INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will-indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Analysis of random trees

Carlos Alberto Zamora Cura

School of Computer Science
McGill University, Montreal

January, 2000

A thesis submitted to the Faculty of Graduate Studies and
Research in partial fulfillment of the requirements of

the degree of PhD in Science

Copyright © Carlos Alberto Zamora Cura, 1999

i~

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Waellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your e Votre réédrence
Our Nig Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-64705-6

Canada

Abstract

In the first part of the thesis, we analyze the expected time complexity of
range searching with k-d trees in all dimensions when the data points are
uniformly distributed in the unit hypercube. The partial match results of
Flajolet and Puech are reproved using elementary probabilistic methods.
In addition, we analyze the expected complexity of orthogonal and convex
range search, as well as nearest neighbor search. We introduce a new data
structure, the squarish k-d tree. in which the longest edge is always cut first.
This modification makes the expected time behavior of lower-dimensional
partiai match queries behave as for perfectly balanced complete k-d trees on
n nodes. This is in contrast to a result of Flajolet and Puech, who proved that
for (standard) random k-d trees with cuts that rotate among the coordinate
axes, the expected time behavior is much worse than for balanced complete
k-d trees. We show that the expected complexity for range search and nearest
neighbor search for squarish k-d trees is either optimal or near optimal.

In the second part, we analyze branch-and-bound search for random
b-ary trees. In particular, let T, be a b-ary tree of height n, that has in-
dependent, nonnegative, identically distributed random variables associated
with each of its edges. The value of a node is the sum of all the edge values
on its path to the root. Consider the problem of finding the minimum leaf
value of T;,. Assume that the edge random variable X is nondegenerate, has
E { X%} < oo for some 8 > 2, and satisfies bP{X = c} < 1 where c is the left-
most point of the support of X. We analyze the performance of the standard
branch-and-bound algorithm for this problem and prove that the number of

nodes visited is in probability (8 + o(1))". where 8 € (1,b) is a constant

depending only on the distribution of the edge random variables. Explicit
expressions for 3 are derived. We also show that any search algorithm must
visit (8 +0(1))" nodes with probability tending to one, so branch-and-bound

is asymptotically optimal where first-order asymptotics are concerned.

Résumé

Dans la premiére partie de la thése, on analyse 1'espérance du temps
de complexité de la recherche étendue avec des arbres k-d pour toutes les
dimensions ol les données sont uniformément distribuées au sein de I’hy-
percube unité. Les résultats de concordance partielle de Flajolet et Puech
sont démontrés 4 nouveau a l'aide de méthodes probabilistes élémentaires.
De plus, on analyse I'espérance de la complexité de la recherche a champ
orthogonal et convexe ainsi que de la recherche du voisin le plus proche. On
introduit une nouvelle structure de données, ’arbre k-d squarish, dans lequel
I'aréte la plus longue est toujours la premiere coupée. Cette modification
implique que I’espérance du temps de recherche & concordance partielle de
basse dimension se comporte comme pour les arbres k-d complets & n som-
mets parfaitement équilibrés. Ceci contraste avec un résultat de Flajolet et
Puech, qui ont prouvé que pour les arbres k-d (standards) avec des coupures
qui alternent entre les axes de coordonnées, le comportement de l’espérance
de temps est bien pire que pour les arbres k-d equilibrés. On démontre que
I’espérance de la complexité pour la recherche étendue et celle du voisin le
plus proche pour les arbres k-d squarish est soit optimale ou bien presqu’op-
timale.

Dans la seconde partie, on analyse la recherche branch-and-bound pour
les arbres b-ary aléatoires. En particulier, soit 7,, un arbre b-ary de hauteur
n possédant des variables aléatoires associées a chacune de ses arétes qui
sont non-négatives, indépendantes, et identiquement distribuées. La valeur
d’un sommet est la somme des valeurs de toutes les arétes sur son chemin
vers la racine. Condérons le probléme qui consiste & trouver la valueur-

feuille minimale de T,,. Admettons que la variable aléatoire d’aréte X est

non-dégénérée et satisfait E {X°} < oo pour un 6 > 2, ainsi que bP{X =
¢} < 1, ol ¢ est le point du support de X le plus & gauche. On analyse la
performance de I’algorithme branch-and-bound standard pour ce probléme et
I’'on prouve que le nombre de sommets visités est en probabilité (8+0(1))™, ol
B € (1, b) est une constante ne dépendant que de la distribution des variables
aléatoires d’aréte. Des formules explicites pour 3 sont dérivées. On démontre
aussi que tout algorithme de recherche doit visiter (8 + o(1))™ sommets avec
une probabilité tendant vers un. Donc en autant que le premier ordre est

concerné, branch-and-bound est asymptotiquement optimal.

Acknowledgements

First of all, I want to express my gratitude to Luc Devroye, my thesis su-
pervisor. Right from the beginning, he has shared his ideas with me in an
unselfish way. His enthusiasm, energy and perfect teaching were the main
factors in getting me interested in probabilistic analysis of algorithms. With-
out his help and advice this thesis would have not been possible. My time
at McGill has been much more enjoyable since I started my PhD under his
supervision.

[received financial assistance from a scholarship DGAPA-UNAM for
graduate studies. Many thanks again to Luc Devroye for his financial sup-
port.

My thanks also go to my parents for always believing in me. To my
friends Carlos and Manuel for their company, both intellectual and emotional.
To Refugio for pushing me to have some very needed exercise during my
graduate studies.

Finally my deepest thanks to my wife Carmen for her patience, under-

standing and love. Without her my life would be a total mess.

To my tender wife

Carmen

Contents

Introduction
1 Preliminaries

1.1 Probability
1.2 Inequalities
1.3 Graphs and trees
1.4 Asymptotics

PART | : Range Search and Nearest Neighbor Algorithms

2 Data Structures and Algorithms

2.1 Range search and partial match

3%
N

k-d trees

L]
(W)

Squarish k-d trees
2.4 Nearest neighbor search
2.5 The model .

2.6 Partial match and range search queries

3 Partial Match

3.1 The results of Flajolet and Puech . . .

3.2 Probabilistic proof for the theorem of Flajolet and Puech
3.3 Random partial match queries with squarish k-d trees
3.4 The k dimensional case

3.5 Conclusions

.11
.12
. 13

.27
. 29
. 35
. 40
. 45

4 Orthogonal Range Search

4.1 Orthogonal range search and k-d trees47
4.2 Orthogonal range search and squarish k-d trees 50
4.3 Searching with convexsets53
4.4 Conclusions58

5 Nearest Neighbor Search

5.1 Nearest neighbor problem39
5.2 Algorithms60
5.3 Algorithm A when using k-dtrees _ .61
5.4 Algorithm A when using squarish k-d trees 66
5.5 Algorithm B when using squarish k-d trees 68
5.6 Lower bound for nearest neighbor queries 72
5.7 Conclusions T4

PART Il : Branch and Bound Search

6 Branching processes
6.1 Definitions and basic properties77

6.2 Theory of branching random walks 78

7 Random b-ary trees

7.1 Introduction85
7.2 Previouswork8
7.3 Notation and preliminary results 87
7.4 Proof of main theorem90
7.5 Someexampleso o9
Conclusions9
Bibliography 101

Introduction
L]

To analyze an algorithm, in a broad sense, means to characterize the amount
of resources that an execution of the algorithm will require when applied to
input data of a given length. There are several ways of making this definition
more precise. We may want to know the worst case behavior of the algorithm
with respect to the general resources the algorithm will need to perform its
tasks: we want to have an absolute warranty that the algorithm will not use
more than a certain amount of storage space or a given time complexity on
any input of at most a given length.

The worst case measure is perhaps the most common and well-known
approach when analyzing an algorithm. However, this approach may hide
the typical behavior of the algorithm since the worst case input data may be
rare among all possible inputs.

Another approach is to analyze the algorithm from a probabilistic per-
spective. We can do this in several ways. For example, in one approach,
we assume that the input data is distributed according to some probability
distribution. The amount of resources that the algorithm uses is quantified
in a probabilistic sense. We may want to know the expected space complex-
ity or the expected time complexity for instances of a given size. In general,
we choose some probability distribution on the inputs of a given size and
analyze the performance of the algorithm when applied to a random input

drawn from this distributions.

Range Search and Nearest Neighbor Search

Data structures for multi-attribute data should support the usual dictio-

nary operations as well as some associative queries. Examples of associative

—3—

queries are partial match, range search and nearest neighbor queries. A par-
tial match query asks for all the elements in the file that match a given vector
with possibly a number of wild-cards. The ancestry of most methods to solve
partial match queries is to be found in works by Rivest (1976), where hashing
and digital techniques are explored, and by Bentley (1975) and Bentley and
Finkel (1974) who proposed k-d trees and quad trees, which are comparison
based structures to solve these problems (see also Knuth, 1997).

Range search is a fundamental problem in many fields such as computa-
tional geometry, data base theory and pattern recognition. For a range search
query a set of points is given and a search set is specified. The objective is to
return the points that lie within the search region. Search regions may take
several forms such as half spaces, simplex regions, convex regions or orthog-
onal ranges. Orthogonal range search is of interest to us. When orthogonal
ranges (i.e., hyper-rectangles in the k& dimensional Euclidean space) are con-
sidered, range trees (see, Bentley {1977), Preparata and Shamos (1985)) are
among the best data structures, in a worst case scenario. To solve the prob-
lem, they have O((logn)*~! + N) query time and use O(n(logn)*~!) units
of space, for n data points., where N is the number of points in the query
region. However, the implementation of this data structure is quite cum-
bersome, so simpler mecthods are of interest. k-d trees are binary trees that
store multidimensional data. A k-d tree is built up so that at each level of the
tree a specific component of the data is used for splitting. The components
of the data are used cyclically on the path down the tree. For any node u
having index j € {1,...,k}, all nodes in its left subtree are such that their
7P key is less than the j*! key in u, and all nodes in its right subtree are
such that their jt" key is greater or equal than the j*® key in u. The root is
assigned index 1, and from there on the index of each node is determined by
the depth of the node in the tree in a rotational fashion. Insertion and search
are implemented as for the standard binary search tree algorithms. The dele-
tion procedure is a bit more complex than the deletion procedure in binary

search trees as we must keep the cyclic order of the partition coordinates.

—4—

It nevertheless can be implemented in a very similar manner. The k-d tree
offers several advantages-it takes O(kn) space for n data points, it is easily
updated and maintained, it is simple to implement and comprehend, and it
is useful for other operations besides orthogonal range search. We can also
implement range search by storing the data in a k-d tree by simply visiting
recursively all subtrees of the root that have a nonempty intersection with
the query rectangle.

We can also implement nearest neighbor search using k-d trees. Given a
point z and a set of points in the plane, nearest neighbor search asks for the
nearest neighbor of z among all the points in the given set. This proBlem
has been studied extensively in areas such as computational geometry and

pattern recognition, where nearest neighbor queries are of central importance.

Branch-and-Bound Search

Optimization of rooted trees is a routine problem in computer science and
operations research. The study of efficient algorithms for finding the best leaf
in a rooted tree is the subject of many projects and papers in the artificial
intelligence community. Ifleaves have values associated with them and a min-
imum must be found, one may perform exhaustive search, branch-and-bound
search (which is a depth-first search with on-line pruning of useless subtrees),
backtracking, backtracking with bounded lookahead, and variations of these
methods (Reingold, Nievergelt and Deo (1977), Kumar (1992)). To compare
various methods, toy models have been proposed, of which the model of Karp
and Pearl (1983) is perhaps the most interesting. Karp and Pearl consider
a complete binary tree with n levels of edges and associate with each edge
an independent Bernoulli{(p) random variable. Each node v has a value V,
equal to the sum of the edge values on the path to the root. Each value V, is
available upon request, but each request costs one time unit. The objective
is to find the leaf of minimal value. Karp and Pearl noted that if 2p > 1,

any algorithm must necessarily take exponential expected time in n, while

—5—

for 2p = 1 and 2p < 1, ordinary uniform cost breadth-first search takes on
the average ©(n?) and ©(n) time. In this algorithm. one first visits all nodes
of value 0, then all nodes of value 1, and so forth. McDiarmid (1990) and
McDiarmid and Provan (1990), generalized the work of Karp and Pearl to

b-ary trees and more general distributions.

Outline of the thesis

In the first part of this thesis we analyze the expected time complexity of
partial match search when using as underlying data structure k-dimensional
trees. As we will see in the forthcoming chapters, the expected time com-
plexity of range search can be computed if the expected time complexity of
partial match queries are known. Flajolet and Puech (1986) computed the
expected time complexity of partial match queries in the &£-dimensional unit
cube using generating function techniques. They found that the expected
time complexity of partial match when s out of the k£ attributes are specified
is asymptotic to nl=3/k+6(s/k) where 0 < 8(u) < 0.07 for u € [0, 1]. Thus,
the expected time complexity of partial match is not optimal when using k-d
trees, as off-line, if a median k-d tree is constructed from the data, any partial
match query takes worst case time O(nl~Vk + N) where NNV is the number of
points in the query region. We reprove the Flajolet and Puech (1986) results
using probabilistic methods. This is work reported in Chanzy, Devroye and
Zamora-Cura (1999).

Having this result as starting point, we analyze the expected time com-
plexity of range search when using k-d trees. We also introduce the “squarish
k-d tree”, which is a k-dimensional tree that has optimal expected time com-
plexity with respect to partial match queries, explicitly ©(n'~*/%), when s
out of k attributes have been specified. We also study the complexity of
range search when using squarish k-d trees. These results can be found in

Devroye, Jabbour and Zamora-Cura (1999).

—6—

Using the results about range search we analyze two algorithms to solve
the nearest neighbor problem. In the first algorithm, range search queries
centered at the query point are performed on boxes of growing side length.
We return the nearest neighbor of the point in the second nonempty box. We
analyze both k-d trees and squarish k-d trees with respect to this algorithm.
The second algorithm works by returning the nearest neighbor among all the
points lying in the box of sides of length twice the perimeter of the box on
which the query point lies.

In the second part of this thesis, we generalize and complement the
results of Karp and Pear! (1983), McDiarmid (1990) and McDiarmid and
Provan (1990). We show that in probability, the number of nodes visited by
the standard branch-and-bound algorithm to find the minimum leaf value in
a random tree (as introduced in the previous section) is (§ + o(1))™, where
B € (1.b) is a constant depending only on the distribution of the edge random
variables, and b is the fan-out of the tree and =n is the number of levels. We
derive explicit expressions for 3. We also show that any search algorithm
must visit (8 + o(1))" nodes with probability tending to one, so branch-
and-bound is asymptotically optimal is a first-order asymptotic sense. These

chapters are based on Devroye and Zamora-Cura (1999).

Chapter 1
Preliminaries

In this chapter we present the basic mathematical tools that we will be

using through out the thesis.

1.1 Probability

DEFINITION. A o-algebra (§2, F) consists of a sample space €2 and a collec-
tion of subsets F of Q) satisfying that,

e e F,

e if A€ F then A€ € F, and

o V{A;}ienw of sets in F, U;enA; € F.

The first and second conditions imply that Q € F. Moreover, the second
and third conditions imply that a o-algebra is closed under countably infinite
intersections. If Q = R* and B is the smallest o-algebra containing all the
rectangles, then B is called the Borel o-algebra. The elements of B are called

Borel sets.

DEFINITION. A probability space is a triple (2, F,P) where (Q,F) is a
o-algebra, and P is a function from F to [0, 1] such that,
e P{0}=0,
e P {-} is o-additive, this is A1, A3,... € F and A;NA; =0,i# 7,
imply that P {UZ, A} = T2, P {A:},

The sets in F are called events. When the set Q is finite the o-algebra
considered is its power set. In this thesis the measurability questions are
irrelevant as the standard o-algebras are rich enough so as to avoid any type

of measurability problem.

THEOREM 1.1. (BOOLE's INEQUALITY). Let (Q,F,P) be a probability
space. If A,,...,An, € F then,

P{Ul 4:} < Zn:P {A:}.

Given a probability space (2, F,P), and A, B € F, with P {B} > 0, we
define the conditional probability of A given B, P {A|B}, as

P {AN B}
P{B}

It can easily be verified that conditional probabilities are indeed probability
functions. A random variable X over (2, F.P) is a real-valued function over

the sample space, X : Q — IR, such that for all z € IR,
fwe: X(w)<z}eF.

This definition allows us to have a more compact notation for complex events
since, for example, P {w € 2 : X(w) < z} becomes P {X < z}.

Given a random variable X over (2, F, P) we define its expected value
as follows,

E{X}= f XdP.
Q

When the random variable is discrete the expected value of X becomes
ZueQ X(w)P{X =w}.

The following two theorems are most useful when computing expected

values of random variables.

THEOREM 1.2. (LINEARITY OF EXPECTATION). Let X;,..., X,, be random

variables over (0, F,P), then
B{3 x| - Sanw,
i=1 =1
for any c1,...,¢cn € R,

—10—

THEOREM 1.3. Let Y be a random variable with finite expectation, X and
Z vector-valued random variables. Then,
e There is a function g on R such that E {Y|X} = g(X) with probability
one.
e E{Y}=E{E{X|YV}}.
e IfY is a function of X then E{Y|X} =Y.

We will prove some results in the second part of the thesis about the
convergence in probability of the running time of an algorithm. So, let us

define this notion.

DEFINITION. (CONVERGENCE IN PROBABILITY). Let {X,}nen, be a se-

quence of random variables. We say that

lim X, = X, in probability

n—0C

if for each € > 0

nangQP{an ~X|[>e}=0.

1.2 Inequalities

From now on, whenever a random variable X is given, a proper (Q, 7, P)
probability space is supposed to exist. We present several standard inequal-

ities that we will use through out the thesis.

THEOREM 1.4. (CAUCHY-SCHWARZ INEQUALITY). If the random variables
X and Y have finite second moment (i.e., E {X2} < o0 and E {¥Y?} < 00),
then

E{XY}| < VE{X?2}E{Y?}

THEOREM 1.5. (HOLDER'S INEQUALITY). Let p,q € (1,00), such that %+

% = 1. Let X and Y be random variables such that E {|X?[} < oo, and

11—

E {|Y?} < co. Then.

E{|XY]} < (B{X?H" E®{YH"".

THEOREM 1.6. (MARKOV’S INEQUALITY). Let X be a nonnegative random

variable. Then for each t > 0,

E{X}
—-

P{X >t} <

THEOREM 1.7. (JENSEN’S INEQUALITY). If f is a real-valued convex func-
tion on a finite or infinite interval, and X is a random variable with finite

expectation. taking values in this interval, then

fE{X}) < E{f(X)}.

1.3 Graphs and trees

A directed graph G is a pair (V, FE) where V is a finite set of vertices and E,
the edge set, is a subset of V' x V. In an undirected graph we consider the
edges unordered. The degree of a vertex v € V is the number of edges incident
on it. A walk is a sequence vy, ..., v; of vertices such that (v;,vi4;) € E, for
i=1,...,t — 1. A pathis a walk on which no vertices are repeated. We say
that a graph G is connected if for every pair of vertices there is a path that
connects them. A cycle is a walk such that its first and last points coincide.
A tree T is a connected and acyclic graph. A rooted tree is a tree with a
specially marked node, which we call root of T'.

A rooted directed tree is called m-ary if every vertex has out-degree at

most m and its children are numbered from 1 to m. A binary tree is a 2-ary

tree in which for every node each child is designated as a left child or right
child. A binary search tree is a binary tree in which each vertex has an
associated key coming from a totally ordered universe, such that all the keys
associated to the nodes in its left subtree are smaller or equal than it and all

the keys in its right subtree are greater than it.

1.4 Asymptotics

Many results in the thesis are given in asymptotic notation. We will now

define these notions.

Let f,g : N— R*. Then.
f=0(g) ifand only if 3ng € N,c > 0 : f(n) < cg(n).Vn > ng,

f=Q(g) ifand only if dng € N,c¢ > 0 : f(n) > cg(n).Vn > ng,

and
f =0©(g) if and only if f = O(g) and g = Q(g).
Furthermore,
) e o f(n)
= o(q) if and only if lim —= =40
f=o0(g) AT
. e . f(n)
= w(q) if and only if lim —= =
f (9) yif lim o

PART |

Range Search

and

Nearest Neighbor

Algorithms

—-15—

—16—

Chapter 2
Data Structures and Algorithms

In this chapter we define the problems we will study and the data struc-
tures and algorithms that we will be using to solve the proposed problems
in the first part of the thesis. We introduce the squarish k-d trees as an

alternative data structure to solve the problems at hand.

2.1 Range search and partial match

Range search is a fundamental problem in computational geometry and other
related areas such as pattern recognition, statistics and database manage-
ment systems. It is a problem commonly used within more complex prob-

lems. We can define formally the range search problem as follows:

THE RANGE SEARCH PROBLEM: Given are a set S = {u;,...,un} of n
points in IR* and Q, a family of sets in R¥. We wish to preprocess S into a
data structure so that for a query range Q € Q, all the points in @ N S can

be reported efficiently.

There are several variants of this problem, for example: range counting
(where we only need to report the number of points in @ N S), emptiness
queries (we need only to decide whether QNS = @) or extremal queries (where
we report the set of points in QNS satisfying a specified extremal property).
We should note now that the partial match query problem (report all points
whose values match a given k-dimensional vector with possibly a number
of wild-cards, e.g, we may search all points with values (a1, *, *, a4, as, *)
where * denotes a wild card) is a particular instance of range search where
the rectangles degenerate to products of points, intervals and real lines. For

orthogonal range

17—

—

FIGURE 2.1. The k-d tree and its partition of [0, 1]2.

search, Q is the set of all rectangles. Different data structures have been
used, depending of the definition of Q, that help to solve the problem ef-
ficiently, such as quad trees, k-d trees, and range trees. For surveys see
Bentley and Friedman (1979), Samet (1990a, 1990b), Agarwal (1997) and
Matousek (1994). In a deterministic context, fractional cascading, a modifi-
cation of the range tree technique, yields an O(n(logn)*—!) worst case space
bound and O((logn)*~!+ N) worst case search time, for n data points, where
N is the number of points in the query region. However, the implementation
of this algorithm and data structure is quite cumbersome. The solution using
k-d trees offers several advantages: it takes O(kn) space for n data points,
k-d trees are easily updated and maintained, it is simple to implement and
comprehend, and it is useful for other operations besides orthogonal range
search. Here we concentrate on the use of the k-d tree for solving orthogonal

range search problems.

—18—

2.2 k-d trees

The k-d tree (Bentley, 1975) is a data structure used for storing multidimen-
sional data. It is a binary tree in which each record contains & keys, right
and left pointers to its subtrees, and an integer index between 1 and k that
indicates which key in the record is used for splitting. On any path from the
root, splitting is performed in a rotational fashion. For £ = 1, we obtain the
standard binary search tree. For any node u having index j € {1,...,k}, all
nodes in its left subtree are such that their j*! key is less than the j*® key in
u, and all nodes in its right subtree are such that their " key is greater or
equal than the j*" key in u. The root is assigned index 1, and from there on
the index of each node is determined by the depth of the node in the tree in a
rotational fashion (see figure 2.1). The tree and partition shown in figure 2.1
are constructed by sequentially inserting the points. From now on the words
rectangle and hyper-rectangle will be used interchangeably.

If we assume that the data belongs to [0,1]%, then the insertion of
Ul,-..,Un € [0,1]% in an initially empty k-d tree T creates a family of 2n+1
rectangles that we call R,,. We can associate with each data point wu;4+;
the hyper-rectangle in [0, 1]* in the final partition generated by u;,...,u; in
which it falls. Then each node (including external nodes) in T corresponds
to a region of the unit hypercube. To fix ideas, for 1 < 7 < n, we denote
by R; € R, the rectangle split by u;. The n + 1 leaf rectangles are also
denoted R;, with the index 7 now running from n + 1 to 2n + 1. The set of
these rectangles is denoted by F,. We will take the freedom of considering
R, and F, as either the set of rectangles previously defined, or the set of
indices of the respective rectangles. The dimensions of rectangle R; arc z;;,
for 1 < 7 < &. In the two dimensional case the dimensions are denoted by z;
and y;. It turns out that the shape of these rectangles is very important for
the expected running time of partial match queries.

In order to solve range search, when k-d trees are used to store the

data, we use a natural algorithm proposed by Bentley (1975) (see figure 2.2).

—19—

. Range-Search(T, Q)
u < root[T].T + @

if |T| =0 then return T
else if u € Q then I' « {u}
if |T| =1 then return T
else ¢ « index[u]
case u¢ < z¢ — m¢ : ' < ['U Range-Search(T ighi(u). Q) (a)
ug > z¢ + mg : I <~ ['U Range-Search(Teg (x). Q) (b)
zg —mg < ug < z¢ +me : T « I URange-Search(Tright (), Q)
URange-Search(Tiu (), @) (c)

FIGURE 2.2. Bentley’s range search algorithm.

Bentley’s algorithm starts the search at the root. At each node. it looks at
its index j € {1,....k}, and compares the j*P key of the current node with
the jtP range in the search region. If the range is entirely to the left, the
search continues only on the left child of the node, if it is entirely to the right,
then the search continues only at the right child. Otherwise. the search visits
both subtrees.

The query time for orthogonal search depends upon many factors. such
as the location of the query rectangle, and the distribution of the points. One
may construct a median k-d tree off-line by splitting each time about the
median, thus obtaining a perfectly balanced binary tree, in which ordinary
point search takes ©(log n) worst-case time, and a partial match query with
s coordinates specified takes worst-case time O(n'~%/% 4 N), where N is the
number of points returned (see for example, Lee and Wong, 1977). Assuming
the uniform model (the n data points independent and uniformly distributed
random vectors on [0, 1]* and the specified entries in the query vector inde-
pendent and uniform random variables), Flajolet and Puech (1986) computed
the asymptotic expected running time of partial match query when s out of

. the k attributes are specified and k-d trees are used as data structures, and

—20—

found that if N, denotes the time complexity of a partial match with s

attributes specified. then
E {No} = (1 + o(1))nl=s/k+8(/K), (*)

where 0 < 6(z) < 0.07, for z € [0,1]. In chapter 3 we give a new proof of
their result, by means of probabilistic techniques, and show in chapter 4 how
this result can be used to compute the expected running time of orthogonal
range search. We also extend this result to convex sets in the plane.

We know much more about the expected time complexity of partial
match queries when k-d trees are used as underlying data structures than
the result of Flajolet and Puech (1986). Neininger (1999) showed that the
first asymptotic term for Var {N,} is © ((E {Nn})g), and that

(Nn — E{Np})

v/ Var { N, }

tends in distribution to a non-degenerate limit law. That is. &V,, is asymptot-

ically not concentrated about E {/N,}. Their method of proof uses contrac-
tions, and may also be used to analyze partial match queries for random quad
trees (Neininger and Riischendorf 1999), thus extending results of Flajolet,
Gonnet, Puech and Robson (1990, 1992).

Partial match queries have also been analyzed for locally balanced kdt
trees, a balanced version of random k-d trees, by Cunto, Lau and Flajo-
let (1989). A kdt tree is a k-d tree where each subtree of size greater than
2t has at least t nodes on each of its subtrees. Note that in particular
if a subtree has 2 + 1 nodes, then the key with the median of the com-
ponent which is being used as discriminatory in the whole subtree at this
level is stored in its root. Cunto, et al. (1989) proved that for kdt trees
E{N,} =© (n“s/"“‘é("/k")), where 6(z,t) — 0, as t — oo. So, kdt trees

improve with respect to the behavior of k-d trees as ¢ grows.

FIGURE 2.3. The squarish k-d tree and its partition of the

plane

We should note that in the previous types of k-d trees, deletion op-
erations are not easy to implement, as it may involve a tedious reorgani-
zation of the whole tree. Furthermore the distribution of the tree may be
changed by the insertion and deletion of nodes. To overcome these prob-
lems Duch, Estivill-Castro and Martinez (1998), and Martinez. Panholzer
and Prodinger (1998) proposed the relaxed k-d tree. For this tree, instead of
rotating cyclically the discriminatory coordinate, we cut directions uniformly
at random. Duch, et al. (1998) and Martinez, et al. (1998) showed that for
the relaxed k-d trees E {N,} = © (n®~1), where o = 1/2(1 + /9 — 8s/k),

which is worse than for ordinary random k-d trees.

2.3 Squarish k-d trees

Squarish k-d trees are a minor modification of k-d trees, first proposed in

this thesis. The insertion procedure is modified so that each time a rectangle
is split by a newly inserted leaf point, the longest side of its rectangle is
~cut, that is, the cut is a (kK — 1)-dimensional hyper-plane through the new
point perpendicular to the longest edge of the rectangle. Figure 2.3 shows
the squarish tree and its associated partition for the same set of points in
figure 2.1. In case that there is more than one longest edge, we toss a perfect
coin to decide on one of the longest edges for cutting. It is natural to con-
jecture that if the data points are taken in the unit hypercube, the squarish
partition rule should create a more squarish looking rectangle partition than
if we use a k-d tree partition criterion. This will be apparent from our results.

In chapters 3 and 4 we show that the elongated nature of the rect-
angles generated by the standard k-d tree partition rule explains the poor
performance of random k-d trees with respect to partial match and range
search queries. It is precisely because of the more squarish nature of the
rectangles generated by the squarish partition rule that they have a better
performance on the average with respect to partial match queries. This seem-
ingly small change makes the expected time behavior of lower-dimensional
partial match queries behave as for perfectly balanced complete k-d trees on
n nodes, namely ©(n!~%/%). This is in contrast with the k-d trees reviewed
in the previous section, where it was seen that none of them are optimal on

the average with respect to partial match queries.

2.4 Nearest neighbor search

In chapter 5 we analyze two algorithms to solve the nearest neighbor problem.
In algorithm A in dimension k, we perform range search queries with square
boxes of side length k*/2/n'/¥ for t = 0,1,2...., until T* + 1, where T* is
the first non-empty box. An important quantity that we define is

Pk = Olélfsxke(s/kL
where 6(-) is the function appearing in (*). If the data structure we use

is a k-d tree. and if T, is the time complexity of range search on a square

box of side length k*/2/nl/% by applying the results in chapter 4 about the
complexity of range search queries on k-d trees we prove that

(k=

1)e ke
3 nf”*.'.kz)

E{T.} <C(k

for some C > 0 not depending upon ¢ or n. Using the previous observation,
we will prove that the expected complexity time of algorithm A. in dimension
k. is ©(n”c). When the data structure we use is a squarish k-d tree, then we
prove that the expected time complexity of algorithm A is O(logn loglogn).

In algorithm B. we insert the query point Z in the k-d trce containing
the data and perform a range search centered at Z with dimensions twice the
distance of Z to its parent in the k-d tree. The nearest neighbor is reported
among all points returned by the orthogonal range search. We analvze, in
dimension 2, algorithm B on squarish k-d trees and show that its expected

complexity is O(log” n).

2.5 The model

We consider n independent and uniformly distributed points U;.....U, on
[0.1]*. We store them in order in a k-d tree and call the actual data
Uy, ..., un. The query rectangle Q is Z +[—my,my] X - - - x [-m, my], where
m; > 0 for all j, where the m;’s are fixed (that is, they may depend upon
n only) and Z is uniformly distributed on [0,1]¥ and independent of all
Ui,...,U,. We denote by A; = 2m;,, for 1 < j < k. Note that partial match
queries are range search queries such that for some S C {1...., &}, for each
J €S, m; =0, and for each j € S, m; = 1. We call this the uniform model.
Note that the definitions made for the deterministic case in section 2.2 can
be immediately extended to the uniform model.

When each component of the data comes from a continuous distribution,
the sequence of ranks in each point forms a random permutation. The distri-
bution of the k-d trees evolving from n points coincides with the distribution

of binary trees evolving from the successive insertion of n 1-dimensional data

—94—

points from a common distribution. The distributions and moments of as-
sociated random variables are exactly the same as their analogues in binary

trees.

2.6 Partial match and range search queries

Because for each node in the tree T there is associated a region in [0, 1]%,
a node « in T is visited by Bentley’s range search algorithm if and only if
the query rectangle @ intersects its associated rectangle. A leaf rectangle
is visited if its associated rectangle R; intersects Q. Let IV, be the time
complexity of Bentley’s orthogonal range search, then by the previous

2n+1

N, = Z 1R, nqQ=0]-
=1
For 1 < s < k, and v;,..... vj, € [0,1], partial match query asks for
all points in {uq..... un} satisfving u;;, = vj,. forall 1 <t < s. We say

that the query fixes coordinates ji.....Jjs. We also define L as the set all of
points in [0, l]k whose j;-th coordinate is equal to v;,. forall 1 <t < s. Ina
partial match query, we let the s fixed coordinates be independent and uni-
formly distributed over [0. 1}, and the n data points be random independent
uniformly distributed vectors on [0, 1]*.

We first relate the expected time complexity of partial match to that of

range search. The following proposition allows us to compute the expected

time complexity of range search by using results about partial match queries.

PROPOSITION 2.1 Given is a random k-d tree based on i.i.d. random vari-
ables Uy, . ..,Uy, uniformly distributed on [0, 1]*. Consider a random partial
match query, in which s > 0 of the k fields are specified. Let N, be the num-
ber of comparisons that Bentley’s orthogonal range search performs. Let S

be the set of specified coordinates. Then

n+l

E{Nn} =FE Z HX,'J‘

i=1 j€S

—25—

where X;;.1 < j < k., is the length of the side along the j-th coordinate of

rectangle R; in R,,.

ProOOF. Note that P{LNR; #0|U,,..., U.} = Hjes Xij. Thus we have,

2n+41
E{N.} =E { > 1[LnR.¢m}}

t=1

=~"Z P{LﬂRi'ré@}=E{-{: HXij}-D

i=1 i=1l jEeS

—26~

Chapter 3
Partial Match

In this chapter we present the probabilistic analysis for partial match
queries using the uniform model, when the underlying data structure used is
either a k-d tree or a squarish k-d tree. We present a new probabilistic proof
of a result from Flajolet and Puech (1986) about the expected complexity
time of partial match when using k-d trees. We also give the first analysis of

the expected complexity time of partial match for squarish k-d trees.

3.1 The results of Flajolet and Puech

In a random vertical partial match query on a 2-d tree, we take a uniformly
distributed value Z € [0.1]. and visit all nodes in the tree whose rectan-
gle cuts the vertical line at Z. The probability of hitting a rectangle with
dimensions X; X Y; is of course X;, so that the expected number of nodes
visited, and hence, the expected time for a partial match query, is simply
E { Zf:fl X ,-}, where the sum is taken over all 2n + 1 rectangles in the par-
tition. A similar formula holds of course for horizontal partial match queries.
The previous idea clearly generalizes to arbitrary dimensions. As we saw in
the previous chapter, in dimension k, if S C {1..., &}, with |S| = s, is the set
of fixed attributes and NV, denotes the number of comparisons that Bentley’s

orthogonal range search performs when fixing the coordinates in S, then we

have that
2n+1

E{N.}=Eq > [X

i=1 jES

—927—

0.1 f(r) N

0.2 0.4 0.6 0.8
X

FIGURE 3.1. The top curve is the Flajolet-Puech function

«(-). The bottom curve is the function ().

THEOREM 3.1. (FLAJOLET AND PUECH (1986)). Given is a random k-d
tree based on i.i.d. random variables Uy, ..., U,, distributed uniformly on
[0,1]%. Consider a random partial match query, in which s of the k fields
are specified with k > s > 0. Let N, be the number of comparisons that

Bentley’s orthogonal range search performs. Then
E {Nu} = (c+0(1))n/®),

where ¢ is a constant depending on the indices of the s fixed coordinates and
for 0 < u <1, a(u) =1 —u — §(u) where 6(u) is the root 8 € [0, 1] of the
equation (8 +3 —z)*(0 +2—z)!1~T -2 =0.

We call the function «(-) in the previous theorem. the Flajolet-Puech

«(-) function. An alternative formulation for the previously defined function

—-98—

is as follows:

1 —¢ l—u ¢ ©
o(u) = max <t + 2 -] =25.
0<t<1 1—u u

Note in particular that « is decreasing, and that 1 —u < a(u) < 1.07 — u.
Particular values of interest are a(0) = 1, o(1/2) = 0.5616.... a(1/3) =
0.7162..., a(2/3) = 0.3949.... a(l) = 0 (see figure 3.1). As we commented
in the previous chapter, much more is known about the complexity of partial
match queries. Neininger (1999) proved that if s out of the & fields are fixed,

then for the time complexity of random partial match we have that.

"Vn. - E {lvn.} € -
P EyTS X.

where X is a non-degenerate random variable, and ¢, is defined as follows:
. - L L
Ca(p.v) = iInf{||X — Yi: X=p.Y=v}.

Furthermore, he proves that Var {N,} = (¢ + o(1)) (E {N.})". where the
constant c depends on the fixed coordinates. In the next section. we merely

offer an alternative entirely probabilistic proof of one half of theorem 3.1.

3.2 Probabilistic proof for the theorem of Flajolet and Puech

The arguments of our proof can be traced back to Devroye (1986).

THEOREM 3.2. For fixed s with 0 < s < k, there exist constants C and C’

depending upon s and k only such that, for all subsets S C {1....,k} with
|S| = s,
2n-+1
Clna(s/k) <E Z H Xij < Cna(s/k)'
i=1l jES

PRrROOF. We prove the upper bound only. The proof uses an embedding

argument that constructs an equivalent k-d tree. Assume without loss of

k levels

2% nodes

k levels

\J

22k nodes

2% nodes

[}
l
l k levels

FIGURE 3.2. Tree showing argument in proof ol theo-

rem 3.2.

generality that the set S consists of the first s coordinates in the rotation
(the other cases are not equivalent, but trivially similar). A split along coor-
dinate j will be called a j-split. To determine a split. we just need a uniform
[0, 1] random variable. So. the construction of the k-d tree may be viewed
recursively as follows: at the root, the root rectangle R; = [0, 1}* is subjected
to a l-split based on a uniform [0, 1] random variable U. One data point is
associated with the root (this requires £ — 1 other uniformly distributed co-
ordinates, but they will not be needed for what we need to study), and the
sizes of the subtrees associated with the two sub-rectangles are multinomially
distributed with parameters (n —1,U,1— U). We may apply this procedure
recursively, rotating of course the axes about which we split. After £ rounds,
thus for rectangles at distance & from the root, the dimensions of a rectangle
are described by a vector (Vj...., V;), with independent uniform [0, 1] compo-
nents. As a binomial(N, p), where NV is binomial(n, ¢), is binomial(n, pq), we

see that the size of the subtree associated with the rectangle with dimensions

—30-—-

] k levels
\ l k levels
4
k levels

FIGURE 3.2. Tree showing argument in proof of theo-

2% podes

235 nodes

rem 3.2.

generality that the set S consists of the first s coordinates in the rotation
(the other cases are not equivalent, but trivially similar). A split along coor-
dinate j will be called a j-split. To determine a split, we just need a uniform
[0,1] random variable. So, the construction of the k-d tree may be viewed
recursively as follows: at the root, the root rectangle R; = [0, 1]* is subjected
to a 1l-split based on a uniform [0, 1] random variable U. One data point is
associated with the root (this requires k& — 1 other uniformly distributed co-
ordinates, but they will not be needed for what we need to study), and the
sizes of the subtrees associated with the two sub-rectangles are multinomially
distributed with parameters (n — 1,U,1 — U). We may apply this procedure
recursively, rotating of course the axes about which we split. After £ rounds,
thus for rectangles at distance & from the root, the dimensions of a rectangle
are described by a vector (V;...., Vi), with independent uniform [0, 1] compo-
nents. As a binomial(V, p), where N is binomial(n, q), is binomial(n, pg). we

see that the size of the subtree associated with the rectangle with dimensions

-30—

(V1,. .., V&) is stochastically not larger than a binomial(n,]_[2;1 V;) random
variable N. If N = 0, then the rectangle is either non-existent or a leaf in the
final k-d tree. With this mechanism, our tree is an infinite complete binary
tree. The actual k-d tree with 2n + 1 rectangles is a subtree of the tree whose
nodes represent rectangles R such that N = binomial(n, |R|) > 0. These
N’s are dependent, but that will not matter in what follows, by linearity
of expectation. We note thus that with each node in the infinite tree, an
independent uniform [0, 1] random variable is associated, and that the size of
a rectangle R whose path from the root to the parent of the rectangle node

has uniform random variables Vi, V5, ... is given by
(ViVegrVorgr - VaViegaVoggo oo ViV Vg)

Returning to the problem at hand. we introduce V(R) and W (R) for a rect-
angle R at distance € from the root. Here V(R) is the product of all uniforms
on that path to the root that correspond to j-splits, 1 < 7 < s, and W(R) is
the product for s +1 < j < k. Clearly, |R| = V(R)W (R). The quantity of

interest to us is
2n+1
B { 3 V(R,-)} <
i=1

o0
2 Z E Z V(R)1[binomial(n,|R])>0]
=0

all rectangles R at depth £

Here we consider of course the infinite tree. Leaf nodes in the k-d tree have of
course zero cardinality, but their parents do not. For this reason, we consider
only parent nodes, which explains the coefficient 2. Let Z, and Z], represent
independent products of r and m independent uniform [0, 1] random variables
respectively. Then, by looking at levels that are multiples of k£ only, the last

upper bound is not more than 25+1 4 2%+ 0/, where

o0
_ 193 -
M= Z 2 E {Zsel[binomia.l(n,ZuZ('k_s)()>o] } .
=1

—31-—

To study M. note first that a uniform [0, 1) random variable is distributed

as e E, where E is a standard exponential random variable. Thus, Z,, is

_Gs’.

distributed as e . where G,. denotes a gamma(r) random variable, that

is, a random variable with density

T le—Z
f(l') = —fz:’—.)—- s 2> 0.

Similarly, Zj, _,,, is distributed as e~Cw-a¢. We write from now on G and

G’ for independent gamma random variables. We have then.

tE {pr min (1 nZspZ(, _b)e) }

>
‘=
= Z ({ ’31 (nZ.e2], ’)¢>1]}+E{nZSZZZ(,k—s)Zl[nZ,(Z('k_s)(<1]})
o -
ez: E{Z “[nZ.ezi, 020 } 22 {nZ‘leEk—-"')el[nZ,cZ('L__’N<1]}
I_+ =

o0
I = Z okt E {Z E [nZle('g ,)l>1] }
ke E { —Gul [Gsc'*'G(k s)‘<l°gn] }

o0
ot xs(—ly(k—s)l—l

= 9k ~*Vdzd
; / Hlosn® Tan (-0 © oY

()

x>0.y20
tsE—l(l -~ t)(k-—s)e—l

/ Lhe~1o—2tz—(1—t)z
<logn JOLtL1 F(SE)F(("' — 3)2)
(by the transform z =tz,y = (1 —t)2,0 <t < 1).

dt dz

Similarly, II yields

_

I
8

ND

ke 2 7!
2kt @ {nZseZ(k-s)Cl [nZ,zZ('k_,)t<1] }

o= ke / ké—1_—3tz—2(1—t)z t56-1(1 — g)(k—a)e-t did
= 2% n N T TR AT tdz
Z /log n<z Jo<t<1 L(s&)L((k — s)¢)

~32—

so that

I+ I]=
- t)(k—-'!)f

o~ & e t5¢(1
2“/ / 1 min(1,ne~?) e~ 2tz-(1-t)= dtdz

We first estimate the sum over ¢, taking only those terms that depend upon
¢:

at

= e; T(sO)L((k — 5)2) ’

(k—s)

where a = 2Fz%y , and we recall that r = ¢z, = (1 — t)z. Thus.

. : —z\ p—2tz—(1-t)z
I+[I::/ / 11 x min(l.ne™%)e dtdz .
D<z<o0 JO<t< zt(1 —t)

Employing the Stirling approximation

[4
r(e) = (g) \/%eﬁ’?

for some 6 € [0.1] (Whittaker and Watson, 1927, p. 253), we have for £ > 0,

L(s&)T((k — s)€) _ ke s (k — s)k—3 ¢
I"(ke) 2 \/2_7Te 1/12 s(k_ s)e (kk) .

Defining u = s/k, and

optqyl—t u 1—¢ l—n
ﬁ = z y = 22 £ R
wt(l —u)l-® u l1—-u

we obtain the bound

al’k ke
11 < &2V —5) Zf(“ =)

V2rk C(k8)
3 l/lzm Z
T Vork P(kf)
3 1/12meﬁ Z (kg),_,ﬁkee—g
- (k!

We now show that there is a constant Cy > 0 such that for all 8 > 0,

el/12ef S\ (kb):pMe P
(k&)!

S Coeﬂﬁ3/2)

2

and thus,
IIT < Co/u(l —u)efB2.

For B8 > 1, we have by Jensen’s inequality

61/1266 o0 (ke)%ﬂkle—ﬁ 61/1263

. 2 3/4
Vo 0! < Ve E {Poisson’(8) }
=1
el/12,8 a4 el/1293/4
< 2 < &2 pgae
< —=—(8 +4)7" < e B

For B <1,

el/12,8 = (ké)%ﬂ"ee‘ﬁ el/lzeﬂﬂk = j3/2

Var & 0T - Jax

= 3 23/2
7 < C*eP g/,
=1

53/2
as 7, L~ converges and k > 2. Resubstitution yields

I+11

1 3(1—u)
< 1 z (1 _’u) % 3u _]ﬁ ~f D | 4 u 1=t l—u
= CO/; /(; \ - t('z(z — 5)12) min(1, ne™%) e*(-(x—.) (=) 7 =t-1) dt dz

oo 1
= C/ vz min(1, ne™%) [/ h(t)e*9(t) dt] dz ,
0 0

where C = Cp\/u(l — u)/(u3%(1 — u)3(1-w)), h(t) = $3¥/271(1 —¢)3(1-u)/2-1

and .
EN“ /1 -\ "
g(t)—Q(Z) (1_u> —t-1.

The behavior of g is easily established: by definition of the Flajolet-Puech

function, we have supg.,.; 9(t) = a(u), and the maximum occurs at g €
(0,1). Furthermore, g is unimodal and locally concave about 3. Hence, there
exists a constant v > 0 such that g(¢) < a(u) — v(t — to)2 for all ¢t € (0, 1).
Pick € > 0 such that B = (¢ —€,tg +€) C (0,1). Then

/ h(t)e*9t)dt
o<1

oo ” 1
< sup h(t) / e*(e(m)—vt=to)) gt 4. g=la(m)=ve) / h(t)dt
B —0oo 1]

< D ratw) 4 prestaw-ve)

Vz

—34—

where D and D’ are positive constants only depending upon = (through the

function h and the constant v). Resubstitution now yields
*° D N
I+1I< C’[vzmin(1, ne™%) (732‘1(“) + D'ez(a(u)—ue-)> dz .
0 z

Split the integral over (0,logn) and (logn,oc), and verify that the result is
O(n>(®)), and that all multiplicative constants indeed only depend upon u

and k. g

3.3 Random partial match queries with squarish 2-d trees

In this section, we prove that a random partial match query in a random
squarish 2-d tree takes expected time ©(\/n) as opposed to ©(n°5616-) for
random 2-d trees (see theorem 3.3). We start with the following observation,
that immediately follows by considering the random growth of our k-d trees.
Of course, it implies that the joint distribution of the orderecl volumes of the

1. + 1 leaf rectangles is identical for both random k-d trees considered here.

LEMMA 3.1 Consider a random k-d tree or a random squarish k-d tree.
Then, the volumes of the rectangles in F, are distributed as the set V,
of the consecutive spacings between the order statistics of n i.i.d. random

variables, uniformly distributed on [0, 1].

The next result will be useful when we compute the expected time com-

plexity of range search.

LEMMA 3.2 Consider a random k-d tree or squarish k-d tree constructed
from U,,...,U, independent uniformly distributed random variables over
[0, 1]%. Let R, be the rectangles in the partition defined by cither the random
k-d tree or the random squarish k-d tree based on Un,...,U,. Let X;; be

the length on the j*® coordinate of the i** rectangle. Then,

2n+1
E{Z P, il"'Xik} =2H,4, -1,

=1

where H,, is the n*® harmonic number.

PRroOF. First, note that for any 1 < ¢ < n, X;; --- Xk is the volume |R;|

of the rectangle R;. Note that if Uy,..., U; have already been inserted in

[0,1]%, and U4, is a new point, then the size of the two rectangles generated
by Uit is equal to the size of the rectangle in the final partition of [0, 1]* in

which U;4; falls. Let us denote by R(U;4;) this rectangle. Thus,

2n+1 n—1
E{ Z] il"’Xik} =1 +ZE{E{IR(U,-+1)I | Uy, -...Ui}},

=1 =0
where the 1 accounts for the root rectangle. We claim that E {|R(Ui+1)|} =

2
i+2°

Ui, ...,U; have already been inserted in the tree, so that there are i + 1 ex-

Note that the claim is obviously true for 7 = 0. Now, suppose that

ternal nodes. These external nodes represent the ¢+ 1 rectangles partitioning
[0,1]%. Let these rectangles be S, ..., Si+1. and let the numbering be so that
the leaves are taken from left to right. in order of appearance as leaves in the

k-d tree of Uiy,U;. Then.

t+1
E {lR(UH-l)[} =E {E {Z I[Ui+165z] |Sel I Ui, ..., Ur—}}

=1

41
=E{Z|Se|P{Ui+1€Sf | Uh""U"}}

e=1
i+1
_E {Z |se|2} .
e=1
It is well known that (|Sy[,...,|Si+1|) are jointly distributed as uniform spac-
ings, that is the lengths of the intervals on [0, 1] defined by an i.i.d. uniform
[0, 1] sample of size 7. All these spacings are identically distributed following

a beta(l,7) distribution. If B is a beta(l,?) random variable, then we have

E{B}=1/(i+1) and E {B2} = 2/((i + 1)(i + 2)). Therefore,

2
; = (2 2 = .
E{|RUin)I} = G+ VE{B’} = —
and thus,
n—1
14) E{|RUis1)I} = 1+2(Hp1 - 1).O
=0

We state now the theorem that shows the behavior of partial match

when using squarish 2-d trees.

THEOREM 3.3. For a random squarish 2-d tree,

\/71'—77, 2n+1
53— <E Z: Y: p < 180/n.

The same result holds for E {E’M'I X.;}. Hence, the expecied time for a

random partial match query is ©(y/n).

No attempt was made to optimize the constants. A few technical results

will be needed in the sequel.

LEMMA 3.3 Forp > 0.n > 1, and arbitrary dimension k,
(1)“’J“ Dip+1) _ gl Y IRr 4r(p + 1)
l1+p np—1 e, '

for all n.

ProoF. Let Vi,....V,;1 be the spacings induced by n independent uni-
formly distributed random variables on [0, 1]. It is known that the spacings

Vi ébeta(l, n). Thus. by lemma 3.1, with B(s, t) = S&LEE

NEED
n+1 n+1l _ n~1
E{ Z |R1-|P} =E {Z Vip} Z/ 1B(1U)n ————dv
i€F, =1
. B(p+1,n) L(n+ 2)
=(n+1) B(1,n) _F(p+1)l"(p+n+1) ’

Now, as I'(z + 1) = z['(z) for any z > 0, and for any natural number n and
any s € [0,1], n'~* < [(n+1)/T(n+s) < (n+1)!~¢ (see Mitrionovié¢, 1970),
then
[(n+1)
E Ri|P > =T(p+1)(n+1
{EZ; il } P+)) (v p— DTG TP = D
C(p + 1)(n + 1)2-P+lr]

<

- nLI‘J+1

_Tp+1) (n + 1)2+LPJ-"

np—1 n

< 4T'(p + 1).

—37—

Now, for the lower bound, note that
['(n+1)
JYi}ri P =T n
E{%;() } B+)) e T p — BT T 7~)
> Cp+1) nlpl+1
— nr7l (n+p)---(n+p—]p|)
LT+l (n)U’f“

- npl n+p
I‘(p+ 1) 1\ P+t
= qp-l 1+p ’

LEMMA 3.4 In a random squarish 2-d tree, for every q > 1.

I_Lq/,_,nl"l/z, for q € [1,2):;
E{Z Yiq} < { 8elogn. for 2 — lo:" <g<2
: 5C(q/2+1
€ ;%—1 : (4 - :/" r), forg>2

and for q € [1,2),

1 la/2]+1
Z Y? (pyCE 1) C(q/2 + 1)11.1_“/2.

1€EF.

The same result holds for E {3 ;e X7}.

PrOOF. Let r > 1, and define S — Zie}‘, Y;?. Note that, given Uy, ..., U,
57(-321 — 8% is distributed as Y7 when X > Y and as YIUT+(1-U)1-1)
when X <Y, where U is a uniform [0, 1] random variable, and (X,Y) are

the dimensions of the rectangle split when U, ,; is added. Thus,
E{Sf‘i)l - SSQ)} =
N { > XY (psvaYs + lx v Y (U7 + (1= 0)7 - 1))} '
i€F.
Notice that U? + (1 —U)? —1 < 0 for ¢ > 1, and as min{a,b} < Vab, for
a,b > 0, then by lemmas 3.1 and 3.3,

E{s5,-s@} <E { > XiY; (1[xf>YsIYiq)}

ieF,

<n{ 3 Grgrn} < ML),

ieF.

—-38—

By summing the differences we get,

E {srgq)} =E {"Z (542, - s) + qu)}

r=1

< Z L 40(q/2 + 2) o

&

T a2z
n—1 1
<2+4I(q/2 + (1 +/1 .'L“I/zdx)
5F(q/‘) . 9) + 41‘(%241-0)(1 nl=4/2) (¢ > 2)
{ Y (g€ l1.2)
5[‘(%94;9) 1—q/2) (g > 2).

Because {=>n'"92, as a function of g, reaches its minimum at go = 2(1 —
1/logn), and E {S,(f’)} is a decreasing function of ¢, we have that E {S,([’)} <
8clogn, for gqg < q < 2. The result for E{} ;cx X} can be obtained
similarly just by replacing the y-lengths for the x-lengths in the appropriate
places.

Now, for the lower bound, note that as the X;'s and the Y;'s are identi-

cally distributed:

1
E{z y} - §E{Z(Y{'+X§')}
tEF, i€F,
teF,
lg/2]+1 F(q/2 + 1)
> — T
- q/2 +1 na/2-1
by lemma 3.3, for ¢ € [1,2). a

PROOF OF THEOREM 3.3. Note that the lower bound follows directly from
lemma 3.4, as E {Zze}- Y} is less than E {ZZ"H K} For the upper bound
we use the same technique as in the proof of lemma 3.4. Let S, = ,ffl Y;.

Note that as the sum is over all the rectangles generated by Ui, ..., Uy, we

—39—

[

have now that for r > 1, as X; and Y; are identically distributed,

E{Sr+1 - S} =E { D XaY: (Ipsvig2Ys + Lx<va (ViU + Yi(1 - U)))}
i€EF.,.

=3E { > X,-Y,?}

ieF,

where UéUniform[O, 1], and independent of all Uy, ..., U.. Let qe€ (1,2)

and p > 1 such that % + ¢ =1, then by Hélder’s inequality used twice,

E{Z X"Y?} < E{Z(X,.yi)p}llpE{Z Yiq}l/q

< (4L@+1) 1/p 8 1 L/q
= 7p—1 1— q/2 ra/2=1

by lemmas 3.3 and 3.4. Take p = 3, ¢ = 3/2. and verify that the upper bound

is not more than 24!/3322/3/,/r < 30/\/r. By summing the differences we

finally obtain
2n+1

E{ > Yi} <
=1

For the lower bound, set ¢ = 1 in the lower bound of lemma 3.4. The result

+90) — < 24+902vn =T -1) < 180V,

T

SRR

r=1

for E { antl Xi} can be obtained similarly just by replacing the y-lengths

i=1

for the x-lengths in the appropriate places. O

3.4 The k-dimensional case.

In this section, we obtain the k£ dimensional generalization of the results
in the previous section by induction. Given Uy,..., U,, we define for each

R; € R,, X! = maxj=1,. r Xi; and j® as the index j € {1,...,n} for
which X;; = X;. Note that 77 is unique with probability 1. Our main
result generalizes theorem 3.3 and establishes the expected time optimality

of random squarish k-d trees.

—40—

THEOREM 3.4. Consider a random squarish k-d tree. For¢ € {1,...,k—1},
there exist C,C" > 0 such that

2n41
C'nl'{T <E Z HX,'J' < Cnl_é.,

i=1 jeI
for any I € {1,...,k} of cardinality £ and all n € IN. In particular, by

proposition 2.1 the expected time of a random partial match query with s

specified coordinates is ©(nl—/%).

We prove the following lemma that allows us to prove the lower bound

in the previous theorem.

LEMMA 3.5 Letfe{l,.... k}, then for every .,z > 0,

3

k
H z; < max H z;
el I: IC{1,...,k} \ 7

Jj=1 [I]=¢ jelI

~p

PROOF. Let I* be the subset of {1,...,k} of cardinality ¢ for which the

maximum above is reached. It suffices to observe that,

k ¢ k s+€—1 k—1 k
=) 11T =) <0 (=) - {T=] -
j=1 s=1 j=s s=0 \ jel* jEI*
where the subindice 7 must be understood as (7 mod k), if 7 > k. |

ProposITION 3.1 Let I C {l,...,k} of cardinality ¢ € {1,...,k} and
p €1, %), then there are positive constants C and C' such that

P

¢ —pl
C',’I'I.]'_pE <E Z H JYij < C'nl Pk ,
i€F, \J€El

for alln € IN.
Proor. For I C {1,...,k} with |I| = ¢, we define
P
o7 =2 | 1L %o
i€F, \Jj€I

"

~—

We first look at the upper bound. We define recursively the constants Cy.(¢, p)

for any integer k >0, £ € {1.,..., k} and real number p € [1, 'e—‘) as follows,

40(p + 1), if £ = k;

Cr(¢,p) = { (k — ¢) (1_1%) Ci(k.@)YC (€ +1,ppl/(L+ 1)YP + 2 ife <k,

where p.q > 1 depend on p.k and ¢, they are such that % +% = 1, and
1< pﬁe% < ﬁ-f For the sake of clarity we will choose g later.

For ¢ € {2,...,k}, we define the hypothesis #, stating that the upper
bound holds for all n € IN, all I C {1,....k} such that |I| = ¢, and all
p € [1,%), with constant Cy.(¢,p). We prove H, with an inductive argument.
First, note that H; holds by lemma 3.3. Assuming that H, is true, we prove
Hey. Let I C{1...., k} such that £ —1 = |I| > 1, and p € [1. 7£5). Then

for any integer r > 1 we have,

E{Sr{fl —S,{’pIUI,..,,U,.} = Z (ﬁ .Yi_-,‘) {l[j:-’;'ll (H "Yij)

icF,. \Jj=1 JE!

+1[j..‘€[] (H Xij) /(; (x" + (1 - :L')p — l)d:L‘} .

Jjerl

as we are using the longest edge cut method. Since fol(:cp+(1 —z)P-1)dz <0
for any p > 1, we can drop the second term above and take expected values

so that,

B{s/f-s"} <3 B { 2 (fl X*f) = (H X"") }

tgl ieF. \j=1 jer

Let us denote by E(t) the expected value of the ¢t*® term above. Observe

(ol -
that I[j,=t]X,-j < XiJTlXi}t. Thus we can bound each E(t) as follows,

k e
Et)<EQ Y X II X
i€EF,. \J=1 Jjeru{e}

—49—

Now, for any p.q > 1 such that % + % = 1, we have by applying Holder’s
inequality twice that,

1
-1 _ = =
=—pp P

Q-

k

Et)<E{ > | [%4 E; > | I Xxs
i€F, \g=1 i€F. \jelu(t}
We can apply hypothesis H; to bound the second term above, if we can

choose p > 1 such that pp%5t € [1,k/€). Note that W,i_u > 1,asp €

[1, 7;). Let us define p = max{,/k/p(!!— 1),(-1!#)?}, so that p > 1, yet
1 < pﬁe;—l < %. This completely defines the constant Cr(¢,p). We can
therefore use hypothesis #, and obtain,

M) Y (Ck(& ph(£ — 1)/e)) 1/p

rd=1 r pp-1

B@) < (

_ Celk.0)7Ck (4, pi(¢ ~ 1)/0)%

-1

TTEP

We can thus bound the differences as follows,

— Ak .g\/ac,. 5(8 — 1/p
E {Srl'—fl _ vap} < ZE(t) < (k—¢+ l)Ck(k: q) (‘—IIC'L(&pp(e 1)/e))
t@l rEP

n

Since p < 7£;, we have that Y"1_, > ,1_.[<

—t —»—. So, by summing
n nPT
the differences we get,

p(C—1)

E{SL?} <[Ci(€ - 1,p) - 20! P T +2 < Ce(—1,p)n~ =%

as E {S{'p} < 2, for every p > 1, and any nonempty I C {1,...,k}. Thus,
hypothesis H¢..; is proved.

We now prove the lower bound. As we flip a perfect coin at the beginning
of the process to choose the side of Rg that we cut, all the coordinates
Xi1,- .., X of arectangle R; are exchangeable. So, denoting by S the set of
all I’ C {1,..., k} of cardinality £, all the random variables Y. = [l;er X5
are equally distributed so that:

o{shal-Ae{s s}

i€F, jel I'eSieF, jel'

—43—

Then, by lemmas 3.3 and 3.2,

P) gt

S (T x Z%E ST zc";.

ieF, \jeI i€F. \J=1

We must note that by lemma 3.3, if £ = &, then for any p > 0, there are
positive constants C and C’, depending on p such that the previous result

holds. We are now ready to prove theorem 3.4.

PrROOF OF THEOREM 3.4. The lower bound follows immediately from the
previous proposition. For any subset I C {l....,k} of cardinality ¢ €

{1,....k - 1}, we define:
2n
=211 %
i=1 jeI
As we are using the longest edge cut method we have that,

E{Sr+1 S[lUlz--u.Un} = Z Hxij el]“HX‘J +1[J GI]HXif

i€EF, j=1 JE€I Jjel

13
<3 [Ixs]]Xs-

i€F, j=1 jer

We choose now p = \/k/¢ g =1/(1 - \/¢/k), so that % + % = 1, and apply

Holder inequality with these values to get,
x py 1/p qy /g
E{Sl.,-SIt<3eS D (I X4 Eq > (11X :
i€F, \i=1 ie€F, \jeI

Then by lemma 3.3 and proposition 3.2, there exists a positive constant C

depending upon ¢ and & such that

| Q

E {51 -5/} <

-
=i~

—44—

We add the differences to get

n

E {Sf} SC(Z;}{) +2< 15' (n%) +2.

r=1

3.5 Conclusions

Note that off-line one may construct a median k-d tree by splitting each
time about the median, thus obtaining a perfectly balanced binary tree, in
which search takes ©@(logn) worst-case time, and a partial match query takes
worst-case time Q(n!~/% + N), where N is the number of points returned
(see for example, Lee and Wong, 1977). Therefore we see thaﬁ k-d trees are
not optimal even in an average sense for solving range search. The elongated
rectangles in the partition generated using k-d trees explain its poor perfor-
mance. For squarish k-d trees, however, we have shown that they behave
optimally in an expected sense. For instance, for 2-d trees we have that the
expected time complexity of partial match, when specifying one attribute,
is © (n@) = @ (n0-361552--) whereas for 2-d squarish trees it is ©(y/n).

Relaxed k-d trees have even worse expected complexity time, as for example

. . . . V5
in dimension 2 they have expected complexity © (n s) = © (n0:018034...),

though they have the advantage of supporting deletions easily.

—45—

—46—

Chapter 4
Orthogonal Range Search

In this chapter, we obtain tight upper bounds for the expected time
complexity for Bentley’s orthogonal range search algorithm. We present the-
orems showing that random squarish k-d trees are superior to random k-d
trees for any kind of random orthogonal range search where the dimensions
of the query region are allowed to depend upon n, the number of data points,
in an arbitrary manner. We also generalize these results for arbitrary convex
range search problems in dimension 2. The novelty here is that the dimen-
sions of the search regions are allowed to depend upon =» in an arbitrary

manner.

4.1 Orthogonal range search and k-d trees

Let us first state the theorem about the behavior of range search when using

k-d trees.

THEOREM 4.1. Given is a random k-d tree based on i.i.d. random variables
Uy, ..., U,, distributed uniformly on [0,1]%. Let Q be a random query rect-
angle of dimensions A, X --- X A (which are deterministic functions of n
taking values in [0,1]), with center at Z which is uniformly distributed on
[0,1]*, and independent of Uy, ...,U,. Let N, be the number of comparisons
that Bentley’s orthogonal range search algorithm performs. Then, there exist

constants vy',v > 0 depending upon k only such that
E {N.}

(l"g n+3sc(l, .. k) (ngs Aj) na(Sl/ "’)
IS

<k

7' <

<7

To prove the previous theorem we will need the following result.

—47—

®

PROPOSITION 4.1 Given is a random k-d tree based on i.i.d. random vari-
ables Uy, ..., U,, distributed uniformly on [0,1]*. Let X;; be the length of
the j* side of rectangle R; € R,,. Then, there is a constant C > 0, depending

on k only, such that

PROOF. For £ > 1, let X{9) be the product of | £/k| independent Uniform[0, 1]

random variables. Then.

2n+1 2n+1 k&
B3 ezl SB 2 Dean

.....

i=1 i=1 j=1
oo
< 2 2KE {1y
S 2} x@\"'1.
S; fE{(\)}2"

p(p+1)z((+1) %)e’

for any p > 0. The last expression is finite, for example, if we take p = 2%,
as k > 2. O
PROOF OF THEOREM 4.1. Note that given Uy,...,U,, the probability that
Q intersects R; is the probability that Z has some coordinate Z; that is

within distance A;/2 of R;, and this probability is clearly bounded by the
volume of R; expanded by A; in the j-th direction, for all j. Thus,

2n+l k
E{N:.} <E { > T +Aj)}

i=1 j=1

jes i=1l jES
<c 3 [1a; | a=0S/ + 2l —1
SC{1,....k}:|SI<k \J¢S

—48—

for some constant C > 0 and for all n large enough, by theorem 3.1 and

lemma 3.2. For the lower bound notice that

2n+1
E{Nn.} > E{ Z 1[QnR.~;é0]1[Vje{1,....k}:x.,<1/?.]}

=1
2n+1 k
>Eq > [1 (Xii T)1[VJe{x k}:Xi,<1/2]
i=1 j=1
2n+1 k
A
=50 LI (% +F)
=1 j=1
2n+1 k
- B H (JYij + —2-—) 1[3]6{1 k}:Xi,>1/2]
=1 j=1
A, 2n+1
=) B > ITxq
SC{l.....k} 7¢S i=1 jE€S§
2n+1
- Z T Z H«\ul[agen k}:X.;>1/2)
SC{1,...k} jgs = i=1 j€S
We can bound the second term above for any given S C {1,....k} as follows:
2n+1 2n41
E Z HXijl[ajé{le--"k}:xff>1/2] < E{Z 1[““”‘;’6(1 :.-}-\':‘J'Z%]}
i=1 jE€S i=1

<,
by the previous proposition. The result follows again by theorem 3.1 and

lemma 3.2. O

We must note that the arguments to prove the lower bound indeed apply
to any range search algorithm for solving the range search problem using k-d
trees.
TWwO-DIMENSIONAL SPECIAL CASE. For k = 2, as a(1/2) = ‘/_7‘ = 0.5616,

we see that the expected complexity bound is
Vit—
O (logn + nTs(Al + As) + 'nA]_Ag) .

The first term accounts for complexity due to search in a tree of height logn.

The last term is a volume term, approximately equal to the number of points

—49—

0.5616°4
0.4384

|12

(=]

- 1] | | | LI I T
0 0.2 o. 0.6 08 10 12 14

04384 0.5616

FIGURE 4.1. The complexity regions: in I, the output size
dominates. In II, the 1-d complexity term is largest, and

ITI is like point search.

returned by the query. Both are unavoidable. The middle term is due to
complexity related to the perimeter of the query rectangle as a long perimeter
cuts many rectangles in the partition. In case A} = 1/n® and A, = 1/n®
with a,b > 0, figure 4.1 below shows the regions of the (e, b) plane in which
each of the terms dominates. The perimeter term dominates in the white
region, the volume term dominates in the dark region, and the search term
(logn) dominates in the light region. Point search corresponds to a = b = oo,
and a partial match query corresponds to a = 0,5 = oo or vice versa, which
falls plainly in the white region. Put differently, we have
O(logn) if min(a,b) > a(1/2) = YI=3
E{N,} = { O(nl-e-b) if max(a, b) < 1 — a(1/2) = 3=Y27

Vi 2 -
O(n*"F2-min(ab)) otherwise.

4.2 Orthogonal range search and squarish k-d trees

In this section, we obtain tight upper bounds for the expected complexity

for Bentley’s range search algorithm when using as underlying data structure

—50—

squarish k-d trees. Theorem 4.2 below then states that random squarish k-d
trees are superior to random k-d trees for any kind of random orthogonal

range search.

THEOREM 4.2. Let Q be a random query rectangle of dimensions A; x
-+ x Ay (which are deterministic functions of n taking values in [0, 1]), with
center at Z which is uniformly distributed on [0, 1]*, and independent of the
k-d tree. Let N, be the number of comparisons that Bentley’s orthogonal
range search algorithm performs. Then, there exist constants v > v > 0

depending upon k only such that
E {Nn}

151
(logn + 2 scr..xy Ljes Ajnt=F)

0<[S]<k

v < <7v.

We can rewrite the previous result as follows,

K k-1
E{N.} <~ nHAj-Fan‘% Z HAj-i—logn

i=1 £=1 SC{1,....k} ¢S
|S|=¢

and therefore by allowing any r of the A;’s to be zero, the term that domi-

nates the previous bound is,

nl_i Z HA]

S;|Sf=rjgs

For example, when k& = 2, A = ©(1/n®), and A’ = ©(1/n’), then
E{N.} <~ (nl_a—b +niTt 4ty Iogn) :

By looking at the different regions in the a-b plane we obtain,

O(logn), fora > 1/2 and b > 1/2;
E {N.} < { O(max{nl/?2~2n'/2-b}) fora>1/2,b<1/2,0ora<1/2,b>1/2;
O(nl—e-b), fora <1/2,b<1/2.

—51—

a=0,/n
Par{:ial Match Query
4

b

logn
Point Search

b=0, vn
Partial Match Query

FIGURE 4.2. The complexity regions for A = ©(1/n%)
and A’ = ©(1/n?).
Note that ifa =0and b > 1/2, or b = 0 and a > 1/2, we recover the expected

complexity time of the random partial match query problem.

PROPOSITION 4.2 Let Uy,...,U, be independent and uniformly distributed
over [0, 1] random variables, let X! be the longest side of the i*" rectangle

generated by U,,...,U,. Then, for alln > 0,

E { Z 1[X;>g]} < gtk=3,

ProoF. Note that E {ziefn 1[x.->%]} <2*E {Eieﬂ [Ler Xi,»}, where
I; = {j : Xij > %}. Define S, = >, (l_[j:_,{‘_p% 8X,-J-). We are going to
prove that E {S,} is decreasing so that for n > 1,

E{ Z 1[X;>§]} <263 {S,} < 23 E {So} = 243,
tEF,

—52—

To show E {S.} < E {So}. we look at the differences once again. Set P, =
HjEI.' SXij. Then,

P;

t€Fn

P:
+ 1[(1—.\().-\’;>§] (Pi(l - X)+ > SXt.-)

P;
+1[xx;$%; (1-X)X; <%] (21[”‘|>1] 8X;) } ’

where X £ Uniform[0, 1], and it is independent of Uy, ..., U,. Therefore,

i
1
E{Sr+1 — S-|U1,--.. U}<Z|&|1Y>I]P -1+f (= + 7)dx

iEF- 2.{‘:

R .
+/ ((1—:c)+1/4)dx+/ Y 1/2dz
Jo -

1 1
=ZIR,-|1X_.%P,-(, el ‘.)
16?, ['>-] 4‘¥i (2"Yi)2
<0.

a

PROOF OF THEOREM 4.2. The proof follows exactly the same arguments as
the proof of theorem 4.1, except that so as to prove the lower bound we use

proposition 4.2 instead of proposition 4.1. a

4.3 Searching with convex sets

To perform a range search with a convex set C, we may also recursively de-
scend the k-d tree, and visit all subtrees whose root rectangle has a nonempty
intersection with C. In this section, to fix the ideas, we consider & = 2 only,
although the generalizations to higher dimensions are straightforward. For a
fixed convex set C. we let £ denote the minimal ellipse containing C. Let
the center of £¢ be the origin. Let £c have principal axes u© and v, with «

perpendicular to v. Let R¢ be the smallest rectangle aligned with the axes

FIGURE 4.3. Construction used for convex sets.

(u, v) pair that contains £¢ (and thus touches the ellipse in just four points).
Let the dimensions of the rectangle R¢ (and thus of £¢) in the v and v direc-
tions be A > 0 and A’ > 0 respectively. These dimensions are deterministic
but may depend on n. A random range search is defined as a range search
with convex set Z+ C. the translation by Z (a uniformly distributed random
variable on [0, 1]¥) of C.

First we generalize theorems 4.1 and 4.2 to rotated rectangles. Let Q
be a rectangle of size A x A’ parallel to [0,1]? and centered at the origin.
For ¢ € [0,27), we define Q4 as the rectangle resulting from rotating Q by

¢ about the origin.

THEOREM 4.3. Let Uy,...,U, be independent and uniform random vari-
ables over |0, 1]2, used to construct either a 2-d tree or a squarish 2-d tree,
and let R, be the corresponding partition into rectangles. Let Z be uni-
formly distributed over [0, 1], independent of the U;’s, and let N, be the
number of rectangles in R,, that intersect Z + Q4 (and thus the complexity
of range search with this set). If Q) has dimensions A x A’, then there is a

universal constant v > 0 (not depending upon n, A, A’ or ¢), such that
E{N,} < v(rAA"+ (A + A")n® +logn),

where o = @, if we used 2-d trees and a = 1/2 if we use squarish 2-d

trees.

—54—

\ifi

FiGURE 4.4. Areas in theorem 4.3.

ProoF. If a rectangle R; in R, has dimensions X; x Y;, then Z + Q,
intersects it if and only if Z falls in the octagon outlined in figure 4.4, where
the tilted rectangles are various positions of the tilted query rectangle. It
is easy to see that this octagon in turn is contained in the rectangle R;
extended on top and bottom by !, (again. sce figure 4.4) and on left and
right by [.. Using the same reasoning as in theorems 4.1 and 4.2, we note
that given Uy, ..., U,, the probability that Z + Q4 intersects R;, is bounded
by X;Y; +2 max(lz, L) (Xi + Yi) + 2AA". Clearly, max(lz, L) < (A+A")/V2.
Thus, |

2n+1 2n+-1
E{N,} <E { Z (X,-Y;—)} +V2(A+A)E { Z (X: + Y;)} + (dn +2)AA’
i=1 i=1

< 2Hpi1 — 1 +eV2(A + A)n® + (4n + 2)AA’

for some constant ¢ > 0 by lemma 3.2 and theorem 4.1 and 4.2, depending
on whether we use 2-d trees or squarish 2-d trees.. Note in particular that

the constant ¢ does not depend upon ¢. O

To prepare for the main result of this section, we use a fact from classical

—55—

geometry. stated here in its high-dimensional form. We use the following

result by John (1948).

LEMMA 4.1 Let S be any bounded set in R* not contained in any linear
subspace of it. Let £s be the smallest ellipsoid containing S (called John's
ellipsoid) and £ be the concentric and homothetic ellipsoid at the ratio of

+. Then £ C CH(S) C &g, where CH(S) denotes the convex hull of S.

In particular, John's result implies that |Es| < kF|€5| < k*|cH(S)|. Let
E be an ellipsoid with principal axes of lengths a,..., ay, and let B be the

unit ball of IR*. Then
] = (L1-~-alel _ayp---ag (ﬁ)k

N CORE

4 4

Let S be a set as in the previous lemma. and let £s be John's ellipsoid.
Assume that £s has principal axes of lengths a,,...,a;. Let Rg be the

smallest rectangle whose axes are aligned with those of £ that contains g

(so that its volume is a; x --- x at). Then

IRs| < (%)kr (5‘;—2) cH(S)]

The main result of this section clearly shows why we call the n® term the
perimeter complexity. In higher dimensions, the complexity of range search

involves the volumes of all the lower-dimensional *facets™ of C.

THEOREM 4.4. Let Uy,...,U, be independent and uniform random vari-
ables over [0, 1]2, used to construct either a 2-d tree or a squarish 2-d tree,
and let R, be the partition into rectangles. Let Z be uniformly distributed
over [0, 1]2, independent of the U;’s, and let N, be the number of rectangles
in R, that intersect Z+C, where C is a convex set. Then there is a universal
constant v > 0 (not depending upon n, A, A’ or C), such that

E {N.} < v (n area(C) + n® perimeter(C) + logn),
wlere a = _\/_I_Z_—_s if we used 2-d trees and o = 1/2 if we used squarish 2-d

trees.

—56—

-] — l I 1L ;
} _l T 1 | r
- - B B -
— = TR] il |
| =1l Hf 1
T HE]
— _:% | T
o L e] _ll | e
EE el e g e 1
T 11 | g !SI ——%_ 1
i T »| H—l—_ |r—L T ””;

FIGURE 4.5. 2-d and squarish 2-d partitions. The same

sets of points are used in both figures. The figures clearly

show the elongated nature of rectangles in 2-d trees. The

squarish partition looks indeed more “squarish”.
PROOF. Let Rc be the rectangle associated to John’s ellipsoid £¢ for C, as
defined above. Suppose that it is of size A x A’. Note that the number of
comparisons that range search performs with Z + C is not more than that

for Z + Rc. Therefore, for some v’ > 0,
E{N.} <v¥ (nAA"+ (A + A")n* +logn).

As we noted earlier, AA’ < 2 Area(C). By the convexity of C, and using

—57—

Also,

Perimeter(Rc) = 2(A + A’) < 2v2y/(A)2 + (A”)2 < V8 Perimeter(C) -
Thus we obtain the inequality

E{N.} <+ ((4/1r)nArea(C’) + /8 Perimeter(C)n® + log n) i

4.4 Conclusions

The reason why range search queries, and in particular partial match queries,
have better expected time complexity when using squarish k-d trees than
when using k-d trees is because of the more “squarish” nature of the partition
on the average that the modified data structure produce. Because k-d trees
produce on the average many long skinny rectangles, the probability of a

range query region to hit a rectangle in the partition is larger (see figure 4.5).

Chapter 5
Nearest Neighbor Search

In this chapter we propose two algorithms for finding the nearest neigh-
bor among n points. We analyze both algorithms when having as underlying

data structure k-d trees and squarish k-d trees.

5.1 Nearest neighbor problem

The nearest neighbor problem is a fundamental problem in areas such as
computational geometry and pattern recognition. It has been extensively
studied and several techniques have been proposed to solve it, such as branch-
and-bound techniques (Fukunaga and Narendra 1975), randomization (Ra-
bin 1976, Yuval 1976). divide-and-conquer (Bentley 1975) and bucketing
(Bentley, Weide and Yao 1980). If the data set is of size n, in a worst
case scenario in dimension 2 for example, the nearest neighbor problem can
be solved optimally by using the Voronoi diagram of the data set in O(logn)
time with O(nlogn) preprocessing time. Here we locate the Voronoi region
where the query point is contained, by using binary search on each of the
axes. The ancestry of this method can be found in Dobkin and Lipton (1976)
(see also Shamos and Hoey, 1975). By the use of hashing techniques, in a
probabilistic setting, Bentley, Weide and Yao (1980), showed that the nearest
neighbor problem can be solved in O(1) expected time for some distribution
of the data. They partition the unit square in an array of size \/n/C by
v1/C and search the buckets around the bucket to which the query point

belongs in a spiral fashion.

—59—

-or—
0 o | >
7 0 2 e @__
® _
e
——©@ | ® | —0
— e
® @
© - B ©) py

FIGURE 5.1. Illustration of algorithm A. The same points
are shown in both figures, but to the left a 2-d tree par-
tition and to the right a squarish 2-d tree partition are

shown.

We use k-d trees and squarish k-d trees to solve the nearest neighbor
problem. We propose two algorithms that use the range search algorithm in

the previous chapter, and analyze their expected time complexity.

5.2 Algorithms

To adequately present the results in this section, let us define the following

quantity. Given 2 > 2, we define

pi = gmax (als/k) = 1+s/k).
where a(:) is the Flajolet-Puech function defined in chapter 3. We propose
two algorithms for solving the nearest neighbor problem. These are as follows:

e In algorithm A, we start with an orthogonal range search with a square
box of size 1/ nl/* centered at the query point Z. Repeat with boxes Q;
of sizes k*/2/n'/* for t = 1,2,3,... until t* + 1, where ¢* is the index of
the first nonempty box. Report the nearest point in the £* + 1-st box
(see figure 5.1).

—60—

e In algorithm B, we insert X in the k-d tree. and let @ be the rectangle
associated with X. Let X’ be the parent of X in the tree (note: X' €
Q). Perform an orthogonal range search centered at X with dimensions
2{|X’ — X|| in all directions. Report the nearest neighbor among all
points returned by this orthogonal range search.
The performance of the two previous algorithms differs depending on which
brand of k-d tree is being used. When using algorithm A on squarish k-
d trees, we prove that the expected complexity time of algorithm A is
O(lognloglogn). If we use algorithm B with squarish k-d trees in dimension

2, we prove that the expected complexity time is O(log? n).

5.3 Algorithm A when using k-d trees

Consider a random k-d tree constructed from the insertion of Uy, ..., U,.
independent uniform random variables over [0, 1]*. Let X be a query point
uniformly distributed in the unit square. We consider algorithm A. The pur-
pose of this section is to prove that the expected complexity of this algorithm
is ©(n”*), where

P = ocsnf.sxk G(s/k).-

The constant p; € (0.061,0.064) depends upon & only, and is (V17 —4)/2 =
0.0615536 for k£ = 2. is minimal for £ = 3 (pr = 0.0615254), and oscillates
from that point on. For example, nearest neighbor search in dimensions 2, 4
and 6 have the same expected complexity (as a function of n—the constants
may be different), and nearest neighbor search in 3-d is slightly easier than
in any other dimension as its pi-value is smallest. The maximal value for p;
never exceeds 0.064 (see figure 5.2).

We set first the notation we will use. Let ¢t > 1, we set for all 1 < 7 <k,
A = k¥2/n/* Let Q, be the hypercube with sides all equal to k*/2/n!/¥,
centered at X, a random vector uniformly distributed in [0, 1]¥, on which an

orthogonal range search is performed. Let N; be the number of data points

0.0638

0.0636

0.0634

0.0632 R Fk b
T NANVTTT Y T

0.0628

0.0626

0.0624

0.0622

——
""‘—...__
\‘\,\

0.062

0.0618 l

0.0616

0.0614

0.0612

0.061

™~

3 + 5 6 7 8 9 10 I 12 13 4 15 16 17 18 19 20

FIGURE 5.2. The function pi versus k, the dimension.
The expected complexity of a natural nearest neighbor al-

gorithm grows as nfx.

among U;,...,U, falling in Q;. Let T, be the complexity of Bentley’s or-

thogonal range search algorithm on @, so that

2n+1
T, = Z LRinQ.#0]

=1

where R; is the rectangle in the partition determined by U;,...,U;—; in

which U; falls. The time taken by algorithm A is

T=T1+T>+ an[Ng_2=0] .
t>3

We note that by assumption all points fall in the unit hypercube, and there-

fore, the largest index in the last sum cannot exceed t* = [2logn/(klogk)].

—62—

FacT. Let pr = max{f0(1/k).0(2/k)....,6((k — 1)/k)}. Then there exists

a constant C not depending upon t or n such that

E{T.} <C (k"F"n + %) .

Also,

(k—=1)¢

P{RNQ #0} < T (K0P 4 k¥),

for1 <i<n.

PROOF. Using theorem 4.1, with the A;’s as previously defined, we obtain
E{T:} <
C (A kT8R4

(k—")t

nf/k) 4 .. +k%n9((’°—1)/’°>+1ogn))

The first inequality in the theorem follows immediately from this and the
definition of py, and the fact that logn = o(nP*). The second inequality uses

the fact that P {R; N Q. # 0} is decreasing in ¢, and thus,
tP{R.NQ:Z0}<P{RINQ:#0}+---+P{R:NQ, #0} <E{T:},

if the sample size used for orthogonal range search is i. The first inequality,

with n replaced by ¢ concludes the proof. a

LEMMA 5.1 Let the following constants be given: A > 0, v > 0, 6 > 0,
B>1,1> p>0, subject to the conditions Alog3 <1, log8 < §. Then

[Alogn] n

S B Pl T = o)
t=1

i=1
If the conditions are altered so that p =0 and § = log 3, then

[Alogn] n

Z ﬁ‘z e~ Y1=i/me = O(logn) .

i=1

PrOOF. We may assume without loss of generality that Alogn is integer-

valued. Consider first the sum

o

> g

t=1

—63—

where 1 will later be replaced by v(1 —i/n). By comparison with an integral,

we see that this is not more than
N §x
Jé] / BFe™ " dr .
0

Set z = ne®?, and verify that the latter expression is smaller than

B [log B/5—1 —z BT (log B/6)
B[emysero=re=saz < Z0BL0,

for i < n. With this inequality in hand, we note that for the n*® term in our

surn we have
Alogn lnAlogﬁ nP

p—
2 ﬁtnp-1<n T <
=T 1-3 1=

t=1

Ry [

Furthermore.

Alogn

th 1 Z ,Bt —y(1—i/n)e’* < z -p—~1 ﬁr(logﬁ/d)

S((L—i/n))eBls

t=1l
and thus, it suffices to show that 377 #*~'(1 — i/n)~" = O(n”), where

b € [0,1). By comparison with an integral, we have

n—1

n—1
S 1= ifm) = = nP = 3 (i) 1~ i)

i=1 i=1
1
< n"/ P11 —z) Pdz
0
< B(p, 1 -b)nf,
where B(-,-) is the beta integral. This concludes the first part of lemma 5.1.

For the second part, note as before that the contributions in the double sum

corresponding to i = n and ¢ = n — 1 are O(1). For the remainder, we have

Alognn—2
Z Z i~lgte —y(1—i/n)e’t
=1
oo Alogn ,pn—2 ,3
< Zﬂte"ﬂlhl/n)e"' / e~ 7(1— (z+1)/n)e’" dr
Jé] 1

<0O01)+ — d
<o) 6'7 :z:(l—(x—i—l)/n)
= O(logn) .

—64—

This concludes the proof of the second part of lemma 5.1. a

THEOREM 5.1. IfT is the time for a nearest neighbor search for algorithm

A when using as underlying data structure k-d trees, then E {T'} = ©(n**).

ProOOF. For the lower bound, we note that T > T3, and conclude by the
lower bound of theorem 4.1 applied to ; and the definition of pi. For the
upper bound, we begin with

T=T,+T> +ZTt1[N=-2=°] .

t>3
Taking expected values, theorem 4.1 _implies that E {T1 + T>} = O(n**).
We fix ¢ > 3 and bound E {T:1{n,_,=0]}- The two factors in the expected
value are dependent. However, if N;_, ; denotes the number of points among
Uigis-...Up that fall in Q¢_-, then we note that given X. N;_5; and [R; N

Q: # 0] are independent. Now note that

P {Nt_zﬂ' = OIJY} < sup P {Nt—2,i = OlX' = :L'}
z€(0,1]*

<(-(3))"

Thus, as N;_s > N,_» ;. we have by the previous fact

2n+1
E {T:i(n,_.=0)} = E { Z 1[R¢nQ¢¢0]1[N,_3=0]}

1
n
2E {Z 1[RmQ:¢0]1[N,_2.‘-=o]}

=1

IA

2E {zn:P {Ri NQ: # (DIX}P {Ng_zyi = OIX}}

i=1

<23 exp (—(”“")’“_;'") E (P {R:N Q. # 0]X}}

¢ 2kn
i=1
n (n — i)k

D R P {R:N Q. # 0}

=1

n . k{t—2)

(L—i/n)k~ = \ 2C 7, e 0 ke

§2exp(— ok —Z_(k 2 +k~) .

Thus,

£ (=1t 1-1/)kk“—fg‘,‘
E{T} <O(*)+ Y 20k = Zexp(— YRR C)im-t

2k
t=3 i=1

LT n . k{e—=2)
ke 1 1- k—=
+22C'k?zgexp(—(z/:,z)
t=3 =

=1

=O0m*) +I+1I.

Lemma 5.1 applies to I if we formally take there 8 = k*—1)/2 ~ = 1/(2k)¥,
A =2/(klogk), and § = (klogk)/2. The conditions of the the first part of
lemma 5.1, Alog 8 < 1 and log B8 < 4, hold, so that I = O(n?*). The last part
of lemma 5.1 applies to II if we set 8 = k*/2, v = 1/(2k)*, A = 2/(klogk),
and § = (klogk)/2 = logB. Therefore, II = O(logn). This concludes the
proof. a

5.4 Algorithm A when using squarish k-d trees

We analyze first algorithm A when using squarish k-d trees. By theo-
rem 4.2, each orthogonal range search taken individually (for fixed) takes
expected time O(logn). We show in fact that the total expected time is
O(logn loglogn).

THEOREM 5.2. Let X be a point uniformly distributed on [0, 1]*. Consider
a squarish k-d tree based on n i.i.d. points on [0,1]*. Then the expected time

of algorithm A is O(lognloglogn).

PROOF. Let 7 be the total time it takes algorithm A to finish. Let 7; be the
running time of Bentley’s range search algorithm on = i.i.d. points on [0, 1]*
and a cube Q; centered at X of length kt/2/n!/* and let N, be the number
of points in Q;. Note that

E {T} < O(logn) +E {7-1 + T2 + 27;1[1\/:—2=0]} ,

t=3

where m = |2 log,(2¥n)] bounds the maximum number of iterations the

—66—

algorithms can perform. Thus, it is enough to prove that

E {Z 721[N¢_g=0]} = O(logn loglogn).
t=3

Let = [2 log,.(2* logn)], then

E {Z Tt]-[N,_;»=0]} S(h+1)E{Ths1} +2n z P {N;.2 =0}.

t=3 t=h+2
Now, by theorem 3.2.
(h+ 1) E{Ths1}

£=1 IC{1,....k}j&l

2 X Btk L = 1otk k(h+1)/-
<~ Elogk(2 logn) +2 k '-i-Zn Z H +logn
| [|=£

9 i b 1\k /2 k-1 [k kGBrD)(k=0)/2
=v (,‘—_ log(2 logn) +2 k¢ +1)A./-+an—ilk (f) —W—-l-logn
=1

k-1
(k(h_*-l)k/o L(h+1)k/2 Z (A)k—(h+1)l/o + [ogn)

L (h+1)k/2 (k (h+1)/2 4 1) + Iogn)

k
. 1
2 kok
_<_7<klogk(2 logn) +2 (k 2 IOgn(\/E(L)klogn)l/’“ +1) -i-logn)

= O(lognloglogn).
for all n > e. Finally, for ¢ < m,

Lh(e=2)/2) " < e_kk(t-’.‘)/Z/zk
2kn - ’

P{N,_» =0} < (1-

and therefore P {Np4+2 =0} < 1/n. Thus,

2n) P{N;_» =0} < 2m = O(logn).
t=h+2

a

Theorem 5.2 is in contrast with the situation presented in the previous
section, where for standard random k-d trees, algorithm A is shown to take

expected time ©(nP*), where pi € (0.061,0.064) depends upon & only.

—67—-

5.5 Algorithm B when using squarish k-d trees

We analyze now algorithm B in dimension 2 only when using squarish 2-d
trees as underlying data structure. This algorithm uses the following fact

easily proven by induction.

Fact. Consider the rectangles generated by the insertion of z,,...,T, €
[0,1])3, in the unit square. Then, for every rectangle R in the final partition

there is x; lying on the border of R.

THEOREM 5.3. Let X be a point uniformly distributed on [0, 1)2. Consider
a squarish 2-d tree based on n i.i.d. points on [0, 1]2. Then the expected time

of algorithm B is O(log” n).
We prove a couple of lemmas from which theorem 5.3 follow.

LEMMA 5.2 Let Z,U,....,U, be independent and uniformly distributed
random variables on [0,1]2. Let X,(Z) and Y,(Z) be the x-length and y-
length of the rectangle in the final partition (of the squarish 2-d tree) induced
by Uy, ...,U, in which Z falls. Then, both nE{X2(Z)} and nE {Y;2(2)}
are O(log? n).

ProOF. By lemmas 3.3 and 3.4, for any p.¢ > 1 such that 1—1, + % =1, we

have that
E{X2(2)} =E { D> X?r:-}
icF,
i/p 1/q
SE{Z(XiYi)p} E{ 5 qu}
i€F, i€Fn

(M) (R (-)

_ 41/75Y9(D(p + 1))/" (D(g + 1)/ (gna! — 1)/
- (g —1)1a n "

Let us choose ¢ =1+ =, p=logn + 1, and assume n > e. AsT(p+1) <
V2m (2)P e1/12P (see for example, Abramowitz and Stegun, 1970), there is

—68—

¢ > 0, such that (['(p+1))Y? < ¢p = c(logn+1), and there is ¢ > 0, such that
(T'(g + 1))/2 < ¢q < 4c’. Furthermore, (g — 1)~ = (log n) R T < logn,
and (gn?~!—1)!/9 < 2¢—1. Therefore n E { X2(Z)} = O(log® n). The result

for nE {Y;2(2)} follows in the same manner. a
To prove the next lemma we need the following result.

LEMMA 5.3 (DEVROYE, 1986). Let H, be the height of a random binary

search tree of size n, then for any integer k > max{1,logn} we have

P{H,>k} <~ (261;’3?”)

LEMMA 5.4 Let Z.U;,..., ,Un be independent and uniformly distributed
random variables over [0, 1]>. Let X,(Z) and Y,,(Z) be the x-length and y-
length of the rectangle in the final partition induced by Uy, . .., U, in which Z
falls. Then E{X (2) £, X}, E{va(2) T2, Vi) E{Xu(2) T2, v,
and E {Y (2)T" X, } are O(log® n).

PrRooF. Let F, denote the collection of final rectangles in the squarish 2-
d tree T constructed from Uj,...,U,. For a final rectangle R;, denote by
D(R;) its depth. Then 3:%, X; < ¥,z D(R;)X; + 1. Thus if H, is the
height of T,

E{iXan(Z)} <E { > DR)X: Y X,?Y,-} +1
=1

i€Fa JEFn

SE{Hn Yox:i > X2Y}
icFn JEF.
<tlownE{ZX Z YJ}

t€EF,]e}-n

+E {1[H..2zlogn]Hn Z X Z X?Yj} +1,

i€Fn JEFn

~69—

for any t > 1. Using lemma 5.3, we see that,

E {I[HnZtlogn]Hn Z X Z X]?Y}} <n3P{H, > tlogn}

i€EF, JEF,

S n2ntlog(2—:—)-

We choose ¢ such that ¢log (2) < —2 so that

E {1[;,,,2“08,1,;1,, Y X: > x;Yj} = 0(1).

i€EFa JEFn

We complete the proof by showing that
Z Xi Z X O(logn).
icF, JEF,

For this, let S =3, » Xi Y cr. X?Yj, forr=1,....,n— 1. Note that

S’r+1—S,. = Z meYm I:I(_r,,‘(Ym]Xm Z < 321,_]

meF, je-"-r

+ 1, s ¥ (X Xm) Yo + (1 = X) Xm) Yo — X2Vm) D Xi
teF,

where X éUniform[O, 1], and is independent of all U;....,U,. Now, as

(XXm)?Ym + (1 = X) Xn)?Yim — X2 Y, <0, we have that

Ser1—S5- < D _(X:Y)*?) X7Y;.
i€EF. JEF.

Note that for any p,q > 1, such that % + % =1,

py l/p 7y /a
E {Sr-i-l - Sr} S E { (Z (Xi},i)slz) } E { (Z XJZY'J) } ’
ieF, JEF.

and again by Hélder’s inequality, and lemma 3.3, by choosing ¢ = V1.4, and
V14

P= Jra-1
py l/p 1/p 12
o{(Zowo)) ss{m gonorr) < 7
i€F, i€EF, T

By applying Hélder’s inequality inside the expected value,

qy l/q 1/q
E¢| D XY SE(T7 Y (X7Y))"
JEF. JEF.

i/p 1/q
<rl/p E{Z(ijj)qp} E{Z X}’z}

1/q

JEF- JEF.
, L \r 1 1/q\ /4
1/p
< 467 (rqp—l) (rq'l/‘l—l)
. 46
= 7

Thus, E {Sr+1 — Sr} < 552/r, and by summing the differences we finally
can conclude that E {Zie}'.. Xidier. XJ?'Y}} is indeed O(logn). The other

expected values can be bounded in the same way. a

PROOF OF THEOREM 5.3. Given Uy,...,U,, we define L,(Z) = 2(X,,(Z) +
Y,(Z)). Note that as the expected height of T is O(logn), the expected time
complexity of the nearest neighbor algorithm is bounded by O(logn) plus
the expected time of random orthogonal range search with query rectangle
Q@ having all sides of length L,(Z), and centered at Z. Let N, be the time
complexity of range search. By the same arguments followed in theorem 4.3

we have,

i=1 i=1

2n+1 2n+1
E{N,}<E { > X,-Y,-} 1+2E { > La(Z)(X: + Yi)}+8nE {L2(2)}+1.
By lemma 3.4, E {zf;jl x,-}q-} — O(logn). ForE {zf;;“ Lo(Z)(X: + Y)}
lemma 5.4 above shows that it is O(log®n). As we have that
nE{Xn(2)Y.(Z)} =nE { > (X,Y;f} :
i€Fn
lemma 3.3 shows that it is O(1). Finally, by lemma 5.2 we have that

. nE{L2(Z2)} = O(log®n). Thus the expected running time of algorithm
B is O(log® n). a

—T71—

5.6 Lower bound for nearest neighbor queries

Friedman, Bentley and Finkel (1975) defined an optimized k-d tree on which
associative queries take optimal expected time. They defined optimized k-d
trees, so that at every node the coordinate with the largest spread in val-
ues is chosen as the discriminator and the median of the discriminator key
values partitions the space. The time to construct the tree requires that at
each level of the tree the entire set of keys be scanned. This requires com-
putation of O(kn), for n records. As the depth of the tree is O(logn), the
total computation to construct the tree is O(knlogn). They propose a re-
cursive algorithm for solving nearest neighbor queries that works as follows.
The algorithm starts by computing the distance d between the root and the
query point, this yields an estimated nearest neighbor distance. The ball B
centered at the query point and radius d is considered. The search continues
recursively along the left and/or right subtrees according to whether the B
intersects the rectangles associated to the left and right subtrees updating d
in each recursive invocation. They experimentally investigated the running
time of this algorithm and observed that off-line nearest neighbor queries
may be solved in O(logn) expected time using optimized k-d trees. Later,
Bentley (1990) proposed to study top-down and bottom-up off-line nearest
neighbor queries using optimized k-d trees. In a top-down nearest neigh-
bor query we descend the optimized k-d tree to find the data point in the
tree, perform a nearest neighbor search down the node’s subtree and go up
the tree whenever there is a chance there may be a closer node outside the
tree rooted at the query point. In a bottom-up nearest neighbor search we
assume that we are already at the node associated to the query point and
perform a nearest neighbor search. Bentley (1990) experimentally studied
and conjectured that top-down and bottom-up nearest neighbor queries can
be solved off-line in O(logn) and O(1) expected complexity time when using

optimized k-d trees.

Note that if the data are put in a \/nx /7 regular grid partition of [0, 1]2,
then each cell would receive on average one data point. Bentley, Weide and
Yao (1980) showed that nearest neighboring searching starting from a given
point in a cell takes O(1) expected time. The same is true for all sufficiently
regular, dense and rotund partitions, including, for example, the Voronoi
diagram or the Delaunay triangulation. If the data are stored in a 2-d tree
however, the property fails to hold because of the skinny rectangles. To see
intuitively what is going on, let X be U; and let X’ be the nearest neighbor of
X among Us,,....U,. Define the nearest neighbor distance D,, = || X — X’”
Note that D, is ©(1/y/n) in probability, i.e., P{D, = o(1/v/n)} = o(1) and
P{D, = w(1/y/n)} = o(1). This means that a nearest neighbor search for X
is roughly equivalent to a ¢/\/n % ¢/\/n range search. Indeed, just to verify
that X’ is in fact the claimed nearest neighbor of X, one must at the very
least inspect all nodes on rectangle edges that cut the circle S centered at
X with radius D,,. Since the rectangles are skinny, the points on the edges

may in fact be far from X. Thus a lower bound on the complexity is

2n+1
E{ Z l[R,-nQ;eo]},

i=n+1

where Q is the circle of radius D, centered at X. As D, is in probability
©(1/+/n), theorem 4.1 implies that the expected complexity is Q(n*(1/2)-1/2) >
Q(n0-0615--) Algorithm A is a very natural on-line nearest neighbor algo-
rithm. In this chapter we showed that its expected complexity time is ©(n?*)
when using k-d trees. We conjecture that indeed any algorithm that com-
putes the nearest neighbor using k-d trees as data structure for storing the

data must have expected time complexity Q(n?f*).

5.7 Conclusions

The bound for algorithm B is a bit worse than that for algorithm A,

because while most rectangles are squarish, a sufficient number of them are

—73—~

elongated. In fact, for given M > 1, about 1/M of the final (leaf) rectangles
or more should have an edge ratio exceeding M. For edge ratio M, and
considering that all rectangle areas are about 1/n, we see that the orthogonal
range search should take about M points (the longest edge is about /M/n).
The expected number of returned elements is at least ©(logn). And the
expected number of leaf rectangles visited is of the same order. But each
visited leaf rectangle also induces a visit to all of its ancestors, and there are
about logn of those. The proof of the bound for algorithm A on squarish
k-d trees is by no means optimal. We believe that its real expected time
complexity is ©(logn). Note that Q(logn) is an almost trivial lower bound
for algorithm A on squarish k-d trees.

—T74—

PART I

Branch-and-Bound Search

—T75—

—76—

Chapter 6
Branching processes

In this chapter we introduce the main definitions and recall or prove
auxiliary results for the next chapter, in which we analyze the complexity of

branch-and-bound search on random b-ary trees.

6.1 Definitions and basic properties

Around 1874 Galton and Watson introduced a model for studying the
“problem of extinction of families” in England. Although their process hardly
applies to their original problem. it has become a powerful tool for analyzing
different phenomena in areas such as biology, physics and computer science.

We can visualize a branching process as a possible infinite tree. The root
has Z; children, where Z; has a fixed distribution (p;)i:>o (the reproduction
distribution). Each child in turn reproduces independently according to the
reproduction distribution. This leads to the Galton-Watson random tree,
and the Galton-Watson process. We denote by Z; the number of children in
the ith generation in the Galton-Watson tree, with Zy = 1. We introduce

now the RGF (reproduction generating function),

f)=3 mst =E{s%}, se[o,1].
t=0

The reproduction generating function is a very convenient tool for analyz-
ing the behavior of Galton-Watson branching processes. Let us define the
Malthusian parameter which is nothing but the expected number of children

per particle.

m=E{Z1}=)_tp. = f'(1).
t=0

.Y.; .Y', .\‘. N

FIGURE 6.1. Two-ary tree showing some edges and node

values.

Only two situations can occur: either the population survives forever or it
becomes extinct after a finite time. If the expected number of children per
particle is greater than one, the population explodes, and if it is less than
one the population will die out. Consider the RGF for Z,, the size of the ntP
generation:

fn(s) =E{s*}, selo0,1].

Let us define ¢ to be the probability that the process becomes extinct. Note
that f,(0) = P {Z,, = 0}. In fact, when m < 1, it can be seen. by manip-
ulating f,(s), that ¢ = 1 (unless the degenerate case p; = 1 happens), and
whenm > 1, ¢ < 1.

6.2 Theory of branching random walks

In a branching random walk. a random walk is superimposed on each
path from the root down in a Galton-Watson tree. A value V,, is assigned to
each node in the tree, the value of the root being zero. We consider the fol-
lowing type of branching random walk. Given a node u in the Galton-Watson
tree, for every child v of u, we define V,, = V,, + X, with all displacements
X, independent. Note that this is equivalent to assigning to each edge a

random variable and assigning to each child of a node the value assigned to

—78—

the edge joining them plus the value of the parent.

In general, if u is a node in the tree and its children have displacements
Xu,s- .-+ Xuy. where IV is the size of the offspring of u, then the joint dis-
tribution of (N. X,,.....Xvy) is quite arbitrary. What is important is that
each parent produces children (and their values) in the same manner. We
assume further that the number of children per parent is a fixed positive
integer b (see figure 6.1).

We will use some results adapted from the theory of branching random
walks in order to prove the results in this part of the thesis. For additional
information see, for example, Asmussen and Hering (1983). Athreya and
Ney (1972), and Harris (1963).

We prove our results by looking at the properties of the u-function, which
we define below. For any random variable X, we define m(8) = bE {e~9¥},

> 0. We assume that m(6) < oc, for some 6 > 0.

DEFINITION. Let X > 0 be a nondegenerate random variable. For any

a € R, the u-function is defined by

_ 9a — b f(a—-X)
u(a) = ég{){e m(8)} béggE {e } .

For each t > 0, and n > 0, we define
ZM () = #{w : wis a leaf in Ty, and V,, < t},

where fA denotes the cardinality of set A, and T, is the complete binary tree
of height n. Thus Z(*)(t} is the number of individuals in the nt" generation
of the process with value smaller or equal to ¢.

The following results are from Kingman (1975) and Biggins (1977).

THEOREM 6.1. If u(a) < 1, then with probability one,

Z™(na) =0 for all but finitely many n.

—79—

Ifa € int{a : p(a) > 1}, then

(Z™ (na))™ — u(a) almost surely.

THEOREM 6.2. Let T be the infinite b-ary random tree having edge values
distributed as X > 0, where X is nondegenerate. Let B, = min{V,
v is a leaf of T},}. Then,

B e
li Tn =a= inf{a : u(a) > 1},

n—occ

almost surely.
We now prove some properties of the p-function.

THEOREM 6.3. Let X > 0 be a nondegenerate random variable. Then its

p-function satisfies the following properties:

(1) p is an increasing function on [0, 00).

(2) u is continuous on int{a : p(a) > 0}.

(3) log u is concave.

(4) supger (a) < b.

(5) FE{X} < cc, then p(a) =b, onint{t : p(t) >0}, fora > E{X}.

(6) limgyeo pt (@) = 0.

(7) IfF X >¢>0, then p(a) =0 fora < c.

(8) Let s =sup{t : P{X <t} =0}, and definep =P {X = s}. Then p is
continuous on

(s,00), u(s) =bp, and p(a) =0 fora < s.

PRroOOF. For proofs of (1)-(3), we refer to Biggins (1977) or Kingman (1975).
Proof of (4). Clearly infg>o E {e?(=X)} < 1 by evaluation at § = 0.
Proof of (5). For a > E {X}, we have

= by e}
>b ér;f(') efe—E{X} (by Jensen’s inequality)
>b (as the infimum is attained at 6 = 0).

—80—

[}
nla)
E{V)<x n=h
S 2 R
increasing and log concave

Y N

P IR ontinuous on int{a : ufa) > 0)
Iy " wl
fe-fimost paint FLy
of suppoct of X
3
i)
E{Y}=x
b ..
tncreasing and log concave
continuous on int{ae : g(a) >0}
l
17| R
o a
lefemost point

of support of X
FIGURE 6.2. General form of the p function.

Proof of (6). If E{X} < oc, this follows from (4) and (5). If E {X} = oo,
then let ¢, _p, be the (1—p)-th quantile of X, i.e. g, =sup{t : P {X <t} <
1 — p}. Clearly,as p { 0, g1—p T 00, since E {X} = co. Now, for a > q1_,

H e(a—‘h—p) —_
p(a) >b (;Izlge) (1-p)
> b(1 - p).

We conclude that proof by letting p | 0.

—81—

Proof of (7). For a < c,

p(a) =binf E { e?@= 1 < pinf e#@=9) < pliminfef(a—2) = .
é>0 6>0 8—+c0

Proof of (8). We only need to show that u (s) = bp, as the other statements
follow from (2) and (7). Define p+d = P {s < X <s+¢}. Then for all

€ > 0 small enough

pls) _ inf B ee(s-.lr)}
b >0

< i #(s—s) S 9(s—s—¢)
< ;gf(') {e (p+d)+(1—-p-de }

—_ o ~08c
—Buzlt['){p-*-é-i-(l p—208)e %}

But the last expression goes to p as € — 0, by taking § = 1/¢> (notice that
d - 0as e —0). Thus u(s) < bp. Also, observe that

H (3) . 8(s—s)
—_ > =p.
p 2 ;ggpe P

a

We conclude that g must always follow the pattern as described in fig-
ure 6.2.

Let X be a nonnegative and nondegenerate random variable. We say
that X is regular, if and only if bP {X =c¢} < 1, where c is the leftmost

point of the support of X. For regular random variables we define

a = inf{a : p(a) > 1},
5= sup (%),

z€(0,1) Z

=i N 7Ad) = .
o ()]

Clearly « is well-defined, finite and positive. Also (as we will see below), the
solution v of 1" (a/v) = £ is unique, and 0 < 8 < b, strictly.
We now prove two additional properties of the p-function for regular

random variables.

LEMMA 6.1 Let X > 0 be regular. Then:

(9) For alle > 0, there is £ > 0 such that

sup {u(228) -4 (2)} <
z€(0,1) T T

(10) For all m > 0, there is £ > 0 such that for all 0 < v <&,

a+v
sup u® (+) < sup u* (f}) +n.
z€(0,1) T z€(0,1) z

PROOF. Proof of (9). As g is continuous, bounded, and log-concave on
[@, 00), it is uniformly continuous there, and thus for € > 0 there is 6. > 0

such that for all £ > 0, small enough,

(=
'a‘f"g a4 SJ

_¢
z

T xr

implies that p ("'*'5) —p(2) <e If€/z > 4. then a/z > (a/€)de. and by

choice of £ = §2, we see that a/z > a/d., so that

o (-(29) -+ @) s0-1 () 04 2)

which is small enough by the choice of é,.

Proof of (10). By the triangle inequality, we need only to show that

a+§ z (@
sup lf'()—u (—)}Sn
J:E(O,l){ T z ’

for £ > 0 small enough. By (a + b)? —aP < pba?~!, for alla,b > 0, p € [0, 1],

we have
o, 0 (55) - O =2, 0 (55) @))}
z€(0,1) T T T ze(0,1) T T T
«
< sup {#() } sup {zp=t —)
z€(0,1) z z€(0,1) (z }
< 2o (229 @)
z€(0,1) x

—83—

R
+
"

as 1 < pu(a/zx), for z € (0,1). a

LEMMA 6.2 Let s =sup{t : P {X <t} =0}. Assume that s < . Then

a
B = sup u* —) < b.
z€(0,1) z

PRroOF. By continuity of g, there is € > 0, such that p(a/(1 —¢€)) < Vb.

Then, because s < a,
Q@ o
8= max{ sup ut (—), sup u* (—) }
0<z<l—¢ T/ 1-e<z<l r

< max {bl_e,;t (1 ie)}

< max {bl_s, \/E} ;

the result follows. O

—84—

Chapter 7
Random b-ary trees

In this chapter we present our main result about the time complexity of
branch-and-bound search for random b-ary trees. We use branching random
walks as a tool for analyzing the behavior of the algorithm on random b-ary

trees.

7.1 Introduction

Let T, be a b-ary tree of height n, which has independent, nonnegative,
identically distributed random variables associated with each of its edges.
The value of a node is the sum of all the edge values on its path to the root.
We consider the problem of finding the minimum leaf value of 7T;,. Assume
that the edge random variable X is nondegenerate, has E {X%} < oc for
some € > 2, and satisfies bP{X = ¢} < 1 where c is the leftmost point of
the support of X. We analyze the performance of the standard branch-and-
bound algorithm (this is, the nodes are visited in a depth-first search fashion
trimming useless branches) for this problem and prove that the number of
nodes visited is in probability (8 + o(1))®, where 8 € (1,0) is a constant
depending only on the distribution of the edge random variables. We derive
explicit expressions for 8. We also show that any search algorithm must visit
(B + o(1))™ nodes with probability tending to one, so branch-and-bound is

asymptotically optimal where first-order asymptotics are concerned.

7.2 Previous work

Karp and Pearl (1983) introduced the following model. Let T}, be a binary
tree of height n, which has independent, identically distributed Bernoulli(p)

—85—

random variables associated with each of its edges. The value of a node is
the sum of the values of the edges on the path from the root to that node.
The objective is to find the leaf in the tree with minimal value. Karp and
Pearl noted that if 2p > 1, any algorithm must necessarily take exponential
time in n, while for 2p = 1 and 2p < 1, ordinary uniform cost breadth-first
search takes on the average ©(n2) and ©(n) time. In this algorithm, one first
visits all nodes of value 0, then all nodes of value 1, and so forth.

In 1990, McDiarmid and Provan and McDiarmid (1990) generalized the
work of Karp of Pearl to b-ary trees and more general nonnegative edge
distributions. If X is a typical edge random variable, and p = P {X = 0},
where 0 is the leftmost point of the support of X, they show that if bp < 1,
any exact search algorithm must take exponential time. It is this model the
one we will consider. We assume throughout that X is a regular random
variable, as defined in the previous chapter. As the tree T}, has b™ leaves, it
is important to ask what fraction of the nodes is revealed before the minimal
leaf is found. In branch-and-bound search, we visit the nodes as in depth-first
search, and visit v if and only if its parent’s value is less than the minimal leaf
value seen thus far (if any have been visited; otherwise, the node is visited
unconditionally). The algorithm is of course guaranteed to find the overall
minimum. If N is the number of nodes visited by the branch-and-bound
algorithm (the number of values V; revealed), we will show the following

theorem.

THEOREM 7.1. Let X be a regular random variable.

A. If N is the number of nodes visited by branch-and-bound search, and
E {XG} < oo for some 6 > 2, then there exists a number 8 € (1,b) such
that

lim P{|N1/"—ﬁ| >e} —0. (1)

n—oo

B. The number N' of nodes visited by any algorithm that is guaranteed to

find the optimum must be such that

lim P{N'V" gﬂ—e} —0

n—ca

for all e > 0.

Sometimes it is instructive to see how N compares with the size of T',.

The theorem above states that in probability,
N = ITnlp+°(1)

as n — oc. where [T,] = 5.7 b* and p = logy 8. The closer p is to zero,
the more pruning is achieved. Interestingly, the pruning parameter p dif-
fers from distribution to distribution, and may take any value in (0,1). As
p > 0, we see that an exponential explosion (in n) is unavoidable. The proofs
are based upon results from branching random walks due to Biggins (1977).
Especially part B of theorem 7.1 is an embarrassingly straightforward corol-
lary of Biggins’ results. We give an explicit form for 8 and p for all regular
distributions.

The same tree model was also considered by Zhang and Korf (1992).
who analyzed other search strategies, such as iterative-deepening-A* and
recursive best-first search. Branch-and-bound was also analyzed by Smith
(1984) on a different random tree model. Wal and Yu (1985) considered
branch and-bound with best-first search, and Stone and Sipala (1986) looked
at backtracking. Of course, backtracking was analyzed on a host of other
models, and we refer to Purdom (1983) and Brown and Purdom (1981) for
just two examples. Pearl (1984) is the basic reference for the probabilistic

analysis of various search strategies.

7.3 Notation and preliminary results

Let us first set the notation. Let ug,...,u, be the nodes in the left roof of
Th, let vg1,..., 0k p—1 be the siblings of ug, and thus the children of ug_;
(see figure 7.1). Let V;, , denote the sum of all edge values on the path from
u to v. Notice that V,, , = V,, — V,,, if v is a descendent of u. We will be

particularly interested in Vi, _, .. for descendants w of ur_;. We define the

- :
< Za = 2w . descendants of wep, suchocbac 45, o <ML)]

Moo =wn{ll _, - roalcaf doondane of ay -

FIGURE 7.1. Notation for trees.

following random variables that will appear in our analysis:

Mn’k =
min {Vy,_,,» : v is a leaf descendant of uy, where v and w;, are nodes in T, } ,
Zkt =

ﬁ{w : descendants of vy (including vy, itself), such that V,,, _, » < ﬁ/[n,k}

We now present some preliminary results in order to prove part A of

theorem 7.1.

PROPOSITION 7.1 Assume E {X?} < oo for some 8 > 2. Consider Ty,
and define N = max{V,, : w is a descendant of u, at distance k from u,},
where k = [dlogy(n — 1), for 0 < d < 6§ — 2 fixed. Then, for every £ > 0
there exists ¢ > 0. ng > 0, such that

P{N.>(n—-1)¢} < (_n—f—l)*?’ for all n > ng.

PrROOF. Clearly. if N > (n — 1), there must be at least one node de-
scendant of u; at depth k + 1 having value greater than (n — 1)§. There-
fore P{Ny > (n— 1)} < b*P {z’r'“x,- > (n - 1)5}, where X;Z X, for

=1

t=1,....k, and the X;’s are independent. Then by Markov’s and Jensen’s

. inequalities, for all n large enough.

2]
k+1
*lx,

bkp{gfx,- >(n—1)£} < bkE{(zm) }

((n —1)§)°

bk +1)°E { X%}
- ((n —1)§)°
< pldiogs(n—1}] (ldlogy(n — 1)} + I)BE {X"}
- ((n—1)&)°
o QP E{X%} (logy(n — 1))*
=T g (n—1)7—4
-)’ E{X%} 1
- '3 (n—1)%

i=1

a
PROPOSITION 7.2 Let T,,. Nir. k. 8 and d as in the previous proposition.
Then, for all £ > 0, there is ¢ € (0. 1). such that

P {Mn,l > (n— 1) (a +&), N < (‘n. — 1){/2} < (P("-l)d?

for all n large enough.

PRrROOF. Denote by vy,...,v, all nodes in T, at depth k. Define B:_, to
be the minimum of all V;,, ,, such that w is a leaf descendant of v;. Then, by

independence of the B:_, s,

P {Mn1 > (n—1)(a+£), Ny < (n—1)§/2}
<P{Bl . +(n-1§2>(n-1)(a+8), ..Bi+n-1)¢2>(n-1)(a+}
k
= (P {Bn-t > (n - 1)(a+£/2)})’
< (P {Buk > (n~ K)(a+£/2)})" .
where B, _x is the random variable defined in theorem 6.2. Substituting &
by |dlog,(n — 1)| and using theorem 6.2 we get that
. P {Bn—Ldlog,,(n-——l)j > (n — |dlogy(n — 1)) (a +E/2)} —+ 0, as n — oo.

—89—

Thus we can find ¢ € (0, 1) such that

P {Bn—[dlogb(n—l)j > (n — |dlogy(n — 1)) (e +£/2)} < o,
for all n large enough. Hence,

P {I\’In,l >((n—L)(a+E&), Ny < (n - 1)5/2}
< (P {Bn—-Ldlogb(n_l)J > (n — I_dlogb(n - l)J)(a +§/2)})(n—1)'1

< o1,

for all n large enough. O
The following corollary is immediate from the two previous propositions.
COROLLARY 7.1 Assume E {Xa} < oo for some 8 > 2. Pick d € (0,0 — 2).

For all £ > 0, there are (> 0. v € (0,1), and ng such that

P (Mo > (n - (a+6)} <

CEnE +o™=V for all n > ne.

7.4 Proof of main theorem

We first prove one half of part A of theorem 7.1. The second half of part A

follows from part B, and will be proved in theorem 7.3 below.
THEOREM 7.2. Let X be a regular random variable with E {X°} < oo for

some 6 > 2. Then for every e > 0

lim P Nl/">ﬁ+e}=o.

n—oc

PROOF. Let T, be the random b-ary tree as defined in the previous section.
It is clear that the number descendants of vy; visited by the algorithm is

smaller than or equal to bZ;; + 1, because if the value of a node is less than

—-90—

the minimal leaf value seen thus far, all its b children will be visited. It

follows that

n b-1
N<b (ZZZH-FTL) + 1.

k=1 (=1
Thus,

p{an >ﬁ+e} =P {N > (B+e)"}

n b-1
P{bZZZ&z+bn+l>(ﬂ+6)n}
k=1I=1
n b—1
(B+e)"
> 2 F {bz >(b—1)n+1}

k=1 Il=1

(A

IN

if (B+€e)"/((b—1)n+1) > bn+ 1, which is true for all n large enough. Now,
notice that Zy; < 1+ b+ --- 4+ b7~k < p"~*+1 50 that for £ > [(1 — §)n],

bZk[< bn—k+1 < b&n-{-l < (:B +E)n
= = —bh-1n+1’

where § is taken

logp (b—-1)n+1)+1
- .

0< 6 <log,(B+e¢)—

Observe that the previous can be done for all n large enough. The previous

observation implies that

n b—1 {(1-6)n] b1
(B +¢) _(B+e)™ }
;lﬂp{bz“ —)n +1} kz_: ;P{bz"‘> 1)n+1(|
for all n large enough. Next, for all £ > 0,
(B+¢e)"
P {454> G i)
<P {1\/[,,,5; > (n — k)(a +§)}+P {bZk[(a+§) > (b}fl;)'l&?:)-i—l—}

where the random variable Z; (a + &) represents the number of descendants
w of vy, such that V,,, _, . is not larger than (a + £)(n — k). Corollary 7.1
implies that there are ¢ > 0, ¢ € (0,1), and ng, such that,

P {(Mas > (0 — k)(a+€)} < /(n — k)2 + =0,

—91—

for n > ng, uniformly over 1 < k£ < (1 — §)n. Thus. for n > ng,

[(1=6)n] b1 -)
Y S P{Mu>n-k) (et Y b(;.:_:’“akd)

k=1 =1 k=n—|(1-0)n]
< n¢
(n — (1 - é8)n[)?
b¢ d
< _ (on)
< 53 +b(1 — &)y n

— 0 as n — oc.

+ b =t=mD? | (] _ §)n]

Now, for the other part of the sum in (*), note that

P {bZkl (a+¢) > (b(f -;)Z)Zl} < E{b(‘ik:-(?):f)} (6 - 1)m+1)
CB{bTl Z e+ 0} (- n+1)
- (ﬁ'*‘&')" :

where Z;Z‘ (a + &) is the number of descendants w of wg; such that V,,, _, ,, is
smaller than or equal to (a + &)(n — k), and the distance from w to vy is j.

Now, for 8 > 0,

E{Z](a+&} <V P{Xi+ - X;+ Xj41 < (n—k)(a+ &)}
<V E {ee(("_")("‘*'f)_xl_'"—X"“)} (by Markov’s inequality)

) j+1
= b f(n—k)(ats) H E {e—X"e} (by the independence of the X;’s)

i=1

= pef(n~Ri(a+8) (g {e—xe})i+1 (because the X;’s are identically distributed)

< (smferte=srmnn)
_((m_kxa+a))“1
H j+1 ;
where for the last equality to hold we took 6 = 8* such that

bE{e“" u:;-;_(:w-x)} — ((n —k)(a+§)) .

J+1

&

—92—

Thus, since x (a) is an increasing function of a > 0,

P{bZy(a+&) > w(—f;z)%} < b((l’(ﬂi:+l) ZE{Z,{,(a+§)}

e ()

_ b —1n+1) i(s ((n+1)<a+s>))"+1

n41
(B +e)" K 7+ 1

n4+1
b((b—1)n+1) <« L [a+E
=T Brer ;(:Ztt‘i)“(z))

n+1
nb((b — 1)n + 1) _ z(a+€)
=T Brer (zéth‘,’l, “\Tz) '

We now sum all the terms and get

W(1~8)n| b—1

(B +e)
> ZP{qu(a+£)>(“m +1}

k=1 =1
n+l
n2b(b — 1)((b— 1)n +1) I(a+£)
= (B+e)m (:Ztg,)l)” z)

n+l
T (B+E)" |ze(01) T '

Notice that if £ were equal to 0, then the quantity in the square brackets

would be 7*!. Lemma 6.1 implies that for £ > 0, there exists £* > 0 such

that

z. a+€‘) - (C\ € €
sup g < sup pu (—) +-=0+ .
z€(0,1) (z z€(0,1) z/ 2 2

Therefore,

b3 3 - n+1l
—"n sup p° (a +¢&)) <
(B+e)™ \ ze0.1) z

s 3 [SUPze(0,1) ¥ (Q—Ei) zfae+&
b°n sup p©
B+e z€(0,1) +
3 3 ﬂ +€/2 ™ 5
< b°n (—ﬁ-l-e) (B+¢/2)
— 0. a

n-—3+00

—93—

To finish the proof of theorem 7.1, we show the universal lower bound
. of part B. Note that any algorithm must visit all nodes v in T}, with value
strictly less than B,,. the minimal leaf value in T;,. Thus, it suffices to prove

the following.

THEOREM 7.3. Let X > 0 be a regular random variable. Let N' be the

number of nodes v in T,, with value V,, < B,,. Then, for every € > 0,

lim P{N'V* < B—¢} =0.

n—o0

PROOF. We use the notation from theorem 6.1, and note that
N' > i z@(B, - 1).
=0
Define a. 8 and < as in the previous chapter, and set & = |yn]|. Thus, for
any § € (0,),
N'2 Z® ((a - &)n) Iip, —15 (@=e)m-
By theorem 6.2, with probability one, B, — 1 > (a — &)n for all n large

enough. Thus, we are done if we can show that given ¢ > 0, we can find

& > 0 such that

lim P {(Z("‘) ((a - 5)n)) Yt - e} = 0.

TL— 00

To this effect, observe that

(%) n |) [(la=8n, k] ME
(20 (@ -gm) " = | (2 (25 2%))
- 1 I/k
y—l
> (2 (55%)
i 24
o — v
—) —
«(559)]
. by theorem 6.1. By the continuity of p, the lower bound tends to S as £ 1 0,
since B = (/7). O

—94—

7.5 Some examples.

b P b P

2 334648 3 .257101
4 .220361 5 .198027
6 182672 7 171302
8 .162452 9 155311

10 .149393 11 .144383
12 .140071 13 .136306
14 .132983 15 .130019
16 127354 17 124941
18 122741 19 120725
20 .118868 21 117149

TABLE 7.1. Values of bvs. p for the exponential distribution.

In this section we will present some examples of u-functions and g-values

for some well-known distributions.

EXAMPLE. Exponential Distribution. If X is exponentially distributed,
m(0) =1/(0 + 1), and

fa

E {ee(a—X)} = 96?7

for 8 > 0. Also,

(@) = b inf e bae'™*, a <1;
a >0 |6+ 1 b , otherwise,

because log (be; u) is minimum for 8 = al — 1. The value « is defined to be

the unique solution of

abel ™ = 1. (2)

Observe that as b — oo, a ~ 1/2b. Note that

(a4 (o4 1—-2 z T
sup u® (—) = sup {—be =t V sup b
z€(0,1) T z€(a,1) + T z€(0,a)

ea:z:
sup {—e"‘} Vv b,
z€(a,l) z*

b p b p

2 090941 3 455860
4 372014 5 311999
6 7

8

265677 .228184
.196821 9 .169940
10 -146465 11 125653
12 .106973 13 .090028
14 074516 15 061973
16 .046876 17 .034384
18 022566 19 .011245

TABLE 7.2. Values of bvs. p for the Bernoulli (.05) distribution.

because ab = e*~!. The value of z which maximizes the first quantity is e*~!

(which is in (e, 1)). By manipulating (2) we get

a—~1
g=Ke " e Ve
eaea—le_en—l

a—1
= rnax{ee Q,b"‘}

— ea(b— 1)

because e®~! = ab. Note that e*(*~1) < e for any value of b, and 8 — /e as

b — oco. Also. p =log, 8~ 1/(2logb), as b = oc.

EXAMPLE. Bernoulli distribution with parameter p € (0.1). Let X be a

Bernoulli(p) distributed random variable, then
E{e®*} =p+(1-p)e?’
and

—bi 6(a—X)
n@ =l {e)

—_ M Ga 1_ ‘]
bgrzlge (p+ (1 —ple’)

l—-a

_[o(=) T () o<asion

b , a>1—mp.

—-96—

b P b p

2 .022782 3 445452
4 405182 9 379173
6 7
8

.360477 346137
334648 9 325150
10 317110 11 310176
12 .304107 13 298731
14 .293919 15 .289575
16 285625 17 .282010
18 .278682 19 .275604
20 272745 21 .270078

TABLE 7.3. Values of bvs. p for the gamma (3) distribution.

So as to define v, we must assume that bp < 1. Thus « is defined as the

solution of the equation

p l-c l—p «
b (_) (__) ~1.
l-« a
Note that as p = P {X =0} and taking b = 2 we recuperate one of the

results of Karp and Pearl (1983).

ExaMPLE. Gamma distribution with parameter r. We first compute

o xr—le—xeo(a—r)

wla) =bigl |)

. eBu.
~P BTy
ea(i-]‘)

RECH

vb
_ {be"‘“ (2)", if0<a<r;

b , a>T.

because fa — rlog(1 + 6) is minimal when a = %5. Thus « is defined as the

solution to the equation:

Finally,
e

,3 = sup ,_l't (g) — Sup b:cerz—a (—)1'1:.
z€(0,1) rT

Note that u® (e/z) is maximal at = = b'/7/r and therefore

’ bbl/'a/rea(b‘/"—l)

B =

_ ea(b‘/r—l)
potira/r - .

—98—

Conclusions

In the first part of the thesis we studied the expected time complexity of range
search when the data structure used for storing the data is the k-d tree. By
studying the geometry of the rectangle partition generated by the k-d tree,
we were able to find a tight expression for the expected time complexity of
range search that reflected the geometry of the query region. This result
showed the way to improve on the expected complexity of range search by
defining a new data structure that we called squarish k-d tree.

In chapter 3 and 4 we saw that k-d trees are not optimal even in an
average sense for solving range search. The elongated rectangles in the parti-
tion generated using k-d trees explain its poor performance. We showed that
squarish k-d trees behave optimally in an expected sense. For instance, that
the expected time complexity of partial match in 2-d trees, when specifying

. . ViT— .
one attribute, is © (n 3 3) = © (n®361552--) whereas for 2-d squarish trees

it is O(/n).

In chapter 5 we analyzed two natural algorithms for solving the nearest

neighbor problem when using k-d trees. We conjectured that for k-d trees
the expected time complexity of nearest neighbor queries is Q(n”<). We also
conjecture that the expected time complexity of nearest neighbor queries
when using algorithm A and squarish k-d trees is indeed O(logn). This
requires further research.

Another very interesting problem that deserves further study is the ex-
pected worst-case complexity of range search. That is, the data points are
still random, but now the position of the query can be chosen arbitrarily. We
believe that the expected worst case complexity over all partial match queries

with worst case location of the free corrdinates, is also bounded from above

—99—

by the bound given in theorem 3.2 and 3.4 for the k-d tree and squarish k-d
tree respectively.

In the second part of the thesis we studied the time complexity of branch-
and-bound search for random trees. Theorem 7.1 shows that up to first-order
asymptotics, ordinary depth-first search is as good as any search strategy for
all regular random variables. This is remarkable, as depth-first search can

be implemented using only O(n) storage.

—100—

Bibliography

ABRAMOWITZ, M. AND STEGUN, I. A. (1970), Handbook of Mathematical

Functions, Dover Publications, New York.

AGgarwaL, P. K. (1997), Handbook of Discrete and Computational Geom-

etry, CRC Press, chapter Range searching.

ASMUSSEN, S. aAND HEeRrING, H. (1983). Branching Processes, Birkhiuser,

Boston.

ATHREYA. K. B. AND NEY, P. E. (1972). Branching Process, Springer-Ver-

lag. Berlin.

BENTLEY, J. L. (1975), Multidimensional binary search trees used for asso-

ciative searching, Communications of the ACM 18, 509-517.

BENTLEY, J. L. (1979), Multidimensional binary search trees in database

applications, IEEE Transactions on Software Engineering SE-5, 333-340.

BENTLEY, J. L., AND FINKEL, J. H. (1979), Data structures for range

searching, ACM Computing Surveys 11, 397-409.

BENTLEY, J. L. AND STaNAT, D. F. (1975), Analysis of range searches in

quad trees, Information Processing Letters 3, 170-173.

BENTLEY, J. L. (1990), K-d trees for semidynamic point sets, 6!* Annual

Symposium on Computational Geometry, 187-197.

—101-

BENTLEY, J. L., WEIDE, W., AND YAO, A. C. (1980), Optimal expected
time algorithms for closest point problems, ACM Transactions on Mathe-

matical Software, 6, 563-580.

BiGcaGins, J. D. (1977), Chernoffs theorem in the branching random walk,
Journal of Applied Probability 14, 630-636.

BrowN, C. A. AND PurDOM, P. W. (1981), An average time analysis of
backtracking, SIAM Journal of Computing 10, 583-593.

CHANZY, P.., DEVROYE, L. AND ZAMORA-CuURA, C. (1999). Analysis of

range search for random k-d trees. Submitted for publication.

CunTOo, W., Lau, G. AND FraJOLET, P. (1989), Analysis of kdt-trees:
kd-trees improved by local reorganizations, in F. Dehne, J. R. Sack and
N. Santoro, ed, Workshop on Data Structures and Algorithms (WADS89),
vol. 382 LNCS, Springer Verlag, 24-38.

DEVROYE, L. (1986), A note on the height of binary search trees, Journal
of the ACM 33, 489-498.

DEVROYE, L. (1987), Branching processes in the analysis of the heights of

trees, Acta Informatica 24, 277-298.

DEVROYE, L., JABBOUR, J. AND ZAMORA-CURA, C. (1999), Squarish k-d

trees. Submitted to the SIAM Journal of Computing.

DEVROYE, L. AND LAFOREST, L. (1990), An analysis of random d-dimen-

sional quadtrees, SIAM Journal on Computing 19, 821-832.

DEVROYE, L. AND ZAMORA-CURA, C. (1999), On the complexity of branch-
and-bound search for random trees, Random Structures and Algorithms, 14,

309-327.

DoBkIN, D aAND LipTON, R. J. (1976), Multidimensional searching prob-
lems, SIAM Journal of Computing 5, 181-186.

—-102—-

DucH, A., EsTIviLL-CASTRO, V. AND MARTINEZ, C. (1998), Randomized
k-dimensional binary search trees, Technical Report Universitat Polytécnica
de Catalunya, LSI-98-48.ps.

FINKEL, R. A. AND BENTLEY, J. L. (1974), Quad trees: a data structure

for retrieval on composite keys, Acta Informatica pp. 1-9.

FLAJOLET, P., GONNET, G. AND PUECH, C. (1991), The analysis of mul-
tidimensional searching in quad-trees, in Proceedings of the Second Annual

ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, pp. 100-109.

FLAJOLET, P., GONNET, G. AND PUECH, C. (1992), Analytic variations

on quadtrees, Algorithmica 10, 473-500.

FrajoLeTr, P., GoNNET, G., PuECH, C. AND RoBsoON, J. M. (1993),

Analytic variations on quadtrees, Algorithmica, 10, 473-500.

FLAJOLET, P. LAFFORGUE, T. (1994), Search costs in quadtrees and singu-
larity perturbation analysis. Discrete and Computational Geometry 12, 151—

175.

FLAJOLET, P. AND PUECH, P. (1986), Partial match retrieval of multidi-
mensional data, Journal of the ACM 33, 371-407.

FRIEDMAN, J. H., BENTLEY, J. L. AND FINKEL, R. A. (1977), Al algorithm
for finding best matches in logarithmic expected time, ACM Tansactions on

Mathematical Software, 3, 209-226.

FUKUNAGA, K. AND NARENDRA, P. M. (1975), A branch-and-bound- algo-
rithms for computing the k-nearest neighbors, IEEE Transactions of Com-

puting, C-24, 750-753.

GARDY, D., FLAIOLET, P. AND PUECH, C. (1989), Average cost of orthog-

onal range queries in multiattribute trees, Information Systems 14, 341-350.

GoNNET, G. H. AND BAEZA-YATES, R. (1991), Handbook of Algorithms
and Data Structures, Addison-Wesley, Workingham.

—103—

HAMMERSLEY, J. M. (1974), Postulates for subadditive processes, Annals
of Probability 2, 652-680.

HARRIs, T. E. (1963), The Theory of Branching Processes, Springer-Verlag.

JoHN, F. (1948), Studies and Essays Presented to R. Courant, Interscience,
New York, chapter Extremum problems with inequalities as subsidiary con-

ditions, pp. 187-204.

KArRP, R. M. AND PEARL, J. (1983), Searching for an optimal path in a

tree with random costs, Artificial Intelligence 21, 99-117.

KingMaN, J. F. C. (1975), The first-birth problem for an age-dependant
branching process, Annals of Probability 3(5), 341-345.

KnuTtH, D. E. (1997), The Art of Computer Programming. Vol. 3. 2nd ed..
Addison-Wesley, Reading, MA.

KUMAR, V. (1992). Encyclopedia of Artificial Intelligence, 2nd ed., Wiley-
Interscience, chapter Search, branch and bound, pp. 1468-1472.

LEe, D. T. aAND Wong, C. K. (1977), Worst-case analysis for region and
partial region searches in multidimensional binary search trees and quad

trees, Acta Informatica 9, 23-29.

MaHMouD, H. M. (1992), Evolution of Random Search Trees, John Wiley,
New York

MARTINEZ, C., PANHOLZER, A. AND PRODINGER, H. (1998), Partial match
queries in relaxed multidimensional search trees, Technical Report Universi-

tat Polytécnica de Catalunya, LSI-98-53.ps.

MATOUSEK, J. (1994), Geometric range searching, ACM Computing Surveys
26, 421-461.

McDI1ARMID, C. J. H. (1990), Disorder in Physical Systems, Oxford Science
Publications, chapter Probabilistic analysis of tree search, pp. 249-260.

—104—

McDiarMID, C. J. H. AND ProOVAN, G. M. A. (1991), An expected-cost
analysis of backtracking and non-backtracking algorithms, in LJCAI-91: Pro-
ceedings of the Twelfth International Conference on Artificial Intelligence,

Morgan Kaufmann Publishing, San Mateo, CA, pp. 172-177.
MITRINOVIC, D. S. (1970), Analytic Inequalities, Springer-Verlag., New York.

NEININGER. R. (1999). Asymptotic distributions for partial match queries

in k-d trees, preprint, Universitat Freiburg.

NEININGER, R. AND RUSCHENDORF, L., (1999), Limit laws for partial match

queries in quadtrees, preprint, Universitat Freiburg.

PEARL. J. (1984). Heuristics: Intelligent Search Strategies for Computer

Problem Solving. Addison-Wesley, Reading, Mass.

PrTrTEL, B. (1984), On growing random binary trees, Journal of Mathemat-
ical Analysis and Applications 103, 461-480.

PurpoM, P. W. (1983), Search rearrangement backtracking and polynomial

average time, Artificial Intelligence 21, 117-133.

RaABIN, M (1976). Probabilistic algorithms, in Algorithms and Complexity,
ed. .J. Traub. Academic Press, New york, N.Y., 21-39.

REINGOLD, E. M., NIEVERGELT, J. AND DEoO, N. (1977), Combinatorial
Algorithms: Theory and Practice, Prentice Hall, Englewood Cliffs, N.J.

RoBson, J. M. (1979), The height of binary search trees, The Australian
Computer Journal 11, 151-153.

SAMET, H. (1990a), Applications of Spatial Data Structures, Addison-Wesley,
Reading, MA.

SAMET, H. (1990b), The Design and Analysis of Spatial Data Structures,
Addison-Wesley, Reading, MA.

SHAMOs, M. I. AND HOEY, D. (1975), Closest-point problems, IEEE Symp.

on Foundations of Computer Science, 151-162.

-105—

SMITH, D. R. (1984), Random trees and the analysis of branch and bound
procedures, Journal of the ACM pp. 163-188.

SPROUL, R.. (1991), Refinements to nearest neighbor searching in k-dimensional
trees, Algorithmica. (6), 579-589.

STONE, H. S. AND SIPALA, P. (1986), The average complexity of depth-first
search with backtracking and cutoff, IBM Journal of Research and Develop-
ment 30, 242-2358.

VITTER, J. AND FLAJOLET. P. (1990), Handbook of Theoretical Computer
Science, Vol. A: Algorithms and Complexity, MIT Press. chapter Average-

case analysis of algorithms and data structures.

VAN KREVELD, M. AND OVERMARS, M. (1991), Divided k-d trees, Algo-
rithmica, (6), 840-858.

WaH, B. W. anD Yu, C. F. (1985), Stochastic modeling of branch-and-
bound algorithms with best-first search, IEEE Transactions of Software En-
gineering SE-11, 922-934.

WHITTAKER, E. T. AND WATsON, G. N. (1927), A Course of Modern
Analysis, Cambridge University Press, Cambridge., U.K.

Yao, F. F. (1990). Handbook of Theoretical Computer Science, Vol. A:
Algorithms and Complexity, MIT Press, Amsterdam, chapter Computational
geometry, pp- 343-389.

YuvaL, G. (1976), Finding nearest neighbors, Information Processing Let-
ters, 5, 63-65.

ZHANG, W. AND KORF, R. E. (1992), An average-case analysis of branch-
and-bound with applications, in Proceedings of the 10th National Conference

on AI—AAAI-92, San Jose, CA, pp. 1-6.

—106-

