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Abstract

In this thesis, we address a number of issues pertaining to the computational
power of monoids and semigroups as machines and to the computational com-
plexity of problems whose difficulty is parametrized by an underlying semigroup
or monoid and find that these two axes of research are deeply intertwined.

We first consider the “program over monoid” model of D. Barrington and
D. Thérien [BT88] and set out to answer two fundamental questions: which
monoids are rich enough to recognize arbitrary languages via programs of arbi-
trary length, and which monoids are so weak that any program over them has
an equivalent of polynomial length? We find evidence that the two notions are
dual and in particular prove that every monoid in DS has exactly one of these
two properties. We also prove that for certain “weak” varieties of monoids,
programs can only recognize those languages with a “neutral letter” that can
be recognized via morphisms over that variety.

We then build an algebraic approach to communication complexity, a field
which has been of great importance in the study of small complexity classes.
Specifically, we consider the amount of communication that two players, Alice
and Bob, need to exchange in order to compute the product m;ms...m, of n
elements of some fixed finite monoid M when Alice knows only the odd-indexed
m,; and Bob knows the even-indexed m;. We prove that every monoid has com-
munication complexity'O(l), O(logn) or ©(n) in this model. We obtain similar
classifications for the communication complexity of finite monoids in the prob-

abilistic, simultaneous, probabilistic simultaneous and MOD,-counting variants



of this two-party model and thus characterize the communication complexity
(in a worst-case partition sense) of every regular language in these five models.
Furthermore, we study the same questions in the Chandra-Furst-Lipton multi-
party extension of the classical communication model and describe the variety of
monoids which have bounded 3-party communication complexity and bounded
k-party communication complexity for some k. We also show how these bounds
can be used to establish computational limitations of programs over certain
classes of monoids.

Finally, we consider the computational complexity of testing if an equation
or a system of equations over some fixed finite monoid (or semigroup) has a
solution. In the case of a single equation we extend the work of [GR99] by pro-
viding strong evidence that this pljoblem cannot be resolved without answering
questions about the expressive power of programs over that monoid. Most no-
tably, we give a quasipolynomial-time upper bound for solving equations over
a group which is known to require prbgrams of exponential length in order to
compute AND. We also give a number of upper bounds and hardness results for
solving equations over monoids which are not groups and show that, in apparent
contrast with the group case, the problem can be NP-complete over some M
even if it is tractable over some N admitting M as a submonoid.

We find that testing the satisfiability of a system of equations over a finite
monoid is either tractable or NP-complete depending on whether the monoid
belongs to the class J; V Ab or not. For the restricted case when the right-hand
side of the equations are constants, we show that a similar dichotomy holds for
monoids and for regular semigroups. We also give a number of partial results
for the general case of semigroupsi and relate this question with constraint-

satisfaction problems.
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Résumé

Nous étudions dans cette these des questions lides & la puissance de calcul des
monoides et des semigroupes, lorsqu’ils sont considérés comme des machines,
et a la complexité de problemes dont la difficulté est paramétrisée par un semi-
groupe. Ces deux axes de recherche sont en fait intimement reliés.

Nous revoyons tout d’abord la notion de “programmes sur monoides” for-
malisée par D. Barrington et D. Thérien et tentons de répondre 4 deux questions
fondamentales a propos de ce modéle: quels sont les monoides assez riches pour
permettre la reconnaissance de langages arbitraires grace a des programmes
de longueur arbitraire et quels sont les monoides si faibles que tous leurs pro-
grammes ont un équivalent de longueur polynomiale? Nos résultats semblent
indiquer que ces deux propriétés sont duales et démontrons qu’en particulier,
tout monoide dans la variété DS possede exactement I'une de ces propriétés.
Nous démontrons également que pour certaines variétés, les programmes ne peu-
vent reconnaitre un langage contennant une “lettre neutre” que si ce langage
peut étre reconnu grace & un morphisme sur un monoide de cette variété.

Nous développons ensuite une approche algébrique & la complexité de com-
munication, un domaine d’une grande importance dans létude des petites classes
de complexité. Nous étudions la quantité de communication que deux joueurs,
Alice et Betrand, se doivent d’échanger pour calculer le produit de n éléments
mymy ... m, d'un monoide M lorsqu’Alice ne connait que les m; ol i est pair
et que Bertrand ne connait que les m; ou i est impair. Nous montrons que tout

monoide a une complexité de communication O(1), ©(logn) ou ©(n) dans ce
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modele. Nous obtenons des classifications similaires dans les variantes prob-
abiliste, simultanée, simultanée probabiliste et MOD, de ce modele et car-
actérisons ainsi la complexité de communication (par rapport & une partition
pire-cas) de tous les langages réguliers. Nous étudions également ces ques-
tions dans I'extension multipartite du modéle & deux joueurs et obtenons une
caractérisation des monoides ayant une complexité bornée pour le modele &
trois joueurs et pour le modele a & joueurs pour un certain k. Nous montrons
également comment ces résultats permettent d’établir les limites calculatoires
des programmes sur certaines variétés de monoides.

Enfin, nous étudions la complexité de déterminer ’existence d’une solution
a une équation ou a un systéme d’équations sur un monoide (ou un semigroupe)
donné. Dans le cas des équations, nos résultats completent ceux de [GR9I9] et
suggerent fortement que la question ne peut étre résolue sans comprendre les lim-
ites calculatoires des programmes sur ce monoide. En particulier, nous décrivons
un algorithme permettant de résoudre en temps quasi-polynomial une équation
sur un groupe pour lequel les programmes calculant la fonction AND nécéssitent
une longueur exponentielle. Nous établissons aussi quelques bornes inférieures
et supérieures de la complexité de ce probleme lorsque les équations sont sur
un monoide qui n’est pas un groupe. Contrairement au cas des groupes, nous
montrons qu’il existe un M pour lequel ce probleme est NP-complet bien qu’il
soit calculable en temps polynomial pour un N dont M est un sous-monoide.

Nous établissons aussi que le probleme de la satisfaisabilité des systémes
d’équations est soit résoluble en temps polynomial sur un monoide fini de la
variété J; V Ab mais est NP-complet autrement. Nous démontrons une di-
chotomie semblable lorsque les moitiés droites de chaque équation ne sont que
des constantes et plusieurs résultats dans le cas plus général des semigroupes.

Nous relions aussi ces problemes aux problemes de satisfaisabilité de contraintes.

v
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Chapter 1

Introduction

1.1 Finite Semigroups, Automata and Regular
Languages

Despite their well-known limitations, finite automata have always been and will
remain a fundamental model of computation and a starting point for investi-
gations in theoretical aspects of computer science. Their study has also been
motivated by applications to pattern matching, modeling of finite state systems
and important links with logic and algebra.

It was noticed early on that algebra provided a most powerful framework to
analyze and classify regular languages according to their combinatorial prop-
ertics. The carlier results included the algebraic characterization of star-free
languages proved by M. P. Schiitzenberger [Sch65] and the characterization of
piecewise testable languages given by L. Simon [Sim75] before S. Eilenberg es-
tablished a one-to-one correspondence between varieties of semigroups (classes
of semigroups closed under direct product, morphic images and subsemigroups)
and varieties of languages (classes of languages closed under quotients, Boolean
operations and inverse morphisms from free semigroup to frec semigroup), thus
providing the precise framework for algebraic automata theory. Finding ex-
plicit algebraic descriptions of language varieties for which we are given a

combinatorial description and, conversely, finding combinatorial descriptions
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2 CHAPTER 1. INTRODUCTION

of language varieties corresponding to natural algebraic varieties has led to
important advances in both algebra and language theory. In fact, these ele-
gant methods have been so successful that it is difficult to separate today au-
tomata theory from finite semigroup theory: their influence can be seen for
instance on recent results concerning logic and in particular temporal logic
[Str94, TW02b, TW98, TW02a, BMT99] and they are robust enough to be
adapted to offer nice algebraic approaches to Biichi automata [PP03] and timed-

automata [BPT01].

1.2 Monoids as Machines

Let us view a finite monoid M as a machine whose sole ability is to compute the
product of a list of elements of M. How can we use this machine to recognize
languages in, say, A*? The classical mechanism is that of a morphism: each
input letter is translated into a monoid element through some predetermined
mapping ¢ : A — M and the input is accepted if the product of these elements
lies in some target set F* C M. It is easy to see that this captures exactly the
regular languages and this observation is the starting point of classical algebraic
automata theory.

As pictured in Figure 1.1, we can consider more elaborate ways to use a
monoid M as a language recognizer. We construct a machine that first pre-
processes the input in A* in some predetermined way thus translating it into a
sequence of monoid elements. Our machine then accepts its input if the multi-
plication of these elements belongs to some previously chosen accepting subset
of M. Clearly, the power of such machines depends both on the nature of this
preprocessing and on the particular monoid used in the later step. Amazingly,
well-known complexity classes can be characterized in this way.

The first such example stems from the “program over monoid” formalism

introduced by D. Barrington and D. Thérien in the mid 80’s: in this case, the
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Ty T2 -+ Tp-1 Tpn Input
} } } }
Preprocessing
v } }
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ifmeF itm¢gF

Figure 1.1: Monoids as machines

preprocessing produces a polynomial number of monoid elements, each of which
is a function of exactly one input position. It was first shown that a language
can be recognized by a polynomial length program over a monoid if and only if
it belongs to the class NC! of languages recognizable by families of logarithmic
depth Boolean circuits [Bar89]. Subsequently, algebraic characterizations of
well-known subclasses of NC' were obtained when the underlying monoid was
restricted to belong to some important varieties [BT88].

A few years later, similar techniques were used to show that using a prepro-
cessing performed by a polynomial-time machine allowed an algebraic charac-
terization of PSPACE [HLS193].

Such characterizations are interesting for different reasons. First of all, they
automatically yield a new point of view on the corresponding complexity classes
and give one the opportunity to use tools developed in algebraic automata the-
ory to investigate the properties of the classes (see e.g. [MPT91}). They also
suggest an interesting way of studying the structure of this class by examin-
ing the computational power of these machines when the monoid belongs to
restricted classes. In the two examples just cited, many of the best known

subclasses of NC! and PSPACE can be put in correspondence with well-studied



4 CHAPTER 1. INTRODUCTION

varieties of monoids. Even more importantly, varieties allow one to algebraically
define very fine parametrizations of the complexity classes.

In turn, algebraic characterizations of complexity classes underline the im-
portance of questions about computational problems whose complexity is para-
metrized by an underlying finite semigroup or monoid such as the membership
problem [Koz77, BLS87, BMT92] and some of its variants [BKLMO1], equa-
tion satisfiability [GR99], monoidal circuit evaluation [BMPT97], learning an
expression over a monoid [GTT01] among others. In many cases, questions
about the complexity of these problems and questions about the computational
limits of semigroups as language recognizers are closely linked and sometimes
inseparable.

As we try to understand the computational power of monoids as machines (in
various formalisms) and the computational complexity of algorithmic problems
about monoids, we are thus simultaneously building an algebraic point of view
on computation and a computational point of view on algebra. While for the
most part, tools from algebra have resulted in advances in complexity theory, it
is also the case that complexity questions have motivated advances in semigroup

theory.

1.3 Owur contributions

The work presented in this thesis is a contribution to this algebraic point of
view on computational complexity. We prove a number of new results about
the computational power of programs over monoids and explore new areas in
which the semigroup/monoid approach is meaningful. We relate the results
obtained in these different contexts with one another and with existing work.
We present in Chapter 2 the main tools and results from semigroup the-
ory and algebraic automata theory which will be used in later chapters. In

particular, we list varieties of monoids and semigroups which bear particular
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importance to our work and to many similar investigations. We also recall
some basic notions of computational complexity theory, introduce Boolean cir-
cuit models, branching programs and briefly survey the current state of research
in circuit complexity to outline some of the major open questions in the field.
Chapters 3, 4, 5 form the bulk of our work; we have tried to make each of them
as self-contained as possible although an interesting feature of our results is that
some classes of monoids and semigroups play key roles in apparently unrelated

problems.

1.3.1 Programs over Monoids

We begin Chapter 3 by reviewing the “program over monoid” formalism and
its deep running link to Boolean circuits of shallow depth (and bounded-width
branching programs). We then prove that some monoids are so weak as ma-
chines that any computation they can perform via programs can actually be
achieved with programs of polynomial léngth. On the other hand, some monoids
are rich enough that they can, via programs, recognize arbitrary languages pro-
vided that no restriction on program length is imposed. Surprisingly, we find
some evidence that these two properties are dual and show that in the variety
DS every monoid either has the above polynomial length property or is universal.
We also present a number of results for monoids outside this class and argue in
favor of a conjecture which would generalize the dichotomy observed in DS.

In order to understand the computational power of programs over given
varieties of monoids, it is crucial to isolate so-called program-varieties V, i.e.
varieties such that any regular language which contains a so-called neutral letter
and can be recognized by programs of polynomial length over some M € V can
in fact be recognized by some N € V but using the more primitive notion of
recognition via morphism. We show that for some varieties an even stronger

statement is true: we say that V has the Crane Beach property if any language
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with a neutral letter that can be recognized by programs of polynomial length
over some M € V is in fact regular and can be recognized, via morphism, by
some N € V. We show in particular that commutative monoids and 7 -trivial

monoids have this property while it has been shown not to hold for aperiodic

monoids [BIL*01].

1.3.2 Communication Complexity

In Chapter 4, we propose an algebraic approach to communication complexity,
a field which, over the last twenty years, has been at the heart of many investi-
gations in complexity theory [KN97], most significantly in the study of shallow
Boolean circuits and branching programs.

We look at the amount of communication that k£ parties need to exchange
in order to evaluate the product of n elements of a finite monoid M when the
access to the inputs is distributed among the different parties in the worst pos-
sible way. We prove that the two-party communication complexity of a finite
monoid is either constant, ©(logn) or ©(n) in the standard two-party determin-
istic model of A. Yao [Yao79] and give algebraic descriptions of all three cases.
We obtain similar classifications for the two-party simultaneous, probabilistic,
probabilistic simultaneous and Mod,-counting communication complexity of a
finite monoid. As a corollary, we are able to give, up to a constant, the com-
munication complexity, in a worst-case partition sense, of any regular language
in all five of these models. Some of our results highlight and explain the central
importance of certain regular languages in communication complexity theory.

We also look at the communication complexity of regular languages and
monoids in the multiparty model of A. Chandra, M. Furst and R. Lipton
[CFL83]. We prove algebraic characterizations for monoids and regular lan-
guages which have bounded 3-party communication complexity and those which

have bounded k-party communication complexity for some fixed k. Our alge-
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braic approach isolates natural examples of languages for which precise multi-
party communication complexity bounds would constitute fundamental progress
in our understanding of this tricky model. We are also led to conjecture a mul-
tiparty generalization of Szegedy’s algebraic characterization of languages with
bounded two-party communication complexity.

We apply our communication complexity results to identify program-varie-
ties and to obtain length lower bounds for programs computing some explicit
function over certain classes of monoids. While most of the lower bounds are
corollaries or only slight improvements of previously known results, our tech-

niques are quite different.

1.3.3 Equations over Semigroups

In Chapter 5, we try to understand how the algebraic structure of a finite
monoid or semigroup affects the complexity of solving equations over that fixed
semigroup. Our work complements the results of M. Goldmann and A. Russell
who had obtained results in the group case [GR99].

We first look at the complexity of testing if a given equation over the monoid

M:

CoTiyC1 - . . Ty Cp = doTjydy ... 2j,dy

where ¢;,d; € M are constants and x’s are variables, can be satisfied. That is if
variables can be assigned values in M so that the right-hand and left-hand side
of the equation multiply out to the same value in M. This problem, denoted
EQN,,, had been shown NP-complete for non-solvable groups and in P for
nilpotent groups. The latter upper bound was in fact obtained for the related
problem P-SAT;, of testing whether a given M-program has some input on
which it outputs a specified target. We prove that the complexity of P-SAT; and
EQNg when the underlying monoid is a solvable but non-nilpotent groups G is

tightly connected to well-known open problems on the expressivity of bounded-
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depth modular circuits: in particular, we obtain a quasi-polynomial time upper
bound for both P-SAT« and EQN, when exponential lower bounds are known
on the length of G-programs computing AND. When the underlying M is
aperiodic, we surprisingly show that solving an equation over M is in some cases
easier than solving an equation over some divisor N of M and that P-SAT
can be strictly harder than EQN,,. We further prove that P-SAT}, lies in the
very simple complexity class ACY if M lies in the variety DO N Gp; but is
NP-complete for any aperiodic monoid not lying in this class.

We also look at the complexity of EQNj,, the problem of testing the satis-
fiability of a system of equations over M (or more generally of a semigroup S)
and also consider a restricted version of the problem T-EQN7, when the right-
hand side of each equation contains no variables. We prove sharp dichotomies
for the complexity of both problems which depend on the algebraic properties
of the underlying monoid. We show that EQN7}, lies in P if M is a monoid in
J1 V Ab and is NP-complete otherwise and similarly show that T-EQN3}, lies
in P if M is a monoid in RB V Ab and is NP-complete otherwise. We also
consider the case of systems over a regular semigroup and in particular obtain a
similar dichotomy for the complexity of T-EQN%. We also establish an intrigu-
ing connection between our methods and universal algebra methods used in the

study of constraint satisfaction problems.



Chapter 2

Background

This chapter gives a quick technical introduction to algebraic automata the-
ory and complexity theory which are the bases of our discussion. We review a
number of definitions and important results in the field as well as set notation.
We assume that the reader is familiar with the basic notions of relations, con-
gruences, morphisms, solvable groups and Time/Space complexity of a Turing

machine.

2.1 Algebraic Automata Theory
2.1.1 Semigroups and Automata

The theory of finite semigroups and its applications to formal languages have
been the subject of extensive work since the 50’s. We suggest as reference the
book of J.E. Pin [Pin86] and his more recent comprehensive survey on syntactic
semigroups [Pin97] although some of the more technical results can only be
found in less accessible books such as [Eil76] or [HowT76].

A semigroup is a set S together with a binary, associative operation (which
we usually denote multiplicatively). We further say that S is a monoid if there
exists an identity element 1g in S such that 1g-t =t -1¢=¢tforallt € S. The

multiplication of a semigroup defines a canonical surjective morphism evalg :

9



10 CHAPTER 2. BACKGROUND

S* — S by

evalg(s182...8k) = 81 Sy ... 5.

We will sometimes refer to the languages in S* of the form {wlevals(w) € F}
for some F' C S as the word problems of S. In the case of monoids, evaly, is
defined as a function from M* to M and, similarly, word problems are subsets
of M*.

With the exceptions of the free semigroup A* and the free monoid A*, all
semigroups considered in this thesis will be finite and in the rest of this Chapter,
S and M will respectively denote a finite semigroup and a finite monoid.

We want to view finite semigroups as language recognizers akin to finite
automata (see [Sip97, HU79]). Formally, we say that a language L C A* (resp.
L C A*) can be recognized by the semigroup S (resp. the monoid M) if there
exists a morphism ¢ : AT — S (resp. ¢ : A* — M) and an accepting subset
T C S (resp. T'C M) such that L = ¢~1(T).

The algebraic theory of automata and regular languages is affected, some-
times at quite a deep level, by whether languages are defined to be subsets
of the free monoid A* (finite words over the alphabet A including the empty
word) or subsets of the free semigroup A™ (finite words over the alphabet A
excluding the empty word). Because of this, two parallel theories presenting
only slight, but occasionally crucial, differences have to be constructed. This is
only a concern in a few occasions in this work and we will for the most part try
to avoid the problem. In particular, many of the definitions stated below cover
the monoid case although the reader should keep in mind that distinctions with
the semigroup case might exist.

For a finite automaton M with state set @, every word w € A* defines a
transformation @ — . This set of mappings forms a monoid (under composi-
tion) which we call M’s transformation monoid. One can easily show that any

language recognized by M can be recognized by M’s transformation monoid.
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Moreover, the Cayley graph of a finite monoid M can be viewed as a finite

automaton, allowing one to prove:

Proposition 2.1 A language L C A* can be recognized by a finite automaton

if and only if it can be recognized by a finite monoid if and only if it is reqular.

The last part of this statement is a trivial reformulation of Kleene’s The-
orem. The main objective of algebraic automata theory is to refine Kleene’s
Theorem: once it is established that languages recognized by finite monoids
have a nice combinatorial characterization (i.e. they can be described by regu-
lar expressions) it is natural to ask whether subclasses of regular languages can

be put in similar correspondence with subclasses of monoids.

2.1.2 The Variety Theorem

We say that a monoid N divides M and write N < M if there exists a surjective
morphism from a submonoid T of M onto N. It is easy to check that < is a
well-defined partial order (up to isomorphism) on finite monoids and that any
language that can be recognized by N can also be recognized by any M with
N < M. A class V of monoids is a (pseudo)-variety® if it is closed under direct
product and division.

For L C A*, we define the syntactic congruence, denoted =p, by letting
v =5, y if and only if for all u,v € A* we have uzv € L if and only if uyv € L.
The syntactic monoid of L, denoted M (L) is A*/ =r. One can think of M (L)
as the “minimal recognizer” of L since it is not hard to show that M (L) itself
recognizes L and divides any other monoid that also recognizes L. It should
be noted also that the construction of M (L) is very similar to the automaton
minimization process d la Myhill-Nerode. Of course, M (L) is finite if and only

if L is regular.

!Strictly speaking, a variety is a class of monoids closed under arbitrary direct product
whereas pseudo-varieties only require closure under finite direct product. Because we only
look at classes of finite monoids, we will ignore this distinction.
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For u € A* a string and L C A* a language, the right (resp. left) quotient of
L by u is the set Lu™" = {w:w € A* and wu € L} (resp. u™'L = {w : w € A*
and uw € L}). A class £ of languages is a language-variety if and only if it is
closed under Boolean operations, left and right quotients and inverse morphisms
from one free monoid to another (i.e. if L € A* isin £ and ¢ : B* — A* is a
morphism, then ¢~1(L) is also in £).

Eilenberg’s variety theorem links varieties of monoids and varieties of lan-

guages:

Theorem 2.2 (Variety Theorem) There is a natural bijection between vari-
eties of languages and varieties of monoids: if V is a class of monoids and L is
the class of languages over any finite alphabet that are recognized by a monoid
in 'V then 'V 1s a variety of monoids only if L is a variety of languages and is,

in this case, generated by the set {M (L) : L € L}.

Varieties are thus the natural unit to classify monoids in terms of their
computational power and one can hope to make explicit the correspondence
between an algebraic description of a variety V and a combinatorial description
of languages in the associated language-variety. We will give many examples of

such results.

2.1.3 The Structure of Finite Semigroups

For any monoid M, we introduce five equivalence relations known as Green’s
relations which describe whether two elements generate the same ideals in M.

Formally:
o v Jyif MaeM = MyM;
o Ly if Mx = My;

e zRyifaM = yM;
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e zHyif bothzRyand z Ly;

o 2Dy if £ 'R o Ly, that is there exists z such that zR z and 2 L.

In a semigroup S, Green’s relations are defined using ideals in S!, the monoid
obtained from S by adding an identity element if there is none in S. It can be
shown that R is a left-congruence (i.e. z Ry implies cx R cy for all ¢) and that
L is a right-congruence. Moreover R and £ commute (ie. D = RoL = LoR)
and so all five of these relations are indeed equivalence relations. Moreover,
the relations J and D coincide for any finite S. Since we are only interested
in the structure of finite semigroups, we will consequently always refer to the
J-relation but the reader should be aware that some of the results stated below
do not hold for infinite monoids in which D # 7.

For an element z of M, we denote by J, (vesp. R,, L;, H;) the J-class
(resp. R~, L-, H-class) of z. We also define natural pre-orders <7, <, <,
on M with eg. x <57 y if and only if MaM C MyM. We will say that “z is
(strictly) J-above y” if £ >7 y (resp. z >z y), and similarly for <g and <.
Note that z <7 y if and only if there exists u, v such that z = uyv. Similarly,
z < y if and only if there is u with © = yu and z <, y if and only if there is

u with £ = uy. One can easily prove:

Lemma 2.3 For any a,b in M, if a <7 ab (resp. a <z ba) then a R ab (resp.
aLlab).
For any a J b, if a <p b (resp. a <, b) then in fact aRb (resp. a L ).

The following lemma is the fundamental result about Green’s relations:

Lemma 2.4 (Green’s Lemma) Suppose a andb are two elements of the same
R-class, i.e. there exist u,v s.t. au = b and bv = a. Denote by p, : M — M
the function defined by p,(s) = su. Then p, and p, are bijections from L, to
Ly and from Ly to L, respectively.

Moreover p, = p;' and they preserve H-classes.
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The basic properties of Green’s relations lead to the so-called “egg-box” rep-
resentation of (finite) semigroups. Each J-class of the semigroup is represented
as a table where rows correspond to R-classes, columns to L-classes and cells
to H-classes. From Green’s Lemma, we also know that each cell contains the
same number of elements. When writing out the egg-box representation, the
J-classes are often laid out with respect to the <; preorder (see for example
Figure 2.1).

We say that e € S is idempotent if 2 = e. Idempotents play an important
role in the structure of semigroups. In particular, the identity element 1, is an
idempotent of M. We say that S has a zero is there is an element 0 € S such
that Os = s0 = 0 for all s € S. Note that 0 is idempotent. We state two easy

lemmas which further stress the importance of idempotents:

Lemma 2.5 Let e = € be an idempotent. a <g e if and only if ea = a.

Similarly a <. e if and only if ae = a.

Lemma 2.6 Let a Jb. Then ab € R, N Ly if and only if L, N'Ry contains an

idempotent e = e2.

We include here a proof of this simple but very useful fact to give an example
of arguments using basic properties of Green’s Lemma.
Proof. If there is an idempotent e in £, N R;, we have ae = a, eb = b. By
Green’s lemma aeb € R, N L, and aeb = (ae)(eb) = ab.

Conversely, if ab € R,NL,, then, by Green’s lemma, there is an f in £,NR,
such that fb=b. By lemma 2.5, since b < f, f must be idempotent. O

The subsemigroup generated by an element s of S is finite of course, so there
must exist ¢, p such that s**7 = s* and the subsemigroup can be shown to have
a unique idempotent. We will denote by w the smallest integer such that s*

is idempotent for all s € S and call w the exponent of S. For any idempotent
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e € 5, the set eSe forms a submonoid of S with identity e which we call the
local submonoid of S associated with e.

Groups are a well-known special case of monoids. Recall that a monoid G

is a group if every element g € GG has an inverse g~} L= g7lg =

lg. Every idempotent in a monoid M forms a trivial subgroup of M. Note

such that gg~

also that by Lemma 2.6 an H-class containing an idempotent is closed under

multiplication and, more generally, one can show:

Lemma 2.7 Let H be any H-class of M, then H contains an idempotent if

and only if H 1s a mazimal subgroup of M.

Consequently every H-class contains at most one idempotent. Using Green’s

Lemma, one can further establish:
Lemma 2.8 Any two mazimal subgroups of a common J-class are isomorphic.

We say that S is a union of groups if each of its elements lies in a maximal
subgroup of S. This is equivalent to the requirement that s“*t! = s for each
s€S.

If every maximal subgroup of S is trivial, i.e. contains a single element, then

S is said to be aperiodic or group-free. An important consequence of Lemma

2.7 1s

Lemma 2.9 S is aperiodic if and only if all its H-classes contain a single

element.

An element a of S is said to be reqular if there exists some z € S such that
ara = a. A J-class is said to be regular if all its elements are regular. As
the next lemma shows, regularity is not a property of individual elements but

rather of J-classes.

Lemma 2.10 The following are equivalent for a J -class J of a finite semigroup:
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1. J 1s regular;
2. J contains a reqular element;
3. Bvery R-class and every L-class of J contains an idempotent;

4. J contains an idempotent.

We say that a semigroup is regular if all its elements are regular.

A semigroup is said to be completely simple if it consists of a single J-class
and 0-simple if it consists of two J-classes one of which contains only 0. As we
will see next, the structure of these semigroups is very well understood.

Note that by Lemma 2.6, a J-class of S forms a completely simple subsemi-
group of S if and only if it all its H-classes are subgroups. We seek a refinement
of Lemma 2.6 in order to understand the structure of multiplication within a
regular J-class. Let J be a regular J-class of S and let - denote the multiplica-
tion in S. We denote by J° the 0-simple semigroup consisting of the elements
of J and a 0 with the multiplication o given by sot =s-tif s-¢ lies in J and
s ot =0 otherwise.

Let G denote some finite group with multiplication o and n, m be positive
integers. A Rees matriz is an m by n matrix R with entries in G U {0} and
the corresponding Rees semigroup is the semigroup with elements in ([m] x G x

[n]) U {0} and where the multiplication of non-zero elements is given by:

(i1, 91, 51) - (i2, g2, Jo) = (i1, g1 0 Ry, 4, © 92 , J2)

if R, 4, s in G' and
(ilaglajl) ’ (’i2,92,j2) =0

it R, = 0.

Theorem 2.11 FEvery 0-simple semigroup is isomorphic to a Rees semigroup.
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In particular, for every regular [J-class J, we can construct a Rees-matrix
representation of J° Say that J has m R-classes and n L-classes, with Hij
denoting the intersection of the 5" R-class and j** £-class: because J is regular,
we can assume that it has at least one idempotent per R-class and per £-class
and in particular we assume that e;; is an idempotent in H;;. Let G be the
maximal group #H;; and construct R € (G U {0})™*™ as follows: first, entries
R;y and R, ; are assigned 1 or 0 depending on whether H;; or #H;; contains
an idempotent or not. By Green’s Lemma, there are elements [; (resp. r;) such
that multiplication on the right (resp. left) by [; maps the j™ L-class (resp.
i™ R-class) to the 1st one and these can be chosen so that ril; = eq;. The
other entries I;; are also 0 if H;; does not contain an idempotent and is r;/;

otherwise. Simple calculations show that this Rees semigroup is isomorphic to

JO.

When a Rees matrix contains no 0 entries, we usually think of the corre-
sponding semigroup as completely simple and every completely simple semi-
group can be represented in this way [Gra68]. A 0O-simple semigroup S whose
Rees matrix contains only entries 0 and 1g is said to be flat. By extension,
a regular J-class J is said to be flat if J° is flat and a semigroup is said to
be flat if all its regular J-classes are flat. An easy exercise shows that the 0-
simple semigroup S is non-flat if and only if there exist idempotents e, d, f € S
such that e Ld R f such that defd # d. In other words, a 0-simple S is flat if
its idempotents generate an aperiodic subsemigroup. In fact, more generally,
any semigroup S is flat if and only if its idempotents generate an aperiodic

subsemigroup.

We further say that S is orthodoz if its idempotents form a subsemigroup
in S. Every orthodox semigroup is flat and the two notions coincide for simple

and 0-simple semigroups.
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2.1.4 Operations on Semigroups

We next describe a number of ways to construct semigroups from other semi-
groups. It is natural to ask of course how the computational power of the new
semigroup compares with that of its building blocks and to try and relate al-
gebraic operations on semigroups with combinatorial operations on languages
or, taking the machine point of view on semigroups, with operations that some-
how combine the computing power of two machines. For instance, running two
automata in parallel on the same input can obviously be related to the direct
product of two semigroups.

The wreath product of semigroups S and T, denoted SoT, is the set ST" x T

with an operation defined as

(fi,t1) - (for ta) = (fr - fof, tata)

where f3'(z) = fo(xt1), and - is the operation in S. There is a nice machine
interpretation of the wreath product in terms of series connection of finite au-
tomata (see e.g. [Str94]).

Wreath products are central to a number of results about decompositions of
certain semigroups. For instance, it can be shown that every semigroup divides
a wreath product of groups and aperiodic semigroups [KR65] and that every
solvable group divides a wreath product of Abelian groups.

For varieties V, W, we will denote by V x W the variety of semigroups
generated by the wreath products SoT for S € V and T € W. At this level,
the wreath product is associative, that is we have U (VW) = (Ux V)« W
for any varieties U, V, W.

The block product of S and T, denoted S O 7T is a two-sided version of the
wreath product. Its underlying set is ST 7" x T with the multiplication given

by
(fl?tl) ' (f27t2) = (gat1t2)
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where g : T'x T — S is given by g(z,y) = fi(z,t2y) fo(zt1,y). We will denote
V OW the variety of monoids generated by the block products M O N for
M €V and N € W. In contrast with the wreath product, the block product
1s not associative, even at the variety level. Iterated block products also appear
in many decomposition theorems although such statements must crucially take
into account the bracketing of such products. For instance, a finite monoid is

aperiodic if and only if it divides some
(MyO...(Mp—20(M,_10M,))...)

where each M; is idempotent and commutative [RT89], whereas a monoid be-
longs to the strictly smaller variety DA (see Subsection 2.1.6) if and only if it

divides some

(...(MyOM)OM;)...0M,)

where each M; is idempotent and commutative [ST02].

A relational morphism from a semigroup S to a semigroup 7" is a mapping
m: S — 2T such that 7(z)m(y) C m(xy) for any z,y € S and 7(z) # 0 for all
z € S. Furthermore, if S,T are monoids, we require that 17 € w(1g).

The Mal’cev product V@ W of the semigroup variety V and the monoid
variety W is the class of monoids M such that there exists a relational morphism
7 from M onto a monoid N of W such that for all idempotents e € N we have

n(e) = {m € M|e € n(m)} forms a semigroup belonging to V.

2.1.5 Congruences and Finite Counting

Many combinatorial descriptions of language-varieties can be obtained through
congruences that do some sort of “finite counting”. We introduce here some
useful notation and terminology. Let ¢ > 0 and p > 1 be integers. We say that
z and y are equal threshold ¢ (and write z = y (thresh t)) if z = y or z and y are
both greater or equal to ¢. We further say that z,y are equal threshold ¢ and
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modulo p (and write x = y (thresh t, mod p))ifz =y orz,y >tand z =y
(mod p). For a word v € A*, we denote by a(u) the alphabet? of u, that is the
set of letters of A that occur in u. For any a € A we further denote by |u,
the number of occurrences of @ in u and by a;(u) the vector of dimension |A|
which gives for every a € A the value of |u|, up to threshold ¢. Similarly, oy ,(u)
denotes the |A|-dimensional vector holding the values |ul, up to threshold ¢ and
modulo p.

A subword u = aqas...as, with a; € A of a word 2 € A* is a factorization
of  as

T = TopQ1X]...T5_105%¢

with z; € A*. We denote by (z) the number of occurrences of u as a subword
of z, i.e. the number of possible different factorizations of z as above.

For any, £ > 0 ¢ > 0, p > 1, we can define an equivalence relation g,
on A* as z v,y if and only if © and y have the same number (threshold t
and modulo p) of occurrences of each subword u of length at most k. In fact,
the 7’s are congruences of finite index. When the syntactic congruence of L is
refined by <y, ,, we say that membership in L depends on the number threshold
t modulo p of subwords of length k. We will later on give algebraic descriptions

of such languages and we note for now:

Lemma 2.12 Let A be some finite alphabet. Any z € A* is 1 p-equivalent to
a word of length at most p - |A[*P.

More generally, if Ly, ..., Ly are languages in A* and a,...,a; are letters

x

in A, we denote by ((LoalleakLk

)) the number of factorizations of z as z =
W1 W1 . .. apwi With w; € L;. When the a; and L; are such that for any =z

we have either ( =0 or ( ’ ) = 1 then we say that the

x
(LoalLl‘..akLk)) (LO(LJLInJIk-Lk,)

concatenation Lgaj Ly ... axLy is unambiguous.

2In some of the litterature, this is alternatively called the content of u and is denoted e(u).
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For a language-variety £, we denote by UPol(L) the language variety gener-
ated by unambiguous concatenations Lyay ...aiL; with L; € £. We further let
My, Pol(L) denote the variety generated by the languages {z]| ((Loalleu-akLk.)) = j
(mod p)} for some 0 < j<p-—1and L; € L.

2.1.6 A Catalog of Varieties

The variety Theorem clearly establishes varieties as the central object of study
in the algebraic theory of regular languages. There are a number of ways in
which we might define varieties: through restrictions on automata or regular
expressions, through congruences, through generators for the variety, through
identities and so on. By the latter, we mean that varieties of semigroups can
often be conveniently characterized as the class of semigroups whose elements
satisfy a certain set of equalities®, thus yielding an obvious algorithm to decide
if S lies in V when this set is finite. Consider for instance the variety Com
of commutative monoids: these are exactly the monoids satisfying the identity
xy = yx. (It is also a simple exercise to show that the corresponding languages
are exactly those for which membership depends on the number of occurrences
of each letter threshold ¢ and modulo p.) In fact, we will sometimes loosely
use what are known as pseudo-identities although a formal treatment of them
requires the presentation of a topological framework which we prefer to leave
out (see [Pin97]).

We list here a number of varieties of semigroups and monoids which will be
of importance in later chapters and for each of them give a number of alternate
descriptions. We will be particularly interested in the combinatorial descriptions
of the corresponding varieties of languages (when such descriptions are known).

These varieties are listed for quick reference in the index of notation.

3In fact, every variety of finite semigroups can be characterized as the class of semigroups
that ultimately satisfy a certain set of identities.
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Varieties of Groups

It should first be noted that no “nice” combinatorial description of the languages
whose syntactic monoids lie in the variety G of finite groups is known. This is
related to the apparent impossibility of understanding the combinatorics of non-
solvable groups. There are, however, good descriptions of languages recognized
by a number of subvarieties of Gso the variety of solvable groups [Thé79].

First, for a prime p let us denote by G, the class of p-groups i.e. the groups
of order p® for some integer «v. This variety is characterized by the identity
2?" = 1. Moreover, it can be shown that L’s syntactic monoid belongs to G,
if and only if there exists a k£ such that membership of z in L depends on the
values (%) (mod p) where |u| < k.

A group is said to be nilpotent if and only if it is the direct product G x
... X G, where each G| is a p;-group for some prime p;. Alternatively, if z,y are
elements of a group G, we call [z,y] = 27y~ 'zy the commutator of x and y.
For two subgroups Hi, Hy of G' we denote by [Hy, Hs] the subgroup generated
by commutators [hy, he] with h € H and k € K. We can form the sequence
G =Gy 2 Gy 2 ... by setting G;41 = [G;,G] and say that G is nilpotent of
class k if Gy, is the trivial group. It can be shown that this coincides with our
previous definition of a nilpotent group. We also recursively define a commutator
of weight t: any element of G is a commutator of weight 1 and ¢ € G is a
commutator of weight ¢ > 1 if and only if there exist u,v € G commutators
of weight t1,¢y respectively with ¢, + ¢, = ¢ and such that ¢ = [u,v]. It is
fairly simple to show that a group is nilpotent of class k if and only if the sole
commutator of weight £ + 1 in G is the identity element 1.

We denote by Gy the variety of nilpotent groups of class & and by Gy
the variety of all nilpotent groups. In particular, all G, are subvarieties of Gy

and Gy 1 coincides with the variety Ab of Abelian groups.

Theorem 2.13 ([Eil76, Thé83]) A language L is recognized by a nilpotent
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group G of class k if and only if there is an integer m > 2 such that membership
of x in L depends on the number modulo m of occurrences in z of each subword

u of length at most k.

In fact, one can choose m in this theorem to be the exponent of G. We will

also need the following fact about a very special subclass of of solvable groups:
Lemma 2.14 The group G lies in Gy * Ab if and only if |G, G| lies in Gy.

For any variety of groups H, we will denote as H the variety of monoids
whose subgroups all lie in H. We will refer to G, as the variety of solvable

monoLds.
Aperiodic Varieties

Recall that M is aperiodic if no subset of it forms a non-trivial group. We
denote by A the variety of aperiodic monoids. One can show that M lies in A
if and only if m¥ = m**! for all m € M.

A regular language L is said to be star-free if it can be described by an
extended regular expression (i.e. a regular expression built using letters of the
alphabet, (, concatenation, Kleene star and the Boolean operations union and
complement) without using the Kleene star. For example, if A = {a,b}, the

language L = A*ab* is star-free because L = (ala. The following (much

celebrated) theorem is due to M. P. Schiitzenberger:

Theorem 2.15 ([Sch65]) A language L is star-free if and only if M(L) is

aperiodic.

We have already mentioned that M is aperiodic if and only all its H-classes
are trivial. One can similarly consider the variety J of 7-trivial monoids which
is known to be defined by the identities (zy)* = (yz)¥ and z¢ = 2 *!.

We say that a language L is piecewise testable if there exists k € N such that
membership of any word w in L depends on the set of subwords of length at

most k occurring in w. The following is due to I. Simon [Sim75]:
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Theorem 2.16 The language L is piecewise testable if and only if M (L) lies
mn J.

There are similar well-known descriptions of the variety of languages cor-
responding to the varieties L and R of respectively L-trivial and R-trivial
monoids.

We denote by A; the variety of idempotent semigroups, that is semigroups
in which every element is idempotent. Such semigroups are often called bands
and the lattice of subvarieties of Ay is completely understood (see e.g. [GP89))
although only some of the smallest of these varieties will be of importance in

our work. Most importantly, we will consider the varieties:
e J; of commutative bands or semilattices;
e NB of normal bands, that is bands satisfying zyzz = zzyz;
e R of R-trivial bands, i.e. bands satisfying zyz = zvy;

o L, of L-trivial bands, i.e. bands satisfying zyz = yz;

RB of regular bands, i.e. bands satisfying xyzzx = zyzz. It can be shown

that RB is the smallest variety containing both Ry and L.

Note that a language L has its syntactic monoid in J; if and only if member-
ship of z in L depends on a(z). Correspondingly, J; is generated, as a variety
of monoids, by a single two-element monoid U; consisting of the idempotents
{1,0} and multiplication defined in the obvious way. It can easily be shown
that U; divides any monoid which is not a group.

Similarly, languages corresponding to the variety Acom of commutative ape-
riodic semigroups are the ones for which membership depends on occurrences

of each letter threshold ¢ for some ¢.
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DS and its Subvarieties

For any variety of semigroups V, we denote by DV the variety of semigroups
whose regular J-classes all lie in V. All such varieties are contained in DS,
where S denotes the variety of all semigroups, and S lies in DS if and only if
each of its regular J-classes is closed under multiplication, which, from Lemma
2.6 amounts to requiring that each H-class of a regular J-class contain an
idempotent. Thus, a semigroup in DS which is regular is in the variety UG of

unions of groups. The following can be used to characterize DS:
Lemma 2.17 For any semigroup S, the following are equivalent:
1. S lies in DS;
2. S satisfies the identity ((zy)“(yz)*(zy)*) = (zy)¥;
3. for any z,y € S where x <7y and x is regular we have © J vy J yz;
4. for any x,y € S such that xy R x we have in fact Ryy C R,.

This has a number of interesting consequences. For instance, if M is in
DS and u,v € M* are such that a(u) = a(v), then v and v are J-related.
Moreover, in the special case where M is a union of groups (or furthermore is
idempotent) then u J v whenever a(u) = a(v).

If M is outside DS, then there exist two J-related idempotents e, f such
that ef <z e. One can use this to show that if M is not in DS then M is either
divided by B, the syntactic monoid of (ab)* or divided by U the syntactic
monoid of A*bbA*. These two monoids are aperiodic and both contain the six
elements {1, a, b, ab, ba,0} although U has one more idempotent element than
B;.  Their egg-box representations are given in Figure 2.1 with idempotents
marked by *’s. It is also easy to show that U divides By x Bs.

Let O denote the variety of orthodox semigroups. The variety DO will

play an important role in later chapters as we will exploit the combinatorial
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[* 1*
ab* | a ab®* | a*
b ba* b ba*
0" 0"
BA, U

Figure 2.1: The egg-box representations of U and B,.

description of the corresponding language-variety. By definition, M lies in DO
it and only if the product of any two J-related idempotents of M is also an
idempotent in the same J-class. This is equivalent to requiring that M be flat
and lying in DS.

For a finite monoid M (and in particular any finite group G), we say that
z,y € A* are M-equivalent if for all morphisms ¢ : A* — M we have ¢(z) =

¥ (y). For example, ab and ba are M-equivalent for any commutative M.

Lemma 2.18 Suppose M € DO and let wy,wy € A* be G-equivalent for any
subgroup G of M. For any morphism ¢ : A* — M and any x € M such that
zp(wy) H xd(we) R we have in fact zdp(w;) = zd(ws).

Proof. We first observe that for any idempotent ¢ € M and any w,v € M
lying J-above e we have (eu)”e(ve)” = (eu)“(ve)* since e, (ew)” and (ve)¥ are
J-related idempotents. Similarly, if f is another idempotent J-related to e we
have euvf = eufeuvf.

Let ¢(w;) = y; and ¢(wy) = yy. Since zy; H 2y, Rz there must exist
s,t € M lying J-below y; and y, with zst = z = z(st)* and zyits = zy; =
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zy;(ts)”. Let T be the submonoid of elements of M lying J-above (st) and
Y 1 T — Higyopsye given by 9(z) = (st)“z(ts)“. Using our earlier observation

we conclude that ¢ is a morphism since

Y(wy) = (st)°wy(ts)” = (st)(ts)” (st) y(ts)” = P()(y).

Since w; and wy are equivalent with respect to the group Hisyw(tsyw, we must

have (st)“y1(t5)* = ¥(y1) = ¥(y2) = (st)“ya(ts)*. Thus,
ryr = z(st)%y1 (1) = z(st)“ys(ts)” = zys.

O

Schiitzenberger [Sch76] proved the following characterization of languages

whose syntactic monoids lie in DO and have subgroups in some H:

Theorem 2.19 Let H be a variety of groups and L denote the language variety
corresponding to J1 V H. Then the syntactic monoid of a language L lies in

DO N H if and only if L is in UPol(L).

As Lemma 2.22 will show, this also means DO NH = LI® (J; v H).
Building on the work of D. Thérien and T. Wilke [TW98], we will now prove a
slight refinement of Schiitzenberger’s Theorem by characterizing these languages
in terms of a convenient congruence. For a € a(u), the a-left (resp. a-right)
decomposition of u is the unique factorization u = upau; with a & a(ug) (resp.
a ¢ a(ur)). For a finite group G, we define ~5, on A* where n = |A| by

induction on n + k. First, we have z Nfio y if and only if z,y are G-equivalent.

Next, we let x NrGL,k y when and only when:
Lz Ng,k—l Y;
2. a(z) = afy);

3. For any a € az) = aly), if x = z¢az; and y = yoay, are the a-left

decompositions of z and y then 2o ~7_, ; yo and x; ~ LY
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4. For any a € a(z) = aly), if = zeaz; and y = yoay, are the a-right
decompositions of z and y then zq ~F ;| yo and z; ~5_; |, 1.

This equivalence relation is well-defined since |a(zp)| < |a(z)| in (3) and

la(z1)] < |a(z)| in (4). It is easy to check that ~¢, is in fact a congruence of

finite index.

Theorem 2.20 Let M = A* /v, with |A| =n. Then M € DO NH if and only
if ~G S 7y for some k € N and G € H.

Proof.  For one direction, we need to show that A*/ ~¢, is in DO N H
for any integer k£ and any group G € H. We will appeal to the theorem of
Schiitzenberger which we previously cited as Theorem 2.19: it is an easy exer-
cise to verify that each Nﬁ’ x-class can be described by an unambiguous concate-
nation Kya; ...asKs where the K; can be recognized by the direct product of
an idempotent and commutative monoid (to verify whether a(z) = a(y)) and
a group in H (to verify that z,y are G-equivalent). Schiitzenberger’s Theorem
thus insures that any disjoint union of these classes forms a language whose
syntactic monoid lies in DO N H.

For the second part of our proof, let us denote as [u], for any u € A*, the
v equivalence class of u. We define the R-decomposition (with respect to the
congruence v) of a string u € A* as the unique factorization u = uga,u; . . . auy,

with a; € A and u; € A* such that:

L. [woar ... asugs] R[uoa ... asusa.y] for any s < t.
2. [uoay ... a5 R[uoay . ..asu, for any s < t.

3. [uo) H 1ps.

Because M lies in DS we know by Lemma 2.17 that a; € a(u;—,). In
particular, u = ugay uiaz. .. awu,; is the aj-left-decomposition of u. Symmet-
rically, we can define £-decompositions of strings, which will relate to right-

decompositions.
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Let now k£ be the maximum of the number of R-classes and the number of
L-classes of M. Let B C A be a sub-alphabet with |B| = m and suppose u,v

are strings in B*. We claim that if G € H denotes the direct product of all
G

m,mk

maximal subgroups of M, then u ~ v implies [u] = [v] and prove this by
induction on m.

For m = 0, the claim is trivially true. For the inductive step, assume now
m > 1 and suppose u Nﬁl’mk v, with a(u) = a(v) # 0. Let v = ugayu, . .. ayuy
be the R-decomposition of u with ¢t < k. We write w; for w;a;y; .. .asu, and, by
our earlier remark, have w; = w;a;41w;41 is the a;4-left-decomposition of w;,
so there must be a decomposition v = wvya; . ..a;vy such that u; ijz-l,mk—-i U;
for i < t (Note that this actually implies u; Nr(il—l,(m~—1)k v;). By the induc-
tion hypothesis, we have [u;] = [v;] for all ¢ < t so [u] R [uga; ... ui_1a;] =
[voar ... vi—1a¢] > [v]. Symmetrically, we get [v] >z [u] and thus [u] R [v].
With the symmetric argument, we cdn also establish [u] £ [v] so we have [u] H [v].

It remains to show that in fact [u] = [v]. Note that by definition of ~%, we

have that u; and v; are G-equivalent. So by Lemma 2.18 we obtain,
{U} = [u0a1 P utﬁlat][ut] = [u0a1 N ut_lat][vt] = [anl e 'Ut_lat][vt] - [’U]
]

The variety DA of monoids whose regular J-classes form aperiodic semi-
groups is contained in DO and is in fact equal to DO NT if I denotes the trivial
variety and so DA is captured by the congruences N,,’]’k for the trivial group I.

Specifically, Theorem 2.19 yields

Corollary 2.21 The syntactic monoid of a language L C A* lies in DA if and

only if L is the disjoint union of unambiguous concatenations
ASGIAI Ce akA;;

with a; € A and A; C A.



30 CHAPTER 2. BACKGROUND

Monoids in DA and corresponding languages have many beautiful proper-
ties and interesting algebraic, logical and combinatorial characterizations which
place them at the heart of many investigations in automata theory, complexity
and logic (see [TT02b] for a survey). In particular, DA is characterized by the
identity (zyz)“y(zyz)” = (zyz)”. We note also that any aperiodic outside of

DA is not in DS and therefore admits one of By or U as a divisor.

Varieties Defined using Varieties

Given algebraic characterizations for varieties V and W and combinatorial de-
scriptions for the corresponding languages, we can sometimes get good descrip-
tions for varieties defined in terms of V and W. The first example that comes
to mind is of course their join V'V W, that is the variety generated by elements
of V and W. It is easy to see that the languages corresponding to V'V W are
Boolean combinations of languages recognized by monoids in V or W but more
often than not, obtaining a convenient algebraic description for the join is very
difficult. Similarly, a number of important varieties can be defined as V « W or
V OW and so on.

For any variety of monoids V, we denote by LV the variety of semigroups
S in which all local submonoids (i.e. submonoids of the form eSe) lie in V.
Relevant local varieties in this work include the local p-groups LG, and the

locally trivial semigroups LI.

Theorem 2.22 ([PST88]) Let V be a variety of finite monoids with an asso-
ciated variety of languages L. The variety of monoids associated with UPol(L)
is LIG) V.

Theorem 2.23 ([Wei92]) Let p be prime and V be a variety of finite monoids
with an associated variety of languages L. The variety of monoids associated

with M,Pol(L) is LG, @ V.
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The application of this theorem to the case V. = Com will bear special
importance in Chapter 4. We will also need the following characterization of

the variety LG, @ Com.

Theorem 2.24 The monoid M lies in LG, 8 Com if and only if every sub-
group of M lies in Gy x Ab and for all J-related idempotents e, f € M holds

(efe)’” =e.

Proof. The simplest way to obtain this theorem is through topological results
of [PW96]. Since we do not really need to introduce these sophisticated methods,
we sketch here a proof from elementary principles.

Suppose first that there is a relational morphism 7 : M — T with T com-
mutative and for any idempotent d € T, 77'(d) € LG,. If e is an idempotent
of M, then there is an idempotent d in w(e) and er~!(d)e is a p-group. It
is easy to show that any idempotent f J-related to e is also in 771(d) so
(efe)*” = e. Moreover, since T is commutative, for any z,y in the group H,,
holds d € n(z™H)w(y~)m(z)7(y). Thus [z,y] € 77(d) and so [z,y]”" = e and
therefore #,. is a group in G * Ab.

Conversely, let M be such that for all 7-related idempotents e, f € M holds
(efe)’” = e. In particular, M lies in DS and so z¥y¥ is J-related to (zy).
From each [J-class J; of M, we pick a maximal subgroup G;: the subgroup
|G, (] is normal in G; and the group K; = G;/[G;, Gy] is Abelian. We also
denote by p; the canonical morphism from G; into K; and e; the idempotent in
G;.

We define a monoid 7" in J; V Ab on the set | K;. For¢; € K, and ¢, € K,
such that (e;, e;,)” and ey, are J-related idempotents in M, we choose my and m;
arbitrary pre-images in Gy, Gj, in p; ' (1) and p,;l(tg) respectively and define

the multiplication of ¢; and ¢5 in T as:

tl . tz - pk(ek(mlmg)“’Hek).
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Note that the particular choice of my,my is unimportant. It is also easy to
verify associativity.
We claim that there is a morphism ¢ from M to T such that the inverse

image of any idempotent in T is a local p-group. We define ¢ by:

¢(x) = piewe)
where z¢ belongs to the J-class J; and e is the idempotent in group G;. One
must check that this is a well defined morphism. The crucial property we will
use is that if e is the idempotent of G; and [ is another idempotent J-related
to e, then p;(efe) = e. Indeed, since every group in M is in G, * Ab and
(efe)?” = e then efe lies in the subgroup [G;, Gi]. Now we get:

¢(z) - dy) = paleates)  pyleyyey)
= Plesy)(Eay(eazes)(eyyey)esy)
= Pleay)(CayTYCay)
= ¢(zy)
The same remark allows us to conclude that the inverse image of any idempotent

of T is a local p-group. O

If an element x of S is regular, there exists by definition some a with aza = o
and zar = x and we say that a is an inverse of z. In general, inverses in that
sense may not be unique and from Lemma 2.6 one can easily show that every
regular element of S has a unique inverse if and only if every regular J-class
of S has exactly one idempotent per R and L-class. If each element of S has
a unique inverse, we say that S is an inverse semigroup and denote by (Inv)
the variety generated by such semigroups. It is characterized by the identity
r?y* = y“r¥ and we have (Inv) = J; * G = J; @ G (sce [Pin95]).

A Brandt semigroup is a 0-simple inverse aperiodic semigroup. We denote
by BSj the (unique) Brandt semigroup such that the non-trivial J-class has k*

elements.
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Lemma 2.25 The monoid By can be generated by k elements ay,ay, ..., a

subject to the relations:
1. a;a; =0 forany j #1i+1,

2. Gi0i41 (mod k) - - - Gitk (mod k) = @5 for all 4.

We will write By, to denote the Brandt monoid BS}. Note that we already have
stressed the importance of By when discussing subvarieties of DS.

One last variety which we will consider is DA *G which has recently emerged
as one of particular importance in logical descriptions of regular languages. The
following theorem is part of semigroup folklore and an explicit proof can be

found for instance in [STO01].

Theorem 2.26 The monoid M lies in DA * G if and only if for any two J-

related idempotents e, f in M holds either ef < e or ef is idempotent.

In particular, if M does not lie in DA * G, then it either admits U as a
divisor or it is non-flat. In other words DO = (DA x G) N DS.

2.2 Computational Complexity

Computational complexity theory is concerned with classifying languages in
terms of the resources needed to decide them in a certain model of computation.
The classical and most natural measures are that of time and space required
on a Turing machine (see [Sip97, Pap94, GJ79]) but the study of alternative
measures and computation models have been a major part of the successful

development of the theory.

2.2.1 Complexity Classes, Reductions and Completeness

Computational complexity theory has been hampered by the frustrating inabil-

ity of the field to provide explicit lower bounds on resources needed for explicit
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functions. We trust that the reader is familiar with the P versus NP problem:
despite years of intensive research, many leading theoreticians [Gas02b] feel that
super-polynomial time lower bounds for a problem in NP are as far out of reach
today as they were twenty-five years ago. Basic containments for the classes
of languages L, P, PSPACE of languages recognizable by deterministic Turing
machines in, respectively, logarithmic space, polynomial time, polynomial space

and their non-deterministic counterparts NL, NP, NSPACE are easy to obtain:
LCNLCPCNPCPSPACE = NSPACE;

but although L # PSPACE can be obtained through the space-hierarchy the-
orem, none of the other inclusions above is known to be strict.

Because getting explicit complexity lower bounds is so difficult, reductions
have been a central tool of complexity theory since they allow us to at least
compare the relative complexity of various problems and obtain strong indica-
tions that a given problem is hard. A many-one reduction from L C A* to
K C B* is a function f : A* — B* such that for any z € A*, x € L if and only
if f(z) € K. If fis “easy enough” to compute (this might take on different
meaning in different contexts), then A is “at least as hard” to compute as B.

For a complexity class C, we say that a language I is C-complete if K liesin C
and for all L € C there is an “easy enough” reduction from L to K. For instance,
NL, P, NP and PSPACE are all known to have complete problems under many-
one reductions computable in logarithmic space. Establishing that a problem
K is, say, NP-complete under logspace reductions is significant because then K
belongs to P if and only if all other problems in NP do. In Chapter 5 we will
be concerned with a number of problems lying in NP and will write L <p K
to denote the existence of a many-one reduction from L to K computable in
polynomial time.

For K C B* we define a Turing machine with a K oracle to be an ordinary

Turing machine with the ability to query a K-oracle, that is to decide in 1 time
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step whether some w € B* belongs to K. We say that L is polynomial-time
Turing-reducible to K, and denote this L <L K if L can be decided by a Turing
machine with oracle K that runs in polynomial time. Note that a polynomial-
time many-one reduction is a polynomial-time Turing reduction where only one
query to the oracle is made. Similarly, we will say that L is polynomial-time
bounded-truth-table-reducible to K, and denote this L <% K, if L can be decided
by a Turing machine with oracle K that runs in polynomial time and makes
only a constant number £ of oracle queries. We will say that a language is

NP-complete if it is NP-complete under polynomial time Turing-reductions.

Of course, for subclasses of L, completeness under, say, many-one logspace-
computable reductions is meaningless and much weaker notions of reductions
need thus be defined. A projection 7 of length s maps A”™ to B* in such a way
that for each j € [s] there is a unique ¢ € [n] such that the j** bit of 7 ()
depends only on the i** bit of z.

2.2.2 Circuit Complexity

A Boolean circuit C' with n (Boolean) inputs Xi,..., X, is a directed acyclic
graph with three types of nodes (or gates): 2n input nodes of in degree 0, a
single output node of out-degree 0 and inner nodes with in- and out-degree at
least 1. The input nodes are labeled with X; or X; while the inner nodes and
output node are labeled with a symmetric Boolean function chosen from some
predetermined base (unless otherwise specified, this base is {AND,OR}).

Such a circuit naturally computes a function from {0, 1}™ — {0, 1} as follows:
given an input z = by ...b,, nodes in C' are recursively assigned a Boolean value.
First, the input gates X;, X; get value b; and 1—b, respectively. Next, if the gates
g1, .-, gt have been assigned values vy, ..., v, and are the inputs to gate g (i.e.
are the set of nodes with arcs to g) then g is assigned the value f(vy,vs,...,v;)

where f is the label assigned to g. Because, every inner node has in-degree and
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out-degree af least 1, every gate in the circuit is assigned some value during this
process. The output node is always assigned a value last and this value C(z) is
the output of the circuit.

The language L(C) accepted by C' is the set {z|C(z) = 1}. The size of the
circuit is the number of gates in C and its depth is the length of the longest
path from an input node to the output node. Of course, we can easily refine
this definition to allow circuits to process non-Boolean inputs or to allow non-
symmetric functions computed at each gate.

A circuit can only process inputs of some fixed length although in general
we are interested in using circuits as machines to recognize subsets of {0, 1}*.
We say that the language L C {0,1}* is recognized by the circuit family C =
(Co, Ch,...) if the n' circuit C,, processes inputs of length n and accepts L N
{0,1}™. We can then define the size and depth of C as functions from N to N
in the obvious way.

Such models of computation, where different lengths of input are processed
by different machines are called non-uniform models. Their power exceeds that
of Turing machines since they can, for example, recognize arbitrary languages
over a l-letter alphabet.

The following symmetric Boolean functions are traditionally used as parts
of bases in Boolean circuits: MoOD,, is the function which returns 1 if the sum of
its input bits is divisible by m; THRESHOLD, returns 1 if at least ¢ of its input
bits are 1; MAJORITY returns 1 if its input contains more 1’s than 0’s (i.e.
MAJORITY is THRESHOLD, /7). We now define the following circuit complexity

classes:

e ACY is the class of languages which can be recognized by a family of
{AND,OR}-circuits of unbounded fan-in, polynomial size and constant

depth;

e CC%m)] is the class of languages which can be recognized by a family
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of {MoD,,}-circuits of unbounded fan-in, polynomial size and constant

depth;
CC" is the union over all m of the CC°[m] classes;

ACCO[m] is the class of languages which can be recognized by a family
of {AND,OR,MOD,, }-circuits of unbounded fan-in, polynomial size and

constant depth;
ACC? is the union over all m of the ACC®[m] classes;

TCP is the class of languages which can be recognized by a family of
{MAJORITY }-circuits of unbounded fan-in, polynomial size and constant

depth;

NC! is the class of languages which can be recognized by a family of
{AND,OR}-circuits with bounded fan-in, polynomial size and O(logn)
depth;

NC is the class of languages which can be recognized by a family of
{AND,OR}-circuits with bounded fan-in, polynomial size and O(log* n)

depth for some k.

Since all these classes are defined using a non-uniform model of computa-

tion, there is no way to relate them to the usual Time/Space classes. However,

uniform versions of these classes can be devised by requiring that there ex-

ist a Turing machine which, given n can produce a description of the circuit

(), within strict resource bounds. Conversely, Turing machine models can be

made non-uniform by introducing so-called advice tapes. We will for the most

part completely disregard uniformity issues in this work but we note that the

inclusions

ACY,CC* C ACC*CTC*C NC* CLCNLCNCCPCNPC PSPACE
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hold in suitably defined uniform and suitably defined non-uniform variants of

these classes.

Boolean circuits, and particularly shallow Boolean circuits have served as
an interesting tool in the study of parallel computation. Just as P is usually
viewed as capturing the notion of sequential tractability, uniform NC is usually
thought of as the class of problems with efficient parallel algorithms. The book
of H. Vollmer [Vol99] presents a nice overview of circuit complexity and its

importance in theoretical computer science today.

Subclasses of NC! have been the subject of intense research since the 1980’s
(see survey [All97]). The hope once was that techniques developed to separate
various subclasses of NC! would be eventually built upon and refined in order to
separate more powerful classes. Unfortunately, the important work on so-called
“natural proofs”, introduced in the seminal paper of A. Razborov and S. Rudich
[RRI7], indicates that a separation of even TC® from NP will require radically

different methods than current combinatorial lower bound methods for circuits.

Still, circuit complexity has delivered very interesting results. A series of
papers (starting from [Ajt83, FSS84]) established that PARITY (i.e. MoDy) does
not lie in ACY, thus separating AC? from ACC’. Subsequent work culminated
in exponential size lower bounds for depth &£ AC? circuits computing an explicit
function computable by depth (k + 1) linear-size ACP circuits [Has87]. Very
different techniques further showed that in fact Mob,, does not lie in CC°[p]
for p prime, unless m is a power of p [Raz87, Smo86]. A lot of other results have
shown lower bounds for restricted classes of CC%[m], ACC? and TC® circuits
but despite impressive work in this field, we know of no super-linear size lower

bound for depth-3 CCP[6]-circuits computing an NP-complete problem.

Many surprising circuit-complexity upper bounds have also been established.
Let us mention for instance that THRESHOLDoge,, [FKPS85, HWWY94] and ad-

dition of log n n-bit numbers (see [Str94]) can be done in AC® while division and
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multiplication of n n-bit numbers can be computed in uniform TC° [HABO2].

2.2.3 Branching Programs

A branching program on n Boolean variables is a directed acyclic graph with a
distinguished source node of in-degree 0 and two sink nodes sy and s; of out-
degree 0. The source nodes and the inner nodes are labeled with a variable z;
and have two outgoing edges labeled 0 and 1. A branching program represents
in a natural way a Boolean function f: {0,1}" — {0,1}: a given z € {0,1}",
defines a unique path from the source to one of the sinks by following at any
node labeled z; the edge labeled with the value of the i*" bit of z. Naturally,
f(z) is the label of the sink reached in this way.

We will view branching programs (or BP’s for short) as a natural non-
uniform computation model somewhat akin to Boolean circuits. They are also
very useful when seen as a data structure for Boolean functions (in that case they
are alternatively referred to as binary decision diagrams). Natural measures for
the complexity of a branching program include size (number of nodes) and depth
(length of longest source to sink path).

Branching programs have received a lot of attention both from theoreticians
and from researchers in more application oriented fields such as verification and
model checking. The book of I. Wegener is an excellent introduction to both
theory and applications of BP’s [Weg00].

A restricted class of BP’s plays an important role in the motivation for our
work. A bounded-width branching program (or BWBP) of width & is a special
case of BP in which each inner node belongs to some level and edges go only from
level i to level i+ 1. Furthermore, all nodes of a given level query the same input
bit. This model was introduced by [BDFP86], partly as means of identifying
interesting subclasses of NC!'. Indeed, it is easy to show that every Boolean

function that can be represented by a family of BWBP’s of polynomial depth
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can be computed by a family of NC! circuits. It was conjectured at the time that
the MAJORITY function could not be computed by BWBP’s in sub-exponential
length. This was disproved by the remarkable result of D. Barrington which

will be discussed in our next chapter.



Chapter 3

Programs over Monoids

The class of languages which can be recognized via morphism by a finite monoid
is quite limited. Over the past twenty years, different formalisms have been
introduced to generalize the notion of recognition of a language by a monoid.
The focus of this chapter is a model of computation introduced by D. Barrington

and D. Thérien known as programs over monoids.

3.1 From Homomorphisms to Programs

3.1.1 The Program Model

An n-input program ¢ over a monoid! M (or M-program) of length t is a

sequence of instructions

¢ = (i1, f1) iz, f2) . .. (4, f2)

where the 7;’s are indices in [n] and the f;’s are functions from the input alphabet
A into M. We will sometimes refer to the f;’s as query functions. As the
terminology suggest, such programs process only inputs of length n and on

input x = 2125 ...z,, the output ¢(z) of ¢ on z is

d(x) = fi(zy,) falzsy,) . .. fi(zi,) = m.

'More generally, one can consider programs over semigroups although most of the literature
focuses on programs over monoids. This reflects the fact that the existence of an identity
element is helpful when designing such programs.

41
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Note that the right-hand side can be seen alternatively as ¢ elements of M or
as m, their product in M. We say that ¢ accepts z if ¢(z) belongs to some
accepting subset F' C M and say that L C A™ can be recognized by ¢ if there
exists some F' such that L = {z : ¢(z) € F}.

In general, we say that L C A* can be recognized by an M-program of length
s(n) if there is a sequence (¢o, ¢1, . ..) where ¢, is an n-input program of length
bounded by s(n) that can recognize L N A™. In effect, such a sequence can be
seen as a non-uniform projection of length s(n) from L to the word problem
for M but we will use in this context the program terminology. Note that a
morphism is a special case of a program-family: each ¢, has length n, the *®
bit queried is always the i*® input letter and the query function is always the
same.

The program model is non-uniform and has super-Turing computational
power although, just as Boolean circuit models, standard uniform versions of it
can be defined.

The motivation for introducing this model of computation originally lies in
the study of bounded-width branching programs. D. Barrington observed that
the edges cdnnecting two levels of a BWBP can be seen as two transformations
on k points fy, fi : [k] — [k] where fy and f; correspond to the edges with labels
0 and 1 respectively. Thus, a BWBP can be seen as a program over the finite
monoid generated by all functions occurring in the BP. This algebraic point of

view led to a surprising theorem.

Theorem 3.1 ([Bar89]) The language L C A* is recognized by a program of
polynomial length over some finite monoid M if and only if L lies in non-uniform

NC*.

In fact, we can replace the finite monoid M by any non-solvable group and
the theorem relies on a property of finite simple non-Abelian groups which

had already been uncovered twenty years earlier by W. Maurer and J. Rhodes
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[MR65] although its computational complexity implications were first noticed
by Barrington. In particular, because MAJORITY lies in NC! and because Ss,
the group of permutations on 5 points is non-solvable, MAJORITY was shown to
be computable by a family of width-5 branching programs of polynomial depth.

There exists a deep connection between shallow Boolean circuits and pro-
grams over monoids which was gradually uncovered in the 80’s using tools which
had been developed in the context of algebraic automata theory. Barrington
and D. Thérien showed that many natural subclasses of NC! also had nice

algebraic characterizations [BT88], the most important of which are:
Theorem 3.2 Let L be o language in A*:

e L lies in non-uniform AC if and only if it can be recognized by a program

of polynomial length over some finite aperiodic monoid M;

o L lies in non-uniform CC® if and only if it can be recognized by a program

of polynomaial length over some finite solvable group G;

L lies in non-uniform ACC® if and only if it can be recognized by a program

of polynomial length over some finite solvable monoid M.

L lies in non-uniform NC* if and only if it can be recognized by a program

of polynomial length over some finite non-solvable group G.

Moreover, uniform versions of these theorems can easily be obtained. Re-
markably, PARITY, the word problem of the group Cy, the smallest non-aperiodic
monoid, was historically the first language shown not to belong to AC? [FSS84].
In retrospect, Theorem 3.2 shows how natural a target PARITY truly was.

Programs over monoids therefore offer an algebraic approach to the study
of shallow Boolean circuits and BWBP’s. This has many advantages: foremost
powerful results and insights from algebraic automata theory can be ported to

circuit complexity theory. Secondly, very fine natural parametrizations of NC*
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can be obtained [MPT91], some of which do not have a natural description in
terms of circuits. The same phenomenon also helps us choose reasonable and
natural targets for progress towards the resolution of questions such as CCY
vs. NC': indeed, this question boils down to bounding the power of polynomial
length programs over a solvable group. Once the question is posed in these
terms, a natural research program emerges: try to bound the computational
power of polynomial length programs over what algebraic automata theory sug-

gests are more and more intricate classes of groups.

This was pursued early on in [BST90] where it was shown that AND cannot
be computed by a program over a nilpotent group and cannot be computed in
sub-exponential length by a program over any group in the variety G, x Ab.
It can also be shown that computing MOD,, requires programs of exponen-
tial length over groups in this variety unless m divides the order of the group
[BS94, BS99]. These results can be translated into size lower bounds for circuits
consisting of MOD, gates at the input level followed by a number of MOD,, gates
for a prime p (see also [ST, Cau96]). The same techniques led to a proof that
CCP[q] circuits cannot compute AND in sub-linear size [Thé94] and it is fair to
say that the state of the art lower bound technology for modular circuits was

developed using the algebraic approach.

The power of programs over aperiodics has also been explored: one can give
an algebraic characterization of AC® restricted to circuits of depth % using the
“dot-depth” parametrization of aperiodics (see [BT88]) and precisely charac-
terize the power of polynomial-length programs over semigroups of dot-depth 1
[MPTO00] and monoids in DA [GT03]. It has also been shown that some aperi-
odics are too weak to compute the MOD,,, function with programs, regardless

of length [Thég9).

The results mentioned thus far bound the power of polynomial length pro-

grams over fixed varieties of “weak” monoids. Other results bound the ex-
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pressiveness of short programs over “powerful” varieties of monoids: it can be
shown that families of programs of length o(nloglogn) have very limited ca-
pabilities (see comments in Section 3.4) and in particular that they cannot
compute MAJORITY regardless of what the underlying monoid is [BS95]. A
completely different approach has shown that for any group G, the output of
any “rich enough” G-program which queries each input bit only once is very

close to the uniform distribution on G [GRT00].

3.1.2 Summary of Results

In this chapter we present some new results about the limited computational
power of programs over certain varieties of monoids as well as introduce further
motivation for the next chapters. We first review in the next section basic
properties of programs and establish some of the tools that we will use in the
later sections. Section 3.3 constitutes the core of this chapter: we try to answer
two fundamental questions about the program over monoid model. On one hand
we seek to characterize the monoids which are powerful enough to recognize
arbitrary languages when no length restriction is imposed on the programs.
The existence of such monoids, which we will call universal can easily be proved
and corresponds to the well-known fact that even exponential-size depth-2 AC°
circuits have universal computing power. On the other hand some monoids
are so weak that any computation they can do can be realized by a program
of polynomial length. Surprisingly, this polynomial length property, which we
will define more formally, appears to be dual to universality. We conjecture
that every finite monoid M is either universal or able to perform all of its
computations in polynomial length, depending on whether M belongs to the
variety DA * G N Gy. Our main result supporting the conjecture is that this
dichotomy does hold if M belongs to the variety DS. We also prove that M
1s universal if it does not belong to DA x G but that it has the polynomial
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length property if it is the wreath product of an aperiodic monoid in DA and
a p-group G. For the most part, these results have been published as [TT02a).

P. McKenzie, P. Péladeau and D. Thérien [MPT91] showed that for any
variety V of monoids, the class P(V) of languages which can be recognized
by polynomial length programs over a monoid in V is essentially characterized
by the regular languages in P(V). For every V there exists a maximal variety
of monoids W such that P(V) = P(W) and when V = W, we say that
V is a program-variety. In the terminology of H. Straubing [Str00], V is a
program-variety if the only monoids whose multiplication can be “simulated”
by a polynomial length program over a monoid in V are the monoids of V itself.
In Section 3.4, we argue that identifying such varieties is the very goal of an
algebraic approach to NC!. For certain program-varieties V, the computational
limits of V-programs are even more dramatic because any language L that
contains a so-called neutral letter and can be recognized by a program over
some M € V can be recognized by a morphism over some N € V. We prove

that Com and J have this property and discuss the implications.

3.2 Basic Properties of Programs

Lemma 3.3 Let G be an arbitrary group and let G, be the subgroup generated
by all commutators of weight c. Then any function f : A¢ — G, can be realized

by a G-program ¢; of length (dg)¢, where dg depends on G.

Proof. We use induction on c: if ¢ = 1, the program is simply ¢; = (1, f).
For ¢ > 1, let g be a commutator of weight ¢; and h be a commutator of weight
ce, where ¢; + ¢ = ¢. For any fixed z in ‘Acl, there exists, from the induction
hypothesis, a program ¢, , that outputs ¢ on input z and 1g on any input
different from z. Similarly, for einy fixed y in A® there is a program ¢, , that
outputs h on input y and 1¢ on any other input. By the induction hypothesis,

1

such programs also exist for g~' and h~! since these are also in G,, and G,
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respectively. Let now z be in A, with z = 2y, where z is in A and y is in A%:
we construct @, jgn = Pz g-1 Py 1Pz, gy n, Where it is understood that the first
and third segments query the prefix of length ¢; of the input while the second
and fourth segments query the suffix of lehgtll cy. This program is easily seen
to have the property that it yields g, h] on input z and the identity element on
any other input. We finally get the desired program ¢ as the concatenation of
the various ¢, f(,), for all z in A°. Note that the program has length exponential

in c. ]

Remark 3.3. In particular, if a group G is not nilpotent of class ¢ then
G411 contains some g # 1g and there exists a G-program ¢ of length
exponential in ¢ such that ¢(z) =1 if and only if all bits of z € {0, 1}¢*!

are on and ¢(z) = g otherwise.

It has proved fruitful, in the study of complexity classes lying within NC*
to represent subsets of {0,1}" by polynomials over a finite ring. This was
the starting point of R. Smolensky and A. Razborov’s algebraic approach to
proving that PARITY and MAJORITY do not lie in AC? [Smo86, Raz87] and other
subsequent similar work (see the survey [Bei93]). We will represent functions
from A" — Z, as polynomials over the finite ring Z, in the k-n boolean variables
ofh 2l att, .28 L a8 where A = {ay,. .., as}. The intended meaning
of these variables, of course, is that .’ is equal to 1 if the i*" letter of the input
r € A" is a; and is 0 otherwise. For this reason we will in fact be working over
the semi-ring Z,[z7", ..., 2%] modulo the identities ()% = z;’ for all 4, and

rn

z - x¥ =0foralliandall j#1.
Such polynomials naturally represent a function from A" — Z, and, con-
versely, any function f : A — 7Z, can be represented as a polynomial of this

form because the polynomial ' 252 . .. 2 is equal to 1 if the input z is ¢y . . . ¢,
p 1 +2 n 1%

and is 0 otherwise. We say that the language L C A™ is recognized by the poly-
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nomial r if for all z € A", r(z) = x1(z). Typical measures of “complexity” for
these polynomials include degree and size (number of terms).

We will find it is useful to take this point of view when bounding the com-
putational power of certain monoids. The next lemma, for instance, shows that
programs over p-groups can be represented by particularly “simple” polynomials

over Zp.

Lemma 3.4 Let G be a p-group. For every n-input G-program ¢ over the
alphabet A and any accepting subset F' C G, the language L($) is recognized

over Zy by a polynomial of degree at most dg.

Proof. We first note that this Lemma is proved in [PT88] in the special case
A = {0,1}. We will use the characterization of languages recognized by p-groups
presented earlier in Chapter 2. Recall that the word problem for a p-group boils
down to counting modulo p the number of occurrences of all subwords of length
at most kg.

Let ¢ be an n-input G-program over the alphabet A = {a;,...,a5}. Note
that if the polynomials 7,7, recognize L, Ly € A" respectively, then (1 — ;)
recognizes A" — Ly and 77y recognizes Ly N Ly. Thus, in light of the previous
remarks, it is sufficient to show that for all u € G*¥ and all 0 < i < p — 1, the
set {v € A™: (¢§f)) = 4 (mod p)} is recognized over Z, by a polynomial of
bounded degree. To see this, note that any occurrence of u as a subword of
$(x), is the result of k instructions giving a specific output. In other words,

there are input variables z;,,...,z; and alphabet letters by, ..., b, such that u

k
occurs in ¢(x) precisely because z;; = b; in 2. These z;, have the correct value
o e . by

if and only if the monomial xi’ll ... 2;; evaluates to 1 so we can count the number

of occurrences of © modulo p using a polynomial of degree bounded by k. O

We have already mentioned that when reasoning about programs it is often

useful to think of the output of the program as the word in M* corresponding
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to the concatenation of the elements output by each instruction. Similarly,
notice that an n-input program is a finite sequence of instructions, i.e. a finite
word over the alphabet ¥ of size n x AM consist of pairs (i, f) with i € [n]
and f : A — M. This point of view allows us to reason, for example, about
the similarity in behavior of two programs which are equivalent with respect to

certain finite index congruences over :*.

Consider for instance two n-input programs ¢, ¢, over an idempotent com-
mutative monoid M. It is easy to see that if over this large alphabet we have
a(¢1) = af¢s) then for any z € A™ we will have a(d;(z)) = a(d2(z)) and thus
p1(z) = ¢o(z).

If N is a submonoid of M, then every N-program is also an M-program. If
N = 6(M) for some surjective morphism 6, then this morphism can be used to
transform an M-program ¢ to an N-program 6(¢) in the obvious way: every
instruction of ¢, say (¢, f) becomes (¢, #(f)). Then, obviously, 8(¢)(z) = 6(¢p(z))
for any input z. The opposite process is in fact more interesting: if ¢ is an N-
program, then there is an M-program ¢ such that §(¢) = v and so any language
recognized by an N-program with accepting subset ¥ C N can be recognized

by an M-program using accepting subset §7!(F).

Note also that when ¢ = (41, f1) ... (is, f5) is a program over a group G, we
will write ¢! to denote the program (is, £71)... (i1, fi’}). Of course for any
input z we get (¢(z))~! = ¢~ ().

It is sometimes convenient to consider so called k-programs over M in which
instructions are allowed to query k-tuples of input positions instead of single
positions. The computing power of polynomial-length k-programs does not
exceed NC! although for a specific monoid polynomial length (k + 1)-programs
might be strictly more powerful than polynomial length k-programs. A simple
trick shows that every polynomial length k-program over M can be rewritten as

a t-program in which the ¢-tuples are only queried once and in some fixed order
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[Str00]. This formalism is helpful when relating programs to logic [Str94, Str01].

3.3 Universality vs. Polynomial Length Prop-
erty

In Theorems 3.1 and 3.2 the polynomial restriction on the length of the programs
is crucial. As the next example illustrates however some monoids cannot take

advantage of a relaxation of the length requirement.

Example 3.4. Let ¢ be an n-input program of length s over a commutative
M. Any two instructions in ¢ can be commuted at will without affecting the
output of the program since the underlying monoid is commutative. Moreover,
two adjacent instructions that query the>same input letter can be coalesced
into a single instruction outputting the product in M of the outputs of the

two original instructions. Therefore there is an n-input program ¢’ of the form

¢I = (1>f1)(2’ f2) s (TL, fn)

such that ¢(z) = ¢'(z) for all z € A",

When analyzing the computational power of programs over commutative mo-
noids, the restriction to polynomial length is thus completely irrelevant be-

cause any such program can be assumed of length n.

We say that a monoid M has the polynomial length property (often abbrevi-
ated PLP) if there exists a polynomial p(n) such that for each n and for every
n-input M-program ¢ with target set F,, C M, there exists an equivalent n-
input M-program ), with possibly a different target set F;, C M, of length
p(n). By equivalent we mean that for any input z, we have ¢(z) belonging to
Fy if and on 9(z) belongs to Fy.

It is not clear whether the PLP is preserved by taking submonoids or morphic

images and by taking direct products. Let M have the PLP and let NV be a
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submonoid of M: an N-program is also an M-program and this M-program
can be reduced to an equivalent one of polynomial length, but this new M-
program may involve in its instructions elements which are outside of N, and
hence may not be an N-program. Let next N = §(M): for any N-program ¢,
we have seen that we can construct an M-program p such that 6(p) = ¢, and p
can be reduced to an equivalent program of polynomial length, say . We are
unfortunately not guaranteed that the accepting subset of 4 is the pre-image of
some subset of IV, i.e. it may be that 6(n;) = 6(no) where n, is accepting and ny
is rejecting: hence, there is no clear way of transforming ¢ into an N-program.
A similar problem occurs when we look at programs ¢ over M x N where M and
N have the PLP unless the accepting subset is the direct product of a subset of
M and a subset of N. This is probably hpt an easy problem to get around as

the following example illustrates.

Example 3.4. Since the AND function lies in NC!, there is a polynomial
length program to compute it over the (non-solvable) group S3 x As. How-
ever, any program computing AND over the subgroup S; is known to require
exponential length [BST90]. This does not ruin the possibility that the poly-
nomial length property is preserved under division, as PLP provably does not
hold in S3 x A5, but the example shows that an argument to prove the closure

property will crucially depend on PLP holding for the larger monoid.

This inconvenience, however, motivates the following definition: we say that

an M-program 1 is a contraction of an M-program ¢ if
1. ¥(z) = ¢(z) for any z € A™,
2. Every instruction in ¢ (z) is an instruction ¢.

In other words, 1 can be obtained from ¢ by permuting, deleting or duplicating

instructions of ¢ and the two programs always have the same output. We further
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say that M has the polynomial length contraction property (abbreviated PLCP)
if there exists a polynomial p(n) such that for each n and for every n-input
M-program ¢, there exists a contraction 1 of ¢ whose length is bounded by
p(n). For example, the arguments given in Example 3.3 show that commutative
monoids have the PLCP. Of course, any M having the PLCP also has the PLP

but in addition:

Lemma 3.5 If M, N are monoids with N < M and M has the polynomial
length contraction property than so does N. Moreover, if M, and My have the
PLCP, then M, x My has the PLP.

Proof. Suppose that N is a submonoid of M and let ¢ be some n-input N-
program. One can alternatively consider ¢ as an M-program and, since M has
the PLCP, there exists a contraction ¢ of ¢ whose length is bounded by p(n).
Now 1 is itself an N-program since all its instructions are instructions in ¢.

If N = 6(M), then for any n-input N-program ¢ let ¢ be a contraction (of
length at most p(n) of an M-program 7 € 67'(¢). For any £ € A", we have
(0(¥))(z) = 0((¥)(x)) = ¢(x) and, since every instruction of ¢ is an instruction
of 7, every instruction of 6(¢) is an instruction of 6(7) = ¢. Hence, 8()) is a
contraction of ¢ of length at most p(n).

Let ¢ = (41, f1) .- - (is, f5) be a program over M; x M, with and let ¢y, (resp.
®u,) be the program obtained from ¢ by replacing each f; by g; : A — M x M,
(resp. h; : A — My x M) defined as follows: for each a € 4, if f;(a) = (my, my),
with m, € My and my € M, then g;(a) = (m1, 1ag,) and hi(a) = (1pr,,m2). Of
course, ¢(x) = du, () - dar,(2) for all z. Now ¢py and @y, can be viewed
as programs over M; and M, respectively and can therefore be contracted to
polynomial length vy, and 1y, respectively. Clearly ¢ and tn, - 9y, are

equivalent. O

As we will see, it is often convenient, in order to establish that N has the

PLP, to prove that /N divides some M having the PLCP.
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On the other hand, say that M is universal if every language L C A* can be
recognized by a family of M-programs, possibly of super-polynomial size. Such
monoids exist of course and we will give many such examples. For instance, it
is a simple exercise to build a branching program of width 3 for an arbitrary

Boolean function on- {0, 1}". We also note:
Lemma 3.6 The class of non-universal monoids is closed under division.

Proof. Let N be a non-universal monoid. Let first M be a submonoid of
N. Since any M-program is also an N-program, M cannot be universal either.
Let next M = 0(N) for some surjective morphism 6. As we argued in the last
section, every language recognized by an M-program can be recognized by an

N-program so if N is non-universal, M cannot be. g

We do not know if non-universal monoids form a variety however because we
are unable to prove yet that the class of non-universal monoids is closed under
direct product. _

Are universality and PLP related properties? It is easy to see that if M has
the PLP then it certainly is not universal for there are doubly-exponentially
many subsets of A" but only exponentially many M-programs of length p(n).
In fact, we believe that the two notions are dual to one another and in the

remainder of this section, we will argue in favor of the following conjecture.
Conjecture 3.7 Let M be a finite monoid. The following are equivalent:
1. M has the polynomial length property;
2. M is non-universal; -
3. M belongs to the variety DA * G N Gy

We have already argued for (1 = 2) and will show (2 = 3). Our strongest
indication that this conjecture is true is that this duality of universality and

PLP holds for any monoid in DS.
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3.3.1 A Dichotomy Theorem for DS

We start with a generalization of Lemma 3.3.

Lemma 3.8 If G is nilpotent, it has the polynomial length contraction property.

Proof. Suppose G is nilpotent of class k with exponent m. We know that
if u,v € G* have the same number, mod m, of occurrences of any subword
of length at most & then evalg(u) = evalg(v). Let us consider an n-input G-
program ¢ as a word over the alphabet ¥ = [n] x G# of possible instructions.
By Lemma 2.12 there exists a word 1 over ¥ of length at most m - |[X|*™ and
such that v and ¢ have the same number of occurrences of any subword of
length at most & (mod m). Of course, ¢ is just another G-program and we
claim that for any input « we will have ¢(z) = v¥(x). Indeed, any occurrence
of a length ¢t subword g¢;...g; of ¢(x) (seen as a word in G*) results from a
subword w € X* of length ¢ in ¢ comprising the instruction which output these
g1,---,¢: on input z. Because ¢ and ¢ have the same number of occurrences
of any subword in ¥* of length at most k, then for each z, ¢(x) and ¢ (x) will
also have the same number of occurrences of any subword in G* of length at
most k and so ¢(z) = ¢(z) on any z. Any ¢ thus has a contraction + of length
m - |S]F™ = O(n?). O

We can extend this proof to direct products of a commutative idempotent

with a nilpotent group.
Lemma 3.9 If M is in J1V Guu then M has the PLCP.

Proof. The proof is just a slight complication of the previous argument.
Suppose M has exponent m and assume all its subgroups are nilpotent of class

k. Consider an n-input M-program ¢ as a word over the alphabet & = [n] x M4
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of possible instructions. By Lemma 2.12 there exists a word 9 over X of length
at most m - |Z|* and such that 1) and ¢ have the same alphabet and the same
number of occurrences of any subword of length at most k£ (mod m). Now 1)
is just another M-program and for any input & we will have ¢(z) = () since
the words ¢(x) and 1(x) (seen as words in M*) will have the same alphabet

and same number of subwords of length at most & (mod m). d

Considering congruences on the alphabet of possible instructions made sense
in these examples because we could find a small representative of each congru-

ence class. Similarly, we will exploit:

Lemma 3.10 For any finite alphabet A of size n, any integer t, and any nilpo-
tent group G of class k and exponent m, each Nﬁt class has a representative of

size O(nk¥).

Proof. Recall the definition of ~%: two words z,y are Nit—equivalent if they
are G-equivalent, have the same alphabet and their a-left-decompositions (and

same for a-right) zoaz; and yeay, are such that zy and vy, are Nf_l’t—equivalent
G

and x,y; are Nﬁthl—equivalent. We will say that a position in z is a ~p

bookmark if it holds the occurrence of @ such that zgaz; is the a-right or a-left

decomposition of z or if for some b-left-decomposition of x = zyba) it isa ~G ;-
bookmark of zj or a ~¢,_, of 2} (or symmetrically for a b-right-decomposition).
Note that for any z, the Nf,it bookmarks are the same no matter what the group
G is.

Let z be a word in A*. We begin by marking certain special positions in
r and define our marking scheme S,: by induction on n + t as follows. For
n 4+t =1, we do not mark any letter. For n +¢ > 1, we begin by marking the
first and last occurrence of any letter in a(x). If we have marked an occurrence

of a corresponding to the a-left decomposition z = zgaz; we recursively mark

Zp using marking scheme Sia(zo),¢ and z; using S, ;1. We symmetrically mark
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recursively the segments defined by the a-right decomposition of z. A simple
induction shows that the number of letters marked in S,,, is bounded by O(n?).

Of course, this scheme was tailor-made to mark all the occurrences of letters
which are Nf, .~bookmarks in . Suppose z = uavbw where a, b are consecutive
marked letters and let v’ be such that a(v) = «(v’') and v and v’ have the

number modulo m of occurrences of any subword of length & or less. If we
G

let 2’ = wav'bw then z ~}, 1’ because v and v’ are G-equivalent and because
the ~&,-bookmarks in = and ' coincide. We know that v’ can be chosen of
length O(n*) and since there are at most O(n') in z that are delimited by two
consecutive marked positions we can construct some word in the ~& -class of z

that has length O(n**). O

Lemma 3.11 If M is in DO N Gy then M has the PLCP.

Proof. Since M lies in DO NGy, there exists a nilpotent group of class & and
exponent m as well as a constant ¢ such that any u,v € M* with u Nﬁwl,t v we
have evaly (u) = evalp(v). Consider an n-input M-program ¢ as a word over
the alphabet ¥ = [n] x MM of possible instructions. By the previous Lemma,
there exists a word 1) over X of length at most mn - ||*" and such that 1 ~, , ¢.

For any input z, we will show that if ¢ and v are Ng':t—related then the
words ¢(z) and ¥(z) in M* can be shown Ngt-related, where s = |a(¢(z))],
using induction on s + ¢. The case ¢ = 0 has already been argued in the
proof of Lemma 3.8. Fix = and consider the a-left decomposition of ¢(z) for
some a € a(¢(x)). This a had to be output by some instruction querying
bit ¢ and applying some function f; where f;(z;) = a. Thus, the (i, f;)-left
decomposition of ¢ is ¢ = ¢ (4, f;)P1 where ¢o(z) does not contain any a. There
must exist a corresponding (i, f;)-left decomposition of 4 as ¢ (¢, f;)11 and such
that tho(z) does not contain any a either. By induction we get ¢o ~& , , ¢o(z)

and ¢1(z) ~5,_, ¢1(z) and by left-right symmetry ¢(z) ~&, 4(z) as claimed.
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We can therefore construct a polynomial length contraction of ¢ so M has

the PLCP. O

At least within DS, we will show that DO N Gy is the variety that exactly
captures monoids having the PLP. We first state a result of [BST90]:

Lemma 3.12 If G is a group which is not nilpotent, then it is universal.

Proof. If G is not nilpotent, then for every n there is a commutator h € G,,
that is not the identity. Fix such an h arbitrarily. Let L be an arbitrary subset
of A", Let f : A” = G, be defined by f(z) = hifz € L and f(x) = 1 otherwise.
By Lemma 3.3, f can be realized by a G-program and L is recognized by this
program and accepting subset {h}. O

In particular this lemma ensures universality for any monoid containing a

non-nilpotent subgroup.
Lemma 3.13 If M contains a non-flat reqular 7 -class then M is universal.

Proof. If M contains a non-flat regular J-class, there exist J-related idem-
potents d, e, f in M with dH (ef), ed = d, de = e and df = d but efe # e.

Let L be an arbitrary subset of A™. Fix a word w € L and consider the
program ¢ = e - (1,01)...(n, gs) - fe where, for any ¢ € 4, gi(c) = 1 if ¢ = w;
and g;(c) = d otherwise. For any = # w, at least one instruction outputs a d and,
since d* = d, ¢(z) = edfe = e. On the other hand ¢(w) = efe. Concatenating
such programs for all elements of L, we get a program v with the property that
¢(x) = e for ¢ L. On the other hand, if z does belong to L then exactly one
of the segments will output efe and so we will get ¢(z) = efe # e. d

Combining the four previous lemmas, we obtain:

Theorem 3.14 If M is in DS then it has the PLCP if it is in DO N Gy and

it 1s universal otherwise.
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Proof. If M contains a non-nilpotent subgroup then it is universal by Lemma
3.12 and if it is in DS—DO then it contains a simple non-orthodox subsemigroup
and is thus universal by Lemma 3.13. If M lies in DO N G,y however, then it
has the PLCP by Lemma 3.11. 0O

It follows that programs over monoids in DO N Gy cannot compute, for
instance, the word problem of a non-nilpotent group. Furthermore, the function
MOD, cannot be computed by any program over DO N —G—; where p and ¢ are
distinct primes. This follows from the observation that such programs can
be contracted and then simulated with bounded depth {AND,OR, MOD,}-
circuits of polynomial size. The latter cannot recognize MOD, [Smo86]. We
conjecture that, similarly, MAJORITY cannot be computed by any program
over DO N G-

3.3.2 Some Results in DA x G

Can we find a similar dichotomy for monoids outside of DS? The following
result, originally proved in [Thé89], restricts quite dramatically the space of
candidates for the PLP. Recall that the monoid U, which we introduced in

Section 2.1.6, is the syntactic monoid of the language {a, b}*bb{a, b}*.
Lemma 3.15 U is universal.

We sketch this proof for completeness.

Proof. For any w € A", consider the program

dw = ab(1, f1)(2, f2) ... (n, fu)b

where fi(c) = a if ¢ # w; and fi(c) = 1 otherwise. Note that since a is
idempotent in U, we get ¢y, (z) = abab = ab if w # z and ¢, (x) = abb = 0 if
w = x. So for any L C A", the program ¢ of length n - |L| consisting of the
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concatenation of all programs ¢, where w; € L; is such that ¢(z) = 0 if and

only if z € L. O

As a corollary, we thus obtain implication (2 = 3) of conjecture 3.7.

Theorem 3.16 If M does not belong to the variety DA * G N Gy then M is

universal.

Proof. Recall from Chapter 2 that if M ¢ DA % G then there exist two idem-
potents e, f € M such that e J fJ(ef) but ef is not idempotent. If (ef)* also
is J-related to e and f then this J-class is non-flat and the universality follows
from Lemma 3.13. Otherwise, since (ef)Je, there must be an idempotent s in
the H-class L, N Ry. Thus, U is a divisor of M and we appeal to Lemma 3.15.
OJ

Therefore, universality and PLP questions only remain open for the variety

DA « G.

Theorem 3.17 If M is of the form N oG with N € DA and G € G, then M
has the PLP.

Our proof of this theorem is unfortunately quite technical and its main idea

is best illustrated in the following example which we prove as a warm-up.

Example 3.17. Claim: the monoid M = U, o C,, has the PLP.

We assume for simplicity that the input alphabet is {0,1}. By Lemma 3.4,
we know that for any n-input program 1) over a p-group G such as C,, there
exists a polynomial r in Z,[X},... X,,] of degree at most dc, such that r =1

whenever 1 outputs A € F' C C, and r = 0 otherwise.

Let us denote by the pair (f,5) € (U™

,C,) the product of the first 4 in-
structions of ¢ on some input. If (f;, ;) is the result of the 7*® instruction, we

have

(fir i) = (ficr 77, Gimr00)
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We will say that instruction ¢ is an h-crash site for z € {0,1}" if on = we have

fi_1(R) = 1 but f;(h) = 0. In particular, this implies that ff"'”l(h) = 0.

Our main claim is that for all & in C, there can only be polynomially h-crash
sites querying bit X;. Consider in particular all such instructions such that
a crash occurs on an input where X; = 1. Since the value g;_; is computed
by a C, program, we know that there exists a fixed degree Z,-polynomial r;
associated with this instruction such that f7~(h) = 0 if and only if ; = 1.
There are only ( dgp) many linearly independent such r’s, hence if we have
more than ( dz,,) crash sites it must be the case that some 7; can be expressed
as a linear combination of 7;’s with j < i. Hence if r; = 1, there must be j < i
with r; = 1. This shows that 7 is actually not a crash site since whenever

X1 =1and f""'(h) = 0 we already had f;(h) = 0.

Therefore, we have at most p-2-n - (dgp) instructions which are crash sites,
i.e. where the Ulc” part of the computation is truly active. For all but polyno-
mially many instructions in ¢, we can thus replace the UIC ¥ component of the
instruction by the identity without affecting the result of our computation. In
between any two potential crash sites, we are thus left with subprograms over
the subgroup C;, but these can be made to have polynomially bounded length

using Lemma 3.8.

We now extend the same idea, at the expense of technical complications, to
prove the full version of Theorem 3.17.
Proof. Let ¢ be an n-input M-program of length s. As in the example above,
we will begin by identifying a polynomial number of key instructions in ¢ and
argue that for all inputs z the N%-component of ¢(z) can only be affected at
one of these locations. Suppose that N divides N*/ ~njx and let us again
denote by (fi(z),5i(x)) € (N¥, G) the product of the first 7 instructions of ¢ on
input z and by f;, € N the N component of the output of the i instruction

on z. For an element g € G, we will say that the i*" instruction of ¢ is h-critical
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if there exists an input x such that in the following word in N*:

Fra(R) fa(h) o S (h) < f2 (R

the *" letter is a ~|x|x bookmark.

We claim that for each h € G there are only polynomially many h-critical
instructions in ¢. First, the number of bookmarks in a given word over N* is
bounded by some constant ¢ depending on N and & and so, for a given z, only
¢ input letters are ever queried by the corresponding h-critical instructions.
Keeping the analogy with our example, let us consider the set R of all z’s
for which the h-critical instructions were the result of querying z,,...,z, and
finding them holding, say, 1. Now, the g; are computed by a program over some
group in G and so, by Lemma 3.4, for any h-critical instruction producing the
bookmark, say b, there exists a polynomial r; in Z, with fixed degree such that
fI=Y(h) = by if and only if r; = 1.

For any w € R, let l4,...,[. be the locations at which the h-critical instruc-
tions appear and say they hold letters by, ..., b.. There exists a constant degree
polynomial g, over Z, such that positions [y, ...,l. hold by, ..., b. if and only if
quw(z) =1 and g,(z) =0 otherwise. There are only polynomially many linearly
independent such ¢, so if R is too large, we can find w;,wy; € R such that
Qwy = Yuw;-

In this case, the two words of N*

1 = fru (B) f, (h) S5 () fl ()

and
Uy = frwg (R[5, (R) .. fI2(R) ... T ()

are such that they agree on every letter which is a ~|y|, bookmark of u; or a
~|n|k bookmark of uy. These locations must coincide. Thus, only polynomially

many different instructions in the program can be found h-critical because of
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some z € R. Since there are only polynomially many possibilities for R we have
proved our claim.

The N component of ¢(z) can truly be affected only at one of the polyno-
mially many critical instructions. In all other instructions, we can replace the
N¢ component of the computation by the identity without affecting the output
of the program. The resulting segments in between two critical instructions can
be viewed as G-programs and thus be contracted to polynomial length using

Lemma 3.11 since G is nilpotent. U

These constructions do not imply the existence of polynomial length con-
tractions of arbitrary programs over DA x G and it is quite possible that
some monoids in this variety do not have the PLP. They are, however, di-
visors of a monoid which has the PLP and so no monoid in DA * G, is
universal. In particular, a theorem of Thérien [Thé89| building on the work
of Smolensky [Smo86] shows that, regardless of length, no program over a
monoid in Jy x G can compute the function MOD, for any primes p # q.
In fact, Thérien’s argument can eaéily be extended to any variety of the form
(GpO(GpO(...0G,O(J1*Gp)...))). By the results of [PST88], any monoid
in DA x Gy, is in one of these varieties and thus no program over a monoid in
DA * G can compute the function MOD, for any primes p # q.

Using a different argument, we will next show that no program over a Brandt
monoid can compute the function MOD, for any ¢. Although this is a strictly
weaker result than the ones just mentioned, we believe that the novel proof
technique could help in proving non-universality of other aperiodic monoids

with similar properties.

Theorem 3.18 If M is a Brandt monoid, then no M-program can compute

MOD,, for any integer m > 2.
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Proof. Suppose that ¢ is a By-program computing MOD,,, for inputs of length
n 2 2m+ 1. We can assume without loss of generality that the output of each
instruction is either a generator or the identity and that there exists? z € {0,1}"
such that ¢(z) = 0. Note that a string w in {1, ay, a ... a3 }* evaluates to 0 in B,
if and only if for some j # 7 + 1, it contains occurrences of a; and a; separated
only by 1’s and, in particular, w evaluates to 0 if there exists 4,4 such that
|wla; = |w|e; > 1. Thus if ¢(z) = 0, we can find instructions s < t querying
(not necessarily distinct) bits by, b; and producing a;, a; respectively while all
instructions in between them output the identity. Let ) be the subprogram of
¢ consisting of instructions between s and ¢ and suppose that z € MOD,,. For
any 2’ at Hamming distance 1 from z, we have 2’ ¢ MOD,, and thus ¢(z') # 0.
Assuming ¢ < 7, this means that if any one bit of z other than b, or b, is flipped
then 1) must now output a word w € {1,ay,ay...ax}* such that forall® i < < j
we have |wl,, — |wlq, = 1. However; if we now flip ¢ bits of  other than b, or b,
the output of ¢ contains ¢ more occurrences of a; than a; and so the program’s

output is 0 again. This is a contradiction for unless ¢ is a multiple of m we

should have ¢(z') # ¢(z).

This argument can clearly be adapted to handle the case where € MOD,,.
O

The above proof actually shows that programs over Brandt monoids have
very limited ability to compute symmetric functions. In particular, they cannot

compute THRESHOLD; unless ¢ or n — ¢ is a constant.

The proof can also be adapted to obtain similar limits on the power of
programs over the transition monoids M) associated to the following finite au-

tomata:

’If ¢(z) # 0 for all z € {0,1}" then ¢(x) is completely determined by the output of the
first and last instructions whose output is not 1.
3If j < 4, we want to consider all I except those between j and i.
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b b b

The Mj’s were studied in [Thé89] as examples of non-universal aperiodic mono-
ids of dot-depth k. Brandt monoids, as well as the M}’s are inverse aperiodics
but have the very special property that they lie in J; * G, for some prime p.
Still, the idea behind our last proof is that as soon as a program ¢ over By, or
M, is doing non-trivial computation, then for a vast majority of inputs we have

#(x) = 0. Intuitively, all inverse aperiodic monoids have this property.

3.3.3 Open Problems

Do Brandt monoids have the PLP? Intuitively, the fact that each of them is a
divisor of a monoid which does have the PLP leads us to believe so, but even
the case of Bj has so far eluded proof. This is the subject of ongoing work with
K. Reinhardt and D. Thérien.

Another outstanding problem concerns the power of program over monoids
which lie in DA * G but not in DA * G, for any prime p. We conjecture that
Lemma 3.17 can be extended to show that monoids of the form N o G where
N is in DA and G is a nilpotent group have the PLP. A first step would be to
show that no monoid in DA * Gy is universal. As of yet, we have no proof that
even U; o Cg is non-universal. We believe that resolving these two problems are

key steps towards a possible proof of our conjecture.

3.4 Crane Beach Properties and Program Va-
rieties

How can we classify monoids in terms of their computational power? If we are

using morphisms to recognize languages, then we have seen that varieties are
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the natural unit of classification. In the case of programs over monoids however,
any two non-solvable monoids recognize exactly languages in non-uniform NC!.
For a variety of monoids V, let us denote by P(V) the class of languages which

can be recognized by a polynomial length program over some monoid in V.

Theorem 3.19 ([MPT91}) If V,W are varieties of monoids P(V) = P(W)
if and only if P(V) and P(W) contain the same regular languages.

One might expect that for some relatively weak and robust varieties the
regular languages in P(V) coincide with the regular languages with syntactic
monoids in V. This intuition is unfortunately incorrect in most cases because
a lot of computation can be hardwired into the program itself. Consider for
instance the regular language L C {a,b}* consisting of words that hold an
a in some even-indexed position. In order to recognize membership in L, an
automaton must have a mechanism that keeps track of the parity of the number
of input letters read so far and one can easily see that M (L) correspondingly
contains the group (5. On the other hand, we can write a program over U, that
recognizes L by making sure that only the even-indexed positions of the input
are queried by the program. Similarly, the language of words that have an even
number of a’s beyond the first ten positions can be recognized by a program
over Cy even though its syntactic monoid is not a group.

We say that a language L C A* has a neutral letter if there is a letter e € A
such that for any u,v € A* we have uv € L if and only if uev € L. In other
words, the letter e is neutral if and only if e is equivalent to the empty word
in the syntactic congruence of L. For any language L C A*, we denote by
Le C (AU {e})*, where e ¢ A, the language with neutral letter e such that
u € A* lies in L€ if and only if u lies in L. Note that L and L¢ have the same
syntactic monoids.

Intuitively, a program computing L¢ cannot exploit its ability to look for

specific input letters appearing in specific input positions.
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Theorem 3.20 If V,' W are varieties of monoids P(V) = P(W) if and only
if P(V) and P(W) contain the same reguldr languages with neutral letter.

We say that a variety V of monoids is a program-variety (or P-variety) if the
regular languages with neutral letter lying in P(V') have their syntactic monoid
in V. This is equivalent to the requirement that for any monoid M, if all sets
Tm C M* with T,, = {wl|evaly(w) = m} can be recognized by polynomial
length programs over monoids in V then in fact M € V. In light of the above
theorem, program-varieties are the natural unit of classification of monoids in
terms of their power as language recognizers via programs. Of course, most

varieties are not program varieties.

Theorem 3.21 (see [Str00]) The varieties of all finite monoids M, p-groups
Gy, aperiodics A, J-trivial monoids J, commutative monoids Com all are

program-varieties.

Of course, Theorem 3.2 shows that “A is a program variety” and “MOD,
does not belong to AC? for any p” are equivalent statements. Many fundamental
circuit complexity questions can similarly be rephrased in this way. Showing
that AND does not belong to CC° for instance, is equivalent to showing that
Ggso1 1s a program-variety.

Showing that Com is a program variety is a simple exercise. In fact, one
can establish an even stronger statement about the languages with neutral letter

that programs over commutative monoids can compute.

Example 3.21. Suppose that I, C A* is a language with a neutral letter, say
e, that can be recognized by a program ¢ = (¢, ¢1,...) over a commutative
monoid M of threshold ¢ and exponent p. As we have seen in the previous
section, we can assume that each ¢, consists of n instructions each querying a

different input letter. Let u,v be two words in X* such that cp,(u) = oy, (v).



3.4. CRANE BEACH PROPERTIES AND PROGRAM VARIETIES 67

Note that the lengths of u and v must be equal modulo p. We can thus
pad u and v with e’s to obtain words «' and v’ of equal length k£ and with
g p(u) = agp(V').

Consider the s-input program ¢, with s = k - |[M|4l. Because there are only
|M|14l possible query-functions, there must be a set of positions I C [s] of
size k such that the corresponding instructions in ¢, all have the same query-
function f. We denote by u” (resp. v") the word of length s obtained by
placing the letters of u’ (resp. v') in the k positions of I and placing neutral

letters e in the other s — k positions. We claim that ¢,(u") = ¢s(v").

Indeed, since u” and v” agree on all positions outside I, it is sufficient to show

that we have

(03 (u")) = it (d5(0"))
where ¢!(w) denotes the output in M* of the instructions of ¢, querying
positions in I. Since the positions I in »"” hold the word v’ and since the
corresponding instructions use the same query-function f, the number of oc-
currences of m in ¢! (u") is just

> 1l - 1£(@) e

acA
Since we have oy, (u') = au,(v') we have for all m € M
D e [£(@)lm =D _[v'la - |£(a)lm(thresh ¢, mod p)
acA acA

which proves our claim.

Thus ¢(u") = ¢(v") and so «” and v” are either both in L or both in L.
Because u and v can be obtained ‘from " and »” respectively by deleting
neutral letters, they are also either both in L or both in L. Hence the syntactic
congruence of L is coarser than the congruence induced by oy, so M(L) is a

finite commutative monoid.
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The Crane-Beach Conjecture, first postulated by D. Thérien and C. Laute-
mann, stated that all languages with a neutral letter recognized by ACP circuits
were in fact star-free languages or, equivalently, that all languages with a neu-
tral letter recognized by a polynomial length program over an aperiodic monoid
had a finite and aperiodic syntactic monoid. The Crane-Beach Conjecture was
disproved by N. Immerman [BIL*01].

We will say that programs over a monoid variety V have the Crane-Beach
property if any language with neutral letter recognized by a polynomial length
program over a monoid in V has its syntactic monoid in V. By definition, every
such variety is a program variety although the example of the variety A shows

that the converse does not hold in general.
Theorem 3.22 Programs over J have the Crane-Beach property.

Proof. This can be obtained as a c‘orollary of Theorem 3.11 of [BIL*01] where
it is shown that every language with a neutral letter which can be defined by a
Boolean combination of ¥{-sentences uéing arbitrary numerical predicates is in
fact regular and has a syntactic monoid in J. Every language recognized by a
family of polynomial-length programs over J is in fact definable in this way and
the result is not difficult to obtain once the logical framework has been precisely
defined.

However, we want here to prove this directly from the programs, in the
spirit of Example 3.4. Unfortunately, we will only show this for the following
special case. Let M be J-trivial: we say that a family of M-programs (¢n)n>0
recognizing a language L that contains a neutral letter e is silent if for every n
we have ¢, (™) = 15,. We claim that in this case L is regular and M (L) lies in
J.

Let £ be minimal such that any two words in M* in which the same subwords
of length k or less appear evaluate to the same element (note that it is sufficient

to consider the subwords over the alphabet M — {1,,}. It suffices to show that
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any two words u,v in A* that have the same occurrences of subwords of length
at most k are either both in or both not in L. Because the neutral letter allows
various forms of padding, we can assume without loss of generality that u and
v have the same length [ > k.

Note that if a subword ¢;...t, with s < k occurs in ¢,(z), then each t;
is the output of an instruction querying only one position in z. In particular,
there is an s-tuple of positions in = such that for any y agreeing with 2 on these
positions ¢, (y) also contains the subword ¢, .. .t,.

For the program ¢, given k-tuple of input positions (zy,...,zx), with the
z; € [n] written in increasing order, and given assignment (ay,as9,...,a;) to
these positions, we denote by W((il,’.'.:;’:k’“)) the set of subwords in (M — {1,/})*
of length at most & in ¢,(q) where ¢ holds a; in position z; and neutral letters
everywhere else. Note that since we assumed that the program is silent every
instruction querying a position holding a neutral letter outputs 1, and so every
such subword results from instructions querying one of the z;. In particular, any
subword of ¢, (¢) will also occur in ¢,(y) for any word y holding a; in position

We color k-tuples of positions (z1,...,z;) with the sets
L1,y k
{W((all,...,a:))l(ab SR a'k,) €A }

There are only finitely many colors of course since |A|, k¥ and |M| are all fixed.
Thus, by Ramsey’s Theorem, there exists n such that we can find a set I C [n]
of size [ and such that any k-tuple from I is labeled with the same color. We
will call these [ positions special positions.

Let u', v' be the words of length n obtained by placing respectively u and v
in the [ special positions and neutral letters at all other positions. We will now

compare the set of subwords in (M — {1p})* of length at most & occurring in

¢n(u') and ¢, (v').
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For any occurrence of the subword ¢, ...¢,, with t; € M — {1y} and s < k,
occurring in ¢, (u'), we can find a k-tuple of special positions z; < zo < ... <
such that each ¢; is the output of an instruction querying one of these positions.
Let us suppose these positions hold the letters a;, ag, . . ., ax. Thus u contains the

subword ay ...a; and so v also does. Therefore, we can find k special positions

Y1 <y < ...<ygin v which hold ay,a,,...,a.
The subword ¢; ... ¢, belongs to W&,’,ﬁﬁ;;ﬁfﬁ and since the tuples (zy,...,zx)
and (y1,...,yx) were assigned the same color, we must have t; ...t, belongs to
(Y150 k)

(a1p) Since v’ holds a; in position y;, the subword t; ... ¢; occurs in ¢, (v').
Therefore, ¢,(u’) and ¢, (v') contain exactly the same subwords of length at
most k£ which implies ¢,,(u') = ¢,(v') and, in turn, that « and v are either both

in L or both not in L. ‘ Al

The above argument will fail when the programs are not silent although it is
reasonnable to believe that this technical difficulty can be addressed by either
refining the coloring or showing that every program over a J-trivial monoid
is equivalent to one which is silent. The following was also established using

similar Ramsey-theoretical tools by C. Lautemann and D. Thérien:

Theorem 3.23 ([LTO01]) Programs over Guax have the Crane-Beach prop-

erty.

Note that in the context of groups the programs can be assumed “silent”
without loss of generality because of the presence of inverses.

We will show in Section 4.4 that varieties DA, DO N Ab and DO N G,;
are program-varieties using communication complexity results. It is unclear at
this time whether the convenient combinatorial descriptions we have of regular
languages recognized by such monoids can be combined with extremal combi-

natorics to further show that these have the Crane-Beach property.
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Do programs over solvable groups have the Crane-Beach property? If they
do, then CC? is a strict subset of NC! and we cannot reasonably expect a simple
proof of this fact. However, although it is widely believed that G, forms a
program-variety, it is possible that the Crane-Beach property fails for G4, much
like it does for aperiodic monoids. Providing an explicit example of a language
L with neutral letter that can be recognized by polynomial size CC? circuits
but such that M (L) is not in Ggo would be of great interest.

We should note that a related result of D. Barrington and H. Straubing
[BS95] shows that any language with neutral letter recognized by an M-program
of length o(nloglogn) is regular and has a syntactic monoid dividing the direct
product of a number of copies of M and M", where M" is the reverse monoid

of M in which multiplication by s -yt =t -5 5.
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Chapter 4

Communication Complexity

4.1 Introduction

The need for efficient communication is omnipresent in modern computer sci-
ence. It is a natural concern in distributed computing, networking, computer
architecture, cryptography but although the formal study of communication
complexity, beginning in the late 70’s, was originally motivated by such prac-
tical concerns (note the title of Yao’s seminal paper [Yao79]) its later devel-
opment has mostly served as a surprisingly versatile tool in just about every
area of theoretical computer science. The game at the heart of communication
complexity is the following: Alice and Bob are given inputs z and y respec-
tively and want to collaborate to compute a function f(z,y) while minimizing
the communication that they need to exchange. Many variants of it can be de-
fined: non-deterministic, probabilistic, round-bounded, approximate and so-on.
A. Chandra, M. Furst and R. Lipton also introduced in [CFL83] an interesting
multiparty extension of the usual Alice and Bob model. In their game, k players
collaborate to compute f(zy,...,zx) but each player is given access to all but
one of the z;’s. This model gives rise to subtle combinatorics and has also found
many applications to other areas of complexity theory.

In many cases, it is possible to upper bound the communication complexity

(in an appropriate model) of functions which can be computed using a lim-
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ited amount of resources so that obtaining lower bounds on the communication
complexity (in the same model) of an explicit function f translates into lower
bounds for the resources needed to compute f. This approach has yielded results
in VLSI (see [Lov89}), lower bounds for monotone circuits [KW88] including a
complete separation of the monotone NC hierarchy [RM97], Time-Space trade-
offs for Turing machines [BNS92, KN97] to cite only a few. Communication
complexity is also the main tool used in the study of branching programs: the
book of Wegener [Weg00] provides a complete overview of the theory of branch-
ing programs and OBDD’s with an emphasis on communication complexity and
more recent results include [BSSV00, BV02]. Perhaps even more significant in
the context of this thesis are the applications to lower bounds for classes of
circuits lying within NC', mainly threshold circuits [HG90, Nis94, ROKY94],
but also CCP circuits [Gro92, Gro94b] and ACC? circuits [HG90, Lok01]. As
we will see, some of these results can be rephrased in algebraic terms using the

circuits/monoids correspondence offered by programs.

Another rather unexpected link between communication complexity and
monoids was uncovered by Szegedy [Sze93] who showed that a language has
bounded two-party deterministic communication complexity if and only if it
can be recognized by a program over a commutative monoid. This amazing
result is strong indication that an algebraic point of view on communication

complexity can be fruitful.

In [BFS86], Babai, Frankl and Simon built a complexity theoretic view of
communication and formally introduced notions of complexity classes, reduc-
tions and completeness in a (two-party) communication complexity context.
Their goal wag twofold: this provides, on one hand, a natural yet powerful
framework to compare the power of different extensions or restrictions of the
usual deterministic model and understand the complexity of concrete functions

while building, on the other hand, a rich structure of classes in which we can
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hopefully gain intuition on the nature of non-determinism, alternation, count-
ing and so on. This “world picture” of communication complexity classes was
further described in various papers [HR90, DKMW92] and it should be noted
that there exist regular languages which are complete for many of these com-
plexity classes, including the communication complexity analogues of NP, @P,
PSPACE, etc. Whereas regular languages are the simplest languages from a
classical Time/Space complexity point of view, they can have large communica-
tion complexity even in quite powerful models. In fact, some of the most studied
languages in communication complexity (Disjointness, Inner Product mod p),
although not regular languages themselves, are equivalent from a communication

complexity perspective to regular languages.

4.1.1 Summary of Results

This chapter develops an algebraic approach to communication complexity. On
one hand, this point of view allows us to use properties of finite monoids to
understand the limits of various communication complexity models and compare
their relative power and, on the other hand, it provides a systematic way of using
communication complexity to understand the computational limits of programs
over monoids.

We first consider the well known deterministic two-party model as well as
1ts simultaneous, probabilistic, simultaneous probabilistic, and MOD,-counting
variants. We set out to answer the following question: what is the communi-
cation complexity, in a worst-case partition sense, of any regular language in
each of these models? Specifically, we look at the complexity of determining
if the word a,biazbs ... a,b, is a member of a given regular language I, C T*
where the a; € ¥ U {€} are known to Alice and the b; € ¥ U {¢} are known
to Bob. It was established in [RTT98] that, in these models, regular languages

having communication complexity O(f) for some f : N — N form a variety
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of languages so our question has an algebraic answer. In Section 4.2, we use
algebraic tools to completely characterize the communication complexity of any
regular language in the deterministic, probabilistic, simultaneous, probabilis-
tic simultaneous and MOD,-counting (for prime p) models. Remarkably, our
classifications feature in all five cases complexity gaps. For instance, we find
that a regular language L has deterministic communication complexity either
O(1) (when its syntactic monoid is commutative), ©(logn) (when M (L) lies in
DONAD but is not commutative, i.e. when M(L) is not commutative but L is
the disjoint union of unambiguous concatenations of the form Lga,L; . ..aiLj
with M(L;) commutative) and ©(n) otherwise. This is in sharp contrast with
the general case where for an arbitrary f : N — N with 1 < f(n) < n it is easy

to artificially construct a non-regular language of complexity ©(f).

In all four variants of the deterministic model, we find that communication
complexity induces classifications with only a small number of classes: a regular
language L has simultaneous complexity either O(1), ©(logn) or ©(n), proba-
bilistic complexity O(1), O(loglogn), ©(logn) or O(n), probabilistic simultane-
ous complexity O(1), O(logn) or ©(n), and, for any prime p, MOD,-counting
complexity O(1), ©(logn) or ©(n). Moreover, some of these classes are related
in unexpected ways: a regular language has O(logn) probabilistic complexity
only if it has O(logn) deterministic complexity and further has ©(loglogn)
probabilistic complexity if and only if it has ©(logn) simultaneous complexity
if and only if it has ©(logn) probabilistic simultaneous complexity. In fact,
we prove that the simultaneous and probabilistic simultaneous complexities of
any regular language are equal, up to a constant. We also find that a regu-
lar language has MOD,-counting and MOD ,-counting complexity O(logn) for
distinct primes p, g if and only if it has deterministic complexity O(logn). All
varieties involved in these classifications, some of which have already been shown

to be of importance in previous chapters, have convenient descriptions both al-
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gebraically and combinatorially and are decidable. In obtaining these results
we amazingly use communication complexity reductions to and from only four
(well-known) problems: Disjointness, Inner Product modulo p, Greater Than
and Index and this retrospectively both highlights and explains their importance

as fundamental examples in communication complexity theory.

In Section 4.3 we consider the tricky multiparty communication complexity
model. As in the two-party case, we set out to describe the multiparty complex-
ity of each regular language and show that this question, as in the two-party
case, has an algebraic answer. We are able to prove that any regular language
L recognized by a group has k-party complexity O(1) if M(L) is nilpotent of
class k — 1 and k-party complexity ©(n) otherwise. The general case, however,
seems very challenging and we can only prove partial results. Most notably,
we show that there exists a k£ such that the regular language L has k-party
complexity O(1) if and only if M (L) lies in DO N Gy and give a characteriza-
tion of regular languages with constant three-party communication complexity.
The techniques used in these proofs are a combination of Ramsey theoretical
arguments akin to the ones of [CFL83] and probabilistic techniques using the

discrepancy method in the line of [BNS92, Gro93].

Our results shed an interesting light on a poorly understood, yet important,
communication model and identify problems, such as the multiparty communi-
cation complexity of piecewise testable languages, as natural targets for further
research in the field. We also argue that our results might be a first step towards
an analog of Szegedy’s Theorem which would provide an algebraic characteri-

zation of functions with bounded k-party communication complexity.

In Section 4.4, we discuss the impact of our communication complexity
bounds on issues surveyed in Chapter 3. In particular we use a very general

communication complexity argument to show that DO N Ab and DO N G,

are program-varieties. We further give a new proof of an exponential lower
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bound for the length of (G, * Ab)-programs computing Disjointness and pro-
pose a communication complexity conjecture in the same spirit which would
separate the computing power of polynomial length (Gp * Gy k41)-programs

and polynomial length (Gp * Gy x)-programs.

4.2 Two-party Communication Complexity

Is is hard to overstate the quality of [[KN97] as an introduction to communication
complexity and we refer the reader to it for further details on the concepts

introduced throughout this section. We will use that book’s notation.

4.2.1 Two-party Models

In the deterministic model, two players, Alice and Bob, wish to compute a
function f : S™ x ™ — T where S and T are finite sets. Alice is given
z € S"™ and Bob y € S™8 and they collaborate in order to obtain f(z,y)
by exchanging bits (using, say, a common blackboard) following the format
imposed by a previously agreed upon communication protocol P.

It is convenient to think of a protocol in an informal way as a scheme ensuring
that Alice and Bob will never speak simultaneously and will be able to make
sense of the information they send each other. Intuitively, P determines, at
every stage, whether the current run of the protocol is over and if not, whose turn
it is to write the next bit. This is a function of the communication written thus
far but is independent of the players’ inputs. If it is Alice’s turn to speak (resp.
Bob’s turn), the protocol specifies what the next bit sent will be as a function
of z and the communication exchanged so far (resp. y and the communication
exchanged so far). When a run of P terminates, its output, denoted P(z,y), is
a function of the blackboard’s content. We define the cost of P as the maximum
number of bits exchanged for any input. Note that we assume that Alice and

Bob each have arbitrary computational power.
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Formally, a protocol P with domain S5™4 x S™8 and range T is a finite binary
tree where each internal node v is labeled either by a function A, : S74 — {0,1}
or a function B, : S™ — {0,1}, and where each leaf is labeled by a value in
T. To determine the output P(z,y) € T of the protocol on input (z,y) we
start walking along the tree from the root. When we visit an internal node v
labeled with a function A, (resp. B, ), we go to v’s left child if A,(z) = 0 (resp.
B,(y) = 0) and right if A,(z) =1 (resp. B,(y) = 1). The value P(z,y) is the
label of the leaf thus reached. The cost of P is the height of the tree and we say
that P computes f if P(z,y) = f(z,y) for all (z,y) € S"4 x S"&.

The deterministic communication complexity of f, denoted D(f) is the cost
of the cheapest protocol computing f. In general, we will be interested in the
complexity of functions f : S* x S* — T and will thus consider D(f) as a
function from N x N to N (or from N to N when the length of inputs given to
Alice and Bob are related) and study its asymptotic behavior.

In a semultaneous protocol P, we disallow any interaction between Alice and
Bob: Each of them simultaneously sends a message to a trusted referee which
has access to none of the input and the referee produces the output P(z,y) € T.
We denote D!I(f) the simultaneous communication complexity of f, i.e. the cost

of the cheapest simultaneous protocol computing f.

In a probabilistic communication protocol P, Alice and Bob have access to
private random bits which determine their behavior. The protocol is said to
compute f if for all z,y, the probability over the choices of these random bits
that P(z,y) = f(z,y) is at least 3/4. We denote R(f) the probabilistic (or

randomized) communication complexity of f.

Combining properties of the two previous models, a simultaneous probabilis-
tie communication protocol P, is one in which Alice and Bob simultaneously
send a message depending on their inputs and their random bits to a trusted

referee which then outputs P(z,y) which should equal f(z,y) with probability
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at least 3/4. We denote RI(f) the simultaneous probabilistic (or randomized)
communication complexity of f.

In contrast to these first four models, the non-deterministic and MOD,, com-
munication models that we present next will only be used to recognize languages,
i.e. to compute functions from S* x S* into {0, 1}.

In a non-deterministic communication protocol* P another player, say God,
having access to both x and y first sends to Alice and Bob a proof = whose length
is a function of the length of « and y. Alice and Bob then follow an ordinary de-
terministic protocol P’ with output in {0,1}. The protocol P accepts the input
(z,y) if and only if there is some proof 7 such that the output of the ensuing
deterministic protocol P’ outputs 1. The cost of a non-deterministic protocol
is the maximum number of bits exchanged in the protocol (including the bits
of m) for any input (z,y). We denote the non-deterministic communication
complexity of a language L as N*(L). The co-non-deterministic communica-
tion complexity of L, denoted N°(L) is the non-deterministic communication
complexity of L’s complement.

A MOD,-counting communication protocol P is similar to a non-deterministic
protocol but it accepts those (z,y) such that the number of proofs that lead
Alice and Bob to acceptance is not divisible by p. We denote by N™°% (L) the
MOD,-counting communication complexity of L.

Notice that for any function f, we have R(f) < D(f) < maz{na,ng} +1
because every deterministic protocol is a probabilistic protocol and because f
can always be computed by a protocol in which one player sends over all its
data, subsequently letting the other player compute and then communicate the
result. Moreover one can establish R(f) > log(D(f)) using brute force de-

randomization of probabilistic protocols. Similarly the following elementary

!'We use here a “guess and verify” presentation of non-deterministic protocols which is
most convenient in the context of our discussion. Alternatively, we could introduce them as
protocols in which Alice and Bob are allowed to act non-deterministically (see e.g. [BFS86,
KN97, DKMW92] for alternative presentations).
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facts can be easily established:
o log(DI(f)) < D(f) < DI(f) < na +ng;
o log(RI(f)) < R(f) < RI(f) < DI(f);
o log(D(L)) < NY(L) < D(L);
o log(D(L)) < NM®(L) < D(L);

Moreover, if p is prime, then NMo% (L) = ©(NMod= (L)) for all integers o and

for any languages Ly, Lo:
NMOdP(Ll U LQ) = O(NMOd” (Ll) -+ NMOdp(LQ))

and

NModp (Ll) — @(NMod,, (‘L‘l‘))

All these models have been extensively studied. At the heart of what we
understand about their combinatorics is the following simple observation: if the
communication induced by a deterministic protocol P is the same on input pairs
(z1,91) and (z2,y2) then it will also be the same for (z1,1,) and (z3,4,). As an
example, consider the function Equality: FQ(z,y) = 1 if and only z = y. A
protocol computing E(Q) must induce different communication patterns for the
2" pairs of the form (z,z) with z € {0, 1}" for otherwise the protocol will also
accept some pair (z,y) with  # y. This suffices to show that D(EQ) > n.

The following four functions are, like Equality, classical examples studied in

communication complexity:

e For z,y € {0,1}", we define Disjointness as: DISJ(z,y) = 1 if and only
if 'V @y =0;

1<i<n
e For z,y € {0,1}", and any m € N we define Inner Product (mod q) as:
IP,(z,y) =1if and only if ¥ z;5; =0 (mod q);
1<i<n
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| | D [ R [ D[R [NT T N T N ]
DISJ ©(n) O(n) |B(n)|O(n)| ©n) ©(n) | B(logn)
IP, O(n) O(n) |0((n)]|O6MNn)| O(n) ©(n) O(n)
I Ppa ©(n) O(n) |O(n)|O(n)|O(logn)| O(n) O(n)
GT O(n) |O(logn) | O(n) | On)| ©O(n) O(n) ©(n)

INDEX || ©(logn) | ©(logn) | ©(n) | ©(n) | ©(logn) | O(logn) | O(logn)

Table 4.1: Some well-known communication complexity bounds. (Note that p
is prime, o > 1 and ¢ is not a power of p.)

e For two n-bit numbers z,y € [2"] we define Greater Than as: GT(z,y) =1

if and only if x > y.

e Forz € {0,1}" and a log n-bit number p € [n] we define INDEX (x,p) =

Ty,

The known communication complexity bounds for these problems can be
summed up in Table 4.1. It should be noted that non-trivial work is needed
to establish some of these bounds. The probabilistic lower bound for DISJ
received a lot of attention in the late 80’s ([BFS86, KS92, Raz92]) while the
probabilistic lower bound for I P, follows from quite technical results of [CG85]
(see also [DKMW92, Gro94b] for the case p # 2). The GT probabilistic upper
bound, due to N. Nisan and S. Safra, is also tricky (see exercise 3.18 in [KN97))
while the randomized simultaneous lower bounds for INDEX and GT are due
respectively to [KNR99] and [MNSW98]. Most MOD,-counting bounds are
theorems (or easy corollaries) of [DKMW92].

4.2.2 Communication Complexity of Regular Languages
and Monoids ‘

In general, we want to study the communication complexity of functions which
do not explicitly have two inputs. In the case of regular languages and monoids

we will use a form of worst-case partition definition. Formally, we define the de-
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terministic (resp. randomized, simultaneous, probabilistic simultaneous, MOD,-
counting) communication complexity of a reqular language L C A* as the deter-
ministic (resp. randomized, simultaneous, probabilistic simultaneous, MOD,-
counting) communication complexity of the following problem: Alice and Bob
respectively receive aj,as,...az,—1 and ay,ay,...,as, where each a; is either
an element of A or the empty word? ¢ and they want to determine whether
a1Gs . . . ag, belongs to L.

Similarly, the deterministic (resp. randomized, simultaneous, probabilistic
simultaneous) communication complezity of a finite monoid M is the determin-
istic (resp . randomized, simultaneous, probabilistic simultaneous) communica-
tion complexity of evaluating in M the product m; - ms - ... - mg, where the
odd-indexed m; € M are known to Alice and the even-indexed m, are known to
Bob. We further define the MOD,-counting communication complexity of M as
the maximum over all F' C M of the MOD,-counting complexity of determining
if this product my - mq - ... - mg, belongs to F.

The following basic facts from [RTT98], whose proofs we sketch here for

completeness, support our choices of definition:

Lemma 4.1 Let L C A* be regular with M(L) = M. We have D(M) =
O(D(L)) and similarly for DI, R, R and NM°% for p prime.

Proof. [sketch] Let ¢ : A* — M be the recognizing morphism with L =
¢~'(F). Then a word ajay...as, belongs to L if and only if the product
P(ar)p(az) ... #(as,) belongs to F and so the communication complexity of L

in all four models is bounded by the complexity of M(L).

?This definition of communication complexity of a regular language L is, up to a constant
factor, equivalent to the worst-case partition complexity discussed in Section 4.5 as long
as there exists an integer ¢ such that each m € M(L) is the image, under the recognizing
morphism, of a word of length ¢. In particular, the communication complexity of L is, up to
a constant, the worst-case partition complexity of L¢. These issues are discussed in greater
detail in [Tes99].
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Conversely if M = M (L) we can pick for each m € M some word u,, € A*
where ¢(u,) = m. By padding with empty words ¢, we can assume that such
um’s can be chosen in (AU{e})* with |u,,| = ¢ for all m. Moreover, by definition
of the syntactic congruence, we can find a finite set of pairs of words (x4, y;) such
that for any w € A* and any u,; holds w ~p up,; (i.e. ¢(w) = m;) if and only
if we have z;wy; € L when and only when Tilhm;Yi € L.

Suppose Alice and Bob are given monoid elements mq, ms, ..., my,—; and
Mo, My, . .., Ma, respectively. If they have a protocol for L and want to evaluate
the product myma ... my, they can do so by repeatedly using the L-protocol to
check if each of the words s; = 2; (U, Um, - - - Um,, )y; belong to L. In order to
use the L-protocol, it must be the case that Alice knows all odd-indexed letters
in s; and Bob knows every even-indexed one so padding with € has to be used
once more to achieve this. Still, the length of the resulting s;’s will be no more

than 4qn. O

In particular the deterministic (resp. simultaneous, randomized, probabilis-
tic simultaneous, MOD,-counting) complexity of a monoid M is, up to a con-
stant, the maximal communication complexity of any regular language that it

can recognize.

Lemma 4.2 For any increasing f : N — N the class of monoids such that
D(M) (resp. DV(M), R(M), RI(M), NModo (M) for p prime) is O(f) forms a

variety.

Proof. [sketch] It is straightforward to verify that in all four models, the com-
munication complexity of the direct product of monoids M x N is bounded by
the sum of the complexities of M and N. Moreover, if N < M then every
language recognized by N is also recognized by M and by our previous remark

the complexity of N is at most that of M. O
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4.2.3 Rectangular Reductions

As we mentioned earlier, [BFS86] introduced a convenient notion of reductions

in the communication complexity setting.

Definition 4.3 A rectangular reduction of length t from a language L C A* x
A" to a language L' C A™ x A™ is a pair of functions (ra,rg) such that for any

(z,y) € A* x A*:

1. |ra(z)] and |rp(y)| depend respectively on |z| and |ly| and are respectively

bounded by t(|z|) and t(Jy|);
2. (z,y) € L if and only if (ra(z),rp(y)) € L'.

Clearly, a rectangular reduction from L to L' can be used to infer a commu-
nication complexity lower bound for L' from a lower bound for L since 74(z)
and rp(y) can be computed privately by Alice and Bob respectively.

We give here a variant of this definition which specifically suits our needs:

Definition 4.4 Let L C A" x AI™ and M be some finite monoid. We de-
fine a rectangular reduction of length t from L to M as a sequence of 2t
functions ay, by, as,. .., a9-1,by, with a; : A" — M and b; : A7) — M,
such that for every x € A" and y € A'™ we have (z,y) € L if and only if
evalpy (a1 (x)bo(y) .. . bat(y)) € T for some target subset T of M.

Such a reduction transforms a pair (z,y) into a sequence of 2t monoid el-
ements my, ..., my where the odd-indexed m; are obtained as a function of

only and the even-indexed m; are a function of y.

In general, we are interested in reductions from K C A* x A* into M. In
our definition we used the notation L C A" x Af(™ to stress that we focus on
languages K in which pairs (z,y) have lengths related by a common parameter

n. It should be clear that if i has communication complexity {(g(n)) and has,
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for each n, a reduction of length ¢(n) to M then M has complexity Q(g(t71(n))).
We will write K <! M to indicate that K has a rectangular reduction of length
t to M and will drop the ¢ superscript whenever ¢ = O(n).

Note that if the language K is recognized by a program of length ¢(n) over
M then we have K <! M since a program is a special form of rectangular

reduction in which every a; (resp. b;) depends in fact on a single letter of z

(resp. y).

4.2.4 Bounds and Classifications

We establish bounds on the two-party communication complexity of monoids
and regular languages and provide complete classifications in the deterministic,
probabilistic, simultaneous and MOD,-counting (p prime) models. The anal-
ysis of the first three cases was published as [TT03]. We begin with an easy

observation.
Lemma 4.5 If M is commutative then DI(M) = O(1).

Proof. Since M is commutative, we have
My Mo - ... Moy = (m1-m3-..'.-m2n_1)-(mg-m4-...-m2n).

So if Alice and Bob send to the referee the log|M| bits representing (my - ms -
...~ Map—q) and (mg - my - ... ma,) respectively, he can compute the product

My -Mo ... Moy. |

Next, we use the combinatorial description of languages with syntactic mono-

ids in DO to obtain another upper bound.

Lemma 4.6 Let L C A* be such that M(L) € DO N Ab. Then D(L) =
O(logn).
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Proof. By Lemma 2.20, L is a union of N&Lk-classes for some Abelian group
G. We claim that any such class has logarithmic communication complexity
and argue by induction on ¢t = |A| + k. For ¢ = 1 there is nothing to prove.
For t > 1, let w € (AU {e})* be some predetermined representative of the
class. Given the input z = 2,25 ... 29, € A%, Alice and Bob can check whether
a(z) = a(u) by exchanging |A| + 1 bits. Next, they need to verify that v and z
are G-equivalent. If G' has exponent p, we get v and z G-equivalent if and only
if |u), = |z], (mod p) for all @ € A. The latter condition can easily be verified
with communication cost about |A|[log p], a constant. Let u = vaw be the a-left
decomposition of u and ¢, j denote the locations of the leftmost occurrence of a
in z that is seen respectively by Alice and Bob. These indices can be exchanged
at logarithmic communication cost so that if, for example, 4 is smaller than j
then Alice and Bob can conclude that x = zy...2;_ 1024, ...7, is the a-left
decomposition of z and further verify, by induction, that z;...z,_; NIGAI—Uc
v and zip1...2, Nﬁu,k—l w using only O(logn) communication. Left-right

symmetry completes the proof. (]

The example of GT shows that probabilistic protocols can be much more
efficient than deterministic ones and it is natural to ask whether such gains
can be made for certain monoids in DO N Ab. This motivates the following

definition:
Definition 4.7 We call W the variety of monoids M satisfying:
1. M € DO;

2. exwyf = ewzyf = exywf for all w,e, f,x € M such that e, f are idem-

potents lying J-below w; i.e. M satisfies

(swt)*wzy(uwv)? = (swt)’zwy(vwy)”

= (swt)*zyw(uwv)®.
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Remark 4.7. Suppose M € W has exponent p and consider some w € M
lying J-above idempotents e, f, and some z,y € M. Since M € DO, we

have ewPe = e and so

exwPyf = ewPexwPyf
= ewPwPeryf (By condition 2)

= exyf

Note also that condition 2) shows that W C Ab. Indeed, if u,v are elements

of a subgroup with identity element e, we have
UY = euve = evue = V.

For a word v € A* and a € A we denote by RED;(u) be the unique word of
A* obtained by keeping in u only the first and last ¢ occurrences of each letter
a with |u|, > 2t and all occurrences of letters a with |ul, < 2t. For example,
RE Dy(abcbabbababba) = abcbaabba. We will show that languages recognized by
monoids in W have a useful combinatorial characterization: we set u =, v if

and only if:
2. For all a € A we have |u], = |v], (mod p).

Alternatively, we could define RED; ,(u) as the word obtained from u by the
following process: For every a € a(u) with |g|, > 2t mark the first and last ¢
occurrences of a then move all other occurrences of a, if any, next to the t*" one
and then reduce that block of a’s modulo p. If |¢], < 2t, all occurrences of a are
left untouched. Note that we clearly have RED,;(u) = RED,(u) and u &%, v
if and only if RED,,(u) = RED;,(v).

Theorem 4.8 Let M = A*/v, then M € W if and only if =, ,C v for some
t,p.
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Proof. For one direction, we need to show that M = A*/ =, lies in W. By
definition, we can see that the ~;, equivalence classes are unambiguous concate-
nations of languages with syntactic monoids in J; V Ab and so M € DON Ab
by Theorem 2.20. Furthermore, let us consider the words ¢ = (vwv)Pwz(ywz)?
and r = (vwv)Prw(ywz)®. For any a € A, |ql, = |z|a + |w]e = |r|s (mod p)

and

RED,((uwv)?wz(ywz)?) = RED((uvwv)®z(ywz)?)
= RED;((uwv)Pzw(ywz)?)

since for any letter a occurring in w, the first ¢ occurrences of a lie in (uwwv)®
and its last ¢ occurrences lie in (ywz)®. Thus, ¢ ~, r so M satisfies condition
2 of Definition 4.7.

Conversely, suppose M is in W. We need to show that there exist ¢, p such
that for any morphism ¢ : A* — M we have ¢(q) = ¢(r) for any ¢ =,
and it is in fact sufficient to establish ¢(q) = ¢(RED,,(q)) since RED,,(¢q) =
RED,,(r). In particular, we choose p as the exponent of M and ¢ as |M| + 1.

Recall that to obtain RED, ,(q), one successively considers all @ € A with
lgle > 2t, “groups” together the “middle” a’s and reduces their number modulo
p. We will show that the image under ¢ is preserved by this process. Consider
a word u = ugaua...au; with at least ¢ occurrences of a. Since t = M| + 1,

there must exist 1 <7 < j < ¢ such that

5; = Plugaura . .. u;) = dlugawa. . . uj) = s;.
This means that

5; = siplauipra. .. auy) = s;¢(auia. .. auy)v.

Therefore there exist g,h € M such that ¢(u) can be written as geh where

e = ¢(aup1a. .. au;)*” is an idempotent lying J-below a.
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Suppose now that ¢ contains at least 2¢ + 1 occurrences of a. We can thus
factor ¢ as ¢ = wpa...us_jazayav,_1a...avg where the u;’s and v;’s do not
contain a. From the remarks of the preceding paragraph, we can now use con-
dition 2 in Definition 4.7 to obtain ¢(¢) = é(uwea. .. w1aazyavi_ia. . .avy).
Repeating this same process for all occurrences of a in z or y we can get
#(q) = dluga... u—1aa** 4z av,_ja.:.avy) where a ¢ o(z) and from condi-
tion 1: ¢(q) = ¢(woa. .. ui—1aatzav,_ja...avy) where 0 < d < p is such that
lgle — 2t = d (mod p). If the same manipulation is made for every a € A, we

obtain ¢(q) = ¢(RED,,(q)) as we needed. O

At least intuitively, we have M (L) lying in W if and only if membership of a
word w in L can be determined by counting threshold ¢, mod p the occurrences
of letters in w and determining the relative positions of any of the first and last
t occurrences of letters in w. In terms of two-party communication complexity,
W thus forms an “easy” subclass of DO N Ab because these comparisons of

log n-bit numbers can be done relatively efficiently.

Lemma 4.9 Let L C A* be such that M(L) € W. Then DI(L) = O(logn)
and R(L) = O(loglogn).

Proof. As in the previous proof, we obtain these upper bounds for the =,
classes. Let u be some representative of the target class and z the common
input of Alice and Bob. Checking whether |u|, = |z|, (mod p) is easily done at
constant cost so we only need to show that verifying RED;(z) = RED;(u) can
be done efficiently. For the simultaneous case, the players send to the referee the
locations of the first and last ¢ occurrences that they see of each letter ¢ € A.
Given this information, the referee can reconstruct RED;(x) and compare it to
REDy(u).

For the probabilistic case we use a subprotocol of cost O(loglogn) to deter-

mine for any k < t which of Alice or Bob holds the k' (or symmetrically the
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k™ to last) occurrence of some letter a in z, provided of course that lz], > k.
We argue by induction on k: For k =1, let i, j be the positions of the first oc-
currence of a seen by Alice and Bob respectively. Of course Alice holds the first
occurrence of a if and only if ¢ < j and, using the complexity bound mentioned
in Table 4.1, this can be tested by a randomized protocol at cost O(loglogn)
since 4, j are only logn-bits long. For k£ > 1 we can assume from induction
that Alice and Bob have marked, in their respective inputs, the occurrences of
a which are among the first £ — 1 of a in . The k™ occurrence must be either
the first unmarked a that Alice sees or the first unmarked a that Bob sees,
whichever comes first in . Once again, Alice and Bob are left with comparing
two log n-bit numbers and apply the O(loglogn) cost protocol.

For 1,7 < ¢, the i*" occurrence of a in = comes before the 5™ occurrence
of b in z if and only if the i*" occurrence of a in RED;(z) comes before the

+th

J
REDy(z) = RED(u) by verifying that for all 7,7 < t and all a,b € A the

" occurrence of a precedes the j™ occurrence of b in RED,(u) if and only if

occurrence of b in RED;(z). This means that Alice and Bob can check

the i*" occurrence of a precedes the j* occurrence of b in z. Since they can

determine which of them holds these occurrences, they can check precedence
either privately (when one player holds both occurrences) or by using once
more the O(loglogn) randomized protocol to compare two logn bit numbers.
It should be noted that in any event, the GT protocol is used only a constant
number of times (depending on t and |A|) so we need not worry about the

dwindling of the overall probability of correctness in the protocol. O

We have seen that unambiguous products of languages with commutative
syntactic monoids have O(logn) deterministic communication complexity. It
should not come as much of surprise that in the MOD,-counting model we can

correspondingly obtain:
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Lemma 4.10 Let L € A* be regular with M(L) € LG, Com. We have
NModo (L) = O(logn).

Proof. We know from the result of [Wei92] cited as Lemma 2.23 that L is in

M,Pol(Lecom), i.e. is a Boolean combination of languages of the form

{=] ((LoalLf. . akLk)) =J (modp)}

where M(L;) is commutative for all 7. So we only need to exhibit an O(logn)-
cost protocol to check if a given word w € (A U {€})* has a number of factor-
izations as uga1u; . . . Gglk, with u; € L;, that is congruent to 7 modulo p.

Suppose first that j = 0. The protocol we present in the next paragraph
will in fact output positively if and only if the number of valid factorizations is
not congruent to 0 modulo p. This is sufficient as we have mentioned that for p
prime NMod ([) = NModv (),

The proof sent by God in the first step of the protocol consists of k& log n-bit
integers t; < fy < ... < ;. In the next stage of the protocol, Alice and Bob
interpret the ¢;’s as possible locations for the bookmarks ay, a,, ..., a; in w and
accept if they correspond to a valid factorization ugaju; . ..agu, with u; € L;.
This can be done at constant cost since Alice and Bob need only check that
position ?; indeed contains letter a; and that segment u; belongs to L;, which
requires only O(1) bits since M (L;) is commutative. The cost of the protocol is
dominated by the length of the proof which is O(logn). The number of proofs
accepted by Alice and Bob is thus exéctly the number of legal factorizations so
the protocol accepts if and only if it is non-zero modulo p. Note that for j # 0,
we need to slightly modify our protocol by adding the possibility for God to
send one of (p — j) different “special” proofs that always lead Alice and Bob to
accept. il

To obtain lower bounds matching the upper bounds presented above, we

give a number of conditions under which a finite M admits a reduction from
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GREATER THAN, DISJOINTNESS, INNER PRODUCT mod ¢ and INDEX.

Lemma 4.11 1. If M is non-commutative then GT <" M (Notice that the

reduction has exponential length);
2. If M is not in DS then DISJ <, M;
3. If M lies in DS but is not in DO then IP, <, M for some integer q;

4. For any prime p, if M lies in DS but contains J -related idempotents e, f
such that (ef)?" is not idempotent for any a > 1 then IP, <, M for q not

a power of p;
5. If G'is a non-commutative group then 1P, <, G for some integer q;

6. For any prime p, if G is a group outside of Gp x Ab then IP, <, G for

some q which is not a power of p;

7. If M is in DO but not in W then INDEX <, M.

Proof. 1- Let a,b € M be such that ab # ba. We obtain an exponential length
reduction from GT'(z,y) by building mim; ... mgn+1 where m; = a for i = mg,;
m; = b for © = my,_; and m; = 1y otherwise. The product of the m; is then ba
if and only if z > y and is ab otherwise.

2- If M is not in DS then it admits one of By or U as a divisor. In both cases,
the reduction from DISJ builds for every pair x;,y; a four-tuple ma;_s ... my
where my;_3 = a and my;_; = b when z; = 1 and mg_3 = my;—; = 1), when
z; = 0, my;—2 = ab when y; = 1 but my;_o = 13y when y; = 0 and my; = ab for
any input. One can check that in both B, and U, any such four-tuple evaluates
to 0 when z; = 1; = 1 and to ab otherwise so the product of all of them is 0 if
z; = 1y; = 1 for some 7 and is ab otherwise.

3- Since M is in DS but not DO, there must exist two J-related idempotents

e, f such that ef is not idempotent. Since M is in DS, however, we have efe #



94 CHAPTER 4. COMMUNICATION COMPLEXITY

e = (ef)¥e. Let ¢ be minimal such that (ef)% = e: The reduction produces
elements my ... mo, where my;_1 = e if z; = 1 and my_1 = elef)” = (ef)¥
otherwise and mq; = fe if y; = 1 and my; = (ef)”e = e otherwise. In particular
the product mg;_1me; is efe if and only if 2; = y; = 1 and is e otherwise and so
the product m; ... mg, equals (ef)lS}ijS"xiyiED (o q)e which equals e if and only
if IP,(z,y) = 1.

4- The argument is almost the same as 3-. Again, let ¢ be minimal such that
(ef)le = e. We are guaranteed that ¢ is not a power of p and we can reuse the
reduction described for 3-.

5- If G is not Abelian, there must exist g,h € G such that the commutator
[g,h] = g7'h~'gh is not the identity and thus has order ¢ # 1. We obtain
a reduction from IF, by creating for each pair z;,y; a four-tuple of monoid

elements Mg 34521451144 where My;—3 = g“l

and my4;,_; = g when z; = 1
and my;_3 = my;—; = 1g when z; = 0 and where my;_» = h™' and my; = h
when y; = 1 and my;_g = my; = 1g when y; = 0. This four-tuple thus evaluates
to [g, h] if and only if z; = y; = 1 and to 15 otherwise and the product of all
such tuples is [g, h]li‘%ﬁ"xiyi (mod @)

6- If G is not in G, * Ab, there must exist g, h € G such that [g, h] has order ¢
which is not a power of p so we can reuse the previous reduction.

7- If M lies in DO — W, we must consider two cases. Assume first that there
exist e, f,u, v, w with e, f idempotent and J-below w such that euw“vf # euvf.
Since M is in DO we have ew“e = e and fw“f = f.

We obtain a rectangular reduction from INDEX (z,s) by creating m =

MMy ... Moyt as follows:

(e fori=1,3,...,25 — 3 (the first s — 1 odd-indexed m;’s);
(eu) fori=2s—1;

(vf) fori=2s+1;

f fort=2s+3,...,2n+1 (all other odd indexed m;’s);
1y fore=2j and z; = 0;

mi=<

for i =25 and z; = 1.
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The values of the odd indexed and even indexed m; depend respectively on s
and z as required and one can see that since ew“e is e and fw“f is f, the
product of the m;’s is equal to euvf when z, is 0 and euw“vf when z, is 1
which shows the correctness of the reduction.

If on the other hand we do have evw“vf = euvf for all suitable e, u, v, w, f,
then there must exist e, f,u,w € M with e, f idempotent J-below w but
ewuf # euwf for otherwise we have euwvf = evw“wvf = euw“vwf = euvw f
and M lies in W. On the other hand, since we assume euw“vf = euvf, we
have euwf = ew”uwf and ewuf = ewuw”f. We now obtain a rectangular

Ieductlon from INDEX (z, s) (assuming w.l.o.g. that z, = 1) as follows:

(¢ fori=1
f fori=2n+1
U forv=2s+1;
m; = < 1y for all other odd-indexed ¢;
w for even ¢ = 2j such that z; = z;_;
w for even i = 2j such that z; = 1 and z;_1 = 0;
(w“™!  for even i = 2j such that z; = 0 and z;_; = 1.

Agaln the values of the odd indexed and even indexed m;’s depend respec-
tively on s and z. The value of the even indexed m;’s are such that the product
Mgy . .. my; is w1 for some k, if and only if z; is 1 and w*¥ if ; is 0. Sim-
ilarly, using the fact that z,, = 1, the product ma;ys ... mey, is w** if and only

kw1

ifz; =1 and w otherwise. Using the values assigned by the reduction to

the odd-indexed m;’s we have
MMy . .. Mypt1 = MMy ... Mg U Most2Masiq - - - Mop |

. . . ! .
and by our previous remarks this is ew* T luw*“f = ewuf if z; = 1 and

ew*uwk Ut f = eyw f if 2, = 0 so our reduction is correct. O

In particular, if M does not lie in DO N Ab then it either admits a linear
length reduction from DISJ (if it is outside DS) or from I P, for some ¢ (if it is
either in DS but not in DO or if it is outside Ab). Combining our last lemma
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with the upper bounds above we can obtain the three following theorems.

Theorem 4.12 Let L C A* be a regular language with M = M(L). Then

o) iof and only if M is commutative;
D(L) = < O(logn) if and only if M is in DO N Ab but not commutative;
O(n) otherwise.

Proof. We know D(L) = O(1) if M is commutative and D(L) = Q(logn)
otherwise since in that case GT <?" M. Lemma 4.6 gives the upper bound
when M € DO N Ab. Finally, when M is not in DO N Ab, then it admits
a linear length reduction from DISJ or IP, which yields the last Q(n) lower
bound. |

Theorem 4.13 Let L C A* be a regular language with M = M(L). Then

O(1) if and only if M is commutative;

R(L) = O(loglogn) if and only if M is in W butﬁt commutative;
©(logn) if and only iof M is in DO N Ab but not in W;
©(n) otherwise.

Proof. When M is in W but not commutative we put together Lemma 4.9
and part 1 of Lemma 4.11 to get the tight loglogn bound. Similarly, if M lies
in DO N Ab but not in W then it admits a reduction from INDEX which
proves the Q(logn) lower bound matching Lemma 4.6 and when M is not in

DO N Ab we again use the linear lower bounds on the probabilistic complexity

of DISJ and IF,. O

Theorem 4.14 Let L C A* be a regular language with M = M(L). Then
0O(1) iof and only if M is commutative;
DI(L)) = O(RI(L) = ©(logn) if and only if M is in W
but M 1s not commutative;
©(n) otherwise.
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Proof. When M is in W but not commutative we combine the upper bound
of Lemma 4.9 with the lower bound obtained from part 1 of Lemma 4.11. When
M is not in W then it admits a linear length reduction from INDEX, DISJ

or I P, which all have Q(n) probabilistic simultaneous complexity. O

There are non-regular languages for which probabilistic simultaneous pro-
tocols significantly outperform deterministic simultaneous ones. For instance,
the probabilistic simultaneous complexity of Equality is O(y/n) (folklore, see
[NS96, BK97] for explicit protocols) and it was established by [BK97] that this
quadratic gain is optimal, i.e. that for any L holds D!I(L) = O(RI(L)?). Such
gaps do not exist for regular languages because they do not exist for GT, IP,,

INDEX or DISJ.

Theorem 4.15 Let L C A* be a regular language with M = M(L) and p be

prime. Then

o(1) if and only if M is commutative;
NMOPy(L) = ¢ O(logn) if and only if M is in LG, @ Com
O(n) otherwise.

Proof. 1If M is in LG, @ Com but not commutative, we use GT <" M
for the lower bound and Lemma 4.10 for the upper bound. If M is not in
LG, @ Com then it must be either outside of DS, outside of G, * Ab or have
J-related idempotents e, f with (ef)P” not idempotent and by Lemma 4.11 we
then have either DISJ <, M or IP, <, M for some ¢ not a prime power of p.
In either cases this suffices to get NMO9P» (M) = Q(n). O

Corollary 4.16 If L is a regular language such that for two distinct primes p
and q we have both NMOP»(L) = O(logn) and NMOP«(L) = O(logn). Then
D(L) = O(logn).
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Proof. By our previous theorem, M must lie in the intersection of LG, 8 Com

and LG4 & Com. In particular, M lies in G, * Ab and G4 * Ab so it must

in fact lie in Ab. Similarly, if for all J-related idempotents e, f holds both
(ef)? and (ef)?” then it must be that ef is itself idempotent and so M lies in
DO. By Theorem 4.12, all monoids in DO N Ab have O(logn) deterministic

communication complexity. ]

One might suspect that such a phenomenon does not occur for non-regular
languages although, to the best of our knowledge, this question has never been

studied. On the other hand it is known that for any language L we have

D(L) = O(NY(L) - N°(L)).

4.3 Multiparty Communication Complexity

4.3.1 The Input on the Forehead Model

With applications to distributed computing in mind, it seems natural to gener-
alize the two-party model to a k-party model in which each player gets access
to a 1/k fraction of the input. Although this model has been studied [DF89]
it is of limited interest because its power goes down as the number of players
increases.

Chandra, Furst and Lipton, on the other hand, introduced an alternative
multiparty model [CFL83] which has since found numerous theoretical applica-
tions. In this variant, k& players Pi,..., P, collaborate to compute a function
f(z1,...,zx) where each participant P; knows the values of all the inputs ezcept
x;. This game is often referred to as the “number on the forehead” model since
it 1s convenient to picture that player 7 has x; written on his forchead, available
to everyone but himself. The players exchange bits, according to a previously
agreed upon protocol, by writing them on a blackboard seen by everyone. The

protocol specifies whose turn it is to speak and what a player broadcasts is a
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function of the communication history and the input he has access to. The
protocol’s output is a function of what is on the blackboard after the protocol’s
termination. We will denote® by Dg(f) the deterministic k-party communica-

tion complexity of f. It should be clear that Dy(f) = D(f).

We can of course define simultaneous, probabilistic, non-deterministic and
MOD,-counting variants of this model. We will use DL', Ry, N} and N,f,wo‘l” to
respectively denote simultaneous, probabilistic, non-deterministic and MOD,-
counting k-party communication complexity.

Much less is known about the multiparty models: they sometimes have very
surprising power (see e.g. non-trivial upper bounds in [Amb96, Gro94a, Pud03]
and bounds presented later in this section) and there seems to be no way to
avoid tricky combinatorics when establishing lower bounds. The information
known to each player overlaps a lot since any input letter is known to k — 1
of the k players. This also means that the power of the multiparty model
increases with the number of players involved as the fraction of inputs that a
player cannot see decreases. Let us consider the 3-way generalization of the
equality function: EQ3(z,y,z) =1 if and only if 2 = y = 2. While EQUALITY
is the canonical example of a function with maximal two-party deterministic
communication complexity, EQ3 can be computed by a 2-bit 3-party protocol.
Indeed, it suffices for the player holding x on his forehead to verify that y = 2
and for the player holding y to verify z = 2.

In the combinatorial analysis of two-party models, the central notion was
that of a rectangle. The corresponding notion in the multiparty model is that of
cylinder intersections. A subset S of X; x Xy x...x X}, is said to be a cylinder in
the ith dimension if membership in S is independent of the ith coordinate, i.e.

if for all 21, x5, ...,z and any z; we have (z1,...,z;,...,7%) € S if and only if
2

3The k-party communication complexity is sometimes denoted by D¥(f), a notation pri-
marily used to denote k-round two-party complexity. We choose to put k as a subscript to
avoid this confusion.
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(z1,...,2},...,3%) € S. We say that S is a cylinder intersection if S = [} S;
1<i<k
where S5 is a cylinder in the ith dimension.

Lemma 4.17 (see [KN97]) Let f : X; x Xo X ... X Xy — {0,1} be a func-
tion of k-inputs. Any deterministic k-party communication protocol of cost c
computing f partitions the input space into at most 2° f-monochromatic cylin-
der intersections corresponding to the communication exchanged on a particular

nput.

Two-dimensional cylinder intersections are just rectangles of course, but k-
dimensional cylinder intersections have much less structure than k-dimensional
hyper-rectangles. We will say that a set of k elements of X, x Xy x ... x X}

forms a star if it is of the form:

(z7, @2, .., ak), (T1, Ty ooy Th)y ooy (T1, Ty oo, T))

where for each 4, z; # zj and z; € X;. In that case, we call (21, ,..., ;) the
center of this star. These notions allow us to give a useful characterization of

cylinder intersections.

Lemma 4.18 A set S C X, X Xy X ... x Xy is a cylinder intersection if and

only if the center of any star contained in S is itself an element of S.

Historically, the first multiparty lower bound is that of A. Chandra, M. Furst
and R. Lipton who used Ramsey theory to obtain bounds on the complexity of
adding k integers. Let EXACTLYy» (abbreviated Fy.) be the function of k n-bit
integers defined as

Ezn(l'l,...,.fll'k) =

1 if Yoy = 2™
0 otherwise.

Theorem 4.19 ([CFL83]) For all constant k, we have Dy,(Ex) = w(1).
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In fact, the bounds for the communication complexity of Ean are both tight
and unclear since they are expressed in terms of Ramsey-theoretical sequences
whose limit are known to be infinite but for which no reasonable bounds exist

except for the cases k = 2, 3.

4.3.2 Discrepancy Bounds

A completely different approach to obtain lower bounds on the multiparty com-
munication complexity of some function f is to bound the maximal size of any
f-monochromatic cylinder intersection. In many cases, it is even possible to
find strict bounds on the size of cylinder intersections which are “almost” f-
monochromatic and this yields lower bounds on the cost of protocols that can
approximate f.

This approach is formalized using the notion of discrepancy. Let p be prime
and w be some complex p™ root of unity. For a function f : X; X ... x X; —

{1,w,...,wP"!}, we define the discrepancy of f as
Disc(f) = msz}xlzzjo’_lwi])r[f(xl, o mp) =wand (3, ...,2;) € 5]

where the maximum is taken over all cylinder intersections S and where the tu-
ple (z1,...,zx) is chosen uniformly at random from X; x ... x X. Intuitively,
a function with low discrepancy can not have large cylinder intersections in
which a large fraction of elements have the same image under f and thus any
communication protocol with low cost is bound to disagree with f at many
points. Discrepancy is thus used primarily to prove lower bounds on the com-
munication complexity of approximations to a function but, for our purposes,

we will only use the following basic lemma, whose proof can be found in e.g.

[KN97, BNS92, Gro92].
Lemma 4.20 For any f: X1 X ... x X = {1,w,...,wP7t},

Ry (f) = Qlog(1/ Disce(f))).
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It should be noted that the discrepancy does not necessarily lead to optimal
lower bounds (see examples in [KN97]). Furthermore, computing good upper
bounds for Disci(f) can prove to be quite difficult.

Let 1,..., 2 be n-bit vectors, z; = b}b?...b". We define the k-WISE GEN-
ERALIZED INNER PRODUCT modulo p (or GIP;,) as the function of k n-bit

vectors such that

1 Y el 4l =0 mod p);
GIPk,p($1,--.,xk):{ 1<j<n 172 k (

0 otherwise.

In other words, GIP,, is the language of k by n matrices that have a number
of all-1 columns divisible by p. Of course, for p prime, we can also consider the

S

non-Boolean version of GIF;, which maps inputs (z1,...,zx) to wisi<»

Theorem 4.21 ([BNS92, Gro92]) For allk and p holds Ri(GI P, p) = Q(n).

The original proof explicitly computed a O(c™™) upper bound on the dis-
crepancy of the non-Boolean version of GIP;, for prime p. Historically, this
was first established in the case p = 2 by L. Babai, N. Nisan and M. Szegedy
[BNS92] and later generalized in [Gro92] to arbitrary p. Both proofs are some-
what intricate and are based on induction on k.

It was later shown by F. Chung and P. Tetali [Chu90, CT93] and R. Raz
[Raz00] that this bound could be calculated with far less effort, at least in the
case p = 2. It is unclear whether these techniques have an analog for the case
p > 2.

We want to apply the discrepancy technique in order to lower bound the
multiparty communication complexity of the following variant of the generalized
inner product modulo p (in its non-Boolean version). We define the k-wise
truncated inner product modulo p or TGIP; , for short, as the function which
maps k n-bit vectors ', ..., 2¥ and an index s € [n] as TGIP, ,(z!,. .., 2%, s) =

wXisi@lel-al)  In other words, TGIP;, is GIP;, computed on the inputs
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zt, ...,z truncated after s bits. Note also that for any 1, ...z € {0,1}"™ and

any s € [n] we have TGIP; (21, ..., 2k, 8) = GIPey1 (21, . . ., 21, 15077%).
We will use a result of V. Grolmusz [Gro92] concerning the discrepancy of

GIP;,p. Let us define

Ak(”) = " {g%?f¢k|Ei[GIPk,p(f)¢1¢2 A ¢k]|

where Z = (z1,...,xx) € ({0,1}")* and ¢; is shorthand for ¢(Z) and where the
maximum is taken over all ¢; : ({0,1}")¥ — {0, 1} such that ¢;(x1,...,z;) does
not depend on z;. The expected value E; is taken on the uniform distribution
over ({0,1}™)%.

Note that the function ¢;¢, . .. ¢y is the indicator function for some cylinder
intersection and thus Ag(n) is exactly the discrepancy of GIP;, on inputs of

length n.
Lemma 4.22 ([Gro92]) For all k, there exists d > 1 such that Ap(n) < d™™.
We adapt Grolmusz’s proof of this lemma and use its result to show:
Lemma 4.23 For any k and any prime p,
Disc(TGIP;,) = O(1/v/n).
Proof. Similarly, to Ax(n), we define

Ek(n) = max |Ef,5[TGIPk7p(f, 8)¢1¢2 c. ¢k¢][
G1,02,.., 08,1

where & = (21,...,2x) € ({0,1}")* and ¢; and v are shorthand for ¢;(, s) and
(%, s). The maximum is taken over all ¢;,v : ({0,1}")* x [n] — {0,1} such
that ¢;(z1, ..., 2k, s) does not depend on z; and (x4, ..., zx, s) does not depend
on s. The expected value E;z is taken on the uniform distribution on pairs in

({0, 1}™)% x [n]. Clearly, for inputs of length n we have Disc(TGIP;,) = S (n).
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By convexity of expectations, we have
Ep(n) S E|EJ[TGIP, (%, 5)¢1 . . . dpth]|
and since ¥ does not depend on s:
Ep(n) < Ez|ETGIP (T, 8)01 . .. ¢l

For any complex-valued random variable A, we have (E[|A[])? < E[|A]?] by the

Cauchy-Schwartz inequality. If in particular we choose
\ = [E([TGIPy(, 5)é1 ... ]

we obtaln

Zx(n) < (BgEy[TGIP (T, 5)r . .. d)|2) 2.

Furthermore |E [TGIPy; (T, s)¢1 . . . ¢¢]]* can be rewritten as
(Es[TGIPyy(Z,5)01 ... ¢x))Es[TGI Py (2, 8) 1 - . . dp]

where T'G1 P, denotes the complex conjugate of TGIP and we can write

Ex(n) < (Bz(Bs[TGIP, (T, 8) b1 - . . 1)) (Bo[TGI Py p(2, ) b1 . . . di])) V2.

For any s,t in [n] we write ¢§ (resp. ¢!) to denote the restriction of ¢; where
the last input is s (resp. t). Furthermore for fixed s < ¢ we will “split” the k-

tuple of vectors 7 as 77 and 7 as follows: If the i*" coordinate of Zis z; = bybs ... by,

then the i*" coordinate of 7 is y; = byp1bsp2 . .. b and the i coordinate of 7 is

zi = biby ... bsbiiy ... by, The crucial observation is that for fixed s < t we have
TGIPp(Z,8) - TGIP; ,(Z,t) = GI Py (7).
Indeed, TGIP;, (%, t) = TGI Py (&, s) - GI Py »(¥) and

TGIP, (2, $)TGI By (%, 5) = |TGIP, (%, 5)2 = 1.
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So we can now bound Z(n) as:

Ek(n) < (BoEEfGIP ()5, ... k)2,

Note that it is sufficient to consider the expectation over the pairs s < ¢
since the case s > t is completely symmetric. For fixed s < ¢ and fixed 7 of
length s +n — ¢, define ¢; : ({0,1}!7%)F — {0,1} as (%) = ¢:(2)pL(F) where &

is split as ¢ and 2 for that choice of s and ¢. We can now write

Ex(n) < (B BAEFGIP, (1) - - - G2

% component of § and we can thus use

Now (; does not depend on the %
Lemma 4.22 to claim that there exists d such that |[E;[GI P, ()¢ ... G| < d77
when we consider s of length j.

Thus, the value of E;EzGIP;,(7)( ... (] depends most crucially on how

far apart s and ¢ are. We now use this bound in our estimate on Zy(n):

Ei(n) < (Bycd U2

j=n—1
< (D Prit—s=j]-d)"”
=0
j=n—1
< (Y (n=j)fn*-d)
=0
j=n~-1
< (Ufn Y d7)
=0
= o(1/Vh).
And so our claim about Disc(T'GIPy,) is proved. O

As an immediate corollary to the latter two lemmas we obtain from Lemma

4.20:

Theorem 4.24 For all k and any prime p
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L] Dk_,_l(TGIPk,p) - Q(log n),

o Di(GIPy,) = Q(n);

Notice that the lower bound for TGIP is of course tight. Indeed, suppose
player k£ + 1 has s written on his forehead: it suffices for any other player to
send him the logn bits of s for player £ + 1 to know the entire input and thus
be able to output the correct value of TGIP.

4.3.3 Multiparty Complexity Bounds for Regular Lan-
guages and Finite Monoids

Similarly to the two-party case, we define the k-party communication complexity
of a finite monoid M as the k-party complexity of evaluating in M the product
My My -... Mk, where the m; € M is written on the forehead of player j where
j =1 (mod k).

Similarly, the k-party communication complexity of a regular language L C
A* is the k-party complexity of determining whether the word a;asas . . . ayy, lies
in L, with a; € AU {e} written on the forehead player j’s where j =4 (mod k).

It is easy to show that for any & > 2 the (k + 1)-party communication
complexity of a regular language L (resp. of a monoid M) is at most its k-
party complexity. We can also rework the proof for the two-party case (see also

[RTT98]) to obtain the elementary facts:

Lemma 4.25 Let L C A* be regular with M(L) = M. For any k, we have
Dy (M) = ©(Dy(L)) and similarly for D,L', Ry and N,ﬁvj(’d‘” for p prime.

For any increasing f : N — N and any k the class of monoids such that Dy (M)
(resp. DL‘(M), Rip(M), N,éw"d” for p prime) is O(f) forms a variety.

We define the following generalizations of the two-party rectangular reduc-

tions from a language to a monoid:
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Definition 4.26 A k-dimensional hyper-rectangular reduction of length t from
a language* L C (A™)* to a monoid M is a sequence of kt functions (s, . .., sy)
where the s;’s are functions from A™ to M such that (xy,...,zx) € (A™)* belongs

to L if and only if
s1(21)52(22) - . - $5(T(j mod k) - - - Ske—1(Tk—1) Skt (k).

In other words, such a reduction maps a k-tuple (z1,...,z;) € (A")* to a se-
quence of kt monoid elements where the j** monoid element is obtained solely

as a function of ; where i = j (mod k).

We will write L g:k M to denote the existence of a k-dimensional hyper-
rectangular reduction from L to M. A program is a special form of hyper-
rectangular reduction.

We have already mentioned that the multiparty model often has surprising
power and is much harder to analyze than the two-party models. Ideally, we
would like to obtain complete classifications similar to the ones of Section 4.2
but we only have partial results in this direction.

We begin by sketching the proof of a complete characterization for the k-
party deterministic and probabilistic communication complexity of groups which

first appeared in [RTT98, Tes99].

Theorem 4.27 Let G' be a group. If G is in Guux then Dy (G) = O(1).
Otherwise Ry11(G) = Q(n).

Proof. The upper bound is a result of the combinatorial description of lan-
guages whose syntactic monoids are nilpotent groups of class & (Theorem 2.13):
if M(L) is a nilpotent group of class & then membership in L can be determined

by counting the number of occurrences of each subword of length at most &

*In general of course, we might need to consider languages consisting of k-tuples of inputs
of different lengths. The definition can clearly be adapted for such cases at the cost of extra
sub/superscripts.
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modulo some integer m. In the (k + 1)-party game, any set of k input letters
is seen entirely by at least one player so a protocol using (k + 1) - [logm] can
easily be devised to count the number of occurrences of a particular subword of
length at most k.

The lower bound generalizes the idea of part 5 of Lemma 4.11. If G is not
nilpotent of class k, there exists a commutator ¢ of weight k£ + 1 which is not
the identity. By Lemma 3.3 there exists a G-program ¢ taking k + 1 bits as
input and such that

if all z; are on;

P(r122 .. T 41) = {g

lg  otherwise.

By concatenating n such programs, we can obtain a G-program 1) of linear

length to recognize GIPj1,, and this hyper-rectangular reduction shows that

Riea(G) = Q(n). O

To analyze the general case, we introduce an alternative parametrization of
languages recognized by monoids in DO by defining for any group G a family
of congruences %gt on A* for any s,t € N. First, for any ¢, we let « %g’, y for

all z,y. Then recursively, we define z zgt y if and only if

1. z and y are G-equivalent;
2. %?—l,t Ys
3. ay(z) = ay(y);

4. For all z = zgaz, and y = yoay; with |zo|, = |yola < t, we have zq L

~G .
Yo and my A yg;

5. For all ¢ = zoazy and y = yoay; with |21], = |y1]e < £, we have 2y =€

~G
Yo and m1 =, Y1

One can check that for all s,¢, =, is a well defined finite index congruence.

This congruence is quite close to ~¢ defined in Chapter 2: where in ~¢ we
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were primarily concerned with the first and last occurrence of each letter, we
look here at the first and last ¢ occurrences of each letter. Note however that
A2 18 not equal to Nﬁu,s because, the induction base and the recursion on the
prefixes and suffixes is slightly different in the two definitions. For example, one
can verify that for any commutative G we have ab ~{) ba but ab 2§, ba.

Not so surprisingly, given the similarity to ~, we can show that zgt also

parametrizes DO:

Theorem 4.28 Let M = A*/~, with |A| = n and let H be a variety of groups.
Then M € DO NH if and only if %SGJQ v for some s,t and some G € H.

Proof. To show that A*/ ~§, is in DO N H, it suffices to note that the ~¢,
classes are all unambiguous concatenations of languages with syntactic monoids
inJ; Vv H.

The converse follows from Theorem 2.20 since, from the definitions of ~¢

and ~%, we have zfs,lgwf,s. O

For any group G, and positive integers s, ¢, we will denote by stc;t the variety
of monoids M = A*/v such that zftg 7. The following lemma motivates the
introduction of the %gt congruences in the context of multiparty communication

complexity.

Lemma 4.29 Let G be a nilpotent group of class d. If M lies in V%ﬁ then
Disrq) (M) = O(1).

Proof. It is sufficient to establish the upper bound for A*/ zf,t for any alphabet
A and any s,t and we will do so using induction on s. In the case of s = 0 there
is nothing to prove.

Suppose now s > 1 and take a set of representatives [u;] of A*/~{,. For each
u;, the players will check whether w %gt u;. First, they need to verify that w

and u; are G-equivalent and since G is nilpotent of class d, this requires counting
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the number of occurrences modulo some p of subwords of length at most d in
w®. Since the number of players involved is (s+d) > (d+1), this can be done at
constant cost (see Theorem 4.27). Next, the players can exchange O(t) = O(1)
bits to insure that oy (w) = ay(u;). If s = 1, we are done because there is no
recursive condition to check. If s > 2, suppose u; = vpavy with |vgl, < ¢. There
exists a factorization w = wpaw;, with |vy|, = |we|, but in order to handle the
recursion, the players first need to identify the exact location of the j th 4 in w
(where |ugle =7 — 1).

To achieve this, each player sends a list of identities of the players they
think ignore the first j a’s. This requires only O((s + d + 1)logt) = O(1)
communication. Of course, only the player who has the first ¢ on his forehead
will incorrectly identify the first member in that list (say this player is Player
1), while all others will agree on designating him as the one ignoring the first
a. Since s > 2, there are at least 3 players involved in the protocol, so Player [
can indeed be identified as the only one disagreeing with the majority. We can
correct his list by adding an [ in the first position and shifting the rest of his list
right. Now, the second positions in the lists of all but one of the players agree
and we can repeat this procedure for j rounds. In the end, all players know
which player ignores the j" a and all except that player know the location of
that a. The protocol can now sideline this player and let the other s +d — 1
players check whether v &S| ; wo and v, ~¢ |, wy. By induction this is doable

with O(1) communication. Left-right symmetry completes the protocol. O

Consequently, any language in DON G, has constant communication com-
plexity for some large enough (but fixed) k. This in fact characterizes DONG
for, as we will see next, both By and U can be shown to have w(1) communica-

tion complexity in every k-party model.

% Alternatively the players could do this by comparing the images of w and u; under all
possible morphisms from A* to G. This strategy can be implemented at constant cost from
Theorem 4.27.
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Lower bounds for U were proved in [RTT98] using the universality of U. We
will present an alternative proof in the same spirit which, in addition, explicitly
establishes, to our knowledge, the first multiparty lower bound for a natural
generalization of the Disjointness function. For n-bit vectors z,..., x5, we
define the k-WISE EMPTY INTERSECTION PROBLEM E}; as the Boolean function
such that Elg(zy,...,2) = 0 if and only if the k¥ x n matrix with rows z; has
no all-1 column. In other words, if we think of the z;’s as representing subsets
of {0,1}, then El (xy,...,23) = 1lifand only if 2, Nze N ...N 2z = 0. In
particular Ely, = DISJ. We will also denote by NEI, the complement of EI,.

Lemma 4.30 For all fized k we have D (U) = Q(logn).

Proof. Simple counting arguments (see e.g. [Gro93, Gro97]) can show that
there exists a language L in ({0,1}")* with k-party communication complex-
ity at least n — logn — logk. We claim that any such language has a k-
dimensional hyper-rectangular reduction of size |L| to NEI;. Indeed, given
some element T = (zy,...,xx) of ({0,1}")*, the k players can easily apply an
hyper-rectangular reduction to obtain a k x| L| boolean matrix Mz with columns
labeled by elements § = (yy,...,yx) of L and such that entry (,7) = 1 if and
only if 2; = y;. Thus, a column labeled 7 in this matrix consists of all 1’s if and
only if Z = §. On the other hand M; contains a column labeled Z if and only if
z€lL.

Since L has k-party complexity at least n—logn—Ilogk and reduces in length
|L] < 28 to NEI,, we get Dy(NEI,) > logn/k.

We get the lower bound for U by noticing that for any &, the language NEI}

can be computed by a linear length program over U. O

No sub-linear upper bounds are known for the k-party communication com-
plexity of U and ET; and it is tempting to conjecture that our lower bounds are

far from optimal.



112 CHAPTER 4. COMMUNICATION COMPLEXITY

To obtain a lower bound for the multiparty complexity of By, we will appeal
to a Ramsey-theoretical result known as the Hales-Jewett Theorem [GRS80]
and which concerns colorings of [t]* where ¢ € N. We say that the vectors
v, ... vt € [t]" form a combinatorial line if at each position 4 they either agree
(i.e. for all 1 < 4,j" <t we have v/ = v/ ) or are such that v} = j. We now state

the theorem:

Theorem 4.31 (Hales-Jewett) For any integers c,t there exists an integer n
such that if all vectors in [t]"* are colored with ¢ colors then there is a monochro-

1

matic combinatorial line v',... V' (i.e. a line whose elements all were assigned

the same color).

The Hales-Jewett number HJ(c,t) is naturally defined as the minimal such
n. While the theorem’s proof implicitly provides an upper bound in terms of ¢
and ¢, these bounds are not primitive recursive. Although the lower bound for
Eon cited earlier is not proved using the Hales-Jewett itself, it uses a Ramsey-
theoretical result with a similar flavor. Chapter 29 of [Juk01] describes this
and other theoretical computer science related applications of the Hales-Jewett

theorem and its variants.
Lemma 4.32 For any fized k we have Dy(B;) = w(1).

Proof. We willin fact prove the lower bound for the function k-SET-PARTITION
(or Party, for short) which we define as follows: Let Sy, ..., Sy be subsets of [n)
represented as [n]-bit vectors, then Party(S;,...,S;) = 1 if and only if these
sets are a partition of [n], i.e. if the bitwise sum of the vectors is the all-1 vector.

Every input (Si,...,Sk) € P([n])* that is accepted by a protocol for Part,
is such that for every 1 < j < n, the clement j lies in exactly one of the
Sy’s. Using this observation, these inputs can be put in one-to-one correspon-
dence with n-tuples in [k]". As an example for & = 3 and n = 4, we have

Party({4},{1,3},{2}) = 1 and this input corresponds to the n-tuple (2, 3,2, 1).
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Suppose that the communication complexity of Part is bounded, for some
k, by a constant c¢. To every input accepted by a protocol for Party, (i.e.
to every element in [k]™), we can assign one of 2° colors corresponding to the
communication history resulting from that particular input. If n is large enough,
there must be, by the Hales-Jewett Theorem, a monochromatic combinatorial
line v',...,v*, where the v”’s are in [k]*. If we let ) # 7' C [n] be the set of
coordinates on which the v%’s disagree, we get that there are sets Sy, ..., S} such
that TUS U. . .USy = [n] and all the inputs (S UT, Sy, ... Sk), (S1, S2UT, ... Sk),
..., (81, 52,...5,UT) induce the same communication history. However this is a
contradiction: By the star property mentioned earlier, the input (S;, S, ... Sk)
also induces that same communication although it should be rejected since
Si1U...US, =[n] =T # [n].

We complete the proof by showing an easy reduction from Part; to By: the
reduction is obtained by concatenating n blocks of £ + 2 elements of Bs, such
that the 5*® block is amy,j ... myjab where my; is b if j lies in S; but m; ; is 1
otherwise. It is easy to see that the 5'" block thus created will evaluate to ab if

J lies in exactly one S; and to 0 otherwise. O

In contrast to U, there are known non-trivial upper bounds on the multi-
party communication complexity of B,. K. Reinhardt has shown upper bounds
[Rhe01] which are good examples of the surprising possibilities offered by the

multiparty model and we sketch one of these bounds for completeness.

Lemma 4.33 (Reinhardt) - Dy(B;) = O(y/nlogn);
- D5(B,) = O(logn).

Proof. We exhibit a O(y/nlogn) 4-player protocol for the language L =
(c*ac*bc*)* which is sufficient since its syntactic monoid is By. The 5-party
protocol is based on the same ideas. We can assume without loss of generality

that the players receive an input word belonging to c¢*aA*bc* and thus only
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need verify that there exists an occurrence of b between any two consecutive
occurrences of a and vice-versa. In particular, if the input is to be accepted,
then there must be, between any two occurrences of a a number of b’s exceeding
the number of a’s by exactly one.

Players 1 and 2 consider the intervals defined by two a’s occurring on the
foreheads of players 3 and 4 and write a list® 4;,...,4; of possible lengths for
the intervals. If there are d intervals, the maximum of all 4; times d must
exceed n and so t = O(y/n). Next, for each 4;, they exchange O(logn) bits to
determine the number of b’s minus the number of a’s that they see occurring
in such intervals of length 4;. If they find that this number is not equal to the
number of intervals of length ; the protocol halts and rejects.

A similar procedure is repeated for intervals defined by two b’s held by player
3 or 4 and for every pair of players. If all these steps are completed successfully,
the protocol accepts.

It is clear that no rejected input z is in the language. Conversely, suppose
that z is not in the language, i.e. that x contains a subsegment of the form
ac*a (or bc*b), and let h be the minimal length of such a segment. If the
protocol accepts x nonetheless, it must be that some other segment w of length
h and delimited by two a’s contained at least two more b’s than a’s. It must
therefore be that w contained a segment of the form bc*b, but this contradicts

the minimality of h. O

As a corollary to Theorem 4.37, we know D3(B) = Q(logloglogn) but for
k > 4, there is a huge gap between these upper bounds and our best lower
bounds (non primitive recursive) for the k-party communication of B,.

Our results thus far allow us to give an algebraic characterization of lan-
guages for which there exist constant cost protocols when enough players are

involved.

6This need not be done explicitly but it simplifies the protocol’s description and analysis.
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Theorem 4.34 There exists a constant k such that Dg(M) = O(1) if and only
if M € DO N G

Proof. The upper bound is provided by Lemma 4.29. The converse is obtained
by noticing that any M notin DONGy; can be divided either by a non-nilpotent
group (Lemma 4.27), by U (Lemma 4.30) or by B, (Lemma 4.32). O

This theorem unfortunately fails to provide algebraic characterizations of
monoids with bounded complexity in the k-party game for specific values of k.
We are guaranteed by Theorem 4.25 that such characterizations exists and we
have already established one for £ = 2 in Section 4.2.

Let us first consider the case k£ = 3. By Lemma 4.29, we can evaluate in

constant 3-party complexity

e the product in any monoid M in Vg, when G is a nilpotent group of

class 2;
e the product in any monoid N in Vm for a commutative group H;
e the product in any M x N where M, N are as above.

We will show that this in fact captures exactly the limits of the 3-player
game. Intuitively, the class of languages we have just implicitly defined is cap-

tured by the following congruence on A*: we set” z ~, y if and only if:

Loay(z) = eu(y);

2. the number of subwords of length at most 2 in z and y coincide modulo
D;

3. For any z = moax; with |z¢| < t, there is y = yoay; with |zols = |yo|. and

such that a;,(z0) = aup(yo) and aup,(z1) = arp(yr).

"The congruence ~ defined here is not the same as the ~“ congruence defined in Chapter
2 and used to parametrize DO.
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4. For any x = zpaz; with |z,] < t, there is y = ypay, with |z1], = |y1], and

such that ay, (7o) = i p(yo) and awp(@1) = ary(r).
Let Bg be the variety of monoids M satisfying
1. M € DO;
2. M ¢ m,
3. for all w lying J-above idempotents e, f and any u, v holds

evwvf = euvf;

4. for all z,y lying J-above idempotents e, f and any z holds

ezz? ey f = exV Ly lryzf.
The congruence ~;, and the variety Bg are quite similar to respectively the

congruence =, and W defined in Section 4.2. In fact it is clear that W C Bg.

Lemma 4.35 Let M = A*/v, then M € Bs if and only if ~;,C v for some
t,p.

Proof. The proof is similar to the one of Lemma 4.8: it M = A*/ ~,,, then M
clearly satisfies conditions 1 and 2 for membership in Bz. Furthermore, to check
3 and 4 one can easily verify that the words ¢ = (swt)Puw’v(zwy)® and ry =
(swt)Puv(zwy)? are ~y y-equivalent and that g = (szyu)PzzP~lyP~ ey (vayw)?
and ry = (szxyu)PaP tyP leyz(veyw)? are ~; ,-equivalent. So M lies in Bg.

For the converse, assume M lies in B3. We need to show that there exist ¢, p
such that for any morphism ¢ : A* — M we have ¢(q) = ¢(r) for any g ~,, r.
We will choose p as the exponent of M and ¢ as [M| + 1.

Suppose A = {ay,a9,...,a;}. For any € A*, denote by & the word ob-

tained from z by the following process:
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e as a first step, we mark the first and last ¢ occurrences in z of any letter

ag;

e next, suppose y is a segment of z lying between two consecutive marked
letters. Note that every letter of a(y) occurs at least ¢ times to the left

and right of y. We replace y by the word
Y=ol . ap*ag, a1]" as, al])™ L ag, Qg

where [a, 0] is shorthand for the pseudo-commutator ¥»~'a?~1ba, and where
the 0 < m; < p-1and 0 < n;,; < p—1 are such that the number of
subwords of length 2 in y and 3 are equal modulo p. Note that we have

m; = 0 and n; ; = 0 if a; does not belong to a(y).

e Finally, we move every pseudo-commutator [a;, a;] introduced in the pre-
vious step next to the leftmost marked position where the prefix contains ¢
occurrences of both a; and a; and reduce the block of [a;, a;]’s thus created

modulo p.

We have z ~,, % of course. Indeed, replacing y by ' in the second step
has no effect on the overall count of subwords of length 2. Furthermore, step
2 and step 3 preserve the number of occurrences (modulo p and threshold t)
of each letter before or after any of the marked positions because [a;, a;] has
0 occurrences of any letter modulo p. It can also be shown conversely that if
T ~yp Y, then 2 = 4.

It now suffices to prove that for any morphism ¢ : A* — M we have ¢(z) =
&(). Suppose y is a segment of z lying between two consecutive marked letters
in © = xoaybz,. Every letter of a(y) occurs at least ¢ times in both x4 and z,
since y itself contains no marked letters. So by the argument of Lemma 4.8,
we can show for any pair of letters a;, a; € a(y) that both ¢(zy) and ¢(z,) can

be written as res where e is an idempotent lying below a;,a;. Since M is in



118 CHAPTER 4. COMMUNICATION COMPLEXITY

Bs, we have for any e, f idempotents below ¢(a;), ¢(a;) and any u,v,w both

euv f = eup(a;)Pvf and
eud(a;)P ' d(a;)P aavw f = euvg(a)P " pla;) P aiaw f.
Supposing y = yoa;a,y; we can successively apply these rules to get:

</5(5C) = ¢ SCOCLyoazaﬂJlbxl)
= P(zoayoal asajy;bxy)

p p 1
aiajylbxl)

= ¢ anylaja'l[ajaaz]ylbxl)

(
(
= ¢(zoayia;a]
(
(

= ¢ 950617/1@;@1?/1[33; al]bxl)

This suffices to show that step 2 in our production of Z can be done without
affecting the image under ¢. Similarly, step 3 can also be done without affecting

the image under ¢. O

We will show that monoids in B are exactly the ones with bounded 3-party
communication complexity. One crucial tool for our argument will be a result

of P. Pudldk [Pud03].

Theorem 4.36 Let the In-Between functzon IBF :{0,1}" x [n] X [n] — {0, 1}
be defined as

1 ifr < s and one of the bits T,,1,...,xs is I;

IBF(x,r,s) = {

0 else.
Then we have DQ (IBF) = Q(loglogn) and thus D3(IBF) = Q(logloglogn).
It is worth noting that this result implies an Q(loglogn) lower bound on the

three-party communication complexity of By whereas the techniques of Lemma

4.32 only yield w(1). We can now prove
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Theorem 4.37 For all M € Bg holds Ds(M) = O(1). If M ¢ Bgs then
D3(M) = Q(logloglogn).

Proof. In one direction it suffices to prove the upper bound for the ~; ,-classes.
Let u be some word of A* and suppose that 3 players are given z € A*. To
check z ~y;, u, they first need to compare «;(z) and oy (u), which requires only
2t-|A| bits. Next, they need to compare the number of occurrences of subwords
of length 2 modulo p, which we have already argued can be done using 3p - |A|?
bits of communication in the three-party model. Finally, if u = wgau, with
luglo = 4 < t, the three parties can determine in O(1) communication which of
them holds the (i + 1) occurrence of a in z (see the proof of Lemma 4.29).
The two other players thus know how to factor z as zgaz; with |z¢|, = 7 and
can verify that oy ,(zo) = oy p(ug) and ayp(21) = agp(ur). Left-right symmetry
completes the argument.

Conversely, suppose M is not in Bs. If M is not in DS, then it is divided
by either U or By and so D3(M) = Q(logloglogn).

If M lies in DS but not in DO, we claim that GIP; ,(z,y, z) has a linear
length reduction to M. The argument is almost exactly the one in the proof of
Lemma 4.11: there must exist two J-related idempotents e, f € M such that ef
is not idempotent and efe # e = (ef)“e. Let ¢ be minimal such that (ef)% = e
and suppose without loss of generality that the |z| = |y| = |2] = n is a multiple
of ¢. Our reduction produces elements m; ... ms, where ms;_o = e if 2, = 1 and
Mgy = ef otherwise; mg;_y = 17 if y; = 1 and mgy;_; = f otherwise; ms; = e
if z; =1 and mgy; = fe otherwise. In particular the product ms;_oms;_1ms; is e
if and only if z; = y; = 2; = 1 and is efe otherwise so the product m; ...ms,
equals (efe)n—lﬁiin ¢ which equals e if and only if GIP; ,(x,y,z) = 1. Since
D3(GIP;s,) = Q(n), we have D3(M) = Q(n).

If M is not in G2, then by Theorem 4.27 we have Ds(M) = Q(n).

Finally, suppose M lies in DO ﬂm but not in Bs. We consider two cases:
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suppose first that for some w lying J-above idempotents e, f and for some u, v
we have euw“vf # euvf. Then IBF(x,r,s) admits the following linear length
reduction to M. The reduction gives elements my, ..., ma,qs:

(e fori=1

f fori=3n+3

euw fori=23r+2;

m; = qve fori=3s+1;

1p for all other ¢ with ¢ Z 0 (mod 3);

for 7 = 37 such that z,; = 1;

1y for even 4 = 3j such that z; = 0;

We have w*w® = w* and, since M lies in DO, both ew“e = e and fu“f =
f. Therefore, the product m;...ms,.3 is equal to euvf if and only if all of
M3ry3,. .., M3s are 1y which occurs if and only if x,,4,...,z, are 0, i.e. if and
only if IBF(z,r,s) = 0. Otherwise, m, ... msy 3 is euw*vf. From the IBF
lower bound we thus get D3(M) = Q(logloglogn).

Finally, suppose that M satisfies euw“v f = euvf for each w lying J-above
e and f but there exist u,v € M lying J-above idempotents e, f and z such

that

e’ 'y f # ezu® o Tty f.

In that case, we claim, that for some prime ¢, TGIP;, has a linear length

reduction to M.

Let g be the smallest positive integer such that e[v,u]? = e and [v,u)if = f
and assume without loss of generality that ¢ is prime®. Because M is in
DO N Guii2, the idempotent e and the pseudo-commutator [v,u] commute
with respect to their action on the R-class of e and in particular, ev,u] =

eev,u] = elv,ule. So if e[v,ulzf # ez[v,u|f, then for all 1 < i < ¢ — 1 we have

81If ¢ is not prime, the proof can be carried through using a reduction from T'GI P, , for
some prime divisor of q.
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e[v, u]'z[v, u]" " f £ ezv, u]f. Indeed, if we assume otherwise, we have:

ez[v, U]f = e[v7 u]iz[v’ u]q+1—if
= e[fu’ u]iez[v’ U]f[’l), u]q—if
= efv,ul'efv, u]'2[v, W] fv, uTif

= elv,u]*z[v, u]tTEf

By repeating this manipulation, we in fact have for any k£ > 1:

ki q+1—k'if

ezlv, ulf = efv, u]*z[v, u]

which leads to a contradiction for £ > 1 such that ki =0 (mod q).

We now construct the reduction from T'GIP, (x,y,s) to M and assume for
simplicity that the inner product (not truncated) of z and y is equal to 1 modulo
g. We build from (z, y, s) the word e(m; ... mg,) f in M* where m; depends on z
if i =1 (mod 3), on y if i =2 (mod 3) and on s if 1 =0 (mod 3). Specifically,

we set
e my; = z if © = 25 and mg; = 1), otherwise;

e mgi_s = u*"! and mgi_p = u if z; = 1 but me_5 = 1, and mg;_o = 1y if

z; = 0;

o mgi—q = u"Land mg_; = w if y; = 1 but mei_y = Ly and me_y = 1 if

yi:().

One can easily verify that if ¢ = 1<§<Sxiyi then the product e(my...mg,)f
evaluates to e[v, u]'z[v, u]® 1=t f. From our previous remarks, this product is
equal to ez[v, u]f if and only if TGIP, ,(x,y,s) = 1. This reduction shows that
D3(M) = Q(logn) in this case. O

Characterizations of monoids with bounded k-party complexity for any & > 4

seem out of reach for now. A first step would be to characterize the class
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of aperiodic monoids with bounded k-party complexity and we propose the

following conjecture.

Conjecture 4.38 A star-free language L has bounded k-party communication
complezity if and only if it is the disjoint union of z,ﬁ_u for some t where the

superscript I denotes the trivial group.

Since the trivial group is of nilpotency class 1, we can apply Lemma 4.29 to ob-
tain the “if” direction of this conjecture. From the definition of this congruence,
we see that %{,t captures exactly languages with aperiodic and commutative
syntactic monoids. This proves our conjecture for k¥ = 2 and in the case k = 3,
it follows as a simple corollary to Theorem 4.37.

A straightforward induction on & shows that for any k,¢ and any s < k the

words = = (a},,ak...a%)°

and y = (aj,,a} ...a})°*" are = -equivalent. For
k = 0, this is trivially true. For k > 1 it suffices to prove the equivalence for
s=k. If v = zpa,7, and y = yoa; 41 with |2ole, = |Yola, < ¢ then in fact zy = yo
and there is u such that 2, = u(aj, af, ... a})* and y; = u(al, af ...at)k. By

. - (gl ol £\k—1
our induction hypothesis (aj,,a}, ... a%)

and (al,a...a!)* and thus z; and
Y1 are %i—l,t equivalent. Left-right symmetry completes the argument.

In particular, the piecewise-testable language A*a; A* ... A*ap . A* is not the
union of & , classes because (af,af ...a!)¥*! contains a subword ajas ... aps
while (a},a} .. .a})* does not. In our communication game, it is of course easy
for k + 1 players to identify the existence of a subword of length %k at constant
cost since any occurrence of it will be seen entirely by at least one player. In
fact, a lot of our intuition about the power of the k£ + l1-party game revolves

around this “free access” to subwords of length k. This leads us to separately

formulate a weak special case of Conjecture 4.38:

Conjecture 4.39 The k-party communication complexity of the regular lan-

gquage A*a  A* ... A*ay A* is non-constant.
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This statement has been established by P. Pudlak [Pud03] for the cases k =
2,3,4,5 (see also [Gas02a] for an explicit treatment of the case k = 3) using
a Ramsey-theoretical result known as Hindman’s Theorem. Its full resolution
would be a major step in our understanding of the fundamental limits of the
k-party game and would nicely complement Theorem 4.27 which shows that
counting, modulo p, the occurrences of subwords of length & can be done at
constant cost by &+ 1 players or more but requires 2(n) bits of communication

for k£ players or less.

4.4 Applications to Program and Circuit Lower
Bounds

We have shown that our algebraic point of view on communication complexity is
a fruitful one. Bounds on the communication complexity of monoids allow us on
one hand to gain some insight on the relative power of various communication
models and, on the other hand, it allows us to identify, as in Conjecture 4.39,
concrete functions for which communication complexity lower bounds are most
susceptible of being particularly meaningful.

While algebraic tools help in the analysis of communication models, commu-
nication complexity results can, in turn, be used to formalize certain arguments
in the study of programs over monoids. For instance we can use results of this

Chapter to obtain the following:

Theorem 4.40 The varieties Com, W, DA, DO N Ab and DO N G are

all program-varieties.

Proof. We first prove this for W. Suppose M is such that for all m € M,
the subset M,, of M* given by M,, = {m...my : evalpys(my,...,m,) = m}
can be recognized by polynomial-length programs over W. These programs

constitute a polynomial length rectangular reduction from the word problem
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of M to the word problem of some monoid in W. We can therefore conclude
that DI(M) = O(logn) and thus M € W. Using respectively constant two-
party complexity, logarithmic two-party deterministic complexity and constant
multiparty complexity, we obtain similar results for Com, DONAb and DON
G-

To show that DA is a program-variety, we need to combine these ideas with

the fact that aperiodics form a program-variety. O

This fact was already known for Com (folklore) and DA (proved using a.
completely different idea in [MPT91]) but the technique used here is very general
and the following lemma (first proved in [RTT98]) can be used to obtain such

results:

Lemma 4.41 Let f = O(log" n) for some r > 0. For any k > 2, the class of
monoids with k-party deterministic communication complezity (resp. probabilis-

tic, simultaneous, MOD,-counting) forms a program-variety.

V. Grolmusz implicitly exploited this idea to prove the following result about

modular circuits:

Theorem 4.42 ([Gro92]) For any prime p and any composite integer m that
is not a prime power, there exists an explicitly constructible function f com-
putable by depth-2 MOD,, circuits but not computable by any constant depth
MOD, circuit.

In fact, this result can be obtained as a corollary to the following theorem

of D. Barrington, H. Straubing and D. Thérien:

Theorem 4.43 ([BST90]) Let p be a prime and G a group in Gpx Ab. There
18 a constant cg > 1 such that any G-program computing the AND of n variables

has length (ck).
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The results obtained previously in this Chapter allow us to obtain a theorem

slightly stronger than Grolmusz’s but weaker than the latter.

Theorem 4.44 Let p be a prime and G a group in Gy Ab (or, more generally,
any monoid M in LG, @ Com). There is a constant cg > 1 such that any G-
program computing DISJ has length Q(c%).

Proof.  Suppose for contradiction that DISJ can be recognized by a G-
program of sub-exponential length f(n). This program constitutes a length
f(n) rectangular reduction from DISJ to G and, since G has MOD,-counting
two-party complexity O(logn), it allows us to build a O(log(f(n))) = o(n)
MOD,-counting two-party protocol for DISJ. This is in contradiction with the
lower bound stated in Table 4.1. ' O

In their paper, Barrington, Straubing and Thérien propose the constant-

degree hypothesis, a conjecture generalizing Theorem 4.43 mentioned above.

Conjecture 4.45 (Constant-degree hypothesis [BST90]) Let p be prime.
If G is a group in Gy * Gy then any G-program computing the AND function
has length 2%,

This conjecture is proposed as a first step towards the more ambitious goal of
proving that AND cannot be computed in sub-exponential length by programs
over any solvable group or, equivalently, in sub-exponential size by CCY circuits.
Such lower bounds would be the dual of the exponential-size lower bounds for
AC? circuits computing MOD,,.

Progress towards the constant-degree hypothesis has proved to be quite dif-
ficult: circuit lower bounds of V. Grolmusz and G. Tardos [GT00, Gro98] (see
also [ST]) can be reformulated to cover very special cases and attempts have
been made for the case where the group is the wreath product of a p-group

and a nilpotent group of class two [BTT02]. If we seek lower bounds for the
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AND function, the communication complexity approach is probably doomed to
fail since AND has extremely low communication complexity in every reason-
able model but as Theorem 4.44 suggests it might prove fruitful if we target a

slightly more complicated function.

Conjecture 4.46 For any fized k, the MOD,-counting k-party communication
complexities of Ely and GIPF are Q(n).

Such lower bounds would immediately imply:

Corollary 4.47 (Assuming 4.46) For any k > 1, there is a function which
can be computed by a polynomial length program over a group in Gp * Gui ki1
but cannot be computed by a sub-exponential length program over any group in
Gp * Gpirk.

There is a function in ACY which cannot be computed by any program of sub-

exponential length over a group G in Gy * G

Proof. [sketch] The first observation to make of course is that any group G in
Gy * Gk lies in LGy @) Gk Since any G’ in G is such that Dy (G') =
O(1), we must have N,?/IOd”(G) = O(logn). Thus, no sub-exponential length
program over G can recognize a function of super-logarithmic k-party MOD,,-
counting complexity.

Assuming the conjectured lower bounds, we conclude that EI; and GI Pq"
cannot be recognized in sub-exponential length by G-programs, when G €
Gp * Gk while it is an easy exercise to show that they are recognizable in
polynomial length by a program over a group in G, * Guik1. Furthermore,
for every k the function EI; can be computed by a linear length program over
U and thus N,ﬁwad"(U) = {)(n) for all constant k. Hence U cannot be recognized

by a sub-exponential length program over a group in Gp * Gp. U
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While length lower bounds for G-programs AND remain the ultimate goal,
it should be noted that no super-linear bounds exist for an explicit function in

NP if G 1s solvable but not in Gp + Ab.

4.5 Conclusion and Open Problems

We have established a number of classification results for the communication
complexity of regular languages and monoids and have shown their importance
as means of understanding both the power of communication complexity models
and the power of monoids as language recognizers. Our results further stress
the importance of the varieties DO and its subclasses, in particular DO N G
and DONAb which we will again encounter in the context of our next chapter.

We believe that this algebraic approach to communication complexity could

and should be explored further and present some open questions pertaining to

it.

4.5.1 Towards a Multiparty Analog of Szegedy’s Theo-
rem

The worst-case partition k-party communication complexity of a language K C
A™ is, as the terminology suggests, the maximum over all k-partitions of [n] =
S1USsU. .. USy of the k-party communication complexity of determining if w €
A™ belongs to K when player P; has the letter of w indexed by S; written on his
forehead. We mentioned in this chapter’s introduction the following spectacular

theorem due to M. Szegedy:

Theorem 4.48 ([Sze93]) A language K has bounded worst-case partition two-
party communication complexity iof and only if it can be recognized by a program

over a commutative monoid.

Such a connection between programs and communication complexity is com-

pletely unexpected and the proof of this result is difficult. On the other hand,
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its content is so rich that it is important to consider possible extensions of the
theorem.

It seems hopeless to find a “program-over-monoid” characterization of lan-
guages with, say, logarithmic two-party communication complexity since MA-
JORITY has logarithmic communication complexity but presumably cannot be
computed by a program over any solvable monoid and provably cannot be com-
puted by a program over a monoid DO N Ab. It is quite possible on the other
hand that a multiparty analog of Szegedy’s Theorem exists. In the rest of this

subsection, we want to argue in favor of the following conjecture.

Conjecture 4.49 For any L C A*, there exists a constant k such that Dy(L) =
O(1) in the worst-case partition if and only if there exists r such that L can be

recognized by an r-program over some M in DO N Gy.

One direction of Szegedy’s Theorem is quite straightforward: if L can be
recognized by a program over a commutative monoid then, regardless of the
input partition, Alice can compute the product of the outputs of instructions
querying input letters that she has access to. Sending this value to Bob requires
only log | M| bits and this is sufficient information for Bob to determine the value
of the program’s output. Note that it is crucial to consider only 1-programs for
otherwise certain instructions might be querying both input letters known only
to Alice and input letters known only to Bob.

Similarly, we can establish the easy half of our conjecture:

Lemma 4.50 If there exists v such that L C A* can be recognized by an r-
program over some M in DO N Guy then there exists a constant k such that

Dy (L) = O(1) in the worst-case partition.

Proof. Let ¢ be the r-program over M recognizing L. Since M lies in DO N

G, we know that there exist ¢ such that the program accepts z if and only

G

if ¢(z), when viewed as a word in M*, belongs to some disjoint union of ~l
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classes for some nilpotent group G of class d. In the case r = 1, we can use a
variant of the protocol described in the proof of Lemma 4.29 to do this but if
r > 1 then the value of a particular instruction may be unknown to as many as

r players and we have to be more careful in our implementation of this strategy.

We choose a number of players k = (|JM|+¢+1)-r-d+1. Let us consider M
as an alphabet and show that for any w € M* and any © € A*, these k players
can check in O(1) communication if w NIGM|,t #(x). We argue by induction on
s = |M| +t. This is trivially true for s = 1. If s > 1, we distinguish two cases.
First if ¢ = 0, then the players need to verify that w and ¢(z) are G-equivalent.
Since G is nilpotent of class d, this can be done by counting, modulo some ¢,
occurrences of subwords of length d in ¢(z). Any such occurrence is the result
of at most d instructions and its existence is thus known to all but 7 - d players,
regardless of the input’s partition. Since & is greater than r - d, the counting of

these occurrences modulo ¢ can be done using only O(1) communication.

If t > 0, the players can check in O(1) communication that w Nﬁ\ﬂ,t—l
¢(x) (by induction) and that c(w) = a(¢(z)) (because k > r). The difficulty,
of course, lies in verifying that for any m € w if w = wymw; is the m-left
decomposition of w, then the m-left decomposition of ¢(z) = wvymwv, is such
that wy Nﬁ,”_l,t vy and wy NICI:VII,t—l vy. For a given input z to the program and
a given partition of this data, our &£ players can vote on the set of players which
hold (on their forehead) one of the input letters queried by the first instruction
in ¢ that, in their opinion, outputs a given m € a(¢(z)). Note that this vote

only requires each player to send r - [logk] = O(1) bits.

The players that do not hold any of these 7 letters will, of course, all agree.
Because k£ > 27 + 1, a majority of players (at least ¥’ = (|[M|+1)-r-d+ 1
of them) will thus identify a subset of at most r players with these letters of =
written on their forehead and will know that the m-left decomposition of ¢(z)

is vgmuy. These k' players need to verify wy Nﬁw_u vo and wy ~|GM|¢_1 vy and



130 CHAPTER 4. COMMUNICATION COMPLEXITY

this can be done, by our induction hypothesis, at O(1) cost since ug and v are

also outputs of an M-program. Left-right symmetry completes the proof. [

The technicality of this proof might be seen as a bad omen: Surely if the
“easy” half or our conjecture is difficult to establish then we should expect that
proving the second half, if it is true at all, will be extremely hard, if not out
of reach. Such pessimism can be tempered: first our last proof is, at least
conceptually, not so complicated. Secondly, our results of Chapter 3 show that
DO N Gy is reasonably well-behaved with respect to programs. In particular,
this program-variety has the polynomial-length contraction property and this
could be a useful tool. Furthermore, we have the advantage of knowing very
good combinatorial descriptions of languages recognized (via morphisms) by this
variety. It is worth noting that we know of no language with bounded k-party
communication complexity which cannot be easily shown to be recognized by
an r-program over DO N Gy

As a first step towards this conjecture, it might be easier to establish the
conjecture in the restricted case where L has a neutral letter. This would follow
if we could show, for instance, that r-programs over DO N G,y have the Crane-
Beach property. It is clear that progress towards this conjecture will require a

very good understanding of the combinatorics of the multiparty model.

4.5.2 Further Bounds for Regular Languages

Another very intriguing open question concerns the non-deterministic commu-
nication complexity of regular languages. Attacking this question from an al-
gebraic angle will require a refinement of our techniques since some regular
languages have a non-deterministic communication complexity exponentially
smaller than their complement. This means that we cannot find tight bounds
for N*(L) by simply looking at the algebraic properties of M(L). However, it is

easy to show that the class of regular languages with non-deterministic commu-
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nication complexity O(f) is closed under positive Boolean operations, inverse
homomorphisms and left-right quotients, i.e. that it forms a positive variety of
languages (see e.g. [Pin97]). Correspondingly, N*(L) is thus determined by al-
gebraic properties of L’s ordered syntactic monoid. We have already established
that, in the two-party case, a regular language has logarithmic deterministic
communication complexity if and only if it is a disjoint union of unambiguous
concatenations of languages with commutative syntactic monoids and that it
has logarithmic MOD,-counting complexity if it is a disjoint union of prod-
ucts with p-counters of languages with commutative syntactic monoids. It is
tempting to conjecture the following characterization for the non-deterministic

two-party model:

Conjecture 4.51 Let L C A* be a regular language with M = M(L). Then

(

O(1) if and only if M(L) is commutative;
O©(logn) if and only if M(L) is non-commutative
NY(L) = but L is the disjoint union of languages
Loai Ly ... ap Ly with M(L;) commutative;
©(n) otherwise.

\

Because Greater Than has linear non-deterministic two-party complexity,
it is possible to show N'(L) = Q(logn) whenever M (L) is non-commutative.
The non-deterministic upper bound for laﬁguages of the form Loa{L,...ai L
with M (L;) commutative can be obtained in a way similar to the protocol given
in the proof of Lemma 4.10: God first proposes factorization of the input w as
UgQ1Uy . . . AUk by sending, at logarithmic cost, the positions of the k bookmarks
and Alice and Bob then check the validity of this factorization by verifying, at
constant cost, that u; € L, for each 7. On the other hand, the linear lower bound
probably requires both subtle algebraic calculations and non-deterministic com-
munication complexity lower bounds that are of a different nature than the ones

for Inner Product and Disjointness. A curious corollary of this conjecture would

be that if L is regular then D(L) = ©(max{N'(L), N°(L)}).
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There are of course many questions left open in the multiparty case. We
have already mentioned open problems about the k-party communication com-
plexity of piecewise testable languages, the exact k-party complexity of B, and
U among others. All our results focus on the case where the number of play-
ers is fixed independently of the input’s length but it is of course natural to
consider the case where k is a function of n. Currently, no non-trivial bound
is known for the communication complexity of an explicit function when k is
polylogarithmic in n. Such bounds would be extremely interesting since it has
been observed [HG90] that, from the results of [Ya090, BT94], any f € ACC®
has polylogarithmic simultaneous multiparty communication complexity if the
number of players is polylogarithmic.

Finally, it is possible that the algebraic approach will also be fruitful in
the study of quantum communication complexity. This model introduced by
A. Yao [Ya093] generalizes the probabilistic model by allowing Alice and Bob to
exchange qubits. It has attracted considerable attention in the last ten years and
it is still unclear how its power differs from the classical communication models
[TS99]. It is known that Inner Product modulo 2 still has linear communication
complexity in this model [CvDNT99] and it would be interesting to translate
this to a linear lower bound for any regular language L with M (L) in DS — DO
or outside Ab using the methods developed in Section 4.2.



Chapter 5

Satisfiability of Equations over
Semigroups

Algorithmic questions concerning the resolution of equations over finitely pre-
sented groups is a central concern in combinatorial group theory. For instance,
a recent result of C. Gutiérrez shows that the problem of checking the satisfia-
bility of an equation over the free group lies in PSPACE [Gut00]. One may also
view the famous DISCRETE LOGARITHM problem as a simple group equation.
In each of these contexts, the group is, at least implicitly, given as part of the
input.

On the other hand, M. Goldmann and A. Russell studied in [GR99] the re-
lationship between the algebraic properties of a finite group and the complexity
of determining the solvability of an equation or a system of equations over that
fixed group. They showed that determining whether a system of equations over
G has a solution is NP-complete for any non-Abelian G and polynomial time
computable for any Abelian G. For the case of a single equation, however, they
could not establish a complete dichotomy: they proved on one hand the NP-
hardness of determining the solvability of an equation over a fixed non-solvable
group and, on the other hand, showed that the problem was polynomial-time
computable, and in fact computable in ACC?, for nilpotent groups. The case of

solvable, non-nilpotent groups, however, was left open. Interestingly, the upper

133
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bound for nilpotent groups is obtained by studying the complexity of determin-
ing whether a given n-input G-program outputs a specific element g of G for

some input z € {0,1}".

In this chapter, we extend this work in a number of directions: we inves-
tigate the complexity of checking the satisfiability of programs, equations and
systems of equations over monoids and, more generally, of semigroups. The re-
sults in the case of programs and single equations complete the picture sketched
by Goldmann and Russell by further uncovering the tight relationship between
these questions and the ones about the expressive power of programs and ex-
pressions over particular varieties of monoids. The case of systems of equations,
on the other hand, is tightly connected to the constraint satisfaction problems,
a well-studied framework used to analyze the complexity of a wide range of

combinatorial problems.

We can also relate our work to that of O. Klima and J. Srba about the
complexity of UNIFICATION and MATCHING in idempotent semigroups [KS00,
K1i02, Kli03a]. These problems are equivalent to testing the satisfiability of
certain equations over a free idempotent semigroup satisfying some fixed set of
identities. More recently, O. Klima has considered the problem of solving certain
systems of two equations over a fixed monoid [K1i03b] in order to understand

the complexity of checking if a monoid satisfies a given identity.

The chapter consists of two independent parts. Results of Section 5.1 concern
satisfiability problems for single equations and programs over monoids. They
were, for the most part, published in [BMM*00] and obtained in collaboration
with D. Barrington, P. McKenzie, C. Moore and D. Thérien. The results of
Section 5.2 concern systems of equations over monoids and semigroups and
arose from further work with C. Moore and D. Thérien [MTT01] and subsequent
collaboration with Ondfej Klima [KTT03]. T am particularly indebted to Ondiej

for Lemma 5.26.
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5.1 Single Equations and Programs

5.1.1 Introduction

Formally, an equation over a finite monoid M is given as:
CoXiocl Ce Cn—lXin = doondl e dm_1Xﬁm

where ¢;,d; € M are constants and the X;’s are variables, not necessarily dis-
tinct. The EQUATION SATISFIABILITY problem for M (which we will denote by
EQN,,) is to determine whether a given M-equation has a solution i. e. to deter-
mine whether one can assign values in M to the variables such that the equation
is satisfied. Similarly the TARGET-EQUATION SATISFIABILITY problem for M
(denoted T-EQN,,) is the special case of EQN,, where the right-hand side of
the equation is free of variables and thus consists of a single constant which
we call the target (we will refer to these as equations with targets). Clearly,
T-EQN,, and EQN,, are equivalent problems when M is a group.

We will be considering M-programs over a binary input alphabet. In this
case, we write instructions in our programs as (i,mg,m;) with ¢ € [n] and
mg, my € M. Such an instruction queries input bit z; and outputs m,,. An
instance of the PROGRAM SATISFIABILITY problem for M (denoted P-SATy)

consists of an n-input M-program

¢ = (7;1’ fl)(i% f2) s (7;57 fs)
and a target element m € M. The problem is to determine whether there exists

some z € {0,1}" such that ¢(x) = m. Note that this is always at least as hard

as determining the satisfiability of an equation with target.
Lemma 5.1 For any M, we have
T-EQN,;; <p P-SATy,

and

EQN,, <" P-SAT s«
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Proof. Suppose the equation c¢pXjc;...X; ¢, = s has t variables. It can
be satisfied if and only if the following M-program over the ¢ - |M| variables
Y1,..., Y m can reach the target s: we replace every constant ¢; by the in-
struction (Y7, ¢;, ¢;) and each occurrence of the variable X; by a sequence of |M]|

instructions querying variables Y., ..., /klMl of the form

(}/1917 1M7m1)(Y/€2a 1Mam2) s <YI€|M|a 1M777FL|M|)

where my, ..., myyy are the |M| elements of M. Note that for any m € M,
there is an assignment of the Y,’s such that this sequence of |M| instructions
evaluates to m.

A similar construction allows the encoding of a system of two target-equa-

tions
{ coXi €. . Xj € =5
dolecl . ijCp =1

as a program over M x M. The first half of the program encodes the first
equation as in the above paragraph by using only the first copy of M: constants
c; are now replaced by (Y1, (¢;, 1), (¢;, 1ar)) and variables become blocks of

instructions of the form

(Yk17 (1M7 1M); (ml, 1M)) e (YkIMl’ (1M; 1M)7 (m|M|, ]-M))

Similarly the second half of the program uses the second copy of M. The
crucial observation however is that if a variable X occurs in both equations
then for any setting of the variables Y, the program segments corresponding
to an occurrence of X in the first half will evaluate to (157,7n) if and only if
the segments corresponding to X in the second half evaluate to (m,1,;). The
system of equations is thus satisfiable if and only if the program can reach the
target (s,t). To explicitly complete the reduction from FQNy to P-SAT yrx s,
it suffices to note that B, = E; is satisfiable in M if and only if there is m € M

Elzm
Egzm

such that the system
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is satisfiable. 0

Despite the apparent similarity of T-EQN and P-SAT, we will see that the
converse of this lemma is not true unless P equals NP and we will try to
understand how and why T-EQN,, and P-SAT),, differ in complexity. It should
be noted that all three problems defined above lie within NP since it is easy to
check in polynomial-time, and in fact in NC', whether a particular assignment
satisfies a given equation or program.

As a start, it is useful to understand whether upper bounds for program
or equation satisfiability over a certain M can translate into upper bounds for

satisfiability problems over divisors of M or M x M.

Lemma 5.2 1. If N s a submonoid of M then P-SATy <p P-SAT,, and if
N is a morphic image of M then P-SATy <%t P-SAT,,.

2. If N is a morphic image of M then T-EQNy <% T-EQN,,.

3. For any M, N, we have

EQN,.v <% {EQN,,, EQNy}

and

T-EQN,;n <5 {T-EQN,,, T-EQN}.
Proof.

1. A program ¢ over a submonoid N of M is simply a program over M where
the output of each instruction lies in NV and so any algorithm for P-SAT,

2s an algorithm for P-SAT .

Suppose now that there is a surjective morphism ¢ : M — N. TFor a
given an n-input N-program ¢, we can obtain a (not uniquely defined)

M-program ¢' by replacing the elements of NV output by instructions of ¢
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by arbitrary pre-images of them under ¢. Thus, for each z € {0,1}", we
have ¥(¢'(z)) = ¢(z) and so there exists z with ¢(z) = ¢ if and only if for

some m € M where ¢(m) = t there exists z with ¢'(z) = m.

2. A similar argument can be used: if (M) = N, then given an N-expression
E, we can obtain an M-expression E' by replacing every constant in E by
some arbitrary pre-image. Then F =t is satisfiable if and only if there is

a pre-image m € M of ¢t such that E' = m is satisfiable.

3. This last part simply follows from the observation that an equation over
the direct product M x N is simply a pair of completely independent

equations over M and N respectively.

d

Consequently, the class Mp = {M : P-SAT), € P} is closed under division,
Mrpg = {M : T-EQN,, € P} is closed under direct product and morphic images
and Mp = {M : EQN,, € P} is closed under direct product. As we will see,
the latter two classes do not form varieties. Intuitively, Mg might not be closed
under submonoids because when we can check satisfiability of equations over the
larger monoid M no mechanism can guarantee that the variables are assigned

only values in the submonoid. This motivates the following definition:

Definition 5.3 A subset T' of M is said to be inducible if there exists an M -
expression E in k variables such that the image of E (that is {m : for some

TeMFE@Z) =m})isT.
The following is an easy observation due to [GR99]:

Lemma 5.4 If N is an inducible submonoid of M, then EQNy <p EQN,, and



5.1. SINGLE EQUATIONS AND PROGRAMS 139

On the other hand, Mp is closed under division but might not be closed
under direct product. We can certainly view a program over M x N as a pair
of programs on M and N respectively which are both satisfiable if the original
program is, but, conversely, there is no obvious way to check whether the sets of
satisfying assignments for each of them are disjoint or not. We will come back

to these issues in Subsection 5.1.4.

5.1.2 Groups

As we stated earlier, it is shown in [GR99] that T-EQN, (and thus EQN)
are NP-complete for any non-solvable group G. As an immediate corollary, we
also obtain the NP-completeness of P-SAT; for non-solvable G. The latter is
not surprising in light of Barrington’s Theorem: the satisfiability problem for
programs over a non-solvable group is equivalent to the satisfiability problem
for NC! circuits, which is NP-complete. In fact, the problem is already NP-
complete for depth two AC%-circuits (by Cook’s Theorem). Similarly, other
results about the complexity of P-SAT for restricted classes of monoids can be
interpreted as results about the complexity of checking satisfiability for circuits
of a corresponding class.

Goldmann and Russell also showed that for a nilpotent group G, P-SAT¢
(and thus T-EQN,) was computable in polynomial time. Their proof is centered

around the following fact:

Proposition 5.5 [PT88] Let ¢ be an n-input program over a nilpotent group G
and g an arbitrary element of G. There exists a constant dg such that if there
exists some x € {0,1}" where ¢(z) = g then there ezists a y € {0,1}" of weight
at most dg such that ¢(y) = g.

In other words, if a P-SAT instance is satisfiable, then it can be satisfied

by one of the ¢, (dnc) = O(n’) n-bit strings of weight at most dg. Since this
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set has polynomial size a “brute force search” approach can be used to check
satisfiability in polynomial time.

This proposition also shows that a program over a nilpotent group G cannot
compute the AND of more than dg variables. We mentioned in the introduction
and in Chapter 3 that the AND-function is not believed to be computable even
by a program of sub-exponential length over any solvable group although this
conjecture has only been proved for a small subvariety of solvable groups (see

Chapter 3 and Section 4.4).

Definition 5.6 A finite group G is AND-strong if there exists a G-program of
polynomial length computing AND and is AND-weak if any G-program comput-

ing the AND of n variables requires length Q(c™) for some ¢ > 1.

From Barrington’s Theorem we know that all non-solvable groups are AND-
strong while the results of [BST90] show that the wreath product of a p-group
and an Abelian group is always AND-weak. The following shows that, similarly
to the nilpotent case, the lack of expressiveness of AND-weak groups can be

exploited to obtain good algorithms for P-SAT.

Theorem 5.7 If G is AND-weak then P-SATq is solvable in quasi-polynomial

time.

Proof. We claim that if a program in s variables over G can be satisfied, then
it can be satisfied by an assignment of weight logarithmic in the length of the
program (Recall that the weight |z|, of z € {0,1}* is the number of 1’s in z).
Suppose that this is not the case. Let w be a satisfying assignment of minimal
weight, with |w|; = k. Assume without loss of generality that the first k bits of
w are 1. By fixing Xy4q,..., X to 0, we obtain a k-input program v over G.
This program outputs s when all its input bits are 1, but since w was assumed

to have minimal weight, the output of ¢ is not s otherwise. In other words, 1) is
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computing the AND of & bits. Since G is AND-weak, we must have n > 2%*) 5o
k < O(logn). It is thus sufficient to consider only the O((O(lggn))) = O(nOlogm))

assignments of weight at most &, so'we have a quasi-polynomial time algorithm.

O

Many solvable groups, however are not known to be AND-weak, so it would
be preferable to obtain upper bounds on the complexity of P-SAT for solvable
groups independently of assumptions on their computational power but the
following theorem shows that the two questions are probably too closely tied to

allow it.

Theorem 5.8 If G' is AND-strong, then P-SATgoc, is NP-complete for the
wreath product G o Cy, for any cyclic group Cy with k > 4.

Proof. We want to build a reduction from 3-SAT. Define the function f, ,, :
Cr, — G as

_Jgo itz=0
fgo,_tn(x)—{gl if 30

Also, denote by id the function such that id(x) = 1 for all x € Cy. Consider

now the following 3-input program over G o Cy,

¢ = (1,(:d,0),(id, 1)) (2,(2d,0), (id, 1)) (3, (id, 0), (id, 1))

(17 (fgo,gu 0)’ (fgo,glv O))(lv (id> O)? (Zd7 _1))
(2, (id, 0), (id, —1)) (3, (id, 0), (id, —1))

First note that the C; component of ¢’s output will always be 0. Note also that
the middle instruction’s output is independent of the value of the bit queried.
It is also the only instruction affecting the G component of the output. This
component is a function f such that f(0) = g; if one of the input bits is on
and f(0) = go otherwise. To see this note that when we execute the middle

instruction, the product in Cj so far is not equal to zero if and only if one of



142CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

the instructions yielded a +1. Thus, ¢ is recognizing the OR of these three
variables.

Suppose the 3-SAT instance has m clauses. By assumption there is a G-
program of length m® that computes the AND of m variables. If we replace
every instruction (4, gg, ¢1) by a program over G o C) as above, we obtain a
program of length 7-m¢® which is satisfiable if and only if the 3-SAT instance is
satisfiable. d

The wreath product of two solvable group is itself solvable and the proof
of Theorem 5.7 can be used to show that super-polynomial lower bounds on
the length of programs recognizing the AND over a group G translate into sub-
exponential upper bounds on the time complexity of P-SAT. Thus, assuming
that no sub-exponential time algorithm can solve an NP-hard problem, there
exists an AND-strong solvable group if and only if there exists a solvable group
for which P-SAT is NP-complete.

By Lemma 5.1 we now have upper bounds for T-EQN, for AND-weak G’s
but it is not known whether the hardness result on P-SAT go¢, for AND-strong
G’s can translate into hardness for, say, T-EQN,¢, . On the other hand, if all

solvable groups are AND-weak, as we conjecture, then this is unimportant.

5.1.3 Aperiodic Monoids

In light of the group case, one might hope to prove a converse to Lemma 5.1
and show equation satisfiability and program satisfiability to be polynomially
equivalent but we show in this section that there exist aperiodic monoids M such
that P-SAT,, is NP-complete but EQN,, is in P. Furthermore, we characterize
the class of aperiodics for which P-SAT is NP-complete.

Lemma 5.9 For any monoid M in DA, P-SAT ), T-EQN,, and EQN,, all lie
in P (in fact in AC°).
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Proof. By Lemma 5.1, it suffices to prove the upper bound for P-SAT. Let
¢ be an n-input M-program of length [ and F' C M be a target set. The set
{w:w € M* and evalp(w) = m € F} can be expressed as the finite disjoint
union of unambiguous Afa; A} ... ap A} with a; € M and A; C M.

Hence it is sufficient to consider the at most (fc) k-tuples of instructions of
¢ that could be held responsible for the presence of the subword aas...ax in
¢(x). For each of them, we need to check if there is an assignment such that
the output of the program belongs to Aja1 A} ... arA; and that can clearly be
done in linear time.

In fact, this brute force approach can easily be implemented in AC? since the

evaluation of the product of n elements in an aperiodic monoid is computable

in AC® [BTSS]. O

If we turn our attention to aperiodics outside of DA, the first examples to

consider are of course U and B,.
Lemma 5.10 T-EQNpg, is NP-complete.

Proof. We use a reduction from 1-3SAT. Each variable v; in the 1-3SAT
instance is represented by two variables v and v] representing v; and its com-
plement in the equation. We build the following equation with target ab. First,
we concatenate, for each ¢ the segments abv; v bv; v b and for each clause e.g.
(vi, U7, vg) we concatenate abv; vy v b.

It is easy to see that the first half of the equation forces us to choose one of

Y

R 4
T )

v as 1 and the other as a. If we now interpret a as TRUE and 1 as FALSE,
the equation is satisfiable if and only if we can choose assignments to the v;
such that in every segment e.g. abu; 'uj“v,jb exactly one of the variables is set to

a. [l

Thus, P-SATp, is also NP-complete. Furthermore:

Lemma 5.11 P-SATy is NP-complete.
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Proof. We essentially use the universality of U discussed in Chapter 3. We have
already seen that the program ¢; = (i1,b, ba)(iz, 1,a)(i3,1,a) . .. (ig, ba, a) (over
U) outputs ba if one of the X;;’s is set to 1 and 0 otherwise. By concatenating
such ¢;’s we get a program whose output is ba if all ¢,’s have one of their input
variables set to 1 and O otherwise. So we can simulate a CNF formula and

obtain a reduction from SAT. O

Using Lemma 5.2, we thus obtain the following dichotomy:

Theorem 5.12 If M is aperiodic then P-SAT; lies in P if M is in DA and

18 NP-complete otherwise.

It is tempting in light of Lemma 5.10 to conjecture that the same dichotomy
also holds for equation and target-equation satisfiability. This is however not

the case:
Theorem 5.13 EQN;; and T-EQN,, can be decided in polynomial time.

Proof. We first provide a polynomial time algorithm for T-EQN,, and crucially
use the fact that, in U, aza = a whenever z # 0. Intuitively, we use the fact
that a’s are our friends. In particular, we have that if zyz = a then zaz = a.

We will show that for any target, if the equation is satisfiable then it can
be satisfied by an assignment with a very precise structure. We are given the
expression E : ¢y X; ¢ ... X, ¢, and a target m.

If m = 0, the equation is trivially satisfiable by setting any variable to 0,
and if m = 1, it is satisfiable if and only if all the ¢;’s are 1. Since the equation
is 0 if any of the ¢; is 0, we will assume that the constants are non-zero.

If m = a, then F is satisfiable if and only if it is satisfied when all the
variables are set to a, namely when we have both ¢y € {1,a,ab} and ¢, €
{1,a,ba}.

If m = ba, and E can be satisfied, then it can be satisfied by one of the

O(n) assignments of the following form: all the variables occurring before some
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point j in the equation (which might be a constant or a variable) are set to
1, the variable at point j is set to ba and the other variables are set to a. To
see this, consider any satisfying assignment to E. If the first b in the induced
string comes from a constant, then all the variables occurring before it must
have been set to 1. Moreover, all we have to insure now is that there are no
consecutive 0’s in the suffix. So we can set all the variables that haven’t yet
occurred to a without affecting the target. If the first b occurs in a variable,
the same reasoning shows that we can set this variable to ba and the variables
not yet considered to a. So it is sufficient to check a linear number of possible
assignments to decide satisfiability. The case m = ab is handled in a similar,
symmetrical way.

Finally if m = b, it suffices to consider the following O(n?) assignments:
variables occurring before some j or after some & are set to the identity, the
variable at point j is set to ba or b, the one at point & to ab or b, and all remaining
variables are set to a. Again, if we now consider any satisfying assignment and
call 7 and £ the first and last occurrence of b in the induced word over M*,
then we know that all variables occurring before j or after k were set to 1. The
variable or constant at point j must be b or ba, the one at point k£ being b or ab
so we still have a satisfying assignment if we set the rest of the variables to a.

The algorithm can easily be adapted to handle equations with variables on

both sides. O

Since B, belongs to the variety generated by U this shows that neither
Mg nor Mrg form varieties. This also shows that B is not inducible! as
a submonoid of U x U. In [GR99], the notion of inducibility was needed to
complete the NP-completeness proof of T-EQN, in the case of non-solvable

groups G and our result gives indication that this was a necessary evil.

!Strictly speaking, this is under the hypothesis that P is not NP, although this can probably
be proved directly.
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5.1.4 A Look at the General Case

Getting necessary and sufficient conditions for the tractability of program and
equation satisfiability already seems difficult, if not impossible, in the basic cases
of groups and aperiodics. In this subsection we prove some partial results for
monoids in general and try to further understand what differentiates program
satisfiability and equation satisfiability.

We start with an easy generalization of the hardness results for non-solvable

groups.

Theorem 5.14 If M is non-solvable then P-SAT ), EQN,,; and T-EQN,, are
all NP-complete.

Proof. The result for P-SAT is an immediate corollary of the NP-completeness
of P-SAT for non-solvable groups G and Lemma 5.2. Similarly, if G is a non-
solvable subgroup of M with idempotent e then the expression eze induces the

submonoid eMe. Any target-equation over G, say
C()Xilcl e Xincn =)

can be viewed as an equation over eMe. If it is satisfiable in eMe then a
satisfying assignment must set variables on the left-hand side to values J-above
the target g and thus H-related to e. In other words, the equation is satisfiable
over eMe if and only if it is satisfiable in G. Hence we have T-EQN, <p
T-EQN,p. <p T-EQN,; <p EQN,, and so the latter two are NP-complete. [

The proof of Lemma 5.9 used crucially the combinatorial characterization
of languages with syntactic monoids in DA and it it perhaps not too surprising

that this argument can be generalized to subclasses of DO.

Lemma 5.15 If M € DO N Gy then P-SATy,, EQN,, and T-EQN,, all lie
in P (and in fact in ACCC).
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Proof. Because of Lemma 5.1 it is again sufficient to establish the upper
bound for P-SAT),. Let ¢ be an n-input M-program of length [ and F' C M be
a target set. The set {w : w € M* and evalpy(w) = m € F} can be expressed
as the finite disjoint union of unambiguous Lia, L] ... ax L} where the L; are the
intersection of some A} with A; C M and some language K; recognized by a
nilpotent group.

For the at most (,lc) k-tuples of instructions of ¢ that could be held responsi-
ble for the presence of the subword ayas . .. a; in ¢(x), we need to check if there is
an assignment such that the output of the program belongs to Lia L7 . .. a, L.
As a first step we check for each input variable z; whether setting it to 0 or 1
causes some instruction to throw us out of one of the A}’s. This process forces
an assignment on some of the variables (or possibly even proves that the target
is unreachable given this particular k-tuple) and leaves other free.

What we are left with can be thought of as a system of k£ + 1 programs over
nilpotent groups. The k-tuple chosen previously naturally defines k¥ segments
b0, @1, - .., ¢r of the program which, after our initial computation, are now n'-
input programs for some n' < n. We are searching of course for some 2’ €
{0,1}" such that for all 1 < j < k we have ¢;(z') belongs to the nilpotent
group language K;. We can reuse a trick of the proof of Lemma 5.1 to argue
that this is no harder than a program satisfiability problem over the nilpotent
group M(Ko) x M (K1) x ... x M(K}) which, by the result of [GR99] is doable

in polynomial time. 0

Indications of hardness for P-SAT;; when M lies outside DO N G,; are
scarce. Just as we have shown NP-completeness for non-solvable M’s, we can

extend our results about aperiodics easily to show:
Lemma 5.16 If M s not in DS then P-SAT,, is NP-complete.

We are however unable so far to provide any indication of hardness for either

P-SATj; or EQN,, when M is in DS — DO.
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P is closed? || Direct products | Factors | Subs
MreNG YES YES 7
MrgnNA YES YES NO

Mg YES YES NO
MpnNG 7 YES | YES
MpNA YES YES | YES

Mp ? YES | YES

Table 5.1: Closure properties of Myg and Mp.

Our results so far have also indicated that beyond their apparent sim-
ilarities, the tasks of checking satisfiability for programs and for equations
present different computational challenges. In particular, Table 5.1 sums up
the known closure properties of the classes Myp = {M : T-EQN,, € P} and
Mp = {M : P-SAT), € P} and they are quite different. It should be noted
that although Mp N A is known to be closed under direct products we have no

direct proof of this fact.

5.1.5 Open Problems

Our results establish a close connection between the algebraic properties of a
finite monoid M, its power as a language recognizer and the complexity of re-
solving equations or programs over M. Many questions remain open, however,
the most important of which is the complexity of P-SAT in the case of solvable
but not nilpotent groups. Of course, we have tied the full resolution of this
question to lower bounds for CCO circuits but progress on this problem can be
made in other ways. For instance, we cannot rule out that there exists a better
way to use the hypothesis that a group is AND-weak in order to surpass our
quasi-polynomial time upper bound P-SAT;. We conjecture that this is not
possible. Certainly, any indication that P-SAT¢ is not in P for non-nilpotent
AND-weak groups would be of great interest. Note that our current algorithm

puts, for instance, P-SATg, in the complexity class N Pliog®n] of problems which
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can be decided by a polynomial time non-deterministic Turing machine that is
using only O(log®n) bits of non-determinism (see e.g. [DF97, GLM96]). Per-
haps, P-SATg, can actually be shown complete for this class or at least hard for

some smaller class of bounded non-determinism.

Another outstanding problem is the complexity of P-SAT,; when M is in
DS—-DO. We believe that the problem is NP-complete also in this case. In light
of our proof that monoids in DS — DO are universal (Lemma 3.13), this would
follow from the NP-completeness of determining if, given a CNF formula, there
exists a truth assignment to the variables which satisfies 0 modulo p clauses
in the formula. To the best of our knowledge, no hardness result is known for
this problem. Obtaining indication that P-SAT), is tractable if and only if M
lies in DO N Gy would provide an interesting parallel with our communication

complexity results.

We chose to study the satisfiability of programs. It would be reasonable
to also study the equivalent of P-SAT for k-programs. The results would be
radically different in the case of aperiodics since it is easy to prove this problem
is NP-complete for any aperiodic if £ > 2. On the other hand, our upper bounds
for nilpotent groups still hold and if a group is AND-strong then the problem
is NP-complete for k£ > 3.

Finally, one can study the complexity of counting the number of solutions
for a program-equation. This was briefly discussed in [BMM100], where it is
established that the problem #P-SAT is in #L for monoids in DA but #P-
complete for non-solvable monoids and for U and B A, in simple correspondence
with the results presented above. In particular, it seems challenging to find an
efficient way of counting the number of assignments satisfying a certain program
over a nilpotent group G': our current algorithm for P-SAT seems to lack the

finesse presumably needed for the counting task.
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5.2 Systems of Equations

We now turn to the study of systems of equations over a given semigroup. The
SYSTEMS OF EQUATIONS SATISFIABILITY problem over a semigroup S (abbre-
viated as EQNY) is that of determining whether a given set of equations over
S can be simultaneously satisfied. We will also study the restriction T-EQN%
of EQNY in which the right-hand side of each equation in the system is a con-
stant. For finite groups, the problems are obviously equivalent: they lie in P
for Abelian groups and are NP-complete otherwise [GR99].

Recall from Section 5.1 that T C S is inducible if there exists an expression
E over S such that the range of E is exactly T'. Similar to Lemma 5.4, one can

show

Lemma 5.17 If T is an inducible subsemigroup S then EQN} < EQNY and
T-EQN; < T-EQN7%.

We will show that for any finite monoid M both EQNj}, and T-EQN3}, are
either in P or NP-complete depending on whether M belongs to J, V Ab or
not in the general case and depending on whether M belongs to RB VvV Ab or
not in the case of target-equations. We prove a similar dichotomy for T-EQN7
when S is a regular semigroup and prove a number of sufficient conditions on
a semigroup S for the NP-completeness of T-EQN% and EQN%. We begin by
pointing out a very interesting connection between these problems and so called

constraint satisfaction problems.

5.2.1 Constraint Satisfaction Problems

Let D be a finite domain and I" be a finite set of relations on D. To each pair
D, T corresponds a CONSTRAINT SATISFACTION PROBLEM (CSP). An instance
of CSP(T') is a list of constraints, i.e. of pairs R;(S;) where R; € T is a k-ary

relation and S, the scope of It;, is an ordered list of of k-variables (with possible
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repetitions) and we want to determine whether the variables can be assigned
values in D such that each constraint is satisfied. As an example, the problem
EQNY% can be seen as a CSP problem in which the domain is the semigroup S
and I' is the set of constraints definable as equations over S.

This class of combinatorial decision problems has received a lot of attention
because of the wide variety of problems which it encompasses and because con-
straint satisfaction problems arise so naturally in artificial intelligence. CSP lies
in NP and is easily seen to be NP-complete in general so one seeks to identify
tractable restrictions of the problem. One might choose, for instance, to impose
certain conditions on the structure of constraints appearing in a given instance.
A lot of research has also dealt with identifying necessary and sufficient con-
ditions on I' to have CSP(T") tractable over a given domain D. This approach
was pioneered by T. Schaefer [Sch78] who studied the CSP problem on Boolean
domains. In this case, the problem is usually known as GENERALIZED SATISFI-
ABILITY and Schaefer proved that this problem was NP-complete unless it was
one of six tractable special cases: 2-SAT, 0-valid SAT, 1-valid SAT, affine-SAT,
Horn-SAT and anti-Horn SAT. Affine-SAT is the case where each relation is the
solution set of a system of equations over the cyclic group C,. The only other
2-clement monoid is U; of course and, interestingly, we can relate the last two

of Schaefer’s tractable cases to systems of equations over Uj.

Lemma 5.18 A boolean relation is Horn or anti-Horn, i.e. expressible as tuples
satisfying a congunction of disjuncts containing each at most one un-negated
(resp. negated) variable, if and only if it is the set of solutions of a system of

equations over Uj.

Proof. Identify the element 1 of U; with TRUE and 0 with FALSE. Then the
Horn clause X; A Xy A ... X, — Y is satisfied when one of the X,’s is FALSE or

when all X;’s and Y are TRUE. These are exactly the tuples which satisfy the
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equation

XIXQXnZXanY

over U.
Conversely, the equation X, ... X, = Y;...Y,, corresponds to the Horn
formula:
N XA AX,=Y)A N\ (AL AY, = X))
1<i<m 1<i<n
If on the other hand we choose to identify 1 with FALSE and 0 with TRUE,

a similar argument shows the relationship of U; systems to anti-Horn formulas.

d

Recently, tools from universal algebra [BKJ00, Dal00], group theory and
relational database theory [F'V99] have been used to identify classes of relations
for which CSP is tractable and it is conjectured that for any domain D and any
set of relations I' the problem CSP(T') either lies in P or is NP-complete. Let us
define a k-ary operation to be any function f : D¥ — D and say that a relation

R € Dt is preserved by f if for any k t-tuples
(di,dy,....d), ..., (dY,dE, ... dF)
all lying in R, the t-tuple

(f(dy,-. di),. . f(dy, ., dp))

is also in R. The algebraic properties of the operations that preserve every
relation in I' can be studied to determine the complexity of CSP(T"). Using
this approach, A. Bulatov obtained a spectacular dichotomy theorem similar to
the one of Schaefer for domains of size three [Bul02]. It has also been shown
that if the domain is a semigroup S and I'g is the set of relations preserved by
the multiplication in S then CSP(I'g) is tractable if S is a block group and is
NP-complete otherwise [BJV02].
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Although our work is a priori incomparable to the results just cited, the
mechanics of some of our upper bounds can be rephrased in the universal algebra

terminology. We will also use a powerful result of [FV99]:

Theorem 5.19 If G is a group and T is a set of relations such that for each
R €T of arity k the k-tuples in R form a coset of G*, then over the domain G

CSP(T') can be solved in polynomial time.

5.2.2 Tractable Cases

We begin by presenting some polynomial time algorithms to test the satisfiabil-
ity of systems of equations over simple classes of monoids and semigroups. We
are faced with an inconvenient obstacle: if M and N are monoids such that M
divides N we do not know how to infer upper bounds for EQN7}, from upper
bounds for EQN7},. In fact, as we will see later on, solving equations over certain
semigroups might be easier than solving equations over some of their divisors.
As usual, we will first separately treat the group case and the aperiodic case

before combining them to get upper bounds in the general case. We first recall:

Lemma 5.20 ([GR99)]) IfG is Abelian, then T-EQNY, and EQNY, are solvable

in polynomaal time.

Remark 5.20. The proof of Goldmann and Russell uses simple Gaussian
elimination techniques, but this lemma can also be obtained as a corollary
to Theorem 5.19. Indeed, it can be shown that a subset T of a group G is

a coset if and only if uv™'w lies in T for all v, v, w € T. If an equation over

a commutative group z;, ...z;, = ¢ has solutions (uy, ..., u,), (v1,...,v,)
and (wy, ..., w,) then

- -1 _ -1 -1

U;il'l}il Wiy ...UiS’UZ-s Wi, = Uy ...’U,Z'S'Uis ..UZl Wi, (U
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and so the solutions form a coset of G™. In fact, this is true even of more
complicated relations: if H is a subgroup of G and ¢ ... ¢, are morphisms
from G into H, then the relation defined by ¢1(z;,) ... ¢s(z;,) = h also
forms a coset in G™. This observation will be important in two of our

algorithms.
Next, we consider systems over idempotent and commutative semigroups.

Lemma 5.21 If S is an idempotent and commutative semigroup then EQN%

lies in P.

Proof. Such semigroups are J-trivial and the J-ordering defines a semilattice

on S. Our algorithm will rely on the following observation: if (uy,...,u,)
and (vy,...,v,) are solutions to a system of equations £ in n variables over S,
then (ujv1,...,unv,) is also a solution to £. Indeed, using idempotency and

commutativity, any equation in £ can be rewritten as
CXiy .« . Ty, = dTj, ... T,

whence we can conclude cu;, ... u; = duj ... uj and cv; ...v;, = dvj, ... vj,.

Using idempotency and commutativity again, we thus get
CUsy Uiy v Uy Uy, = AUy, Uy - o U, V5,

Note that (uivi,...,u,v,) is the meet of (uy,...,u,) and (vy,...,v,) in the
semilattice S™.

Our algorithm maintains a lower bound ¥ = (Y1, ..., Yyn) for the minimal
solution to £. We initialize Y as (0, ..., 0) and update it as follows. In each step,
if (y1,...,yn) is a solution to &, the algorithm halts. If not, there must be some

equation® in &, say cz;, ...z, = dzj, ...xj, such that cy;, .. iy 7AYo Y-

2Technically, since S is not necessarily a monoid, we cannot assume that constants ¢ and
d appear in this equation. This is however unimportant in our argumentation.
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Since we are maintaining Y as a lower bound to any assignment satisfying &,
we know that, for any satisfying assignment, the right-hand side product is
bounded below by dy;, ...y;,. Thus, if there is some y;, occurring on the left-
hand side which is not J-above dy;, ...y,, then we can update our lower bound
by setting y;, := i, V (dyj, ... y;,), 1.e. the J-minimal element of S lying above
both y;, and the right-hand side product®. We do similar updates on variables
occurring on the left-hand side which do not lie J-above the current product
on the right-hand side.

We iterate this until we reach a fixed point for Y. The process terminates
in at most n - |S| steps since the value of Y always increases in the semilattice
S™. If the fixed point is not a solution to the system, then we conclude that £ is
unsatisfiable for in this case we must have an equation such that cy;, ...y, = ¢
and dy;, ...y; = d but ¢ # d. Obviously no solution to £ can then exist above

Y so & has no solution. O

In fact, this algorithm can be viewed as an instance of a classical result from
the CSP literature [JCGI7] showing the tractability of CSP when the relations
are preserved by an associative, commutative and idempotent operation. As we
noted in the first paragraph of our proof, the multiplication in S preserves the
relations defined as equations over S.

Next, we look at upper bounds for the resolution of systems of target-
equations. This restriction allow some more leeway and we will give an al-
gorithm to solve T-EQNYg over a regular band (i.e. an idempotent semigroup

satisfying the identity abaca = abca) and use the following technical result:

Lemma 5.22 Let S be a reqular band and supposexy ...z = s andy, ...y, = s
for some z;,y;,s € S. For all shuffles K of zy ...z with y, ...y, we have

K =s.

3If no such element exists, we conclude that the system is unsatisfiable.
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Proof. In any idempotent semigroup, the product of two elements J-above
some u € S is also J-above u. Hence we have K > s since each z;, y; lies J-
above s. On the other hand, since all z;’s appear in K, we can use the relation
abaca = abca to get KsK = K1+ 23K = K? = K. Thus, s >; K and so
s J K. Furthermore, every prefix of zy ...z is R-above s and so z1...2;5 = s
for all 7 < k.

We claim that K >% s. Indeed, we have Ks = Kszy...z4y;...y. Using
again the relation abaca = abca, we can replace the occurrence of z; in K on
the right-hand side of this equation with the prefix z; ...z; since all the z; with
J < i appear both before and after x;. Hence K's can be written as a product
of prefixes of 1 ---2; or y; ...y, times s. Thus Ks = s and K >3 s.

By a symmetric argument, K >, s. Since s J K, we have s H K and s = K
by aperiodicity. O

We can now prove:
Lemma 5.23 If S is a regular band then T-EQNY lies in P.

Proof. Our algorithm works by shrinking a list of possible values for each
variable and implicitly uses the fact that the relations defined by equations over
S are closed under a set function [DalOVO].

For each variable z;, 1 < ¢ < n, we initialize a set A; = S of “possible values”
for x; and repeat the following until either the A; are fixed or some A; = 0: for
all ¢ from 1 to n, for each equation F involving z;, and each a; € A;, if there
exists no n-tuple (a1,...,a;,...a,) with a; € A; that satisfies E, then we set
A=A —{ai}.

If some A; is empty, the system clearly has no solution. Conversely, we are
left with sets A; such that for all ¢; € A; and all equations E in the system,
there are a; € A; for all ¢ # j such that the n-tuple (ay, ..., a,) satisfies E. We

claim that this guarantees the existence of a solution to the system.
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Indeed, let t; be the product in S of all elements of A4; = {a{”,... a""} in
some arbitrary order. Then (t1,...,t,) satisfies all equations in the system. To
see this, consider some equation F = x125...2; = s. The product t1ty. .. % is
a shuffle of solutions to this equation by definition of the A;’s, so by Lemma
5.22, the tuple (¢, ...,t,) also satisfies the equation.

It remains to show that our algorithm runs in polynomial time. It is sufficient
to show that we can efficiently test whether a given equation z; ...z, = s has
a solution @ = (ay,...,a;,...,a,) where a; is given and for each j # i we have
aj € Aj.

We will use a variant of our algorithm for EQN,, for monoids in DA since S
belongs to DA, we know that sets S, = {w € S*|evals(w) = s} are the disjoint
union of unambiguous concatenations Sgb,S} . .. 0.7 with S; C S. So to test for
the existence of an @ as above, we need only consider, for each S{b Sy ... bS],
the (’;) ways of placing the b;’s among the k variables z1, ..., 2} occurring in the
equation. To validate this choice, it now suffices to check that we have b; € A;
if we set z; = b;, and, for all other variables, that the corresponding A; contains

at least one element which belongs to the right S;’s. |

We can combine the result of Lemmas 5.20, 5.21, 5.23 to solve, in polynomial
time, equations over the direct product of a commutative band and an Abelian
group and target-equation over the direct product of a regular band and an
Abelian group. The tractability of these problems can also be shown for divisors
of such semigroups but this requires some additional work. We introduce two

definitions:

Definition 5.24 The semigroup S is a strong semilattice of Abelian groups
if there exists a semilattice E (i.e. a commutative band), a family of disjoint
Abelian groups {Gele € E} and for every e, f € E such that e > f a group
homomorphism ¢ ¢ : Ge — Gy such that:
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1. S is the union of the G,
2. ¢ee=1dg, forallee€ E;
3. foranye >z f 27 d we have ¢540 Qe f = ¢ou;

4. the multiplication in S is given by the formula
T-y= ¢mw7mwyw ([L') . (ﬁyw@wyw ('y)

Similarly, we say that the semigroup S is a strong regular band of Abelian
groups if there exists a regular band E, a family of disjoint Abelian groups
{Gele € E} and for every e, f € F such that e > f a group homomorphism
¢e,; : Ge — G satisfying the same properties.

Lemma 5.25 Let S be a semigroup. The following are equivalent:
1. S is a strong semilattice of groups;
2. S liesin Jy V Ab;
3. S is a union of Abelian groups and J = H over S.

4. S 1s a commutative union of groups.

This follows from well-known facts about unions of groups (see, e.g. [How76]).
Yet, we will sketch part of this proof because some of the mechanics involved
will be of use later on and because it is a good warm-up for the slightly more
technical proof of Lemma 5.26.

Proof.

(1 = 2) Suppose S is a strong semilattice of Abelian groups with k J-
classes. Let G =[] . G. and consider the subsemigroup T of E x G consisting
of elements (f, ge,, .-, ge,) such that g., = 1 unless e; > f. We claim that S

is @ morphic image of T'.
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Indeed, define ¢ : T'— S as

w(fagla-”)gk): H ¢8i,f(gi)'

eizgf

Obviously, v is surjective. Moreover, it is a well-defined morphism since we can

show that $(f, g1, ., g8) - O g}, g}) s

= ]I ¢er@) - I] er(oh) (5.1)

ei>gf e;>gf

= [ er9) - T denrr(gh) (5.2)
e;>qf eizgff'

= I Gerr@) - T @eorrlal) (5.3)
e;>gff e;>2gfF

= |1 ¢errlog) (5.4)
ei> s ff

= (ff, 045, 9k91) (5.5)

We have (5.2) by properties 3 and 4 of Definition 5.24 and (5.3) because
membership in T' guarantees that g; = 1 unless e; > f. For (5.4), we use that
Gy is Abelian and that the ¢’s are morphisms.

(2= 3) 1is a simple exercise.

(3=1) can be obtained as in the proof of Lemma 5.26.

(4 & 1) is part of semigroup theory folklore (see e.g. [How76]). O

Lemma 5.26 For a semigroup S, the following are equivalent:
1. 5 s a strong regular band of Abelian groups;
2. S belongs to RBV Ab.

3. S is an orthodoz union of Abelian groups such that E(S) is a reqular band

and H s a congruence;
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Proof.

(1 = 2) This is similar to the corresponding implication in the proof of
Lemma 5.25. Suppose S is a strong regular band of Abelian groups. From
every H-class we pick the idempotent e; in S and the corresponding subgroup
G;. Let G = G1 x ... X Gy be the product of all such groups. Our claim is
that S is a divisor of the semigroup E(S) x G. Let T be the subsemigroup of

S consisting of elements (e, gy, ..., gs) where g; = 1 whenever ¢; is not J-above

e. Let 1 : T"— S be defined as

'[/)<ta g1, ... 7gk) = H (bei,t(gi)'
e;> gt

It is obvious that v is surjective. Moreover, it is a well defined morphism because

we can show ¢ (f, g1,...,96) - ¥(f' 91, ., 95) 18

= [ Ser@) - I ¢eor (5.6)

ei>gf ei>gf

= I der(o) - T deisr(d) (5.7)
ei>gf eizgff!

= I esr) - [[ @err(e) (5.8)
ei>ff" ei> g ff"

= I deisrloig) (5.9)
eizgff

= Y(ff, 045, 9e01) (5.10)

(2 = 3) The direct product T of a regular band and an Abelian group certainly
has these properties. They are clearly preserved under morphic images. If S is
a subsemigroup of T', it is an orthodox union of Abelian groups such that E(S)
is a regular band. Furthermore and because 7" is a union of groups, if u Hgv in
S, then for any s € S we have usHrvs. In particular (us)(us)* *vs = vs and
since (us)? " lvs € S we get us Hvs.

(3 = 1) This is the hardest of the three implications. Let S be an orthodox

union of Abelian groups such that E(S) is a regular band and # is a congruence.
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Then for any z,y,e € S with e idempotent we have:
exeye = ex(ex)’e(ye)ye = ex(ex) (ye) ye = exye (1)

since e, (ex)¥, (ye)*¥ are elements of the regular band E(S).

For any idempotents e, f € S, let G., Gy be the maximal subgroups of
S containing e and f respectively and define for any e >, f the morphism
Pey 1 Ge — Gy as de p(z) = faf. Because of (1), ¢. s is a well-defined group
homomorphism. Clearly, ¢.. = ide, and for idempotents d > ¢ > 7 f we have

for any = € Gg:
¢e,f © ¢d,e(x) - fexef = fEfIL'fef = fxf = ¢d,f(x)'

Clearly, S is the union of the Abelian groups G,. Since H is a congruence
on S, we have zyH 2*y* and so zy = zy“zyz“y”. By (1) we get that the

multiplication in S is given by

Ty = Y sy Yy = g guye (X) - Pyo goye (Y).

These structural results allow us to prove:
Lemma 5.27 If S is a semigroup in the variety J1 V Ab then EQNY lies in P.

Proof. We know that S is a strong semilattice of Abelian groups. Let £ be
a system of equations over S in n variables. If (uy,...,u,) and (vy,...,v,) are
two solutions to &, then one can easily verify that (ufvy,...,u%v,) is also a
solution to £. If £ is satisfiable over S, then it must be also be satisfiable in
S/H = E(S) (note that # = J is a congruence over S since S is a union of
groups) and since E(S) is a semilattice, we can find in polynomial time the

J-minimal solution of this system.
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In other words, we can find in polynomial time idempotents ti,...%, such
that if £ has a solution then it has a solution (yy,...,y,) such that y¥ = ¢; for
each 1 <14 < n. We next check if such (yi,...,y,) exists.

Recall from our previous proof of Lemma 5.25 that if G = [[,., Ge and T
is the subsemigroup of E x G consisting of elements (f, ge,, ..., ge,) such that

ge; = 1 unless e; > 7 f, then S = 1(T) where

T/)(f7gl7"'agk): H ¢)€77f(gl)

ei>7f

Consider now the following constraint satisfiability problem over this group
G with variables X1, ..., X,,. First, we constrain every X; so that (¢;, X;) belongs
to T'. Next, we insure that the X; are such that setting z, = ¥(t;, X;) we get a
solution to £. It is clear that these constraints can be satisfied in G if and only
if £ has a solution.

Now observe that, as we pointed out in our remark following Lemma 5.20,
every relation of arity & used to build the above constraints forms a coset of G*.

Thus, using Theorem 5.19, we can test for the existence of such Xj. O

As in the case of EQNY, we can exploit further the ideas presented in the
algorithm of Lemma 5.23 to obtain an upper bound for a larger class with the

help of our structural result.
Lemma 5.28 If S is a semigroup in RB V Ab then T-EQNY lies in P.

Proof. We proceed exactly as in the proof of Lemma 5.27. We can adapt
Lemma 5.22 to show that if we have z;...x, = s and y; ...y, = s then for any
shuffle K of z;...2; and yy ...y we have K = s.

In particular, if £ is a system of equations over S in n variables, we can use
the algorithm of Lemma 5.23 to find idempotents t,,...%, such that if £ has a
solution then it has a solution (yi,...,yn) such that ¢ =¢; for each 1 <1 < n.

Once again, it remains to check if such (y1,...,y,) exist.
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As for Lemma 5.27, we can formulate this question as a constraint satis-
fiability problem over the product of all subgroups of S. Once more, every
relation used forms a coset in some power of G so this problem can be solved

in polynomial time. O

5.2.3 Hardness Results

Next, we obtain a number of NP-completeness results which, in some cases,
will be combined with the upper bounds presented above to provide complete
dichotomies for the complexity of EQN* and T-EQN”. Recall that in order
to establish a hardness result on the complexity of equation satisfiability for a
semigroup S, it is sufficient to prove the hardness results for inducible subsets of
S. We will make extensive use of this fact in the arguments below. In particular,
for any monoid M, the set of elements J (resp. £, R) below an element m is
inducible by the expression zymzy (resp. zym, mz,). Also, for any idempotent
e in a semigroup S, the expression exe induces the submonoid eSe and the set
of idempotents can be induced by the expression z¢. Consequently, we will
loosely use sentences such as “we restrict the variable z; to be idempotent and
J-below m” to improve the readability of our reductions.

If m is a regular element of a semigroup S. The target equation z,yxz, = m
can be satisfied if and only if y is J-above m. To stress the intended meaning of
certain equations, we will sometimes write y > 7 m in place of such an equation.

We will use reductions from the following NP-complete problems: 3saT, 1-
3SAT, NAE 3SAT, MONOTONE NAE3SAT and GRAPH k-COLORABILITY. The
NP-completeness of the first four are guaranteed by Schaefer’s Theorem. MONO-
TONE NAEJSAT is perhaps the lesser known problem in the list: it is the variant
of NAE3SAT in which no clause contains a negated literal. It is sometimes pre-
sented as the MONOCHROMATIC TRIANGLE problem [GJ79].

In the rest of this section we will systematically use M to denote a finite
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monoid and S to denote a finite semigroup in the statement of lemmas.
Lemma 5.29 If S is not in Ab then T-EQNY is NP-complete.

Proof. This is a simple corollary of the already oft-cited NP-completeness of
T-EQNg, for non-Abelian G proved in [GR99]. If G is a maximal non-Abelian
subgroup of S with idempotent e, the expression eSe induces a submonoid in
which every element is either in G or lying J-below e. So any system of target-
equations over with targets in G is satisfiable in G if and only if it is satisfiable

in eSe. O

In contrast to the group case, there are commutative aperiodic monoids for

which T-EQNj;, is already NP-complete.

Lemma 5.30 If M is aperiodic but not idempotent, then T-EQN}, is NP-

complete.

Proof. Let m # m? be a J-maximal non-idempotent element of M.
We use the following reduction from 1-3SAT: for each Boolean variable X;

in the formula, we create two variables x;, Z; for the system and create equations
(1) z,z;=m and (2) Zyxzi=m.
Moreover, for each clause of the formula, e.g. (X;V X,V X3) we add the equation
(3) 21Z223 = m.

Suppose first that the 1-3SAT formula is satisfiable. Then we can satisfy
the resulting system of equations by setting x; = m and Z; = 1 whenever X is
TRUE, and z; = 1 and Z; = m whenever X; is FALSE. It is easy to see that this
satisfies the sets of Equations (1), (2) and (3).

Conversely, suppose that this system of equations is satisfiable. Note first

that Equations (1) and (2) force z; (resp. Z;) to be both R-above and L-above
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m. So if z; (say) lies in m’s J-class, it must be R and £ equivalent and hence
‘H-equivalent to m. By aperiodicity, this implies in fact z; = m. It follows
that at least one of z; or Z; lies strictly J-above m; otherwise we would have
T; = T; = m, and since m is not idempotent this would violate Equation (1).
Moreover, since m is J-maximal among the non-idempotent elements of M,
whichever one of z;, Z; is strictly J-above m must be some idempotent e.

‘Therefore, suppose z; = e where e >7 m is idempotent. Then Equation (1)
gives us m = eZ; = ee¥; = em, and similarly (2) gives m = me. We cannot also
have Z; > 7 m, since then T; would also be idempotent, which this leads to the
contradiction m? = eZ;ZT;e = eZ;e = em = m. Thus Z; J m whence Z;Hm and
from aperiodicity Z; = m.

Similarly, if Z; >7 m then x; = m. So if we set X; to TRUE when 2, = m
and FALSE when Z; = m, Egs. (1) and (2) insure that our mapping between
Boolean variables and variables in M is consistent, in the sense that for all 1,
exactly one of z;, Z; is m and the other is an idempotent in a higher J-class.

Finally, suppose that all 3 variables in Equation (3) have idempotent values.
By a previous argument, these values fix m and so m? = ,TyT3m = T1Tom =
z1m = m, a contradiction. We get a similar contradiction if two or more of
the variables are set to m. Therefore (3) insures that exactly one literal in each

clause is true, and the 1-3sAT formula is satisfiable. O

In fact, this is a special case of the more general hardness result:

Lemma 5.31 If M is not a union of groups, then T-EQN3}, is NP-complete.

Proof. Let m be a J-maximal element satisfying m?

<7 m. Any monoid
element v with u > 7 m is H-related to u* and u**! = w.
We use the same reduction from 1-3SAT as in our previous proof: for each

literal in the formula X; and its complement X;, we add equations z;7; = m
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and Z;z; = m and for each clause we add the equation e.g.
T1ZTaT3 =M.

One can easily check that given a satisfying assignment to the formula we can
obtain a satisfying assignment tb the system of equations.

For the converse, Eqs. (1) and (2) show that if z; 7 m then in fact a; H m,
just as in Lemma 5.30. Since the H-class of m contains no idempotent, the
product of any two elements of H,, lies strictly J-below m. Egs. (1) and (2)
thus force at least one of x;, Z; to be strictly J-above m.

Suppose both x; and Z; are strictly J-above m. Then we have m = z,%; =
;2" = may and m = ma!. Moreover, z; and Z; commute by Eqs. (1) and (2),
so we get m = ma¥z¥ = m(z;%;)¥ = m*“T! <, m, a contradiction. Therefore,
at least one of x;, Z; must be H-equivalent to m while the other fixes the H-class
of m, so if we identify true literals with variables taking a value H-equivalent to
m, we obtain a consistent truth assignment, and, repeating the argument of the

previous proof, exactly one literal in each clause corresponding to Equation (3)

must be true. 0

We will see later that these hardness results do not hold in the case of

semigroups.

Lemma 5.32 If M is aperiodic and idempotent but is not commutative, then

EQN3, is NP-complete.

Proof. Let a,bin M be such that ab # ba. We can choose «a, b such that a is
a J-maximal element which is not central in M (i.e. which does not commute
with every element) and b is a J-maximal element which does not commute
with a. We now obtain a reduction from 3sAT. For each Boolean variable X;

in the formula, we create variables z;, Z;, y;, 7; and equations
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(1) zz;=a (2) Zxi=a
(3) il = b (4) Uiy =0
(5) %0 = Fizs (6) Ty = s

Also, for each 3SAT clause, e.g. X; V X, V X3, we add an equation
(7) T1Z9T3 = Q.

Given a satisfying assignment to the formula, we can construct a solution to
the above system by setting z; = a, Z; = 1, y; = b, and §; = 1 whenever X is
TRUE, and x; =1, Z; = a, y; = 1, §; = b whenever X is FALSE.

Conversely, suppose the system of equations is satisfiable. Equation (1)
shows that both z; and 7; lie J-above a. Since a and b don’t commute, a
cannot be the product of two elements commuting with b. However, any element
strictly J-above a is central so at least one of z;, #; must be J-equivalent to a.
Moreover, Egs. (1) and (2) insure that z;, Z; are both L-above and R-above a,
so if z; J a (say) we must also have 2 H a and thus z = a by aperiodicity. Thus
at least one of x;, #; must be a. Similarly at least one of y;, 7; must be b, since
any elements strictly J-above b commute with a.

If z; = a, then §; commutes with a by Eq. (5). Thus #; must be strictly
J-above b. If y; = b, then Z; commutes with b by Eq. (6), so z; is strictly
J-above a. We can thus obtain a consistent truth assignment to the literals by
setting X; to TRUE if and only z; = a and y; = b and X; to TRUE if and only
Z; =a and ¥; = b.

Since every element strictly J-above a is central but a is not, a cannot be a
product of elements J-above it. Therefore, if £1Z923 = a then one of 1, Ty, 23

must be a, so the corresponding 3sAT clause is satisfied. U

Corollary 5.33 If S is a band but is not a normal band (i.e. it does not satisfy
abca = acba) then EQNYS is NP-complete.
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Proof. We claim that S is normal if and only if it is locally J;. Indeed, if S
is normal then for any a, b, ¢ we have abaca = abacaa = acabaa = acaba and so
S is locally Jq.

Also, every band in LJ; is regular because we have
abca = abababcacaca = (aba)(aba)(abca)(aca)(aca) = abacabeabaca = abaca.
Thus if S is a band in LJ;, we have
abca = abaca = acaba = acha

which proves our claim.
Every monoid eSe is inducible so if is S is a band which is not normal, then

1t must have an inducible submonoid for which EQNY is NP-complete. l

The following matches the upper bound of Lemma 5.23:

Lemma 5.34 Let S be a band outside RB, then T-EQNY is NP-complete.

Proof. Since S is not a regular band, there are A, B,C € S be such that
ABACA # ABCA and we choose A, B, C such that ABCA is J-maximal. We
can assume without loss of generality that ABAC A is not R-related to ABC' A
for otherwise ABACA is not L-related to ABCA and we can proceed dually.

Setting a = ABA, b = AB, ¢ = CABA, we obtain ab = b, ba = a,
ca = c. Also, ac = abaca # abca = be since abaca = ABACABA is R-related
to ABACA and abca = ABCABA is R-related to ABCA.

Let a,b,c € S as above be elements such that ab = b, ba = a, ca = ¢, ac # be
and ¢ is J-maximal with the properties abaca # abca and ¢ < a,b. We claim
that for all s € S satisfying @ >7 s > ¢ we have in fact as = bs. Indeed, the
J-maximality of ¢ imposes abasa = absa. Since ab = b and ba = b this shows

that asa = bsa and so as = asas = bsas = bs.
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We can now obtain the following reduction from 3SAT to T-EQNZ. where
T is the (inducible) semigroup of elements lying J-below a. For each Boolean

literal X; in the formula, we introduce the variables z;, %;, y; and construct the

equations
(1)  cx; = (2) cxy=c
3) wa=a (4)  az;0T; = ac
(5) bx;bx; = be (6)  wyiz;ac = ac
(7) yii'ibc = bc

Moreover for any ¢ which is R-related to a we add the equations
(8) qmige = qc (9) qZiqc = qc

Note that in any solution to these equations we know from Eqgs. (1,2) that
both z; and Z; lie J-above c. Suppose that both lie strictly J-above ¢ then by
our previous remarks az; = bz; and aZ; = bZ;. But then az;az; = bx;b%; and
this contradicts Eqs. (4,5).

Suppose on the other hand that both z; and Z; are J-related to c: by
Egs. (1,2) we get z; LT; Lc. We thus have z; = z,ac Z;bc = Z; and in fact
z;yc = z; for any y >z c. Since Eq. 3 imposes y; R a we deduce from Eqgs. (8,9)
that

YiZiQC = Y5 = YiLilYsC = YsC = YTy = y;T;be.

This, however contradicts Eqs. (6,7). Hence, exactly one of x;, Z; is J-related
to ¢ and the other lies strictly J-above c.
We complete our reduction by introducing, for each of clause of the 3sAT

formula, e.g. X; V X, V X3, the pair of the equations:
(10) aziaZsaxs = ac (11)  bz1bZabzs = be

One can now verify that if the 3SAT instance is satisfiable, then we can
satisfy the system obtained through our reduction by letting z; = ¢, #; = aq,

y; = a whenever X; is TRUE, and z; = a, T; = ¢, y; = b whenever X; is FALSE.
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Conversely, suppose the system of the equations is satisfiable. Since exactly
one of z;,T; is J-related to ¢, we get a consistent truth assignment to the
literals by setting X; (resp. X;) to TRUE if and only if 2; J ¢ (resp. #; J c).
This assignment satisfies every clause of the original formula for if the variables
occurring in Eq. (11) all lie strictly J-above ¢ we have az, = bz; aZy = bZ,

and azxz = bz so that

axr1aToadrs = bﬂ?lbfgb(ﬂg

in violation of Egs. (11,12). O

Lemma 5.35 If S is a union of groups but is not orthodoz then T-EQNY is
NP-complete.

Proof. We can assume without loss of generality that S is a completely
simple unorthodox semigroup. Otherwise, we know that it contains such a
subsemigroup S’. For any s € S’, the expression z; sz, induces the subsemigroup
of elements J-below S’. Furthermore, if ¢ lies in S’ we can use target-equations
such as (tzt)* = t“ to restrict variables to values lying J-above S’ and so
NP-completeness for T-EQNY, implies NP-completeness for T-EQN’.

We consider the Rees matrix representation of the completely simple semi-
group S: suppose S has a R-classes and # L-classes. There exists a group G
and a matrix R € G**# such that elements of S can be represented as triples

(i,9,7) with g € G, 1 <i < @, 1 <4 < B and multiplication given by
(41, 91, 1) - (32, G2, J2) = (i1, 91 - Rj i - G2, J2)

We can assume that the first row and first column of R contain only the identity
of the group e.
We can recursively reorder the rows and columns in the following way: sup-

pose row k is such that Ry ; = e for every i < t. We choose the row (k + 1) as
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e e e
[ e e
¢ g
€ € e I * ES * ES
6 Rt R
e e % 7 7 7 7 9
A I S T

Figure 5.2.3: Rees matrix of S after reordering: all entries above the dotted
line are e. The *’s represent entries which cannot be e.

the one with the most number of e’s among Ry, ; with ¢ < ¢ and reorder the
columns such that all these entries appear first in the row.

Because we assumed that the class is not orthodox, there is some non-identity
entry in R so after reordering, we can, as shown in Figure 5.2.3, find indices
a,b,c with R, # e and a < ¢ and such that
-Rj=eforall 1 <j<bifandonlyifi <c;

-forall a <i<candall j >0, we have R, ; # e.

We can now obtain a reduction from 1-3SAT in the following way: for each
Boolean variable X; we create variables x;, Z; and force them to be idempotent.
We begin by adding a number of equations to constrain the z; and Z; in a helpful

way. We first impose the equations

(1) 2z = (1,e,1) (2) wi(be,a)z; = (1, Ryp, 1)

In any solution to the system, we must have z; = (1,¢, k;) and &; = (t;,¢,1)
since the first row and column of R consist of all e’s and the variables are
constrained to take on only idempotent values. Equation 1 thus further forces
Ry, = e and from Eq. 2 we have Ry, p + Roy, = R, . Similarly we require that

Ry, ; = e for all 1 < j < b by using equations of the form:

(3) =zi(j,e,1)=(1,e,1)
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We thus have insured that k; < ¢ and in fact that either k; < @ or t; < b for
otherwise Ry, ;, # e.
For a clause X; VX5V X3 we wish to add the requirement Ry, y- Ry, Ry 5 =

R, ;. This can be encoded as an equation such as:
(4) z1(b,e,a)T2(1,e,1)z3(b,e,1) = (1, Rap, 1)

If the 1-3SAT is satisfiable, then the system can be satisfied by setting z; =
(1,e,a) and Z; = (1,e,1) whenever X; is TRUE and z; = (l,¢,1) and Z; =
(b,e,1) whenever X; is FALSE.

For the converse, suppose first that R,; does not have order 2. Note that
if k; < a then Ry, = e and so R,;; = R, whereas if ¢; < b then R,;, = € so
Ry, p = Rap. Hence, we get a well-defined truth assignment by setting X; to
TRUE if Ry, 5 = Rep and R,y = e and setting X; to FALSE if Ry, , = e and
R, = R,p. For any clause in the 1-3SAT instance, say X; V X, V X3, there is
an equation of type (4) imposing Ry, s - Rqy, © Riyp = Rayp and since R, does
not have order 2, exactly one of Ry, 4, Ry 4y, Ry p i Rqp and the other two are
e so exactly one literal per clause is TRUE.

If R, does have order 2, our last argument breaks down because equations
of type (4) might be satisfied even if all three of Ry, j, Roy,, Rk, are equal to
R, ;. By appealing once again to Schaefer’s Theorem, we can assume that each
clause in the 1-3SAT instance contains at least one negated and one unnegated
literal, say X and X,. For a clause X1V X,V X3, Eq. 4 imposes X; & X, P X;.
If we can further guarantee that one of X; or X, is FALSE, we will be able to
conclude that exactly one of the three literals in the clause is TRUE. We do so

by adding the constraint Ry, ., = e using equation
(6) =12 =(le1)

which cannot be satisfied if k&; < a and ¢, < b. Thus, one of X; and X, is

assigned the value FALSE. O
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This can be used to prove the NP-completeness of T-EQNY for any S that

contains a completely simple unorthodox subsemigroup. We can also prove:

Corollary 5.36 Let S be a completely simple semigroup (i.e. a single J-class).
Then EQNY is in P if S is orthodox and has only commutative subgroups but

T-EQNY is NP-complete otherwise.

Proof. The hardness result follows directly from the previous lemma. The
upper bound stems from the observation that a completely simple orthodox
semigroup is the direct product of an Abelian group and an idempotent semi-
group satisfying zyz = zz for all z,y,2 € S. Systems over such bands are

obviously solvable in polynomial time. O

Lemma 5.37 If S is an orthodoz union of groups such that H is not a congru-

ence on S, then T-EQNY is NP-complete.

Proof. Suppose we have a,b,¢c € S such that a Hb but ac Hbc (the dual
argument can be used if we have ca # ¢b). In fact, it is easy to see that there
exists @ and an idempotent e lying J-below a such that ae H ae.

We choose @ and e as J-maximal such that ae H a“e. So for any 7 € S
with @ >7  >7 e, and any yH 2z J x, we have both yeH ze and a“yH az.
In particular, we cannot have ze = ae for otherwise, since ez H a* "'z J  we
have

a“e = o“ lze H a¥ze = ae

a contradiction. Similarly, we cannot have zae H ae.
We can further assume without loss of generality that ea” = e for otherwise

the idempotent f = (ea”)* has the property that
af RaeRa’eRa”f

and fa¥ = f.
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We build a reduction from 3SAT as follows. For each Boolean variable X, we

introduce variables z;, Z;, v; such that v; is H-related to a and add the equations:

(1) Tie = ae (2) (z;0€)* = (ae)¥
(3) V;T;0€ >R e (4)  wvaZe > ae
(5)  (viziZ)” = (ae)

Moreover, for each 3SAT clause, e.g. X; V X,V X3 we introduce a variable

w; that is H-related to a and the equation
(6) w;z1Toz5 = ae.

Given an assignment to the Boolean literals satisfying the 3sAT formula,
one can verify that this system has a solution by setting z; = ae, Z; = ¥ and
v; = a¥ whenever X; is TRUE and z; = a, Z; = ae and v; = a®~! whenever X,
is FALSE.

Conversely, suppose that there exists a solution to the constructed system.
Equations (1,2) show that z; and Z; are R-above ae while Eq. (5) forces at least
one of them to lie J-below a. If we suppose on the other hand that they are
both J-related to e then from Egs. (2,3) we have v;x; R ae R v;aZ; and thus
v;a’e R v;ae which is a contradiction since v; H a. By the remarks made above,
neither z; nor Z; must however be J-related to one of e or a. If we set X; (resp.
X;) to TRUE if and only if z;Je (resp. Z;J€), our assignment is consistent.
Furthermore Eq. (6) guarantees that every clause in the 3SAT instance contains

at least one TRUE literal for otherwise the corresponding product w;zZoz3 will

be J-related to a. O

5.2.4 Dichotomy Theorems for EQN), and T-EQN3}, over
Monoids

In the case of monoids, it is possible to combine the upper bounds and NP-

completeness results to obtain complete dichotomies for the complexity of EQN%,
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and T-EQN7},. This involves the structural results about the varieties J; V Ab
and RBV Ab.

Theorem 5.38 For any monoid M, we have EQN}, lying in P if M belongs
to J1 V Ab and EQNY}, s NP-complete otherwise.

Proof. The upper bound is Lemma 5.27. On the other hand, EQN3%, is NP-
complete if M either contains a non-Abelian subgroup (Lemma 5.29) or is not
a union of groups (Lemma 5.31). If it is a union of groups but is not orthodox,
we can appeal to Lemma 5.35. Finally, if M is an orthodox union of groups,
but E(M) fails to be J-trivial, then NP-completeness follows from Lemma 5.32
because F(M) is an inducible submonoid. Otherwise, M is an orthodox union
of Abelian groups with E(M) commutative and must thus belong to J; V Ab.
g

Similarly, our characterization of RB Vv Ab allows us to prove

Theorem 5.39 For any monoid M, we have T-EQN}, lying in P if M belongs
to RBV Ab and T-EQN}, is NP-complete otherwise.

Proof. The upper bound is Lemma 5.28. As we argued previously, T-EQN?},
is NP-complete unless it is an orthodox union of Abelian groups. If the latter
holds, however, we still have NP-completeness if E(M) does not form a regular
band (Lemma 5.34). Finally, by Lemma 5.37, we have NP-completeness unless
M is an orthodox union of Abelian groups such that E(M) is a regular band
and H forms a congruence. By Lemma 5.26, this mean that we can show NP-

completeness of T-EQNj, for any M not belonging to RB V Ab. O

5.2.5 Results and Questions in the Semigroup Case

Do similar dichotomies hold in the case of semigroups? While this is very
tempting to conjecture, one is faced with an obstacle illustrated in the following

example.
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Example 5.39. Consider the semigroup K with three generators* r, g, b,
elements {r,g,b,rr,rg,rb, gr, gg, gb,br,bg,bb,0} and such that zyz = 0 for
any z,y,2 € K. Since the product of any three elements of K is 0, any
equation over K can be assumed to have at most two variables or constants
on either side and any equation of the form z,z, = ab with a,b € {r, g,b} is

equivalent to the two equations z; = a and z4 = b.

To solve a system £ of equations over K with variables z;,...,z,, we can
proceed as follows. If there are no equations of the form z; = ¢ or z;z; = ab,
then we know that the all-0 assignment satisfies £. Otherwise, the values
of z; and z; are now forced and we can replace their occurrences in £ with
the appropriate constants. The new system thus obtained has strictly fewer
variables and we can repeat this strategy until we either obtain a satisfying
assignment for £ or obtain an obviously unsatisfiable system. This algorithm

clearly solves EQN% in polynomial time.

In contrast, consider the semigroup T with generators r, g, b, elements {r, g, ),
E,N,0} with 0 being the sole idempotent and such that the square of any
generator is F, the product of any two distinct generators is IV and any other

product is 0. One can verify that 7" is a morphic image of K.

Yet, we claim that T-EQN7. is NP-complete. We use a reduction from 3-
COLORABILITY: for every node v; in the graph G we create a variable z;
and add the equation z? = E. Furthermore, for every edge (vi,v;), we add
equation z;z; = N. If the original graph can be colored using colors Red,
Green and Blue then the system can be satisfied by setting z; = r (resp.
g,b) if and only if v; is colored Red (resp. Green, Blue). Conversely, in any
satisfying assignment to the system, each x; is assigned one of r, g or b and

no pair z;, r; with (v;,v;) € G is assigned the same generator so the graph is

4In semigroup jargon, K is the free nilpotent semigroup of threshold 3 over three genera-
tors.
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3-colorable.

In light of this example, the class of semigroups S for which EQN} (or
T-EQNY) lies in P does not form a variety (unless P = NP). We therefore
choose, as a first step, to restrict our attention to the complexity of solving
systems over regular semigroups where, empirically, such phenomena do not
seem to occur. Note also that K is an example of a semigroup which is not a
union of groups but for which EQN7, is tractable, in sharp contrast of Lemma

5.31 in the case of monoids.

Lemma 5.40 Let S be a regular semigroup consisting of

o a J-mazimal J-class B with at least two R-classes and with exzactly one

idempotent per L- and R-class;
o J-classes below B are all subgroups.

Then T-EQNY is NP-complete.

Proof. We know that B is a square J-class containing exactly one idempo-
tent per R-class and per L-class. Therefore the product of any two distinct
idempotents of B does not lie in B.

Let H be a J-maximal H-class such that xy € H for some idempotents
t,y € B. Let Ey = {z :2® = z,2 € B,xy € H for some y € B} and let ey be
the unique idempotent of H. Note that if z is an idempotent of B which is not
in Fy then neither xz nor zz lie in H for any idempotent € B. Also, for any
distinct z,y € Ey, we have both zy and yz lying in H. Indeed, we must have
exgr and yey lying in H so zy must lie J-below B but J-above H so zy lies in
H.

Suppose first that |Eg| = 2, i.e. Eg = {a,b}. We build a reduction from

MONOTONE NAE3SAT as follows: for each variable X; in the formula, we create
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the variables z;, Z;, force them to be idempotents in B and add the equation
(1) (.’Ez.’lw?l)w = €§H.

Moreover, for any clause X; V X3 V X3 we add the two equations

(2) (231.’L‘2.’173)w =€y (3) (fljgfg)w =€y

One can easily verify that if we are given an assignment to the X; satisfying
the MONOTONE NAE3SAT instance, we can obtain a solution to the system by
letting z; = a, £ = b if X; is TRUE and z; = b, & = a if X, is FALSE otherwise.

Conversely, consider any solution to this system of equations. Equation 1
insures that z; and z; take on distinct values in Ey. In other words, we are
guaranteed that {z;,Z;} = {a,b}. If we set X; to TRUE if and only if z; = a we
get from Eq. (2) that not all three literals in a clause are TRUE (for we would
then have 12923 = a) and similarly from Eq. (3), not all literals are FALSE.

Suppose now that |Ey| = k > 3. Using similar ideas, we can now obtain
a reduction from k-COLORABILITY which is NP-complete for k& > 3. For each
vertex v; in the graph, we create the variable z;, force it to be an idempotent

in B and for all edges e.g. (v1,v2) in the graph, add the equation
(4) (z122)" =eq

Given a valid k-coloring of the graph, we obtain a solution to the system
by identifying the k different colors with the & idempotents of Ej;. Conversely,
given a solution to the system, we color vertex v; with the value z;. We can
assume that no vertex in the graph is isolated so that every variable z; is involved
in some equation of the form (z;2;)¥ = ey and therefore lies in Ey;. For two
adjacent v;, v; the corresponding values z;, z; must be distinct for otherwise we
get 7;2; = x; # ey in violation of Eq. (4). We therefore have a valid k-coloring

of the graph. O
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Figure 5.1: Idempotents in B: the *’s (resp. —’s) mark H-classes which contain
(resp. do not contain) an idempotent.

Whereas this will allow us to handle the case where the regular semigroup S
is inverse but not a union of groups, the next lemma will cover the case where

S is not a union of groups and not inverse.

Lemma 5.41 If S is a regular 0-simple semigroup but is not a union of groups,

then T-EQNY is NP-complete.

Proof. We can assume from the previous Lemma that S is not inverse. So
the non-minimal J-class, B has at least one R-class (or £-class) containing two
idempotents. Our reduction will naturally exploit the location of idempotents
in B. We represent this in Figure 5.1 as follows: the s R-classes and ¢ £-classes
can be represented in an s by t table where each cell is labeled with a x if the
corresponding H-class contains an idempotent and labeled with — otherwise.

We further reorder the rows and column of this table such that the first row
contains a maximal number of * (say & of them) and the first & cells in this row
are labeled with #’s. The first n rows are then those equal to row 1, if any and
we say that these form row-block 1. Next, we choose the (n+1)*" row such that
it has a maximal number m < k of *’s occurring in its first & cells and reorder
the columns such that these m cells occur first. Row-block 2 consists of all rows
with *’s in their first m cells.

We now reduce from MONOTONE NAE 3SAT. For each literal X; we create

variables z;, Z; and force them to be idempotent. We also impose for all 1 <
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j < m the conditions
(1) a;T; € B (2) ajji € B

where a; is the idempotent in the H-class corresponding to the ;% cell of row
1. As we already observed, the constraint z € B can be imposed by the target-
equation ujzus = b where b is any element of B. Note that these restrictions
ensure that in any solution to the system, both variables z; and #; belong to
one of the two row-blocks. Indeed, if the p' cell (with p < m) in the row of
z; is labeled with —, we have apz; = 0 since Ry, N L,, does not contain an
idempotent.

Similarly, we use equations to impose
(3) r;a1 € J (4) Tiaq € J.

This forces z;, Z; to lie in H-classes of B sitting in the first £ columns.

Because k > 2, we can find a, b in row-block 1 and ¢, d in row-block 2 (also
shown in Figure 5.1) such that a,b,c¢ are idempotent with ad = b, ba = c,
ac = ba = a and cd = db = cb = d but H; contains no idempotent. Notice that
for any element u of the first £ cells in row-blocks 1 or 2, we have (aua)* = a
because both R,NL, and £,NR, contain an idempotent. Similarly, the product
of any number of idempotents lying in the first & cells of a same row-block also
belong to this row-block.

We introduce the equation

By our last remarks, this is not satisfied if both z;, Z; are taken in the same row-
block for (az;Z;z;a)” then equals a. It is satisfied however if {z;,7;} = {b,c}.

Finally, for every clause X; V X5 V X3 we add equations

(6) (azizaz30)” =0 (7) (aZ1Z2%30)" = 0.
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Now, given an assignment to the X; satisfying the MONOTONE NAE3SAT in-
stance we can set z; = b and Z; = ¢ when X; is TRUE and z; = cand Z; = b
when X; is FALSE and easily verify that this constitutes a solution to the system
constructed. Suppose conversely that we are given a solution to the system. All
the z;, Z; are idempotents in the first & cells of row-blocks 1 and 2 and if we set
the literal X; (resp. X;) to TRUE whenever z; (resp. Z;) belongs to row-block 1
and to FALSE when z; (resp. Z;) lies in row-block 2 we obtain a consistent truth
assignment because of Eq. (5). Because Eqs. (6) and (7) are also satisfied it
must be that for each clause X; V Xy V X3 the variables 21, 25, 23 do not all lie in
the same row-block. Similarly 1, T, Z3 do not all lie in the same row-block and
so our assignment to the literals satisfies the MONOTONE NAE3SAT instance.
O

The reductions presented in the last two lemmas can be slightly generalized

to obtain:

Lemma 5.42 If S is regular, then T-EQNYG is NP-complete unless S is an

orthodox union of Abelian groups.

Proof. If S is a union of groups but is not orthodox then T-EQNY is NP-
complete from Lemma 5.31. If S is regular but is not a union of groups, there
exists some J-minimal J-class B that is not a union of groups and it suffices to
show the NP-completeness of T-EQNZ. where T is the subsemigroup of elements
lying J-below this class. We distinguish two cases.

If B contains exactly one idempotent per R- and L-class and all J-classes
strictly below B are subgroups, we can use Lemma 5.40. Otherwise, the re-
duction in that proof must be slightly refined: we can still find a J-maximal
J-class H such that there are two distinct idempotents in B with zy € H. We
can define Ey as before and still obtain that for any z,y € Fy both zy and

yz lie in H. If ey is an idempotent in H, however, we cannot assume that
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(ry)* = ey in this case. Still, it is easy to show that two idempotents z,y
in B, belong to Ey and are distinct if and only if, for all z € Ey, we have
(zxyz)* = zegz. We can thus salvage our reduction, by replacing Eqgs. (1,2,3)
by |Eg| different equations which will impose these constraints.

If B contains at least two idempotents in, say, some R-class, we can reuse
the reduction of Lemma 5.41. Now, we cannot anymore use the equation

(ax;Z;z;a)” = 0. Note however, that we can replace it by

W

(az;ZT;0)" (aZ;x;0)* = d*.

Indeed, this is still unsatisfied if both variables are taken from the same row
block but is satisfied when {z;,z;} = {b,c}. Similarly, we can replace the

equations
(6) (ax1moz30)” =0 (7) (aZ1Z2T30)” = 0.
by the equations
(6) (awizea)?(az2z10)” (azi230)" (az3210)” (az2T30)” (aT3T20)* = d*
and

(7) (aa‘clxga)“’(aigila)“(afliga)w(afgi‘la)“(aigfga)“(afﬁga‘:ga)“’ =d".

Theorem 5.43 For any regular semigroup S, we have T-EQNY lying in P if S
belongs to RB V Ab and T-EQNY is NP-complete otherwise.

Proof. The proof is almost identical to the one of Theorem 5.39 for we have
established that the NP-completeness of T-EQNY% when S is regular but not a

union of groups. ]
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We are so far unable to provide an equivalent dichotomy theorem in the case
of EQNYg for regular semigroups. We define a strong normal band of Abelian
groups to be a strong regular band of Abelian groups in which the idempotents

form a normal band. We have established:

Lemma 5.44 If S is regular but is not a strong normal band of Abelian groups

then EQNY is NP-complete.

Proof. This is a slight refinement of half of Lemma 5.43: if S is not a strong
regular band of Abelian groups then T-EQNY is NP-complete. If it is, then
E(S) is not a normal band and we get NP-completeness from Corollary 5.33. O

In fact we conjecture:

Conjecture 5.45 Let S be a regular semigroup. Then EQNY is tractable if S

is a strong normal band of Abelian groups and EQNY is NP-complete otherwise.

It seems that the only piece missing to complete this puzzle is a polynomial
time algorithm to solve EQNY for normal bands S because we can reasonably
expect to extend such an algorithm to any strong normal band of Abelian group.
It is quite easy to obtain an algorithm in the very special case where S is a free
normal band on k generators and this has already been pointed out, in a different
context, in [K1i03a]. As of yet, we are unable to extend these solutions to all
normal bands.

Of course, many open questions remain concerning the complexity of EQN%
and T-EQNg for non-regular S. The fact that answers to such questions will
not be given by varieties should not be a pretext to dismiss such inquiries
and should on the contrary be taken as added motivation for the problem. It is
absolutely reasonable to assume that a simple necessary and sufficient condition
for tractability can be formulated in these cases and our results thus far can
already establish the NP-completeness of both problems in a large class of non-

regular semigroups.
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5.3 Conclusion

At first glance, we would expect questions concerning the complexity of solving
single equations and systems of equations over a finite monoid or semigroup to
be closely related. It is of course unreasonable to argue that they are not, yet
the lessons learned from the two main sections of this chapter are very different.
The case of single equations is closely related to questions about the power of
finite monoids as language recognizers. It outlines once again the importance of
cornering the computational power of CC? circuits and programs over solvable
groups, and it further establishes the importance of DA and DO in complexity
issues related to finite monoids.

Considering semigroups as machines on the other hand is a useless point of
view in the case of systems of equations. Yet, many beautiful connections with
previous algebraic approaches to constraint satisfaction problems have been un-
covered. The fact that we can prove dichotomies for EQN},, T-EQN}, and
T-EQN7y for regular S indicates that these problems are “well-behaved” restric-
tions of CSP. We have mentioned some of the very general results from universal
algebra identifying sufficient conditions on I for the tractability of CSP(T). It
would be interesting to see if all our upper bounds can be obtained using these
techniques and, if so, to understand whether the full gamut of them is needed
in our context. For instance, there seems to be some similarity between the
algorithms presented for EQN% and T-EQNY for, respectively, strong semilat-
tices and strong regular bands of Abelian groups and the notion of para-primal
algebras introduced of Dalmau [Dal00].

There might also be natural ways other than equations to define sets of
relations I' on S¥ in terms of the algebraic structure of S. A similar direction in
which to extend this research is to investigate the complexity of the satisfiability
of inequations over a fixed ordered monoid. This is a very natural extension of

our problem and it is quite possible that its structure will be as nice and rich
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of meaning.
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Chapter 6

Conclusion

We have studied various computational complexity issues involving finite semi-
groups and monoids. We have first focused on the algebraic point of view
on NC! emanating from the seminal work of D. Barrington and D. Thérien
[Bar89, BT88]. We showed that some monoids are so weak that they cannot
gain any advantage in computational power if polynomial length restrictions for
the “program over monoid” formalism are relaxed and have given some evidence
that any monoid failing to have this polynomial length property is rich enough
to recognize arbitrary languages via programs of exponential length. We have
also shown that programs over certain varieties of monoids are no more powerful

than morphisms over that same variety.

Next, we have established a rich algebraic point of view on communication
complexity. This has allowed us to algebraically characterize, up to a con-
stant, the communication complexity of every regular language in some of the
best-known two-party models, thus making a fundamental contribution to our
understanding about the power of these models, their interrelations and the key
role played by regular languages in the development of this theory. We have also
proved a number of similar classifications in the multiparty “input on the fore-
head” model which has led us to isolate regular languages which quite certainly

constitute key objects of study for further research on this model of communica-

187
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tion complexity. Our results also suggest the possible existence of an algebraic
characterization of languages having bounded multiparty communication com-
plexity for some bounded number of players. Our communication complexity
results can also be used to obtain new insights on the computational limitations
of polynomial length programs over certain varieties of monoids, thus opening

new paths to an eventual resolution of questions about the program model.

Finally, we have studied how the algebraic properties of a semigroup S im-
pact the complexity of solving equations over S. We provided the first non-
trivial upper bounds for checking the satisfiability of an equation over S; or,
more generally, over any group which is too weak to efficiently compute AND
via programs and established a number of upper bounds and hardness results
for equation and program satisfiability over monoids which are not groups. We
found stark dichotomies in the complexity of solving systems of equations over a
fixed monoid and found the problem, and its main variant, to be either tractable
or NP-complete depending on whether the monoid belonged to a specified vari-
ety. We also established a number of interesting partial results in the semigroup
cases and argued that our dichotomy results were to be expected in light of the

conjectures arising from the algebraic study of constraint satisfaction problems.

Our results highlight the importance of certain classes of monoids and semi-
groups in such contexts. Indeed, monoids in the variety DO N Gy, for in-
stance, are exactly the monoids in DS having the polynomial length property,
are exactly the monoids with O(1) communication complexity for some bounded
number of players and are the only ones for which we know how to solve P-SAT
in polynomial time. Other varieties such as solvable groups, J-trivial monoids
and specific monoids like U and B have played key roles in different contexts

both in this work and other similar investigations.

Traditionally, the analysis of problems whose complexity is parametrized by

an underlying finite semigroup has been done separately for the group case and
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the aperiodic case but often left open in the general case. In many cases, the
limit between tractable and intractable cases involve varieties Ab, G5 and G,
in the group case and DA in the aperiodic case. Such a phenomenon occurs, for
example, in the communication complexity and equation satisfiability settings
but also in the context of membership problems [BMT92], learning expressions
over monoids [GTTO01] among others. Our work suggests that considering vari-
eties of the form DO N H should be the first attempt at combining results for

groups and aperiodics to resolve the general case.

We have of course left open a number of open questions concerning the main
topics of this thesis and have discussed them in the relevant chapters but we
want to recall here that many of these questions are deeply intertwined. For
instance, our questions on the exact complexity of P-SATs for non-nilpotent
solvable groups can only be resolved if we are able to understand whether G,

forms a program-variety or not.

If L is a language with neutral letter and bounded two-party communication
complexity then, by Szegedy’s Theorem, L can be recognized by a program over
a commutative monoid. Since Com has the Crane Beach property, we must
thus have that L is regular with M (L) commutative. Similarly, if DO N Gy
has the Crane Beach property, then our proposed generalization of Szegedy’s
Theorem holds for languages with a neutral letter. On the other hand, if it does
not have the Crane Beach property, then a counterexample of a non-regular
language with neutral letter which can be recognized by a family of programs
over some monoid in DO N Gy would certainly be an interesting candidate to

disprove the communication complexity conjecture.

We believe that a most important avenue for research is to further under-
stand the connections between the various contexts which we have analyzed
with a semigroup algebra perspective. One has to believe that under favor-

able circumstances, the algebra of semigroups and monoids can constitute a
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bridge linking in meaningful ways issues in communication complexity, circuit
complexity, logic, algebraic automata theory, to name but a few areas.

In this thesis, we have been dealing exclusively with languages of finite words.
In some applications of finite automata, such as model checking, the focus is on
so-called w-languages of infinite words. There exists a well-developed algebraic
theory of w-regular languages quite similar to classical algebraic automata the-
ory [PP03]. It would be most interesting to understand the impact of our results

and the intuitions we have developed on this theory and its many applications.
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deterministic, 79
MOD,-counting, 80
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of a monoid, 83
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truth-table, 35
Turing, 35
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matrix, 16
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Szegedy, 127
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theorem, 12
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Problems and Languages

CSP(I') CONSTRAINT SATISFIABILITY PROBLEM (with relations I').
DISJ DISJOINTNESS.

EQ EqQuALITY.

(T)-EQN  (TARGET)-EQUATION SATISFIABILITY.

(T)-EQN* SYSTEM OF (TARGET)-EQUATIONS SATISFIABILITY.
GIP;q k-wise GENERALIZED INNER PRODUCT (mod g).

GT GREATER THAN.

INDEX INDEX.

IP, INNER PrODUCT (mod ¢).
P-SAT PROGRAM SATISFIABILITY.
Varieties

A Aperiodic semigroups.

A, Bands.

Acom Commutative aperiodics.
Ab Abelian groups.

Com Commutative semigroups.
DV Regular J-classes lie in V.
Gp p-groups.

Goil, Grilk  Nilpotent groups (of class k).

Gsol Solvable groups.
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s

Jq

LV
NB

Ry

RB
UG
vow
VOW
VW
W
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Semigroups with subgroups in H.
Trivial variety.

Semilattices.

L-trivial bands.

Semigroups with local monoids in V.
Normal bands.

R-trivial bands.

Regular bands.

Unions of groups.

Block product.

Mal’cev product.

Wreath product.

Monoids with R(M) = ©(loglogn).

Other Symbols

AC®
ACC
cco
D(L)
Dli(L)
M,Pol(L)
NY(L)
NMody ()
NC!
P(V)
R(L)
RI(L)
UPol(L)

Bounded depth polynomial size AND,OR circuits.
Bounded depth polynomial size AND,OR,MOD,,, circuits.
Bounded depth polynomial size MoD,,, circuits.
Deterministic communication complexity.
Simultaneous communication complexity.
Mod,-counter closure.

non-deterministic communication complexity.
Mod,-counting communication complexity.

Log depth AND,OR circuits with bounded fan-in.
Languages recognized via polylength V-programs.
Probabilistic communication complexity.
Simultaneous probabilistic communication complexity.

Unambiguous polynomial closure.
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=y Syntactic congruence.
<7 J-preorder (similarly for R, £).

~¢ Congruence parametrizing subclasses of DO.



