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Abstract

In the first part of the thesis~ we analyze the expeeted time eomplexity of

range searehing with k-d trees in ail dimensions when the data points are

uniformly distributed in the unit hypercube. The partial match results of

Flajolet and Puech are reproved using elementary probabilistic methods.

In addition, we analyze the expected complexity of orthogonal and eonvex

range search, as weil as nearest neighbor seareh. vVe introduee a new data

strueture~ the squarish k-d tree. in which the longest edge is always eut first.

This modification rnakes the expeeted time behavior of lower-dimensional

partial match queries behave as for perfectly balanced complete k-d trees on

n nodes. This is in contrast to a result of Flajolet and Puech, who proved that

for (standard) randoln k-d trees with cuts that rotate among the eoordinate

axes, the expected time behavior is much worse than for balanced complete

k-d trees. We show that the expeeted eomplexity for range search and nearest

neighbor search for squarish k-d trees is either optimal or near optimal.

In the second part, we analyze branch-and-bound search for random

b-ary trees. In particular, let Tn be a b-ary tree of height n, that has in­

dependent, nonnegative, identieaily distributed random variables associated

with each of its edges. The value of anode is the SUIn of ail the edge values

on its path to the root. Consider the problem of finding the minïnlum leaf

value of Tn . Assume that the edge random variable X is nondegenerate, has

E { X 8 } < CX) for sorne () > 2, and satisfies bP{X = c} < 1 where c is the left­

most point of the support of X. We analyze the performance of the standard

branch-and-bound algorithm for this problem and prove that the number of

nodes visited is in probability ({3 + o(l»)n, where {3 E (1, b) is a constant
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depending only on the distribution of the edge random variables. Explicit

expressions for 13 are derived. \Ve also show that any search algorithm must

visit Cj3+o(l))n nodes with probability tending to one, so branch-and-bound

is asymptotically optimal where first-order asymptotics are concerned.
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Résumé

Dans la première partie de la thèse, on analyse l'espérance du temps

de complexité de la recherche étendue avec des arbres k-d pour toutes les

dimensions où les données sont uniformément distribuées au sein de ~'hy­

percube unité. Les résultats de concordance partielle de Flajolet et Puech

sont démontrés â nouveau à raide de méthodes probabilistes élémentaires.

De plus~ on analyse l'espérance de la complexité de la recherche à champ

orthogonal et convexe ainsi que de la recherche du voisin le pLus proche. On

introduit une nouvelle structure de données, Parbre k-d squarish, dans lequel

r arête la plus longue est toujours la première coupée. Cette modification

implique que l'espérance du temps de recherche à concordance partielle de

basse dimension se comporte comme pour les arbres k-d complets à n som­

mets parfaitement équilibrés- Ceci contraste avec un résultat de Flajolet et

Puech, qui ont prouvé que pour les arbres k-d (standards) avec des coupures

qui alternent entre les axes de coordonnées, le comportement de l'espérance

de temps est bien pire que pour les arbres k-d equilibrés. On démontre que

l'espérance de la complexité pour la recherche étendue et celle du voisin le

plus proche pour les arbres k-d squarish est soit optimale ou bien presqu'op­

timale.

Dans la seconde partie, on analyse la recherche branch-and-bound pour

les arbres b-ary aléatoires. En particulier, soit Tn un arbre b-ary de hauteur

n possédant des variables aléatoires associées à chacune de ses arêtes qui

sont non-négatives, indépendantes, et identiquement distribuées. La valeur

d'un sommet est la somme des valeurs de toutes les arêtes sur son chemin

vers la racine. Condérons le problème qui consiste à trouver la valueur­

feuille minimale de Tn - Admettons que la variable aléatoire d'arête X est
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non-dégénérée et satisfait E {Xe} < 00 pour un () > 2~ ainsi que bP{)( =
c} < l, où c est le point du support de X le plus à gauche. On analyse la

performance de l'algorithme branch-and-bound standard pour ce problème et

1~on prouve que le nombre de sommets visités est en probabilité ({3+o(1))n, où

{3 E (1, b) est une constante ne dèpendant que de la distribution des variables

aléatoires d'arête. Des formules explicites pour {3 sont dérivées. On démontre

aussi que tout algorithme de recherche doit visiter ({3 + o(l))n sommets avec

une probabilité tendant vers un. Donc en autant que le premier ordre est

concerné, branch-and-bound est asymptotiquement optimal.
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Introduction

To analyze an algorithm, in a broad sense, means to characterize the amount

of resources that an execution of the algorithm will require when applied to

input data of a given length. There are several ways of making this definition

more precise. We may want to know the worst case behavior of the algorithm

with respect to the general resources the algorithm will need to perform its

tasks: we want to have an absolute warranty that the algorithm will not use

more than a certain amount of storage space or a given time complexity on

any input of at most a given length.

The worst case measure is perhaps the most cornmon and well-known

approach when analyzing an algorithm. However~ this approach may lude

the typical behavior of the algorithm since the worst case input data may he

rare among aIl possible inputs.

Another approach is to analyze the algorithm from a probabilistic per­

spective. vVe can do this in several ways. For example, in one approach,

we assume that the input data is distributed according to sorne probability

distribution. The amount of resources that the algorithm uses is quantified

in a probabilistic sense. We may want ta know the expected space complex­

ity or the expected time cornplexity for instances of a given size. In general,

we choose sorne probability distribution on the inputs of a given size and

analyze the performance of the aigorithm when applied to a random input

drawn from this distributions.

Ra nge Search and Nearest Neighbor Search

Data structures for multi-attribute data should support the usuai dictio­

nary operations as weIl as sorne associative queries. Examples of associative

-3-
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queries are partial match~ range search and nearest neighbor queries. A par­

tial match query asks for ail the elements in the file that match a given vector

with possibly a number of wild-cards. The ancestry of most methods to solve

partial match Queries is to be found in works by Rivest (1976), where hashing

and digital techniques are explored~ and by Bentley (1975) and Bentley and

Finkel (1974) who proposed k-d trees and quad trees, which are comparison

based structures ta solve these problems (see also Knuth~ 1997).

Range search is a fundamental problem in many fields such as computa­

tional geometry~data base theory and pattern recognition. For a range search

query a set of points is given and a search set is specified. The objective is ta

retllrn the points that lie within the search region. Search regions may take

several forms such as half spaces, simplex regions, convex regions or orthog­

onal ranges. Orthogonal range search is of interest ta us. \,tVhen orthogonal

ranges (i.e., hyper-rectangles in the k dimensional Euclidean space) are con­

sidered, range trees (see, Bentley (1977), Preparata and Shamos (1985)) are

among the best data structures, in a worst case scenario. To solve the prob­

lem, they have O((logn)k-l + N) query time and use O(n(logn)k-l) uuits

of space, for n data points~ where N is the number of points in the query

region. However, the implementation of this data stnlcture is quite cum­

bersonle~ so simpler mcthods are of interest. k-d trees are binary trees that

store multidimensional data. A k-d tree is built up so that at each level of the

tree a specifie component of the data is used for splitting. The components

of the data are used cyclically on the path down the tree. For any node u

having index j E {l, ... , k}, ail nodes in its left subtree are such that their

jth key is less than the jth key in u, and ail nodes in its right subtree are

such that their jth key is greater or equal than the jth key in u. The root is

assigned index 1, and from there on the index of each node is determined by

the depth of the node in the tree in a rotational fashion. Insertion and search

are iInplemented as for the standard binary search tree algorithms. The dele­

tion procedure is a bit more complex than the deletion procedure in binary

search trees as we must keep the cyclic arder of the partition coordinates.

-4-
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It nevertheless can be implemented in a very similar manner. The k-d tree

offers severa! advantages-it takes O(kn) space for n data points. it is easily

updated and maintained~ it is simple to implement and comprehend, and it

is useful for other operations besides orthogonal range search. vVe cao also

implement range search by storing the data in a k-d tree by sîmply visiting

recursively al! subtrees of the root that have a nonempty intersection with

the query rectangle.

We can also implement nearest neighbor search using k-d trees. Given a

point x and a set of points in the plane, nearest neighbor search asks for the

nearest neighbor of x among aU the points in the given set. This problem

has been studied extensively in areas snch as computational geometry and

pattern recognition, where nearest neighbor queries are of central importance.

Branch-and-Bound Search

Optimization of rooted trees is Cl. routine problem in computer science and

operations research. The study of efficient algorithms for finding the best leaf

in a rooted tree is the subject of Inany projects anù papers in the artificial

intelligence community. Ifleaves have values associated with them and a min­

imum must be found, one may perform exhaustive search, branch-and-bound

search (which is a depth-first search with on-lîne pruning of useless subtrees)~

backtracking, backtracking with bounded lookahead, and variations of these

methods (Reingold, Nievergelt and Deo (1977), Kumar (1992». To compare

various methods, toy models have been proposed, of wruch the model of Karp

and Pearl (1983) is perhaps the most interesting. Karp and Pearl consider

a complete binary tree with n levels of edges and associate with each edge

an independent Bernoulli(p) random variable. Each node v has a value Vv

equal to the SUffi of the edge values on the path to the root. Each value Vu is

available upon request, but each request costs one time unit. The objective

is to flnd the leaf of minimal value. Karp and Pearl noted that if 2p > 1,

any algorithm must necessarily take exponential expected time in n; while

-5-
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for 2p = 1 and 2p < 1, ordinary uniform cost breadth-tirst search takes on

the average 8(n2 ) and Sen) time. In this algorithm~ one first visits ail nodes

of value 0, then ail nodes of value 1, and so forth. McDiarmid (1990) and

~IcDiarm.id and Provan (1990), generalized the work of Karp and Pearl to

h-ary trees and more general distributions.

Outline of the thesis

In the first part of this thesis we analyze the expected time complexity of

partial match search when using as underlying data structure k-dimensional

trees. As we will see in the forthcoming chapters1 the expected time com­

plexity of range search can be computed if the expected tinle complexity of

partial nlatch queries are known. Flajolet and Puech (1986) conlputed the

expected time complexity of partial match queries in the k-dimensional unit

cube using generating ftmction techniques. They found that the expected

time complexity of partial match when s out of the k attributes are specified

is asymptotic to nl-s/k+O(s/k), where 0 < (J(u) < 0.07 for u E [O,IJ. Thus,

the expected time complexity of partial match is not optimal when using k-d

trees, as off-line, if a median k-d tree is constructed from the data, any partial

match query takes worst case time O(n1- 1/ k +N) where N is the number of

points in the query region. We reprove the Flajolet and Puech (1986) results

using probabilistic nlethods. This is work reported in Chanzy, Devroye and

Zamora-Cura (1999).

Having this result as starting point, we analyze the expected time com­

plexity of range search when using k-d trees. We also introduce the "squarish

k-d tree", which is a k-dimensional tree that has optimal expected time com­

plexity with respect to partial match queries, explicitly 8(n1- S
/

k
), when s

out of k attributes have been specified. We also study the complexity of

range search when using squarish k-d trees. These results can be found in

Devroye, Jabbour and Zamora-Cura (1999).

-6-
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Using the results about range search we analyze two algorithms to solve

the nearest neighbor problem. In the first algorithm, range search queries

centered at the query point are performed on boxes of growing side length.

We return the nearest neighbor of the point in the second nonempty box. We

analyze both k-d trees and squarish k-d trees with respect to this algorithm.

The second algorithm works by returning the nearest neighbor among ail the

points lying in the box of sicles of length twice the perimeter of the box on

which the query point lies.

In the second part of this thesis, we generalize and complement the

results of Karp and Pearl (1983), rvlcDiarmid (1990) and tvlcDiarmid and

Provan (1990). We show that in probability, the numher of nodes visited by

the standard branch-and-bound algorithm to find the minimtilll leaf value in

a random tree (as introduced in the previous section) is ({3 + o(l)Yl ~ where

{3 E (1 ~ b) is a constant depending only on the distribution of the edge random

variables~ and b is the fan-out of the tree and n is the number of levels. \Ve

derive explicit expressions for {3. We also show that any search algorithm

must visit ({3 + o(l))n nodes with probability tending ta one, so branch­

and-bound is asymptotically optimal is a first-order asymptotic sense. These

chapters are based on Devroye and Zaulora-Clu·a (1999) .

-7-
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Chapter 1
Preliminaries

In this chapter we present the basic mathematical tools that we will be

using through out the thesis.

1.1 Probability

DEFINITION. A u-algebra (11, F) consists of a sample space n and a collec­

tion of subsets F oEn satisfying that!

• 0 E F!

• if A E F tben ACE F, and

• V{AihEN oEsets in F, UiENAi E F.

The first and second conditions imply that 11 E F. Moreover, the second

and third conditions imply that a u-algebra is closed under conntably infinite

intersections. If n = R k and 8 is the smallest u-algebra containing ail the

rectangles, then B is called the Borel u-algebra. The elements of B are called

Borel sets.

DEFINITION. A probability space Ïs a triple (!1, F, P) where (n, F) is a

u-algebra: and P is a function From:F ta [0, 1] sucb that,

• P {0} = 0,

• P {.} is a-additive, this is Ab A 2 , ••• E :F and Ai n A j = 0, i :f. j,

imply that P {U~lAà = L:::l P {Ail,

The sets in :F are called events. When the set n is finite the u-algebra

considered is its power set. In this thesis the measurability questions are

irrelevant as the standard u-algebras are rich enough so as to avoid any type

of measurability problem.

-9-
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THEOREM 1.1. (BOOLE'S INEQUALITV). Let (n, F, P) be a probability

space. If Al, ... ,An E F then7

n

P {U?=l Ai} ~ L: P {Ai}.
i=l

Given a probability space (n~ F, PL and A! BEF, with P {E} > O! we

define the conditional probability of A given B! P {AIE}, as

p{AnB}
P{B}

It can easily be verified that conditional probabilities are indeed probability

fnnctions. A random variable ..-Y over (n, F! P) is a real-valued function over

the sample space, )( : n -+ R, snch that for aIl x E R,

{w En: ...Y(w) ~ x} E F.

This definition allows us to have a more compact notation for complex events

since, for example~ P {w En: ...Y(w) < x} becomes P {...Y ~ x}.

Given a random variable X over en,:F, P) we define its expected value

as fol1ows,

E{X} = LXdP.

When the random variable is discrete the expected value of ..-Y becomes

LWEQ X(w) P {X = w}.

The following two theorems are most usefuI when computing eJ\.llected

values of random variables.

THEOREM 1.2. (LINEARITY OF EXPECTATION). Let X b ... , "-Yn be random

variables over (n,:F, P)7 then

[or any Cl! ... ,en E R.

-10-



• THEOREM 1.3. Let Y be a random variable with nnite expectation: X and

Z vector-valued random variables. Then,

• Tbere is a function 9 on R k such tbat E {YIX} = g(X) with probability

one.

• E {Y} = E {E {..-Y"IY}} .

• If Y is a function of X then E {YIX} = Y.

vVe will prove sorne results in the second part of the thesis about the

convergence in probability of the running time of an algorithm. So, let us

define this notion.

DEFINITION. (CONVERGENCE IN PROBABILITY). Let {"-Y"n}nEN: be a. se­

quence of random variables. ~Ve say that

if for eacll ê > 0

iim "-Y"n = ..-Y",
n~oo

in probability

1.2 Inequalities

lim P {IX n - X 1~ ê} = O.
1L~OO

•

From now on, whenever a random variable .JY" is given, a proper (n,:F, P)

probability space is supposed to exist. We present several standard inequal­

ities that we will use through out the thesis.

THEOREM 1.4. (CAUCHY-SCHWARZ INEQUALITY). If the random variables

)( and Y have nnite second moment (i.e., E {X2} < 00 and E {y2} < 00),

then

THEûREM 1.5. (HOLDER'S INEQUALITY). Let p, q E (1,00), such tllat ~ +
~ = 1. Let X and Y· be random variables sucll that E {I..-Y"PI} < 00, and

-11-
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E {Iyql} < 00. Then.

E {IXYI} :::; (E {!XPI}) l/V (E {Iyrll}) t/'1 .

THEOREM 1.6. (lVIARKOV~S INEQUALITY). Let 4~ be a nannegative random

variable. Then for eacb t > 0,

THEOREM 1.7. (.JENSEN~S INEQUALITY). If f Ïs a real-valued convex func­

tian on a finite or Ïnfinite Ïnterval, and X Ïs a random variabLe wÏth finite

expectatÏon~ taking values in tbis ÏntervaL t1Jen

f(E {4Y}) < E {f(.X)}.

1.3 Graphs and trees

A directed graph G is a pair (V, E) where V is a finite set of vertices and E,

the edge set, is a subset of V x V. In an undirected graph we consider the

edges tillordered. The degrce of a vertex v E V is the number ofedges incident

on it. A walk is a sequence Vt, ... , Vt of vertices such that (Vi, Vi+d E E, for

i = l, ... , t - 1. A path is a walk on which no vertices are repeated. We say

that a graph G is connected if for every pair of vertices there is a path that

connects them. A cycle is a walk such that its first and last points coïncide.

A tree T is a connected and acyclic graph. A rooted tree is a tree with a

specially marked node, which we caU root of T.

A rooted directed tree is called m-ary if every vertex has out-degree at

most m and its children are numbered from 1 to m. A binary tree is a 2-ary

-12-
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tree in which for every node each child is designated as a left child or right

cbild. A binary search tree is a binary tree in which each vertex has an

associated key coming from a totally ordered universe, such that aU the keys

associated to the nodes in its left subtree are smaller or equal than it and ail

the keys in its right subtree are greater than it.

1.4 Asymptotics

l\IIany results in the thesis are given in asymptotic notation. vVe will now

define these notions.

Let f,g : lN -+ R+. Theo:

f = O(g) if and only if ~no E N, c > 0 : f(n) < cg(nL 'ï/n ;::: no:

f = [2(g) if and only if ~no E lN: c > 0 : f(n) > cg(n): 'ï/n ;::: no~

and

f = 8(g) if and only if f = O(g) and 9 = n(g).

Furthermore,

f = o(g) if and only if lim f(Cn)) = 0:
n-too 9 n

f = w(g) if and only if lim fCC
n

)) = 00.
n-too 9 n

-13-
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PART 1

Range Search

and

Nearest Neigh bar

Aigorithms
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Chapter 2
Data Structures and Aigorithms

In this chapter we define the problems we will study and the data struc­

tures and algorithms that we will be using to solve the proposed problems

in the first part of the thesis. We introduce the squarish k-d trees as an

alternative data structure to solve the problems at hand.

2.1 Range search and partial match

Range search is a fundamental problem in computational geometry and other

related areas such as pattern recognition~ statistics a.nd database manage­

ment systems. It is a problem commonly used within more complex proh­

lems. vVe can define formally the range search problem as follows:

THE RANGE SEARCH PROBLEM: Given are a set S = {Ul, ... ~ 'un} of n

points in lRk and Q, a family of sets in n.k
• ~Ve wish ta preprocess S into a

data structure so that for a query range Q E Q, aIl the points in Q n Scan

he reported efficiently.

There are several variants of this problem~ for example: range counting

(where we only need to report the number of points in Q n S), emptiness

queries (we need only to decide whether QnS = 0) or extremal queries (where

we report the set of points in Q n S satisfying a specified extremal property).

We should note now that the partial match query problem (report aU points

whose values match a given k-dimensional vector with possibly a number

of wild-cards, e.g, we may search all points with values (ar, *~ *, U4, as, *)

where * denotes a wild card) is a particular instance of range search where

the rectangles degenerate to products of points, intervals and real lines. For

orthogonal range
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FIG URE 2.1. The k-d tree and its partition of [0, If.

search, Q is the set of aH rectangles. Different data structures have been

used, depending of the definition of Q, that help to soLve the problem ef­

ficient ly, such as quad trees, k-d trees, and range trees. For surveys see

Bentley and Friedman (1979), Samet (1990a, 1990b), Agarwal (1997) and

Matousek (1994). In a deterministic context, fractional cascading, a modifi­

cation of the range tree technique, yields an O(n(logn)k-l) worst case space

bound and O«logn)k-l+1V) worst case search time, for n data points, where

N is the number of points in the query region. However, the inlplementation

of this algorithm and data structure is quite cumbersome. The solution using

k-d trees offers several advantages: it takes O(kn) space for n data points,

k-d trees are easily updated and maintained, it is simple to implement and

comprehend, and it is llseful for other operations besides orthogonal range

search. Here we concentrate on the use of the k-d tree for soLving orthogonal

range search problems.
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2.2 k-d trees

The k-d tree (Bentley, 1975) is a data structure used for storing multidimen­

sional data. It is a binary tree in which each record contains /;; keys, right

and left pointers to its subtrees, and an integer index between 1 and k that

indicates which key in the record is used for splitting. On any path from the

root, splitting is performed in a rotational fashion. For k = 1, we obtain the

standard binary search tree. For any node U having index j E {l, ... , k}, aIl

nodes in its left subtree are such that their jth key is less than the jth key in

u, and ail nodes in its right subtree are such that their jth key is greater or

equal than the jth key in u. The root is assigned index 1, and from there on

the index of each node is determined by the depth of the node in the tree in a

rotational fashion (see figure 2.1). The tree and partition shawn in figure 2.1

are constructed by sequentially inserting the points. From now on the words

rectangle and hyper-rectangle wiU be used interchangeabLy.

If we assume that the data belongs to [0, 1]":, then the insertion of

Ut, ... , Un E [0, lY': in an initially empty k-d tree T creates a family of 2n + 1

rectangles that we caU Rn. We can associate with each data point 'Ui+l

the hyper-rectangle in [0, l]k in the final partition generated by Ut, ... , Ui in

which it faUs. Then each node (including external nodes) in T corresponds

to a region of the unit hypercube. To fi.."{ ideas, for 1 < i ::; n, we denote

by Rt E 'Rn the rectangle split by Ui. The n + 1 leaf rectangles are also

denoted Ri, with the index i now running from n + 1 to 2n + 1. The set of

these rectangles is denoted by :Fn . We will take the freedom of considering

'Rn and :Fn as either the set of rectangles previously defined, or the set of

indices of the respective rectangles. The dimensions of rectangle H..ï ar~ xii,

for 1 < j < k. In the two dimensional case the dimensions are denoted by Xi

and Yi.. It turns out that the shape of these rectangles is very important for

the expected running time of partial match queries.

In order to soLve range search, when k-d trees are used to store the

data, we use a natural algorithm proposed by Bentley (1975) (see figure 2.2).
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FLwnge-Search(T,Q)

U ~ root[T]. r ~ 0

if ITI = 0 then return r
else if U E Q then r ~ {u}

if ITI = l then return r

else ef- index[1.L]

case Ut. < Zt. - mt. : r f- rU Range-Search(Tright(tL) ~ Q) (a)

Ut. > ZI. + mi : r ~ r U Range-Search(Tieft(tL)~ Q) (b)

ze - mt. < Ut. < Zt. + me : r ~ r URange-Search(Tdght(u), Q)

uRange-Search(lleft(tL), Q) (c)

FIGURE 2.2. Bentley's range search algorithm.

Bentley~s algorithm starts the search at the root. At each node. it looks at

its index j E {1~ .... k L and compares the jth key of the CUITent node with

the jth range in the search region. If the range is entirely to the left, the

search continues only on the left child of the node, if it is entirely to the right,

then the search continues only at the right child. Otherwise~ the search visits

both subtrees.

The query time for orthogonal search depencls llpon many factors, such

as the location of the query rectangle, and the distribution of the points. One

may construct a median k-d tree off-lïne by splitting each time about the

median, thus obtaining a perfectly balanced binary tree, in which ordinary

point search takes 8(log Tt) worst-case time, and a partial match query with

s coordinates specified takes worst-case time O(n1 - s / k + N), where N is the

number of points returned (see for example, Lee and Wong, 1977). Assuming

the uniform model (the n data points in.dependent and uniformly distributed

random vectors on [0, l]k and the specified entries in the query vector inde­

pendent and uniform random variables), Flajolet and Puech (1986) computed

the asymptotic expected running time of partial match query when s out of

the k attributes are specified and k-d trees are used as data structures, and
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found that if N n denotes the time complexity of a partial match with s

attributes specified~ then

where 0 < B(x) < 0.07, for x E [0,1]. In chapter 3 we give a new proof of

their result, by means of probabilistic techniques, and show in chapter 4 how

this result can be used to compute the expected running time of orthogonal

range search. vVe also extend this result to convex sets in the plane.

vVe know much more about the expected time complexity of partial

match queries when k-d trees are used él.S underlying data stnlctnres than

the result of Flajolet and Puech (1986). Neininger (1999) showecl that the

first asymptotic term for Var {Nn } is e ((E{Nn })2), and that

(lVn - E {Nn })

.jVar {Nn }

tends in distribution to a non-degenerate limit law. That is~ N n is asymptot­

ically not concentrated about E {Nn }. Their method of proof uses contrac­

tions, and may also be used to analyze partial match queries for random quad

trees (Neininger and Riischendorf 1999): thus extending results of Flajolet,

Gonnet, Puech and Robson (1990, 1992).

Partial match queries have also been analyzed for locally balanced kdt

trees, a balanced version of random k-d trees, by Cunto, Lau and Flajo­

let (1989). A kdt tree is a k-d tree where each subtree of size gTeater than

2t has at least t nodes on each of its subtrees. Note that in particular

if a subtree has 2t + 1 nodes, then the key with the median of the com­

ponent which is being used as discriminatory in the whole subtree at this

level is stored in its root. Cunto, et al. (1989) proved that for kdt trees

E {Nn } = e (n l-S/k+Ô(S/k,t)) , where ê(x, t) -7 0, as t -+ 00. So, kdt trees

improve with respect to the behavior of k-d trees as t grows.
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FleURE 2.3. The squarish k-d tree and its partition of the

plane

vVe should note that in the previous types of k-d trees~ deletion op­

erations are not easy to implement~ as it may involve a tedious reorgani­

zation of the whole tree. Furthermore the distribution of the tree may be

changed by the insertion and deletion of nodes. To overcome these prob­

lems Duch~ Estivill-Castro and lVlartinez (199S)~ and lVlartinez~ Panholzer

and Prodinger (199S) proposed the relaxed k-d tree. For this tree~ instead of

rotating cyclically the discriminatory coordinate, we eut directions uniforrnly

at random. Duch, et al. (1998) and Martinez, et al. (1998) showed that for

the relaxed k-d trees E {Nn } = e (na - 1), where Q = 1/2(1 + J9 - 8s/k),

which is worse than for ordinal"y random k-d trees.

2.3 Squarish k-d trees

Squarish k-d trees are a minor modification of k-d trees, first proposed in
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this thesis. The insertion procedure is modified so that each time a rectangle

is split by a newly inserted leaf point, the longest side of its rectangle is

cut, that is, the cut is a (k - 1)-dimensional hyper-plane through the new

point perpendicular to the longest edge of the rectangle. Figure 2.3 shows

the squarish tree and its associated partition for the ~iame set of points in

figure 2.1. In case that there is more than one longest edge, we toss a perfect

coin to decide on one of the longest edges for cutting. It is natural to con­

jecture that if the data points are taken in the unit hypercube, the squarish

partition rule should create a more squarish looking rectangle partition than

if we use a k-d tree partition criterion. This will be apparent from our results.

In chapters 3 and 4 we show that the elongated nature of the rect­

angles generated by the standard k-d tree partition rule explains the poor

performance of randonl k-cl trees with respect to partial lllatch and range

search queries. It is precisely because of the nlore squarish nature of the

rectangles generated by the sqllarish partition rule that they have a better

performance on the average with respect to partial match queries. This seem­

ingly small change makes the expected time behavior of lower-dimensionai

partial match queries behave as for perfectly balanced cornplete k-d trees on

n nodes, namely e(n1-5/1.:). This is in contrast with the k-d trees reviewed

in the previons section~ where it was seen that none of them are optimal on

the average with respect to partial match queries.

2.4 Nearest neighbor search

In chapter 5 we analyze two algorithms to solve the nearest neighbor problem.

In aigorithm A in dimension k, we perform range search queries with square

boxes of sicle length k t
/ 2 ln l/k, for t = 0, 1,2...., until T* + 1: where T* 1S

the first non-empty box. An important quantity that we define is

Pk = max 8(s/k):
O~s~k

where 0(·) is the function appearing in (*). If the data structure we use

is a k-d tree. and if Tt is the time complexity of range search on a square
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box of side length k t /'!. /n l /
k

• by applying the results in chapter 4 about the

complexity of range search queries on k-d trees we prove that

(

(10<-1)' kt)
E {Td ~ c k-~-nPIc + kT ~

for sorne C > 0 not depending upon t or n. Using the previous observation,

we will prove that the expected cornplexity time of algorithm A. in dimension

k, is e (nPk ). When the data structure we use is a squarish k-d tree~ then we

prove that the expected time complexity of algorithm A. is O(lognloglogn).

In algorithm B~ we insert the query point Z in the k-d trce containing

the data and perform a range search centered at Z with dimensions twice the

distance of Z to its parent in the k-d tree. The nearest neighbor is reported

among aH points returned by the orthogonal range search. We ana.lyze~ in

dimension 2~ algorithm B on squarish k-d trees and show that its expected

complexity is o (log2 n).

2.5 The mode)

vVe consider n independent and uniformly distributed points Ul~ .. ' ~ Un on

[O~ l]k. vVe store thenl in order in a k-d tree and caU the élctual data

'Ul, ... : Un. The query rectangle Q is Z + [-ml, mil x .. , X [-171,1.;, m~J where

mj > 0 for aH j, where the mj's are fixed (that is, they may depend upon

n only) and Z is uniformly distributed on [O,l]k and independent of ail

U l : ... , Un. We denote by ~j = 2111j, for 1 < j ~ k. Note that partial match

queries are range search queries snch that for sorne S ç {l~ ... , k}, for each

j E S: mj = 0, and for each j ~ S, mj = 1. We caU this the uniform model.

Note that the definitions made for the deterministic case in section 2.2 can

be imrnediately extended to the uniform model.

When each component of the data cornes from a continuous distribution,

the sequence of ranks in each point fonns a random permutation. The distri­

bution of the k-d trees evolving from n points coincides with the distribution

of binary trees evolving from the successive insertion of n I-dimensiollal data
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points from a common distribution. The distributions and moments of as­

sociated random variables are exactly the same as their analogues in binary

trees.

2.6 Partial match and range search queries

Because for each node in the tree T there is associated a region in [O~ 1Jk,

anode 'lL in T is visited by Bentley~s range search algorithm if and only if

the query rectangle Q intersects its associated rectangle. A leaf rectangle

is visited if its associated rectangle I4. intersects Q. Let J.Vn be the time

complexity of Bentley's orthogonal range search, tllen by the previolls

2n+l

N n = L l[R i nQ#0j'
i=l

For 1 ~ s ~ k, and Vil •••. ~ 'Ui~ E [0, IL partial match query asks for

aIl points in {Ul, ... ,tln } satisfying Uiit = 'Vjt. for aUl ~ t::; s. We say

that the query fixes coordinates il, ... ,is' vVe also define L a...'i the set aU of

points in [0, 1Jk whose if-th coordinate is equal ta Vit ~ for aU 1 ~ t ~ s. In a

partial matcll query, we let the s fL'Ced coordinates be independent and uni­

formly distributed over [O. 1], and the n data points be random independent

uniformly distributed vectors on [0, IJk.

\Ve first relate the expected time complexity of partial Inatch to that of

range search. The following proposition allows us to compute the expected

time complexity of range search by using results about partial match queries.

PROPOSITION 2.1 Given is a random k-d tree based on i.i.d. random vari­

ables U l , ... , Un, uniformly distributed on [O,lJk. Consider a random partial

match query, in which s > 0 of the k tields are specitied. Let N n be the num­

ber of comparisons that Bentley:s orthogonal range search performs. Let S

be the set of specified coordinates. Tben
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where Xij~ 1 ~ j < k! is the Iength of the side along the j-th coordinate of

rectangle ~ in Rn.

PROOF. Note that P {L n Rï # 01 Ub ... ~ Un} = IIjEs ..:T(ij. Thus we have,

E {Nn } = E r~l l[LnR'#0j}

-I~l P {L n il.; # 0} = E {2~1UXij } .0
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2n+l }

E{Nn } = E t;!1 Xij .

•

•

Chapter 3
Partial Match

In this chapter we present the probabilistic analysis for partial match

queries using the uniform model~ when the underlying data structure used is

either a k-d tree or a squarish k-d tree. We present a new probabilistic proof

of a result from Flajolet and Puech (1986) about the expected cOluplexity

time of partial match when using k-d trees. vVe also give the first analysis of

the expected cOluplexity tinle of partial match for squarish k-d trees.

3.1 The results of Flajolet and Puech

In a random vertical partial match query on a 2-d tree: we take a uniformly

distributed value Z E [0,1]. and visit aIl nodes in the tree whose rectan­

gle cuts the vertical Une ut Z. The probability of hitting a rectangle with

dimensions )(i x Yi is of course ~Yi: SO that the expected number of nodes

visited, and hence, the expected time for a partial match query, is simply

E {Li~tl Xi } ~ where the SUffi is taken over aIl 2n + 1 rectangles in the par­

tition. A similar formula holds of course for horizontal partial match queries.

The previous idea clearly generalizes to arbitrary dimensions. As we saw in

the previous chapter: in dimension k, if S ç {1 ... , k}, \':ith IBI = s, is the set

of fi."{ed attributes and N n denotes the number of cornparisons that Bentley's

orthogonal range search performs when fLxing the coordinates in S, then we

have that
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FIGURE 3.1. The top curve is the Flajolet-Puech function

n(-). The bottom curve is the function B(-).

THEOREM 3.1. (FLAJOLET AND PUECH (1986)). Given is a random k-d

tree based on i.i.d. randonl variables [II~ .. " UT1~ distribllted llniformly on

[O,I]k. Consider a random partial match query, in livhich s of the k fields

are specified with k > s ;::: O. Let N n be the number of comparisons that

Bentley's orthogonal range search performs. Tlwn

E {Nu} = (c + o(l))no(s/k):

wllere c is a constant depending on the indices of the s fixed coordinates and

for 0 < u < 1~ a(u) = 1 - 'U - O(u) where O(u) lS the root 0 E [0,1] of the

equation CO + 3 - x)X(O + 2 - x)l-x - 2 = O.

vVe call the function a(·) in the previons theorem. the Flajolet-Puech

a( .) function. An alternative formulation for the previously defined function
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is as follows:

{ (
1 t)l-u ( t) Il }a{LL) = ma..x t + 2 -- - - 2 .

O~t:5 1. 1 - 'U 'IL

Note in particular that a is decreasing, and that 1 - u < n(u) ~ 1.07 - 'U.

Particular values of interest are 0(0) = 1~ 0(1/2) = 0.5616 ... ~ 0(1/3) =
0.7162 ... ~ n(2/3) = 0.3949 ...~ n(l) = 0 (see figure 3.1). As we commented

in the previous chapter~ much more is known about the complexity of partial

match queries. Neininger (1999) proved that if s out of the k fields are fi."{ed~

then for the time complexity of random partial match we have that.

where ..-\. is a non-degenerate random variable~ and f.2 is defined as follows:

Furthermore, he proves that Var {Nn } = Cc + 0(1)) CE {lVr1 } )~, where the

constant c depends on the fi.xed coordinates. In the next section. we merely

offer an alternative entirely probabilistic proof of one half of theorem 3.1.

3.2 Probabilistic proof for the theorem of Flajolet and Puech

The arguments of our proof can be traced back to Devroye (1986).

THEOREM 3.2. For Eixed s with 0 < s < k: there exist constants C and C'

depending upon sand k only sucil tl1at, for aIl su bsets 5 ç {l, ... , k} with

ISI = s,

{

2n+l }
C'nCL(s/k) < E L II Xij < CnQ(s/k).

i=l jeS

PROOF. We prove the upper bound only. The proof uses an embedding

argument that constructs an equivalent k-d tree. Assume without 10ss of
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generality that the set S consists of the first s coordinates in the rotation

(the other cases are not equivalent, but trivially similar). A split along coor­

dinate j will be calleel a j-spLit. To determine a split, we just need a llniform

[0, 1] random variable. So, the construction of the k-cl tree may be viewed

recursively as foLlows: at the root, the root rectangle RI = [0, 1]1.: is subjected

to aI-split based on a uniform [0,1] random variable U. One data point is

associated with the root (this requires k - 1 other llniformly clistributed co­

ordinates, but they will not be needed for what we need to study) ~ and the

sizes of the subtrees associated with the two sub-l'ectangles are muLtinomially

distl'ibuted with parameters (n - l, U, 1- U). We nlay apply this procedure

recursiveLy, l'otating of course the a..x:es about which we split. Arter k rounds,

thus for rectangles at distance k from the l'oot, the dimensions of a rectangle

are clescribed by a vector (VI.... ~ Vk ), with independent uniform [0, 1] compo­

nents. As a binomial(N, pL where N is binomial(n, q), is binomiaL(n, pqL we

see that the size of the subtl'ee associated with the rectangle with dimensions
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generality that the set S consists of the first s coordinates in the rotation

(the other cases are not equivalent, but trivially similar). A split along coor­

dinate j will be called a j-split. To determine a split~ we just need a uniform

[0, 1] random variable. So~ the construction of the k-d tree may be viewed

recursivelyas follows: at the foot, the root rectangle RI = [0, l]k is subjected

to aI-split based on a uniform [0, 1] random variable U. One data point is

associated with the root (this requires k - 1 other uniformly distributed co­

ordinates, but they will not be needed for what we need to study), and the

sizes of the subtrees associated with the two sub-rectangles are multinomially

distributed with parameters (n - 1, U, 1 - U). We may apply this procedure

recursively, rotating of course the axes about which we split. After k rounds,

thus for rectangles at distance k from the root, the dimensions of a rectangle

,1re described by a vector (Vl~"" Vk ), with independent uniform [O~ 1] compo­

nents. As a binomial(N, p), where N is binomial(n, q), is binomial(n, pqL we

see that the size of the subtree associated with the rectangle with dimensions
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(VI, ... , Vk ) is stochastically not larger than a binomial(n, n~l \Ii) random

variable N. If N = 0: then the rectangle is either non-existent or a leaf in the

final k-d tree. With this mechanism, our tree is an infinite complete binary

tree. The actual k-d tree with 2n + 1 rectangles is a subtree of the tree whose

nodes represent rectangles R snch that N = binomial(n,IRI) > O. These

N's are dependent, but that will not matter in what follows: by linearity

of expectation. We note thus that with each node in the infinite tree, an

independent uniform [0,1] random variable is associated, and that the size of

a rectangle R whose path from the root ta the parent of the rectangle node

has uniform random variables VI, \12, ... is given by

Returning ta the problem at hand, we introduce VeR) and ~V(R) for a rect­

angle R at distance efrom the root. Here VeR) is the product of al! uniforms

on that path to the root that correspond ta j-splits, 1 < j < s, and ~V(R) is

the product for oS + 1 ~ j ~ k. Clearly, IRI = V(R)IJV(R). The quantity of

interest ta us is

{

2n+l }

E ~ V(R;) :s;

2f E { E V(R) l[binomial(n,IR[) >0] } .
l=O aIl rectangles R at depth l

Here we consider of course the infinite tree. Leaf nodes in the k-d tree have of

course zero cardinality, but their parents do not. For this reason, we consider

only parent nodes, which explains the coefficient 2. Let Zr and Z:n represent

independent products ofr and m independent unifonn [0, 1] random variables

respectively. Then, by looking at levels that are multiples of k only, the last

upper bound is not more than 2k +1 + 2k +1M, where

00 { }kt. •AI = 2 E Z se1.. , .E [bmomlal(n,Z.lZCk_ ... )(»o]
l=l
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To study M ~ note first that a uniform. [0, 1] random variable is distributed

as e-E , where E is a standard exponential random variable. Thus~ Zsl is

distributed as e-G!fl, where Gr denotes a gamma(r) random variable, that

is, a randorn variable with density

x r - 1e-x

J(x) = r(r) ,x > 0 .

Similarly, ZCk-s)l is distributed as e-GUc-s)l. We write from now on Gand

C' for independent gamma random variables. \Ve have then.

CXl

NI < L 2k
P. E { ZsP. min ( 1, nZS,-Z(/.:_S)i) }

l=1

= f 2
kl (E {Zse 1 [nZ Z' >1] } + E{nZ;iZ(k_S)f. 1 [nZ Z' <1] })

!ft (k-.){- !Ir. (k-,,)(
i=1

- ~ ?kt. E {Z 1 } +~ ?kt. E { Z2 Z' 1 }- ~ - sl- [nZ Z' >1] L...J - n si (k-s)l- [nZ Z' <1]
s( (k-s)(- !fl (1.:-5)(

l=1 '-=1
= 1+11 .

First we handle 1. vVe have

l = f 2
ki

E {Z.sp.l [nZ Z' >1] }
!ft (k-5)(-

l=1

00 { }- ')kt. E e-G.s t 1- L" [Gst+GCk_s)tSlogn]
l=1
00 t sl-1 (k-s}l-1_ ?kl. -x X Y -x-y- L - x+y<logn e r(si)r«k _ s)i) e dxdy

l=1 x;::O,y;::O

00 l 1 tst.-l(l - t)U.:-s)l-l- ?kl kl.-l -2tz-(l-t)z dt d
- {; - . O<z<logn 0«<1 Z e r(sl)r((k --: s)l) Z

(by the transform x = tz, y = (1 - t)z, 0 < t < 1)

Similarly, II yields

II = f 2
ke

E {nz;eZ (k_s)ll [nZ Z' <1] }st (k-s)t
l=1

00 1 1 tsf-l(l - t)(k-s)t-l= L 2k t.n zl.:l-l e -3tz-2(1-t)z '. dt dz
_ logn<z O<t<l r(sl)r«k - s)i)

l-1 -
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so that

1+11=

ex: 1 1 tSl(l t)(k-s)lL 2kl zkl-1 min(I, ne-Z
) e-2tz-(1-t)z - dt dz

l=l O<Z<OCi O<t<l t(l - t)r(sf)r«k - s)l)

We first estimate the sum over f, taking only those terms that depend upon

l:
ex: l

III = L rcsl)r(~k - s)l) ,
l=l

where a = 2k x s y{/.:-s), and we recall that x = tz, y = (1 - t)z. Thus,

1 + 11= r r III x minCI, ne-Z
) e-

2tz
-(1-t)z dt dz .

.!O<Z<CIO JO<t<l zt(l - t)

Employing the Stirling approximation

for sorne () E (0,-1] (vVhittaker and vVatson, 1927, p. 253), we have for l > 0,

r(sl)f«k - s)l) > 0 -1/12~ (ss(lO; - S)/.:-.s) p.

f(kf) - V~7re V~ kk .

Defining u = s / k, and

{3 = 2x'L y 1-u. = 2z (~) 'U ( 1 - t) 1-11.

nU. (1 - 'U) 1- tJ. U 1 - u

we obtain the bound

We now show that there is a constant Co > 0 such that for aIl {3 > 0,

e1/ 12e.8 00 (kl)~l3kle-{3 {3 3/2

.;2rr L (kl)! < Coe 13 ,
l=l
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and thus~

For {3 > 1~ we have by .Jensen~s inequality

e 1/ 12e{1 00 (kf.) i {3kl e - f3 e 1/ 12ef3 .., 3/4

..j2iê ~ (kt)! ~..j2iê E {POIsson-(,B)}

e1/ 12 e{3 3/4 e1/ 12?3/4
::; (/32 + ,8) < - e{3/33/2 ...n;rr ..j2iê

For {3 < 1,

as 2:;:1 j:~2 converges and k ~ 2. Resubstitution yields

I +II

( )(t)3'U ( I-t) 3(1-u)

100 11 ZU 1 - u U I-tL _ z(,,(.!..)"(~)L-" __ )<Co' min(I. ne--) e - u L-.. t 1 dt dz
- 0 0 t 2(1 - t)2 .

= c 1"'" .jZmine!, ne- Z
) [11

h(t)ezg('l dt] dz ,

where C = eO V'u(l - u)/(u3u(1- u)3(1-u)L h(t) = t3u/2-1(1_t)3(1-u)/2-11

and

(
t ) U ( 1 t ) 1-11.

g(t)=2;: 1-u -t-1.

The behavior of 9 is easily established: by definition of the Flajolet-Puech

fllnction, we have sUPO<t<l g(t) = aeu), and the maximum occnrs at to E

(0,1). Furthermore, 9 is unimodal and locally concave about ta- Hence, there

exists a constant v > 0 such that g(t) ::; Q('u) - v(t - tO)2 for ail t E (0, 1).

Pick E > 0 snch that B = (to - E, to + €) ç (0,1). Then

1 h(t)ezg(t)dt

O<t<l

::; sup h(t)100
ez(a(tL)-v(t-tO)~)dt+ ez (a(U)-VE

2
) rI h(t)dt

B -00 Jo
< D eza(u) + D' e z (a(u)-vE

2
)

-,fi
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where D and D'are positive constants ooly depending upon 'lL (through the

function h and the constant v). Resubstitution now yields

Split the integral over (O,logn) and (logn, 00), and verify that the result is

O(nCk(u»), and that all multiplicative constants indeed only depend upon u

and k. 0

3.3 Random partial match queries with squarish 2-d trees

In this section~ we prove that a random partial match query in a randorn

squarish 2-d tree takes expected time e( y'n) as opposed to e{nO.S6l6.. _) for

random 2-d trees (see theorem 3.3). vVe start with the following observation,

that immediately foHows by considering the randonl growth of our k-d trees.

Of course, it implies that the joint distribution of the ordered volumes of the

11. + 1 [eaf rectangles is identical for both random k-d trees considered here.

LEMMA 3.1 Consider a random k-d tree or él random Sqll<:lriSl1 k-d tree.

Then , the volumes of the rectangles in :Fn are distributed as the set Vn

of the consecutive spacings between the order statistics of n Ï.i.d. random

variables, uniformly distributed on [0, 1].

The next result will be useful when we cornpute the expected time com­

plexity of range search.

LEMMA 3.2 COClsider a random k-d tree or squarish k-d tree constructed

from Ut, ... , Un independent uniformly distributed random variables over

[0, 1]k. Let Rn be the rectangles in the partition denned by either the random

k-d tree or the random squarish k-d tree based on Ur, ... 1 Un. Let Xij be

the length on the jth coordinate of the i th rectangle. Then,

{

2n+l }
E ?= .X"il··· X ik = 2Hn +1 - 1,

'l=l
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where H n is the n th harmonie number.

PROOF. First~ note that for any 1 < i :5 n~ ....Y"il •.• )(ik is the volume IRïI
of the rectangle R;.. Note that if Ul~ ... , Ui have already been inserted in

[0, l]k, and Ui+l is a new point, then the size of the two rectangles generated

by Ui + l is equal to the size of the rectangle in the final partition of [0, l]k in

which Ui+l fails. Let us denote by R(Ui+d this rectangle. Thus~

E r~l Xil"' .Xik } = 1 +~ E {E {lR(Ui+lll 1U1 ,·.·, Ui }},

where the 1 accounts for the root rectangle. vVe daim that E {jR(Ui+r)1} =
i;2. Note that the daim is obviously true for i = o. Now, suppose that

U l , •.• ,Ui have already been inserted in the tree~ so that there are i + 1 ex­

ternal nodes. These external nodes represent the i + 1 rectangles partitioning

[O,I]k. Let these rectangles be SI, ... , Si+l' and let the numbering be so that

the leaves are taken from left to right, in order of appearance as leaves in the

k-d tree of Ul , ... , Ui • Then,

E{lR(Ui+,) 1} =E{E {~l[U;+lESd IBd 1U1 ,.··, Ui} }

{

i+l }
= E E [Sel P {Ui +l E S,- 1 Ul,·.·, Ui}

1.=1

{

i+l }
=E ~ISd2 .

It is weIl known that (IS1I, ... , ISi+ll) are jointly distributed as uniform spac­

ings, that is the lengths of the intervals on [0, 1] defined by an LLd. uniform

[0, 1] sample of size i. AlI these spacing-s are identicalIy distributed following

a beta(l, i) distribution. If B is a beta{l, i) random variable, then we have

E {B} = l/{i + 1) and E {B2} = 2/((i + l)(i + 2)). Therefore,

E {IR(Ui +1)1} = (i + 1) E {B2
} =~ .t+ ....

and thus,
n-l

1 + E E {IR(Ui+r) 1} = 1 + 2(Hn + l - 1).0
i=O
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We state now the theorem that shows the behavior of partial match

when using squarish 2-d trees.

THEOREM 3.3. For a random squarish 2-d tree~

v;n :::; E r~' Yi } :::; 180,;n.

The same result holds for E {L;~Tl }(i}. Hence~ tl1e expected time for a

random partial matdl qllery is S(y'n).

No attempt was made to optimize the constants. A few technical results

will be needed in the sequel.

LEMMA 3.3 For p > O~ n > 1~ and arbitrary dimension k:

(
_1_) Lpj+l r(p + 1) < E { ~ lRïIP } < 4r(p + 1).
1 + P n P- 1 -.L.J - nP- L .

1Er..

for a11 n.

PROOF. Let Vl~ ... ~ V~+l be the spacings induced by n iudependent uni­

formly distributed random variables on [071}. It is known that the spacings

Tr ~ b ( ) h· b l . 1 B( ) - rc...}r(t}Vi - eta l, n . T us. y emma 3.1~ W1t l s, t - r(s+t) ~

{ } {
n+l} n+1

1
1 (1 )n-1

E L IRïIP =E Lvt = L v P B-~~n rlv
'Er '-1 '-1 0 ( . )1 n 1- t-

( )
B(p+1,n) f( ) r(n+2)= n+1 = p+1 .

B(l, n) r(p + n + 1)

Now, as r(x + 1) = xr(x) for any x > 0, and for any natural number n and

any s E [0, Il, n 1- s ~ r(n+ l)jf(n+s) < (n+ 1)1-8 (see Mitrionovié, 1970),

then

{~ p} f(n+ 1)
E .L.J IRïI = r(p + l)(n + 1) (n + p) ... (n + p - [pJ)r(n + p -LPJ)

tEr"

r(p + l)(n + 1)2-p+ LpJ
<----:::..--_:........:-_~---

- nLpJ+1

= f(p + 1) (n + 1) 2+lpJ-p
n P- 1 n

4f(p + 1)< .
- n P- 1
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for q E [1,2):

for 2 - ---1....- < q < 2:logT1. - - .

for q > 2~

•

•

Now, for the lower bound, note that

E { L (_:ril'i)p} = r(p + l)(n + 1) r(n + 1)
iEF

n
(n+p).··(n+p-IFJ)r(n+p-I.PJ)

r (p + 1) n I.PJ+ 1
> ---...,;,..-:---~-~--~-
- nP- 1 (n + p) ... (n + p-Jpl)

> r(p + 1) (_n_) I.PJ+l
- n P- 1 n+p

> r(p + 1) (_1_) I.PJ+1 .
- n P- 1 1 + P

o

LEMMA 3.4 In a random squarish 2-d tree~ for every q 2:: L

{

_811,1-'1/2
l-q/2 ~

E L ~q < 8elogn~

tEF. } - 5r~j~:'il) (~ - n
q
,':.-,) ,

and for q E [1, 2L

{ } (
1 ) Lq/2J +1

E ~ yq > r(q/2 + 1)nl - lf/ 2 .
.L..J

F
1 - q/2 + 1

lE n

The same result holds for E {LiEJ='n Xl}.

PROOF. Let r > 1, and define s~q) = LiEF.. Yi,q. Note that~ given Ut:· .. , Ur,

S;~l - s~q) is distributed as yq when J't( > Y and as yq(UfJ + (1 - U)q - 1)

when X < Y, where U is a uniform [0,1} randolll variable, and (...'Y, Y) are

the dimensions of the rectangle split when Ur +l is added. Thus,

E { S(fJ) - S(q)} =
r+l r

E {.L ...'t(iY'i (l[xi>YdYi
q + l[xi<Yi]Yi

q
(uq + (1 - U)fJ - 1»)} .

IEJ='..

Notice that uq + (1- U)q -1 < 0 for q 2:: l, and as min{a,b} < .jQJj, for

a, b > 0, then by lemmas 3.1 and 3.3,

E {S;~1 - s~q)} ~ E {L ..X"iYi (lPC>Y;JYi
q)}

iEJ='..

< E {~ (X.}';)q/2+1} < 4r(q/2 + 2) .
- ~ 1 1 - 7.'1/ 2

iEF..
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•
By summing the differences we get,

(
/

n-1 1 )
~ 2 + 4r(q/2 + 2) 1 + 1 x q / 2dx

{

ID + 4r(q/2+2} (n 1- q / 2 - 1):< L-q/2 .

- 5r(q/2 + 2) + 4r~/~~i2} (1 - 11. l-q/2)

{

_8_nl-q/2. (q E [1. 2))< 1-'1/2 ' .
- S['(q/2+2} (!1. _ n 1-'1/2 ) (q > 2)

'1/2-1 2 •

(qE[1~2))

Cq > 2)

Because 1_~/2n1-q/2~ as a function of q, reaches its minimum at qo = 2(1 ­

1/ logn), and E { s~q)} is a decreasing function of q, we have that E { s~q)} <

Se logn, for qo ~ q ~ 2. The result for E {LiEF" ..-Y?} can he obtained

sirnilarly just by rcplacing the y-lengths for the x-Iengths in the appropriate

places.

Now, for the lower bound, note that as the Xi's and the }i's are identi­

cally distributed:

by lemma 3.3, for q E [1,2). o

•
PROOF OF THEOREM 3.3. Note that the lower bound follows directly from

lemma 3.4, as E {LiEF
n

Yi} is less than E {L;~il Yi}. For the upper bound

we use the sanle technique as in the proof of lemma 3.4. Let Sn = L;~t1 Yi .

Note that as the sum is over aIl the rectangles generated by UI : ... , Un, we
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•
have now that for T > 1, as }(i and Yi are identically distributed,

E {Sr+l - Sr} = E {L XiYi (l[Xi>Yd2Yi + l[X i <Yd(YiU + }i(1 - U»)}
iEF..

=3E{.L ..-Y"iYi
2

}
lEF..

where U c. Uniform[O, 1], and independent of aU U I , ... , Un. Let q E (1,2)

and p > 1 such that ~ + ~ = 1, then by Holder's inequality llsed twice,

by lemma.s 3.3 and 3.4. Take p = 3, q = 3/2. and verify that t.he upper bound

is not more than 24 1
/ 3322

/ 3 /...fF < 30/ft. By summing the clifferences we

finally obtain

5 n-l 1 5
< ? +90 L ~:s;? +90(2Jn -1 -1) < 180J1ï.

.... r=l v T
-

•

For the lower bound, set q = 1 in the lower boune! of lernma 3.4. The reslùt

for E { L.;~Tl ..-Yi } can be obtained similarly just by replacing the y-Iengths

for the x-Iengths in the appropriate places. 0

3.4 The k-dimensional case.

In this section, we obtain the k dimensional generalization of the results

in the previous section by induction. Given UI , .• . , Un, we define for each

~ E Rn, Xi = maxj=l,... ,k "-Yij and ji as the index j E {l, ... , n} for

which ./l(ij = ..-Yi. Note that j; is unique with probability 1. Our main

result generalizes theorem 3.-3 and establishes the expected time optimality

of random squarish k-d trees.
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THEOREM 3.4. Consider a random squarish k-d tree. For l E {l, ... , k -1},

there exist C, C' > 0 such that

{

2n+l }
C'n1 - f < E ~ IIX·· < Cni-/;.

- ~ &] - .

i=l jEl

for any 1 ç {l, ... , k} of cardinality land a11 n E N. In particular, by

proposition 2.1 the expected time of a random partial match query with s

specified coordinates is 8(n l-s/k).

We prove the following lemma that allows us to prove the lower bound

in the previous theorem.

LEMMA 3.5 LetlE {l, ... !k}, tLlen forever.Yxl, ... !Xk > 0:

(

k )t ()tII Xj < max: II Xj
·-1 [: lÇ;{l•... ,k} 'El
J- Ill=i J

PROOF. Let [* be the subset of {l, ... , k} of cardinality l for wrnch the

maximum above is reached. It suffices to observe that,

(}1 Xj) e = tl CïrXj) ~ TI Cu Xj) - Cg. Xj) k

where the subindice j must be understood as (j mod k), if j > k. 0

PROPOSITION 3.1 Let 1 ç {l, ... , k} of cardinality l E {l, ... , k} and

p E [l, ~), then there are positive constants C and C' SUdl that

for a11 n E N.

PROOF. For 1 ç {l, ... : k} with III = l, we define

s;',P = L (II Xi j ) P

iE:Fr jEl

-41-



•
We first look at the upper bound. We define recursively the constants Ck(l.,p)

for any integer k > 0: l. E {1: ... =k} and real number p E [l, ~) as follows,

if I!. = k;

if l. < k,

•

where fi, ij > 1 depend on p. k and l, they are such that ~ + * l, and

1 < pp e~l < e~l· For the sake of clarity we will choose fi later.

For f. E {2, ... , k}, we define the hypothesis 1ip. stating that the upper

bound holds for aH n E N~ aH l ç {l, ... , k} snch that III = f.~ and aH

p E [1, ~), with constant Ck(l,p). We prove 1le with an inducth,.e argument.

First, note that 1ik holds by lemma 3.3. Assuming that 1le is truc, we prove

1it.-l. Let l ç {1~ ... ~ k} such that I!. - 1 = III > 1, and p E [L f.~l). Then

for any integer r 2:: 1 we have,

E { S;:t\ - S;,PIU1 , ••• ~ Ur}= L (il Xii) {l[i;oll] (II )(ii) P

iE:Fr j=l jE!

+l[i;" El] (Jl Xii) Vl' (XV + (1 - xlV - l)dX} ,

as we are using the longest edge eut method. Since Jo
L
(xP +(I-x)P-I)dx < 0

for any p > l, we can drop the second term above and take expected values

sa that,

Let us denote by E(t) the expected value of the tth term above. Observe
(-1 1

that l[ii=tJXii :5 .X:i / ....yi~· Thus we can bound each E(t) as fol1ows,

E(t) :5 E {L (fi Xii) ( II ....Yij ) t-;lP} .
iEFr j=l iEIU{t}
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Now, for any p, q > 1 such that ~ + ~ = 1, we have by applying Hûlder's

inequality twice that,

E(t) < E {E (il Xii) il} ~ E {E ( II JYij ) l-;lP'fi} ~ .
iEFr j=l iEFr iEIU{t}

We can apply hypothesis 1I.l to bound the second term above, if we can

choose 'fi > 1 such that ppl;.l E [1, kil). Note that P('-~l} > l, as p E

[1, '-~l)' Let us define fi = max { Jklp(l. - 1), (l._ll)P}' so that 'fi > 1~ yet

1 < ppl!.l < ~. This completely defines the constant Ck(l,p). vVe can

therefore use hypothesis 1I.l and obtain,

E(t) ~ (Ck~k,ij))l/il(Ck(e,~~~l_-l)ll))l/ti
r q - l r-;;-pp-l

Ck(k, ij)l/iiCk(l,pp(l- l)ll)i
-

We can thus bound the differences as follows,

{S l,P _ SI.P} EE() (k -l + l)Ck(k,ij)l/iiCk(e,pp(l - 1)ll)l/p
E r+ l r:::; t < (- l •

-p
Uli r k

Since p < t.~l' we have that I:;=l ---i=r- <
r P -;;-

the differences we get,

1 n

l-pY nPY' So, by summing

•--=-

as E { S:'p} < 2, for every p > 1, and any nonempty [ ç {l, ... , k}. Thus,

hypothesis llt.-l is proved.

We now prove the lower bound. As we flip a perfect coin at the beginning

of the process to choose the sicle of Ro that we cut, aU the coordinates

Xil, ... , ){ik of a rectangle Rï are exchangeable. So, denoting by S the set of

aU [' ç {l, ... , k} of cardinality l, aIl the random variables LiEF
n

IliEI' )(Ij

are equally distributed so that:

E { E II XP.} =~ E {E E II x P.} .
iEF

n
jEl 7.) [SI l'ES iEFn jEl' 1.)
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Then, by lemmas 3.3 and 3.2,

o

We must note that by lemma 3.3, if e= k, then for any p ~ 0, there are

positive constants C and Cf, depending on p sueh that the previous result

holds. We are now ready ta prove theorem 3.4.

PROOF OF THEOREM 3.4. The lower bound follows immediately From the

previous proposition. For any subset [ ç {1, ... , k} of cardinality l E

{l, ... , k - 1}, we define:

2n

S~ = EilXij.
i=l jE!

As we are using the longest edge eut method we have that,

E{S;+l - S;lUl""'Un } = I:: fr Xij {1[j;e!]2 II ":Yij + l[i;EI] il Xii}
iE:F,. j=l JET JEI

k

< 3 I:: il X ij il )(ij'

iE:F,. j=l JET

vVe choose now p = Jk/l, q = 1/(1 - Jl/k), so that ~ + *= 1, and apply

H61der inequality with these values to get,

Then by lemma 3.3 and proposition 3.2, there exists a positive constant C

depending upon land k sueh that
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We add the differences to get

E {S~} < c (t IL) + 2 ~~ ( :) + 2.
r=l rk 1 - k nk

o

3.5 Conclusions

Note that off-line one may construct a median k-d tree by splitting each

time about the median, thus obtaining a perfectly balanced binary tree, in

which search takes 8(logn) worst-case time, and a partial match query takes

worst-case time O(n 1- 1/ k + NL where N is the number of points returned

(see for example, Lee and "Vong, 1977). Therefore we see that k-d trees are

not optimal evcn in an average sense for solving range search. The elongated

rectangles in the partition generated using k-d trees explain its poor perfor­

mance. For squarish k-d trees, however, we have shown that they behave

optimally in an expected sense. For instance, for 2-d trees we have that the

expected time conlplexity of partial match, when specifying one attribute,

is G (n ~-3) = e (nO.S61S52...), whereas for 2-d squarish trees it is Ge yIn).

Rela.xed k-d trees have even worse expected conlplexity time, as for example

in dimension 2 they have expected complexity e (n 1+2,,/5) = e (nO.G18034...),

though they have the advantage of supporting deletions easily.
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Chapter 4
Orthogonal Range Search

In this chapter~ we obtain tight upper bounds for the expected time

complexity for Bentley~s orthogonal range search algorithm. vVe present the­

orems showing that random squarish k-d trees are superior to random k-d

trees for any kind of random orthogonal range search where the dimensions

of the query region are allowed to depend upon n 1 the number of data points~

in an arbitraI}~manner. vVe also generalize these results for arbitrary convex

range search problems in dimension 2. The novelty here is that the dimen­

sions of the search regions are allowed to depend upon n in an arbitrary

manner.

4.1 Orthogonal range search and k-d trees

Let us first state the theorem about the behavior of range search when using

k-d trees.

THEOREM 4.1. Given is a random k-d tree based on i.i.d. randonl variables

U l , ... , Un, distributed unifo.rm1yon [0, l]k. Let Q be a random query rect­

angle of dimensions ~1 x ... X Â k (which are deterministic Eunctions of n

taking values in [O~ 1]), with center at Z which is uniformly distributed on

[0, l]k, and independent oEUl , ... , Un. Let N n be the nl.lmber of comparisons

that Bentley's orthogonal range search algorithm performs. Then, there exist

constants 'Y', 'Y > 0 depending upon k only such that

'< E{~} <

r - (IOgn + LSÇ{l•... ,k} (rrj~SÂ j ) nQ(ISl/k» - r·
ISI<k

To prove the previous theorem we will need the following result.
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PROPOSITION 4.1 Given is a random k-d tree based on i.i.d. random vari­

ables U l , ... , Un, distributed uniformlyon [O,I]k. Let Xij be the length of

the jth side ofrectangle Rï E 'Rn. Then, there is a constant C > 0, depending

on k only, such that

P ROOF. For i > 1, let ..tyCl) be the product of LilkJ independent Uniform[O, 1]

random variables. Then,

{
2n+1 } {2n+1 k }

E ?= l[ma.xjE{l .....k} Xij~~J < E ?=?= l[xij~t]
l=l 1=1 J=l

co

::; L2lkE{1[xrf)~~I}
l=1
oc::; L 2f.f.:E {(_~(l»)lJ} 2P

l=l

for any p ~ o. The last expression is finite, for example, if we take p = 2k ,

as k > 2. 0

PROOF OF THEOREM 4.1. Note that given Ul ,.·., Un, the probability that

Q intersects ~ is the probability that Z has sorne coordinate Zj that is

within distance 6.j 12 of Rï, and this probability is clearly bounded by the

volume of Rï expanded by 6.j in the j-th direction, for ail j. Thus,

E{Nn } < E r~t.n (Xi; + ~;)}

- L (II 6. j ) E {2ft II Xi;}
SÇ{l•... ,k} jf1.S i=l jES

< C L (II 6. j ) nQ(ISl/k) + 2Hn +1 - 1
SÇ{l, ... ,k}:ISI<k jf1.S
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for sorne constant C > 0 and for ail n large enough, by theorem 3.1 and

lernma 3.2. For the lower bound notice that

{

2n+l k~. }-E L II (Xi j + 2') 1[3jE{1•...,k}:XiJ 2=:1/2]
z=l J=1

~. {2n+l }L II -tE L II '-~ij
SÇ{l .... ,k} j~S i=1 jES

Â. {2n+1 }L JI 2
J

E ?= JI .-Y"ij l[3jE{1.....k}:X t j>1/2] .
SÇ{1•...,k} J~S z=1 JES

We can bound the second term above for any given S C {1, ... , k} as follows:

by the previous proposition. The result follows again by theorem 3.1 and

lernma 3.2. o

•

We must note that the arguments to prove the lower bound indeed apply

to any range search a.lgorithm for solving the range search problem using k-d

trees.

TWû-DIMENSIûNAL SPECIAL CASE. For k = 2, as 0(1/2) = 4-3 ~ 0.5616,

we see that the expected complexity bound is

The first term accounts for complexity due ta search in a tree of height log n .

The last term is a volume term, approximately equal to the number of points
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FIGURE 4.1. The complexity regions: in l, the output size

dominates. In II, the 1-d complexity term is largest, a.nd

III is like point search.

returned by the qllery. Both are unavoidable. The nüdclle term is due to

complexity related to the perimeter of the query rectangle as a long perimeter

cuts many rectangles in the partition. In case ~L = l/ncL and ~2 = l/nb

with a, b > 0, figure 4.1 below shows the regions of the (a, b) plane in which

each of the ternlS dominates. The perimeter term dominates in the white

region, the volume term dominates in the clark region, and the search term

(log n) dominates in the light region. Point search corresponds to a = b = 00,

and a partial match query corresponds to a = 0, b = 00 or vice versa, which

faUs plainly in the white region. Put differently, we have

{

O(logn)

E {Nn } = O(n 1- a - b )

v'i7-3 . ( b)O(n-2 --mIn a, )

if min(a, b) > 0:(1/2) = ~-:J

if max(a, b) < 1 - a(1/2) - 5-fU
otherwise.

•
4.2 Orthogonal range search and squarish k-d trees

In this section, we obtain tight upper bounds for the expected complexity

for Bentley's range sem·ch algorithm when using as underlying data structure
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•
squarish k-d trees. Theorem 4.2 below then states that random squarish k-d

trees are superior to random k-d trees for any kind of random orthogonal

range search.

THEOREM 4.2. Let Q be ;1. random query rectangle of dimensions ~1 x

••• X dk (which are deterministic functions ofn taking values in [0, 1]J: with

center at Z which is uniform1y distributed on [O~ l]k 1 and independent of the

k-d tree. Let N n be the number of comparisons that Bentley 1s orthogonal

range search algorithm performs. Then, there exist constants 'Y > 'Y' > 0

depending upon k only such that

vVe can rewrite the previous result as follows~

k /.:-1

E{Nn }<1' nII~j+Lnl-f L IIdj+Logn
i=l l=l SÇ{l, ...,k} j~S

ISI=l

•

and therefore by allowing any r of the l:i.j 's to be zero~ the term that domi­

nates the previous bound is,

n 1
- f L II aj.

S;ISI=ri~S

For example, when k = 2, Â = Gel/na), and 6,' = 8(1/nb
), then

E {Nn } < 'Y (n 1- a
-

b + n î - a + n~-b + logn) .

By looking at the different regions in the a-b plane we obtain,

for a > 1/2 and b > 1/2;
for a > 1/2, b < 1/2, or a < 1/2, b > 1/2;
for a < 1/2, b < 1/2.
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a = 0, Vii
Partial Match Query

logn
Point Search

1/2 a
b = 0, ..;n
Partial ~v[atch Query

•

FIGURE 4.2. The complexity regions for ~ = 8(ljna
)

and ~' = 8(ljnb
).

Note that if a = 0 and b ~ 1/2~ or b = 0 and a > 1/2, we recover the expected

complexity tirne of the random partial match query problenl.

PROPOSITION 4.2 Let U1 , ••• ,Un be independent and uniform1y distributed

over [0, l]k random variables: let Xt be the longest side of the i th rectangle

generated by U1 , . .. , Un. Tllen~ for a11 n ~ O~

PROOF. Note that E {EiE:Fn l[X;>tl} < 2k E {EiE:Fn I1jE 1 i X ij }, where

Ii = {j : Xij > ~}. Define Sn = EiE:Fn(I1 j :X
ij

> t 8Xij). We are going ta

prove that E {Sn} is decreasing sa that for n ~ 1,

E{ L l[Xi>tJ} ~ 2
k

-
3

E{Sn} $ 2
k

-
3

E{So} = 2
4k

-
3

•

iE:F...
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•
To show E {Sn} < E {So}. we look at the differences once again. Set Pi =

I1iE I; 8Xij . Then,

Sr+! - Sr = .L 1R;11[x;>~l {-p; + l[xx.. >~l (p;X + l[1[,f>l)si~)
tErn 1

+ l[(l-x)x;>~l (P;(l - X) + 1[1 [,f>ll si;)
+l[XX;$~; (l-X)X"$~l (21[1[,f> Il si; )},

where )( c. Uniform[O, IJ~ and it is independent of Ul~ ... , Ur. Therefore,

E {Sr+! - SrIUl ,···, U,.} :<; i~.IR;ll[X; >~JP; ( -1 +1,:.. (x + ~ )dx

+ [-,.~ .. ((1 - x) + 1/4)dx +1:\. 1/2dx)

= L IRïll[x;>~JPi (4~~~ - (2;~)2)
iEr,. 1. l

~ o.

o

PROOF OF THEOREM 4.2. The proof follows exactly the same arguments as

the proof of theorem 4.1, except that 50 as to prove the lower bound we use

proposition 4.2 instead of proposition 4.1.

4.3 Searching with convex sets

o

•

To perform a range search with a convex set C, we may also recursively de­

scend the k-d tree, and visit aIl subtrees whose root rectangle has a nonempty

intersection with C. In this section, to fLx the ideas, we consider k = 2 only,

although the generalizations to higher dimensions are straightforward. For a

fLxed convex set C ~ we let êe denote the l11ÏnÏInal ellipse containing C. Let

the center of êe be the origin. Let êe have principal axes u and 'U ~ with u

perpendicular to v. Let Re be the smallest rectangle aligned with the axes

-53-



•

•

FIGURE 4.3. Construction used for convex sets.

(u~ v) pair that contains [c (and thus touches the ellipse in j ust four points).

Let the dimensions of the rectangle Re (and thus of te) in the 'U and v direc­

tions be ~ > 0 and ~' > 0 respectively. These dimensions are (ietenninistic

but may depend on n. A random range search is defined as a range search

with convex set Z +C. the translation by Z (a tmiformly distributed random

variable on [0, 1]k) of C.

First we generalize theorems 4.1 and 4.2 to rotated rectangles. Let Q

be a rectangle of size ~ x ~' parallel to [O~ IF and centered at the origin.

For 4J E [0,21rL we define Qq, as the rectangle resulting from rotating Q by

4J about the origin.

THEOREM 4.3. Let Ul~' .. , Un be independent and uniform random vari­

ables over [0, IF 7 used to construct either a 2-d tree or a squarish 2-d tree7

and let 'Rn be the corresponding partition into rectangles. Let Z be uni­

formly distributed over [O~ 1F7 independent of the Ui 'S7 and let N n be the

number of rectangles in 'Rn tlIat intersect Z + QrP (and thus the complexity

of range search with tllis set). If Q has dimensions ~ x 6,'7 then there is a

universal constant 'Y > 0 (not depending upon n, ~7 ~' or <!», sud1 tllat

where a = q-3, if we used 2-d trees and a = 1/2 if we use squarish 2-d

trees.
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FleURE 4.4. Areas in theorem 4.3.

PROOF. If a rectangle R;. in 'Rn has dimensions Xi x Yi! then Z + Qep

intersects it if and only if Z falls in the octagon outLined in figure 4.4~ where

the tilted rectangles are varions positions of the tilted qnery rectangle. It

is easy to see that this octagon in turu is contained in the rect.angle Ri

extended on top and bottanl by Ly (again. see figure 4.4) and on left and

right by Lx. Using the sarne rcasoning as in thearellls 4.1 and 4.2~ wc not.e

that given U I , ... ! Un, the probability that Z + Qep intersects Ri, is bounded

by .tYiYi +2 rnax(Lx , ly)(.tYi +Yi)+2LlLl'. Clearly, max(lx,ly) < (Ll+t1')/V2.

Thus,

{
2n+l} {2n+l}

E {Nn } < E ~ (Xil'i) + .J2(~ + ~/) E ~ (Xi + l'i) + (4n + 2)~~'

< 2Hn +1 - 1 + cv'2(~ + ~')na + (4n + 2)~~'

Ta prepare for the [uain result of this sect.ion, wc use a fact from classical

for sorne constant c > 0 by Iemma 3.2 and theorem 4.1 and 4.2, depending

on whether we use 2-d trees or squarish 2-d trees.. Note in particular that

•
the constant c does not depend upon 4J. o
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geometry~ stated here in its high-dimensional fonn. vVe use the fol1owing

result by John (1948).

LEMMA 4.1 Let S be any bounded set in R k not contained in any linear

subspace of it. Let Es be the smallest ellipsoid containing S (called John 's

ellipsoid) and E~ be the concentric and homothetic eL1ipsoic1 at the ratio of

i· Then E~ C CH(S) ç Es: where CH(S) denotes tlle convex hull of S.

In particular, John~s result implies that IEsl < kkIE~' ::; A;klcH(S)I. Let

E be an ellipsoid with principal a.xes of lengths al ~ ... ~ ak~ and let B be the

unit ball of R k
• Theo

Let S be a set as in the previous lemma~ and let Es be John's ellipsoid.

Assume that Es has principal axes of lengths al ~ ... ~ al,;. Let R s be the

smallest rectangle whose a..xes a.re aligned with those of [s that contains Es

(so that its volurne is (LI X •.• x ak)' Tlrcn

( 2)k (k+2)IRsl ~ Ji r -2- ICH(S)I·

The main result of this section clearly shows why we caU the nec term the

perimeter complexity. In higher dimensions~ the complexity of range search

involves the volumes of ail the lower-dimensional ;'facets:~ of C.

THEOREM 4.4. Let U I , ... , Un be independent and uniform randoln vari­

ables over [O~ 1f 1 Llsed ta construct either a 2-d tree or a squarisll 2-d tree,

and let 'Rn be the partition into rectangles. Let Z be uniformly distributed

over [0, If, independent of the Ui 's, and let N n be the number of rectangles

in Rn that intersect Z +C1 where C is a convex set. Then tl1cre is a universal

constant"( > 0 (not depending upon n: ~, ~' or G), sucil that

E {Nn } < 'Y (n area(C) + na perimeter(G) + logn) ,

wllere Cl: = ~-3 if we used 2-d trees and a = 1/2 if we used squarisb 2-d

trees.
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FIGURE 4.5. 2-d and squarish 2-d partitions. The same

sets of points are used in both figures. The figures clearly

show the elongated nature of rectangles in 2-d trees. The

squarish partition looks indeed more "squarish".

PROOF. Let Re he the rectangle associated to John's ellipsoid &e for C, as

defined above. Suppose that it is of size ~ x ~'. Note that the number of

comparisons that range search performs with Z + C is not more than that

for Z + Re. Therefore, for sorne 'Y' > 0,

As we noted earlier, ~t1' < ~ Area(C). By the convexity of C, and using
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AIs0 ,

Perimeter(Rc) = 2(~ + ~/) < 2V2J(Ll)2 + (d')2 < V8Perimeter(C) .

Thus we obtain the inequality

E {Nn } < "'/ (4jrr)nA.rea(C) + VSPerimeter(C)nCk + logn) .

o

4.4 Conclusions

The reason why range search queries, and in particular partial match queries,

have better expected time complexity when using squarish k-d trees than

when using k-d trees is because of the more "squarish" nature of the partition

on the average that the modified data structure produce. Because k-d trees

produce on the average many long skinny rectangles, the probability of a

range query region to hit a rectangle in the partition is larger (see figure 4.5) .
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Chapter 5
Nearest Neighbor Search

In this chapter we propose two algorithms for finding the nearest neigh­

bor among n points. We analyze both algorithms when having as underlying

data structure k-d trees and squarish k-d trees.

5.1 Nearest neighbor problem

The nearest neighbor problem is a fundamental problem in areas such as

computational geometry and pattern recognition. It has been extensively

studied and several techniques have been proposed ta solve it~ snch as branch­

and-bound techniques (Fukunaga and Narendra 1975), randomization (Ra­

bin 1976, Yuval 1976), divide-and-conquer (Bentley 1975) and bucketing

(Bentley, Weide and Yao 1980). If the data set is of size n, in a worst

case scenario in dimension 2 for example, the nearest neighbor problem can

be solved optimally by using the Voronoi diagram of the data set in O(logn)

time with O(n logn) preprocessing time. Here we locate the Voronoi region

where the query point is contained, by using binary search on each of the

axes. The ancestry of this method can be found in Dobkin and Lipton (1976)

(see also Shamos and Hoey, 1975). By the use of hashing techniques, in a

probabilistic setting, Bentley, Weide and Yao (1980), showed that the nearest

neighhor problem can he solved in 0(1) expected time for sorne distribution

of the data. They partition the unit square in an array of size .JiiIC by

.;nIC and search the buckets around the bucket to which the query point

belongs in a spiral fashion.
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FIGURE 5.1. Illustration of algorithm A. The sanIe points

are shown in both figures, but to the left a 2-d tree par­

tition and to the right a squarish 2-d tree partition are

shown.

We use k-d trees and squarish k-d trees to solve the nearest neighbor

problem. We propose two algorithms that use the range search algorithm in

the previous chapter. and analyze their expected time complexity.

5.2 Aigorith ms

To adequately present the results in this section, let us define the fol1owing

quantity. Given k ~ 2, we define

Pk = ma.."{ (a(sfk) - 1 + s/k) ,
O~s:9,;

where a(·) is the Flajolet-Puech function defined in chapter 3. We propose

two algorithms for solving the nearest neighbor problem. These are as follows:

•
• In algorithm A, we start with an orthogonal range search with a square

box of size Ifn l / k centered at the query point Z. Repeat with boxes Qt

of sizes kt / 2fn l/k for t = 1,2,3, ... until t* + 1, where t· is the index of

the first nonempty box. Report the nearest point in the t* + l-st box

(see figure 5.1).
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• In algorithm B, we insert )( in the k-d tree~ and let Q be the rectangle

associated with X. Let X' be the parent of X in the tree (note: )(' E

Q). Perform an orthogonal range search centered at X with dimensions

211X' - ...Y"II in all directions. Report the nearest neighbor among aIl

points returned by this orthogonal range search.

The performance of the two previous algorithms differs depending on which

brand of k-d tree is being used. When using algorithm A on squarish k­

d trees, we prove that the expected complexity time of algorithm A is

O(Logn log logn). If we use algorithm B with squarish k-d trees in dimension

2, we prove that the expected complexity time is O(log2 n).

5.3 Aigorithm A when using k-d trees

Consider a random k-d tree constructed from the insertion of U l , .. ·, Un,

independent uniform random variables over [0, l]k. Let ...Y he a query point

uniformly distributed in the unit square. We consider algorithm A. The pur­

pose of this section is to prove that the expected complexity of this algorithm

is 8(nPk ), where

Pk = max B(slk).
0:5s:5k

The constant Pk E (0.061,0.064) depends upon k only, and is (Vï7 - 4)/2 ~

0.0615536 for k = 2, is minimal for k = 3 (Pk ~ 0.0615254), and oscillates

from that point on. For exampLe, nearest neighhor search in dimensions 2, 4

and 6 have the same expected complexity (as a function of n-the constants

may he different), and nearest neighhor search in 3-d is slightly easier than

in any other dimension as its Pk-value is smallest. The maximal value for Pk

never exceeds 0.064 (see figure 5.2).

We set first the notation we will use. Let t > 1, we set for a1l1 < j ~ k,

~j = k t / 2 ln l/k. Let Qt be the hypercube with sicles all equal to k t / 2 ln l/k,

centered at ,..l(, a random vector uniformly distributed in [0, l]k, on which an

orthogonal range search is performecl. Let Nt he the number of data points
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FIGURE 5.2. The function Pk versus k, the dimension.

The expected complexity of a natural nearest neighbor al­

gorithm grows as nPk •

among Ul, ... , Un falling in Qt. Let Tt he the complexity of Bentley's or­

thogonal range search algorithm on Qt, so that

2n+l

Tt = L 1[Ri nQt#0] ,
i=l

where R& is the rectangle in the partition determined by Ut, ... , Ui-l in

which Ui faIls. The time taken by algorithm A is

•
T = Tl + T2 + LTt l[Nt_2=O] •

t~3

We note that by assumption all points fail in the unit hypercube, and there­

fore, the largest index in the last sum cannat exceed t* = f210gn/(k log k)l.
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• FACT. Let Pk = rnax{8(lfk),8(2fkL ... ,fJ((k - l)fk)}. Then there exists

a constant C not depending upon t or n such that

(

(k-l)t kt)E {Tt} 5: C k-;!-nPk + kT .

A Iso,
C ( (k-llt let)P {llï n Qt # 0} < i k-2-iPk + k"2 ,

for 1 <i < n.

PROOF. Using theorem 4.1! with the tlj's as previously defined~ we obtain

E {Tt} <

C (k ;r + k (k-;llt n8(1/k) + k (Ic-;:!)t n O(2/k) + ... + k~nO((k-l)/k) + logn) .

The first inequality in the theorem follows immediately from this and the

definition of Pk, and the fact that log n = o(nPl.: ). The second inequality uses

the fact that P {Ri n Qt i= 0} is decreasing in i, and thus,

if the sample size used for orthogonal range search is i. The first inequality,

with n replaced by i concludes the praof. o

•

LEMMA 5.1 Let the following constants be given: A > 0, 1 > 0, 8 > 0,

{3 > 1, 1 > P > 0, subject to the conditions A log {3 < 1, log {3 < d. Then

rAlognl nL {3t L i P- 1e--y(1-i/n)e
cSt = O(nP ) •

t=l i=l

If the conditions are altered so that p = °and 8 = log,8, then

rA lognl n 1
'"" {3t L -:e-"Y(l-i/n)e

cSt
= O(logn) .

L.J . 't
t=l 1=1

PROOF. We may assume without 10ss of generality that Alogn is integer­

valued. Consider first the sunl
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• where TJ williater be replaced by ')'(l-i/n). By comparison with an integral!

we see that this is not more than

[00 5:z:

{3 Jo {3xe- Tfe dx.

Set z = T/ex6 , and verify that the latter expression is smaller than

P- [rxJ( / )log{3/15-1 -z d < {3f(log[3/J)
dT] Jo Z "7 e z - dT]log{3/15 '

for i < n. "Vith this inequality in hand, we note that for the n th term in our

SUIn we have

Furthermore!

Alogn p-l Alog/3
'"" [3t p-l n nLJ n < l
t=1 1 - li

nP

<--1·-1--
{3

•

n-l A logn n-l
~ -ip - 1 ~ {Jte-"Y(l-i/n)é f < ~ i P- 1 /3r(log{3/8)
~ f=: - ~ 8(,(1 - i/n»)logl3/c5

and thus, it suffices to show that L~~11 i P - 1(1 - -ijn)-b - O(nP ), where

b E [0,1). By comparison with an integral, we have

n-l n-l

L i P - 1(1- i/n)-b = n P.!. L(i/n)P-l(l - ijn)-b
i=1 11. i=1

< n P 11 x p - 1 (1 - x)-b dx

< B(p, 1 - b)nP ,

where BC·,·) is the beta integral. This concludes the first part of lemma 5.l.

For the second part, note as before that the contributions in the double SUffi

corresponding to i = n and i = n - 1 are 0(1). For the remainder, we have

Alogn n-2L L i-1{Jte-"Y(1-i/n)é
t

t=l i=l

00 A logn [n-2 ~t

< L{3te -"Y(l-l/n)é
f + L JI ~e-"Y(l-(X+l)/n)e.st dx

t=l t=l 1

{J J.n-2 1
<01+- dx- () D'Y 1 x(1 - (x + l)/n)

= O(logn) .
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THEOREM 5.1. lfT is the time for a nearest neighbor search for algorithm

A when using as underlying data structure k-d trees: then E {T} = S(n Pk ).

• This concludes the proof of the second part of lemma 5.1. o

•

PROOF. For the lower bound, we note that T ~ Tl, and conclude by the

lower bound of theorem 4.1 applied to Q1 and the definition of Pk. For the

upper bound~ we begin with

T = Tl + Tz + ETt l[Nt _ 2 =O] •

t~3

Taking expected values, theorem 4.1 implies that E {Tl + Tz } = O(nPk ).

vVe fi.."( t > 3 and bound E {Tt l[Nt_2=O]}. The two factors in the expected

value are dependent. However, if Nt-Z,i denotes the number of points among

Ui + l , . .. , Un that faH in Qt-Z' then we note that given X, Nt-Z,i and [R.ï n

Qt =1= 0J are independent. Now note that

P {Nt-Z,i = OI.,Y"} < sup P {Nt-Z,i = 01.,Y" = x}
xe[o,l]k

~ (1 -C~~-2rr- i

(

(n _ i)k ke t:,l-2) )
:::; exp - ?k... n

Thus, as Nt-2 ~ Nt-Z.i, we have by the previous fact

E {Tt l[Nt_:!=O]} = E {2)+:1 1[Rin Q.#011[N._.=OI}
&=1

:::; 2 E {t l[R.nQ.#011[N._,.i=OI}
&=1

= 2 E {~p {H.; n Q,,6 01X} P {N,-2,i = DIX}}

< 2t exp (- (n- ~~~~) E {P {H.; n Q,,6 01X}}

= 2texp (- (n-i~k~)P {Ri n Qt =1= 0}
. 2 n
1=1

< ~ exp (_ (1 - i/n)k~) 2C (k ek-;l)t iPk + k ;t) .
- L..J 2k i

i=l
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Thus~

t- n ( kCt-2) )(k-llt 1 - i k-··-
E{T}<O(nPk)+L2Ck-~-Lexp _C /;l - iPk - 1

t=3 1=1

~ ?Ck;t~ ~ (1- i/n}k kCt:;'!})
+~- L...J . exp k

t 2
t=3 i=l

= O(nPk ) + 1+11 .

Lemma 5.1 applies to l if we fonnally take there (3 = k(k-1)/2 ~ 'Y = 1/(2k)k ~

A = 2/(k log k), and 8 = (k log k)/2. The conditions of the the first part of

lemma 5.1, A log{3 ::; 1 and log,B < 8, hold, sa that 1 = O(nPk ). The last part

of lemma 5.1 applies to II if we set /3 = kk/2, 'Y = 1/(2k)k~ .4 = 2/(k log k)~

and 8 = (k log k)/2 = log/3. Therefore, II = O(logn). This concludes the

proo[ 0

5.4 Aigorithm A when using squarish k-d trees

vVe analyze first algorithm A when using squarish k-d trees. By theo­

rem 4.2~ each orthogonal range search taken individually (for fL-xed i) takes

expected time 0 (log n). We show in fact that the total expected time is

o (log n log log Tl.).

THEOREM 5.2. Let X be a point unifocmly distributed on [0, l]k. Consider

a squarish k-d tree based on n i.i.d. points on [0, l]k. Then the expected tiIne

of algorithm A is O(log n log log n).

P ROO F. Let T be the total time it takes algorithm A to finish. Let 7i be the

running time of Bentley's range search algorithm on n Li.d. points on [0, l]k

and a cube Qi centered at X of length k t/ 2 /n 1/ k , and let Nt he the number

of points in Qt. Note that

E {T} ::; O(logn) + E { Tt + 12 +~ T,1[N._2=OI} ,

where m = Lî logk(2k n)J bounds the maximum number of iterations the
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algorithms can perform. Thus, it is enough to praye that

E {f: 7t1[Nt_2=OJ} = O{logn log Logn).
t=3

Let h = rî logk (2 k log n)l, then

E{f:Tt1[Nt_2=OJ}:5 (h+1)E{7h+l}+2n f: P{Nt - 2 =O}.
t=3 t=h+2

Now~ by theorem 3.2.

(

') ) k-1 k(h+1)/2
<1 iLogk(2kLogn)+2 k(h+1)k/2+ Ln1

- 1lk L II n
1lk

+logn
l=1 IÇ{l, ... ,k} jflI

III=l

(

? ) ( .? k-l . (k) k(h+l)(k-i)/2 )= "/ ~. logk(2k logn) + 2 k(h+I)kl- + 'ni - llk . + logn
fï ~ l. nl-llk

i=l

= -y (~ logk(2k log n) + 2) (k(h+l lk/2 + k(h+l)k/2 I: (~) k-(h+l)I/2 + IOgn)

l=l

< -y (~logk(2k logn) + 2) (k(h+l)k/2 (k-(h+ll/2 + 1) k + IOgn)

< 'Y (-k~ lOgk(2k logn) + 2) (kk2k logn (.jk .1 / . + 1) k + lOgn)
k(2k logn)l k

= O(logn loglogn).

for aIl n > e. Finally~ for t :5 m,

(
k k(t-?)/2 ) Tt_ ~ - _kk(t-'!I/2121.:

P {Nt - 2 - 0}:5 1 - 2k n < e :

and therefore P {Nh+2 = O} < lin. Thus,

m

2n L P {Nt - 2 = O} < 2m = O(logn).
t=h+2

o

Theorem 5.2 is in contrast with the situation presented in the previous

section, where for standard random k-d trees, algorithm A is shown to take

expected time 8(nPk ), where Pk E (0.061,0.064) depends upon k only.
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5.5 Aigorithm B when using squarish k-d trees

We analyze now algorithm. B in dimension 2 only when using squarish 2-d

trees as undedying data structure. This algorithm uses the following fact

easily proven by induction.

FACT. Consider the rectangles generated by the insertion of Xl, ... ~ X n E

[0, If, in the unit square. Then, for every rectangle R in the final partition

tbere is X j lying on the border of R.

THEOREM 5.3. Let X be a point uniforrn1y distributed on [0,1]2. Consider

a squarish 2-d tree based on n i.i.d. points on [O~ 1]2. Tben the expected time

of algorithm B is O(log2 n).

We prove a couple of lemmas from which theorem 5.3 follow.

LEMMA 5.2 Let Z~ UI~ ... , Un be independent and uniformly distributed

random variables on [0, If. Let Xn(Z) and Yn(Z) be tbe x-length and y­

length of the rectangle in tbe final partition (oftbe squarisb 2-d tree) induced

by U I , ... , Un in which Z /::1.11s. Then, both nE {..'Y~(Z)} and n E {Y~(Z)}

are O(log2 n).

PROOF. By lemmas 3.3 and 3.4~ for any p~ q > 1 such that ~ + *= 1, we

have that

E{X~(Z)}=E{.L XJYi}
tEr..

~ E { L (XiYi)P} l/p E { L ..'y;q} l/q

iEr.. iEF..

~ (4rcp + 1)) l/p (srCq + 1) (q __1_)) l/q
n P- 1 q - 1 n q - l

41/ PSI/ q (r(p + 1))I/P (r(q + 1))I/q (qnq - l - 1) l/q
- (q-l)l/q n

Let us choose q = 1 + lo~n' p = logn + 1, and assume n > e. As r(p + 1) <

J21r (~)P e l / 12p (see for example, Abramowitz and Stegun, 1970), there is

-68-



•

•

c > O. snch that (r(p+1))1/P < cp = c(logn+1), and there is c' > 0, snch that

1/ 1/ ~(r(q + 1» q:::; c'q < 4c'. Furthermore, (q -1)- q = (logn)logn+L < logn,

and (qnq- 1 -l)1/q :::; 2e-1. ThereforenE{..-Y~(Z)}=O(log2 n ). Theresult

for n E {Y~(Z)} follows in the same manner. 0

To prove the next lemma we need the following result.

LEMMA 5.3 (DEVROYE, 1986). Let Hn be the height of a random binary

search tree of size n 7 tiien for any integer k ~ max{l, logn} we have

LEMMA 5.4 Let Z~ Ul~ ... , Un be independent and uniforrnly distributed

random variables o\-'er [0,1]2. Let ..-Yn(Z) and Yn(Z) be the x-length and y­

length of the rectangle in the final partition induced by U l , . .. , Un in which Z

falls. Then E {..-Yn(Z) 2:i~l"-Yi}' E {Y~(Z) Li:l Yi}~ E {"-\n(Z) 2:i~l Yi},
and E {Yn(Z) 2:i::l"-Yi} are o (log2 n).

PROOF. Let F n denote the collection of final rectangles in the squarish 2­

d tree T constructed from U1 , ••. , Un. For a final rectangle Ri, denote by

D(ll.ï) its depth. Then 2:;~1 Xi :::; EiEFn D(Rï)Xi + 1. Thus if Hn is the

height of T,

E {f X,Xn(Z)} :::; E {.L D(ll.ï)Xi .L XjYj} + 1
t=l tE:F.. JE:Fn

<E{Hn LXi L X]Yj} +1
iE:Fn jE:Fn

:::; tlognE {L Xi LXJYj} + 1
iE:Fn iE:Fn

+ E {l[H.. ~tlOgn]Hn E "-Yi L XJYj} + 1,
iE:Fn iE:Fn
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for any t > 1. Using lemma 5.3, we see that,

E {l[Hn~tlOgnIHn L Xi L XJYJ} :5 n
3 p {Hn > tlogn}

iE:Fn jE:Fn

:5 n 2 n t loge 2c"') •

We choose t such that t log (2
t
e) < -2 50 that

We complete the proof by showing that

Sr+l-Sr = L .XmYm [l[Xrn<YrnIXm L 4'YJYj
mEFr jEFr

+ l[Xm>YmI((XXm)2Ym + ((1 - X)XmfYm - 4'Y~Ym) LXi] ,
iEFr

where }( c Uniform[O, 1], and is independent of ail U l , ... , Un' Now, as

(X 4'Y m)2Ym + ((1 - "'Y)4'YmfY;n - X~Ym < 0, we have that

Sr+l - Sr < L (Xi Yi)3/2 L XJYj.
iEFr jEFr

Note that for any p. q > 1. such that l + ! = 1... p q .

and again by H61der's inequality, and lernma 3.3, by choosing q = v'1A, and

P
_ vT4
- v'l'A-l'

{ ( )
P} l/p { } l/p

E .L (X;l'i)3/2 < E rP/q.L (X;l'i)3
p
/2 < ~ .

lEFr lEFr

-70-



•

•

By applying H6lder"s inequality inside the expected value,

( { }

l/V { l/q
) l/q

< r
1

/
p

E .L (Xi l'j)qp E.L '-YJ:!}
lEFr JErr

( (
l ) l/p ( 1 ) 1/(1) l/q

< 46r1
/ p --

- rqp-1 r q2 / 2 - 1

46
ft·

Thus, E {Sr+1 - Sr} :5 552/r, and by summing the differences we finally

can conclude that E {LiEFn -:\:"i LiErn .LY]Yj} is indeed O(logn). The other

expected values cao be bounded in the same way. 0

PROOF OF THEOREM 5.3. Given U l : ... : Un, we define Ln(Z) = 2(.-Yn (Z) +

Yn(Z)). Note that as the expected height ofT is O(logn), the expected time

complexity of the nearest neighbor algorithm is bounded by O(logn) plus

the expected tinle of random orthogonal range search with query rectangle

Q having ail sides of length Ln(Z), and centered at Z. Let lVn be the time

complexity of range search. By the same arguments followed in theorem 4.3

we have,

By lemma 3.4, E {L;~tl '-YiYi } = O(logn). For E {L;~tl Ln(Z) (Xi + Yi) },

lemma 5.4 above shows that it is o(log2 n). As we have that

nE {Xn(Z)Yn(Z)} = nE { L (XiYi)2} ,
iErn

lemma 3.3 shows that it is 0(1). Finally, by lemma 5.2 we have that

nE {L~(Z)} = O(log2 n). Thus the expected running time of algorithm

B is O(log2 n). 0
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5.6 Lower bound for nearest neighbor queries

Friedman, Bentley and Finkel (1975) defined an optimized k-d tree on which

associative queries take optimal expected time. They defined optimized k-d

trees, so that at every node the coordinate with the largest spread in val­

ues is chosen as the discriminator and the median of the discriminator key

values partitions the space. The time to construct the tree requires that at

each level of the tree the entire set of keys be scanned. This requires com­

putation of O(kn), for n records. As the depth of the tree is O(logn),. the

total computation ta construct the tree is O(kn logn). They propose a re­

cursive algorithm for solving nearest neighbor queries that works as follows.

The algorithm starts by computing the distance d between the root and the

query point, this yields an estimated nearest neighbor distance. The ba.ll B

centered at the query point and radius d is considered. The search continues

recursively along the left and/or right subtrees according ta whether the B

intersects the rectangles associated ta the left and right subtrees updating d

in each recursive invocation. They experimentally investigated the running

time of this algorithm and observed that off-lïne nearest neighbor queries

may be solved in O(Log n) expected time using optimized k-d trees. Later,

Bentley (1990) proposed to study top-down and bottom-up off-lïne nearest

neighbor queries using optimized k-d trees. In a top-down nearest neigh­

bor query we descend the optimized k-d tree ta find the data point in the

tree, perform a nearest neighbor search down the node's suhtree and go up

the tree whenever there is a chance there may he a doser nocle outside the

tree rooted at the query point. In a bottom-up nearest neighbor search we

assume that we are already at the nocle associated to the query point and

perform a nearest neighbor search. Bentley (1990) experimentally studied

and conjectured that top-clown and hottom-up nearest neighbor queries can

he solved off-lïne in O(log n) and 0(1) expected complexity time when using

optimized k-d trees.
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Note that if the data are put in a~x ..;n regular grid partition of [O~ 1J2,
then each cell would receive on average one data point. Bentley~ Weide and

Yao (1980) showed that nearest neighboring searching starting from a given

point in a cell takes 0(1) expected time. The same is true for aIl sufficiently

regular, dense and rotund partitions, induding, for example, the Voronoi

diagram or the Delaunay triangulation. If the data are stored in a 2-d tree

however, the property fails to hold because of the skinny rectangles. To see

intuitively what is going on, let X be Ul and let .X:' be the nearest neighbor of

X among U2 , ..• ~ Un. Define the nearest neighbor distance Dn = IIX - X'II·
Note that D n is 8(11 J1i) in probability, i.e., P{Dn = 0(11 J1i)} = 0(1) and

P{Dn = w(l/ J1i)} = 0(1). This means that a nearest neighbor search for..lY

is rOllghly eqllivalent to a clVii x clVii range search. Indeed~ jllSt to verify

that X' is in fact the claimed nearest neighbor of ..IY. ~ one must at the very

least inspect aH nodes on rectangle edges that cut the circle S centered at

X with radius D n . Since the rectangles are skinny, the points on the edges

may in fact be far from X. Thus a lower bOlmd on the complexity is

{

2n+1 }

E .L 1[Ri nQ#0] ,
l=n+l

where Q is the circle of radius D n centered at ..IY.. As Dn is in probability

8(11 Vii) , theorem 4.1 implies that the expected complexity is n(nO (1/2)-1/2) ~

O(nO.06l5... ). Algorithm A is a very natural on-tine nearest neighbor algo­

rithm. In this chapter we showed that its expected compLexity time is 8(nPk )

when using k-d trees. We conjecture that indeed any algorithrn that com­

putes the nearest neighbor using k-d trees as data structure for storing the

data must have expected time complexity n(n Pk ).

5.7 Conclusions

The bound for algorithm B is a bit worse than that for algorithm A,

because while most rectangles are squarish, a sufficient number of them are
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elongated. In fact~ for given l\1f > 1, about llNI of the final (leaf) rectangles

or more should have an edge ratio exceeding 1\;1. For edge ratio !vI, and

considering that aU rectangle areas are about lin, we see that the orthogonal

range search should take about !vI points (the longest edge is about J!vI1n).

The expected number of returned elements is at least 8(logn). And the

expected number of leaf rectangles visited is of the same order. But each

visited leaf rectangle also induces a visit to aIl of its ancestors, and there are

about log n of those. The proof of the bound for algorithm A on squarish

k-d trees is by no means optimal. We believe that its real expected time

complexity is 8(1ogn). Note that n(logn) is an almost triviallower bound

for algorithm A on squarish k-d trees.
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PART Il

Branch-and-Bound Search

-75-



•

•
-76-



•

•

Chapter 6
Branching processes

In this chapter we introduce the main definitions and recall or prove

atDciliary results for the next chapter, in which we analyze the complexity of

branch-and-bound search on random b-ary trees.

6.1 Definitions and basic properties

Around 1874 Galton and Watson introduced a model for studying the

;'problem of extinction of families:' in England. Although their process hardly

applies to their original problem~ it has become a powerful tool for analyzing

different phenomena in areas such as biology, physics and computer science.

We can visualize a branching process as a possible infinite tree. The root

has Z1 children, where Z1 has a fixed distribution (Pi)i2:0 (the reproduction

distribution). Each child in turn reproduces independently according to the

reproduction distribution. This leads to the Galton-vVatson random tree,

and the Galton-Watson process. We denote by Zi the number of children in

the i th generation in the Galton-Watson tree, with Zo = 1. We introduce

now the RGF (reproduction generating function),

00

f(s) = LPtst = E {sZt}, sE [0,1].
t=O

The reproduction generating function is a very convenient tool for analyz­

ing the behavior of Galton-Watson branching processes. Let us define the

Malthusian parameter which is nothing but the expected number of children

per particle.
CXJ

m = E {Zl} = L tPt = f'(l) .
t=O
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FIG URE 6.1. Two-ary tree showing sorne edges and node

values.

ünly two situations can OCCUI: either the population survives (orever or it

becomes extinct after a finite time. If the expected nllmbcr of children per

particle is greater than one~ the population explodes~ and if it is less than

one the population will die out. Consider the RGF for Zn, the size of the n th

generation:

Let us define q to be the probability that the process becomes extinct. Note

that InCO) = P {Zn = O}. In fact~ when m < 1, it can be seen~ by manip­

ulating f n (s), that q = 1 (unless the degenerate case Pl = 1 happens), and

when m > 1, q < 1.

6.2 Theory of branching random walks

In a branching random walk a random walk is superimposed on each

path from the root down in a GaLton-Watson tree. A value Vv is assigned to

cach node in the tree, the value of the root being zero. We consider the fol­

lowing type of branching random walk. Given anode u in the Galton-Watson

tree, for every child v of u~ we define Vv = Vu + Xv, with aU displacements

~T(v independent. Note that this is equivalent to assigning to each edge a

random variable and assigning to each child of a node the value assigned to
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• the edge joining them plus the value of the parent.

In general, if u is a node in the tree and its children have displacemcnts

"-YVt , ••• , X VN ' where N is the size of the offspring of u, then the joint dis­

tribution of (N. "-Y"Vt ~ ••• ~ ~YVN) is quite arbitrary. What is important is that

each parent produces children (and their values) in the same manner. vVe

assume further that the number of children per parent is a fi..xed positive

integer b (see figure 6.1).

vVe will use sorne results adapted from the theory of branching random

walks in order to prove the results in this part of the thesis. For additional

information see~ for example~ Asmussen and Hering (1983L Athreya and

Ney (1972L and Harris (1963).

Wc prove our results by looking at the properties of the JL-function~which

we define below. For any random variable X, we define m(B) = b E {e-8X },

B ;::: O. vVe assume that n1.(B) < x, for sorne () > O.

DEFINITION. Let .K. ~ 0 be a nondegenerate random variable. For any"

a E R, the j.L-flinction is defined by

p.(a) = iuf {e8a m(B)} = b inf E {eB(n-X)} .
e~o 8~O

For each t > 0, and n > 0, we define

z(n)(t) = Ü{w : w is a leaf in Tn , and V;u < t},

THEOREM 6.1. If /-L(a) < 1, then with probability one,

where UA denotes the cardinality of set A, and Tn is the complete binary tree

of height n. Thus Zen) (t) is the number of individuals in the n th generation

of the process with value smaller or equal to t.

The following reslùts are from Kingman (1975) and Biggins (1977).

• Z(n)(na) = 0 for aIl but tinitely many n.
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If a E int{a : lJ.(a) > 1}, then

almost surely.

THEOREM 6.2. Let T be the infinite b-ary random tree lIaving edge values

distributed as )( > 0, where X is nondegenerate. Let B n = min{~ :

v is a leaf of Tn }. Then~

I Bn der. { () }im - = a = luf a : IJ. a > 1 ,
n~oo n

almost surely.

We now prove sorne properties of the JL-function.

THEOREM 6.3. Let ..:y > 0 be a nondegenerate random variable. Then its

IJ.-function satisfies the following properties:

(1) IJ. is an increasing function on [o~ 00).

(2) tL is continuous on int{a : IJ. (a) > O}.

(3) log JL is conCëlve.

(4) SUPaER JL (a) < b.

(5) If E {X} < cc, then IJ. (a) =b, on int {t : p. (t) > O}, for a ~ E {~Y}.

(6) limatoo /-L (a) = b.

(7) If X ~ c > 0, then JL (a) = 0 for a < c.

(8) Let s = sup{t : P {X < t} = D}, and define p = p {X = s}. Then IJ. is

continuous on

(s, 00), /-L (s) = bp, and IJ. (a) = 0 for a < s.

PROOF. For proofs of (1)-(3), we refer to Biggins (1977) or Kingman (1975).

Proof of (4). Clearly inf9;:::O E {e9(a-X)} < 1 by evaluation at e= o.
Proof of (5). For a ~ E {~Y'}, we have

I-L (a) = b inf E {e8(a-:
q }

9;:::0

> b inf e6(a-E{X}) (by Jensen's inequality)
- 6;:::0

> b (as the infimum is attained at () = 0).
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FlGURE 6.2. General form of the J.L function.

Proof of (6). If E {..-Y} < oc: this follows from (4) and (5). If E {..-Y"} = 00:

then let ql-p be the (l-p)-th quantile of X, Le. ql-p = sup{t : P {..-Y ::; t} <

1 - p}. Clearly, as p!- 0, ql-p t 00, since E {..-Y} = 00. Now, for a > ql-p,

fJ. (a) > b (j~ e8(,,-Q1-p») (1 - p)

> b(l - p) .

'VVe conclude that proof by letting p !- o.
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Proof of (7). For a < c~

J.L Ca) = b inf E {eB(a-x)} < b inf eB(a-c) < b lirn inf eB(a-c) = o.
B~O - B~O - 8-+00

Proof of (8). ,\;Ve only need to show that J.L (s) = bp: as the other statements

foilow from (2) and (7). Define p + J = P {s < .L'y < s + ê}. Then for ail

ê > 0 small enough

/-L(S) = infE{eB(S-x,}
b B~O

< inf {e8(S-S) (p + J) + (1 - p - J)eB(S-S-~)}
B~O

= inf {p + J + (1 - p - J)e-Be
} •

B~O

But the last expression goes to p as ê ~ 0, by taking f) = l/ê2 (notice that

J ~ 0 as ê ~ 0). Thus /-L (s) ~ bp. Also! observe that

J.L (s) > inf pe8(s-s) = p.
b 8~O

o

vVe conclllde that /-L must always follow the pattern as clescribed in fig­

ure 6.2.

Let X be a nonnegative and nondegenerate random variable. vVe say

that )( is regular 1 if and only if b P {X = c} < 1: where c is the leftmost

point of the support of X. For regular random variables we define

Cl: = inf{a : J.L (a) > I},

{3 = sup J.Lx (Cl:) ,
xE(O,l) X

Clearly Cl: is well-defined, finite and positive. Aiso (as we will see below)~ the

solution 'Y of /-L'Y Ca./'Y) = {3 is unique, and 0 < {3 < b: strictly.

We now prove two additional properties of the J-L-function for regular

random variables.
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LEMMA 6.1 Let)( > 0 be regular. Then:

(9) For all ê > O! tIIere is ç > 0 such tbat

sup {1J. (a + ç) -p, (a)} < ê.
xE(O,l) X X

(10) For aIl Tl > 0, there is ç > 0 such that for ail °~ v < ç,

(o+v) (Cl!)sup J..Lx -- < sup /-Lx - +17.
xE(O,l) x xE(O,l) X

PROOF. Proof of (9). As p, is continuous, bounded, and log-concave on

[a,oo), it is uniformly continuous there, and thus for ê > 0 there is r5e > 0

such that for ail ç > 0, small enough,

1

Cl! + ç - 0: 1 = ~ ~ Je
X X X

implies that JL (Q~e) - J.L (~) < €. If f,/x > Je, then a/x;::: (ajç)Je, and by

choice of ç = If;, we see that a/x > a/5e , so that

which is smaIl enough by the choice of 8e .

Proof of (10). By the triangle inequality, we need only to show that

for ç > 0 small enough. By (a + b)P - aP ~ pbaP- 1
, for aIl a, b > 0, P E [0,1],

we have

sup {p,x (0: + ç) _J..Lx (a)} < sup {X (J.L (a + ç) - J..L (Ct)) J.Lx-l (Q)}
xE(O,l) X X xE(O,l) X X X

< sup {J..L (0: + ç) -IL (O)} sup {x J.LX-l (Cl:) }
xE(O,l) X X xE(O,l) X

~ sup {J..L(a+ç)_J..L(a)},
xE(O,l) x X
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LEMMA 6.2 Let s = sup{t : P {X < t} = O}. Assume that s < Q. Then

(3 = sup p,x (a) < b.
xE(O,l) x

PROOF. By continuity of JL~ there is é > 0, such that IL (a/Cl - é)) < Vb.
Then, because s < a~

•

the result follows.
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Chapter 7
Random b-ary trees

In this chapter we present our main result about the time complexity of

branch-and-bound search for random b-ary trees. We use branching random

walks as a tool for analyzing the behavior of the algorithm on random b-ary

trees.

7.1 1ntroduction

Let Tn be a b-ary tree of height n, which has independent, nonnegative~

identically distributed random variables associated with each of its edges.

The value of anode is the sum of ail the edge values on its path to the l'oot.

We consider the problem of finding the minimum leaf value of Tn . Assume

that the edge random variable J'Y. is nondegenerate, has E { .Lye} < oc for

sorne () > 2, and satisfies bP{J'Y. = c} < 1 where c is the leftmost point of

the support of X. vVe analyze the performance of the standard branch-and­

bound algorithm (this is, the nodes are visited in a depth-fust search fashion

trimming useless branches) for this problem and prove that the number of

nodes visited is in probability (,6+o(l))n, where fi E (l,b) is a constant

depending only on the distribution of the edge random variables. We derive

explicit expressions for fi. We also show that any search algorithm must visit

({3 + o(l))n nodes with probability tending to one, so branch-and-bound is

asymptotically optimal where fust-order asymptotics are concerned.

7.2 Previous work

Karp and Pearl (1983) introduced the following mode!. Let. Tn be a binary

tree of height n~ which has independent, identically distributed Bernoulli(p)
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random variables associated with each of its edges. The valuc of anode is

the sum of the values of the edges on the path from the root to that node.

The objective is to find the leaf in the tree with minimal value. Karp and

Pearl noted that if 2p > 1, any algorithm. must necessarily take exponential

time in n, while for 2p = 1 and 2p < 1, ordinary uniform cost breadth-first

search takes on the average e(n2 ) and Sen) time. In this algorithm, one first

visits ail nodes of value 0, then ail nodes of value 1, and so forth.

In 1990, McDiarmid and Provan and McDiarmid (1990) generalized the

work of Karp of Pearl to b-ary trees and more general nonnegative edge

distributions. If X is a typical edge random variable, and p = p {X = O},

where 0 is the leftmost point of the support of )(, they show that if bp < 1,

any exact search algorithm must take exponential time. It is this model the

one we will consider. Wc assume throughout that ..-\ is a regular random

variable, as defined in the previous chapter. As the tree T n has bn lcaves, it

is important to ask what fraction of the nodes is revealed before the minimal

leaf is found. In branch-and-bound search~ we visit the nodcH as in depth-first

search, and visit v if and only if its parent 's value is less than the minimalleaf

value seen thus far (if any have been visited; otherwise, the node is visited

unconditionaily). The algorithm is of course guaranteed ta find the overall

minimum. If N is the number of nodes visited by the branch-and-bound

algorithm (the number of values v;' revealed), we will show the following

theorem.

THEOREM 7.1. Let X be a regular random variable.

A. If N is the number of nodes visited by branch-and-bound searcb, and

E { X 8 } < 00 for sorne f) > 2, then tbere exists a number (3 E (1, b) such

that

lim P {IN1/n -,BI> E} = O.
n-+oo

(1)

•
B. Tbe number N' of nodes visited by any algoritbm tl1at is guaranteed ta

find the optimum must be such tbat

lim P {NIl
/

n ~ (3 - E} = 0
n-+oo
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for an é > O•

Sometimes it is instructive to see how N compares with the size of Tn .

The theorem above states that in probability~

as n --+ 00. where ITnl = L~=o bi and p = logh,8. The doser p is to zero~

the more pruning is acrueved. Interestingly~ the pruning parameter p dif­

fers from distribution to distribution, and may take any value in (O~ 1). As

p > O~ we see that an exponential explosion (in n) is unavoidable. The proofs

are based upon results from branching random walks due to Biggins (1977).

Especial1y part B of theorem 7.1 is an embarrassingly straightforward corol­

lary of Biggins' results. We give an explicit forill for 13 and p for aIl regular

distributions.

The same tree model was also considered by Zhang and Korf (1992)~

who analyzed other search strategies, such as iterative-deepening-A.* and

recursive best-first search. Branch-and-bound was also analyzed by Smith

(1984) on a different ranclom tree moclpl. Wall and Yu (1985) considered

branch and-botmd with best-first search, and Stone and Sipala (1986) looked

at backtracking. Of course~ backtracking was analyzed on a hast of other

models, and we refer ta Purdom (1983) and Brown and Purdom (1981) for

just two examples. Pearl (1984) is the basic reference for the probabilistic

analysis of varions search strategies.

7.3 Notation and preliminary results

Let us first set the notation. Let uo, ... ,Un be the nodes in the left roof of

Tn , let VIc,l, ... , Vk,b-l be the siblings of Uk, and thus the children of Uk-l

(see figure 7.1). Let V;I.,V denote the sum of aH edge values on the path from

U ta v. Notice that lI;l.,v = Vv - Vu, if v is a descendent of 'u. We will be

particularly interested in VUk_l,1U~ for descendants w of 'lL1c-l' We define the
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FIGURE 7.1. Notation for trees.

following random variables that will appear in our analysis:

v is a [eaf descendant of UJ,;, where 1) and iLI.: are nodes in T n } ,

•

~ {w descendants of 'Ul.:l (including Vkl itself), snch that V';Lk_L,W < Nin,k}

We now present sorne preliminary results in order to prove part A of

theorem 7.1.

PROPOSITION 7.1 Assume E {X8 } < 00 for sorne f) > 2. Consider Tn ,

and define NI.; = max{V';y : w is a descendant ofuI at distance k from Ut},

where k = Ld logb(n - l)J: for 0 < d < () - 2 fixed. Then: for evez:y f. > 0

tlIere exists ( > O~ no > 0, such that

(
P {NI.: > (n -l)f.} < (n -1)2' for aIL n > no·

PROOF. Clearly, if NI.; > (n - l)ç, there must be at least one node de­

scendant of Ut at depth k + 1 having value greater than (n - l)ç. There­

fore P {NI.; > (11. - l)ç} ~ bl.: P {L:~} .Xi > (n - 1)€}, where .X:i c.. ~Y, for
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i = 1, ... ~ k~ and the ~Y/s are independent. Then by Markov's and Jensen's

inequalities, for aIl n large enough,

k {k+! } bk E { (E::l1Xi) 9}
b P ~ Xi > (n - l)~ < ((n _ 1)~)9

bk(k + 1)8 E {Xe}
< -----.;;.:----...;;...- «n - 1)€)8

bldlogb(n-l}J (ldlogb(n -l)J + 1)8 E {X"O}
<----------~----=--....;.-- «n - 1)~)8

(2d)8 E {~y8} (logb(n - 1»8< ---...::.....-~-...;...;;.-.--~

- €8 (n - 1)8-d

(2d)8 E {X8 } 1
~ E,8 (n - 1)2

o

PROPOSITION 7.2 Let Trl~ lVI.;. k~ (J and d as in the previolls proposition.

Tllen, for all ç > 0, tllere is cp E (0, 1). sueil that

P {Mn,! > (n - 1)(0: + ~), Nk < (n - 1)E,/2} < ep(n-l)'1 ,

for all n large enough.

PROOF. Denote by VI,"" Vbl.: ail nodes in Tn at depth k. Define B~_k to

be the minimum of aU Vu; ,10 such that w is a leaf descendant of Vi. Then, by

independence of the B~_k 's,

P {/VIn,1 > (n - 1)(0: + E,), lVI.; < (n - 1)E./2}

{
bl.: }< P B~_k + (n - 1)ç/2 > (n - 1)(0: + ç), ... ~ Bn- k + (n - 1)ç/2 > (n - 1)(0: + €)

bl.:= (P {Bn-k > (n -1)(a+E./2)})

bl.:
< (P {Bn-k > (n - k)(o: + ç/2)}) ~

where B n - k is the random variable defined in theorem 6.2. Substituting k

by ld logb(n - 1)J and using theorem 6.2 we get that

P {Bn-ldlogb(n-l)J > (n - ld logb(n - 1)1)(0: + €/2)} --7 o~ as n -r 00.
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• Thus we can find q; E (O! 1) snch that

P {Bn-ldlogb(n-l)J > (n - Ldlogb(n - 1)J)(a + €/2)} < cp~

for ail n large enongh. Hence~

P {Ain,l > (n - l)(a + ç), Nk :5 (n - 1)€/2}
(n l)'l

< CP {Bn-ldlogb(n-l)J > (n - Ld logb(n - l)J)(a + ç/2)}) -
< cp(n-l)cJ ~

for ail n large enough. o

•

The following corollary is immediate from the two previous propositions.

COROLLARY 7.1 Assume E {~l(8} < 00 for sorne () > 2. Pick d E (O~ () - 2).

For aIl ç > O~ there are ( > O~ cp E (0,1), and no SUdl tl18.t

P {Mn,l > (n - 1)(<:> + ç)} ~ (n ~ 1)2 + cp(n-l l ", [or aIl n :::: no·

7.4 Proof of main theorem

We first prove one half of part A of theorem 7.1. The second half of part A

follows from part B, and will be proved in theorem 7.3 below.

THEOREM 7.2. Let X be a regular random variable witb E {~y8} < 00 for

sorne () > 2. Tllen for every e > 0

lim P {N1/n > f3 + e} = o.
n-+cx::

PROOF. Let Tn be the random b-ary tree as defined in the previous section.

It is clear that the number descendants of Vkl visited by the algorithm is

smaller than or equal to bZkl + l, because if the value of anode is less than
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the minimal leaf value seen thus far, all its b children will be visited. It

follows that

(

n b-l )

N < b f;~ Zkl + n + 1.

Thus,

P {N I
/
n > f3 + €} = P {N > (,8 + €)n}

< P {b ?:; E~ Zkl + bn + 1 > ({3 + ,,)n }

< ~~p {bZ (,8 + €Yl }-~ t:t kl > (b - l)n + 1 '

if ({3 +€)n/«b -l)n + 1) > bn + l, which is true for aH n large enough. Now~

notice that Zkl ~ 1+ b+ ... + bn-k < bn-k+l, so that for k > rC1 - 8)nl,

bZ. < bn-k+1 < blin+1 < (,8 + €)n .
kl - - - (b - 1)n + 1 .

where 8 is taken

O .t: 1 ({3 ) 10gb (Cb - l)n + 1) + 1< u :5 ogb + € - .
n

Observe that the previous can be done for ail n large enongh. The previous

observation implies that

for aU n large enough. Next, for ail ç > D,

{
(/3 + €)n }

P b Zkl > Cb _ l)n + 1

< P {lV/n k > (n - k)(a + ç)} +P {bZkl (a + €l > (b({3 ~ ,,)n },- , -ln+1

where the random variable Zkl (a + ç) represents the number of descendants

w of Vkl, snch that \/Uk_l'tu is not larger than (a + ç)(n - k). Corollary 7.1

implies that there are ( > 0, cp E (0, 1), and no~ such that,

P {lV!n,k > (n - k)(a + ç)} < (/(n _ k)2 + cp(n-k)",
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for n > no~ uniformly over 1 < k ~ (1 - 8)n. Thus! for n ;::: no,

LCl-8)nJ b-1 n-1

L LP{Mn,k>(n-k)(a+Ç)}< L b(~+'Pkd)
k=l l=l k=n-L(1-8)nJ

< bn( + brp(n-LC1-c5)nJ)d L(l - c5)nJ
- (n - L(l - c5)nJ)2

~~~( + b(l - c5)cp(8n)d n
u-n

---+ 0 as n --7 oc.

NOW, for the other part of the sum in (*L note that

P {b Z (a + C) > (f3 + ê)n } < E {b Zkl (a + ç)} «b - l)n + 1)
kl ~ (b - 1)n + 1 - (fi + é)n

E { b2:;~t Zll (0: + ç) } ((b ~ l)n + 1)
- ({3 + ê)T1

where Zi, (a + ç) is the number of descendants tu of 'VkC such that. V~Lk_l'W is

smaller than or equal to (a + ç)(n - k), and the distance from w to Vkl is j.

Now, for () > 0,

E {Zll (a + ç)} < ~ P {Xl + ... "'Yj + X j +1 ~ (n - k)(a + ç)}

< lJi E { e8«n-k)(Q+~)-X 1 -----Xj+d} (by rvlarkov's ineqnality)

i+l
= lJie8(n-k)(o:+~) IlE {e-X ;8} (by the independence of the Xi's)

i=l
-+1

= !Ji e8(n-k)(o:+~) (E {e-X8 } )J (because the Xï's are identically distributed)

< (bE {e8('n-~~;"HI x)}r+1

= (~Cn-;~~+E)))i+l

where for the last equality to hold we took [) = [)* snch that
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Thus~ since J.L (a) is an increasing function of a ~ 0,

({3+e)n } b«b-l)n+ 1)~ { . }
P {bZkl (a +.;) > (b -1)n + 1 < (.8+E)n ~ E Z~I (a +.;)

< b((b-l)n+l) I:( (n_k)(a+~)))i+l
- ({3 + e) n j = l J.L j + 1

= b((b -1)n+ 1) I: ( ffi (n+ l)(Q+~)))n+l
({3 + e)n j=l f-L j + 1

:;; b((b - l)n:: 1) I:( sup JLx (0: + €)) n+l
({3 + e) j=l xE(O,l) X

nb«b - l)n + 1) ( x (0: + ç)) n+l< Sup IJ. --
- ({3 + €)n xE(O,l) X

\Ve now SUffi ail the terrns and get

L(l-c5)nJ b-l { ({j + )n }
{; ~P bZkda+';»(b_l)~+l

n 2b(b - l)«b - l)n + 1) ( x (cr + ç)) n+l< sup IJ. --
- ({3 + é)n xE(O,l) x

b3n3 [ (0: +ç)] n+l< sup /-Lx --
- ({3 + €)n xE(O,l) x

Notice that if ~ were equal to O~ then the quantity in the square brackets

wOllld be {3n+l. Lemma 6.1 implies that for é > 0, there exists ~* > 0 snch

that

(0: + €*) (Q) € esup J.Lx < sup /-Lx - +- = (3 + -.
xE(O,l) x - xE(O,l) X 2 2

Therefore,

b3 n 3

({3 + é)n

o
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• To finish the proof of theorem 7.1, we show the universallower bound

of part B. Note that any algorithm must visit aIl nodes v in Tn with value

strictly less than B n ~ the rnÏnimalleaf value in Tn . Thus~ it suffices to prove

the following.

THEOREM 7.3. Let .X ~ 0 be a regular random variable. Let N' be tbe

number of nodes v in Tn with value Vu < B n . Then, for every E > 0,

Hm P {N'lin < {3 - E} = O.
n~oo

PROOF. We use the notation from theorem 6.1, and note that

n

N' ~ L Z(j}(Bn - 1).
j=O

Define et. {3 and "1 as in the previous chapter~ and set k = LInJ. Thus~ for

any ç E (O~ et)~

N' ~ Z(1.:) ((a: - ç)n) I[B.. -l>(a-~)Tl].

By theorcm 6.2, with probability one, B n - 1 > (a: - ç)n for aU n large

enollgh. Thus! we are done if we can show that given E > O~ we can find

ç > 0 such that

To this effect, observe that

by theorem 6.1. By the continuity of /-L, the lower bound tends ta {3 as ç .J.. 0,• since {3 = /-L'CalI)·
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• 7.5 Sorne examples.

b p b p

2 .334648 3 .257101
4 .220361 5 .198027
6 .182672 7 .171302
8 .162452 9 .155311

10 .149393 Il .144383
12 .140071 13 .136306
14 .132983 15 .130019
16 .127354 17 .124941
18 .122741 19 .120725
20 .118868 21 .117149

TABLE 7.1. Values of bvs. p for the exponential distribution.

In this section we will present sorne examples of IL-functions and ,a-values

for sorne well-known distributions.

EXAMPLE. Exponential Distribution. If}( is exponentially distributed,

n~(f) = 1/«() + 1), and
8a

E {e8(a-X)} = _e__
() + l'

for f) > o. AIso,

{
e

8a
} {b l-aJ.1. Ca) = b inf -- = ae 1

82:0 f) + 1 b ,
a < 1·- ,
otherwise,

because Log (b~U) is minimum for () = ~ - 1. The value Ct is defined to he

the unique solution of

•
Observe that as b --+ 00, 0: t"J 1/2b. Note that

sup /-Lx (0:) = sup {Q bel-~ } x V sup bX

xE(O,l) X xE(a,l) x xE(O,a)

_ sup {ea
: e-a } V bO

,

xE(a,l) x
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2 .590941 3 .455860
4 .372014 5 .311999
6 .265677 7 .228184
8 .196821 9 .169940

10 .146465 Il .125653
12 .106973 13 .090028
14 .074516 15 .061973
1G .046876 17 .034384
18 .022566 19 .011245

TABLE 7.2. Values of bvs.p for the Bernoulli (.05) distribution.

because o:b = eO
-

1
. The value of x which maximizes the first quantity is eo - 1

(which is in (0:: 1)). By manipulating (2) we get

because ea - 1 = ab. Note that eo(b-l) < e for any value of b: and {3 ~ .je as

b ~ 00. AIso: p = logb.6 "J 1/(2 10gb), as b -+ 00.

EXAMPLE. Bernotùli distribution with parameter p E (O. 1). Let LY be a

Bernoulli(p) distributed random variable, then

and

•
J.L (a) = b inf E {e8(a-x) }

8~O

=b inf e8a (p + (1 - p)e8
)

8~O

= {b (6)1-a (~)a,

b ,
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b p b p

2 .522782 3 .445452
4 .405182 5 .379173
6 .360477 7 .346137
8 .334648 9 .325150

10 .317110 Il .310176
12 .304107 13 .298731
14 .293919 15 .289575
16 .285625 17 .282010
18 .278682 19 .275604
20 .272745 21 .270078

TABLE 7.3. Values of bvs. p for the gamma (3) distribution.

So as to define a~ we must assume that bp < 1. Thus a is defined as the

solution of the equation

( ) l-Q (1 )Q
b l~a :p =1.

Note that as p = p {}( = O} and taking b = 2 we recuperate one of the

results of Karp and Pearl (1983).

EXAMPLE. Gamma distribution with parameter T. We first compute

. 100 x r - 1e-x e8(a-x)
f.L (a) = b luf r( ) dx

8~O 0 T

e8a

=binf --­
8~O (1 + oy
eae ~-1)

=b (~)r vb

= { ber
-

a (~) r, if 0 :::; a :::; T;

b , a ~ 7·.

because Oa - T log(l + 8) is minimal when a = 1~8. Thus a is defined as the

solution to the equation:

Finally,
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Note that /-Lx (Ct/x) is maximal at x = bl/r/ rand therefore
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Conclusions

In the first part of the thesis we studied the expected time compLexity of range

search when the data structure used for storing the data is the k-d tree. By

studying the geometry of the rectangle partition generated by the k-d tree~

we were able to find a tight expression for the expected time compLexity of

range search that refiected the geometry of the query region. This resuLt

showed the way ta improve on the expected complexity of range search by

defining a new data structure that we called squarish k-d tree.

In chapter 3 and 4 we saw that k-d trees are not optimal even in an

average sense for solving range search. The elongated rectangles in the parti­

tion generated using k-d trees explain its pOOl' performance. vVe showed that

squarish k-d trees behave optimally in an expected sense. For instance, that

the expected time complexity of partial match in 2-d trees~ when specifying

one attribute, is e (n ~-3) = e (nO.561552 ... ): whereas for 2-d squarish trees

i t is e (v'7i) .

In chapter 5 we analyzed two natural algorithms for solving the nearest

neighbor problem when using k-d trees. We conjectured that for k-d trees

the expected time complexity of nearest neighbor queries is n (nPk ). We also

conjecture that the expected time complexity of nearest neighbor queries

when using algorithm A and squarish k-d trees is indeed O(logn). This

requires further research.

Another very interesting problem that deserves further study is the ex­

pected worst-case complexity of range search. That is, the data points are

still random, but now the position of the query can he chosen arbitrarily. We

believe that the expected worst case complexity over aH partial match queries

with worst case location of the free corrdinates, is also bounded from above
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by the bound given in theorem 3.2 and 3.4 for the k-d tree and squarish k-d

tree respectively.

In the second part of the thesis we studied the time complexity ofbranch­

and-bound search for random trees. Theorem 7.1 shows that up to fust-order

asymptotics, ordinary depth-first search is as good as any search strategy for

aIl regular random variables. This is remarkable, as depth-first search can

be implemented using only O(n) storage.
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