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Abstract

The idea of precision medicine is to use patient-level data to develop personalized treat-

ment regimes for each individual. Dynamic treatment regimes (DTRs) formalize this idea

and use statistical tools to learn from data and personalize treatment to optimize treat-

ment decisions. There are different methods to estimate the optimal DTR. We focused on

the dynamic weighted ordinary least squares (dWOLS), a regression-based approach to

estimating the parameters of a DTR.

In practice, we must often use observational data to determine personalized treatment

strategies. This poses several difficulties, particularly due to potential unmeasured con-

founders which can create biased results. To evaluate the impact of potential unmeasured

confounding factors, sensitivity analysis methods are used.

In this thesis, we developed a simple and easy-to-use sensitivity analysis method. We

introduced a sensitivity parameter that partially captures the impact of violations of the

no unmeasured confounding assumption. The sensitivity parameter is obtained by eval-

uating the mean of the unmeasured confounder conditional on the measured covariates.

The performance of the method is assessed in various scenarios through simulation stud-

ies. Finally, we applied this method to the National Health and Nutrition Examination

Survey (NHANES) data to examine how physical activity recommendations can be tai-

lored at an individual level while accounting for unmeasured confounding.
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Résumé

La notion de la médecine de précision est d’utiliser les données au niveau du patient

pour développer des régimes de traitement personnalisés pour chaque individu. Les

régimes de traitement dynamiques (RTD) formalisent cette idée et utilisent des outils

statistiques pour apprendre des données afin de personnaliser le traitement et d’optimiser

les décisions de traitement. Il existe de différentes méthodes pour estimer le RTD optimal.

Nous nous sommes concentrés sur la méthode des moindres carrés ordinaires pondérés

dynamiques, une approche basée sur la régression pour estimer les paramètres d’un RTD.

En pratique, nous devons souvent utiliser des données non-randomisées pour déterminer

des stratégies de traitement personnalisées. Cela pose plusieurs difficultés, notamment en

raison de potentiels facteurs de confusion non mesurés qui peuvent mener à des résultats

biaisés. Pour évaluer l’impact des facteurs de confusion potentiels non mesurés, des

méthodes d’analyse de sensibilité sont utilisées.

Dans cette thèse, nous avons développé une méthode d’analyse de sensibilité simple

et facile à utiliser. Nous avons introduit un paramètre de sensibilité qui capture partielle-

ment l’impact des violations de l’hypothèse de l’absence de facteurs de confusion non

mesurés. Le paramètre de sensibilité est obtenu en évaluant la moyenne du facteur de

confusion non mesuré conditionnellement aux covariables mesurées. Les performances

de la méthode sont évaluées dans divers scénarios à l’aide d’études de simulation. En-

fin, nous avons appliqué cette méthode aux données de l’Enquête nationale sur la santé

et la nutrition (≪ NHANES ≫) pour examiner comment les recommandations d’activité
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physique peuvent être adaptées au niveau individuel, tout en tenant compte d’un facteur

de confusion non mesuré.
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Chapter 1

Introduction

In clinical practice, the notion of precision medicine or personalized medicine is that

healthcare should be tailored at the individual patient level. Rather than considering a

traditional “one size fits all” approach, a personalized strategy suggests that clinicians

should tailor medical decisions to account for patient response heterogeneity. The goal

of precision medicine is to find the treatment which will optimize a patient’s clinical out-

come. There are obviously numerous benefits from considering a personalized approach

to patient care, including better treatment efficacy, fewer side effects, etc. [4, 41].

In practice, patient care typically involves several decisions that are made sequentially.

As such, personalized treatment strategies will often consist of a sequence of decision

rules, where a treatment decision at any given point in time could (and likely will) af-

fect future decisions. The theory of dynamic treatment regime (DTR) formalizes this idea

and consists of a general framework for determining the optimal sequence of treatments.

The notion of tailored interventions is not limited to medicine or therapeutic treatment of

illness. Tailored recommendations can also be used for educational interventions, adver-

tising, or behavioural interventions or recommendations. The latter example will be the

focus of the real data analysis undertaken in Chapter 5.

A DTR considers patient information such as medical history, socio-demographic fac-

tors, and genetic information as input and recommends a treatment, or sequence of treat-
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ments as output. It formalizes the notion of precision medicine by tailoring treatment

regimes such that the clinical outcome of interest is optimized [17]. In the illustrative

analysis of Chapter 5, tailoring variables are primarily socio-demographic.

There are several statistical approaches that can be used for estimating optimal treat-

ment strategies. There are two broad classes for DTR estimation: regression-based and

value search methods. Within the class of regression-based methods, there are also sev-

eral different approaches including G-estimation [31], Q-learning [40, 47] and dynamic

weighted ordinary least squares (dWOLS) [15, 45], the last of which is the focus of this

thesis.

In regression-based methods, we model the conditional expectation of the outcome of

clinical interest, given patient information and history. The optimal treatment rules are

then estimated by sequentially optimizing the outcome at each treatment stage, starting

from the last stage and working backwards (full details on estimation will be provided

in Chapter 2). The validity of this approach to estimating personalized treatment rules is

based on several standard assumptions. One of these assumptions is that of no unmea-

sured confounding (NUC), an assumption that is often violated in research that relies on

non-experimental data such as electronic health records. Violations of the assumption of

NUC may lead to biased estimation, thereby yielding sub-optimal treatment strategies.

The issues that arise due to unmeasured confounding have been widely discussed

in the literature. Several authors have proposed various sensitivity analyses that can be

used to evaluate the impacts of violations to NUC [12,33]. The objective of this thesis is to

explore the sensitivity of dWOLS estimation to violations of the NUC assumption [33]. In

particular, we propose a sensitivity analysis approach that attempts to capture the effect

of an unmeasured confounder in a single sensitivity parameter.

The thesis includes six chapters. In Chapter 2, the literature relevant to dWOLS and

sensitivity analyses of unmeasured confounders is reviewed. The basic concepts, nota-

tions, and assumptions are also given. Then a new sensitivity analysis approach in the

dWOLS framework is proposed in Chapter 3. In Chapter 4, several simulation studies are

2



summarized. The first set of simulations investigates the performance of dWOLS estima-

tors in the presence of unmeasured confounding. The second set of simulations explores

incorporating a sensitivity parameter in dWOLS in order to compensate for unmeasured

confounding. Chapter 5 considers a real data analysis applying the proposed method to

the National Health and Nutrition Examination Survey (NHANES) data. The conclusion

and further discussion are presented in Chapter 6.
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Chapter 2

Literature Review

In this chapter, we provide a general review of the literature on DTRs as well as estima-

tion methods for determining the optimal treatment strategy. We will focus on regression-

based estimation methods, specifically dWOLS. We will then describe some existing ap-

proaches for conducting sensitivity analysis which is the main focus of our work. By

providing an overview of the literature on dWOLS and sensitivity analysis techniques,

we aim to lay the foundation for the methodology proposed in the following chapter.

2.1 Dynamic Treatment Regime

As stated in Chapter 1, a DTR consists of a sequence of treatment rules, each of which

uses patient information as input and recommends the treatment which optimizes some

outcome of clinical interest. The optimal DTR is determined by comparing the expected

response under different treatment strategies, and selecting the regime that leads to the

best expected outcome [4]. In the multi-stage setting, the optimal DTR improves the

expected outcome in long-term conditions by constructing a sequence of treatment rules

that will result in the best outcome over an extended period [26]. In the single-stage

setting, on the other hand, the optimal DTR consists of a single decision rule yielding the

optimal outcome and is referred to as an individual treatment rule (ITR).
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Determining the optimal DTR raises some challenges, as past treatments impact both

present and future treatment decisions, therefore, there is a need for sophisticated models

[46]. There exists several statistical frameworks for estimating the optimal DTR, including

value-search techniques and regression-based methods. This work will focus on the latter

approach, particularly dWOLS, as will be discussed in more detail in Section 2.3. Before

discussing the methods for determining the optimal DTR, we will first discuss the type

of data typically used in such problems, the required notations, and the assumptions that

are necessary for DTR estimation and inference.

2.2 Data Type, Notation, and Assumptions

To estimate an optimal DTR, data must provide sufficient information. Different com-

ponents must be considered and recorded to obtain the optimal DTR, including patient

treatment history, the outcome variable of interest, covariates that predict the outcome,

and any potential confounders. The goal is to provide treatment recommendations at

critical decision points, namely at the time that a treatment decision is made. In this the-

sis, we consider a binary “treatment” variable that refers to either receiving the treatment

or not. Ideally, the covariates summarize all relevant patient information and history, not

only for tailoring treatment but also for predicting the outcome and controlling confound-

ing. The final component is the outcome, that is, the response variable of interest, which

is impacted by covariates and treatment.

Data Type

A data source may be categorized as either experimental or observational (i.e., not ran-

domized or non-experimental), and the latter is the focus of this thesis. Observational

studies are commonly used in clinical research, particularly when randomized experi-

ments are not feasible. Examples of observational data sources include electronic health

records, cohort studies, and case-control studies.
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Working with observational data can be challenging and, when not analyzed carefully,

can lead to biased inference. Such biases include detection bias, recall bias, and selection

bias, all of which can lead to biases in estimations [16]. Under certain assumptions, how-

ever, unbiased estimation is still possible when using observational data.

Observational data are also subject to confounding, which happens when the effect

of the treatment is mixed with the effect of another covariate. In general, confounding

occurs when the relationship between the treatment and outcome is distorted by the con-

founding variable(s). Failure to account for confounding can lead to biased estimates of

the treatment effect on the outcome. Therefore, identifying and adjusting for confounding

variables is essential in any causal analysis [11].

In this thesis, we aim to develop a sensitivity analysis approach for adjusting for un-

measured confounders. As such, the methods developed in this thesis are relevant in the

case of observational data, that is, in the absence of randomization.

Notation

In DTR, the decision points or time points at which a treatment decision is made, are

defined as stages. In a multi-stage setting, a DTR consists of a set of decision rules for all

stages. Throughout this thesis, the random variables and observed values are indicated

by upper case and lower case letters, respectively. We will consider the following notation

in a multi-stage DTR:

• Xj : the covariates before beginning the jth treatment

• Aj : a binary variable representing assigned treatment at the jth stage

• Hj : the patient history before the jth treatment i.e., Hj = (X1, ..., Xj, A1, ..., Aj−1)

• Y : the final outcome measuring the patient’s response to the sequence of treatment.

In this thesis, the notation Y (a) represents the potential outcome that would be observed

if the individual receives treatment a. In the case of binary treatment, Y (1) signifies the
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potential outcome in the presence of treatment, whereas Y (0) corresponds to the potential

outcome in the absence of treatment.

Figure 2.1 shows the causal diagram of a simplified two-stage study with no unmea-

sured confounders. In this thesis, we focus primarily on the single-stage setting, although

we also consider some cases with two stages in the simulations.

X1

A1

X2

A2

Y

Figure 2.1: Causal diagram for a two-stage example with no unmeasured confounders.

The interactions are not shown in this graph.

Assumptions

Several standard assumptions are required for estimating the optimal treatment strategy,

as will now be detailed for a one-stage setting. An essential assumption is the axiom of

consistency. It states that the potential outcome is equal to the observed outcome when

we have observed treatment, i.e.,

Y = AY (1) + (1− A)Y (0).

Another assumption is known as the stable unit treatment value assumption (SUTVA),

stability, or “no interference” assumption by some authors. By this assumption, there

is no interaction between units such that one person’s outcome is not affected by other

individuals’ treatments [4]. The next assumption is positivity which means that all treat-

ment levels are possible for any covariate combination [32]. In causal inference, positivity

means we only assess causal effects in people who are eligible for all levels of treatment.
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Anyone who would either always, or never, receive the treatment should be excluded

from the study. Thus, the positivity assumption ensures that every combination of co-

variates in a population has a non-zero probability of treatment, i.e.,

P (A = a|X = x) > 0 ∀a ∈ {0, 1} and ∀x.

We also assume that the treatment and potential outcome conditional on covariates

are independent [30]; this is known as no unmeasured confounding (NUC) which is a

type of exchangeability property i.e.,

A ⊥ Y (A)|X.

A violation of this assumption typically implies that there is at least one variable C that

is associated with both outcome and treatment [36], though other structures in causal

diagrams can lead to NUC violations as well. We refer to such variables C as unmeasured

confounders. Recall that a confounder C is such that it is associated with the outcome

and treatment, but is not on the causal pathway between the treatment and outcome.

In this sense, the time-ordering or direction of association plays an important role: a

confounder must occur before receiving the treatment and is thus not influenced by the

treatment itself. Note that if a variable lies on the causal pathway between the treatment

and outcome, it is referred to as a mediator. The assumption of NUC is also known as

strong ignorability.

To estimate the optimal DTR, many estimation approaches rely on confounding ad-

justment methods via the “treatment model” or “propensity score (PS)” which is defined

as the coarsest function

π(x) = P (A = 1|X = x)

where A is a binary treatment and X is a set of the measured covariates. The PS mod-

els the probability of a patient receiving a treatment based on confounding variables.
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It ensures that covariate distributions are balanced between treatment groups, allowing

matching on it for estimation of treatment effects that is not biased by confounding. To

estimate the PS, logistic regression models are often used [35].

Having discussed the notations and required assumptions, in the next section, we

review the dynamic weighted ordinary least squares ( dWOLS) method for estimating

the optimal DTR, which is the focus of this work.

2.3 dWOLS Methods

Different statistical approaches can be used for estimating optimal treatment strategies.

Two main classes to estimate the optimal DTR are value search methods [27, 32, 48] and

regression-based methods [15, 26, 31, 40, 45, 47]. Value search methods parameterize the

treatment rules and find the expected outcome associated with each regime. In other

words, the value search approach focuses on the parameters of the treatment rule rather

than the parameters of the mean outcome model [32]. The optimal treatment strategy is

then determined by comparing the expected outcome (value) of each treatment rule, and

selecting the rule with the highest expected value. The inverse probability weighted es-

timator (IPWE) [32] and the augmented inverse probability weighted estimator (AIPWE)

[48] are two methods that fall within the value search class.

In this thesis, we focus on regression-based methods which involve using regression

models to estimate the effect of treatment on patient outcome. Regression-based methods

model the contrast between optimal and observed treatment and find the treatment that

optimizes the estimated mean outcome. In a multi-stage setting, these methods begin

with the optimal DTR estimation of the last stage and move backward to the first stage

using regressions.

In regression-based approaches for estimating the optimal DTR, the blip function is

the main modelling component pertinent to DTR estimation. In a single-stage setting, the

blip function γ(X,A;ψ) is defined as the difference between the expected outcome under
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treatment a and the expected outcome under aref , i.e.,

γ(x, a;ψ) = E[Y (a)− Y (aref )|X = x].

In this method, the outcome model E[Y |X = x,A = a; β, ψ] is written as m(X; β) +

γ(X,A;ψ), where m(X; β) is the treatment-free model defined as the expected outcome

under the baseline treatment (typically, aref = 0). We thus use a classical outcome model

with a new notation. The advantage of this structure is its ability to isolate the crucial

terms that require precise specification (blip function). In the context of DTR, blip pa-

rameters ψ represent critical parameters for decision-making, while treatment-free model

parameters β are considered nuisance parameters. A related concept to the blip function

is the regret function which is the difference between the expected outcome under the

optimal treatment (aopt) and the expected outcome under the assigned treatment a and is

defined as

µ(x, a;ψ) = E[Y (aopt)− Y (a)|X = x].

The regret is related to the blip function, specifically,

µ(x, a;ψ) = γ(x, aopt;ψ)− γ(x, a;ψ).

Thus, the regression-based methods for DTR estimation separate the linear terms that

interact with the treatment in the outcome model. In most cases, the forms of ψTaxψ and

βTxβ are considered for γ(X = x,A = a;ψ) and m(X = x; β), respectively. Notations of

xψ and xβ refer to the variables that are included in the models, i.e., Xψ and Xβ are the

subsets of the covariate X relevant for the blip and treatment-free models, respectively.

G-estimation [31], Q-learning [40,47], and dWOLS [15,45] are examples of regression-

based estimation methods. In Q-learning method, the focus is on the quality function

10



(Q-function) defined as

Q(X = x,A = a; β, ψ) = E[Y |X = x,A = a].

For a one-stage setting, the estimation process is then using a linear regression

Q(x, a; β, ψ) = βTxβ + ψTaxψ

and the optimal DTR is the one which maximizes the Q-function, i.e.,

âopt = argmaxaQ(x, a; β̂, ψ̂).

For a one-stage example, the G-estimation method defines the functions

G(X; β) = Y − γ(X,A;ψ) and S(X,A) =
∂

∂ψ
γ(X,A;ψ).

We then posit a model for E[G(X;ψ)|X; β] which can be a linear model

E[G(x;ψ)|x; β] = βTxβ.

The ψ̂ can then be obtained by solving the equation

U(ψ) =
n∑
i=1

(G(ψ)− E[G(X = x, ψ; β)])(S(A,X)− E[S(A,X)|X = x]) = 0.

G-estimation and Q-learning are similar in concept, but we need more modeling in G-

estimation which provides increased robustness to model miss-specification. G-estimation

in the form shown above is doubly-robust in that the blip parameter estimators are con-

sistent if at least one of the treatment or treatment-free models is correctly specified un-

der the NUC assumption since the two terms in parentheses are then conditionally inde-

pendent ensuring a zero mean estimating function. The Q-learning method is relatively
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simple but is not doubly-robust, and depends on correctly specifying the Q-function

models [31]. The dWOLS method is, in some sense, a combination of these two meth-

ods: it borrows the doubly-robustness feature of G-estimation and the intuitiveness of

Q-learning. In this thesis, we focus on the dWOLS approach, as it is doubly-robust and

easy to implement [45].

The dWOLS approach, first introduced by Wallace and Moodie [45], considers weighted

regression models for estimating the optimal DTR. More specifically, dWOLS associates

specific weights to observations and fits a weighted regression model for the outcome

given (i.e., conditional on) the covariates and treatment allowing for interactions between

treatment and (typically a subset) of these covariates.

In the dWOLS framework, another assumption is required, in addition to the identi-

fiability assumptions (SUTVA, positivity, and NUC) discussed in Section 2.2. We assume

that the blip function is correctly specified and its form is linear. Further, we require that

all tailoring variables are also included in the treatment-free model.

Under the above assumptions, the blip parameter estimates are doubly-robust when

the weights satisfy the balancing property defined as

(1− π(X = x))w(A = 0, X = x) = π(X = x)w(A = 1, X = x). (2.1)

Wallace and Moodie [45] explored several different weight functions that satisfy the bal-

ancing property within the dWOLS framework. This thesis utilizes two commonly em-

ployed weights, namely, the absolute value weights and the inverse probability weights

(IPW). The former is specified as w(A = a,X = x) = |a− P (A = 1|X = x)| and the latter

is defined as w(A = a,X = x) = 1
P (A=a|X=x)

.

For a one-stage setting, dWOLS estimation consists of fitting a weighted linear regres-

sion model of the form

E(Y |x, a; β, ψ) = βTxβ + ψTaxψ,

12



and the optimal DTR is the one which maximizes the blip function, i.e.,

âopt = argmaxaγ(x, a; ψ̂).

In a multi-stage setting of DTR, dWOLS starts from the last stage and sequentially

works backward to the first stage. In evaluating the impact of stage-specific treatments,

the potential outcome approach is utilized to determine the hypothetical outcome if all

subsequent decisions were made optimally. Here, a pseudo-outcome Ỹj is considered for

stage j, assuming that the patient will follow the optimal treatment plan from that stage

forward. Considering a J-stage example, the pseudo-outcome at the jth stage is defined

as

Ỹj = Y +
J∑

k=j+1

µk(Xk, Ak; ψ̂k).

The last stage pseudo-outcome is the observed outcome, i.e., ỸJ = Y.

Note that in a multi-stage setting, a similar approach to creating a pseudo-outcome

is considered in G-estimation and Q-learning, however, the exact calculations are not

identical (though they are the same in expectation under the correct specification of the

outcome model). In Q-learning, the pseudo-outcome is calculated as the predicted out-

come under the optimal treatment, relying on the β̂ and is defined as the maximum of

Qj+1(Xj+1, aj+1; β̂j+1, ψ̂j+1) for j = 1, ..., J − 1 i.e.,

Ỹ
Q-learning
j = maxaj+1

Qj+1(Xj+1, aj+1; β̂j+1, ψ̂j+1),

and Ỹ
Q-learning
J = Y.

In G-estimation, the pseudo-outcome is the observed outcome removing the expected

effect of observed treatment and adding the expected effect of the optimal treatment.

Similarly to dWOLS method, the pseudo-outcome can be expressed as regret functions as

Ỹ G-estimation
j = Y +

J∑
k=j+1

µk(Xk, Ak; ψ̂k)
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for j = 1, ..., J − 1 and Ỹ G-estimation
J = Y.

In summary, in the dWOLS method, we need to specify a treatment model π(x), a

linear blip function γ(x, a;ψ) = ψTaxψ, and the treatment-free model m(x; β) = βTxβ for

each stage. The stage j blip parameter estimators ψ̂j are then obtained by a weighted

regression of the pseudo-outcome Ỹj and finally, the stage j optimal treatment âoptj is

calculated. The sequence of optimal decisions at each stage creates the optimal DTR

âopt = (âopt1 , âopt2 , ..., âoptJ−1, â
opt
J ).

Consider a two-stage example and assume that a larger value of Y is more beneficial

in a clinical sense. To find the optimal DTR, we begin by modelling the observed outcome

at the second stage (Y ). If ψ̂2 is the estimated parameter, the backward dynamic program-

ming strategy will be âopt2 = argmaxaγ2(x2, a2; ψ̂2). The inference for the first stage will

then be based on the pseudo-outcome at first stage Ỹ1 = Y +µ2(x2, a2; ψ̂2) which accounts

for the estimated optimal stage two treatment âopt2 . The optimal stage one treatment will

be âopt1 = argmaxaγ1(x1, a1; ψ̂1) where ψ̂1 is the dWOLS estimated parameter using Ỹ1.

Therefore, the optimal decision rule for a two-stage regime is âopt = (âopt1 , âopt2 ). Algo-

rithm 1 shows the dWOLS method in a two-stage example, where a higher value of Y is

considered more beneficial, and the blip function is assumed to be linear in the form of

γi(xi, ai;ψ) = ψTaix
ψ
i for i = 1, 2.

Note that the dWOLS method in Wallace and Moodie [45] was developed specifi-

cally for binary treatment and a continuous outcome. Schulz and Moodie [37] proposed

a generalized dWOLS method appropriate for both continuous or categorical treatment.

Other extensions have since been developed for censored outcomes [38] and discrete out-

comes [3].

Regarding the DTR in software, Wallace et al. [46] introduced DTRreg, an R package,

which implements the dWOLS. To perform the simulation analysis in Section 4.1, the

DTRreg package is used. In the next section, an examination of the existing literature

pertaining to sensitivity analysis is presented.
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Algorithm 1 dWOLS Method: two-stage example

1: Specify the following

• second-stage treatment model (π2(x2))

• second-stage blip function (γ2(x2, a2;ψ))

• second-stage treatment-free model (m2(x2; β))

2: Calculate weights w2 that satisfy equation 2.1
3: Estimate ψ̂2 by performing a weighted regression of Y using the second-stage blip

and second-stage treatment-free functions in the model
4: Construct the second-stage optimal treatment

âopt2 =

{
1, xψ2 ψ̂2 > 0

0, otherwise

5: Calculate the first-stage pseudo-outcome

Ỹ = Y + µ2(x2, a2; ψ̂2)

6: Specify the followings

• first-stage treatment model (π1(x1))

• first-stage blip function (γ1(x1, a1;ψ))

• first-stage treatment-free model (m1(x1; β))

7: Calculate weights w1 that satisfy equation 2.1
8: Estimate ψ̂1 by performing a weighted regression of Ỹ using the first-stage blip and

first-stage treatment-free functions in the model
9: Construct the first-stage optimal treatment

âopt1 =

{
1, xψ1 ψ̂1 > 0

0, otherwise

10: Obtain the optimal DTR âopt = (âopt1 , âopt2 )
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2.4 Sensitivity Analysis

Observational studies require careful consideration since they are subject to hidden bi-

ases. While conducting such a study, the analyst must identify and account for all po-

tential confounding factors that could distort the treatment effect. Confounding variables

can be measured or unmeasured. Age, gender, and socioeconomic status (income, edu-

cation level, occupation, wealth, etc.) are typical examples of measured confounders that

can be adjusted for in various ways. Unmeasured confounders, on the other hand, are

variables that affect both the treatment and the outcome but were not documented and

therefore cannot be directly adjusted for.

In general, sensitivity analysis is a technique used in various fields, including en-

gineering, economics, politics, epidemiology, and physics [6, 13, 20, 24], to assess how

changes in the variables or assumptions of a model can affect the outcome. Sensitivity

analysis can thus be used to assess the robustness of estimators to potential sources of un-

measured confounding by examining the impact of unmeasured confounders. By assess-

ing the potential impact of unmeasured confounders on outcomes, a sensitivity analysis

can provide additional insights that can inform decision-making [1, 29].

There are several methods for conducting sensitivity analyses, which can be classified

as either probabilistic or deterministic [28]. This thesis focuses on a probabilistic sensitiv-

ity analysis, which involves positing probability distributions of unknown covariates to

examine bias and using these distributions to conduct sensitivity analysis.

In contrast, deterministic sensitivity analysis involves varying one or more parameters

of interest in a fixed manner rather than considering them as arising or being drawn

from probability distributions [28]. A deterministic sensitivity analysis is limited by the

fact that it treats parameters as though they are known, which is not always the case,

especially when dealing with unmeasured confounders.

In clinical research, the idea of sensitivity analysis was first introduced by Cornfield et

al. [5] in 1959, when they investigated the relationship between smoking and lung cancer
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and assessed whether unknown variables could have confounded the association. Their

main question was, “How strong should the unmeasured confounder be in order to ex-

plain away the association between the treatment and outcome?” They concluded that

if the strength of the unmeasured confounder that is required to explain away the asso-

ciation is too large, then the association between the treatment and the outcome cannot

be explained only by one factor. Instead, it suggests a causal relationship between the

treatment and outcome. Since then, various methods have been proposed to conduct

sensitivity analyses. Rosenbaum and Rubin [34] focused on the effect of unmeasured

confounders on the relationship between a binary treatment and a binary outcome. They

examined the relationship by adjusting for both a binary unmeasured confounder and

an observed categorical covariate. They performed a sensitivity analysis by assessing the

odds ratios between the unmeasured confounder and both the treatment and the out-

come, determining the values at which the causal effect becomes insignificant.

In the presence of unmeasured confounding in observational studies, several methods

are available to conduct sensitivity analyses and assess the impact of this confounding on

the outcome. These methods include the use of E-values, Bayesian approaches, Monte

Carlo (MC) methods, and G-estimation. In the following sections, we will provide a con-

cise discussion of each of these approaches.

The E-value is a measure that determines the minimum strength of association re-

quired between an unmeasured confounding variable and both the treatment A and out-

come Y to account for the observed relationship between A and Y . VanderWeele et

al. [43] stated that sensitivity analysis could be employed with this approach to assess

how strong an unmeasured confounder would have to be to explain away an observed

treatment–outcome relationship.

There are different formulas to calculate the E-value for an estimate such as risk ratio,

odds ratio, hazard ratio, etc. For instance, for an observed risk ratio (RR), the E-value is

17



calculated based on the following formula

E− value =


RR+

√
RR(RR− 1), RR > 1

1
RR

+
√

1
RR

( 1
RR

− 1), RR < 1.

Suppose for example that an observed risk ratio is 3 (RR = 3), using the E-value, the

analyst can make statements such as: “The observed risk ratio of 3 could be explained

away by an unmeasured confounder that was associated with both A and Y by a risk

ratio of 5.45 each, but weaker confounding could not do so” [43]. Some more examples

and discussions on this method are provided in [19, 22].

Ioannidis et al. [14] raised some concerns about the limitations and potential misinter-

pretation of the E-value method. They pointed out that certain unrealistic assumptions

are made when using E-values, notably that there is only one unmeasured confounder.

Another assumption is that the unmeasured confounder C is equally associated with the

treatment A and outcome Y , which is often not the case. Additionally, the assumption

that a single variable can capture the effects of multiple confounders is implausible, as

is the assumption that there is no interaction between the effects of the unmeasured con-

founderC and the treatmentA and the outcome Y . VanderWeele et al. provided guidance

on how to avoid the potential misuse of the E-value approach in [7, 44].

Bayesian approaches and MC methods are probabilistic sensitivity analyses to assess

the impact of any potential unmeasured confounding on the outcome. Bayesian sensitiv-

ity analyses use a statistical framework based on prior probabilities and likelihood func-

tions to estimate the treatment effect, while MC sensitivity analysis is a simulation-based

approach that uses random sampling to estimate the causal effect [39]. More specifically,

MC sensitivity analysis can involve randomly sampling values from the probability dis-

tributions for the parameters influencing bias caused by unmeasured confounder and

then evaluating the model outcome for each sample. By repeating this process many

times, a distribution of model outcomes is generated, which can be used to estimate how

the treatment effect changes due to the unmeasured confounding and the uncertainty
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associated with this bias. The Bayesian sensitivity analysis method, on the other hand,

involves specifying a prior distribution for the unmeasured confounder, creating a model

for the probability of the data given the unmeasured confounder, and finally, using Bayes’

theorem, calculating the posterior distribution of the causal effect that accounts for the

bias due to unmeasured confounding [23, 39].

G-estimation has also been used to carry out sensitivity analyses. Hernán and Robins

employed G-estimation to examine the sensitivity of effect estimates to different assump-

tions [12]. To perform a sensitivity analysis using G-estimation, they created a candidate

potential outcome defined as H(ψ) = Y − γ(X,A;ψ), and considered the model

logit[P(A = 1|H(ψ), X = x)] = λ0 +H(ψ)xTλ1 + xTλ2.

Under the NUC assumption, the value of λ1 should be zero. They estimated the value of

ψ by fitting a logistic regression model and finding the value of ψ that resulted in a value

of zero for λ̂1. When there is unmeasured confounding, the value of λ1 is not zero and a

sensitivity analysis can be conducted by changing the value of λ1 and examining how it

affects the estimated treatment regime.

Vancak and Sjölander also considered G-estimation to conduct sensitivity analysis

[42]. They parameterized the mean of the counterfactual outcome with a single sensitivity

parameter to capture the bias due to an invalid instrumental variable. In causal inference,

instrumental variables are used to study treatment effects in the presence of unmeasured

confounding. A valid instrumental variable is associated with the treatment and only

influences the outcome through the treatment, avoiding any confounding with the out-

come. On the other hand, an invalid instrumental variable directly affects the outcome

apart from its impact on the treatment, which violates the assumption of NUC. Vancak

and Sjölander performed a sensitivity analysis to assess the impact of an invalid instru-

mental variable by considering a reasonable range of values for the sensitivity parameter

to determine the effect of the bias on the outcome [42].
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Rose et al. proposed a MC sensitivity analysis to correct for bias in the estimation

of DTRs in the presence of unmeasured confounders [33]. They captured the bias in the

estimators by specifying the dependence of the unmeasured confounder on all other mea-

sured confounders and treatments.

Consider the following outcome model

E[Y |X = x,A = a, C = c; β, ψ, βc] = xTβ + axTψ + βcc, (2.2)

where βc is the coefficient for the unmeasured confounder C. They performed a MC

sensitivity analysis by specifying the mean of the unmeasured confounder conditional on

the covariateX and treatmentA,E[C|X = x,A = a;α] such that α denotes the parameters

of the model as well as specifying a probability distribution for the parameter βc. When

C is continuous, α will be given by a linear regression model and if C is binary, α will be

given by a logistic regression model.

They then sampled α and βc from specified prior distributions, captured the bias by

imputing the values of C, and finally, calculated the bias-adjusted estimation of ψ by

using the dWOLS method ˆψadj = ψ̂ − b̂ias(ψ̂) where ψ̂ is the dWOLS estimates with

imputed C and b̂ias(ψ̂) = E(ψ̂) − ψ using estimates for C and βc. This analysis by Rose

et al. [33] includes a complex method which requires considering the full distribution of

C|X,A. It can also be difficult to implement in realistic settings.

We proposed a general yet simple method of sensitivity analysis inspired by Rose et

al. In Chapter 3, we detail the proposed method which only relies on specifying the re-

lationship between the unmeasured confounder and at least one other measured covari-

ates. This simpler method may help to (partially) capture the bias in dWOLS estimators

with unmeasured confounding by considering the distribution of C|X . We will explore

this approach and assess whether this method can fully, or only partially, eliminate bias

resulting from unmeasured confounding.

20



2.5 Summary

In this chapter, relevant background information was provided and a review of the litera-

ture on sensitivity analysis was given. More specifically, we have briefly introduced value

search and regression-based approaches for DTRs. We then reviewed the notations and

assumptions required in the dWOLS framework. A more detailed review of the dWOLS

approach was provided, as this work focuses on this specific estimation technique.

We reviewed the literature on sensitivity analysis for assessing the impact of unmea-

sured confounding. We have described different methods of analyzing sensitivity such

as E-values, Bayesian approaches, MC methods, and G-estimation. Borrowing from the

MC approach considered in [33], in this work we propose a simpler sensitivity analysis

method for dWOLS when the NUC assumption may be violated.

In the next chapter, we will describe how to execute the proposed sensitivity analysis

approach to adapt the estimation of the optimal DTR in the dWOLS framework in the

presence of unmeasured confounding. In Chapter 4, the proposed approach is evaluated

in different simulation studies.
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Chapter 3

Sensitivity Analysis of dWOLS

Estimators

As mentioned in Chapter 2, a sensitivity analysis has been developed for unmeasured

confounding in dynamic treatment regimes (DTRs) in [33]. This method, however, was

fairly complex and required many assumptions, some of which would be difficult to meet

in practice. In this chapter, we propose a simplification of the method considered in [33].

The proposed approach is a similar, yet simpler, way to adjust estimation by only spec-

ifying the relationship between unmeasured confounders and all other measured con-

founders. A new sensitivity analysis method was also introduced in [42] which was de-

veloped for invalid instrumental variables in the G-estimation framework. In this chapter,

we show that the simplified approach of Rose et al. that we explore here is in fact a similar

implementation to that of [33].

3.1 Proposed Approach

The main objective of this thesis is to characterize and reduce the bias of dWOLS estima-

tors in the presence of unmeasured confounders. The directed acyclic graph (DAG) in

Figure 3.1 illustrates a causal model including a treatment A and an outcome Y with an
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unmeasured confounder C and a measured covariate X . The arrows from C confirm that

the model is affected by the unknown confounder.

AX Y

C

A : X

Figure 3.1: Causal diagram with interaction (A : X), where C is an unmeasured con-

founder.

Recall that in the dWOLS framework, the outcome model is represented as a function

of the covariate X and the treatment variable A. Specifically, the outcome model can be

expressed in terms of a treatment-free model, a blip function, and an error term, denoted

as

Y (X,A = a; β, ψ) = m(X; β) + γ(X,A = a;ψ) + ε

= XTβ + aXTψ + ε.

In the presence of an unmeasured confounder C, the outcome model is modified to in-

clude a confounder coefficient βc, resulting in the expression

Y (X,C,A = a; β, βc, ψ) = XTβ + βcC + aXTψ + ε.

The causal parameters ψ = (ψ0, ψ1) represent the average treatment effect, where ψ0 is the

coefficient of A and ψ1 is the coefficient of the interaction term A : X . The mean causal

effect can be expressed as

E[Y |X = x,C,A = a]− E[Y |X = x,C,A = 0] = a(ψ0 + ψ1x),
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which characterizes the difference in outcome means between treated and untreated sub-

jects, after adjusting for the confounder C and the covariate X .

The true causal effect is thus obtained by adjusting for A, X , and C. Since we do

not have any data on C, adjusting for C is ignored and the NUC assumption is violated.

When the NUC assumption is violated and we only adjust for A and X in our model,

there will then be an indirect relationship between A and Y through C that distorts the

true causal relationship. The estimation of the true treatment effect will thus be biased

due to not controlling for C.

To address this issue, we propose a method that approximates the true expectation of

C given X and A with a linear function that depends only on X , i.e.,

E[C|A,X] ≈ η0 + η1X.

In fact, we use X as a surrogate for C and try to adjust for covariate X and unmeasured

confounder C simultaneously by creating an offset. This offset would help us to adjust

for the relationship between Y and X , as well as the relationship between Y and C.

If there is a linear relationship between X and C, we should be able to do a good job

in approximating the estimation. However, if the dependency of C on X is not linear,

the estimation may be less accurate, but it can still reduce the bias. Note that this linear

relationship ignores the relationship between C and A, although we know there must be

a relationship between C and A since C is a confounder.

We rewrite the expected outcome using the linear function of E[C|A,X]:

E[Y |A,X] = EC|A,X(E[Y |A,X,C])

= β0 + ψ0A+ βxX + βcE[C|A,X] + ψ1AX

≈ β0 + ψ0A+ βxX + βc(η0 + η1X) + ψ1AX

= (β0 + βcη0) + ψ0A+ ψ1AX + (βx + βcη1)X

= α0 + ψ0A+ ψ1AX + α∗X.
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Therefore, E[Y |A,X] is approximated by α0 + ψ0A+ ψ1AX + α∗X where

α∗ = βx + βcη1 (3.1)

α0 = β0 + βcη0.

We now propose to estimate the treatment effect ψ0 and ψ1 using the dWOLS method. We

can obtain ψ̂0 and ψ̂1 by fitting a weighted ordinary regression model with A and AX in

the model and an offset of αX , assuming that we know the true value of α denoted by α∗.

Note that the function αX may not capture all of the effect of the unmeasured C, and we

may still have some bias due to C left even after adjusting for αX .

In real data, we do not know the value of α∗ and so we must find a plausible range of

values. Based on the Formula 3.1, α must account for E[C|X]. We thus need to consider

how strong the relationship between the unmeasured confounder C and covariate X is

so that we can come up with a guess of a plausible range for α. We can either infer the

relationship between C and X from outside data or may use the estimates from literature

that propose a value or a range for α.

After finding a plausible α−range, we carry out a sensitivity analysis to account for

uncertainty in the value of α. The algorithm 2 shows the procedure to carry out a sensi-

tivity analysis to find adjusted ψ̂0 and ψ̂1.

Algorithm 2 Proposed MC sensitivity analysis: one-stage example

1: Calculate the propensity score π = P (A = 1|X)
2: Calculate the weights ŵ
3: for αj ∈ α−range do
4: Estimate ψ̂adj−j0 and ψ̂adj−j1 by standard weighted ordinary least squares regression

including A and AX in the outcome model and an offset of αjX.
5: end for

Having described the details of the proposed method, in the next section, we provide

demonstrations of the proposed method by presenting several examples, including a lin-

ear model that violates the assumption of NUC. These examples serve to illustrate how

to determine the value of α∗.
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3.2 Examples

To illustrate the implication of the nonzero value of α, we focus on a linear model with

unmeasured confounder C. We assume the causal structure as illustrated in the DAG

in Figure 3.1. We consider three one-stage examples with a single covariate (X), an un-

measured confounder (C), and a binary treatment (A). In all examples, Uni refers to a

Uniform distribution, Ber is a Bernoulli distribution, N is a Normal distribution, and the

expit function is defined as expit(u) = exp(u)
1+exp(u)

. In all of the examples, the mean outcome

is given by β0 + βxx+ βcc+ a(ψ0 + ψ1x) where the parameters of interest are ψ0 and ψ1.

As outlined in the previous section, to estimate the parameters of interest, we first

need to find the value of α that accounts for E[C|X]. We begin by using Bayes’ theo-

rem to find the distribution of C|X . Then, we obtain the dWOLS estimators ψ̂0 and ψ̂1

by a weighted ordinary least squares regression including an offset αX . The following

examples show the procedure to find the value of α.

Example 1: The first one-stage example’s data generating mechanism (DGM) is as

follows

C ∼ Uni(0, 1)

X|C = c ∼ Ber(c)

A|X = x,C = c ∼ Ber(expit(γ0 + γxx+ γcc))

Y |C = c,X = x,A = a ∼ N(β0 + βxx+ ψ0a+ ψ1ax+ βcc, 1).

We start the calculations by finding the distribution of C|X . Using Bayes’ theorem

f(C|X) =
f(X|C)f(C)∫

C
f(X|C)f(C)dc

=
cx(1− c)(1−x) × 1∫
cx(1− c)(1−x)dc

= 2cx(1− c)(1−x).
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Therefore, the distribution of C|X is Beta(X + 1, 2 − X) and E[C|X] = η0 + η1X = X+1
3

.

Thus, η0 = η1 =
1
3

and based on the Formula 3.1, α∗ = βx +
1
3
βc.

Note that we could also calculate the value of α numerically by MC averaging based

on the Formula 3.1 equation and the fact that C|X ∼ Beta(1 +X, 2−X). In this method,

we draw C ′ ∼ Beta(1 + x, 2 − x) for a big sample size (e.g., n = 1, 000, 000) and compute

the f(X = x,C ′ = c′) = βx + βcc
′. The average of the generated values of the function

f(X,C ′) is an estimate of α∗. This method can also be used to confirm that the value of α

was calculated correctly.

Example 2: In this example, unmeasured confounder C and measured confounder X

are from Bernoulli distributions. Let p is fixed, the DGM is as follows

C ∼ Ber(p)

X|C = c ∼ Ber(ξ0 + ξ1c)

A|X = x,C = c ∼ Ber(expit(γ0 + γxx+ γcc))

Y |C = c,X = x,A = a ∼ N(β0 + βxx+ ψ0a+ ψ1ax+ βcc, 1).

We again need to find the distribution of C|X . Using Bayes’ theorem

P (C = c|X = 0) =
P (X = 0|C = c)P (C = c)∑
C∈{0,1} P (X = 0|C)P (C)

=
(1− ξ0 − ξ1c)p

c(1− p)1−c

(1− ξ0)(1− p) + (1− ξ0 − ξ1)p

=


(1−ξ0−ξ1)p
1−ξ0−ξ1p , c = 1

(1−ξ0)(1−p)
1−ξ0−ξ1p , c = 0.

Therefore, the distribution of C|X = 0 is Ber( (1−ξ0−ξ1)p
1−ξ0−ξ1p ).
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Similarly, we find the distribution of C|X = 1

P (C = c|X = 1) =
P (X = 1|C = c)P (C = c)∑
C∈{0,1} P (X = 1|C)P (C)

=
(ξ0 + ξ1c)p

c(1− p)1−c

ξ0(1− p) + (ξ0 + ξ1)p

=


(ξ0+ξ1)p
ξ0+ξ1p

, c = 1

ξ0(1−p)
ξ0+ξ1p

, c = 0.

Therefore, the distribution of C|X = 1 is Ber( (ξ0+ξ1)p
ξ0+ξ1p

). Thus, we have

E[C|X = 1] = η0 + η1 =
(ξ0 + ξ1)p

ξ0 + ξ1p
,

E[C|X = 0] = η0 =
(1− ξ0 − ξ1)p

1− ξ0 − ξ1p
.

We can find the value of η1 as follows:

η1 = E[C|X = 1]− E[C|X = 0]

=
(ξ0 + ξ1)p

ξ0 + ξ1p
− (1− ξ0 − ξ1)p

1− ξ0 − ξ1p

=
ξ1p(1− p)

(ξ0 + ξ1p)(1− ξ0 − ξ1p)
.

Now we can obtain the value of α∗ based on the Formula 3.1,

α∗ = βx + βc
ξ1p(1− p)

(ξ0 + ξ1p)(1− ξ0 − ξ1p)
.
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Example 3: This example considers Normal distributions for unmeasured confounder

C and measured confounder X . The DGM is as follows

C ∼ N(0.5, 0.5)

X|C = c ∼ N(c, 0.5)

A|X = x,C = c ∼ Ber(expit(γ0 + γxx+ γcc))

Y |C = c,X = x,A = a ∼ N(β0 + βxx+ ψ0a+ ψ1ax+ βcc, 1).

We find the distribution of C|X by Bayes’ theorem

f(C|X) ∝ f(X|C)f(C)

∝ exp{−1

2
× 2× (c2 − c+

1

4
+ x2 − 2xc+ c2)}

∝ exp{−1

2
× 4× (c2 − 2c(

1 + 2x

4
) + (

1 + 2x

4
)2}

∝ exp{−1

2

(c− 1+2x
4

)2

1
4

}.

Therefore, the distribution of C|X is N(1+2x
4
, 1
4
) and E[C|X] = η0 + η1X = 1+2x

4
. Thus,

η0 =
1
4
, η1 = 1

2
, and based on the Formula 3.1, α∗ = βx +

1
2
βc.

These examples showed how we can find the value of α∗. As explained in the motiva-

tion for the approach, we propose approximating the true expectation of C given X and

A with a linear function that depends only on X :

E[C|A,X] ≈ η0 + η1X.

In the examples here, we have focused only on the relationship betweenC andX , without

regard for how it may be modified by A. This may be a reasonable approach in settings

where the distributions of and the dependence between X and C are well-understood,

but in practice these calculations are likely not feasible. In a real data analysis, it may be

necessary to determine a plausible range of α from external data or subject-matter knowl-
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edge. After calculating the value of α or estimating its range, we can obtain estimators

of interest using dWOLS with a weighted ordinary least squares regression including an

offset αX.

3.3 Summary

In this chapter, we showed how a sensitivity analysis can be conducted by employing a

single sensitivity parameter to construct adjusted dWOLS estimators of ψ = (ψ0, ψ1) by

offsetting theX effect according to α. For the linear causal model and a (measured) binary

covariate X , we expressed E[Y |X,A] as a function of the observed data by specifying the

distribution of C|X . In more realistic settings where it is not possible to determine the

value of sensitivity parameter α∗, we can consider a reasonable range of α. Finally, the

parameter ψ is estimated for each value of α in the range.

In fact, since C also causally affects both treatment A and outcome Y , in order to

consistently estimate ψ0 and ψ1, we would need to consider the dependency of C on

X , A, and Y . This is the approach taken by Rose et al. [33]. However, this approach

requires correctly specifying even more complex dependences, which is even less likely

to be achieved in practice than the specification required in our proposal.

The proposed method aims to capture much of the confounding by a very straight-

forward analysis which only includes specifying the distribution of C|X . Thus, applying

this simple method may help to eliminate much of the bias; the reason that all of the bias

may not be captured is that the entire confounding relationship was not fully accounted

for. In Section 4.2, the method has been applied to different scenarios and we examine its

effectiveness in reducing bias.
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Chapter 4

Simulations

In this chapter, the results from several simulation studies are provided. To demonstrate

the impact of violating the NUC assumption, we focused on estimation of the optimal

treatment rule using the dWOLS method in the first set of simulations. The second set of

simulations consisted of a sensitivity analysis in the presence of unmeasured confound-

ing. The following subsections detail the results and main findings from these analyses.

4.1 Impact of NUC Violations on dWOLS

The main goal of this study was to explore the impact of unmeasured baseline confound-

ing on dWOLS estimators. Estimation was considered using two types of weights: abso-

lute value weights and inverse probability of treatment weights. Several scenarios were

explored in order to assess the impact of omitting certain confounders on the estima-

tion, focusing on the case of two unmeasured confounders. We present a detailed out-

line of the simulation study plan, following the ADEMP guidelines [25, 46]. This plan

includes key elements such as the data generating mechanism, simulation estimand, es-

timation method, and performance metrics. After providing this description, we present

the study’s results.
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4.1.1 Data Generation

We focused on a two-stage example with a single covariate at stage one and stage two

(X1 and X2, respectively), binary treatment at each stage (A1 and A2), and two potentially

unmeasured confounders (C1 and C2). We assumed X1 ∼ N(0, 1), X2 ∼ N(1.25X1, 1),

C1 ∼ Ber(0.5), C2 ∼ N(−0.5, 0.5), and binary treatment Ai ∼ Ber(expit(Xi + C1 + C2)) for

i = 1, 2 . We considered the following outcome model

Y = exp(X1) +X3
1 + C1 + C2 − µ1 − µ2 + ε

where ε ∼ N(0, 1) and µ is the regret function defined as follows

µ1 = (Aopt1 − A1)(1 +X1)

µ2 = (Aopt2 − A2)(1 +X2).

4.1.2 Estimand, Methods, and Performance Metrics

In this example, the true data generating blip function is defined as γ1 = A1(1 +X1) and

γ2 = A2(1 + X2) for stage 1 and 2, respectively. Thus, the blip parameters are given by

ψi = (ψi0, ψi1) for each stage i = 1, 2. The true blip parameters are ψ10 = ψ11 = ψ20 =

ψ21 = 1 and the two treatment rules are thus

Aopt1 = 1ψ10+ψ11X1>0 = 11+X1>0 = 1X1>−1

Aopt2 = 1ψ20+ψ21X2>0 = 11+X2>0 = 1X2>−1

where the function 1 is an indicator function, i.e., 1X>−1 is equal to 1 when X > −1, and

it is equal to 0 otherwise.

For two different sample sizes of 1000 and 5000, we generated 500 datasets. In each

iteration, we computed the dWOLS estimates using two weights: w1(a, x) = |a − P (A =
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1|X = x)| and w2(a, x) = 1
P (A=a|X=x)

; in what follows, we refer to these as the “absolute

value” and “inverse” weights. The following three analyses were considered:

• Analysis 1: treatment model and treatment-free model are correctly specified

• Analysis 2: only treatment model is correctly specified

• Analysis 3: only treatment-free model is correctly specified

In Section 4.1.3, we discuss the results from two different set-ups in a two-stage set-

ting, however, we first describe the estimand of interest and the performance metrics.

Note that throughout, the same forms of model misspecification were considered at both

stages.

Recall that the blip parameter estimators obtained from the dWOLS method are doubly-

robust [45], i.e., the blip parameter estimators are consistent if at least one of the treatment

or treatment-free models is correctly specified. This is precisely what we will demonstrate

here, and then demonstrate the impact of misspecifications of the model including those

that arise due to missing confounders.

In a regression-based framework, the outcome model E[Y |X = x,A = a] can typically

be parameterized as follows

E[Y |X = x,A = a] = m(x; β) + γ(x, a;ψ)

where γ(x, a;ψ) and m(x; β) are blip function and treatment-free models, respectively. In

our simulation set-up, the outcome mean model is

E(Y |X1, A1, X2, A2, C1, C2) = exp(X1) +X3
1 + C1 + C2 − Aopt1 (1 +X1)

+ A1(1 +X1)− Aopt2 (1 +X2) + A2(1 +X2).
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We can express the mean outcome in terms of the second-stage treatment-free and blip

models denoted by m2 and γ2, respectively, as follows

m2(X1, A1, X2, C1, C2) = exp(X1) +X3
1 + C1 + C2 − Aopt1 (1 +X1)

+ A1(1 +X1)− Aopt2 (1 +X2)

γ2(A2, X2, A1, X1, C1, C2) = A2(1 +X2)

Since Aopt2 = 11+X2>0, the sign of (1 +X2) determines the optimal treatment at the second

stage. For the first interval, we calculate the pseudo-outcome

Ỹ = Y + γ2(A
opt
2 )− γ2(A2) = exp(X1) +X3

1 + C1 + C2 − Aopt1 (1 +X1) + A1(1 +X1)

− Aopt2 (1 +X2) + A2(1 +X2) + ε+ Aopt2 (1 +X2)− A2(1 +X2)

= exp(X1) +X3
1 + C1 + C2 − Aopt1 (1 +X1) + A1(1 +X1) + ε.

Thus, the conditional expectation E[Ỹ |X1, A1, C1, C2] is

E[Ỹ |X1, A1, X2, A2, C1, C2] = exp(X1) +X3
1 + C1 + C2 − Aopt1 (1 +X1) + A1(1 +X1)

which has the following components

m1(X1, A1, X2, C1, C2) = exp(X1) +X3
1 + C1 + C2 − Aopt1 (1 +X1)

γ1(A2, X2, A1, X1, C1, C2) = A1(1 +X1)

where m1 and γ1 denote the first-stage treatment-free and blip models, respectively. So,

the correct models are as follows

• Treatment model at stage one: A1 ∼ X1 + C1 + C2

• Treatment-free model at stage one: ∼ exp(X1) +X3
1 + C1 + C2 − Aopt1 − Aopt1 X1

• Treatment model at stage two: A2 ∼ X2 + C1 + C2
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• Treatment-free model at stage two: ∼ exp(X1)+X
3
1 +C1+C2+A1(1+X1)−Aopt1 (1+

X1)− Aopt2 (1 +X2).

The model specifications considered in the three analyses are summarized in Table 4.1.

Table 4.1: Model specification for analysis 1, 2, and 3 (where the true models include the

optimal treatment terms)

Analysis Item-Stage Model
1 treatment - stage 1 A1 ∼ X1 + C1 + C2

treatment-free - stage 1 ∼ exp(X1) +X3
1 + C1 + C2 − Aopt1 − Aopt1 X1

treatment - stage 2 A2 ∼ X2 + C1 + C2

treatment-free - stage 2 ∼ exp(X1) +X3
1 + C1 + C2 + A1(1 +X1)

−Aopt1 (1 +X1)− Aopt2 (1 +X2)
2 treatment - stage 1 A1 ∼ X1 + C1 + C2

treatment-free - stage 1 ∼ X1

treatment - stage 2 A2 ∼ X2 + C1 + C2

treatment-free - stage 2 ∼ X1 +X2

3 treatment - stage 1 A1 ∼ 1
treatment-free - stage 1 ∼ exp(X1) +X3

1 + C1 + C2 − Aopt1 − Aopt1 X1

treatment - stage 2 A2 ∼ 1
treatment-free - stage 2 ∼ exp(X1) +X3

1 + C1 + C2 + A1(1 +X1)
−Aopt1 (1 +X1)− Aopt2 (1 +X2)

Note that the correct specifications here are in fact impossible to fit in practice since

they rely precisely on the primary targets of interest, namely Aopt1 and Aopt2 . Thus, we

considered more realistic specifications that exclude these optimal terms. Note that this

implies that the “true” treatment-free models will in fact be misspecified.

The primary goal of personalized medicine is to estimate the optimal DTR from the

data, and the optimal DTR is that which yields the maximum possible outcome. A useful

metric for evaluating the estimated optimal treatment rule is the value function, which

is defined as V a = E[Y (A = a)]. Amongst various estimated rules, the one with the

largest value function is considered the best. It is observed that estimated rules with

greater value functions exhibit less bias. Note that the greatest value for a value function
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is V Aopt . Thus, along with reporting parameter estimates ψ̂10, ψ̂11, ψ̂20, and ψ̂21, the value

function of the estimated rules (V Âopt) help us in comparing the dWOLS estimators. We

used a large sample size N = 10, 000 with fixed values of X1N , X2N , and εN (for the

errors on Y ) that are generated according to the known (true) DGM. We then allocated

treatment according to the estimated optimal treatment for each of the replicates in the

simulation and computed the value function under the estimated optimal treatment. We

also computed the proportion of times that the estimated optimal decision rules agree

with the true optimal decision rules. We reported the following three metrics as well as

the value of V for each estimated rule:

• Prop.A1: agreement of A1 only

• Prop.A2: agreement of A2 only

• Prop.A1 and A2: agreement of A1 and A2.

The test set of data is generated using the same set-up previously described.

4.1.3 Results

Figure 4.1 and Table 4.2 illustrate the estimated blip parameters under the 3 analyses as

shown in Table 4.1. Note that the y-axis scale varies in the individual plots. As one can

see the dWOLS estimates are unbiased using these 3 analyses. In terms of weights, the

estimates are unbiased using both weights, however, there is less variability with absolute

value weights. The larger sample size results in less variability, as would be expected.

36



Figure 4.1: Empirical distribution of the estimated blip parameters over 500 simulated

datasets for Analysis 1, 2, and 3. The true value of the parameters is indicated by a dashed

horizontal line.
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Table 4.2: Empirical mean and standard error (SE) of estimated blip parameters over 500

simulated datasets for Analysis 1, 2, and 3 where the true models include the optimal

treatment terms and the true values are ψ10 = ψ11 = ψ20 = ψ21 = 1. This information is

also presented in Figure 4.1.

Weights n Analysis 1 Analysis 2 Analysis 3
ψ̂10 (SE) absolute value 1000 1.00 (0.07) 0.99 (0.18) 1.00 (0.07)
ψ̂11 (SE) 1.00 (0.08) 1.01 (0.47) 1.00 (0.08)
ψ̂20 (SE) 1.00 (0.08) 1.01 (0.19) 1.00 (0.08)
ψ̂21 (SE) 1.01 (0.07) 1.01 (0.30) 1.01 (0.06)
ψ̂10 (SE) inverse 1.00 (0.08) 1.04 (0.41) 1.00 (0.07)
ψ̂11 (SE) 1.01 (0.09) 1.05 (1.04) 1.00 (0.08)
ψ̂20 (SE) 1.00 (0.10) 1.10 (0.50) 1.00 (0.08)
ψ̂21 (SE) 1.00 (0.08) 1.05 (0.70) 1.01 (0.06)
ψ̂10 (SE) absolute value 5000 1.00 (0.03) 1.01 (0.08) 1.00 (0.03)
ψ̂11 (SE) 1.00 (0.04) 1.00 (0.22) 1.00 (0.04)
ψ̂20 (SE) 1.00 (0.03) 1.01 (0.08) 1.00 (0.03)
ψ̂21 (SE) 1.00 (0.03) 1.01 (0.13) 1.00 (0.03)
ψ̂10 (SE) inverse 1.00 (0.04) 1.02 (0.22) 1.00 (0.03)
ψ̂11 (SE) 1.00 (0.04) 1.02 (0.68) 1.00 (0.04)
ψ̂20 (SE) 1.00 (0.04) 1.04 (0.34) 1.00 (0.03)
ψ̂21 (SE) 1.00 (0.04) 1.07 (0.63) 1.00 (0.03)

By considering the true underlying data generating models, the results show that the

estimated parameters are consistent if at least one of the treatment or treatment-free mod-

els is correctly specified. As noted above, these model specifications are idealized since in

reality, we are not able to obtain the true optimal treatments (recall that the optimal treat-

ment is a function of the true blip parameters, which we do not know). Since Aopt1 and

Aopt2 are unknown, the model specifications cannot include these terms. A more realistic

approach is then to consider a slightly misspecified treatment-free model for each stage

which omits the terms involving the stage-specific optimal treatments. Table 4.3 details

the model specifications considered for each stage in each of the three analyses.
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Table 4.3: Model specifications for analysis 1, 2, and 3. The models do not include the

optimal terms, and thus the treatment-free models are incorrectly specified for all three

analyses, but Analyses 1 and 2 correctly specific the treatment models.

Analysis Item-Stage Model
1 treatment - stage 1 A1 ∼ X1 + C1 + C2

treatment-free - stage 1 ∼ X1 + exp(X1) +X3
1 + C1 + C2

treatment - stage 2 A2 ∼ X2 + C1 + C2

treatment-free - stage 2 ∼ X1 +X2 + exp(X1) +X3
1 + C1 + C2 + A1(1 +X1)

2 treatment - stage 1 A1 ∼ X1 + C1 + C2

treatment-free - stage 1 ∼ X1

treatment - stage 2 A2 ∼ X2 + C1 + C2

treatment-free - stage 2 ∼ X1 +X2

3 treatment - stage 1 A1 ∼ 1
treatment-free - stage 1 ∼ X1 + exp(X1) +X3

1 + C1 + C2

treatment - stage 2 A2 ∼ 1
treatment-free - stage 2 ∼ X1 +X2 + exp(X1) +X3

1 + C1 + C2 + A1(1 +X1)

Note that the data generating model can be either based on the blip function or based on

the regret function; the latter is considered in this chapter. The data generating process

can be devised such that the treatment-free models do not depend on the optimal terms

(Aopt), however, these scenarios are often unrealistic. The following DGM is an example

of one based on the blip function

X1 ∼ N(0, 1)

A1|X1 = x1 ∼ Ber(expit(−2 + 2x1))

X2|A1 = a1, X1 = x1 ∼ N(0.5, 0.5)

A2|A1 = a1, X1 = x1, X2 = x2 ∼ Ber(expit(−2 + 2x1 + x2 − a1))

Y |A1 = a1, X1 = x1, X2 = x2, A2 = a2 ∼ N(0.2− a1 + 2a2 + 0.5x1 + 0.2x2, 1).

The treatment-free models do not include the optimal treatment terms. However, for the

parameters in the DGM to correspond to the true causal treatment effects, it is necessary

for the stage-wise covariates, X1 and X2, to be independent. In reality, the independence

of the covariates in each stage rarely happens.
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In this thesis, we are interested in assessing how omitting a confounder affects the

dWOLS estimators. Therefore, in this next set of simulations, we considered omitting one

or both confounders from the model specifications. Note that in this setting, the treatment

and treatment-free models are all misspecified by omitting confounder C1 or C2, or both

(and also omitting the optimal treatment terms). Again, we considered the three analyses

with different forms of model misspecification and explored the impact on the resulting

dWOLS estimates.

The results, reported in Table 4.4, provide the mean and standard error (SE) for the

blip parameter estimates, estimated value function, and estimates for the optimal stage-

specific treatment A1N and A2N . Results are shown for a sample size of 1000 and 5000,

each with 500 replicates. The box-plots in Figure 4.2 show the blip parameters for the 500

iterations of the simulation. Note that y-axes are variably scaled. In terms of the model

performance, omitting both C1 and C2 introduces bias in the dWOLS estimates; the bias is

smaller when only one of the confounders C1 or C2 is omitted. A similar trend is observed

for both sample sizes, except, variability decreased when the sample size is larger. In this

particular scenario, where the strength of confounding was the same for both C1 and C2,

by omitting both confounders we faced more bias in comparison to the scenario where

only one confounder is omitted. The value function and proportion of agreements are

smaller when one of the confounders is omitted from the model. Recall that confounders

C1 and C2 are different types of variables, and we considered binary (C1) and continu-

ous (C2) confounders in our models. By disregarding the binary confounder C1, the bias

ψ̂10 and ψ̂20 is similar to the bias in the models omitting the continuous confounder C2.

Therefore, this bias did not seem to depend on the type of omitted confounder. However,

we speculate that the strength of the confounding, rather than the variable type of the

confounder, will affect bias. We therefore perform additional simulations to examine this

possibility.
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Figure 4.2: Estimated blip parameters when model specifications do not include the op-

timal terms but includes the confounders C1 and C2 for Analysis 1, 2, and 3, over 500

simulated datasets. The true value of the parameters is indicated by a dashed horizontal

line.
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Figure 4.3: Estimated blip parameters when model specifications do not include the op-

timal terms and the confounder C1 for Analysis 1, 2, and 3, over 500 simulated datasets.

The true value of the parameters is indicated by a dashed horizontal line.
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Figure 4.4: Estimated blip parameters when model specifications do not include the op-

timal terms and the confounder C2 for Analysis 1, 2, and 3, over 500 simulated datasets.

The true value of the parameters is indicated by a dashed horizontal line.
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Figure 4.5: Estimated blip parameters when model specifications do not include the op-

timal terms and the confounders C1 and C2 for Analysis 1, 2, and 3, over 500 simulated

datasets. The true value of the parameters is indicated by a dashed horizontal line.
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Table 4.4: Estimated blip parameters, value function, and proportion of agreements with

the same coefficients for C1 and C2 over 500 simulated datasets, (ψ10 = ψ11 = ψ20 = ψ21 =

1 and V Aopt = 1.67).

w1 w2
Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3

IncludedC1 andC2 - n = 1000

ψ̂10 (SE) 1.00 (0.07) 0.99 (0.18) 1.00 (0.07) 1.00 (0.08) 1.04 (0.41) 1.00 (0.07)
ψ̂11 (SE) 1.00 (0.08) 1.01 (0.47) 1.00 (0.08) 1.01 (0.09) 1.05 (1.04) 1.00 (0.08)
ψ̂20 (SE) 1.00 (0.08) 1.01 (0.19) 0.95 (0.09) 1.00 (0.11) 1.10 (0.50) 0.95 (0.09)
ψ̂21(SE) 1.01 (0.07) 1.01 (0.30) 0.69 (0.06) 0.98 (0.10) 1.05 (0.70) 0.69 (0.06)
V (SE) 1.65 (0.00) 1.62 (0.06) 1.64 (0.01) 1.65 (0.00) 1.50 (0.34) 1.64 (0.01)
Prop. A1 0.98 0.93 0.98 0.98 0.88 0.98
Prop. A2 0.98 0.95 0.93 0.97 0.90 0.93
Prop. A1 andA2 0.96 0.89 0.91 0.95 0.80 0.91
IncludedC1 andC2 - n = 5000

ψ̂10 (SE) 1.00 (0.03) 1.01 (0.08) 1.00 (0.03) 1.00 (0.04) 1.02 (0.22) 1.00 (0.03)
ψ̂11 (SE) 1.00 (0.04) 1.00 (0.22) 0.99 (0.04) 1.00 (0.05) 1.02 (0.68) 0.99 (0.04)
ψ̂20 (SE) 1.00 (0.04) 1.01 (0.08) 0.96 (0.04) 1.00 (0.05) 1.04 (0.34) 0.96 (0.04)
ψ̂21 (SE) 1.00 (0.03) 1.01 (0.13) 0.68 (0.03) 1.00 (0.05) 1.07 (0.63) 0.68 (0.03)
V (SE) 1.67 (0.00) 1.67 (0.01) 1.66 (0.00) 1.67 (0.00) 1.60 (0.22) 1.66 (0.00)
Prop. A1 0.99 0.96 0.99 0.99 0.91 0.99
Prop. A2 0.99 0.98 0.92 0.99 0.94 0.92
Prop. A1 andA2 0.98 0.94 0.92 0.97 0.86 0.92
OmittedC2 - n = 1000

ψ̂10 (SE) 1.23 (0.08) 1.22 (0.18) 1.23 (0.08) 1.23 (0.08) 1.26 (0.38) 1.23 (0.08)
ψ̂11 (SE) 1.00 (0.09) 1.01 (0.46) 0.99 (0.09) 1.01 (0.10) 1.04 (0.95) 0.99 (0.09)
ψ̂20 (SE) 1.22 (0.09) 1.29 (0.19) 1.18 (0.09) 1.23 (0.11) 1.39 (0.46) 1.18 (0.09)
ψ̂21 (SE) 1.00 (0.08) 1.03 (0.29) 0.69 (0.07) 0.98 (0.10) 1.07 (0.67) 0.69 (0.07)
V (SE) 1.64 (0.01) 1.61 (0.06) 1.60 (0.02) 1.64 (0.01) 1.50 (0.31) 1.60 (0.02)
Prop. A1 0.95 0.93 0.95 0.95 0.89 0.95
Prop. A2 0.96 0.93 0.88 0.95 0.89 0.88
Prop. A1 andA2 0.91 0.87 0.85 0.91 0.80 0.85
OmittedC2 - n = 5000

ψ̂10 (SE) 1.23 (0.04) 1.24 (0.08) 1.23 (0.04) 1.23 (0.04) 1.25 (0.20) 1.23 (0.04)
ψ̂11 (SE) 1.00 (0.04) 1.00 (0.21) 0.98 (0.04) 1.00 (0.04) 1.01 (0.63) 0.98 (0.04)
ψ̂20 (SE) 1.23 (0.04) 1.30 (0.08) 1.18 (0.04) 1.23 (0.05) 1.34 (0.28) 1.18 (0.04)
ψ̂21 (SE) 1.00 (0.04) 1.03 (0.12) 0.68 (0.03) 1.00 (0.05) 1.08 (0.49) 0.68 (0.03)
V (SE) 1.66 (0.00) 1.66 (0.02) 1.63 (0.01) 1.66 (0.00) 1.60 (0.16) 1.63 (0.01)
Prop. A1 0.95 0.94 0.95 0.95 0.92 0.95
Prop. A2 0.95 0.95 0.88 0.95 0.92 0.88
Prop. A1 andA2 0.91 0.90 0.84 0.91 0.85 0.84
OmittedC1 - n = 1000

ψ̂10 (SE) 1.23 (0.08) 1.23 (0.18) 1.23 (0.08) 1.23 (0.08) 1.27 (0.38) 1.23 (0.08)
ψ̂11 (SE) 1.01 (0.09) 1.01 (0.46) 0.99 (0.09) 1.01 (0.10) 1.06 (0.97) 0.99 (0.09)
ψ̂20 (SE) 1.23 (0.09) 1.31 (0.19) 1.18 (0.09) 1.23 (0.11) 1.40 (0.45) 1.18 (0.09)
ψ̂21 (SE) 1.00 (0.08) 1.03 (0.29) 0.69 (0.06) 0.98 (0.10) 1.07 (0.63) 0.69 (0.06)
V (SE) 1.64 (0.01) 1.61 (0.06) 1.60 (0.02) 1.64 (0.01) 1.52 (0.26) 1.60 (0.02)
Prop. A1 0.95 0.93 0.95 0.95 0.89 0.95
Prop. A2 0.95 0.93 0.88 0.95 0.89 0.88
Prop. A1 andA2 0.91 0.87 0.84 0.90 0.80 0.84
OmittedC1 - n = 5000

ψ̂10 (SE) 1.23 (0.04) 1.24 (0.08) 1.23 (0.04) 1.23 (0.04) 1.26 (0.19) 1.23 (0.04)
ψ̂11 (SE) 1.00 (0.04) 1.01 (0.21) 0.98 (0.04) 1.00 (0.05) 1.02 (0.60) 0.98 (0.04)
ψ̂20 (SE) 1.23 (0.04) 1.30 (0.08) 1.18 (0.04) 1.23 (0.05) 1.34 (0.31) 1.18 (0.04)
ψ̂21 (SE) 1.00 (0.03) 1.04 (0.12) 0.68 (0.03) 0.99 (0.05) 1.09 (0.57) 0.68 (0.03)
V (SE) 1.66 (0.00) 1.66 (0.02) 1.63 (0.01) 1.66 (0.00) 1.61 (0.16) 1.63 (0.01)
Prop. A1 0.95 0.94 0.94 0.95 0.92 0.94
Prop. A2 0.95 0.95 0.88 0.95 0.92 0.88
Prop. A1 andA2 0.91 0.90 0.84 0.91 0.85 0.84
OmittedC1 andC2 - n = 1000

ψ̂10 (SE) 1.42 (0.08) 1.42 (0.18) 1.42 (0.08) 1.42 (0.09) 1.45 (0.37) 1.42 (0.08)
ψ̂11 (SE) 1.01 (0.09) 1.01 (0.45) 0.99 (0.09) 1.01 (0.10) 1.06 (0.91) 0.99 (0.09)
ψ̂20 (SE) 1.42 (0.09) 1.57 (0.19) 1.37 (0.10) 1.43 (0.11) 1.66 (0.42) 1.37 (0.10)
ψ̂21 (SE) 1.00 (0.08) 1.05 (0.29) 0.69 (0.07) 0.98 (0.10) 1.09 (0.60) 0.69 (0.07)
V (SE) 1.62 (0.01) 1.59 (0.06) 1.56 (0.03) 1.62 (0.02) 1.52 (0.23) 1.56 (0.03)
Prop. A1 0.92 0.92 0.92 0.92 0.89 0.92
Prop. A2 0.92 0.90 0.84 0.92 0.88 0.84
Prop. A1 andA2 0.86 0.84 0.79 0.85 0.80 0.79
OmittedC1 andC2 - n = 5000

ψ̂10 (SE) 1.42 (0.04) 1.43 (0.07) 1.43 (0.04) 1.42 (0.04) 1.45 (0.17) 1.43 (0.04)
ψ̂11 (SE) 1.00 (0.04) 1.01 (0.21) 0.98 (0.04) 1.00 (0.05) 1.01 (0.54) 0.98 (0.04)
ψ̂20 (SE) 1.42 (0.04) 1.57 (0.08) 1.37 (0.04) 1.43 (0.05) 1.62 (0.25) 1.37 (0.04)
ψ̂21 (SE) 1.00 (0.04) 1.05 (0.12) 0.68 (0.03) 0.99 (0.05) 1.11 (0.44) 0.68 (0.03)
V (SE) 1.64 (0.01) 1.63 (0.02) 1.58 (0.01) 1.64 (0.01) 1.60 (0.13) 1.58 (0.01)
Prop. A1 0.92 0.92 0.91 0.92 0.91 0.91
Prop. A2 0.92 0.91 0.84 0.92 0.90 0.84
Prop. A1 andA2 0.85 0.85 0.79 0.85 0.83 0.79
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In the previous set of simulations, where the confounders had the same strength in

the outcome model, we saw similar results whether C1 or C2 was excluded from the

model specifications. Next, we explored how the bias differed when the strength of the

confounders are different. Specifically, we considered different coefficients for the con-

founders C1 and C2 and assessed the resulting dWOLS estimators when the confounders

are omitted from our model specifications. We considered the same two-stage example

with the same covariates and confounders, however, in these simulations we made C2 a

stronger confounder by generating data in which its impact on the outcome was greater

and also made the effect of the confounder C1 negative. The outcome model is defined as

follows

Y = exp(X1) +X3
1 − 0.5C1 + 1.75C2 − µ1 − µ2 + ε

where ε ∼ N(0, 1) and µ is the regret function defined as before.

The box-plots shown in Figure 4.6 through 4.9 summarize the blip parameters for the

500 iterations of the simulation. Note that y-axes are variably scaled. Figure 4.6 shows the

box-plots when C1 and C2 are included in the model specifications. Figure 4.7 shows the

box-plots when C1 is omitted from the model specifications while in Figure 4.8 only C2 is

omitted from the model specifications. Figure 4.9 includes the box-plots when C1 and C2

are both omitted from the model specifications.

As in the previous simulation, we explored the effects on the blip parameter estimates,

the estimated value function, and the proportion of treatment agreement for the different

forms of model misspecification. The results are summarized in Table 4.5. In all model

specifications, the SEs are decreasing when the sample size is larger. Unlike the previ-

ous simulation, omitting both C1 and C2 did not introduce the most bias in the dWOLS

estimates. The bias was greatest when only C2 was omitted. One plausible explanation

for this finding is that the coefficients of C1 and C2 had different signs, leading to a ”can-

celling out” of biases that were acting in different directions. The bias was smaller when
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only C1 was omitted from model specification. Unsurprisingly, omitting the stronger con-

founder caused more bias, whereas disregarding the weaker confounder resulted in less

bias. Therefore, omitting confounder C2 caused more bias in comparison to the scenarios

where only one confounderC1 or both confounders were omitted. The value function was

smaller than the estimated value function with C1 or both C1 and C2 in the model. The

proportion of agreements to treatments were also smaller. Thus, we see that the strength

of confounder affected the bias.

Figure 4.6: Estimated blip parameters when model specifications do not include the op-

timal terms but includes the confounders C1 and C2 for Analysis 1, 2, and 3, over 500

simulated datasets. The true value of the parameters is indicated by a dashed horizontal

line.
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Figure 4.7: Estimated blip parameters when model specifications do not include the op-

timal terms and the confounder C1 for Analysis 1, 2, and 3, over 500 simulated datasets.

The true value of the parameters is indicated by a dashed horizontal line.
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Figure 4.8: Estimated blip parameters when model specifications do not include the op-

timal terms and the confounder C2 for Analysis 1, 2, and 3, over 500 simulated datasets.

The true value of the parameters is indicated by a dashed horizontal line.
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Figure 4.9: Estimated blip parameters when model specifications do not include the op-

timal terms and the confounders C1 and C2 for Analysis 1, 2, and 3, over 500 simulated

datasets. The true value of the parameters is indicated by a dashed horizontal line.

50



Table 4.5: Estimated blip parameters, value function, and proportion of agreements with

different coefficients for C1 and C2 over 500 simulated datasets, (ψ10 = ψ11 = ψ20 = ψ21 =

1 and V Aopt = 0.55).

w1 w2
Analysis 1 Analysis 2 Analysis 3 Analysis 1 Analysis 2 Analysis 3

IncludedC1 andC2 - n = 1000

ψ̂10 (SE) 1.00 (0.07) 0.99 (0.18) 1.00 (0.07) 1.00 (0.08) 1.04 (0.40) 1.00 (0.07)
ψ̂11 (SE) 1.00 (0.08) 1.00 (0.48) 1.00 (0.08) 1.01 (0.09) 1.04 (1.04) 1.00 (0.08)
ψ̂20 (SE) 1.00 (0.08) 1.01 (0.19) 0.95 (0.09) 1.00 (0.11) 1.10 (0.50) 0.95 (0.09)
ψ̂21 (SE) 1.01 (0.07) 1.01 (0.30) 0.69 (0.06) 0.98 (0.10) 1.05 (0.70) 0.69 (0.06)
V (SE) 0.54 (0.00) 0.50 (0.07) 0.53 (0.01) 0.54 (0.00) 0.38 (0.34) 0.53 (0.01)
Prop. A1 0.98 0.93 0.98 0.98 0.88 0.98
Prop. A2 0.98 0.95 0.93 0.97 0.90 0.93
Prop. A1 andA2 0.96 0.89 0.91 0.95 0.80 0.91
IncludedC1 andC2 - n = 5000

ψ̂10 (SE) 1.00 (0.03) 1.01 (0.08) 1.00 (0.03) 1.00 (0.04) 1.02 (0.22) 1.00 (0.03)
ψ̂11 (SE) 1.00 (0.04) 1.00 (0.22) 0.99 (0.04) 1.00 (0.05) 1.02 (0.68) 0.99 (0.04)
ψ̂20 (SE) 1.00 (0.04) 1.01 (0.08) 0.96 (0.04) 1.00 (0.05) 1.04 (0.34) 0.96 (0.04)
ψ̂21 (SE) 1.00 (0.03) 1.01 (0.13) 0.68 (0.03) 1.00 (0.05) 1.07 (0.63) 0.68 (0.03)
V (SE) 0.55 (0.00) 0.54 (0.01) 0.53 (0.00) 0.55 (0.00) 0.47 (0.22) 0.53 (0.00)
Prop. A1 0.99 0.96 0.99 0.99 0.91 0.99
Prop. A2 0.99 0.98 0.92 0.99 0.94 0.92
Prop. A1 andA2 0.98 0.94 0.92 0.97 0.86 0.92
OmittedC2 - n = 1000

ψ̂10 (SE) 1.40 (0.09) 1.39 (0.19) 1.40 (0.09) 1.40 (0.10) 1.43 (0.39) 1.40 (0.09)
ψ̂11 (SE) 1.00 (0.10) 1.00 (0.47) 0.99 (0.10) 1.01 (0.11) 1.04 (0.95) 0.99 (0.10)
ψ̂20 (SE) 1.39 (0.11) 1.47 (0.20) 1.34 (0.11) 1.40 (0.13) 1.56 (0.46) 1.34 (0.11)
ψ̂21 (SE) 1.00 (0.09) 1.03 (0.29) 0.69 (0.08) 0.98 (0.11) 1.07 (0.67) 0.69 (0.08)
V (SE) 0.51 (0.02) 0.48 (0.06) 0.46 (0.03) 0.51 (0.02) 0.39 (0.28) 0.46 (0.03)
Prop. A1 0.93 0.92 0.92 0.93 0.89 0.92
Prop. A2 0.93 0.91 0.85 0.92 0.88 0.85
Prop. A1 andA2 0.86 0.84 0.80 0.86 0.79 0.80
OmittedC2 - n = 5000

ψ̂10 (SE) 1.40 (0.04) 1.41 (0.08) 1.40 (0.04) 1.40 (0.05) 1.42 (0.20) 1.40 (0.04)
ψ̂11 (SE) 1.00 (0.05) 1.00 (0.21) 0.98 (0.05) 1.00 (0.05) 1.01 (0.62) 0.98 (0.05)
ψ̂20 (SE) 1.40 (0.04) 1.48 (0.09) 1.35 (0.05) 1.40 (0.06) 1.52 (0.28) 1.35 (0.05)
ψ̂21 (SE) 1.00 (0.04) 1.04 (0.12) 0.68 (0.03) 1.00 (0.06) 1.08 (0.49) 0.68 (0.03)
V (SE) 0.52 (0.01) 0.51 (0.02) 0.46 (0.01) 0.52 (0.01) 0.47 (0.14) 0.46 (0.01)
Prop. A1 0.92 0.92 0.92 0.92 0.91 0.92
Prop. A2 0.93 0.92 0.84 0.92 0.90 0.84
Prop. A1 andA2 0.86 0.85 0.79 0.86 0.83 0.79
OmittedC1 - n = 1000

ψ̂10 (SE) 0.88 (0.07) 0.88 (0.18) 0.89 (0.07) 0.89 (0.08) 0.93 (0.38) 0.89 (0.07)
ψ̂11 (SE) 1.00 (0.08) 1.00 (0.47) 1.00 (0.08) 1.01 (0.09) 1.06 (0.98) 1.00 (0.08)
ψ̂20 (SE) 0.88 (0.08) 0.94 (0.18) 0.84 (0.09) 0.89 (0.10) 1.04 (0.45) 0.84 (0.09)
ψ̂21 (SE) 1.00 (0.07) 1.03 (0.29) 0.69 (0.06) 0.98 (0.09) 1.08 (0.63) 0.69 (0.06)
V (SE) 0.54 (0.00) 0.51 (0.07) 0.53 (0.01) 0.54 (0.01) 0.40 (0.32) 0.53 (0.01)
Prop. A1 0.97 0.92 0.97 0.97 0.87 0.97
Prop. A2 0.97 0.95 0.96 0.97 0.91 0.96
Prop. A1 andA2 0.94 0.88 0.93 0.94 0.80 0.93
OmittedC1 - n = 5000

ψ̂10 (SE) 0.88 (0.03) 0.89 (0.08) 0.89 (0.03) 0.88 (0.03) 0.92 (0.19) 0.89 (0.03)
ψ̂11 (SE) 1.00 (0.04) 1.01 (0.21) 0.99 (0.04) 1.00 (0.04) 1.02 (0.61) 0.99 (0.04)
ψ̂20 (SE) 0.89 (0.03) 0.94 (0.08) 0.85 (0.04) 0.89 (0.05) 0.98 (0.31) 0.85 (0.04)
ψ̂21 (SE) 1.00 (0.03) 1.04 (0.13) 0.68 (0.03) 0.99 (0.05) 1.09 (0.57) 0.68 (0.03)
V (SE) 0.54 (0.00) 0.54 (0.01) 0.54 (0.00) 0.54 (0.00) 0.48 (0.19) 0.54 (0.00)
Prop. A1 0.97 0.96 0.97 0.97 0.91 0.97
Prop. A2 0.97 0.97 0.95 0.97 0.95 0.95
Prop. A1 andA2 0.95 0.93 0.93 0.95 0.87 0.93
OmittedC1 andC2 - n = 1000

ψ̂10 (SE) 1.26 (0.09) 1.25 (0.18) 1.26 (0.09) 1.26 (0.10) 1.29 (0.37) 1.26 (0.09)
ψ̂11 (SE) 1.00 (0.11) 1.00 (0.46) 0.99 (0.10) 1.01 (0.11) 1.06 (0.91) 0.99 (0.10)
ψ̂20 (SE) 1.25 (0.10) 1.39 (0.19) 1.21 (0.11) 1.26 (0.12) 1.49 (0.42) 1.21 (0.11)
ψ̂21 (SE) 1.00 (0.10) 1.05 (0.29) 0.69 (0.08) 0.98 (0.11) 1.09 (0.60) 0.69 (0.08)
V (SE) 0.52 (0.01) 0.49 (0.06) 0.48 (0.03) 0.52 (0.01) 0.41 (0.26) 0.48 (0.03)
Agreement toA1 0.95 0.93 0.94 0.95 0.89 0.94
Agreement toA2 0.95 0.92 0.87 0.94 0.89 0.87
Agreement toA1 andA2 0.90 0.86 0.83 0.90 0.81 0.83
OmittedC1 andC2 - n = 5000

ψ̂10 (SE) 1.26 (0.04) 1.27 (0.08) 1.26 (0.04) 1.26 (0.05) 1.29 (0.17) 1.26 (0.04)
ψ̂11 (SE) 1.00 (0.05) 1.01 (0.21) 0.98 (0.05) 1.00 (0.05) 1.01 (0.54) 0.98 (0.05)
ψ̂20 (SE) 1.26 (0.04) 1.39 (0.08) 1.22 (0.05) 1.27 (0.06) 1.45 (0.25) 1.22 (0.05)
ψ̂21 (SE) 1.00 (0.04) 1.06 (0.12) 0.68 (0.03) 1.00 (0.06) 1.11 (0.44) 0.68 (0.03)
V (SE) 0.53 (0.00) 0.52 (0.02) 0.49 (0.01) 0.53 (0.01) 0.48 (0.13) 0.49 (0.01)
Agreement toA1 0.94 0.94 0.94 0.94 0.92 0.94
Agreement toA2 0.95 0.94 0.87 0.95 0.92 0.87
Agreement toA1 andA2 0.90 0.88 0.83 0.90 0.85 0.83
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Based on our simulations, we can conclude that any violation of the assumption of

NUC will yield biased blip parameter estimators, and this bias is affected by the strength

of the omitted confounder, however, the bias was similar regardless of the type of the

confounder. In the next section, we explore a sensitivity analysis to attempt to compensate

for the bias due to unmeasured confounding in the dWOLS framework.

4.2 Sensitivity Analysis

In this section, we explored a sensitivity analysis approach through several simulations

to assess the bias of the blip parameter using dWOLS. The main goal of this study is to

demonstrate the sensitivity analysis method and assess whether it can reduce or even

eliminate bias resulting from unmeasured confounding. We implemented our proposed

sensitivity analysis method which involves a single sensitivity parameter, α∗, that cap-

tures the impact of the violation of the NUC assumption as discussed in Chapter 3.

For the set-up considered here, after determining the true value of the sensitivity pa-

rameter, we considered a range of α based on the true value of α∗. In a real data example,

it would not be possible to determine the true value of the sensitivity parameter without

auxiliary data and so a plausible range of values would be used. For varying values of

α in a specified range, dWOLS estimates were obtained by including an offset that is a

function of α and the measured confounder X which is correlated with its unmeasured

counterpart. Again, we considered dWOLS estimation using both the absolute value

weights and the inverse probability of treatment weights.
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4.2.1 Data Generation

We considered an one-stage example with a single covariate (X), an unmeasured con-

founder (C), and a binary treatment (A). We assumed the following DGM

C ∼ Uni(0, 1)

X|C = c ∼ Ber(c)

A|X = x,C = c ∼ Ber(expit(η0 + ηxx+ ηcc))

Y |C = c,X = x,A = a ∼ N(β0 + βxx+ ψ0a+ ψ1ax+ βcc, σ
2
y) (4.1)

where η = (η0, ηx, ηc) = (0,−1, 0.5), σ2
y = 1, and we considered different values for β =

(β0, ψ0, βx, ψ1, βc). The parameters of interest are ψ0 and ψ1.

Note that additional simulations were also conducted for the following scenarios with

different values for the parameters of the treatment-free model:

• scenario 1

C ∼ Ber(0.55)

X|C = c ∼ Ber(0.25 + 0.75c)

A|X = x,C = c ∼ Ber(expit(−x+ 0.5c))

Y |C = c,X = x,A = a ∼ N(β0 + ψ0a+ βxx+ ψ1ax+ βcc, 1)

• scenario 2

C ∼ N(0.5, 0.5)

X|C = c ∼ N(2.2c, 0.5)

A|X = x,C = c ∼ Ber(expit(−x+ 0.5c))

Y |C = c,X = x,A = a ∼ N(β0 ++ψ0a+ βxx+ ψ1ax+ βcc, 1).
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The results can be found in Appendix A.

4.2.2 Estimands, Methods, and Performance Metrics

As in the previous simulations, we considered two different sample sizes of 1000 and 5000

and 500 replications in each scenario. We focused on a case where there is no interaction

between treatment and covariate (ψ1 = 0), then we considered an outcome model with

an interaction between treatment and covariate (ψ1 ̸= 0). The mean (SE) of the resulting

dWOLS estimates are summarized in tables and box-plots for each of the two cases. The

estimand and methods are the parameters of the blip model, ψ = (ψ0, ψ1), and the dWOLS

estimator based on a model that includes the αX offset. The performance metrics, as in

Section 4.1, are the mean (SE) of the estimators, the value function, and the proportion of

agreement of the estimated optimal rule with the true optimal rule. As before, for every

value of α in the specified range, estimation was carried out via dWOLS using both the

absolute value weights and the inverse probability of treatment weights. The resulting

estimates were then compared with the true value of ψ = (ψ0, ψ1) which is (1, 0) for the

case where there is no interaction between treatment and covariate and (1, 1) for the case

with an interaction between treatment and covariate.

In a first simulation set-up, the ψ1 is zero in DGM 4.1. We considered different values

for β = (β0, ψ0, βx, ψ1, βc), and calculated the value of α∗ using Formula 3.1, which we

reproduce here for convenience:

α∗ = βx + βcη1.

The MC Averaging Method was also used to calculate the α∗. As we showed in Section

3.2, we drewC ′ ∼ Beta(1+x, 2−x) from a big sample size of n = 1, 000, 000 and computed

the average of the function f(x, c′).
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Considering the DGM 4.1, the function f(X,C ′) was defined as

f(x, c′) = (β0 + βxx+ βcc
′)(1− expit(η0 + ηxx+ ηcc

′))

+ (β0 + βxx+ ψ0 + βcc
′ − ψ0)expit(η0 + ηxx+ ηcc

′),

and the value of α∗ was then calculated by α∗ = f̄1,c′ − f̄0,c′′ where c′ ∼ Beta(2, 1) and

c′′ ∼ Beta(1, 2).

The different sets of values for the parameter β led to different values for α∗, which

are summarized in Table 4.6. For each of the three DGMs 1, 2, and 3 listed in Table 4.6,

we considered a reasonable range of plausible α values to include in the outcome model

within the dWOLS framework.

Table 4.6: α∗ and α-range when there is NO interaction between treatment and covariate.

β = (β0, ψ0, βx, ψ1, βc) α∗
MC α∗ = βx +

βc
3

α-range
DGM 1 (1, 1, -1.5, 0, 2) -0.83 -0.83 (-1, -0.5)
DGM 2 (1, 1, 1.7, 0, 2.6) 2.57 2.56 (2.25, 2.75)
DGM 3 (1, 1, -2.5, 0, -2.6) -3.37 -3.36 (-3.5, -3)

4.2.3 Results

The results of the three scenarios with sample sizes of 1000 and 5000 and 500 replications

are summarized in Table 4.7. The results show that the dWOLS approach performs quite

well, and the resulting ψ̂0 shows little or no bias. Using the absolute value weights and

the inverse probability of treatment weight, the dWOLS estimators change very slightly

for each value of α, whereas in the unweighted ordinary least squares approach, the esti-

mates vary considerably with the value of α. This suggests that, for these DGMs, simply

including X in the dWOLS analysis largely accounts for the effect of the unmeasured, but

correlated, variable C such that there is relatively little impact of the NUC violation. The

sensitivity analysis therefore has little effect on the dWOLS estimators.

55



The chosen α-range contains the true value of α∗ that reduces bias. As the sample

size increased the variability decreased for all dWOLS estimators. Using unweighted

regression, the bias decreased as the sample size increases, whereas the bias does not

change when the sample size is bigger by using absolute value and inverse weightings.

As discussed in Chapter 3, we did not capture the entire bias by this proposed method.

Here, we have observed that we could improve the estimations by a simple method that

only requires specifying the relationship between the unmeasured confounder and all

other measured confounders (covariates). To eliminate all bias we needed to consider

the full distribution of C|X,A rather than the distribution of C|X , however, the former is

more complex and even less likely to be well-specified or understood in realistic settings.

Figure 4.10 shows the average of estimator (ψ̂0) based on the value of α for the three

DGMs and sample sizes of 1000 and 5000.
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Figure 4.10: Box-plots of empirical distribution of the unweighted dWOLS estimator ψ̂0 of

the true causal parameter ψ0 = 1 (marked via a horizontal dashed line) in a linear causal

model as a function of the sensitivity parameter α when there is no interaction between

the treatment and covariate. The true values of α are α∗
DGM1 = −0.83, α∗

DGM2 = 2.56, and

α∗
DGM3 = −3.36.
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Table 4.7: Mean (SE) of ψ̂0, where true value is ψ0 = 1 in a linear causal model as a

function of the sensitivity parameter α when there is no interaction between treatment

and covariate. The true values of α are α∗
DGM1 = −0.83, α∗

DGM2 = 2.56, and α∗
DGM3 =

−3.36.

n = 1000 n = 5000

DGM α ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE) ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE)
DGM 1 -1 1.03 (0.07) 1.06 (0.07) 1.06 (0.07) 1.02 (0.03) 1.06 (0.03) 1.06 (0.03)

-0.95 1.04 (0.07) 1.06 (0.07) 1.06 (0.07) 1.03 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.9 1.05 (0.07) 1.06 (0.07) 1.06 (0.07) 1.04 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.85 1.06 (0.07) 1.06 (0.07) 1.06 (0.07) 1.05 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.8 1.07 (0.07) 1.06 (0.07) 1.06 (0.07) 1.06 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.75 1.08 (0.07) 1.06 (0.07) 1.06 (0.07) 1.07 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.7 1.09 (0.07) 1.06 (0.07) 1.06 (0.07) 1.08 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.65 1.10 (0.07) 1.06 (0.07) 1.06 (0.07) 1.09 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.6 1.11 (0.07) 1.06 (0.07) 1.06 (0.07) 1.10 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.55 1.12 (0.07) 1.06 (0.07) 1.06 (0.07) 1.11 (0.03) 1.06 (0.03) 1.06 (0.03)
-0.5 1.13 (0.07) 1.06 (0.07) 1.06 (0.07) 1.12 (0.03) 1.06 (0.03) 1.06 (0.03)

DGM 2 2.25 1.00 (0.08) 1.07 (0.08) 1.07 (0.08) 1.00 (0.03) 1.07 (0.03) 1.07 (0.03)
2.3 1.01 (0.08) 1.07 (0.08) 1.07 (0.08) 1.01 (0.03) 1.07 (0.03) 1.07 (0.03)

2.35 1.02 (0.07) 1.07 (0.08) 1.07 (0.08) 1.02 (0.03) 1.07 (0.03) 1.07 (0.03)
2.4 1.03 (0.07) 1.07 (0.08) 1.07 (0.08) 1.03 (0.03) 1.07 (0.03) 1.07 (0.03)

2.45 1.05 (0.07) 1.07 (0.08) 1.07 (0.08) 1.04 (0.03) 1.07 (0.03) 1.07 (0.03)
2.5 1.06 (0.07) 1.07 (0.08) 1.07 (0.08) 1.05 (0.03) 1.07 (0.03) 1.07 (0.03)

2.55 1.07 (0.07) 1.07 (0.08) 1.07 (0.08) 1.07 (0.03) 1.07 (0.03) 1.07 (0.03)
2.6 1.08 (0.07) 1.07 (0.08) 1.07 (0.08) 1.08 (0.03) 1.07 (0.03) 1.07 (0.03)

2.65 1.09 (0.07) 1.07 (0.08) 1.07 (0.08) 1.09 (0.03) 1.07 (0.03) 1.07 (0.03)
2.7 1.10 (0.07) 1.07 (0.08) 1.07 (0.08) 1.10 (0.03) 1.07 (0.03) 1.07 (0.03)

2.75 1.11 (0.07) 1.07 (0.08) 1.07 (0.08) 1.11 (0.03) 1.07 (0.03) 1.07 (0.03)
DGM 3 -3.5 0.91 (0.07) 0.93 (0.08) 0.93 (0.08) 0.90 (0.03) 0.93 (0.03) 0.93 (0.03)

-3.45 0.92 (0.07) 0.93 (0.08) 0.93 (0.08) 0.91 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.4 0.93 (0.07) 0.93 (0.08) 0.93 (0.08) 0.92 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.35 0.94 (0.07) 0.93 (0.08) 0.93 (0.08) 0.94 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.3 0.95 (0.07) 0.93 (0.08) 0.93 (0.08) 0.95 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.25 0.96 (0.07) 0.93 (0.08) 0.93 (0.08) 0.96 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.2 0.97 (0.07) 0.93 (0.08) 0.93 (0.08) 0.97 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.15 0.98 (0.07) 0.93 (0.08) 0.93 (0.08) 0.98 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.1 0.99 (0.07) 0.93 (0.08) 0.93 (0.08) 0.99 (0.03) 0.93 (0.03) 0.93 (0.03)
-3.05 1.00 (0.07) 0.93 (0.08) 0.93 (0.08) 1.00 (0.03) 0.93 (0.03) 0.93 (0.03)

-3 1.01 (0.07) 0.93 (0.08) 0.93 (0.08) 1.01 (0.03) 0.93 (0.03) 0.93 (0.03)

58



Next, we considered an interaction in the outcome model, i.e., ψ1 ̸= 0, in DGM 4.1.

Considering different sets of the parameters for the treatment-free model, the value of

α∗ was calculated based on Formula 3.1. As described in the previous section, the MC

Averaging Method was also used to confirm that the value of α∗ is calculated correctly.

Considering different DGMs, the value of α∗ and the α-range are summarized in Table

4.8.

Table 4.8: α∗ and α-range when there is interaction between the treatment and covariate.

β = (β0, ψ0, βx, ψ1, βc) α∗
MC α∗ = βx +

βc
3

α-range
DGM 1 (1, 1, -1.5, 1, 2) -0.83 -0.83 (-1, -0.5)
DGM 2 (1, 1, 1.7, 1, 2.6) 2.57 2.56 (2.25, 2.75)
DGM 3 (1, 1, -2.5, 1, -2.6) -3.37 -3.36 (-3.5, -3)

Table 4.9 shows the mean (SE) of ψ̂0 for two different sample sizes of 1000 and 5000

over 500 replications. The average (SE) of ψ̂1 for two sample sizes of 1000 and 5000, and

iteration of 500 datasets are summarized in Table 4.10. We can see the bias of the dWOLS

estimators as a function of α in this table. Figure 4.11 also shows the average of estimators

of ψ̂0 and ψ̂1 for DGM 1 when n = 1000. DGM 2, and 3 exhibited the same pattern as DGM

1. The results for DGM 1, 2, and 3 for n = 5000 can be found in Appendix B.
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Figure 4.11: Box-plots of empirical distribution of ψ̂0 and ψ̂1 of the true causal parameter

ψ0 = ψ1 = 1 (marked via a horizontal dashed line) as a function of the sensitivity param-

eter α when there is an interaction between the treatment and covariate in DGM 1 when

n = 1000.
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Table 4.9: Mean (SE) of blip parameter ψ̂0, where true value is ψ0 = 1 as a function of the

sensitivity parameter α when there is interaction between treatment and covariate. The

true value of α are α∗
DGM1 = −0.83, α∗

DGM2 = 2.56, and α∗
DGM3 = −3.36.

n = 1000 n = 5000

DGM α ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE) ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE)
DGM 1 -1 0.96 (0.08) 0.98 (0.08) 0.97 (0.08) 0.95 (0.04) 0.97 (0.04) 0.97 (0.04)

-0.95 0.99 (0.08) 1.00 (0.08) 1.00 (0.08) 0.98 (0.04) 0.99 (0.04) 0.99 (0.04)
-0.9 1.02 (0.08) 1.03 (0.08) 1.02 (0.08) 1.01 (0.04) 1.02 (0.04) 1.02 (0.04)
-0.85 1.05 (0.08) 1.05 (0.08) 1.05 (0.08) 1.04 (0.04) 1.04 (0.04) 1.04 (0.04)
-0.8 1.08 (0.08) 1.07 (0.08) 1.07 (0.08) 1.07 (0.04) 1.07 (0.04) 1.07 (0.04)
-0.75 1.11 (0.08) 1.10 (0.08) 1.10 (0.08) 1.10 (0.04) 1.09 (0.04) 1.09 (0.04)
-0.7 1.14 (0.08) 1.12 (0.08) 1.12 (0.08) 1.13 (0.04) 1.11 (0.04) 1.12 (0.04)
-0.65 1.16 (0.08) 1.14 (0.08) 1.15 (0.08) 1.16 (0.04) 1.14 (0.04) 1.14 (0.04)
-0.6 1.19 (0.08) 1.17 (0.08) 1.17 (0.08) 1.19 (0.04) 1.16 (0.04) 1.17 (0.04)
-0.55 1.22 (0.08) 1.19 (0.08) 1.20 (0.08) 1.22 (0.04) 1.18 (0.04) 1.19 (0.04)
-0.5 1.25 (0.08) 1.22 (0.08) 1.22 (0.08) 1.25 (0.04) 1.21 (0.04) 1.22 (0.04)

DGM 2 2.25 0.87 (0.09) 0.91 (0.09) 0.90 (0.09) 0.88 (0.04) 0.92 (0.04) 0.91 (0.04)
2.3 0.90 (0.09) 0.93 (0.09) 0.93 (0.09) 0.91 (0.04) 0.94 (0.04) 0.93 (0.04)

2.35 0.93 (0.09) 0.96 (0.09) 0.95 (0.09) 0.94 (0.04) 0.96 (0.04) 0.96 (0.04)
2.4 0.96 (0.09) 0.98 (0.09) 0.98 (0.09) 0.97 (0.04) 0.99 (0.04) 0.98 (0.04)

2.45 0.99 (0.09) 1.01 (0.09) 1.00 (0.09) 1.00 (0.04) 1.01 (0.04) 1.01 (0.04)
2.5 1.02 (0.09) 1.03 (0.09) 1.03 (0.09) 1.03 (0.04) 1.04 (0.04) 1.03 (0.04)

2.55 1.05 (0.09) 1.05 (0.09) 1.05 (0.09) 1.06 (0.04) 1.06 (0.04) 1.06 (0.04)
2.6 1.08 (0.09) 1.08 (0.09) 1.08 (0.09) 1.08 (0.04) 1.08 (0.04) 1.08 (0.04)

2.65 1.11 (0.09) 1.10 (0.09) 1.10 (0.09) 1.11 (0.04) 1.11 (0.04) 1.11 (0.04)
2.7 1.14 (0.09) 1.12 (0.09) 1.13 (0.09) 1.14 (0.04) 1.13 (0.04) 1.13 (0.04)

2.75 1.17 (0.09) 1.15 (0.09) 1.15 (0.09) 1.17 (0.04) 1.15 (0.04) 1.16 (0.04)
DGM 3 -3.5 0.85 (0.08) 0.87 (0.09) 0.86 (0.09) 0.86 (0.04) 0.87 (0.04) 0.87 (0.04)

-3.45 0.88 (0.08) 0.89 (0.09) 0.89 (0.09) 0.89 (0.04) 0.90 (0.04) 0.90 (0.04)
-3.4 0.91 (0.08) 0.91 (0.09) 0.91 (0.09) 0.92 (0.04) 0.92 (0.04) 0.92 (0.04)
-3.35 0.94 (0.08) 0.94 (0.09) 0.94 (0.09) 0.95 (0.04) 0.94 (0.04) 0.95 (0.04)
-3.3 0.97 (0.08) 0.96 (0.09) 0.96 (0.09) 0.98 (0.04) 0.97 (0.04) 0.97 (0.04)
-3.25 1.00 (0.08) 0.98 (0.09) 0.99 (0.09) 1.01 (0.04) 0.99 (0.04) 1.00 (0.04)
-3.2 1.03 (0.08) 1.01 (0.09) 1.01 (0.09) 1.04 (0.04) 1.02 (0.04) 1.02 (0.04)
-3.15 1.06 (0.08) 1.03 (0.09) 1.04 (0.09) 1.07 (0.04) 1.04 (0.04) 1.05 (0.04)
-3.1 1.09 (0.08) 1.06 (0.09) 1.06 (0.09) 1.10 (0.04) 1.06 (0.04) 1.07 (0.04)
-3.05 1.12 (0.08) 1.08 (0.09) 1.09 (0.09) 1.12 (0.04) 1.09 (0.04) 1.10 (0.04)

-3 1.15 (0.08) 1.10 (0.09) 1.11 (0.09) 1.15 (0.04) 1.11 (0.04) 1.12 (0.04)
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Table 4.10: Mean (SE) of blip parameter ψ̂1, where true value is ψ1 = 1 as a function of the

sensitivity parameter α when there is interaction between treatment and covariate. The

true values of α are α∗
DGM1 =-0.83, α∗

DGM2 =2.56, and α∗
DGM3 = −3.36.

n = 1000 n = 5000

DGM α ψ̂1 (SE) ψ̂1−w1 (SE) ψ̂1−w2 (SE) ψ̂1 (SE) ψ̂1−w1 (SE) ψ̂1−w2 (SE)
DGM 1 -1 1.18 (0.10) 1.18 (0.10) 1.18 (0.10) 1.18 (0.05) 1.18 (0.05) 1.18 (0.05)

-0.95 1.13 (0.10) 1.13 (0.10) 1.13 (0.10) 1.13 (0.05) 1.13 (0.05) 1.13 (0.05)
-0.9 1.08 (0.10) 1.08 (0.10) 1.08 (0.10) 1.08 (0.05) 1.08 (0.05) 1.08 (0.05)
-0.85 1.03 (0.10) 1.03 (0.10) 1.03 (0.10) 1.03 (0.05) 1.03 (0.05) 1.03 (0.05)
-0.8 0.98 (0.10) 0.98 (0.10) 0.98 (0.10) 0.98 (0.05) 0.98 (0.05) 0.98 (0.05)
-0.75 0.93 (0.10) 0.93 (0.10) 0.93 (0.10) 0.93 (0.05) 0.93 (0.05) 0.93 (0.05)
-0.7 0.88 (0.10) 0.88 (0.10) 0.88 (0.10) 0.88 (0.05) 0.88 (0.05) 0.88 (0.05)
-0.65 0.83 (0.10) 0.83 (0.10) 0.83 (0.10) 0.83 (0.05) 0.83 (0.05) 0.83 (0.05)
-0.6 0.78 (0.10) 0.78 (0.10) 0.78 (0.10) 0.78 (0.05) 0.78 (0.05) 0.78 (0.05)
-0.55 0.73 (0.10) 0.73 (0.10) 0.73 (0.10) 0.73 (0.05) 0.73 (0.05) 0.73 (0.05)
-0.5 0.68 (0.10) 0.68 (0.10) 0.68 (0.10) 0.68 (0.05) 0.68 (0.05) 0.68 (0.05)

DGM 2 2.25 1.33 (0.12) 1.33 (0.12) 1.33 (0.12) 1.33 (0.05) 1.33 (0.05) 1.33 (0.05)
2.3 1.28 (0.12) 1.28 (0.12) 1.28 (0.12) 1.28 (0.05) 1.28 (0.05) 1.28 (0.05)

2.35 1.23 (0.12) 1.23 (0.12) 1.23 (0.12) 1.23 (0.05) 1.23 (0.05) 1.23 (0.05)
2.4 1.18 (0.12) 1.18 (0.12) 1.18 (0.12) 1.18 (0.05) 1.18 (0.05) 1.18 (0.05)

2.45 1.13 (0.12) 1.13 (0.12) 1.13 (0.12) 1.13 (0.05) 1.13 (0.05) 1.13 (0.05)
2.5 1.08 (0.12) 1.08 (0.12) 1.08 (0.12) 1.08 (0.05) 1.08 (0.05) 1.08 (0.05)

2.55 1.03 (0.12) 1.03 (0.12) 1.03 (0.12) 1.03 (0.05) 1.03 (0.05) 1.03 (0.05)
2.6 0.98 (0.12) 0.98 (0.12) 0.98 (0.12) 0.98 (0.05) 0.98 (0.05) 0.98 (0.05)

2.65 0.93 (0.12) 0.93 (0.12) 0.93 (0.12) 0.93 (0.05) 0.93 (0.05) 0.93 (0.05)
2.7 0.88 (0.12) 0.88 (0.12) 0.88 (0.12) 0.88 (0.05) 0.88 (0.05) 0.88 (0.05)

2.75 0.83 (0.12) 0.83 (0.12) 0.83 (0.12) 0.83 (0.05) 0.83 (0.05) 0.83 (0.05)
DGM 3 -3.5 1.12 (0.11) 1.12 (0.11) 1.12 (0.11) 1.12 (0.05) 1.12 (0.05) 1.12 (0.05)

-3.45 1.07 (0.11) 1.07 (0.11) 1.07 (0.11) 1.07 (0.05) 1.07 (0.05) 1.07 (0.05)
-3.4 1.02 (0.11) 1.02 (0.11) 1.02 (0.11) 1.02 (0.05) 1.02 (0.05) 1.02 (0.05)
-3.35 0.97 (0.11) 0.97 (0.11) 0.97 (0.11) 0.97 (0.05) 0.97 (0.05) 0.97 (0.05)
-3.3 0.92 (0.11) 0.92 (0.11) 0.92 (0.11) 0.92 (0.05) 0.92 (0.05) 0.92 (0.05)
-3.25 0.87 (0.11) 0.87 (0.11) 0.87 (0.11) 0.87 (0.05) 0.87 (0.05) 0.87 (0.05)
-3.2 0.82 (0.11) 0.82 (0.11) 0.82 (0.11) 0.82 (0.05) 0.82 (0.05) 0.82 (0.05)
-3.15 0.77 (0.11) 0.77 (0.11) 0.77 (0.11) 0.77 (0.05) 0.77 (0.05) 0.77 (0.05)
-3.1 0.72 (0.11) 0.72 (0.11) 0.72 (0.11) 0.72 (0.05) 0.72 (0.05) 0.72 (0.05)
-3.05 0.67 (0.11) 0.67 (0.11) 0.67 (0.11) 0.67 (0.05) 0.67 (0.05) 0.67 (0.05)

-3 0.62 (0.11) 0.62 (0.11) 0.62 (0.11) 0.62 (0.05) 0.62 (0.05) 0.62 (0.05)
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As we saw in Section 4.1, the dWOLS estimators are biased when the NUC assump-

tion is violated. The bias is affected by the strength of confounding. In this section, we

explored a sensitivity analysis approach wherein a single sensitivity parameter adjusts

for the effect of the unmeasured confounder.

The proposed approach reduced the bias in the estimators by considering the depen-

dency ofC only onX ; this procedure is simpler and more straightforward than a previous

proposal by Rose et al [33] that relies on specifying the dependence of C on X and A. We

captured much of the bias and the α-range includes the true value of α∗ that led to an

improved estimator of ψ = (ψ0, ψ1) in all scenarios.

As one can see from Tables 4.9 and 4.10, larger sample size can provide lower variance

for all unweighted, absolute weights, and inverse weights dWOLS estimators, although

the bias is not reduced – rather a more precise but biased estimate is found as sample size

increases.

4.3 Summary

In this chapter, we conducted several simulation studies with different settings and in-

vestigated a novel proposal for a sensitivity analysis method. The approach is illustrated

through several simulations, which highlights the importance of sensitivity analysis and

provides general points for conducting such analyses.

A comprehensive sensitivity analysis has been done in [33] that includes a complex

method; we proposed a simpler method to capture the bias in dWOLS estimators with

unmeasured confounding in the model. Our method only relied on determining the rela-

tionship between unmeasured confounders and measured covariates. The result showed

that we could improve the estimations but we could not eliminate all of the bias since we

were not fully accounting for confounding. In next chapter, we implement the proposed

method of sensitivity analysis in a real-world data example.
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Chapter 5

Application: Analysis of the NHANES

Data

Chapter 3 introduced a straightforward sensitivity analysis method aimed at quantifying

the possible extent of the bias in estimators when the assumption of NUC is violated.

The previous chapter conducted simulations using known DGMs to evaluate the effec-

tiveness of the proposed sensitivity analysis approach. In this chapter, we apply the

proposed method to real-world data obtained from the United States’ National Health

and Nutrition Examination Survey (NHANES) with the objective of assessing the impact

of a potential unmeasured confounder on an analysis that seeks to determine whether

physical activity recommendations should be tailored to an individual’s socioeconomic

status.

5.1 Background

Maintaining a healthy body mass index (BMI) is widely recognized as beneficial for over-

all human health. Various factors have been shown to affect an individual’s BMI, includ-

ing physical activity, dietary habits, and genetics. Studies have shown that socioeconomic

factors such as educational level and economic status are also associated (not necessarily
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causally) with BMI [9,10]. In developed countries, lower wealth levels have been linked to

higher BMI [9] due to limited access to healthy food options and reliance on high-calorie

processed foods. Additionally, educational level has been found to affect BMI [8], po-

tentially due to greater knowledge about healthy eating and regular exercise or through

mechanisms such as higher education increasing income, which in turn is associated with

lower BMI in developed nations. Therefore, when examining the causal impact of phys-

ical activity on BMI (which may be heterogeneous across covariates), it is crucial to con-

sider the influence of educational level and wealth status, as these may act as important

confounders that can introduce bias if adjustment is inadequate or not possible. Further,

physical activity requirements may be greater for lower income individuals to compen-

sate for structural and environmental inequities such living in a food desert (low access

to high quality nutrition) or being in a less walkable neighbourhood [18, 21].

To address this, our analysis aims to estimate an individual treatment rule (ITR) for

physical activity tailored to wealth levels with the objective of optimizing BMI. In this

analysis, we consider educational level as an unmeasured confounder. To evaluate the

sensitivity of the estimated physical activity recommendation to the unmeasured educa-

tional level, we apply the proposed sensitivity analysis procedure.

5.2 Methods

This section provides an overview of the NHANES data and outlines the variables used

in the analysis including physical activity, BMI, educational levels, and wealth status.

NHANES data

The NHANES program assesses the health and nutritional well-being of individuals,

both children and adults, residing in the United States. The survey, initiated in 1999,

has been conducted continuously and releases data publicly in 2-year cycles. It is car-

ried out by the National Center for Health Statistics (NCHS) within the Centers for Dis-
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ease Control and Prevention (CDC) by collecting data through interviews and phys-

ical examinations. The data are accessible through the CDC’s NCHS official website

[www.cdc.gov/nchs/nhanes].

The NHANES data provide invaluable insights for understanding population health

and public health policies in the United States. It employs a diverse range of data col-

lection methods, including clinical examinations, selected medical and laboratory tests,

and in-depth interviews. Data is collected through the use of laptops, personal inter-

views, and computer-assisted self-interviewing. The survey consists of two parts: the

initial part involves computer-assisted personal interviewing, conducted by mobile exam

center interviewers, the second part is administered through an audio computer-assisted

self-interviewing system.

NHANES starts data collection by contacting selected households and obtaining ba-

sic demographic information such as age, race, and gender for all household members.

Through a random selection process, certain household members are then chosen for fur-

ther, more detailed data collection.

For the analysis in this chapter, we focus on several specific variables of the NHANES

data relevant to our motivating question: BMI, physical activity, wealth status, educa-

tional level, age, and diabetes. The outcome of interest in our analysis is BMI, which is

calculated as the weight in kilograms divided by the height in meters squared. It pro-

vides a measurement allowing the classification of individuals into different ranges. The

commonly used ranges based on BMI are classified as follows [2].

Table 5.1: Common BMI classification system.

Classification BMI
Underweight ≤ 18.5
Normal weight 18.6− 24.9
Overweight 25− 29.9
Obesity ≥ 30
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We use BMI as a continuous variable in our analysis, and mentioned these thresholds

merely for context. The physical activity variable is categorized as either Yes or No, with

participants considered physically active if they engage in moderate or vigorous-intensity

sports, fitness, or recreational activities. This variable is derived from a comprehensive

survey consisting of 21 questions aimed at assessing the individual’s activity level. These

questions cover various aspects of (in)activity, including the frequency of being active

for at least one hour in the past 7 days, the average hours spent watching TV, using a

computer, and playing video games in the past 30 days, the nature and extent of physical

activity involved in the person’s work, the frequency of walking or cycling for at least

10 minutes in a typical week, engagement in moderate-intensity or vigorous-intensity

sports or recreational activities, and the number of hours spent sitting in a typical day.

The responses to these questions collectively determine the assignment of the physical

activity variable.

The wealth level is determined as a ratio of family income to wealth guidelines, where

smaller numbers indicate greater poverty. The educational level is recorded as 8th grade,

9th − 11th grade, high school, some college, or college graduate. Table 5.2 shows the sum-

mary statistics for the variables for the years 2009− 2010 and 2011− 2012. For continuous

variables, the mean and standard deviation (SD) are provided. The categorical variables

are represented by the percentage for each category. Note that missing data are excluded

from the dataset. Table 5.3 presents the summary statistics for the two subgroups defined

by the physical activity variable.
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Table 5.2: Summary of NHANES data for 2009− 2012, excluding missing data.

Variable 2009-2010 (N=3303) 2011-2012 (N=3329)
BMI (mean (SD)) 28.9 (6.9) 28.7 (6.4)
Wealth Level (mean (SD)) 2.9 (1.6) 2.9 (1.7)
Age (mean (SD)) 46.8 (16.8) 47.2 (16.9)
Physical Activity (N (%))
Yes 1719 (52%) 1832 (55%)
No 1584 (48%) 1497 (45%)
Diabetes (N (%))
Yes 337 (10%) 334 (10%)
No 2966 (90%) 2995 (90%)
Educational Level (N (%))
8th grade 201 (6%) 181 (5%)
9th − 11th grade 435 (13%) 354 (11%)
High school 754 (23%) 629 (19%)
Some college 1014 (31%) 1075 (32%)
College graduate 899 (27%) 1090 (33%)

Table 5.3: Summary of NHANES data (2009− 2012) for each category of physical activity,

excluding missing data.

Variable 2009-2010 2011-2012
Physical Activity No (N=1584) Yes (N=1719) No (N=1497) Yes (N=1832)
BMI (mean (SD)) 30.0 (7.5) 27.9 (6.1) 29.7 (6.8) 27.9 (6.0)
Wealth Level (mean (SD)) 2.6 (1.6) 3.3 (1.6) 2.5 (1.6) 3.2 (1.7)
Age (mean (SD)) 49.4 (17.4) 44.4 (15.8) 51.1 (16.7) 44.1 (16.3)
Diabetes (N (%))
Yes 215 (14%) 122 (7%) 209 (14%) 125 (7%)
No 1369 (86%) 1597 (93%) 1288 (86%) 1707 (93%)
Educational Level (N (%))
8th grade 141 (9%) 60 (3%) 141 (9%) 40 (2%)
9th − 11th grade 297 (19%) 138 (8%) 239 (16%) 115 (6%)
High school 464 (29%) 290 (17%) 333 (22%) 296 (16%)
Some college 459 (29%) 555 (33%) 500 (34%) 575 (32%)
College graduate 223 (14%) 676 (39%) 284 (19%) 806 (44%)
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Analysis

In our analysis, the objective is to determine the optimal ITR for recommending physical

activity, and then to use the proposed sensitivity analysis to demonstrate the potential

impact of violating the assumption of NUC in a real-world setting. We also investigate

whether physical activity recommendations should be tailored to the individual’s wealth

level.

We use NHANES data collected during the years 2009−2010 to examine the impact of

physical activity on individual’s BMI and estimate an ITR to optimize BMI while adjust-

ing for wealth level. We assume that educational level acts as an unmeasured confounder.

The initial sample size consisted of 5000 participants, from which we removed 1352 par-

ticipants below the age of 20 years. We further removed 345 data points with missing

values in any of the variables used in our analysis. Out of all participants, 61 individ-

uals were classified as underweight (BMI< 18.5) and were excluded from the sample,

resulting in a final sample size of 3242 non-underweight adult participants aged 20 years

or above with complete data. Among these participants, 1684 (52.0%) individuals were

physically active, while 1558 (48%) have the physical activity variable coded as “No”.

In our model, the outcome variable of interest is BMI, where higher BMI values are

indicative of being considered overweight. To align with the dWOLS method, which

typically is implemented so as to maximize the outcome, we transform the outcome as

the negative value of the BMI measure, i.e., in our analysis, Y represents negative BMI.

Physical activity serves as the “treatment” variable, denoted as A. We define A = 1 if

a participant engaged in moderate or vigorous-intensity sports, fitness, or recreational

activities; otherwise, A = 0 is assigned.

In addition to physical activity, we include the wealth variableX as a covariate, which

is derived from reported wealth levels; we let X serve as both a tailoring variable and as

a potential confounder. The wealth level X measured as a continuous positive number

between 0 and 5. Educational level is represented by variable C, reflecting the number

of years of schooling. We recode the five educational levels (8th grade, 9th − 11th grade,
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high school, some college, or college grad) as 8, 10, 12, 14, and 16 years, respectively,

and treat these as continuous since they represent (approximately) the number of years of

formal schooling of the participant. Note that treating the educational level variable as a

continuous variable helps us to obtain a smoother relationship between wealth status and

educational level variables. We could then fit a straight line through the relationship. We

are thus able to approximate the expectation of educational level variable given wealth

status and physical activity with a linear function.

We also include age and diabetes status as covariates in our model. By including

these variables as predictors of the outcome, we aim to reduce variability and control for

potential distortions in the relationship between physical activity and BMI. Note that the

diabetes variable is either “Yes” or “No”, which we recode as 1 (“Yes”) and as 0 (“No”)

for convenience.

In order to illustrate the concepts explored in the simulation, we utilize both tailored

and non-tailored models in the data analysis. This approach aims to enhance our under-

standing of whether such tailoring would be beneficial for individuals from economically

disadvantaged backgrounds. Specifically, we consider the two following outcome models

Model 1: E[Y |X,A,C;ψ, β] = β0 + β1age + β2diabetes + βxX + βcC + ψ0A,

Model 2: E[Y |X,A,C;ψ, β] = β0 + β1age + β2diabetes + βxX + βcC + A(ψ0 + ψ1X).

We use dWOLS to estimate ψ̂model1 = ψ̂0 and ψ̂model2 = (ψ̂0, ψ̂1). Estimation is per-

formed using two types of weights: absolute value weights (w1) and inverse probability

of treatment weights (w2). Table 5.4 shows the dWOLS estimations for model 1 and 2

when the educational level is measured.
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Table 5.4: dWOLS estimations of parameters using NHANES data for 2009− 2010 when

educational level is included in the regression model.

Model 1 Model 2
w1 w2 w1 w2

β̂0 (SE) -31.24 (0.76) -31.19 (0.75) -30.74 (0.81) -30.73 (0.79)
β̂1 (SE) 0.00 (0.01) 0.01 (0.01) 0.00 (0.00) 0.01 (0.01)
β̂2 (SE) -3.75 (0.41) -3.51 (0.39) -3.76 (0.40) -3.52 (0.39)
β̂x (SE) 0.08 (0.08) 0.08 (0.08) -0.06 (0.10) -0.04 (0.11)
β̂c (SE) 0.08 (0.06) 0.07 (0.05) 0.07 (0.05) 0.07 (0.05)
ψ̂0 (SE) 1.71 (0.23) 1.73 (0.23) 0.91 (0.47) 1.02 (0.47)
ψ̂1 (SE) NA NA 0.27 (0.14) 0.24 (0.14)

In the first model, there is only a main treatment effect, so physical activity is the

optimal recommendation if ψ̂0 > 0. In the second model, where the treatment effect is

tailored to wealth status, the optimal ITR is to recommend physical activity if ψ̂0+ ψ̂1X >

0. Equivalently, we can see that this means that physical activity is recommended if X >

−ψ̂0/ψ̂1, assuming ψ̂1 is positive (the recommendation for physical activity is otherwise

given if X < −ψ̂0/ψ̂1).

These results in Table 5.4 indicate that “everyone should engage in moderate or vigorous-

intensity sports, fitness, or recreational activities”, since the corresponding thresholds

are both negative (−3.37 and −4.25), and the tailoring variable wealth is strictly posi-

tive hence always greater than these thresholds. The estimated optimal recommendation

aligns with current recommendations on the benefits of physical activity for adults. Thus,

there is no apparent benefit to tailoring the recommendations based on wealth status.

Next, we assume that educational level is unavailable and estimate an ITR to opti-

mize BMI without adjusting for educational level in the analysis. We apply the proposed

sensitivity analysis method to assess the impact of omitting the educational level from

the model. We compare the results from this analysis to that obtained when educational

level is measured, taking the estimate based on the absolute value weights as the gold
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standard since that choice of weights was found to provide a more accurate estimator in

our simulations.

To conduct the sensitivity analysis, we first determine the value of α∗ using Formula

3.1, which we reproduce here for convenience: α∗ = βx + βcη1. In this formula, η1 rep-

resents the coefficient of X in the model E[C|X], while βx and βc are the coefficients of

X and C, respectively. To obtain these parameters, we utilize NHANES data from the

years 2011 − 2012 as a secondary data source and estimate these key sensitivity parame-

ters needed to posit a realistic range for α∗ using linear regression models. The estimate

of these parameters are shown in Table 5.5.

Table 5.5: Estimations of parameters using NHANES data for 2011− 2012.

Model 1 Model 2
η̂1 0.67 0.67
β̂c 0.05 0.05
β̂x 0.13 0.08
α∗ 0.16 0.11

Having posited the value of α∗, we follow the procedure outlined in Algorithm 2. We

consider (0.01, 0.21) as the plausible range of α (a range around α∗) and estimate ψ̂model1

and ψ̂model2 using dWOLS including the treatment with an offset of αX . In the next sec-

tion, we present the results of the estimated values in the models which omit the educa-

tional level.

5.3 Results

This section presents the estimates of ψ̂model1 and ψ̂model2 for each α value within the speci-

fied range, considering models where educational level is unmeasured. Table 5.6 provides

the estimates of ψ̂model1 and ψ̂model2 based on the absolute value weights and inverse prob-

ability of treatment weights denoted by w1 and w2, respectively. Note that the estimates
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using w1 exhibit slight changes however this is not evident from the table as the results

are rounded to two decimal places.

Table 5.6: Estimates of the treatment decision rule parameter ψ̂model1 (average treatment

effect with no tailoring) and ψ̂model2 (parameters of a tailored decision rule) as a function of

the sensitivity parameter α. The estimated values for ψ̂model1 = ψ̂0, when the educational

level is measured using weights w1 and w2, are 1.71 and 1.73, respectively. The estimated

values for ψ̂model2 = (ψ̂0, ψ̂1), when the educational level is measured using weights w1

and w2, are (0.91, 0.27) and (1.02, 0.24), respectively.

α ˆ̃ψ0−w1 (SE) ˆ̃ψ0−w2 (SE) ψ̂0−w1 (SE) ψ̂1−w1 (SE) ψ̂0−w2 (SE) ψ̂1−w2 (SE)
0.01 1.71 (0.23) 1.72 (0.23) 0.97 (0.37) 0.25 (0.10) 1.01 (0.36) 0.24 (0.09)
0.02 1.71 (0.23) 1.72 (0.23) 1.00 (0.37) 0.24 (0.10) 1.04 (0.36) 0.23 (0.09)
0.03 1.71 (0.23) 1.72 (0.23) 1.03 (0.37) 0.23 (0.10) 1.07 (0.36) 0.22 (0.09)
0.04 1.71 (0.23) 1.73 (0.23) 1.06 (0.37) 0.22 (0.10) 1.10 (0.36) 0.21 (0.09)
0.05 1.71 (0.23) 1.73 (0.23) 1.09 (0.37) 0.21 (0.10) 1.13 (0.36) 0.20 (0.09)
0.06 1.71 (0.23) 1.73 (0.23) 1.12 (0.37) 0.20 (0.10) 1.16 (0.36) 0.19 (0.09)
0.07 1.71 (0.23) 1.73 (0.23) 1.15 (0.37) 0.19 (0.10) 1.19 (0.36) 0.18 (0.09)
0.08 1.71 (0.23) 1.73 (0.23) 1.17 (0.37) 0.18 (0.10) 1.22 (0.36) 0.17 (0.09)
0.09 1.71 (0.23) 1.73 (0.23) 1.20 (0.37) 0.17 (0.10) 1.25 (0.36) 0.17 (0.09)
0.10 1.71 (0.23) 1.73 (0.23) 1.23 (0.37) 0.16 (0.10) 1.28 (0.36) 0.16 (0.09)
0.11 1.71 (0.23) 1.73 (0.23) 1.26 (0.37) 0.15 (0.10) 1.31 (0.36) 0.15 (0.09)
0.12 1.71 (0.23) 1.73 (0.23) 1.29 (0.37) 0.14 (0.10) 1.34 (0.36) 0.14 (0.09)
0.13 1.71 (0.23) 1.73 (0.23) 1.32 (0.37) 0.13 (0.10) 1.36 (0.36) 0.13 (0.09)
0.14 1.71 (0.23) 1.73 (0.23) 1.35 (0.37) 0.12 (0.10) 1.39 (0.36) 0.12 (0.09)
0.15 1.71 (0.23) 1.73 (0.23) 1.38 (0.37) 0.11 (0.10) 1.42 (0.36) 0.11 (0.09)
0.16 1.71 (0.23) 1.73 (0.23) 1.40 (0.37) 0.10 (0.10) 1.45 (0.36) 0.10 (0.09)
0.17 1.71 (0.23) 1.73 (0.23) 1.43 (0.37) 0.09 (0.10) 1.48 (0.36) 0.09 (0.09)
0.18 1.71 (0.23) 1.73 (0.23) 1.46 (0.37) 0.08 (0.10) 1.51 (0.36) 0.08 (0.09)
0.19 1.71 (0.23) 1.73 (0.23) 1.49 (0.37) 0.07 (0.10) 1.54 (0.36) 0.07 (0.09)
0.20 1.71 (0.23) 1.73 (0.23) 1.52 (0.37) 0.06 (0.10) 1.57 (0.36) 0.06 (0.09)
0.21 1.71 (0.23) 1.73 (0.23) 1.55 (0.37) 0.06 (0.10) 1.60 (0.36) 0.05 (0.09)

Furthermore, Figure 5.1 displays the estimates of ψ̂model1 while Figure 5.2 shows the

estimates of ψ̂model2 as α varies. As we saw in Section 4.2.3, both the estimates obtained

with absolute value weights and inverse weights are consistent and the estimates derived

from the absolute value weights display lower variability. Therefore, as noted above, we

consider the estimates obtained with absolute value weights as a baseline representation
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Figure 5.1: Estimates of the treatment decision rule parameter ψ̂model1 as a function of

the sensitivity parameter α. The estimated parameters using absolute value weights (w1)

when educational level is included are shown by solid lines. The dashed line indicates the

estimated parameters when adjusting for the educational level using inverse probability

of treatment weights (w2).

(i.e., our best guess at the truth) in both figures. The solid lines represent the estimated

parameters for weight w1 when the educational level is included. The dashed lines indi-

cate the estimated parameters when adjusting for the educational level using weight w2.
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Figure 5.2: Estimates of the treatment decision rule parameter ψ̂model2 as a function of

the sensitivity parameter α. The estimated parameters using absolute value weights (w1)

when educational level is included are shown by solid lines. The dashed lines indicate the

estimated parameters when adjusting for the educational level using inverse probability

of treatment weights (w2).
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Overall, the estimated optimal ITRs, regardless of whether they are tailored or not,

support the conventional belief that adults should engage in moderate or vigorous-intensity

sports, fitness, or recreational activities. In this particular analysis, the presence of an un-

measured confounder does not reverse this recommendation.

5.4 Summary

In this chapter, we applied the proposed sensitivity analysis method to a real dataset,

aiming to examine how the optimal treatment regime changes in the presence of an un-

measured confounder. Specifically, we utilized NHANES data from the years 2009− 2010

to analyze the association between BMI and physical activity, tailored to the wealth level.

We assumed that educational level is unknown and, therefore, not adjusted for. To esti-

mate the value of the sensitivity parameter α, we employed a secondary dataset obtained

from NHANES for the years 2011− 2012.

We conducted two analyses to explore the impact of a potential unmeasured con-

founder on the outcome model. One of the analyses was tailored to an individual’s wealth

status, while the other was conducted without tailoring. The estimated optimal ITRs from

both analyses support each other, leading to the conclusion that physical activity should

always be recommended to reduce BMI.

The analysis had limitations related to measurement error, missing data, and assump-

tions about the relationship between measured and unmeasured factors. In the next chap-

ter, we will further discuss these limitations. By assessing the impact of the limitations,

we can gain a better understanding of the strengths and weaknesses of our analysis.
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Chapter 6

Discussion and Conclusion

This chapter provides additional discussions about the proposed approach, as well as the

data analysis. The approach explored in this thesis consists of a straightforward sensi-

tivity analysis method, specifically designed to address potential bias arising from un-

measured confounding when estimating DTRs. The proposed sensitivity analysis ap-

proach considered in this work incorporates a sensitivity parameter, which accounts for

the posited impact of the unmeasured confounder on the outcome. This impact is cap-

tured by the correlation between an unmeasured confounder and a measured confounder,

providing a means to adjust for potential confounding effects that may have been omit-

ted in a standard dWOLS analysis. This method is simple and applicable to various types

of unmeasured confounders, although the development is motivated by and analytically

most obvious in the case where both the measured and unmeasured confounders are con-

tinuous and are linearly related both to one another and to the outcome.

It is important to note that implementing this method requires the specification of a

parametric model to capture the relationship between the unmeasured confounder and

the measured confounder. This model serves as a crucial component for determining

the appropriate offset to adjust for the unmeasured confounder in the outcome model.

Finding an appropriate model for the conditional mean of the unmeasured confounder(s)
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given the measured covariates may be a challenging task, particularly in the absence of

external data or domain expertise.

As previously mentioned, the proposed sensitivity analysis approach provides a tool

for reducing the bias in the blip parameters due to unmeasured confounding and leads

to more accurate estimators of treatment effects. However, it is important to note that

the approach cannot completely eliminate all of the bias since the issue of confounding

is not fully resolved. Note that we could not eliminate all of the bias since we were not

fully accounting for confounding: the method accounts for the relationship between the

unmeasured confounder at the outcome, but not for its relationship with the treatment.

The approach was shown to perform well with simulated data and also appears to per-

form reasonably well for a real-world application. In simulated scenarios, where the true

values of the underlying treatment rule parameters are known, the approach confirms the

doubly-robustness property of the dWOLS blip parameter estimators and examines the

impact of omitting either one or two confounders during estimation. While evaluating

the approach’s performance in real data scenarios poses challenges due to the absence of

known true values, it shows reasonable performance based on available data.

The proposed approach has limitations and restrictions that need to be considered.

The sensitivity analysis proposed and studied in this thesis may fail to reduce the bias of

the estimators in scenarios where there is only a weak (or no) association between the un-

measured confounder(s) and the measured confounder(s) or when this relationship is not

(approximately) linear. Additionally, the performance of the method has not been inves-

tigated in settings where other assumptions required for unbiasedness, such as positivity,

are violated.

It is crucial to recognize that the analysis conducted in Chapter 5 was subject to some

assumptions and limitations that could impact the findings. Our analysis relied on cer-

tain assumptions regarding the relationship between measured and unmeasured factors.

Specifically, we made the assumption of a linear relationship between wealth status and

educational level, despite the possibility that the actual relationship could be more com-

78



plex. However, as we had access to data on both these variables, we were in fact able

to assess this relationship and observed it to be at least approximately linear (results not

shown). Of course, such an assessment would not typically be possible in settings where

the unmeasured confounder was entirely unavailable even in an external or validation

dataset. A limitation of the analysis is that we only considered a single-stage setting. It is

also important to acknowledge that the confounding in the data was found to be weak.

It typically leads to less bias in the results when confounding is weak. Furthermore, the

strength of the correlation between measured and unmeasured confounders was not very

strong in this analysis. Thus, the measured confounders do not strongly represent the in-

fluence of the unmeasured confounders.

The analysis also had limitations related to measurement error and missing data. Mea-

surement error was introduced, for example, when we converted the categorical educa-

tional levels into a continuous variable, where midpoint values were assigned to each

level. While this conversion introduced some degree of measurement error, we expect the

impact to be small given the narrow range of each category, typically spanning only two

years. Missing data posed another issue in our analysis. There were instances where cer-

tain variables or observations were not available. In the NHANES analysis in this thesis,

missing data were simply removed. A more sophisticated approach might incorporate

inverse probability weighting for missingness, or use multiple imputation. However, the

combined use of these methods with the sensitivity analysis has not been explored either

theoretically or in simulation. This would be an interesting avenue of future work.

Based on the limitations discussed here, there are several areas for future research that

could improve the use of the proposed method. One possible direction is to adapt the

method for situations where there are multiple stages involved. This is particularly im-

portant for real-world applications, which often involve complex multi-stage processes.

Another area for future research is to explore other regression-based methods for esti-

mating DTRs. While the thesis focused on dWOLS for estimating treatment regimes, this

approach can be extended to other regression-based estimation methods aimed at either
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DTRs or simpler estimands such as an average treatment effect, or a conditional average

treatment effect.
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Appendix A

Sensitivity Analysis for Other DGMs When There Is No In-

teraction Between the Treatment and Covariate

Scenario 1

Table A.1 shows the mean and standard error of ψ̂0 for the following DGMs. The true

value of ψ0 in a linear causal model as a function of the sensitivity parameter α is 1 and

there is no interaction between treatment and covariate. Figure A.1 also includes the box-

plots of empirical distribution of the estimator ψ0. The DGM is as follows

C ∼ Ber(0.55)

X|C = c ∼ Ber(0.25 + 0.75c)

A|X = x,C = c ∼ Ber(expit(−x+ 0.5c))

Y |C = c,X = x,A = a ∼ N(β0 + βaa+ βxx+ βaxax+ βcc, 1)

where the value of β = (β0, βa, βx, βax, βc) for each DGM is

• DGM 1: β = (1, 1,−1.5, 0, 2)

• DGM 2: β = (1, 1, 1.7, 0, 2.6)

• DGM 3: β = (1, 1,−2.5, 0,−2.6).
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Table A.1: Mean (SE) of blip parameter ψ̂0 as a function of the sensitivity parameter α for

the case that distribution of the unmeasured confounder is Ber(0.55). The true value is

ψ0 = 1 and there is interaction between treatment and covariate. The true value of α are

α∗
DGM1 = 0.16, α∗

DGM2 = 3.85, and α∗
DGM3 = −4.26.

n = 1000 n = 5000

DGM α ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE) ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE)
DGM 1 -0.25 1.03 (0.07) 1.09 (0.07) 1.09 (0.07) 1.03 (0.04) 1.08 (0.03) 1.09 (0.04)

-0.2 1.04 (0.07) 1.09 (0.07) 1.09 (0.07) 1.04 (0.04) 1.08 (0.03) 1.09 (0.04)
-0.15 1.05 (0.07) 1.09 (0.07) 1.09 (0.07) 1.04 (0.03) 1.08 (0.03) 1.09 (0.04)
-0.1 1.05 (0.07) 1.09 (0.07) 1.09 (0.07) 1.05 (0.03) 1.08 (0.03) 1.09 (0.04)
-0.05 1.06 (0.07) 1.09 (0.07) 1.09 (0.07) 1.05 (0.03) 1.08 (0.03) 1.09 (0.04)

0 1.06 (0.07) 1.09 (0.07) 1.09 (0.07) 1.06 (0.03) 1.08 (0.03) 1.09 (0.04)
0.05 1.07 (0.07) 1.09 (0.07) 1.09 (0.07) 1.07 (0.03) 1.08 (0.03) 1.09 (0.04)
0.1 1.08 (0.07) 1.09 (0.07) 1.09 (0.07) 1.07 (0.03) 1.08 (0.03) 1.09 (0.04)

0.15 1.08 (0.07) 1.09 (0.07) 1.09 (0.07) 1.08 (0.03) 1.08 (0.03) 1.09 (0.04)
0.2 1.09 (0.07) 1.09 (0.07) 1.09 (0.07) 1.09 (0.03) 1.08 (0.03) 1.09 (0.04)

0.25 1.10 (0.07) 1.09 (0.07) 1.09 (0.07) 1.09 (0.03) 1.08 (0.03) 1.09 (0.04)
DGM 2 3.5 1.07 (0.08) 1.11 (0.08) 1.12 (0.08) 1.06 (0.04) 1.11 (0.04) 1.11 (0.04)

3.55 1.07 (0.08) 1.11 (0.08) 1.12 (0.08) 1.07 (0.04) 1.11 (0.04) 1.11 (0.04)
3.6 1.08 (0.08) 1.11 (0.08) 1.12 (0.08) 1.07 (0.04) 1.11 (0.04) 1.11 (0.04)

3.65 1.08 (0.08) 1.11 (0.08) 1.12 (0.08) 1.08 (0.04) 1.11 (0.04) 1.11 (0.04)
3.7 1.09 (0.08) 1.11 (0.08) 1.12 (0.08) 1.09 (0.04) 1.11 (0.04) 1.11 (0.04)

3.75 1.10 (0.08) 1.11 (0.08) 1.12 (0.08) 1.09 (0.04) 1.11 (0.04) 1.11 (0.04)
3.8 1.10 (0.08) 1.11 (0.08) 1.12 (0.08) 1.10 (0.04) 1.11 (0.04) 1.11 (0.04)

3.85 1.11 (0.08) 1.11 (0.08) 1.12 (0.08) 1.11 (0.04) 1.11 (0.04) 1.11 (0.04)
3.9 1.12 (0.08) 1.11 (0.08) 1.12 (0.08) 1.11 (0.04) 1.11 (0.04) 1.11 (0.04)

3.95 1.12 (0.08) 1.11 (0.08) 1.12 (0.08) 1.12 (0.04) 1.11 (0.04) 1.11 (0.04)
4 1.13 (0.08) 1.11 (0.08) 1.12 (0.08) 1.13 (0.04) 1.11 (0.04) 1.11 (0.04)

DGM 3 -4.5 0.91 (0.08) 0.89 (0.08) 0.89 (0.08) 0.91 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.45 0.92 (0.08) 0.89 (0.08) 0.89 (0.08) 0.92 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.4 0.93 (0.08) 0.89 (0.08) 0.89 (0.08) 0.92 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.35 0.93 (0.08) 0.89 (0.08) 0.89 (0.08) 0.93 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.3 0.94 (0.08) 0.89 (0.08) 0.89 (0.08) 0.94 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.25 0.95 (0.08) 0.89 (0.08) 0.89 (0.08) 0.94 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.2 0.95 (0.08) 0.89 (0.08) 0.89 (0.08) 0.95 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.15 0.96 (0.08) 0.89 (0.08) 0.89 (0.08) 0.96 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.1 0.97 (0.08) 0.89 (0.08) 0.89 (0.08) 0.96 (0.04) 0.89 (0.04) 0.88 (0.04)
-4.05 0.97 (0.08) 0.89 (0.08) 0.89 (0.08) 0.97 (0.04) 0.89 (0.04) 0.88 (0.04)

-4 0.98 (0.08) 0.89 (0.08) 0.89 (0.08) 0.97 (0.04) 0.89 (0.04) 0.88 (0.04)
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Figure A.1: Box-plots of empirical distribution of the estimator ψ̂0 of the true causal pa-

rameter ψ0 = 1 (marked via a horizontal dashed line) in a linear causal model as a function

of the sensitivity parameter α when there is no interaction between the treatment and co-

variate.
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Scenario 2

Table A.2 shows the mean and standard error of ψ̂0 for the following DGMs. The true

value of ψ0 in a linear causal model as a function of the sensitivity parameter α is 1 and

there is no interaction between treatment and covariate. Figure A.2 also includes the box-

plots of empirical distribution of the estimator ψ0. The DGM is as follows

C ∼ N(0.5, 0.5)

X|C = c ∼ N(2.2c, 0.5)

A|X = x,C = c ∼ Ber(expit(−x+ 0.5c))

Y |C = c,X = x,A = a ∼ N(β0 + βaa+ βxx+ βaxax+ βcc, 1).

where the value of β = (β0, βa, βx, βax, βc) for each DGM is

• DGM 1: β = (1, 1,−1.5, 0, 2)

• DGM 2: β = (1, 1, 1.7, 0, 2.6)

• DGM 3: β = (1, 1,−2.5, 0,−2.6).
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Table A.2: Mean (SE) of blip parameter ψ̂0 as a function of the sensitivity parameter α for

the case that distribution of the unmeasured confounder is N(0.5, 0.5). The true value is

ψ0 = 1 and there is interaction between treatment and covariate. The true value of α are

α∗
DGM1 = −0.82, α∗

DGM2 = 2.94, and α∗
DGM3 = −3.83.

n = 1000 n = 5000

DGM α ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE) ψ̂0 (SE) ψ̂0−w1 (SE) ψ̂0−w2 (SE)
DGM 1 -1 0.79 (0.08) 1.04 (0.08) 1.04 (0.09) 0.78 (0.03) 1.04 (0.03) 1.04 (0.04)

-0.95 0.84 (0.08) 1.04 (0.08) 1.04 (0.09) 0.83 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.9 0.88 (0.08) 1.04 (0.08) 1.04 (0.09) 0.88 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.85 0.93 (0.08) 1.04 (0.08) 1.04 (0.09) 0.93 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.8 0.98 (0.07) 1.04 (0.08) 1.04 (0.09) 0.98 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.75 1.03 (0.07) 1.04 (0.08) 1.04 (0.09) 1.03 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.7 1.08 (0.07) 1.04 (0.08) 1.04 (0.09) 1.08 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.65 1.13 (0.08) 1.04 (0.08) 1.04 (0.09) 1.13 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.6 1.18 (0.08) 1.04 (0.08) 1.04 (0.09) 1.18 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.55 1.23 (0.08) 1.04 (0.08) 1.04 (0.09) 1.23 (0.03) 1.04 (0.03) 1.04 (0.04)
-0.5 1.28 (0.08) 1.04 (0.08) 1.04 (0.09) 1.28 (0.03) 1.04 (0.03) 1.04 (0.04)

DGM 2 2.5 0.87 (0.08) 1.05 (0.08) 1.05 (0.10) 0.87 (0.03) 1.05 (0.03) 1.05 (0.04)
2.55 0.92 (0.08) 1.05 (0.08) 1.05 (0.09) 0.92 (0.03) 1.05 (0.03) 1.05 (0.04)
2.6 0.97 (0.08) 1.05 (0.08) 1.05 (0.09) 0.97 (0.03) 1.05 (0.03) 1.05 (0.04)

2.65 1.02 (0.08) 1.05 (0.08) 1.05 (0.09) 1.02 (0.03) 1.05 (0.03) 1.05 (0.04)
2.7 1.07 (0.08) 1.05 (0.08) 1.05 (0.09) 1.07 (0.03) 1.05 (0.03) 1.05 (0.04)

2.75 1.12 (0.08) 1.05 (0.08) 1.05 (0.09) 1.12 (0.03) 1.05 (0.03) 1.05 (0.04)
2.8 1.17 (0.08) 1.05 (0.08) 1.05 (0.09) 1.17 (0.03) 1.05 (0.03) 1.05 (0.04)

2.85 1.22 (0.08) 1.05 (0.08) 1.05 (0.10) 1.22 (0.03) 1.05 (0.03) 1.05 (0.04)
2.9 1.27 (0.08) 1.05 (0.08) 1.05 (0.10) 1.27 (0.03) 1.05 (0.03) 1.06 (0.04)

2.95 1.31 (0.08) 1.05 (0.08) 1.05 (0.10) 1.32 (0.03) 1.05 (0.03) 1.06 (0.04)
3 1.36 (0.08) 1.05 (0.08) 1.05 (0.10) 1.37 (0.03) 1.05 (0.03) 1.06 (0.04)

DGM 3 -3.85 0.59 (0.08) 0.95 (0.08) 0.95 (0.10) 0.58 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.8 0.64 (0.08) 0.95 (0.08) 0.95 (0.10) 0.63 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.75 0.69 (0.08) 0.95 (0.08) 0.95 (0.09) 0.68 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.7 0.74 (0.08) 0.95 (0.08) 0.95 (0.09) 0.73 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.65 0.79 (0.08) 0.95 (0.08) 0.95 (0.09) 0.78 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.6 0.84 (0.08) 0.95 (0.08) 0.95 (0.09) 0.83 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.55 0.89 (0.08) 0.95 (0.08) 0.95 (0.09) 0.88 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.5 0.94 (0.08) 0.95 (0.08) 0.95 (0.09) 0.93 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.45 0.99 (0.08) 0.95 (0.08) 0.95 (0.09) 0.98 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.4 1.04 (0.08) 0.95 (0.08) 0.95 (0.09) 1.03 (0.03) 0.94 (0.04) 0.94 (0.04)
-3.35 1.09 (0.08) 0.95 (0.08) 0.95 (0.09) 1.08 (0.03) 0.94 (0.04) 0.94 (0.04)
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Figure A.2: Box-plots of empirical distribution of the estimator ψ̂0 of the true causal pa-

rameter ψ0 = 1 (marked via a horizontal dashed line) in a linear causal model as a function

of the sensitivity parameter α when there is no interaction between the treatment and co-

variate.
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Appendix B

Sensitivity Analysis When There Is Interaction Between the

Treatment and Covariate

Considering the following DGM

C ∼ Uni(0, 1)

X|C = c ∼ Ber(c)

A|X = x,C = c ∼ Ber(expit(−x+ 0.5c))

Y |C = c,X = x,A = a ∼ N(β0 + βxx+ βaa+ βaxax+ βcc, 1)

where the value of β = (β0, βa, βx, βax, βc) for each DGM is as follows

• DGM 1: β = (1, 1,−1.5, 1, 2)

• DGM 2: β = (1, 1, 1.7, 1, 2.6)

• DGM 3: β = (1, 1,−2.5, 1,−2.6),

Figure B.1 shows the average of estimators of ψ0 and ψ1 for DGM 1 when n = 5000. Figure

B.2 also shows the average of estimators of ψ0 and ψ1 for DGM 2 when n = 1000, Figure

B.3 shows the average of estimators of ψ0 and ψ1 for DGM 2 when n = 5000, Figure B.4

shows the average of estimators of ψ0 and ψ1 for DGM 3 when n = 1000, and Figure B.5

shows the average of estimators of ψ0 and ψ1 for DGM 3 when n = 5000.
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Figure B.1: Box-plots of empirical distribution of the estimator ψ̂0 and ψ̂1 for DGM 1 when

n = 5000. The true causal parameters are ψ0 = ψ1 = 1 (marked via a horizontal dashed

line) in a linear causal model as a function of the sensitivity parameter α when there is

interaction between the treatment and covariate.
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Figure B.2: Box-plots of empirical distribution of the estimator ψ̂0 and ψ̂1 for DGM 2 when

n = 1000. The true causal parameters are ψ0 = ψ1 = 1 (marked via a horizontal dashed

line) in a linear causal model as a function of the sensitivity parameter α when there is

interaction between the treatment and covariate.
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Figure B.3: Box-plots of empirical distribution of the estimator ψ̂0 and ψ̂1 for DGM 2 when

n = 5000. The true causal parameters are ψ0 = ψ1 = 1 (marked via a horizontal dashed

line) in a linear causal model as a function of the sensitivity parameter α when there is

interaction between the treatment and covariate.
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Figure B.4: Box-plots of empirical distribution of the estimator ψ̂0 and ψ̂1 for DGM 3 when

n = 1000. The true causal parameters are ψ0 = ψ1 = 1 (marked via a horizontal dashed

line) in a linear causal model as a function of the sensitivity parameter α when there is

interaction between the treatment and covariate.
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Figure B.5: Box-plots of empirical distribution of the estimator ψ̂0 and ψ̂1 for DGM 3 when

n = 5000. The true causal parameters are ψ0 = ψ1 = 1 (marked via a horizontal dashed

line) in a linear causal model as a function of the sensitivity parameter α when there is

interaction between the treatment and covariate.
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[12] HERNÁN, M. A., AND ROBINS, J. M. Causal Inference: What If. Boca Raton: Chapman

& Hall/CRC, 2020.

[13] IMAI, K., AND YAMAMOTO, T. Causal inference with differential measurement error:

Nonparametric identification and sensitivity analysis. American Journal of Political

Science 54, 2 (2010), 543–560.

[14] IOANNIDIS, J. P., TAN, Y. J., AND BLUM, M. R. Limitations and misinterpretations of

E-values for sensitivity analyses of observational studies. Annals of Internal Medicine

170, 2 (2019), 108–111.

[15] JIANG, C., WALLACE, M. P., AND THOMPSON, M. E. Dynamic treatment regimes

with interference. Canadian Journal of Statistics 51, 2 (2023), 469–502.

[16] KALINCIK, T., AND BUTZKUEVEN, H. Observational data: understanding the real

MS world. Multiple Sclerosis Journal 22, 13 (2016), 1642–1648.

[17] KOSOROK, M. R., AND MOODIE, E. E. M. Adaptive Treatment Strategies in Practice.

Society for Industrial and Applied Mathematics, Philadelphia, PA, 2015.

94



[18] LEVINE, Y. T., MCCRADY-SPITZER, S. K., AND LEVINE, J. A. Walk score and

poverty in American cities. Medical Research Archives 4, 7 (2016).

[19] LINDEN, A., MATHUR, M. B., AND VANDERWEELE, T. J. Conducting sensitivity

analysis for unmeasured confounding in observational studies using E-values: The

evalue package. Stata Journal 20, 1 (2020), 162–175.

[20] LIU, H., CHEN, W., AND SUDJIANTO, A. Relative entropy based method for proba-

bilistic sensitivity analysis in engineering design. Journal of Mechanical Design 128, 2

(2006), 326–336.

[21] MAMIYA, H., MOODIE, E. E. M., AND BUCKERIDGE, D. L. A novel application of

point-of-sales grocery transaction data to enhance community nutrition monitoring.

AMIA Annual Symposium Proceedings 2017 (2018), 1253–1261.

[22] MATHUR, M. B., SMITH, L. H., YOSHIDA, K., DING, P., AND VANDERWEELE, T. J.

E-values for effect heterogeneity and approximations for causal interaction. Interna-

tional Journal of Epidemiology 51, 4 (2022), 1268–1275.

[23] MCCANDLESS, L. C., GUSTAFSON, P., AND LEVY, A. Bayesian sensitivity analysis

for unmeasured confounding in observational studies. Statistics in Medicine 26, 11

(2007), 2331–2347.

[24] MORIO, J. Global and local sensitivity analysis methods for a physical system. Eu-

ropean Journal of Physics 32, 6 (2011), 1577–1584.

[25] MORRIS, T. P., WHITE, I. R., AND CROWTHER, M. J. Using simulation studies to

evaluate statistical methods. Statistics in Medicine 38, 11 (2019), 2074–2102.

[26] MURPHY, S. A. Optimal dynamic treatment regimes. Journal of the Royal Statistical

Society: Series B 65, 2 (2003), 331–355.

95



[27] MURPHY, S. A., VAN DER LAAN, M. J., AND ROBINS, J. M. Marginal mean models

for dynamic regimes. Journal of the American Statistical Association 96, 456 (2001),

1410–1423.

[28] ORSINI, N., BELLOCCO, R., BOTTAI, M., WOLK, A., AND GREENLAND, S. A tool

for deterministic and probabilistic sensitivity analysis of epidemiologic studies. Stata

Journal 8, 1 (2008), 29–48.

[29] PHAM, B. T., NGUYEN, M. D., DAO, D. V., PRAKASH, I., LY, H.-B., LE, T.-T., HO,

L. S., NGUYEN, K. T., NGO, T. Q., HOANG, V., SON, L. H., NGO, H. T. T., TRAN,

H. T., DO, N. M., VAN LE, H., HO, H. L., AND TIEN BUI, D. Development of

artificial intelligence models for the prediction of compression coefficient of soil: An

application of Monte Carlo sensitivity analysis. Science of The Total Environment 679

(2019), 172–184.

[30] ROBINS, J. M. Causal inference from complex longitudinal data. In Latent Variable

Modeling and Applications to Causality, M. Berkane, Ed. Springer, 1997, pp. 69–117.

[31] ROBINS, J. M. Optimal structural nested models for optimal sequential decisions. In

Proceedings of the Second Seattle Symposium in Biostatistics, D. Y. Lin and P. J. Heagerty,

Eds., vol. 179. Springer, New York, NY, 2004, pp. 189–326.
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