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ABSTRACT

We give an overview of flux compactification and a brief introduction to the

present challenges in embedding inflation into string theory. With these challenges

in mind, we suggest a novel string theory setup in which to study brane inflation.

We construct a deformation of the warped resolved conifold background with su-

persymmetry breaking ISD (1,2) fluxes by adding D7–branes. We find spontaneous

supersymmetry breaking without generating a bulk cosmological constant. In the

compactified form, our background will no longer be a Calabi–Yau manifold. In the

presence of D7–branes, the (1,2) fluxes can give rise to non-trivial D-terms. We study

the Ouyang embedding of D7–branes and find that in this case the D–terms are in-

deed non-zero. In the limit when we approach the singular conifold, the D–terms

vanish for Ouyang’s embedding, although supersymmetry is broken. We discuss the

puzzle of determining the correct 4D supergravity superpotential and suggest an

approach to study the inflationary dynamics in this background.
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ABRÉGÉ

Nous donnons un survol de la compactification des flux dans la théorie des su-

percordes, ainsi qu’une brève introduction aux défis présents dans la réalisation de

l’inflation par le biais de la théorie des cordes. Nous proposons ainsi une concrétisation

originelle de l’inflation due aux branes. En ajoutant des branes D7 à la théorie de

type IIB, nous construisons une modification d’un fond de variété conique déformée

à l’aide de flux auto-duaux imaginaires ISD (1,2) brisant la supersymmétrie, sans

toutefois générer de constante cosmologique dans le volume. Dans sa forme com-

pactifiée notre fond ne sera plus une variété Calabi-Yau, puisqu’une classe de Chern

non-nulle sera permise. En présence des branes D7, les flux (1,2) peuvent de plus

générer des termes D non-triviaux. Nous étudions le plongement Ouyang de branes

D7 et trouvons que dans ces cas, les termes D sont effectivement non-nuls. Dans la

limite de la variété conique singulière, les termes D deviennent zéro pour le plonge-

ment de Ouyang, alors que la supersymmétrie parâıt être brisée. Nous discutons du

problème de la détermination du superpotentiel effectif en 4 dimensions, et suggérons

une approche pour l’étude de la dynamique de l’inflation dans ce contexte.
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ABRÉGÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 A brief review of string compactification . . . . . . . . . . . . . . . . . . 6

2.1 Type IIB string theory at a glance . . . . . . . . . . . . . . . . . . 7
2.2 Trivially factorized compactifications . . . . . . . . . . . . . . . . 10
2.3 Flux compactification . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Warped compactifications . . . . . . . . . . . . . . . . . . . 13
2.3.2 A general warped ansatz . . . . . . . . . . . . . . . . . . . 14
2.3.3 Solving the equations of motion and the Bianchi identities . 16

2.4 The 4D effective theory . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Preserving N = 1 supersymmetry . . . . . . . . . . . . . . 20
2.4.2 SUSY for the compact warped Calabi–Yau . . . . . . . . . 22

2.5 Non-compact warped solutions . . . . . . . . . . . . . . . . . . . . 26

3 Inflation in string theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 The inflationary paradigm . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Brane inflation and warped compactifications . . . . . . . . . . . . 31
3.3 Solving the First η-problem with Warped Backgrounds . . . . . . 32
3.4 Moduli stabilization and the second η-problem . . . . . . . . . . . 33
3.5 Finely tuned remedies . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 D3/D7 inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.7 A possible scenario for natural inflation . . . . . . . . . . . . . . . 39

4 D7–branes on the resolved conifold . . . . . . . . . . . . . . . . . . . . . 42

4.1 The background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

v



4.2 The warped resolved conifold with fluxes . . . . . . . . . . . . . . 45
4.3 The scalar potential and supersymmetry . . . . . . . . . . . . . . 48
4.4 Ouyang embedding of D7–branes on the resolved conifold . . . . . 53
4.5 D-terms from non–primitive background flux on D7–branes . . . . 61

5 Future Directions and Applications to Cosmology . . . . . . . . . . . . . 70

5.1 Compactification and non-Kählerity . . . . . . . . . . . . . . . . . 70
5.1.1 Inflationary dynamics . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 Supersymmetry restoration . . . . . . . . . . . . . . . . . . 72

5.2 AISD Fluxes and Anti-Branes . . . . . . . . . . . . . . . . . . . . 73
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A The geometry of the resolved conifold . . . . . . . . . . . . . . . . . . . . 75

B Ouyang embedding of D7–branes on the resolved conifold . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



CHAPTER 1

Introduction

There should be little wonder that the inflationary model continues to be the

dominant paradigm of early-universe cosmology with its robustly successfull obser-

vational predictions [1]. Nevertheless, many of its proponents are dissatisfied with

standard effective field theoretic approaches to inflation and remain in search of a

fundamental theory in which to make sense of the model’s conjectured characteristics

and requirements. Although effective field theories have given much valuable insight,

understanding the naturality and stability of a specific model requires a more thor-

ough understanding of the UV physics. Without a clear picture of how inflation is

embedded into a fundamental physical theory, inflation will continue to be a model

of questionable motivation.

It is accordingly valuable to see if it is possible, first, to embed the inflationary

paradigm into a realistic string theory background and, second, to determine how

natural such an embedding is within string theory. While the first challenge as been

answered affirmatively to most investigator’s satisfaction [2, 3, 4, 5, 6, 7], finding

examples that satisfy the somewhat nebulous requirement of naturalness has been
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problematic. In this manuscript we will construct a background that shows promise

for generating inflation without excessive fine-tuning.

The requirements of an inflationary model can be fit into string theory in a

vast number of ways. We make the choice to construct a background for a particular

subset of these models known in the literature under ’brane-inflation’. Current brane

inflation models (e.g. [2, 3, 4, 5]) are usually situated in a particular type IIB string

theory setup known as the “warped throat”. In this setup, one considers supergravity

solutions with non-vanishing background fluxes which generate a strongly warped

Calabi–Yau geometry via their backreaction on the metric. The warping introduces

a hierarchy in the 4D Planck scale dependent on the position in the background

manifold. Almost uniformly in the literature, the Calabi-Yau background is taken

to be the deformed conifold [8], although many of the calculations are actually done

using the metric of a singular conifold for ease of calculation. The small compact end

of the conifold is referred to as the infrared tip of the throat while the non-compact

end is referred to as the UV, in accordance with the hierarchy generated by the

warping.

Typically in brane inflation models an anti–D3-brane is placed at the infrared tip

of the throat and a D3-brane at some distance from it towards the UV. The D3/D3-

pairing breaks supersymmetry, uplifts the vacua [9], and generates a force on the

branes [10, 11]. The long-range attractive forces between the branes result specifically

from a gravitational attraction between the branes and from the Ramond-Ramond

background fields under which the branes are charged. The potential corresponding

to these forces is flattened by the warping of the metric between the brane and
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anti-brane [2]. Due to this flatness, the field in the 4D theory corresponding to the

brane/anti-brane distance is an ideal candidate for the inflaton field.

Nevertheless, such a setup is fraught with problems; generating a proper in-

flationary model under this program is exceedingly difficult [2]. When one takes

into account the full spectum of moduli fields, it has not yet been possible to iso-

late a slow-rolling inflaton and simultaneously stabilize the remaining fields without

appeals to fine-tuning [2, 3, 4]

In this paper, we consider a variant approach that compactifies on a warped

resolved conifold [12] instead of the warped deformed conifold considered in other

work to date. The salient difference between these two backgrounds is the blow-up of

a 2-cycle at the tip in the resolved conifold as opposed to a 3-cycle for the deformed.

The broken Z2 symmetry of the blown up 2-cycle should capture some effects of more

general non-Calabi-Yau conifold backgrounds that are closely related to the resolved

and deformed conifolds.

This setup obviates the need for anti-branes as the background fluxes break

supersymmetry spontaneously. Despite this fact, we will show conclusively that

the fluxes nevertheless obey all of the equations of motion up to linear order in a

suitable expansion parameter. We will solve the field equations for the background

by following a method first used by Ouyang in [13] according to a general ansatz

for warped backgrounds established by [14, 15, 16]. Though the fluxes we find are

consistent on the non-compact Calabi-Yau manifold considered, they cannot exist

on a compact Calabi-Yau. We will argue that the presented background should be

thought of as a CY coordinate patch on some more general compact background.
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Further, we will show that the SUSY-breaking background fluxes generate D–

terms that uplift the potential1 if D7-branes present in the background are wrapped

on particular cycles (and possibly no D–terms for other choices of embedding). D–

terms from D-branes in string theory have been well-studied by a variety of authors

[20, 21, 22, 23, 24], who have established methods to calculate this uplifting. As D–

terms necessitate the presence of F–terms [25], we will consider how SUSY breaking

can be seen in the F–term potential. We will show that there will be no F-term

uplifting and some aspects of this breaking will remain open questions for further

study. Namely, there will remain a puzzle as to how to establish the correct 4D

superpotential for the generalized compactification into which our setup must be

embedded.

The addition of D7–brane to this setup should not be seen as precarious. D7–

branes are a standard ingredient in F-theory compactifications of type IIB string

theory and play a key role in the stabilization of Kähler moduli through non–

perturbative corrections to the superpotential in most IIB string compactifications

[9]. Moreover, the inclusion of the D7–brane is key to our proposed slow-roll in-

flationary model. As has been show in D3/D7 inflationary models, the pull-back of

SUSY-breaking fluxes onto a D7 brane generates an attractive potential between D3–

and D7–branes [6]. On the other hand, the SUSY-breaking fluxes in our background

will also attract a D3–brane towards the tip of the throat. In such a manner, one can

1 This idea was put forward in [17], but needed some corrections [18, 19]
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create opposing forces on a D3–brane controlled by the same SUSY-breaking param-

eter. The conjecture is that with these two forces controlled by the same parameter,

a fine balance will emerge naturally and result in a stable slow-roll potential.

This manuscript is outlined as follows: In Chapter 2, we will give an overview

of the basic ideas behind flux compactifications in string theory. We will discuss a

specific class of supergravity solutions known as warped Calabi-Yau compactifica-

tions. We will also discuss the conditions for preserving N = 1 supersymmetry in

the 4D effective theory and how to compute the corresponding 4D SUSY potentials.

In Chapter 3, we will outline the basic ideas of brane-inflation, the current dilem-

mas, and then motivate a choice of new background. In Chapter 4, we will explicitly

construct the string theory setup and compute the relevant background fields and

potentials.

Contribution of authors

The original research contained in this thesis is based on work done in collab-

oration with K. Dasgupta, P. Franche, and A. Knauf [26]. Specifically, chapters 4

and 5, to which this author was a primary contributor, are largely taken from this

work. Sections of [26] discussing the F-theory lift of this work, to which this author

was not a primary contributor, have not been included in this thesis.
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CHAPTER 2

A brief review of string
compactification

String theory, for mathematical consistency, is formulated as a theory in 10

spacetime dimensions. This naturally must be reconciled with the existence of a

universe of only four dimensions that we observe and measure. If a 10D theory is to

be taken seriously, it must also provide a mechanism whereby modes that propagate

in the extra dimensions are decoupled from low-energy observed physics. One such

method is to compactify six spatial dimensions on some manifold of small volume.

Kaluza-Klein excitations on the internal compact manifold gain masses of order the

inverse compactification length scale (Mc), and are not visible in the low-energy 4D

effective theory.

There are also strong reasons to believe that some supersymmetry may be mani-

fest in our universe at relatively low energies (well below the scale Mc). This, and the

technical simplifications gained in supersymmetric theories, motivate us to search for

compactifications of string theory that result in supersymmetric effective theories.

Nevertheless, the full 10D string theory may retain too large a number of unbroken
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supercharges when reduced to 4D or, conversely, none at all. Theories with N > 2

in 4D are heavily constrained and are not viable examples in which to embed the

standard model. One thus must carefully select the compactification conditions to

give a suitable N = 1, 2 low-energy theory.

We will begin by discussing the most naive trivial compactifications of string

theory as a starting point to examine more general warped compactifications. We

will then examine the 4D effective theory that results from warped compactifications

on Calabi-Yau manifolds and discuss the stabilization of moduli fields.

Because the history of and motivations for string compactifications are expan-

sive, we will attempt to take the most direct path to the relevant results while

hopefully laying down an intelligible background. In doing so, we will inevitably

pay insufficient attention to the phenomenology that motivated these string theory

constructions and to some key results. We will similarly only concern ourselves with

discussing type IIB string theory, which, as will become clear, is a profitable limit in

which to study the 4D effective theory of the compactifications. Similar work—some

of it taking historical precedence over the results described here—has been carried

out in M-theory and heterotic string theory. This work will be described either in

its IIB variation or, unfortunately, not all.

2.1 Type IIB string theory at a glance

We now will summarily establish a large amount of notation used in this paper

by detailing the field content and action of the low-energy supergravity limit of type

IIB string theory. We will only detail the bosonic degrees of freedom in the theory,

although one should not forget that appropriate fermionic superpartners exist for
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the mentioned fields. Derivations of these results are well-documented in standard

string theory texts, eg. [27].

Type IIB string theory is a theory of closed strings, with open strings stretching

between Dp-branes of odd dimension. The Dp-branes are charged under (p+1)-form

R-R fields and act as sources for background flux. Thus, in the R-R sector, there are

fields C0, C2, and C4 with respective field strengths F1, F3, and F5. In the NS-NS

sector there is the metric g, the dilaton Φ, and a two-form field B2 with field strength

H3.

Type IIB string theory has a global SL(2,Z) symmetry and it will be useful to

redefine the above fields into a form that makes the symmetry of the theory explicit.

We define

τ = C0 + ie−Φ (2.1)

G3 = F3 − τH3 (2.2)

g = e−Φ/2g . (2.3)

The above metric transformation changes from the action from the String Frame to

the Einstein Frame. We also will define a five-form field strength

F̃5 = F5 +
1

2
B2 ∧H3 −

1

2
C2 ∧ F3 (2.4)

and impose the constraint that it is self-dual

?F̃5 = F̃5 , (2.5)
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as an equation of motion (to match the string spectrum) because it cannot be derived

from a covariant 10D supergravity action. Under an SL(2,Z) transformationa b

c d

 a, b, c, d ∈ Z (2.6)

these fields transform as

τ → aτ + b

cτ + d
G3 →

G3

cτ + d
(2.7)

g → g F̃5 → F̃5 . (2.8)

In these variables, the bulk bosonic action for the low-energy supergravity limit of

type IIB string theory, in the Einstein frame where it is SL(2,Z) invariant, is given

by

SIIBBulk =
1

2κ2
10

∫
d10X

√
−g

(
R− ∂Mτ∂

M τ̄

2(Imτ)2
− G3 · Ḡ3

12Imτ
− F̃ 2

5

4 · 5!

)
. (2.9)

It will also be useful to recall the action for D-branes in the IIB theory. For a

Dp-brane, the Dirac-Born-Infeld (DBI) action is given by

SDBI = −Tp
∫
dp+1σ e−Φ

√
−det(ĝ + B̂ + 2πα′F ) , (2.10)

where σ are coordinates on the D-brane, ĝ and B̂ are the pullbacks of the respective

fields onto the worldvolume of the brane, and F is the gauge field living on the brane.

The Chern-Simons (CS) action for a Dp-brane is given by

SCS = Tp

∫
dp+1σ C eB+2πα′F , (2.11)
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where we are implicitly only keeping the (p+1)-forms in the action and have defined

the quantity C by

C =
4∑

n=0

C2n , (2.12)

a sum of RR gauge fields. Note that for Dp-branes, the DBI action stays the same,

but the CS action changes sign.

2.2 Trivially factorized compactifications

The simplest (and naive) assumption for a compactification scenario is that

spacetime trivially factorizes into a product space

M =M4 ×M6 , (2.13)

where M4 is some maximally symmetric Poincaré invariant 4-manifold and M6

is the internal 6D Riemannian compact manifold. For now we make the further

simplifying assumptions that the dilaton is constant along the internal manifold and

that all background fluxes vanish.

We would like to preserve the minimal fraction of the full supersymmetry that

could possibly descend to the resulting 4D effective theory. This is equivalent to

finding an internal manifold that supports the existence of exactly one covariantly

conserved spinor. One can then show that this condition implies it is possible to

endow the internal manifold with a complex structure and Kähler metric that is

Ricci flat:

Rmn = 0 . (2.14)
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Such manifolds are called Calabi-Yau (CY). The definition of a compact CY man-

ifold typically also includes the condition that it be simply connected. We use this

definition here.1

In the case of type IIB string theory on a CY, the N = 2 supersymmetries in

10D (one each for the left-moving and right-moving states) reduce to N = 2 in 4D.

CY moduli fields in the 4D theory

A Calabi-Yau manifold is connected to other Calabi-Yau manifolds through con-

tinuous deformations of the metric and complex structure that preserve the condition

of Ricci-flatness. Thus, a CY manifold is a point in a geometric space of CY man-

ifolds on which the coordinates are called moduli. For CY manifolds, this moduli

space is a finite dimensional product space [28],

M = M1,1 ×M2,1 , (2.15)

where M1,1 corresponds to the space of Kähler deformations and M2,1 corresponds

to the space of complex structure deformations. Kähler deformations of the metric

leave the complex structure unchanged and are locally parameterized by a basis of

h1,1 real harmonic (1, 1)-forms on a CY manifold at a point in moduli space:

δg̃ab̄ = ai(ψi)ab̄ , (2.16)

1 A more complete treatment of CY manifolds and the relation to SUSY can be
found in any number of string theory reviews or textbooks, such as [27].
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where ψi a basis of H1,1. Conversely, complex structure deformations of the metric

require a corresponding deformation of the complex structure to keep the metric

Kähler. These deformations are locally parameterized by a basis of h2,1 complex

harmonic (2, 1) forms on a CY manifold at a point in moduli space:

δg̃āb̄ = bj
1

‖Ω‖2
Ω̄cd
ā (χj)cdb̄ = bjχ′j , (2.17)

where χj are a basis of H2,1 and Ω the unique holomorphic 3-form on a CY. Thus

we can parameterize deformations of the metric locally in moduli space as

δg̃ = aiψi + bjχ′j . (2.18)

If we allow these parameters to vary with the position in non-compact space, it is

then clear that these moduli parameters ai(x
µ), bj(x

ν) will enter the 4D effective

theory as scalar fields. One finds kinetic terms for these fields from dimensional

reduction of the Ricci scalar ∫
M6

d6y
√
gR + ... . (2.19)

As the moduli controlling the background geometry of the compactification are

actually fields of the 4D theory, we immediately conclude that they must be stabilized

by a large mass to explain the absence of scalar fields observed in our universe. This

problem is commonly known as moduli stabilization. Without other contributions

to the action, we will only find kinetic terms for these moduli fields in the trivial

compactification without background fluxes.
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Enticingly, we can heuristically see from the fact that the G-flux (G3 field

strength) is built from the same basis of (2,1) forms that they may have the pos-

sibility to generate potentials for some of the moduli. We will examine this in the

section 2.4.

2.3 Flux compactification

2.3.1 Warped compactifications

A simple generalization of the trivially factorized background is a warped com-

pactification with metric

gMNdX
NdXM = e2A(y)ηµνdx

µdxν + e−2A(y)g̃mndy
mdyn, , (2.20)

where XM , XN are coordinates on the full 10D metric, xµ, xν are coordinates on the

non-compact space, and ym, yn are coordinates on the internal compact space. A(y)

is the warp factor and is independent of the non-compact coordinates. Thus, this

background retains 4D Poincaré invariance. For now, we will not demand that the

unwarped internal manifold (M6, g̃mn) is Calabi-Yau, although this will be a useful

specialization to consider later on.

Warped compactifications are of interest to us because of the prominent role they

play in brane inflation scenarios. The warping of the metric allows one to greatly

flatten the inflaton potential, allowing for slow-roll inflation to take place. This will

be described in Section 3.2. Warped compactifications are also of general interest

because the warping of the metric allows one to generate an exponential hierarchy

between the Planck scale and weak scale physics [16].
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Warped compactifications were first realized in string theory in [14] in the con-

text of M-theory. There, the authors derived a consistent compactification of the

low-energy supergravity limit of M-theory on a warped Calabi-Yau 4-fold, resulting

in an N = 2 D = 3 effective theory. They did so by turning on non-vanishing 4-

form flux and finding constraints which relate it to the warp factor of the geometry.

This work was extended in [29] to D = 4 effective theories in type IIB by lifting the

M-theory background to F-theory, and then was elaborated on by [16], again in type

IIB. In describing the relevant results here, we will follow the derivation provided in

[16].

2.3.2 A general warped ansatz

Consider the general warped metric given in (2.20). We will construct an ansatz

for a consistent string background on this metric. This entails finding consistent

solutions for G3, the self-dual five-form flux F̃5, and the axio-dilaton τ (recall the

field content of type IIB string theory as described earlier in section 2.1) that obey

all constraints and equations of motion.

The five-form flux is self-dual, and thus cannot be constrained to live only in

internal dimensions. We thus must be careful to choose a form that is Poincaré

invariant. We can do so by choosing the legs in external space to be proportional to

the 4D volume form and then adding the self-duality explicitly:

F̃5 = dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 + ?dα(y) ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 , (2.21)

for some function α(y) as yet to be determined and where we use ? to denote the

Hodge star operator. Further, suppose that the axio-dilaton is non-constant, but

14



only depends on the internal coordinates (τ(y)) and the G3-flux is non-vanishing with

legs only along the internal manifold (again so as to satisfy 4D Poincaré invariance).

Because we are allowing non-vanishing background fluxes on the compactification

manifold, we call such a background a (warped) flux compactification.

Field equations and constraints

Given this ansatz, let us list the entire set of constraints and field equations

from the IIB action in 2.1

S = Sbulk + SDBI + SCS (2.22)

that must be satisfied for a consistent supergravity solution. First, one must solve

Einstein’s equation, which can be rewritten as an explicit equation for the Ricci

tensor as

RMN = κ2
10

(
TMN −

1

8
gMNT

)
, (2.23)

where TMN is the stress energy tensor. For our particular ansatz this field equation

becomes, for the non-compact components,

Rµν = −gµν
(
G3 · Ḡ3

48Imτ
+
e−8A

4
∂Mα∂

Mα

)
+ κ2

10

(
T locµν −

1

8
gµνT

loc

)
. (2.24)

Here we have separated out the contribution from the fluxes, leavingthe stress-energy

from localized sources (D-branes) T locµν . For the compact internal components, we

similarly find

R̃mn = κ2
10

∂mτ∂nτ̄ + ∂nτ∂mτ̄

4(Imτ)2
+ κ2

10

(
T̃ locmn −

1

8
g̃mnT̃

loc

)
(2.25)
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(There is a tilde on the stress-energy tensor here because we are varying the action

with respect to the unwarped internal metric g̃mn).

We also must solve the field equations for the flux, G3, and for the axio-dilaton,

τ :

d
(
e4A ?6 G3 − iαG3

)
+

i

Imτ
dτ ∧ <

(
e4A ?6 G3 − iαG3

)
= 0 (2.26)

∇̃2τ =
∇̃τ · ∇̃τ
iImτ

− 4κ2
10(Imτ)2

√
−g

δS̃loc

δτ̄
, (2.27)

where ?6 is the Hodge star operator on the internal manifold. In addition, we must

make sure that all the fluxes obey the appropriate Bianchi identities:

dF3 = 0 (2.28)

dH3 = 0 (2.29)

dF̃5 = H3 ∧ F3 + 2κ2
10T3ρ

loc
3 . (2.30)

where ρloc3 is the localized D3 charge density. Lastly, we must impose the self-duality

of the five-form flux, although this has already been taken care of by our choice of

ansatz.

2.3.3 Solving the equations of motion and the Bianchi identities

We now outline the computation of a series of constraints arising from the above

field equations for the metric and Bianchi identities for the five-form flux. The con-

straints can be satisfied by a simple refinement of the initial ansatz and a restriction

on the types of allowed localized sources (branes). With this refined ansatz, it is

then possible to show that most of the remaining field equations take on a simplified

form or are trivially satisfied.
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First, we note that the external components of the Ricci tensor can be computed

explicitly from the warped metric ansatz:

Rµν = −ηµνe4A∇̃2A . (2.31)

Next, it is possible to rewrite the Bianchi identity from (2.30), using our ansatz, as

∇̃2α = ie2AG3 · ?6Ḡ3

12Imτ
+ 2e−6A∂mα∂

me4A + 2κ2
10e

2AT3ρ
loc
3 . (2.32)

Combining these two conditions with the expression for the Ricci tensor in terms of

the background fields (2.24) gives the constraint equation

∇̃2(e4A − α) = e2A

6Imτ
|iG3 − ?6G3|2 +

e−6A|∂(e4A − α)|2 + (2.33)

2κ2
10e

2A
[

1
4

(
T locmm − T loc µµ

)
− T3ρ

loc
3

]
.

We can identify an immediate consistent solution as

α = e4A (2.34)

?6G3 = iG3 (2.35)

assuming we only include localized sources that satisfy

T locmm − T loc µµ = T3ρ
loc
3 . (2.36)

It is worth noting that, although this identification is always a consistent choice

locally, the conclusion can be strengthened in a compact setting. In this case, the
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LHS of (2.34) integrates to zero. Under the weakened assumption only that

T locmm − T loc µµ ≥ T3ρ
loc
3 , (2.37)

the positivity of the individual terms on the RHS implies that (2.34) and (2.36)

must hold. Thus, given our initial ansatz, our solution is sufficient in non-compact

backgrounds and necessary in compact ones.

The assumption (2.36) limits the types of branes that can be consistently em-

bedded in our background. Namely, it is valid for D3 branes, fractional D3 branes

(D5 branes wrapped on homologically trivial cycles), and D7 branes, but not anti-D3

branes or D5 branes [16].

Solving the remaining constraints

What remains to be checked is that this solution obeys the remaining Bianchi

identities for F3 and H3 (2.28, 2.29) and equations of motion for G3 and τ (2.26, 2.27),

and satisfies Einstein’s equations for the internal compactification manifold g̃mn.

While the Bianchi identities must be imposed by hand on our choice of background

flux, the equation of motion for G3 is satisfied automatically by this ansatz because

the individual terms of (2.26) vanish exactly:

e4A ?6 G3 − iαG3 = 0 . (2.38)

Solving the dilaton equation of motion (2.27) and ensuring that the internal

manifold is consistent with the dilaton (2.25) remains non-trivial. In the absence

of D7 branes, these equations are satisfied by a Calabi-Yau manifold with constant

dilaton. In the presence of D7 branes, a non-trivial dilaton will be necessary to
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solve these field equations. From the F-theory perspective, the choice of dilaton is

determined uniquely by the monodromy of the D7 branes [30]. If one can find a

globally well-defined lift of the IIB background to F-theory such that it is a fibration

over a flat CY base, then these equations must be satisfied. Such a lift is discussed

in the paper on which this work is based [26], but is not within the scope of this

manuscript.

Imaginary self-dual fluxes

We call fluxes that satisfy the second condition in (2.35),

?6G3 = iG3 , (2.39)

imaginary self-dual (ISD). Conversely, we call fluxes anti-imaginary self dual (AISD)

if they satisfy

?6G3 = −iG3 . (2.40)

On a compact Calabi-Yau, there is a limited cohomology which allows us to

be able to make precise statements about the space of fluxes that can satisfy this

constraint. The complete cohomology of harmonic three-forms on a compact Calabi-

Yau is determined by the basis of (2,1) forms {χα} (whose number is determined

by the Hodge number h2,1), the unique (3,0) form Ω, and the conjugates of these

forms. One can show that on a compact Calabi-Yau {χα, Ω̄} are always ISD forms

and hence their conjugates are AISD forms (See, for example, [27]).

These assumptions must be relaxed for non-compact Calabi-Yau manifolds, or

compact non-Calabi-Yau manifolds. Such manifolds may support a non-trivial (1,0)
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cohomology. Thus we can construct a three-form from the wedge product of a (1,0)-

or (0,1)- form with an element of the (1,1)-cohomology.

2.4 The 4D effective theory

2.4.1 Preserving N = 1 supersymmetry

Recall that we would like our background to retain N = 1 supersymmetry

up to some parametrically controlled spontaneous breaking. However, we do not

generically expect that the background fluxes in solutions of the type discussed here

will preserve all (or any) of the original supersymmetry.

In [31, 32, 33], necessary and sufficient conditions were found to preserve N = 1

supersymmetry in warped type IIB compactifications with a non-constant dilaton

of the particular variety described in the previous section (such backgrounds are

commonly denoted ‘B-type’ solutions). The authors of [31, 32, 33] found first that

the internal unwarped manifold, (M6, g̃), must be a complex Kähler manifold. Thus

it must be a complex manifold with closed Kähler form J . Second, they found that

G3 must be ISD, that it must be primitive:

J ∧G3 = 0 ; (2.41)

and, lastly, that it must be of Hodge type (2,1).

We can see the supersymmetry breaking that arises when we have non-ISD fluxes

on a background by examining the scalar potential of the 4D theory that arises from

the G-flux. We find this potential by direct dimensional reduction of the 10D theory.
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In particular, it is induced by the flux kinetic term

SG = − 1

4κ2
10

∫
G3 ∧ ?6G3

Im τ
, (2.42)

where the Hodge star is on the cohomology of the internal manifold and we are

integrating over the internal manifold. In this kinetic term we have left out the

warp factor as well as the kinetic term for F̃5. Though not strictly complete, this

simplified calculation gives the correct features of the calculation as all fields couple

to the warp factor and the five-form flux in the same ratio [16]. One can think of this

as a large radius limit in which the warp factor is constant and hence the five-form

flux similarly vanishes as it depends on [dα] = 0.2 The unwarped kinetic term can

be rewritten as a potential plus a topological term if we split G3 into its constituent

ISD and anti-ISD part:

G3 = GISD +GAISD , G(A)ISD ≡ 1

2

(
G3 ± i ∗G3

)
?6G

ISD = iGISD , ?6G
AISD = −iGAISD . (2.43)

Then the flux kinetic term in the action becomes

SG = − 1

2κ2
10

∫
GAISD ∧ ?6G

AISD

Imτ
+

i

4κ2
10

∫
G3 ∧G3

Imτ

= −V −Nflux . (2.44)

2 For a more precise treatment that also includes warping, the Einstein term and
the F5 flux term see [34]. The qualitative result remains unchanged and it was shown
that the GVW superpotential is not influenced by warping.
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The second term is topological and independent of the moduli. In a compact setup it

will be cancelled by the localized charges, if we use the tadpole cancellation condition∫
H3 ∧ F3 = −2κ2

10T3Q
loc
3 (D7–branes also carry an effective D3–charge given by

−χ(X)/24, the Euler character of the corresponding F–theory 4–fold). The potential

for the moduli is given by the anti-ISD fluxes only

V =
1

2κ2
10

∫
GAISD ∧ ?6G

AISD

Imτ
. (2.45)

This means that the potential vanishes identically for ISD flux and gives rise to the

ensuing condition ?6G3 = iG3. Note, however, that this potential remains vanishing

for fluxes that are non-primitive or that are not of Hodge type (2,1), but still ISD.

It requires a more careful analysis, which we will do in the next section, to see how

these break supersymmetry.

It is worth stressing again that the conditions and results outlined above are

independent of the type of manifold (M6, g̃) chosen in the warped compactification.

2.4.2 SUSY for the compact warped Calabi–Yau

For a compact Calabi-Yau, the limited cohomology supported on the manifold

allows us to make precise statements about SUSY preserving fluxes. In fact, one can

show that any (2,1) flux on a compact Calabi-Yau must be both ISD and primitive.

Using the Lefschetz decomposition, we can decompose any harmonic (2,1) flux on a

Kähler (and hence also on a CY) manifold into components

χα = χα′ + v ∧ J , (2.46)
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where χα′ and v are primitive forms.3 However, a CY manifold does not support any

globally defined one-forms. Thus all 3-forms on a CY manifold must be primitive.

One can show that these primitive forms must be ISD by explicit calculation. It

follows by simple conjugation of these forms that all (1,2) forms are AISD.

It is clear that any flux that solves the equations of motion (ie. the flux is ISD)

on a compact CY will preserve SUSY.

The Kähler potential and superpotential

In order to understand the potential for moduli fields, it will be useful to under-

stand the effective theory in terms of the Kähler potential (K) and superpotential

(W ) of an N = 1 4D effective theory. In terms of these variables, we can write the

F-term potential in its canonical supergravity form

VF = eK

(∑
α

|DαW |2 − 3|W |2
)
, (2.47)

with DαW = ∂αW + W∂αK and α running over all Kähler moduli ka, complex

structure moduli zi and the dilaton Φ.

The Kähler potential can be found through explicit dimensional reduction of

the 10D action, comparing the resulting non-canonical kinetic terms with the generic

form for the kinetic term of an N = 1 scalar:

S =
1

2κ2
4

∫
d4
√
−gx∂α∂βK∂µφα∂µφβ . (2.48)

3 Note that primitivity for fluxes that are not 3-forms has a more general meaning
than given earlier. Namely, an n-form α on a complex 3-fold is primitive if J4−n∧α =
0. Thus v is annihilated by J ∧ J ∧ J
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One finds that the Kähler potential for the complex structure moduli and dilaton is

given by [28]

K = − ln(−i(τ − τ̄))− ln

(
−i
∫
M6

Ω ∧ Ω̄

)
. (2.49)

It is also necessary to find the Kähler potential for the Kähler moduli.

In [35], it was conjectured (and later supported by direct computation [16]),

that the correct form of the superpotential is

W =

∫
G3 ∧ Ω , (2.50)

where Ω is the unique (3,0) form on the CY manifold. It is easy to see that this is

the natural choice to enforce the previously established supersymmetry constraints.

The supersymmetry condition

W =

∫
G3 ∧ Ω = 0 (2.51)

enforces that W must not be of type (0,3). Note next that

∂Ω

∂zj
= −∂jK(z, z̄)Ω(3,0) + χ

(2,1)
j , (2.52)

for zj complex structure moduli and χ
(2,1)
j the corresponding primitive (2, 1) basis

element of H(2,1). (see e.g. [28]). Thus

DjW = −∂jK
∫
G3 ∧ Ω +

∫
G3 ∧ χj + (∂jK)

∫
G3 ∧ Ω =

∫
G3 ∧ χj (2.53)

and the vanishing of this equation requires that G3 have no (1,2) components. Lastly,

we find that

DτW =
−1

τ − τ̄

∫
Ḡ3 ∧ Ω . (2.54)
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This enforces the last constraint that G3 not have a (3,0) component.

This perspective also allows us to see more clearly how background G-flux leads

to the stabilization of the complex structure moduli. Under changes of the complex

structure, the Hodge type of the G3 will naturally change as Hodge type is determind

by the complex structure of the manifold. The G3-flux will generically pick up

components that are of type (1, 2) and this will break supersymmetry, generating

terms DjW 6= 0. A similar argument suggests that G3 will also generically change

its Hodge type under shifts of the dilaton. Because G3 is determined by the addition

of two three forms (recall G3 = F3 − τH3), changing τ will upset the balance that

leads to pure (2,1)-flux and generically introduce (3,0) components. Thus, as above,

DτW 6= 0 and we see that there is a potential for the dilaton.

Although the matching of constraints from the 10D and 4D perspectives is com-

pelling evidence that the Gukov-Witten-Vafa superpotential is correct, one can make

a stronger statement. Expanding the scalar potential derived in (2.45) in terms of

a basis of 3-form fluxes on a CY, one finds that the potential can be written in the

form (2.47) with the above defined superpotential [16].

We also have similar contributions from the Kähler moduli, although these do

not enforce any additional supersymmetry constraints. For example, for the volume

modulus ρ, one finds

DρW =
−3W

ρ− ρ̄
. (2.55)

One might naively expect that any generic supersymmetry breaking would gen-

erate a non-zero potential. However, (2.45) tells us that this is not the case as only

supersymmetry breaking with AISD fluxes will generate an uplifted potential. This
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can be seen similarly from the standpoint of (2.47). Imaginary self-dual SUSY-

breaking fluxes correspond to W 6= 0, but this does not automatically imply that V

is non-zero. Notably, there is a corresponding term

Gρρ̄DρWDρW , (2.56)

which can often exactly cancel this contribution. These so-called no–scale models

have broken supersymmetry, but have vanishing potential and cannot stabilize the

volume modulus. The form of solution discussed herein is exactly of this type.

This can be seen easily because the constraint equations that define our solution

are independent of a rescaling of the metric (or, more generally, of perturbations

to the Kähler moduli of the metric). Nevertheless, this is merely the leading-order

perturbative potential. It does not account for non-perturbative corrections to W ,

nor to α′ corrections to the Kähler potential. Non-perturbative corrections to the

superpotential that stabilize the volume modulus (or Kähler moduli) [9] will be an

important element in studying inflationary dynamics in chapter 3.

2.5 Non-compact warped solutions

Although we have demonstrated that it is possible to create consistent warped

Calabi-Yau compactifications that preserve N = 1 SUSY, this is not a sufficient

accomplishment to facillitate the study of inflationary dynamics in this background.

We need further to be able to write an explicit metric for the CY manifold. How-

ever, this has not been possible for compact CY 3-folds as no explicit metrics are

known. One can, instead, consider warped solutions where the internal manifold is

Calabi-Yau, but non-compact. In this case, explicit metrics are known and can be
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simply written. One must be able to show that such non-compact solutions can be

consistently embedded into a compact solution as local geometric data.

A particularly interesting variety of solutions are non-compact warped conifolds

[8, 36, 12]. Conical singularities naturally arise in the moduli space of compact

Calabi-Yau manifolds [28] and hence these non-compact solutions can, in general, be

consistently embedded into compact CY backgrounds [16].

The simplest such conifold solution is the singular conifold [37]. It is a hyper-

surface in C4 defined by

yz − uv = 0 (2.57)

for x, y, u, v complex coordinates. Topologically, the singular conifold can be thought

of as cone over the base S2 × S3 and has a Ricci flat metric given explicitly by

ds2 = dρ2 +
1

9
ρ2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2

+
ρ2

6

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+
ρ2

6

(
dθ2

2 + sin2 θ2 dφ
2
2

)
. (2.58)

At ρ = 0, this metric has a true singularity where the curvature becomes infinite.

In [36], Klebanov and Tseytlin constructed warped backgrounds with the sin-

gular conifold as the unwarped internal manifold, commonly called the Klebanov-

Tseytlin (KT) warped throat. It was shown that placing D3 branes at the tip of the

conifold sources F3 flux, while wrapping D5 branes on a 2-cycle of the conifold would

source H3 flux. Making an exactly analogous ansatz to section 2.3.2, they constructed

a consistent supergravity solution with background fluxes turned on. This flux ‘com-

pactification’ is exactly of the form we described. Recall that this form of solution

is sufficient to satisfy all the constraints outlined in a non-compact background and
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further it is necessary that this form holds locally in compact backgrounds (assuming

that all the localized objects obey the relation between the stress-energy tensor and

tension outlined in (2.36)).

One can find similar ‘compactifications’ on other types of conifold backgrounds

that are non-singular. These will be described in more detail in chapter 4.
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CHAPTER 3

Inflation in string theory

In this chapter we will give a (briefer still) introduction to inflation and its

embedding into explicit string theory models. We will focus on brane/anti-brane

models of inflation in IIB string theory. The complete avoidance of other interesting

models of stringy inflation does not reflect an evaluation of their promise.

Following this overview, we will use the described characteristics of brane/anti-

brane inflation and some of its remaining challenges to motivate a proposal for a

variant inflationary scenario. This scenario will, in turn, be the motivation for the

background that we construct and study in this manuscript.

3.1 The inflationary paradigm

Inflation, as a phenomenological paradigm of early-universe cosmology, has been

fantastically successful. It provides a simple explanation for the observed flatness

and homogeneity of the universe and has been remarkably accurate in predicting

and explaining the perturbations observed in the cosmic microwave background [1].

In coarsest of terms, the inflationary model posits a scalar field, rolling down to

the minimum of a potential well and, in doing so, generating an exponential expansion
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of space in the early universe. For inflation to generate sufficient e-foldings, the

inflaton field must roll slowly down a potential. If the inflaton field has a canonical

kinetic term, then slow-roll requires that the parameters

ε =
M2

pl

2

(
V ′

V

)2

(3.1)

η = M2
pl

(
V ′′

V

)
(3.2)

be much less than unity. For the inflationary models we will be discussing, it will be

the η-parameter whose smallness is difficult to control.

While there is much to be understood by considering inflation from the per-

spective of an effective field theory, it is important to embed the paradigm into a

UV complete model such as string theory. If string theory really is the correct UV

complete model of our universe, then it must be able to contain the low-energy dy-

namics of inflation, assuming we are convinced that inflation is, in fact, the correct

model of the early universe. More concretely, we also do not expect that the full

parameter space of an EFT will be accessible by its realization in a UV complete

theory. Finding explicit embeddings into string theory allows one to better measure

how realistic and generic the parameters of an EFT really are in that setting.

Perhaps most importantly, from the perspective of an EFT it is not possible

to construct models that have η << 1 without reaching to poorly motivated fine-

tuning. This is absolutely generic to all EFTs of slow-roll inflation and can be seen

quite simply: We naturally expect the renormalization group flow to generate a

higher-dimensional operator

V (φ)

M2
pl

φφ† , (3.3)
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as this term automatically respects all the symmetries of theory. The EFT thus

predicts a contribution to η of order 1 that must be finely tuned away. In a UV

complete theory, on the other hand, we might hope that such contributions are

forbidden by uniquely stringy mechanisms.

3.2 Brane inflation and warped compactifications

Brane inflation, first proposed in [10] was given a true stringy realization in

[11]. In their scenario, they imagined a gas of branes and anti-branes extending

across non-compact space and moving in the compact directions. The long-range

attraction between oppositely-charged branes pulls them together. The field in the

4D effective theory corresponding to the distance between the branes acts as the

inflaton.

We will make the embedding of this model more explicit and consider a D3-

brane placed in a CY background and extending along all 4 non-compact directions.

Further, we will assume that the brane has been fixed by some potential such that

it is only free to move towards an attractive anti D3-brane some distance r away.

A simple calculation, first put forward in [11], can show that a trivially factorized

Calabi-Yau compactification is too naive a setting for slow-roll brane inflation. In

such a background, the 4D Planck mass is determined simply by M2
4,P l = M8

10,P lL
6,

where L is the length scale of the CY manifold. Meanwhile, the potential will have

a contribution independent of r from the brane tension and a contribution from the

exchange of massless bulk modes. All of these bulk modes must have a long range

behaviour (by Gauss’s Law) that generates a potential with scaling 1/r4. We thus
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have a potential

V = A− B

r4
(3.4)

and it is then immediate that (3.2) becomes

η ∼ k

(
L

r

)6

, (3.5)

for k some constant. Through a more careful analysis determining A and B and by

canonically normalizing the kinetic term for r [38], it can be shown that this constant

is of order 1. We thus cannot make η small without having the branes at distances

larger than the compactification scale, an impossibility in our approach. While this

can seemingly be avoided by introducing extra dimensions of anisotropic scales, it

has been shown that this will not render a solution without introducing tachyonic

directions in the potential [2].

3.3 Solving the First η-problem with Warped Backgrounds

In [2] (commonly known in the literature as KKLMMT), it was shown that

sufficiently small η can be found by generalizing trivially factorized backgrounds to

warped compactifications. Consider a warped solution as set forth in the section

2.3.2 with some warp factor α(r) that only depends on an internal coordinate r, a

constant dilaton, and a compact CY compactification manifold. Adding a D3-brane

at some radius r1, one can calculate a perturbation to the warp factor by solving

∇2
6∆α = Cδ6(r − r1) (3.6)

to find a new warp factor α(r, r1) = α(r) + ∆α(r, r1). An anti-D3-brane, situated

at some point r0 with r1 >> r0, can then be used as a probe brane to calculate the
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potential between the brane/anti-brane pair. This can be extracted simply from the

DBI and Chern-Simons actions for these branes, given by

SD3 = −T3

∫
d4x
√
−g
√
α(r0, r1)2 − α(r0, r1)∂µr0∂µr0 − T3

∫
d4xα(r0, r1)(3.7)

'
∫
d4x (T3∂µr0∂

µr0 − 2T3α(r0, r1)) . (3.8)

The resulting potential is

V (r0) = 2T3α(r0, r1) (3.9)

and the canonical field can be seen from the kinetic term to be φ =
√
T3r0. In

KKLMMT, they considered such a setup for a simple background with warpfactor

α(r) =
R4

r4
, R = 4πagsNα

′ 2 , (3.10)

where the parameter a depended on the precise choice of compactification manifold

and N is a free parameter determining the number of units of flux wrapping the

compact manifold. The resulting perturbed potential was then found to be

V = 2T3
r4

0

R4

(
1− 1

N

r4
0

r4
1

)
. (3.11)

It is then easy to calculate η again and see that, when r0 << R, the factor of r8
0/R

4

is enough to flatten the potential and generate a small mass term.

3.4 Moduli stabilization and the second η-problem

While at first glance it may seem like [2] solved our η-problem, they also point

out that we have crucially neglected the moduli fields discussed in section 2.4.2. If

the moduli fields do not have a potential, then it is not consistent to consider our

background to be stable and to consider brane dynamics while the moduli are static.
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Even if the moduli fields have some potential, the slow roll of the field associated to

the brane/anti-brane pair is irrelevant if one of the moduli fields rolls quickly.

There are two immediate approaches one may take to this problem. One could

consider one or a combination of these moduli fields to be the relevant inflaton field

instead of a brane/anti-brane pair. Though there is a vast and productive literature

on this approach (see [39], for example, as a review), we will not take this angle here.

Rather, we will attempt to find a mechanism that generates a potential to stabilize

all of these fields and assume that the moduli fields are already at the minima of

their potential.

For warped flux compactifications on compact Calabi-Yau backgrounds, we have

shown in section 2.4.2 that the complex structure moduli fields and dilaton will all be

stabilized by the potential generated by the G-flux wrapping the internal manifold.

It remains then only to stabilize the Kähler moduli. We will only consider the Kähler

moduli associated to the overall volume of the compactification ρ that is generic to

all CY solutions. It will be seen that stabilizing this volume modulus will generically

induce a new η-problem that is not nearly as easy to overcome as the one solved by

warped backgrounds.

Following [2], we consider a generic potential that stabilizes the volume superfield

ρ. Such a potential may arise from non-perturbative corrections to the superpotential

from gauge condensates on D7 branes or Euclidean D3-brane instantons [9]

W = W0 +W (ρ) , (3.12)
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although we will keep the exact form of the potential generic. Further, we note that

all potentials arising from brane tensions or fluxes vanish with some power of the

physical scale L−a, for a some order one number. This gives a potential of the form

V =
X(ρ)

La
, (3.13)

neglecting explicit dependencies on other moduli. However, the complex volume

superfield is related to the physical length modulus of the compactification by [2]

2L = ρ+ ρ̄− k(φ, φ̄) , (3.14)

for position fields φi of the mobile D3. The stabilization of the volume field will

thus introduce a dependence on the brane position into the potential. The potential

(3.13), when rewritten in terms of complex fields, will have the form

V =
X(ρ)

(ρ+ ρ̄− k(φ, φ̄))a
. (3.15)

We can further assume that there is a minimum in moduli space at ρ = ρ0 and

φ = 0, at which point we have that k(φ, φ̄) = φφ̄. Expanding the potential about

this minimum, we find that

V = V (ρ0, 0)

(
1 + a

φφ̄

ρ0 + ρ̄0

)
. (3.16)
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When the inflaton field φ is canonically normalized and renamed ϕ,1 , this becomes

V = V (ρ0, 0) (1 + 3aϕϕ̄) (3.17)

with a mass term of order one. This argument is also made more explicitly for

particular backgrounds of brane inflation in [2].

We see that a generic attempt to stabilize the volume modulus leads to mass

terms for the inflation field that give an order one contribution to η. In order to

eliminate this effect, one has to introduce further dependence on the brane position

into the scalar potential potential. That this further contribution should have the

correct sign and cancel the existing term to high precision is not naively expected

and would necessitate a finely-tuned potential. The hope, then, is that one can find

such a tuned contribution that arises naturally.

3.5 Finely tuned remedies

A particularly successful explicit scenario for examining the η-problem in D3/D3

inflation was put forward in [3]. They consider a warped deformed conifold back-

ground2 with a stack of D7 branes placed on a specific cycle determined by the

Kuperstein Embedding [40].

1 The normalization that gives the canonical form of the inflaton kinetic term is
ϕ = φ/

√
3(ρ+ ρ̄). That this is correct can easily by seen by examining the relevant

term in the Kahler potential: K 3 −3 ln (ρ+ ρ̄− k(φ, φ̄)). Again, we are taking a
quadratic approximation to k(φ, φ̄).

2 A more detailed introduction to this background will be given at the beginning
of chapter 4.
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In previous work, the non-perturbative corrections to the superpotential due

to gauge condensates on the D7 brane were calculated [41]. It was found that not

only did the condensate contribution depend on the volume superfield, as suggested

first in [9], but also on the position of a D3-brane. This further effect is due to the

D3-brane’s backreaction on the cycle on which the D7 is wrapped. For a stack of n

D7-branes wrapped on a cycle determined by the holomorphic equation

f(zi) = 0 , (3.18)

the non-perturbative correction is given by

W (ρ, zi) = W0 + A0

(
f(zi)

f(0)

)1/n

e−aρ , (3.19)

for some constants A0 and a that will not be of particular importance to us here.

The explicit dependence of the superpotential on the brane position contributes

additional terms to the F-term potential. These new terms correct the potential for

the mobile D3-brane only at 3rd order; they found no direct cancellation of the large

mass term for the inflaton. More concretely, they found that η takes the form

η =
2

3
− η−1/2

(
φ

φµ

)
, (3.20)

for some parameters φµ, η−1/2 that are determined by the Kuperstein embedding

itself and by the precise embedding of the entire deformed conifold scenario into a

complete compact CY background. It is clear that the η-problem will only disappear

near inflection points where these two terms cancel. Such a set-up remains finely-

tuned and does not present itself as a natural solution.

37



3.6 D3/D7 inflation

A variant model of brane inflation considers instead a D3/D7-brane system,

where again the inter-brane distance serves as the inflaton field [6]. In this case,

the branes are attracted by a potential generated from gaugino condensates on the

D7–brane and SUSY-breaking fluxes on the D7 world volume. The F-term and D-

term potentials appearing from the gaugino condensate and SUSY-breaking fluxes

conspired to give a consistent resolution of the anomalies associated with the FI

terms.

D3/D7 inflation has primarily been studied in toroidal manifolds of the form

T n/Γ, for Γ some discrete symmetry group , the most common background of which is

K3×T 2/Z2 studied in [6, 42]. It has not been studied in warped conifold backgrounds

of the type discussed here for D3/D3 inflation.

The D3/D7 inflationary model did not have an initial η-problem in [6]. As its

inflationary potential is generated by D-terms rather than F-terms, it may inherit

an η-problem from non-perturbative effects needed to stabilize the volume modulus.

Although mass terms from the non-perturbative F-term potential are prohibited by

a shift symmetry at the classical level, there is a strong indication that this will not

be preserved in quantum corrections [7, 42].
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3.7 A possible scenario for natural inflation

Let us now sketch a possible model of inflation using the resolved conifold back-

ground with D7 branes and additional D3 branes. This scenario will combine the

basic premise of D3/D3 in the ‘warped throat’ with D3/D7 models3 .

We want to balance a D3–brane that is attracted towards the D7–brane (because

of the non-primitive flux on the D7 worldvolume) with another force that drives the

D3 toward the tip. This can be achieved by using a background in which the addition

of a D3 explicitly breaks supersymmetry, such as the resolved warped deformed

conifold [15]. The motion of D3–branes towards the tip in the latter background is a

consequence of the running dilaton. One could supplement the attraction due to the

running dilaton by adding additional anti-D3–branes at the bottom of the throat.

While either of these potentials alone are still too steep for slow–roll inflation,

combining both forces we might hope to slow down the motion of the D3 in either

the one or the other direction. There are two possible scenarios, depending on which

force dominates:

• The D–term potential created by the non–primitive flux dominates and attracts

the D3–brane towards the wrapped D7 brane. Inflation ends when the D3

dissolves into the D7 as non-commutative instantons and supersymmetry is

restored.

• The attraction towards the anti–D3 brane at the bottom of the throat (or by

a running dilaton in a more general background) dominates. Inflation ends as

3 A Similar idea has been proposed independently by Cliff Burgess.
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all or some D3 branes getting annihilated by the anti–D3 brane(s) at the tip

of the throat.

The naive hope is that the motion in either direction will be slow because the D3

branes are pulled in both directions. Achieving such slow roll will not necessarily

be another appeal to fine-tuning. A proper arrangement of D3/D7-branes in the

singular conifold will preserve supersymmetry; there will be no forces on the branes

and the configuration will be static. The appearance of a running dilaton and of

supersymmetry-breaking fluxes on the D7-branes should be controlled by the small

deformation of the background away from the singular geometry. If both forces

are controlled by the same parameter, there is hope that they will be of the same

magnitude.

If we want to combine the D-term and F-term potentials we are faced with an

issue pointed out by [25]: for a supersymmetric background it is impossible to have

a D-term potential that could be used to pull the D3 brane towards the D7 branes.

Thus if we want to switch on non–primitive fluxes on the wrapped D7 branes we

have to embed the D7 branes in a non-supersymmetric background. Our problem

becomes threefold:

• Construct a supergravity background with embedded D7 branes that breaks

supersymmetry spontaneously;

• Allow for a possible D-term uplifting by avoiding the no-go theorem of [25],

as pointed out by [19]. Note that the D7 worldvolume theory will not only

contribute the D but also possible F-terms, such that the issue of [25] might

be resolved;
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• Balance the D3 brane using the two forces: one from the D-term potential and

the other from the attractive force at the tip of the deformed conifold in the

setup of [2].

In this manuscript we will address the first two problems by constructing a non-

supersymmetric background with D-terms on the D7 branes given by the pullback

of a non–primitive flux. To analyze the last problem, we might have to go to a more

generic background like the resolved warped deformed conifold [15], whereas most of

the literature deals with the limit where the manifold looks like a singular conifold.
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CHAPTER 4

D7–branes on the resolved conifold

4.1 The background

The simplest “throat” studied so far is the singular conifold, a warped flux

background known as the Klebanov–Tseytlin (KT) solution [36], which we introduced

in section 2.5. The singularity at the tip of the conifold can be smoothed out in two

different ways: by blowing up a 3–sphere (the deformed conifold) or by blowing up a

2–sphere (the resolved conifold). Both of these manifolds are still Calabi–Yau. These

particular backgrounds, with added fluxes, have been studied by Klebanov–Strassler

(KS) [8] and Pando Zayas–Tseytlin (PT) [12] respectively.

On the other hand, one could imagine a less simple, but more general, back-

ground that allows for both blown–up 2– and 3–cycles. The “resolved warped de-

formed conifold” can be interpreted as such a manifold. It was suggested [43] (see

also [44]) as an interpolating solution between the KS and Maldacena–Nunez (MN)

solutions. It turns out [45, 15] that the correct interpolating solution does not have

a blown–up 2–cycle but a broken Z2 symmetry in comparison to the singular or de-

formed conifold metric. It is not a CY anymore, but an SU(3) structure manifold.
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Since the resolved conifold is the simplest manifold with such a broken Z2 (corre-

sponding to the exchange of the two 2-cycles in (4.1)) we will use it as a toy model

here, keeping in mind that our motivation stems from the “resolved warped deformed

conifold”. Apart from the broken Z2 symmetry, there is another interesting feature:

the background exhibits a running dilaton, in contrast to the KT, KS or PT solutions

on warped CY’s with constant dilaton. Placing a D3–brane in this background will

result in a force due to this running dilaton. This does not mean that the resolved

warped deformed conifold breaks supersymmetry, but rather that the D3 oriented

along Minkowski space does not preserve the same subset of supercharges. There is

another source of a running dilaton that will be of interest to us: D7–branes. Their

behavior will be determined by the particular embedding we choose for the D7.

The most general “throat” background, taken as one that allows for blown–up

2– and 3–cycles, has the metric

ds2 = F3 dr
2 + F4(dψ + cos θ1 dφ1 + cos θ2 dφ2)2

+ F1

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+ F2

(
dθ2

2 + sin2 θ2 dφ
2
2

)
(4.1)

+ 2b

[
cosψ

(
dθ1dθ2 + sin θ1 sin θ2dφ1dφ2

)
− sinψ

(
sin θ2dφ2dθ1 − sin θ1dφ1dθ2

)]
,

where the coefficients Fi, b are functions of the radial coordinate r, (θi, φi) parame-

terize two 2–spheres, and ψ = 0 . . . 4π is a U(1) fibration over those spheres. The

commonly known backgrounds are found in the limits:

• singular conifold: F1 = F2 and b = 0, i.e. both 2-spheres have equal radii (and

shrink to zero size as r → 0), the cross–terms in the third line in (4.1) are

absent;
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• deformed conifold: F1 = F2 and b 6= 0, i.e. both 2-spheres have equal radii,

but the U(1) shift symmetry is broken due to the more complicated fibration

in the third line;

• resolved conifold: F1 6= F2 and b = 0, i.e. the 2–spheres have unequal size (this

corresponds to the breaking of a discrete Z2 exchanging both) and the third

line in (4.1) is absent.

For a complete definition of the functions Fi we refer the reader to [15, 37, 46]. They

are of course more restricted than outlined above in order to guarantee an SU(3)

holonomy or SU(3) structure. In [5], the limit

F1 ≈ F2 =
r2

6
, b → 0, F3 = 1, F4 =

r2

9
(4.2)

was employed. In this limit the background becomes a (non-compact) singular coni-

fold, and one can add D7 branes using the technique discussed in [13]. This is the

simplest choice and works well in the situation when we are far from the tip of the

throat and the resolution parameter (the size of the 2–sphere that remains finite) is

very small. Here, we intend to go beyond this simplification. However, the resolved

warped deformed conifold is difficult to study, mostly because it is not a CY. We

therefore choose the simplest approximation that captures the essential feature of

the broken Z2: we choose to restrict ourselves to the resolved conifold.

We will turn on fluxes (or rather borrow them from the PT solution [12]) that

break supersymmetry because they are not only of cohomology type (2,1), but also

(1,2). This is not possible on a compact CY. (1,2) flux can only be ISD if it is of the

form J1,1 ∧ m̄0,1, for some antiholomorphic 1–form m̄ (J is the Kähler form). This
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would require a nontrivial one–cycle, so the first Chern class cannot be zero anymore.

This argument breaks down for non–compact manifolds, as Poincaré duality fails. In

a consistent compactification, one therefore has to change the background as to

not be conformally CY, or to glue it onto a compact bulk in such that the entire

compactification manifold is no longer CY. This would lead us beyond the case of

conformal CY with flux compactifications examined in [29] or GKP [16], and is

beyond the scope of this work. In section 4.2 we will review the PT background and

explain why it already breaks supersymmetry. It will be shown, however, that this

does not lead to uplifting as the cosmological constant remains zero (this is explained

in section 4.3). Only after we embed D7–branes in this background (see section 4.4)

we can observe the D–terms and uplift our potential. This calculation is performed

in section 4.5.

4.2 The warped resolved conifold with fluxes

Similar to the Klebanov–Strassler model, a warped geometry can be created by

fluxes in the resolved conifold background (see appendix A for a thorough discus-

sion of this geometry and definition of coordinates). The full supergravity solution

for the resolved conifold was derived by Pando–Zayas and Tseytlin [12] (PT) and

includes non–trivial RR and NS flux with constant dilaton. It can be understood as

placing a stack of fractional D3–branes (i.e. D5–branes that wrap a 2–cycle) in this

background. The ten–dimensional metric is found to be

ds2
10 = h−1/2(ρ) ηµνdx

µdxν + h1/2(ρ) ds2
6 , (4.3)
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where ds2
6 refers to the resolved conifold metric given by

ds2
6 = κ(ρ)−1 dρ2 +

κ(ρ)

9
ρ2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2

+
ρ2

6

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+
ρ2 + 6a2

6

(
dθ2

2 + sin2 θ2 dφ
2
2

)
. (4.4)

Note that as ρ → 0, the (θ2, φ2) sphere remains finite, whereas for the singular

conifold both (θi, φi) spheres scale with ρ2/6. The parameter a is called the resolution

parameter because it determines the size of the resolved 2–sphere. This asymmetry

in the geometry also determines an asymmetry in the flux on the 2–cycles and is the

source of supersymmetry breaking. The 3–form fluxes in this background are1

H3 = dρ ∧ [f ′1(ρ) dθ1 ∧ sin θ1 dφ1 + f ′2(ρ) dθ2 ∧ sin θ2 dφ2] (4.5)

F3 = Peψ ∧ (dθ1 ∧ sin θ1 dφ1 − dθ2 ∧ sin θ2 dφ2) (4.6)

and the self–dual 5–form flux is given by

F5 = F + ∗F , F = K(ρ) eψ ∧ dθ1 ∧ sin θ1 dφ1 ∧ dθ2 ∧ sin θ2 dφ2 , (4.7)

where

f1(ρ) =
3

2
gsP ln(ρ2 + 9a2)

f2(ρ) =
1

6
gsP

(
36a2

ρ2
− ln[ρ16(ρ2 + 9a2)]

)
(4.8)

K(ρ) = Q− 1

3
gsP

2

(
18a2

ρ2
− ln[ρ8(ρ2 + 9a2)5]

)

1 There is a typo in eq. (4.3) in [12], concerning the sign of F3.

46



and where P is proportional to the number of fractional D3-branes and Q proportional

to the number of regular D3-branes, and both are proportional to α′. This solution is

of the exact form of our ansatz in the non-compact CY setting discussed in chapter

2.

It was pointed out in [47] and confirmed in [46] that this solution breaks su-

persymmetry. The reason lies in the fact that the 3–form flux has not only a (2,1),

but also a (1,2) part (see Section 2.4.1). It is, nevertheless, a consistent supergravity

solution because the 3–form flux G3 = F3 − iH3 obeys the imaginary self–duality

condition ∗6G3 = iG3 as was derived earlier in Section 2.3.3.

It is sufficiently important to show explicitly that this statement is correct.

Using (A.15) we can rewrite the 3–form flux in terms of vielbeins

G3 = − 18P

ρ3
√
κ

(e2∧e3∧e4 + i e1∧e5∧e6)+
18P (e2 ∧ e5 ∧ e6 + i e1 ∧ e3 ∧ e4)

ρ
√
ρ2 + 6a2

√
ρ2 + 9a2

. (4.9)

The vielbein notation is extremely convenient to see that this flux is indeed imaginary

self-dual. The Hodge dual is simply found by

∗6(ei1 ∧ ei2 ∧ . . . ∧ eik) = ε
ik+1...i6

i1i2...ik
eik+1

∧ . . . ∧ ei6

and does not involve any factors of
√
g. We use the convention that ε123456 = ε 456

123 =

1. With the complex structure (A.17) the PT flux becomes

G3 =
−9P

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

[
(ρ2 + 3a2) (E1 ∧ E2 ∧ E2 − E1 ∧ E3 ∧ E3)

+ 3a2 (E2 ∧ E1 ∧ E2 + E3 ∧ E1 ∧ E3)
]
.(4.10)
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We make several observations: This flux is neither primitive2 nor is it of type

(2,1). We can see that it has a (1,2) and a (2,1) part, which cannot be avoided by

a different choice of complex structure. Consequently, this flux does indeed break

supersymmetry.

We also observe that, in the limit a → 0, the (1,2) part vanishes, the flux

becomes primitive, and we recover the singular conifold solution. This indicates that

the resolution forbids a supersymmetric supergravity solution, i.e. the blow–up of a

nontrivial 2–cycle in a conifold geometry can lead to supersymmetry breaking. We

will exploit this fact to our advantage.

4.3 The scalar potential and supersymmetry

We have just argued that the non-primitive (1,2) flux breaks supersymmetry.

One might therefore wonder if it can be used to uplift our potential to a positive

vacuum. The answer is a resolute no because the scalar potential always remains zero

when the flux is ISD, regardless of whether or not the vacuum breaks supersymmetry.

This follows immediately from (2.45), but it is not clear why this is true from the

supergravity perspective. Keeping in mind that the supergravity form of the potential

derived earlier (2.47) is only valid for a compact CY manifold, can we nevertheless

understand the vanishing potential from this point of view? Clearly, there is no

F–term associated to derivatives w.r.t. the Kähler parameter or the dilaton, as the

superpotential (2.50) does not depend on them. But what about an F–term Dzj
W?

2 Since J = ı
2

∑
i(Ei ∧Ei) it follows immediately that J ∧G3 has a nonvanishing

E2 ∧ E3 ∧ E1 ∧ E2 ∧ E3 part that is proportional to a2.
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Let us for a moment assume we are still talking about a CY, although (1,2) ISD

flux cannot exist on a compact CY. So we still assume our moduli space to be

parameterized by Ω and χi the holomorphic three-form and primitive basis of (2,1)

forms. Let us furthermore assume the superpotential is still given by (2.50). Then it

is easy to see that there could be a non–vanishing derivative of W w.r.t. a complex

structure parameter. Using (2.52) one finds

∂zi
W = ki(z, z̄)W +

∫
G3 ∧ χ(2,1)

i , (4.11)

which could be nonvanishing for G3 of type (1,2). But (1,2) flux can only be ISD if

it is proportional to the Kähler form, G(1,2) = J (1,1) ∧ m̄(0,1), so this becomes

∂zi
W =

∫
J (1,1) ∧ m̄(0,1) ∧ χ(2,1)

i = 0 (4.12)

when we use the fact that χi is primitive, J (1,1) ∧χ(2,1)
i = 0. If there is no (0,3) part

present, W vanishes identically and

Dzi
W = ∂zi

W +W ∂zi
K = 0 , (4.13)

so all F–terms vanish in our setup. Note that in the non–compact scenario the term

−3|W |2 is absent (we neglected MP in above formulae). However, our argument does

not depend on the no–scale structure of the model. W is identically zero, because

we don’t have any (0,3) flux turned on, and all F-terms vanish individually.

This discussion has two immediate weak points: First of all, we can no longer

assume our moduli space is only parameterized by Ω and χi if we allow for a (1,2)

flux. Once we compactify, there has to be a basis for the one–form m(1,0) as well

49



(for simplicity of the argument let us assume there is only one such 1–form in the

following). This would modify the derivative of Ω, the natural guess respecting the

(3,0)+(2,1) structure3 being

∂Ω

∂zj

= kj(z, z̄)Ω(3,0) + χ
(2,1)
j + νj J

(1,1) ∧m(1,0) . (4.14)

If we keep using the GVW superpotential, we get an additional term

∂zj
W =

∫
G3 ∧ (νj J

(1,1) ∧m(1,0)) =

∫
J (1,1) ∧ m̄(0,1) ∧ νj J (1,1) ∧m(1,0) , (4.15)

which will in general be non–zero for the type of G3 flux we have turned on. However,

the superpotential will also change since we have to expand G3 in this new basis as

well:

GAISD
3 = g1 Ω + gi2 χ̄i + g3 J ∧ m̄ . (4.16)

Plugging this into the scalar potential (2.45) does not give (2.47) in terms of the

superpotential defined for CY manifolds. To bring this into the form of the standard

F–term potential we would need to know the metric on the new moduli space, which

does not correspond to a CY anymore. Finding the relevant moduli space would

allow one to see how W changes. It is likely that it will contain terms with J , and

thus will introduce a dependence on Kähler structure moduli. This breaks the no–

scale structure and we have to re–examine the cancellation between DkaW and W .

3 In the case of a complex manifold, the original derivation [28] holds and (4.14)
would not acquire an extra term.
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Regardless, we know that the combination
∑

α |DαW |2 − 3|W |2 has to vanish, as

(2.45) remains valid. ISD flux cannot give a non–zero potential.

In addition, it is worth noting that we may have to modify the superpotential

as to include a term enforcing primitivity. In the compact CY setting this is already

taken care of, because an ISD (2,1) form is always primitive. The ISD (1,2) form

we are concerned with, on the other hand, is not. If we allow for this type of flux,

we should introduce a term that reproduces the primitivity condition as a SUSY

condition DW = 0. This was already considered in an M/F–theory context [35],

where it was conjectured that

W̃ =

∫
J ∧ J ∧G4 . (4.17)

Given this definition, DJW̃ = 0 leads to the primitivity condition J ∧G4 = 0 for the

4-form flux on the 8–manifold. It is not obvious how this term reduces to type IIB.

It will not give rise to a superpotential, but rather to a D–term, as it depends on the

Kähler moduli and not the complex structure moduli. For a K3 × K3 orientifold,

the dimensional reduction of W̃ has been carried out [21] and the result agrees with

that obtained in type IIB from a D7–worldvolume analysis [22]. Also in the F–theory

setup, only the non–primitive fluxes on the D7–branes create a D–term in the effective

four–dimensional theory. We can therefore safely conclude that the supersymmetry

breaking due to the (1,2) flux will not be visible in the scalar potential that appears

from the reduction of the IIB bulk action.

There is also an enlightening discussion in [48] where it was illustrated that,

from an F–theory point of view, a flux of type (0,4), (4,0), or proportional to J ∧ J
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can break supersymmetry without generating a cosmological constant. It is the

latter case that corresponds to non–primitive ISD flux in IIB. We do not have an

explicit map between these two types of fluxes, but we do present some arguments

in [26]. It should be clear that ISD flux lifts to self–dual flux in F-theory and that

the non-primitivity property is preserved in this lift.

To summarize, the supersymmetry breaking associated to non–primitive (1,2)

fluxes will not give rise to an F–term uplift, as the scalar potential generated by the

flux in the IIB bulk action remains zero, so does the superpotential if we rely on the

CY property of the resolved conifold. We can, however, in the spirit of KKLMMT

allow a non–vanishing W0 that is created by fluxes in the compact bulk that is glued

to the throat. It does not appear in the scalar potential because of the no–scale

structure of these models (but it will, once the no–scale structure is broken by non–

perturbative effects or because the superpotential is not simply the one from GVW

[35] anymore).

The (1,2) flux gives rise to an “auxiliary D–term” [33], which is absent in the 4d

scalar potential but can be understood as an FI–term from an anomalous U(1) on

the D7 worldvolume (the pullback of the B-field on the D7 worldvolume enters into

the DBI action). Let us therefore turn to the question how to embed a D7 in the

resolved conifold background; we will then turn to the computation of the D–terms

in section 4.5.
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4.4 Ouyang embedding of D7–branes on the resolved conifold

We consider now the addition of D7–branes to the PT background. In [13] a

holomorphic embedding of D7–branes into the singular conifold background was pre-

sented. Such an embedding is necessary to preserve supersymmetry on the subman-

ifold, although not alone sufficient (complete BPS conditions are found in [49, 50]).

In particular, supersymmetry requires that, in the absence of gauge flux on the D7,

the pullback of the flux is (1,1) and primitive on the cycle wrapped by the D7.

The holomorphic embedding chosen in [13] is described by

z = µ2 , (4.18)

where z is one of the holomorphic coordinates defined in (A.8). It is commonly known

as the Ouyang embedding. Although we already know that the PT background

breaks supersymmetry, we will use precisely the same embedding (we consider only

µ = 0 for simplicity). It is worth emphasizing that this embedding, first considered

on the singular conifold, remains holomorphic on the resolved conifold (details are

found in Appendix B). As a consistency check we should always be able to recover

the original singular solution in the limit a→ 0.

The singular solution from [13] is actually not supersymmetric, though one might

have expected otherwise. The primitivity of the pulled-back flux is not met by the

singular Ouyang embedding in [13]. It is possible to restore supersymmetry by

turning on appropriate gauge flux such that the combination of the gauge flux and

background flux is primitive [51]. Nevertheless, as we will demonstrate in section

4.5, this susy breaking in [13] does not manifest itself in a D–term.
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The D7–brane induces a non–trivial axion–dilaton

τ =
i

gs
+

N

2πi
log z , (4.19)

where N is the number of embedded D7-branes and z is now a holomorphic co-

ordinate on the resolved conifold, (see (A.8) for its definition). As pointed out in

[5], there is an additional running of the dilaton in the “resolved warped deformed

conifold” background, but in does not show up in our toy model because we use a

conformal CY. As we focus on the limit where the geometry looks like the resolved

conifold (i.e. b → 0 in (4.1)), we recover the PT supergravity solution, which has a

constant dilaton. We will therefore concentrate on the running of the dilaton (4.19)

as generated by the D7–brane embedding4 . This running dilaton was not taken into

account by [3], where the D7 is embedded in the singular conifold and a D3–brane

is attracted towards an anti–D3 at the bottom of the throat. The given reasoning is

that the dilaton contribution should be exactly cancelled by a change in geometry

when approaching the supersymmetric limit (if the D7–brane embedding is super-

symmetric and the D3–brane preserves the same supersymmetry, the scenario has to

be stable when the SUSY–breaking anti–D3 is removed). Our setup, on the other

4 Note that the choice of our axio-dilaton is the minimal one that guarantees
that under a z monodromy we will recover the correct charge of a single D7 brane.
However there is a much deeper reason for choosing this. As we will discuss later in
section 3.3, our background appears from a F-theory compactification on a fourfold
with Euler number 19728. For such a fourfold the local D7 brane charge is exactly
given by the above choice of the axio-dilaton with N being the effective number of
coincident local and non-local seven branes.
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hand, is non–supersymmetric from the start and therefore we are not led to conclude

that the running of the dilaton should vanish from a similar line of argument. It will,

however, be suppressed by the susy breaking scale. For a viable inflationary scenario

one should rather use the resolved warped deformed conifold; its running dilaton will

be the primary reason for a D3 to move towards the tip5 . In this section we simply

want to study the backreaction of the dilaton onto the background.

We determine the change the dilaton induces in the other fluxes and the warp

factor at linear order gsN , (see appendix B for details of the calculation). We neglect

any backreaction on the geometry beyond a change in the warp factor, i.e. we will

assume the manifold remains a conformal resolved conifold. This ansatz turns out

to be justified because we are able to solve the eom’s with the internal manifold still

being the resolved conifold. A distortion of the conifold with Ouyang embedding has

been studied in [52], but the D7–branes are smeared over the angular directions, such

that the dilaton does not exhibit the behavior (4.19) and runs as log ρ only. Instead

of choosing this approximation, we will prove the consistency of our approach by

solving all equations of motion explicitly.

5 Such a scenario has been studied in [5], where the running dilaton due to a
blown–up 2–cycle was parameterized by δN(a) log z, where a is a small resolution.
This analysis was based on the original Ouyang embedding [13], which we will now
reconsider for the resolved conifold.
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Consider first the Bianchi identity, which in leading order becomes

dĜ3 = dF̂3 − dτ ∧ Ĥ3 − τ ∧ dĤ3 = −dτ ∧H3 +O((gsN)2) (4.20)

= −
(
N

2πi

dz

z

)
∧
(
df1(ρ) ∧ dθ1 ∧ sin θ1 dφ1 + df2(ρ) ∧ dθ2 ∧ sin θ2 dφ2

)
+O((gsN)2) ,

where H3 indicates the unmodified NS flux from (4.5), whereas the hat indicates the

corrected flux at leading order. In order to find a 3–form flux that obeys this Bianchi

identity, we make an ansatz

Ĝ3 =
∑

αi ηi , (4.21)

where {ηi} is a basis of imaginary self–dual (ISD) 3–forms on the resolved conifold.

In accordance with the observations about the cohomology of G3, we do not restrict

ourselves to (2,1) forms, but allow for ηi of (1,2) cohomology as well. With the

convention (A.17) we define

η1 = E1 ∧ E2 ∧ E2 − E1 ∧ E3 ∧ E3

η2 = E1 ∧ E2 ∧ E3 − E1 ∧ E3 ∧ E2

η3 = E1 ∧ E2 ∧ E1 + E2 ∧ E3 ∧ E3

η4 = E1 ∧ E3 ∧ E1 − E2 ∧ E3 ∧ E2

η5 = E2 ∧ E3 ∧ E1 (4.22)

η6 = E1 ∧ E1 ∧ E3 + E2 ∧ E2 ∧ E3

η7 = E1 ∧ E1 ∧ E2 − E3 ∧ E2 ∧ E3

η8 = E2 ∧ E1 ∧ E2 + E3 ∧ E1 ∧ E3

.
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Note that there are five (2,1) ISD forms, but only three (1,2) ISD forms. This is due

to the fact that a form of type (1,2) can only be ISD if it is proportional to J .

Not surprisingly, there is no solution to the Bianchi identity involving only the

(2,1) forms. We find a particular solution in terms of only four of above eight 3–forms

P3 = α1(ρ) η1 + e−iψ/2α3(ρ, θ1) η3 + e−iψ/2α4(ρ, θ2) η4 + α8(ρ) η8 , (4.23)

with

α1 =
3gsNP

8πρ3

[
18a2 − 36(ρ2 + 3a2) log

(
ρ
a

)
+ (10ρ2 + 72a2) log

(
ρ2

ρ2+9a2

)]
√
ρ2 + 6a2

√
ρ2 + 9a2

α3 = −3
√

6gsNP
72a4 − 3ρ4 + a2ρ2(log(ρ2 + 9a2)− 56 log ρ)

8πρ3(ρ2 + 6a2)2
cot

θ1

2

α4 = −9
√

6gsNP
ρ2 − 9a2 log(ρ2 + 9a2)

8πρ4
√
ρ2 + 6a2

cot
θ2

2
(4.24)

α8 =
3a2

ρ2 + 3a2

[
3gsNP

−9(ρ2 + 4a2) + 28ρ2 log ρ+ (81a2 + 13ρ2) log(ρ2 + 9a2)

8πρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

+ α1

]
.

Note that a8 is implicitly given by α1. Furthermore, we find a homogeneous solution

Ghom
3 = β1(z, ρ) η1 + e−iψ/2β3(ρ, θ1) η3 + e−iψ/2β4(ρ, θ2) η4 (4.25)

+e−iψβ5(ρ, θ1, θ2) η5 + β8(z, ρ) η8 ,

with βi given in (B.10). This solution has the right singularity structure at z = 0 and

ρ = 0, but it does not transform correctly under SL(2,Z). When ψ → ψ + 4π, the

axion–dilaton transforms as τ → τ+N . This would imply that G3 has to be invariant

under this shift, which is true for the particular solution, but not the homogeneous

one. We therefore conclude that the correction to the 3–form flux, which is in general
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a linear combination of P3 and Ghom
3 , is given by (4.23) only

Ĝ3 = G3 + P3 . (4.26)

Note that in terms of ηi the original 3–form flux was given by

G3 = −9P
(ρ2 + 3a2) η1 + 3a2 η8

ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

. (4.27)

We can now determine the change in the remaining fluxes and the warp factor, at

least to linear order in (gsN). We find the corrected RR and NS flux from the real

and imaginary part of Ĝ3, respectively

Ĥ3 =
Ĝ3 − Ĝ3

τ − τ̄
and F̃3 =

Ĝ3 + Ĝ3

2
. (4.28)

This results in the closed NS-NS 3–form

Ĥ3 = dρ ∧ eψ ∧ (c1 dθ1 + c2 dθ2) + dρ ∧ (c3 sin θ1 dθ1 ∧ dφ1 − c4 sin θ2 dθ2 ∧ dφ2)

+

(
ρ2 + 6a2

2ρ
c1 sin θ2 dφ2 −

ρ

2
c2 sin θ1 dφ1

)
∧ dθ1 ∧ dθ2 (4.29)

and the non–closed RR 3–form (note that F̃3 = F̂3 − C0Ĥ3, where F̂3 is closed)

F̃3 = − 1

gs
dρ ∧ eψ ∧ (c1 sin θ1 dφ1 + c2 sin θ2 dφ2)

+
1

gs
eψ ∧ (c5 sin θ1 dθ1 ∧ dφ1 − c6 sin θ2 dθ2 ∧ dφ2)

− 1

gs
sin θ1 sin θ2

(
ρ

2
c2 dθ1 −

ρ2 + 6a2

2ρ
c1 dθ2

)
∧ dφ1 ∧ dφ2 , (4.30)
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(see (B.15) for the coefficients ci). This allows us to write the NS 2–form potential

(dB2 = Ĥ3)

B2 =

(
b1(ρ) cot

θ1

2
dθ1 + b2(r) cot

θ2

2
dθ2

)
∧ eψ (4.31)

+

[
3g2

sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1

2
sin

θ2

2

)
+ b3(ρ)

]
sin θ1 dθ1 ∧ dφ1

−
[
g2
sNP

12πρ2

(
−36a2 + 9ρ2 + 16ρ2 log ρ+ ρ2 log(ρ2 + 9a2)

)
log

(
sin

θ1

2
sin

θ2

2

)
+ b4(ρ)

]
× sin θ2 dθ2 ∧ dφ2 ,

where the coefficients are given in (B.17). This mirrors closely the result for the

singular conifold [13] and we can indeed show that we produce this result in the a→ 0

limit. Away from the singular limit, we find an asymmetry between the (θ1, φ1) and

(θ2, φ2) spheres, which was to be expected since our manifold (the resolved conifold

or its more complicated cousin, the resolved warped deformed conifold) does not have

the Z2 symmetry that exchanges the two 2–spheres in the singular conifold geometry.

The lesser degree of symmetry is naturally also expressed in the fluxes.

The five–form flux is as usual given by (∗̃10 indicates the Hodge star on the full

10–dimensional warped space)

F̂5 = (1 + ∗̃10)(dĥ−1 ∧ d4x) , (4.32)

which requires knowledge of the warp factor ĥ(ρ) that is consistent with these new

fluxes. In order to solve the supergravity equations of motion one requires

ĥ2 ∆ĥ−1 − 2ĥ3 ∂mĥ
−1 ∂nĥ

−1gmn = −∆ĥ = ∗6

(
Ĝ3 ∧ Ĝ3

6(τ − τ)

)
=

1

6
∗6 dF̂5 , (4.33)

59



where ∆ is the Laplacian on the unwarped resolved conifold and all indices are raised

and lowered with the unwarped metric. After some simplifications the Laplacian on

the resolved conifold takes the form

∆ĥ = κ ∂2
ρ ĥ+

5ρ2 + 27a2

ρ(ρ2 + 6a2)
∂ρĥ+

6

ρ2

(
∂2
θ1
ĥ+ cot θ1 ∂θ1ĥ

)
+

6

ρ2 + 6a2

(
∂2
θ2
ĥ+ cot θ2 ∂θ2ĥ

)
.

This should be evaluated in linear order in N, since we solved the SuGra eom for the

fluxes also in linear order. As the the right hand side of

1

6
∗6 dF̂5 =

54gsP

πρ6(ρ2 + 6a2)(ρ2 + 9a2)

{
12πρ4 + 9a2ρ2(8π − gsN) + 54a4(4π + gsN)

+gsN

[
(25ρ4 + 66a2ρ2 − 54a2) log ρ+ (10ρ4 + 102a2ρ2 + 189a4) log(ρ2 + 9a2)

+6(ρ4 + 6a2ρ2 + 18a4) log

(
sin

θ1

2
sin

θ2

2

)]}
(4.34)

appears sufficiently complicated, we need to employ some simplification. The obvious

choice is to consider ρ � a, i.e. we only trust our solution sufficiently far from the

tip. As in the limit a → 0 we recover the singular conifold setup, we know our

solution takes the form [13]

ĥ(ρ, θ1, θ2) = 1 +
L4

r4

{
1 +

24gsP
2

πα′Q
log ρ

[
1 +

3gsN

2πα′

(
log ρ+

1

2

)
(4.35)

+
gsN

2πα′
log

(
sin

θ1

2
sin

θ2

2

)]}
+O

(
a2

ρ2

)
with L4 = 27πgsα

′Q/4. Apart from the a2/ρ2–correction, this is the same result as for

the singular conifold [13]. We have not been able to find an analytic solution at higher

order, but considering that most models work with even cruder approximations of

the warp factor (i.e. h(r) ∼ log r/r4), we believe this should suffice.
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4.5 D-terms from non–primitive background flux on D7–branes

Soft supersymmetry breaking via D–terms on D7–branes has been considered

in [20] and was later applied to more realistic type IIB orientifolds [22, 23] or their

F–theory lift [21, 24] (see also [53] for a IIA scenario); the most general study for gen-

eralized CYs has appeared in [54]. The established consensus is that non–primitive

flux on the D7–worldvolume gives rise to D-terms in the effective 4–dimensional the-

ory, which can only under certain conditions remain non–zero in the vacuum. One

way to phrase the necessary condition is to require that the 4–cycle wrapped by the

D7–branes admits non–trivial 2–forms that become trivial in the ambient Calabi–

Yau, i.e. the H2–cohomology on the four–cycle is bigger than just the pullback of

H2(CY ). (Equivalently [22] states that the 4–cycle needs to intersect its orientifold

image over a 2–cycle that supports non–trivial flux. The same is true in the case

of two stacks [23] intersecting over a 2–cycle.) This condition can be satisfied for

the Ouyang embedding in the µ 6= 0 case: The resolved conifold admits only one

non–trivial 2–cycle, the sphere that remains finite at the tip. The 4–cycle that the

D7 wraps, on the other hand, can also have a non-trivial cycle spanned by (θ1, φ1),

if the D7 in the Ouyang embedding do not reach all the way to the bottom of the

throat. On the D7, this cycle will never shrink completely. Nevertheless, we are

mostly concerned with the case µ = 0 here. In contrast to [22, 23] we consider the

pullback of a background field with non–vanishing fieldstrength, not the zero mode

fluctuations, i.e. we do not expand the worldvolume flux in a basis of H2. This gives

rise to a D-term that depends on the overall volume of the manifold and the resolu-

tion parameter a. Though an orientifold will be necessary to consistently compactify
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our background, we will not specify any orientifold action here, as we do not know a

specific compactification for our background.

Following the derivation in [23, 54], we extract the D-terms from the DBI action.

Suppose our stack of N D7–branes wraps a 4-cycle Σ, as specified by the Ouyang

embedding in section 4.4. The full DBI action for the 8–dimensional worldvolume

(in string frame) reads

SD7 = −µ7

∫
Σ×M4

d8ξ e−Φ

√
|ǧ + B̌ − 2πα′F | , (4.36)

where the symbol ˇ indicates the pullback of the metric and the NS field onto the

D7 and where F is the worldvolume gauge flux. With the warped product ansatz

for the spacetime this expression becomes

SD7 = −µ7

∫
d4x e−Φ

√
|ǧ4|

√∣∣1 + 2πα′ǧ−1
4 F4

∣∣Γ , (4.37)

where g4 and F4 indicate the 4–dimensional part of the metric and gauge flux and

one defines

Γ =

∫
Σ

d4ξ
√
|ǧΣ + F| , (4.38)

where we have introduced F = B̌ − 2πα′F . In the following, the pullback is always

understood as onto the 4–cycle Σ. We do not consider any gauge fields along the

external space M4. The quantity (4.38) is the main parameter for the D–terms.

Expanding the full action (4.36) at low energies yields the potential contribution

VD7 = µ7e
3ΦV−2Γ , (4.39)
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where the volume V of the resolved conifold is defined as

V =
1

6

∫
Y

J ∧ J ∧ J =
(4π)2

108

∫ R

0

ρ3(ρ2 + 6a2) dρ =
8π3

81
R4(R2 + 9a2) . (4.40)

This integral has to be regularized by an explicit cut–off, as we study the non–

compact case. Simply cutting off the radial direction does probably destroy the

holomorphicity condition, but we will ignore this subtlety here.

One can write [23] Γ = Γ̃e−iζ = |Γ̃|ei(ζ̃−ζ), where ζ is determined from the BPS

calibration condition and

Γ̃ =
1

2

∫
Σ

(
J̌ ∧ J̌ −F ∧ F

)
+ i

∫
Σ

J̌ ∧ F . (4.41)

Then the condition for the D7 to preserve the same supersymmetry as the O7 corre-

sponds to ζ = ζ̃ = 0, or equivalently ImΓ̃ = 0. Allowing for a small supersymmetry

breaking, one expands the D7–potential (4.39) in ImΓ̃� <Γ̃ and finds

VD7 = µ7e
3ΦV−2Γ = µ7e

3ΦV−2

√
(<Γ̃)2 + (ImΓ̃)2

= µ7e
3ΦV−2<Γ̃ +

1

2
µ7e

3ΦV−2 (ImΓ̃)2

<Γ̃
. (4.42)

The first term in this expansion will be cancelled by the tadpole cancellation condi-

tion in a consistent compactification. The second term is interpreted as the SUSY–

breaking D–term. The real and imaginary part of Γ̃ are easily read off from (4.38)

(the integrals are real) and can be calculated for our explicit case at hand. All we

need to know is the pullback of the Kähler form onto the 4–cycle and the worldvolume

flux F .
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We would like to consider the simple case such that

B̌ 6= 0 , F = 0 , (4.43)

as we have an explicit solution of this form. There could be gauge flux on the

D7–brane to could restore supersymmetry in the a → 0 limit. It is noted again

that to preserve supersymmetry, holomorphicity is not enough. One also needs the

worldvolume flux to be of pure (1,1) type and primitive [49]. The reason that it is so

difficult to achieve non–trivial D–terms with closed B̌ is that F could always cancel

the non–primitive part of B̌ [22], unless some non–trivial topological conditions are

met.

In calculating the D–terms, we must treat the D7 as a probe. Thus the B–field

that is pulled back is not the one we calculated in (4.31), but the original PT solution

B = f1(ρ) sin θ1 dθ1 ∧ dφ1 + f2(ρ) sin θ2 dθ2 ∧ dφ2 , (4.44)

where f1 and f2 were defined in (4.8). The embedding z = 0 we use has actually 2

branches, since

z = 0 =
(
9a2ρ4 + ρ6

)1/4
sin

θ1

2
sin

θ2

2
(4.45)

can be satisfied by either θ1 = 0 or θ2 = 0. This implies that also φ1 =fixed or

φ2 =fixed, as θi being zero refers to the pole of one of the 2–spheres where the circle

described by φi collapses. The full holomorphic cycle is then a sum over these 2

branches.

Consider the 2 four–cycles Σ1 = (ρ, ψ, φ1, θ1) and Σ2 = (ρ, ψ, φ2, θ2) that

correspond to the branches θ2 = 0 and θ1 = 0, respectively. The complex structure
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induced on them is actually a trivial pullback of the complex structure on the resolved

conifold. Using the complex vielbeins (A.17), we see that

Σ1 = (E1|θ2=0, E2) , Σ2 = (E1|θ1=0, E3) , (4.46)

where in E1|θ2=0 and E1|θ1=0 the imaginary part is truncated to

ImE1|θ2=0 =
ρ
√
κ

3
(dψ+cos θ1 dφ1) and ImE1|θ1=0 =

ρ
√
κ

3
(dψ+cos θ2 dφ2) ,

respectively. It is easy to show that the induced complex structure on the four–cycle

still allows for a closed Kähler form. With this observation we find the pullback of

B onto both branches

B̌|Σ1 =
−3i

ρ2
f1E2 ∧ Ē2 , B̌|Σ2 =

−3i

ρ2 + 6a2
f2E3 ∧ Ē3 , (4.47)

which turn out to be of type (1,1). But that does not mean they are primitive. In fact,

as we will see shortly, the pullback of B is not primitive on each individual branch,

but in the limit a→ 0 the D-term generated by them vanishes when summing over

both branches. So it appears that the Ouyang embedding in the singular conifold [13]

breaks supersymmetry due to this non–primitivity, but generates neither an F-term

nor a D-term. Supersymmetry could possibly be restored by choosing appropriate

gauge flux, but we solved the equations of motion only for the case F = 0, so we will

keep working with this assumption. In general, F would mix with the metric in the

e.o.m., changing our original setup.
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If we consider the B–field (4.31) that reflects the D7–backreaction, we find its

pullback onto Σ1 (the case of Σ2 is completely analogous)

B̌2|Σ1 = b1(ρ) cot
θ1

2
dθ1 ∧ (dψ + cos θ1 dφ1) (4.48)

+

[
3g2

sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1

2
· 0
)

+ b3(ρ)

]
sin θ1 dθ1 ∧ dφ1 .

We encounter the usual problem that B contains terms with log z, so naturally we

find a log–divergent term if we pull back onto a cycle that is described by z = 0.

However, this is not our concern here. We highlight the fact that this B-field is not

of pure (1,1) type anymore, but rather contains (2,0) and (0,2) terms as well:

B̌2|Σ1 =
3
√

3i b1(ρ)

2ρ2
√

2κ(ρ)
cot

θ1

2

[
eiψ/2(E1 ∧ Ē2 − Ē1 ∧ Ē2) + e−iψ/2(E1 ∧ E2 + E2 ∧ Ē1)

]
− 3i

ρ2

[
3g2

sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1

2
· 0
)

+ b3(ρ)

]
E2 ∧ Ē2 . (4.49)

For our considerations the probe approximation shall suffice. We could not obtain

any sensible result with the B–field (4.48) anyway, as we would have to integrate

over the divergent points θi = 0. Naturally, this self–interaction is divergent.

Let us now turn to the calculation of the D-terms for the embedding µ = 0. The

crucial integral for the D-term coming from (4.41) is given by the pullbacks of J and

B. We still need to give the pullback of J onto both branches:

J̌ |Σ1 =
ρ

3
dρ ∧ (dψ + cos θ1 dφ1) +

ρ2

6
sin θ1 dφ1 ∧ dθ1

J̌ |Σ2 =
ρ

3
dρ ∧ (dψ + cos θ2 dφ2) +

ρ2 + 6a2

6
sin θ2 dφ2 ∧ dθ2 . (4.50)
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And we repeat the pull–back of B in terms of real coordinates:

B̌|Σ1 = f1(ρ) sin θ1 dθ1 ∧ dφ1 , B̌|Σ2 = f2(ρ) sin θ2 dθ2 ∧ dφ2 . (4.51)

The D-term is now obtained from ImΓ̃ in (4.41)

D =

∫
Σ1

J̌ |Σ1 ∧ B̌|Σ1 +

∫
Σ2

J̌ |Σ2 ∧ B̌|Σ2

=

∫
Σ1

ρ

3
f1 sin θ1 dρ ∧ dψ ∧ dθ1 ∧ φ1 +

∫
Σ2

ρ

3
f2 sin θ2 dρ ∧ dψ ∧ dθ2 ∧ φ2 .(4.52)

We see immediately that for the case f1 = −f2, i.e. the singular a → 0 limit of

the KT solution, the D-term vanishes after summing both cycles, even though the

pullback of B is non-primitive in this case. For the case a 6= 0 we can perform the

integrals, again introducing a cut–off R for the radial direction. We find

D =
32π2gsP

9

[
9a2 log(9+a2)−(9a2−2R2) logR−(9a2+R2) log(9a2+R2)

]
. (4.53)

To obtain the full D-term potential, we also need <Γ̃ from (4.41). Looking at

the pullbacks of the B–fields (4.47) we see that B̌ ∧ B̌ vanishes for both branches, so

<Γ̃ =
1

2

∫
Σ1

J̌ |Σ1 ∧ J̌ |Σ1 +
1

2

∫
Σ2

J̌ |Σ2 ∧ J̌ |Σ2

=
4π2

9
R2(R2 + 6a2) . (4.54)

The total D-term potential then reads

VD7 =
1

2
µ7e

3ΦV−2 (ImΓ̃)2

<Γ̃

=
59049µ7 e

3Φ

512π8

D2

R10(R2 + 6a2)(R2 + 9a2)2
, (4.55)
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with the D-term D from (4.53). In the probe approximation, Φ is just the constant

background dilaton and can be set to zero. This is one of the main results of our

paper. We find a non–zero D–term created by non-primitive (1,2) flux when pulled

back to non-primitive flux on D7–branes. Their magnitude is highly suppressed in

a large volume compactification. It would be most desireable to find a consistent

compactification for our setup, in which we do not have to introduce a cut–off by

hand that spoils holomorphicity. Let us stress again that these (1,2) fluxes did not

lead to the creation of a bulk cosmological constant because they are ISD. We would

expect, however, a modification of the superpotential, i.e. in general D-terms on

D7–branes also create F-terms [21, 22, 23].

We have so far neglected any zero modes. Once we study D3/D7 inflation, there

will also be degrees of freedom that become light when the two branes approach

each other. The D– and F–terms in this case have to be re-evaluated. As already

outlined in the beginning of this section, we believe that the conditions to have non–

zero D–terms in the vacuum (i.e. intersection over a two–cycle with non–trivial flux

or a cohomology H2(Σ) of the 4–cycle that is greater than the pullback of the CY

cohomology H2(CY )) can be met when µ 6= 0. For µ = 0, it appears rather the

opposite: there is only one non–trivial 2–cycle in the resolved conifold, the blown–

up (φ2, θ2)–sphere. With µ = 0, the cycle Σ1 is topologically trivial (it contains

the shrinking 2–sphere), the cycle Σ2 is not. However, once we compactify, we will

introduce another cycle on which the (0,1) form is supported. This should be in

(ρ, ψ) direction, as G(1,2) ∼ J ∧ Ē1, and E1 extends along ρ and ψ. However, from

(4.51), we see that this 2–cycle does not support any flux.

68



We believe this puzzle might be clarified once the original Ouyang embedding

in the singular conifold background is made supersymmetric with appropriate gauge

fluxes. Note however, that there is an essential difference between the singular KT

and the resolved PT backgrounds: the B–field in the bulk is primitive, i.e. J∧J∧B =

0, for the first case but not for the latter.

The next step would be to consider the embedding µ 6= 0. The integrals becomes

much more complicated and cannot be solved analytically. Only for the case a = 0

have we been able to show by numerical integration that D = 0. For a 6= 0 the

integrand’s strong oscillatory behavior has prevented us from finding a solution so

far. Note that the pullback of J and B is much more involved. We have to use the

embedding equations

(ρ6 + 9a2ρ4) =

(
|µ2|

sin θ1
2

sin θ2
2

)4

, ψ = φ1 + φ2 + const . (4.56)

It is then tedious but straightforward to calculate the pullback

J̌αβ = ∂αy
m∂βy

n Jmn , (4.57)

where m,n = ρ, ψ, θ1, θ2, φ1, φ2 run over the whole 3–fold, whereas α, β = θ1, θ2, φ1, φ2

parameterize the 4–cycle. A similar formula gives the pullback of the NS field B̌.

Note, however, that the pullback will contain terms with (sin θi)
−1, which diverge

at the integration boundaries θi = 0. For the case a = 0, this seems to be under

control; for the resolved case we cannot make any definite statement.
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CHAPTER 5

Future Directions and
Applications to Cosmology

5.1 Compactification and non-Kählerity

One remaining issues that has not been given sufficient attention thus far is the

nature of a possible compactification of our background. It will certainly not be a

Calabi–Yau, nor even Kähler. We argued in chapter 4 that the six–dimensional base

cannot be a Calabi–Yau manifold as it has a non-vanishing first Chern class. One

can go further, as was discussed in [26], and argue that by reducing our background’s

M-theory lift to IIA, the T–dual IIB background will indeed be non–Kähler. This

construction follows the ones laid out in [55, 56]. Specifically, the three-form flux

that we get in type IIA will dissolve in the metric once we T-dualize to type IIB

theory, making the background non-Kähler1 . Once the background is non-Kähler

there would be extra sources of fluxes, namely “geometric flux”. One can replace the

1 In M-theory once dJ 6= 0 the four-form flux J ∧ J is not closed.
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type IIB three-form NS flux by

H̃3 ≡ Ĥ3 + id(e−φJ) . (5.1)

This complexification of the three-form flux is not new and has been observed earlier

in heterotic compactifications [57, 58, 59, 60], which in turn gave rise to a new

superpotential in the heterotic theory [61, 62]. An interesting observation here is

that the type IIB background itself becomes non-Kähler now as compared to the

heterotic background where the type IIB background was conformally Kähler.

We also remarked on possible generalizations of the IIB superpotential in section

4.3. It seems clear that the GVW superpotential will get corrected if the moduli space

is enlarged by non–trivial one–forms. For the case of a background that is mirror

to a Calabi–Yau with NS flux (so it acquires a non–trivial T 3 fibration when the

mirror symmetry is interpreted as three T–dualities — the NS B–field becomes part

of the metric in the mirror manifold [55]), a superpotential has been proposed [24].

Whether or not this is suggestive for our case requires further study. Thus far, we

have no reason to believe that our IIB manifold (globally) admits an SU(3) structure.

The space of generalized Calabi–Yau manifolds is much larger, though some work on

superpotentials in this case appeared in [63, 64, 65, 66]. If we could infer that our IIB

background admits an SU(3) structure, then it would be guaranteed to be complex

[67, 68, 69] if it preserved supersymmetry. However, in the presence of SUSY–

breaking flux we cannot infer the structure of the manifold. A complex manifold

would have the advantage of giving control over the space of complex structure

deformations.
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5.1.1 Inflationary dynamics

The warped resolved conifold may be a good model of inflation with D-term

uplifting, despite the difficulties in computing non-zero D–terms in this work. We

would have to extend our analysis beyond the case µ = 0 (in this case the D7 extend

all the way down the throat, which would not allow us to place a D3 between the D7

and the tip) and to other embeddings, such as the Kuperstein embedding [40]. Our

preliminary analysis indicates that the value of the D-terms should depend on the

choice of embedding.

Taking a resolved warped deformed conifold creates non-trivial dilaton profile

from two sources now:

• From the D7 branes, and

• From the broken Z2 symmetry in the metric.

The running of dilaton from the first case can already be seen at a supersymmet-

ric level in the Ouyang background [13], which was originally analyzed for a non–

compact singular conifold background. Once we generalize the metric to one with

broken Z2 and switch on fluxes, the second case mentioned above becomes relevant,

and we must discuss the combined effects to get the full background geometry. This

makes the problem much harder to solve.

5.1.2 Supersymmetry restoration

If the D3–brane falls into the D7–branes at the end of inflation we expect super-

symmetry to be restored. Such a SUSY restoration was first described in [6]. For our

case, the situation is more involved. From the F-theory point of view (more detail

is given in the original paper [26]), one can argue that in the presence of F flux on
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the D7–brane we can in fact demand:

J ∧Gtotal = 0 (5.2)

and therefore restore supersymmetry with (2,2) fluxes.

The F flux used to restore supersymmetry in the above paragraph could be

interpreted in two ways: switching on the second Chern class or switching on first

Chern class. The former, which leads to instantons, is the end point of the D3 brane

dissolving on the D7 branes. The latter, however, gives rise to a bound state of a D5

brane with the D7 branes. Such a technique of restoring supersymmetry has already

been discussed in [70, 71] and could probably be used to restore supersymmetry in

the limit where the resolution parameter a goes to zero. This would then be one

simple way of restoring supersymmetry in the original Ouyang construction [13].

5.2 AISD Fluxes and Anti-Branes

Related to our flux choice is another issue that deserves mentioning. The (1, 2)

flux that we have described in this paper is ISD and solves the equations of motion.

One may also choose AISD flux if one changes the ansatz for the background geom-

etry, i.e. if one ventures beyond conformal Calabi–Yau compactifications or allows

objects that do not respect the BPS-like bound assumed in our initial ansatz (see

[72]). Typically, one can show that a compact conformally Calabi-Yau background

only allows ISD fluxes that are also primitive. As we saw above, non-primitive ISD

fluxes are allowed on a compact non-Kähler background or on a non-compact Calabi-

Yau background. However, AISD fluxes are generically part of the solution to the
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equations of motion on non-Kähler backgrounds. Some recent papers dealing with

this are [73, 74, 72].

5.3 Conclusions

Motivated by the possibility of a naturally balanced background that would gen-

erate slow-roll inflation, we have applied the methods of [13] to the warped resolved

conifold background of Pando–Zayas and Tseytlin [12]. We found a supergravity

background that breaks supersymmetry spontaneously due to fluxes of type (1,2)

without generating a bulk cosmological constant. The pullback of the NS B–field

onto the D7–worldvolume gives rise to D-terms, which vanish in the limit of van-

ishing resolution parameter a → 0, i.e. when we approach the original singular

background of [13]. In the case we studied, the D7 gauge fluxes were zero and the

D-terms were entirely due to the non–primitive NS B–field. In general, we would

also expect F–terms from the D7 worldvolume theory.

To continue to study inflationary dynamics in this background, it will be nec-

essary to study other D7 embeddings to find non-zero, analytically computable D–

terms. It will also be necessary to properly understand the F–term potential by

establishing to correct superpotential in the 4D theory. This, in turn, will require a

more complete understanding of the compactification of the warped resolved conifold

into more general non-CY backgrounds.
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APPENDIX A

The geometry of the resolved
conifold

The resolved conifold is a manifold which looks asymptotically like the singular

conifold, but is non–singular at the tip. Its geometry can be derived by starting with

the singular version, a non–compact Calabi–Yau 3–fold, that can be embedded in C4

as [37]
4∑
i=1

z2
i = 0 . (A.1)

This describes a cone over S2 × S3, which becomes singular at the origin. By a

change of coordinates this can also be written as

yz − uv = 0 , (A.2)

which is equivalent to non–trivial solutions to the equationz u

v y


ξ1

ξ2

 = 0 , (A.3)
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in which ξ1, ξ2 are homogeneous coordinates on CP1 ∼ S2. For (u, v, y, z) 6= 0 (away

from the tip), they describe again a conifold. But at (u, v, w, z) = 0 this is solved by

any pair (ξ1, ξ2). Due to the overall scaling freedom (ξ1, ξ2) ∼ (λξ1, λξ2) we can mod

out by this equivalence class and (ξ1, ξ2) actually describe a CP1 ∼ S2 at the tip of

the cone. The resolved conifold can be covered by two complex coordinate patches

(H+ and H−), given by

H+ = {ξ1 6= 0} = {(u, y;λ)|u, y, λ ∈ C} , λ =
ξ2

ξ1

(A.4)

H− = {ξ2 6= 0} = {(v, z;µ)|v, z, µ ∈ C} , µ =
ξ1

ξ2

. (A.5)

On H+ we have that

z = −uλ , v = −yλ , (A.6)

on H−

y = −vµ , u = −zµ , (A.7)

and on the intersection of these two patches, the coordinates are related by

(v, z;µ) = (−yλ,−uλ; 1/λ) .

The holomorphic coordinates are conveniently parameterized by

z =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ−φ1−φ2) sin(θ1/2) sin(θ2/2)

y =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ+φ1+φ2) cos(θ1/2) cos(θ2/2)

u =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ+φ1−φ2) cos(θ1/2) sin(θ2/2) (A.8)

v =
(
9a2ρ4 + ρ6

)1/4
ei/2(ψ−φ1+φ2) sin(θ1/2) cos(θ2/2) .
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Here, θi = 0 . . . π, φi = 0 . . . 2π are the usual Euler angles on S2, ψ = 0 . . . 4π

describes a U(1) fiber over the two 2–spheres and ρ = 0 . . .∞ is the radial coor-

dinate. Note that our radial coordinate ρ is related to the commonly used r via

ρ2 = 3/(2r2)F ′(r2), where F (r2) appears in the Kähler potential K of the resolved

conifold

K(r) = F (r2) + 4a2 log(1 + |λ|2) . (A.9)

Note that the Kähler potential is not a globally defined quantity, since λ is only

defined on the patch H+ that excludes ξ1 = 0. For completeness let us also quote

[37, 12]

F ′(r2) =
∂F (r2)

∂r2
=

1

r2

(
−2a2 + 4a2N−1/3(r) +N1/3(r)

)
with (A.10)

N(r) =
1

2

(
r4 − 16a2 +

√
r8 − 32a6r4

)
. (A.11)

The inverse relation between ρ and r is found to be

r =

(
2

3

)3/4

(9a2ρ4 + ρ6)1/4 . (A.12)

In terms of these real coordinates the Ricci–flat Kähler metric on the resolved conifold

reads

ds2
res = κ(ρ)−1 dρ2 +

κ(ρ)

9
ρ2
(
dψ + cos θ1 dφ1 + cos θ2 dφ2

)2

+
ρ2

6

(
dθ2

1 + sin2 θ1 dφ
2
1

)
+
ρ2 + 6a2

6

(
dθ2

2 + sin2 θ2 dφ
2
2

)
, (A.13)

with κ(ρ) = (ρ2 + 9a2)/(ρ2 + 6a2). In the limit a → 0 one recovers the singular

conifold metric; therefore, a is called “resolution” parameter and gives the radius of
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the blown–up 2–sphere at the tip.

It will be useful later on to have a set of vielbeins that describes this metric, i.e.

ds2 =
6∑
i=1

(ei)
2 . (A.14)

Following [46] we choose

e1 = κ−1/2 dρ

e2 =
ρ
√
κ

3
(dψ + cos θ1 dφ1 + cos θ2 dφ2) =

ρ
√
κ

3
eψ

e3 =
ρ√
6

(sinψ/2 sin θ1 dφ1 + cosψ/2 dθ1)

e4 =
ρ√
6

(− cosψ/2 sin θ1 dφ1 + sinψ/2 dθ1) (A.15)

e5 =

√
ρ2 + 6a2

√
6

(sinψ/2 sin θ2 dφ2 + cosψ/2 dθ2)

e6 =

√
ρ2 + 6a2

√
6

(− cosψ/2 sin θ2 dφ2 + sinψ/2 dθ2) ,

as they lead to a closed Kähler form J as well as a closed holomorphic 3–form Ω

with a simple complex structure induced by

J (1,1) = e1∧e2+e3∧e4+e5∧e6 , Ω(3,0) = (e1+ie2)∧(e3+ie4)∧(e5+ie6) . (A.16)

We define our complex vielbeins to be

E1 = e1 + i e2 , E2 = e3 + i e4 , E3 = e5 + i e6 . (A.17)
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This results in a coordinate expression for J as

J =
ρ

3
dρ ∧ (dψ + cos θ1 dφ1 + cos θ2 dφ2)

+
ρ2

6
sin θ1 dφ1 ∧ dθ1 +

ρ2 + 6a2

6
sin θ2 dφ2 ∧ dθ2 . (A.18)
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APPENDIX B

Ouyang embedding of D7–branes
on the resolved conifold

In this appendix we describe how D7–branes can be embedded in the PT back-

ground. We use the Ouyang [13] embedding

z = µ2 , (B.1)

where z is one of the holomorphic coordinates defined in (A.8). While this choice was

originally made for the singular conifold, it continues to give a consistent holomorphic

embedding on both patches. From (A.8), it is clear that selecting z = µ2 on H−

implies that −uλ = µ2 on the intersection with H+, which consistently gives z = µ2

on all of H+.

While the case µ 6= 0, where the D7-brane does not extend to the tip of the throat, is

of primary interest for inflationary models, we set µ = 0 for simplicity of calculation.

As a consistency check, we should always be able to recover a supersymmetric solution
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in the limit a→ 0. The D7–brane induces a non–trivial axion–dilaton

τ =
i

gs
+

N

2πi
log z , (B.2)

where N is the number of embedded D7-branes. Our goal is to determine the change

the dilaton induces in the other fluxes and the warp factor. We will closely follow the

method laid out in [13] and solve the SuGra equation of motion only in linear order

gsN . That said, we neglect any backreaction onto the geometry beyond a change

in the warp factor, i.e. we will assume the manifold remains a conformal resolved

conifold.

Consider first the Bianchi identity, which in leading order becomes (H3 indicates

the unmodified NS flux from (4.5), whereas the hat indicates the corrected flux at

leading order)

dĜ3 = dF̂3 − dτ ∧ Ĥ3 − τ ∧ dĤ3 = −dτ ∧H3 +O((gsN)2) (B.3)

= −
(
N

2πi

dz

z

)
∧
(
df1(ρ) ∧ dθ1 ∧ sin θ1 dφ1 + df2(ρ) ∧ dθ2 ∧ sin θ2 dφ2

)
+O((gsN)2) .

In order to find a 3–form flux that obeys this Bianchi identity, we make an ansatz

Ĝ3 =
∑

αi ηi , (B.4)

where {ηi} is a basis of imaginary self–dual (ISD) 3–forms on the resolved conifold

given in (4.22). We find a particular solution in terms of only four of above eight

3–forms

P3 = α1(ρ) η1 + e−iψ/2α3(ρ, θ1) η3 + e−iψ/2α4(ρ, θ2) η4 + α8(ρ) η8 , (B.5)
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with

α3 = −3
√

6gsNP
72a4 − 3ρ4 + a2ρ2(log(ρ2 + 9a2)− 56 log ρ)

8πρ3(ρ2 + 6a2)2
cot

θ1

2

α4 = −9
√

6gsNP
ρ2 − 9a2 log(ρ2 + 9a2)

8πρ4
√
ρ2 + 6a2

cot
θ2

2
(B.6)

α8 =
3a2

ρ2 + 3a2

[
3gsNP

−9(ρ2 + 4a2) + 28ρ2 log ρ+ (81a2 + 13ρ2) log(ρ2 + 9a2)

8πρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

+ α1(ρ)

]
.

Note that a8 is implicitly given by α1, which in turn is determined via the first order

ODE

α′1(ρ) =
−3

ρ(ρ2 + 3a2)(ρ2 + 9a2)
√
ρ2 + 6a2

[
(162a6 + 78a4ρ2 + 15a2ρ4 + ρ6)√

ρ2 + 6a2
α1(ρ)

+3gsNP
−162a6 + 99a4ρ2 + 63a2ρ4 + 6ρ6 + 14a2ρ2(ρ2 + 9a2) log ρ2

ρ2+9a2

4πρ3
√
ρ2 + 9a2

]
.(B.7)

Letting a→ 0 in above equations, we do indeed recover the singular conifold solution

of [13]. Keeping the resolution parameter a finite instead, we can solve for α1(ρ)

α1(ρ) =
3gsNP

8πρ3

[
18a2 − 36(ρ2 + 3a2) log

(
ρ
a

)
+ (10ρ2 + 72a2) log

(
ρ2

ρ2+9a2

)]
√
ρ2 + 6a2

√
ρ2 + 9a2

. (B.8)

Furthermore, we find a homogeneous solution

Ghom
3 = β1(z, ρ) η1 + e−iψ/2β3(ρ, θ1) η3 + e−iψ/2β4(ρ, θ2) η4 (B.9)

+e−iψβ5(ρ, θ1, θ2) η5 + β8(z, ρ) η8 ,
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with

β1 =
−3i

8ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

[
12(ρ2 + 3a2) log z + 18a2 + 10(ρ2 − 9a2) log ρ

+ (13ρ2 + 99a2) log(ρ2 + 9a2)
]

β3 = 3i
√

6

(
−36a4 + 3ρ4 + 2a2ρ2

(
20 log ρ− log(ρ2 + 9a2)

)
4ρ3(ρ2 + 6a2)2

)
cot

θ1

2

β4 = −9i
√

6

(
ρ2 − 6a2 log(ρ2 + 9a2)

4ρ4
√
ρ2 + 6a2

)
cot

θ2

2
(B.10)

β5 =
−9i (cot θ1

2
cos θ2 + cot θ1)

2ρ2
√
ρ2 + 9a2 sin θ2

β8 =
−27ia2

8ρ3
√
ρ2 + 6a2

√
ρ2 + 9a2

[
4 log z + 6− 10 log ρ− log(ρ2 + 9a2)

]
.

This solution has the right singularity structure at z = 0 and ρ = 0, but it does

not transform correctly under SL(2,Z); only the particular solution does. We there-

fore conclude that the correction to the 3–form flux, which is in general a linear

combination of P3 and Ghom
3 , is given by (B.5) only

Ĝ3 = G3 + P3 . (B.11)

We can now determine the change in the remaining fluxes and the warp factor, at

least to linear order in (gsN). We find the corrected fluxes from the equations

Ĥ3 =
Ĝ3 − Ĝ3

τ − τ̄
and F̃3 =

Ĝ3 + Ĝ3

2
, (B.12)
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which evaluates to

Ĥ3 = dρ ∧ eψ ∧ (c1 dθ1 + c2 dθ2) + dρ ∧ (c3 sin θ1 dθ1 ∧ dφ1 − c4 sin θ2 dθ2 ∧ dφ2)

+

(
ρ2 + 6a2

2ρ
c1 sin θ2 dφ2 −

ρ

2
c2 sin θ1 dφ1

)
∧ dθ1 ∧ dθ2 , (B.13)

F̃3 = − 1

gs
dρ ∧ eψ ∧ (c1 sin θ1 dφ1 + c2 sin θ2 dφ2)

+
1

gs
eψ ∧ (c5 sin θ1 dθ1 ∧ dφ1 − c6 sin θ2 dθ2 ∧ dφ2)

− 1

gs
sin θ1 sin θ2

(
ρ

2
c2 dθ1 −

ρ2 + 6a2

2ρ
c1 dθ2

)
∧ dφ1 ∧ dφ2 . (B.14)

We have introduced the coefficients

c1 =
g2
sPN

4πρ(ρ2 + 6a2)2

(
72a4 − 3ρ4 − 56a2ρ2 log ρ+ a2ρ2 log(ρ2 + 9a2)

)
cot

θ1

2

c2 =
3g2

sPN

4πρ3

(
ρ2 − 9a2 log(ρ2 + 9a2)

)
cot

θ2

2
(B.15)

c3 =
3gsPρ

ρ2 + 9a2
+

g2
sPN

8πρ(ρ2 + 9a2)

[
− 36a2 − 36ρ2 log a+ 34ρ2 log ρ

+(10ρ2 + 81a2) log(ρ2 + 9a2) + 12ρ2 log

(
sin

θ1

2
sin

θ2

2

)]
c4 =

3gsP (ρ2 + 6a2)

κρ3
+
g2
sNP

8πκρ3

[
18a2 − 36(ρ2 + 6a2) log a+ (34ρ2 + 36a2) log ρ

+(10ρ2 + 63a2) log(ρ2 + 9a2) + (12ρ2 + 72a2) log

(
sin

θ1

2
sin

θ2

2

)]

c5 = gsP +
g2
sPN

24π(ρ2 + 6a2)

[
18a2 − 36(ρ2 + 6a2) log a+ 8(2ρ2 − 9a2) log ρ

+(10ρ2 + 63a2) log(ρ2 + 9a2)
]

c6 = gsP +
g2
sPN

24πρ2

[
− 36a2 − 36ρ2 log a+ 16ρ2 log ρ+ (10ρ2 + 81a2) log(ρ2 + 9a2)

]
.
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This allows us to write the NS 2–form potential

B2 =

(
b1(ρ) cot

θ1

2
dθ1 + b2(ρ) cot

θ2

2
dθ2

)
∧ eψ (B.16)

+

[
3g2

sNP

4π

(
1 + log(ρ2 + 9a2)

)
log

(
sin

θ1

2
sin

θ2

2

)
+ b3(ρ)

]
sin θ1 dθ1 ∧ dφ1

−
[
g2
sNP

12πρ2

(
−36a2 + 9ρ2 + 16ρ2 log ρ+ ρ2 log(ρ2 + 9a2)

)
log

(
sin

θ1

2
sin

θ2

2

)
+ b4(ρ)

]
× sin θ2 dθ2 ∧ dφ2 ,

with the ρ-dependent functions

b1(ρ) =
g2
SNP

24π(ρ2 + 6a2)

(
18a2 + (16ρ2 − 72a2) log ρ+ (ρ2 + 9a2) log(ρ2 + 9a2)

)
b2(ρ) = −3g2

sNP

8πρ2

(
ρ2 + 9a2

)
log(ρ2 + 9a2) (B.17)

and b3(ρ) and ba(ρ) are given by the first order differential equations

b′3(ρ) =
3gsPρ

ρ2 + 9a2
+

g2
sNP

8πρ(ρ2 + 9a2)

[
− 36a2 − 36a2 log a+ 34ρ2 log ρ

+(10ρ2 + 81a2) log(ρ2 + 9a2)
]

b′4(ρ) = −3gsP (ρ2 + 6a2)

κρ3
− g2

sNP

8πκρ3

[
18a2 − 36(ρ2 + 6a2) log a (B.18)

+(34ρ2 + 36a2) log ρ+ (10ρ2 + 63a2) log(ρ2 + 9a2)
]
.

The five–form flux is as usual given by

F̂5 = (1 + ∗̃10)(dĥ−1 ∧ d4x) . (B.19)
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In order to solve the supergravity equations of motion, the warp factor has to fulfill

ĥ2 ∆ĥ−1 − 2ĥ3 ∂mĥ
−1 ∂nĥ

−1gmn = −∆ĥ = ∗6

(
Ĝ3 ∧ Ĝ3

6 (τ − τ)

)
=

1

6
∗6 dF̂5 , (B.20)

where ∆ is the Laplacian on the unwarped resolved conifold and all indices are raised

and lowered with the unwarped metric. This should be evaluated in linear order in

N, since we solved the SuGra eom for the fluxes also in linear order. However, we

were unable to find an analytic solution to this problem, so we need to employ some

simplification. We can take the limit ρ� a, i.e. we restrict ourselves to be far from

the tip. As in the limit a → 0 we recover the singular conifold setup [13], we know

our solution takes the form

ĥ(ρ, θ1, θ2) = 1 +
L4

r4

{
1 +

24gsP
2

πα′Q
log ρ

[
1 +

3gsN

2πα′

(
log ρ+

1

2

)
(B.21)

+
gsN

2πα′
log

(
sin

θ1

2
sin

θ2

2

)]}
+O

(
a2

ρ2

)
,

with L4 = 27πgsα
′Q/4. Unfortunately, we cannot give an explicit expression for

the a2/ρ2 corrections. However, the above result is already an improvement over

using the simple Klebanov–Tseytlin warp factor (which is strictly only valid for the

singular solution, but is often employed in the deformed KS geometry).
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