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Abstract

Prognosis after cancer treatment is a constant concern for physicians, patients and their sur-
rounding friends and family. This is one of the reasons that treatment outcomes prediction is
such a critical field of research. The sheer magnitude of data generated within a typical radiation
oncology clinic each year facilitates the development and eventual validation of predictive and
prognostic models. Furthermore, the technological advances driven by data science have en-
abled the usage of advanced machine learning techniques which can far exceed the performance

of previously used conventional techniques.

Most cancer patients follow a standard radiation oncology workflow, which among other
things includes medical imaging (CT/PET) and the creation of a radiation therapy treatment
plan. As these sorts of data are (in theory) present for every patient, they are ideal variables to
input into a predictive model. The goal of this thesis was to investigate these two types of pre-
treatment input data (diagnostic imaging and dosimetric data) along with patient characteristics
to identify associations and create models capable of predicting a cancer patient’s treatment

response following radiation therapy.

The first objective was to investigate dose-volume metrics as predictors of clinical outcomes
in a cohort of 422 non-small cell lung cancer (NSCLC) patients who received stereotactic body
radiation therapy (SBRT). A correlation between the dose delivered to the region outside the
tumor and the occurrence of distant metastasis was revealed. In particular, patients who received
above a certain threshold dose were shown to have significantly reduced distant metastasis
recurrence rates compared to the rest of the population. This was first shown on 217 patients all
of whom were treated with conventional SBRT treatment modalities. Next, a similar analysis
was done on 205 patients who were treated with a robotic arm linear accelerator (CyberKnife).

It was found that the CyberKnife cohort had both superior distant control and local control,
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suggesting that under current prescription practices, CyberKnife, as a delivery device, could be
superior for treating NSCLC patients with SBRT.

The second objective of this thesis was to investigate the usage of a deep learning framework
applied to raw medical imaging data in order to predict the overall prognosis of head & neck
cancer patients post-radiation therapy. A de novo architecture was built incorporating CT
images, resulting in comparable performance to a state-of-the-art study. Furthermore, our
model was shown to recognize imaging features (‘radiomics’) previously shown to be predictive
without being explicitly presented with their definition. The final portion of this work was the
development of a multi-modal deep learning framework which incorporated CT & PET images
along with clinical information. This was compared to the previous architecture built, showing
substantial increase in prediction performance for both overall survival and local recurrence. It
was also shown to function in the presence of missing data, a common occurrence within the

medical landscape.

This work demonstrates that pre-treatment prediction of a cancer patient’s post-radiation
therapy outcomes is possible by learning correlations and building models from readily available
data. Future efforts should be put towards data sharing & data curation to enable the creation
and validation of models that eventually can be used in the clinic. Ultimately, predictive models
should evolve into generative models whereupon one’s treatment could be automatically created

with the explicit intention of statistically optimizing that patient’s outcomes.



Résumé

Le pronostic apres le traitement du cancer est une préoccupation constante des médecins, des
patients et de leurs proches. Ce n’est qu’une des raisons pour lesquelles la prédiction des résul-
tats est un domaine de recherche si critique. L’ampleur des données générées chaque année dans
une clinique de radio-oncologie facilite la création et, éventuellement, la validation de modeles
pronostiques prédictifs. En outre, les progres technologiques induits par 1’informatique ont
permis I’utilisation de techniques avancées d’apprentissage automatique qui peuvent largement

dépasser les performances des techniques précédemment utilisées.

La plupart des patients atteints du cancer suivent un flux de travail de radio-oncologie
standard, qui comprend entre autres 1’imagerie médicale (CT / PET) et la création d’un plan
de traitement par radiothérapie. Comme ces types de données sont (en théorie) présents pour
chaque patient, ce sont des variables idéales a saisir dans un modele prédictif. Le but de cette
these était d’étudier ces deux types de données de prétraitement pour trouver des associations et

créer des modeles capables de prédire le pronostic d’un patient apres la radiothérapie.

Le premier objectif était d’étudier les parametres de dose comme prédicteur des résultats
cliniques dans une cohorte de 422 patients atteints de cancer du poumon non a petites cellules
(CBNPC) qui ont recu une radiothérapie stéréotaxique corporelle (SBRT). Une corrélation entre
la dose délivrée a la région extérieur de la tumeur et I’apparition de métastases a distance a été
trouvée. En particulier, les patients qui ont recu une dose au-dessus d’un certain seuil se sont
avérés avoir un taux de récidive de métastases a distance considérablement réduit. Cela a été
premicrement démontré sur 217 patients qui ont tous été traités avec des modalités de traitement
SBRT conventionnelles. Ensuite, une analyse similaire a été effectuée sur 205 patients traités
avec un accélérateur linéaire a bras robotisé (CyberKnife). Il a été constaté que la cohorte

CyberKnife avait a la fois un contr6le distant et un contrdle local supérieurs, ce qui suggere
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qu’en vertu des pratiques de prescription actuelles, le CyberKnife pourrait étre supérieur lors
du traitement des patients CBNPC.

Le deuxieme objectif de cette these était d’étudier I'utilisation d’un cadre d’apprentissage
profond appliqué aux données brutes d’imagerie médicale afin de prédire le pronostic post-
radiothérapie des patients atteints d’un cancer de la téte et du cou. Une architecture de novo
incorporant des images CT a été construite, résultant en des performances comparables aux
études de pointe. De plus, il a ét€ démontré que notre modele reconnait les caractéristiques
d’imagerie («radiomique») précédemment montrées comme prédictives sans en étre explicite-
ment informé de leur définition. La derniere partie de ce travail consistait du développement
d’un cadre d’apprentissage profond multimodal qui incorporent des images CT & PET ainsi que
des informations cliniques. Ce modele a été comparé a I’architecture précédente, montrant des
augmentations substantielles des performances de prédiction pour la survie globale et la récidive
locale. 1l a également été démontré qu’il fonctionnait en présence de données manquantes, un

phénomene courant dans le paysage médical.

Ce travail démontre que la prédiction avant-traitement du pronostic post-radiothérapie d’un
patient atteint du cancer est possible en apprenant des corrélations et en construisant des modeles
a partir de données facilement disponibles. Des travaux futurs devront étre consacrés au partage
et a la conservation des données afin de permettre la création et la validation de modeles pouvant
éventuellement étre utilisés en clinique. Finalement, les modeles prédictifs devraient évoluer
vers des modeles génératifs, apres quoi le traitement pourrait étre automatiquement créé avec

I’intention explicite d’optimiser statistiquement le pronostic des patients.
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Chapter 1

Introduction

1.1 Cancer

Cancer is both one of the most prevalent diseases in society along with being one of the most
life-altering ones. Nearly 1 in 2 Canadians will develop some form of cancer during their
lifetime, while nearly 1 in 4 will die from it [1]. Many will have to endure the emotional and
physical hardships associated with cancer diagnosis (and treatment) multiple times as cancer
often recurs, either locally or through distant metastases. These are but few of the reasons
why there is great value in the discovery of predictive characteristics that can be used to model

prognosis and inform both the patient and their care team of potential future risk.

Cancer results from abnormal cell growth, which is to some extent caused by stochastic
mutations occurring during cell replication [2]. Abnormal cell growth results in the fundamental
truth that cancer cannot be eradicated in the manner that a virus such as smallpox can be.
However, what is achievable is the advancement of diagnosis & treatment mechanisms to
the point where cancer is (mostly) curable, through the drastic increase of survival rates and
reduction of recurrence risk. With the influx of data that is also becoming available in an
increasingly organized fashion in the 21* century healthcare environment, along with the
advent of artificial intelligence (AI) methodologies, ‘outcome prediction’ research is becoming
incredibly prevalent. By combining multiple forms of information, which is in principle readily
available within the clinic, predictions regarding prognosis/diagnosis can be made. These
predictions could enable treatment strategy alterations in the light of data collected during

treatment or perhaps even guide the creation of a truly personalized treatment plan in lieu of
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the ‘standard of care’ treatment. The field of medical physics in particular concerns the usage
of radiation to eradicate cancer cells, known as radiation therapy. The focus of this thesis is
specifically with respect to cancer patients treated with radiation therapy, further introduced in

the following section.

1.2 Radiation therapy

There is a negative stigma surrounding the use of radiation within society, however radiation
therapy (RT) has proven to be an particularly effective cancer treatment technique. RT is used in
approximately 50% of cancer treatments [3, 4]. This can be in conjunction with chemotherapy,
targeted therapy and/or surgery, or utilized as the sole treatment method. The unit which defines
the amount of radiation delivered during radiation therapy, and is thus prescribed (akin to a
drug) is known as the gray (Gy). The gray is defined as the energy deposited per unit mass, 1
Gy =1 joule/kilogram.

One form of radiation therapy (RT) involves directing a beam of ionizing radiation through
a patient’s body, carefully targeted at their cancer. Charged particles (such as electrons, protons
or carbon ions) are considered directly ionizing as they deposit energy through Coulombic
interactions. Photons are traditionally classified as indirectly ionizing because they must un-
dergo interactions (photoelectric effect!, Compton scattering and pair production) to produce
secondary charged particles which then directly deposit energy [5, 6]. The most common way
to deliver radiation to a patient is through external beam radiation therapy (EBRT). The EBRT
classification (as opposed to internal beam radiotherapy) solely refers to the fact that the radia-
tion source is external to the patient. EBRT can be delivered using beams of protons, electrons,
heavy ions or photons. By far, the most common of these is the high-energy photon beam,
delivered by a linear accelerator (or ‘linac’). A linac accelerates electrons to MeV-energies
which strike a tungsten target, emitting photons (said to be in the MV-range) which are directed
towards the patient. The majority of treatments (and consequently linacs) deliver 6 MV photons,

although there is some variety (for instance, IROC-H data shows that 96.4% of lung stereotactic

!The designation “indirectly ionizing” is in fact incorrect since photons can directly ionize atoms; what is more
correctly meant is “indirectly energy-depositing” since the majority of the photon energy is transferred to orbital
electrons removed from the atom which subsequently deposit their energy through Coulombic interactions with
multiple atoms in the medium.[5]
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treatments are at 6 MV, remainder is mostly 10 MV [7]).

RT could be considered the most fundamental way of eradicating a cell as it functions
by damaging the cellular DNA. This occurs through either single-strand breaks (SSBs) or
double-strand breaks (DSBs), both of which can cause substantial damage to a cell’s ability to
survive. While the cell has numerous complex repair mechanisms [2], the delivery of a precise
amount of radiation (i.e., prescription) has been empirically determined to provide an adequate
probability of eradication. These repair mechanisms (and the biological differences between
healthy tissue and cancerous tissue) can also be taken advantage of in order to spare healthy
tissue. However, it is an inherent consequence of RT that healthy tissue receives some amount
of dose. To better understand these effects, concepts such as tumor control probability (TCP)
and normal tissue complication probability (NTCP) were developed. This allows the physician
to not only prescribe a tumor dose, but also to prescribe dose constraints for each organ-at-risk
(OAR) which can ensure the NTCP remains sufficiently low. To first order, one can imagine a
particular treatment modality could be beneficial to a patient with a tumor in a specific region,
based on differing NTCPs (graphically depicted in Figure 1.1 [8]).

Conceptually, this should lead to radiation therapy aiming to maximize the TCP (by de-
livering as much dose as possible to the tumor) while minimizing the NTCP (by avoiding
dose to non-cancerous, or ‘healthy’ tissue). In practice, this optimization problem is not al-
ways explicitly performed. Instead, modern day treatments are based on meeting dose-volume
constraints as defined by the planner. However, this manifests itself in a ‘one-prescription-
fits-all’ methodology, in which the standard-of-care is (more or less) widely defined for a
particular cancer type and a treatment is crafted per patient to ensure that the relevant regions
(tumor/healthy tissue) receive (at least/below) a predefined benchmark dose (defined so the
TCP/NTCP remain acceptably high/low). The work performed throughout this thesis aligns
itself with a healthcare ecosystem where treatment plans are built through the explicit opti-
mization of TCP/NTCP. In the future, TCP/NTCP will not be the metric which is explicitly
optimized (as they currently are concepts defined as population averages); however the idea
of ‘outcomes-based treatment planning on a per-patient basis’ (hopefully) will exist. For
example, perhaps patient-personalized TCP/NTCP curves could be generated, based on that
specific patient’s pre-treatment data. Although this will require fundamental changes to the

workflow within oncology, numerous areas of research (this thesis included) present novel
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Figure 1.1 Dose-response relationship for both tumor control probability (TCP, blue) and
normal tissue complication probability (NTCP, red). In this example, two treatment modal-
ities are shown impacting a differing amount of healthy tissue and thus having differing NTCP
curves. Thus, for this hypothetical treatment, IMRT (intensity modulated radiation therapy) or
protons would be superior to 3-D CRT (conformal radiation therapy). The dashed curve can
only achieve a TCP of 45% while ensuring the NTCP stays below 10%, while the solid curve
can achieve nearly double the TCP ( 90%) while maintaining the same 10% NTCP [8].

evidence that such a process could result in significant improvements to clinical outcomes. In
particular, this thesis focuses primarily on clinical outcomes as an end-point (local control,
distant control, survival, etc...). Treatment complications (and the ability to predict them) are

an important area of research, however, they are not explicitly investigated throughout this thesis.

1.3 Workflow & available information

The workflow within a typical cancer clinic has multiple complex steps involving a variety of

trained professionals and resources (Figure 1.2 [9, 10]). Prior to even entering the radiation
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oncology department (this workflow assumes radiation therapy is deemed the appropriate treat-
ment), the patient has a consultation with a physician which (nearly always) leads to a computed
tomography (CT) scan (within the radiology department). This often also involves other forms
of imaging, most commonly magnetic resonance imaging (MRI) & positron emission tomogra-
phy (PET). Pathology is nearly always done, unless a patient is considered unfit to tolerate its
invasive nature. The results are discussed by the medical team and presented to the patient. If
cancer is present, the patient formally enters the radiation oncology workflow. Another image
(called CT-simulation) is performed, whereupon the relevant anatomy is contoured. This image
is needed as it mimics the positioning of treatment, allowing the delivery to be as accurate
as possible. The most important contours are the gross tumor volume (GTV), the planning
target volume (PTV) and any organs-at-risk (OARs). The GTV is defined as the macroscopic
disease seen on the CT, while the PTV represents an added margin (typically on the order of
a few mm) to account for patient movement and daily setup uncertainties. Occasionally, a
clinical target volume (CTV) margin is added representing the incorporation of microscopic
spread (and its associated uncertainty). An internal target volume (ITV) margin will be added
if motion is of concern. Common OARs are the spinal cord, heart, lung, brain stem, bladder,
rectum, etc... Next, the radiation oncologist prescribes a specific amount of radiation to the
GTYV, along with dose constraints to each OAR. This prescription depends on knowledge of
the stage, the pathology, patient condition, sex, age, smoking status, etc... Following the
prescription, medical physicists and/or dosimetrists create a treatment plan which is verified
and approved by a medical physicist. The radiation oncologist then validates the treatment
plan, formally approving it for treatment. Delivery of a treatment requires precise setup of the
patient (often with immobilization) along with numerous verification steps, some of which
may necessitate an adaptation of the originally approved plan (‘adaptive radiotherapy’). Most
patients receive more than 1 dosage of radiation therapy (defined as a fraction), and thus the
delivery setup process occurs many times per patient. Note that the above workflow is a simple
example. Sometimes multiple images (perhaps of multiple modalities) are required throughout
the process, or the treatment planning process is repeated multiple times before the final plan is
accepted by the radiation oncologist. Occasionally blood tests and/or genotyping is available, re-

sulting in biomarker/genetic data, however this research does not incorporate these forms of data.

As a patient progresses through their cancer diagnosis and subsequent treatment, there is a

tremendous amount of data created for a variety of reasons. As mentioned above, medical imag-
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Figure 1.2 Example workflow within a typical radiation oncology clinic that depicts the
numerous individuals and resources involved [9].

ing & pathology (if available) is used to diagnose, locate and subsequently plan the treatment
of the disease. Additionally, it is used to follow-up on the patient, to ensure that the cancer is
in recession or otherwise determine the appropriate actions. All patients receive at least one
type of 3D or 4D image, however many receive multiple. There are a wide variety of imaging
modalities used within an oncology department, however the most common are computed
tomography (CT), positron emission tomography (PET), magnetic resonance imaging (MRI)
and ultrasound (US). Although these images are created for the aforementioned reasons, there is
a wealth of potentially predictive outcome information hidden within. Additionally, the patient’s

clinical history and a variety of other laboratory tests (e.g., HPV/EBV) can be considered. This
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is what the entire field of outcome prediction research and big data revolves around; utilizing
the otherwise ‘discarded’ information within a cancer clinic to improve prediction accuracy and
eventually facilitate personalized treatment. A summary of the most commonly used forms of
data is shown in Figure 1.3 [11]. The first two manuscripts of this thesis focus on the usage
of treatment plans (dose distributions), while the final two manuscripts focus on the usage of

medical imaging (specifically CT & PET).
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Figure 1.3 Summary of prevalent forms of information which could be used within health-
care [11]. Note this graphic does not represent every type of information within healthcare, but
rather some of the most commonly used.
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Unfortunately, the present ecosystem results in it being extremely difficult to acquire, curate
and actually make use of most of these data. The process is often incredibly long, and in many
ways parallels difficulties experienced in the experimental method. First, approval must be
granted by Health Canada’s and the Public Health Agency of Canada’s Research Ethics Board
(REB) [12]. This ensures that the research meets the highest ethical standards, and that the
greatest protection is provided to participants serving as research subjects. Often, the application
to the REB (or more accurately the Internal Review Board (IRB) of the parent institution) can
be difficult to define particularly when the data is being analyzed retrospectively, in comparison
to a prospective study where explicit consent forms could be made. Furthermore, when a study
begins, it isn’t always explicitly clear as to what methodologies will be applied or how many
patients will be used. These aspects, among others, result in a slow approval process prior to
even beginning any research. Once approval is granted, one of the most time-consuming (and
grueling) tasks begins: data curation. Data curation is a multi-step process, that first requires
learning the schema(s) of the (sometimes multiple) database(s) from which you are retrieving
the data. Often, each patient has each form of data (e.g., images, clinical notes, outcomes) in
different databases, requiring care to be taken in order to ensure that each variable gets correctly
linked to the other variables. Furthermore, each type of data requires domain knowledge to
analyze. In particular, CT/PET images and dose distributions (of which are used throughout this
thesis) are stored in the ‘Digital Imaging and Communications In Medicine’ (DICOM) format
[13]. Similarly, outcome data is typically not stored in a directly parsable format. Instead,
it requires one to manually go through consultation notes and determine whether or not the
outcome of interest occurred. When this process is repeated for multiple variables and 100s
of patients, it becomes an incredibly time-consuming task. As will be discussed in the final
chapter, data availability within the hospital environment is a major hurdle to overcome before
outcome prediction models similar to those within this thesis have a realistic chance of being
used in a clinical setting. The current environment requires the expenditure of far too many
resources in order to make models that include hundreds of patients, let alone the thousands
(or hundreds of thousands) that would be required to properly validate such models. Ideally,
this thesis (and research similar to it) helps motivate the need for large-scale data sharing and

standardization.
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1.4 Thesis objectives

As the concept of personalized medicine is garnering more and more attention, methodology
enabling accurate outcome prediction becomes essential. The hypothesis of this thesis is that
by properly using the vast & diverse information that is (in principle) available pre-treatment,
one can accurately determine whether a cancer patient is of particularly high/low-risk and thus

could warrant a more aggressive/conservative treatment.

There are two primary objectives of this thesis (each of which have sub-objectives) related
to outcome prediction using different methodologies, different cancer sites & different types of

pre-treatment information:

1. Determine novel predictive dose metrics with respect to distant recurrence in non-small

cell lung cancer patients treated with stereotactic body radiation therapy.

(a) Build an algorithm capable of evaluating dose metrics to a particularly shaped region

outside the tumor (Chapter 4).

(b) Investigate the dose fall-off outside the tumor, for multiple treatment modalities
(VMAT/CRT vs. CyberKnife) (Chapters 4 & 5).

2. Use deep learning (convolutional neural networks (CNNs)) applied to pre-treatment data

to predict clinical outcomes of head & neck cancer patients.

(a) Build a novel end-to-end CNN architecture trained de novo using CT images as
input (Chapter 6).

(b) Further develop the framework by building a multi-modal architecture capable of

jointly considering clinical information, PET & CT images (Chapter 7).

1.5 Thesis outline

Chapter 2 provides an overview of the statistical concepts required to understand the various
tests (and their statistical significance, or lack thereof) used throughout the research. Chapter
3 introduces machine learning, motivates deep learning while providing a literature review of

its applications within medical physics and presents the theory behind convolutional neural
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networks (CNNs), a tool used extensively throughout the second half of this thesis. Chapters
4-7 are original manuscripts each describing outcome prediction within a variety of contexts.
Chapter 4 investigates the dose outside of the tumor as a predictive factor within a cohort of
non-small cell lung cancer patients. Chapter 5 performs a similar analysis to Chapter 4, on
a separate cohort of patients who were treated with a robotic treatment modality in order to
determine the impact of a specific treatment modality on the correlation. Chapter 6 examines
the predictive performance of directly applying a CNN to pre-treatment CT images of a head &
neck cancer patient cohort. This methodology is further expanded on in Chapter 7, with the
incorporation of the same cohort’s PET images and clinical information. Chapter 8 concludes
with a summary of the entire thesis and a discussion on the envisioned future of outcome

prediction, particularly how it could and should be applied to personalized medicine.
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Chapter 2

Statistical concepts

2.1 Introduction

A fundamental understanding of statistics is required to correctly interpret and utilize the results
of any outcome prediction research. Although ‘statistical significance’ is often strived for due
to the perceived community acceptance, caution and rigor are required when interpreting the
results of any statistical test. This necessity applies to either end of the ‘statistically signifi-
cant’ spectrum, whether one dismisses results because they’re not ‘statistically significant’ or
vice-versa, where one believes results solely because they’re ‘statistically significant’ [1]. It
is for this reason that this work always attempts to form a hypothesis as to why the results are
what they are. A crucial statistical concept to stress is that correlation does not inherently imply

causation.

Throughout the course of this thesis, various statistical tests and concepts were used. Rather
than make some attempt to explicitly define them directly prior to their usage, brief descriptions
will be in the following subsections. Ideally, this will provide the reader with the statistical
background necessary to properly understand the presented results. First, odds ratios will
be introduced, a commonly used statistical metric in a medical context that quantifies the
association between two events. The concept of p-values will also be introduced, a metric
used to assess the significance of the result of a statistical test. Next, the receiver operating
characteristic (ROC) curve will be introduced, along with its associated metrics. The concept
of Kaplan-Meier curves (and their analysis) will be motivated and discussed. Finally, the Cox

proportional-hazards model (the multivariable analysis technique used in Chapter 5) will be
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explained.

2.2 Odds ratios & p-values

An odds ratio (OR) is a measure of association between an exposure and some outcome [2].
The exposure (or variable of interest) is typically some health characteristic or aspect of medical
history (i.e. smoking history), but can also be any user-defined metric such as the mean radiation
dose to a particular region. The outcome is often the presence of some disease or disorder (i.e.,
lung cancer given smoking history), but can also represent the occurrence of an event, such
as death or cancer recurrence. Intuitively, the odds ratio represents the odds that a particular
outcome will occur given some particular exposure, compared to the odds that the same outcome

will occur without said exposure. Mathematically, this is represented by the following [2]:

Diseased Healthy
Exposed Dp Hg
Not exposed Dy Hy
Dg/H,
OR = D/HE 2.1)
Dy/Hy
thus resulting in the following logical statements:
OR =1 = Exposure does not affect odds of outcome (2.2)
OR > 1 = Exposure is associated with higher odds of outcome (2.3)
OR <1 = Exposure is associated with lower odds of outcome (2.4)

A very important consequence of this definition is that an OR # 1 does not necessarily
imply a correlation and certainly does not imply causation. For example, it is very possible
(probable with a small sample size) that an odds ratio of 1.05 could be entirely due to random
chance (or statistical noise). For this reason, one should employ 95% confidence intervals
and/or p-values. A 95% confidence interval estimates the precision of the odds ratio. Often, this

is interpreted as representative of statistical significance if the range does not overlap the null
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value (OR = 1). However, this does not necessarily imply that a range that does overlap the null

value is indicative of a lack of association.

P-values are used to quantify significance for many statistical tests. Hypothesis testing
is when one uses a data-set to test the validity of a claim (the alternative hypothesis) against
the null hypothesis. If the data-set supports the alternative hypothesis, the null hypothesis is
rejected. The p-value, for a given statistical model, represents the probability that when the
null hypothesis is true, the statistical summary would be greater than or equal to the observed
results [3]. In other words, the p-value represents the probability of obtaining an effect at least
as extreme as the one in your data-set, assuming the null hypothesis is true. This means that a
p-value does not represent the validity of the alternative hypothesis, rather represents the null
hypothesis’ lack of validity. This is a subtle distinction, but nonetheless p-values are still a
widely used metric to test for statistical significance and will be employed throughout each
manuscript within this thesis. Often, 0.05 is defined as a significance threshold within medical
physics literature, and more broadly within the clinical environment [3]. It is reiterated that
reducing the results of an analysis to exclusively whether or not a threshold was passed can

result in erroneous conclusions and should be avoided.

2.3 Receiver operating characteristic (ROC) curves

A receiver operating characteristic (ROC) curve is a visual representation of a model’s diagnostic
ability over a varying range of discriminative thresholds [4]. Mathematically, the x-axis
represents the false positive rate (FPR) while the y-axis represents the true positive rate (TPR).
Alternatively, the TPR is known as sensitivity. Specificity is defined as 1-FPR. Both of these
metrics are often used to quantify the performance of a model in conjunction with the area under
the curve (AUC). The area under the curve is a measure of discrimination equal to the probability
that the classifier will rank a randomly chosen positive instance higher than a randomly chosen
negative one (assuming normalized units). In other words, the AUC represents the ability for a
model to properly classify input data. An AUC of 0.5 represents a completely random model,
while an AUC of 1.0 represents a model with perfect prediction performance. These concepts

are depicted in Figure 2.1. A represents a perfect model (AUC = 1), D represents a completely
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random model (AUC = 0.5) while B and C represent models of intermediate strength (AUCs ~
0.85 and 0.7 respectively).

110

0.8-

0.6-

0.4-

Sensitivity

0.2

0.01" | | |
0.0 0.2 04 06 08 1.0

FPR

Figure 2.1 Comparison of four receiver operating characteristic curves of differing quality.
A perfect curve (A) has an AUC of 1.0. The chance diagonal (D) has an AUC of 0.5 and
represents a completely random test. Curves with some discrimination ability lie between the
two extremes (B, C).
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2.4 Kaplan-Meier (KM) analysis

Kaplan-Meier (KM) analyses are commonly used to assess the effect an intervention has on
survival rates within a clinical trial [5, 6]. In particular, they’re an excellent way of analyzing
data whereupon subjects have differing survival & enrolment times, especially when some
subjects drop out of the study early or are otherwise lost to follow-up. Time-to-event is an
important concept, defined as starting when a subject receives a particular intervention (in our
case, radiotherapy) and ending upon either an event (the outcome of interest) or dropping out
of the study (censored). This time is also known as the serial time, in contrast to the calendar
time, because two subjects can have an identical serial time even if their interventions occurred

on different days.

The outcome of interest can be any clinical end point of interest (progression-free survival,
etc...) however for the following example, survival will be used. A KM survival curve depicts
the survival function of enrolled subjects over time. For each interval, the survival function
is defined as 1 - number of events which occurred in the previous time interval divided by
the number of patients at risk. The ‘at risk” nomenclature is particularly important as it does
not include patients who have died or are censored. Thus, the y-axis represents the estimated
probability of survival for a hypothetical cohort (existing at a specific snapshot in time), not the

actual overall % of patients who survived.

While valuable information can be gained from a single KM curve, often KM analysis
involves the comparison of two groups (thus two curves). Typically, one curve represents the
group which received an intervention (ex. a new drug on trial) while the other curve represents
the control (ex. placebo). An example of this is shown in Figure 2.2. In this example, treatment

B is significantly more effective at improving survival than treatment A.

As discussed in the preceding sections, a statistical test is required to quantify the difference
between two curves. The log-rank test is widely used in clinical trials to establish the efficacy
of a new drug/treatment in comparison to the ‘control’ standard-of-care. The test statistically
evaluates whether the null hypothesis is true, i.e. whether the survival distribution is identical

between the two populations (or curves). The log-rank test statistic is defined as [6, 8]:
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-|— Treatment=A -|— Treatment=B

Log-rank
» 0.271 p <0.0001

0 12 24 36 48
Time

Number at risk (number censored)

== 100 (0) 75 (7) 49 (16) 24 (24) 3 (36)
== 100 (0) 83 (6) 70 (11) 54 (18) 29 (57)

Figure 2.2 Example of KM curve comparison. x axis represents the serial time, y-axis
represents the survival probability. Numbers below graph represent the number of patients
still at risk each time point, accounting for the number of patients lost to follow-up (number
censored) [7].

0 —Ey? +02—1522
- E E

L

(2.5)

where O; represents the total number of observed events in the i/ group and E; represents the
expected number of events in the i/ group. As the test is evaluating whether the null hypothesis
is true, the expected number of events is calculated from the entire population, across both
curves (as if they were considered the same distribution). Thus, E; represents the sum of
expected events over time; each time an event is observed, the number of expected events also
increases. Finally, a y? table (with 1 degree of freedom) is used to determine whether the

log-rank test statistic is considered statistically significant and thus the null hypothesis would
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be rejected [8].

One limitation of the log-rank test is that it only can determine whether the difference
in survival times across two groups is significant, but cannot account for other independent
variables. An alternative method of comparing two survival distributions is by using the hazard
ratio and the Cox proportional-hazards model (further explained in the subsequent section).
The hazard ratio gives a relative event rate between the two groups (along with 95% confidence

intervals), while the Cox model is able to account for other confounding variables.

2.5 Multivariable analysis

The methods described above (KM curves, ROC metrics) are examples of univariable analyses.
A primary limitation is that they only consider the impact that a single variable has on the
investigated outcome, while ignoring the potential impact of others. For example, a univariable
analysis of the impact smoking has on coronary heart disease does not account for the fact
that smokers are more likely to be male, live in poverty or have a sedentary lifestyle. Any
or all of these factors could be confounders. Furthermore, univariable methods function best
for categorical variables (sex, usage of drug, smoker/non-smoker, etc...) when a dataset can
be split into two distinct groups (or curves, as seen above). When investigating continuous
variables (age, gene expression, weight, etc...), the described approach is not applicable!. The
Cox proportional-hazards model (hereafter referred to as the Cox model) addresses both these

problems [9].

The Cox model simultaneously evaluates the impact that multiple variables (covariates) have
on the occurrence of an event. Notably, rather than solely considering the binary occurrence of
said event, the Cox model incorporates the time at which the event occurred. Typically, the Cox

model is expressed as a hazard function at time t, h(t) [9]:

/’l(l‘) = h()(l‘) X exp(b1x1 + boxy + ) (2.6)

where the b; coefficients represent the effect size (impact) of each covariate x; and hg(¢) repre-

sents the baseline hazard. In essence, the Cox model represents a multiple linear regression of

I'Short of applying a threshold, which is not ideal due to the amount of lost information.
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the logarithm of the hazard of variables x;.

Each quantity exp® represents the hazard ratio of the i’th covariate. A hazard ratio indicates
whether the increase/decrease of a covariate results in an increase/decrease of the event hazard.
Similar to the odds ratio, it is helpful to think of hazard ratios above 1 as being positively
associated with the event probability (in our case, bad prognostic factor), while a hazard ratio
below 1 is negatively associated with the event probability (in our studies, good prognostic

factor).
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Chapter 3

Deep learning in medical physics

3.1 Introduction to deep learning

Deep learning is a niche application within the greater domain of machine learning that has
rose to prominence in recent years. A form of artificial intelligence (Al), machine learning is
‘the ability for an Al system to acquire their own knowledge, by extracting patterns from raw
data ’[1]. Deep learning, a subset of machine learning, uses combinations of artificial neural
networks to learn from large amounts of data. There are a wide variety of machine learning
algorithms, ranging from simple logistic regression to naive Bayes. These sorts of algorithms
have proven successful at many decision-based tasks, such as whether to recommend Cesarean

delivery (logistic regression) or separating spam email from regular email (Naive Bayes).

Logistic regression is a statistically based algorithm which assigns a probability to the
occurrence of a particular binary outcome based on a number of input variables. Similar to
linear regression, it involves the combination of multiple inputs and an output, however contrary
to linear regression, the output is a probability. Specifically, P(y = 1|x): the probability that the
outcome y = 1, given the input data x. Instead of a linear combination, logistic regression uses

the logistic function:

1

P :1 = "
=1 = T o)

(3.1)
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where w represents the weight matrix (akin to linear regression), and x represents the matrix

of input data.

This can be quite powerful and is widely used as a basic statistical tool, due to its simplicity
and interpretability. One problem which algorithms of this class encounter is that they’re heavily
dependent on the representation of the data they’re given. They explicitly require data in a
particular format: a matrix of data, where each column represents a data instance and each
row represents a variable. Furthermore, they require the user to have specific knowledge of
the domain in order to convey certain pieces of relevant information to the algorithm prior
to using it. Among other things, deep learning provides a way for the computer to break
down complex concepts within a data-set into a simpler representation, which if desired could
then be analyzed by a similar algorithm to those described above. Furthermore, some deep
learning algorithms are able to function on a shockingly small amount of a priori information
required, compared to a feature-learning approach where the user is required to pre-define
relevant metrics [1]. In other words, some deep learning algorithms are capable of learning at-

tributes of a data-set and conveying that information to the user, rather than the other way around.

The structure of this chapter is as follows. First, the theoretical concepts behind the
building block of most commonly used deep learning algorithms, the multi-layer perceptron (or
alternatively, the neural network) will be introduced. Next, the convolutional neural network,
a derivative of the neural network which is remarkably powerful for computer vision will be
described. The training & optimization process fundamentally required to use a deep learning
algorithm will be explained. A literature review of concurrent deep learning research within
the field of medical physics will be presented. Next, generative modeling will be introduced,
along with a similar review of generative modeling as it applies to medical physics. Finally, a
practical overview of how to build a deep learning model (specifically using CNNs) within a

hospital setting will be presented.

3.2 Neural networks

It is difficult to describe a deep learning algorithm without using the term ‘neural network’ . A
neural network, also known as a deep feed-forward network or a multi-layer perceptron (MLP)

is the quintessential deep learning model. Nearly all algorithms that fall under the deep learning
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umbrella either involve a/multiple neural network(s), concepts adopted from neural networks or
some derivative of a neural network [1]. Thus, before going further, we must understand the

neural network.

A neural network is composed of multiple layers, each of which contain multiple nodes, or
neurons. Each neuron represents the flow of information from one layer to the next. Mathemati-
cally, this is represented by a weighted sum of its inputs followed by some non-linear activation
Jfunction (more on this later) resulting in a single output value. This is shown in the following

equations:

7= WIX] FWoXo + . F Wy, = W %X (3.2)

hy(X) = H(z) = (W xx) (3.3)
0 ifz<O

H(z) = (3.4)
1 ifz>0

where x; is the i"” input into a neuron, w; is the i'" (learned) weight of a neuron, ,,(x) repre-

sents the output of a neuron and the Heaviside function (.7¢) is used as an example non-linear

activation function.

The example neuron shown above (making use of a step function) can be used for simple
linear binary classification. Evidently, it’s just computing a linear combination of the inputs and
applying a threshold. If the result exceeds a threshold, it outputs a positive class or else outputs

the negative class.

While the above example can be used for simple applications, it is still incredibly primitive.
However, the neuron is a very powerful building block as we can begin to combine multiple
neurons both horizontally and vertically. A ‘horizontal’ combination of neurons represents a
number of neurons all of which have the same input(s), however could have different learned
weights. This is called a layer. A single layer of neurons is called a perceptron, while multiple
layers stacked on top of one another (‘vertical’ combination whereupon the inputs of one layer
are the outputs of the preceding layer) is called a multi-layer perceptron. Layers which do

not explicitly use external input data or output some form of user-desired classification are
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called hidden layers. This nomenclature represents the fact that the layer’s representation of the
data is never explicitly seen by the user, barring debugging processes or the pursuit of specific

analytics. A multi-layer perceptron is visually depicted in Figure 3.1.
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Figure 3.1 A 3-layer neural network (or MLP) that consists of an input layer (3 nodes),
2 hidden layers (4 nodes each) and an output layer (1 node). As indicated by the arrows
between layers, each node is connected to every other node in the proceeding/preceding layer.
This connection is mathematically represented by Equations 1, 2 and 3. Figure reproduced from
CS231n - Stanford University [2]

In the example discussed, the activation function used was the Heaviside function. The
presence of an activation function is crucial, as it provides the algorithm the ability to represent
non-linear relations. Without this, a neural network would simply be a glorified linear regression
algorithm. However, any non-linear function can be used as an activation function. In practice,
the Heaviside function is rarely used. Currently, the most popular activation function is the
rectified linear unit (ReLU) [1]. The ReLU computes the function f(x) = max(0,x). In other
words, the activation is thresholded at zero for negative values. Although this seems like a
very simplistic non-linear function, in practice it has proven to be adequate in allowing neural

networks to far exceed the performance of many other machine learning algorithms.

3.3 Convolutional neural networks

So far, only neural networks have been discussed whereupon the input is a single vector which

is subsequently transformed through numerous hidden layers. A convolutional neural network
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(CNN) expands on this idea, by making the explicit assumption that the input data is an image
[1]. While it is theoretically possible to flatten image data into an x by 1 vector and utilize a
neural network, this does not scale well from a computational perspective and ultimately does
not achieve good performance. For example, an image of size 200 x 200 x 3 (which doesn’t
come close to the size of the average medical image) would lead to every single neuron having

120,000 weights! This is very wasteful and often leads to over-fitting [2].

CNNs introduce spatial representation, by using kernels (or filters) with learned weights.
This results in each neuron being connected to a small spatial region of the previous layer, rather
than being fully connected to every neuron of the previous layer. This allows the model to learn
spatial representation and drastically reduces the number of parameters. A visual representation
of a CNN is shown in Figure 3.2.

- e o
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Figure 3.2 Visual depiction of a CNN. With each subsequent layer, the 3D input data (shown
in red, notably has dimensions of width x height X depth) gets transformed into a smaller,
but deeper representation which is used as input into the next layer. Figure reproduced from
CS231n - Stanford University [2].

The most important layer of the CNN is the convolutional layer [2]. These layers compute
the output of neurons, similar to a neural networks’ layer, except they have multiple weights
which define the aforementioned kernel. Recall that the CNN introduces spatial representation,
by connecting each neuron to a small region of the preceding layer. Each kernel computes
a dot product between the weights and this small region (called the input volume, typically
3x3, 5x35, etc...). This results in each layer reducing the width and height of the image, while
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increasing the depth (where the depth represents the number of kernels with differing weights).
With stacked convolutional layers, the input image (say 512x512x 1 for a single slice CT) is
transformed into a much smaller, but deeper volume (say 32x32x 12). Intuitively, each of these
filters (n = 12, in the prior example) will activate strongly when they see a particular feature
within an input image. Often, in networks trained on photo-realistic images, this could be a
sharp edge, or a patch of some specific color. When you have 100s of these filters working
together, the network is able to analyze an input image and find relations that otherwise could

be undetectable by more conventional algorithms.

Typically, after a number of convolutional layers, the final volume will be flattened into
a single x by 1 vector and input into a (or multiple) fully connected layer(s) (which are
mathematically and functionally identical to the layers described in the basic neural network).
This is the basic architecture used in Chapters 6 and 7 and results in the output of a single
classification score. It is noted that other deep learning methodologies are able to output a
continuous variable; the example described merely parallels the methodology used throughout
Chapters 6 and 7.

3.4 Training & Optimization

Initially, all of the aforementioned weights (whether they are in a fully connected layer or
in a convolutional layer) are either randomly initialized or sampled from some distribution’.
Based on the performance of the model (as defined by a so-called loss/objective function), these
weights are iteratively adjusted using a method further defined below. This is called training
a neural network and involves a number of terms which must be defined to understand the

optimization algorithms.

The error (or loss/objective function) is the mathematical quantity which defines how well
the network is performing during the training. The entire goal of the optimizer is to minimize the
error, and the weights are adjusted to achieve this task. Two of the most common error functions
are mean squared error (for regression problems) and cross entropy (for classification problems).

Gradient descent 1s the most commonly used optimization algorithm which iteratively moves

!Commonly used is the Xavier initializer. Put simply, it draws samples from a truncated normal distribution
with its mean centered on O [1, 3].
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the weights in the direction of steepest descent as defined by the negative of the gradient (with
respect to the error). Calculating this gradient can be challenging, which led to the development
of backpropagation [4]. By using the derivative chain rule, backpropagation computes the
gradient of the error function with respect to the weights. Then, the weights can be updated

according to the following equation:

W(t+1) = W(t) — eG(W) (3.5)

where W(7) represents the weight vector at iteration ¢, the relaxation factor € represents the
learning rate and G(W) represents the previously computed estimate of the gradient. The
learning rate € is a hyper-parameter tweaked during the entire process, and as shown depicts the
impact the gradient has on each iteration. Hyper-parameters represent user-defined parameters
(often related to the training process) which can be modified in between each repetition of the

training process-.

Calculating the output of the model (forward propagation), calculating the loss function,
computing the gradient and updating the weights (according to Equation 3.5) makes up one
iteration. By repeating this process 100s of times, the deep learning model is trained. Typically,
other context-specific metrics such as accuracy, Dice similarity score, AUC, sensitivity or
specificity are used post-training to assess the model’s performance on an independent data set.

In this work, the ROC affiliated metrics (AUC/specificity/sensitivity) are typically used.

3.5 Deep learning in medical physics

Deep learning has been applied extensively to nearly every STEM sub-field and medical physics
is no exception. The majority of applications within medical physics fall into one of two
sub-categories: medical imaging or radiation therapy. Machine learning algorithms have been
used in computer-aided diagnosis (CAD) for decades, initially on chest radiographs and mam-
mograms in the 1980s [5, 6]. Through the 90’s, Shih-Chung et al. used a basic CNN for
lung nodule detection [7], although the CNN was very shallow (2 layers) in comparison to

modern architectures. Since then, a vast amount of research within either the medical imaging

2Not between each iteration within the training process, but rather between each set of iterations (could be
thought of as a training ‘experiment’)
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or radiation therapy sub-fields has made extensive use of deep learning algorithms. In particular,
medical physics machine learning research has greatly benefited from the advent of the GPU and
open software platforms (in part leading to the rise of deep learning) throughout the previous

decade (visually represented in Figure 3.3).
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Figure 3.3 Number of peer-reviewed publications in radiologic medical imaging that in-
volved DL. Image reproduced from Sahiner et al.[8]

Deep learning’s applications within medical imaging can be further broken down into 3
categories: image segmentation (contouring), detection & characterization. Segmentation
algorithms are often used to define organs of interest as Kovacs et al. did while achieving
excellent performance in segmenting the whole lung on a cine MRI [9]. The other main class
of segmentation algorithms are used to contour lesions; for example, Men et al. applied a

deep de-convolutional neural network (DDNN) to a cohort of 230 nasopharyngeal cancer
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patients [10]. Detection algorithms are often similar to segmentation algorithms, however their
main purpose is to locate an OAR within an image (either 2D or 3D). Typically, this will be
used in tandem with a segmentation algorithm. Characterization algorithms often fall into
two classes: diagnosis or prognosis (Chapters 6 and 7 involve a prognosis characterization
algorithm). Computer-aided diagnosis (CADx) involves the input of some suspicious region,
followed by the computer estimating the likelihood that said region is diseased or healthy. A
very active area of diagnosis deep learning research (in part due to the more accessible images)
uses mammograms to predict the presence of breast cancer [11, 12]. Finally, the idea behind
prognostic characterization algorithms (specifically related to medical imaging) is to determine
predictive image-based biomarkers, such as: size, shape, texture, kinetics, etc... These range
from using an end-to-end CNN (such as in this work) to combining specifically engineered

image features (‘radiomics’) [13, 14].

3.6 Generative modeling

One of the most discussed topics within the machine learning community at the moment is
generative modeling. In 2014, Goodfellow et al. [15] proposed a novel type of generative model,
known as the generative adversarial network (GAN). GANSs are an elegant class of algorithms
that perform exceptionally well if the user does not explicitly require an understanding of the
data’s underlying probability distribution and is instead only interested in sampling high-quality
data. GANs effectively learn how to model an input distribution by training two "adversarial"
networks [15]. The generator continuously improves its ability to generate fake images that
can fool the discriminator. Meanwhile, the discriminator is trained to distinguish between fake
and real images. If properly trained, the generator will eventually be able to create images that
the discriminator can not tell apart from real images. At this point, the discriminator can be
discarded and the generator can be repeatedly used to generate new images.This is visually

represented in Figure 3.4.

The primary challenge in the successful application of a GAN is the training process. In
practice, it is very difficult to train the network to a point where it converges properly. This is
in part due to the unique objective function needed to train a GAN. The mini-max objective

function is:
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D-dimensional
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Figure 3.4 Visual depiction of a basic generative adversarial network (GAN). Predicted
labels represent the discriminator’s ability to classify an input as real or fake. Figure reproduced

from 6.S191 - MIT [16].

min max[Ey-p,,,10gDg, (x) + E;p log(1 — Dg,(Ge,(2)))] (3.6)

0, 6,
where Dy, (x) represents the output of the discriminator (predicted class) and Gy, (z) represents

the output of the generator (fake image).

The training process (‘mini-max game’) consists of two alternating steps:

¢ Gradient ascent on discriminator:

r%ax[EXdiamlongd (%) + E;vp log(1 — Dg,(Ge,(2)))]
d

* Gradient descent on generator:

I‘%in E;p log(1 —Dg,(Ge,(2)))
8

Intuitively, the first term of Equation 3.6 represents the ability for the discriminator to
properly classify real images. The second term represents the ability for the discriminator to
properly classify fake images (or alternatively, the ability for the generator to create images
that successfully fool the discriminator). This is represented in the mini-max game, whereupon

the first step improves the discriminator’s ability and the second step improves the generator’s
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ability.

While deep generative modeling is still relatively recent, there are a few notable applica-
tions within medical physics. Nearly all of these fall into the categories of data augmenta-
tion/synthesis, image reconstruction or dose prediction. A generative model can be used to
create new image samples, thus increasing the training set size and reducing over-fitting. Cui
et al. used an auto-encoder’ based framework to simulate dynamic PET emission data then
used in a reconstruction algorithm [18]. However, care must be taken as to avoid introducing
unacceptable levels of bias in the generation process [19]. Emami ef al. [20] used GANs to
create synthetic CTs from magnetic resonance images in an attempt to facilitate the removal
of CT-scans from the diagnostic workflow. Much of the current excitement around GANSs is
their ability to create incredibly realistic images, particularly of human faces [21]. However,
their applications within healthcare could be of tremendous value, especially as the technology
is further developed and validated. Mahmood et al. [22] (among others) have used a GAN to
create a dose distribution solely from a planning CT. The immediately obvious value from using
such a generative model is the time efficiency gained. A properly trained GAN can create a
dose distribution (and subsequent treatment plan) on the order of milliseconds, while the current
software/workflow used in the clinic typically takes on the order of hours. Furthermore, creating
a treatment plan using current software introduces variability and extra planning time due to the
individual expertise required in choosing beam angles, etc... As long as the GAN-created dose
distribution obeys the prescribed dose constraints, it is reasonable to believe that this sort of

automated method will be widely accepted in the future.

Each of these examples highlight the impact and potential that deep generative modeling
has on the medical physics community. A more speculative discussion as to how generative

modeling could specifically aid in outcome prediction will be presented in Chapter 8.

3 Auto-encoders compress an input into a smaller representation, which can ultimately be sampled from,
resulting in previously unseen generated images. Further details are beyond the scope of this thesis, however the
interested reader is referred to Atienza et al.[17].
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3.7 Building a CNN within a hospital environment

The process between beginning with a hypothesis and ending with a deep learning network
capable of performing outcome prediction involves numerous steps, which each involve concepts
discussed throughout the preceding sections. In this section, these steps will be summarized
and put into context with respect to the work performed in Chapters 6 and 7. It is noted that

more manuscript-specific information will be presented in the Chapters themselves.

1. Approval: Formulate hypothesis and receive REB approval for the proposal.
2. Data retrieval/curation: Retrieve all the data from respective sources, and begin curation.

3. Initial debugging: Begin building code-base for network, and ensure data is of the correct

form to be properly input.

4. First training: Once initial debugging is complete, code the desired framework and begin

training.

5. Hyper-parameter tweaking: By training on one set (training set) and validating on another

(validation set), tweak hyper-parameters and re-train to determine the final architecture.

6. External testing: Test the final architecture on an external data-set (which went through

both approval and data retrieval/curation) to best estimate the performance.

Throughout the course of building outcome predictions models within a hospital setting,
it is wise to always have some form of proposal within the approval process. Given it often
takes months and can involve numerous levels of bureaucracy, it is common (and occurred
over the course of this work!) for delays while waiting for REB approval. Once approval is
granted, the data retrieval/curation process begins (described in Chapter 1.3). This will often
require numerous queries of the respective data-base, given it is extremely unlikely that one
does not accidentally omit the exportation of some relevant piece of information. However, by
proper planning this delay can be reduced or avoided! Chapters 4 and 5 involved multiple trips
to external institutions to export treatment plans and clinical information of the 422 patients
involved. Chapters 6 and 7 primarily made use of a public data-set, however extensive data
curation was still required for the images to be in a parseable format. By keeping in mind the

schema of whichever deep learning packages are being used (Tensorflow/Keras/PyTorch, etc...),
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significant time can be saved during the data curation process. Particularly if caution is not
taken, there will likely be a initial debugging step, whereupon the input data representation
will need to be modified. For example, in this work (Chapter 6), the data curation process
involved converting the DICOM CT images to PNGs (Portable Network Graphics), encoding
the outcome (1/0) in the file title and separating them into folders based on their partitioning
scheme (training/validation sets). Once the first three steps have been completed, building (and

training) the network can begin.

The final three steps represent building (first training), validating (hyperparameter tweaking)
and testing (external testing) a CNN. Unfortunately, the external testing step is not always
possible, largely due to lack of data. In Chapters 6 and 7, cross-validation was employed to
provide a performance estimate; explicit comparisons were made to the respective benchmark
studies using the validation performance. An external data-set is currently being curated,

specifically for usage in the manuscript under preparation (Chapter 7).
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4.1 Preface

The first goal of this thesis was motivated by an unexpected observation during my MSc.
research [1]. The previous research found an inverse correlation between tumor size and
distant metastasis rates. This was seemingly contradictory, as conventional wisdom suggests
that larger tumors should be associated with a poor prognosis, so we investigated this issue
further. This chapter describes the correlation we found between the dose distribution outside
the tumor and distant metastasis rates. Furthermore, it describes the correlation between tumor

volume and this dose distribution, revealing the confounding variable which resulted in the
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MSc thesis’ observation. Ultimately this chapter presents a statistical outcome prediction model
incorporating dose metrics outside of the tumor in non-small cell lung cancer patients treated
with SBRT. The work suggests the dose received by the region close to the PTV may be directly

relevant to the risk of distant metastases.

4.2 Abstract

In an era where little is known about the “abscopal” (out-of-the-field) effects of lung SBRT,
we investigated correlations between the radiation dose proximally outside the PTV and the

risk of cancer recurrence after SBRT in patients with primary stage I non-small cell lung cancer
(NSCLO).

This study included 217 stage I NSCLC patients across 2 institutions who received SBRT.
Correlations between clinical and dosimetric factors were investigated. The clinical factors con-
sidered were distant metastasis (DM), loco-regional control (LRC) and radiation pneumonitis
(RP). The dose (converted to EQD2) delivered to regions of varying size directly outside of the
PTV was computed. For each feature, area under the curve (AUC) and odds ratios with respect
to the outcome parameters DM, LRC and RP were estimated; Kaplan-Meier (KM) analysis was

also performed.

Thirty-seven (17%) patients developed DM after a median follow-up of 24 months. It was
found that the mean dose delivered to a shell-shaped region of thickness 30 mm outside the PTV
had an AUC of 0.82. Two years after treatment completion, the rate of DM in patients where the
mean dose delivered to this region was higher than 20.8 Gy, was 5% compared to 60% in those
who received a dose lower than 20.8 Gy,. KM analysis resulted in a hazard ratio of 24.2 (95%
CI: 10.7, 54.4); p < 107>. No correlations were found between any factor and either LRC or RP.

The results of this study suggest that the dose received by the region close to the PTV has
a significant impact on the risk of distant metastases in stage I NSCLC patients treated with
SBRT. If these results are independently confirmed, caution should be taken, particularly when

a treatment plan results in a steep dose gradient extending outwards from the PTV.
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4.3 Introduction

Lung cancer is both the leading cause of cancer deaths worldwide and one of the most frequent
cancers [2]. Despite advances in cancer treatment, metastatic lung cancer is still related to a poor
prognosis [3]. Cancer recurrence, including distant metastasis, is possibly due to microscopic
disease extensions (MDE) of the primary lung tumor, although there has been little research

done specifically on MDEs or their possible distribution to verify this hypothesis [4-9].

Stereotactic body radiation therapy (SBRT) is a technique used to deliver a highly accurate
dose in a well-defined target volume [10, 11]. The localized nature of this technique is one of
the primary advantages: it allows for a maximal dose to the tumor, while minimizing the dose
to healthy tissue and thus the risk of treatment complications. However, one clinical difficulty
when treating localized lung cancers with SBRT is precisely defining the gross tumor volume
(GTV). This inaccuracy may increase the chances that microscopic disease outside of the GTV
is not eradicated. Furthermore, as the precise location of MDEs are unknown, the requisite
planning target volume/ clinical target volume (PTV/CTV) margins are unclear. If the area
outside the tumor contains microscopic disease, minimizing the dose to a region that is overly
constrained could increase the probability of microscopic cancer cells surviving after SBRT,
increasing the risk of cancer recurrence. The conformal nature of SBRT amplifies this problem

due to the sharp dose gradient outside of the PTV.

The present investigation was conceived from a previous study [1] that correlated biomarkers
and dosimetric parameters in a small cohort of patients. The study found that target volume
size was inversely correlated with distant metastasis. As this seemed counter-intuitive, we
investigated further, eventually leading to an analysis of the dose falloff around the PTV. Thus,
the aim of the present study was to determine if there is a correlation between the radiation dose
immediately outside the PTV and cancer recurrence in patients with stage I non-small cell lung
cancer (NSCLC) treated with SBRT.
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4.4 Methods

4.4.1 Patient selection

Two hundred and seventeen patients with primary stage I NSCLC treated using SBRT (either
3D-CRT or VMAT) between 2011 and 2015 were included in this study. 44% of patients were
treated by the McGill University Health Centre (MUHC), the remainder were treated at the
Centre Hospitalier de 1’Université de Montréal (CHUM). Diagnosis of NSCLC was confirmed
through histology in 139/217 (64%) of patients. The remainder (36%) had no biopsy due to
either refusal or risk considerations and the diagnosis of primary NSCLC was assumed based
on clinical history and PET-CT images. 195/217 of all patients (90%) received a PET-CT
scan, which was used for staging. None of the patients received any form of chemotherapy or
alternative cancer treatment. All patients had only one well-defined lung tumor and did not

have a prior cancer within the past 5 years.

4.4.2 Follow-up and clinical factors

The clinical factors considered for this study were distant metastasis (DM), loco-regional control
(LRC) and radiation pneumonitis (RP) (grade > 3 based on Common Terminology Criteria for
Adverse Events (CTCAE) v4.0 [12]). Follow-up was performed 1-3 months after treatment
completion and then every 3-6 months. Only patients with at least 12 months of follow-up data
were included in the analysis. A patient was considered to have LRC if they had a radiographic
response to treatment on CT images and no progression of the tumor was seen in the CT or PET
scans done at each follow-up visit. If evidence of progression was observed at any point, the

patient was considered to have loco-regional failure (LRF).

4.4.3 Sub-cohort selection

To confirm the significance of the observations, analyses were performed on sub-cohorts of

patients with an additional set of selection criteria as shown:

e Sub-cohort A: The group containing 139 patients whose histology was confirmed by
biopsy, 28 of whom developed distant metastasis (20%). This group was chosen to

determine if the lack of biopsy for some patients influenced the results.
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* Sub-cohort B: The group of patients who had a more sharply defined follow-up time,
between the first and third quartile, i.e., month 14 - month 32 (23 metastasis events in
122 patients, 19%). This group was chosen to determine if the wide range of follow-up

times influenced the results.

* Sub-cohort C: The group of patients who had a PTV volume between the first and third
quartile, i.e., 16 cc - 40 cc (16/109, 15%). This group was chosen to determine if the

wide range of PTV volumes influenced the results.

* Sub-cohort D: The group of patients who received one of the majority fractionation
schemes, either 48 Gy/3 fractions or 60 Gy/3 fractions (27/159, 17%). This group was

chosen to determine if the variation in fractionation schemes influenced the results.

* Sub-cohort E: The group of patients treated at MUHC (19 metastasis events in 96 patients,
20%).

* Sub-cohort F: The group of patients treated at CHUM (18 metastasis events in 121
patients, 15%). This group and sub-cohort E were chosen to determine if the variation
in modality (3D-CRT versus VMAT), contouring style and dose prescription (described

below) influenced the results.

4.4.4 CT acquisition and tumor segmentation

Target delineation was performed on radiation therapy planning CTs using Eclipse (Varian
Medical Systems, Palo Alto, CA, USA). The internal target volume (ITV) was drawn based
on the inspiration, expiration and the maximum intensity projection (MIP) images obtained
from the 4DCT taken in conjunction with the planning CT. The CTs were acquired per a
standard scanning protocol with a resolution of 512 x 512 pixels and 3 mm slice thickness. The
contours were drawn manually and individually verified by an expert radiation oncologist. The
PTV was a 3-5 mm extension margin (due to institutional variability) to the ITV. The MUHC
patients’ prescription isodose surfaces were chosen such that 95% of the PTV was covered by
the prescription dose and 99% of the PTV received at least 90% of the prescription dose with a
5 to 11-field 3D conformal technique using Novalis TX 6 MV photon beams (Varian Medical
Systems, Palo Alto, CA, USA; Brainlab, AG, Munich, Germany). CHUM patients’ prescription

1sodose surfaces were chosen such that 95% of the PTV was covered by the prescription dose
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while maintaining the requirement that the prescription isodose must be within 65% - 85% of
the maximum dose. SBRT was delivered using RapidArc (Volumetric Modulated Arc Therapy)
on a 6 MV photon beam (Varian Medical Systems, Palo Alto, CA, USA). Dose calculation
was originally performed using the Analytical Anisotropic Algorithm (AAA) for all patients.
The dose analysis was verified on recalculated Monte Carlo plans (EGSnrc, Ottawa, Canada,
[13]). Image verification was performed prior to and during each treatment using cone-beam
CT (CBCT).

4.4.5 Region of interest (ROI) creation

An algorithm to evaluate the dose parameters in a region of varying size outside of each patient’s
PTV was developed using Python’s pydicom module [14]. The algorithm consisted of five
primary steps, described in detail within the supplementary material:

1. Superimpose PTV point cloud onto dose grid, generate convex hull of PTV.
2. Grow the PTV point cloud in 3D space isotropically.
3. From the grown point cloud, generate a convex hull.

4. Exclusive OR (XOR) logic applied to both convex hulls, resulting in a shell-shaped region
radially extending outwards from the PTV.

5. Analysis of dose applied to this region.

The algorithm generated two types of regions. ROl ,,;(x mm) represents a shell-shaped region
including the entire volume up to x mm outside of the PTV. ROly;f¢(x mm) represents a 1 mm
thick shell-shaped region at a distance of x mm away from the PTV boundary. x was varied
from 1 mm to 100 mm in 1 mm increments. This maximal range was chosen to be significantly
beyond the range which is suggested to contain microscopic spread [7, 8, 15]. A realistic
depiction of the algorithm is shown in the left side of Figure 4.1 (green inner volume represents
PTYV, black represents the boundary of ROI,,,;(30mm)). A two-dimensional example of the

ROIs created for a hypothetical circular tumor is shown in the right side of Figure 4.1.

The potential error due to the difference between the planned dose distribution and the

delivered dose distribution due to patient setup error and/or movement was estimated as follows.
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1 mm thick
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mm from PTV

. (ROl ,{10mm))
PTV

5 mm continuous
ROI
(ROI_,,,(5mm))

Figure 4.1 Left side: Depiction of the ROI algorithm. Inner green volume represents the
PTV, black represents the boundary of the 30-mm thick shell-shaped region. Right side:
Two-dimensional example of the region of interest creation algorithm. Shown are the PTV,
ROl (5 mm) (the continuous region up to 5 mm outside the PTV) and ROl ;;r¢(10 mm) (1
mm region, 10 mm away from the PTV).

The ROI creation algorithm was rerun with the inclusion of a dose grid shift applied prior to
superimposing the PTV point cloud onto the dose grid. For each patient a dose grid shift of one
voxel along a random axis was applied. As the voxel spacing in all patients is greater than 2
mm, and the literature reports a maximum error of 2 mm [16—19], this method determines an

upper limit uncertainty caused by the planned versus delivered dose discrepancy.

4.4.6 Parameters from the dose distribution

All doses were converted to the equivalent dose in 2 Gy fractions (EQD2) assuming an a/f3 of
10 [10, 20-22] in order to correct for biological effects between fractionation schemes. The
dosimetric parameters computed for each ROI were the arithmetic mean dose delivered and
the median dose delivered. The correlation coefficient between these parameters and the PTV
volume was also computed. The homogeneity index (HI) for each patient was computed to

analyze whether it had any correlation with the outcome. The HI was computed using the
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definition from the International Commission on Radiation Units and Measurements (ICRU)
Report 83 [23-25]:

_ Dy — Dog
50

HI x 100% 4.1

where D;, Dog and D5 represent the near maximum, near minimum and median PTV dose
respectively. A homogeneity index close to zero indicates a near homogeneous dose distribution.

Additionally, the arithmetic mean dose to the PTV was computed.

4.4.7 Statistical Analysis

The mean dose fall-off for each patient, from ROIy;¢(1mm) to ROI; s r(100mm) was computed.
Each point along the x-axis thus represents the mean dose received by a 1 mm thick region x
mm away from the PTV. The patients were separated into two groups based on their treatment
outcome. For each group, mean dose was averaged and plotted. The difference between the two

curves was calculated and plotted.

All statistical analyses were done on Matlab R2017a software. The area under the curve
(AUC) of Receiver Operating Characteristic (ROC) curves with respect to each clinical factor
was calculated for each parameter. The odds ratio for each parameter was also computed
using logistic regression from the Dose Response Explorer System (DREES) toolbox [26, 27].
95% confidence intervals and a p-value (two tailed) for each odds ratio were additionally
computed. The p-value significance threshold was adjusted by a factor of 4 to account for the
testing of mean/median dose for both ROly; ¢ ¢(x mm) and ROl ;o (x mm) (Bonferroni correction
[28, 29]). Thus, a p-value below 0.01 was considered statistically significant. Factors with
an AUC above 0.70, an odds ratio below 0.25 and a p-value below 0.01 were considered
predictive. Additionally, a mean threshold dose was computed from the optimal operating point
of the ROC curve and used to generate a Kaplan-Meier distant-metastasis-free survival curve.
Hazard ratios and 95% confidence intervals were generated using Cox proportional hazard
regression. Additionally, a multivariate logistic regression analysis of possible confounding
factors including tumor location, tumor size (both 2D maximum tumor extension and 3D

volume), cancer type, homogeneity index and fractionation scheme was performed.
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4.5 Results

The follow-up time, defined as the time from treatment completion to last follow-up, had a
median of 24 months (range: 12-36 months). DM was observed in 37 out of the 217 patients
(17%). RP was observed in 18 patients (8%). LRF was observed in 26 patients (12%). Both
LRF and DM was observed in 17 patients (8%). There was no correlation found between
histology and any specific outcome. The site of the DM was quite diverse across the patient
cohort (10 sites), however the most frequent DM sites were contralateral lung (35%), bone
(19%) and brain (14%). The characteristics of the total patient cohort (with respect to DM) are

summarized in Table 4.1 (range in parenthesis).

Table 4.1 Patients and tumor characteristics

DM Did not develop DM  Percentage of total cohort [%]
Total 37 180 100%
Median Follow-up [months] 21 (3-56) 24 (12 - 58)
Institution
McGill University Health Centre (MUHC) 19 77 44%
Centre Hospitalier de 1’ Université de Montréal (CHUM) 18 103 56%
Median PTV volume [cc?] 18.5[5.7-51.51 37.41[6.3-305.4]
Histology
NSCLC (verified by PET) 11 67 36%
NSCLC (not otherwise specified) 1 9 4%
Adenocarcinoma 14 83 45%
Squamous Cell Carcinoma 11 21 15%
Dose fractionation
34 Gy/1 fr 1 1 1%
34 Gy/2 fr 0 1 1%
45 Gy/5 fr 1 0 1%
48 Gy/3 fr 16 58 34%
48 Gy/4 fr 7 33 18%
50 Gy/5 fr 1 13 6%
54 Gy/3 fr 2 0 1%
60 Gy/3 fr 9 74 38%

The mean dose fall-off for each of the two patient sets (DM or no DM) is shown in Figure 4.2.
The difference in mean dose fall-off between the two sets is also shown (inset). The red crosses
(bottom curve) represent the patient group that developed DM, the blue circles represent the
patient group that did not (top curve). The maximum difference between the groups was found
to be 6.6 Gy; at a distance of 16 mm away from the PTV. Observing the point of inflection on
the difference curve to be at 30 mm, it is postulated that ROI,,,,;(30mm) represents the region

most indicative of the risk of distant metastasis. A similar analysis for LRC and RP was found
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to show no statistical difference between their respective curves.
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Figure 4.2 Mean dose fall-off separated into patients whom developed distant metastasis
(crosses) and those who did not (circles). X-axis represents a 1 mm thick spherical shell
x mm away from the PTV.

The mean dose received by a region of thickness 30 mm (ROI,,;(30mm)) was found to
have an AUC of 0.81 and an odds ratio of 0.09 (95% CI: 0.03 - 0.24), p-value < 10> with
respect to DM. The threshold dose was computed from the optimal operating point of the ROC
to be 20.8 Gy,. Two years after treatment completion, the rate of DM in patients where the
mean dose delivered to this region was higher than 20.8 Gy, was only 5%, compared to nearly
60% in those who received a dose lower than 20.8 Gy;. The Kaplan-Meier DM-free survival
curve separating patients whom received more than the threshold dose (blue) and less (red) is

shown in Figure 4.3. The hazard ratio between the two curves was found to be 24.17 (95% CI:
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10.74 - 54.36), p-value < 1075.
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Figure 4.3 Mean dose fall-off separated into patients whom developed distant metastasis
(crosses) and those who did not (circles). X-axis represents a 1 mm thick spherical shell
x mm away from the PTV.

Every other parameter from the dose distribution analyzed with respect to DM had an
AUC greater than 0.70 and an odds ratio less than 0.20 (p-value < 107°), far exceeding the

predictive benchmark. With respect to RP, no dosimetric parameter exhibited an AUC of over
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0.55. Similarly, with respect to LRC, no dosimetric parameter exhibited an AUC of over
0.55. The uncertainty caused by potential differences between planned and delivered dose
distributions due to patient setup and/or movement was found to be on the order of + 0.01
for both the odds ratios and the AUCs and was therefore deemed negligible. A summary of
the statistical computations with respect to DM performed on the total cohort (217 patients)
is shown in Table 2. The correlation coefficient between tumor volume and the mean dose
received by ROI,,,:(30mm) was found to be 0.62, p-value < 107>. The mean dose received by

ROl y,:(30mm) was found to not have any correlation with treatment technique/institution.

Table 4.2 Summary of statistical analysis with respect to distant metastasis (total patient
cohort). Part A represents data extracted from the differential dose analysis, part B is data from
the continuous region analysis.

AUC OR[95% CI] p-value

A. Differential 1 mm thick region at distance x [ROI;7(x)]

Mean dose delivered to ROl (16 mm) 0.80 0.09(0.04,0.25) <107

Median dose delivered to ROI;;¢¢(16 mm) 0.76  0.16(0.07,0.36) < 107>
B. Continuous 30 mm region [ROI,,,; (30 mm)]

Mean dose delivered to RO,y (30 mm) 0.81 0.09(0.03,0.24) <107

Median dose delivered to ROl (30 mm) 0.75 0.17(0.07,0.39) < 107
PTYV volume 0.73 / /
Homogeneity Index 0.51 / /
Median dose delivered to PTV 0.55 / /
Mean dose delivered to PTV 0.55 / /

With respect to DM, the homogeneity index (HI) was found to have an AUC of 0.51. The
mean and median dose to the PTV were both found to have an AUC of 0.55. Therefore, none of

the dose coverage factors were deemed predictive.

Detailed results of the statistical computations performed on each patient sub-cohort are
presented in the supplementary material. In summary, every dose parameter analyzed within
each sub-cohort maintained its correlation with distant metastasis. The mean dose received by a
region outside the PTV of thickness 30 mm (ROI,,,;(30mm)) was found to have an AUC of
0.80, 0.84, 0.76, 0.83, 0.79 and 0.81 with respect to DM for sub-cohorts A, B, C, D, E and F
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respectively. Thus, the choice of institution (i.e. modality/prescription method) did not have a

significant effect on the conclusions.

4.6 Discussion

The main objective of SBRT is local tumour control and there is a lack of literature specifically
investigating distant metastasis and its potential risk factors. Nonetheless, our cohort had
loco-regional failure rates (10%) and distant metastasis rates (20%) consistent with published
literature [30-34]. This implies that our cohort was nothing out of the ordinary, but rather a
typical collection of NSCLC patients. The “abscopal” effect or the “out-of-the-field effect”
of radiation is thought to be related to immune modulation, but ultimately controversial [35].
Similarly, the interaction between the radiation dose received by the tumor and the potential
MDEs outside of the PTV is still unclear. Our findings show a significant correlation between
the dose just outside the PTV and the occurrence of distant metastasis in patients treated with
SBRT for stage | NSCLC. Patients for whom the dose outside but proximal to the PTV was
higher had less incidence of distant metastasis. Figure 2 represents the dose fall-off as we
spatially move away from the PTV. It shows that the areas that received the largest difference
in mean dose, when comparing patients who developed metastasis versus those who did not,
are the most strongly correlated with the occurrence of distant metastasis. Thus, the observed
correlation merits urgent scrutiny by independent researchers in prospectively designed clinical
studies, and if verified, a change in dose prescription is warranted to potentially reduce the
rate of DM. We suggest the addition of a secondary dose margin, on the order of a 20 mm
extension, with a lower dose requirement (on the order of 21 Gy;). This may minimize the risk
of DM without increasing the risk of treatment complications. Multivariate analysis including
dosimetric parameters, tumor location, tumor size including 2D maximum tumor extension and
3D volume, cancer type, homogeneity index and fractionation scheme was performed and did

not confer any extra information or reveal any confounding factors.

Microscopic disease extensions (MDESs) have been reported at least 26 mm beyond the
gross tumor edge [7]. Studies, performed after lobectomies, measured the extension of the
microscopic disease outside the tumor [7, 8, 15]. Although results varied, in part due to the lack
of ability to accurately count cells in 3-dimensions, the range of the maximum MDE distance
was reported to be 8-26 mm [7, 8, 15, 36-38]. One could speculate that MDEs within this range
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were more efficiently killed in the group who received a higher dose of radiation to this region,
decreasing the risk of spreading cancer cells and causing distant metastases. This is consistent
with Figure 2 and part A of Table 2 which suggest that the region that would benefit most from
dose escalation is at a distance of 16 mm (ROl ;¢ ¢(16mm)) outside the PTV. This is additionally
consistent with the shaded region of Figure 2 (inset) and part B of Table 2 showing that the
dose delivered to a region of up to 30 mm outside the PTV (ROI,,;(30 mm)) is significantly
related to the occurrence of distant metastasis. The existence of MDEs suggest that a CTV may
be required when treating stage I NSCLC patients with SBRT [19] and that escalating the dose
to a region that extends 10-20 mm outside of the PTV may sterilize MDEs and decrease the
risk of recurrence. The difference in the mean dose to the region outside the PTV between the
two groups was found to be no more than 6.6 Gy;, which corresponds to a dose escalation of
less than 5% of the prescribed dose. No correlations were found between any of the dosimetric
factors evaluated and the risk of radiation pneumonitis. This implies that dose escalation of this

magnitude could be performed without adverse consequences.

There is a growing body of data suggesting that radiotherapy has an impact on the tumor’s
microenvironment even when radiation treatment is given in small fields such as the ones used
in lung SBRT [35]. This impact is complex and not well understood. Radiation may cause
not only cell death, but also changes in the phenotype of surviving cells and may make the
tumor cells more sensitive to immune-mediated cell death [35]. Radiotherapy can also be
immunosuppressive and we speculate as to whether this immunosuppression could have an
influence on the spreading of microscopic tumor cells after SBRT. This could result in the
phenomenon observed throughout this study, a correlation with distant metastasis without seeing

any correlation with loco-regional control.

This study’s conclusions apply to primary stage I NSCLC patients receiving SBRT without
any systemic treatment. Statistical analysis performed on the sub-cohorts with more restrictive
characteristics provided further confidence in the findings. Of particular interest, when analyz-
ing a restricted range of PTV volumes (16 cc - 40 cc), the correlation between PTV volume and
DM disappeared, while the correlation with the dose distribution outside the PTV remained.
This implies that the dose falloff outside of the PTV is the causal factor, rather than the PTV
volume. The choice of institution did not have a statistical impact on the findings, reinforcing
that they are not biased by institution, but rather directly influenced by the dose distribution.
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Consequently, the choice of technique (3D-CRT versus VMAT) did not impact the mean dose
to the region investigated. Thus, no conclusions can be made as to whether one modality is

superior.

Whether partially automated or entirely performed by a professional, the treatment planning
process is designed to maximize the dose to the PTV while minimizing the dose to healthy
tissue. There are several factors (patient size, tumor size/location/density/homogeneity, lung
size/density) which will drastically impact the dose gradient outside the PTV. Consequentially,
some treatment plans deliver a significantly lower dose to potential MDEs outside the PTV. In
particular, this applies to patients with small tumors (less than ~20 cc) who generally receive
more conformal treatment plans in the interest of reducing treatment complications. Due to the
correlation found between PTV volume and the mean dose to this region, the treatment plans
of smaller tumors should be closely examined to ensure that this region is not coincidentally
receiving an inadequate dose. In oligometastatic NSCLC patients, it is known that SBRT may
increase the risk of developing new distant metastases [39, 40], but this is typically explained by
the fact that patients with macroscopic oligometastases often also have occult microscopic tumor
cell deposits at other sites [41]. In stage I NSCLC treated by SBRT, our finding of a correlation
between the dose proximally outside the PTV and the occurrence of distant metastases must be
both confirmed and better understood. The results of this study suggest that a secondary margin
outside the PTV subject to a dose constraint of at least 20.8 Gy, could drastically reduce distant

metastasis rates without adverse consequence.

This study shows a significant correlation between the radiation dose outside of the PTV and
the occurrence of distant metastases in stage I NSCLC patients treated with SBRT. Patients who
received higher doses (escalation of less than 5% of the prescription dose) outside the PTV had
less risk of developing distant metastases. If independently confirmed, this correlation suggests
that current practice, particularly the inexistence of a CTV, may cause inadequate coverage in
stage | NSCLC patients treated with SBRT. Dose escalation to an area beyond the PTV may be

beneficial, ensuring that the probability of complete microscopic disease eradication is adequate.
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5.1 Preface

Following the previous study (Chapter 4), the next sub-objective of the thesis was determining
whether other treatment modalities also resulted in a similar observation. CyberKnife was a
particularly interesting option, due to the robotic nature of the CyberKnife delivery, allowing for
extreme non-coplanarity and robust motion tracking. We hypothesized that these differences,
among other things, could have a drastic impact on the dose distribution outside the PTV, a
hypothesis validated from the results. Ultimately, this study investigates whether radiotherapy
when delivered by CyberKnife is comparable to conventional SBRT with respect to distant

recurrence or local control.
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5.2 Abstract

Previous literature suggests that the dose proximally outside the PTV could have an impact on
the incidence of distant metastasis (DM) after SBRT in stage I NSCLC patients. We investigated
this observation (along with local failure) in deliveries made by different treatment modalities:
robotic mounted linac SBRT (CyberKnife) vs conventional SBRT (VMAT/CRT).

This study included 422 stage I NSCLC patients from 2 institutions who received SBRT: 217
treated conventionally and 205 with CyberKnife. The dose behavior outside the PTV of both
sub-cohorts were compared by analyzing the mean dose in continuous shells extending 1, 2, 3,
..., 100 mm from the PTV. Kaplan-Meier analysis was performed between the two sub-cohorts
with respect to DM-free survival and local progression-free survival. A multivariable Cox
proportional hazards model was fitted to the combined cohort (n = 422) with respect to DM

incidence and local failure.

The shell-averaged dose fall-off beyond the PTV was found to be significantly more modest
in CyberKnife plans than in conventional SBRT plans. In a 30 mm shell around the PTV, the
mean dose delivered with CyberKnife (38.1 Gy) is significantly larger than with VMAT/CRT
(22.8 Gy, p < 1078). For 95% of CyberKnife plans, this region receives a mean dose larger than
the 21 Gy threshold dose discovered in our previous study. In contrast, this occurs for only 75%
of VMAT/CRT plans. The DM-free survival of the entire CyberKnife cohort is superior to that
of the 25% of VMAT/CRT patients receiving less than the threshold dose (VMAT/CRT -;;Gy),
with a hazard ratio of 5.3 (95% CI: 3.0 - 9.3, p < 10~®). The 2 year DM-free survival rates
were 87% (95% CI: 81% - 91%) and 44% (95% CI: 28% - 58%) for CyberKnife and the below-
threshold dose conventional cohorts, respectively. A multivariable analysis of the combined
cohort resulted in the confirmation that threshold dose was a significant predictor of DM (HR =
0.28,95% CI: 0.15-0.55, p < 10_3) when adjusted for other clinical factors. CyberKnife was
also found to be superior to the entire VMAT/CRT with respect to local control (HR = 3.44, CI:
1.6 - 7.3). The 2-year local progression-free survival rates for the CyberKnife cohort and the
VMAT/CRT cohort were 96% (95% CI: 92% - 98%) and 88% (95% CI: 82% - 92%) respectively.

In standard-of-care CyberKnife treatments, dose distributions that aid distant control are

achieved 95% of the time. Although similar doses could be physically achieved by conventional
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SBRT, this is not always the case with current prescription practices, resulting in worse DM
outcomes for 25% of conventional SBRT patients. Furthermore, CyberKnife was found to

provide superior local control compared to VMAT/CRT.

5.3 Introduction

A major cause of death related to cancer is the distant recurrence of the primary cancer [1].
Metastatic cancer is typically related to a poor prognosis in part due to the unpredictable nature
of the disease [2]. This often leads to an inability to explicitly define the ideal treatment. Our
recent study suggested that microscopic disease extensions (MDEs) of a primary non-small cell
lung cancer (NSCLC) tumor could be related to distant metastasis [3], although there has been
little research done which could explicitly confirm this hypothesis [4-9].

The aforementioned study [3] investigated whether the dose to the region outside of the
planning target volume (PTV) could have any influence on distant metastasis (DM) incidence
using a cohort of 217 NSCLC patients treated with stereotactic body radiation therapy (SBRT).
We hypothesized that due to the uncertainty in predicting where MDEs may be present, the
conformal nature of SBRT could potentially increase the risk of microscopic cancer cells
surviving after treatment, thus increasing the incidence of DM. The study concluded that there
was a threshold dose of approximately 21 Gy (equivalent dose in 2 Gy fractions) to the region
extending 30 mm outwards from the PTV. After 2 years, patients who received more than this
dose (75% of the cohort) had a DM incidence rate of just 5%, while patients who received less
than this dose (25% of the cohort) had a DM incidence rate of nearly 60%.

CyberKnife (Accuray Incorporated, Sunnyvale, California, USA) consists of a lightweight
linear accelerator mounted on a robotic system, giving it the ability to deliver highly non-
coplanar dose distributions. It further differs from conventional SBRT modalities with its
real-time image guidance system, which allows for more accurate radiation delivery [10].
Additionally, the constraints in prescription for a CyberKnife plan can differ from conventional
SBRT plans. While there are a number of studies investigating CyberKnife treatment outcomes
[11-15], to the authors’ knowledge, none focus specifically on distant control. Furthermore,
none investigated the dose outside of the PTV, but rather focused on more conventional variables,

such as tumor size, prescription dose or dosimetric variables within the PTV. The present study
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first investigates the dose distribution outside the PTV as planned for and subsequently delivered
by the CyberKnife. This is compared to the cohort investigated in our previous study, all of
whom had SBRT delivered through either Volumetric Modulated Arc Therapy (VMAT) or
conformal radiation therapy (CRT). A multivariable analysis was conducted to adjust for
clinical factors that may act as confounders. We then investigated whether the difference in
these modalities could have an impact on distant metastasis incidence or local control, and thus
whether CyberKnife could be a superior choice to VMAT/CRT under current clinical practice.
This study represents a novel comparison between treatment modalities, while nearly doubling

the number of patients previously included in our previous study.

5.4 Methods

5.4.1 Patient Selection

This study included 422 patients, all of whom received SBRT between July 2009 and February
2015 for stage I NSCLC. The dataset was gathered from two institutions (McGill University
Health Centre (MUHC), Centre Hospitalier de I’Université de Montréal (CHUM)) and three
modalities (VMAT, CRT, CyberKnife). For the purpose of this study, the dataset was split
into two distinct cohorts. The first cohort consisted of 217 patients treated with either CRT or
VMAT (identical to the previous study [3]), while the second cohort consisted of 205 patients
treated with CyberKnife. Histology was used to confirm diagnosis of NSCLC in 72% of
patients. The remainder did not have a biopsy due to either refusal or risk considerations and
thus diagnosis was assumed from CT/PET scans. None of the patients received any form of
chemotherapy or alternative cancer treatment. The two cohorts were not necessarily treated by
the same physicians, however the same physician group was involved in the determination of
outcomes. Retrospective analyses were performed in accordance with the relevant guidelines
and regulations as approved by the Research Ethics Committee of the McGill University Health
Centre (MUHC) (Protocol numbers: MP-37-2011-936, 10-263-GEN).

5.4.2 Follow-up and clinical factors

The primary clinical endpoints considered throughout this study were distant metastasis (DM)

and local failure (LF). Regional failure (RF), locoregional failure (LRF) and overall survival
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(OS) were considered as secondary clinical endpoints. Follow-up of each patient was performed
1-3 months after treatment completion and then every 3-6 months. Any patient who did not
have at least 12 months of follow-up information in conjunction with no cancer recurrence was
excluded from the study. Follow-up time was defined as time from treatment completion to

time of last follow-up.

5.4.3 CT acquisition, tumor segmentation and dose prescription

Comprehensive details regarding the VMAT/CRT cohort can be found in the Methods section
of the previous study [3]. In summary, the CRT patients were all from MUHC and were
delivered with 5 to 11 fields using Novalis TX 6 MV photon beams (Varian Medical Systems,
Palo Alto, CA, USA; Brainlab, AG, Munich, Germany). The VMAT patients were treated
at CHUM using RapidArc delivery of Clinac 6 MV photon beams (Varian Medical Systems,
Palo Alto, CA, USA). Prior to November 2013, 169 patients in the CyberKnife cohort were
treated on the CyberKnife G4 system at CHUM. The CyberKnife VSI system at the same
institution was used to treat the remaining 36 patients of this cohort. No significant distinction
was observed between the commissioning measurements of the two CyberKnife models. CT
images were acquired for CyberKnife patients in supine position on a 512x512 grid with 1 mm
slice thickness, on which contours were delineated by a senior radiation oncologist. Depending
on the institution, the PTV is defined to be a 3-5 mm extension to the gross tumor volume. For
VMAT and CyberKnife patients, the same requirement is followed to choose the prescription
isodose surface: 95% of the PTV must be covered by the prescription dose. Several lung SBRT
protocols (RTOG 0813 [16], RTOG 0915 [17]) have further restrictions on the dose fall-off
outside the PTV. In particular, upper limits are set on the ratio of the 50% prescription isodose
volume to the PTV volume. For CyberKnife plans, it was difficult to fulfill the target coverage
goal without exceeding these fall-off limits. The latter were therefore not imposed upon the
CyberKnife plans in this study. When necessary, respecting dose constraints to organs at risk
was prioritized over target coverage. Either XSight Lung (n = 64), XSight Spine (n = 51)
or the Synchrony Respiratory Tracking system (n = 90) were used in CyberKnife treatments
depending on the tumor’s position, size and motion. Cone beam CT (CBCT) was employed for
every fraction for all VMAT/CRT patients. Neither gating nor breath-hold techniques were used.
In the Cyberknife cohort, 185 patients had their treatment planning dose initially calculated

using Accuray’s Ray-Tracing algorithm while the remaining 20 were calculated with Monte
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Carlo. However for lung SBRT plans, Ray-Tracing doses have been shown to be substantially
inaccurate, with overestimation of the mean PTV dose on the order of 10 - 20% when compared
with the more accurate Monte Carlo technique [18-20]. All VMAT and CRT patients had their
treatment planning dose calculated with the Anisotropic Analytical Algorithm (AAA). Several
studies have found that the discrepancy between AAA and Monte Carlo is much milder, with
differences in the mean PTV dose on the order of 1 - 4% [21-24]. To allow for an accurate
comparison, CyberKnife dose distributions were recalculated with an independent EGSnrc

Monte Carlo model (Ottawa, Canada, [25]), while keeping all beam parameters constant [26].

5.4.4 Region of Interest (ROI) creation

The algorithm used to evaluate the dose parameters to the region outside the PTV (of varying
size) is identical to that of the previous study [3]. In summary, the algorithm consists of five

primary steps, described in detail within the Supplementary Materials:

* Superimpose PTV point cloud onto dose grid, generate convex hull
* Grow the PTV point cloud in 3D space isotropically.
* From the grown point cloud, generate a convex hull.

* Exclusive OR (XOR) logic applied to both convex hulls, resulting in a shell-shaped region
radially extending outwards from the PTV.

* Analysis of dose applied to this region.

The ROI specifically considered throughout this study was ROI.,,;,(x mm), representing a
shell-shaped region including the entire volume up to x mm (excluding the PTV itself) outside

the PTV boundary. The volume was truncated if it crossed the lung boundary.

5.4.5 Parameters from the dose distribution

Prior to any analysis, all dose values were converted to the equivalent dose in 2 Gy fractions
(EQD2p) assuming an ot/ of 10 in order to account for biological effects between the differing
fractionation schemes [27-30]. EQD2( was specifically used for comparison purposes to the

previous study [3]. The formula used for the calculation of EQD2 is as follows:
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where N is the number of fractions and d is the dose per fraction.

EQD210=N><d>< (51)

As in the previous study [3], the arithmetic mean dose delivered to the ROIs was computed.
A new parameter was calculated for this study; the fraction of the volume of the ROI which
received at least x Gy EQD2 dose. Henceforth, this parameter will be referred to as V., where
x represents the EQD2( dose of interest. Of particular interest to this study is Vrp, where TD
represents the threshold dose discovered in the previous study, 21 Gy [3].

5.4.6 Motion robustness

A unique feature of CyberKnife dose delivery is its target tracking system. Intrafraction
motion is measured in real-time during the treatment and the beam positions are corrected
accordingly. Thus, despite target motion due to patient breathing, the delivered dose distribution
in the patient frame can be expected, in theory, to remain similar to the planning dose. In
contrast, conventional SBRT delivery relies on the delineation of an internal target volume
(ITV) that encompasses the GTV throughout all breathing phases. By optimizing the dose
to the PTV, defined as an extension to the ITV, the target is thus ensured to be sufficiently
covered. However, as no beam positioning correction is performed in this case, the overall
delivered dose distribution inherently differs from the planning dose that is calculated on a
static phantom. One may be concerned that this difference invalidates the comparison between
CyberKnife and VMAT/CRT doses beyond the PTV. To investigate this possibility, the impact
of intrafraction motion on the dose delivery was assessed using a subset of 18 VMAT plans
with representative motion (0-12 mm in all directions). The intrafraction target motion is
estimated from the difference between the inspiration and expiration CT images. For each plan,
the treatment isocenter position was shifted by half of the maximum recorded displacement
and the dose was recalculated using an independent Monte Carlo model, while keeping the
patient phantom fixed!. This process was repeated for a displacement of equal magnitude in the
opposite direction. This results in two shifted dose distributions. For each voxel of the dose

grid, the arithmetic mean of the 2 shifted doses and the non-shifted dose was taken. This final

I>Phantom’ in this context is referring to voxelized representation of a CT image with inclusion of density and
material information.
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dose grid (‘motion-averaged’) represents an upper limit to the impact motion has on the dose
distribution. The mean dose to the ROI,,;(x mm) was calculated for x = 1 to x = 100 mm using
the motion-averaged dose distribution. For every point of the resulting motion-averaged fall-off
curve, the difference with the non-shifted curve was computed, and averaged over the subset of
plans. The magnitude of the difference induced in the VMAT/CRT fall-off curve when taking
into account patient motion was then compared to the difference between the fall-off curve of
VMAT/CRT and CyberKnife.

5.4.7 Statistical analysis

All statistical analysis was done using either Matlab 2018a software or Python 2.7. The mean
dose fall-off for each patient was computed (ROI,;;(x mm)) from x = 1 mm to x = 100 mm.
The fall-offs were then separated into the VMAT/CRT cohort and the CyberKnife cohort and
averaged over all patients within the respective cohorts. This resulted in a comparison plot
between the mean dose fall-off curve averaged over the VMAT/CRT patients and the mean dose
fall-off curve averaged over the CyberKnife patients. 95% confidence intervals (of the mean)
were calculated for each point along the curves. In an identical fashion, the average fall-off of

Vrp in both cohorts was computed and plotted.

To further visualize the comparison of the mean dose delivered to ROI,,,;(30 mm) between
the two cohorts, a histogram was generated with a bin width of 2 Gy. The value of x was chosen
to be 30 mm as suggested by the previous study to be the region most impacted by the delivered
dose [3]. A Wilcoxon rank sum test was used to determine whether the distribution of mean
dose to ROI,,,;(30 mm) from either cohort differed in a statistically significant way (defined as
p < 0.05).

Kaplan-Meier (KM) analysis of DM-free survival was performed to compare the CyberKnife
cohort to the VMAT/CRT cohort. This analysis was repeated for the 25% of VMAT/CRT patients
who received a mean dose to ROI.on:(30 mm) less than the threshold dose (VMAT/CRT <2Gy).
Hazard ratios (HR), 95% confidence intervals (95% CI) and p-values were generated from
a univariable Cox proportional hazards regression. Both patient deaths and patients lost to
follow-up were censored. As the competing risk of patient death was censored in the analysis,

it is important to note that the cumulative incidence of DM as estimated by the KM curve may
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be overestimated. However the cause-specific hazard ratio between the two cohorts calculated
from the Cox proportional hazards model remains valid in the presence of a competing risk

[31]. This was repeated for local/regional failure and death as endpoints.

Finally, to adjust for potential confounders, a multivariable Cox proportional hazards model
was fit to the combined cohort (n=422) using the following covariates: sex, age, staging,
histology, PTV volume, prescription dose in EQD2y, mean EQD2 to the PTV, treatment
modality and a binary variable indicating whether the mean dose to the ROI,,,;(30 mm) was
larger than the threshold dose of 21 Gy. To account for histology being a non-binary categorical
variable, dummy binary variables were created for each histology category while the unknown
category, representing missing histology, was used as the reference and thus omitted. All
continuous variables (age, PTV volume, prescription EQD2;¢, mean EQD2 to the PTV) were
modelled to follow a linear relationship with the logarithm of the hazard function. The analysis
was performed separately using either DM, death or local/regional failure as clinical endpoints.
The resulting hazard ratio, 95% confidence intervals and p-values were calculated for each
covariate. Both the univariable and multivariable Cox regression were performed using the
lifelines package (Python) [32].

5.5 Results

The median follow-up time was 24 months (range: 12 - 74 months). Distant metastasis was
observed in 63 patients (15%). Local failure was observed in 37 patients (9%), while regional
failure was observed in 28 patients (7%). Out of the 63 patients with DM, 12 (19%) also
had local failure. Consistent with the previous study [3], the majority of DM sites were the
contralateral lung (32%), brain (21%) and bone (17%). Detailed characteristics of both cohorts
are shown in Table 5.1 (the VMAT/CRT cohort characteristics are identical to the previous
study [3]).

The mean dose fall-off curves are shown in Figure 5.1a. The top curve (blue) represents
the CyberKnife cohort while the bottom curve (red) represents the VMAT/CRT cohort. Fig-
ure 5.1b represents the fall-off of Vrp. Past x = 10 mm, both sets of curves are statistically
distinguishable at the 95% confidence level. One may note that the prescription EQD2;g of
VMAT/CRT patients was statistically significantly lower than that of CyberKnife patients: me-
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Table 5.1 Patients and tumor characteristics. Percentages in square brackets represent pro-
portion relative to the cohort size or median value. The standardized difference between the
VMAT/CRT cohort vs. the CyberKnife cohort were calculated. The “not otherwise specified”
histology is abbreviated as NOS.

VMAT/CRT CyberKnife Percentage of ~ Standardized
cohort [3] cohort total cohort [%] difference

Total 217 205 100%
Distant Metastasis Events 37 [17%] 26 [13%] 15% 0.12
Local Failure Events 28 [13%] 9 [4%] 9% 0.30
Regional Failure Events 17 [8%] 11 [5%] 7% 0.10
Death Events 31 [14%] 22 [11%] 13% 0.11
Institution

MUHC 96 0 23%

CHUM 121 205 77%
Tumor Stage

Tl 207 [95%] 163 [80%] 88% 0.49

T2 10 [5%] 42 [20%] 12% -0.49
PTV volume range [cm?’] 5.7-305.41[23.7] 4.3-189.0[22.5] 0.12
Age range [years] 46 - 93 [75] 44 - 95 [76] -0.02
Follow-up range [months] 12 - 58 [24] 12 - 74 [25] -0.14
Gender

Male 104 [48%] 94 [46%] 47% 0.04

Female 113 [52%] 111 [54%] 53% -0.04
Histology

Unknown 58 [27%] 61 [30%] 28% -0.07

NSCLC NOS 20 [9%] 17 [8%] 9% 0.03

Adenocarcinoma 96 [44%)] 66 [32%] 38% 0.25

Squamous Cell Carcinoma 41 [19%] 53 [26%] 23% -0.17

Large Cell Carcinoma 2 [1%] 8 [4%] 2% -0.20
Dose fractionation

48 Gy / 3 fr 74 0 17%

48 Gy / 4 fr 40 1 10%

50Gy /4 fr 0 17 4%

50Gy/S5 fr 14 28 10%

60 Gy /3 fr 83 122 49%

60 Gy/S5 fr 0 30 7%

Other 5 7 3%

dian prescription of 110 Gy vs. 150 Gy respectively (Wilcoxon rank sum test: p-value = 0.006,
p = 0.43). However, after Monte Carlo recalculation of the CyberKnife plans, the mean-PTV
dose of CyberKnife (median = 150 Gy) and VMAT/CRT patients (median = 137 Gy) were not
found to be statistically distinguishable by a Wilcoxon rank sum test (p-value = 0.65, p = 0.48).
No significant change to the fall-off curve past x = 10 mm (< 2%) was observed by taking
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into account the intrafraction motion and was therefore neglected. The impact of intrafraction
motion on the fall-off curve is plotted for all x in the Supplementary Material. The variability
of the PTV margin (3 vs. 5 mm) was also considered. A 2 mm difference in the PTV margin
translates to at most a 2 mm uncertainty in x on the dose to the ROI.,,;(x mm). Considering the
magnitude of differences observed between fall-off curves between x = 10 mm and 100 mm,

uncertainties on the order of 2 mm were not found to affect significance of the statistical results.
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Figure 5.1 Dose fall-off comparison of the two cohorts considered within the study. The
black lines represent the mean value, while the shaded region represents the 95% confidence
intervals. (a) represents mean dose [Gy] delivered to a region x mm away from the boundary
of the PTV while (b) represents the ratio of volumes that received a dose of at least 21 Gy
(threshold dose). Both curves are statistically distinct past x = 10 mm.

A histogram representing the mean dose delivered to a continuous 30 mm shell outside the
PTV (ROI,;,;(30 mm)) is shown in Figure 5.2. The red bins represent the VMAT/CRT cohort
with a median EQD2 of 22.8 Gy, while the blue bins represent the CyberKnife cohort with
a median EQD2( of 38.1 Gy. The Wilcoxon rank sum test results in a significant difference
between the two distributions with a p-value of < 1078 and p = 0.13. The vertical black line
represents the previously determined threshold dose (21 Gy [3]), illustrating the small fraction
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of CyberKnife patients below said dose (5%), in comparison to the VMAT/CRT patients (25%).
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Figure 5.2 Histogram of the mean dose (Gy) delivered to ROI-on7(30mm) across the two
cohorts. Vertical black line represents the threshold dose, 21 Gy. Purple shading indicates
overlap of the two cohorts.

Kaplan-Meier analysis was performed to determine whether the CyberKnife delivery pro-
vided superior distant control rates in NSCLC patients. When comparing VMAT/CRT cohort
(red) with the entire Cyberknife cohort (Figure 5.3b, there was a 47% increased risk of distant
metastasis-free survival although with the confidence interval spanning the null: hazard ratio =
1.47 (95% CI: 0.89 - 2.44, p-value = 0.13). However, when comparing the entire CyberKnife
cohort with the VMAT/CRT Gy subset in Figure 5.3a, patients in the VMAT/CRT .21y cohort
were found to have a significantly higher hazard ratio of 5.30 (95% CI: 3.04 - 9.25, p-value
< 1078). The 2 year DM-free survival rate is 87% (95% CI: 81% - 91%) for the CyberKnife
cohort vs. 44% (95% CI. 28% - 58%) for the VMAT/CRT .Gy subset. With respect to local
progression-free survival, Figure 5.3d shows that patients treated with VMAT/CRT were found
to have a higher risk of local failure, with a hazard ratio of 3.44 (95% CI: 1.62 - 7.31, p-value
= 0.001). The 2 year local-progression free survival rates were 96% (95% CI: 92% - 98%)
and 88% (95% CI: 82% - 92%) for CyberKnife and VMAT/CRT respectively. Patients in the

VMAT/CRT 21y subset were similarly found to have even worse local outcomes, with a hazard
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ratio of 5.31 (95% CI: 2.04 - 13.8, p-value < 10~3) when compared with the entire CyberKnife
cohort (Figure 5.3c). We also performed KM analysis for regional failure, loco-regional failure
and overall survival (KM curves in the Supplementary Material).
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Figure 5.3 Kaplan-Meier progression-free survival curves. The shaded regions correspond
to the 95% confidence band of their respective survival curves. Crosses represent censored
datapoints. (a) and (b) represent distant metastasis-free survival curves, while (c) and (d)
represent local progression-free survival curves. The top curves (blue) represent the entire

CyberKnife cohort while the bottom curves (red) represent either the entire VMAT/CRT cohort
(b,d) or the VMAT/CRT -Gy cohort (a,c).

A multivariable Cox proportional hazards regression was performed on the combined co-
hort of CyberKnife and VMAT/CRT patients (n=422) using DM or local failure as clinical
endpoints. The proportional hazards assumption was verified to be valid. After adjusting for

other clinical factors, exceeding the threshold dose to the ROI,,,;(30 mm) was found to be
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associated with a significantly lower risk of DM with a hazard ratio of 0.28 (95% CI: 0.15 -
0.55, p-value < 1073). With respect to DM, the hazard ratio was moderately elevated when
comparing VMAT/CRT with Cyberknife (HR: 1.23, 95% CI: 0.70 - 2.16) although with a wide
confidence interval spanning the null. With respect to LF, the modality choice of VMAT/CRT
was associated with a significantly higher hazard ratio: 3.12 (95% CI: 1.42 - 6.85, p-value =
0.004). Exceeding the threshold dose was associated with a decreased risk of LF (HR: 0.68,
95% CI: 0.29 - 1.55) although with a wide confidence interval spanning the null. The hazard
ratios for all other covariates are tabulated in the Supplementary Materials. The result of this

analysis using RF, LRF and death as endpoints are also included in the Supplementary Materials.

As sensitivity analysis, continuous variables were modelled with restricted cubic splines
with 3 knots to account for the non-linear relationship with the outcome [33]. Exceeding the
threshold dose to the ROI,,,,;(30 mm) was still found to be associated with significantly reduced
risk of DM, with a hazard ratio of 0.25 (95% CI: 0.13 - 0.47, p-value < 10~%). VMAT/CRT
treatments as compared to CK treatments were also found to be associated with a higher risk of
LF, albeit with a lower HR: 2.31 (95% CI: 1.02 - 5.21, p-value = 0.04). As the prescription dose,
a continuous variable, was significantly associated with LF (and not DM) when log-linearly

modelled, this larger change in magnitude of LF-related HR as compared to DM is expected.

Adenocarcinomas have been shown to be more multi-focal, may have associated ground-
glass opacities and are substantially harder to contour [34]. To determine whether this could
be a confounder, a restricted analysis (n = 260) was performed by omitting patients with ade-
nocarcinoma. This was done for both the univariable KM analysis and the multivariable Cox
model. No difference in conclusions regarding the hazard ratios of the two above-mentioned
covariates were observed. The restricted KM survival curves and a table of the hazard ratios for

all covariates is included in the Supplementary Material.

A concern may be that the difference in prescription dose between the VMAT/CRT and
Cyberknife cohort could be a confounder. Although the prescription EQD2g was explicitly
accounted for in the multivariable analysis, a restricted analysis (n = 205) was also performed
with only patients receiving a prescription of 60 Gy in 3 fractions in either cohort. No changes

in the conclusions were found (detailed results in the Supplementary Material).
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5.6 Discussion

Often the primary objective when employing SBRT in the treatment of lung cancer is local
control [35]. This leads to a lack of literature specifically investigating distant control and its
potential risk factors. The previous study by Diamant ez al. [3] investigated whether the dose
delivered to the region outside the PTV could have an impact on distant metastasis. We found
that the dose to the region defined as ROI.,,;(x mm) was strongly (inversely) correlated with the
occurrence of distant metastasis. In particular, separating the patient cohort by a mean threshold
dose of approximately 21 Gy to ROI,,,;(30 mm) resulted in a hazard ratio of 24.2 (95% CI: 10.7
- 54.4) in favor of the above-threshold branch. It was hypothesized that this observation could
be due to the incomplete eradication of microscopic spread (suggested to be present within a

range of 8-26 mm outside the GTV [7]) or immuno-response stimulation (‘abscopal effect’[36]).

In the present study, the shallower dose fall-off of CyberKnife treatment plans as compared
to conventional SBRT plans results in a significantly smaller proportion (5% vs. 25%) of
CyberKnife plans receiving less than the threshold dose in the ROI,,,;(30 mm). Supporting
the hypothesis of our previous study, the entire CyberKnife cohort was found to significantly
outperform VMAT/CRT .Gy cohort with respect to distant control. No meaningful statistical
analysis of the lower-than-threshold branch of the CyberKnife cohort was possible due to its
small sample size (n = 13, 6% of cohort). Notably, this dosimetric characteristic of CyberKnife
plans was not specifically intended during treatment planning, but is rather inherent to its
high non-coplanarity and lack of strict adherence to RTOG guidelines. This result implies
that with current lung SBRT prescriptions not taking the threshold dose in consideration, Cy-
berKnife treatments provide statistically superior DM-free outcomes compared to at least 25%
of VMAT/CRT plans. As the threshold dose is indeed achieved in the remaining 75% of
VMAT/CRT patients, no statistically significant improvement is observed when comparing
the entire VMAT/CRT cohort to the CyberKnife cohort (HR = 1.47, 95% CI: 0.89 - 2.44,
p-value = 0.13 as seen in Figure 5.3b). For conventional SBRT delivered at other institutions, a
similar analysis needs to be performed to establish whether a non-negligible fraction of patients
also receive less than the threshold dose. While there are numerous speculative biological
explanations for these results [3], we stress that biologically oriented studies are required to

understand further. This study presents a statistically confirmed observation, hopefully leading
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to further research.

The present study did not find an association in the CyberKnife cohort between incidence
rate of DM and the numerical mean dose delivered to ROI.,,;(x mm) for any value of x. This
is in stark contrast with our previous study [3], where a strong correlation was found for all
values of x. Our hypothesis is that this is due to the known sigmoidal behaviour of tumor
control relative to delivered dose [28, 37]. We speculate that MDEs within the region outside
the PTV would follow a similar model, considering they are also cancer cells. Since 95% of the
CyberKnife cohort receive above the threshold dose (in other words, the plateau of the sigmoid

model), we do not find any correlation between delivered dose and distant metastasis incidence.

A thorough multivariable analysis was performed to account for potential confounders. The
only factor that was significantly associated with a difference in the risk of DM is whether or
not the patient’s mean dose to the ROI.,,;(30 mm) reached the threshold. This result suggests
that it is not the treatment modality that affects DM incidence but rather the dose to a 30 mm
shell surrounding the PTV. This result further supports the finding that the proposed threshold
dose is meaningful. Consistent with our previous study [3], no association was found between
prescription/mean PTV dose and DM. We also note the larger number of T2 tumors in the CK
cohort, compared to the VMAT/CRT cohort (20% to 5%, standardized difference = 0.49). As
the multivariable analysis did not find staging to be associated with the outcome (DM)), it is

unlikely to be a confounder.

The previous study [3] did not find a correlation between the incidence rate of local failure
and the mean dose delivered to ROI,,;(x mm) for any value of x. This study did find a signifi-
cant difference between the two cohorts investigated (Figure 5.3d). After adjusting for other
clinical factors, including prescription EQD2;9, VMAT/CRT patients were still found to have a
significantly higher risk of local failure when compared to CyberKnife patients. There are a
number of potential factors that could have caused this association. As shown and discussed
throughout this report, the differences between VMAT/CRT and CyberKnife dose distributions
seem to have an impact. We note that the mean dose to the ROI.,,,;(30 mm), used as a continuous
variable rather than a threshold, was found to be associated with local control in a univariable
analysis (HR = 0.94, 95% CI: 0.90 - 0.98, p-value = 0.002). However, when adjusted for other
clinical factors including treatment modality (VMAT/CRT vs. CyberKnife), this metric was not
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found to be statistically significantly associated with local failure (HR = 0.96, 95% CI: 0.90 -
1.02, p-value = 0.17). The multivariable analysis was repeated while varying the threshold of
the mean dose to the ROI.,,,;(30 mm). Although not statistically significant, hazard ratios in
the range of 0.28 to 0.41 were found for threshold doses of 30 to 34 Gy (see Supplementary
Material). Future work should be done to determine an intuitive, predictive metric that is appro-
priately representative of the dosimetric differences between conventional SBRT techniques
and CyberKnife. Furthermore, the motion tracking employed by a CyberKnife unit may have
an impact on local control rates in our representative cohort. Several steps were taken to reduce
the impact of motion during VMAT/CRT treatments, including the use of the internal target
volume based on 4DCT and daily cone beam CT. However these measures cannot compensate
for motion to the extent provided by real-time tracking as performed by CyberKnife. We note
that this study’s 2-year local control rates (96% (95% CI: 92% - 98% and 88%, 95% CI: 82%
- 92%), for CyberKnife and VMAT/CRT respectively) were comparable to those found in a
previous systematic review by Solda et al. (88% (95% CI: 78% - 94%) and 91% (95% CI: 89%
- 93%)) [38].

The slower dose fall-off for CyberKnife compared to our standard-of-care conventional
SBRT resulted in significantly lower incidence rates of DM for CyberKnife patients than
VMAT/CRT <216y patients. However, as slower dose fall-offs are still achievable when using
VMAT or CRT, the former distinction could potentially disappear if a threshold mean dose
was introduced into the radiotherapy prescription. This is demonstrated by the non-significant
hazard ratio of the treatment modality when adjusted for the threshold dose and other clinical
factors. However, we note that dose distributions are spatially complex, heterogeneous and
highly dependent on treatment modality. A secondary mean dose prescription to a region outside
the PTV does not address this spatial heterogeneity across individual treatment plans. Further
research should be done in order to determine the ideal prescription parameter that results in
the most consistent dose distribution across treatment plans. Prior to clinical implementation,
these results warrant external validation using additional independent cohorts, ideally through a
prospective trial. Furthermore, this study is purely observational in nature. More biologically
oriented investigations should be done to determine the validity of the hypothesized causality
presented within this report. Nevertheless, as CyberKnife treatment plans routinely deliver
above-threshold dose to regions outside the PTV, the proposed clinical recommendations should

not cause further complications than the ones currently observed in patients treated with Cy-
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berKnife. This was explicitly shown in our previous study [3] which found no correlation
between radiation pneumonitis and the dose to ROI,,,;(30 mm). Thus we recommend the
introduction of a secondary dose prescription of approximately 21 Gy to a region extending

30 mm outwards from the PTV particularly when using conventional SBRT modalities.
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6.1 Preface

The previous two studies (Chapters 4 and 5) used a simple statistical model on dose metrics
to perform outcome prediction on NSCLC patients. Midway through my PhD, we made
the decision to pivot into using a more advanced outcome prediction model. At the time,
deep learning was growing in popularity but had not been applied to prognosis prediction
based on pre-treatment data. For a number of reasons (discussed throughout the studies), our
hypothesized deep learning model would use raw image data (both CT and PET) to perform
outcome prediction on head & neck cancer patients. The study presented within this chapter

was the first results obtained, solely using the CT images.



82 Deep learning in head & neck cancer outcome prediction

6.2 Abstract

Traditional radiomics involves the extraction of quantitative texture features from medical
images in an attempt to determine correlations with clinical endpoints. We hypothesize that
convolutional neural networks (CNNs) could enhance the performance of traditional radiomics,
by detecting image patterns that may not be covered by a traditional radiomic framework. We
test this hypothesis by training a CNN to predict treatment outcomes of patients with head and
neck squamous cell carcinoma, based solely on their pre-treatment computed tomography image.
The training (194 patients) and validation sets (106 patients), which are mutually independent
and include 4 institutions, come from The Cancer Imaging Archive. When compared to a
traditional radiomic framework applied to the same patient cohort, our method results in a AUC
of 0.88 in predicting distant metastasis. When combining our model with the previous model,
the AUC improves to 0.92. Our framework yields models that are shown to explicitly recognize

traditional radiomic features, be directly visualized and perform accurate outcome prediction.

6.3 Introduction

Radiation therapy is often used (74%][1]) to treat head and neck (H&N) cancers, a group of
neoplasms originating from the squamous cells that line the mucosal surfaces of the oral cavity,
paranasal sinuses, pharynx or larynx. Although loco-regional control of most H&N cancers is
reasonably good (=90%)[2], long-term survival can be quite poor (5-year survival rates as low
as 50%)[2], in large part due to the development of distant metastasis or second primary cancers
[3, 4]. Thus, the development of a model capable of identifying potential high-risk patients
prior to treatment is critical. With such a model, a better-informed decision could be made
regarding patient risk stratification. A high-risk patient could be assigned a more aggressive
treatment regimen, potentially improving their outcome. Similarly, a low-risk patient could
receive a more conservative treatment, delivering less radiation in order to reduce the chance
of harmful side effects, such as hormonal disorders, tismus, xerostomia or dental disease [5].
The primary focus of this work is to build a model that is capable of discerning high-risk H&N

cancer patients prior to their treatment using solely their computed tomography (CT) image.

Machine learning has played an increasingly prominent role over the past few decades in

nearly every aspect of the STEM (science, technology, engineering and medicine) fields [6, 7].
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Recently, deep learning, a sub-field of machine learning, has risen to the forefront of the artificial
intelligence community [8]. One of the most popular deep learning tools is the convolutional
neural network (CNN), a type of algorithm inspired by the biological neural networks within
the animal visual cortex. CNNs consist of sequential layers which contain increasingly complex
representations of data, eventually resulting in a classification of the input data [9, 10]. In
particular, they are very effective at analyzing images and have achieved enormous success
in numerous computer vision tasks, such as object detection, semantic segmentation, object

classification and CADx (computer-aided diagnosis) [11-19].

Radiomics is the study of “image biomarkers" - the characterization of tumor phenotypes
via the extraction of data from all types of medical images [20]. In the past few years, it has
been extensively deployed for outcome prediction, among other applications [21-28]. For
image-based outcome prediction, there are three common approaches. The first is the use of
handcrafted features [29] which are directly extracted from the medical images. Often, these
features are then fed into a machine learning algorithm for outcome prediction (e.g., random
forest, support vector machine) [21-28]. We refer to this as “traditional radiomics". The second
approach uses the outputs of the deeper layers in a CNN (often the final or penultimate fully
connected layer) as “deep features". Similar to the first approach, these “deep features" are
then fed into a secondary machine learning algorithm for outcome prediction [30-32, 18, 17].
The third approach employs transfer learning to fine-tune the weights of a pre-existing network
to predict outcomes [9, 10]. Our methodology represents a novel fourth approach in that we
use a single end-to-end CNN trained de novo (with no secondary machine learning algorithms)
to predict oncological outcomes. To our knowledge, this is something that has not been
successfully attempted in this context. This study will be specifically benchmarked against a
previous study on the same data by Vallieres et al. [25] which correlated a number of radiomic
features from pre-treatment pre-segmented CT images with the outcome of H&N cancer patients.
We use a novel deep CNN framework on the same cohort of patients, improving on a number
of metrics, both quantitative and qualitative; detailed comparisons are made throughout this
report. In the benchmark study, the most predictive combination of radiomic features related
with distant metastasis involved LRHGEgrry (long run high grey level emphasis of the grey
level run length matrix), ZSVsrszy (zone size variance of the grey level size zone matrix) and
ZSNgrszm (zone size non-uniformity of the grey level size zone matrix) [25, 29]. We show

that our network is capable of directly recognizing these radiomic features without having any
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prior information regarding their mathematical definition. While CNNs can be used for image
segmentation [11, 12, 16], our methodology functions on pre-segmented tumor volumes, both

to stay consistent with the benchmark study [25] and to simplify the task at hand.

One of our primary hypotheses is that a carefully trained CNN could learn the ability
to recognize radiomic features. Typically, when attempting to apply a CNN framework to
an unexplored image dataset that is of limited size, one uses a methodology called transfer
learning. In transfer learning, a network that has already been trained and evaluated on another
(much-larger) dataset is used as a starting point, and subsequently fine-tuned for the dataset
of interest [9, 10]. This often results in excellent performance [33]. As an example, ImageNet
[34] is a database of over 1 million RGB images which programmers compete on in an attempt
to accurately classify the images into 1 of over 20,000 categories (e.g., dog, cat, plane, car,
bench). Transfer learning was used to teach a top-performing network (Google’s Inception-v3
[35]) to classify dogs into one of eleven breeds (e.g., bulldog, dachshund) with 96% accuracy
[36] . The success is largely because of the similarity in the features that distinguish objects
and dog breeds, features such as sharp edges or color gradients. In accordance with our goal of
training a CNN that can recognize radiomic features, employing a transfer learning approach is
possibly less successful. Furthermore, if an adequately sized dataset is available for the relevant
classification task, it may not be necessary to use transfer learning as a methodology. Since
medical images look substantially different from the everyday world to the human eye, and we
have a dataset of 300 patients at our disposal, we decided to explore training a network de novo
using gray-scale CT images. A comparison to a more traditional transfer learning approach is

included in the Supplementary Information to quantitatively evaluate this hypothesis.

The novel contributions of this work are three-fold. Firstly, we develop a deep CNN-based
framework capable of accurately predicting H&N cancer treatment outcomes based solely on a
patient’s pre-treatment CT image. Secondly, the framework is an externally validated medical
gray-scale end-to-end CNN built de novo, rather than using transfer learning. Finally, the CNN
is shown to explicitly recognize previously engineered radiomic features with proven predictive
power[25] on a benchmark study, and is shown to complement their performance in a number

of qualitative and quantitative ways which will be discussed throughout this report.
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6.4 Results

6.4.1 Benchmark study comparison

The testing set of 106 patients used in the benchmark study [25] is used as an independent
validation set in this study. The training set used was identical to that of the benchmark study.
The results obtained from our CNN framework are shown alongside the results of the compared
study [25] in Tables 6.1 and 6.2. The training and evaluation was done on the central tumor slice,
which was defined as the slice with the maximum number of tumor pixels within a patient’s
entire set of CT images. This is in contrast to the benchmark study, where the model was trained
and evaluated on the entire tumor volume. To evaluate the model’s robustness with respect to
the precise choice of tumor slice, the same network was also trained and evaluated on the slice
directly above (superior) and below (inferior) the central slice. In summary, the most powerful
network resulted in an area under the receiver operating characteristic curve (AUC) of 0.88
when predicting distant metastasis, comparable to the benchmark result. The most improved
network, trained to predict loco-regional failure, had an AUC of 0.65, a substantial improvement
over the prior study which was unable to find any predictive radiomic features. An AUC of
0.70 was found when predicting overall survival, comparable to the benchmark result. These
improvements will have to be further verified by using an additional independent testing set on
which the CNN is applied without any change to the hyper-parameters. The precise choice of
the evaluation slice did not have a significant impact on the results, as shown in Table 6.1. It
is noted that this study calculated specificity and sensitivity based on an optimized threshold,
while the benchmark study[25] performed imbalance adjustments and used a threshold of 0.5.
Additionally, using the same logistic regression methodology described in the benchmark study
[25],we combined the final output score of our DM CNN model with the three aforementioned
features used in the DM model of the benchmark study. The DeLLong test was used to assess
whether the combined model resulted in a statistically significant change in the AUC [37].
The new four-feature model had an AUC of 0.92 in the validation set (p-value of 0.04 when
compared to the benchmark model, p-value of 0.12 when compared to the CNN model). This
combination approach could not be implemented for the other outcomes, due to the traditional

radiomics model’s inability to find strong individual features.
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Table 6.1 Validation set AUC results compared to Vallieres ef al.’s[25] testing set results on the
same patient cohort. Robustness was evaluated by training and evaluating networks on the center
slice, the inferior slice and the superior slice. Final column represents a combined model utilizing
the CNN score and the traditional features from Vallieres et al. [25]. The combined model was only
implemented for DM, due to the traditional radiomics model’s inability to find strong individual
features for the other two outcomes.

AUC (Area under the curve) Combined
model
AUC
Central slice  Superior slice Inferior slice Vallieres et al.[25]
Distant metastasis (DM) 0.88 0.88 0.88 0.86 0.92
Loco-regional failure (LRF) 0.65 0.63 0.64 0.50 -
Overall survival (OS) 0.70 0.68 0.67 0.65 -

Table 6.2 Validation set results compared to Vallieres ef al.’s[25] testing set results on the
same patient cohort. Balanced accuracy is defined as the average of the specificity and
sensitivity. It is noted that this study calculated specificity and sensitivity based on thresholds
optimized in the training set, while the benchmark study[25] performed imbalance adjustments
during training and then used a single probability threshold of 0.5 in the testing phase. DM:
Distant metastasis; LRF: Loco-regional failure; OS: Overall survival.

Specificity Sensitivity Balanced Accuracy

Present study Vallieres et al.[25] | Present study Vallieres et al.[25] | Present study Valliéres et al.[25]
DM 0.89 0.77 0.86 0.79 88% 77%
LRF 0.67 0.61 0.65 0.39 66% 58%
0S 0.67 0.67 0.68 0.55 68% 62%

6.4.2 Cross validation

To better assess the stability of our results, we performed 5-fold cross validation on the entire

set of 300 DM images. No changes to the hyper-parameters were made between any of the

folds and thus remained identical to the hyper-parameters used in the comparison presented
above. The mean AUC was found to be 0.85 (range: 0.80 to 0.88). It is noted that the 5-fold

cross validation results should not be directly compared to the results of the benchmark study

[25] due to the differing data partitioning scheme.



6.4 Results 87

6.4.3 Visualization of results

There are a number of visualization tools that we can use to better understand the behaviour
of the CNN, many of which are facilitated by the Keras-vis toolbox [38]. All visualization
examples in this section represent the highest performing network (i.e., trained on the central
tumor slice to predict distant metastasis). Figure 6.1 represents a montage of four patient CTs,
two of whom developed DM (top), and two who did not (bottom). These particular CT images
are chosen to represent the diversity in features perceivable by the human eye (e.g., shape,
first-order textures). The leftmost column is a zoomed-in view of the 512 x 512 pixel CT
image that enters the model, representing the pre-processing done (which merely amounts
to setting any pixels outside of the gross tumor volume to zero). The middle column shows
gradient class activation maps (Grad-CAMs [39]) on the penultimate convolutional block, which
depict what areas of the image the CNN found most relevant for outcome prediction. The heat
map represents how important each region of the image is to the given classification. This
information can potentially be used by clinicians to make further hypotheses regarding the
nature of the tumor. The final column depicts a merger of the Grad-CAM and the CT image.
This is the image we recommend is used when attempting to understand the network’s behavior

on a particular input image.

Another method of visualizing our network is through an activation map. Shown in Fig-
ure 6.2, an activation map represents a procedurally generated image that would result in a
distant metatasis classification of maximal probability (a score of 1). We stress that this image
was generated on the fully trained network and thus does not represent an individual CT image
within the dataset. The image appears quite disorderly at first, but there are some interesting
aspects that we can discern from it. Firstly, the image appears mostly homogeneous on a large
scale, meaning no region of the image favors one pattern over another. This is an indication that
our network is approaching location invariance, due to tumor locations being highly variable
regardless of outcome within the training set. Secondly, when focusing on a small portion of
the image, the image appears heterogeneous both in shape and intensity. This is indicative
of heterogeneous tumors being more aggressive and likely to be assigned a poor outcome,
an observation consistent with the published literature [40—43]. The corresponding minimal
activation map (i.e., a score of 0) is shown and discussed in the Supplementary Note/Fig. Al.
Although Figure 6.2 does not directly explain any specific patient prediction, it gives insight

into the trained network and the patterns it is associating with a specific classification.
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Distant
metastasis

No distant
metastasis

Figure 6.1 Montage of tumors and gradient class activation maps (Grad-CAM): First two
rows represent patients who developed distant metastasis (DM). Last two rows represent patients
who did not develop DM. (a): Raw image input into the model (zoomed in for visualization
purposes). Note that tumor segmentation is performed prior to being input into the model. (b):
Gradient class activation map (Grad-CAM [39]) of the penultimate convolutional block, red
represents a region more significant to the designated classification. (¢): Image merge of the
first two columns.

6.4.4 Filters within the CNN explicitly recognize radiomic features

To determine whether the CNN trained de novo could be recognizing radiomic features, we
visualized a montage of filters. Each convolutional block within the network functions by
convolving a variable number of learned filters with the input data [9]. Figure 6.3 represents 4
of the 128 filters that make up the final convolutional block. Similar to Figure 6.2, Figure 6.3 is
not representative of any specific CT image but rather the final trained network. Each square
represents the procedurally generated input image that would maximize the mean output of a

specific filter, thus informing us at an abstract level what sort of image each filter is interested in
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Figure 6.2 Maximal activation map depicting a procedurally generated image that results
in a classification of maximal probability. Represents a procedurally generated image input
that would result in a maximal classification score of 1 (i.e. distant metastasis). Of particular
interest is the large scale homogeneity and the small scale heterogeneity. Color map chosen
solely for visualization purposes.

when making a decision. It is evident that each of these filters is maximally activated by various
textures, rather than a particular shape or object as is common in more typical convolutional
neural networks. In order to determine whether any of the filters were specifically activated by
previously engineered radiomic features, we extracted 94 radiomic features (as described in the
Image Biomarker Standardization Initiative (IBSI [29])) from each filter’s maximal activation
map (Figure 6.3). An example of this analysis when performed on 64 of the filters (chosen
among those whose maximal activation maps converged) is shown in Figure 6.4. The y-axis
represents the normalized value of a specific radiomic feature that Vallieres et al.[25] found

to be predictive (blue: ZSVgrszm, red: ZSNgrszm, yellow: LRHGEGrrry). These features
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were calculated using the exact same extraction parameters as the benchmark study. The letters
indicate the corresponding square in Figure 6.3. Of particular interest are the numerous blue
peaks (a, ¢ and d). These filters are strongly activated by an input region with a high value
of the radiomic feature ZSVsrszy, precisely the feature that Vallieres et al.[25] found to be
most predictive. Many of these filters are also strongly activated by extreme (high or low)
values of ZSNgrszy and LRHGEGrry (red and yellow respectively). In particular, many filters
represent various permutations of the three features. As an example, (a) is activated by all three
radiomic features, (b) is mostly activated by red, (¢) is mostly activated by blue and yellow,
while (d) is mostly activated by blue. In essence, these filters are recognizing and combining

various radiomic features to help classify a particular input image.

The 64 filters’ maximal activation maps are displayed in Supplementary Fig. A2. The
radiomic analysis for these 64 filters and all 94 radiomic features (as described in the Image
Biomarker Standardization Initiative (IBSI [29]) and extracted using 128 gray levels and a scale

of 1 mm) is displayed in Supplementary Fig. A3.

6.5 Discussion

These results show great potential in using convolutional neural networks trained de novo on
medical gray-scale images to predict oncological treatment outcomes. The average adult human
is capable of looking at an object or person and immediately classifying it properly (type of
object/name) with virtually 100% accuracy. This is largely due to the types of features that
our brains have developed to subconsciously look for and associate with a particular object or
person (e.g. sharp edges/color gradients combining into shapes). These concepts are precisely
what networks trained on ImageNet have learned to process. A major benefit to training a
network de novo is that it can learn abstract concepts unique to the dataset of interest such
as specific radiomic texture features. This is explicitly shown in Figures 6.3 and 6.4. The
radiomic analysis performed (Figure 6.4) shows that many of these filters are able to process
and distinguish radiomic features without explicitly being told the definition of any feature. The
primary example of this are the numerous blue peaks in Figure 6.4. Effectively, these filters
have learned the ability to see an image from a perspective that is interested in the value of
the radiomic feature ZSVs<zys. Furthermore, this feature is one of the radiomic features that

Vallieres et al. [25] found to be predictive. Similarly, many of the filters are strongly attuned to
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Figure 6.3 Maximal activation maps of four filters within the final convolutional layer.
Represents procedurally generated images that would each result in a particular filter being
maximally activated. While humans are capable of distinguishing between these four images,
we are currently unable to directly interpret them. Our framework is capable of analyzing the
type of data that these images represent. The lettering scheme is relevant to Figure 6.4. Color
map chosen solely for visualization purposes. The maximal activation map was generated as a
512 x 512 image to spatially represent the input CT shape.

the features LRHGE g rim and ZSNgrszu, the two other features that Vallieres et al. [25] found
predictive. The ability of our network to directly recognize radiomic features without being
told their definition is powerful for a number of reasons, one of which being it may remove the
need to specifically engineer new features. The relationship between the filters of our network
and the most predictive radiomic features of the compared study also helps build confidence
in the network’s output. As seen in Table 6.1, a combination approach does increase the AUC
from 0.88 to 0.92. This indicates that although our network does recognize the features to some
extent, it does not directly represent them. In other words, there is still some orthogonality

between the quantitative value of a radiomic feature and the filter’s impact on our network’s
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Figure 6.4 Normalized value of three radiomic features of interest across 64 convolutional
filters within the final convolutional layer. x-axis represents which filter within the third
convolutional block. y-axis represents the value of the radiomic feature, normalized across all
filters. Blue bars represent ZSV1 57y, red bars represent ZSNgrszy and yellow bars represent
LRHGEGgry- Of particular interest are the numerous blue peaks (a, ¢ and d). These filters
are strongly activated by an input region with a high value of the radiomic feature ZSVgrs7um,
precisely the feature that Vallieres et al.[25] found to be most predictive. Many of these filters
are also strongly activated by extreme (high or low) values of ZSNgrszy and LRHGEGrrim
(red and yellow respectively). In particular, many filters represent various permutations of the
three features. As an example, (a) is activated by all three radiomic features, (b) is mostly
activated by red, (¢) is mostly activated by blue and yellow, while (d) is mostly activated by
blue. The lettering scheme corresponds to the maximal activation maps shown in Figure 6.3.

output score. Future work could be done to further investigate the difference between the two

representations.

The visualization tools we used in this work begin to overcome one of the primary obstacles
in outcome analysis using a machine learning model: interpretability. The benchmark study

found the most predictive combination of radiomic features related with distant metastasis to
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be LRHGEGrrim, ZSVirszm and ZSNgrszy- While these features are mathematically well-
defined, it is difficult for humans to visualize them, let alone develop an intuition for them. In
comparison, the visualization tools our framework uses, particularly the class activation maps
(Figure 6.1), are more interpretable. It is noted that the interpretations discussed thus far do not
exhaust all the information our method can extract. Through future research and collaboration,
it is our belief that our framework can lead to further hypotheses. The visualization tools grant
the ability to not only have more confidence in the output, but also provide a tool to the medical

community that may help discover unknown aspects of these gray-scale images.

One major advantage of this framework is the lack of feature engineering, in stark contrast to
traditional radiomic frameworks. In particular, the benchmark study [25] required the extraction
of 55 pre-defined radiomic features, 40 of which were extracted using combinations of three
parameters (isotropic voxel size, quantization algorithm and number of gray levels). In total,
this resulted in the extraction of 1615 radiomic features. Prior to the extraction, an elaborate and
complex feature selection process was required to identify the “potentially useful" features [25].
Elaborate procedures for the selection of potentially useful features have also been developed
for radiomic analyses of other cancer types [44]. The approach developed in this report eschews
this problem by giving the algorithm the full set of un-altered pixel data of the tumor and
allowing the algorithm to tell the user what is important rather than the user explicitly telling the
algorithm what is important. This is one of the primary motivations behind our exploration of a
end-to-end CNN, without any feature or machine learning algorithm selection. Similarly, as the
handcrafted features were extracted from pre-segmented tumors, maintaining this segmentation
allows us to better evaluate the hypothesized connection between the CNN’s behavior and the

radiomic features.

There are improvements that could be made to this framework to potentially increase
prediction performance and generalizablity. As an example of a potential pre-processing step,
the CT images could be cropped to include only the field-of-view surrounding the tumor
itself. This could improve the learning capabilities of the algorithm particularly by improving
the location invariance of the model. However, this would be (albeit slightly) complicating
the framework, directly opposing one of its primary advantages. There are two sources of
information that could be added to our framework. The first would be to fully incorporate

3-dimensional information. In contrast to the radiomic study [25] which used the entire
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tumor volume, our framework only considers the central slice (with robustness estimated
by training on one slice superior/inferior). It is emphasized that this study was capable of
surpassing the predictive power of the benchmark study solely using a single 2-dimensional
image. By incorporating the entire tumor, the performance could potentially be further improved.
However, convolutional neural networks which incorporate 3-dimensional image information
are architecturally complex and computationally expensive. Another information source is each
patient’s positron emission tomography (PET) image. Vallieres et al. [25] found additional
predictive power in each patient’s PET image, so incorporating this information into our
framework should improve performance. Potential image manipulation needs aside, this would
be computationally simpler than incorporating volumetric information. The CT + PET image
could be introduced into the network in a 2-channel fashion: input data would be 512 x 512
x 2 pixels, rather than 512 x 512 x 1 pixels. This is akin to the 3-channel RGB input that
many traditional CNNs use. Additionally, our framework uses solely the pre-segmented gross
tumor volume as an input rather than including the surrounding tissue. Ideally one would
include the surrounding tissue and build a network capable of incorporating any information
within. This would also remove the need for location invariance, as there could be additional
information contained in the tumor’s precise location within the anatomy. Finally, while we
performed a relatively simple combination approach (logistic regression), future work could
study the different methods that could be used to better combine traditional radiomics and
CNN information. An in-depth study regarding transfer learning and whether a transfer-learnt
network is capable of recognizing the same radiomic features could also be performed. These
improvements were not included to align with the goal of assessing our primary hypothesis,

keeping the initial framework as simple as possible and to reduce training time.

This report showed the power and potential of using a deep convolutional neural network
built de novo to perform outcome predictions on the pre-treatment CT image of head and neck
cancer patients. Often transfer learning is used to train a CNN on a new dataset due to the
perception that thousands, if not millions of images are required to build an accurate model.
Our framework shows that a training set of 200 medical gray-scale images may be sufficient
to train a network de novo, with proper data augmentation. The model was shown to have the
ability to explicitly recognize radiomic features and further improve on the performance of a
traditional radiomics framework. Performance gains aside, our framework overcomes many of

the typical issues when building a traditional radiomics-based model. Specifically, our model is
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capable of being interpreted in a more intuitive fashion and completely eschews the need for
feature engineering. We believe our framework could serve as the base of a gray-scale image
analysis tool capable of being adapted to other imaging modalities (e.g., PET, MRI) or other

cancer sites (e.g., liver, lung, breast).

6.6 Methods

6.6.1 Patient cohorts

Extensive details regarding the patient cohort used throughout this report are publicly available
on The Cancer Imaging Archive (TCIA) [25, 45] repository. Eligible patients were taken from
four separate institutions (Hopital général juif (HGJ), Centre hospitalier universitaire de Sher-
booke (CHUS), Hopital Maisonneuve-Rosemont (HMR) and Centre hospitalier de I’ Université
de Montréal (CHUM)). The majority received chemotherapy adjuvant to radiotherapy (92%)
while the remainder solely received radiation (8%). All patients underwent joint FDG-PET/CT
scans, however this study only made use of the CT image. The training set was defined as
the patients from HGJ and CHUS, while the validation set was defined as the patients from
HMR and CHUM. This was the same distribution used in the compared study [25], specifically
notable due to the validation set only containing patients from independent institutions. Any
patients with metastases or recurrent H&N cancer at presentation were excluded, along with
any patients receiving palliative care. The median age of patients across the total cohort was 63
years (range: 18-88). The median follow-up period across all patients was 43 months (range:
6-112). Any patients that did not develop cancer recurrence and had a follow-up period of less
than 24 months were discarded. The outcome distribution for both cohorts is shown in Table 6.3.

It is noted that 2 patients from the training cohort were lost to data corruption.

6.6.2 Convolutional neural network architecture

Our CNN contains four main operations: convolution, non-linearity, pooling and classifi-
cation. These four operations are facilitated by layers, which are the building blocks of the
overall framework. The convolution operation is ultimately what learns and subsequently
extracts features from the input data. The layer includes a variable number of convolutional

filters, each of which acts as a sliding window (of a small size, e.g., 5 x 5 pixels) applying



96 Deep learning in head & neck cancer outcome prediction

Table 6.3 Patient/outcome distribution [25, 45]

Training cohort Validation cohort

Total 194 106
Outcome
Distant metastasis (DM) 26 (13%) 14 (13%)
Loco-regional failure (LRF) 29 (15%) 16 (15%)
Death 32 (16%) 24 (23%)
Institution
Hopital général juif (HGJ) 92 (47%) -
Centre hospitalier universitaire de Sherbooke (CHUS) 102 (53%) -
Hopital Maisonneuve-Rosemont (HMR) - 41 (39%)
Centre hospitalier de 1’Université de Montréal (CHUM) - 65 (61%)
Tumor type
Oropharynx 129 (66%) 77 (73%)
Hypopharynx 5 (3%) 7 (7T%)
Nasopharynx 20 (10%) 8 (7%)
Larynx 36 (19%) 9 (8%)
Unknown 4 (2%) 5 (5%)

a convolution over the input data. By learning a number of different filters (e.g., 64), the
network is able to incorporate a large variety of features. The more filters we choose to learn,
the more image features the network is able to ultimately extract and recognize in unseen
images. The non-linearity operation is needed to accurately model the type of real-world
data we are interested in. Many CNNs have adopted the use of a rectified linear unit (ReLU),
which simply replaces all negative input values (from the preceding convolutional layer) by
0. Instead, we use a parametrized rectified linear unit (PReLU), which has largely the same
effect but allows a small amount of the negative input values to propagate through the network
by multiplying the negative portion of the input domain by a learnt non-zero slope [46]. Next,
the pooling operation serves to progressively reduce the spatial size of the input information.
This is important for computational efficiency, to ensure that the model can be generalized and
most importantly, to introduce location invariance. In our model we utilize “max-pooling”,
an operation that replaces every 4 x 4 region of input data with the maximum value among
them. Finally, the classification operation takes all the high-level features from the previous
representations and combines them using a sigmoid activation function to determine which

class the input represents.
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Henceforth, we will refer to convolutional blocks, which contain the convolution operation,
the non-linearity operation and the pooling operation stacked one after another. By stacking
convolutional blocks, the network is able to progressively learn complex image features that

humans are not used to processing.

Our CNN architecture is shown in Figure 6.5 and was largely chosen for its simplicity, a
characteristic that increases the model’s ability to generalize and reduces the risk of over-fitting.
Of particular note is the usage of a 512 x 512 pixel input layer, allowing any standard CT
image to directly be analyzed by the network with minimal pre-processing. The input layer is
followed by 3 consecutive convolutional blocks. Each block consists of a convolutional layer,
a max-pooling layer and a PReLu layer. It is noted that the PReLu layers are not explicitly
depicted in Figure 6.5. The convolutional layers used a filter size of 5 x 5 pixels, 3 x 3
pixels and 3 x 3 pixels, respectively. These layers formed the foundation of the network, each
subsequent layer uncovering more complex features. The first block containing a larger filter
allowed the later layers to have larger effective fields of view, combining a larger number of
input pixels to determine important features. Notably, the max-pooling layers grant the network
some degree of location invariance, a crucial attribute given the fact that the location of the
tumor within the CT should not impact the outcome. The 3 convolutional blocks were followed
by two consecutive fully connected layers and a final PReLu. Finally, a drop-out layer was
included after the last fully connected layer, directly prior to the classification layer. Drop-out
played a major role in reducing over-fitting by removing half of the information every single
stochastic gradient descent iteration. Each iteration, the output of half of the nodes in the
final fully connected layer were set to 0. This teaches the network that it must be capable of
functioning even with a substantial amount of missing information, effectively forcing it to not

rely too heavily on a single piece of information [9].

6.6.3 Implementation details

Our framework was built on Python3 using the Keras library operating on the well-optimized
tensor manipulation library Tensorflow[47, 48]. The final outcome probability (in the classifica-
tion layer) was computed using a sigmoid classifier. Each convolutional block used a PReLLU as
an activation function. The network weights were optimized using a stochastic gradient descent
algorithm with a fixed learning rate of 0.001 and a momentum of 0.5. The mini-batch size

was 32 and the objective function used was binary cross-entropy. Image augmentation was
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Figure 6.5 Depiction of our convolutional neural network’s architecture. Text below the
graphic represents the operation between layers. Text above the graphic represents the number
of feature maps or nodes within the layer. The CNN consists of three consecutive convolutional
blocks, each of which contain a convolutional layer (of varying filter size), a max-pooling layer
(4 x 4 kernel) and a parametric rectified linear unit (not shown). Following this, the output is
flattened and proceeds through two fully connected layers, a parametric rectified linear unit (not
shown) and a dropout layer prior to being classified via a sigmoid activation function.

performed to increase generalization and reduce the training bias that the network is inherently
subjected to [9]. Prior to training, each image was randomly flipped (horizontally and/or
vertically), rotated a random amount (0-20°), and shifted a random fraction (0 to 0.4 times
the total width of the image) in a random direction. This resulted in the total training dataset
(and thus a single epoch) consisting of 4000 images (each tumor is augmented roughly 20
times). Our algorithm was trained and evaluated on a pair of NVIDIA GTX 1080TI graphic
processing units to exploit their computational speed. Total training time for one network
required approximately 5 hours (100 epochs). The time required to predict outcomes on the
validation cohort is approximately 100 milliseconds. More details regarding the implementation

and the specific range of parameters tested can be found in the Supplementary Methods.
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7.1 Preface

This study builds on the previous work (Chapter 6) by integrating more readily available
information into the outcome prediction. The logical step to take after the previous study was
to incorporate the PET image and subsequently the clinical information. The current chapter
describes the improvements gained from including these other types of pre-treatment data.
These results in specific indicate the strength of outcome prediction models, particularly when

harnessing pre-treatment data and the combination of multiple forms of input data.

7.2 Abstract

As patients receive cancer care, a tremendous amount of data is generated, much of which
is often not used to its full potential. In particular, with few exceptions all patients undergo

CT imaging and a substantial fraction receive PET imaging. We hypothesized that a novel
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deep learning framework could incorporate the pre-treatment PET/CT imaging data of head
& neck cancer patients along with relevant clinical variables to perform outcome prediction
that exceeds the ability of the current state-of-the-art models. We tested this hypothesis using
a training (194 patients) and validation set (106 patients) which were mutually independent
and included 4 institutions. The architecture involved a novel training methodology whereupon
2 image input branches (PET/CT) were trained independently prior to being merged with
a clinical branch. For predicting overall survival, our method achieved an AUC of 0.86, a
substantial increase (p-value = 10~3) over the previous work (AUC = 0.70), which incorporated
CT data only. Furthermore, we evaluated the impact that missing data has on our model to
determine its robustness. Our framework yields models that easily combine multiple forms of

input information and perform accurate outcome prediction.

7.3 Introduction

Radiation therapy is widely used to treat cancer patients, often in conjunction with chemotherapy,
surgery, targeted therapy or other alternatives. Over 50% of all patients receive radiation therapy
at some point during their cancer treatment [1]. For some cancers, radiation therapy is even more
prominent (e.g., 87% of breast cancer patients). Advances in radiation therapy over the past
decades have led to survival rates that exceed what was achievable prior to its usage. However,
the prognosis of any individual patient is still often poorly determined. This report will focus on
patients afflicted with head and neck (H&N) cancer, a group of neoplasms originating from the
squamous cells that line the mucosal surfaces of the oral cavity, paranasal sinuses, pharynx or
larynx. Long-term survival is often quite poor within these patients (as low as 35% depending
on the tumor type) [2—4]. Thus, a model that can accurately discern between high-risk patients

and low-risk patients is crucial, so that personalized treatments may eventually become a reality.

The vast majority of oncology patients receive some amount of medical imaging prior to
treatment, in order to diagnose, localize and facilitate the treatment of their cancer. Two of
the most common imaging modalities used in this context are computed tomography (CT) and
positron emission tomography (PET). With few exceptions (blood cancers), the CT scan is
used for all [5] cancer patients, while the PET scan is used for a substantial fraction. Although
the majority of H&N cancer patients have this data available, it is seldom used to its full

potential, particularly in outcome prediction. There is a wealth of literature investigating



7.3 Introduction 107

potential predictive image features (radiomics) of both modalities individually, but rarely are
they combined and investigated together within a deep learning context [6—13]. There is little
literature, if any, investigating the usage of both CT and PET input data as a direct input to deep
learning techniques, such as convolutional neural networks (CNN) [14]. This study develops
a deep learning framework which combines PET and CT image data with possibly relevant
clinical information, such as tumor type, age, chemotherapy (or lack thereof) and tumor staging

(TMN system [15]) to predict various clinical endpoints.

Within the past decade, deep learning algorithms have been increasingly used for healthcare
applications and have achieved great success in a number of tasks, including object detection,
semantic segmentation, object classification and CADx (computer-aided diagnosis) [16-26].
Our group showed that a convolutional neural network (CNN) could be applied directly to
a patient’s CT imaging data and perform outcome prediction of comparable accuracy to a
benchmark study on the same data-set [27]. A particularly novel aspect of that study was that
the network was trained de novo rather than using a transfer learning methodology. This is in
stark contrast to the vast majority of published literature. The current study improves on this
methodology by introducing both PET images and clinical information into the framework.
Although there have been deep learning frameworks developed to combine multiple medical
images, to the author’s knowledge, none allow for unregistered images or incorporate clinical
information. Moreover, few focus on outcome prediction and rather most are concentrated on

organ segmentation by combination of multiple MRI modalities [28, 29, 23, 30, 31].

The novel contributions of this work are three-fold. Firstly, we develop a novel multi-branch
deep learning framework, capable of incorporating multiple forms of input data to perform
accurate outcome prediction. Secondly, we propose a novel training methodology, where
each branch of the framework is trained independently prior to combination resulting in a
performance improvement. Finally, the framework is capable of functioning even if one of the
forms of input data is missing, a commonly occurring situation within outcome prediction and

thus a desirable feature within any predictive model.
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7.4 Results

7.4.1 Benchmark study comparison

This study used the same training and validation partitioning scheme as the benchmark study
[27]. This allows for direct comparison between the predictive metrics. The results obtained
from our multi-branch framework are shown alongside the results of the benchmark study in
Table 7.1. Method A represents the novel methodology introduced in this paper where the
image branches are trained individually prior to introducing the clinical data and the combining
multi-layer perceptron (MLP, see Methods for more detail). Method B represents training the
entire framework from a random initialization, with all branches participating simultaneously.
Table 7.1 represents the results obtained when using all available information: PET images,
CT images and clinical data. As shown, our framework improves performance for all three
outcomes. Using the DelLong test [32], improvement is statistically significant for loco-regional
failure (LRF, p-value of 10~3) and overall survival (OS, p-value of 10~%). Our proposed training
methodology (Method A) improves the performance when compared to Method B, although
not in a statistically significant fashion. The most substantial improvement was for overall
survival prediction (from an AUC of 0.70 to 0.86) and thus the subsequent evaluations/analyses

are discussed with respect to the OS model.

7.4.2 Cross validation

To evaluate the stability and robustness of our results, we performed 5-fold cross validation
on the entirety of the patient cohort (all 298 patients). Thus, each network was trained on
238 patients and tested on 60 patients. No hyper-parameter tuning was performed prior to,
or between any of the folds. The mean AUC in predicting overall survival across the 5 folds
(within the respective validation sets) was 0.83 (range: 0.77 to 0.87). This numerical quantity
should not be directly compared to the other results, considering the differing partitioning

methodologies.

7.4.3 Evaluation of framework with missing data

Figure 7.1 represents the network’s behavior if one form of input data is entirely missing

(implementation described further in Methods, using Method A for training). It is seen that
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Table 7.1 Validation set results compared to Diamant ef al.’s [27] results on the same
patient cohort. Method A represents the novel methodology introduced in this paper of
training each CNN branch individually, prior to introducing the full framework. Method B
represents training the entire framework from random initialization. Both methodologies are
more comprehensively described in the Methods section. Square brackets represent p-values
when compared to Diamant et al.[27, 32]. Bolded values represent a statistically significant
increase.

Distant metastasis (DM) Loco-regional failure (LRF) Overall survival (OS)

AUC

Method A 0.93 [0.27] 0.78 [103] 0.86 [1073]

Method B 0.85 0.70 0.78

Diamant et al. [27] 0.88 0.65 0.70
Specificity

Present study (A) 0.90 0.79 0.83

Diamant et al. [27] 0.89 0.67 0.67
Sensitivity

Present study (A) 0.93 0.75 0.79

Diamant et al. [27] 0.86 0.65 0.68
Balanced Accuracy

Present study (A) 92% 77% 81%

Diamant et al. [27] 88% 66% 68%

the framework continues to perform in all such cases, albeit with reduced performance. This
evaluation also gives intuition into the importance of both PET and clinical data. It is evident
that the removal of PET (shown by purple bars) has a substantial impact on the sensitivity
of the model, while in contrast the removal of the clinical data (shown by blue bars) has a
substantial impact on the specificity of the model. This is further evidence that the two forms
of information are complementary in nature. Figure 7.1 represents the behavior of the model
when trained with all data present, but evaluated with some data missing. Similar analysis was
performed to evaluate how the model(s) would behave if one (or more) forms of data were
missing from training. This behavior is shown in Figure 7.2. An additional visualization of
these results is shown in Figure 7.3. Solid lines represent the presence of both PET and clinical
data, dashed lines represent the absence of PET data and dotted lines represent the absence of
clinical data. A clear ‘clustering’ is seen in the ROC behavior, highlighting the importance of

both the PET and clinical data (and conversely, the relative insignificance of the CT data).
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Figure 7.1 Results when evaluating the model’s overall survival prediction performance
on the validation set if one branch of input data is entirely missing (implementation de-
scribed in Methods). This is a quantitative representation of how the model is capable of
functioning even if individual patients are missing a piece of input data, albeit while losing
predictive power. Balanced accuracy is described as the average of the specificity and sensitivity.
Of particular note is the reduction in sensitivity with discarded PET data (purple) and the
reduction in specificity with discarded clinical data (blue).

7.4.4 Interpretation of clinical branch

To further understand the behavior of the clinical branch, we created a number of artificial
cohorts where the clinical variables were constrained to take a certain value (while all other
information remained the same). This was done for tumor stage (all patients set to T4, all
patients set to TO), node stage (all N3, all NO) and tumor type (all hypopharyngeal cancer).
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Figure 7.2 Results when evaluating overall survival prediction performance on the valida-
tion set whereupon each model was trained with solely the information depicted on the
x-axis. Balanced accuracy is described as the average of the specificity and sensitivity.

Numerical results can be found in the Supplementary Information, however all artificial cohorts
behaved in a fashion that is consistent with what the literature would suggest [2—4]. If all
patients were changed to be stage T4 or N3, or have hypopharyngeal cancer, the number of
predicted high risk patients drastically increased. Similarly, if all patients were changed to be

stage TO or NO, the number of predicted high risk patients dramatically decreased.
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Figure 7.3 ROC results when evaluating the model’s overall survival prediction perfor-
mance on the validation set if one branch of input is entirely missing (implementation
described in Methods). Solid lines represent the presence of both PET and clinical data, dashed
lines represent the absence of PET data and dotted lines represent the absence of clinical data.

7.5 Discussion

The results presented in this report show great promise when combining multiple forms of imag-
ing and clinical data to perform outcome prediction. Additionally, the framework developed
is easily adaptable to forms of data not included here, such as other imaging modalities (e.g.
MRI, ultrasound) or other discrete variables (e.g. radiomics, genomics, biomarker concentra-
tions). Table 7.1 shows statistically significant performance improvements in local control and
overall survival. Furthermore, the novel training methodology introduced in this report again re-

sults in an improvement over simply training the entire architecture from a random initialization.

While the full framework represents the potential of using all available information, certain

patients may not have all the input data types the model was trained on. This problem will

1.0
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only be exasperated as more forms of data are added into such a framework (e.g. genomics). It
is for this reason that we have deliberately built our framework (and subsequently evaluated
it) in such a fashion that allows for one (or many) forms of data to be missing. Naturally, the
performance will decrease if any particular input is missing (Figure 7.1). However, we have
shown that the framework does not inherently cease to function. This methodology also allows
us to gain intuition of the importance of a particular type of input data. For example, discarding
PET data (purple bars) results in a significant drop in sensitivity, while discarding clinical
data (blue bars) results in a significant drop in specificity. Effectively, the PET information
seems to be particularly relevant in identifying patients with high-risk tumors (resulting in many
false negatives if removed) while the clinical information helps in recognizing patients with
lower-risk tumors (resulting in many false positives if removed). We note that the performance
of a model trained solely on CT images (Figure 7.2) is superior to that of one trained on all 3
forms of data and evaluated on only CT (Figure 7.1). This may indicate that a superior approach
to allowing the framework to function with missing data would be to have an ensemble of
models, each of which was trained on every possible permutation of data inputs. However,
a substantially larger cohort, ideally including patients of varying data availability, would be
required to concretely make such conclusions. In contrast, the performance of a model trained
solely on PET images (Figure 2) is inferior to that of one trained on all 3 forms of data and
evaluated on only PET (Figure 1). A possible explanation for this result is that when the model
is trained under the blanket influence of all the other forms of data, the model could learn
certain predictive correlations that would be unknown without said influence. In other words,
the optimization algorithm is able to get closer to the minimum along the ‘PET-axis" when

under the influence of other forms of data.

Another advantage to our framework is the lack of a requirement for the input images to
be spatially registered. The majority of algorithms that involve multiple images, for outcome
prediction or otherwise, require the images to be spatially registered. Not only can this task be
time-consuming, challenging or impossible, it also adds an unavoidable source of error. Our
framework was specifically developed to not require registration. A desirable consequence of
this choice is that the framework also does not necessarily require the PET/CT images to be of
the same anatomical location. In addition to the benefits just described, this also improves the
robustness of the model by allowing flexibility in precise location of all 3 dimensions of the

images used. Currently, both images are taken from the same general anatomical location (i.e.
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the GTV), however our framework allows for two images of differing location. This could be
used for outcome prediction incorporating information from multiple organs. A more detailed
analysis of the impact that tumor type has on the performance of the model was not possible due
to the relatively small number of patients. With a larger data-set, this impact could be quantified

and further investigated.

This work represents advancements towards the goal of truly personalized treatment. By
incorporating more information that is readily available from the clinic, we were able to
significantly improve the predictive performance of current state-of-the-art outcome prediction
models. Although this model only incorporated as intervention the use of chemotherapy as a
binary input, other intervention information could be also introduced. First, this could be simple
discrete variables, such as: type of radiation treatment (e.g. VMAT, CyberKnife, tomotherapy),
prescription dose, and number of fractions. However, using our framework, one could also
implement the dose grid of a patient’s radiation treatment plan. By combining the PET/CT
images, clinical information and dose grid of a patient in an outcome prediction context, one
could introduce a ‘quality score’ of a treatment plan. This could lead to generative modeling
where a truly personalized (and optimized) radiation treatment plan can be created based on

patient outcomes rather than an anatomy-based atlas or physical / radiobiological models.

7.6 Methods

7.6.1 Patient cohorts

Extensive details regarding the patient cohort used in this report are publicly available on The
Cancer Imaging Archive (TCIA) [10, 33] repository. Eligible patients were taken from four
separate institutions (Hopital général juif (HGJ), Centre hospitalier universitaire de Sherbooke
(CHUS), Hopital Maisonneuve-Rosemont (HMR) and Centre hospitalier de 1’Université de
Montréal (CHUM)). The majority received chemotherapy adjuvant to radiotherapy (92%) while
the remainder solely received radiation (8%). All patients underwent joint FDG-PET/CT scans,
both of which were used in this study. The training set was defined as the patients from HGJ
and CHUS, while the validation set was defined as the patients from HMR and CHUM. This
was the same distribution used in the two previous studies [10, 27], specifically notable due to

the two sets containing patients from independent institutions. Any patients with metastases
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or recurrent H&N cancer at presentation were excluded, along with any patients receiving
palliative care. The median age of patients across the total cohort was 63 years (range: 18-90).
The median follow-up period across all patients was 43 months (range: 6-112). Any patients
that did not develop cancer recurrence/pass away and had a follow-up period of less than 24

months were discarded.

The clinical variables included in the framework are: age, T-stage, N-stage, tumor type and
whether or not chemotherapy was administered. Although HPV-status was available for some
patients (40%) it was not incorporated due to the amount of missing data which would have
prevented the network from accurately training. The overall TMN stage was not incorporated
as the majority of patients (68%) were Stage IV and thus the distinction between T-stage and
N-stage was more informative. Similarly, all of the patients were MO and thus M-stage was not
included. The outcome distribution for both cohorts is shown in Table 7.2. It is noted that 2

patients from the training cohort were lost to data corruption.

7.6.2 Multi-branch network architecture

Our multi-branch framework currently includes 3 separate branches. The terminology ‘branch’
is used to indicate distinct forms of input data (e.g. PET, CT or clinical). The terminology is
also used to describe the portion of the entire framework which is trained independently prior to
merging the branches (described as Method A). The framework is based around a combination
of convolutional networks (which make up the branches) aligned horizontally, followed by a
multi-layer perceptron (MLP). As an input, the MLP takes the flattened output of each branch

and concatenates them into a single vector. Conceptually, this is depicted in Figures 7.4 and 7.5.

This overarching framework served as a basis for all hyper-parameter tuning. In other words,
the concatenation of 3 individual branches into a single MLP stayed consistent throughout
the report. Furthermore, informed by prior literature [27], the number of convolutional layers
within each CNN stayed constant. The following subsections describe each branch individually,
a detailed figure of the architecture (including exact sizes for each layer) is shown in the
Supplementary Methods.
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Table 7.2 Patient/outcome distribution [10, 33]. Percentage values are with respect to each

cohort.
Training cohort Validation cohort

Total 194 106
Outcome

Distant metastasis (DM) 26 (13%) 14 (13%)

Loco-regional failure (LRF) 29 (15%) 16 (15%)

Death 32 (16%) 24 (23%)
Institution

Hopital général juif (HGJ) 92 (47%) -

Centre hospitalier universitaire de Sherbooke (CHUS) 102 (53%) -

Hoépital Maisonneuve-Rosemont (HMR) - 41 (39%)

Centre hospitalier de 1’Université de Montréal (CHUM) - 65 (61%)
Age

Range 18 - 88 44 -90

Mean 62 +8 67 £7
Tumor type

Oropharynx 129 (66%) 77 (73%)

Hypopharynx 5 (3%) 7 (7%)

Nasopharynx 20 (10%) 8 (T%)

Laryngeal 36 (19%) 9 (8%)

Unknown 4 (2%) 5 (5%)
T-stage

T1 29 (15%) 10 (9%)

T2 65 (34%) 45 (43%)

T3 66 (34%) 28 (26%)

T4 30 (15%) 17 (16%)

Unknown 4 (2%) 6 (6%)
N-stage

NO 51 (26%) 9 (8%)

N1 29 (15%) 12 (11%)

N2 108 (56%) 72 (69%)

N3 6 (3%) 13 (12%)
Therapy type

Chemotherapy + Radiation therapy 156 (80%) 95 (90%)

Radiation therapy 38 (20%) 11 (10%)

Convolutional branches (PET/CT)

First, we describe the convolutional neural networks (henceforth referred to as the PET branch

and CT branch). Each CNN branch uses an architecture similar to that described in our
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Figure 7.4 Step 1 of Method A. Represents the individual (and separate) training of the
PET branch and the CT branch. This involves a (subsequently discarded) MLP, consisting
of two fully connected layers and a dropout layer. Specifics regarding architecture are found in
the Supplementary Information.

previous work [27]. This consists of sequential convolutional blocks, each of which contains
a convolutional layer, followed by an activation function, followed by a pooling layer. The
architectures for both the PET and CT branches contain 3 convolutional blocks, whereupon the
convolutional layers use filter sizes of 5 x 5 pixels, 3 x 3 pixels and 3 x 3 pixels, respectively.
The activation function used was the parametric linear unit (PReL.U), empirically determined to
be superior to other common activation functions. The max-pooling layers either used a 2 x 2
pixel or 4 x 4 pixel kernel for PET/CT respectively. The discrepancy was due to the difference
in image input size (128 x 128 pixels vs. 512 x 512 pixel for PET/CT) and to ensure that the
compressed representation at the end of the branches were of comparable size. Both image
modalities used the central slice of the tumor, defined as the slice with the maximum number of

GTV pixels (same as the previous study).
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Figure 7.5 Step 2 of Method A. Represents the incorporation of learned weights from
Step 1, followed by the concatenation of the output feature maps and a new MLP being
added and subsequently trained. The new MLP consists of a 256-node fully connected layer,
followed by a 128-node fully connected layer followed by a 0.5 dropout layer.

Discrete branch (clinical)

The discrete branch is made up of 5 input values. Age was simply entered as a continuous value
while T-stage, N-stage and tumor type were encoded in order to facilitate their implementation.
Whether or not a patient received chemotherapy/targeted therapy neoadjuvant/concomitant to
radiotherapy was encoded as a binary variable. No hyper-parameter tuning was performed for
this branch.

7.6.3 Training methods

Two training methods were developed and applied to the framework described. Method A
represents training the two image branches independently prior to their concatenation. The
independent training involves the usage of a 2-layer MLP stacked on top of the convolutional
layers . After the branch has been trained individually, that MLP is discarded (Figure 7.4) and
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the convolutional layers are used as an input for the next step. After both image branches have
been trained individually, an MLP is added to the concatenation of both branches and trained,
while the convolutional layer weights remain frozen (Figure 7.5). Finally, the MLP weights
are frozen while the convolutional layer weights (previously frozen) are allowed to vary with a
small learning rate (107°). Method B is where the entire architecture is initialized randomly

prior to being trained in one step.

7.6.4 Evaluation of framework with missing data

It was necessary to develop some methodology to evaluate the framework’s performance with
missing data as the network is not capable of generating an output with literally no input to
any given branch. This was trivial for the encoded values of tumor type, T-stage or N-stage
as the network was trained with some values of "Unknown" and thus when removing clinical
information, they were set to "Unknown". For age, we used the mean age of the entire training
set as an input for every patient (63 years). For chemotherapy, the node was set to ‘chemotherapy
+ radiation therapy", as this was the case for the majority of patients (92%) that the network was
trained on. For PET/CT, an image of noise was generated and used as an input. To maintain
the same range of pixel values, the noise images were generated with the same mean as their

respective training cohort.

7.6.5 Implementation details

Our framework was built on Python3 using the Keras functional API operating on the tensor
manipulation library Tensorflow 2.0 [34, 35]. The final outcome probability (in the combining
MLP) was computed via a sigmoid classifier. All network weights were trained using the
stochastic optimization algorithm Adam [36]. The mini batch size was 32 and as all outcomes
were binary, cross-entropy was used as an objective function. Image augmentation was per-
formed on the PET/CT input data as it has been shown to increase generalization and reduce
training bias, particularly on smaller data-sets [14]. No augmentation was performed on the
clinical data. Prior to training, each image was randomly flipped (horizontally, vertically or
both), rotated a random amount (from O - 20°), and shifted a random fraction (from O to 0.2
times the total width/height of the image) in a random direction. This resulted in the total
training data-set (and thus a single epoch) consisting of 4000 images (each patient’s images are

augmented roughly 20 times). It is noted that while the PET/CT input data is unregistered, their
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augmentation was paired. In other words, for each input sample, both the PET and CT images
were flipped/rotated/shifted in an identical fashion. If this was not done, the algorithm would
be attempting to learn from two ‘different’ augmented tumors. All computation performed
throughout this report was done on a pair of NVIDIA GTX 1080TT graphic processing units.
Total training time for one network required approximately 3 hours (150 epochs). More details
regarding the implementation and the specific range of parameters tested can be found in the
Supplementary Methods.
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Chapter 8
Summary and future directions

This chapter summarizes the work presented throughout this thesis, highlighting the novelty of
each work and concludes by discussing how outcome prediction could evolve within radiation

oncology eventually resulting in generative modeling within a personalized treatment context.

8.1 Summary

The entirety of this thesis focused on using pre-treatment data to predict a cancer patient’s
prognosis after they receive radiation therapy. There are numerous types of methodologies to
predict outcomes and numerous types of medical data. The two primary objectives incorporated
different methodologies (statistical correlations/deep learning), different types of data (dose
distributions/medical images) applied to different types of cancer patients (non-small cell lung
cancers/head & neck cancers). In order to properly understand the presented work, it was
first necessary to detail the statistical tests & metrics used (Chapter 2) along with the basic
theory behind deep learning in addition to the current deep learning applications within the
field of medical physics (Chapter 3). Then, the thesis described the found correlation between
dose metrics outside the PTV and distant metastasis rates for NSCLC patients who received
conventional (Chapter 4) or robotic-mounted (Chapter 5) radiotherapy. The latter half of the
thesis described the usage of medical images (both CT & PET) as input into a deep learning
framework applied to head & neck cancer patients (Chapters 6 & 7).
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8.1.1 Dose outside the PTV as a predictor of DM in NSCLC SBRT pa-

tients

Often, dosimetric outcome prediction studies involve analysis of the dose to conventionally
contoured structures, such as the PTV or the OARs. In contrast, the first goal of this thesis
investigated the dose outside the PTV and whether it could predict DM in NSCLC SBRT
patients. The initial hypothesis was that microscopic cancer cells could be present outside of
the PTV and thus the dose to that region could be of importance. An isotropic PTV growing
algorithm was built in order to facilitate the analysis of this region. Two types of regions were
investigated; continuous shells of thickness x and discrete 1 mm thick rings x mm away from

the edge of the PTV. Both the mean and median dose to these regions were computed.

Both chapters represented the first time that the region directly outside the PTV was in-
vestigated in a formulaic fashion. They also resulted in the discovery of an association which
through prospective trials could lead to a clinical change in practice. Chapter 4 considered
solely NSCLC patients who received conventional treatment modalities, specifically conformal
radiotherapy (CRT) or volumetric modulated arc radiotherapy (VMAT). A relationship was
found between the mean dose to a continuous region of thickness 30 mm and the incidence
of distant metastasis. Of particular note was the discovery of a ‘threshold dose’. Patients
who received higher than said threshold dose had substantially reduced DM rates compared
to those who received below. Chapter 5 explored whether a similar correlation was found
for a unique robotic-mounted treatment modality (CyberKnife). Interestingly, no explicit
correlation was found between the dose metrics and any region analyzed. However, nearly
all of the CyberKnife patients were found to be above the previously determined threshold
dose. Given the sigmoidal behaviour of tumor response [1, 2], the lack of correlation was
consistent with what we would expect. Despite the lack of explicit correlation in the dose
metrics, CyberKnife was still found to perform significantly better with respect to distant control
as well as local control. We hypothesized that this could be due to numerous factors, includ-

ing the non-coplanarity and the robust motion tracking employed exclusively by the CyberKnife.

This work demonstrated that the spatial information within the dose distribution is of
relevance to outcome prediction research. Although the majority of studies (and modern treat-

ment planning practice) solely consider dose prescriptions/constraints or relatively generalized
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NTCP/TCP models, these results suggest that more complex spatial personalization of treatment
plans may result in superior outcomes. Notably, this research suggests that attention ought to be

taken to not just the region suspected to be cancerous, but also the most proximal regions.

8.1.2 Deep learning framework for outcome prediction in H&N patients

The latter half of this thesis investigated a different outcome prediction methodology applied
to a different cohort of cancer patients. In this case, a deep learning framework was built (and
subsequently developed) to predict the prognosis of head & neck cancer patients. Chapter 6
presents the first architecture that was built, one that only incorporates the CT. This, along
with the concept of training de novo, were deliberate decisions in an attempt to start simple.
This work represented the first end-to-end convolutional neural network that could perform
outcome prediction on H&N cancer patients using solely a pre-treatment CT of the GTV with
performance comparable to the current state-of-the-art. This architecture was also shown to
recognize images with similar radiomic features to those found to be predictive in the previous
study [3], without being explicitly told their definition. Visualization tools were also developed

and used to further interpret the quantitative results.

Chapter 7 further developed the deep learning architecture by incorporating both the PET
image and the clinical information. This work represented the novel application (and refinement)
of a deep learning algorithm to outcome prediction within oncology. Specifically, the multi-
modal framework and the explicit ability to function with missing information present findings
which are crucial when building an outcome prediction model capable of functioning within a
healthcare environment. It was shown that significant increases in performance were gained,
particularly when predicting local recurrence or overall survival. This study also incorporated
a novel training methodology where each modality of input data was trained independently
prior to their combination. Also shown was the ability to interpret the model’s dependence on
each type of data, along with its ability to function even when a data modality was missing. An
external dataset is currently being curated for further testing, however this portion of the thesis

showed great promise in the future of outcome prediction within the field.
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8.2 Future directions

The final portion of this thesis presents a speculative discussion regarding the future of outcome

prediction within radiation oncology.

8.2.1 Outcome prediction within radiation oncology

As presented throughout this thesis and discussed in the preceding section, the vast majority
(if not all) of ‘outcome prediction” models have not been clinically utilized yet. It is my firm
belief that within the next few years, substantial steps will be made towards leveraging the
full power of these models. There are a number of initiatives within (and outside of) radiation
oncology pursuing this aim. MEDomics’ vision is to ‘provide research scientists with integrated,
end-to-end, open-source multi-omics computation tools for state-of-the-art outcome predic-
tion modeling in oncology’ [4]. To that end, their consortium is developing an open-source
computation platform and novel algorithms to detect/understand/predict a number of clinical
endpoints in the treatment of cancers. CERR (a Computational Environment for Radiotherapy
Research) was developed to provide a tool which could facilitate the combination of various
types of information found within radiation oncology. The motivation was to make reproducing
research within radiation oncology treatment planning far easier, as often it’s difficult to even
review results from other researchers due to the lack of standardization. More specifically, the
format used in CERR was designed to be a ‘compact, self-describing object containing all the

treatment plan archive data’ [5].

In order for a model to be even considered as a clinical decision support tool, above all else
it must be trusted. For a model to be trusted, it requires extensive validation on a very large body
of data. The majority of mainstream outcome prediction medical models were built on hundreds
of thousands of data-points. For example, Esteva et al. [6] used 129,450 images to perform
binary classification on images of suspected skin cancer. They showed that a CNN could achieve
performance on par with 21 board-certified dermatologists. Within a hospital setting, often
acquiring anywhere close to one thousand data-points, let alone hundreds of thousands is a strug-
gle. This is one of the primary reasons why outcome prediction models are not currently used
in the radiation oncology clinic, but many steps are being taken (e.g. clinical data repositories
or ‘data lakes’) in an attempt to rectify this problem. However, it is still unclear as to how many

data-points are required for an end-to-end outcome prediction model to be clinically validated
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& subsequently accepted. Perhaps with numerous types of information (images, pathology,

genomic sequencing, etc...) one thousand patients, albeit with complete data, could be sufficient.

Ideally, the field (and to a broader extent, healthcare) will reach a point where a predictive
validated model exists for each cancer histology & treatment modality. Then, each patient
could be assigned a computationally determined pre-treatment ‘risk score’, indicative of their
most likely prognosis. This could then inform treatment options, such as whether escalating
the dose could reduce recurrence probability or whether a less aggressive prescription could
reduce negative side-effects. By incorporating models within all of oncology, the care team in
conjunction with the patient could also determine whether an alternative treatment or some com-
bination of treatments (e.g. chemotherapy, targeted therapy, surgery, etc...) could be ultimately
beneficial. The first iteration of models to be employed in the clinic will likely be focused on
targeting outliers; patients whose predicted treatment response is significantly distinct from the
more general population and perhaps an additional medical opinion or treatment alterations are

required.

Finally, the full potential of generative modeling (and thus, deep learning) will not be
realized until it is possible to automatically create a treatment plan for each patient, optimized
for that patient’s particular prognosis on that patient’s data. This could be done by training a
model (on a large sample size) to perform outcome prediction based on an input treatment plan
(including dose distribution, chemotherapy dose, etc...), medical images, clinical variables, and
more... After the model is trained (as a classification algorithm), the output classification score
could become an optimization metric, whereupon the treatment plan becomes the new output.
For new patients, the purpose of the model is to generate a treatment plan, given the influence
of the other input data (medical images, etc...) while optimizing the classification score. Prior
to generating an ‘outcomes-optimized’ treatment plan, it is necessary to fully understand how
the patient’s information (be it imaging, dose-volume or otherwise) relates to the outcome. The
work presented within this thesis does not explicitly include generative modeling; however,
represents steps towards this vision, one where a patient’s treatment is truly personalized and

explicitly optimized for their unique cancer.
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Appendix A

Supplementary Information - Chapter 4

Region of Interest Creation Algorithm

First, the PTV point cloud (a list of voxel positions contained directly on the PTV contour)
was used to create a 3D volume and superimposed upon the dose grid (contained within the
DICOM dose file). A convex hull encompassing the PTV, defined as the smallest convex set
that contains the PTV, was generated using this point cloud. Second, the PTV point cloud was
"grown" by a variable amount. The growing was facilitated by determining the centroid of the
PTV and generating a direction vector between the centroid and every point. The direction
vectors were scaled by a variable amount. Third, the grown point cloud was used to generate a
convex hull of the isotropically grown PTV. This convex hull was superimposed with the lung
contour mask, ensuring that the region of interest did not encroach on the contralateral lung and
only included voxels within the ipsilateral lung. Next, XOR logic was used to create a mask
which only considered points within the grown region but not within the PTV itself. This new
ring-shaped region is hereafter referred to as the continuous cumulative region of interest of
width X (ROI,,n:(Xx mm)). X was varied in a range of 1 mm and 100 mm in 1 mm increments and
represents the number of millimeters each direction vector was grown by. This maximal range
was chosen as to be significantly beyond the range which is suggested to contain microscopic
spread [6,7,13]. Additionally, regions representing a differential region of thickness 1 mm were
created. This region was also varied in relative distance from the PTV boundary from 1 mm to
100 mm in 1 mm increments and is hereafter referred to as ROl;;r(x mm). The ROI masks
were then applied to the dose grid, from which all voxels contained within each ROI were

analyzed.
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Statistical Analysis w.r.t. RP

The summary of statistical analysis w.r.t RP is shown in Table A.1.

Table A.1 Summary of statistical analysis w.r.t RP

AUC OR[95%CI] p-value

Differential 1 mm thick region at distance x [ROI;;¢ (16 mm)]

Mean dose received by ROl (16 mm) 0.50 1.16(0.55,2.62) 0.72

Median dose received by ROIy;¢¢(16 mm) 0.50 1.18(0.55,2.63) 0.72
Continuous 30 mm spherical region [ROI,,; (30 mm)]

Mean dose received by ROl (30 mm) 0.50 1.23(0.55,2.37) 0.61

Median dose received by ROI,yn (30 mm) 0.50 1.11(0.40,3.08) 0.85
PTYV volume 0.62 2.50(1.17,5.32) 0.02
Homogeneity Index 0.50 / /
Median dose received by PTV 0.55 / /
Mean dose received by PTV 0.55 / /

The summary of statistical analysis w.r.t local control is shown in Table A.2.

Table A.2 Summary of statistical analysis w.r.t local control

AUC OR[95% CI'] p-value

Differential 1 mm thick region at distance x [ROI;;¢¢(16 mm)]

Mean dose received by ROl (16 mm) 0.50 1.48(0.71,3.79)  0.30

Median dose received by ROly;¢¢(16 mm) 0.50 1.47(0.70,3.78)  0.31
Continuous 30 mm spherical region [ROI,,, (30 mm)]

Mean dose received by ROl (30 mm) 0.51 1.64(0.81,3.42) 0.20

Median dose received by ROl (30 mm) 0.51 1.65(0.80,3.43) 0.20
PTYV volume 0.60 1.48(0.76,2.85) 0.25
Homogeneity Index 0.50 / /
Median dose received by PTV 0.51 / /

Mean dose received by PTV 0.50 / /
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Sub-cohort statistical analysis

The summary of statistical analysis w.r.t distant metastasis for each sub-cohort is shown in

Tables A.3, A4, A5, A.6, A7 and A8.

Table A.3 Summary of statistical analysis (sub-cohort A verified by biopsy)

AUC* OR? [95% CI°] p-value

Differential 1 mm thick region at distance x [ROI;;¢¢(16 mm)]

Mean dose received by ROI;isr(16 mm) 0.79 0.12(0.04,0.34) <107

Median dose received by ROly;¢ (16 mm) 0.77  0.16(0.06,0.41) <1073
Continuous 30 mm spherical region [ROI,,,; (30 mm)]

Mean dose received by ROl (30 mm) 0.80 0.10(0.03,0.31) <107

Median dose received by ROI,,n (30 mm) 0.77 0.15(0.06,0.39) < 107
PTV volume 0.74  0.22(0.09,0.53) 1074
Homogeneity Index 0.51 / /
Median dose received by PTV 0.50 / /
Mean dose received by PTV 0.50 / /

“with respect to distant metastasis
bwith respect to distant metastasis
“Confidence Interval
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Table A.4 Summary of statistical analysis (sub-cohort B restricted between first and third
quartile of follow-up period)

AUC* OR? [95% CI°] p-value

Differential 1 mm thick region at distance x [ROI;;; (16 mm)]

Mean dose received by ROl (16 mm) 0.84 0.05(0.01,022) <107

Median dose received by ROly;¢¢(16 mm) 0.77 0.14(0.05,0.38) < 107
Continuous 30 mm spherical region [ROI,,, (30 mm)]

Mean dose received by ROl (30 mm) 0.83  0.05(0.01,0.22) <107

Median dose received by ROl (30 mm) 0.83  0.06(0.01,0.25) <107
PTYV volume 0.72  0.24(0.10,0.62) 1074
Homogeneity Index 0.54 / /
Median dose received by PTV 0.55 / /
Mean dose received by PTV 0.54 / /

“with respect to distant metastasis
bwith respect to distant metastasis
“Confidence Interval

Table A.5 Summary of statistical analysis (sub-cohort C restricted between first and third
quartile of PTV volume)

AUC* OR? [95% CI°] p-value

Differential 1 mm thick region at distance x [ROI;;¢¢(16 mm)]

Mean dose received by ROl (16 mm) 0.76  0.15(0.04,0.53) 1074

Median dose received by ROIy;¢ (16 mm) 0.74  0.20(0.06,0.65) 1073
Continuous 30 mm spherical region [ROI,,,; (30 mm)]

Mean dose received by ROl (30 mm) 0.74  0.18(0.05,0.68) 1073

Median dose received by ROI,, (30 mm) 0.71 0.28(0.09,0.82) 102
PTV volume 0.50 / /
Homogeneity Index 0.56 / /
Median dose received by PTV 0.51 / /
Mean dose received by PTV 0.51 / /

“with respect to distant metastasis
bwith respect to distant metastasis
“Confidence Interval
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Table A.6 Summary of statistical analysis (sub-cohort D restricted to patients receiving
three fractions of radiation)

AUC* OR? [95% CI‘] p-value

Differential 1 mm thick region at distance x [ROI;;¢¢(x)]

Mean dose received by ROI;rr(16 mm) 0.82 0.07(0.02,0.27) <107

Median dose received by ROIy;¢¢(16 mm) 0.80 0.10(0.03,0.33) <1073
Continuous 30 mm spherical region [ROI,,; (30 mm)]

Mean dose received by ROI (30 mm) 0.83  0.06(0.01,0.26) < 1073

Median dose received by ROI,, (30 mm) 0.81  0.09(0.03,0.31) <1073
PTV volume 0.72  0.23(0.08,0.63) 107*
Homogeneity Index 0.53 / /
Median dose received by PTV 0.57 / /
Mean dose received by PTV 0.57 / /

“with respect to distant metastasis
bwith respect to distant metastasis
“Confidence Interval

Table A.7 Summary of statistical analysis (sub-cohort E restricted to patients treated at
MUHC)

AUC® OR”[95% CI¢] p-value

Differential 1 mm thick region at distance x [ROI;;¢¢(x)]

Mean dose received by ROl (16 mm) 0.75 0.23(0.07,0.68) <1073

Median dose received by ROIy;¢¢(16 mm) 0.76  0.19(0.06,0.58) < 10~*
Continuous 30 mm spherical region [ROI,,; (30 mm)]

Mean dose received by ROl (30 mm) 0.79  0.14(0.04,0.49) < 10~*

Median dose received by ROl (30 mm) 0.78  0.15(0.05,0.53) < 10~*
PTYV volume 0.80 0.06(0.01,0.40) 107>
Homogeneity Index 0.53 / /
Median dose received by PTV 0.54 / /
Mean dose received by PTV 0.53 / /

“with respect to distant metastasis
bwith respect to distant metastasis
“Confidence Interval
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Table A.8 Summary of statistical analysis (sub-cohort F restricted to patients treated at

CHUM)
AUC* OR? [95% CI‘] p-value

Differential 1 mm thick region at distance x [ROI;;s¢(x)]

Mean dose received by ROIy;(16 mm) 0.81 0.10(0.02,0.26) <107

Median dose received by ROIy;¢¢(16 mm) 0.73  0.23(0.08,0.64) < 1073
Continuous 30 mm spherical region [ROI,,, (30 mm)]

Mean dose received by ROl (30 mm) 0.75 0.15(0.05,0.48) < 10~*

Median dose received by ROIo,: (30 mm) 0.72  0.26(0.09,0.72) < 1073
PTYV volume 0.59 0.38(0.15,0.96)  0.03
Homogeneity Index 0.53 / /
Median dose received by PTV 0.53 / /
Mean dose received by PTV 0.52 / /

“with respect to distant metastasis
bwith respect to distant metastasis
“Confidence Interval
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Region of Interest Creation Algorithm

The ROI creation algorithm is identical to that which was used in the previous study. The
corresponding Figure from said study is also reproduced here for completeness (Figure 1).
First, the PTV point cloud (a list of voxel positions contained directly on the PTV contour)
was used to create a 3D volume and superimposed upon the dose grid (contained within the
DICOM dose file). A convex hull encompassing the PTV, defined as the smallest convex set
that contains the PTV, was generated using this point cloud. Second, the PTV point cloud was
"grown" by a variable amount. The growing was facilitated by determining the centroid of the
PTV and generating a direction vector between the centroid and every point. The direction
vectors were scaled by a variable amount. Third, the grown point cloud was used to generate a
convex hull of the isotropically grown PTV. This convex hull was superimposed with the lung
contour mask, ensuring that the region of interest did not encroach on the contralateral lung and
only included voxels within the ipsilateral lung. Next, XOR logic was used to create a mask
which only considered points within the grown region but not within the PTV itself. This new
ring-shaped region is hereafter referred to as the continuous cumulative region of interest of
width x (ROI,,n: (X mm)). X was varied in a range of 1 mm and 100 mm in 1 mm increments and
represents the number of millimeters each direction vector was grown by. The ROI masks were

then applied to the dose grid, from which all voxels contained within each ROI were analyzed.
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Supplementary Statistics

The DM event rate for the higher-than-threshold branch of the CyberKnife cohort (n=192) was
13%. The DM event rate for the lower-than-threshold branch of the CK cohort (n=13) was 0%.
Analysis on this partition was not included in the main text of the manuscript due to the lack of

a sufficient number of patients within the lower branch to infer any meaningful conclusions.

1 mm thick

differential ROI 10

mm from PTV
.— (ROl ,,{10mm))
PTV

% S/ 2y, ),
7y, 7
Y,

5 mm continuous
ROI
(ROI,,,.(5mm))

Figure B.1 Left side: Depiction of the ROI algorithm. Inner green volume represents the
PTYV, black represents the boundary of the 30-mm thick shell-shaped region. Right side:
Two-dimensional example of the region of interest creation algorithm. Shown are the PTV,
ROI.,,;(5 mm) (the continuous region up to S mm outside the PTV) and ROI;;5.(10 mm) (I mm
region, 10 mm away from the PTV). Reproduced from previous study [3].
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Figure B.2 The impact of considering intrafraction motion on the dose to the RO/, as a
function of distance x from the PTV. This was done for a subset of 18 VMAT/CRT patients.
Beyond 10 mm, the mean difference in the dose to the ROI,,,; as calculated with the non-shifted
vs. the motion-averaged dose distribution is less than 2%
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Figure B.3 Kaplan-Meier regional progression-free survival curves. The shaded regions
correspond to the 95% confidence band of their respective survival curves. Crosses represent
censored datapoints.
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Figure B.4 Kaplan-Meier overall survival curves. The shaded regions correspond to the 95%
confidence band of their respective survival curves. Crosses represent censored datapoints.



143

=)
S

4
o
S

o
)
S

e
=
=)

HR =3.54
(95%CI: 1.8 - 7.1)
p-value <1073

HR =2.23

(95%CI: 1.3 - 3.8)

0507 p-value = 0.003

0401 —— CyberKnife, n =205
—— VMAT/CRT, n=217

o
W
S

—— CyberKnife, n = 205
—— VMAT/CRT 9 1gy, n =52

N
=
(=1
Locoregional progression-free survival
=
D
(=]

Locoregional progression-free survival
f=]
(=)
(=]

o
W
S

Locoregional Locoregional
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time [months] Time [months]

(a) The top curve (blue) represents the entire Cy- (b) The top curve (blue) represents the entire Cy-
berKnife cohort while the bottom curve (red) repre- berKnife cohort while the bottom curve (red) repre-
sents the VMAT/CRT -Gy cohort. sents the entire VMAT/CRT cohort.
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Figure B.6 Kaplan-Meier distant metastasis free survival curves restricted to only patients
with a prescription dose of 60 Gy in 3 fractions. The shaded regions correspond to the 95%
confidence band of their respective survival curves. Crosses represent censored datapoints.
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Figure B.7 Kaplan-Meier local progression-free survival curves restricted to only patients
with a prescription dose of 60 Gy in 3 fractions. The shaded regions correspond to the 95%
confidence band of their respective survival curves. Crosses represent censored datapoints.
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Figure B.8 Kaplan-Meier distant metastasis free survival curves restricted to patients
without adenocarcinoma. The shaded regions correspond to the 95% confidence band of their
respective survival curves. Crosses represent censored datapoints.
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Figure B.9 Kaplan-Meier local progression-free survival curves restricted to patients with-
out adenocarcinoma. The shaded regions correspond to the 95% confidence band of their
respective survival curves. Crosses represent censored datapoints.

Table B.1 Hazard ratios obtained from multivariable Cox proportional hazards models
with respect to distant metastasis and local failure. Ranges quoted in brackets are the 95%
confidence intervals. Bolded values represent statistical significance. For categorical variables,
the reference category, such as the “Unknown" histology, is marked with an asterisk. Categorical
covariates for which one of its categories featured no events were omitted.

Distant metastasis Local failure
Hazard Ratio p-value Hazard Ratio p-value

Sex [female vs. male*] 1.03 (0.61-1.74) 092 057(0.29-1.13) 0.11
Age [years] 098 (0.96-1.01) 029 0.960.93-1.000 0.04
Stage [T2 vs. T1%*] 1.58(0.65-3.83) 032 0970.28-342) 097
VMAT/CRT vs. CK* 1.23(0.70-2.16) 046 3.12(1.42-6.85) 0.004
PTV volume [cm?] 0.99 (0.97-1.01) 0.32 1.00(0.98 -1.01) 0.63
Prescription EQD2 [Gy] 099 (098-1.01) 060 0.97 (0.94-1.00) 0.04
Mean PTV EQD?2 [Gy] 1.00 (0.99 -1.02) 0.62 1.01 (0.99-1.03) 0.29
ROI(30 mm) threshold 0.28 (0.15-0.55) <103 0.68(0.29-1.55) 0.36
Histology

Unknown* ref ref ref ref

NSCLC NOS 2.19 (0.99 -4.83) 0.05 1.10(0.33-3.65) 0.88

Adenocarcinoma 097 (0.51-1.86) 093 1.34 (0.60-298) 047

Squamous Cell Carcinoma 1.04 (0.48 -2.25)  0.92 1.07 (0.34-3.32) 0091
Large Cell Carcinoma 1.50(0.34-6.64) 0.60 - -
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Table B.2 Hazard ratios obtained from a multivariable Cox proportional hazards model
with respect to various endpoints. Ranges quoted in brackets are the 95% confidence intervals.
Bolded values represent statistical significance. For categorical variables, the reference category,
such as the “Unknown" histology, is marked with an asterisk. Categorical covariates for which
one of its categories featured no events were omitted.

Regional failure Locoregional failure Death
Hazard Ratio p-value Hazard Ratio p-value Hazard Ratio p-value
Sex 1.25(0.58-2.73) 0.57 0.72(0.43-1.23) 0.23 0.95 (0.54 - 1.69) 0.87
Age [years] 1.03(0.98-1.08) 0.23 098(0.95-1.01) 0.12 0.99 (0.96 - 1.02) 0.51
Stage 1.98 (0.70-5.58) 0.20 1.64(0.74-3.60) 0.22 2.94 (146 -5.92) 0.002
VMAT/CRT vs. CK* 1.64 (0.69-3.85) 0.26 2.20(1.24-3.91) 0.007 1.68(0.90-3.11) 0.10
PTV volume [cm?] 1.00 (0.99-1.02) 0.69 1.00(0.99-1.01) 0.71 1.00 (0.99 - 1.01) 0.52

Prescription EQD2 [Gy] 1.00(0.97-1.03) 0.77  0.98 (0.96-1.00) 0.10 0.99 (0.97 - 1.01) 0.23
Mean PTV EQD2 [Gy] 0.99(0.97-1.01) 043 1.00(0.99-1.02) 0.81 1.00 (0.98 - 1.01) 0.85
ROI(30 mm) threshold ~ 0.52 (0.19-1.45) 021 0.68(0.35-1.34) 0.27 0.74 (0.34 - 1.60) 0.44

Histology
Unknown* ref ref ref ref ref ref
NSCLC NOS 2.56 (0.66-9.84) 0.17 1.62 (0.64 -4.13)  0.31 1.44 (0.56 - 3.73) 0.45
Adenocarcinoma 1.24 (0.41-3.78) 0.70 1.33(0.68 -2.60)  0.40 0.99 (0.48 - 2.06) 0.99
SCC 2.63(0.86-7.97) 0.09 1.95(0.91-4.19) 0.09 1.60 (0.72 - 3.59) 0.25

LCC - - - - 1.42(0.18-11.37)  0.74
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Table B.3 Hazard ratios obtained from a multivariable Cox proportional hazards model
with respect to various endpoints restricted to patients without adenocarcinoma. Ranges
quoted in brackets are the 95% confidence intervals. Bolded values represent statistical sig-
nificance. For categorical variables, the reference category, such as the “Unknown" histology,
is marked with an asterisk. Categorical covariates for which one of its categories featured no
events were omitted.

Distant metastasis Local failure
Hazard Ratio p-value Hazard Ratio p-value

Sex [female vs. male*] 1.05 (0.55 - 2.03) 0.88 0.76 (0.28 - 2.01) 0.57
Age [years] 099 (096-1.03) 0.78 0.96 (0.91 - 1.01) 0.09
Stage [T2 vs. T1%*] 1.30(0.43-3.89) 0.64 1.07 (0.18 - 6.24) 0.94
VMAT/CRT vs. CK* 096(049-1.89) 090 4.50(1.27-15.95) 0.02
PTV volume [cm?] 1.00 (098 -1.02) 0.63 1.01 (0.99 - 1.03) 0.27
Prescription EQD2 [Gy] 0.99 (0.97-1.02) 0.60 0.97 (092 - 1.01) 0.15
Mean PTV EQD2 [Gy] 1.00 (0.99-1.02) 0.91 1.02 (0.99 - 1.05) 0.15
ROI(30 mm) threshold 0.33(0.15-0.77) 0.01 0.47 (0.14 - 1.62) 0.23
Histology

Unknown* ref ref ref ref

NSCLC NOS 2.09 (094 -4.66) 0.07 1.24 (0.35-4.32) 0.74

Squamous Cell Carcinoma 0.95 (0.43 - 2.07) 0.89 1.03 (0.31 - 3.42) 0.96
Large Cell Carcinoma 1.44 (0.32 - 6.43) 0.63 - -
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Table B.4 Hazard ratios obtained from a multivariable Cox proportional hazards model
with respect to various endpoints restricted to only patients with a prescription dose of
60 Gy in 3 fractions. Ranges quoted in brackets are the 95% confidence intervals. Bolded
values represent statistical significance. For categorical variables, the reference category, such
as the “Unknown" histology, is marked with an asterisk. Categorical covariates for which one
of its categories featured no events were omitted.

Distant metastasis Local failure
Hazard Ratio p-value Hazard Ratio p-value

Sex [female vs. male*] 0.80 (0.34 - 1.91) 0.61 0.50 (0.13-1.89) 0.30
Age [years] 0.99 (0.94 - 1.04) 0.68 0.95 (0.89 - 1.02) 0.13
Stage [T2 vs. T1%] 1.98 (0.42 - 9.40) 0.39 - -
VMAT/CRT vs. CK* 0.93 (0.31-2.79) 089 5.88(1.18-29.39) 0.03
PTV volume [cm?] 0.99 (0.95 - 1.03) 0.58 0.98 (0.90 - 1.06) 0.57
Mean PTV EQD2 [Gy] 1.00 (0.99 - 1.02) 0.88 1.01 (0.98 - 1.05) 0.50
ROI(30 mm) threshold 0.20 (0.05 - 0.71) 0.01 0.61 (0.09 - 4.16) 0.61
Histology

Unknown* ref ref ref ref

NSCLC NOS 3.37(0.75-15.11)  0.11 - -

Adenocarcinoma 1.25(0.43 - 3.64) 0.68 0.60 (0.14 - 2.46) 0.47

Squamous Cell Carcinoma  1.48 (0.43 - 5.06) 0.53 - -
Large Cell Carcinoma 1.54 (0.16 - 14.64) 0.71 - -
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Figure B.10 Hazard ratio with respect to local failure obtained from a multivariable Cox
regression of the mean dose to the ROI,,,;(30 mm) for differing threshold levels. Hazard
ratios in the range of 0.28 to 0.41 can be found for a threshold between 30 to 34 Gy. Shaded
bands represent 95% confidence intervals.
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Supplementary Note 1: Minimal activation map

The procedurally generated minimal activation map is shown in Figure C.1. Evidently, this
figure represents noise. This is expected as the algorithm is trained to evaluate whether an
image is likely to be an aggressive tumor. Thus, procedurally generating an image to which the
network would assign a minimal score ends up resembling noise. This further reinforces that
the maximal class activation map (and its properties) represent a difference between more and

less aggressive tumors.

Supplementary Note 2: Radiomic analysis

As mentioned in the manuscript, the radiomic analysis (for 94 radiomic features as described
in IBSI [1]) was performed for the top 64 filters that make up the final convolutional block.
The maximal activation maps for the 64 filters are shown in Figure C.2 (low-resolution version,
high-resolution version requires separate download due to size). The radiomic analysis results

are shown in Figure C.3.

Supplementary Methods 1: Transfer learning approach

VGGI19 was used as a transfer learning base, chosen for being the most recently successful

network to win ImageNet while still maintaining similar architecture to ours (in comparison to
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Figure C.1 Minimal activation map. Depicts a procedurally generated image input that would
result in a minimal classification score of O (i.e. not distant metastasis).

the more advanced ResNet/GoogleNet). More explicitly, VGG19’s final layers involve multiple
fully connected layers, concluding in a fully connected layer with x nodes, where x is the number
of image classes. This is in comparison to more advanced networks, which may not employ the
same fully connected layer stack. Three approaches were taken. Firstly, the convolutional base

(and weights) of VGG19 were used with a randomly initialized fully connected stack identical
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Figure C.2 Maximal activation maps for top 64 filters in the final convolutional block.
Represents procedurally generated images that would each result in a particular filter being
maximally activated. Color map chosen solely for visualization purposes.

to the bottom portion of Figure 5. This fully connected stack was subsequently fine-tuned, with
a learning rate of 10-4, keeping the convolutional base weights frozen. As VGG19 requires
images of shape 224 X 224, our images had to be cropped to this size. This was done while

keeping the GTV itself as centered as possible in the cropped image. After 100 epochs of
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Figure C.3 Radiomic analysis across all features and filters. x-axis represents the radiomic
feature number as defined in the Image Biomarker Standardization Initiative (IBSI). y-
axis represents the filter number (arbitrary). Color indicates the normalized value of the radiomic
feature (standard deviations away from the mean calculated for a specific feature across all
filters). Color scale chosen solely for visualization purposes. This analysis represents that the
range of filters represents a diverse selection of radiomic features, combined in a number of
different ways.

training using the same partition scheme as the benchmark study, this resulted in an AUC of 0.69
predicting DM. The second method used an identical architecture, except the fully connected
stack was not randomly initialized, but rather used the learnt weights from our top performing

model. It was subsequently fine-tuned for 100 epochs, using a learning rate 10-4. This resulted
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in an AUC of 0.72. The final approach was identical to the second approach; however, we only
trained the final fully connected layer. That is, only trained 4096 parameters. This resulted
in an AUC of 0.76, slightly better when compared to the previous transfer learning methods
utilized, however still substantially worse than our de novo methodology. More work is needed
to investigate the full implications of using transfer learning in this context; for our study we

further concentrated on the performance of our own CNN constructed for this purpose.

Supplementary Methods 2: Parameters tested when building
the CNNs

A variety of architectures and parameters were tested during the course of this research. A
summary of what values were tested is shown in Table C.1. A more detailed explanation of each
parameter and the range tested is described below. We note that the exact choice of architecture
and parameters is a result of an educated trial-and-error process, and the intuition gleaned from
it. There is a decent degree of robustness in the variation of many parameters (e.g. size of
fully connected layers, number of filters, type of non-linearity), as slight modifications will not

qualitatively alter the results.

Table C.1 Summary of parameters tested during the course of this research. Bolded value
represents the value(s) settled on in the final model.

Parameter tested Values tested

Batch size 16, 32, 48

Number of filters 32, 64, 128, 256, 512
Number of convolutional blocks 2,3,4

Type of non-linearity PReL.U, ReLU

Filter size 3x3, 5x5, 7x7, 9x9, 12x12
Type of pooling Max pooling, Average pooling
Size of pooling 2x2, 4x4, 6x6

Number of fully connected layers 1,2,3

Size of fully connected layers 64, 128, 256, 512
Learning rate 102,103,104, 107
Momentum 0.25, 0.5, 0.75, 0.9
Rotation range (data augmentation) | 20°, 30°, 40°

Shift range (data augmentation) 0.2,0.3,04
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Batch size: The batch size represents the number of images that the network sees each
iteration of the algorithm. One epoch consists of several batches such that the network sees
every image once (i.e. # of batches/epoch = total # of images / batch size). The performance
seemingly began to plateau at the chosen batch size (32), higher batch sizes did not improve the
performance. Furthermore, at higher batch sizes, computational memory becomes a serious

concern, limiting our possible range of batch sizes.

Number of filters: The number of filters represents the number of learned weight matrices
within each convolutional layer. A variety of permutations was tested, always with deeper layers
including either an equal number or more (often double) filters than the previous layer. The
range (from 25 to 29) is a typical range tested when building a CNN framework. Our network
leans towards using a smaller number of filters when possible, to avoid over-fitting.

Number of convolutional blocks: The number of convolutional blocks drastically impacts
the complexity of the network. CNNs are prone to over-fitting, especially with a larger number
of convolutional blocks, limiting our range to that shown above. In particular, the CNN began

to overfit when using 4 convolutional blocks as opposed to 3.

Type of non-linearity: Parametric rectified linear units (PReLU) introduce a minor amount
of complexity into the network, which in our case resulted in a performance increase of approx-

imately 2%.

Filter size: Filter size represents the effective impact that a single pixel has on deeper layers.
A particularly large range was chosen as a priori the relevant neighbourhood around any given
pixel is unknown. As most tumors within our dataset were relatively small, the larger filter sizes

(i.e. 9 x 9 or higher) were quickly dismissed.

Type of pooling: Average pooling was attempted, but quickly dismissed for generalization
purposes. In our case, max pooling results in a network with significantly less over-fitting. This
is as expected, as each max-pooling layer effectively reduces the amount of information (which
possibly could be used to over-fit) by nearly 95%. In comparison, average-pooling reduces the

dimensionality, but still allows much of the information to flow through to the next layer.
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Size of pooling: Larger max pooling results in less over-fitting, but 6x6 resulted in the loss

of a substantial amount of information (particularly with the filter size used).

Number of fully connected layers: The number of fully connected layers significantly im-
pacts the complexity of the network. It also exponentially increases the computational power
required, restricting the maximum range. Like the number of convolutional blocks, we found
the network began to overfit when using more than 2 fully connected layers. On the other hand,
using 2 fully connected layers instead of 1 resulted in a significant performance increase (on
the order of 10%).

Size of fully connected layers: Similarly, the size drastically impacts the complexity and the
computational power required. It is typical to test up to a size of 2'°, however we did not due to

computational reasons.

Learning rate: Learning rate affects the step size that the algorithm takes during the gradient
descent algorithm. A learning rate that is too high can skip over a local/global minimum, while
a learning rate that is too low can get caught in a local minimum. We also experimented with
lowering the learning rate once the algorithm was close to a global minimum, however it did

not result in a performance gain.

Momentum: Similar to varying the learning rate, momentum can help the algorithm not get
caught in a local minimum. It does this by not taking a step solely based on the gradient, but
also incorporates the current velocity (akin to classical momentum). A wide range was tested as

a priori it is difficult to know what the proper value for our particular network is.

Rotation range (data augmentation): The rotation range was chosen to enable most pos-
sible arrangements of a particular tumor (as each image was also flipped horizontally and/or

vertically).

Shift range (data augmentation): The shift range was chosen as to not create a situation
where a tumor could be shifted entirely out of frame (<1% chance even at the maximum shift

value.
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Number of epochs: To ensure that each network had enough training time, they were trained
for 400 epochs and the training/validation loss was visually inspected. An example of the
training (blue)/validation (orange) loss progress for is shown in Supplementary Figure C.4. At
approximately 100 epochs, the network began to over-fit the training data (as shown by the
steeper slope on the training curve and drastic increase in the validation loss. Ultimately, the

model reached its validation loss minimum at the 34" epoch.
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Figure C.4 Training/Validation loss for a sample training of a network. Orange represents
the loss measured on the validation data-set, blue represents the loss measured on the training
data-set.
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Supplementary Note 1: Numerical results on artificial cohorts

(for clinical interpretation)

When applying the model to the actual cohort, 33/106 high-risk patients (w.r.t. overall survival)
are predicted (31%). In the first artificial set (T4 cohort), the model predicts 50/106 high-risk
patients (47%), to be expected as it is known that T4 tumors have a worse prognosis. Similarly,
in the second artificial set (TO cohort), the model predicts 22/106 high-risk patients (21%).

Further results are shown in Table D1.

Table D.1 Numerical results when applying overall survival prediction model to artificial

cohorts.
‘ Predicted high-risk patients True Negative Rate (TNR) True Positive Rate (TPR)
Actual Cohort 33/106 (31%) 68/82 (83%) 19/24 (79%)
All T4 50/106 (47%) 52/82 (63%) 19/24 (83%)
ANl TO 22/106 (21%) 73/82 (89%) 19/24 (54%)
AlI N3 36/106 (34%) 65/82 (79%) 19/24 (79%)
AIINO 27/106 (25%) 71/82 (87%) 19/24 (67%)
All hypopharyngeal | 101/106 (96%) 5/82 (6%) 24/24 (100%)
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Figure D.1 PET portion trained in Step 1 (red). Numbers are indicative of the dimensions of
each layer (“feature map”). Each layer alternates between a convolutional kernel (of size 5x5,
3x3, 3x3) and a max-pooling layer (2x2, 2x2, 2x2). Not shown is a dropout layer (0.5) after the
final fully connected layer.
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Figure D.2 CT portion trained in Step 1 (blue). Numbers are indicative of the dimensions of
each layer (“feature map”). Each layer alternates between a convolutional kernel (of size 5x5,
3x3, 3x3) and a max-pooling layer (4x4, 4x4, 4x4). Not shown is a dropout layer (0.5) after the
final fully connected layer.

Supplementary Methods: Parameters tested when building
the CNNs

A variety of architectures and parameters were tested during the course of this research. A
summary of what values were tested is shown in Table D2. A more detailed explanation of each
parameter and the range tested is described below. We note that the exact choice of architecture
and parameters is a result of an educated trial-and-error process, and the intuition gleaned from
it. Furthermore, informed by our previous work, we were able to perform a more efficient
parameter search, ultimately eliminating the need to test the extreme ranges. There is a decent
degree of robustness in the variation of many parameters (e.g. size of fully connected layers,
number of filters, type of non-linearity), as slight modifications will not qualitatively alter the

results.
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Table D.2 Summary of parameters tested during the course of this research. Bolded value
represents the value(s) settled on in the final model.

Parameter tested Values tested

Batch size 16, 32, 48
Number of filters 32, 64,128
Number of convolutional blocks 3

Type of non-linearity PReLU, ReLU
Filter size 3x3, 5x5, 7x7
Type of pooling Max pooling
Size of pooling 2x2, 4x4, 6x6
Number of fully connected layers 1,2,3

Size of fully connected layers 64, 128, 256, 512
Initial Learning rate 103,107
Rotation range (data augmentation) | 20°

Shift range (data augmentation) 0.2

Batch size: The batch size represents the number of images that the network sees each
iteration of the algorithm. One epoch consists of several batches such that the network sees
every image once (i.e. # of batches/epoch = total # of images / batch size). The performance
seemingly began to plateau at the chosen batch size (32), higher batch sizes did not improve the
performance. Furthermore, at higher batch sizes, computational memory becomes a serious

concern, limiting our possible range of batch sizes.

Number of filters: The number of filters represents the number of learned weight matrices
within each convolutional layer. A variety of permutations was tested, always with deeper layers
including either an equal number or more (often double) filters than the previous layer. The

range (from 25 to 27) was informed by our previous work.

Number of convolutional blocks: The number of convolutional blocks drastically impacts
the complexity of the network. CNNs are prone to over-fitting, especially with a larger number

of convolutional blocks; 3 were used as informed by our previous study.

Type of non-linearity: Parametric rectified linear units (PReLLU) introduce a minor amount

of complexity into the network, which in our case resulted in a performance increase of approx-
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imately 2%.

Filter size: Filter size represents the effective impact that a single pixel has on deeper layers.
Informed by our previous study, we were able to reduce the range of filter sizes tested. This is

further reinforced due to the size of each tumor.

Type of pooling: Max-pooling was used as informed by our previous study.

Size of pooling: Larger max pooling results in less over-fitting, but 6x6 resulted in the loss

of a substantial amount of information (particularly with the filter size used).

Number of fully connected layers: The number of fully connected layers significantly
impacts the complexity of the network. It also exponentially increases the computational power
required, restricting the maximum range. Like the number of convolutional blocks, we found
the network began to overfit when using more than 2 fully connected layers. On the other hand,
using 2 fully connected layers instead of 1 resulted in a significant performance increase (on
the order of 10%).

Size of fully connected layers: Similarly, the size drastically impacts the complexity and the
computational power required. It is typical to test up to a size of 210, however we did not due

to computational reasons.

Initial learning rate: Learning rate affects the step size that the algorithm takes during
the gradient descent algorithm. A learning rate that is too high can skip over a local/global
minimum, while a learning rate that is too low can get caught in a local minimum. Similar to
the previous study, we also experimented with lowering the learning rate once the algorithm

was close to a global minimum, however it did not result in a performance gain.

Rotation range (data augmentation): The rotation range was chosen to enable most pos-
sible arrangements of a particular tumor (as each image was also flipped horizontally and/or

vertically).
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Shift range (data augmentation): The shift range was chosen as to not create a situation
where a tumor could be shifted entirely out of frame (<1% chance even at the maximum shift

value).
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