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Abstract 

In this thesis, we address a number of issues pertaining to the computational 

power of monoids and semigroups as machines and to the computational com

pl exit y of problems whose difficulty is parametrized by an underlying semigroup 

or monoid and find that these two axes of research are deeply intertwined. 

We first consider the "program over monoid" model of D. Barrington and 

D. Thérien [BT88] and set out to answer two fundamental questions: which 

monoids are rich enough to recognize arbitrary languages via programs of arbi

trary length, and which monoids are so weak that any program over them has 

an equivalent of polynomiallength? We find evidence that the two notions arc 

dual and in particular prove that every monoid in DS has exactly one of these 

two properties. We also prove that for certain "weak" varieties of monoids, 

programs can only recognize those languages with a "neutral letter" that can 

be recognized via morphisms over that variety. 

We then build an algebraic approach to communication complexity, a field 

which has been of great importance in the study of small complexity classes. 

Specifically, we consider the amount of communication that two players, Alice 

and Bob, need to exchange in order to compute the product mlm2 ... m n of 71, 

clements of sorne fixed finite monoid M when Alice knows only the odd-indexed 

m'i and Bob knows the even-indexed mi. We prove that every monoid has com

munication complexity 0(1), 8(log71,) or 8(71,) in this model. We obtain similar 

classifications for the communication complexity of finite monoids in the prob

abilistic, simultaneous, probabilistic simultaneous and MODp-counting variants 



of this two-party model and thus characterize the communication complexity 

(in a worst-case partition sense) of every regular language in these five models. 

Furthermore, we study the same questions in the Chandra-Furst-Lipton multi

party extension of the classical communication model and describe the variety of 

monoids which have bounded 3-party communication complexity and bounded 

k-party communication complexity for sorne k. We also show how these bounds 

can be used to establish computational limitations of programs over certain 

classes of monoids. 

Finally, we consider the computational complexity of testing if an equation 

or a system of equations over sorne fixed finite monoid (or semigroup) has a 

solution. In the case of a single equation we extend the work of [GR99] by pro

viding strong evidence that this problem cannot be resolved without answering 

questions about the expressive power of programs over that monoid. Most no

tably, we give a quasipolynomial-time upper bound for solving equations over 

a group which is known to require programs of exponential length in order to 

compute AND. We also give a number of upper bounds and hardness results for 

solving equations over monoids which are not groups and show that, in apparent 

contrast with the group case, the problem can be NP-complete over sorne NI 

even if it is tractable over sorne N admitting M as a submonoid. 

vVe find that testing the satisfiability of a system of equations over a finite 

monoid is either tractable or NP-complete depending on whether the monoicl 

belongs 1,0 the class JI V Ab or not. For the restricted case when the right-hand 

side of the equations are constants, we show that a similar dichotomy holcls for 

monoids and for regular semigroups. We also give a number of partial results 

for the general case of semigroups and relate this question with constraint

satisfaction problems. 
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Résumé 

Nous étudions dans cette thèse des questions liées à la puissance de calcul des 

monoïdes et des semigroupes, lorsqu'ils sont considérés comme des machines, 

et à la complexité de problèmes dont la difficulté est paramétrisée par un semi

groupe. Ces deux axes de recherche sont en fait intimement reliés. 

Nous revoyons tout d'abord la notion de "programmes sur monoïdes" for

malisée par D. Barrington et D. Thérien et tentons de répondre à deux questions 

fondamentales à propos de ce modèle: quels sont les monoïdes assez riches pour 

permettre la reconnaissance de langages arbitraires grâce à des programmes 

de longueur arbitraire et quels sont les monoïdes si faibles que tous leurs pro

grammes ont un équivalent de longueur polynomiale? Nos résultats semblent 

indiquer que ces deux propriétés sont duales et démontrons qu'en particulier, 

tout monoïde dans la variété DS possède exactement l'une de ces propriétés. 

Nous démontrons également que pour certaines variétés, les programmes ne peu

vent reconnaitre un langage contennant une "lettre neutre" que si ce langage 

peut être reconnu grâce à un morphisme sur un monoïde de cette variété. 

Nous développons ensuite une approche algébrique à la complexité de com

munication, un domaine d'une grande importance dans létude des petites classes 

de complexité. Nous étudions la quantité de communication que deux joueurs, 

Alice et Betrand, se doivent d'échanger pour calculer le produit de n éléments 

ml m2 ... m n d'un monoïde M lorsqu'Alice ne connait que les m'i où i est pair 

et que Bertrand ne connait que les mi où i est impair. Nous montrons que tout 

monoïde a une complexité de communication 0(1), 8(logn) ou 8(n) dans ce 
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modèle. Nous obtenons des classifications similaires dans les variantes prob

abiliste, simultanée, simultanée probabiliste et MODp de ce modèle et car

actérisons ainsi la complexité de communication (par rapport à une partition 

pire-cas) de tous les langages réguliers. Nous étudions également ces ques

tions dans l'extension multipartite du modèle à deux joueurs et obtenons une 

caractérisation des monoïdes ayant une complexité bornée pour le modèle à 

trois joueurs et pour le modèle a k joueurs pour un certain k. Nous montrons 

également comment ces résultats permettent d'établir les limites calculatoires 

des programmes sur certaines variétés de monoïdes. 

Enfin, nous étudions la complexité de déterminer l'existence d'une solution 

à une équation ou à un système d'équations sur un monoïde (ou un semigroupe) 

donné. Dans le cas des équations, nos résultats complètent ceux de [GR99j et 

suggèrent fortement que la question ne peut être résolue sans comprendre les lim

ites calculatoires des programmes sur ce monoïde. En particulier, nous décrivons 

un algorithme permettant de résoudre en temps quasi-polynomial une équation 

sur un groupe pour lequel les programmes calculant la fonction AND nécéssitent 

une longueur exponentielle. Nous établissons aussi quelques bornes inférieures 

et supérieures de la complexité de ce problème lorsque les équations sont sur 

un monoïde qui n'est pas un groupe. Contrairement au cas des groupes, nous 

montrons qu'il existe un !vI pour lequel ce problème est NP-complet bien qu'il 

soit calculable en temps polynomial pour un N dont M est un sous-monoïde. 

Nous établissons aussi que le problème de la satisfaisabilité des systèmes 

d'équations est soit résoluble en temps polynomial sur un monoïde fini de la 

variété JI V Ab mais est NP-complet autrement. Nous démontrons une di

chotomie semblable lorsque les moitiés droites de chaque équation ne sont que 

des constantes et plusieurs résultato dano le cao plus général deo sellligroupes. 

Nous relions aussi ces problèmes aux problèmes de satisfaisabilité de contraintes. 
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Chapter 1 

Introduction 

1.1 Finite Semigroups, Automata and Regular 
Languages 

Despite their well-known limitations, finitc automata have always been and will 

remain a fundamental model of computation and a starting point for investi

gations in theoreticaJ aspects of computer science. Their stlldy has also been 

motivated by applications to pattern matching, modeling of finite state systems 

and important links with logic and algebra. 

It was noticed early on that algcbra provided a most powerful framework tü 

analyze and classify regular languages according to theiI' combinatorial prop

ertics. The earlier results inclllded the algcbraic characterization of star-j'ree 

languages proved by M. P. Schützenberger [Sch65] and the characterization of 

piecewise testable languages given by 1. Simon [Sirn75] before S. Eilenberg es

tablished a one-to-one correspondence between varieties of sem'tgro'u,ps (classes 

of se mi groups closed under direct product, morphic images and subsemigroups) 

and varieties of languages (classes of languages closed under quotients, Boolean 

operations and inverse morphisrns from free semigrollp to frce scmigrollp), tlms 

providing the precise framework for algebraic automata theory. Finding ex

plicit algebraic descriptions of language varieties for which we are given H, 

cornbinatorial description and, conversely, finding combinatorial descriptions 

1 



2 CHAPTER 1. INTRODUCTION 

of language varieties corresponding to natural algebraic varieties has led to 

important advances in both algebra and language theory. In fact, these ele

gant methods have been so successful that it is difficult to separate today au

tomata theory from finite semigroup theory: their influence can be seen for 

instance on recent results concerning logic and in particular temporal logic 

[Str94, TW02b, TW98, TW02a, BMT99] and they are robust enough to be 

adapted to ofrer nice algebraic approaches to Büchi automata [PP03] and timed

alltomata [BPT01]. 

1.2 Monoids as Machines 

Let us view a finite monoid M as a machine whose sole ability is to compute the 

product of a list of elements of M. How can we use this machine to recognize 

languages in, say, A*? The classical mechanism is that of a morphism: each 

input letter is translated into a monoid element through sorne predetermined 

mapping cP : A --+ NI and the input is accepted if the product of these elements 

lies in sorne target set F ç M. It is easy to see that this captures exactly the 

regular languages and this observation is the starting point of classical algebraic 

automata theory. 

As pictured in Figure 1.1, we can consider more elaborate ways to use a 

monoid NI as a language recognizer. We construct a machine that first pre

pro cesses the input in A * in sorne predetermined way thus translating it into a 

sequence of monoid elements. Our machine then accepts its input if the multi

plication of these elements belongs to sorne previously chosen accepting subset 

of M. Clearly, the power of such machines depends both on the nature of this 

preprocessing and on the particular monoid used in the later step. Amazingly, 

well-known complexity classes can be characterized in this way. 

The first such example stems from the "program over monoid" formalism 

introduced by D. Barrington and D. Thérien in the mid 80's: in this case, the 
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Figure 1.1: Monoids as machines 
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Input 

Monoid elements 

Output 

preprocessing produces a polynomial number of monoid elements, each of which 

is a function of exactly one input position. It was first shown that a language 

can be recognized by a polynomial length program over a monoid if and only if 

it belongs to the class NC l of languages recognizable by families of logarithmic 

depth Boolean circuits [Bar89]. Subsequently, algebraic characterizations of 

well-known subclasses of NCI were obtained when the underlying monoid was 

restricted to belong to sorne important varieties [BT88]. 

A few years later, similar techniques were used to show that using a prepro

cessing performed by a polynomial-time machine aUowed an algebraic charac

terization of PSPACE [HLS+93]. 

Such characterizations are interesting for different reasons. First of aU, they 

automatically yield a new point of view on the corresponding complexity classes 

and give one the opportunity to use tools developed in algebraic automata the

ory to investigate the properties of the classes (see e.g. [MPT91]). They also 

Sllggest an interesting way of studying the structure of this class by examin-

ing the computational power of these machines wh en the monoid belongs to 

restricted classes. In the two examples just cited, many of the best known 

subclasses of NC1 and PSPACE can be put in correspondence with well-studied 



4 CHAPTER 1. INTRODUCTION 

varieties of monoids. Even more importantly, varieties allow one to algebraically 

define very fine parametrizations of the complexity classes. 

In turn, algebraic characterizations of complexity classes underline the im

portance of questions about computational problems whose complexity is para

metrized by an underlying finite semigroup or monoid such as the membership 

problem [Koz77, BLS87, BMT92] and sorne of its variants [BKLMOl], equa

tion satisfiability [GR99], monoidal circuit evaluation [BMPT97], learning an 

expression over a monoid [GTTOl] among others. In many cases, questions 

about the complexity of these problems and questions about the computational 

limits of semigroups as language recognizers are closely linked and sometimes 

inseparable. 

As we try to understand the computational power of monoids as machines (in 

various formalisms) and the computational complexity of algorithmic problems 

about monoids, we are thus simultaneously building an algebraic point of view 

on computation and a computational point of view on algebra. While for the 

most part, tools from algebra have resulteù in advances in cornplexity theOI·y, it 

is also the case that complexity questions have motivated advances in sernigroup 

theory. 

1.3 Our contributions 

The work presented in this thesis is a contribution to this algebraic point of 

view on computational complexity. We prove a number of new results about 

the computational power of programs over monoids and explore new areas in 

which the sernigroupjrnonoid approach is meaningful. We relate the results 

obtained in these different contexts with one another and with existing work. 

We present in Chapter 2 the main tools and results from semigroup the

ory and algebraic autornata theory which will be used in later chapters. In 

particular, we list varieties of rnonoids and semigroups which bear particular 
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importance to our work and to many similar investigations. We also recall 

sorne basic notions of computational complexity theory, introduce Boolean cir

cuit models, branching programs and briefiy survey the current state of research 

in circuit complexity to outline sorne of the major open questions in the field. 

Chapters 3, 4, 5 form the bulk of our work; we have tried to make each of them 

as self-contained as possible although an interesting feature of our results is that 

sorne classes of monoids and semigroups play key roles in apparently unrelated 

problems. 

1.3.1 Programs over Monoids 

We begin Chapter 3 by reviewing the "pro gram over monoid" formalism and 

its deep running link to Boolean circuits of shallow depth (and bounded-width 

branching programs). We then prove that sorne monoids are so weak as ma

chines that any computation they can perform via programs can actually be 

achieved with programs of polynomiallength. On the other hand, sorne monoids 

are rich enough that they can, via programs, recognize arbitrary languages pro

vided that no restriction on program length is imposed. Surprisingly, we find 

sorne evidence that these two properties are dual and show that in the variety 

DS every monoid either has the above polynomiallength property or is u,niversal. 

We a1so present a number of resu1ts for monoids outside this class and argue in 

favor of a conjecture which would generalize the dichotomy observed in DS. 

In order to understand the computational power of programs over given 

varieties of monoids, it is crucial to iso1ate so-called program-varieties V, i.e. 

varieties such that any regu1ar language which contains a so-called neu,tmlletter 

and can be recognized by programs of po1ynomia11ength over sorne 11/! E V can 

in fact be recognized by sorne N E V but using the more primitive notion of 

recognition via morphism. We show that for sorne varieties an even stronger 

statement is true: we say that V has the Cmne Beach property if any language 
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with a neutralletter that can be recognized by programs of polynomiallength 

over sorne MEV is in fact regular and can be recognized, via morphism, by 

sorne N E V. We show in particular that commutative monoids and ..J -trivial 

monoids have this property while it has been shown not to hold for apeTiodic 

monoids [BIL +01]. 

1.3.2 Communication Complexity 

In Chapter 4, we propose an algebraic approach to communication complexity, 

a field which, over the last twenty years, has been at the heart of many investi

gations in complexity theory [KN97], most significantly in the study of shaUow 

Boolean circuits and branching programs. 

We look at the amount of communication that k parties need to exchange 

in order to evaluate the product of n elements of a finite monoid M when the 

access to the inputs is distributed among the different parties in the worst pos

sible way. We prove that the two-paTty communication complexity of a .finite 

monoidis either constant, 8(logn) or 8(n) in the standard two-party determin

istic model of A. Yao [Yao79] and give algebraic descriptions of aU three cases. 

We obtain similar classifications for the two-party simultaneous, probabilistic, 

probabilistic simultaneous and Modp-counting communication complexity of a 

finite monoid. As a corollary, we are able to give, up to a constant, the com

munication complexity, in a worst-case partition sense, of any regular language 

in aU five of these models. Sorne of our results highlight and explain the central 

importance of certain regular languages in communication complexity theory. 

We also look at the communication complexity of regular languages and 

monoids in the multiparty model of A. Chandra, M. Furst and R. Lipton 

[CFL83]. We prove algebraic characterizations for monoids and regular lan

guages which have bounded 3-party communication complexity and those which 

have bounded k-party communication complexity for sorne fixed k. Our alge-
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braie approach isolates natural examples of languages for which precise multi

party communication complexity bounds would constitute fundamental progress 

in our understanding of this tricky model. We are also led to conjecture a mul

tiparty generalization of Szegedy's algebraic characterization of languages with 

bounded two-party communication complexity. 

We apply our communication complexity results to identify program-varie

ties and to obtain length lower bounds for programs computing sorne explicit 

function over certain classes of monoids. While most of the lower bounds are 

corollaries or only slight improvements of previously known results, our tech

niques are quite different. 

1.3.3 Equations over Semigroups 

In Chapter 5, we try to understand how the algebraic structure of a finite 

monoid or semigroup affects the complexity of solving equations over that fixed 

semigroup. Our work complements the results of M. Goldmann and A. Russell 

who had obtained results in the group case [GR99]. 

We first look at the corn pl exit y of testing if a given equation over the monoid 

M: 

where Ci, di E M are constants and :1:'S are variables, can be satisfied. That is if 

variables can be assigned values in M so that the right-hand and left-hand side 

of the equation multiply out to the same value in 1\11. This problem, denoted 

EQN M' had been shown NP-complete for non-solvable groups and in P for 

nilpotent groups. The latter upper bound was in fact obtained for the related 

problern P-SATM of testing whether a given 1I1-prograrn has sorne input on 

which it outputs a specified target. We prove that the complexity of P-SAT Gand 

EQNG when the underlying monoid is a solvable but non-nilpotent groups G is 

tightly connected to well-known open problems on the expressivity of bounded-
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depth modular circuits: in particular, we obtain a quasi-polynomial time upper 

bound for both P-SAT c and EQNc wh en exponentiallower bounds are known 

on the length of G-programs computing AND. Wh en the underlying M is 

aperiodic, we surprisingly show that solving an equation over Nf is in sorne cases 

easier than solving an equation over sorne divisor N of Nf and that P-SATM 

can be strictly harder than EQN M' We further prove that P-SAT M lies in the 

very simple complexity class ACa if M lies in the variety DO n Gni! but is 

NP-complete for any aperiodic monoid not lying in this class. 

We also look at the complexity of EQN~, the problem of testing the satis

fiability of a system of equations over M (or more generally of a semigroup S) 

and also consider a restricted version of the problem T-EQN~ when the right

hand side of each equation contains no variables. We prove sharp dichotomies 

for the complexity of both problems which depend on the algebraic properties 

of the underlying monoid. We show that EQN~ lies in P if M is a monoid in 

JI V Ab and is NP-complete otherwise and similarly show that T-EQN~ lies 

in P if M is a monoid in RB V Ab and is NP-complete otherwise. We also 

consider the case of systems over a r'eg'Ular semigro'Up and in particular obtain a 

similar dichotomy for the complexity of T-EQN~. We also establish an intrigu

ing connection between our methods and universal algebra methods used in the 

study of constraint satisfaction problems. 



Chapter 2 

Background 

This chapter gives a quick technical introduction to algebraic automata the

ory and complexity theory which are the bases of our discussion. We review a 

number of definitions and important results in the field as well as set notation. 

We assume that the reader is familiar with the basic notions of relations, con

gruences, morphisms, solvable groups and TimejSpace complexity of a Turing 

machine. 

2.1 Algebraic Automata Theory 

2.1.1 Semigroups and Automata 

The theory of finite se mi groups and its applications to formaI languages have 

been the subject of extensive work sinee the 50's. We suggest as reference the 

book of J.E. Pin [Pin86] and his more reeent comprehensive survey on syntactic 

semigroups [Pin97] although sorne of the more technical results can only be 

found in less accessible books such as [Eil76] or [How76]. 

A semigroup is a set S together with a binary, associative operation (which 

we usually denote multiplicatively). We further say that S is a monoid if there 

exists an identity element 13 in S such that 13 . t = t· 13 = t for all tES. The 

multiplication of a semigroup defines a canonical surjective morphism eval3 

9 



10 CHAPTER 2. BACKGROUND 

S* -7 S by 

We will sometimes refer to the languages in S+ of the form {wJevalsCw) E F} 

for sorne F ç S as the word problems of S. In the case of monoids, evalM is 

defined as a function from M* to M and, similarly, word problems are subsets 

of 1\1[*. 

With the exceptions of the free semigroup A + and the free monoid A *, aIl 

semigroups considered in this thesis will be finite and in the rest of this Chapter, 

S and NI will respectively denote a finite semigroup and a finite monoid. 

We want to view finite semigroups as language recognizers akin to finite 

automata (see [Sip97, HU79]). Formally, we say that a language L ç A+ (resp. 

L ç A*) can be recognized by the se mi group S (resp. the monoid M) if there 

exists a morphism cp : A+ -7 S (resp. cp : A* -7 M) and an accepting s'Ubset 

T ç S (resp. T ç NI) such that L = cp-l(T). 

The algebraic theor-y of automata and regular languages is affected, some

times at quite a deep level, by whether languages are defined to be subsets 

of the free monoid A* (finite words over the alphabet A including the empty 

word) or subsets of the free semigroup A+ (finite words over the alphabet A 

excl'Uding the empty word). Because of this, two parallel theories presenting 

only slight, but occasionally crucial, differences have to be constructed. This is 

only a concern in a few occasions in this work and we will for the most part try 

to avoid the problem. In particular, many of the definitions stated below cover 

the monoid case although the reader should keep in mind that distinctions with 

the semigroup case might exist. 

For a finite automaton M with state set Q, every word w E A* defines a 

transformation Q -7 Q. This set of mappings forms a monoid (under composi

tion) which we calI M's transformation monoid. One can easily show that any 

language recognized by M can be recognized by M 's transformation monoid. 
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Moreover, the Cayley graph of a finite monoid M can be viewed as a finite 

automaton, allowing one to prove: 

Proposition 2.1 A language L ç A* can be recognized by a finite automaton 

if and only if it can be recognized by a finite monoid if and only if it is regular. 

The last part of this statement is a trivial reformulation of Kleene's The

orem. The main objective of algebraic automata theory is to refine Kleene's 

Theorem: once it is established that languages recognized by finite monoids 

have a nice combinatorial characterization (i.e. they can be described by regu

lar expressions) it is natural to ask whether subclasses of regular languages can 

be put in similar correspondence with subclasses of monoids. 

2.1.2 The Variety Theorem 

We say that a monoid N divides M and write N -< M if there exists a surjective 

morphism from a submonoid T of M onto N. It is easy to check that -< is a 

well-defined partial order (up to isomorphism) on finite monoids and that any 

language that can be recognized by N can also be recognized by any M with 

N -< M. A class V of monoids is a (pseudo )-var"ietyl if it is closed under direct 

product and division. 

For L ç A *, we define the syntactic congruence, denoted L, by letting 

.T - L Y if and only if for aIl 'U, v E A * we have 'uxv E L if and only if uyv E L. 

The syntactic monoid of L, denoted M(L) is A* / =L. One can think of M(L) 

as the "minimal recognizer" of L sinee i t is not hard to show that .M (L) i tself 

recognizes Land divides any other monoid that also recognizes L. It should 

be noted also that the construction of M(L) is very similar to the automaton 

minimization pro cess à la Myhill-Nerode. Of course, M(L) is finite if and only 

if L is regular. 

lStrictly speaking, a variety is a class of monoids closed under arbitrary direct product 
whereas pseudo-varieties only require closure un der finite direct product. Because we only 
look at classes of finite monoids, we will ignore this distinction. 
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For u E A* a string and L ç A* a language, the right (resp. left) quotient of 

L by u is the set Du-1 = {w : w E A* and wu EL} (resp. u-1 L = {w : w E A* 

and 'uw EL}). A class L of languages is a lang'U,age-va:riety if and only if it is 

closed under Boolean operations, left and right quotients and inverse morphisms 

from one free monoid to another (i.e. if L E A* is in L and cp : B* ~ A* is a 

morphism, then cp-l(L) is also in L). 

Eilenberg's variety theorem links varieties of monoids and varieties of lan

guages: 

Theorem 2.2 (Variety Theorem) There is a natural bijection between vQ,'ri

eties of languages and varieties of monoids: if V is a class of monoids and L is 

the class of languages over any finite alphabet that are recognized by a monoid 

in V then V is a variety of monoids only if L is a variefy of lang'U,ages and is, 

in this case, generated by the set {M (L) : L EL}. 

Varieties are thus the natural unit to classify monoids in terms of their 

computational power and one can hope to make explicit the correspondence 

between an algebraic description of a variety V and a combinatorial description 

of languages in the associated language-variety. We will give many examples of 

such results. 

2.1.3 The Structure of Finite Semigroups 

For any monoid M, we introduce five equivalence relations known as Green's 

relations which describe whether two elements generate the same ideals in M. 

Formally: 

• .rJy if JI./I.rJvl = N!yM; 

• x LY if Nlx = My; 

• x R y if xM = y M; 
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• x 1{ y if both x R y and x L y; 

• x'Dy if x R 0 L y, that is there exists z such that x R z and z Ly. 

In a semigroup S, Green's relations are defined using ideals in Sl, the monoid 

obtained from S by adding an identity element if there is none in S. It can be 

shown that R is a left-congruence (i.e. x R y implies ex R ey for aIl e) and that 

L is a right-congruence. Moreover Rand L commute (i.e. 'D = R 0 L = LoR) 

and so an five of these relations are indeed equivalence relations. Moreover, 

the relations :J and 'D coincide for any finite S. Since we are only interested 

in the structure of finite semigroups, we will consequently always refer to the 

:J-relation but the reader should be aware that some of the results stated below 

do not hold for infinite monoids in which 'D :/=- :J. 

For an element x of M, we denote by J.y, (resp. Rx, Lx, 1{x) the :J-class 

(resp. R-, L-, 1{-class) of x. We also define natural pre-orders "5:.:h :;'n, :;'C 

on M with e.g. x :;'.1 y if and only if MxM ç MyM. We will say that "x is 

(strictly) :J-above y" if x 2.1 y (resp. x >.1 y), and similarly for :;'n and :;'c. 

Note that x :;'.1 y if and only if there exists u, v such that x = uyv. Similarly, 

x :;'n y if and only if there is u with x = yu and x :;'C y if and only if there is 

'U with x = uv. One can easily prove: 

Lemma 2.3 For any a, b in M, if a :;'.1 ab (resp. a :;'.1 ba) then a R ab (resp. 

aL ab). 

For any a:Jb, ifa:;'n b (resp. a:;'c b) then in fa ct aRb (resp. aLb). 

The following lemma is the fundamental result about Green's relations: 

Lemma 2.4 (Green's Lemma) Suppose a and b are two elements of the same 

R-cla8s, i. e. there e.Tist u, v 8. t. an = band lyu = a. Denote by Pu : M ---+ M 

the function defined by Pu (s) = su. Then Pu and Pv are bijections .tram La ta 

Lb and from Lb ta La respectively. 

Mareover Pu = p;;l and they preserve 1{-classes. 
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The basic properties of Green's relations lead to the so-caIled "egg-box" rep

resentation of (finite) semigroups. Each .J-class of the semigroup is represented 

as a table where rows correspond to R-classes, columns to L-classes and ceIls 

to 1-l-classes. From Green's Lemma, wc also know that each ceIl contains the 

same number of elements. When writing out the egg-box representation, the 

.J-dasses are often laid out with respect to the -::;':1 preorder (see for example 

Figure 2.1). 

We say that e E S is idempotent if e2 = e. Idempotents play an important 

role in the structure of semigroups. In particular, the identity element lM is an 

idempotent of M. We say that S has a zero is there is an element 0 E S such 

that Os = sO = 0 for aIl sES. Note that 0 is idempotent. We state two easy 

lemmas which further stress the importance of idempotents: 

Lemma 2.5 Let e = e2 be an idempotent. a -::;'n e if and only if ea a. 

Similarly a -::;'C e if and only if ae = a. 

Lemma 2.6 Let a.J b. Then ab E Ra n Lb if and only if La n Rb contains an 

idempotent e = e2
. 

We include here a proof of this simple but very useful fact to give an example 

of arguments using basic properties of Green's Lemma. 

Proof. If there is an idempotent e in La n Rb, we have ae = a, eb = b. By 

Green's lemma aeb E Ra n Lb and aeb = (ae)(eb) = ab. 

Conversely, if ab E RanLb, then, by Green's lemma, there is an f in LanRb 

such that fb = b. By lemma 2.5, since b -::;'R f, f must be idempotent. 0 

The subsemigroup generated by an element s of Sis finite of course, so there 

must exist t, p such that st+p = st and the subsemigroup can be shown to have 

a unique idempotent. We will denote by w the smaIlest integer such that SW 

is idempotent for aIl sES and calI w the exponent of S. For any idempotent 
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e E S, the set eSe forms a submonoid of S with identity e which we call the 

local submonoid of S associated with e. 

Groups are a well-known special case of monoids. Recall that a monoid G 

is a gTOUp if every element 9 E G has an inverse g-l such that gg-l = g-lg = 

le. Every idempotent in a mono id M forms a trivial subgroup of .!VI. Note 

also that by Lemma 2.6 an H-class containing an idempotent is closed under 

multiplication and, more generally, one can show: 

Lemma 2.7 Let H be any H-class of M, then H con tains an idempotent if 

and only if H is a maximal SUbgTOup of M. 

Consequently every H-class contains at most one idempotent. Using Green's 

Lemma, one can further establish: 

Lemma 2.8 Any two maximal SUbgTOupS of a common J -class aTe isomoTphic. 

We say that S is a union of gTOUpS if each of its elements lies in a maximal 

subgroup of S. This is equivalent to the requirement that sw+l = s for each 

sES. 

If every maximal subgroup of S is trivial, i.e. contains a single element, then 

S is said to be apeTiodic or gTOup-fTee. An important consequence of Lemma 

2.7 is 

Lemma 2.9 S zs apeTiodic if and only if all its H-classes contain a single 

element. 

An element a of S is said to be TegulaT if there exists sorne x E S such that 

axa = a. A J-class is said to be regular if all its elements are regular. As 

the next lemma shows, regularity is not a property of individual elements but 

rather of J-classes. 

Lemma 2.10 The following aTe equivalent fOT a J -class J of a .finite semigTO'/J,p: 
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1. J is reg'Ular; 

2. J contains a regular elemerd; 

3. Every R-class and every L-class of J contains an idempotent; 

4. J contains an idempotent. 

We say that a semigroup is regular if all its elements are regular. 

A semigroup is said to be completely simple if it consists of a single J-class 

and O-simple if it consists of two J-classes one of which contains only O. As we 

will see next, the structure of these semigroups is very weIl understood. 

Note that by Lemma 2.6, a J-class of S forms a completely simple subsemi

group of S if and only if it aIl its tl-classes are subgroups. We seek a refinement 

of Lemma 2.6 in order to understand the structure of multiplication within a 

regular J-class. Let J be a regular J-class of S and let· denote the multiplica

tion in S. We denote by JO the O-simple semigroup consisting of the elements 

of J and a 0 with the multiplication 0 given by sot = s . t if s . t lies in J and 

sot = 0 otherwise. 

Let G denote sorne finite group with multiplication 0 and n, m be positive 

integers. A Rees matrix is an m by n matrix R with entries in G U {O} and 

the corresponding Rees semigroup is the semigroup with elements in ([m] x G x 

ln]) U {O} and where the multiplication of non-zero elements is given by: 

Theorem 2.11 Every O-simple semigro'Up is isomorphic to a Rees semigroup. 
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In particular, for every regular .J-class J, we can construct a Rees-matrix 

representation of JO. Say that J has m R-classes and n L:-classes, with 1-lij 

denoting the intersection of the i th R-class and lh L:-class: because J is regular, 

we can assume that it has at least one idempotent pel' R-class and pel' L:-class 

and in particular we assume that eu is an idempotent in 1-lu. Let G be the 

maximal group Hu and construct R E (G U {O} )mxn as follows: first, entries 

Ri,l and Ru are assigned le or 0 depending on whether Hü or Hlj cantains 

an idempotent or not. By Green's Lemma, there are elements lj (resp. Ti) such 

that multiplication on the right (resp. left) by lj maps the J·th L:-class (resp. 

i th R-class) to the lst one and these can be chosen so that Tilj = eu. The 

other entries Ri,j are also 0 if H ij does not contain an idempotent and is Tilj 

otherwise. Simple calculations show that this Rees semigroup is isomorphic to 

JO. 

When a Rees matrix contains no 0 entries, we usually think of the corre

sponding semigroup as completely simple and every completely simple semi

group can be represented in this way [Gra68]. A O-simple semigroup S whose 

Rees matrix contains only entries 0 and le is said to be fiat. By extension, 

a regular .J -class J is said to be .fiat if JO is fiat and a semigroup is said to 

be .fiat if all its regular .J-classes are fiat. An easy exercise shows that the 0-

simple semigroup S is non-fiat if and only if there exist idempotents e, d, f E S 

such thateL: d R f such that def d i= d. In other words, a O-simple S is fiat if 

its idempotents generate an aperiodic subsemigroup. In fact, more generally, 

any semigroup S is fiat if and only if its idempotents generate an aperiodic 

subsemigroup. 

We further say that S is oTthodo.'E if its idempotents form a subsemigroup 

in S. Every orthodox semigroup is fiat and the two notions coincide for simple 

and O-simple semigroups. 
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2.1.4 Operations on Semigroups 

We next describe a number of ways to construct semigroups from other semi

groups. It is natural to ask of course how the computational power of the new 

semigroup compares with that of its building blocks and to try and relate al

gebraic operations on semigroups with combinatorial operations on languages 

or, taking the machine point of view on semigroups, with operations that some

how combine the computing power of two machines. For instance, running two 

automata in parallel on the same input can obviously be related to the direct 

product of two semigroups. 

The wreath prodv,ct of semigroups S and T, denoted SoT, is the set ST
l x T 

with an operation defined as 

where f~1 (x) = h(xtt}, and· is the operation in S. There is a nice machine 

interpretation of the wreath product in terms of series connection of finite au

tomata (see e.g. [Str94]). 

Wreath products are central to a number of results about decompositions of 

certain semigroups. For instance, it can be shown that every semigroup divides 

a wreath product of groups and aperiodic se mi groups [KR65] and that every 

solvable group divides a wreath product of Abelian groups. 

For varieties V, W, we will denote by V * W the variety of semigroups 

generated by the wreath products SoT for S E V and T E W. At this level, 

the wreath product is associative, that is we have U * (V * W) = (U * V) * W 

for any varieties U, V, W. 

The black praduct of Sand T, denoted SOT is a two-sided version of the 

wreath product. Its underlying set is ST
l 
xTl X T with the multiplication given 

by 
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where 9 : T x T ~ S is given by g(x, y) = ,h(x, t2y)h(xt 1, y). We will den ote 

V 0 W the variety of monoids generated by the block products J'tl] 0 N for 

MEV and NEW. In contrast with the wreath product, the block product 

is not associative, even at the variety level. Iterated block products also appear 

in many decomposition theorems although such statements must crucially take 

into account the bracketing of such products. For instance, a finite monoid is 

aperiodic if and only if it divides sorne 

(MID ... (Mn- 2 0 (Mn-ID Mn)) ... ) 

where each Mi is idempotent and commutative [RT89], whereas a monoid be

longs to the strictly smaller variety DA (see Subsection 2.1.6) if and only if it 

divides sorne 

where each 1\IIi is idempotent and commutative [ST02]. 

A relational morphism from a semigroup S to a semigroup T is a mapping 

7f : S ~ 2T such that 7f(x)7f(Y) ç 7f(xy) for any x, y E Sand 7f(x) =J. 0 for aIl 

.1: E S. Furthermore, if S, Tare monoids, we require that 1T E 7f(ls). 

The Mal'cev prod'Uct V@W of the semigroup variety V and the monoid 

variety W is the class of monoids 1\11 such that there exists a relational morphism 

7f from 1\11 onto a monoid N of W such that for aIl idempotents e E N we have 

7f-I(e) = {m E Mie E 7f(m)} forms a se mi group belonging to V. 

2.1.5 Congruences and Finite Counting 

Many combinatorial descriptions of language-varieties can be obtained through 

congruences that do sorne sort of "finite counting". We introdnce here sorne 

useful notation and terminology. Let t 2 0 and p 2 1 be integers. We say that 

x and y are equal threshold t (and write x = y (thresh t)) if x = y or x and y are 

bath greater or equal to t. We further say that x, y are equal threshold t and 
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modulo p (and write x = y (thresh t, mod p)) if x = y or x, y 2: t and x = y 

(mod p). For a word u E A *, we denote by o{u) the alphabet2 of u, that is the 

set of letters of A that occur in u. For any a E A we further denote by lula 

the number of occurrences of a in u and by Œt(U) the vector of dimension lAI 

which gives for every a E A the value of lula up to threshold t. Similarly, Œt,p(U) 

denotes the IAI-dimensional vector holding the values lula up to threshold t and 

modulo p. 

A 871,bword u = a1a2 ... as, with ai E A of a word x E A* is a factorization 

of x as 

with Xi E A *. We denote by (~) the number of occurrences of 'u as a subword 

of :r, i.e. the number of possible different factorizations of x as above. 

For any, k 2: 0 t 2: 0, p 2: 1, we can define an equivalence relation rk,t,p 

on A* as x ,k,t,p y if and only if x and y have the same number (threshold t 

and modulo p) of occurrences of each subword u of length at most k. In fact, 

the ,'s are congruences of finite index. Wh en the syntactic congruence of L is 

refined by rk,t,p, we say that membership in L depends on the number threshold 

t modulo p of subwords of length k. We williater on give algebraic descriptions 

of such languages and we note for now: 

Lemma 2.12 Let A be 80me finite alphabet. Any x E A* i8 rk,l,p-equivalent ta 

a ward of length at m08t p ·IAlkP • 

More generally, if Lo, ... ,Lk are languages in A* and al, ... ,ak are letters 

in A, we denote by ((L LX L)) the number of factorizations of x as x = 
00,) ) ... ak k 

wOa]'Wl ... akWk with 111i E Li. When the ai and Li are sueh that for any x 

we have either ( x ) = 0 or ( x ) = 1 then we say that the 
(LoalLl ... akLk) (LoajLl ... akLAJ 

concatenation LOa1L1 ... akLk is u,nambigu,071,8. 

2In sorne of the litterature, this is alternatively called the content of 'U and is denoted c('u). 
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For a language-variety L, we den ote by U Pol(L) the language variety gener

ated by unambiguous concatenations Laal ... akLk with Li E L. We further let 

MpPol(L) denote the variety generated by the languages {xl ((LoalL~ ... akLk)) = j 
(mod p)} for sorne 0 :S j < p - 1 and Li E L. 

2.1.6 A Catalog of Varieties 

The variety Theorem clearly establishes varieties as the central object of study 

in the algebraic theory of regular languages. There are a number of ways in 

which we might define varieties: through restrictions on automata or regular 

expressions, through congruences, through generators for the variety, through 

identities and so on. By the latter, we mean that varieties of semigroups can 

often be conveniently characterized as the class of semigroups whose elements 

satisfy a certain set of equalities3 , thus yielding an obvious algorithm to decide 

if S lies in V when this set is finite. Consider for instance the variety Corn 

of commutative monoids: these are exactly the monoids satisfying the identity 

xy = yx. (It is also a simple exercise to show that the corresponding languages 

are exactly those for which membership depends on the number of occurrences 

of each let ter threshold t and modulo p.) In fact, we will sometimes loosely 

use what are known as pseudo-identities although a formaI treatment of them 

requires the presentation of a topological framework which we prefer to leave 

out (see [Pin97]). 

We list here a number of varieties of se mi groups and monoids which will be 

of importance in later chapt ers and for each of them give a number of alternate 

descriptions. We will be particularly interested in the combinatorial descriptions 

of the corresponding varieties of languages (when ~uch descriptions are known). 

These varieties are listed for quick reference in the index of notation. 

3In fact, every variety of finite semigroups can be characterized as the class of semigroups 
that ultimately satisfy a certain set of identities. 
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Varieties of Groups 

It should first be noted that no "nice" combinatorial description of the languages 

whose syntactic monoids lie in the variety G of finite groups is known. This is 

related to the apparent impossibility of understanding the combinatorics of non

solvable groups. There are, however, good descriptions of languages recognized 

by a number of subvarieties of G so1 the variety of solvable groups [Thé79J. 

First, for a prime P let us denote by G p the class of p-groups i.e. the groups 

of order pŒ for sorne integer Cl!. This variety is characterized by the identity 

xpw = 1. Moreover, it can be shown that L's syntactic monoid belongs to G p 

if and only if there exists a k such that membership of x in L depends on the 

values (~) (mod p) where lui :S k. 

A group is said to be nilpotent if and only if it is the direct product Cl x 

... X C k where each Gi is a Pi-group for sorne prime Pi. Alternatively, if x, y are 

elements of a group G, we call [x, yJ = :r-1y- 1xy the commu,tatoT of x and y. 

For two subgroups Hl, H2 of G we denote by [Hl, H2J the subgroup generated 

by commutators [hl, h2J with h E H and k E K. We can form the sequence 

C = Co '2 Cl '2 ... by setting GHI = [Ci, CJ and say that C is nilpotent of 

class k if C k is the trivial group. It can be shown that this coincides with our 

previous definition of a nilpotent group. We also recursively define a commutator 

of weight t: any element of G is a commutator of weight 1 and 9 E G is a 

commutator of weight t > 1 if and only if there exist u, v E G commutators 

of weight h, t 2 respectively with t l + t 2 = t and such that 9 = [u, v J. It is 

fairly simple to show that a group is nilpotent of class k if and only if the sole 

commutator of weight k + 1 in C is the identity element le. 

We denote by Gni!,k the variety of nilpotent groups of class k and by Gni! 

the variety of aIl nilpotent groups. In particular, aIl G p are subvarieties of Gni! 

and Gni!,l coincides with the variety Ab of Abelian groups. 

Theorem 2.13 ([Eil76, Thé83]) A language L is recognized by a nilpotent 
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gmup G of class k if and only if there is an integer m 2: 2 sud/' that membership 

of x in L depends on the number modulo m of occurrences in x of each subword 

11, of length at most k. 

In fact, one can choose m in this theorem to be the exponent of G. We will 

also need the following fact about a very special subclass of of solvable groups: 

Lemma 2.14 The gmup G lies in G p * Ab if and only if [G, G] lies in G p ' 

For any variety of groups H, we will denote as H the variety of monoids 

whose subgroups aIl lie in H. We will refer to G so1 as the variety of solvable 

'fT/,onoids. 

Aperiodic Varieties 

Recall that M is aperiodic if no subset of it forms a non-trivial group. We 

denote by A the variety of aperiodic monoids. One can show that !vI lies in A 

if and only if m W = mw+1 for aIl m E M. 

A regular language L is said to be star-free if it can be described by an 

extended regular expression (i.e. a regular expression built using letters of the 

alphabet, 0, concatenation, Kleene star and the Boolean operations union and 

complement) without using the Kleene star. For example, if A = {a, b}, the 

language L = A*ab* is star-free because L = 0a0a0. The following (much 

celebrated) theorem is due to M. P. Schützenberger: 

Theorem 2.15 ([Sch65]) A language L is star-free if and only if !vI(L) 2S 

aperiodic. 

We have already mentioned that !vI is aperiodic if and only aIl its 1-l-classes 

are trivial. One can similarly consider the variety J of J-trivial monoids which 

is known to be defined by the identities (xy)W = (yx)W and xW = xw+1 . 

We say that a language L is piecewise testable if there exists kEN such that 

membership of any word w in L depends on the set of subwords of length at 

most k occurring in w. The following is due to 1. Simon [Sim75]: 
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Theorem 2.16 The language L is piecewise testable if and only if M(L) lies 

in J. 

There are similar well-known descriptions of the variety of languages cor

responding to the varieties Land R of respectively L.:-trivial and R-trivial 

monoids. 

We denote by Al the variety of idempotent semigroups, that is semigroups 

in which every element is idempotent. Such semigroups are often called bands 

and the lattice of subvarieties of Al is completely understood (see e.g. [GP89]) 

although only sorne of the smallest of these varieties will be of importance in 

our worle Most importantly, we will consider the varieties: 

• JI of commutative bands or semilattices; 

• NB of normal bands, that is bands satisfying xyzx = xzyx; 

• RI of R-trivial bands, i.e. bands satisfying xyx = xv; 

• LI of L.:-trivial bands, i.e. bands satisfying xyx = yx; 

• RB of regular bands, i.e. bands satisfying xyxzx = xyzx. It can be shown 

that RB is the smallest variety containing both RI and LI. 

Note that a language L has its syntactic monoid in JI if and only if member

ship of x in L depends on 0:( x). Correspondingly, JI is generated, as a variety 

of monoids, by a single two-element monoid U1 consisting of the idempotents 

{I,O} and multiplication defined in the obvious way. It can easily be shown 

that U1 divides any monoid which is not a group. 

Similarly, languages corresponding to the variety Acom of commutative ape

riodic semigroups are the ones for which membership depends on occurrences 

of each letter threshold t for sorne t. 
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DS and its Subvarieties 

For any variety of semigroups V, we denote by DV the variety of semigroups 

whose regular J-classes all lie in V. All such varieties are contained in DS, 

where S denotes the variety of all semigroups, and S lies in DS if and only if 

each of its regular J-classes is closed under multiplication, which, from Lemma 

2.6 amounts to requiring that each 1{-class of a regular J-class contain an 

idempotent. Thus, a semigroup in DS which is regular is in the variety DG of 

unions of groups. The following can be used to characterize DS: 

Lemma 2.17 For any semigroup S, the following are equivalent: 

1. S lies in DS; 

3. for any x, y E S where x "5::1 y and x is regv1ar we have x J xy J yx; 

4. for any x, y E S su ch that xyRx we have in fact RxY ç Rx· 

This has a number of interesting consequences. For instance, if M is in 

DS and u, v E M* are such that a(u) = a(v), then U
W and V

W are J-related. 

Moreover, in the special case where M is a union of groups (or furthermore is 

idempotent) then uJv whenever a(u) = a(v). 

If M is out si de DS, then there exist two J-related idempotents e, f such 

that ef <:1 e. One can use this to show that if NI is not in DS then M is either 

divided by B 2 the syntactic monoid of (ab)* or divided by U the syntactic 

monoid of A * bbA *. These two monoids are aperiodic and both contain the six 

elements {l, a, b, ab, ba, O} although U has one more idempotent element than 

B 2 . Their egg-box representations are given in Figure 2.1 with idempotents 

marked by *'s. It is also easy to show that U divides B 2 X B 2 . 

Let 0 denote the variety of orthodox semigroups. The variety DO will 

play an important role in later chapters as we will exploit the combinatorial 
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ab* a ab* a* 

b ba* b ba* 

U 

Figure 2.1: The egg-box representations of U and B 2 . 

description of the corresponding language-variety. By definition, M lies in DO 

if and only if the product of any two J-related idempotents of NI is also an 

idempotent in the same J-class. This is equivalent to requiring that NI be fiat 

and lying in DS. 

For a finite monoid M (and in particular any finite group G), we say that 

x, y E A* are M -equivalent if for aIl morphisms 'ljJ : A* -+ NI we have 'ljJ(x) = 

'ljJ(y). For example, ab and ba are M-equivalent for any commutative NI. 

Lemma 2.18 Suppose M E DO and let WI, W2 E A* be G-equivalent faT any 

subg7'Oup G of M. FaT any mOTphism 4> : A* -+ M and any x E NI such that 

x4>( WI) 1-1. x4>( W2) R x we have in fact x4>( WI) = x4>( W2). 

Proof. We first observe that for any idempotent e E NI and any u, v E NI 

lying J-above e we have (eu)We(ve)W = (eu)W(ve)W since e, (eu)W and (ve)W are 

J-related idempotents. Similarly, if f is another idempotent J-related to e we 

have euvf = evJevf. 

Let 4>( WI) = YI and 4>( W2) = Y2· Since l:YI 1-1. XY2 R x there must exist 

s, t E NI lying J-below YI and Y2 with xst = x = x(st)W and XYits = :rYi = 
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XYi(tS)W. Let T be the submonoid of elements of M lying J-above (st)W and 

'I/J : T -+ H(st)w(ts)W given by 'ljJ(x) = (st)Wx(ts)w. Using our earlier observation 

we conclude that 'ljJ is a morphism since 

Since W1 and W2 are equivalent with respect to the group H(st)w(ts)W, we must 

o 

Schützenberger [Sch76] proved the following characterization of languages 

whose syntactic monoids lie in DO and have subgroups in sorne H: 

Theorem 2.19 Let H be a variety of groups and J: denote the language variety 

corresponding to JI V H. Then the syntactic monoid of a language L lies in 

DO n H if and only if L is in UPol(J:). 

As Lemma 2.22 will show, this also means DO n H = LI(@l(Jl V H). 

Building on the work of D. Thérien and T. Wilke [TW98], we will now prove a 

slight refinement of Schützenberger's Theorem by characterizing these languages 

in terms of a convenient congruence. For a E a(u), the a-left (resp. a-right) 

deco'mposition of u is the unique factorization u = '11,00,'11,1 with a tJ- a( uo) (resp. 

a tJ- a(uI)). For a finite group G, we define rv~,k on A* where n = lAI by 

induction on n + k. First, we have x rv~,o y if and only if x, y are G-equivalent. 

Next, we let x rv~ k y when and only when: , 

1. x rv~ k-1 y; , 

2. a(x) = a(y); 

3. For any a E a(x) = a(y), if x = XOaX1 and y = yoaY1 are the a-left 

decompositions of x and y then Xo rv~_l k Yo and Xl rv~ k-1 YI; , , 
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4. For any a E a(x) = a(y), if x = XOaxl and y = yoaYl are the a-right 

decompositions of x and y then Xo rv~,k_l Yo and Xl rv~_l,k YI' 

This equivalence relation is well-defined since la(xo) 1 < la(x) 1 in (3) and 

la(xr)1 < la(x)1 in (4). It is easy to check that rv~,k is in fact a congruence of 

finite index. 

Theorem 2.20 Let M = A* Ir, with lAI = n. Then 1\11 E DO n li if and only 

if rv~,kÇ , for some kEN and G E H. 

Proof. For one direction, we need to show that A * / rv~ k is in DO n H , 

for any integer k and any group G E H. We will appeal to the theorem of 

Schützenberger which we previously cited as Theorem 2.19: it is an easy exer

cise to verify that each rv~,k-class can be described by an unambiguous concate

nation KOal .. . asKs where the Ki can be recognized by the direct product of 

an idempotent and commutative monoid (to verify whether a(x) = a(y)) and 

a group in H (to verify that x, y are G-equivalent). Schützenberger's Theorem 

thus insures that any disjoint union of these classes forms a language whose 

syntactic monoid lies in DO n H. 

For the second part of our proof, let us denote as lu]' for any 'U E A*, the 

, equivalence class of u. We define the R-decomposition (with respect to the 

congruence ,) of a string u E A* as the unique factorization u = uoal'Ul ... a(Ut, 

with ai E A and 'Ui E A* such that: 

Because 1\11 lies ln DS we know by Lemma 2.17 that ai rJ ()I(Ui-l). In 

particular, u = 'Uo al 'ula2' . . atUt is the al-left-decomposition of u. Symmet

rically, we can define L-decompositions of strings, which will relate to right

decompositions. 
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Let now k be the maximum of the number of R-classes and the number of 

L:-classes of M. Let B ç A be a sub-alphabet with IBI = m and suppose u, v 

are strings in B*. We claim that if G E H denotes the direct product of all 

maximal subgroups of M, then u rv~,mk V implies [u] = [v] and prove this by 

induction on m. 

For m = 0, the claim is trivially true. For the inductive step, assume now 

m 2: 1 and suppose u rv~mk v, with a(u) = a(v) i- 0. Let 'u, = 'u,Oalul·· .a(u,t , 

be the R-decomposition of u with t :::; k. We write 'lUi for Uiai+l ... a(u,t and, by 

our earlier remark, have 'lUi = Uiai+l 'lUi+l is the ai+l-left-decomposition of 'lUi, 

so there must be a decomposition v = vOal ... atvt such that Ui rv'~-l,mk_i Vi 

for i < t (Note that this actually implies Ui rv~_l,(m_l)k Vi). By the induc

tion hypothesis, we have lUi] = [V'i] for all i < t so [u] R [uOal ... Ut-lat] = 

[VOal ... Vt-lat] 2:n [v]. 8ymmetrically, we get [v] 2:n ['u,] and thus ['U,] R [v]. 

With the symmetric argument, we can also establish ['U,] L: [v] so we have [u] 1-l [v]. 

Tt remains to show that in fact [u] = [v]. Note that by definition of rv
G , we 

have that Ut and Vt are G-equivalent. 80 by Lemma 2.18 we obtain, 

o 

The variety DA of monoids whose regular .J'-classes form aperiodic semi

groups is contained in DO and is in fact equal to DO n î if l den otes the trivial 

variety and so DA is captured by the congruences rv,~ k for the trivial group J. , 

8pecifically, Theorem 2.19 yields 

Corollary 2.21 The syntactic monoid of a language L ç A* lies in DA if and 

only if L is the disjoint union of unambiguous concatenations 

with ai E A and Ai ç A. 
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Monoids in DA and corresponding languages have many beautiful proper

ties and interesting algebraic, logical and combinatorial characterizations which 

place them at the heart of many investigations in automata theory, complexity 

and logic (see [TT02b] for a survey). In particular, DA is characterized by the 

identity (xyz)Wy(xyz)W = (xyz)w. We note aIso that any aperiodic outside of 

DA is not in DS and therefore admits one of B2 or U as a divisor. 

Varieties Defined using Varieties 

Given algebraic characterizations for varieties V and W and combinatorial de

scriptions for the corresponding languages, we can sometimes get good descrip

tions for varieties defined in terms of V and W. The first example that cornes 

to mind is of course their join V V W, that is the variety generated by elements 

of V and W. It is easy to see that the languages corresponding to V V W are 

Boolean combinations of languages recognized by monoids in V or W but more 

orten than not, obtaining a convenient algebraic description for the join is very 

difficult. Similarly, a number of important varieties can be defined as V * W or 

V 0 W and so on. 

For any variety of monoids V, we denote by LV the variety of semigroups 

S in which aU local submonoids (i.e. submonoids of the form eSe) lie in V. 

Relevant local varieties in this work include the local p-groups LGp and the 

locally trivial semigroups LI. 

Theorem 2.22 ([PST88]) Let V be a variety oJ finite monoids with an asso

ciated variety oJ languages L. The variety oJ monoids associated with U POl(L) 

is LI@V. 

Theorem 2.23 ([Wei92]) Let p be prime and V be a variety oJfinite monoids 

with an associated variety oJ languages L. The variety oJ monoids associated 

with MpPol(L) is LGp @V. 
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The application of this theorem to the case V = Corn will bear special 

importance in Chapter 4. We will also need the following characterization of 

the variety LGp Q9) Corn. 

Theorern 2.24 The monoid NI lies in LGp Q9) Corn if and only if every sv.b

grov.p of M lies in G p * Ab and for aU J -related idempotents e, f E 1\11 holds 

(efe)P
W 

= e. 

Proof. The simplest way to obtain this theorem is through topological 1'esults 

of [PW96]. Sinee we do not really need to introduee these sophisticated methods, 

we sketch he1'e a proof from elementary p1'inciples. 

Suppose first that there is a relational morphism 7f : M -t T with T com

mutative and for any idempotent d E T, 7f-1(d) E LGp . If e is an idempotent 

of M, then there is an idempotent d in 7f(e) and e7f-1(d)e is a p-group. It 

is easy to show that any idempotent f J-related to e is also in 7f-1(d) so 

(efe)P
W 

= e. Moreove1', sinee T is commutative, for any x, y in the group He, 

holds d E 7f(x- l )7f(y-1)7f(X)7f(Y). Thus [x, y] E 7f-1(d) and so [.T,y]p
W = e and 

therefore He is a group in G p * Ab. 

Conve1'sely, let NI be such that for aU J-1'elated idempotents e, f E M holds 

(efe)PW 

= e. In particular, J\,{ lies in DS and so XWyw is J-related to (xy)w. 

From each J-class Ji of ]\([, we pick a maximal subgroup Ci: the subgroup 

[Ci, Cil is normal in Ci and the group Ki = Ci/[Ci, Cil is Abelian. We also 

den ote by Pi the canonical morphism from Ci into Ki and ei the idempotent in 

Ci' 

We define a monoid T in JI V Ab on the set U Ki, For t l E Kil and t 2 E K i2 

such that (eil ei2)W and ek are J -related idempotents in M, we choose ml and m2 

arbitrary pre-images in ail' Gi2 in p~l (il) and p,-:/ (i2) respectively and define 

the multiplication of il and i2 in Tas: 
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Note that the particular choice of ml, m2 is unimportant. It is also easy to 

verify associativity. 

We claim that there is a morphism cjJ from M to T such that the inverse 

image of any idempotent in T is a local p-group. We define cjJ by: 

cjJ(x) = Pi(exe) 

where X W belongs to the J-class Ji and e is the idempotent in group Gi . One 

must check that this is a well defined morphism. The crucial property we will 

use is that if e is the idempotent of G i and f is another idempotent J -related 

to e, then Pi(efe) = e. Indeed, since every group in M is in G p * Ab and 

(efe)P
W 

= e then efe lies in the subgroup [Gi , G,J Now we get: 

cjJ(x) . cjJ(y) px(exxex) . py(eyyey) 

p(cxy) (exy ( exxex) (eyyey )exy ) 

cjJ(xy) 

The same remark allows us to conclude that the inverse image of any idempotent 

of T is a local p-group. D 

If an element x of Sis regular, there exists by definition sorne a with axa = a 

and xax = x and we say that a is an inverse of x. In general, inverses in that 

sense may not be unique and from Lemma 2.6 one can easily show that every 

regular element of S has a unique inverse if and only if every regular J-class 

of S has exactly one idempotent per Rand L-class. If each element of S has 

a unique inverse, we say that S is an inverse semigroup and denote by (Inv) 

the variety generated by such semigroups. It is characterized by the identity 

;r;wyw = yWxW and we have (Iuv) = JI * G = J 1 §lG (see [Pin95]). 

A Brandt semigroup is a O-simple inverse aperiodic semigroup. We denote 

by BSk the (unique) Brandt semigroup such that the non-trivial J-class has k2 

elements. 
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Lemma 2.25 The monoid Bk can be generated by k elements 0,1,0,2, ... , ak 

subject to the relations: 

2. aiai+1 (mod k) .. . ai+k (mod k) = ai for aU i. 

We will write Bk to denote the Brandt monoid BS~. Note that we already have 

stressed the importance of B2 when discussing subvarieties of DS. 

One last variety which we will consider is DA*G which has recently emerged 

as one of particular importance in logical descriptions of regular languages. The 

following theorem is part of semigroup folklore and an explicit proof can be 

found for instance in [STOl]. 

Theorem 2.26 The monoid !VI lies in DA * G if and only if for any two J

related idempotents e, f in M holds either ef <:1 e or ef is idempotent. 

In particular, if M does not lie in DA * G, then it either admits U as a 

divisor or it is non-fiat. In other words DO = (DA * G) n DS. 

2.2 Computational Complexity 

Computational complexity the ory is concerned with classifying languages 1Il 

terms of the resources needed to decide them in a certain model of computation. 

The classical and most natural measures are that of time and space required 

on a Turing machine (see [Sip97, Pap94, GJ79]) but the study of alternative 

measures and computation models have been a major part of the successful 

development of the theory. 

2.2.1 Complexity Classes, Reductions and Completeness 

Computational complexity theory has been hampered by the frustrating inabil

ity of the field to provide explicit lower bounds on resources needed for explicit 
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functions. We trust that the reader is familiar with the P versus NP problem: 

despite years of intensive research, many leading theoreticians [Gas02b] feel that 

super-polynomial time lower bounds for a problem in NP are as far out of reach 

today as they were twenty-five years ago. Basic containments for the classes 

of languages L, P, PSPACE of languages recognizable by deterministic Turing 

machines in, respectively, logarithmic space, polynomial time, polynomial space 

and their non-deterministic counterparts NL, NP, NSPACE are easy to obtain: 

L ç NL ç P ç NP ç PSPACE = NSPACE; 

but although L =1= PSPACE can be obtained through the space-hierarchy the

orem, none of the other inclusions above is known to be strict. 

Because getting explicit complexity lower bounds is so difficult, reductions 

have been a central tool of complexity theory since they allow us to at least 

compare the relative complexity of various problems and obtain strong indica

tions that a given problem is hard. A many-one redv,ction from L ç A* to 

J( ç B* is a function j : A * -+ B* such that for any x E A *, .T E L if and only 

if j(x) E J(. If j is "easy enough" to compute (this might take on different 

meaning in different contexts), then A is "at least as hard" to compute as B. 

For a complexity class C, we say that a language J( is C-complete if J( lies in C 

and for aIl L E C there is an "easyenough" reduction from L to J(. For instance, 

NL, P, NP and PSPACE are aIl known to have complete problems under many

one reductions comput able in logarithmic space. Establishing that a problem 

J( is, say, NP-complete under logspace reductions is significant because then J( 

belongs to P if and only if aIl other problems in NP do. In Chapter 5 we will 

be concerned with a number of problems lying in NP and will writeL::;'p J( 

to denote the existence of a many-one reduction from L to J( computable in 

polynomial time. 

For J( ç B* we define a Turing machine with a J( oracle to be an ordinary 

Turing machine with the ability to query a J(-oracle, that is to decide in 1 time 
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step whether sorne w E E* belongs to K. We say that L is polynomial-time 

Turing-reducible to K, and denote this L S:~ K if L can be decided by a Turing 

machine with oracle K that runs in polynomial time. Note that a polynomial

time many-one reduction is a polynomial-time Turing reduction where only one 

query to the oracle is made. Similarly, we will say that L is polynomial-time 

bounded-truth-table-reducible to K, and den ote this L s:~t K, if L can be decided 

by a Turing machine with oracle K that runs in polynomial time and makes 

only a constant number k of oracle queries. We will say that a language is 

NP-complete if it is NP-complete under polynomial time Turing-reductions. 

Of course, for subclasses of L, completeness under, say, many-one logspace

comput able reductions is meaningless and much weaker notions of reductions 

need thus be defined. A projection 7r of length s maps An to ES in such a way 

that for each j E [s] there is a unique i E [n] such that the lh bit of 7r(x) 

depends only on the i th bit of x. 

2.2.2 Circuit Complexity 

A Boolean circuit C with n (Boolean) inputs Xl, ... ,Xn is a directed acyclic 

graph with three types of nodes (or gates): 2n input nodes of in degree 0, a 

single output no de of out-degree ° and inner nodes with in- and out-degree at 

least 1. The input nodes are labeled with Xi or Xi while the inner nodes and 

output no de are labeled with a symmetric Boolean function chosen from sorne 

predetermined base (unless otherwise specified, this base is {AND,OR}). 

Such a circuit naturally computes a function from {a, l}n -t {a, 1} as follows: 

given an input x = bl ... bn , nodes in C are recursively assigned a Boolean value. 

First, the input gates Xi, Xi get value bi and I-bi respectively. Next, if the gates 

gl, .. . , gt have been assigned values VI, ... , Vt and are the inputs to gate 9 (i.e. 

are the set of nodes wi th arcs to g) then 9 is assigned the value f ( VI, V2, ... , Vt) 

where f is the label assigned to g. Because, every inner node has in-degree and 
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out-degree at least 1, every gate in the circuit is assigned sorne value during this 

process. The output node is always assigned a value last and this value C(x) is 

the output of the circuit. 

The language L (C) accepted by C is the set {x 1 C (x) = 1}. The size of the 

circuit is the number of gates in C and its depth is the length of the longest 

path from an input node to the output node. Of course, we can easily refine 

this definition to allow circuits to pro cess non-Boolean inputs or to allow non

symmetric functions computed at each gate. 

A circuit can only pro cess inputs of sorne fixed length although in general 

we are interested in using circuits as machines to recognize subsets of {O, 1} *. 

We say that the language L ç {O, 1}* is recognized by the circuit family C = 

(Co, Cl, ... ) if the nth circuit Cn processes inputs of length n and accepts Ln 

{O,I}n. We can then define the size and depth of C as functions from N to N 

in the obvious way. 

Such models of computation, where different lengths of input are processed 

by different machines are called non-uniform models. Their power exceeds that 

of Turing machines since they can, for example, recognize arbitrary languages 

over a 1-letter alphabet. 

The following symmetric Boolean functions are traditionally used as parts 

of bases in Boolean circuits: MODm is the function which returns 1 if the sum of 

its input bits is divisible by m; THRESHOLDt returns 1 if at least t of its input 

bits are 1; MAJORITY returns 1 if its input contains more 1 's than O's (i.e. 

MAJORITY is THRESHOLDn /2)' We now define the following circuit complexity 

classes: 

• ACo is the class of languages which can be recognized by a family of 

{AND, OR }-circuits of unbounded fan-in, polynomial size and constant 

depth; 

• CCO[m] is the class of languages which can be recognized by a family 
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of {MODm}-circuits of unbounded fan-in, polynomial size and constant 

depth; 

• CCO is the union over aIl m of the CCO[m] classes; 

• ACCo [ml is the class of languages which can be recognized by a family 

of {AND,OR,MoDm}-circuits of unbounded fan-in, polynomial size and 

constant depth; 

• ACCo is the union over aIl m of the ACCO[m] classes; 

• TCo is the class of languages which can be recognized by a family of 

{MAJORITy}-circuits of unbounded fan-in, polynomial size and constant 

depth; 

• NC l is the class of languages which can be recognized by a family of 

{AND,OR}-circuits with bounded fan-in, polynomial size and O(logn) 

depth; 

• NC is the class of languages which can be recognized by a family of 

{AND,OR}-circuits with bounded fan-in, polynomial size and O(logk n) 

depth for sorne k. 

Since aIl these classes are defined using a non-uniform model of computa

tion, there is no way to relate them to the usual TimejSpace classes. However, 

uniform versions of these classes can be devised by requiring that there ex

ist a Turing machine which, given n can pro duce a description of the circuit 

Cn within strict resource bounds. Conversely, Turing machine models can be 

made non-uniform by introducing so-caIled advice tapes. We will for the most 

part completely disregard uniformity issues in this work but we note that the 

inclusions 

ACO,CCO ç ACCo ç TCo ç NC l ç L ç NL ç NC ç P ç NP ç PSPACE 
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hold in suitably defined uniform and suitably defined non-uniform variants of 

these classes. 

Boolean circuits, and particularly shallow Boolean circuits have served as 

an interesting tool in the study of par'aIlel computation. Just as P is usually 

viewed as capturing the notion of sequential tractability, uniform NC is usually 

thought of as the class of problems with efficient parallel algorithms. The book 

of H. Vollmer [Vo199] presents a nice overview of circuit complexity and its 

importance in theoretical computer science today. 

Subclasses of NC l have been the subject of intense research since the 1980's 

(see survey [A1l97]). The hope once was that techniques developed to separate 

various subclasses of NC l would be eventually built upon and refined in order to 

separate more powerful classes. Unfortunately, the important work on so-called 

"nat.ural proofs" , int.roduced in t.he seminal paper of A. Razborov and S. Rudich 

[RR97], indicat.es t.hat. a separation of even TCo from NP will l'equire radically 

diffel'ent. met.hods t.han current. combinat.oriallower bound met.hods for circuit.s. 

St.ill, circuit. complexity has delivered very interesting result.s. A series of 

papers (start.ing from [Ajt.83, FSS84]) est.ablished t.hat. PARITY (i.e. MOD2) does 

not. lie in ACo, thus separat.ing ACo from ACCo. Subsequent. work culminat.ed 

in exponent.ial size lower bounds for dept.h k ACo circuit.s comput.ing an explicit. 

funct.ion comput.able by dept.h (k + 1) linear-size ACo circuit.s [Has87]. Very 

different. t.echniques further showed t.hat. in facto MODm does not lie in CCO[p] 

for p prime, unless m is a power of p [Raz87, Sm086]. A lot of other result.s have 

shown lower bounds for rest.rict.ed classes of CCO[m], ACCo and TCo circuit.s 

but despit.e impressive work in t.his field, we know of no super-linear size lower 

bound for depth-3 CCO[6]-circuits computing an NP-complete problem. 

Many surprising circuit-complexity upper bounds have also been est.ablished. 

Let. us ment.ion for inst.ance that. THRESHOLDlogC n [FKPS85, HWWY94] and ad

dit.ion oflog n n-bit numbers (see [St.r94]) can be done in ACo while division and 
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multiplication of n n-bit numbers can be computed in uniform TCo [HABa2]. 

2.2.3 Branching Programs 

A branching program on n Boolean variables is a directed acyclic graph with a 

distinguished source node of in-degree a and two sink nodes So and S1 of out

degree a. The source nodes and the inner nodes are labeled with a variable X'i 

and have two outgoing edges labeled a and 1. A branching program represents 

in a natural way a Boolean function f : {a, l}n -+ {a, 1}: a given x E {a,l}n, 

defines a unique path from the source to one of the sinks by following at any 

node labeled Xi the edge labeled with the value of the i th bit of x. Naturally, 

f (:r) is the label of the sink reached in this way. 

We will view branching programs (or BP's for short) as a natural non

uniform computation model somewhat akin to Boolean circuits. They are also 

very useful wh en seen as a data structure for Boolean functions (in that case they 

are alternatively referred to as binary decision diagrams). Natural measures for 

the complexity of a branching program include size (number of nodes) and depth 

(length of longest source to sink path). 

Branching programs have received a lot of attention both from theoreticians 

and from researchers in more application oriented fields such as verification and 

model checking. The book of 1. Wegener is an excellent introduction to both 

theory and applications of BP's [WegaaJ. 

A restricted class of BP's plays an important l'ole in the motivation for our 

worle A bounded-width bran ching program (or BWBP) of width k is a special 

case of BP in which each inner node belongs to sorne level and edges go only from 

level i to level i + 1. Furthermore, aH nodes of a given level query the same input 

bit. This model was introduced by [BDFP86], partly as means of identifying 

interesting subclasses of NC1
. lndeed, it is easy to show that every Boolean 

function that can be represented by a family of BWBP's of polynomial depth 
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can be computed by a family of Nel circuits. It was conjectured at the time that 

the MAJORITY function could not be computed by BWBP's in sub-exponential 

length. This was disproved by the remarkable result of D. Barrington which 

will be discussed in our next chapter. 



Chapter 3 

Programs over Monoids 

The class of languages which can be recognized via morphism by a finite monoid 

is quite limited. Over the past twenty years, different formalisms have been 

introduced to generalize the notion of recognition of a language by a monoid. 

The focus of this chapter is a model of computation introduced by D. Barrington 

and D. Thérien known as programs over monoids. 

3.1 From Homomorphisms to Programs 

3.1.1 The Program Model 

An n-input program cP over a monoid1 M (or M-program) of length t is a 

sequence of 7:nstrv,ctions 

cP = (i l, fI) ( i2 , 1"2) ... (it, ft) 

where the ij 's are indices in [n] and the ij 's are functions from the input alphabet 

A into NI. We will sometimes refer to the jj's as qv,ery functions. As the 

terminology suggest, such programs process only inputs of length n and on 

input x = XIX2 ... X n , the output cP(x) of cP on x is 

1 More generally, one can consider programs over semigroups although most of the literature 
focuses on programs over monoids. This refiects the fact that the existence of an identity 
element is helpful wh en designing such programs. 

41 
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Note that the right-hand side can be seen alternatively as t elements of NI or 

as m, their product in M. We say that cp accepts x if cp(x) belongs to sorne 

accepting subset F ç 111 and say that L ç An can be recognized by cp if there 

exists sorne F such that L = {x : cp(x) E F}. 

In general, we say that L ç A* can be recognized by an NI-program oflength 

s(n) if there is a sequence (CPo, CPl, ... ) where CPn is an n-input program oflength 

bounded by s(n) that can recognize Ln An. In effect, such a sequence can be 

seen as a non-uniform projection of length s(n) from L to the word problem 

for M but we will use in this context the program terminology. Note that a 

morphism is a special case of a program-family: each CPn has length n, the i th 

bit queried is always the i th input letter and the query function is always the 

same. 

The program model is non-uniform and has super-Turing computational 

power although, just as Boolean circuit models, standard uniform versions of it 

can be defined. 

The motivation for introducing this model of computation originally lies in 

the study of bounded-width branching programs. D. Barrington observee! that 

the edges connecting two levels of a BWBP can be se en as two transformations 

on k points fo, fI : [k] -+ [k] where fo and fI correspond to the edges with labels 

o and 1 respectively. Thus, a BWBP can be se en as a program over the finite 

monoid generated by aIl functions occurring in the BP. This algebraic point of 

view led to a surprising theorem. 

Theorem 3.1 ([Bar89]) The language L ç A* is recognized by a progmm of 

polynomiallength over some finite monoid M if and only if L lies in non-uniform 

NCl
. 

In fact, we can replace the finite monoid M by any non-solvable group and 

the theorem relies on a property of finite simple non-Abelian groups which 

had already been uncovered twenty years earlier by W. Maurer and J. Rhodes 
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[MR65] although its computational complexity implications were first noticed 

by Barrington. In particular, because MAJORITY lies in NC l and because S5, 

the group of permutations on 5 points is non-solvable, MAJORITY was shown to 

be comput able by a family of width-5 branching programs of polynomial depth. 

There exists a deep connection between shallow Boolean circuits and pro

grams over monoids which was gradually uncovered in the 80's using tools which 

had been developed in the context of algebraic automata theory. Barrington 

and D. Thérien showed that many natural subclasses of NC l also had mee 

algebraic characterizations [BT88], the most important of which are: 

Theorem 3.2 Let L be a language in A * : 

• L lies in non-uniform ACo if and only if it can be recognized by a program 

of polynomiallength over some finite aperiodic monoid M; 

• L lies in non-uniform CCO if and only if it can be recognized by a program 

of polynomial length over some finite solvable group G; 

• L lies in non-uniform ACCo if and only if it can be recognized by a progra:m 

of polynomial length over some finite solvable monoid M. 

• L lies in non-uniform NC l if and only if it can be recognized by a program 

of polynomial length over some finite non-solvable group G. 

Moreover, uniform versions of these theorems can easily be obtained. Re

markably, PARITY, the word problem of the group C2 , the smallest non-aperiodic 

monoid, was historieally the first language shown not to belong to ACo [FSS84]. 

In retrospect, Theorem 3.2 shows how natural a target PARITY truly was. 

Programs over monoids thorefore offer an algobraic approach to the study 

of shallow Boolean circuits and BWBP's. This has many advantages: foremost 

powerful results and insights from algebraic automata theory can be ported to 

circuit complexity theory. Secondly, very fine natural parametrizations of NC l 
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can be obtained [MPT91], sorne of which do not have a natural description in 

terms of circuits. The same phenomenon also helps us choose reasonable and 

natural tar'gets for progress towards the resolution of questions such as CCO 

vs. NC l
: indeed, this question boils down to bounding the power of polynomial 

length programs over a solvable group. Once the question is posed in these 

terms, a natural research program emerges: try to bound the computational 

power of polynomiallength programs over what algebraic automata theory sug

gests are more and more intricate classes of groups. 

This was pursued early on in [BST90] where it was shown that AND cannot 

be computed by a program over a nilpotent group and cannot be computed in 

sub-exponential length by a program over any group in the variety G p * Ab. 

It can also be shown that computing MODm requires programs of exp onen

tial length over groups in this variety unless m divides the order of the group 

[BS94, BS99]. These results can be translated into size lower bounds for circuits 

consisting of MOD q gates at the input level followed by a number of MODp gates 

for a prime p (see also [ST, Cau96]). The same techniques led to a proof that 

CCO[g] circuits cannot compute AND in sub-linear size [Thé94] and it is fair to 

say that the state of the art lower bound technology for modular circuits was 

developed using the algebraic approach. 

The power of programs over aperiodics has also been explored: one can glve 

an algebraic characterization of ACo restricted to circuits of depth k using the 

"dot-depth" parametrization of aperiodics (see [BT88]) and precisely charac

terize the power of polynomial-length programs over semigroups of dot-depth 1 

[MPTOO] and monoids in DA [GT03]. It has also been shown that sorne aperi

odics are too weak to compute the MODm function with programs, regardless 

of length [Thé89]. 

The results mentioned thus far bound the power of polynomial length pro

grams over fixed varieties of "weak" monoids. Other results bound the ex-
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pressiveness of short programs over "powerful" varieties of monoids: it can be 

shown that families of programs of length o( n log log n) have very limited ca

pabilities (see comments in Section 3.4) and in particular that they cannot 

compute MAJORITY regardless of what the underlying mono id is [BS95]. A 

completely different approach has shown that for any group G, the output of 

any "rich enough" G-program which queries each input bit only once is very 

close to the uniform distribution on G [GRTOO]. 

3.1.2 Summary of Results 

In this chapter we present sorne new results about the limited computational 

power of programs over certain varieties of monoids as weIl as introduce further 

motivation for the next chapters. We first review in the next section basic 

properties of programs and establish sorne of the tools that we will use in the 

later sections. Section 3.3 constitutes the core of this chapter: we try to answer 

two fundamental questions about the program over monoid model. On one hand 

we seek to characterize the monoids which are powerful enough to recognize 

arbitrary languages when no length restriction is imposed on the programs. 

The existence of such monoids, which we will calI universal can easily be proved 

and corresponds to the weIl-known fact that even exponential-size depth-2 ACa 

circuits have univers al computing power. On the other hand sorne monoids 

are so weak that any computation they can do can be realized by a program 

of polynomial length. Surprisingly, this polynomial length property, which we 

will define more formaIly, appears to be dual to universality. vVe conjecture 

that every finite monoid M is either universal or able to perform aU of its 

computations in polynomial length, depending on whether M belongs to the 

variety DA * G n G nil . Our main result supporting the conjecture is that this 

dichotomy does hold if M belongs to the variety DS. We also prove that NI 

is universal if it does not belong to DA * G but that it has the polynomial 
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length property if it is the wreath product of an aperiodic monoid in DA and 

a p-group G. For the most part, these results have been published as [TT02a]. 

P. McKenzie, P. Péladeau and D. Thérien [MPT91] showed that for any 

variety V of monoids, the class P(V) of languages which can be recognized 

by polynomiallength programs over a monoid in V is essentially characterized 

by the regular languages in P (V). For every V there exists a maximal variety 

of monoids W such that P(V) = P(W) and wh en V = W, we say that 

V is a program-variety. In the terminology of H. Straubing [StrOO], V is a 

program-variety if the only monoids whose multiplication can be "simulated" 

by a polynomiallength program over a monoid in V are the monoids of V itself. 

In Section 3.4, we argue that identifying such varieties is the very goal of an 

algebraic approach to Nel . For certain program-varieties V, the computational 

limits of V-programs are even more dramatic because any language L that 

contains a so-called neutral letter and can be recognized by a program over 

sorne NI E V can be recognized by a morphism over sorne N E V. We prove 

that Corn and J have this property and discuss the implications. 

3.2 Basic Properties of Programs 

Lernrna 3.3 Let G be an arbitrary group and let Gc be the subgroup generated 

by all commutators of weight c. Then any function f : AC -+ G c can be realized 

by a G-program cP! of length (dGY, where dG depends on G. 

Proof. We use induction on c: if c = 1, the program is simply cP! = (1,1). 

For c > 1, let 9 be a commutator of weight Cl and h be a commutator of weight 

C2, where Cl + C2 = c. For any fixed x in ACI, there exists, from the induction 

hypothesis, a pro gram CPx,g that outputs 9 on input x and IG on any input 

different from x. Similarly, for any fixed y in AC2 there is a program cPy,h that 

outputs h on input y and I G on any other input. By the induction hypothesis, 

such programs also exist for g-l and h-1 since these are also in GC! and GC2 
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respectively. Let now z be in AC, with z = xy, where x is in AC! and y is in AC2: 

we construct c,Dz,[g,hj = c,Dx,g-1c,Dy,h-1c,Dx,gc,Dy,h, where it is understood that the first 

and third segments query the prefix of length Cl of the input while the second 

and fourth segments query the suffix of length C2. This program is easily seen 

to have the property that it yields [g, h] on input z and the identity element on 

any other input. We finally get the desired program c,D f as the concatenation of 

the various c,Dz,f(z) , for aIl z in AC. Note that the program has length exponential 

III C. o 

Remark 3.3. In particular, if a group G is not nilpotent of class C then 

GC+1 contains sorne 9 #- IG and there exists a G-program c,D of length 

exponential in C such that <f;(x) = 1 if and only if aIl bits of x E {D,lY+l 

are on and c,D(x) = 9 otherwise. 

It has proved fruitful, in the study of complexity classes lying within NC l 

to represent subsets of {D,l}n by polynomials over a finite ring. This was 

the starting point of R. Smolensky and A. Razborov's algebraic approach to 

proving that PARITY and MAJORITY do not lie in ACo [Sm086, Raz87] and other 

subsequent similar work (see the survey [Bei93]). We will represent functions 

from An --+ Zp as polynomials over the finite ring Zp in the k· n boolean variables 

X~l , X~'2 , ... , x~s , ... , X~l , ... ,x~s w here A = {al, ... , as}. The intended meaning 

of these variables, of course, is that x~.i is equal to 1 if the i th letter of the input 

x E Anis aj and is D otherwise. For this reason we will in fact be working over 

the semi-ring Zp[X~l, ... ,x~s] modulo the identities (X~j)2 = x:,j for aIl i, j and 

x~j . X~l = D for aIl i and aU j #- l. 

Snch polynomials naturally represent a function from An --+ 'LI' and, con

versely, any function f : An --+ Zp can be represented as a polynomial of this 

form because the polynomial X~lX~2 ... x;: is equal to 1 if the input x is CIC2 .. ' Cn 

and is D otherwise. We say that the language L ç Anis recognized by the poly-



48 CHAPTER 3. PROGRAMS OVER MONOIDS 

nomial r if for aU x E An, r(x) = xdx). Typical measures of "complexity" for 

these polynomials include degree and size (number of terms). 

We will find it is useful to take this point of view wh en bounding the com

putational power of certain monoids. The next lemma, for instance, shows that 

programs over p-groups can be represented by particularly "simple" polynomials 

over Zp. 

Lemma 3.4 Let G be a p-group. For every n-input G-program <fy over the 

alphabet A and any accepting subset F ç G, the language L (<fy) is recognized 

OVe7' Zp by a polynomial of degree at most dG. 

Proof. We first note that this Lemma is proved in [PT88] in the special case 

A = {O, 1}. We will use the characterization of languages recognized by p-groups 

presented earlier in Chapter 2. RecaU that the word problem for a p-group boils 

down to counting modulo p the number of occurrences of aU subwords of length 

at most kG. 

Let <fy be an n-in pu t G-pro gram over the alphabet A = {al,' .. , 0,8 }. Note 

that if the polynomials rI, r2 recognize LI, L2 E An respectively, then (1 - rI) 

recognizes An - LI and rlr2 recognizes LI n L2. Thus, in light of the previous 

remarks, it is sufficient to show that for aU u E Gk and aU 0 < i < p - 1, the 

set {x E An : (.p~)) = i (mod p)} is recognized over Zp by a polynomial of 

bounded degree. To see this, note that any occurrence of '1.1, as a subword of 

<fy(x) , is the result of k instructions giving a specifie output. In other words, 

there are input variables Xii' ... ,Xik and alphabet letters bl , ... ,bk such that 'U 

occurs in <fy(x) precisely because Xij = bj in x. These Xij have the correct value 

if and only if the monomial x~: ... x~Z evaluates to 1 so we can count the Humber 

of occurrences of u modulo p using a polynomial of degree bounded by k. 0 

vVe have already mentioned that wh en reasoning about programs it is often 

useful to think of the output of the program as the word in M* corresponding 
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to the concatenation of the elements output by each instruction. Similarly, 

notice that an n-input program is a finite sequence of instructions, i.e. a finite 

word over the alphabet L; of size n x AM consist of pairs (i, f) with i E [n] 

and f : A --7 M. This point of view allows us to reason, for example, about 

the similarity in behavior of two programs which are equivalent with respect to 

certain finite index congruences over L;*. 

Consider for instance two n-input programs (h, cjJ2 over an idempotent com

mutative monoid M. It is easy to see that if over this large alphabet we have 

Œ(cjJd = Œ(cjJ2) then for any x E An we will have Œ(cjJl(X)) = Œ(cjJ2(X)) and thus 

cjJ l ( x) = cjJ2 ( X ) . 

If N is a submonoid of M, then every N-program is also an M-program. If 

N = e(M) for sorne surjective morphism e, then this morphism can be used to 

transform an M-program cjJ to an N-program e(cjJ) in the obvious way: every 

instruction of cjJ, say (i, f) becomes (i, cjJ(f)). Then, obviously, e(cjJ) (x) = e(cjJ(.'r)) 

for any input x. The opposite process is in fact more interesting: if 'l/J is an N

program, then there is an M-program cjJ such that e( cjJ) = 'ljJ and so any language 

recognized by an N-program with accepting subset F ç N can be recognized 

by an M-program using accepting subset e- 1(F). 

Note also that wh en cjJ = (il, fI) ... (is, fs) is a program over a group C, we 

will write cjJ-1 to den ote the program (is, fs-1) ... (il, f1-1). Of course for any 

input x we get (cjJ(x))-l = cjJ-l(x). 

It is sometimes convenient to consider so called k-programs over l'vI in which 

instructions are allowed to query k-tuples of input positions instead of single 

positions, The computing power of polynomial-length k-programs do es not 

exceed NC l although for a specific monoid polynomiallength (k + 1 )-programs 

might be strictly more powerful than polynomiallength k-programs. A simple 

trick shows that every polynomiallength k-program over M can be rewritten as 

a t-program in which the t-tuples are only queried once and in sorne fixed order 
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[StrOO]. This formalism is helpful wh en relating programs to logic [Str94, StrOl]. 

3.3 Universality vs. Polynomial Length Prop
erty 

In Theorems 3.1 and 3.2 the polynomial restriction on the length of the programs 

is crucial. As the next example illustrates however sorne monoids cannot take 

advantage of a relaxation of the length requirement. 

Example 3.4. Let cp be an n-input program of length S over a commutative 

NI. Any two instructions in cp can be commuted at will without affecting the 

output of the program since the underlying monoid is commutative. Moreover, 

two adjacent instructions that query the same input letter can be coalesced 

into a single instruction outputting the product in M of the outputs of the 

two original instructions. Therefore there is an n-input program cp' of the form 

cp' = (1, h)(2, 12) ... (n, ln) 

such that cp(x) = cp'(x) for aIl .1: E An. 

When analyzing the computational power of programs over commutative mo

noids, the restriction to polynomial length is thus completely irrelevant be

cause any such program can be assumed of length n. 

We say that a monoid M has the polynomial length proper·ty (often abbrevi

ated PLP) if there exists a polynomial p(n) such that for each n and for every 

n-input 1I1-program cp with target set F<j; ç M, there exists an equivalent n

input M-program 'ljJ, with possibly a different target set F'Ij; ç 111, of length 

p(n). By equivalent we mean that for any input x, we have cp(x) belonging to 

F<j; if and on 'ljJ(x) belongs to F'Ij;. 

It is not de aI' whether the PLP is preserved by taking submonoids or morphic 

images and by taking direct products. Let M have the PLP and let N be a 
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submonoid of NI: an N-program is also an M-program and this ]\'f-program 

can be reduced to an equivalent one of polynomial length, but this new NI

program may involve in its instructions elements which are outside of N, and 

hence may not be an N-program. Let next N = O(M): for any N-program cp, 

we have se en that we can construct an M-program p such that O(p) = cp, and p 

can be reduced to an equivalent program of polynomiallength, say 'ljJ. We are 

unfortunately not guaranteed that the accepting subset of'!jJ is the pre-image of 

sorne subset of N, i.e. it may be that e(nl) = e(n2) where nl is accepting and n2 

is rejecting: hence, there is no clear way of transforming 'ljJ into an N-program. 

A similar problem occurs when we look at programs cp over Mx N where }I.![ and 

N have the PLP unless the accepting subset is the direct product of a subset of 

M and a subset of N. This is probably not an easy problem to get around as 

the following example illustrates. 

Example 3.4. Since the AND function lies in NCl , there is a polynomial 

length program to compute it over the (non-solvable) group S3 X A5' How

ever, any program computing AND over the subgroup 8.3 is known to require 

exponentiallength [BST90]. This does not ruin the possibility that the poly

nomiallength property is preserved under division, as PLP provably does not 

hold in S3 x A5, but the example shows that an argument to prove the closure 

property will crucially depend on PLP holding for the larger monoid. 

This inconvenience, however, motivates the following definition: we say that 

an NI-program '!jJ is a contraction of an M-program cp if 

1. '!jJ(x) = cp(x) for any x E An; 

2. Every instruction in '!jJ(x) is an instruction cp. 

In other words, '!jJ can be obtained from cp by permuting, deleting or duplicating 

instructions of cp and the two programs always have the same output. We further 
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say that NI has the polynomiallength contraction property (abbreviated PLCP) 

if there exists a polynomial p(n) such that for each n and for every n-input 

M -program cp, there exists a contraction 1/J of cp whose length is bounded by 

p(n). For example, the arguments given in Example 3.3 show that commutative 

monoids have the PLCP. Of course, any M having the PLCP also has the PLP 

but in addition: 

Lemma 3.5 If M, N are monoids with N -< M and M has the polynomial 

length contraction property than so does N. Moreover, if Nh and M 2 have the 

PL CP, then Ml x NI2 has the P LP. 

Proof. Suppose that N is a submonoid of M and let cp be sorne n-input N

program. One can alternatively consider cp as an M-program and, sinee 1'/1 has 

the PLCP, there exists a contraction 'ljJ of cp whose length is bounded by p( n). 

Now 'l/; is itself an N-program since all its instructions are instructions in (p. 

If N = e(M), then for any n-input N-program cp let 'l/; be a contraction (of 

length at most p(n) of an NI-program T E e-l(cp). For any x E An, we have 

(e('ljJ))(x) = e(('ljJ) (x)) = cp(x) and, sinee every instruction of'ljJ is an instruction 

of T, every instruction of e( 'ljJ) is an instruction of e( T) = cp. Henee, e( '1/)) is a 

contraction of cp of length at most p( n). 

Let cp = (il, fd ... (is, fs) be a program over Ml x M 2 with and let CPMI (resp. 

CPMJ be the pro gram obtained from cp by replacing each fi by gi : A ~ Ml X M 2 

(resp. hi : A ~ Ml X .M2 ) defined as follows: for each a E A, if fi (a) = (ml, md, 

with ml E Ml and m2 E Nh then g,Ja) ~ (ml, 1M2 ) and hi(a) = (l Mll m2). Of 

course, cp(x) = CPMI (x) . CPM2(X) for all x. Now CPlvh and CPM2 can be viewed 

as programs over Ml and M 2 respectively and can therefore be contracted to 

polynomial length 1/J Ml and 1/J M2 respectively. Clearly cp and 'l/; Ml . 'l/; M2 are 

equivalent. 0 

As we will see, it is often convenient, in order to establish that N has the 

PLP, to prove that N divides sorne M having the PLCP. 
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On the other hand, say that M is universal if every language L ç A * can be 

recognized by a family of 1I1-programs, possibly of super-polynomial size. Such 

monoids exist of course and we will give many such examples. For instance, it 

is a simple exercise to build a branching program of width 3 for an arbitrary 

Boolean function on {a, 1 }n. We also note: 

Lemma 3.6 The class of non-universal monoids is closed un der division. 

Proof. Let N be a non-universal monoid. Let first M be a submonoid of 

N. Since any M-program is also an N-program, M cannot be universal either. 

Let next M = B(N) for sorne surjective morphism B. As we argued in the last 

section, every language recognized by an M-program can be recognized by an 

N-program so if N is non-universal, M cannot be. 0 

We do not know if non-universal monoids form a variety however because wc 

are unable to prove yet that the class of non-universal monoids is closed under 

direct product. 

Are universality and PLP related properties? It is easy to see that if M has 

the PLP then it certainly is not universal for there are doubly-exponentially 

many subsets of An but only exponentially many M-programs of length p(n). 

In fact, we believe that the two notions are dual to one another and in the 

remainder of this section, we will argue in favor of the following conjecture. 

Conjecture 3.7 Let M be a finite monoid. The following are equivalent: 

1. lVI has the polynomial length property; 

2. 111 is non-univer-sal; 

3. lVI belongs to the variety DA * G n G niJ . 

We have already argued for (1 '* 2) and will show (2 '* 3). Our strongest 

indication that this conjecture is true is that this duality of universality and 

PLP holds for any monoid in DS. 
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3.3.1 A Dichotomy Theorem for DS 

We start with a generalization of Lemma 3.3. 

Lemma 3.8 If G is nilpotent, it has the polynorniallength contraction pTOperty. 

Proof. Suppose G is nilpotent of class k with exponent m. We know that 

if u, v E G* have the same number, mod m, of occurrences of any subword 

of length at most k then evala(u) = evala(v). Let us consider an n-input G

program cp as a word over the alphabet ~ = [n] x GA of possible instructions. 

By Lemma 2.12 there exists a word '1jJ over ~ of length at most m . 1~lk.rn and 

such that 'l/J and cp have the same number of occurrences of any subword of 

length at most k (mod m). Of course, '1jJ is just another G-program and we 

daim that for any input x we will have cp(x) = '1jJ(x). Indeed, any occurrence 

of a length t subword .91 ... gt of cp(x) (seen as a word in G*) results from a 

subword W E ~* of length t in cjJ comprising the instruction which output these 

91, ... ,9t on input .T. Because cp and 'l/J have the same number of occurrences 

of any subword in ~* of length at most k, then for each x, cp(x) and 'l/J(x) will 

also have the same number of occurrences of any subword in G* of length at 

most k and so cjJ( x) = 'l/J (x) on any x. Any cp thus has a contraction '1jJ of length 

m. 1~lk.rn = O(nd ). 0 

We can extend this proof to direct products of a commutative idempotent 

with a nilpotent group. 

Lemma 3.9 If M is in JI V Gni! then M has the PL CP. 

Proof. The proof is just a slight complication of the previous argument. 

Suppose M has exponent m and assume all its subgroups are nilpotent of class 

k. Consider an n-input lI1-program cjJ as a word over the alphabet ~ = [n] x lI1A 
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of possible instructions. By Lemma 2.12 there exists a word 'ljJ over I: of length 

at most m· 1I:lk and such that 'ljJ and cp have the same alphabet and the same 

number of occurrences of any subword of length at most k (mod m). Now '~) 

is just another M-program and for any input x we will have cp(x) = 4)(x) since 

the words cp(x) and 'ljJ(x) (seen as words in M*) will have the same alphabet 

and same number of subwords of length at most k (mod m). o 

Considering congruences on the alphabet of possible instructions made sense 

in these examples because we could find a small representative of each congru

ence class. Similarly, we will exploit: 

Lemma 3.10 For any .!inite alphabet A of size n, any integer t, and any nilpo

tent group G of class k and exponent m, each rv~,t class has a representative of 

size O(nk
). 

Proof. Recall the definition of rv G : two words x, y are rv~cequivalent if they , 

are G-equivalent, have the same alphabet and their a-left-decompositions (and 

same for a-right) XOaXI and yoaYI are such that Xo and Yo are rv~_l cequivalent , 

and Xl, YI are rv~ t_requivalent. We will say that a position in .r, is a rv~ C , , 

bookmark if it holds the occurrence of a such that XOaxI is the a-right or a-Ieft 

decomposition of x or iffor sorne b-Ieft-decomposition of x = x~bx~ it is a rv~_l,C 

bookmark of x~ or a rv~,t_l of x~ (or symmetrically for a b-right-decomposition). 

Note that for any x, the rv~,t bookmarks are the same no matter what the group 

Gis. 

Let x be a word in A *. We begin by mar'king certain special positions in 

x and define our marking scheme Sn,t by induction on n + t as follows. For 

n + t = 1, we do not mark any letter. For n + t > 1, we begin by marking the 

first and last occurrence of any letter in Œ(X). If we have marked an occurrence 

of a corresponding to the a-left decomposition x = XOaXI we recursively mark 

Xo using mar'king scheme S!a(xo)!,t and Xl using Sn,t-l. We symmetrically mark 
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recursively the segments defined by the a-right decomposition of x. A simple 

induction shows that the number of letters marked in Sn,t is bounded by O(nt ). 

Of course, this scheme was tailor-made to mark aIl the occurrences of letters 

which are rv~ cbookmarks in x. Suppose x = uavbw where a, b are consecutive , 

marked letters and let v' be such that 0:( v) = 0:( v') and v and v' have the 

number modulo m of occurrences of any subword of length k or less. If we 

let x' = uav'bw then x rv~,t x' because v and v' are G-equivalent and because 

the rv~,cbookmarks in x and x' coincide. We know that v' can be chosen of 

length O(nk ) and since there are at most O(nt ) in x that are delimited by two 

consecutive marked positions we can construct sorne word in the rv~,cclass of x 

that has length O(nk+ t ). D 

Lemma 3.11 If M is in DO n Gni! then M has the PL CP. 

Proof. Since M lies in DO n G nib there exists a nilpotent group of class k and 

exponent m as weIl as a constant t such that any u, v E M* with 'U rvfLl,t v we 

have evalM(u) = evalM(v). Consider an n-input M-program r/J as a word over 

the alphabet I; = [n] x lvfM of possible instructions. By the previous Lemma, 

there exists a word 'l/J over I; of length at most m ·1I;l kS and such that 'l/J rv~l,t r/J. 

For any input x, we will show that if r/J and 'l/J are rvfcrelated then the , 

words r/J(x) and 'l/J(x) in M* can be shown ""'fcrelated, where s = 100(r/J(x)) l, , 

using induction on s + t. The case t = 0 has already been argued in the 

proof of Lemma 3.8. Fix x and consider the a-left decomposition of r/J(x) for 

sorne a E o:(r/J(x)). This a had to be output by sorne instruction querying 

bit i and applying sorne function fj where fj (Xi) = a. Thus, the (i, fj )-left 

decomposition of r/J is r/J = r/Jo(i, fJ)r/Jl where (Po(x) Goes not contain any 0,. There 

must exist a corresponding (i, fj)-left decomposition of'l/J as 'l/Jo(i, fJ)'l/J1 and such 

that 'l/Jo(x) does not contain any a either. By induction we get r/Jo rvf_1 t 'l/Jo(x) , 

and r/J1(X) rvft_l 'l/Jl(X) and by left-right symmetry r/J(x) rvft 'l/J(x) as claimed. , , 



3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 57 

We can therefore construct a polynomial length contraction of cp so M has 

the PLCP. 0 

At least within DS, we will show that DO n G nil is the variety that exactly 

captures monoids having the PLP. We first state a result of [BST90]: 

Lemma 3.12 If G is a group which is not nilpotent, then it is universal. 

Proof. If G is not nilpotent, then for every n there is a commutator h E Gn 

that is not the identity. Fix sueh an h arbitrarily. Let L be an arbitrary subset 

of An. Let f : An -+ Gn be defined by f(x) = h if X ELand f(x) = 10therwise. 

By Lemma 3.3, f can be realized by a G-program and L is recognized by this 

pro gram and aeeepting su bset {h}. 0 

In particular this lemma ensures universality for any monoid containing a 

non-nilpotent subgroup. 

Lemma 3.13 If M contains a non-fiat regular .:J -class then NI is universal. 

Proof. If M contains a non-fiat regular J-class, there exist J-related idem

potents d, e, f in NI with dH (ef), ed = d, de = e and df = d but efe 1- e. 

Let L be an arbitrary subset of An. Fix a word w ELand consider the 

program cp = e· (1,91) ... (n, gn) . fe where, for any c E A, 9i(C) = 1 if c = 'Wi 

and gi(C) = d otherwise. For any xl- w, at least one instruction outputs a d and, 

sinee d2 = d, cp(x) = edfe = e. On the other hand cp(w) = efe. Concatenating 

such programs for all elements of L, we get a program 'ljJ with the property that 

'Ij)(x) = e for x rf. L. On the other hand, if x does belong to L then exactly one 

of the segments will output efe and so we will get 'ljJ(x) = efe 1- e. 0 

Combining the four previous lemmas, we obtain: 

Theorem 3.14 If M is in DS then it has the PLep if it is in DO n G nil and 

it is universal otherwise. 
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Proof. If M contains a non-nilpotent subgroup then it is universal by Lemma 

3.12 and ifit is in DS-DO then it contains a simple non-orthodox subsemigroup 

and is thus universal by Lemma 3.13. If M lies in DO n G nil however, th en it 

has the PLCP by Lemma 3.11. D 

It follows that programs over monoids in DO n G nil cannot compute, for 

instance, the word problem of a non-nilpotent group. Furthermore, the function 

MODq cannot be computed by any program over DO n G p where p and q are 

distinct primes. This follows from the observation that such programs can 

be contracted and then simulated with bounded depth {AND, OR, NIODp }

circuits of polynomial size. The latter cannot recognize MODq [Sm086]. We 

conjecture that, similarly, MAJORITY cannot be computed by any program 

over DO n G nil . 

3.3.2 Sorne Results in DA * G 

Can we find a similar dichotomy for monoids outside of DS? The following 

result, originally proved in [Thé89], restricts quite dramatically the space of 

candidates for the PLP. Recall that the mono id U, which we introduced III 

Section 2.1.6, is the syntactic monoid of the language {a, b} * bb{ a, b} *. 

Lemma 3.15 U is univers al. 

We sketch this proof for completeness. 

Pro of. For any w E An, consider the pro gram 

CPw = ab(l, il) (2, h) ... (n, fn)b 

where fi(C) = a if C =1= Wi and fi(C) = 1 otherwise. Note that since a is 

idempotent in U, we get CPw (x) = abab = ab if W =1= x and CPw (x) = abb = 0 if 

W = x. So for any L ç An, the program cp of length n· ILl consisting of the 
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concatenation of aU programs CPWi where Wi E Li is such that cp( x) = ° if and 

only if x E L. 0 

As a eorollary, we thus obtain implication (2,* 3) of conjecture 3.7. 

Theorem 3.16 If M does not belong to the variety DA * G n G ni1 then M is 

universal. 

Proof. RecaU from Chapter 2 that if M tf. DA * G then there exist two idem

potents e, f E M such that e J f J(ej) but ef is not idempotent. If (ej)w also 

is J-related to e and f then this J-class is non-fiat and the universality follows 

from Lemma 3.13. Otherwise, sinee (ej)Je, there must be an idempotent s in 

the H-class .ce n Rf. Thus, U is a divis or of M and we appeal to Lemma 3.15. 

o 

Therefore, universality and PLP questions only remain open for the variety 

DA*G. 

Theorem 3.17 If M is of the forrn No G with N E DA and G E Gp then lV! 

has the PLP. 

Our proof of this theorem is unfortunately quite technical and its main idea 

is best illustrated in the following example which we prove as a warm-up. 

Example 3.17. Clairn: the rnonoid M = UI 0 Cp has the PLP. 

We assume for simplicity that the input alphabet is {a, 1}. By Lemma 3.4, 

we know that for any n-input program 'ljJ over a p-group G such as Cp, there 

exists a polynomial r in Zp [X 1, ... XnJ of degree at most deI' such that r = 1 

whenever 'ljJ outputs h E F ç Cp and r = ° otherwise. 

Let us denote hy the pair (~, !Ji) E (U;'l', Cp) the product of the firRt 'l in

structions of cp on sorne input. If (fi, gi) is the result of the i th instruction, we 

have 
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We will say that instruction i is an h-crash site for x E {O, l}n if on x we have 

h-l (h) = 1 but h(h) = O. In particular, this implies that fPi-1 (h) = O. 

Our main claim is that for aIl h in Cp there can only be polynomially h-crash 

sites querying bit Xl' Consider in particular all such instructions such that 

a crash occurs on an input where Xl = 1. Since the value !h-l is computed 

by a Cp program, we know that there exists a fixed degree Zp-polynomial ri 

associated with this instruction such that f;i-1 (h) = 0 if and only if ri = 1. 

There are only (d n ) many linearly independent such r's, hence if we have 
Cp 

more than (d n ) crash sites it must be the case that sorne ri can be expressed 
cp 

as a linear combination of ry's with j < i. Hence if ri = 1, there must be j < i 

with rj = 1. This shows that i is actually not a crash site since whenever 

Xl = 1 and f;i-1(h) = 0 we already had h(h) = O. 

Therefore, we have at most p . 2 . n . (dn 
) instructions which are crash sites, 

,Cp 

i.e. where the ufp part of the computation is truly active. For aIl but polyno-

mially many instructions in cP, we can thus replace the ufp component of the 

instruction by the identity without affecting the result of our computation. In 

between any two potential crash sites, we are thus left with subprograms over 

the subgroup Cp but these can be made to have polynomially bounded length 

using Lemma 3.8. 

We now extend the same idea, at the expense of technical complications, to 

prove the full version of Theorem 3.17. 

Proof. Let cP be an n-input M-program of length s. As in the example above, 

we will begin by identifying a polynomial number of key instructions in cP and 

argue that for all inputs x the N G -component of cP(x) can only be affected at 

one of these locations. Suppose that N divides N* / "'INI,k: and let us again 

denote by (h(x), !Ji(x)) E (NG
, C) the product of the first i instructions of cP on 

input x and by Ax E N G the N G component of the output of the i th instruction 

on x. For an element 9 E C, we will say that the i th instruction of cP is h-critical 
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if there exists an input x such that in the following word in N*: 

h,x(h)1i,~(h) ... 1!,~-1 (h) ... J!,"x- 1 (h) 

the i th letter is a rvlNJ,k bookmark. 

We daim that for each h E G there are only polynomially many h-critical 

instructions in cP. First, the number of bookmarks in a given word over N* is 

bounded by sorne constant c depending on N and k and so, for a given x, only 

c input letters are ever queried by the corresponding h-critical instructions. 

Keeping the analogy with our example, let us consider the set R of aU x's 

for which the h-critical instructions were the result of querying Xl, ... ,Xe and 

finding them holding, say, 1. Now, the gi are computed by a program over sorne 

group in G p and so, by Lemma 3.4, for any h-critical instruction producing the 

bookmark, say bl there exists a polynomial ri in 7lp with fixed degree such that 

1;i-1 (h) = bl if and only if ri = l. 

For any W E R, let lI, ... ,le be the locations at which the h-critical instruc

tions appear and say they hold letters bl , ... ,bc . There exists a constant degree 

polynomial qx over 7Lp such that positions h, ... , le hold bl , ... , be if and only if 

qw(x) = 1 and qw(x) = 0 otherwise. There are only polynomiaUy many linearly 

independent such qw so if R is too large, we can find Wl, W2 E R such that 

In this case, the two words of N* 

and 

are such that they agree on every letter which is a rvlNI,k bookmark of Ul or a 

rvlNI,k bookmark of U2. These locations must coincide. Thus, only polynomially 

many different instructions in the program can be found h-critical because of 
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sorne x E R. Sinee there are only polynomially many possibilities for R we have 

proved our daim. 

The N G component of </J(x) can truly be affected only at one of the polyno

mially many critical instructions. In aIl other instructions, we can replace the 

NG component of the computation by the identity without affecting the output 

of the program. The resulting segments in between two critical instructions can 

be viewed as G-programs and thus be contracted to polynomial length using 

Lemma 3.11 sinee G is nilpotent. 0 

These constructions do not imply the existence of polynomial length con

tractions of arbitrary programs over DA * G p and it is quite possible that 

sorne monoids in this variety do not have the PLP. They are, however, di

visors of a monoid which has the PLP and so no monoid in DA * G p is 

univers al. In particular, a theorem of Thérien [Thé89] building on the work 

of Smolensky [Sm086] shows that, regardless of length, no program over a 

monoid in JI * G p can compute the function MODq for any primes p :j:. (j. 

In fact, Thérien's argument can easily be extended to any variety of the form 

(Gp 0 (Gp 0 ( ... 0 G p 0 (JI * G p ) ... ))). By the results of [PST88], any monoid 

in DA * G p is in one of these varieties and thus no pro gram over a monoid in 

DA * G p can compute the function MOD q for any primes p :j:. (j. 

Using a different argument, we will next show that no program over a Brandt 

monoid can compute the function MODq for any q. Although this is a strictly 

weaker result than the ones just mentioned, we believe that the novel proof 

technique could help in proving non-universality of other aperiodic monoids 

with similar properties. 

Theorem 3.18 If M is a Brandt monoid, then no M -progmm can compute 

MODm for any integer m 2: 2. 
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Proof. Suppose that cjJ is a Bk-program computing MODm for inputs of length 

n 2: 2m + 1. We can assume without loss of generality that the output of each 

instruction is either a generator or the identity and that there exists2 x E {a, l}n 

such that cjJ(x) = a. Note that a string w in {l, al, a2'" ad* evaluates to a in Bk 

if and only if for sorne j =1= i + 1, it contains occurrences of ai and a.i separated 

only by 1 's and, in particular, w evaluates to a if there exists i, j such that 

Iwlai - IWlaj > 1. Thus if cjJ(x) = 0, we can find instructions s < t querying 

(not necessarily distinct) bits bs , bt and producing ai, a.i respectively while aIl 

instructions in between them output the identity. Let 'ljJ be the subprogram of 

(p consisting of instructions between sand t and suppose that x E MODm . For 

any x' at Hamming distance 1 from x, we have x' tJ. MODm and thus cjJ(x') =1= a. 
Assuming i < j, this means that if any one bit of x other than bs or bt is fiipped 

then '1/) must now output a word w E {l, al, 0,2 ... ak} * such that for aIl3 i < l < j 

we have Iwl al -Iwlai = 1. However, if we now fiip c bits of x other than bs or bt , 

the output of'ljJ contains c more occurrences of al than ai and so the program's 

output is a again. This is a contradiction for unless c is a multiple of m we 

should have cjJ(x') =1= cjJ(x). 

This argument can clearly be adapted to handle the case where x tJ. lI!{ODm . 

D 

The above proof actually shows that programs over Brandt monoids have 

very limited ability to compute symmetric functions. In particular, they cannot 

compute THRESHOLDt unless t or n - t is a constant. 

The proof can also be adapted to obtain similar limits on the power of 

programs over the transition monoids M k associated to the following finite au

tomata: 

2If cjJ(x) i a for all x E {a, l}n then cjJ(x) is completely determined by the output of the 
first and last instructions whose output is not l. 

3If j < i, we want to con si der alll except those between j and i. 
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a a a ... :=B 
b b b 

The M k 's were studied in [Thé89] as examples of non-universal aperiodic mono

ids of dot-depth k. Brandt monoids, as weIl as the M k 's are inverse aperiodics 

but have the very special property that they lie in JI * G p for sorne prime p. 

Still, the idea behind our last proof is that as soon as a program cp over Bk or 

M k is doing non-trivial computation, then for a vast majority of inputs we have 

cp(x) = o. Intuitively, an inverse aperiodic monoids have this property. 

3.3.3 Open Problems 

Do Brandt monoids have the PLP? Intuitively, the fact that each of them is a 

divisor of a mono id which does have the PLP leads us to believe so, but even 

the case of B2 has so far eluded pro of. This is the subject of ongoing work with 

K. Reinhardt and D. Thérien. 

Another outstanding problem concerns the power of program over monoids 

which lie in DA * G but not in DA * Gp for any prime p. We conjecture that 

Lemma 3.17 can be extended to show that monoids of the form N 0 G where 

N is in DA and G is a nilpotent group have the PLP. A first step would be to 

show that no monoid in DA * Gni! is universal. As of yet, we have no proof that 

even U1 0 C6 is non-universal. We believe that resolving these two problems are 

key steps towards a possible proof of our conjecture. 

3.4 Crane Beach Properties and Program Va
rieties 

How can we classify monoids in terms of their computational power? If we are 

using morphisms to recognize languages, then we have seen that varieties are 
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the natural unit of classification. In the case of programs over monoids however, 

any two non-solvable monoids recognize exactly languages in non-uniform Ne l . 

For a variety of monoids V, let us denote by P(V) the class of languages which 

can be recognized by a polynomiallength program over sorne monoid in V. 

Theorem 3.19 ([MPT91]) If V, W are varieties of monoids P(V) = P(W) 

if and only if P(V) and P(W) contain the same regular languages. 

One might expect that for sorne relatively weak and robust varieties the 

regular languages in P(V) coincide with the regular languages with syntactic 

monoids in V. This intuition is unfortunately incorrect in most cases because 

a lot of computation can be hardwired into the program itself. Consider for 

instance the regular language L ç {a, b} * consisting of words that hold an 

a in sorne even-indexed position. In order to recognize membership in L, an 

automaton must have a mechanism that keeps track of the parity of the number 

of input letters read so far and one can easily see that M(L) correspondingly 

contains the group C2 . On the other hand, we can write a program over UI that 

recognizes L by making sure that only the even-indexed positions of the input 

are queried by the program. Similarly, the language of words that have an even 

number of a's beyond the first ten positions can be recognized by a program 

over C2 even though its syntactic monoid is not a group. 

We say that a language L ç A * has a neutral letter if there is a let ter e E A 

such that for any u, v E A * we have uv E L if and only if 'uev E L. In other 

words, the letter e is neutral if and only if e is equivalent to the empty word 

in the syntactic congruence of L. For any language L ç A *, we den ote by 

LE ç (A U {e})*, where e tt A, the language with neutral letter e such that 

v, E A* lies in V if and only if v, lies in L. Note that L and LE have the same 

syntactic monoids. 

Intuitively, a program computing LE cannot exploit its ability to look for 

specific input letters appearing in specific input positions. 
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Theorern 3.20 If V, W are varieties of monoids PCV) = P(W) if and only 

if PCV) and P(W) contain the same regular languages with neutral letter. 

We say that a variety V of monoids is a program-variety (or P-variety) if the 

regular languages with neutralletter lying in PCV) have their syntactic monoid 

in V. This is equivalent to the requirement that for any monoid M, if aU sets 

Tm ç M* with Tm = {w 1 eval M (w) = m} can be recognized by polynomial 

length programs over monoids in V then in fact MEV. In light of the above 

theorem, program-varieties are the natural unit of classification of monoids in 

terms of their power as language recognizers via programs. Of course, most 

varieties are not program varieties. 

Theorern 3.21 (see [StrOOD The varieties of all finite monoids M, p-groups 

Gp , aperiodics A, J -trivial monoids J, commutative monoids Corn all are 

program-varieties. 

Of course, Theorem 3.2 shows that "A is a program variety" and "MODp 

do es not belong to ACo for any p" are equivalent statements. Many fundamental 

circuit complexity questions can similarly be rephrased in this way. Showing 

that AND does not belong to CCO for instance, is equivalent to showing that 

G so1 is a program-variety. 

Showing that Corn is a program variety is a simple exercise. In fact, one 

can establish an even stronger statement about the languages with neutralletter 

that programs over commutative monoids can compute. 

Exarnple 3.21. Suppose that L ç A * is a language with a neutralletter, say 

e, that can be recognized by a program cP = (cPo, cPl, ... ) over a commutative 

monoid M of threshold t and exponent p. As we have seen in the previous 

section, we can assume that each cPn consists of n instructions each querying a 

different input letter. Let U,'V be two words in 2:;* such that Œt,p(U) = Œt,p(V). 
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Note that the lengths of u and v must be equal modulo p. We can thus 

pad 'U and v with e's to obtain words u' and v' of equal length k and with 

Œt,p(U') = Œt,p(V'). 

Consider the s-input program rPs with s = k· IMIIAI. Because there are only 

1l\11 1AI possible query-functions, there must be a set of positions J ç [s] of 

size k such that the corresponding instructions in rPs aIl have the same query

function j. We denote by 'u" (resp. v") the word of length s obtained by 

placing the letters of u' (resp. v') in the k positions of J and placing neutral 

letters e in the other s - k positions. We daim that cPs (u") = cPs Cu"). 

lndeed, sin ce u" and v" agree on aIl positions outside J, it is sufficient to show 

that we have 

Œt,p ( rP~ ( u")) = Œt,p ( rP~ ( v") ) 

where rP; (w) denotes the output in M* of the instructions of rPs querymg 

positions in J. Since the positions J in u" hold the word u' and since the 

corresponding instructions use the same query-function j, the number of oc

currences of m in rP; (u") is just 

2)u'la ·lj(a)lm· 
aEA 

Since we have Œt,p(U') = Œt,p(V') we have for aIl m E M 

I}u'la 'lj(a)lm == LIV'la 'lj(a)lm(thresh t, mod p) 
aEA aEA 

which proves our daim. 

Thus cP( u") = cP( v") and so u" and v" are either both in L or both in L. 

Because '/), and v can be obtained 'from 1L" and v" respectively hy dE~leting 

neutralletters, they are also either both in L or both in 1. Rence the syntactic 

congruence of L is coarser than the congruence induced by Œt,p so M(L) is a 

finite commutative monoid. 
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The Crane-Beach Conjecture, first postulated by D. Thérien and C. Laute

mann, stated that alllanguages with a neutralletter recognized by ACo circuits 

were in fact star-free languages or, equivalently, that alllanguages with a neu

tralletter recognized by a polynomiallength program over an aperiodic monoid 

had a finite and aperiodic syntactic monoid. The Crane-Beach Conjecture was 

disproved by N. Immerman [BIL +01]. 

We will say that programs over a mono id variety V have the Crane-Beach 

property if any language with neutral let ter recognized by a polynomial length 

program over a monoid in V has its syntactic monoid in V. By definition, every 

such variety is a program variety although the example of the variety A shows 

that the converse does not hold in general. 

Theorem 3.22 Programs over J have the Crane-Beach property. 

Proof. This can be obtained as a corollary of Theorem 3.11 of [BIL+01] where 

it is shown that every language with a neutralletter which can be defined by a 

Boolean combination of ~l-sentences using arbitrary numerical predicat es is in 

fact regular and has a syntactic monoid in J. Every language recognized by a 

family of polynomial-length programs over J is in fact definable in this way and 

the result is not difficult to obtain once the logical framework has been precisely 

defined. 

However, we want here to prove this directly from the programs, in the 

spirit of Example 3.4. Unfortunately, we will only show this for the following 

special case. Let M be J-trivial: we say that a family of M-programs (CPn)n?O 

recognizing a language L that contains a neutralletter e is silent if for every n 

we have cpn(en) = lM. We daim that in this case L is regular and lVl(L) lies in 

J. 

Let k be minimal such that any two words in M* in which the same subwords 

of length k or less appear evaluate to the same element (note that it is sufficient 

to consider the subwords over the alphabet M - {lM}' It suffices to show that 
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any two words u, v in A* that have the same occurrences of subwords of 1ength 

at most k are either both in or both not in L. Because the neutral let ter allows 

various forms of padding, we can assume without 10ss of genera1ity that u and 

v have the same length 1 2:: k. 

Note that if a subword t l ... ts with s :::; k occurs in CPn(x), then each t i 

is the output of an instruction querying only one position in x. In particular, 

there is an s-tuple of positions in x such that for any y agreeing with x on these 

positions CPn(Y) also contains the subword t l ... t s · 

For the program CPn, given k-tup1e of input positions (Xl, ... , Xk), with the 

Xi E [n] written in increasing order, and given assignment (al, a2, ... ,ak) to 

these positions, we denote by W(~11:.'.'.',::/ the set of subwords in (M - {lM})* 

of length at most k in CPn(q) where q holds ai in position Xi and neutralletters 

everywhere else. Note that since we assumed that the program is silent every 

instruction querying a position holding a neutralletter outputs lM and so every 

such subword results from instructions querying one of the Xi' In particular, any 

subword of CPn(q) will also occur in CPn(Y) for any word y holding ai in position 

We col or k-tuples of positions (Xl, ... , Xk) with the sets 

There are only finitely many colors of course since lAI, k and IMI are aIl fixed. 

Thus, by Ramsey's Theorem, there exists n such that we can find a set l ç [n] 

of size 1 and such that any k-tuple from l is labeled with the same color. We 

will call these 1 positions special positions. 

Let v,', v' be the words of length n obtained by placing respectively u and v 

in the 1 special positions and neutral letters at aIl other positions. We will now 

compare the set of subwords in (M - {lM})* of length at most k occurring in 

CPn ('u') and CPn (v'). 
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For any occurrence of the subword tl ... t s , with ti E M - {lM} and s :S k, 

occurring in 4Yn (u' ), we can find a k-tuple of special positions Xl < X2 < ... < Xk 

such that each t i is the output of an instruction querying one of these positions. 

Let us suppose these positions hold the letters al, a2, ... ,ak. Thus u contains the 

subword al ... ak and so v also does. Therefore, we can find k special positions 

Yl < Y2 < ... < Yk in v' which hold al, a2, ... ,ak· 

The subword t l ... ts belongs to W(~ll,:·.·.::S and since the tuples (Xl, ... , Xk) 

and (YI, ... ,Yk) were assigned the same color, we must have tl ... t s be10ngs to 

W(Yl, ... ,Ykl. Since v' ho1ds ai in position Yi, the subword t l ... ts occurs in 4Yn(v' ). (Q,l, .. ·,Q,k) 

Therefore, 4Yn ('u' ) and 4Yn (v') contain exactly the same subwords of length at 

most k which implies 4Yn (u') = 4Yn (v') and, in turn, that 'u and v are either both 

in L or both not in L. o 

The above argument will fail when the programs are not silent a1though it is 

reasonnable to believe that this technical difficulty can be addressed by either 

refining the coloring or showing that every program over a J-trivial monoid 

is equivalent to one which is silent. The following was also established using 

similar Ramsey-theoretical tools by C. Lautemann and D. Thérien: 

Theorem 3.23 ([LTOl]) Programs over Gnil,k have the Crane-Beach prop

erty. 

Note that in the context of groups the programs can be assumed "silent" 

without 10ss of generality because of the presence of inverses. 

We will show in Section 4.4 that varieties DA, DO n Ab and DO n G nil 

are program-varieties using communication complexity results. It is unclear at 

this time whether the convenient combinatorial descriptions we have of regular 

languages recognized by such monoids can be combined with extremal combi

natorics to further show that these have the Crane-Beach property. 
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Do programs over solvable groups have the Crane-Beach property? If they 

do, then CCO is a strict subset of NC1 and we cannot reasonably expect a simple 

proof of this facto However, although it is widely believed that G so1 forms a 

program-variety, it is possible that the Crane-Beach property fails for G so1 much 

like it does for aperiodic monoids. Providing an explicit example of a language 

L with neutral letter that can be recognized by polynomial size CCO circuits 

but such that M(L) is not in G so1 would be of great interest. 

We should note that a related result of D. Barrington and H. Straubing 

[BS95] shows that any language with neutralletter recognized by an J\,1-program 

of length o(n log log n) is regular and has a syntactic monoid dividing the direct 

product of a number of copies of M and NF, where 111F is the reverse monoid 

of M in which multiplication by S 'Mc t = t' M S. 
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Chapter 4 

Communication Complexity 

4.1 Introduction 

The need for efficient communication is omnipresent in modern computer sci

ence. It is a natural concern in distributed computing, networking, computer 

architecture, cryptography but although the formaI study of communication 

complexity, beginning in the late 70's, was originally motivated by such prac

tical concerns (note the title of Yao's seminal paper [Yao79]) its later devel

opment has mostly served as a surprisingly versatile tool in just about every 

area of theoretical computer science. The game at the heart of communication 

complexity is the following: Alice and Bob are given inputs x and y respec

tively and want to collaborate to compute a function f(x, y) while minimizing 

the communication that they need to exchange. Many variants of it can be de

fined: non-deterministic, probabilistic, round-bounded, approximate and so-on. 

A. Chandra, M. Furst and R. Lipton also introduced in [CFL83] an interesting 

multiparty extension of the usual Alice and Bob model. In their game, k players 

collaborate to compute f(Xl' ... ,Xk) but each player is given access to aIl but 

one of the Xi'S. This model gives rise to subtle combinatorics and has also found 

many applications to other areas of complexity them·y. 

In many cases, it is possible to uppeT bmmd the communication complexity 

(in an appropriate model) of functions which can be compllted llsing a lim-

73 
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ited amount of resources so that obtaining lower bounds on the communication 

complexity (in the same model) of an explicit function f translates into lower 

bounds for the resources needed to compute f. This approach has yielded results 

in VLSI (see [Lov89]), lower bounds for monotone circuits [KW88] including a 

complete separation of the monotone NC hierarchy [RM97], Time-Space trade

offs for Turing machines [BNS92, KN97] to cite only a few. Communication 

complexity is also the main tool used in the study of branching programs: the 

book of Wegener [WegOO] provides a complete overview of the theory of branch

ing programs and OBDD's with an emphasis on communication complexity and 

more recent results include [BSSVOO, BV02]. Perhaps even more significant in 

the context of this thesis are the applications to lower bounds for classes of 

circuits lying within NC1
, mainly threshold circuits [HG90, Nis94, ROKY94], 

but also CCO circuits [Gro92, Gr094b] and ACCo circuits [HG90, Lok01]. As 

we will see, some of these results can be rephrased in algebraic terms using the 

circuits/monoids correspondence offered by programs. 

Another rather unexpected link between communication complexity and 

monoids was uncovered by Szegedy [Sze93] who showed that a language has 

bounded two-party deterministic communication complexity if and only if it 

can be recognized by a program over a commutative monoid. This amazing 

result is strong indication that an algebraic point of view on communication 

complexity can be fruitful. 

In [BFS86], Babai, Frankl and Simon built a complexity theoretic view of 

communication and formally introduced notions of complexity classes, reduc

tions and completeness in a (two-party) communication complexity context. 

TIH-ür goal was twofold: this provides, on one hand, a natural yot powerful 

framework to compare the power of different extensions or restrictions of the 

usual deterministic model and understand the complexity of concrete functions 

while building, on the other hand, a rich structure of classes in which we can 
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hopefully gain intuition on the nature of non-determinism, alternation, count

ing and so on. This "world picture" of communication complexity classes was 

further described in various papers [HR90, DKMW92] and it should be noted 

that there exist regular languages which are complete for many of these com

pl exit y classes, including the communication complexity analogues of NP, EBP, 

PSPACE, etc. Whereas regular languages are the simplest languages from a 

classical Time/Space complexity point of view, they can have large communica

tion complexity even in quite powerful models. In fact, sorne of the most studied 

languages in communication complexity (Disjointness, rnner Product mod p), 

although not regular languages themselves, are eqv,ivalent from a communication 

complexity perspective to regular languages. 

4.1.1 Summary of Results 

This chapter develops an algebraic approach to communication complexity. On 

one hand, this point of view allows us to use properties of finite monoids to 

understand the limits of various communication complexity models and compare 

their relative power and, on the other hand, it provides a systematic way of using 

communication complexity to understand the computationallimits of programs 

over monoids. 

We first consider the well known deterministic two-party model as well as 

its simultaneous, probabilistic, simultaneous probabilistic, and MODp-counting 

variants. We set out to answer the following question: what is the communi

cation complexity, in a worst-case partition sense, of any regular language in 

each of these models? Specifically, we look at the complexity of determining 

if the word albla2b2 .. . o,.,}Jn is a member of a given regular language L ç 2:* 

where the ai E 2: U {é} are known to Alice and the bi E 2: U {é} are known 

to Bob. It was established in [RTT98] that, in these models, regular languages 

having communication complexity OU) for sorne f : N ---7 N form a variety 
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of languages so our question has an algebraic answer. In Section 4.2, we use 

algebraic tools to completely characterize the communication complexity of any 

regular language in the deterministic, probabilistic, simultaneous, probabilis

tic simultaneous and MODp-counting (for prime p) models. Remarkably, our 

classifications feature in aU five cases complexity gaps. For instance, we find 

that a regular language L has deterministic communication complexity either 

0(1) (when its syntactic monoid is commutative), 8(logn) (when M(L) lies in 

DO n Ab but is not commutative, i.e. wh en M(L) is not commutative but L is 

the disjoint union of unambiguous concatenations of the form LOalLl ... akLk 

with M(Li ) commutative) and 8(n) otherwise. This is in sharp contrast with 

the general case where for an arbitrary f : N -+ N with 1 ~ f(n) ~ n it is easy 

to artificiaUy construct a non-regular language of complexity 8U). 

In aIl four variants of the deterministic model, we find that communication 

complexity indu ces classifications with only a smaIl number of classes: a regular 

language L has simultaneous complexity either 0(1), 8(logn) or 8(n), proba

bilistic complexity 0(1), 8(loglogn), 8(logn) or 8(n), probabilistic simultane

ous complexity 0(1), 8(logn) or 8(n), and, for any prime p, MODp-counting 

complexity 0(1), 8(logn) or 8(n). Moreover, sorne of these classes are related 

in unexpected ways: a regular language has O(logn) probabilistic complexity 

only if it has O(logn) deterministic complexity and further has 8(loglogn) 

probabilistic complexity if and only if it has 8(logn) simultaneous complexity 

if and only if it has 8(logn) probabilistic simultaneous complexity. In fact, 

we prove that the simultaneous and probabilistic simultaneous complexities of 

any regular language are equal, up to a constant. We also find that a regu

lar language has MODp-counting and MODq-counting complexity O(logn) for 

distinct primes p, q if and only if it has deterministic complexity O(logn). AlI 

varieties involved in these classifications, sorne of which have already been shown 

to be of importance in previous chapters, have convenient descriptions both al-
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gebraically and combinatorially and are decidable. In obtaining these results 

we amazingly use communication complexity reductions to and from only four 

(well-known) problems: Disjointness, lImer Product modulo p, Greater Than 

and Index and this retrospectively both highlights and explains their importance 

as fundamental examples in communication complexity theory. 

In Section 4.3 we consider the tricky multiparty communication complexity 

model. As in the two-party case, we set out to describe the multiparty complex

ity of each regular language and show that this question, as in the two-party 

case, has an algebraic answer. We are able to prove that any regular language 

L recognized by a group has k-party complexity 0(1) if M(L) is nilpotent of 

class k - 1 and k-party complexity 8(n) otherwise. The general case, however, 

seems very challenging and we can only prove partial results. Most notably, 

we show that there exists a k such that the regular language L has k-party 

complexity 0(1) if and only if l\II(L) lies in DO n G nil and give a characteriza

tion of regular languages with constant three-party communication complexity. 

The techniques used in these proofs are a combination of Ramsey theoretical 

arguments akin to the ones of [CFL83] and probabilistic techniques using the 

discrepancy method in the line of [BNS92, Gro93]. 

Our results shed an interesting light on a poorly understood, yet important, 

communication model and identify problems, such as the multiparty communi

cation complexity of piecewise testable languages, as natural targets for further 

research in the field. We also argue that our results might be a first step towards 

an analog of Szegedy's Theorem which would provide an algebraic eharacteri

zation of functions with bounded k-party communication complexity. 

In Section 4.4, we discuss the impact of our communication complexity 

bounds on issues surveyed in Chapter 3. In particular we use a very general 

communication complexity argument to show that DO n Ab and DO n G nil 

are program-varieties. We further give a new proof of an exponential lower 
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bound for the length of (Gp * Ab)-programs computing Disjointness and pro

pose a communication complexity conjecture in the same spirit which would 

separate the computing power of polynomial length (Gp * G nil,k+1)-programs 

and polynomiallength (Gp * Gnil,k)-programs. 

4.2 Two-party Communication Complexity 

Is is hard to overstate the quality of [KN97] as an introduction to communication 

complexity and we refer the reader to it for further details on the concepts 

introduced throughout this section. We will use that book's notation. 

4.2.1 Two-party Models 

In the deterministic model, two players, Alice and Bob, wish to compute a 

function f : snA X snB -+ T where Sand Tare finite sets. Alice is given 

x E snA and Bob y E snB and they collaborate in order to obtain f(x, y) 

by exchanging bits (using, say, a common blackboard) following the format 

imposed by a previously agreed upon communication p7'Otocol P. 

It is convenient to think of a proto col in an informaI way as a scheme ensuring 

that Alice and Bob will never speak simultaneously and will be able to make 

sense of the information they send each other. Intuitively, P determines, at 

every stage, whether the current run of the protocol is over and if not, whose turn 

it is to write the next bit. This is a function of the communication written thus 

far but is independent of the players' inputs. If it is Alice's turn to speak (resp. 

Bob's turn), the proto col specifies what the next bit sent will be as a function 

of x and the communication exchanged so far (resp. y and the communication 

exchanged 80 far). Wh en a run of P terminates, its output, denoted P(x, y), is 

a function of the blackboard's content. We define the cost of P as the maximum 

number of bits exchanged for any input. Note that we assume that Alice and 

Bob each have arbitrary computation al power. 
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Formally, a proto col P with domain snA X snB and range T is a finite binary 

tree where each internaI no de v is labeled either by a function Av : snA -+ {O, 1} 

or a function Bu : snB -+ {0,1}, and where each leaf is labeled by a value in 

T. To determine the output P(x, y) E T of the protocol on input (x, y) we 

start walking along the tree from the root. Wh en we visit an internaI no de v 

labeled with a function Av (resp. Bv), we go to v's left child if Av(x) = ° (resp. 

Bv(Y) = 0) and right if Av(x) = 1 (resp. Bv(Y) = 1). The value P(x, y) is the 

label of the leaf thus reached. The cost of P is the height of the tree and we say 

that P computes f ifP(x,y) = f(x,y) for aIl (x,y) E snA X snB. 

The deterministic communication complexity of f, denoted DU) is the cost 

of the cheapest proto col computing f. In general, we will be interested in the 

complexity of functions f : S* x S* -+ T and will thus consider DU) as a 

function from N x N to N (or from N to N when the length of inputs given to 

Alice and Bob are related) and study its asymptotic behavior. 

In a simultaneous protocol P, we disallow any interaction between Alice and 

Bob: Each of them simultaneously sends a message to a trusted referee which 

has access to none of the input and the referee pro duces the output P(x, y) E T. 

We denote DII (f) the simultaneous communication complexity of f, i.e. the cost 

of the cheapest simultaneous proto col computing f. 

In a probabilistic communication protocol P, Alice and Bob have access to 

private random bits which determine their behavior. The proto col is said to 

compute f if for aIl x, y, the probability over the choices of these random bits 

that P(x, y) = f(x, y) is at least 3/4. We denote RU) the probabilistic (or 

randomized) communication complexity of f. 

Cornhining properti0R of t,he two p1'0viollS models, a 8im'U,!taneo1J.S p'rObabilis

tic communication protocol P, is one in which Alice and Bob simultaneously 

send a message depending on their inputs and their random bits to a trusted 

referee which then outputs P(x, y) which should equal f(x, y) with probability 
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at least 3/4. We denote RII (f) the simultaneous probabilistic (or randomized) 

communication complexity of f. 

In contrast to these first four models, the non-deterministic and MODp com

munication models that we present next will only be used to recognize languages, 

i.e. to compute functions from S* x S* into {O, 1}. 

In a non-deterministic communication protocol1 P another player, say God, 

having access to both x and y first sends to Alice and Bob a proof 7r whose length 

is a function of the length of x and y. Alice and Bob then follow an ordinary de

terministic proto col P' with output in {O, 1}. The proto col P accepts the input 

(x, y) if and only if there is sorne proof 7r such that the output of the ensuing 

deterministic proto col P' outputs 1. The co st of a non-deterministic proto col 

is the maximum number of bits exchanged in the proto col (including the bits 

of 7r) for any input (x, y). We denote the non-deterministic communication 

complexity of a language L as N 1(L). The co-non-deterministic communica

tion complexity of L, denoted N° (L) is the non-deterministic communication 

complexity of L's complement. 

A MODp-counting communication protocol Pis similar to a non-deterministic 

proto col but it accepts those (x, y) such that the number of proofs that lead 

Alice and Bob to acceptance is not divisible by p. We denote by N M
O

dl'(L) the 

MODp-counting communication complexity of L. 

Notice that for any function J, we have R(f) :::; D(j) :::; max{nA, nB} + 1 

because every deterministic proto col is a probabilistic proto col and because J 

can always be computed by a protocol in which one player sends over an its 

data, subsequently letting the other player compute and then communicate the 

result. Moreover one can establish R(j) ~ log(D(j)) using brute force de

randomization of probabilistic protocols. Similarly the following elementary 

l We use here a "guess and ver if y" presentation of non-deterministic proto cols which is 
most convenient in the context of our discussion. Alternatively, we could introduce them as 
proto cols in which Alice and Bob are allowed to act non-deterministically (see e.g. [BFS86, 
KN97, DKMW92] for alternative presentations). 
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facts can be easily established: 

• log( RII (f)) ~ R(f) ~ RII (f) ~ DII (f); 

• 10g(D(L)) ~ NI(L) ~ D(L); 

• 10g(D(L)) ~ NMOdp(L) ~ D(L); 

Moreover, if p is prime, then NMOdp(L) = 8 (NMOdpŒ (L)) for aIl integers ex and 

for any languages LI, L2 : 

and 

AlI these models have been extensively studied. At the heart of what we 

understand about their combinatorics is the following simple observation: if the 

communication induced by a deterministic proto col P is the same on input pairs 

(.Tl' YI) and (X2' Y2) then it will also be the same for (Xl, Y2) and (X2, YI)' As an 

example, consider the function Equality: EQ(x, y) = 1 if and only X = y. A 

protocol computing EQ must induce different communication patterns for the 

2n pairs of the form (x, x) with x E {a, l}n for otherwise the protocol will also 

accept sorne pair (x, y) with x =1 y. This suffices to show that D(EQ) ~ n. 

The following four functions are, like Equality, classical examples studied in 

communication complexity: 

• For x, y E {a, l}n, we define Disjointness as: DISJ(x, y) = 1 if and only 

if V XiYi = 0; 
l::Çi::Çn 

• For x,y E {a, l}n, and any mEN we define Inner Product (mod q) as: 

l Pq(x, y) = 1 if and only if 2:; XiYi = ° (mod q); 
l::Çz::Çn 
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Il D R 

DISJ 8(n) 8(n) 8(n) 8(n) 8(n) 8(n) 8(log n) 
IPq 8(n) 8(n) 8(n) 8(n) 8(n) 8(n) 8(n) 

IPpŒ 8(n) 8(n) 8(n) 8(n) 8(logn) 8(n) 8(n) 
GT 8(n) 8(logn) 8(n) 8(n) 8(n) 8(n) 8(n) 

INDEX 8 (log n) 8(logn) 8(n) 8(n) 8(logn) 8(log n) 8 (log n) 

Table 4.1: Sorne well-known communication complexity bounds. (Note that p 
is prime, a 2: 1 and q is not a power of p.) 

• For two n-bit numbers x, y E [2 n
] we define Greater Than as: GT(x, y) = 1 

if and only if x 2: y . 

• For xE {O, l}n and a logn-bit number p E [n] we define INDEX(x,p) = 

The known communication complexity bounds for these problems can be 

summed up in Table 4.1. It should be noted that non-trivial work is needed 

to establish sorne of these bounds. The probabilistic lower bound for DIS J 

received a lot of attention in the late 80's ([BFS86, KS92, Raz92]) while the 

probabilistic lower bound for l P2 follows from quite technical results of [CG85] 

(see also [DKMW92, Gr094b] for the case p 1= 2). The GT probabilistic upper 

bound, due to N. Nisan and S. Safra, is also tricky (see exercise 3.18 in [KN97]) 

while the randomized simultaneous lower bounds for INDEX and GT are due 

respectively to [KNR99] and [MNSW98]. Most MODp-counting bounds are 

theorems (or easy corollaries) of [D KMW92]. 

4.2.2 Communication Complexity of Regular Languages 
and Monoids 

In general, we want to study the communication complexity of functions which 

do not explicitly have two inputs. In the case of regular languages and monoids 

we will use a form of worst-case partition definition. Formally, we define the de-
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terministic (resp. randomized, simultaneous, probabilistic simultaneous, MODp-

counting) communication complexity of a regv,lar language L ç A * as the deter

ministic (resp. randomized, simultaneous, probabilistic simultaneous, MODp -

counting) communication complexity of the foIlowing problem: Alice and Bob 

respectively receive al, a3, ... a2n-l and a2, a4, ... ,a2n where each ai is either 

an element of A or the empty word2 E and they want to determine whether 

al a2 ... a2n belongs to L. 

Similarly, the deterministic (resp. randomized, simultaneous, probabilistic 

simultaneous) communication complexity of a finite monoid NI is the determin

istic (resp . randomized, simultaneous, probabilistic simultaneous) communica

tion complexity of evaluating in M the product ml . m2 ..... m2n where the 

odd-indexed mi E NI are known to Alice and the even-indexed mi are known to 

Bob. We further define the MODp-counting communication complexity of M as 

the maximum over aIl F ç M of the MODp-counting complexity of determining 

if this product ml . m2 ..... m2n belongs to F. 

The foIlowing basic facts from [RTT98], whose proofs we sketch here for 

completeness, support our choices of definition: 

Lemma 4.1 Let L ç A* be regular with M(L) = l'III. We have D(M) 

8(D(L)) and similarly for DII, R, RII and NModp for p prime. 

Proof. [sketch] Let 4> : A* --t M be the recogmzmg morphism with L = 

4>-l(F). Then a ward a1a2 ... a2n belongs to L if and only if the product 

4>(a1)4>(a2) ... 4>(a2n) belongs to F and so the communication complexity of L 

in aIl four models is bounded by the complexity of M(L). 

2This definition of communication complexity of a regular language Lis, up to a constant 
factor, equivalent to the worst-case partition complexity discussed in Section 4.5 as long 
as there exists an integer t such that each.m E M(L) is the image, un der the recognizing 
morphism, of a word of length t. In particular, the communication complexity of Lis, up to 
a constant, the worst-case partition complexity of LE. These issues are discussed in greater 
detail in [Tes99J. 
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Conversely if M = NI(L) we can pick for each mE M sorne word um E A* 

where cjJ( um ) = m. By padding with empty words E, we can assume that such 

'um's can be chosen in (A U {E})* with Iuml = t for aIl m. Moreover, by definition 

of the syntactic congruence, we can find a finite set of pairs of words (Xi, Yi) such 

that for any w E A* and any umj holds W f'"VL 'umj (i.e. cjJ(w) = mj) if and only 

if we have X(WYi E L when and only wh en X'iUmj Yi E L. 

Suppose Alice and Bob are given monoid elements ml, m3,"" m2n-1 and 

m2, m4, ... ,m2n respectively. If they have a proto col for Land want to evaluate 

the product mlm2 ... m2n they can do so by repeatedly using the L-protocol to 

check if each of the words Si = Xi (um ] um2 ... Um2JYi belong to L. In order to 

use the L-protocol, it must be the case that Alice knows aIl odd-indexed letters 

in Si and Bob knows every even-indexed one so padding with E has to be used 

once more to achieve this. Still, the length of the resulting Si'S will be no more 

than 4qn. o 

In particular the deterministic (resp. simultaneous, randomized, probabilis

tic simultaneous, MODp-counting) complexity of a monoid NI is, up to a con

stant, the maximal communication complexity of any regular language that it 

can recognize. 

Lemma 4.2 For any increasing f : N -+ N the class of monoids su ch that 

D(M) (resp. DII(M); R(M), RII(M), NModp(M) for p prime) is OU) forms a 

variety. 

Proof. [sketch] It is straightforward to verify that in an four models, the com

munication complexity of the direct product of monoids M x N is bounded by 

the sum of the cornplexities of M and N. MOI'eover, if N --< NI then every 

language recognized by N is also recognized by M and by our previous rernark 

the complexity of N is at most that of NI. 0 
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4.2.3 Rectangular Reductions 

As we mentioned earlier, [BFS86] introduced a convenient notion of reductions 

in the communication complexity setting. 

Definition 4.3 A rectangular reduction of length t from a language L ç A * x 

A* to a language L' ç A'* X A'* is a pair of functions (rA, rB) such that for any 

(x,y) E A* x A*: 

1. IrA(x)1 and IrB(y)1 depend respectively on Ixl and lyl and are respectively 

bounded by t(lxl) and t(lyl); 

2. (x, y) E L if and only if (r A(X), rB(y)) E L'. 

Clearly, a rectangular reduction from L to L' can be used to infer a commu

nication complexity lower bound for L' from a lower bound for L since r A(X) 

and rB(y) can be computed privately by Alice and Bob respectively. 

We give here a variant of this definition which specifically suits our needs: 

Definition 4.4 Let L ç An X Af(n) and M be some finite monoid. We de

fine a rectangular reduction of length t from L to M as a sequence of 2t 

functions al, b2, a3,"" a2t-l, b2tJ with ai : An -+ M and bi : A.f(n) -+ !VI, 

such that for every x E An and y E A.f(n) we have (x, y) E L if and only if 

evalM(al(x)b2(y) ... b2t (y)) ET for some target subset T of !VI. 

Such a reduction transforms a pair (x, y) into a sequence of 2t monoid el

ements ml, ... ,m2t where the odd-indexed mi are obtained as a function of x 

only and the even-indexed mi are a function of y. 

In general, we are interested in reductions from K ç A* x A* into M. In 

our definition we used the notation L ç An x A.f(n) to stress that we focus on 

languages K in which pairs (x, y) have lengths related by a common parameter 

n. It should be clear that if K has communication complexity O(g(n)) and has, 
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for each n, a reduction of length t(n) to M then NI has complexity n(g(t- l (n))). 

We will write K :S; M to indicate that K has a rectangular reduction of length 

t to M and will drop the t superscript whenever t = O(n). 

Note that if the language K is recognized by a program of length t(n) over 

M then we have K :S; M since a pro gram is a special form of rectangular 

reduction in which every ai (resp. bi) depends in fact on a single let ter of x 

(resp. y). 

4.2.4 Bounds and Classifications 

We establish bounds on the two-party communication complexity of monoids 

and regular languages and provide complete classifications in the deterministic, 

probabilistic, simultaneous and MODp-counting (p prime) models. The anal

ysis of the first three cases was published as [TT03]. We begin with an easy 

observation. 

Lemma 4.5 If M is commutative then DII(NJ) = 0(1). 

Proof. Since NI is commutative, we have 

80 if Alice and Bob send to the referee the log IMI bits representing (ml' m3 . 

. . . . m2n-d and (m2 . m4 ..... m2n) respectively, he can compute the product 

D 

Next, we use the combinatorial description oflanguages with syntactic mono

ids in DO to obtain another upper bound. 

Lemma 4.6 Let L ç A* be such that 1\I[(L) E DO n Ab. Then D(L) 

O(logn). 
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Proof. By Lemma 2.20, L is a union of 1"V~I,k -classes for sorne Abelian group 

C. We claim that any such class has logarithmic communication complexity 

and argue by induction on t = lAI + k. For t = 1 there is nothing to prove. 

For t > 1, let u E (A U {E})* be sorne predetermined representative of the 

class. Given the input x = XIX2 ... X2n E A*, Alice and Bob can check wh ether 

o:(x) = o:(u) by exchanging lAI + 1 bits. Next, they need to verify that 'U and x 

are C-equivalent. If Chas exponent p, we get u and x C-equivalent if and only 

if l'ul a - Ixia (mod p) for aU a E A. The latter condition can easily be verified 

with communication cost about IAlilogpl, a constant. Let u = vaw be the a-left 

decomposition of u and i, j denote the locations of the leftmost occurrence of a 

in x that is se en respectively by Alice and Bob. These indices can be exchanged 

at logarithmic communication cost so that if, for example, i is smaller than j 

then Alice and Bob can conclude that x = Xl ... X'i-laXHI ... X n is the a-left 

decomposition of x and further verify, by induction, that Xl ... X'i-l I"VBtr-l,k 

v and Xi+l'" x n l"V~r,k-l w using only O(logn) communication. Left-right 

symmetry completes the proof. o 

The example of CT shows that probabilistic protocols can be much more 

efficient than deterministic on es and it is natural to ask whether sueh gains 

can be made for certain monoids in DO n Ab. This motivates the foUowing 

definition: 

Definition 4.7 We caU W the variety of monoids M satisfying: 

1. MEDO; 

2. exwyf = ewxyf = exywf for all w, e, f, x E M such that e, f are idem

potents lying J -below w; i. e. M satisfies 

(swttwxy(uwvt (swt)Wxwy(uwvt 

(swt)W xyw ( uwv)w. 
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Remark 4.7. Suppose NI E W has exponent p and con si der some w E M 

lying J-above idempotents e, f, and some x, y E M. Since 111 EDO, we 

have ewP e = e and so 

ewP exwP y f 

ewPwPexyf (By condition 2) 

exyf 

Note also that condition 2) shows that W ç Ab. lndeed, if '11" V are elements 

of a subgroup with identity element e, we have 

uv = euve = evue = v'u. 

For a word '11, E A* and a E A we denote by REDt(u) be the unique word of 

A* obtained by keeping in '11, only the first and last t occurrences of each letter 

a with lul a 2: 2t and an occurrences of letters a with lul a < 2t. For example, 

RED2 (abcbabbababba) = abcbaabba. We will show that languages recognized by 

monoids in W have a useful combinatorial characterization: we set '11, ';::::;t,p v if 

and only if: 

2. For an a E A we have lul a - Ivl a (mod p). 

Alternatively, we could define REDt,p(u) as the word obtained from '11, by the 

following process: For every a E a(u) with Iqla 2: 2t mark the first and last t 

occurrences of a then move an other occurrences of a, if any, next to the tth one 

and then reduce that block of a's modulo p. If Iqla < 2t, an occurrences of a are 

left untouched. Note that we clearly have REDt,l(U) = REDt(u) and '11, ';::::;t,p v 

if and only if REDt,p(u) = REDt,p(v). 

Theorem 4.8 Let NI = A* Ir, then M E W if and only if ';::::;t,pç , for some 

t,p. 



4.2. TWO-PARTY COMMUNICATION COMPLEXITY 89 

Proof. For one direction, we need to show that M = A* / ~t,p lies in W. By 

definition, we can see that the ~t,p equivalence classes are unambiguous concate

nations of languages with syntactic monoids in JI V Ab and so M EDO n Ab 

by Theorem 2.20. Furthermore, let us consider the words q = (uwv)tpwx(ywz)tp 

and r = (uwv)tpxw(ywz)tP. For any a E A, Iqla - Ixia + Iwl a - Irl a (mod p) 

and 

REDt( (uwv )tpwx(ywz)tp) REDt( (uwv )tPx(ywz )tP) 

RE Dt (( UWV )tP xw (ywz )tP) 

since for any letter a occurring in w, the first t occurrences of a lie in (v,wv)tP 

and its last t occurrences lie in (ywz)tP. Thus, q ~t,p r so NI satisfies condition 

2 of Definition 4.7. 

Conversely, suppose NI is in W. We need to show that there exist t,p such 

that for any morphism cjy : A* --t M we have cjy(q) = cjy(r) for any q ~t,p r 

and it is in fact sufficient to establish cjy(q) = cjy(REDt,p(q)) since REDt,p(q) = 
RE Dt,p (r ). In particular, we choose p as the exponent of M and t as 1 M 1 + 1. 

Recall that to obtain REDt,p(q), one successively cons id ers aIl a E A with 

Iqla ~ 2t, "groups" together the "middle" a's and reduces their number modulo 

p. We will show that the image under cjy is preserved by this process. Consider 

a word u = 'UOaula . .. aUt with at least t occurrences of a. Since t = IMî + 1, 

there must exist 1 :=:; i < j :=:; t such that 

This means that 

Therefore there exist g, hEM such that cjy(u) can be written as geh where 

e = cjy(aUi+la . .. aUj)W is an idempotent lying .J-below a. 
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Suppose now that q contains at least 2t + 1 occurrences of a. We can thus 

factor q as q = 'uoa ... 'Ut_laxayaVt_la . .. avo where the 'Ui'S and v,/s do not 

contain a. From the remarks of the preceding paragraph, we can now use con

dition 2 in Definition 4.7 to obtain <jJ(q) = <jJ(uoa ... Ut_laaxyaVt_la ... avo). 

Repeating this same process for all occurrences of a in x or y we can get 

<jJ(q) = <jJ(uoa ... Ut-la akp+dz aVt-la . .. avo) where a tf. Œ(Z) and from condi

tion 1: <jJ(q) = <jJ(uoa ... Ut_laadzavt_la ... avO) where 0::; d < p is such that 

Iqla - 2t d (mod p). If the same manipulation is made for every a E A, we 

obtain <jJ(q) = <jJ(REDt,p(q)) as we needed. D 

At least intuitively, we have M(L) lying in W if and only if membership of a 

word w in L can be determined by counting threshold t, mod p the occurrences 

of letters in w and determining the relative positions of any of the first and last 

t occurrences of letters in w. In terms of two-party communication complexity, 

W thus forms an "easy" subclass of DO n Ab because these comparisons of 

log n-bit numbers can be done relatively efficiently. 

Lemma 4.9 Let L ç A* be such that lYI(L) E W. Then DII(L) = O(logn) 

and R(L) = O(loglogn). 

Proof. As in the previous pro of, we obtain these upper bounds for the ~t,p 

classes. Let u be sorne representative of the target class and x the corn mon 

input of Alice and Bob. Checking whether lula Ixia (mod p) is easily done at 

constant cost so we only need to show that verifying REDt(x) = REDt(u) can 

be done efficiently. For the simultaneous case, the players send to the referee the 

locations of the first and last t occurrences that they see of each letter a E A. 

Given this information, the referee can reconstruct REDt(x) and compare it to 

REDtCu). 

For the probabilistic case we use a subprotocol of cost O(log log n) to deter

mine for any k ::; t which of Alice or Bob holds the kth (or symmetrically the 
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kth to last) occurrence of sorne let ter a in x, provided of course that Ixia 2: k. 

We argue by induction on k: For k = 1, let i, j be the positions of the first oc

currence of a seen by Alice and Bob respectively. Of course Alice holds the first 

occurrence of a if and only if i < j and, using the complexity bound mentioned 

in Table 4.1, this can be tested by a randomized proto col at co st 0 (log log n) 

since i, j are only log n-bits long. For k > 1 we can assume from induction 

that Alice and Bob have marked, in their respective inputs, the occurrences of 

a which are among the first k - 1 of a in x. The kth occurrence must be either 

the first unmarked a that Alice sees or the first unmarked a that Bob sees, 

whichever cornes first in x. Once again, Alice and Bob are left with comparing 

two logn-bit numbers and apply the O(loglogn) cost proto col. 

For i, j :::; t, the i th occurrence of a in x cornes before the ph occurrence 

of b in x if and only if the i th occurrence of a in RE Dt (x) cornes before the 

jth occurrence of b in REDt(x). This means that Alice and Bob can check 

REDt(x) = REDt(u) by verifying that for an i, j :::; t and an a, b E A the 

i th occurrence of a precedes the ph occurrence of b in REDtCu,) if and only if 

the i th occurrence of a precedes the ph occurrence of b in x. Since they can 

determine which of them holds these occurrences, they can check precedence 

either privately (when one player holds both occurrences) or by using once 

more the 0 (log log n) randomized protocol to corn pare two log n bit numbers. 

It should be noted that in any event, the CT protocol is used only a constant 

number of times (depending on t and lAI) so we need not worry about the 

dwindling of the overall probability of correctness in the proto col. o 

We have seen that unambiguous products of languages with commutative 

syntactic monoids have O(logn) deterministic communication complexity. It 

should not come as much of surprise that in the MODp-counting model we can 

correspondingly obtain: 
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Lemma 4.10 Let L C A* be reg'lJ,lar with M(L) E LGp ~ Corn. We have 

NModp(L) = O(1ogn). 

Proof. We know from the result of [Wei92] cited as Lemma 2.23 that L is in 

MpPol(Lcom), i.e. is a Boolean combination of languages of the form 

{xl ( x ) = j 
(LOa1L1 ... akLk) -

(mod p)} 

where M(Li ) is commutative for aIl i. So we only need to exhibit an O(logn)-

cost proto col to check if a given word w E (A U {E})* has a number of factor

izations as uoal'Ul ... akuk, with Ui E Li, that is congruent to j modulo p. 

Suppose first that j = O. The protocol we present in the next paragraph 

will in fact output positively if and only if the number of valid factorizations is 

not congruent to 0 modulo p. This is sufficient as we have mentioned that for p 

prime NMOdp(L) = NMOdp(L). 

The proof sent by God in the first step of the proto col consists of k log n-bit 

integers t l < t 2 < ... < t k . In the next stage of the protocol, Alice and Bob 

interpret the t i 's as possible locations for the bookmarks al, a2, ... ,ak in w and 

accept if they correspond to a valid factorization 'UOalul'" ak'U'k with 'U"i E Li' 

This can be done at constant cost since Alice and Bob need only check that 

position t i indeed contains letter ai and that segment Ui belongs to Li, which 

requires only 0(1) bits sinee M(L i ) is commutative. The cost of the proto col is 

dominated by the length of the proof which is O(logn). The number of proofs 

accepted by Aliee and Bob is thus exactly the number of legal factorizations so 

the protocol accepts if and only if it is non-zero modulo p. Note that for j 1- 0, 

we need to slightly modify our proto col by adding the possibility for God to 

send one of (p - j) different "special" proofs that always lead Alice and Bob to 

accept. o 

To obtain lower bounds matching the upper bounds presented above, we 

give a nllmber of conditions under which a finite M admits a reduction from 
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GREATER THAN, DISJOINTNESS, INNER PRODUCT mod q and INDEX. 

Lemma 4.11 1. If M is non-commutative then GT ~;n M (Notice that the 

reduction has exponential length); 

2. ri M is not in DS then DISJ ~r' M; 

3. If Jill lies in DS but is not in DO then 1 Pq ~T M for some integer' q; 

4. For any prime P, if M lies in DS but contains J -related idempotents e, f 

such that (e f)pu 
is not idempotent for any Œ 2 1 then 1 Pq ~T M for q not 

a power of p; 

5. If G is a non-commutative group then 1 Pq ~T G for some integer q; 

6. For any prime P, if G is a group outside of G p * Ab then 1 Pq ~T G for 

some q which is not a power of p; 

7. If M is in DO but not in W then INDEX ~T M. 

Proof. 1- Let a, b E M be such that ab =1= ba. We obtain an exponentiallength 

reduction from GT(x, y) by building mlm2'" m2n+1 where mi = a for i = m2x; 

mi = b for i = m2y-l and mi = lM otherwise. The product of the mi is then ba 

if and only if x 2 y and is ab otherwise. 

2- If M is not in DS then it admits one of B2 or U as a divisor. In both cases, 

the reduction from DISJ builds for every pair Xi, Yi a four-tuple m4i-3··. m4i 

where m4i-3 = a and m4i-l = b when Xi = 1 and m4i-3 = m4i-l = lM when 

Xi = 0, m4i-2 = ab when Yi = 1 but m4i-2 = lM wh en Yi = 0 and m4i = ab for 

any input. One can check that in both B 2 and U, any such four-tuple evaluates 

to 0 when Xi = Yi = 1 and to ab otherwise so the product of an of them is 0 if 

X.; = Yi = 1 for sorne i and is ab otherwise. 

3- Since 1\1 is in DS but not DO, there must exist two J-related idempotents 

e, f such that ef is not idempotent. Since M is in DS, however, we have efe =1= 
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e = (ef)w e. Let q be minimal sueh that (ef)IJe = e: The reduetion produces 

elements ml ... m2n where m2i-l = e if Xi = 1 and m2i-l = e(ef)w = (ef)w 

otherwise and m2i = je if Yi = 1 and m2i = (ef)w e = e otherwise. In partieular 

the produet m2i-lm2i is eje if and only if Xi = Yi = 1 and is e otherwise and so 
L: XiYi=Û (mod IJ) 

the produet ml ... m2n equals (ef) l <ôy;n e whieh equals e if and only 

if l PIJ (x, y) = 1. 

4- The argument is almost the same as 3-. Again, let q be minimal sueh that 

(ej)IJ e = e. We are guaranteed that q is not a power of p and we ean reuse the 

reduetion deseribed for 3-. 

5- If G is not Abelian, there must exist 09, h E G sueh that the eommutator 

[09, h] = g-lh-lgh is not the identity and thus has order q i- 1. We obtain 

a reduetion from l PIJ by ereating for eaeh pair Xi, Yi a four-tuple of monoid 

elements m4i-3m4i-2m4i-lm4i where m4i-3 = 09- 1 and m4'i-l = 09 when Xi = 1 

and m4'i-3 = m4i-l = le when X'i = 0 and where m4i-2 = h- l and m4i = h 

wh en Yi = 1 and m4i-2 = m4i = le wh en Yi = O. This four-tuple thus evaluates 

to [g, h] if and only if Xi = Yi = 1 and to le othe l'wise and the product of aU 
L: XiYi (mod IJ) 

sueh tuples is [g, hp~i~n . 

6- If G is not in G p * Ab, there must exist g, h E G sueh that [09, h] has order q 

whieh is not a power of p so we ean reuse the previous reduetion. 

7- If M lies in DO - W, we must eonsider two cases. Assume first that there 

exist e, j, u, v, w with e, j idempotent and .J-below w sueh that euwWvj i- euvj. 

Since NI is in DO we have ewWe = e and jwW j = j. 

We obtain a reetangular reduetion from INDEX(x,8) by ereating m 

ml'm2 ... m2n+l as follows: 

e for i = 1,3, ... ,28 - 3 (the first 3 - 1 odd-indexed mi's); 

(eu) 
(vI) 

j 

for i = 28 - 1; 

for i = 23 + 1; 

for i = 23 + 3, ... , 2n + 1 (all other odd indexed mi 's); 

lM for i = 2j and Xj = 0; 

W
W for i = 2j and X j = 1. 
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The values of the odd indexed and even indexed mi depend respectively on 8 

and x as required and one can see that since ewWe is e and fww f is f, the 

product of the mi's is equal to euvf wh en Xs is 0 and e'uwwvf when Xs is 1 

which shows the correctness of the reduction. 

If on the other hand we do have euwwvf = euvf for an suit able e, 'U, v, w, f, 

then there must exist e, f, u, w E M with e, f idempotent J-below w but 

ewuf i- euwf for otherwise we have euwvj = euwWwvj = euwWvwj = euvwj 

and M lies in W. On the other hand, since we assume euwwvf = euvf, we 

have euw j = ewWuw j and ewuj = ewuwW f. We now obtain a rectangular 

reduction from INDEX(x, 8) (assuming w.l.o.g. that X n = 1) as foUows: 

m'i = 

e 

f 
'U 

lM 
W W 

W 

for i = 1 

for i = 2n + 1 

for i = 28 + 1; 

for aU other odd-indexed i; 

for even i = 2j such that Xj = Xj-l; 

for even i = 2j such that Xj = 1 and Xj-l = 0; 

ww- 1 for even i = 2j such that Xj = 0 and Xj-l = l. 
Again, the values of the odd indexed and even indexed mi's depend respec-

tively on 8 and x. The value of the even indexed mi's are such that the product 

m2m4 . .. m2i is wkw+1, for sorne k, if and only if Xi is 1 and wkw if Xi is O. Sim

ilarly, using the fact that Xn = 1, the product m2i+2 ... m2n is wk'w if and only 

if Xi = 1 and Wk'w+l otherwise. Using the values assigned by the reduction to 

the odd-indexed mi's we have 

and by our previous remarks this is ewkw+1uwk'w f = ewuf if Xs 

ewkwuwk'w+l f = euw f if Xs = 0 so our reduction is correct. 

1 and 

o 

In particular, if M does not lie in DO n Ab then it either admits a linear 

length reduction from DIS J (if it is outside DS) or from 1 Pq for sorne q (if it is 

either in DS but not in DO or if it is outside Ab). Combining our last lemma 
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with the upper bounds above we can obtain the three following theorems. 

Theorem 4.12 Let L ç A* be a regular language with M = 1\1[(L). Then 

{ 

0 (1) if and only if M is commutative; 

D(L) = 8(logn) if and only if M is in DO n Ab but not commutative; 

8(n) otherwise. 

Proof. We know D(L) = 0(1) if M is commutative and D(L) = Sl(logn) 

otherwise since in that case GT :s;n M. Lemma 4.6 gives the upper bound 

when M E DO n Ab. Finally, wh en M is not in DO n Ab, then it admits 

a linear length reduction from DIS] or IPq which yields the last Sl(n) lower 

bound. 

Theorem 4.13 Let L ç A* be a regular language with ]'\11 = .1I1(L). Then 

R(L) = 

o (1) if and only if NI is commutative; 

8 (log log n) 
8 (log n) 
8(n) 

if and only if 111 is in W but not commutative; 

if and only if M is in DO n Ab but not in W; 

otherwise. 

o 

Proof. When M is in W but not commutative we put together Lemma 4.9 

and part 1 of Lemma 4.11 to get the tight log log n bound. Similarly, if NI lies 

in DO nAb but not in W then it admits a reduction from INDEX which 

proves the Sl(log n) lower bound mat ching Lemma 4.6 and when NI is not in 

DO n Ab we again use the linear lower bounds on the probabilistic complexity 

of DIS] and IPq. o 

Theorem 4.14 Let L ç A* be a regular language with NI = M(L). Then 

o (1) 'if and only if 111 is comrrmtative; 

Il Il 8 (log n) i.f' and only if' 111 is in W D (L)) = 8(R (L) = 
but NI is not commutative; 

8(n) otherwise. 
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Proof. When M is in W but not commutative we combine the upper bound 

of Lemma 4.9 with the lower bound obtained from part 1 of Lemma 4.11. When 

M is not in W then i t admi ts a linear length red uction from INDEX, DIS J 

or l Pq which aU have D(n) probabilistic simultaneous complexity. o 

There are non-regular languages for which probabilistic simultaneous pro

tocols significantly outperform deterministic simultaneous ones. For instance, 

the probabilistic simultaneous complexity of Equality is O( vin) (folklore, see 

[NS96, BK97] for explicit protocols) and it was established by [BK97] that this 

quadratic gain is optimal, i.e. that for any L holds DII(L) = O(RII(L)2). Sueh 

gaps do not exist for regular languages because they do not exist for CT, l Pq , 

INDEX or DISJ. 

Theorern 4.15 Let L ç A* be a regulo:r language with M = M(L) and p be 

prime. Then 

{

O(l) 
NMODp(L) = 8(logn) 

8(n) 

if and only if NI is commutative; 

if and only if M is in LGp q;:p Corn 

otherwise. 

Proof. If NI is in LGp q;:p Corn but not commutative, we use CT :s;n NI 

for the lower bound and Lemma 4.10 for the upper bound. If 111 is not in 

LGp q;:p Corn then it must be either outside of DS, outside of G p * Ab or have 

.J-related idempotents e, f with (ej)Pw 
not idempotent and by Lemma 4.11 we 

then have either DIS J :Sr M or l Pq :Sr M for sorne q not a prime power of p. 

In either cases this suffices to get NMODp(lVJ) = D(n). 0 

Corollary 4.16 If L is a regu,lar language such that fOT two distinct pr"irnes ]J 

and q we have both NMODp(L) = O(logn) and NMODq(L) = O(logn). Then 

D(L) = O(logn). 
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Proof. By our previous theorem, M must lie in the intersection of LGp ~ Corn 

and LGq r:&P Corn. In particular, ],,1 lies in G p * Ab and G q * Ab so it must 

in fact lie in Ab. Similarly, if for aIl J-related idempotents e, J holds both 

(ej)P
w 

and (ej)qw then it must be that eJ is itself idempotent and so M lies in 

DO. By Theorem 4.12, aIl monoids in DO n Ab have O(logn) deterministic 

communication complexity. 0 

One might suspect that such a phenomenon does not occur for non-regular 

languages although, to the best of our knowledge, this question has never been 

studied. On the other hand it is known that for any language L we have 

4.3 Multiparty Communication Complexity 

4.3.1 The Input on the Forehead Madel 

With applications to distributed computing in mind, it seems natural to gener

alize the two-party model to a k-party model in which each player gets access 

to a 1/ k fraction of the input. Although this model has been studied [DF89] 

it is of limited interest because its power goes down as the number of players 

increases. 

Chandra, Furst and Lipton, on the other hand, introdueed an alternative 

multiparty model [CFL83] which has sinee found numerous theoretical applica

tions. In this variant, k players Pl, ... ,Pk collaborate to compute a function 

f(XI, ... ,Xk) where each participant Pi knows the values of aIl the inputs e.'Ecept 

:r:,i.' This game is often referred to as the "number on the forehead" moclel sinee 

it is convenient to pictme that player i has Xi written on his forehead, availablü 

to everyone but himself. The players exchange bits, according to a previously 

agreed upon protocol, by writing them on a blackboard se en by everyone. The 

proto col specifies whose turn it is to speak and what a player broadcasts is a 



4.3. MULTIPARTY COMMUNICATION COMPLEXITY 99 

function of the communication history and the input he has access to. The 

protocol's output is a function of what is on the black board after the protocol's 

termination. We will denoté by Dk(J) the deterministic k-party communica

tion complexity of f. It should be clear that D2 (J) = D(J). 

We can of course define simultaneous, probabilistic, non-deterministic and 

MODp-counting variants of this model. We will use D~, Rk, NI and Nt/adf' to 

respectively denote simultaneous, probabilistic, non-deterministic and MODp-

counting k-party communication complexity. 

Much less is known about the multiparty models: they sometimes have very 

surprising power (see e.g. non-trivial upper bounds in [Amb96, Gr094a, Pud03] 

and bounds presented later' in this section) and there seems to be no way to 

avoid tricky combinatorics wh en establishing lower bounds. The information 

known to each player overlaps a lot since any input letter is known to k - 1 

of the k players. This also means that the power of the multiparty model 

increases with the number of players involved as the fraction of inputs that a 

player cannot see decreases. Let us consider the 3-way generalization of the 

equality function: EQ3(X, y, z) = 1 if and only if x = y = z. While EQUALITY 

is the canonical example of a function with maximal two-party deterministic 

communication complexity, EQ3 can be computed by a 2-bit 3-party proto col. 

Indeed, it suffices for the player holding x on his forehead to verify that y = z 

and for the player holding y to verify x = z. 

In the combinatorial analysis of two-party models, the central notion was 

that of a rectangle. The corresponding notion in the multiparty model is that of 

cylinder intersections. A subset S of Xl x X2 X ... X X k is said to be a cylinder- in 

the ûh dimension if membership in S is independent of the ith coordinate, i.e. 

if for all Xl, X2,"" Xk and any x~ we have (Xl,' .. , Xi,"" Xk) E S if and only if 

3The k-party communication complexity is sometimes denoted by D k (1), a notation pri
marily used to denote k-round two-party complexity. We choose to put k as a subscript to 
avoid this confusion. 
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(Xl, ... ,X~, ... ,Xk) E S. We say that S is a cylinder intersection if S = n Si 
l<i<k 

where Si is a cylinder in the ith dimension. 

Lemma 4.17 (see [KN97]) Let f : Xl X X 2 X ... X X k -+ {O, 1} be a func

tion of k-inputs. Any deterministic k-party communication protocol of cost c 

computing f partitions the input space into at most 2c f -monochTOmatic cyl in

der intersections corresponding to the communication exchanged on a particular 

input. 

Two-dimensional cylinder intersections are just rectangles of course, but k

dimensional cylinder intersections have mu ch less structure than k-dimcnsional 

hyper-rectangles. We will say that a set of k elements of Xl x X 2 X ... X X k 

forms a star if it is of the form: 

where for each i, Xi =F x~ and Xi E Xi. In that case, we call (Xl, X2, ... , Xk) the 

center of this star. These notions allow us to give a useful characterization of 

cylinder intersections. 

Lemma 4.18 A set S ç Xl X X 2 X ... X X k is a cylinder intersection if and 

only if the center of any star contained in S is itself an element of S. 

Historically, the first multiparty lower bound is that of A. Chandra, M. Furst 

and R. Lipton who used Ramsey theory to obtain bounds on the complexity of 

adding k integers. Let EXACTLY2n (abbreviated E2n) be the function of k n-bit 

integers defined as 

if I;Xi = 2n; 

otherwise. 

Theorem 4.19 ([CFL83]) For all constant k, we have D k (E2n) = w(l). 
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In fact, the bounds for the communication complexity of E2" are both tight 

and unclear sin ce they are expressed in terms of Ramsey-theoretical sequences 

whose limit are known to be infinite but for which no reasonable bounds exist 

except for the cases k = 2,3. 

4.3.2 Discrepancy Bounds 

A completely different approach to obtain lower bounds on the multiparty com

munication complexity of sorne function f is to bound the maximal size of any 

f-monochromatic cylinder intersection. In many cases, it is even possible to 

find strict bounds on the size of cylinder intersections which are "almost" f

monochromatic and this yields lower bounds on the cost of proto cols that can 

approximate f. 

This approach is formalized using the notion of discrepancy. Let p be prime 

and w be sorne complex pth root of unity. For a function f : Xl X ... X X k -t 

{l, w, ... , wp -
l 
}, we define the discrepancy of f as 

Disck(f) = m:xIE~~b-lwiPr[f(xl"'" Xk) = wi and (:1:1"," Xk) E Sll 

where the maximum is taken over aIl cylinder intersections Sand where the tu

pIe (Xl, . .. , Xk) is chosen uniformly at random from Xl x ... X X k. Intuitively, 

a function with low discrepancy can not have large cylinder intersections in 

which a large fraction of elements have the same image under f and thus any 

communication protocol with low co st is bound to disagree with f at many 

points. Discrepancy is thus used primarily to prove lower bounds on the com

munication complexity of approximations to a function but, for our purposes, 

we will only use the foIlowing basic lem ma, whose proof can be found in e.g. 

[KN97, BNS92, Gr092J. 

Lemma 4.20 For any f : Xl X ... X X k -t {l, w, ... , wp
- l }, 
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It should be noted that the discrepancy does not necessarily lead to optimal 

lower bounds (see examples in [KN97]). Furthermore, computing good upper 

bounds for DisCk (1) can prove to be quite difficult. 

Let Xl, ... , Xk be n-bit vectors, Xi = b}b; ... br. We define the k-WISE GEN

ERALIZED INNER PRODUCT modulo p (or GIPk,p) as the function of k n-bit 

vectors such that 

(mod p); 

In other words, G l Pk,p is the language of k by n matrices that have a number 

of all-l columns divisible by p. Of course, for p prime, we can also consider the 
E xl x~".xi 

non-Boolean version of GI Pk,p which maps inputs (Xl,"" Xk) to w1'.O,j'.O,n '. 

Theorem 4.21 ([BNS92, Gro92]) For aU k andp holds Rk(GIPk,p) = n(n). 

The original proof explicitly computed a O(cn
) upper bound on the dis

crepancy of the non-Boolean version of G l Pk,p for prime p. Historically, this 

was first established in the case p = 2 by L. Babai, N. Nisan and M. Szegedy 

[BNS92] and later generalized in [Gro92] to arbitrary p. Both proofs are some

what intricate and are based on induction on k. 

It was later shown by F. Chung and P. Tetali [Chu90, CT93] and R. Raz 

[RazOO] that this bound could be calculated with far less effort, at least in the 

case p = 2. It is unclear whether these techniques have an analog for the case 

p> 2. 

We want to apply the discrepancy technique in order to lower bound the 

multiparty communication complexity of the following variant of the generalized 

inner product modulo p (in its non-Boolean version). We define the k-wise 

truncated inner product modulo p or TGI Pk,p for short, as the function which 

maps k n-bit vectors Xl, ... ,xk and an index s E [n] as TG l Pk,p(xl, ... ,xk, s) = 

wI::~î(xIx;".x7). In other words, TGIPk,p is GIPk,p computed on the inputs 
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Xl, ... ,Xk truncated after s bits. Note also that for any xl, ... Xk E {a, l}n and 

any s E [n] we have TGIPk,p(Xl, ... , Xk, s) = G1Pk+l,p(Xl, ... , :rk, Pon-s). 

We will use a result of V. Grolmusz [Gro92] concerning the discrepancy of 

G l Pk,p. Let us define 

where i! = (Xl, ... ,Xk) E ({O, 1 }n)k and CPi is shorthand for cp(i!) and where the 

maximum is taken over an CPi: ({O, l}n)k -+ {a, 1} such that CPi(Xl' ... ,Xk) does 

not depend on Xi. The expected value Ex is taken on the uniform distribution 

Note that the function CPI CP2 ... CPk is the indicator function for sorne cylinder 

intersection and thus 6k (n) is exactly the discrepancy of G l Pk,p on inputs of 

length n. 

Lemma 4.22 ([Gro92]) For ail k, there e.'Eists d > 1 sv,ch that 6 k (n) :; d-n . 

We adapt Grolmusz's proof of this lemma and use its result to show: 

Lemma 4.23 For any k and any prime p, 

Disc(TGIPk,p) = O(l/v'n). 

Proof. Similarly, to 6k (n), we define 

where i! = (Xl, ... ,Xk) E ({O, l}n)k and CPi and 'ljJ are shorthand for CPi(i!,S) and 

'l/J(i!, s). The maximum is taken over aIl CPi, 'ljJ : ({O, l}n)k x [n] -+ {a, 1} such 

that CPi(Xl, .. . , Xk, s) does not depend on Xi and 'ljJ(Xl, .. . , Xk, s) does not depend 

on s. The expected value Ex is taken on the uniform distribution on pairs in 

({O, l}n)k x ln]. Clearly, for inputs oflength n we have Disc(TGIPx;,p) = Sdn). 
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By convexity of expectations, we have 

and since 'ljJ does not depend on s: 

For any complex-valued random variable À, we have (E[IÀIJ)2 ~ E[lÀI2] by the 

Cauchy-Schwartz inequality. If in particular we choose 

we obtain 

Furthermore lEs [TGIPk,p(x, s)(Pt ... c/>kW can be rewritten as 

where TG 1 Pk,p denotes the complex conjugate of TG 1 P and we can write 

For any s, t in [n] we write c/>f (resp. c/>D to denote the restriction of c/>'i where 

the last input is s (resp. t). Furthermore for fixed s ~ t we will "split" the k

tuple of vectors x as yand z as follows: If the i th coordinate of x is Xi = b l b2 ... bn 

then the i th coordinate of y is Yi = bs+1bs+2 ... bt and the i th coordinate of z is 
Zi = b1b2 ' .. bs bt+l ... bn . The crucial observation is that for fixed s ~ t we have 

Indeed, TGIPk,p(x, t) = TGIPk,p(x, s) . GIPk,p(y) and 
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80 we can now bound Bk(n) as: 

Note that it is sufficient to consider the expectation over the pairs s :::; t 

since the case s ::::: t is completely symmetric. For fixed s :::; t and fixed z of 

length s + n - t, define (i : ({O, 1 }t-s)k ~ {O, 1} as (i(il) = cpf(i)cp;(i) where i 

is split as il and z for that choice of sand t. We can now write 

Now (i does not depend on the i th component of il and we can thus use 

Lemma 4.22 to daim that there exists d such that 1 [Ey[G l Pk,p(iJ)(l ... (k]1 :::; d-.i 

when we consider fJ's of length j. 

Thus, the value of Ez[Ey[G l Pk,p(il)(l ... (k] depends most crucially on how 

far apart sand tare. We now use this bound in our estimate on Bk (n): 

Bk(n) < (Es~td-(t-s)) 1/2 

.i=n-1 

< (L Pr[t - s = j] . d-.i) 1/2 

.i=O 

.i=n-1 

< (L (n - j)ln2 . d-.i)1/2 

.i=O 
j=n-1 

< (lin L d-.i)1/2 
j=O 

O(l/Vrï)· 

And so our daim about Disc(TG l Pk,p) is proved. o 

As an immediate corollary to the latter two lemmas we obtain from Lemma 

4.20: 

Theorem 4.24 For all k and any prime p 
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Notice that the lower bound for TGl P is of course tight. lndeed, suppose 

player k + 1 has s written on his forehead: it suffices for any other player to 

send him the log n bits of s for player k + 1 to know the entire input and thus 

be able to output the correct value of TG l P. 

4.3.3 Multiparty Complexity Bounds for Regular Lan
guages and Finite Monoids 

Similarly to the two-party case, we define the k-party communication complexity 

of a finite monoid M as the k-party complexity of evaluating in M the product 

ml . m2· . .. ' mkn where the mi E NI is written on the forehead of player j where 

j i (mod k). 

Similarly, the k-party communication complexity of a regular language L ç 

A* is the k-party complexity of determining wh ether the word ala2a3 ... akn lies 

in L, with ai EAu {E} written on the forehead player j's where j i (mod k). 

It is easy to show that for any k 2 2 the (k + 1)-party communication 

complexity of a regular language L (resp. of a monoid M) is at most its k

party complexity. We can also rework the proof for the two-party case (see also 

[RTT98]) to obtain the elementary facts: 

Lemma 4.25 Let L ç A* be regv,lar with M(L) = M. For' any k, we have 

Dk(J\lI) = 8(Dk(L)) and similarly for D~, Rk and N:!odp for p prime. 

For any increasing f : N --+ N and any k the class of monoids sv,ch that Dk(M) 

(resp. D~(NI), Rk(M), N::odp for p prime) is OU) forms a variety. 

We define the following generalizations of the two-party rectangular reduc

tions from a language to a monoid: 
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Definition 4.26 A k-dimensional hyper-rectangular reduction of length t from 

a languagé L ç (An)k to a monoid NI is a sequence of kt functions (SI, . .. , Stk) 

where the Si 's are functions from An to M such that (Xl, ... , Xk) E (An)k belongs 

to L if and only if 

In other words, such a reduction maps a k-tuple (Xl, ... , Xk) E (ATL)k to a sc

q'U,ence of kt monoid elements where the jth monoid element is obtained solely 

as a function of Xi where i == j (mod k). 

We will write L S;k M to denote the existence of a k-dimensional hyper

rectangular reduction from L to M. A program is a special form of hyper

rectangular reduction. 

We have already mentioned that the multiparty model often has surprising 

power and is much harder to analyze than the two-party models. ldeally, we 

would like to obtain complete classifications similar to the ones of Section 4.2 

but we only have partial results in this direction. 

We begin by sketching the proof of a complete characterization for the k

party deterministic and probabilistic communication complexity of groups which 

first appeared in [RTT98, Tes99]. 

Theorem 4.27 Let G be a group. If G zs in Gnil,k then Dk+l (G) 

Otherwise Rk+I(G) = D(n). 

0(1). 

Proof. The upper bound is a result of the combinatorial description of lan

guages whose syntactic monoids are nilpotent groups of class k (Theorem 2.13): 

if M (L) is a nilpotent group of class k then membership in L can be determined 

by counting the number of occurrences of each subword of length at most k 

4In general of course, we might need to consider languages consisting of k-tuples of inputs 
of difJerent lengths. The definition can clearly be adapted for such cases at the cost of extra 
sub/superscripts. 



108 CHAPTER 4. COMMUNICATION COMPLEXITY 

modulo sorne integer m. In the (k + l)-party game, any set of k input letters 

is seen entirely by at least one player so a proto col using (k + 1) . pog ml can 

easily be devised to count the number of occurrences of a particular subword of 

length at most k. 

The lower bound generalizes the idea of part 5 of Lemma 4.11. If G is not 

nilpotent of class k, there exists a commutator 9 of weight k + 1 which is not 

the identity. By Lemma 3.3 there exists a G-program cP taking k + 1 bits as 

input and such that 

if aIl Xi are on; 

otherwise. 

By concatenating n such programs, we can obtain a G-program '1/) of linear 

length to recognize G l Pk+l,m and this hyper-rectangular reduction shows that 

o 

To analyze the general case, we introduce an alternative parametrization of 

languages recognized by monoids in DO by defining for any group G a family 

of congruences ~~t on A* for any s, t E N. First, for any t, we let :1: ~~t y for 

aIl X, y. Then recursively, we define X ~~t Y if and only if 

1. X and y are G-equivalent; 

2 X ",G Y' . "'8-l,t' 

4. For aIl x = XOaxl and y = yoaYl with I:r:ola, = IYola, :::; t, we have :1:0 ~?-l,t 

Yo and Xl ~?-l,t YI; 

5. For aIl x = XOaXl and Y = yoaYl with IXlla, = IYlia :::; t, we have 1:0 ~?-1,1, 

Yo and Xl ~?-l t YI· , 

One can check that for aIl s, t, ~?t is a well defined finite index congruence. , 

This congruence is quite close to rv
G defined in Chapter 2: where in rv

G we 
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were primarily concerned with the first and last occurrence of each let ter , we 

look here at the first and last t occurrences of each letter. Note however that 

::::::;7,1 is not equal to rvBtI,s because, the induction base and the recursion on the 

prefixes and suffixes is slightly different in the two definitions. For example, one 

can verify that for any commutative G we have ab ;::::::?1 ba but ab rf?1 ba. , , 

Not so surprisingly, given the similarity to rvG , we can show that ;::::::~t also , 

parametrizes DO: 

Theorem 4.28 Let M = A* /" with lAI = n and let H be a vaTiety of gTOUpS. 

Then lI1 E DO n H if and only if :::::::;7,tç , faT sorne 5, t and sorne G E H. 

Proof. To show that A * / ;::::::~t is in DO n H, it suffices to note that the ;::::::~t , , 

classes are aIl unambiguous concatenations of languages with syntactic monoids 

in JI V H. 

The converse follows from Theorem 2.20 since, from the definitions of ;::::::G 

and rvG we have:::::::;G Cr,P. , ns,l- n,s o 

For any group G, and positive integers 5, t, we will denote by V R:J?t the variety 

of monoids M = A* /, such that ;::::::?,tç f. The following lemma motivates the 

introduction of the ;::::::~t congruences in the context of multiparty communication , 

complexity. 

Lemma 4.29 Let G be a nilpotent group of class d. If M lies in V ~G then 
"'s,t 

Proof. It is sufficient to establish the upper bound for A* / ;::::::~t for any alphabet , 

A and any s, t and we will do so using induction on s. In the case of s = 0 there 

if> nothing to prove. 

Suppose now s 2: 1 and take a set of representatives lUi] of A * / ;::::::7,t. For each 

Ui, the players will check whether w :::::::;~t Ui. First, they need to verify that w , 

and Ui are G-equivalent and since G is nilpotent of class d, this requires counting 
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the number of occurrences modulo sorne p of subwords of length at most cl in 

w 5
. Since the number of players involved is (8 + cl) 2:: (d + 1), this can be done at 

constant cost (see Theorem 4.27). Next, the players can exchange O(t) = 0(1) 

bits to insure that Œt (w) = Œlui)' If 8 = 1, we are done because there is no 

recursive condition to check. If 8 2:: 2, suppose 'Ui = VOaVI with Ivo la :s: t. There 

exists a factorization w = WOawI, with Ivola = Iwola but in order to handle the 

recursion, the players first need to identify the exact location of the jth a in w 

(where Ivola = j - 1). 

To achieve this, each player sends a list of identities of the players they 

think ignore the first j a's. This requires only 0((8 + d + 1) logt) = 0(1) 

communication. Of course, only the player who has the first a on his forehead 

will incorrectly identify the first member in that list (say this player is Player 

l), while aIl others will agree on designating him as the one ignoring the first 

a. Since 8 2:: 2, there are at least 3 players involved in the proto col , so Player l 

can indeed be identified as the only one disagreeing with the majority. We can 

correct his list by adding an l in the first position and shifting the rest of his list 

right. Now, the second positions in the lists of aIl but one of the players agree 

and we can repeat this procedure for j rounds. In the end, aIl players know 

which player ignores the jth a and aIl except that player know the location of 

that a. The protocol can now sideline this player and let the other 8 + d - 1 

players check whether Vo ~?-l,t Wo and VI ~?-l,t wl. By induction this is doable 

with 0(1) communication. Left-right symmetry completes the proto col. 0 

Consequently, any language in DO n Gni! has constant communication com

plexity for sorne large enough (but fixed) k. This in fact characterizes DOnGni! 

for, as we will see next, both B 2 and U can be shown to have w(l) communica

tion complexity in every k-party model. 

5 Alternatively the players could do this by compal'ing the images of w and 'Ui uuder ail 
possible morphisms from A * ta G. This strategy cau be implemeuted at constant cast from 
Theorem 4.27. 
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Lower bounds for U were proved in [RTT98] using the universality of U. We 

will present an alternative proof in the same spirit which, in addition, explicitly 

establishes, to our knowledge, the first multiparty lower bound for a natural 

generalization of the Disjointness function. For n-bit vectors Xl,"" Xk, we 

define the k-WISE EMPTY INTERSECTION PROBLEM Eh as the Boolean function 

such that Eh(xI, ... , Xk) = D if and only if the k x n matrix with rows Xi has 

no all-1 column. In other words, if we think of the Xi'S as representing subsets 

of {D, 1}, then Eh(xl,"" Xk) = 1 if and only if Xl n X2 n ... n :Ek = 0. In 

particular EI2 = DISJ. We will also denote by NEh the complement of Eh. 

Lemma 4.30 For all,fixed k we have Dk(U) = D(logn). 

Proof. Simple counting arguments (see e.g. [Gro93, Gro97]) can show that 

there exists a language L in ({D, 1 }n)k with k-party communication complex

ity at least n - log n - log k. We daim that any such language has a k

dimensional hyper-rectangular reduction of size ILl to N Eh. lndeed, given 

sorne element x = (Xl,'" ,Xk) of ({D, l}n)k, the k players can easily apply an 

hyper-rectangular reduction to obtain a k x ILl boolean matrix Mx with columns 

labeled by elements y = (YI, ... ,Yk) of Land such that entry (i, y) = 1 if and 

only if Xi = Yi. Thus, a column labeled y in this matrix consists of aIl 1 's if and 

only if x = y. On the other hand NIx contains a column labeled x if and only if 

xE L. 

Since L has k-party complexity at least n-logn-logk and reduces in length 

ILl:::; 2kn to NEh, we get Dk(NEh) 2: logn/k. 

We get the lower bound for U by noticing that for any k, the language N Eh 

can be computed by a linear length program over U. o 

No sub-linear upper bounds are known for the k-party communication com

pl exit y of U and Eh and it is tempting to conjecture that our lower bOllnds are 

far from optimal. 
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To obtain a lower bound for the multiparty complexity of B21 we will appeal 

to a Ramsey-theoretical result known as the Hales-Jewett Theorem [GRS80] 

and which concerns colorings of [t]n where t E N. We say that the vectors 

VI, ... ,vt E [q~ form a combinatorial line if at each position i they either agree 

(i.e. for a11 1 ::; j, j' ::; t we have vi = vn or are such that vi = j. We now state 

the theorem: 

Theorem 4.31 (Hales-Jewett) For any integers c, t there exists an integer n 

such that if all vectors in [t]n are colored with c colors then there is a monochro

matic combinatorial line VI, ... ,vt (i. e. a line whose elements ail were assigned 

the same color). 

The Hales-Jewett number H J(c, t) is natura11y defined as the minimal sueh 

n. While the theorem's pro of implicitly provides an upper bound in terms of c 

and t, these bounds are not primitive recursive. Although the lower bound for 

E2n cited earlier is not proved using the Hales-Jewett itself, it uses a Ramsey

theoretical result with a similar fiavor. Chapter 29 of [JukOl] describes this 

and other theoretical computer science related applications of the Hales-Jewett 

theorem and its variants. 

Lemma 4.32 For any fixed k we have Dk(B2 ) = w(I). 

Proof. We will in fact prove the lower bound for the function k-SET-PARTITION 

(or Partk for short) which we define as follows: Let SI, ... ,Sk be subsets of [n] 

represented as [n]-bit vectors, then Partk(Sl,' .. , Sk) = 1 if and only if these 

sets are a partition of ln], i.e. if the bitwise sum of the vectors is the a11-1 vector. 

Every input (SI, . .. ,Sk) E P([n])k that is accepted by a protocol for Partk 

is such that for every 1 ::; j ::; n, the element j lies in exactly one of the 

Si's. Using this observation, these inputs can be put in one-to-one correspon

den ce with n-tuples in [k]n. As an example for k = 3 and n = 4, we have 

Part3( {4}, {1, 3}, {2}) = 1 and this input corresponds to the n-tuple (2,3,2,1). 
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Suppose that the communication complexity of Partk is bounded, for sorne 

k, by a constant c. To every input accepted by a protocol for Partk, (i.e. 

to every element in [k]n), we can assign one of 2C col ors corresponding to the 

communication history resulting from that particular input. If n is large enough, 

there must be, by the Hales-Jewett Theorem, a monochromatic combinatorial 

line vI, ... ,vk, where the vi's are in [k]n. If we let 0 =1= T ç [n] be the set of 

coordinates on which the v'i'S disagree, we get that there are sets SI, ' , . ,Sk such 

that TUSIU .. . USk = [n] and aIl the inputs (SI UT, S2,'" Sk), (SI, S2UT, ... Sk), 

... , (SI, S2, ... SkUT) induce the same communication history. However this is a 

contradiction: By the star property mentioned earlier, the input (SI, S2,'" Sk) 

aZsa induces that same communication although it should be rejected since 

S lU ... U S k = [n] - T =1= [n]. 

We complete the proof by showing an easy reduction from Partk to B 2 : the 

reduction is obtained by concatenating n blocks of k + 2 elements of B2' such 

that the ph block is aml,j ... mk,jab where mi,j is b if j lies in Si but mi,j is 1 

otherwise. It is easy to see that the ph block thus created will evaluate to ab if 

j lies in exactly one Si and to 0 otherwise. o 

In contrast to U, there are known non-trivial upper bounds on the multi

party communication complexity of B2 . K. Reinhardt has shown upper bounds 

[RheOl] which are good examples of the surprising possibilities offered by the 

multiparty model and we sketch one of these bounds for completeness. 

Lemma 4.33 (Reinhardt) - D 4 (B2 ) = O(fologn); 

- D 5 (B2 ) = O(logn). 

Proof. We exhibit a O(fologn) 4-player proto col for the language L = 

( c* ac* bc*) * w hich is sufficient since i ts syntactic monoid is B 2 . The 5-party 

protocol is based on the same ideas. We can assume without loss of generality 

that the players receive an input word belonging to c*aA*bc* and thus only 
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need verify that there exists an occurrence of b between any two consecutive 

occurrences of a and vice-versa. In particular, if the input is to be accepted, 

then there must be, between any two occurrences of a a number of b's exceeding 

the number of a's by exactly one. 

Players 1 and 2 consider the intervals defined by two o,'s occurring on the 

foreheads of players 3 and 4 and write a list6 il,' .. ,it of possible lengths for 

the intervals. If there are d intervals, the maximum of all ij times d must 

exceed n and so t = O( J7ï). Next, for each i j , they exchange O(log n) bits to 

determine the number of b's minus the number of o,'s that they see occurring 

in such intervals of length ij . If they find that this number is not equal to the 

number of intervals of length ij the proto col halts and rejects. 

A similar procedure is repeated for intervals defined by two b's held by player 

3 or 4 and for every pair of players. If all these steps are completed successflllly, 

the protocol accepts. 

It is clear that no rejected input x is in the language. Conversely, suppose 

that x is not in the language, i.e. that x contains a subsegment of the form 

ac* a (or bc* b), and let h be the minimal length of such a segment. If the 

proto col accepts x nonetheless, it must be that sorne other segment w of length 

h and delimited by two o,'s contained at least two more b's than o,'s. It must 

therefore be that w contained a segment of the form bc*b, but this contradicts 

the minimality of h. o 

As a corollary to Theorem 4.37, we know D 3 (B2 ) = D(logloglogn) but for 

k 2: 4, there is a huge gap between these upper bounds and our best lower 

bounds (non primitive recursive) for the k-party communication of B2 . 

Our results thus far allow us to give an algebraic characterization of lan

guages for which there exist constant cost protocols wh en enough players are 

involved. 

6This need not be done explicitly but it simplifies the protocol's description and analysis. 
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Theorem 4.34 There exists a constant k such that Dk(M) = 0(1) if and only 

if A1 E DO n G nil . 

Proof. The upper bound is provided by Lemma 4.29. The converse is obtained 

by noticing that any M not in DOnGnil can be divided either by a non-nilpotent 

group (Lemma 4.27), by U (Lemma 4.30) or by B2 (Lemma 4.32). o 

This theorem unfortunately fails to provide algebraic characterizations of 

monoids with bounded complexity in the k-party game for specific values of k. 

We are guaranteed by Theorem 4.25 that such characterizations exists and we 

have already established one for k = 2 in Section 4.2. 

Let us first consider the case k = 3. By Lemma 4.29, we can evaluate in 

constant 3-party complexity 

• the product in any monoid M in V ~g:t when G is a nilpotent group of 

class 2; 

• the product in any monoid N in V ~rt for a commutative group H; 

• the product in any M x N where !VI, N are as above. 

We will show that this in fact captures exactly the limits of the 3-player 

game. Intuitively, the class of languages we have just implicitly defined is cap

tured by the following congruence on A *: we set 7 X rvt,p Y if and only if: 

2. the number of subwords of length at most 2 in x and y coincide modulo 

p; 

3. For any x = XOaXl with Ixo 1 < t, there is y = yoaYl with Ixo la = Iyo la and 

such that Œt,p(:X:o) = Œt,p(YO) and Œt,p(Xl) = Œt,p(Yl). 

7The congruence"" defined here is not the same as the ""G congruence defined in Chapter 
2 and used to parametrize DO. 
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4. For any x = XOaxI with IXII < t, there is y = yoaYI with IXlla. = IYlla. and 

such that Œt,p(XO) = Œt,p(YO) and Œt,p(.'rl) = Œt,p(yd· 

Let B3 be the variety of monoids M satisfying 

1. ME DO; 

2. M E G nil,2; 

3. for aU w Iying J-above idempotents e, f and any u, v holds 

4. for aU x, y Iying J-above idempotents e, f and any z holds 

The congruence ""'t,p and the variety B3 are quite similar to respectively the 

congruence ~t,p and W defined in Section 4.2. In fact it is clear that W ç B3' 

Lemma 4.35 Let M = A* Ir, then !VI E B3 if and only if rvt,pç , for some 

t, ]J. 

Proof. The pro of is similar to the one of Lemma 4.8: if M = A* / ""'t,p, then M 

clearly satisfies conditions 1 and 2 for membership in B3' Furthermore, to check 

3 and 4 one can easiIy verify that the woids ql = (swt)tpuwtpv(xwy)tp and rI = 

(s'Wt)tpuv(xwy)tp are rvt,p-equivalent and that q2 = (sxyu)tPzxp- 1yp- 1xy(vxy'W)LP 

and r2 = (sxyu)tPxP-Iyp-Ixyz(vxyw)tp are rvt,p-equivalent. So !VI lies in B3' 

For the converse, assume M lies in B3' We need to show that there exist t, p 

snch that for any morphism cp : A* ~ 1'vl we have cp(q) = cp(r) for ally q "'t,li r. 

vVe will choose p as the exponent of M and t as IMI + 1. 

Suppose A = {al, 0,2, ... ,ak}. For any x E A*, denote by :Î: the word ob

tained from x by the foUowing process: 
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• as a first step, we mark the first and last t occurrences in x of any let ter 

• next, suppose y is a segment of x lying between two consecutive marked 

letters. Note that every letter of a(y) occurs at least t times to the left 

and right of y. We replace y by the word 

where [a, b] is shorthand for the pseudo-commutator bP-1aP-1ba, and where 

the 0 ~ mi ~ P - 1 and 0 ~ ni,) ~ P - 1 are such that the number of 

subwords of length 2 in y and y' are equal modulo p. Note that we have 

mi = 0 and ni,) = 0 if ai does not belong to a(y). 

• Finally, we move every pseudo-commutator [ai, aj] intraduced in the pre

vious step next to the leftmost marked position where the prefix contains t 

occurrences of both ai and aj and reduce the block of [ai, aj]'s thus created 

modulo p. 

We have x "-'t,p i of course. lndeed, replacing y by y' in the second step 

has no effect on the overall count of subwords of length 2. Furthermore, step 

2 and step 3 preserve the number of occurrences (modulo p and threshold t) 

of each let ter before or after any of the marked positions because [a'i, aj] has 

o occurrences of any letter modulo p. It can also be shown conversely that if 

x "-'t,p y, then i = f). 

It now suffices to prave that for any morphism cjJ : A* ~ NI we have cjJ(x) = 

cjJ(i). Suppose y is a segment of x lying between two consecutive marked letters 

in x = xoaybxl' Every letter of a(y) occurs at least t times in both :co and Xl 

since y itself contains no marked letters. So by the argument of Lemma 4.8, 

we can show for any pair of letters ai, aj E a(y) that both cjJ(xo) and cjJ(Xl) can 

be written as res where e is an idempotent lying below ai, aj' Since 1\1 is in 
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B3, we have for any e, f idempotents below cp(ai), cp(aj) and any 7J" v, 'W both 

e7J,V f = e7J,cp( ai)Pv f and 

Supposing y = YoaiajYl we can successively apply these rules to get: 

cp(xoaYOafaiajYl bXl) 

cp(xoaYl ajaf af-l aiajYl bXl) 

cp(xoaYlajadaj, ai]y1bxd 

cp(xoaYlajaiYdaj, adbxl) 

This suffices to show that step 2 in our production of i; can be done without 

affecting the image under cp. Similarly, step 3 can also be done without affecting 

the image under cp. o 

We will show that monoids in B3 are exactly the ones with bounded 3-party 

communication complexity. One crucial tool for our argument will be a result 

of P. Pudlik [Pud03]. 

Theorem 4.36 Let the In-Between fu,nction 1 BF : {a, l}n x [n] x [n] -t {a, l} 

be defined as 

IBF(x, r, s) = g if r < s and one of the bits Xr+l, ... ,Xs is 1; 

else. 

Then we have D~(IBF) = O(loglogn) and th'U,s D 3 (IBF) = O(logloglogn). 

It is worth noting that this result implies an O(log log n) lower bound on the 

three-party communication complexity of B2 whereas the techniques of Lemma 

4.32 only yield w(l). We can now prove 
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Theorem 4.37 FaT all M E B3 holds D3(NI) 

D3(M) = S1(logloglogn). 

0(1). If M t/. B3 then 

Proof. In one direction it suffices to prove the upper bound for the "'-'t,p-classes. 

Let U be sorne word of A * and suppose that 3 players are given x E A *. To 

check x "'-'t,p u, they first need to compare Œt(X) and Œt(U), which requires only 

2t 'IAI bits. Next, they need to compare the number of occurrences of subwords 

of length 2 modulo p, which we have already argued can be done using 3p 'IAI2 
bits of communication in the three-party model. Finally, if U = 'u,Oa'U'l with 

l'u,ola = 'i < t, the three parties can determine in 0(1) communication which of 

them hoIds the (i + 1) th occurrence of a in x (see the proof of Lemma 4.29). 

The two other players thus know how to factor x as XOaxl with Ixola = i and 

can verify that Œt,p(XO) = Œt,p(UO) and Œt,p(xd = Œt,p(UI)' Left-right symmetry 

completes the argument. 

Conversely, suppose Al is not in B3' If M is not in DS, then it is divided 

by either U or B2 and so D3(M) = S1(logloglogn). 

If M lies in DS but not in DO, we claim that GI P3,q(X, y, z) has a linear 

length reduction to M. The argument is almost exactly the one in the pro of of 

Lemma 4.11: there must exist two ..J-related idempotents e, f E M such that ef 

is not idempotent and efe f:. e = (ef)w e. Let q be minimal such that (ef)qe = e 

and suppose without loss of generality that the Ixl = Iyl = Izl = n is a multiple 

of q. Our reduction pro duces elements ml ... m3n where m3i-2 = e if Xi = 1 and 

m3i-2 = ef otherwise; m3'i-l = lM if Y'l = 1 and m3'i-l = f otherwise; m3i = e, 

if Zi = 1 and m3i = f e otherwise. In particular the product m3i-2m3i-1 m3i is e 

if and only if Xi = Yi = Zi = 1 and is efe otherwise so the product 'ml ... m3n 
n- L: X'Y'Z' 

equals (efe) l::;i:::;n'" e which equals e if and only if GI P"q(:r, y, z) = 1. Since 

D3(GIP3,q) = S1(n), we have D3(M) = S1(n). 

If NI is not in G nil ,2, then by Theorem 4.27 we have D3(M) = S1(n). 

Finally, suppose M lies in DOnGnil ,2 but not in B3' We consider two cases: 
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suppose first that for sorne w 1ying J-above idempotents e, f and for sorne 'H, v 

we have euwwvf 1- e'uvf. Then lBF(x, r, s) admits the foIlowing 1inear 1ength 

reduction to M. The reduction gives elements ml,···, m3n+3: 

e for i = 1 

f for 'i = 3n + 3 

eu for i = 3r + 2; 

mi = ve for i = 3s + 1; 

1 M for aIl other i with i o:j. 0 (mod 3); 

wW for i = 3j such that Xj = 1; 

lM for even i = 3j such that Xj = 0; 

We have wWww = wW and, since M lies in DO, both ewWe = e and fw w f = 

f. Therefore, the product ml ... m3n+3 is equal to e'uv f if and only if aU of 

m3r-+3, ... ,m3s are lM which occurs if and only if Xr+l, ... ,Xs are 0, i.e. if and 

only if lEF(x,r,s) = O. Otherwise, ml .. . m3n+3 is euwwvf. From the lEF 

lower bound we thus get D3 (M) = S1 (log log log n) . 

FinaIly, suppose that M satisfies euwwvf = euvf for each w lying J-above 

e and f but there exist u, v E NI lying J-above idempotents e, f and z such 

that 

In that case, we claim, that for sorne prime q, TGl P2,q has a linear length 

reduction to NI. 

Let q be the smaIlest positive integer such that e[v, u]q = e and [v, u]q f = f 
and assume without 10ss of generality that q is primes. Because M is in 

DO n G nil ,2, the idempotent e and the pseudo-commutator [v, u] commute 

with respect to their action on the R-class of e and in particular, e[v, u] = 

ee[v, u] = e[v, u]e. 80 if e[v, u]zf 1- ez[v, u]f, then for aIl 1 ::; i ::; q - 1 we have 

SIf q is not prime, the proof can be carried through using a reduction from TG! Pz,p for 
sorne prime divisor of q. 
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e[v, U]i z[v, U]q+l-i f i- ez[v, u]f. lndeed, if we assume otherwise, we have: 

ez[v, ulJ e[v, u]iz[v, u]q+l-i f 

e[v, u]iez[v, u]j[v, U]q-ij 

e[v, upe[v, u]iz[v, u]q-i+l j[v, u]q-ij 

e[v, U]2i z [v, U]q+1-2i j 

By repeating this manipulation, we in fact have for any k ~ 1: 

which leads to a contradiction for k ~ 1 such that ki - 0 (mod q). 
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We now construct the reduction from TG l P2,q(X, y, s) to M and assume for 

simplicity that the inner product (not truncated) of x and y is equal to 1 modulo 

q. We build from (x, y, 3) the word e(ml ... m6n)J in M* where mi depends on x 

if i = 1 (mod 3), on y if i = 2 (mod 3) and on 3 if i := 0 (mod 3). Specifically, 

we set 

• m3i = z if i = 23 and m3i = lM otherwise; 

Xi = 0; 

• m6i-4 = 'uw
-

1 and m6i-l = u if Yi = 1 but m6i-4 = lM and m6i-l = lM if 

Yi = o. 

One can easily verify that if t = ~ XiYi then the product e(m! ... m6n)j 
l:S~:Ss 

evaluates to e[v, u]tz[v, U]qt+l-t j. From our previous remarks, this product is 

equal to ez[v, ulf if and only if TGl P2,q(x, y, s) = 1. This reduction shows that 

D3(M) = o (log n) in this case. 0 

Characterizations of monoids with bounded k-party complexity for any k ~ 4 

seem out of reach for now. A first step would be to characterize the class 
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of aperiodic monoids with bounded k-party complexity and we propose the 

following conjecture. 

Conjecture 4.38 A star-free language L has bounded k-party communication 

complexity if and only if it is the disjoint union of ~LI,t for sorne t wher'e the 

superscript l denotes the trivial group. 

Since the trivial group is of nilpotency class 1, we can apply Lemma 4.29 to ob

tain the "if" direction of this conjecture. From the definition of this congruence, 

we see that ~Lt captures exactly languages with aperiodic and commutative 

syntactic monoids. This proves our conjecture for k = 2 and in the case k = 3, 

it follows as a simple corollary to Theorem 4.37. 

A straightforward induction on k shows that for any k, t and any s ::; k the 

words x = (a~+la~ ... aDs and y = (a~+la~ ... aDs+1 are ;::::{cequivalent. For 

k := 0, this is trivially true. For k ~ 1 it suffices to prove the equivalence for 

s = k. If x = :r:OaiXI and y = yoaiYI with Ixolai = IYolai ::; t then in fact 1:0 = Yo 

and there is u such that Xl = u(a~+la~ ... aD k- 1 and YI = u(a~+la~ ... aD k. By 

our induction hypothesis (a~+la~ ... aDk- 1 and (a~+la~ ... aDk and thus Xl and 

YI are ~Ll,t equivalent. Left-right symmetry completes the argument. 

In particular, the piecewise-testable language A*aIA* ... A*ak+IA* is not the 

union of ~i,t classes because (a~+la~ ... aDk+1 contains a subword ala2··· ak+l 

while (a~+l a~ ... aD k does not. In our communication game, it is of course easy 

for k + 1 players to identify the existence of a subword of length k at constant 

cost sin ce any occurrence of it will be seen entirely by at least one player. In 

fact, a lot of our intuition about the power of the k + I-party game revolves 

around this "free access" to subwords of length k. This leads us to separately 

formulate a weak special case of Conjecture 4.38: 

Conjecture 4.39 The k-party communication complexity of the regular lan-

guage A*aIA* .,. A*akA* is non-constant. 
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This statement has been established by P. Pudlak [Pud03] for the cases k = 

2,3,4,5 (see also [Gas02a] for an explicit treatment of the case k = 3) using 

a Ramsey-theoretical result known as Hindman's Theorem. Its full resolution 

would be a major step in our understanding of the fundamental limits of the 

k-party game and would nicely complement Theorem 4.27 which shows that 

counting, modulo p, the occurrences of subwords of length k can be done at 

constant cost by k + 1 players or more but requires 0(71,) bits of communication 

for k players or less. 

4.4 Applications to Program and Circuit Lower 
Bounds 

We have shown that our algebraic point of view on communication complexity is 

a fruitful one. Bounds on the communication complexity of monoids allow us on 

one hand to gain sorne insight on the relative power of various communication 

models and, on the other hand, it allows us to identify, as in Conjecture 4.39, 

concrete functions for which communication complexity lower bounds are most 

susceptible of being particularly meaningful. 

While algebraic tools help in the analysis of communication models, commu

nication complexity results can, in turn, be used to formalize certain arguments 

in the study of programs over monoids. For instance we can use results of this 

Chapter to obtain the following: 

Theorem 4.40 The varieties Corn, W, DA, DO n Ab and DO n G niJ are 

all progra:m-varieties. 

Proof. We first prove this for W. Suppose NI is sueh that for aIl m E A1, 

the subset Mm of M* given by Mm = {ml ... m n : evaIM(ml, ... ,mn) = m} 

can be recognized by polynomial-Iength programs over W. These programs 

eonstitute a polynomial length rectangular reduction from the word problem 
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of M to the word problem of sorne monoid in W. We can therefore conclude 

that DII(M) = O(logn) and thus 1\11 E W. Using respectively constant two

party complexity, logarithmic two-party deterministic complexity and constant 

multiparty complexity, we obtain similar results for Corn, DO n Ab and DO n 

Gni!· 

To show that DA is a program-variety, we need to combine these ideas with 

the fact that aperiodics form a program-variety. D 

This fact was already known for Corn (folklore) and DA (proved using a 

corn pletely different ide a in [MPT91]) but the technique used here is very general 

and the following lemma (first proved in [RTT98]) can be used to obtain su ch 

results: 

Lernrna 4.41 Let f = o (logT n) for some r > O. For any k 2: 2, the class of 

monoids with k-party deterministic communication complexity (resp. probabilis

tic, simultaneous, MODp-counting) forms a progmm-variety. 

V. Grolmusz implicitly exploited this idea to prove the following result about 

modular circuits: 

Theorern 4.42 ([Gro92]) For any prime p and any composite integer m that 

is not a prime power, there exists an e.'Eplicitly constructible function f com

putable by depth-2 MODm circuits but not computable by o,ny constant depth 

MODp circuit. 

In fact, this result can be obtained as a corollary to the following theorem 

of D. Barrington, H. Straubing and D. Thérien: 

Theorern 4.43 ([BST90]) Let p be a prime and G a group in G p * Ab. Ther'e 

is a constant Cc > 1 su ch that any G-progmm compv,ting the AND of n vo,Tiables 

has length D(cë). 
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The results obtained previously in this Chapter allow us to obtain a theorem 

slightly stronger than Grolmusz's but weaker than the latter. 

Theorem 4.44 Let p be a prime and G a group in Gp*Ab (or, more generally, 

any monoid M in LGp @ Corn). The're is a constant Ca > 1 such that any G

program computing DISJ has length D(c'c)' 

Proof. Suppose for contradiction that DISJ can be recognized by a G

pro gram of su b-exponential length 1 ( 71,). This pro gram consti tu tes a length 

1(71,) rectangular reduction from DISJ to Gand, sinee G has MODp-counting 

two-party complexity O(1ogn), it allows us 1,0 build a O(1og(f(n))) = 0(71,) 

MODp-counting two-party proto col for DISJ. This is in contradiction with the 

lower bound stated in Table 4.1. o 

In their paper, Barrington, Straubing and Thérien propose the constant

degree hypothesis, a conjecture generalizing Theorem 4.43 mentioned above. 

Conjecture 4.45 (Constant-degree hypothesis [BST90]) Let p be prime. 

r! G is a group in G p * G nil then any G-program computing the AND function 

has length 2!2(n). 

This conjecture is proposed as a first step towards the more ambitious goal of 

proving that AND cannot be computed in sub-exponential length by programs 

over any solvable group or, equivalently, in sub-exponential size by CCo circuits. 

Such lower bounds would be the dual of the exponential-size lower bounds for 

ACo circuits computing MODp . 

Progress towards the constant-degree hypothesis has proved 1,0 be quite dif

ficult: circuit lower bounds of V. Grolmusz and G. Tardos [GTOO, GrogS] (see 

also [ST]) can be reformulated 1,0 cover very special cases and attempts have 

been made for the case where the group is the wreath product of a p-group 

and a nilpotent group of class two [BTT02]. If we seek lower bounds for the 
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AND function, the communication complexity approach is probably doomed to 

fail sinee AND has extremely low communication complexity in every reason

able model but as Theorem 4.44 suggests it might prove fruitful if we target a 

slightly more complicated function. 

Conjecture 4.46 For any .fixed k, the MODp-counting k-party communication 

complexities of Eh and GI Pc; are O(n). 

Such lower bounds would immediately imply: 

Corollary 4.47 (Assuming 4.46) For any k 2 1, there is a function which 

can be computed by a polynomial length progmm over a group in G p * G nil,k+1 

but cannot be computed by a sub-exponential length progmm over any group in 

G p * Gnil,k. 

There is a function in Aq which cannot be computed by any progmm of sub

exponentiallength over a group G in G p * G ni1 . 

Proof. [sketch] The first observation to make of course is that any group G in 

G p * Gnil,k lies in LGp @J) Gnil,k' Since any G' in Gnil,k is such that Dk (G') = 

0(1), we must have N::odp(G) = O(logn). Thus, no sub-exponential length 

program over G can recognize a function of super-logarithmic k-party MODp-

counting complexity. 

Assuming the conjectured lower bounds, we conclude that Eh and G l Pc; 

cannot be recognized in sub-exponential length by G-programs, wh en G E 

G p * Gnil,k while it is an easy exercise to show that they are recognizable in 

polynomial length by a program over a group in G p * G nil ,k+l. Fnrth(~rmore, 

for every k the function Eh can be computed by a linear length program over 

U and thus N::odp(U) = O(n) for all constant k. Henee U cannot be recognized 

by a sub-exponentiallength program over a group in G p * G nil . o 
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While length lower bounds for G-programs AND remain the ultimate goal, 

it should be noted that no super-linear bounds exist for an explicit function in 

NP if G is solvable but not in G p * Ab. 

4.5 Conclusion and Open Problems 

We have established a number of classification results for the communication 

complexity of regular languages and monoids and have shown their importance 

as means of understanding both the power of communication complexity models 

and the power of monoids as language recognizers. Our results further stress 

the importance of the varieties DO and its subclasses, in particular DO n G nil 

and DO n Ab which we will again encounter in the context of our next chapter. 

We believe that this algebraic approach to communication complexity could 

and should be explored further and present sorne open questions pertaining to 

it. 

4.5.1 Towards a MuItiparty Analog of Szegedy's Theo
rem 

The worst-case partition k-party communication complexity of a language J( ç 

An is, as the terminology suggests, the maximum over aIl k-partitions of [n] = 

SlUS2U ... USk of the k-party communication complexity of determining if w E 

An belongs to J( wh en player Pi has the letter of w indexed by Si written on his 

forehead. We mentioned in this chapter's introduction the following spectacular 

theorem due to M. Szegedy: 

Theorem 4.48 ([Sze93]) A language J( has bounded worst-case partition two

party communication complexity if and only if it can be recognized by a pmgm:m 

over a commutative monoid. 

Such a connection between programs and communication complexity is com

pletely unexpected and the pro of of this result is difficult. On the other hand, 
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its content is so rich that it is important to consider possible extensions of the 

theorem. 

It seems hopeless to find a "program-over-monoid" characterization of lan

guages with, say, logarithmic two-party communication complexity sin ce MA

JORITY has logarithmic communication complexity but presumably cannot be 

computed by a program over any solvable mono id and provably cannot be com

puted by a program over a monoid DO n Ab. It is quite possible on the other 

hand that a multiparty analog of Szegedy's Theorem exists. In the l'est of this 

subsection, we want to argue in favor of the following conjecture. 

Conjecture 4.49 For any L ç A *, there exists a constant k such that Dk (L) = 

0(1) in the worst-case partition if and only if there exists r S'Uch that L can be 

recognized by an r-program over some M in DO n Gni!' 

One direction of Szegedy's Theorem is quite straightforward: if L can be 

recognized by a pro gram over a commutative monoid then, regardless of the 

input partition, Alice can compute the product of the outputs of instructions 

querying input letters that she has access to. Sending this value to Bob requires 

only log 11\11 bits and this is sufficient information for Bob to determine the value 

of the program's output. Note that it is crucial to consider only I-programs for 

otherwise certain instructions might be querying both input letters known only 

to Alice and input letters known only to Bob. 

Similarly, we can establish the easy half of our conjecture: 

Lemma 4.50 If there exists r such that L ç A * can be recognized by an r

program ove'f' some M in DO n Gni! then the'f'e exists a constant k s'Il,ch that 

Dk(L) = 0(1) in the worst-case partition. 

Proof. Let cp be the 'f'-program over M recognizing L. Since M lies in DO n 

Gni!, we know that there exist t such that the program accepts x if and only 

if cp(x), wh en viewed as a word in M*, belongs to sorne disjoint union of rv~l,t 
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classes for sorne nilpotent group G of class d. In the case r = 1, we can use a 

variant of the protocol described in the pro of of Lemma 4.29 to do this but if 

r > 1 then the value of a particular instruction may be unknown to as many as 

r players and we have to be more careful in our implementation of this strategy. 

We choose a number of players k = (1 M 1 + t + 1) . r . d + 1. Let us consider J'v1 

as an alphabet and show that for any W E 1'\,1* and any x E A *, these k players 

can check in 0(1) communication if W "'ltfl,t cp(x). We argue by induction on 

s = 11111 + t. This is trivially true for s = 1. If s > 1, we distinguish two cases. 

First if t = 0, then the players need to verify that w and cp(x) are G-equivalent. 

Since G is nilpotent of class d, this can be done by counting, modulo sorne q, 

occurrences of subwords of length d in cp(x). Any such occurrence is the result 

of at most d instructions and its existence is thus known to aU but r . d players, 

regardless of the input's partition. Since k is greater than r . d, the counting of 

these occurrences modulo q can be done using only 0(1) communication. 

If t > 0, the players can check in 0(1) communication that w "'~I,t-l 

cp(x) (by induction) and that a(w) = a(cp(x)) (because k > r). The difficulty, 

of course, lies in verifying that for any 'rn E w if w = WO'rnWl is the 'rn-left 

decomposition of w, then the 'rn-left decomposition of cp(x) = 'UO'rn'Ul is such 

that Wo rv~l_l,t Vo and Wl "'~I,t-l Vl' For a given input x to the program and 

a given partition of this data, our k players can vote on the set of players which 

hold (on their forehead) one of the in pu t letters queried by the first instruction 

in cp that, in their opinion, outputs a given 'rn E a(cp(x)). Note that this vote 

only requires each player to send T' pog k l = 0(1) bits. 

The players that do not hold any of these r letters will, of course, aU agree. 

Because k > 2r + 1, a majority of players (at least k' = (I.MI + t) . 'f' . d + 1 

of them) will thus identify a subset of at most T players with these letters of x 

written on their forehead and will know that the 'rn-left decomposition of cp(x) 

is VO'rnVl. These k' players need to verify Wo "'~I-l,t Vo and Wl "'~I,t-l VI and 
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this can be done, by our induction hypothesis, at 0(1) cost since '/),0 and 'Uo are 

also outputs of an M-program. Left-right symmetry completes the proof. 0 

The technicality of this proof might be se en as a bad omen: Surely if the 

"easy" half or our conjecture is difficult to establish then we should expect that 

proving the second half, if it is true at aIl, will be extremely hard, if not out 

of reach. Such pessimism can be tempered: first our last proof is, at least 

conceptually, not so complicated. Secondly, our results of Chapter 3 show that 

DO n G nil is reasonably well-behaved with respect to programs. In particular, 

this program-variety has the polynomial-Iength contraction property and this 

could be a useful tool. Furthermore, we have the advantage of knowing very 

good combinatorial descriptions oflanguages recognized (via morphisms) by this 

variety. It is worth noting that we know of no language with bounded k-party 

communication complexity which cannot be easily shown to be recognized by 

an r-program over DO n Gnil. 

As a first step towards this conjecture, it might be easier to establish the 

conjecture in the restricted case where L has a neutralletter. This would follow 

if we could show, for instance, that r-programs over DO n G nil have the Crane

Beach property. It is clear that progress towards this conjecture will require a 

very good understanding of the combinatorics of the multiparty model. 

4.5.2 Further Bounds for Regular Languages 

Another very intriguing open question concerns the non-deterministic commu

nication complexity of regular languages. Attacking this question from an al

gebraic angle will require a refinement of our techniques since sorne regular 

languages have a non-deterministic communication complexity exponentially 

smaller than their complement. This means that we cannot find tight bounds 

for N1(L) by sim ply looking at the algebraic properties of M(L). However, it is 

easy to show that the class of regular languages with non-deterministic commu-
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nication complexity OU) is closed under positive Boolean operations, inverse 

homomorphisms and left-right quotients, i.e. that it for"ills a positive variety of 

languages (see e.g. [Pin97]). Correspondingly, NI (L) is thus determined by al

gebraic properties of L's ordered syntactic monoid. We have already established 

that, in the two-party case, a regular language has logarithmic deterministic 

communication complexity if and only if it is a disjoint union of unambiguous 

concatenations of languages with commutative syntactic monoids and that it 

has logarithmic MODp-counting complexity if it is a disjoint union of prod

ucts with p-counters of languages with commutative syntactic monoids. It is 

tempting to conjecture the following characterization for the non-deterministic 

two-party model: 

Conjecture 4.51 Let L ç A* be a regular language with NI = M(L). Then 

0(1) if and only if M(L) is commutative; 

8(logn) if and only if M(L) is non-commutative 
NI (L) = but L is the disjoint union of languages 

LOalLl . .. akLk with M(L i ) comrmdative; 
8(n) otherwise. 

Because Greater Than has linear non-deterministic two-party complexity, 

it is possible to show N 1(L) = D(logn) whenever M(L) is non-commutative. 

The non-deterministic upper bound for languages of the form LOalLl ... akLk 

with M(L i ) commutative can be obtained in a way similar to the proto col given 

in the proof of Lemma 4.10: God first proposes factorization of the input w as 

uOal Ul ... akuk by sending, at logarithmic cost, the positions of the k bookmarks 

and Alice and Bob then check the validity of this factorization by verifying, at 

constant cost, that 'Ui E Li for each i. On the other hand, the linear lower bound 

probably requires both subtle algebraic calculations and non-deterministic com

munication complexity lower bounds that are of a different nature than the ones 

for Inner Product and Disjointness. A curious corollary of this conjecture would 

be that if Lis regular then D(L) = 8(max{N1(L),NO(L)}). 
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There are of course many questions left open in the multiparty case. We 

have already mentioned open problems about the k-party communication com

plexity of piecewise testable languages, the exact k-party complexity of B2 and 

U among others. AlI our results focus on the case where the number of play

ers is fixed independently of the input's length but it is of course natural to 

consider the case where k is a function of n. Currently, no non-trivial bound 

is known for the communication complexity of an explicit function when k is 

polylogarithmic in n. Such bounds would be extremely interesting since it has 

been observed [HG90] that, from the results of [Ya090, BT94], any f E ACeo 

has polylogarithmic simultaneous multiparty communication complexity if the 

number of players is polylogarithmic. 

FinalIy, it is possible that the algebraic approach will also be fruitful in 

the study of quantum communication complexity. This model introduced by 

A. Yao [Ya093] generalizes the probabilistic model by allowing Alice and Bob to 

exchange qubits. It has attracted considerable attention in the last ten years and 

it is still unc1ear how its power differs from the c1assical communication models 

[TS99]. It is known that Inner Product modulo 2 still has linear communication 

complexity in this model [CvDNT99] and it would be interesting to translate 

this to a linear lower bound for any regular language L wi th M (L) in D S - DO 

or outside Ab using the methods developed in Section 4.2. 



Chapter 5 

Satisfiability of Equations over 
Semigroups 

Algorithmic questions concerning the resolution of equations over finitely pre

sented groups is a central con cern in combinatorial group theory. For instance, 

a recent result of C. Gutiérrez shows that the problem of checking the satisfia

bility of an equation over the free group lies in PSPACE [GutOO]. One may also 

view the famous DISCRETE LOGARITHM problem as a simple group equation. 

In each of these contexts, the group is, at least implicitly, given as part of the 

input. 

On the other hand, M. Goldmann and A. Russell studied in [GR99] the re

lationship between the algebraic properties of a finite group and the complexity 

of determining the solvability of an equation or a system of equations over that 

fixed group. They showed that determining whether a system of equations over 

G has a solution is NP-complete for any non-Abelian G and polynomial time 

computable for any Abelian G. For the case of a single equation, however, they 

could not establish a complete dichotomy: they proved on one hand the NP

hardness of determining the solvability of an equation over a fixed non-solvable 

group and, on the other hand, showed that the problem was polynomial-time 

computable, and in fact computable in ACCo, for nilpotent groups. The case of 

solvable, non-nilpotent groups, however, was left open. Interestingly, the upper 

133 
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bound for nilpotent groups is obtained by studying the complexity of determin

ing whether a given n-input G-program outputs a specific element g of G for 

sorne input x E {O, l}n. 

In this chapter, we extend this work in a number of directions: we inves

tigate the complexity of checking the satisfiability of programs, equations and 

systems of equations over monoids and, more generally, of semigroups. The re

sults in the case of programs and single equations complete the picture sketched 

by Goldmann and Russell by further uncovering the tight relationship between 

these questions and the ones about the expressive power of programs and ex

pressions over particular varieties of monoids. The case of systems of equations, 

on the other hand, is tightly connected to the constraint satisfaction problems, 

a well-studied framework used to analyze the complexity of a wide range of 

combinatorial problems. 

We can also relate our work to that of O. Klima and J. Srba about the 

complexity of UNIFICATION and MATCHING in idempotent semigroups [KSOO, 

Klf02, Kli03a]. These problems are equivalent to testing the satisfiability of 

certain equations over a free idempotent semigroup satisfying sorne fixed set of 

identities. More recently, O. Klfma has considered the problem of solving certain 

systems of two equations over a fixed monoid [Kli03b] in order to understand 

the corn pl exit y of checking if a monoid satisfies a given identity. 

The chapter consists of two independent parts. Results of Section 5.1 concern 

satisfiability problems for single equations and programs over monoids. They 

were, for the most part, published in [BMM+OO] and obtained in collaboration 

with D. Barrington, P. McKenzie, C. Moore and D. Thérien. The results of 

Section 5.2 concern systems of equations over monoids and semigroups and 

arose from further work with C. Moore and D. Thérien [MTT01] and subsequent 

collaboration with Ondf"ej Klîma [KTT03]. l am particularly indebted to Ondf"ej 

for Lemma 5.26. 
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5.1 Single Equations and Programs 

5.1.1 Introduction 

Forrnally, an equation over a finite rnonoid M is given as: 

where Ci, dj E M are constants and the Xi 's are variables, not necessarily dis

tinct. The EQUATION SATISFIABILITY problern for M (which we will denote by 

EQN!vI) is to deterrnine whether a given NI -equation has a solution i. e. to deter

mine whether one can assign values in M to the variables such that the equation 

is satisfied. Sirnilarly the TARGET-EQUATION SATISFIABILITY problern for NI 

(denoted T-EQN!vI) is the special case of EQN!vI where the right-hand side of 

the equation is free of variables and thus consists of a single constant which 

we call the target (we will refer to these as equations with targets). Clearly, 

T-EQN!vI and EQN!vI are equivalent problerns wh en M is a group. 

We will be considering NI-prograrns over a binary input alphabet. In this 

case, we write instructions in our prograrns as (i, ma, md with i E [n] and 

Tno, ml E M. Such an instruction queries input bit Xi and outputs m Xi • An 

instance of the PROGRAM SATISFIABILITY problern for /v1 (denoted P-SAT!vI) 

consists of an n-input M-prograrn 

and a target elernent m E M. The problern is to deterrnine whether there exists 

sorne X E {a, l}n such that cjJ(x) = m. Note that this is always at least as hard 

as deterrnining the satisfiability of an equation with target. 

Lemma 5.1 For any M, we have 

and 
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Proof. Suppose the equation COXi1 Cl ... Xin Cn = s has t variables. It can 

be satisfied if and only if the following M-program over the t . IMI variables 

Yl , ... ,}t'IMI can reach the target s: we replace every constant Ci by the in

struction (Yl , Ci, Ci) and each occurrence of the variable Xi by a sequence of 11111 

instructions querying variables Yk1 , ... 'YkIMI of the form 

where ml, ... , miMI are the IMI elements of M. Note that for any m E M, 

there is an assignment of the Yk's such that this sequence of IMI instructions 

evaluates to m. 

A similar construction allows the encoding of a system of two target-equa-

tions 

{ 

CO./Yij Cl ... '/Yin Cn = S 

dOXjj Cl ... XjpCp = t 

as a program over M x M. The first half of the program encodes the first 

equation as in the above paragraph by using only the first copy of M: constants 

Ci are now replaced by (YI, (Ci, lM), (Ci, lM)) and variables become blocks of 

instructions of the form 

Similarly the second half of the program uses the second copy of M. The 

crucial observation however is that if a variable X occurs in both equations 

then for any setting of the variables Y, the program segments corresponding 

to an occurrence of X in the first half will evaluate to (lM, m) if and only if 

the segments corresponding to X in the second half evaluate to (m, lM). The 

system of equations is thus satisfiable if and only if the program can reach the 

target (s,t). To explicitly complete the reduction from EQNM to P-SATMxM, 

it suffices to note that El = E 2 is satisfiable in M if and only if there is m E 1\11 

such that the system 
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is satisfiable. o 

Despite the apparent similarity of T-EQN and P-SAT, we will see that the 

converse of this lemma is not true unless P equals NP and we will try to 

understand how and why T-EQN M and P-SAT M differ in complexity. It should 

be noted that aIl three problems defined above lie within NP since it is easy to 

check in polynomial-time, and in fact in Nel
, whether a particular assignment 

satisfies a given equation or program. 

As a start, it is useful to understand whether upper bounds for program 

or equation satisfiability over a certain NI can translate into upper bounds for 

satisfiability problems over divisors of M or M x M. 

Lemma 5.2 1. If N is a submonoid of M then P-SATN :;'p P-SATM and if 

N is a morphic image of M then P-SATN :;.~t P-SATM . 

2. rI" N is a morphic image of M then T-EQNN :;.~t T-EQNM . 

3. For any M, N, we have 

and 

Proof. 

1. A program cP over a submonoid N of M is simply a program over M where 

the output of each instruction lies in N and so any algorithm for P-SAT M 

is an algorithm for P-SATN . 

Suppose now that there is a surjective morphism 'IjJ : M --+ N. For a 

given an n-input N-program cP, we can obtain a (not uniquely defined) 

M-program cP' by replacing the elements of N output by instructions of cP 
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by arbitrary pre-images of them under 'ljJ. Thus, for each x E {a, 1 Vt, we 

have 'ljJ(rj/(x)) = rjJ(x) and so there exists x with rjJ(x) = t if and only if for 

sorne m E M where rjJ(m) = t there exists x with rjJ'(X) = m. 

2. A similar argument can be used: if 'ljJ (M) = N, then gi ven an N -expression 

E, we can obtain an M-expression E' by replacing every constant in E by 

sorne arbitrary pre-image. Then E = t is satisfiable if and only if there is 

a pre-image m E M of t such that E' = m is satisfiable. 

3. This last part simply follows from the observation that an equation over 

the direct product M x N is simply a pair of completely independent 

equations over M and N respectively. 

D 

Consequently, the class M p = {M : P-SATM E P} is closed under division, 

M TE = {NI: T-EQN M E P} is closed under direct product and morphic images 

and ME = {NI: EQN M E P} is closed under direct product. As we will see, 

the latter two classes do not form varieties. Intuitively, ME might not be closed 

under submonoids because when we can check satisfiability of equations over the 

larger monoid M no mechanism can guarantee that the variables are assigned 

only values in the submonoid. This motivates the following definition: 

Definition 5.3 A subset T of M is said ta be inducible if there e:Eists an NI

expression E in k variables such that the image of E (that is {m : for sorne 

x E M k , E (x) = m}) is T. 

The following is an easy observation due to [GR99]: 

Lemma 5.4 If N is an inducible submonoid of M, then EQNN -:5:p EQNM and 

T-EQNN -:5:p T-EQNM · 
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On the other hand, M p is closed under division but might not be closed 

under direct product. We can certainly view a program over NI x N as a pair 

of programs on M and N respectively which are both satisfiable if the original 

program is, but, conversely, there is no obvious way to check whether the sets of 

satisfying assignments for each of them are disjoint or not. We will come bad: 

to these issues in Subsection 5.1.4. 

5.1.2 Groups 

As we stated earlier, it is shown in [GR99] that T-EQNc (and thus EQNc) 

are NP-complete for any non-solvable group G. As an immediate corollary, we 

also obtain the NP-completeness of P-SAT c for non-solvable G. The latter is 

not surprising in light of Barrington's Theorem: the satisfiability problem for 

programs over a non-solvable group is equivalent to the satisfiability problem 

for NCl circuits, which is NP-complete. In fad, the problem is already NP

complete for depth two ACo-circuits (by Cook's Theorem). Similarly, other 

results about the complexity of P-SAT for restricted classes of monoids can be 

interpreted as results about the complexity of checking satisfiability for circuits 

of Cl, corresponding class. 

Goldmann and R,ussell also showed that for a nilpotent group G, P-SAT G 

(and thus T-EQNc) was computable in polynomial time. Theil' proofis centered 

around the following fact: 

Proposition 5.5 [PT88} Let cp be an n-input program over a nilpotent group G 

and g an arbitrary element of G. There exists a constant dG such that if there 

exists some x E {a, l}n where cp(x) = g then there exists a y E {a, l}n ofweight 

at most dG su ch that cjJ(y) = g. 

In other words, if a P-SAT G instance is satisfiable, then it can be satisfied 

by one of the Lt~l C:) = O(ndc ) n-bit strings of weight at most dG' Since this 
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set has polynomial size a "brute force search" approach can be used to check 

satisfiability in polynomial time. 

This proposition also shows that a program over a nilpotent group G cannot 

compute the AND of more than dG variables. We mentioned in the introduction 

and in Chapter 3 that the AND-function is not believed to be comput able even 

by a program of sub-exponential length over any solvable group although this 

conjecture has only been proved for a small subvariety of solvable groups (see 

Chapter 3 and Section 4.4). 

Definition 5.6 A finite group G is AND-strong if there exists a G-program of 

polynomiallength computing AND and is AND-weak if any G-program comput

ing the AND of TI, variables requires length O(cn ) for sorne c > 1. 

From Barrington's Theorem we know that aIl non-solvable groups are AND

strong while the results of [BST90] show that the wreath product of a p-group 

and an Abelian group is always AND-weak. The following shows that, similarly 

to the nilpotent case, the lack of expressiveness of AND-weak groups can be 

exploited to obtain good algorithms for P-SAT. 

Theorem 5.7 If G is AND-weak then P-SAT G is solvable in quasi-polynomial 

time. 

Pro of. We claim that if a program in s variables over G can be satisfied, then 

it can be satisfied by an assignment of weight logarithmic in the length of the 

pro gram (Recall that the weight IxiI of x E {O, 1} * is the number of 1 's in x). 

Suppose that this is not the case. Let w be a satisfying assignment of minimal 

weight, with Iwll = k. Assume without loss of generality that the first k bits of 

w are 1. By fixing Xk+l, ... ,Xs to 0, we obtain a k-input program 'ljJ over G. 

This program outputs s wh en aIl its input bits are 1, but since w was assumed 

to have minimal weight, the output of'ljJ is not s otherwise. In other words, 'ljJ is 
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computing the AND of k bits. Since G is AND-weak, we must have n 2: 2!1(k), so 

k :::; O(logn). It is thus sufficient to consider only the O((o(l~gn))) = O(n°(Iogn)) 

assignments of weight at most k, sowe have a quasi-polynomial time algorithm. 

o 

Many solvable groups, however are not known to be AND-weak, so it would 

be preferable to obtain upper bounds on the complexity of P-SAT for solvable 

groups independently of assumptions on their computational power but the 

following theorem shows that the two questions are probably too closely tied to 

allow it. 

Theorem 5.8 If G is AND-strong, then P-SAT CoGk is NP-complete for the 

wreath prodv,ct Go Ck for any cyclic group Ck with k 2: 4. 

Proof. We want to build a reduction from 3-SAT. Define the function f 90 ,91 : 

Ck ~ G as 

{
go if x = ° 

f 90 ,91 (x) = gl if x # ° 
AIso, denote by id the function such that id(x) = 1c for all x ECk' Consider 

now the following 3-input program over Go Ck 

cP = (1, (id,O), (id, 1)) (2, (id,O), (id, 1)) (3, (id,O), ('id, 1)) 

(1, (fgO,gl' 0), (fgO,gl' 0))(1, (id, 0), (id, -1)) 

(2, (id, 0), (id, -1)) (3, (id, 0), (id, -1)) 

First note that the Ck component of cP's output will always be O. Note also that 

the middle instruction's output is independent of the value of the bit queried. 

It is also the only instruction affecting the GGk component of the output. This 

component is a function f such that f(O) = gl if one of the input bits is on 

and f(O) = go otherwise. To see this note that wh en we execute the middle 

instruction, the product in Ck so far is not equal to zero if and only if one of 
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the instructions yielded a +1. Thus, cp is recognizing the OR of these three 

variables. 

Suppose the 3-SAT instance has m clauses. By assumption there is a G

program of length me that computes the AND of m variables. If we replace 

every instruction (i, go, gd by a program over Go Ck as above, we obtain a 

program of length 7· me which is satisfiable if and only if the 3-SAT instance is 

satisfiable. o 

The wreath product of two solvable group is itself solvable and the proof 

of Theorem 5.7 cau be used to show that super-polynomial lower bounds on 

the length of programs recognizing the AND over a group G translate into sub

exponential upper bounds on the time complexity of P-SAT c. Thus, assuming 

that no sub-exponential time algorithm can solve an NP-hard problem, there 

exists an AND-strong solvable group if and only if there exists a solvable group 

for which P-SAT is NP-complete. 

By Lemma 5.1 we now have upper bounds for T-EQNc for AND-weak G's 

but it is not known whether the hardness result on P-SAT OoC" for AND-strong 

G's can translate into hardness for, say, T-EQNoock . On the other hand, if aU 

solvable groups are AND-weak, as we conjecture, then this is unimportant. 

5.1.3 Aperiodic Monoids 

In light of the group case, one might hope to prove a converse to Lemma 5.1 

and show equation satisfiability and program satisfiability to be polynomiaUy 

equivalent but we show in this section that there exist aperiodic monoids f'/l such 

that P-SAT M is NP-complete but EQN M is in P. Furthermore, we characterize 

the c1ass of aperiodics for which P-SAT is NP-complete. 

Lemma 5.9 For any monoid NI in DA, P-SATM , T-EQNM and EQN M alllie 

in P (in jàct in ACO J. 
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Proof. By Lemma 5.1, it suffices to prove the upper bound for P-SAT. Let 

cp be an n-input M-program of length land F ç M be a target set. The set 

{w : w E M* and eval M (w) = m E F} can be expressed as the finite disjoint 

union of unambiguous AÔa1Ai ... akAk with ai E M and Ai ç M. 

Rence it is sufficient to consider the at most (k) k-tuples of instructions of 

cp that could be held responsible for the presence of the subword a1a2 ... ak in 

cp(x). For each of them, we need to check if there is an assignment such that 

the output of the program belongs to Aôa1Ai ... akAk and that can clearly be 

done in linear time. 

In fact, this brute force approach can easily be implemented in ACa since the 

evaluation of the product of n elements in an aperiodic monoid is comput able 

in ACa [BT88]. o 

If we turn our attention to aperiodics outside of DA, the first ex amples to 

consider are of course U and B 2 . 

Lemma 5.10 T-EQN B2 is NP-complete. 

Proof. We use a reduction from 1-3sAT. Each variable Vi in the 1-3sAT 

instance is represented by two variables vt and vi representing Vi and its com

plement in the equation. We build the following equation with target ab. First, 

we concatenate, for each i the segments abvtvibvivtb and for each clause e.g. 

(Vi, Vj, Vk) we concatenate abvtvjvtb. 

It is easy to see that the first half of the equation forces us to choose one of 

vt, vi as 1 and the other as a. If we now interpret a as TRUE and 1 as FALSE, 

the equation is satisfiable if and only if we can choose assignments to the Vi 

snch that in every segment e.g. abvtvivtb exactly one of the variables is set to 

a. D 

Thus, P-SAT B2 is also NP-complete. Furthermore: 

Lemma 5.11 P-SATu is NP-complete. 
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Proof. We essentially use the universality of U discussed in Chapter 3. We have 

already seen that the program cPi = (il, b, ba)(i2' 1, a)(i3, 1, a) ... (i k , ba, a) (over 

U) outputs ba if one of the X ij 's is set to 1 and 0 otherwise. By concatenating 

such cP/s we get a program whose output is ba if aIl cjJ/s have one of their input 

variables set to 1 and 0 otherwise. So we can simulate a CNF formula and 

obtain a reduction from SAT. D 

Using Lemma 5.2, we thus obtain the following dichotomy: 

Theorem 5.12 If M is aperiodic then P-SATM lies in P if M is in DA and 

is NP-complete otherwise. 

It is tempting in light of Lemma 5.10 to conjecture that the same dichotomy 

also holds for equation and target-equation satisfiability. This is however not 

the case: 

Theorem 5.13 EQNu and T-EQNu can be decided in polynomial time. 

Proof. We first provide a polynomial time algorithm for T-EQNu and crucially 

use the fact that, in U, axa = a whenever x f O. Intuitively, we use the fact 

that a's are our friends. In particular, we have that if xyz = a then xaz = a. 

We will show that for any target, if the equation is satisfiable then it can 

be satisfied by an assignment with a very precise structure. We are given the 

expression E : COXi1 Cl ... X in Cn and a target m. 

If m = 0, the equation is trivially satisfiable by setting any variable to 0, 

and if m = 1, it is satisfiable if and only if aIl the c/s are 1. Since the equation 

is 0 if any of the Ci is 0, we will assume that the constants are non-zero. 

If m = a, then E is satisfiable if and only if it is satisfied when aIl the 

variables are set to a, namely when we have both Co E {l, a, ab} and Cn E 

{l, a, ba}. 

If m = ba, and E can be satisfied, th en it can be satisfied by one of the 

o (n) assignments of the following form: aIl the variables occurring before sorne 
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point j in the equation (which might be a constant or a variable) are set to 

1, the variable at point j is set to ba and the other variables are set to a. To 

see this, consider any satisfying assignment to E. If the first b in the induced 

string cornes frorn a constant, then aIl the variables occurring before it must 

have been set to 1. Moreover, aIl we have to insure now is that there are no 

consecutive b's in the suffix. 80 we can set aIl the variables that haven't yet 

occurred to a without affecting the target. If the first b occurs in a variable, 

the same reasoning shows that we can set this variable to ba and the variables 

not yet considered to a. 80 it is sufficient to check a linear number of possible 

assignments to decide satisfiability. The case m = ab is handled in a sirnilar, 

symmetrical way. 

FinaIly if m = b, it suffices to consider the foIlowing O(n2
) assignrnents: 

variables occurring before sorne j or arter sorne k are set to the identity, the 

variable at point j is set to ba or b, the one at point k to ab or b, and aIl remaining 

variables are set to a. Again, if we now consider any satisfying assignment and 

calI j and k the first and last occurrence of b in the induced word over ./11/*, 

then we know that aIl variables occurring before j or after k were set to 1. The 

variable or constant at point j must be b or ba, the one at point k being b or ab 

so we still have a satisfying assignrnent if we set the rest of the variables to a. 

The algorithrn can easily be adapted to handle equations with variables on 

both sides. o 

8ince B 2 belongs to the variety generated by U this shows that neither 

ME nor M TE forrn varieties. This also shows that B 2 is not inducible1 as 

a subrnonoid of U x U. In [GR99], the notion of inducibility was needed to 

complete the NP-completeness proof of T-EQNc in the case of non-solvable 

groups G and our result gives indication that this was a necessary evil. 

lStrictly speaking, this is under the hypothesis that P is not NP, although this can probably 
be proved directly. 
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5.1.4 A Look at the General Case 

Getting necessary and sufficient conditions for the tractability of pro gram and 

equation satisfiability already seems difficult, if not impossible, in the basic cases 

of groups and aperiodics. In this subsection we prove sorne partial results for 

monoids in general and try to further understand what differentiates program 

satisfiability and equation satisfiability. 

We start with an easy generalization of the hardness results for non-solvable 

groups. 

Theorem 5.14 If M is non-solvable then P-SATM , EQNM and T-EQNM are 

all NP-complete. 

Proof. The result for P-SAT is an immediate corollary of the NP-completeness 

of P-SAT c for non-solvable groups Gand Lemma 5.2. Similarly, if G is a non

solvable subgroup of M with idempotent e then the expression exe induces the 

submonoid eM e. Any target-equation over C, say 

can be viewed as an equation over eM e. If it is satisfiable in eNI e then a 

satisfying assignment must set variables on the left-hand side to values .J-above 

the target 9 and thus tl-related to e. In other words, the equation is satisfiable 

over eMe if and only if it is satisfiable in G. Hence we have T-EQNc ~p 

T-EQNeMe ~p T-EQN M ~p EQN M and so the latter two are NP-complete. 0 

The proof of Lemma 5.9 used crucially the combinatorial characterization 

of languages with syntactic monoids in DA and it it perhaps not too surprising 

that this argument can be generalized to subclasses of DO. 

Lemma 5.15 If M E DO n G nil then P-SATM , EQNM and T-EQNM alllie 

in P (and in fact in A CCfJ). 
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Proof. Because of Lemma 5.1 it is again sufficient to establish the upper 

bound for P-SATM . Let 4> be an n-input M-program of length land F ç M be 

a target set. The set {w : w E M* and evalM(w) = m E F} can be expressed 

as the finite disjoint union of unambiguous LÔa1Li ... akL'k where the Li are the 

intersection of sorne Ai with Ai ç M and sorne language Ki recognized by a 

nilpotent group. 

For the at most G) k-tuples of instructions of 4> that could be held responsi

ble for the presence of the subword ala2 ... ak in 4>(x), we need to check ifthere is 

an assignment such that the output of the program belongs to LÔa1Li ... akL'k. 

As a first step we check for each input variable Xj whether setting it to 0 or 1 

causes sorne instruction to throw us out of one of the Ai 's. This process forces 

an assignment on sorne of the variables (or possibly even proves that the target 

is unreachable given this particular k-tuple) and leaves other free. 

What we are left with can be thought of as a system of k + 1 programs over 

nilpotent groups. The k-tuple chosen previously naturally defines k segments 

4>0,4>1, ... ,4>k of the program which, after our initial computation, are now n'

input programs for sorne n' ::s: n. We are searching of course for sorne x' E 

{o,l}n' such that for aIl 1 ::s: j ::s: k we have 4>'i(X') belongs to the nilpotent 

group language Ki, We can reuse a trick of the proof of Lemma 5.1 to argue 

that this is no harder than a pro gram satisfiability problem over the nilpotent 

group l\II(Ko) x l\II(Kd x ... X l\II(Kk ) which, by the result of [GR99] is doable 

in polynomial time. 0 

Indications of hardness for P-SATM when M lies outside DO n Gni! are 

scarce. Just as we have shown NP-completeness for non-solvable M's, we can 

extend our results about aperiodics easily to show: 

Lemma 5.16 If M is not in DS then P-SATM is NP-complete. 

We are however unable so far to provide any indication of hardness for either 

P-SATM or EQN M when M is in DS - DO. 
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P is closed? Direct products Factors Subs 
MTEnG YES YES ? 

MTEnA YES YES NO 
M TE YES YES NO 

MpnG ? YES YES 
MpnA YES YES YES 

M p ? YES YES 

Table 5.1: Closure properties of M TE and M p. 

Our results so far have also indicated that beyond their apparent sim

ilarities, the tasks of checking satisfiability for programs and for equations 

present different computational challenges. In particular, Table 5.1 sums up 

the known closure properties of the classes M TE = {M : T-EQN M E P} and 

M p = {M : P-SATM E P} and they are quite different. It should be noted 

that although M p nAis known to be closed under direct products we have no 

direct proof of this facto 

5.1. 5 Open Pro blems 

Our results establish a close connection between the algebraic properties of a 

finite monoid M, its power as a language recognizer and the complexity of re-

solving equations or programs over M. Many questions remain open, however, 

the most important of which is the complexity of P-SAT in the case of solvable 

but not nilpotent groups. Of course, we have tied the full resolution of this 

question to lower bounds for CCO circuits but progress on this problem can be 

made in other ways. For instance, we cannot rule out that there exists a better 

way to use the hypothesis that a group is AND-weak in order to surpass our 

quasi-polynomial time upper bound P-SAT G. We conjecture that this is not 

possible. Certainly, any indication that P-SAT G is not in P for non-nilpotent 

AND-weak groups would be of great interest. Note that our current algorithm 

puts, for instance, P-SAT S3 in the complexity class N pUog
2n

J of problems which 
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can be decided by a polynomial time non-deterministic Turing machine that is 

using only o (log2 n) bits of non-determinism (see e.g. [DF97, GLM96]). Per

haps, P-SAT S3 can actually be shown complete for this class or at least hard for 

sorne sm aller class of bounded non-determinism. 

Another outstanding problem is the complexity of P-SATM when IVI is in 

DS-DO. We believe that the problem is NP-complete also in this case. In light 

of our proof that monoids in DS - DO are universal (Lemma 3.13), this would 

follow from the NP-completeness of determining if, given a CNF formula, there 

exists a truth assignment to the variables which satisfies 0 modulo p clauses 

in the formula. To the best of our knowledge, no hardness result is known for 

this problem. Obtaining indication that P-SATM is tractable if and only if M 

lies in DO n Gni! would provide an interesting parallel with our communication 

complexity results. 

We chose to study the satisfiability of programs. It would be reasonable 

to also study the equivalent of P-SAT for k-programs. The results would be 

radically different in the case of aperiodics since it is easy to prove this problem 

is NP-complete for any aperiodic if k 2:: 2. On the other hand, our upper bounds 

for nilpotent groups still hold and if a group is AND-strong then the problem 

is NP-complete for k 2:: 3. 

Finally, one can study the complexity of counting the number of solutions 

for a program-equation. This was briefty discussed in [BMM+OO], where it is 

established that the problem #P-SAT is in #L for monoids in DA but #P

complete for non-solvable monoids and for U and BA2' in simple correspondence 

with the results presented above. In particular, it seems challenging to find an 

efficient way of counting the number of assignments satisfying a certain program 

over a nilpotent group G: our CUITent algorithm for P-SAT G seems to lack the 

finesse presumably needed for the counting task. 
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5.2 Systems of Equations 

We now turn to the study of systems of equations over a given semigroup. The 

SYSTEMS OF EQUATIONS SATISFIABILITY problem over a semigroup S (abbre

viated as EQN~) is that of determining wh ether a given set of equations over 

Scan be simultaneously satisfied. We will also study the restriction T-EQN~ 

of EQN~ in which the right-hand side of each equation in the system is a con

stant. For finite groups, the problems are obviously equivalent: they lie in P 

for Abelian groups and are NP-complete otherwise [GR99]. 

Recall from Section 5.1 that T ç S is inducible if there exists an expression 

E over S such that the range of E is exactly T. Similar to Lemma 5.4, one can 

show 

Lemma 5.17 If T is an inducible subsemigroup S then EQN;' :::; EQN~ and 

T-EQN;' :::; T-EQN~. 

We will show that for any finite monoid M both EQN~ and T-EQN~ are 

either in P or NP-complete depending on whether M belongs to JI V Ab or 

not in the general case and depending on whether M belongs to RB V Ab or 

not in the case of target-equations. We prove a similar dichotomy for T-EQN~ 

when S is a regular semigroup and prove a number of sufficient conditions on 

a semigroup S for the NP-completeness of T-EQN~ and EQN~. We begin by 

pointing out a very interesting connection between these problems and so called 

constraint satisfaction problems. 

5.2.1 Constraint Satisfaction Problems 

Let D he a finite domain and r be a finite set of relations on D. To each pair 

D, r corresponds a CONSTRAINT SATISFACTION PROBLEM (CSP). An instance 

of CSP(r) is a list of constraints, i.e. of pairs Ri(Si) where Ri E r is a k-ary 

relation and Si, the scope of Ri, is an ordered list of of k-variables (with possible 
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repetitions) and we want to determine whether the variables can be assigned 

values in D such that each constraint is satisfied. As an example, the problem 

EQN~ can be seen as a CSP problem in which the domain is the semigroup S 

and r is the set of constraints definable as equations over S. 

This class of combinatorial decision problems has received a lot of attention 

because of the wide variety of problems which it encompasses and because con

straint satisfaction problems arise so naturally in artificial intelligence. CSP lies 

in NP and is easily se en to be NP-complete in general so one seeks to identify 

tractable restrictions of the problem. One might choose, for instance, to impose 

certain conditions on the structure of constraints appearing in a given instance. 

A lot of research has also dealt with identifying necessary and sufficient con

ditions on r to have CSP(r) tractable over a given domain D. This approach 

was pioneered by T. Schaefer [Sch78] who studied the CSP problem on Boolean 

domains. In this case, the problem is usually known as G ENERALIZED SATISFI

ABILITY and Schaefer proved that this problem was NP-complete unless it was 

one of six tractable special cases: 2-SAT, O-valid SAT, 1-valid SAT, affine-SAT, 

Horn-SAT and anti-Horn SAT. Affine-SAT is the case where each relation is the 

solution set of a system of equations over the cyclic group C2 . The only other 

2-element monoid is UI of course and, interestingly, we can relate the last two 

of Schaefer's tractable cases to systems of equations over UI . 

Lemma 5.18 A boolean relation is Horn or anti-Horn, i.e. expressible as tuples 

satisJying a conjunction oJ disjuncts containing each at most one un-negated 

(resp. negated) variable, iJ and only iJ it is the set oJ solutions oJ a system oJ 

equations over UI . 

Proof. Identify the element 1 of UI with TRUE and 0 with FALSE. Then the 

Horn clause Xl /\ X 2 /\ ... X n -+ y is satisfied wh en one of the Xi's is FALSE or 

wh en an Xi's and Y are TRUE. These are exactly the tuples which satisfy the 
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equation 

over UI . 

Conversely, the equation Xl··· X n 

formula: 

Yi ... Ym corresponds to the Horn 

If on the other hand we choose to identify 1 with FALSE and 0 with TRUE, 

a similar argument shows the relationship of UI systems to anti-Horn formulas. 

o 

Recently, tools from universal algebra [BKJOO, DalOO], group theory and 

relational database theory [FV99] have been used to identify classes of relations 

for which CSP is tractable and it is conjectured that for any domain D and any 

set of relations r the problem CSP(r) either lies in P or is NP-complete. Let us 

define a k-ary operation to be any function f : D k ~ D and say that a relation 

R E Dt is preserved by f if for any k t-tuples 

( d~ , d~, ... , di), ... , (d~, d~, ... , d~) 

alllying in R, the t-tuple 

(j (d~, ... , d~), ... , f (di, ... , d~)) 

is also in R. The algebraic properties of the operations that preserve every 

relation in r can be studied to determine the complexity of CSP(r). Dsing 

this approach, A. Bulatov obtained a spectacular dichotomy theorem similar to 

the one of Schaefer for domains of size three [Bll102]. It has aiso been shown 

that if the domain is a semigroup Sand r s is the set of relations preserved by 

the multiplication in S then CSP(r s) is tractable if S is a block group and is 

NP-complete otherwise [BJV02]. 
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Although our work is a priori incomparable to the results just cited, the 

mechanics of sorne of our upper bounds can be rephrased in the universal algebra 

terminology. We will also use a powerful result of [FV99]: 

Theorem 5.19 If G is a group and r is a set of relations such that for each 

REr of arity k the k-tuples in R form a coset of Gk
, then over the do main G 

CSP(r) can be solved in polynomial time. 

5.2.2 Tractable Cases 

We begin by presenting sorne polynomial time algorithms to test the satisfiabil

ity of systems of equations over simple classes of monoids and semigroups. We 

are faced with an inconvenient obstacle: if M and N are monoids such that M 

divides N we do not know how to infer upper bounds for EQN~ from upper 

bounds for EQNrv. In fact, as we will see later on, solving equations over certain 

semigroups might be easier than solving equations over sorne of their divisors. 

As usual, we will first separately treat the group case and the aperiodic case 

before combining them to get upper bounds in the general case. We first recall: 

Lemma 5.20 ([GR99]) IfG is Abelian, then T-EQNè and EQNè arc solvable 

in polynomial time. 

Remarie 5.20. The proof of Goldmann and Russell uses simple Gaussian 

elimination techniques, but this lemma can also be obtained as a corollary 

to Theorem 5.19. Indeed, it can be shown that a subset T of a group G is 

a coset if and only if uv-1w lies in T for aIl 11" v, w E T. If an equation over 

a commutative group XiI.·. Xis = 9 has solutions (11,1, ... , Un), (Vl, ... , vn ) 

and (Wl, ... , W n ) then 

- 9 
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and so the solutions form a coset of Gn. In fact, this is true even of more 

complicated relations: if His a subgroup of Gand CPI ... CPs are morphisms 

from G into H, then the relation defined by CPI (Xi)) ... CPs (xd = h also 

forms a coset in Gn. This observation will be important in two of our 

algorithms. 

Next, we consider systems over idempotent and commutative semigroups. 

Lemma 5.21 IJ S is an idempotent and commutative semigrovp then EQNs 
lies in P. 

Proof. Such semigroups are J"-trivial and the J"-ordering defines a semilattice 

on S. Our algorithm will rely on the following observation: if (Ul, ... ,1In) 

and (VI, ... , Vn ) are solutions to a system of equations E in n variables over S, 

then (UI VI, ... ,UnVn ) is also a solution to E. Indeed, using idempotency and 

commutativity, any equation in E can be rewritten as 

Using idempotency and commutativity again, we thus get 

Note that CUl'UI, ... , unvn) is the meet of ('UI, ... , 'Un) and (VI,"" 'Un) in the 

semilattice sn. 
Our algorithm maintains a lower bound Y = (YI, ... , Yn) for the minimal 

solution to E. We initialize Y as (0, ... ,0) and update it as follows. In each step, 

if (YI, ... ,Yn) is a solution to E, the algorithm halts. If not, there must be sorne 

equation2 in E, say eX'i) ... Xik = dXj) ... Xj!) such that eYi) ... Yik -=1=- dYj) ... Yjt· 

2Technically, since S is not necessarily a monoid, we cannot assume that constants c and 
d appear in this equation. This is however unimportant in our argumentation. 



5.2. SYSTEMS OF EQUATIONS 155 

Since we are maintaining Y as a lower bound to any assignment satisfying [;, 

we know that, for any satisfying assignment, the right-hand side product is 

bounded below by dYh ... Yjt. Thus, if there is sorne Yi s occurring on the left

hand side which is not J-above dYjl ... Yjt then we can update our lower bound 

by setting Yi s : = Yi s V (dYjl ... Yjt), i.e. the J -minimal element of S lying ab ove 

both Yi s and the right-hand side product3
. We do similar updates on variables 

occurring on the left-hand side which do not lie J-above the CUITent product 

on the right-hand side. 

We iterate this until we reach a fixed point for Y. The pro cess terminates 

in at most n· ISI steps since the value of Y always increases in the semilattice 

sn. If the fixed point is not a solution to the system, then we conclude that [; is 

unsatisfiable for in this case we must have an equation such that CYil ... Yi" = C 

and dY,il ... Yjt = d but C -# d. Obviously no solution to [; can then exist ab ove 

Y so [; has no solution. o 

In fact, this algorithm can be viewed as an instance of a classical result from 

the CSP literature [JCG97] showing the tractability of CSP wh en the relations 

are preserved by an associative, commutative and idempotent operation. As we 

noted in the first paragraph of our proof, the multiplication in S preserves the 

relations defined as equations over S. 

Next, we look at upper bounds for the resolution of systems of target

equations. This restriction allow sorne more leeway and we will give an al

gorithm to solve T-EQN~ over a regular band (i.e. an idempotent semigroup 

satisfying the identity abaca = abca) and use the following technical result: 

Lemma 5.22 Let S be a regular band and suppose Xl' .. Xk = sand Yl ... Yl = s 

for sorne Xi, Y'i, sES. For al! shuffies K of Xl ... Xk with YI· .. YI, we have 

K=s. 

3If no such element exists, we conclude that the system is unsatisfiable, 



156CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS 

Proof. In any idempotent semigroup, the product of two elements .1-above 

sorne u E S is also .1-above u. Hence we have K ?:r s since each X'i, Yi lies .1-

above s. On the other hand, since aIl x/s appear in K, we can use the relation 

abaca = abca to get K sK = K Xl ... XkK = K 2 = K. Thus, s ?:r K and so 

s .1 K. Furthermore, every prefix of Xl ... Xk is R-above sand so Xl ... :Eis = s 

for aIl i :::; k. 

We claim that K ?n s. Indeed, we have K s = K SXl ... XkYl ... Yl. Using 

again the relation abaca = abca, we can replace the occurrence of Xi in K on 

the right-hand side of this equation with the prefix Xl ... Xi since aIl the Xj with 

.i ::; i appear both before and after Xi. Hence K scan be written as a product 

of prefixes of Xl ... Xk or Y1 ... Yl times s. Thus K s = sand K ?n s. 

By a symmetric argument, K ?C s. Since s .1 K, we have s 1{ K and s = K 

by aperiodicity. D 

We can now prove: 

Lemma 5.23 If S is a regular band then T-EQNs lies in P. 

Proof. Our algorithm works by shrinking a list of possible values for each 

variable and implicitly uses the fact that the relations defined by equations over 

Sare closed under a set function [DaWO]. 

For each variable Xi, 1 ::; 'i :::; n, we initialize a set Ai = S of "possible values" 

for Xi and repeat the foIlowing until either the Ai are fixed or sorne Ai = 0: for 

an i from 1 to n, for each equation E involving Xi, and each a'i E Ai, if there 

exists no n-tuple (al, ... , ai, ... an) with aj E Aj that satisfies E, then we set 

Ai := A - {ai}. 

If sorne Ai is empty, the system clearly has no solution. Conversely, we are 

left with sets Ai such that for an ai E Ai and an equations E in the system, 

there are aj E Aj for an i i- .i such that the n-tuple (al, ... ,an) satisfies E. We 

claim that this guarantees the existence of a solution to the system. 
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lndeed, let ti be the product in S of all elements of Ai = {a~l), ... ,a~s;)} in 

sorne arbitrary order. Then (t l , ... , tn) satisfies aIl equations in the system. To 

see this, consider sorne equation E = XlX2 ... Xk = s. The product t l t2 ... tk is 

a shuffie of solutions to this equation by definition of the A's, so by Lemma 

5.22, the tuple (t l , . .. , tn) also satisfies the equation. 

It remains to show that our algorithm runs in polynomial time. It is sufficient 

to show that we can efficiently test whether a given equation Xl ... Xk = s has 

a solution li = (al,"" ai, ... , an) where ai is given and for each j =J- i we have 

aj E Aj. 

We will use a variant of our algorithm for EQN M for monoids in DA: since S 

belongs to DA, we know that sets S8 = {w E S*levals(w) = s} are the disjoint 

union of unambiguous concatenations S~blS~ ... btS; with Si ç S. 80 to test for 

the existence of an li as above, we need only consider, for each S~blS~ ... btS;, 

the (~) ways of placing the bï's among the k variables Xl, ... ,Xk occurring in the 

equation. To validate this choice, it now suffices to check that we have bi E Aj 

if we set Xj = bi , and, for all other variables, that the corresponding Ai contains 

at least one element which belongs to the right S/s. o 

We can combine the result of Lemmas 5.20, 5.21, 5.23 to solve, in polynomial 

time, equations over the direct product of a commutative band and an Abelian 

group and target-equation over the direct product of a regular band and an 

Abelian group. The tractability of these problems can also be shown for divisors 

of such semigroups but this requires sorne additional work. We introduce two 

definitions: 

Definition 5.24 The semigroup S is a shong semilattico of Abelian groups 

if there exists a semilattice E (i. e. a commutative band), a family of disjoint 

Abelian groups {Gele E E} and for every e, f E E such that e ?:.:J f a gro'Up 

homomorphism CPe,J : Ge -+ G f such that: 
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1. S is the union of the Ge; 

2. </Je,e = idce for aU e E E; 

3. for any e ?s f ?s d we have </J J,d 0 </Je,j = </Je,d; 

4. the multiplication in S is given by the formula 

Similarly, we say that the semigroup S is a strong regular band of Abelian 

groups if there exists a regular band E, a family of disjoint Abelian groups 

{Gele E E} and for every e, f E E such that e ?s f a group homomorphism 

</Je,j : Ge -+ G J satisfying the same properties. 

Lemma 5.25 Let S be a semigroup. The foUowing are equivalent: 

1. S is a strong semilattice of groups; 

2. S lies in JI V Ab; 

3. S is a union of Abelian groups and J = 1-l over S. 

4. S is a commutative union of groups. 

This follows from well-known facts about unions of groups (see, e.g. [How76]). 

Yet, we will sketch part of this pro of because sorne of the mechanics involved 

will be of use later on and because it is a good warm-up for the slightly more 

technical proof of Lemma 5.26. 

Proof. 

(1 =>- 2) Suppose S is a strong semilattice of Abelian groups with k: :1-

classes. Let G = IleEE Ge and consider the subsemigroup T of Ex G consisting 

of elements (f, gel' ... , gek) such that gei = 1 unless ei ?s f· We claim that S 

is a morphic image of T. 
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lndeed, define 1/J : T -t S as 

1/JU, gl, ... ,gk) = TI CPei,J(gi)' 
ei?::.J! 

Obviously, 1/J is surjective. Moreover, it is a well-defined morphism since we can 

show that 1/JU, gl," ., gk) ·1/JU', g~, ... , gD is: 

(5.1 ) 

(5.2) 

(5.3) 

ei?:.:r!!' 
1/JU J', glg~, ... ,gkg~) (5.5) 

We have (5.2) by properties 3 and 4 of Definition 5.24 and (5.3) because 

membership in T guarantees that gi = 1 unless ei :::: f. For (5.4), we use that 

G f f' is Abelian and that the cp's are morphisms. 

(2 :::} 3) is a simple exercise. 

(3 :::} 1) can be obtained as in the proof of Lemma 5.26. 

(4 <=> 1) is part of semigroup theory folklore (see e.g. [How76]). 0 

Lemma 5.26 For a semigroup S, the following are equivalent: 

1. S is a strong regular band of Abelian groups; 

2. S belongs to RB V Ab. 

3. S is an orthodox union of Abelian grov,ps such that E(S) is a regular band 

and 1{ is a congruence; 
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Proof. 

(1 =} 2) This is similar to the corresponding implication in the pro of of 

Lemma 5.25. Suppose S is a strong regular band of Abelian groups. From 

every 1i-class we pick the idempotent ei in S and the corresponding subgroup 

ai. Let G = G1 X ... X Gk be the product of aIl such groups. Our daim is 

that S is a divisor of the semigroup E(S) x G. Let T be the subsemigroup of 

S consisting of elements (e, 91, ... ,98) where 9i = 1 whenever ei is not J-above 

e. Let 'Ij; : T -t S be defined as 

'Ij;(t, 91,···, 9k) = II cPei,t(9i). 
ei'2:.Jt 

It is obvious that 'Ij; is surjective. Moreover, it is a weIl defined morphism because 

we can show 'Ij;(j, 91,.··, 9k) . 'Ij;(j', 9~,···, 9U is: 

II cPe;,!(9i)· II cPe;,J' (9~) (5.6) 
~'2:.Jf ~'2:.JJ' 

(5.7) 

II cPei,! J' (9i)· II cPe;,/ f' (9D (5.8) 
ei'2:.JfJ' ei'2:.JfJ' 

'Ij;(j j', 919~, ... ,9k9U (5.10) 

(2 =} 3) The direct product T of a regular band and an Abelian group certainly 

has these properties. They are clearly preserved under morphic images. If S is 

a subsemigroup of T, it is an orthodox union of Abelian groups such that E(S) 

is a regular band. Furthermore and because T is a union of groups, if u 1is v in 

S, then for any sES we have us1iT v s. In particular ('ILs) ('Us )w-l '/J S = 1) sand 

since (us t-1vs E S we get us 1i vs. 

(3 =} 1) This is the hardest of the three implications. Let S be an orthodox 

union of Abelian groups such that E(S) is a regular band and 1i is a congruence. 
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Then for any x, y, e E S with e idempotent we have: 

sinee e, (ex)W, (ye)W are elements of the regular band E( S). 

For any idempotents e, f E S, let Ce, Cf be the maximal subgroups of 

S eontaining e and f respeetively and define for any e ?J f the morphism 

1Je,J : Ce -+ Cf as 1Je,J(X) = fxf· Because of (1), 1Je,J is a well-defined group 

homomorphism. Clearly, 1Je,e = idoe and for idempotents d ?J e ?J f we have 

for any x E Cd: 

1Je,J 0 1Jd,e(X) = fexef = fefxfef = fxf = 1Jd,J(X). 

Clearly, S is the union of the Abelian groups Ge. Since 1l is a congruence 

on S, we have xy1lxWyw and so xy = xWyWxyxWyw. By (1) we get that the 

multiplication in S is given by 

. ww ww ww A-. ()A-. () X . Y = x Y xx Y yx Y = 'f'xW,xWyW X . 'f'yW,xWyW Y . 

o 

These structural results allow us to prove: 

Lemma 5.27 If S is a semigroup in the variety JI V Ab then EQN~ lies in P. 

Proof. We know that S is a strong semilattice of Abelian groups. Let E be 

a system of equations over S in n variables. If (Ul' ... ,'un) and (Vl' ... ,vn) are 

two solutions to E, then one can easily verify that (u1vl"'" u~vn) is also a 

solution to E. If E is satisfiahle over S, then it must he also he satisfiahle in 

S /1l = E (S) (note that 1l = J is a congruence over S since S is a union of 

groups) and sinee E(S) is a semilattiee, we can find in polynomial time the 

J-minimal solution of this system. 
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In other words, we can find in polynomial time idempotents t l , ... tn such 

that if E has a solution then it has a solution (YI, ... ,Yn) such that yi = t i for 

each 1 :::; i :::; n. We next check if such (YI, ... ,Yn) exists. 

Recall from our previous praof of Lemma 5.25 that if G = TIeEE Ge and T 

is the subsemigroup of E x G consisting of elements (j, gel' ... ,gek) such that 

gei = 1 unless ei ?J f, then S = 1jJ(T) where 

VJ(j, gl,"" gk) = TI CPei,J(gJ 
ei?J f 

Consider now the following constraint satisfiability problem over this group 

G with variables Xl,' .. , Xn. First, we constrain every Xi so that (ti, Xi) belongs 

to T. Next, we insure that the Xi are such that setting Zi = 7jJ(ti, Xi) we get a 

solution to E. It is clear that these constraints can be satisfied in G if and only 

if E has a solution. 

Now observe that, as we pointed out in our remark following Lemma 5.20, 

every relation of arity k used to build the above constraints forms a coset of G k . 

Thus, using Theorem 5.19, we can test for the existence of such Xi' 0 

As in the case of EQN~, we can exploit further the ideas presented in the 

algorithm of Lemma 5.23 to obtain an upper bound for a larger class with the 

help of our structural result. 

Lemma 5.28 If S is a semigroup in RB V Ab then T-EQN~, lies in P. 

Proof. We proceed exactly as in the praof of Lemma 5.27. We can adapt 

Lemma 5.22 to show that if we have Xl ... Xk = s and YI ... YI = s then for any 

shuffie K of Xl' .. . Tk and Yr . .. YI we have K = s. 

In particular, if E is a system of equations over S in n variables, we can use 

the algorithm of Lemma 5.23 to find idempotents t l , ... tn such that if E has a 

solution then it has a solution (Yb' .. ,Yn) such that yi = t i for each 1 :::; i :::; n. 

Once again, it remains to check if such (YI,' .. ,Yn) exist. 
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As for Lemma 5.27, we can formulate this question as a constraint satis

fiability problem over the product of all subgroups of S. Once more, every 

relation used forms a coset in sorne power of G so this problem can be solved 

in polynomial time. o 

5.2.3 Hardness Results 

Next, we obtain a number of NP-completeness results which, in sorne cases, 

will be combined with the upper bounds presented above to provide complete 

dichotomies for the complexity of EQN* and T-EQN*. Recall that in order 

to establish a hardness result on the complexity of equation satisfiability for a 

semigroup S, it is sufficient to prove the hardness results for inducible subsets of 

S. We will make extensive use ofthis fact in the arguments below. In particular, 

for any monoid M, the set of elements J (resp. [" n) below an element m is 

inducible by the expression XlmX2 (resp. Xlm, mXl). Also, for any idempotent 

e in a semigroup S, the expression exe induces the submonoid eSe and the set 

of idempotents can be induced by the expression X W
• Consequently, we will 

loosely use sentences such as "we restrict the variable Xi to be idempotent and 

J-below m" to improve the readability of our reductions. 

If m is a regular element of a semigroup S. The target equation XlyX2 = m 

can be satisfied if and only if y is J-above m. To stress the intended meaning of 

certain equations, we will sometimes write y ?.:r m in place of such an equation. 

We will use reductions from the following NP-complete problems: 3SAT, 1-

3SAT, NAE 3SAT, MONOTONE NAE3sAT and GRAPH k-COLORABILITY. The 

NP-completeness of the first four are guaranteed by Schaefer's Theorem. MONO

TONE NAE3sAT is perhaps the lesser known problem in the list: it is the variant 

of NAE3sAT in which no clause contains a negated literaI. It is sometimes pre

sented as the MONOCHROMATIC TRIANGLE problem [GJ79]. 

In the rest of this section we will systematically use M to denote a finite 
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monoid and S to denote a finite semigroup in the statement of lemmas. 

Lemma 5.29 If S is not in Ab then T-EQN~ is NP-complete. 

Proof. This is a simple corollary of the already oft-cited NP-completeness of 

T-EQNè for non-Abelian G proved in [GR99]. If G is a maximal non-Abelian 

subgroup of S with idempotent e, the expression eSe induces a submonoid in 

which every element is either in G or lying J-below e. So any system of target

equations over with targets in G is satisfiable in G if and only if it is satisfiable 

in eSe. D 

In contrast to the group case, there are commutative aperiodic monoids for 

which T-EQN~ is already NP-complete. 

Lemma 5.30 If M is aperiodic but not idempotent, then T-EQN~ zs NP

complete. 

Proof. Let m =1= m 2 be a J-maximal non-idempotent element of !VI. 

We use the following reduction from 1-3SAT: for each Boolean variable Xi 

in the formula, we create two variables X'i, X'i for the system and create equations 

Moreover, for each clause of the formula, e.g. (Xl V)(2 V X 3 ) we add the equation 

Suppose first that the 1-3sAT formula is satisfiable. Then we can satisfy 

the resulting system of equations by setting Xi = m and X'i = 1 whenever Xi is 

TRUE, and Xi = 1 and Xi = m whenever Xi is F ALSE. It is easy to see that this 

satisfies the sets of Equations (1), (2) and (3). 

Conversely, suppose that this system of equations is satisfiable. Note first 

that Equations (1) and (2) force Xi (resp. Xi) to be both R-above and L:-above 
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m. So if Xi (say) lies in m's J-class, it must be n and .c equivalent and henee 

1-l-equivalent to m. By aperiodicity, this implies in fact Xi = m. It foIlows 

that at least one of Xi or Xi lies strictly J-above m; otherwise we would have 

X'i = Xi = m, and sinee m is not idempotent this would violate Equation (1). 

Moreover, since m is J-maximal among the non-idempotent elements of M, 

whichever one of Xi, Xi is strictly J-above m must be sorne idempotent e. 

Therefore, suppose Xi = e where e > :J m is idempotent. Then Equation (1) 

gives us m = eXi = eexi = em, and similarly (2) gives m = me. Wc cannot also 

have X'i >:J m, sinee then Xi would also be idempotent, which this leads to the 

contradiction m 2 = eX'ixie = eXie = em = m. Thus Xi J m whenee X'i 1-lm and 

from aperiodicity Xi = m. 

Similarly, if Xi >:J m then Xi = m. 80 if we set Xi to TRUE when Xi = m 

and FALSE when Xi = m, Eqs. (1) and (2) insure that our mapping between 

Boolean variables and variables in M is consistent, in the sense that for aIl i, 

exactly one of Xi, Xi is m and the other is an idempotent in a higher J-class. 

FinaIly, suppose that aIl 3 variables in Equation (3) have idempotent values. 

By a previous argument, these values fix m and so m2 = XIX2x3m = XIX2m = 
:Cl m = m, a contradiction. We get a similar contradiction if two or more of 

the variables are set to m. Therefore (3) insures that exactly one literaI in each 

clause is true, and the 1-3sAT formula is satisfiable. 0 

In fact, this is a special case of the more general hardness result: 

Lemma 5.31 If M is not a union of groups, then T-EQN~ is NP-complete. 

Proof. Let m be a J-maximal element satisfying m2 
<,J m. Any monoid 

element u with u > ,J m is 1-l-related to U
W and uw+1 = u. 

We use the same reduction from 1-3sAT as in our previous proof: for each 

literaI in the formula Xi and its complement Xi, we add equations XiXi = m 
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and XiXi = m and for each clause we add the equation e.g. 

One can easily check that given a satisfying assignment to the formula we can 

obtain a satisfying assignment to the system of equations. 

For the converse, Eqs. (1) and (2) show that if Xi J m then in fact .Ti 1-L m, 

just as in Lemma 5.30. Since the 1-L-class of m contains no idempotent, the 

product of any two elements of 1-Lm lies strictly J-below m. Eqs. (1) and (2) 

thus force at least one of X'i, Xi to be strictly J-above m. 

Suppose both Xi and Xi are strictly J-above m. Then we have m = ,TiXi = 
X'iX~+l = mxr and m = mx;, Moreover, Xi and Xi commute by Eqs. (1) and (2), 

so we get m = mxrxr = m(xixi)W = mw+1 <:7 m, a contradiction. Therefore, 

at least one of Xi, Xi must be 1-L-equivalent to m while the other fixes the 1-L-class 

of m, so if we identify true literaIs with variables taking a value 1-L-equivalent to 

m, we obtain a consistent truth assignment, and, repeating the argument of the 

previous proof, exactly one literaI in each clause corresponding to Equation (3) 

must be true. o 

We will see later that these hardness results do not hold in the case of 

semigroups. 

Lemma 5.32 If M is aperiodic and idempotent but is not commutative, then 

EQN~ is NP-complete. 

Proof. Let a, b in M be such that ab -# ba. We can choose a, b such that a is 

a J-maximal element which is not central in M (i.e. which does not commute 

with every element) and b is a J-maximal element which does not commute 

with a. Vve now obtain a reduction from 3SAT. For each Boolean variable Xi 

in the formula, we create variables Xi, Xi, Yi, fh and equations 
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(1) XiXi = a (2) XiXi = a 
(3) ydli = b (4) YiYi = b 
(5) X(f}i = YiXi (6) XiYi = YiXi 

AIso, for each 3SAT clause, e.g. Xl V )(2 V X 3 , we add an equation 

Given a satisfying assignment to the formula, we can construct a solution to 

the above system by setting Xi = a, Xi = 1, Yi = b, and Yi = 1 whenever Xi is 

TRUE, and Xi = 1, Xi = a, Yi = 1, rh = b whenever Xi is FALSE. 

Conversely, suppose the system of equations is satisfiable. Equation (1) 

shows that both Xi and Xi lie J-above a. Since a and b don't commute, a 

cannot be the product oftwo elements commuting with b. However, anyelement 

strictly J-above a is central so at Ieast one of Xi, Xi must be J-equivalent to a. 

Moreover, Eqs. (1) and (2) insure that Xi, Xi are both L-above and R.-above a, 

so if Xi J a (say) we must also have X 1-l a and thus X = a by aperiodicity. Thus 

at least one of Xi, Xi must be a. Similarly at least one of Yi, fh must be b, since 

any elements strictly J-above b commute with a. 

If Xi = a, then Yi commutes with a by Eq. (5). Thus Yi must be strictly 

J -above b. If Yi = b, then Xi commutes with b by Eq. (6), so X'i is strictly 

J-above a. We can thus obtain a consistent truth assignment to the literaIs by 

setting Xi to TRUE if and only Xi = a and Yi = band Xi to TRUE if and only 

Xi = a and Yi = b. 

Since every element strictly J-above a is central but a is not, a cannot be a 

product of elements J-above it. Therefore, if XIX2X3 = a then one of Xl, X2, :1;3 

must be a, so the corresponding 3SAT clause is satisfied. o 

Corollary 5.33 If S is a band but is not a normal band (i. e. it do es not satisfy 

abca = acba) then EQN~ is NP-complete. 
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Proof. We daim that S is normal if and only if it is locally J 1. lndeed, if S 

is normal then for any a, b, c we have abaca = abacaa = acabaa = acaba and so 

S is locally J 1. 

Also, every band in LJ 1 is regular because we have 

abca = abababcacaca = (aba)(aba)(abca)(aca)(aca) = abacabcabaca = abaca. 

Thus if S is a band in LJ 1, we have 

abca = abaca = acaba = acba 

which proves our daim. 

Every monoid eSe is indu cible so if is S is a band which is not normal, then 

it must have an inducible submonoid for which EQN~ is NP-complete. D 

The following matches the upper bound of Lemma 5.23: 

Lemma 5.34 Let S be a band outside RB, then T-EQN~ is NP-complete. 

Proof. Since S is not a regular band, there are A, B, CES be such that 

ABACA =f ABCA and we choose A, B, C such that ABCA is J-maximal. We 

can assume without loss of generality that ABACA is not R-related to ABCA 

for otherwise ABACA is not .L-related to ABCA and we can proceed dually. 

Setting a = ABA, b = AB, c = CABA, we obtain ab = b, ba = a, 

ca = e. Also, ac = abaca =f abca = be since abaca = ABACABA is R-related 

to ABACA and abca = ABCABA is R-related to ABCA. 

Let a, b, cES as above be elements such that ab = b, ba = a, ca = e, ac =f hc 

and e is J -maximal with the properties abaca =f abca and e <:7 a, b. We daim 

that for aIl sES satisfying a ?.:7 s >:7 c we have in fact as = bs. lndeed, the 

J-maximality of c imposes abasa = absa. Since ab = band ba = b this shows 

that asa = bsa and so as = asas = bsas = bs. 
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We can now obtain the following reduction from 3SAT to T-EQN~ where 

T is the (inducible) semigroup of elements lying .J-below a. For each Boolean 

literaI Xi in the formula, we introduce the variables Xi, Xi, Yi and construct the 

equations 

(1) eX'i = e (2) eXi = e 
(3) Yia = a (4) aXiaxi = ae 

(5) bXibxi = be (6) YiXiae = ae 

(7) Yixibe = be 

Moreover for any q which is R-related to a we add the equations 

Note that in any solution to these equations we know from Eqs. (1,2) that 

both Xi and Xi lie .J-above e. Suppose that both lie strictly .J-above e then by 

this contradicts Eqs. (4,5). 

Suppose on the other hand that both Xi and Xi are .J-related to e: by 

Eqs. (1,2) we get Xi 12 Xi 12 e. We thus have Xi = Xiae Xibe = Xi and in fact 

Xive = Xi for any y ?:.S e. Since Eq. 3 imposes Yi R a we deduce from Eqs. (8,9) 

that 

This, however contradicts Eqs. (6,7). Renee, exactly one of Xi, Xi is .J-related 

to e and the other lies strictly .J-above e. 

We complete our reduction by introducing, for each of clause of the 3SAT 

formula, e.g. Xl V X2 V X 3 , the pair of the equations: 

One can now verify that if the 3SAT instance is satisfiable, then we can 

satisfy the system obtained through our reduction by letting X'i = e, ,Ti = a, 

Yi = a whenever Xi is TRUE, and Xi = a, X'i = e, Yi = b whenever Xi is FALSE. 
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Conversely, suppose the system of the equations is satisfiable. Since exactly 

one of Xi, Xi is J-related to c, we get a consistent truth assignment to the 

literaIs by setting Xi (resp. Xi) to TRUE if and only if Xi J C (resp. Xi J c). 

This assignment satisfies every clause of the original formula for if the variables 

occurring in Eq. (11) alllie strictly J-above c we have aXl = bXl aX2 = bX2 

and aXa = bxa so that 

in violation of Eqs. (11,12). o 

Lemma 5.35 If S is a union of groups but is not orthodox then T-EQN~ zs 

NP-complete. 

Proof. We can assume without loss of generality that S is a completely 

simple unorthodox semigroup. Otherwise, we know that it contains sueh a 

subsemigroup S'. For any S E S', the expression XlSX2 induces the subsemigroup 

of elements J-below S'. Furthermore, if t lies in S' we ean use target-equations 

such as (txt)W = tW to restrict variables to values lying J-above S' and so 

NP-eompleteness for T-EQN~, implies NP-completeness for T-EQN~. 

We eonsider the Rees matrix representation of the completely simple semi

group S: suppose S has cv R-classes and j3 L-classes. There exists a group G 

and a matrix R E GŒX/3 such that elements of Scan be represented as triples 

(i, g, j) with g E G, 1 :::; i :::; cv, 1 :::; j :::; j3 and multiplication given by 

We can assume that the first row and first column of R contain only the identity 

of the group e. 

We can recursively reorder the rows and columns in the following way: sup

pose row k is such that Rk,i = e for every i :::; t. We choose the row (k + 1) as 
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e e e 

e e e 
....... _ ....... _ ....... _ ....... -

e e e Rab * * * , 

e e e * * * * ........ _ ....... 
e e * * RCb 7 7 7 

, •••• " • ..J 
, 

e e : * 7 7 7 7 7 7 
, ........... 

e * 7 7 7 ? ? 7 ? 
............ 

Figure 5.2.3: Rees matrix of S after reordering: aIl entries above the dotted 
line are e. The *'s represent entries which cannot be e. 

the one with the most number of e's among Rk+l,i with i ::; t and reorder the 

columns such that aIl these entries appear first in the row. 

Because we assumed that the class is not orthodox, there is sorne non-identity 

entry in R so after reordering, we can, as shown in Figure 5.2.3, find indices 

a, b, c with Ra,b #- e and a < c and such that 

- Ri,j = e for aU 1 ::; j < h if and only if i < c; 

- for aU a ::; i < c and aIl j 2: h, we have Ri,j #- e. 

We can now obtain a reduction from 1-3sAT in the foIlowing way: for each 

Boolean variable Xi we create variables Xi, Xi and force them to be idempotent. 

We begin by adding a number of equations to constrain the Xi and :Ëi in a helpful 

way. We first impose the equations 

In any solution to the system, we must have Xi = (1, e, ki ) and Xi = (ti , e, 1) 

sin ce the first row and column of R consist of aU e's and the variables are 

constrained to take on only idempotent values. Equation 1 thus further forces 

Rki,li = e and from Eq. 2 we have Rk.i,b . Ra,ti = Ra,b. Similarly we require that 

Rki,j = e for aIl 1 ::; j < b by using equations of the form: 

(3) Xi(j, e, 1) = (1, e, 1) 
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We thus have insured that ki < c and in fact that either k i < a or t i < b for 

otherwise Rk t --/.. e. ~,'t T 

For a clause XIV X 2 V X 3 we wish to add the requirement Rkl ,b • Ra,l2 . R k3 ,b = 

Ra,b' This can be encoded as an equation such as: 

If the 1-3sAT is satisfiable, then the system can be satisfied by setting :ri = 

(1, e, a) and Xi = (1, e, 1) whenever Xi is TRUE and Xi = (1, e, 1) and Xi = 

(b,e, 1) whenever Xi is FALSE. 

For the converse, suppose first that Ra,b does not have order 2. Note that 

if k i < a then Rki,b = e and so Ra,t.; = Ra,b whereas if ti < b then Ra,ti = e sa 

Rk.;,b = Ra,b. Rence, we get a well-defined truth assignment by setting Xi ta 

TRUE if Rki,b = Ra,b and Ra,ti = e and setting Xi ta FALSE if Rki,b = e and 

Ra,ti = Ra,b' For any clause in the 1-3sAT instance, say Xl V X2 V X 3 , there is 

an equation of type (4) im posing Rk1,b . Ra,t2 . R k3 ,b = Ra,b and sin ce Ra,b does 

not have order 2, exactly one of Rk1,b, Rah' R k3 ,b is Ra,b and the other two are 

e sa exactly one literaI per clause is TRUE. 

If Ra,b does have arder 2, our last argument breaks down because equations 

of type (4) might be satisfied even if all three of Rk1,b, Ra,t2' Rk3 ,b are equal ta 

Ra,b' By appealing once again ta Schaefer's Theorem, we can assume that each 

clause in the 1-3sAT instance contains at least one negated and one Ilnnegated 

literaI, say Xl and X 2. For a clause Xl V X2 V X 3 , Eq. 4 imposes Xl EB X2 EB X 3 . 

If we can further guarantee that one of Xl or X 2 is FALSE, we will be able ta 

conclude that exactly one of the three literaIs in the clause is TRUE. We do sa 

by adding the constraint Rk j h = e using equation 

which cannat be satisfied if k l < a and t 2 < b. Thus, one of Xl and X 2 is 

assigned the value FALSE. D 
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This can be used to prove the NP-completeness of T-EQN~ for any S that 

contains a completely simple unorthodox subsemigroup. We can also prove: 

Corollary 5.36 Let S be a completely simple semigroup (i.e. a single J-class). 

Then EQN~ is in P if S is orthodox and has only commutative subgroups but 

T-EQN~ is NP-complete otherwise. 

Proof. The hardness result follows directly from the previous lemma. The 

upper bound stems from the observation that a completely simple orthodox 

semigroup is the direct product of an Abelian group and an idempotent semi

group satisfying xyz = xz for an x, y, z E S. Systems over such bands are 

obviously solvable in polynomial time. D 

Lemma 5.37 If S is an orthodox union of groups such that 1-l is not a congr''U,

ence on S, then T-EQN~ is NP-complete. 

Proof. Suppose we have a, b, cES such that a 1-l b but ac li bc (the dual 

argument can be used if we have ca 7IL cb). In fact, it is easy to see that there 

exists a and an idempotent e lying J-below a such that ae 1/l aWe. 

We choose a and e as J-maximal such that ae li aWe. So for any x E S 

with a >:J x >:J e, and any y 1-l z J x, we have both ye 1-l ze and aWy 1-l az. 

In particular, we cannot have xe = ae for otherwise, since aWx 1-l aW-1x J x we 

have 

a contradiction. Similarly, we cannot have xae 1-l ae. 

We can further assume without loss of generality that eaW = e for otherwise 

the idempotent f = (eaW)W has the property that 

and faw = f. 
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We build a reduction from 3SAT as follows. For each Boolean variable Xi, we 

introduce variables Xi, Xi, Vi such that Vi is 1l-related to a and add the equations: 

(1) xie = ae (2) (xiae)W = (ae)W 

(3) vixiae '2n ae (4) viaxie '2n ae 
(5) (ViXiXi)W = (ae)W 

Moreover, for each 3SAT clause, e.g. Xl V X 2 V X 3 we introduce a variable 

'Wj that is H-related to a and the equation 

Given an assignment to the Boolean literaIs satisfying the 3SAT formula, 

one can verify that this system has a solution by setting Xi = ac, X'i = aW and 

Vi = aW whenever Xi is TRUE and Xi = a, Xi = ae and Vi = aw-
l whenever Xi 

is FALSE. 

Conversely, suppose that there exists a solution to the constructed system. 

Equations (1,2) show that Xi and Xi are R-above ae while Eq. (5) forces at least 

one of them to lie J-below a. If we suppose on the other hand that they are 

both J-related to e then from Eqs. (2,3) we have ViXi R ae R ViœY;'i and thus 

v'ia2e R Viae which is a contradiction since Vi H a. By the remarks made above, 

neither Xi nor Xi must however be J-related to one of e or a. If we set Xi (resp. 

Xi) to TRUE if and only if xiJe (resp. xiJe), our assignment is consistent. 

Furthermore Eq. (6) guarantees that every clause in the 3SAT instance contains 

at least one TRUE literaI for otherwise the corresponding product 'WjXIX2X3 will 

be J-related to a. o 

5.2.4 Dichotomy Theorems for EQN~ and T-EQN~ over 
Monoids 

In the case of monoids, it is possible to combine the upper bounds and NP

completeness results to obtain complete dichotomies for the complexity of EQN~ 
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and T-EQNM. This invol ves the structural resul ts about the varieties JI V Ab 

and RB V Ab. 

Theorem 5.38 For any monoid M, we have EQNM lying in P if M belongs 

to JI V Ab and EQNM is NP-complete otherwise. 

Proof. The upper bound is Lemma 5.27. On the other hand, EQNM is NP

complete if NI either contains a non-Abelian subgroup (Lemma 5.29) or is not 

a union of groups (Lemma 5.31). If it is a union of groups but is not orthodox, 

we can appeal to Lemma 5.35. Finally, if NI is an orthodox union of groups, 

but E(M) fails to be J-trivial, then NP-completeness follows from Lemma 5.32 

because E(M) is an inducible submonoid. Otherwise, M is an orthodox union 

of Abelian groups with E(M) commutative and must thus belong ta JI V Ab. 

D 

Similarly, our characterization of RB V Ab allows us to prove 

Theorem 5.39 For any monoid M, we have T-EQNM lying in P if M belongs 

to RB V Ab and T-EQNM is NP-complete otherwise. 

Proof. The upper bound is Lemma 5.28. As we argued previously, T-EQN~[ 

is NP-complete unless it is an orthodox union of Abelian groups. If the latter 

holds, however, we still have NP-completeness if E(M) does not form a regular 

band (Lemma 5.34). Finally, by Lemma 5.37, we have NP-completeness unless 

M is an orthodox union of Abelian groups such that E(M) is a regular band 

and 1{ forms a congruence. By Lemma 5.26, this mean that we can show NP

completeness of T-EQN~ for any M not belonging to RB V Ab. D 

5.2.5 Results and Questions in the Semigroup Case 

Do similar dichotomies hold in the case of semigroups? While this is very 

tempting to conjecture, one is faced with an obstacle illustrated in the following 

example. 
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Example 5.39. Consider the semigroup K with three generators4 r, g, b, 

elements {r, g, b, rr, rg, rb, gr, gg, gb, br, bg, bb, O} and such that xyz = 0 for 

any x, y, z E K. Since the product of any three elements of K is 0, any 

equation over K can be assumed to have at most two variables or constants 

on either side and any equation of the form XIX2 = ab with a, b E {r, g, b} is 

equivalent to the two equations Xl = a and X2 = b. 

To solve a system E of equations over K with variables Xl, ... ,:I:n , we can 

proceed as follows. If there are no equations of the form Xi = C or XiXj = ab, 

then we know that the all-O assignment satisfies E. Otherwise, the values 

of Xi and Xj are now forced and we can replace their occurrences in E with 

the appropriate constants. The new system thus obtained has strictly fewer 

variables and we can repeat this strategy until we either obtain a satisfying 

assignment for E or obtain an obviously unsatisfiable system. This algorithm 

dearly solves EQN~ in polynomial time. 

In contrast, cons id el' the semigroup T with generators r, g, b, elements {r, g, b, 

E, N, O} with 0 being the sole idempotent and such that the square of any 

generator is E, the product of any two distinct generators is N and any other 

product is O. One can verify that T is a morphic image of K. 

Yet, we daim that T-EQN~ is NP-complete. We use a reduction from 3-

COLORABILITY: for every node Vi in the graph G we create a variable .1:'i 

and add the equation x~ = E. Furthermore, for every edge (Vi, Vj), we add 

equation XiXj = N. If the original graph can be colored using colors Red, 

Green and Blue then the system can be satisfied by setting Xi = T (resp. 

g, b) if and only if Vi is colored Red (resp. Green, Blue). Conversely, in any 

satisfying assignmellt to the system, eac.:h Xi is assigned one of T, 9 or band 

no pair Xi, Xj with (Vi, Vj) E G is assigned the same generator so the graph is 

4In semigroup jargon, J( is the free nilpotent semigroup of threshold 3 over tlu'ee genera
tors. 
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3-colorable. 

In light of this example, the class of semigroups S for which EQNs (or 

T-EQN~) lies in P does not form a variety (unless P = NP). We therefore 

choose, as a first step, to restrict our attention to the complexity of solving 

systems over regular semigroups where, empirically, such phenomena do not 

seem to occur. Note also that J( is an example of a semigroup which is not a 

union of groups but for which EQN;{ is tractable, in sharp contrast of Lemma 

5.31 in the case of monoids. 

Lemma 5.40 Let S be a regular semigroup consisting of 

• a J -maximal J -class B with at least two R-classes and with exactly one 

idempotent per L- and R-class; 

• J -classes below B are all subgroups. 

Then T-EQN~ is NP-complete. 

Proof. We know that B is a square J-class containing exactly one idempo

tent pel' R-class and per L-class. Therefore the product of any two distinct 

idempotents of B does not lie in B. 

Let H be a J-maximal tl-class such that xy E H for sorne idempotents 

:t,y E B. Let EH = {x: x 2 = X,X E B,xy E H for sorne y E B} and let eH be 

the unique idempotent of H. Note that if z is an idempotent of B which is not 

in EH then neither xz nor zx lie in H for any idempotent x E B. Also, for any 

distinct x, y E EH, we have both xy and yx lying in H. Indeed, we must have 

ef{x and yef{ lying in H so xy must lie J-below B but J-above H so xy lies in 

H. 

Suppose first that IEHI = 2, i.e. EH = {a,b}. We build a reduction from 

MONOTONE NAE3sAT as follows: for each variable Xi in the formula, we create 
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the variables Xi, Xi, force them to be idempotents in Band add the equation 

Moreover, for any clause Xl V X 2 V X 3 we add the two equations 

One can easily verify that if we are given an assignment to the Xi satisfying 

the MONOTONE NAE3sAT instance, we can obtain a solution to the system by 

letting X'i = a, X = b if Xi is TRUE and Xi = b, X = a if Xi is FALSE otherwise. 

Conversely, cons id el' any solution to this system of equations. Equation 1 

in sures that Xi and Xi take on distinct values in EH' In other words, we are 

guaranteed that {Xi' x,J = {a, b}. If we set Xi to TRUE if and only if ;Ci = a we 

get from Eq. (2) that not aIl three literaIs in a clause are TRUE (for we would 

then have XIX2X3 = a) and similarly from Eq. (3), not aIl literaIs are FALSE. 

Suppose now that IEHI = k ~ 3. Using similar ideas, we can now obtain 

a reduction from k-COLORABILITY which is NP-complete for k ~ 3. For each 

vertex Vi in the graph, we create the variable Xi, force it to be an idempotent 

in B and for aIl edges e.g. (VI, V2) in the graph, add the equation 

Given a valid k-coloring of the graph, we obtain a solution to the system 

by identifying the k different colors with the k idempotents of EH' Conversely, 

given a solution to the system, we color vertex Vi with the value Xi' We can 

assume that no vertex in the graph is isolated so that every variable Xi is illvolved 

in sorne equation of the forrn (XiX j)W = e Il and therefore lies in E fI. For two 

adjacent Vi, Vj the corresponding values Xi, Xj must be distinct for otherwise we 

get XiXj = Xi f eH in violation of Eq. (4). We therefore have a valid k-coloring 

of the graph. 0 
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Row- block 1 { 

Row-block 2 { 

* 
* 
* 
* 
* 
* 

... 
* 
... 
... 
* 
-
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a* b* - - - -
* * - - - -
c* d-
* -
-

Figure 5.1: Idempotents in B: the *'s (resp. -'s) mark 'ti-classes which contain 
(resp. do not contain) an idempotent. 

Whereas this will allow us to handle the case where the regular semigroup S 

is inverse but not a union of groups, the next lemma will cover the case where 

S is not a union of groups and not inverse. 

Lemma 5.41 If S is a regular O-simple semigroup but is not a union of groups, 

then T-EQN~ is NP-complete. 

Proof. We can assume from the previous Lemma that S is not inverse. 80 

the non-minimal J -class, B has at least one R-class (or L-class) containing two 

idempotents. Our reduction will naturally exploit the location of idempotents 

in B. We represent this in Figure 5.1 as follows: the sR-classes and tL-classes 

can be represented in an s by t table where each cell is labeled with a * if the 

corresponding 'ti-class contains an idempotent and labeled with - otherwise. 

We further reorder the rows and column of this table such that the first row 

contains a maximal number of * (say k of them) and the first k cens in this row 

are labeled with *'s. The first n rows are then those equal to row 1, if any and 

we say that these form row-block 1. Next, we choose the (n + 1 )th row such that 

it has a maximal number m < k of *'s occurring in its first k cells and reorder 

the columns sueh that these m cens oecur first. Row-bloek 2 consists of aU rows 

with *'s in their first m cells. 

We now reduce from MONOTONE NAE 3SAT. For each literaI Xi we create 

variables Xi, Xi and force them to be idempotent. We also impose for an 1 ~ 
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j ::; m the conditions 

where aj is the idempotent in the 1{-class corresponding to the lh cell of row 

1. As we already observed, the constraint Z E B can be imposed by the target

equation UIZU2 = b where b is any element of B. Note that these restrictions 

ensure that in any solution to the system, both variables Xi and Xi belong to 

one of the two row-blocks. Indeed, if the pth cell (with p < m) in the row of 

Xi is labeled with -, we have apxi = 0 since RXi n .cap does not contain an 

idempotent. 

Similarly, we use equations to impose 

This forces Xi, Xi to lie in 1{-classes of B sitting in the first k columns. 

Because k ~ 2, we can find a, b in row-block 1 and c, d in row-block 2 (also 

shown in Figure 5.1) such that a, b, c are idempotent with ad = b, ba = c, 

ac = ba = a and cd = db = cb = d but Hd contains no idempotent. Notice that 

for any element U of the first k cells in row-blocks 1 or 2, we have (aua)W = a 

because both Ran.cu and .canRu contain an idempotent. Similarly, the product 

of any number of idempotents lying in the first k cells of a same row-block also 

belong to this row-block. 

We introduce the equation 

By our last remarks, this is not satisfied if both Xi, Xi are taken in the same row

block for (axixixia)W then equals a. It is satisfied however if {Xi, Xi} = {b, c}. 

Finally, for every clause Xl V X 2 V X 3 we add equations 
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Now, given an assignment to the Xi satisfying the MONOTONE NAE3sAT in

stance we can set Xi = b and Xi = c wh en Xi is TRUE and Xi = c and Xi = b 

when Xi is FALSE and easily verify that this constitutes a solution to the system 

constructed. Suppose conversely that we are given a solution to the system. All 

the Xi, Xi are idempotents in the first k cells of row-blocks 1 and 2 and if we set 

the literaI Xi (resp. Xi) to TRUE whenever Xi (resp. Xi) belongs to row-block 1 

and to FALSE wh en Xi (resp. Xi) lies in row-block 2 we obtain a consistent truth 

assignment because of Eq. (5). Because Eqs. (6) and (7) are also satisfied it 

must be that for each clause Xl V X 2 V X 3 the variables Xl, X2, X3 do not alllie in 

the same row-block. Similarly Xl, X2, X3 do not alllie in the same row-block and 

so our assignment to the literaIs satisfies the MONOTONE NAE3sAT instance. 

o 

The reductions presented in the last two lemmas can be slightly generalized 

to obtain: 

Lemma 5.42 If S is regular, then T-EQN~ zs NP-complete unless S zs an 

orthodox union of Abelian groups. 

Proof. If S is a union of groups but is not orthodox then T-EQN~ is NP

complete from Lemma 5.31. If S is regular but is not a union of groups, there 

exists sorne .J-minimal .J-class B that is not a union of groups and it suffices to 

show the NP-completeness of T-EQN~ where T is the subsemigroup of elements 

lying .J-below this class. We distinguish two cases. 

If B contains exactly one idempotent pel' R- and 'c-class and all .J-classes 

strictly below B are subgroups, we can use Lemma 5.40. Otherwise, the 1'e

duction in that proof must be slightly refined: we can still find a .J-maximal 

.J-class H such that there are two distinct idempotents in B with xy E H. We 

can define EH as before and still obtain that for any X, y E EH both xy and 

yx lie in H. If eH is an idempotent in H, however, we cannot assume that 
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(xy)W = eH in this case. Still, it is easy to show that two idempotents x, y 

in B, belong to EH and are distinct if and only if, for aU z E EH, we have 

(zxyz)W = zeHz. We can thus salvage our reduction, by replacing Eqs. (1,2,3) 

by 1 EH 1 different equations which will impose these constraints. 

If B contains at least two idempotents in, say, sorne R-class, we can reuse 

the reduction of Lemma 5.41. Now, we cannot anymore use the equation 

(axixixia)W = O. Note however, that we can replace it by 

Indeed, this is still unsatisfied if both variables are taken from the same row 

block but is satisfied when {Xi, Xi} = {b, c}. Similarly, we can replace the 

equations 

by the equations 

and 

o 

Theorem 5.43 For any regular semigroup 5, we have T-EQNs lying in Pif 5 

belongs ta RB V Ab and T-EQN:S is NP-complete otherwise. 

Proof. The proof is almost identical to the one of Theorem 5.39 for we have 

established that the NP-completeness of T-EQNs wh en 5 is regular but not a 

union of groups. o 
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We are so far unable to provide an equivalent dichotomy them·em in the case 

of EQN~ for regular semigroups. We define a strong normal band of Abelian 

groups to be a strong regular band of Abelian groups in which the idempotents 

form a normal band. We have established: 

Lemma 5.44 If S is regular but is not a strong normal band of Abelian groups 

then EQN~ is NP-complete. 

Proof. This is a slight refinement of half of Lemma 5.43: if S is not a strong 

regular band of Abelian groups then T-EQN~ is NP-complete. If it is, then 

E(S) is not a normal band and we get NP-completeness from Corollary 5.33. 0 

In fact we conjecture: 

Conjecture 5.45 Let S be a regular semigroup. Then EQN~ is tractable if S 

is a strong normal band of Abelian groups and EQN~ is NP-complete otheT'wise. 

It seems that the only pie ce missing to complete this puzzle is a polynomial 

time algorithm to solve EQN~ for normal bands S because we can reasonably 

expect to extend such an algorithm to any strong normal band of Abelian group. 

It is quite easy to obtain an algorithm in the very special case where S is a free 

normal band on k generators and this has already been pointed out, in a different 

context, in [Kli03a]. As of yet, we are unable to extend these solutions to all 

normal bands. 

Of course, many open questions remain concerning the complexity of EQN~. 

and T-EQN~ for non-regular S. The fact that answers to such questions will 

not be given by varieties should not be a pretext to dismiss such inquiries 

and should on the contrary be taken as added motivation for the problem. It is 

absolutely reasonable to assume that a simple necessary and sufficient condition 

for tractability can be formulated in these cases and our results thus far can 

already establish the NP-completeness of both problems in a large class of non

regular semigroups. 
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5.3 Conclusion 

At first glance, we would expect questions concerning the complexity of solving 

single equations and systems of equations over a finite monoid or semigroup to 

be closely related. It is of course unreasonable to argue that they are not, yet 

the lessons learned from the two main sections of this chapter are very different. 

The case of single equations is closely related to questions about the power of 

finite monoids as language recognizers. It outlines once again the importance of 

cornering the computational power of CCO circuits and programs over solvable 

groups, and it further establishes the importance of DA and DO in complexity 

issues related to finite monoids. 

Considering semigroups as machines on the other hand is a useless point of 

view in the case of systems of equations. Yet, many beautiful connections with 

previous algebraic approaches to constraint satisfaction problems have been un

covered. The fact that we can prove dichotomies for EQN~, T-EQN~ and 

T-EQN~ for regular S indicates that these problems are "well-behaved" restric

tions of CSP. We have mentioned sorne of the very general results from universal 

algebra identifying sufficient conditions on r for the tractability of CSP(r). It 

would be interesting to see if aIl our upper bounds can be obtained using these 

techniques and, if so, to understand whether the full gamut of them is needed 

in our context. For instance, there seems to be sorne similarity between the 

algorithms presented for EQN~ and T-EQN~ for, respectively, strong semilat

tices and strong regular bands of Abelian groups and the notion of para-primaI 

algebras introduced of Dalmau [DalOO]. 

There might also be natural ways other than equations to define sets of 

relations r on Sk in terms of the algebraic structure of S. A similar di[(~ction in 

which to extend this research is to investigate the complexity of the satisfiability 

of inequations over a fixed ordered monoid. This is a very natural extension of 

our problem and it is quite possible that its structure will be as nice and rich 
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of meaning. 
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Chapter 6 

Conclusion 

We have studied various computational complexity issues involving finite semi

groups and monoids. We have first focused on the algebraic point of view 

on Ne l emanating from the seminal work of D. Barrington and D. Thériell 

[Bar89, BT88]. We showed that sorne monoids are so weak that they cannot 

gain any advantage in computational power if polynomiallength restrictions for 

the "program over monoid" formalism are relaxed and have given sorne evidence 

that any monoid failing to have this polynomial length property is rich enough 

to recognize arbitrary languages via programs of exponential length. We have 

also shown that programs over certain varieties of monoids are no more powerful 

than morphisms over that same variety. 

Next, we have established a rich algebraic point of view on communication 

complexity. This has allowed us to algebraically characterize, up to a con

stant, the communication complexity of every regular language in sorne of the 

best-known two-party models, thus making a fundamental contribution to our 

understanding about the power of these models, their interrelations and the key 

rol(> played by regular languages in the development of this theory. We have also 

proved a number of similar classifications in the multiparty "input on the fore

head" model which has led us to isolate regular languages which quite certainly 

constitute key objects of study for further research on this model of communica-

187 
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tion complexity. Our results also suggest the possible existence of an algebraic 

characterization of languages having bounded multiparty communication com

plexity for sorne bounded number of players. Our communication complexity 

results can also be used to obtain new insights on the computation al limitations 

of polynomiallength programs over certain varieties of monoids, thus opening 

new paths to an eventual resolution of questions about the program model. 

Finally, we have studied how the algebraic properties of a semigroup S im

pact the complexity of solving equations over S. We provided the first non

trivial upper bounds for checking the satisfiability of an equation over 53 or, 

more generally, over any group which is too weak to efficiently compute AND 

via programs and established a number of upper bounds and hardness results 

for equation and program satisfiability over monoids which are not groups. We 

found stark dichotomies in the complexity of solving systems of cquations over a 

fixed monoid and found the problem, and its main variant, to be either tractable 

or NP-complete depending on whether the mono id belonged to a specified vari

ety. We also established a number of interesting partial results in the semigroup 

cases and argued that our dichotomy results were to be expected in light of the 

conjectures arising from the algebraic study of constraint satisfaction problems. 

Our results highlight the importance of certain classes of monoids and semi

groups in such contexts. lndeed, monoids in the variety DO n G nih for in

stance, are exactly the monoids in DS having the polynomial length property, 

are exactly the monoids with 0(1) communication complexity for sorne bounded 

number of players and are the only ones for which we know how to solve P-SAT 

in polynomial time. Other varieties such as solvable groups, .J-trivial monoids 

and specific monoids like U and B 2 have played key roles in different contexts 

both in this work and other similar investigations. 

Traditionally, the analysis of problems whose complexity is parametrized by 

an underlying finite semigroup has been done separately for the group case and 
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the aperiodic case but often left open in the general case. In many cases, the 

limit between tractable and intractable cases involve varieties Ab, G nil and G so1 

in the group case and DA in the aperiodic case. Such a phenomenon occurs, for 

example, in the communication complexity and equation satisfiability settings 

but also in the context of membership problems [BMT92], learning expressions 

over monoids [GTT01] among others. Our work suggests that considering vari

eties of the form DO n H should be the first attempt at combining results for 

groups and aperiodics to resolve the general case. 

We have of course 1eft open a number of open questions concerning the main 

topics of this thesis and have discussed them in the relevant chapters but we 

want to recall here that many of these questions are deeply intertwined. For 

instance, our questions on the exact complexity of P-SAT G for non-nilpotent 

solvable groups can only be resolved if we are able to understand whether G so1 

forms a program-variety or not. 

If L is a language with neutralletter and bounded two-party communication 

complexity then, by Szegedy's Theorem, L can be recognized by a program over 

a commutative monoid. Since Corn has the Crane Beach property, we must 

thus have that L is regular with M(L) commutative. Similarly, if DO n G nil 

has the Crane Beach property, then our proposed generalization of Szegedy's 

Theorem holds for languages with a neutralletter. On the other hand, if it does 

not have the Crane Beach property, then a counterexample of a non-regular 

language with neutral letter which can be recognized by a family of programs 

over sorne monoid in DO n G nil would certainly be an interesting candidate to 

disprove the communication complexity conjecture. 

We believe that a most important avenue for research is to further und er

stand the connections between the various contexts which we have analyzed 

with a semigroup algebra perspective. One has to believe that under favor

able circumstances, the algebra of semigroups and monoids can constitute a 
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bridge linking in meaningful ways issues in communication complexity, circuit 

complexity, logic, algebraic automata theory, to name but a few areas. 

In this thesis, we have been dealing exclusively with languages of finite words. 

In sorne applications of finite automata, such as model checking, the focus is on 

so-called w-languages of infini te words. There exists a well-developed algebraic 

theor·y of w-regular languages quite similar to classical algebraic automata the

ory [PP03J. It would be most interesting to understand the impact of our results 

and the intuitions we have developed on this theory and its many applications. 
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Acom Commutative aperiodics. 

Ab Abelian groups. 

Corn Commutative semigroups. 

DV Regular .J -classes lie in V. 

Gp p-groups. 

Gnil, Gnil,k Nilpotent groups (of class k). 

Gsol Solvable groups. 
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Semigroups with subgroups in H. 

Trivial variety. 

Semilattices. 

'c-trivial bands. 

Semigroups with local monoids in V. 

Normal bands. 

R-trivial bands. 

RegulaI' bands. 

U nions of groups. 

Block product. 

Mal'cev product. 

Wreath product. 

Monoids with R(M) = 8(loglogn). 

Other Symbols 

ACo Bounded depth polynomial size AND,OR circuits. 

ACCo Bounded depth polynomial size AND,OR,MoDm circuits. 

CCO Bounded depth polynomial size MODm circuits. 

D (L) Deterministic communication complexity. 

DII(L) Simultaneous communication complexity. 

MpPol('c) Modp-counter dosure. 

N 1(L) non-deterministic communication complexity. 

NMOdp(L) Modp-counting communication complexity. 

NC l Log depth AND,OR circuits with bounded fan-in. 

P(V) Languages recognized via polylength V-programs. 

R(L) Probabilistic communication complexity. 

RII (L) Simultaneous probabilistic communication complexity. 

U Pol('c) Unambiguous polynomial dosure. 
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== L Syntactic congruence. 

:;'.:7 .J-preorder (similarly for n, 12). 

,;:::;c Congruence parametrizing subclasses of DO. 


