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Abstract

In this thesis, the problem of attitude dvnamics anc maneuvering of flexible, multibody
space systems is studied. A formulation for deriving the equations of motion of these svstems,
based on Kane's method. is presented. In this formulation the concepts of constrained motion

and the effect of nonlinear coupling between rigid-body motion and the elastic vibrations are

examined in depth.

Dynamics of constrained systems is studied with the main objective of deriving the
complete, minimum-dimension set of equations of motion. A class of constraints is identified
whose associated constraint forces, unknown quantities, remain in the minimum-order set of
equations obtained by conventional methods. In this case, the minimum-order set of equations
is incomplete, i.e., these equations have more unknowns than the number of equations, and can
not be solved. A novel method, based on Kane's equations, is presented which is capable of
generating the complete, minimum-order set of equations even for this class of constrained
motion. As a spin-off, the formulation sheds some light on aspects such as adequacy and

redundancy of constraint forces,

The effect of rigid-body motion on the dynamic behavior of flexible systems, known as
dynamic or geometric stiffening effect, is examined m detail. An analytical develop_ment based
on Kane's method is presented which shows that, in general, the equa:tions of f;“loﬁon of a
flexible system which undergoes rigid body motion might have some terms missing if the
elastic motions are expressed as linear combinations of the generahzed coordmates The
analysis precisely identifies which terms will be missed in a general \case It speclﬁcally shows
that if the rigid-body mouon is not prescribed, certain blocks of the\ generahzed mass matrix

might also miss some terms. Finally, 2 novel method based on nonlmear stram-dlsplacement
: ! '

I



relations 1s presented which can be used either to derive the correct equations directly, or to find
the correction terms for an incorrect set of equations developed using conventional methods.
The method is geometry-independent and can be used for different elastic elements such as

beams, piates and shells.

Taking advantage of the above mentioned developments, a formulation is developed and
implemented in a symbolic computer code, FLXSDM, for deriving the analytical form of the
cquations of motion. The code can handle constrained systems which are congregations of rigid
bodies, beams, and plates connected through arbitrary joints, even flexible joints, Defining in-
termediate parameters to minimize the length of the equations, the code has been successful in
simulating complex systems even on PC computers. The features such as easy incorporation of
actuators, even along elastic members, and analytical linearization in the presence of
intermediate parameters makes the code a powerful tool in control synthesis of complex

systems.

Application of artificial constrained motion to devise open-loop control laws for tracking
problems is proposed. Using this approach, to track the desired output trajectory, the states of
the system do not have to track prescribed trajectories. Interesting applications of this method in

semi-manual control of manipulators and in fine tracking of flexible manipulators are presented,

A perturbation technique in conjunction with a phase-plane based optimal control
analysis is proposed for near-minimum-time maneuvering of flexible multibody systems
mo_ving along a prescribed trajectory. The idea is successfully employed to devise a control law
for a typical retrieval maneuver performed by a Shuttle-based three link, flexible manipulator.

e
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Résumé

Cette thése étudie le probleme de la manoeuvrabilité et du contrdle des manipulateurs
spaciaux. La formulation utilisée pour obtenir les équations de mouvement de ces systémes est
basée sur la méthode de Kane. Avec cette formulation, les concepts de mouvement contraint
“constrained motion” et 'effet d’'accouplement entre le mouvement de corps rigide “rigid body

motion™ et les vibrations élastiques sont examinés en profondeur.

La dynamique de systémes contraints est étudiée avec pour objectif principal de
minimiser la dimension du systéme d'équations de motion. Une classe de contraintes pour
laquelle le systéme d'équations posséde plus de forces contraignantes que d'équations est
identifiée. Pour cette classe de systémes, les équations posséde plus d'inconnus que d'équations
et ne peuvent donc étre ~$solues. La methode présentée est basée sur la dynamique de Kane et
peut générer un systéme d'équations d'un ordre minimum méme pour cette classe de systéme.
De plus, cette formulation apporte des éclaircissements sur certains aspects tel que la

pertinence et [a redondance de contraintes,

Les effets de déplacements de corps sur la réponse dynamique d'un systéme flexible,
aussi connu-sous raidissement dynamigy e “dynamic stiffening”, sont examinés en detail, Le
développement analytique présenté démontre que; généralement, les équations de motion d'un

-systéeme flexible qui exécute une manoeuvre rigide peuvent perdre certains termes si la motion
flexible est exprimé sous forme d'une combinaison linéairé éles coordonnés généralisées.
L'analyse identifie avec précision quels termes sont susceptible de disparaitre. Elle démontre
que si la motion rigide n'&st: pas prescrite,-certaines blocs de la matrice de mass généralisée
peuvent aussi manquer certain termes. De plus, une nouvelle tﬁeﬂ)ode basée sur une relation

non-linéaire entre les deformations et les déplacements, permet de soit dériver correctement les



¢quations de motion ou d'établir des corrections pour des systémes d'équations incorrectes
tasés sur des methodes conventionnelles. Cette methode est indépendante de la géométrie et

peut étre utilisée pour différents primitifs tel que plaques, poutres et autres.

Un programme symbolic, FLXSIM, utilise les développements mentionés ci-haut et
dénve analytiquement les équations de motion. Le programme supporte des systémes
contraints qui sont composés de primitifs, poutres et de plaques connectés par des joints
arbitraires. Le programme a été utilisé avec succes pour la simulation de systémes complexes
sur un ordinateur personnel (PC). La facilité d'implémentation de servomoteur (méme au long
du membre flexible) et la linéanisation analytique en présence de parameétres intermédiaires font

de ce programme un outil puissant en matiére de synthése de controle de systémes complexes.

Une application artificielle de contrainte est proposée pour la conception de boucle Je
contrdle “feed forward” de trajectoire. En utilisant cette approche, les variables du systéme
n'ont pas besoin de suivre une trajectoire prescrite. Des applications intéressentes de cette
méthode en contrdle semi-manuelle de manipulateur et en manipulation précise de

manipulateur flexible sont présentées.

Une technique de perturbation en conjonction avec une analyse du plan de phase optimal
est proposé pour manoeuvrer des systémes flexibles sur une trajectoire prescrite en un temps
presque minimum “near-minimum-time”. Cette technique a été utiliséc avec succés pour

déterminer une fonction de contrdle pour des manoeuvres typiques de récupération par un

manipulateur (trois membres) de l2 navette spaciale.
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Claim of Originality

To the best of the author's knowledge, the following developments presented in this

thesis are original and have not been presented elsewhere.

e Development of a new method based on the introduction of modified nonholonomic
partial velocities for deriving the complete minimum-order set of equations for systems

with artificial and/or natural constraints.

« Development of some analytical measures for testing the adequacy and redundancy of

constraint forces.

« Development of a formulation which precisely identifies the terms which might be missed

from the equations of motion of elastic sysiems undergoing rigid-body motion.

 Development of a geometry-independent method —applicable to any type of elastic media-
for calculation of second-order terms of elastic displacements based on the nonlinear
strain-displacement relations, and presentation of specialization of this method to Euler

beams and thin plates.

» Development of a versatile symbolic computer code (FLXSDM) for deriving dynamic
equations of motion of flexible multibody systems in open or closed kinematic chain
configuration. ‘

» Application of feedback linearizaticn technique to a system sul_:jecfed to sirﬁple
nonholonomic constraints,

» Development of a modified feedback linearization technique for handling under-actuated
systems.



« Proposttion of an approach for deriving an open-loop control law, based on artificially

constrained motion, fo: iracking maneuver of flexible systems.

» Proposition of an algorithm for near-minimum-time control of flexible multibody systems
with fairly general configuration along a prescribed trajectory, and application of the

method to the problem of retneval of a satellite by a spacecraft mounted flexible

manipulator in minimurm time,
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Chapter 1

Introduction

Increasing demand on precise orientation, and re-orientation, of sateliites has resulied in
an area of scientific endeavor referred to as attitude dynamics and maneuvering. The need for
attitude maneuvering of a spacecraft starts as soon as the spacecraft is inserted into the orbit,
and lasts until the end of the in-orbit mission. For example, a commumcation satellite must be
initially oriented toward a specific direction, once it is inserted into the orbit, and the same
orientation must be maintained as long as the satellite is functional. This means that a series of
attitude maneuvers must be performed regularly to compensate for the angular dnft due to the
environmental effects such as solar radiation torque, magnetic torque, and meteoroidal impact.
Other examples are the maneuvers involving retargeting an antenna or manipufating an object
with a spacecraft mounted manipulator, while keeping the rest of the system undisturbed.
These examples, showing the importance of attitude maneuvering in a space mission, imply
that the success of a space mission is very much dependent on a correct analysis and design of

attinide maneuvers,

In the early stage of space exploration, the space systems tended 0, be small,
mechanically simple and rigid. However, 2 modem spacecraft such as the Space Station Alpha,
shown in Figure 1.1, can be composed of several flexible and rigid components arranged in 2
tree topology with both closed and open chains. On the other hand; 2 modemn large space



RCS Boom

1. Introduction
Statlon Readlator

LA

Solar Panel

A
e 9
ZZWZE
&4 7
X a
= . -
2 \ SRy
- = ‘¢ .
- - ‘}ﬁ* ZH
2 E SR 9 -
?‘. Z ZZ Y RIS - _ "' | Moblle Servicing
ZZ ZZ d: B’ System
- - zZZ Z
3 9B N
= e Z
22w :
PV_Radiator|—_ " ?—%—.:‘-f. z
2
2 4__’.:'!_:
/l-.-'/'.é'p-p"’
e
W=~ —
M} z.
= “z
ZUZ Z
Z Z
Main Truss ZZ ?é
X5 A
ZZ Wz
ZZ W~
ZZ
.
zZ

Figure 1.1 A schematic diagram showing one of the possible configurations during the
evolution of Space Station Alpha (taken from Modi and Suleman {1991]).

system might be multitasking, i.e., it may perform several different activities simultaneously.
Any of these features (flexibility, presence of closed loop chains in the system configuration,

and capability for multitasking) can drastically increase the difficulty of the problem at hand.

The solution to a typical attitude maneuvering problem consists of two major parts as
follows: (1) To develop a mathematical model describing the motion of the system, i.e., the
equations of motion, provided that the orbital motion of the system is known and is not affected
by attitude dynamics. (2) To devise a control law so that certain objectives are satisfied during
the maneuver. The motion of the controlled system can then be simulated using the developed
equations of motion to verify the validity of the devised control law, Each of the two parts of the

solution has its associated difficulties which are steadily being increased by ambitious space
missions requiring more complex spacecraft.

L]
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1. Introduction

Since the equations of motion govemning the athtude dynamics of a multibody system are
usually lengthy and of highly nonlinear form, it is almost impossible to generate them for a
system possessing more than two bodies without simplifying assumptions or usage of
computers. This transforms the problem of obtaining the equations of motion to writing a

suitable formalism, an algorithm for generating the equations of motion using computers.

Most of the existing formalisms and their associated computer codes have been designed
to satisfy the needs for simulation purposes, i.e., to have a computationally better performance.
However, in addition to the performance, capability of proper linearization, easy incorporation
of actuators (discrete or distributed), especially in the case of flexible bodies, automatic
elimination of algebraic constraint equations, yielding a minimum dimension set of ordinary
differential equations, ODEs - not a hybrid set of ODEs and algebraic equations ~ as the
equations of monun, are some other crucial points to the versatility of a formalism developed

for control purposes.

Flexibility of the space systems is one of the important issues in spacecraft dynamics.
The necessity for considering the flexibility effect in the dynamic analysis was first realized
when the anomalous behavior of Explorer-I and Alouette-] was attributed to their flexible
appendages. Explorer-] was passively spin-stabilized about its minimum-moment of inertia
axis. The motion of a spacecraft spinning around its minimum-moment of inertia axis, which is
stable if the system is rigid, was later proved to be unstable for flexible systems. The instability
of Explorer-I was attributed to its flexible antennas. Alouette-], a satellite with a compact
central body and four long flexible antennas, was also destabilized due to the energy dissipation
associated with the structural motion of the appendages caused by solar heating.

An important issue in analyzing the flexible systems undergoing large rigid motion is the
effect caused by coupling of the elastic and rigid degrees of freedom (DOFs). Modeling 2
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system of this type while neglecung the effect of coupling may result in faulty equanons of

motion.

Constrained motion is another important issue in spacecraft dynamics, even if there is no
real closed kinematic loop in the system. As an example, the motion cf a free floating
spacecraft, under no extemal forces or moments except the gravity while neglecting the gravity
gradient effect, can be considered as a constrained motion with the simple non-holonomic
constraint of constant angular momentum and the holonomic constraint of prescribed orbital
motion for the entire system’s center of mass. In the case of spatial motion, for instance, either
of these constraints can reduce the degrees of freedom of the system by three, which may make

the analysis of the system a lot easter.

Apart from the aﬁove mentioned constraints and those associated with closed kinematic
chains, constrained motion ¢an be encountered when the motion of some of the DOFs of the
system are prescribed through the appropriate application of actuator forces — not through the
interaction with the prescribed surrounding environment. This type of constraints, which can be
called arrificial constraints, are likely to be encountered in space robotics where a manipulator
may be employed to imitate the motion of a certain mechanism. Figure 1.2 shows a typical
problem in Twhich the manipulator may be required to move the point O along the local
horizontal to ensure the librational stability of a tethered satellite system (TSS). In this case, the
system has three DOFs and one artificial constraint, as opposed to four DOFs for the

unconstrained motion.

s
=

Clearly if one can generate the equations of motion of avconstra.ined system as a set of
explicit ODEs, not differential and algebraic equations (DAEs), it can save a lot of efforts in
control analysis and simulation; moreover, it ensures that the motion would follow the

prescribed pattem.
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Figure 1.2 The general configuration of a TSS being controlled using a manipulator,

Once the equations of motion are generated, a control law can be devised based on the
objective of the maneuver. Different methods and algorithms of control might be used,
depending on the maneuver and the objectives, to accomplish the task. For example, the
stationkeeping maneuver of a satellite can be performed by utilizing a control law obtained
from linear control methods. In this case, the controller can be designed based on LQR method
1o optimize some cost function, like the consumed energy, or it can be simply a PD controller
which is clearly easier to implement practically. Another example is the docking maneuver
which can be accomplished using a controller designed using the feedback linearization
technique, a nonlinear controller, or one based on the LQR method with time dependent gains.
The same task can be done, while optimizing a cost function such as maneuvering time, using

the nonlinear optimal control methods.

Optimal solutions, which are usually too difficult to implement in practice, are of
academic interest. In reality, they provide the lower/upper limits for a specific maneuver and

give a measure to define the performance of a practical solution.
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In spite of the considerable amount of research done, the problems of dynamic stiffening
effect and constrained motion, which are vital in analysis of spacecraft attitude dynamics, have
not been solved completely. These problems are tackled in this thesis. In addition, development
of a formalism, and a computer code based on that, capable of generating the equations of
motion analytically and in a form suitable for control purposas is also attempted. Finally, this
thesis aims at applying existing algorithms of control such as feedback linearization technique,
and nonlinear optimal control, perhaps with some improvements, to maneuver and control of

complex space systems,

1.1 Literature Review

Due to the fact that the analysis and design of space systems have to be very precise,
research on many relevant subjects has been pioneered, or at least elaborated, by researchers
working on problems related to space. This is true for dynamics and maneuvering of spacecraft
t00. Nevertheless, these subjects have also been studied by researchers with other interests. For
instance, the research on multibody dynamics in a modemn context was first initiated by
researchers working on spacecraft dynamics; however, the same subject has also been studied

by other researchers working in other areas such as robotics and mechanisms.

To obtain a better perspective of the previous reseasch works, the literature review has
been categonzed under four topics as follows:
(1) multibody dynamics;
(2) dynamic stiffening effect;
(3) constrained motion;

(4) minimum-time maneuvering and control.



1. Introduction

Although this 1s not the way the story was unfolded chronologically. we have chosen this path
to share the benefits of research work done by people in other disciplines. We believe that this

will provide a better means to spot the difficulties and unresolved problems.

1.1.1 Multibody dynamics

The last three decades have witnessed considerable efforts towards formulation of
dynamical equations of multibody systems, conducted by investigators in three different fields:
spacecraft dynamics, robotics, and mechanisms. The multibody dynamics in 2 modern context
was first studied by Hooker and Margulies [1965]. In this study, they considered a system of
interconnected rigid bodies in a tree configuration. On the other hand, the very fundamental
contributions to this field can be attributed to Likins {1966, 1974], Meirovitch [1966, 1970,
1973), and Hughes [1970, 1972]. Likins, with his comprehensive papers, provided a good
physical insight to the o;o‘além and inspired extensive research activities. Precise modeling and
elegant mathematical analyseis were carried out by Meirovitch. Besides presenting generalized
formulation procedures, Hughes performed extensive work on analysis and control of space
systems. These studies provided a strong background to the subject of the effect of flexibility

on attitude dynamics.

While most of the above-mentioned works_were directed towards spacecraft dynamics,
research on multibody dynamics with applications in mechanism dynamics and, particularly,
manipulators dynamics was also undertaken, Uicker [1965] derived the equations of motion of
closed-loop linkages. His work was later modified by Kahan [1969] to include open-loop
mechanisms, In the seventies, researchers were trying to use the dynamical models of
manipulators in their control analysis. The works of Paul [1972], Bejczy [1974], Raibert

- [1977), and Hom [1978] can be mentioned as some examples in which they emplog%‘u«liﬁ'ermt

simplified mathematical models in the control analysis. The models were simplified to
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overcome the computational difficulties due to complicated equations of motion of the

manipulators, which at that ume was a bottleneck to the problem.

In the early stages, researchers were more concemed with developing the theoretical
foundation of the problem. However, in recent vears, the research is conducted more and more
towards developing formalisms, i.e., algorithms suitable for automatic generation of equations
of motion using computers, and improving their performance. Some of these works are
concerned with more specific problems, e.g., tethered satellite systems and ground-based
robots. while some others have tried 1o produce formalisms with a broader area of application.
However, none of the formalisms can claim to be equally suitable for different areas of interest.

nor are they equally well designed for both control and simulation purposes.

There is a vast body of literature on multibody dynamics. To avoid diverting from our
objective, we focus our attention on general purpose formalism and refer the interested reader

to the comprehensive reviews of multibody dynamics by Modi [1974], and Likins [1988].

MBDY, developed by Flisher and Likins [1974] based on Hooker-Margulies
formulation, was one of the first computer codes for simulating multibody dynamics. Frisch
[1975] developed NBOD?2 to generate and solve the equations of motion of N coupled flexible
bodies and point masses. Bodley et al.[1978] produced a computer code called DISCOS which
was capable of incomporating control in the simulation of the dynamics of structures.
TREETOPS was another computer code which was developed by Singh et al.[1985] to
simulate the dynamics of flexible multibody systems. Unlike most of the previousty-mentioned
computer codes, e&msive cqg'ltrol simulation capabilities were built into the TREETOPS
program. Cyril et al.[1991]:\6i~\e§eloped a computer code, FLEXLINK, for serial manipulators
with flexible links, In all these codes the formatism is implemented numerically.

Another branch of multibody computer codes evolved as a result of the developme;lt of
symbolic computer languages such as MATHEMATICA and MAPLE. Several symbolic
8
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computer codes were developed for multi-rigid-body svstems, such as NEWEUL by Schichlen
and Kreuzer {1977}, MESA VERDE by Winenburg and Wolz [1985]. SDENACT by
Rosenthal and Sherman [1986]. AUTOLEV by Schaechter and Levinson [1988], and
AUTOSIM by Savers [1991]. These codes are capable of analvticallv generating the explicit
form of the equations of motion. However, the advantage of having analviical, explicit form of
equations comes with the difficulty of increasing the length of the equations as the number of
the bodies in the system grows. This difficulty. which becomes drastically worse for systems

with flexible members, can be identified as the bottleneck for using symbolic multibody codes.

Symbolic multi-rigid-body computer codes such as SD/EXACT and AUTOSIM, despite
their fair capabilities, are not suitable for today's space systems due to the inherent flexibility of
light weight space structures, Most of the multi-flexible-body formalisms, on the other hand,
are implemented numerically which makes it necessary to pre-define the system configuration,
i.e., the kind of joints and links, the position of the actuators, etc. Simpler definitions result in
better performance of the formalism, but restrict it in scope, while defining more complete
systems results in weaker performance. Moreover, completely numerical implementation is not
suitable for control purposes, for numerical linearization is difficult to perform and the
implementation of arbitrary placement of actuators becomes very difficult, if not imposstble.

Also, incorporation of different control schemes becomes a difficult task.

1.1.2 Dynamic stiffening effect

Study of the behavior of flexible bodies attached to 2 moving support has been
vigorously pursued for almost fifty years in connection with 2 number of diverse discipliqw
such as machine design, helicopter dynamics, robotics, and spacecraft dynamics. The problem
can be stated as the disagreement between the results predicted by conventional modeling
methods and the experimental results. The _researchers have tried to find a method to make

appropriate corrections to the equations of motion of such systems to obtain correct results. The
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scope of the published studies on this subject varies from the simple case of vibration of
rotating bars with constant angular velocity to very complicated problems of the motion of

flexible spacecraft antennas with arbitrary base motion.

Meirovitch [1967], in his monograph, discussed the problem of transverse vibration of a
rotating bar with prescribed angular velocity, as well as transverse vibration of a bar under axial
forces. Vigneron [1970] also studied the effect of dynamic stiffening in multibody dynamics.
He studied the dynamics of a spinning satellite with crossed-dipole configuration. Likins [1974]
who probably coined the words “‘geometric stiffening” of rotating beams, carried out an

illuminating study on this subject by considering the problem of rotating elastic appendages.

Hoa [1979] investigated the vibrational frequencies of a rotating beam with a tip mass.
The effects of the root offset and the setting angle (the angle between the spin axis and the
beam axis) were also considered. The papers by Peters and Hodges [1980] and Kammer and
Schiack [1986] have considered planar vibration of a rotating beam and determined the critical
spin rate for buckling. Fox and Burdess [1978], in a similar study, calculated the limits on the

natural frequencies of a rotating beam.

The problem of an elastic beam undergoing arbitrary base motion was studied by Kane et
al. [1987). They proposed to retain the second order terms, in terms of elastic generalized
coordinates, in the expression for the axial elastic displacement of the beam. In spite of
reasonable results obtained, their approach suffers from a confusion in using the deformed and
undeformed-configuration coordinates. In developing the equation govemning the coupling of
the elastic deflections, from which the second order terms are extracted, they assumed that the
transverse deflections are functions of deformed-configuration coordinates. However, the
transverse elastic deflections supplied to this equation, as well as the rest of calculations, were
expressed Iin terms of undeformed coordinates. This inconsistency violates the above-mentioned
crucial equation from which the exprassion for the second-order longitudinal elastic deflection

10
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was calculated. The same deficiency remained tn the study of plates undergoing large overail
motion carred out by Banerjee and Kane [1989). This drawback has been clearly pointed out
and discussed by Hanagud and Sarkar [1989] who, instead. used a fourth order expression tor

the elastic strain energy to compensate for the missing terms tn the equations of motion.

Ider and Amirouche [1989] investigated the effect of geometric stiffening on the
dvnamics of multtbody elastic systems. They chose to use a third-order expression for the

elastic strain energy to accommodate the dynamic stiffening effect.

Most of the work done in this area suffers from the drawback of direct use of geometry
in establishing the relations govemning the interaction of the elastic deflections, trrespective of
whether these relations are used later in calculation of nonlinear velocities or nonlinear strain
energy. The direct use of geometry, which is a case-dependent approach, has been a major
obstacle in developing general methods capable of handling more complicated elastic elements

such as plates and shells.

As an attempt to circumvent this obstacle, Banerjee and Dikens [1990]. in a fairly
complete study, considered the problem of a general elastic body undergoing arbitrary base
motion. They proposed a method based on compensating for the missing terms by means of a
geometric stiffness matrix. The matrix must be generated using a finite element approach and
defining the zero-order inertia forces as an external force field acting on the elastic body.
Although the study is a significant advancemeni, it is difficult to use the method for complex
multibody systems, for which the definition of the generalized coordinates and generalized
speeds associated with base motion are different from those used in their paper.

A better idea was proposed by Padilla and von Flotow [1992]. Attributing the missing
terms to premature linearization (lineanzation prior to the calculation of velocities), they
suggested the use of nonlinear strain-displacement relations to prevent loss of any terms in the

equations of motion. Their study, however, fell short of developing a general formulation

11
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applicable to different elastic media. They confined their study to the beams and for more
complicated cases suguested the use of ruthlessly linearized 2quations. equations in which all
nonhnear terms involving the elastic deflections and their ume rate of change are ignored.

instead of using improperly linearized equanons.

1.1.3 Constrained motion

In the past decade there has been a growing interest in modeling and simulartion of large
mechanical systems with constrained motion and closed kinematic loops. This has been
motivated by applications in diverse areas such as astrodynamics. robotics, mechanisms, and

biosystems.

The method of using Lagrange's multipliers 10 generate the equations governing the
motion of a constrained system is well known — see Goldstein [1950] for example. However,
this method has the disadvantage of producing 2 hybrid set of differential and algebraic
equations (DAEs). which may not be convenient in many cases. Moreover, for a system with P
independent constraints, this hybrid set of equations has 2P additional equations (and
unknowns) compared to the minimum number of equations which are conceptually sufficient to
describe the motion of the system. Hence, a considerable amount of effort has been devoted to
find methods to eliminate the unwanted variables and reduce the order of the equations of
motion to its minimum, which at the same time reduces the hybnd set of DAEs to a set of

ODEs. o

Within the past few decades, several related methods have been proposed that first derive
the hybrid set of equations and subsequently reduce the system, by means of a matrix
transformation, to the minimal order form. In a procedure developed by Uicker [1969], the
dependent variables are calculated from the algebraic constraint equations numerically. The
independent coordinates are integrated then using these initial values. The necessity for proper
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choice of the independent coordinates and the high cost of iterations for calculation of the
dependent coordinates are some of the drawbacks of this method. Wehage and Haug [1982]
suggested 2 method which uses a Lagrangian approach and Gaussian elimination 1o identify the
independent generalized coordinates. Nikravesh and Haug [1983] used Gausstan elimination
with full pivoting to accomplish the same task. Their work was modified by Mani {1984] who
employed singular value decomposition to identify the independent generalized coordinates.
This technique showed better stability characteristics. His work was further improved by Kim
and Vanderploeg [1986] on the numencal efficiency by introducing “null-space updating”

based on OR decomposition.

As opposed to these Lagrangian-based methods, another set of algorithms have been
developed based on Kane's method. Kane [1961] presented an elegant approach which can be
used to directly generate the minimal set of equations. This method will be discussed in detail
in the fourth chapter. The drawback of this method can be identified as the lack of a constraint
force evaluation approach as systematic as the Lagrangian multiplier method and the necessity

for predetermining the independent generalized speeds.

A senies of research works were conducted to modify Kane's approach to determine the
independent coordinates of a constrained system automatically. Kamman and Huston [1984]
introduced the zero-eigenvalue technique, which was based on a matrix theorem given by
Walton and Steeves [1969], to calculate the orthogonal complement of the constraint Jacobian
matrix. This orthogonal complement matrix is used then to identify the independent coordinates
as well as to reduce the equations of motion to its minimal form. Singh and Likins [1985] used
singular-value decomposition to do the same task. Angeles and Lee [1988] used the method of
natural orthogonal comp]ement 1o eliminate the Lagrange multipliers. To improve ﬂae numerical
efficiency, Amirouche et al. [1988] used a pseudo-upper-triangular deoompésition of the
constraint matrix based on successive multiplication of Householder transformations to

compute the orthogonal complement matrix. Ider and Amirouche [1988] presented a similar

13
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method based on equivalence transformation of the constraint matrix to an upper-triangular

form. The transformation matrix was generated by simple Gaussian elimination technique.

All of the above methods presume the constraints to be implemented naturally. While the
methods for generating the equations of motion of naturally constrained systems is rather well
developed, no method is available to derive the equations of motion of artificially constrained

systems (as defined in Section 3.4).

1.1.4 Minimum-time control

Rapid maneuvering has long been part of many space missions. For an actual system,
with actuator saturation limit, the time elapsed to accomplish a certain motion cannot be shorter
than a certain value. The time-optimal-maneuvering problem deals with finding the time-history
of the control inputs, actuator torques, which can accomplish the desired motion in the shortest

interval of time.

This optimization problem can be formulated using Pontryagin's minimum principle (see
Kirk [1970]) with the final time as the objective function, the function to be minimized. The
problem has no closed-form solution except in the simplest cases such as a single DOF system
with a single controller. Moreover, the problem for complicated nonlinear systems yields
acceptable results, even to numerical approaches, only when certsin simplifying restrictions are
applied. Taking the effect of flexibility into account increases the complexity of the problem by
increasing both the DOFs of the system and introducing the necessity for suppressing the

elastic motions.

Many researchers have devoted their efforts towards developing numerical methods to
solve the two-point boundary-value problem (TPBVP) arising from Pointryagin's minimum
principle. Most of these methods are the shooting methods, based on iteration, to find correct

initial conditions for the costates of the system, =

SN

14
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Robert et al. [1969] introduced a perturbanon technique to solve the nonlinear TPBVP
The method is based on making the svstem increasingly nonlinear through a sequence of hinear
problems. while using the solution to each step as the forcing function for the next order of
equations. In a similar approach, Subrahmanyam [1986] uses Newton's method 1o make
successive approximatons by lineanzing the system through a discretization procedure. Miele
and Iyer [1970]. using the method of particular solution tried to approximate the “true™ set of’
titial conditions by 2 linear combination of a set of ininial conditions used in the previous steps
to determtine the independent solutions. Quasilinearization is another technique which is used
by several researchers when addressing the problem of nonlinear TPBVP. Yeo et al. [1974]
introduced a method for choosing the initial multipliers for quasilinearization in an optimal way
to achieve the fastest convergence as well as an accurate solution. Li and Bainum [1990]
employed the quastlinearization techmque to minimize a blended-function of time and energy
while shortening the final time successively to arrive at the minimum time solution. Bainum et
al. used the results of this method as the initial guess for a multiple shooting method to arrive at
a more accurate solution to the minimum time problem of multi-axis maneuvering of a fiexible
spacecraft [1992].Unlike the previously mentioned methods, which need a relatively pood
initial guess to converge, the direct methods such as the steepest descent method employed by
Storm [1973] lead to very fast convergence within a few steps. However, the convergence rate
decays as the desired accuracy increases. The steepest decent algorithm was recently modiﬁed.
by Meier and Bryson [1990] to develop the switch time optimization (STQ) method. The
method assumes that the controls are saturated during the maneuver and takes the number of

switches as the input to solve for the switch times.

Another method which seems to be promising in solving optimal control problems is the
method of collocation and nonlinear programming. Collocation was developed by Dikmanns
and Well [1975) and combined with nonlinear programming by Wm and Paris [1987).
The method, which was recently employed by Scrivener a.ﬁd Thompson [1993] to find the time-

15
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opumal attitude maneuver of a nuid spacecraft, has the advantage of converging within the

desired accuracy in a reasonable amount of time, even with a relatively poor initial guess.

The problem of rest to rest maneuvering of rigid spacecraft has received considerable
attention in the past. In an early attempt. Karnton [1970] studied the minimum ume maneuver
of a ngid spacecraft, while assuming the angular velocity vector to remain fixed in the inernal
frame. In a simular way, D'Amano and Stubbs [1979] used Euler's theorem on rotation to
perform rapid reorientation of rigid spacecraft. This problem was also studied by several other
researchers. One may mention the works by Chen and Kane [1980]. Camngton and Junkins
[1986], Vadali and Junkins [1983,1984]. Wie and Barbara [1985]. and Vadali [1986] as typical
examples. For more detailed information, the interested reader is referred to the comprehensive

review on this subject by Singh et al. [1989] and Scrivener and Thompson [1992].

Flexible spacecraft slewing problems, like their rigid-body counterparts, have received
considerable attention. Most of the researchers in this area studied the problem of single-axis

maneuvering of a rigid hub with flexible appendages.

Dods and Williamson [1984] studied the problem of single-axis maneuvering of a
flexible, single-controller spacecraft. They came up with an algorithm suitable for systems with
a low fundamental frequency. Ben-Asher and Bums [1987] presented a solution to 2 nonlinear
optimization problem based on the solution to the linearized problem as an initial guess. It was
found that the minimum times for both linear and nonlinear systems were similar, but
symmetry of switching times was destroyed in the nonlinear model. The same problem was
solved through phase-plane analysis by Barbieri and Oguner [1988].

=

Perturbation technique was used by Meirovitch and Quinn [1987], Meirovitch and ™=
Sharony [1990] and Meirovitch and Kwak [1990]. Using the pent;rbaﬁcn technique, they -
subdivided the equations of motion to two sets: (1) the zero-order set, 2 nonlinear set governing’
the rigid-body motion:; (2) the first-order set, a linear time-varying set associated with the
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elastic motion. The system was controlled by a combination of open-loop and closed-loop
control. The bang-bang input torque resulting from the time-opnmal solution of the zero-order
svstem was applied by the hub actuator as the open-loop control to produce the reference
motion. At the same time, the actuators located on the flexible appendages applied the mput

torques of the feedback control. calculated using state feedback approaches, 1o suppress the

elastic vibrations.

The protlem of nme-optimal, open-loop control of a single-axis maneuver of a rigid hub
with flexible appendages was also studied by Thompson et al. [1989]. To meet hardware
constraints in generating instantaneous switches and to avoid excitation of higher flexible
modes, they chose to avoid instantaneous switching by smoothing the bang-bang control
profile. In this approach. the ability to control the degree of sharpness of the switches, has
provided a good means to evaluate the tradeoffs with respect to maneuver ime and residual

energy.

This work was later on improved by Junkins et al. [1990]. They employed the
Lyapounov method to devise an asymptotically stable feedback control to suppress the elastic
vibrations. The input to the system, applied by a single actuator to the hub, was the sum of this
feedback and a reference smoothed-bang-bang controi, obtained based on the analysis
presented by Thompson et al.[1989). The method was subsequently validated by them
experimentally [1991]. This method was also applied by Bell and Junkins [1993] to solve the
minimum time and minimum fuel, three dimensional maneuvering of a flexible spacecraft with
geheral configuration, and by Hecht and Junkins [1992] to solve the time optimal problem of a
flexible two-link manipulator. In a recent work, Bang et al, [1993] took the near-minimum-time
maneuver resulting from smoothed input and optimized the control with respect to the
smoothing parameters .The resulting profile involves less smoothing, to achieve a short

maneuver, but the vibrational excitation is also reduced.
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Bainum and L1 [1991] emploved the method of quasilineanzation and particular solution
to address the problem of opumal large angle maneuvers of a flexible spacecraft. The same
method was also used by Tan et al. {1991] 1o solve the problem of minimum ume slewing of a
flexible shallow spherical shell system. They used the solution to the linearized problem as a

nominal solution for the nonlinear TPBVP.

In a recent paper. Li and Bainum [1993] presented an analytical solution to the minimum
time control of a fourth-order linear system near the origin. The system under consideration,
which has two real zeros and two imaginary eigenvalues, represents a flexible structure with

one rigid mode and one elastic mode.

Banerjee and Singhose [1994] studied the problem of slewing and vibration control of a
highly flexible structure. They used the innovative method of “preshaping input command”
presented by Singer and Seering [1990] to find the multi-switch bang-bang control law which
can accomplish a rest-to-rest maneuver in minimum time while suppressing the elastic vibration
at the same time. In addition to this open-loop control, they also presented the results of an

augmented closed-loop control.

The multi-dimensional optimal control problem has also been studied extensively by
researchers in the field of robotics. Although most of the algorithms developed by researchers
in this field are meant to be used for rigid, earth-bound robots, they can be commonly applied to
other multi-dimensional optimal control problems, The STO algorithm, developed by Meier
and Bryson [1990], is an example of the algorithms developed originally to solve time-optimal
control problem of a two-link manipulator that have found applications in other areas of

research.

. For the sake of brevity, only one algorithm which is of particular interest to this thesis is
discussed here and for more references, the-interested reader is refereed to the excellent

reviews on this subject by Shiller and Dubowsky [1989] and Wie et al. [1990]. Babrow et al.
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[1985] developed the above-mentioned algorithm for the special case of the ume-optmal
motion of a manipulator along a specified path. This method uses the phase-plane analvsis to
find the optimal velocity profile of the manmpulator along a wiven path subject to actuator
constraints. The method considers the full nonlinear dvnamics of the manipulator and pernuts
actuator constraints to be expressed as complex functions of the system states. The algorithm is
quite straight forward and computationally efficient in the case of single-switching maneuver,
However, in the case of multi-switching controls. which can occur frequently, an metlicient

shooting method was suggested for calculation of switching points.

This work was extended by Shiller [1984] to include the constraint of maximum speeds
that a manipulator can sustain without losing its grasp of the payload. Shiller and Dubowsky

[1989] extended the method further to find the optimal path itself.

1.2 Motivation and Objectives

The prnimary objective of this work is to study different aspects of the dynamics of
flexible, multibody space-structures during rapid maneuvering and to produce a computer code
which can correctly develop the equations of motion of such systems in a form suitable for

control analysis.

Constrained motion is the first concept which is discussed in this thesis. While nanerally
constrained motion has gained considerable attention in the past, artificially constrained motion
has almost been untouched. In fact, almost no attention has been paid to the merhod of
implementation of constraint forces which is the main point of difference between natural and
artificial constraints. One of the specific objectives of this study is to develop a method which
can uniquely generate the minimum dimension set of equations of motion for systems subject to

artificial and/or natural constraints.
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EfTect of rigid-body base motion on the dvnamic response of flexible systems is another
point of interest in this study. Although this has been studied by several researchers, there is
still & debate over what 1s the exact source of flaw in the equations (kinetic or strain energy). or
what remedy is the best. Above all, the lack of a general theory which can be applied 10 a
multibody system with different kinds of elastic members (beams. plates, and shells) 1s also

evident,

Having developed the above mecthods for handling constrained motion and flexible
systems undergoing rigid-body motion, development of a symbolic computer code armed with
these theories is attempted. The code should be capable of introducing some intermediate
parameters to keep the size of the equations of motion as small as possible, and carrying out
proper linearization of equations in the presence of intermediate parameters. It should also

facilitate easy incorporation of actuators in any arbitrary location, even on the elastic bodies.

The second objective of this work is to study some issues related to the control and
maneuvering of flexible multibody space systems. The application of constrained motion,
specially artificial constraints, in control of flexible multibody systems is studied. Although the
control of constrained systems has been studied in the past, the idea of using artiﬁcia]
constraints to devise control algorithms is new. Time-optimal motion of flexible, multibody

systems along a specified path is the last subject to be studied in this thesis.
1.3 Thesis Organization
The thesis can be divided into two parts. The first part, Chapters 2-5, analyses the

dynamics of the system and the relevant issues, while the second part, Chapters 6-8, deals with

control and simulation of the system.

In particular, Chapter 2 presents the overall structure and formulation of the equations

govemning constrained motion of a flexible multibody system. The dynamical model for a
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general member of the system is presented along with the specialization for ngid bodies,
Timoshenko beams. and plates. Lineanization of equations of motion in the presence of

intermediate parameters 1s also discussed in this chapter.

Chapter 3 is devoted to the study of constrained motion. Natural and antificial constraints
are first introduced and their difference is discussed. Conventional methods for generating the
equations of motior: of naturally constrained systems is presented briefly. Next, a method is
developed which can be employed to generate the minimum-order set of equations for systems
with artificial and/or natural constraints. This chapter ends with the discussion of some related

issues such as determination, adequacy and redundz.icy of constraint forces.

In Chapter 4, the kinematical equations of motion and the modified recursive method,
used to calculate angular velocities and partial velocities necessary in developing the equations
of motion, are presented. Most of the material covered in Chapters 2 and 4 are not new
developments and are presented briefly for the sake of completeness and continuity of the

discussion.

The effect of rigid-bo-dy base motion on dynamic response of elastic systems is studied in
Chapter 5. The discussion starts with a proof to show that incorrect kinetic energy (due to early
linearization of velocities) is the source of the error in the equations developed by using the
conventional methods of discretization. Different remedies for this problem are then examined
and compared. Finally, a general method for generating the correct equations of motion based
on the nonlinear strain-displacement relations is presented. Specialization of the mdhoi which
can be virtually applied to any elastic medium, are given for beams and plates. Several
examples are provided to illustrate some rather unusual phenomena in elastic bodies
undergoing large base motion (such as missing terms in the mass matrix or experiencing a

softening effect).
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The formalism developed in Chapters 2-5 is employed in Chapter 6 to solve three
problems. Capture of a spinning satellite by a flexible two-link manipulator s the first problem
studied. In the second problem, the feasibility of using a two-link space manipulator for
stabilizing tethered satellite systems is investigated. The last problem studied deals with the
retrieval of a large payload by a redundant space manipulator, which possesses seven revolute
joints; in this study the effects of flexibility of both the joints and links of the manipulator are

taken into account.

The idea of using constrained motion in control of multibody systems is presented in
Chapter 7 through presentation of some examples. It is shown that the method can find
interesting applications in semi-manual control of manipulators and in fine tracking of flexible

manipulators.

Chapter 8 presents an approach for near-minimum-time maneuvering of flexible
multibody systems moving along a prescribed trajectory. The idea is successfully employed to
perform a retrieval maneuver by a Shuttle-based three link, flexible manipulator.

Chapter 9 concludes this thesis by presenting some concluding remarks and suggestions

for future work.



Chapter 2
Dynamics

2.1 Introduction

As stated in Chapter 1. development of a computer code for generating the equations of
motion of a flexible multibody system is one of the objectives of this study. This chapter
presents the formulation, based on which the computer code (FLXSIM) is produced. Most of
the matenial presented in this chapter are not new developments and are presented briefly for
the sake of continuity and completeness. In this chapter, it is assumed that the system has no
closed kinematic loop or prescribed motion, i.e., the motion is unconstrained. The study of

constrained motion is left for Chapter 3.

The formulation is based on Kane's method and the equations of motion are found by
superposing the contribution of each body to the generalized mass and force matrices. Since
each body is being considered as a part of the whole system, not a separate body, and since the
formalism is based on an energy-based method, the non-working constraint forces (e.g., joint

forces) do not come into the picture.

Before starting the discussion, it is useful to define some of the conventions used in this
thesis. The right subscripts are numeric indices except for the index *t’, the right superscripts

refer to the points and bodies of interest, and the left superscripts stand for the reference
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frames; for example, * V7 is the velocity of point p in frame A. The left superscript is omitted
in the case of the inertia frame. The elements of a column are components of the corresponding
vector in the frame shown by the left superscript, except for the rotational quantities which are
the components of the vector in the frame shown by the right superscript. Thus, if @, and b,
denote unit vectors in frames A and B, respectively, then *r” =& - *F7 (the i-th component of
the position vector of point p in frame A, *F?, projected in frame A);, however,
“w" =b,- *®" (the i-th component of the projection of the relative angular velocity vector

A®® in frame B); similarly *a® = b, - *@®, and so on.

2.2 General Formulation

Consider a system S with N degrees of freedom which is a congregation of n rigid and
flexible bodies connected through a set of arbitrary joints (Figure 2.1). The system is driven by
4 inputs, i.e., actuator forces and torques, denoted by T = 7),...,7,,. The motion of the system

can be fully described in terms of 2N independent scalars as follows: q=¢,,...,qy, the

Figure 2.1 A multibody system.

generalized coordinates; and u =u,,...,u,, the generalized speeds. The generalized speeds are
defined as linear combinations of the time rates of the generalized coordinates:

N
u, =YY (a.04,+Z(q), r=L..N, ‘ (2.1)
o
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2 Dvnamies

such that Eq. (2.1) can be solved uniquely for ¢,.....q, .

Rane's equations of motion for the continuous svstem S, shown it Figure 2.1, can be

WTitten as

JV7R7dD- [V a7dm=0, r=l..N, (22)
o' m'

in which ', m® and a? are, respectively, the entire domain of S, the mass of S, and the accel-
eration of the element p : also, R? is the resultant contributing force acting on the element J/?

(see Kane and Levinson [1985]), while V[ is the r-th partial velocity of element p, defined as
VP =&Vi(qu.n)féu,, r=l..N. (2.3)

The acceleration of point p has the general form of

N
a® =3 VX(q.n)u, +al(qur), (2.4

s=1

in which a]. the remainder of acceleration of point p, denotes the portion of the acceleration
which is independent of time derivatives of the generalized speeds. Substituting Eq. (2.4), one

can rewrite Eq.(2.2) as:
M(q,7)a=rf(q.u.1,1), (2.5)

where M and f are the generalized mass and force matrices which can be written in the form

M= ZM’.
ot (2.6)
F=>1.
=l
Here the elements of M’ and f/ are givgn by
M= [V?-Vidm, rs=1..N, j=l..n, (2.7.2)
o
..frj =;:J - ler’.a{ d’"» r= 1!---9N ’ j= 1*""" (Z'Tb)
o
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A= [VERTD. r=l N =l (2.7.¢)

at

The main task of the formalism is to produce M’ and f’. which are the contributions of
individual members to the mass matrix and force column. Equations (2.7) are sufficient for the
caleulation of the above mentioned terms in the most general case which is an arbitrary elastic
body. In the calculation procedure, there are two main steps: (1) calculation of the kinematical
terms, V', af | as well as determination of the resultant contributing force R acting on the

element J, and (i1} integration over the domain of each body. necessary in Egs. (2.7).

The procedure for calculation of the kinematcal terms 1s given in Chapter 4: on the other
hand, the difficulty of evaluating volume integrals can be circumvented in special cases by
carrying out the closed form solution or at least by reducing the dimension of integration. What
follows in this section presents such simplifications for cases when the j-th body is either a rigid
body, a beam type member, or a plate. Nevertheless, the same simplifications can be performed

for other types of members such as shells,

2.2.1 Specialization for rigid bodies

Let the j-th member of the previously defined system S be a rigid body B, shown in
Figure 2.2. Defining a set of mutually perpendicular unit vectors b,,b,.b;, fixed in B with the
origin at its center of mass, b , one can express the partial velocity V? and the remainder of

acceleration a? in terms of centroidal quantities V., a2, 0%, a? and @ ® as follows:

.. Figure 2.2 Schematic of a rigid body B

-
N
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\"r’" = \': -s-C'q((Df SR LA y\':)_ r=1....\. 2%

o LY o T PR S R S I o 1 IR B S S P
al =a, +~Ca; ~r'+7aN+C (0" ~ v’ +2 7V, {29

In the above relations, C”. whose elements (], are given by i, b,. is the rotation matnx for
frame B relative to the inertial trame I winle " denotes the angular velocity of B in |
Furthermore, © 7 and a,'. respectively. can be written as the r~th partial angular velocity and

the remainder of angular acceleration of B in |,

mf =5m5(q.u,t)/6'u, r=l...N, (2.1
AY

o’ = o/(q.Ni, +al(q.u.). (2.1
ral

Thus e is the part of &” that does not depend on the time rate of the generalized speeds.
Substituring Eqs. (2.8-29) into Eqs{2.7), and noting that j..- pdm=0 and
J...- Br? x (0% x®r”)dm =10 ® (@® can be replaced with other quantities such as o and
) ). where I? is the centroidal inertia matrix of B corresponding to the axes aligned with the

unit vectors b, b..and b,, one obtains
M= V! - V' +0f (P 0B). rs=L...N, (2.12.2)

FE=Vi.R-mfa))+0! [T-IFa’ -0 x(IP0)]., r=1...N, (212b)

in which the torque T and the force R whose line of action passes through the point b, are the
equivalent set for all the contributing forces acting on B. We may recall that R stands for the

components of R in the inertial frame L, whereas, T contains the components of T in the body

frame B.

2.2.2 Specialization to Timoshenko beams

Suppose the j-th member of the system is a one dimensional elastic body (i.e., the
properties of the member are only functions of a single variable x); beams, bars, and strings are

examples of this kind of members. In this section, Eqs. (2.7) are simplified for a Timoshenko

27
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beam, the most comprehensive one dimensional elastic body. Table 2.1 gives the possible

simplifications from a Timoshenko beam to other one-dimenstonal elastic bodies.

Consider a Timoshenko beam (Figure 2.3) charactenized by a natural length L. matenal
properties [5(x) .(i{x). px), and cross sectional properties Afxj, Jfx). a.(x). a,(x) .x(x), and
["(x). The above properties are defined as follows. Let x be the distance from the root of the
beam, point o, to the centroid of a generic cross section of the beam, which in this analysis is
assumed to coincide with the center of twist, the flexure center and the elastic center: then £(x).
G{x), and pfx) represent the modulus of elasticity, the shear modulus and the mass per unit
length of the beam at x, respectively. The area of cross section, the Saint Venant torsion factor,
and the warping factor are denoted by 4,x and I' respectively. Hereafter the functional

representation “(x)" is omitted.
| N
B\
\@ Y

. ==

Figure 2.3 Schematic of a cantilever beam.

To define the quantities J, ., a,,we define a set of mutually perpendicular unit vectors
b,.b.,b,. fixed in the plane of the cross section at x with its origin, b, at the centroid and
oriented such that b, is along the elastic axis of the beam and b, , b, are located in the plane of
the cross section; then, J is the matrix of the second moment of area of the cross section
associated with axes along the unit vectors b,.b..b, and a. and @, are the shear area ratios
for l-): and 53 directions (see Kane et al. [1987]). To generate the contribution of this member
to M and f .we consider an element of the beam with a length of dx. This element, dB, can be
treated as an infinitesimal rigid body, so that using the comresponding expressions for rigid
bodies (Eqs.(2.12)), we may derive the expressions for dM and df, the contribution of the
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element to the svstem mass and force matrices. The centrondal inertia and mass ot the element,

needed in Eqs.(2.12), can be related to J and p as follows

I”:%Jd\- . omt = pde (2 13)

Substituting Eqs.(2.13) into Egs(2.12) and integranng over the length of the beam, one gets the

contribution of the entire beam to the total mass matrix and force column as:

L
AL =jp[\’f-\r’f’ﬁ-l_‘mf-(.lu),‘?)]cit. rs=ho N, (219

where F/ denotes the contribution of the j-th member to the generalized active force column
defined in Eq.(2.7.c). As opposed to the rigid bodies. calculation of #’ for clastic members
needs further elaboration. There are two sources of contributing forces in &7, the first is the
external contributing forces and the second is the internal ones, where external and intemai are

defined with respect to the entire beam, not the element dB. Thus we can write

L
A = [[VE- R +RY+0 (T +T)]dx, r=L...N, (2.16)
[}

where, R and T° are the density of the equivalent set of all contributing external forces and
moments acting on the element dB, while R’ and T' form the density of the equivalent set for

the internal ones. Hence, we may write
F=(FE) +(FY, r=1..,N. 217

The contribution of the internal forces and moments, ((%’)’, can be derived by utilizing the

strain energy function as follows:

(E'Y =-3U/dq,. r=1...N. 2.18)
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One should note that the elastic <rrain energy 1s a function of 2lastic generalized coordinates
only, so (5,7)" =0 for all non-elastic generalized coordinates. Equation (2 18} 1s based on the
assumpuion that the generalized speeds are defined such that ¢, =« for all ¢, belonging to the
elastic DOFs. A similar relation for the general definition of generalized speeds can be found tn

Kane and Levinson [1985].

The strain energy is a function of the deformation of the beam. To establish this function
we need to define the relative orientation and position of a generic element B in the frame A,
located at the root of the beam. The two frames, A and B. are parallel when the beam is
undeformed. In fact, frame A is undergoing the same rigid motion a< the beam. The element 4B
can be brought into a general onentation from the orentation of A by three successive rotations
of 6,.6,.0,. about b.b,,b,: furthermore, the element can be brought into a general position
from 1ts undeformed position by an elasnc displacement of wa, +w,a. +w;a,. Based on the

above definitions, the strain energy function is :

L -
U= HE A(c‘n(x r)) Ej“(cﬁ(x t)) EJ;,(cG 5 (x, t)) (59,(3:,:))' N
2 A & &

G A dwy(x. " GAf dny(x. : '
;—:—(Lgﬁ—&(x,t)) +i—3(ﬂgl—)+9:(x,f)) }ﬂ (219)

In the above relation, 77 denotes the displacament of the element along the axial direction of the
beam, as shown in an exaggerated fashion in Figure 2.4. Note that 7 is equal to w, only up to

the first order of the elastic generalized coordinates, but they are not equal if the second order

e —--wlL—

X
Figure 2.4 Displacement of the neutral axis.
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terms of the generalized coordinates are taken into account This will be discussed m more

detail in Chapter 3, where the dvnamic stiffening effect is addresse.d

There might be two kinds of external forces. namely distributed (e.g. gravitanonal), and
concentrated (e.g. actuators) forces and torques acting on the beam. In this case (5 )" can be
calculated as:

L W W
Fy = [[Ve R s0l T+ TV R Tl T r=lLlN, 220)

1] &l -l
in which, p* is the element of the beam on which the external print force/torque. R*/T, is
acting, and R* and T are the density of distributed external forces and moments per unit
length of the beam. Equation (2.20) makes the implementation of any type of external forces

easy.

So far, the relations governing the contribution of an elastic beam to the total mass and
force matrices are established, but these relations are in terms of the spatial coordinates of the
elements of the beam, w.0, which need an infinite number of generalized coordinates to be
described. Clearly it can not be 2 practical way, so one needs to discretize these quantities to
obtain some finite number of DOFs, The assumed modes method is used here to relate the

spatial coordinates to the generalized coordinates as:

Hi=vy

n(xvt) = Z¢h ql

impy -l
Hy*Vy

w (6= > @0.q, k=23 (2.21)
e gy~
Hiren*Vien

0, (x.0)= Z‘Pu-;); g9, k=123

gl

which represent linear combinations. of the elastic generalized coordinates, g,(f), and some
admissible functions, @, (x),which must satisfy at least the geometric boundary conditions. v,
are arbitrary numbers which signify the number of shape functions err;ployed. whereas g, and
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4, . denote the number of generalized coordinates previously defined. One should note that no

.t

special boundary condition has been assumed so far, and hence the same formulation can be

used for different types of boundary conditions.

The use of the assumed modes method or finite elements is equivalent to the assumption
of linearity for the clasric DOFs, for these methods are good only if the motion due to each
mode is not affected by the others. This can be true only if all elasric DOFs are small enough,
so that a set of ODEs linear in elastic DOFs and non-linear in rigid DOFs is the best we can get
from a discretized elastic system. However, to get a properly linearized set of equations, we

may start linearizing only afier the calculation of the partial velocities.

When discretization techniques are used by defining the elastic displacements w, . w,.w,
as linear combinations of the elastic generalized coordinates, the linearization has inevitably
started prematurely, prior to the calculation of the partial velocities. In the absence of a large
rigid motion, this yremature linearization would not cause any problem. But, for an elastic body
undergoing large rigid motions, premature linearization might result in the loss of some firs:-
order terms in the equations of motion. A detailed discussion of this subject can be found in
Chapter 5 of this thesis, where it is shown that in the case of beams, this problem can be
avoided by considering terms up to the second-order in the elastic generalized coordinates in

the expressions for w, as follows:

p—
&)
o
12

S

W, =17- j[(é’wg /é’«‘,‘)f +(ow, /ag)’]dg. .

Table 2.1 Possible simplifications from Timoshenko beam.

To Neglect Sat Euler String Bar
, _ Beam

Extension P=0.i=v,..v
Bending in a, dir. =0, i= vl L
Bending in a,dir. P 0. i = vkl : n
Torsion =0l imvllyg L

. Rotarylnetia =~ Ip=ly,=0 = n u
Shear Vo, = ifo, =0 L B .
Warping restraint r=o n | n
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2.2.3 Specialization to plates

The specialization for plates can be carrted out in a simular fashion as for beams.
Consider that the j-th member of the system I is a thin plate, shown in Figure 2.5, with the
thickness & which is much smaller than the other two dimensions of the plate (L, and L.). The
plate is characterized by its mass density per unit area p, modulus of elasticity £, and Poisson's
ratio v. In the following analysis, both mid-plane stretch and transverse vibration of the plate
are considered. Besides, the effect of rotary inertia is taken into account, however, the shear
deformation is ignored. To find the contribution of the plate in the equations of motion of the
system, i.e.,, M’ and f’, we consider an infinitesimal element of the plate (see Figure 2.5) with

the area of dix, d, and height of A.

W
3 A 3 Lg -
LI’/ . el bl il 4 xg.wz
»/. -,:":'/ dB 1
< A
2% W Ah

Figure 2.5 Schematic of a thin plate

To describe the motion of the plate we define two frames. The frame A is located at the
point of attachment of the plate to the lower body in the chain such that the unit vector &, is
normal to th mid-plane of the plate. Frame A follows the rigid-body motion of the plate. On
the other hand, the frame B is attached to the element dB with its origin at the centroid of the
element. This frame, which is parallel to the frame A when the plate is undeformed, follows all
motions of the element dB. The frame B can be brought into a general orientation from the
orientation of A by three successive rotations of 6,,8,,;, about b,,b,,b, respectively,
- furthermore, the element can be brought into a general position from its undeformed position by

an elastic displacement of w,@, +w,a, +w,a,.
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The infinitesimal element, /B, can be regarded as a ngid body with centroidal moment

of tmerta and mass defined as

1= P e de, | m® = o . (2.23)
],, 1 2 1 -
where
1 00
K=|0 1 0. (2.24)
000

Substituting Eqs.(2.23) into Eqs.(2.12) and integrating over the area of the plate. one gets the
contribution of the entire plate to the total mass matrix and force column as:

L L
M’ = J.p[Vf-Vf-bf—_,mf-(Km:)]cbc:dq, rs=1L..N, (2.25)

L
0o

L L
1 =_F:-’—J.J.p V:’-af+%mf-[l(uf+n)3x(KmB)]]dx:ck,, r=1....N. (2.26)
o0 -

In the above equations, 5’ denotes contribution of the j-th member to the generalized active
force column defined in Eq.(2.7.c). This term, using the same. methodology presented for

beams, can be calculated as

Ll ’ r
7 ==cUfey,+ | [[Vt R*+0! Tdedn + TV R+ Tl T,
00

ku] k=l

rel.N, @2

in which, p* is the element of the plate on which the external point force/torque, R*/T*, is
acting, and R? and T are the density of distributed external forces and moments per unit area

of the plate. The strain energy of the piate, denoted in Eq.(2.27) by U, is given by
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t= IJ.{#T[“:A ":'“'::.: L l;l.("':_.‘ - “':.:):]‘

'
En . . .
——-—,—-[u'._'_“ =wla+ 2w w21 ")"';x-] vy, (2.28)
12(1- %) - | S I
where
Ew o
W o= ) " = ) (2.29)
[N - ¢ - -
cx, cx. fx,

The spatial coordinates of the plate can be related to the elastic generalized coordinates
using assumed modes method as:
Hy * ¥y
w, (x.1)= Zgoh q,. k=123,

de.-l 92
Baen*Vitey (-"‘0)

63: (x,t) = Zq)(ko!)l ql‘ k = 1'2‘3 A

1=t |

in which v, are arbitrary numbers which signify the number of shape functions employed.
whereas, u, denotes the number of generalized coordinates previously defined. It is shown in
Chapter 5 that to obtain correct results for a plate undergoing large rigid-body motion, this
linear relations must be corrected to include second order terms of the elastic generalized

coordinates.

2.3 Linearization

The equanons of motion can be lineanzed after obtaining them, or by starting
linearization only after calculating the partial velocities based on :nonlinear expressions for
velocities. Any attempt to start the linearization prior to this stage would lead to a premature

linearization, which may result in the loss of some linear terms in the equations of motion.

Here, the linearization is carmied out analytically after obtaining the nonlinear form of the
equaﬁons of motion. This has the advantage of obtaining both nonlinear and tinear forms of thg

~ equations of motion; moreover, the difficulty of extending the formalism to make it capable of
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direct generanon of the linear form of the equanons is removed. This way, the burden of
lineanzaton is left to the computer, and it is done using the symbolic computer language.

MAPLE-V

The non-linear equations of motion, however, are often very lengthy. which makes either
the introduction of some intermediate parameters necessary or the use of symbolic language
impractical. The code developed here is capable of analytical lineanzation of the equatons
generated in terms of intermediate parameters using the chain rule for differentiation. This
mzkes the use of the code for generating linear and non-linear equations of motion of large

systems practical.

To discuss the method of lineanization, a few words about the intermediate parameters
are necessary. The general form cf the equations of motion, with intermediate parameters, can

be written as

M(q.z.r)u=f(q,u.2,7.7). (2.31)
in which z is the vector of intermediate parameters. The intermediate parameters are collected
in a \-}ay such that the i-th intermediate parameter is a function of the first (i-1) intermediate

parameters, the generalized coordinates, the generalized speeds, and the inputs of the system as

follows:
z, =5,(50 002 U T (2.32)
The linearized form of the equations of motion can then be written as:
M =(f, - (V8),]q+, 5+, T+(T, - (Va), . (233)
In the above relation, ,W. and ¥ are the trim condition or nominal values of the generalized

" coordinates, the generalized speeds, and time-rate of the generalizedlspeeds. Similarly, M

denotes the value of the mass matrix evaluated at the trim condition, i.e, M = M(q,Z,?). On
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the other hand, q.6.u, T, and Z represent the small deviations of the corresponding vanables

from their tim-condition values. The other terms appearing in Eq.(2.33} can be defined as

fq:qi ru=-. ra=-" f\:(;rl
(‘ |-|.u.lt (‘u g.u.L.1 (‘ 1!.'“!‘ o |q,lll‘
(2.34)
—_ (M u — Ma
(), = SO0 G, = SO
£q ‘ éz
q.2.u q.1.u

where Z is the value of z evaluated at the trim condition,

To complete the linearization procedure. Z and Z must be computed. Taking advantage
of the special arrangement of the vector z (see Eq.(2.32)), one can use the following recursive

formulas to accomplish this task.

z =z(5.....5...q.9.5,1). (2.35)
=1
I= Z-’-., 3 +(2),q+(E) v+ (), T (2.36)
FEL)
in which Z, .(5,),.(z,),. and (5,), are defined as:
— Iz o:, z é:
5, = T O =— . :|u='_‘- » - t=_' (237
S _ (=)q (=) r =) o"tl_...( )
1.3.0.% 1.8.4.T i.q.0.1 &gt
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Chapter 3

Constrained Motion

3.1 Introduction

In Chapter 2 a formulation for unconstrained motion of multibody systems was
developed . In this chapter we extend the formalism to systems with constrained motion. The
motion of a system is said to be constrained when, irTespective of the time history of dniving
forces, the generalized coordinates of the system and their time derivatives are related to each
other through some algebraic relations. If P constraints are imposed on a system with A~
degrees of freedom (DOFs), then the DOFs of the system are reduced to N = A = P. In this
case, one may expect that an independent set of A"+ N first-order differential equations, ./~
kinematical and N dynamical equations, suffices to describe the dynamics of the system, that is
to determine A/ generalized coordinates and N independent generalized speeds. Unlike the
kinematics analysis which is quite straight-forward, the procedure of deriving a complete,
minimum-order set of dynamical equations of motion may pose a chalienging problem.

Discussion of the formulation of these equations is the subject of this chapter.

In this context, by “minimum-order set of equations” we mean a set of dynamical
equations with as many equations as the number of independeit generalized speeds. On the
other hand, a “complete sst of equations™ is a set which has as many unknowns as the number

of equations. In general, a minimum-order set of equations may not be complete.



3. Constrained Motton

In this chapter we first classifv the constraints; then, tvo most popular, existing methods
for deriving the minimum-order set of equations governing the motion of constrained systems
are briefly explained. Afterwards, we identfy a class of constraints for which the constraint
forces, unknown quantities, remain in the minimum-order set of equations obtained by
conventional methods. In this case, the minimum-order set of equations 1s incomplete, i.e., have
more unknowns than the number of equations, and cannot be solved. A novel method, based on
Kane's equations, is presented which is capable of generating the complete, minimum-order set
of equations even for this class of constrained motion. The essence of the method is to make
some modifications to the nonholonomic partial velocities. Use of these modificd partial
velocities eliminates the contributing constraint forces automatically and includes their effect in
the equations of motion at the same time. As a spin-off, the formulation sheds some light on

aspects such as adequacy and redundancy of constraint forces.

3.2 Classification of Constraints

For a dynarnical system, the function g(q,u,) = O represents a constraint, where q and
u denote the arrays of generalized coordinates and generalized speeds of the sysiem, while ¢

represents time,

A constraint is called kolonomic if the constraint equation is integrable, i.e., it can be
represented as g(q,2)=0. On the other hand, a constraint with non-integrable equation is
called nonholonomic. The constraint is simple nonholonomic if the function g(q,u,f) is a
linear function of generalized speeds. The constraints may also be classified as rheonomic and

scleronomic, according to whether the function g does, or does not contain ¢ explicitly.

In addition to the above kinematic classifications, which are well-known to dynamicists,
constraints can be classified based on their dynamic nature as artificially and naturally imposed

constraints. Artificially imposed constraints are those constraints which are maintained by
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3. Constrained Motion

applying constraint forces through actuators; these constraint forces need to be evaluated and
supplied aruficially. On the other hand, natural constraints are those constraints whose
associated forces are applied naturally, through reaction of the elements of the system with each
other and with the surrounding environment. These two types of constraints and their

differences are discussed in more detail in the following sections.

The scope of the study here is confined, from the kinematic point of view, to systems
with simple nonholonomic constraints. This, however, can include holonomic constraints as
well, because any holonomic constraint equation can be differentiated to yield a furm similar to
that of a simple nonholonomic one, On the other hand, both categories of natural and artificial

constraints are studied.

3.3 Dynamic Equations for Constrained
Motion: Conventional Methods

Consider a system S, comprised of v particles, with N DOFs which is subjected to P

independent simple nonholonomic constraints described by

I]N’
2

in which q=¢,,...,qy,, i5 an amay of the generalized coordinates, and u, =u,,...,u, and

[["41 @n],., [Aat )]p.p] [E: ] =[B(a.0)],, (3.1)

U, =y,,,.... 4y, denote the independent and dependent sets of generalized speeds of the
system, respectively. Here, LA, is an invertible matrix, by virtue of the independence of
constraints. The constraints are enforced by P constraint forces whose magnitudes are
designated by C=C,.....Cp.

The objective is to find a set of N dynamical equations of motion. This task can be
accomplished using either Lagrange's method or Kane's method. We discuss both methods
here; however, the second one, Kane's method, is the one adopted in the formulation and
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3. Constrained Motion

computer code developed i this study. Both of the above-mentioned methods, which can be
readily found in the literature, are briefly presented here for the sake of continuity and

completeness,

3.3.1 Lagrange's method

Lagrange's equations of motion for the constrained system S can be written as (see

Meirovitch [1970])

d(s8) éo ’
- - = A, =L....N+P, 32
dr[é’q,) Gg, QLA ' 2

in which £,0,, and A= [A, A, ] are, respectively, the Lagrangian of the system, the r-th
generalized active force of the system, and the constraint matrix defined in Eq.(3.1). The
quantity A, denotes the i-th Lagrange's multiplier, which is an indication of the i-th constrained
force of the system. The set of N + P equations of motion, Eq.(3.2), can be transformed into a
set of N equations independent of the Lagrange multipliers. To this end, Eq.(3.2) must be
premultiplied by the transpose of the matrix .4° defined as

[y
AC = a1 L (3 '3)
l:_[Az ]P-P ['A‘]P"N]
in which [I] denotes the identity matrix. The matrix .4° is clearly an orthogonal complement
. matrix of A (i.e,.A.A°=0). As stated in Chapter 1, several procedures for the numerical
calculation of the matrix .A° are available in the literature, Using this transformation one may

write the minimum-order set of equations of motion, which is now independent of Lagrange

multipliers, as

< . Jdfec) ao] & . , |
E .4,[5(5)-aq ]= E A,Q,, Jj=L...,N. (3.9)
rail r r .

rul
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3. Constrained Moton
3.3.2 Kane's method

Kane's equations of motion (Kane and Levinson [1985]) for the constrained system 8

can be written as

SmVi-a'=Y V.R, r=1..N, (3.5)

where m' .a’, and R’ denote the mass and the acceleration of the i-th particle, and the resuitant
of all contributing active forces applied on particle i, respectively. Here, V: denotes the r-th

nonholonomic partial velocity of the i-th particle defined as

V! =oV'(qu,,0)/du,, r=1..,N, (3.6)
where V' is the absolute velocity of particle / . One can readily see that, in this formulation, the
introduction of the Lagrange multipliers is not necessary, so the minimum-order set of

equations can be generated directly.

In spite of their differences, which may make one of the above-mentioned methods more
convenient for a certain problem, either of them can be applied equaily well to solve most of the
constrained motion problems encountered in practice. There are cases, however, when some of
the constraint forces remain in the minimum-order equations of motion obtained by either one
of the above two methods. The presence of these constraint forces (which are called
contributing constraint forces) causes the number of unknowns to exceed the number of
equations. This phenomenon is discussed in more detail in the next section, where an important
class of constraints which normally exhibit this behavior is introduced.

3.4 Natural and Artificial Constraints

Equation (3.1) (A u=B) describes completely the simple nonholonomic constraints
from the kinematics point of view; however, it does not say anything about the method of

imposition of these constraints. One should note that two identical systems moving under
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3. Constrained Motion

kinemaucally equivalent constraints may exhibit completely different dynamic behavior
depending on the method of imposition of constraints —natural or artificial. A simple example

which illustrates this point is given below.

5 5 Ta
= H ’ o
| A B '
i p
v /| 5 /4
Lgn \?ql /“I;L"' ’ ) L.,*,u_,
S S S S SS VA A
a) b)

Figure 3.1 Two different type of constraints: (a) natural; (b) artificial.

Figure 3.1-a depicts a mechanism which keeps the second link of a rigid manipulator
parallel to the X axis, during the course of its motion, by forcing it to move between two
frictionless guides at A and B. The motion of the guides themselves in the Y direction is made
possible by the motion of the plate P in the guide V. Since the constraint forces —reaction forces
at A and B- are provided through natural interaction of the system with its surrounding
environment, the motion can be considered as an example of a natural constrained motion.
The motion takes place in the horizontal plane. In this case, the constraint forces do not

contribute in the minimum-order set of equations of motion which is
@me 3, =1,, 3.7

where M and £ are the mass and the length of each link, and %, = g, is the generalized speed of

the system. Here 7, is the input to the system and there are as many equations as unknowns,

On the other hand, Figure 3.1-b shows a two-link manipulator whose second link is
intended to remain horizontal through application of the torque 7,. This model is a typical

example of systems with artificial constraints, for the constraint torque is applied through the
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3. Constrained Motion

actuator located at the elbow joint (it needs to be evaluated and supplied artificially). In ths
case, regardless of the employed method, the constraint torque 7, remains in the

mimmum--order set of equations of motion, which is
(4me*[3Yi, =7, -1,. (3.8)

Clearly, in this case, ., cannot be regarded as a free input parameter, as opposed to 7,,
for it has to be provided in such a manner that the second link always remains horizontal.
Comparison of Eqgs.(3.7) and (3.8) reveals that the method of imposition of constraints affects
the dynamics of the system, Note that Eq.(3.8) is identical to Eq.(3.7) except for a term 7.
which obviously is not identically zero. It also shows that the minimum-order set of equations
generated for the system with the antificial constraint is not complete. it has more unknowns

than equations, as opposed to the equations generated for the system with the natural constraint.

All previous methods for reducing the order of equations share the basic short—coming of
just taking advantage of the kinematical definition of constraints, i.e., Eq.(3.1). These
approaches do not account for the dynamic nature of the constraints, so they end up with the
same equations of motion for a constrained system regardless of the type of the constraint,

natural or artificial.

A point which is worth mentioning before leaving the discussion is that there are cases
where the constraint forces associated with artificial constraints do not appear in the minimum-
order set of equations generated using the conventional methods (presented in Section 3.3). As
an example, we may think of prescribing the motion of the first link of a planar two link
manipulator as a function of time. In this case the torque 7, has to be evaluated, as a certain
function of time based on the dynamics of the system, and then would be applied through an

actuator. However, this torque would not appear in the minimum-order set of equations

. . . . . N
generated using the conventional order-reduction methods, i.e., the constraint torque 7, is poa-

contributing even if the constraint itself is artificial. Now, one might asic how to fiI;d out if the

~
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constraint forces for a complicaied motion are contributing or not. The answer to this question

will be given in Section 3.6.1.

3.5 Dynamic Equations for Constrained
Motion: a New Method

In this section, we use Kane's equations of motion to develop a method which can handle
the constrained motion regardless of the type of imposition of constraints, natural or artificial.
First the basic formulation is developed; then the calculation effort involved in generating the
equanons of motion using this method is assessed, and finally the standard form of the

equations and its specialization for continuous systems is presented. The analysis is based on

the following assumptions:

« The directions of the applied constraint forces are known (as functions of time and

generalized coordinates), although their magnitudes are unknown.

» Constraint forces are adequate to enforce the specified constrained motion —except for

some singular configurations which can be avoided in practice.

« Constraint forces are not redundant.

The above assumptions are made to make the discussion more concise, and by r.o means

T

S~

they restrict the scope of this formulation, specially in practical situations. The first a!.smlmi;t::t;t:l'\\":-:—-——"—‘Q
does not restrict the generality of the analysis, because any constraint force with unknown
direction, which is rare in practice, can be resolved into a set of components with known
directions and unknown magnitudes. Also, any constrained system must satisfy the second
assumption, otherwise it can not follow the prescribed constrained motion. On the other hand,
redundancy of the constraint forces, which might be encountered in practice, would bring some

aspects of mechanics of materials into the analysis of motion, which is usually avoided in the
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3. Constrained Motion

analysis of muitibody systems. Hawving siated the assumptions, we may now present the

equations of motion.

3.5.1 Basic formulation

Consider the system S, described in Section 3.3. It would be shown that the complete
minimum-order equations of motion for this system can be obtained using the following
equation:

' V2 =S VR, r=l..N, 3.9)
> PR

1=l ml

in which ', and a' are the mass and the absolute acceleration of the i-th particle, respectively,
while \zl'_f is the r-th modified nonholonomic partial velocity (MINPV) of particle i, {as defined
later). Also, R’ denotes the resultant of all contributing forces, including the constraint forces,
which is acting on particle i, This includes the contact forces (like friction), the body forces

(such as gravity and magnetic forces), and the actuator forces.

The completeness of Eq.(3.9) implies that the use of \7; in generating the equations of
motion causes all constraint forces to vanish from the equations of motion. In other words

SV-e=0. (3.10)

il
The proof of Eq.(3.10) is given in Appendix A. The term €, appearing in the above equation,
is the resultant of all contributing constraint forces acting on the i-th particle. One has to
distinguish between C,, the magnitude of the j-th constraint force (2 scalar), and € “the
r;su!tant of ail contributing constraint forces applied on particle i (a vector). In fact, C , and €
are related to each other through the following equation:

e"=2",cj n’, ;. (3.1)
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where n¥ denotes the array of the direction cosines of the j-th constrant foree applied on the -

th particle: it ts zero if the j-th constraint force is not acung on the -th partele

In order to define the modificd nonholonomic partial velocities, Vr'. and to show that
Eq.(3.9) represents .V independent equations goveming the motion of the constrained system,
we start with the conventional nonholonom's equations of motion, discussed in Section 3.3.2.
These equations. which are generated using the nonholonomic partial velocities, can be stated

for the system S as

YmVia =3 ViF+3 Vi€ r=1..V, (.12

where m'.a’'. V! and € are as defined earlier, and F' =R' -€' is the resultant of all

contributing active forces, excluding the constraint forces, applied on particle i.

Equation (3.12) represents N independent equaiions of motion, In the case of systems
with namural constraints, these equations are complete, i.e., the number of equations is the same
as the number of unknowns (the independent generalized speeds). That is because the second
term on the right hand side (RHS) of Eq.(3.12) vanishes (Kane and Levinson [1985]). This
means that Eq.(3.12) can be solved in conjunciion with kinematical equations to determine the
dynamics of the system, ie. to determine q,,....q,., and u,....,u, as functions of time.
Equally well, in the case of systems with artificial constraints, Eq.(3.12) represents N
independent equations of motion. However, in this case the second term on the RHS of
Eq.(3.12) may not vanish which, as stated earlier, makes the set of dynamical equatid:t;

incomplete. Substituting Eq.(3.11), one can rewrite Eq.(3.12) as follows

v v P
Zm'Tf;-a‘=ZV:.F' +27-:1C1-' r=1...,N. (3.13)
(L] =l 1=l - -
where ’
7Z,=2 V0", r=L..Nj=Ll..P, (.14) -
¢m] T . .
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while 7. can be defined as the contnbution of the unit magnitude of the j-th constraint force n

the #-th nonholonomic equation of motion.

/” additional independent equations, with ro additional unknowns. are clearly necessary
from which the constraint forces, (. are to be found and substituted into Eq.(3.13) 1o yield a

complete set of V independent equanions of motion.

These additional equations can be obtained by introducing P additional generalized
speeds such that they violate the constraints, These additional generalized speeds are used only
in the calculation of modified partial velocities, while they are all set 10 zero in determining the
velocities and accelerations. The partial velocities associated with these new generalizedrspeeds
can be used to generate the P additional independent equations. This procedure. which is
parallel to the procedure of “bringing non-contributing constraint forces into ewidence”
discussed by Kane and Levinson [1985]. is detailed in Appendix B. The procedure presented
here, as opposed to the one suggested by Kane and Levinson which leaves the burden of
properly introducing the additional generalized speeds to the user. provides an algonthmic
method of introducing some P independent additional generalized speeds which forces the
motion to violate al! of the above-mentioned constraints. In Appendix B it is shown that the
partial velocities associated with the new, constraint-violating generalized speeds, V', can be

related to the partial velocities of the system through the following relation
Vie=2 4. Vi s=L...P (3.15)
kul)

in which A" =.4;". while A, is the marrix defined in Eq.(3.1). It is also proven in Appendix B
that the equations of motion generated using V', would provide P additional equations
independent of Eq.(3.12) as follows:

1wl 1a] 1=l

im'v,'j,,.-a'=iv,','x-l-=“+iv,'_'s-e, s=L....P. " (3.16)

Defining the elements of the matrix 77, , as
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and using Eq.(3.11). one can rewrite Eq.(3.16) as

SmVi =YV PSS TIC, s=llp (3 18)

N LN I

The existence of the inverse of the matrix 7 is guaranteed by the assumpnon of adequacy of’
the constraint forces (this is discussed in more detall in Section 3.6 3). Considening this, we

may premultiply the set of Egs.(3.18) by ~7 7" and add the result 1o Eq.(3.13) 10 get

s PP
Zmi(vl Zz (7'1 ‘)FV.‘"\} t
121 w1 32l
v p P
[ ZZ 7" ,,V:'\) F. r=L..N. (3.19)
1=t =] zal

Now, we define V,', as

P P -
==Y 37 (7, Ve, r=llN, (3.20)

el sal

which reduces Eq.(3.19) to

Sm V2 =YV F, r=l..N. (3.21)

Note that since Eqs (3.16) are independent of Eqs(3.13) the result of solving them together,
Eqgs.(3.21), represents N independent equations governing the motion of the constrained

system. Finally, Eq.(3.9) can be obtained by adding Eq.(3.10) to Eq.(3.21) and noting that
R =F+€.

As one can see, the key element in this formulation is the definition of the modified-
nonholonomic partial velocities ‘tf:, defined in Eq.(3.20). I?Lecalling the definition of V,’,'_., in
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. Eq. (3 15). we may relate the modified nonholonomic partial velocities to the parnal velocinies of

the svstem as follows

where

On the other hand, the nonholonomic partial velocities of the system defined by Kane and

Levinson [1985] can be written as

P
Vi=Vi+d 4,V (3.24)

L S
]

in which A =-A4]' A. Substituting for Vr' from Eq.(3.24) imo Eq.(3.22), on¢ may more

conveniently write
- P
Vi=Vi+d (4, -E)V.y. (3.25)
(L}
= T As opposed to the definition of V;, which only accounts for the effects of kinematics of

constraint, the effect of constraint forces is also included in the definition of '\:f;, through the
appearance of T and 7" in the definition of matrix E (see Eq.(3.23)). This, indeed, is the
reason why the present approach is successful in dealing with systems with artificial

constraints,

It is evident from Eqs.(3.24) and (3.25) that for a system with no constraints (P =0),
both \zf,' and V,' are equivalent to V.. This suggests that Eq.(3.9) can be employed to develop

the equations of motion of unconstrained systems as well as constrained ones.
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3.5.2 Calculation effort

The calculation effort necessarv to generate the equations of motion based on the
MNPVs, the method presented in this section, differs from that of generating nonholonomic
equations of motion based on the conventional methods. e.g.. EQ.{3.13), by the amount of work
necessary to produce the matnx E. Qut of the three elements forming the matrix E, the matnx
A'= A’ is necessary in calculation of the nonholonomic partial velocities as well. The other
two matrices. (7" and T') are very easy to calculate, despite their appearance as summations
over the whole domain of the system. This 15 due 1o the fact that the term n’ appearing in their
definition is zero at all points of the system except for a few, the points of application of
constraint forces. With this in mind. one has to carry out the summations only over the points of

application of the constraint forces.

The other fact which simplifies the calculation even further is that the artificial constraint
forces usually appear in pairs (action and reaction) with n* = -n“"" where i and i+1 depict
the points of application of the j-th contributing constraint force. Observing this £t one may
avoid the burden of calculating the partial velocities (V, and V!"'), necessary in calculation of

7 and 7. One may. instead, calculate the partial velocity of the differences, i.e.,
V-V =&V -V ou,, r=l.. N+P. (3.26)
The simplifying effect of Eq.(3.26) can be better understood by considering that normally
the i-th and (i+/)-th points are adjacent, so, no matter how complex the system is, V' - V'

has a simple relation with the DOFs and generalized speeds, as opposed to V' and V'*' which

may have very complicated expressions.
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3.5.3 Standard form of equations governing
constrained motion

To obtain the standard ‘orm of the equatons of motion, we may expand the acceleration

of the s~th particle as
N
Z u, -, (3.27)
=1

in which ;. the remainder of acceleration of the i-th particle, is the portion of a' which does
not contain the time derivative of the generalized speeds. Substituting for a' from Eq.(3.27) in

Eq.(3.9), we may write the standard form of equations of motion as

~

Zf r=l,...N (3.29)
=1

in which l‘.f'l and ? the mass matrix and generalized force column associated with modified

nonholonomic partial velocities, are defined as

!\zd”:Zm'%;.v:‘ r‘s=l!"'!N1
L (3.29)
[=3 ViR -m3). r=1...N.

[L]]

3.5.4 Extension of the formulation for continuous
systems

Let us once again consider the system S, described in Chapter 2, which is a congregation
.~ of n bodies and has N DOFs. Besides, we consider that the system is subjected to P simple
nonholonomic constraints, described by Eq.(3.1). The system, in this case, has N+ P
generalized coordinates (q=4g,....,qy_,), N independent generalized speeds (u, = u,,...,%,.),
and P dependent generalized speeds (u, = u,_,.....%y_p).
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Equation (3.28) represents the dynamical equations of motion of this svstem. The mass
matrix and force column for this svstem can be obtained by changing the summations

Eqs.(3.29) to integrals over the entire domain of S as

=
fn
(H

Fdm,  ras=1.L0N,
(3.30

1}
(H

I
e B,

£ TRYAD - | VPR dm,  r=1...N,

in which D, m’ and a’ are, respectively, the entire domain of S. the mass of S, and the
acceleration of a sample infinitesimal element p: also. R? is the resultant contributing force
acting on the element p. Dividing the domain of integrals, one can find the contribution of the j-

th member of the system to M and T as

A:-;f;’, j‘\zf‘_”v rs=1....N,
= "= ~ (3.31)
1= IV‘_’ _[V,’-':'i;"dm r=1...N,
o !
and
M= M,
sl (3.32)

=N
i

M-
=l

]
]
—

Similar specializations as those given in Section 2.2 can be made for Eqs.(3.31) in the case of
the j-th member of the system being a rigid body, a beam, or a plate. For instance, if the j-th
member of the system is a rigid body, denoted by B, Eqs.(3.31) can be simplified to

ME=mP V2.2 482 (1P 32), r.s=1L..N, (3.33.a)
FP=V . R-m ) +&2 [T-V & -0’ x(P0®)], r=1...N. (333b)

in which m® and I? are the mass and the centroidal inertia matrix of B corresponding to the
local axes. Furthermore, the term R denotes the array of components of R in the inertial frame
L whereas, T contains the components of T in the body frame B. The torque T and the force
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3. Constrained Motion

R . whose line of action passes through the centroid of the rigid body B, are the equivalent set

for all the contributing forces acting on B. The quantity @ which appears in Eqgs.(3.33) is

defined as

e

H ~ B &8 -~ -
P=gf-Y E 0l r=l..N. (3.34)

lid
=k

where the matrix E is as defined in Eq.(3.23).

3.6 Constraint Forces

In this section we examine some issues relevant to the constraint forces such as
contribution, determination, adequacy, and redundancy of the constraint forces. In the
discussion of adequacy and redundancy, instead of giving rigorous proofs, we try to provide the

reader with some insight and practical measures.

3.6.1 Contributing forces

A primary question which may arise in dealing with constrained systems can be whether
a constraint force, say C,. is a contributing one or not. The question can be answered, in some
cases, based on the intuition and expertise of the dynamicist. However, a more reliable answer
can be obtained by forming the j-th éolumn of the matrix 7. The force is not contributing if
and only if this column is identically zero. This suggests that if there is any doubt about a
constraint force being contributing or not, the best way is to regard it as contributing and
include it in the active forces, R’. One can also see that if all constraint forces are non-
contributing then the matrix 7~ would be identically zero, and consequently so would be matrix
E. In this case, the modified nonholonomic partial velocities, \zf,, reduce to the nonholonomic
partial velocities, V,, which makes the use of the method presented here completely equivalent

to the conventional method presented in the Section 3.3.2
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-5

3.6.2 Determination

The constraint forces can be simply calculated using Eq.(3 18) as tollows

n

C=S7 N, SV A -F), =il (3 39)
s 1

4
- sl
-l

One should be specially careful about using the active forces excluding all constraint torces. F',

in this equation,

3.6.3 Adequacy

For a system with P constraints we may say that the P constraint forces, (.....(’,. are
adequate to enforce the constrained motion if for any arbitrary motion of the system
(q(#),u(?).0(t)). one can find C,.....C, such that Eq.(3.18) is satisfied. Note that violating
Eq.(3.18) is equivalent to producing acceleration, and consequently velocities, which would
violate the constraints. The adequacy of constraint forces can be achieved only if the matrix 7*
is invertible, Otherwise, one may always find some combination of q(f),u(f), and u(#) which

violates Eq.(3.18).

3.6.4 Redundancy

A constraint force is said to be redundant if it does the same job as another constraint
force, or a combination of some other constraint forces. In this case, removing the redundant
constraint force should not have any effect on the dynamics of the system, except for the

magnitude of the constraint forces which might be altered.

To avoid redundancy, the number of constraint forces should be equal to-the number of
constraints. However, this is not a sufficient condition. For instance, for a system with P
constraints we may arrange P constraint forces in such a way that some of them repeat the same

operation and become redundant; of course, in this case the system suffers from a lack of
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3 Constrammed Motion

adequacy of constraint forces too. The redundancy of constraint forces can be mathematically
verified by checking the linear independence of the columns of the matrix 7. To clarifv this,
let us assume that m columns of the matrix 7" are linearly dependent {without loss of
generality we may assume them to be the first m columns) such that

m-l

7= a7 i=l..P. (3.36)

11

The contribution of (',....,C, in Eq.(3.18) is

> 7.C, =27C +7,C,. i=l..P (337
7=l 31
which can be rewritten using Eq.{3.36) as
m m=1
> 7C =27, +a,C,). i=L..P (3.38)
=l Jal

One can readily observe from Eq.(3.38) that a new set of constraint forces containing m-/
members (with the magnitudes of C, +a, C,) can have exactly the same contribution to the
dynamics of the system as the constraint forces C,,...,C_. This means that the m-th constraint

force is redundant and can be removed without any effect on the dynamics of the system.
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Chapter 4

Kinematic Analysis

4.1 Introduction

In the previous two chapters, a formulation was developed which can be emploved to0
generate NV independent dynamical equations of motion of the system S which has N DOFs and
P simple nonholonomic constraints. In this chapter we complete the formalism by presenting
the kinematic analysis of the system. Considenng that any unconstrained motion can be
modeled as a special case of constrained motion with zero constraints (P =0), we may just

focus on completing the formulation for constrained systems.

To solve for the 2N + P independent variables of the system S (u,....,n, . and
G-+ qy.p)» We need N + P independent equations in addition to the N dynamical equations.
Besides, the dynamical equations are functions of some kinematical terms which need to be
calculated. The calculation of these terms, specially in the case of multibody systems, is an
important part of the procedure of developing the equations of motion and has a great impact on

the performance of the resultant equations of motion.

In this chapter, we first present the kinematical differential equations of the system,
which provides the N + P additional equations necessary to complete the set of 2N+ P
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equations which describes the motion of the svstem. Then, a recursive formulanon for

calculation of the kinematical terms involved m the dynamical equations of motion is presented.

4.2 Kinematical Differential Equations

The differential kinemancal equanons of motion relate the ume denvanves of the
generalized cocrdinates to the generalized speeds of the system. These equanons. for the
constrained system S, can be found using the definion of the generalized speeds.
u=Y(q.r)q+Z(q.r), and solving them for q as follows:

NP
g, =2 W (qnu +X (qn r=l..N=+P2 (3.1

LR

The kinematical equations can also be expressed in ternms of independent generalized speeds.
To this end, we recall the constraint equations, Eq.(3.1). which can be rewritten in an explicit

form as

[u.], ={a@n],  [w], +[B@n,. 142)

The dependent generalized speeds, u., can be substituted from Eq.(4.2) into Eq.(4.1) which
yields

N . -
4, =2 W (aDu+X(q0), r=L..N+P 43)
sl
where
— P : -
Wﬂ:Wrx-i.zm(_\'.;-) ‘435' r=1.....N+P . S=],,__,N’
k;! - (4.4)

X=X +Y W, B. r=1..N+P.
Equations (4.3) and (3.28) fom. a set of 2V+P ordinary differertial: equations which can
be solved to give the 2N+Punknowns of the system, u,,....u, and qt,;_.r.q.\,_‘,.
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4.3 Modified Recursive Method.

The equanons of monon. presented in the previous chapter. are functions of the toltowing
kinematical terms: @ . © .{': and :’i':. In mulnbody syvstems the caleulanon of
these terms for each body needs a lot of computational effort, most of which nught have been
repeated in the calculations related to the previous member in the chain. This s why utilizing a
recursive method seems helpful in reductng the amount of kinematcal calculations. In contrast
to the usual recursive method. used widely in previous works, which uses the kinemancal terms
of the parent bodyv. a modified recursive method is presented which 1s based on the usage of an
anxiliary frame with known kinematical propertes calculated in the previous step. This method
offers a greater flexibility compared with the usual recursive method. As the auxiliary frame,

one can choose the parent body-frame (the usual recursive method). the inertia frame or any

other frame which suits the problem the best.

To show how the method works, we consider a frame B, i.e., a frame attached to 2 nigid
body B (Figure 4.1) which is assumed to be part of the systemn S with N DOFs. and P simple
nonholonomic constraints, defined as in Eq.(4.2). In addition to the frame B, we also consider
~n auxiliary frame A whose motion is assumed to be known: points & and a are, respectively,

the origins of the frames B and A.

a
‘2,431

a
3
‘\

Figure 4.1 Rilative configuration of 2 frame B and an auxiliary frame A in the inertial frame
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4 Kinematc Analvsis

The purpose 1s to calculate 0’6" 0”@ (ie. the angular velociy, the r-th
nonholonomic and modified nonholonomic partial angular velocity. and the nonholonomic
remannder of the angular acceleration of the frame B n the inertial frame), and fv': . ‘:":. :“i: (1e.
the r-th nonholonomic and modified nonholonomic partial velocity, and the nonholonomic

remander of the acceleration of point b in the inernial frame), using the known kinematics of the

auxiliary frame A. To this end. we may start with the following basic relattons of relative

motion:
o’ =("C" 0" +"0°, (4.5)
ab‘ =(JCB)Tm.—I+(.-Icﬁ)TaA _!_.-Ia!?‘ (46)
vh =V +C.-l(w.-¢ x .-Grb + .-tvb)‘ (47)
a’=a*+C (0 x r +2V)+Ca’ x“r* + "a°). (4.8)

In above relations, * C is the rotation matrix of frame B in frame A, defined by 4 C: =4, -b .
and “r® denotes the array of the components of the position vector of the point & in frame A.

Similarly, C”. the rotation matrix of frame A in the inertial frame. is definedas C' =1 -3 .

To obtain a recursive formulation for @ f, the r-th nonholonomic partial angular velocity

of B in the inertial frame, let us start with the following definition (Kahe and Levinson {1985])

lv
0®=>&2u +&2, (4.9)

r=l

in which @ ? is the part of ® ® which is independent of generalized speeds. Expanding the right
hand side of Eq.{4.5). using Eq.(4.9), and collecting the coefficients of generalized speeds, one

can rewrite Eq.(4.5) as:

¥ N
o’ =Y [(CY &; +°8! |u,+2[("C’) &} + 57 (4.10)
ral rul )

The r-th nonholonomic partial angular velocity of frame B in inertial frame, 6f. can be easily

found by inspection from Eq.(4.10) to be -
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4 Ninematie Analvsis
6 =('CY 8 -8 r=t..N G

A similar relation can be established for the r-th holonomic partial angular veloaity,
which is needed in calculanon of 5? by expanding angular velociies i terms of all
generalized speeds as follows:

NP

0= 0 u+o. (4.12)

r-l

which results in

o) =('CYol+"0f. r=l.. . N+P. (4.13)
To obtain the relation for & f, let us recall its definition
ey ] ~8 P ]
o, =d, -2 FE o . r=L..N. (4.1

Substituting for & and @’  from Egs.(4.11) and (4.13) into Eq.(4.14), while collecting

similar terms. one obtains

- i P
65=(*‘C")’[S:-ZE,,m;‘..\H"af—ZE,, m] r=l...N, @15

sal d sal
which is equivalent to
3::("(:8)7 g:-{-"%rﬂ’ r=l‘___,N‘ (4[6)

Starting from Egs.(4.6-4.R) and using a similar approach, one can develop the following

. ~B b b b
recursive formulas for ., V:, V. ,and &

&-‘8 =(AC8)T(DA +(ACB)T&: +.-l&:|‘. (4‘17)

vrb =~v: +Cd(6: x.‘!rb_!_“v:)‘ r:I.___‘N‘ : (4]8)
V=V +C'(@! x*r"+4V]), r=1..,N, . (4.19)

a, =3, +C' o x P +2'V")+CY(E! x *r*+ 7). . (420

In the above relations two categories of terms can be identified as follows :
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4. Kinematc Analvsis

I. Terms which depend on both frames A and B, ie, "r‘".4CH.'4V':’.4%:’."‘5:.

4 M A=K A—H Ly
w .'é, ,"a and 'C”.

2 Terms which depend only on the choice of the auxiliary frame, 1.e. \7: V'.a

r

~d A e

0, .0, cr. .C".and €. These terms are assumed to be known from the previous step.

From the first category of terms, “r® and "C?, which physically determine the position
and orientation of B in A, must be introduced as inputs to the formalism, while the others must
be calculated. Adopting “C” as the required input to the formalism, provides a flexibility over
using different sets of orientation parameters (e.g.. different sets of Euler angles, Euler
parameters). The computer code, FLXSDM, provides several subroutines to compute the

rotation matrix based on the given orientation parameters.

. b A b B A
Knowing “R® and “C?, one can calculate " V°, “a’ ‘0’ ‘a®

ﬂp'lﬂ - .-lr-..B, (4.21)
Aala - AI;-PB’ 4.22
A_B l & a8 ACB -
o, ="d - =‘;ZZ% C, (4.23)
=1 k=l

daB = .40-)8' g (4-24)

) LI

in which &, is the permutation symbol. It is worth mentioning that in the above relations the
time derivatives are frame mdependeng for *r®. V* ,and * a) are scalars —components of
vectors. Using the definition of nonholonomic partial velocities and remainder of acceleration,

one can find them by inspection from the 2bove relations or calculate them as follows:

‘V=2l'V(qun)féu, r=L..N+P, _ (4.25)
- P
W=tV AY 4 V., r=1..N, (4.26)
sul B
N )
Av: =4vb _Z Ai}: u,, (4.27)
=] '
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hY .
A=y Vi -tV

, " (4 28)
¥ _ ard 8 - - I )
o, =(["® (q,u.t)]/c. u. r=1..... N+ P (429
r
iA~8 4 B Ak . -
6, ="o, +> 4 "o . r=l..N, (430
o
N
- N
8] ="0" -3 ‘olu,. (430
r.1
-\ - .
CHED R A (432

On the other hand, the modified nonholonomic partial velocities can be found, using their

definitions {(equations (3.22) and (3.34))

~ P
AV =VE_SE, AVh., r=LlN {4.33)
N ""'B-ZE o . r=lL..N (4.34)

s=]

da—d — L

The second category of terms - i.e., V', V", a0 87 f,&f.C". and C* - can be
calculated, simply, by substituting frame B in the above relation with the new auxiliary frame
A’. This means to provide "r* and, “C*" and to carry out similar calculations as above. The
last point to mention is that the kinematical properties of the first auxiliary frame must be
provided as the input to the formalism. Obviously, the inertia frame can serve as the first

auxiliary frame to remove the burden of providing complicated relations.
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Chapter 5

The Effect of Nonlinear Coupling
Between Elastic and Rigid-Body
Motions

5.1 Introduction

The effect of rigid-body base motion on the dynamic response of a flexible system was
briefly addressed in Chapter 2, in the dynamic analysis of beams and plates. This chapter

presents a detailed discussion of this subject.

For quite some time, researchers have recognized that the stiffness of an elastic beam,
whose base is undergoing fast rotation around an axis normal to its center-line, increases with a
rate proportional to the square of the angular velocity of rotation. This possibly was the reason
why the phenomenon was called geometric or dynamic stiffening. In contrast to the
experimental observations, the equations of motion obtained by the conventional approaches
predict the beam to become softer. This contradiction was a reason for the researchers to look
for the shortcomings of the conventional Mc modeling and to find a way to compensate for |
the missing stiffness. ‘



/

5.The Effect of Nonlinear Coupling Between Elastic and Rigid-Body Motions

Some researchers attribute the source of this defect to the truncation of the strain energy
expression in linear theory; therefore, they suggest retention of the nonlinear terms up to the
third-order of elastic generalized coordinates in the strain energy expression. The second group
considers the centrifugal field as an external, psendo-potential field and finds the stiffness due
to this field and adds it to the stffness obtained from the linear elastic strain energy. The third
group believes that the missing stiffness is due to premature linearization. The terms
“premature linearization™ and “improper linearization,” which are interchangeably used in this
thesis, refer to a linearization which is started prior to the calculation of partial derivatives in the
process of deriving the equations of motion by an energy-based method. For instance, any
linearization done prior to the calculation of partial velocities in Kane's method, or partial
denivatives of kinetic and potential energy expressions in Lagrange's method, would be
premature. This group suggests to retain up to the second order terms of the elastic
generalized coordinates in the expressions for elastic deflections to avoid improper -

linearization. There is stil} some debate as to which approach is the best.

In this chapter, we first show that premature linearization may lead to the loss of some
linear terms in the equations of motion that are generated using an energy-based method (e.g,
Lagrange's or Kane's method). To this end, a general formulation of the equations of motion,
based on Kane's equations, for a system that undergoes both rigid body motion and elastic
motion, is presented. Both properly and prematurely linearized equations of motion are
obtained and compared to learn which terms are lost in the equations of motion and where.
Then, different remedies for compensating for the missing terms are compared. A method
based on the nonlinear strain-displacement theory is presented afterward, which can be
employed to derive the correct equations of motion of a general elastic system undergoing a
general rigid body motion. A systematic procedure is introduced which can be used 1o
specialize the method for different elastic media. The specialization of this method for beams
and plates is given. Finally, the problem of an orbiting satellite with long flexible appendages
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along with some other illustrative examples are solved using the presented theory. The
examples show some interesting phenomena such as softening of a flexible beam due to its

rigid-body base motion, or missing some terms from mass matrix due to improper linearization.

5.2 Improper Linearization, the Source of
Error

In this section, we first explain, through a simple example, how the equations of motion
might lose some terms as a result of improper linearization, and how it can be prevented. Then,
a general formulation is given to identify which terms will be missing from the equations of
motion, obtained by conventional methods, for elastic systems undergoing rigid body motion in

a general case.

5.2.1 A simple example

Consider a hinged rigid bar, shown in Figure 5.1, which undergoes small oscillations
around its equilibrium position in the vertical plane. The goal is to generate the linear form of
the equation of motion, using an energy-based method. The position vector of an element of

the bar can be written as (see Figure 5.1)

r = xcos(q)i+xsin(q)j, (5.1)
or, for small g,
: r=xi+xqj, (5.2)

which is correct up to the first order. Using this linearized position vector, Eq.(5.2), one can
find the kinetic energy and potential energy of the system as T=m/[" 42/6 andV =-mglf2.
Substituting these energy expressions in Lagrange’s equaticn results in the following equation

(mi*[3)§=0. (53)

Onecanmdilyséeﬂ;aiﬂxerestbringtermduetoﬂaegmvityisabsenththepmnaturely
linearnized equation of motion of the pendulum, Eq.(5.3). This is exactly what happens when 2
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conventional method 1s emploved to generate the equatons of motion u«ng energv-based
methods. The conventional methods consider the position vector of an element of the elastc

bodv as a linear combination of the elastic generalized coordinates, which is clearly a premature

lineanzation,

To cortect the above error. in the case of the simple pendulum, we might use either the

nonlinear expression for position vector, Eq.(5.1). or the approximation of that correct up to the

second order. Eq. (5.4). as follows
r=x(1-¢°[2)i+xqj. (5.4

Using the second-order position vector, Eq.(5.4). we can develop the kinetic and potential

energyas T=ml* 4" /6 and V' = ~mgl(1-q" /2)/2. and consequently, the equation of motion

as
(mi*[3)G +(mglj2)q = 0. (5.5)

This properly linearized equation of motion is in total agreement with the results that can be

obtained from linearizing the nonlinear equation of motion obtained by starting from Eq.(5.1).

In the case of elastic members, however, a complete nonlinear expression for the elastic
deflections may not be achievable, but an expression correct up to the second order can be
written using the nonlinear strain-displacement theory. This simple example reveals that the
phenomenon of missing terms is not confined to the analysis of elastic systems. In other words,

any set of prematurely linearized equations might suffer from the same defect.

5.2.2 General formulation

At this point, we present a general formulation, based on Kane's method, to identify the
terms which might be omitted, due to premature linearization, in the equations of motion of a

system with both zero-order and first-order DOFs (e.g., an elastic system undergoing rigid-

rFl
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body motion). To this end. the partially-linearized equations of motion for the system are
derived first by lineanizing the nonlinear equations (proper linearization) and then by starting the
linearization prior to the calculation of partial velocities (premature lineanzanon). The
comparison of these two sets of equations reveals the missing terms and their places in the
equations of motion, Here, the terms “zero-order”™ and “first-order™ refer to the quantities of the
order of £ and £'. respectively, where &' << &', For instance, the rigid-body motion is O(&").
while the elastic motion is O(E‘). Besides, by “parnally-linearized equations™ we mean a set of
equations which are linear functions of the first-order DOFs but nonlinear functions of the zero-

order DOFs.

Before starting the discussion, it is useful to recall some of the conventions which are
used in this chapter. Overhead symbols ***, “=", and *™ are used to indicate, respectively, the
lineanzed form, the nominal value, and the small deviation from the nominal value of the
corresponding quantity. For instance, V =V +V indicates that the linearized velocity equals
the nominal value V plus the small deviation V. Also, the prematurely linearized items and the
terms associated with them are identified by an asterix, e.g., V_ is the prematurely linearized r-

th partial velocity.

Consider a system S consisting of v particles with N degrees of freedom. The system
can be identified by the definition of 2N scalars as follows: g,,....qy, the generalized
coordinates, and #,,...,4y, the generalized speeds. Assume that the first N ¢ generalized
coordinates and generalized speeds are small compared to the others. The nonlinear equations
of motion for this system, using Kane's method can be written as

VR -ma')=0, 5:6)

in]
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where V) is the r-th parnal velocity of the particle p' in the inernal frame. defined as
EV'[En,. R' represents the resultant contributing active forces acting on '+ and # and 2’

are the mass and acceleration of p', respectively.

The linearized form of V, . R', and a' can be written as

Vi=V+V!, r=1..N, (5.7.0)
R =R'+R', (5.7.6)
A= +3'. (5.7.¢)

The equations of motion, Eq.(5.6), can be lineanized by substituting the linearized form of

V!.R'. and a', Egs.(5.7). and neglecting the second-order terms. This vields the properly

linearized equations of motion as

i'\‘r; -(R'-m' ﬁ')-:-i[V; -(R'-m 3 )+V!-(R' -m' 5')]= 0. r=L....N (58)

tm] ral

In the above relation the first summation contains the zero-order terms, and the second
summation contains the first-order terms of the linearized equations of motion. Each of these
two parts can be equated to zero separately. The zero-order equations of motion are suitable for
calcuiation of the nominal motion of the system. The first order equations are suitable for linear
analysis such as linear control and stability analysis. The partially linearized form of the
equations of motion, Eq.(5.8), is specially important for the purpose of simulation of elastic

systems with zero-order degrees of freedom.

We get the prematurely linearized equations of motion by starting the linearization prior

to the calculation of partial velocities. The general linearized form of the velocity expression is

V=3 Viu+ DV +V)u+V, (5.9)
N ral

J'IN“'I
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where \;':' 1s the part of V' that does not depend on the generalized speeds. Note that since

u ..., are of the first order, the \7; ..... \7'\. do not remain in the lineanized velocity
e e

expression The partial velocities of the system in this case are

<|

' r=1--N_.

*t

<
i}

(5.10)
V=V +V r=N_+L..N
which are already linear. However, the first N, of them are different from those obtained by
proper linearization (see Eq.(5.7.a3)). 1.e., linearization after the calculation of partial velocities.
Premature linearization, thus, causes loss of the first-order terms of the partial velocities

assoctated with the linear generalized speeds, , seenslly

The equations of motion with premature linearization are now

S VR - i) =0, (5.11)

=]

Considering the fact that differentiation with respect to time and linearization with respect to the

generdlized coordinates, generalized speeds, and input forces are commutative, we can write

3" =V =V =i =7 +7. (5.12)
Substituting for V" and 4" from Eqs.(5.10) and (5.12) into Eq.(5.11) and neglecting the
second order terms, one gets the prematurely linearized equations of motion (which, in general,
do not represent the correct equations of motion) as follows :

SV.R-m @)YV (R -p'i)=0 r=l..N; (5.13.2)

SV - T[T (R - )

VIR -m'T)|=0, r=Ng+l...N (5.13.)

Comparison of Egs.(5.13) with Eq. (5.8) reveals that
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o Premature lineanzation has no effect on the zero-order part of the equations of motion

(first summation in the equations), as expected.

= Premature lineartzation has no effect on the equations of motion associated wath the zero-

order DOFs (rigid-body motion), r = N +1,....N.

« Due to premature linearization, the equations of motion associated with the first-order

DOFs, r=1...., N £ lose the following first order terms represented by £:
£=Y[Vi-(R -m'T)| r=1...Ng. (5.14)

1=l

Equations (5.9) and (5.10) suggest that to avoid premature linearization it is adequate to
retain up to the second order terms in the expression for velocity. However, if premature
linearization has already been done, then the equations can be corrected by adding the missing
part given by Eq. (5.14) to them. This suggests another approach to generate the correct
equations of motion: first, generate the prematurely linearized form of the equations, using
conventional theories; then, generate the equations of motion for a similar system, which is
moving only with second-order velocities under the action of a zero-order force field equal to

the difference of the zero-order contributing active forces and inertia forces; then, add the two

sets of equations.

Equations (5.8) and (5.13) can be used to generate the standard form of the equation:s of

motion. Differentiation of Eq. (5.9) with respect to time gives

Ne N _ ) . :
i=YVa+ Y Vu+a, (5.15)
=]

suN gl

in which &}, the remainder of acceleration, is the portion of acceleration that is independent of

time derivatives of the generalized speeds. Equation (5.15) cani be equivalently written as:

7
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il

a= > Vai-a,
Nped

N, N (310
=YV TV -al,

! Nyl
Substituting Eq.(5.16) into Eq.(3.8) and collecting the coetficient of /., one can rewrite

Eq.(5.8). the set of properly linearized equations of motion, as

Mu=f (5172
where

M, =4" (5.17.b)
zm'[V;-ir;n'r;-V;], r=l N .s=N .+ N
t=l

f,=i[’\?;-(ﬁ'-m‘ﬁ;)+\7;-('ﬁ'-m‘ﬁ;], r=1...VN. (5.17.0)

On the other hand. substitution of Eq.{(5.16) in Eqs.(5.13) yields the prematurely linearized

form of equations as

M a= (5.18.0)
where
S VAV, r=la N s=lo,Ny
=]
M, =3 M ViV | r=L..Ng.s=Ng+L... N (5.18.b)
=] .

SV AV V], re Nt leoN 5= N +1N

| imt
[ a .
SV -m'd), r=l.uN,
£r=9" . (5.18.0)
Y[V -m a)+ V(R -m )], r=Np+lo. N
| 1=l h

The equations of motion can be partitioned as

MBE Mm I‘IE rE

MR.E M.RR ‘:‘R fR
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in which the superscripts £ and R indicate the terms associated with the first-order and zero-
order DOFs, respectively, Comparison of Egs. (5.17) and (5.18) shows that all blocks of the
properly linearized equations are equal to their corresponding ones in prematurely linearized

. - . +
equations, except ior the following two blocks

=M '[Zm V! V'] r=le..No.s=No+1...N  (520a)

ff=f* +[E V' (R -m 5,)] =f*+Gq®. r=1...N, (5.20.b)

r-1

in which G is a N, x N, matrix whose elements are given by

G, Z(é’V’/éq,)( 'em'd) =G, (q" ut ). rs=L. N (5.21)

12l

where ¥ and u® denote the vectors of zero-order generalized coordinates, gy, _,,....q,. and
generalized speeds, #,, _.....#,,. This matrix becomes a function of time only, or a constant, if
v

all zero-order motions of the system are prescribed (in which case N = N).

Padilla and von Flotow [1992] suggested that, in addition to the above mentioned biocks,
some linear terms might be omitted from the M"™® block due to premature linearization, The
above formulation (see also Eq.(5.14)) clearly shows that none of the blocks associated with the

rigid-body motion, including M™ , might lose any term due to premature linearization. This is

* due to the fact that premature linearization has no effect on the partial velocities associated with

the zero-order generalized speeds (see Eq.(5.10)).
The following facts can be concluded from Egs.(5.17) to (5.21):

« In the case of properly partially linearized equations of motion, the mass matrix is not

symmetric as can be seen in Egs.(5.17.b).

T The missing terms shown within square brackets in Eqs.(5.20) could be generated directly by
substituting Eqs.(5.16) into Eq.(5.14)-
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« Because the missing terms depend on V', they are /incar functions of ¢ .....q, . the first-

order generalized coordinates.

s In the case of completely linearized equations (i.e.. all the large motions are prescribed).
the generalized force vector is the only part of the equations of motion that might lose
some terms. Moreover, in this case, N = N, and the geometric suffness matnx is

independent of generalized coordinates and speeds.

5.3 Comparison of Different Remedies

In this section the three previously mentioned methods of compensation (see Section $.1)
are compared. The first method. nonlinear strain energy approach, proves to be the weakest, for
it compensates for some missing lincar stiffness terms with non-lincar ones. The method can
produce reasonably good results only if the elastic DOFs of the system are selected cautiously.
For instance, in the case of beams, to obtain correct results, one has fo consider at least one
DOF for the longitudinal vibrations, This itself has two major dii’ﬁculti&s; First, it increases the
order of the system. if only the transverse motions are of interest, and second, it introduces
some unwanted high frequencies due to the longitudinal vibrations, which makes the
integration procedure more difficult. In addition to these difficulties, since the method cannot
recover the missing terms explicitly, it is not convenient for the cases where the zero-order
motion/force is either time or generalized coordinate-dependent. The example presented in

Section 5.5.1 helps to shed some light on this discussion.

The second method, pseudo-potential field method, less frequently used for multibody
systems, has the potential for correct compensation of the missing stiffness terms, but it is not
recommended, because the difficulty of implementing the method grows drastically as the
system and its rigid motions become more complicated. Besides, 1one of the above methods is
capable of compensating for the missing terms in the mass matrix, for the elements of mass

matrix, usually, are not rendered by a potential energy function. However, an extension of the
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second method based on Eq.f5.14), similar 10 what Banerjee and Dickens [1990] have used,
may compensate for missing terms in the mass matrix, although the implementation of this

method is difficult in the case of complex multibody systems.

On the other hand, the third method, usually more convenient and rigorous, can be
employed to derive the correct and complete form of the lineanzed equations of motion, which
can be used for either linear analysts or nonlinear simulation. The example presented in Section
5.5.1 is devoted to clarify the above discussion. This method will be explained in more detail in

the next section.

5.4 A Method for Direct Accommodation of
the Missing Terms

5.4.1 General formulation

As suggested in the first section, the use of a nonlinear expression for the velocities, up to
second order terms, results in the generation of the equations of motion correct up to the first
order. This can be easily accomplished if the small DOFs are not elastic DOFs (see the
example of the pendulum in the first section). But, in the case of an elastic body, it is not that
easy to find the nonlinear expressions for velocities because the true nonlinear expressions for

elastic deflections in terms of elastic generalized coordinates are not known.
In general, the elastic deflections (w,,w,, and w,) can be expressed as
w=w(x,q") (5.22)

where w denotes the vector of elastic deflections (see Figure 5.2), q = 9,5---»q,, 1s the vector
X

of the elastic generalized coordinates, which are functions of time, and x is the position vector

in the undeformed configuration, a spatial variable. Now if the elastic deflections are small

enough, one can use a Taylor expansion to express w as
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Ny

Ne Ny
w (X, 1) = ;goq (x)g, + ;; w,(x)q g+, i=123 (5.23)
in which ¢, and y,, are functions of the space vanables. Conventional methods of
discretization, like the assumed-miode method, consider only up to the first order terms of the
above Taylor expansion. This might be a good approximation for descnbing w(x, t) itself,
within a chosen domain, However, no matter how small w(x, t) i1s, we have to keep the second
order terms to have the correct form of the equations of motion up to the first order, derived by

ait energy-based method for a system which undergoes rigid-body motion. Now the question

remains as to how to find @, and v,

In the conventional methods of discretization, ¢, , the mods shapes, are approximated by
some shape functions, which must at least satisfy the geometric boundary conditions. Although
@, can be approximated by any set of shape functions, the accuracy of the results is strongly
dependent on how similar the chosen shape functions are to the actual mode shapes. In the
same fashion, any set of functions which satisfy the geometric boundary conditions is
acceptable as y/,, . Similar to the case of @, , the better the chosen y,, agrees with the physics

of the system, the better the results obtained.

One of the best ways to find consistent shape functions for w,, is to take advantage of
the nonlinear strain-displacement theory. Using this theory one can relate the nonlinear elastic

displacements to the diagonal elements of the strain tensor, &,, as (see Donaldson {1993])
£ = 0w [0+ [(0w/0%,)" +(0w,/0%)’],
1 N
Sy =aw2/6x,+E[(BW,/ax2)‘+(6w3/ax2)2], (5.24)

. = 0wy /03, +2[(Gw,[0x,)} +(9w, [0’

In this study the Lagrangian description is adopted, which means that everything is expressed in

terms of the undeformed configuration. This has both the convenience of working with
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practically preferred undeformed configuration as well as requiring much simpler algebra in

deriving the theory.

In the method presented here, the strains g,, not the displacements, are considered as
linear functions of the elastic generalized coordinates, and the elastic displacements w, are then
calculated using the nonlinear sirain-displacement theory. Since the strains are linear functions

of elastic generalized coordinates, we may always choose them such that

Nl‘
I.‘:" =04, (5.25)
Jul
in which @, are the first-order shape functions defined in Eq.(5.23). Using Eq.(5.25), one can
rewrite Eq.(5.24) as

Ny
w =20, 9, —%j[(a“’z/agl): * (ﬁw:,/a.f‘):]d‘fl ’

J=l

Ng
wy =3 01,0, = [[(OW /08 + (0w, /08, 1de., (526

J=l

Ny
wy=30y,4, =5 [[(Om 08 +(om[08,)]de,,

=

where £ denotes a dummy variable for x. Equations (5.26) form a set of coupled partial
differential equations, However, since we only need to retain up to second-order terms in the
expression for w,,w,, and w,, it is good enough to substitute the first-order part of their

expressions in the mtegrals “Tiiisiams the problem to an explicit integration which results in:

Ny *-’“’1 Ny N T dp, 3p
= __N’ N' wu apu: apSJ &’3& 5
?::,wf,q, ;Z} I 2 xZ & )dé‘,-Q,q,,, (5.27)
= - 17 ] aph‘ &’u apzi asz
i (o o LY TR

The method can now be summarized in the following two steps:
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» Define W, the first-order components of the displacements as linear functions of the elastic

generalized coordinates

Ny
\;" = ZunqJ . (5.28)

1=l

« Calculate the displacements w, correct up to the second order using Eq. (5.27).

Although the above formulation is quite general and can be applied to any type of three-
dimensional elastic member, it is more convement to have specializations for some simpler
cases. For instance, it is not an efficient approach to analyze a beam or a plate as a general
three-dimensional elastic body. To denive the equations of motion of a general three-
dimens:ional elastic body, one has to carry out triple integrals over the spatial domain of the
body. However, for a beam only single integrals need to be evaluated. This simplification is due

to the practical assumptions made in the beam theory.

To be practically useful, the above theory must be expressed using the same terminology
as used in the related specified category (e.g. beams). It can be achieved by applying the
assumptions made for that specific category of elastic bodies to the above theory. As a result,
an improved theory for that category will be developed which has the conveniences of both
simplicity and accuracy. To do this, one has to take the following stens: (1) find the general 3-D
elastic displacement field based on the lower dimensional elastic displacement field and the
assumptions made in that specific medium; (2) make the necessary second-order corrections to -
the 3-D elastic field using Eq.(5.27); (3) reversing the first step, find the correct special lower
dimensional displacement field using the results of the second step and the assumptions ;nade
for the medium. The specializations of the above theory to Euler beams and thin plates are

presented below as examples.

t)
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5.4.2 Speciaiization to Euler beams

Consider an Euler beam with a nigid infinitesimal element dB, shown in Figure 5.3.
Transverse deflections, longitudinal vibration and torsion are different types of motion which
the beam might experience. To analyze the motion of the beam, the elastic displacements of
point b, and elastic rotations of the element dB should be expressed in terms of the elastic
generalized coordinates. Using the conventional assumed-mode method, one can express the
linear fiald of displacements as

Ng
Ea = Z¢q(x!)q; » i= 132’3)

J=l

Ny
8,=3 0,(x)q;. (5.29)

isl
B, =-0w,[d%,, 8, =0w,[dx,.
Note that in Eqs.(5.29) the underlined variables, %, (x,) and ,(x,), denote the corresponding
quantities evaluated at point b, with x, = x, = 0. These quantities do not represent the general
three-dimensional field of displacements in the beam.

The second order expression for the above displacements and rotations can be obtained
using the geometry of the beam. However, in this context, we would like to follow a general
approach, which can be applied similarly to other categories of elastic bodies. To do so, we
should first find the first-order three-dimensional displacement field, W,(x,,x,,x,}, from which
W,(x,) and 8,(x,) can be derived; then the comected field of displacements, w;(x,,%;,x,),
should be calculated, using Eqs.(5.27). Finally, the corrected displacements and rotations of
dB, w,(x,),9,(x,), should be calculated using w,.

The three dimensional field w,(x,,x,,x;) can be found by applying the assumptions
made in the slender-beam theory to a general field of displacements which results in (Ider and
Amirouche [1989])
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ﬁ.l = Ei —(C:E:/C?xl)x: _(&l_‘./(’:r;)xn .
W, =W, "é: X (530
W, =W -:—él X

.

The linear three dimensional field W, (x,,x.,x;) is corrected using Egs.(5.27), and the
corrected one-dimensional displacements and rotations of dB, w, and 8, are extracted from

them as

w, =Zl¢u(x|)q1 —%j[(a—‘gz/aét)z +(§£3/a§')2]d§| !

=l

Nl
w,=y0,(x)q,. i=23, (5.31)

jrl

Ny
§'| = .z¢"4_,(*'1)‘1, 4 g: = _523/5:‘1 * Q?' = azzlaxl °

1=l

Use of the above nonlinear relations would result in generation of the equations of motion
correct up to the first order. It is worth mentioning that although 8, are small, the second order
terms involving them should be retained in the rotation matrix to prevent prefnature

linearization.
5.4.3 Specialization to thin plates

The theory can be specialized for thin plates in a similar fashion as for beams. Consider
the plate shown in Figure 5.4. The two—-dimentional linear field of elastic displacements for thin
plates, which relates the elastic motion of a 2-D infinitesimal rigid element dB of the plate to
the elastic generalizéd coordinates, can be expressed as:

Ny
7, =30 (5ox)g,, =123 *
E'?" v (5.32)

ét =0w,[dx,, _éz =-3w,[9x,.

The corresponding 3-D elastic displacement field can be related to the above 2-D elastic field
by (see Donaldson [1993])
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" w {x, x. x)=¥, -[mj.,(xt.x:)/c.r:]x__.

w, (XX, x )=, —[c"’i‘;(.\.‘:.x, )/c"'x:]x_‘ . (5.

P
)
LPF]
—

WX, X )= w(x . x.).

This linear 3-D field is corrected using Eq.{5.27). and the results are evaluated at x, =0 to0

yield the following corrected 2-D special field:

'.'.8 1 -2 - -y 2 -
w, = Z‘Pu(xx-x:)qj "'.;J[(aﬂ:/a‘.:i)- +(€‘_".3/0‘;1)-]J§| .
=1 bl

ol | SO R
we =205, (%.%:)q, - < [[(Gw, /&) +(w,[85) 1dE; .

5 = (5.34)
!3=Z¢31(xl‘x:)qlv

=l

9, =w,/x, , 8,=-Ew,/dx,

[t should be mentioned here that the above specialized theories, established for beams and thin

. plates, are valid for any type of t-~ndary conditions. However, the domain of the integral must - .

2

be such that the geometric boundary conditions are met by the second-order shape functions.
Furthermore, the specialization can be done similarly for the cases where shear deformations

are important.

5.5 Illustrative Examples

5.5.1 Cantilever beam with longitudinal base
motion

To clanfy the discussion of the third section, “Comparison of the Three Different Reme-
ciies.“ the well-known problem of a cantilever beam with longitudinal base motion, shown in
Figure 5.5, is considered. The elastic deflection of the beam, which is confined to the vertical
plane, is described thh one transverse mode as W.=@q, where @ is a shape function
satisfying the geometric boundary conditions, and ¢ is the elastic generalized coordinate. The

. k equation of motion obtained using this linear relation, prematurely linearized, is
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f-eq=0 (33%)

which neither reflects the effect of the gravity nor the base motion. Here ) = ¢ (E//m 1),
where £7. L. and m are. respecuvely. the flexural ngditv, the fength, and the mass of the
beam, while ¢, is a constant whose value depends on the chotce of the shape functions. For
instance. for the shape function @(x). given in Eq.(5.36). which is used in the solution of this

example, the value of ¢, is 12.36.
p(x)= .4[(cosh(£ &) —cos( £ 5))-o(sinh(1 &) -sin(4 .E))] (5.36)

in which 4 =05, 2 =1875. o = (cosh A +cosA)/(sinh 2 +sini),and $=x/L.

A second order correction can be made to the above first order displacement using

Eq.(5.31), the nonlinear strain-displacement method, to give

_ 1 Sp(E) 2
= 2[_§£ ( agtl )dg']q ' (5.37)
W, =@q.

Using the above nonlinear displacements, one can develop the properly linearized

equation of motion for this beam as
q+[cof ~a,(g/L)-2, (a(t)/L)]q =0 (5.38)

where g,a(7}, and «, are, respectively, the acceleration due to gravity, the base acceleration
and a constant whose value depends on tﬁe choice of the shape function (for the shape function
given by Eq.(5.36), a, =2259). Equation (5.38) shows that for a(f) =a, >0 the system
becomes dynamically softer, and for a(f)=a, <O stiffer. On the other hand, if
a(t) =a, cos{(w, t) the stiffness becomes time dependent, and the equation of motion can be
transformed into the smndard form of the Mathieu equation, which means even a statically
unstable beam, with (g/L) > (; /a,), can be stabilized by a proper choice of a, and @,;
conversely, a siatically stable beam might become unstable. Although the method of
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stabilizaton with fateral base motion 1s well known, the present method of stabihization by
longrudinal base motion could not be analyzed. unless the equations of motion are denived

correctly.

On the other hand. using the first method of remedy. t.e. by emploving a fourth-order
strain energy expression and constdering one rransverse elastic DOF only. the equation of

motion can be found as
c‘j+wfq+ﬁl(cuf/l.:)q3=0 (5.39)

where B, is a constant, dependent on the choice of the shape function (with ¢ defined in
Eq.(5.36), f, = 0.818). Obviously. the compensating term, S, (wf / L) q . always stiffens the
system, regardless of the base motion, so it cannot describe the other effects discussed earlier,
arising from different kinds of base motions. Of course, the nonlinear strain energy method can
produce much better results if one considers the longitudinal motion of the beam as well. In this

case, the equations of motion, considering one transverse and one longitudinal mode, are

G +aiq +B (0 [L) g +(r @l [L)gg, =0

! s (5.40)
4, +tw.q, +(ﬂ: o /L)q; = a;(.?'*'“(‘))

where g,, and g, stand for the lateral and longitudinal generalized coordinates, @, and 3, are
as defined earlier, and «,,f,, and y, are some constants. The quantity @,, which is the
fundamental frequency of the longitudinal vibration of the beam in absence of gravity and base
motion, is given by @] =¢, E A/mL, where A denotes the cross-sectional area of the beam.
The constants a,, 8,.¥,and ¢, are functions of the selected shape functions. Using the function
given in Eq.(5.36) as the transverse shape function and sin(zx/2 L) as the longitudinal shape-
function, one can evaluate a,.8,.7,2nd ¢, to =1273, 0355,1405, and 2.467, respectively.

Equations (5.40) can produce results similar to those of Eq.(5.38), but at the cost of
increasing the order of the system and making the set of differential equations stiff by
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Equations (5.40) can produce results stmilar to those of Eq.(5.38), but at the cost of
increasing the order of the system and making the set of differential equations suff by
introducing a high frequency @, into the system. One should also note that if a(#} is constant,
Eqs.(5.40) can predict the correct frequency for the lateral motion, taking advantage of
linearization around g, obtained from the solution for the fixed points. However if aft) is time
dependent, this possibility is ruled out. The same difficulty arises when the zero-order

motion/force is generahized-coordinate-dependent.

Typical simulation results (non-dimensional tip deflection, &/ L, versus the period of non-
moving beam, 7,) for two types of base motion, obtained using the presented theory (Eq.(5.38)),
are shown in Figures 5.6 and 5.7. As can be seen, the résponse of the system to 2 typical initial
condition varies both with changes in (g//)/w’ and the parameters of the base motion.
Besides, Figure 5.6 shows that for a value of (g/l)/ a),: =05 the linear solution becomes
unstable. This linear instability is the phenomenon of buckling of the beam under its own

weight.
5.5.2 Planar two-bar linkage

Figure 5.8 shows a system that serves as an example to show the possibility of terms
missing in the generaiized mass matrix of the system due to premature linearization. The
system, which consists of two rigid bars connected through a revolute joint, has two degrees of
freedom. The first degree of freedom, g,, is intended to remain small, while the second one,
g,.can accept large values. The system is assumed massless except for the point masses m, and

m, located at the tips of the bars.

Using the nonlinear expression of r, = L, &, + L,[~sin(q,) i +cos(g,)%,] to express
the position vector of the -point mass m,, one gets the nonlinear equations of motion in vector

formas
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m_ 1 m, L[] - L sin(g,)] 1,

m L [L, -1 sin(q,)] ]’1:('"; =m)+=m L[L, =21 sin(q)] %
-Kq, —=m.L L. cos{q,) | (5.41)
L+m L L (2u. + 1)) cos(q, )
On the other hand. the prematurely linearized equations of motion, obtained using the linearized

form of the position vector of m, (i.e., r, = Ly n, + L.[-g n, +,]), are

m, I m, L2 i
m L Li(m +m)y+m, L(L =20 q,) | Ui
[—K‘h ~my L, L, u; +m:L::“::Q1]

(5.42)
T +2m.L L,

and the properly linearized equations of motion, obtained based on the position vector with
second-order terms (i.e., r, = L, @ + L.[-¢ f, +(1- qf /2) 't'l] ), are

mE  mL(-La) [za.]_
m, L2 Li(my +m)+m, L(L,-2L q,) | # B

[—K‘h-mleL:u:z"'("’:Ié"::%"”':!‘::"::.q_‘):l (543)

L +2m, L Luu,
The missing terms in the generalized mass matrix and force vector are underlined. The form of
these terms, linear in terms of elastic generalized coordinates and their places, are in complete

agreement with the general results obtained in Section 5.2.2,

Either Eq.(5.14) or Egs.(5.20) can be employed to determine the missing terms in the set
of prematurely linearized equations of motion, Eq.(5.42). Adding the result of Eq.(5.14) to

Eq.(5.42), one obtains the correct form of the equations of motion, For this system

=0, ¥=-Lgt,
a9 = (L, - Lag)t, - (Lo, + Lud ), (5.44)
R® =0, ‘
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where the superscript () indicates quantities associated with the i-th point mass. Substitution of
Eqs.(5.43) into Eq. (5.14) gives the correction terms to be added to the nght hand side of
Eq.(5.42) as follows:

E=m L Liyq,-mLulq, (5.45)

This lumped model was chosen to provide the possibility of comparison of the results of
premature and proper linearization with the linearized equations obtaired from nonlinear
equatiuns of motion, Eq. (5.41). A very similar problem can be considered by replacing the
second rigid bar, the masses and the spring with an elastic cantilever beam clamped to the rigid
massless first bar. Use of the conventional assumed-mode method for describing the elastic
displacements of the beam causes similar terms to be missed from the equations of motion. As

before, none of the methods of compensation is capable of compensating for these terms except

the third one.

5.5.3 RAE satellite

The Radio Astronomy Satellite, launched by NASA in July 1968, had four 228.75 meteis
STEM type Be-Cu antennas, with 0.02 (Kg/m) density and bending stiffness of 6.033 (N.m2).
The antennas are located in the orbital plane, The planar motion of the system, depicted in
Figure 5.9, is studied here. The center of mass moves on a 224 minute nominally circular orbit,
but let us assume that it is subjected to a known orbital perturbation of y(t) in the local
horizontal direction. The gravity gradient effect is taken into account, and the attitude of the
satellite during the motion is assumed unchanged. Due to the small forces, me"longitudinal
elongation of the beam is negligible and is of no interest. So, the elastic displacements of the
booms are described using one transverse DOF for each boom, Using the conventional
assumed-mode method, one may write W, = @, g,,i =1,...,4, where W, stands for the lateral

deflection of the i-th boom. The equations of motion for the system, obtained based on W3, are
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g~ (l - 4:7:(ru“/m1 ): ‘)ql =By =0,

¢ +(1-alo, /o)), +7 ¥0=0,
‘ . (5.46)
¢+ (1-alo, /o) )¢, - By (1) =0.

¢;+(1-alw,/0,) g, -7y (0 =0.

in which w, is the orbital rate and @ 3,7 are some constants which are functions of the
selected shape functions; moreover, prime and double prime stand for time denivatives with
respect to the non-dimensionalized time, 7 = f@,, where @, denotes the fundamental frequency
of the booms with a fixed base, As expected, the stffness of the booms are reduced due to the
rotation about the earth (recall that the prematurely linearized equation of motion predicts lower
stiffhess for a rotating beam compared to the non-rotating one). The terms Sy” and 7 y* in
Eq.(5.46) act as forcing'ﬁmctions due to the translational and Coriolis acceleration of the base.
Using the shape function given in Eq.(5.36), one can evaluate the constants a, 8, 7.and @, to

be 0215, 1340, 1,25, and 0.00117, respectively.

The correct form of the equations of motion could be generated directly using the third
method. However, a more convenient approach may be to make corrections to Eqs.(5.46) by
adding the results of Eqs.(5.14) to them. Taking similar steps as those taken in the previous

example, one can calculate the correction terms using Eq.(5.14) as

[(74+008y")q,| [.74+008y' 0 0 ¢ Taq]
-.01y"q, 0 -0.01y" 0 0 g
&= . » (3.47)
(:74-008y")q, 0 0  .74-008y' O |gq
0ly"q, | 0 0 0 001y" j g, | __

in which the data for RAE satellite have already been incorporated. As expected, the
* compensating terms appear in the form of a geometric sufﬁms matrix, for the zero-order
motions are prescribed. The compensating terms show that the stiffness of the boom is, indeed,

a function of y* and y”. This suggests that the boomns might become softer and even buckle for

87



5. The Effect of Nonlinear Coupling Berween Elasuc and Rigid-Body Motions

certain values of ¥" and »”. This phenomenon is shown in Figure 5,10, which presents some
tvpical simulation results for the booms | and 3 for the case of ¥ =0 and ¥ =0.235(m/~

{3y =201 m rad). In this case. the third boom buckles due to the effect of Coriolis acceeleration

of the base.

On the other hand, the first remedy. nonlinear strain energy expression, compensates for
the missing stiffness by adding the cubic terms 1.56 x 10'""(],".!' =1....4 to the corresponding
equations of motion, which does not account for the effect of the base motion. This method,
however, can produce better results if one considers at least one longitudinal DOF for each
boom. Clearly, the worst thing an analyst might do is to study a system with eight DOFs, while
it can be analyzed correctly with only four DOFs, Furthermore, the method produces
additional difficulties by introducing the longitudinal frequencies, almost 7000 times larger than
the lateral frequencies, to the system of differential equations which makes the integration

procedure more difficult.

5.5.4 Rotating cantilever plate

This example is given to verify the applicability of the presented theory to a two
dimensional elastic media. Consider a rectangular cantilever plate (Figure 5.4), rotating about
one of its edges, say the X, axis, with a constant angular velocity of @ . The dimensions of the
plate are /., and h, respectively. Tts material properties are characterized by Young's
modulus £, Poisson’s ratio v, and mass per unit area p. The equations of motion for this

system can be obtained using the following linear field of elastic displacement:

:1=Ez=0'
- . (5.48)
¥y =2.0,(%,.%,)q,
in]
in which
(x.%,)= al®)y (x")’
2. %) =¥ (%) ¥, (%, (5.49)

@.(%,%,) =y (%) ¥ ,(x,),
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while the shape functions w_ (x;) and w, (x,) are chosen as the i-th eigenfunctions of a

cantilever and a free-free beam, respectively.

The above linear field of elastic deflections, Eqs.(5.48), can be corrected to a nonlinear
one using Eqgs.(5.34). The correct governing equations of motion, based on the nonlinear elastic

displacement field, can be found as
g, +(0.2l0;+0)g, =0. =12, (5.50)
in which @, and @, the frequencies of the non-rotating plate, are as follows

2.48(Dfpl).

=! (5.51)
=[1+9.24(1-VWF)3:. '

&
In the above relations, / =1 /I, denotes the ratio of the dimensions of the plate, while the

flexural rigidity D is given by E#°[12(1-v*).

Figure 5.11 shows the variation in the non-dimensionalized frequencies of oscillation of
the plate with the change in the non-dimensionalized angular velocity,  , /@, . for a rectangular
plate with v=.3 and / = 1. As expected, the results of the conventional theory, dotted lines,
falsely show dynamic softening, while the results of the present theory, solid lines, correctly

predict stiffening of the rotating plate.
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Figure 5.3 Schematic of an Euler beam.

Figure 5.4 Schematic of a thin plate.

Figure 5.5 A Vertical Cantilever with moving base.
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Chapter 6

Applications

6.1 Introduction

So far, we have completed a formulation for the dynamic analysis of flexible multbody
systems, based on which the computer code FLXSIM has been developed. This chapter is
devoted to the presentation of simulation results for three different problems, whose equations

of motion are obtained using FLXSIM.

Capture of a spinning satellite by a flexible two-link manipulator is the first problem
studied. In the second problem, the feasibility of using a two-link space manipulator for
stabilizing tethered satellite systems is investigated. The last problem studied deals with the
retrieval of a large payload by a redundant space manipulator, which possesses seven’revolute
joints; in this study the effects of flexibility of both the joints and links of the mampulator are

taken into account.

The problems solved in this chapter may serve as a means to show some of the
capabilities of the formalism developed in the previous chapters, and the computer code written
based on that. For instance, the capabilities of deriving the minimum-order set of equations for
a constrained system and analytical linearization of equations of motion in the presence of
intermediate parameters are demonstrated in the first problem. On the other hand, the versatility
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of the code in handling complex flexible multibody systems with flexible joints is shown
through the solution of the third problem, a serial manipulator with twenty DOFs (rigid and
flexibie). In this problem, proper definition of intermediate parameters has made it possible to

analyze the problem using a PC computer.

6.2 Capture of a Spinning Satellite

A two-link spacecraft-mounted manipulator, shown in Figure 6.1, is used to capture a
spinning satellite. The purpose is to achieve a smooth berthing of the payload as it is captured
by the end effector of the manipulator.

The problem is solved with three different sets of assumptions. In all three cases, a
circular orbit, not affected by the aititude dynamics of the system during the capturing process,
and planar motion, are assumed. In the first case, the manipulator links are considered to be
rigid and the center of mass (c.n.) of the spacecraft, not of the entire system, is assumed to
follow a circular orbit. In the secénd case, the assumption of rigidity is dropped and the elastic
dlsplacement of each beam is approxlmated by using only the first mode of a fixed base
cantifever. The third case, an example of application of constrained moticn analysis, is
concerned with the same problem as the first case, but assumes that the entire system’s center
of mass is in the above-mentioned circular orbit. |

-

The system, in the first case, has four holonomic DOFs (rigid). In the second c2 cg;r;’ﬂaere
are six holonomic DOFs (four rigid and two elastic). In the third case, the center ot:;aass of the
entire system is considered to move in a circular orbit; hence even if the system has four
holonomic DOFs, th; definition of two dependent pseudo-generalized coordinates (g and gy),
which describe the position of the spacecraft center of mass (see Figure 6.1) is necessary to
make the analysis of the system easier. The constraint equation, obtained by making the
position vector of the whole system's ceﬁter of mass in the orbital frame equal to zero, is:
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2pm =0 (6.1)
(B}
where p' indicates the position vector of the center of mass of the i-th member tn the orbital
frame. Differentiation of Eq.(6.1) with respect to time yields two scalar functions linear in
terms of the generalized speeds u,,..., #, which can be solved for #, and ¥, to give

4
u,., =ZA,,(ql,...,q6)u,_ s=12. 6.2)

rz)

The system is treated as a simple nonholonomic one with ¢,,...,q, as the generalized

coordinates and Eqs.(6.2) as the simple nonholonomic constraints.

The physical parameters of the system are: spacecraft mass =10000 kg, spacecraft
moment of inertia about its center of mass=40000 kg.m?, orbital rate =0.001 rad/sec, satellite
(payload) mass =1000 kg, payload moment of inertia about its center of mass=500 kg.m?,
payload initial spin rate =05 rpm, link mass =20 kg, (E I),,,, =8810 N.m", link length =8.13
m, the distance from the spacecraft center of mass to the shoulder joint, c‘—J‘- =1 m (Figure

6.1), the distance from satellite center of mass to the wrist joint, ¢>J* =1 m (Figure 6.1).

The initial conditions are calculated by solving the inverse kinematics problem such that
the satellite center of mass is located on local horizontal sixteen meters away from the
spacecraft center of mass. Besides, 10 assure a2 smooth berthing process, the initial joint rates
are chosen such that the grapple point on the satellite (payload) and the end effector have the

same velocity.
6.2.1 Uncontrolled motion simulation

The uncontrolled motion of the system during the post-capturing phase is simulated here.
Figure 6.2 compares the results of simulation for the cases one and three (spacecraft c.m.

moves along the prescribed orbit and entire system ¢.m. moves along the prescribed orbit). The
time history of the joint DOFs, for all three cases, are shown in Figure 6.3.a, while the tip
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deflections of the beams (case 2) and the position of the spacecraft c.m. (case 3) are presented
in Figures 6.3.b and 6.3.c, respectively. As can be seen from the results (Figure 6.3.a), there is
almost no difference between the flexible and nigid cases; this is due to the smooth berthing
process and absence of applied torques at the joints. The considerable difference between case
1, or case 2, (the spacecraft c.m. in a circular orbit) and case 3 (the entire system c.m. in a
circular orbit), as seen in Figures 6.2 and 6.3, suggests that a free-flying case cannot be
approximated arbitrarily as either case 1 or case 3. In other words, the spacecraft needs reaction

jets to eliminates ¢, and g, variations and stay on a prescribed orbit.

The results also show the possibility of using the rotational kinetic energy of the captured
satellite in the retrieval process. After being captured by the arm, the satellite moves towards
the mother spacecraft even in the absence of any actuator forces (Figure 6.3.2). The results
represent only one possible solution to the problem because the system is redundant and
different sets of initial conditions, corresponding to different approach trajectories, may be
chosen. Strong dependency of the system response on the initial conditions might induce a
challenging problem of choosing the best set of initial conditions, i.e., best approach trajectory,
to get the most desirable system response.

6.2.2 Controlled motion simulation

The purpose of control here is to maintain the pre-capture configuration of the system
during post-capturing phase while reducihg the satellite spin rate to zero. This is done for the

three previously mentioned cases.

~

Case I: Feedback linearization technique is employed to control the system in this case.
To use this technique, the equations of motion should be written in the form Mua=f=Q++,
in which T is the part of the generalized force vector associated with input torques, and Q is
the part independent of them. This is done by the computer code automatically, which is
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specially useful for complicated systems when definition of intermediate parameters is

inevitable.

Having the equations of motion in the above form, one can choose
t=-Q-M[Du+K(q- )] (63)
where D, K, and q,,, are the specified damping and suffness matrices associated with the
controlled response, and the array of nominal values (trim condition) of the generalized
coordinates. Choosing D and K as diagonal positive-definite matrices would asymptotically
stabilize the system. The simulation results of the controlled motion for case 1 are presented in

Figures 6.4 and 6.5.

Case 2: In this case, the equations of moticn are analytically linearized around the tim
condition, i.e., the pre-capture configuration, Then, an LQR method is used to stabilize the
motion around the trim condition. The simulation results for this case are presented in Figures
6.6 and 6.7. Although the results show small deflections for the bear (Figure 6.6), this may not
be the case for any arbitrary berthing scheme with impact or any arbitrary set of initial
conditions. An interesting result obtained here is that the elastic DOFs can be controlled using

the joint torques.

Case 3: Feedback linearization technique is used to control the motion of the system
during the post-capture phase. The generated equations of motion are of the form

‘ b "—
> Mu,=f=0+%, r=.4 (6.4)
=] .

in which T denotes the part of the nonholonamic generalized force vector associated with input

torques, and Q is the part independent of them. Choosing

T=-Q-M[D#+K(q-7)] (65)
where D, and g;,, are as defined as before but the stiffness matrix, X, is defined as

Kns = [K4-4 04-2] ) (6.6)
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where K, is a diagonal positive matrix. This way ¢.. ¢, .1, and #,_ are not controlled directly,
however, since «, and u, are simple algebraie functions of u,..... t, (Eq.(0.2)), they would be
controlled once u,.....1, are controlled. This, in tumn. controls ¢, and ¢, which are related to

i,..... 1, through the kinematical differential equations of motion.

The time history of the joint angles during the post-capture phase for cases | and 3 are
compared in Figure 6.4.a. As one c¢an see, using similar K and D. we get similar solutions for
joint angles in both cases, On the other hand. Figure 6.4.b shows that the system ts maintained
in the same configuration as in the first case, but without using the reaction jets which are
necessary in the first case to maintain the spacecraft center of mass in the orbit. Using a similar
approach, it is possible to reduce one more degree of freedom by introducing the simple non-
holonomic constraint of constant angular momentum. This makes it possible to control the

attitude of the spacecraft through the joint torques as well,

6.3 Stabilizing Tethered Satellite Systems
Using Space Manipulators

Tethered satellite systems (i.e, orbiting bodies connected by a long tether) have the
potential for a large number of applications. These systems can be shuttie-mounted, space
station-based or free flyers. The applications cover a broad spectrum such as upper atmospheric
measurements, electrodynamic experiments, providing microgravity environment, isolation of
scientific platforms from the space station, etc. A detailed documentation of these applications
has been done by von Tiesenhausen[1984].

There are three phases in the operation of tethered satellite systems: deployment phase,
during which the subsatellite is deployed to the appropriate altitude; the stationkeeping phase
during which experiments are conducted; and the retrieval phase in which the subsatellite is
reeled back into the main satellite. The deployment phase is asymptotically stable if the
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deployment rate is less than certain critical rate; the stationkeeping phase is marginally stable,
while the retrnieval phase is unstable (see Misra and Modi [1986]). This makes it necessan’ 10

devise some control schemes to stabilize the dynamics of tethered satellite systems.

The off-set control, proposed by Modi et al.[1990]. is one of the several schemes devised
for this purpose. This scheme, which ts specially suitable for short tethers, involves changing
the offset of the point of attachment of the tether. The objective of this study is to investigate the
feasibility of using a space manipulator as a mecharusm to implement the offset control during

stationkeeping and retrieval.

To start with, a dynamical model is developed for the system consisting of a spacecraft-
mounted manipulator and a tethered payload, using the computer code FLXSIM, Control laws
are then developed using this dynamical model. Finally, computer simulations are carried out to

validate the control laws developed.

6.3.1 Equations of motion

The system under consideration, shown in Figure 6.8, consists of a main spacecraft, the
orbiter, a two-link spacecraft-mounted manipulator and 2 subsatellite, connected to the orbiter
by a tether. In deriving the equations of motion, it is assumed that the spacecraft and the
manipulator are rigid and the entire motion is coplanar with the orbital plane. The subsatellite is
modeled as a point mass, while the tether is assumed to be massless and to remain straight

during the motion.

With the above assumptions, the system has four degrees of freedom (DOFs) which are
described by the following generalized coordinates: g, the pitch angle of the spacecraft; g , the
shoulder joint angle; g,, the elbow joint angle; and g, the librational angle of the tether. The
generalized speeds are simply defined as the time derivatives of the generalized coordinates
(u. =g, i= 14) In addition to these.four DOFs, the system has some prescribed motions

!
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which are the motion of the spacecraft center of mass in a circular orbit, R = R, and 8 = 8(1),
and the vanation of the length of the tether, L = L(¢). It is assumed that these prescnbed

motions are not affected by the other motions of the system.

In the analysis of this system the gravity gradient plays an important role, due to the
considerably large dimensions of the system. The gravitational forces applied on a rigid body.
considering the effect of gravity gradient, can be replaced (see Hughes [1986]) by a force W,
passing through the center of mass of the body accompanied by a torque T, where

W, = -m® g,[1-2(p/R,)cosalii ~[m® g, (o/R)sinalk 6.7
T, = 3(&/R)l(sin(Ra)([}} - I2)/2 + cos(2a)/ 2 1k (6.8)
in which, p is the distance from the point o (see Figure 6.9) of the system which is moving in a

prescribed orbit (e.g., spacecraft center of mass in this problem) and g, denotes the

acceleration due to gravity measured at the point o.
The equations of motion for this system, which are obtained using the computer code
FLXSIM, have the following general form
M4:4 (q’ L(‘)) I.'.I-‘Iml = 4x] (q’ “! L’ L’ L.) + q;llt3'll » (6‘9)

in which t={z,,7,,7,}, where 7,7, and 7, are the actuator torques applied on the
spacecraft, shoulde: joint, and elbow joint, respectively. The equations of motion of the system,
Eqgs.(6.9), have the following characteristics:

« The equations are highly nonlinear and coupled.
« The equations can have fixed points only when the length of the tether is either constant (in

the stationkeeping phase) or an exponential function of time (during redieval and
deployment).

.Equat.ions (6.7) and (6.8) represent simplified form of W, and T, for the planar case.
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« The linearized equations of motion are time-invariant if the length of the tether is constant

and time-varying if the length of the tether is changing.

e The uncontrolled response of the system is asymptotically stable duning deployment,

marginally stable during stationkeeping, and unstable during retrieval.

« The rank of matrix 7" is less than the number of DOFs, which means that the system is

under-actuated (i.e.. there are not as many free input parameters as the DOFs).

Figure 6,10 illustrates the uncontrolled motion of a tethered satellite system, with fixed
manipulator. The following data were used in the numerical simulations presented in this study:
m™ =10 kg, m™=20kg, m™M*=500kg, I =9.68x10° kg.m*,
7 =129 x10° kg’ I =101x10° kg.m*, I = I = I =,
I' =813 m, The stationkeeping phase is simulated for L™ =500m, and the retrieval
phase for both L“*" = 50073 and L™ = 500-46 0, where 8 denotes the orbital angle.

The dependence of the equations of motion on the tether length and its derivatives makes
the equations of motion autonomous for the stationkeeping phase and non-autonomous for
retrieval. Because of this difference in the nature of the equations, different control strategies
are chosen for each phase. A standard LQR method is used to make the stationkeeping phase
asymptoﬁcélly stable. On the other hand, feedback linearization technique is emp!oyed to
stabilize the retrieval. It is assumed that all of the states of the system are available and the

actuator forces are unlimited.

6.3.2 Control of the system during stationkeeping

The equations of motion goveming the stationkeeping phase have several fixed points. Here,
the equations are analytically linearized around the fixed point [0,0,0,0,7/2, #/4, 3z /4, x]

to give
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[ﬁ 0][&] Df. l')'fq][n] [D_f.}
e + 1 (6.10)
0 1i& 1 o f[&]l ] o

in which £ and 1 are small perturbations defined by u=wu+7, and q=q+ £, and Df,

represents the Jacobian of f with respect to *, ™ evaluated at the fixed point.

The fact that the linearized system is controllable permits the use of state feedback
techniques. A standard LQR method is used here with different weight functions. Figures 6.11
and 6.12 show the response of the system for different values of the tether length and three

different weight functions as follows:

(1 0 0 O
— 01 0 0
fMoo 0 HOSOO R={0 10
1 o wH.| 0010 of "001
0 0 0 1]

and

QY =Q where k=1

Q®' =Q where k=25

Q¥ =Q where k=50

where Q is the weight function for the states and R is the weight function for the inputs in the

objective function which is minimized in the LQR method.

The results in Figure 6.11 and 6.12 show the feasibility of using space manipulators to
asymptotically stabilize the motion during stationkeeping. The rather small amount of control
efforts shows that the flexibility of the manipulators would not be a major concem (elastic
deformations would be small), However, for long tethers, where the required joint torques are
large, the flexibility of the manipulator links should be included in the analysis.

6.3.3 Control of the system during retrieval

The equations of motion during retrieval is non-autonomous. The motion of the system

during retrieval phase is unstable; moreover, it does not have, in general, any fixed point. With
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this in mind, one may choose the feedback linearization technique to stabilize the system.
However, no input has a direct access to the librational DOF of the tether, as can be seen from
the dimension of T in Eq.(6.9). This means that, the system is not completely feedback
linearizable. One solution to this problem is to stabilize the tether motion using the other inputs,
that is to linearize the equation associated with the librational tether angle using the other
inputs. This, however shifts the instability from the tether to the rest of the system and cannot
be considered as a good solution. Another approach, which has been successfully applied to
some simple systems encountering the same problem, is to transform the equations under a
specific nonlinear transformation, which makes the inputs capable of complete feedback
linearization of the new system (for example, see Spong and Vidyasagar[1989]). The existence
of the transformation is subject to the validity of certain conditions on the mass matrix and force
vector. However, the complexity of this system leaves no room for this approach. Besides, even
if one accepts to undertake the burden of the analysis, there is still no guarantee that the
conditions are met or the nonlinear transformation can be found. A third approach is to use a

modified feedback linearization technique as follows.

The set of nonlinear differential equations

Mu=f+T1 (6.11)

can be linearized by choosing T such that
Tt=-f-ML (6.12)
where
L=Du+A(q-9q) (6.13)

in which, D and A are positive definite matrices, usually chosen to be diagonal. However, if
the rank of 7 is less than the number of DOFs, then Eq.(6.12) would be an overdetermined set
of equations and has no unique solution. In this case, we may choose to find T such that the
index &, defined as;
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e=(TT+f+MLY Q(TT+f+ML), (6.14)

is minimized. The matnx Q>0 in Eq.(6.14) is the weight function, which can be simply

chosen as the identity matrix. Using this T as the input to the system gives

Mi=f+TTz-ML (6.15)

It is worth mentioning that this method does not guarantee the asymptotic stability of the
system; instead, it tries to narrow the gap, in an optimum sense, between the response of the

system with that of a completely linearized system, u+L = 0.

Figures 6.13 and 6.14 present the simulation results for retrieval phases using the above
method. The results show that the method can be used in 2 sequential retrieval-stationkeeping
procedure to successfully retrieve the subsatellite. These results show some sharp jumps in the
actuator torques, which occur at the beginning of each stationkeeping period. This suggests
that, in practice, to avoid actuator saturation due to this sharp jumps, the maneuver should be
scheduled such that the controlled stationkeeping phase starts before the system gains certain
amount of energy during the retrieval phase. It is also evident that shorter tethers are easier to
control (demand less control effort and induce smaller motion in the rest of the system). The
results also reveal that a multi-step retrieval-stationkeeping gives better results than retrieving
the same length in one step followed by a period of controlled stationkeeping (see Figure 6.13).
Comparison of the simulation results for retrieving the subsatellite with exponential and
constant rate (Figure 6.14) shows that the exponential rate gives better performance both in

terms of the motion and the required actuator torques.

6.4 Modeling and Simulation of a Redundant -
Space Manipulator

‘The objective of this study is to develop the dynamical model of a system with several
rigid and elastic degrees of freedom. This study may serve to verify the mpablhty of the
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computer code FLXISM in handling complicated dynamical svstems. The system under
consideration, shown in Figure 6.15, is 2 large space manipulator which has eight links
connected through seven revolute joints, arranged in a three-dimensional configuration, This
manipulator resembles the Space Station Remote Manipulator System (SSRMS} which is
supposed tu serve on the space station Alpha. Out of the eight links of the manipulator, links 4
and § (long booms) may, in practice, exhibit elastic behavior. Besides, due to the rather high
gear ratio of the joints (w,, /@, = 1700), the effect of joint flexibility is significant. Thus, even
a basic, simplified dynamical model for this system must include the effects of joint and link

flexibility.

The system has seven rigid DOFs, joint angles. To account for the effect of joint
flexibility, the joints of the system, which are identical. are modeled as second order systems
(mass-spring). This means that each joint has one additional DOF (flexible DOF). In addition to
the above fourteen DOFs, the system has, at least, six elasic DOFs due to in-plane, out-of-
plane. and rotational elastic vibrations of links 4 and 5 (assumed-mode method is used here to

model the elastic behavior of the booms).

The motion of the system can be fully described by the definition of twenty generalized

coordinates as follows:
Qiveng,26,,....0, joint angles,
RN (VR STTEY & motor angles,
s torsion of link 4 (tip deflection),
s out-of-plane bending of link 4 (tip deflection),
qir in-plane bending of link 4 (tip deflection),
Gs torsion of link 5 (tip deflection),
G out-of-plane bending of link 5 (tip deflection),
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qs in-plane bending of link 5 (tip deflection).

The generalized speeds of the system are simply defined as the tme denvatives of the

generalized coordinates of the system (Le.. u, =¢,. i = 1.....20).

Figure 6.16 illustrates the definition of the joint and motor angles (¢,.....¢,,). The joint
and motor angles (€, and y,) are related as &, =y, —=r @ . where r and &, are, respectively,
the gear ratio of the gearbox and the elastic rotational deflection of the gearbox as seen from tts

input side. If the joint flexibility is neglected. then &, vanishes.

The long booms of the manipulator (links 4 and 5) are modeled as Euler-Bemoulli
beams. As stated earlier, the assumed mode method is used to relate the elastic deflections to

the elastic generalized coordinates as follows:

¢, =@ ¢, P = PGy,
Wy, S¥ G Wy, =¥ g, (6.16)
W, =W 4q,, We. =¥ .

in which ¢,,w,,, and w,_ are, respectively, the elastic torsion and the elastic deflections in ¥
and Z directions associated with the i-th link. Moreover, @, and y are shape functions which
are chosen as follows:

@ =sin(7§/2)

w = 4] (cosh(4 &) - cos(4 £)) - o(sinh(4 &) - sin(4 §))] o

in which 4 =05, 1 =1875, o= (cosh A +cosA)/(sinh A +sin 1), and &= x/L, where x and
L are the spatial variable and the length of the beam.

On the other hand, the joints of the system are modeled as mass-spring systems. Figure
6.17 illustrates a schematic of the i-th flexible joint of the manipulator. In this figure the torques
Tp.T,, and 7, are the motor torque, the spring torque and the joint torque (the torqué

delivered to the i+1-% link), respectively. It is assumed that:
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» The gearbox inertia is included in J,_. the motor inera.

« The stiffness of both motor and gearbox are replaced by a spring which is located between

motor (pure inertia) and the gearbox (pure transiormer), see Figure 6.17.

According to this model, the motor torque is the input to the system. the joint
torque,7, =r 7_, is the torque which drives the next link. and the spring torque. 7, . is a
(] 1

function of the elastic rotational deflection,d,, defined as

5

0.07 sgn(8,) 87 16| <15rad. 6.19)
~ |sen(8,)(04 5, -04425) |5,|215rad '

where “sgn” denotes the sign function.

Figures 6.18 to 6.21 show the simulation results for typical maneuver for the system,
The data of the system, which are used in this simulation, are presented in Table 6.1. In this
maneuver the manipulator is employed to retrieve a heavy payload along a straight line (here, X
axis). This maneuver resembles the docking of Shuttle with the Space Station Alpha using the
SSRMS. In this simulation it is assumed that both orbital and attitude motions of the Space

Station are unchanged during the maneuver.

hiﬁdly. the manipulator is in straight-out configuration (g, =0,/ =1....,20), and both
‘manipulator and payload are at rest, with respect to the Space Station. Although the nominal
maneuver is planar, the actual maneuver is three dimensional. That is due to the presence of
flexibility in joints and links and the spatial configuration of the manipulator. The maneuver is
accomplished by an open-loop control, with the actuator torques evaluated using the inverse

dynamics of the rigid model of the manipulator.
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Table 6.1

Redundant space manipulator, the charactenistic data.

o, Appheations

Deser. Mass Length Central moment of inertia (Kg. m-)
(Kg) (m) L, I Iy

Link | 207 1.2 6.4 30.6 30.6
Link 2 90 0.6 8.4 3.1 2.1
Link 3 90 0.5 5.6 2.1 38
Link 4 160 - - -
Link 3 160 - - -
Link 6 90 0.5 5.6 2.1 58
Link 7 90 0.6 3.4 8.1 2.1
Link 8 207 1.2 6.4 30.6 30.6
Payload 90000 1.4 9.68 < 10° 129 x 10° 101x10"

r=1700 (m) Gearbox ratio

J,=2x10" (Kgm?) Motor inertia

M, =90 (Kg)

EI =25x10° (N.m?)
GJ=127x10° (N.m2)

Mass of joints (motor and gearbox)

Flexural ngidity of long booms

Torsional rigidity of long booms
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Satellite

el
AR |

y
I
Figure 6.1 Capturing 2 spinning satellite, the system configuration
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Figure 6.16 Schematic of a flexible joint. definition of the motor and joint angles.
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Figure 6.17 Schematic of a flexible joint: (a) the mass-spring model; (b) the free-body
diagram of the elements of the joint.
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Chapter 7

Application of Constrained
Motion in the Control of Flexible
Structures

7.1 Introduction

In Chapter 3 a new method was introduced for developing the minimum-order set of
equations of motion for systems with both artificial and natural constraints. The proposed
method can find several applications in position and force control of robots (see Craig [1989]

and Raibert and Graig [1981]). This chapter presents an interesting application of that method

__inthe position control of flexible manipulators.

In practice, there are cases where maintaining a nominal trajectory of a system during the
entire interval of motion is important. Preserving the direction of an antenna during the
maneuver of a satellite and moving the end effector of a _manipu!ator along a prescribed .
trajectory are typical examples of this sort of problems, which are also referred to as tracking
problems. One way of achieving an accurate tracking of the ?utput trajectory is to tack all of
the states of the system in a way that the desired output is generated. This can be accomplished
via a feedback linearization technique, provided that the system is not under-actuated e, the
number of independent inputs is not less than the number of degrees of freedom of the system),



7. Application of Constrained Motion in Control of Flexible Structures

In contrast to ngid-body systems, feedback linearization technique does not guarantee an

accurate tracking of the output for flexible systems, which are normaily under-actuated.

Another approach for tracking problems, which is introduced in this chapter, is to
constder the equations which describe the desired trajectories as some constraints on the motion
of the system. Due to the imposition of constraints, some ¢t the DOFs of the system, as many
as the number of the constraint equations, become dependent on the others, In this approach,
the states do not have to follow prescribed trajectories to ensure tracking of the output, but the
dependent states are always determined such that the constraints are satisfied, or in other

words, the desired output irajectory is perfectly tracked.

To apply this method, one has to recognize the input forces which have the potential to
act as the constraint forces, and to obtain the relations which give the magnitude of the inputs in
terms of the states of the system. Next, the minimum-order equations of motion of the
constrained system, which is an arrificially constrained one, has to be developed. This set of
equations can then be employed to manipulate the system, while the tracking of the desired
trajectory is assured by imposition of constraints. The method presented in Chapter 3 for
deriving the equations of motion of artificially constrained systems can provide us with both the

2quations of motion of the constrained system and the expressions for constraint forces,

The approach presented in this chapter has two advantages which are due to the fact that,
to have a desired trajectory' tracked by the output, the states do not have to follow preseribed
trajectories. The first advantage is that one can use any arbitm_ry type of control scheme to
manipulate 12he independent states of the system without being concemed about violating the
prescribed evolution of the output. The second advantage is that to track a desired trajectory the

sys:tem does not have %o be fully actuated, so the method can work equally well work for n'éid
and flexible systems,
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7. Application of Constrained Motion in Control of Flexible Structures
7.2 Analytical Development

Consider a system with A degrees of freedom which has 4 inputs denoted by
T=7,,...,T,. The system is required to move such that its outputs track prescribed trajectories

described by P equations as follows:

g£(q,0)=0, i=L..,P, P<u (7.1)

in which q = g,,...,4 - is the array of generalized coordinates of the system, and ¢ is time. This
system can be viewed as 2 constrained system whose motion is subjected to P constraints
described by Eq.(7.1). In practice, however, to impose the constraints, we must find P inputs
of the system which can act as constraint forces. Assuming 7,,...,7, to be the set of inputs that
are acting as constraint forces, one can use Eq.(3.28) to develop the equations of motion of this

constrained system as
Zf{n u, =ﬁ(q,u,,r,‘,,...,r”,t), r=1...,N, (7.2)
Fol

in which N = A/— P is the number of degrees of freedom of the constrained system, and
u, =¥,,...,u, denotes the array of independent generalized speeds. The u— P inputs in
Eq(7.2), ,,,...,7,, can be used to manipulate the system (to control the motion of the
constrained system), while tracking of prescribed trajectories is guaranteed through imposition

of artificial constraints by application of 7,,..., 7.

The constraint forces (7,,...,7p) can be found using Eq.(3.35). These forces are
functions of the generalized coordinates and generalized speeds of the system and the other
inputs - ie., 7, =ri(q,u,,r,,,,,...,r,,,t)_.i=1,...,P. Calcx:iation of 7,,...,7p based on
Eq.(3.35) represents a model-based, operﬂoop control law for the system which, in theory,
guarantees the motion of the system to comply with the constraints (desired trajectory). In

practice, however, a perfect tracking of prescribed u'ajectons is pei_lding upon the accuracy of
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the model. the availability of input forces that are supposed to act as the constrant forces, and

availability of the states of the svstem.

7.3 Illustrative Examples

Two examples are given to illustrate how the method works, and how it ¢can be emploved

to control a flexible structure.

7.3.1 A rigid, two-link manipulator

Consider a ngid, two-link manipulator, shown in Figure 7.1, which is employed to move
a point mass M, at the tip of the second link, along the X axis. The main objective is that the
mass does not leave the X axis during the course of motion. Although, for this rigid
manipulator. the maneuver can be accomplished by feedback linearization technique, we want
to apply the method presented here for two reasons. First, to show, through a simple example,
how the method works, and second, to show how this method enables us to use a mixed control

strategy to control this system.

The prescnibed trajectory can be descnbed by the equation ¢sin(q,)+ sin(q,) =0, in
which ¢ denotes the length of the links and ¢, and g, are the generalized coordinates of the

system as shown in Figure 7.1, Solving this relation, one gets the following constraint equation
g,+q,=0. (73)

Employing (he method presented in Section 7.2 and choosing the torque 7, as the.
constraint force, we can find the magnitude of z,, using Eq.(3.35), in terms of the states of the

system and the other input as

7, =[cos(2g, X Y2 + M/m)— (M|m+1/3)]r, - £ u sin(2q,Xm/2+ M),  (7.4)
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where m denotes the mass of each link, and #, = ¢, 1s the independent generalized speed of the
system. On the other hand, the equation of motion of the constrained system, with the

constraints as described in Eq.(7.3), can be written, based on Eq.(3.28), as follows:
mé i, =1, (7.5)

As one can see, Eq.(7.5) represents a one degree of freedom system with one input. This
equation can be used to control the independent generalized coordinate (g,). and. through that,
to manipulate the payload, whereas the open-loop contro! law given by Eq.(7.4) guaranties the
tracking of the prescribed trajectory (i.e., the mass M moves on the X axis). To control ¢,. one
can use any control law, even a simple PD controller which can be easily implemented in
practice, This also allows us to control the system semi-manually - to control g, by a master
and slave system, while g, is being controlled through proper evaluation and application of 7.,
such that the overall motion satisfies the constrained motion which describes the desired

trajectory,

The validity of the above analysis can be verified by simulation, However, in this simple
case, one may analytically verify that the equations of motion of the unconstrained system
admits ¢, = ~q, as its solution if the torque 7, is determined by the open-loop control law of
Eq.(7.4). To this end, let us substitute 7, from Eq.(7.4) into the equations of motion of the
unconstrained system given by

[(4m/3 + M) acos(q, - g, ):“:fq] ) [71 -7, —au; sin(g, —q, ):|’ 26
acos(g,-q.) (m[3+M)E& [,
which results in
[(4m/3+ M acos(g, —q:)][a, ] =[(1—mrl - ol sin(g, ~ ;)] sin(qu)]], an
acos(q,—q:) (mf{3+M)e* | & Br, +au;[sin(g, - ¢,)~sin(2¢,)]

7, +au; sin(g, - 4.)
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where a = (mj2~ M) and B =cos(Zy, NI/2+ M/m)y—(M/m+1/3), Upon substituting
g, =—q..1 = -u,. and #; = =i, in Eq.(7.7), after some mathematical mampulation, one gets

the following consistent, over-determined set of equations

mi: 7,
=l (7.8)
me O

which shows that ¢, +¢. = 0 is a solution 10 Eq.(7.6) if 7, is determined by Eq.(7.4).

7.3.2 Control of a flexible manipulator

In this example we consider a2 manipulator with two flexible links and a rigid end effector
which are connected through revolute joints in a planar configuration as shown in Figure 7.2.
The data of the manipulator are given in Table 7.1. The flexible links of the manipulator are
modeled as Euler-Bernoulli beams. Transverse vibration in the plane of motion is the only
elastic motion which is considered. Assumed modes method, with one elastic DOF for each
link, is used to relate the elastic deflections of the beams to the elastic generalized coordinates
of the system. The normalized first mode shape of a cantilever beam, given in Eq.(5.36), is

used as the shape function. The system has five DOFs, which can be identified by the definition
of the following generalized coordinates:

g,: shoulder joint angle,
g.: elastic tip deflection of the first link,
g, : elbow joint angle,
q,: elastic tip deflection of the second link,
gs: wrist joint angle,
The generalized speeds of the system are defined as the time derivatives of the g_meralized. -
coord’nates (i.e., u, =4,,f =1...,5). The system has three inputs denoted by 7,,7,, and 7,
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which are the actuator torques applied at the shoulder, elbow, and wrist joints, respectively.

7. Application of Constrained Motion in Control of Flexible Structures

This system is under-actuated, 1.e., has fewer inputs than the number of DOFs,

Table 7.1 Three-link flexible manipulator. the phvsical data.

Description Mass (kg) Length (m) Flexural rigidity Structural
(N.m2) damping
Link | 2.51 0.8 930 2%
Link 2 2,51 0.8 930 2%
End effector & 5 0.15 - -
Payload

We intend to perform a rest-to-rest maneuver which moves the end effector of the
manipulator from point A (¥ =5c¢m) to point B (¥ =80 cm) along the Y axis, see Figure 7.2.
The objective is to keep the tip of the end effector on the ¥ axis. The desired trajectory ¢an be
described by X, = 0, where X, denotes the .X'-component of the position vector of the end
effector tip. Using forward kinematics, one can expand the constraint equation as follows:

X, =08[cos(q,)+cos(q, +7 ¢, +4;)]—q- sin(q,) - g, sin(q, +¥ g, +q;)

7.9
+0.15¢c08(q, +7 s+ +¥ q. +q,) =0 @

in which 7 is a constant dependent on the choice of the shape function (using the shape

function grven in Eq.(5.36), y = 1.72).

Applying the method presented in Section 7.2, while considering 7, as the constraint

force. one can develop the equations of motion of the constrained system as

3 2
zMni‘s = r+Z
ru} ]

n

N

T, r=1..4. (7.10)

Equations (7.10) can be used to control the independent DOFs of the system (here, g,,--..4,).
\ Different control schemes can be used to control this system. For instance, the computed torque
method can be employed to manipulate g, and g, (joint angles) such that the wrist joint moves

close to a desired trajectory (wiih dewviations due to elastic fluctuations). The wrist joint angle
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7. Application of Constrained Motion in Control of Flexible Structures

(¢.) will be accordingly determined. through application of r,. such that the end effector up

follows the prescnbed trajectory.

A simpler method. used in this example. for controlling the constrained motion of the
svstem {given by Eq.{7.10)) is to employ a PD controller. The control law can be expressed as

o =k(q -q)+c (i -u),

- — 7110
Ty = k() - qy) e (i1, — ), ¢

where g, and 7, are the desired final values for ¢, and w,. This type of controller, apparently.
does not force the states of the system to follow prescribed trajectories. moreover, it does not
control the elastic vibrations directly. However, the dependent generalized coordinate (g, ) will
always be determined, by applying the proper value of the constrained force (r,). such that the

end effector moves along the ¥ axis, the prescribed trajectory.

The initial and final conditions for this maneuver, which are chosen arbitrarily, are given
in Table 7.2. The results of the simulation of the system for the aforementioned maneuver are
shown in Figure 7.3, while Figure 7.4 shows the input torques which are applied to accomplish

the maneuver. The controller gains for this simulation are chosen as &, =120, £, =80,¢, =22,

and ¢, = 16.
Table 7.2 Initial and final conditions for moving the end effector of a flexible manipulator
along the ¥ axis
g, (rad) g:_ g, (rad) A gs (rad)
Initial conds. 0.1253 0 2.8909 0 1.6961
Final conds. 0.5421 0 1.8964 v 1.7503

Now, let us repeat the same maneuver, moving the end effector from point A to point B
along the Y axis), but with a different objective. This time we would like to maintain the end
effector parallel to the X axis, see Figure 7.2. Repositioning a spacecraft antenna, while

preserving its orientation, is an interesting application for this type of maneuver,
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7. Applicanon of Constrained Motion in Control of Flexible Structures

The desired prescribed motion can be expressed as €, = 7. where 6, denotes the angle

of the end effector measured from the .Y axis. As before, the constraint equation can be

expanded as follows:

0.2, +7q.+q.+7q,+q. =T

(7.12)

in which ¥ = 1.72. The independent DOF's of the constrained system is controlled using the

same PD controller as defined in Eq.(7.11), but with a different set of controller gains chosen as

k, =30, k, =20.c, =11, and ¢, =8. The initial and final conditions for this maneuver, which

are chosen arbitrarily, are given in Table 7.3. The simulation results for this maneuver are

shown in Figures 7.5 and 7.6.

Table 7.3 Initial and final conditions for moving the end effector of a flexible manipulator

parallel to the X axis
g, (rad) g g, (rad) g g, (rad)
Inital conds. -1.15 0 29436 1.348
Final conds. 0.3483 0 2,0742 0.7190
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N AV A N A A e .”.‘ A
Figure 7.1 Schematic of a rigid, two-link manipulator.

B L~

Y

;S
Figure 7.2 Schematic of a flexible, three-link manipulator.
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Chapter 8

Time-Optimal Maneuvering of
Flexible Multibody Systems

8.1 Introduction

The problem of minimum-time maneuvering of space systems has gained a lot of
attention in the past. Depending on the complexity of the system, the optimal solution might
become very complicated and difficult, if not impossible, for practical implementation as a
feedback control of the system, Yet, the same solution is important because it can provide a
limit on the achievable performance for the maneuver at hand; moreover, in some cases it can

be a2 guide for modifying the practical maneuvers to achieve a better performance.

“In Chapter 1 it was mentioned that most of the research works in the area of time-optimal
control of flexible multibody systems were directed towards solving the problem of
maneuvering of systems with a special configuration, i.e., a rigid hub with some flexible
appendages. On the 6ther hand, multibody systems with general configuration, such as space
manipulators, have received comparatively less attention. In this chapter we try to use optimal

control theory to maneuver a multibody system along a prescribed trajectory.

Instead of finding the minimum-time solution using. numerical methods, a near- .-~

e

minimum-time soludon is attempted. The solution is found by employing a _pemirl;z{ti;n
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8. Time-Optimal Maneuvenng of Flexible Multibody Svstems

technique to subdivide the equations of motion into two sets: zero-order equations (governing

the rigid body motion) and first-order equations (describing the elastic vibrations).

The time-optimal solution to the zerc-order part is found by applying nonlinear optimal
control theory. while the unwanted elastic fluctuations are damped by a controller designed
using a linear control theory such as the LQR method. The actuator forces™ are then found by
superposing the forces found from the open-ioop control law of the zero-order system and the

closed-loop control law of the first-order system.

8.2 Theoretical Development

The problem at hand can be stated as follows:

(P1): For asystem S with N DOFs (N® rigid DOFs and (N = N®) elastic DOFs} and N®
inputs, determine the inputs which can drive the system from its specified initial

condition to the desired final condition in minimum time.

To express the problem mathematically, let us assume that the DOFs of the system are
described by N generalized coordinates denoted by q=¢,,-..,q,,, of which the first N*
describe the rigid body DOFs of the system. Furthermore, the magnitudes of the actuator forces
denoted by T =17,,..., 7, are the inputs of the system. The equations of motion of this system
can be wrftten as R

N Nk
> M (q.0d,=f@QaN+2. 7,7, r=l..N. 3.1)

We further assume that the maneuver starts at ¢ =0 from q, and g, andendsat /=¢/ in q,
and q,, where all the quantities q,, §,. q,, and q, are specified. With these definitions,
problem (P1) can be restated as

¥ In this context, the term “actuator force™ refers to both actuator force and actuator torque.
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8. Time-Optimal Maneuvenng of Flexible Multibody Systems

(P2); Forthe system S, we seek 1o find the input © = T (t) which minimizes the performance
index function J = _[:’ di. with q(0) = q,. 4(0) =4q,.q(:,) =q, and q(1,) = q,,. subject

1o the following constraints

iﬁ/f,,(q,!)ij: = f,(q.q.:)-x-'Zz, 7. r=lL..N (8.2)
3l [EH

and

L,

r, <7, st_. i=L..N% (8.3)

This problem can be solved using Pontryagin's minimum principle, which results in a bang-
bang solution (Meirovitch [1990]). However, determining the number of switches and the
switching times can be a challenging problem. In the case of complicated problems, such as
multibody flexible systems, not only a closed form solution can not be reached, but even the

numerical methods often fail to give the switching times.

For flexible systems, a near-minimum-time solution can be obtained by using the
perturbation technique to partition the equations of motion into a zero-order and a first-order set

of equations. This technigue is discussed in the following section.

8.2.1 Perturbation technique

In this section we first show how the technique can be used to partition the equations of

“motion into two sets of zero-order and first-order equations. Then, it will be discussed how the

method can be used to find the near-minimum-time solution for a flexible system.

The technique is based on the assumption that the difference between the response of a
flexible svstem and its rigid counterpaﬁ is of the first-order (i.e., one order of magnitude-
small;r than the rigid-body motion). This is true only if the magnitudes of the elastic vibrations
are much smaﬂer than those of the rigid-body motion. According to this assumption, if the array
qis ﬁe solution to Egs.(8.1), which describe the motion of the flexible system, then it can be
expressed as '.
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§. Time-Optimal Maneuvenng of Flexible Multibody Svstems

q=q-+q (8.4

where § is an array of some first-order terms (i.e.. {g] <<|iq]). and  is the solution to the
equations of motion of the rigid counterpart of the system § given by
N b

Z LANG, = [AqN+2. 7.@07,. r=l. NF, (8.5)

K (X3 ]

in which N % is the number of the rigid DOFs of the system. Substituting q from Eqs.{8.4) and
q and T by their equivalents G+ ¢ and T+ in Eq.(8.1), using Taylor expansion up to the first
order to expand Eq.(8.1), and collecting the zero-order and first-order terms, one gets

\nl

ZM @0g, =£,@9.0+2 7,(@0N7,. r=1..N, (8.6.a)

s=1 t= i

N i
Z[M,,(ﬁ-f)ri,~+ K.[@.q.04,+ C,,('ci.ﬁ,t)ci,] =2 7, (@.0F,. r=1..N, (86b)

sl 12}
where
oM of, o7, -
K = rs=1....N, 8.7
Baa)2-%]
and
' C,,={5—j_r'jl . rs=1..N. (8.8)
M, Jug

One can see that using this technique, the equations of motion of the system, Eq.(8.1),
have been split into two sets of equations, Eqs.(8.6). Considering that §, =g, =g, =0 for

i=N®+1,...,N (the elastic DOFs), one can reduce the first set of equations, Eq.(8.6.a),

which describes the motion of the sysfern in the absence of elastic vibrations, to the equations of ]

motion of the rigid counterpart of the system, Eq.(8.5). This set of equations is, obviousl}, a
nonlinear set, but of the lower dimension, N, compa.reﬁ to the original system with dimension
N. On the other hand, the second 5et, given by Eq.(8.6.b), which describes the ;ﬁrst-drd:er
motion induced by the flexibility of the system, is a; linear set of equations .of the same

dimension as the original system.
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The problem can, now, be solved in two steps to give a near-minimum-time solution. The
first step would be to find a T which drives the rigid counterpart of the system from its initial
condition (q,, §,) to the final condition (ﬁf.'f'if) in minimum time. In the second step, we seek
to find T, using the LQR method, such that the vibrations induced by the flexibility effect get
damped. The desired control law which accomplishes the maneuver in near-minimum-time is

givenas T=T+7T

8.2.2 Minimum-time, rigid-body maneuver

The minimum-time maneuvering problem for the rigid counterpart of the cystem § can

be stated as follows:

(P3): Find the actuator torque T = T(t) which minimizes the index function J = J;[’ dt, with
9(0) = §,.9(0) = Q, . 9(f,) = Q. and G(T,) = G, subject to the following constraints

N- _ . _ . Nl _ _
> M. (@.0e,=1.q.9.0+),7,@,07, r=L.,N%, (8.9)
ml

inl
and

T_ST,S7_, i=l..N" (8.10)

The solution to this problem is a bang-bang control law; however, finding the switching
points can still be a challenging problem. In fact, for systems with N#>1, not only a closed-

form solution may not be found in general, but , in some cases, even numerical methods fail to

give the solution. For instance, Bobrow et al.[1985) reported that even for a rigid manipulator

with three DOFs, several numerical methods were tested, but all of them failed 1o give the
switching points, |

Here, instead of using numerical routines to solve the problem in its general form, we try
to ﬁnd:the time-optimal solution for the system along a prescribed trajectory. Although this

" method does not yield the global sotution for problem (P3), it is still a useful method because it

is computationally advantageous and can find ﬁmcﬁcal applications. The method is specially
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convenient for cases where the path of maneuver is either prescribed or has to be selected from
a few possible paths. Such cases are likely to be encountered in maneuver of robotic
manipulators. Apart from robotics applications, the mcinod can also be used in cases such as
minimum-time, rest-to-rest, 3-D maneuvering of a rigid body around the Euler axis, with

specified initial and final conditions.

In this method, application of the constraints, which describes the path, reduces the
degrees of freedom of the system from N® to one. However, due to the presence of several
actuators, which together should drive the system along the prescribed path, the time-optimal
solution for this one-DOF system is not as straightforward as a simple one-DOF system (with
10 constraint). What follows is a brief discussion of the method. A simpler, and yet more
detailed version of the method can be found in the paper published by Bobrow et al.[1985]. The

above mentioned time-optimal probiem can be stated as follows:

i
(P4): Find the actuator torque T which minimizes the index function J = L’dt, with

0 =9,9(0)=1,.9{ ) =T, and q(@ )= '("]'f. subject to the following constraints

Nt L - . NE
> M, (4,09, =5@ 4.0+ 7.@ 07, r=L.. NF, (8.11)
m] ml
g(@s,0)=0, i=1.. N (8.12)
and
T_s7,s%_, i=l..,N% (8.13)

In Eq.(8.12) the scalar § denotes a pseudo-generalized coordinate which can uniquely
determine the configuration of the constrained system. For instance, the length measured along
the path or one of the generalized coordinates of the system can be a candidate for the scalar 5.
This means that given a value of S, one should be able to find corresponding values of

Gise-sGpa- :

To solve problem (P4) we try to express it as a m&DdF problem in terms of the
pseudo-generalized coordinate s . To this end, §,q, and § must be substituted in Eq.(8.11) by
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8. Time-Optimal Maneuvering of Flexible Multtbody Svstems

thetr equivalents in terms of 5, 8, and §. Differentiating the constraint equations with respect to
time, one can write

ql

[A @50 A:(ﬁ.s.t)][ J= B(q.s.1). (8.14)

5

This equation can be solved for q. provided that the constraints are independent (i.e.. A, is

invertible), which results in
q= A(G.5.0)5+B(@.5.0). (8.15)
where A = —A A, and B=.4"' 5. Differentiating Eq.(8.15) with respect to time. one gets

q=A(G.5.0)5+A(q,5q.5)5+B(g.5.q,5.0). (8.16)

Substituting for G and q from Egs.(8.15) and (8.16) into Eq.(8.11), one can rewrite the

equations of motion, Eq.(8.11), as
C¥=7-D, (8.17)
in which C and D are N ¥ x 1 matrices given by

C=T"'MA,

D=F[M®B+A9-1] 19
Given the values of 5,3, and §, Eq.(8.18) shows the unique values of the actuator forces, <,
which are needed to produce the specified motion. However, taking the actuator limits,
Eq.(8.13), mto consideration, certain patterns of motion may not be achievable. In other words,
for a given pairof 5 and §, tiiere is a bound _of admissible accelerations, where an admissible
acceleration for given § and § is defined as any acceleration which can drive the system

without violating the constraints. To find the bound of admissible accelerations, let us substitute

the actuator force limits from Eq.(8.13) into Eq.(8.17)

t_-D sC3ss7,_-D, i=l.. N~ (8.19)
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Since for any § and &, @ and § can be computed using Eqs.(8.12) and (8.15), all quantines

the above equation can be considered as functions of § and &. If C, =0, Eq.(8.19) can be

rewritten as
h(s.5)<3sg(s.d). i=l..NF, (8.20)
where
(F_-D)/C. C>o.
h(s.8)=3 _ 7 . (8.21)
(T __ —D,)/C, . C <0,
and
F..-D)/C. C>o.
g(s.8)=3 " . (8.22
(rl" _Dr)/CI‘ (’J <0'

Any admissible acceleration must satisfy all of the inequalities give by Eq.(8.20). which means
that

h(s.5)S5Sg(s.5). (8.23)

in which A(s,5) = max(h (s.5)) and g(s.3) = min(g, (s.5)), with the maximum and minimum

taken over those / for which C, =0,

On the other hand, if C, =0, the i-th ihequality of Eq.(8.20) reduces to

T, <D <7, . (8.29)

so the selection of § can not depend on whether Eq.(8.20) holds for that i or not. In this case,
while choosing § the i-th inequality has to be overlooked. However, there might be cuases
where for a given pair of s and § no admissible acceleration can be found. This can happen
when irrespective of the value of ¥, a given pair of s and § violates either the inequality given
by Eq.(8.24) or the inequality given by Eq.(8.23) (i.e., makes g(s,3) <h(s.,5)). Such a pair of
S and s s nonfeasible, which means that if the systeﬁi gains the velocity § at the point §, the
actuators can no longer hold the system on the prescribed trajectory. This divides the phase

plane (5= 5 plane) into feasible and nonfeasible regions. In prai:tice, for most of the points on
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the path, there is a certain velocity § above which no combination of admissible actuator forces

can hold the system on the prescribed trajectory.
Now, we come to the point when we can restate problem (P4) in terms of 5.

(PS): Grven s(0) and 5(0), chouve (1) to minimize the final time 1, for which s(I,)=s,

and 3(1 )= 3, subject 1o the following inequality constraints
h(s.3) <5 £ g(s,3) (8.25)

It can be proved that (see Bobrow et al.[1985]) to minimize the maneuver time, § must
always takes either its minimum or its maximum possible value; that is, either §= g(s.,5) or
¥ = h(s,3). Therefore, finding the optimal control law amounts to finding the times at which §

switches between maximum acceleration and maximum deceleration.

The best way to find the switching points of this problem is to construct the switching
curve in the phase plane. This method is motivated by the fact that for a maneuver, the higher
the phase-plane trajectory, the shorter the traveling time. The method can be stated in terms of

the following algorithm:

Step 1: Integrate the equation § = h(s,3) backward in time from s=5, and 5 =3, until either
the line s = 5, is reached or the solution curve (¢,) enters the non feasible region of the

phase plane (Figures 8.1 and 8.2).

Step 2: Integrate the equation § = g(s,3) forward in time from s =5, and § = 3, unti! either the
solution curve (c,) intersects the solution curve ¢, (see Figure 8.1), or it enters the non-
feasible region of the phase plane at some point a (Figure 8.2). In the first case, the
solution is complete; the problem has one switch which takes place at the intersection of

curves ¢, and c,. In the second case, the probiem is multi-switching.
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. Step 3: From point @ on the curve ¢, drop to some lower velocity on the dotied vertical line
(see Figure 8.2). Then, integrate the equation § = A1(s.8) forward in time until either the
sofution curve (c,) intersects the § axis, or it enters the nonfeasible region of the phase
plane. The objective is to find, by iteration, the point » such that the decelerating

trajectory, ¢;. starting from point b just touches the boundary of the non feasible region

at a single point s,.

Step 4: From point s. integrate the equation § = /(s.5) backward in time until the solution

curve intersects the solution curve c. at some point s, (see Figure 8.2).

Step 5:From point s, integrate the equation §= g(s,§) forward in time' until either the
solution curve (c,) intersects the solution curve ¢, at some point s, (see Figure 8.2) or it
again enters the nonfeasible region of the phase plane. In the first case, the solution is
complete, and the three switches are determined to be at points s,,s,, and s;. In the

second case, however, the system has more switches which can be found by repeating

the Steps 3 to 5.

This algorithm involves a tedious iteration procedure for multi-switching case. A much

better method for finding the switching points of this type of problems is proposed by Pfeiffer
and Johanni [1987].

8.2.3 Vibration suppression
Two different strategies can be adopted to design the feedback control to damp the

unwanted elastic vibrations. The first is to control the elastic vibrations while the rigid-body

maneuver is in progress, and the other strategy is to start damping the elastic vibrations after

. * 1t can be proved. see Bobrow et al.[1985], that it is possible to resume maximum acceleration at point 5y
without immediately entering the nonfeasible region.

150
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the rigid body maneuver is finished. The corresponding formulation, advantages and

disadvantages of each method are discussed below.

8.2.3.1 Vibration suppression during the minimum-time
maneuver

In this approach one has to spare some of the actuator capabilities for the feedback
control (T) for vibration suppression. This reduces the limits on the actuator forces available to

the rigid-body maneuver (ie., T, <T,, and T, > T,,) For instance, one might choose

max

T,.,.=aTt,, and T, A =at,, where 0<a <. Suppose that T (f) is the actuator force

niax
which accomplishes the rigid-body maneuver in a minimum time denoted by 7, according to a
certain selection of T, and T, . Then, the feedback control law for the vibration suppression

can be obtained by solving the following time-varying LQR problem:
Find T which minimizes the performance index function
J= L { XTQX+TRE)dL, (8.26)

subject to following time-varying linear equations

N = - e - ) .
Y [M.@ 08, +K,@ T .04,+C,@ .4 .04,|=
F1 1}

N‘

> 7.@ 0%, r=1...N, (8.27)

=]

in which " =q () denotes the time-optimal solution to the rigid-body maneuver, and

the matrices K and C are as defined in Eqs.(8.7) and (8.8).

The quantities X =[§,§], Q 20, and R > 0 appearing in Eq.(8.26) are, respectively, the state

vector of the system and some weight functions.

In this approach the final time of the maneuver (7) would be equal to the final time of

the rigid-body maneuver (t7). Due to simultaneous vibration suppression and rigid-body
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maneuver, which prevents build up of elastic vibrations. this method can work even for highly
flexible systems which may go unstable (develop large elastic vibrations) in the absence of

feedback control during the ngid-body maneuver.

A disadvantage of this method is that one has to decide a prion what percentage of the
actuator capacity should be allocated to the rigid-body maneuver task. Apparently, the lower
this percentage is, the longer the maneuver time would be, and the higher this percentage 1s. the
higher the chance for the actuators to get saturated during the maneuver would be (recall that
the actuator force is the sum of T and T).

8.2.3.2 Vibration suppression after finishing the minimum-time
maneuver

In this approach the actuator forces for the entire maneuver are given by

T =

7, O0st<H _ "
i=1,...,NF, (8.28)

7., tf siz2tf

where 7/ denotes the minimum-time for the rigid-body maneuver. In this case, due to the

absence of feedback control during the rgid-body maneuver we have T, =<, and

T, = T, Which, clearly, makes 7/ smaller than 7", the rigid-body maneuver time obtained
in the previous approach. The feedback control law for vibration suppression can be obtained

by solving the following time-invariant, LQR problem
Find T which minimizes
J= J:’ (XTQX+TRY)d!, (8.29)

subject 1o the following time-invariant linear equations

N Y - .
Z[Mn@d’t)q-;s +Kn@d!ﬁd’t)q: +Cu(ﬁd5ﬁd’t)&s]= zz@d")tnr = ]""'N(S'BO)

sl 1=l
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in which G and q* are the desired final values of § and q (given constants). and the

maitrices K and C are as defined in Egs.(8.7) and (8.8).

In this approach. the final maneuver time is ¢/ =17 ~¢*, where 1’ indicates the settiing
time of the vibration suppression maneuver. Although the final time of the maneuver is larger
than the minimum-time for rigid-body maneuver(t/ > 7). it may not be larger than the final
time obtained in the previous approach. This is due to the larger ngid body-maneuver time for
the previous approach (7 ) compared to the 7. On the other hand, the feedback controller
designed based on this approach is both easier to design and to implement. However, lack of
vibration suppression during the rigid-body maneuver may make this approach an improper
choice for highly flexible systems. This approach can be used only for those systems whose
response to the open-loop bang-bang control. in the absence of feedback control for vibration
suppression, falls within a FRrst-order neighborhood of the response of the rigid-body

counterpart of the system.

8.3 Application: Retrieving a Satellite in
Minimum Time, Using a Flexible
Manipulator

Consider the system shown in Figure 8.3 in which a satellite (a rigid payload) is grasped
by a flexible, spacecraft mounted manipulator. The main spacecraft is orbitting the earth in a
104.72 min. circular orbit. The system is initially at rest. with respect to the orbital frame. We
intend to use the manipulator to retrieve the satellite from point A (), =15 m) to point B
(¥, =3 m) along the local honzontal (y, axis), while preserving the orientation of the satellite

during the maneuver.

In this example, it is assumed that the orbital motion and attitude of the main spacecraft

are not affected by the motion of the manipulator and the satellite. The in-plane, transverse
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vibrations of the manipulator links are approximated using the assumed modes method. One
elastic DOF is considered for each link and the normalized first mode shape of a cantlever
beam, given in Eq.(5.36). 1s used as the shape function. The svstem has five DOFs, which can

be tdentified by the definition of the following generalized coordinates:
q,: shoulder joint angle,
q.: elbow joint angle,
q; : wrist joint angle,
q,:. elastic tip deflection of the first link,

g,: elastic tip deflection of the second link.

The system has three inputs denoted by 7,,7,. and 7, which are the actuator torques
applied at the shoulder, elbow, and wrist joints, respectively. The actuator bounds are
|7,/ <800 N.m

|z.| <800 N.m (8.31)
|z;| <400 N.m

To find a near-minimum-time solution for this maneuver, we first find the minimum-time
solution for a similar maneuver performed by the rigid counterpart of the system S (problem P4

stated in Section 8.2.2). The constrained equations (Eq.(8.12) and (8.13) in problem P4) for

this system are given as
@ +q.+q, =7,
d +£cos(g,)+ {cos(q, +g,)—R=0, (8.32)
) £sin(g,)+¢sin(g, +¢.)—s=0,
and -
[7,] <800 N.m, ‘
7. <800 N.m, (8.33)

[£,| <400 N.m,
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i which the quanunes . 8.7, and 5 indicate. respectively. the offset of the shoulder joint
from the spacecraft center of mass. the distance from the wrist joint to the pavload center of
mass, the length of the manipulator links. and the pseudn generalized coordinate which is the
distance measured along the Y axis. The physical data of the system are given in Table 8.1, and

e initial and final conditions for this man:euver(i.e..ﬁo.'t:in.ﬁ,-. and 'iif) are given in Table 8.2.

Table 8.1 Spacecraft mounted flexible manipulator: the physical data.

Descnption Mass (kg) Length (m) Flexural rigidity Structural
(N.m?) damping
Spacecraft 100600 = - -
Link 1 80 ¢=813 1x10° 1%
Link 2 80 £=813 1x10° 1%
Payload 4000 R= - -
Table 8.2 Time-optimal retrieval maneuver: the initial and final conditions.
g, (rad) q, (rad) ¢. (rad)
Initial cond. 1.175 0,7925 1,175
Final cond. 0.1856 2.7705 X 0.1856

The solution to this minimum-time problem is a single switching, bmé-‘ﬁadg maneuver

with the final time 7/ =40.37(s) and the switching time ¢, = 14.61(s).

Appiying the open-loop control T. the input tcrques obtained from the rigid-body |
minimum-time maneuver, to the flexible system shows that the system is stiff enough to
withstand the bang-bang, open-icop control, so the vibration suppression is carried out after
finishing the rigid-body maneuver. Figures 8.4 and 8.5 show the simulation results for the near-
minimum-time maneuver. The results show that some of the capabilities of the second and third
actuators are not used during the maneuver. This suggests .that one can obtain a shorter

maneuver time by selecting another path for going from point A to point B, L
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| KA

!

Figure 8.1 Minimum-time trajectory construction; a single-switching case

‘S'

Figure 8.2 Minimum-time trajectory construction; a multi-switching case
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Spacecraft

Satellite

Figure 8.3 Retrieval of a satellite by a spacecraft mounted manipulator; a schematic of the
system.
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Chapter 9

Conclusions and

Recommendations for Future
Work

9.1 Summary and Conclusions

The problem of attitude dynamics and maneuvering of flexible, multibody space systems
was considered in this thesis. The main problems which were examined in detail are the con-
strained motion, the effect of ngid-body base motion on the dynamical characteristics of a
flexible structure, application of constrained motion in control of flexible space systems, and the
time-optimal maneuvering of flexible systems along a prescribed trajectory. A formulation for k
deriving the equations of motion of flexible multibody systems was presented based on the
above developments. The formulation was implemented in a symbolic computer code,

FLXSIM, which was employed to solve several problems,

The following points were concluded from the study of the constrained motion.

« Constrained motion is of particular importance in the analysis of motion of space systems.
That is because, even in the absence of any closed kinematic loop, the motion of a

spacecraft during certain modes of operation can be regarded as a constrained motion. For
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example, in the free-flying mode, that is to fly with no thruster finngs, the component
bodies of the system move such that the center of mass of the entire system remains on the

orbit.

» The method of implementation of the constraint forces (naturally or artificially) has an

important effect on the response of the system.

» The available methods for constrained motion cannot, in general, produce a complete set of
equations (with as many equations as the number of unknowns) for systems subjected

artificial constraints,

This investigation led to the development of a novel method which can be applied to
generate directly the complete, minimum-order set of equations of motion of systems with
artifictal and/or natural constraints. The method automatically reduces to the conventional
methods of formulation for constrained motion if all of the constraints are natural. As a spin-off
of this formulation, some analytical measures were developed for testing the adequacy and

redundancy of the constraint forces.

The effect of negligence of the second-order elastic deflections’ on the equations of
motion of flexible systems which undergo rigid-body motion is another topic which was studied
in detail. From this study the following points were concluded

o Improper linearization (i.e., a linearization which is started prior to the calculation of partial
derivatives in the process of deriving the equations of motion using an energy based
method) is a source of flaw in dynamic analysis of flexible systems undergoing rigid-body

motion.

* The term “second-order elastic deflections™ refers to some small quantities (of the order
&) which are quadratic functions of the elastic generalized coordinates. These terms are
normally neglected in the linear analysis of the elastic systerns with fixed base.
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. » Using a nonlinear strain energy expression (up to the third order) to compensate for this
deficiency is 2 weak remedy, which can produce wrong results unless special care is taken
in choosing the elastic DOFs of the system. For instance, in the case of beams, this method
can only produce acceptable results when the elongation of the beam is not ignored. This,
clearly, is not convenient for cases where the elongation of the beam is of no practical
importance, such as flexible space manipulators. Another drawback of this remedy is that
considering elongation of the beam as a degree of freedom makes the differential equations
of motion numenically stiff and inconvenient for simulation purposes —recall that the
frequencies of longitudinal vibration of a beam can be several hundred times larger than

those of its lateral vibrations.

« The stiffness of an elastic system may or may not be increased due to the base motion. In
fact, the stiffness of the system might be reduced in some cases or it might become time
varying, depending on the base motion. Thus, the general use of the term “geometric
stiffening” or “nonlinear stiffening” is not strictly valid. Furthermore, rigid-body base

motion, if not prescribed, inight even change the generalized mass matrix of the system.

» Contrary to the common belief, it was shown that the importance of the nonlinear coupling
between elastic and rigid-body motions is not restricted to spinning systems; any type of
rigid-body acceleration of the base might change the dynamic behaviour of the system. For
example, if a constant velocity perturbation is applied to the orbital motion of a non-
spinning satellite, the flexible appendages of the satellite might become either stiffer or
softer (they may even collapse) due to the effect of Coriolis acceleration of the satellite -

during this maneuver,

To prevent improper linearization and to derive the correct form of equations of motion
for elastic systems undergoing rigid body motion, a novel method based on nonlinear strain-
. displacement relations was presented in this thesis. The method can be used either to derive the
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correct equations directly, or to find the correction terms for an improperly linearized set of
equations. The method is geometry-independent and can be used for any arbitrary type of

elastic media. Specializations of the method for beams and plates are provided for convenience.

The computer code FLXSIM, developed based on the formulation presented in this
thesis, was applied 10 study several problems. One of them was the study of capture of 2

spinning satellite by a flexible space manipulator, from which we concluded the following.

« If the approach trajectory (i.e., the initial condition) is chosen properly, the rotational

kinetic energy of the captured satellite can be used in the remmeval process.

» The uncontrolled post-capture response of the system strongly depends on the approach
trajectory. This induces a challenging problem of choosing the best approach trajectory to

achieve the most desirable system response.

 Considering the free flying mode as a constrained motion can be helpful both in control
synthesis as well as the simulation of the dynamics of the system by reducing the order of
the equations of motion. For instance, regulation' of a space structure during its free flying

mode, using feedback linearization technique, can be carried out without thruster firing,

Another application was the examination of the problem of using space manipulators in
stabilizing tethered satellite systems (TSS), through offset control. A standard LQR method
was used to asymptotically stabilize the librational motion of the tether during the
stationkeeping phase, marginally stable if uncontrolled. A modified feedback linearization
technique was employed to keep the response of the system during the retrieval phase —an
unstable one if uncontrolled- bounded. The results indicate the possibility of using space
manipulators to control tethered satellite systems with short tether lengths, Some of the points
learned from this study are the foﬁowing:

T Regulation refess to 2 control problem in which we intend to keep the states of the system close
1o some constant target values.
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« Shorter tethers are easier to control (demand less control effort and induce smaller motion

in the rest of the system),

« A multi-step retrieval-stationkeeping gives better results than retrieving the same length in

one step followed by a period of controlled stationkeeping.

» The performance of retrieval with exponential rate is better, both in terms of the system

response and the required actuator torques, compared to the retrieval with constant rate.

The idea of using artificial constrained motion to devise open-loop control laws for
tracking problems was introduced in this thesis. Using this approach, the output can track the
desired trajectory without requiring all of the states of the system to track prescribed
trajectories. This method can find interesting applications in semi-manual control of
manipulators and in fine tracking of flexible manipulators. In the case of flexible manipulators,
the controller does not try to prevent elastic vibrations; instead, it tries to compensate for the
effect of the elastic vibrations by necessary corrections in the joint angles so that the output
tracks the desired motion. This method was employed to control a flexible manipulator such

that its end effector follows a prescribed trajectory.

A perturbation technique in conjunction with a phase-plane based optimal control analy-
sis was proposed for near-minrimum time maneuvering of flexible multibody systems moving
along a prescribed trajectory. The idea was successfully employed to devise a control law for a
typical retrieval maneuver performed by a Shuttle-based three link, flexible manipulator.

9.2 Suggestions for Future Work

Perhaps one of the reasons for the exponential growth in the knowledge is that any
research activity introduces more new questions than answers. This is true for the research

work presented in this thesis as well. Here are some of these questions and problems which
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might provide a platform for new research activities and advancements in the analvsis of

dynamics and maneuvering of flexible space systems.

« Development of a method based on Lagrange's equations for deriving the complete
minimum-order equations of motion of artificially constrained systems. This. perhaps. can
be done by premultiplying the equations of motion by the orthogonal complement of 2
modified constraint matrix. The problem amounts to modifying the Jacobian matrix of the
constraints in such a way that its orthogonal complement is normal to the matrix of

influence of the constrained forces*.

« Adopting Eulerian description (i.e., considering the shape functions as functions of current
configuration as opposed to the reference configuration) in calculating the second-order
elastic deflections based on the nonlinear strain-displacement relations. This can heip to
develop a more accurate, but more complex theory for correct analysis of two and three-
dimensional elastic members, such as plates and shells, undergoing overall rigid body

motion,

« Extension of the dynamic formulation by giving the specialized relations for contribution of
a shell type member to the mass matrix and generalized force vector, and the specialization
of the method presented in Section 5.4 for calculating the second order elastic deflections

of shells,

» Development of an order-n formulation, while incorporating the theories for constrained

motion and geometric nonlinearities presented in this thesis.

» Development of numerically efficient methods for calculation of the constraint forces for

artificially constrained systems,

: The matrix of inﬂucncc'of the constrained forces is the matrix of coefficients of constraint forces in the
equations of motion.
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o Development of the equations of motion goverming the tracking errors of an artificialiv
constrained system. These equations can be used to devise a feedback control law tor
bertter tracking and damping the dewviations of the output from the desired trajectory due w0

the disturbances and uncertainties of the model.
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Appendix A:

Proof of Equation 3.10

To prove the validity of the Eq. (3.10), we begin with substtution of Eq.(3.20) in
Eq.(3.10) which vields

i(ﬁ;-e-

P
| -l

i — —
ZT& (T'—i):a Vi -€ ) =0. (Al
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Now substitution of €' from Eq.(3.11) gives

r=] FEL sxt kal FE}]

i[i’c (f n’C, }-‘iiﬁ, (T V", (f n’C, ]] =0. (A2)

Changing the order of summations and recalling the definition of T (Eq.(3.14)) and T"
(Eq.(3.17)) we arrive at
P
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The left hand side (LHS) of Eq.(A3) is identically zero which completes the proof.



Appendix B:

Independent Additional Equations for
Constraint Forces

In this section we prove that for a system with N DOFs and P simple nonholonomic
constraints, using \7,". defined as in Eq.(3.15). one can generate P additional cquations
independent of the nonbolonomic equations of motion, given in Eq.(3.13). To this end. we

define a new set of generalized speeds for the system. contamning P additonal generalized

W =L Hy S NN,
WL = Uy sty p = New, (Bl)
U =Wy, poaeenally,ap S0y S Wy el p .

The new P generalized speeds, u;,_,,...,u}_,. are defined such that they satisfy the following

2P simple nonholonomic constraints

[[A(q,z)],.N -[1,.. [A:(q.o],..p] H =[[B(q-')]p]

[O]P-N [I]P-P [O]P-P [u;]‘v [0]!‘"\

in which [I] and [0] are the unity and zero matrices, respectively, whereas.:4,,.4, and B are

(B2)

as defined in Eq.(3.1). The new system with the 2P constraints defined in Eq.(B2) is exactly
equivalent to the original system if u] and [u;,u;]T are considered as independent and
dependent generalized speeds, respectively. On the other hand, this definition provides the
capability of violating the j-th original constraint simply by relaxing the new constraint of
u,.p =0, the (j+P)-th row in the new set of constraint equations. One should note that, withoqt

this approach, it can be a difficuit task to define some P independent generalize& speeds which
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can violate the desired constraints in the case of complex svstems. This can be even more

difficult if one wants to violate some of the constraints while leaving the rest to remain in etfect

The velocity of the i-th particle of the system in terms of the onginal generalized speeds

15 defined as
NP
V=Y Viu+V, (B3)
r=1
in which V|, the remainder of velocity of particle i. is the term which does not depend on the

peneralized speeds. Substituting for #, from Eq.(B1), one can express the velocity in terms of

the new set of generalized speeds as follows

N NeP
V=3V'u+ Y V'u+V,. (B4)
ral reN«pPel

The partial velocities associated with the new generalized speeds can be found, simply by
inspection of Eq.(B4), to be

V)=V, r=1..N,
V'=0, r=N+l...N+P, (B5)
V'=V ,, r=N+P+1..N+2P.

Now, let us relax the last P constraints in Eq.(B2) which is equivalent to relaxing the P
constraints of the original system. The new constraint equations are
[w],
(4@, -1, [A@0).]|], |=B@)],. (B6)
[u ]y
in which u| and u} are considered as independent and uj as dependent generalized speeds.
We may generate N+P independent nonholonomic equations of motion for the above system
using the new nonholonomic partial velocities which are defined (with the help of Eq.(B6)) as:
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VsV ST AN o rellN-P (B7)

where
Rpem =404l [A,) (B)

Equation (B7) can be expressed in terms of partial velocities of the ortginal svstem as follows:

ViavieS 4 v =V r=1..N
. (B9
VI'i=0+> AV, r=N+l..N+P
azl
It can be observed from (BY) that using V... V... one can generate N-P

independent equanons of which the first NV of them are exactly equivalent to the nonholonomic
equations of motion (Eq.(3.13)). and the last P of them are those used to calculate the constraint

forces (Eq.(3.16)). This completes the proof of independence of Eq.(3.13) from Eq.(3.16).
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