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Abstract

This thesis proposes a novel hybrid audio inpainting approach that takes into account the diversity of
signals and increases the quality of the reconstruction. Audio inpainting aims at recoveringmissing
or degraded parts of an audio signal based on its reliable segments. The degradations arise in various
real-world scenarios, such as impulsive noise, clipping, transmission errors, and physical damage
of storage medium. Existing inpainting approaches suffer from several limitations, such as energy
drop in the reconstructed signal, especially for longer gaps, and poor reconstruction quality for
non-stationary signals, such as signals with modulations, or transients, and for noisy signals.

In the proposed approach, left and right reliable neighborhoods around the gap are used to re-
construct the signal of the gap. Based on the fact that an audio signal can be considered as a mixture
of three components: sinusoids (or tonal), transients, and noise, each pair of reliable neighborhoods
is divided into these components using a structural sparse decomposition technique for subsequent
analysis. The gap is reconstructed by extrapolating the parameters estimated from the reliable neigh-
borhoods of each component. The estimated parameters of each component are extracted separately
based on their own acoustic characteristics. Manymethods used in this thesis, such as the structural
sparse decomposition, partial tracking, and extrapolation algorithms, are refined for more robust
inpainting results.

A series of experiments are conducted to evaluate the performance of the various stages of the
hybrid approach and compare it with other state-of-the-art inpainting approaches on both synthe-
sized and real audio signals, considering various evaluationmetrics such as signal-to-noise ratio and
objective difference grade. The results demonstrate the hybrid approach to achieve high-quality re-
construction and low computational complexity across a wide range of gap lengths and signal types,
especially for longer gaps (longer than 50 ms) and stationary signals.
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Résumé

Cette thèse propose une nouvelle approche hybride de restoration audio (Audio Inpainting) qui
prend en compte la diversité des signaux sonore et améliore la qualité de la reconstruction. La res-
toration audio vise à reconstituer les parties manquantes ou dégradées d’un signal audio à partir de
segments fiables. Dans les situations réelles les dégradations sont du type bruit impulsif, écrêtage,
erreurs de transmission ou dûes à la détérioration physique de supports de stockage. Les approches
existantes de la restoration audio souffrent de plusieurs limitations, telles que la chute d’énergie dans
les signaux reconstruits, surtout pour les plus longues brèches, et la mauvaise qualité de reconstruc-
tion de signaux non stationnaires, tels que des signauxmodulés ou transitoires, ainsi que de signaux
bruités.

Dans l’approche proposée, les voisinages fiables gauche et droit autour de la brèche sont utili-
sés pour reconstruire le signal dans la brèche. En se fondant sur le fait qu’un signal audio peut être
considéré comme un mélange de trois composantes : sinusoïdes (ou tons), transitoires et bruits,
chaque paire de voisinage fiable est décomposé en ces composantes à l’aide d’une technique de dé-
composition parcimonieuse structurée pour une analyse ultérieure. La brèche est reconstruite en
extrapolant les paramètres estimés de chaque composante sur ces voisinages fiables. Les paramètres
estimés de chaque composante sont extraits séparément en fonction de leurs propres caractéris-
tiques acoustiques. De nombreuses méthodes utilisées dans cette thèse, telles que la décomposition
parcimonieuse structurée, le suivi partiel et les algorithmes d’extrapolation, sont affinées afin d’ob-
tenir des résultats de restoration audio plus robustes.

Une série d’expériences est menée pour évaluer la performance des différentes étapes de l’ap-
proche hybride ainsi que la comparer avec d’autres approches tirées de l’état de l’art de la restoration
audio sur des signaux tant synthétisés que réels, et en considérant diverses mesures d’évaluation
telles que le rapport signal sur bruit et la note différentielle objective. Les résultats montrent que
l’approche hybride permet d’obtenir une reconstruction de haute qualité pour une large gamme de
longueurs et de types de brèches avec une bonne préservation de l’énergie et une extension de par-
tiels.
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1
Introduction

1.1 Audio Degradation

Degradation of audio signals is ubiquitous in the real world and can happen at many stages of au-
dio content production. The impulsive noise and clipping introduce unwanted components while
recording. Transmission errors, like internet packet losses, will miss samples of an audio stream.
Moreover, the storage mediums can be physically damaged so that the information cannot be re-
trieved accurately. The degradation can drastically reduce the perceived audio quality. Conse-
quently, there is a growing need to restore the missing or distorted parts of the audio signal, which
leads to the emergence of a research field known as audio inpainting (Adler et al. 2012). Audio in-
painting involves the recovery of missing or degraded parts of an audio signal based on its reliable
segments. This problem was previously referred to as audio restoration in earlier decades, prior to
the adoption of the term audio inpainting (Godsill and Rayner 1998).

1.2 Audio Inpainting

Adler et al. (2012) proposed a general framework for reconstructing themissing or severely damaged
parts of an audio signal named audio inpainting. Let 𝐲 ∈ ℝ𝑁 be an audio signal with 𝑁 samples.
Assume that the indices of its missing or highly degraded samples are known. These samples are
referred to as unreliable samples. The other samples will be considered reliable. The recovered signal
should be the same as the original signal in the reliable part, in other words, it should belong to the
following set Γ𝐲:

Γ𝐲 = {𝐬 ∈ ℝ𝑁 ∶ 𝐌R𝐬 = 𝐌R𝐲} (1.1)

where𝐌R ∈ ℝ𝑁×𝑁 is a square diagonal matrix whose 𝑘-th diagonal value is 1 if the 𝑘-th sample of
the original signal is reliable, otherwise it is 0, which means𝐌R𝐲 will contain all reliable samples.
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1. Introduction

In addition, the signal𝐲 cannot only be represented in the timedomain but also in a transformed
domain (such as the Gabor transform). The goal of audio inpainting is to find a signal 𝐬 ∈ Γ𝐲 that
is perceptually similar to the undegraded version of signal 𝐲.

For some kinds of degradations (such as clipping), some prior knowledge about themissing data
could be incorporated to narrow down the solution space, so that the reconstruction signals will be
in a subset of Γ𝐲. Furthermore, the degradation could be analyzed in the time domain or in the
time-frequency (TF) domain, which leads to different approaches for reconstruction. For example,
the clipping can be seen as an amplitude cutoff in the time domain or as a harmonic distortion in
the TF domain.

In the rest of the thesis, wemostly consider the gap scenario. A gap refers to a temporal segment
with consecutive samples missing. Gaps can usually be divided into two categories based on their
duration: short gaps and long gaps.

Short gaps are usually less than 100 milliseconds in duration, and they are sometimes further
classified into short gaps (< 10 ms) and medium gaps (10–100 ms) (Taubock et al. 2021). In this
scenario, the signal is more likely to be approximately stationary for the duration of the gap. One
classic but still state-of-the-art approach is Janssen’smethod, which interpolates themissing samples
iteratively according to their neighborhood based on the autoregressive model (Janssen et al. 1986).
Recently, techniques in the time-frequency domain have been introduced to solve the inpainting
problem, such as sparse decomposition (Adler et al. 2012; Mokrý et al. 2019; Mokrý and Rajmic
2020) and non-negative matrix factorization (Mokrý et al. 2023).

Long gaps, on the other hand, are more than 100 milliseconds in duration. This is a more chal-
lenging situation because the signal is usually non-stationary. Different approaches could be used,
such as sinusoidal modelling (Esquef et al. 2003; Lukin and Todd 2008), waveform substitution
based on self-similarity (Perraudin et al. 2018), and deep learning methods (Marafioti et al. 2019;
Marafioti et al. 2021; Moliner and Välimäki 2023). These approaches typically require a longer con-
text (or even the entire range of the signal) to reconstruct the gap.

In this thesis, we mainly focus on gaps of length 10–500 milliseconds.

1.3 Motivation

We started our exploration with the sparsity-based models, especially the SParse Audio INpainter
(SPAIN), which has better signal-to-noise ratio (SNR) and speed compared to Janssen’s method for
very short gaps (Mokrý et al. 2019). While experimenting with the method, we found that this
method (as well as other sparsity-based methods) has an assumption that does not always hold for

2



1.4. Contributions

the signals: the undegraded signal should be sparse, which means the signal can be represented
as a linear combination of a few simple waveforms. This assumption leads to poor reconstruction
quality on certain signals, such as those that are fast-varying or noisy.

To further investigate the problem, we need to consider the characteristics of the input signal
itself. An audio signal can be considered a mixture of three components: sinusoids, transients, and
noise (Verma and Meng 2000). The sinusoids (also known as the tonal part) can be generalized as
the slow-varying deterministic part, which is mostly stationary (or cyclo-stationary) in the longer
term. The transients represent the fast-varying deterministic part, which consists of components
that have a short duration, a wide spectral bandwidth, and are usually located at the beginning
or end of a sustained sound. The noise refers to the stochastic part of the signal, which is often
referred to as the residual of the signal. Different methods are generally used for analyzing and re-
synthesizing these three components, which may explain the inconsistency in the reconstruction
quality of sparsity-based methods on different signals. This model provides a structured view of the
various audio signals and is widely used in the fields of additive synthesis (Verma and Meng 2000;
Tantibundhit et al. 2006) and audio encoding (Daudet and Torrésani 2002). However, it is rarely
discussed in the context of audio inpainting.

In order to separate these three components from the mixture, one technique that can be used
is called sparse decomposition. This method is able to provide a signal representation that is not only
more interpretable, but also contains structured information extracted from the signal (Kereliuk
andDepalle 2011; Siedenburg andDörfler 2011). Moreover, sparse decomposition can be combined
with other methods that are tailored for each component, such as sinusoidal modeling for the tonal
part, to achieve a better reconstruction quality than inpainting methods using only the sparsity-
based techniques.

Therefore, we will build a hybrid approach to improve the perceived quality of the reconstruc-
tion. The hybrid approach will utilize structural sparse decomposition to obtain these three com-
ponents and reconstruct them in different ways.

1.4 Contributions

The main contribution of the thesis is the new hybrid approach for audio inpainting. The model
links approaches from different fields and exhibits high-quality reconstruction across a wide range
of gap lengths and signal types. We provide a comparison and discussion of typical inpainting ap-
proaches while considering signal diversity. Moreover, a novel approach to determining the weight
of neighborhood in social sparsity is proposed in the decomposition process. A heuristic method

3



1. Introduction

is introduced to automatically tune the hyperparameters of sparse decomposition algorithms. We
also refined the partial tracking and extrapolation algorithms to obtain more robust results.

1.5 Organization of theThesis

Chapter 2 provides an overview of typical approaches for audio inpainting, including sparse de-
composition, additive synthesis, and noise reconstruction. The weaknesses of these methods are
discussed. Chapter 3 introduces a new hybrid approach for audio inpainting and elaborates on each
component in detail. Chapter 4 analyzes our hybrid approach and compares it with other state-of-
the-art techniques through various experiments. Chapter 5 summarizes this thesis, outlines the
strengths and limitations of our approach, and addresses some possibilities for future research.
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2
Review of Audio InpaintingMethods

This chapter reviews the typical approaches for audio inpainting. We focus on threemain categories
of methods: sparse decomposition, sinusoidal modeling, and autoregressive modeling. Each cat-
egory is discussed in detail, encompassing the underlying principles, related inpainting methods,
and their weaknesses. The rest of this chapter is organized as follows. Section 2.1 provides an in-
depth explanation of sparse decompositionmethods, covering fundamental concepts such as atoms
and frames, and explores their applications in audio inpainting. Section 2.2 discusses both analysis
and synthesis techniques based on the sinusoidal modeling, along with an exploration to related
audio inpainting methods. Section 2.3 introduces autoregressive modeling, specifically examining
linear prediction methods, spectral envelope estimation techniques, and their applications to audio
inpainting.

2.1 Sparse Decomposition

Sparse decomposition, relying on the concept of atomic modeling, is a technique that represents or
approximates an audio signal as a linear combination of a few elementary waveforms selected from
a large waveform bank. The sparse decomposition can be applied to audio inpainting, based on
finding appropriate constraints associated to the problem. In this section, we first review the basic
concepts of sparse decomposition, and then present and discuss some existing sparsity-based audio
inpainting methods.
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2.1.1 Atoms and dictionaries

In the atomic modeling, a time-domain audio signal 𝑦[𝑛] can be written as a linear combination of
simple waveforms,

𝑦[𝑛] = ∑
𝑖

𝑥𝑖𝜙𝑖[𝑛] (2.1)

where 𝜙𝑖[𝑛] are the simple waveforms (atoms), and 𝑥𝑖 are the weights of them. The set of atoms
forms a dictionary. We can rewrite the model into matrix form,

𝐲 = 𝚽𝐱 (2.2)

where 𝐲 ∈ ℝ𝑁 is an audio signal,𝚽 ∈ ℝ𝑁×𝑀 is a dictionary whose columns 𝝓𝑚 are atoms.
The choices of the set of atoms 𝜙𝑖[𝑛] are infinite. In order to represent a wide variety of signals

and to have good time-frequency (TF) domain properties, a Gabor frame could be used to build a
set of atoms as will be described below.

2.1.2 Gabor frames

A Gabor atom is defined as
𝜙𝑚,𝑘[𝑛] = 𝜓[𝑛 − 𝐻𝑚]𝑒2𝜋𝑗𝑘/𝐾 (2.3)

where 𝜓 is a window, 𝐻 is a hop size, 𝐾 is the number of frequency shifts or frequency channels.
The signal length 𝑁 should be divisible by the hop size 𝐻 . Therefore, for a signal with length 𝑁 ,
we can build 𝑃 = 𝐾𝑁/𝐻 different Gabor atoms. The set of these Gabor atoms is referred to as the
Gabor dictionary.

By choosing the appropriate 𝜓, 𝐻 , and 𝐾, a Gabor frame can be formed by satisfying the con-
dition that for all signals 𝐲 ∈ ℂ𝑁 , there exist constants 𝐴,𝐵 > 0 so that:

𝐴‖𝐲‖22 ≤ ∑
𝑚,𝑘

∣⟨𝐲, 𝝓𝑚,𝑘⟩∣
2 ≤ 𝐵‖𝐲‖22 (2.4)

where 𝐴 and 𝐵 are called the frame bounds.
Frames need fewer restrictions and are easier to construct than bases, as they introduce redun-

dancy to the dictionaries formore flexibility. Redundancy can provide interpretable representations
in the TF domain.

The signal 𝐲 can be synthesized from the Gabor atoms 𝝓𝑚,𝑘 and their coefficients 𝑥𝑚,𝑘:

𝑦[𝑛] = ∑
𝑚,𝑘

𝑥𝑚,𝑘 𝜙𝑚,𝑘[𝑛] ⟺ 𝐲 = 𝚽𝐱 (2.5)
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where 𝚽 ∶ ℂ𝑃 → ℂ𝑁 is the synthesis operator, 𝐱 ∈ ℂ𝑃 is the vector of coefficients of Gabor atoms.
The coefficients of atoms can be calculated as:

𝑥𝑚,𝑘 = ⟨𝐲,𝝓𝑚,𝑘⟩ ⟺ 𝐱 = 𝚽𝐲 (2.6)

where 𝚽H is the conjugate transpose (Hermitian transpose) of 𝚽 and is referred to as the analysis
operator. By composing the synthesis and analysis operators, we can define the frame operator 𝐒 so
that:

𝐒𝐲 = 𝚽𝚽H𝐲. (2.7)

If the frame operator 𝐒 is a diagonal positive-definite matrix, i.e., all values from its main diagonal
are greater than 0 and all other values are 0, then we say that the frame operator satisfies the painless
case (Balazs et al. 2013). In addition, if 𝐒 is a positive multiple of the identity matrix (𝐒 = 𝑐𝐈𝑁 ,
where 𝑐 is a positive number and 𝐈𝑁 is the𝑁 ×𝑁 identity matrix), the frame is called a tight frame
(Dörfler 2001). In this case, we have 𝐴 = 𝐵 for Eq. (2.4). The tight frames are used for various
applications and will be mentioned in later sections of the thesis.

2.1.3 Sparse approximation

Many audio signals can be represented (or approximated) by a small amount of atoms (Kereliuk
2013). That means most value in 𝐱 will be zero if 𝚽 is a redundant dictionary (a frame). A sparse
representation of an audio signal describes the signal in a more interpretable way and could be used
for high-level analysis and processing. However, there is a trade-off between sparsity and the quality
of approximation. That leads to the sparse approximation problem, which can be formalized as an
optimization problem:

𝐱̂ = argmin
𝐱

‖𝐱‖0 subject to ‖𝐲 − 𝚽𝐱‖22 ≤ 𝜀 (2.8)

where ‖𝐱‖0 is the ℓ0 “norm” of𝐱which counts the non-zero coefficients in𝐱, ‖𝐲−𝚽𝐱‖22 measures the
residual energy, and 𝜀 is the residual energy threshold. Since we try to minimize the error between
the original signal 𝐲 and the synthesized signal𝚽𝐱, this model is referred to as the synthesismodel,
and we say that 𝐱 is a sparse representation of 𝐲.

In contrast to the synthesis model, an alternative approach called the analysismodel has gained
growing interest within the last decade. Instead of controlling the number of non-zero coefficients of
atoms, the analysis model tries to sparsify the transformed signal by applying the analysis operator
to the signal:

𝐱̂ = argmin
𝐱

‖𝚽H𝐱‖0 subject to ‖𝐲 − 𝐱‖22 ≤ 𝜀 (2.9)
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where𝚽H is the analysis operator and satisfies𝚽𝚽H to be a positive multiple of the identity matrix,
we say that 𝐱 is a cosparse representation of 𝐲 (Nam et al. 2013). Although these two models look
similar, they tend to generate very different decomposition results.

Although finding the optimal solution to this problem is very challenging, a suboptimal solution
is usually built as an approximation based on available algorithms. There are two main approaches
to solving this problem: the greedy approach and the relaxation approach.

2.1.3.1 Greedy approach

Greedy algorithms iteratively select atoms froma given dictionary. The coefficients of selected atoms
are updated to minimize the residual error at each iteration.

Suppose that we start with an empty selection and all coefficients are zero (𝐱(0) = 𝟎). Then
we need to choose one atom from the dictionary that has the most influence on the signal. That
could be achieved by finding the maximum absolute value of the correlation between atoms and the
signal:

argmax
𝑘

|⟨𝐲, 𝝓𝑘⟩| (2.10)

where 𝑘 is the index of the atom, representing the 𝑘-th atom (𝑘-th column of the dictionary). Then
we can update the selection 𝐱(1) = 𝐱(0) + 𝛼𝜹𝑘, where 𝛼 = ⟨𝐲,𝝓𝑘⟩ is the coefficient, 𝜹𝑘 is a vector
that is 1 for the 𝑘-th value and 0 for the others. The residual can then be calculated by:

𝐫(1) = 𝐲 −𝚽𝐱(1) = 𝐫(0) − 𝛼𝝓𝑘 (2.11)

where 𝐫(0) = 𝐲 is the residual before selecting any atoms. That forms one iteration of this algorithm,
and the next atom to be selected will be the one with the highest correlation with the residual 𝐫(1).
This method is known as matching pursuit (MP) algorithm, and it is one of the earliest and most
well-known greedy algorithms for sparse decomposition (Mallat and Zhang 1993). The procedure
is summarized in Algorithm 1.

2.1.3.2 Relaxation approach

Instead ofmaking locally optimal decisions at each iteration, the relaxation approach aims tomodify
the optimization problem itself and obtain a global approximate solution through iterations.

We start by rewriting the problem (Eq. (2.8)) to an unconstrained form:

𝐱̂ = argmin
𝐱

1
2‖𝐲 −𝚽𝐱‖22 + 𝜆ℛ(𝐱) (2.12)
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Algorithm 1. Matching Pursuit (MP)
Input: input signal 𝐲, dictionary𝚽
Output: coefficients of atoms 𝐱
Initialization: n = 1, 𝐱(0) = 𝟎, 𝐫(0) = 𝐲
1: repeat
2: 𝑘(n) = argmax𝑘 ∣⟨𝐫(n-1), 𝝓𝑘⟩∣
3: 𝛼(n) = ⟨𝐫(n-1), 𝝓𝑘(n)⟩
4: 𝐱(n) = 𝐱(n-1) + 𝛼(n)𝜹𝑘(n)

5: 𝐫(n) = 𝐫(n-1) − 𝛼(n)𝝓𝑘(n)

6: n = n+ 1
7: until stopping condition

where 𝜆 > 0 represents the Lagrange multiplier, controlling the strength of the constraint, andℛ is
the regularization function penalizing small coefficients. In this case, the regularization functionℛ
corresponds to the ℓ0 “norm.”

Due to the fact that the ℓ0 “norm” is non-convex andNP-hard to solve (Natarajan 1995), a convex
relaxation can be employed by replacing the ℓ0 “norm” to the ℓ1-norm. The ℓ1-norm is convex and
computationally tractable while still promoting sparsity. Therefore, it is a good approximation of the
ℓ0 “norm” for sparse decomposition. This technique is known as LASSO (least absolute shrinkage
and selection operator) (Tibshirani 1996) or basis pursuit denoising (Chen et al. 2001).

One of the most popular methods for solving the LASSO problem is the Iterative Shrinkage-
Thresholding Algorithm (ISTA), which is a generalized gradient descent method for non-smooth
functions. ISTA is based on applying a gradient descent step followed by a proximal operator to
project the gradient onto a convex set while minimizing the regularization term. The proximal
operator of a given convex function 𝑓 is:

prox𝑓(𝐱) = argmin
𝐳

{1
2‖𝐱 − 𝐳‖22 + 𝑓(𝐳)} . (2.13)

When the regularization function is ℓ1-norm, the solution of the proximal operator is a simple
shrinkage operator 𝒮 which refers to soft-thresholding:

𝒮𝜆(𝑥𝑖) = sgn(𝑥𝑖)max(|𝑥𝑖| − 𝜆, 0) = 𝑥𝑖(1 −
𝜆
|𝑥𝑖|

)
+

(2.14)

where 𝜆 > 0 is the threshold parameter, sgn(𝑥) is the sign function, (𝑥)+ = max(𝑥, 0). The shrink-
age operator has the property of setting small values of 𝑥𝑖 to zero, thus promoting sparsity in the
solution. The procedure is summarized in Algorithm 2.
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Algorithm 2. Iterative Shrinkage-Thresholding Algorithm (ISTA)
Input: input signal 𝐲, synthesis operator𝚽, regularization parameter 𝜆, shrinkage operator 𝒮
Output: coefficients of atoms 𝐱
Initialization: n = 1, 𝐱(0) = 𝟎, 𝛾 = ‖𝚽𝚽H‖
1: repeat
2: ∇(n)

𝐱 = 𝚽H(𝐲 − 𝚽𝐱(n-1))
3: 𝐱(n) = 𝒮𝜆/𝛾 (𝐱(n-1) + 1

𝛾∇(n)
𝐱 )

4: n = n+ 1
5: until stopping condition

Furthermore, the ISTA algorithm can be extended to the accelerated proximal gradient algo-
rithm, known as the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) (Beck and Teboulle
2009). FISTA provides faster convergence and improves the computational efficiency of ISTA by
incorporating a momentum term (𝜏 in Algorithm 3), while maintaining the accuracy of the sparse
decomposition. Algorithm 3 describes the FISTA procedure.

Algorithm 3. Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
Input: input signal 𝐲, synthesis operator𝚽, regularization parameter 𝜆, shrinkage operator 𝒮
Output: coefficients of atoms 𝐱
Initialization: n = 1, 𝐱(0) = 𝟎, 𝐳(0) = 𝟎, 𝛾 = ‖𝚽𝚽H‖, 𝜏(0) = 1
1: repeat
2: ∇(n)

𝐱 = 𝚽H(𝐲 − 𝚽𝐱(n-1))
3: 𝐳(n) = 𝒮𝜆/𝛾 (𝐱(n-1) + 1

𝛾∇(n)
𝐱 )

4: 𝜏(n) = 1
2 (1 +√1 + (2𝜏(n-1))2)

5: 𝐱(n) = 𝐳(n) + 𝜏(n-1)−1
𝜏(n) (𝐳(n) − 𝐳(n-1))

6: n = n+ 1
7: until stopping condition

2.1.4 Structured sparsity

Sparse decomposition is a powerful technique for effectively representing signals with a smaller
number of non-zero coefficients. However, simple sparse decomposition methods may fall short
when it comes to capturing the underlying structural information present in signals. One approach
to addressing this limitation is through the utilization of structured sparsity (Siedenburg andDörfler
2011). Structured sparsity aims to incorporate prior knowledge from the signals into the decom-
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position process, enabling a more meaningful representation of signals under multiple applications
(Kereliuk 2013).

The structure information could be integrated into the norm by extending it to summations
within and outside the group of atoms. The idea leads to a technique namedmixed norm (Kowalski
and Torrésani 2009):

‖𝐱‖𝑝,𝑞 = ⎛⎜
⎝

𝐺
∑
𝑔=1

(
𝑀
∑
𝑚=1

|𝑥𝑔,𝑚|𝑝)
𝑞/𝑝

⎞⎟
⎠

1/𝑞

(2.15)

where 𝑥𝑔,𝑚 is a double-indexed element of𝐱 ∈ ℝ𝑁 ,𝐺 is the number of groups, and𝑀 is the number
of members in each group, so that𝐺×𝑀 is the number of atoms. The 𝑝 and 𝑞 determine the norm
behaviors within and between groups, respectively. When 𝑝 > 2 and 𝑞 < 2, minimizing ‖𝐱‖𝑝,𝑞
promotes inter-group sparsity, implying that only fewer groups are selected, while when 𝑝 < 2 and
𝑞 > 2, it promotes intra-group sparsity, implying that fewer members of each group are selected
(Balazs et al. 2013). The problem reduces to a standard LASSO when 𝑝 = 𝑞 = 1.

One particular case is the group-lasso problem, in which 𝑝 = 2 and 𝑞 = 1, forming the ℓ2,1
norm (Kowalski and Torrésani 2009). The problem can be denoted by the following optimization
problem:

𝐱̂ = argmin
𝐱

{1
2‖𝐲 −𝚽𝐱‖22 + 𝜆‖𝐱‖2,1} . (2.16)

The proximal operator of the group-lasso problem is given by:

prox‖⋅‖2,1(𝜆)(𝑥𝑔,𝑚) = 𝑥𝑔,𝑚(1 − 𝜆
‖𝐱𝑔‖2

)
+

(2.17)

where 𝐱𝑔 represents the vector containing all members𝑚 in the group 𝑔.
The group-lasso problem can be applied to extract structured information in the TF domain.

For example, if atoms in the TF domain are grouped by time so that all frequencies in each time bin
are its members, then the solution of the corresponding group-lasso will include fewer groups, and
all members of the group will not shrink. This corresponds to extracting the transients of the signal,
which are short and non-stationary components. In contrast, if atoms are grouped by frequency so
that all times in each frequency bin are its members, this corresponds to extracting the tonal part of
the signal, which corresponds to sustained and stationary part.

However, the limitation of group-lasso is that its groups are global rather than local, so it is chal-
lenging to handle signals that change over time. For example, a signal may have different transient
and tonal components at different segments, and applying a fixed grouping schememay not capture
these variations.
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To address this constraint, an alternative approach can be employed by constructing overlap-
ping groups utilizing the neighborhood associated with each atom. This technique, known as so-
cial sparsity, involves selecting atoms based on the weighting of coefficients within their respective
neighborhoods (Kowalski et al. 2013). The neighborhood𝒩(𝑘) of an atom with index 𝑘 is defined
as a set of indices 𝑘′ that are near the atom 𝑘. The neighborhood can be of an arbitrary shape and
can be weighted for more flexibility, as shown in Figure 2.1. The weights 𝑤𝑘′∣𝑘 of the index 𝑘′ at the
𝑘-th atom should satisfy that 𝑤𝑘∣𝑘 > 0, 𝑤𝑘′∣𝑘 ≥ 0 for all 𝑘′ ∈ 𝒩(𝑘), and∑𝑘′∈𝒩(𝑘) (𝑤𝑘′∣𝑘)

2 = 1.

time
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k3

(b) unevenly weighted

Figure 2.1 Two neighborhood configurations in the time-frequency plane. The circles represent
atoms, the square borders represent the neighborhood𝒩(𝑘) of the corresponding index 𝑘 (denoted
by solid circles), and the shades of color represent the magnitude of the weights.

After defining the neighborhood, the shrinkage operator can be built. One possible shrinkage
operator is the windowed-group-lasso (WGL), which is given by:

𝒮WGL
𝜆 (𝑥𝑘) = 𝑥𝑘

⎛⎜⎜
⎝
1 − 𝜆

√∑𝑘′∈𝒩(𝑘)𝑤𝑘′∣𝑘|𝑥𝑘′ |2
⎞⎟⎟
⎠

+

(2.18)

From this equation, we can observe that only the atoms with the weighted sums of the coeffi-
cients of their neighborhood larger than 𝜆will be selected. Thus, the method is capable of suppress-
ing isolated atoms with large coefficients while extracting structured information, depending on the
configuration of the neighborhood.
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2.1.5 Applications

Sparse decomposition can be utilized to address various signal processing tasks by redefining the
underlying optimization problem. In this section, wewill explore two specific examples wheremod-
ified sparse decomposition problems are employed to tackle practical issues. These applications in-
corporate prior knowledge and introduce additional constraints to guide the sparse decomposition
process toward estimations of the original signal.

One instance is to estimate the original signal from its degraded observation. The degradation
can be formulated as:

𝐲̂ = 𝔇𝐲 + 𝜺. (2.19)

Here, 𝐲 represents the original signal, 𝐲̂ corresponds to the observed signal, 𝔇 denotes a degra-
dation operator, and 𝜺 an additive noise. In many cases, the degradation operators are nonlinear,
making the task of finding their inverse challenging. Furthermore, the degraded signal is often not
as sparse as the original signal. Consequently, sparse decomposition techniques can be employed to
approximate the original signal. Figure 2.2 demonstrates how different types of degradation affect
the sparsity of the signal in distinct ways.

To address specific types of signal degradation, different constraints are introduced to guide the
sparse decomposition process (Mokrý et al. 2020). One type of degradation is that part of the signal
is missing or highly degraded. We call this degradation a gap. In this case, the reliable part of the
observed signal should remain unchanged, while the reconstruction signal to replace the unreliable
part should be sparse. This can be expressed as a modified sparse decomposition problem with an
additional constraint that forces the reconstructed signal to match the reliable part of the observed
signal (Adler et al. 2012). The problem can be written as:

𝐱̂ = argmin
𝐱

‖𝐱‖0 subject to ‖𝐌R𝐲̂ −𝐌R𝚽𝐱‖22 ≤ 𝜀. (2.20)

Another type of degradation is clipping, where the amplitude is limited between a lower bound
−𝜃clip and an upper bound+𝜃clip, where 𝜃clip is referred to as the clipping threshold. In this scenario,
the part of the signal that stays within the threshold is the reliable part and should be unchanged,
while the other parts should exceed the clipping threshold and end upwith larger amplitudes (Adler
et al. 2012). The problem can be formulated as:

𝐱̂ = argmin
𝐱

‖𝐱‖0 subject to ‖𝐌R𝐲̂ −𝐌R𝚽𝐱‖22 ≤ 𝜀 and |𝐌C𝚽𝐱| ≥ |𝜃clip| (2.21)

where 𝐌C ∈ ℝ𝑁×𝑁 is a square diagonal matrix where the 𝑘-th diagonal element is 1 if the corre-
sponding 𝑘-th sample of the original signal is clipped, and 0 otherwise, so that𝐌C𝐲will contain all
clipped samples.
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Figure 2.2 Time domain (left side) and frequency domain (right side) representations of a 100Hz
sine wave with different degradations. From top to bottom: original sine wave; sine wave with a
100-sample gap (between the two dashed lines); sine wave with clipping at an amplitude of 0.5. The
sampling rate is set to 𝑓𝑠 = 8000Hz.

In addition to restoring various signal from the degradations, sparse decomposition is capable
of separating a signal into different components. This technique, known asmultilayered expansion,
involves decomposing a given signal into distinct layers or components, each representing a specific
aspect of the signal (Kowalski and Torrésani 2009; Kereliuk and Depalle 2011). A common expan-
sion of the audio signal is to decompose it into tonal, transient, and noise components, so that the
signal 𝐲 can be represented by the summation of these components:

𝐲 = 𝐲tonal + 𝐲transient + 𝐲noise (2.22)

where 𝐲tonal, 𝐲transient, and 𝐲noise are the tonal, transient, and noise layer respectively.
To achieve this tonal + transient + noise expansion, two different Gabor frames are utilized

to represent the signal components that are suitable their signal features. The frame 𝚽long has a
long duration window and is adapted to the tonal layer, while the frame𝚽short has a short duration
window and is adapted to the transient layer. Consequently, the multilayered expansion can be
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formulated as:

𝐱̂ = argmin
𝐱∩

‖𝐱∩‖0 subject to ‖𝐲 − 𝚽long𝐱tonal −𝚽short𝐱transient‖22 ≤ 𝜀 (2.23)

where 𝐱∩ = [𝐱tonal, 𝐱transient]. The noise component can be obtained from the residual of the de-
composition:

𝐲noise = 𝐲 −𝚽long𝐱tonal −𝚽short𝐱transient. (2.24)

2.1.6 Sparsity-based inpainting models

This section introduces two sparsity-based inpainting approaches that are considered state-of-the-
art. These approaches differ in their sparsity measures and optimization strategies, which lead to
different outcomes. The first approach, SPAIN, minimizes the ℓ0-norm of the coefficients, which
results in a non-convex problem. The second approach, reweighted inpainting, uses the convex ℓ1-
norm relaxation and applies weighting to the coefficients. Further discussion and comparison of
these approaches will be presented in the subsequent sections.

2.1.6.1 SPAIN

The SParse Audio INpainter (SPAIN) is an audio inpainting method that adapts the SPADE al-
gorithm by Kitić et al. (2015), which was originally developed for audio declipping. The SPAIN
algorithm is based on the ℓ0-norm minimization problem, which enhances sparsity. However, this
problem is non-convex and computationally intractable. To overcome this challenge, SPAIN incor-
porates the Alternating DirectionMethod of Multipliers (ADMM) optimization scheme to approx-
imate a local-optimal solution (Mokrý et al. 2019). The analysis and synthesis variants of SPAIN are
described in Algorithm 4 and Algorithm 5.

The relaxation step size 𝜎 and step rate 𝜌 should be positive integers, andℋ𝑙(𝐱) denotes the hard
thresholding operator, which retains only the 𝑙 largest magnitude coefficients of 𝐱 while setting the
rest to zero.

Experiments show that both variants achieve state-of-the-art reconstruction quality in terms of
objective measures such as signal-to-noise ratio (SNR) and PEMO-Q (Huber and Kollmeier 2006),
especially for gaps less than 25 ms (Mokrý et al. 2019; Mokrý and Rajmic 2020). In most cases, the
analysis variant slightly outperforms the synthesis variant (Mokrý et al. 2019).
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Algorithm 4. A-SPAIN
Input: input signal 𝐲, analysis operator 𝚽H, reliable mask 𝐌R, relaxation step size 𝜎, relaxation

step rate 𝜌
Output: estimated signal 𝐱
Initialization: n = 1, 𝐱(0) = 𝐲, 𝐮(0) = 𝟎, 𝑙 = 𝜎, 𝐳 = 𝟎
1: repeat
2: 𝐯(n) = ℋ𝑙(𝚽H𝐱(n-1) + 𝐮(n-1))
3: 𝐱(n) = argmin𝐳 ‖𝚽H𝐳 − 𝐯(n) + 𝐮(n-1)‖22 subject to 𝐌R𝐳 = 𝐌R𝐲
4: 𝐮(n) = 𝐮(n-1) +𝚽H𝐱(n) − 𝐯(n)

5: n = n+ 1
6: if mod (n, 𝜌) = 0 then
7: 𝑙 = 𝑙 + 𝜎
8: end if
9: until stopping condition

Algorithm 5. S-SPAIN
Input: input signal 𝐲, synthesis operator 𝚽, reliable mask 𝐌R, relaxation step size 𝜎, relaxation

step rate 𝜌
Output: coefficients of atoms 𝐱
Initialization: n = 1, 𝐱(0) = 𝚽H𝐲, 𝐮(0) = 𝟎, 𝑙 = 𝜎, 𝐳 = 𝟎
1: repeat
2: 𝐯(n) = ℋ𝑙(𝚽H (𝐱(n-1) − 𝐮(n-1)))
3: 𝐱(n) = argmin𝐳 ‖𝚽𝐯(n) − 𝐳 + 𝐮(n-1)‖22 subject to 𝐌R𝐳 = 𝐌R𝐲
4: 𝐮(n) = 𝐮(n-1) +𝚽𝐯(n) − 𝐱(n)

5: n = n+ 1
6: if mod (n, 𝜌) = 0 then
7: 𝑙 = 𝑙 + 𝜎
8: end if
9: until stopping condition
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2.1.6.2 Reweighted inpainting

Reweighted inpainting is another sparsity-based audio inpainting approach that solves a weighted
ℓ1-norm relaxation problem, which is convex and practically solvable using splitting algorithms
(Mokrý and Rajmic 2020). This approach introduces a weight assignment to the coefficients, al-
lowing coefficients with higher weights to resist shrinkage and preserve more energy within the gap
region. The analysis and synthesis variants of the relaxation problem are formulated in Eq. (2.25)
and Eq. (2.26):

̂𝐬 = argmin
𝐬

‖𝐰 ⊙𝚽H𝐬‖1 subject to ‖𝐌R𝐲 −𝐌R𝐬‖22 ≤ 𝜀 (2.25)

𝐱̂ = argmin
𝐱

‖𝐰 ⊙ 𝐱‖1 subject to ‖𝐌R𝐲 −𝐌R𝚽𝐱‖22 ≤ 𝜀 (2.26)

where𝐰 represents the weight vector that each value 𝑤𝑖 of the vector should be greater than 0, and
⊙ denotes the element-wise multiplication.

Various approaches can be employed to define these weights. One approach is based on the
reliability of atoms, where coefficients associated with atoms overlapping with the gap region should
have lower weights than those fully located within the reliable part. The weights are defined as
follows:

𝑤𝑖 =
‖𝐌R𝝓𝑖‖𝑞𝑝
‖𝝓𝑖‖𝑞𝑝

(2.27)

where𝝓𝑖 is the 𝑖-th atom,𝐌R𝝓𝑖 is the reliable part of the atom, 𝑝 and 𝑞 are parameters that influence
the norm behavior. The choices for 𝑝 and 𝑞 can be 𝑝 = 𝑞 = 0 (support based), 𝑝 = 𝑞 = 1 (ℓ1-norm
based), 𝑝 = 2, 𝑞 = 1 (ℓ2-norm based), and 𝑝 = 𝑞 = 2 (energy based).

The analysis and synthesis problems can be solved usingChambolle-Pock andDouglas-Rachford
algorithms, respectively (Mokrý and Rajmic 2020).

Another approach of reweighting is to adjust theweights in each iteration, called iterative reweight-
ing. This method can adaptively adjust the weights according to the magnitude of the coefficients.
For small coefficients, theweights will progressively increase, making themmore resistant to shrink-
age. The analysis iterative reweightingmethod is summarized in Algorithm 6, where step 2 is solved
using the Chambolle-Pock algorithm.

Experimental results demonstrate that both reweighted method improve the reconstruction
quality in terms of energy preservation, particularly for gaps longer than 25 ms, compared to non-
reweighted ℓ1 relaxation methods (Mokrý and Rajmic 2020).
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Algorithm 6. Analysis Iterative Reweighted Inpainting

Input: input signal 𝐲, analysis operator𝚽H, reliable mask𝐌R, weight threshold 𝜖 > 0
Output: estimated signal 𝐱
Initialization: n = 1, 𝐱(0) = 𝐲, 𝐮(0) = 𝟎,𝐰(0) = 𝟏
1: repeat
2: 𝐱(n) = argmin𝐳 ‖𝐰(n-1) ⊙𝚽H𝐳‖1 subject to 𝐌R𝐳 = 𝐌R𝐲
3: 𝐮(n) = 𝚽H𝐱(n)

4: 𝑤(n)
𝑖 = 1/(|𝑢(n)

𝑖 | + 𝜖)
5: n = n+ 1
6: until stopping condition

2.1.7 Limitation of sparsity-based models

Despite the good performance of sparsity-based inpaintingmethods. There are still some limitation
that affect the quality of the reconstructed signals. This section addresses two primary aspects of
these limitation: energy loss and artifacts induced by stationary assumptions.

One of the common problems of sparsity-based inpainting methods is the energy loss for the
reconstructed signal when the gaps get longer. This is partly due to the regularization process that
shrinks the coefficients of the signal, resulting in a lower energy level in the gap region. This problem
has been reduced by using the reweighted method proposed by Mokrý and Rajmic (2020), which
assigns weights to the coefficients according to their reliability to resist shrinkage. However, both
SPAIN and reweighted inpainting methods process the signal segment by segment, in an overlap-
add approach. This leads to another problem: when processing windowed segments with small
number of reliable samples, the algorithm struggles to make a good estimate based on very limited
reliable information, thus resulting in a reconstructed segment with very low energy. One demon-
stration of this problem is shown in Figure 2.3. Some sparsity-based inpainting methods, such as
the one proposed by Taubock et al. (2021), attempt to avoid the segmentation problem by process-
ing the entire signal at once, but it still relies on maximal sparsity along frequency for all time bins,
thereby neglecting the temporal context.

Another problem is the unsatisfactory reconstruction quality for non-stationary signals, such
as those containing noise or fast time-varying components like modulations. Noise is inherently
not sparse in the TF domain, which contradicts the core assumption of sparse decomposition algo-
rithms that the signal can be represented by a small amount of atoms. Consequently, sparsity-based
inpaintingmethodsmay erroneously select atoms and propagate them to the gap because of the am-
biguity of representing noise with mismatched dictionaries, which makes the reconstruction look
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2.1. Sparse Decomposition

Figure 2.3 Energy drop of the reconstructed signal in the gap using the sparsity-based inpainting
methods. The solid gray line represents the original signal, the solid black line represents the recon-
structed signal, and the light shaded area denotes the gap area. The result is obtained by applying
the A-SPAIN method.

like a stationary signal with randomly selected atoms, or sound like the “freezing” of noise in the
gap region. In some cases, some methods may discard the noise component, as a way of denoising,
leading to a noticeable decrease in energy. Figure 2.4 illustrates these two scenarios respectively.
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(a) “freezing” of noise
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(b) discarded noise

Figure 2.4 Noise artifacts of reconstructed signals with noise in the gap using the sparsity-based
inpainting methods. The two light colored dashed lines indicate the beginning and end of the gap.
The leftpanel shows the result obtained by using theweightedDouglas-Rachford algorithm, whereas
the right panel shows the result obtained by using the weighted Chambolle-Pock algorithm.
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Similarly, fast time-varying signals, even though theymay be sparse in some TF representations,
are “forced” to propagate stationarily within the gap by sparsity-based methods. This results in a
reconstruction that looks like a jump from the left reliable part to the right reliable part with a cross-
fade rather than a smooth continuity within the gap region (shown in Figure 2.5). This problem has
been partially solved by employing dictionary learning technique to obtain sparser solutions using
a dictionary that is learned from the reliable part of the signal (Taubock et al. 2021). However, these
methods still use relatively short atoms that is challenging to capture the time-varying characteristics
of such signals.
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Figure 2.5 Frequency jumpof reconstructed fast time-varying signal in the gap using the sparsity-
based inpainting methods. The two light colored dashed lines indicate the beginning and end of the
gap. The result is obtained by using the iteratively reweighted Chambolle-Pock algorithm.

2.2 Sinusoidal Modeling

Sinusoidal modeling is a technique that represents an audio signal as a sum of sinusoids with slowly
evolving amplitudes and frequencies (McAulay and Quatieri 1986). The time-varying sinusoids are
called partials. The model can be formulated as:

𝑦[𝑛] = ℜ{
𝑃
∑
𝑝=1

𝐴𝑝[𝑛] exp(𝑗(𝜑𝑝 + 2𝜋
𝑛
∑
𝑘=0

𝑓𝑝[𝑘]))} (2.28)

where 𝐴𝑝 and 𝑓𝑝 represent the instantaneous amplitude and frequency of partial 𝑝, 𝜑𝑝 is the initial
phase of partial 𝑝, andℜ{𝑥} is the real part of 𝑥 ∈ ℂ.
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2.2. Sinusoidal Modeling

Sinusoidal modeling involves two processes: analysis and synthesis. The analysis process con-
sists of estimating the sinusoidal parameters and decomposing the signal into a set of independent
partials, also known as partial tracking.

Parameter estimation is a key step of sinusoidal analysis, which involves extracting the am-
plitudes, frequencies, and phases of the sinusoids from the observed signals. For non-stationary
signals, these parameters are not trivial to estimate, and various methods have been proposed for
this case. Section 2.2.1 introduces two parameter estimation techniques: the STFT-based method
and the Distribution Derivative Method (Betser 2009).

Partial tracking also plays an important role in analysis, which involves connecting the detected
peaks across the slices of an audio signal appropriately to form the partials. Ideally, each tracked
partial should form a smooth trajectory. Section 2.2.2 introduces a few partial tracking approaches.

The synthesis process generates reconstructed signals from parameters obtained during the
analysis. It can be achieved using a bank of oscillators that generate the sinusoids according to
the parameters estimated during the analysis. This process is described in Section 2.2.3.

Sinusoidalmodeling can be employed for audio inpainting by filling the gapwith a resynthesized
signal. The resynthesized signal is constructed based on the parameters extracted in the neighbor-
hood of the gap. Section 2.2.4 explains this method and Section 2.2.5 discusses its limitation.

2.2.1 Parameter estimation

The sinusoidal parameter estimation methods involve two steps: obtaining the coefficients in the
time-frequency transformed domain and locating the spectral peaks from these coefficients. Short-
time Fourier transform (STFT) is commonly used to derive the time-varying parameters, and the
spectral peaks are then extracted from each slice of the STFT.The STFT of a signal 𝑦[𝑛] is formalized
by:

𝑌 (𝑚, 𝑘) =
+∞
∑

𝑛=−∞
𝑦[𝑛]𝜓[𝑛 − 𝐻𝑚]𝑒−2𝜋𝑗𝑛𝑘/𝐾 (2.29)

where𝑚 represents the slice number, 𝑘 is the frequency channel to evaluate, 𝜓 is the window func-
tion,𝐻 is the hop size, and𝐾 is the number of frequency channels.

In this section, two different approaches are introduced, among the existing ones. One approach
is the McAulay and Quatieri method (1986), which finds the spectral peaks from the spectrogram
𝑃(𝑚, 𝑘) of each STFT slice:

𝑃(𝑚, 𝑘) = |𝑌 (𝑚, 𝑘)|2 (2.30)
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where 𝑌 (𝑚, 𝑘) is the STFT of signal 𝑦[𝑛]. Spectral peaks are identified as local maxima in the spec-
trogram. The frequencies are estimated from the location of the peaks, while the amplitude and
phase of each peak are obtained from the magnitude and argument of the STFT coefficients.

However, this method has a weakness due to the limited resolution of the spectrogram. Fre-
quency estimation is quantized by the frequency bin size, which reduces the estimation accuracy.
Moreover, sinusoids falling between frequency bins result in energy spreading over adjacent bins,
causing reduced peak amplitudes and biased phases.

This issue can be improved by using a quadratic interpolation of the spectral magnitude around
each peak, referred to as the quadratically interpolated FFT method (Smith and Serra 1987). This
technique approximates the true peak location and magnitude by fitting a parabola to three points:
the peak itself and its two neighboring bins.

Another advanced approach is the Distribution Derivative Method (DDM).The DDM is based
on the exponential polynomial sinusoidal model. In this model, a partial, slowly evolving frequency
and amplitude sinusoid (in the continuous time) can be defined as:

𝑦(𝑡) = exp(
𝑄
∑
𝑘=0

𝛼𝑘𝑡𝑘) (2.31)

where 𝛼𝑘 are complex sinusoidal parameters and 𝑄 is the polynomial order.
The instantaneous log-amplitude and phase of this component are:

𝑎(𝑡) =
𝑄
∑
𝑘=0

ℜ{𝛼𝑘} 𝑡𝑘 (2.32)

𝜑(𝑡) =
𝑄
∑
𝑘=0

ℑ {𝛼𝑘} 𝑡𝑘 (2.33)

and the instantaneous frequency can be calculated by taking the time derivative of the phase:

𝑓(𝑡) = 𝜑′(𝑡)
2𝜋 = 1

2𝜋
𝑄−1
∑
𝑘=1

ℑ {𝛼𝑘} 𝑘𝑡𝑘−1. (2.34)

If we weight the component using an arbitrary waveform (atom) 𝝓 that is constant 0 outside
a finite range and is conjugated in order to prepare the expression of a dot product, the weighted
signal 𝑦𝜙 can be represented as:

𝑦𝜙(𝑡) = 𝑦(𝑡) ̄𝜙(𝑡) (2.35)

and its derivative is:

𝑑𝑦𝜙
𝑑𝑡 (𝑡) = 𝑦′(𝑡) ̄𝜙(𝑡) + 𝑦(𝑡) ̄𝜙′(𝑡) = (

𝑄
∑
𝑘=1

𝛼𝑘𝑢′
𝑘(𝑡))𝑦(𝑡) ̄𝜙(𝑡) + 𝑦(𝑡) ̄𝜙′(𝑡) (2.36)

22



2.2. Sinusoidal Modeling

where 𝑢𝑘(𝑡) = 𝑡𝑘.
By integrating the derivative over time, we get:

∫
+∞

−∞

𝑑𝑦𝜙
𝑑𝑡 (𝑡)d𝑡 =

𝑄
∑
𝑘=1

𝛼𝑘∫
+∞

−∞
𝑢′
𝑘(𝑡)𝑦(𝑡) ̄𝜙(𝑡)d𝑡 +∫

+∞

−∞
𝑦(𝑡) ̄𝜙′(𝑡)d𝑡. (2.37)

Since the weighted signal 𝑦𝜙(𝑡) is 0 while approaching to infinity, the integration of its derivative
should be 0:

∫
+∞

−∞

𝑑𝑦𝜙
𝑑𝑡 (𝑡)d𝑡 = 0. (2.38)

This equation can be rewritten as a linear system of equations:

−⟨𝐲, 𝜙′
𝑚⟩ =

𝑄
∑
𝑘=1

𝛼𝑘⟨𝐲 ⊙ 𝐮𝑘, 𝝓𝑚⟩ (2.39)

where ⊙ is the element-wise multiplication.
In order to obtain all𝛼𝑘, at least𝑄 different equations are necessary to derive the unique solution

of the equations.
Meanwhile, the value of 𝛼0, which determines the initial amplitude and phase, cannot be esti-

mated using the above method. An approximate least square estimation method is proposed for
that reason. This method starts by finding the atom 𝝓𝑚 with the highest correlation to the signal 𝐲:

𝝓𝑚 = argmax
𝝓

|⟨𝐲, 𝝓⟩|. (2.40)

Then the corresponding 𝛼0 is:

𝛼0 = log(⟨𝐲, 𝝓𝑚⟩) − log(⟨exp(𝐔𝜶),𝝓𝑚⟩) (2.41)

where𝐔 = (𝐮1, ⋯ , 𝐮𝑄) and 𝜶 = (𝛼1, ⋯ , 𝛼𝑄)𝑇 .
It should be noted that there are various parameter estimationmethods for an exponential poly-

nomial signal model, each with its advantages and limitation (Hamilton and Depalle 2012). A com-
prehensive review and comparison of these methods, evaluating their accuracy and efficiency for
different signal types, can be found in Hamilton and Depalle (2012). It is worth mentioning that
there are other types of parameter estimation methods, such as Prony’s method (Hildebrand 1956),
Pisarenko’s method (Pisarenko 1973), and ESPRIT (Roy and Kailath 1989). However, they are out
of the scope of this thesis.
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2.2.2 Partial tracking

Partial tracking (PT) is a technique that aims to build partial trajectories by linking the spectral
peaks with estimated sinusoidal parameters across slices. This technique plays a significant role
in various applications such as sound synthesis (McAulay and Quatieri 1986), music transcription
(Klapuri andDavy 2006), and audio inpainting (Lagrange et al. 2005). The first PTmethod was pro-
posed by McAulay and Quatieri (1986) for speech analysis and synthesis. The McAulay-Quatieri
partial tracking (MQ-PT) method applies a heuristic greedy algorithm to find the nearest peak in
frequency in the next slice to connect. In this process, some unmatched partials at the next slice are
considered as “birth”, while some partials that cannot be continued to the next slice are considered
as “death”. However, this MQ-PT method does not guarantee an optimal solution for the partial
tracking problem, and may result in incorrect trajectories. Recently, Neri and Depalle (2018) pro-
posed a fast algorithm for partial tracking based on linear programming. The approach treats partial
tracking as a combinatorial optimization problem to obtain the optimal connections between peaks
by minimizing connection costs, instead of finding local optimal solutions as in the greedy MQ-PT
method. This approach improves both tracking accuracy and robustness compared to the greedy
MQ-PT method. We will describe these two methods in detail in the following sections.

2.2.2.1 Greedy approach

TheMQ-PTmethod relies on a heuristic greedy algorithm to assign spectral peaks from one slice to
the next based on a cost of assignment (McAulay and Quatieri 1986). The cost of assigning a peak
𝑖 with frequency 𝑓 [𝑘−1]

𝑖 at slice 𝑘 − 1 to peak 𝑗 with frequency 𝑓 [𝑘]
𝑗 at slice 𝑘 is defined as:

𝐶𝑖𝑗 = ∣𝑓 [𝑘−1]
𝑖 − 𝑓 [𝑘]

𝑗 ∣ , (2.42)

which measures the frequency difference between the peaks. A matching threshold Δ𝑓 will be de-
fined to determine whether there is a continuation of a partial or not.

The partial tracking process is described as follows:

• Search: For each peak 𝑖 at slice 𝑘−1, search for peaks at slice 𝑘 such that the costs of assigning
them to the peak 𝑖 are lower than the predefined matching thresholdΔ𝑓 .

• Death: If none of the peaks at slice 𝑘 satisfy this condition, then the partial trajectory associ-
ated with peak 𝑖 is considered “dead” upon entering slice 𝑘.

• Match: If one or more peaks satisfy this condition. The peak 𝑗 at slice 𝑘 with the smallest cost
𝐶𝑖𝑗 among these peaks is selected to form a candidate match (𝑖, 𝑗) between peak 𝑖 and peak
𝑗.
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• Selection: For each candidate match (𝑖, 𝑗), if there exists another peak ℎ at slice 𝑘 − 1 such
that 𝐶ℎ𝑗 < 𝐶𝑖𝑗, then peak 𝑗 should be assigned to peak ℎ instead of peak 𝑖, since peak ℎ is
closer to peak 𝑗 in frequency. In this case, the candidate match (𝑖, 𝑗) fails and peak 𝑖 has to
seek other potential assignments that satisfy previous steps or is considered “dead”.

• Birth: After checking all candidate matches, if there remain unmatched peaks at slice 𝑘, these
remaining peaks are considered as “born” and their partial trajectories start.

One problem with this method is that it does not guarantee an optimal solution for the par-
tial tracking problem. For example, consider three parallel ascending chirps (sweeping signals), as
shown in Figure 2.6. The greedy algorithm will fail to match the bottom left and top right peaks,
and will connect the two middle peaks to the wrong partials, resulting in incorrect trajectories.

time

fr
e
q
u
e
n
cy

Figure 2.6 Incorrect trajectories in theMQ-PT greedy-based partial tracking process. The circles
denote the estimated spectral peaks, dash lines are the true partials, which represent three parallel
ascending chirps, the colored lines are the found tracked partials using the heuristic greedy algo-
rithm.

This issue can be partially solved by alternative methods, such as the hidden Markov model-
based method (Depalle et al. 1993) and the linear programming-based method (Neri and Depalle
2018). These alternative techniques improve both tracking accuracy and robustness compared to
the greedy approach.
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2.2.2.2 Combinatorial optimization approach

The partial tracking can be considered as an assignment problem, which is a combinatorial opti-
mization problem that aims to find the optimal assignment of elements from one set to another set
based on their assignment costs (Neri and Depalle 2018). Suppose that the first set 𝑆1 contains 𝑁1
elements, the second set 𝑆2 contains 𝑁2 elements. The assignment problem can be formalized as
follows:

minimize
𝑁1

∑
𝑖=1

𝑁2

∑
𝑗=1

𝐶𝑖𝑗𝑋𝑖𝑗

subject to
𝑁1

∑
𝑖=1

𝑋𝑖𝑗 = 1 𝑗 = 1,… ,𝑁2

𝑁2

∑
𝑗=1

𝑋𝑖𝑗 = 1 𝑖 = 1,… ,𝑁1

(2.43)

where 𝐶𝑖𝑗 is the cost of assigning element 𝑖 in set 𝑆1 to element 𝑗 in set 𝑆2, 𝑋𝑖𝑗 is a binary variable
indicating the assignment, which is set to 1 if element 𝑖 is assigned to element 𝑗 and 0 otherwise.

The optimal solution of the assignment problem can be obtained by the Hungarian algorithm
in polynomial time (Kuhn 1955).

The method introduces continuity constraints between the midpoints of consecutive slices by
incorporating the frequency and amplitude differences between the peaks at the midpoint of the
slices in the cost function. The frequency and amplitude differences between peak 𝑖 and 𝑗 in slice 𝑘
is defined as:

Δ𝑓 [𝑘]
𝑖𝑗 = 𝑓 [𝑘−1]

𝑖 [𝐻/2] − 𝑓 [𝑘]
𝑗 [−𝐻/2] (2.44)

Δ𝑎[𝑘]𝑖𝑗 = 𝑎[𝑘−1]
𝑖 [𝐻/2] − 𝑎[𝑘]𝑗 [−𝐻/2] (2.45)

where 𝐻 is the hop size, 𝑓 [𝑘]
𝑖 [𝑛] and 𝑎[𝑘]𝑖 [𝑛] are the instantaneous frequency and log-amplitude of

partial 𝑖 in slice 𝑘, respectively.
These constraints lead to two types of assignments: useful assignments and spurious assign-

ments. Useful assignments are those that satisfy the continuity constraints, while spurious assign-
ments are those that do not satisfy them and are thus ignored in the partial tracking process.

The cost of a useful assignment from peak 𝑖 in slice 𝑘 − 1 to peak 𝑗 in slice 𝑘 is defined as:

𝐶useful[𝑘]
𝑖𝑗 = 1 − exp⎛⎜

⎝
−
Δ𝑓 [𝑘]

𝑖𝑗
2

2𝜎2
𝑓

−
Δ𝑎[𝑘]𝑖𝑗

2

2𝜎2𝑎
⎞⎟
⎠

. (2.46)
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2.2. Sinusoidal Modeling

The parameters 𝜎2
𝑓 and 𝜎2

𝑎 are the variances of the frequency and amplitude distributions, re-
spectively, which are computed as:

𝜎2
𝑓 =

𝜁2𝑓
2 ln(𝛿 − 2) − 2 ln(𝛿 − 1) (2.47)

and
𝜎2
𝑎 = 𝜁2𝑎

2 ln(𝛿 − 2) − 2 ln(𝛿 − 1) (2.48)

where 𝜁𝑓 and 𝜁𝑎 are predefined thresholds that control the range of the frequency and amplitude
matching, respectively. 𝛿 is the parameter that controls the trade-off between useful and spurious
assignments.

The cost of a spurious assignment is defined as:

𝐶spurious
𝑖𝑗 = 1 − (1 − 𝛿)𝐶useful

𝑖𝑗 . (2.49)

To obtain both useful and spurious assignments using the Hungarian algorithm, the cost matrix
can be defined as:

𝐶𝑖𝑗 = min{𝐶useful
𝑖𝑗 , 𝐶spurious

𝑖𝑗 }. (2.50)

Consequently, assignments 𝑋𝑖𝑗 = 1 with 𝐶𝑖𝑗 = 𝐶useful
𝑖𝑗 are considered as useful assignments,

while those with 𝐶𝑖𝑗 = 𝐶spurious
𝑖𝑗 are categorized as spurious assignments.

If a useful assignment is not connected to any previous trajectories, this assignment is considered
as a born partial. If a previous trajectory does not correspond to any useful assignments in the
current slice, the partial is considered as dead.

This method achieves high-quality partial tracking results across various types of signals with
more robustness and less computational complexity thanpreviousmethods (Neri andDepalle 2018).

2.2.3 Sinusoidal synthesis

After obtaining the partials from the partial tracking algorithm described in Section 2.2.2, the signal
can be reconstructed across slices using the overlap-add technique. The reconstructed signal in the
𝑘-th slice is given by:

̂𝑦[𝑘][𝑛] = ℜ{
𝑃 [𝑘]

∑
𝑝=1

̂𝑎[𝑘]𝑝 exp (𝑗 (2𝜋𝑛 ̂𝑓 [𝑘]
𝑝 + 𝜑̂[𝑘]

𝑝 ))} (2.51)

and then each frame is overlap-added to its overlapping neighbors.

27



2. Review of Audio Inpainting Methods

However, this simple reconstruction process suffers from a limitation. The sinusoidal parame-
ters are fixed within each slice, which can lead to poor reconstruction quality. Therefore, interpo-
lation of sinusoidal parameters is required for better reconstruction.

In this section, wedescribe the synthesis technique for sinusoidalmodeling proposed byMcAulay
and Quatieri (1986), which involves the interpolation of both amplitude and phase parameters. The
linear interpolation of amplitude is performed for each slice using:

̂𝑎[𝑘]𝑝 [𝑛] = ̂𝑎[𝑘]𝑝 + 𝑛
𝐻 ( ̂𝑎[𝑘+1]

𝑝 − ̂𝑎[𝑘]𝑝 ) (2.52)

where𝐻 represents the hop size, and 𝑛 varies from 0 to𝐻 − 1.
For phase interpolation, a cubic polynomial is used in continuous time*:

𝜑̂[𝑘]
𝑝 (𝑡) = 𝜑[𝑘]

𝑝 + 𝜔[𝑘]
𝑝 𝑡 + 𝛼[𝑘]

𝑝 𝑡2 + 𝛽[𝑘]
𝑝 𝑡3. (2.53)

Four equations are constructed from the estimated frequencies and phases at the beginning and
end of the slice to determine the parameters of the cubic polynomial:

𝜑̂[𝑘]
𝑝 (0) = 𝜑[𝑘]

𝑝 = 𝜑̂[𝑘]
𝑝 (2.54)

𝜑̂′[𝑘]
𝑝 (0) = 𝜔[𝑘]

𝑝 = 2𝜋 ̂𝑓 [𝑘]
𝑝 (2.55)

𝜑̂[𝑘]
𝑝 (𝑇 ) = 𝜑[𝑘]

𝑝 + 𝜔[𝑘]
𝑝 𝑇 + 𝛼[𝑘]

𝑝 𝑇 2 + 𝛽[𝑘]
𝑝 𝑇 3 = 𝜑̂[𝑘+1]

𝑝 + 2𝜋𝑀 (2.56)

𝜑̂′[𝑘]
𝑝 (𝑇 ) = 𝜔[𝑘]

𝑝 + 2𝛼[𝑘]
𝑝 𝑇 + 3𝛽[𝑘]

𝑝 𝑇 2 = 2𝜋 ̂𝑓 [𝑘+1]
𝑝 (2.57)

where 𝑇 is the end time of a slice (𝐻 times the sample period), 𝑀 is an integer used for phase
unwrapping, 𝜑̂′[𝑘]

𝑝 represents the first-order derivative of 𝜑̂[𝑘]
𝑝 .

To determine the appropriate value of 𝑀 , a smoothness constraint is applied to the frequency
function. This ensures that the optimal 𝑀 leads to a maximally smooth frequency trajectory, or
in other words, a trajectory with the minimum frequency variance. The optimization problem is
formalized as:

𝑀̃ = argmin
𝑀

∫
𝑇

0
(𝜑̂′′[𝑘]

𝑝 (𝑡))
2
𝑑𝑡 (2.58)

where 𝜑̂′′[𝑘]
𝑝 denotes the second-order derivative of 𝜑̂[𝑘]

𝑝 . The solution 𝑀̃ is a real number, and the
optimal𝑀 is chosen as the closest integer to 𝑀̃ .

By incorporating both the linear amplitude interpolation and the cubic phase interpolation with
maximal smoothness, the final synthesized signal in slice 𝑘 is given by:

̂𝑦[𝑛] = ℜ{
𝑃 [𝑘]

∑
𝑝=1

̂𝑎[𝑘]𝑝 [𝑛] exp (𝑗𝜑̂[𝑘]
𝑝 [𝑛])} 𝑘𝐻 ≤ 𝑛 < (𝑘 + 1)𝐻. (2.59)

*The time 𝑡 is not the continuous time of the signal, but is normalized between 0 and𝐻 times the sample period.
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2.2. Sinusoidal Modeling

This synthesis technique is capable of reconstructing diverse types of signals (McAulay and
Quatieri 1986), and it will be used in our hybrid approach.

2.2.4 Sinusoidal inpainting models

One of the earliest methods that applies sinusoidal modeling to solve audio inpainting problem was
proposed by Maher (1993). This method matches all the partials on both sides of the gap based on
the linear extrapolation, and employs cubic polynomial extrapolation to estimate the amplitude and
frequency of a partial across the gap. However, this straightforward approach does not consider the
possibility of partial birth and death in the gap, and can produce false matches if the parameters of
the partials are modulated.

A more advanced method is described and will be used in our hybrid approach, which employs
linear prediction to estimate the parameters of partials in the gap, and interpolates matched par-
tials or extrapolates unmatched partials based on a specific technique (Lagrange et al. 2005). This
approach allows for the birth and death of partials and handles the phase discontinuity problem at
the gap boundaries. The method consists of three main steps: partial extension, partial matching,
and partial interpolation. The details of each step are given below.

In the partial extension stage, partials that appear on one side of the gap are extended to the
other side of the gap using Burgmethod for linear prediction, which is a technique that estimates the
optimal autoregressive parameters of a signal by minimizing the forward and backward prediction
errors recursively. The Burg method will be explained in Section 2.3.

In the partial matching stage, the extended partials from both sides of the gap arematched based
on the normalized Euclidean distance between two predicted partials in the gap. The normalized
Euclidean distance of frequency between the predicted partials ̂𝑝𝑖 and ̂𝑝𝑗 is defined as:

̄𝑑𝑓( ̂𝑝𝑖, ̂𝑝𝑗) =
‖ ̂𝐟𝑖 − ̂𝐟𝑗‖2 /√𝐾𝑅 −𝐾𝐿 + 1

1 + 𝜎( ̂𝐟𝑖) + 𝜎( ̂𝐟𝑗)
(2.60)

where 𝐾𝐿 and 𝐾𝑅 are the first and last unreliable slices in the gap, ̂𝐟𝑖 = [ ̂𝑓 [𝐾𝐿]
𝑖 ,… , ̂𝑓 [𝐾𝑅]

𝑖 ]
𝑇
, and

𝜎( ̂𝐟𝑖) is the standard deviation of the vector ̂𝐟𝑖. The normalized Euclidean distance of amplitude can
be defined in a similar way.

If both normalized Euclidean distances of a partial pair (𝑝𝑖, 𝑝𝑗) are smaller than their frequency
and amplitude thresholds ( ̄𝑑𝑓( ̂𝑝𝑖, ̂𝑝𝑗) < 𝑇𝑓 , ̄𝑑𝑎( ̂𝑝𝑖, ̂𝑝𝑗) < 𝑇𝑎), these two partials are merged into one
partial 𝑝𝑚, and the partials 𝑝𝑖 and 𝑝𝑗 are removed from the list.

In the partial interpolation stage, the parameters of the matched partials are interpolated in
the gap using a crossfade technique with an asymmetric window function. For the merged partial
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2. Review of Audio Inpainting Methods

𝑝𝑚, the predicted frequency ̂𝑓𝑚 is obtained by crossfading between ̂𝑓𝑖 and ̂𝑓𝑗 with an asymmetric
window function ̃𝜓, which is defined as:

̂𝑓 [𝑘]
𝑚 = ̃𝜓( 𝑘 −𝐾𝐿 + 1

𝐾𝑅 −𝐾𝐿 + 2)
̂𝑓 [𝑘]
𝑖 +(1 − ̃𝜓( 𝑘 −𝐾𝐿 + 1

𝐾𝑅 −𝐾𝐿 + 2))
̂𝑓 [𝑘]
𝑗 . (2.61)

The asymmetric window function is derived from time-wrapping a symmetric cosine window
̆𝜓:

̆𝜓(𝑡) = 1 + cos(𝜋(1 + 𝑡))
2 (2.62)

where 𝑡 is continuous time ranged from 0 to 1. The time-wrapping is related to the lengths of 𝑝𝑖 and
𝑝𝑗, and satisfies a constraint that the midpoint of the window corresponds to the relative length of
partial 𝑝𝑖, which is formalized by:

̃𝜓(
𝑁𝑝𝑖

𝑁𝑝𝑖
+𝑁𝑝𝑗

) = 1
2 (2.63)

where 𝑁𝑝𝑖
and 𝑁𝑝𝑗

are the lengths of partial 𝑝𝑖 and 𝑝𝑗. The time-wrapping function 𝜚(𝑁𝑝𝑖
, 𝑁𝑝𝑗

) is
defined as:

𝜚(𝑁𝑝𝑖
, 𝑁𝑝𝑗

) = ln(1/2)
ln{ ̆𝜓 (𝑁𝑝𝑖

/(𝑁𝑝𝑖
+𝑁𝑝𝑗

))}
. (2.64)

Therefore, the asymmetric window is defined as:

̃𝜓 =
⎧{
⎨{⎩

̆𝜓(𝑡)𝜚(𝑁𝑝𝑖 ,𝑁𝑝𝑗 ) 𝑁𝑝𝑖
> 𝑁𝑝𝑗

1 − (1 − ̆𝜓(𝑡))𝜚(𝑁𝑝𝑗 ,𝑁𝑝𝑖 ) otherwise
. (2.65)

Theamplitude of a partial usually has largermodulation than frequency, so the proposedmethod
constrains the predicted amplitudes ̂𝑎𝑖 and ̂𝑎𝑗 for a smooth transition. The predicted amplitude ̂𝑎𝑖
at the end of the gap should equal to the local average amplitude of partial 𝑝𝑗. Therefore, the con-
strained amplitude of partial 𝑝𝑖 is:

̌𝑎[𝑘]𝑖 = ̂𝑎[𝑘]𝑖 + 𝑘 −𝐾𝐿 + 1
𝐾𝑅 −𝐾𝐿 + 2

⎛⎜
⎝

∑𝑙𝑗
𝑞=1 ̂𝑎[𝐾𝑅+𝑞]

𝑗
𝑙𝑗

− ̂𝑎[𝐾𝑅+1]
𝑖

⎞⎟
⎠

(2.66)

where 𝑙𝑗 = min{𝑁𝑝𝑗
, 𝐿avg} is the number of slices for calculating the local average of partial 𝑝𝑗

from slice𝐾𝑅 +1 to slice𝐾𝑅 + 𝑙𝑗, 𝐿avg is a parameter for controlling the range for the calculation.
Similarly, the constrained amplitude of partial 𝑝𝑗 is:

̌𝑎[𝑘]𝑗 = ̂𝑎[𝑘]𝑗 + 𝑘 −𝐾𝑅 − 1
𝐾𝑅 −𝐾𝐿 + 2

⎛⎜
⎝

∑𝑙𝑖
𝑞=1 ̂𝑎[𝐾𝐿−𝑞]

𝑖
𝑙𝑖

− ̂𝑎[𝐾𝐿−1]
𝑗

⎞⎟
⎠

. (2.67)
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2.2. Sinusoidal Modeling

The amplitude of merged partial 𝑝𝑚 is then constructed using the same asymmetric window:

̂𝑎[𝑘]𝑚 = ̃𝜓( 𝑘 −𝐾𝐿 + 1
𝐾𝑅 −𝐾𝐿 + 2) ̌𝑎[𝑘]𝑖 +(1 − ̃𝜓( 𝑘 −𝐾𝐿 + 1

𝐾𝑅 −𝐾𝐿 + 2)) ̌𝑎[𝑘]𝑗 . (2.68)

The phase of a partial 𝑝𝑚 in the gap is constructed iteratively from left to right:

𝜑̂[𝐾𝐿]
𝑚 = 𝜑[𝐾𝐿−1]

𝑚 + 𝐻
𝑓𝑠

𝜋 (𝑓 [𝐾𝐿−1]
𝑚 + ̂𝑓 [𝐾𝐿]

𝑚 ) (2.69)

𝜑̂[𝐾𝐿+𝑘]
𝑚 = 𝜑̂[𝐾𝐿+𝑘−1]

𝑚 + 𝐻
𝑓𝑠

𝜋 ( ̂𝑓 [𝐾𝐿+𝑘−1]
𝑚 + ̂𝑓 [𝐾𝐿+𝑘]

𝑚 ) (2.70)

where 𝑘 ∈ [1,𝐾𝑅 − 𝐾𝐿 + 1], 𝑓𝑠 is the sample rate. However, the predicted phase at slice 𝐾𝑅 + 1
may not equal to the actual phase from the partial 𝑝𝑗, leading to a phase discontinuity. The phase
prediction error at𝐾𝑅 + 1 is defined as:

𝑒𝜑𝑚
= wrap(𝜑̂[𝐾𝑅+1]

𝑚 − 𝜑[𝐾𝑅+1]
𝑚 ) (2.71)

wherewrap(𝜑) is the phase wrapping function that maps any angle𝜑 to the range [−𝜋, 𝜋). An error
spreading method is proposed to spread the prediction error into each slice in the gap to reduce the
discontinuity. The phases after spreading are computed by:

𝜑̃[𝑘]
𝑚 = 𝜑̂[𝑘]

𝑚 + 𝑘 −𝐾𝐿 + 1
𝐾𝑅 −𝐾𝐿 + 2 wrap(𝑒𝜑𝑚

). (2.72)

For the unmatched partials, the amplitude should decay to zero in the gap if there is a partial
death, which can be formalized by:

̃𝑎[𝑘]𝑖 = ̂𝑎[𝑘]𝑖 − 𝑘 −𝐾𝐿 + 1
𝑙𝐷

max{ ̂𝑎[𝐾𝐿+𝑙𝐷−1]
𝑖 , 0} (2.73)

where 𝑙𝐷 is the maximum length of partial death. Similarly, the amplitude should increase from
zero in the gap if there is a partial birth, which can be formalized by:

̃𝑎[𝑘]𝑗 = ̂𝑎[𝑘]𝑗 − 𝐾𝑅 − 𝑘 + 1
𝑙𝐵

max{ ̂𝑎[𝐾𝑅−𝑙𝐵+1]
𝑗 , 0} (2.74)

where 𝑙𝐵 is themaximum length of partial birth. The frequency and phase of the unmatched partials
are not modified in the gap.

The study demonstrates that the proposed method achieves improved reconstruction quality
for gaps up to hundreds of milliseconds based on subjective listening tests, especially for complex
polyphonic signals with modulations (Lagrange et al. 2005).
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A more recent method extends the previous work by interpolating both the sinusoidal and the
noisy residual components of the audio signals, which makes the method more suitable for a wider
range of audio signals (Lukin and Todd 2008). Themethod also proposes a technique to interpolate
the partials based on decomposing the frequency and amplitude trajectories of a partial to a sum
of sinusoids, and use one interpolated partial with different frequency-shifts to build consistent
harmonic structure. This method improves reconstruction quality and robustness for noisy and
harmonic signals (Lukin and Todd 2008).

2.2.5 Limitation of sinusoidal inpainting models

The sinusoidal inpainting method utilizes prior knowledge to extract higher-level structural infor-
mation (partials) from audio signals than atoms in sparse decomposition, enabling it to reconstruct
longer gaps without energy loss and to handle modulated signals. However, there are still some
limitations related to this type of approaches.

One limitation is that the sinusoidal modeling is not suitable for reconstructing the noise com-
ponent of the audio signals. Somemethods only synthesize the sinusoidal component and disregard
the noise component, which can cause perceptual artifacts (Lagrange et al. 2005). Some methods
use alternative techniques to deal with the noise, such as autoregressive modeling (Lukin and Todd
2008), which will be discussed in Section 2.3.

Another limitation is that some sinusoidal inpaintingmethods using linear prediction to extend
the partial trajectory struggle to interpolate chirp-like partials, which frequency variations do not
have an autoregressive structure. This is because these methods assume that the partials are sta-
tionary or slowly varying, while a chirp contains a trend that is hard to capture by autoregressive
models. This can result in inaccurate interpolation results, as illustrated in Figure 2.7.

Moreover, the performance of the sinusoidal inpainting method relies heavily on the quality of
parameter estimation and partial tracking algorithms. For signals with crossing partials or signif-
icant noise, the tracked partials are often fragmented. In this case, a partial is split into multiple
partials and each has erroneous values at both ends. This makes it difficult to predict the partials
in the gap using less reliable information from shortened partials due to fragmentation, which can
impair the quality of reconstruction. The fragmentation of tracked partials is shown in Figure 2.8.
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Figure 2.7 Interpolation of a linearly increasing curve with a gap using the Burg method with
32 poles. The dash lines indicate the start and end of the gap. The red solid line in the gap is the
prediction result using the Burg method, which shows an autoregressive structure that oscillates
around it.
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Figure 2.8 Fragmentation of tracked partials in a synthesized audio signal consisting of a har-
monic signal with a vibrato, mixed with chirps plus background noise. All parameters are un-
changed as in Neri and Depalle (2018).
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2.3 Autoregressive Modeling

Autoregressive (AR)modeling is amodel for both analysis and synthesis of audio signals. Themodel
assumes that each sample of a signal is a linear combination of its past samples. A 𝑝-th order AR
model is defined as:

̂𝑦[𝑛] = −
𝑝

∑
𝑘=1

𝑎𝑘𝑦[𝑛 − 𝑘] (2.75)

where 𝑎𝑘 are the AR coefficients and ̂𝑦[𝑛] is the modeled signal.
By incorporating an input signal, the autoregressive structure defines the structure of a system

that constrains how an input signal evolves over time. A 𝑝-th order AR structure is defined as:

𝑦[𝑛] = 𝑥[𝑛] −
𝑝

∑
𝑘=1

𝑎𝑘𝑦[𝑛 − 𝑘] (2.76)

where 𝑥[𝑛] is the input signal, and 𝑦[𝑛] is the output signal.
In the deterministic context, the AR structure is an infinite impulse response (IIR) filter process-

ing an input signal 𝑥[𝑛]. In the stochastic context, the AR structure represents a random process
that assumes that each sample in the sequence is a linear combination of its previous values plus
a random variable. This random variable represents the unpredictable part of the signal, and it is
usually modeled as white noise 𝜖[𝑛].

If an observed signal 𝑦[𝑛] is modeled by an ARmodel ̂𝑦[𝑛], the error (or residual) 𝑒[𝑛] of the AR
model can be calculated by taking the difference between the actual signal 𝑦[𝑛] and its model ̂𝑦[𝑛]:

𝑒[𝑛] = 𝑦[𝑛] − ̂𝑦[𝑛] = 𝑦[𝑛] +
𝑝

∑
𝑘=1

𝑎𝑘𝑦[𝑛 − 𝑘]. (2.77)

If we compare this equation with the AR structure in Eq. (2.76), the error can be considered as
the input 𝑥[𝑛] (or a white noise 𝜖[𝑛]) of the system.

In addition, the AR structure can be expressed in the frequency domain. Using 𝑧-transform,
Eq. (2.76) can be rewritten as:

𝑌 (𝑧) = 𝑋(𝑧)
1 +∑𝑝

𝑘=1 𝑎𝑘𝑧−𝑘 (2.78)

where 𝑌 (𝑧) and 𝑋(𝑧) are the 𝑧-transforms of 𝑦[𝑛] and 𝑥[𝑛], respectively. Therefore, the 𝑝-th order
AR structure can be considered as an all-pole filter with 𝑝 poles. The transfer function𝐻(𝑧) of the
all-pole filter is:

𝐻(𝑧) = 𝑌 (𝑧)
𝑋(𝑧) = 1

1 +∑𝑝
𝑘=1 𝑎𝑘𝑧−𝑘 . (2.79)
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ARmodeling can be considered from two perspectives, which will be explained in Section 2.3.1.
The techniques of obtaining the AR coefficients will be described in Section 2.3.2 and 2.3.3. Sec-
tion 2.3.4 provides two AR-based models for addressing the audio inpainting problem.

2.3.1 Dual perspectives of ARmodeling

Autoregressive modeling can be applied from two different perspectives for achieving different
goals: synthesis and analysis. In the synthesis perspective, the goal is to generate a signal 𝑦[𝑛] from
an input signal 𝑥[𝑛] using a given AR structure, which is parameterized in terms of coefficients 𝑎𝑘.
The output signal is thus obtained by filtering the input signal 𝑥[𝑛] with the IIR filter which transfer
function is 𝐻(𝑧) in Eq. (2.79). In practice, we usually choose the input signal to be a white noise
𝜖[𝑛] with zero mean and unit variance. Signal 𝑦[𝑛] can be formulated as:

𝑦[𝑛] = 𝐺𝜖[𝑛] −
𝑝

∑
𝑘=1

𝑎𝑘𝑦[𝑛 − 𝑘]. (2.80)

Therefore, a scaling factor 𝐺 should be added to scale the input noise to change the variance of
the output signal. This procedure is illustrated in Figure 2.9a.

One application of this synthesis perspective is the source-filter synthesis model. Source-filter
consists of synthesizing a sound by filtering a spectrally rich input sound source. It was originally
proposed to explain the production of speech (Fant 1971), and then was extended to speech or
musical instrument sound synthesis (Makhoul 1975; Caetano and Rodet 2012). The sound source
can be various types of signals, such as a pulse train or noise. The filters are usually obtained by
analyzing the acoustic features of a target sound. In this thesis, this source-filter technique is applied
to reconstruct the time-varying noise component within the gap.

In the analysis perspective, we assume that a given signal 𝑦[𝑛] is generated by an input signal 𝑥[𝑛]
filtered with a specific AR structure, and the goal is to estimate the AR structure. Suppose that the
𝑝-th-order AR structure is estimatedwith the right parameters 𝑎𝑘. Then, we canwrite the prediction
error signal 𝑒[𝑛] in the form of Eq. (2.77), which ideally should be white noise with a mean of zero
and a variance of 𝐺2 (𝐺 is the scaling factor used in the synthesis perspective). In other words,
the error signal 𝑒[𝑛] (or input signal 𝑥[𝑛]) can be obtained by filtering the given signal 𝑦[𝑛] with an
all-zero finite impulse response (FIR) filter, which is known as the inverse filter (Makhoul 1975).
The transfer function of this FIR filter 𝐴(𝑧) can be deduced from rewriting Eq. (2.77) using the
𝑧-transform:

𝐴(𝑧) = 𝐸(𝑧)
𝑌 (𝑧) = 1 +

𝑝
∑
𝑘=1

𝑎𝑘𝑧−𝑘. (2.81)
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H(z) y[n]x[n]
(Gϵ[n])

(a) synthesis

x[n]
(Gϵ[n])

A(z) y[n]

(b) analysis

Figure 2.9 Dual perspectives of AR modeling.

This procedure is illustrated in Figure 2.9b.
One application of this analysis perspective is the spectral envelope estimation, which is to an-

alyze a signal to approximate its spectral envelope from estimated AR coefficients (Makhoul 1975).
By reorganizing Eq. (2.81) and replacing 𝑧 with 𝑒𝑗𝜔, we get:

𝑌 (𝑒𝑗𝜔) = 𝐸(𝑒𝑗𝜔)
1 +∑𝑝

𝑘=1 𝑎𝑘𝑒−𝑗𝜔𝑘 . (2.82)

The power spectral density (PSD) of the output signal 𝑦[𝑛] is then defined as:

𝑃𝑦(𝜔) = |𝑌 (𝑒𝑗𝜔)|2 = ∣𝐸(𝑒𝑗𝜔)∣2

∣1 +∑𝑝
𝑘=1 𝑎𝑘𝑒−𝑗𝜔𝑘∣2

. (2.83)

As the transfer function of the estimated AR structure is:

𝐻(𝑧) = 𝐺
𝐴(𝑧) = 𝐺

1 +∑𝑝
𝑘=1 𝑎𝑘𝑧−𝑘 . (2.84)

The estimated PSD from the AR structure filtering the white noise of variance 1 is given by:

̂𝑃𝑦(𝜔) = |𝐻(𝑒𝑗𝜔)|2 = 𝐺2

∣1 +∑𝑝
𝑘=1 𝑎𝑘𝑒−𝑗𝜔𝑘∣2

. (2.85)

The optimal AR structure, which is obtained by minimizing the variance of the error, can be
reformulated in the spectral domain:

SSE𝑦 = 1
2𝜋 ∫

𝜋

−𝜋
|𝐸(𝑒𝑗𝜔)|2 𝑑𝜔 = 𝐺2

2𝜋 ∫
𝜋

−𝜋

𝑃𝑦(𝜔)
̂𝑃𝑦(𝜔)

𝑑𝜔. (2.86)
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According to this equation, minimizing the error corresponds to minimizing the ratio of the
integrated PSD of the signal to its approximation on the unit circle, thereby providing an estimation
of the spectral envelope of signal 𝑦[𝑛] with a smooth curve with ⌈𝑝/2⌉ peaks (Hayes 1996).

However, the shape of the estimated spectral envelope depends on the method used to estimate
the AR coefficients (Kay andMarple 1981). Therefore, one should choose an appropriate estimation
method and model order according to their application and the characteristics of the input signal.
Section 2.3.3 will discuss some of these estimation methods.

2.3.2 Evaluating AR coefficients from the correlation of the signal

In this section, we will derive the AR coefficients 𝑎𝑘 of an AR model. Suppose that the input signal
is a white noise 𝜖[𝑛]with zeromean and unit variance. TheAR structure can be compactly rewritten
as: 𝑝

∑
𝑘=0

𝑎𝑘𝑦[𝑛 − 𝑘] = 𝜖[𝑛] (2.87)

where 𝑎0 = 1.
Multiplying both sides by 𝑦∗[𝑛 − 𝑙] for 𝑙 = 0, 1,… , 𝑝 and taking the expectation, we obtain:

𝑝
∑
𝑘=0

𝑎𝑘E{𝑦[𝑛 − 𝑘]𝑦∗[𝑛 − 𝑙]} = E{𝜖[𝑛]𝑦∗[𝑛 − 𝑙]} (2.88)

where E{𝑥} is the expectation of 𝑥, and 𝑦∗[𝑛] is the complex conjugate of 𝑦[𝑛]. Since 𝜖[𝑛] is uncor-
related with past values of 𝑦[𝑛], we have E{𝜖[𝑛]𝑦[𝑛 − 𝑙]} = 0 for any 𝑙 > 0. This equation can be
rewritten with the autocorrelation function:

𝑝
∑
𝑘=0

𝑎𝑘𝑟𝑦(𝑙 − 𝑘) =
⎧{
⎨{⎩

∑𝑝
𝑘=0 𝑟𝑦(−𝑘) for 𝑙 = 0

0 for 𝑙 > 0
(2.89)

where 𝑟𝑦(𝑙) is the autocorrelation of signal 𝑦[𝑛] with lag 𝑙. These equations are referred to as the
Yule-Walker equations. The equations can also be written in matrix form as:

⎡
⎢⎢⎢⎢
⎣

𝑟𝑦(0) 𝑟𝑦(−1) ⋯ 𝑟𝑦(−𝑝)
𝑟𝑦(1) 𝑟𝑦(0) ⋯ 𝑟𝑦(−𝑝 + 1)
⋮ ⋮ ⋱ ⋮

𝑟𝑦(𝑝) 𝑟𝑦(𝑝 − 1) ⋯ 𝑟𝑦(0)

⎤
⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐑𝐲

⎡
⎢⎢⎢⎢
⎣

𝑎0
𝑎1
⋮
𝑎𝑝

⎤
⎥⎥⎥⎥
⎦⏟

𝐚

=
⎡
⎢⎢⎢⎢
⎣

∑𝑝
𝑘=0 𝑟𝑦(−𝑘)

0
⋮
0

⎤
⎥⎥⎥⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐛

(2.90)
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or compactly:
𝐑𝑦𝐚 = 𝐛. (2.91)

Since the autocorrelation matrix𝐑𝑦 is a Toeplitz matrix, the Levinson-Durbin recursion can be
applied to solve the AR coefficients 𝐚 efficiently (Kay 1988).

2.3.3 Estimating AR coefficients from the observed signal samples

In practice, the autocorrelation 𝑟𝑦(𝑙) is unknown, since we do not have all the possible realizations
of the signal 𝑦[𝑛]. Therefore, AR coefficients cannot be obtained and can only be estimated. We
usually estimate the AR coefficients from a finite number of samples from one specific realization of
a randomprocess. This technique is referred to as linear prediction. In this section, wewill introduce
two methods for estimating the AR coefficients: the autocorrelation method and the Burg method.
These methods will be used in subsequent sections.

The autocorrelationmethod directly estimate the autocorrelation 𝑟𝑦(𝑙) based on the observed𝑁
samples of the signal 𝑦[𝑛] and use the estimated autocorrelation to solve the Yule-Walker equations.
The estimated autocorrelation ̂𝑟𝑦(𝑙) is defined as:

̂𝑟𝑦(𝑙) =
1
𝑁

𝑁−1
∑
𝑛=0

𝑦[𝑛]𝑦[𝑛 − 𝑙]. (2.92)

The Burg method, on the other hand, does not rely on solving the Yule-Walker equation but
rather expresses the AR structure (inverse filter𝐴(𝑧)) as a lattice structure. The estimated AR coeffi-
cients are derived from the estimation of reflection coefficients of the lattice structure byminimizing
the forward and backward prediction errors iteratively (Hayes 1996).

The forward prediction error 𝑒→𝑘 [𝑛] at order 𝑘 is defined as the difference between signal 𝑦[𝑛]
and its prediction ̂𝑦[𝑛]:

𝑒→𝑘 [𝑛] = 𝑦[𝑛] − ̂𝑦[𝑛] = 𝑦[𝑛] +
𝑘

∑
𝑙=1

𝑎𝑘[𝑙]𝑦[𝑛 − 𝑙], (2.93)

where 𝑎𝑘[𝑙] represents the 𝑙-th AR coefficient (𝑎𝑙) at order 𝑘.
The backward prediction error 𝑒←𝑘 [𝑛] at order 𝑘 is then defined based on the Levinson-Durbin

recursion:

𝑒←𝑘 [𝑛] = 𝑦[𝑛 − 𝑘] − ̂𝑦[𝑛 − 𝑘] = 𝑦[𝑛 − 𝑘] +
𝑘

∑
𝑙=1

𝑎∗𝑘[𝑙]𝑦[𝑛 − 𝑘 + 𝑙]. (2.94)

Using the two prediction errors from the previous order, we can build a cell of lattice structure,
which is illustrated in Figure 2.10. The prediction errors for the next order can be calculated by the
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following equations:

𝑒→𝑘+1[𝑛] = 𝑒→𝑘 [𝑛] + 𝛾𝑘+1𝑒←𝑘 [𝑛 − 1] (2.95)

𝑒←𝑘+1[𝑛] = 𝑒←𝑘 [𝑛 − 1] + 𝛾∗
𝑘+1𝑒→𝑘 [𝑛] (2.96)

where 𝑒→0 [𝑛] = 𝑒←0 [𝑛] = 𝑦[𝑛], and 𝛾𝑘 is referred to as the 𝑘-th reflection coefficient, which determines
the coefficients of the 𝑘-th lattice filter.

+

+
Figure 2.10 Single cell of a FIR lattice structure.

The Burg method aims to estimate the reflection coefficients 𝛾𝑘 based on the average of the sum
of the squares of the forward and backward errors:

̄𝑒↔𝑘 = 1
2(𝑁 − 𝑘)

𝑁−1
∑
𝑛=𝑘

(|𝑒→𝑘 [𝑛]|2 + |𝑒←𝑘 [𝑛]|2) (2.97)

where𝑁 is the length of signal 𝑦[𝑛].
The reflection coefficients 𝛾𝑘 are obtained by differentiating ̄𝑒↔𝑘 with respect to 𝛾𝑘, which yields

𝛾𝑘 = −2∑𝑁−1
𝑛=𝑘 𝑒→𝑘−1[𝑛]𝑒←∗

𝑘−1[𝑛 − 1]
∑𝑁−1

𝑛=𝑘 (|𝑒→𝑘−1[𝑛]|2 + |𝑒←𝑘−1[𝑛 − 1]|2)
. (2.98)

Then, the AR coefficients 𝑎𝑘 can be calculated from the reflection coefficients as follows:

𝑎𝑘[𝑛] =
⎧{
⎨{⎩

𝑎𝑘−1[𝑛] + 𝛾𝑘𝑎∗𝑘−1[𝑘 − 𝑛] 𝑛 = 1, 2,… , 𝑘 − 1
𝛾𝑘 𝑛 = 𝑘

. (2.99)

Since |𝛾𝑘| ≤ 1, the Burg method ensures that all estimated poles are on or inside the unit circle,
thus the estimated all-pole filter is always stable (Kay 1988).
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2.3.4 AR-based inpainting models

One possible use of the ARmodeling is to predict the future values of a signal from its past observa-
tion, based on estimating theAR coefficients that best capture the underlying temporal relationships
within the signal (Makhoul 1975). This predictive aspect ofARmodeling in the timedomain enables
the interpolation and extrapolation of a signal, which can be useful for applications such as audio
inpainting. In this section, we will describe two distinct methods for AR-based audio inpainting
(Janssen et al. 1986; Etter 1996).

The first method, proposed by Janssen et al. (1986), assumes that the signal is stationary around
the missing samples, which allows us to regenerate them based on the AR parameters that are esti-
mated from the reliable neighborhood.

Let 𝐲 = [𝑦[0], 𝑦[1],… , 𝑦[𝑁 − 1]]𝑇 be a signal with some missing samples. The missing samples
are denoted by 𝐦 = [𝑦[𝑚1], 𝑦[𝑚2],… , 𝑦[𝑚𝑀 ]]𝑇 . Since an AR model can represent one missing
sample by other previous samples, the sum of the squares of the prediction error of the AR model
is given by:

SSE(𝐚,𝐦) =
𝑁−1
∑
𝑛=𝑝

∣
𝑝

∑
𝑙=0

𝑎𝑙𝑦[𝑛 − 𝑙]∣
2

. (2.100)

where 𝐚 = [𝑎1,… , 𝑎𝑝]𝑇 , 𝑎0 = 1.
The goal of this method is to minimize SSE(𝐚,𝐦) with respect to both AR parameters 𝐚 and

missing samples𝐦. However, this is a nontrivial problem. Thismethod seeks to obtain a suboptimal
solution based on an iterative approach. At the k-th iteration, we obtain an estimate of 𝐚̂(k) from the
previous estimate of 𝐦̂(k-1), and then use that 𝐚̂(k) to obtain the estimate of 𝐦̂(k) for this iteration.
This can be achieved by solving the following two equations:

𝐚̂(k) ∶ 𝜕 SSE(𝐚, 𝐦̂
(k-1))

𝜕𝐚 = 0 (2.101)

𝐦̂(k) ∶ 𝜕 SSE(𝐚̂
(k),𝐦)

𝜕𝐦 = 0. (2.102)

This procedure is initialized with𝐦(0) = 0, and terminated when convergence is reached.
The second method, proposed by Etter (1996), uses two separate AR models for the left-sided

and right-sided neighborhood, and crossfades two extrapolations to restore the missing samples.
Suppose the signal 𝐲 is separated into three segments: left reliable part 𝐲𝐿 = [𝑦[0],… , 𝑦[𝑚𝐿 −

1]]𝑇 , missing part𝐲𝑀 = [𝑦[𝑚𝐿],… , 𝑦[𝑚𝑅]]𝑇 , and right reliable part𝐲𝑅 = [𝑦[𝑚𝑅+1],… , 𝑦[𝑁−1]]𝑇 .
We estimate the AR parameters 𝑎→𝑘 for the left reliable part, then calculate the forward prediction
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of the missing samples as follows:

̂𝑦→[𝑚] =
⎧{{
⎨{{⎩

𝑝
∑
𝑘=1

𝑎→𝑘 ̂𝑦→[𝑚 − 𝑘] 𝑚𝐿 ≤ 𝑚 ≤ 𝑚𝑅

𝑦[𝑚] otherwise

. (2.103)

Similarly, we estimate the AR parameters 𝑎←𝑘 for the right reliable part from right to left, then
calculate the backward prediction as follows:

̂𝑦←[𝑚] =
⎧{{
⎨{{⎩

𝑝
∑
𝑘=1

𝑎←𝑘 ̂𝑦←[𝑚 + 𝑘] 𝑚𝐿 ≤ 𝑚 ≤ 𝑚𝑅

𝑦[𝑚] otherwise

. (2.104)

The estimated signal is obtained by crossfading the forward and backward prediction:

̂𝑦[𝑚] = 𝜓(1
2 + 𝑚−𝑚𝐿

2(𝑚𝑅 −𝑚𝐿 + 1)) ̂𝑦→[𝑚] + 𝜓( 𝑚−𝑚𝐿
2(𝑚𝑅 −𝑚𝐿 + 1)) ̂𝑦←[𝑚] (2.105)

where 𝜓(𝑡) = 1
2 (1 − cos(2𝜋𝑡)), 𝑡 ∈ [0, 1) is the raised-cosine window.

This method does not require the signal to be stationary over the entire missing segment, which
leads to better performance for various types of signals, compared with Janssen’s method (Etter
1996).
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3
Hybrid Inpainting Approach

In the previous chapter, we explored and discussed various existing methods that have been com-
monly used in the context of audio inpainting. These methods, while providing valuable insights
and advancements, often exhibit certain limitations when applied to various audio signals.

In this chapter, we propose a hybrid approach that views an audio signal as a mixture of three
components: tonal, transient, and noise. By integrating and refining previous methods for treating
the different components, our proposed approach aims to overcome the limitations observed in
individual techniques and achieve better reconstruction quality. Figure 3.1 illustrates the overall
process of our method.

input 
signal

tonal 
decomposition

+

noise 
reconstruction

transient 
decomposition

tonal 
reconstruction

post-processing
output 
signal

pre-processing

Figure 3.1 The overview structure of the proposed hybrid approach.

The rest of this chapter is organized as follows: Section 3.1 describes the pre-processing proce-
dure for this approach. Section 3.2 discusses the methods used to decompose an audio signal into
its tonal component and the remainder. Section 3.3 illustrates howwe reconstruct the deterministic
(tonal) part using partial analysis and prediction. Section 3.4 explains how to separate the transient
and stochastic components of the residual signal. Section 3.5 provides two techniques for restor-
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ing the noise component. Section 3.6 demonstrates how to construct the output signal using the
previously predicted components.

3.1 Pre-processing

Thepre-processing involves shortening and aligning the input signal for future processes. The length
of the shortened signal is determined by the signal type and the length of the gap. The center of the
gap should be aligned with the window so that the reconstruction energy will be symmetric (Mokrý
and Rajmic 2020). The amount of extra shift is referred to as the offset. There are two configurations
of offsets: the full offset aligns the center of the gap with the center of a Gabor window, whereas the
half offset places the gap’s center just in the midpoint of two adjacent windows (Mokrý and Rajmic
2020). In our method, the half offset configuration will be chosen.

The minimum length of the shortened signal is determined based on the offset, window size,
and time shift of the window (Rajmic et al. 2015). In order to better estimate time-varying signals,
we will set the length longer than the minimal support. The extended length of the left and right
neighborhoods𝑁neighbor will be an integer multiple of the time shift of the window.

3.2 Sparse Decomposition of Tonal Part

In our hybrid approach, we will process the three components of audio signals in a different way.
In order to process these components, we first decompose the signal into a deterministic part and a
residual part by using sparse decomposition with an iterative re-weighting method.

3.2.1 Model selection

We use the analysis variant* of social sparsity for the decomposition of the tonal part. The goal is to
solve an optimization problem of the following form:

argmin
𝐱

{1
2‖𝐌R𝐱 −𝐌R𝐲‖22 + 𝜆‖𝚽H𝐱‖1} . (3.1)

TheLoris-Verhoeven (LV) algorithm could be applied to solve this problem (Záviška andRajmic
2022). The algorithm is summarized in Algorithm 7.

*Themethod of calculating the neighborhood of the social sparsity has been changed, and the details are described
in Section 3.2.3.
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Algorithm 7. Loris-Verhoeven (LV) algorithm for audio inpainting, where 𝐮(n-1/2) designates the
intermediate state of 𝐮(n) in each iteration.
Input: input signal 𝐲, reliable mask 𝐌R, synthesis operator 𝚽, analysis operator 𝚽H, weights 𝐰,

parameters 𝜎, 𝜏 , 𝜌
Output: estimated signal 𝐱
Initialization: n = 1, 𝐱(0) = 𝐲, 𝐮(0) = 𝚽H𝐲
1: repeat
2: 𝐠(n-1) = 𝐌H

R(𝐌R𝐱(n-1) −𝐌R𝐲)
3: 𝐯(n-1) = 𝐮(n-1) + 𝜎𝚽H(𝐱(n-1) − 𝜏𝐠(n-1) − 𝜏𝚽𝐮(n-1))
4: 𝐮(n-1/2) = 𝐯(n-1) − 𝜎𝒮𝜆/𝜎,𝐰(𝐯(n-1)/𝜎)
5: 𝐱(n) = 𝐱(n-1) − 𝜌𝜏(𝐠(n-1) +𝚽𝐮(n-1/2))
6: 𝐮(n) = 𝐮(n-1) + 𝜌(𝐮(n-1/2) − 𝐮(n-1))
7: n = n+ 1
8: until stopping condition

3.2.2 Reweighting method

We propose an iterative reweighting method for the sparse decomposition process to penalize un-
wanted frequencies in noise and preserve more energy of the partials. The shrinkage thresholds
for each atom depend on both 𝜆 and the weight 𝑤𝑘. For example, the Persistent Empirical Wiener
(PEW) shrinkage function with weight coefficient 𝑤𝑘 (Siedenburg et al. 2014) is:

𝒮𝜆,𝐰(𝑥𝑘) = 𝑥𝑘(1 −
𝜆2 ⋅ 𝑤𝑘

‖𝒩(𝑥𝑘)‖22
)

+
(3.2)

To implement the iterative reweighting method, we calculate the autocorrelation of both left
(𝑥L) and right (𝑥R) parts of the reliable neighborhood:

𝑟𝑥(𝑛) =
1
𝑁E{𝑥𝑛+𝑚𝑥∗

𝑚} =
⎧{
⎨{⎩

1
𝑁 ∑𝑁−𝑛+1

𝑚=0 𝑥𝑛+𝑚𝑥∗
𝑚 𝑚 ≥ 0

𝑟∗𝑥(−𝑚) 𝑚 < 0
(3.3)

where E{𝑥} is the expected value of 𝑥. The range of the autocorrelation signal is from−(𝑁 − 1) to
𝑁 − 1.

Then we estimate the PSD of these two signals, using the Burg’s AR method with 𝑝tonal poles
(see Section 2.3). The corresponding PSD will be obtained by calculating the frequency response
from the AR coefficients. The number of data points of the frequency response should match the
number of the frequency bins of a frame. The PSD curve 𝑝[𝑘] is shown in Figure 3.2a.
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Since the energy of high frequency components is low and we want a flat reweighting curve, we
flatten the PSD curve. To achieve that, we track the prominent peaks of the PSD whose amplitude
is above the amplitude threshold 𝑎peak. Then we use linear interpolation to draw a curve 𝑞[𝑘] that
connects these peaks (Figure 3.2b). For the parts without peaks on the left and right sides, the
values should be the amplitudes of the nearest peaks. If there are no peaks detected, the value of this
curve is set to 1. The flattened curve is the PSD curve 𝑝[𝑘] divided by the peak curve 𝑞[𝑘], and the
values smaller than the threshold 𝑎flattenmin are set to the threshold itself to avoid very small weights
(Figure 3.2c):

𝑤flatten[𝑘] = max{𝑝[𝑘]
𝑞[𝑘] , 𝑎

flatten
min } . (3.4)

After obtaining the flattened curve, we build the reweighting curve 𝑤re[𝑘] by shifting the flat-
tened curve by −𝑎shift and then rescaling it between two bounds 𝜇low < 1 and 𝜇high > 1 (Fig-
ure 3.2d), so that most values of this curve are below 1. The upper and lower bounds converge to 1
as the number of iterations increases:

𝜇(n)
low = 1 − 1 − 𝜇(0)

low
n

(3.5)

𝜇(n)
high = 1 +

𝜇(0)
high − 1

n
(3.6)

where n is the iteration number.
After building the reweighting curves for the left part (𝑤L) and right part (𝑤R), we use that

curve to re-adjust our weightingmatrix. Suppose that the weightingmatrix𝐖 contains𝐾 rows (for
frequency bins) and 𝑀 columns (for time bins). We split the matrix into a left and right subpart,
such that the left part𝐖L contains the first ⌈𝑀/2⌉ columns of𝐖 and the right part𝐖R contains
the remaining columns (𝑀 − ⌈𝑀/2⌉). The updated weighting matrix will be:

𝐖(n+1) = [𝐖(n+1)
L ,𝐖(n+1)

R ] (3.7)

= [𝐖(n)
L ⊙ [𝐰L, ⋯ ,𝐰L],𝐖(n)

R ⊙ [𝐰R, ⋯ ,𝐰R]] (3.8)

where the superscript ⋅(n) represents the iterationnumber,⊙ is the element-wisemultiplier, [𝐰L, ⋯ ,𝐰L]
represents a matrix that has the same shape as𝐖L, and each column is𝐰L.

To limit the weight, we set an upper bound 𝑤max for the weighting matrix, so that for each
element 𝑤𝑘 in𝐰L or𝐰R:

𝑤𝑘 ∶= min{𝑤𝑘, 𝑤max}. (3.9)

Figure 3.2 illustrates the curves constructed at each stage of the reweighting method.
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3.2. Sparse Decomposition of Tonal Part
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(a) PSD curve 𝑝
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(b) Prominent peak curve 𝑞
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(c) Flattened curve 𝑤flatten
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(d) Reweighting curve 𝑤re

Figure 3.2 PSD and related curves created at each stage of the reweighting method.

3.2.3 Neighborhood definition

In addition, we change the neighborhood calculation strategy of the social sparsity (see Section 2.1.4).
Instead of using a constant 2D kernel as the neighborhood weights for the 2D convolution to cal-
culate the coefficient sum of each atom’s neighborhood in the TF plane, we use an order-statistic
filter. The order-statistic filter is a non-linear spatial filter that sets the coefficient based on the 𝑘-th
smallest value among the defined neighbors (Pitas and Venetsanopoulos 1992). For example, a 4th-
order statistic filter with a 3×3 square neighborhood with values from 1 to 9 sets the coefficient to 4,
which is the 4th smallest value among its 3×3 neighbors. In ourmethod, we define a neighborhood
𝒩 with 21 members as in Figure 3.3:

We set the order of the filter to ⌊(𝑁𝒩 − 1)/2⌋, where 𝑁𝒩 is the number of non-zero element
in the neighborhood 𝒩 (𝑁𝒩 = 21 in our definition), so that it will be just smaller than using the
median value to filter out more noise to make the result sparser.
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Figure 3.3 The neighborhood configuration in our hybrid approach. The dark solid circle repre-
sents the center point and the colored shaded area represents the neighborhood of the center point.

3.2.4 Tuning of lambda

The parameter 𝜆, which controls the sparsity, is automatically tuned based on the following proce-
dure.

A short-time Fourier transform (STFT) of the signal is performed using a Hann window of
length 512 and a hop size of 128. The gradient magnitude at the location of each TF atom is com-
puted, which reflects their local variability:

|∇𝑥𝑚,𝑘| = √∣𝜕𝑥𝑚,𝑘
𝜕𝑚 ∣

2
+ ∣𝜕𝑥𝑚,𝑘

𝜕𝑘 ∣
2

(3.10)

where 𝑥𝑚,𝑘 represents the STFT coefficient of a signal at frame number 𝑚 and frequency channel
𝑘.

The gradient in discrete time can be estimated using the central difference for inner values:

𝜕𝑥𝑚,𝑘
𝜕𝑚 = 𝑥𝑚+1,𝑘 − 𝑥𝑚−1,𝑘

2 (3.11)

𝜕𝑥𝑚,𝑘
𝜕𝑘 = 𝑥𝑚,𝑘+1 − 𝑥𝑚,𝑘−1

2 (3.12)
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3.2. Sparse Decomposition of Tonal Part

and single-sided differences for values along the outermost edges of the matrix:

𝜕𝑥1,𝑘
𝜕𝑚 = 𝑥2,𝑘 − 𝑥1,𝑘

2 (3.13)

𝜕𝑥𝑀,𝑘
𝜕𝑚 = 𝑥𝑀,𝑘 − 𝑥𝑀−1,𝑘

2 (3.14)

𝜕𝑥𝑚,1
𝜕𝑘 = 𝑥𝑚,2 − 𝑥𝑚,1

2 (3.15)

𝜕𝑥𝑚,𝐾
𝜕𝑘 = 𝑥𝑚,𝐾 − 𝑥𝑚,𝐾−1

2 (3.16)

where𝑀 and𝐾 are the number of time and frequency bins, respectively.
The randomness of the gradient magnitudes is quantified by evaluating their spectral flatness:

flatness∇(𝑚) =
(∏𝐾

𝑘=1 |∇𝑥𝑚,𝑘|)
1/𝐾

1
𝐾 ∑𝐾

𝑘=1 |∇𝑥𝑚,𝑘|
=

exp( 1
𝐾 ∑𝐾

𝑘=1 ln |∇𝑥𝑚,𝑘|)
1
𝐾 ∑𝐾

𝑘=1 |∇𝑥𝑚,𝑘|
. (3.17)

The relative noisiness level of the STFT of the original signal is determined by taking themedian
value of the spectral flatness of the gradient magnitudes.

Since spectral flatness is a relative value and 𝜆 is an absolute value for the coefficients of the
atoms, we use spectral flatness and root-mean-square energy (RMSE) of the input signal together
to predict the value of 𝜆. 𝜆 is calculated from the following equation, obtained by fitting a linear
regression between log10(𝜆) and the log10 of the product of the spectral flatness and the RMSE.
The data points for linear regression come from an experiment. In this experiment, we created a
synthesized signal consisting of frequency-modulated sinusoids and linear chirps. The number of
atoms with non-zero coefficients after decomposing the signal (without introducing the sparsity
constraint, i.e., 𝜆 = 0) is used as the baseline to measure the sparsity. Then, we add white noise
with different noise levels to the synthesized signal and decompose the signal with different 𝜆. The
smallest 𝜆 that reaches the baseline (times a factor that is slightly greater than 1) is considered the
optimal 𝜆, and will be used for the linear regression. The regression result is formulated as:

log10 𝜆 = 1.55465 log10(𝜃50% ⋅ 𝜇R) + 0.51171 (3.18)

where 𝜃50% = median{flatness∇} is the median value (50th percentile) of the spectral flatness
values flatness∇, and 𝜇R = RMSE(𝐌R𝐲) is the root-mean-square energy of the reliable parts of
signal 𝐲.
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3. Hybrid Inpainting Approach

3.3 Inpainting of the Deterministic Part

Thedeterministic component resulting from the sparse decomposition ismainly composed of time-
varying sinusoids, also knownas partials. Therefore, the techniques for analyzing and re-synthesizing
partials can be applied to reconstruct the deterministic part in the gap region. This goal is achieved
by performing the following steps: first, the signal is analyzed to extract the partials and the par-
tials are further processed to be more reliable and consistent; second, the corresponding partials on
both sides of the gap are matched and predicted; finally, the partials are resynthesized to obtain the
reconstructed signal.

3.3.1 Partial tracking

The partial tracking method is primarily based on the approach proposed by Neri and Depalle
(2018), with modifications on the treatment of the gap and of the cost matrix.

3.3.1.1 Treatment of the gap

Gaps in signal usually lead to discontinuities in the time domain and artifacts in the spectrum,
which can confuse the partial tracking algorithm and result in inaccurate estimates of frequency
and amplitude, and even in many fragmented or “fake” partials at the beginning and end of the gap.
That degrades the quality and accuracy of subsequent analysis and synthesis.

To address this problem, we will skip analyzing the frames where more than 25% of the samples
are missing. Therefore, samples located near the gap region will not be analyzed.

3.3.1.2 Cost matrix

A fixed frequency threshold in Hz may be difficult to track for partials in high frequency, since the
frequency variation is greater at high frequencies than at low frequencies. Therefore, we calculate
the mel-scale frequency difference instead, so that:

Δ𝑓𝑖𝑗 = mel (𝑓 [𝑘−1]
𝑖 (𝐻/2)) −mel (𝑓 [𝑘]

𝑗 (−𝐻/2)) (3.19)

where the definition mel(𝑓) = 2595 log10(1 + 𝑓/700) is from O’Shaughnessy (2000), and 𝑓 [𝑘]
𝑖 (𝑛)

represent the instantaneous frequency of the 𝑖-th partial at time 𝑛 over frame 𝑘.
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Figure 3.4 Tracking of partials in a synthesized audio signal consisting of multiple chirps plus
background noise with a gap (between the dashed lines). Parameters of the tracking method are
unchanged as in Neri and Depalle (2018).

In order to suppress tracking of partials with abrupt changes in frequency, we add a constraint
related to the frequency derivative (also called the chirp rate):

Δ𝛽𝑖𝑗 =
𝑓 ′
𝑖
[𝑘−1](𝐻/2)

log10 (𝑓
[𝑘−1]
𝑖 (𝐻/2))

− 𝑓 ′
𝑗
[𝑘](−𝐻/2)

log10 (𝑓
[𝑘]
𝑗 (−𝐻/2))

(3.20)

where 𝑓 ′ is the first-order derivative of 𝑓 .
The costs for useful and spurious assignments will be:

𝐶useful
𝑖𝑗 = 1 − exp(−(Δ𝑎𝑖𝑗)

2

2𝜎2𝑎
− (Δ𝑓𝑖𝑗)

2

2𝜎2
𝑓

− (Δ𝛽𝑖𝑗)
2

2𝜎2
𝛽

) (3.21)

𝐶spurious
𝑖𝑗 = 1 − (1 − 𝛿track)𝐶useful

𝑖𝑗 (3.22)
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where:

Δ𝑎𝑖𝑗 = 𝑎[𝑘−1]
𝑖 (𝐻/2) − 𝑎[𝑘]𝑗 (−𝐻/2) (3.23)

𝜎2
𝑎 = 𝜁2𝑎

2 ln(𝛿track − 2) − 2 ln(𝛿track − 1) (3.24)

𝜎2
𝑓 =

𝜁2𝑓
2 ln(𝛿track − 2) − 2 ln(𝛿track − 1) (3.25)

𝜎2
𝛽 =

𝜁2𝛽
2 ln(𝛿track − 2) − 2 ln(𝛿track − 1). (3.26)

Parameters 𝜁𝑎, 𝜁𝑓 , and 𝜁𝛽 control the threshold values for amplitude, frequency, and frequency slope
change, respectively.

The cost matrix will be:
𝐶𝑖𝑗 = min{𝐶useful

𝑖𝑗 , 𝐶spurious
𝑖𝑗 }. (3.27)

The Hungarian algorithm is then used to obtain the optimal assignment matrix by providing
the cost matrix𝐂 (Neri and Depalle 2018).

3.3.2 General partial predictionmethod

A general prediction method is proposed in this section, which will be extensively applied to the
subsequent processing of partials.

Consider a signal that contains a vibrato and which average frequency increases linearly, such
as a combination of a vibrato and a chirp. The instantaneous frequency of this partial should be:

𝑓𝑖(𝑡) = (𝑓0 + 𝛽𝑡) + 𝐴 cos(2𝜋𝑓𝑚𝑡) (3.28)

where 𝑓0 is the fundamental frequency, 𝛽 is the chirp rate,𝐴 is the modulation depth, and 𝑓𝑚 is the
modulation frequency.

The signal contains a long-term trend, and a short-term periodicity, which makes it challenging
to be predicted only by an autoregressive model. Therefore, we assume that a partial may contain
both trend and periodicity, or only one of them, and predict these components separately.

In order to predict the trend component, a linear regression of the frequency (or amplitude)
of the partial is performed. The coefficient of determination (𝑅2) for the regression result, which
measures how well the regression model fits the data, is calculated by the following equation:

𝑅2 = 1 − ∑𝑖(𝑦𝑖 − ̂𝑦𝑖)2
∑𝑖(𝑦𝑖 − ̄𝑦)2 (3.29)
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where 𝑦𝑖 is the observed data (analyzed frequency or amplitude values), ̂𝑦𝑖 is the predicted data, and
̄𝑦 is the mean of the observed data.
If𝑅2 is greater than a threshold (𝑅2

𝑓 for frequency and𝑅2
𝑎 for amplitude), the trend is considered

as it exists, and the linear regression model is used to predict the trend value. If 𝑅2 is less than or
equal to the threshold, the trend is considered as non-existent, and the trend component is set to 0.

Burg’s AR model is employed to predict the periodicity component. The order (or the number
of poles) of the AR model is set to 𝑝predict.

The final result is obtained by adding the trend prediction and the periodicity prediction. This
allows both long-term and short-term variations in partial frequency and amplitude to be captured.

3.3.3 Partial reconnection

In some cases, a partial that is originally continuous may be segmented into several partials due to
noise or other factors. The length of the partials affects the accuracy of the prediction, as longer
partials contain more information than shorter partials that are fragmented (shown in Figure 2.8).
To address this issue, we propose a method to reconnect these fragmented partials based on their
frequency and amplitude continuity.

The proposed method can be applied to the partials that fall into the following two scenarios.
The first scenario is when the two partials overlap in time by a small amount. The second scenario
is when the two partials do not overlap in time, but are close together, which means that there is a
small gap between their end and start points. Figure 3.5 illustrates these two cases accordingly.

The proposed method is based on the following criteria:

• The length of a partial should not be smaller than 𝑙connectmin , as the prediction error is very large
for very short partials.

• The two partials should have similar boundary frequencies, as this indicates that they likely
belong to the same original partial.

• The two partials cannot overlapmore than 𝑙overlapmax windows or jumpmore than 𝑙jump
max windows,

as this may indicate that they are two separate partials instead of one.

• The cost of connecting two partials should be small enough.

The process starts by selecting the longest partial and comparing it with all other nearby partials.
Nearby partials are defined by their relative boundary frequency difference, with the long partial
being less than a thresholdΔboundary

𝑓 .
For each pair of selected partials, the long one needs to be extrapolated for comparison. There

are two cases of extrapolation of the long partial: if they overlap, the overlapping data points are
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Figure 3.5 Two scenarios of potential partial connection. The solid lines represent analyzed par-
tials, the solid points represent data points (per frame), and the dashed lines with gradient color
represent potential partial connections.

removed and then the long partial is extrapolated using the proposed predictionmethod. If they do
not overlap, the full range of data points is used to extrapolate the long partial.

The costs of connection are then calculated for each pair of partials. Suppose the long partial is
denoted by 𝑝𝑖 and the other partial is denoted by 𝑝𝑗. Then the cost for connecting 𝑝𝑗 to 𝑝𝑖 is:

𝐶connect
𝑝𝑖←𝑝𝑗

= 𝛿connect
̄𝑑𝑓(𝑝𝑖, 𝑝𝑗)
𝜁connect𝑓

+ (1 − 𝛿connect)
̄𝑑𝑎(𝑝𝑖, 𝑝𝑗)
𝜁connect𝑎

(3.30)

where 𝜁connect𝑓 and 𝜁connect𝑎 are the thresholds for frequency and amplitude, 0 ≤ 𝛿connect ≤ 1 is
a parameter that controls the influence of the two metrics on the cost. ̄𝑑𝑓(𝑝𝑖, 𝑝𝑗) and ̄𝑑𝑎(𝑝𝑖, 𝑝𝑗)
represent the normalized frequency (in themel scale) or amplitude (in dB scale) Euclidean distances
between two partials 𝑝𝑖 and 𝑝𝑗 in the range of 𝑝𝑗, which means the frequency and amplitude of 𝑝𝑖
in this range is mostly extrapolated. We use the definition of normalized Euclidean distance from
(Lagrange et al. 2005):

̄𝑑𝑓( ̂𝑝𝑖, 𝑝𝑗) =
‖mel( ̂𝐟𝑖) −mel(𝐟𝑗)‖2/√𝑁𝑝𝑗

1 + 𝜎{mel( ̂𝐟𝑖))} + 𝜎{mel(𝐟𝑗)}
(3.31)

̄𝑑𝑎( ̂𝑝𝑖, 𝑝𝑗) =
‖𝐚̂𝑖 − 𝐚𝑗‖2/√𝑁𝑝𝑗

1 + 𝜎{𝐚̂𝑖} + 𝜎{𝐚𝑗}
(3.32)
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where ̂𝐟𝑖 and 𝐚̂𝑖 are the (predicted) frequency and amplitude of partial 𝑝𝑖 in the range of partial 𝑝𝑗,
𝑁𝑝𝑗

is the length (in frames) of partial 𝑝𝑗, and 𝜎{𝐱} is the standard deviation of 𝐱.
The partial withminimal connection cost (𝐶connect) is determined only if theminimal cost is less

than 1 (min{𝐶connect} < 1). If all costs are greater than 1, the long partial is unable to connect to any
other partials. The selected partial is then merged to the long partial. If they overlap, crossfading
is used in the overlapping area to smooth the transition. If they do not overlap, they are simply
concatenated. After merging these two partials, the shorter partial is removed from the list. The
process is repeated until all valid partials are processed.

The reconnection method can reduce the total number of partials, which may result in more
accurate and consistent matching and prediction results.

3.3.4 Partial matching

The next step is to determine which partial near the left boundary of the gap should be connected
to which partial near the right boundary of the gap in order to form a merged partial. To achieve
this, a method for matching two partials before and after the gap is proposed.

First, all partials with enough length (more than a threshold 𝑙match
min ) that are near the gap are

selected as candidates for matching. The definition of “near” is from the last fully reliable frame (no
missing samples) to the last analyzed frame before the gap.

Then, all candidate partials in the gap region are extrapolated using the general prediction
method described in the previous section. For the left reliable part, any sudden change, such as
a fast attack, is detected and removed based on a slope ratio threshold 𝛽attack

𝑎 . The frequency ex-
trapolation uses either an AR model or an AR model plus a linear regression, depending on the
existence of a trend. The amplitude extrapolation does not use amplitude data from semi-reliable
frames that contains missing samples for prediction. For the right reliable part, no sudden change
detection is performed because we assume that the region immediately to the right of the gap does
not contain any fast attack followed by a decay.

Next, the normalized Euclidean distances (defined in Section 3.3.3) between the left and right
predictions for each pair of candidate partials are calculated. Instead of calculating the distance
between the two predictions of a pair of partials in the gap equally, we focus on the prediction
distance at the gap’s bounds. To achieve this, we define the forward and backward weighted distance
differences and use them to compute the weighted Euclidean distances. The weighted normalized
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Euclidean distances of frequency (inmel scale) and amplitude (in dB scale) are calculated as follows:

̄𝑑𝑓( ̂𝑝𝑖, ̂𝑝𝑗) =
min{‖ ̂𝐟𝑖→𝑗‖2, ‖ ̂𝐟𝑖←𝑗‖2}/√𝑙gap
1 + 𝜎(mel( ̂𝐟𝑖)) + 𝜎(mel( ̂𝐟𝑗))

(3.33)

̄𝑑𝑎( ̂𝑝𝑖, ̂𝑝𝑗) =
min{‖𝐚̂𝑖→𝑗‖2, ‖𝐚̂𝑖←𝑗‖2}/√𝑙gap

1 + 𝜎(𝐚̂𝑖) + 𝜎(𝐚̂𝑗)
(3.34)

where the hat above the symbols represents predicted values in the gap region, 𝑙gap is the num-
ber of frames that contains the gap, and ̂𝐟𝑖→𝑗 = 𝐰→ ⊙ (mel( ̂𝐟𝑖) −mel( ̂𝐟𝑗)) and ̂𝐟𝑖←𝑗 = 𝐰← ⊙
(mel( ̂𝐟𝑖) −mel( ̂𝐟𝑗)) are the weighted forward and backward differences of ̂𝑝𝑖 and ̂𝑝𝑗 in frequency
on the mel scale. The weighting vectors𝐰→ and𝐰← are defined as:

𝐰→ = exp(− ln(𝑙gap)
𝑙gap

[0, 1,… , 𝑙gap − 1]𝑇) , (3.35)

𝐰← = exp(− ln(𝑙gap)
𝑙gap

[𝑙gap − 1, 𝑙gap − 2,… , 0]𝑇) . (3.36)

Similarly, 𝐚̂𝑖→𝑗 and 𝐚̂𝑖←𝑗 are defined as:

𝐚̂𝑖→𝑗 = 𝐰→ ⊙ (𝐚̂𝑖 − 𝐚̂𝑗) , (3.37)

𝐚̂𝑖←𝑗 = 𝐰← ⊙ (𝐚̂𝑖 − 𝐚̂𝑗) . (3.38)

This distance measures how well these two partials match in terms of frequency and amplitude.
A cost matrix based on the normalized Euclidean distances is constructed as follows, similar to the
matrix in Section 3.3.1:

𝐶𝑖𝑗 = min{𝐶match
𝑖𝑗 , 𝐶mismatch

𝑖𝑗 } (3.39)

and

𝐶match
𝑖𝑗 = 1 − exp⎛⎜

⎝
−( ̄𝑑𝑎( ̂𝑝𝑖, ̂𝑝𝑗))

2

2𝜎2𝑎
− ( ̄𝑑𝑓( ̂𝑝𝑖, ̂𝑝𝑗))

2

2𝜎2
𝑓

⎞⎟
⎠

(3.40)

𝐶mismatch
𝑖𝑗 = 1 − (1 − 𝛿match)𝐶match

𝑖𝑗 . (3.41)

Finally, the Hungarian algorithm (Neri andDepalle 2018) is employed to determine the optimal
matching that minimizes the total cost. Thismatching indicates which partials should be connected
across the gap.
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3.3.5 Partial prediction

After matching the partials near the gap, further extrapolation of these partials is required for in-
painting. All partials involved in the partial matching process are further partitioned into three
groups: matched partials, unmatched born partials, and unmatched dead partials. Different extrap-
olation (or interpolation) strategies will be applied to these three groups of partials.

3.3.5.1 Frequency extrapolation

Weuse the frequency interpolationmethodbased on asymmetric crossfading in (Lagrange et al. 2005).
However, the proposed general partial prediction method is utilized for predicting the frequency
instead of directly applying linear prediction.

3.3.5.2 Amplitude extrapolation

For the amplitude extrapolation, different methods are applied to the three groups of partials.
The matched partials are interpolated using the amplitude constraint and asymmetric crossfad-

ing method proposed by Lagrange et al. (2005), but with our partial prediction method instead.
The unmatched born partials are further separated into two types based on their slope of the

trend line calculated from the general partial prediction method.
If the slope is positive, indicating an increasing amplitude in the long term, the predicted am-

plitude at the beginning of the gap is checked against a certain threshold. If it is below (or equal to)
the threshold, the predicted amplitude is unchanged. If it is above the threshold, a linear attack is
added so that the amplitude at the beginning of the gap reaches the threshold. The amplitude after
the linear attack is given by:

𝑎[𝑘] = ̃𝑎[𝑘] + 𝑘R − 𝑘
𝑙birth

𝑇𝑎 (3.42)

where 𝑎[𝑘] is the output amplitude, ̃𝑎[𝑘] is the predicted amplitude, 𝑘R is the frame index of the first
reliable amplitude after the gap, 𝑘 is the current frame index, 𝑙birth is the length of the attack, and 𝑇𝑎
is the minimal amplitude threshold.

If the slope is negative or zero, indicating a decreasing or constant amplitude in the long term,
we assume the partial is attacked and then decayed during the gap in this scenario. Therefore, the
amplitude curve is constructed by replacing the linear trend with a parabola that satisfies three
conditions:

• the first reliable amplitude after the gap should be on the parabola,
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3. Hybrid Inpainting Approach

• the derivative of the parabola at the first reliable data point after the gap should be the same
as the slope of the linear trend, if the slope of the linear trend is not too steep, and

• the amplitude at the start of the partial should be below the minimal amplitude threshold.

The parabola in the form of 𝑎𝑥2+𝑏𝑥+𝑐 can be derived by solving the following linear equations:

⎛⎜⎜⎜⎜
⎝

𝑘2R 𝑘R 1
2𝑘R 1 0

(𝑘R − 𝑙birth)2 (𝑘R − 𝑙birth) 1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎R
𝛽trend
𝑇𝑎

⎞⎟⎟⎟⎟
⎠

(3.43)

where 𝑎R is the first reliable amplitude after the gap, 𝛽trend is the slope of linear trend, and 𝑙birth is
the length of the partial birth.
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Figure 3.6 The predicted parabolic trend of the amplitude of a partial birth. The gray dashed line
represents the limits of the gap, the blue solid line on the right side represents the analyzed partial,
the green dashed line represents the estimated linear trend, and the red solid line on the left side
represents the calculated parabolic trend.

The amplitude curve is then obtained by adding the parabola to the periodicity prediction curve.
The unmatched dead partials are treated similarly as the unmatched born partials, except that

the sign of the slope condition is flipped, and parabola conditions are changed accordingly. The
linear equations for this parabola are defined as:

⎛⎜⎜⎜⎜
⎝

𝑘2L 𝑘L 1
2𝑘L 1 0

(𝑘L + 𝑙death)2 (𝑘L + 𝑙death) 1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑎
𝑏
𝑐

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑎L
𝛽trend
𝑇𝑎

⎞⎟⎟⎟⎟
⎠

(3.44)
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3.4. Decomposition of Transient and Stochastic Parts

where 𝑘L is the frame index of the first reliable amplitude before the gap, 𝑎L is the first reliable
amplitude before the gap, and 𝑙death is the length of the partial death.
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Figure 3.7 The predicted parabolic trend of the amplitude of a partial death. The gray dashed
line represents the gap, the blue solid line on the left side represents the analyzed partial, the green
dashed line represents the estimated linear trend, and the red solid line on the right side represents
the calculated parabolic trend.

3.3.5.3 Phase extrapolation

The phase is reconstructed in the same way as the phase interpolation method in Lagrange et
al. (2005), which is based on the method of McAulay and Quatieri (1986) and further spreads the
phase error over the whole gap.

3.3.5.4 Partial re-synthesis

Thesignal ̂𝑦tonalwith all partials is reconstructed using the synthesismethod inMcAulay andQuatieri
(1986), which is described in Section 2.2.3.

3.4 Decomposition of Transient and Stochastic Parts

After obtaining the residual signal without most of the deterministic part, the next step is to further
decompose it into a transient and a stochastic component.

Before starting the decomposition, the residual signal is further shortened, because no long
context is needed for analyzing the transient component that is short in duration. In our thesis, we
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3. Hybrid Inpainting Approach

specify that the length of each reliable neighborhood of the shortened signal should be no less than
the maximum of the following two values: 1/4 of the gap length and the length of the window used
for the tonal decomposition (Ψtonal).

The plain analysis variant of social sparse decomposition is used, without using the reweighting
method or special neighborhood definition, compared with the model in Section 3.2. The neigh-
borhood is defined as an equal-weight rectangle with 1 time-bin width and 25 frequency-bin height,
which promote the selection of transient-like structure.

Parameter 𝜆 is obtained in a similar way as in Section 3.2.4. To better analyze the transients,
the window length and hop size of STFT are changed to 128 and 32, respectively. Instead of calcu-
lating the spectral flatness of the gradient magnitudes, we calculate it from the gradient along the
frequency direction, because the gradient along the frequency may be less affected by transient sig-
nals with sudden changes in frequency components. The spectral flatness along frequency direction
is formalized as follows:

flatness𝑓(𝑚) =
(∏𝐾

𝑘=1 ∣
𝜕𝑥𝑚,𝑘
𝜕𝑘 ∣)

1/𝐾

1
𝐾 ∑𝐾

𝑘=1 ∣
𝜕𝑥𝑚,𝑘
𝜕𝑘 ∣

=
exp( 1

𝐾 ∑𝐾
𝑘=1 ln ∣

𝜕𝑥𝑚,𝑘
𝜕𝑘 ∣)

1
𝐾 ∑𝐾

𝑘=1 ∣
𝜕𝑥𝑚,𝑘
𝜕𝑘 ∣

. (3.45)

The parameter 𝜆 can be calculated by the following equation:

log10 𝜆 = 1.06324 log10(𝜃90% ⋅ 𝜇R) + 0.51639 (3.46)

where 𝜃90% is the 90th percentile of the spectral flatness values flatness𝑓 , 𝜇R = RMSE(𝐌R𝐲res) is
the root-mean-square energy of the reliable parts of the tonal residual signal 𝐲res.

The decomposition result is the transient part of the residual signal. The residual of the de-
composition is considered to be the stochastic part, which will be analyzed and reconstructed in a
subsequent process.

3.5 Noise Reconstruction

In order to analyze the stochastic part and to reconstruct the noise from the residual, the region
near the boundary of the gap is set to be unreliable for the analysis of the stochastic part. Because
the previous sparse decomposition of the tonal part may not be accurate enough near the boundary,
and may leak some energy of tonal part to the residual signal. The length of the unreliable part to
ignore for the analysis is determined by a parameter𝑁ignore.
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3.6. Output Generation

Burg’s AR model is used to estimate the PSD of the left and right reliable neighborhoods that
consist of noise. The number of poles for the ARmodel is set to 𝑝noise. Based on the PSD estimation,
two reconstruction methods are proposed for different scenarios.

If the PSD change is small over time, two noise signals that have the same PSDs as the left and
right reliable neighborhoods’ are generated by filtering a normalized Gaussian noise with linear
prediction coefficients calculated from Burg’s method. Then, a cosine window with length Ψnoise is
used to crossfade the left and right noise signals to obtain a smooth transition.

If the PSD change is large over time such as a moving resonance, the Log Area Ratio (LAR) co-
efficients between the left and right reliable neighborhoods’ are calculated and linearly interpolated
and converted back to filter coefficients using Levinson’s recursion (Hayes 1996).

LAR(𝛾𝑖) = ln(1 − 𝛾𝑖
1 + 𝛾𝑖

) (3.47)

where 𝛾𝑖 is the 𝑖-th reflection coefficient estimated with the Burg’s method.
Then, a normalized Gaussian noise is filtered with these coefficients to generate a noise signal

that matches the PSD variation. The reconstructed noise will be placed in the unreliable region.

3.6 Output Generation

The complete reconstructed signal ̂𝑦rec is obtained by superimposing the partial signal ̂𝑦tonal and the
noise signal ̂𝑦noise together. In order to keep the reliable part of the original signal unchanged, only
the gap region will be replaced by the reconstructed signal, with a short crossfade (length𝑁crossfade)
at the boundaries of the gap to suppress potential discontinuity.

Suppose that the observed signal is ̂𝑦[𝑛], the window functions for crossfading are 𝜓↗[𝑛] (for
ramping up) and 𝜓↘[𝑛] (for ramping down), the degraded part starts from 𝑛𝐿 to 𝑛𝑅. The output
signal 𝑦rec can be formulated as:

𝑦rec[𝑛] =

⎧{{{{{
⎨{{{{{⎩

̂𝑦[𝑛] for 𝑛 ∈ [0, 𝑛𝐿𝐿)
̂𝑦[𝑛] ⋅ 𝜓↘[𝑛 − 𝑛𝐿𝐿] + ̂𝑦rec[𝑛] ⋅ 𝜓↗[𝑛 − 𝑛𝐿𝐿] for 𝑛 ∈ [𝑛𝐿𝐿, 𝑛𝐿)
̂𝑦rec[𝑛] for 𝑛 ∈ [𝑛𝐿, 𝑛𝑅]
̂𝑦[𝑛] ⋅ 𝜓↗[𝑛 − 𝑛𝑅 − 1] + ̂𝑦rec[𝑛] ⋅ 𝜓↘[𝑛 − 𝑛𝑅 − 1] for 𝑛 ∈ (𝑛𝑅, 𝑛𝑅𝑅]
̂𝑦[𝑛] for 𝑛 ∈ (𝑛𝑅𝑅, 𝑁]

(3.48)

where 𝑛𝐿𝐿 = 𝑛𝐿 − 𝑁crossfade, 𝑛𝑅𝑅 = 𝑛𝑅 + 𝑁crossfade, 𝜓↗[𝑛] ≠ 0 for 0 ≤ 𝑛 < 𝑁crossfade, and
𝜓↘[𝑛] ≠ 0 for 0 ≤ 𝑛 < 𝑁crossfade.
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4
Experiments

This chapter presents a comprehensive evaluation and analysis of the hybrid inpainting approach
proposed in Chapter 3. A parameter selection strategy for optimizing the hybrid approach is pro-
posed in Section 4.1, which will be applied to subsequent experiments. The evaluation metrics
employed include signal-to-noise ratio (SNR), Itakura-Saito distance (ISD), and objective differ-
ence grade (ODG), and are introduced in Section 4.2. Three distinct experiments are conducted
to assess the performance and effectiveness of each component of the hybrid approach in various
scenarios, described in Section 4.3, 4.4 and 4.5, respectively. Furthermore, the hybrid approach is
compared with other state-of-the-art inpainting methods using real audio signals in Section 4.6.

4.1 Parameter Selection Strategy

This section describes the strategy for choosing the parameters of variousmethods used in the stages
of our hybrid approach in Chapter 3. These parameters were determined before conducting the
experiments.

4.1.1 Pre-processing parameters

We extend the lengths of the left and right reliable neighborhoods beyond the minimum support
to provide a larger context for better extrapolating time-varying partials. The length of the each
expanded neighborhood is an integer multiple of the time shift 𝑎tonal for tonal decomposition. The
extended length of each reliable neighborhood is defined as:

𝑁neighbor = 𝑎tonal ⋅max{⌈𝑁gap
𝑎tonal

⌉ , 32} (4.1)
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where 𝑁gap is the number of samples of the gap. The length can be shorter if the signal around the
gap is stationary.

4.1.2 Sparse decomposition parameters

The sparse decomposition technique is employed in two stages of our hybrid approach: decom-
posing the tonal part and the transient part. For the tonal decomposition, we use a long window
and a high degree of redundancy, which provide a high frequency resolution for locating spec-
tral peaks and reliable estimated time-varying parameters for partial processing. The window size
should range from 1024 to 4096 samples, and the redundancy should be no less than 4. For the
transient decomposition, we use a short window and low degree of redundancy for detecting rapid
changes in the amplitude or frequency of the signal. The window size in this scenario should be
less than 128 samples, and the redundancy should be small but not exceed the limit of the perfect
reconstruction condition for the window used.

In order to reduce the spectral leakage and to promote the sparsity of the tonal component, we
use a Nuttall window in the tonal decomposition. The Nuttall window is a type of window function
that consists of up to five trigonometric terms and continuous derivatives, which can provide very
low peak side-lobe and fast side-lobe roll-off rate (Nuttall 1981). The Nuttall window used in tonal
decomposition is defined as:

𝜓nuttall[𝑛] =
1
Ψ

3
∑
𝑘=0

𝛼𝑘 cos(2𝜋𝑘𝑛/Ψ) (4.2)

where Ψ is the window size, 𝛼0 = 0.338946, 𝛼1 = 0.481973, 𝛼2 = 0.161054, and 𝛼3 = 0.018027.
Meanwhile, we use the Hann window in the transient decomposition for its low redundancy for

perfect reconstruction. The Hann window is defined as:

𝜓hann[𝑛] =
1
Ψ (1

2 + cos(2𝜋𝑛/Ψ)
2 ) . (4.3)

Table 4.1 and 4.2 summarize the parameters used to decompose the tonal and transient com-
ponents, respectively. The window sizes (Ψtonal and Ψtransient) and hop sizes (𝐻tonal and𝐻transient)
control the trade-off between time and frequency resolutions of the tonal and transient decom-
positions. The error tolerance parameters (𝜀tonal and 𝜀transient) are the stopping conditions of the
decomposition algorithms. The three hyperparameters in LV algorithm (𝜎, 𝜏 , and 𝜌) usually do not
need to be changed. The AR order 𝑝tonal determines the number of peaks in the estimated spectral
envelope, which should not be too small (unable to flatten small peaks) or too large (long com-
puting time). The parameters 𝑎peak, 𝑎flattenmin , 𝜇(0)

low, 𝜇(0)
high, and 𝑎shift jointly influence the shape of the
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weight rescale curve. The optimal combination of parameters should result in a curve that flattens
all frequencies with partials while discarding all frequencies with noise. Themaximumweight𝑤max
provides an upper limit to the curve to prevent preserving energy from noise at specific frequencies.

Table 4.1 Parameters for the sparse decomposition of tonal component.

Parameter Symbol Value

Window size (in sample) Ψtonal 2048
Time shift / hop size (in sample) 𝐻tonal 256
Error tolerance 𝜀tonal 0.5
Step size of variable 𝐮 in LV algorithm 𝜎 2/3
Step size of variable 𝐯 in LV algorithm 𝜏 1.5
Relaxation parameter in LV algorithm 𝜌 1
AR order of Burg’s model 𝑝tonal 128
Amplitude threshold for prominent peaks (in dB) 𝑎peak −50
Minimum amplitude of flattened curve (in dB) 𝑎flattenmin −100
Initial lower bound of weight rescale curve 𝜇(0)

low 0.75
Initial upper bound of weight rescale curve 𝜇(0)

high 1.25
Amplitude shift of weight rescale curve (in dB) 𝑎shift −30
Maximum weight 𝑤max 100

Table 4.2 Parameters for the sparse decomposition of transient component.

Parameter Symbol Value

Window size (in sample) Ψtransient 64
Time shift / hop size (in sample) 𝐻transient 16
Error tolerance 𝜀transient 0.5
Step size of variable 𝐮 in LV algorithm 𝜎 2/3
Step size of variable 𝐯 in LV algorithm 𝜏 1.5
Relaxation parameter in LV algorithm 𝜌 1

4.1.3 Partial processing parameters

The partial processing procedure aims to reconstruct the tonal part of the signal in the gap region
using techniques such as partial tracking, reconnection, matching, and prediction. For the partial
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tracking method, we use a small amplitude threshold 𝑎trackpeak to select spectral peaks that captures
more partials at high frequency. However, a too small threshold may also select some noise as
partials, resulting in distortion. The polynomial order 𝑄 of the exponential sinusoidal model used
in DDM is set to 2 to capture the linear variation of frequency and to simplify the prediction using
linear prediction. Parameters 𝜁𝑎, 𝜁𝑓 , 𝜁𝛽 control the cost of connecting two spectral peaks into a
partial. The larger these three parameters are, the more likely it is for the peaks to be connected,
even if their amplitudes, frequencies, and frequency slopes are far apart. On the other hand, very
small parameters may prevent the partials from connecting, leading to overly fragmented partials.
The parameter 𝛿track adjusts the preference between useful and spurious assignments, where all
assignments are spurious if 𝛿track = 0 and useful if 𝛿track = 1. The determined partial tracking
parameters are shown in Table 4.3.

Table 4.3 Parameters for partial tracking.

Parameter Symbol Value

Window size (in sample) Ψpartial 2048
Amplitude threshold for peak picking (in dB) 𝑎trackpeak −50
Order of exponential sinusoidal model in DDM 𝑄 2
Preference between useful and spurious assignments 𝛿track 0.25
Assignment threshold for amplitude change (in dB) 𝜁𝑎 15
Assignment threshold for frequency change (in mel) 𝜁𝑓 15
Assignment threshold for frequency slope change 𝜁𝛽 0.002

In the process of partial re-connection, we iterate through each partial in order from longest
to shortest, and compare that partial to all other partials in each iteration for reconnection. When
looking for potential reconnections, we exclude short partials of length less than 𝑙connectmin from the
outer loop because they are hard to predict. Parameter 𝑙connectmin should not be too large, which would
prohibit the reconnection of fragmented partials. ParameterΔboundary

𝑓 controls the number of can-
didate partials for the inner loop, which should be set as small as possible without affecting potential
reconnections. The maximum length of partial overlap 𝑙overlapmax and 𝑙jump

max should not be too large to
avoid misconnecting two independent partials. The parameter configuration is in Table 4.4.

For the partial matching method, we ignore short partials of length less than 𝑙match
min near the

gap for matching. The amplitude slope ratio 𝛽attack
𝑎 used to detect attacks should be large enough,

otherwise it may wrongly consider the rising part of a periodic signal as an attack. The parameters
are summarized in Table 4.5.
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Table 4.4 Parameters for partial reconnection.

Parameter Symbol Value

Partial length threshold for potential reconnection (in window) 𝑙connectmin 6
Minimum relative frequency difference between partial bounds Δboundary

𝑓 0.06
Assignment threshold for amplitude change (in dB) 𝜁connect𝑎 12
Assignment threshold for frequency change 𝜁connect𝑓 0.02
Preference between useful and spurious assignments 𝛿connect 0.5
Maximum length of partial overlap (in window) 𝑙overlapmax 5
Maximum length of partial jump (in window) 𝑙jump

max 3

Table 4.5 Parameters for partial matching.

Parameter Symbol Value

Partial length threshold for potential matching (in window) 𝑙match
min 4

Amplitude slope ratio threshold for attack detection 𝛽attack
𝑎 2.5

Assignment threshold for amplitude change (in dB) 𝜁match
𝑎 10

Assignment threshold for frequency change 𝜁match
𝑓 0.012

Preference between useful and spurious assignments 𝛿match 0.6

For the partial prediction, we use two 𝑅2 thresholds to examine the existence of frequency and
amplitude trends. The threshold of frequency trend𝑅2

𝑓 should be larger than that of amplitude trend
𝑅2

𝑎 because the amplitude fluctuates more than frequency. The AR order of Burg’s method 𝑝predict
should be large for better prediction, which is set to ⌈𝑙𝑝/2⌉ in our implementation, where 𝑙𝑝 is the
length of the partial used for prediction and determinated by the method. Theminimum amplitude
𝑇𝑎 of the parabola trend should be a very small value so that a partial can hardly be perceived at its
birth or death. The values of these parameters are shown in Table 4.6, where 𝑙gap is the length of the
gap (in window), estimated by the method.

4.1.4 Noise reconstruction and post-processing parameters

To analyze the noise component, we removed small segments of signal near the boundaries of the
gap, where the tonal decomposition may have energy leakage. The length𝑁ignore of these segments
should not be too long, as this will reduce the amount of reliable information near the gap. Similarly,
the two crossfade lengths for noise (Ψnoise) and reliable signals (𝑁crossfade) should be small. The
pole number 𝑝noise of the AR model for estimating the spectral envelope should be sufficient to
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Table 4.6 Parameters for partial prediction.

Parameter Symbol Value

𝑅2 threshold for the existence of frequency trend 𝑅2
𝑓 0.92

𝑅2 threshold for the existence of amplitude trend 𝑅2
𝑎 0.88

AR order of Burg’s model for linear prediction 𝑝predict ⌈𝑙𝑝/2⌉
Minimum amplitude threshold of a parabola curve (in dB) 𝑇𝑎 −80
Length of partial birth (attack) in the gap (in window) 𝑙birth 𝑙gap
Length of partial death (decay) in the gap (in window) 𝑙death 𝑙gap

capture all prominent peaks of the noise component. Table 4.7 summarizes the configuration of
these parameters in our experiments.

Table 4.7 Parameters for noise reconstruction and post-processing.

Parameter Symbol Value

Length to ignore for analysis (in sample) 𝑁ignore ⌈Ψtonal/4⌉
AR order of Burg’s model 𝑝noise 128
Cosine window size for crossfading noise signals (in sample) Ψnoise 32
Crossfade length for reliable neighborhoods (in sample) 𝑁crossfade 128

4.2 EvaluationMetrics

This section presents three differentmetrics that are used to evaluate the quality of the reconstructed
signals for the proposed hybrid inpainting approach and other inpainting methods.

Thefirstmetric is the signal-to-noise ratio (SNR),which is also known as the signal-to-distortion
ratio in the context of audio inpainting (Taubock et al. 2021). The SNR is defined as follows:

SNR(𝐲, 𝐲̂) = 10 log10
‖𝐲‖22

‖𝐲 − 𝐲̂‖22
(4.4)

where 𝐲 and 𝐲̂ represent the original signal (without gaps) and the inpainted signal, respectively. A
higher SNR value indicates a better reconstruction of the audio signal. Alternatively, the SNR can
be computed only on the gap region, since the reliable parts are usually unchanged in inpainting
methods (except for a very short crossfade in our hybrid approach):

SNRgap(𝐲, 𝐲̂) = 10 log10
‖𝐌G𝐲‖22

‖𝐌G𝐲 −𝐌G𝐲̂‖22
(4.5)
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where𝐌G ∈ ℝ𝑁×𝑁 is a diagonal matrix that is the complement of𝐌R such that𝐌G𝐲 extracts all
unreliable (gap) samples in 𝐲.

The second metric is the Itakura-Saito distance (ISD), more properly referred to as the Itakura-
Saito divergence, which quantifies the spectral (dis)similarity between an original power spectrum
𝑃 and its approximation ̂𝑃 (Itakura and Saito 1968). Unlike SNR, ISD takes into account the fre-
quency characteristics of the signals. The ISD is defined as follows:

ISD(𝑃 , ̂𝑃 ) = 1
𝐾

𝐾
∑
𝑘=1

(𝑃[𝑘]
̂𝑃 [𝑘]

− ln 𝑃 [𝑘]
̂𝑃 [𝑘]

− 1) (4.6)

where𝐾 represents the number of spectral data points in 𝑃 . A lower ISD indicates a higher spectral
similarity between the original and reconstructed signals, which implies a better quality of recon-
struction.

The thirdmetric is a perceptualmetric called objective difference grade (ODG), whichmeasures
the perceptual similarity between the original and reconstructed signals. The ODG corresponds to
the subjective difference grade obtained from subjective listening tests, which is specified in the
ITU-R recommendation BS.1387 (ITU-R 1998). The ODG ranges from 0 to –4 and can be inter-
preted as shown in Table 4.8.

Table 4.8 Interpretation of ODG levels.

Description ODG

Imperceptible 0
Perceptible but not annoying −1
Slightly annoying −2
Annoying −3
Very annoying −4

There are several methods that implement ODG, such as the Perceptual Evaluation of Audio
Quality (PEAQ) method (Thiede et al. 2000). In this thesis, we use the PEMO-Q method to calcu-
late the ODG, which has a more advanced auditory model based on a modulation filterbank and
demonstrates higher prediction accuracy than PEAQ (Huber and Kollmeier 2006).

4.3 Experiment 1: Separation of theThree Components

In this section, we evaluate the performance of our proposed hybrid approach for decomposing
an input signal with gaps into three components (layers): tonal, transient, and noise. The decom-
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position process is illustrated in Figure 4.1, where these three components are extracted layer by
layer from the input signal. First, the tonal layer is obtained by applying the tonal decomposition
algorithm to the input signal. Then, the transient layer is derived by applying the transient decom-
position algorithm to the residual of the tonal decomposition. Finally, the noise layer is the residual
of the transient decomposition.

input 
signal

tonal 
decomposition

transient 
decomposition

pre-processing

tonal 
signal

transient 
signal

noise 
signal

Figure 4.1 The decomposition process for Experiment 1.

In this experiment, we use three different signals to test our hybrid approach. The first signal
is a synthesized harmonic signal with modulations and additive noise, which contains only tonal
and noise components. The second signal is a synthesized inharmonic signal with exponentially
damped sinusoids with a ramp-up attack and additive noise, which contains all three components.
The third signal is a recording of a glockenspiel melodic phrase from the SoundQuality Assessment
Material (SQAM) dataset (European Broadcasting Union 2008), which is a real audio signal that
also contains all the three components. These signals are visualized in Figure 4.2. All test signals
are mono, 44.1 kHz, and 16 bits.

Figure 4.3 shows the time domain and the time-frequency (TF) domain representations of the
original signal (with a gap), the decomposed tonal component, the decomposed transient compo-
nent, and the noise component for the first signal (tonal + noise). We can observe that our hybrid
approach successfully separates the tonal and noise components from the input signal. No transients
are extracted except for the discontinuity at the boundaries of the gap, which is expected since there
are no transients in the original signal. However, we notice that for partials with greater modulation
depths in the high frequency, the energy leakage of tonal decomposition is more significant, which
means that some energy from the tonal layer is leaking to the noise layer.

Figure 4.4 shows the decomposition results for the second signal (tonal + transient + noise). Our
hybrid approach achieves good separation of these three components from the input signal. How-
ever, we observe that there are some energy leakages from the tonal and transient decompositions
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(a) Test signal 1 in the time domain with gap
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(b) Test signal 1 in the TF domain with gap
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(c) Test signal 2 in the time domain with gap
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(d) Test signal 2 in the TF domain with gap
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(e) Test signal 3 in the time domain with gap
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(f) Test signal 3 in the TF domain with gap

Figure 4.2 Time and time-frequency domain representations of the three test signals used for
Experiment 1. The noise level for test signals 1 and 2 is at –20 dB. The length of the gap is 50
milliseconds.

to the noise layer.
Figure 4.5 shows the decomposition results for the third signal (recording with all three com-

ponents). Our hybrid approach demonstrates good separation of these three components from the
input signal. However, there are transients remaining in the tonal layer and some noise remaining
in the transient layer*.

*The audio excerpts and supplemental figures can be accessed through the webpage: https://etosphere.github.io/
hybrid-inpainting-approach-demo/.
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(a)Decomposed tonal signal in the time domain
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(b)Decomposed tonal signal in the TF domain

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A
m

p
lit

u
d

e

(c)Decomposed transient signal in the time domain
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(d)Decomposed transient signal in the TF domain
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(e)Decomposed noise signal in the time domain
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(f)Decomposed noise signal in the TF domain

Figure 4.3 Decomposition results for test signal 1 for a noise level of -20 dB in Experiment 1.

We discuss our findings from this experiment as follows. Our hybrid approach succeeds in de-
composing an input signal with gaps into three components: tonal, transient, and noise. The tonal
decomposition performs better for stationary or slow-varying signals but is less ideal for signals
with fast modulations. Figure 4.6 illustrates the reconstruction quality of tonal and transient com-
ponents at different noise levels for the first two test signals: one with modulations and one without
modulations. We can observe that the reconstruction SNR is lower for the signal with modula-
tions compared with the more stationary signal. This may be because we build the reweighting
curves based on the assumption that the left and right reliable parts are approximately stationary
for estimating the spectral envelope, and this assumption does not hold for signals with fast-varying

72



4.3. Experiment 1: Separation of the Three Components

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
A

m
p

lit
u

d
e

(a)Decomposed tonal signal in the time domain
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(b)Decomposed tonal signal in the TF domain

0 0.1 0.2 0.3 0.4 0.5 0.6
Time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

A
m

p
lit

u
d

e

(c)Decomposed transient signal in the time domain
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(d)Decomposed transient signal in the TF domain
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(e)Decomposed noise signal in the time domain
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(f)Decomposed noise signal in the TF domain

Figure 4.4 The decomposition results for test signal 2 at a noise level of -20 dB in Experiment 1.

partials.
There are also some energy leakages from the decompositions to the transient and noise layers,

which can influence subsequent inpainting processes. This may be because of inappropriate choices
of sparsity parameters𝜆 for tonal and transient decompositions. Too low𝜆 keeps a portion of energy
that belongs to lower layers (transient and noise) in upper layers (tonal and transient), leading to
unsuccessful decompositions. On the other hand, too high 𝜆 allows some energy from the upper
layers (tonal and transient) to slip into the lower layers (transient and noise), leading to excessive
energy leakage.
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(a)Decomposed tonal signal in the time domain
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(b)Decomposed tonal signal in the TF domain
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(c)Decomposed transient signal in the time domain
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(d)Decomposed transient signal in the TF domain
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(e)Decomposed noise signal in the time domain
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(f)Decomposed noise signal in the TF domain

Figure 4.5 The decomposition results for test signal 3 in Experiment 1.
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Figure 4.6 The reconstruction SNR of tonal and transient components for two signals at different
noise levels. The red dashed line corresponds to test signal 1 and the blue dash-dotted line corre-
sponds to test signal 2.
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4.4 Experiment 2: Partial Processing and Tonal Reconstruction

In this section, we test the reconstruction quality of the tonal component. The reconstruction
process involves partial analysis, prediction, and resynthesis. As shown in Figure 4.7, after pre-
processing, the input signal is first decomposed to extract its tonal component. Then, the partials of
the decomposed tonal component will be tracked, reconnected, and matched to predict the partials
in the gap. Next, the tonal signal in the gap will be synthesized from the predicted partials. Finally,
the inpainted tonal component will be obtained by replacing the gap region of the decomposed
tonal signal with the synthesized signal, with a small amount of crossfading at the gap boundaries.

input 
signal

tonal 
decomposition

pre-processing

partial
tracking

partial 
reconnection

partial
matching

partial 
prediction

post-processing
output 
signal

partial 
resynthesis

Figure 4.7 The partial reconstruction process for Experiment 2.

In this experiment, we use three signals to test our partial processing and tonal reconstruc-
tion methods. The first signal is a synthesized inharmonic signal with exponentially damped si-
nusoids and additive noise. The second signal is a synthesized signal with harmonic modulations,
inharmonic quadratic chirps, and additive noise. The third signal is a recording of a soprano voice
with vibrato from the SoundQuality AssessmentMaterial (SQAM) dataset (European Broadcasting
Union 2008). These three test signals are visualized in the left panel of Figure 4.8. All test signals
are mono, 44.1 kHz, and 16 bits. The extracted tonal components of these test signals are shown in
the right panel of Figure 4.8.

For the first test signal, Figure 4.9 shows the intermediate results of the process of inpainting
the tonal part. We can find that partials are successfully detected from the decomposed tonal part
(Figure 4.9a), and some fragmented partials with small amplitudes are reconnected (Figure 4.9b).
The predicted partials in the gap are notmisconnected to each other, which indicates that the partial
matchingmethod works as expected (Figure 4.9c). The reconstructed tonal part has smooth attacks
and decays in the gap (Figure 4.9d).
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(a) Test signal 1 with a gap in the TF domain
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(b) Tonal component of test signal 1
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(c) Test signal 2 with a gap in the TF domain
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(d) Tonal component of test signal 2
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(e) Test signal 3 with a gap in the TF domain
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(f) Tonal component of test signal 3

Figure 4.8 Time-frequency domain representations of the three test signals and their decomposed
tonal components used for Experiment 2. The noise level for test signals 1 and 2 is at –30 dB. The
length of the gap is 100 milliseconds.

Figure 4.10 shows the results for the second test signal. At the partial tracking stage, the method
works well for isolated partials. However, some problems may arise when partials cross or con-
verge (Figure 4.10a). At the reconnection stage, some truncated partials are reconnected correctly,
whereas some other partials are connected wrongly because of serious frequency interferences (Fig-
ure 4.10b). In general, from the partial prediction result (Figure 4.10c) and the reconstructed tonal
component (Figure 4.10d), we find that most partials are predicted correctly. The prediction may
become inaccurate for heavily fragmented partials and partials with higher interference. At the
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(a) Partial tracking result
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(b) Partial reconnection result
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(c) Partial prediction result
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(d)Reconstructed tonal component in theTFdomain

Figure 4.9 Partial reconstruction results at different stages for test signal 1 in Experiment 2.

same time, some unwanted attacks and decays and some discontinuity at the boundary of the gap
may occur.

Figure 4.11 shows the tonal reconstruction results of the third test signal. We can observe that
the presence of noise makes the tracked partials more fragmented, and some of these partials are
composed of noise and are unpredictable (Figure 4.11a). The reconnection process connects trun-
cated partials to overcome fragmentation, but some partials composed of noise are misconnected
(Figure 4.11b). From the prediction and reconstruction results (Figure 4.11c and 4.11d), we find
that the prediction quality is high for the low-frequency part, where the noise interference is small,
while the prediction is inaccurate for the high-frequency part, where the noise interference is large*.

In conclusion, our tonal reconstruction method is able to predict the trajectories of partials so
that their temporal evolutions are more similar to their origins than what other methods provide.

*The audio excerpts and supplemental figures can be accessed through the webpage: https://etosphere.github.io/
hybrid-inpainting-approach-demo/.
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(a) Partial tracking result

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

0

5000

10000

15000

20000

F
re

q
u

e
n

c
y
 (

H
z
)

(b) Partial reconnection result
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(c) Partial prediction result
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(d)Reconstructed tonal component in theTFdomain

Figure 4.10 Partial reconstruction results at different stages for test signal 2 in Experiment 2.

However, some problems still exist in some cases. During the partial tracking process, we find that
when two partials cross each other, they interfere with each other on both frequency and amplitude,
resulting in inaccurate partial parameters estimated by the DDM, which may further lead to the
following scenarios:

• The trajectories are interrupted, producing some new partials.

• Trajectories are misconnected, so that one partial may connect to another after the crossing.

• Many fragmented partials appear near the intersection.

The partial reconnection process is capable of reducing the fragmentation of partials. However,
if the trajectory of a partial has been deviated by the interference or the partials are too fragmented,
the results of this process are less ideal.

Our partial prediction method, which incorporates both trend and AR components, making it
capable of reconstructing both partials with increasing or decreasing frequency, and partials with
periodic changes in frequency. By adjusting the corresponding parameter (𝑅2), we can control
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(a) Partial tracking result

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time (s)

0

1000

2000

3000

4000

5000

F
re

q
u

e
n

c
y
 (

H
z
)

(b) Partial reconnection result
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(c) Partial prediction result
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(d)Reconstructed tonal component in theTFdomain

Figure 4.11 Partial reconstruction results at different stages for test signal 3 in Experiment 2.

the sensitivity of extracting the trend component. If the prediction method is too sensitive, in other
words, if𝑅2 is too large, it will be easier to incorrectly extract the trend component from the periodic
trajectories.

For the prediction of a partial’s amplitude, more energy is preserved in the gap region due to
the use of a parabola instead of a linear trend component. However, the parabola trend cannot
simulate a fast attack with an asymmetric shape, and we do not try to predict the temporal location
and amplitude of the attack based on audio information.
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4.5 Experiment 3: Noise Reconstruction

In this section, we test and compare the reconstruction quality of the noise component using two
different techniques: crossfade-based technique and LAR interpolation technique. The process is
illustrated in Figure 4.12, where the input noise signal with a gap is analyzed and reconstructed
separately using the two methods, resulting in two inpainted signals correspondingly.

input 
signal

pre-processing

post-processing
output 
signal 1

crossfade of two 
filtered noises

LAR 
interpolation

post-processing
output 
signal 2

Figure 4.12 The noise reconstruction process for Experiment 3.

We use three test signals in this experiment, which are visualized in Figure 4.13. The first test
signal is a synthesized signal with the superposition of two time-varying filtered noises, whose band-
widths are varying with time. The second test signal is also a synthesized signal with the superpo-
sition of two time-varying filtered noises, but whose center frequencies are varying with time. The
third test signal is a recording of a rain sound, which is obtained from an environmental sound
dataset named BDLib2 (Bountourakis et al. 2015; Bountourakis et al. 2019). All signals are mono,
44.1 kHz, and 16 bits.

Figure 4.14 illustrates the reconstruction results using the two noise reconstruction techniques
for the first test signal. We can observe from the spectrograms that the reconstructed signals from
both methods are similar to the original test signal without gap.

Figure 4.15 shows the reconstruction results for the second test signal. In this case, we can see
that the crossfade-based technique (Figure 4.15a) ends up with stationary resonance frequencies in
the gap region, while the LAR interpolation technique (Figure 4.15b) successfully reconstructs the
time-varying resonance frequencies, although the reconstruction quality of the filtered noise with
faster frequency variation is lower than that of the slower-varying one.

Figure 4.16 presents the reconstruction results for the third test signal. The reconstruction qual-
ity is very similar to that of the first test signal, and there is no noticeable difference between the two
methods*.

*The audio excerpts and supplemental figures can be accessed through the webpage: https://etosphere.github.io/
hybrid-inpainting-approach-demo/.
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(a) Test signal 1 without gap
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(b) Test signal 1 with added gap
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(c) Test signal 2 without gap
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(d) Test signal 2 with added gap
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(e) Test signal 3 without gap
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(f) Test signal 3 with added gap

Figure 4.13 Time-frequency representations of the three test signals (with or without gap) in
Experiment 3. The length of the gap is 150 milliseconds.

To evaluate the reconstruction quality of the three test signals quantitatively, we use the time-
varying Itakura-Saito distance (TV-ISD) between the reconstructed and the original noise signals
(without the gap) as a metric. We use a Hann window to segment the gap region of both signals,
with a window size of 2048 and a hop size of 512. For each segment, we calculate the ISD between
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(a) Crossfade of two filtered noises
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(b) LAR interpolation

Figure 4.14 Noise reconstruction results for test signal 1 using two different techniques in Ex-
periment 3.
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(b) LAR Interpolation

Figure 4.15 Noise reconstruction results for test signal 2 using two different techniques in Ex-
periment 3.

these two signals. The PSDs for each segment are estimated using the Burg method with an order
of 8. The TV-ISD is a vector that contains the ISD calculated from each segment.

The evaluation result is shown in Table 4.9. We can see that for noise signals with small varia-
tions of the local maximumof their PSDs, such as test signals 1 and 3, the crossfade-based technique
yields slightly better and more consistent reconstruction quality than the LAR interpolation tech-
nique. On the other hand, for noise signals with large variations at the localmaximumof their PSDs,
such as test signal 2, the LAR interpolation technique significantly outperforms the crossfade-based
technique in terms of reconstruction quality.

Therefore, to achieve a better reconstruction of the noise component, we need to choose which
technique to use based on the characteristics of the signal. For signals with stationary or slowly
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(b) LAR Interpolation

Figure 4.16 Noise reconstruction results for test signal 3 using two different techniques in Ex-
periment 3.

Table 4.9 The time-varying Itakura-Saito distance (TV-ISD) of reconstructed signals using two
noise reconstruction techniques for three test signals. The values are acquired by repeating the
process a 100 times.

Mean TV-ISD (Standard Deviation)

Reconstruction technique Test signal 1 Test signal 2 Test Signal 3

Crossfade of two filtered noises 0.107 (0.042) 1.377 (0.244) 0.041 (0.009)
Interpolation of LAR coefficients 0.443 (0.398) 0.229 (0.048) 0.039 (0.009)

varying PSDs, we can use the crossfade-based technique, which is simpler and faster. For signals
with fast varying PSDs, we should use the LAR interpolation technique, which can capture and
preserve the temporal variations better. An automatic selection between the two techniques could
be achieved in future research throughmeasuring the variability of the PSDs and selecting based on
a predefined threshold.

4.6 Experiment 4: Comparison with Other InpaintingMethods

In this experiment, we compare the reconstruction quality of our hybrid approach (Hybrid) with
four state-of-the-art inpainting methods using 10 real audio signals. The four inpainting methods
are the analysis variant of SPAINmethod (A-SPAIN) (Mokrý et al. 2019), the weighted Chambolle-
Pockmethod (w-CP) (Mokrý andRajmic 2020), the iteratively reweightedChambolle-Pockmethod
(re-CP) (Mokrý andRajmic 2020), and the frame-wise Janssenmethod (Janssen) (Janssen et al. 1986).
All these methods use the half offset configuration, a window size of 2800, and a hop size of 700,
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4.6. Experiment 4: Comparison with Other Inpainting Methods

as the same values in Mokrý and Rajmic (2020). For the Janssen method, we set the number of
iterations to 20.

The 10 audio recordings are chosen from the Sound Quality Assessment Material (SQAM)
dataset (European Broadcasting Union 2008), which contains various types of signals. The infor-
mation on these test signals are summarized in Table 4.10.

Table 4.10 Information on the ten test audio signals used for comparison in Experiment 4.

Track number Signal content Duration (second)

09 Viola melodic phrase 10.59
14 Oboe melodic phrase 10.32
23 Horn melodic phrase 10.74
33 Gong single tone (forte) 10.82
44 Soprano solo 10.69
56 Organ solo 10.43
58 Guitar solo 9.67
60 Piano solo 10.26
65 Orchestra excerpt 10.99
69 Pop music excerpt 10.62

For each test audio signal, we divide it equally into 10 segments, and create a gap of a specified
size (from10 to 500milliseconds) at a random location in each segment. We exclude the first and last
segments from the inpainting process, since they are usually the attack and decay parts of the signal.
We also ensure that the reliable neighborhoods needed for the inpainting methods are long enough
so that gaps are not presented near the boundaries. If the gap length is larger than 200 milliseconds,
we reduce the number of segments to 6 to avoid creating gaps that are too large compared to the
segment length.

For each segment with a gap, we reconstruct the signal using our hybrid approach and the four
inpaintingmethods*. For the hybrid approach, we use the crossfade-based technique to reconstruct
the noise component. We evaluate the reconstruction quality using three metrics: SNR (SNRgap),
TV-ISD, and ODG. To calculate the TV-ISD, we use a Hann window with a window size of 2048
and a hop size of 512, and estimate the PSDs for each segment using the Burg method with an order
of 64. In addition, we record the elapsed time for each inpainting method to produce results.

*The audio excerpts and supplemental figures can be accessed through the webpage: https://etosphere.github.io/
hybrid-inpainting-approach-demo/.
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4. Experiments

For each inpainting method and each gap length, we use the interquartile range (IQR) method
to remove outliers from the metrics data. The IQR is calculated by subtracting the 25th percentile
(𝑄1) from the 75th percentile (𝑄3) of the data. Data points that are smaller than 𝑄1 − 1.5IQR or
larger than 𝑄3 + 1.5IQR are considered as outliers and removed from the analysis.

The evaluations of different audio inpainting methods under three metrics are shown in Fig-
ure 4.17, 4.18, and 4.19.
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Figure 4.17 Comparison of audio inpainting methods under different gap lengths in terms of
SNR.

According to Figure 4.17, when the gap length is lower than 50ms, the hybrid approach does not
have the same good SNR as other methods, and all the methods show the same overall performance
when the gap length is 50 ms or longer.

In terms of TV-ISD, the hybrid approach performs more consistently across all gap lengths and
beats all other approaches for gaps longer than 100 ms (Figure 4.18). This indicates that the hybrid
approach is able to maintain the spectral shape over a wide range of gaps.

Comparing the results of ODG, the hybrid approach has a much better reconstruction quality
than other methods when the gap is longer than 50 ms in both evaluation metrics. It is not as good
as other models when the gap is lower than 50 ms (Figure 4.19).

The degradation of the reconstruction quality of our hybrid approach may be attributed to the
following reasons. First, it is difficult to spread the phase error when synthesizing the partials when
gap is short, which leads to a more pronounced discontinuity and lowers the ODG.Moreover, since
we use preset parameters to inpaint all types of signals, the partial matching method sometimes
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Figure 4.18 Comparison of audio inpaintingmethods under different gap lengths in terms of TV-
ISD (lower values are better). For gaps of lengths 250 and 500 ms, the TV-ISD cannot be calculated
(extremely large values of results) for methods except the hybrid approach, and is therefore not
shown in the figure.

matches two partials that represent different notes together (parameters such as 𝜁match
𝑓 and 𝜁match

𝑎
are set too aggressive in this scenario). This predicts incorrect partial trajectories, which significantly
decrease the reconstruction quality, especially for longer gaps.

We can infer from the above findings that the hybrid approach achieves better results in all three
evaluation metrics when the gap is longer than 50 ms, which means that our approach is better
at inpainting longer gaps (100–500 ms). Notably, when the gap is longer than 50 ms, the hybrid
approach has stable performance, whereas other methods such as Janssen and re-CP start to fail.
Even more, the hybrid approach shows less standard variations in longer gaps.

At the same time, the hybrid approach shows better reconstruction quality in more stationary
signals, such as the Viola and the Horn signals, as shown in Figure 4.20, and far outperforms other
methods for gap lengths greater than 100 ms (Figure 4.21). Furthermore, as for the running time,
our hybrid approach, together with the A-SPAIN and the w-CP methods, has a much shorter run-
ning time and almost does not increase when the gap length grows, as shown in Figure 4.22.

The main advantage of our hybrid approach is that it is more adaptive and flexible than other
approaches for inpainting an audio signal by integrating more controllable parameters. In practice,
fine-tuning related parameters depending on the characteristics of an audio signal can result in
better reconstruction.
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Figure 4.19 Comparison of audio inpainting methods under different gap lengths in terms of
ODG (higher values are better).

We illustrate the adaptability and flexibility of our hybrid approach with two examples. The first
example uses a synthesized sound with linear chirps and added noise (with noise level at –15 dB),
and the second uses a soprano recording with vibrato from the Sound Quality Assessment Material
(SQAM) dataset (European Broadcasting Union 2008).
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Figure 4.20 Reconstruction SNR of the hybrid approach for multiple signals under different gap
lengths.
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Figure 4.21 Comparison of audio inpainting methods for the Horn signal under different gap
lengths in terms of ODG.

For both signals, we fine-tune some parameters in the partial tracking and matching methods.
We set the window size of partial trackingΨpartial to 1024 samples to better capture the time-varying
nature of these two signals. We set smaller values for the assignment thresholds for amplitude (𝜁𝑎 =
12) and frequency (𝜁𝑓 = 12) changes for the partial tracking method to reduce the misconnection
of two independent partials. We also set smaller values for the assignment thresholds for amplitude
(𝜁match

𝑎 = 0.01) and frequency (𝜁match
𝑎 = 9) changes for the partial matching method to reduce the

mismatch of two independent trajectories. The reconstruction results for the two test signals are
presented in Figures 4.23 and 4.24, respectively.

As for the synthesized signal with chirps and noise, compared to the original TF representation
(Figure 4.23a), w-CP and re-CP fail to inpaint the tonal (chirp) part, and the re-CPmethod discards
the noise in the gap. At the same time, A-SPAIN and Janssen cannot adapt to the variations of
frequencies in the gap due to their stationary assumptions in the gap, leading to frequency jumps and
the “freezing” of noise. However, our hybrid approach successfully captured the features from the
reliable neighborhoods and accurately predicted both tonal and noise components for this signal.

As for the soprano signalwith vibrato, compared to the original TF representation (Figure 4.24a),
w-CP and re-CP failed to inpaint the tonal component with modulation. Meanwhile, A-SPAIN and
Janssen fail to connect the correct partials. The hybrid approach shows the most similar trajectories
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Figure 4.22 Comparison of audio inpainting methods under different gap lengths in terms of
running time.

as the original audio signal with the correctly inpainted partials withmodulation and captures some
of the noise. These two results also confirm the “frequency jump” problem and the “freezing/discard
of noise” problem of the other inpainting approaches.

In conclusion, the hybrid approach is more general and adaptive than other methods with var-
ious lengths of gaps, especially for longer gaps and stationary signals, and it can also be fine-tuned
to get better results based on the characteristics of the signal in practical usage.
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(a)Original signal
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(b)Hybrid result
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(c) A-SPAIN result
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(d) w-CP result
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(e) re-CP result
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(f) Janssen result

Figure 4.23 Time-frequency domain representations of the reconstructions of various inpainting
methods for the synthesized chirps with added noise. The length of the gap is 50 milliseconds.
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(c) A-SPAIN result
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(d) w-CP result
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(e) re-CP result
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(f) Janssen result

Figure 4.24 Time-frequency domain representations of the reconstructions of various inpainting
methods for the soprano recording with vibrato. The length of the gap is 50 milliseconds.
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5
Conclusion

5.1 Summary

This thesis proposes a novel hybrid audio inpainting approach that takes into account the diversity
of audio signals. This approach solves the inpainting problem in a structured way as it decomposes
the signal into tonal, transient, and noise components and reconstructs them separately using their
own reliable neighborhoods. Some state-of-the-art methods are adopted and refined in the present
study, such as the structural sparse decomposition, partial tracking, and extrapolation algorithms,
to provide more robust inpainting results.

Comparing the inpainting results of A-SPAIN, w-CP, re-CP, and Janssenmethods across the gap
from 10 ms to 500 ms in terms of SNR, TV-ISD, and ODG, we found that the hybrid approach is
more general and adaptive than other methods with various lengths of gaps, especially for longer
gaps (longer than 50 ms) and stationary signals. Furthermore, our hybrid approach remains fast
and scarcely increase the running time as the gap length grows.

5.2 FutureWork

There are still some limitations and challenges that need to be addressed in future work. Some
possible directions are as follows:

Recovering the transients in the gap. It is crucial for reconstructing the transient component to
estimate the onset positions of the transients in the gap. A possible solution is to incorporate some
beat tracking models, such as Ellis (2007), to induce the potential locations for transients based
on the rhythmic structure of the signal. Another possibility is to exploit the fact that transients
are typically found at the start of a sustained sound, and divide the “sustained” components in the
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5. Conclusion

gap into several damped sine waves with transients. The ramped exponentially damped sinusoidal
(REDS) atoms, proposed by Neri and Depalle (2017), can efficiently represent this type of signal
and can be potentially used for reconstructing the transients.

Improving the robustness of the hybrid approach. Another challenge of our approach is to deal
with factors such as noise that can interfere with the estimation of the parameters of a partial, which,
togetherwith the fact that partial tracking and reconnectionmethods often fall into a local optimum,
leads to unstable experimental results. Despite proposing many strategies and using parameters to
constrain the partial processing methods, the results are still undesirable for some cases. Therefore,
more advanced partial tracking and prediction methods need to be proposed to address this issue.

Using supplementarymaterials to guide the inpainting process. A possible way to enhance our
approach is to use some additional information or context from other modalities or sources to in-
paint the audio. For instance, Zhou et al. (2019) proposed a vision-infused deep audio inpainting
method that utilizes the modality context in the accompanying video to inpaint the audio. Simi-
larly, it may be also possible to use musical scores to provide information (such as note and rhythm)
to help guide the inpainting process for long gaps.

Extending the hybrid approach for reconstructing other degradations. The recovery of various
degradations of audio signals is a more general problem than audio inpainting in the context of
our thesis. The audio signals can be not only degraded in time domain, such as missing samples
(gap) or limited amplitude (clipping), but also degraded in time-frequency domain, including data
compression (quantization) and high-frequency removal (bandlimiting) (Mokrý et al. 2020; Jax and
Vary 2002). The three-layer structured audio processing approach can be applied to recover other
degradations.
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