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Abstract

In this thesis. The problem of attitude d~llamics anc maneuvering of flexible. multibody

space systems is studied. A fOrImùation for derivmg the equations of motion of th.'Se systems.

based on Kane's method. is presented. In this formulation the concepts of constrained motion

and the effect of norùinear couplim; between rigid-body motion and the e1astic "brations are

examined in depth.

Dynamics of constrained systems is studied with the main objective of deriving the

complete. minimum-dimension set of equations of motion. A class of constraints is identified

whose associated constraint forces. unknown quantities. remain in the oùnimum-order sel of

equations obtained by conventional methods. In this case. the minimum-order sel of equations

is incomplete, i.e.• these equations have more unknowns lhan the number of equations. and can

not be solved. A novel method, based on Kane's equations, is presenled which is capable of

generating the complete, nùnimum-order set of equations even for this class of constrained

motion. As a spin-ofl: the formulation sheds some light on aspects such as adequacy and

redundancy ofconstraint forces.

The effect of rigid-body motion on the dynamic behavior of flexible systems, known as

dynamic or geometric stiffening effect. is examined in detail. An analytica1 development based

on Kane's method is presented which shows that, in genera!. the equàtions of motion of a

flexible system which undergoes rigid body motion oùght have :rome terms oùssing if the

elastic motions are expressed as /inear combinations of the generalized coordinates. The
, . ,

analysis precisely identifies which terms wiU be nùssed in, a g~eral lcase. lt SP~ca1IYshows
, ,

\ 1 ~.

that if the rigid-body motion is not prescribed, certain blacks of thel generalizecl mass matrix
l,

oùght also .niiss some terms. FinaUy, a novel method based on norùinear strain"displacement
",
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relations \s presenled which can be used either la derive the correcl equalions direcdy. or 10 find

Ihe correC\lon lerms for an incorrect set of equations developed using conventional methods.

The method is geometrJ'-independent and can be used for different dastic elements such as

beams. plates and shells.

Taking advantage of the above mentioned developments. a formulation is developed and

implemented in a syrnbolic computer code, FLXSIM, for deriving the analytical form of the

cquations of motion. The code can handle constrained systems which are congregations of rigid

bodies. bearns. and plates connected through arbitral)' joints, even flexible joints. Defining in­

termediate pararnelers to minimize the length of the equations. the code has been successful in

simulating complex systems even on PC computers. The features such as easy incorporation of

aClUators, even a10ng elastic members. and analytical linearization in the presence of

intermediate pararneters makes the code a powerful tool in control synthesis of complex

systems.

Application of artificial constrained motion to devise open-loop controllaws for traeking

problems is proposed. Using this approach, ta track the desired output tr.ljectol)'. the states of

the system do not have ta track prescribed trajectories. Interesting applications ofthis method in

semi-manual control ofmanipulators and in fine traeking offlexible manipulators are presented.

A perturbation technique in conjunction with a phase-plane based optimal control

analysis is proposed for near-minimum-lime maneuvering of flexible muln'body systems

moving along a prescribed trajectol)'. The idea is successfully employed ta devise a controllaw

for a typical retrieva1 maneuver performed by a Shuttle-based three link, flexible manipulator.

u
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Résumé

Celte thèse étudie le problème de la manoeuvrabilité et du contrôle des manipulateurs

spaciaux. La fonnulation utilisée pour obtenir les équations de mouvement de ces systèmes est

basée sur la méthode de Kane. Avec celte fonnulation. les concepts de mouvement contraint

"constrained motion" et l'effet d'accouplement entre le mouvement de corps rigide "rigid body

motion" et les vibrations élastiques sont examinés en profondeur.

La dynamique de systèmes contraints est étudiée avec pour objectif principal de

minimiser la dimension du système d'équations de motion. Une classe de contraintes pour

laquelle le système d'équations possède plus de forces contraignantes que d'équations est

identifiée. Pour cette classe de systèmes, les équations possède plus d'inconnus que d'équations

et ne peuvent donc être ~lues. La methode présentée est basée ;;ur la dynamique de Kane et

peut générer un système d'équations d'un ordre minimum même pour cette classe de système.

De plus, cette fonnulation apporte des éclaircissements sur certains aspects tel que la

pertinence et la redondance de contraintes.

Les effets de déplacements de corps sur la réponse dynamique d'un système flexible,

aussi connu sous raidissement dynami~~ "dynamic stiffening", sont examinés en detail Le

développement analytique présenté démontre que généralement, les équations de motion d'un

,système flexible qui exécute une manoeuvre rigide peuvent perdre certains tennes si la motion
, ,

flexible est exprimé sous fonne d'une combinaison linéaire des coordonnés généralisées.

L'analyse identifie avec précision quels termes sont susceptible de disparaître. Elle démontre

que ,si la motion rigide n'est pas prescrite,· certaines blocs de la matrice de mass généralisée

peuvent aussi manquer certain tennes. De plus, une nouvelle methode basée sur une relation

non-linéaire entre les deformations et les déplacements, pennet de soit dériver correctement les

iii
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équatIons de motion ou d'établir des corrections pour des systèmes d'équations incorrectes

t:\sès sur des methodes conventionnelles. Cene methode est indépendante de la géométrie et

peut être utilisée pour différents primitifs tel que plaques. poutres et autres.

Un programme symbolic. FLXSIM. utilise les développements mentionés ci-haut et

dérive analytiquement les équations de motion. Le programme supporte des systèmes

contraints qui sont composés de primitifs. poutres et de plaques connectés par des joints

arbitraires. Le programme a été utilisé avec succès pour la simulation de systèmes complexes

sur un ordinateur personnel (PC). La facilité d'implémentation de servomoteur (même au long

du membre flexible) et la linéarisation analytique en présence de paramètres intermédiaires font

de ce programme un outil puissant en matière de synthèse de contrôle de systèmes complexes.

Une application artificielle de contrainte est proposée pour la conception de boucle de

contrôle "feed forward" de trajectoire. En utilisant cene approche, les variables du système

n'ont pas besoin de suivre une trajectoire prescrite. Des applications intéressentes de cette

méthode en contrôle semi-manuelle de manipulateur et en manipulation précise de

manipulateur flexible sont présentées.

Une technique de perturbation en conjonction avec une analyse du plan de phase optimal

est proposé pour manoeuvrer des systèmes flexibles sur une trajectoire prescrite en un temps

presque minimum "near-minimum-time". Cette technique a été utiliséc avec succès pour

déterminer une fonction de contrôle pour des manoeuvres typiques de récupération par un

manipulateur (trois membres) de la navette spaciale.

iv
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Claim of Originality

To !he best of the author's knowledge, the following developments presented in this

thesis are original and have not been presented elsewhere.

• D~velopment of a new method based on the introduction of modified nonholonomic

partial velocities for deriving the complete minimum-order set of equations for systems

with artificial and/or natutal constraints.

• Development of some analytical measures for testing the adequacy and redundancy of

constraint forces.

• Development of a formulation which precisely identifies the terrns which might be missed

from the equations ofmotion ofelastic syst~ms undergoing rigid-body motion.

• Development of a geometry-independent method -applicable ta any type of elastic media­

for calculation of second-order terrns of elastic displacements based on the non1inear

strain-displacement relations, and presentation of specialization of titis method ta Euler

bearns and thin plates.

• Development of a versatile symbolic computer code (FLXSIM) for deriving dynamic

equations of motion of flexible multibody systems in open or c10sed kinematic chain

configuration.

• Application of feedback linearizatièn technique ta a system subjected ta silliple

nonltolonomic constraints.

• Deve10pment of a modified feedback linearization technique for handling under-actuated

systems.
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• Proposition of an approach for deriving an open-loop control la\\'. based on artificially

constrained motion. fo: :racking maneuver of tlexible systems.

• Proposition of an algorithm for near-minimum-time control of tlexible multibody systems

with fairly general configuration along a prescribed trajectory. and application of the

method to the problem of retrieval of a satellite by a spacecraft mounted tlexible

manipulator in minimum lime.
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Chapter 1

Introduction

Increasing demand on precise orientation. and re-orientation. of satellites has result~-d in

an area of scientific endeavor referred to as attitude dynamics and maneuvering. The necd for

attitude maneuvering of a spacecraft starts as soon as the spacecraft is insened into the orbit.

and lasts until the end of the in-orbit mission. For e.'Cample. a communication satellite must be

initially oriented towarc1 a specific direction, once it is insened into the orbit. and the same

orientation must be maintained as long as the satellite is functional. This means that a series of

attitude maneuvers must be perforrned regularly to compensate for the angular drift due to the

environmental effects such as solar radiation torque. magnetic torque, and meteoroidal impact

Other examples are the maneuvers involving retargeting an antenna or manipulating an object

with a spacecraft mounted manipulator, while keeping the rest of the system undisturbed.

These examples, showing the importance of attitude maneuvering in a space mission, imply

that the success of a space mission is very much dependent on a correct analysis and design of

attitude maneuvers.

In the early stage of space exploration, the space systems tended to_ be smalI.

mechanica11y simple and rigid However. a modem spacecraft such as the Space Station Alpha,

shown in Figure Ll. can be composed of severa! flexible and rigid components arranged in a

tree topology with both closed and open chains. On the other band; a modem large space
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Figure 1.1 Aschematie diagram showing one ofthe possible configurations during the
evolution ofSpaee Station Alpha (taken from Modi and Suleman [1991]).

system might be multitasking, i.e., it may perform severa! different activities simultaneously.

Any of these features (flexibility, presenee of closed loop chains in the system configuration,

and capability for multitasking) cao drastica1ly inerease the difficulty ofthe problem at hand

The solution ta a typica1 attitude maneuvering problem consists of two major parts as

follows: (1) To develop a mathematica1 mode! describing the motion of the system, i.e., ihe

equations ofmotion, provided that the orbital motion ofthe system is known and is not affected

by attitude dynamics. (2) To devise a eontrollaw so that eertain objectives are satisfied during

the maneuver. The motion of the controlled system cao then be simulated using the developed

equations ofmotion ta verify the validity ofthe devised controllaw. Each ofthe two parts ofthe

solution has its associated difficulties w1ùch are steadily beirig increased by ambitious space

missions requiring more complex spacecraft.
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Since the equalions of mOlion goveming the attitude dynamics of a mullibody syslem are

usually lengthy and of highly nonlinear form. il is almosl impossible 10 generale them for a

syslem possessing more than IWO bodies withoul simp\ifYing assumplions or usage of

compulers. This transfonns the problem of oblaining the equations of motion 10 \\TÎting a

suitable formalism, an algorithm for generating the equations of motion using compulers.

Most of the existing formalisms and their associaled compuler codes have been designed

10 satisfY the needs for simulation purposes, i.e., to have a computational\y belter performance.

However, in addition 10 the performance. capability of proper linearization. easy incorporation

of aetualors (discrele or distribuled), especially in the case of flexible bodies. aulomatic

elirnination of a1gebraic constraint equations, yielding a minimum dimension sel of ordinary

differential equations, ODEs - not a hybrid set of ODEs and algebraic eqllations - as the

equations of motiun. are some other crucial points to the versatility of a formalism developed

for control purposes.

Flexibility of the space systems is one of the important issues in spacecraft dynamics.

The necessity for considering the flexibility effect in the dynamic analysis was first realized

when the anomalous behavior of Explorer-I and Alouette-I was attributed to their flexible

appendages. Explorer-I was passively spin-stabilized about its minimum-moment of inertia

axis. The motion ofa spacecraft spinning around its minimum-moment of inertia axis, which is

stable if the system is rigic!, was laler proved 10 be unstable for flexible systems. The instability

of Explorer-I was attributed to its flexible antennas. Alouette-I, a satellite with a compact

central body and four long flexible antennas, was aIso destabilized due to the energy dissipation

associated with the structural motion ofthe appendages caused by solar heating.

An important issue in~g the flexible systems undergoing large rigid motion is the

effect caused by coupling of the e1astic and rigid degrees of freedom (DOFs). Modeling a

3
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syst~m of this type whil~ n~gl~cting th~ effect of coupling may result in faul!).' equations of

mollon.

Constrained motion is another important issue in spacecraft dynamics. even if there is no

r~al c10sed kinematic loop in the system, As an example. the morion cf a free floaring

spacecraft. under no extemal forces or moments except the gravity while neglecring the gravity

gradient effect, can be considered as a constrained morion with the simple non-holonomie

constraint of cons/an/ anglliar momen/llm and the holonomie constraint of prescribed orbital

motionfor the entire sys/em's center ofmass. In the case ofspatial motion. for instance. either

of these constraints can reduce the degrees of freedom of the system by three. which may make

the analysis of the system a lot casier.

Apart from the above mentioned constrainlS and those associated with closed kinematic

chains. constrained motion cao be encountered when the motion of some of the OOFs of the

system are prescribed through the appropriate application of aetuator forces - not through the

interaction with the prescribed surrounding environment This type of constrainlS, which cao be

called artificial cons/rainlS. are likely to be encountered in space robotics where a manipulator

may be employed to imitate the motion of a certain mechanism. Figure 1.2 shows a typical

problem in which the manipulator may be required to move the point 0 along the local

horizontal to ensure the Iibrational stability ofa tethered satellite system (TSS). In this c:ase, the

system has three OOFs and one artificial constraint, as opposed to four OOFs for the

unconstrained motion.
,

=
Clearly if one cao generate the equations of motion of a constrained system as a set of

e" ..pIicit ODEs, not differential and algebraic equations (DAEs), it cao save a lot of efforts in

control analysis and simulation; moreover, .it ensures that the motion would follow the

prescribed pattern.

4
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Once the equations of motion are generated, a control law can be devised based on the

objective of the maneuver. Different methods and a1gorithrns of control might be used,

depending on the maneuver and the objectives, to accomplish the task. For e.'l:ample, the

stationkeeping maneuver of a satellite can be performed by utilizing a control law obtaincd

from linear control methods. In this case. the controller can be designed based on LQR method

to optimize sorne cost function, like the consumed energy, or it can be simply a PD controller

which is clearly easier to implement practically. Another example is the docking maneuver

which can be accomplished using a controller designed using the feedback linearization

technique, a noniinear controller, or one based on the LQR method with time dependent gains.

The sarne task can be done, while optimizing a cOst function such as maneuvering time, using

the nonlinear optimal control methods.

Optimal solutions, which are usually too diflicult te implement in practice, are of

academic interest In reality, they plOvide the lower/upper limits for a specifie maneuver and

give a measure te define the performance ofa practical solution.

5
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In spite of the considerable amount of research done. the problems of dynamic stiffening

effect and constrained motion. which are vital in analysis of spacecraft attitude dynamics. have

not been solved completely. These problems are tackled in this thesis. In addition, development

of a formalism, and a computer code based on that, capable of generating the equations of

motion analytically and in a form suitable for control purposes is also anempted. Finally, this

thesis aims at applying existing algorithms of control such as feedback linearization technique,

and nonlinear optimal control, perhaps with sorne improvements. to maneuver and control of

complex space systems.

1.1 Literature Review

Due to the fuet that the analysis and design of space systems have to be very precise,

research on many relevant subjects has been pioneered, or at lcast elaborated, by researchers

working on problems related 10 space. This is true for dynarnics and maneuvering ofspacecraft

too. Nevertheless, these subjects have also been studied by researchers with other interests. For

instance, the research on multibody dynamics in a modem context was tirst initiated by

researchers wo!\(ing on spacecrafl dynamics; however, the same subjeet has also been studied

by other researchers working in other areas such as robotics and mechanisms.

To obtain a better perspective of the previous research works, the literature review has

been categorized under four 10pics as follows:

(1) multibody dynamics;

(2)dynarnic stiffening effeet;

(3) constrained motion;

(4) minimum-rime maneuvering and control

6
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Although this is not the \Vay the story \Vas unfolded chronologically, we have chosen this path

to share the benefilS of research work done by people in other disciplines. We bdieve that this

",ill provide a belter means to spot the difficulties and unresolved problems.

1.1.1 Multibody dynamics

The last three decades have witnessed considerable efforts towards formulation of

dynamical equations of multibody systems, conducted by investigators in three different fields:

spacecraft dynamics, robotics. and mechanisms. The multibody dynamics in a modem context

was first studied by Hooker and Margulies [1965]. In this study. they considered a system of

interconnected rigid bodies in a tree configuration. On the other hand, the very fundamental

contributions to this field tan be annbuted to Likins [1966, 1974], Meirovitch [1966. 1970,

1973], and Hughes [1970, 1972]. Likins. with his comprehensive papers. provided a good

physical insight to the 1l1'C"1.>lem and inspired extensive research activities. Precise modeling and

elegant mathematical analyseis were carried out by Meirovitch. Besides presenting generalized

formulation procedures, Hughes performed extensive work on analysis and control of space

systems. These studies provided a strong background to the subject of the effect of f1ex1bility

on attitude dynamics.

While most of the above-mentioned works....vere directed towards spacecraft dynamics.

research on multibody dynamics with applications in mechanism dynamics and, particular\y,

manipulators dynamics was also undertaken. Uicker [1965] derived the equations of motion of

closed-loop linkages. His work was later modified by Kahan [1969] to include open-loop

mechanisms. In the seventies, researchers were trying to use the dynamical mollets of

manipulators in their control analysis. The works of Paul [1972], Bejczy [1974], Raibert

[1977], and Hom [1978] tan be mentioned as sorne examples Ùl which they empl~-different

simp1ified mathematical models Ùl the control analysis. The models were sirnplified to
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owreome the eomputational diffieulties due to eomplieated equations of motion of the

manipulators. whieh at that time was a bonleneek to the problem.

ln the early stages. rcsearehers were more eoneemed with developing the theoretieal

foundation of the problem. However. in reeent years. the rcseareh is eondueted more and more

towards developing formalisms. i.e.• a1gorithms suitable for automatie generation of equations

of motion using eomputers. and improving their performance. Sorne of thcse works are

eoneemed with more specifie prob!ems. e.g.. tethered satellite systems and ground·based

robolS. while sorne others have tried to produce formalisms with a broader area of application.

However. none of the formalisms Can claim to be equally suitable for different areas of intercsl.

nor are they equally weil designed for both control and simulation purposes.

There is a vast body of literature on multibody dynamics. To avoid diverting from our

objective. we focus our attention on general purpose formalism and refer the interested reader

to the comprehensive reviews of multibody dynamics by Modi [1974]. and Likins [1988].

MBDY. developed by Flisher and Likins [1974] based on Hooker-Margulies

formulation, was one of the first computer codes for simulating multibody dynamics. Frisch

[1975] developed NBOD2 to generate and solve the equations of motion ofN coupled flexible

bodies and point masses. Bodiey et al.[1978] produced a computer code caI1ed DISCOS which

was capable of incorporating control in the simulation of the dynamics of structures.

TREETOPS was another computer code which was developed by Singh et al.[1985] to

simulate the dynamics of flexible multibody systems. Un1ike most of the previous1y-mentioned

computer codes.. extensive control simulation capabilities were built inta the TREETOPS
~

program. Cyril et aI.[1991]-developed a computer code. FLEXLINK, for seriai manipulators
"0

with flexible links. In ail these~codes the formalism is implemented nurnerical1y.

Another branch of multibody computer codes evolved as a result of the development of

symbolic computer languages such as MATIŒMATICA and MAPLE. Severa! symbolic
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computer codes were developed for multi-rigid-body systems. such as "EWEUL by Sch.ehlen

and Kreuzer [1977]. MESA VERDE by Winenburg and \Volz [1985]. SD;EXACT b~'

Rosemhal and Sherman [1986]. AUTOLEV by Schaechter and Levinson [1988]. and

AUTOSIM by Sayers [1991]. These codes are capable of anal~1ically generating the explicit

form of the equations of motion. However. the advantage of ha\ing analytical. explicit form of

equations cornes with the difficulty of increasing the length of the equations as the number of

the bodies in the system grows. This difficulty. which becomes drastically worse for systems

with flexible members. cao be identified as the bonleneck for using symbolic multibody codes.

Symbolic multi-rigid-body computer codes such as SDIEXACT and AUTOSlM. despite

their fair capabilities. are not suitable for today's space systems due to the inherent fle.xibility of

light weight space structures. Most of the multi-flexible-body formalisms. on the other hand.

are implemented numerically which makes it necessary to pre-define the system configuration.

i.e.• the kind ofjoints and links. the position of the actuators. etc. Simpler definitions result in

bener performance of the forma1ism, but restrict it in scope. while defining more complete

systems results in weaker performance. Moreover. completely numerical implementation is not

suitable for control purposes, for numerical linearization is difficult to perform and the

implementation of arbitrary placement of actuators becomes very difficull, if not impossible.

Also. incorporation ofdifferent control schemes becomes a difficult task.

1,1.2 Dynamic stiffening effect

StudY of the behavior of flexible bodies anached to a moving support has been

vigorously pursued for almost fift:y years in connection with a number of diverse disciplines

such as machine design, helicopter dynamics, robotics, and spacecraft dynamics. The problem

cao be stated as the disagreement between the resu1ts predicted by conventiona! modeling

methods and the experimenta! results. The researchers have tried to find a method to make

appropriate corrections to the equations ofmotion ofsuch systems to obtain correct results. The

9
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scope of the published studies on this subject varies !Tom the simple case of \ibration of

rotaunl; bars wlth constant anl;ular velocity to very complicated problems of the motion of

flexible spacecraft antennas with arbitrary base motion.

Meiro\itch [1967]. in his mono~raph, discussed the problem of transverse vibration of a

rotating bar with prescribed angular velocity, as weil as transverse vibration of a bar under a.xial

forces. Vigneron [1970] also studied the effect of dynamic stiffening in multibody dynamics.

He studied the dynamics ofa spinning satellite with crossed-dipole configuration. Likins [1974]

who probabll' coined the words "geometric stiffening" of rotating beams. carried out an

iIIuminating study on this subject bl' considering the problem ofrotating e1astic appendages.

Hoa [1979] investigated the vibrational frequencies of a rotating beam with a tip mass.

The effects of the root offset and the setting angle (the angle between the spin axis and the

beam axis) were also considered. The papers bl' Peters and Hodges [1980] and Karnmer and

Schlack [1986] have considered planar vibration of a rotating beam and deterrnined the critical

spin rate for buckling. FOK and Burdess [1978]. in a simi1ar study. calculated the 1imits on the

natural frequencies ofa rotating beam.

The problem ofan elastic beam undergoing arbitrary base motion was studied bl' Kane et

al. [1987]. They proposed to retain the second order terms. in rerms of elastic generalized

coordinares.. in the elCpression for the axial elastic disp1acement of the beam. In spire of

reasonable results obtained, their approach suffers from a confusion in using the defonned and

undefonned-configuration coordinates. In developing the equation governing the coupling of

the elastic deflections. from which the second order terms are eKtracted, they assurned that the

transverse deflections are functions of defonned-configuration coordinates. However. the

transverse e1astic deflections supplied to this equation, as weil as the rest of calculations, were

elCpressed in terms ofundefonned coordinates. This inconsistency vio1ates the above-mentioned
1

crucial equation from which the elCpression for the second-order longitudinal elastic deflection

10
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was cakulated. The same deticiency remained in the study of plates undergoing large ovcrall

motion carried out by Baneljee and Kane [1989]. This drawback has been c1early poimed l'ut

and discussed by Hanagud and Sarkar (1989] who. instead. used a founh order expression lor

the dastic sttain energy to compensate for the missing terms in the equat:ons of motion.

Ider and Amirouche [1989] invesrigated the effect of geometric stiffening on the

dYl1amics of multibody elasric systems. They chose to use a third-order expression lor the

elasric strain energy to accommodate the dynamic stiffening effect.

Most of the work done in this area suffers from the drawback of dircct /lSC ofgcolllclry

in establislùng the relations goveming the interaction of the elastic deflections. irrespective of

whether these relations are used later in calculation of nonlinear velocities or nonlinear sttain

energy. The direct use of geometry. which is a case-dependent approach. has becn a major

obstacle in developing general methods ~-apable ofhandling more complicated elastic elements

such as plates and shells.

As an altempt to circurnvent this obstacle. Banerjec and Dikens [1990]. in a fairly

complete study, considered the problem of a general elastic body undergoing arbitrary base

motion. They proposed a method based on compensating for the missing terrns by means of a

geometric stiffitess matrix. The matrix must be generated using a finiie element approach and

defining t1ie zero-order inertia forces as an extemal force field acting on the elastic body.

A1though the study is a significant advancement, it is difficuit to use the method for complex

muitibody systems. for which the definition of the generalizedcoordinates and generalized

speeds assocïated with base motion are different from those used in their paper.

A better idea was proposed by Padilla and von Flotow [1992]. Attributing the missing

terrns to premature Iinearization (linearization prior to the caIcuiation of velocities), they

suggested th~ use ofnonIinaar strain-displacement relations to prevent loss of any terrns in the

equations of motion. Their study. however. fell short of developing a general formulation
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apphcabl~ to dltT~r~nt e1astic m~dia. They confin~d their study to the b~ams and for mor~

comphcat~d cas~s sugg~ted the us~ of mllllcHly lineari=ed ~quations. ~quations in which ail

nonhn~ar t~rms involving th~ ~Iastic deflections and their time rate of change are ignored.

,"st~ad of using improperly hnearized equations.

1.1.3 Constrained motion

ln the past decade there has been a growing interest in modeling and simulation of large

m~'Chanical systems with constr:lÎned motion and c10sed kinematic loops. This has be~n

motivated by applications in diverse areas such as astrodynamics. robotics. mechanisms. and

biosystems.

The method of using Lagrange's multipliers to generate the equations goveming the

motion of a constrained system is weil known - see Goldstein [1950] for example. However.

this method has the disadvantage of producing a hybrid set of differential and algebraic

equations (DAEs). which may not be convenient in many cases. Moreover, for a system with P

independent constraints. this hybrid set of equations has 2P additional equations (and

unknowns) compared to the minimum number of equations which are conceptually sufficient te

describe the motion of the system. Hence, a considerable amount of effort has been devoted te

find methods to eliminate the unwanted variables and reduce the order of the' equations of

motion to its minimum. which at the same rime reduces the hybrid set of DAEs to a set of

ODEs.

Within the past few decades. severa! re1ated methods have been proposed that first derive

the hybrid Set of equations and subsequently reduce the system, by means of a matrix

transformation. te the minimal order fonn. In a procedure developed by Uicker [1969], the

dependent variables are ca\culated from the algebraic constraint equations numerical1y. The

independent coordinates are integrated then using these initial values. The necessity for proper
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choice of the independent coordinates and the high cost of iterations for calculation of the

dependent coordinates are sorne of the drawbacks of this method. Wehage and Haug [1982]

suggested a method which uses a Lagrangian approach and Gaussian elimination to identifY the

independent generalized coordinates. Nikravesh and Haug [1983] used Gaussian elimination

with full pivoting to accomplish the same task. Their work was modified by Mani [1984] who

employed singular value decomposition to identify the independent generalized coordinates.

This technique showed bener stabilily characteristics. His work was further improved by Kim

and Vanderploeg [1986] on the numerical efficiency by introducing "null-space updating"

based on QR decomposition.

As opposed to these Lagrangian-based methods, another set of a1gorithms have been

developed based on Kane's method. Kane [1961] presented an elegant approach which cao be

used to direetly generate the mi:-.imal set of equations. This method will be discussed in detail

in the fourth chapter. The drawback ofthis method cao be identified as the Jack of a constraint

force evaluation approach as systematic as the Lagrangian multiplier method and the neeessily

for predetermining the independent generalized speeds.

A series of research works were conducted to modify Kane's approach to determine the

independent coordinates of a constrained system automatically. Kamman and Huston [1984]

introduced the zero-eigenvalue technique, wfùch was based on a matrix theorem given bY

WallOn and Steeves [1969]. 10 calculate the orthogonal complement of the constraint Jacobian

matrix. This orthogonal complement matrix is used then to identify the independent coordinates

as weil as to reduce the equations ofmotion to its minimal form. Singh and Likins [1985] used

singular-value decomposition to do the same task. Angeles and Lee [1988] used the method of

natural orthogonal complement 10 eliminate the Lagrange multipliers. To improve the numerical

efficiency. Amirouche et al. [1988] used a pseudo-upper-triangu1ar decomposition of the

constraint matrix based on successive multiplication of Householder transformations 10

compute the orthogonal complement matrix. Ider and Amirouche [1988] presented a similar
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method based on eqUivalence transformation of the constraint matrix to an upper-triangular

form The transformation matrix was generated by simple Gaussian elimination technique.

Ail of the above methods presume the constraints to be implemented nahlral/y. While the

methods for generating the equations of motion of naturally constrained systems is rather weil

developed, no method is available to derive the equations of motion of artificially constrained

systems (as defined in Section 3.4).

1.1.4 Minimum-time control

Rapid maneuvering has long been part of many space oùssions. For an aetual system,

with actuator saturation Iimil, the time elapsed to accomplish a certain motion cannot be shorter

than a certain value. The time-optimal-maneuvering problem deaIs with finding the time-history

of the control inputs, aetuator torques, which can accomplish the desired motion in the shortest

intervaI of time.

This optimization problem can be formulated using Pontryagin's minimum principle (see

Kirk (1970» with the final time as the objective function, the function to be minimized. The

problem has no closed·form solution except in the simplest cases 50ch as a single DOF system

with a single conttoller. Moreover, the problem for complicated nonlinear systems yields

acceptable results, even to numerica1 approaches, 0!Ùy when certain simplifying restrictions are

applied. Taking the efFect offlexibility into accolDtt increases the complexity of the problem by

increasing both the DOFs of the system and introducing the necessity for suppressing the

elastic motions.

Many researchers have devoted their efforts towards deve\oping numerica1 methods tO

solve the two-point bolDtdary-vaIue problem (TPBVP) arising from Pointryagin's minimum

principle. Most of these methods are the shooting methods, based on iteration, te find correct

initial conditions for the costates ofthe system.
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Robert et al, [1969] inrroduced a perturbation technique to solve the nonhne:u TPB\'!'

The method is based on making the system increasingly nonhnear through a sequence of hne:u

problems. while using the solution to each step as the forcing function for the next l'rder "f

equations, ln a similar approach. Subrahmanyam (1 9S6] uses Ne",on's method 10 nl:lke

successive approximations by linearizing the system through a discretization procedure, l\\ide

and Iyer (1970]. using the method of particular solution tried to approximate the "tme" set "f

initial conditions by a linear combination of a set of initial conditions used in the pre\iOll' st.'Ps

to determine the independent solutions, Quasilinearization is another technique which is used

by several researchers when addressing the problem of nonlinear TPBVP, Yeo et al, (1 Q7-l]

inrroduced a method for choosing the initial multipliers for quasilinearization in an optimal way

to achieve the fastest convergence as weil as an accurate solution. Li and Bainum (1 '190]

employed the quasilinearization technique to minimize a blended·function of rime and energy

while shortening the final rime successively to arrive at the minimum rime solution. Bainum et

al. used the resuIts ofthis method as the inirial guess for a mulriple shooring method to arrive at

a more accurate solution to the minimum rime problem of muIti-axis maneuvering of a flexible

spacecraft [1992].Unlike the previously menrioned methods. which need a relatively good

inirial guess to converge. the direct methods such as the steepest descent method employed by

Storm [1973] lead to very fast convergence within a few steps. However. the convergence rate

decays as the desired accuracy increases. The steepest decent a1gorithm was recent1y modilied

by Meier and Bryson [1990] to develop the switch rime optimization (STO) method. The

method assumes that .the controls are saturated during the maneuver and takes the numbcr of

switches as the input to solve for the switch rimes.

Another method which seems to be prornising in solving optimal control problcms is the

method of collocation and nonlinear programming. Collocation was developed by Dikmanns

and Weil [1975] and combined with nonilnear programming by Hargreaves and Paris [1987].

The methed. which was recent1y employed by Scrïvener and Thompson [1993] to find the rime-
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"pumal atlltud.: mant.:uwr of a rigld spacecraft. has the advantage of converging \\lthm the

u,:slred accuracy m a r.:asonabl.: amount oftime. even \\ith a relarively poor Initial guess.

Th.: probl.:m of rest to rest maneuvering of rigid spacecraft has received considerable

anCl1uon m the past ln an early anempt. Karmon [1970] studied the minimum rime maneuver

of a nglu spacecraft. while assuming the angular velocity vector to remain fixed in the inertial

fr:lme. In a similar way. D'Amano and SlUbbs [1979] used Euler's theorem on rotation to

perform rapid reorientarion of rigid spacecraft. This problem was also slUdied by severa! other

researchers. One may mention the works by Chen and Kane (1980]. Carrîngton and Junkins

[1986]. Vadali and Junkins (1983.[984]. Wie and Barbara (1985]. and Vadali ([ 986] as typical

examples. For more detailed information, the inleresled reader is referred to the comprehensive

reviewon this subjecl by Singh el al. (1989] and Scrivener and Thompson (1992].

Flexible spacecraft slewing problems. like their rigid-body counlerparts. have received

considerable attention. Most of the researchers in this area SlUdied the problem of single-axis

maneuvering ofa rigid hub with f1e.xible appendages.

Dods and Williarnson (1984] SlUdied the problem of single-axis maneuvering of a

f1e.xible. single-controller spacecraft. They carne up with an algorithm suitable for systems with

a low fundarnental frequency. Ben-Asher and Burns (1987] presenled a solution 10 a nonlinear

optimization problem based on the solution 10 the linearized problem as an initial guess. It was

found that the minimum times, for bath linear and nonlinear systems were similar. but

symmetty of switching times was destroyed in the nonlinear mode!. The sarne problem was

solved through phase-plane analysis by Barbieri and Oguner [1988].

~

Perturbation technique was used by Meirovitch and Quirm [1987], Meirovitch and ,::::/

Sharony (1990] and Meirovitch and Kwak [1990]. Using the perturbaticn technique. they

subdivided the equations ofmotion 10 IWO sets: (1) the zero-Order set, a nonlinear set goveming'

the rigid-body motion: (2) the first-order set, a linear time-varying set associated with the
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control. Th~ bang-bang mput torqu~ r~sulting irom th~ time-optimal solution oi the zeH'-<'rder

system \Vas appli~d by th~ hub actuator as the op~n·loop control to produce the rcli:rencc

motion. At th~ same time. the actuators locat~d on th~ t1exible appendage:; applied the mput

torques of the feedback control. calculated using st:lle feedback approache:;. (0 supprcss th,'

elastic \ibrations.

The l'roblem of time-optimal. open-loop control of a single-a.xis maneuver of a rigid hub

with flexible appendages was also studied by Thompson et al. (1989). To meet hardware

cOnstraÎnlS in generating instantaneous switches and to avoid excitation of higher t1exible

modes. they chose to avoid instantaneous switching by smoothing the bang-bang control

profile. In this approach. the ability to control the degree of sharpness of the switches. has

provided a good means to evaluate the tradeoffs with respect to maneuver time and residual

energy.

This work was later on improved by Junkins et al. [1990). They employed the

Lyapounov method to devise an asymptotica1ly stable feedback control to suppress the elastic

vibrations. The input to the system. applied by a single aetuator to the hub. was the sum of this

feedback and a reference' smoothed-bang-bang control. obtained based on the analysis

presented by Thompson et aI.[1989]. The method was subsequently validated by them

experimentally [1991]. This method was also applied by Bell and Junkins [1993] to solve the

minimum time and minimum fuel. three dimetlSional maneuvering of a flexible spacecraft with

general configuration, and by Hecht and Junkins [1992] to solve the time optimal problem of a

flexible two-link manipulator. In a recent worle, Bang et al. [1993] lOOk the near-minimum-time

maneuver resulting from smoothed input and optimized the control with respect to the

smoothing parameters .The resulting profile involves less smoothing, to achieve a short

maneuver. but the vibrational excitation is aIso reduced.

17



•

•

1 Introduction

Bamum and LI [1991 J employed the method of quasilinearization and panicular solution

to address the problem of optimal large angle maneuvers of a flexible spacecraft. The same

111~lhod was also used by Tan et al. [1991] to solve the problem of minimum time sle"ing of a

flexible shallow spherical shell system. They used the solution to the linearized problem as a

nommai solution for the nonlinear TPBVP.

ln a recent paper. Li and Bainum [1993] presented an analytical solution to the minimum

time control of a fourth-order linear system near the origin. The system under consideration,

which has IWO real zeros and two imaginary eigenvaJues, represents a flexible structure with

one rigid mode and one elastic mode.

Baneljee and Singhose [1994) studied the problem ofslewing and vibration control of a

highly fle.xible structure. They used the innovative method of "preshaping input command'"

presented by Singer and Seering [1990) to find the multi-switch bang-bang control law which

tan accomplish a rest-to-rest maneuver in minimum time while suppressing the elastic vibration

at the same time. In addition to this open-loop control, they also presented the results of an

augmented c1osed-loop control.

The multi·dimensional optimal control problem has also been studied extensively by

researchers in the field of roboties. A1though most of the algorithrns developed by researchers

in this field are meant to be used for rigid, earth-bound robots. they can be commooly applied to

other multi-dimensional optimal control problems. The STO algorithm, developed by Meier

and Bryson (1990), is an exarnple of the algorithrns developed originally ta solve time-optimal

control problem of a two-link manipulator that have found applications in other areas of

research.

For the sake ofbrevity, ooly one algorithm which is ofparticular interest to titis thesis is

discussed here and for more references, the: interested reader is refereed ta the excellent

reviews on titis subject by Shiller and Dubowsk-y [1989] and Wie et al. (1990). Babrow et al.

18



•

•

[1 QS5] d~v~lop~d th~ abov~·m~ntion~d algorithm for th~ Sp~Clal case of the tllll<:-<'ptllllai

motion of a manipulator along a sp~cifi~d path. ThiS m~thod uses the phase·plane :malys\s tl'

find th~ optimal velociry profil~ of the manipulator along a given path sub.lect to actuat,'r

constraints. Th~ method considers the full nonlinear dynarnics "f the manipulator :md pernllts

actuator constraints to b~ c.'(press~d as compl~x functions of the system states. The alg"rithm \S

quit~ straight forward and computationally efficient in the case of single-switching maneuvcr.

Howev~r. in th~ cas~ of multi-switching controls. which can occur frequently. an met1icient

shooting method was sugg~ted for ca1culation ofswitching points.

This work was extended by Shiller [1984] to include th~ constraint of ma.'(imum speeds

that a manipulator can sust:lÏn \vithout losing its grasp of the payload. Shiller and Dubowsl..-y

[1989] ~":tended the method funher to find the optimal path itself.

1.2 Motivation and Objectives

The primaIY objective of this work is to slUdy different aspects of the dynarnics of

flexible, multibody space-slrUctures during rapid maneuvering and to produce a computer code

which can correctly develop the equations of motion of such systems in a forrn suitable for

control analysis.

Constrained motion is the first concept which is discussed in this thesis. While nal/lra/Iy

constrained motion has gained considerable attention in the past, artificia//y constrained motion

has almoS! been untouched In fact, almost no attention has been paid to the mClhod of

imp/ementation of constraint forces which is the main point of difference between natural and

artificial constraints. One of the specific objectives of this study is to develop a method which

can uniquely generate the minimum dimension set ofequations ofmotion for systems subject to

artificial and/or natural constraints.
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EfT~ct of rigtd-body bas~ motion on th~ dynamlc r~sponse of flexible systems is another

pomt of mter~st in thls study. AIthough this has b~~n studi~d by several research~rs. there is

still a debate owr what is the ~xact source of flaw in the equallons (kinetic or strain energy). or

what remedy is th~ b~sl. Above ail. the lack of a general theory which can be applied to a

multibody 'J'stem with different kinds of elastic members (beams. plates. and sheIls) is also

evident.

Having developed the above mcthods for handling constrained motion and flexible

systems undergoing rigid-body motion. development of a symbolic computer code armed ,vith

these theories is attempted. The code should be capable of introducing some intermediate

parameters to keep the size of the equations of motion as small as possible. and carrying out

proper linearization of equations in the presence of intermediate parameters. It should aise

facilitate easy incorporation ofactuators in any arbitrary location, even on the elastic bodies.

The second objective of this work is to study some issues related to the control and

maneuvering of flexible multibody space systems. The application of constrained motion.

specially artificial constraints, in control of flexible multibody systems is studied. A1though the

control of constrained systems has been studied in the past, the idea of using artificial

constraints to devise control algorithrns is new. Time-optimal motion of flexible, multibody

systems along a specified path is the last subject to be studied in this thesis.

1.3 Thesis Organization

The thesis can be divided into two parts. The first part, Chapters 2-5, analyses the

dynarnics ofthe system and the relevant issues. while the second part, Chapters 6-8, deals with

control and simulation ofthe system.

In particular. Chapter 2 presents the overall structure and formulation of the equations

goveming constrained motion of a flexible multibody system. The dynarnical model for a
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general member of the system is presented along \\ith the specialization for rigid bodies.

Timoshenko beams. and plates. Line:uization of equations of motion in the presence of

intermediate parameters IS also discussed in this chapter.

Chapter 3 is devoted to the study of constrained motion. Natural and artiticial constraints

are tirst introduced and their difference is discussed. Conventional methods for generating the

equations of motion of naturally constrained systems is presented briefly. Ne.xt. a method is

developed which cao be employed to generate the minimum-order set of equations for systems

with artiticial and/or natural constraints. This chapter ends with the discussion of sorne related

issues such as detennination, adequacy and redund::'tCY ofconstraint forces.

In Chapter 4, the kinematical equations of motion and the modified recursive method.

used to calculate angular velocities and partial velocities necessary in developing the equarions

of motion, are presented. Most of the material covered in Chapters 2 and 4 are not new

developments and are presented briefly for the sake of completeness and continuity of the

discussion.

The effect ofrigid-body base motion on dynamic response ofelastic systems is studied in

Chapter 5. The discussion starts with a proofto show that incorrect kinetic energy (due to early

linearization of velocities) is the source of the errer in the equations developed by using the

conventional methods of discretization. Different remedies for this problem are then examined

and compared Finally, a general method for generating the correct equations of motion based

on the non1inear strain-displacement relations is presented. Specia1ization of the method, which

can be virtually applied to any elastic medium, are given for bearns and plates. Severa!

examples are provided to iIIustrate some rather unusual phenomena in e1astic bodies

undergoing large base motion (such as missing terms in the mass malrix or cxperiencing a

softening effect).
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The formalism developed in Chapters 2-5 is employed in Chapter 6 to solve three

problems. Capture of a spinning satellite by a flexible two-Iink manipulator is the tirst problem

studied. In the second problem. the feasibility of using a two-link space manipulator for

stabilizing tethered satellite systems is investigated. The last problem studied deals with the

retrieval of a large payload by a redundant space manipulator. which possesses seven revolute

joints; in this study the effects of f1exibility of both the joints and links of the manipulator are

taken into account.

The idea of using constr:IÎned motion in control of rnultibody systems is presented in

Chapter 7 through presentation of sorne examples. It is shown that the rnethod can find

interesting applications in serni-rnanual control of rnanipulators and in fine tracking of flexible

rnanipulators.

Chapter 8 presents an approach for near-minimwn-time rnaneuvering of flexible

rnultibody systems moving along a prescribed trajectory. The idea is suceessfu1ly employed to

perform a retrieval rnaneuver by a Shuttle-based three Iink, flexible rnanipulator.

Chapter 9 conc1udes this thesis by presenting sorne conc1uding remarks and suggestions

for future warle.

22



•

•

Chapter 2

Dynamics

2.1 Introduction

As stated in Chapter 1. development of a computer code for generating the equations of

motion of a fle.xible multibody system is one of the objectives of this study. This chapter

presents the formulation. based on which the computer code (FLXSIM) is produced. Most of

the material presented in this chapter are not new developments and are presented briefly for

the sake of conrinuity and completeness. In this chapter, it is assumed that the system has no

closed kinematic loop or prescribed motion. i.e., the motion is unconstrained. The study of

constrained motion is left for Chapter 3.

The formulation is based on Kane's method and the equations of motion are found by

superposing the contribution of each body to the generalized mass and force matrices. Since

each body is being considered as a part of the whole system. not a separate body, and since the

forma1ism is based on an energy-based method. the non-working constraint forces (e.g., joint

forces) do not come into the pieture.

Before starting the discussion. it is useful to define sorne of the conventions used in this

thesis. The right subscripts are numeric indices except for the index 't'. the right superscripts

refer to the points and bodies ofinterest, and the left superscripts stand for the reference
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frames; for example. A V' is the veloeity of point p in frame A. The left superscript is omincd

in the case of the inertia frame. The elements of a column are components of the corresponding

vector in the frame shown by the left superscripl except for the rotationaI quantities which are

the components of the vector in the frame shown by the right superscripl Thus. if a, and fi,

denote unit vectors in frames A and B. respectively. then Ar,' = a, . Af' (the i-th component of

the position vector of point p in frame A. Af'. projected in frame A); however.

A W :' '" fi,' "Oi B (the i-th component of the projection of the relative angular velocity vector

A Oi B in frame B)' similarly A aB = fi . AciB and so on. '" .

2.2 General Formulation

Consider a system S with N degrees of freedom which is a congregation of n rigid and

flexible bodies connected through a set ofarbitrary joints (Figure 2.1). The system is driven by

JJ inputs. i.e.• aetuator forces and torques. denoted by 't = '1"1 ••••• '1"p' The motion of the system

can be fully descnbed in terrns of 2N independent scaIars as follows: q = q"...•q"'. the

•

tt
Figure 2.1 A multibody system.

generaIized coordinates; and u = u1,•••,u",. the generaIized speeds. The generatized speeds are

defined as linear combinations ofthe lime rates ofthe generaIized coordinates:

•
'"ur = :LY..(q,t)q.+Zr(q,t), r=I, ...•N,
..1

(2.1)
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• such that Eq. (: 1) can be solved uniquely for 'i,.· ""i, .

Kane's equations of motion for the continuous system S. sho\\TI ln Figure: 1. c:Ul he

"Tinen as

SV:.Rrd/J- SV:':lrdm=O. r= I. .... .\'.
:J'

in which 0" • m'and a rare. respectively. the entire domain of S. the mass of S. and the acccl­

eration of the element p ; also. R r is the resultant contributing force acting on the clement di>

(see Kane and Levinson [1985]). while V: is the r-th partial velociry of e1ement /'. detined :1S

V: = cvr(q.u.t)/èll,. r = I..... N .

The acceleration ofpoint p has the general forro of

.,
a' ="L V."(q.t)ti, +af(q.u.t).... (2.4)

in which af. the remainder of acceleration of point p. denotes the portion of the acceleration

which is independent oftime derivatives of the generalized speeds. Substituting Eq. (2.4). one

can rewrite Eq.(2.2) as:

M(q,t) Ù = f(q.u. 't,t). (2.5)

where M and f are the generalized mass and force matrices which can be written in the forro

•

ft

M="LW •
J.I

ft

f= "LfJ.
J"

Here the elements of MJ and f J are given by

M~= SV:.V:dm. r,s=l....,N. j=l•...•n.

""
!/ =,F/ - fv:.a:dm. r=l.....N, j=l.....n

""where

(2.6)

(2.7.a)

(2.7.b)
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The main task of the formalism is to produce M! and f! . which are the contributions of

md.v.dual members to the mass matrix and force column. Equations (2.7) are sufficient for the

cakulallon of the above mentioned terms in the most general case which is an arbitrary elastic

hody. In the calculation procedure. there are !wo main steps: (i) ~a1culation of the kinematical

terms. V;". ar .as weil as determination of the resultant contributing force R r acting on the

dement JD. and (ii) integration over the domain of each body. necessary in Eqs. (2.7).

The procedure for calculation of the kinematicalterms is given in Chapter 4; on the other

hand. the difficulty of evaJuating volume integrals can be circumvented in special cases by

carrying out the c10sed form solution or atleast by reducing the dimension of integration. What

follows in this section presents such simplifications for cases when the j-th body is either a rigid

body. a bearn type member. or a plate. Nevertheless. the same simplifications can be performed

for other types of members such as shells.

2.2.1 Specialization for rigid bodies

Let the j-th member of the previously defined system S be a rigid body B. shown in

Figure 2.2. Defining a Sel ofmutually perpendicular unit veclors 6)i:,ii;. fixed in B with the

origin at its center of mass. b • one can express the partial velocity V: and the remainder of

acceleration a: in terms ofcentroidai quantities V:. a:. Q):. a~ .and Q) B as follows:

00
1./"-

.0 Figure 2.2 Schematic ofa rigid body B
,,~--::,

26



•
'\ Dyn~ll1ll('s

vr=V'-C"((I)'" , "r'-'"V') ri\"r r r r' = ..•.•.•

~ .. "f ~ or.. '1.. • ~ Il' "1.. " ..a; =:l~ ... C·(a; ,'r' ... ·a;) .... C·{(I)· ... 'r' .::""'),

In the above relations. C". whose e1ements C;~. are given hy i, .b,. is the rotalll,n matn" I,'r

frame B relative to the inenial frame :. wh~l<, (1)'" denotes the angular velocity of B in 1.

Furthermore. (1);" and a;". respectively. can be writt.:n as the r-th partial angular wloclly and

the rem:linder of angular acceleration ofB in I.

B - 8( )j-m, =cm q.U.l Cil, r= I.. ... N . (~.IO)

s
a 8 =Lm~(q.l)ti, +a~(q.u.l).

,,'
(2.11)

Thus a~ is the part of a" that does not depend on the time rate of the generalized sp.:eds.

Substituting Eqs. (2.8-2.9) into Eqs.(2.7). and noting that J. pJm= 0 and..'
L, 8 r P x(m B xBrP)dm= 18m8 (m B can be replaced with other quantities snch as m~ and

a~ ). where lB is the centroidal inenia matrix of B corresponding to the :L'Ces a1igned with the

unit veetors b,.b:.and b l , one obt:lins

(2. 12.a)

•

in which the torque T and the force R whose 1ine of action passes through the point b. are the

equivalent set for all the contributing forces acting on B. We may rec:Ul that R stands for the

components of:R in the inertial frame 1, whereas, T contains the components of t in the body

frameS.

2.2.2 Specialization to Timoshenko beams

Suppose the j-th member of the system is a one dimensional elastic body (i.e., the

properties ofthe member are only functions ofa single variable x); beams, bars, and strings are

examples of this kind of members. In this section, Eqs. (2.7) are simplified for a Timoshenko
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heam. the most comprehenslw one dimensional dastic body. Table 2.1 giws the possIble

sImplifications from a Timoshenko beam to other one-dimensional dastic bodies.

Consider a Timoshenko beam (Figure 2.3) characterized by a naturallength L. matenal

properties E{.r) .<;(rl. P(X). and cross sectional properties A(.r). J(r). a, (xl. a) (x) .1\(x). and

f(x). The above properties are defined as follo\vs. Let.r be the distance ITom the root of the

beam. point (J. to the centroid of a generic cross section of the bearn. which in this analysis is

assumed to coincide with the center of twist. the flexure center and the elastic center: then E(r).

G(x). and p(x) represent the modulus of elasticity. the shear modulus and the mass per unit

len/:,'Ùl of the beam at .r. respectively. The area of cross section. the Saint Venant torsion factor.

and the warping factor are denoted by A. K and r respectively. Hereafter the functional

representation •(x)' is omined.

Figure 2.3 Schematic ofa cantilever beam.

To define the quantities J,a"a3,we define a set ofmutually perpendicular unit Veclors

h
"
b"b3, fixed in the plane of the cross section at x with its origin, b, at the centroid and

oriented such that h, is along the elastic axis of the beam and h"h3 are located in the plane of

the cross section: then, J is the matrix of the second moment of area of the cross section

3SSOCiated with axes along the unit VectOrs b,.h"h3 and a, and a 3 are the shear area ratios

for b, and h3 directions (see Kane et al. [1987]). To generate the contribution ofthis member

to M and f •we consider an element ofthe beam with a length ofd:c. This element. dB, can be

treated as an infinitesimal rigid body, 50 that using the corresponding expressions for rigid

bodies (Eqs.(2.12», we may derive the expressions for dM and df, the contribution of the
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• ~I~m~nl 10 Ih~ syst~m mass and forc~ matnc~s Th~ œnlro.dal m~l1.a :md lllass ,,1' th~ d~lll,·nl.

ne~d~d in Eqs. (2 12). can b~ rdal~d to .. and p as 1"lIo\\'s

.'"= P",i'C
A

Substituting Eqs.(2.13) inlo Eqs(2.12) and int~grnting owr th~ Ilmgth of the bealll. ,,,,e gets the

contribution ofth~ ~ntir~ b~3I1l to th~ total mass matrix and forc~ column as:

f.' =.T,J - Jp[v: .a~ +2.Q)~ .[.1 a~ +Q)8 x (.1 Q)·")l]d'C. r = 1•.... N.
o A

(21-1)

(2.15)

where F.' denotes the contribution of the j-th member to the genera1ized :lctive force column

defined in Eq.(2.7.c). As opposed to the rigid bodies. ca1cul:ltion of.T,J for e1astic members

needs further elaborntion. There are IWO sources of contributing forces in .F,J • the first is the

external contributing forces and the second is the internai ones. where externa1 and internai are

defined with respect to the entire beam, not the element dB. Thus we can write

L

.F,J =J[V: ·(R' +R')+Q)~·(r +T')]cU, r =I, ... ,N,
o

(2.16)

where., R' and r are the density of the equivalent set of ail contributing extema1 forces and

moments acting on the element dB, while R' and T' form the density of the equivaJent set for

the intemal ones. Hence., we may write

.F,J = (;;1)' +(.F,J)', r = I, ...,N. (2.17)

The contribution of the internai forces and moments, (.F,J)', can be derived by uti1izing the

strain energy function as foUows:

•
(;;J)' =-au/aq" r =I, ...,N. (2.18)
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One should note that the c1ast.c c:rain cncrb'y IS a function of dastic gcnerahzcd coordmatcs

only. so Cr;-- J' = 0 for ail non-c1a.suc generahzcd coordmatcs. Equation (218) 'S based on the

:L'SumpItOn that the generahzed speeds arc detiroed such that ci, = ", for all 'l, belonging to the

c1a.suc DOfs A similar relation for the general definition of generalized speeds can be found in

Kane and Le\1nson [1985].

The strain enerb'Y is a function of the deformation of the beam. To establish this function

we need to define the relative orientation and position of a generic clement dB in the frame A.

located at the root of the beam. The IWO frames. A and B. are parallel when the beam is

undeformed. In facl. frame A is undergoing the same rigid motion a< me beam. The element dB

can be brought into a general orientation from the orientation of A by three successive rotations

of 8,.8,.8,. about iil.h"h,: furtherrnore. the element can be brought into a general position

From ilS undeforrned position by an elastic displacement of wla, +w,a, +w,a,. Based on the

above detinitions, the strain energy function is :

In the above relation. Tl denotes the displacement of the element a10ng the axial direction of the

beam, as shown in an exaggerated fashion in Figure 2.4. Note that Tl is equal te wl only up te

the tirst order of the elastic generalized coordinates. but they are not equal if the second order

~-; -i\\"t~
Figure 2.4 Displacement ofthe neutral axis.
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terms of the generalized coordinates are taken lOto account This will he J,sŒsseJ 10 m.'re

detail in Chapler 5. where the d~llamic stiftèning etfect is aJdress(.;

There might be two kinds of extemal forces. namely distributed le.g. gravitat,,'na!). :Uld

concentrated (e.g. aClUators) forces and torques acting on the beam. In this case (.7,' r can he

calculated as:

L u~ u

( -r"})" =J[V·.RJ "'"Cl'.TJjdx· "V r ' .R' . "Cl r ' .T'..r,. r' r T,.t..., r T.:...., r •

Il ... -\ 1.:-\

r = 1•. '" N. (::!.::!Ol

in which. p' is the element of the beam on which the extemal p"'int force/torque. R' IT'. is

acting. and R J and T" are the density of distributed e:-..1cmal forces and moments per unit

len~'Ùl of the beam. Equation (2.20) makes the implementation of any type of extemal forc~'S

easy,

So far, the relations governing the contribution of an elastic bearn to the total mass and

force matrices are established, but these relations are in terms of the spatial coordinates of the

elements of the beam, w.e, which need an infinite number of generalized coordinates to be

described. Clearly it can not be a practical way, so one needs to discretize thcse quantities to

obtain some finite number of OOFs. The assumed modes method is used here to relate the

spatial coordinates to the generalized coordinates as:

,ul-'"

7/(x,t) = L Iph q,
'.,u,-I
,u.. -"..

w,(x,t)= LIp.. q" k=2,3
,.,u... -I
,u(hoJ)·"fhSI

8, (x.t) = Llpe,<}), q,. k =1.2,3
,·,uC....I)·1

(2.21)

.'
which represent linear combinations of the elastic genera1ized coordinates, q, (t), and sorne

Mmissible functions, Ip', (x).which must satisfy al least the geOmetric bounclaly conditions. v.
- ~ - ,

are arbitraly ntimbers which signify the nuinber ofshape functions employed. whereas Jl, and
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Sp~ClaJ boundary condition has been assumed so far. and hence lhe same fonnulation can be

lIs~d tor ditTer~nt types of boondary conditions.

The use of lhe assumed modes method or finite elements is equivalem to the assumption

of linearity for the dastic DOFs. for these methods are good only if the motion due to each

mode is not atfecled by ùle others. This can be true only if ail c!astic DOfs are small enough.

so lhal a sel of ODEs linear in c1astic DOfs and non-linear in rigid DOfs is the best we cao gel

from a discrelized elastic system. However. to get a properly linearized set of equations. we

may slar! linearizing only arter the calculation of the partial velocities.

When discretization techniques are used by defining the elastic displacements w,•w,. w,

as linear combinations of the elastic generalized coordinates. the linearization has inevitably

slar!ed prematurely. prior to the calculation of the partial velocities. In the absence of a large

rigid motion. this I:remature linearization would not cause any problem. But, for an elastic body

undergoing large rigid motions. premature Iinearization might result in the loss of some first­

order ten"s in the equations of motion. A detailed discussion of this subject can be found in

Chapter 5 of this thesis. where il is shown lhal in the case of beams, this problem can be

avoided by l..'onsidering lerms up lO the second-order in the elastic generalized coordinales in

the expressions for w1as follows:

•
wl =77- J[(ôw,/ôçt +(ÔW3/ôçndç.

o
(2.22)

Table 2.1
ToNcglcet

Possible simplifications from Tirnoshenko bearn.
Sel Euler String Bar

Bearn

•
E.'<tension
Bcnding in a, dir.
Bcnding in a,cdir.
Torsion

: Rotary 1nertia
Shear
Warping restrninl

'P1i~ 0 ~ i· \'h••••V2

'P:.~ O. i a v,+I. v3.
~.a: O. i - v)+t v4

cp~a O. i = v.+1 v.
1" -1,,-0
l/cx, ~ Ua., = 0

r=o
•••

••
•
•

••
•
••
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2.2.3 Specialization to plates

The specialization for plates can be ,arried out in a similar fashion as for beams.

Consider that the j-th member of the system S is a thin plate. shown in Figure 2.5. with the

thickness h. which is much smaller than the other two dimensions of the plate (L, and L:). The

plate is characterized by ilS mass density per unit area p. modulus of elasticity E. and Poisson's

ratio v. In the following analysis. both mid-plane stretch and transverse vibration of the plate

are considered. Besides. the effeet of rotary inertia is takcn into account; however. the shear

deformation is ignored To find the contribution of the plate in the equations of motion of the

system. i.e.• M J and f J • we consider an infinitesimal element of the plate (sec Figure 2.5) with

the area of de, de: and height ofh.

Ll/~~ ..... ~...... "I x2:2

/. .,--------------

C
.>/ dB l"Gl .....

".,. - .., .
" ..:,..... ."

'xl'~
Figure 2.5 Schematic ofa thin plate

•

To descn'be the 1'I10tion of the plate we define IWO frames. The frame A is located at the

point of an,u:\unent of the plate to the lower body in the chain such that the unit veetor i, is

normal to th;~ mid-plane of the plate. Frame A follows the rigid-body motion of the plate. On

the other hand, the frame B is attached to the element dB with its origin at the centroid of the

element This frame. which is parallel to the frame A when the plate is undeformed, follows ail

motions of the element dB. The frame B can be brought into a general orientation from the

orientation of A by three successive rotations of (J"(J2,(J,, about ii)i2 ,ii,;respective1y;

furtherrnore. the e1ement can be brought into a general position from ilS undeformed position by
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The tnfimt~'SlmaJ dement. dH. can be regarded as a rigid body ,,;th centroidaJ moment

of inertla and mass defined as

1" = ph' K do: d'r.
12 ,_ (2.23)

(2.24)

•

Substituting Eqs.(2.23) into Eqs.(2.12) and integrating over the area of the plate. one gets the

contribution of the entire plate to the total mass matrix and force column as:

L, L,

M~= JJp[V:'V:+~~Q)~'(KQ):+n:~I' r.s=\... .. N. (2.25)

o 0

L, L,

f.' =.r;'-JJp[v:-a~+~~Q)~'[KI1~+Q)BX(KCDB)]]~:~I' r=I•...• N. (2.26)

o 0

ln the above equations• .r;' denotes contribution of the j-th member to the generalized active

force column defined in Eq.(2.7.c). This term. using the sarne· methodology presented for

bearns. can be calculated as

~~ ~' ~r

.r;' =-êU!ëq, +JJ[v: ·Rd +CD~ ·yd]~~1+LV:' ·R" +LQ):' .T'.
00 t.l t.l

r =1••••• N. (2.27)

in which, p" is the element of the plate on which the extemal point force/torque, R"'Tl, is

acting, and Rd and r are the density ofdistributed extemal forces and moments per unit area

of the plate. The strain energy orthe plate, denoted in Eq.(2.27) by U. is given by
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where
{,:. U'

U' = ---'-'-
I.J" (~X (~x.

; ..

The spatial coordinates of the plate can be related to the e1astic generalized coordinales

using assumed modes method as:

14 • .. ".

W.(X./)= L'P"q,. k= 1.2.3.
''''1<1 • • 1

I<lt.~JI·''t .."

8. (X./) = L 'P".J)' 'l,. k = 1.2.3.
I=,u'-"I·'

(2.30)

•

in which v. are arbitrary numbers which signify the number of shape functions employed;

whereas. f.J. denotes the number of generalized coordinates previously defined. Il is shown in

Chapter 5 that to obtain correct results for a plate undergoing large rigid-body motion. this

linear relations must be corrected to include second order terms of the elastic generalized

coordinates.

2.3 Linearization

The equations of motion can be linearized after obtaining them. or by starting

linearization only after calculating the partial velocities based onnonlinear expressions for

velocities. AJIy attempt to stan the Iinearization prior to this stage would lead to a premature

Iinearization, which may result in the 1055 ofsome linear terms in the equations ofmotion.

Here, the linearization is carried out ana1ytically after obtaining the nonlinear forrn of the

equations of motion. This has the advantage ofobtaining both nonlinear and linear forms of the

equations of motion: moreover. the difficulty of extending the forrnalism to make it capable of
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dlr~ct gc'l1eratlDn of the Iinear form of the equanons is removed. This \Vay. the burden of

hneanzallon 15 leli to t:le computer. and it is done using the symbohc computer language.

:'-IAPLE-V

The non-Iinear equations of motion. ho\Vever. are often very lengthy. which makes either

the introduction of some imermediate parameters necessary or the use of symbolic language

impractical. The code developed here is capable of analytical linearization of the equations

generated in terms of intermediate parameters using the chain rule for differentiation. This

m:tkes the use of the code for generating Iinear and non-linear equations of motion of large

~)'stems practical.

To discuss the method of linearization, a few words about the intermediate parameters

are necessary. The general form cf the equations of motion, with intermediate parameters. can

be wrinen as

M(q.z.I)Ù =f(q.u.z. 't.I). (2.3\ )

in which z is the vector of intermediate parameters. The intermediate parameters are collected

in a way such that the i-th intermediate parameter is a function of the tirst (i-\) intermediate

paramelers. the genera1ized coordinates, the generalized speeds. and the inputs ofthe system as

follows:

The \inearized form of the equations ofmotion can then be written as:

Mi =[C. -(Mù).lq+C. ü+C, 't+[C. -(Mù).li.

(2.32)

(2.33)

In the above relation, q.ii. and ïi are the trim condition or nominal values of the generalized

. cOordinates. the generalized speeds, and time-rate of the generalized speeds. Similarly. M

denotes the value of the mass matrix evalual:ed al the trim condition, i.e.. M = M(ëi,z,t). On
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• the other hand. q. ü. il. 't. and z represent the small de\lalll>nS ,,1' the ~orresp,,",hng \';m:lhles

l'rom their mm-condition values. The other ternIS appe:tring ln Eq.(:: .."l ~;m he detined:l.<

- l ~f 1

f =-1, -,
( ..t 1

'1.II.'.l

(M il), = /(M il)
l?Z

'1.1:.'1 'I.I,U

where z is the value of z eV:lluated at the trim condition.

To complete the linearization procedure. z and z must be computed. Taking advantage

of the special arrangement of the vector Z (see Eq.(2.32)). one can use the following recurslve

formulas to accomplish this task.

.-,
=. = L=..J =J +(=.). q + (=.). li +(=.). 't.

pl

in which =•• (=. )•• (=.)•• and (=.). are defined as:.J ,

(2.35)

(2.36)

•

- a-
- =~
-1.) 13- "

- J I.tl.a.li: i.ii.ü:i i.q.ii.i l.ii.Ii.'

.(2.37)
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Chapter 3

Constrained Motion

3.1 Introduction

ln Chapter 2 a formulation for unconstrained motion of multibody systems was

developed . In this chapter we extend the formalism to systems with constrained motion. The

motion of a system is said te be constrained when, irrespective of the time histo1)' of driving

forces. the generalized coordinates of the system and their time derivatives are related to each

other through some a1gebraic relations. If P constraints are imposed on a system with H

degrees offreedom (DOFs). then the DOFs of the system are reduced te N =H - P. In this

case. one may expeet that an independent set of H +N first-order differential equations. JI!

kinematical and N dynamical equations. suffices te describe the dynamics of the system. that is

te determine H generalized coordinates and N independent generalized speeds. Unlike the

kinematics anaIysis which is quite straight-forward, the procedure of deriving a complete.

minimum-order set of dynamical equations of motion may pose a challenging problem.

Discussion ofthe formulation ofthese equations is t.'te subjeet ofthis chapter.

ln this context, by ~minimum-order set of equations" we mean a set of dynamical

equations with as many equations as the number of independeili generalized speeds. On the

other hand, a ~complete ~ of equations" is a set which has as many unknowns as the number

ofequation~. In general. a minimum-order set ofequations may not be complete.
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In this chapter we tirst c1assifY the constraints: then. two most popular. cxisting mc!hods

for deriving the minimum-order set of equarions goveming the motion of constraincd systems

arc bricfly explained. Aftcrwards. wc identifY a class of constraints for which the constraint

forces. unknown quanriries. remain in the minimum-order set of equarions obtaincd by

convenrional methods. ln this case. the minimum-order set of equarions is incompletc. i.e.. have

more unknowns than the number of equarions. and cannot be solved. A novel method. based on

Kane's equations. is presented which is capable of generaring the complete. minimum-order set

of equarions even for this c1ass of constrained morion. The essence of the method is to make

sorne modificarions to the nonholonomic partial velociries. Use of these modificd partial

veloeiTies eliminates the contriburing constraint forces automarically and includes their effect in

the equarions of morion at the same rime. As a spin-off, the fonnularion sheds sorne light on

aspects such as adequacy and redundancy ofconstraint forces.

3.2 Classification of Constraints

For a dynamical system, the function g(q,u,t) =0 represents a constraint, where q and

u denote the arrays ofgeneralized coordinates and generalized speeds of the system, while r

represents rime.

A constraint is caIIed holonomie if the constraint equation is integrab1e. i.e., it can be

represented as g(q, r) =O. On the other hand, a constraint with non-integrable equation is

caIled nonh%nomic. The constraint is simple nonholonomic if the function g(q, u,t) is a

linear function of generaIized speeds. The constraints may also he classified as rheonomic and

sc/eranomie, according to whether the function g does, or does not contain t expIicitly.

ln addition to the above kinematie classifications, which are weII-known to dynamicists.

constraints tan he classified based on their dynamie nature as artificially and naturaIly imposed

constraints. Artificial/y imposed eonstraints are those constraints which are inaïntained by
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"pplYll1g constr:lint forces through actuators; these constraint forces need to be evaluated and

supph~d anificially. On the other hand. natural eonstraints are those eonstraints whose

assoclal~d forces are applied naturally. through reaetion of the elements of the system with each

other and with the surrounding environment These IWO types of eonstraints and their

dilferenees are diseussed in more detail in the following sections.

The seope of the study here is eonfined, from the kinematie point of view, to systems

with simple nonholonomie eonstraints. This, however, cao include holonomie constraints as

weil, because any holonomie constraint equation cao be differentiated to yield a f"rrn similar to

that of a simple nonholonomie one. On the other hand, both categories of natural and artifieial

eonstraints are studied.

3.3 Dynamic Equations for Constrained
Motion: Conventional Methods

Consider a system S. comprised of v particles, with N DOfs w1ùch is subjeeted to P

independent simple nonholonomic constraints described by

[[.A,(q,t)],..", [.Az(q.t)],..,.]~::t]= [B(q,t)],., (3.1)

•

in which q=q.,...,q",.,. is an array of the generalized coordinates. and ul =ul, ....u.... and

u: =""'.I .....""'.P denote the independent and dependent sets of generalized speeds of the

system, respectively. Here, .Az is an invertible matrix, by viItue of the independence of

constraints. The constraints are enforced by P constraint forces whose magnitudes are

designated by C=C, ....'C,..

The objective is 10 find a set of N dynarnical equations of motion. This task cao be

accomplished using either Lagrange's method or Kane's method. We discuss both methods

here; however. the second one, Kane's method, is the one adopted in the formulation and
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computer code developed in this study. Both of the above-mentioncd methods. whlch can be

readlly found in the literature. are brielly presented here for the sake of continuity and

completeness.

3.3.1 Lagrange's method

Lagrange's equations of motion for the constrained system S can be wrinen as (see

Meirovitch [1970])

r= I•...• N +P. (3.2)

in which L. Q,. and A. =[.A, Az] are, respeclively, the Lagrangian of the system, the r-th

generalized active force of the system, and the constraint matrix defined in Eq.(3.I). The

quantity J., denotes the i-th Lagrange's multiplier, which is an indication of the i-th constrained

force of the system. The set of N +P equations of motion, Eq.(3.2), can be transformed into a

set of N equations independent of the Lagrange multipliers. To this end, Eq.(3.2) must he

premultiplied by the transpose ofthe matrix AC defined as

(3.3)

in which [1] denotes the identity matrix. The matrix AC is clearly an orthogonal complement

matrix of A. (i.e.,A.A.' =0). As stated in Chapter 1, severa! procedures for the numerical

calculation of the matrix A.' are available in the literature. Using this transformation one may

write the minimum-order set of equations of motion, which is now independent of Lagrange

multipliers, as

•
~~[~(;~)_;LJ=~~Q.., j=I,...,N.
,..1 q, q, '_1

(3.4)
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3.3.2 Kane's method

Kane's equations of motion (Kane and Levinson [1985)) for the constrained system S

can be writien as

• •
Lm'V;.a'=2:V:.R', r=I•...• N,
1=1 1=1

(3.5)

where m' •a' •and R' denote the mass and the acceleration of the i-th particle. and the resultant

of ail contributing active forces applied on particle i. respeclively. Here, V; denotes the r-th

nonholonomic partial velocity of the i-th particle detined as

v; =oV'(q.U"/)/Oll.. r=I, ...,N, (3.6)

•

whcre V' is the absolute velocity ofparticle i . One can readily sec that, in this fonnulation, the

introduction of the Lagrange multipliers is not necessary, so the rninimum-order set of

equations can be generated directly.

In spite oftheir differences. w1ùch may make one of the above-mentioned methods more

convenient for a certain problern, either of them can be applied equally well to solve most ofthe

constrained motion problems encountered in practice. There are cases. however. when some of

the constraint forces remain in the minimum--order equations of motion obtained by either one

of the above IWO methods. The presence of these constraint forces (wIùch are ca1led

contribuling conslrainl forces) causes the number of unlatowns to exceed the number of

equations. This phenomenon is discussed in more detail in the next section, where an important

class ofconstraints which nonnally exhibit this behavior is introduced.

3.4 Naturai and Artificial Constraints

Equation (3.1) (A u =B) describes complete1y the simple nonholonooùc constraints

from the kinematics point of view; however, it does not say anything about the method of

imposition of these CO"lStTaints. One should note that IWO identica1 systems moving under
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kinematically equivalent constrainlS may exhibit completdy diffcrent dynamic beha\ior

depending on the method of imposition of constraints -natural or anificial. :\ simple example

which illustrates this point is given below.

a)

Figure 3.1
b)

Two different type ofconstraints: (a) nalUral; (b) artificial.

Figure 3.I-a depicts a mechanism which keeps the second link of a rigid manipubtor

parallel to the X axis, during the course of its motion, by forcing it to move between Iwo

friction1ess guides at A and B. The motion of the guides themselves in the Y direction is made

possible by the motion of the plate P in the guide V. Since the constraint forces -reaction forces

at A and B- are provided through natural interaction of the system with its surrounding

environment, the motion cao be considered as an example of a natural constrained motion.

The motion takes place in the horizontal plane. In this case, the constraint forces do not

contribute in the minimurn-order set ofequations ofmotion which is

(3.7)

•

where m and l are the mass and the length ofeach Iink, and u1 = li, is the generalized speed of

the system. Here ", is the input to the system and there are as many equations as unknowns.

On the other band, Figure 3.l-b shows a two-link manipulator whose second link is

intended to remain horizontal through application of the torque "2' This mode! is a typica1

example of systems with artificial constraints, for the constraint torque is applied through the
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actuator located at the elbow joint (it needs to be evaluated and supplied artificially). ln this

case. regardless of the employed method, the constraint torque T, remains in the

mimmum-order set of equations of motion, which is

(4me'j3)ü, =T,-T,. (3.8)

•

Clearly, in this case, T, cannot be regarded as a free input parameter, as opposed to T"

for it has to he provided in such a manner that the second link a1ways remains horizontal.

Comparison of Eqs.(3.7) and (3.8) reveals that the method of imposition of constraints affects

the dynamics of the system. Note that Eq.{3.8) is identical to Eq.{3.7) except for a term T,

which obviously is not identically zero. It a1so shows that the minimum-order set of equations

generated for the system with the artificial constraint is not complete, it has more unknowns

than equations, as opposed to the equations generated for the system with the natural constrainl

Ali previous methods for reducing the order ofequarions share the basic short-œming of

just taking advantage of the kinematical definition of constraints, i.e., Eq.{3. 1). These

approaches do not account for the dynamic nature of the constraints, sc they end up with the

same equations of motion for a constrained system regardless of the type of the constraint,

natural or artificial.

A point which is worth mentioning before leaving the discussion is that there are cases

where the constraint forces associated with artificial constraints do not appear in the minimum­

order set of equations generated using the conventional methods (presented in Section 3.3). As

an example. wc may think of prescribing the motion of the tirst link of a planar two Iink

manipulator as a funetion of time. In this case the torque 1"1 bas to be evaluated, as a certain

funetion of time based on the dynamics of the system, and then would be applied through an

aetuator. However, this torque would not appear in the minimum-order set of equalions
-::-/..

generated using the conventional order-reduction metltods, ie., the constraint torque 1"l-~.?...n;;
- -.------

contributing even if the constraint itse1f is artificia1. Now, one might ask how to find out if the
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conslraint forces for a complicaied motion are conlributing or not The answer 10 Ihis question

will be given in Section 3.6.1.

3.5 Dynamic Equations for Constrained
Motion: a New Method

ln this section. we use Kane's equations of motion to dewlop a mcthod which can handle

the constrained motion regardless of the type of imposition of constraints. natural or artiticial.

First the basic fonnulation is developed; then the calculation effort involved in gcnerating the

equanons of motion using this melllod is assessed. and finally the standard fonn of the

equations and its speciaIization for continuous systems is presented. The analysis is based on

the following assumptions:

• The directions of the applied constraint forces are known (as functions of time and

generalized coordinates), although their magnitudes are unknown.

• Constraint forces are adequate to enforce the specitied constrained motion -excepl for

sorne singular configurations which cao be avoided in practice.

• Constrainl forces are not redundanl

The above assumptions are made to make the discussion more concise, and by no means
~::.....-.::::.....:-,

they restrict the scope ofthis fonnulation, specia1ly in practical situations. The tirs! assumptioii"::::~=-::.c

does not resnict the generality of the analysis, because any constraint force with wlknown

direction, which is rare in practice, cao be resolved into a set of components with known

directions and unknown magnitudes. Also, any constrained system must satisfY the second

assumption, otherwise it cao nol foUow the prescribed constrained motion. On the other band,

redundancy ofthe constraint forces, which might be encountered in practice, would bring sorne

aspects of mechanics of materials into the analysis of motion, which is usua1ly avoided in the

4S



fi

3. Constrained Motion

'Ulalysls of muitibody systems Having stated the assumptions. we may now present the

equations of motion.

3.5.1 Basic formulation

Consider the system S. described in Section 3.3. It would be shown that the complete

minim/lm-ordcr equations of motion for this system can be obtained using the following

eql'ation:

.. - ... -
Lm'V;.a' =LV;.R'. r= 1.....N.
,., ,.1

(3.9)

in which m'. and a' are the mass and the absolute acceleration ofthe i-th particIe, respectively,

while V; is the r-th modified nonh%nomic partial ve/ocity (MNPV) ofparticle i. (as defined

later). Also. R' denotes the resultant of ail contributing forces. including the constraint forces.

which is acting on particle i. This includes the contact forces (like friction), the body forces

(such as gravity and magnetic forces). and the actuator forces_

The completeness of Eq.(3.9) implies that the use of V; in generating the equations of

motion causes ail constraint forces to vanish from the equations ofmotion. In other words

.-
LV;'e' =0.
,a'

(3.10)

The proofof Eq.(3.1 0) is given in Appendix A. The tenn e', appearing in the above equation,

is the resultant of ail contributing constraint forces acting on the î-th particle. One has te

distinguish between C
J

• the magnitude of the j-th constraint force (a scalar). and e' ,.cthe

resultant of ail contributing constraint forceS apjllied on partic1e i (a vector). In faet, CJ and e
are related to cach other through the following equation:

•
p

e' - ""C n~
-~ J '

Jat
(3.11)
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where n" denotes the array of the direction cosines ofthe.l-th constr:unt force apphed on the /-

th partick it IS zero if the.l-th constraint force is not acting on the l-th particle

ln order to define the moJ!fieJ "'Jl/holollomie l'<lrlial \·t:!oL'irh·s. V;. and to show that

Eq.(3.9) represents N illJepcllJellt equations goveming the motion of the constrained system.

we star! with the conven:ion:ll nonholonom:.: equations of motion. discussed in Section Ll::

These equations. which are generated using the nonholonomic parti:ll velocitics. can he stated

tor the system S as

where m'.a' . V;. and e are as defined earlier. and F' =R' - e is the resultant of :III

contributing active forces. elCcluding the constraint forces. applied on particle i.

Equation (3.12) represents N independent equaLions of motion. ln the case of systems

with naU/ral constraints, these equations are complete. i.e.• the number of equations is the same

as the number of unknowns (the independent gener:ùized speeds). That is because the second

term on the right hand side (RHS) of Eq.(3.12) vanishes (Kane and Levinson [\985]). This

means that Eq.(3.12) cao be solved in conjuncâon with kinematical equations to determine the

dynamics of the system, i.e. to determine q" ....q,V.p and ", .... ,uN as functions of lime.

Equally weil. in the case of systems with artificial constraints, Eq.(3.12) represents N

independent equations of motion. However, in this case the second term on the RHS of~

Eq.(3.l2) may not vanish which, as stated earlier, makes the set of dYnamical equatio.",:,

incomplete. Substituting Eq.(3.11), one cao rewrite Eq.(3.12) as follows

•
where

v v P

~m'V'·ai=~V··F'+~TC. r=I•... ,N.
~ r ~ r ~ '? J
1.1 ,-1 J.l

:

v

..;:: =~V-· '0" 1 N' 1 PJ" L.J r 't r = ,... , ,J = 't ••• , ,

'.1

(3.13)

'(3.14)
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"tlll~ 7'., can b~ ddin~d as th~ contribution of th~ unit magnitude of th~ J-th consrr:unt forc~ ln

th~ r-th nonholonolTllc ~qu~non of motion.

/' addllional indep~ndent ~quations. with no additional unknO\'TIs. are c1~arly nec~sary

l'rom wh,ch th~ constraint forces. C
J

• are to be found and substituted into Eq.(3.13) to yield a

complet~ s~t of N ind~pendent equations of motion.

Th~e additional equations cart be obtained by introducing P additional generalized

speeds such thal they violale the constrainlS. These additional generalizeci speeds are used only

in the calculation of moditied partial velocities. while they are ail set to zero in determining the

velocities and acceler3tions. The partial velocities associated with these new generalized speeds

can be used to gener3te the P additional independem equations. This procedure. which is

parallel to the procedure of "bringing non-contributing constraint forces into evtdence"

discussed by Kane and Levinson [1985]. is detailed in Appendix B. The procedure presented

here. as opposed to the one suggested by Kane and Levinson which leaves the burden of

properly introducing the additional generalized speeds to the user. provides an a1gorithrnic

method of introducing sorne P independenr additional generalized speeds which forces the

motion to violate al! of the above-mentioned constrainlS. In Appendix B it is shown that the

partial velocities associated with the new. constraint-violating generalized speeds. V:~:<. can be

related to the partial velocities ofthe system through the following relation

,.
V:::< =LA~ V~..",. s= l, ....p

ka,
(3.15)

in which A' =A:-1
• "mie A: is the matrix defined in Eq.(3.1). It is aIso proven in Appendix B

that the equations of motion generated using V:::< would provide P additional equations
.

independent ofEq.(3.12) as follows:

~ ,_" i_~-rI - v_"
L.m V••:<·a - L. V••:<·F +LV••N·e.
'.1 1_1' 1.1

Defining the elements ofthe matrix T;.,. as

s=1•...• P. (3.16)
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and using Eq.(3 11). on~ can r~writ~ Eq.(3 1(» as

.<.) = I. .... /' .

s = I..... /' (3 I~)

Th~ existence of the inverse of the matrix T' is guaranteed by Ih~ assumption "fadequacy of

Ih~ conslrainl forces (Ihis is discussed in more d~tail in S~ction 3.6 3). Consid~rmg Ihis. we

may premultiply the set ofEqs.(3.1S) by -TT'-' and add the result 10 Eq.(3.13) 10 gel

r= \..... N. (3.19)

Now. we define V; as

- p p

V; = V; - :L:LT., (7'-\. V;:". r = I•...• N.
1",1 sai

which reduces Eq.(3.19) to

"- ~. -
:Lm'V;.a'=:LV;.F'. r=\..... N.
Isi ,.1

(3.20)

(3.21)

•

Note that since Eqs (3.16) are independent of Eqs(3.13) the result of solving them together.

Eqs.(3.2!1 represents N mdependent equations goveming the motion of the constrained

system. Finally. Eq.(3.9) cao be obtained by adding Eq.(3.10) to Eq.(3.21) and noting that

R' =F' +e.

As one cao sec, the key e1ement in this fonnulation is the definition of the modified

nonholonomic partial velocities V;. defined in Eq.(3.20). Reca1ling the detinition of V;" in
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Eq(3 l' J. W~ may relate the modified nonholonomlc partial velocllies to th~ partial wlocl!I~s of

the system as follo\1IS

_ r

V' = ~., - "F V' . 1 \'.. r L J~.l ,.:-';, r= ..... 1' •

.• -,1

whcre
l' "

E" =~~~ CT"\.A;'. r= 1..... N.s= L ... P.
lo: ·1 J 1

(3.22)

(3.23 )

On the other hand. the nonholonomic panial velocities of the system defin~d by Kane and

Levinson [1985] Carl be wrilten as

p

V; =V; +~ AJ, V:.:-- .,-,
(3.24)

in which A =_A,-I A,. Substituting for V; from Eq.(3.24) imo Eq.(3.22). one may more

conveniently write

- p

V; = V; +~(Au -E..,)V;.".
..1

(3.25)

•

As opposed to the definition of V;, which only accounts for the effects of kinematics of

constraint. the effect of constraint forces is also included in the definition of ~;, through the

appearance of i' and T'in the definition of matrix E (see Eq.(3.23». This. indeed, is the

reason why the present approach is successful in dealing with systems with artificial

constraints.

It is evident from Eqs.(3.24) and (3.25) that for a system with no constraints (P = 0),

bath V; and V; are equivalent to V;. This suggests that Eq.(3.9) can be employed to develop

the equations ofmotion ofunconstrained systems as weil as constrained ones.
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3.5.2 Calculation effort

The calculation effort nccess:u;. to generate the cquallons of mOll"n based on the

:l-INPVs. the method presentcd in this section. differs l'rom that of generating nonholonllnllc

equations of motion based on the con\'cntional methods. e.g.. Eq.(3.13). by the amount ofwork

necessary to produce the matnx E. Out of the three elements forming the matnx E. the matnx

A' = .4,-1 is necessary in calculation of the nonholonomic partial \'e\ocitics as weil. The other

two matrices. ('T and T') are very easy tO calculate. despite their appearan~e as summations

over the whole domain of the system. This is due to the fact that the term n" appearing in their

definition is zero at all points of the system except for a few. the points of Jpplication of

constraint forces. With this in minci. one has to carry out the summations only over the points of

application of the constraint forces.

The other fuct which simplifies the calcuJation even further is that the artificial constraint

forces usually appear in pairs (action and reaction) with n" =_n(,o')1 where i and i+ 1 depict

the points of application of the j-th contributing constraint force. Observing this f, ~t one may

avoid the burden of calculating the partial velocities (V; and V;o'). necess:uy in calculation of

T and T'. One may. insteacl. calculate the partial vdocity of the differences. i.e.•

V i _V'O' =::VV' _V'O')/-"u 1 N P• • "'\ v " r = •...• + . (3.26)

•

The simplifYing effect ofEq.(3.26) can be better understood by considering that nortnally

the i-th and (i+ l)-th points are adjacent, so, no matter how complex the system is, V' - V,o'

bas a simple relation with the DOfs and generalized speeds, as opposed to V' and V'o' which

may have very complicated expressions.
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3 Constr:un~d :'-Iollon

Q:overnlnQ:- -
To obtain the standard :orm of the ~quations of motion. we may ~xpand the acc~leration

of the t-th partic1e as

,.
a' = ~ V' li • a'L... r r t

,.,.1
(3.2i)

in which a;. th~ remainder of acceleration of the i-th partic1e. is the portion of a' which does

not contain the time derivative of the generalized speeds. Substituting for a' from Eq.(3.2i) in

Eq.(3.9). we may write the standard form of equations of motion as

.\,' - -
L !vin IÏ, =1.. r= 1•.... N (3.28)

- -
in which M and i'. the mass matrix and generalized force column associated with modified

nonholonomic partial velocities. are defined as

- . -
.M'n = Lm'V;. V:. r.s = 1•...•N.

,.\
_ v_

1. =LV; ·(R' -m'a;). r =1•...• N.
,.\

(3.29)

•

3.5.4 Extension of the formulation for continuous
systems

Let us once again consider the system S. described in Chapter 2. which is a congregation

•. of n bodies and bas N OOFs. Besides, we consider that the system is subjected to P simple

nonholonomic constraints.. described by Eq.(3.1). The system. in this case, has N +P

generalized coordinates (q =q\ ....,q,v.p). N independent generalized speeds (u1 = ul •••••u,v),

and P dependent generalized speeds (u: ="N • I' .... IIN• P )'
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• Equation (3.18) represents the dynamical equations of motion of thls systcm. Thc m:!.'.'

matrix and force column for this system can be obtained by changmg thc summ:!!Ions 111

Eqs(3.19) to integrals over the entire domain ofS as

KI" = Se,: .\';" Jm. r.s = 1..... X.
~.

1. = S{·:·RPJD- Ser:.aiJm. r= I..... N.
D' ",'

(330)

in which D'. m'and a Pare. respectively. the entire domain of S. the ma.~s of S. and thc

acceleration of a sarnple infinitesimal element p; also. R P is the resultant contributing force

acting on the elementp. Dividing the domain ofintegrals. one can find th~ contribution orthej-

- -
Ih member of the system to M and i as

J:i~ = Ser:.V!,dm. r.s= 1.... ,N.

""/,1 =Ser:.RPciD- Ser:.a!'dm, r= l, ... , N,

D' ""

and

(3.3\ )

(3.32)

Similar specializations as those given in Section 2.2 can be made for Eqs.(3.31) in the case of

the j-th member of the system being a rigid body, a beam, or a plate. For instance, if the j-th

member ofthe system is a rigid body, denoted by B, Eqs.(3.31) can be simplified to

M=B=mBV=b.V-b+m=B.(IBm- B) rs 1 N
n r. r s'" = ,.... , (3.33.a)

•
in which mB and lB are the mass and the centroidal inertia matrix of B corresponding to the

local axes. Funhermore, the term R denotes ~e array of components ofR in the inertial frame

L whereas, T contains the components of î in the body frame B. The torque î and the force
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R. whose Ime of action passes through the centroid of the rigld body B. are the equivalent set

for ail the contnbuting forces acting on B. The quamity ~; which appears in Eqs.(3.33) is

delined as

where the matrix E is as defined in Eq.(3.23).

3.6 Constraint Forces

r= I..... N. (3.34)

•

In this section we examine some issues relevant to the constraint forces such as

contribution, delermination. adequacy, and redundancy of the constraint forces. ln the

discussion ofadequacy and redundancy. instead ofgiving rigorous proofs. we tty to provide the

reader with some insight and practical measures.

3.6.1 Contributing forces

A primary question which may arise in dea1ing with constrained systems cao be whether

a constraint force, say C). is a contributing one or not The question cao be answered, in some

cases, based on the intuition and expertise of the dynamicist However, a more reliable answer

cao be obtained by forming the j-th column of the matrix T. The force is not contributing if

and only if this column is identical1y zero. This suggests that if there is any doubt about a

constraint force being contributing or not the best~ is te regard it as contributing and

include it in the active forces, Ri. One cao also see that if all constraint forces are non­

contributing then the matrix T would be identically zero, and consequentiy so would be matrix

E. ln this case, the modified nonholonomic partial ve1ocities, Vr , reduce to the nonholonomic

partial velocities, ~~, which makes the use ofthe method presented here completely equivalent

te the conventional method presented in the Section 3.3.2
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3.6.2 Determination

The constraint forces can be simply calculated using Eq.(> 1S) ;1.< tollows

r \'
( ' - '(T"') , ... " ( , , F') . 1 l'; - L- rI L- • ,.;"0' nI :1 - • J = ..... .

.• 1 1-1

One should be specially careful about using the active forces excluding ail constraint torces. F' .

in this equation.

3.6.3 Adequacy

For a system with P constraints we may say that the P constraint forces. C, ..... ( ',.. are

adequate to enforce the constrained motion if for any arbitrary motion of the system

(q(I), U(I), Ü(I», one can find C, "'" Cp such that Eq.(3.18) is satisfied. Note tha! violating

Eq.(3.18) is equivalent to producing acceleration. and consequently velocities, which would

violate the constraints. The adequacy of constraint forces can be achieved only if the matrix T'

is invertible. Otherwise. one may a1ways find some combination of q(t), U(I), and Ü(I) which

violates Eq.(3.18).

3.6.4 Redundancy

A constraint force is said to be redundant if it does the same job as another constraint

force, or a combination of some other constraint forces. In this case. removing the redundant

constraint force should not have any effect on the dynamics of the system, except for the

magnitude ofthe constraint forces which might be altered.

To avoid redundancy. the number of constraint forces should be equal te the number of

constraints. However. this is not a sufficient condition. For instance, for a system with P

constraints we may arrange P constraint forces in such a Wlrj that some ofthem repeat the same

operation and become redundant; of course. in this case the system suffers frem a lack of
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ad"quacy of constra;nt forœs too. The redundancy of constraint forces can be mathematically

writi"d by checking the linear independence of the columns of the matrix T'. To c1arit:-· this.

let us assume that m columns of the matrix T'are linearly dependent (without 1055 of

g"nerality we may assume them to be the fir.<t III columns) such that

~.,

7 ' -" 7"'Il,,-~aJ.'J~
rI

111e contribution of (', .... ,Cm in Eq.(3.18) is

i =1•...• P. (3.36)

'" "'-:
I7.;r) = L7.;(>r,~Cm' i= L .. P
J'.d 1'1

which can be rewrinen using Eq.(3.36) as

m _,

L 7.;C) = L 7.;'(C} +a} Cm)' i = 1..... P
pl J'II

(3.37)

(3.38)

•

One can readily ~selVe from Eq.(3.38) that a new set of constraint forces containing m-l

members <with the magnitudes of C} +ai Cm) can have exactly the same contribution 10 the

dynamics of the system as the constraint forces C" ....Cm • This means that the III-th constraint

force is redundant and can be removed without any effeet on the dynamics ofthe system.
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Chapter 4

Kinematic Analysis

4.1 Introduction

In the previous 1\\10 chapters. a fonnulation was developed which can be employed to

generate N independent dynamical equations of motion of the system S which has N DOFs and

P simple nonholonomic constraints. In this chapter we complete the fonnalism by presenting

the kinematic analysis of the system. Considering that any unconstrained motion can be

modeled as a special case of constrained motion with zero constraints (P = 0). we may just

focus on completing the formulation for constrained systems.

To solve for the 2N + P independent variables of the systemS (UI' •••• IIN and

ql' ....q.v.p). we nePd N + P independent equations in addition to the N dynamical equations.

Besides. the dynamical equations are functions of some kinematical terrns which need to be

calculated. The calculation of these terrns. specially in the case of multibody systems, is an

important part ofthe procedure ofdeveloping the equations ofmotion and has a great impact on

the performance ofthe resultant equations of motion.

In this chapter, we first present the kinematical differential equations of the system.

which provides the N +P additional equations necessary to complete the set of 2N + P
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~quanons "hlch dc'Scnbes the monon of the system. Then. a recursl\'e formulanon tàr

cakulanon ofth~ km~mancallermsm\'o\\'ed in the d~namlcal equanons ofmonon is presemed.

4. Î Kinematical Differentiai Equations

The dJlf~rential kinemalical equations of motion relate the time deri\'ati\'es of the

generalized cocrdinates to the generaIized speeds of the system. These equations. for the

constrained system S. can be found using the definition of the generalized speeds.

u = Y(q.r)q -+- Z(q.r). and sohing them for q as follo\'.'S:

.\'. ,..
cl' = '5" IV (q.r) II -+- X (q.r). r = L ... N -+- P., _ r') J"

J ~1

(4.\ )

The kinematical ~uations CatI aIso be expressed in tem.s of independent generaiized speeds.

To this end. we recall the constraint equations. Eq.(3.l). which can be rewrillen in an e:\.-plicit

form as

(4.2)

The dependent generaiized speeds. u,. CatI be substilUted from Eq.(4.2) into Eq.(4.l) which

yields

where

.v
q, = :LW.,(q.l) II, + X,(q.l). r = 1..... N +P.

,.1

p

W., = W., +:Lw,(,v"J A". r = 1..... N +P • s= 1•...• N.o.,
p

X, =X, or :Lw,(,v"J B.. r =1••••• N +P.
h'

(4.3)

(4.4)

•
Equations (4.3) and (3.2S) fom; a set of2N-+-P ordinary diffe~i:ll:equations which CatI

be solved to give the 2N-+-P:unknowns ofthe system. u, •••.•u.v and ql••• ~.q.v-P-
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4.3 Modified Recursive Method .

Th~ ~qu:llions ofmonon. pr~s~nt~dm th~ pr~\ious chapt~r. ar~ lùnctK'ns of the ii.,lk'\\1ng

kin~maric:ù t~rrns: (1)". ~ ... iiï".ci·". {., .,., and à'. In multibodv svst~ms l;,e ealculallc>n ,'i
rrtrr t ••

thes~ t~rms for ~ach body n~ds a lot of computational ~ftort. most of wh.ch might haw been

r~p~at~d in th~ calcularions r~lat~d to th~ pr~\ious m~mb~r in th~ chain. This IS why ullhzmg a

r~cursiv~ method seems helpful in reducing the amount of kinemaric:ù c:ùculations ln eontra.'!

tO the usu:ù recursive method. used widely in pr~\ious works. which uses th~ kinematic:ù temlS

ofth~ parent body. a modified rcc/lrsiw mcrllOd is pres~nted which is bas~d on the usag~ of an

Q/lxiliaryframc with known kinemarical properties calculated in th~ pr~\ious step. This method

ofrers a greater f1exibility compared with the usu:ù r~cursive m~thod. As the auxiliary trame.

one can choose :he parent boày-frame (the usu:ù recursive methodl. the inertia fram~ or any

other frame which suits the problem the best.

To show how the method works. we consider a frame B. i.e.. a frame anached to ~ rigid

body B (Figure 4.1) which is assumed to be part of the system S with N OOFs. and P simple

nonholonomic constraints. defined as in Eq.(4.2). In addition 10 the frame B. we also consider

?n auxiliary frame A whose motion is assumed to be known; points b and a are. respectively.

the origins of the frames B and A.

a
a 3 l ~ al
~, / //
.Av(8 1 a

1
1 a

.1 r [7)
~'"{'-/

Figure 4.1 Rdative configuration ofa frame B and an auxiliary frame Ain the inertia1 frame
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If !i -If ~

The purpose IS to ealeulate CIl' .w; .w; .êi;' (ie. the angular vdoeity. the r-th

nonholonomle and modified nonholonomie partial angular veloeity. and the nonholonomie

rem:nnder of the angular aeeeleration of the frame B in the inertial frame). and ~.:. V','. li; (i.e..

the r-th nonholonomie and modified nonholonomie partial veloeity. and the nonholonomie

remamder of the aeeeleration ofpoint b in the inertial frame). using the known kinematies of the

auxiliary frame A. To this end. we may start ,,;th the following basie relations of relative

motion:

CIl B =("CB)T 00" +·'OOB.

aB =("èB)" 00" +("CB)T a" +"a".

Vh = V" +C"(oo" x "rh + "V').

(-1.5)

(4.6)

(-1.7)

(4.8)

ln above relations. AC· is the rotation matrix offrame B in frame A. defined by "C· = 3 . jj .
" 'J

and A rh denotes the array of the eomponents of the position vector of the point b in frame A.

Similarly. CA. the rotation matrix of frame A in the inertial frame. is defined as CA = ï '3 .
1) 1 J

To obtain a recursive formulation for ii):. the r-th nonholonomic partial angular velocity

of B in the inertial frame, let us star! with the following definition (Kane and Levinson [1985])

,v
m8 = "'ii)8/1 +ii)8

~ r" l'.., (4.9)

in which ii) ~ is the part of m8 which is independent ofgeneralized speeds. Expanding the right

hand side of Eq.(4.5). using Eq.(4.9). and collecting the coefficients of generalized speeds, one

tan rewrite Eq.(4.5) as:

mB=±[(AC)T ii): + Aii):]u. + ±[(ACB)TiD: + AiD:].
Mil ,..1

(4.10)

•
The r-th nonholonornic partial angular velocity of frame B in inertial frame, iD:. tan be easily

found by inspection from Eq.(4.10) to be
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A siml!ar relation can be established for the r-th holonomlc partial angular ,'d,'C1!',·.

which is needed in caJculation of ~:. by expanding angular velocmes ln tenns of ail

generali<:ed speeds as follows:

.\'. r
m=)m/l+m._ r,. 1

,.,
which resullS in

T0 obtain the relation for ~ : • let us recall ilS definition

(-1 I~)

(-113)

- P
-8 _8 "E !'
O)r=Q)r-~ nO) ....N ..,., r = 1••••• N. (4.14)

SubstilUting for 0;: and Q) ~'N from Eqs.(4.11) and (4.13) into Eq.(4.14). while collecting

similar terros. one obtains

which is equivaient to

r= 1..... N. (4.15)

r =I....,N. (4.16)

Starting from Eqs.(4.6-4.R) and using a similar approach, one can develop the following

_8 :-.b =b -b
recursive formulas for a, ' v.' Y., and a,

•

V: =V;+CA(o;; x Arb + AV:), r=l, ....N.

Y=b=Y=·+CA(m=AxArb+Ay=b) 1 Nr r r ,., r = ...., 't

In the above relations two categories ofterros can be identified as follows :

(4.17)

(4.18)

(4.19)

(4.20)

61



•
-1. Kmemalic Analysls

T h· h d d b th C 'd B· 'r' 'CH Ai;-h "V==/'l'l-"erms w IC epen on 0 trames .., an . I.e.. . .'" " a,.

2. Terms which depend only on the choice of the auxiliary frame. i.e. V';. V;.a;.Ol A.

00·' . i;i A•aA•CA • and tA. These terms are assumed 10 be known ITom the pre,;ous slep., , ,

From the tirst category oftenns, Ar" and 'C8
, which physicaJly detennine the position

and orientation of B in A. must be introduced as inputs to the formalism. while the others must

be caJculated. Adopting • C
8

as the required input to the formalism, pro\ides a flexibility over

using different sets of orientation pararneters (e.g.. different sets of Euler angles. Euler

pararneters). The computer code. FLXSIM. pro\ides severa! subroutines to compute the

rotation matrix based on the given orientation pararneters.

"Ab AB ÂbAb,.,8ASKnowmg R and C, one can caJculate V, a , al , a. as

• 8 'v' 8a =, , '

.oC BA· B
a, = (d"

(4.21)

(4.22)

(4.23)

(4.24)

in which & • is the permutation symbol. It is worth mentioning that in the above relations the
q -

time derivatives are frame independent, for • r,b. •v,b. and • (j)~ are scalars -i:omponents of

vectors. Using the definition of nonholonomic partial velocities and remainder of acceleration,

one can find them by inspection from the above relations or caJcuIate them as fonows:

•
p

'V: ="V: +LA". 'V:.:". r= 1,•••• N.
..1

.v
"vb ="vb

_" "Vbut ~ r l"

~l

(4.25)

(4.26)

(4.27)
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'H "[A H( )l/"w, = c w q.U.r C/I,. r = 1.. ". X --1'.

r = 1..... X. (.130\

".-f;;.8 = ~It... ' _, A",,,,b
~I Vol L... VoIrll~.

, .1

.,
..f.;;H = """ .1<iBu +.~":"B-, L r' Olt·

":-1

(.13 1)

(·132\

On the other hand. the modified nonholonomic partial velocities can be round. using Iheir

definitions (equations (3.22) and (3.34»

r= 1..... N

r = 1•.••• N

(4.33)

(4.34)

•

. -" =" _" .-1 -.of =..: -.of A • A
The second eategory oflerms - I.e.. V.' V. ,a, ,CD ,CD. ,CD" a, ,C • and C - can be

calculalecL simply. by substituting frame B in the above relation with the new auxiliary frame

A'. This means 10 provide ArA' and. ACA' and to carry out similar calculations as above.The

last point to mention is that the kinematical properties of the first auxiliary frame must be

provided as the input to the formalism. Obviously, the inertia frame can serve as the first

auxiliary frame ta remove the burden ofproviding complieated relations.
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Chapter 5

The Effect of Nonlinear Coupling
Between Elastic and Rigid-Body
Motions

5.1 Introduction

The effect of rigid-body base motion on the dynanûc response of a flexible system was

briefly addressed in Chapter 2. in the dynanûc anaIysis of beams and plates. T1ùs chapter

presents a detailed discussion ofthis subject

For quite some time, researchers have recognized that the stiffness of an e1astic beam,

whose base is undergoing fast rotation around an axis nonnal ta its center-line, increases with a

rate proportional to the square of the angular ve10city of rotation. This possibly was the reason

why the phenomenon was called geometric or dynanûc stiffening. In contrast ta the

experimental observations, the equations of motion..obtained by the conventional approaches
~.

prediet the beam ta become softer. This contradiCtIOn was a reason for the researchers ta look

for the shortcomings ofthe conventional dynanûc modeling and to find a way ta compensate for

the missing stiffness.
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Sorne researchers attribute the source of this defect to the truncation of the strain energy

expression in linear theory; therefore. they suggest retention of the nonlinear terms up to the

third-order of elastic generalized coordinates in the strain energy expression. The second group

considers the centrifugai field JS an e.xtemaI. pselldo-porential field and finds the stiffuess due

to this field and adds it to the stiffhess obtained from the linear elastic strain energy. The third

group believes that the missing stiffitess is due to premature 1inearization. The terms

"premature linearization" and "improper 1inearization," which are interchangeably used in this

thesis. refer to 'llinearization which is started prior to the calculation ofpartial derivatives in the

process of deriving the equations of motion by an energy-based method For instance. any

1inearization done prior to the calculation of partial ve10cities in Kane's method. or partial

derivatives of kinetic and potential energy expressions in Lagrange's method. would he

premature. This group suggests to retain up to the second order terms of the elastic

generalized coordinates in the expressions for e1astic deflections to avoid improper

Iinearization. There is still some debate as ta which approach is the best

In t1ùs chapter, we first show that premature 1inearization may 1ead to the 1055 of some

1inear terms in the equations of motion that are generated using an energy-based method (e.g.,

Lagrange's or Kane's method). To this end, a general fonnulation of the equations of motion,

based on Kane's equations, for a system that undergoes bath rigid body motion and elastic

motion, is presented. 80th properly and prematurely Iinearized equations of motion are

obtained and compared to learn which terms are lost in the equations of motion and where.

Theo, different remedies for compensating for the missing terms are compared. A method

based on the non1inear strain-displacement theory is presented afterward, which can he

employed ta derive the correct equations of motion of a general e1astic system undergoing a

general rigid body. motion. A systematic procedure is introduced which can he usedto

specialize the method for difTerent e1astic media. The sj>eciaIization of tIùs method for beams

and plates is given. Finally, the problem of an orbiting satellite with long flexible appendages
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a10ng with some other iIIustrative examples are solved using the presented theory. The

examples show some interesting phenomena such as softening of a flexible beam due to its

rigid-body base motion, or missing some terms !Tom mass matrix due to improper linearization.

5.2 Improper Linearization, the Source of
Error

ln this section, we tirst explain, through a simple example, how the equations of motion

might lose some terms as a resuIt of improper linearization, and how it can be prevented. Theo,

a general formulation is given to identi1Y which terms will be missing !Tom the equations of

motion, obtained by conventional methods, for elastic systems undergoing rigid body motion in

a general case.

5.2.1 A simple example

Consider a hinged rigid bar, shown in Figure 5.1, which undergoes small oscillations

around its equilibrium position in the vertical plane. The goal is 10 generate the linearform of

the equation ofmotion. using an energy-1;ased me/hod. The position vector of an element of

the bar can be written as (see Figure 5.1)

r =xcos(q)i+xsin(q)j,
or, for small q.

r:xi+xqj,

(5.1)

(5.2)

which is correct up to the first order. Using this linearized position vector, Eq.(S.2), one can

find the kinetic energy and potential energy of the system as T=mf il/6 and V = -mgI/2.

Substituting these energy expressions in Lagrange's equation resuIts in the foUowing equation

(5.3)

•
One can readily see that the restoring term due 10 the gravity is absent in the premature1y

linea:ized equation ofmotion of the pendulurn, Eq.(S.3). This is exact1y what happens when a
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conventional method is employed to generate the equations of motion u·mg enerb,!·-ba.'ed

methods. The conventional methods consider the position \'eetor of an elc:ment of the elastlc

body as a linear combination of the elastic generalized coordinates. which is c1early a premature

linearization.

To conect the above error. in the case of the simple pendulum. we might use either the

nonlinear expression for position vector. Eq.(5.1), or the approximation ofthat correct up to the

second order, Eq. (5.4), as follows

r:: x(l-q' /2)i+xq j.

Using the second-order position vcetor, Eq.(5.4), we can develop the kinetic and potential

energy as T = ml' ci' /6 and V = -mgl(l-q' /2)/2. and consequently, the equation of motion

as

(mN3)èj+(mgl/2)q = O. (5.5)

This properly lineari=ed equation of motion is in total agreement with the results that can be

obtained from linearizing the nonlinear equation of motion obtained by starting from Eq.(5. 1).

In the case of elastic members, however. a complete nonlinear expression for the elastic

deflections rnay not be achievable. but an expression correct up to the second order can be

written using the nonlinear strain-displacement theory. This simple example reveals that the

phenomenon of missing terrns is not confined to the analysis of elastic systems. In other words.

any set ofprematurely Iinearized equations might suffer from the same defeet

5.2.2 General formulation

At this point, we present a genera! formulation, based on Kane's method, to identify the

terrns which might be omitted, due to premature linearization, in the equations of motion of a

system with bath zero-order and first-order DOFs (e.g., an e1astic system undergoing rigid-

•
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body motion). To this end the panially-linearized equalions of motion for Ihe syslem are

derived first by linearizing the nonlinear equalions (proper linearization) and then by slaning Ihe

Iineanzalion prior 10 the calculation of panial velocities (premature linearization). The

comparison of these !wo sets of equations reveals the missing lenns and their places in the

equations ofmotion. Here. the lenns "zero-order" and "first-order" refer 10 the quantilies of the

o 1 • 1 h lOF' th· 'd bd' . O( ")order of & and & • respective y. w ere & «&. or InStance. e ngl - 0 y monon IS &.

while the elastic motion is 0(&'). Besides. by "panially-line3rized equations" we mean a sel of

equations which are Iinear functions of the lirsl-order OOFs but nonlinear functions of the zero-

order OOFs.

Before staning the discussion, it is useful to recall some of the conventions which are

used in this chapler. Overhead syrnbols "', '-', and ,-, are used to indicate, respectively, the

linearized fotm, the nominal value, and the small deviation from the nominal value of the

corresponding quantity. For instance, V=V +V indieates that the linearized velocity equals

the nominal value V plus the small deviation V. Also, the prematurely linearized items and the

tenns associated with them are identilied by an asterix, e.g.• V; is the prematurely linearized r­

th panial velocity.

Consider a system S consisting of v panicles with N degrees of fteedom. The system

can be identilied by the definition of 2N scalars as follows: q!'•..•qN. the genera1ized

coordinates, and u, .... ,uN • the genera1ized speeds. Assume that the first NE generalized

coordinates and genera1ized speeds are small compared to the others. The nonlinear equations

ofmotion for this system, using Kane's method can be written as

•
:

•LV; .(Ri -m" a')=O,
;_1

(5.6)
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where V; is the r·th partial velocity of the particle p' in the inenlal frame. detined as

êV' / (~Il,. R' represents the resultant contributing active forces acting on p'. and III' and li'

:rre the mass and acceleration of p' . respectively.

The linearized forro of V; . R' . and li' can be "TIllen as

v; =V; + V;. r =1....• N .

â.' =R' +R'.
â'=a'+à' .

(5.7.a)

(5.7.b)

(5.7.c)

The equations of motion. Eq.(S.6). can be linearized by substilUting the linearized forro of

V;. R'. and a'. Eqs.(5.7). and neglecting the second-order terrns. This yields the properly

linearized equations ofmotion as

v v

:LV;'(R' -m'3")+:L[V;'(R' -m'a')+V;'(R' -m'3")]=O. r= 1•...• N (5.8)
'.1 ,_1

In the above relation the first summation contains the zero-order terrns. and the second

summation contains the first-order terrns of the linearized equations of motion. Each of these

IWO parts can be equated to zero separately. The zero-order equations of motion are suitable for

calculation of the nominal motion of the system. The first order equations are suitable for linear

analysis such as linear control and stability analysis. The partially linearized forro of the

equations of motion. Eq.(S.8), is specially imponant for the purpose of simulation of elastic

systems with zero-order degrees offreedom.

We get the prematurely linearized equations of motion by starting the linearization prior

to the calculation ofpartial velocities. The generallinearized form ofthe velocity expression is

•
N. fil

V'=:LV:u,+ :L(V:+V:)u,+V~,
,..1 ,..v....,

(5.9)
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where V:' 15 the pan of V' that does not depend on the generalized speeds. :"ote that smee

/l, ••••• /1.;, are of the first order. the V; ..... V'~" do not remain in the linearized veloeity

exprc'Ssion The panial veloeities of the system in this ease are

j
V',. "

V =

, V' = V' +V'
• • •

r= 1 .. • N• • E'

r=NE +l..... N.

(510)

which are aJready linear. However. the first NE of them are different from those obtained by

proper linearization (see Eq.(5.7.a)). i.e.• linearization after the calculation ofpartiaJ veloeities.

Premature linearization. thus. causes loss of the first-order tenns of the partial velociries

associated with the linear generalized speeds. Ill"'" /I.v•.

The equarions of morion with premature linearizarion are now

• •LV; ·(R' -m' â") = O.
,.1

(5.11)

Consi<1fri.lg the fuet that differentiation with respect to time and linearization with respect to the

generalized coordinates, generalized speeds, and input forces are commutative. we can write

... V~, V'='1 .... -' _.a = = =a =a +a. (5.12)

Substituting for V; and â" from Eqs.(5.10) and (5.12) into Eq.(5.11) and negleeting the

second order terms, one gets the prematurely linearized equations of motion (which, in general,

do not represent the correct equations ofmotion) as follows :

••

• v

L V: . (Ri -m''ii)+L V: . (R' -m' li') =0 r =1,.•••NE
,., ;-1

v v

L V; .(R.i -m''i')+L[V; .(Ri -nt li')
,.1 1.1

.+V;'(R'-m'ir)]=O. r=NE+l.....N

Comparison ofEqs.(5.13) with Eq. (5.8) reveals that

(5.13.a)

(5.13.b)
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• Premature linearization has no effect on the zero-order part of the equatioll.' of mo~ion

(tirst summation in the equations). as expected.

• Premature linearization has no effect on the equations of motion associated with the zero-

order OOfs (rigid-body motion). r =NE + 1..... N.

• Due to premature linearization. the equations of motion associated with the tirst-order

OOfs. r = 1•...• NE' Jose the following tirst order terms represented by &:

•
&.=2:[V;'(R'-m'i')] r=I•...• NE •

..1

(5.14)

Equations (5.9) and (5.10) suggest that to avoid premature linearization it is adequate to

retain up to the second order terms in the expression for velocity. However. if premature

linearization has already been done. then the equations cao be corrected by adding the missing

part given by Eq. (5.14) to them. This suggests another approach to generate the correct

equations of motion: first, generate the prematurely linearized forrn of the equations. using

conventional theories; then, generate the equations of motion for a similar system, which is

moving only with second-order velocities under the action of a zero-order force field equal to

the difference of the zero-order contnbuting active forces and inertia forces; then, add the two

sets ofequations.

Equations (5.8) anc' (5.13) cao be used to generate the standard forrn of the equations of

motion. Differentiation ofEq. (5.9) with respect to rime gives

(5.15)

•
in which â~, the remainder of acceleration, is the portion ofacce1eration that is independent of

time derivatives ofthe generalized speeds. Equation (5.15) cari hé equivalently wriuen as:
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:ï 1 = )" y: li ~- , ,
, 1

.\

")' \., li ·:1' .
- " 1

.' -":roI

Substituting Eq.(5.16) into Eq.(5.8) and collecting the coetlicient of li,. ,'ne C:U1 rewrite

Eq.(5.8). the set ofproperly linearized equations of motion. as

Mû=f (5.17:1\

(S.\7.c\

(SI7.b)

r =\.. ... N .s= 1.. ... NF.
,.

"m' V'·V'L- r ~.

Id
,.

Lm'[V;. V; + V;. V;]. r=I....,N .s=NE + I..... N
,-=1
,.

f, = L[V; '(R' -m' â;)+ V; ·(R' -m'a;)], r = I... .. N.
",

M =n

where

On the other hand. substitution of Eq.(5.16) in Eqs.(S.13) yields the prematurely linearized

forrn ofequations as

(S.IS.a)

where
v

Lm' V;·V;, r=I, ...,N ,s=I.... ,NE,.,
v

M " = "m'Vi,V" 1 N NINn L. r, ' r = ,..., E' S = E + ,...,,., (S.IS.b)

v

Lm'[V;. V; + V; .V;], r = NE +I,...,N ,S= Nt; +1, ... ,N,.,
v

L V; .(R' -mi â~), r = 1.... ,Nt;
;_1f;= v

L[V: .(R' -m' â:>+ V; '(R' -m'il;>],
1.1 -

r=Nt;+I,....N

(S.IS.c)

The equations ofmotion cao be partitioned as

• (5.19)
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m whlch the superscripts /, and Il mdicate the terms associated with the first-order and zero-

oruer DOfs. respecllvely. Comparison of Eqs. (5.17) and (5.18) shows that ail blocks of the

properly Iinearized equations are equal to their corresponding ones in premalUrely linearized

equations. eXC~pt r~r the following two blocks'

MEl< =M'EI< +[tm' v;.v;J. r= I..... NE.s= NE+L N

rF.=r·,·+[:tV;'(R'-m'a;)]=r·E+GqE. r=I N,.
,..

in which G is a NE X NE matrix whose elements are given by

•
G~ = L(oV;/Oq,).(R' -m'a:)=G~(qR,uR,t). r.s= I... .. NE·

pl

(5.20.a)

(5.20.b)

(5.21)

•

where qR and UR denote the vectors ofzero-order generalized coordinates, qs••• ,....q.,.. and

generalized speeds, Il,v••• , ... ,11",. This matrix becomes a function oftime only, or a constant. if

ail zero-order motions of the system are prescribed (in which case NE =N).

Padilla and von Flotow [1992] suggested mat. in addition to the above mentioned blocks,

sorne linear terms might be omitted &om the MAA block due to premature linearization. The

above formulation (see also Eq.(5.14» clearly shows that none ofthe blocks associated with the

rigid-body motion. including MAA, might lose any term due to premature linearization. This is

. due to the faet mat premature linearization has no effeet on the partial velocities associated with

the zero-order generalized speeds (see Eq.(5.10».

"-
The following faets can be concluded &om Eqs.(5.17) to (5.21):

• III the case ofproper/y partia//y /inearized equations of motion. the màss matrix is not

symmetric as can be seen in Eqs.(5.l7.b).

t The missing tenns shown within square brackets in Eqs.(S.20) could be gcncrated directly by
substituting Eqs.(S.16) into Eq.(S.14)· '
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• B<'caus<: the missing term.< depend on ";. they are Ii/lùlr funet:ons "f Il,,,, .. Il \ •. the lirst­

order gener:ùized coordinates.

• ln the case of eomplete1y Iinearized equations (i.e.. ail the large l1lotlClns are presenbedl.

the gener:ùized force vector is the only part of the equations of motion that might lose

some terms. Moreover. in this case. N = NE' and the geometric stiffuess matrix is

independent ofgeneralized coordinates and speeds.

5.3 Comparison of Different Remedies

ln this section the three previously mentioned methods of compensation (see Section 5.1)

are compared. The first methocl nonlinear strain energy approach. proves to be the weakest. for

it compensates for some missing lincar stiffuess terms with non-lincar ones. The method can

produce reasonably good results only if the elal.ric DOFs of the system are selected cautiously.

For instance. in the case of bearns. to obtain correct results, one lIas!o consider Olt least one

DOF for the longitudinal vibrations. This itself has IWO major difficulties. First. it increases the

order of the system. if oniy the transverse motions are of interest. and seconcl it introduces

some Ilmvantcd lIigh frcquencies due to the longitudinal vibrations, which makes the

integration procedure more difficuit ln addition to these difficuities, since the method caMOt

recover the missing terms explicitly, it is not convenient for the cases where the zero-order

motion/force is either time or generalized coordinate-dependent The example presented in

Section 5.5.1 helps te shed some light on this discussion.

The second methocl pseudo-poiential field methocl less frequently used for muitibody

systems. has the potential for correct compensation of the missing stiflhess terms, but it is not

recommendecl because the difficuity of im~lementing the method grows drastically as the

system and its rigid motions become more complieated. Besides, lIone of the above methods is

capable of compensating for the missing terrns in the mass matri.." for the elements of mass

matrix, usually, are not rendered by a potential energy function. However. an extension of the
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second method based on Eq.i5.14). similar 10 whal Bane~ee and Dickens (1990) have usee!,

may compensale for missing lerms in the mass matrix. although the implemenlation of this

method is difljcult in the case of complex multibody systems.

On the other hand, the third method, usually more convenient and rigorous, Carl be

employed to derive the correct and complete forro of tlle Iinearized equations of motion, which

Carl be used for either linear analysis or nonlinear simulation. The example presenled in Section

5.5. 1 is devoted to c1arify the above discussion. This method will be explained in more detail in

the next section.

5.4 A Method for Direct Accommodation of
the Missing Terms

5.4.1 General formulation

As suggested in the first section, the use ofa nonlinear expression for the velocities, up to

second order lerrns, results in the generation of the equations of motion correct up to the first

order. This Carl be easily accomplished if the small DOFs are not elastic DOFs (see the

example of the pendulum in the first section). But, in the case ofan elastic body, it is not that

easy 10 find the nonlinear expressions for velocities because the true nonlinear expressions for

elastic deflections in terrns ofelastic generalized coordinates are not known.

In genera1, the elastic deflections (w),w2 , and w3) Carl be expressed as

(5.22)

•
where w denotes the vector ofelastic deflections (see Figure 5.2), qE =ql'•••,qN is the vector

•
of the e1astic generaIized coordinates, which are functions of rime, and x is the position vector

in the undeforrned configuration, a spatial variable. Now if the e1astic deflections are small

enough, one Carl use a Taylor expansion to express w as
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• ~. s. s.
Il' (x.r) ="" m (x) q +"")' IV (x) q q +... i =1.2.3

1 ~ 't',} } ~ __ . 'l. J t •

J 1 ri l' 1

(523)

ln which 'P'I and '1/'1' arc functions of the space variables. Conventional methods of

discrerizarion. like the assumee-mode method. ::c.nslder only up to the l'irst order terms of the

above Taylor expansion. This might be a good approximarion for describing w(x. t) itself.

within a chosen domain. However. no matter how small w(x. t) is. we have to keep the second

order terms 10 have the correct forrn of the equations of morion up to the l'irsl order. derived by

:li: energy-based melhod for a system which undergoes rigid·body morion. Now the question

remains as to how to l'ind 'P. and "'...

In the conventional methods of discretizarion. 'P., the mode shapes. are approximated by

sorne shape functions. which must at lcast satislY the geometric boumlary conditions. Although

'Po can be approximated by any set of shape functions. the accuracy of the results is strongly

dependent on how similar the chosen shape functions are to the actual mode shapes. In the

same fashion. any set of functions which satislY the geometric boundary conditions is

acceptable as "'.Ji<' Similar to the case of 'P• • the better the chosen "'.. agrees with the physics

ofthe system. the better the reslilts obtained.

One of the best ways to find consistent shape functions for "'.. is to take advantage of

the nonlinear strain-displacement theory. Using this theory one can relate the nonlinear elastic

displacements to the diagonal elements ofthe strain tensor. G•• as (see Donaldson [1993)

&"" =ôw1/ôx, +~[(ÔW2/ÔX!)2+(ÔW3/ÔXI)2].

&". =ÔW2/ÔX: +M(ÔW1/ÔX2)2 +(ôW3/Ôx:)2].

1 . -
&= =ÔW3/Ô~+'2[(ÔW1/ÔX3)2 +(ÔW2/Ô~)2].

(5.24)

•
Ùl this study the Lagrangian description is adopte<!. which means that everything is expressed in

terrns of the undeformed configuration. This has both the convenience of working with
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practically preferred ,mJeformcJ configuration as weil as requiring much simpler algebra in

deriving the theory.

ln the method presented here. the strains e". not the displacements. are considered as

linear functions of the elastic generalized coordinates. and the elastic displacements w, are then

caJculated using the nonlinear !".rain-displacement theory. Since the strains are linear functions

ofelastic generalized coordinat~. we may aIways choose them such that

(5.25)

in which 'P. are the first-order shape functions defined in Eq.(5.23). Using Eq.(5.25). one can

rewrite Eq.(5.24) as

(5.26)

•

where ç. denotes a dummy variable for x,. Equations (5.26) form a set of coupled partial

differentiaI equations. However. since we only need to retain up ta second-order terms in the

expression for w\. w2 • and w3• it is good enough ta substinite the first-order part of their

expressions in the integra1s..:n';,,-.wllS the problem ta an explicit integration w1ùch results in:
é/

The method can now be summarized in the following IWO steps:
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• Define li',. the first-order components of the displacements as linear fur,ctions of the elastic

generalized coordinates

N,

li', = LC7"JQJ'
J.I

• Calculate the displacements w, correct up to the second order using Eq. (5.21).

(5.28)

•

Although the above formulation is quite general and can be applied to any type of three-

dimensional elastic member. it is more convenient to have specializations for sorne simpler

cases. For instance, it is not an efficient approach to analyze a beam or a plate as a general

three-dimensional elastic body. To derive the equations of motion of a general three­

dimens:onal e1astic body, one has to cany out triple integrals over the spatial domain of the

body. However, for a beam only single integrals need to be eva1Ul1ted. This simplification is due

to t"e practica1 assumptions made in the beam theory.

To be practica1ly useful, the above theory must be expressed using the same terminology

as used in the related specified category (e.g. beams). It can he achieved by applying the

assumptions made for that specific category of elastic bodies ta the above theory. As a result,

an improved lheory for that category will be developed which has the conveniences of both

simplicity and accuracy. To do this, one has to take the following sters: (1) find the general 3-D

elastic displacement field based on the lower dimensional elastic displacement field and the

assumptions made in that specific medium; (2) make the necessary second-order corrections ta·

the 3-D elastic field using Eq.(S.21); (3) reversing the first step, find the correct speciallo';iëi'

dimensional displacement field using the results of the second step and the assumptions made

for the medium. The specializations of the above theory ta Euler beams and thin plates are

presented below as examples.
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5.4.2 Speciaiization to Euler beams

Consider an Euler bearn with a rigid infinitesimal element dB, shown in Figure 5.3.

Transverse deflections. longitudinal vibration and torsion are different I)pes of motion which

the bearn might experience. To analyze the motion of the beam, the elastic displacements of

pOint b, and elastic rotations of the element dB should be expressed in tenns of the elastic

generaIized coordinates. Using the conventional assurned-mode method, one can express the

linear fi~ld ofdisplacements as

N.

~ =L9'.(x,)QJ ' i =1,2,3,
J.l

_ N.

~, = L9'4J(XI )q" (5.29)
J.I

Note that in Eqs.(5.29) the underlined variables, ~ (x,) and ~ (XI)' denote the corresponding

quantities evaIuated at point b, with ~ =~ = O. These quantities do not represent the jtenecal

three-dimensional field ofdisplacements in the beam.

The second order expression for the above displacements and rotations can be obtained

using the geometry of the beam. However, in this context, wc would Iike te follow a genecal

approach, which can be applied similarly to other ClItegories of elastic bodies. To do sc, wc

should firstfind the first-orderthree-dimensional displacementfield, Wj(xl'X:'~)' from which

~(x,) and ~(XI) can be derived; then the corrected field of displacements, Wj(~,X:'~),

should be calcu1ated, using Eqs.(S.27). Finally, the corrected displacements and rotations of

dB, ~(x,),M~),should becalculated using w,.

The three dimensional field Wj(xl'X:'~) can be found by applying the assumptions

made in the slender-beam theol)' te a genecal field of displacements which results in (Ider and

Anùrouche [1989])

79



S.The Effect of Nonlinear Coupling Between Elastic and RIgid-Body Motions

• "\ = ~1-(ê'!i:ll~X,)X, -(ê'!i;/èx,):r:, .

li', =~, -~, x, .

"'\ =~; +~l x;: .

(S.30)

The Iinear three dimensional field w,(x"x"x,) is corrected using Eqs.(S.27). and the

corrected one-dimensional displacements and roiati'Jns of dB, ~ and §" are extracted !Tom

them as

N

~, ='t({),/x,)qJ -H[(a~,/aç,)' +(8~,/aç,)'}dç"
J-'
N.

~ = L({)i/(x,)qJ • i = 2,3,
JO'

N.

~, = L({)./,,:,)qJ' ~,= -8~3/8x" ~3 = 8~,18x,.
J-I

(5.31)

Use ofthe above nonlinear relations would result in generation of the equations of morion

correct up ta the first order. It is worth mentioning that a1though ~ are small, the second order

terrns involving them should be retained in the rotation matrix ta prevent premature

linearization.

5.4.3 Specialization to thin plates

The theory can be specialized for thin plates in a similar fashion as for beams. Consider

the plate shown in Figure 5.4. The two-dirnentionallinear field ofelastic disp\acements for thin

plates., which relates the elastic motion of a 2-D infinitesimal rigid element dB of the plate ta

the elastic generalized coordinates, can be expressed as:

The correSponding 3-D elastic displacement field can be related ta the above 2-D elastic field

by (see Donaldson [1993])•

N.

~ =L({)V<:~'I,X2)qj , i =1,2,3
J-\

~\ =8~3/8x2' ~ =-8~3/8x"

(5.32)
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• "', (x,, x: .xJ =!!:: - [A1.,(x,. x,)1ëxJc, .

"·,(x:.x:.x,) =!!:: -[~~,(x:.x)lëx:lx,.

". (x,.x.. x.) = ~,(x,.x.).l .' _

(533 )

ThIS linear 3-D field is eorreeted using Eq.(5.271. and the results are e\'a1uated at x, = 0 to

Ylcld th,. following eorreeted 2-D special field:

!!:, = i:'P,,(X,.x:)q, -~J[(ê!!::lê';,): + (è!!:)è';,):jd';, .
1=1 -

!!:: =i:'P:/x,.x:)q, -~J[(è!!:,fê';:): +(ê!!:J/ê;:>'jd";:.
,,,", -
N.

!!:J =2: rpJ,(xI.x:)q, •
,,'

(5.34)

.'

lt should be mentioned here that the above specialized theories. established for b"arns and thin

plates. are valid for any type of 1;-- 'mdary conditions. However. the domain of the integral must

be such that the geometric boundary conditions are met by the second-order shape functions.

Furthermore. the specialization can be done similarly for the cases where shear deformations

are important

5.5 Illustrative Examples

5.5.1 Cantilever beam with longitudinal base
motion

To c1arify the discussion of the third section. "Comparison of the Three Different Reme­

dies." the well-known problem of a cantilever beam with longitudinal base motion. shown in

Figure 5.5. is considered The e\astic deflection of the bearn, which is confined to the vertical

plane. is described \vith one transverse mode as W~ =rpq. where rp is a shape function

sati~g the geometric boundary conditions. and q is the elastic generalized coordinate. The

equation ofmotion obtained using this linear relation. prematurely linearized, is
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• which neither reflects the effect of the gra\;ty nor the base motion. Here (Ù~ =." (n/m 1.' 1.

where El. L. and III are. respectively. the tlexural rigidity. the length. and the mass of the

beam. while ", is a constant ",hose value depends on the choice of the shape tùnctions. For

instance. for the shape function cp(x). given in Eq.(5.36). which is used in the solution of this

example. the value of c, is 12.36.

cp(x) = Al(cosh(2 9 - cos(}. .;)) - 0 (sinh(,i 9 - sin(}.';»)J. (5.36)

in which A = 0.5. ;. = \.875. 0' = (cosh;' + cos}.)/(sinh;. + sin 2). and .; = xl L.

A second order correction can be made to the above /irst order displacement using

Eq.(5.31). the nonlinem strain-displacement method. to give

w =[_.!.x1'(Crp(';'»dJ'] :
-, ., <le '=', q •

- 0 &1:0 1

w: =tpq.

(5.37)

Using the above nonlinear displacements. one cao develop the properly linearized

equation ofmotion for this beam as

(5.38)

•

where g, a(t). and al are, respectively. the acceleration due to gravity, the base acceleration

and a constant whase value depends on the choice of the shape function (for the shape function

given by Eq.(5.36). al = 2259). Equation (5.38) shows that for a(t) =ao> 0 the system

becomes dynamical1y softer. and for a(t) = ao < 0 stiffer. On the' other band, if

a(t) =a. cos(œot) the stiflhess becomes time dependent, and the equarion of motion cao be

transformed into the standàrd form of the Mathieu equarion, which means even a statica1ly

unstable bèam, with (glL) > (œ; la,). cao be stabilized by a proper choice of ao and œo:

conversely, a statical1y stable beam might become unstable. Although the method of
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stabli,zanon \Vith !ater"! base motion IS weil knO\,n. the present method of stabl1izat'on by

!"/lgIII/Jm,,! base motion could not be analyzed. unless the equations of motion are deriwd

corrt.:ctly

On th" other hand. using the first method of remedy. i.e. by employing a fouJ1h-order

stram ener!,'Y expression and considering one transverse elastic OOF only. the equation of

motion can be found as

(5.39)

where Plis a constant. dependent on the choice of the shape function (with qJ defined in

Eq.(5.36). P, = 0.818). Obviously. the compp.nsating term. P,«(J)~ / L') q'. always stitfens the

system. regardless of the base motion. 50 it cannot describe the other etfects discussed earlier.

arising from different kinds of base motions. Of course, the nonlinear strain energy method can

produce much betler results ifone considers the longitudinal motion of the beam as weil. In this

case. the equations of motion, considering one transverse and one longitudinal mode, are

Ci, +(J)~ql +PI «(J)~ / L') l +(r 1 (J)~/L)q,q, = û

Ci, +(J)~q, +(p, (J)~/L)q: =a,(g+a(t))
(5.40)

where q., and q: stand for the lateral and longitudinal generalized coordinates, (J)t and PI are

as defined earlier, and a:,p:, and ri are sorne constants. The quantity (J):, which is the

fundamentai frequency of the longitudinal vibration of the beam in absence ofgravity and base

motion. is given by (J) ~ =c: E A/ mL, where A denotes the cross-sectional area of the beam.

The constants a:,p:,r 1and c: are functions ofthe selected shape functions.' Using the function

given in Eq.(S.36) as the transverse shape function and sin(7rx/2L) as the longitudinal shape

function. one can evaIuate a~,P~,r 1and c~ ta -1.273, 03SS,1.40S, and 2.467, respectively.

Equations (5.40) cao produce results similar ta thase of Eq.(S.38), but at the cast of

increasing the arder of the system and making the set of differential equations stiff by

83



•

•

5.The Effect of Nonlinear Coupling Between Elastic and Rigid-Body 1\ll1llons

Equations (5.40) can produce results similar to those of Eq.(5.3S). but at the cost of

mcreasing the order of the system and making the set of differential equations stiff by

introducing a high frequency w: into the system. One should also note that if a(t! is constant.

Eqs.(5.40) can predict the correct frequency for the lateral motion. taking :\l:l\':lIltage of

linearization around if: obtained from the solution for the fixed points. However if <1(1) is time

dependent. this possibility is ruled out. The sarne difficulty arises when the zero-order

motion/force is generalized-coordinate-dependent.

Typical simulation results (non-dimensional tip deflection,ô/L. versus the period of non­

moving bearn, 1'1) for IWO types ofbase motion, obtained using the presented theory (Eq.(5.38».

are shown in Figures 5.6 and 5.7. As can be seen, the rësponse of the system to a typical initial

condition varies both with changes in (gl!)/w; and the pararneters of the base motion.

Besides, Figure 5.6 shows that for a value of (gl!)/w~ =0.5 the linear solution becomes

unstable. This linear instability is the phenomenon of buckling of the bearn under its own

weight.

5.5.2 Planar two-bar linkage

Figure 5.8 shows a system that serves as an exarnple to show the possibility of terms

missing in the generalized mass matrix of the system due to premature Iinearization. The

system, which consists oftwo rigid bars connected through a revolute joint, has two degrees of

freedorn. The tirst degree of freedom, q" is intended to remain smaJI. while the second one,

q:,can accept large values. The system is assumed massl= except for the point masses ln, and

1Il:, located al the tips ofthe bars.

Using the non1inell! expression ~f r: =r.. D, +4[-sin(ql)D1+cos(ql)~l to express

the position vector of the point mass m.., one gets the nonlinear equations of motion in vector

formas
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• [

11/, 1.:

11/, l.ol/., -1., sint,!)]

11/, l.oll., - L, sint'!,)] ][Ii:]
I,~(II/, -11/,)-111, l.oll., -21., sint'!,)] li, -

[
- K ,!, - III: 1., L:/lî cos(q,) ]

T,+III:I.,'-:/I,(211:+II,)COS(q,) ,
(541 )

On the other hand. the prematurely linearized equations of motion. obtained using the linearized

form of the position vector of III: (i,e.. r: = L, n, + '-::[-q, n, + l, D, are

[
III. 13-
III: I~

(542)

and the properly !inearizeci equations of motion, obtained based on the position vector with

second-order terms (i.e" r, = L, n, + L,[-q, n, +(1- q~ /2) il] ), are

[
11/: ~
III,!},

III,'-::('-::-L,q,) ][li']
~(III, +111,)+111, ,-::TL:-2L, q,) li, =

[-Kql-III'L,'-::U~ +(m,r;I/~q'-III,r;I/~q,)],
T, +2m,L, '-::1/,1/,

(5.43)

The missing terms in the generalized mass matrix and force vector are underiined. The fonn of

these terms, linear in terms of elastic generalized coordinates and their places, are in complete

agreement with the general results obtained in Section 5.2.2.

Either Eq.(5.14) or Eqs.(5.20) cao be employed te determine the missing terms in the set

of prematurely linearized equations of motion, Eq.(5.42). Adding the result of Eq.(5.14) to

Eq.(5.42), one obtains the correct fonn ofthe equations ofmotion. For this system

.'
vel) - 0 vI') - - L. q i,-, ,- -,-,.,

al') =(L,ü, - L,u~)~ - (L,ü, + L,u~)iil '
R(:)=O,

(5.44)
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where the superscripl (i) indicales quantities associaled ",ith the i-th poinl mass. Substitution of

Eqs.(5.44) inlo Eq. (5.14) gives the correclion lerrns 10 be added 10 the righl hand side of

Eq.(5.42) as fonows:

(5.45)

•

This lumped model was chosen to provide the possibility of comparison of the results of

premature and proper linearization with the linearized equations obtained !Tom nonlinear

equatiuns of motion, Eq. (5.41). A very similar problem can be considered by replacing the

second rigid bar, the masses and the spring with an elastic cantilever bearn c1amped 10 the rigid

massless tirst bar. Use of the conventional assumed-mode method for describing the elastic

displacements of the bearn causes similar terrns to be missed from the equations of motion. As

before, none of the methods ofcompensation is capable of compensating for these terrns except

the third one.

5.5.3 RAE satellite

The Radio Astronomy Satellite, launched by NASA in Iuly 1968. had four 228.75 meters

STEM type Be-Cu antennas, with 0.02 (Kg/m) density and bending stiffhess of 6.033 (N.m2).

The antennas are located in the orbital plane. The planar motion of the system, depicted in

Figure 5.9. is studied here. The center ofmass moves on a 224 minute nomina1ly circular orbit,

but let us assume that it is subjected 10 a lmown orbital perturbation of y(t) in the local

horizontal direction. The gravity gradient effeçt is taken in10 account, and the attitude of the

satellite during the motion is assumed unchanged. Due to the sma1l forces, the 10ngitudina1

elongation of the bearn is negligible and is of no interest. So, the elastic displacements of the

booms are described using one transVerse DOF for each boom. Using the conventional

assumed-mode method, one may write w~ = tp, q,.i = 1.....4. where w~ stands for the latera1

def1ection ofthe i-th boom. The equations ofmotion for the system, obtained based on w~. are

86



5The Effect of Nonlinear Coupling B~twe~n Elastic and Rigid-Body :'>Iotions

• '1;'.,.( 1- a((v,,/(v,j'l'l,· fJy"(I) = O.

'1;' + (1- a(w.,/w, )')'1, -- Y.1"(1) = O.

c('+ (1- a(w,,jw, )')'11 - fJy"(t) = O.

q~'+(I-a(w,,/w,nq. -r y'(t)=O.

(5.46)

•
-'

in which w" is the orbital rate and a.fJ.r are sorne constants ",hich are funcrions of the

selected shape functions: moreover. prime and double prime stand for rime derivarives with

respect to the non-dimensionalized rime. T =twl' where w, denotes the fundarnental frequency

of the booms with a fixed base. As expected, the stiflhess of the booms are reduced due to the

rotarion about the earth (recall that the prematurely linearized equarion of morion predicts lower

stifliless for a rotating bearn compared to the non-rotating one). The terros fJy" and r y' in

Eq.(5.46) act as forcing functions due to the translational and Coriolis acceleration of the base.

Using the shape function given in Eq.(5.36), one can evaluate the constants a, p, r, and (tJ1 to

be 0.215,1340. 1.25, and 0.00117, respectively.

The correct fonn of the equations of motion could be generated directly using the third

method. However, a more convenient approach may be to make corrections to Eqs.(5.46) by

adding the results of Eqs.(5.14) to them Taking sunilar steps as those taken in the previous

example, one can calculate the correction terros using Eq.(5.:14) as

(.74+.008y')ql .74+.008y' 0 0 0 'l,

-.Oly"q: 0 -O.Oly" 0 0 qze= = ,(5.47)
(.74-.008y')q, 0 0 .74-.008y' 0 Cf,

.Oly"q. 0 0 0 O.Oly" q.

in which the data for' RAB satellite have a1ready been incorporated. As expected, the

compensating terros appear in the fonn ôf a geometric stifthess matrix, for the zero-order

motions are prescribed. The compensating te.rms show that the stifthess of the boom is, indee<!,

a function of y' and y". This suggests that the booms might become softer and even buck1e for
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certain values of y' and y". TIlis phenomenon is shown in Figure 5.10. wh.ch presents sorne

typical simulation results for the booms 1 and 3 tor the case of.i' =0 and .i· =0 :::35 (11/ / s)

(y' = :::01 11/ rad). ln this case. the third boom buckles duc to the effect of Coriolis acceleration

of the base.

On the other hand. the first remedy. nonlinear strain energy expression. compensmes for

the missing stiffuess by adding the cubic terms 1.56 x 10" q,;. i = 1. ... .4 to the corresponding

equations of motion. which does not account for the effect of the base motion. This method.

however. can produce beller resullS if one considers at least one longitudinal OOF for each

boom. Clearly. the worst thing an analyst might do is to study a system with eight OOFs. while

it can be analy=ed correc/ly with only four OOFs. Furtherrnore. the method produces

additional difficulties by introducing the longitudinal frequencies. almest 7000 times larger than

the lateral frequencies, to the system of differential equations which makes the integration

procedure more difficult

5.5.4 Rotating cantilever plate

This example is given to veritY the applicability of the presented theory to a IWO

dimensional elastic media Consider a rectangular cantilever plate (Figure 5.4), rotating about

one ofits edges, say the X: axis, with a constant angular velocity 01'0>0' The dimensions of the

plate are 1,.1:. and h. respectively. Ils material properties are charaeterized by Young's

modulus E. Poisson's ratio v. and mass per unit area p. The equations of motion for this

system cao be obtained using the following linear field ofelastic displacement

~I =~=O.

•
inwhich

:
!!J = L9/.(xl'x:)q••

'.1

9/1(Xl' x:) ='II01 (XI) 'IIIl (x:),

9/: (xl'x:) ='IIo:(x,) 'IIn(x:),

(5.48)

(5.49)
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whllc the shape funcrions ':1
0

(Xi) and 'V;, (x,) are chosen as the i-th eigenfunctions of a

cantilcvcr and a free-free bearn. respectively.

The abovc linear field of elastic deflections. Eqs.(5.48). can be corrected to a nonlinear

onc using Eqs. (5 34). The correct goveming equations of motion. based on the nonlinear elastic

displacement field. can be round as

in which 00, and 00,. the frequencies of the non-rotating plate. are as follows

OOi = 12.48(D/pt,).
-- ( ., ( )1-]-­1Il; = 1+9._4 I-v ; lIli.

(5.50)

(5.51 )

••

ln the above relations. l, =IJl,. denotes the ratio of the dimensions of the plate. while the

fle."Curai rigidity D is given by E h3
/ 12(1- v').

Figure 5. Il shows the variation in the non-dimensionalized frequencies of oscillation of

the plate with the change in the non-dimensionalized anguIar vclocity, 1Il 0(ri1_ for a rectangular

plate with v=.3 and l, = 1. As expected. the resuIts of the conventional theory, dotled lines.

falsely show dynamic softening, while the resuIts of the present theory, solid lines, correctly

prediet stiffening ofthe t'otaling plate.
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Chapter 6

Applications

6.1 Introduction

So far, we have completed a formulation for the dynamic analysis of flexible multibody

systems, based on which the computer code FLXSIM bas been developed. This chapter is

devoted to the presentation of simulation results for three different problems, whose equations

ofmotion are obtained using FLXSIM.

Capture of a spinning satellite by a flexible two-Iink rnanipulator is the first problem

studied. In the second problem, the feasibility of using a two-Iink space manipulator for

stabilizing tethered satellite systems is Ùlvestigated. The last problem studied deals with the

retrieva1 ofa large payload by a redundant space manipulator, which possesses seven revolute
,~.

joints; in this study the efi'ects off1exibility of both the joints and links ofthe manipulator are

taken into account

The problems solved in this chapter may serve as a rneans to show sorne of the

capabilities ofthe formalism developed in the previous chapters, and the computer code written

based on that For instance, the cap8bilities ofderiving the minimum-order set ofequations for

a constrained system and anaIytical Iinearizaticin of equations of motion in the presence of

intermediatéparameler5 are demonstrated in the first problem. On the other band, the versatiIity
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of the code in handling complex flexible multibody syslems with flexible joints is shown

through the solution of the third problem. a seriai manipulalor with twenty OOFs (rigid and

flexible). In this problem. proper definition of inlennediale paramelers has made il possible 10

analyze the problem using a PC computer.

6.2 Capture of a Spinning Satellite

A two-link spacecraft-mounled manipulalor, shown in Figure 6.1. is used 10 capture a

spiMing salel1ile. The purpose is 10 achieve a smooth berthing of the payload as it is captured

by the end effector of the manipuiator.

The problem is solved with thrce different sets of assumptions. In ail three cases. a

circuiar orbit, not affected by the altitude dynamics of the system during the capturing process.

and planar motion. are assumed. In the first case, the manipuiator links are considered ta be

rigid and the center of mass (e.I:'!.) of the spaeecraft, not of the entire system. is assumed to

follow a cireuiar orbit In the second case, the assumption of rigidity is dropped and the e1astie

displacement of each beam is approximated by using oniy the first mode of a fixed base

cantilever. The third case, an example of application of constrained motien analysis. is

concemed with the same problem as the first case, but assumes that the entire system's center

ofmass is in the above-mentioned eircuiar orbit

//~

The system. in the tirst case, bas four holonomie DOFs (rigid). In the second ca5'':' there
~-::::::::::- ."

are six holonomie OOFs (four rigid and two elastie). In the third case, the centerofmass ofthe

entire system is considered to move in a circu1ar orbit; hence even if the system bas four

holonomie DOFs, the definition oftwo dependentpseudo-generalizedcoordinates (qs and q,).

which descn"be the position of the spacecraft center of mass (sec Figure 6.1) is necesSaly ta

make the anaiysis of the system easier. The constraint equation. obtained by ma1cing the

position vectar ofthe whole system's centerofmass in the oriJitolframe equaI ta zero. is:
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(6.1 )

where p' indicates the position vector of the center of mass of the i-th member in the orbital

frame. Differentiation of Eq.(6.1) with respect to time yields IWO scaJar functions linear in

terrns of the generalized speeds u" ... ,u. which can be solved for u, and u. to give

•
u'04=~A.. (q" ... ,q.)u,. s=I,2.,., (6.2)

•

The system is treated as a simple nonholonomic one with q, ,... ,q. as the generalized

coordinates and Eqs.(6.2) as the simple nonholonomic constraints.

The physicaJ parameters of the system are: spacecraft mass =10000 kg, spacecraft

moment of inertia about its center of mass=40000 kg.m', orbital rate =0.001 rad/sec, satellite

(payload) mass =1000 kg, payload moment of inertia about its center of mass=500 kg.m',

payload initial spin rate =0.5 rpm, link mass =20 kg, (E I)b'" =8810 N.m', link length =8.13

m, the distance from the spacecraft center of mass te the shoulder joint, ClJ' = 1 m (Figure

6.1), the distance from satellite center ofmass te the wristjoint, c'J3 = 1 m (Figure 6.1).

The initial conditions are caJculated by solving the inverse kinematics prob1em such that

the satellite center of mass is located on local horizontal sixteen meters away from the

spacecraft center of mass. Besides, te assure a smooth berthing process, the initial joint rates

are chosen such that the grapple point on the satellite (payload) and the end effector have the

same velocity.

6.2.1 Uncontrolled motion simulation

The uncontrolled motion ofthe~em during the post-capturing phase is simulated here.

Figure 6.2 compares the resu1ts of simulation for the cases one and three (spacecraft c.rn.

moves aIong the prescn"bed orbit and entire system C.rn. moves along the prescn"bed orbit). The

rime history of the joint DOFs. for all three cases, are shown in Figure 6.3.8, while the tip
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deflections of the bearns (case 2) and the position of the spacecraft c. m. (case 3) are presenled

in Figures 6.3.b and 6.3.c. respectively. As can be seen from the results (Figure 6.3.a). there is

almosl no difference belWeen the flexible and rigid cases; this is due 10 the smooth berthing

process and absence of applied lorques at the joints. The considerable difference belWeen case

1. or case 2. (the spacecraft c.m. in a circuIar orbil) and case 3 (the entire syslem c.m. in a

circular orbit). as seen in Figures 6.2 and 6.3. suggests thal a free-flying case cannol be

approximaled arbitrarily as either case 1 or case 3. ln other words. the spacecraft needs reaction

jets to eliminates q, and q. variations and stay on a prescribed orbit

The resuIts also show the possibility of using the rotational kinetic energy of the captured

satellite in the retrievaI process. After being captured by the ann, the satellite moves towards

the mother spacecraft even in the absence of any aetuator forces (Figure 6.3.a). The resuIts

represent only one possible solur.on to the problem because the system is redundant and

different sets of initial conditions. corresponding to different approach trajectories, may be

chosen. Strong dependency of the system response on the initial conditions might induce a

challenging problem of choosing the best set of initial conditions, i.e., best approach trajectoty,

to get the most desirable system response.

6.2.2 Controlled motion simulation

The purpose of control here is to maintain the pre-capture configuration of the system

during post-capturing phase wIule reducing the satellite spin rate to zero. This is done for the

three previously mentioned cases.

Case 1: Feedback Iinearization technique is employed to control the system in this case.

To use this technique, the equations of motion shouId he written in the form Mù =r =Q+'t,

in which 't is the part ofthe generalized force vector associated withinput torques, and Q is

the part independent of them. This is done by the computer code automatica11y, which is
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specially useful for complicated systems when definition of intermediate parameters is

lOevltable.

Having the equations of motion in the above forrn. one cao choose

or= -Q-M[Du+K(q-q)] (6.3)

where D4.4' K4.4 and ïï..., are the specified damping and stiflhess matrices associated with the

controlled response, and the array of nominal values (trim condition) of the generalized

coordinates. Choosing D and K as diagonal positive-definite matrices would asymptotically

stabilize the system. The simulation results of the controlled motion for case 1 are presented in

Figures 6.4 and 6.5.

Case 2: In this case, the equations of motion are analytica1ly Iinearized around the trim

condition. i.e., the pre-capture configuration. Theo. an LQR method is used to stabilize the

motion around the trim condition. The simulation results for this case are presented in Figures

6.6 and 6.7. Although the results show small deflections for the beam (Figure 6.6), this may not

be the case for any arbitraIy berthing scheme with impact or any arbitraIy set of initial

conditions. An interesting result obtained here is that the elastic DOFs cao be controlled using

the joint torques.

Case 3: Feedback Iinearization technique is used to control the motion of the system

during the post-capture phase. The generated equations ofmotion are ofthe fonn

•LM..ü. = l = Q.. + î'" r = 1,...,4
..1

(6.4)

in which i denotes the part ofthe nonholollÔmic generaIized force vector associated with input

torques, and Q is the part independem ofthem. Choosing

•
i=-Q-M[Dü+K(q-q)l

where D••• and Q601 are as defined as before but the stiflhess matrix, K••6• is defined as

(6.5)

(6.6)
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where K•.• is a diagonal positive matrix. This way '/,. ,/" .11, and II.. are nl't comrolled dlrectl\'.

however. since II, and II.. are simple algebraic functions of II,,, ... II. \Eq.\b.~)l. they "'l'uld he

controlled once II, ..... II. ale controlled. This. in !Un!. comrols '/, and ,/,. whlch ale related to

II,,, ... 11.. through the kinematical differemial equations of motion.

The time histor)' of the joint angles during the post-capture phase for cases 1 and .; arc

compaled in Figure 6.4.a. As one can see. using similal K and D. we get similal solutions for

joint angles in both cases. On the other hand. Figure 6.4.b shows that the system is maintained

in the Satne configuration as in the tirst case. but without using the reaction jets which ale

necessary in the tirst case to maintain the spacecraft center of mass in the orbi!. Using a similal

approach. it is possible to reduce one more degree of freedom by introducing the simple non­

holonomic constraint of constant angular momentum. This makes it possible to control the

attitude of the spacecraft through the joint torques as weil.

6.3 Stabilizing Tethered Satellite Systems
Using Space Manipulators

Tethered satellite systems (i.e.. orbiting bodies connected by a long tether) have the

potential for a large number of applications. These systems can be shuttle-mounted. space

station-based or free flyers. The applications cover a broad spectrum such as upper atrnospheric

measurements, electrodynamic experiments. providing microgravity environmenl, isolation of

scientific platforrns from !he space station, etc. A detailed documentation of1hese applications

has been done by von Tiesenhausen[1984].

There are 1hree phases in !he operation of tethered satellite systems: deployment phase,

during which !he subsateUite is deployed to !he appropriate altitude; !he stationkeeping phase

during which experiments are condueted; and !he retrieval phase in which !he subsatellite is

reeled back into !he main satellite. The deployment phase is asymptotically stable if !he
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deployment rate is less than certain critical rate; the stationkeeping phase is marginally stable.

whlie the retrleval phase is unstable (see Misra and Modi [1986]).This makes it necessary ta

devise sorne control schemes ta stabilize the dynamics of tethered satellite systems.

The otT·set control. proposed by Modi et al. [1990]. is one of the several schemes devised

for this purpose. This scheme. which is specially suitable for short tethers. involves changing

the offset of the point of anachment of the tether. The objective of this study is ta investigate the

feasibility of using a space manipulator as a mechanism ta imp1ement the offset control during

stationkeeping and retTieval.

Ta star! with. a dynamical model is developed for the system consisting of a spacecraft­

mounted manipulator and a tethered payload, using the computer code FLXSIM. Control laws

are then developed using this dynamical mode!. Finally. computer simulations are carried out ta

validate the controllaws developed.

6.3.1 Equations of motion

The system under consideration. shown in Figure 6.8, consists ofa main spacecraft. the

orbiter. a two-link spacecraft-mounted manipuialOr and a subsatellite, connected to the orbiter

by a tether. Ùl deriving the equations of motion. it is assumed that the spacecraft and the

manipulator are rigid and the entire motion is coplanar with the orbital plane. The subsatellite is

modeled as a point mass. while the tether is assumed lO be massless and lO remain straight

during the motion.

With the above assumptions. the system has four degrees offreedom (DOFs) which are

described by the following generalized coordinates: ql' the pitch~gle ofthe spacecraft; q:. the

shoulder joint angle: %. the e1bow joinungle: and q•• the librational angle of the tether. The

generalized speeds are simply detined as the lime derivatives of the generalized coordinates

(u. ='l.. i =l......q. Ùl addition to these four OOFs. the system has some prescribed motions
1 1
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which are the motion of the spacecraft center ofmass in a circular orbit. R = R..,. and 8 = 8(t).

and the variation of the length of the tether. L =L(t). It is assumcd that thcsc prcscribed

motions are not affected by the other motions of the system.

In the analysis of this system the gravit}· gradient plays an important role. due to the

considerably large dimensions of the system. The gravitational forces applied on a rigid body.

considering the effect ofgravity gradient, can be replaced (sec Hughes [1986]) by a force W.

passing through the center ofmass ofthe body accompanied by a torque T. where'

W. = _m8 go[I-2(P/Rc,)cosa)ii-[m8 go (P/R..,) sin a)i

T. =3(go/Rc,)[(sin(2aXI~ -1~)/2 +cos(2a)I~)k

(6.7)

(6.8)

in which, P is the distance from the point 0 (sec Figure 6.9) of the system which is moving in a

prescribed orbit (e.g., spacecraft center of mass in this problem) and go denotes the

acceleration due to gravity measured at the point o.

The equations of motion for this system, which are obtained using the computer code

FLXSIM, have the following general forro

M •••(q, L(t» ù••1 = f" 1(q,u, L, L, I) +7.,3't3• 1, (6.9)

•

in which 't =['l'l' 'l'2' 'l'3y, where 'l' l' 'l'2 and 'l'3 are the actuator torques applied on the

spacecraft, shouldel;oint, and e1bowjoint, respective1y. The equations ofmotion ofthe system,

Eqs.(6.9), have the following characteristics:

• The equations are highly nonlinear and coupled.

• The equations can have fixed points only when the length ofthe tether is either constant (m
/

the stationkeeping phase) or an exponential function of time (during re'aieval and

deployment).
:

•Equations (6.7) and (6.8) n:p=t simplificd form ofW. and T. for the planar case.
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• The linearized equations of motion are time-invariant if the length of the tether is constant

and time-varying if the length of the tether is changing.

• The uncontrolled response of the system is asymptotically stable during deploymenl,

marginaIly stable during stationkeeping, and unstable during retrievaI.

• The rank of matrix T is less than the number of DOFs, which means that the system is

under-aclUated (i.e.• there are not as many free input parameters as the DOFs).

Figure 6.10 illustrates the uncontrolled motion ofa tethered satellite system, with med

manipulator. The following data were used in the numerica1 simulations presented in this study:

m........ = lOs kg, mA'" = 20 kg, m~.u,,, = SOO kg, [t;"'''' = 9.68 x 10· kg.m',

["'''w 129 10· k' [....... 101 10· kg' [ ....... -/....... /....... 0:u =. x :g.m ., 33 = . x .m , 12 - 13 = 23 =,

t,... =8.13 m. The stationkeeping phase is simulated for L...... = SOOm, and the retrievaI

phase for both L..uwr =SOOe-o·"g and L"rJwr =SOO-46 (J, where (J denotes the orbitai angle.

The dependence ofthe equations of motion on the tether length and its derivatives makes

the equations of motion autonomous for the stationkeeping phase and non-autonomous for

retrievaI. Because of this difference in the nature of the equations, different control strategies

are chosen for each phase. A standard LQR method is used to make the stationkeeping phase

asymptotica11y stable. On the other hane\, feedback linearization technique is employed ta

stabilize the retrievaI. It is assumed that aIl of the states of the system are avai1able and the

aetuator forces are un1imited.

6.3.2 Control of the system during stationkeeping

The equations of motion goveming the stationkeeping phase have severa! med points. Here,

the equations are QIlQ/ytica1ly linearized around:the med point [0,0,0,0,%/2, %/4, 3%/4, %]

togive
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(6.10)

in which .; and Tf are small perturbations defined by u = ïi + Tf, and q = q + .;, and Df.

represents the Jacobian of f with respect 10 ". ,. evalualed al the fixed point.

The facl that the linearized system is controllable permits the use of stale feedback

lechniques. A standard LQR method is used here with different weighl functions. Figures 6.11

and 6.12 show the response of the syslem for different values of the tether length and three

different weight functions as follows:

1 0 0 0

B:.J ["
0

:]
[kM... 0 S 0 0

Q= B= R= 0 1
0 0 0 10 0

0 0
0 0 0

and
Q(l) = Q where k = 1
Q(2) = Q where k = 2S
Q() = Q where k = SO

where Q is the weight function for the states and R is the weight function for the inputs in the

objective function which is minimized in the LQR method

The results in Figure 6.11 and 6.12 show the feasibility of using space manipulators to

asymptotically stabi1ize the motion during stationkeeping. The rather small amount of control

efforts shows that the flexibility of the manipulators would not be a major concem (e1astic

deformations would be small). However, for long tethers, where the required joint torques are

large, the flexibility ofthe manipulator links should be included in the analysis.

6.3.3 Control of the system during retrieval

The equations of motion during retrieval is non-autonomous. The motion of the system

during retrieval phase is unstable; moreover, it does not have, in genera1, any fixed point With
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this in mind, one may choose the feedback linearization technique to stabilize the system.

However, no input has a direct access te the librational DOF of the tether, as can be seen from

the dimension of 't in Eq.(6.9). This means that, the system is not completely feedback

linearizable. One solution to this problem is te stabilize the tether motion using the other inputs,

that is to linearize the equation associated with the librational tether angle using the other

inputs. This, however shifts the instability from the tether te the rest of the system and can.'lot

be considered as a good solution. Another approach, w1ùch has been successfully applied to

sorne simple systems encountering the same problem, is te transform the e:quations under a

specifie nonlinear transformation, which makes the inputs capable of complete feedback

linearization of the new system (for example, see Spong and Vidyasagar(1989)). The existence

of the transformation is subject to the validity ofcertain conditions on the mass matrix and force

vector. However, the complexity ofthis system leaves no room for this approach. Besides, even

if one accepts te undertake the burden of the analysis, there is still no guarantee that the

conditions are met or the nonlinear transformation can be found A third approach is te use a

modified f<ledback linearization technique as foUows.

The set ofnonlinear ditrerential equations

Mù=f+'T't

can be linearized by choosing 't such that

'T't=-f-ML

where

L=Du+A(q-q)

(6.11)

(6.12)

(6.13)

•
in which, D and A are positive definite matrices, usuaIIy chosen te be diagonal. However, if

the rank of'T is less !han the number ofDOFs, then Eq.(6.l2) would be an overdetennined set

of equations and has no unique solution. In this case, we may choose te find i such !bat the

index & • defined as:
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is minimized. The matrix Q> 0 in Eq.(6.14} is the weight funcrion. which can be simply• [; = (Ti +f +M LlQ(Ti+f +M L).

chosen as the identity matrix. Using this i as the input to the system gives

Mù=f+Ti:-ML

6. Applicarions

(6.14)

(6.15)

•

It is worth mentioning that this method does not guarantee the asymplotic stability of the

system; instead. it tries to narrow the gap, in an optimum sense, between the response of the

system with that ofa completely linearized system, il +L =O.

Figures 6.13 and 6.14 present the simulation results for retrieval phases using the above

method. The results show that the method can be used in a sequential retrieval-stationkeeping

procedure to successfully retrieve the subsatellite. These results show some sharp jumps in the

actuator torques, which occur at the beginning of each stationkeeping period This suggests

that, in practice, to avoid actuator saturation due to this sharp jumps, the maneuver should be

scheduled such that the controlled stationkeeping phase stans before the system gains certain

amount of energy during the retrieval phase. It is also evident that shoner tethers are easier to

control (demand less control effon and induce smaller motion in the rest of the system). The

results also reveal that a multi-step retrieval-stationkeeping gives better results than retrieving

the same length in one step followed by a period ofcontroUed stationkeeping (see Figure 6.13).

Comparison of the simulation results for retrieving the subsatellite with exponential and

constant rate (Figure 6.14) shows that the exponential rate gives beller performance both in

terms ofthe motion and the required actuator torques.

6.4 Modeling and Simulation of a Redundant
Space Manipulator

The objective of this study is to develop the dynamica\ modcl of a system with severa)

rigid and e\astic degrees of freedom. This study may serve to verify the capability of the
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computer code FLXISM in handling complicated dynamical systems. The system under

cons,derallOn. shown in Figure 6.15. is a large space manipulator which has eight links

connected through seven revolute joints. arranged in a three-dimensional configuration. This

manipulator resembles the Space Station Remote Manipulator System (SS&\1S) which is

supposed tu serve on the space station Alpha Out of the eight links of the manipulator. links 4

and 5 (long booms) may. in practice. exhibit elastic beha\ior. Besides. due to the rather high

gear ratio of the joints (wm/w,,", = 1700). the effect ofjoint flexibility is significanl. Thus. even

a basic. simplified dynamica1 model for this system must inc1ude the effects of joint and link

flexibility.

The system has seven rigid DOfs. joint angles. To account for the effect of joint

fle."ibility. the joints of the system, which are identica1. are modeled as second order systems

(mass-spring). This means that eachjoint has one additional DOf (flexible DOf). In addition 10

the above fourteen DOfs. the system has. al least, six elastic DOfs due to in-plane. out-of­

plane. and rotational elastic vibrations of links 4 and 5 (assumed-mode method is used here to

model the elastic behavior ofthe booms).

The motion of the system can be fully described by the definition of twenty generalized

coordinates as follo\vs:

•

q, •...•q, lB (J, ..... (J,

q••...•q,•• y, .....y,

q.6

ql7

joint angles.

motor angles.

torsion oflink 4 (tip deflection).

out-of-plane bending oflink 4 (tip deflection).

in-plane bending oflink 4 (tip deflection).

torsion oflink 5 (tip deflection)•

out-of-plane bending oflink 5 (tip deflection).
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• in-plane bending oflink 5 (tip detlection1.

The generalized speeds of the system are simply defined as the time derivativC$ of the

generalized coordinates of the system (i.e.. ", = ci,. i = 1.. ...201.

Figure 6.16 illustrates the definition of the joint and motor angles (ch ••••• <fI.1. The joint

and motor angles (8, and r,) are related as J, =r, - r 8,. where r and J, are. respectively.

the gear ratio of the gearbox and the elastic rotational deflection of the gearbox as seen l'rom its

input side. Ifthe joint flexibility is neglected. then J, vanishes.

The long booms of the manipulator (links 4 and 5) are modeled as Euler-Bernoulli

beams. As stated earlier. the assumed mode method is used to relate the elastic deflections to

the elastic generalized coordinates as follows:

W Sy = II' Ql9'

ws: = II' Q~o'

(6.16)

in which ifJ.. w"" and w" are, respectively, the elastic torsion and the elastic deflections in Y

and Z directions associated with the i-th link. Moreover. 'P, and II' are shape functions which

are chosen as follows:

fi' =sin(;r~/2)

II' =A[(cosh(i1.~ - cos(i1.~) - O'(sinh(i1.~ - sin(i1. ~)]
6.17)

•

in which A =05, il. =1.875. 0' =(coshil. +cosÀ)/(sinhii. +sinil.), and ~=x/L, where x and

L are the spatial variable and the length ofthe bearn.

On the other hand, the joints of the system are mode1ed as mass-spring systems. Figure

6.17 iIIustrates a schematic of1he i-1h flexible joint ofthe manipulator. In titis figure the torques

.... ' • ~' and " are 1he motor torque, 1he spring torque and 1he joint torque (the torque

delivered to the i+1-st \ink), respectively. It is assumed that
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• The gearbox inenia IS included in Jm • the motor inertia.

• The stiffness of both motor and gearbox are replaced by a spring which is located bel\veen

motor (pure inenia) and the gearbox (pure transiOrmer). see Figure 6.17.

According to this model. the motor torque is the input to the system. the joint

torque. r, = r r", is the torque which drives the next link. and the spring torque. r,•. is a

function of the elastic rotational deflection.o,. defined as

{

0.07 sgn(o,) 0,:

r" = sgn(o, )(0.4 0, - 0.4425)

where "sgn" denotes the sign function.

10,1 < 15 rad.

10,1~ 1.5 rad
(6.18)

•

Figures 6.18 to 6.21 show the simulation results for a typical maneuver for the system.

The data of the system. which are used in this simulation, are presented in Table 6.1. In this

maneuver the manipulalor is employed to retrieve a heavy payload along a straight line (here. X

axis). This maneuver resembles the docking of Shuttle with the Space Station Alpha using the

SSRMS. In this simulation it is assurned that bath orbital and attitude motions of the Space

Station are unchanged during the maneuver.

Initially. the manipulator is in straight-out configuration (q. =O. i =1•.••,20). and bath

manipulalor and payload are al rest, with respect to the Space Station. Although the nominal

maneuver is planar. the aetua1 maneuver is three dimensional. Thal is due to the presence of

flexibility in joints and links and the spatial configuration of the manipulator. The maneuver is

accomplished by an open-loop control. with the aetuator torques evaluated using the inverse

dynamics ofthe rigid model ofthe manipulator.
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dh hTbl61Rdda e . e un ant space manlpu alor. tee aractens!lc ata.

Descr. Mass Length Centrai moment of inema (Kg. m:\

(Kg) (m\ 1" l" 1"
Link 1 :07 1.2 6.4 30.6 30.6

Link2 90 0.6 8.4 8.1 2.1

Link3 90 0.5 5.6 2.1 5.8

Link4 160 7 - - .
Link 5 160 7 - - -
Link 6 90 0.5 5.6 :.\ 5.8

Link 7 90 0.6 8.4 8.1 2.1

Link 8 207 1.2 6.4 30.6 30.6

Pavload 90000 1.4 9.68" 10· 1.29 x 10· 101 x 10"

•

r = 1700 (ml

J.. = 2 x 10.... (Kg.m2)

Gearbox ratio

Motor inertia

MJ =90 (Kg)

El = 25 x 10· (N.m2)

GJ =1.27 x 106 (N.m2)

Mass ofj'Jints (motor and gearbox)

Flexural rigidity of long booms

Torsional rigidity of long booms

•
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Figure 6.1 Capturing a spinning satellite, the S)'Slcm configwation
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Figure 6.2 Simulation ofthe uncontrolled capturing process with a rigid manipu1alor: (a) case
1. spacecraft center ofmass bas the prescribed orbit; (b) case 3. entire system's center ofmass

bas the prescribed orbit
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1•Figure 6.S The generaI configuration ofa

TSS being controlled using a manipulator.
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Figure 6.9 Gravitational forces applied on a
rigid body. considering the effect ofgravit)'

gradient
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Chapter 7

Application of Constrained
Motion in the Control of Flexible
Structures

7.1 Introduction

ln Chapter 3 a new method was introduced for developing the minimum-order set of

equations of motion for systems with both artificial and natural constraints. The proposed

method can find severa! applications in position and force control of robots (see Craig [1989]

and Raibert and Graig [1981]). This chapter presents an interesting application of that method

. _in the position control offlexible manipulators.

ln practice, there are cases where maintaining a nominal trajectory ofa system during the

entire interva! of motion is important Preserving the direc:ion of an antenna during the

maneuver of a satellite and moving the end effector of a manipulator along a prescn1Jcd .

trajectory are typical examples of this sort of problems, which are also referred to as traeking

problems. One way of ac1ùeving an accurate traeking of the output trajectory is to t=ack all of

the states ofthe system in a way that the desired output is generated. This can be accomplished

via a feedback linearization technique, provided that the system is not under-aetuated (Le., the

number ofindependent inputs is not less titan the number ofdegrees offreedom ofthe system). .



•

•

7. Application of Constrained Motion in Control of Flexible Structures

In contrast to rigid-body systems. feedback linearization technique do~ not guarantee an

accurate tracking of the output for flexible systems. which are normally under-actuated.

Another approach for tracking problerns, which is introduced in this chapter. is to

consider the equations which describe the desired trajectories as sorne constraints on the motion

of the system. Due to the imposition of constraints. sorne oi the DOFs of the system. as many

as the number of the constraint equations. become dependent on the others. In this approach.

the states do not have to follow prescribed trajectories to ensure tracking of the output. but the

dependent states are always determined such that the constraints are satisfied. or in other

words. the desired output trajectory is perfect1y tracked.

To apply this method. one has to recognize the input forces which have the polential 10

aet as the constraint forces, and to obtain the relations which give the magnitude of the inputs in

terrns of the states of the system. Next, the minimurn-order equations of motion of the

constrained system. which is an artificially constrained one. has to be developed. This set of

equations can then be employed to manipulate the system. while the tracking of the desired

trajectory is assured by imposition of constraints. The method presented in Chapler 3 for

deriving the equations ofmorion of artificially constrained systems can provide us with both the

equations ofmotion ofthe constrained system and the expressions for constraint forces.

The approach presented in this chapter has Iwo advantages which are due te the faet that.

to have a desired trajectory tracked by the output, the states do not have te f01l0w prescribed

trajectories. The first advantllge is that one can use any arbitrary type of control scherile to

manipulate the independent states of the system without being concemed about violating the

prescnbed evolurion ofthe output The second advantage is that te traek a desired trajectory the

system does Ilot have 10 be fully aetuated, 50 the method can work equaUy we1l work for rigid

and flexible systems.
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7.2 Analytical Development

Consider a syslem with Af degrees of freedom which has p inputs denoted by

t = ri .... , r P' The syslem is required 10 move such that its outputs track prescribed trajectories

described by P equations as follows:

g,(q,t)=o, i=I, ... ,P, P<p (7.1)

in which q = q" ... ,q..,. is the array ofgeneralized coordinates of the system, and t is time. This

system can be viewed as a constrained system whose motion is subjected to P constraints

described by Eq.(7.1). In practice, however, to impose the constraints, we must find P inputs

of the system which can act as constraint forces. Assuming T" ••• , Tl' to bethe set of inputs that

are acting as constraint forces, one can use Eq.(3.28) to develop the equations of motion ofthis

constrained system as
"1- _ _

LM.. ü, =l,(q,UI,Tp." ••• ,Tp,t), r= I,...,N,..., (7.2)

•

in which N = Af- P is the number of degrees of freedom of the constrained system, and

u i =", ,,,,,uN denotes the artay of independent generalized speeds. The p- P inputs in

Eq.(7.2), T P." ... , T p' can be used to manipulate the system (to control the motion of the

constrained system), while traeking of prescn'bed trajectories is guaranteed through imposition

ofartificial constraints by application ofr, ,'''' Tl"

The constraint forces (T" ...,Tp ) can be found using Eq.(3.3S). These forces are

functions of the generalized coordinates and genei'alized speeds of the System and the other

inputs - i.e., Ti = T.(q,UI,Tp." •••,Tpot),i =1,••.,P. Calculation of 'Z'" •••,'Z'p based on

Eq.(3.3S) represents a model-base<!, open-loop control 1aw for the system which, in theory,

guarantees the motion of the system to comply with the constraints (desired trajectory). In

proctice, however. a perfeci tracking ofprescribed trajectories is pending upon the accuraey of
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the mode\. the a\'aibbility of input forc~s that are suppos~d to act as th~ constr:unt forœs. 'Uld

a\'a,bbility of the states of the system.

7.3 Illustrative Examples

Two examples are given to ilIustrate how the method works. and how it can he employ~d

to control a flexible structure.

7.3.1 A rigid, two-link manipulator

Consider a rigid. two-link manipulator. shown in Figure 7.1. which is employed to mo\'e

a point mass M. at the tip of the second link. a10ng the X a:<is. The main objective is that the

mass does not leave the X axis during the course of motion. Although. for this rigid

manipulator. the maneuver can be accomplished by feedback linearization technique. we want

to apply the method presented here for two reasons. First, to show. through a simple exanlple.

how the method works. and second, to show how this method enables us to use a mixed control

srrategy to control this system.

The prescribed rraject0'Y can be described by the equation tsin(q,)+tsin(q:)=O. in

which t denotes the length of the links and q, and q: are the generalized coordinates of the

system as shown in Figure 7.1. Solving this relation, one gets the following constraint equation

(7.3)

•

Employing ~ method presented in Section 7.2 and choosing the torque T: as the

constraint force. we can find the magnitude of T:. using Eq.(3.35). in terms of the states of the

system and the other input as
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where mdenotes the mass of each link. and /l, = ci, is the independent generalized speed of the

system. On the other hand. the equation of motion of the constrained system. with the

constraints as described in Eq.(7.3). can be writlen. based on Eq.(3.281. as follows:

me' li, =" (7.5)

As one can see. Eq.(7.5) represents a one degree offreedom system \Vith one input. This

equation can be used to control the independent generalized coordinate (q,). and. through that.

to manipulate the payload. whereas the open-loop controllaw given by Eq.(7.4) guaranties the

tracking of the prescribed trajeetory (i.e.• the mass M moves on the X axis). To control q,. one

can use any control law. even a simple PD controller which CalI be easily implemented in

practice. This also allows us to control the system semi-manually - to control q, by a master

and slave system. white q, is being controlled through proper eva1uation and application of "

such that the overall motion satisfies the constrained motion which describes the desired

trajeetory.

The va1idity of the above analysis CalI be verified by simulation. However, in this simple

case, one may analytica1ly verify that the equations of motion rf the unconstrained system

admits q, =-q, as its solution if the torque " is determined by the open-loop control law of

Eq.(7.4). To this end, let us substitute " from Eq.(7.4) into the equations of motion of the

unconstrained system given by

[

(4m/3+ M)/.'

acos(q, -q,)

which results in

(7.6)

•
[

(4m/3 + M)/.:

acos(q, -q,)
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where a=(m/'2-.I!){: and p= cos('2,!,)(I/'2+ Af/m)-(.II/m.,. 1/3) Upon subsllllllmg

Cf, = -'1:. 11, = -II:. and li, = -Ii: in Eq.(7.7). after some mathematica! manipulation. one gets

the following consistent. over-determined set of equations

(78)

•

which shows that Cf, + Cf, = 0 is a solution to Eq.(7.6) if r, is detennined by Eq.(74).

7.3.2 Control of a flexible manipulator

ln this example we consider a manipulator with two flexible links and a rigid end effector

which are connected through revolute joints in a planar configuration as shown in Figure 7.2.

The data of the manipulator are given in Table 7.1. The flexible links of the manipulator are

modeled as Euler-Bernoulli beams. Transverse vibration in the plane of motion is the only

elastic motion which is considered. Assumed modes rnethod. with one elastic DOF for each

link, is used to relate the elastic deflections of the beams to the elastic generalized coordinales

of the system. The normalized first mode shape of a cantilever beam. given in Eq.(5.36), is

used as the shape funerion. The system has five DOfs. which can be identified by the definition

of the following generalized coordinates:

q,: shouider joint angle,

q:: eiastic tip deflection ofthe first link,

q, : elbowjoint angle,

q.: elastic tip deflection ofthe second link,

qs: wrist joint angle.

The genera1iZed speeds of the system are l;lefined as the time deriVatives of the generalized

coorè.;nates (i.e.• u. = q,.i = 1••••,5). The system has three inputs denoted by ',. '2' and "
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which arc the actuator torques applied at the shoulder. elbow. and "nst joints. respecti\'ely.

This system is under-actuated. i.e. has fewer inputs than the number of DOFs.

thTable 7.1 Three-link flexible manioulator: e ph\'sical data

Description Mass (kg) Length (m) Flexural rigidity Structural

(N.m2) damping

Link 1 2.51 0.8 930 2%

Link2 2.51 0.8 930 2%

End effector & 5 0.15 - -
Payload

We intend to perfonn a rest-to-rest maneuver wlùch moves the end effector of the

manipulator from point A (y = 5 cm) to point B (y = 80 cm) a10ng the Y axis. see Figure 7.2.

The objective is to keep the tip of the end effector on the Y axis. The desired rrajectory can be

described by X. = 0, where X. denotes the X -component of the position vector of the end

effector tip. Using forward kinematic::. one can expand the constraint equation as follows:

X. = 0.8[cos(q, )+cos(ql +y q: +q)]-q: sin(ql)-q. sin(ql +y q: +q)

+ 0.1 5cos(qt +yq: +q) +y q. +q~)=0
(7.9)

in which y is a constant dependent on the choice of the shape ftulction (using the shape

ftulction gtven in Eq.(5.36), Y =1.72).

Applying the method presented in Section 7.2, white considering T) as the constraint

force, one can develop the equations ofmotion of the constrained system as

"- -:-
:LM,,ù.=l,+:LT.T,, r=I,...,4.
...1 1-1

(7.10)

•

Equations (7.10) can be used to control the independent DOFs orthe system (here, qwoo,q.).

Different control schemes can be used to control this system. For instance, the computed torque

method can be employed to manipuiate ql and q3 (joint angles) such that the wrist joint moves

close to a desired trajectOly (with deviations due to elastic fluctuations). The wristjoint angle
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(q,) "ill be accordingly determined. through application of ')' such thatthe end elTector IIp

follows the prescribed trajectory.

A simpler method. used in this example. for control\ing the constr:ùned motion of the

system (given by Eq.(7.1 0)) is to employa PD controller. The controllaw C:lll be expressed as

" =k,(q,-q,)+c,(u,-II,).

" = k,(q, -q,)+c,(u) -II,).
(7.11 )

where q, :lIld ii, are the desired final vaIues for q, :lIld Il,. This type of conrroller. apparently.

does not force the states of the system to follow prescribed trajectories: moreover. it does not

control the elasric vibrations directly. However. the dependent genemlized coordinate (q,) will

a1ways be determineci, by applying the proper vaIue of the constrained force (• , ). such that the

end effector moves a10ng the Y axis. the prescribed trajectory.

The initial and final conditions for this maneuver, which are chosen arbitrarily, are given

in Table 7.2. The results of the simulation of the system for the aforementioned maneuver are

shown in Figure 7.3, while Figure 7.4 shows the input torques which are applied to accomplish

the maneuver. The controller gains for this simulation are chosen as k, =120, k, =80,c, =22,

and c, = 16.

Table 7';' Initial and fina1 conditions for moving the end effector ofa flexible manipulator
al th Y .on2 e axIS

Q, (rad) q. Q, (rad) q. Q, (rad)

Initial concis. 0.1253 0 2.8909 0 1.6961

Final conds. 0.5421 0 1.8964 0 1.7503

•

Now, let us repeat the sarne maneuver. moving the end effector from point A to point B

a10ng the Yaxis), but with a different objective. This lime we would like to maintain the en~

effector para11e\ to the X axis, see Figure 7.2. Repositioning a spacecraft antenna, while

preserving its orientation, is an interesting application for this type ofmaneuver.
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The desired prescribed motion can be expressed as B, = ;r. where B, denot~s the angle

of the end effector measured from the X a.xis. As before. the constraint equation can be

expanded as follows:

(7.121

in which r = 1.72. The independent DOrs of the constrained system is controlled using the

same PD controller as defined in Eq.(7.11 l. but with a different set of controller gains chosen as

kl =30, k, =20. CI =Il. and c, =8. The initial and final conditions for this maneuver. which

are chosen arbitrarily. are given in Table 7.3. The simulation results for this maneuver are

shawn in Figures 7.5 and 7.6.

Table 7.3 Initial and final conditions for moving the end effector ofa flexible manipuIator
arall 1 thPl e ta eXa.'Os

q, (rad) q. q, (rad) q. q, (rad)

Ininal concis. -1.15 0 2.9436 0 1.348

Final conds. 0.3483 0 2.0742 0 0.7190

•
135



•

••

7 Application of Constr:un~d\Iotion m Control of FI~"lbl~ Strllctur~s

'/////////·/III,//~///,//·.//r./

Figure 7.1 Schematic ofa rigicl, two-link manipulator.

B i

Q'·1", 't 35 .....

Il Il Il 1
Figure 7.2 Schematic ofa flexible. three-link manipulator.
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Chapter 8

Time-Optimal Maneuvering of
Flexible Multibody Systems

8.1 Introduction

The problem of minimum-time maneuvering of space systems has gained a lot of

attention in the past Depending on the complexity of the system. the optimal solution might

become very complicated and difficult, if not impossible. for practical implementation as a

feedback control of the system. Yet, the same solution is important because it can provide a

limit on the achievable performance for the maneuver at hand; moreover, in some cases it can

be a guide for modifying the practical maneuvers to achieve a better performance.

•. In Chapter 1 it was mentioned that most ofthe research works in the area of time-optimal

control of flexible multibody systems were directed towards solving the problem of

maneuvering of systems with a special configuration, i.e., a rigid hub with some flexible

appendages. On the other hand, multibody systems with genera\ configuration, such as space

manipulators. have received comparatively less attention. In this chapter we t'Y to use optimal

control theory to maneuver a multibody system a10ng a prescribed trajectory.

Instead, of finding the minimum-lime solution using: numerical methods, a near-//'
--~

minimum-time solution is attempted. The solution is found by employing a pertUrbation
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technique to subdi\ide the equations of morion into two sets: zero-order equallons (govemmg

the rigid body motion) and tirst-order equarions (describing the e1astic \1brations).

The time-optima! solution to the zere-order part is found by applying nonlinear optimal

control thecry. while the unwanted elastic fluctuations are damped by a controller designed

using a linear control thecry such as the LQR method. The actuator forcest are then found by

superposing the forces found from the open-ieep control law of the zero-order system and the

c1osed-locp controllaw of the tirst-order system.

8.? Theoretical Deve lopment

The problem at hand cao be stated as folloW5:

(Pl): Fora syslem S wilh N DOFs (N R rigid DOFs and (N - NR) elastic DOFs) and NR

inpllls. delennine Ihe inpuls which can drive Ihe syslem lram ils specijicJ inilial

condition 10 the desiredfinal condition in minimum lime.

To express the problem mathematica1ly, let us assume that the OOFs of the system are

described by N generalized cocrdinates denoted by q = q" ••• ,qN' of which the tirst NR

describe the rigid body OOFs ofthe system. Furthermore, the magnitudes of the actuator forces

denoted by 't = ~I"'" ~N' are the inputs ofthe system. The equations ofmotion ofthis system

cao be written as

N N-

:LM,.(q,/)ëj, =f..(q,ci,/) +:Lr.. ~"
".1 ._1

r =I, ...,N. (8.1)

•

We further assume that the maneuver stans al 1=0 from q. and ci. and ends al 1=l' in q,

and cir , where ail the quantities q., ci., q" and cir are specified. With these definitions,

problem (P1) cao be restated as

r ln this contexl, the tcrm Maetuator force" rcfers to both aetualor force and aetuator torque.
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IP2). !';Jr Ihe \l'Slem S, IlC seek 10 find Ihe inpul 't ='t (1) ",hieh mintmi:es Ihe petformanee

index./imelion J =r dl, wilh q(O) = qo' q(O) = qo.q(t/) = ql and q(l/) = q!, mbjcel

/(} Ihe/ollo"'ing eonslraint'·

~ ~~

LM,,(q,l)ii, =/,(q.q.I)+ LT.. T,. r= I. .... N
J 1 1-=:

tlnd

(8.2)

(8.3)

•

This problem can be solved using Ponnyagin's minimum principle, which results in a bang·

bang solution (Meirovitch [1990]). However. determining the number of switches and the

switching times can be a challenging problem. In the case of complicated problems. such as

multibody tlexible systems. not only a closed fonn solution can not be reached. but even the

numerical methods often failtu give the switching times.

For flexible systems. a near-minimum-time solution can be obtained by using the

perturbation technique to partition the equations of motion into a zero-order and a first-order set

of equations. This technique is discussed in the following section.
- -. - -

8.2.1 Perturbation technique

hl this sèction we first show how the technique can be used to partition the equations of

.motion into IWo sets ofzero-order and first-order equations. Then. it will be discussed how the

method can be used to find the near·minimum·time solution for a flexible system.

The technique is based on the assumption that the difference between the response of a

flexible system and its rigid counterpart is of the first-order (i.e., one order of magnitude:

smaller !han the rigid·body motion). This is truc Î)nly if the magnitudes of the e1astic vibrations

are much smaller than those ofthe rigid-body motion. According to this assumption, ifthe array

q is the solution to Eqs.(S.l). which describe the motion of the flexible system, then it càn be

e.xpressed as
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where q is an =y of sorne lirst-order terms (i.e.. ilqll <-.:: Ilqll). and q is the solution to the

eqllations of motion of the rigid counterpart of the system S given by

• q=q+q (8 .\)

,Vif ,\,11

L.lvf~(q./)q,=ï.(q.q./)+L:t,,(q./)ï,. r=I ..... N". (85)
.,_,1 1 cl

in which NR is the number of the rigid DOFs of th" system. Substituting q from Eqs.(8.-l) and

il and 't by their equivalents il +qand 't + 't in Eq.(8.1). using Taylor expansion up 10 the tirs!

order to expand Eq.(8.1). and collecting the zero-order and lirst-order terms. one gets

N N-

LM,,(q,t)q, =j,(q,q./) ... L:T,;(q.t)ï,. r = 1..... N.
".=1 t=l

(8.6.a)

,\' Nit

L[M,,(ii,t)q,+K,,(ii,q,t)q, +C,,(ii,q,t)q,] = L :T,;(q./) r,. r = 1.. ... N. (8.6.b)
".1 1,1

where

K [(~ ôM" "') ôj, ô7;, -]rs = L,..--q, -----T, .
"1 êq, êq, êq, -'

q••

r,s= 1..... N. (8.7)

and

C,,=[ZI.,,' r.s=I.....N. (8.8)

•

One can see that using this technique, the equations of motion of the system, Eq.(8.1),

have been split inlo IWO sets of equations. Eqs.(8.6). Considering that ëj, = tj, =if. =0 for

i = NR + I, ...,N (the elastic OOfs), one can reduce the tirs! set of equations. Eq.(8.6.'a),

which describes the motion ofthe system in the absence ofelastic vibrations, to the equations of

motion of the rigid counterpart of the system, Eq.(8.5). This set of equations is, obviously, a

nonlinear set, but of the lower dimension, NR, compared to the original system with dimension

N. On the other hand, the second set, given by Eq.(8.6.b). which describesethefirst-order

motion induced by the flexibility of the system. is a 1inear set of equations of the same

dimension as the original system.

.<---
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The problem cano now. be solved in two steps 10 give a near-minimum-time solution. The

lirst step would be to find a i which drives the rigid counterpart of the system from its initial

condition (il" q,) 10 the final ~ndition (qf' Qf) in minimum time. In the second step, we seek

10 find i. using the LQR method, such that the vibrations induced by the f1exibihty efl'ect get

damped. The desirp.d controllaw which accomplishes the maneuver in near-minimum-time is

given as 't = i+i

8.2.2 Minimum-time, rigid-body maneuver

The minimum-time maneuvering problem for the rigid counlerpart of the :;jStem S can

be stated as follows:

(P3): Find the actuator torque i =i(t) which minimizes the index fiinction J =l'dt. with

q(O) = 'iio. Q(O) = 4, .q(tf ) = 'iif • QIld q(t,) = qf' subject to thejollowing constraints

N- Na

LM..<ëï,M. = fr<ëï.q,t) +L~<ëï,t)i'i' r = 1,....N R
• (8.9)

..1 ;_1

and
• i<1=1....,N. (8.10)

•

The solution ta this problem is a bang-bang controllaw; however. finding the switching

points can still be a challenging problem. In fact, for systems with NR > 1, not only a closed .

form solution may not be found in genera1, but, in some cases, even numerica\ methods fail ta

give the solution. For instance, Bobrow et a1.[1985] reported that even for a rigid manipulator

with three DOFs, severa! numerica\ methods were tested, but ail of them failed to give the

swilching points.

Here, instead ofusing numerica\ routines ta solve the problem in its general form, we try

ta find the time-optimal solution for the system along a prescribed trlIjectoty. Although this

method does DOt yie\d the global solution for problem (P3), it is still a uSefuI method because it

is computationa11y advantageous and can find practica\ applications. The method is specïal1y
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convenient for cases where the path of maneuver is either prescribed or has to be selected from

a few possible paths. Such cases art: likely to be encountewJ in maneuver of robotic

manipulators. Apart from robotics applications. ;.':e l::othod can a1so be used in cases such as

minimum-time. rest-to-rest, 3-0 maneuvering of a rigid body around the Euler a.xis. with

specified initial and final conditions.

In this method. application of the constraints. which describes the path, reduces the

degrees of freedom of the system Îrom NR to one. However. due to the presence of severa!

aetuators. which together should drive the system a10ng the prescribed path, the time-optimal

solution for this one-DOF !'}'Stem is not as straightforward as a simple one-DOF system (with

100 constraint). What fol1ows is a brief discussion of the method. A simpler. and yet more

detailed version ofthe method can be found in the paperpublished by Bobrow et a1.[1985]. The

above mentioned time-optima1 problem can be stated as fol1ows:

(P4): Find the aClUator torque :t which minimizes the index function J =l' dl. with

q(O) =Cio.q(O) =il. .q(if) = q" and q(ï,) =ql" subject to thefollowing conslrainls

N- N-

LM..<'ii,t)q. = f,<'ii,q,t)+ :LT.,<'ii.t)i'" r = I, ...•N R
, (S.lI)

~l I~

and
g,Cii,s,t) =0, i =I, .•. ,NR

,

r, Sr, Sr, , i =1,...,N R
•- -

(S.l2)

(S.13)

•

In Eq.(8.I2) the scalar s denotes a pseudo-generalized coordinale which can unique1y

determine the configuration of tlie constrained system. For instance, the length measured a10ng

the path or one ofthe generalized coordinales ofthe system can he a candidate for the sca1ar s .

This means that given a value of s, one should he able ta find corresponding values of

To solve problem (P4) we 1ry ta express it as a one-DOF problem in terrns of the

pseudo-generalized coordinate s. To this end. q,q, and q must he substituted in Eq.(S.Il) by
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Iht:lr t:qUlvaJents in terms of s. .'. and .,' . Differenriating the constraint equations "ith respectto

umè. one can writc

[
'"'1

[A,Cq.s.1) A,(q.s.l)] ~J= 15(q.S.l). (S.14)

This equation can be solved for il. provided that the constraints are independent (i.e.. A, is

invertible). which results in

il = A(q.S.l)S+ B(q.s.r). (S.15)

where A = -A,"A, and B= A," 15. Differenriating Eq.(S.15) with respect to rime. one gets

il = A(q.S.l)S +À(q.s.i1.s.t)s+ B(q.S.i1.S.1). (8.16)

Substituting for il and il from Eqs.(8.15) and (S.16) into Eq.(8.l1). one tan rewrite the

equations of motion. Eq.(S.II). as

Given the values of s.s. and S. Eq.(8.18) shows the unique values of the aetuator forces. 1:.

which are needed to produce the specified motion. However, taking the aetuator limits.

Eq.(8.13). iIito consideration. certain patterns ofmotion may not be achievable. In other words.

for a given pair of s and s. there is a bound of adnüssible accelerations, where an adnüssible

acceleration for given s and s is defined as any acceleration which tan drive the system

\vithout violating the constraints. To find the bound ofadnüssible accelerations. let us substitute

the aetualor force limits from Eq.(8.13) into Eq.(S.I7)

•

Cs='t-D.

in which C and D are N R X 1 matrices given by

c=r'MA.
D=7-1[M(B+Às)-r].

r, -D, sC;sSr, -D,. i=I•...•N R
•- -

(8.17)

(8.18)

(8.19)
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Since for any s and.~. li and li can be compuled using Eqs.(S.12) and (S.15). ail quanlincs '"

Ihe above equalion can be considered as functions of s and .~. If C, ;:: O. Eq.(8.1'l) can be

rewnllen as

h,(s..~)Silsg,(s.•~). i = L ... N·.
where

and

. {(ï',_ -D,)jC,. C, >0.
h,(s.s)= (- -D)jet',_ l ,. C, <O.

. {(ï',_ -D, )jC, . C, > O.
u(ss)-
<", • - {ï',_ -D,)jC,. C, <O.

(S.2I)

(S.22)

Any admissible acceleration must satisfy ail of the inequalities give by Eq.(8.20). whichm~

that

h(S.5) sils g(S.5). (8.23)

in which h(S,5) =max(~(s,5») and g(S,5) =min(g,(s,5»), with the maximum and minimum, ,
taken over those i for which C, .. O.

On the other hancl, if C, =0, the i-th inequality ofEq.(8.20) reduces 10

r, <Dt <r, .- - (8.24)

•

so the selection of s can nol depend on whether Eq.(8.20) holds for that i or not In this case,

while choosing s the i-th inequa1ity has 10 be overlooked. However, there might be cases

where for a given pair of s and 5 no admissible acceleration can be found. This can happen

when irrespective of the value of s.a given pair of s and 5 violales either the inequaiity given

by Eq.(8.24) or the inequa1ity given by Eq.(8.23) (i.e., makes g(S,5) <h(S,5». Such a pair of

s and 5 is nonfeasible, which means that if the system gains the ve10city 5 al the point s . the

actuators can no longer hold the system on the prescribed trajectoty. This divides the phase

plane (S-5 plane) into feasible and nonfeasible regïons. In practice, for most of the points on
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the path. there IS a cenam velocity.~ above which no combinarion of admissible actuator forces

can hold the system on the prescribed trajectory.

Now. we come to the point when we can restate problem (P4) in lerms of s .

(P5): Umm s(O) and .,'(0), cho",·e ~'(I) ta minimi:e the final time if for which s(i;) = s;

cmd .~( i; ) = '~f' sllbjcct ta the fo//owing ineqlla/iry constrainrs

h(s.s) :::; Ji:::; g(s.s) (8.25)

•

Il tan be proved that (see Bobrow el a1.[1985]) tl) minimize the maneuver rime. s musl

a1ways takes either its minimum or its maximum possible value; thal is. either Ji = g(s.s) or

Ji = h(s.s). Therefore. finding the optimal eontrollaw amounts to finding the times at whieh s
switches between ma.ximum aeeeleration and maximum deceleration.

The best way to find the switehing points of this problem is to eonstruet the switehing

eurve in the phase plane. This method is motivated by the faet that for a maneuver, the higher

the phase-plane trajectory, the shoner the traveling time. The method can be stated in terros of

the following algorithm:

Step 1: Integrate the equation Ji =h(s,s) baekward in rime from s= sf and s =;'f until either

the line s =s. is reached orthe solution eurve (CI) enters the non feasible region of the

phase plane (Figures 8.1 and 8.2).

Step 2: Integrate the equation Ji =g(s,5) forward in rime from s=s. and 5 =5. until either the

solution eurve (e:,) intersects the solution curve c; (see Figure 8.1), or it enters the non­

feasible region of the phase plane at some point a (Figure 8.2). In the tirst case, the

solution is complete; the problem bas one switeh which takes place al the intersection of

curves CI and c:. In the second case, the problem is multi-switching.
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Step 3: From point a on the cUr'.·e c,. drop to sorne lower velocity on the dolted wrtieal IlIle

(see Figure 8.:!). Then. integrate the equation ,'i = h(s.,') tOr'.vard in time until either the

solution cUr'.·e (c,) intersects the s a.xis. or it enters the nonfeasible region of the phase

~Iane. The objective is to tind. by iteration. the point h such that the dece1erating

trajectory. cJ ' starting !Tom point b just touches the boundary of the non feasible region

at a single point s•.

Step 4: From point s, integrate the equation ,ç = h(s."') backward in time until the solution

curve intersects the solution curve c: at sorne point s, (see Figure 8.2).

Step S:From point s: integrate the equation s= g(s.s) forward in timet until either the

solution curve (c.) intersects the solution curve c, at sorne point s, (see Figure 8.2) or il

again enters the nonfeasible region of the phase plane. In the tirst case. the solution is

complete. and the three switches are delermined to be at points s" s:' and ~;. In the

second case, however, the system has more switches which can be found by repealing

the Steps 3 to 5.

This a1gorithm involves a tedious iteration procedure for multi-switching case. A much

better method for finding the switching points of this type of problems is proposed by Pfeiffer

and Johanni [1987].

8.2.3 Vibration suppression

Two different strategies cao be adopted to design the feedback control ta darnp the

unwanted elastic vibrations. The first is ta control the elastic vibrations while the rigid-body

maneuver is in progress, and the other strategy is ta start darnping the elastic vibrations after

t It can be proved. sec Bobrow et a1.[198S), that it is possible to rcsume maximum acccIcrntion at poinl s:
\Vithout immcdiately enlcrïng the nonfcastble rcgion.
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the rigid body maneuver is finished. The corresponding formulation. advantages and

disadvantages of each method are discussed below.

8.2.3.1 Vibration suppression during the minimum-time
maneuver

In this approach one has to spare some of the actuator capabilities for the feedback

control (ï:) for vibration suppression. This reduces the limits on the actuator forces available to

the rigid-body maneuver (i.e., 'tm", < 'm", and 'tmm > 'mm)' For instance, one might choose

't"", = a 'm.. and 'tmm = a 'mm where 0 < a < l. Suppose that 't, (1) is the actuator force

which accomplishes the rigid-body maneuver in a minimum time denoted by 1,1, according to a

certain selection of 'tm.. and 'tmm . Theo, the feedback controllaw for the vibration suppression

tan be obtained by solving the follo\ving time-varying LQR problem:

Find i which minimizes Ihe peifonnance indexfimction

(8.26)

••

sllbject 10 following time-varying linear eqllations

N

L[M,,(if ,I)q. +K,,(ii', 'if ,t)ij. +C,,(if,'if,t)q.] =..,
,v'

LJ;;(ii',t)i'" r = 1,.••,N, (8.27),.,

in which if =if(t) denoles the time-optimal solution 10 the rigid-body manezlver. and

the matrices K and C are as defined in Eqs.(8. 7) and (8.8).

The quantities X= (q,q], Q~ 0, and R > 0 appearing in Eq.(8.26) are, respectively, the state

vector ofthe system and some weight functions.

In this approach the final rime of the maneuver (f.') would be equal to the final rime of

the rigid-bo<IY maneuver (i,'). Due to simultaneous vibration suppression and rigid-body
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maneuver. which prevents build up of elasric \;brarions. this method can work even for highly'

flexible systems which may go unstable ldevelop large e1asric \;brations) in the ab~ence of

feedback control during the rigid-body maneuver.

A disadvantage of this method is that one has to decide a priori what perccntage of the

aClUator capacity should be allocated to the rigid-body maneuver task. Apparently. the lower

this percentage is. the longer the maneuver rime would be. and the higher this percentage is. the

higher the chance for the aClUators to get saturated during the maneuver would be lrecall that

the aClUator force is the sum of't and :r).

8.2.3.2 Vibration suppression after finishing the minimum-time
maneuver

In this approach the actuator forces for the entire maneuver are given by

{
T"

'1' =, -'l',.
OS t S f{

ff St'? tl'
i= I, ... ,NR

• (8.28)

where if denotes the minimum-time for the rigid-body maneuver. In this case, due to the

absence of feedback control during the rigid-body maneuver we have i:m.. = 'tm... and

i:m;" ='tm;". which, c1early. makes if smaller than ~I. the rigid-body maneuver rime obtained

in the previous approach. The feedback control law for vibration suppression can be obtained

by solving the following time-invariant, LQR problern

Fmd;: which minimizes

(8.29)

•
subject 10 thefollowing time-invarianllinear equations

N . N-
'L[Mn(ii" .t)q, + Kn(ii".'if' ,t)q, +Cn(ii" .qd,t)q,] = 'L.7,;(iid ,t)'f"T = 1,.... N(S.30)
sai '.1
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m "Iuch q" and tj" arc rhe desiredfinal vailles ofëj and tj (~iven ,·onsrant~). and the

matrices K ,md C are as d~fined in Eqs. (8. ï) and (8.8).

ln this approach. the final maneuver time is rJ = rf .. l", where t' indicates the senling

time of the vibration suppression maneuver. Although the final time of the maneuver is larger

than the minimum-lime for rigid·body maneuver(t f > if). it ma)' not be larger than the final

time obtained in the previous approach. This is due to the larger rigid bOdy-maneuver time for

the pre_;ous approach (i/) compared to the if. On the other hand. the feedback controUer

designed based on this approach is both easier to design and to implement. However. lack of

vibration suppression during the rigid-body maneuver may make this approach an improper

choice for highly flexible systems. This approach can be used only for those systems whose

response to the open-loop bang-bang control. in the absence of feedback control for vibration

suppression. falls within a first-order neighborhood of the response of the rigid-body

counterpart of the system.

8.3 Applic~tion: Retrieving a Satellite in
Minimum Time, Using a Flexible
Manipulator

Consider the system shown in Figure 8.3 in which a satellite (a rigid payload) is grasped

by a flexible. spacecraft mounted manipulator, The main spacecraft is orbitting the earth in a

104.72 min. circuJar orbit The system is initially at rest with respect to the orbital frame. We

intend ta use the manipulator to retrieve the satel1ite from point A (y. =15 m) to point B

(y. =3 m) along the local horizontal (y. axis). while preserving the orientation of the satellite

during the maneuver.

In this example, it is assumed that the orbital motion and attitude of the main spacecraft

are not affeeted by the motion of the manipulator and the satellite. The in-plane, transverse
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vibrations of the manipulator links are approximated using the assumed mode':' l11élhod. One

dastic OOF is considered for each link and the norm:l1ized tirst mode shapé of a c,ullIlever

beam. given in Eq.(5.361. is used as the shape function. The system has liw OOFs. which C'1n

be identitied by the detinition of the following gener:l1ized coordinates:

q,: shoulder joint angle.

q:: elbow joint angle.

q3 : wrist joint angle.

q. : elasric rip defiection of the tirst link.

q,: elasric rip defiection of the second link.

The system has three inputs denoted by '"',, and " which are the actuator torques

applied at the shoulder, elbow, and wrist joints. respectively. The actuator bounds are

1.,1:5 SOO N.m

1',I:5S00 N.m

1'31:5 400 N.m

(8.31)

To find a near-minimum-rime solution for this maneuver, we first find the minimum-rime

solution for a similar maneuver performed by the rigid counterpart of the system S (problem P4

Slated in Section S.2.2). The constrained equations (Eq.(S.l2) and (S.13) in proùlem P4) for

this system are given aS

•
and

q. +q, +% = H,

d+lcos(q,)+lcos(q, +qz)-R= 0,

lsin(q,) + lsin(q, +q,)-s= 0,

1'i',1 :5 SOO N.m,

1'i',1 :5S00 N.m,

1'i'31 :5'400 N.m,

(8.32)

(8.33)
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ln whlch the quantities d. R. r. and s indicate. respectively. the offset of the shoulder joint

from the spacecraft center of mass. the distance from the wrist joint to the payload center of

mass. the length of the manipulator links. and the p,;eud'l generalized coordinate which is the

distance measured along the Y axis. The physical data of the system are given in Table S.\. and

<le initial and final conditions for this maneuver(i.e.. lio. qo. lil . and ql) are given in Table 8.2.

th h 'cal d. 1d fl 'blraftTable 8.1 Soacec mounte e.X! e manlDu ator: e DI VSI ata

Descnption Mass (kg) Length (m) Flexural rigidity Structural

(N.m2) darnping

Spacecraft 100COO d= 1 - -
Link 1 80 e= 8.13 lx \0' \%

Link 2 80 1.=8.\3 \ x 10' 1%

Payload 4000 R= \ - -

Table 8.2 Time-ooomal retrieval manellver: the initial and final conditions.

q, (rad) q, (rad) q, (rad)

Initial cond 1.175 0.7925 1.175

Final cond. 0.1856 2.7705 , 0.1856
. -

The solution to this minimum-time problem is a single switching, bang-bang maneuver

with the final time il =40.37(s) and the switching time t, =14.61(s).

Applying the open-loop control 't. the input torques obtained from the rigid-body

minimum-time maneuver, to the flexible system shows that the system is stiff enough to

withstand the bang-bang, open-k.'Op contro~ so the vibration suppression is carried out after

finishing the rigid-body maneuver. Figures 8.4 and 8.5 show the simulation results for the near­

minimum-time maneuver. The results show that some ofthe capabiIities ofthe second and third

•
actuators are not used during the maneuver. This suggests. that one can obtain a shorter

maneuver time by selecting another path for going from point Ato point B. .
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Figure 8.1 Minimum-time tl':\iectory construction: a s;ngle-switching case

s

~ ~
Figure 8.2 Minimum-time tl':\iectory construction; a multi-switching case
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Figure 8.3 Retrieval ofa satellite by a spacecraft mounted manipulator; a schematic ofthe
system.
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Figure 8.4 Simulation resuilS for moving the sateUite along the local horizontal; rime histol)' of

the generalized coordinates. .
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Chapter 9

Conclusions and
Recommendations for Future
Work

9.1 Summary and Conclusions

The problem of attitude dynamics and maneuvering of flexible. multibody space systems

was considered in this thesis. The main problems which were examined in detail are the con­

strained motion, the effect of rigid-body base motion on the dynamica1 characteristics of a

flexible structure. application ofconstrained motion in control offlexible space systems. and the

time-optimal maneuvering of flexible systems along a prescribed trajectory. A formulation for

deriving the equations of motion of flexible multibody systems was presented based on the

above developments. The formulation was implemented in a symbolic computer code,

FLXSIM. which was employed te solve severa! problems.

The following points were concluded from the study ofthe constrained motion.

• Constrained motion is of particular importance in the analysis of motion of space systems.

That is becallÇe, even in the absence of any closed kinematic loop. the motion of a

spacecraft during certain modes ofoperation can be regarded as a constrained motion. For
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example. in the free-flying mode. that is to fly with no thruster firings. the component

boclies of the system move such that the center of mass of the entire system remains on the

orbit.

• The method of implementation of the constraint forces (naturaIly or artificially) has an

important effect on the response ofthe system.

• The available methods for constrained motion cannot, in generaI. produce a complete set of

equations (with as many equations as the number of unknowns) for systems subjeeted

artificial constraints.

This investigation led to the development of a novel method which can be applied to

generate directly the complete, minimum-order set of equations of motion of systems with

artificial and/or naturaI constraints. The method automatically reduces to the conventional

methods offonnulation for constrained motion ifail of the constraints are naturaI. As a spin-off

of this fonnulation. some analytical measures were developed for testing the adequacy and

redundancy ofthe constraint forces.

The effect of negligence of the second-order e1astic deflections' on the equations of

motion offlexible systems which undergo rigid-body motion is another tapic which was studied

in detail. From this study the foUowing points were concluded

• Impropèt linearization (i.e.• a linearization which is started prior ta the calcu\ationofpartial

derivatives in the process of deriving the equations of motion using an energy based

method) is a source off1aw in dynanùc ana1ysis offlexible systems undergoing rigid-body

motion.

• The tcrm "second-order e\astic deflections" refers to sorne SmaI1 quantities (of the order
&') which are quadratic functions of the e1astic generaIized coordinates. These terrns are
normal1y negleeted in the Iinear anaIysis ofthe e\astic systems with fixed base.
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• Using a nonlinear strain energy expression (up to the third order) to compensate for this

deficiency is a weak remedy. which can produce wrong results unless special care is taken

in choosing the elastic OOFs of the system. For instance. in the case of bearns. this method

can only produce acceptable results when the elongation of the bearn is not ignored. This.

c1early. is not convenient for cases where the elongation of the bearn is of no practica1

importance. such as flexible space manipulators. Another drawback of Ûlis remedy is that

considering elongation ofthe bearn as a degree offreedom makes the differential equations

of motion numerica1ly stiff and inconvenient for simulation purposes -reca1l that the

frequencies of longitudinal vibration of a bearn can he severa! hundred times larger thm

thase ofits lateral vibrations.

• The stiffuess of an elastic system may or may not be increased due to Ûle base motion. In

faet, Ûle stiflhess of Ûle system might be reduced in sorne cases or it might become time

vmying, depending on the base motion. Thus, Ûle genera1 use of Ûle term "geometric

stiffening" or "nonlinear stiffening" is not strict1y valid Furthermore. rigid-body base

motion, ifnot prescribed, might even change Ûle genera1ized mass matrix ofÛle system.

• Contrary to the common belief, it was shown that the importance ofÛle nonlinear coupling

between elastic and rigid-body motions is not restricted ta spinning systems; any type of

rigid-body acceleration ofthe base might change the dynamic behaviour of the system. For

example, if a constant velocity perturbation is applied ta the orbital motion of a non­

spinning satellite, the flexible appendages of the satellite might become either stiffer or

softer (they may even coUapse) due ta the effect of Coriolis acceleration of the satellite

during this maneuver.

To prevent improper Iinearization and ta derive the ct'rrect form of equations of motion

for e1astic systems undergoing rigid body motion, a novel method based on nonlinear strain­

displacement relations was presented in this thesis. The method can he used either ta derive the
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correct equations directly, or to find the correction terrns for an improperly linearized set of

equations. The method is geometry-independent and can be used for any arbitrary type of

elastic media Specializations of the method for bearns and plates are provided for convenience.

The computer code FLXSIM. developed based on the formulation presented in this

thesis, was applied to study severa! problems. One of them was the study of capture of a

spinning satellite by a flexible space manipulator, from which we concluded the following.

• If the approach trajectory (i.e., the initial condition) is chosen properly, the rotational

kinetic energy of the captured satellite can be used in the retrieval process.

• The uncontrolled post-capture response of the system strongly depends on the approach

trajectory. This induces a challenging problern of choosing the best approach trajectory to

achieve the Most desirable system response.

• Considering the free flying mode as a constrained motion can be he1pful both in control

synthesis as weil as the simulation of the dynamics of the system by reducing the order of

the equations ofmotion. For instance, regu1ationt ofa space structure during its free flying

mode, using feedback linearization technique, can be carried out without thruster firing.

Another application was the examination of the problem of using space manipulators in

stabilizing tethered satellite systems (fSS), through offset control. A standard LQR method

was used to asymptotically stabilize the librational motion of the tether during the

stationkeeping phase, margina11y stable if uncontrolled. A modified feedback Iinearization

technique was employed to keep the response of the system during the retrieval phase -an

unstable one if uncontrolled- bounded. The resuIts indicate the posstbility of using space

manipulators to control tethered sate1Iite systems with short tether lengths. Some of the points

learned from this study are the following:

t Rcgu1ation rcfcrs to a control problem in wbich we intend to keep the states of the system close
to sorne constanl target values.
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• Shorter tethers are easier to control (clemand less control effort and induce smaller motion

in the rest of the system).

• A multi-step retrieval-stationkeeping gives better results than retrieving the SaIne length in

one step followed by a period ofcontrolled stationkeeping.

• The performance of retrieva! with exponential rate is bener, both in terms of the system

response and the required aetuator torques, compared to the retrieval with constant rate.

The idea of using artificial constrained motion to devise open-loop control \aws for

tracking problems was introduced in this thesis. Using this approach, the output can track the

desired trajectory without requiring ail of the states of the system to track prescribed

trajectories. This method can find interesting applications in senù-manual control of

manipulators and in fine traeking offlexible manipulaters. In the case of flexible manipulators,

the controller does not try te prevent elastic vibrations; instead, it tries te compensate for the

effect of the e1astic vibrations by necessary corrections in the joint angles so that the output

tracks the desired motion. This method was employed to control a flexible manipulator such

that its end effector follows a prescribed trajectory.

A perturbation technique in conjunction with a phase-plane based optimal control ana\y­

sis was proposed for near-minimum time maneuvering of flexible multibody systems moving

along a prescn"bed trajectory. The idea was successfully employed te devise a controllaw for a

typica1 retrîeva! maneuver performed by a Shuttle-based three Iink, flexible manipulator.

9.2 Suggestions for Future Work

Perhaps one of the reasons for the exponential growth in the knowledge is that any

research activity introciuces more new questions than answers. This is true for the research

work presented in this thesis as well. Here are some of these questions and problerns which
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mlght provldc a platform for new research acti\iries and advancements ln the analysis of

dynamics and maneuvering of flexible space systems.

• Development of a method based on Lagrange's equations for derhing the complete

minimum-order equarions of motion of arrificia/{I' constrained systems. This. perhaps. can

be done by prcmultiplying the equations of motion by the orthogonal complement of a

modified constraint matrix. The problem amounts to modilYing the Jacobian matrix of the

constraints in such a way that its orthogonal complement is normal to the matrix of

influence of the constrained forces:.

• Adopting Eulerian description (i.e.. considering the shape functions as functions of current

configuration as opposed to the reference configuration) in caIculating the second-order

elastic deflections based on the nonlinear strain-displacement relations. This can heip to

develop a more accurate, but more complex theory for correct analysis of IWO and three­

dimensional elastic members, such as plates and shells, undergoing overall rigid body

motion

• Extension of the dynamic formulation by giving the specialized relations for contribution of

a shell type member to the mass matrix and generalized force vector, and the specialization

of the method presented in Section 5.4 for caIculating the second order elastic deflections

ofshells.

• Development of an order-n formulation, while incorporating the theories for constrained

motion and geometric nonlinearities presented in this thesis.

• Development of numerically efficient methods for caIculation of the constraint forces for

artificially constrained systems.

•• The matrl." of influence of the constrained forces is the matrl." ofcoefficients of constraint forces in the
equations of motion.
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• Dewlopment of the equations of motion gowming the tracking errors of 'Ul artlf,clally

constrained system, These equations can be used to devise a feedback control law li.)r

better tracking and damping the de,iations of the output from the desired trajectory dœ to

the disturbances and uncertainties of the model.
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• Appendix A:

Proof of Equation 3.10

To prove the validity of the Eq. (3.10). we begin "ith substitution of Eq.(3.20) in

Eq.(3.10) which yields

Now substitution ofe from Eq.(3.ll) gives

(AI)

Changing the order of summations and recalling the definition of T (Eq.(3.14» and T'

(Eq.(3.17» we arrive at

•

r PPP

If.c, -IIIf.. (T'-')",T;C, =0.
J'Ill J.... ".1 hl

The left hand side (LHS) ofEq.(A3) is identica1ly zero which completes the proof.

(A3)



• Appendix B:

Independent Additional Equations for
Constraint Forces

In this section we prove that for a system with N OOfs and P simple nonholonomic

constraints. using V;'. defined as in Eq.(3.15). one can generate P additional equations

independent of the nonrolonomic equations of motion. given in ::q.(3.13). To this end. wc

define a new set of generalized speeds for the system. containing P additional generalized

speeds. The new set. //;." "//,~,,p, and the original set of generalized speeds. //, ..... //., .... are

related to each other through the following relations:

u~ = tl;~u .. ll.~ =Dl =", ..... u,'\ •

u; =tl.~.I .... ,II~.•r == Ne\v.

ui =U,~+P.I'''·'U.~.:p =: u: = Il'-';.I,··.,ll,'ll.r.

(BI)

The new P generalized speeds, 1I~" .....II.~.p. are defined such that they satistY the following

2P simple nonholonomic constraints

(82)

•

in which [1] and [0] are the unity and zero matrices, respectively, whereas/Â"Â: and B are

as defined in Eq.(3.1). The new system with the 2P constraints defined Ct Eq.(82) is exaetly

equivalent ta the original system if u; and [u;.u;f are considered as independent and

dependent generalized speeds, respectively. On the other hand, this definition provides the

capability of violating the J-th original constraint simply by relaxing the new constraint of

u;.P = 0, the (j+P)-th row in the new set ofconstraint equations. One should note that, without

!his approach, it can be a difficult task to define sorne P independent generalized speeds which
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• can \1olal~ Iho doslrod constralnts ln th~ cas~ of compl~" syst~ms. This can bo ~\ on mor~

dltlicuit If ono wanls 10 violale some of the constraints whil~ I~a\ing the restto r~main in df~ct

Tho vclocity of th~ i-th partiele of the system in terms of the original g~neralized sp~~ds

15 dotinod as

.... p

V' = "V' /1 .;. V'~ r,. : ~

,.-::1

(B3)

in which V;. the remainder of velocity of partiele i. is the term which does not depend on the

generalized speeds. Substituting for /l, From Eq.(B1J. one can express the velocity in terms of

the new set ofgeneralized speeds as follows

.v ,v.:p
V' ="" V" Il + "'" V" Il + V'~ ,.,. L...,.,. t'

,...1 ,..,\'.P-I

(B4)

The partial velocities associated with the new generalized speeds can be found. simply by

inspection of Eq.(B4). to be

V" =V' 1 N,. ,., r = ,... ., ,

v;' =0, r=N+l, ... ,N+P,

V;' =V;"p, r = N +P+ I....,N+2P.

(B5)

Now. let us relax the last P constraints in Eq.(B2) which is equivalent to relaxing the P

constraints ofthe original system. The new constraint equations are

(B6)

•
in which u; and u; are considered as independent and u; as dependent genera1ized speeds.

We may generate N+P independent nonholonomic equations of motion for the above system

using the new nonholonomic partial velocities which are defined (with the help ofEq.(B6» as:
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• where

:-
\." = V" - "":j" V" 1 \,}'

• '~'" "'\"'1'" r::: .
, :

(B:)

(B~)

Equation (B7) cao be expressed in terros of partial ve10cities of the original system as tl,lIows

r
V;l = V; + L.·t'V.:.,\' = ~':. r= L. .... ;V

.0:-1

r
Y- .. - 0 . "A' Y'

, - .,.,:.- .•,. .1.,\'·

;1 .. 1

r = N + \, .... N + l'.

(B'l)

•

- -1 b b ed fr (89) th Y.. Y" " "t can e 0 serv 001 at usmg 1 ••••• .v.p. one cao genernte 'v'"

independent equations of which the tirst N of them are exactly equivalent to the nonholonomic

cquations of motion (Eq.(3.13». and the last P ofthem are those used to calculate the constmint

forces (Eq.(3.16». This completes the proofofindependence ofEq.(3. 13) from Eq.(3.16).
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