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Abstract

Early vision is usually considered to involve the description of geometric structure
in an image or sequence of images. Whether biological or artificial, the behaviQural
constraints on real-time visual systems typical require that this first stage of visual
processing be fast, reHable, general and automatic. The design of a visual system
which is general enough to handle a wide variety of tasks is thus most likely to
be highly parallel, and involve distributed representations of geometric objects. Jn
this work, we investigate sorne of these general principles and propose both general
metl:odology and specifie applications.

We build on a general theory of distributed, local representations which we cali
thick traces. Thick trace descriptions of continuous graphs preserve topological prop­
erties such as connectivity, and allow for the descriptions of multi-valued mappings.

Local operators for extracting image curves have been a focus of machine vision
research for twenty years. Considered in the context of thick traces, however, we can
reasses the goals of these operators and provide a c1ear description of when they should
respond positively and when they should not. In order to achieve this behaviour, we
develop an algebra, the Logical/Linear algebra, which incorporates features of both
Boolean and linear algebra into a set of non-linear combinators. This algebra is then
used to design a family of local operators which explicitly test the logical preconditions
underlying the definition of an image curve.

Relaxation labelling is a highly parallel, distributed method of extracting consis­
tent structures from a set of labels. There is a natural match between the represen­
tations used in relaxation labelling and thick traces. We exploit this connection by
developing a general method for relaxing a set of potentially noisy initial estimates
of thick traces (as produced by image operators) into descriptions which are thick
traces of geometric models. Furthermore we show how such a system can interpolate
into gaps in the traces while simultaneously respecting legitimate discontinuities and
boundaries.

Finally, we apply these methods to two problems in early vision: the description
of curves and texture flow fields. For image curves, the resulting descriptions of
piecewise smooth curves include both local orientation and curvature information.
The entire process accurately describes end-points, corners, junctions and bifurcations
by allowing many consistent traces to be incident on a single point in the image.

The term texture flow is used to describe a class of static textures with locally
parallel dense orientation structure (e.g. Glass or hair patterns). We derive a geo­
metric model of these textures from a smooth non-deforming velocity field. Initial
operators and a relaxation network are then defined to interpolate dense, piecewise
smooth flow from sparse inputs. The resulting system produces accurate descriptions
even in the presence of discontinuities, holes, and overlapping textures.
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Resumé

La première étape de la perception visuelle est habituellement considérée comme
nécessitant une description des structures géométriques d'une image ou d'unc séqucncc
d'images. Les contraintes typiques imposées au comportemcnt d'un systèmc visuel,
qu'il soit biologique ou artificiel, requiert que cette première étape du processus soit
rapide, fiable, générale et automatique. Ainsi, la conception d'un système visuel
suffisamment général pour traiter une grande variété de tâches, se demarquera prob­
ablement par un haut degré de parallélisme et d'une représentation distribuée des
objects géométriques. Dans cette thèse, nous étudions ces principes g~néraux et nous
proposons une méthodologie générale et des applications spécifiques.

Nous nous basons sur une théorie générale des représentations locales distribuées
que nous appelons traces épaisses. La description de la trace épaisse conscrve les
propriétés topologiques telles que la connectivité, et permet la description de relations
à valeurs multiples.

Les opérateurs locaux pour extraire les courbes d'une image ont été un point de
mire de la recherche sur la vision artificielle depuis vingt ans. Toutefois, considérés
dans le contexte des traces épaisses, nous pouvons réévaluer les buts de ces opérateurs
et fournir une description claire établissant quand ils doivent répondre positivement
et quand ils ne le doivent pas. Afin d'obtenir ce comportement, nous développons
une algèbre, l'algèbre logique/linéaire, qui combine les caractéristiques de l'algèbre
booléenne et de l'algèbre linéaire dans un ensemble de prédicats non-linéaires. Cette
algèbre sert ensuite à concevoir une famille d'opérateurs locaux qui testent explicite­
ment les préconditions logiques sous-jacentes à la définition d'une courbe.

La méthode dite"Relaxation Labelling" est une méthode ql'li affiche un haut degré
de parallélisme et qui se sert d'informations distribuées pour extraire une structure
cohérente d'un ensemble d'étiquette. Les représentations de cette méthode vont de
pair avec cenes des traces épaisses. Pour relaxer un ensemble composé des évaluations
potentiellement corrompues de la trace épaisse telles 'lu 'obtenues par les opérateurs
locaux, nous exploitons cette relation en développant une méthode générale en des
descriptions qui sont des traces épaisses de modèles géométriques. De plus, nous
montrons comment un tel système peut interpoler dans les trous des traces tout en
respectant simultanément les discontinuités et les frontières légitimes.

Finalement, nous appliquons ces méthodes à deux problèmes en vision: la descrip­
tion des courbes et la description de l'aspect vectoriel des textures. Pour les courbes
dans l'image, monotones par morceau, leur description se compose de l'information lo­
cale à propos de l'orientation et de la courbure. En permettant l'incidence de plusieurs
traces cohérentes à un même point de l'image, ce procédé décrit avec exactitude les
terminaisons, les coins, les jonctions et les bifurcations

L'aspect vectoriel des textures est utilisé pour décrire une classe de textures sta­
tiques ayant des structures parallèles denses (par ex., les cheveux et les motifs de
Glass). Nous dérivons un modèle géométrique de ces textures à partir d'un champ de
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vélocité, monotone et qui ne se déforme pas. Des opérateurs locaux et un réseau de
relaxation sont ensuite définis afin d'interpoler des champs vectoriels denses, mono­
tones par morceau, à partir d'entrées clairsemées. Le système qui en résulte produit
des descriptions exactes même en présence de discontinuités, de trous, ou de textures
se chevauchant.
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Vision is the process of interpreting and describing images. Early vision is the iirst

stage in this process, taking raw measurements of light to the first intcrp"dations of

those images (e.g. there is a bright !ine here). While there is a broad consensus on

sorne of the fundamental characteristics of this process, on certain major issues, such

as the properties of the representations and descriptions involved (e.g. what a good

solution looks like), there is little agreement. In this work, we will olfer alternatives

to sorne of the traditional assumptions about these representations, and will present

computational methods which build on these alternatives.

It is perhaps best to begin by describing what we see as the consensus and then

move on to points of disagreement. The term curly vision is usually used to refer to

those visual processes which

• are fast, automatic and unmodified by intention or motivation;

• are purely retinotopic (i.e. operate on maps of the retina); and

• describe the image in terms of general geometric properties, such as the presence

or absence of one-dimensional discontinuities.

Thus, the description of curves in grey-scale images would qualify as an carly vision

problem, but mental rotation and object recognition would not. Sorne of the problems

which are normally considered to be within the scope of early vision are: curve and

texture description, stereo fusion, optical Sow, and local shading analysis.

Disagreements arise, however, when discussions move from these general princi­

pies to their consequences and their application to real problems. For example, Marr

[Mar82] suggested that the speed requirements of biological or real-time carly vision

prec1uded the possibility of considering iterative or global optimization procedures,

and yet membrane [Ter84, BZ87], and regularization methods [PTI<85], both of which

involve global optimization, have been proposed as general theories of early vision.

2
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1. Introduction

Focusing in particular on lhc ncccl for l'cal-lime opcmtion or an engineering approx­

imation to it, we make the assumption that early vision systems must be local and

parallel. Moreover if they are iterative they must converge in no more than a few iter­

ations in order to be predictably real-time. These constraints suggest the possibility

of implementation with fast, special-purpose hardware [Mea89].

'. Given this context, we focus initially on the representations used for early vision.

A representation is a language for delineating a c1ass of structures and a description

is a sentence in this language. Thus an image representation is a set of possible

assertions about images. An accurate description of a particulaI' image is one of

these assertions which is true when applied to the image. Whereas sorne trivial

descriptions are simply measurements (e.g. the intensity map of the retina), most

early vision prcblems involve the detection and description of features in the image.

In these cases, the selection of a particular description is a non-trivial assertion of the

existence of certain features and the absence of others.

For example, if we wish to represent straight lines in images, our representation

must allow for the description of all possible straight Hnes which could exist in an

image. A description of a particular image would amount to the assertion that certain

of these Hnes do exist in the image and that others do not.

To understand the effects of a choice of representation, we consider the problem

of discontinuities. It has been suggested that one of the most fundamental orga­

nizing principles of a visual system is the detection and description of discontinu­

ities. Physiologists [HW62, Orb84, HL87] have chosen to desclÏbe the organization

of the mammalian visual system in terms of responses to spatially and temporally

discontinuous inputs: edges, bars ancl points of light turning on or off. Psychologists

[HR85, Ley88, Bie85] have likewise argued that much of perception is based on de­

scriptions of discontinuities (e.g. bounding contours and their end-points, junctions

and corners).

Computational vision reseal'chers too have concentl'ated on the extraction of edges

[MH80, Can86], corners [BA84, Lee90] and texture c1iscontinuities [ZRD75, BPR83,

Vo087, MP90] for much of the past twenty years. Yet most of these computational

3
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1. Introdnction

methods actually involve the systematic elimination or misrepresentation of certain

discontinuities. Algorithms that rely on indiscriminate smoothing 1.0 combat noise are

the most common culprit (e.g. [MHSO, Can86]). While locating certain discontinuities

(e.g. edges), they displace or destroy others (e.g. the corner points) [LecS5].

More subtle though is the problem presented by representations which makc it

difficult 1.0 find discontinuities. A good representation will either highlight important

structural features or make them explicit, yet the usual machine vision represcntations

for simple features often obscure these features. For example, in Canny's representa­

tion of edges [Can86], il. is assumed that there is a one-to-onc mapping from image

points 1.0 edge directions. However, al. corners and junctions there are discontinuities

in edge orientation which appear as multiple edges incident on the same image point.

Both the smoothing and the representation thus conspire to ensure that the resulting

descriptions are not accurate al. these points. Yet il. is be1ieved [WaI75, HR85, Bie85]

that accurate location and description of these points al'e fundamental to the recog­

nition of objects.

A related problem becomes apparent when wc consider the case of optical fiow. Il.

is generally assumed that the problem of extracting accurate optical fiow descriptions

involves the assignment of a single velocity (possibly stationary) 1.0 every point in

the image [U1I79, Hee87]. Yet the human visual system has no inherent dilficulty in

perceiving motion of partially occluded (e.g. behind a picket fence) or transparent

objects. These are both cases in which there are appear to be multiple independent

motions al. the same point in the image [ZIH90].

In contrast 1.0 these one-value-per-pixel representations, which wc cali thin traces,

wc will propose an alternative class of disc/'ete relJrcscntlttions which 71(thtmlly .qul'­

port the description of multiple values lle/' pixel, and thus of both discontinuitics und

transparencies. This class, which we cali thick traces, arises naturally from a reconsid­

eration of how 1.0 describe a piecewise continuous graph on a discretely sampled space.

We suggest that thick traces are a better choice than thin traces precisely because

they facilitate the recognition of boundaries and discontinuities. The development of

these thick trace representations and algorithms to extract thcm from images forms

4
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the body of this thesis.

The next step in our development arises from a reconsideration of the kind of

reasoning needed to locate and describe curves in an image. Deciding that we wi1l

adopt a thick trace representation constrains, but does not determine the algorithms

needed to extract these descriptions from images. Instead we reconsider the problem

of designing a local operator to respond only when a curve with a given local geometry

passes through a point in the image. We conclude that the decision implied by this

goal is more complicated than can be pl'ovided by a simple threshold on operator re­

sponses, even when this is combined with local maxima selection [Can86, Har82]. The

complications arise, in part, because of the need to ensure stable operator behaviour

in the neighbourhood of end-points and multiple image curves.

Instead we suggest that the sign of contrast of the features being extracted be

the only "threshold" involved in the decision procedure. Using linear operators as

building blocks, we interpret posi ti ve responses as confirmation of associated logical

hypotheses. In order to support this interpretation, it is essential to provide a logical

foundation for making the decisions required (e.g. that the operator is centered on a

bright line of a given orientation). We wi1l therefore design a Logical/Linear (L/L)

algebra which combines the behaviour of both Boolean and linear algebras. The oper­

ators designed with this algebra verify, rather than assume, the logical preconditions

for the existence of the designed features without incorporating an arbitran) threshold

on significance.

This leads to the final focus of this thesis, the question of what can be assumed to

be a significant structure. Traditional approaches assume that sorne sort of threshold

is applied to select points or regions of significance (e.g. [MH80, Can86, BZ87)). We

suggest that this is an inappropriate method for the same reasons which lead to the

introduction of the L/L algebra. There is more to this issue than just the pragmatic

concerns of image curves, and in the end we question what an early vision system

shoulà do.

There seems to be an implicit assumption in the design and evaluation of vision

systems that early vision processes should present to later processing stages only those

5
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features in the image which are salient and somehow "significant." The consequence

of this assumption is often that a non-zero threshold on local contrast or correlation

is used to separate the "wheat" from the "chaIT." 'l'et this assumption seems to be

at odds with the consensus that early vision is automatic and unintentionai. If early

vision were automatic, then it would have to deliver to later stages etJcryt/aing t/wl

could possibly be allended 10. It would be the job of some attentional process to select

which parts of this output are relevant to the task at hand. Given this assumption

then, early vision systems should always operate at the boundaries of sensitivity of

the visual system, and should produce descriptions of ail verifiable features within

their range of representation. The only non-zero thresholds in the system should

depend directly on known measurement errors and noise in the system. The only fast

adaptations should derive from the measurable noise or distortion in the image.

The criteria for selecting features should thus be entirely structurai. If there is

a predictable local geometry for certain features then it is the relationship between

that geometry and the image which should act as a measure of the significance of

features in early vision. For example, if a process extracts curves from the image, it

should select them based on whether or not they are lines or edges, relatively brighter

or darker than their backgrounds, and piecewise differentiable. It should not choose

to select only those curves which exceed sorne arbitrary minimum contrast. In other

words, it should depend only on inlrinsic criteria and avoid the explicit or implicit

incorporation of exlrinsic cri teria.

We suggest that beyond the criteria which relate the features directly to the image

(e.g. whether or not they are Hnes or edges), the primal'Y criterion for selection should

be whether or not the local geometry of the features corresponds to sorne model of

the image. This process thus involves the inference of connections between individnal

feature elements and the selection of those which appear to be part of a non-trivial

structure-the thick trace of sorne continuous mode\. Thus the computational theory

described in this document thus two stages:

1. Local Logical/Linear operators produccpositive responses only when they can

verify the existence of sorne feature with a specified local geometry in the image.

6
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1. Introduction

Because of image noise, cOllfounding structure and operator imperfections, the

responses are not guarallteed to group together into thick traces.

2. These responses are used to initialize a relaxation process which produces con­

nected thick traces. This process is designed t.o converge quickly on only thick

traces of piecewise smooth models.

This work is organized to follow the development above. In Part l, we analyse the

discrete representation of continuous graphs OIJ images. This discussion culminates

in the adoption of a new killd of representation: the thick trace. In Part II, we

design the LogicalfLinear Algebra and design local image operators for extracting

local descriptions of image curves. These descriptions are a first approximation to

the thick traces desired. Finally, in Part III, we show how these initial estimates can

be refined to incorporate intrinsic constraints from geometric models using relaxation

labelling. The system relaxes to thick traces of piecewise continuous graphs on images.

By starting with good approximations, the outputs of LogicalfLinear operators, we

ensure that the relaxation stabilizes artel' as few as three iterations. Finally, we

demonstrate the application of the full theory for image curves and texture flow.

Throughout we rely on a number of organizing principles.

• Independence from the detailed structure of the sampling. Ali analysis is appli­

cable ta bath regular and random sllmplings of the image and image properties.

• The avoidance of arbitrary thresholds. Ali decision procedures within the

designed systems are based on the LogicalfLinear algebra, and thus ail non­

linearities depend on contmst sign.

• The need to stabilize the location of discontinuities. Throughout, discontinuities

in the image are either explicitly extracted (e.g. as edges and lines) or are

stabilized so that the locations of boundaries in the output coincide with their

locations in the image.

• Efficient exploitation of massive parallelism. Ali operations in the final systems

are local sums augmented by simple, pointwise non-linearities. Ali operations

7
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1. Introduction

can thus be implemented with sllllllolO feed·forll1<lI'Il netll'Ol'ks of simple, inde­

pendent computationu/ uni/s.

As a result of these principles we suggest that this work constitutes a computational

theory of early vision. Although it is outside the context of this document, we also

believe that these ides are relevant to a theory of the organization of processing in

mammalian visual cortex.

1.1 Claims of Originality

• We define the dass of early vision problems which this theory addresses as

the extraction of discrete descriptions of cross-sections through fibre bundlcs

(a genera\ization of graphs of functions). The dass of problems covered thus

encompasses static image maps, optical f10w and three-dimensional vision.

• A new kind of discrete representation (thick traces) of continuous structures is

defined and analysed. We condude that this is better than traditional rcpre­

sentations for early vision processing because it is a Jlurely local reprcsentation

which nevertheless al10ws for the straightforward recognition of boundarics and

discontinuities, points of fundamental interest for early vision.

• An algebra for reasoning in the context of \incar opcrators is dcvcloped. The

combinators ofthis new algebra, the LogicaljLincar algebra, exhibit both Boolean

and piecewise \inear properties.

• Smooth approximations to the LogicaljLinear combinators are developcd which

al10w for reasoning with uncertainty. This approximation is an interpolation be­

tween \inear combination and the absolutc LjL combination prcviously dcfined.

• Local LjL operators are designed which dctect bright and dark \ines and cdgcs

in images. These operators accurately catcgorize these features and operate

stably in the presence of multiple curves and end-points. They are dearly good

approximations to the thick traces of the underlying image curves.

8
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1. Introduction

• We formalize the relationship between geometric models (e.g. straight !ines)

and cross-sections of fibre bundles on images. The resulting analysis clarifies

the criteria which may be used to recognize significant geometric structures

among the outputs of image operators.

• Relaxation labelling is proposed as a theory for extracting these geornetrically

significant structures from image operator responses. With the analysis de­

scribed above we show how to guarantee that the fixed points of a relaxation

process are thick traces of geometric models. This involves the augmentation

of the support network with L/L combinators.

• We demonstrate the viability of this theory by applying it to two distinct early

vision problems: the extraction of image curves with orientation and curvature,

and the interpolation of texture f10w fields with orientation, curl and diver­

gence. The resulting outputs are shown to be stable and accurate, and locate

boundaries and discontinuities with precision.

9
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Physical theories, or their models, are usually deseribcd in tenns of continnons math­

ematics. When represented on a digital computer however, the data involved are

represented on fini te, discrete point-sets: samplings. What then, is the relationship

between properties defined in the continnons spaees of Oll!' theories and discrete sam­

plings of those spaees?

Sampling theory [Raj6S] and nnmerical analysis [BurS9] are two fields that address

this question. While they are both relevant to vision, we seek to develop a means of

thinking about the process of discretization whieh exposes aspects of the sampling

process not often considered in these fields. In particular, we wish to determine how

the choice of representation can affect our ability to reason about the continnity of

the sampled data. This aspect of the problem is extl'Cmely important for vision. To

clarify the the development in this chapter we introduce an example relevant to the

representation of image data. We will consider the question of representing a graph

of the orientation of a piecewise smooth curve in a planaI' image. This example will

then continue through the thesis, evolving with the development.

Example 2.1 Consider a piecewise differentiable, continuons plane curve 0 : S ~

IR2 parameterized by arc-Iength where S i~ the interval [D, eJ. When the tangent

T(S) =o'(s) is expressed in polar coordinates we have a piecewise continuons func­

tion 8(8), the direction map (speed is constant). Corners in 0 will appear as step

discontinuities in 8 (see Fig. 2.1).

Considering the general problem of representing functions on a continuum, we

start with a definition

Definition 2.1 A sampling of a continuum X is an ordered set of distinct values

X = {Xi E Xli =F j "* Xj f. Xj V

lNote that the continuum IR" CI'" be described Ils ail orclerecl point.set ancl thu. i. a valicl, if

10
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Figure 2.1: A piecewise differenUable plane curve Cl! (a) has tangent T and
normal n. When expressd in polar coordinates, the tangent vector T has a
direction (J (b) which can be graphed over the arc-length s of the curve. Note
that a corner in the curve Cl! appears as a discontinnity in the direction (J.

Throughout the following work, we will assume that all spaces X being sampled are

path-connected topological vector spaces with Riemannian metric [Spi79, Arm83].

Using such a sampling, functions are often discretized as follows.

Example 2.2 Given a function on met1'Ïc spaces f : X -+ Y, and a sampling X
of the domain X, a diseretization Î of the function f is given by the ordered set of

values

Î = {fi =lx f(x) l1Ii(X - x,) dp(X) 1Xi EX},
with p(X) a measure on X. 11I,(x) is known as the point-spread funetion of the

diseretization. If Vi,j: 111, = 111il and 111 and It(X) are sufficiently well-behaved then

this operation is a convolution.

Perhaps the simplest such discretization is given by the Dirae delta funetion

llIi(X) = c5(x), which gives the discretization fi = f(x,) by definition. In general,

if the function represents sorne Platonic property of the real world (e.g. air tem-

counterintuitive, sampling of itself. The indexed notation ("'i) used for describing elements of the
sampling set should not be taken as implying the cOllntability of j(. It is simply usoo as a means of
specifying that the point "'i i. in the sampling j( •

11
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2. Diserctization

Figure 2.2: The Voronoi diagram of a two-dimensional space X is shown. The
diserete points Xi E X are nse" to partition the spaee into rcgions whieh are
doser to Xi than any other point Xj. There is a Voronoi ecll Xi C X associated
with each point Xi.

perature), then any measurement of that property is, in erreet, a spatio-tempoml

diseretization of the funetion (i.e. a sampie of the value at some definite point or set

of points in spaee-time). The point-spread funetion captures some of the inexactlless

of the measurement process.

Example 2.3 (continued) COliSidel' the direction 0(.0) of the plane curve o(s) over

the closed interva! S = [D,l]. The integer samplillg on IR then gives the samplillg

Si = i for i E {D,l, ... ,liJ}. In this case, the Dirac discretization of O(s) is givcn by

Oi - O(Si) = O(i).

Note that Oi is undefined if 0 is not continuous at i.

Since a sampling X is used ta represent the continuum X, we assert that each

point Xi E X represents a distinct subset of the continuum. A natural partition such

that each such subset is a neighbourhood of Xi is given by the Voronoi diagram of the

sampling.

12
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Definition 2.2 [Aur91, Con93] Given a sampling X of the Riemannian metric space

X with distance metric d(x,y), the VOl'Olloi cLillgram (also known as the Dirichlet

tiling) is a partition of X into disjoint subsets, the VOl'Onoi cells, such that

X; = {x EX l"'xi E X: xi:l Xi and cL(Xi,x) < d(xj,x)}.

We cali the point Xi the kernel of the cell Xi.

Since there is a one-to-one mapping between kernel points Xi and Voronoi cells Xi, we

can assert that Xi represents ail of the points in Xi (and vice-versa). This relationship,

in which a partition of X is described by a discrete set of points, will be fundamental

to our analysis of the relationship between a sampling and the metric space being

sampled.

Note that in the strict sense, the definition in Def. 2.2 does not partition X, since

the boundaries betwcen cells are not assigned to a unique ccli. This detail is especially

important for sparse samplings (see below). The ordering required in Def. 2.1 serves

to assign these boundaries, with boulldary points taken to be members of the lowest

numbered Voronoi cell for which they are limit point....

Definition 2.3 [Con93] The nulius p(Xi) of the Voronoi cell Xi is the distance

p(Xi) = limsupcL(a:i,x).
xeXi

The covering radius of the sampling X is then

p(X) = mal' p(Xi).
ZieX

We will say that a sampling is S]UlrSe if and only if

min p(X;) > O.
x,EX

Clearly, finite samplings [Raj68] are sparse, whether they are regular or random.

13
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Example 2.4 (continued) Consider the domain S of ct. The Voronoi cells of the

sparse sampling Si = i on this space are simply the interv:\ls

Si = [i - 1/2, i + 1/2) n S,

assuming the metric d(x, y) = lx - yi. The l'adius of this sampling is then 1/2.

Note that we have implicitly allowed the continuum 1.0 be considered as a sampling

of itself. It is clear that for this sampling X = X we have

Xi = {:Ci}'

With this in mind, we can determine whether or not. a proposed discretization of a

property defined on the continuum is "reasonable."

Definition 2.4 Given a continuum X consider the relation P(S) where S eX. If

there exists a relation p(S) for subsets SC X such that

X = X =} P(S) <:} p(S)

then P is a valid discretization of P. If there exists a function j(S) for SC X such

that

X = X =} J(S) = j(S)

then Î is a valid discretization of J.

This definition clearly agrees with standard pl'aclice. For example, the Dimc

discretization described in Ex. 2.2 is a valid discretization since

J(Xi) = r J(x) <S(x - Xi) dx.lx

by definition of the Dirac delta <S(x).

Referring to vision for a moment, the c1assieal discretization of an image on a

regular grid is simply a special case of this general formulation.

14
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Example 2.5 For a 2-dimensional image 1 : X --+ Y defined on X = [0,1] x [0,1],

a regular grid (a sampling) is given by Xi; = «2i - 1)/2n, (2j - 1)/2n) for i,j =
(l, ... ,n). A digital image Î is derived from the image / by sampling / on X ­
{Xij EX}. The Dirac discretization of the image fllnction is then given by Î ij ­

/(Xij).

ln sorne cases, however, we cannot use this definition directly, but must instead

rely on a limiting process. ln that case, considel' a sampling X of X. Now, consider

a sequence of samplings X = (XI,X2 , ••• ) of X such that Xi C Xi+! and

,lim (J(Xi) = o.
0-100

We will cali such a sequence a tlecrellsing sequence of samplings of X. If we consider

a function Î defined on a sampling, then the limit of j over a decreasing sequence

will giv<' the function f to which it is eqllivalent. Analogously, a relation P which

selects subsets of the sampling similarly converges on subsets P of the continuum.

For example, it is clear that for a decreasing sequence of discretizations X we can

conclude that

{Xi} = ,lim Xi.
'->00

As a shorthand for limits taken over such a decreasing sequence of samplings, we

adopt the notation p(X) --+ O. Thus the limit above becomes, simply

{Xi} = lim Xi.
p(X)->O

We this in mind, we note that the validity test does not carry with it a guarantee

of uniqueness. ln fact there may be a number of different valid discretizations of even

the simplest properties. Consider again the discl'etization of a function on X.

Example 2.6 An alternate valid disc1'etization of the continuous function f : X --+ Y

15
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on X is given by area averaging, in which

Ji =
fx. J(x) rll/(X)

Vol(X; )

, where Jl(X) is a measure on X.

To prove this for X = Y = IR we rcfer lo the flll1damcntal thcorcm of ca1clll11s

[Spi65)

t J(x) rlx = F(b) - F(tl).

Therefore

= F'(Xi) = J(Xi).

The proof of the general case when X and Y are arbitrary metric spaces can he found

in [Spi65).
~.

lim fi = lim
( ..... 0 (-+0

= lim
.-10

fb,lr;) f(3:) ri:\'

lb. (Xi)!
F(Xi +C) - F(a'i - C)

2c

•

~•

This method has the advantage over the Dirac discretization in that it incorporates

ail values of the function f(x) on Xi in order to form.f;. Fllrthermore, for this

discretization the implicit point-spread functiol1 is a c1mmctcristic function of the

Voronoi cell

{

IfVol(Xi) if x E Xi,
l1Ii(X - Xi) =

o otherwise.

As p(X) -+ 0, this function converges on the Dirac delta o(x - Xi). In general,

any point-spread function l1Ii(X) which reduces to the Dirac delta over a c1ecreasing

sequence of samplings makes Ex. 2.2 a valid discretization.

For example, for the plane curve in Ex. 2.1, the length averaging of direction is

obtained by

1
i+I/Z

0; =. O(s) eLs.
'-1/2

And for the image sampling in Ex. 2.5, the Voronoi cells Xii are squares centered
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around Xi;' and a spatial averaging discretization is given by

Î;- = 2.../' ( I(x) tlx dy.
J n2 J)',

A'J

So far, we have only considered valid discretizations. In order to understand how

the definition above restricts possible discretizations it is useful to introduce an invalid

discretization.

ExampIe 2.7 Consider a discl'etization of f(x) based on convolution with a Gaussian

kernel

If 0' is constant for ail discretizations, it is easy to see that this is not a valid dis­

cretization since Iï(x) = (G. *J)(Xj) =F J(Xi) for 0' =F O.

If, however, instead of a fixetl 0' we vary it so that 0' oc: p(X), then this discretiza­

tion is valid. This is, in fact, one definition of the Dirac delta, namely

o(X) -

•

t •

In essence, if limp(g)-+o lII(x) =o(x) then the discretization by convolution with 1II is

valid. This condition is true for both the area averaging above and the 0' oc: p(X)

case of the Gaussian convolution.

Now consider the problem of discrt:lizing arbitrary subsets of X (i.e. choosing a

subset SC X to represent the subset S C X). An obvious approach would have the

subset S C X discretize to the set of points Xi E X fol' which Xi E S. Although this

is a valid discretization, the Xi selected do not always coyer S. Coverings are the

fundamental building block of topology, so in order to represent or at least reason

about topological properties such as connectedness it is necessary to ensure that S
covers S.
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2. Discretization

F= Y

, , , , , ,
, , , , , ,

, , , , , ,
, , , , , , B X

cg =(X X Y. n, X)

Figure 2.3: A product bundle ~ is the shown as ils total srace E, which is the
Cartesian product of a base space B and the fibres F. This can be thought of as
just a high dimensional vector srace. A regular discretizatioll of both the Im"e
space and the fibres is shown by the dols.

Definition 2.5 The closed subsct S of X is discretized by the subset SC X where

The set of Voronoi cells Xi E Sforms ail irreducible coverillg of S .

Significantly, this is also a valid discretization since for X =X

S = {x E X 1 { x } n 5' # 0} - 5'.

2.1 Fibre Bundles

The regular sampling of continuous images pl'esented above is the traditional domain

on which early vision algorithms are formulated. However, often ignored is a second

kind of "discretization" inherent in digital systems, lhe quanlization of the values

measured (e.g. image intensities). Rather thail cOllsidering these as a separale pro­

cesses, we introduce a formai model of the discretization of functions and images

which combines both this spatial samplillg and lhe quantization of values in a single

structure. To do this we introduce fibre bundles.

18



•
,

••

•

2. Discretization

Definition 2.6 [Hus66] A fib7'e bllllllle is a triple ~ = (E, 71', B) of a total space E, a

base space B, and a projection 71' : E -t B.2 The expressions E«() and B(ç) may be

used ta refer to the total and base spaces of~. For each b E B, the space F = 71'-I(b)

is calIed the fibre F over b. A bundle of the fOfln (B x F, 71', B) where 71'(b, f) = b, is

known as a product bundle. If the base space B of a bundle is the domain X of an

image 1 : B -t F then we will refer to t.he bundle as an imllge bunllle.

We adopt this formalism because of its descriptive ac1vantage in dealing with the

relationships between the base and fibre spaces and the natural association between

cross-sections of a bundle (described below) anc1 the problems that one faces in early

vision. At times it may be siml'1er to think of the fibre bundles we use-product

bundles of vector spaces-as simply high dimensional vector spaces.

An immediate consequence of this definition is that vector functions may be iden­

tified with certain subsets of the total space.

Definition 2.7 [Hus6G] Given a vector function 1 : B -t F, we form the natural

product bundle ~ by taking ç = (B x F,7I',B) and 71'(x, y) = x for (x,y) E B x F. The

mapping 1 is then a cross-section of the bundle over any domain S c B, where the

domain of 1 is identified with the base space of the bundle and the range with the

fibre.

For the purposes of this work, we will work with the point set which corresponds

ta this mapping, the trace

TRU) = {(x, I(x)) E E(€) 1x ES},

This is also calIed the grapli of 1 on S

Note that every function corresponds to a cross-section in sorne product space, and

vice-versa [Hus66]. For convenience, we will therefore sometimes use the same symbol

ta refer to the cross-section and its equivalent function. Furthermore, if E(ç) is

2The bundle eis often identified simply Ils .. : E -+ B, since this expression contains ail of the
components of the bundle.
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(a)

e

(b)

x

•
Figure 2.4: The direction maplJ : S -t IR for a plane cnrve 0' has two dilfcrent
natural product bundles. (a) If wc lise the interval S as the base "pace B = S,
then the direction mal' is a cross-section in the total space S x IR. If instead,
(b) we treat (l( as a submanifold of the base space B = X x Y then the direction
mal' is a cross-section over (l( C B in the total space B x m..

a topological vector space with Riemanllian metric, the cross-sections induced by

continuous functions are also differelltiable submanifolds of the total space [LanB5J.

Identifying the cross-section as a manifold will be essential in sorne of the development

below.

•

•

•

•
•

Example 2.8 (continued) The natul'al product bundle for a particulaI' physical or

geometric mapping is not always unique. In l'articulaI', it depcnds on the choice of

the base space used to express the function. We will describe two possible bundlcs,

e. and e", associated with the direction mal' of a plane curve.

For the plane curve (l( : S -t m.2, the direction mal' °:S -t m. has the natuml

product bundle e. = (8 x m., 11'" 8) where 11',(5,0) = 5 (Fig. 2.4a). The function °is

then a cross-section of this bundle.

We can also choose B(ç,,) = m.2 as the base space of a natural product bundle for

the direction mal' of an image curve since cr is a submanifold of m.2 • This leads to a

bundle in which ç" = (IR2 x m.,11'",IR.2 ) and 11',,(x,y,0) = (x,y) (Fig. 2.4b). The mal'

6 is then defined only over cr C m.2 • >
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Figure 2.5: The trace of fnnction f : X -t Y in the natnral product bundle
e= (X x Y, 7f t X) is the cross-section {(x, f(x)) 1x EX}. When the bundle is
discretized, with discrete total space Ë = f( x Y, then the cross-section can be
represented as either (a) the thin trace, in which the V01"Onoi cell Yj through
which f crosses Xi is chosen from each libl'e, or (b) the thick trace, which includes
ail points eij for which the cross-section intersects Eij.

2.1.1 Discretization of Graphs: Discrete Traces

We now return to consideration of the discretization of functions, but this time from

the point of view of the natural product bundle. The first step is to define a sampling

of the bundle.

Definition 2.8 A discrete prodllct bllndle { is given by { = (Ê t 7f,Ê) where Ê =

Ê x ft' and Ê1 and ft' are samplings of the base space B and the fibre F respectively.

When we wish ta separate the samplings Ê1 and ft', a point in Ê is referred to as

eij = (Xi,Yj). The projection is given by 1l"e(ei;) = Xi. We refer generally to the

discretizations of cross-sections of discret,e bunclles as discrcte tTllces.

Now consider the discretization of the cross-section f : X -t Y, a bounded,

piecewise continuous function with compact support on X. Given a sampling of the

total space Ê =X x Y, one discretization of the function f is given by what we refer

21



•t

2. Discretizatioll

1.0 as the thin trace (see Fig. 2.1.1)

THlN(f) = {eij E Ê 1J(Xi) E Yj } .

Thal. is, for each sampied fibre }', choose the kernel point (Xi,Yi) closest to the

intersection (Xi,f(Xi))'

Theorem 2.9 Tlle thin trace TIIIN(f) is a mlic/ C/iscl'etizatioll ofTR(f).

This can be verified, since for .'Î{ =X,

t

THIN(f) = {eij E Ê 1J(Xi) E Yj }

- {(x, y) E El J(:c) E {y} }

- TR(f). •

•

•

••
•

When the sampling Y is regular, this definit.ion is equivaient to a reguiar sam­

pling of X with Xi E X and quant.izat.ion of J(Xi) by l'Ounding. This is exactiy the

representation of images produced by digital camcras and most oftcn used in image

processing.

Example 2.9 (continued) Consider t.he discrctization of the direction fundion °:
S~ IR by the Dirac delta function so that

Oi = O(i).

This is c1eariy just the interscction point. of °with thc fibre ovcr i. If this value is

represented in a digital computer by rounding 0i to the nearest representable vaiue

(e.g. a f10ating point numher), then the set of vaiues

TmN(O) = {(O,OO),(l,OI)""}

is the thin trace of f) in the natural produd bundle (. = (S X IR, 71'" S). Since the

sampling S is regular, this can he represented as just the sequence of rounded vaiues
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(00 , Olt •..). Considered in this way, the f10ating point numbers represent a very fine

sampling of the range of O.

An alterna.te discretization is given by the thick trace (see Fig. 2.5b), which will

become the focal point of this thesis.

Definition 2.10 The thick tmce of the funetion 1 on €is given by

THICK(J) = {Cij E Ê 13x E X: (x,J(x)) E Eij } •

Thus, every Voronoi cell in the sampied total space Ê through which the cross-section

(x,/(x)) passes is represented in the thick trace by its Voronoi kernel. An obvious

consequence of this definition is that t.he thin trace is a subset. of the thick trace.

Theorem 2.11 The thick trace TIIlCI<(J) is a vaJjd discretization o{TR(J).

••
•

For X =X,

THICI<(J) = {Ci; E Ê 13x E X: (x,/(x)) E Ei; }

= {(x,y) E Ê \3x E X: (x,J(x)) E {(x,y)} }

= {(x, y) E El J(x) = Y}
= TR(J). •

•

•

••
•

Example 2.10 (continucd) Since there are two distinct product bundles for the

direction map, there are two distinct representations for the thick trace of the map

over a particular curve.

The thick trace of 0 in the bunc1le~. is t.he set. of Voronoi cells Ei ; which intersect

the curve 1. = {(s, O(s)) 1sES}. In this case, that implies that on each fibre

'II";I(Si) we include all cells which overlap the interval [infs, O(s),suPs, O(s)] where

Si = li - 1/2, i +1/2) n S.

Alternatively, the thick trace of 0 in t,he bundle ~o can also be calculated. This time
.. .. 2 ...

10 = {(a(s),IJ(s)) 1SES}, with the sampling of the total space E(~o) = IR. x IR.
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(Le. the image domain is samplcd as pixels and thc dircctions are as abovc). For

this bundle, the projection 1I"u(TIIICI-:(u)) is the sllbset discretization of 0 on n\~,

while on each fibre 11";;1 (bi ) over this subset we again have an interval bOllnded by the

minimum and maximum values of 0(5) fol' which 0(5) E Bi.

Note that Canny's algorithm fol' edge detection (Can86], produces an image po­

sition to direction mapping which is single-valued fol' edge points in the image. Thc

edge points are chosen by locating image points which give laterally maximal edge

matches. In terms of thin and thick traces then, the Canny algorithm produces a thin

trace of the direction mal' OlIer the thicl; trace (in faet. the discrete sllbset) of points

in the image (the base space) which fall on the curve of latcralmaxima. We will show

that one consequence of this choice of representation is that algorithms such as this

cannot properly distinguish either comer points or crossings. This ina<iequacy is an

inherent property of the choice of representation.

In many cases there will be a clear preference fol' one of these representations

over the other. With digital images, for example, users normally prefer thin trace

representations because of the possibility of representing the base-space implicit1y

due to the one-to-one B -+ F mapping (e.g. for compact storage). Hence, from

this perspective, the usual representations of images on digital storage media are ail

thin traces, where the indices of points are implicit and values are arranged in a

rectangular array in memory.

2.1.2 Discrete Traces and Continuity

As representations, both thin and thick traces represent an equivalencc c1ass of func­

tions which could have generated the tmce. We refer to this c1ass as th" functions

underlying a discrete trace. Thus, given a thin 01' thicl, trace, we may draw ccr­

tain conclusions about the functions which might undel'ly that tracc. In many cascs,

a preference for one representation 01' another hinges not simply on the amount of

memory needed to store it, but on the conclusions which can bc drawn about these

functions. In particular, we will show that whcn continuity of the functions in the
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Figure 2.6: Connectivity of salllpied spaces is defined in terms of contact
between the Voronoi cells (bonndaries dclifllited with dotted Iines). If the contact
is over an entire face, then thc point.s are s/l'tJny/y conncc/cd (heavy Iines). If
the point of contact is a single point, then the points are weak/y connected (light
Iines). The neighbourhood of a point consists of all of the points to which it is
connected (clark or Iight slmded cells). For a rectnngnlar grid, these concepts
are familiar as .{-conncctctlnes.~ and 8-conncclctlness.

equivalence c1ass is not assumed a priori, then the thick trace is a better representa­

tion since il. allows one 1.0 investigate the continuity of the c1ass in a way not possible

with thin traces.

The focus of this analysis is the relationship between the connectivity of discrete

traces on sparse samplings and the continuity of the underlying curves. Before this

relationship can be clarified, we must state clearly what we mean by the connectivity

of a sampling.

Definition 2.12 Given a spal'se sampling Ê (i.e. minp(Ei) > 0) the connectivity

graph of Ê is a graph on the vel'tices { Ci E Ê} with the edges representing direct

contact between Voronoi cells. The stronD connectivity graph C'(Ê) is formed by

including an edge (ei, ej) whenevel' Ei and Ej shal'e a common face. The weak con­

nectivity graph CW(Ê) is fOl'med by including an edge (ei, Cj) whenever Ei and Ej

share any common limit point.

Note that the traditional notions of 4-connected and 8-connected graphs on grids

are subsumed by these definitions, with 4-connectedness strong and 8-connectedness

weak (see Fig. 2.6).

Interestingly, for generic (i.e. random 01' randomized) samplings, the strong and
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weak cases are equivalent. This al'Ïses from the observation that a weak conncction

which is not equivalent ta a strong one can only OCCllI' al. vertices with more than

three incident edges (i.e. there are al. least four points equidistant from the vertex).

This occurrence is of vanishing probabilit.y fol' randolll distl'Ïblltions of kernel points

[?J. Thus, although the strong/weak distinction is important for work on regular salll­

plings, il. is largely irrelevant for il'1'egnlar salllplings. Fol' this reason, we will ignore

the distinction (and distinguishing sllperscl'Ïpt) and assume the weak connectivity.

Note that the connectivity graph Ims only been defined for sparse samplings. Thus

rather than reiying on Def. 2.4 we will instead reason directly with the connectivity

graph. ln particular we will prove that the connectivity of this graph is equivalent ta

the path-conncctedness of the space on which il. is defined.

Definition 2.13 The connectivity graph C(S) of a sparse sampling subset S C É

consists of all vertices { ei ES} and l'li edges (ei, ej) E Clé) where bath ei, ej E S.

The sparse sampling subset Sis conncc/cd if and only if for 0111 pairs ei, ej E Sa finite

path exists in C(S) from ei ta ej.

Theorem 2.14 A sparse sampling 8nbset S C É is connectec/ ifanel only if the union

of the Voronoi cells

u = U Ei

s,es
is path-connected.

Observe that each Voronoi cell Ei is both tl'Ïvially path-connected and has a connected

connectivity graph. Il. is 01150 clear thnt the union of a cell Ei and sorne path-connected

set of cells { Ej 1i :f j } is path-connected if and only if there is sorne limit point in

cornrnon between Ei and sorne Ej. This condition is equivalent 1.0 the assertion that

3(ei, ej) E C(É). Thus by induction we conclude thal. the connectivity graph of a

finite set of Voronoi cells is connectee! if and only if their union is path·connected.

To show that this conclusion extene!s 1.0 infinite subsets as well il. is only necessary

1.0 consider that U is path-connected if and only if there is a path JI of finite length

between any two points in U [Al'In83]. The if part is trivial, since a finite path in
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the eonnectivity graph is a path in U. To prove only if, it is neeessary 1.0 consider

a bounded neighbourhood Np of the path l'. Since the volume of the neighbourhood

is finite and the volume of each Ej in .5' is non-zero, this neighbourhood has a finite,

irreducible eover in 8. Since eaeh Ej in t.his cover is path-connected and Ei n Np # 0,

the cover is itself path-conneeted and thus has connecl.ed graph. Thus for every finite

path p in U there is a finite cover of l,in !,. with eonneeted graph. •

This definition has an immediate and important consequence.

Theorem 2.15 If t1le set S c E is patiJ-connectecl t1len its cliscretization 8 C Ê is

connected for any sampling

From Def. 2.5 we know that

IfEj E 8: Ej n S # 0

and sinee eaeh Ej E 8 is path-eonnected IVe eonclude that a finite path exists from any

point pEU E j to any q E S. Thus, sinee S is path-conneeted, U E. is path-eonneeted

and by Thm. 2.14 this is equivalent to the assertion that the eonneetivity graph C(8)

is eonnected. •

•

Now we can explicitly state the crucial relal.ionship between the continuity of a

cross-section and eonnectivil.y of the thick trace.

Theorem 2.16 Let f : S C B ~ F be a continuous cross-section of t1le total space

E. If Ê =Ê x ft' is a sarnpling of E, t1len:

1. T1Ie tllick trace THIC(((J) is connectecl;

2. Tlle discretized domain 8 is cOllllected;

Each of these follow immediately from Thm. 2.15. What will be most important

for vision applications is the folloll'ing.

Corollary 2.17 If a t1lick trace is disconnectec1 t1lell all functions underlying t1le

trace are discontinuous.
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Moreover, the local conncc/il/i/y of the thicl. trace can be related to the local

continuity of the underlying functions. III particlllar, boundaries of the connectivity

graph of the thick trace correspond to bouudary points allli poiuts of discontinuity of

piecewise continuous mappings. To see this, consider a piecewise cOlJtinuous mapping

f as a collection of continuous patches {glo"'} which coYer J. Thcn, thc local

connectivity of points in THICI\(g,,) allows one 1.0 idcnt.ify the boundaries of the

patch g,.

Corollary 2.18 Consider tlle connectec/ set 01' point,s li = TlIICI\(J) n 71'-I(b;) on

the fibre 71'-I(b;) {or fa continuous cross-section. II'7I'-I(bd is a neigllbouring fibre

(i.e. (b;,bk) E C(Ê)) but li cloes not. Ilal'e a neigllbollr in 71'-1 (bk)

then UT; Ei contains a bounclary point (or Cl'elY canUnllous pal,cll unc/erlying tlle t.1Jick

trace.

Thus we have both global and local conclusions about the continuity of the cquivaicncc

c1ass of mappings underlying a thicl. tracc, and a simple method for recognizing whcn

a point in a thick trace is al. the boundary of its domain. Moreover, thcse propertics

depend only on the intrinsic conncctivity of the tl'ilce. These are the kcy proJlcrtics

that make the thick trace important for vision.

Example 2.11 (continued) Consiclcr the thick trace ill E(~.) of a picccwise smooth

curve with a corner al. s = Sd. This rcsult,s in a local discontinuity in dircction 0(8) at

Bd (Fig. 2.7b). Note that in the thicl. tl'ilCC there are two disconnected points in the

discrete fibre over Sd. Each of these points reprcscnts a boundary of a smooth patch

covering the function O.

In contrast, consider the thin trace of the same function (Fig. 2.7a). Thcrc are

a number of points where the thin trace is not locally connectcd, only onc of which

corresponds 1.0 a discontinuity in thc IIndel'1ying fllnction.

In contrast 1.0 the relationship betwecn continuity of functions and thc conncctivity
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s

Figure 2.7: A corner in the plane clll've 0' appcars as a stcp discontinuity in
the direction mal' (J. The discontinuity lIlay apJlcar as a disconnected point in
both thc THIN (a) and Tille" (h) tracc.~ of the dircction mal', but in only the
thick trace does such a discontinuit.y nnamhiguously indicate a discontinuity in
(J. Notice in (a) that the thin tracc is disconnccted wherever the derivativc is
high, and not only Olt discontinuitics.

of thick traces, is the observation that no snch relationship holds for thin traces.

Proposition 2.19 In general, a C/iSCollllcctec/ tllin trace TmN(f) does not indicate

a discontinuity in J.

•

•

A disconnected point in the thin trace may arise from either a large derivative or a

true discontinuity: these cases are indist.inguishable with thin trace representations.

This can be seen both in Figs. 2.1.1 and Fig. 2.7a.

ln contrast with the thick trace, the continuity of f does not constrain the struc­

ture of the thin trace at ail. Any thin trace (i.e. a cross-section of Ê such that

there is exactly one eij E THlN(f) fol' each i), corresJlonds t.o at least one continuous

function. Such a function is easily const.ruct.ed by just connecting the kernel points

eij E TIllN(f) for an nearest neighbours on Êl. Worse yet, a.ny interpolation between

these points which does not intersect any other fibres will result in the same thin

trace, including those with significant wandering between the bi E Êl points. So,

the thin trace THIN(f) in and of it.self l'l'ovides no int.rinsic information about the
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continuityor discontinuity of those fuudious uuderlyiug it..

If we add additional constraints (e.g. bouuds3 ou the derivatives of J or the

Shannon bandwidth conditiou) theu il. is possible 1.0 draw conclusious about the

continuity of a cross-section from the thin t.race, but as wc have seen not without

such extra conditions. Thus iu comput.at.ioual sit.uatious iu which we need to verify

continuity from discrete traces, a thicl, trace is a more useful representation than a

thin trace.

• 2.1.3 Other Constraints

••
•

•

•

••
•

The relationship between continuity and counectivity provides a stroug argu~llent fol'

adopting thick traces for certain pl'Oblems. Even iu cases where this may uot be an

issue (e.g. hounds on derivatives l/l'e available ext.ernally), t,here are other rClL~onS to

prefer a thick trace.

It should he clear that computation of the t.hicl, t.mce ou a sampling is a plll'ely

local computation. If a single processiug element, is assoeiat./lc\ with each samplec\

point in the total space, then it.s local deeisiou procec\lII'e cau be summarizec\ IL~:

does the curve intersect my Voronoi cell'? The faet. t.hat. the metrics we consider

are strictly Riemannian guarantees that this is a [llll'ely local computation, requiring

only knowledge of the position of the bouudaries of the cell (lixec\ by the sampling).

The thin trace is, however, somewhat less local in t.h"t it requires the iut.egration of

information over the entire fibre. This local selection procec\ure can he a hottleneck

in sorne systems (e.g. [PM91]). We suggest that the thick trace is a hetter match for

the representations stored in massively parallel, distl'ihut.ed systems such IL~ SIMD

parallel computers, neural networks or the hrain.

Another advantage of of the thicl, t.race H'pl'eseut.at.ion is tlmt it can represent a

richer class of geometric structu1'CS than the thin trace. The faet that multiple points

(connected or not) on a discrete fih1'C can he representcd in the thick tmce, allows for

the accurate depiction of structures which c\epend on Illulti-valued mappings from the

3These bOUllds cali be derived froll\ the ",dii of 1.1", dis<:rl,ti.atiolls of the base I1l1d fibre "1"""'"
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Figure 2.8: Both self intersections (a) and intersections of independent curves
(b) can cause significant problems fol' l'epresentations which insist on assigning
a single orientation to each pixel in an image (e.g. [CanaO]). The fact that thick
traces can include multiple points (connected 01' not) on a single fibre allows for
the accurate representation of snch points.

base space 1.0 the fibre. Thus a thicl, trace can accurately describe self-intersections

and transparency in ways that t.he thin trace cannot.. In many cases, especially in

early vision, a strict assumption of single-valued mappings may lead 1.0 incomplete

theories of the phenomena being examined.

A natural computer representation for thicl, traces is 1.0 assign one bit pel' point ei

in the total space E(€) of the bllndle €. A description of the cross-sections which exist

in an image would then be given by setting ail bits 1.0 zero except those which are in

the thick trace the cross-sections in t,he image. Note that there is nothing inherent in

this representation which precllldes the independent activation of multiple, disjoint

intervals in a single discrete fibre. As we saw above, this property has important

consequences for the representatioll of discontinllolls points in the cross-section. Il. is

also useful in the representation of i1'l'eglllar curves.

Example 2.12 (continued) Note that nothing in the description of thick traces on

€o precludes the possibility that a Cllrve may intersect the fibre El; more than once.

Consider a self-intersecting cll1've sllch as shown in Fig. 2.8a. At the point of self-
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intersection, there are Iwo int.crsections het.wccn t.he clII've in E(çu) and t.he discret.e

fibre ai over the point. The t.hick t.rnct' of this cm'v" in the hundle ç" will then contain

two separate interva.1s on the fibre over t.he crossing point. Not.e thal. neither of these

intervals corresponds 1.0 a boundary in the domain of the mapping, thus this point is

not a "corner." Iilstead, we can interpret the description in tenus of the intersection

of two distinct regular patches talœn from a regular covel'ing of the irregular curvc

[dC76).

Consider instead the represent.ation chosen by Canny [CanSli). In this case, the

algorithm finds the unique "best" local direction fol' an edge al. every point. As

we have stated before, this can be considercd 1.0 be a thin trace representation of

the direction map in Ça over the imnge clll'ves. At. point.s of int.ersection, Canny is

forced 1.0 choose the "more significant." local direction and abandon the other, sincc

the representation assumes al. mosl. one direct.ion pel' position. In general though,

the smoothing inherent in Canny's approach ensures t.hat the direction chosen is not

even one of those incident on the point, but some weighted avernge. This is one of the

sources of the well-known problems in similar algorithms near crossings and corners.

One might argue that the storage and possibly computational expense is too great

1.0 justify the use of thick traces. To make this argument for early vision, one wonld

have 1.0 support the hypothesis that il. is sufficient 1.0 describe images in terms of

one-tcrone mappings from points to local structure (e.g. in regulal'ization [PTI(85)

or membrane [BZ87) models fol' surface reconstl'llction). Now that wc have a clear

alternative though, this hypothesis seems t.enuous al. best. The class of representations

we propose is one in which a number of differenl. geomet.ric st.ructures can coexist at

a point in the image. For a variel.y of carly vision problems this seems to be a

much better match than the restriction 1.0 single-valued nHLppings. For curves, the

thick trace can clearly represent crossings; fol' texture 1I0w, transparent textures; and

for optica\ f1ow, transparent motions. Moreover, the discontinuities which can be

expected 1.0 occur in each of these situations are not only represented in the thick

trace, but easily extracted.

Finally, recall that the thick trace is a Calle!' of the trace of the cross-section
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whereas the thin trace is not. This may he an important consideration if the topology

of the underlying mapping is an issne [Arm83]. While il. is certainly beyond the scope

of this work to examine ail uses that might be made of the algorithms developed, we

can at least state that a covering is an appropl'iate starting point for an investigation

of the topological properties of a geometl'ic object.

2.2 Conclusions

In summary then, this analysis has const.rained both t.he nature of the solutions we

might seek and the means of achieving them. We suggest that cross-sections of fibre

bundles are an appropriate framework for formulating many problems in early vision.

The inherently discrete nature of digital images, however, leads one to conclude that

reasoning within this framework must he implemellted on discrete samplings of the

bundles and discrete traces of cross-sections. Fol' at least a few of the fundamental

questions faced in early vision we have demonstrated that such reasoning is better

supported on thick rather than thin traces. The body of this thesis will consist of

a demonstration of means to ext.raet. and use such t.hick traces for sorne of the most

basic problems of early vision.
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In Chapter 2 we explored the l'elationship between pl'opel'ties of a function and its

description in discretely sampied spaces. In the l'est of this thesis we apply the results

of this work 1.0 machine vision by extl'acting thicl, trace descriptions from images.

The solution is divided into two sl.ages. In Part Il we show how 1.0 locate those

points in the sampled total space which accurately descl'ibe local features of the image

using local operators. Howevel', since the pl'ocess used is inherently local and inexact,

the descriptions produced are not necessal'i1y connect.ed everywhere the underlying

features are. In Part III we use the intl'insic geometry of the features thus found 1.0

combine those points which seem 1.0 be part of the same thick trace into connected

components.

In order 1.0 provide a sustained focus fol' the subsequent analysis, we will investi­

gate a classical problem which is fundamental 1.0 the development of general purpose

artificial vision systems: locatiug and descl'ibing image cUl'ves.

In Part II, in particular, we will addl'ess the problem of designing local operators

which respond only al. those image points thl'ough which a curve with a particular local

geometry passes. The resulting operal.ors are similal' to classical approaches [Can86]

in that they are built up from lineal' convolul.ions. Howevel', rather than relying

on ad·hoc post-processing 1.0 select significant l'esponses we develop an algebra (the

Logical/Linear algebra) which fOl'ma!izes the reasoning involved. With this algebra

we are able 1.0 design operatol's which select. specifie categories of curve (e.g. bright

!ines but not edges) and al. the same time verify local continuity.

3.1 Image Curves

A typical problem in early vision is the extraction of curvilineal' boundaries or edges

from a static image via local operatol's. The opel'atol' which makes this discrimination

is referred 1.0 as an "edge detectol'." The design of such operators is a problem which
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is widely considered to be fundamcnt.al to carly vision.

There is no shortage of these so-called "l'dge det.ect.ors" and "line detectors" in

computer vision. Many different. designs have been pl'Oposed, based on a range of

optimality criteria (e.g [Heu71, Can8Gj), and many of these designsexhibit pl'Opertics

in common with biological vision syst.ems [JP87). While this agreement between

mathematics and physiology is encouraging, there is still dissatisfaction with these

operators-despite their 'opt.imal' design t.hey do not. work sulficient.1y weil to support

subsequent analysis. Part of the problem is undoubtedly the myopie perspective to

which such operators are restricted, suggesting the need fol' more global interactions

[ZDDI88). We believe that mOre can be donc 10cally, and thal. another significant part

of the problem stems from the types of models on which t.he opcrators are based and

the related mathematical tools t.hat. have been invokml \.0 derive them. In this part

of the thesis we introduce an appl'Oach 1.0 operator design that differs significantly

from the standard practice, and illustrat.e how it can be used to design non-linear

operators for locating lines and edges.

The usual model used in the design of ",Ige operators involves two components:

an ideal step edge plus additive Gaussian noise. This model was proposed in one of

the first edge detector designs [HB70), and has conl:inned through the most reccnt

[Can86, Der87). Thus it is no surprise t.hat. the solnl.ioll resembles the product of two

operators, one to smooth the noise (e.g. a Ganssian) and the other 1.0 locate the edge

(e.g. a derivative).

While sorne of the limitations of the ideal sl,ep edge modd have been addressed

elsewhere (e.g. [Hor77, LZ84j), a perhaps more important limitatioll of the operator

design has not been considercd. It. is assnmcd t,hat. in vicwing a small local region

of the image, only a single section of olle edge is beillg examined. This may be an

appropriate simplification in some cont.innous li mit, but it is definitely not valid in

digital images. Many of the systematic problems with edge alld line detectors occur

when structure changes within the local support of the operator (e.g. several edges

or lines coincide). Since these singularit,ies are not dealt with by the noise component

of the model either, the linear operator behaves pcorly ill their vicinity.
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Figure 3.1: A set of potential image curve configurations which must be con­
sidered in the design of operators. An ideal image (a) of a black curve on a white
background; a noisy image (b) of a lower-contrast version of the same curve; an
obscured version (c) of the ideal image. The oval in each image represents the
spatial support of a local operator. A negative contrast line operator should
respond positively in ail three cases.

In particular, curve-detecting operat.QI·s are usua11y designed 1.0 respond when a

certain intensity configuration occurs 10ca11y (see Figure 3.1a). A signal estimation

component of the operator is then incorporated in the design 1.0 filter local noise

(see Fig. 3.1b). However, significant contrast changes are rarely noise-they are

more likely 1.0 be the result of a set of distinct objects whose images project 1.0

coincident image positions (see Fig. 3.1c). An operator which claims 1.0 'detect' or

'select' a certain class of image features should continue 1.0 do so in the presence of

such confounding information.

We propose that image operators shou1d be designed to respond positively 1.0

the expected image structure, and to nol. responrl at ail when such structure is not

present. Unless they meet both of these goals, they are useless for producing thick

trace descriptions. Simple linear operators achieve the first of these goals, but in

order 1.0 fulfi11 the second we must. incorponüe a more direct verification of the exis­

tence conditions for a given featme int.o the operator itself. We accomplish this by

decomposing the linear operator into components which correspond 1.0 assertions of

the logical preconditions for a given feat.me. When the expected image structure is

present, a boo/ean combination of these l'esponses produces a linear response, whereas

if any of the conditions are violated the rcsponse will be suppressed non-linearly. Be­

cause these operators unite elements from boolean logic and linear operator theory,
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... ..
7I(s)

Q'(SO)

Figure 3.2: An image curve a:S = (SO,SI) -t 1112 with the tangent r(s) and
normal n(s).

we refer to thern as Logical/Lineal' (L/L) operators.

3.2 Definitions and Goals

For consistency we sha1l adopt the fol1owing tel'll1inology. EIlgcs are the curves which

separate lighter and darker areas of an image-the perceived discontinuities in the

intensity surface; lines are those curves which might have been drawn by a pen or

pencil (sometimes referred to a.. bmw in ot.her work [Mar82]). Image curves are either

of these. Two independent propert,ies describe sllch image curves: their structure

along the tangential and in the normal directions. Tangent,ial1y, both lines and edges

are projections of space curves; it is the cross-sectional structure in the image which

differentiates them.

Forma1ly, let 1: m? -+ IR be an analylic inlensity surface (an image) and 0': S =
(so, SI) -+ m? a smooth CUl've parameterized by arc lellgth (sec Figure 3.2). The

orientation 6(s) is the direction of the tangent r(s), a unit vector in the direction of

O"(s), and the normal vector 71(8) is a unit, veet.or in t.he direction O'''(s).

Forrna1ly, an image curve is delined by a set of local stl'UctuJ'lLI conditions on the

image in the directions tangential and normal to the curve. The normal cross-section
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P. at the point o(s) is given by

P.(t) = 1(0(5) +t 11(5)), 5 E S,t E IR.

Definition 3.1 An image cu,,'e is a map 0: S ~ 1 such that

N(P.), the normal condition, determines the classification of the curve.•

(Tangent)

(Normal)

ois Cl continuous on S, and

a condition N(f3.) holds for ail sES.

(3.1a)

(3.1b)

•
For the purposes of this analysis, we concentrate on three kinds of image curve:

1. Q is an edge1 in 1 iff ° is an image clll've with normal condition

2. Q is a positive contrast line in 1 iff a is an image curve with normal condition••
N(P.) _ lim P.(t) < lim P.(t).

C...O- I-+U+
(3.2a)

N(P.) _ liIll P~(t) > 0 and lim P~(t) < O.
t-+O- 1-+0+

(3.2b)

3. Q is a negative contrast line in 1 iff Q is an image curve with normal condition

N(P.) _ Hm .B~(t) < 0 and liIll P~(t) > O.
1-+0- 1-+0+

(3.2c)

•

•
t

Thus, edges are order 0 discontinuities (steps) in cross-section, while positive and

negative contrast lines are order 1 discont,inuities (crea.~es) which are also maxima or

minima, respectively.

Note that in contrast to traditional definitions, the tangent and normal conditions

above are both point conditions, which must hold at every point in the trace of

1Note that the definition of a line is independent of curve orientation, while a rising edge will only
he seen looking along Q in one direction. Thus lin.es need only be pnrnmeterized over 11" orientations
while edges rCfJuire 211" orientntions.
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(a) (b) (c)

t.

•

Figure 3.3: A set of image CIII've confignrations which lIlay generate false pos­
itive operator responses. An image of an cont.rast edgc (a) shollid Ilot stimlliate
a line operatorj a impropel'1y Ol'icllted opcratol' (b) shollid Ilot be stillllliated; an
operator which does not lie on the clll've (c) shollid Ilot. hc st.illllliated. The oval
in each image represents the spat.ial sllpport of t.he local opcmlol·. A negalivc
contrast line operator s/lOultl'lOt l'CS/JOlltl positively ill allY of lhcse cases.

the curve. We thus have a ba.~is fol' designing purely local opcrators to locate and

categorize such curves in images.

Linear operators do respond when t.hese condit.ions are met. However, they also

respond in situations in which the conditions are 1101 met. Thesc responses are referred

to as false-positives. The current analysis will focus on a Illechanism fOI' avoiding three

kinds of false-positives typical of \incar operal.ors:

1. Confusion between lines {mil et/ges: Lines and edges are differentiated by their
•

cross-sections. For accu rate ident.ification the log]; al conditions on the cross­

section must be satisfied, and in ~ach case we will show that a linear operator

tests them incompletely (Fig. 3.3a).

2. Merging or interference bet1llecII IIcaTby cm'vcs: The local continuit.y of image

curves is important fol' resolving and separating nearby features. Linear opera­

tors Interfere with testing cont.innit.y by filling in gaps between nearby features

and responding significant.ly t.o clIl'ves which arc far frolll their preferrcd orien­

tations (Fig. 3.3b).

3. Smoothing out discontirmilics or' failiTlg la loclllize linc-cIlILings: The locations

of the discontinuities and end-points of a C1II'Ve arc fnndamental to higher-level

descriptions [8ie85, I<vD7li, KvD82, Koe84J. Linear opcrators systematically
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intcrfere with the 10caiizat.ioll of <1iscollt.inllolls point.s by responding whenever

the receptive field of the ol'erat.or overiilps the curve al. ail (Fig. 3.3c).

To tie a1l of this back 1.0 t.he <1isCll.,sioll of Cllilp. 2 we observe that the conditions

above can be summarized by stat.ing t.hat t.hese local operators must in isolation aet

as reasonable estimates of the strillgent. thicl, trace condition of Def. 2.10 for image

curves. Thus, idea1ly, a perfect "edge del.ect.or" shollid respond positively if and only

if there exists an edge in the image whose local description int.ersects the Voronoi ce1l

around which the deteetor is tllne<1. Each of t.he t.hree conditions above amounts 1.0 a

practical translation of one aspect. of the assert.ion that. t.he operator be a reasonab/e

estimate of the thick trace int.ersection.
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•

The three qualitatively different. kinc1s of image cnr"!'s c1efinec1 in §3.2 imply three

distinct sets of preconditions for the existence of an image cm"e. As notec1 previ­

ously, the curve description process must. respect. lhese distiuctious. Focusing for the

moment on the line condition of (3.2b), wc begin by adopling an orienlec1, linear line

operator similar to the one described iu [CanSG].

Canny adopted the assumplion of liuearily lo facilit.at.e uois" sensili"ily aualy­

sis, and relied on post-processiug t.o gnal'llnt.ee localit.y aud sclectivity of response.

He arrived at a \ine operalor whose cross-section is silllilar la a Ganssian second­

derivative, and an edge opel'ator similar lo a Gaussian lirsl del"Ï"at.ive. Nenrophysi­

ologists [MTT78, 8M84, JPS71 and psychophysicisls [81,851 have ac1oplec1 such liuear

models to capture many of the funclional properties of lhe carly visual syslem, and

the mathematics for analyzing lhem is widcly knowu (e.g. Fourier aualysis). These

models arc also attractive l'rom a comput.at.ional poiut of vieil' hecause lhey exhibil

most of the properties requil'ed of a measurellJenl opemlor for image curves. How­

ever, they also exhibit the false-posit.ive respouses dcscribed ahove (parlially shawn

in Figures 5.3 and 5.4).

To \imit these false-positives, wc will relax t.he ic~sumplion of linearity and lesl

the necessary structural conditions explicitly. This is accomplished by developiug an

algebra of LogicallLinear (LIL) Opcm!ors which allow lhese conditions to be lesled

as the operator's response is beiug coust.rllcted. TIll' result.ing responses will appear

to be \inear as long as ail of lhese condit.ions arc fnlfilled. Curiously, under lhese

conditions they will mimic the response pl'Opert.ies of "simple cclls" in visual corlex.
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4. A LogicaIfLiIl~al' Framework for Image Operators

4.1 Logical/Linear Combinators

As stated above, we wish to l'l't.aill 'L' III Ilch as possible of the desirable properties of

the Iinear operator approach whil,' alloll'illg fol' t.he kill<! of structural analysis which

can be used to categorize cllrves all<l verify contillllity. We pnrslle these apparently

contradictory goals by starting with an optima/linear operator, and then decomposing

it in a way that allows for it's reconst.ruct.ion, provided that. t.he structural design

conditions are verified.

ln l'articulaI', we

1. Begin with a linear operator and decompose it into a set of Iinear component

operators whose sum is ident.ical t.o t.he init.ial operat.or.

2. These Iinear components represent measurement. operat.ors for the logical pre­

conditions of the designed feat.lI1'e's exist.ence.

3. The overall operator response is to be positive only if these structural precon­

ditions are satisfied

4. For the range of inputs generating positive responses, the operator should act

identically to the original linear operator.

The combination of operator responses to flllfill the thirc! and fourth conditions

above can be derived from a mapping of the real line to logical values. Assume

that positive operator responses represent. confirmation of a logical condition (Iogical

TRUE) and that negative responses represent rejection (Iogical FALSE). To derive the

numeric::}logical mapping, wc adopl. the principle that. 111/ cOTlfi7'ming etlidence shou/d

be combined if the /agica/ coudil.iou holds, II/Ill cout1'lldiclory etlideuce combined if the

condition fai/s. This leads to the following set of logical/linear combinators:
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.\, A LogkaljLillcal' Framell'ol'k fol' Image Opcralol's

Definition 4.1 The Logical/Li"ftlf' ,.m"ilirlll/II/'S ~ and 'il art' givcn by

:r + 1/. if :r > 0 A1/ > 0;

y, if :r > 0 A1/ $; 0;
x~y =

;1\ if :r $; 0 AY > 0;

:1' + 1/, if :1' $; 0 AY $; O.

,r +1/, if ,r > 0 AY > 0;

:1:, if ,r > 0 AY $; 0;
x 'il y =

1/, if :r S; 0 AY > 0;

:1:+1/, if ,r $; 0 A 1/ S; O.

Before we descend into technical det.ail, it. should he not.ed t.hat these opcmtors

can be thought of as accumulating evidence for or against. a plu'l.icular hypothesis,

with positive values being evidence 'for' and negative values evidencc 'against'. Thus

if an hypothesis il requires that both of two prior hypot.heses (:c and y) he truc

then consistent positive evidcncc l'rom t.hesc inpnt.s, represent.ed by positive vaines, is

required to produce a positive ont.pul. il = :1: ~ y. Shonld this combined hypothesis

instead be rejected, ail evidence for this rejection is combined. In ail cases, the logical

truth or falsehood of an hypot.hesis is conl.ained in t.he sigll of l.he value, while the

strength of the evidence for or against t.he hypothesis is represented by the magnit.ude.

lt should be apparent that reasoning about. the signs of derival.ives (sec ~3.2) will be

Datural with this formalism.

4.2 A Logical/Linear Algebra

We DOW proceed to develop general Jll'Operties of tlwse LIL combinators and deline a

class of operators which embody l.hcse pl'Operties. With this hackground established,

we can theD move on to the devclopment of the specialized operators we will use for

early vision.

Using the combinators ~ and 'Î', we deline a gcnerative syntax for L/L expressions.

Definition 4.2 A Logical/Lincm' IIT,cl'lllm' on the veetor space X (x E X) is any

44



•
•

•

•

1.
1
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function L : X ~ Dl in the language C delilled by the grammar:

L ~ tPi(X); L~ (li L; L ~ L ~ L; L ~ L ~ L.

where each (Li is a real const.ant. ancl ench "Ji(:I') is a boullded, real-valued, linear

function.

Example 4.1 The expression

F(x,y) = x~y

defines a L/L operator F : Dl2 ~ Dl which is positive only if both x and y are positive,

in which case it evaluates as F(x, y) = :r. + y. An equivalent description of F as an

operator is given by

where ?fi is the projection operator which selects the i'" dimension of X.

There are two fundamental properties which justify the use of the term Logi­

cal/Linear expressions to describe these fOl'ms: they comprise a Boolean Algebra, and

they are linear on certain Sllbs/mces of !,heir entire domain.

To show the first of these, consider the universe of vectors U in Dl" excluding the

axes·

1
U = {x E Dl" 1Xi #- 0 }

and the subspaces {L(x)}+ ={:r E U 1L(x) > O}.

(4.1)

1

1•
•

Theorem 4.3 (Logical) Fol' the lauguilge of L/L opera tors LEe., the set of all

sets {L(x)}+ and tlleir complemeuts { L(a:) }+ = U - { L(x) }+ farro a Boolean

Aigebra with meet ~,join ~ IInd complement -.

The following equivalences can be derivecl directly from Definition 4.1, for ail

•For real-valuecl variables, t.he exclllsioll of t.he axes lIeecieci t.o clemollsl,ral,e logieal equivalellee is
not. problemat.ie beeause it. is a sllbseL of mellSllre O•
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It is easy to verify that these sets fOrIn a field lI'it.h t.he help of t.he el(uivalences above

(e.g. the equivalence of 4- and n ensures t.hat. if X and Y are members then X 4- Y is

also). Furthermore, these meet, join and complement. opemt.ors arc dearly isomorphic

to the standard set-theoretic n, U and complement. The furt.her observation thal. 0

and U are the bounds of this field (msure \.hat. this syst,em is a Boolean algebra.

•

•

•

•

••

{-LI(:r)}+ = {L I (:,,) }+'

{LI(x) 4- L2 (a:)}+ = {LI(:l:)}+ n {L 2 (a:)}+.

{LI(x) ~ L2(a:)}+ = {L I(,,:)}+ U {L2(:r)}+.

((Sik60), p. 3)

The fol1owing equivalences can also he derived direct.ly:

{a L(x)}+ = {L(x)}+ if Il > 0

(4.2)

(4.3)

(4.4)

•

•

•

•

••
•

These demonstrate that the const.ant weight.s IIi in t.he language! act as either identity

or complement and thus do not disturb t.he Boolean algebra.

Corollary 4.4 Each LIL operator IIlls an a..socia ted Boo/cali fllllCt.ioll creal.ecl /JY

substituting" and V for 4- and ~ respect.ive/y, allt! by "ep/acing eacl, Iii constlllli. witll

either the identity function ifpositive or -. (negilt.ioll) if negat.ive. Tlle truth va/Ile of

each expression ,p;(x) is TRUE if ..1';(x) > 0 alli/ FALSE ol.lIerwise.

Thus, continuing Ex. 4.1, the equivalent. logical function F for F is

F(x, y) = (,,: > 0)" (y> 0).

The second fundamental property of t.hese opemt.ors, t.heir conditional lineari ty,
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is revealed by considering the minimlll polynomials

t
(4.5)

t

1.
t

t

t

1•

where q;(x) = "';(x) if bit i in the binary rcprcscntation of j is zero, q;(x) = -"';(x)

if bit i is one. Then.

Theorem 4.5 (Linear) AII.Y LIL opeJ'ato/' L i.. linea/' on tlle subspace {Pj(x)}+

of any minimal polynomial Pj (x).

Any Boolean polynomial can be equiva!ently expressed as the join of minimal poly­

nomials or the lower bound (1) ([BM77], p. 370). Thus {L(x)}+ can be expressed as

the ~ of a group of such minimal polynomials of the l,b;(x)'s (the disjunctive canonical

form (DCF) of L(x)). Without loss of generalit.y, consider a particular such polyno­

mial Pj(x). Noting that every element "';(x) for x E {Pj(x)}+ has a fixed value and

thus fixed sign, Definition 4.1 guarant.ecs t,hat. ~ is linear on the subspace defined by

{Pj(x)}+ (for fixed sign argument,s, the branch chosen in the ~ is fixed). Thus, any

minimal polynomial Pj(x) is linear on {Pj(x) }+.

Consider nolV the DCF of L(3:). We ImolV that each Pj(x) in this DCF is both

Iinear and of constant sign on {Pj(x)} +. By the same reasoning as for ~ above, we

can state that 'tI is Iinear if it,s argument.s have const,ant sign, and thus the DCF of

L(x) is a Iinear combination of expressions which are guaranteed Iinear on {Pj(x) }+.

Therefore, L(x) is also linear on every { Pj(x)} +. •

4.3 Logical/Linear Image Operators

By extension from the arit.hmct,ic Opl'rllt.or.. , t.he L/L operat.ors are applied pointwise

to sequences of vectors or images. Thus, l'econsidering Ex. 4.1 above, the operator F

becomes

We are now ready to develop the da.... of L/L operators that we shall require to reason

about images, and begin with an example.
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Example 4.2 Suppose that the linear operators 11'1 and v>; l'l'ovide a pointwise mea·

sure of two image properties (e.g. .,h = D; and 4'2 = D;. the second directional

derivatives) which are components of a more complex image property (e.g. locating

convexity, the points where D;(f) < 0 and D;,(f) < 0). If this aggregate property

can be expressed as a logical combinat.ion of t.he signs of the linear properties, then

we can build a L/L operator <li on the image snch that.

<lI(I)(x) =

In this case, we would define

{

posit.ive,

negat.ive,

if x is a convex point;

ot.hcrwise.

, <li (I)(x) = (-D; * l)(:c) ~ (-D~ * l)(x).

••

t

•

This example reveals a dass of L/L operators appropriate for reasoning about

images.

Definition 4.6 A Logical/Lincm' coT/tllJlulioll opc7'(,10l' <li is a L/L operator on an

image 1 such that all1/Ji(I) al'e linear convolutions of the fOI'l11

1/Ji(I) = "Ji * 1 = r"'i(X - 1) l(i) dt.lx

The operation of such an operator on an image is termed the Logical/Linear convo­

lution of 1 by II/, and is written

lI>(I) - lI> * l.

Note that the !inear convolution 1/J * 1 is a special case.

Returning 1.0 Ex. 4.2, we can assert. tha!.

II/(I) - <li d

= (-D;*l)~(-D~*l)

= (-D;~-D~)*l
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thus justifying the nota.tion we will use for descrihillg L/L convolution opera.tors:

This opera.tor will produce an imagp. whose elemenl.s are positive only for convex

points of the input image.

An importa.nt rela.tionship we will use 1.0 design image operators is tha.t between

a L/L operator and its !inear redllction.

Definition 4.7 The lille/Ir retluclioll V' of a L/L operator 111 is that !inear opera.tor

which is produced by substitlltillg + fol' each L/L comhinator in the L/L operator

description.

CoroUary 4.8 Given a tlle /ineal' l'l'tillction V,(x) of a L/L operatol' l1I(x), a L/L

convolution of 111 * 1 is exactly e/Jllal to tlle /ineat· convolution of.,p * 1 if the logical

expression corresponding to tlle L/L expl'ession is TRUE.

Thus in fulfi\ling our goa.l of developing L/L image operators which reta.in sorne of the

optima! behaviour of a particular linear operal.or, we will seek 1.0 design L/L operators

which reduce 1.0 'optimal' !inear operat.ors.

Before we move on 1.0 actual design, il. will he important. 1.0 examine a. second,

equivalent definition of the L/L combinat.ors which ha.~ nseful computational conse-

quences.

Definition 4.9 The p.ul/proximale L/L c01llbirwlo7'S are given by:

X~PY - X(l- O'p(x) O'p(-Y)) + Y(l- O',,(y) O'p(-x)), X,Y ~ 0, (4.6a)

x't/PY - X(l- O'p(Y) 0'1'(-:1:)) + Y(l- O'p(x) O'p(-Y)), X,Y ~ 0, (4.6b)
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f(x)

•t

where

( )
f(1/'2 +px)

up x = -=-:-:--'-'--':---:-:--'-----,-
f(I/2 + IIX) + f(1/2 - p:c)'

= {e-1
/'" if:r > 0

0, ol.herwiHe.

(4.7)

t

t

1.

The 'Iogistic' sigmoid function of [RHWSG] iH allother option for u,.(x), but the

fact that the function ehosen is only non-singular (i.e. 0 < up(x) < 1) on x E

[-1/21" 1/21'1means that l.he "hard" logie of §4.1 Ht.ill apl'lieH for values outside of

this region.

The notion of p-approximate is c1arified by t.he following.

Theorem 4.10

lim :c ~,' 11 = :r ~ y
1'-+00

lim x'tI"y = :c 'tI y
p-+oo

Note that

{

l,if a: > 0;
Hm up(x) = u(x) =

p-toc 0 tl ., 0 ICrWlse.

This function is a choice operator pivoting arounc! zero, anc! as such it can be used lo

directly define the L/L combinators above. If this limit is substituted in eqs. (4.G),

then they can be rephrased as

1

•

•

x ~ y = (x unless {x> 0/1 Y $ O}) + (y unless {y> 0/1 x $ O})

x 'tI y = (x unless {:r. $ 0/1 y> O}) + (y unless {y $ 0/1 x> O})

It can be verified that these are equivalent t.o Def. 4. J. •

••
•

The approximations represented by ~,' and 'tI l' expose anolher relationship between

the Hnear sum and the L/L combinat.ors. Since uu(:r.) = 1/2, substitution of this value
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.00

••
(a) :z: 4p y, fi = 0

(d) :z: ~p y, fi =0 (el :r. ~p y, fi = 8

(c) :z: 4 p y, fi = 00

(C) :z: ~p y, fi = 00

.00

-.

Figure 4.1: Graphs oC the p-approximate L/L combinators varying l': (a), (b),
and (c) show x4.P Y, (d), (e), and (f) show :r.~/Y. Note that asp varies between
oand 00, the combinators VlU'y from pUloely lineal' ta purely logical, with smooth
interpolation in between.
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into eq. (4.6) simplifies both L/L cOlllhinat.ors t.o a \ineal' cOlllhinat.ion

x ~o Y - 3/4 (:r + y)

:1' ~oy = 3/4 (:I:+ y)

Thus, the p-approximates ~p and ~" fOl'\l1 a cont.inuous deformatiou from a linear

combination to the absolute L/L operations as l' goes fl'Om 0 to 00 (sec Fig. 4.1).

These p-approximates may be preferaule t.o the ideal L/ L operators in many prac­

tical situations. The most obvious situat.ion iu which one lllight prefer the smooth

approximates is one in which there is some noise 01' uncertainty in the inputs. It

could be disastrous if sorne small input.s are randomly positive or negative due to

noise, especially if other inputs are st.l'Ong and unamhigous. The ()-approximate L/L

operators solve this problem by sllloot.hing t.he logical t.ransitions al'ound zero, and

thus significantly reducing the noise-sensit.ivil.y when 5III ail , potentially amuiguous

inputs are introduced. The p-aPPI'OXilllates also have advantages if differentiauility is

important (e.g. for optimization).

Of course, when we choose to use t.he apPl'oximal.e L/L combinators we are facecl

with the c1ifficulty of choosing p. This cali he proulematic when the range of x and

y is not precisely constrained. Since 1/21' is, in essence, a threshold on the logical

significance of x or y, p should normally ue set uased on the expected range and

uncertainty in x or y. Even if these are c1eady defined, however, setting p to some

fixed value can be problematic, in particular, :1' *,. y does nol monotonically increase

with increasing x for ail values of y. Thus fol' some values of :r: ami y an incre<LSe in

x can result in a decrease of x ~p y. This can he resolved simply by tying p ta :r. and

y. In particular,

p = p'/max{:c,y)

will ensure that such points of non-monotonicity do not exist. We refer to the L/L

combinators with locally adaptive p as IUlllplive (J-tlppro:ûmllles.
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Using the framework defined above, wc now proceed 1.0 derive a family of L/L image

operators 1.0 locate and describe image Clll'ves as defined in Definition 3.1. We begin

by observing that the conditions expressed in eqs. (3.2b,3.2c,3.2a) segregate into inde­

pendent one-dimensional conditions in ort.hogonal directions-along the tangent and

the normal. The normal condition selects the proper contrast cross-section 1.0 define

a (positive or negative contrast) Hne 01' cclge, and the tangential condition ensures

local Cl continuity of the infened curve. Thus, our solution is a separable family

of two-dimensional operators exprcsscd i"~ the Cnrtcsian product of orthogonal, one­

dimensional L/L operators, one normal N(y) and the other tangential T(x) 1.0 sorne

preferred direction. With (x, y) defining a local, orthonormal coordinate system, we

seek

\lI(x,y) = T(x) x N(y) 01' \li = T x N.

Moreover, the tangential condition (Cl continuity), and thus the tangential operator

T, is identical for a11 three image cUl've t,ypes.

Thus, we divide the design into till'ee stages:

• First, derive a set of one-dimensional L/L operators {Np, NN, NE} (for posi­

tive and negative Hnes and edges, respectively) which verify the cross-sectional

(normal) conditions of Definition 3.1, while avoiding t,he pitfa11s discussed in

Chapter 3.

• Then, derive a one-dimensional L/L operator T which is capable of discrimi­

nating between 10ca11y continuous and discontinuous curves along their tangent

direction.

• Fina11y, form a family of direction-specific two-dimensional L/L image curve op­

erators by forming the Cartesian product of the two one-dimensional operators.
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Figure 5.1: Cross sections or image lines and edges. A line in an intensity
image (a) is located al. the peak or ils cross-section. Not.e that this coincides
with a zero in the derivative {J' and l\ negal.ive second derivative {J". An illtensity
edge (b) occurs al. peaks in the dCl'ivative {J' or t.he cross-section. The derivatives
shown are derived l'rom convolution by Q' and Q" oper;\\'ol's \Vith CT = 3.

5.1 The Normal Operators: Categorization

For the purpose of illustration, we will Legill wit.h the a1mlysis of a TlOsititlC cOll/ms/

line (3.2b). The methodology developed will apply Ilat.umlly t.o the two other image

curve types.

Since a necessary condition for the existence of such a li ne is a local extremum in

intensity (fig. 5.1 is a display of typical 10 cross-sections of lines and edges), wc will

first consider the operator struct.ure normal 1.0 its preferred orientation. This is just

the problem of locating extrema in the cross-section {J,.

A local extremum in a one-dimensional dilfercmt.iable signal {J(x) exists only at

those points where

Estimating the location of such zeroes in the presence of noise is normally achieved

by locating zero-crossings, thus in pract.ice these condit.ions Lecome

•

-.
,

fI'(:r:) = 0 and {1"(:r:) :f: O.

(3'(x - f) > 0 and (3'(:e +c) < 0 and {J"(3:) < 0

(5.1 )

(5.2)
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Figure 5.2: Central differcllces slIggcst. that. ail approximat.ion to the ,,"h deriva­
tive can be obtained from a di[el'ence hct.wecn two displaccd (Il_l)th derivatives.
Thus in (a) the sum of two G' OpCl'lltOl'S approxilllate -G", alld in (b) the sum
of two G" operators approximalc G(3).

for sorne f > O. An operator which can reliahly restrict its responses to only those

points where these conditions hold will only respond to local maxima in a one­

dimensional signal.

A set ofnoise-insensitive linear derivat.ive opera tors (or 'fuzzy derivatives' [KvD87J)

are the various derivatives of the Gaussian,

• G.(x) 1 -r'/2n'=--e ,"ffrrtr

", r'~ '.- ~

which will be expressed as G~(x), G~(x), et.:. These estimators are optimal for

additive, Gaussian, i.i.d. noise.

When convolved over a one-dimensional siguai these give noise-insensitive esti­

mates of the derivatives of the signal, fol' exall1Jllc

Theorem 5.1 {3~(X-f) > 0 anrl P~(:r:+f) < 0 anrl P;(x) < 0 aresufflcient conditions•
{3~(x) = {3'(3:) *G.(x) = {3(x) * G~(x), (5.3)
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for a local maximum in the sigu,l1 #(;1') .

The identity in (5.3) shows that. these <:andit.ions are necessary and sufficient for

the existence of a local maximnm in (i.(;I') = li(;I') * G.(.1')' The maximnm principlc

for the heat equation ([PWS4], p. IGI) implies that. nlllvolnt.ion by a Ganssian cannat

introduce new maxima. Thus the above <:andit.ions imply the existence of a maximnlll

•
,

in J3(x). •

'.

,

•

This suggests a practica! met.hod for locating maxima in a noisy one-dimensional

signal. Comparing the result.s of convolnt.ions by dm·ivat.ives of Gaussians will allow

us to determine the points where Theorelll 5.1 holds. The loci of snch points will

form distinct intervals with widt.hs ::; 2<. The paramet.er (1 dct.ermines the amonnt of

smoothing used to reduce noise-sensit.ivil.y.

Observe by central Iimits that:

f'(x) = lim (f(:r: +c) - f(:r: - c))/2c.
(~1I

Thus for the derivative estimat.es P., one wonld expecl. t.hat

with the accuracy of the approximat.ion a function of (. Thus t.he con,l:~ions in Th(.~

orem 5.1 can be verified from examinal.ion of the derivative p~(x)-a linear combina­

tion of two points will give -J3~(:r:). More specifically, wc adopt the approximation

-G~(x) ::::: (G~(x +() - G~(3' - '))/2f, where (/(1 ::; I. Figure 5.2a shows t.hat. for

( = q /2 this is an acceptable approximat.ion.

Thus, convolution by G' allows test.ing of all t.hree condit.ions in Theorem 5.1

simultaneously. Using the L/L combinators of §4.1 wc are now able to deline a one­

dimensional operator which liaS a posit.ive response on!y wit.hin a small range of local

maxima.
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Operator 5.1 The one·dilllensionainorlllai op"rator fol' /OCII/lIl1lxilllll NAt is

(5.4)

, where

,Il, = ( "(00+ )/')'n.l. ( _c,

n~ = - G~(:r. - f)/2c

Clearly then. the key advantage of this Np opel'lltor is that:

Observation 5.2 The response Np(p')(:r) will he posit.ive only if there is local max­

imum in P. within the region [:r: - (, '" + (1.

By reference to Definition 4.1 we can see that Np(P')(x) > 0 implies that both

nH,B)(x) > 0 and n~(,B)(x) > O. Equat.ion 5.3 t.hen illlplies that

Thus a positive response enst\l'es t.hat. ,B~(,,: - () > 0 and ,B~(x +() < 0, which in turn

,

••
•

P~(:r: - ()/2f

n~(.1:) *P(:r:) = - P~(:r: +f)/2f

imply the presence of a local maxilllulll on P'. between :r: - f and x +f. 1

(5.5)

(5.6)

•

••
•

The performance improvement from introducing t.his non-linearity is considerable.

The !inear operator exhibits consist.ent. pat.t.el'lls of false positive responses. The sim­

plest example is the response near a st.ep (see fig. 5.3). The linear operator displays a

characteristic (false) peak response when t.he st.ep is cent.ered over one of the zeroes in

the operator profile. The logical/!inear ~ opel'lltion prevents this error since both a'

IObserve that although the local maximllm ill fla is gllarallteed to fall within this region. the
corresponding maximum ill 13 is Ilot lIecessarily sa restricted. Qllalitatively however, we cali rely on
the observatioll that the maxima for a sigllal will COliverge 011 th. celll.roid of that signal under heat
propagation (or as we convolve wil,h larger alld larger Gallssialls). COllsiderillg the features of 13 in
isolation then, we can state that the smoothillg will cause the local.ioll of the local maximum in 13.
ta shift towards the ceutroid of the 100:al inl.eusil.y distribul.ioll, a "hellomenon observed in studies
of biological visual systems (e.g. the vernier ,":uil.)' studics of [WM8:1]).
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Figure 5.3: Responses of LIL positive contTnst Iilll' operator and the Iinear
operator -G" which it reduces to, 11('.11' a stop cdgt.! Wh05l~ local profile varies
from the ideal. The graphs show U'" image profiles heing operated on, covering
(a) a simple step edge, (b) a componnd st.ep wil.h slope above > 0, and {cl a
compound step with slope above < O. It cnn 1", seen tlHLt the L/L operator
blocks the unwanted l'esponse nenr a st.ep whkh is not also a local maximum
(a,b), but that when the "dge is alsu a lucal nHLximunl {cl it does respond.
The !inear -G" operatol', howevCl', l'esponds positively in each of these cases,
exhibiting consistent (and el'I'oneons) displnCl'lnent of t.he peak l'esponse.

halves of the operator registel' derivat.ives in t.he same direction and 50 do not fulfill

the conditions of (5.2). The L/L opcrat.OI· will l'espond positively on1y in the CiL"e

that the slope above the step is negative (i.e. only when the transition point is also

a local maximum).

A more specific operator can he del'ived hy examining the implications of (3.2h)

beyond the local maxima. A discont.innons peak, such as t.ha\. shown Fig. 5.1a is not

only a negative local minimum in {:J~, bul a posit.ive local maximum in (:J~4). Thns

two addition conditions arc reqnircd

,

,
This can again be captured by cent.ral dirrerenres, comhining t.wo orrset third-derivative

estimates.

Operator 5.2 The one-dimensional normal opcrat.or fol' T/Osi/illl: Cfm/ms/ liTlcS NT' is

•
,

Np = n' ~ n' ~ (pl A n(:l)
1 r 1 4' "

(5.7)
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where

(3) =Il,

,

•

~.

The extension of this analysis lo the ot.her cl\l've l.ypcs in §3.2 is straightforward.

The above analysis can be repeat.ed in it.s cnt.iret.y \Vith a simple change of sign so as

to be specific for an identical feature of the opposite cOlltrast.

Operator 5.3 The one-dimensional operator fol' 1If:!JIIIÎl1e contmst fines NN is

Slightly more complicated is the ca.-!' fol' edges. In the simplest case, a rising

discontinuity is signalled by a local maxima of the first derivat.ive, thus imposing the

following conditions

(5.8a)

or

{l"(.1' - E) > 0 and (l"(J' + E) < O. (5.8b)

This condition is just the familial' zero-crossing of a second derivative, exactly the

condition used by Haralick [Har82] and Canny [CaIl8ô]. Note that this operator

actually selects any infiection [JOint•• in the signal.

Mirroring the analysis above, the verificat.ioll of l.hese conditions can be realized

in an L/L operator selecting inflecl.ion points NI:

Operator 5.4 The one-dimensional operal,or NI fol' injlcetion points is,
NI = n,' ~ n:'.

where,
• " G~(:r +E),Il, =
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11~~ = - G~(:l~ - f) .

Now as with the line operat.ors, selection of mOre t.ruly edge-lilœ feat.ures is possible

by examination of other derivat.ives. Not.e t.hat. a blul'l'ed st.e!, l"\ge ha., vanishing

even derivatives and sign-a1t.el'llat.illg 1I01l-zero odd del'Ïvatives (sec fig. 5.1). The

description of an edge adopted in (5.S) is dearly consist.ent. wit.h t.his observation, but

incomplete. Note also that ail "edge" is the derivative of a "peak," which wa.' used

for analysing line-like images. \Vit.h t.his addil.iona\ informal.ion, we cali adopt a more

selective operator for image edges which rl'quir"s th ..1 ail of the following cOllditions

must be verified

{J'(x) > 0 and {J"(x) = 0 ami {I(:!)(:I:) < 0 alld {Il'I)(:I:) = 0 and ,8(5)(X) > 0 (5.!la)

or

{J'(x) > 0 and {J"(x-c) > 0 alld (l''(x+c) < 0 alld (I('I)(:I:-C) < 0 alld {J(4)(:r.+C) > 0

(5.!lb)

These conditions2 can be verified ill an L/L edge oJlerator NE:

Operator 5.5 The one-dimensiona\ operator NE for "tilles is

N 'A ." A "A ('1) A (4)
E = Be 'i' Il, '+' Il,. 4' 11, 4' Il,_

where

n' = G~(x),<

(.1)
= - Gtl)(:I: +d.Il,

n(·1) = Gtl ) (:1: - cl·,.

This operator is significantly morc selective than the lzero-crossing of il second-

2The condition !l'(,,) > 0 is aCI.llaily nl50 iJnplemelll.ec1 by Haralick [HarS2] and CanllY [CallSO],
since their lateral maximaselectioll i5 roilowed by " threshold (J'(:r:) > 0, where 0 i8 positive.
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derivative,' [MI-180] which is only one oft.he logical prpconclit.ions on which this opera­

tor depends. One can therefore exped less of a proulem of non-eclge signaIs generating

edge-like responses with this operator t.han wit.h these other less specific operators.

Il. is important 1.0 realize that. t.he operat.or family which forms the basis for this

analysis is the Derivatives of Gaussian family of operators. I<oenderink [l<oe88,

I<vD90) derived this family as one ort.honormal solution of the problem of deriv­

ing size-invariant spatial samplings of images. Memuers of this operator family can

be transformed into each other via a set, of simple, unitary transformations. This

has definite computational aclvant,ages, since the higher clerivat.ives and spatial offsets

from pixel centers may be clerivecl from a smal1 canonical set. of operators by linear

combinations. In addition, Young [You8S] has persuasively argued that this is exactly

these are exactly the basis fundions which are usecl uy primate visual systems.

5.2 The Tangential Operator: Continuity

So far only the normal image st.1'IIct.lII'e (/3.) has ueen discussecl. In order to extend

this result to two-dimensions, we must, examine t.he t.angential (curvilinear) structure

of the curves (0'). By Definition 3.1 we must verify the local continuity of candidate

curves. In addition, the extraction of orientation-specific measures was deemed es­

sential for further processing. In t.his section, t.hese l'roblems will be addressed by

imposing a further t~llgential struct.l\l'e on the operator. We will fol1ow the same

course as for the normal cross-section-first a linear stmctlll'e will be proposed which

will then be decomposed 1.0 1'Cvea! linear measlll'ement operators for the components

of the structural preconditions. The empha.,is again is placed on these preconditions

and their L/L combination.

Consider the image cross-sect.ion t.ha! is tangent. t.o t.he image curve 0' at every

point. Assume that the intensit.)' variat.ion along this clll've is everywhere smooth

and corrupted only by additive Gaussians noise. The local contrast along the curve

as compared against its backgrouncl is an acceptaule measure of the curve's salience.

This suggests filtering image noise with a linear Gaussians operator t(x) = Gu. along
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Figure 5.4: The signal is t.he t.ang,'nt.ial s,'ct.ion of Iln image line near the
discontinuous termination of t.he line (the endline). Not.e that the linear oper­
ator (a) exhibits a smooth at.tenllation of n-sponse aronnd the line ending. We
seek an operator (b) whose response n.l.tennat..s abl'llllt.ly at 01' near the elldline
discontinuity.

the tangential direction.

Near a curve end-point, however, t.he tallgellt.ial section will exhibit. an abl'Upt dis­

continuity (see fig. 5.4). The inciiscriminate smoothillg of the Gaussians will obscure

this contrast discontinuity by, in effect., assnming that no ciiscontinuity is present be­

fore it is applied, thus violat.ing t.he thinl cl'Ït.erioll of §:l.2. The [oell[ eontillllity of thl:

curve must be verifted prior 1.0 slIIool.hillg.

To resolve this, consider a definit.ion of t.he local cont.inuity of a function. The

function J(x) is said to be conl.irl1lm'" at. :cu if[

,

•

(5.10)

For our purposes, assume that. tllC' nOIl-linearit.ies associated with the normal compo­

nents of the L/L image curve operat.ors are evaluat.eci befo1'lP those in the tangential

L/L operators. Then a curve t.erminat.ion point ill tlill image IlIUSt. be signalled by

3With a pure linear operator expressed as tl", Carl.esian prodnel. of lIorlJlal alld tangelltial Olll~

dimensional operators, order-of-evaillation is nnilllportant, hnl. lVith Logieal/I.inear operatorH order­
oC-evaluation ean be esselltiaI.
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•
(a)
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(b)
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(c)
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,

,
•

Figure 5.5: Schematie of the half·field decompositioll and line endings. The
elliptic regions in each figure represent the 0pCI·at.or positions as the operator is
placed beyond the end of an image line. ln (a) the operator is centered on the
image line and the lille exists in both half-fields. III (b) the operator is centered
on the end-point and whereas the line only exists in one half-field, the other
half-field con tains the end-point. In (c) the opemtor is cente"ed off the line and
the line only exists in one half-field.

a contrast sign reversaI in the image sect.ion seen by t.he tangential L/L operator-a

transition from a region which Ims Leen coufil'lnecl 1.0 Le of the given category (1'05­

itive response) 1.0 a region which has been rejected (negative response). We will cali

the behaviour which the tangent.ial operator must exhibit enrl-line stability. A one­

dimensional operator is end-line st.able if and only if il. responds positively only when

centered on a uniformly positive region of the image.

Representing the intensity variation along the curve Q as a function of the arc­

length la(s), the worst-case line-encling (01' Legiuning) is a step in intensity al. s =o.
End-line stability requires tltat the operat.or's response T(lo)(s) be non-positive for

ail s :5 f, and positive for ,ç > (:' Given the reCJuirement. for symmetric approach

outlined in eq. (5.10), from fig. 5.5 we observe t.hat, t.his can be achievecl by separately

considering the behaviour of t.he cmve in eaeh taugent.ial direction around the operator

centre.

We thercfore adopt a partitiou which clivicles the oJlerator kernel into two regions

along its length. Using the st.cp function O'(~:) of CCJ. (4.3) a partition of G(x) around

4This property must also operaI" sYlllmeLrical1y aL the other eud of t.IlP. curve.
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Figure 5.6: A one-dimensional Gallssian (l'epl'esen\.ing tlll! tangential opemtor
t) partitioned into two regions (a) t.o oht.ain the two half-field opemtors delined
by eq. (5.11). The addition of' 'st.ahilizCl's' is shown in (h).

Ois given by

1. (5.11 )

Operator 5.6 The one-dimensional opemtol' fol' /.llIIgwtill/ CIJlltillllity T is

(5.12)

t

••
t

Note that t-(x) + t+(x) = G(3:) = t,(:I:) fol' ail .':, as l'eqnil'ed. The smooth partition

opel'atol' O'p(x) of eq. (4.7) can be lIsed fol' a smooth, stable partition.

Observation 5.3 The opemtol' T is crll/-tinc stllb/c.

Considel' the component responses in t.he neighLolll'hood of t.he stcp cdge lu(s) =

O'(s). The l'esponse of t+ to t.his stcp is gil'pn hy

t+(Iu)(S) = (t+ *O')(s)

- L:t+(S-T)U(T)dT

= [0 O'(s _ T) G(•• - T) dT
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Figure 5.7: Responses (illcllldillg compollelll. "espollses) ofannnstabilized end­
line operator (a) and the stabilized versioll (h). Note that the L/L combination
of the unstabilized compollents (a) c10es not, in fact, rednce to zero beyond the
end r.f line. This is dne to the lise of the L/L 4.p apPl'Oximation with p < 00. In
ordel' to produce stable attennation at a Hne encling, inhibitory regions (stabi­
lizers) are added to the t- ancl t+ components, which have the effect of pushing
the component responses 'ne'"'' hnt 'off' t,he line-encling below zero (h) .

= l'"" D'(T) G(T)I/T

= {[G(T)clT, ifs>Oj

0, if s :5 O.

The L/L AND of t+ and t- to procluce T requires that both component responses

be strictly positive for a posit.ive response, t.hus whenever s :5 0 around the step

described above, the T response is also zero. It is obvious that the same analysis

appHes to the symmetric t- component. and the 1 - 17(,') st.ep eclge, which describes

behaviour around the other end of the Hile. Thus the T operator is end-Hne stable

symmetrically around a step edge. •
t

••
The above l'roof, however, depends crit.ically 011 the use of ideal L/L combinators,

while in most cases we would prefel' 1.0 use non-idea\ combillal.ors (4- p where p < 00).

When the non-ideal combinators al'e nsed, the 'end-Hne stable' operator described

above does not properly att.ennat.e l'esponses beyond t.he li ne ending (see Fig. 5.7a).

•
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In order to achieve this attenuat.ion, it. is necessary t.o force t.he component responscs

in the region just beyond a line l'nding significant,ly helo\\' zero.

This is achieved with the addit.ion of t.he 'stahilizers' (sho\\'n in Fig. 5.Gb):

t-(x) = G(:") 0'.(-:") +bG'(x),

t+(x) = G(3:) O',,(x) - bG'(,,:).

(5.13)

(5.14)

••

•

Thus, a smooth partition of G(:I') by 0'.(:1') is augmented with an overshoot -bG'(x).

The overshoot guarantees that. when the center of the 0l'erator is near the line ending

(see Fig. 5.7b) one component will give a negative response over the region where the

operator is not centered on the line. Since thc st.ahilizcrs are symmetric, it does not

matter whether the operator is near a l'ising 01' faHing linc-cnding-if the operator

is centered over the positive region il. will respond. FtIlthel'l1lOre, since the integral

of the stabilizers is zero, they will have no crfect what,soever on a 10caHy constant

signal. The candidate tangelltial 0l'erator is thcll the L/L AND of these stabilized

components. The parameters (l and b arc chosen so t.hat t.he cnt;orf is exactly aligned

with the line ending.

An extension of this princip!e to multiple regions can lead to greater noise in­

sensitivity (as suggested by Davis [DRA76]). Fol' even n the increasing sequence of

partition points (Xil"" x,,-al can be used ta partition 1.(":) into n regions where

t1(X) - t(:I') 11(:1'1 -:1')

tj(x) = t(x) (0'(,,:; - :1') + 0'(:1' - :l'j-al- 1)

t,,(x) = t(:I') 0'(:1' - :l',,-al.

If we then constrain the Xi 50 t.hat. Vi: ft;(,,:) cl:,. = 1/11 then this is a partition into

n equal-area regions with X"/2 = 0.0. In Ql'del' to gUal'antee end-line stahility for the

responses to these regions, their L/L comhination must gunrantee that al. least one

of the regions i :5 n/2 and al. least one of t.hose for which i > 11/2 responds positively
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(i.e. there is positive support, from bot.h sicles). Furt.hermore, if ail of the regions

for which i ~ n/2 have posit.ive response t.hen the overail response must be positive,

since this is exactly what happens at. tbe encl point of an ideal line. Finally, Davis

suggested that the majority of regions shonlcl be !'e'luirecl 1.0 he positive.

We have examined two of t.he possihle L/L combinations which exhibit this be­

haviour.

Operator 5.7 The simIlle one-climellsional comhillat.ioll for tangential continuity

over n components is

Thus if both central regions are posit.ive allcl eit,her of t.he ext.ensions 1.0 the 1eft or

right, then the aggregate l'esl'onse is positive.

Operator 5.8 The majority one-dimensional combinat,ion for tangential continuity

over n components is

T = VI A ti,
C iEC

where C is a sequence of ail choiees of n/2 + 1 regions from (1, ... , n).

There are three observations we can mal", from these designs:

1. Both of these l'l'duce t,o C'l. (5.12) for n = 2.

2. For n > 2, both these operators impose a minimal length of the positive region

which generates a posit.ive aggregate response.

•

•

3. In terms of pure L/L combinators, the implement,at.ion cost of the majority

combination for n > 4 is much greater t,han the simple combination.

Henceforth, when we show the t.allgent.ial comhination as 1.- t;. 1.+ we will assume that

the decompositions and either of the L/L combinations (simple or majority) may be

substituted without other modificat.ion. Finally, we note without further comment the

similarity between this approach ancl t.he AN Ding of LGN (Iateral geniculate nucleus)

afferents proposed by MalT ancl Hilclreth [MH80]).
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5.3 The Two-Dimensional Image Operators

Finally then, we can constrllct t.he Iwo-dimensional image clIl've operators by taking

the Cartesian product of t.he normal and t.angt'nl,Îl,1 component.s. In order to com­

plete the analysis, we unify t.his tangenl.Ïal cont.inllit.y comuinat.ioIl with the normal

combination (see Fig. 5.8 for an example).

Operator 5.9 The Logicll/jLinca1" imagc C1I1'IIC oJlcmlOl's II'; (where i selects the

operator category) are given by

\li. = W x N;) 4- (t.+ X Nd, i E {P, N, E}

where

••
,

,
•

n' A n' A n(3) A n(:J)
ILt-' r't' 1 4' "

-nI ~ -n~ 4- -n13
) ~ _n~3)

n' A n" A n" A n(·I) A n(·1)
e4\ l't' r'+' l't',"

for Positive Conl.rast. Lines,

for Negat.ive Cont.rast. Lines,

fol' Edges.
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Figure 5.8: Illustration of the construction of the two-dimensionai positive
contrast line operator. Each of the bottom row of operators is a linear operator
which is formed by one of the linear component operators n/,r X t/,r' The middle
row represents the linear reduction of the operators t/,r X Np, in other words the
sum of the two operators below. The operator shown at the top of the pyramid
is the linear reduction of '1Jp, the sum of the middle optrators. The cross-hairs
represent the centre of each operator and are provided solely for purposes of
aiignment.
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As per the decomposition inl.o cUl've types ,lesCl'ibed above, Wc cl·eal.e thl'ee dilfel'ent

classes of curve operator, for posit.ive aud negat.ive ~.JI\t.rast lines and for edges. The

operators in the following examples ail have a t.angenl.ial IT = 2.0 and a lateml IT =

.../2/2 pixels. The! of the the latel'a! opemt.ol' sepamt.ions is .,fi/'!.. This ensmes that

ail curves are localized to connect.ed l'<'gions wit.h widl.h ~ ..,fi pixels.

For the comparison images, Canny's algol'il.lnll was nppli~d with an upper thresh­

old of ~ 15% contrast. This value was adequat.e fol' sUPpl'essing most noise, although

sorne of the examples show t.hat. the noise Ims not. been ent.il'eiy eliminal.ed. The low

threshold was set to 1% so ll.' 1.0 COllle dose 1:0 mal.ching l.he sensit.ivity of the L/L

operators to very faillt structures.

A natural but informai evaluation cl'it.el'ion fol' edge opel'a\.ol's is the degl'ee to

which the 'edge map' produced corresponds t.o a reasona!.>le line dmwing of an im­

age. Wc therefore use a test image of a stal.ue "Paolina" not unlike the su!.>jects

in Michelangelo's drawings. This dl'llwing is pal'ticularly suita!.>le because, as I(oen­

derink has pointed out, the repl'esenl.al.ion of CI'ClC,es and folds is especially important

for conveying a sense of three-dimensional stl'ncl.ul'e [I\vD7li. ((vD82J. An eXlLInina­

tion of the Canny and L/L edge images for the st.al.tle l'eveals a mal'ked dilference

in the ability to distinguish pel'cept.ually salienl. edges fl'om ol.hel' Idnds of intensit.y

changes. Comparison with Michelangelo's t.l'eat.ment. reveals c1early that the L/L

operators represent more of the significaut. stl'lld.ul'e than 1he Canny opemtor.

Formai criteria for an image l'ml'<' Wel'<~ estahlislwd in §3.2, and these provide

less subjective demonstrations of whel'e t.he Canny opel'a\.ol' fails. We stress that

our goal here is not to focus on t.he shortcomings of the Canny operator, but rather

to indicate the shortcomings of t.he long t.mdit.ion of mlge operat.ors that consist

of linear convolutions followed by thl'esholding, fl'om Sobel [DH73] through Marr­

Hildreth [MH80] and most recent.ly in Cal illY.
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Figure 6.1: Image of statue (a), provided by Pietro Perona, and edge maps
computed by: (b) Canny's algorithm (h =15%), and (c) L/L operators (both
algorithms are run at the same scale). Compare these representations with
the human expert's Une drawing in Fig. 6.2, especially around the chin and
neck. The Canny operator consistently signais non-salient 'edges', misses edges
in complex neighbourhoods (e.g. near the T-junction of the chin and neck) and
shows discontinuous orientation changes as smooth. (The boxes represent the
approximate locations of the details shown in subsequent figures) .

•

•

••

(a) (b)
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Figure 6.2: Line drawings, slleh ,l., t.his Miehl'iangelo, d"lnollst.rate ill a c1ear
and eompelling manner the signifieallee of illlage elll'ves for the visliai systelll. A
well-exeeuted line drawing depends erit.ically 011 ellrvat.llre, line terrllÎllatiolls alld
junetions for its visual salienee. I\oclldl'I'ink has st.l'l·ssl'd how the "bifureatioll
structures" define the al'III and should'!I' IIlusclllal.ul'c alld I.he lIIallller iu which

the chin oecludes the lIeck. Ohs"I''''' t.IIl' silllilarit.y lll't.II'''''" I.his alld the L/L
operator responses, and dilfel'enccs lI'it.h t.hl· Canny operat.ol'.
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The first criterion, the need fol' predirt.abll' ileha"ioul' in t.he neighbourhood of mul­

tiple image curves is examined in each of t.he det.ails fl'Olll the statue image (Figs. 6.3,

6.4, and 6.5). In these circulllst.allces, The Call1lY opemt.or either leaves large gaps

(Figs. 6.3b and 6.5b), or simply illfers a sllloot.h, ulldisturbed local contour (Fig. 6Ab).

This failure disrupts the abilit.y 1.0 recolIst.l'lIct t.he killCl of information which gives a

sense of three-dimensional st.l'lIct.ul'e, silice creases and folds involve the intersection

and joining of just such multiple" illlage cmves. III t.he worst case, nearby curves can

interfere with the Canny operat.or's abilit.y to el't.ract. much meaningful structure at

aIl (Fig. 6.7b).

This leads us to the second crit.erioll, t.he need t.o preserve line terminations and

discontinuities. In our approach t.o <'m'Iy vision, we t.alœ curve discontinuities to

be represented by multiple, spat.ially coi IIcidcnt. edges [LZSS, Zuc86, ZDI89]. This

holds for both "corners" and "T-junct.ions"-such discontinuities are inadequately

captured by the Canny operat.or. Where t.here are clear discontinuities and junctions

in the image curves, the Canny operat.or eit.hcr Ica"es gaps 01' gives smooth output

curves (see in l'articulaI' the detail in Fig. 6.4b). The L/L operators represent such

curve crossings and junctions by suppol·t.ing mnlt.iple independent orientations in a

local neighbourhood, just the represcntat.ion we re'luire. So not only do the L/L

operators respond stably in t.he neighbourhood of multiple coincident curves, but

they are also able to adequat.ely represent this coincidence. Preceding attempts at

edge operators have re!ied on I.he Il /11';07'; assumpt.ïon (usually implicit) that only one

edge need be considered in each local ncighbourhood, and thus that only one edge

need be represented at each point. in t.he out.pul. image. By rejecting that assumption

and ensuring that the L/L operat.ors perfOl'll1 st.ably in t.he neighbourhood of edge

conjunctions, we l'l'ovide a st.able, complet.e representat.ioll of these fundamental image

structures.

Recently, there has been sOllle aHempt. t.o dcfinc "st.ecrable filters" for edge detec­

tion [FA91, PM91, Per92], and 1.0 ha,,<' t.I1<"111 l'l'ovide a represent.al.ion for image curve

discontinuities analogous to ours (i.e., as lllult.iple orientations at the same position).

However, the !inear spatial SUPPOlt of I.hese operat.ors again causes problems, in this
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case a "smearing" or blurring of t.he corner Plll!rgy OVl'r a Ilt'ighbourhood. An addi­

tional search process is t.herefor" introllllccd t.o finll t.he locat.ions and directions of

maximal response [Per92], analogons 1.0 what wc called "Iat.emlmaxima selection" in

earlier implementations of our systelll [ZJ)DI~SI. While snch sl"lrch processes provide

sorne of the necessary non-linear behaviour, t.hey introdncc additional int,erpretative

difficulties that do not arise with the L/L decolllposition. S"arch also further com­

plicates parallel implementat.ions by int.roducing s('lJlwntial hott.lcnecks. Finally, the

standard steerable filters still exhibit, mislocalization of line cndings (which led in

[Per92] to the introduction of pnd-Iinc' dpt.·ctors). Th" st.perahlc filt.m·s approach is

useful, howeyer, for reasons of comput.ational efficiency, and we snggest that they may

be used as a basis set for the linear component.s of our L/L opemtors.

Finally, the third criterion, the pot('ntial confnsion bet.ween Iines and edges, is

seen to be addressed by the L/L open\l.or approach. This l'roblem is acute with the

Canny operator, and is deliberat,ely confonnded by the "edgc etll'rgy" mel.hods [MBSS,

PM91], thus necessitating a second stage of analysis IIl1/ll'cfe,'s lute" IIJ IIhsol,,!c illlllYC

intensities to fully describe t,he local strnct.ure of the image curYe. The fingerprint

(Fig. 6.7) and the composite image of the stat,ue (Fig CUi) show the utility and richness

of a representation which separates edge ancl line information. The fingerprint is

clearly more appropriately and parsimoniously reprcsented by the line imag'~, while

the highlights on the statue (adjaccnt 1.0 some of I.he cclges) are reyealed by the line

image. lt has been argued that. most line-like strnctures can be reyealed by looking

for locally parallel edge responses, bnt r.Iearly nol. ail (e.g. t.he many highlights on the

statue's surface). We submit that parsimonions represent.al.ions wiII combine features

from both edge and line images ami interpret them ,e' appropriate.

It is also important to note that. c.Dmpnting Canny's algoril.lnll on a parallel archi­

tecture requires a number of itemt.ions of lIi1atioll ill order t.o implement the 'hysteretic

threshold'. Consider a planar parallel computer wit.h one processor allocated to each

image pixel. The Canny algol"it.hm's time complexit.y on a snch an architecture is

O(n), where n is the maximum lengt.h of a curye. Worst case, this is proportional

to the number of pixels in the imagp., t.\IlIS J"(!prc~s(,nting a significant bottleneck in an
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Figure 6.3: Detail of statue (a) from lower left near jaw and neck, and edge
maps computed by: (b) Canny's algorithm, and (c) L/L operators (both algo­
rithms are run at the same scale). Note that Canny's algorithm does not connect
the two edges which join at the T-junction. The L/L operator responses repre­
sent the discontinuity by supporting two independent orientations in the same
local neighbourhood.
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Figure 6.4: Detail of statue (a) from upper right, and edge maps computed by:
(b) Canny's algorithm, and (c) L/L operators (both algorithms are run at the
same scale). The Canny operator misses much of the rich structure in this small
region as a result of interference between the nearby edges and the chaice of high
threshald. A lower threshold would have the effect of exposing more structure,
but then the noisy respanses seen in Fig. 6.1a would alsa be expanded. The
L/L operator exposes this structure and also re)Jresents the discontinuitics and
bifurcations in the underlying edge structure.
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(a)
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Figure 6.5: Detail of statue (a) from lower right near shoulder, and edge maps
computed by: (b) Canny's algorithm, and (c) L/L operators (both algorithms
are run at the same scale). Again the Canny operator does not represent the
conjunction of edges in this neighbourhood, while the L/L operators show the
edge bifurcation clearly.
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Figure 6.6: The statue as represented by the three categories of L/L operators.
The black lines show the edge responses while the white and grey Iines show the
bright and dark lines respectively. Note that sorne features, such as the bottom
of the palm of the hand, are only c1early represented by the line images.
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(b)

(d)

•

Figure 6.7: Fingerprint image (a), and edge maps computed by (b) Canny's
algorithm, and (c) L/L edge operators. The most appropriate representation (d)
is the L/L positive contrast line operator. The complexity of display and the
proximity between nearby image features are the most significant contributors
to the breakdown of Canny's algorithm in this case. These problems are dealt
with in the L/L operators by the explicit testing of local consistency before
combining component inputs. This serves to isolate features even when other
nearby structures exist within the spatial support of the operator.
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atherwise parallelizable algorit.hm. In contrast, the L/L operat.or implementation has

0(1) time eomplexity for sneh an archit.ect.llI'c.
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Part III

Intrinsic Geometry
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An image curve has both structure with respect 1.0 the image (i.e. il. is an edgc), and

structure intrinsic 1.0 its geometry (i.e. continuous curvature). No matter how wcl1

local image operators work, they are restrict.ed 1.0 direct analyscs of thc image and

thus are subject 1.0 disturbances. Part 11 described methods for limiting both false

positive and false negative responses, but the opcrators obtained arc not entircly frec

from the effects of noise and confounding stimnli. Moreovel', thcrc is no gnal'iLntcc

that their responses represent connected thicl, traces of continnous cnrves. If we hope

1.0 produce descriptions of image curves which arc vCl'ifiably t,hick traccs wc need

1.0 reason about the continuity and consist('lIcy of the image cmves considercd as

geometric objects.

So our immediate problcm is 1.0 selcct from amongst the l'csponses of thcsc initial

operators those which are most likely 1.0 form thick traces according to sorne local

geometry. To reason with thick traces directly, howcver, we are faccd with a 1'0­

tential1y enormous explosion in thc amount of data 1.0 UC processed. For cxamplc,

if we represent 16 possible orientations of lines fol' cach POlllt, in our image, them a

sampling of the total space of a 256 x 25(i pixcl image will contain ovcr 1 rnil1ion sitcs.

For a system 1.0 managc this data quicldy and vcrifiably we wil1 havc to exploit l~~

much paral1elism as possiblc. Onc wcl1-c!efincd systcm fol' solving exactly this kiIH! of

problem (extracting consistcnt, structures from discl'ctc rcpl'csentations) is r'Cillxlltirm

labelling.

Designing a relaxation network fol' a specific problcm can bc dimcult, howevcr,

because of the problem of rclating thc pragmatic goals of a particular situation to the

fixed summative networks of relaxation !abcl1ing.

The contribution of this chaptcr is to dcfine cxplicit criteria by which a set of

operator responses which constitute a noisy description of a thick trace may be trans­

formed into a verifiablc thicl, trace. This will involve a formai description of the
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kinds of geometric models which fOrIn these thick traces and then a translation of

these models into support networks for relaxation labelling. The resulting labelling

assignments are verifiably accurate approximations to the thick traces allowed by the

mode!.

We found that in order to design initial operators which respected the structure

of images, we were forced to reason using an explicit hypothesis-testing framework.

In this chapter, we conclude that in order to reason about the intrinsic properties of

the curves themselves we must do the same. Moreover, we find that the L/L alge­

bra of Chap. 4 is a perfect match fol' the kinds of reasoning required in these new

situations. The resulting networks incorporate L/L combinators into the classical

relaxation framework, and are reliable, stable and converge very quickly (3 to 4 iter­

ations). We thus believe that the methoclology described below is of general use for

early vision.

7.1 Definitions

Relaxation labelling [HZ83] is a computational method for finding consistent structures

within a network of hypotheses. Closely relatecl to popular neural network methods

[MZ92], it involves representing an assignment problem as a set of labelled nodes 1

each with a set of associated labels A;. Each AE Ai is interpreted as a possible value

to be assigned to node i. The scalar /I;(A), i E l, A E Ai is the confidence that A

should be assigned to node i. There are two restrictions on these confidences

o:5 pi(A) :5 1 and L:>i(A) = 1.
h,

If these restrictions hold fol' ail i Eland A E A;, then the triple of U,A,p) is

called a labelling assignment. The space of such labelling assignments is [(. A simple

interpretation of such an assignment is that pi(A) is the confidence that the label A

should be assigned to node i.

The goal of relaxation labelIing is to solve an assignment problem: to choose a

labelIing assignment which maximizes sorne mensure of cOllsistency. In order to do
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this, we augment the labelling with a matrix ";j(>', >.'l, which is a measure of the

compatibility between label>' Olt i and label >" at node j.

Definition 7.1 The support for a label>' Olt i is

s;(>';ii) = L L ";j(>',>") IIj(>.').
jE/.VEAJ

An unambiguous labelling is a labelling assignment such that

Vi El, >. E Ai: l'i(>') E { 0, 1}

which defines a mapping i -+ >. if and only if 1';(>') = 1. Wc say t.hat >. is assigned to

the node i. A consistent labelling is a labclling assignment. which fullills the condition

Vi E l,v E [(: LI,;(>')s;(>';ii) ~ LU;(>')Si(>';ji),
~ ~

where K is the space of alliabelling assignment.s.

Formally, relaxation labelling solves the problem of finding a consistent labelling

given an initial description (l,A,I') and the compatibility IlliLtriX ";j. If IlVel'llgc loelll

consistency (for symmetric compatibilit,ies) is given by

A(p) = L L l';(>')s;(>'; ii),
iEJ .\Ehj

then the algorithm in Fig. 7.1 constitutes a gradient iL~cent on average local consis­

tency which terminates at a consist.ent labelling [HZ83].

For the early vision problems we ~onsider here, the genel'lll case can he simplilied

considerably. Remember that we are attempting to ext.l'llct cross-sections through

image bundles. Wc assume that one nodc is 'L~sociat.cd wit.h every t1iscret.e point in

a image bundle and that the labels Olt each point are A; = {TIlUE, FALSE}. Thua,

anode i represents the hypothesis that there is a cross-section which intersccts the

Voronoi cell Ei. We refer to this special case as two lilbel relaxation lilbel/ing [PZ85J .

The two-Iabel representation, and updat.e and projection steps are considerably
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1. Compute an init.ial cNt.imat.e of l' = {l';(..\)} which conNt.i­
tutes a labelling aNsignmcnt.. Cali t.his l'''.

2. R.epeat starting with 1/ = 0 untill''' iN COllNiNt.ent.:

(a) Repeat for ail i El:

i. Compllt.e l'i =l';' + .1.<;.
ii. Project.l'i onto fi l'alidlabelling assignnll'nt.. This

new assignl11ent. Îs 7,il +1•

(b) Set Il =Il + 1.

3. Generate the mapping i ~ .\.

Figure 7.1: The Hlimmei-Zliekel' algorit.hlll for I·claxat.ioll lahcllillg [HZ83].

simplified. In terms of the represent.at.ioll, wc need only cl'aluat.e and st.orc l'j(TltlIE)

sinee pj(FALSE) = 1 - Pi(TRUE). In addition, if wc impose t.he design condition

that S,(FALSE) = -s,(TRUE), then any evidcnce for a hypot.hesis is naturally evi­

dence opposing its converse. ThIS amollnt.s t.o a condit.ion on t.he st.l'IIct\ll'e of t.11<!

compatibilities Tij, and is easily realizable in practice, wit.h

T,j(TRUE, TRUE) =-T,j(TRUE, FALSE) = -1'ôj(FALSE, THUE) = l'ij(FALSE, FALSE).

With these restrictions, we can simplify the not.ation, using l'; t.o refer ta l'j(TIlUE)

and s, ta refer ta Sj(TRUE). The support then simplifies t.o

t

and the update rule becomes

Si = L l'ij IJj,
jEl

11~'+J - [l{' + <s .]11 - 1 U,,
'

Ut

(7.1)

•
t

where [xn is x truncated to the interval [O,IJ.

Gradient ascent procedures are necessarily vulnerable ta the presence of local

minima. One of the requirements of fi problem dcfinit.iolJ w:ing a relaxation labelling
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paradigm is thus to ensnre t.hat. Ilw rOlllhinalion of t.he init.ial est.ima!.e pO and the

compatibility matrix rij produces only 1/t(;(ming/lIllocal minima. One way of thinking

of this is to require that both the initial estima!.e and the upclate function preserve

whichever features are deemed to b" essential fol' a viable solution (i.e. the support Si

is only positive when these fea!.lIl'es cali he verificcllocally). These requirements must

be treated as design preconeli!.ions on I.h" calclliation of t.he initial estimates and the

derivation of the compatibilities.

7.2 Geometrie Compatibility

•

•

•
t

As we have suggested, the problelll of ext.racting geomet.dcally "consistent" structure

from an image depenels on the clefinit.ion of consist.ency. If the representation is

in terms of a sampIed fibre bunelle, then the description of a consistent structure

will be the thick trace of some cross-sect.ion of the bnnelle. As we showeel above,

the selection of the points in such a cross-section can be forlllulated as a two-label

assignment problem. However, select.ing these point.s will elepenel critically on the

local geometry of these cross-sections; that is, on the compatibility structure chosen.

ln this section we develop a framework fol' l'elating an image geornetl'Y to the

geometry of cross-sections in a fibre bunclle. The I·esult.ing mot/cls match the structure

of the fibres to a description of t.he local image geometry, anel constrain the cross­

sections. With this framework in place, we cali elet.erllline if a pair of points in the

total space are "compatible" wit.h the elesireel image geomet.ry anel, if they are not,

how "incompatible" they arc. Dy then extencling this investigation to a sampling of

the total space we will lay t.he grounelwork for the elesign of a relaxation labelling

network whose fixed points are thick traces moelel cl'oss-sections.

To clarify the reasoning anel result.s, t.he elerivations will be accompanied by an

elaborated exarnple. For simplicity, we will considel' the problem of finding continuous

straight lines in images.
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ï. Relaxation Labelling

7.2.1 Continuous Spaces

We begin by introclucing geomet.ric models 011 fibre bnndl"s. A geolllet.ric mode! is a

complete description of a geomet.ric fonn on t.he base spacc of an image bunclle.

Definition 7.2 Amadei M 011 the bunc!le ç is a set. of different.iable cross-sections

M : B ~ E of ç which cover t.he t.ot.al spaœ E. If M is a pal'tition of E (i.e. each

point p E E(ç) has a unique cross-sect.ioll M E M such t.hal. l' E M) then wc say

that the model M is minimal, and wc can refer t.o the cross-section selected by l'iL'

Mp •

For example, the set of ail straight. lilles in the plane IR2 and t.heir orielltations 0 is a

modelon the bundle ç : 0 ~ IR2
• Not.e t.hat a minilllalllloclei cali be expressed iL' a

mapping M : Ex B ~ E where M(", '1) = !l'l,,(q). We restrict. these Illappings M

to be differentiable.

To use this abstract construction fol' t.he represent.al.ioll of geolllet.ric strllcture, wc

assume that each cross-section M is t.he illsl.ant.iat.ioll of sollle gcometric primitive.

We refer to this kind of model as a gco11lc/.1ic 1Ilmlel. If this model is millimal, then

each point pEE is a complete descript.ion of t.he local geomel.ry.

Whether a model is minimal or IlOt., it. cali be used t.o group togethcr ail of the

points which share membership ill olle of it.s cross-sect.ions. Wc say that snch points

are compatible with each other.

Definition 7.3 For a moclel M, we c1cfille a C01ll11l/./.ibili/.y rclatiol' CM(,',q) bctween

points p, q E E(Ç) where

For minimal models this is clearly an cqnivalclICCl relation. Moreovcl', fol' minimal

models this definition simplifies tO the l'eqnirclllcllt that. '1 E M,,, but silice '1 uniquely

selects the cross-section Mq
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Figure 7.2: A diagram of a model of stmight Hnes in planaI' images. [n (a)
is shown the geometric description of Hnes in images. Compatible local models
(e.g. at points l' and If) genemt.e the sallie Hne. The model deterrnines a family
of cross-sections in the natnml prodnc!. bnndle ç = X x e (b) which themselves
form straight Hnes. The geolllet.I'Y of Hnes in t.he plane thns induces a geometry
of cross-sections in the total space.

It is clear from the above results tliat Illinilllallllodeis give much more structure to

the compatibility relation than gencl'al lllodP.1s. Il. is for l,hat. reason t.hat. we will

henceforth restrict our analysis to minimal models. Much of the work below will

apply equally weil to general models, but at.t.cmpt.ing to delineate the differences

would likely obscure sorne of the results.

Example 7.1 We know that. a straight line in a plane is complet,ely described by

a position and a direction. Thus, a model [. of straight lines in the plane image

1 : X ~ Y where X C IR2 is defined on l.he bunclle f,c. = (X x e, 71', Xl, where

e = [0,71'), by the cross-sections:

for x E X and 0 E e. We will refer t.o t.he line general,cd by 11 = (x,O) as

L(x,O) - {L(:I', 0)(5) 1 (:r:, 0) E X x e and s E IR}.
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It is important to note at this point. t.hat. t.opologieally t.h.. t.otal spart· Er is cylindrical •

sinee the orientation Il is the saille as Il + mr for integra! Il.

Proposition 7.4 The model [, is willillwl.

The fact that this is a minimal model is c1ear from a pll1'ely geomet.rie point, of

view, sinee a point, and an orif'nt.at,jon nniqne1y d"termine a st.l'aight. lilH'. It. is st.ill

useful to explicitly ,?rove minimality in terms of the mode!. Wc must show t,hal, ail

L(q) intersecting the point l' = (:c,O) arc ident.ical. For any q' E L(q), wc have

q' = L(q)(s') = L(p)(s + s'). Thus q' E L(q) =:- q' E L(I') and t.herefor.. L(q) c L(l')'

But this is also true for l' and q reversed, so LÜ') C L(q) and t.hns L(].) = L(q). •

The straight line model illustrat.es a Illethod for dcfining models by paramet.eriza­

tion.

Definition 7.5 A parametel'izetlllllll/ci is a Illodel M on ç described hya family of

cross-sections

M = {M(l') : S ....:; E Il' E E}.

where S, the parameterization, is a neighbourhood of t.he origin in Dl" and M(]I)(O) =

p.

Observe that since ail Mare cross-scct.ions of ç, 1/ :s dirn(BM ).

Corollary 7.6 A parametel'izec1moclel M is minimal if amI only if for allq E M(l')'

M(q) is a reparameterization of M(I').

We have 50 far ignored the faet. that. localily is oft.en an issne whcn applying

models to real situations. For example if t.he model is derived from a truncat.ed

Taylor expansion of a local neighbomhood, thcn wc cOIn only be confident lhal il is

accurate within sorne bounded neighbomhood. The ext.ent. of lhis neighbonrhood is

determined by the distance travc'lIec! along 'Ir (M) = {'Ir(c) 1c E M} , the projection

of M into the base space. '1'0 sel' why this is 50, it, is sulficient to rcmlize that since M

is a cross-section, motion on M is completely proscribed by mot,ion in the ba.qe space

B (i.e. there is a one-to-one mapping from B 1.0 M).

B!J



•
,

••

•

ï. Relaxation Labelling

As a first step in understaJl(ling local eompatihility t.h"n, wc neeclto define a means

of relating both compatible ancl incolnl'at.ilJle l'airs of point.s in E t.o the moclel M.

Initial1y, consicler only compatible pairs.

Definition 7.7 The tmnsTJOT"t di..t.llllct d~ (fi, q) betwf'en two compatible points T', q E

M is the length of the shortest path between 1I"(fI) ancl 1I"(q) in 11"(1\1).

Since M is connected, such a path cloes exist, ancl with the Riemannian metric on

'Il"(M) inherited l'rom B, the length of sneh a path is wel1-clefinecl. In fact, since 1I"(Mj

is a submanifolcl of B, we can cleclnce t.hat. th" minimal pat.h l'rom T' to q is a geodesic

on 'Il"(M) (thus justifying the use or the ter III "transport."). Civen this, d'(T" q) is

dearlyan induced metric on 1I"(M) and thus also on M.

To extend this to arbitrary pairs of point.s, wc refcr to the tubular neighbourhood

of M. This is a generalization of the perpendicular project.ion operat.or over M in E

which is a basic building block of moclem clifferential geometry. We refer to the tubular

neighbourhood since it may help reaclers familial' with fibre bundle manipulations to

understand subsequent derivat.ions. Other readers neecl only note that the tubular

mal' 1I"A( is simply the perpenclicular project.ion from E onto fl'!.

Treating the model cross-sections M as clifferentiable submanifolds of E, we can

identify the tangent bunclles of the t.otal space T( E) ancl the submanifold T( M).

Definition 7.8 [Lan85, Kos93] The nOI'mlll b'unr/le vM of the submanifold M C

E is the quotient bundle 7Af(E)/T(M). There exists a bundle 1I"M : TM -t M,

unique under isotropies, equivalfmt. t.o the normal bundle 1JM such that TM is a

neighbourhood of M in E and the zero section of 11"A( is M. The neighbourhood

7M is the tubulul' neighbOlt1'hood of M and 1I"A( the tubulu.r l1l1Lp. In IRn the tubular

mal' is a perpendicular project.ion l'rom TM onto M. If TM = E, then the tubular

neighbourhood is snid to be ta/III. Finally, we not.e t.hat. the subspace of E normal to

the manifold M at e EMis just the inverse of the tubular mal' 'Il"'i,/(e).

Now consider two points T' and q in the tot.al space associated with the model

M. If p and q are compatible under M, t.hen t.here exist.s some M E M such that

p, q E M. Otherwise, if p and q are in t.he t.ubular neighbolll'hood of some cross-section
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M", then lI'M'(p) and lIM.(q) are on M" and Ihns compatihle IIl1ller .M.

Definition 7.9 We define the i7lcolIIl'lI/i!Ji/ily of l' and If with the mode! .\If as

dC(p, q) = illf d(p, l'") +d(lf, If')'
M-elv!

where p" = lI'M'(P) and q" = lI'~/,(q).

(ï.2)

•

•

••

•

•

In essence, dC(p, q) is a measure of the minimal perl.lIl'hat.ion of l' and If which will pro­

duce a compatible pair. We refer t.o t.he t.riple (M",I'·. If") as the 7IIi7linw/I"'ojcctio71

of p and q onto M.

The minimal projection is used 1.0 extend the dcf!nit.ion of I.ransport dist.anc" 1.0

arbitrary points.

Definition 7.10 The trcmsl'o1'l. rlis/cl7IC:c: hct.wee.n l'oints l', If E E is

where (M",p",q") is the minimal projeet.ion of /' and If onl.o M.

These two measures of compat.ibilit.y het.ween /' and q will form t.he basis fol' ail of

our subsequent calculations with compal.ibilities.

Example 7.2 (continued) Consider two points l' = (:!:,,, Y", 0,,) ami If = (:!:'/l Y'/l 0,,) in

E(L:) = X x 0 and a cross-section M"(s) = I!+s(cos 0", sin 0",0) where I! = (x', y", 0").

Now, let p" = M"(s;) and q" = M"(s)), and since (/," - I!) . (l'" - l') = 0 and

(q" - e) . (q" - q) = 0 we can express 7" and q" as fllnctions of e. Therefore if

p" = M"(sp) and q" = M"(s,,)

d'(]I, q) = Isp - s"I,

dC(]I,q) = min d(]"(I!),p)+d(c((I!),q).
tEE

The projections p" and q" are shown in Fig. 7.:Ja.

!JI



•
7. Relaxation Labelling
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(a) (1,)

'.

•

Figure 7.3: The minimal pmjection of t.wo points l' and 1/ onto the straight tine
model c.. The sum ofthe dist.auces 1/(71,J1·) and Il(lf, If·) is a measure of the incom­
patibility d'(p,lJ) between the tiues l' and 'l, while the dist.ance d(1l'(p·),1l'(q·)) is
the transport distance d'(JI, '1). When 7' and If are compatible, then d'(p, '1) = O.
Of the two ';iagrams, (a) shows t.he symmet.ric minimal project.ion, while (b)
show the projection associated with the asymmet.ric compatibility of Der. 7.15.

7.2.2 Discrete Spaces

Before we can understand the impact. of t.h"",, mcasUr(~s 011 the derivation of relaxation

labelling compatibilities we need t.o invcstigat.c t.heir t,ranslation int.G 5ampled spaces.

We start by defining a relatioll on discrete points in the total space of a geometric

model. This relation is a discret.izat.ion of t.he compat.ibilit.y defined in Def. 7.3.

Definition 7.11 Given a model M on é, and a discret,ization Ê(ç) of ç, we define a

discrete c07n]Jatibility relation êM bet.ween points Ci, Ci E Ê(é,) where

êM(ei' Ci) Ç} 3" E Ei , lJ E EJ , 111 E M: l'E M and lJ E M.

That is, there is sorne cross-sect.ioll in t.h", moclel M whose thick trace includes both

points Ci and Ci' Note that, in contrast, with the cont,inuous clefinition, while this

relation is commutative, it is in general not t.l'allsit.ive, even if the model is minimal.

Theorem 7.12 The discl'cte romflilt,ibi1it.l' rdal.ioll êM(Ci' Ci) fol' Ci, Cj E Ê is a valid
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discretization of CM(c;, ci)'

For Ê = E, the Voronoi ceUs Ei and E) cont.ract. ta th,' singletons { Ci} and {Ci},

and the equation above becomes

exactly the continuous definition of Der. 7.:1. •
•

•

••
•

••
t

As we noted above, this relation can Il<.' <'"press"d in tel'lns of thick traces. FOI' a

minimal model, the thick trace of a cl·oss-sect.ion l'l'ovides n convenient verification of

compatibility since

CorolJary 7.13 If Ci E THICI\(M,,) or "i E TIIICI\(M,,) then f'i amI Ci are compat.­

ible under the mode] M.

Furthermore, comparing the two definitions (2.10 and 7.11) imllledintely reveals that

CorolJary 7.14 For a givell point, Ci, t,lw I,hick trace uf I.he Cl'Oss-scctioll M" is il

subset of the set of points comp"/,ibl" wi/,h Ci' { "i E Ê 1 êM(Ci' Ci) }.

These observations lead immediat.ely ta a second discretization of the compatibility

relation.

Definition 7.15 Given a minimallllodei M on ç and a discret.izat.ion Ê(ç) of ç, wc

define the asymmetric complllibility relal.ion êM(Ci' l1i) hetwecn l'oints Ci, Ci E Ê(Ç)

where

Again, the reduction 1.0 cont.innons cOllll'at.ihilit.y is ohvions.

CorolJary 7.16 The discrel... cOll'lpa/.i/Ji/i/.y l'elilt.ioll êM(Ci'C)) for l'j,Ci E Ê is il

vaIid discretization of CM(c;, Cj).

With this relation, the minimal project.ion bccomes (M", ci, Cj) where
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and the compatibilit.y met.ric, t.ransporl dislanre and incompat.ibilit.y are derived from

this new projection. Howcvcr, tilis rdation is neililcr commutative nor transitive

(hencc asymmetrie). We will sec, i1owever, 1.i1at it pl'Ovides the basis for mapping

geometric models onto relaxation labelling support.s.

Example 7.3 (cor/tinlled) Consider t.wo poinls Ci = (x;,y;,Ool and ej = (Xj,yj,Oj)

in E(.c) = X x 0. Let ei = Cj + s(cosOj,sinOj,O). Tile Iwrpendicular projection of

Ci onto L'J is tilen found by solving (ci - Cj)' (ei - col = 0 for s, which gives

s = (:t·; - :",) cos OJ + (Yi - y,) sin 0,.

The projection to ei is shown in Fig. ï.:lb.

With this projection, we can explicil.ly calculale t.i1e l.ransport distance and in­

compatibility between any two line clements Ci allli Cj.

••
tI~(e;,ej) = 1"1.

d'/;(e;,ej) - lei-ed .

(7.3)

(7.4)

•

These definitions provide a basis for underst.anding compatibility relationships

in discretizations of geometric models, hut. t.hey leave a number of computational

questions open-most significant.ly t.he quest.ion of how ta determine whether or not

a particular cross-section M intersects the Voronoi ccII Ei. Since the E; is a convex

polyhedron, it can be defined by a set of linear illeCJualities of the form (e - eol· n :5 r,

one for each face. The problem of t.est.ing int.ersect.ion het.ween the cross-section M

and the cell Ei is thus formalized as

•
MnE;#0 Ç> VJEF,:3eEM:(c-Col'1I/:57'/, (7.5)

••
where Fis the set of faces of Ei. While t.his is nol. an expensive computation for a

single cross-section M and Voronoi cell Ei , when the t.est.s number in the millions, it

may be prohibitive.

As an alternative, we suggest an approximat.ion wilich may be sign:ficant1y less
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expensive lo compute. If E; is neariy spbericnl (i.l'. 11',' liS" a elose-packed t.essdat.ion

or E is of high dimensionalit.y), t.bl'n il is cI,'ar t.hnt

is an approximate test for intersection Iwt.we"n M and Ei • Th" only cirellm.,t.anCl' in

'.vhich this is true bllt. Mn E; = 0 is wlll'n 71'M(C;) E (b,.(S,l(c;) n Ed. As long i~' E;

is nearly spberical Vol(E;) > Vol(b,.(E,)(c;))/2, I.blls fol' t.he 1IIl1j"ritll of point.s Ci fol'

which this is true M n E; # 0.

The above approximation depends on t.he iI.'Sumpt.ion t.bat. t.he samplings are 1111­

biased, that 'J that the Ej are ail very nenri)' splll'rinl1 ,\Ilel of t.he same radius (i.e.

Vi:p(Ei) ~ p(Ë)). The usualregnlar samplings (t'.g. sqnare and h.)xagonal grids) are

unbiased. In general any sampling for which t.he' sample point.s art' t.he cent.ers of a

spherical close packing [Con93] is also. We will ,"'sunle below t.lmt. ail samplings are

unbiased.

7.3 Relaxation Labelling Support

We now have the machiner)' t.o answer t.he I",y '1l1cst.ion: wlmt. is t.be relationship

between compatibility as defined in §7.2.2, and t.he mat.rix 1'ij in relaxation lahelling'!

We can set up the labelling iI.,signrnent. pl'Ohlelll by '~'Slnlling tbat each point

Ci E Ë(ç) has an associated node i in the labelling. Furt.hel'lllOre i~'social.e with 1I0de

i a confidence Pi that for some point e E Ei • t.he project.ion 71'(c) in the image h,~,

the local geometry M. E M. Thus Iii = 1 implies 1.lml. Co' is in the thicl, trace of

sorne cross-section M in the mode! M. Since t.he"e cross-sections arc cont.inuous, an

unambiguous labelling for such a geollleLric pl'Ohlem consist.s of a set of connected

components of the discrete total space cach of which is associat.ed with a single model

cross-section. We will cali sucb a connert.cd colllpOlwnt. a l'mil/ultiMe subsd of the

labelling.

The design pl'oblem is thus t.o devdop a snpport. fundion so that the lixed points

of the relaxation are labelling assignnwnt.s which consist. only of non-degenerate corn·
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patible subsets. Each assigne" node will then l'l'present confirmation of the existence

of a patch of the sclected geomet.ry in 1.11l' associat.ed image.

There are three goals which conslrain t.he designillg of lahelling sllpports for such

a system:

• The labelling assignmelli. in whieh ail confidences are zero except those in the

thick trace of a model crosS-Sl'rt.iOlI Illllst hl' a fixl'd poilli. of t.he relaxat.ion. The

closest fixed point ta sueh ail assigllluent. shollld be t.he uuambiguous assignment

in which ail of these labels havf' confidence 1. Therefore, nodes in such a thick

trace should receive positive sllpport..

• The thick traces extraet.ed should he eit.her disjoint. or only connected at single

points. We would normally expect. them 1.0 be disjoint., but allowing point con­

nectivity, we shall sel', will allow fol' the possibilit.y of representing bifurcations

in certain geometric object.s. Overall, t.his reCluirement. fol' disjointness can be

seen as implying that there be an empt.y region sttrl'OlInding each thick trace in

which allnodes have zero cOllfidence. In tenus of support. t,hen, nodes which are

near but not on a thick trace of assigned labels should reccive negative support.

• Isolated labels should receive non-positive support.

Ideally, support for a label shouM 11/: ]lOsilille if 111111 only if the label represents a point

which is on Il moclel cl'oss-sccfiou c11:fiul:rl by S07I11: sel of ncighb07lring labels. If these

goals are met, then the effect of relaxat.ion ou an init.ial est.imatp. of label confidences

should be the selection of mut.ually support.ing collections of labels which l'l'present

continuous patches of model cross-sedialiS. Ali ot.her labels should be suppressed and

eliminated. A diagram of this plan is pl'Ovided in Fig. 7.4-it will be useful to keep

it in mind as we devclop the solut.ion.

Keeping these goals in mind, we seek 1.0 dl·fille a support. function Si such that

the thick traces of model curves are fixf'd point.s of t.he relaxat.ion. From the point of

view of a single node, the support. fol' a point. ei should be posit.ive only if it can be

verified ta be in such a thick t.race. One mcthod of calculating support would thus
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Figure 7.4: The fixed poillt. of a geollletl'ic relaxat.ioll problelll is showlI. The
cross-section M is shawn in the salllpied tot.al space Ê wilh the points in its
thick trace ei € THlcl«(M) in solid black. If t.h,'s,' poilll.s are t.o be a fixed-point
of relaxation labelling, t.lwlI a lahellillg ill which ollly t.he black points have
Pi > 0 must prodnce a sllpport, flllll'I,ioll ill which .'ô > 0 1'01' only those points.
Ail points ej r;. THICI«M) (open circles) rect-ive lion-positive sllpport. Insl.e"d
we design a support fllnction hy reconst.rllct.ing t,he cross-sl'ction M IInderlying
THICI«(M). We then define a lIew trace TIIICI<I,(M) (illcllldillg lhe gmy poinL'
as weil) such that d(Ci. M) < {' for sOllle (' ;:: l'(Ê). The slIpporl fllllCtioll is thell
positive only if Cô € Tlllcl\t'(Af). III t.his case, 1Ill' tract' TIIICJ<I,(M J is the fixed
point of the relaxation.
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Figure 7.5: The model cl'oss-sediolls in t.he lIeighbonrhood of a point ei. As­
suming that ei alld Cj are cOlllpal.ible, I.h,·n t.he cross-sect.ion Me, intersects Ei
andei E Ei.Showarecr = M.,n7l'~«:;) and ci = 71'AI.,(ci).SinceM issmooth,
Me, and Me. arc approxinmt.ely parnllellocnlly and thns d(Ci'C;) '" d(ei,ei).

be ta construct a smooth cross-seet.ion M E 1\If fl'Olll il labelling nssignment and then

update IIi bnsed on whether 01' nol Ci E TIIICI\(M). Sect.ion 7.2.2 concluded with an

examination of how ta make lhis selection efficicnt.ly. Therefore, we seek a method

of combining the labels in a t.hir.k t.race t.o form a smoot,h underlying cross-section

MEM.

Consider the neighbourhood of t.he [Joint. Ci anel t.he nssociated cross-section Me;.

If our reconstruction methoel is sounel, t.hen t.he smoot.h c.oss-section constructed

from THICl«Me;) must pnss through Ei • Fol' lhe moment. foc us on the points ej E

THICI«Me;). By Der. 7.11 we kno\\' t.hat.

and thus, since ei = TrAl, (ei) t.h"t.,

Now, on the fibre Tr.\r:. (ei) of t.he t.ubul"r buuelle of Me. at. ei (which we shorten
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to lI'JJ(ei)), we can const.ruct th.. point of inll'l's..c1ion

Assuming that the minimalmodel JV/ considered as a mapping JV/ : E x B --+ E is

smooth, then for e E Ei ,

•
(see Fig. 7.5).

p ~ p(Ei)

Thus, since ci = lI';:i(f'j) WI' l'an l'ondudc thal. for some radius
• J

ei E TIIIGI\(M.
J

) => (Vj:c; E b/,(ei)).

•

·e

•

•

•

•e
t

Thus from the point of view of the fiul'C' of the tnbnlar uundle over ei, reconstructing

a smooth cross-section underlying t.he t.race may be achieved by combining the points

et Înto a single point eE lI'JJ(e;). The point. Ci is then in the thick trace of this

cross-section if and only if e E Ei •

A possible solution is suggest.cd in [DZf)O]. Wc l'l~sta\.e t.heir observation in terms

of sampIed bundles and cross-sect.ions. The sampling of E implies that a point Cj in

Ê represents an equivalence dass of cross-sect.ions which int.ersect. Ej. If we represent

this equivalence dass by a Weinel' 111<',c'lII'e over t.he cross-sect.ions, then for any l'oint

ci E Me, the Weiner mea.sure l'C~st.rict.ed t.o lI'At~) (cj) (t.he snhspacc normal 1.0 M'J

at ci) is approximately Ganssian. Th,' W..ilH'1' I1waslll'e arises hecause t.he chc,s of

continuous functions is equivaJent t.o t.he sampie fnnct.ions of a Brownian motiol1

[Do084]. Because of this, the central li mit. theorem implies that the distribution of

points et = M. n lI'M~;(ei) for fi)(ed ej and e E Ei is approximatcly Gaussian. This

observation can be used 1.0 show tha!. in t.he plane, the lineal' combination of iL set of

Gaussians around the saml'le l'oints on t.he t.hic!, trace of a curve forms iL potential

field, the val1eys of which arc curves wit.h t.he same thic!, trace!

We can apply similar reasoning to the mOl'e general problem of averaging values

on the fibres of a tubular bUlldle, Firsl. consider the combinatioll of discrete values

in IRn.
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7. Relaxation Labelling

Theorem 7.17 If P : IR" --t Dl is a weig/lt.ecl slIm of Gallssialls of the form

P(:r.) = L 1/; Gn.U:r - ":d),
i

(or some collectioll o( Xi E IR", 1/; > 0, ami (7i > 0, t.JJCIl ;.JI local maxima of P(x) are

witllill the cOllvex hull of { Xi }. Moreover, there is at least olle such local maximum.

Consider the face F of the convex hull of {:ri}' Deline the half-plane

HF = { :r. 1 (:r. - :r.F) " :::; a}

where XF E F and, is the inlVard facing unit. normal t.o F. Taking the directional

derivative of P with respect. to , gives

P.,(x) = L /liG~(J:)
i

where

Since Gi(x) is monotonically decreasing with increasing lx - Xii, we see that

(X - ":d " > a # G~(:I:) > O.

Therefore

,,: rt HF =? (x - :r.i) " > a
=? G~(x) > a
=? P.,(:r.) > O.

Since local extrema coincide lVit,h a sign change in ail direct.ional derivatives, ail local

extrema of P(x) must be in HF. This conclusion holds for each face of the convex

hull, therefore the local maxima in 1(:1:) must. be in the intersection of ail such half-
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planes-the convex hull. To ",.p 1hal ""ch a local nHlxinllll11 ('xi"t" wp net'd only refcr

to the maximum principle of the heat e'luat:on ([PWS4], p. 1G1) which guarantee"

that for finite time (i.e. finit.t' a) a global maxilllum (and thu" a local maximum)

a1ways exists if the initial value i" non-con"t.ant.. •

Since 'lrAJ(ei) is isomorphic wit.h IR" wher(' Il = dim(E) - dim(M), IVe cau con­

struct a cross-section underlying t.he t.hicJ; t.l·ae(' Tlllel\( Ml of M by construetiug the

function

Pte) = L 7'j G.,(d'(e,c,)) G•• (tlC(c,Cj)),
j

where ej E THICI\(M). Since t.hE' rest.rid.ion of t.hi" fuuet.ion t.o 'Ir.i/(c;) i" of t.he fOl'ln

described in Thm. 7.17 with

(/; = lIj G.,(d'(e,ej))

"' - Colol·i - J

the local maxima of P on 'lrAJ (e;) are ail wit.hin t.he convex hull of et. The distances

let - eil are bounded above by some const.ant. p (silice ct R: en. Therefore, allloc'li

maxima of P on 'lrAJ(e;) are in t:he bail b,.(Ci) which i" approximately the Voronoi ccli

E;. Without proving that there is a unique such maximum (Iargely irrelevant. since

the sampling will combine them), t.he discussion al. t.he end of §7.2.2 suggest.s t.hat. wc

can define the p-trace

TIIICI\,.(M) = {l,'; 1 d('lrA/(I';), l';) ::; fJ}

which is an approximation t.o TIIIC:I\(M) such that.

p ~ p(X) =? Tlllcl\(M) c TIIICI\,,(M).

Moreover, THICI<p(M) is clenrly conneet.ed fOI' smooth M if {J ~ (J(X), thus the rela-
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tionship between the path-connect.edlwss of !If and the connect.edness of THICK(M)

is preserved in TIIICl<p(M). 50, if wc st.art. wit.h a lahdling a.'Signment of the form

Pi = {~
if 'i E TIII<.:I\,,(M);

ot.llcl'wise,

1

•

and a support function Si which is posit.ive if and only if there is a local maximum of

P(Ci) in bp(Ci) n rr;/ (c;), then .si is posit.ive if and only if Ci E THICl<p(M).
"

Corollary 7.18 If Si is posi/.il'e exact./y whelJ t.hem is a local maximum of P(c) in

bp(Ci) n rr;1(ci) then the thick trace TIIICI\,,(M) for M EMis a fixed point of

relaxation label/ing.

With the LogicalfLinear Aigebra of Chal'. :1, we have a direct. means of testing

this condition 10cally.

Observation 7.19 If x E X is a local maximum of P : X -+ IR in some neighbour­

hood bp(x), then x is a local maximullI of P in every Ileighbourhood bp(x) n Cl< where

Cl<: IR -+ X is a differentiablc curve wit.h t.angent 'Y =0/(").

In order to locate local maxima in P we need only identify regions within which the

directiona! derivatives P~ change sign and t,he second directional derivative Pn < O.

Definition 7.20 Let r = (-YI, ... ,'Y/I) be an ort.honormal basis for rr;1 (Ci)' The local

gcomctric support for Ci is given hy

Si = A P~k (Ci - P'Yd ~ - P~, (cd P'Yd·
~'Sll

where P~, is the directional derival.ive of P in I.he direct.ion 'Yk.

This support Si is guaranteed to be posit.ive if thel'e is a local maxima in bp(Ci) n
rr;1(ci).

Theorem 7.21 Givell thllt. " > ,,( Ei ) t.11l' geollletric support Si is positive if there is

a local maximum of P(c;) ail t./le ."d,spare of E normal t.o Mc, in the \loronoi cell Ei•
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Referring to Thm. 5.1, we seC' t.hat

guarantee the existence of a localmaximnlll of P 011 the li Il'' frolll e; - f'"'Ik to c; + 1'"'Ik.

Thus, when there is a local maximullI of l' ill o,,(e;), this cOllditioll is true for ail

directions..., Er. Therefore each of t.11<" expn'ssiolls r\.(c; - f'"'Ik) t:. -P,,(c; +!'"'Id is

positive when there is a local llIaximlllll wit.hill /1;.

By Def. 4.1 we know that. 1.11<' 1./1. AND of posit.i\'l' valllC's is lIeressarily positive.

Thus the support Si is positive ift.hcre is il locallllaxinllllllof P(I';) 011 7T:\J(C;) within

the ball op(ei)' Since p > p(E;), this Lall C'lIcloses t.he Vorolloi cell E;. •

••

•

Choosing an orthonormal basis 1'01' 7T:\J(C;) is ilOt. diHiclIlt. for t.he geomct,l'Îc proh­

lems we have investigated. Because tllf' cross-sed.ioll ha< a ullique value on each fiLre,

any orthonormal basis for the fibre F will be al. a pl'Oper subset ofa basis for 7T:\J(,,;).

If S, the domain of M, is of I.h" sailli' diIlH'lIsiollalil.y as il t.hell t.his ba<is is complet"

since it is orthonormal, normal t.o Al alld of t.lll' t'l)qllired dillwlIsiollality. Otherwis",

we need only augment this basis \Vit.h ail ort.hollot'lllai ba<is for the subspace normal

to S in B.

Finally we can relate the geolltet.l'Îc support which \VI' have developed 1.0 the relax­

ation compatibilities of §7.l. Rccall t.hat ill the l.wo label C,L<e, tlm relaxatioll support.

simplifies to

,';j = L l'j l'ij.
j

Now, the local geometric sUPJlort. for c; is of t.he 1'0t'lll

8; = A ±p~.,,(c; =f IJ"'Ik/1)'
k

where the linearit.y of convolut.ioll allll the derivat.ivc oJlC'rat.ol' imply that

P~'/2(ei =f fl"'Ik/2) = L l'j C::,.,,(I:; =f fl"'Ik/2)'
J
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ï. Relaxation Labelling

wherc

Thus the geometric compatibility can b" l'ewrit.t.cn in t.he form

SI = A SI' (7.6).,
k

whcre

~'k = L k.; 7'i l'ij
j

and

l'k, = ±C"~",,(ei 'f (J'Yk/~)''J

Note that because of the part.ial derivat.ives in normal directions, those points which

are laterally displaced from t.he inferred manifold by great.er than p and are parallel

1.0 il. are inhibited. Thus the Sr component.s are referred 1.0 as the /atem/ inhibi·

t~on components of the support. QI' sim"ly t.he /II/em/ campanents. The analogy with

traditionallateral inhibition met.hods [Rat.Cl5] is obvious.

Thus we have a relaxation labelling algorithm wit.h guaranteed fixed-points, the

thick traces of cross-sections M E M of sollle geomet.ric mode\. And while il. is true

that the L/L non-linearit,ies ohsclI1'e t.h" re1at,ionship bet.ween t.he relaxation and a

gradient ascent, the behaviour of t.his relaxation meets t.he goals set out above. Wc

have already observed the fixed-point, helmviour, and t.he lateral inhibition guarantees

that a label near M but not. in Tlllr.I\,,(M) will hf' adively suppressed.

A number of free paramet.f'rs arise in t.his cnlculat.ion: t.he values of p, u. and Ul.

Significantly though, they are tight.Iy constmined. As we have seen p in Def. 7.20

is currently constrained by () > p( E;}. WC' bave already shown t.hat if this is truc,

then the points selected by S; > () arf' a sllpersel. of t.hose ideally selected. Il. is clear

that p::::l p(Ei) for THlCl\p(M) 1.0 bf' a rf'asonahle approximat.ion t.o THICI«M), and

must certainly be constrained above by p < 2p( Ei)' Fll1't.hermore, P on 11';1 (ei) is

a weighted sum of Gaussians G.,(Ic; - ctll where lei - ctl < p. Thus, for the L/L

combination of Def. 7.20 1.0 l)l'ovide a goud est.imat.e of the second derivative of this
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field we require that (7< > p. HOII'''\'('r, fTc cannat he much grt'atcr than this without

causing inappropriate merging of Iwarby independeut traces [DZ!IO]. This discussion

is summarized by the conditions:

1'( Bj ) < l' < 21'l B;),

l' < fTc < 211( Bj ).

Note that these constraints are ;'1(1<:1'('11(/""1 of the part.icular geometric problcm heing

solved.

The last of the free paramete,·s fT, is the least constl·ainee!. It is certainly obvious

that (71 > (7< since we l,wnl 1.0 combine points on t.he sanl<' cross-sed.ion even al. some

distance. However, the upper oound of r1, is const.rained only by the accuracy of the

model in reflecting the local strnc\.me of 1.1tl' image. The significant. question is over

what range we can safely a"snm" th"t. the modcl is an acemat.e description of the

image. For example using l.he line mod<'1, if 11'1' know tha\. t.he extl·ad.ed image curves

have curvatures which vary significant.ly l'rom zero, then l.he stmight. line model may

only be accurate for as liU.le le' t.wo 01' t.lm·t' pixels al'CJund any point.. This \Voulel

then require that (71 ::::: 1.0. Clcarly t.his is not. much cont.ext. t.o contribntc to the

construction of global curves. This is one re«.'on t.hat. OUI' act.ual image curve models

incorporate curvature information direct.ly.

Example 7.4 (continuetl) To define the local geomet.ric supJlort for our line model

we must determine a basis fol' l.he snhsl'ace normal 1.0 a model cross-section. Clearly

the vector 1'1 = (0,0,1) consl.itnt.es a hasis fol' t.he fibn' e over any point. in B(!).

Since the co-dimension of Sin il(!) is on{', 11'(' nt'"d only augment. t.his Imsis \Vith the

vector 1'2 = (sin Oi, - cos Oi, 0) at. Ci = (:l'j, 1/i, Il;). r = {1'I> 1'2} th us forms a complete

basis of the subspace of E(!) normal t.o L" at. l'j .

Given this basis, we l'an calculat.e t.h" geomct.ric support. for Cj as

t

•
(7.7)
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Figure 7.6: The Iinear reduction of the L/L support for the horizontal line
label. Shown are the relative positions and orientations of compatible (white)
and incompatible (black) labels in the neighbourhood of a horizontalline label.
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7. Relaxation Labelling

(bl

(d)

•

•

Figure 7.7: The four component support networks for the horizontalline label.
The four networks represent (a) P." (ei-P'l'il, (b) -P." (ej+p'Yl), (c) P..,., (Cj-{J'Y2),
and (d) -P..,., (ei+P'l'2)' The local support for the horizontal label is only positive
if the inner products of each of these fields with the local confidences is positive.
The networks (a) and (b) ensure that the horizontalline is at a local maxima in
position normal to its orientation, while (c) and (d) ensure that it is at a local
maxima in orientation.
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The four linear components of t.his support are iuslaut.iat.ed in the four support net­

works shown in Fig. 7.6.

7.3.1 Boundary 8tability

Boundary stability is the requirement tbat. tbe boundal'ies of cross-sections must nei­

ther dilate nor contract througb iteral.ious of the relaxal.iou. This same property was

referred to as end-line stabilit.y iu §5.2 in t.he cout.ext. of image curve operators. It is

easy ta appreciate that bouudary st.ability is a gcucmlizat,ion of this concept, since

the boundaries of lines are t,beir end-point.s.

To see that this is a proolem iu tbe desigu of relaxation support we need only

refer ta the analysis aoove. The support fuuct.ion a.~ defined in Def. 7.20 involves

the selection of local maxima in directions perpendicular 1.0 a manifold, constructed

by a smooth combination of tbe confidence measurements on a thick trace. This

method ensures that regions of posit.i,·e support. will not. dilate perpendicular 1.0 this

manifold, but il. delioerat.ely eucolll'ages clilat,ion along t,he manifold. Thus if the set

of selected labels is sorne sllb••et of the tbicl, t,race of a model cross-section, then the

entire thick trace will receive posit,ive sUJlport. This is " significant problem if the

target cross-sections are oounded, proper suosets of t.he model cross-sections.

Example 7.5 (continued) Each line L iu the model [. is oounded if and only if the

base spc.ce X is bounded. However. an act,ual image of st.raight lines will contain a

number of line segments with arbitrary oounds. Assume that one such image consists

of a single line segment eand t,hal. 1LI1 init,iallaoelling correctly selects the thick trace

of this line. Thus, only t,hase Jloint.s in t,be t.hicl, trace have non-zero confidence.

Examining eq. (7.7) reveals th"t, every point, in tbe t,bick t,race of tbe modelline L for

which ec L will receive positive sUJlport (sec Fig. 7.8). Thus tbe fixed point of the

relaxation labelling will be tbe thicl, trac," of the model line Land not the segment e.

This example suggest,s thal. tbe solution 1.0 t,he boundary st,ability problem may

be developed as an extension of tbe design of end-line stable image operators. Recall

the eventual statement of t,he cont,iuuit)' prohlem for image clll'ves in §5.2: a one-
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, ,, ,
1 l , l " l '

a-ï-~ï--T·-T··ï--ï-- .aï--j·-
1 l , 1 1 1 1 1
l , , 1 1 1 ,.

--ï-·ï--T-·T··ï-·T-~ •• j--j--
1 l , 1 1 1 1 1
l , , 1 " "--j--i--'·-i--i--T-- --T--j--
1 1 1 l " 1 1
, 1 1 l " "--T--i--j--i--j--r-- --j--j--
1 1 1 1 1 l " 1
, 1 1 l '1 •• 1--i--i--i--i--i--i-· --j--- 7--7--
l , 1 1 1 1 1 1 1--+--+--+--+..+--+.- j--+--+.-+-.
1 1 1 l , 1 l , 1 1 1

-_.!. •• .!. •• ..!. •• ..!...-.!. --.!.. •• .!..--.!.. •• .!..-.!..-
1 1 1 1 1 1 1 1 1
1 1 1 l '1 1 1 1
1 ,. " 1 1 1 l ,--7--7---- --j--j--j--j--j--j .. j--

" '" 1 1 1 1l " l , l , , 1 1
--j- ·-i··,--j··j--j--"--j--r--j--

1 1 1 1 1 1 1 l ,
__ .!. •• .!.._ .!. __ .!.._ .!.._.!. __ .!.._ .!o __ .l.._ .!. __ .!. __

1 1 1 1 1 1 1 1 1 l ,
1 1 1 1 l , 1 1 l , 1
l , , , 1 1 1 1 l , 1.- j--i--i-- j--j--7--7--7--7--T-- j--
1 l , 1 1 1 1 l , 1 1
1 l , 1 1 • 1 l , , 1

Figure 7.8: Withont incol'pomt.ing clld-lin~ st.abilit,y ,'olldit.ioll~, th~ l'cgioll of
positive support (shaded) al'Oulld 1,1", I.hick tract· of a bOllnded line segmcut. (the
heavy line) covers the ellt,i1'e lIIud," Ih",. In onlel' 1.0 ell~III'e that, support. sclect
only the the thick trace of t.h~ ~"gll\('lIt" wc mllst, impuse nll addit.iom,1 condition
referred ta as boundmy sl,abilit.y.

dimensional operator is entl-linc sloblt: if (/7HI 111IIy if il "es]umds ]Jositillciy if antl

only if its centre is in a ,miformly ]JIIsilillc ,'cyiml of I·cs]um."'s. We cali l'cstate thi~

condition for support on manifolds of al'bit.ral'Y dimcnsioll iL': yeolllcll'ic: Sll]l]wrl is

boundary stable if antl only if il is ]JIIsilit1e e",oct/y 1/1/""71 ecnlcl'cll 011 a unifm'lIlly

positive region of the labelliny 11H1]1.

The problem thus becomes one of deciding wllf'n c; is wit,hill a l'egion of positive

support defined by the labellillg nHlp.

Observation 7.22 Considel' a c1o~ed, connect.ed submallifold Mu of M. If Mu is of

the same dimensionality as M, t.hen fol' ail l'egulal' C\ll'ves ct : IR. ~ M such t.hat

0(0) = ei

ei E Mu Ç} 3p> 0, Vs E [O,p): n(.s) EMil,

In essence, ei E Mu if and ollly if t.he Mu sun'Ollruls Ci. ln geometric terms, cast a

ray out l'rom ei in all dil'ect.ious ou At allli il' cadi suell ray illt.el'sect,s Mu in a neigll­

bourhood which includes ei thell Ci is sUl'l'ouuded. Thel'e may be other mcthods of

verifying whether or not a point is iu t.hc illl,cl'iol' of a l'egion, but this can be incor­

porated naturally into the calculatioll of support, defined above. Since the support

field Si at a point ei is the sllm of cOIlt.l'iblltiolls l'l'am points in the neighbourhood
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(b)

t.

•

Figure 7.9: A decolllposit.ioll of I.h~ lIeighhollrhood of a point into quadrants
allows one to verify whether 01' Ilot I.h,' poill!. is "inside" sorne convex region (in
gray) by verifying that. ail qll,ulmllts illtl'l'sect t.hl' ,·(·gioll.

of ei, if we need to verify that. positive support is coming from ail directions we can

decompose the support calculatiou into a small set of direction ranges and ensure

that there is positive support. from ail of these rauges. If we assume that locally, the

boundary of the region of positive support is linear or convex, then there is a simple

local decomposition which will verify t.his killC! of "sul'I'onnd."

Definition 7.23 Let Z = {(II"" (,,} he an orthonormal basis for t.he manifold M.

We can then define the n half-planes around m E M as

/li(m) = {3: E AI 1 (;1' - m) . ((j - m) > O}.

Define a partition of M aroundm E M int.o the 2" regions QI(m), which we cali the

generalized qllalimnts of M aronnd m. such that

Q,(m) = {x E M 1 Vi E (1 ..... II):;r E /l;(m) ~ BIN(l,i) = 1}.

where BIN(/, i) is the i'" digit. in t.he binary relll·esent.at.ion of L•

For example, if M is the realline, thcn t.he Q,(11I) are t,he half-fields greater than or
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less than m; if M is the plan<'. 11I1'n \.11" ql(lII) an' qnadran\.s aronnd III, and sa on.

Each such quadrant is spanned hy a ,·onll'ac\., l'llnner\ed sPI of din'ctions nrouud Ill.

They thus form an ideal stal'\.ing poill\. fol' the discriminat.ion dcscribcd above siucc:

Theorem 7.24 If N is li COII\'('X, l'illi/-mlll"'c'.",/ SII/lIIlilllil'o/d ,,1' M lVit./, t.1,e Sllllle

dimensionality as Il'1, theu

(V/: N n QI(m) '# 0) =} 111 E N.

If Vi: N n QI(m) '# 0 then we can sel<'el. on.. point :1'1 l'rom ..ach quadrant QI(1II) such

that XI E N. The convex 11II1I of t.1I<',,' poillt.s 11(:1'10"" :1'",) cont.ains 111. Since ail

these XI are in N and N is cûnvex, t.hcn l/(:I:Io'" ,:1'",) C N and t.hns III EN. •

The consequence of this rcsult. on \.he design of boundal'Y st.ahle support func­

tions is now clear. Since Hw bonndari<'s on t.h<, mod..1 s..ct.ion M project. to unique

boundaries on the base spacc H(M), we arc conwl'lwd t.h,,( 71'(c;) be inside a regiou

of positive support. The support udwork fol' fi is dccolllposed into the 2" regions

specified by the quadrants QI(7I'(':1)) at'onlul 71'(('i) on 71'(M.,) wh",'" Il is the dillleu­

sionality of M.;. The geometric snpport. will now be positive if ami only if the support

in each of the 2" quadrants is positive. Âssuming thtln that. Z = { (l,' .. , (" } is an

orthonormal basis for 8, wc define the qnadrant.s

QI(ei) = {e E B l 'v'j E (1, ... ,II):e E l/k;) <=> BIN(/,j) = l},

around ei where

Hj(e;) = {c E B 1(e - Ci)' ((j - e;) > O}.

Then the geometric compal,ibilit.y can Iw rC'writ.l.I'n in 1.11" 1'01'111

Si = A 'II
1. i

• 1• S' = A 'lkl, •. i
k
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J

where
r kl = {±G~",(Ci'ffl"Yk/2) ifcjEQI;

'J o othcrwise.

This deeomposition of t.he support. ul'l.work illt.o s"I'I'0rl "cgions guarantees that. the

geometrie support is stable near boulldarics-posit.i l'c illside and non-positive outside.

Referring baek to the implenwllt.at.ioll of end-Ii ne st.abilit.y fol' image eurve opera­

tors in §5.2, we ean see that therc is an alt.ernat.e definit.ion for this. A eharaeteristie

funetion of the quadrant QI(e;) is givell hy

••
where

Thus

if BIN(I, 1) = 1;

ol.hcrwise.

•

•

•

Example 7.6 (conlinlled) The st.raighl, line of orient.al.ion 0 has a basis in the plane

eonsisting of the veetor ( = (cos 0, sin 0). Thus, as wit.h the image eurve operator,

to produee a boundary stable snpport. wc decompose int.o t.wo regions along the line.

The half-field partitions are defined as

qdei,ej) - 17(' (ej - Ci)),

q2(e;, Cj) = 17(' (e; - ej)).

Thus the geometrie support. of t.he line lahel t'ô is givell hy

••
•

5'; = A L:
I,k j

Ik
Pi 1'ij'
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(a)

ï. Relaxation Labelling

(b)

Figure 1.10: The !inear reductions of (a) the left and (b) the right hand sides of
the boundary stability decomposition of the support network for the horizontal
!ine label .

••
(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

•
Figure 1.11: The eight component support networks for the horizontal !ine
label. Each field shows the relative positions and orientations of compatible
(white) and incompatible (black) labels in the neighbourhood of a horizontal
!ine label The networks show are· (a) r!!· (b) r~!· (c) r~!l (d) r~!· (e) r!,2

• • IJ' IJ' IJ' 'J' l"

(f) r~J2, (g) r~/ 1 and (h) rt/- Ail eight of these networks are instantiated for
each discrete position in the image and each discrete orientation.
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ï. Relaxation Labelling

and

where

The resulting support networks al''' shown in Fig. 7.11.

7.4 Summary

In review, we have shown how 1.0 consl.l'ncll'"laxation net.works which solve geometric

problems. After constmining t.he class of geonwt.ric models to consider, we defined a

general method for translating th"se modds inl.o fixc,drelaxation labelling networks.

These networks prodllce good approximations 1.0 I.hick traces of model cross-sections.

Unlike previous approaches, this nwt.hocl forma\ly id"nt.ifies t.he fixed points of the

relaxation with particular cross-sections in the models. Moreover, by designing the

relaxation for stability in the presence of bOllndaries, we have ensured that the only

e!fect of the relaxation is 1.0 select and fill in t.hicl, t.mces where they previously existed.

The one concern that may r<'main in applying these methods 1.0 early vision is

the iterative nature of the relaxation met.hod. Man [Mar82] claimed that the speed

demanded of the early vision system preclllded the use of relaxation or global opti­

mization methods which typically require tens 01' hundreds of iterations to converge

on stable solutions. However, wc will show iu th" following chapters that this geomet­

ric relaxation method typical1y convel'g"s in iL" few as threl' 01' four iterations, thus

rehabilitating it as a theory of early vision.
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• Chapter 8 Image Curves

•

Reliable descriptions of imllgt: CIII'I'".< as piecewise sllloot.h p1alle curves ill images are

fundamental for much of high-Ievel procf'ssing, especially recogllit.ioll. III t.his chapt.er

we will reconsider the prob1em of c1,'sigllillg a n,lia]'lf' syst."1ll for ext.rading thick t.race

descriptions of those curves ill lighl. of t.11<' resll1t.s of Chap. i.

In Chap. 3, an image curVf' was c1difll'd as t.ltf' 10CIIS of one-climensiona1 clisconti­

nuities in the intensity surface. Wc will huilcl 011 t.his c1efillit.ioll allcl t.he cOlIse'luellces

outlined in §3.2. In keeping wit.h t.he foc Ils of t.he previolls chapt.er, we wilillow incor­

porate an explicit represent.at.ion of t.he local geome: l'y of l.he c\\l'ves illto a geometric

model, and design a relaxat.ioll lahf'lIing syst.em t.o ext.ract. t.hick t.races of CltrVeS from

LogicalfLinear oper.,tor respOllseS.

8.1 Representation

The Fundamental Theorem of t.he Local Thl'ory of C\\I'ves ([clC7G] pp. 19) asserts

that the combination of local ol'ienl.at.ion ancl curvat.ure maps c1efines a plalle curve

uniquely under translation ancl rot.at.ion. Il. is not. sllrprising t.hen t.ltat. curvature iM

a fundamental building block of moclem theol'ies of contolli' shape [Ley88, Kim91,

KTZ92]. Clearly then, a visua1 syst.elll IllIlSt. malw curvat.\\I'e mC;L~urelllents explicit

for whichever higher-leve1 processes const.l'I\ct. c1,.scl'ipt.ions of shapes prior to their

recognition. The only issue then is whc" C1/.7·lll1ll1l't is mllilc e:r./I/icit.

In Chap. 3 we demonstratecl t.hat. orient.al.ion mllst Le macle cxp!icit in order to sim­

ply detect the presence image curvcs. Two pieces of eviclence sllggest that curvature

too should be made explicit. at. t.he padiesl. sl.ages of curve df'scl'ipt.ion. Psychophysical

analysis of dotted lines suggest.s t.hat. Illirdy //lm/ c\\l'val.nre infol'lltation can strongly

bias the ability to reliably locat.e CUI'Vl' discont,inuit,il's [J,Z88]. Neurophysiologically,

curvature tuned neurons have been obsCl'vecl in primary vislla1 cortex [DZC87] .

From a purely empirical viewpoillt, wc sllggcst. thal. a model with explicit cur-
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, ....,

- ~

e

Figure 8.1: The fibre space El x K fOI' image clIrve representation is a cylindrical
space, with orielltation/clIl·vat.lIre pairs iclellt.iRecl \Vit.h point.s on the Sil l'face of
the cylinder.

vature will allow for faster, more accmate relaxat.ioll. Considering the orientation

and curvature as the first two t.enns ill a local Taylor expansion of the curve, we can

assert that a description which illc!udes bot.h will he accurate (1.0 within sampling

uncertainties) over a larger neighhomhood t.han one which inc!udes only orientation.

We will show that a relaxation syst.em which incorporat.es local curvature explicitly

can thus integrate more local information in a single it.eration, and therefore converge

very quickly.

Thus we choose an image bumlle which explicit.ly represent.s local orientation and

curvature measurements on the fibre F =El x K (see Fig. 8.1) over each point x E X

for the image 1 : X -+ IR. Givpn that. hot.h t.he base space X and fibre F will be

discretized by sampling, the image curves are represented in this sampied total space

as thick traces of the actual Clll'ves in t.he image.

Following the analysis of Chap. 2, we will first. consider the sampling of the total

space of this bundle. A regular sampling of the base space is naturally provided by

the pixelization of the image. Thns for each pixel in the image we have a discrete

set of orientation/cul'vature pairs which r"present. possible local geometries for curves

passing through that pixel. Orientation is sampied regularly over either 11' or 211'

radians depending on whether the image curve has direction or simply orientation (we

will return 1.0 this with specific examples). Thus for Il discrete orientations, we san1ple

al. the points Oi = i1l'ln for i E {D, ... , '1/ - 1 } . Curvature is also sampied regularly
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over the range 1\ = [-"III'" "III••J, ",Iw\"(' "",(I:I" is chosen appropriale 10 the scale (we

willreturn to this below). Wit,h "' curval,ul'l'S "'t' samplt' al "i = "'111•• (-1 +2j /(m-I ))

for je {D, ... , m - 1}. The simplesl Hiemanuian lIlelric which ensnres that this is

an unbiased sampling is an L2 Illet,l'Ïc snch t.hal th.. dist.ance het.",een adjacent sample

points in each dimension is always 1. This is adlieved ",it,h the metrics

d("i'''i) =

d(Oj, Iii)
1(0; - O"mod<"1

=
'Ir/n

l,:; - "il
21"","./(111 - 1)'

'.

1.

and d(ei, ei) an L2 combinat.ion or t,h,'se. The :1" mode y opcrat.ion is a centered modu­

lus, with the output values rest.rir\.('d t.o t.he iut,erval (-y/2,1//2]. Since for lines only

relative orientation is significant, l' = 'Ir, whereas for edges ,. = 2'1r, Thus for each pixel

in the image we have m x n discret.e local geolllet.l'ies.

Referring 1.0 these samples or the film, n" local geomet.ries depends, or course, on

the assignment or a model C t,o t.his image hnndle. The single nssnmption needed to

develop such a model is the n"sumpt.ion or (locally) const.ant. curval.ure. Each triple

of a point, orientation and curvat.lll'e in t,hl" t.otal space or the mode! then delilleates

a unique circ1e. These ch'c1es can be described succinctly by a parameterized model,

which is equivalent to cocirculru';ly n" defined in [PZ85J.

Consider first a circ1e pa.,sing throngh t,he origin wit,h orientation 0 and curvature

It. An arc-Iength parameterizatioll or t.he posit,ion, orienl.at.ion and curvatu1"C of this

circ1e is given by the following l'eet.or

C.(s) =

sin(';")/H

(1 - cos(';$))/I<

•
Now, since ail circ1es with l,he salll<' clII'l'at.nrC' a!'l) simply rot.ations and translations of

such a circ1e, we can parameterize t.he image curve model over the entire total space
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Ee by rotating and translatillg t.hesl~ cil'cll's.

Identifying a poillt in the lolal sl'aC!' iL' ("',y,a,h') t.he image curve model C =

{C~"B~} is parameterizecl hy t.11I' fllllrt.ioll

Sill(h'S)/'"

(1 - cos(",s))/",

where T~." is translation by ("', y) alld Ho is rol.at,ion hy a arollnd the origin. Note

that C~"B~ is trivially re-parametel'Îzed al'Olllld (:l,', y', 0', ",') = Cr"B~(S) by translation

T~,_~."._" and rotation RB'-B, both of which are illvertible.

Corollary 8.1 C is a minima! moc/e/.

8.2 Initial Estimates

The first practical problem ill ext,ract.illg t.he l,hic!; traces of image curves is of course to

define how those curves are instanl,iatecl in an image, and how to design local operators

tuned for this instantiation and a pmticlllar point in the fibre. The discussion and

motivation surrounding the development of the Logical/Linear operators of Part II

dearly establishes them as candidat.es for this t,asl" They classify image curves into

bright and dark lines and edges, t.heir response profiles cover the Voronoi cells for

the zero-curvature sllbspace of 0111' t.ol,al space, alld l,hey l'l'present a stable, logically

well-founded approximatioll of l,he intersection condition which forms the foundation

of the definition of the thic!; trace (D,·f. 2.10) at Ica-,t. for isolated CllrVes. Significantly

too, the graded l'esponses frol11 these 0l'l'rators cali he int.erpret.ed as a "strength of

agreement" between the abstract. moclcl ami l,he image, a dear foundation for their

use as initial estimates ill a relaxation. The ollly difficllity is that these operators are

uniquely tuned for straight lines, exhibiting a monotonic c1ecrease in response with

increase in curvature.

There is however a dear pat,h arollllcl t.his impasse. Dobbins has developed a theory
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of end-stopping in visual cort.ex which l''1l1all'~ 1hi~ l'h,'nollll'noll wit.h curvat.url' tlming

of simple cells [DZCSS, Dob92]. ln l,lit' ~illll'bt. 1'0l' III , ail end-st.ol'I'ed operator i~

constructed by taking the diffel'l'nel' lwt.wcl'n t.he re~l'0n~c~ of an excit.at.ory compolll'nt

14 and an inhibitory componcnt, R_ via t.hc fonnllia

where
if:1' ~ 0;

ot.hel'\\' ise.

·e

••

The effect of the rectificatioll opera1,01' fI> i~ t,o pr,'vt'Ilt. a ncgat.ive re~pon~e to the ill­

hibitory component from contribn\.illg l'o~it.ively t.o l,Ill' aggrl'gat.e ol'erator, III Dob·

bins' work this is justified lIelll'ophy~iologically by refercnce t.o t.he low spontaneolls

firing frequency of neurons in prilllary Vi~lIal corl,cx. Fol' 011I' work, the pragnmtic

effect is more significant.

If both component operators are matched in positioll, cross-sectioll and orienta­

tion tuning, then any differellce~ ill t.hl'ir ~"II~it.ivil,y t.o variat.ioll in curvature will

l'l'suit in an aggregate response which i~ maximal fol' ~Olll" specific, possibly non-zero,

curvature. In particulaI' assllmiug l,hat. I,ot.h cOlllpouent,s have response maxima at

zero curvature (e.g. the 1,/1, opemt.or~ of l'art. Il), 1,lwu if t.he excil.al.ory cOll1ponent

is broadly curvature tuned and the inhihil.ory opemtor i~ tight.ly tllned, the aggregate

response will be maximal fol' ~ome non-zero Clll'Vat.llre. The hellaviollr l'an he ~een in

Fig. 8.2.

Dobbins' work and analy~i~ WIL~ bllilt. 011 t.he iL~~lImpt.ioll that the com[lonent

operators were linear, so ther" lIlay Ill' ~Olll" IIl'~it.at.ioll in applying il. unmodified

to the 1,/1, operators we use. Fir~t.Iy, wc cali cali '1l1e~tioll whether the armlysis

used to support the model appli,,~ 1.0 t.lwse operat.or~. Secondly, we l'an ask how

the rectifying non-Iinearity COll1pares wit.h the 1,/1, nOlllinearities'! The first concern

is at least partiy dealt with by rcfcl'I'illg 1,0 the lillear [lait of the 1,/1, paradigm.

Within the region of inpllt. space fol' which t.he LIL operat.ors give positive responses

(a restriction imposed by the recl.ifyillg opemt.or) wc can a.~~ert. that wc are within a
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Figure 8.2: TIming profile.. of end-st.opped cOlllponent.s can produce an ag­
gregate operator tnned fOI' non-zero clII'vatnre even when both components are
tune<! for zero curvatnre, In both profiles, the responses of both excitatory and
inhibitory components are shown doum' and t.lll'ir rectified difference is shawn
soHd. In the case (a) whe,'c t.he curvat.nrc responsl!S of hoth the excitatory and
inhibitory components of an end-sl.opped operat.or are symmetric, the aggregate
response is also symmetric and t.hus t,nned fOI' the magnit.ude of cnrvature. When
(b) the inhibitory cOlllponent, has an asynllnct.l·ic curvat.nre response profile the
aggregate operator can he t.uned for hoth magnit,nde and sign of cnrvature.
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single linear subspace of the inpnt. spart'. Thns at. It'ast. sonH' of Dohhins' extensive

linear analysis can he l'ehaLilit.at.ecl fol' Oll\' 1I0n-lin"al' op"l'at.ors. To cleal \Vith the

second, we need only observe thal the rt'ct.ificat.ion operat.ol' </J(xl is, at least, in the

ideal sense, a Logical/Lineal' combinat.or it.sell'! Considel' t.he eqnation

So there should be littie concept,ual diffkult,y ill applyillg t,his "encl-st,opping equals

curvature" methodology 1.0 the desigll of L/L opt'I'at.ol's.

The one final concern is that, t,he simple DoLbins' operat.ol' selects only curva­

ture magnitude, whereas il. is essential 1.0 discl'iminale Loth sign and magnitude of

curvature. As seen in Fig. tl.2b t.his CIl" be achiev(~d lVit,h an ll'Ylllmetric inhiLitory

response. Significantly, this a.'ymnwt,I'Y can Ill.' obt.aincd hy crt'ating an inhibitory

operator formed from a suLset, of t.he normal componelJl.s IVhich f01'1ll the excitatory

operator. For example, for the posit.ivl' contl'ast. line operat.ol' we pl'oduce t.he iu­

hibitory component by select.ing t.he uOl'lllal cOlllponent.s which are on t.he side IWIIIY

from the preferred sign of curvat.nl'C. Refel'l'ing hacl, t.o C'l. (5.7l we t.hus descl'ihe the

normal cross-section of t,he inhihil,Ol'y opel'al.ol' as

N­p-

1 (:1)= ni fi. n, ,01'

= n' A n(:l)r ~\ ,. ,

••

depending on whether we are designing an operat.ol' fol' posit,ive 01' negative curvaturc.

Thus we can extend OUI' design frolll Chap. Ii t.o support. cUl'vature tuning.

Operator 8.1 The Logiclll/Lirlf'l/1' 'ÎlIwg" 1''11/.,1(' /lJIf'I'lIlot·,. \~i I,nlled fol' non-zero cur­

vatures are given by

lIt; = 1lI+ \~ i+ - </J(1lI- \~ i- "

\li i+ = (1.;,+ x Ni+l fi. (tt,+ x Ni+l,

\lIf_ = (t.;,_ x Nt:.l fi. (t.L x Nf_l,
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where w+ and w_ are weight.s, i E {P, N, E} and (1,_ > 17,+ and

" n' ~ n' ~ n(3) ~ n(:l)J~p+ - 1 r 1 r

N+ = n, ~ nl3)p-

Np_ = n' ~ n(3) fol' Posit.ive Cont.l'ast Lines;, ,

NN+ - -n, ~ -n;. ~ -nf') ~ -n!.")

Nk_ ' (:l)- -n, ~ -ni

NN_ - -n' ~ -n(:I) fol' Negat.ive Cont.rast Lines;, ,

NE+ - n~ ~ n,' ~ n:~ ~ nl'I) ~ n!:I)

Nk_ = "~ (,1)ni ni

W - n" ~ n('I) fol' Edges.E- , ,

Examples of these opcrat.ol's fol' bl'ight. lines (\J1p) are show in Fig. 8.3. The

curvature responses of these t.wo operat.ol's are shawn in Fig. 8.4. Note that normal

1.0 the preferred orientation, each operat.or smoot.hs wit.h a Gaussian with Un = V2/2
and localizes maxima ta a region V2 pixels wide. This l'roduces a family of operators

tuned for perhaps the smallest. scale Jlossihle while st.illreliably eliminating noise. At

this scale, 5 pixels is close t.o t.h" minimllm radius of a ci l'cie which can be reliably

distinguished l'rom a blob and simult;aneously cat.egorized int.o either a line or edge-Iike

discontinuity. This is t.he source of t,he limÎl., "",•• = 0.2.

Having seen that these operat.ors are t.\lIwd 1'01' posit.ion, orient.al.ion and curvature

(the basis functions of the total space), t.he final piecc of dat.a needed 1.0 justify their

use as estimators fol' t.he thick t.race of image l'urv,,s is some mal.ch between their

sensitivity and the Voronoi cclls of t.he samplillg. Consider a response mal' over

the points ei in the total space EL' fol' ail ideal image formed l'l'am the model curve

C. i • In order 1.0 ensure that. t.here a1'<' no hli ncl-spot.s in t.he operat.ors (ideal curves

which no operator will respond t.o), wc must. ensure t.\lRt the total space is covered

by the positive responses of the operators 1.0 these ideal stimuli. Locally, this means

that if we mal' the positive respons(~s of an individual operat.or varying the position,

orientation, and curvature of t.he sf.imnlus curvc-t.he sensit.ivit.y region must cover

the respective Voronoi cell,
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Figure 8.3: Excitatory and inhihit.OI',Y p,"'t.S or Cllrvat,nre t.llned posit.ive con­

trast Hne opcrators. FOI' ('ach or the "pcl'at.ors shown, \,1", aggregate l'Csponse

is thc diffcrcncc bctwccn the l'('spon"(' t.o t.11(' (!xcit.al,ol'y 0lwrat.or (t.op) and thc

inhibitory opcratol' (bottolll) is t.h(· aggn'gal.e l'(!sponst!. According lo lhe l'csnlt"

or Dobbins [Doh92] thi" n'spolIs(' sllOlIld 1", \1I1I('d \.0 a. part.iclllar comhination

oforientatioll and curva.t.llll', (1(l1)(~II(11'111. 011 1.11(l1'1lIal.i\'(~ JC'IIp;l.hs or t.hl! cxcil.a.tol'Y
and inhibitol'Y opcrat.ors, Two (!lId-st.0plll,d Ilright. Iill" 0l",rat.ors arc shown: (a)

tuned for Clll'Vatllre 1< = -0,2, and (h) li = -(1.1.
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~•., .,- ,., ~ ..-=-.•., ........ ~ " .. ... -, ." ..

(a) (h) (c)

1.

1.

Figure 8.4: CurvatuJ'e respolIs,'s fOI' the two curved Iille operators of Fig. 8.3
and a straight (zero,cul'val,urp) "p,'r'al.ClI'. Th,'sl! al'p "htaiued by examining the
response to ail ideal CUI'I'P of width 2 pixels. TI", 1'l!SpOIlSes are for operators
tuned for (a) 1< =-0.2, (b) ,,= -11.1, ,",,1 (c) /; =n.

Lines
Excil.at.ory InlIibit.ory

"',+ w+ 11+ 0',_ 'HI_ ll_

1<- 0.0 2.80 1.I 4 - - -
n. = ±O.! 2.40 1.2 4 3.2 2.2 4
n. = ±O.2 l.fiï 1.:1 2 2.:1 2.8 4

Edges
Exrit.nJor~' 1Il II ibi t.ory

""+ w+ 11+ "',- 'W_ u_

n.= 0.0 2.80 1.50 4 - - -
n. = ±O.l 2.40 l.ÛO 4 3.2 :l.0 4
n. _ ±0.2 j .ni l.i5 2 2.:1 3.5 4

Table 8.1: Parallleters fol' "1I1·l'al.UI'l' tlllwd Iille alld edge opemtors. Ali op­
crators lIscd have the sallw llul"lIIal l>fll'jlllIPt,<'I':-; "n = .j2 and ( = J2/2, thus
restricting responses ta a spat.ialregion withill l,he radius of a square pixel around
the curve. The parameters whirlr al'l' l'aril'd fol' clII'vature timing are the tan­
gential extent CTh nUlllbeJ' of l.aug('utial regiolls 11, and the J'elative weights w of
excitatory (+) and inltihitor)' (-) 001llPOIII'UI5.
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Figure 8.5: The slIrfaces showlI III!I'" al"1' 1.1", rl'spolls,'s of t.III' cllrvl'd Iille 0l,,'m­
tors as we systenmlically val'Y IIlod," posit.ioll ill 1.1", loi ,,1 sp"ce Ec of lJIlI' illlagl!
curve model C. These ilre ohtaillC'd hy 14('lJ( I I'i1IÎnJ!; ideml 1110<11'1 (~lII'VI_'S (positive
contrast circles) parallwtel"Ïz,'d arolllld 1111' 111",1,,1 poillts showlI as ax"s of t.l",
graphs. The responses are t.lwlI ohlailll'li hy sil Il ply CllOlplltilig 1.1", L/L rl!spUIISl!
to the operalor exalllilled. TI", rl'SpUIISI'S "l'<' <>rl-\allizl'd ill mllllllils \Vith (a)
K = -0.2, (b) K = -0.1, alld (l') " = (l.O. Il''callsl' of 1.1", "'1l1ival""ce uf llll!
operators ullcler rotation alld translat.ioll, W(' cxalllilll' ullly t.he UIH!I'ator l'CSPOUSI!

allhe origin alld zero ol·iellt,atioll.
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Wc examine this by procluciug " SI'l'i,'S of 111"1" of noss-s<,ctions t.hrough the opera­

tor's sensitivity mal'. The r<'l"vaul nwps fOI' t'"ch of IIIC' hright. line operat.ors described

in Table 8.1 are shown in Fig. ti.5. TIIC' uou-zero !'l'spouses in these maps represent

ideal curves to which the operalor r"spoucls-thesc uon-7.ero responses should cover

the Voronoi ccII for which the opcralo1' is Innecl, 'Ne can sec that as long as spatial

sampling has rac!ins less t.han ::::: 1 pix('1, llI'it'nt."t.ioll sal11pling ha", radins less than :::::

15' , and curvatnre sampliug has rac!ins less Ihall ::::: 0.15, then these operators will

cover the total space.

8.3 Relaxation

Wc can sec l'rom both the icleali7.t'd 1'1'01)(' st.inlll!i "uc! t.he empirical tests with real

images that the L/L operat.ors cio not. pl'Oc!nct' fnlly consistent thick traces of the

image curves. The response nlllps fol' t'vcn icleal cnrves are not perfect matches

for the Voronoi cells. Significaut.ly t.oo, t.he operat.ors are not. entirely insensitive 1.0

noise and other variations 1'1'0111 I.ht' icl"al, which Canse both gaps and extraneous,

noisy responses. To separate t.he signal l'rom the noise anc! fil! in these gaps, we use

the local geometric information which t.he responses represent 1.0 construct smooth,

connected thick traces. This l11eans cI<'v<"loping a relaxat.ion labelling network which

verifies membership in such a 1.1'''1'<'', using t.he conficlences l'rom the L/L operators as

a starting point, and relaxing to eqnilihrium.

Following the analysis in §7.3 IVe ns," t.he aSYlllmet.ric compatibility 1.0 define re­

laxation support. As IVe can see l'rom Fig. 8.Gb, this is accomplished by choosing ei
as the perpendicular project.ion of ej ont.o t.h,~ cÎI'c1e generated by ej. Assume for a

moment that ej = (0,0,0, "j), anc! Ci = (:I:j, Yj, 0;, />;) t.hen IVe can conclude that l

cP = arg(:I'i' Yi - I/I>j).

IThe function nrg(r, yl is t.he angle of I.he l''')' l'rom t.he ol'igin 1.0 ('0, yl.
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t

c. = C,
'/ J

r = I/l\j

,
: e,
'- .

···...!..J••
(a) (h)

,
Figure 8.6: The calculat.iou or willpa,t.ihilit,y l'or t.h~ illlagt· CIII'Ve lIIodel Cst.art.s
with the solution to the lIIillilllizat.iou prohlelll iu "'J. (7.~), III (a) is showu t.he
geometric solution or this pl'ohlClII. III (h) is sllOlVlI t.ht· gt·olllt't.ric solut.iOll or t.he
related asyrnmet.ric prohh·lII. ",hkh is solvahl" algl'hraid.l' (s"e ~'J. (~.J)). The
asymmet.ric compaLilJilit,y is t.he hasis l'or t,h" sllppmt. cait-ulat.ious.

~.
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• then

ci =

sill(1)/"')

(1 - cos(rJ;))/»j

,p + Tf /2

t.

unles& Koj = 0, in which ca.~e il. hecomes

ci = (:l'i,U,D,D).

t/J = arg(TT"JI,Ho, (:r:i,y;) - (0, I/»j))

sin(q,)/I"j

(1 - cos(q,))/"j

1 + Tf /2
(8.1)

t

,

Note that this perpendicular pl'ojecl.ioll (t.Il(' I.llhulal' map) is unique for every point

in the total space except the center of the cil·cle. Thu8 the tubular neighbourhood is

total except for the singularity.

From this, we can immediatc1y derille the 8tructll1'e of the geometric support

around the point ej = (Xj,Yj,fJj,I>.j) ill 1.lw samp)l'c! l.oI.al space.

The basis functions for the I.ubulal' lIl'ighboll1'hood "(i are JlI0st naturally:

"(1 = (- sin Oj, co.,fJj, 0, D)

t. "(2 = (D,O,I,O)

1'a = (O,O,D,I)
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(c) (d)

,
Figure 8.7: Shown are the lateral inhibition component networks of the full
support network for a curve label with 8i =0.0· and Ki =0.1. The interactions
shown are (a) rIj, (b) rlj, (c) r~j' (d) r~. Note that (a) and (bl together select
local maxima in position, (c) and (d) in orientation .
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(b)
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Figure 8.7: (continued) Shawn are the lateral inhibition component networks
of the full support network for a curve label with 8i =0.0· and "i =0.1. The
interactions shown are (e) rrj' and (f) rfj' Note that (e) and (f) together select
local maxima in curvature.

Thus we have six components which make up the support around Ci:

r!. = G~, (Ci - Pid, 2 -G~I (c;+ Pid,'1 Tij -
a Gt (Ci - Pi2), 4 -Gt(Ci +Pi2),Ti; - Ti; -
5 = G~;(Ci - Pia), r~· -G~;(ei +Pia),Ti; '1 -

where

From §7.3 we have the constraints Ut ;:: Uc ;:: p > 0.5 and Uc < 1. We use the values

U c = P = -/2/2 and Ut = 2.5. The support components calculated with these values

are shown in Fig. 8.9.

The boundary stability partition is straightforward. Since the model is one­

dimensional, we can use the partition developed for lines

ç = (COs8i,sin8i'O,O),

S(CitCj) = ç. (Cj - Ci),
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1/1(1,,1)) = a(-'(l'"l)),

/J~(I';,I'i) = a(-"(I';,l))).

In the same way that th" elld-lilll' l'xl ellsiulis d"snilwt! ill §5.:!, illcreased the rL~

liability of the initial operat.ors, Il'1' may illcl'<'ase 1.111' Sl,,·cificit.y of t.he support if wc

partition into more than two regions alld t.hell l'omhi"" usillg a st.rollger combina­

tion condition. Partitioning t.he sllpporl. lIetll'orl, illto lIIore thall two regions l'an

be achieved by the same means as fOI' the c\ll've opemt.ors, since the cmve model

is parameterized by arc-lengt.h _'(";, "i)' If (.'1, ... .-'.. ) is an incrl'asing se'lUl'nœ of

partition points, then we l'an pmtit,ion hy t.he chamc.t.eristic. functions /Ji:

Q1(e;, l'i) = 17h - .'(l'i, ''j))

q,(l';,l'i) = 17(s'-"(I·;,/'j))+17(.'(e;,I'j)-Si_tl-l

such that

f Ci(e;) I/I(e;, l'i) tlei = 1/11.
JE(e)

The tangential components of t,his support net.lI'ork are thcn

sf = AL
~. j

•

••
,

To combine these component. respollses we conlt! adopt cit.her the simple or the

majority combination from §5.2. In t.his case, onl' of the goals of the relaxation is to

interpolate between nearby conllJHtihlc· C\ll'Vl'S. TI", "simple" colllhillation ru le Ili~~

a strong veto for the central r"gions, 50 il. is Ill1lilwly 1.0 adlil!Ve this interpolation .

The "majority" rule is more lelliellt., hllt. colllplicated t.o illlplmnent in terms of the

basic L/L combinators. Inst:ead Il'1' sl'"I, ail L/L cOlllhillal.ioll which will interpolatc

positive support into gaps only when t.here is 110 local negative support. Of course,

this combination must also be end-Iille sl.al,le as onl.lillcd in §5.2. The solution we

adopt is derived from an ext.ellsioll of t.11l! principl.. of "sul'I'onl"I" int.rodllced in §7.3.1.
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(a)
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8. Image Curves

(b)

(d)

t.
•

Figure 8.8: Decomposition into regions of the support network for a curve label
with Bi = 0.0· and 14 = 0.1. Shown are the linear reductions of the networks for
four regions divided such that the ideal support from each region is equal.
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We start with an analogy. hllagillt' YOII arl' standing al. a point alld must determille

whether you are surrounded Ly gllllmell. You look aroullcl. If t.he thst person you see

in aIl directions has a gun, t.lwlI YOII an' SUl'1'oul"h'd. Auy ullal'1lled person bctwecn

you and the gunmen is evidellcl' tllnt you may Ilot be slllTound"d. Applying this

principle 1.0 the partitioll of the su l'puri. lIetwurk ab",'c, "ail directiolls" simply nwans

s < 0 and s > 0, while "the first persull" ill l'ach dircdioll is the first l/1l/1711big1/llllS

response from one of the tallgl'ntial sllpport COlllpollelll.s! '1'0 embuc1y this prillcip1c

then, the "surround" combilH\\.or shoulci c.CJmbillc' rc'spOllses hy seieetillg the lIearest

unambiguous response and t,hl'II adclinp; 1,0 il. thllsc' n'spOllses fmm flll'thcr regiolls

which agree in sign. So if the lIean'st Ullillllbiglllllls is positive tlwlI we add togethcr

aIl positive responses, and vic., Vl'rsa.

This process can be forma1ized by IIsillg 1.11<' /H'l'proximale LIL comLillat.ors with

p < 00, In that case, the response:r is ambigllolls whell :l'E [-1/2{1, 1/2{1 J, or whcn

"',,("') "',.( -",) > u.

The responses x and y have t.hl' sa Il Il' sigll whc'II

0',,(:1') O',,(y) > 0 or "",(-:1') "",( -y) > O.

Definition 8.2 For four regiolls {Si, S'l, Sr, sn the 81/1'1'0111111 cOlllbillalioll is givclI

by

Cj = ~':- A Cj+•. i '. 1 tt'" 1 1

where

s; = S~ +st (O'p(Sf) O',,(8! )+ "",( -Sr) "",(-sn +20',,(Sfj "',,(-sn)
st = sr +st( I1p (Sr) 11,,(5';1) +"",( -Sn ""'(-sn +2"",(Sr) "",( -Sr)).
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8. Image Curves

Thus if 51 = 0, then 5;- =5l. Fol' l' =oc, wc have

,.- "2 l ,.+ ";,',:"li = ,:"li flllC ,Ji = ,),

I r" ("Ar"t. lerelOI'P ,:"lj = .:'Ii 4' "'i .

So it is fair to consider this to ue a kind of Logical/Linear comuinator. It is equivalent

to a simple Boolean comuinat.ion of t.he signs of t.he inputs and the output is always

a linear combination of the 1111(/III/,i9'/10'/1$ componcnt. responses. It is, however, only

wel1-delined fol' p < 00.

The identities auove also c1eady show t.hat. t.his wllIuinat.ion will ue end-line stable,

since the combination 51 ~ Sr would 1",. Thus fol' t.his combination of support, the

point ei will receive positive supporl. a" long as I.herl' arc unambiguous support regions

surrounding the point ei. Thus, t.he slllTound combinat.or int.erpolates into gaps only

when surrounded and when local support.s do not. cont.radict. the interpolation. This

is the behaviour we set out. t.o design ahovl'.

8.4 Results

We will reserve most of the comment.s on specific rl'sult.s to the ligure captions, and

concentrate only on general point.s. Rot.h t.he linc and edge compatibilities were ca1cu­

lated with the same set of paranwt.el·s. Curvat.l\I'e was sampIed into live classes with

values { -0.2, -0.1,0.0,0.1,0.2 }, and di l'C'ct.ion was sampled into either 8 (lines) or

16 (edges) discrete direction classes. In bot.h c,"~es. t.he difl'erence between adjacent

directions was 22.5' . The la\.cml component.s of the support were implemented with

(Tc = ( = ../2/2, nOI'lllalized 1.0 t.he dist.ance met.ric. The t.angent.ial extent was deter­

mined by setting (T, = 2.5 and clivicling inlo 1'01\1' regions for end-line stability. The

compatibilities were nOI'malized sa t.hal. t.he maximum possiule support for a label is

1 and only those compatibilit.i,~sgrealer t.han 5% of maximum were used. The relax­

ation was performed with a st.ep-size of 0 =1. Fina.l1y, the initial measurements used

the p-approximate L/L operat.ors wit.h fi = Hi, and t.he relaxation used the adaptive
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(a)
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(b)

(d)

,
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Figure 8.9: A selection of the support networks for the image curve modei
C. The networks shown are the Iinear reductions of the full support networks
for a sampling with 8 orientations and 5 curvatures { -0.2, -0.1, 0.0, 0.I,O.2}.
Shown are the networks supporting the labels (a) Bi = O· and t>i = -0.2, (b)
Bi =22.5' and t>i = -0.1, (c) Bi =45' and t>i =0.0, (d) Bi =07.5' and t>i =0.1.
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p-approximates with p' =4.

To this point, we have uot. meut.ioued imp!(·meulat.iou at. ail. The system itself was

developed using a genera! image J)J'oce~~iug package developed by the author for the

MasPar MP-l. A SIMD paralld nlitchiue, t.he MasPal' has between 1024 and 16384 4­

bit processors arranged in a plaual' al'I'ay. Sinl'e ail of t.he computat.ions in this system

are either pointwise or involve ouly local COl11l11ullicat.iou, it. was straightforward to

map the processing elements t.o both L/L opemt.ors aud individua! nodes in the

relaxation. The resulting syst.em will l'un ou bot.h t,he MasPar and uniprocessor

machines.

In examining the results wc ob~erv(~ a nUlllher of general principles:

• In no case is structlll'e "creat.c)c\" by t.hl' reiaxat.iou. The only interpolation

performed is into regions surrouneled by c()usi~t.cmt. st.ructlll'e. Thus small gaps

in curves are fillcd in, but. largl' gap~ rl'slIlt. iu di~t.inct. t.races.

• The end-points of curves aJl(llillc~ are apparelll.!y st.ahle, even when a number of

independent curves have coincident. euel-points. These coincident endpoints are

the building blocks fol' mllch high,,1' 1l'\'(>1 pl'Oœs~ing a._ they signal the presence

of corners, und june/ion...

• Gurves do not inteljet'!' '//Ii/il weil olhel' '//Iheu they C1'O..... This independence

is a function of their relat.ive orient.at.ions at. t.he crossing point. In general,

two crossing curves will not int.erfere as long as t.he difference between their

orientations is great.er than t.he diffm'ence between adjacent orientations in the

sampling. Wit.h orient.al.ion sampled at, 22.5" ·ml.l'rva!s there will be no inter­

ference for incident angll'~ grC'al.C'r t.han ·11i .. , A finl'r sampling will decrease this

threshold.

• In certain cases, biJ1l1'cll/iou.. iu curv"s lU'''' t'lem'ly described at a point by a

single trace approaching fl'Ol11 one side aud mult.iple t.races approaching from

the other.

• Isolated points are not. climinat.ed, but t.hcir confidences remain uniformly low,
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since they receive posit.ive supporl ollly frolll t.h"llIsdves. Thus t.hey may hc

"seen" or noticec1 only at. t.he hllllllclaries of I.hl' syst.cm 's OII'U c1iscriminabilit,y.

• There is no need to aclapt. t.1lC' init.ial 0l'l'rators or I.he rdaxat.ion cOlllpatibilities

to different situations. l'Il<' illlagl's US"C1 vary gl'l.'at.ly in cOIlt.ra.'I, ancl noisiness,

yet the results are unifol'luly good. This is not. t.o say t.hat. therc is no neccl

for adaptability or cont.rast. rcnol'lualizat.ioll in t.1", init.ial operat.or rcsponses­

their responses may improl'<' frolll t.IH.'SI' l'llil<lIl('('nl<'nl::. Bowev!.'r, note that. the

relaxation network is comph,t"",y ÏtI<I"Il<'ndent. of t.1l<' adual image, c1epencling

only on the geometry of cnrv,'s aucl t.h,' rl'lll·cs"IIt.at.ioll wc have chosen fol' that.

geometry. So the only t,hillg t.hal sll<,h dtanges llIight erl'ed woulel be the «uality

of the starting point fol' t.1lC' rdaxal.ioll .
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(a)

•• , ,
"

J

(b)

'" r ' 1

(c)

1 -

•

Figure 8.10: One of the basic tasks in interpreting a cerebral angiogram (a) is
to recognize and describe the blood vessels, which show up as bright !ines. The
images are typically noisy and of low contrast. Shown are the results of applying
initial bright !ine operators (b), followed by 5 iterations of geometric relaxation
(c). The darkness of the !ines displayed is proportional to the label confidence.
There are a number of features to note here: the sharpening of corners, the
enhanccment of long faint curves, and the filling in of short gaps.
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Figure 8.11: Two gn1l'hs SllOWill1\ th," 1"'OI\''''ss 01' Il,,, allgiognll" l'daxatioll
through live iteratiolls. III (a) is showlI iiI!' total ('ollsislellcy 01' li", lahellillg
after each iteration. We see thal, illCl',"as,'s IIl1il'Ol'lIIly alld '1l1ick1y. III th) is shoWII
the number of labels with 1I01l-Z,"I'O wllfid"III'," al'l,,",' ,'ach ilemt,ioll. CI"arly Lhe
relaxation is 'luite selective, "filllillalilll\ hall' 01' l'III! lalwls al'tel' [, item\.Ïolls.
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Figure 8.12: The state of the relaxation of the bright lines in the cerebral
angiogram after initial operators (top left), and through five iterations (across
and down).
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Figure 8.13: A detail of the angiogram showing an area from the lower left (a),
initial operator responses (b), and the results after 5 iterations (c). Note the
removal of the "haïr" around Hne endings, the increase in a.ccura.cy of the local
curvature estimates (shawn by the curvature of the segments), the stability of
junctions and corners, and the filling in of short gaps.
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(a)

(b) (c)

•
Figure 8.14: A detail of the angiogram showing a loop in the upper right
(a), initial operator responses (b), and the results after 5 iterations (c). Note
the increasing accuracy of the curvature estimates, the stability of the crossings
and end-points, the filling in of short gaps. Of particular interest is the c1ear
description of the bifurcation which seems to occur in the lower part of the
image.
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(a)

••

(b) (c)

•

Figure 8.15: Retinal microgram showing blood vessels on the retina (a), and
the results of applying initial bright Hne operators (b), followed by 5 Iterations of
geometric relaxation (c). The major and most of the minor blood vessels show
up clearly. The tree structure is readily apparent although in many places the
branch points of the tree soom disconnected. Where these gaps are observed is
exactly where the major vessels are more than two pixels wide, thus the minor
vessels generally abut on the boundarrJ of these vessels.
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Figure 8.16: Fingerprint (a), and the results of applying initial bright line
operators (b), followed by 5 iterations of geometric relaxation (c). There is
virtually no interference between nearby curves even when they are parallel.
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(a)

••

(b) (c)

•

Figure 8.17: Fingerprint (a), and the results of applying initial edge opcrators
(b), followed by 5 iterations of geometric relaxation (c). Note the correspon­
dence between the edge terminations and discontinuities, and betwccn bifurc:l.­
tion points. The flaws in the fingerprint also show up clearly. And again there
scems to be little or no interference between nearby edges even though in sorne
cases they are separated by as little as two or three pixels.
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Figure 8.18: The statue image from Chap. 6 (a), and the results of applying
initial edge operators (b), followed by 5 iterations of geometric relaxation (c).
Since little detail is visible, note only the elimination of much background noise
and the enhancement of the major bounding contours.
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Figure 8.19: A detail of the statue image showing the area around the hand·
neck occlusion (a), initial operator responses (b), and the results after 5 iter·
ations of relaxation of the edge responses (c). Note the clear T-junction and
corner where the hand is occluded by the neck and hair. Note also the ability
of the relaxation to extract structure from very complicated regions like the fall
of hair and the tuft at the nape of the neck.
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Figure 8.20: A detail of the statue image showing an area from the lower left
(a), initial operator responses (b), and the results after 5 iterations (c). Note
the evolution of the local curvatures and the accuracy of the resulting sketch. In
regions of such high curvature a curve smoothing system which minimized total
curvature would likely displace the features significantly.
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8. Image Curves

(a)

'.

(b) (c)

•
Figure 8.21: A detail of the statue image showing an area from the lower right
(a), initial operator responses (b), and the results after 5 iterations (c). Note
that within a two-pixel neighbourhood there is both a T-junction and apparent
bifurcation. There seems to be little or no interference between them.
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• Chapter 9 Texture Flow

'.

1•

Texture flow is a term we use 1.0 dl'scrilu' a n'rt.aill c1ilSS of oriented, static textures.

These textul'eS consist of locally pamll"I, oricllt.('d clemellts which form a direction

field in the image. Familial' examples of sill'h I.exl·ures ilre l'andom dot moiré patterns

(or Glass patterns [Gla73]) alld Imir pat.t<'l'IIs.

The perception of such t.extures has heen ext.ensively invest.igated, in both psy­

chophysical [Gla73, GS7û, LZSi, Z11I!JO] alld comput.al.ional realms [Ste78, Zuc84,

KW87, RS!!I]. We will rely 011 Iwo ohserval.iolls fl'Cm t.he psychophysics 1.0 focus the

development of the computatiolls hclow. The first. of these is that sparse orientation

information can give rise t.o a dellse l.exl.l\I'e flow percepl., wit.h implicit orientation

perceived everywhere inside the field. This suggesl.s t.hat. a great deal of interpola­

tion is being performed. BCCilUSC son1<' of t.he cfi"ets ohserved (e.g. with moving,

overlapping fields [ZIH!!O]) seem 1.0 illdicat.e t.hat. very low-Ievel feat.ures are implicitly

constructed (i.e. as illusory feat.ures) wil.hiu t.he iut.erJ>olat.ed areas-we suggest that

this interpolation takes place early in t.he processillg st.ream.

The second observation which wc regard as significant. Ims 1.0 do with the percep­

tion of discontinuities in thesc fields. III psychoJ>hysical experiments il. was shown

that, as with curves, the abilit.y 1.0 reliably locat.e discont.inuit.ies in texture flow fields

depends on the availability of /OCI// C'/II'III/./'/I7·/: illformation [LZS7]. Thus as with image

curves, we conclude fl'Cm this t.lmt. cl\I'vat.ur() illformatioll is explicitly managed in

the inference of texture flow fields. \\le will show Iwlow how local curvature can he

defined in such a field.

The description of texture flow fields will t.herefore illvolve the computation of

dense descriptions interpolat.ed fl'Cm pot.ent.ially sparse initial orientation estimates.

These estimates will be provided by L/L operat.ors tuned fol' hot.h orientation and local

curvature. Furthermore, t.he int.erpolal.ioll process will allow multiple, transparent

flows 1.0 coexist in a region alld will st.a1>ilize t.he discollt.illuit.ies and bounclaries of the
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(a)

9. Texture Flow

(b)

••

•
•

Figure 9.1: Two examples of texture flow: (a) a hair patlern taken from
[Bro66), and (b) an artificial Glass pattern. Thcse arc both perceived as dense,
locally parallel fields of oriented texture.

flow fields themselves. As we have shown, these goals can be achieved by implementing

the interpolation as a relaxation labelling process designed to extract thick traces of

smooth texture flows. We will show that the relaxation will interpolate a dense !ield

from sparse inputs without arbitrarily smoothing over discontinuities. This chapter

will cover the definition and implementation of this system.

Berore continuing, it is important to point out a signi!icant analogy. Il has been

suggested that the similarities between texture flow and optical flow may be signilir.ant

[R891]. In fact, a smooth texture flow may be modelled as the direction lIlap of a

smooth velocity field. Beyond this there are basic similarities in the perception of

these phenomena which we feel expose similar styles of processing:

• Both flows give rise to dense percepts from sparse data;

• Both are stable with respect to transparency; and

• Both are stable at boundaries.

The last two of these are issues which are simply not considered by current theories of
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9. Texture Flow

proeessing eit.her texture 'lOI\' [KWR7, HS!Jl] lII' oJlt.ienl flow [1-1581, Hee87]. A system

whieh ean produee aeeurat.!' descril'I.ious of l'i''('(~wis,, slllool.h l.ext.lIl'e fields, sueh as

the one described below, l\'illr('(IUil'<' linl(' lIlodilical.iou t.o also 1\'01'1; for optic flow.

9.1 Representation

We derive our model of text.lIl'e flow F fmlll " t.wo-dim!'nsional motion field by as­

sociating the direction of flow iu I.h" ulnl.iou field I\'it.h a st.at.ic orientation in the

texture.

The simplest such motion field is clt'nrly just. coust.aut parallel flow. However,

aceeleration is a signifieant. p"ral1l"""r iu nud",·st.allding mot.ion flow (it is assoeiated

with rotation and looming), and as 11'" shall sel' is rclat.ed t.o the curvuture of the

statie flow field. Thus we augment. O\ll' flow 1Il0de! wit.h eurl and divergence terms,

generating a locainon-deforllling field wil.h collst.aut. curl and divergence. Sueh a field

F(x, y) on the plane is defilled by I.h" "'1l1at.ion

(
J" ) ( 1 - I,'"y + 1.,,:1: )F(x,y) = = .
III h~,,:" + h"l'Y

Dilferentiation will verify t.hat. t.he divergence of t.his fjeld is 2n." and the curI is 211:,..

Orientation maps of this field fol' a nn 1111 "'1' of values of n" and nu is shown in Fig. 9.2.

The ehoiee of the symbols l'" mltl nu is pl)rhaps puzzling since II: is usually asso­

ciated with eUl'vatUl'e. We jusl.ify t.his choice by examining t.he field at the origin.

Consider the local direction of t.he field

0(:1', y) = al'g(J,., JlI ).

If we take Tt as the unit. vcet.or l'aml\C'1 1.0 t.he field at. t.he origin and 11 as the unit

normal then

1
• O(w.)

""U = 1111 --.-,
{-HI (
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Figure 9.2: FOIII' direct.ioll lidds ""III.en'd arolllld the onglll (circled). The
fields are generatcd wit.h 1/ = lJ at. t.11l' oril',ill nllcl (a) "u = O.lJ allcl Ku = 0.0,
(b) Ku = 0.1 and Ku = 0.0, (c) Ku = 11.0 allcl l'" =0.2, ,,/Id (d) "u = 0.1 ,,/Id
"v = 0.2. Ali fields are direct.ioll fields l'or l'<'locil,y lil'Ids with CO/lst"/lt C/lri lLild
divergence.
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l
, 11('/1)

"II = 1111--,
I-+U (

Thus Ku is a measure of chang,· of ol'i"ntalion tang,'nl 1.0 the field and K." is the change

of orientation normal to the fid,J. 1'h"l'd'oI"<' 11'<' 1'<'1'''1' 1.0 K" as the lltngenl curvalure

and Ku as the nOl'lIIlt1 Cl/l'lI111'l/1'/:,

We now have ail of the IJlIile!ing hlod;s l"'I'c1<'c1 1.0 repl'esent this texture f10w field.

Since this is a static image, our hase space is again t.he image plane X. The fibre is now

three-dimensional including dil'ect.ion ane! t.wo curva\.lIl'es F = El x J(u x [(u. Thus a

point in the total space E(:F) is ''j =("'i'Yi,Oi,N.",.,;,,;). Sampling this fibre regularly

can be done with the same salnplings nsl'c1 in Chal'. 8, Fol' 11 discrete orientations, we

sampie at the points 0; = i1l' / IL 1'01' i E { (J, • , , ,1/ - J }, Bot.h curvatures are sampied

regularly over the range 1\" = Il',, = [-",,,,,,,I:,,,.,J, ''''ith m curvat.ures we sample

at Kj = "",••(-1 +2j/(m -1)) 1'01' jE {O,.,.,1II-1}, The L2 metrics for the

components of this total space arl' then

d(lIi,lIj ) =
Illi - IIj moclr 11'

11'/11

(J(h~llj, '1~lIj) = l''··fli - I;uil

2,;"""/(m,, - 1)

tl( J'.lIi, Ii_II j)
11."1/; - "~lIj 1- :l.,;",.,/('I1l" - 1)

and d(e;, Cj) is the L2 combinat.ion of th"se met.rics, The result.ing Voronoi cells are

5-dimensional cubes.

The model derived fl'Om t.hese ('Qnstraints is s'raight.forwarcJ. The directions de­

rived l'rom the motion field 1'01'111 the hasic strllc\.ur<' of t.he t.ext.ure f10w cross-sections

Fe; which 1'01'111 the model :F = {F,.• }, TIl(' parametel'izat.ion of F over the base

space (x, y) gives a Ilatural pan.me1.erizatioll 01' t.he modeJ. As \Vith image curves we
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initially define the modcl al'Oulld II,,' orig;iu .

./'

where

F(".,!!) =
!!

i1rg; (.f~., J;, )
1.,,(;1', y)

",.(;/', y)

••
,

,

•
•

"u(x,y) = Ur"-u + f"",, + (f,,'" - f,·y)(",/ + ,,}))/U; + f;)3/2

"v(x, y) = Ur"-v - f u"" + (J~.".. + f"y)(n. ..2+"}))/U; + f;)3/2

The "u and "-v components of l.his 1110d<'1 arc dcrived hy rcpal1l1nctcrizing the field

around (x, y). This can be dOliC "asily hy nolillg; l.hat. t.he field !('" y) is singular iLt

By maintaining the location of t.his sillgularity i1nd ca!culat.ing 1... alld "-u with respect

to the direction O(x,y) we obt.ain t.he clII·va.l.tll't' valucs above.

Finally, we define the exl.ension or t.he mocld cross-sec.t.ioll over t.he lliL~e spacc by

reparameterizing the static field at. l'adl poilli. ill l.he biL'" Spill'C. As with image curves

this is simply t.he translation allCl rot.alioll or t.he fields defillcd around the origin.

:1'

y

i1rg(f" J;,)

1.,,(:1', y)

I.,,(:r, y)

Note that "u and "v are invariant. III1c1l'1' l'OI.at.ion, sine<' t.hey am ddinecJ with respect

to the local orientation. Silice t.he l,rllllspllri. of t.he field is act.ually cJefined by a
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reparameterization,

Corollary 9.1 The moc/el :F i" lui"iulII/.

9.2 Initial Estimates

•

•

t

•

•

t

•

The initial measurement of conlidc'l1Cf' i~ ~o similar 1.0 thal. used for image curves that

we need only slightly modify thes!' l'sl.illlal!'s fol' text.u1'<' f1ow. As we noted above, the

tangent curvature is a measlll'e of l'hauge of oricUI.atiou parallel 1.0 the field. Because

of this, therc is a naturai mappiug 1'1'0111 l'lll'I'<'d line or edge operators to operators

for texture f10ws with 1:. = (J. Then" is a difflcll!l.y, however, in del'iving operators

specific to nou-zero normal Clll'vatlll'e~. !3"fol'<' we exp!aill how this might be resolved,

we modify the image curve operal.ors slight.ly.

Psychophysical evidence suggcsl.~ thal. locally correlated dots in Glass patterns

must be of similar contrasl. in order 1.0 crea te a f1ow-!ilœ percept [GS76]. As one

way of interpreting this, we suggesl. thal. the l'eatures underlying texture f10w are

contrast-sign specific, but thal. the re~ponse~ l'rom these building blocks combine

across contrast and kill(l, Tlwt. is, only oripntp<1 fm\l.lII'es with locally consistent

contrast (i.e. bl'ight or dark Iines) will coul;ribul.e 1.0 the texture f10w field, but the

responses for both signs of conl.rasl. will conl.rihut.c cqually 1.0 the same texture f10w

field. This is an argument for a cOlllph'x cl'11 [1I\Vei2] 01' ""dge energy" building block

[MBSS], which responds eqllally 1.0 eit.hel· conl.rasl. sigll, bllt which is insensitive to

neutral contrast inputs (e.g. a dot pair collsist.ing of one white and on black dot).

Within the context of LIL operal.ors, t.his leads 1.0 an obviolls extension of the image

curve operators.

Operator 9.1 Select. two L/L lille operat.ors \11 p alld \\J N for bright and dark lines

respectively, and two edge operatOl's \\J E alili \\Jf.: for opposite contrast edges. If they

are ail of the same size, and tllned f'or the sam" orientat.ion and cllrvatllre then a LIL

curved texture flow operator tllned for the given orientation and tangent curvature is

givell by

156



•

•

9. Texture Flow

Now we come back to t.ll" '1111'st.ion of 1101\" to d"vdop 1.0 oht.ain init.ial estinmt.es

of the normal curvature t'", On" approach I\"onld 1)(' t.u angnll'nt these local oJlerators

with latera11y displaced ofr-parall..1 compon('nl.s. bnt. il. is not. clear how effective this

would be. In general it :,l,onld not. 1", a n''1nirr·nl<'nt. for I.h" perccpt.ion of a divergent.

f10w that there be matched l'airs of ofl~paralld lill<' segment.s (sc<! Fig. b).

Instead we have chosen an alt."nmtivl' sl.ral.l'gy. Wc ns.. t.11<' relaxat.ion network

itself to develop the estimat.es of normal curvat.ur('. This is possible only because t'v

is a directional derivative of li. Ir t.11<' init.ial dir"dion est.inmt.es are accu rate, t.hen

/t. is constrained everywhere hy th .. local variatiUlI in I.his direct.ion field, Wc thus

initialize a11 estimates of l'; for il pari icnl it r posi 1. iun. urienl.a tion and tangent cnrvatnre

with the tuned initial est.imal"s l'rom 01', !1.1. Ali nOl'lnitl cnrval.ures al, this point

are initialized with the sanw vahl<'. Tht, rdaxation then nses t.his start.ing position

without the lateral componenl.s which rc~st.rict. posit.ive snpport.s t.o local maxima in

normal curvature. In this way, a lond esl.inlllte of t.he nonnal curvat.ure is actually

derived l'rom the texture f10w snpport, fh'ld. This is similar t.o I.he approach used by

Parent [PZ85] to estimat.e local cnrval.1II'1' wit.honl. c1ll'val.lII'e-tnnecl local operat.ors,

9.3 Relaxation

With image curves, had the inil.ial 01)('l<Il.ors perfonned perfectly (i.e. ail and only

those operators on thick traces n'sponcl Jlosit.ively) 11'1' conld have avoided the relax­

ation step entirely. In that case, il, was larg"ly thl' realization that no simple local

image operator can simultaneonsly l'esul,,,, ail of t.11l! cunlpet.ing tkmancls t.hat. t.he

thick trace represent.at.ion re'lnin's and also hl' (,(I1IIf1It:ir:ly illsell"ili"e 10 noise. For

texture f10w however, relaxat.ion is not an opt.ion, <'ven wit.h perf"cI. input.s. llemember

that texture f10ws generate a dens.. PNC"Pt. frolll potl!lll.ially sparse dat.a (e.g. Glass

patterns), Since the initial opera tors can only extract. infol'lllat.ion from t.he image

data directly, the inference of densc" st.l'IIct.lII''' mils!. 1", Icft IIp t.o some int.erpolation

process, in this case relaxat.ion labdling. Moreover. lL~ we showed above, the initial

estimates do not even provide a complete descript.ioll of t.he model paramet.ers. Thus
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in arder ta create a dense descripl.ioll of \.11<' now which incillcies normal curvature we

must incorporate a relaxation s\.age.

The design of the sllpport nelwork t'voh'es <Iirectly from the eqllations in §7.3. The

model :F developed auove llils a simple \.1I1"l1al· nlilp. Silice each model cross-section

covers the entire uase space, in orcier t.o caJenla\.e ci fol' a given Ci we need only project

onto Fe, on the fibre over Ci. AsslInw fol' t.he moment. t.hat Ci = (0,0,0, Ku, Kv) and

Ci = (x,Yj,Oj,Ku;,Kvil. COlllplllillP; J~, on t.he fiure over Ci (i.e. at (.1:,y) = (Xi,Yi)) we

thus have

'"
11

arg(f,·,JII)

Ku(:I"Y)

nu(:'" y)

As with image curves, sincc ollly rl'Ia\.ive posit.ion (:"i - :"i, Yi - Yi) is significant,

we can transform this int.o gl"neral posit.ion hy t.ranslat.ion and rotation. Thus for

(X,y) = ILo,(-:"i'-Yi)

()

()

arg(f,,, j'II) - °i

h·." ("', y)

h'u(":'Y)

Thus gives the incompatibility ami \.ransport. <Iist.anees directly:

1
rlF(t'"I)) rI(t'i - t:;J,=
rlj(C'i' ('j) = 1(·1:i, Yi)l.

• We now have the necessary building blacks ta define the local geometric support

for a texture f10w label. Since t.he t.ulnl1ar lIlap rest.riet.s t.he projection ta an inclividual
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Figure 9.3: Thc linear reduction of the texturc lIow field supporting .. labcl
with (Ji =D,leu =-0.1, and le. =0.0.

fibre, any basis for the fibre is a basis for the tubular neighbourhood of .. point. Thus

the usual orthonormal basis for the fibre can be used, namely r = { il, i2, i3 } whcre

il = (0,0, l, 0, 0),

i2 - (0,0,0, 1,0),

i3 - (0,0,0,0,1).

However, since le. is a construct of the network, we do not crcatc a pair of latcral

inhibition components in the i3 direction. Thus wc have four latcral componcnts

making up the support network around Ci (shown in Fig. 9.4)

T!' Gt(Ci - Pil), 2 -Gt(Ci +Pid,') - rij -,
3 GL(Ci - Pi2), 4 = -G~.i (Ci +Pi2),Tij - Tij

•
•

whcre
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(b)

,

(c) (d)

1•

Figure 9.4: Shown are the four lateral inhibition component networks of the
full support network for a texture ftow label with 9; = 0.0, "u = -0.1, and
". = 0.0. The interactions shown are (a) rl;. (b) r~;l (c) r~;, (d) rt;. Note that
(a) and (b) together select local maxima in orientation, (c) and (d) in tangent
curvature.
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The decomposition into l'l'gions is silllilnriy straightfor\\'nl'<l. l'hl' l'cal constraint

on this is that we \\'ish diswunl the df,'ct of isolal."d curvcs. When a single curve

is not supporteel by other Internlly displilced pllmlle! curves, it should not by itself

cause a significant texture flo\\' p"l·cepl.. 011,' WIIY t.o achieve I.his is to cnsure that the

initial responses causeel by a single 1'111'\'" a1'(.' S('gl'l.gal.",1 illl.o jllst t\\'o of the quadrants

around a point. Since we are l'r,'e \.0 cllOOS" tItI!! url.hollol'lnn! llilsis fol' the base spaœ

X, we choose the one for which (1 is orfsl"1. hy rr/4 frolll 0;. Thus ifwe sel. 0; = 0;+rr/4

the basis is given by

(1 = (eosO~,sinO~,O,O,O),

(~ = (- sill O:.cos Oi. 0,0,0).

This produces four regions (sec Fig. lUi):

ql(ei,ej) = 17((1 . (~j - l';)) 17((~ . (Cj - Cj)),

lJ2(ej,ej) = 17((1 . (Cj - Cj)) 17((2' (Cj - Cj)),

q3(ej, Cj) = 17((1' (e; - t'j)) rr((2' (e; - Cj)),

lJ4(ej,ej) = 17((1' (Ci - eJ)rr((2' (Ci - Cj)).

9.4 Results

For the most part, the parllmd(.'rs "tllltl'OlIillg 1.11(.' textllrc flow relaxation are idcnti­

cal to those for image ClII'Ves. WC' l'I'IIS(.' I.h(.' illlage o))('ratOl's frolll Table 8.1 to builel

the initial operators above. Fol' 1his l'I'aSOIl IV" have, discrdizcd "... into live c1i~~ses

with values {-O.2,-O.l,O.O,O.I,O.2}, "lId 0 in!.o 8 classes with the e1iffercnce be­

tween adjacent directions was 22.5". The lateral componellts of the support were

implemented with Ue = ( = /2/2, 1I01'lllalized 1.0 the distance IlIctl'Ïc. Since " .. is

Il construct of the relaxat.ion slll'porl., IVe teste<1 discrcl.izat.ions with only one c1ass
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(c)
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(b)

(d)

1•
1

Figure 9.5: Decomposition into regions of the support network for a texture
f10w label with 8; = 0, Ku; = -0.1, and Ku; = 0.0. Shown are the linear reductions
of the networks for four quadrants around the origin.
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t'v = 0 and \Vith three Ku E { -O.!, 0.0, 0.1 } . Silln' th" 1<" \'ailles are not. localized

with a pair of lat.eral inhibition (,OInIHllIC'lIl.s, Wl' liS<' a small"r fT, = (l.5 in the Ku

direction. As we explained aho\',', t.11l' ac('macy 01' t.he ori'·IIt.at.ioll estimates ensures

that the cross-section l'cmai ns loca lizrd iIl 1his di l'l'ct iOIl.

Since the support fields an' circlliar. thl' sllpport is di\'i<1<><1 illt.o four boundary­

stability components as descrihrd ahol'e. The r;lllius 01' t.his neighbourhood \Vas estab­

lished by setting (Tt = 2.5. The compat.ihiliti,·s wel'(' Illll'\naliz"d "xact.ly as in Chal'. 8

and only those within 5% or maximum w"re us('(\. Pillally, t.h(' init.ial measurement.s

used the p-approximate L/L operal.ors wil.h f' = I(i, alld the relaxat.ion used the

adaptive p-approximates \Vit.h ri' = 4.

Note that except for t.he special l.r('al.II11'nt or /Ô. 0' l.!u. panllllet.ers used ill this case

are identical 1.0 those nsed fol' image CIII'I'('S. We tal", I.his as empirical verificat.ion of

the daim in §7.3 that the choiee or l'ahll's l'or most. or I.he "l'l''''' paramet.ers" in the

relaxation is independent of I.he pflTl.klllflr mmh'\s lise,!.

Again, we leave most oft.III' slH'cific ('Olnllll'nl.soll t.he rcslIll.s 1.0 I.he figure captions,

and focus on general obserl'al.ions:

• The interpolation perl'onlled hy t.h,· l'<'Iaxflt.ioll is very fasl., producing dense

descriptions from initially spflrs" Olles fll'I.('r only one or I.wo il.erations (pig. 9.7).

Note also (Fig. 9.13) that the inl."I'J"llal.ion I.al",s plflce cv<'nl.hrough non-empl.y

regions in the case of tnmspflrenl. owrlapl'ing fields.

• The interpolation appears 1.0 1", slal,\,' arollnd singlliaril.ies or t.he field sllch ;~~

centers of rotation or eXIHln.~ioll.

• Overlapping fields are ckarly indicat,'d hy I.he l'l't'sen"" or mnltiple, disjoint

labels coexisting al. the sanll' poilll in t.11t' image (pig. !I.!:!).

• The boundaries of the regiolls app,'ar 1.0 he sl.ahle allli appear 1.0 "infer" a

smooth boundary around I.hc field. Olle errer.!. or the "surronnd" rcquircment is

that these boundaries are slightly CllIlCiLl'e wlwlI they are illtcrpolated through

blank regions.
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• Discontinuit.ies in th" flo\\' fil'Ids an' signall"d hy ('''';lIcil!f'IIl/''''/H/liries (Fig. 9.11) .

The fields themselws nl'''c1 1101 art.ually ov<'rlal', but. if l,he uoundaries coincide

within a few pixels over a long dist.ance, t.h"n t.hey should he iut.erpreted as a

texture discont.inuity 01' occlusion ancl not. as indel'endent transparent f1ows.

• Flaws in the f10w fields are c1early rel'resent.erl uy either a hale 01' a discontinuous

patch. This may he e,,<'nt.ial infol'11H1l.ion in sit.uat.ions where the f1aws are the

points of interest (e.g. fol' locat.ing Imol.s in wood).
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Figure 9.6: A circular Glass pattern (a), and the resu!ts of applying initial Dow
operators (b), followed by 5 Iterations of geometric relaxation (c). Note that the
flow is interpolated densely everywhere even though neither the image nor the
initial operator responses are dense.
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Figure 9.7: The state of the relaxation of the texture flow for the circular Glass
pattern after initial operators (top left), and through five iterations (across and
down). Note that the interpolation takes place on the first two iterations after
which orientations and curvatures are refined.
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Figure 9.8: A divergent Glass pattern (a), and the rcsults of applying initial
f10w operators (b), followcd by 5 iterations of gcometric relaxation (c). This
relaxation is performcd with normal curvaturc K. = 0.0. Note that it is only
very near the singularity that wc see an cffect of the assulIIption that K. doC!!
not vary from zero.

167



•
9. Texture Flow

.r" .t.~. ....~. • " ~~ • .IiII •
• ~ ra-

1. 1 ." .. •
" . -.. .... ... ,'.- ..... ~~JI.'. ~:;" :7~

~ ~ ..
,il ,1 il.. C !!.. ~--..

.... --: -~
• - "

.. ~

~ i" • '" . .'• 1:': ..; ......,
._...-0lIl • __ .. -II

• ~~.• ........J
' Il •• • .!I ··Saa '.• ~

'~ 'c. :i::t., ' 1• • .--:.s. ., Il .J.G
~. 1

',~ '''e
B~.

~ ~ l '
• ~ [1 'il. ~

~..... .. l~B 1 B ,] •
e~ ••_1 - 1 - .JI 1 '\... .. ..._M,

' .••
'"

.. ,~I• ;.:..,..0 !._--- - l' I!"" • ~idll i' ... • 1•• • ,1
.~:( i 1 ~ 'L - .... ~ .. :, ~ p,

1 r " l,- -, ~.... .1- .".. .. ' ••

(a)

•• p' - - ...

.'~/ ...
1 1 / l' ." ......., ., ... .,.. ...-----~ ...
fllli ,.,.." ...~-----------,

11111/1 ",-------------"
1./11//1 I~" "
1 rllllll"'~" ,

1111111"';~ ,-------------11111111;;; ---- -_ ·-
1 1 1 1 1 1 l , , .'.,. -- ---- -----

"'1"1// ~--------------,r r r ri' / --------- ~~~ .1 1 1 1 1 1 1 r __~~_~~_ _ ...

III l 1 1 .~ •.--~ ~~~ ....

Itll -- , , ,, '. ' - ,"", ....................,"",........, ....
..~' ................,""""
""""""""""""\"""~,... .. \ \ \\\"'\\\\\\\\
\\\\\\\\\\\'\\\\

.' \\\\\\\\\\\\\\
Il i\\\\\\\\\\\\\\
111\\\\\\\\\\\\\\1

~~,~ 1111111\\\\\\\\\\\\
-~~~. /1111111\\\\\\\\\\\

1/1111111\\\\\\\\\\\
1///1/11111\\\\\\\\\\
1111. 11111\\\\\\\\\\

.. 1 11111\\\\,

". ,

\ .

: 1

" .... .. .,. ""
... '. '-'"

\ ~... • (10,., '. \ "

... ~ ...

'.-~._ .. '_." "';

\ .

.~ '.
'-'.

....
..... ,;

'. '. '~~.

"o· ~ ..•..

.'~ ..

-~...

,/ ,.' .
"/ .. - .._~

./

,
; . :

" 1 .. ~•

. ~ ." -, ....,il' ':'-' ,'.;0.-.".'

.~','''' " .'

1 -/ ~

: ~ ..

. :

.' -

, "
" ,

\... ~ \
.... '~ " '~ •.• ~ l' ;."

" ....... _ .... i

--- ~'j.,
.'

J '/.
l ,

"

: '

......

,, ,

c

.-

,~.

.:
: 1,,'
"

·e

(b) (c)

•
Figure 9.9: A Glass pattern with both rotation and divergence (a), and the
results of applying initial Dow operators (b), followed by 5 iterations of geometric
relaxation (c), This relaxation is performed with normal curvature "v = 0.0,
There are gaps in the field near the singularity, where the normal curvature
differs significantly from zero,
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Figure 9.10: A Glass pattern with both rotation and divergence (a), aud thc
rcsults of applying initial flow operators (b), followcd by 5 iterations of geornet­
rie relaxation (c). This relaxation is pcrfermed frorn thc sallie starting point
as Fig. 9.13 except with three normal curvature classes t'v E {-0.1, 0,0, 0.1 }.
There are no longer any gaps in the field near the singularity, where the normal
curvature differs significantly frem zero.
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Figure 9.11: A pattern of parallel Iines with a local orientation discontinuity
(a), and the results of applying initial f10w operators (b), followed by 5 iterations
of geometric relaxation (c). The f10w field extracted shows two distinct f10w
fields with a common boundary (to within 2 pixels). Common boundaries signal
a discontinuity in the field, either because of a f10w discontinuity or an occlusion.
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Figure 9.12: A Glass pattern with a local orientation discontinuity (a), and the
results of applying initial flow operators (b), followed by 5 iterations of geometric
relaxation (c). Note that exactly as with the ideal parallel lines, the flow field
extracted shows two distinct flow fields with a common boundary.
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Figure 9.13: A complex texture f10w pattern with overlapping textures and a
hole (a), and the results of applying initial f10w operators (b), followed by 10
iterations of geometric relaxation (c). The overlapping fields are represented
by multiple unconnected labels being supported over the same position. Note
that +he presence of this overlap does not interfere with the ability to locate
the boundary of the field overlayed on the right hand side of the image, even
though there is no such discontinuity in theother field. Of course, neither field
encroaches on the hole at the top.
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Figure 9.14: A whor! in the fingerprint image (a), and the results of applying
initial ftow operators (b), followed by 5 iterations of geometric relaxation (c).
Note that the ftow is stable around the singularity, and near the "rift" direcLly
above the singularity.
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Figure 9.15: Blowup of the fingerprint (a) and the f10w field (b) around the
singularity. Shown are only the labels which received positive support at the 174
fifth Iteration. Notice the curvatures associated with these labels. Also note the
"holes" at the singularity and rift.
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Figure 9.16: Anot"er singularity in the fingerprint image (a), and the rcsults
of applying initial flow operators (b), followed by 5 iterations of geornetric rL~

laxation (c). Note that the flow is stable around this very different type of
singularity.
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(a)
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•
Figure 9.17: A picture of fur taken from [Bro66], pp. 93 (a), and the results of
applying initial flow operators (h), followed by 5 iterations of geometric relax­
ation (c). The direction of flow varies smoothly over the image.
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Figure 9.18: A picture of tree bark takell from [BroGG], pp. 72 (a), alld the
results of applying initial flow operators (b), followed by 5 iterations of geornetric
relaxation (c). Note the holes in the resulting flow field wherever therc are kllots
or flaws in the wood surface.
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From a strict engineering point. of view, t.his t.lwsis present.ccl a general-purpose system

for analyzing curves and t.ext.ure f10w lic'Icls in early vision. In both cases, the results

obtained l'rom this system al'<' riearly ,"'('111',11.., ancl rohllsl..

For curves, the system is able 1.0 categorize t.he t.hree killcls of local contrast-defined

image curves (bright ancl clark lill"S, allcl c,clgps) accu1'at.ely ancl without confusion.

The resulting descriptions stahilizp t.he encl-points of t.hese curves, make coarse and

accurate measurements of hoth orientation allcl clll'vat.lII'e, ancl implicit1y represent

the locations of both comers allCl junct.ion l'oints. MOI'C'over, t.he topological proper­

ties of the thick trace represent.al.ioll c'nslll'e I.hat t.1,,'re is some continuous, smooth

model curve underlying each conneded subset. of point.s which survive the relaxation.

The resu1ting descriptions shoulcl be an excelient. start.ing point 1'01' higher-level vision

systems. This is in conl.nest. t.o I.IIP "indnst.ry-st.allliarcl" alt.el'llatives now available

which: mislocalize line endings, an' IInahle 1.0 properly represent c01'llers and junc­

tions, impose continuity rat11er lhan rcvcalillg it., ami dc,pend on arbitrary thresholds

thus limiting sensitivity to faint. st.imnli.

For texture 1I0w we have clevdopecl a syst.em which cali accurately clescribe smooth

texture 1I0ws in the presence of hol.h clisl'Ont.inuit.ies ancl t.ransparency. Il is able to

interpolate dense, smooth flo\\'s into blank regions, but only does so when those

regions are sU1'l'ouncled by consis\.lmt. 1I0\\'. This bdmviour seems to mimic human

perception when faced wil.h Glass pat.l.c'l'I1 st.imuli. TIll' system also localizes the

boundaries of regions of smoot.h f10lV evell in t.he presence of inclependent, transparent

1I0ws without such cliscontinuil.ic's. All.o!!,el.her, t.he syst.em present,ecl is sufficient to

capture most of the funclamenl.a\ properl.ic's which charact.erize the perception of such

1I0w-like textures.

Three new theoretical builcling bloeks \\'el'<' c1cvelopccl in orcier to achieve these

goals: the thick trace disl,riblll.ed repres('nt.ations. t.he L()gic{/I/Lin~{/r {//gcbm, and
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the theory of gcomctric cOlllJl(llibilil fi fol' 1'<·laxal.ioll la""l\illg. 111 cach case, the 1'1111

generalit.y of the l'esults shollid Ill' ch·ar. Il sholl!d IllIIs Ill' sll'aiglllJol'ward t.o apply

the techniques we have developed t.o 01.111'1' l'l'O''I''ms ill carly visioll.

10.1 Future Directions

In considering the directions 01'''11 fol' 1'111111'<' l'<'SI'iuTh, We l'OCIIS fil'st. 011 ext."nsiOIlS t.o

the particular applicatiolls ill""st.igat"d, lIallwly illlil!!," CIII'''''S alld t."xt.ure 1I0ws, alld

then on bronder issues.

Global Descriptions. The tlIost o"violls l'ocus fol' 1'111.111'<' worl, is the illtegratioll

of these distributed represent.at.iolls illto 11101'<' glo"al descript.ioIlS. Clearly a system

which produces more global repl'eselltat.iolls of Clll'Vl'S 01' fidds wOllld be IIseful, cspe­

cially one which made explicil. sOIll(' of th" illl'ol'lnat.ioll which is iml'Iicit ill the thick

traces: the locations of elld-poilll.s, COI'Il<'rs, jllllct.iollS alld "ifurcat.iolls. W" have takell

care throughout to deal'1y defill(' 1.\", dc·snil'ti-..Is which 0111' syst."m l'l'OdllCl's-l.hick

traces of cross-sections-and ill Chal" :1 Wc' d"S(Ti",·d th" l'I·ol'ert.ies of tl",se tmces,

so the input to such a syst.em is wel\-d"fill"'\. Mol'''oWI', a glolml illl.egrat.ion problcm

was solved implicitly during the design of t.he relaxal.ion net.works, using a technique

reminiscent of the solution fol' Cllrves IJroposed in [DZHO]. It. is sl,ill undear, however,

how to efficiently integrate a conn"cl."d tl'acC' of local descriptions inl.o a IIniqlle glohal

description of a curve 01' flow fid<!.

Scale. Another unresolve<! issll" is 1.11<' roI" of seal". 111 hot.h of the systems

designed in this thesis, the scale of IJl'occ'ssillg was fixc'd alI<1 J'()sl.l'id"d t.o the slll1Lllc)sl.

possible size with respect. t.o t.he image salllpling. Y"'I. a clII've which appears st.raight.

locally may be pbviously Clll'Vl.'<! if view",d IlIOl'e glolmlly, and t.he saille cali be saicl

of fiow fields. Our intuitions abolli. 1.1", 1IIII1Iall visllal syst.em are ol't.cm pointers ta

solutions to general vision prohl"l1Is. alld in I.his case 0111' ahilit.y t.o choose the "right"

scale at which to desc1'Ïbe a CUl'\'e ill<!ical.es t.hal. S(JIIIl! sort of mlllt.iscaie represent.atioll

is being passed on to iater stages of l'I'lln'ssing (al't.er ail w,· seem t.o be ahle to pick and

choose the scale we pay attentioll \0 c\"I"'IIC\illg 011 cil'Clllllstallces). Yet this multi-scale
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representation does not app"ar 10 1,,· sim ply a fnnction of smoothing (as suggested

by scale-space approaches [WitRli]), sincc' finI' 10\\'·"onlrasl cmves (which cannot be

detected once the image is smootlwd) "an prndnœ \'l'l'Y large, salient l'egions of 1011'

perceived curvature. The same cfl'l'cf. is seen in random dot ~'Ioiré patterns in which

very small dots can be used 1.0 prodnce large, slo\\'ly cnrving fields. Clearly there is

something more going on here. On,· possibl,' snggest.ion is provided by theories of

multi-grid relaxat.ion (e.g. [Ter8~)) \\'hich involve inleract.ions bet.ween descriptions

at different scales.

Optical Flow. The means by which the l.e:.;I.nl'<' f10\\' mode! was developed in

Chap. 9 and of course the nam" "lcxt.lII'e f1o\\''' deliberat.ely evoke images of motion

fields. We suggest that the extraction of optical f10w may involve a natural extension

of the texture flow sysl.em 1.0 spatio.I.('mporal images. The path is faidy clear. Linear

operators for delecting and describing local motion have Ï>een described (e.g. [Hee87])

and these wouId almost cert.ainly benelit. from t.he int.rodnct.ion of L/L non-linearities.

Furthermore, jusl as the text.ure f10w relaxal.ion numages 1.0 resolve the competing

goals inherent when smoothing in t.he preSI'nc(' of discont.inuil.ies, 50 could a similar

approach to optical flow. The presence of t.ransparent., ovedapping fields is perhaps

even more endemic in mot.ion 1.lmt. wit.h st.at.ic t.exl.lIl'es. Finally, short range motion

capture may be explained in t.el1lls of t.he "snITonnd" processing of motion fields.

Implementation. Ral.her considering ot.her applicat.ions of tllese ideas, another

issue of pressing imporl.ance is t.hc' '1nl'sl.ion of implemcnt.at.ion. Even on modern

SIMD machines such as the MasPar 01' Connect.ion Machine t.he computational scale

of the systems we have descrihed ean bl" overwhelming. Consider the combinatorics

of image curves. Fol' the init.ial operat.ors (fol' mlges), we have SO local operators each

of which is composed of 20 linC'ar compllll<'nt.s. This means t.hat 1600 convolutions of

the image are performed jnsl. 10 ,'xtl'aet init.ial C'st.imat.es. FOI' a 512 X 512 image this

will produce an image bunclle with :W.llllll,llllll sam pied point.s. '1'0 relax this system

involves evaluating as many as severai hundred local interactions pel' node. At least

in scale, we have produced a sysl.elll t.hal. has mol'<,' in cOl11l11on with visual cortex

than "neural networks".
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Vet there is hope fol' imp!'·Illt'IIt.illg 1hl'Sl' syst.,'ms efliciellt.ly. Wc Ilote that. ail

r,omputations performed ill the SYSII'IlI l'ail h" 1l"COlllPOSl'd illto idelltical buildiug

blocks of the fol' III

y; = (L";,·".,) ~ (LI.;,,,,,), ,
where ai; and bi; are fixctl 'Wcight., aud t.1", ;/', an' SIlHlIl, houlldetl vahlt.'s communicated

over sorne local network. So t.he "lttin' SYSt.I'IIlS collsist.s of Ilot.hillg more thau lixed

summing networks aud POillt, 1l00,-lilll'al'Ïtil's. ~lorl'll\','r fOI' hot.h t.he illitial opemtor

responses and the relaxatiou it.crilt.ious, lIl/ 'l/}lIlnl,." lItl/y hl: paj'"'IIll:r! simlt/tllflt,olt"ly.

This suggests that sOllle form of d'·llil'a!.,'tI, hig,hly illl,"ITollllt'dell VLSI syst.em might

be able to perform these comput.~t.iolls ill real-t.ime.

But what would this syst.emlook Iii",,! TI", iuitial LIL O)ll'rators were imp1emeuted

entire1y in low-precision illtegcr arit.hlllC't.i<: (~-l(i hit.s), aud the relaxation laLelling

confidences were passed betwecu iteratiolls with similady low-precisioll int"gers (8

bits). This suggests that. useful syst."llIs l'ail Ill' d"ve1oped with very low bit-mte

communication paths. A not ulll'eiL,ollahl" pal.h 1.0 pursu,.' wouId thus he dec!icated

VLSI, perhaps even anaJog VLSI [MeaH!l]. Wilh ill!.,'rcolllll'diolls huilt ill and weighl.s

either programmed or bUl'lled ill, il. woulc! take uo more than a few layers of hardware

to go from an image to a fully conuccted thick t.I·""" desl'ril,illg clII'ves or t"xtme 11011'.

Biology. The final suggest,ioll for fltt,me work is l'cally just ait exploratioll of ail

undercurrent of the entire proj<,ct -1.1", strllct.lll''' of hiological vision syst,ems. Anyone

even vaguely familial' with t,lH' Il,'mophysiology of eady visioll [HWG2; OrhR4] will

have noticed echos of biology throllgholl!. this wOl'k. Wc havI' previollsly invcstigated

sorne of the implications of the L/L opel'''!.ol'.; fol' thcorics of simplc cdls in visual

cortex [DIZ!JD]. There were very (J1'Olllisillg t:Oulll,ct.iollS hel.wccll the computatiollal

theory and the behaviom of individual llellrOIiS. We Iwli""" that this should he

investigated further. Moreover, if tlll' Logical/Lillcal' Iloll-linearities do indm~d have

correlates in the operatiolls of IleU\'OlIS 1,111)11 the l'l'Iaxatioll techniques may constitute

a theory of at 1east sorne of the illtl'I'adiolls hel.\\·(·ell lIeUl'CllIs ill primary visllal cortex.
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8-connEocted, 25

labelling
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discrete, 21
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normal,90
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simple, 67
surround, 133

compatibility, 95
asymmetric, 93
continuous, 87
discrete, 92
relaxation labelling, 84

compatible subset, 95
connectivity

discrete, 26
graph, 25, 26
strong, 25
weak,25
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average local, 84

convolut,ion, 11
cross-section, 19,21,33,84, S!J, !)2
curvature

normal,154
tangent, 154

curve
image, 89

delta function, 11, 22

d'·SCI'ipl.ioll,3
DiraL -'fT dclta funct.ion
Diricldd t.iliug, 13
diSr:I"et.iza tion

decre,",iug sequence, 15
01' fllllct.ions, 11
sul,set., 18
valid, 14

edge,39

libre, 19

grap". 19

illlage
bUlldle, 19, 84, 116

image curve, 115
iucompat.ibility, 91
irn·dut"ible coveriug, 18

labell illg
assigllmenl., 83, 85
cousist.ent, 84, 84
relaxat.iou, 83
support, 84
ulHlmbiguous, 84

liue
negat.ive contrast, 39
posil.ive cout.rast., 39

logical/linear
p-aJlproximat.es, 49, 52
combinat.ors, 44
convolution, 48
oJll'rat.or, 38, 44

minimal project.ion, 91
model, 87

geomct.ric, 87
minimal,87
paramet.erized, 89

uomml condit.ion, 39

operat.or
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edge,60
image cu!'ve, 68

curved,121
inflection, 59
line

bright, 58
dark,59

local maxima, 57
tangellt continuity, 64

parameterization, 89
partition, 87
point-spread function, 11, 16
projection, 19

quadrant
generalized, 110

quantization, 18

radius, see Voronoi radius
reduction, 49
relaxation

labelling, 83
two label, 84

representation, 3

10, COlldllsiolls

1.01"\ splln', 19
t.ract.. 19

c1iscn'lt\ 21
t.hicl" 4, 23, 23, !J2, !)3, 116, 118,

\22, 12fi
t.hill, 22, 22-2'1

t.rallspo!'t. dist.allce, 90
t.uhula!' Illllp, 90, 128
1.111111\111' lIeighholl!'hood, 90, 128

Vorolloi
",,11,13, \fi
dillgrlllll, 13
k"md, 13
radius, 13

lVe"k cÛlInect.ivit.y, sec counectivity
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sampling, 10
sparse,13
unbiased, 95

stability
boundary, lOS
end-line, 63

straight lines, 88
strong connectivity, see conncct.ivit.y
submanifold, 20
support

geometric, 102, 105
regions, 112

support components
lateral, 104
regions, 112

thick trace, see trace, thick
thin

trace, 4
thin trace, see trace, thin
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