper bound for computing
the a-hull of a terrain?

27

Chapter 4

Tetrahedralizing special classes of

solid terrains

Decomposing a geometric object into simpler parts is one of the most fundamental
problems in computational geometry [CD85, Kei85]. This decomposition is employed
in such applications as graphics, pattern recognition, solid modeling and mesh gen-
eration for finite element methods.

It is well known that any simple polygon can be triangulated [Lenll). The proB—
lem of triangulating a simple polygon in linear time has been one of the main re-
search problems in computational geometry for nearly two decades. Recently Chazelle
showed that a simple polygon can be triangulated in linear time [Cha91]. The problem
of tetrahedralizing a §i:ﬁ1ple polyhedron in 3D without adding new vertices (Steiner
points) is significantly more difficult than its 2D counterpart. Schoenhardt gave a
counterexample (see the 6-vertex twisted prism in Figure 4.1) which shows that it
is not always possible to tetrahedralize a simple polyhedron [Sch28]. Bagemihl ex-
tended Schoenhardt’s result by showing that there exist n-vertex simple polyhedra
which can not be tetrahedralized [Bag48] (Figure 4.2). Seidel gave a counterexample
to show that not all simple rectilinear (isothetic) polyhedra can be tetrahedralized
(Chapter 10 of [O’'R87]). Recently Ruppert and Seidel showed that it is NP-complete
to decide if a simple polyhedron can be tetrahedralized [RS92]. Nevertheless Chazelle
and Pa'ios showed that if O{r?) Steiner points are allowed, a simple polyhedron can

28

A

Figure 4.1: Schoenhardt’s counterexample.

Figure 4.2: Bagemihl’s counterexample.

29

a

Figure 4.3: A solid terrain can not be tetrahedralized.

be tetrahedralized into a linear number of tetrahedra in O(nlogn 4+ r) time, where
7 is the number of reflex edges of the given polyhedron [CP90]. (Given an arbitrary
polyhedron A in 3D, we assume that every edge of A is determined by two of its
faces. An edge of A is called a reflex edge if the outer dihedral angle of the two faces
defining that edge is less than m, it is called a flat (coplanar) edge if the angle is equal
to w, otherwise it is called a convez edge. A vertex is called reflez if it is adjacent to
at least one reflex edge.)

We first give a counterexample to show that a solid terrain is not always tetra-
hedralizable. The example (see Figure 4.3) is essentially based on the Schoenhardt
polyhedron. The coordinates of the vertices on the bottom face are a = (0, —"—’3@,0),

= (2, —’C ,0) and ¢ = (-2, JC ,0). Initially we have a regular frustum such that the
coordma,tes of the vertices on the top faces are (0, ——£ ,2), (1, £,2) and (- 1, =, 2).
We rotate the upper face, a regular triangle, in counterclockwuse order around its
center by a small angle . We have the coordinates of the vertices of the new top face
as follows: d = (— -JCcos(I- -6), JCsm(g -0),2),e= (-£ sin(8), ——‘@- cos(8), 2)
and f = (—\Ccos(” + 9), 3 sin(Z + 6),2) (see Figure 4.4).

The outer norm of the fax:e Aace is
fiy =< —4v/3, -4,4sin6 - B cosf + 85 >,

while the outer norm of the face Acde is

30

Figure 4.4: A solid terrain can not be tetrahedralized (top view).

i =< —%i(cosﬂ +sin(§ - 0)),
—133@(sin6 + cos(Z — 8)), :
4lsin @ sin(£ — 8) — sinf + 3 sin(E —) — cosd cos(% — 0) — cos(E —0) +
V3cosd] > .
If 6 is very small, the polyhedron we obtain is clearly not tetrahedralizable since
all the vertices are reflex (edges ¢, af and bd are all reflex) (compare Figures 4.3
and 4.4). We only need to show that when # is very small, there exists i=< 0,0,1 >
such that & e i; > 0 for ali vhe faces (with norm ;) except Aabe. By symmetry it
suffices to show that for i =1, 2.
In fact we have
limg_ofe i = "—"3@ > 0 and
limg_o i @ iy = 242 > 0.
Consequently the polyhedron formed by a,b,¢,d, e, f is a solid terrain which does not
admit a tetrahedralization. Thereiore, we have the following theorem.

31

Theorem 4.1: A solid terrain does not always admit a tetrahedralization.

Although it seems that tetrahedralizing a general simple polyhedron in 3D is an
intractable problem, there are some results known regarding tetrahedralizing special
classes of simple and non-simple polyhedra. It is well known that a convex polyhedron
in 3D can always be tetrahedralized in linear time. Recently Goodman and Pach
[GP88] proved that the class of simple polyhedra defined by CH(PU Q) ~ P - Q
(CH(P U Q) is the convex hull of P and @), such that P and Q are both convex
polyhedra and PN Q = 0, can always be tetrahedralized. They also showed that the
class of non-simple polyhedra defined by P — @, such that P and Q are both convex
polyhedra and @ C P (we call such a polyhedron a convez annulus henceforth), can
always be tetrahedralized. Both of these two algorithms have a time complexity of
O(n?). Bern showed that the first algorithm is optimal and he proposed an O(nlogn)
time algorithm to improve the second one [Ber93]. '

Although we have just presented a countrexample to show that not all solid
terrains can be tetrahedralized, we show in this chapter that the following classes of
simple and non-simple polyhedra can always be tetrahedralized: simple slab (with
or without holes), subdivision slab, a box with fixed-depth rectilinear holes (a type-
1 box henceforth) and a box with linearly ordered rectangular holes (a type-2 box
henceforth). The first two classes of polyhedra can be considered as generalized solid
terrains, whiie the latter two classes of boxes belong to the class of solid Manhattan
terrains. We also discuss the problem of tetrahedralizing the class of polyhedra which
are the union of a collection of convex polyhedra.

4.1 Tetrahedralizing simple and non-simple slabs

We begin by giving some elementary definitions. A simple slab S is a simple poly-
hedron defined by translating a simple polygon F with m vertices until it reaches
another identical polygonal face F' such that both F and F' are faces of S and all
other faces defined by ab € F,a'b € F' are parallelograms. If F is a triangle, S is
called a prism. If F is a simple polygon with k holes we call the resulting non-simple
polyhedron a slab with & holes. In a prism we say that two diagonals are coincident if

32

a b

Figure 4.5: Two coincident diagonals ina prisi.

they meet at a vertex (see Figure 4.5). Note that if a prism has two coincident diag-
onals then we can tetrahedralize the prism in two different ways: we can triangulate
the untriangulated face (free face henceforth) by inserting a diagonal arbitrarily. The
dual of a triangulated simple polygon is defined as the graph such that the vertices
of the graph correspond to the triangles in the triangulated polygon and there is an
edge between two vertices in the graph if and only if the two corresponding triangles
in the triangulated polygon share a diagonal. It is known that the dual of a simple
polygon with n vertices is a tree with n — 2 vertices and n — 3 edges; furthermore,
once the polygon is triangulated its dual can be computed in linear time [O'R87]. We
propose the following algorithm to show that an n-vertex slab with &k holes can be
tetrahedralized.
Algorithm 4.1
BEGIN
(1) Triangulate the two polygohs with holes F, F' such that they have the same
triangulation,
(2) Construct a graph G with k + 1 vertices such that each vertex corresponds to
a hole or the outermost polygon. Any diagonal which connects two holes or
connects a hole with the outermost polygon defines the edge between the two
corresponding vertices in G, if such an edge is not defined yet. This yields

33

a connected graph G. Compute a spanning tree of G. Label the & diagonals
which correspond to the k edges of this spanning tree cutting diagonals

and double these cutting diagonals. This gives us a triangulated polygon
{with no holes).

(3) Visit every prism whose top has one cutting diagonal and insert coincident
diagonals on the faces of the prism opposite to the face whose top edge is the
cutting diagonal (this makes the face a free face). These prisms are labelled
constrained prisms because if one of the inserted diagonals is later flipped
then so is its neighbor in order to preserve coincidence and the resulting
freedom for its cutting diagonal face.

(4) Visit every prism whose top has two cutting diagonals and insert coincident
diagonals on the faces of the prism containing the cutting diagonals, If more
than one triangle each containing two cutting diagonals have these cutting
diagonals anchored on the same vertex then all inserted diagonals are made
coincident on this vertex. If a set of triangles each containing two cutting
diagonals share cutting diagonals alternatively then all inserted diagonals
are made alternatively coincident to the vertices of F and F' on which two
connecting two cutting diagonals are anchored (refer to Figure 4.6). These
prisms are labelled frozen prisms because these diagonals will never be changed.

(5) Compute the dual tree of the triangulation obtained at Step (2).

(6) Starting with any leaf perform a depth-first search of the dual tree to visit -
all prisms. Triangulate all prisms except frozen ones. If a prism is ordinary it
can be triangulated arbitrarily. If the prism is constrained then coincidence
should be respected.

END

Proof of Correctness:

As shown in Figure 4.7, the possible conflicts arise when we run the depth-first
search and triangulate the relevant prisms; furthermore, conflicts can only arise at
prisms which contain cutting diagonals where we must make sure that the prisms on
both sides of the cutting diagonals contain matching diagonals. We know that there
can not be any face in the triangulation of the upper face with three cutting diagonals,

34

Figure 4.6: Three type-3 prisms share cutting diagonals alternatively.

cutting diagonal

Figure 4.7: Tetrahedralizing a slab (top view).

35

since the existence of such a face implies that the spanning tree we obtain in Step
(2) has a cycle. Consequently, a prism can contain at most two cutting diagonals.
We call a prism corresponding to a leaf in the dual tree whose upper face contains
one cutting diagonal a type-1 prism; a prism corresponding to a degree two node in
the dual tree whose upper face contains one cutting diagonal a type-2 prism and a
prism corresponding to a leaf in the dual tree whose upper face contains two cutting
diagonals a type-3 prism.

Now we consider the following cases:

(I) A type-1 prism or a type-2 prism shares the free face with another type-1
prism or another type-2 prism. According to Step (3), the top edge of the free face is
a cutting diagonal and the free face can be triangulated arbitrarily. We just need to
choose one triangulation to make the tetrahedralization of the two prisms consistent.

(IT) A type-l prism or a type-2 prism shares its free face with a type-3 prism.
According to Step {4), this face is a face of the type-3 prism and is already triangulated
by inserting a coincident diagonal. This gives us a triangulation of the free fuce (hence
a tetrahedralization of the two prisms).

(ITI) A type-3 prism shares a cutting diagonal face with another type-3 prism.
Again according to Step (4), the face of a type-3 prism whose top edge is not a
cutting diagonal is a free face. If the two (or more) prisms have their cutting diagonals
anchored on the same vertex then all inserted diagonals are incident to this vertex
therefore the face separating the two prisms has a consistent triangulation; otherwise
we insert coincident diagonals on the non-free faces of one prism, then according to
the triangulation of the face separating the two prisms we insert coincident diagonals
on the non-free faces of the other prism (see Figure 4.6). For both of these two
subcases any triangulation of the free faces gives us a tetrahedralization of the two
prisms. O
Complexity Analysis of Algorithm 4.1:

Step (1) takes O(nlogn) time and space [AAP8G]. Each of the remaining steps
takes O{n) time and space. Since a triangulated polygon with n vertices has O(n)
edges and faces, the graph G we build at Step (2) has at most O(n) edges. Conse-
quently, a spanning tree of G can be computed in O(rn) time [AHU83]. With a similar

36

argument, we can show that each of Steps (3)-(6) takes O(n) time. Therefore the al-
gorithm runs in O(nlogn) time and linear space. Furthermore this is optimal since
any tetrahedralization of a polyhedron must triangulate all the faces of the polyhe-
dron and triangulating a polygon with holes with a total of O(n) vertices (i.e., F, F')
has a lower bound of Q(nlogn) in the algebraic computation tree model [AAP86]. If
F is a simple polygon with no holes, then Step (1) takes O(n) time and so does the
whole algorithm. We therefore have the following theorem.

Theorem 4.2: An n-vertex polygonal slab with holes can be tetrahedralized in opti-
mal O(n logn) time and linear space and a simple n-vertex slab can be tetrahedralized
in optimal O(n) time.

Now we generalize Algorithm 4.1 to obtain an algorithm for tetrahedralizing a
(bounded) subdivision slab with n vertices. A (bounded) subdivision slab is built
by translating a planar subdivision to a different plane (without loss of generality,
. assume the two planes are parallel to the XY-plane) such that every face which is not
parallel to the XY-plane is a parallelogram.
The correctness proof is sufficiently similar to that for Algorithm 4.1 to be omitted.
We only show how to change the problem such that we can apply Algorithm 4.1
directly.
Algorithm 4.2:
BEGIN
(1) Triangulate the upper and lower faces of the subdivision slab.
(2) Compute a spanning tree of the dual graph of the triangulation. If an edge
of the dual graph is not an edge of the spanning tree, then double the edge
in the triangulation which corresponds to that dual graph edge. This yields a
triangulated polygon. To make the terminology consistent with what we used
in Algorithm 4.1, we call these edges which are doubled cutting diagonals.
(3) Run Steps (3)-{6) of Algorithm 4.1.
END
Complexity Analysis of Algorithm 4.2:
. Step (1) has a time complexity of O(n log n) since the face of a planar subdivision is

37

Figure 4.8: A type-1 box.

a polygon with holes and triangulating a polygon with holes with O(n) vertices takes
O(nlogn) time [AAPS6]. Step (2) takes O(n) time since the size of the triangulated
subdivision is O(n) (so is its dual) and a spanning tree of a graph with O(n) edges can
be computed in linear time [AHU83]. The remaining steps take a total of O(n) time
following the analysis of Algorithm 4.1. Therefore Algorithm 4.2 runs in O(nlogn)
time and linear space. We have consequently established the following theorem.

" Theorem 4.3: An n-vertex subdivision slab can be tetrahedralized in O(nlogn)
time and linear space.

4.2 Tetrahedralizing special classes of solid Man-

hattan terrains

We mention early in this chapter that it is not always possible to tetrahedralize a
simple rectilinear polyhedron. However we strongly believe that any solid Manhattan
terrain admits a tetrahedralization, although we have not found a proof yet. In this
section we show that certain special classes of solid Manhattan terrains can always
be tetrahedralized.

We first give a definition of the two special classes of solid Manhattan terrains to
be studied in the following context. A fype-I box is defined as follows {see Figure

38

Figure 4.9: A type-2 box.

4.8): given a 3D rectilinear box with height H, dig a set of non-intersecting rectilinear
holes at the top of the box such that each of these holes has a unique depth A < H,
we call the resulting simple rectilinear polyhedron a type-1 box. A type-2 box is
defined similarly (see Figure 4.9): given a 3D rectilinear box with height H, dig a set
of nonintersecting rectangular holes on the top of the surface of the box such that
the heights of the holes h; < H (for all ¢), and the holes are linearly ordered along
a direction ! on F (i.e., the orthogonal projections of the holes onto { form a set
of disjoint line segments on ! and the sorted order of these line segments along [is
already known).

Since the algorithms in this section rely heavily on the algorithms by Goodman
and Pach [GP88] and Bern |[Ber93], we give below a detailed description of these
algorithms.

Goodman and Pach’s algorithms

Assume P,Q are two convex poiytopes in d-dimension, in [GP88] it was shown
that the polytopes CH(PUQ)— P - Q where PNQ =@ and P—Q where Q C P all
admit a cell decomposition whose maximal cells are openly disjoint convex polytopes.
Goodman and Pach first proved the following theorem as a prelude.

39

Theorem 4.4 {GP88]: Let H be a hyperplane crossing a d-dimensional convex poly-
tope P. Assume that H does not contain any vertex of P, and let H* and H~ be the
two halfspaces determined by H. Then P admits a cell decomposition whose maximal
cells are openly disjoint convex polytopes Q;, Q2,... such that each Q; = CH(F;,UGy),
where (a) F; C H*, G; € H™ are proper faces of P and (b) dim F; + dim G; = d-1.

We only give a sketch of the proof. The proof can be thought of as “bending a
polytope about a hyperplane”. It consists essentially of projecting the vertices of the
polytope P onto a wedge in (d+1)-dimension formed by two d-dimensional halfspaces
meeting along H, then computing the convex hull P' of the new set of vertices in
(d + 1)—dimension, and finally projecting the facets of the “upper” boundary of P
back into the original d-space (see Figure 4.10). A face Q' of P' is called an “upper”
facet if Q' can be “seen” from the +oo of the (d + 1)st coordinate axis.! This results
in a cell decomposition of P which is transverse to H.

In Figure 4.10 we present a 2D convex polytope P with seven vertices and a
hyperplane H crossing P but does not contain any vertex of P. Following Goodman
and Pach'’s proof we project the vertices of P onto the 3D wedge defined by H, then
we compute the convex hull P' of the projected vertices in 3D and finally we project
the upper hull of P’ back to 2D. This results in a triangulation of P such that the
vertices of each internal diagonal do not lie on the same side of H.

In 3D the above theorem implies that if P is a convex polyhedron, H is a plane
cutting through P and H does not contain any vertex of P then there exists a tetra-
hedralization of P such that each tetrahedron has the property that the vertices of
the tetrahedron do not all belong to one of the two halfspaces H*, H~.

By modifying the proof for the above theorem slightly, Goodman and Pach showed
the following two theorems relevant to this thesis. As the above proof, these proofs
are all constructive; consequently, Goodman and Pach have implicitly proposed the
algorithms to compute the cell decompositions of the two classes of polytopes CH(PU
Q)- P-Q and P - Q. Furthermore, since the core of their algorithms is to compute

1Ma.thernat;:ca.lly, this means that there exist (s t) € R (5 € R, t > 0) and a real a such that
af Q' = {(z.,9) € Ri*1:sez+ty=a}and P’ C {(z,y) € R¥+!: a0z +ty < al
Here aff Q denotes the affine subspace of R%*! spanned by the points of Q.

40

Figure 4.10: Illustration for the proof of Theorem 4.4.

41

Figure 4.11: Illustration for the proof of Theorem 4.5.

the convex hull of n points in (d+ 1)—dimensions, both of these two algorithms takes
O(nli;d'J) time, with the recent optimal convex hull algorithm by Chazelle [Cha93].
Clearly both algorithms run in O(n?) time when d = 3. Now we introduce the

following theorem for compute the cell decomposition of the polytope CH{PU Q) -
P —Q where PNQ =0.

Theorem 4.5 {GP88]: Let P and @ be two disjoint d-dimensional convex polytopes.
Then CH(PUQ) - P-Q admits a cell decomposition whose maximal cells are openly
disjoint convex polytopes @, @3,... such that each Q; = CH(F; U G;), where F; and
G; are proper faces of P and Q, respectively, and dim F; + dim G; = d - 1.

42

Again we only give a sketch of the proof. Interested reader is encouraged to refer
to [GP88] for the details of the proof. Let H be a hyperplane strictly separating P
from Q. Goodman and Pach’s proof consists essentially of projecting the vertices of
the polytopes P, Q onto a wedge in (d+ 1)—dimensi6n formed by two d—dimensional
halfspaces meeting along H, then computing the convex hull P' of the new set of
vertices in (d+1)-dimension, and finally projecting the facets of the “lower” boundary
of P’ back into the original d-space (see Figure 4.11). A face S of P’ is called “lower”
facet if ' can be “seen” from the —oo of the (d -+ 1)st coordinate axis.? This results
in a cell decomposition of P which is transverse to H.

In Figure 4.11 we show two disjoint convex polytopes P and Q and a hyperplane
H strictly separating P from Q. Following their proof we project the vertices of P
onto the 3D wedge defined by H, then we compute the convex hull P’ of the projected
vertices in 3D and finally we project the lower hull of P’ back to 2D. This results in
a triangulation of the simple polygon CH(P U Q) — P — @ such that the vertices of
each internal diagonal of CH(P U @) — P — Q do not lie on the same side of H.

In 3D the above theorem implies that if P and) are two disjoint convex polyhedra
then the polyhedron CH(P U Q) — P — () admits a tetrahedralization. Finally we
introduce the following theorem for compute the cell decomposition of the polytope

P-Q(QcP)

Theorem 4.6 [GP88]: Let P and @ be two d-dimensional convex polytopes and
Q C P. Then P — Q admits a cell decomposition whose maximal cells are openly
disjoint convex polytopes Q;, Q2,... such that each Q; = CH(F; UG;), where F; and
G; are proper faces of P and @, respectively, and dim F; + dim G; = d - 1.

The proof of this theorem is made again by modifying that of Theorem 4.4. In
this case H is a d-hyperplane at infinity and the wedge is defined by a pair of parallel
halfspaces in (d + 1)—dimensions. We first project the vertices of P,Q onto the
two parallel halfspaces respectively, then we compute the convex hulls P',Q’ of the
projected vertices and finally we project the convex hulls of P, Q' back to d—space.
This results in a cell decomposition of P—Q which is transverse to H. In 3D Theorem

*Mathematically, this means that there exist (s,¢) € R+ (s € R%, t < 0) and a real & such that
aff §' = {(z,y) e R :50z+ty=a}and P C {(z,y) € R¥*' : 50z 4ty < a}.

43

Figure 4.12: A tetrahedralization of CH(PU Q) — P — Q can have {(n?) tetrahedra.

4.6 implies that if P, @ are two convex polyhedra such that @ C P then P — @ admits
a tetrahedralization. Recently Bern have proposed an O(nlogn) time algorithm to
tetrahedralize P — @, which will be presented in the following paragraphs.

Bern’s algorithm

Bern [Ber93] showed that algorithm of Goodman and Pach for tetrahedralizing
the class of polyhedra CH(PU Q) ~ P — Q is optimal ® and proposed an O(nlogn)
time algorithm to improve their algorithm for tetrahedralizing the class of polyhedra

P-Q.

Theorem 4.7 [Ber93]: Let P,@ be two disjoint convex polyhedra in 3D. (n?)
tetrahedra are necessary to tetrahedralize CH{(PUQ) - P - Q.

3However, Bern left out some crucial details in the abstract and from what he presented in that
abstract his proof was not convincing although his idea was correct. He constructed two bands of
triangles, one oriented vertically and the other horizontally. He claimed that each tetrahedron has
volume O(1) and if the volume of the polyhedron is O(n?) then any tetrahedralization must have
Q(n?) tetrahedra. But it is not convincing that the polyhedron constructed by Bern has volume
O(n?), even if the two original bands are parallel. The reason is that there is no exact formula to
compute the volume bounded by two parallel convex polygons unless the sectional area function of
the resulting polyhedron is given explicitly (See Chapter 8 of [KB38]).

44

Figure 4.13: The cap of a PSQ vertex.

Proof *: We construct a regular tetrahedron R such that the length of each edge
of the tetrahedron is n. It is clear that the volume of the tetrahedron is O(n?®). We
choose two non-adjacent edges, ab and cd, of the tetrahedron R and we plot two
convex polygonal curves with size O(n) on the two faces f, f» incident to ab. These
two convex polygonal curves, together with ab, define a convex polyhedron P. We
can choose these two convex polygonal curves such that they are very close to ab;
furthermore, we can also plot O(n) vertices on the surfaces of P bounded by f, fa
such that all the edges of P, except ab, are of length of O(1) (see Figure 4.12). We
construct @ similarly based on cd. The tetrahedra that liein CH(PUQ)~P - Q use
either a small triangular face from one convex polygon and a vertex from the other,
or two edges from the two different convex polyhedra. In either case, the volume of
such a tetrahedron is O(n). The volume of CH(P U Q) — P — Q is very close to
the original tetrahedron R hence is also O(n%); therefore, any tetrahedralization of
CH(PU Q) — P — Q has at least Q(n?) tetrahedra, O

Given a simple polyhedron A and a convex vertex u of A, let cap(u) be the
polyhedron that is the closure of the difference of A and the convex hull of all the

4This proof, with full details, is a modification to the original proof by Bern [Ber93].

45

vertices of of A except u. It is known that cap(u) is a star-shaped polyhedron and u
lies in its kernel; consequently, cap(u) can be tetrahedralized in time linear of its size
[CP90].

The basic idea of Bern’s algorithm for tetrahedraling P—Q is to remove iteratively
a cap(v) of P — (). Each vertex of cap(v) is either a vertex of P adjacent to v, or
is a vertex of @ lying outside CH(P — v). After the removal of cap(v), P shrink to
a smaller convex pelyhedron, with vertex set equal to all the remaining vertices of
P and some vertices of Q. We say these vertices of Q pop up, i.e., first appear on
P after the removal of cap(v) (Figure 4.13). We call a vertex u a PSQ vertex if u
belongs to P but not @. If time complexity is not of concern, we can keep on deleting
the cap of a POQ vertex u until all the vertices of have popped up. Computing
cap(u) takes O(nlogn) time since computing the convex hull of O(n) points in 3D
takes ©(nlogn) time [PS85]. Therefore by deleting (and tetrahedralizing) the caps
of PEQ vertices consecutively it takes O(nr%logn) time to tetrahedralize P — Q.
Therefore this tetrahedralization produces O(n?) tetrahedra.

To improve the complexity of the above procedure, we delete an independent
set of PE(Q vertices (and their caps). Such an independent set I can be computed
in O(n) time and enables the removal of O(n) tetrahedra. The total number of
iterations of such removals is O(logn) [Kir83], [DK85] (see also Chapter 4 about
the construction of independent sets). The harder part is to compute the caps of
vertices in I. To accomplish this, we first compute P, the convex hull of the vertices
of P — I. This can be done in linear time by filling the “holes” resulting from the
deletions of independent vertices, using a brute-force method (since each hole has
O(1) size). We then compute the convex hull of P' and Q in linear time. Computing
the convex hull of the union of two convex polyhedra can be solved using geometric
duality: transform the vertices of the polyhedra into faces of dual polyhedra and
then compute the intersection of the dual polyhedra. Points interior to both dual
polyhedra dualize to planes exterior to both old polyhedra. Therefore CH(P' U Q)
can be computed in O(n) time using Chazelle's linear time algorithm for intersecting
two convex polyhedra [Cha92]. Since there are O(logn) iterations and as we have
just shown, each iteration can be accomplished in O(n) time, the total time and space

46

complexity for tetrahedralizing P — Q is O(nlogn). Consequently Bern has shown
the following theorem.

Theorem 4.8 [Ber93]: Let P,Q be two convex polyhedra in 3D such that @ C P.
The (non-simple) polyhedron P ~ G can be tetrahedralized in O(nlogn) time and

space.

We now present an algorithm to tetrahedralize a type-1 box. The underlying idea
is to partition a type-1 box into disjoint parts such that each part can be tetrahedral-
ized with a known algorithm.

Algorithm 4.3

BEGIN

(1) Compute the convex hull of the rectilinear holes. Since the holes have the
same depth, we obtain a slab with holes and height h.

(2) Run Algorithm 4.1 to tetrahedralize the slab obtained in Step (1). Remove all
tetrahedra and triangulate the bottoms of those holes. We are left with a box
with a hole E such that the bottom of E is a planar triangulation.

(3) Run the algorithm by Bern to tetrahedralize the polyhedron we obtain in
Step (2).

END

Proof of Correctness:

According the algorithm, after Step (1) and (2) we have a rectilinear box with a
hole such that there are coplanar edges on the hole. We can think of this as a special
convex annulus such that the outer polyhedron is a 8-vertex rectilinear polyhedron
and the inner polyhedren is a convex polyhedron (with coplanar edges). We will show
that by running a simplied version of Bern's algorithm, this special convex annulus
can be tetrahedralized in O(nlogn) time.

From the above discussion on Bern’s algorithm, we can notice that in the whole
process of deleting caps, no edge is ever added between two vertices of Q. Therefore
as long as there is no vertex of P coplanar with a face of Q, the above algorithm
works for the case when Q has coplanar vertices and edges.

The convex annulus we have is also special in the sense that P has only 8 vertices.

47

Therefore we only need to delete and tetrahedralize 8 caps, i.e., we do not have to
compute and delete the independent vertices of P as in [Ber93]. Thus this step takes
O(nlogn) time following the above discussion. O
Complexity Analysis of Algorithm 4.3:

Step (1) takes O(nlogn) time since it involves computing the convex hull of a set
of rectilinear polygons. Step (2) takes O(nlogn) time following Theorem 4.2. We
have just showed that Step (3) also takes O(nlogn) time. Therefore Algorithm 4.3

runs in O(nlogn) time and linear space. We have therefore obtained the following
theorem.

Theorem 4.9: An n-vertex type-1 box can be tetrahedralized in O{n logn) time and
linear space.

Now we propose a quadratic time algorithm to tetrahedralize an n-vertex type-
2 box with k linearly ordered holes: p(1),p(2),...,,p(k). Although the holes have
a linear order along {, if we tetrahedralize them incrementally we simply obtain an
O(n®) time algorithm. This is because that an incremental algorithm takes O(n)
step and each step involves tetrahedralizing a CH(PUQ) — P — Q alike polyhedron,
which takes (n?) time following Theorem 4.7. We use a divide-and-conquer method
to obtain an O(n?) time algorithm.

Algorithm 4.4
BEGIN
(1) Tetrahedralize the region bounded by the holes by a divide-and-conquer method,
i.e., recursively tetrahedralize the regions formed by the first &/2 holes
and by the last k/2 holes, then combine the result by running Goodman
and Pach’s algorithm.
(2) Run the algorithm of Bern to tetrahedralize the convex annulus we obtain in
Step (1).
END
Proof of Correctness:
The only thing we need to show is that Step (1) always works. The crucial
point is that the holes are linearly ordered. The first iteration will tetrahedralize

48

Figure 4.14: A U(2) polyhedron and the illustration for a convex cap.

the regions formed by CH(p(1), p(2)) — p(1) — p(2); CH(p(3),p(4)) — p(3) — p(4); ...;
CH(p(k - 1),p(k)) = p(k — 1) — p(k) (assume k is even). After the first iteration we
have k/2 convex holes which are still linearly ordered along !. This property holds
after any iteration. Therefore we can continue this recursive procedure until we end
up with only one convex hole. Step (2) is correct following the correctness proof of
Algorithm 4.3. O
Complexity Analysis of Algorithm 4.4:

The analysis of Algorithm 4.4 is as follows: Step (2) runs in O(nlogn) time
following Theorem 4.8. The complexity of Step (1) can be measured by the following
recurrence relation:

T(n) = 2T(n/2) + O(n?) = O(n?).

Therefore the time complexity of Algorithm 4.4 is O(n?) and we have the following
theorem.

Theorem 4.10: Ar n-vertex type-2 box can be tetrahedralized in O(n?) time.

4.3 Tetrahedralizing the union of convex polyhe-

dra

49

Figure 4.15: An interlocked U(3) polyhedron.

In this section we investigate the tetrahedralization of a class of polyhedra which are
the union of a set of convex polyhedra. A polyhedron is called a U(k) polyhedron
(U(k) for short) if it is the union of k convex polyhedra. Therefore trivially, U(1) can
always be tetrahedralized. We will show that a U(2), U(3) polyhedron can always be
tetrahedralized, but a U(k) polyhedron (for & > 4) can not always be tetrahedralized.

Let P and @ be two convex polyhedra such that P N Q is not empty. In order
to simplify the analysis of our algorithms in this section, we will not consider the
cases when P and @) do not have'proper intersections, i.e., when P N Q is only
a point, a line segment or a polygonal face. Let 9P, 0Q be the surfaces of P,Q
respectively. Let C, which will be called a crown henceforth, be a simple closed
polygonal chain of 8P N 8Q. C separates 8P into two parts dP),dP,; such that.
C = 0P, N3P,. Let Sy, 53 denote all the vertices on dP,, P, respectively. We call
any one of CH(S,)~-CH(C),CH(S2)—CH(C) a convez cap (with respect to Q) and
denote it by C(P, Q) (see Figure 4.14). We first show that a U(2) polyhedron can be
tetrahedralized in linear time.

Theorem 4.11: An n-vertex U(2) polyhedron can be tetrahedralized in linear time.

50

Proof: Suppose we are given a U(2) polyhedron which is the union of two convex
polyhedra (The two convex polyhedra P,Q do not have to be given explicitly). If
the given U(2) polyhedron is convex, then it is clear that it can be tetrahedralized.
Otherwise we know that there is at least one reflex edge. Choose a reflex vertex v
of the U(2) polyhedron. Since P, @ are all convex v has to be a vertex of a crown
of P,Q, ie,, v € OP,v € 8Q. Therefore v can see the whole interior of P and Q,
hence the U(2) polyhedron given is a star-shaped polyhedron with v in its kernel.
Consequently, the U(2) polyhedron can be tetrahedralized in linear time. O

Now we start to show that a U(3) polyhedron can always be tetrahedralized.
Unlike for a U(2) polyhedron, we assume that the three convex polyhedra are also
given. The reason for attaching this condition is that our algorithm needs to identify
all the crowns of the given U(3) polyhedron. It is easy to see that a U'(3) polyhedron
does not have to be simple. A U(3) polyhedron PUQU R is called interlocked if and
only PNQNR =0 while PNQ # @, PNR # ¢ and QN R # B (see Figure 4.15). For
the following two lemmas, we assume that all the crowns have already been identified.

Lemma 4.12: An n-vertex convex cap can be tetrahedralized in O{nlogn) time.
Proof: (Refer to Figure 4.14) By the definition, a crown C separates the surface of P
into two parts dP;, 8P, such that C = 8P, N dP,. Therefore C C 8P,. Consequently
CH(C) c CH(S)), which immediately implies that CH(S,) — CH(C) defines a
convex annulus. We know already that a convex annulus can be tetrahedralized in
O(nlogn) time [Ber93]. Therefore this lemma is proved. O

Lemma 4.13: An n-vertex interlocked U(3) polyhedron can be tetrahedralized in
O(nlogn) time. ‘

Proof: (Refer to Figure 4.15) First of all, following Lemma 4.12 we can tetrahedralize
and remove all the convex caps (if any) in a total of O(nlogn) time. Let I denote an
interlocked U(3) polyhedron with no convex cap, and let C,,C, and Cj be its three
crowns. Then CH(C,),CH(C;) and CH(Cj3) separate I into three disjoint parts,
I, I and I3, Each of CH(I})UCH(Cs), CH(I;)UCH(C3) and CH(I3)UCH(C,) is
a convex cap which can be tetrahedralized in O(nlogn) time following Lemma 4.12.
0

ol

We now present the following algorithm to tetrahedralize a U(3) polyhedron,
There are several cases of a U(3) polyhedron resulting from three convex polyhedra.
The following tetrahedralization algorithm deals with each of these cases separately.

Algorithm 4.5

BEGIN

(1) Test whether the given U(3) polyhedron is convex by traversing all the edges

of the polyhedron. If it is convex, tetrahedralize it directly and exit.

(2) Test whether there is a reflex vertex which is adjacent with three reflex edges.

If there is such a vertex v then tetrahedralize U(3) by adding diagonals |
(and consequently faces) from v to all other vertices which are not adjacent
with v and then exit.

(3) Compute all the crowns as follows. Start with a reflex edge e = 77%; and

identify the two faces f1, f2 adjacent with e such that f; € P, f; € Q.

An edge of a crown is always determined by a face f; € P and a face f; € Q,
therefore always keep fi € P and f; € Q that determine the current crown
edge. If e; € P is adjacent with f; and v; = e; N f,, then keep the face of P
which shares e, with f; as the new f;. If e; € Q is adjacent with f; and

v = e N fi, then keep the face of which shares e; with f as the

new f (see Figure 4.16).

Repeat this operation until v, is reached, thus one crown has been computed.
Continue the above procedure until all the reflex edges are traversed.
Consequently all the crowns have been computed.

(4) Remove and tetrahedralize all the convex caps determined by the crowns
computed in Step (3) (using the results of Lemma 4.12).

(5) If the remainder is a convex polyhedron, then tetrahedralize it directly.
Otherwise, the remainder is an interlocked U(3) polyhedron. Use the
method in Lemma 4.13 to tetrahedralize it.

END

Proof of Correctness:

If a U(3) polyhedron is convex, then Step (1) identifies it and tetrahedralizes it

directly in linear time. If there exists a reflex vertex v of the U'(3) polyhedron PUQUR

52

Figure 4.16: Illustration for the computation of a crown.

such that v € P, v € @, and v € R, then it is clear that the given U; polyhedron is
star-shaped hence can be tetrahedralized in linear time (see Figure 4.17). We know
that the union of any two convex polyhedra can only result in vertices which are
adjacent to at most two reflex edges. Therefore, if there exists a reflex vertex which
is adjacent with three reflex edges then such a vertex must belong to 3P N3Q N AR.
Step (2) identifies this case and tetrahedralize it in linear time.

After Step (2), if the algorithm does not stop then we know that every vertex of
the U(3) polyhedron belongs to at most two original polyhedra. In this case no two
crowns intersect each other. Step (3) identifies all the crowns. Following Lemma 4.12,
all the convex caps of P,Q, R can be tetrahedralized in O(nlogn) time. In Step (4),
all the convex caps (if any) are removed and tetrahedralized. The remainder is either
a convex polyhedron (case (a)), which can be tetrahedralized easily; or an interlocked
U(3) polyhedron with no convex cap (case (b)), which can be tetrahedralized in
O(nlogn)} time following Lemma 4.13. D

Therefore we have established the following theorem.

Theorem 4.14: An n-vertex U(3) polyhedron can be tetrahedralized in O(nlogn)
time.

Finally we give a counterexample to show that a U(4) polyhedron does not always

53

(@)

Figure 4.17: Illustration for the proof of Theorem 4.14.

a

Figure 4.18: The Schoenhardt polyhedron can be decomposed into 4 disjoint convex
polyhedra.

94

admit a tetrahedralization. The example is essentially based on the Schoenhardt poly-
hedron, which can be decomposed into four disjoint convex polyhedra: P{c,e,d,h),
P(a,e, f,i), P(b,d,g, f) and P(e,b,c,g,h,i) (no two convex polyhedra intersect ex-
cept on their surface) (see Figure 4.18), . ‘

The detail of this example is given as follows. The coordinates of the vertices on
the bottom face are a = (0,—3{,‘,@,0), b= (1,% ¥.0) and ¢ = (-1,% ¥3 0). Initially
we have a regular triangular prism such that the coordinates of the vertices on the
top faces are (9, —JC ,2), (1, 335,2) and (-1, i3£,2) The Schoenhardt polyhedron is
obtained by rotatmg the upper face, which is a regular triangle, around its center by
a small angle # (sce Figure 4.19). We have the coordinates of the vertices of the new
face as follows:

= (= -JC cos(§ ~ 0), 243 sin(§ — 8),2),
e= (= —‘C sin(@), — cos(),2) and
f= (—‘3C cos(% + 0), -335 sin(§ + 6),2).
We extend the plane H, through a,c,e, the plane H, through a,b, f and the plane
Hj through b, ¢, d. We need to show that the common intersection of the half-pianes
H7,HY and Hy, together with plane Z > 0 and Z < 2, gives us a convex polyhedron
P(a,b,c, g, h,1). Infact we only need to show that the intersections of H with Z = 2,
H} with Z =2 and H with Z = 2 are not empty.

Suppose that H; intersects with Z = 2 at line ek’ such that &' is a point on df,
H, intersects with Z = 2 at line fi' such that i’ is a point on de and Hj intersects
with Z = 2 at line dg’ such that ¢ is a point on ef. We can show that the coordinate
of i is

z = [2V/3sin(8)(cos(Z +) + cos(§ — 6)) — 2sin(+ 6) cos(£ - 8)

~2cos(#){cos(§ + 8) + cos(§ — 8)) — 2cos(% + 8)sin(% + 6)]
/[3cos(} ~ 0) + 3cos(% +6) = V3sin(E - 8) + V3sin(E + 9)),
= [2v/3sin(8)(sin($ + o) sin(§ - 9)) - 2\/5 sin(+4) cos(-g -4
—2cos(0)(sin(§ + 6) — sin(-) + 2\/§cos(% +8)sin(§ - 0)]
/[3cos(§ = 0) + 3cos(% +0) — v3sin(5 - 0) + \/§sin(§- +8)).

Furthermore when # < 7/6, k' always lies to the left of the perpendicular bi-
sector of df. Symmetrically, this holds for ¢' and i'. Therefore when we rotate the

55

Figure 4.19: The Schoenhardt polyhedron can be decomposed into 4 disjoint convex
polyhedra {top view).

upper face by an angle no greater than 7/6 the intersection of H with Z = 2,
Hf with Z = 2 and H; with Z = 2 is not empty; furthermore, this intersection
defines exactly the convex polyhedron P(a,b,c,g,h,:). Similarly we can show that
P(c,e,d,h), P(a,e, f,i) and P(b,d,g, f) are the intersections of certain half-planes
hence are all convex polyhedra (Figure 4.18).

We have thus shown that the Schoenhardt polyhedron is the union of four convex
polyhedra. Therefore, we have the following theorem.

Theorem 4.15: A U(4) polyhedron does not always admit a tetrahedralization.

4.4 Some remarks

We followed in the footsteps of Goodman and Pach [GP88] as well as Bern [Ber93] by
showing in this chapter that certain special classes of simple and non-simple polyhedra
can always be tetrahedralized. We also provided efficient algorithms for obtaining
tetrahedralizations of polyhedra belonging to these classes. For the general problem

o6

of deciding whether a solid terrain can be tetrahedralized, we are neither able to
obtain a polynomial time algorithm, nor able to prove its NP-completeness. We list
it as an open problem.

Open Problem 3: What is the complexity of deciding whether a solid terrain can
be tetrahedralized?

Although we have presented a counterexample to show that a solid terrain can not
always be tetrahedralized, we are not able to present such an example for the class
of solid Manhattan terrains. We strongly believe the following conjecture is true:

4. Conjecture: All solid Manhattan terrains can be tetrahedralized without using
Steiner points.

We show in this chapter that a U(3) polyhedron can always be tetrahedralized
on the condition that the three convex polyhedra are also given. It would be -rery
interesting to know whether this latter condition can be removed or not.

Open Problem 5: Can a U(3) polyhedron always be tetrahedralized?

57

Chapter 5

The shortest watchtower and

related problems

5.1 Introduction

The problem of computing the shortest watchtower of a given terrain, i.e., a shortest
vertical line segment erected on the terrain such that the top of the line segment can
see every point on the surface {see Figure 5.1}, was posed by deFloriani, Falcidieno and
Nagy [Sha88]. Sharir gave an O(n log? n) algorithm for solving the problem [Sha88)
(n is the number of vertices of the terrain). He also posed the problem of computing
the shortest watchtowsr in O(nlogn) time and made the conjecture that either the
fractional cascading [CG86] or the hierarchical representation [DI(85] technique might
give us the solution.

In this chapter we show that we can solve the problem in O(nlogn) time by
storing additional information on Dobkin-Kirkpatrick’s hierarchical representation of
a convex polyhedron. In Section 5.2, we give the details of our algorithm. In Section
5.3, we discuss a variation of the shortest watchtower problem: computing the shortest
vertical distance between two convex, non-intersecting terrains. In Section 5.4, we

pose a set of closely related open problems for future research.

38

Figure 5.1: The shortest watchtower of a polyhedral terrain.

5.2 Computing the shortest watchtower of a ter-

rain in O(nlogn) time

5.2.1 Preliminary

We begin by making the following definition. Given two line segments s; and s; in
3D, if there is a vertical line ! such that s;NI # @, s2NI # O, then the vertical distance
between s; and s (denoted by d(s;, s3)) is the difference between the Z-coordinates
of sy N1 and so NIl. Otherwise the vertical distance between the two segments is
defined to be infinity.

First we follow [Sha88] to reformulate the original problem. Let fy,..., fn be the
planar faces of S, and let 7y, ..., 7., be the planes containing these faces, a point v can
see the entire surface of S if and only if it lies above every =; (m is the number of faces
of § and m < 2n~—4). It turn out that the intersection of all halfspaces defined by =;'s
is an unbounded convex polyhedron, and by using Muller and Preparata’s algorithm
[MPT79), it can be computed in O(nlogn) time (we denote it as L). Now the problem

59

is reduced to computing the shortest vertical distance between a polyhedral terrain S
with O(n) faces and another convex polyhedral terrain L with O(n} faces lying above
S. The shortest vertical line segment 77, with « € S, v € L, must satisfy one of the
following properties:

(1) v is a vertex of L;

(2) u is a vertex of S

(3) u lies on an edge of S and v lies on an edge of L.

The first two cases can be done in a total of O(nlogn) time by applying any
O(logn) planar point location algorithm [KKir83, ST86]. The third case can be solved
by using a nested binary search, which has a running time of O(log? n), to compute the
shortest vertical distance between a line segment e and an arbitrary convex polyhedron
P (assume that e and P does not intersect) [Sha88]. We improve this bound to
O(logn), thus improving the overall bound to O(nlogn).

Throughout this chapter, we use P(g) to denote a point on P (g is the vertical
projection of P{q) on the plane Z =). We use e to denote a line (line segment) on
the plane Z = 0 aund its vertical projection on P is denoted by P(e). (Similarly we
use e(q) to denote a point on a line e.) Assume P is an n-vertex convex polyhedron
and its vertical projection is R, which is a bounded planar subdivision. Let e = ab
be an edge of S, e(t) be any point on e and P(t) is the point (on the lower hull} of P
lying directly above e(t). Let

FF(t) = d(P(t), e(t)).

We have the following observation:

Observation 5.1: FF(t) is a piecewise linear convex function.

5.2.2 The hierarchical representation of a convex polyhe-

dron and its extension

Now we give a brief description of Dobkin-Kirkpatrick’s hierarchical representation
of a convex polyhedron {DK85]. Let P be a polyhedron in 3D with vertex set V(P},

60

edge set E(P) ([V(P)|,|E(P)] € O(n)). A sequence of polyhedra, H(P) = P, ..., P,
is said to be a hierarchical representation of P if

(i) P, = P and P, is a 3-simplex (i.e., a convex polyhedron whose size is constant);

(ii) Piys C P, for 1 <i < k; '

(iif) V(Piy1) C V(F:); and

(iv) the vertices of V(P;)—V (P4,) form an independent set (i.e., are non-adjacent)

in P;.

Furthermore, as shown in [DK85], there exists a constant ¢ = 11 such that for
a convex polyhedron P in 3D there exists a hierarchical representation of degree
at most ¢, O(logn) height, and O(n) size and such a hierarchical representation
can be constructed in O(n) time. We show briefly in the following paragraphs the
procedure to construct such a hierarchical representation. Further details can be
found in [Kir83, DK85]. ,

Suppose the faces of P have already be triangulated. Since the surface of P can be
represented as a planar graph, P has at most 3n —6 edges (following Euler’s formula).
The idea is as follows, each time we delete a constant factor of the number of vertices
in the current convex polyhedron to obtain a coarser one. We obtain k = O(logn)
convex polyhedra (P, Py, ..., P;), such that,

(1) P, is the given convex polyhedron P.

(2) Pi,, is obtained from P; such that the number of vertices in P;,; is at most a

constant fraction of that in P; (we show later that this constant is 23/24).

(3) Each face of P, intersects at most a constant ¢ of faces in P,

We use the independent set idea to achieve our goal. A set of vertices is inde-
pendent if no two vertices of the set are adjacent. We show how to find a suitable
independent set of P as follows (one which has at least n/24 vertices). Since P has
at most 3n — 6 edges the sum of all the vertex degrees is at most 6n — 12, Then the
average vertex degree has to be less than 6. By the pigeon-hole principle, there are
at least n/2 vertices whose degree is no more than 11. We lump these vertices into
a set called I};. We pick a vertex v, in the set Ij;, by the definition of independent
set, all of its neighbors (which is at most 11) can not be in the independent set. This
means that for every 12 vertices in Ij;, we can obtain at least 1 vertex that is not

61

adjacent to another vertex in Iy;. Therefore, we can find an independent set I with
size 1/12 that of Ij) or at least n/24 in size.

By eliminating the n/24 vertices of I from the current convex polyhedron (and ail
the edges incident at those vertices) and computing the convex hulls of the “holes”
resulting from the deletion of these independent vertices, we can reduce the total
number of vertices by a constant factor of 1/24 to have the next coarser convex
polyhedron. The independent set of n/24 vertices from P can be found in O(n) time;
furthermore, computing the convex hull of the “holes” resulting from the deletion
of the independent vertices takes O(n) time (since each convex hull has a constant
number of faces).

The total time and space complexity of constructing a hierarchical representation
of P is therefore:

O(n+gn+(8)n+(E)n+...) =0 () = 02im) = 0n)

Because each time we extract a constant factor of vertices out of the previous convex
polyhedron, the number of levels of this hierarchical structure is O(logn). From this
construction we have the following observation.

Observation 5.2: There are at most 11 edges of P; intersecting any supporting plane
of Piyy.

Suppose we already have the (reverse) hierarchical representation Py,..., P41,
P,,...,P, (P, = P) for P. The shortest vertical distance between P; and an arbitrary
line segment e = ab (denoted by dmin(ab, P;)) is defined as the minimum vertical
distance between ab and 73 over all 75 € P,

Suppose P;4; and an edge T7 of P, are given such that d(ab, T7) is a breakpoint
(i.e., a vertex) of the distance function FP+1, then two neighboring breakpoints of
d(ab, T7) must be d(e;,ab) and d(ez, ab) where ¢, is an edge of one triangular face
along T7 and e; is an edge of the other triangular face along Zy. In Figure 5.2,
e = TwW, ep = JZ. We say that such a pair (e, e2) is a local pair of Ty. We first show
the following lemma.

Lemma 5.3: Assume (Tw,3z) is a local pair of T3 in P;,. Then it is not a local

62

Figure 5.2: Illustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 1).

63

Figure 5.3: Illustration for the proofs of Lemma 5.3 and Lemma 5.4 (Case 2).

pair of T7 in P, if and only if there is a p' € V(P,) — V(P.;,) such that both p'z and
'y belong to E(P)).

Proof: When we construct the hierarchical representation of Piy; from P; we keep
deleting independent vertices with degree at most 11. The deletion of such a vertex
r gives us a hole and we then compute the convex hull of the hole (actually a part of
the convex hull which conforms to the convexity of P;, we will call it lower hull of r
and denote it by H(r) henceforth). Now we are actually reversing this order.

If there is a p' € V(P;) = V(Pi;1) such that both p'z and p'y belong to E(P;) then
we have the following two cases (without loss of generality we refer to Figure 5.2 and
suppose we only add p' back to Pi;):

(1) 7 is a boundary edge of H(p').

(2) 77 is not a boundary edge of H(p).

In the first case z has to be on the boundary as well, therefore the face Azyz can not
be a face of P;. This implies that neither ¥z nor 3z can be a neighboring breakpoint

64

of 7 for the distance function between e and P:. In the second case if we add p' to
P;.1 then both of the faces Aryz and Azryw do not belong to P;. Hence Z7 is not an
edge of P; and the result trivially holds (see Figure 5.3).

If there is no such p' € V(P;) — V(Pi41) such that both pz and p'y belong to
E(P;) then both of the faces Azyz and Azyw are faces of F;. Hence < Tw,5Z >
remains a local pair of 7 in P;. O

With this result we proceed to prove the following lemma.

Lemma 5.4: Assume the function Fi+1 () achieves its minimum at edge =7 of Piy,
then dpis(ab, P;) is either equal to dpin(ab, Piyy) or the shortest vertical distance
between ab and 57 such that p € V(P;) = V(Pit1), ¢ € V(Piy1), 77 € E(P)) — E(Piy)
and p%,pJ € E(P;) = E(P.41), if such p, ¢ exist,
Proof: Note that we have two important properties here:
(1) the distance function F.fi+1(t) is convex, and .
(2) if we add a vertex p' € V(P;) - V(Pi41) (along with its adjacent edges and
faces) to Py, the resulting polyhedron is still convex. (By adding all these
vertices we finally obtain F.)
We prove Lemma 5.4 by contradiction. It is obvious that if d,,,(ab, P;) is not equal to
dmin(ab, Py1) then dp,in(ab, P) < dmin(ab, Piy1) and dp,iq(ab, P;) must be the vertical
distance between ab and a line segment 5g such that p € V(P) -V (Piy1), ¢ € V(Pit1)
and pg € E(F;) = E(P;41). The crucial point is that if such p, ¢ exist then both px
and Py belong to E(F;) — E(P;41).

Suppose our claim is false, i.e., dmin(ab, P;) < dmin(ab, Pi41) and it achieves the
minimum at p’q € E(P,) - E(P,41) such that p’ € V(B) — V(Pis1), ¢ € V(Pis1)
and at least.one of p'z and p'y € E(P;) — E(Pip1).

Assume we add only p' (and the corresponding edges adjacent to it) to Piy,.
According to the above discussion the resulting polyhedron P' is still convex. Since
we only add p' to P, and at most one of p'z and p'y belongs to E(P;) ~ E(Piy1),
at most one of p'z and p'y belongs to E(P'). By Lemma 5.3 the two faces Azyé
and Aryw along the edge g are faces of P; (hence are faces of P') (Figure 5.3).
Now let us consider the distance function between e = ab and P'. It has two local

65

minima: d(ab,TF) (this is equal to dmin(ab, Piy), since Azyz and Azyw are faces
of P', d(ab,) is a local minimum), and d(ab,p’q’) (this is the global minimum by
assumption). However this contradicts Observation 5.1. O

Lemma 5.4 enables us to check only a small number of edges of P; when computing
dpin(ad, P;). We show in the following lemma that this number is actually a constaat.

Lemma 5.5: If dpi.(ab, P;,1) is known, then to compute duin{ab, P;) we need only
check at most 22 edges in E(P;) — E(P;41) in constant time.

Proof: Following Lemma 5.4, in order to compute dmsn(;ﬂ;, P;) we need to find all
p € V(P;) = V(Pi41) such that both T and Py belong to E(P;) — E(Pi.1). It turns
out that there are at most two such p's, We have two cases: (1) T7 € P; and (2)
Iy ¢ .

In Case (1) we might have such a p' to the right of the line 77 and a p” to the left
of the line TF such that all edges incident upon p in E{(P;) intersect the supporting
plane Azyz and all the edges incident upon p” in E(P;) intersect the supporting
plane Azyw. By Observation 5.2, there are at most 11 edges incident to p' {p").
Therefore in total we have at most 22 candidate edges. To compute dp,in(ab, P;) we
simply compute the minimum vertical distance between ab and these 22 edges and
choose the smaller of this minimum and dy,;(ab, Piy.1). This gives us dpin(ab, P;). It
is clear that dpmin(@b, P;) is computed in O(1) time.

In Case (2) we have fewer candidates, since there is only one such p. All of the
edges incident to p (including PT,Py) belong to E(F;) and they all intersect with
any supporting plane through 77. Again by Observation 5.2, there are at most
11 candidate edges. Consequently we can compdte dpmin(ab, P;) by computing the
minimum vertical distance between ab and these 11 edges in O(1) time.

Although we know that at most two such p’s exist from the above discussion, in
order to design an efficient algorithm, we need to find out p € V(P,) - V(Piy1) in
constant time. We can clarify this by storing additional information in the hierar-
chical representation of P without increasing the overall time and space bound when
computing the hierarchical representation of P. In the process of deleting r € V(FP;)
to obtain P, we compute the H(r). For each edge of H(r) we assign a parent node

66

(r,i) to it. In this process, no edge can have more than two level-i parent nodes (a
boundary edge of the hull can have two such parent node since it can be a boundary
edge of two lower hulls). Therefore given Ty € E(FP;4;) we can retrieve its level-i

parent nodes in V(P;) — V(P;41) in O(1) time, From these parent nodes (at most 2),
we can list the edges (at most 22) incident to them in E(F;) in constant time. O

Lemma 5.4 and Lemma 5.5 enable us to design an algorithm for an arbitrary edge
e and a convex polyhedron P such that the algorithm returns the shortest vertical
distance between e and P in Of{logn) time. We first give a revised algorithm for
computing the hierarchical representation of a convex polyhedron by storing i-level
parents for all edges in P,,.

Algorithm Revised-Hierarchical-Representation(P);

BEGIN

FOR i =1 to k UNTIL |P.4;| =3 DO

(1) Compute the hierarchical representation from P; to P,4; using the independent
vertez deletion of Kirkpatrick [Kir83] and Dobkin-Kirkpatrick [DK85).

(2) For each vertex r being deleted in V(F;), compute H(r).

(3) Associate r with every edge of H(r), these are the level-i parent vertex
for these edges in E{P.;).

END

Suppose we already have a revised version of the hierarchical representation of a
convex polyhedron P. The following algorithm computes the shortest vertical distance
between P and an arbitrary line segment (or line) e in O(logn) time. For simplicity
we assume that e does not intersect with P and the vertical distance between e and P
is not infinity at this stage. It is known that whether a line or a line segment intersects
with a convex polyhedron P or not can be detected in O{log n) time [DK90]. And we
can test whether the vertical distance between e and P is infinity in O(logn) time by
detecting the intersection of the planar projection of P, which is a convex polygon,
with the planar projection of e. In fact we can generalize the definition of the distance
between two line segments in 3D such that the following algorithm can also detect
the intersection of e and P, i.e., we do not have to make the assumption that P is

67

above e. The generalization is given after the following algorithm.

Algorithm Shortest- Vertical-Distance(e, P);

BEGIN

(1) Set ¢ = k.

(2) Compute dpyin(e, Piy1), suppose it is equal to d(e,Zy) for some TF € Fiyi.

(3) List all the edges incident to the level-i parent nodes of Ty. These are the
candidate edges of P; for computing d,;ix(e, P;). Compute the minimum
vertical distance between e and all of these edges. Compare it with
dmin(€, Piv1) = d(e,TF), the smaller of the two is d,;,(e, P;). Record the
new ITF.

(4) Continue (3) until dy,i,(e, P.) is obtained, output dni(e, P,).

END

The correctness of the above algorithm directly follows from Lemma 5.4 and
. Lemma 5.5. We now show how to generalize the distance between two line seg-
ments in 3D and how to modify the above algorithm to make it work for the case
when e and P intersect. Given two line segments s and e in 3D, if there is a vertical
line ! such that sN{ is higher than en! # @, then the signed vertical distance between
s and e is defined as D(s,e) = d(s, e), otherwise D(s,e} = —d(s,e). With this new
definition, even if e and P intersects Observation 5.1 still holds (without loss of gen-
erality we only consider the case when e intersects with the lower convex hull of P or
it lies below the lower convex hull of P). With Observation 5.1, we can use Lemmas
5.4 and 3.5 to obtain a witness of the intersection of e and P, If the shortest vertical
distance between e and P, is positive and at the next step the shortest vertical
distance between e and P; becomes non-positive, then we stop and report the point
of P; (which achieves the shortest vertical distance between e and P;) as a witness of

the intersection of e and P. Consequently we have the following theorem.

Theorem 5.6: After an O(n) time and space preprocessing on P, we can either

report the intersection of P with a line segment (or a line) e by giving a witness, or

report that the vertical distance between e and P is infinity, or compute the shortest
. vertical distance between e and P in O(logn) time.

68

We can further generalize the above algorithm to compute the shortest distance
between a convex polyhedron and a line segment (or a line) along a given direction
d =< a, 8,7 > where a® + 32 + 42 = 1. In this sense the shortest vertical distance
is the special case when d =< 0,0,1 >. We need oﬁly perform an orthogonal trans-
formation to obtain a new coordinate system < X',Y',Z' > such that in the new
system d =< 0,0,1 >. This is done as follows, we have

— -
AX =X,

and we know that ;=< 0,0,0 >, ;=< 0,0,0 > and £,=< a, 3,7 >, X,=<0,0,1 >
satisfy the above equation. But since A is a 3x3 orthogonal matrix containing nine
variables, with these information we have an infinite number of such orthogonal ma-
trices A. To simplify things we set € =< -3, a,0 >, which is perpendicular to a, as
the unit vertor along X'. Then X3 =< ~5,a,0 >, J'E‘:; =< 1,0,0 > also satisfy the
above equation. With this information, we have a unique orthogonal matrix A.

Now we obtain a representation of the convex polyhedron P and the line seg-
ment e in the new coordinate system by performing the orthogonal transformation
A. We represent them as P4 and e4 respectively in the new system. Then we run
the Shortest- Vertical-Distance algorithm to compute the shortest vertical distance be-
tween P4 and e4. This gives us the shortest distance of P and e along the direction

-

d =< q, 3,7 >. Therefore we have the following theorem.

Theorem 5.7: After O(n) time and space preprocessing on P, we can either report
the intersection of P with a line segment (or a line) e by giving a witness, or report
that the distance between e and P along a given direction d=< a, 3,7 > is iofinity,
or compute the shortest distance between e and P along d in O(logn) time.

Finally we give an O(nlogn) time algorithm for solving the shortest watchtower
problem.

69

Algorithm Shortest- Watchtower(S);

BEGIN

(1) Compute the intersection of the halfspaces defined by each face of the terrain
by using Muller and Preparata’s algorithm [MP79]. This gives us the
unbounded convex polyhedron L.

(2) Compute the revised hierarchical representation of L.

(3) For every vertex v of S, perform a point location to compute all the vertical
distances %7 such that v is a vertex of §. Compute the minimum
(with the location) among all of these distances.

(4) For every vertex u of L, perform a point location to compute all the vertical
distances wv such that u is a vertex of L. Compute the minimum
(with the location) among all of these distances.

(5) For every edge e in S, run Compute-Shortest-Distance(e,L}; compute
the minimum (with the location) among all of these distances.

(6) Among the three minima obtained in Steps (3), (4) and (5) choose the
minimum (with the corresponding location). Qutput it as the shortest

watchtower of S.
END

Therefore we have the main result of this chapter.

Theorem 5.8: Algorithm Shortest- Watchtower(S) computes the shortest watchtower
of a polyhedral terrain S with n vertices in O(nlogn) time.

5.3 Computing the shortest vertical distance be-

tween two convex terrains

A variation of the shortest watchtower problem, pointed out by Sharir, is to com-

pute the shortest vertical distance between two arbitrary, non-intersecting polyhedral

terrains. Using a technique called generalized point location, Chazelle and Sharir
obtained an O(n1-%9%78) algorithm for the problem, which beat the trivial O(n?) time
bound [CS90]. Chazelle et al. [CEGS89] also gave a randomized algorithm with time

70

O(n*/3+¢) (for any € > 0} for solving this problem. It is very interesting whether we
can obtain a faster, deterministic algorithm, ‘

The second problem we are interested in is the problem of computing the short-
est vertical vertical distance between two non—intersecﬁng convex polyhedra (or two’
convex terrains which are convex in opposite direction). We show that if the revised
hierarchical representation of the two convex polyhedra is known, we can compute
the shortest vertical distance between the two convex polyhedra in O(log?n) time.
By generalizing the distance function, we can detect the intersection of two convex
polyhedra in O(log® n) time (after O(n) time and space preprocessing). This achieves
the same bound as Cole’s similar list method [Col86], and Dobkin and Kirkpatrick’s
hierarchical representation method [DK85, DK90).

The underlying idea of our method is to apply the revised hierarchical representa-
tion of a convex polyhedron. It is known that the vertical distance function between
two convex polyhedra is convex [Roc70]. With this property we show that when the
shortest vertical distance between P; and @; is known, we need only check the shortest
vertical distance between at most 22 edges € E(P;_;) — E(P;) and Q;, which can be
done in O(logn) time by Algorithm Shortest- Vertical-Distance(e, P). Consequently,
we have shown that the shortest vertical distance between two preprocessed convex.
polyhedra P, Q can be computed in O(log? ») time. By generalizing the definition of
the vertical distance function, we also solve the version when P, Q) intersect.

We first list a topological relationship between two given convex polyhedra P, @
in 3D (Figure 5.4). Cases (1) and (2) can be detected easily and are thus ignored.
Without loss of generality, we only consider case (3) (hence (4) and (5)). For simplic-
ity, we only consider the lower hull of P and the upper hull of Q and still use P and
@ to represent them henceforth.

We first follow Section 5.1 and define certain distance functions between a convex
polyhedron and a given convex polyhedron. Let P(t) be any point on the surface of
P and Q(t) be the (vertical) projection of P(t) on the surface . We define

F§(t) = d(P(t),Q(t),
as the distance function between P and Q. By a well-known result in convex analysis

71l

© © 9

Case (1) Case (2)
P p
-) Q
Case (3) The lower hull of P is above Case (4) The lower hull of P intersects
the upper hull of Q. the upper hull of Q.
Q
P

Case (5) The lower hull of P is below the upper hull of Q.

Figure 5.4: The topological relationship between two convex polyhedra.

72

[Roc70] we have the following lemma.
Lemma 5.9 [Roc70]: F{(t) is a piecewise linear convex function over .

Suppose we already have the (reverse) hierarchical representation Pk, ..., Piy1,
Pi,...,P; (P, = P) for P and the (reverse) hierarchical representation Qum,..., Qj+1,
Qjy .- @1 (@1 = Q) for Q. Without loss of generality we also assume that k£ < m.
The minimum vertical distance between P; and Q; (denoted by d(P;, Q;)) is defined
as the minimum vertical distance between

(1) ab € P; and 75 € Q; over all ab € P; and 75 € Q;; or

(2) a vertex v; € P; and a face f; € @j; cr

(3) a vertex v; € Q; and a face f; € Pi.

The idea of our algorithm is to essentially start with { = k and compute the
shortest vertical distance between P; and Q;. Then we reach the step of P, and
Qi-1 in two substeps: < P, Q; > = < P, Qi > = < Fi1,Qi-1 > (i.e., alternatively
decreasing the indices P; and Q;). We show that each of these two substeps takes
O(logn) time. Without loss of generality, we only give a detailed description of the
first substep. Given P; and @, suppose d(ab,Z7) is the shortest distance between
P; and @; such that @b € P; and Tf € Q;. Furthermore, assume P;(0) € ab and
Qi(0) € T7 realize the shortest vertical distance between P; and Q;, the two vertices
adjacent to ab is ¢, d and the two vertices adjacent tu 77 is z,w.

Lemma 5.10: Suppose d(ab,77) is the shortest vertical distance between P; and
Qi such that ab € P; and 7§ € Q;. Then the shortest vertical distance between
Pi_; and Q; is either equal to d(ab,Z7) or the shortest vertical distance between
Q; and pg € E(P_;) - E(F) such that p € V(Pi;) - V(P), ¢ € V(P,), and
pa,pb € E(P;-,) - E(P,), if such p, ¢ exist.
Proof: Note that we have two imbortant properties here:
(1) the distance function ng (t) is convex; and
(2) if we add a vertex p' € V(Pi—1) — V(P) (along with its adjacent edges
and faces) to P, the resulting polyhedron is still convex. (By adding all these
vertices we finally obtain P,_;.)
Now we prove Lemma 5.10 by contradiction.

73

b

Figure 5.5: Illustration for the proof of Lemma 5.10.

It is obvious that if d(P;_;, Q;) is not equal to d(P;, Q;) then d(P, Q) < d(F;, Q:)
and d(P;_;,Q;) must be the vertical distance between an edge of Q; and an edge
7q € E(P;-;) — E(P;) such that p € V(P,-1) — V(P,), ¢ € V(P;). The crucial point
is that if such p, g exist then both pa and pb belong to E(P;—;) — E(P,).

Suppose our claim is false, i.e., d(Pi_1, Qi) < d(F;,Q;) and it achieves the mini-
mum at p'q € E(Pi_;) — E(P,) such that p' € V(Pi.y) = V(B), ¢ € V(P,) and at
least one of p'a and p'd & E(P._;) — E(P).

Assume we add only p' (and the corresponding edges adjacent to it) to P;. Ac-
cording to the above discussion the resulting polyhedron P’ is still convex. Since we
only add p' to P; and at most one of p'a and p'b belongs to E(P,_;) — E(F;), at most
one of p'a and p'b belongs to E(P'). Because of that the faces of P; incident to @b,
Aabd and Aabc, are faces of P’ (see Figure 5.5). Assume P'(0') € P' and Qi(0') € Q;
realize the shortest vertical distance between P’ and ;. :

Now let us consider the distance function between P'(o0') and Q;. It has two local
minima: d(ab,77) (this is equal to d(P;, Q;), since Aabe and Aabd are faces of P',
d(ab, T7) is a local minimum), and d(P'(0'), Qi(0')) (this is the global minimum by
assumption). But this contradicts the fact that the shortest vertical distance function

74

between two convex polyhedra is always convex. O

Lemma 5.11: Given d(P;,Q;), to compute d(P;.;,Q;) it is sufficient to check the
shortest vertical distance between at most 22 edges in E(P,—;) — E(F;) and Q;. Fur-
thermore, this can be done in O(logn) time.

Proof: In Lemma 5.10 we clarify the (relatively hard) case when d(P;, Q;) is realized
by a pair of edges of P; and Q;. If d(P;, Q;) is realized by a vertex v; € P; and a face
fi € Q;, then in O(logn) time we can find the polyhedron (with at most 11 edges
of E(P;-;) — E(P;)) which is below f, where f; is the supporting plane of P; which
is parallel to f; [DK90]. Thus d(P;—;, Q) is equal to either d(v;, f;) or the shortest
vertical distance between the 11 edges of E(P;,—,) — E(P;) below f? (if exist) and Q;.
The case when d(F;, Q;) is realized by a vertex »; € Q; an‘: - face f; € P; can be
clarified symmetrically. Following Lemma 5.5 and Theorem 5.6, O(log n) time suffices
to compute d(P;;,Q;). O ‘

Lemmas 5.10 and 5.11 enable us to design an algorithm for computing the shortest
vertical distance between two preprocessed convex polyhedra P and @ in O(log?n)
time. We simply start from P, and Q) until we reach P, and @,, using O(logn)
steps, each taking O(logn) time. Similar to what we have done in Section 5.2, we
can adopt the generalized vertical distance function (which is also convex) and apply
Lemmas 5.10 and 5.11. Therefore we can also deal with the case when P, () intersects.

Consequently we have the following theorem.

Theorem 5.12: After O(n) time and space preprocessing on P, (), one can either
report the intersection of P with @) by giving a witness, or report that the vertical
distance between P and @ is infinity, or report the shortest vertical distance between
P and Q in O(log? n) time.

We can generalize the above algorithm further to compute the shortest distance
between two convex polyhedra along a given direction. The details, being identical
to those of Theorem 5.7, are therefore omitted.

Corollary 5.13: After an O(n) time and space preprocessing on P, Q, one can either
report the intersection of P with Q by giving a witness, or report that the distance

73

between P and Q along a given direction d = < a, 3,7 > is infinity, or report the
shortest distance between P and Q along d in O(log? n) time. O

5.4 Some remarks

Although we have successfully solved the shortest watchtower problem in O(nlogn)
time, there are nonetheless some related problems remaining.

Open Problem 6: What is the lower bound for computing the shortest watchtower
of a polyhedral terrain? Does the information that L is a special convex polyhedron
help improving the O(nlogn) upper bound? We strongly believe that Q(nlogn) is
the lower bound since in our algorithm there are two steps with an 2(nlogn) lower
bound (i.e., computing the intersection of n half spaces, locating n points in a planar
triangulation). Proving the {)(nlogn) lower bound or giving an o{nlogn) time algo-
rithm remains to be an open problem. On the other hand, another related problem of
computing the lowest watchtower of a polyhedral terrain, i.e., a line segment erected
on the terrain such that the top of the watchtower can see the vshole terrain and the
Z-coordinate of the top is minimized, can be formulated as a linear programming
problem and can thus be solved in linear time.

Open Problem 7: For the problem of computing the shortest vertical distance
between two non-intersecting terrains, is it possible to obtain a faster, deterministic
algorithm?

Open Problem 8: For the problem of intersection detection between two convex
polyhedra, is it possible to obtain an o(log’n) query bound (even at the cost of
increasing preprocessing time and space)? This is one of the fundamental problems
in intersection detection. It is very interesting that no o(log? n) query bound has
been achieved although three different methods have been tried. Is Q(log? n) a lower
bound for this problem?

76

Chapter 6
Guarding polyhedral terrains

Victor Klee posed the problem of determining the minimum number of guards suffi-
cient to cover the interior of an n-sided art gallery (polygon) in 1973. Chvital showed
that 5| guards are sufficient and somatimes necessary to cover the interior of an n-
sided art gallery using a lengthy combinatorial argument [Chv75). Subsequently Fisk
[Fis78] gave a concise and elegant proof using the fact that the vertices of a triangu-
lated polygon may be three-colored. Avis and Toussaint [AT81] used Fisk’s proof to
design an O(n logn) algorithm for placing the guards. Recently, I{ooshesh and Moret
[KM92] showed that the guards can be placed in linear time. Although many similar
problems have been studied in computational geometry {O'R87, She89, She92), little
is known about guarding an object in three dimensions. In this chapter we present
some results on guarding the surface of a polyhedral terrain.

The problem of guarding a polyhedral terrain was first investigated by deFloriani,
et al. [dFP*86]. They showed that finding the minimum number of vertex guards
could be done using a set covering algorithm. Cole and Sharir {CS89] showed that’
the problem was NP-complete.

In this chapter, we first show that the problem of findir z the minimum number of
edge guards for a polyhedral terrain is NP-complete. Then we show that | 3] vertex
guards are always sufficient and sometimes necessary to guard an n-vertex terrain. We
also present a linear time algorithm for placing || vertex guards to cover a terrain.
With respect to edge guards, we establish that [E’;—;ﬁlj edge guards are sometimes

[(

necessary to guard the surface of an n-vertex terrain. The sufficiency result of | %]
edge guards is proved by Everett and Rivera-Campo [ERC82]. Finally, we present a
linear time algorithm for placing | 4] edge guards to cover a polyhedral terrain. Re-
ducing the gap between sufficiency and necessity for édge guards and finding efficient,
practical algorithms to achieve the known bounds remain open problems.

We begin by reviewing some of the terminology used throughout this chapter.

Recall that a pelyhedral terrain (or terrain) T is a connected polyhedral surface
in R3 with n vertices such that the intersection of T with every vertical line is either
a point or it is empty. This immediately implies that there exists a planar graph T
associated with the terrain whose embedding is the orthogonal projection of T on
the XY-plane. Consequently, every component z (a vertex, edge or a face) of T has
a corresponding component z’ in T'. Two points a,b on or above T are said to be
visible if the line segment ab does not intersect any point strictly below 7.

Throughout this chapter, we only consider problems concerning vertex and edge
guards. A vertez guerd is a guard that is only allowed to be placed at the vertices of
T. An edge guard is a guard that is only allowed to be placed on the edges of T. A
point x on T is said to be visible to an edge if there exists a point ¥ on the edge such
that = and y are visible,

6.1 Minimum edge guarding a polyhedral terrain

is NP-complete

In this section we show that the problem of deciding wheiLer or not a set of edge
guards (including two endpoints) can cover the surface of a terrain is NP-complete.
The NP-hard proof is achieved by modifying the proof of Cole and Sharir for proving
the NP-completeness of the minimum veirtex guarding a polyhedral terrain prob-
lem, which uses a reduction from SATISFIABILITY, a famous NP-complete problem
[CooTl].

78

SATISFIABILITY

INSTANCE: A set of variables zi,...,2, and a CNF formula F with clauses
Ci,...,Cm over Ty, ..., Zp.

QUESTION: Is there a truth assignment of F?

Essentially we first follow [CS89] to construct a polyhedral terrain. Then we
modify the construction of pits to prove our result. Start with a horizontal plane,
erect n — 1 walls and dig some pits. The n — 1 parallel walls separate the plane
into n rows, where each row corresponds a variable. The pits all lie within rows.
There are 2m pits per row and they are arranged in a circular fashion (see Figure 6.1
(a), which displays the viev of a row from the above). The upper rims of the pits
are all the same, and the rims of each pair of adjacent pits in the same row have a
common vertex, which we call a peak vertex. The modification is to first construct
the pits differently such that the rims of each pair of adjacent pits in the same row
have a common edge, which we call a peak edge (peak for short) (see Figure 6.1 (b)).
We create m columns, perpendicular to the rows, one per clause. Each column cuts
through all of the walls, The idea is that only from a peak edge are the interiors of
the two adjacent pits completely visible, and only from the boundary or interior of
a pit can we see the whole pit. This can be achieved by making the pit very deep
relative to the height of the walls (see Figure 6.2). The rest of the construction is
exactly the same as that of Cole and Sharir {TS89).

In order to see the 2m bottoms of all the pits in a row, at least m edge guards
will have to be needed. Moreover, let ey, ..., €3, be the peak edges in some row, Then
to be able to view all the pits in this row with exactly 2m edges, they will have
to be placed at every other peak edge (i.e., either at the odd-numbered peaks or at
the even-numbered peaks of that row). Assume row r corresponds to variable z,,
the choice of even peak edges for the guarding edges in r will correspond to setting
zr = true, while the choice of odd peak edges will correspond to setting z, = false.
If clause C; of formula F does not contain z, or Z,, then the peaks py;_1,py; in row
r are placed outside of any column; if C; contains x, (resp. Z,), then peak edge p;
(resp. poj—1) is placed inside the jth column while py;_; (resp. ps;) is placed outside
of any column. We can arrange this by varying the lengths of the pits in the rth row.

79

peak vertex

Figure 6.1: A view of the pits in a row.

80

pit
wall wall

Figure 6.2: The pit can only be guarded by the edges on its rim (or inside it).

A wall has a triangular cross-section {parallel to columns). Thus a side of a wall
can be seen entirely from any peak edge in either of the adjacent rows. Therefore, no
additional edge guards are required for viewing the sides of the walls parallel to the

rows. We show in Figure 6.3 a terrain for the following formula
F= (.'171 V iz VI3) A(T VIyVzaV i)

Thus the reduction results in a polyhedral terrain § with O(mn) faces which requires
at least mn edge guards to see all of it. Moreover, if exactly this number of edge
guards is used, all of them must be placed at peaks in the manner described above.
Furthermore, we must have at least one edge guard per column. This occurs if
and only if formula F is satisfiable. We have thus shown that SATISFIABILITY is
reducible to the problem of determining whether a polyhedral terrain can be guarded
from a given number of edge guards in polynomial time. Therefore the latter problem
is NP-hard.

However, unlike the problem of minimum vertex guarding a terrain, the problem of
minimum edge guarding a terrain is not clearly in NP. We present below a polynomial
time algorithm to decide whether a polyhedral terrain can be guarded by a set of &
edges. Without loss of generality we triangulate all the faces of the terrain so that
all the faces are triangular.

81

X4

X3

X2

X1

T V
T A (
l
fO
th
i f
aln
A TT.
6-3.
.

82

Algorithm 6.1
BEGIN
(1) Remove all of the faces which are adjacent to the endpoints of the k edges.
These faces can be guarded by the edge guards. If no face is left then
report YES and exit.
(2) For each face left decide if it can be strongly guarded by an edge guard.
If the answer is positive then report YES and exit; otherwise, decide if
these faces can be guarded collectively by the k edge guards, if the answer
is positive then report YES and exit, otherwise report NO and exit.
END
Notice that we have left out some details in Step (2). Testing if a face can be
strongly guarded by an edge, i.e., the face can be guarded by every point on that edge,
can be done by deciding whether or not the convex hull of the face and the edge is
empty, which can be accomplished in linear time. Since there could be O(n) faces
left after Step (1) and for each face we need to test if it can be strongly guarded by
one of the k edge guards the total complexity of this procedure is O(n2k) = O(n3)
time. The problem of testing whether or not a face F' can be collectively guarded by
the k edge guards is much more difficult. We must apply the results of [BDEG94]
to compute the part of F visible from an edge in O(n®) time and O(n*) space.!
Therefore, decide whether or not F can be guarded collectively by the & edge guards
can be accomplished in O(n7) time and O(n®) space. Again, since there could be
O(n) faces left after Step (1) the total time complexity for this procedure is O(n®)
time.
Therefore, the problem of minimum edge guarding a polyhedral terrain is in NP.
Consequently we have shown the following theorem.

Theorem 6.1: It is NP-complete to determine, for a given polyhedral terrain with
O(n) faces and a given integer k, whether there exist & edge guards on the terrain

which collectively see the entire surface of the terrain.

1This visible part is the union of the arrangement of “hyper”-planes, defined by O(n?) parabola
and lines, thus has combinatorial complexity of O(n'). More details can be found in [BDEG94].

83

6.2 Guarding polyhedral terrains

A set of guards covers a terrain if every point on the terrain is visible from at least
one guard in the set. The vertex guarding problem we study is the following: what
is the number of vertex guards which is always sufficient and sometimes necessary to
cover any polyhedral terrain? Similarly, the edge guarding problem is to determine
the number of edge guards which is always sufficient and sometimes necessary to cover
any polyhedral terrain.

The combinatorial counterparts of these terrain guarding problems can be ex-
pressed as guarding problems on the planar triangulated graph derived from the ter-
rain. A vertex guard on the graph can only guard the faces adjacent to that vertex,
and an edge guard on the graph can only guard the faces adjacent to the endpoints
of the edge. The following theorem shows that we can restrict our investigation to
guarding problems on the derived planar triangulated graph.

Theorem 6.2: In the worst case, the guarding problem on a polyhedral terrain is
equivalent to the combinatorial guarding problem on the planar triangulated graph
derived from the terrain.

Proof: Suppose a vertex on a polyhedral terrain could not guard one of the faces
adjacent to it. This would imply that some other face was obstructing its vision, but
that would violate the property that the intersection with a vertical line must be a
single point. Thus a guarding of the planar triangulated graph implies a guarding of
the polyhedral terrain.

On the other hand, given any planar triangulated graph embedded in the plane
T', we can construct a terrain T based on T" by projecting it on the upper half of a
sphere containing the planar triangulated graph. In this case, a vertex (edge) guard
z of T can only see the faces adjacént toit. O

6.2.1 Guards on a terrain

In this section we show that || vertex guards are always sudficient and sometimes
necessary to guard a polyhedral terrain. We also show that [“"’Tgﬂj edge guards are

84

Figure 6.4: A seven-vertex terrain.

sometimes necessary to guard a polyhedral terrain.

Vertex guards

Lemma 6.3: The seven-vertex graph shown in Figure 6.4 needs at least three vertex
guards. Furthermore, if three vertex guards are used to cover it, then at most one of
the three guards can be an exterior vertex.

Proof: Suppose that two vertices suffice. One of the inner four vertices must be
chosen to cover the inner triangles. If the central vertex is chosen, then the remaining
unguarded (outer layer} triangles can not be covered by one guard, as the triangles
A and B do not share a vertex. Therefore, one of the three middle vertices must be
chosen. Without loss of generality, suppose vertex z is chosen. Then, the unguarded
triangles (A and the three triangles adjacent to A) are not coverable by one vertex
guard.

Now we show that at most one vertex guard can be an exterior vertex. If all three
were exterior vertices, then the middle three triangles would be uhguarded. Suppose
that at least two of the vertex guards are exterior vertices. Without loss of generality,
let them be the bottom two. We now have A and the three central triangles (directly

below A) unguarded. These triangles can not be guarded with one additional guard.
|

85

From the graph in Figure 6.4, we construct a series of planar subdivisions Sy, ..., Sk,
where S; is the graph of Figure 6.4 and S;4; is obtained from Si in the following
maunner: let Sk be the graph of Figure 6.4 with one of the central triangles replaced
by a copy of S; (without loss of generality, suppose it is the one below face A). We
show the following property about S:

Lemma 6.4: S; is triangulated, has n, = 4k — 1 vertices and needs g = 2k — 1
guards. If Si is covered by exactly 2k — 1 guards, then at most one guard is on the
exterior face.

Proof: By induction on k.

Basis: k = 1. Follows from Lemma 6.3.

Inductive Hypothesis: For all k < ¢, t > 1, S is triangulated, has ny = 4k — 1
vertices and needs g, = 2k ~ 1 guards. Furthermore, if it is covered by exactly 2k -1
guards, then at most one guard is on the exterior face.

Inductive Step: k =t + 1. Sy, is triangulated by construction. It has n, + 4 =
(4t — 1)+ 4 = 4(t + 1) — 1 vertices. We now only need to show that it requires
2(t+1)—1=2t+1 guards, and that if it uses that few, then only one exterior vertex
is a guard.

In Sy,1, there is a copy of S;. By induction, this copy of S; must use at least 2t -1
guards. We consider cases based on how many guards this copy of S; uses as follows.

Case 1: The copy of S; uses exactly 2t — 1 guards. Then the copy of S; has at
most one guard on one of its exterior vertices. There are 4 subcases: no guard is
placed on the exterior of S, left vertex (y) is a guard, right vertex (z) is a guard, and
the lower vertex (w) is a guard.

1.1: No guard is placed on the exterior of S;. Since S, is already covered, two
guards suffice to cover the remainder of S41. We have that g4 = (2t -1)+2 =
2(t + 1) — 1. If exactly 2 guards are used, then at most one of them can be on the
exterior of Sy;.

1.2: A guard is placed at y. This configuration requires at least two guards.
If covered with exactly two guards ({2t — 1) +2 = 2t + 1 guards total), then at most
one is on the exterior face,

1.3: A guard is placed at z. This subcase is symmetric to subcase 1.2.

86

1.4: A guard is placed at w. There is a ring of six triangles that requires two
guards and at most one of these guards is on the exterior face.

Case 2: The copy of S; uses ezactly 2t guards. Then the copy of S; may have
guards on ali three of its exterior vertices (i.e., z,y,). However, this still leaves one
face (B) uncovered, so one more guard is required. If only one more guard (2t-+1
total) is used, then only that guard may be on the exterior face.

Case 3: The copy of Sy uses more than 2t guards. Then the induction hypothesis
is true. O

Therefore we have the following theorems.

Theorem 6.5: There exists a terrain on n vertices, for any n = 3 mod 4 that requires
[n/2] vertex guards.

Proof: This follows directly from Lemma 6.4. For that terrain, we have: g = 2k —1
and n; = 4k — 1, therefore

Gg=2(ne+1)/d)-1=(m+1)/2=-1=(np~1)/2=|n/2]. O

Theorem 6.6: {n/2| vertex guards are always sufficient and sometimes necessary to
guard the surface of an arbitrary terrain T with n vertices.

Proof: First 4-color the vertices of T'. This can always be done since T" is a planar
graph [AH77]. By the pigeon hole principle, among the 4 colors there must be 2 colors
such that no more than [n/2] vertices are colored by these two colors. Furthermore,
these |n/2] vertices are sufficient to guard all of the faces of T (because every triangle
must have at least one vertex colored with one of these 2 colors). Necessity follows
from Theorem 6.5. O

Edge guards

We now commence our investigation on edge guards.

Lemma 6.7: The terrain in Figure 6.5 needs at least two edge guards. Furthermore,
if a mixture of edge guards and vertex guards are allowed, then one edge guard and
one vertex guard suffice.

Proof: Suppose one edge guard suffices. We then have the following cases.

87

b

a

Figure 6.5: A six-vertex terrain which needs two edge guards.

Case 1. ab,ac, be do not cover triangle(z, y, 2).

Case 2. ay,az do not cover triangle(b, ¢, z).

Case 3. TZ does not cover triangle(a, y, ¢).

All other cases follow by symmetry. Therefore we need at least two edge guards
for the terrain in Figure 6.5 (edges ab and 7Z suffice). For all the cases above the
unguarded faces can be covered by one vertex guard. O

Theorem 6.8: There is a planar triangulation that needs at least (4n -- 4)/13 edge
guards. :

Proof: Such a planar triangulation is derived from an arbitrary triangulated convex
polygon P with v vertices and v — 2 internal triangular faces.

We put a copy of Figure 6.5 in each face of P and along each edge of the boundary
of P. Then we triangulate the untriangulated faces. (In total we add v+ (v — 2) =
2v — 2 such copies to P.) Suppose the triangulation we obtain is P* and it needs g,
edge guards. Because guards can not be shared between any copies of Figure 6.5, P*
requires at least g, = 2(2v — 2) = 4v ~ 4 edge guards and has vp. =v+6(20 —-2) =
13v — 12 vertices. Substituting vp. by n, we have: g, = (dn — 4)/13. O

88

6.2.2 Algorithms for placing terrain guards

In this section, we present some practical, efficient algorithms for placing the vertex
and edge guards. Since establisking the number of vertex guards and the number of
edge guards sufficient to cover a terrain required the use of the four color theorem,
finding a practical efficient algorithm to place the guards seems unlikely unless a
deeper understanding of the problem is achieved. To this end, we present practical

algorithms for guard placement which approximate the upper bounds.

Placing vertex guards

Observation 6.9: Given a five coloring of the vertices of any terrain, any set of three
color classes provides a vertex guarding of the terrain since every face of the terrain
is a triangle except possibly the outer face (which need not be guarded).

Based on this observation, a simple linear time algorithm follows:

Algorithm 6.2:

BEGIN

(1) Five-color the vertices of the planar triangulation graph.

(2) Among the five colors, choose three colors which are minimally used.

END

By [CNS81], Step (1) takes O(n) time. Clearly, O(n) time also suffices for Step
(2). Therefore, the complexity of Algorithm 6.2 is O(n).

Edge guard placement

We extend some of the elegant ideas of Everett and Rivera-Campo [ERC92] in order
to develop a linear time algorithm for placing 2?" edge guards to cover a polyhedral
terrain. We use the following lemma.

Lemma 6.10: Given a finite collection of R real numbers there exists an element of
R that must be less than or equal to average.

Proof: Let k be the average of the collection R. Suppose that there were no elements
of R that were less than or equal to k. This implies that all of the elements are greater
than k. But then k could not be the average. O

89

Our edge guard algorithm proceeds as follows. The first step in the algorithm is
to five color the vertices. Let the five colors be: 1, 2, 3, 4, 5. .

Let Matching(a, b, c) denotes a mazrimal matching (which is not necessarily a maz-
imum matching) on the graph induced by the vertices in the three color classes a,
b and ¢. Although Matching(a, b, c) does not provide a set of edges that guards the
whole terrain, if we take all the edges in Matching(e, b,c) as well as one edge from
each of the remaining unmatched vertices of color a, b, and ¢ then we guard the whole
terrain by Observation 6.9. Let Guard(a, b, c) represent the size of a set of edge guards
obtained in this way. Also, let Size(a, b, c) represent the number of vertices of the three
color classes a, b, and c. We have the following relation: Guard(a, b,c) = Size(a, b, ¢)
- Matching(a, b,c). This relation holds because for each edge of the matching, we
reduce the number of unmatched vertices by 2 which results in a reduction of the size
of Guard by 1. ’

There are 10 possible combinations of three color classes resulting from the five
coloring of the graph, We list them here in lexicographical order for reference: 123,
124, 125, 134, 135, 145, 234, 235, 245, 345. Let ¢; represent the *» combination in
lexicographical order. Notice that each color clzss appears in 6 combinations. Thus,

10
3~ Size(c;) = 6n.
i=1

Therefore we have the following lemma.

Lemma 6.11 If {2, Matching(c;) > 2n, then there exists a guarding of size < [%]
Proof: The average size of Guard =

T2, Size(c;) — 123, Matching(c;) < 6n-2n 2n
10 = 10]

Therefore, one of the combinations provides a Guarding of size < 355 by Lemma 6.10.
o

When T), Matching(c;) < 2r, we have the following lemma.
Lemma 6.12 One of the following pairs of Matchings provides a set of edges that

guards the whole terrain: Matching(1,2,3) and Matching(1, 4,5), Matching(1,2, 5)

90

and Matching(2, 3,4), Matching(1,2,4) and Matching(3, 4,5), Matching(1,3,4) and
Matching(2, 3,5), Matching(1, 3, 5) and Matching(2, 4, 5).

Proof: Let us first consider the first pair of matchings. Suppose there is a triangle
which is not guarded. This meons that all three vertices of the triangle must be
unmatched. Clearly, the triangle can not contain edges whose endpoints have colors
: {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {4, 5}, because if it did, we could add an extra
edge to one of the Matchings contradicting the fact that it is maximal. So it must
contain one of: {2, 4}, {2, 5}, {3, 4}, {3, 5}. Suppose it contained {2, 4}. Well the
third vertex must have color: 1, 3, or 5. Thus, the triangle contains an edge which
must be guarded. If it did not we could add an extra edge to one of the two matchings
contradicting the fact that they are maximal. The argument is similar for the other
three {2, 5}, {3, 4}, {3, 5}. The argunient for the other four matching pairs is also
similar. O

The average size of a matching pair = ¥12, MELCEH-IEE < 2 (note that the
average is taken over five since there are five matching pairs). Thus, one of the pairs
of matchings provides a guarding with the desired size by Lemma 6.10.

Computing a maximal matching on a graph induced by the three chosen colors
can be done in linear time in the number of edges in the graph. Thus O(n) time
suffices to compute all of the matchings induced by all 10 combinations of three color
classes. Once all of the matchings are computed, Lemmas 6.10 and 6.11 guarantee
that either a guarding or a pair of matchings will have size less than or equal to 35’1
Since there are only 10 different guardings and 5 pairs of matchings, the appropriate
set can be found in only linear time. Therefore, we have the following theorem.

Theorem 6.13: Given a polyhedral terrain on n vertices, O(n) time is sufficient to
find a set S of edges to guard the terrain, where ||S]| < |2].

6.2.3 Conclusions

The following table summarizes the results of guarding polyhedral terrains.

91

Sufficiency Necessity Algorithmic Bounds
Vertex Guards [|n/2] {n/2l |3n/5]
Edge Guards |n/3] [(4n-4)/13] | = |2n/5]

There are some open problems related to this chapter and we summarize them as

follows.

Open Problem 9: Is it possible to reduce the gap between sufficiency and neces-
sity for edge guards? Are there practical efficient algorithms that match the known

bounds?

Note: We have tried to use computer to find whether there is a 9-vertex planar
triangulation which needs 3 edge guards. Recently with the help of David Avis and
Komei Fukuda (they showed [and generated] that there are 78 non-isomorphic trian-
gulations for a set of 9 planar points), we showed that there is no such triangulation
which needs 3 edges (by checking all the 78 triangulations). (If there were one, we
could immediately improve the lower bound on edge gnards to (6n — 6)/19.)

92

Chapter 7

Intersection detection and
computation for Manhattan

terrains

Intersection detection and computation is one of the fundamental prohlems in com-
putational geometry. This problem finds applications in motion planning, collision
detection and avoidance, computer graphics, CAD and VLSI [PS85]. Typical previous
known results regarding intersection detection are as follows: detecting the intersec-
tion of a line or a line segment with a convex polygon [CD87], with a simple polygon
[CG89]; detecting the intersection between two simple polygons {Mou92, Ama93];
detecting the intersection of a line, a plane, or a convex polyhedron wich a convex
polyhedron [DK83, CD87, DK90]. For tke general intersection detection problem
regarding non-convex polyhedra in 3D, a few results are on!y kuown very recently.
With the results of ray-shooting [dB92], de Berg shows that the intersection de-
tection query of a line (a ray or a line segment) with an arbitrary polyhedron can be
answered in O(logn) time and the data structure can be constructed in O(n4+*) (for
any € > 0) time and space. Furthermore, the intersection of a rectilinear line (a ray
or a line segment) with an axis-parallel polyhedron can be detected in O(logn) time
with O(n!*¢) (for any € > 0) time and space preprocessing. If the space complexity is
of more concern, then he shows that the query can be answered in O{log n(loglogn)?)

93

time and the data structure can be constructed in O(nlogn) time and space. Since
a Manhattan terrain is a special axis-parallel polyhedron which arises frequently in
practice we would like to ask: if the object is a Manhattan terrain instead of an ar-
bitrary axis-parallel polyhedron, can the rectilinear ray shooting be performed more
efficiently? We show in this chapter that this question can be answered positively.

There are many more results regarding intersection computation and we are un-
able to list all of them. Most of these results before 1988 can be found in Chapter 7 of
[PS85] (the second edition). Two of the most famous results of intersection computa-
tion after 1988 are the optimal linear time algorithm for computing the intersection
of two convex polyhedra by Chazelle [Cha92] and the optimal O(nlogn + K) time
algorithm for computing the intersection of n line segments [CE92].

The known results regarding the intersection detection and computation of poly-
hedral terrains are as follows, The problem of computing the shortest vertical distance
between two non-intersecting polyhedral terrains (two sets of lines or line segments in
3D) has been solved with a randomized algorithm with time O(n4/3+¢) (for any € > 0);
consequently, the problem of detection the intersection between two polyhedral ter-
rains can be solved with the same bound [CEGS89). The problem of computing the
longest vertical distance between two polyhedral terrains (two sets of lines or line
segments ir. 3D) has also been solved with a randomized with time O(n%/3+¢) (for
any € > 0) [GP92]. (Note: The corresponding problem of computing the shortest or
longest distance between two sets of rectilinear lines in 3D can be reduced to comput-
ing the red /blue closest pair and furtherest pair between two sets of reals and can be
solved easily in ©(nlogn) and ©(n) time respectively. However, the corresponding
problem of computing the shortest or longest distance between two sets of rectilinear
line segments in 3D can not be solved in this way.) The problem of computing the
intersection (upper envelope) of two polyhedral terrains one of which is convex has
been solved in optimal O(nlogn + K) time [Sha¥s]. The problem of computing the
intersection of two polyhedral terrains has been solved with a randomized algorithm
with time O(n%/3+¢ 4 K1/3pt+ 4 Klog?n) (for any € > 0), where K is the size of
output [Pel93).

In this chapter we consider the intersection detection and computation problems

94

for Manhattan terrains (solid Manhattan terrains). We show that after O(nlogn)
time and space preprocessing, the intersection of a rectilinear line segment (ray, or
line) with a Manhattan terrain can be detected in O(logn) time. For the dynamic
version of this problem, we show that there exists a dynamic data structure with a
query and update of O{log? n) time and O(rlogn) space. With these results, we are
able to show that:

(1) Given two Manhattan terrains with a total of O(n) vertices, we can either
compute the shortest vertical distan~s between them or report their intersection in
O(nlogn) time. Equivalently, given two sets of rectilinear line segments, the shortest
distance between them can be computed in O(nlogn) time.

(2) Given two Manhattan terrains (or two sets of rectilinear line segments) with
a total of O(n) vertices, the longest vertical distance between them can be computed
in O(nlogn) time.

(3) Given two Manhattan terrains with a total of O(n) vertices, we can compute
their intersection (upper envelope) in O(n logn + K) time, where K is the combina-
torial complexity of the envelope.

The techniques and data structures we use include: multi-layer tree, segment tree
[Ben77, VW82], symmetric order heap [HT84|, fractional cascading [CG86] and any
one of the techniques and data structures supporting planar point location queries
in O(logn} time with O(n) time and space preprocessing {Kir83, EGS86, ST86]. In
order to support the dynamic version of the above problems, we also use the 2D
dynamic point location algorithm of Preparata and Tamassia [PT89].

7.1 Preliminary

We begin by recalling some elementary definitions. A Manhattan terrain M with n
vertices is a connected 3D rectilinear polyhedral surface such that the intersection of
any vertical line with M is either empty, a point, or a vertical line segment. A solid
Manhattan terrain M is a simple rectilinear polyhedron such that there exists a face
f of M and the intersection of M with any line perpendicular to f is either empty,
or a line segment with one endpoint lying on f.

95

A segment tree is a data structure that is used to store a set of intervals on the
real line. Segment trees are introduced by Bentley in 1977 |Ben77]. Since then, they
have found many applications, especially for axis-parallel and c-oriented geometric
objects [PS85). .

Let S be a set of n possibly overlapping half-open intervals I;’s on the real line, i.e.,
S={h,..1,}. Let [; = [z;, ;). The m < 2n different endpoints of I;’s partition the
real line into m + 1 half-open elementary intervals. The segment tree that stores S is
a balanced binary tree with m + 1 leaves, which correspond to the m + 1 elementary
intervals. Each internal node v of T has an interval associated with it that is the
union of the intervals associated with its two children. In other words, each node v of
T has an interval associated with it that is the nnion of all elementary interval leaves
of T(v). We denote this interval by I,. An interval I; € S is stored at those nodes v
such that I, C I;, but Lnapent(vy € I;. One can check that I; is precisely the disjoint
union of all the intervals I, over all node v where I; is stored.

We give a procedure for building a segment tree by inserting intervals one after
another [VW82]. Assume we have already built a tree T based on the m+1 elementary
intervals (the root r of T corresponds to the real line), we want to store a line segment
I'inT,

Algorithm Insertion(T(r),I);

BEGIN
(1) If I. € I, then add I to the node list of r.
(2) If I, € I, then at least one of the following hold.
(2.1} If Liegyr) O 1 # O, then Insertion(T(left(r)),l);
(2.2) If I gnyry N I # 0, then Insertion(T(right(r)),I).
END

From the above insertion procedure we can see that I can be stored with at most
two nodes at each level of T. Therefore an interval is stored at most O{logn) times
in T, which implies that the space for storing T is O(nlogn). We denote the subset
of intervals that are stored at some node » by L({v), and call L(v) the associated list
of v. Consequently we have the following theorem [VW82)].

Theorem 7.1 [VW82]: A segment tree T for a set S of n intervals can be constructed

96

Ao

> s _
l4 TS " >

Figure 7.1: A segment tree of four line segments.

in O(n logn) time and space. The query of reporting all intervals that contain a query
point z can be answered in O(logn + k) time, where k is the number of intervals
reported. Furthermore, the set of intervals that contain z is the union of all associated
lists L(v) of all v on the search path of z in T

In Figure 7.1, we show a segment tree storing four segments. In practice, to solve
more complex problems we might need to store each associated list as some other data
structure instead of a linked list. This gives us multi-layer data structures, Willard
and Leuker [WL85] showed the following result:

Theorem 7.2 [WL85]: Suppose that the associated lists L{v) in a segment tree
are stored in data structures that can be built in O(N(|L(v)|)) time and space with
O(U(]|L{v)])) query and update time. Then the total time and space for constructing

this multi-layer date structure is O(N(|L(v)|)logn), the query and update time is
O(U(|L(v)|) log n).

The intersection detection problem for Manhattan terrains is to design data struc-
tures to support efficient queries about the intersection between a preprocessed Man-
hattan terrain M and an arbitrary rectilinear line segment or another Manhattan

97

terrain. We also consider the dynamic version of the above problems, i.e., when only
a constant number of changes occurred on the vertices, edges and faces of M. (In the
worst case, adding or deleting a new face to M can cause linear number of changes
on vertices, edges and faces of M.) '

7.2 Detecting the intersection of two Manhattan

terrains

In this section we show how to detect the intersection between two Manhattan terrains
in O(nlogn) time. We first show how to report the intersection between a Manhattan
terrain M and a query rectilinear line segment in O(logn) time after O(n logn) time
and space preprocessing. Recall that a line segment is rectilinear if it is perpendicular
to either the XY-, or YZ- or XZ-planes. |

Distance Definition 1: Given two rectilinear line segments ¢; and ¢ in 3-D, if there
is a vertical line / such that t; NI # @, t, N1 # 0, then the vertical distance between t;
and t; (denoted by d(t;, %)) is the difference between the Z-coordinate of ¢; N{ and
taN!. Otherwise the vertical distance between the two rectilinear segments is infinity.

Unless specified otherwise, we use the above definition of distance, We first show
how to compute the shortest vertical distance between a Manhattan terrain M and a
rectilinear line segment after preprocessing M. We then show how to generalize this
procedure to answer the intersection detection query.

We first give an O(log?n) solution to compute the shortest vertical distance be-
tween a rectilinear line segment ab and a Manhattan terrain M. The shortest vertical
line segment T, with v € ab, u € M, must satisfy one of the following properties:

(1) v is either a or b;
(2) u lies on an edge of M and v lies on ab.

The first case can be dealt with using planar point location (for this reason, we
will ignore the case when ab is a vertical line segment, i.e., it is perpendicular to the
XY-plane). For the second case we just consider the case when ab is perpendicular
to the YZ-plane. Without loss of generality, assume & = (24,¥),b = (25, ¥).

98

1Yx/§ 37] >» X
4 5 >
6 2 3 D\I‘C\/O
T 4 56 O
7 1 7 /

Figure 7.2: A Manhattan terrain and its two-layer segment tree.

The idea is to construct a two-layer tree such that the first layer is a segment tree
and the second layer is a balanced binary search tree. We first build a segment tree T
for all of the edges of M which are vertical to the XZ-plane (Figure 7.2). A node v in
T has a certain y-interval [, associated with it. Node v can be considered to represent
the horizontal slab [—oco, +-00] X I,. When considering a vertical line segment inside
the horizontal slab corresponding to v, we always restrict our attention to the part of
the vertical line segment inside the slab corresponding to v. A search with yin T gives
us O(logn) associated lists L(v) such that the shortest vertical distance between ab
and M is equal to the shortest vertical distance between ab and one of the elements
in these lists.

We fix a plane P parallel to the XY-plane which is above M. We store each
associated list L(v) in a balanced search tree T, according to the X-coordinates of
these O(n) line segments such that a leaf corresponds to a line segment in L(v) and
each leaf store its distance to the plane P; furthermore, the parent of two nodes
is the one whose distance to P is smaller., With such a T,, we can compute the
shortest vertical distance between P and those segments between X = z,, X = z,

which is equal to the distance between P and the nearest-common-ancestor of z,

99

and z;, (denoted by nca(z,, 7)), in the time proportional to the height of T, (which
is O(logn)). Then the shortest vertical distance between ab and these segments
can be computed in an extra O(1) time: it is equal to d(P, nca(z,,2,)) — d(P,ab),
if ab is below P; otherwise, it is equal to d(P, nca(:c.,,:c;,)) + d(P,ab). In total, we
have O(log n) associated lists for an elementary interval (which are the associated lists
stored at the nodes on the path from the root to the leaf representing that elementary
interval). For each of these L(v) (and the corresponding T,,) it takes O(logn) time to
compute the shortest vertical distance between ab and nea{zq, Tp) in T,. Therefore
the complexity for answering such a query is O(log? n) and the preprocessing time
and space is O(nlogn). Consequently we have the following theorem.

Theorem 7.3: After O(nlogn) time and space preprocessing, the shortest vertical
distance between a Manhattan terrain M and a rectilinear query line segment can
be answered in O(log? n) time.

Note: Throughout this chapter, all the results regarding computing the shortest
vertical distance can be generalized to computing the longest vertical distance. What
we need to do is to construct a T, corresponding to L(v) such that the leaves of T},
correspond to the line segments in L(v) and each leaf store its distance to the plane P;
furthermore, the parent of two nodes is the one whose distance to P is larger. With
such a data structure we search the longest distance between M and a rectilinear line
segment in the multi-layer tree with the same time complexity.

Moreover, the above data structure also solves the dynamic version of the problem.
The point is that the second layer is a balanced binary search tree which supports
an O(logn) time update [Tar83]. Combining this with the results of Preparata and
Tamassia {PT89] (which supports O(log® n) time for a query or an update after O(n)
time and space preprocessing), we have the following corollary.

Corollary 7.4: After O(n logn) time and space preprocessing, the shortest (longest)
vertical distance between a Manhattan terrain M and a rectilinear query line segment
can be solved in O(log? n) time. A Manhattan terrain of constant size can be inserted
into or deleted from the structure representing M in O(log? n) time.

100

12345678910I11
A: 8\510\6’2’14 7\9‘3‘11\4

2 5@\9
5P

JORIOBLOED

Figure 7.3: An array A and its Symmetric Qrder Heap.

We show that for the static version of the problem, we can improve the query time
to O(log n) without increasing the time and space for preprocessing. The crucial point
is that instead of storing a balanced binary tree for L(v), we can store a special data
structure called symrﬁetric order heap [HT84], such that the nearest-common-ancestor
of two nodes in the heap can be answered in O(1) time. We call the resulting data
structure a two-layer hybrid segment tree.

Let A[l..n] be an array of n real numbers. A Symmetric Order Heap (SH) is a
binary tree that holds the entries of A[l..n]. SH has n nodes and each Ali] appears
in only one node of SH. If we denote the node that holds A[i] by w;, then SH has the
following properties:

1. SHis a heap, i.e., if w; is the parent of w; then Afi] < A[j].

2. The symmetric order (inorder) traversal of nodes of SH is w;, wy, ..., Wy, i.e.,
nodes in symmetric order contain A[l], Af2],...,A[n].

The following theorem is established in [HT84):

101

Theorem 7.5 [HT84]: A symmetric order heap can be constructed in linear time
and after an additional linear time preprocessing on the heap we can answer the

nearest-common-ancestor query in O(1) time.

Let val() = d(P,w;) be the shortest vertical distance between w; and P, where
w; € L(v). We can use the val(?) information for each w; to construct a SH for every
associated list. Then by Theorem 7.5, we can answer the nearest-common-ancestor
query between any w; and w; in O(1) time such that w; is the leftmost interval inter-
secting with (the XY-projection of) a6 and w; is the rightmost interval intersecting
with (the XY-projection of) ab. However, there are O(log) associated lists for an
elementary interval and for each associated list L(v) finding the leftmost (rightmost)
interval intersecting with ab by binary search takes O(logn) time. Consequently the
total time complexity could be O(log?n), which is no better than the binary tree
implementation. Nevertheless we can apply the fractional cascading technique of
Chazelle and Guibas [CG86] to improve the bound to O(logn).

Suppose L(v) is the associated list of interval v in the segment tree T, and let
L(left(v)) be the associated list of interval left(v) in T. The basic observation is that
the position of x, in L(v) will give us information about its position in the associated
lists of its two children (for simplicity we only discuss L(left(v))). What we do is
to first add two new pointers from each element in L(v) to the smallest (largest)
element which is at least as large (small) in L{left(v)). With these pointers, for the
example shown in Figure7.4 we can find in O(1) time the leftmost (rightmost) interval
in L{left(v)) intersecting the query line segment ab once we know the the leftmost
(rightmost) interval in L(v) intersecting ab. However, we are rarely in this fortunate
situation since in general there could be O(n) intervals in L{left(v)) between interval
1 and 2 (see Figure7.4). This problem can be overcome by copying certain elements
of L{left(v)) into L(v) and vice versa [CG86). It turns out that the copying can be
done in such a way that the search in L{left(v)) can be done in constant time if
we already know the position the query value in L{v); furthermore, the asymptotic
preprocessing time and space is not affected. We summarize the result of [CG86] as
follows.

102

1 2 3 4 5
12 8 40 w7
a b
: \)%
6 7 8 9 ‘ *y
L(left(v)) — N

!
6 7 8 9

Figure 7.4: The pointers used for fractional cascading,.

Theorem 7.6 [CG86): Let T be a binary tree with O(n) nodes, and suppose that each
node v in T stores an ordered list L{v). Fractional cascading allows us to compute
the position of a query value in L(left(v)) in O(1) time if we know the position of
the query value in L(v). The time needed to set up the fractional cascading structure
is O(n + Ler | L(v)]).

Consequently we perform a binary search in the associated list which is stored
at the root of the tree T, and then we can do the searches in the lists stored at the
remaining nodes on the search path in O(1) time per list. (We can also say that
the amortized time for this search is O(1) per list). Therefore we have the following
theorem.

Theorem 7.7: After O(nlogn) time and space preprocessing, the shortest vertical
distance between a Manhattan terrain M and a rectilinear query line segment can
be computed in O(logn) time.

Proof: The query is essentially the same as the one we perform for Theorem 7.3.
The difference is that we can find the shortest vertical distance between ab and the
elements in an associated list in O(1) time with the result of Theorems 7.5 and
7.6. An elementary interval have O(logn) associated subsets, therefore in total we
can find the shortest vertical distance between ab and all the elements in all these
subsets in O(logn)O(1) = 0(log n) time. The time and space for preprocessing is
still O(nlogn). O

103

With this result we can proceed to obtain the following thecrem.

Theorem 7.8: The shortest vertical distance problem between two non-intersecting
Manhattan terrains with a total of O(n) vertices can.be computed in O(nlogn) time.
Proof: As we have discussed above the shortest distance between ab € M; and M,
can cither be the shortest distance between a (b) and M, or the shortest distance
between ab and Mj. The former can be solved using poiut location in O(logn) time
and the latter can be solved in O(logn) time by Theorem 7.7. For every edge in M,
we can perform the above procedures symmetrically. Since there are O(n) edges in
M, Mg, the total time complexity is O{nlogn). O

Now we show how to generalize the above result to znswer the intersection detec-
tion queries of a rectilinear line segment and a preprocessed Manhattan terrain. In
fact we can simply generalize the definition of the shortest vertical distance between
an edge 75 of M and ab as follows:

Distance Definition 2: If ab is above 77, then D(ﬁ,f‘g) = d(EF,E‘y), otherwise
D(ab,77) = —d(ab, 77).

With this definition, we can see that ab intersects with M if and only if the shortest
vertical distance between ab and M is negative. Then we can follow Theorem 7.7 to

obtain the following result (the only difference is that we store D(ab,v;) instead of
d(ab, v;) in val(i)).

Theorem 7.9: After O(nlogn) time and space preprocessing, we can either report
the intersection of ab (or a rectilinear line) and M (by giving a witness), or retura
the shortest vertical distance between ab and a Manhattan terrain M, or report this
distance is infinity in O(logn) time.

Consequently we have the following result which is symmetric to Theorem 7.8.

Theorem 7.10: Given two Manhattan terrains with a total of O(n) vertices we can
either report their intersection (by giving a witness) or return the shortest vertical
distance between them in O(nlogn) time.

104

SH of L(v)

nca(xa, xb)

Xb

Figure 7.5: Computing the intersections of a line with a Manlattan terrain.

7.3 Computing the intersection of two Manhat-

tan terrains

Following the second distance definition and Theorem 7.9, we can compute the inter-
section of a Manhattan terrain M and a query line segment ab in O(log n + k) time,
where kg is the combinatorial complexity of the intersection of M and ab. With this
result we can compute all the edge/face intersections between the two Manhattan
terrains. Consequently, the intersection (upper envelope) of two Manhattan terrains
can be computed in O(nlogn + K) time, where K is the combinatorial complexity
of the envelope.

Theorem 7.11: The iutersection of M and a query line segment ab can be computed
in O(logn + kg3) time, where kg is the combinatorial complexity of the intersection
of ab and M. |

Proof: We preprocess M as we have done in Theorem 7.7, that is, the second layer
is a set of SH'’s. Once we locate the position of z, and x; in L(v) (which is stored as a
symmetric order heap, each node has additional pointers to its next level for fractional
cascading), we can compute the nearest-common-ancestor of them, nca(z,, x), in
O(1) time. Then we start a preorder traversal at the subtree rooted at nca(z,,z,).

105

During the traversal, if a node w representing cd is traversed such that D(ab,cd) >0 |
then discard the subtree rooted at w (since all these nodes rooted at w are below ab
and there is no intersection between ab and all these nodes).

Suppose there are k; intersections between ab and the edges stored in (the sym-
metric order heap of) L(v). Since the number of leaves in a tree is at most the number
of internal nodes plus one, it is clear that we visit at most 2k; + 1 nodes in L(v) to
compute all the intersections between ab and the edges stored in L(v) (see Figure 7.5).
Consequently it takes 3 ciciopa(2ki +1) = O(logn + 2 F,; ciciogn ki) = O(logn + kas)
time to compute all the intersections between b and M. O

With this result, we can solve the following problem. Given two Manhattan
terrains M, Mz, compute the upper envelope of My, M (i.e., viewing M;, M, as
two functions z = fi(z,y) and z = fo(z,y) !, the upper envelope of My, Mg is the
graph of the pointwise maximum of f,, fo). Clearly each vertex of the upper envelope
is either:

(1) a vertex of M, lying below Mg, or

(2) a vertex of M lying below M;, or

(3) an intersection of an edge of M, with a face of My, or
(4) an intersection of an edge of M2 with a face of M.

The first two types of vertices can be found in O(nlogn) time using planar point
location. The last two types of vertices can be found in O(nlogn + K) time by
Theorem 7.11. After all these vertices have been computed, we have the following
theorem:

Theorem 7.12: The upper envelcpe of two Manhattan terrains can be computed in
O(nlogn + K) time, where K is the combinatorial complexity of the upper envelope.
Proof: We have just shown how tocompute the vertices of the envelope in O(n logn+
K) time. To list the envelope as a planar graph, we need to list the edges and faces
adjacent with these vertices. This can be done without affecting the asymptotic time
and space complexity. For the first two types of vertices this is straightforward as we

1For a point (z,y) on the XZ-plane or the YZ-plane, f; (f2) is defined as the maximal length
vertical line segment on M, (M32) such that the lower endpoint of the line segment is (z,y)-

106

already have the DCEL representations of the two Manhattan terrains. For a vertex
v of the envelope such that v = e N f; such that e; is an edge of M, and f, is a face
of Ms. The faces of the envelope which are adjacent to v are exactly the parts of
those faces adjacent to e; in M; and a part of f,. Again since we already have the
DCEL representations of M; and M, the faces which are adjacent with the last two
types of vertices can be listed in O(nlogn + K') time. O

Similarly, given two solid Manhattan terrains such that their valid bases are on

the same plane we can compute their intersection or union in O{nlogn + K) time.

7.4 Some remarks

In this chapter, we have shown that the rectilinear ray shooting problem for a Man-
hattan terrain can be solved more efficiently than that for an arbitrary axis-parallel
polyhedron. However, our data structure for a Manhattan terrain does not support

efficient ray shooting queries for an arbitrary ray. We list this as an open problem.

Open Problem 10: Is it possible to solve the intersection detection (ray shooting)
problem of a Manhattan terrain with an arbitrary line in 3D in O(logn) time with

o(n?) time and space preprocessing?

Chazelle et al. [CEGS89) have an O(log® ») time solution to solve the ray shooting
problem between a polyhedral terrain and an arbitrary line with O(n?+*} time and
space preprocessing. de Berg [dB92] has an O(logn) time solution to solve the ray
shooting problem between a 3D axis-parallel polyhedron and an arbitrary line with
O(n®*¢) time and space preprocessing. de Berg’s result gives us a better solution to
the above problem. But can we do even better? (Note that a Manhattan terrain is a
special polyhedral terrain as well as a special 3D axis-parallel polyhedron.)

107

Chapter 8
Conclusions

In this thesis, we have studied a series of problems regarding polyhedral terrains.
These problems include the problem of testing if a polyhedral object is a terrain,
computing the shortest watchtower of a terrain, guarding a polyhedral terrain with
a number of guards which is provably always sufficient and sometimes necessary,
detecting and computing the intersection between Manhattan terrains to the problerﬁ
of tetrahedralizing several classes of simple and non-simple polyhedra, which include
some special classes of solid terrains. These results, all of which are both practical
and implementable, have applications in computer graphics, CAD/CAM, military
surveillance, forest fire monitoring, locations of radio transmission stations and the
emerging areas of geographical information systems and spatial databases. In this
final chapter, we summarize the most representative results of this thesis and mention
some related open problems.

In Chapter 2 the problems of deciding if a polyhedral surface is a polyhedral terrain
and if a simple polyhedron is a solid terrain have been investigated. It turns out that
the latter problem is closely related to the problem of deciding whether or not a
polyhedral object can be manufactured by stereolithography. Optimal, practical and
straightforward linear time algorithms have been obtained to solve these problems.

In Chapter 3 we consider a generalization of the convex hull, i.e., the a-hull of
a terrain and obtain algorithms to compute the exact and approximate a-hulls of
a terrain. This problem is closely related to the problem of manufacturing a solid

108

terrain using NC-machining,

In Chapter 4 the problem of tetrahedralizing simple and non-simple polyhedra,
which include some special classes of solid terrains, is studied. Although it is known
that not all polyhedra admit a tetrahedralization and it is NP-complete to decide
whether a simple polyhedron can be tetrahedralized, there are some results known
about tetrahedralizing some special classes of simple and non-simple polyhedra by
Goodman and Pach [GP88], and Bern [Ber93]. In Chapter 4 we extend the set of
tetrahedralizable simple and non-simple polyhedra by showing that certain classes of
sim.ple and non-simple polyhedra, which include some special classes of solid terrains,
admit a tetrahedralization and can be tetrahedralized efficiently. We also show that
an arbitrary solid terrain does not always adinit a tetrahedralization.

In Chapter 5 the problem of computing the shortest watchtower is studied. The
first known O(n logn) algorithm to compute the shortest watchtower of a polyhedral
terrain is proposed. This settles an open problem posed six years ago by Sharir
[Sha88].

In Chapter 6 the problems of guarding polyhedral terrains with vertex and edge
guards are studied. Although the problems of locating the minimum number of
vertex and edge guards to guard the whole surface of a polyhedral terrain are all
NP-complete, it has been shown in Chapter 6 that |n/2] vertex guards are always
sufficient and sometimes necessary to guard the surface of an arbitrary polyhedral
terrain and |(4n — 4)/13] edge guards are sometimes necessary to guard the surface
of a polyhedral terrain, which is the best known lower beund in contrast to the |n/3]
upper bound by Everett and Rivera-Campo [ERC92]. Although these results are not
practical due to the employment of the four-color theorem in the proof, practical
linear time algorithms have been obtained to guard a polyhedral terrain.

In Chapter 7 the problems of detecting and computing the intersection of Man-
hattan terrains have been studied. Although the same problems regarding arbitrary
polyhedral terrains have been investigated in recent years and fast randomized al-
gorithms have been proposed, we are able to show that these algorithms can be
improved significantly if the terrains are rectilinear (Manhattan terrains). A data
structure, which is obtained by marrying the standard segment tree with the special

109

symmetric order heap, is proposed to represent a Manhattan terrain and is at the
core of these algorithms. .
Although we have studied a series of elementary problems involving polyhedral
terrains and have obtained many new results in this thesis, there are many problems
which remain to be solved efficiently, many of them have been mentioned in the thesis.

Below we give a list to summarize these problems for future research.

(1) What is the complexity of decomposing a 3D polyhedral surface S into the
minimum number of terrains (along different directions) if S is not a terrain?

(2) Is it possible to improve the O(n®) upper bound for computing the
a-hull of a terrain?

(3) What is the complexity of deciding if a solid terrain can be tetrahedralized?

(4) Conjecture: All solid Manhattan terrains can be tetrahedralized without
using Steiner points. ‘

(8) Can a U(3) polyhedron always be tetrahedralized?

{6) What is the lower bound for computing the shortest watchtower of a polyhedral
terrain? Or, is it possible to obtain an o(n logn) time algorithm to solve it?

(7) For the problem of computing the shortest vertical distance between two
non-intersecting terrains, is it possible to obtain a faster, deterministic
algorithm?

(8) For the problem of intersection detection between two convex polyhedra,
is it possible to obtain an o{log® n) query bound (even at the cost of
increasing preprocessing time and space)?

(9) Is it possible to reduce the gap between sufficiency and necessity for edge
guards in Chapter 67 Are there practical, efficient algorithms that match the
known bounds for vertex and edge guards?

(10) Is it possible to solve the intersection detection (ray shooting) problem for
a Manhattan terrain with an arbitrary line in 3D in O(logn) time with o(n?)
time and space preprocessing?

Besides all these theoretical problems, a further direction of research is to apply

these recently developed algorithms to the fields of geographical information systems
and spatial databases to obtain better GIS and spatial database software products.

110

Very recently there have been several results in this field, for example, applying plane
sweep to obtain efficient intersection queries in spatial databases [GS91]. It will be
very interesting to see how additional geometric algorithms can be applied directly
in GIS and spatial databases.

111

Bibliography

(AAPS6]

[ABB*93]

[AHT77]

[AHU74)

[AHUS3]

[Ama93]

[A093]

T. Asano, T. Asano, and R. Pinter. Polygon triangulation: efficiency and
minimality. J. Algorithms, 7:221-231, 1986.

B. Asberg, G. Blanco, P. Bose, J. Garcia-Lopez, M. Overmars, G. Tous-
saint, G. Wilfong, and B. Zhu. Feasibility of design in stereolithography.
In Proc. FSTTCS’93, India., volume 761 of Lecture Notes in Computer
Science, pages 228-237. Springer-Verlag, 1993.

K. Appel and W. Haken. Every planar map is 4-colorable. lll Journal of
Mathematics, 21:429 ~ 567, 1977.

AV. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis
of computer algorithms. Addison-Wesley Publishing Company, Reading,
MA, 1974.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data structures and algo-
rithms. Addison-Wesley Publishing Company, Reading, MA., 1983.

N. M. Amato. An optimal algorithm for finding the separation of simple
polygons. In Proc. 3rd Workshop Algorithms Data Struct., volume 709 of
Lecture Notes in Computer Science, pages 48-59. Springer-Verlag, 1993.

D. Abel and B. C. Ooi. Advances in Spatial Databases: Third Intl. Sym-
pos., SSD’93, volume 692 of Lecture Notes in Computer Science. Springer-
Verlag, 1993.

112

[AS93)

[ATS1]

[Bag48]

[BDEG94]

[BenT77]

[Ber93]

[Bez72]

[BFK84]

[BSTZ92)

[BSTZ93)

[Bur86)

P. Agarwal and M. Sharir. On the number of views of polyhedral terrains.
In Proc. 5th Canadian CG Conf., pages 55-60, 1993.

D. Avis and G.T. Toussaint. An efficient algorithm for decomposing a

polygon into star-shaped polygons. Pattern Recognition, 13(6):395-398,
1981.

F. Bagemihl. On indecomposable polyhedra. American Mathematical
Monthly, pages 411-413, 1948.

M. Bern, D. Dobkin, D. Eppstein, and R. Grossman. Visibility with a
moving point of view. Algorithmica, 11:360-378, 1994.

J. Bentley. Algorithms for Klee’s rectangle problems. unpublished

manuscript, Departiaent of Computer Science, Carnegie-Mellon Univer-
sity, 1977.

M. Bern. Compatible tetrahedralizations. In Proc. 9th ACM Computa-
tional Geometry Conf., pages 281-288, 1993.

P. Bezier. Numerical Control—Mathematics and applications. John Wil-
ley and Sons, London, 1972.

W. Boem, G. Fagin, and J. Kahmann. A survey of curve and surface
methods in CAGD. Computer-Aided Geometric Design, 1:1-60, 1984.

P. Bose, T. Shermer, G. Toussaint, and B. Zhu. Guarding polyhedral
terrains. In Proc. 30th Allerton Conf., pages 402-404, 1992.

P. Bose, T. Shermer, G. Toussaint, and B. Zhu, Guarding polyhedral ter-
rains. Submitted to: Computational Geometry: Theory and Applications
(also as Technical Report SOCS 92.20, McGill University), 1993.

P.A. Burrough. Principles of geographical information systems for land
resources assessment. Clarendon Press, Oxford, UK, 1986.

113

[CD8S5]

[CD87]

[CE92]

[CEGSS89)

[CG86)

[CG89]

[Chag3]

[Chal)

[Cha92]

[Chao3)

[Cheg9)]

[Chv75]

B. Chazelle and D.P. Dobkin. Optimal convex decompositions. In
G. T. Toussaint, editor, Computational Geometry, pages 63-133. North-
Holland, Amsterdam, Netherlands, 1985.

B. Chazelle and D. Dobkin, Intersection of convex objects in two and
three dimensions. J. ACM, 34(1):1-27, 1987.

B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting
line segments in the plane. J. ACM, 39:1-54, 1992,

B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir. Lines in space—
combinatorics, algorithms and applications. In Proc. 21st STOC, pages
382-393, 1989.

B. Chazelle and L. Guibas. Fractional cascading, Part I: A data structur-
ing technique. Algorithmica, 1(3):133-162, 1986.

B. Chazelle and L. Guibas. Visibility and intersection problems in planar
geometry. Disc. Comp. Geom., 4(6):551-581, 1989.

I. Chappel. The use of vectors to simulate material removed by numeri-
cally controiled milling. CAD, 15(3):156-158, 1983.

B. Chazelle. Triangulating a simple polygon in linear time. Disc. Comp.
Geom., 6(5):485-524, 1991.

B. Chazelle. An optimal algorithm for intersecting three-dimensional con-
vex polyhedra. SIAM J. Comput., 21(4):671-696, 1992,

B. Chazelle. An optimal convex hull algorithm in any fixed dimension.
Disc. Comp. Geom., 10(4):377-409, 1993.

L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4:97—
108, 1989.

V. Chvatal. A combinatorial vheorem in plane geometry. J. Comb, Theory
Ser. B, 18:39-41, 1975. ‘

114

[CNS81]

[Col86]

[CooT1]

[CP90]

[CRS92]

[CS89)

[CSs0]

[dB92]

[dFP+86]

[DISHS9]

[DK83]

N. Chiba, T. Nishizeki, and N. Saito. A linear 5-coloring algorithm for
planar graphs. J. Algorithms, 2:317-327, 1981.

R. Cole. Searching and sorting similar lists. J. Algorithms, 7(3):202-220,
1986.

S. A. Cook. The complexity of theorem-proving procedures. In Proc. 8rd
STOC, pages 151-158, 1971.

B. Chazelle and L. Palios. Triangulating a nonconvex polytope. Disc.
Comp. Geom., 5:505-526, 1990.

V. Chandru, V. T. Rajan, and R. Swaminathan. Monotone pieces of
chains. ORSA Journal on Computing, 4(4):439-446, 1992,

R. Cole and M. Sharir. Visibility problems for polyhedral terrains. J.
Symbolic Computation, 7:11-30, 1989.

B. Chazelle and M. Sharir. An algorithm for generalized point location
and its application. J. Symbolic Computation, 10(3):281~-309, 1990.

M. de Berg. Efficient algorithms for ray shooting and hidden surface re-
moval. PhD thesis, Department of Computer Science, Utrecht University,
1992.

L. deFloriani, B. Falcidieno, C. Pienovi, D. Allen, and G. Nagy. A
visibility-based model for terrain features. In Proc. 2nd International
Symp. on Spatial Date Handling, pages 235-250, 1986.

R. L. Drysdale, III, R. B. Jerard, B. Schaudt, and K. Hauck. Discrete
simulation of NC machining. Algorithmica, 4:33-60, 1989.

D.P. Dobkin and D.G. Kirkpatrick. Fast detection of of polyhedral inter-
section. Theoret. Comput. Sci., 27(5):241-253, 1983.

115

[DK85)

[DK90]

[DR&0]

[EGS86)

[EKS83)

[EM94)

[ERC92]

[Fis78)

[FP79]

(GP8s

[GP92]

D.P. Dobkin and D.G. Kirkpatrick. A linear time algorithm for deter-
mining the separation of convex polyhedra. J. Algorithms, 6(4):381-392,
1985.

D.P. Dobkin and D.G. Kirkpatrick. Determining the separation of pre-
processed polyhedra—a unified approach. In Proc. 17th ICALP, pages
400-413, July, 1990.

D. P. Dobkin and S. P. Reiss. The complexity of linear programming.
Theoret. Comput. Sci., 11:1-18, 1980.

H. Edelsbrunner, L.J. Guibas, and J. Stolfi. Optimal point location in a
monotone subdivision. SIAM J. Comput., 15:317-340, 1986.

H. Edelsbrunner, D.G. Kirkpatrick, and R. Seidel. On the shape of a set
of points in the plane. JEEE Trans. Inform. Theory, IT-29:551-559, 1983.

H. Edelsbrunner and E. Muecke. Three-dimensional Alpha Shapes. ACM
Trans. on Graphics, (to appear), 1994.

H. Everett and E. Rivera-Campo. Edge guarding a polyhedral terrain.
unpublished manuscript, Department of Computer Science, University of
Quebec at Montreal, 1992,

S. Fisk. A short proof of Chvatal’s watchman theorem. J. Combin. Theory
Ser. B, 24:374, 1978.

I.D. Faux and M.J. Pratt. Computational Geometry for design and man-
ufacture. Ellis Horwood, Chichester, UK, 1979,

J. Goodman and J. Pach. Cell decomposition of polytopes by bending.
Israel J. Mathematics, 64(2):129-138, 1988.

L. Guibas and M. Pellegrini. New algorithmic results for lines-in-3-space
problems, Technical Report TR-92-005, International Computer Science
Institute, 1992. '

116

(GS91]

[Her89)

[Hoo86]

[HS93)

[HT34]

[KB38]

[Kei85]

[Kir83]

[KM92]

[LDs1]

[Lee9l]

[Len11]

O. Guenther and H.J. Schek. Advances in Spatial Databases: Second
Intl. Sympos., SSD’91, volume 525 of Lecture Notes in Computer Science.
Springer-Verlag, 1991,

J. Hershberger. Finding the upper envelope of n line segments in
O(nlogn)} time. Inform. Process. Lett., 33:169-174, 1989,

T. Van Hook. Real time shaded NC milling display. ACM SIGGRAPH,
20(4):15-20, 1986.

D. Halperin and M. Sharir. New bounds ior lower envelopes in three
dimensions, with applications to visibility in terrains. In Proc. 9th ACM
Symp. Comput. Geom., pages 11-18, 1993.

D. Harel and R. Tarjan. Fast algorithm for finding nearest common an-
cestors. SIAM J. Comput., 13(2):338-355, 1984.

W. Kern and J. Bland. Solid Mensuration with proofs. John Willey and
Sons, NY, 1938.

J.M. Keil. Decomposing a simple polygon into simpler components, SIAM
J. Comput., 14:799-817, 1985.

D.G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Com-
put., 12(1):28-35, 1983.

A. Kooshesh and B. Moret. Three-coloring the vertices of a triangulated
simple polygon. Pattern Recognition, 25(4):443-444, 1992,

D.T. Lee and R.L. Drysdale. Generalization of Voronoi Diagrams in the
plane. STAM J. Comput., 10(1):73-87, 1981.

J. Lee. Analyses of visibility sites on topographic surfaces. Int. J. GIS.,
5:413-429, 1991.

N. Lennes. Theorems on the simple finite polygon and polyhedron. Amer-
ican Journal of Mathematics, 33:37-62, 1911.

117

[LZ93)

[Meg84)

[Mou92]

[MP79]

[O'R87]

[Pel93]

[PHT7|

[PS81]

[PS85]

[PT89]

[PT92]

[PV92)

Z. Li and B. Zhu. On the monotonicity of polygons and polyhedral ter-
rains. In Proc. ICYCS’93, Beijing, China, pages 629-632, 1993,

N. Megiddo. Linear programming in linear time when the dimension is
fixed. J. ACM, 31:114-127, 1984,

D. Mount. Intersection detection and separators for simple polygons. In
Proc. 9th ACM Symp. on Computational Geometry, pages 303-311, 1992,

D. Muller and F. Preparata. Finding the intersection of n half-spaces in
time O(nlogn). Theoret. Comput. Sci., 8(4):45-55, 1979.

J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, 1987.

M. Pellegrini. On lines missing polyhedral sets in 3-space. In Proc. 9th
ACM Symp. on Computational Geometry, pages 19-28, 1993.

F. P. Preparata and S. J. Hong. Convex hulls of finite sets of points in
two and three dimensions. Commun. ACM, 20:87-93, 1977.

F.P. Preparata and K. Supowit. Testing a simple polygon for monotonic-
ity, Inform. Process. Lett., 12(4):161-164, 1981,

F.P. Preparata and M.I. Shamos. Computational Geometry: An Intro-
duction. Springer-Verlag, 1985. ‘

F. Preparata and R. Tamassia. Fully dynamic point location in a mono-
tone subdivision. SIAM J. Comput., 18(4):811-830, 1989.

F. Preparata and R. Tamassia. Efficient point location in a convex spatial
cell-complex. SIAM J. Comput., 21(2):267-280, 1992,

F. P. Preparata and J. S. Vitter. A simplified technique for hidden-line
elimination in terrains. In Proc. 9th Symp. Theoret. Aspects Comput.
Sci., volume 577 of Lecture Notes in Computer Science, pages 135-146.
Springer- Verlag, 1992. '

118

[PW79]

[Roc70]

[RR92]

[RS88]

[RS92]

[Sch2s]

[Shass]

[Sha93a]

[Sha93b]

[She89)

[She92

R. Pressman and J. Williams. Numerical Control and computer aided
manufacturing. John Willey and Sons, NY, 1979.

R.T. Rockafellar. Convezr Analysis. Princeton University Press, Princeton,
NJ, 1970.

A. Rosenbloom and D. Rappaport. Moldable and castable polygons. In
Proc. 4th Canadian CG Conf., pages 322-327, 1992,

J. H. Reif and S. Sen. An efficient output-sensitive hidden-surface re-
moval algorithms and its parallelization. In Proc. {th ACM Symp. on
Computational Geometry, pages 193-200, 1988.-

J. Ruppert and R. Seidel. On the difficulty of triangulating three-
dimensional polyhedra. Disc. Comp. Geom., 7:227-253, 1992.

E. Schoenhardt. Uber die zerlegung von dreieckspolyedern in tetraeder,
Mathematische Annalen, 98:309-312, 1928,

M. Sharir. The shortest watchtower and related problems for polyhedral
terrains. Inform. Process. Lett., 29(5):265-270, 1988.

M. Sharir. Almost tight upper bounds for lower envelopes in higher di-
mensions. In Proc. 3{th IEEE Symp. Found. Comput. Sci. (FOCS 93),
pages 498-507, 1993.

M. Sharir. Arrangements of surfaces in higher dimensions: Envelopes,
single cells, and other recent developments. In Proc. 5th Canad. Conf.
Comput. Geom., pages 181186, Waterloo, Canada, 1993.

T. Shermer. Visibility properties of polygons. PhD thesis, School of Com-
puter Science, McGill University, Montreal, Canada, 1989,

T. C. Shermer. Recent results in art galleries. Proc. IEEE, 80(9):1384-
1399, 1992,

119

[ST86]

[Stio1]

[Tar83]

N. Sarnak and R.E. Tarjan. Planar point location ising persistent search
trees. Comm. ACM, 29.669-679, 1986.

S. Stifter. An axiomatic approach to Voronoi-diagrams in 3D. J. Comput.
Syst. Sci., 43:361-374, 1991.

R.E. Tarjan. Data Structures and Network Algorithms. SIAM monograph,
Philadelphia, PA, 1983.

[TVWZ93] G. Toussaint, C. Verbrugge, C. Wang, and B. Zhu. Tetrahedralization

[VW82]

of simple and non-simple polyhedra. In Proc. 5th Canadian CG Conf.,
pages 24-29, 1993.

V. Vaishnavi and D. Wood. Rectilinear line segment intersection, layered
segmentation, and dynamization. J. Algorithms., 3(2):160-176, 1982.

[WCC+93] T. Woo, §-Y Chou, L-L Chen, K. Tang, and S. Y. Shin. Scallop hull and

[WL85)

[WW86)]

[Yap87]

[Zhu92]

[Zbu93)

its offset for a monotone chain in linear time. manuscript, Department of
Industrial and Operations Engineering, University of Michigan, 1993.

D. Willard and G. Lueker. Adding range restriction capability to dynamic
data structures. J. ACM, 32:597-617, 1985.

W.P. Wang and K.K. Wang. Geometric modeling for swept volume of
moving solids. JEEE Computer Graphics and Applications, 6(12):8-17,
1986.

C. K. Yap. An O(nlogn) algorithm for the Voronoi diagram of a set of
simple curve segments. Disc. Comput. Geom., 2:365-393, 1987.

B. Zhu. Improved algorithms for computing the shortest watchtower of
polyhedral terrains. In Proc. {th Cenadian CG Conf., pages 286-291,
1992,

B. Zhu. Computing the shortest watchtower of a polyhedral terrain in
O(nlogn) time. Computational Geometry: Theory and Applications (sub-
mitted), 1993. | -

120

