
ln compliance with the
Canadian Privacy Legislation

sorne supporting forms
may have been removed from

this dissertation.

White these forms may be included
in the document page count,

their remaval daes nat represent
any loss of content fram the dissertation.

Computational Complexity Questions Related
to Finite Monoids and Semigroups

Pascal Tesson

School of Computer Science
M cGill University, Montreal

February 2003

A thesis submitted to the Faculty of Graduate Studies
and Research in partial fulfillment of the requirements

of the degree of Ph.D. Science.

Copyright @Pascal Tesson 2003.

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88589-5
Our file Notre référence
ISBN: 0-612-88589-5

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Abstract

In this thesis, we address a number of issues pertaining to the computational

power of monoids and semigroups as machines and to the computational com

pl exit y of problems whose difficulty is parametrized by an underlying semigroup

or monoid and find that these two axes of research are deeply intertwined.

We first consider the "program over monoid" model of D. Barrington and

D. Thérien [BT88] and set out to answer two fundamental questions: which

monoids are rich enough to recognize arbitrary languages via programs of arbi

trary length, and which monoids are so weak that any program over them has

an equivalent of polynomiallength? We find evidence that the two notions arc

dual and in particular prove that every monoid in DS has exactly one of these

two properties. We also prove that for certain "weak" varieties of monoids,

programs can only recognize those languages with a "neutral letter" that can

be recognized via morphisms over that variety.

We then build an algebraic approach to communication complexity, a field

which has been of great importance in the study of small complexity classes.

Specifically, we consider the amount of communication that two players, Alice

and Bob, need to exchange in order to compute the product mlm2 ... m n of 71,

clements of sorne fixed finite monoid M when Alice knows only the odd-indexed

m'i and Bob knows the even-indexed mi. We prove that every monoid has com

munication complexity 0(1), 8(log71,) or 8(71,) in this model. We obtain similar

classifications for the communication complexity of finite monoids in the prob

abilistic, simultaneous, probabilistic simultaneous and MODp-counting variants

of this two-party model and thus characterize the communication complexity

(in a worst-case partition sense) of every regular language in these five models.

Furthermore, we study the same questions in the Chandra-Furst-Lipton multi

party extension of the classical communication model and describe the variety of

monoids which have bounded 3-party communication complexity and bounded

k-party communication complexity for sorne k. We also show how these bounds

can be used to establish computational limitations of programs over certain

classes of monoids.

Finally, we consider the computational complexity of testing if an equation

or a system of equations over sorne fixed finite monoid (or semigroup) has a

solution. In the case of a single equation we extend the work of [GR99] by pro

viding strong evidence that this problem cannot be resolved without answering

questions about the expressive power of programs over that monoid. Most no

tably, we give a quasipolynomial-time upper bound for solving equations over

a group which is known to require programs of exponential length in order to

compute AND. We also give a number of upper bounds and hardness results for

solving equations over monoids which are not groups and show that, in apparent

contrast with the group case, the problem can be NP-complete over sorne NI

even if it is tractable over sorne N admitting M as a submonoid.

vVe find that testing the satisfiability of a system of equations over a finite

monoid is either tractable or NP-complete depending on whether the monoicl

belongs 1,0 the class JI V Ab or not. For the restricted case when the right-hand

side of the equations are constants, we show that a similar dichotomy holcls for

monoids and for regular semigroups. We also give a number of partial results

for the general case of semigroups and relate this question with constraint

satisfaction problems.

ii

Résumé

Nous étudions dans cette thèse des questions liées à la puissance de calcul des

monoïdes et des semigroupes, lorsqu'ils sont considérés comme des machines,

et à la complexité de problèmes dont la difficulté est paramétrisée par un semi

groupe. Ces deux axes de recherche sont en fait intimement reliés.

Nous revoyons tout d'abord la notion de "programmes sur monoïdes" for

malisée par D. Barrington et D. Thérien et tentons de répondre à deux questions

fondamentales à propos de ce modèle: quels sont les monoïdes assez riches pour

permettre la reconnaissance de langages arbitraires grâce à des programmes

de longueur arbitraire et quels sont les monoïdes si faibles que tous leurs pro

grammes ont un équivalent de longueur polynomiale? Nos résultats semblent

indiquer que ces deux propriétés sont duales et démontrons qu'en particulier,

tout monoïde dans la variété DS possède exactement l'une de ces propriétés.

Nous démontrons également que pour certaines variétés, les programmes ne peu

vent reconnaitre un langage contennant une "lettre neutre" que si ce langage

peut être reconnu grâce à un morphisme sur un monoïde de cette variété.

Nous développons ensuite une approche algébrique à la complexité de com

munication, un domaine d'une grande importance dans létude des petites classes

de complexité. Nous étudions la quantité de communication que deux joueurs,

Alice et Betrand, se doivent d'échanger pour calculer le produit de n éléments

ml m2 ... m n d'un monoïde M lorsqu'Alice ne connait que les m'i où i est pair

et que Bertrand ne connait que les mi où i est impair. Nous montrons que tout

monoïde a une complexité de communication 0(1), 8(logn) ou 8(n) dans ce

iii

modèle. Nous obtenons des classifications similaires dans les variantes prob

abiliste, simultanée, simultanée probabiliste et MODp de ce modèle et car

actérisons ainsi la complexité de communication (par rapport à une partition

pire-cas) de tous les langages réguliers. Nous étudions également ces ques

tions dans l'extension multipartite du modèle à deux joueurs et obtenons une

caractérisation des monoïdes ayant une complexité bornée pour le modèle à

trois joueurs et pour le modèle a k joueurs pour un certain k. Nous montrons

également comment ces résultats permettent d'établir les limites calculatoires

des programmes sur certaines variétés de monoïdes.

Enfin, nous étudions la complexité de déterminer l'existence d'une solution

à une équation ou à un système d'équations sur un monoïde (ou un semigroupe)

donné. Dans le cas des équations, nos résultats complètent ceux de [GR99j et

suggèrent fortement que la question ne peut être résolue sans comprendre les lim

ites calculatoires des programmes sur ce monoïde. En particulier, nous décrivons

un algorithme permettant de résoudre en temps quasi-polynomial une équation

sur un groupe pour lequel les programmes calculant la fonction AND nécéssitent

une longueur exponentielle. Nous établissons aussi quelques bornes inférieures

et supérieures de la complexité de ce problème lorsque les équations sont sur

un monoïde qui n'est pas un groupe. Contrairement au cas des groupes, nous

montrons qu'il existe un !vI pour lequel ce problème est NP-complet bien qu'il

soit calculable en temps polynomial pour un N dont M est un sous-monoïde.

Nous établissons aussi que le problème de la satisfaisabilité des systèmes

d'équations est soit résoluble en temps polynomial sur un monoïde fini de la

variété JI V Ab mais est NP-complet autrement. Nous démontrons une di

chotomie semblable lorsque les moitiés droites de chaque équation ne sont que

des constantes et plusieurs résultato dano le cao plus général deo sellligroupes.

Nous relions aussi ces problèmes aux problèmes de satisfaisabilité de contraintes.

IV

Acknow ledgments

First and foremost, l wish to express my deepest gratitude to my Ph.D. super

visor Denis Thérien. His enthusiasm, generosity and humanity have kept me

motivated and eager to learn from his teaching. He has supported me fin an

cially over the course of my graduate studies at McGill and l am grateful for

his confidence in my work. Above all, l want to thank him for supporting me

through difficult times and periodically rem in ding me that these are "the best

years of my life" (wh ether l like it or not).

l have been very fortunate to me et a number of Denis' collaborators over

the last few years and l have greatly benefited from their experience, their

insights and their willingness to patiently share them with me. In particular,

the work in this thesis is for the most part based on papers coauthored by David

Barrington, Ricard Gavaldà, Ondrej Klfma, Pierre McKenzie, Cris Moore and

Jean-François Raymond (as well as Denis) [RTT98, BMM+OO, MTTOl, GTTOl,

TT02a, TT03, KTT03] and it has been a great pleasure for me to work with

each of them. l am also indebted to Stéphane Demri, Peter Kadau, Klaus-Jorn

Lange, Clemens Lautemann, François Lemieux, Jean-Eric Pin, Pavel Pùdlak,

Klaus Reinhardt, Alex Russell, Benjamin Steinberg and Howard Straubing for

many helpful discussions that helped shape my understanding of the field.

l am very grateful to Klaus-Jorn Lange for welcoming me in Tübingen, and

for generously sharing tea, beer and many ideas. My stay in Tübingen would not

have been the same without the help, support and most importantly friendship

of Peter, Jens, Klaus-Jorn, Klaus, Lyne and Denis (and their children!).

v

l feel privileged to have been a part of McGill's computer science department.

l have greatly appreciated the administrative and academic staff's dedication

and patience. l also want to thank my office mates Arkadev Chattopadhyay,

Sylvie Hamel and Mark Mercer for their advice and support during the writing

of my thesis.

There have been many times when l have needed the help of close friends

and family and l would like to particularly thank my parents, my sister, Xavier,

V éronique, Francis, Guillaume and Olivier for their kindness and support.

Last but not least, and from the bottom of my heart, l want to thank

Marie-Claude for her love, her patience, her advice and her unwavering support

throughout the past four years.

vi

Contents

1 Introduction 1

1.1 Finite Semigroups, Automata and Regular Languages 1

1.2 Monoids as Machines 2

1.3 Our contributions .. 4

1.3.1 Programs over Monoids 5

1.3.2 Communication Complexity 6

1.3.3 Equations over Semigroups . 7

2 Background 9

2.1 Algebraic Automata Theory 9

2.1.1 Semigroups and Automata . 9

2.1.2 The Variety Theorem 11

2.1.3 The Structure of Finite Semigroups 12

2.1.4 Operations on Semigroups 18

2.1.5 Congruences and Finite Counting 19

2.1.6 A Catalog of Varieties 21

2.2 Computational Complexity .. 33

2.2.1 Complexity Classes, Reductions and Completeness 33

2.2.2 Circuit Complexity . 35

2.2.3 Branching Programs 39

3 Programs over Monoids 41

vii

3.1 From Homomorphisms to Programs

3.1.1 The Program Model

3.1.2 Summary of Results

3.2 Basic Properties of Programs

3.3 Universality vs. Polynomial Length Property

3.3.1 A Dichotomy Theorem for DS .

3.3.2 Sorne Results in DA * G

3.3.3 Open Problems

3.4 Crane Beach Properties and Program Varieties .

4 Communication Complexity

4.1 Introduction.........

4.1.1 Summary of Results

4.2

4.3

4.4

4.5

Two-party Communication Complexity

4.2.1 Two-party Models

4.2.2 Communication Complexity of RegulaI' Languages and

Monoids

4.2.3 Rectangular Reductions

4.2.4 Bounds and Classifications.

Multiparty Communication Complexity .

4.3.1 The Input on the Forehead Model .

4.3.2 Discrepancy Bounds

4.3.3 Multiparty Complexity Bounds for RegulaI' Languages

and Finite Monoids

Applications to Program and Circuit Lower Bounds

Conclusion and Open Problems

4.5.1 Towards a Multiparty Analog of Szegedy's Theorem .

4.5.2 Further Bounds for RegulaI' Languages

Vlll

41

41

45

46

50

54

58

64

64

73

73

75

78

78

82

85

86

98

98

101

106

123

127

127

130

5 Satisfiability of Equations over Semigroups

5.1

5.2

5.3

Single Equations and Programs

5.1.1 Introduction .

5.1.2 Groups

5.1.3 Aperiodic Monoids

5.1.4 A Look at the General Case

5.1.5 Open Problems

Systems of Equations .

5.2.1 Constraint Satisfaction Problems

5.2.2 Tractable Cases .

5.2.3 Hardness Results

5.2.4 Dichotomy Theor·ems for EQN~I and T-EQN~ over Mo-

noids

5.2.5 Results and Questions in the Semigroup Case

Conclusion.

6 Conclusion

Bibliography

Index

Index of Symbols and Notation

lX

133

135

135

139

142

146

148

150

150

153

163

174

175

184

187

191

203

205

Chapter 1

Introduction

1.1 Finite Semigroups, Automata and Regular
Languages

Despite their well-known limitations, finitc automata have always been and will

remain a fundamental model of computation and a starting point for investi

gations in theoreticaJ aspects of computer science. Their stlldy has also been

motivated by applications to pattern matching, modeling of finite state systems

and important links with logic and algebra.

It was noticed early on that algcbra provided a most powerful framework tü

analyze and classify regular languages according to theiI' combinatorial prop

ertics. The earlier results inclllded the algcbraic characterization of star-j'ree

languages proved by M. P. Schützenberger [Sch65] and the characterization of

piecewise testable languages given by 1. Simon [Sirn75] before S. Eilenberg es

tablished a one-to-one correspondence between varieties of sem'tgro'u,ps (classes

of se mi groups closed under direct product, morphic images and subsemigroups)

and varieties of languages (classes of languages closed under quotients, Boolean

operations and inverse morphisrns from free semigrollp to frce scmigrollp), tlms

providing the precise framework for algebraic automata theory. Finding ex

plicit algebraic descriptions of language varieties for which we are given H,

cornbinatorial description and, conversely, finding combinatorial descriptions

1

2 CHAPTER 1. INTRODUCTION

of language varieties corresponding to natural algebraic varieties has led to

important advances in both algebra and language theory. In fact, these ele

gant methods have been so successful that it is difficult to separate today au

tomata theory from finite semigroup theory: their influence can be seen for

instance on recent results concerning logic and in particular temporal logic

[Str94, TW02b, TW98, TW02a, BMT99] and they are robust enough to be

adapted to ofrer nice algebraic approaches to Büchi automata [PP03] and timed

alltomata [BPT01].

1.2 Monoids as Machines

Let us view a finite monoid M as a machine whose sole ability is to compute the

product of a list of elements of M. How can we use this machine to recognize

languages in, say, A*? The classical mechanism is that of a morphism: each

input letter is translated into a monoid element through sorne predetermined

mapping cP : A --+ NI and the input is accepted if the product of these elements

lies in sorne target set F ç M. It is easy to see that this captures exactly the

regular languages and this observation is the starting point of classical algebraic

automata theory.

As pictured in Figure 1.1, we can consider more elaborate ways to use a

monoid NI as a language recognizer. We construct a machine that first pre

pro cesses the input in A * in sorne predetermined way thus translating it into a

sequence of monoid elements. Our machine then accepts its input if the multi

plication of these elements belongs to sorne previously chosen accepting subset

of M. Clearly, the power of such machines depends both on the nature of this

preprocessing and on the particular monoid used in the later step. Amazingly,

well-known complexity classes can be characterized in this way.

The first such example stems from the "program over monoid" formalism

introduced by D. Barrington and D. Thérien in the mid 80's: in this case, the

1.2. MONOIDS AS MACHINES

Xl

~

~
ml
t

X2 ... Xn-l

~ ~ ~

Preprocessing

~ ~ ~
m2 ... m's-l

~ ~ t
Multiply in M

t
m

/'\..
Accept Reject
if m E F if m tf. F

Xn

~

~
ms

~

Figure 1.1: Monoids as machines

3

Input

Monoid elements

Output

preprocessing produces a polynomial number of monoid elements, each of which

is a function of exactly one input position. It was first shown that a language

can be recognized by a polynomial length program over a monoid if and only if

it belongs to the class NC l of languages recognizable by families of logarithmic

depth Boolean circuits [Bar89]. Subsequently, algebraic characterizations of

well-known subclasses of NCI were obtained when the underlying monoid was

restricted to belong to sorne important varieties [BT88].

A few years later, similar techniques were used to show that using a prepro

cessing performed by a polynomial-time machine aUowed an algebraic charac

terization of PSPACE [HLS+93].

Such characterizations are interesting for different reasons. First of aU, they

automatically yield a new point of view on the corresponding complexity classes

and give one the opportunity to use tools developed in algebraic automata the

ory to investigate the properties of the classes (see e.g. [MPT91]). They also

Sllggest an interesting way of studying the structure of this class by examin-

ing the computational power of these machines wh en the monoid belongs to

restricted classes. In the two examples just cited, many of the best known

subclasses of NC1 and PSPACE can be put in correspondence with well-studied

4 CHAPTER 1. INTRODUCTION

varieties of monoids. Even more importantly, varieties allow one to algebraically

define very fine parametrizations of the complexity classes.

In turn, algebraic characterizations of complexity classes underline the im

portance of questions about computational problems whose complexity is para

metrized by an underlying finite semigroup or monoid such as the membership

problem [Koz77, BLS87, BMT92] and sorne of its variants [BKLMOl], equa

tion satisfiability [GR99], monoidal circuit evaluation [BMPT97], learning an

expression over a monoid [GTTOl] among others. In many cases, questions

about the complexity of these problems and questions about the computational

limits of semigroups as language recognizers are closely linked and sometimes

inseparable.

As we try to understand the computational power of monoids as machines (in

various formalisms) and the computational complexity of algorithmic problems

about monoids, we are thus simultaneously building an algebraic point of view

on computation and a computational point of view on algebra. While for the

most part, tools from algebra have resulteù in advances in cornplexity theOI·y, it

is also the case that complexity questions have motivated advances in sernigroup

theory.

1.3 Our contributions

The work presented in this thesis is a contribution to this algebraic point of

view on computational complexity. We prove a number of new results about

the computational power of programs over monoids and explore new areas in

which the sernigroupjrnonoid approach is meaningful. We relate the results

obtained in these different contexts with one another and with existing work.

We present in Chapter 2 the main tools and results from semigroup the

ory and algebraic autornata theory which will be used in later chapters. In

particular, we list varieties of rnonoids and semigroups which bear particular

1.3. OUR CONTRIBUTIONS 5

importance to our work and to many similar investigations. We also recall

sorne basic notions of computational complexity theory, introduce Boolean cir

cuit models, branching programs and briefiy survey the current state of research

in circuit complexity to outline sorne of the major open questions in the field.

Chapters 3, 4, 5 form the bulk of our work; we have tried to make each of them

as self-contained as possible although an interesting feature of our results is that

sorne classes of monoids and semigroups play key roles in apparently unrelated

problems.

1.3.1 Programs over Monoids

We begin Chapter 3 by reviewing the "pro gram over monoid" formalism and

its deep running link to Boolean circuits of shallow depth (and bounded-width

branching programs). We then prove that sorne monoids are so weak as ma

chines that any computation they can perform via programs can actually be

achieved with programs of polynomiallength. On the other hand, sorne monoids

are rich enough that they can, via programs, recognize arbitrary languages pro

vided that no restriction on program length is imposed. Surprisingly, we find

sorne evidence that these two properties are dual and show that in the variety

DS every monoid either has the above polynomiallength property or is u,niversal.

We a1so present a number of resu1ts for monoids outside this class and argue in

favor of a conjecture which would generalize the dichotomy observed in DS.

In order to understand the computational power of programs over given

varieties of monoids, it is crucial to iso1ate so-called program-varieties V, i.e.

varieties such that any regu1ar language which contains a so-called neu,tmlletter

and can be recognized by programs of po1ynomia11ength over sorne 11/! E V can

in fact be recognized by sorne N E V but using the more primitive notion of

recognition via morphism. We show that for sorne varieties an even stronger

statement is true: we say that V has the Cmne Beach property if any language

6 CHAPTER 1. INTRODUCTION

with a neutralletter that can be recognized by programs of polynomiallength

over sorne MEV is in fact regular and can be recognized, via morphism, by

sorne N E V. We show in particular that commutative monoids and ..J -trivial

monoids have this property while it has been shown not to hold for apeTiodic

monoids [BIL +01].

1.3.2 Communication Complexity

In Chapter 4, we propose an algebraic approach to communication complexity,

a field which, over the last twenty years, has been at the heart of many investi

gations in complexity theory [KN97], most significantly in the study of shaUow

Boolean circuits and branching programs.

We look at the amount of communication that k parties need to exchange

in order to evaluate the product of n elements of a finite monoid M when the

access to the inputs is distributed among the different parties in the worst pos

sible way. We prove that the two-paTty communication complexity of a .finite

monoidis either constant, 8(logn) or 8(n) in the standard two-party determin

istic model of A. Yao [Yao79] and give algebraic descriptions of aU three cases.

We obtain similar classifications for the two-party simultaneous, probabilistic,

probabilistic simultaneous and Modp-counting communication complexity of a

finite monoid. As a corollary, we are able to give, up to a constant, the com

munication complexity, in a worst-case partition sense, of any regular language

in aU five of these models. Sorne of our results highlight and explain the central

importance of certain regular languages in communication complexity theory.

We also look at the communication complexity of regular languages and

monoids in the multiparty model of A. Chandra, M. Furst and R. Lipton

[CFL83]. We prove algebraic characterizations for monoids and regular lan

guages which have bounded 3-party communication complexity and those which

have bounded k-party communication complexity for sorne fixed k. Our alge-

1.3. OUR CONTRIBUTIONS 7

braie approach isolates natural examples of languages for which precise multi

party communication complexity bounds would constitute fundamental progress

in our understanding of this tricky model. We are also led to conjecture a mul

tiparty generalization of Szegedy's algebraic characterization of languages with

bounded two-party communication complexity.

We apply our communication complexity results to identify program-varie

ties and to obtain length lower bounds for programs computing sorne explicit

function over certain classes of monoids. While most of the lower bounds are

corollaries or only slight improvements of previously known results, our tech

niques are quite different.

1.3.3 Equations over Semigroups

In Chapter 5, we try to understand how the algebraic structure of a finite

monoid or semigroup affects the complexity of solving equations over that fixed

semigroup. Our work complements the results of M. Goldmann and A. Russell

who had obtained results in the group case [GR99].

We first look at the corn pl exit y of testing if a given equation over the monoid

M:

where Ci, di E M are constants and :1:'S are variables, can be satisfied. That is if

variables can be assigned values in M so that the right-hand and left-hand side

of the equation multiply out to the same value in 1\11. This problem, denoted

EQN M' had been shown NP-complete for non-solvable groups and in P for

nilpotent groups. The latter upper bound was in fact obtained for the related

problern P-SATM of testing whether a given 1I1-prograrn has sorne input on

which it outputs a specified target. We prove that the complexity of P-SAT Gand

EQNG when the underlying monoid is a solvable but non-nilpotent groups G is

tightly connected to well-known open problems on the expressivity of bounded-

8 CHAPTER 1. INTRODUCTION

depth modular circuits: in particular, we obtain a quasi-polynomial time upper

bound for both P-SAT c and EQNc wh en exponentiallower bounds are known

on the length of G-programs computing AND. Wh en the underlying M is

aperiodic, we surprisingly show that solving an equation over Nf is in sorne cases

easier than solving an equation over sorne divisor N of Nf and that P-SATM

can be strictly harder than EQN M' We further prove that P-SAT M lies in the

very simple complexity class ACa if M lies in the variety DO n Gni! but is

NP-complete for any aperiodic monoid not lying in this class.

We also look at the complexity of EQN~, the problem of testing the satis

fiability of a system of equations over M (or more generally of a semigroup S)

and also consider a restricted version of the problem T-EQN~ when the right

hand side of each equation contains no variables. We prove sharp dichotomies

for the complexity of both problems which depend on the algebraic properties

of the underlying monoid. We show that EQN~ lies in P if M is a monoid in

JI V Ab and is NP-complete otherwise and similarly show that T-EQN~ lies

in P if M is a monoid in RB V Ab and is NP-complete otherwise. We also

consider the case of systems over a r'eg'Ular semigro'Up and in particular obtain a

similar dichotomy for the complexity of T-EQN~. We also establish an intrigu

ing connection between our methods and universal algebra methods used in the

study of constraint satisfaction problems.

Chapter 2

Background

This chapter gives a quick technical introduction to algebraic automata the

ory and complexity theory which are the bases of our discussion. We review a

number of definitions and important results in the field as well as set notation.

We assume that the reader is familiar with the basic notions of relations, con

gruences, morphisms, solvable groups and TimejSpace complexity of a Turing

machine.

2.1 Algebraic Automata Theory

2.1.1 Semigroups and Automata

The theory of finite se mi groups and its applications to formaI languages have

been the subject of extensive work sinee the 50's. We suggest as reference the

book of J.E. Pin [Pin86] and his more reeent comprehensive survey on syntactic

semigroups [Pin97] although sorne of the more technical results can only be

found in less accessible books such as [Eil76] or [How76].

A semigroup is a set S together with a binary, associative operation (which

we usually denote multiplicatively). We further say that S is a monoid if there

exists an identity element 13 in S such that 13 . t = t· 13 = t for all tES. The

multiplication of a semigroup defines a canonical surjective morphism eval3

9

10 CHAPTER 2. BACKGROUND

S* -7 S by

We will sometimes refer to the languages in S+ of the form {wJevalsCw) E F}

for sorne F ç S as the word problems of S. In the case of monoids, evalM is

defined as a function from M* to M and, similarly, word problems are subsets

of 1\1[*.

With the exceptions of the free semigroup A + and the free monoid A *, aIl

semigroups considered in this thesis will be finite and in the rest of this Chapter,

S and NI will respectively denote a finite semigroup and a finite monoid.

We want to view finite semigroups as language recognizers akin to finite

automata (see [Sip97, HU79]). Formally, we say that a language L ç A+ (resp.

L ç A*) can be recognized by the se mi group S (resp. the monoid M) if there

exists a morphism cp : A+ -7 S (resp. cp : A* -7 M) and an accepting s'Ubset

T ç S (resp. T ç NI) such that L = cp-l(T).

The algebraic theor-y of automata and regular languages is affected, some

times at quite a deep level, by whether languages are defined to be subsets

of the free monoid A* (finite words over the alphabet A including the empty

word) or subsets of the free semigroup A+ (finite words over the alphabet A

excl'Uding the empty word). Because of this, two parallel theories presenting

only slight, but occasionally crucial, differences have to be constructed. This is

only a concern in a few occasions in this work and we will for the most part try

to avoid the problem. In particular, many of the definitions stated below cover

the monoid case although the reader should keep in mind that distinctions with

the semigroup case might exist.

For a finite automaton M with state set Q, every word w E A* defines a

transformation Q -7 Q. This set of mappings forms a monoid (under composi

tion) which we calI M's transformation monoid. One can easily show that any

language recognized by M can be recognized by M 's transformation monoid.

2.1. ALGEBRAIC AUTOMATA THEORY 11

Moreover, the Cayley graph of a finite monoid M can be viewed as a finite

automaton, allowing one to prove:

Proposition 2.1 A language L ç A* can be recognized by a finite automaton

if and only if it can be recognized by a finite monoid if and only if it is regular.

The last part of this statement is a trivial reformulation of Kleene's The

orem. The main objective of algebraic automata theory is to refine Kleene's

Theorem: once it is established that languages recognized by finite monoids

have a nice combinatorial characterization (i.e. they can be described by regu

lar expressions) it is natural to ask whether subclasses of regular languages can

be put in similar correspondence with subclasses of monoids.

2.1.2 The Variety Theorem

We say that a monoid N divides M and write N -< M if there exists a surjective

morphism from a submonoid T of M onto N. It is easy to check that -< is a

well-defined partial order (up to isomorphism) on finite monoids and that any

language that can be recognized by N can also be recognized by any M with

N -< M. A class V of monoids is a (pseudo)-var"ietyl if it is closed under direct

product and division.

For L ç A *, we define the syntactic congruence, denoted L, by letting

.T - L Y if and only if for aIl 'U, v E A * we have 'uxv E L if and only if uyv E L.

The syntactic monoid of L, denoted M(L) is A* / =L. One can think of M(L)

as the "minimal recognizer" of L sinee i t is not hard to show that .M (L) i tself

recognizes Land divides any other monoid that also recognizes L. It should

be noted also that the construction of M(L) is very similar to the automaton

minimization pro cess à la Myhill-Nerode. Of course, M(L) is finite if and only

if L is regular.

lStrictly speaking, a variety is a class of monoids closed under arbitrary direct product
whereas pseudo-varieties only require closure un der finite direct product. Because we only
look at classes of finite monoids, we will ignore this distinction.

12 CHAPTER 2. BACKGROUND

For u E A* a string and L ç A* a language, the right (resp. left) quotient of

L by u is the set Du-1 = {w : w E A* and wu EL} (resp. u-1 L = {w : w E A*

and 'uw EL}). A class L of languages is a lang'U,age-va:riety if and only if it is

closed under Boolean operations, left and right quotients and inverse morphisms

from one free monoid to another (i.e. if L E A* is in L and cp : B* ~ A* is a

morphism, then cp-l(L) is also in L).

Eilenberg's variety theorem links varieties of monoids and varieties of lan

guages:

Theorem 2.2 (Variety Theorem) There is a natural bijection between vQ,'ri

eties of languages and varieties of monoids: if V is a class of monoids and L is

the class of languages over any finite alphabet that are recognized by a monoid

in V then V is a variety of monoids only if L is a variefy of lang'U,ages and is,

in this case, generated by the set {M (L) : L EL}.

Varieties are thus the natural unit to classify monoids in terms of their

computational power and one can hope to make explicit the correspondence

between an algebraic description of a variety V and a combinatorial description

of languages in the associated language-variety. We will give many examples of

such results.

2.1.3 The Structure of Finite Semigroups

For any monoid M, we introduce five equivalence relations known as Green's

relations which describe whether two elements generate the same ideals in M.

Formally:

• .rJy if JI./I.rJvl = N!yM;

• x LY if Nlx = My;

• x R y if xM = y M;

2.1. ALGEBRAIC AUTOMATA THEORY 13

• x 1{ y if both x R y and x L y;

• x'Dy if x R 0 L y, that is there exists z such that x R z and z Ly.

In a semigroup S, Green's relations are defined using ideals in Sl, the monoid

obtained from S by adding an identity element if there is none in S. It can be

shown that R is a left-congruence (i.e. x R y implies ex R ey for aIl e) and that

L is a right-congruence. Moreover Rand L commute (i.e. 'D = R 0 L = LoR)

and so an five of these relations are indeed equivalence relations. Moreover,

the relations :J and 'D coincide for any finite S. Since we are only interested

in the structure of finite semigroups, we will consequently always refer to the

:J-relation but the reader should be aware that some of the results stated below

do not hold for infinite monoids in which 'D :/=- :J.

For an element x of M, we denote by J.y, (resp. Rx, Lx, 1{x) the :J-class

(resp. R-, L-, 1{-class) of x. We also define natural pre-orders "5:.:h :;'n, :;'C

on M with e.g. x :;'.1 y if and only if MxM ç MyM. We will say that "x is

(strictly) :J-above y" if x 2.1 y (resp. x >.1 y), and similarly for :;'n and :;'c.

Note that x :;'.1 y if and only if there exists u, v such that x = uyv. Similarly,

x :;'n y if and only if there is u with x = yu and x :;'C y if and only if there is

'U with x = uv. One can easily prove:

Lemma 2.3 For any a, b in M, if a :;'.1 ab (resp. a :;'.1 ba) then a R ab (resp.

aL ab).

For any a:Jb, ifa:;'n b (resp. a:;'c b) then in fa ct aRb (resp. aLb).

The following lemma is the fundamental result about Green's relations:

Lemma 2.4 (Green's Lemma) Suppose a and b are two elements of the same

R-cla8s, i. e. there e.Tist u, v 8. t. an = band lyu = a. Denote by Pu : M ---+ M

the function defined by Pu (s) = su. Then Pu and Pv are bijections .tram La ta

Lb and from Lb ta La respectively.

Mareover Pu = p;;l and they preserve 1{-classes.

14 CHAPTER2. BACKGROUND

The basic properties of Green's relations lead to the so-caIled "egg-box" rep

resentation of (finite) semigroups. Each .J-class of the semigroup is represented

as a table where rows correspond to R-classes, columns to L-classes and ceIls

to 1-l-classes. From Green's Lemma, wc also know that each ceIl contains the

same number of elements. When writing out the egg-box representation, the

.J-dasses are often laid out with respect to the -::;':1 preorder (see for example

Figure 2.1).

We say that e E S is idempotent if e2 = e. Idempotents play an important

role in the structure of semigroups. In particular, the identity element lM is an

idempotent of M. We say that S has a zero is there is an element 0 E S such

that Os = sO = 0 for aIl sES. Note that 0 is idempotent. We state two easy

lemmas which further stress the importance of idempotents:

Lemma 2.5 Let e = e2 be an idempotent. a -::;'n e if and only if ea a.

Similarly a -::;'C e if and only if ae = a.

Lemma 2.6 Let a.J b. Then ab E Ra n Lb if and only if La n Rb contains an

idempotent e = e2
.

We include here a proof of this simple but very useful fact to give an example

of arguments using basic properties of Green's Lemma.

Proof. If there is an idempotent e in La n Rb, we have ae = a, eb = b. By

Green's lemma aeb E Ra n Lb and aeb = (ae)(eb) = ab.

Conversely, if ab E RanLb, then, by Green's lemma, there is an f in LanRb

such that fb = b. By lemma 2.5, since b -::;'R f, f must be idempotent. 0

The subsemigroup generated by an element s of Sis finite of course, so there

must exist t, p such that st+p = st and the subsemigroup can be shown to have

a unique idempotent. We will denote by w the smaIlest integer such that SW

is idempotent for aIl sES and calI w the exponent of S. For any idempotent

2.1. ALGEBRAIC AUTOMATA THE ORY 15

e E S, the set eSe forms a submonoid of S with identity e which we call the

local submonoid of S associated with e.

Groups are a well-known special case of monoids. Recall that a monoid G

is a gTOUp if every element 9 E G has an inverse g-l such that gg-l = g-lg =

le. Every idempotent in a mono id M forms a trivial subgroup of .!VI. Note

also that by Lemma 2.6 an H-class containing an idempotent is closed under

multiplication and, more generally, one can show:

Lemma 2.7 Let H be any H-class of M, then H con tains an idempotent if

and only if H is a maximal SUbgTOup of M.

Consequently every H-class contains at most one idempotent. Using Green's

Lemma, one can further establish:

Lemma 2.8 Any two maximal SUbgTOupS of a common J -class aTe isomoTphic.

We say that S is a union of gTOUpS if each of its elements lies in a maximal

subgroup of S. This is equivalent to the requirement that sw+l = s for each

sES.

If every maximal subgroup of S is trivial, i.e. contains a single element, then

S is said to be apeTiodic or gTOup-fTee. An important consequence of Lemma

2.7 is

Lemma 2.9 S zs apeTiodic if and only if all its H-classes contain a single

element.

An element a of S is said to be TegulaT if there exists sorne x E S such that

axa = a. A J-class is said to be regular if all its elements are regular. As

the next lemma shows, regularity is not a property of individual elements but

rather of J-classes.

Lemma 2.10 The following aTe equivalent fOT a J -class J of a .finite semigTO'/J,p:

16 CHAPTER 2. BACKGROUND

1. J is reg'Ular;

2. J contains a regular elemerd;

3. Every R-class and every L-class of J contains an idempotent;

4. J contains an idempotent.

We say that a semigroup is regular if all its elements are regular.

A semigroup is said to be completely simple if it consists of a single J-class

and O-simple if it consists of two J-classes one of which contains only O. As we

will see next, the structure of these semigroups is very weIl understood.

Note that by Lemma 2.6, a J-class of S forms a completely simple subsemi

group of S if and only if it aIl its tl-classes are subgroups. We seek a refinement

of Lemma 2.6 in order to understand the structure of multiplication within a

regular J-class. Let J be a regular J-class of S and let· denote the multiplica

tion in S. We denote by JO the O-simple semigroup consisting of the elements

of J and a 0 with the multiplication 0 given by sot = s . t if s . t lies in J and

sot = 0 otherwise.

Let G denote sorne finite group with multiplication 0 and n, m be positive

integers. A Rees matrix is an m by n matrix R with entries in G U {O} and

the corresponding Rees semigroup is the semigroup with elements in ([m] x G x

ln]) U {O} and where the multiplication of non-zero elements is given by:

Theorem 2.11 Every O-simple semigro'Up is isomorphic to a Rees semigroup.

2.1. ALGEBRAIC AUTOMATA THEORY 17

In particular, for every regular .J-class J, we can construct a Rees-matrix

representation of JO. Say that J has m R-classes and n L:-classes, with 1-lij

denoting the intersection of the i th R-class and lh L:-class: because J is regular,

we can assume that it has at least one idempotent pel' R-class and pel' L:-class

and in particular we assume that eu is an idempotent in 1-lu. Let G be the

maximal group Hu and construct R E (G U {O})mxn as follows: first, entries

Ri,l and Ru are assigned le or 0 depending on whether Hü or Hlj cantains

an idempotent or not. By Green's Lemma, there are elements lj (resp. Ti) such

that multiplication on the right (resp. left) by lj maps the J·th L:-class (resp.

i th R-class) to the lst one and these can be chosen so that Tilj = eu. The

other entries Ri,j are also 0 if H ij does not contain an idempotent and is Tilj

otherwise. Simple calculations show that this Rees semigroup is isomorphic to

JO.

When a Rees matrix contains no 0 entries, we usually think of the corre

sponding semigroup as completely simple and every completely simple semi

group can be represented in this way [Gra68]. A O-simple semigroup S whose

Rees matrix contains only entries 0 and le is said to be fiat. By extension,

a regular .J -class J is said to be .fiat if JO is fiat and a semigroup is said to

be .fiat if all its regular .J-classes are fiat. An easy exercise shows that the 0-

simple semigroup S is non-fiat if and only if there exist idempotents e, d, f E S

such thateL: d R f such that def d i= d. In other words, a O-simple S is fiat if

its idempotents generate an aperiodic subsemigroup. In fact, more generally,

any semigroup S is fiat if and only if its idempotents generate an aperiodic

subsemigroup.

We further say that S is oTthodo.'E if its idempotents form a subsemigroup

in S. Every orthodox semigroup is fiat and the two notions coincide for simple

and O-simple semigroups.

18 CHAPTER 2. BACKGROUND

2.1.4 Operations on Semigroups

We next describe a number of ways to construct semigroups from other semi

groups. It is natural to ask of course how the computational power of the new

semigroup compares with that of its building blocks and to try and relate al

gebraic operations on semigroups with combinatorial operations on languages

or, taking the machine point of view on semigroups, with operations that some

how combine the computing power of two machines. For instance, running two

automata in parallel on the same input can obviously be related to the direct

product of two semigroups.

The wreath prodv,ct of semigroups S and T, denoted SoT, is the set ST
l x T

with an operation defined as

where f~1 (x) = h(xtt}, and· is the operation in S. There is a nice machine

interpretation of the wreath product in terms of series connection of finite au

tomata (see e.g. [Str94]).

Wreath products are central to a number of results about decompositions of

certain semigroups. For instance, it can be shown that every semigroup divides

a wreath product of groups and aperiodic se mi groups [KR65] and that every

solvable group divides a wreath product of Abelian groups.

For varieties V, W, we will denote by V * W the variety of semigroups

generated by the wreath products SoT for S E V and T E W. At this level,

the wreath product is associative, that is we have U * (V * W) = (U * V) * W

for any varieties U, V, W.

The black praduct of Sand T, denoted SOT is a two-sided version of the

wreath product. Its underlying set is ST
l
xTl X T with the multiplication given

by

2.1. ALGEBRAIC AUTOMATA THEORY 19

where 9 : T x T ~ S is given by g(x, y) = ,h(x, t2y)h(xt 1, y). We will den ote

V 0 W the variety of monoids generated by the block products J'tl] 0 N for

MEV and NEW. In contrast with the wreath product, the block product

is not associative, even at the variety level. Iterated block products also appear

in many decomposition theorems although such statements must crucially take

into account the bracketing of such products. For instance, a finite monoid is

aperiodic if and only if it divides sorne

(MID ... (Mn- 2 0 (Mn-ID Mn)) ...)

where each Mi is idempotent and commutative [RT89], whereas a monoid be

longs to the strictly smaller variety DA (see Subsection 2.1.6) if and only if it

divides sorne

where each 1\IIi is idempotent and commutative [ST02].

A relational morphism from a semigroup S to a semigroup T is a mapping

7f : S ~ 2T such that 7f(x)7f(Y) ç 7f(xy) for any x, y E Sand 7f(x) =J. 0 for aIl

.1: E S. Furthermore, if S, Tare monoids, we require that 1T E 7f(ls).

The Mal'cev prod'Uct V@W of the semigroup variety V and the monoid

variety W is the class of monoids 1\11 such that there exists a relational morphism

7f from 1\11 onto a monoid N of W such that for aIl idempotents e E N we have

7f-I(e) = {m E Mie E 7f(m)} forms a se mi group belonging to V.

2.1.5 Congruences and Finite Counting

Many combinatorial descriptions of language-varieties can be obtained through

congruences that do sorne sort of "finite counting". We introdnce here sorne

useful notation and terminology. Let t 2 0 and p 2 1 be integers. We say that

x and y are equal threshold t (and write x = y (thresh t)) if x = y or x and y are

bath greater or equal to t. We further say that x, y are equal threshold t and

20 CHAPTER 2. BACKGROUND

modulo p (and write x = y (thresh t, mod p)) if x = y or x, y 2: t and x = y

(mod p). For a word u E A *, we denote by o{u) the alphabet2 of u, that is the

set of letters of A that occur in u. For any a E A we further denote by lula

the number of occurrences of a in u and by Œt(U) the vector of dimension lAI

which gives for every a E A the value of lula up to threshold t. Similarly, Œt,p(U)

denotes the IAI-dimensional vector holding the values lula up to threshold t and

modulo p.

A 871,bword u = a1a2 ... as, with ai E A of a word x E A* is a factorization

of x as

with Xi E A *. We denote by (~) the number of occurrences of 'u as a subword

of :r, i.e. the number of possible different factorizations of x as above.

For any, k 2: 0 t 2: 0, p 2: 1, we can define an equivalence relation rk,t,p

on A* as x ,k,t,p y if and only if x and y have the same number (threshold t

and modulo p) of occurrences of each subword u of length at most k. In fact,

the ,'s are congruences of finite index. Wh en the syntactic congruence of L is

refined by rk,t,p, we say that membership in L depends on the number threshold

t modulo p of subwords of length k. We williater on give algebraic descriptions

of such languages and we note for now:

Lemma 2.12 Let A be 80me finite alphabet. Any x E A* i8 rk,l,p-equivalent ta

a ward of length at m08t p ·IAlkP •

More generally, if Lo, ... ,Lk are languages in A* and al, ... ,ak are letters

in A, we denote by ((L LX L)) the number of factorizations of x as x =
00,)) ... ak k

wOa]'Wl ... akWk with 111i E Li. When the ai and Li are sueh that for any x

we have either (x) = 0 or (x) = 1 then we say that the
(LoalLl ... akLk) (LoajLl ... akLAJ

concatenation LOa1L1 ... akLk is u,nambigu,071,8.

2In sorne of the litterature, this is alternatively called the content of 'U and is denoted c('u).

2.1. ALGEBRAIC AUTOMATA THE ORY 21

For a language-variety L, we den ote by U Pol(L) the language variety gener

ated by unambiguous concatenations Laal ... akLk with Li E L. We further let

MpPol(L) denote the variety generated by the languages {xl ((LoalL~ ... akLk)) = j
(mod p)} for sorne 0 :S j < p - 1 and Li E L.

2.1.6 A Catalog of Varieties

The variety Theorem clearly establishes varieties as the central object of study

in the algebraic theory of regular languages. There are a number of ways in

which we might define varieties: through restrictions on automata or regular

expressions, through congruences, through generators for the variety, through

identities and so on. By the latter, we mean that varieties of semigroups can

often be conveniently characterized as the class of semigroups whose elements

satisfy a certain set of equalities3 , thus yielding an obvious algorithm to decide

if S lies in V when this set is finite. Consider for instance the variety Corn

of commutative monoids: these are exactly the monoids satisfying the identity

xy = yx. (It is also a simple exercise to show that the corresponding languages

are exactly those for which membership depends on the number of occurrences

of each let ter threshold t and modulo p.) In fact, we will sometimes loosely

use what are known as pseudo-identities although a formaI treatment of them

requires the presentation of a topological framework which we prefer to leave

out (see [Pin97]).

We list here a number of varieties of se mi groups and monoids which will be

of importance in later chapt ers and for each of them give a number of alternate

descriptions. We will be particularly interested in the combinatorial descriptions

of the corresponding varieties of languages (when ~uch descriptions are known).

These varieties are listed for quick reference in the index of notation.

3In fact, every variety of finite semigroups can be characterized as the class of semigroups
that ultimately satisfy a certain set of identities.

22 CHAPTER 2. BACKGROUND

Varieties of Groups

It should first be noted that no "nice" combinatorial description of the languages

whose syntactic monoids lie in the variety G of finite groups is known. This is

related to the apparent impossibility of understanding the combinatorics of non

solvable groups. There are, however, good descriptions of languages recognized

by a number of subvarieties of G so1 the variety of solvable groups [Thé79J.

First, for a prime P let us denote by G p the class of p-groups i.e. the groups

of order pŒ for sorne integer Cl!. This variety is characterized by the identity

xpw = 1. Moreover, it can be shown that L's syntactic monoid belongs to G p

if and only if there exists a k such that membership of x in L depends on the

values (~) (mod p) where lui :S k.

A group is said to be nilpotent if and only if it is the direct product Cl x

... X C k where each Gi is a Pi-group for sorne prime Pi. Alternatively, if x, y are

elements of a group G, we call [x, yJ = :r-1y- 1xy the commu,tatoT of x and y.

For two subgroups Hl, H2 of G we denote by [Hl, H2J the subgroup generated

by commutators [hl, h2J with h E H and k E K. We can form the sequence

C = Co '2 Cl '2 ... by setting GHI = [Ci, CJ and say that C is nilpotent of

class k if C k is the trivial group. It can be shown that this coincides with our

previous definition of a nilpotent group. We also recursively define a commutator

of weight t: any element of G is a commutator of weight 1 and 9 E G is a

commutator of weight t > 1 if and only if there exist u, v E G commutators

of weight h, t 2 respectively with t l + t 2 = t and such that 9 = [u, v J. It is

fairly simple to show that a group is nilpotent of class k if and only if the sole

commutator of weight k + 1 in C is the identity element le.

We denote by Gni!,k the variety of nilpotent groups of class k and by Gni!

the variety of aIl nilpotent groups. In particular, aIl G p are subvarieties of Gni!

and Gni!,l coincides with the variety Ab of Abelian groups.

Theorem 2.13 ([Eil76, Thé83]) A language L is recognized by a nilpotent

2.1. ALGEBRAIC AUTOMATA THE ORY 23

gmup G of class k if and only if there is an integer m 2: 2 sud/' that membership

of x in L depends on the number modulo m of occurrences in x of each subword

11, of length at most k.

In fact, one can choose m in this theorem to be the exponent of G. We will

also need the following fact about a very special subclass of of solvable groups:

Lemma 2.14 The gmup G lies in G p * Ab if and only if [G, G] lies in G p '

For any variety of groups H, we will denote as H the variety of monoids

whose subgroups aIl lie in H. We will refer to G so1 as the variety of solvable

'fT/,onoids.

Aperiodic Varieties

Recall that M is aperiodic if no subset of it forms a non-trivial group. We

denote by A the variety of aperiodic monoids. One can show that !vI lies in A

if and only if m W = mw+1 for aIl m E M.

A regular language L is said to be star-free if it can be described by an

extended regular expression (i.e. a regular expression built using letters of the

alphabet, 0, concatenation, Kleene star and the Boolean operations union and

complement) without using the Kleene star. For example, if A = {a, b}, the

language L = A*ab* is star-free because L = 0a0a0. The following (much

celebrated) theorem is due to M. P. Schützenberger:

Theorem 2.15 ([Sch65]) A language L is star-free if and only if !vI(L) 2S

aperiodic.

We have already mentioned that !vI is aperiodic if and only aIl its 1-l-classes

are trivial. One can similarly consider the variety J of J-trivial monoids which

is known to be defined by the identities (xy)W = (yx)W and xW = xw+1 .

We say that a language L is piecewise testable if there exists kEN such that

membership of any word w in L depends on the set of subwords of length at

most k occurring in w. The following is due to 1. Simon [Sim75]:

24 CHAPTER 2. BACKGROUND

Theorem 2.16 The language L is piecewise testable if and only if M(L) lies

in J.

There are similar well-known descriptions of the variety of languages cor

responding to the varieties Land R of respectively L.:-trivial and R-trivial

monoids.

We denote by Al the variety of idempotent semigroups, that is semigroups

in which every element is idempotent. Such semigroups are often called bands

and the lattice of subvarieties of Al is completely understood (see e.g. [GP89])

although only sorne of the smallest of these varieties will be of importance in

our worle Most importantly, we will consider the varieties:

• JI of commutative bands or semilattices;

• NB of normal bands, that is bands satisfying xyzx = xzyx;

• RI of R-trivial bands, i.e. bands satisfying xyx = xv;

• LI of L.:-trivial bands, i.e. bands satisfying xyx = yx;

• RB of regular bands, i.e. bands satisfying xyxzx = xyzx. It can be shown

that RB is the smallest variety containing both RI and LI.

Note that a language L has its syntactic monoid in JI if and only if member

ship of x in L depends on 0:(x). Correspondingly, JI is generated, as a variety

of monoids, by a single two-element monoid U1 consisting of the idempotents

{I,O} and multiplication defined in the obvious way. It can easily be shown

that U1 divides any monoid which is not a group.

Similarly, languages corresponding to the variety Acom of commutative ape

riodic semigroups are the ones for which membership depends on occurrences

of each letter threshold t for sorne t.

2.1. ALGEBRAIC AUTOMATA THE ORY 25

DS and its Subvarieties

For any variety of semigroups V, we denote by DV the variety of semigroups

whose regular J-classes all lie in V. All such varieties are contained in DS,

where S denotes the variety of all semigroups, and S lies in DS if and only if

each of its regular J-classes is closed under multiplication, which, from Lemma

2.6 amounts to requiring that each 1{-class of a regular J-class contain an

idempotent. Thus, a semigroup in DS which is regular is in the variety DG of

unions of groups. The following can be used to characterize DS:

Lemma 2.17 For any semigroup S, the following are equivalent:

1. S lies in DS;

3. for any x, y E S where x "5::1 y and x is regv1ar we have x J xy J yx;

4. for any x, y E S su ch that xyRx we have in fact RxY ç Rx·

This has a number of interesting consequences. For instance, if M is in

DS and u, v E M* are such that a(u) = a(v), then U
W and V

W are J-related.

Moreover, in the special case where M is a union of groups (or furthermore is

idempotent) then uJv whenever a(u) = a(v).

If M is out si de DS, then there exist two J-related idempotents e, f such

that ef <:1 e. One can use this to show that if NI is not in DS then M is either

divided by B 2 the syntactic monoid of (ab)* or divided by U the syntactic

monoid of A * bbA *. These two monoids are aperiodic and both contain the six

elements {l, a, b, ab, ba, O} although U has one more idempotent element than

B 2 . Their egg-box representations are given in Figure 2.1 with idempotents

marked by *'s. It is also easy to show that U divides B 2 X B 2 .

Let 0 denote the variety of orthodox semigroups. The variety DO will

play an important role in later chapters as we will exploit the combinatorial

26 CHAPTER 2. BACKGROUND

ab* a ab* a*

b ba* b ba*

U

Figure 2.1: The egg-box representations of U and B 2 .

description of the corresponding language-variety. By definition, M lies in DO

if and only if the product of any two J-related idempotents of NI is also an

idempotent in the same J-class. This is equivalent to requiring that NI be fiat

and lying in DS.

For a finite monoid M (and in particular any finite group G), we say that

x, y E A* are M -equivalent if for aIl morphisms 'ljJ : A* -+ NI we have 'ljJ(x) =

'ljJ(y). For example, ab and ba are M-equivalent for any commutative NI.

Lemma 2.18 Suppose M E DO and let WI, W2 E A* be G-equivalent faT any

subg7'Oup G of M. FaT any mOTphism 4> : A* -+ M and any x E NI such that

x4>(WI) 1-1. x4>(W2) R x we have in fact x4>(WI) = x4>(W2).

Proof. We first observe that for any idempotent e E NI and any u, v E NI

lying J-above e we have (eu)We(ve)W = (eu)W(ve)W since e, (eu)W and (ve)W are

J-related idempotents. Similarly, if f is another idempotent J-related to e we

have euvf = evJevf.

Let 4>(WI) = YI and 4>(W2) = Y2· Since l:YI 1-1. XY2 R x there must exist

s, t E NI lying J-below YI and Y2 with xst = x = x(st)W and XYits = :rYi =

2.1. ALGEBRAIC AUTOMATA THE ORY 27

XYi(tS)W. Let T be the submonoid of elements of M lying J-above (st)W and

'I/J : T -+ H(st)w(ts)W given by 'ljJ(x) = (st)Wx(ts)w. Using our earlier observation

we conclude that 'ljJ is a morphism since

Since W1 and W2 are equivalent with respect to the group H(st)w(ts)W, we must

o

Schützenberger [Sch76] proved the following characterization of languages

whose syntactic monoids lie in DO and have subgroups in sorne H:

Theorem 2.19 Let H be a variety of groups and J: denote the language variety

corresponding to JI V H. Then the syntactic monoid of a language L lies in

DO n H if and only if L is in UPol(J:).

As Lemma 2.22 will show, this also means DO n H = LI(@l(Jl V H).

Building on the work of D. Thérien and T. Wilke [TW98], we will now prove a

slight refinement of Schützenberger's Theorem by characterizing these languages

in terms of a convenient congruence. For a E a(u), the a-left (resp. a-right)

deco'mposition of u is the unique factorization u = '11,00,'11,1 with a tJ- a(uo) (resp.

a tJ- a(uI)). For a finite group G, we define rv~,k on A* where n = lAI by

induction on n + k. First, we have x rv~,o y if and only if x, y are G-equivalent.

Next, we let x rv~ k y when and only when: ,

1. x rv~ k-1 y; ,

2. a(x) = a(y);

3. For any a E a(x) = a(y), if x = XOaX1 and y = yoaY1 are the a-left

decompositions of x and y then Xo rv~_l k Yo and Xl rv~ k-1 YI; , ,

28 CHAPTER 2. BACKGROUND

4. For any a E a(x) = a(y), if x = XOaxl and y = yoaYl are the a-right

decompositions of x and y then Xo rv~,k_l Yo and Xl rv~_l,k YI'

This equivalence relation is well-defined since la(xo) 1 < la(x) 1 in (3) and

la(xr)1 < la(x)1 in (4). It is easy to check that rv~,k is in fact a congruence of

finite index.

Theorem 2.20 Let M = A* Ir, with lAI = n. Then 1\11 E DO n li if and only

if rv~,kÇ , for some kEN and G E H.

Proof. For one direction, we need to show that A * / rv~ k is in DO n H ,

for any integer k and any group G E H. We will appeal to the theorem of

Schützenberger which we previously cited as Theorem 2.19: it is an easy exer

cise to verify that each rv~,k-class can be described by an unambiguous concate

nation KOal .. . asKs where the Ki can be recognized by the direct product of

an idempotent and commutative monoid (to verify whether a(x) = a(y)) and

a group in H (to verify that x, y are G-equivalent). Schützenberger's Theorem

thus insures that any disjoint union of these classes forms a language whose

syntactic monoid lies in DO n H.

For the second part of our proof, let us denote as lu]' for any 'U E A*, the

, equivalence class of u. We define the R-decomposition (with respect to the

congruence ,) of a string u E A* as the unique factorization u = uoal'Ul ... a(Ut,

with ai E A and 'Ui E A* such that:

Because 1\11 lies ln DS we know by Lemma 2.17 that ai rJ ()I(Ui-l). In

particular, u = 'Uo al 'ula2' . . atUt is the al-left-decomposition of u. Symmet

rically, we can define L-decompositions of strings, which will relate to right

decompositions.

2.1. ALGEBRAIC AUTOMATA THEORY 29

Let now k be the maximum of the number of R-classes and the number of

L:-classes of M. Let B ç A be a sub-alphabet with IBI = m and suppose u, v

are strings in B*. We claim that if G E H denotes the direct product of all

maximal subgroups of M, then u rv~,mk V implies [u] = [v] and prove this by

induction on m.

For m = 0, the claim is trivially true. For the inductive step, assume now

m 2: 1 and suppose u rv~mk v, with a(u) = a(v) i- 0. Let 'u, = 'u,Oalul·· .a(u,t ,

be the R-decomposition of u with t :::; k. We write 'lUi for Uiai+l ... a(u,t and, by

our earlier remark, have 'lUi = Uiai+l 'lUi+l is the ai+l-left-decomposition of 'lUi,

so there must be a decomposition v = vOal ... atvt such that Ui rv'~-l,mk_i Vi

for i < t (Note that this actually implies Ui rv~_l,(m_l)k Vi). By the induc

tion hypothesis, we have lUi] = [V'i] for all i < t so [u] R [uOal ... Ut-lat] =

[VOal ... Vt-lat] 2:n [v]. 8ymmetrically, we get [v] 2:n ['u,] and thus ['U,] R [v].

With the symmetric argument, we can also establish ['U,] L: [v] so we have [u] 1-l [v].

Tt remains to show that in fact [u] = [v]. Note that by definition of rv
G , we

have that Ut and Vt are G-equivalent. 80 by Lemma 2.18 we obtain,

o

The variety DA of monoids whose regular .J'-classes form aperiodic semi

groups is contained in DO and is in fact equal to DO n î if l den otes the trivial

variety and so DA is captured by the congruences rv,~ k for the trivial group J. ,

8pecifically, Theorem 2.19 yields

Corollary 2.21 The syntactic monoid of a language L ç A* lies in DA if and

only if L is the disjoint union of unambiguous concatenations

with ai E A and Ai ç A.

30 CHAPTER 2. BACKGROUND

Monoids in DA and corresponding languages have many beautiful proper

ties and interesting algebraic, logical and combinatorial characterizations which

place them at the heart of many investigations in automata theory, complexity

and logic (see [TT02b] for a survey). In particular, DA is characterized by the

identity (xyz)Wy(xyz)W = (xyz)w. We note aIso that any aperiodic outside of

DA is not in DS and therefore admits one of B2 or U as a divisor.

Varieties Defined using Varieties

Given algebraic characterizations for varieties V and W and combinatorial de

scriptions for the corresponding languages, we can sometimes get good descrip

tions for varieties defined in terms of V and W. The first example that cornes

to mind is of course their join V V W, that is the variety generated by elements

of V and W. It is easy to see that the languages corresponding to V V W are

Boolean combinations of languages recognized by monoids in V or W but more

orten than not, obtaining a convenient algebraic description for the join is very

difficult. Similarly, a number of important varieties can be defined as V * W or

V 0 W and so on.

For any variety of monoids V, we denote by LV the variety of semigroups

S in which aU local submonoids (i.e. submonoids of the form eSe) lie in V.

Relevant local varieties in this work include the local p-groups LGp and the

locally trivial semigroups LI.

Theorem 2.22 ([PST88]) Let V be a variety oJ finite monoids with an asso

ciated variety oJ languages L. The variety oJ monoids associated with U POl(L)

is LI@V.

Theorem 2.23 ([Wei92]) Let p be prime and V be a variety oJfinite monoids

with an associated variety oJ languages L. The variety oJ monoids associated

with MpPol(L) is LGp @V.

2.1. ALGEBRAIC AUTOMATA THE ORY 31

The application of this theorem to the case V = Corn will bear special

importance in Chapter 4. We will also need the following characterization of

the variety LGp Q9) Corn.

Theorern 2.24 The monoid NI lies in LGp Q9) Corn if and only if every sv.b

grov.p of M lies in G p * Ab and for aU J -related idempotents e, f E 1\11 holds

(efe)P
W

= e.

Proof. The simplest way to obtain this theorem is through topological 1'esults

of [PW96]. Sinee we do not really need to introduee these sophisticated methods,

we sketch he1'e a proof from elementary p1'inciples.

Suppose first that there is a relational morphism 7f : M -t T with T com

mutative and for any idempotent d E T, 7f-1(d) E LGp . If e is an idempotent

of M, then there is an idempotent d in 7f(e) and e7f-1(d)e is a p-group. It

is easy to show that any idempotent f J-related to e is also in 7f-1(d) so

(efe)P
W

= e. Moreove1', sinee T is commutative, for any x, y in the group He,

holds d E 7f(x- l)7f(y-1)7f(X)7f(Y). Thus [x, y] E 7f-1(d) and so [.T,y]p
W = e and

therefore He is a group in G p * Ab.

Conve1'sely, let NI be such that for aU J-1'elated idempotents e, f E M holds

(efe)PW

= e. In particular, J\,{ lies in DS and so XWyw is J-related to (xy)w.

From each J-class Ji of]\([, we pick a maximal subgroup Ci: the subgroup

[Ci, Cil is normal in Ci and the group Ki = Ci/[Ci, Cil is Abelian. We also

den ote by Pi the canonical morphism from Ci into Ki and ei the idempotent in

Ci'

We define a monoid T in JI V Ab on the set U Ki, For t l E Kil and t 2 E K i2

such that (eil ei2)W and ek are J -related idempotents in M, we choose ml and m2

arbitrary pre-images in ail' Gi2 in p~l (il) and p,-:/ (i2) respectively and define

the multiplication of il and i2 in Tas:

32 CHAPTER 2. BACKGROUND

Note that the particular choice of ml, m2 is unimportant. It is also easy to

verify associativity.

We claim that there is a morphism cjJ from M to T such that the inverse

image of any idempotent in T is a local p-group. We define cjJ by:

cjJ(x) = Pi(exe)

where X W belongs to the J-class Ji and e is the idempotent in group Gi . One

must check that this is a well defined morphism. The crucial property we will

use is that if e is the idempotent of G i and f is another idempotent J -related

to e, then Pi(efe) = e. Indeed, since every group in M is in G p * Ab and

(efe)P
W

= e then efe lies in the subgroup [Gi , G,J Now we get:

cjJ(x) . cjJ(y) px(exxex) . py(eyyey)

p(cxy) (exy (exxex) (eyyey)exy)

cjJ(xy)

The same remark allows us to conclude that the inverse image of any idempotent

of T is a local p-group. D

If an element x of Sis regular, there exists by definition sorne a with axa = a

and xax = x and we say that a is an inverse of x. In general, inverses in that

sense may not be unique and from Lemma 2.6 one can easily show that every

regular element of S has a unique inverse if and only if every regular J-class

of S has exactly one idempotent per Rand L-class. If each element of S has

a unique inverse, we say that S is an inverse semigroup and denote by (Inv)

the variety generated by such semigroups. It is characterized by the identity

;r;wyw = yWxW and we have (Iuv) = JI * G = J 1 §lG (see [Pin95]).

A Brandt semigroup is a O-simple inverse aperiodic semigroup. We denote

by BSk the (unique) Brandt semigroup such that the non-trivial J-class has k2

elements.

2.2. COMPUTATIONAL COMPLEXITY 33

Lemma 2.25 The monoid Bk can be generated by k elements 0,1,0,2, ... , ak

subject to the relations:

2. aiai+1 (mod k) .. . ai+k (mod k) = ai for aU i.

We will write Bk to denote the Brandt monoid BS~. Note that we already have

stressed the importance of B2 when discussing subvarieties of DS.

One last variety which we will consider is DA*G which has recently emerged

as one of particular importance in logical descriptions of regular languages. The

following theorem is part of semigroup folklore and an explicit proof can be

found for instance in [STOl].

Theorem 2.26 The monoid !VI lies in DA * G if and only if for any two J

related idempotents e, f in M holds either ef <:1 e or ef is idempotent.

In particular, if M does not lie in DA * G, then it either admits U as a

divisor or it is non-fiat. In other words DO = (DA * G) n DS.

2.2 Computational Complexity

Computational complexity the ory is concerned with classifying languages 1Il

terms of the resources needed to decide them in a certain model of computation.

The classical and most natural measures are that of time and space required

on a Turing machine (see [Sip97, Pap94, GJ79]) but the study of alternative

measures and computation models have been a major part of the successful

development of the theory.

2.2.1 Complexity Classes, Reductions and Completeness

Computational complexity theory has been hampered by the frustrating inabil

ity of the field to provide explicit lower bounds on resources needed for explicit

34 CHAPTER 2. BACKGROUND

functions. We trust that the reader is familiar with the P versus NP problem:

despite years of intensive research, many leading theoreticians [Gas02b] feel that

super-polynomial time lower bounds for a problem in NP are as far out of reach

today as they were twenty-five years ago. Basic containments for the classes

of languages L, P, PSPACE of languages recognizable by deterministic Turing

machines in, respectively, logarithmic space, polynomial time, polynomial space

and their non-deterministic counterparts NL, NP, NSPACE are easy to obtain:

L ç NL ç P ç NP ç PSPACE = NSPACE;

but although L =1= PSPACE can be obtained through the space-hierarchy the

orem, none of the other inclusions above is known to be strict.

Because getting explicit complexity lower bounds is so difficult, reductions

have been a central tool of complexity theory since they allow us to at least

compare the relative complexity of various problems and obtain strong indica

tions that a given problem is hard. A many-one redv,ction from L ç A* to

J(ç B* is a function j : A * -+ B* such that for any x E A *, .T E L if and only

if j(x) E J(. If j is "easy enough" to compute (this might take on different

meaning in different contexts), then A is "at least as hard" to compute as B.

For a complexity class C, we say that a language J(is C-complete if J(lies in C

and for aIl L E C there is an "easyenough" reduction from L to J(. For instance,

NL, P, NP and PSPACE are aIl known to have complete problems under many

one reductions comput able in logarithmic space. Establishing that a problem

J(is, say, NP-complete under logspace reductions is significant because then J(

belongs to P if and only if aIl other problems in NP do. In Chapter 5 we will

be concerned with a number of problems lying in NP and will writeL::;'p J(

to denote the existence of a many-one reduction from L to J(computable in

polynomial time.

For J(ç B* we define a Turing machine with a J(oracle to be an ordinary

Turing machine with the ability to query a J(-oracle, that is to decide in 1 time

2.2. COlVIPUTATIONAL COlVIPLEXITY 35

step whether sorne w E E* belongs to K. We say that L is polynomial-time

Turing-reducible to K, and denote this L S:~ K if L can be decided by a Turing

machine with oracle K that runs in polynomial time. Note that a polynomial

time many-one reduction is a polynomial-time Turing reduction where only one

query to the oracle is made. Similarly, we will say that L is polynomial-time

bounded-truth-table-reducible to K, and den ote this L s:~t K, if L can be decided

by a Turing machine with oracle K that runs in polynomial time and makes

only a constant number k of oracle queries. We will say that a language is

NP-complete if it is NP-complete under polynomial time Turing-reductions.

Of course, for subclasses of L, completeness under, say, many-one logspace

comput able reductions is meaningless and much weaker notions of reductions

need thus be defined. A projection 7r of length s maps An to ES in such a way

that for each j E [s] there is a unique i E [n] such that the lh bit of 7r(x)

depends only on the i th bit of x.

2.2.2 Circuit Complexity

A Boolean circuit C with n (Boolean) inputs Xl, ... ,Xn is a directed acyclic

graph with three types of nodes (or gates): 2n input nodes of in degree 0, a

single output no de of out-degree ° and inner nodes with in- and out-degree at

least 1. The input nodes are labeled with Xi or Xi while the inner nodes and

output no de are labeled with a symmetric Boolean function chosen from sorne

predetermined base (unless otherwise specified, this base is {AND,OR}).

Such a circuit naturally computes a function from {a, l}n -t {a, 1} as follows:

given an input x = bl ... bn , nodes in C are recursively assigned a Boolean value.

First, the input gates Xi, Xi get value bi and I-bi respectively. Next, if the gates

gl, .. . , gt have been assigned values VI, ... , Vt and are the inputs to gate 9 (i.e.

are the set of nodes wi th arcs to g) then 9 is assigned the value f (VI, V2, ... , Vt)

where f is the label assigned to g. Because, every inner node has in-degree and

36 CHAPTER 2. BACKGROUND

out-degree at least 1, every gate in the circuit is assigned sorne value during this

process. The output node is always assigned a value last and this value C(x) is

the output of the circuit.

The language L (C) accepted by C is the set {x 1 C (x) = 1}. The size of the

circuit is the number of gates in C and its depth is the length of the longest

path from an input node to the output node. Of course, we can easily refine

this definition to allow circuits to pro cess non-Boolean inputs or to allow non

symmetric functions computed at each gate.

A circuit can only pro cess inputs of sorne fixed length although in general

we are interested in using circuits as machines to recognize subsets of {O, 1} *.

We say that the language L ç {O, 1}* is recognized by the circuit family C =

(Co, Cl, ...) if the nth circuit Cn processes inputs of length n and accepts Ln

{O,I}n. We can then define the size and depth of C as functions from N to N

in the obvious way.

Such models of computation, where different lengths of input are processed

by different machines are called non-uniform models. Their power exceeds that

of Turing machines since they can, for example, recognize arbitrary languages

over a 1-letter alphabet.

The following symmetric Boolean functions are traditionally used as parts

of bases in Boolean circuits: MODm is the function which returns 1 if the sum of

its input bits is divisible by m; THRESHOLDt returns 1 if at least t of its input

bits are 1; MAJORITY returns 1 if its input contains more 1 's than O's (i.e.

MAJORITY is THRESHOLDn /2)' We now define the following circuit complexity

classes:

• ACo is the class of languages which can be recognized by a family of

{AND, OR }-circuits of unbounded fan-in, polynomial size and constant

depth;

• CCO[m] is the class of languages which can be recognized by a family

2.2. COMPUTATIONAL COMPLEXITY 37

of {MODm}-circuits of unbounded fan-in, polynomial size and constant

depth;

• CCO is the union over aIl m of the CCO[m] classes;

• ACCo [ml is the class of languages which can be recognized by a family

of {AND,OR,MoDm}-circuits of unbounded fan-in, polynomial size and

constant depth;

• ACCo is the union over aIl m of the ACCO[m] classes;

• TCo is the class of languages which can be recognized by a family of

{MAJORITy}-circuits of unbounded fan-in, polynomial size and constant

depth;

• NC l is the class of languages which can be recognized by a family of

{AND,OR}-circuits with bounded fan-in, polynomial size and O(logn)

depth;

• NC is the class of languages which can be recognized by a family of

{AND,OR}-circuits with bounded fan-in, polynomial size and O(logk n)

depth for sorne k.

Since aIl these classes are defined using a non-uniform model of computa

tion, there is no way to relate them to the usual TimejSpace classes. However,

uniform versions of these classes can be devised by requiring that there ex

ist a Turing machine which, given n can pro duce a description of the circuit

Cn within strict resource bounds. Conversely, Turing machine models can be

made non-uniform by introducing so-caIled advice tapes. We will for the most

part completely disregard uniformity issues in this work but we note that the

inclusions

ACO,CCO ç ACCo ç TCo ç NC l ç L ç NL ç NC ç P ç NP ç PSPACE

38 CHAPTER 2. BACKGROUND

hold in suitably defined uniform and suitably defined non-uniform variants of

these classes.

Boolean circuits, and particularly shallow Boolean circuits have served as

an interesting tool in the study of par'aIlel computation. Just as P is usually

viewed as capturing the notion of sequential tractability, uniform NC is usually

thought of as the class of problems with efficient parallel algorithms. The book

of H. Vollmer [Vo199] presents a nice overview of circuit complexity and its

importance in theoretical computer science today.

Subclasses of NC l have been the subject of intense research since the 1980's

(see survey [A1l97]). The hope once was that techniques developed to separate

various subclasses of NC l would be eventually built upon and refined in order to

separate more powerful classes. Unfortunately, the important work on so-called

"nat.ural proofs" , int.roduced in t.he seminal paper of A. Razborov and S. Rudich

[RR97], indicat.es t.hat. a separation of even TCo from NP will l'equire radically

diffel'ent. met.hods t.han current. combinat.oriallower bound met.hods for circuit.s.

St.ill, circuit. complexity has delivered very interesting result.s. A series of

papers (start.ing from [Ajt.83, FSS84]) est.ablished t.hat. PARITY (i.e. MOD2) does

not. lie in ACo, thus separat.ing ACo from ACCo. Subsequent. work culminat.ed

in exponent.ial size lower bounds for dept.h k ACo circuit.s comput.ing an explicit.

funct.ion comput.able by dept.h (k + 1) linear-size ACo circuit.s [Has87]. Very

different. t.echniques further showed t.hat. in facto MODm does not lie in CCO[p]

for p prime, unless m is a power of p [Raz87, Sm086]. A lot of other result.s have

shown lower bounds for rest.rict.ed classes of CCO[m], ACCo and TCo circuit.s

but despit.e impressive work in t.his field, we know of no super-linear size lower

bound for depth-3 CCO[6]-circuits computing an NP-complete problem.

Many surprising circuit-complexity upper bounds have also been est.ablished.

Let. us ment.ion for inst.ance that. THRESHOLDlogC n [FKPS85, HWWY94] and ad

dit.ion oflog n n-bit numbers (see [St.r94]) can be done in ACo while division and

2.2. COMPUTATIONAL COMPLEXITY 39

multiplication of n n-bit numbers can be computed in uniform TCo [HABa2].

2.2.3 Branching Programs

A branching program on n Boolean variables is a directed acyclic graph with a

distinguished source node of in-degree a and two sink nodes So and S1 of out

degree a. The source nodes and the inner nodes are labeled with a variable X'i

and have two outgoing edges labeled a and 1. A branching program represents

in a natural way a Boolean function f : {a, l}n -+ {a, 1}: a given x E {a,l}n,

defines a unique path from the source to one of the sinks by following at any

node labeled Xi the edge labeled with the value of the i th bit of x. Naturally,

f (:r) is the label of the sink reached in this way.

We will view branching programs (or BP's for short) as a natural non

uniform computation model somewhat akin to Boolean circuits. They are also

very useful wh en seen as a data structure for Boolean functions (in that case they

are alternatively referred to as binary decision diagrams). Natural measures for

the complexity of a branching program include size (number of nodes) and depth

(length of longest source to sink path).

Branching programs have received a lot of attention both from theoreticians

and from researchers in more application oriented fields such as verification and

model checking. The book of 1. Wegener is an excellent introduction to both

theory and applications of BP's [WegaaJ.

A restricted class of BP's plays an important l'ole in the motivation for our

worle A bounded-width bran ching program (or BWBP) of width k is a special

case of BP in which each inner node belongs to sorne level and edges go only from

level i to level i + 1. Furthermore, aH nodes of a given level query the same input

bit. This model was introduced by [BDFP86], partly as means of identifying

interesting subclasses of NC1
. lndeed, it is easy to show that every Boolean

function that can be represented by a family of BWBP's of polynomial depth

40 CHAPTER 2. BACKGROUND

can be computed by a family of Nel circuits. It was conjectured at the time that

the MAJORITY function could not be computed by BWBP's in sub-exponential

length. This was disproved by the remarkable result of D. Barrington which

will be discussed in our next chapter.

Chapter 3

Programs over Monoids

The class of languages which can be recognized via morphism by a finite monoid

is quite limited. Over the past twenty years, different formalisms have been

introduced to generalize the notion of recognition of a language by a monoid.

The focus of this chapter is a model of computation introduced by D. Barrington

and D. Thérien known as programs over monoids.

3.1 From Homomorphisms to Programs

3.1.1 The Program Model

An n-input program cP over a monoid1 M (or M-program) of length t is a

sequence of 7:nstrv,ctions

cP = (i l, fI) (i2 , 1"2) ... (it, ft)

where the ij 's are indices in [n] and the ij 's are functions from the input alphabet

A into NI. We will sometimes refer to the jj's as qv,ery functions. As the

terminology suggest, such programs process only inputs of length n and on

input x = XIX2 ... X n , the output cP(x) of cP on x is

1 More generally, one can consider programs over semigroups although most of the literature
focuses on programs over monoids. This refiects the fact that the existence of an identity
element is helpful wh en designing such programs.

41

42 CHAPTER 3. PROGRAMS OVER MONOIDS

Note that the right-hand side can be seen alternatively as t elements of NI or

as m, their product in M. We say that cp accepts x if cp(x) belongs to sorne

accepting subset F ç 111 and say that L ç An can be recognized by cp if there

exists sorne F such that L = {x : cp(x) E F}.

In general, we say that L ç A* can be recognized by an NI-program oflength

s(n) if there is a sequence (CPo, CPl, ...) where CPn is an n-input program oflength

bounded by s(n) that can recognize Ln An. In effect, such a sequence can be

seen as a non-uniform projection of length s(n) from L to the word problem

for M but we will use in this context the program terminology. Note that a

morphism is a special case of a program-family: each CPn has length n, the i th

bit queried is always the i th input letter and the query function is always the

same.

The program model is non-uniform and has super-Turing computational

power although, just as Boolean circuit models, standard uniform versions of it

can be defined.

The motivation for introducing this model of computation originally lies in

the study of bounded-width branching programs. D. Barrington observee! that

the edges connecting two levels of a BWBP can be se en as two transformations

on k points fo, fI : [k] -+ [k] where fo and fI correspond to the edges with labels

o and 1 respectively. Thus, a BWBP can be se en as a program over the finite

monoid generated by aIl functions occurring in the BP. This algebraic point of

view led to a surprising theorem.

Theorem 3.1 ([Bar89]) The language L ç A* is recognized by a progmm of

polynomiallength over some finite monoid M if and only if L lies in non-uniform

NCl
.

In fact, we can replace the finite monoid M by any non-solvable group and

the theorem relies on a property of finite simple non-Abelian groups which

had already been uncovered twenty years earlier by W. Maurer and J. Rhodes

3.1. FROM HOMOMORPHISMS TO PROGRAMS 43

[MR65] although its computational complexity implications were first noticed

by Barrington. In particular, because MAJORITY lies in NC l and because S5,

the group of permutations on 5 points is non-solvable, MAJORITY was shown to

be comput able by a family of width-5 branching programs of polynomial depth.

There exists a deep connection between shallow Boolean circuits and pro

grams over monoids which was gradually uncovered in the 80's using tools which

had been developed in the context of algebraic automata theory. Barrington

and D. Thérien showed that many natural subclasses of NC l also had mee

algebraic characterizations [BT88], the most important of which are:

Theorem 3.2 Let L be a language in A * :

• L lies in non-uniform ACo if and only if it can be recognized by a program

of polynomiallength over some finite aperiodic monoid M;

• L lies in non-uniform CCO if and only if it can be recognized by a program

of polynomial length over some finite solvable group G;

• L lies in non-uniform ACCo if and only if it can be recognized by a progra:m

of polynomial length over some finite solvable monoid M.

• L lies in non-uniform NC l if and only if it can be recognized by a program

of polynomial length over some finite non-solvable group G.

Moreover, uniform versions of these theorems can easily be obtained. Re

markably, PARITY, the word problem of the group C2 , the smallest non-aperiodic

monoid, was historieally the first language shown not to belong to ACo [FSS84].

In retrospect, Theorem 3.2 shows how natural a target PARITY truly was.

Programs over monoids thorefore offer an algobraic approach to the study

of shallow Boolean circuits and BWBP's. This has many advantages: foremost

powerful results and insights from algebraic automata theory can be ported to

circuit complexity theory. Secondly, very fine natural parametrizations of NC l

44 CHAPTER 3. PROGRAMS OVER MONOIDS

can be obtained [MPT91], sorne of which do not have a natural description in

terms of circuits. The same phenomenon also helps us choose reasonable and

natural tar'gets for progress towards the resolution of questions such as CCO

vs. NC l
: indeed, this question boils down to bounding the power of polynomial

length programs over a solvable group. Once the question is posed in these

terms, a natural research program emerges: try to bound the computational

power of polynomiallength programs over what algebraic automata theory sug

gests are more and more intricate classes of groups.

This was pursued early on in [BST90] where it was shown that AND cannot

be computed by a program over a nilpotent group and cannot be computed in

sub-exponential length by a program over any group in the variety G p * Ab.

It can also be shown that computing MODm requires programs of exp onen

tial length over groups in this variety unless m divides the order of the group

[BS94, BS99]. These results can be translated into size lower bounds for circuits

consisting of MOD q gates at the input level followed by a number of MODp gates

for a prime p (see also [ST, Cau96]). The same techniques led to a proof that

CCO[g] circuits cannot compute AND in sub-linear size [Thé94] and it is fair to

say that the state of the art lower bound technology for modular circuits was

developed using the algebraic approach.

The power of programs over aperiodics has also been explored: one can glve

an algebraic characterization of ACo restricted to circuits of depth k using the

"dot-depth" parametrization of aperiodics (see [BT88]) and precisely charac

terize the power of polynomial-length programs over semigroups of dot-depth 1

[MPTOO] and monoids in DA [GT03]. It has also been shown that sorne aperi

odics are too weak to compute the MODm function with programs, regardless

of length [Thé89].

The results mentioned thus far bound the power of polynomial length pro

grams over fixed varieties of "weak" monoids. Other results bound the ex-

3.1. FROM HOMOMORPHISMS TO PROGRAMS 45

pressiveness of short programs over "powerful" varieties of monoids: it can be

shown that families of programs of length o(n log log n) have very limited ca

pabilities (see comments in Section 3.4) and in particular that they cannot

compute MAJORITY regardless of what the underlying mono id is [BS95]. A

completely different approach has shown that for any group G, the output of

any "rich enough" G-program which queries each input bit only once is very

close to the uniform distribution on G [GRTOO].

3.1.2 Summary of Results

In this chapter we present sorne new results about the limited computational

power of programs over certain varieties of monoids as weIl as introduce further

motivation for the next chapters. We first review in the next section basic

properties of programs and establish sorne of the tools that we will use in the

later sections. Section 3.3 constitutes the core of this chapter: we try to answer

two fundamental questions about the program over monoid model. On one hand

we seek to characterize the monoids which are powerful enough to recognize

arbitrary languages when no length restriction is imposed on the programs.

The existence of such monoids, which we will calI universal can easily be proved

and corresponds to the weIl-known fact that even exponential-size depth-2 ACa

circuits have univers al computing power. On the other hand sorne monoids

are so weak that any computation they can do can be realized by a program

of polynomial length. Surprisingly, this polynomial length property, which we

will define more formaIly, appears to be dual to universality. vVe conjecture

that every finite monoid M is either universal or able to perform aU of its

computations in polynomial length, depending on whether M belongs to the

variety DA * G n G nil . Our main result supporting the conjecture is that this

dichotomy does hold if M belongs to the variety DS. We also prove that NI

is universal if it does not belong to DA * G but that it has the polynomial

46 CHAPTER 3. PROGRAMS OVER MONOIDS

length property if it is the wreath product of an aperiodic monoid in DA and

a p-group G. For the most part, these results have been published as [TT02a].

P. McKenzie, P. Péladeau and D. Thérien [MPT91] showed that for any

variety V of monoids, the class P(V) of languages which can be recognized

by polynomiallength programs over a monoid in V is essentially characterized

by the regular languages in P (V). For every V there exists a maximal variety

of monoids W such that P(V) = P(W) and wh en V = W, we say that

V is a program-variety. In the terminology of H. Straubing [StrOO], V is a

program-variety if the only monoids whose multiplication can be "simulated"

by a polynomiallength program over a monoid in V are the monoids of V itself.

In Section 3.4, we argue that identifying such varieties is the very goal of an

algebraic approach to Nel . For certain program-varieties V, the computational

limits of V-programs are even more dramatic because any language L that

contains a so-called neutral letter and can be recognized by a program over

sorne NI E V can be recognized by a morphism over sorne N E V. We prove

that Corn and J have this property and discuss the implications.

3.2 Basic Properties of Programs

Lernrna 3.3 Let G be an arbitrary group and let Gc be the subgroup generated

by all commutators of weight c. Then any function f : AC -+ G c can be realized

by a G-program cP! of length (dGY, where dG depends on G.

Proof. We use induction on c: if c = 1, the program is simply cP! = (1,1).

For c > 1, let 9 be a commutator of weight Cl and h be a commutator of weight

C2, where Cl + C2 = c. For any fixed x in ACI, there exists, from the induction

hypothesis, a pro gram CPx,g that outputs 9 on input x and IG on any input

different from x. Similarly, for any fixed y in AC2 there is a program cPy,h that

outputs h on input y and I G on any other input. By the induction hypothesis,

such programs also exist for g-l and h-1 since these are also in GC! and GC2

3.2. BASIC PROPERTIES OF PROGRAMS 47

respectively. Let now z be in AC, with z = xy, where x is in AC! and y is in AC2:

we construct c,Dz,[g,hj = c,Dx,g-1c,Dy,h-1c,Dx,gc,Dy,h, where it is understood that the first

and third segments query the prefix of length Cl of the input while the second

and fourth segments query the suffix of length C2. This program is easily seen

to have the property that it yields [g, h] on input z and the identity element on

any other input. We finally get the desired program c,D f as the concatenation of

the various c,Dz,f(z) , for aIl z in AC. Note that the program has length exponential

III C. o

Remark 3.3. In particular, if a group G is not nilpotent of class C then

GC+1 contains sorne 9 #- IG and there exists a G-program c,D of length

exponential in C such that <f;(x) = 1 if and only if aIl bits of x E {D,lY+l

are on and c,D(x) = 9 otherwise.

It has proved fruitful, in the study of complexity classes lying within NC l

to represent subsets of {D,l}n by polynomials over a finite ring. This was

the starting point of R. Smolensky and A. Razborov's algebraic approach to

proving that PARITY and MAJORITY do not lie in ACo [Sm086, Raz87] and other

subsequent similar work (see the survey [Bei93]). We will represent functions

from An --+ Zp as polynomials over the finite ring Zp in the k· n boolean variables

X~l , X~'2 , ... , x~s , ... , X~l , ... ,x~s w here A = {al, ... , as}. The intended meaning

of these variables, of course, is that x~.i is equal to 1 if the i th letter of the input

x E Anis aj and is D otherwise. For this reason we will in fact be working over

the semi-ring Zp[X~l, ... ,x~s] modulo the identities (X~j)2 = x:,j for aIl i, j and

x~j . X~l = D for aIl i and aU j #- l.

Snch polynomials naturally represent a function from An --+ 'LI' and, con

versely, any function f : An --+ Zp can be represented as a polynomial of this

form because the polynomial X~lX~2 ... x;: is equal to 1 if the input x is CIC2 .. ' Cn

and is D otherwise. We say that the language L ç Anis recognized by the poly-

48 CHAPTER 3. PROGRAMS OVER MONOIDS

nomial r if for aU x E An, r(x) = xdx). Typical measures of "complexity" for

these polynomials include degree and size (number of terms).

We will find it is useful to take this point of view wh en bounding the com

putational power of certain monoids. The next lemma, for instance, shows that

programs over p-groups can be represented by particularly "simple" polynomials

over Zp.

Lemma 3.4 Let G be a p-group. For every n-input G-program <fy over the

alphabet A and any accepting subset F ç G, the language L (<fy) is recognized

OVe7' Zp by a polynomial of degree at most dG.

Proof. We first note that this Lemma is proved in [PT88] in the special case

A = {O, 1}. We will use the characterization of languages recognized by p-groups

presented earlier in Chapter 2. RecaU that the word problem for a p-group boils

down to counting modulo p the number of occurrences of aU subwords of length

at most kG.

Let <fy be an n-in pu t G-pro gram over the alphabet A = {al,' .. , 0,8 }. Note

that if the polynomials rI, r2 recognize LI, L2 E An respectively, then (1 - rI)

recognizes An - LI and rlr2 recognizes LI n L2. Thus, in light of the previous

remarks, it is sufficient to show that for aU u E Gk and aU 0 < i < p - 1, the

set {x E An : (.p~)) = i (mod p)} is recognized over Zp by a polynomial of

bounded degree. To see this, note that any occurrence of '1.1, as a subword of

<fy(x) , is the result of k instructions giving a specifie output. In other words,

there are input variables Xii' ... ,Xik and alphabet letters bl , ... ,bk such that 'U

occurs in <fy(x) precisely because Xij = bj in x. These Xij have the correct value

if and only if the monomial x~: ... x~Z evaluates to 1 so we can count the Humber

of occurrences of u modulo p using a polynomial of degree bounded by k. 0

vVe have already mentioned that wh en reasoning about programs it is often

useful to think of the output of the program as the word in M* corresponding

3.2. BASIC PROPERTIES OF PROGRAMS 49

to the concatenation of the elements output by each instruction. Similarly,

notice that an n-input program is a finite sequence of instructions, i.e. a finite

word over the alphabet L; of size n x AM consist of pairs (i, f) with i E [n]

and f : A --7 M. This point of view allows us to reason, for example, about

the similarity in behavior of two programs which are equivalent with respect to

certain finite index congruences over L;*.

Consider for instance two n-input programs (h, cjJ2 over an idempotent com

mutative monoid M. It is easy to see that if over this large alphabet we have

Œ(cjJd = Œ(cjJ2) then for any x E An we will have Œ(cjJl(X)) = Œ(cjJ2(X)) and thus

cjJ l (x) = cjJ2 (X) .

If N is a submonoid of M, then every N-program is also an M-program. If

N = e(M) for sorne surjective morphism e, then this morphism can be used to

transform an M-program cjJ to an N-program e(cjJ) in the obvious way: every

instruction of cjJ, say (i, f) becomes (i, cjJ(f)). Then, obviously, e(cjJ) (x) = e(cjJ(.'r))

for any input x. The opposite process is in fact more interesting: if 'l/J is an N

program, then there is an M-program cjJ such that e(cjJ) = 'ljJ and so any language

recognized by an N-program with accepting subset F ç N can be recognized

by an M-program using accepting subset e- 1(F).

Note also that wh en cjJ = (il, fI) ... (is, fs) is a program over a group C, we

will write cjJ-1 to den ote the program (is, fs-1) ... (il, f1-1). Of course for any

input x we get (cjJ(x))-l = cjJ-l(x).

It is sometimes convenient to consider so called k-programs over l'vI in which

instructions are allowed to query k-tuples of input positions instead of single

positions, The computing power of polynomial-length k-programs do es not

exceed NC l although for a specific monoid polynomiallength (k + 1)-programs

might be strictly more powerful than polynomiallength k-programs. A simple

trick shows that every polynomiallength k-program over M can be rewritten as

a t-program in which the t-tuples are only queried once and in sorne fixed order

50 CHAPTER 3. PROGRAMS OVER MONOIDS

[StrOO]. This formalism is helpful wh en relating programs to logic [Str94, StrOl].

3.3 Universality vs. Polynomial Length Prop
erty

In Theorems 3.1 and 3.2 the polynomial restriction on the length of the programs

is crucial. As the next example illustrates however sorne monoids cannot take

advantage of a relaxation of the length requirement.

Example 3.4. Let cp be an n-input program of length S over a commutative

NI. Any two instructions in cp can be commuted at will without affecting the

output of the program since the underlying monoid is commutative. Moreover,

two adjacent instructions that query the same input letter can be coalesced

into a single instruction outputting the product in M of the outputs of the

two original instructions. Therefore there is an n-input program cp' of the form

cp' = (1, h)(2, 12) ... (n, ln)

such that cp(x) = cp'(x) for aIl .1: E An.

When analyzing the computational power of programs over commutative mo

noids, the restriction to polynomial length is thus completely irrelevant be

cause any such program can be assumed of length n.

We say that a monoid M has the polynomial length proper·ty (often abbrevi

ated PLP) if there exists a polynomial p(n) such that for each n and for every

n-input 1I1-program cp with target set F<j; ç M, there exists an equivalent n

input M-program 'ljJ, with possibly a different target set F'Ij; ç 111, of length

p(n). By equivalent we mean that for any input x, we have cp(x) belonging to

F<j; if and on 'ljJ(x) belongs to F'Ij;.

It is not de aI' whether the PLP is preserved by taking submonoids or morphic

images and by taking direct products. Let M have the PLP and let N be a

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 51

submonoid of NI: an N-program is also an M-program and this]\'f-program

can be reduced to an equivalent one of polynomial length, but this new NI

program may involve in its instructions elements which are outside of N, and

hence may not be an N-program. Let next N = O(M): for any N-program cp,

we have se en that we can construct an M-program p such that O(p) = cp, and p

can be reduced to an equivalent program of polynomiallength, say 'ljJ. We are

unfortunately not guaranteed that the accepting subset of'!jJ is the pre-image of

sorne subset of N, i.e. it may be that e(nl) = e(n2) where nl is accepting and n2

is rejecting: hence, there is no clear way of transforming 'ljJ into an N-program.

A similar problem occurs when we look at programs cp over Mx N where }I.![and

N have the PLP unless the accepting subset is the direct product of a subset of

M and a subset of N. This is probably not an easy problem to get around as

the following example illustrates.

Example 3.4. Since the AND function lies in NCl , there is a polynomial

length program to compute it over the (non-solvable) group S3 X A5' How

ever, any program computing AND over the subgroup 8.3 is known to require

exponentiallength [BST90]. This does not ruin the possibility that the poly

nomiallength property is preserved under division, as PLP provably does not

hold in S3 x A5, but the example shows that an argument to prove the closure

property will crucially depend on PLP holding for the larger monoid.

This inconvenience, however, motivates the following definition: we say that

an NI-program '!jJ is a contraction of an M-program cp if

1. '!jJ(x) = cp(x) for any x E An;

2. Every instruction in '!jJ(x) is an instruction cp.

In other words, '!jJ can be obtained from cp by permuting, deleting or duplicating

instructions of cp and the two programs always have the same output. We further

52 CHAPTER 3. PROGRAMS OVER MONOIDS

say that NI has the polynomiallength contraction property (abbreviated PLCP)

if there exists a polynomial p(n) such that for each n and for every n-input

M -program cp, there exists a contraction 1/J of cp whose length is bounded by

p(n). For example, the arguments given in Example 3.3 show that commutative

monoids have the PLCP. Of course, any M having the PLCP also has the PLP

but in addition:

Lemma 3.5 If M, N are monoids with N -< M and M has the polynomial

length contraction property than so does N. Moreover, if Nh and M 2 have the

PL CP, then Ml x NI2 has the P LP.

Proof. Suppose that N is a submonoid of M and let cp be sorne n-input N

program. One can alternatively consider cp as an M-program and, sinee 1'/1 has

the PLCP, there exists a contraction 'ljJ of cp whose length is bounded by p(n).

Now 'l/; is itself an N-program since all its instructions are instructions in (p.

If N = e(M), then for any n-input N-program cp let 'l/; be a contraction (of

length at most p(n) of an NI-program T E e-l(cp). For any x E An, we have

(e('ljJ))(x) = e(('ljJ) (x)) = cp(x) and, sinee every instruction of'ljJ is an instruction

of T, every instruction of e('ljJ) is an instruction of e(T) = cp. Henee, e('1/)) is a

contraction of cp of length at most p(n).

Let cp = (il, fd ... (is, fs) be a program over Ml x M 2 with and let CPMI (resp.

CPMJ be the pro gram obtained from cp by replacing each fi by gi : A ~ Ml X M 2

(resp. hi : A ~ Ml X .M2) defined as follows: for each a E A, if fi (a) = (ml, md,

with ml E Ml and m2 E Nh then g,Ja) ~ (ml, 1M2) and hi(a) = (l Mll m2). Of

course, cp(x) = CPMI (x) . CPM2(X) for all x. Now CPlvh and CPM2 can be viewed

as programs over Ml and M 2 respectively and can therefore be contracted to

polynomial length 1/J Ml and 1/J M2 respectively. Clearly cp and 'l/; Ml . 'l/; M2 are

equivalent. 0

As we will see, it is often convenient, in order to establish that N has the

PLP, to prove that N divides sorne M having the PLCP.

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 53

On the other hand, say that M is universal if every language L ç A * can be

recognized by a family of 1I1-programs, possibly of super-polynomial size. Such

monoids exist of course and we will give many such examples. For instance, it

is a simple exercise to build a branching program of width 3 for an arbitrary

Boolean function on {a, 1 }n. We also note:

Lemma 3.6 The class of non-universal monoids is closed un der division.

Proof. Let N be a non-universal monoid. Let first M be a submonoid of

N. Since any M-program is also an N-program, M cannot be universal either.

Let next M = B(N) for sorne surjective morphism B. As we argued in the last

section, every language recognized by an M-program can be recognized by an

N-program so if N is non-universal, M cannot be. 0

We do not know if non-universal monoids form a variety however because wc

are unable to prove yet that the class of non-universal monoids is closed under

direct product.

Are universality and PLP related properties? It is easy to see that if M has

the PLP then it certainly is not universal for there are doubly-exponentially

many subsets of An but only exponentially many M-programs of length p(n).

In fact, we believe that the two notions are dual to one another and in the

remainder of this section, we will argue in favor of the following conjecture.

Conjecture 3.7 Let M be a finite monoid. The following are equivalent:

1. lVI has the polynomial length property;

2. 111 is non-univer-sal;

3. lVI belongs to the variety DA * G n G niJ .

We have already argued for (1 '* 2) and will show (2 '* 3). Our strongest

indication that this conjecture is true is that this duality of universality and

PLP holds for any monoid in DS.

54 CHAPTER 3. PROGRAMS OVER MONOIDS

3.3.1 A Dichotomy Theorem for DS

We start with a generalization of Lemma 3.3.

Lemma 3.8 If G is nilpotent, it has the polynorniallength contraction pTOperty.

Proof. Suppose G is nilpotent of class k with exponent m. We know that

if u, v E G* have the same number, mod m, of occurrences of any subword

of length at most k then evala(u) = evala(v). Let us consider an n-input G

program cp as a word over the alphabet ~ = [n] x GA of possible instructions.

By Lemma 2.12 there exists a word '1jJ over ~ of length at most m . 1~lk.rn and

such that 'l/J and cp have the same number of occurrences of any subword of

length at most k (mod m). Of course, '1jJ is just another G-program and we

daim that for any input x we will have cp(x) = '1jJ(x). Indeed, any occurrence

of a length t subword .91 ... gt of cp(x) (seen as a word in G*) results from a

subword W E ~* of length t in cjJ comprising the instruction which output these

91, ... ,9t on input .T. Because cp and 'l/J have the same number of occurrences

of any subword in ~* of length at most k, then for each x, cp(x) and 'l/J(x) will

also have the same number of occurrences of any subword in G* of length at

most k and so cjJ(x) = 'l/J (x) on any x. Any cp thus has a contraction '1jJ of length

m. 1~lk.rn = O(nd). 0

We can extend this proof to direct products of a commutative idempotent

with a nilpotent group.

Lemma 3.9 If M is in JI V Gni! then M has the PL CP.

Proof. The proof is just a slight complication of the previous argument.

Suppose M has exponent m and assume all its subgroups are nilpotent of class

k. Consider an n-input lI1-program cjJ as a word over the alphabet ~ = [n] x lI1A

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 55

of possible instructions. By Lemma 2.12 there exists a word 'ljJ over I: of length

at most m· 1I:lk and such that 'ljJ and cp have the same alphabet and the same

number of occurrences of any subword of length at most k (mod m). Now '~)

is just another M-program and for any input x we will have cp(x) = 4)(x) since

the words cp(x) and 'ljJ(x) (seen as words in M*) will have the same alphabet

and same number of subwords of length at most k (mod m). o

Considering congruences on the alphabet of possible instructions made sense

in these examples because we could find a small representative of each congru

ence class. Similarly, we will exploit:

Lemma 3.10 For any .!inite alphabet A of size n, any integer t, and any nilpo

tent group G of class k and exponent m, each rv~,t class has a representative of

size O(nk
).

Proof. Recall the definition of rv G : two words x, y are rv~cequivalent if they ,

are G-equivalent, have the same alphabet and their a-left-decompositions (and

same for a-right) XOaXI and yoaYI are such that Xo and Yo are rv~_l cequivalent ,

and Xl, YI are rv~ t_requivalent. We will say that a position in .r, is a rv~ C , ,

bookmark if it holds the occurrence of a such that XOaxI is the a-right or a-Ieft

decomposition of x or iffor sorne b-Ieft-decomposition of x = x~bx~ it is a rv~_l,C

bookmark of x~ or a rv~,t_l of x~ (or symmetrically for a b-right-decomposition).

Note that for any x, the rv~,t bookmarks are the same no matter what the group

Gis.

Let x be a word in A *. We begin by mar'king certain special positions in

x and define our marking scheme Sn,t by induction on n + t as follows. For

n + t = 1, we do not mark any letter. For n + t > 1, we begin by marking the

first and last occurrence of any letter in Œ(X). If we have marked an occurrence

of a corresponding to the a-left decomposition x = XOaXI we recursively mark

Xo using mar'king scheme S!a(xo)!,t and Xl using Sn,t-l. We symmetrically mark

56 CHAPTER 3. PROGRAMS OVER MONOIDS

recursively the segments defined by the a-right decomposition of x. A simple

induction shows that the number of letters marked in Sn,t is bounded by O(nt).

Of course, this scheme was tailor-made to mark aIl the occurrences of letters

which are rv~ cbookmarks in x. Suppose x = uavbw where a, b are consecutive ,

marked letters and let v' be such that 0:(v) = 0:(v') and v and v' have the

number modulo m of occurrences of any subword of length k or less. If we

let x' = uav'bw then x rv~,t x' because v and v' are G-equivalent and because

the rv~,cbookmarks in x and x' coincide. We know that v' can be chosen of

length O(nk) and since there are at most O(nt) in x that are delimited by two

consecutive marked positions we can construct sorne word in the rv~,cclass of x

that has length O(nk+ t). D

Lemma 3.11 If M is in DO n Gni! then M has the PL CP.

Proof. Since M lies in DO n G nib there exists a nilpotent group of class k and

exponent m as weIl as a constant t such that any u, v E M* with 'U rvfLl,t v we

have evalM(u) = evalM(v). Consider an n-input M-program r/J as a word over

the alphabet I; = [n] x lvfM of possible instructions. By the previous Lemma,

there exists a word 'l/J over I; of length at most m ·1I;l kS and such that 'l/J rv~l,t r/J.

For any input x, we will show that if r/J and 'l/J are rvfcrelated then the ,

words r/J(x) and 'l/J(x) in M* can be shown ""'fcrelated, where s = 100(r/J(x)) l, ,

using induction on s + t. The case t = 0 has already been argued in the

proof of Lemma 3.8. Fix x and consider the a-left decomposition of r/J(x) for

sorne a E o:(r/J(x)). This a had to be output by sorne instruction querying

bit i and applying sorne function fj where fj (Xi) = a. Thus, the (i, fj)-left

decomposition of r/J is r/J = r/Jo(i, fJ)r/Jl where (Po(x) Goes not contain any 0,. There

must exist a corresponding (i, fj)-left decomposition of'l/J as 'l/Jo(i, fJ)'l/J1 and such

that 'l/Jo(x) does not contain any a either. By induction we get r/Jo rvf_1 t 'l/Jo(x) ,

and r/J1(X) rvft_l 'l/Jl(X) and by left-right symmetry r/J(x) rvft 'l/J(x) as claimed. , ,

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 57

We can therefore construct a polynomial length contraction of cp so M has

the PLCP. 0

At least within DS, we will show that DO n G nil is the variety that exactly

captures monoids having the PLP. We first state a result of [BST90]:

Lemma 3.12 If G is a group which is not nilpotent, then it is universal.

Proof. If G is not nilpotent, then for every n there is a commutator h E Gn

that is not the identity. Fix sueh an h arbitrarily. Let L be an arbitrary subset

of An. Let f : An -+ Gn be defined by f(x) = h if X ELand f(x) = 10therwise.

By Lemma 3.3, f can be realized by a G-program and L is recognized by this

pro gram and aeeepting su bset {h}. 0

In particular this lemma ensures universality for any monoid containing a

non-nilpotent subgroup.

Lemma 3.13 If M contains a non-fiat regular .:J -class then NI is universal.

Proof. If M contains a non-fiat regular J-class, there exist J-related idem

potents d, e, f in NI with dH (ef), ed = d, de = e and df = d but efe 1- e.

Let L be an arbitrary subset of An. Fix a word w ELand consider the

program cp = e· (1,91) ... (n, gn) . fe where, for any c E A, 9i(C) = 1 if c = 'Wi

and gi(C) = d otherwise. For any xl- w, at least one instruction outputs a d and,

sinee d2 = d, cp(x) = edfe = e. On the other hand cp(w) = efe. Concatenating

such programs for all elements of L, we get a program 'ljJ with the property that

'Ij)(x) = e for x rf. L. On the other hand, if x does belong to L then exactly one

of the segments will output efe and so we will get 'ljJ(x) = efe 1- e. 0

Combining the four previous lemmas, we obtain:

Theorem 3.14 If M is in DS then it has the PLep if it is in DO n G nil and

it is universal otherwise.

58 CHAPTER 3. PROGRAMS OVER MONOIDS

Proof. If M contains a non-nilpotent subgroup then it is universal by Lemma

3.12 and ifit is in DS-DO then it contains a simple non-orthodox subsemigroup

and is thus universal by Lemma 3.13. If M lies in DO n G nil however, th en it

has the PLCP by Lemma 3.11. D

It follows that programs over monoids in DO n G nil cannot compute, for

instance, the word problem of a non-nilpotent group. Furthermore, the function

MODq cannot be computed by any program over DO n G p where p and q are

distinct primes. This follows from the observation that such programs can

be contracted and then simulated with bounded depth {AND, OR, NIODp }

circuits of polynomial size. The latter cannot recognize MODq [Sm086]. We

conjecture that, similarly, MAJORITY cannot be computed by any program

over DO n G nil .

3.3.2 Sorne Results in DA * G

Can we find a similar dichotomy for monoids outside of DS? The following

result, originally proved in [Thé89], restricts quite dramatically the space of

candidates for the PLP. Recall that the mono id U, which we introduced III

Section 2.1.6, is the syntactic monoid of the language {a, b} * bb{ a, b} *.

Lemma 3.15 U is univers al.

We sketch this proof for completeness.

Pro of. For any w E An, consider the pro gram

CPw = ab(l, il) (2, h) ... (n, fn)b

where fi(C) = a if C =1= Wi and fi(C) = 1 otherwise. Note that since a is

idempotent in U, we get CPw (x) = abab = ab if W =1= x and CPw (x) = abb = 0 if

W = x. So for any L ç An, the program cp of length n· ILl consisting of the

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 59

concatenation of aU programs CPWi where Wi E Li is such that cp(x) = ° if and

only if x E L. 0

As a eorollary, we thus obtain implication (2,* 3) of conjecture 3.7.

Theorem 3.16 If M does not belong to the variety DA * G n G ni1 then M is

universal.

Proof. RecaU from Chapter 2 that if M tf. DA * G then there exist two idem

potents e, f E M such that e J f J(ej) but ef is not idempotent. If (ej)w also

is J-related to e and f then this J-class is non-fiat and the universality follows

from Lemma 3.13. Otherwise, sinee (ej)Je, there must be an idempotent s in

the H-class .ce n Rf. Thus, U is a divis or of M and we appeal to Lemma 3.15.

o

Therefore, universality and PLP questions only remain open for the variety

DA*G.

Theorem 3.17 If M is of the forrn No G with N E DA and G E Gp then lV!

has the PLP.

Our proof of this theorem is unfortunately quite technical and its main idea

is best illustrated in the following example which we prove as a warm-up.

Example 3.17. Clairn: the rnonoid M = UI 0 Cp has the PLP.

We assume for simplicity that the input alphabet is {a, 1}. By Lemma 3.4,

we know that for any n-input program 'ljJ over a p-group G such as Cp, there

exists a polynomial r in Zp [X 1, ... XnJ of degree at most deI' such that r = 1

whenever 'ljJ outputs h E F ç Cp and r = ° otherwise.

Let us denote hy the pair (~, !Ji) E (U;'l', Cp) the product of the firRt 'l in

structions of cp on sorne input. If (fi, gi) is the result of the i th instruction, we

have

60 CHAPTER 3. PROGRAMS OVER MONOIDS

We will say that instruction i is an h-crash site for x E {O, l}n if on x we have

h-l (h) = 1 but h(h) = O. In particular, this implies that fPi-1 (h) = O.

Our main claim is that for aIl h in Cp there can only be polynomially h-crash

sites querying bit Xl' Consider in particular all such instructions such that

a crash occurs on an input where Xl = 1. Since the value !h-l is computed

by a Cp program, we know that there exists a fixed degree Zp-polynomial ri

associated with this instruction such that f;i-1 (h) = 0 if and only if ri = 1.

There are only (d n) many linearly independent such r's, hence if we have
Cp

more than (d n) crash sites it must be the case that sorne ri can be expressed
cp

as a linear combination of ry's with j < i. Hence if ri = 1, there must be j < i

with rj = 1. This shows that i is actually not a crash site since whenever

Xl = 1 and f;i-1(h) = 0 we already had h(h) = O.

Therefore, we have at most p . 2 . n . (dn
) instructions which are crash sites,

,Cp

i.e. where the ufp part of the computation is truly active. For aIl but polyno-

mially many instructions in cP, we can thus replace the ufp component of the

instruction by the identity without affecting the result of our computation. In

between any two potential crash sites, we are thus left with subprograms over

the subgroup Cp but these can be made to have polynomially bounded length

using Lemma 3.8.

We now extend the same idea, at the expense of technical complications, to

prove the full version of Theorem 3.17.

Proof. Let cP be an n-input M-program of length s. As in the example above,

we will begin by identifying a polynomial number of key instructions in cP and

argue that for all inputs x the N G -component of cP(x) can only be affected at

one of these locations. Suppose that N divides N* / "'INI,k: and let us again

denote by (h(x), !Ji(x)) E (NG
, C) the product of the first i instructions of cP on

input x and by Ax E N G the N G component of the output of the i th instruction

on x. For an element 9 E C, we will say that the i th instruction of cP is h-critical

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 61

if there exists an input x such that in the following word in N*:

h,x(h)1i,~(h) ... 1!,~-1 (h) ... J!,"x- 1 (h)

the i th letter is a rvlNJ,k bookmark.

We daim that for each h E G there are only polynomially many h-critical

instructions in cP. First, the number of bookmarks in a given word over N* is

bounded by sorne constant c depending on N and k and so, for a given x, only

c input letters are ever queried by the corresponding h-critical instructions.

Keeping the analogy with our example, let us consider the set R of aU x's

for which the h-critical instructions were the result of querying Xl, ... ,Xe and

finding them holding, say, 1. Now, the gi are computed by a program over sorne

group in G p and so, by Lemma 3.4, for any h-critical instruction producing the

bookmark, say bl there exists a polynomial ri in 7lp with fixed degree such that

1;i-1 (h) = bl if and only if ri = l.

For any W E R, let lI, ... ,le be the locations at which the h-critical instruc

tions appear and say they hold letters bl , ... ,bc . There exists a constant degree

polynomial qx over 7Lp such that positions h, ... , le hold bl , ... , be if and only if

qw(x) = 1 and qw(x) = 0 otherwise. There are only polynomiaUy many linearly

independent such qw so if R is too large, we can find Wl, W2 E R such that

In this case, the two words of N*

and

are such that they agree on every letter which is a rvlNI,k bookmark of Ul or a

rvlNI,k bookmark of U2. These locations must coincide. Thus, only polynomially

many different instructions in the program can be found h-critical because of

62 CHAPTER 3. PROGRAMS OVER MONOIDS

sorne x E R. Sinee there are only polynomially many possibilities for R we have

proved our daim.

The N G component of </J(x) can truly be affected only at one of the polyno

mially many critical instructions. In aIl other instructions, we can replace the

NG component of the computation by the identity without affecting the output

of the program. The resulting segments in between two critical instructions can

be viewed as G-programs and thus be contracted to polynomial length using

Lemma 3.11 sinee G is nilpotent. 0

These constructions do not imply the existence of polynomial length con

tractions of arbitrary programs over DA * G p and it is quite possible that

sorne monoids in this variety do not have the PLP. They are, however, di

visors of a monoid which has the PLP and so no monoid in DA * G p is

univers al. In particular, a theorem of Thérien [Thé89] building on the work

of Smolensky [Sm086] shows that, regardless of length, no program over a

monoid in JI * G p can compute the function MODq for any primes p :j:. (j.

In fact, Thérien's argument can easily be extended to any variety of the form

(Gp 0 (Gp 0 (... 0 G p 0 (JI * G p) ...))). By the results of [PST88], any monoid

in DA * G p is in one of these varieties and thus no pro gram over a monoid in

DA * G p can compute the function MOD q for any primes p :j:. (j.

Using a different argument, we will next show that no program over a Brandt

monoid can compute the function MODq for any q. Although this is a strictly

weaker result than the ones just mentioned, we believe that the novel proof

technique could help in proving non-universality of other aperiodic monoids

with similar properties.

Theorem 3.18 If M is a Brandt monoid, then no M -progmm can compute

MODm for any integer m 2: 2.

3.3. UNIVERSALITY VS. POLYNOMIAL LENGTH PROPERTY 63

Proof. Suppose that cjJ is a Bk-program computing MODm for inputs of length

n 2: 2m + 1. We can assume without loss of generality that the output of each

instruction is either a generator or the identity and that there exists2 x E {a, l}n

such that cjJ(x) = a. Note that a string w in {l, al, a2'" ad* evaluates to a in Bk

if and only if for sorne j =1= i + 1, it contains occurrences of ai and a.i separated

only by 1 's and, in particular, w evaluates to a if there exists i, j such that

Iwlai - IWlaj > 1. Thus if cjJ(x) = 0, we can find instructions s < t querying

(not necessarily distinct) bits bs , bt and producing ai, a.i respectively while aIl

instructions in between them output the identity. Let 'ljJ be the subprogram of

(p consisting of instructions between sand t and suppose that x E MODm . For

any x' at Hamming distance 1 from x, we have x' tJ. MODm and thus cjJ(x') =1= a.
Assuming i < j, this means that if any one bit of x other than bs or bt is fiipped

then '1/) must now output a word w E {l, al, 0,2 ... ak} * such that for aIl3 i < l < j

we have Iwl al -Iwlai = 1. However, if we now fiip c bits of x other than bs or bt ,

the output of'ljJ contains c more occurrences of al than ai and so the program's

output is a again. This is a contradiction for unless c is a multiple of m we

should have cjJ(x') =1= cjJ(x).

This argument can clearly be adapted to handle the case where x tJ. lI!{ODm .

D

The above proof actually shows that programs over Brandt monoids have

very limited ability to compute symmetric functions. In particular, they cannot

compute THRESHOLDt unless t or n - t is a constant.

The proof can also be adapted to obtain similar limits on the power of

programs over the transition monoids M k associated to the following finite au

tomata:

2If cjJ(x) i a for all x E {a, l}n then cjJ(x) is completely determined by the output of the
first and last instructions whose output is not l.

3If j < i, we want to con si der alll except those between j and i.

64 CHAPTER 3. PROGRAMS OVER MONOIDS

a a a ... :=B
b b b

The M k 's were studied in [Thé89] as examples of non-universal aperiodic mono

ids of dot-depth k. Brandt monoids, as weIl as the M k 's are inverse aperiodics

but have the very special property that they lie in JI * G p for sorne prime p.

Still, the idea behind our last proof is that as soon as a program cp over Bk or

M k is doing non-trivial computation, then for a vast majority of inputs we have

cp(x) = o. Intuitively, an inverse aperiodic monoids have this property.

3.3.3 Open Problems

Do Brandt monoids have the PLP? Intuitively, the fact that each of them is a

divisor of a mono id which does have the PLP leads us to believe so, but even

the case of B2 has so far eluded pro of. This is the subject of ongoing work with

K. Reinhardt and D. Thérien.

Another outstanding problem concerns the power of program over monoids

which lie in DA * G but not in DA * Gp for any prime p. We conjecture that

Lemma 3.17 can be extended to show that monoids of the form N 0 G where

N is in DA and G is a nilpotent group have the PLP. A first step would be to

show that no monoid in DA * Gni! is universal. As of yet, we have no proof that

even U1 0 C6 is non-universal. We believe that resolving these two problems are

key steps towards a possible proof of our conjecture.

3.4 Crane Beach Properties and Program Va
rieties

How can we classify monoids in terms of their computational power? If we are

using morphisms to recognize languages, then we have seen that varieties are

3.4. CRANE BEACH PROPERTIES AND PROGRAM VARIETIES 65

the natural unit of classification. In the case of programs over monoids however,

any two non-solvable monoids recognize exactly languages in non-uniform Ne l .

For a variety of monoids V, let us denote by P(V) the class of languages which

can be recognized by a polynomiallength program over sorne monoid in V.

Theorem 3.19 ([MPT91]) If V, W are varieties of monoids P(V) = P(W)

if and only if P(V) and P(W) contain the same regular languages.

One might expect that for sorne relatively weak and robust varieties the

regular languages in P(V) coincide with the regular languages with syntactic

monoids in V. This intuition is unfortunately incorrect in most cases because

a lot of computation can be hardwired into the program itself. Consider for

instance the regular language L ç {a, b} * consisting of words that hold an

a in sorne even-indexed position. In order to recognize membership in L, an

automaton must have a mechanism that keeps track of the parity of the number

of input letters read so far and one can easily see that M(L) correspondingly

contains the group C2 . On the other hand, we can write a program over UI that

recognizes L by making sure that only the even-indexed positions of the input

are queried by the program. Similarly, the language of words that have an even

number of a's beyond the first ten positions can be recognized by a program

over C2 even though its syntactic monoid is not a group.

We say that a language L ç A * has a neutral letter if there is a let ter e E A

such that for any u, v E A * we have uv E L if and only if 'uev E L. In other

words, the letter e is neutral if and only if e is equivalent to the empty word

in the syntactic congruence of L. For any language L ç A *, we den ote by

LE ç (A U {e})*, where e tt A, the language with neutral letter e such that

v, E A* lies in V if and only if v, lies in L. Note that L and LE have the same

syntactic monoids.

Intuitively, a program computing LE cannot exploit its ability to look for

specific input letters appearing in specific input positions.

66 CHAPTER 3. PROGRAMS OVER MONOIDS

Theorern 3.20 If V, W are varieties of monoids PCV) = P(W) if and only

if PCV) and P(W) contain the same regular languages with neutral letter.

We say that a variety V of monoids is a program-variety (or P-variety) if the

regular languages with neutralletter lying in PCV) have their syntactic monoid

in V. This is equivalent to the requirement that for any monoid M, if aU sets

Tm ç M* with Tm = {w 1 eval M (w) = m} can be recognized by polynomial

length programs over monoids in V then in fact MEV. In light of the above

theorem, program-varieties are the natural unit of classification of monoids in

terms of their power as language recognizers via programs. Of course, most

varieties are not program varieties.

Theorern 3.21 (see [StrOOD The varieties of all finite monoids M, p-groups

Gp , aperiodics A, J -trivial monoids J, commutative monoids Corn all are

program-varieties.

Of course, Theorem 3.2 shows that "A is a program variety" and "MODp

do es not belong to ACo for any p" are equivalent statements. Many fundamental

circuit complexity questions can similarly be rephrased in this way. Showing

that AND does not belong to CCO for instance, is equivalent to showing that

G so1 is a program-variety.

Showing that Corn is a program variety is a simple exercise. In fact, one

can establish an even stronger statement about the languages with neutralletter

that programs over commutative monoids can compute.

Exarnple 3.21. Suppose that L ç A * is a language with a neutralletter, say

e, that can be recognized by a program cP = (cPo, cPl, ...) over a commutative

monoid M of threshold t and exponent p. As we have seen in the previous

section, we can assume that each cPn consists of n instructions each querying a

different input letter. Let U,'V be two words in 2:;* such that Œt,p(U) = Œt,p(V).

3.4. CRANE BEACH PROPERTlES AND PROGRAM VARlETlES 67

Note that the lengths of u and v must be equal modulo p. We can thus

pad 'U and v with e's to obtain words u' and v' of equal length k and with

Œt,p(U') = Œt,p(V').

Consider the s-input program rPs with s = k· IMIIAI. Because there are only

1l\11 1AI possible query-functions, there must be a set of positions J ç [s] of

size k such that the corresponding instructions in rPs aIl have the same query

function j. We denote by 'u" (resp. v") the word of length s obtained by

placing the letters of u' (resp. v') in the k positions of J and placing neutral

letters e in the other s - k positions. We daim that cPs (u") = cPs Cu").

lndeed, sin ce u" and v" agree on aIl positions outside J, it is sufficient to show

that we have

Œt,p (rP~ (u")) = Œt,p (rP~ (v"))

where rP; (w) denotes the output in M* of the instructions of rPs querymg

positions in J. Since the positions J in u" hold the word u' and since the

corresponding instructions use the same query-function j, the number of oc

currences of m in rP; (u") is just

2)u'la ·lj(a)lm·
aEA

Since we have Œt,p(U') = Œt,p(V') we have for aIl m E M

I}u'la 'lj(a)lm == LIV'la 'lj(a)lm(thresh t, mod p)
aEA aEA

which proves our daim.

Thus cP(u") = cP(v") and so u" and v" are either both in L or both in L.

Because '/), and v can be obtained 'from 1L" and v" respectively hy dE~leting

neutralletters, they are also either both in L or both in 1. Rence the syntactic

congruence of L is coarser than the congruence induced by Œt,p so M(L) is a

finite commutative monoid.

68 CHAPTER 3. PROGRAMS OVER MONOIDS

The Crane-Beach Conjecture, first postulated by D. Thérien and C. Laute

mann, stated that alllanguages with a neutralletter recognized by ACo circuits

were in fact star-free languages or, equivalently, that alllanguages with a neu

tralletter recognized by a polynomiallength program over an aperiodic monoid

had a finite and aperiodic syntactic monoid. The Crane-Beach Conjecture was

disproved by N. Immerman [BIL +01].

We will say that programs over a mono id variety V have the Crane-Beach

property if any language with neutral let ter recognized by a polynomial length

program over a monoid in V has its syntactic monoid in V. By definition, every

such variety is a program variety although the example of the variety A shows

that the converse does not hold in general.

Theorem 3.22 Programs over J have the Crane-Beach property.

Proof. This can be obtained as a corollary of Theorem 3.11 of [BIL+01] where

it is shown that every language with a neutralletter which can be defined by a

Boolean combination of ~l-sentences using arbitrary numerical predicat es is in

fact regular and has a syntactic monoid in J. Every language recognized by a

family of polynomial-length programs over J is in fact definable in this way and

the result is not difficult to obtain once the logical framework has been precisely

defined.

However, we want here to prove this directly from the programs, in the

spirit of Example 3.4. Unfortunately, we will only show this for the following

special case. Let M be J-trivial: we say that a family of M-programs (CPn)n?O

recognizing a language L that contains a neutralletter e is silent if for every n

we have cpn(en) = lM. We daim that in this case L is regular and lVl(L) lies in

J.

Let k be minimal such that any two words in M* in which the same subwords

of length k or less appear evaluate to the same element (note that it is sufficient

to consider the subwords over the alphabet M - {lM}' It suffices to show that

3.4. CRANE BEACH PROPERTIES AND PROGRAM VARIETIES 69

any two words u, v in A* that have the same occurrences of subwords of 1ength

at most k are either both in or both not in L. Because the neutral let ter allows

various forms of padding, we can assume without 10ss of genera1ity that u and

v have the same length 1 2:: k.

Note that if a subword t l ... ts with s :::; k occurs in CPn(x), then each t i

is the output of an instruction querying only one position in x. In particular,

there is an s-tuple of positions in x such that for any y agreeing with x on these

positions CPn(Y) also contains the subword t l ... t s ·

For the program CPn, given k-tup1e of input positions (Xl, ... , Xk), with the

Xi E [n] written in increasing order, and given assignment (al, a2, ... ,ak) to

these positions, we denote by W(~11:.'.'.',::/ the set of subwords in (M - {lM})*

of length at most k in CPn(q) where q holds ai in position Xi and neutralletters

everywhere else. Note that since we assumed that the program is silent every

instruction querying a position holding a neutralletter outputs lM and so every

such subword results from instructions querying one of the Xi' In particular, any

subword of CPn(q) will also occur in CPn(Y) for any word y holding ai in position

We col or k-tuples of positions (Xl, ... , Xk) with the sets

There are only finitely many colors of course since lAI, k and IMI are aIl fixed.

Thus, by Ramsey's Theorem, there exists n such that we can find a set l ç [n]

of size 1 and such that any k-tuple from l is labeled with the same color. We

will call these 1 positions special positions.

Let v,', v' be the words of length n obtained by placing respectively u and v

in the 1 special positions and neutral letters at aIl other positions. We will now

compare the set of subwords in (M - {lM})* of length at most k occurring in

CPn ('u') and CPn (v').

70 CHAPTER 3. PROGRAMS OVER MONOIDS

For any occurrence of the subword tl ... t s , with ti E M - {lM} and s :S k,

occurring in 4Yn (u'), we can find a k-tuple of special positions Xl < X2 < ... < Xk

such that each t i is the output of an instruction querying one of these positions.

Let us suppose these positions hold the letters al, a2, ... ,ak. Thus u contains the

subword al ... ak and so v also does. Therefore, we can find k special positions

Yl < Y2 < ... < Yk in v' which hold al, a2, ... ,ak·

The subword t l ... ts belongs to W(~ll,:·.·.::S and since the tuples (Xl, ... , Xk)

and (YI, ... ,Yk) were assigned the same color, we must have tl ... t s be10ngs to

W(Yl, ... ,Ykl. Since v' ho1ds ai in position Yi, the subword t l ... ts occurs in 4Yn(v'). (Q,l, .. ·,Q,k)

Therefore, 4Yn ('u') and 4Yn (v') contain exactly the same subwords of length at

most k which implies 4Yn (u') = 4Yn (v') and, in turn, that 'u and v are either both

in L or both not in L. o

The above argument will fail when the programs are not silent a1though it is

reasonnable to believe that this technical difficulty can be addressed by either

refining the coloring or showing that every program over a J-trivial monoid

is equivalent to one which is silent. The following was also established using

similar Ramsey-theoretical tools by C. Lautemann and D. Thérien:

Theorem 3.23 ([LTOl]) Programs over Gnil,k have the Crane-Beach prop

erty.

Note that in the context of groups the programs can be assumed "silent"

without 10ss of generality because of the presence of inverses.

We will show in Section 4.4 that varieties DA, DO n Ab and DO n G nil

are program-varieties using communication complexity results. It is unclear at

this time whether the convenient combinatorial descriptions we have of regular

languages recognized by such monoids can be combined with extremal combi

natorics to further show that these have the Crane-Beach property.

3.4. CRANE BEACH PROPERTIES AND PROGRAM VARIETIES 71

Do programs over solvable groups have the Crane-Beach property? If they

do, then CCO is a strict subset of NC1 and we cannot reasonably expect a simple

proof of this facto However, although it is widely believed that G so1 forms a

program-variety, it is possible that the Crane-Beach property fails for G so1 much

like it does for aperiodic monoids. Providing an explicit example of a language

L with neutral letter that can be recognized by polynomial size CCO circuits

but such that M(L) is not in G so1 would be of great interest.

We should note that a related result of D. Barrington and H. Straubing

[BS95] shows that any language with neutralletter recognized by an J\,1-program

of length o(n log log n) is regular and has a syntactic monoid dividing the direct

product of a number of copies of M and NF, where 111F is the reverse monoid

of M in which multiplication by S 'Mc t = t' M S.

72 CHAPTER 3. PROGRAMS OVER MONOIDS

Chapter 4

Communication Complexity

4.1 Introduction

The need for efficient communication is omnipresent in modern computer sci

ence. It is a natural concern in distributed computing, networking, computer

architecture, cryptography but although the formaI study of communication

complexity, beginning in the late 70's, was originally motivated by such prac

tical concerns (note the title of Yao's seminal paper [Yao79]) its later devel

opment has mostly served as a surprisingly versatile tool in just about every

area of theoretical computer science. The game at the heart of communication

complexity is the following: Alice and Bob are given inputs x and y respec

tively and want to collaborate to compute a function f(x, y) while minimizing

the communication that they need to exchange. Many variants of it can be de

fined: non-deterministic, probabilistic, round-bounded, approximate and so-on.

A. Chandra, M. Furst and R. Lipton also introduced in [CFL83] an interesting

multiparty extension of the usual Alice and Bob model. In their game, k players

collaborate to compute f(Xl' ... ,Xk) but each player is given access to aIl but

one of the Xi'S. This model gives rise to subtle combinatorics and has also found

many applications to other areas of complexity them·y.

In many cases, it is possible to uppeT bmmd the communication complexity

(in an appropriate model) of functions which can be compllted llsing a lim-

73

74 CHAPTER 4. COMMUNICATION COMPLEXITY

ited amount of resources so that obtaining lower bounds on the communication

complexity (in the same model) of an explicit function f translates into lower

bounds for the resources needed to compute f. This approach has yielded results

in VLSI (see [Lov89]), lower bounds for monotone circuits [KW88] including a

complete separation of the monotone NC hierarchy [RM97], Time-Space trade

offs for Turing machines [BNS92, KN97] to cite only a few. Communication

complexity is also the main tool used in the study of branching programs: the

book of Wegener [WegOO] provides a complete overview of the theory of branch

ing programs and OBDD's with an emphasis on communication complexity and

more recent results include [BSSVOO, BV02]. Perhaps even more significant in

the context of this thesis are the applications to lower bounds for classes of

circuits lying within NC1
, mainly threshold circuits [HG90, Nis94, ROKY94],

but also CCO circuits [Gro92, Gr094b] and ACCo circuits [HG90, Lok01]. As

we will see, some of these results can be rephrased in algebraic terms using the

circuits/monoids correspondence offered by programs.

Another rather unexpected link between communication complexity and

monoids was uncovered by Szegedy [Sze93] who showed that a language has

bounded two-party deterministic communication complexity if and only if it

can be recognized by a program over a commutative monoid. This amazing

result is strong indication that an algebraic point of view on communication

complexity can be fruitful.

In [BFS86], Babai, Frankl and Simon built a complexity theoretic view of

communication and formally introduced notions of complexity classes, reduc

tions and completeness in a (two-party) communication complexity context.

TIH-ür goal was twofold: this provides, on one hand, a natural yot powerful

framework to compare the power of different extensions or restrictions of the

usual deterministic model and understand the complexity of concrete functions

while building, on the other hand, a rich structure of classes in which we can

4.1. INTRODUCTION 75

hopefully gain intuition on the nature of non-determinism, alternation, count

ing and so on. This "world picture" of communication complexity classes was

further described in various papers [HR90, DKMW92] and it should be noted

that there exist regular languages which are complete for many of these com

pl exit y classes, including the communication complexity analogues of NP, EBP,

PSPACE, etc. Whereas regular languages are the simplest languages from a

classical Time/Space complexity point of view, they can have large communica

tion complexity even in quite powerful models. In fact, sorne of the most studied

languages in communication complexity (Disjointness, rnner Product mod p),

although not regular languages themselves, are eqv,ivalent from a communication

complexity perspective to regular languages.

4.1.1 Summary of Results

This chapter develops an algebraic approach to communication complexity. On

one hand, this point of view allows us to use properties of finite monoids to

understand the limits of various communication complexity models and compare

their relative power and, on the other hand, it provides a systematic way of using

communication complexity to understand the computationallimits of programs

over monoids.

We first consider the well known deterministic two-party model as well as

its simultaneous, probabilistic, simultaneous probabilistic, and MODp-counting

variants. We set out to answer the following question: what is the communi

cation complexity, in a worst-case partition sense, of any regular language in

each of these models? Specifically, we look at the complexity of determining

if the word albla2b2 .. . o,.,}Jn is a member of a given regular language L ç 2:*

where the ai E 2: U {é} are known to Alice and the bi E 2: U {é} are known

to Bob. It was established in [RTT98] that, in these models, regular languages

having communication complexity OU) for sorne f : N ---7 N form a variety

76 CHAPTER 4. COMMUNICATION COMPLEXITY

of languages so our question has an algebraic answer. In Section 4.2, we use

algebraic tools to completely characterize the communication complexity of any

regular language in the deterministic, probabilistic, simultaneous, probabilis

tic simultaneous and MODp-counting (for prime p) models. Remarkably, our

classifications feature in aU five cases complexity gaps. For instance, we find

that a regular language L has deterministic communication complexity either

0(1) (when its syntactic monoid is commutative), 8(logn) (when M(L) lies in

DO n Ab but is not commutative, i.e. wh en M(L) is not commutative but L is

the disjoint union of unambiguous concatenations of the form LOalLl ... akLk

with M(Li) commutative) and 8(n) otherwise. This is in sharp contrast with

the general case where for an arbitrary f : N -+ N with 1 ~ f(n) ~ n it is easy

to artificiaUy construct a non-regular language of complexity 8U).

In aIl four variants of the deterministic model, we find that communication

complexity indu ces classifications with only a smaIl number of classes: a regular

language L has simultaneous complexity either 0(1), 8(logn) or 8(n), proba

bilistic complexity 0(1), 8(loglogn), 8(logn) or 8(n), probabilistic simultane

ous complexity 0(1), 8(logn) or 8(n), and, for any prime p, MODp-counting

complexity 0(1), 8(logn) or 8(n). Moreover, sorne of these classes are related

in unexpected ways: a regular language has O(logn) probabilistic complexity

only if it has O(logn) deterministic complexity and further has 8(loglogn)

probabilistic complexity if and only if it has 8(logn) simultaneous complexity

if and only if it has 8(logn) probabilistic simultaneous complexity. In fact,

we prove that the simultaneous and probabilistic simultaneous complexities of

any regular language are equal, up to a constant. We also find that a regu

lar language has MODp-counting and MODq-counting complexity O(logn) for

distinct primes p, q if and only if it has deterministic complexity O(logn). AlI

varieties involved in these classifications, sorne of which have already been shown

to be of importance in previous chapters, have convenient descriptions both al-

4.1. INTRODUCTION 77

gebraically and combinatorially and are decidable. In obtaining these results

we amazingly use communication complexity reductions to and from only four

(well-known) problems: Disjointness, lImer Product modulo p, Greater Than

and Index and this retrospectively both highlights and explains their importance

as fundamental examples in communication complexity theory.

In Section 4.3 we consider the tricky multiparty communication complexity

model. As in the two-party case, we set out to describe the multiparty complex

ity of each regular language and show that this question, as in the two-party

case, has an algebraic answer. We are able to prove that any regular language

L recognized by a group has k-party complexity 0(1) if M(L) is nilpotent of

class k - 1 and k-party complexity 8(n) otherwise. The general case, however,

seems very challenging and we can only prove partial results. Most notably,

we show that there exists a k such that the regular language L has k-party

complexity 0(1) if and only if l\II(L) lies in DO n G nil and give a characteriza

tion of regular languages with constant three-party communication complexity.

The techniques used in these proofs are a combination of Ramsey theoretical

arguments akin to the ones of [CFL83] and probabilistic techniques using the

discrepancy method in the line of [BNS92, Gro93].

Our results shed an interesting light on a poorly understood, yet important,

communication model and identify problems, such as the multiparty communi

cation complexity of piecewise testable languages, as natural targets for further

research in the field. We also argue that our results might be a first step towards

an analog of Szegedy's Theorem which would provide an algebraic eharacteri

zation of functions with bounded k-party communication complexity.

In Section 4.4, we discuss the impact of our communication complexity

bounds on issues surveyed in Chapter 3. In particular we use a very general

communication complexity argument to show that DO n Ab and DO n G nil

are program-varieties. We further give a new proof of an exponential lower

78 CHAPTER 4. COMMUNICATION COMPLEXITY

bound for the length of (Gp * Ab)-programs computing Disjointness and pro

pose a communication complexity conjecture in the same spirit which would

separate the computing power of polynomial length (Gp * G nil,k+1)-programs

and polynomiallength (Gp * Gnil,k)-programs.

4.2 Two-party Communication Complexity

Is is hard to overstate the quality of [KN97] as an introduction to communication

complexity and we refer the reader to it for further details on the concepts

introduced throughout this section. We will use that book's notation.

4.2.1 Two-party Models

In the deterministic model, two players, Alice and Bob, wish to compute a

function f : snA X snB -+ T where Sand Tare finite sets. Alice is given

x E snA and Bob y E snB and they collaborate in order to obtain f(x, y)

by exchanging bits (using, say, a common blackboard) following the format

imposed by a previously agreed upon communication p7'Otocol P.

It is convenient to think of a proto col in an informaI way as a scheme ensuring

that Alice and Bob will never speak simultaneously and will be able to make

sense of the information they send each other. Intuitively, P determines, at

every stage, whether the current run of the protocol is over and if not, whose turn

it is to write the next bit. This is a function of the communication written thus

far but is independent of the players' inputs. If it is Alice's turn to speak (resp.

Bob's turn), the proto col specifies what the next bit sent will be as a function

of x and the communication exchanged so far (resp. y and the communication

exchanged 80 far). Wh en a run of P terminates, its output, denoted P(x, y), is

a function of the blackboard's content. We define the cost of P as the maximum

number of bits exchanged for any input. Note that we assume that Alice and

Bob each have arbitrary computation al power.

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 79

Formally, a proto col P with domain snA X snB and range T is a finite binary

tree where each internaI no de v is labeled either by a function Av : snA -+ {O, 1}

or a function Bu : snB -+ {0,1}, and where each leaf is labeled by a value in

T. To determine the output P(x, y) E T of the protocol on input (x, y) we

start walking along the tree from the root. Wh en we visit an internaI no de v

labeled with a function Av (resp. Bv), we go to v's left child if Av(x) = ° (resp.

Bv(Y) = 0) and right if Av(x) = 1 (resp. Bv(Y) = 1). The value P(x, y) is the

label of the leaf thus reached. The cost of P is the height of the tree and we say

that P computes f ifP(x,y) = f(x,y) for aIl (x,y) E snA X snB.

The deterministic communication complexity of f, denoted DU) is the cost

of the cheapest proto col computing f. In general, we will be interested in the

complexity of functions f : S* x S* -+ T and will thus consider DU) as a

function from N x N to N (or from N to N when the length of inputs given to

Alice and Bob are related) and study its asymptotic behavior.

In a simultaneous protocol P, we disallow any interaction between Alice and

Bob: Each of them simultaneously sends a message to a trusted referee which

has access to none of the input and the referee pro duces the output P(x, y) E T.

We denote DII (f) the simultaneous communication complexity of f, i.e. the cost

of the cheapest simultaneous proto col computing f.

In a probabilistic communication protocol P, Alice and Bob have access to

private random bits which determine their behavior. The proto col is said to

compute f if for aIl x, y, the probability over the choices of these random bits

that P(x, y) = f(x, y) is at least 3/4. We denote RU) the probabilistic (or

randomized) communication complexity of f.

Cornhining properti0R of t,he two p1'0viollS models, a 8im'U,!taneo1J.S p'rObabilis

tic communication protocol P, is one in which Alice and Bob simultaneously

send a message depending on their inputs and their random bits to a trusted

referee which then outputs P(x, y) which should equal f(x, y) with probability

80 CHAPTER 4. COMMUNICATION COMPLEXITY

at least 3/4. We denote RII (f) the simultaneous probabilistic (or randomized)

communication complexity of f.

In contrast to these first four models, the non-deterministic and MODp com

munication models that we present next will only be used to recognize languages,

i.e. to compute functions from S* x S* into {O, 1}.

In a non-deterministic communication protocol1 P another player, say God,

having access to both x and y first sends to Alice and Bob a proof 7r whose length

is a function of the length of x and y. Alice and Bob then follow an ordinary de

terministic proto col P' with output in {O, 1}. The proto col P accepts the input

(x, y) if and only if there is sorne proof 7r such that the output of the ensuing

deterministic proto col P' outputs 1. The co st of a non-deterministic proto col

is the maximum number of bits exchanged in the proto col (including the bits

of 7r) for any input (x, y). We denote the non-deterministic communication

complexity of a language L as N 1(L). The co-non-deterministic communica

tion complexity of L, denoted N° (L) is the non-deterministic communication

complexity of L's complement.

A MODp-counting communication protocol Pis similar to a non-deterministic

proto col but it accepts those (x, y) such that the number of proofs that lead

Alice and Bob to acceptance is not divisible by p. We denote by N M
O

dl'(L) the

MODp-counting communication complexity of L.

Notice that for any function J, we have R(f) :::; D(j) :::; max{nA, nB} + 1

because every deterministic proto col is a probabilistic proto col and because J

can always be computed by a protocol in which one player sends over an its

data, subsequently letting the other player compute and then communicate the

result. Moreover one can establish R(j) ~ log(D(j)) using brute force de

randomization of probabilistic protocols. Similarly the following elementary

l We use here a "guess and ver if y" presentation of non-deterministic proto cols which is
most convenient in the context of our discussion. Alternatively, we could introduce them as
proto cols in which Alice and Bob are allowed to act non-deterministically (see e.g. [BFS86,
KN97, DKMW92] for alternative presentations).

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 81

facts can be easily established:

• log(RII (f)) ~ R(f) ~ RII (f) ~ DII (f);

• 10g(D(L)) ~ NI(L) ~ D(L);

• 10g(D(L)) ~ NMOdp(L) ~ D(L);

Moreover, if p is prime, then NMOdp(L) = 8 (NMOdpŒ (L)) for aIl integers ex and

for any languages LI, L2 :

and

AlI these models have been extensively studied. At the heart of what we

understand about their combinatorics is the following simple observation: if the

communication induced by a deterministic proto col P is the same on input pairs

(.Tl' YI) and (X2' Y2) then it will also be the same for (Xl, Y2) and (X2, YI)' As an

example, consider the function Equality: EQ(x, y) = 1 if and only X = y. A

protocol computing EQ must induce different communication patterns for the

2n pairs of the form (x, x) with x E {a, l}n for otherwise the protocol will also

accept sorne pair (x, y) with x =1 y. This suffices to show that D(EQ) ~ n.

The following four functions are, like Equality, classical examples studied in

communication complexity:

• For x, y E {a, l}n, we define Disjointness as: DISJ(x, y) = 1 if and only

if V XiYi = 0;
l::Çi::Çn

• For x,y E {a, l}n, and any mEN we define Inner Product (mod q) as:

l Pq(x, y) = 1 if and only if 2:; XiYi = ° (mod q);
l::Çz::Çn

82 CHAPTER 4. COMMUNICATION COMPLEXITY

Il D R

DISJ 8(n) 8(n) 8(n) 8(n) 8(n) 8(n) 8(log n)
IPq 8(n) 8(n) 8(n) 8(n) 8(n) 8(n) 8(n)

IPpŒ 8(n) 8(n) 8(n) 8(n) 8(logn) 8(n) 8(n)
GT 8(n) 8(logn) 8(n) 8(n) 8(n) 8(n) 8(n)

INDEX 8 (log n) 8(logn) 8(n) 8(n) 8(logn) 8(log n) 8 (log n)

Table 4.1: Sorne well-known communication complexity bounds. (Note that p
is prime, a 2: 1 and q is not a power of p.)

• For two n-bit numbers x, y E [2 n
] we define Greater Than as: GT(x, y) = 1

if and only if x 2: y .

• For xE {O, l}n and a logn-bit number p E [n] we define INDEX(x,p) =

The known communication complexity bounds for these problems can be

summed up in Table 4.1. It should be noted that non-trivial work is needed

to establish sorne of these bounds. The probabilistic lower bound for DIS J

received a lot of attention in the late 80's ([BFS86, KS92, Raz92]) while the

probabilistic lower bound for l P2 follows from quite technical results of [CG85]

(see also [DKMW92, Gr094b] for the case p 1= 2). The GT probabilistic upper

bound, due to N. Nisan and S. Safra, is also tricky (see exercise 3.18 in [KN97])

while the randomized simultaneous lower bounds for INDEX and GT are due

respectively to [KNR99] and [MNSW98]. Most MODp-counting bounds are

theorems (or easy corollaries) of [D KMW92].

4.2.2 Communication Complexity of Regular Languages
and Monoids

In general, we want to study the communication complexity of functions which

do not explicitly have two inputs. In the case of regular languages and monoids

we will use a form of worst-case partition definition. Formally, we define the de-

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 83

terministic (resp. randomized, simultaneous, probabilistic simultaneous, MODp-

counting) communication complexity of a regv,lar language L ç A * as the deter

ministic (resp. randomized, simultaneous, probabilistic simultaneous, MODp -

counting) communication complexity of the foIlowing problem: Alice and Bob

respectively receive al, a3, ... a2n-l and a2, a4, ... ,a2n where each ai is either

an element of A or the empty word2 E and they want to determine whether

al a2 ... a2n belongs to L.

Similarly, the deterministic (resp. randomized, simultaneous, probabilistic

simultaneous) communication complexity of a finite monoid NI is the determin

istic (resp . randomized, simultaneous, probabilistic simultaneous) communica

tion complexity of evaluating in M the product ml . m2 m2n where the

odd-indexed mi E NI are known to Alice and the even-indexed mi are known to

Bob. We further define the MODp-counting communication complexity of M as

the maximum over aIl F ç M of the MODp-counting complexity of determining

if this product ml . m2 m2n belongs to F.

The foIlowing basic facts from [RTT98], whose proofs we sketch here for

completeness, support our choices of definition:

Lemma 4.1 Let L ç A* be regular with M(L) = l'III. We have D(M)

8(D(L)) and similarly for DII, R, RII and NModp for p prime.

Proof. [sketch] Let 4> : A* --t M be the recogmzmg morphism with L =

4>-l(F). Then a ward a1a2 ... a2n belongs to L if and only if the product

4>(a1)4>(a2) ... 4>(a2n) belongs to F and so the communication complexity of L

in aIl four models is bounded by the complexity of M(L).

2This definition of communication complexity of a regular language Lis, up to a constant
factor, equivalent to the worst-case partition complexity discussed in Section 4.5 as long
as there exists an integer t such that each.m E M(L) is the image, un der the recognizing
morphism, of a word of length t. In particular, the communication complexity of Lis, up to
a constant, the worst-case partition complexity of LE. These issues are discussed in greater
detail in [Tes99J.

84 CHAPTER 4. COMMUNICATION COMPLEXITY

Conversely if M = NI(L) we can pick for each mE M sorne word um E A*

where cjJ(um) = m. By padding with empty words E, we can assume that such

'um's can be chosen in (A U {E})* with Iuml = t for aIl m. Moreover, by definition

of the syntactic congruence, we can find a finite set of pairs of words (Xi, Yi) such

that for any w E A* and any umj holds W f'"VL 'umj (i.e. cjJ(w) = mj) if and only

if we have X(WYi E L when and only wh en X'iUmj Yi E L.

Suppose Alice and Bob are given monoid elements ml, m3,"" m2n-1 and

m2, m4, ... ,m2n respectively. If they have a proto col for Land want to evaluate

the product mlm2 ... m2n they can do so by repeatedly using the L-protocol to

check if each of the words Si = Xi (um] um2 ... Um2JYi belong to L. In order to

use the L-protocol, it must be the case that Alice knows aIl odd-indexed letters

in Si and Bob knows every even-indexed one so padding with E has to be used

once more to achieve this. Still, the length of the resulting Si'S will be no more

than 4qn. o

In particular the deterministic (resp. simultaneous, randomized, probabilis

tic simultaneous, MODp-counting) complexity of a monoid NI is, up to a con

stant, the maximal communication complexity of any regular language that it

can recognize.

Lemma 4.2 For any increasing f : N -+ N the class of monoids su ch that

D(M) (resp. DII(M); R(M), RII(M), NModp(M) for p prime) is OU) forms a

variety.

Proof. [sketch] It is straightforward to verify that in an four models, the com

munication complexity of the direct product of monoids M x N is bounded by

the sum of the cornplexities of M and N. MOI'eover, if N --< NI then every

language recognized by N is also recognized by M and by our previous rernark

the complexity of N is at most that of NI. 0

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 85

4.2.3 Rectangular Reductions

As we mentioned earlier, [BFS86] introduced a convenient notion of reductions

in the communication complexity setting.

Definition 4.3 A rectangular reduction of length t from a language L ç A * x

A* to a language L' ç A'* X A'* is a pair of functions (rA, rB) such that for any

(x,y) E A* x A*:

1. IrA(x)1 and IrB(y)1 depend respectively on Ixl and lyl and are respectively

bounded by t(lxl) and t(lyl);

2. (x, y) E L if and only if (r A(X), rB(y)) E L'.

Clearly, a rectangular reduction from L to L' can be used to infer a commu

nication complexity lower bound for L' from a lower bound for L since r A(X)

and rB(y) can be computed privately by Alice and Bob respectively.

We give here a variant of this definition which specifically suits our needs:

Definition 4.4 Let L ç An X Af(n) and M be some finite monoid. We de

fine a rectangular reduction of length t from L to M as a sequence of 2t

functions al, b2, a3,"" a2t-l, b2tJ with ai : An -+ M and bi : A.f(n) -+ !VI,

such that for every x E An and y E A.f(n) we have (x, y) E L if and only if

evalM(al(x)b2(y) ... b2t (y)) ET for some target subset T of !VI.

Such a reduction transforms a pair (x, y) into a sequence of 2t monoid el

ements ml, ... ,m2t where the odd-indexed mi are obtained as a function of x

only and the even-indexed mi are a function of y.

In general, we are interested in reductions from K ç A* x A* into M. In

our definition we used the notation L ç An x A.f(n) to stress that we focus on

languages K in which pairs (x, y) have lengths related by a common parameter

n. It should be clear that if K has communication complexity O(g(n)) and has,

86 CHAPTER 4. COMMUNICATION COMPLEXITY

for each n, a reduction of length t(n) to M then NI has complexity n(g(t- l (n))).

We will write K :S; M to indicate that K has a rectangular reduction of length

t to M and will drop the t superscript whenever t = O(n).

Note that if the language K is recognized by a program of length t(n) over

M then we have K :S; M since a pro gram is a special form of rectangular

reduction in which every ai (resp. bi) depends in fact on a single let ter of x

(resp. y).

4.2.4 Bounds and Classifications

We establish bounds on the two-party communication complexity of monoids

and regular languages and provide complete classifications in the deterministic,

probabilistic, simultaneous and MODp-counting (p prime) models. The anal

ysis of the first three cases was published as [TT03]. We begin with an easy

observation.

Lemma 4.5 If M is commutative then DII(NJ) = 0(1).

Proof. Since NI is commutative, we have

80 if Alice and Bob send to the referee the log IMI bits representing (ml' m3 .

. . . . m2n-d and (m2 . m4 m2n) respectively, he can compute the product

D

Next, we use the combinatorial description oflanguages with syntactic mono

ids in DO to obtain another upper bound.

Lemma 4.6 Let L ç A* be such that 1\I[(L) E DO n Ab. Then D(L)

O(logn).

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 87

Proof. By Lemma 2.20, L is a union of 1"V~I,k -classes for sorne Abelian group

C. We claim that any such class has logarithmic communication complexity

and argue by induction on t = lAI + k. For t = 1 there is nothing to prove.

For t > 1, let u E (A U {E})* be sorne predetermined representative of the

class. Given the input x = XIX2 ... X2n E A*, Alice and Bob can check wh ether

o:(x) = o:(u) by exchanging lAI + 1 bits. Next, they need to verify that 'U and x

are C-equivalent. If Chas exponent p, we get u and x C-equivalent if and only

if l'ul a - Ixia (mod p) for aU a E A. The latter condition can easily be verified

with communication cost about IAlilogpl, a constant. Let u = vaw be the a-left

decomposition of u and i, j denote the locations of the leftmost occurrence of a

in x that is se en respectively by Alice and Bob. These indices can be exchanged

at logarithmic communication cost so that if, for example, i is smaller than j

then Alice and Bob can conclude that x = Xl ... X'i-laXHI ... X n is the a-left

decomposition of x and further verify, by induction, that Xl ... X'i-l I"VBtr-l,k

v and Xi+l'" x n l"V~r,k-l w using only O(logn) communication. Left-right

symmetry completes the proof. o

The example of CT shows that probabilistic protocols can be much more

efficient than deterministic on es and it is natural to ask whether sueh gains

can be made for certain monoids in DO n Ab. This motivates the foUowing

definition:

Definition 4.7 We caU W the variety of monoids M satisfying:

1. MEDO;

2. exwyf = ewxyf = exywf for all w, e, f, x E M such that e, f are idem

potents lying J -below w; i. e. M satisfies

(swttwxy(uwvt (swt)Wxwy(uwvt

(swt)W xyw (uwv)w.

88 CHAPTER 4. COMMUNICATION COMPLEXITY

Remark 4.7. Suppose NI E W has exponent p and con si der some w E M

lying J-above idempotents e, f, and some x, y E M. Since 111 EDO, we

have ewP e = e and so

ewP exwP y f

ewPwPexyf (By condition 2)

exyf

Note also that condition 2) shows that W ç Ab. lndeed, if '11" V are elements

of a subgroup with identity element e, we have

uv = euve = evue = v'u.

For a word '11, E A* and a E A we denote by REDt(u) be the unique word of

A* obtained by keeping in '11, only the first and last t occurrences of each letter

a with lul a 2: 2t and an occurrences of letters a with lul a < 2t. For example,

RED2 (abcbabbababba) = abcbaabba. We will show that languages recognized by

monoids in W have a useful combinatorial characterization: we set '11, ';::::;t,p v if

and only if:

2. For an a E A we have lul a - Ivl a (mod p).

Alternatively, we could define REDt,p(u) as the word obtained from '11, by the

following process: For every a E a(u) with Iqla 2: 2t mark the first and last t

occurrences of a then move an other occurrences of a, if any, next to the tth one

and then reduce that block of a's modulo p. If Iqla < 2t, an occurrences of a are

left untouched. Note that we clearly have REDt,l(U) = REDt(u) and '11, ';::::;t,p v

if and only if REDt,p(u) = REDt,p(v).

Theorem 4.8 Let NI = A* Ir, then M E W if and only if ';::::;t,pç , for some

t,p.

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 89

Proof. For one direction, we need to show that M = A* / ~t,p lies in W. By

definition, we can see that the ~t,p equivalence classes are unambiguous concate

nations of languages with syntactic monoids in JI V Ab and so M EDO n Ab

by Theorem 2.20. Furthermore, let us consider the words q = (uwv)tpwx(ywz)tp

and r = (uwv)tpxw(ywz)tP. For any a E A, Iqla - Ixia + Iwl a - Irl a (mod p)

and

REDt((uwv)tpwx(ywz)tp) REDt((uwv)tPx(ywz)tP)

RE Dt ((UWV)tP xw (ywz)tP)

since for any letter a occurring in w, the first t occurrences of a lie in (v,wv)tP

and its last t occurrences lie in (ywz)tP. Thus, q ~t,p r so NI satisfies condition

2 of Definition 4.7.

Conversely, suppose NI is in W. We need to show that there exist t,p such

that for any morphism cjy : A* --t M we have cjy(q) = cjy(r) for any q ~t,p r

and it is in fact sufficient to establish cjy(q) = cjy(REDt,p(q)) since REDt,p(q) =
RE Dt,p (r). In particular, we choose p as the exponent of M and t as 1 M 1 + 1.

Recall that to obtain REDt,p(q), one successively cons id ers aIl a E A with

Iqla ~ 2t, "groups" together the "middle" a's and reduces their number modulo

p. We will show that the image under cjy is preserved by this process. Consider

a word u = 'UOaula . .. aUt with at least t occurrences of a. Since t = IMî + 1,

there must exist 1 :=:; i < j :=:; t such that

This means that

Therefore there exist g, hEM such that cjy(u) can be written as geh where

e = cjy(aUi+la . .. aUj)W is an idempotent lying .J-below a.

90 CHAPTER 4. COMMUNICATION COMPLEXITY

Suppose now that q contains at least 2t + 1 occurrences of a. We can thus

factor q as q = 'uoa ... 'Ut_laxayaVt_la . .. avo where the 'Ui'S and v,/s do not

contain a. From the remarks of the preceding paragraph, we can now use con

dition 2 in Definition 4.7 to obtain <jJ(q) = <jJ(uoa ... Ut_laaxyaVt_la ... avo).

Repeating this same process for all occurrences of a in x or y we can get

<jJ(q) = <jJ(uoa ... Ut-la akp+dz aVt-la . .. avo) where a tf. Œ(Z) and from condi

tion 1: <jJ(q) = <jJ(uoa ... Ut_laadzavt_la ... avO) where 0::; d < p is such that

Iqla - 2t d (mod p). If the same manipulation is made for every a E A, we

obtain <jJ(q) = <jJ(REDt,p(q)) as we needed. D

At least intuitively, we have M(L) lying in W if and only if membership of a

word w in L can be determined by counting threshold t, mod p the occurrences

of letters in w and determining the relative positions of any of the first and last

t occurrences of letters in w. In terms of two-party communication complexity,

W thus forms an "easy" subclass of DO n Ab because these comparisons of

log n-bit numbers can be done relatively efficiently.

Lemma 4.9 Let L ç A* be such that lYI(L) E W. Then DII(L) = O(logn)

and R(L) = O(loglogn).

Proof. As in the previous pro of, we obtain these upper bounds for the ~t,p

classes. Let u be sorne representative of the target class and x the corn mon

input of Alice and Bob. Checking whether lula Ixia (mod p) is easily done at

constant cost so we only need to show that verifying REDt(x) = REDt(u) can

be done efficiently. For the simultaneous case, the players send to the referee the

locations of the first and last t occurrences that they see of each letter a E A.

Given this information, the referee can reconstruct REDt(x) and compare it to

REDtCu).

For the probabilistic case we use a subprotocol of cost O(log log n) to deter

mine for any k ::; t which of Alice or Bob holds the kth (or symmetrically the

4.2. TvVO-PARTY COMMUNICATION COMPLEXITY 91

kth to last) occurrence of sorne let ter a in x, provided of course that Ixia 2: k.

We argue by induction on k: For k = 1, let i, j be the positions of the first oc

currence of a seen by Alice and Bob respectively. Of course Alice holds the first

occurrence of a if and only if i < j and, using the complexity bound mentioned

in Table 4.1, this can be tested by a randomized proto col at co st 0 (log log n)

since i, j are only log n-bits long. For k > 1 we can assume from induction

that Alice and Bob have marked, in their respective inputs, the occurrences of

a which are among the first k - 1 of a in x. The kth occurrence must be either

the first unmarked a that Alice sees or the first unmarked a that Bob sees,

whichever cornes first in x. Once again, Alice and Bob are left with comparing

two logn-bit numbers and apply the O(loglogn) cost proto col.

For i, j :::; t, the i th occurrence of a in x cornes before the ph occurrence

of b in x if and only if the i th occurrence of a in RE Dt (x) cornes before the

jth occurrence of b in REDt(x). This means that Alice and Bob can check

REDt(x) = REDt(u) by verifying that for an i, j :::; t and an a, b E A the

i th occurrence of a precedes the ph occurrence of b in REDtCu,) if and only if

the i th occurrence of a precedes the ph occurrence of b in x. Since they can

determine which of them holds these occurrences, they can check precedence

either privately (when one player holds both occurrences) or by using once

more the 0 (log log n) randomized protocol to corn pare two log n bit numbers.

It should be noted that in any event, the CT protocol is used only a constant

number of times (depending on t and lAI) so we need not worry about the

dwindling of the overall probability of correctness in the proto col. o

We have seen that unambiguous products of languages with commutative

syntactic monoids have O(logn) deterministic communication complexity. It

should not come as much of surprise that in the MODp-counting model we can

correspondingly obtain:

92 CHAPTER 4. COMMUNICATION COMPLEXITY

Lemma 4.10 Let L C A* be reg'lJ,lar with M(L) E LGp ~ Corn. We have

NModp(L) = O(1ogn).

Proof. We know from the result of [Wei92] cited as Lemma 2.23 that L is in

MpPol(Lcom), i.e. is a Boolean combination of languages of the form

{xl (x) = j
(LOa1L1 ... akLk) -

(mod p)}

where M(Li) is commutative for aIl i. So we only need to exhibit an O(logn)-

cost proto col to check if a given word w E (A U {E})* has a number of factor

izations as uoal'Ul ... akuk, with Ui E Li, that is congruent to j modulo p.

Suppose first that j = O. The protocol we present in the next paragraph

will in fact output positively if and only if the number of valid factorizations is

not congruent to 0 modulo p. This is sufficient as we have mentioned that for p

prime NMOdp(L) = NMOdp(L).

The proof sent by God in the first step of the proto col consists of k log n-bit

integers t l < t 2 < ... < t k . In the next stage of the protocol, Alice and Bob

interpret the t i 's as possible locations for the bookmarks al, a2, ... ,ak in w and

accept if they correspond to a valid factorization 'UOalul'" ak'U'k with 'U"i E Li'

This can be done at constant cost since Alice and Bob need only check that

position t i indeed contains letter ai and that segment Ui belongs to Li, which

requires only 0(1) bits sinee M(L i) is commutative. The cost of the proto col is

dominated by the length of the proof which is O(logn). The number of proofs

accepted by Aliee and Bob is thus exactly the number of legal factorizations so

the protocol accepts if and only if it is non-zero modulo p. Note that for j 1- 0,

we need to slightly modify our proto col by adding the possibility for God to

send one of (p - j) different "special" proofs that always lead Alice and Bob to

accept. o

To obtain lower bounds matching the upper bounds presented above, we

give a nllmber of conditions under which a finite M admits a reduction from

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 93

GREATER THAN, DISJOINTNESS, INNER PRODUCT mod q and INDEX.

Lemma 4.11 1. If M is non-commutative then GT ~;n M (Notice that the

reduction has exponential length);

2. ri M is not in DS then DISJ ~r' M;

3. If Jill lies in DS but is not in DO then 1 Pq ~T M for some integer' q;

4. For any prime P, if M lies in DS but contains J -related idempotents e, f

such that (e f)pu
is not idempotent for any Œ 2 1 then 1 Pq ~T M for q not

a power of p;

5. If G is a non-commutative group then 1 Pq ~T G for some integer q;

6. For any prime P, if G is a group outside of G p * Ab then 1 Pq ~T G for

some q which is not a power of p;

7. If M is in DO but not in W then INDEX ~T M.

Proof. 1- Let a, b E M be such that ab =1= ba. We obtain an exponentiallength

reduction from GT(x, y) by building mlm2'" m2n+1 where mi = a for i = m2x;

mi = b for i = m2y-l and mi = lM otherwise. The product of the mi is then ba

if and only if x 2 y and is ab otherwise.

2- If M is not in DS then it admits one of B2 or U as a divisor. In both cases,

the reduction from DISJ builds for every pair Xi, Yi a four-tuple m4i-3··. m4i

where m4i-3 = a and m4i-l = b when Xi = 1 and m4i-3 = m4i-l = lM when

Xi = 0, m4i-2 = ab when Yi = 1 but m4i-2 = lM wh en Yi = 0 and m4i = ab for

any input. One can check that in both B 2 and U, any such four-tuple evaluates

to 0 when Xi = Yi = 1 and to ab otherwise so the product of an of them is 0 if

X.; = Yi = 1 for sorne i and is ab otherwise.

3- Since 1\1 is in DS but not DO, there must exist two J-related idempotents

e, f such that ef is not idempotent. Since M is in DS, however, we have efe =1=

94 CHAPTER 4. COMMUNICATION COMPLEXITY

e = (ef)w e. Let q be minimal sueh that (ef)IJe = e: The reduetion produces

elements ml ... m2n where m2i-l = e if Xi = 1 and m2i-l = e(ef)w = (ef)w

otherwise and m2i = je if Yi = 1 and m2i = (ef)w e = e otherwise. In partieular

the produet m2i-lm2i is eje if and only if Xi = Yi = 1 and is e otherwise and so
L: XiYi=Û (mod IJ)

the produet ml ... m2n equals (ef) l <ôy;n e whieh equals e if and only

if l PIJ (x, y) = 1.

4- The argument is almost the same as 3-. Again, let q be minimal sueh that

(ej)IJ e = e. We are guaranteed that q is not a power of p and we ean reuse the

reduetion deseribed for 3-.

5- If G is not Abelian, there must exist 09, h E G sueh that the eommutator

[09, h] = g-lh-lgh is not the identity and thus has order q i- 1. We obtain

a reduetion from l PIJ by ereating for eaeh pair Xi, Yi a four-tuple of monoid

elements m4i-3m4i-2m4i-lm4i where m4i-3 = 09- 1 and m4'i-l = 09 when Xi = 1

and m4'i-3 = m4i-l = le when X'i = 0 and where m4i-2 = h- l and m4i = h

wh en Yi = 1 and m4i-2 = m4i = le wh en Yi = O. This four-tuple thus evaluates

to [g, h] if and only if Xi = Yi = 1 and to le othe l'wise and the product of aU
L: XiYi (mod IJ)

sueh tuples is [g, hp~i~n .

6- If G is not in G p * Ab, there must exist g, h E G sueh that [09, h] has order q

whieh is not a power of p so we ean reuse the previous reduetion.

7- If M lies in DO - W, we must eonsider two cases. Assume first that there

exist e, j, u, v, w with e, j idempotent and .J-below w sueh that euwWvj i- euvj.

Since NI is in DO we have ewWe = e and jwW j = j.

We obtain a reetangular reduetion from INDEX(x,8) by ereating m

ml'm2 ... m2n+l as follows:

e for i = 1,3, ... ,28 - 3 (the first 3 - 1 odd-indexed mi's);

(eu)
(vI)

j

for i = 28 - 1;

for i = 23 + 1;

for i = 23 + 3, ... , 2n + 1 (all other odd indexed mi 's);

lM for i = 2j and Xj = 0;

W
W for i = 2j and X j = 1.

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 95

The values of the odd indexed and even indexed mi depend respectively on 8

and x as required and one can see that since ewWe is e and fww f is f, the

product of the mi's is equal to euvf wh en Xs is 0 and e'uwwvf when Xs is 1

which shows the correctness of the reduction.

If on the other hand we do have euwwvf = euvf for an suit able e, 'U, v, w, f,

then there must exist e, f, u, w E M with e, f idempotent J-below w but

ewuf i- euwf for otherwise we have euwvj = euwWwvj = euwWvwj = euvwj

and M lies in W. On the other hand, since we assume euwwvf = euvf, we

have euw j = ewWuw j and ewuj = ewuwW f. We now obtain a rectangular

reduction from INDEX(x, 8) (assuming w.l.o.g. that X n = 1) as foUows:

m'i =

e

f
'U

lM
W W

W

for i = 1

for i = 2n + 1

for i = 28 + 1;

for aU other odd-indexed i;

for even i = 2j such that Xj = Xj-l;

for even i = 2j such that Xj = 1 and Xj-l = 0;

ww- 1 for even i = 2j such that Xj = 0 and Xj-l = l.
Again, the values of the odd indexed and even indexed mi's depend respec-

tively on 8 and x. The value of the even indexed mi's are such that the product

m2m4 . .. m2i is wkw+1, for sorne k, if and only if Xi is 1 and wkw if Xi is O. Sim

ilarly, using the fact that Xn = 1, the product m2i+2 ... m2n is wk'w if and only

if Xi = 1 and Wk'w+l otherwise. Using the values assigned by the reduction to

the odd-indexed mi's we have

and by our previous remarks this is ewkw+1uwk'w f = ewuf if Xs

ewkwuwk'w+l f = euw f if Xs = 0 so our reduction is correct.

1 and

o

In particular, if M does not lie in DO n Ab then it either admits a linear

length reduction from DIS J (if it is outside DS) or from 1 Pq for sorne q (if it is

either in DS but not in DO or if it is outside Ab). Combining our last lemma

96 CHAPTER 4. COMMUNICATION COMPLEXITY

with the upper bounds above we can obtain the three following theorems.

Theorem 4.12 Let L ç A* be a regular language with M = 1\1[(L). Then

{

0 (1) if and only if M is commutative;

D(L) = 8(logn) if and only if M is in DO n Ab but not commutative;

8(n) otherwise.

Proof. We know D(L) = 0(1) if M is commutative and D(L) = Sl(logn)

otherwise since in that case GT :s;n M. Lemma 4.6 gives the upper bound

when M E DO n Ab. Finally, wh en M is not in DO n Ab, then it admits

a linear length reduction from DIS] or IPq which yields the last Sl(n) lower

bound.

Theorem 4.13 Let L ç A* be a regular language with]'\11 = .1I1(L). Then

R(L) =

o (1) if and only if NI is commutative;

8 (log log n)
8 (log n)
8(n)

if and only if 111 is in W but not commutative;

if and only if M is in DO n Ab but not in W;

otherwise.

o

Proof. When M is in W but not commutative we put together Lemma 4.9

and part 1 of Lemma 4.11 to get the tight log log n bound. Similarly, if NI lies

in DO nAb but not in W then it admits a reduction from INDEX which

proves the Sl(log n) lower bound mat ching Lemma 4.6 and when NI is not in

DO n Ab we again use the linear lower bounds on the probabilistic complexity

of DIS] and IPq. o

Theorem 4.14 Let L ç A* be a regular language with NI = M(L). Then

o (1) 'if and only if 111 is comrrmtative;

Il Il 8 (log n) i.f' and only if' 111 is in W D (L)) = 8(R (L) =
but NI is not commutative;

8(n) otherwise.

4.2. TWO-PARTY COMMUNICATION COMPLEXITY 97

Proof. When M is in W but not commutative we combine the upper bound

of Lemma 4.9 with the lower bound obtained from part 1 of Lemma 4.11. When

M is not in W then i t admi ts a linear length red uction from INDEX, DIS J

or l Pq which aU have D(n) probabilistic simultaneous complexity. o

There are non-regular languages for which probabilistic simultaneous pro

tocols significantly outperform deterministic simultaneous ones. For instance,

the probabilistic simultaneous complexity of Equality is O(vin) (folklore, see

[NS96, BK97] for explicit protocols) and it was established by [BK97] that this

quadratic gain is optimal, i.e. that for any L holds DII(L) = O(RII(L)2). Sueh

gaps do not exist for regular languages because they do not exist for CT, l Pq ,

INDEX or DISJ.

Theorern 4.15 Let L ç A* be a regulo:r language with M = M(L) and p be

prime. Then

{

O(l)
NMODp(L) = 8(logn)

8(n)

if and only if NI is commutative;

if and only if M is in LGp q;:p Corn

otherwise.

Proof. If NI is in LGp q;:p Corn but not commutative, we use CT :s;n NI

for the lower bound and Lemma 4.10 for the upper bound. If 111 is not in

LGp q;:p Corn then it must be either outside of DS, outside of G p * Ab or have

.J-related idempotents e, f with (ej)Pw
not idempotent and by Lemma 4.11 we

then have either DIS J :Sr M or l Pq :Sr M for sorne q not a prime power of p.

In either cases this suffices to get NMODp(lVJ) = D(n). 0

Corollary 4.16 If L is a regu,lar language such that fOT two distinct pr"irnes]J

and q we have both NMODp(L) = O(logn) and NMODq(L) = O(logn). Then

D(L) = O(logn).

98 CHAPTER 4. COMMUNICATION COMPLEXITY

Proof. By our previous theorem, M must lie in the intersection of LGp ~ Corn

and LGq r:&P Corn. In particular,],,1 lies in G p * Ab and G q * Ab so it must

in fact lie in Ab. Similarly, if for aIl J-related idempotents e, J holds both

(ej)P
w

and (ej)qw then it must be that eJ is itself idempotent and so M lies in

DO. By Theorem 4.12, aIl monoids in DO n Ab have O(logn) deterministic

communication complexity. 0

One might suspect that such a phenomenon does not occur for non-regular

languages although, to the best of our knowledge, this question has never been

studied. On the other hand it is known that for any language L we have

4.3 Multiparty Communication Complexity

4.3.1 The Input on the Forehead Madel

With applications to distributed computing in mind, it seems natural to gener

alize the two-party model to a k-party model in which each player gets access

to a 1/ k fraction of the input. Although this model has been studied [DF89]

it is of limited interest because its power goes down as the number of players

increases.

Chandra, Furst and Lipton, on the other hand, introdueed an alternative

multiparty model [CFL83] which has sinee found numerous theoretical applica

tions. In this variant, k players Pl, ... ,Pk collaborate to compute a function

f(XI, ... ,Xk) where each participant Pi knows the values of aIl the inputs e.'Ecept

:r:,i.' This game is often referred to as the "number on the forehead" moclel sinee

it is convenient to pictme that player i has Xi written on his forehead, availablü

to everyone but himself. The players exchange bits, according to a previously

agreed upon protocol, by writing them on a blackboard se en by everyone. The

proto col specifies whose turn it is to speak and what a player broadcasts is a

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 99

function of the communication history and the input he has access to. The

protocol's output is a function of what is on the black board after the protocol's

termination. We will denoté by Dk(J) the deterministic k-party communica

tion complexity of f. It should be clear that D2 (J) = D(J).

We can of course define simultaneous, probabilistic, non-deterministic and

MODp-counting variants of this model. We will use D~, Rk, NI and Nt/adf' to

respectively denote simultaneous, probabilistic, non-deterministic and MODp-

counting k-party communication complexity.

Much less is known about the multiparty models: they sometimes have very

surprising power (see e.g. non-trivial upper bounds in [Amb96, Gr094a, Pud03]

and bounds presented later' in this section) and there seems to be no way to

avoid tricky combinatorics wh en establishing lower bounds. The information

known to each player overlaps a lot since any input letter is known to k - 1

of the k players. This also means that the power of the multiparty model

increases with the number of players involved as the fraction of inputs that a

player cannot see decreases. Let us consider the 3-way generalization of the

equality function: EQ3(X, y, z) = 1 if and only if x = y = z. While EQUALITY

is the canonical example of a function with maximal two-party deterministic

communication complexity, EQ3 can be computed by a 2-bit 3-party proto col.

Indeed, it suffices for the player holding x on his forehead to verify that y = z

and for the player holding y to verify x = z.

In the combinatorial analysis of two-party models, the central notion was

that of a rectangle. The corresponding notion in the multiparty model is that of

cylinder intersections. A subset S of Xl x X2 X ... X X k is said to be a cylinder- in

the ûh dimension if membership in S is independent of the ith coordinate, i.e.

if for all Xl, X2,"" Xk and any x~ we have (Xl,' .. , Xi,"" Xk) E S if and only if

3The k-party communication complexity is sometimes denoted by D k (1), a notation pri
marily used to denote k-round two-party complexity. We choose to put k as a subscript to
avoid this confusion.

100 CHAPTER 4. COMMUNICATION COMPLEXITY

(Xl, ... ,X~, ... ,Xk) E S. We say that S is a cylinder intersection if S = n Si
l<i<k

where Si is a cylinder in the ith dimension.

Lemma 4.17 (see [KN97]) Let f : Xl X X 2 X ... X X k -+ {O, 1} be a func

tion of k-inputs. Any deterministic k-party communication protocol of cost c

computing f partitions the input space into at most 2c f -monochTOmatic cyl in

der intersections corresponding to the communication exchanged on a particular

input.

Two-dimensional cylinder intersections are just rectangles of course, but k

dimensional cylinder intersections have mu ch less structure than k-dimcnsional

hyper-rectangles. We will say that a set of k elements of Xl x X 2 X ... X X k

forms a star if it is of the form:

where for each i, Xi =F x~ and Xi E Xi. In that case, we call (Xl, X2, ... , Xk) the

center of this star. These notions allow us to give a useful characterization of

cylinder intersections.

Lemma 4.18 A set S ç Xl X X 2 X ... X X k is a cylinder intersection if and

only if the center of any star contained in S is itself an element of S.

Historically, the first multiparty lower bound is that of A. Chandra, M. Furst

and R. Lipton who used Ramsey theory to obtain bounds on the complexity of

adding k integers. Let EXACTLY2n (abbreviated E2n) be the function of k n-bit

integers defined as

if I;Xi = 2n;

otherwise.

Theorem 4.19 ([CFL83]) For all constant k, we have D k (E2n) = w(l).

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 101

In fact, the bounds for the communication complexity of E2" are both tight

and unclear sin ce they are expressed in terms of Ramsey-theoretical sequences

whose limit are known to be infinite but for which no reasonable bounds exist

except for the cases k = 2,3.

4.3.2 Discrepancy Bounds

A completely different approach to obtain lower bounds on the multiparty com

munication complexity of sorne function f is to bound the maximal size of any

f-monochromatic cylinder intersection. In many cases, it is even possible to

find strict bounds on the size of cylinder intersections which are "almost" f

monochromatic and this yields lower bounds on the cost of proto cols that can

approximate f.

This approach is formalized using the notion of discrepancy. Let p be prime

and w be sorne complex pth root of unity. For a function f : Xl X ... X X k -t

{l, w, ... , wp -
l
}, we define the discrepancy of f as

Disck(f) = m:xIE~~b-lwiPr[f(xl"'" Xk) = wi and (:1:1"," Xk) E Sll

where the maximum is taken over aIl cylinder intersections Sand where the tu

pIe (Xl, . .. , Xk) is chosen uniformly at random from Xl x ... X X k. Intuitively,

a function with low discrepancy can not have large cylinder intersections in

which a large fraction of elements have the same image under f and thus any

communication protocol with low co st is bound to disagree with f at many

points. Discrepancy is thus used primarily to prove lower bounds on the com

munication complexity of approximations to a function but, for our purposes,

we will only use the foIlowing basic lem ma, whose proof can be found in e.g.

[KN97, BNS92, Gr092J.

Lemma 4.20 For any f : Xl X ... X X k -t {l, w, ... , wp
- l },

102 CHAPTER 4. COMMUNICATION COMPLEXITY

It should be noted that the discrepancy does not necessarily lead to optimal

lower bounds (see examples in [KN97]). Furthermore, computing good upper

bounds for DisCk (1) can prove to be quite difficult.

Let Xl, ... , Xk be n-bit vectors, Xi = b}b; ... br. We define the k-WISE GEN

ERALIZED INNER PRODUCT modulo p (or GIPk,p) as the function of k n-bit

vectors such that

(mod p);

In other words, G l Pk,p is the language of k by n matrices that have a number

of all-l columns divisible by p. Of course, for p prime, we can also consider the
E xl x~".xi

non-Boolean version of GI Pk,p which maps inputs (Xl,"" Xk) to w1'.O,j'.O,n '.

Theorem 4.21 ([BNS92, Gro92]) For aU k andp holds Rk(GIPk,p) = n(n).

The original proof explicitly computed a O(cn
) upper bound on the dis

crepancy of the non-Boolean version of G l Pk,p for prime p. Historically, this

was first established in the case p = 2 by L. Babai, N. Nisan and M. Szegedy

[BNS92] and later generalized in [Gro92] to arbitrary p. Both proofs are some

what intricate and are based on induction on k.

It was later shown by F. Chung and P. Tetali [Chu90, CT93] and R. Raz

[RazOO] that this bound could be calculated with far less effort, at least in the

case p = 2. It is unclear whether these techniques have an analog for the case

p> 2.

We want to apply the discrepancy technique in order to lower bound the

multiparty communication complexity of the following variant of the generalized

inner product modulo p (in its non-Boolean version). We define the k-wise

truncated inner product modulo p or TGI Pk,p for short, as the function which

maps k n-bit vectors Xl, ... ,xk and an index s E [n] as TG l Pk,p(xl, ... ,xk, s) =

wI::~î(xIx;".x7). In other words, TGIPk,p is GIPk,p computed on the inputs

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 103

Xl, ... ,Xk truncated after s bits. Note also that for any xl, ... Xk E {a, l}n and

any s E [n] we have TGIPk,p(Xl, ... , Xk, s) = G1Pk+l,p(Xl, ... , :rk, Pon-s).

We will use a result of V. Grolmusz [Gro92] concerning the discrepancy of

G l Pk,p. Let us define

where i! = (Xl, ... ,Xk) E ({O, 1 }n)k and CPi is shorthand for cp(i!) and where the

maximum is taken over an CPi: ({O, l}n)k -+ {a, 1} such that CPi(Xl' ... ,Xk) does

not depend on Xi. The expected value Ex is taken on the uniform distribution

Note that the function CPI CP2 ... CPk is the indicator function for sorne cylinder

intersection and thus 6k (n) is exactly the discrepancy of G l Pk,p on inputs of

length n.

Lemma 4.22 ([Gro92]) For ail k, there e.'Eists d > 1 sv,ch that 6 k (n) :; d-n .

We adapt Grolmusz's proof of this lemma and use its result to show:

Lemma 4.23 For any k and any prime p,

Disc(TGIPk,p) = O(l/v'n).

Proof. Similarly, to 6k (n), we define

where i! = (Xl, ... ,Xk) E ({O, l}n)k and CPi and 'ljJ are shorthand for CPi(i!,S) and

'l/J(i!, s). The maximum is taken over aIl CPi, 'ljJ : ({O, l}n)k x [n] -+ {a, 1} such

that CPi(Xl, .. . , Xk, s) does not depend on Xi and 'ljJ(Xl, .. . , Xk, s) does not depend

on s. The expected value Ex is taken on the uniform distribution on pairs in

({O, l}n)k x ln]. Clearly, for inputs oflength n we have Disc(TGIPx;,p) = Sdn).

104 CHAPTER 4. COMMUNICATION COMPLEXITY

By convexity of expectations, we have

and since 'ljJ does not depend on s:

For any complex-valued random variable À, we have (E[IÀIJ)2 ~ E[lÀI2] by the

Cauchy-Schwartz inequality. If in particular we choose

we obtain

Furthermore lEs [TGIPk,p(x, s)(Pt ... c/>kW can be rewritten as

where TG 1 Pk,p denotes the complex conjugate of TG 1 P and we can write

For any s, t in [n] we write c/>f (resp. c/>D to denote the restriction of c/>'i where

the last input is s (resp. t). Furthermore for fixed s ~ t we will "split" the k

tuple of vectors x as yand z as follows: If the i th coordinate of x is Xi = b l b2 ... bn

then the i th coordinate of y is Yi = bs+1bs+2 ... bt and the i th coordinate of z is
Zi = b1b2 ' .. bs bt+l ... bn . The crucial observation is that for fixed s ~ t we have

Indeed, TGIPk,p(x, t) = TGIPk,p(x, s) . GIPk,p(y) and

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 105

80 we can now bound Bk(n) as:

Note that it is sufficient to consider the expectation over the pairs s :::; t

since the case s ::::: t is completely symmetric. For fixed s :::; t and fixed z of

length s + n - t, define (i : ({O, 1 }t-s)k ~ {O, 1} as (i(il) = cpf(i)cp;(i) where i

is split as il and z for that choice of sand t. We can now write

Now (i does not depend on the i th component of il and we can thus use

Lemma 4.22 to daim that there exists d such that 1 [Ey[G l Pk,p(iJ)(l ... (k]1 :::; d-.i

when we consider fJ's of length j.

Thus, the value of Ez[Ey[G l Pk,p(il)(l ... (k] depends most crucially on how

far apart sand tare. We now use this bound in our estimate on Bk (n):

Bk(n) < (Es~td-(t-s)) 1/2

.i=n-1

< (L Pr[t - s = j] . d-.i) 1/2

.i=O

.i=n-1

< (L (n - j)ln2 . d-.i)1/2

.i=O
j=n-1

< (lin L d-.i)1/2
j=O

O(l/Vrï)·

And so our daim about Disc(TG l Pk,p) is proved. o

As an immediate corollary to the latter two lemmas we obtain from Lemma

4.20:

Theorem 4.24 For all k and any prime p

106 CHAPTER 4. COMMUNICATION COMPLEXITY

Notice that the lower bound for TGl P is of course tight. lndeed, suppose

player k + 1 has s written on his forehead: it suffices for any other player to

send him the log n bits of s for player k + 1 to know the entire input and thus

be able to output the correct value of TG l P.

4.3.3 Multiparty Complexity Bounds for Regular Lan
guages and Finite Monoids

Similarly to the two-party case, we define the k-party communication complexity

of a finite monoid M as the k-party complexity of evaluating in M the product

ml . m2· . .. ' mkn where the mi E NI is written on the forehead of player j where

j i (mod k).

Similarly, the k-party communication complexity of a regular language L ç

A* is the k-party complexity of determining wh ether the word ala2a3 ... akn lies

in L, with ai EAu {E} written on the forehead player j's where j i (mod k).

It is easy to show that for any k 2 2 the (k + 1)-party communication

complexity of a regular language L (resp. of a monoid M) is at most its k

party complexity. We can also rework the proof for the two-party case (see also

[RTT98]) to obtain the elementary facts:

Lemma 4.25 Let L ç A* be regv,lar with M(L) = M. For' any k, we have

Dk(J\lI) = 8(Dk(L)) and similarly for D~, Rk and N:!odp for p prime.

For any increasing f : N --+ N and any k the class of monoids sv,ch that Dk(M)

(resp. D~(NI), Rk(M), N::odp for p prime) is OU) forms a variety.

We define the following generalizations of the two-party rectangular reduc

tions from a language to a monoid:

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 107

Definition 4.26 A k-dimensional hyper-rectangular reduction of length t from

a languagé L ç (An)k to a monoid NI is a sequence of kt functions (SI, . .. , Stk)

where the Si 's are functions from An to M such that (Xl, ... , Xk) E (An)k belongs

to L if and only if

In other words, such a reduction maps a k-tuple (Xl, ... , Xk) E (ATL)k to a sc

q'U,ence of kt monoid elements where the jth monoid element is obtained solely

as a function of Xi where i == j (mod k).

We will write L S;k M to denote the existence of a k-dimensional hyper

rectangular reduction from L to M. A program is a special form of hyper

rectangular reduction.

We have already mentioned that the multiparty model often has surprising

power and is much harder to analyze than the two-party models. ldeally, we

would like to obtain complete classifications similar to the ones of Section 4.2

but we only have partial results in this direction.

We begin by sketching the proof of a complete characterization for the k

party deterministic and probabilistic communication complexity of groups which

first appeared in [RTT98, Tes99].

Theorem 4.27 Let G be a group. If G zs in Gnil,k then Dk+l (G)

Otherwise Rk+I(G) = D(n).

0(1).

Proof. The upper bound is a result of the combinatorial description of lan

guages whose syntactic monoids are nilpotent groups of class k (Theorem 2.13):

if M (L) is a nilpotent group of class k then membership in L can be determined

by counting the number of occurrences of each subword of length at most k

4In general of course, we might need to consider languages consisting of k-tuples of inputs
of difJerent lengths. The definition can clearly be adapted for such cases at the cost of extra
sub/superscripts.

108 CHAPTER 4. COMMUNICATION COMPLEXITY

modulo sorne integer m. In the (k + l)-party game, any set of k input letters

is seen entirely by at least one player so a proto col using (k + 1) . pog ml can

easily be devised to count the number of occurrences of a particular subword of

length at most k.

The lower bound generalizes the idea of part 5 of Lemma 4.11. If G is not

nilpotent of class k, there exists a commutator 9 of weight k + 1 which is not

the identity. By Lemma 3.3 there exists a G-program cP taking k + 1 bits as

input and such that

if aIl Xi are on;

otherwise.

By concatenating n such programs, we can obtain a G-program '1/) of linear

length to recognize G l Pk+l,m and this hyper-rectangular reduction shows that

o

To analyze the general case, we introduce an alternative parametrization of

languages recognized by monoids in DO by defining for any group G a family

of congruences ~~t on A* for any s, t E N. First, for any t, we let :1: ~~t y for

aIl X, y. Then recursively, we define X ~~t Y if and only if

1. X and y are G-equivalent;

2 X ",G Y' . "'8-l,t'

4. For aIl x = XOaxl and y = yoaYl with I:r:ola, = IYola, :::; t, we have :1:0 ~?-l,t

Yo and Xl ~?-l,t YI;

5. For aIl x = XOaXl and Y = yoaYl with IXlla, = IYlia :::; t, we have 1:0 ~?-1,1,

Yo and Xl ~?-l t YI· ,

One can check that for aIl s, t, ~?t is a well defined finite index congruence. ,

This congruence is quite close to rv
G defined in Chapter 2: where in rv

G we

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 109

were primarily concerned with the first and last occurrence of each let ter , we

look here at the first and last t occurrences of each letter. Note however that

::::::;7,1 is not equal to rvBtI,s because, the induction base and the recursion on the

prefixes and suffixes is slightly different in the two definitions. For example, one

can verify that for any commutative G we have ab ;::::::?1 ba but ab rf?1 ba. , ,

Not so surprisingly, given the similarity to rvG , we can show that ;::::::~t also ,

parametrizes DO:

Theorem 4.28 Let M = A* /" with lAI = n and let H be a vaTiety of gTOUpS.

Then lI1 E DO n H if and only if :::::::;7,tç , faT sorne 5, t and sorne G E H.

Proof. To show that A * / ;::::::~t is in DO n H, it suffices to note that the ;::::::~t , ,

classes are aIl unambiguous concatenations of languages with syntactic monoids

in JI V H.

The converse follows from Theorem 2.20 since, from the definitions of ;::::::G

and rvG we have:::::::;G Cr,P. , ns,l- n,s o

For any group G, and positive integers 5, t, we will denote by V R:J?t the variety

of monoids M = A* /, such that ;::::::?,tç f. The following lemma motivates the

introduction of the ;::::::~t congruences in the context of multiparty communication ,

complexity.

Lemma 4.29 Let G be a nilpotent group of class d. If M lies in V ~G then
"'s,t

Proof. It is sufficient to establish the upper bound for A* / ;::::::~t for any alphabet ,

A and any s, t and we will do so using induction on s. In the case of s = 0 there

if> nothing to prove.

Suppose now s 2: 1 and take a set of representatives lUi] of A * / ;::::::7,t. For each

Ui, the players will check whether w :::::::;~t Ui. First, they need to verify that w ,

and Ui are G-equivalent and since G is nilpotent of class d, this requires counting

110 CHAPTER 4. COMMUNICATION COMPLEXITY

the number of occurrences modulo sorne p of subwords of length at most cl in

w 5
. Since the number of players involved is (8 + cl) 2:: (d + 1), this can be done at

constant cost (see Theorem 4.27). Next, the players can exchange O(t) = 0(1)

bits to insure that Œt (w) = Œlui)' If 8 = 1, we are done because there is no

recursive condition to check. If 8 2:: 2, suppose 'Ui = VOaVI with Ivo la :s: t. There

exists a factorization w = WOawI, with Ivola = Iwola but in order to handle the

recursion, the players first need to identify the exact location of the jth a in w

(where Ivola = j - 1).

To achieve this, each player sends a list of identities of the players they

think ignore the first j a's. This requires only 0((8 + d + 1) logt) = 0(1)

communication. Of course, only the player who has the first a on his forehead

will incorrectly identify the first member in that list (say this player is Player

l), while aIl others will agree on designating him as the one ignoring the first

a. Since 8 2:: 2, there are at least 3 players involved in the proto col , so Player l

can indeed be identified as the only one disagreeing with the majority. We can

correct his list by adding an l in the first position and shifting the rest of his list

right. Now, the second positions in the lists of aIl but one of the players agree

and we can repeat this procedure for j rounds. In the end, aIl players know

which player ignores the jth a and aIl except that player know the location of

that a. The protocol can now sideline this player and let the other 8 + d - 1

players check whether Vo ~?-l,t Wo and VI ~?-l,t wl. By induction this is doable

with 0(1) communication. Left-right symmetry completes the proto col. 0

Consequently, any language in DO n Gni! has constant communication com

plexity for sorne large enough (but fixed) k. This in fact characterizes DOnGni!

for, as we will see next, both B 2 and U can be shown to have w(l) communica

tion complexity in every k-party model.

5 Alternatively the players could do this by compal'ing the images of w and 'Ui uuder ail
possible morphisms from A * ta G. This strategy cau be implemeuted at constant cast from
Theorem 4.27.

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 111

Lower bounds for U were proved in [RTT98] using the universality of U. We

will present an alternative proof in the same spirit which, in addition, explicitly

establishes, to our knowledge, the first multiparty lower bound for a natural

generalization of the Disjointness function. For n-bit vectors Xl,"" Xk, we

define the k-WISE EMPTY INTERSECTION PROBLEM Eh as the Boolean function

such that Eh(xI, ... , Xk) = D if and only if the k x n matrix with rows Xi has

no all-1 column. In other words, if we think of the Xi'S as representing subsets

of {D, 1}, then Eh(xl,"" Xk) = 1 if and only if Xl n X2 n ... n :Ek = 0. In

particular EI2 = DISJ. We will also denote by NEh the complement of Eh.

Lemma 4.30 For all,fixed k we have Dk(U) = D(logn).

Proof. Simple counting arguments (see e.g. [Gro93, Gro97]) can show that

there exists a language L in ({D, 1 }n)k with k-party communication complex

ity at least n - log n - log k. We daim that any such language has a k

dimensional hyper-rectangular reduction of size ILl to N Eh. lndeed, given

sorne element x = (Xl,'" ,Xk) of ({D, l}n)k, the k players can easily apply an

hyper-rectangular reduction to obtain a k x ILl boolean matrix Mx with columns

labeled by elements y = (YI, ... ,Yk) of Land such that entry (i, y) = 1 if and

only if Xi = Yi. Thus, a column labeled y in this matrix consists of aIl 1 's if and

only if x = y. On the other hand NIx contains a column labeled x if and only if

xE L.

Since L has k-party complexity at least n-logn-logk and reduces in length

ILl:::; 2kn to NEh, we get Dk(NEh) 2: logn/k.

We get the lower bound for U by noticing that for any k, the language N Eh

can be computed by a linear length program over U. o

No sub-linear upper bounds are known for the k-party communication com

pl exit y of U and Eh and it is tempting to conjecture that our lower bOllnds are

far from optimal.

112 CHAPTER 4. COMMUNICATION COMPLEXITY

To obtain a lower bound for the multiparty complexity of B21 we will appeal

to a Ramsey-theoretical result known as the Hales-Jewett Theorem [GRS80]

and which concerns colorings of [t]n where t E N. We say that the vectors

VI, ... ,vt E [q~ form a combinatorial line if at each position i they either agree

(i.e. for a11 1 ::; j, j' ::; t we have vi = vn or are such that vi = j. We now state

the theorem:

Theorem 4.31 (Hales-Jewett) For any integers c, t there exists an integer n

such that if all vectors in [t]n are colored with c colors then there is a monochro

matic combinatorial line VI, ... ,vt (i. e. a line whose elements ail were assigned

the same color).

The Hales-Jewett number H J(c, t) is natura11y defined as the minimal sueh

n. While the theorem's pro of implicitly provides an upper bound in terms of c

and t, these bounds are not primitive recursive. Although the lower bound for

E2n cited earlier is not proved using the Hales-Jewett itself, it uses a Ramsey

theoretical result with a similar fiavor. Chapter 29 of [JukOl] describes this

and other theoretical computer science related applications of the Hales-Jewett

theorem and its variants.

Lemma 4.32 For any fixed k we have Dk(B2) = w(I).

Proof. We will in fact prove the lower bound for the function k-SET-PARTITION

(or Partk for short) which we define as follows: Let SI, ... ,Sk be subsets of [n]

represented as [n]-bit vectors, then Partk(Sl,' .. , Sk) = 1 if and only if these

sets are a partition of ln], i.e. if the bitwise sum of the vectors is the a11-1 vector.

Every input (SI, . .. ,Sk) E P([n])k that is accepted by a protocol for Partk

is such that for every 1 ::; j ::; n, the element j lies in exactly one of the

Si's. Using this observation, these inputs can be put in one-to-one correspon

den ce with n-tuples in [k]n. As an example for k = 3 and n = 4, we have

Part3({4}, {1, 3}, {2}) = 1 and this input corresponds to the n-tuple (2,3,2,1).

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 113

Suppose that the communication complexity of Partk is bounded, for sorne

k, by a constant c. To every input accepted by a protocol for Partk, (i.e.

to every element in [k]n), we can assign one of 2C col ors corresponding to the

communication history resulting from that particular input. If n is large enough,

there must be, by the Hales-Jewett Theorem, a monochromatic combinatorial

line vI, ... ,vk, where the vi's are in [k]n. If we let 0 =1= T ç [n] be the set of

coordinates on which the v'i'S disagree, we get that there are sets SI, ' , . ,Sk such

that TUSIU .. . USk = [n] and aIl the inputs (SI UT, S2,'" Sk), (SI, S2UT, ... Sk),

... , (SI, S2, ... SkUT) induce the same communication history. However this is a

contradiction: By the star property mentioned earlier, the input (SI, S2,'" Sk)

aZsa induces that same communication although it should be rejected since

S lU ... U S k = [n] - T =1= [n].

We complete the proof by showing an easy reduction from Partk to B 2 : the

reduction is obtained by concatenating n blocks of k + 2 elements of B2' such

that the ph block is aml,j ... mk,jab where mi,j is b if j lies in Si but mi,j is 1

otherwise. It is easy to see that the ph block thus created will evaluate to ab if

j lies in exactly one Si and to 0 otherwise. o

In contrast to U, there are known non-trivial upper bounds on the multi

party communication complexity of B2 . K. Reinhardt has shown upper bounds

[RheOl] which are good examples of the surprising possibilities offered by the

multiparty model and we sketch one of these bounds for completeness.

Lemma 4.33 (Reinhardt) - D 4 (B2) = O(fologn);

- D 5 (B2) = O(logn).

Proof. We exhibit a O(fologn) 4-player proto col for the language L =

(c* ac* bc*) * w hich is sufficient since i ts syntactic monoid is B 2 . The 5-party

protocol is based on the same ideas. We can assume without loss of generality

that the players receive an input word belonging to c*aA*bc* and thus only

114 CHAPTER 4. COMMUNICATION COMPLEXITY

need verify that there exists an occurrence of b between any two consecutive

occurrences of a and vice-versa. In particular, if the input is to be accepted,

then there must be, between any two occurrences of a a number of b's exceeding

the number of a's by exactly one.

Players 1 and 2 consider the intervals defined by two o,'s occurring on the

foreheads of players 3 and 4 and write a list6 il,' .. ,it of possible lengths for

the intervals. If there are d intervals, the maximum of all ij times d must

exceed n and so t = O(J7ï). Next, for each i j , they exchange O(log n) bits to

determine the number of b's minus the number of o,'s that they see occurring

in such intervals of length ij . If they find that this number is not equal to the

number of intervals of length ij the proto col halts and rejects.

A similar procedure is repeated for intervals defined by two b's held by player

3 or 4 and for every pair of players. If all these steps are completed successflllly,

the protocol accepts.

It is clear that no rejected input x is in the language. Conversely, suppose

that x is not in the language, i.e. that x contains a subsegment of the form

ac* a (or bc* b), and let h be the minimal length of such a segment. If the

proto col accepts x nonetheless, it must be that sorne other segment w of length

h and delimited by two o,'s contained at least two more b's than o,'s. It must

therefore be that w contained a segment of the form bc*b, but this contradicts

the minimality of h. o

As a corollary to Theorem 4.37, we know D 3 (B2) = D(logloglogn) but for

k 2: 4, there is a huge gap between these upper bounds and our best lower

bounds (non primitive recursive) for the k-party communication of B2 .

Our results thus far allow us to give an algebraic characterization of lan

guages for which there exist constant cost protocols wh en enough players are

involved.

6This need not be done explicitly but it simplifies the protocol's description and analysis.

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 115

Theorem 4.34 There exists a constant k such that Dk(M) = 0(1) if and only

if A1 E DO n G nil .

Proof. The upper bound is provided by Lemma 4.29. The converse is obtained

by noticing that any M not in DOnGnil can be divided either by a non-nilpotent

group (Lemma 4.27), by U (Lemma 4.30) or by B2 (Lemma 4.32). o

This theorem unfortunately fails to provide algebraic characterizations of

monoids with bounded complexity in the k-party game for specific values of k.

We are guaranteed by Theorem 4.25 that such characterizations exists and we

have already established one for k = 2 in Section 4.2.

Let us first consider the case k = 3. By Lemma 4.29, we can evaluate in

constant 3-party complexity

• the product in any monoid M in V ~g:t when G is a nilpotent group of

class 2;

• the product in any monoid N in V ~rt for a commutative group H;

• the product in any M x N where !VI, N are as above.

We will show that this in fact captures exactly the limits of the 3-player

game. Intuitively, the class of languages we have just implicitly defined is cap

tured by the following congruence on A *: we set 7 X rvt,p Y if and only if:

2. the number of subwords of length at most 2 in x and y coincide modulo

p;

3. For any x = XOaXl with Ixo 1 < t, there is y = yoaYl with Ixo la = Iyo la and

such that Œt,p(:X:o) = Œt,p(YO) and Œt,p(Xl) = Œt,p(Yl).

7The congruence"" defined here is not the same as the ""G congruence defined in Chapter
2 and used to parametrize DO.

116 CHAPTER 4. COMMUNICATION COMPLEXITY

4. For any x = XOaxI with IXII < t, there is y = yoaYI with IXlla. = IYlla. and

such that Œt,p(XO) = Œt,p(YO) and Œt,p(.'rl) = Œt,p(yd·

Let B3 be the variety of monoids M satisfying

1. ME DO;

2. M E G nil,2;

3. for aU w Iying J-above idempotents e, f and any u, v holds

4. for aU x, y Iying J-above idempotents e, f and any z holds

The congruence ""'t,p and the variety B3 are quite similar to respectively the

congruence ~t,p and W defined in Section 4.2. In fact it is clear that W ç B3'

Lemma 4.35 Let M = A* Ir, then !VI E B3 if and only if rvt,pç , for some

t,]J.

Proof. The pro of is similar to the one of Lemma 4.8: if M = A* / ""'t,p, then M

clearly satisfies conditions 1 and 2 for membership in B3' Furthermore, to check

3 and 4 one can easiIy verify that the woids ql = (swt)tpuwtpv(xwy)tp and rI =

(s'Wt)tpuv(xwy)tp are rvt,p-equivalent and that q2 = (sxyu)tPzxp- 1yp- 1xy(vxy'W)LP

and r2 = (sxyu)tPxP-Iyp-Ixyz(vxyw)tp are rvt,p-equivalent. So !VI lies in B3'

For the converse, assume M lies in B3' We need to show that there exist t, p

snch that for any morphism cp : A* ~ 1'vl we have cp(q) = cp(r) for ally q "'t,li r.

vVe will choose p as the exponent of M and t as IMI + 1.

Suppose A = {al, 0,2, ... ,ak}. For any x E A*, denote by :Î: the word ob

tained from x by the foUowing process:

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 117

• as a first step, we mark the first and last t occurrences in x of any let ter

• next, suppose y is a segment of x lying between two consecutive marked

letters. Note that every letter of a(y) occurs at least t times to the left

and right of y. We replace y by the word

where [a, b] is shorthand for the pseudo-commutator bP-1aP-1ba, and where

the 0 ~ mi ~ P - 1 and 0 ~ ni,) ~ P - 1 are such that the number of

subwords of length 2 in y and y' are equal modulo p. Note that we have

mi = 0 and ni,) = 0 if ai does not belong to a(y).

• Finally, we move every pseudo-commutator [ai, aj] intraduced in the pre

vious step next to the leftmost marked position where the prefix contains t

occurrences of both ai and aj and reduce the block of [ai, aj]'s thus created

modulo p.

We have x "-'t,p i of course. lndeed, replacing y by y' in the second step

has no effect on the overall count of subwords of length 2. Furthermore, step

2 and step 3 preserve the number of occurrences (modulo p and threshold t)

of each let ter before or after any of the marked positions because [a'i, aj] has

o occurrences of any letter modulo p. It can also be shown conversely that if

x "-'t,p y, then i = f).

It now suffices to prave that for any morphism cjJ : A* ~ NI we have cjJ(x) =

cjJ(i). Suppose y is a segment of x lying between two consecutive marked letters

in x = xoaybxl' Every letter of a(y) occurs at least t times in both :co and Xl

since y itself contains no marked letters. So by the argument of Lemma 4.8,

we can show for any pair of letters ai, aj E a(y) that both cjJ(xo) and cjJ(Xl) can

be written as res where e is an idempotent lying below ai, aj' Since 1\1 is in

118 CHAPTER 4. COMMUNICATION COMPLEXITY

B3, we have for any e, f idempotents below cp(ai), cp(aj) and any 7J" v, 'W both

e7J,V f = e7J,cp(ai)Pv f and

Supposing y = YoaiajYl we can successively apply these rules to get:

cp(xoaYOafaiajYl bXl)

cp(xoaYl ajaf af-l aiajYl bXl)

cp(xoaYlajadaj, ai]y1bxd

cp(xoaYlajaiYdaj, adbxl)

This suffices to show that step 2 in our production of i; can be done without

affecting the image under cp. Similarly, step 3 can also be done without affecting

the image under cp. o

We will show that monoids in B3 are exactly the ones with bounded 3-party

communication complexity. One crucial tool for our argument will be a result

of P. Pudlik [Pud03].

Theorem 4.36 Let the In-Between fu,nction 1 BF : {a, l}n x [n] x [n] -t {a, l}

be defined as

IBF(x, r, s) = g if r < s and one of the bits Xr+l, ... ,Xs is 1;

else.

Then we have D~(IBF) = O(loglogn) and th'U,s D 3 (IBF) = O(logloglogn).

It is worth noting that this result implies an O(log log n) lower bound on the

three-party communication complexity of B2 whereas the techniques of Lemma

4.32 only yield w(l). We can now prove

4.3. MULTIPARTY COMMUNICATION COMPLEXITY 119

Theorem 4.37 FaT all M E B3 holds D3(NI)

D3(M) = S1(logloglogn).

0(1). If M t/. B3 then

Proof. In one direction it suffices to prove the upper bound for the "'-'t,p-classes.

Let U be sorne word of A * and suppose that 3 players are given x E A *. To

check x "'-'t,p u, they first need to compare Œt(X) and Œt(U), which requires only

2t 'IAI bits. Next, they need to compare the number of occurrences of subwords

of length 2 modulo p, which we have already argued can be done using 3p 'IAI2
bits of communication in the three-party model. Finally, if U = 'u,Oa'U'l with

l'u,ola = 'i < t, the three parties can determine in 0(1) communication which of

them hoIds the (i + 1) th occurrence of a in x (see the proof of Lemma 4.29).

The two other players thus know how to factor x as XOaxl with Ixola = i and

can verify that Œt,p(XO) = Œt,p(UO) and Œt,p(xd = Œt,p(UI)' Left-right symmetry

completes the argument.

Conversely, suppose Al is not in B3' If M is not in DS, then it is divided

by either U or B2 and so D3(M) = S1(logloglogn).

If M lies in DS but not in DO, we claim that GI P3,q(X, y, z) has a linear

length reduction to M. The argument is almost exactly the one in the pro of of

Lemma 4.11: there must exist two ..J-related idempotents e, f E M such that ef

is not idempotent and efe f:. e = (ef)w e. Let q be minimal such that (ef)qe = e

and suppose without loss of generality that the Ixl = Iyl = Izl = n is a multiple

of q. Our reduction pro duces elements ml ... m3n where m3i-2 = e if Xi = 1 and

m3i-2 = ef otherwise; m3'i-l = lM if Y'l = 1 and m3'i-l = f otherwise; m3i = e,

if Zi = 1 and m3i = f e otherwise. In particular the product m3i-2m3i-1 m3i is e

if and only if Xi = Yi = Zi = 1 and is efe otherwise so the product 'ml ... m3n
n- L: X'Y'Z'

equals (efe) l::;i:::;n'" e which equals e if and only if GI P"q(:r, y, z) = 1. Since

D3(GIP3,q) = S1(n), we have D3(M) = S1(n).

If NI is not in G nil ,2, then by Theorem 4.27 we have D3(M) = S1(n).

Finally, suppose M lies in DOnGnil ,2 but not in B3' We consider two cases:

120 CHAPTER 4. COMMUNICATION COMPLEXITY

suppose first that for sorne w 1ying J-above idempotents e, f and for sorne 'H, v

we have euwwvf 1- e'uvf. Then lBF(x, r, s) admits the foIlowing 1inear 1ength

reduction to M. The reduction gives elements ml,···, m3n+3:

e for i = 1

f for 'i = 3n + 3

eu for i = 3r + 2;

mi = ve for i = 3s + 1;

1 M for aIl other i with i o:j. 0 (mod 3);

wW for i = 3j such that Xj = 1;

lM for even i = 3j such that Xj = 0;

We have wWww = wW and, since M lies in DO, both ewWe = e and fw w f =

f. Therefore, the product ml ... m3n+3 is equal to e'uv f if and only if aU of

m3r-+3, ... ,m3s are lM which occurs if and only if Xr+l, ... ,Xs are 0, i.e. if and

only if lEF(x,r,s) = O. Otherwise, ml .. . m3n+3 is euwwvf. From the lEF

lower bound we thus get D3 (M) = S1 (log log log n) .

FinaIly, suppose that M satisfies euwwvf = euvf for each w lying J-above

e and f but there exist u, v E NI lying J-above idempotents e, f and z such

that

In that case, we claim, that for sorne prime q, TGl P2,q has a linear length

reduction to NI.

Let q be the smaIlest positive integer such that e[v, u]q = e and [v, u]q f = f
and assume without 10ss of generality that q is primes. Because M is in

DO n G nil ,2, the idempotent e and the pseudo-commutator [v, u] commute

with respect to their action on the R-class of e and in particular, e[v, u] =

ee[v, u] = e[v, u]e. 80 if e[v, u]zf 1- ez[v, u]f, then for aIl 1 ::; i ::; q - 1 we have

SIf q is not prime, the proof can be carried through using a reduction from TG! Pz,p for
sorne prime divisor of q.

4.3. MULTIPARTY COMMUNICATION COMPLEXITY

e[v, U]i z[v, U]q+l-i f i- ez[v, u]f. lndeed, if we assume otherwise, we have:

ez[v, ulJ e[v, u]iz[v, u]q+l-i f

e[v, u]iez[v, u]j[v, U]q-ij

e[v, upe[v, u]iz[v, u]q-i+l j[v, u]q-ij

e[v, U]2i z [v, U]q+1-2i j

By repeating this manipulation, we in fact have for any k ~ 1:

which leads to a contradiction for k ~ 1 such that ki - 0 (mod q).

121

We now construct the reduction from TG l P2,q(X, y, s) to M and assume for

simplicity that the inner product (not truncated) of x and y is equal to 1 modulo

q. We build from (x, y, 3) the word e(ml ... m6n)J in M* where mi depends on x

if i = 1 (mod 3), on y if i = 2 (mod 3) and on 3 if i := 0 (mod 3). Specifically,

we set

• m3i = z if i = 23 and m3i = lM otherwise;

Xi = 0;

• m6i-4 = 'uw
-

1 and m6i-l = u if Yi = 1 but m6i-4 = lM and m6i-l = lM if

Yi = o.

One can easily verify that if t = ~ XiYi then the product e(m! ... m6n)j
l:S~:Ss

evaluates to e[v, u]tz[v, U]qt+l-t j. From our previous remarks, this product is

equal to ez[v, ulf if and only if TGl P2,q(x, y, s) = 1. This reduction shows that

D3(M) = o (log n) in this case. 0

Characterizations of monoids with bounded k-party complexity for any k ~ 4

seem out of reach for now. A first step would be to characterize the class

122 CHAPTER 4. COMMUNICATION COMPLEXITY

of aperiodic monoids with bounded k-party complexity and we propose the

following conjecture.

Conjecture 4.38 A star-free language L has bounded k-party communication

complexity if and only if it is the disjoint union of ~LI,t for sorne t wher'e the

superscript l denotes the trivial group.

Since the trivial group is of nilpotency class 1, we can apply Lemma 4.29 to ob

tain the "if" direction of this conjecture. From the definition of this congruence,

we see that ~Lt captures exactly languages with aperiodic and commutative

syntactic monoids. This proves our conjecture for k = 2 and in the case k = 3,

it follows as a simple corollary to Theorem 4.37.

A straightforward induction on k shows that for any k, t and any s ::; k the

words x = (a~+la~ ... aDs and y = (a~+la~ ... aDs+1 are ;::::{cequivalent. For

k := 0, this is trivially true. For k ~ 1 it suffices to prove the equivalence for

s = k. If x = :r:OaiXI and y = yoaiYI with Ixolai = IYolai ::; t then in fact 1:0 = Yo

and there is u such that Xl = u(a~+la~ ... aD k- 1 and YI = u(a~+la~ ... aD k. By

our induction hypothesis (a~+la~ ... aDk- 1 and (a~+la~ ... aDk and thus Xl and

YI are ~Ll,t equivalent. Left-right symmetry completes the argument.

In particular, the piecewise-testable language A*aIA* ... A*ak+IA* is not the

union of ~i,t classes because (a~+la~ ... aDk+1 contains a subword ala2··· ak+l

while (a~+l a~ ... aD k does not. In our communication game, it is of course easy

for k + 1 players to identify the existence of a subword of length k at constant

cost sin ce any occurrence of it will be seen entirely by at least one player. In

fact, a lot of our intuition about the power of the k + I-party game revolves

around this "free access" to subwords of length k. This leads us to separately

formulate a weak special case of Conjecture 4.38:

Conjecture 4.39 The k-party communication complexity of the regular lan-

guage A*aIA* .,. A*akA* is non-constant.

4.4. APPLICATIONS TO PROGRAM AND CIRCUIT LOWER BOUNDS123

This statement has been established by P. Pudlak [Pud03] for the cases k =

2,3,4,5 (see also [Gas02a] for an explicit treatment of the case k = 3) using

a Ramsey-theoretical result known as Hindman's Theorem. Its full resolution

would be a major step in our understanding of the fundamental limits of the

k-party game and would nicely complement Theorem 4.27 which shows that

counting, modulo p, the occurrences of subwords of length k can be done at

constant cost by k + 1 players or more but requires 0(71,) bits of communication

for k players or less.

4.4 Applications to Program and Circuit Lower
Bounds

We have shown that our algebraic point of view on communication complexity is

a fruitful one. Bounds on the communication complexity of monoids allow us on

one hand to gain sorne insight on the relative power of various communication

models and, on the other hand, it allows us to identify, as in Conjecture 4.39,

concrete functions for which communication complexity lower bounds are most

susceptible of being particularly meaningful.

While algebraic tools help in the analysis of communication models, commu

nication complexity results can, in turn, be used to formalize certain arguments

in the study of programs over monoids. For instance we can use results of this

Chapter to obtain the following:

Theorem 4.40 The varieties Corn, W, DA, DO n Ab and DO n G niJ are

all progra:m-varieties.

Proof. We first prove this for W. Suppose NI is sueh that for aIl m E A1,

the subset Mm of M* given by Mm = {ml ... m n : evaIM(ml, ... ,mn) = m}

can be recognized by polynomial-Iength programs over W. These programs

eonstitute a polynomial length rectangular reduction from the word problem

124 CHAPTER 4. COMMUNICATION COMPLEXITY

of M to the word problem of sorne monoid in W. We can therefore conclude

that DII(M) = O(logn) and thus 1\11 E W. Using respectively constant two

party complexity, logarithmic two-party deterministic complexity and constant

multiparty complexity, we obtain similar results for Corn, DO n Ab and DO n

Gni!·

To show that DA is a program-variety, we need to combine these ideas with

the fact that aperiodics form a program-variety. D

This fact was already known for Corn (folklore) and DA (proved using a

corn pletely different ide a in [MPT91]) but the technique used here is very general

and the following lemma (first proved in [RTT98]) can be used to obtain su ch

results:

Lernrna 4.41 Let f = o (logT n) for some r > O. For any k 2: 2, the class of

monoids with k-party deterministic communication complexity (resp. probabilis

tic, simultaneous, MODp-counting) forms a progmm-variety.

V. Grolmusz implicitly exploited this idea to prove the following result about

modular circuits:

Theorern 4.42 ([Gro92]) For any prime p and any composite integer m that

is not a prime power, there exists an e.'Eplicitly constructible function f com

putable by depth-2 MODm circuits but not computable by o,ny constant depth

MODp circuit.

In fact, this result can be obtained as a corollary to the following theorem

of D. Barrington, H. Straubing and D. Thérien:

Theorern 4.43 ([BST90]) Let p be a prime and G a group in G p * Ab. Ther'e

is a constant Cc > 1 su ch that any G-progmm compv,ting the AND of n vo,Tiables

has length D(cë).

4.4. APPLICATIONS TO PROGRAM AND CIRCUIT LOWER BOUNDS125

The results obtained previously in this Chapter allow us to obtain a theorem

slightly stronger than Grolmusz's but weaker than the latter.

Theorem 4.44 Let p be a prime and G a group in Gp*Ab (or, more generally,

any monoid M in LGp @ Corn). The're is a constant Ca > 1 such that any G

program computing DISJ has length D(c'c)'

Proof. Suppose for contradiction that DISJ can be recognized by a G

pro gram of su b-exponential length 1 (71,). This pro gram consti tu tes a length

1(71,) rectangular reduction from DISJ to Gand, sinee G has MODp-counting

two-party complexity O(1ogn), it allows us 1,0 build a O(1og(f(n))) = 0(71,)

MODp-counting two-party proto col for DISJ. This is in contradiction with the

lower bound stated in Table 4.1. o

In their paper, Barrington, Straubing and Thérien propose the constant

degree hypothesis, a conjecture generalizing Theorem 4.43 mentioned above.

Conjecture 4.45 (Constant-degree hypothesis [BST90]) Let p be prime.

r! G is a group in G p * G nil then any G-program computing the AND function

has length 2!2(n).

This conjecture is proposed as a first step towards the more ambitious goal of

proving that AND cannot be computed in sub-exponential length by programs

over any solvable group or, equivalently, in sub-exponential size by CCo circuits.

Such lower bounds would be the dual of the exponential-size lower bounds for

ACo circuits computing MODp .

Progress towards the constant-degree hypothesis has proved 1,0 be quite dif

ficult: circuit lower bounds of V. Grolmusz and G. Tardos [GTOO, GrogS] (see

also [ST]) can be reformulated 1,0 cover very special cases and attempts have

been made for the case where the group is the wreath product of a p-group

and a nilpotent group of class two [BTT02]. If we seek lower bounds for the

126 CHAPTER 4. COMMUNICATION COMPLEXITY

AND function, the communication complexity approach is probably doomed to

fail sinee AND has extremely low communication complexity in every reason

able model but as Theorem 4.44 suggests it might prove fruitful if we target a

slightly more complicated function.

Conjecture 4.46 For any .fixed k, the MODp-counting k-party communication

complexities of Eh and GI Pc; are O(n).

Such lower bounds would immediately imply:

Corollary 4.47 (Assuming 4.46) For any k 2 1, there is a function which

can be computed by a polynomial length progmm over a group in G p * G nil,k+1

but cannot be computed by a sub-exponential length progmm over any group in

G p * Gnil,k.

There is a function in Aq which cannot be computed by any progmm of sub

exponentiallength over a group G in G p * G ni1 .

Proof. [sketch] The first observation to make of course is that any group G in

G p * Gnil,k lies in LGp @J) Gnil,k' Since any G' in Gnil,k is such that Dk (G') =

0(1), we must have N::odp(G) = O(logn). Thus, no sub-exponential length

program over G can recognize a function of super-logarithmic k-party MODp-

counting complexity.

Assuming the conjectured lower bounds, we conclude that Eh and G l Pc;

cannot be recognized in sub-exponential length by G-programs, wh en G E

G p * Gnil,k while it is an easy exercise to show that they are recognizable in

polynomial length by a program over a group in G p * G nil ,k+l. Fnrth(~rmore,

for every k the function Eh can be computed by a linear length program over

U and thus N::odp(U) = O(n) for all constant k. Henee U cannot be recognized

by a sub-exponentiallength program over a group in G p * G nil . o

4.5. CONCLUSION AND OPEN PROBLEMS 127

While length lower bounds for G-programs AND remain the ultimate goal,

it should be noted that no super-linear bounds exist for an explicit function in

NP if G is solvable but not in G p * Ab.

4.5 Conclusion and Open Problems

We have established a number of classification results for the communication

complexity of regular languages and monoids and have shown their importance

as means of understanding both the power of communication complexity models

and the power of monoids as language recognizers. Our results further stress

the importance of the varieties DO and its subclasses, in particular DO n G nil

and DO n Ab which we will again encounter in the context of our next chapter.

We believe that this algebraic approach to communication complexity could

and should be explored further and present sorne open questions pertaining to

it.

4.5.1 Towards a MuItiparty Analog of Szegedy's Theo
rem

The worst-case partition k-party communication complexity of a language J(ç

An is, as the terminology suggests, the maximum over aIl k-partitions of [n] =

SlUS2U ... USk of the k-party communication complexity of determining if w E

An belongs to J(wh en player Pi has the letter of w indexed by Si written on his

forehead. We mentioned in this chapter's introduction the following spectacular

theorem due to M. Szegedy:

Theorem 4.48 ([Sze93]) A language J(has bounded worst-case partition two

party communication complexity if and only if it can be recognized by a pmgm:m

over a commutative monoid.

Such a connection between programs and communication complexity is com

pletely unexpected and the pro of of this result is difficult. On the other hand,

128 CHAPTER 4. COMMUNICATION COMPLEXITY

its content is so rich that it is important to consider possible extensions of the

theorem.

It seems hopeless to find a "program-over-monoid" characterization of lan

guages with, say, logarithmic two-party communication complexity sin ce MA

JORITY has logarithmic communication complexity but presumably cannot be

computed by a program over any solvable mono id and provably cannot be com

puted by a program over a monoid DO n Ab. It is quite possible on the other

hand that a multiparty analog of Szegedy's Theorem exists. In the l'est of this

subsection, we want to argue in favor of the following conjecture.

Conjecture 4.49 For any L ç A *, there exists a constant k such that Dk (L) =

0(1) in the worst-case partition if and only if there exists r S'Uch that L can be

recognized by an r-program over some M in DO n Gni!'

One direction of Szegedy's Theorem is quite straightforward: if L can be

recognized by a pro gram over a commutative monoid then, regardless of the

input partition, Alice can compute the product of the outputs of instructions

querying input letters that she has access to. Sending this value to Bob requires

only log 11\11 bits and this is sufficient information for Bob to determine the value

of the program's output. Note that it is crucial to consider only I-programs for

otherwise certain instructions might be querying both input letters known only

to Alice and input letters known only to Bob.

Similarly, we can establish the easy half of our conjecture:

Lemma 4.50 If there exists r such that L ç A * can be recognized by an r

program ove'f' some M in DO n Gni! then the'f'e exists a constant k s'Il,ch that

Dk(L) = 0(1) in the worst-case partition.

Proof. Let cp be the 'f'-program over M recognizing L. Since M lies in DO n

Gni!, we know that there exist t such that the program accepts x if and only

if cp(x), wh en viewed as a word in M*, belongs to sorne disjoint union of rv~l,t

4.5. CONCLUSION AND OPEN PROBLEMS 129

classes for sorne nilpotent group G of class d. In the case r = 1, we can use a

variant of the protocol described in the pro of of Lemma 4.29 to do this but if

r > 1 then the value of a particular instruction may be unknown to as many as

r players and we have to be more careful in our implementation of this strategy.

We choose a number of players k = (1 M 1 + t + 1) . r . d + 1. Let us consider J'v1

as an alphabet and show that for any W E 1'\,1* and any x E A *, these k players

can check in 0(1) communication if W "'ltfl,t cp(x). We argue by induction on

s = 11111 + t. This is trivially true for s = 1. If s > 1, we distinguish two cases.

First if t = 0, then the players need to verify that w and cp(x) are G-equivalent.

Since G is nilpotent of class d, this can be done by counting, modulo sorne q,

occurrences of subwords of length d in cp(x). Any such occurrence is the result

of at most d instructions and its existence is thus known to aU but r . d players,

regardless of the input's partition. Since k is greater than r . d, the counting of

these occurrences modulo q can be done using only 0(1) communication.

If t > 0, the players can check in 0(1) communication that w "'~I,t-l

cp(x) (by induction) and that a(w) = a(cp(x)) (because k > r). The difficulty,

of course, lies in verifying that for any 'rn E w if w = WO'rnWl is the 'rn-left

decomposition of w, then the 'rn-left decomposition of cp(x) = 'UO'rn'Ul is such

that Wo rv~l_l,t Vo and Wl "'~I,t-l Vl' For a given input x to the program and

a given partition of this data, our k players can vote on the set of players which

hold (on their forehead) one of the in pu t letters queried by the first instruction

in cp that, in their opinion, outputs a given 'rn E a(cp(x)). Note that this vote

only requires each player to send T' pog k l = 0(1) bits.

The players that do not hold any of these r letters will, of course, aU agree.

Because k > 2r + 1, a majority of players (at least k' = (I.MI + t) . 'f' . d + 1

of them) will thus identify a subset of at most T players with these letters of x

written on their forehead and will know that the 'rn-left decomposition of cp(x)

is VO'rnVl. These k' players need to verify Wo "'~I-l,t Vo and Wl "'~I,t-l VI and

130 CHAPTER 4. COMMUNICATION COMPLEXITY

this can be done, by our induction hypothesis, at 0(1) cost since '/),0 and 'Uo are

also outputs of an M-program. Left-right symmetry completes the proof. 0

The technicality of this proof might be se en as a bad omen: Surely if the

"easy" half or our conjecture is difficult to establish then we should expect that

proving the second half, if it is true at aIl, will be extremely hard, if not out

of reach. Such pessimism can be tempered: first our last proof is, at least

conceptually, not so complicated. Secondly, our results of Chapter 3 show that

DO n G nil is reasonably well-behaved with respect to programs. In particular,

this program-variety has the polynomial-Iength contraction property and this

could be a useful tool. Furthermore, we have the advantage of knowing very

good combinatorial descriptions oflanguages recognized (via morphisms) by this

variety. It is worth noting that we know of no language with bounded k-party

communication complexity which cannot be easily shown to be recognized by

an r-program over DO n Gnil.

As a first step towards this conjecture, it might be easier to establish the

conjecture in the restricted case where L has a neutralletter. This would follow

if we could show, for instance, that r-programs over DO n G nil have the Crane

Beach property. It is clear that progress towards this conjecture will require a

very good understanding of the combinatorics of the multiparty model.

4.5.2 Further Bounds for Regular Languages

Another very intriguing open question concerns the non-deterministic commu

nication complexity of regular languages. Attacking this question from an al

gebraic angle will require a refinement of our techniques since sorne regular

languages have a non-deterministic communication complexity exponentially

smaller than their complement. This means that we cannot find tight bounds

for N1(L) by sim ply looking at the algebraic properties of M(L). However, it is

easy to show that the class of regular languages with non-deterministic commu-

4.5. CONCLUSION AND OPEN PROBLEMS 131

nication complexity OU) is closed under positive Boolean operations, inverse

homomorphisms and left-right quotients, i.e. that it for"ills a positive variety of

languages (see e.g. [Pin97]). Correspondingly, NI (L) is thus determined by al

gebraic properties of L's ordered syntactic monoid. We have already established

that, in the two-party case, a regular language has logarithmic deterministic

communication complexity if and only if it is a disjoint union of unambiguous

concatenations of languages with commutative syntactic monoids and that it

has logarithmic MODp-counting complexity if it is a disjoint union of prod

ucts with p-counters of languages with commutative syntactic monoids. It is

tempting to conjecture the following characterization for the non-deterministic

two-party model:

Conjecture 4.51 Let L ç A* be a regular language with NI = M(L). Then

0(1) if and only if M(L) is commutative;

8(logn) if and only if M(L) is non-commutative
NI (L) = but L is the disjoint union of languages

LOalLl . .. akLk with M(L i) comrmdative;
8(n) otherwise.

Because Greater Than has linear non-deterministic two-party complexity,

it is possible to show N 1(L) = D(logn) whenever M(L) is non-commutative.

The non-deterministic upper bound for languages of the form LOalLl ... akLk

with M(L i) commutative can be obtained in a way similar to the proto col given

in the proof of Lemma 4.10: God first proposes factorization of the input w as

uOal Ul ... akuk by sending, at logarithmic cost, the positions of the k bookmarks

and Alice and Bob then check the validity of this factorization by verifying, at

constant cost, that 'Ui E Li for each i. On the other hand, the linear lower bound

probably requires both subtle algebraic calculations and non-deterministic com

munication complexity lower bounds that are of a different nature than the ones

for Inner Product and Disjointness. A curious corollary of this conjecture would

be that if Lis regular then D(L) = 8(max{N1(L),NO(L)}).

132 CHAPTER 4. COMMUNICATION COMPLEXITY

There are of course many questions left open in the multiparty case. We

have already mentioned open problems about the k-party communication com

plexity of piecewise testable languages, the exact k-party complexity of B2 and

U among others. AlI our results focus on the case where the number of play

ers is fixed independently of the input's length but it is of course natural to

consider the case where k is a function of n. Currently, no non-trivial bound

is known for the communication complexity of an explicit function when k is

polylogarithmic in n. Such bounds would be extremely interesting since it has

been observed [HG90] that, from the results of [Ya090, BT94], any f E ACeo

has polylogarithmic simultaneous multiparty communication complexity if the

number of players is polylogarithmic.

FinalIy, it is possible that the algebraic approach will also be fruitful in

the study of quantum communication complexity. This model introduced by

A. Yao [Ya093] generalizes the probabilistic model by allowing Alice and Bob to

exchange qubits. It has attracted considerable attention in the last ten years and

it is still unc1ear how its power differs from the c1assical communication models

[TS99]. It is known that Inner Product modulo 2 still has linear communication

complexity in this model [CvDNT99] and it would be interesting to translate

this to a linear lower bound for any regular language L wi th M (L) in D S - DO

or outside Ab using the methods developed in Section 4.2.

Chapter 5

Satisfiability of Equations over
Semigroups

Algorithmic questions concerning the resolution of equations over finitely pre

sented groups is a central con cern in combinatorial group theory. For instance,

a recent result of C. Gutiérrez shows that the problem of checking the satisfia

bility of an equation over the free group lies in PSPACE [GutOO]. One may also

view the famous DISCRETE LOGARITHM problem as a simple group equation.

In each of these contexts, the group is, at least implicitly, given as part of the

input.

On the other hand, M. Goldmann and A. Russell studied in [GR99] the re

lationship between the algebraic properties of a finite group and the complexity

of determining the solvability of an equation or a system of equations over that

fixed group. They showed that determining whether a system of equations over

G has a solution is NP-complete for any non-Abelian G and polynomial time

computable for any Abelian G. For the case of a single equation, however, they

could not establish a complete dichotomy: they proved on one hand the NP

hardness of determining the solvability of an equation over a fixed non-solvable

group and, on the other hand, showed that the problem was polynomial-time

computable, and in fact computable in ACCo, for nilpotent groups. The case of

solvable, non-nilpotent groups, however, was left open. Interestingly, the upper

133

134CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

bound for nilpotent groups is obtained by studying the complexity of determin

ing whether a given n-input G-program outputs a specific element g of G for

sorne input x E {O, l}n.

In this chapter, we extend this work in a number of directions: we inves

tigate the complexity of checking the satisfiability of programs, equations and

systems of equations over monoids and, more generally, of semigroups. The re

sults in the case of programs and single equations complete the picture sketched

by Goldmann and Russell by further uncovering the tight relationship between

these questions and the ones about the expressive power of programs and ex

pressions over particular varieties of monoids. The case of systems of equations,

on the other hand, is tightly connected to the constraint satisfaction problems,

a well-studied framework used to analyze the complexity of a wide range of

combinatorial problems.

We can also relate our work to that of O. Klima and J. Srba about the

complexity of UNIFICATION and MATCHING in idempotent semigroups [KSOO,

Klf02, Kli03a]. These problems are equivalent to testing the satisfiability of

certain equations over a free idempotent semigroup satisfying sorne fixed set of

identities. More recently, O. Klfma has considered the problem of solving certain

systems of two equations over a fixed monoid [Kli03b] in order to understand

the corn pl exit y of checking if a monoid satisfies a given identity.

The chapter consists of two independent parts. Results of Section 5.1 concern

satisfiability problems for single equations and programs over monoids. They

were, for the most part, published in [BMM+OO] and obtained in collaboration

with D. Barrington, P. McKenzie, C. Moore and D. Thérien. The results of

Section 5.2 concern systems of equations over monoids and semigroups and

arose from further work with C. Moore and D. Thérien [MTT01] and subsequent

collaboration with Ondf"ej Klîma [KTT03]. l am particularly indebted to Ondf"ej

for Lemma 5.26.

5.1. SINGLE EQUATIONS AND PROGRAMS 135

5.1 Single Equations and Programs

5.1.1 Introduction

Forrnally, an equation over a finite rnonoid M is given as:

where Ci, dj E M are constants and the Xi 's are variables, not necessarily dis

tinct. The EQUATION SATISFIABILITY problern for M (which we will denote by

EQN!vI) is to deterrnine whether a given NI -equation has a solution i. e. to deter

mine whether one can assign values in M to the variables such that the equation

is satisfied. Sirnilarly the TARGET-EQUATION SATISFIABILITY problern for NI

(denoted T-EQN!vI) is the special case of EQN!vI where the right-hand side of

the equation is free of variables and thus consists of a single constant which

we call the target (we will refer to these as equations with targets). Clearly,

T-EQN!vI and EQN!vI are equivalent problerns wh en M is a group.

We will be considering NI-prograrns over a binary input alphabet. In this

case, we write instructions in our prograrns as (i, ma, md with i E [n] and

Tno, ml E M. Such an instruction queries input bit Xi and outputs m Xi • An

instance of the PROGRAM SATISFIABILITY problern for /v1 (denoted P-SAT!vI)

consists of an n-input M-prograrn

and a target elernent m E M. The problern is to deterrnine whether there exists

sorne X E {a, l}n such that cjJ(x) = m. Note that this is always at least as hard

as deterrnining the satisfiability of an equation with target.

Lemma 5.1 For any M, we have

and

136CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Proof. Suppose the equation COXi1 Cl ... Xin Cn = s has t variables. It can

be satisfied if and only if the following M-program over the t . IMI variables

Yl , ... ,}t'IMI can reach the target s: we replace every constant Ci by the in

struction (Yl , Ci, Ci) and each occurrence of the variable Xi by a sequence of 11111

instructions querying variables Yk1 , ... 'YkIMI of the form

where ml, ... , miMI are the IMI elements of M. Note that for any m E M,

there is an assignment of the Yk's such that this sequence of IMI instructions

evaluates to m.

A similar construction allows the encoding of a system of two target-equa-

tions

{

CO./Yij Cl ... '/Yin Cn = S

dOXjj Cl ... XjpCp = t

as a program over M x M. The first half of the program encodes the first

equation as in the above paragraph by using only the first copy of M: constants

Ci are now replaced by (YI, (Ci, lM), (Ci, lM)) and variables become blocks of

instructions of the form

Similarly the second half of the program uses the second copy of M. The

crucial observation however is that if a variable X occurs in both equations

then for any setting of the variables Y, the program segments corresponding

to an occurrence of X in the first half will evaluate to (lM, m) if and only if

the segments corresponding to X in the second half evaluate to (m, lM). The

system of equations is thus satisfiable if and only if the program can reach the

target (s,t). To explicitly complete the reduction from EQNM to P-SATMxM,

it suffices to note that El = E 2 is satisfiable in M if and only if there is m E 1\11

such that the system

5.1. SINGLE EQUATIONS AND PROGRAMS 137

is satisfiable. o

Despite the apparent similarity of T-EQN and P-SAT, we will see that the

converse of this lemma is not true unless P equals NP and we will try to

understand how and why T-EQN M and P-SAT M differ in complexity. It should

be noted that aIl three problems defined above lie within NP since it is easy to

check in polynomial-time, and in fact in Nel
, whether a particular assignment

satisfies a given equation or program.

As a start, it is useful to understand whether upper bounds for program

or equation satisfiability over a certain NI can translate into upper bounds for

satisfiability problems over divisors of M or M x M.

Lemma 5.2 1. If N is a submonoid of M then P-SATN :;'p P-SATM and if

N is a morphic image of M then P-SATN :;.~t P-SATM .

2. rI" N is a morphic image of M then T-EQNN :;.~t T-EQNM .

3. For any M, N, we have

and

Proof.

1. A program cP over a submonoid N of M is simply a program over M where

the output of each instruction lies in N and so any algorithm for P-SAT M

is an algorithm for P-SATN .

Suppose now that there is a surjective morphism 'IjJ : M --+ N. For a

given an n-input N-program cP, we can obtain a (not uniquely defined)

M-program cP' by replacing the elements of N output by instructions of cP

138CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

by arbitrary pre-images of them under 'ljJ. Thus, for each x E {a, 1 Vt, we

have 'ljJ(rj/(x)) = rjJ(x) and so there exists x with rjJ(x) = t if and only if for

sorne m E M where rjJ(m) = t there exists x with rjJ'(X) = m.

2. A similar argument can be used: if 'ljJ (M) = N, then gi ven an N -expression

E, we can obtain an M-expression E' by replacing every constant in E by

sorne arbitrary pre-image. Then E = t is satisfiable if and only if there is

a pre-image m E M of t such that E' = m is satisfiable.

3. This last part simply follows from the observation that an equation over

the direct product M x N is simply a pair of completely independent

equations over M and N respectively.

D

Consequently, the class M p = {M : P-SATM E P} is closed under division,

M TE = {NI: T-EQN M E P} is closed under direct product and morphic images

and ME = {NI: EQN M E P} is closed under direct product. As we will see,

the latter two classes do not form varieties. Intuitively, ME might not be closed

under submonoids because when we can check satisfiability of equations over the

larger monoid M no mechanism can guarantee that the variables are assigned

only values in the submonoid. This motivates the following definition:

Definition 5.3 A subset T of M is said ta be inducible if there e:Eists an NI

expression E in k variables such that the image of E (that is {m : for sorne

x E M k , E (x) = m}) is T.

The following is an easy observation due to [GR99]:

Lemma 5.4 If N is an inducible submonoid of M, then EQNN -:5:p EQNM and

T-EQNN -:5:p T-EQNM ·

5.1. SINGLE EQUATIONS AND PROGRAMS 139

On the other hand, M p is closed under division but might not be closed

under direct product. We can certainly view a program over NI x N as a pair

of programs on M and N respectively which are both satisfiable if the original

program is, but, conversely, there is no obvious way to check whether the sets of

satisfying assignments for each of them are disjoint or not. We will come bad:

to these issues in Subsection 5.1.4.

5.1.2 Groups

As we stated earlier, it is shown in [GR99] that T-EQNc (and thus EQNc)

are NP-complete for any non-solvable group G. As an immediate corollary, we

also obtain the NP-completeness of P-SAT c for non-solvable G. The latter is

not surprising in light of Barrington's Theorem: the satisfiability problem for

programs over a non-solvable group is equivalent to the satisfiability problem

for NCl circuits, which is NP-complete. In fad, the problem is already NP

complete for depth two ACo-circuits (by Cook's Theorem). Similarly, other

results about the complexity of P-SAT for restricted classes of monoids can be

interpreted as results about the complexity of checking satisfiability for circuits

of Cl, corresponding class.

Goldmann and R,ussell also showed that for a nilpotent group G, P-SAT G

(and thus T-EQNc) was computable in polynomial time. Theil' proofis centered

around the following fact:

Proposition 5.5 [PT88} Let cp be an n-input program over a nilpotent group G

and g an arbitrary element of G. There exists a constant dG such that if there

exists some x E {a, l}n where cp(x) = g then there exists a y E {a, l}n ofweight

at most dG su ch that cjJ(y) = g.

In other words, if a P-SAT G instance is satisfiable, then it can be satisfied

by one of the Lt~l C:) = O(ndc) n-bit strings of weight at most dG' Since this

140CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

set has polynomial size a "brute force search" approach can be used to check

satisfiability in polynomial time.

This proposition also shows that a program over a nilpotent group G cannot

compute the AND of more than dG variables. We mentioned in the introduction

and in Chapter 3 that the AND-function is not believed to be comput able even

by a program of sub-exponential length over any solvable group although this

conjecture has only been proved for a small subvariety of solvable groups (see

Chapter 3 and Section 4.4).

Definition 5.6 A finite group G is AND-strong if there exists a G-program of

polynomiallength computing AND and is AND-weak if any G-program comput

ing the AND of TI, variables requires length O(cn) for sorne c > 1.

From Barrington's Theorem we know that aIl non-solvable groups are AND

strong while the results of [BST90] show that the wreath product of a p-group

and an Abelian group is always AND-weak. The following shows that, similarly

to the nilpotent case, the lack of expressiveness of AND-weak groups can be

exploited to obtain good algorithms for P-SAT.

Theorem 5.7 If G is AND-weak then P-SAT G is solvable in quasi-polynomial

time.

Pro of. We claim that if a program in s variables over G can be satisfied, then

it can be satisfied by an assignment of weight logarithmic in the length of the

pro gram (Recall that the weight IxiI of x E {O, 1} * is the number of 1 's in x).

Suppose that this is not the case. Let w be a satisfying assignment of minimal

weight, with Iwll = k. Assume without loss of generality that the first k bits of

w are 1. By fixing Xk+l, ... ,Xs to 0, we obtain a k-input program 'ljJ over G.

This program outputs s wh en aIl its input bits are 1, but since w was assumed

to have minimal weight, the output of'ljJ is not s otherwise. In other words, 'ljJ is

5.1. SINGLE EQUATIONS AND PROGRAMS 141

computing the AND of k bits. Since G is AND-weak, we must have n 2: 2!1(k), so

k :::; O(logn). It is thus sufficient to consider only the O((o(l~gn))) = O(n°(Iogn))

assignments of weight at most k, sowe have a quasi-polynomial time algorithm.

o

Many solvable groups, however are not known to be AND-weak, so it would

be preferable to obtain upper bounds on the complexity of P-SAT for solvable

groups independently of assumptions on their computational power but the

following theorem shows that the two questions are probably too closely tied to

allow it.

Theorem 5.8 If G is AND-strong, then P-SAT CoGk is NP-complete for the

wreath prodv,ct Go Ck for any cyclic group Ck with k 2: 4.

Proof. We want to build a reduction from 3-SAT. Define the function f 90 ,91 :

Ck ~ G as

{
go if x = °

f 90 ,91 (x) = gl if x # °
AIso, denote by id the function such that id(x) = 1c for all x ECk' Consider

now the following 3-input program over Go Ck

cP = (1, (id,O), (id, 1)) (2, (id,O), (id, 1)) (3, (id,O), ('id, 1))

(1, (fgO,gl' 0), (fgO,gl' 0))(1, (id, 0), (id, -1))

(2, (id, 0), (id, -1)) (3, (id, 0), (id, -1))

First note that the Ck component of cP's output will always be O. Note also that

the middle instruction's output is independent of the value of the bit queried.

It is also the only instruction affecting the GGk component of the output. This

component is a function f such that f(O) = gl if one of the input bits is on

and f(O) = go otherwise. To see this note that wh en we execute the middle

instruction, the product in Ck so far is not equal to zero if and only if one of

142CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

the instructions yielded a +1. Thus, cp is recognizing the OR of these three

variables.

Suppose the 3-SAT instance has m clauses. By assumption there is a G

program of length me that computes the AND of m variables. If we replace

every instruction (i, go, gd by a program over Go Ck as above, we obtain a

program of length 7· me which is satisfiable if and only if the 3-SAT instance is

satisfiable. o

The wreath product of two solvable group is itself solvable and the proof

of Theorem 5.7 cau be used to show that super-polynomial lower bounds on

the length of programs recognizing the AND over a group G translate into sub

exponential upper bounds on the time complexity of P-SAT c. Thus, assuming

that no sub-exponential time algorithm can solve an NP-hard problem, there

exists an AND-strong solvable group if and only if there exists a solvable group

for which P-SAT is NP-complete.

By Lemma 5.1 we now have upper bounds for T-EQNc for AND-weak G's

but it is not known whether the hardness result on P-SAT OoC" for AND-strong

G's can translate into hardness for, say, T-EQNoock . On the other hand, if aU

solvable groups are AND-weak, as we conjecture, then this is unimportant.

5.1.3 Aperiodic Monoids

In light of the group case, one might hope to prove a converse to Lemma 5.1

and show equation satisfiability and program satisfiability to be polynomiaUy

equivalent but we show in this section that there exist aperiodic monoids f'/l such

that P-SAT M is NP-complete but EQN M is in P. Furthermore, we characterize

the c1ass of aperiodics for which P-SAT is NP-complete.

Lemma 5.9 For any monoid NI in DA, P-SATM , T-EQNM and EQN M alllie

in P (in jàct in ACO J.

5.1. SINGLE EQUATIONS AND PROGRAMS 143

Proof. By Lemma 5.1, it suffices to prove the upper bound for P-SAT. Let

cp be an n-input M-program of length land F ç M be a target set. The set

{w : w E M* and eval M (w) = m E F} can be expressed as the finite disjoint

union of unambiguous AÔa1Ai ... akAk with ai E M and Ai ç M.

Rence it is sufficient to consider the at most (k) k-tuples of instructions of

cp that could be held responsible for the presence of the subword a1a2 ... ak in

cp(x). For each of them, we need to check if there is an assignment such that

the output of the program belongs to Aôa1Ai ... akAk and that can clearly be

done in linear time.

In fact, this brute force approach can easily be implemented in ACa since the

evaluation of the product of n elements in an aperiodic monoid is comput able

in ACa [BT88]. o

If we turn our attention to aperiodics outside of DA, the first ex amples to

consider are of course U and B 2 .

Lemma 5.10 T-EQN B2 is NP-complete.

Proof. We use a reduction from 1-3sAT. Each variable Vi in the 1-3sAT

instance is represented by two variables vt and vi representing Vi and its com

plement in the equation. We build the following equation with target ab. First,

we concatenate, for each i the segments abvtvibvivtb and for each clause e.g.

(Vi, Vj, Vk) we concatenate abvtvjvtb.

It is easy to see that the first half of the equation forces us to choose one of

vt, vi as 1 and the other as a. If we now interpret a as TRUE and 1 as FALSE,

the equation is satisfiable if and only if we can choose assignments to the Vi

snch that in every segment e.g. abvtvivtb exactly one of the variables is set to

a. D

Thus, P-SAT B2 is also NP-complete. Furthermore:

Lemma 5.11 P-SATu is NP-complete.

144CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Proof. We essentially use the universality of U discussed in Chapter 3. We have

already seen that the program cPi = (il, b, ba)(i2' 1, a)(i3, 1, a) ... (i k , ba, a) (over

U) outputs ba if one of the X ij 's is set to 1 and 0 otherwise. By concatenating

such cP/s we get a program whose output is ba if aIl cjJ/s have one of their input

variables set to 1 and 0 otherwise. So we can simulate a CNF formula and

obtain a reduction from SAT. D

Using Lemma 5.2, we thus obtain the following dichotomy:

Theorem 5.12 If M is aperiodic then P-SATM lies in P if M is in DA and

is NP-complete otherwise.

It is tempting in light of Lemma 5.10 to conjecture that the same dichotomy

also holds for equation and target-equation satisfiability. This is however not

the case:

Theorem 5.13 EQNu and T-EQNu can be decided in polynomial time.

Proof. We first provide a polynomial time algorithm for T-EQNu and crucially

use the fact that, in U, axa = a whenever x f O. Intuitively, we use the fact

that a's are our friends. In particular, we have that if xyz = a then xaz = a.

We will show that for any target, if the equation is satisfiable then it can

be satisfied by an assignment with a very precise structure. We are given the

expression E : COXi1 Cl ... X in Cn and a target m.

If m = 0, the equation is trivially satisfiable by setting any variable to 0,

and if m = 1, it is satisfiable if and only if aIl the c/s are 1. Since the equation

is 0 if any of the Ci is 0, we will assume that the constants are non-zero.

If m = a, then E is satisfiable if and only if it is satisfied when aIl the

variables are set to a, namely when we have both Co E {l, a, ab} and Cn E

{l, a, ba}.

If m = ba, and E can be satisfied, th en it can be satisfied by one of the

o (n) assignments of the following form: aIl the variables occurring before sorne

5.1. SINGLE EQUATIONS AND PROGRAMS 145

point j in the equation (which might be a constant or a variable) are set to

1, the variable at point j is set to ba and the other variables are set to a. To

see this, consider any satisfying assignment to E. If the first b in the induced

string cornes frorn a constant, then aIl the variables occurring before it must

have been set to 1. Moreover, aIl we have to insure now is that there are no

consecutive b's in the suffix. 80 we can set aIl the variables that haven't yet

occurred to a without affecting the target. If the first b occurs in a variable,

the same reasoning shows that we can set this variable to ba and the variables

not yet considered to a. 80 it is sufficient to check a linear number of possible

assignments to decide satisfiability. The case m = ab is handled in a sirnilar,

symmetrical way.

FinaIly if m = b, it suffices to consider the foIlowing O(n2
) assignrnents:

variables occurring before sorne j or arter sorne k are set to the identity, the

variable at point j is set to ba or b, the one at point k to ab or b, and aIl remaining

variables are set to a. Again, if we now consider any satisfying assignment and

calI j and k the first and last occurrence of b in the induced word over ./11/*,

then we know that aIl variables occurring before j or after k were set to 1. The

variable or constant at point j must be b or ba, the one at point k being b or ab

so we still have a satisfying assignrnent if we set the rest of the variables to a.

The algorithrn can easily be adapted to handle equations with variables on

both sides. o

8ince B 2 belongs to the variety generated by U this shows that neither

ME nor M TE forrn varieties. This also shows that B 2 is not inducible1 as

a subrnonoid of U x U. In [GR99], the notion of inducibility was needed to

complete the NP-completeness proof of T-EQNc in the case of non-solvable

groups G and our result gives indication that this was a necessary evil.

lStrictly speaking, this is under the hypothesis that P is not NP, although this can probably
be proved directly.

146CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

5.1.4 A Look at the General Case

Getting necessary and sufficient conditions for the tractability of pro gram and

equation satisfiability already seems difficult, if not impossible, in the basic cases

of groups and aperiodics. In this subsection we prove sorne partial results for

monoids in general and try to further understand what differentiates program

satisfiability and equation satisfiability.

We start with an easy generalization of the hardness results for non-solvable

groups.

Theorem 5.14 If M is non-solvable then P-SATM , EQNM and T-EQNM are

all NP-complete.

Proof. The result for P-SAT is an immediate corollary of the NP-completeness

of P-SAT c for non-solvable groups Gand Lemma 5.2. Similarly, if G is a non

solvable subgroup of M with idempotent e then the expression exe induces the

submonoid eM e. Any target-equation over C, say

can be viewed as an equation over eM e. If it is satisfiable in eNI e then a

satisfying assignment must set variables on the left-hand side to values .J-above

the target 9 and thus tl-related to e. In other words, the equation is satisfiable

over eMe if and only if it is satisfiable in G. Hence we have T-EQNc ~p

T-EQNeMe ~p T-EQN M ~p EQN M and so the latter two are NP-complete. 0

The proof of Lemma 5.9 used crucially the combinatorial characterization

of languages with syntactic monoids in DA and it it perhaps not too surprising

that this argument can be generalized to subclasses of DO.

Lemma 5.15 If M E DO n G nil then P-SATM , EQNM and T-EQNM alllie

in P (and in fact in A CCfJ).

5.1. SINGLE EQUATIONS AND PROGRAMS 147

Proof. Because of Lemma 5.1 it is again sufficient to establish the upper

bound for P-SATM . Let 4> be an n-input M-program of length land F ç M be

a target set. The set {w : w E M* and evalM(w) = m E F} can be expressed

as the finite disjoint union of unambiguous LÔa1Li ... akL'k where the Li are the

intersection of sorne Ai with Ai ç M and sorne language Ki recognized by a

nilpotent group.

For the at most G) k-tuples of instructions of 4> that could be held responsi

ble for the presence of the subword ala2 ... ak in 4>(x), we need to check ifthere is

an assignment such that the output of the program belongs to LÔa1Li ... akL'k.

As a first step we check for each input variable Xj whether setting it to 0 or 1

causes sorne instruction to throw us out of one of the Ai 's. This process forces

an assignment on sorne of the variables (or possibly even proves that the target

is unreachable given this particular k-tuple) and leaves other free.

What we are left with can be thought of as a system of k + 1 programs over

nilpotent groups. The k-tuple chosen previously naturally defines k segments

4>0,4>1, ... ,4>k of the program which, after our initial computation, are now n'

input programs for sorne n' ::s: n. We are searching of course for sorne x' E

{o,l}n' such that for aIl 1 ::s: j ::s: k we have 4>'i(X') belongs to the nilpotent

group language Ki, We can reuse a trick of the proof of Lemma 5.1 to argue

that this is no harder than a pro gram satisfiability problem over the nilpotent

group l\II(Ko) x l\II(Kd x ... X l\II(Kk) which, by the result of [GR99] is doable

in polynomial time. 0

Indications of hardness for P-SATM when M lies outside DO n Gni! are

scarce. Just as we have shown NP-completeness for non-solvable M's, we can

extend our results about aperiodics easily to show:

Lemma 5.16 If M is not in DS then P-SATM is NP-complete.

We are however unable so far to provide any indication of hardness for either

P-SATM or EQN M when M is in DS - DO.

148CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

P is closed? Direct products Factors Subs
MTEnG YES YES ?

MTEnA YES YES NO
M TE YES YES NO

MpnG ? YES YES
MpnA YES YES YES

M p ? YES YES

Table 5.1: Closure properties of M TE and M p.

Our results so far have also indicated that beyond their apparent sim

ilarities, the tasks of checking satisfiability for programs and for equations

present different computational challenges. In particular, Table 5.1 sums up

the known closure properties of the classes M TE = {M : T-EQN M E P} and

M p = {M : P-SATM E P} and they are quite different. It should be noted

that although M p nAis known to be closed under direct products we have no

direct proof of this facto

5.1. 5 Open Pro blems

Our results establish a close connection between the algebraic properties of a

finite monoid M, its power as a language recognizer and the complexity of re-

solving equations or programs over M. Many questions remain open, however,

the most important of which is the complexity of P-SAT in the case of solvable

but not nilpotent groups. Of course, we have tied the full resolution of this

question to lower bounds for CCO circuits but progress on this problem can be

made in other ways. For instance, we cannot rule out that there exists a better

way to use the hypothesis that a group is AND-weak in order to surpass our

quasi-polynomial time upper bound P-SAT G. We conjecture that this is not

possible. Certainly, any indication that P-SAT G is not in P for non-nilpotent

AND-weak groups would be of great interest. Note that our current algorithm

puts, for instance, P-SAT S3 in the complexity class N pUog
2n

J of problems which

5.1. SINGLE EQUATIONS AND PROGRAMS 149

can be decided by a polynomial time non-deterministic Turing machine that is

using only o (log2 n) bits of non-determinism (see e.g. [DF97, GLM96]). Per

haps, P-SAT S3 can actually be shown complete for this class or at least hard for

sorne sm aller class of bounded non-determinism.

Another outstanding problem is the complexity of P-SATM when IVI is in

DS-DO. We believe that the problem is NP-complete also in this case. In light

of our proof that monoids in DS - DO are universal (Lemma 3.13), this would

follow from the NP-completeness of determining if, given a CNF formula, there

exists a truth assignment to the variables which satisfies 0 modulo p clauses

in the formula. To the best of our knowledge, no hardness result is known for

this problem. Obtaining indication that P-SATM is tractable if and only if M

lies in DO n Gni! would provide an interesting parallel with our communication

complexity results.

We chose to study the satisfiability of programs. It would be reasonable

to also study the equivalent of P-SAT for k-programs. The results would be

radically different in the case of aperiodics since it is easy to prove this problem

is NP-complete for any aperiodic if k 2:: 2. On the other hand, our upper bounds

for nilpotent groups still hold and if a group is AND-strong then the problem

is NP-complete for k 2:: 3.

Finally, one can study the complexity of counting the number of solutions

for a program-equation. This was briefty discussed in [BMM+OO], where it is

established that the problem #P-SAT is in #L for monoids in DA but #P

complete for non-solvable monoids and for U and BA2' in simple correspondence

with the results presented above. In particular, it seems challenging to find an

efficient way of counting the number of assignments satisfying a certain program

over a nilpotent group G: our CUITent algorithm for P-SAT G seems to lack the

finesse presumably needed for the counting task.

150CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

5.2 Systems of Equations

We now turn to the study of systems of equations over a given semigroup. The

SYSTEMS OF EQUATIONS SATISFIABILITY problem over a semigroup S (abbre

viated as EQN~) is that of determining wh ether a given set of equations over

Scan be simultaneously satisfied. We will also study the restriction T-EQN~

of EQN~ in which the right-hand side of each equation in the system is a con

stant. For finite groups, the problems are obviously equivalent: they lie in P

for Abelian groups and are NP-complete otherwise [GR99].

Recall from Section 5.1 that T ç S is inducible if there exists an expression

E over S such that the range of E is exactly T. Similar to Lemma 5.4, one can

show

Lemma 5.17 If T is an inducible subsemigroup S then EQN;' :::; EQN~ and

T-EQN;' :::; T-EQN~.

We will show that for any finite monoid M both EQN~ and T-EQN~ are

either in P or NP-complete depending on whether M belongs to JI V Ab or

not in the general case and depending on whether M belongs to RB V Ab or

not in the case of target-equations. We prove a similar dichotomy for T-EQN~

when S is a regular semigroup and prove a number of sufficient conditions on

a semigroup S for the NP-completeness of T-EQN~ and EQN~. We begin by

pointing out a very interesting connection between these problems and so called

constraint satisfaction problems.

5.2.1 Constraint Satisfaction Problems

Let D he a finite domain and r be a finite set of relations on D. To each pair

D, r corresponds a CONSTRAINT SATISFACTION PROBLEM (CSP). An instance

of CSP(r) is a list of constraints, i.e. of pairs Ri(Si) where Ri E r is a k-ary

relation and Si, the scope of Ri, is an ordered list of of k-variables (with possible

5.2. SYSTEMS OF EQUATIONS 151

repetitions) and we want to determine whether the variables can be assigned

values in D such that each constraint is satisfied. As an example, the problem

EQN~ can be seen as a CSP problem in which the domain is the semigroup S

and r is the set of constraints definable as equations over S.

This class of combinatorial decision problems has received a lot of attention

because of the wide variety of problems which it encompasses and because con

straint satisfaction problems arise so naturally in artificial intelligence. CSP lies

in NP and is easily se en to be NP-complete in general so one seeks to identify

tractable restrictions of the problem. One might choose, for instance, to impose

certain conditions on the structure of constraints appearing in a given instance.

A lot of research has also dealt with identifying necessary and sufficient con

ditions on r to have CSP(r) tractable over a given domain D. This approach

was pioneered by T. Schaefer [Sch78] who studied the CSP problem on Boolean

domains. In this case, the problem is usually known as G ENERALIZED SATISFI

ABILITY and Schaefer proved that this problem was NP-complete unless it was

one of six tractable special cases: 2-SAT, O-valid SAT, 1-valid SAT, affine-SAT,

Horn-SAT and anti-Horn SAT. Affine-SAT is the case where each relation is the

solution set of a system of equations over the cyclic group C2 . The only other

2-element monoid is UI of course and, interestingly, we can relate the last two

of Schaefer's tractable cases to systems of equations over UI .

Lemma 5.18 A boolean relation is Horn or anti-Horn, i.e. expressible as tuples

satisJying a conjunction oJ disjuncts containing each at most one un-negated

(resp. negated) variable, iJ and only iJ it is the set oJ solutions oJ a system oJ

equations over UI .

Proof. Identify the element 1 of UI with TRUE and 0 with FALSE. Then the

Horn clause Xl /\ X 2 /\ ... X n -+ y is satisfied wh en one of the Xi's is FALSE or

wh en an Xi's and Y are TRUE. These are exactly the tuples which satisfy the

152CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

equation

over UI .

Conversely, the equation Xl··· X n

formula:

Yi ... Ym corresponds to the Horn

If on the other hand we choose to identify 1 with FALSE and 0 with TRUE,

a similar argument shows the relationship of UI systems to anti-Horn formulas.

o

Recently, tools from universal algebra [BKJOO, DalOO], group theory and

relational database theory [FV99] have been used to identify classes of relations

for which CSP is tractable and it is conjectured that for any domain D and any

set of relations r the problem CSP(r) either lies in P or is NP-complete. Let us

define a k-ary operation to be any function f : D k ~ D and say that a relation

R E Dt is preserved by f if for any k t-tuples

(d~ , d~, ... , di), ... , (d~, d~, ... , d~)

alllying in R, the t-tuple

(j (d~, ... , d~), ... , f (di, ... , d~))

is also in R. The algebraic properties of the operations that preserve every

relation in r can be studied to determine the complexity of CSP(r). Dsing

this approach, A. Bulatov obtained a spectacular dichotomy theorem similar to

the one of Schaefer for domains of size three [Bll102]. It has aiso been shown

that if the domain is a semigroup Sand r s is the set of relations preserved by

the multiplication in S then CSP(r s) is tractable if S is a block group and is

NP-complete otherwise [BJV02].

5.2. SYSTEMS OF EQUATIONS 153

Although our work is a priori incomparable to the results just cited, the

mechanics of sorne of our upper bounds can be rephrased in the universal algebra

terminology. We will also use a powerful result of [FV99]:

Theorem 5.19 If G is a group and r is a set of relations such that for each

REr of arity k the k-tuples in R form a coset of Gk
, then over the do main G

CSP(r) can be solved in polynomial time.

5.2.2 Tractable Cases

We begin by presenting sorne polynomial time algorithms to test the satisfiabil

ity of systems of equations over simple classes of monoids and semigroups. We

are faced with an inconvenient obstacle: if M and N are monoids such that M

divides N we do not know how to infer upper bounds for EQN~ from upper

bounds for EQNrv. In fact, as we will see later on, solving equations over certain

semigroups might be easier than solving equations over sorne of their divisors.

As usual, we will first separately treat the group case and the aperiodic case

before combining them to get upper bounds in the general case. We first recall:

Lemma 5.20 ([GR99]) IfG is Abelian, then T-EQNè and EQNè arc solvable

in polynomial time.

Remarie 5.20. The proof of Goldmann and Russell uses simple Gaussian

elimination techniques, but this lemma can also be obtained as a corollary

to Theorem 5.19. Indeed, it can be shown that a subset T of a group G is

a coset if and only if uv-1w lies in T for aIl 11" v, w E T. If an equation over

a commutative group XiI.·. Xis = 9 has solutions (11,1, ... , Un), (Vl, ... , vn)

and (Wl, ... , W n) then

- 9

154CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

and so the solutions form a coset of Gn. In fact, this is true even of more

complicated relations: if His a subgroup of Gand CPI ... CPs are morphisms

from G into H, then the relation defined by CPI (Xi)) ... CPs (xd = h also

forms a coset in Gn. This observation will be important in two of our

algorithms.

Next, we consider systems over idempotent and commutative semigroups.

Lemma 5.21 IJ S is an idempotent and commutative semigrovp then EQNs
lies in P.

Proof. Such semigroups are J"-trivial and the J"-ordering defines a semilattice

on S. Our algorithm will rely on the following observation: if (Ul, ... ,1In)

and (VI, ... , Vn) are solutions to a system of equations E in n variables over S,

then (UI VI, ... ,UnVn) is also a solution to E. Indeed, using idempotency and

commutativity, any equation in E can be rewritten as

Using idempotency and commutativity again, we thus get

Note that CUl'UI, ... , unvn) is the meet of ('UI, ... , 'Un) and (VI,"" 'Un) in the

semilattice sn.
Our algorithm maintains a lower bound Y = (YI, ... , Yn) for the minimal

solution to E. We initialize Y as (0, ... ,0) and update it as follows. In each step,

if (YI, ... ,Yn) is a solution to E, the algorithm halts. If not, there must be sorne

equation2 in E, say eX'i) ... Xik = dXj) ... Xj!) such that eYi) ... Yik -=1=- dYj) ... Yjt·

2Technically, since S is not necessarily a monoid, we cannot assume that constants c and
d appear in this equation. This is however unimportant in our argumentation.

5.2. SYSTEMS OF EQUATIONS 155

Since we are maintaining Y as a lower bound to any assignment satisfying [;,

we know that, for any satisfying assignment, the right-hand side product is

bounded below by dYh ... Yjt. Thus, if there is sorne Yi s occurring on the left

hand side which is not J-above dYjl ... Yjt then we can update our lower bound

by setting Yi s : = Yi s V (dYjl ... Yjt), i.e. the J -minimal element of S lying ab ove

both Yi s and the right-hand side product3
. We do similar updates on variables

occurring on the left-hand side which do not lie J-above the CUITent product

on the right-hand side.

We iterate this until we reach a fixed point for Y. The pro cess terminates

in at most n· ISI steps since the value of Y always increases in the semilattice

sn. If the fixed point is not a solution to the system, then we conclude that [; is

unsatisfiable for in this case we must have an equation such that CYil ... Yi" = C

and dY,il ... Yjt = d but C -# d. Obviously no solution to [; can then exist ab ove

Y so [; has no solution. o

In fact, this algorithm can be viewed as an instance of a classical result from

the CSP literature [JCG97] showing the tractability of CSP wh en the relations

are preserved by an associative, commutative and idempotent operation. As we

noted in the first paragraph of our proof, the multiplication in S preserves the

relations defined as equations over S.

Next, we look at upper bounds for the resolution of systems of target

equations. This restriction allow sorne more leeway and we will give an al

gorithm to solve T-EQN~ over a regular band (i.e. an idempotent semigroup

satisfying the identity abaca = abca) and use the following technical result:

Lemma 5.22 Let S be a regular band and suppose Xl' .. Xk = sand Yl ... Yl = s

for sorne Xi, Y'i, sES. For al! shuffies K of Xl ... Xk with YI· .. YI, we have

K=s.

3If no such element exists, we conclude that the system is unsatisfiable,

156CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Proof. In any idempotent semigroup, the product of two elements .1-above

sorne u E S is also .1-above u. Hence we have K ?:r s since each X'i, Yi lies .1-

above s. On the other hand, since aIl x/s appear in K, we can use the relation

abaca = abca to get K sK = K Xl ... XkK = K 2 = K. Thus, s ?:r K and so

s .1 K. Furthermore, every prefix of Xl ... Xk is R-above sand so Xl ... :Eis = s

for aIl i :::; k.

We claim that K ?n s. Indeed, we have K s = K SXl ... XkYl ... Yl. Using

again the relation abaca = abca, we can replace the occurrence of Xi in K on

the right-hand side of this equation with the prefix Xl ... Xi since aIl the Xj with

.i ::; i appear both before and after Xi. Hence K scan be written as a product

of prefixes of Xl ... Xk or Y1 ... Yl times s. Thus K s = sand K ?n s.

By a symmetric argument, K ?C s. Since s .1 K, we have s 1{ K and s = K

by aperiodicity. D

We can now prove:

Lemma 5.23 If S is a regular band then T-EQNs lies in P.

Proof. Our algorithm works by shrinking a list of possible values for each

variable and implicitly uses the fact that the relations defined by equations over

Sare closed under a set function [DaWO].

For each variable Xi, 1 ::; 'i :::; n, we initialize a set Ai = S of "possible values"

for Xi and repeat the foIlowing until either the Ai are fixed or sorne Ai = 0: for

an i from 1 to n, for each equation E involving Xi, and each a'i E Ai, if there

exists no n-tuple (al, ... , ai, ... an) with aj E Aj that satisfies E, then we set

Ai := A - {ai}.

If sorne Ai is empty, the system clearly has no solution. Conversely, we are

left with sets Ai such that for an ai E Ai and an equations E in the system,

there are aj E Aj for an i i- .i such that the n-tuple (al, ... ,an) satisfies E. We

claim that this guarantees the existence of a solution to the system.

5.2. SYSTEMS OF EQUATIONS 157

lndeed, let ti be the product in S of all elements of Ai = {a~l), ... ,a~s;)} in

sorne arbitrary order. Then (t l , ... , tn) satisfies aIl equations in the system. To

see this, consider sorne equation E = XlX2 ... Xk = s. The product t l t2 ... tk is

a shuffie of solutions to this equation by definition of the A's, so by Lemma

5.22, the tuple (t l , . .. , tn) also satisfies the equation.

It remains to show that our algorithm runs in polynomial time. It is sufficient

to show that we can efficiently test whether a given equation Xl ... Xk = s has

a solution li = (al,"" ai, ... , an) where ai is given and for each j =J- i we have

aj E Aj.

We will use a variant of our algorithm for EQN M for monoids in DA: since S

belongs to DA, we know that sets S8 = {w E S*levals(w) = s} are the disjoint

union of unambiguous concatenations S~blS~ ... btS; with Si ç S. 80 to test for

the existence of an li as above, we need only consider, for each S~blS~ ... btS;,

the (~) ways of placing the bï's among the k variables Xl, ... ,Xk occurring in the

equation. To validate this choice, it now suffices to check that we have bi E Aj

if we set Xj = bi , and, for all other variables, that the corresponding Ai contains

at least one element which belongs to the right S/s. o

We can combine the result of Lemmas 5.20, 5.21, 5.23 to solve, in polynomial

time, equations over the direct product of a commutative band and an Abelian

group and target-equation over the direct product of a regular band and an

Abelian group. The tractability of these problems can also be shown for divisors

of such semigroups but this requires sorne additional work. We introduce two

definitions:

Definition 5.24 The semigroup S is a shong semilattico of Abelian groups

if there exists a semilattice E (i. e. a commutative band), a family of disjoint

Abelian groups {Gele E E} and for every e, f E E such that e ?:.:J f a gro'Up

homomorphism CPe,J : Ge -+ G f such that:

158CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

1. S is the union of the Ge;

2. </Je,e = idce for aU e E E;

3. for any e ?s f ?s d we have </J J,d 0 </Je,j = </Je,d;

4. the multiplication in S is given by the formula

Similarly, we say that the semigroup S is a strong regular band of Abelian

groups if there exists a regular band E, a family of disjoint Abelian groups

{Gele E E} and for every e, f E E such that e ?s f a group homomorphism

</Je,j : Ge -+ G J satisfying the same properties.

Lemma 5.25 Let S be a semigroup. The foUowing are equivalent:

1. S is a strong semilattice of groups;

2. S lies in JI V Ab;

3. S is a union of Abelian groups and J = 1-l over S.

4. S is a commutative union of groups.

This follows from well-known facts about unions of groups (see, e.g. [How76]).

Yet, we will sketch part of this pro of because sorne of the mechanics involved

will be of use later on and because it is a good warm-up for the slightly more

technical proof of Lemma 5.26.

Proof.

(1 =>- 2) Suppose S is a strong semilattice of Abelian groups with k: :1-

classes. Let G = IleEE Ge and consider the subsemigroup T of Ex G consisting

of elements (f, gel' ... , gek) such that gei = 1 unless ei ?s f· We claim that S

is a morphic image of T.

5.2. SYSTEMS OF EQUATIONS 159

lndeed, define 1/J : T -t S as

1/JU, gl, ... ,gk) = TI CPei,J(gi)'
ei?::.J!

Obviously, 1/J is surjective. Moreover, it is a well-defined morphism since we can

show that 1/JU, gl," ., gk) ·1/JU', g~, ... , gD is:

(5.1)

(5.2)

(5.3)

ei?:.:r!!'
1/JU J', glg~, ... ,gkg~) (5.5)

We have (5.2) by properties 3 and 4 of Definition 5.24 and (5.3) because

membership in T guarantees that gi = 1 unless ei :::: f. For (5.4), we use that

G f f' is Abelian and that the cp's are morphisms.

(2 :::} 3) is a simple exercise.

(3 :::} 1) can be obtained as in the proof of Lemma 5.26.

(4 <=> 1) is part of semigroup theory folklore (see e.g. [How76]). 0

Lemma 5.26 For a semigroup S, the following are equivalent:

1. S is a strong regular band of Abelian groups;

2. S belongs to RB V Ab.

3. S is an orthodox union of Abelian grov,ps such that E(S) is a regular band

and 1{ is a congruence;

160CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Proof.

(1 =} 2) This is similar to the corresponding implication in the pro of of

Lemma 5.25. Suppose S is a strong regular band of Abelian groups. From

every 1i-class we pick the idempotent ei in S and the corresponding subgroup

ai. Let G = G1 X ... X Gk be the product of aIl such groups. Our daim is

that S is a divisor of the semigroup E(S) x G. Let T be the subsemigroup of

S consisting of elements (e, 91, ... ,98) where 9i = 1 whenever ei is not J-above

e. Let 'Ij; : T -t S be defined as

'Ij;(t, 91,···, 9k) = II cPei,t(9i).
ei'2:.Jt

It is obvious that 'Ij; is surjective. Moreover, it is a weIl defined morphism because

we can show 'Ij;(j, 91,.··, 9k) . 'Ij;(j', 9~,···, 9U is:

II cPe;,!(9i)· II cPe;,J' (9~) (5.6)
~'2:.Jf ~'2:.JJ'

(5.7)

II cPei,! J' (9i)· II cPe;,/ f' (9D (5.8)
ei'2:.JfJ' ei'2:.JfJ'

'Ij;(j j', 919~, ... ,9k9U (5.10)

(2 =} 3) The direct product T of a regular band and an Abelian group certainly

has these properties. They are clearly preserved under morphic images. If S is

a subsemigroup of T, it is an orthodox union of Abelian groups such that E(S)

is a regular band. Furthermore and because T is a union of groups, if u 1is v in

S, then for any sES we have us1iT v s. In particular ('ILs) ('Us)w-l '/J S = 1) sand

since (us t-1vs E S we get us 1i vs.

(3 =} 1) This is the hardest of the three implications. Let S be an orthodox

union of Abelian groups such that E(S) is a regular band and 1i is a congruence.

5.2. SYSTEMS OF EQUATIONS 161

Then for any x, y, e E S with e idempotent we have:

sinee e, (ex)W, (ye)W are elements of the regular band E(S).

For any idempotents e, f E S, let Ce, Cf be the maximal subgroups of

S eontaining e and f respeetively and define for any e ?J f the morphism

1Je,J : Ce -+ Cf as 1Je,J(X) = fxf· Because of (1), 1Je,J is a well-defined group

homomorphism. Clearly, 1Je,e = idoe and for idempotents d ?J e ?J f we have

for any x E Cd:

1Je,J 0 1Jd,e(X) = fexef = fefxfef = fxf = 1Jd,J(X).

Clearly, S is the union of the Abelian groups Ge. Since 1l is a congruence

on S, we have xy1lxWyw and so xy = xWyWxyxWyw. By (1) we get that the

multiplication in S is given by

. ww ww ww A-. ()A-. () X . Y = x Y xx Y yx Y = 'f'xW,xWyW X . 'f'yW,xWyW Y .

o

These structural results allow us to prove:

Lemma 5.27 If S is a semigroup in the variety JI V Ab then EQN~ lies in P.

Proof. We know that S is a strong semilattice of Abelian groups. Let E be

a system of equations over S in n variables. If (Ul' ... ,'un) and (Vl' ... ,vn) are

two solutions to E, then one can easily verify that (u1vl"'" u~vn) is also a

solution to E. If E is satisfiahle over S, then it must he also he satisfiahle in

S /1l = E (S) (note that 1l = J is a congruence over S since S is a union of

groups) and sinee E(S) is a semilattiee, we can find in polynomial time the

J-minimal solution of this system.

162CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

In other words, we can find in polynomial time idempotents t l , ... tn such

that if E has a solution then it has a solution (YI, ... ,Yn) such that yi = t i for

each 1 :::; i :::; n. We next check if such (YI, ... ,Yn) exists.

Recall from our previous praof of Lemma 5.25 that if G = TIeEE Ge and T

is the subsemigroup of E x G consisting of elements (j, gel' ... ,gek) such that

gei = 1 unless ei ?J f, then S = 1jJ(T) where

VJ(j, gl,"" gk) = TI CPei,J(gJ
ei?J f

Consider now the following constraint satisfiability problem over this group

G with variables Xl,' .. , Xn. First, we constrain every Xi so that (ti, Xi) belongs

to T. Next, we insure that the Xi are such that setting Zi = 7jJ(ti, Xi) we get a

solution to E. It is clear that these constraints can be satisfied in G if and only

if E has a solution.

Now observe that, as we pointed out in our remark following Lemma 5.20,

every relation of arity k used to build the above constraints forms a coset of G k .

Thus, using Theorem 5.19, we can test for the existence of such Xi' 0

As in the case of EQN~, we can exploit further the ideas presented in the

algorithm of Lemma 5.23 to obtain an upper bound for a larger class with the

help of our structural result.

Lemma 5.28 If S is a semigroup in RB V Ab then T-EQN~, lies in P.

Proof. We proceed exactly as in the praof of Lemma 5.27. We can adapt

Lemma 5.22 to show that if we have Xl ... Xk = s and YI ... YI = s then for any

shuffie K of Xl' .. . Tk and Yr . .. YI we have K = s.

In particular, if E is a system of equations over S in n variables, we can use

the algorithm of Lemma 5.23 to find idempotents t l , ... tn such that if E has a

solution then it has a solution (Yb' .. ,Yn) such that yi = t i for each 1 :::; i :::; n.

Once again, it remains to check if such (YI,' .. ,Yn) exist.

5.2. SYSTEMS OF EQUATIONS 163

As for Lemma 5.27, we can formulate this question as a constraint satis

fiability problem over the product of all subgroups of S. Once more, every

relation used forms a coset in sorne power of G so this problem can be solved

in polynomial time. o

5.2.3 Hardness Results

Next, we obtain a number of NP-completeness results which, in sorne cases,

will be combined with the upper bounds presented above to provide complete

dichotomies for the complexity of EQN* and T-EQN*. Recall that in order

to establish a hardness result on the complexity of equation satisfiability for a

semigroup S, it is sufficient to prove the hardness results for inducible subsets of

S. We will make extensive use ofthis fact in the arguments below. In particular,

for any monoid M, the set of elements J (resp. [" n) below an element m is

inducible by the expression XlmX2 (resp. Xlm, mXl). Also, for any idempotent

e in a semigroup S, the expression exe induces the submonoid eSe and the set

of idempotents can be induced by the expression X W
• Consequently, we will

loosely use sentences such as "we restrict the variable Xi to be idempotent and

J-below m" to improve the readability of our reductions.

If m is a regular element of a semigroup S. The target equation XlyX2 = m

can be satisfied if and only if y is J-above m. To stress the intended meaning of

certain equations, we will sometimes write y ?.:r m in place of such an equation.

We will use reductions from the following NP-complete problems: 3SAT, 1-

3SAT, NAE 3SAT, MONOTONE NAE3sAT and GRAPH k-COLORABILITY. The

NP-completeness of the first four are guaranteed by Schaefer's Theorem. MONO

TONE NAE3sAT is perhaps the lesser known problem in the list: it is the variant

of NAE3sAT in which no clause contains a negated literaI. It is sometimes pre

sented as the MONOCHROMATIC TRIANGLE problem [GJ79].

In the rest of this section we will systematically use M to denote a finite

164CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

monoid and S to denote a finite semigroup in the statement of lemmas.

Lemma 5.29 If S is not in Ab then T-EQN~ is NP-complete.

Proof. This is a simple corollary of the already oft-cited NP-completeness of

T-EQNè for non-Abelian G proved in [GR99]. If G is a maximal non-Abelian

subgroup of S with idempotent e, the expression eSe induces a submonoid in

which every element is either in G or lying J-below e. So any system of target

equations over with targets in G is satisfiable in G if and only if it is satisfiable

in eSe. D

In contrast to the group case, there are commutative aperiodic monoids for

which T-EQN~ is already NP-complete.

Lemma 5.30 If M is aperiodic but not idempotent, then T-EQN~ zs NP

complete.

Proof. Let m =1= m 2 be a J-maximal non-idempotent element of !VI.

We use the following reduction from 1-3SAT: for each Boolean variable Xi

in the formula, we create two variables X'i, X'i for the system and create equations

Moreover, for each clause of the formula, e.g. (Xl V)(2 V X 3) we add the equation

Suppose first that the 1-3sAT formula is satisfiable. Then we can satisfy

the resulting system of equations by setting Xi = m and X'i = 1 whenever Xi is

TRUE, and Xi = 1 and Xi = m whenever Xi is F ALSE. It is easy to see that this

satisfies the sets of Equations (1), (2) and (3).

Conversely, suppose that this system of equations is satisfiable. Note first

that Equations (1) and (2) force Xi (resp. Xi) to be both R-above and L:-above

5.2. SYSTEMS OF EQUATIONS 165

m. So if Xi (say) lies in m's J-class, it must be n and .c equivalent and henee

1-l-equivalent to m. By aperiodicity, this implies in fact Xi = m. It foIlows

that at least one of Xi or Xi lies strictly J-above m; otherwise we would have

X'i = Xi = m, and sinee m is not idempotent this would violate Equation (1).

Moreover, since m is J-maximal among the non-idempotent elements of M,

whichever one of Xi, Xi is strictly J-above m must be sorne idempotent e.

Therefore, suppose Xi = e where e > :J m is idempotent. Then Equation (1)

gives us m = eXi = eexi = em, and similarly (2) gives m = me. Wc cannot also

have X'i >:J m, sinee then Xi would also be idempotent, which this leads to the

contradiction m 2 = eX'ixie = eXie = em = m. Thus Xi J m whenee X'i 1-lm and

from aperiodicity Xi = m.

Similarly, if Xi >:J m then Xi = m. 80 if we set Xi to TRUE when Xi = m

and FALSE when Xi = m, Eqs. (1) and (2) insure that our mapping between

Boolean variables and variables in M is consistent, in the sense that for aIl i,

exactly one of Xi, Xi is m and the other is an idempotent in a higher J-class.

FinaIly, suppose that aIl 3 variables in Equation (3) have idempotent values.

By a previous argument, these values fix m and so m2 = XIX2x3m = XIX2m =
:Cl m = m, a contradiction. We get a similar contradiction if two or more of

the variables are set to m. Therefore (3) insures that exactly one literaI in each

clause is true, and the 1-3sAT formula is satisfiable. 0

In fact, this is a special case of the more general hardness result:

Lemma 5.31 If M is not a union of groups, then T-EQN~ is NP-complete.

Proof. Let m be a J-maximal element satisfying m2
<,J m. Any monoid

element u with u > ,J m is 1-l-related to U
W and uw+1 = u.

We use the same reduction from 1-3sAT as in our previous proof: for each

literaI in the formula Xi and its complement Xi, we add equations XiXi = m

166CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

and XiXi = m and for each clause we add the equation e.g.

One can easily check that given a satisfying assignment to the formula we can

obtain a satisfying assignment to the system of equations.

For the converse, Eqs. (1) and (2) show that if Xi J m then in fact .Ti 1-L m,

just as in Lemma 5.30. Since the 1-L-class of m contains no idempotent, the

product of any two elements of 1-Lm lies strictly J-below m. Eqs. (1) and (2)

thus force at least one of X'i, Xi to be strictly J-above m.

Suppose both Xi and Xi are strictly J-above m. Then we have m = ,TiXi =
X'iX~+l = mxr and m = mx;, Moreover, Xi and Xi commute by Eqs. (1) and (2),

so we get m = mxrxr = m(xixi)W = mw+1 <:7 m, a contradiction. Therefore,

at least one of Xi, Xi must be 1-L-equivalent to m while the other fixes the 1-L-class

of m, so if we identify true literaIs with variables taking a value 1-L-equivalent to

m, we obtain a consistent truth assignment, and, repeating the argument of the

previous proof, exactly one literaI in each clause corresponding to Equation (3)

must be true. o

We will see later that these hardness results do not hold in the case of

semigroups.

Lemma 5.32 If M is aperiodic and idempotent but is not commutative, then

EQN~ is NP-complete.

Proof. Let a, b in M be such that ab -# ba. We can choose a, b such that a is

a J-maximal element which is not central in M (i.e. which does not commute

with every element) and b is a J-maximal element which does not commute

with a. Vve now obtain a reduction from 3SAT. For each Boolean variable Xi

in the formula, we create variables Xi, Xi, Yi, fh and equations

5.2. SYSTEMS OF EQUATIONS 167

(1) XiXi = a (2) XiXi = a
(3) ydli = b (4) YiYi = b
(5) X(f}i = YiXi (6) XiYi = YiXi

AIso, for each 3SAT clause, e.g. Xl V)(2 V X 3 , we add an equation

Given a satisfying assignment to the formula, we can construct a solution to

the above system by setting Xi = a, Xi = 1, Yi = b, and Yi = 1 whenever Xi is

TRUE, and Xi = 1, Xi = a, Yi = 1, rh = b whenever Xi is FALSE.

Conversely, suppose the system of equations is satisfiable. Equation (1)

shows that both Xi and Xi lie J-above a. Since a and b don't commute, a

cannot be the product oftwo elements commuting with b. However, anyelement

strictly J-above a is central so at Ieast one of Xi, Xi must be J-equivalent to a.

Moreover, Eqs. (1) and (2) insure that Xi, Xi are both L-above and R.-above a,

so if Xi J a (say) we must also have X 1-l a and thus X = a by aperiodicity. Thus

at least one of Xi, Xi must be a. Similarly at least one of Yi, fh must be b, since

any elements strictly J-above b commute with a.

If Xi = a, then Yi commutes with a by Eq. (5). Thus Yi must be strictly

J -above b. If Yi = b, then Xi commutes with b by Eq. (6), so X'i is strictly

J-above a. We can thus obtain a consistent truth assignment to the literaIs by

setting Xi to TRUE if and only Xi = a and Yi = band Xi to TRUE if and only

Xi = a and Yi = b.

Since every element strictly J-above a is central but a is not, a cannot be a

product of elements J-above it. Therefore, if XIX2X3 = a then one of Xl, X2, :1;3

must be a, so the corresponding 3SAT clause is satisfied. o

Corollary 5.33 If S is a band but is not a normal band (i. e. it do es not satisfy

abca = acba) then EQN~ is NP-complete.

168CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Proof. We daim that S is normal if and only if it is locally J 1. lndeed, if S

is normal then for any a, b, c we have abaca = abacaa = acabaa = acaba and so

S is locally J 1.

Also, every band in LJ 1 is regular because we have

abca = abababcacaca = (aba)(aba)(abca)(aca)(aca) = abacabcabaca = abaca.

Thus if S is a band in LJ 1, we have

abca = abaca = acaba = acba

which proves our daim.

Every monoid eSe is indu cible so if is S is a band which is not normal, then

it must have an inducible submonoid for which EQN~ is NP-complete. D

The following matches the upper bound of Lemma 5.23:

Lemma 5.34 Let S be a band outside RB, then T-EQN~ is NP-complete.

Proof. Since S is not a regular band, there are A, B, CES be such that

ABACA =f ABCA and we choose A, B, C such that ABCA is J-maximal. We

can assume without loss of generality that ABACA is not R-related to ABCA

for otherwise ABACA is not .L-related to ABCA and we can proceed dually.

Setting a = ABA, b = AB, c = CABA, we obtain ab = b, ba = a,

ca = e. Also, ac = abaca =f abca = be since abaca = ABACABA is R-related

to ABACA and abca = ABCABA is R-related to ABCA.

Let a, b, cES as above be elements such that ab = b, ba = a, ca = e, ac =f hc

and e is J -maximal with the properties abaca =f abca and e <:7 a, b. We daim

that for aIl sES satisfying a ?.:7 s >:7 c we have in fact as = bs. lndeed, the

J-maximality of c imposes abasa = absa. Since ab = band ba = b this shows

that asa = bsa and so as = asas = bsas = bs.

5.2. SYSTEMS OF EQUATIONS 169

We can now obtain the following reduction from 3SAT to T-EQN~ where

T is the (inducible) semigroup of elements lying .J-below a. For each Boolean

literaI Xi in the formula, we introduce the variables Xi, Xi, Yi and construct the

equations

(1) eX'i = e (2) eXi = e
(3) Yia = a (4) aXiaxi = ae

(5) bXibxi = be (6) YiXiae = ae

(7) Yixibe = be

Moreover for any q which is R-related to a we add the equations

Note that in any solution to these equations we know from Eqs. (1,2) that

both Xi and Xi lie .J-above e. Suppose that both lie strictly .J-above e then by

this contradicts Eqs. (4,5).

Suppose on the other hand that both Xi and Xi are .J-related to e: by

Eqs. (1,2) we get Xi 12 Xi 12 e. We thus have Xi = Xiae Xibe = Xi and in fact

Xive = Xi for any y ?:.S e. Since Eq. 3 imposes Yi R a we deduce from Eqs. (8,9)

that

This, however contradicts Eqs. (6,7). Renee, exactly one of Xi, Xi is .J-related

to e and the other lies strictly .J-above e.

We complete our reduction by introducing, for each of clause of the 3SAT

formula, e.g. Xl V X2 V X 3 , the pair of the equations:

One can now verify that if the 3SAT instance is satisfiable, then we can

satisfy the system obtained through our reduction by letting X'i = e, ,Ti = a,

Yi = a whenever Xi is TRUE, and Xi = a, X'i = e, Yi = b whenever Xi is FALSE.

170CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Conversely, suppose the system of the equations is satisfiable. Since exactly

one of Xi, Xi is J-related to c, we get a consistent truth assignment to the

literaIs by setting Xi (resp. Xi) to TRUE if and only if Xi J C (resp. Xi J c).

This assignment satisfies every clause of the original formula for if the variables

occurring in Eq. (11) alllie strictly J-above c we have aXl = bXl aX2 = bX2

and aXa = bxa so that

in violation of Eqs. (11,12). o

Lemma 5.35 If S is a union of groups but is not orthodox then T-EQN~ zs

NP-complete.

Proof. We can assume without loss of generality that S is a completely

simple unorthodox semigroup. Otherwise, we know that it contains sueh a

subsemigroup S'. For any S E S', the expression XlSX2 induces the subsemigroup

of elements J-below S'. Furthermore, if t lies in S' we ean use target-equations

such as (txt)W = tW to restrict variables to values lying J-above S' and so

NP-eompleteness for T-EQN~, implies NP-completeness for T-EQN~.

We eonsider the Rees matrix representation of the completely simple semi

group S: suppose S has cv R-classes and j3 L-classes. There exists a group G

and a matrix R E GŒX/3 such that elements of Scan be represented as triples

(i, g, j) with g E G, 1 :::; i :::; cv, 1 :::; j :::; j3 and multiplication given by

We can assume that the first row and first column of R contain only the identity

of the group e.

We can recursively reorder the rows and columns in the following way: sup

pose row k is such that Rk,i = e for every i :::; t. We choose the row (k + 1) as

5.2. SYSTEMS OF EQUATIONS 171

e e e

e e e
....... _ _ _ -

e e e Rab * * * ,

e e e * * * * _
e e * * RCb 7 7 7

, •••• " • ..J
,

e e : * 7 7 7 7 7 7
,

e * 7 7 7 ? ? 7 ?
............

Figure 5.2.3: Rees matrix of S after reordering: aIl entries above the dotted
line are e. The *'s represent entries which cannot be e.

the one with the most number of e's among Rk+l,i with i ::; t and reorder the

columns such that aIl these entries appear first in the row.

Because we assumed that the class is not orthodox, there is sorne non-identity

entry in R so after reordering, we can, as shown in Figure 5.2.3, find indices

a, b, c with Ra,b #- e and a < c and such that

- Ri,j = e for aU 1 ::; j < h if and only if i < c;

- for aU a ::; i < c and aIl j 2: h, we have Ri,j #- e.

We can now obtain a reduction from 1-3sAT in the foIlowing way: for each

Boolean variable Xi we create variables Xi, Xi and force them to be idempotent.

We begin by adding a number of equations to constrain the Xi and :Ëi in a helpful

way. We first impose the equations

In any solution to the system, we must have Xi = (1, e, ki) and Xi = (ti , e, 1)

sin ce the first row and column of R consist of aU e's and the variables are

constrained to take on only idempotent values. Equation 1 thus further forces

Rki,li = e and from Eq. 2 we have Rk.i,b . Ra,ti = Ra,b. Similarly we require that

Rki,j = e for aIl 1 ::; j < b by using equations of the form:

(3) Xi(j, e, 1) = (1, e, 1)

172CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

We thus have insured that ki < c and in fact that either k i < a or t i < b for

otherwise Rk t --/.. e. ~,'t T

For a clause XIV X 2 V X 3 we wish to add the requirement Rkl ,b • Ra,l2 . R k3 ,b =

Ra,b' This can be encoded as an equation such as:

If the 1-3sAT is satisfiable, then the system can be satisfied by setting :ri =

(1, e, a) and Xi = (1, e, 1) whenever Xi is TRUE and Xi = (1, e, 1) and Xi =

(b,e, 1) whenever Xi is FALSE.

For the converse, suppose first that Ra,b does not have order 2. Note that

if k i < a then Rki,b = e and so Ra,t.; = Ra,b whereas if ti < b then Ra,ti = e sa

Rk.;,b = Ra,b. Rence, we get a well-defined truth assignment by setting Xi ta

TRUE if Rki,b = Ra,b and Ra,ti = e and setting Xi ta FALSE if Rki,b = e and

Ra,ti = Ra,b' For any clause in the 1-3sAT instance, say Xl V X2 V X 3 , there is

an equation of type (4) im posing Rk1,b . Ra,t2 . R k3 ,b = Ra,b and sin ce Ra,b does

not have order 2, exactly one of Rk1,b, Rah' R k3 ,b is Ra,b and the other two are

e sa exactly one literaI per clause is TRUE.

If Ra,b does have arder 2, our last argument breaks down because equations

of type (4) might be satisfied even if all three of Rk1,b, Ra,t2' Rk3 ,b are equal ta

Ra,b' By appealing once again ta Schaefer's Theorem, we can assume that each

clause in the 1-3sAT instance contains at least one negated and one Ilnnegated

literaI, say Xl and X 2. For a clause Xl V X2 V X 3 , Eq. 4 imposes Xl EB X2 EB X 3 .

If we can further guarantee that one of Xl or X 2 is FALSE, we will be able ta

conclude that exactly one of the three literaIs in the clause is TRUE. We do sa

by adding the constraint Rk j h = e using equation

which cannat be satisfied if k l < a and t 2 < b. Thus, one of Xl and X 2 is

assigned the value FALSE. D

5.2. SYSTEMS OF EQUATIONS 173

This can be used to prove the NP-completeness of T-EQN~ for any S that

contains a completely simple unorthodox subsemigroup. We can also prove:

Corollary 5.36 Let S be a completely simple semigroup (i.e. a single J-class).

Then EQN~ is in P if S is orthodox and has only commutative subgroups but

T-EQN~ is NP-complete otherwise.

Proof. The hardness result follows directly from the previous lemma. The

upper bound stems from the observation that a completely simple orthodox

semigroup is the direct product of an Abelian group and an idempotent semi

group satisfying xyz = xz for an x, y, z E S. Systems over such bands are

obviously solvable in polynomial time. D

Lemma 5.37 If S is an orthodox union of groups such that 1-l is not a congr''U,

ence on S, then T-EQN~ is NP-complete.

Proof. Suppose we have a, b, cES such that a 1-l b but ac li bc (the dual

argument can be used if we have ca 7IL cb). In fact, it is easy to see that there

exists a and an idempotent e lying J-below a such that ae 1/l aWe.

We choose a and e as J-maximal such that ae li aWe. So for any x E S

with a >:J x >:J e, and any y 1-l z J x, we have both ye 1-l ze and aWy 1-l az.

In particular, we cannot have xe = ae for otherwise, since aWx 1-l aW-1x J x we

have

a contradiction. Similarly, we cannot have xae 1-l ae.

We can further assume without loss of generality that eaW = e for otherwise

the idempotent f = (eaW)W has the property that

and faw = f.

174CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

We build a reduction from 3SAT as follows. For each Boolean variable Xi, we

introduce variables Xi, Xi, Vi such that Vi is 1l-related to a and add the equations:

(1) xie = ae (2) (xiae)W = (ae)W

(3) vixiae '2n ae (4) viaxie '2n ae
(5) (ViXiXi)W = (ae)W

Moreover, for each 3SAT clause, e.g. Xl V X 2 V X 3 we introduce a variable

'Wj that is H-related to a and the equation

Given an assignment to the Boolean literaIs satisfying the 3SAT formula,

one can verify that this system has a solution by setting Xi = ac, X'i = aW and

Vi = aW whenever Xi is TRUE and Xi = a, Xi = ae and Vi = aw-
l whenever Xi

is FALSE.

Conversely, suppose that there exists a solution to the constructed system.

Equations (1,2) show that Xi and Xi are R-above ae while Eq. (5) forces at least

one of them to lie J-below a. If we suppose on the other hand that they are

both J-related to e then from Eqs. (2,3) we have ViXi R ae R ViœY;'i and thus

v'ia2e R Viae which is a contradiction since Vi H a. By the remarks made above,

neither Xi nor Xi must however be J-related to one of e or a. If we set Xi (resp.

Xi) to TRUE if and only if xiJe (resp. xiJe), our assignment is consistent.

Furthermore Eq. (6) guarantees that every clause in the 3SAT instance contains

at least one TRUE literaI for otherwise the corresponding product 'WjXIX2X3 will

be J-related to a. o

5.2.4 Dichotomy Theorems for EQN~ and T-EQN~ over
Monoids

In the case of monoids, it is possible to combine the upper bounds and NP

completeness results to obtain complete dichotomies for the complexity of EQN~

5.2. SYSTEMS OF EQUATIONS 175

and T-EQNM. This invol ves the structural resul ts about the varieties JI V Ab

and RB V Ab.

Theorem 5.38 For any monoid M, we have EQNM lying in P if M belongs

to JI V Ab and EQNM is NP-complete otherwise.

Proof. The upper bound is Lemma 5.27. On the other hand, EQNM is NP

complete if NI either contains a non-Abelian subgroup (Lemma 5.29) or is not

a union of groups (Lemma 5.31). If it is a union of groups but is not orthodox,

we can appeal to Lemma 5.35. Finally, if NI is an orthodox union of groups,

but E(M) fails to be J-trivial, then NP-completeness follows from Lemma 5.32

because E(M) is an inducible submonoid. Otherwise, M is an orthodox union

of Abelian groups with E(M) commutative and must thus belong ta JI V Ab.

D

Similarly, our characterization of RB V Ab allows us to prove

Theorem 5.39 For any monoid M, we have T-EQNM lying in P if M belongs

to RB V Ab and T-EQNM is NP-complete otherwise.

Proof. The upper bound is Lemma 5.28. As we argued previously, T-EQN~[

is NP-complete unless it is an orthodox union of Abelian groups. If the latter

holds, however, we still have NP-completeness if E(M) does not form a regular

band (Lemma 5.34). Finally, by Lemma 5.37, we have NP-completeness unless

M is an orthodox union of Abelian groups such that E(M) is a regular band

and 1{ forms a congruence. By Lemma 5.26, this mean that we can show NP

completeness of T-EQN~ for any M not belonging to RB V Ab. D

5.2.5 Results and Questions in the Semigroup Case

Do similar dichotomies hold in the case of semigroups? While this is very

tempting to conjecture, one is faced with an obstacle illustrated in the following

example.

176CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Example 5.39. Consider the semigroup K with three generators4 r, g, b,

elements {r, g, b, rr, rg, rb, gr, gg, gb, br, bg, bb, O} and such that xyz = 0 for

any x, y, z E K. Since the product of any three elements of K is 0, any

equation over K can be assumed to have at most two variables or constants

on either side and any equation of the form XIX2 = ab with a, b E {r, g, b} is

equivalent to the two equations Xl = a and X2 = b.

To solve a system E of equations over K with variables Xl, ... ,:I:n , we can

proceed as follows. If there are no equations of the form Xi = C or XiXj = ab,

then we know that the all-O assignment satisfies E. Otherwise, the values

of Xi and Xj are now forced and we can replace their occurrences in E with

the appropriate constants. The new system thus obtained has strictly fewer

variables and we can repeat this strategy until we either obtain a satisfying

assignment for E or obtain an obviously unsatisfiable system. This algorithm

dearly solves EQN~ in polynomial time.

In contrast, cons id el' the semigroup T with generators r, g, b, elements {r, g, b,

E, N, O} with 0 being the sole idempotent and such that the square of any

generator is E, the product of any two distinct generators is N and any other

product is O. One can verify that T is a morphic image of K.

Yet, we daim that T-EQN~ is NP-complete. We use a reduction from 3-

COLORABILITY: for every node Vi in the graph G we create a variable .1:'i

and add the equation x~ = E. Furthermore, for every edge (Vi, Vj), we add

equation XiXj = N. If the original graph can be colored using colors Red,

Green and Blue then the system can be satisfied by setting Xi = T (resp.

g, b) if and only if Vi is colored Red (resp. Green, Blue). Conversely, in any

satisfying assignmellt to the system, eac.:h Xi is assigned one of T, 9 or band

no pair Xi, Xj with (Vi, Vj) E G is assigned the same generator so the graph is

4In semigroup jargon, J(is the free nilpotent semigroup of threshold 3 over tlu'ee genera
tors.

5.2. SYSTEMS OF EQUATIONS 177

3-colorable.

In light of this example, the class of semigroups S for which EQNs (or

T-EQN~) lies in P does not form a variety (unless P = NP). We therefore

choose, as a first step, to restrict our attention to the complexity of solving

systems over regular semigroups where, empirically, such phenomena do not

seem to occur. Note also that J(is an example of a semigroup which is not a

union of groups but for which EQN;{ is tractable, in sharp contrast of Lemma

5.31 in the case of monoids.

Lemma 5.40 Let S be a regular semigroup consisting of

• a J -maximal J -class B with at least two R-classes and with exactly one

idempotent per L- and R-class;

• J -classes below B are all subgroups.

Then T-EQN~ is NP-complete.

Proof. We know that B is a square J-class containing exactly one idempo

tent pel' R-class and per L-class. Therefore the product of any two distinct

idempotents of B does not lie in B.

Let H be a J-maximal tl-class such that xy E H for sorne idempotents

:t,y E B. Let EH = {x: x 2 = X,X E B,xy E H for sorne y E B} and let eH be

the unique idempotent of H. Note that if z is an idempotent of B which is not

in EH then neither xz nor zx lie in H for any idempotent x E B. Also, for any

distinct x, y E EH, we have both xy and yx lying in H. Indeed, we must have

ef{x and yef{ lying in H so xy must lie J-below B but J-above H so xy lies in

H.

Suppose first that IEHI = 2, i.e. EH = {a,b}. We build a reduction from

MONOTONE NAE3sAT as follows: for each variable Xi in the formula, we create

178CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

the variables Xi, Xi, force them to be idempotents in Band add the equation

Moreover, for any clause Xl V X 2 V X 3 we add the two equations

One can easily verify that if we are given an assignment to the Xi satisfying

the MONOTONE NAE3sAT instance, we can obtain a solution to the system by

letting X'i = a, X = b if Xi is TRUE and Xi = b, X = a if Xi is FALSE otherwise.

Conversely, cons id el' any solution to this system of equations. Equation 1

in sures that Xi and Xi take on distinct values in EH' In other words, we are

guaranteed that {Xi' x,J = {a, b}. If we set Xi to TRUE if and only if ;Ci = a we

get from Eq. (2) that not aIl three literaIs in a clause are TRUE (for we would

then have XIX2X3 = a) and similarly from Eq. (3), not aIl literaIs are FALSE.

Suppose now that IEHI = k ~ 3. Using similar ideas, we can now obtain

a reduction from k-COLORABILITY which is NP-complete for k ~ 3. For each

vertex Vi in the graph, we create the variable Xi, force it to be an idempotent

in B and for aIl edges e.g. (VI, V2) in the graph, add the equation

Given a valid k-coloring of the graph, we obtain a solution to the system

by identifying the k different colors with the k idempotents of EH' Conversely,

given a solution to the system, we color vertex Vi with the value Xi' We can

assume that no vertex in the graph is isolated so that every variable Xi is illvolved

in sorne equation of the forrn (XiX j)W = e Il and therefore lies in E fI. For two

adjacent Vi, Vj the corresponding values Xi, Xj must be distinct for otherwise we

get XiXj = Xi f eH in violation of Eq. (4). We therefore have a valid k-coloring

of the graph. 0

5.2. SYSTEMS OF EQUATIONS

Row- block 1 {

Row-block 2 {

*
*
*
*
*
*

...
*
...
...
*
-

179

a* b* - - - -
* * - - - -
c* d-
* -
-

Figure 5.1: Idempotents in B: the *'s (resp. -'s) mark 'ti-classes which contain
(resp. do not contain) an idempotent.

Whereas this will allow us to handle the case where the regular semigroup S

is inverse but not a union of groups, the next lemma will cover the case where

S is not a union of groups and not inverse.

Lemma 5.41 If S is a regular O-simple semigroup but is not a union of groups,

then T-EQN~ is NP-complete.

Proof. We can assume from the previous Lemma that S is not inverse. 80

the non-minimal J -class, B has at least one R-class (or L-class) containing two

idempotents. Our reduction will naturally exploit the location of idempotents

in B. We represent this in Figure 5.1 as follows: the sR-classes and tL-classes

can be represented in an s by t table where each cell is labeled with a * if the

corresponding 'ti-class contains an idempotent and labeled with - otherwise.

We further reorder the rows and column of this table such that the first row

contains a maximal number of * (say k of them) and the first k cens in this row

are labeled with *'s. The first n rows are then those equal to row 1, if any and

we say that these form row-block 1. Next, we choose the (n + 1)th row such that

it has a maximal number m < k of *'s occurring in its first k cells and reorder

the columns sueh that these m cens oecur first. Row-bloek 2 consists of aU rows

with *'s in their first m cells.

We now reduce from MONOTONE NAE 3SAT. For each literaI Xi we create

variables Xi, Xi and force them to be idempotent. We also impose for an 1 ~

180CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

j ::; m the conditions

where aj is the idempotent in the 1{-class corresponding to the lh cell of row

1. As we already observed, the constraint Z E B can be imposed by the target

equation UIZU2 = b where b is any element of B. Note that these restrictions

ensure that in any solution to the system, both variables Xi and Xi belong to

one of the two row-blocks. Indeed, if the pth cell (with p < m) in the row of

Xi is labeled with -, we have apxi = 0 since RXi n .cap does not contain an

idempotent.

Similarly, we use equations to impose

This forces Xi, Xi to lie in 1{-classes of B sitting in the first k columns.

Because k ~ 2, we can find a, b in row-block 1 and c, d in row-block 2 (also

shown in Figure 5.1) such that a, b, c are idempotent with ad = b, ba = c,

ac = ba = a and cd = db = cb = d but Hd contains no idempotent. Notice that

for any element U of the first k cells in row-blocks 1 or 2, we have (aua)W = a

because both Ran.cu and .canRu contain an idempotent. Similarly, the product

of any number of idempotents lying in the first k cells of a same row-block also

belong to this row-block.

We introduce the equation

By our last remarks, this is not satisfied if both Xi, Xi are taken in the same row

block for (axixixia)W then equals a. It is satisfied however if {Xi, Xi} = {b, c}.

Finally, for every clause Xl V X 2 V X 3 we add equations

5.2. SYSTEMS OF EQUATIONS 181

Now, given an assignment to the Xi satisfying the MONOTONE NAE3sAT in

stance we can set Xi = b and Xi = c wh en Xi is TRUE and Xi = c and Xi = b

when Xi is FALSE and easily verify that this constitutes a solution to the system

constructed. Suppose conversely that we are given a solution to the system. All

the Xi, Xi are idempotents in the first k cells of row-blocks 1 and 2 and if we set

the literaI Xi (resp. Xi) to TRUE whenever Xi (resp. Xi) belongs to row-block 1

and to FALSE wh en Xi (resp. Xi) lies in row-block 2 we obtain a consistent truth

assignment because of Eq. (5). Because Eqs. (6) and (7) are also satisfied it

must be that for each clause Xl V X 2 V X 3 the variables Xl, X2, X3 do not alllie in

the same row-block. Similarly Xl, X2, X3 do not alllie in the same row-block and

so our assignment to the literaIs satisfies the MONOTONE NAE3sAT instance.

o

The reductions presented in the last two lemmas can be slightly generalized

to obtain:

Lemma 5.42 If S is regular, then T-EQN~ zs NP-complete unless S zs an

orthodox union of Abelian groups.

Proof. If S is a union of groups but is not orthodox then T-EQN~ is NP

complete from Lemma 5.31. If S is regular but is not a union of groups, there

exists sorne .J-minimal .J-class B that is not a union of groups and it suffices to

show the NP-completeness of T-EQN~ where T is the subsemigroup of elements

lying .J-below this class. We distinguish two cases.

If B contains exactly one idempotent pel' R- and 'c-class and all .J-classes

strictly below B are subgroups, we can use Lemma 5.40. Otherwise, the 1'e

duction in that proof must be slightly refined: we can still find a .J-maximal

.J-class H such that there are two distinct idempotents in B with xy E H. We

can define EH as before and still obtain that for any X, y E EH both xy and

yx lie in H. If eH is an idempotent in H, however, we cannot assume that

182CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

(xy)W = eH in this case. Still, it is easy to show that two idempotents x, y

in B, belong to EH and are distinct if and only if, for aU z E EH, we have

(zxyz)W = zeHz. We can thus salvage our reduction, by replacing Eqs. (1,2,3)

by 1 EH 1 different equations which will impose these constraints.

If B contains at least two idempotents in, say, sorne R-class, we can reuse

the reduction of Lemma 5.41. Now, we cannot anymore use the equation

(axixixia)W = O. Note however, that we can replace it by

Indeed, this is still unsatisfied if both variables are taken from the same row

block but is satisfied when {Xi, Xi} = {b, c}. Similarly, we can replace the

equations

by the equations

and

o

Theorem 5.43 For any regular semigroup 5, we have T-EQNs lying in Pif 5

belongs ta RB V Ab and T-EQN:S is NP-complete otherwise.

Proof. The proof is almost identical to the one of Theorem 5.39 for we have

established that the NP-completeness of T-EQNs wh en 5 is regular but not a

union of groups. o

5.2. SYSTEMS OF EQUATIONS 183

We are so far unable to provide an equivalent dichotomy them·em in the case

of EQN~ for regular semigroups. We define a strong normal band of Abelian

groups to be a strong regular band of Abelian groups in which the idempotents

form a normal band. We have established:

Lemma 5.44 If S is regular but is not a strong normal band of Abelian groups

then EQN~ is NP-complete.

Proof. This is a slight refinement of half of Lemma 5.43: if S is not a strong

regular band of Abelian groups then T-EQN~ is NP-complete. If it is, then

E(S) is not a normal band and we get NP-completeness from Corollary 5.33. 0

In fact we conjecture:

Conjecture 5.45 Let S be a regular semigroup. Then EQN~ is tractable if S

is a strong normal band of Abelian groups and EQN~ is NP-complete otheT'wise.

It seems that the only pie ce missing to complete this puzzle is a polynomial

time algorithm to solve EQN~ for normal bands S because we can reasonably

expect to extend such an algorithm to any strong normal band of Abelian group.

It is quite easy to obtain an algorithm in the very special case where S is a free

normal band on k generators and this has already been pointed out, in a different

context, in [Kli03a]. As of yet, we are unable to extend these solutions to all

normal bands.

Of course, many open questions remain concerning the complexity of EQN~.

and T-EQN~ for non-regular S. The fact that answers to such questions will

not be given by varieties should not be a pretext to dismiss such inquiries

and should on the contrary be taken as added motivation for the problem. It is

absolutely reasonable to assume that a simple necessary and sufficient condition

for tractability can be formulated in these cases and our results thus far can

already establish the NP-completeness of both problems in a large class of non

regular semigroups.

184CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

5.3 Conclusion

At first glance, we would expect questions concerning the complexity of solving

single equations and systems of equations over a finite monoid or semigroup to

be closely related. It is of course unreasonable to argue that they are not, yet

the lessons learned from the two main sections of this chapter are very different.

The case of single equations is closely related to questions about the power of

finite monoids as language recognizers. It outlines once again the importance of

cornering the computational power of CCO circuits and programs over solvable

groups, and it further establishes the importance of DA and DO in complexity

issues related to finite monoids.

Considering semigroups as machines on the other hand is a useless point of

view in the case of systems of equations. Yet, many beautiful connections with

previous algebraic approaches to constraint satisfaction problems have been un

covered. The fact that we can prove dichotomies for EQN~, T-EQN~ and

T-EQN~ for regular S indicates that these problems are "well-behaved" restric

tions of CSP. We have mentioned sorne of the very general results from universal

algebra identifying sufficient conditions on r for the tractability of CSP(r). It

would be interesting to see if aIl our upper bounds can be obtained using these

techniques and, if so, to understand whether the full gamut of them is needed

in our context. For instance, there seems to be sorne similarity between the

algorithms presented for EQN~ and T-EQN~ for, respectively, strong semilat

tices and strong regular bands of Abelian groups and the notion of para-primaI

algebras introduced of Dalmau [DalOO].

There might also be natural ways other than equations to define sets of

relations r on Sk in terms of the algebraic structure of S. A similar di[(~ction in

which to extend this research is to investigate the complexity of the satisfiability

of inequations over a fixed ordered monoid. This is a very natural extension of

our problem and it is quite possible that its structure will be as nice and rich

5.3. CONCLUSION 185

of meaning.

186CHAPTER 5. SATISFIABILITY OF EQUATIONS OVER SEMIGROUPS

Chapter 6

Conclusion

We have studied various computational complexity issues involving finite semi

groups and monoids. We have first focused on the algebraic point of view

on Ne l emanating from the seminal work of D. Barrington and D. Thériell

[Bar89, BT88]. We showed that sorne monoids are so weak that they cannot

gain any advantage in computational power if polynomiallength restrictions for

the "program over monoid" formalism are relaxed and have given sorne evidence

that any monoid failing to have this polynomial length property is rich enough

to recognize arbitrary languages via programs of exponential length. We have

also shown that programs over certain varieties of monoids are no more powerful

than morphisms over that same variety.

Next, we have established a rich algebraic point of view on communication

complexity. This has allowed us to algebraically characterize, up to a con

stant, the communication complexity of every regular language in sorne of the

best-known two-party models, thus making a fundamental contribution to our

understanding about the power of these models, their interrelations and the key

rol(> played by regular languages in the development of this theory. We have also

proved a number of similar classifications in the multiparty "input on the fore

head" model which has led us to isolate regular languages which quite certainly

constitute key objects of study for further research on this model of communica-

187

188 CHAPTER 6. CONCL USION

tion complexity. Our results also suggest the possible existence of an algebraic

characterization of languages having bounded multiparty communication com

plexity for sorne bounded number of players. Our communication complexity

results can also be used to obtain new insights on the computation al limitations

of polynomiallength programs over certain varieties of monoids, thus opening

new paths to an eventual resolution of questions about the program model.

Finally, we have studied how the algebraic properties of a semigroup S im

pact the complexity of solving equations over S. We provided the first non

trivial upper bounds for checking the satisfiability of an equation over 53 or,

more generally, over any group which is too weak to efficiently compute AND

via programs and established a number of upper bounds and hardness results

for equation and program satisfiability over monoids which are not groups. We

found stark dichotomies in the complexity of solving systems of cquations over a

fixed monoid and found the problem, and its main variant, to be either tractable

or NP-complete depending on whether the mono id belonged to a specified vari

ety. We also established a number of interesting partial results in the semigroup

cases and argued that our dichotomy results were to be expected in light of the

conjectures arising from the algebraic study of constraint satisfaction problems.

Our results highlight the importance of certain classes of monoids and semi

groups in such contexts. lndeed, monoids in the variety DO n G nih for in

stance, are exactly the monoids in DS having the polynomial length property,

are exactly the monoids with 0(1) communication complexity for sorne bounded

number of players and are the only ones for which we know how to solve P-SAT

in polynomial time. Other varieties such as solvable groups, .J-trivial monoids

and specific monoids like U and B 2 have played key roles in different contexts

both in this work and other similar investigations.

Traditionally, the analysis of problems whose complexity is parametrized by

an underlying finite semigroup has been done separately for the group case and

189

the aperiodic case but often left open in the general case. In many cases, the

limit between tractable and intractable cases involve varieties Ab, G nil and G so1

in the group case and DA in the aperiodic case. Such a phenomenon occurs, for

example, in the communication complexity and equation satisfiability settings

but also in the context of membership problems [BMT92], learning expressions

over monoids [GTT01] among others. Our work suggests that considering vari

eties of the form DO n H should be the first attempt at combining results for

groups and aperiodics to resolve the general case.

We have of course 1eft open a number of open questions concerning the main

topics of this thesis and have discussed them in the relevant chapters but we

want to recall here that many of these questions are deeply intertwined. For

instance, our questions on the exact complexity of P-SAT G for non-nilpotent

solvable groups can only be resolved if we are able to understand whether G so1

forms a program-variety or not.

If L is a language with neutralletter and bounded two-party communication

complexity then, by Szegedy's Theorem, L can be recognized by a program over

a commutative monoid. Since Corn has the Crane Beach property, we must

thus have that L is regular with M(L) commutative. Similarly, if DO n G nil

has the Crane Beach property, then our proposed generalization of Szegedy's

Theorem holds for languages with a neutralletter. On the other hand, if it does

not have the Crane Beach property, then a counterexample of a non-regular

language with neutral letter which can be recognized by a family of programs

over sorne monoid in DO n G nil would certainly be an interesting candidate to

disprove the communication complexity conjecture.

We believe that a most important avenue for research is to further und er

stand the connections between the various contexts which we have analyzed

with a semigroup algebra perspective. One has to believe that under favor

able circumstances, the algebra of semigroups and monoids can constitute a

190 CHAPTER 6. CONCLUSION

bridge linking in meaningful ways issues in communication complexity, circuit

complexity, logic, algebraic automata theory, to name but a few areas.

In this thesis, we have been dealing exclusively with languages of finite words.

In sorne applications of finite automata, such as model checking, the focus is on

so-called w-languages of infini te words. There exists a well-developed algebraic

theor·y of w-regular languages quite similar to classical algebraic automata the

ory [PP03J. It would be most interesting to understand the impact of our results

and the intuitions we have developed on this theory and its many applications.

Bibliography

[Ajt83] M. Ajtai. I:t-formulae on finite structures. Annals of Pure and
Applied Logic, 24:1-48, 1983.

[A1l97] E. Allender. Circuit complexity before the dawn of the new mil
lennium. Technical Report 97-49, DIMACS, 1997.

[Amb96] A. Ambainis. Upper bounds on multiparty communication com
plexity of shifts. In Proc. 13th Symp. on Theoretical Aspects of
Comp. Sei., pages 631-642. 1996.

[Bar89] D. A. Barrington. Bounded-width polynomial-size branching pro
grams recognize exactly those languages in NOl. Joumal of Com
puter and System Sciences, 38(1):150-164, 1989. Preliminary ver
sion appeared in STOC'86.

[BDFP86] A. Borodin, D. Dolev, F. E. Fich, and W. Paul. Bounds for width
two branching programs. SIAM Joumal on Computing, 15(2):549-
560, 1986.

[Bei93] R. Beigel. The polynomial method in circuit complexity. In 8th An
nu al Conf. on Strv,cture in Complexity Theory (SCTC '93), pages
82-95. 1993.

[BFS86] L. Babai, P. Frankl, and J. Simon. Complexity classes in com
munication complexity theory. In Proc. 2"fh IEEE FOCS, pages
337-347. 1986.

[BIL +01] D. A. M. Barrington, N. Immerman, C. Lautemann,
N. Schweikardt, and D. Thérien. The Crane Beach conjec
ture. In Pmc. 16th Symp. on Logic in Comp. Sci. (LICS-Dl) ,
pages 187-196. 2001.

[BJV02] A. Bulatov, P. Jeavons, and M. Volkov. Finite semigroups imposing
tractable constraints. In G. Gomez, P. Silva, and J-E.Pin, editors,
Semigroups, Algorithms, Automata and Languages. WSP, 2002.

191

192 BIBLIOGRAPHY

[BK97] L. Babai and P. G. Kimmel. Randomized simultaneous messages.
In Proc. 12th Conf. on Comp. Complexity (CCC '97), pages 239-
247. 1997.

[BKJOO] A. Bulatov, A. Krokhin, and P. Jeavons. Constraint satisfac
tion problems and finite algebras. In Proceedings 27th Intema
tional Colloquium on A utomata, Languages and Progmmming
ICALP'OO, volume 1853 of Lecture Notes in Computer Science,
pages 272-282. 2000.

[BKLMOl] D. Barrington, P. Kadau, K. Lange, and P. McKenzie. On the
complexity of sorne problems on groups input as multiplication
tables. Joumal of Computer and System Sciences, 63:186-200,
2001.

[BLS87] L. Babai, E. Luks, and A. Seress. Permutation groups in NC. In
Proc. 19th Symp. on Theory of Computing, pages 409-420. 1987.

[BMM+OO] D. M. Barrington, P. McKenzie, C. Moore, P. Tesson, and
D. Thérien. Equation satisfiability and pro gram satisfiability
for finite monoids. In Proc. Math. Foundations of Comp. Sci
(MFCS'OO), pages 172-181. 2000.

[BMPT97] M. Beaudry, P. McKenzie, P. Péladeau, and D. Thérien. Finite
monoids: From word to circuit evaluation. SIAM Jou,r·nal on Com
p'Uting, 26(1):138-152, 1997.

[BMT92] M. Beaudry, P. McKenzie, and D. Thérien. The membership prob
lem in aperiodic transformation monoids. Joumal of the ACM,
39(3):599-616, 1992.

[BMT99] A. Baziramwabo, P. McKenzie, and D. Thérien. Modular temporal
logic. In Proc. 15th Conf. on Logic in Comp. Sci. (LICS'99). 1999.

[BNS92] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudo
random generators for logspace, and time-space trade-offs. Jo'U'rnal
of Comp'Uter and System Sciences, 45(2):204-232, October 1992.

[BPT01] P. Bouyer, A. Petit, and D. Thérien. An algebraic characterization
of data and timed languages, 2001. Submitted to Information and
Computation.

[BS94] D. A. M. Barrington and H. Straubing. Complex polynomials and
circuit lower bounds for modular counting. Comp'Utational Com
plexity, 4(4) :325-338, 1994.

BIBLIOGRAPHY 193

[BS95] D. A. M. Barrington and H. Straubing. Superlinear lower bounds
for bounded-width branching programs. Journal of Computer and
System Sciences, 50(3):374-381, 1995.

[BS99] Barrington and Straubing. Lower bounds for modular counting by
circuits with modulaI' gates. Computational Complexity, 8(3):258-
272, 1999.

[BSSVOO] P. Beame, M. Saks, X. Sun, and E. Vee. Super-linear time-space
tradeoff lower bounds for randomized computation. In 41st Symp.
on Foundations of Comp. Sei. (FOCS '00). 2000.

[BST90] D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform
automata over groups. Information and Computation, 89(2):109-
132, 1990.

[BT88] D. A. M. Barrington and D. Thérien. Finite monoids and the fine
structure of Nel

. Journal of the ACM, 35(4):941-952, October
1988.

[BT94] R. Beigel and J. Tarui. On ACC. Computational Co mple.'Eity ,
4(4):350-366, 1994.

[BTT02] D. A. M. Barrington, D. Thérien, and T. Tsukiji. On the constant
degree hypothesis, 2002. Document in preparation.

[Bu102] A. Bulatov. A dichotomy theorem for constraints on a three-
element set. In Proc. of 43rd Foundations of Camp. Sei.
(FOCS '02) , pages 649-658. 2002.

[BV02] P. Beame and E. Vee. Time-space tradeoffs multiparty communi
cation complexity and nearest neighbor problems. In 34th Symp.
on Theory of Computing (STOC'02), pages 688-697. 2002.

[Cau96] H. Caussinus. A note on a theorem of Barrington, Straubing and
Thérien. Information Processing Letters, 58(1):31-33, 1996.

[CFL83] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party proto
cols. In Proc. l!Jh ACM STOC, pages 94-99. 1983.

[CG85] B. Chor and O. Goldreich. Unbiased bits from sources of weak
randomness and probabilistic communication complexity. In Proc.
26th IEEE FOCS, pages 429-442. 1985.

[Chu90] F. Chung. Quasi-random classes of hypergraphs. Random Struc
tures and Algorithms, 1(4):363-382, 1990.

194

[CT93]

BIBLIOGRAPHY

F. Chung and P. Tetali. Communication complexity and quasi
randomness. SIAM J. Discrete Math., 6(1):110-123, 1993.

[CvDNT99] R. Cleve, W. van Dam, M. Nielsen, and A. Tapp. Quantum entan
glement and the communication complexity of the inner product
function. Lecture Notes in Computer Science, 1509:61-74, 1999.

[DalOO]

[DF89]

[DF97]

V. Dalmau. Computational Complexity of Problems over General
ized Formula. Ph.D. thesis, Universita Politécnica de Catalunya,
2000.

D. Dolev and T. Feder. Multiparty communication complexity. In
Proc. 30th IEEE FOCS, pages 428-433. 30 October-1 November
1989.

R. G. Downey and M. R. Fellows. Parametr'tzed Complexity. Mono
graphs in Computer Science. Springer, 1997.

[DKMW92] C. Damm, M. Krause, C. Meinel, and S. Waack. On rela
tions between counting communication complexity classes. In
9th Annual Symp. on Theor. Asp. of Comp. Sei. (STACS'92).
1992. Full version to appear in Journal of Computer and Sys
tems Sciences. Currently available e.g. from www.num.math.uni
goettingen.de/ damm/.

[Eil76] S. Eilenberg. Automata, Languages and Machines, volume B. Aca
demie Press, 1976.

[FKPS85] R. Fagin, M. M. Klawe, N. J. Pippenger, and L. Stockmeyer.
Bounded-depth, polynomial-size circuits for symmetric functions.
Theoretical Computer Science, 36(2-3):239-250, 1985.

[FSS84] M. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and
the polynomial-time hierarchy. M athematical Systems Theory,
17(1):13-27, 1984. Preliminary version appeared in FOCS'81.

[FV99] T. Feder and M. Y. Vardi. The computational structure of mono
tone monadic SNP and constraint satisfaction: A study through
datalog and group theory. SIAM J. on Computing, 28(1):57-104,
1999.

[Gas02a] W. Gasarch. Notes available from the author's web site., 2002.

[Gas02b] W. Gasarch. Complexity theory column 36: the P=?NP pollo
SIGACT News, 33(2):34--47, 2002. Column edited by L. Hemas
paandra.

BIBLIOGRAPHY 195

[GJ79]

[GLM96]

[GP89]

[GR99]

[Gra68]

[Gr092]

[Gr093]

[Gr094a]

[Gr094b]

[Gr097]

[Gr098]

[GRS80]

[GRTOO]

M. R. Garey and D. S. Johnson. Computers and Intractability:
A guide to the Theory of NP-completeness. W.H. Freeman and
Company, 1979.

J. Goldsmith, M. Levy, and M. Mundhenk. Limited nondetermin
ism. SIGACT News, 27, 1996.

J. Gerhard and M. Petrich. Varieties of bands revisited. Proc. of
London Math. Soc., 58(3):323-350, 1989.

M. Goldmann and A. Russell. The complexity of solving equa
tions over finite groups. In Proc. 14th Conf. on Computational
Complexity, pages 80-86. 1999.

R. Graham. On finite O-simple semigroups and graph theory. Math.
Systems Theory, 2:325-339, 1968.

V. Grolmusz. Separating the communication complexities of MOD
m and MOD p circuits. In Proc. 33rd IEEE FOCS, pages 278-287.
1992.

V. Grolmusz. On multi-party communication complexity of ran
dom functions. Technical Report MPII-1993-162, Max Planck In
stitut für Informatik, December 1993.

V. Grolmusz. The BNS lower bound for multi-party protocols in
nearly optimal. Information and Computation, 112(1):51-54, 1994.

V. Grolmusz. A weight-size trade-offfor circuits and MOD m gates.
In Proc. 2(fh ACM STOC, pages 68-74. 1994.

V. Grolmusz. On the power of circuits with gates of low LI norms.
Theoretical Computer Science, 188(1-2):117-128, 30 November
1997.

V. Grolmusz. A degree-decreasing lemma for MODp-MODm cir
cuits. Lecture Notes in Computer Science (ICALP'98), 1443:215-
222, 1998.

R. L. Graham, B. L. Rotschild, and J. H. Spencer. Ramsey Theo
rey. Series in Discrete Mathematics. Wiley Interscience, 1980.

M. Goldmann, A. Russell, and D. Thérien. An ergodic theorem for
read-once non-uniform deterministic finite automata. Information
Processing Letters, 73(1-2):23-28, 2000.

196 BIBLIOGRAPHY

[GTOO] V. Grolmusz and G. Tardos. Lower bounds for (MODp - MODm)
circuits. SIAM Journal on Computing, 29(4):1209-1222, 2000.

[GT03] R. Gavaldà and D. Thérien. Algebraic characterizations of small
classes of boolean functions. In Proc. of Symp. on Theoretical
Aspects of Comp. Sei.' 03. 2003.

[GTT01] R. Gavaldà, P. Tesson, and D. Thérien. Learning expressions and
programs over monoids, 2001. Submitted to Information and Com
putation. Extended abstract appears in Proc. STACS 2001. Avail
able from www.lsLupc.esj gavaldajpapers.html.

[GutOO] C. Gutiérrez. Satisfiability of equations in free groups is in
PSPACE. In ACM, editor, Proceedings of the thirty second annual
ACM Symposium on Theory of Computing: Portland, Oregon, May
21-23, [2000} , pages 21-27. 2000.

[HAB02] W. Hesse, E. Allender, and D. Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. Journal
of Computer and System Sciences, 65, 2002.

[Has87] J. Hastad. Computational Limitations for Smalt Depth Ci'rcuits.
MIT Press, Cambridge, MA., 1987.

[HG90] J. Hastad and M. Goldmann. On the power of small-depth thresh
old circuits. In Proc. 31st IEEE FOCS, pages 610-618. 1990.

[HLS+93] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and
K. Wagner. On the power of polynomial time bit-reductions. In
Conf. on Structure in Complexity Theory. 1993.

[How76] J. Howie. An Introduction to Semigroup Theory. Academic Press,
1976.

[HR90] B. Halstenberg and R. Reischuk. Relations between communication
complexity classes. J. of Computer and System Sciences, 41:402-
429, 1990.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[HWWY94] J. Hastad, I. Wegener, N. Wurm, and S.-Z. Yi. Optimal depth, very
small size circuits for symmetric functions in ACQ. Information and
Computation, 108(2):200-211, 1994.

[JCG97] P. Jeavons, D. Cohen, and M. Gyssens. Closure properties of con
straints. Journal of the ACM, 44(4):527-548, 1997.

BIBLIOGRAPHY 197

[Juk01]

[Kll02]

[Kli03a]

[Kli03b]

[KN97]

[KNR99]

[Koz77]

[KR65]

[KS92]

[KSOO]

[KTT03]

[KW88]

[Lok01]

S. Jukna. Extremal combinatorics with applications in computer
science. Texts in theoretical computer science. Springer, 2001.

O. Kllma. Unification modulo associativity and idempotency is
NP-complete. In MFCS: Symposium on Mathematical Foundations
of Computer Science. 2002.

O. Kllma. Complexity of unification and matching problems in the
varieties of idempotent semigroups, 2003. To appear in Int. J. of
Algebra and Computation.

O. Klima. On the complexity of checking identities m finite
monoids, 2003. Preprint.

E. Kushilevitz and N. Nisan. Communication Comple:àty. Cam
bridge University Press, 1997.

Kremer, Nisan, and Ron. On randomized one-round communica
tion complexity. Computational Complexity, 8:21-49, 1999.

D. Kozen. Lower bounds for natural proof systems. In 18th A nnual
Symposium on Foundations of Computer Science, pages 254-266.
IEEE, 1977.

K. Krohn and J. Rhodes. The algebraic theory of machines 1.
Trans. Amer. Math. Soc., 116:450-464, 1965.

B. Kalyanasundaram and G. Schnitger. The probabilistic com
munication complexity of set intersection. SIAM J. on Discrete
Mathematics, 5(4):545-557, 1992.

O. Klima and J. Srba. Matching modulo associativity and idem
potency is NP-complete. In MFCS: Symposium on Mathematical
Foundations of Computer Science. 2000.

O. Kllma, P. Tesson, and D. Thérien. Dichotomies in the complex
ity of solving systems of equations over finite semigroups, 2003.
Document in preparation.

M. Karchmer and A. Wigderson. Monotone circuits for connectiv
ity require super-logarithmic depth. In Proc. 20th A CM STOC,
pages 539-550. 1988.

S. Lokam. Spectral methods for matrix rigidity with applications to
size-depth trade-offs and communication complexity. JCSS: Jour
nal of Computer and System Sciences, 63:449-473, 2001.

198 BIBLIOGRAPHY

[Lov89] L. Lovasz. Communication complexity: a survey. Technical Report
CS-TR-204-89, Princeton Uni versi ty, 1989.

[LT01] C. Lautemann and D. Thérien, 2001. Private communication.

[MNSW98] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data
structures and asymmetric communication complexity. Journal of
Computer and System Sciences, 57(1):37-49, 1998.

[MPT91] P. McKenzie, P. Péladeau, and D. Thérien. NC l
: The automata

theoretic viewpoint. Computational Complexity, 1:330-359, 1991.

[MPTOO] A. Maciel, P. Péladeau, and D. Thérien. Programs over semigroups
of dot-depth one. Theoretical Computer Science, 245(1):135-148,
2000.

[MR65] W. Maurer and J. Rhodes. A property of finite simple non-Abelian
groups. Proc. Amer. Math. Soc, 16:552-554, 1965.

[MTTOl] C. Moore, P. Tesson, and D. Thérien. Satisfiability of systems of
equations over finite monoids. In MFCS'Ol , pages 537-547. 2001.

[Nis94] N. Nisan. The communication complexity of treshold gates, 1994.
(Available from http:j jwww.cs.huji.ac.iljfioamjpapers.html).

[NS96] 1. Newman and M. Szegedy. Public vs. private coin fEps in one
round communication games (extended abstract). In Proc. of 28th

ACM Symp. on Theory of Comp. (STOC '96), pages 561-570.
1996.

[Pap94] C. Papadimitriou. Computational Complexity. Addison-Wesley
Publishing, 1994.

[Pin86] J.-E. Pin. Varieties of formallanguages. North Oxford Academic
Publishers Ltd, London, 1986.

[Pin95] J.-É. Pin. PG = BG, a suc cess story. In J. Fountain, editor,
NATO Advanced Study Institute Semigroups, Formal Languages
and Groups, pages 33-47. Kluwer academic publishers, 1995.

[Pin97] J.-E. Pin. Syntactic semigroups. In G. R. et A. Salomaa, editor,
Handbook of language theory, volume 1, chapter 10, pages 679-746.
Springer Verlag, 1997.

[PP03] D. Perrin and J. Pin. Infinite words. Book in preparation, 2003.
A vailable from the author's web page.

BIBLIOGRAPHY 199

[PST88] J.-É. Pin, H. Straubing, and D. Thérien. Locally trivial categories
and unambiguous concatenation. J. Pure Applied Algebm, 52:297-
311, 1988.

[PT88] P. Péladeau and D. Thérien. Sur les langages reconnus par des
groupes nilpotents. C.R. Acad. des Sci. Paris Sér. l Math.,
306(2) :93-95, 1988. English translation by A. Russell and S. Rus
sell appears as TR01-040 of ECCC.

[Pud03] P. Pudlâk. An application of Hindman's theorem to a problem
on communication complexity, 2003. To appear in Combinatorics,
Pl'Obabilityand Computing.

[PW96] J. E. Pin and P. Weil. Profinite semigroups, Mal'cev products, and
identities. Journal of Algebra, 182:604-626, 1996.

[Raz87] A. Razborov. Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition. MATHNASUSSR:
Mathematical Notes of the Academy of Sciences of the USSR, 41,
1987.

[Raz92] A. Razborov. On the distributed complexity of disjointness. The
oretical Computer Science, 106(2):385-390, 14 December 1992.
Note.

[RazOO] R. Raz. The BNS-Chung criterion for multi-party communication
complexity. Computational Complexity, 9(2):113-122, 2000.

[Rhe01] K. Rheinhardt. Upper bounds for the bicycle. Private Communi
cation, 200l.

[RM97] R. Raz and P. McKenzie. Separation of the monotone NO hierar
chy. In Proc. 38th th IEEE FOCS. 1997.

[ROKY94] V. Roychowdhury, A. Orlitsky, and K.-Y.Siu. Lower bounds
on threshold and related circuits via communication complexity.
IEEETIT: IEEE Transactions on Information Theory, 40, 1994.

[RR97] A. A. Razborov and S. Rudich. Natural proofs. Journal of Com
puter and System Sciences, 55(1):24--35, 1997.

[RT89] J. Rhodes and B. Tilson. The kernel of monoid morphisms. .J.
Pure and Applied Algebra, 62:227-268, 1989.

[RTT98] J.-F. Raymond, P. Tesson, and D. Thérien. An algebraic approach
to communication complexity. Lecture Notes in Computer Science
(ICALP'98), 1443:29-40, 1998.

200

[Sch65]

[Sch76]

[Sch78]

[Sim75]

[Sip97]

[Sm086]

[ST]

[STOl]

[ST02]

[Str94]

[StrOO]

[StrOl]

[Sze93]

[Tes99]

BIBLIOGRAPHY

M. P. Schützenberger. On finite monoids having only trivial sub
groups. Information and Control, 8(2):190-194, April 1965.

M. P. Schützenberger. Sur le produit de concaténation non ambigu.
Semigroup Forum, 13:47-75, 1976.

T. J. Schaefer. The complexity of satisfiability problems. In Proc.
10th ACM STOC, pages 216-226. 1978.

1. Simon. Piecewise testable events. In Proc. 2nd GI Conf., pages
214-22·2. 1975.

M. Sipser. Introduction to the Theory of Computation. PWS, 1997.

R. Smolensky. Algebraic methods in the theory of lower bounds
for boolean circuit complexity. In Proc. 19th A CM STOC, pages
77-82. 1986.

H. Straubing and D. Thérien. A note on MODp-MODm-circuits.
Submitted to Theoretical Computer Science.

H. Straubing and D. Thérien. Regular languages defined by gener
alized first-order formulas with a bounded number of bound vari
ables. In Proc. of 18th Symp. on Theoretical Aspects of Comp. Sei.
conference, pages 551-562.,2001.

H. Straubing and D. Thérien. Weakly iterated block products of
finite monoids. In Proc. of the 5th Latin American Theoretical
Informatics Conference (LATIN '02). 2002.

H. Straubing. Finite A utomata, Formal Logic and Circuit Com
plexity. Boston: Birkhauser, 1994.

H. Straubing. When can one monoid simulate another? In Al
gorithmic Problems in Groups and Semigroups, pages 267-288.
Birkhiiuser, 2000.

H. Straubing. Languages defined by modulaI' quantifiers. Informa
tion and Computation, 166:112-132,2001.

M. Szegedy. Functions with bounded symmetric communication
complexity, programs over commutative monoids, and ACC. Jour
nal of Computer and System Sciences, 47(3):405-423, 1993.

P. Tesson. An algebraic approach to communication complexity.
Master's thesis, School of Computer Science, Mc Gill University,
1999.

BIBLIOGRAPHY 201

[Thé79]

[Thé83]

[Thé89]

[Thé94]

[TS99]

[TT02a]

[TT02b]

[TT03]

[TW98]

[TW02a]

[TW02b]

[VoI99]

D. Thérien. Languages of nilpotent and solvable groups (extended
abstract). In A utomata, Languages and Programming, 6th Collo
quium, volume 71 of Lecture Notes in Computer Science, pages
616-632. Springer-Verlag, 1979.

D. Thérien. Subword counting and nilpotent groups. In L. Cum
mings, editor, Combinatorics on Words: Progress and Perspec
tives, pages 195-208. Academic Press, 1983.

D. Thérien. Programs over aperiodic monoids. Theoretical Com
puter Science, 64 (3): 271-280, 29 May 1989.

D. Thérien. Circuits constructed with MODq gates cannot com
pute AND in sublinear size. Computational Complexity, 4:383-388,
1994.

Ta-Shma. Classical versus quantum communication complexity.
SIGACT News, 30, 1999.

P. Tesson and D. Thérien. The computing power of programs over
finite monoids. Journal of Automata, Languages and Combina
tories, 7(2):247-258, 2002.

P. Tesson and D. Thérien. Diamonds are forever: the variety DA.
In G. Gomez, P. Silva, and J-E.Pin, editors, Semigroups, Algo
rithms, Automata and Languages. WSP, 2002.

P. Tesson and D. Thérien. Complete classifications for the com
munication complexity of regular languages. In Proc. Symp. on
Theoretical Aspects of Camp. Sei. 2003. 2003.

D. Thérien and T. Wilke. Over words, two variables are as powerful
as one quantifier alternation. In Proc. 30th ACM Symposium on
the Theory of Computing, pages 256-263. 1998.

D. Thérien and T. Wilke. Nesting until and sinee in linear tem
poral logic, 2002. Symp. on Theoretical Aspects of Comp. Sei.
(STACS'02).

D. Thérien and T. Wilke. Temporal logic and semidirect prod
ucts: An effective characterization of the until hierarchy. SICOMP:
SIAM Journal on Computing, 31, 2002.

H. Vollmer. Introduction to Circuit Complexity: A Uniform Ap
proach. Texts in theoretical computer science. Springer, 1999.

202

[WegOO]

[Wei92]

[Yao79]

[Yao90]

[Yao93]

BIBLIOGRAPHY

1. Wegener. Branching Programs and Binary Decision Diagrams.
SIAM Monographs on Discrete Mathematics and Applications,
2000.

P. Weil. Closure of varieties of languages under products with
counter. J. Comput. Syst. Sei., 45:316-339, 1992.

A. C. Yao. Sorne complexity questions related to distributive com
puting. In Proc. ll th ACM STOC, pages 209-213. 1979.

A. C.-C. Yao. ON ACC and threshold circuits. In Proc. of 3rt

IEEE FOCS, volume 2, pages 619-627. 1990.

A. C.-C. Yao. Quantum circuit complexity. In Proc. of 34th IEEE
FOCS, pages 352-361. 1993.

Index

AND-strong, AND-weak, 140
aperiodic, 15

B 2 ,25
bands, 24
bookmark, 55
branching program, 39-40, 42
Brandt semigroup, monoid, 32

circuit, Boolean, 35-38
communication complexity

deterministic, 79
MODp-counting, 80
multiparty, 99
non-deterministic, 80
of a monoid, 83
of a regular language, 83
probabilistic, 79
simultaneous, 79
simultaneous probabilistic, 80
two-party, 79
worst-case partition, 127

commutator, 22
completeness, 34
constant-degree hypothesis, 125
constraint satisfaction, 150
contraction of a program, 51
Crane Beach, 68

V-relation, 12
discrepancy, 101

M-equivalent, 26
exponent, 14

Green relations, 12
group, 15

203

nilpotent, 22

1-l-relation, 12

idempotent, 14
element, 14

inducible subset, 138
inverse

of an element, 32
semigroup, 32

J-relation, 12

L-relation, 12

monoid, 9
Brandt, 32
division, Il
local, 15
syntactic, Il
transformation monoid, 10
universal, 53

morphism
recognition via, 10
relational, 19

neutral letter, 65
non-uniform model of computation,

36

piecewise testable, 23
polynomiallength contraction prop

erty, 52
polynomial length property, 50
problem

(NON) EMPTY INTERSECTION,

111

204

CSP, 150
DISJOINTNESS, 81
EQUALITY, 81
EQUATION SATISFIABILITY, 135
GENERALIZED INNER PRODUCT,

102
G REATER THAN, 82
INDEX, 82
INNER PRODUCT, 81
MAJORITY, 36
PARITY,38
PROGRAM SATISFIABILITY, 135
SET-PARTITION, 112
SYSTEM OF EQUATIONS SATIS

FIABILITY, 150
TARGET-EQUATION SATISFIABIL

ITY, 135
THRESHOLD, 36
TRUNCATED GENERALIZED IN

NER PRODUCT, 102
product

block product, 18
Mal'cev product, 19
wreath product, 18

program over monoid, 41
projection, 35

quotient, 12

R-relation, 12
reduction, 34

hyper-rectangular, 107
many-one, 34
rectangular, 85
truth-table, 35
Turing, 35

Rees
matrix, 16
semigroup, 16

regular (element,class), 15

semigroup, 9
O-simple, 16

completely simple, 16
fiat, 17
idempotent, 24
inverse, 32
orthodox, 17

star-free, 23
strong band of groups, 157
subword, 20

theorem
Barrington, 42
Hales-Jewett, 112
Schaefer, 151
Szegedy, 127
variety, 12

U,25
U1 ,24

INDEX

unambiguous concatenation, 20
union of groups, 15
universality, 53

variety, 21-33
of languages, 12
of monoids, Il
program-variety, 66, 124
theorem, 12

word problem, 10

zero, 14

Index of Symbols and Notation

Pro blems and Languages

csP(r) CONSTRAINT SATISFIABILITY PrrOBLEM (with relations r).

DISJ DISJOINTNESS.

EQ EQUALITY.

(T)-EQN (TARGET)-EQUATION SATISFIABILITY.

(T)-EQN* SYSTEM OF (TARGET)-EQUATIONS SATISFIABILITY.

GIPk,q k-wise GENERALIZED INNER PRODUCT (mod q).

GT GREATER THAN.

INDEX INDEx.

IPq INNER PRODUCT (mod q).

P-SAT PROGRAM SATISFIABILITY.

Varieties

A Aperiodic semigroups.

Al Bands.

Acom Commutative aperiodics.

Ab Abelian groups.

Corn Commutative semigroups.

DV Regular .J -classes lie in V.

Gp p-groups.

Gnil, Gnil,k Nilpotent groups (of class k).

Gsol Solvable groups.

205

206

RI

RB

UG

VoW

V@W

V*W

W

INDEX OF SYMBOLS AND NOTATION

Semigroups with subgroups in H.

Trivial variety.

Semilattices.

'c-trivial bands.

Semigroups with local monoids in V.

Normal bands.

R-trivial bands.

RegulaI' bands.

U nions of groups.

Block product.

Mal'cev product.

Wreath product.

Monoids with R(M) = 8(loglogn).

Other Symbols

ACo Bounded depth polynomial size AND,OR circuits.

ACCo Bounded depth polynomial size AND,OR,MoDm circuits.

CCO Bounded depth polynomial size MODm circuits.

D (L) Deterministic communication complexity.

DII(L) Simultaneous communication complexity.

MpPol('c) Modp-counter dosure.

N 1(L) non-deterministic communication complexity.

NMOdp(L) Modp-counting communication complexity.

NC l Log depth AND,OR circuits with bounded fan-in.

P(V) Languages recognized via polylength V-programs.

R(L) Probabilistic communication complexity.

RII (L) Simultaneous probabilistic communication complexity.

U Pol('c) Unambiguous polynomial dosure.

INDEX OF SYMBOLS AND NOTATION 207

== L Syntactic congruence.

:;'.:7 .J-preorder (similarly for n, 12).

,;:::;c Congruence parametrizing subclasses of DO.

