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Abstract

Early vision is usually considered to involve the description of geometric structure
in an image or sequence of images. Whether biological or artificial, the behavioural
constraints on real-time visual systems typical require that this first stage of visual
processing be fast, reliable, general and automatic. The design of a visual system
which is general enough to handle a wide variety of tasks is thus most likely to
be highly parallel, and involve distributed representations of geometric objects. In
this work, we investigate some of these generzal principles and propose both general
metlodology and specific applications.

We build on a general theory of distributed, local representations which we call
thick traces. Thick trace descriptions of continuous graphs preserve topological prop-
erties such as connectivity, and allow for the descriptions of multi-valued mappings.

Local operators for extracting image curves have been a focus of machine vision
research for twenty years. Considered in the context of thick traces, however, we can
reasses the goals of these operators and provide a clear description of when they should
respond positively and when they should not. In order to achieve this behaviour, we
develop an algebra, the Logical/Linear algebra, which incorporates features of both
Boolean and linear algebra into a set of non-linear combinators. This algebra is then
used to design a family of local operators which explicitly test the logical preconditions
underlying the definition of an image curve.

Relaxation labelling is a highly parallel, distributed method of extracting consis-
tent structures from a set of labels, There is a natural match between the represen-
tations used in relaxation labelling and thick traces. We exploit this connection by
developing a general method for relaxing a set of potentially noisy initial estimates
of thick traces (as produced by image operators) into descriptions which are thick
traces of geometric models. Furthermore we show how such a system can interpolate
into gaps in the traces while simultaneously respecting legitimate discontinuities and
boundaries.

Finally, we apply these methods to two problems in early vision: the description
of curves and texture flow fields. For image curves, the resulting descriptions of
piecewise smooth curves include both local orientation and curvature information.
The entire process accurately describes end-points, corners, junctions and bifurcations
by allowing many consistent traces to be incident on a single point in the image.

The term texture flow is used to describe a class of static textures with locally
parallel dense orientation structure (e.g. Glass or hair patterns). We derive a geo-
metric model of these textures from a smooth non-deforming velocity field. Initial
operators and a relaxation network are then defined to interpolate dense, piecewise
smooth flow from sparse inputs. The resulting system produces accurate descriptions
even in the presence of discontinuities, holes, and overlapping textures.



Resumé

La premiere étape de la perception visuelle est habituellement considérée comme
nécessitant une description des structures géométriques d’une image ou d’une séquence
d'images. Les contraintes typiques imposées au comportement d’un systéme visuel,
qu'il soit biologique ou artificiel, requiert que cette premiére étape du processus soit
rapide, fiable, générale et automatique. Ainsi, la conception d’un systeme visuel
suffisamment général pour traiter une grande variété de tiches, se demarquera prob-
ablement par un haut degré de parallélisme et d’une représentation distribuée des
objects géométriques. Dans cette thése, nous étudions ces principes généraux et nous
proposons une méthodologie générale et des applications spécifiques.

Nous nous basons sur une théorie générale des représentations locales distribuées
que nous appelons iraces épaisses. La description de la trace épaisse conserve les
propriétés topologiques telles que la connectivité, et permet la description de relations
a valeurs multiples.

Les opérateurs locaux pour extraire les courbes d'une image ont été un point de
mire de la recherche sur la vision artificielle depuis vingt ans. Toutefois, considérés
dans le contexte des traces épaisses, nous pouvons réévaluer les buts de ces opérateurs
et fournir une description claire établissant quand ils doivent répondre positivemnent
et quand ils ne le doivent pas. Afin d’obtenir ce comportement, nous développons
une algébre, ’algébre logique/linéaire, qui combine les caractéristiques de 1'algebre
booléenne et de 1’algébre linéaire dans un ensemble de prédicats non-linéaires. Cette
algébre sert ensuite & concevoir une famille d’opérateurs locaux qui testent explicite-
ment les préconditions logiques sous-jacentes a la définition d'une courbe.

La méthode dite “Relezation Labelling” est une méthode qui affiche un haut degré
de parallélisme et qui se sert d’informations distribuées pour extraire une structure
cohérente d'un ensemble d'étiquette. Les représentations de cette méthode vont de
pair avec celles des traces épaisses. Pour relaxer un ensemble composé des évaluations
potentiellement corrompues de la trace épaisse telles qu’obtenues par les opérateurs
locaux, nous exploitons cette relation en développant une méthode générale en des
descriptions qui sont des traces épaisses de modeles géométriques. De plus, nous
montrons comment un tel systéme peut interpoler dans les trous des traces tout en
respectant simultanément les discontinuités et les frontiéres légitimes.

Finalement, nous appliquons ces méthodes & deux probléemes en vision: la descrip-
tion des courbes et la description de I’aspect vectoriel des textures. Pour les courbes
dans I'image, monotones par morceau, leur description se compose de !'information lo-
cale & propos de 'orientation et de la courbure. En permettant I'incidence de plusieurs
traces cohérentes 2 un méme point de 'image, ce procédé décrit avec exactitude les
terminaisons, les coins, les jonctions et les bifurcations

L'aspect vectoriel des textures est utilisé pour décrire une classe de textures sta-
tiques ayant des structures paralléles denses (par ex., les cheveux et les motifs de
Glass). Nous dérivons un modele géométrique de ces textures a partir d’un champ de



vélocité, monotone et qui ne se déforme pas. Des opérateurs locaux et un réseau de
relaxation sont ensuite définis afin d’interpoler des champs vectoriels denses, mono-
tones par morceau, a partir d'entrées clairsemées. Le systéme qui en résulte produit
des descriptions exactes méme en présence de discontinuités, de trous, ou de textures
se chevauchant.

iii
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Part I

Early Vision and Representations



Chapter 1 Introduction

Vision is the process of interpreting and describing images. Early vision is the first
stage in this process, taking raw measurements of light to the first interpretations of
those images (e.g. there is a bright line here). While there is a broad consensus on
some of the fundamental characteristics of this process, on certain major issues, such
as the properties of the representations and descriptions involved (e.g. what a good
solution looks like), there is little agreement. In this work, we will offer alternatives
to some of the traditional assumptions about these representations, and will present
computational methods which build on these alternatives.

It is perhaps best to begin by describing what we see as the consensus and then
move on to points of disagreement. The term early vision is usually used to refer to

those visual processes which
¢ are fast, automatic and unmodified by intention or motivation;
¢ are purely retinotopic (i.e. operate on maps of the retina); and

o describe the image in terms of general geometric properties, such as the presence

or absence of one-dimensional discontinuities.

Thus, the description of curves in grey-scale images would qualify as an early vision
problem, but mental rotation and object recognition would not. Some of the problems
which are normally considered to be within the scope of early vision are: curve and
texture description, stereo fusion, optical Jow, and local shading analysis.
Disagreements arise, however, when discussions move from these general princi-
ples to their consequences and their application to real problems. For example, Marr
[Mar82] suggested that the speed requirements of biclogical or real-time early vision
precluded the possibility of considering iterative or global optimization procedures,
and yet membrane [Ter84, BZ87], and regularization methods [PTIK85), both of which

involve global optimization, have been proposed as general theories of early vision.
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1. Introduction

Focusing in particular on the need for real-time operation or an engineering approx-
imation to it, we make the assumption that early vision systems must be local and
parallel. Moreover if they are iterative they must converge in no more than a few iter-
ations in order to be predictably real-time. These constraints suggest the possibility
of implementation with fast, special-purpose hardware [Mea89).

Given this context, we focus initially on the representations used for early vision.
A representation is a language for delineating a class of structures and a description
is a sentence in this language. Thus an image representation is a set of possible
assertions about images. An accurate description of a particular image is one of
these assertions which is true when applied to the image. Whereas some trivial
descriptions are simply measurements (e.g. the intensity map of the retina), most
early vision preblems involve the detection and description of features in the image.
In these cases, the selection of a particular description is a non-trivial assertion of the
existence of certain features and the absence of others.

For example, if we wish to represent straight lines in images, our representation
must allow for the description of all possible straight lines which could exist in an
image. A description of a particular image would amount to the assertion that certain
of these lines do exist in the image and that others do not.

To understand the effects of a choice of representation, we consider the problem
of discontinuities. It has been suggested that one of the most fundamental orga-
nizing principles of a visual system is the detection and description of discontinu-
ities. Physiologists [HW62, Orb84, HL87] have chosen to desciibe the organization
of the mammalian visual system in terms of responses to spatially and temporally
discontinuous inputs: edges, bars and points of light turning on or off. Psychologists
[HR85, Ley88, Bie85] have likewise argued that much of perception is based on de-
scriptions of discontinuities (e.g. bounding contours and their end-points, junctions
and corners).

Computational vision researchers too have concentrated on the extraction of edges
[MH80, Can86), corners [BA84, Lee90] and texture discontinuities [ZRD75, BPR83,
Voo87, MP90) for much of the past twenty years. Yet most of these computational
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methods actually involve the systematic elimination or misrepresentation of certain
discontinuities. Algorithms that rely on indiscriminate smoothing to combat noise are
the most common culprit (e.g. [MHS0, Can86]). While locating certain discontinuities
(e.g. edges), they displace or destroy others {(e.g. the corner points) [Lec85).

More subtle though is the problem presented by representations which make it
difficult to find discontinuities. A good representation will either highlight important
structural features or make them explicit, yet the usual machine vision representations
for simple features often obscure these features. For example, in Canny’s representa-
tion of edges [Can86], it is assumed that there is a one-to-one mapping from image
points to edge directions. However, at corners and junctions there are discontinuities
in edge orientation which appear as multiple edges incident on the same image point.
Both the smoothing and the representation thus conspire to ensure that the resulting
descriptions are not accurale at these points. Yet it is believed [Wal75, HR85, Bie85)
that accurate location and description of these points are fundamental to the recog-
nition of objects.

A related problem becomes apparent when we consider the case of optical flow. It
is generally assumed that the problem of extracting accurate optical flow descriptions
involves the assignment of a single velocity (possibly stationary) to every point in
the image [Ul179, Hee87]. Yet the human visual system has no inherent difficulty in
perceiving motion of partially occluded (e.g. behind a picket fence) or transparent
objects. These are both cases in which there are appear to be multiple independent
motions at the same point in the image {ZIH90)].

In contrast to these one-value-per-pixel representations, which we call thin traces,
we will propose an alternative cluss of discrete representations which naturally sup-
port the description of multiple values per pizel, and thus of both discontinuities and
transparencies. This class, which we call thick traces, arises naturally from a reconsid-
eration of how to describe a piecewise continuous graph on a discretely sampled space.
We suggest that thick traces are a better choice than thin traces precisely because
they facilitate the recognition of boundaries and discontinuities. The development of

these thick trace representations and algorithms to extract them from images forms
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the body of this thesis.

The next step in our development arises from a reconsideration of the kind of
reasoning needed to locate and describe curves in an image. Deciding that we will
adopt a thick trace representation constrains, but does not determine the algorithms
needed to extract these descriptions from images. Instead we reconsider the problem
of designing a local operator to respond only when a curve with a given local geometry
passes through a point in the image. We conclude that the decision implied by this
goal is more complicated than can be provided by a simple threshold on operator re-
sponses, even when this is combined with local maxima selection [Can86, Har82]. The
complications arise, in part, because of the need to ensure stable operator behaviour
in the neighbourhood of end-points and multiple image curves.

Instead we suggest that the sign of contrast of the features being extracted be
the only “threshold” involved in the decision procedure. Using linear operators as
building blocks, we interpret positive responses as confirmation of associated logical
hypotheses. In order to support this interpretation, it is essential to provide a logical
foundation for making the decisions required (e.g. that the operator is centered on a
bright line of a given orientation). We will therefore design a Logical/Linear (L/L)
algebra which combines the behaviour of both Boolean and linear algebras. The oper-
ators designed with this algebra verify, rather than assume, the logical preconditions
for the existence of the designed features without incorporeting an erbitrary threshold
on significance.

This leads to the final focus of this thesis, the question of what can be assumed to
be a signiticant structure. Traditional approaches assume that some sort of threshold
is applied to select points or regions of significance (e.g. [MH80, Can86, BZ87]). We
suggest that this is an inappropriate method for the same reasons which lead to the
introduction of the L/L algebra. There is more to this issue than just the pragmatic
concerns of image curves, and in the end we question what an early vision system
should do.

There seems to be an implicit assumption in the design and evaluation of vision

systems that early vision processes should present to later processing stages only those
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features in the image which are salient and somehow “significant.” The consequence
of this assumption is often that a non-zero threshold on local contrast or correlation
is used to separate the “wheat” from the “chafl.,” Yet this assumption seems to be
at odds with the consensus that early vision is automatic and unintentional. If early
vision were automatic, then it would liave to deliver to later stages everything that
could possibly be attended to. It would be the job of some attentional process to select
which parts of this output are relevant to the task at hand. Given this assumption
then, early vision systems should always operate at the boundaries of sensitivity of
the visual system, and should produce descriptions of all verifiable features within
their range of representation. The only non-zero thresholds in the system should
depend directly on known measurement errors and noise in the system. The only fast
adaptations should derive from the measurable noise or distortion in the image.

The criteria for selecting features should thus be entirely structural. If there is
a predictable local geometry for certain features then it is the relationship between
that geometry and the image which should act as a measure of the significance of
features in early vision. For example, if a process extracts curves from the image, it
should select them based on whether or not they are lines or edges, relatively brighter
or darker than their backgrounds, and piecewise differentiable, It should not choose
to select only those curves which exceed some arbitrary minimum contrast, In other
words, it should depend only on intrinsic criteria and avoid the explicit or implicit
incorporation of eztrinsic criteria.

We suggest that beyond the criteria which relate the features directly to the image
(e.g. whether or not they are lines or edges), the primary criterion for selection should
be whether or not the local geometry of the features corresponds to some model of
the image. This process thus involves the inference of connections between individual
feature elements and the selection of those which appear to be part of a non-trivial
structure—the thick trace of some continuous model. Thus the computational theory

described in this document thus two stages:

1. Local Logical/Linear operators produce positive responses only when they can

verify the existence of some feature with a specified local geometry in the image.

6



1. Introduction

Because of image noise, confounding structure and operator imperfections, the

responses are not guaranteed to group together into thick traces.

2. These responses are used to initialize a relaxation process which produces con-
nected thick traces. This process is designed to converge quickly on only thick

traces of piecewise smooth models.

This work is organized to follow the development above. In Part I, we analyse the
discrete representation of continuous graphs on images. This discussion culminates
in the adoption of a new kind of representation: the thick trace. In Part II, we
design the Logical/Linear Algebra and design local image operators for extracting
local descriptions of image curves. These descriptions are a first approximation to
the thick traces desired. Finally, in Part 1II, we show how these initial estimates can
be refined to incorporate intrinsic constraints from geometric models using relaxation
labelling. The system relaxes to thick traces of piecewise continuous graphs on images.
By starting with good approximations, the outputs of Logical/Linear operators, we
ensure that the relaxation stabilizes afler as few as three iterations. Finally, we
demonstrate the application of the full theory for image curves and texture flow.

Throughout we rely on a number of organizing principles.

e Independence from the detailed structure of the sampling. All analysis is appli-

cable to both regquler and random samplings of the image and image properties.

e The avoidance of arbitrary thresholds. All decision procedures within the
designed systems are based on the Logical/Linear algebra, and thus all non-

linearities depend on contrast sign.

e The need to stabilize the location of discontinuities. Throughout, discontinuities
in the image are either explicitly extracted (e.g. as edges and lines) or are
stabilized so that the locations of boundaries in the output coincide with their

locations in the image.

¢ Efficient exploitation of massive parallelism. All operations in the final systems

are local sums augmented by simple, peintwise non-linearities. All operations

7



1. Introduction

can thus be implemented with shallow feed-forward networks of simple, inde-

pendent compulational units.

As a result of these principles we suggest that this work constitutes a computational
theory of early vision. Although it is outside the context of this document, we also
believe that these ides are relevant to a theory of the organization of processing in

mammalian visual cortex.

1.1 Claims of Originality

e We define the class of early vision problems which this theory addresses as

the extraction of discrete descriptions of cross-sections through fibre bundles
(a generalization of graphs of functions). The class of problems covered thus

encompasses static image maps, optical flow and three-dimensional vision.

A new kind of discrete representation (thick traces) of continuous structures is
defined and analysed. We conclude that this is better than traditional repre-
sentations for early vision processing because it is a purely local representation
which nevertheless allows for the straightforward recognition of boundaries and

discontinuities, points of fundamental interest for early vision.

An algebra for reasoning in the context of linear operators is developed. The
combinators of this new algebra, the Logical/Linear algebra, exhibit both Boolean

and piecewise linear properties.

Smooth approximations to the Logical/Linear combinators are developed which
allow for reasoning with uncertainty. This approximation is an interpolation be-

tween linear combination and the absolute L/L combination previously defined.

Local L/L operators are designed which detect bright and dark lines and edges
in images. These operators accurately categorize these features and operate
stably in the presence of multiple curves and end-points. They are clearly good

approximations to the thick traces of the underlying image curves.



1. Introduction

o We formalize the relationship between geometric models (e.g. straight lines)

and cross-sections of fibre bundles on images. The resulting analysis clarifies
the criteria which may be used to recognize significant geometric structures

among the outputs of image operators.

Relaxation labelling is proposed as a theory for extracting these geometrically
significant structures from image operator responses. With the analysis de-
scribed above we show how to guarantee that the fixed points of a relaxation
process are thick traces of geometric models. This involves the augmentation

of the support network with L/L combinators.

We demonstrate the viability of this theory by applying it to two distinct early
vision problems: the extraction of image curves with orientation and curvature,
and the interpolation of texture flow fields with orientation, curl and diver-
gence. The resulting outputs are shown to be stable and accurate, and locate

boundaries and discontinuities with precision.



Chapter 2 Discretization

Physical theories, or their models, are usually described in terms of continuous math-
ematics. When represented on a digital computer however, the data involved are
represented on finite, discrete point-sets: samplings. What then, is the relationship
between properties defined in the continuous spaces of our theories and discrete sam-
plings of those spaces?

Sampling theory [Raj68] and numerical analysis [Bur89] are two fields that address
this question. While they are both relevant to vision, we seek to develop a means of
thinking about the process of discretization which exposes aspects of the sampling
process not often considered in these fields. In particular, we wish to determine how
the choice of representation can affect our ability to reason about the continuity of
the sampled data. This aspect of the problem is extremely important for vision. To
clarify the the development in this chapter we introduce an example relevant to the
representation of image data. We will consider the question of representing a graph
of the orientation of a piecewise smooth curve in a planar image. This example will

then continue through the thesis, evolving with the development.

Example 2.1 Consider a piecewise differentiable, continuous plane curve a : S —
IR? parameterized by arc-length where S is the interval [0,£]. When the tangent
7(s) = o/(s) is expressed in polar coordinates we have a piecewise continuous func-
tion 6(s), the direction map (speed is constant), Corners in a will appear as step

discontinuities in 0 (see Fig. 2.1).

Considering the general problem of representing functions on a continuum, we

start with a definition

Definition 2.1 A sampling of a continuum X is an ordered set of distinct values

X={mieX|i#j=zs#z}!

INote that the continuum IR” cun Le described as an ordered point-set and thus is a valid, if

10



2. Discretization

A

T / o

(a) (b)

Figure 2.1: A piecewise differentiable plane curve a (a) has tangent 7 and
normal n. When expresscl in polar coordinates, the tangent vector v has a
direction 8 (b) which can be graphed over the arc-length s of the curve. Note
that a corner in the curve o appears as a discontinuity in the direction 6.

Throughout the following work, we will assume that all spaces X being sampled are
path-connected topological vector spaces with Riemannian metric [Spi79, Arm83].

Using such a sampling, functions are often discretized as follows.

Example 2.2 Given a function on metric spaces f : X = Y, and a sampling X
of the domain X, a discretization f of the function f is given by the ordered set of
values

f = {f,-:fxf(:c)\ll;(:z—me) dp(X) a:,-e)?},

with u(X) a measure on X. U;(z) is known as the point-spread function of the
discretization. If Vi,7:¥; = ¥;, and ¥ and p(X) are sufficiently well-behaved then
this operation is a convolution.

Perhaps the simplest such discretization is given by the Dirac delte function
¥:(z) = d(z), which gives the discretization f; = f(z:) by definition. In general,

if the function represents some Platonic property of the real world (e.g. air tem-

counterintuitive, sampling of itsell. The indexed notation (z;) used for describing elements of the
sampling set should not be taken as implying the countability of X. It is simply used as a means of
specifying that the point z; is in the sampling X.

11



2. Discretization

Figure 2.2: The Voronoi diagram of a two-dimensional space X is shown., The
discrete points z; € X are used to partition the space into regions which are
closer to z; than any other point ;. There is a Voronoi cell X; C X associated
with each point z;.

perature), then any measurement of that property is, in effect, a spatio-temporal
discretization of the function (i.e. a sample of the value at some delinite point or sct
of points in space-time). The point-spread function captures some of the inexactness

of the measurement process.

Example 2.3 {continued) Consider the direction #(s) of the plane curve a(s) over
the closed interval S = [0,£]. The integer sampling on R then gives the sampling

si=tifori e {0,1,...,(¢]}. In this case, the Dirac discretization of 0(s) is given by
& = 0(s;)) = 0(1).

Note that #; is undefined if # is not continuous at 1.

Since a sampling X is used to represent the continuum X, we assert that each
point z; € X represents a distinct subset of the continuum. A natural partition such
that each such subset is a neighbourhood of z; is given by the Voronoi diagram of the

sampling.

12



2. Discretization

Definition 2.2 [Aur9l, Con93) Given a sampling X of the Riemannian metric space
X with distance metric d(z,y), the Voronoi diagram (also known as the Dirichiet

tiling) is a partition of X into disjoint subsets, the Voronoi cells, such that

X = {:L’EX

Vz; € X: z; # 2; and d(z;,2) < d(z;, ) }

We call the point z; the kernel of the cell X;.

Since there is a one-to-one mapping between kernel points z; and Voronoi cells X;, we
can assert that z; represents all of the points in X; (and vice-versa). This relationship,
in which a partition of X is described by a discrete set of points, will be fundamental
to our analysis of the relationship between a sampling and the metric space being
sampled.

Note that in the strict sense, the definition in Def. 2.2 does not partition X, since
the boundaries between cells are not assigned to a unique cell. This detail is especially
important for sparse samplings (see below). The ordering required in Def. 2.1 serves
to assign these boundaries, with boundary points taken to be members of the lowest

numbered Voronoi cell for which they are limit pointe.

Definition 2.3 [Con93) The rudius p(X;) of the Voronoi cell X; is the distance

p(X:) = limsupd(a, ).
zEX|

The covering radius of the sampling X is then

p(X) = max p(X)).
ziEX

We will say that a sampling is sparse if and only if
min p(X;) > 0.

zEX

Clearly, finite samplings [Raj68] are sparse, whether they are regular or random.

13



2. Discretization

Example 2.4 (continued) Consider the domain § of a. The Voronoi cells of the

sparse sampling s; = ¢ on this space are simply the intervals
Si = [i-1/2,i+1/2)N S,

assuming the metric d(z,y) = | — y|. The radius of this sampling is then 1/2,

Note that we have implicitly allowed the continuum to be considered as a sampling

of itself. It is clear that for this sampling X = X we lhave
Xi = {=}.

With this in mind, we can determine whether or not a proposed discretization of a

property defined on the continuum is “reasonable.”

Definition 2.4 Given a continuum X consider the relation P(S) where S ¢ X. If

there exists a relation P(S) for subsets § C X such that
X=X = P(S) & P(5)

then P is a valid discretization of P. If there exists a function f($) for § C X such
that

X=X = [(5)={($)
then f is a valid discretization of /.

This definition clearly agrees with standard practice. For example, the Dirac

discretization described in Ex. 2.2 is a valid discretization since

fle) = jA f(z)8(z - z;) d.

by definition of the Dirac delta &§(z).
Referring to vision for a moment, the classical discretization of an image on a

regular grid is simply a special case of this general formulation.

14



2. Discretization

Example 2.5 For a 2-dimensional image / : X = Y defined on X = [0,1] x [0,1],
a regular grid (a sampling) is given by x; = ((20 = 1)/2n,(27 — 1)/2n) for i,j =
(1,...,n). A digital image i is derived from the image [ by sampling I on X =
{z:; € X}. The Dirac discretization of the image function is then given by f.-,- =

I(z;;).

In some cases, however, we cannot use this definition directly, but must instead
rely on a limiting process. In that case, consider a sampling X of X. Now, consider
a sequence of samplings X = (X}, X3,...) of X such that X; € X;4; and

'_]_1'12,;)();,-) = 0.
We will call such a sequence a decreasing sequence of samplings of X. If we consider
a function f defined on a sampling, then the limit of f over a decreasing sequence
will give the function f to which it is equivalent. Analogously, a relation P which
selects subsets of the sampling similarly converges on subsets P of the continuum.
For example, it is clear that for a decreasing sequence of discretizations X' we can

conclude that

{:L‘,'} = _lim X.'.

1=300

As a shorthand for limits taken over such a decreasing sequence of samplings, we

adopt the notation p(f( ) = 0. Thus the limit above becomes, simply

{z:} = lim X.

p(X)—0

We this in mind, we note that the validity test does not carry with it a guarantee
of uniqueness. In fact there may be a number of different valid discretizations of even

the simplest properties. Consider again the discretization of a function on X.

Example 2.8 An alternate valid discretization of the continuous function f: X = Y

15



2. Discretization

on X is given by area averaging, in which

fi = f.\'. fl2)dp(X)
(6

where 1(X) is a measure on X.
To prove this for X = Y = R we refer to the fundamental theorem of calculus
[Spi65]
[ sy = Ft) - Fo)

Therefore
i o oz J(@) de
g =
_ i Fleit e = Flai— c),
=0 ¢

F'(z) = f(=i).

The proof of the general case when X and Y are arbitrary metric spaces can be found
in [Spi65).

This method has the advantage over the Dirac discretization in that it incorporates
all values of the function f(z) on X; in order to form f;. Furthermore, for this
discretization the implicit point-spread function is a characteristic function of the
Voronoi cell

1/Vol(X;) ifz € X;,
‘1’,‘(3: - :!:,') = .
0 otherwise.
As p(X) = 0, this function converges on the Dirac delta §(z — z;). In general,
any point-spread function ¥;(z) which reduces to the Dirac delta over a decreasing
sequence of samplings makes Ex. 2.2 a valid discretization.

For example, for the plane curve in Ex. 2.1, the length averaging of direction is

obtained by

i+1/2
o = j.--m 0(s) ds.

And for the image sampliﬁg in Ex. 2.5, the Voronoi cells Xj; are squares centered
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2. Discretization

around z;j, and a spatial averaging discretization is given by

f;,- = ;}5'[’[\.'} I{(z)dz dy.

So far, we have only considered valid discretizations. In order to understand how
the definition above restricts possible discretizations it is useful to introduce an invalid

discretization,

Example 2.7 Consider a discretization of f(z) based on convolution with a Gaussian

kernel

-
et ,

Ge(z) =

o2
If o is constant for all discretizations, it is easy to see that this is not a valid dis-
cretization since fi(z) = (Ga * f)(x:) # f(z;) for o # 0.

If, however, instead of a fired & we vary it so that o o« p(X), then this discretiza-

tion is valid. This is, in fact, one definition of the Dirac delta, namely
§(z) = cl:'-'»% Go(z).

In essence, if lim,(¢_,, ¥(z) = d(z) then the discretization by convolution with ¥ is

valid. This condition is true for both the area averaging above and the ¢ « p(X)

case of the Gaussian convolution.

Now consider the problem of discretizing arbitrary subsets of X (i.e. choosing a
subset § C X to represent the subset S C X). An obvious approach would have the
subset § C X discretize to the set of points z; € X for which z; € . Although this
is a valid discretization, the X; selected do not always cover S. Coverings are the
fundamental building block of topology, so in order to represent or at least reason
about topological properties such as connectedness it is necessary to ensure that §

covers S.
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Figure 2.3: A product bundle £ is the shown as its total space E, which is the
Cartesian product of a base space B and the fibres F. This can be thought of as
just a high dimensional vector space. A regular discretization of both the base
space and the fibres is shown by the dots.

Definition 2.5 The closed subset S of X is discretized by the subset § € X where
§ = {.‘r,-EXlX;ﬂS?E@}.

The set of Voronoi cells X; € § forms an irreducible covering of 5.

Significantly, this is also a valid discretization since for X = X

§={zeX

{(z}nS#0) = 5.

2.1 Fibre Bundles

The regular sampling of continuous images presented above is the traditional downain
on which early vision algorithms are formulated. However, often ignored is a second
kind of “discretization” inherent in digital systems, the quantization of the values
measured (e.g. image intensities). Rather than considering these as a separate pro-
cesses, we introduce a formal model of the discretization of functions and images
which combines both this spatial sampling and the quantization of values in a single

structure. To do this we introduce fibre bundles.
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2. Discretization

Definition 2.6 {HusG6) A fibre bundle is a triple € = (E, 7, B) of a total spuce E, a
base space B, and a projeclion m : E = B.? The expressions E(£) and B(£) may be
used to refer to the total and base spaces of £. For each b € B, the space F = n~(b)
is called the fibre F over b. A bundle of the form (B x F,w, B) where n(b, f) = b, is
known as a product bundle. If the base space B of a bundle is the domain X of an

image / : B — F then we will refer to the bundle as an image bundle.

We adopt this formalism because of its descriptive advantage in dealing with the
relationships between the base and fibre spaces and the natural association between
cross-sections of a bundle (described below) and the problems that one faces in early
vision. At times it may be simpler to think of the fibre bundles we use—product
bundles of vector spaces—as simply high dimensional vector spaces.

An immediate consequence of this definition is that vector functions may be iden-

tified with certain subsets of the total space.

Definition 2.7 [Hus66] Given a vector function f : B — F, we form the naturel
product bundle £ by taking £ = (B x F,n, B) and n(z,y) = z for (z,y) € Bx F. The
mapping f is then a cross-section of the bundle over any domain § C B, where the
dornain of f is identified with the base space of the bundle and the range with the
fibre.

For the purposes of this work, we will work with the point set which corresponds

to this mapping, the trace

TR(f) = {(=.f(z)) € E(§) |z € S},

This is also called the graph of f on S

Note that every function corresponds to a cross-section in some product space, and
vice-versa [HusG66]. For convenience, we will therefore sometimes use the same symbol

to refer to the cross-section and its equivalent function. Furthermore, if E(£) is

¥The bundle £ is often identified simply as 7 : E = B, since this expression contains all of the
components of the bundle.
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(s.9)

(a) (b)

Figure 2.4: The direction map #: § = R for a plane curve o has two different
natural product bundles. (a) Il we use the interval S as the base space B = S,
then the direction map is a cross-section in the total space § x IR. If instead,
(b) we treat o as a submanifold of the base space B = X x Y then the direction
map is a cross-section over & C B in the total space B x IR,

a topological vector space with Riemannian metric, the cross-sections induced by
continuous functions are also differentiable submanifolds of the total space [Lan85].
Identifying the cross-section as a manifold will be essential in some of the development

below.

Example 2.8 (continued) The natural product bundle for a particular physical or
geometric mapping is not always unique. In particular, it depends on the choice of
the base space used to express the function. We will describe two possible bundles,
&, and £, associated with the direction map of a plane curve,

For the plane curve a : § = R?, the direction map ¢ : § = IR has the natural
product bundle £, = (S x R, 7,, S) where 7,(s,0) = s (Fig. 2.4a). The function ¢ is
then a cross-section of this bundle.

We can also choose B(£,) = IR? as the base space of a natural product bundle for
the direction map of an image curve since a is a submanifold of IR?. This leads to a
bundle in which £, = (R? x IR, 7., R?) and m,(x,y,0) = (z,y) (Fig. 2.4b). The map
8 is then defined only over a C R*._
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(a) Thin trace (b) Thick trace

Figure 2.5: The trace of function f : X — Y in the natural product bundle
£ = (X x Y, 7, X) is the cross-section {(z, f(z)) | = € X }. When the bundle is
discretized, with discrete total space E=Xx }.’, then the cross-section can be
represented as either (a) the thin trace, in which the Voronoi cell Y; through
which f crosses z; is chosen from each fibre, or (b) the thick trace, which includes
all points e;; for which the cross-section intersects Ej;.

2.1.1 Discretization of Graphs: Discrete Traces

We now return to consideration of the discretization of functions, but this time from
the point of view of the natural product bundle. The first step is to define a sampling

of the bundle.

Definition 2.8 A discrete product bundle £ is given by € = (E,n, B) where £ =
B x I and B and F' are samplings of the base space B and the fibre F respectively.
When we wish to separate the samplings B and F, a point in E is referred to as
ei; = (z:,9;). The projection is given by m¢(ei;) = z;. We refer generally to the

discretizations of cross-sections of discrete bundles as discrete traces.

Now consider the discretization of the cross-section f : X — Y, a bounded,
piecewise continuous function with compact support on X. Given a sampling of the

total space £ = X x Y, one discretization of the function f is given by what we refer
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2. Discretization
to as the thin trace (see Fig. 2.1.1)
THIN() = {e.-,- € E‘lf(z.-) € Y,-}.

That is, for each sampled fibre ¥, choose the kernel point (xi,y;) closest to the

intersection (z;, f(z;)).
Theorem 2.9 The thin trace THIN([) is a valid discretization of TR(f).

This can be verified, since for X = X,

THIN(f) = {e.-,-eE‘

fw)e; }

_ {(m,y)e E\f(:c)G {y}}
Tr(f). :

When the sampling Y is regular, this definition is equivalent to a regular sam-
pling of X with z; € X and quantization of f(z;) by rounding. This is exactly the
representation of images produced by digital cameras and most often used in image

processing.

Example 2.9 (continued) Consider the discretization of the direction function ¥ :

S — R by the Dirac delta function so that
¢; = 0(:).

This is clearly just the intersection point of § with the fibre over i. If this value is
represented in a digital computer by rounding 0; to the nearest representable value

(e.g. a floating point number), then the set of values
THIN({Y) = {(0,00),(1,0,),...}

is the thin trace of @ in the natural product bundle £ = (S x R,n,,S). Since the

sampling $is regular, this can be represented as just the sequence of rounded values
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2. Discretization
(00,0:,...). Considered in this way, the floating point numbers represent a very fine
sampling of the range of 0.

An alternate discretization is given by the thick trace (see Fig. 2.5b), which will

become the focal point of this thesis.

Definition 2.10 The thick trace of the function f on £ is given by

THICK(S) = {e,-,- ¢ B|3we X: (=, f(2)) € By }

Thus, every Voronoi cell in the sampled total space E through which the cross-section
(z, f(z)) passes is represented in the thick trace by its Voronoi kernel. An obvious

consequence of this definition is that the thin trace is a subset of the thick trace.

Theorem 2.11 The thick trace TiiCK([) is a valid discretization of TR(f).

For X = X,

THICK(f) = {e.-;eE dr € X: (-'B,f(W))EE-'j}
= {Eneb|mex: @) el )

{(-’c,y) €E|flz)= y}
TR(S). |

Example 2.10 (continued) Since there are two distinct product bundles for the
direction map, there are two distinct representations for the thick trace of the map
over a particular curve.

The thick trace of ¢ in the bundle &, is the set of Voronoi cells E;; which intersect
the curve f, = {(s,0(s))|s€ §}. In this case, that implies that on each fibre
7, '(s;) we include all cells which overlap the interval [infg, 6(s),supg, 8(s)] where
Si=[i-1/2,i +1/2)NS5. |

Alternatively, the thick trace of § in the bundle £, can also be calculated. This time

fa = {{a(s),8(s)) | s € S}, with the sampling of the total space E(£,) = R’ xR
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(i.e. the image domain is sampled as pixels and the directions are as above). For
this bundle, the projection m,(THICK(a)) is the subset discretization of a on II-{Q,
while on each fibre 77!(b;) over this subset we again have an interval bounded by the
minimum and maximum values of #(s) for which a(s) € B;.

Note that Canny’s algorithm for edge detection [Can86}, produces an image po-
sition to direction mapping which is single-valued for edge points in the image. The
edge points are chosen by locating image points which give laterally maximal edge
matches. In terms of thin and thick traces then, the Canny algorithm produces a thin
trace of the direction map ower the thick trace (in fact the (liscreté subset) of points
in the image (the base space) which fall on the curve of lateral maxima. We will show
that one consequence of this choice of representation is that algorithms such as this
cannot properly distinguish either corner points or crossings. This inadequacy is an

inherent property of the choice of representation.

In many cases there will be a clear preference for one of these representalions
over the other. With digital images, for example, users normally prefer thin trace
representations because of the possibility of representing the base-space implicitly
due to the one-to-one B — F mapping (e.g. for compact storage). Hence, from
this perspective, the usual representations of images on digital storage media are all
thin traces, where the indices of points are implicit and values are arranged in a

rectangular array in memory.

2.1.2 Discrete Traces and Continuity

As representations, both thin and thick traces represent an equivilence class of func-
tions which could have generated the trace. We refer to this class as the functions
underlying a discrete trace. Thus, given a thin or thick trace, we may draw cer-
tain conclusions about the functions which might underly that trace. In many cases,
a preference for one representation or another hinges not simply on the amount of
memory needed to store it, but on the conclusions which can be drawn about these

functions. In particular, we will show that when continuity of the functions in the
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B L Bl Bl <L I

Figure 2.6: Connectivity of sampled spaces is defined in terms of contact
between the Voronoi cells (boundaries delimited with dotted lines). If the contact
is over an entire face, then the points are strongly connected (heavy lines). If
the point of contact is a single point, then the points are weakly connected (light
lines). The neighbourhood of a point consists of all of the points to which it is
connected (dark or light shaded cells). For a rectangular grid, these concepts
are familiar as J-connecledness and 8-connectedness.

equivalence class is not assumed a priori, then the thick trace is a better representa-
tion since it allows one to investigate the continuity of the class in a way not possible
with thin traces.

The focus of this analysis is the relationship between the connectivity of discrete
traces on sparse samplings and the continuity of the underlying curves. Before this
relationship can be clarified, we must state clearly what we mean by the connectivity

of a sampling.

Definition 2.12 Given a sparse sampling £ (i.e. minp(E;) > 0) the connectivity
graph of £ is a graph on the vertices {e.- € E} with the edges representing direct
contact between Voronoi cells. The strong connectivity graph C*(E) is formed by
including an edge (e;,€;) whenever E; and E; share a common face. The weak con-
nectivity graph C*(E) is formed by including an edge (ei,e;) whenever E; and E;

share any common limit point.

Note that the traditional notions of 4-connected and 8-connected graphs on grids

are subsumed by these definitions, with 4-connectedness strong and 8-connectedness
weak (see Fig. 2.6).

Interestingly, for generic (i.e. random or randomized) samplings, the strong and
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weak cases are equivalent. This arises from the observation that a weak connection
which is not equivalent to a strong one can only occur at vertices with more than
three incident edges (i.e. there are at least four points equidistant from the vertex).
This occurrence is of vanishing probability for random distributions of kernel points
[?]. Thus, although the strong/weak distinction is important for work on regular sam-
plings, it is largely irrelevant for irregular samplings. For this reason, we will ignore
the distinction (and distinguishing superscript) and assume the weak connectivity.
Note that the connectivity graph has only been defined for sparse samplings. Thus
rather than reiying on Def. 2.4 we will instead reason directly with the connectivity
graph. In particular we will prove that the connectivity of this graph is equivalent to

the path-connectedness of the space on which it is defined.

Definition 2.13 The connectivity graph C{S) of a sparse sampling subset § C £
consists of all vertices {e,- € 5'} and all edges (e;,e;) € C(E) where both e, & € S,
The sparse sampling subset $ is connected if and only if for all pairs e;,¢; € S a finite

path exists in C(3) from e; to e;.

Theorem 2.14 A sparse sampling subset § C E is connected if and only if the union

of the Voronéi cells

U=\ E
E.e8

is path-connected.

Observe that each Voronoi cell E; is both trivially path-connected and has a connected
connectivity graph. It is also clear that the union of a cell £; and some path-connected
set of cells { E; | 1 # 7 } is path-connected if and only if there is some limit point in
common between E; and some ;. This condition is equivalent to the assertion that
I(ei,e;) € C(E). Thus by induction we conclude that the connectivity graph of a
finite set of Voronoi cells is connected if and only if their union is path-connected.
To show that this conclusion extends to infinite subsets as well it is only necessary
to consider that U/ is path-connected if and only if there is a path p of finite length

between any two points in U [Arm83]. The if part is trivial, since a finite path in
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2. Discretization

the connectivity graph is a path in U. To prove only if, it is necessary to consider
a bounded neighbourhood N, of the path p. Since the volume of the neighbourhood
is finite and the volume of each E; in § is non-zero, this neighbourhood has a finite,
irreducible cover in §. Since each E; in this cover is path-connected and E;N N, £ @,
the cover is itself path-connected and thus has connected graph. Thus for every finite

path p in U there is a finite cover of p in § with connected graph. |

This definition has an immediate and important consequence.
Theorem 2.15 If the set S C E is path-connected then its discretization ScEis

connected for any sampling

From Def, 2.5 we know that
VE;€§: ENS#0

and since each E; € § is path-connected we conclude that a finite path exists from any
point p € |J E; to any ¢ € S. Thus, since S is path-connected, |J E; is path-connected
and by Thm. 2.14 this is equivalent to the assertion that the connectivity graph C(5)

is connected. | |

Now we can explicitly state the crucial relationship between the continuity of a

cross-section and connectivity of the thick trace.

Theorem 2.16 Let f: S C B = F be a continuous cross-section of the total space
E. If E = B x F is a sampling of E, then:

1. The thick trace THICK(f) is connected;

2. The discretized domain § is connected;

Each of these follow immediately from Thm. 2.15. What will be most important

for vision applications is the following,.

Corollary 2.17 If a thick trace is disconnected then all functions underlying the

trace are discontinuous.
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2. Discretization

Moreover, the local connectivity of the thick trace can be related to the local
continuity of the underlying functions. In particular, boundaries of the connectivity
graph of the thick trace correspond to boundary points and points of discontinuity of
piecewise continuous mappings. To see this, consider a piecewise continuous mapping
f as a collection of continuous patches {¢,...} which cover f. Then, the local
copnectivity of points in THICK(g,) allows one to identify the boundaries of the
patch g,.

Corollary 2.18 Consider the connected set of points f; = THICK(f) N 7=~'(b;) on
the fibre #=Y(b;) for f a continuous cross-section. If #='(by) is a neighbouring fibre

(i.e. (bi,bc) € C(B)) but f; does not have a neighbour in ©="(by)
~Jew € 77 (b, €5 € Jit (eiy,em) € C(E)

then Uy, E; contains a boundary point for every continuous patch underlying the thick

trace,

Thus we have both global and local conclusions about the continuity of the equivalence
class of mappings underlying a thick trace, and a simple method flor recognizing when
a point in a thick trace is at the boundary of its domain. Moreover, these properties
depend only on the intrinsic connectivity of the trace. These are the key properties
that make the thick trace important for vision.
Example 2.11 (continued) Consider the thick trace in E(€,) of a piecewise smooth
curve with a corner at s = s4. This results in a local discontinuity in direction 8(s) at
s4 (Fig. 2.7b). Note that in the thick trace there are two disconnected points in the
discrete fibre over sy. Each of these points vepresents a boundary of a smooth patch
covering the function 4.

In contrast, consider the thin trace of the same function (Fig. 2.7a). There are
a number of points where the thin trace is not locally connected, only one of which

corresponds to a discontinuity in the underlying function.

In contrast to the relationship between continuity of functions and the connectivity
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Figure 2.7: A corner in the plane curve e appears as a step discontinuity in
the direction map #. The discontinuity may appear as a disconnected point in
both the THIN (a) and THick () traces of the direction map, but in only the
thick trace does such a discontinuity unambiguously indicate a discontinuity in
@. Notice in (a) that the thin trace is disconnected wherever the derivative is
high, and not only at discontinuities.

of thick traces, is the observation that no such relationship holds for thin traces.
Proposition 2.19 In general, a disconnected thin trace THIN(f) does not indicate

a discontinuity in f.

A disconnected point in the thin trace may arise from either a large derivative or a
true discontinuity: these cases are indistinguishable with thin trace representations.
This can be seen both in Figs. 2.1.1 and Fig. 2.7a.

In contrast wit‘h the thick trace, the continuity of f does not constrain the struc-
ture of the thin trace at all. Any Lhin trace (i.e. a cross-section of £ such that
there is exactly one e;; € THIN(f) for each 7), corresponds to at least one continuous
function. Such a function is easily constructed by just connecting the kernel points
e;; € THIN(f) for all nearest neighbours on B. Worse yet, any interpolation between
these points which does not intersect any other fibres will result in the same thin
trace, including those with significant wandering between the &; € B points. So,

the thin trace THIN(f) in and of itself provides no intrinsic information about the
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2. Discretization

continuity or discontinuity of those functions underlying it.

If we add additional constraints (e.g. bounds® on the derivatives of f or the
Shannon bandwidth condition) then it is possible to draw conclusions about the
continuity of a cross-section from the thin trace, but as we have seen not without
such extra conditions. Thus in computational situations in which we need to verify
continuity from discrete traces, a thick trace is a more useful representation than a

thin trace.

2.1.3 Other Constraints

The relationship between continuity and connectivity provides a strong arguwent for
adopting thick traces for certain problems. Even in cases where this may not be an
issue (e.g. bounds on derivatives are available externally), there are other reasons to
prefer a thick trace.

It should be clear that computation of the thick trace on a sampling is a purely
local computation. If a single processing element is associated with each sampled
point in the total space, then its local decision procedure can be summarized as:
does the curve intersect my Voronoi cell? The fact that the metrics we consider
are strictly Riemannian guarantees that this is a purely local computation, requiring
only knowledge of the position of the boundaries of the cell (fixed by the sampling).
The thin trace is, however, somewhat less local in that it requires the integration of
information over the entire fibre. This local selection procedure can be a bottleneck
in some systems (e.g. [PM91]). We suggest that the thick trace is a better match for
the representations stored in massively parallel, distributed systems such as SIMD
parallel computers, neural networks or the brain.

Another advantage of of the thick trace representation is that it can represent a
richer class of geometric structures than the thin trace. The fact that multiple points
(connected or not) on a discrete fibre can be represented in the thick trace, allows for

the accurate depiction of structures which depend on multi-valued mappings from the

3These bounds can be derived from the radii of the discretizalions of the base and fibre spaces
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(a) (b)

Figure 2.8: Both self intersections (a) and intersections of independent curves
(b) can cause significant problems for representations which insist on assigning
a single orientation to each pixel in an image (e.g. [Can86]). The fact that thick
traces can include multiple points (connected or not) on a single fibre allows for
the accurate representation of such points.

base space to the fibre. Thus a thick trace can accurately describe self-intersections
and transparency in ways that the thin trace cannot. In many cases, especially in
early vision, a strict assumption of single-valued mappings may lead to incomplete
theories of the phenomena being examined.

A natural computer representation for thick traces is to assign one bit per point €;
in the total space E(£) of the bundle £. A description of the cross-sections which exist
in an image would then be given by setting all hits to zero except those which are in
the thick trace the cross-sections in the image. Note that there is nothing inherent in
this representation which precludes the independent activation of multiple, disjoint
intervals in a single discrete fibre. As we saw above, this property has important
consequences for the representation of discontinuous points in the cross-section. It is

also useful in the representation of irregular curves.

Example 2.12 (continued) Note that nothing in the description of thick traces on
¢, precludes the possibility that a curve may intersect the fibre ©; more than once.

Consider a self-intersecting curve such as shown in Fig., 2.8a. At the point of self-
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intersection, there are fwo intersections between the curve in E(€,) and the discrete
fibre ©; over the point. The thick trace of this curve in the bundle £, will then contain
two separate intervals on the fibre over the crossing poiut. Note that neither of these
intervals corresponds to a boundary in the domain of the mapping, thus this point is
not a “corner.” Instead, we can interpret the description in terms of the intersection
of two distinct regular patches taken from a regular covering of the irregular curve
[dCT6].

Consider instead the representation chosen by Canuny [Can86}. In this case, the
algorithm finds the unique “best” local direction for an edge at every point. As
we have stated before, this can be considered to be a thin trace representation of
the direction map in £, over the image curves. At points of intersection, Canny is
forced to choose the “more significant” local direction and abandon the other, since
the representation assumes at most one direction per position. In general though,
the smoothing inherent in Canny's approach ensures that the direction chosen is not
even one of those incident on the point, but some weighted average. This is one of the

sources of the well-known problems in similar algorithms near crossings and corners.

One might argue that the storage and possibly computational expense is too great
to justify the use of thick traces. To make this argument for early vision, one would
have to support the hypothesis that it is sufficient to describe images in terms of
one-to-one mappings from points to local structure (e.g. in regularization [PTIK85)
or membrane [BZ87] models for surface reconstruction). Now that we have a clear
alternative though, this hypothesis seems tenuous at best. The class of representations
we propose is one in which a number of different geometric structures can coexist at
a point in the image. For a variely of early vision problems this seems to be a
much better match than the restriction to single-valued mappings. For curves, the
thick trace can clearly represent crossings; for texture flow, transparent textures; and
for optical flow, transparent motions. Moreover, the discontinuities which can be
expected to occur in each of these situations are not only represented in the thick
trace, but easily extracted.

Finally, recall that the thick trace is a cover of the trace of the cross-section

32



2. Discretization

whereas the thin trace is not. This may be an important consideration if the topology
of the underlying mapping is an issue [Arm83]. While it is certainly beyond the scope
of this work to examine all uses that might be made of the algorithms developed, we
can at least state that a covering is an appropriate starting point for an investigation

of the topological properties of a geometric object.

2.2 Conclusions

In summary then, this analysis has constrained both the nature of the solutions we
might seek and the means of achieving them. We suggest that cross-sections of fibre
bundles are an appropriate framework for formulating many problems in early vision.
The inherently discrete nature of digital images, however, leads one to conclude that
reasoning within this framework must be implemented on discrete samplings of the
bundles and discrete traces of cross-sections. For at least a few of the fundamental
questions faced in early vision we have demonstrated that such reasoning is better
supported on thick rather than thin traces. The body of this thesis will consist of
a demonstration of means to extract and use such thick traces for some of the most

basic problems of early vision.
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Part 11

From Image to Geometry
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Chapter 3 Image Curve Traces: Logical Foundations

In Chapter 2 we explored the relationship between properties of a function and its
description in discretely sampled spaces. In the rest of this thesis we apply the results
of this work to machine vision by extracting thick trace descriptions from images.

The solution is divided into two stages. In Part Il we show how to locate those
points in the sampled total space which accurately describe local features of the image
using local operators. However, since the process used is inherently local and inexact,
the descriptions produced are not necessarily connected everywhere the underlying
features are. In Part III we use the intrinsic geometry of the features thus found to
combine those points which seem to be part of the same thick trace into connected
components.

In order to provide a sustained focus for the subsequent analysis, we will investi-
gate a classical problem which is fundamental to the development of general purpose
artificial vision systems: locating and describing image curves.

In Part II, in particular, we will address the problem of designing local operators
which respond only at those image points through which a curve with a particular local
geometry passes. The resulting operators are similar to classical approaches [Can86]
in that they are built up from linear convolutions. However, rather than relying
on ed-hoc post-processing to select significant responses we develop an algebra (the
Logical/Linear algebra) which formalizes the reasoning involved. With this algebra
we are able to design operators which select specific categories of curve (e.g. bright

lines but not edges) and at the same time verify local continuity.

3.1 Image Curves

A typical problem in early vision is the extraction of curvilinear boundaries or edges
from a static image via local operators. The operator which makes this discrimination

is referred to as an “edge detector.” The design of such operators is a problem which
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3. lmage Curve Traces: Logical Foundations

is widely considered to be fundamental to early vision.

There is no shortage of these so-called “edge detectors™ and “line detectors” in
computer vision. Many different designs have been proposed, based on a range of
optimality criteria (e.g [Heu71, Can86)), and many of these designs exhibit properties
in common with biological vision systems [JP87). Wlhile this agreement between
mathematics and physiology is encouraging, there is still dissatisfaction with these
operators—despite their ‘optimal’ design they do not work sufficiently well to support
subsequent analysis, Part of the problem is undoubtedly the myopic perspective to
which such operators are restricted, suggesting the need for more global interactions
[ZDDI88]. We believe that more can be done locally, and that another significant part
of the problem stems from the types of models on which the operators are based and
the related mathematical tools that have been invoked to derive them. In this part
of the thesis we introduce an approach to operator design that differs significantly
from the standard practice, and illustrate how it can be used to design non-linear
operators for locating lines and edges.

The usual model used in the design of edge operators involves two components:
an ideal step edge plus additive Gaussian noise. This model was proposed in one of
the first edge detector designs [HB70], and has continued through the most recent
[Can86, Der87]. Thus it is no surprise that the solution resembles the product of two
operators, one to smooth the noise (e.g. a Gaussian) and the other to locate the edge
(e.g. a derivative),

While some of the limitations of the ideal step edge model Liave been addressed
elsewhere (e.g. [Hor77, LZ84]), a perhaps more important limitation of the operator
design has not been considered. It is assumed that in viewing a small local region
of the image, only a single section of one edge is being examined. This may be an
appropriate simplification in some continuous limit, but it is definitely not valid in
digital images. Many of the systematic problems with edge and line detectors occur
when structure changes within the local support of the operator (e.g. several edges
or lines coincide). Since these singularities are not dealt with by the noise component

of the model either, the linear operator behaves poorly in their vicinity.
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(a) (b) (<)

Figure 3.1: A set of potential iinage curve configurations which must be con-
sidered in the design of operators. An ideal image () of a black curve on a white
background; a noisy image (b) of a lower-contrast version of the same curve; an
obscured version (c) of the ideal image. The oval in each image represents the
spatial support of a local operator. A negative contrast line operator should
respond positively in all three cases.

In particular, curve-detecting operators are usually designed to respond when a
certain intensity configuration occurs locally (see F‘igure 3.1a). A signal estimation
component of the operator is then incorporated in the design to filter local noise
(see Fig. 3.1b). However, significant contrast changes are rarely noise—they are
more likely to be the result of a set of distinct objects whose images project to
coincident image positions (see Fig. 3.1c). An operator which claims to ‘detect’ or
‘select’ a certain class of image features should continue to do so in the presence of
such confounding information.

We propose that image operators should be designed to respond positively to
the expected image structure, and to not respond at all when such structure is not
present. Unless they meet both of these goals, they are useless for producing thick
trace descriptions. Simple linear operators achieve the first of these goals, but in
order to fulfill the second we must incorporate a more direct verification of the exis-
tence conditions for a given feature into the operator itself. We accomplish this by
decomposing the linear operator into components which correspond to assertions of
the logical preconditions for a given feature. When the expected image structure is
present, a boolean combination of these responses produces a flinear response, whereas
if any of the conditions are violated the response will be suppressed non-linearly. Be-

cause these operators unite elements from boolean logic and linear operator theory,
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a(sy)

Figure 3.2: An image curve a:S = {30, ) = IR? with the tangent 7(s) and
normal n(s).

we refer to them as Logical/Linear (L/L) operators,

3.2 Definitions and Goals

For consistency we shall adopt the following terminology. Edges ave the curves which
separate lighter and darker areas of an image—the perceived discontinuities in the
intensity surface; lines are those curves which might have been drawn by a pen or
pencil (sometimes referred to as bars in other work [Mar82]). /mage curves are either
of these. Two independent properties describe such image curves: their structure
along the tangential and in the normal directions. Tangentially, both lines and edges
are projections of space curves; it is the cross-sectional structure in the image which
differentiates them.

Formally, let I:IR? = R be an analytic intensity surface (an image) and a: S =
(s0;81) = IR? a smooth curve parameterized by arc length (see Figure 3.2). The
orientation #(s) is the direction of the tangent 7(s), a unit vector in the direction of
a'(s), and the normal vector n(s) is a unit vector in the direction a”(s).

Formally, an image curve is defined by a set of local structural condilions on the

image in the directions tangential and normal to the curve. The normal cross-section
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B, at the point a(s) is given by
B.(1) = I(r.t(s) +¢ n(s)), s€S,telR.
Definition 3.1 An image curve is a map a: S = [ such that

(Tangent) ais C! continuous on S, and (3.1a)

(Normal)  a condition N(g,) holds for all s € S. (3.1b)

N{(B,), the normal condition, determines the classification of the curve.

For the purposes of this analysis, we concentrate on three kinds of image curve:

1. a is an edge’ in [ iff a is an image curve with normal condition
N(@B,) = ‘1_1}1(1)1 Bs(1) < ‘kr(}l B,(t). (3.2a)
2. « is a positive contrast line in [ ifl o is an image curve with normal condition
= Tim A sl
N(B,) = ‘!_%1_ B.(t) > 0 and ‘gr{ﬁ B.(1) < 0. (3.2b)
3. a is a negative conirast line in I iff « is an image curve with normal condition
- ¥ ! H 4
N(B,) = Jim B.(t) < 0 and ‘!Lm Bi(t) > 0. (3.2¢)

Thus, edges are order 0 discontinuities (steps) in cross-section, while positive and
negative contrast lines are order 1 discontinuities (creases} which are also maxima or
minima, respectively.

Note that in contrast to traditional definitions, the tangent and normal conditions

above are both point conditions, which must hold at every point in the trace of

INote that the definition of a line is independent of curve orientation, while a rising edge will only
be seen looking along a in one direction. Thus lines need only be parameterized over m orientations
while edges require 27 orientations,
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\ g

) (=) (1) (©)

Figure 3.3: A set of image curve configurations which may generate false pos-
itive operator responses. An image of an contrast edge (a) should not stimulate
a line operator; a improperly oriented operator (b) should not be stimulated; an
) operator which does not lie on the curve (c) should not be stimulated, The oval
in each image represents the spatial suppori of the local operator. A negative
contrast line operator should not respond positively in any of these cases.

the curve. We thus have a basis for designing purely local operators to locate and
categorize such curves in images.
Linear operators do respond when these couditions are met. However, they also
respond in situations in which the conditious are nol met. These responses are referred
) . to as false-positives. The current analysis will focus on a mechanism for avoiding three

kinds of false-positives typical of linear operators:

1. Confusion between lines and edyes: Lines and edges are differentiated by their

L]
) cross-sections. For accurate identification the logi:al conditions on the cross-
section must be satisfied, and in each case we will show that a linear operator

tests them incompletely (Fig. 3.3a).

Merging or interference between nearby curves: The local continuity of image
curves is important for resolving and separating nearby features. Linear opera-
tors interfere with testing continuity by filling in gaps between nearby features
) and responding significantly to curves which are far from their preferred orien-

tations (Fig. 3.3b).

3. Smoothing out discontinuilies or fuiling to loculize line-endings: The locations
b of the discontinujties and end-points of a curve are fundamental to higher-level

. descriptions {Bie85, KvD76G, KvD82, Koe84]. Linear operators systematically
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interfere with the locaiization of discontinuous points by responding whenever

the receptive field of the operator overlaps the curve at all (Fig. 3.3¢c).

To tie all of this back to the discussion of Chap. 2 we observe that the conditions
above can be summarized by stating that these local operators must in isolation act
as reasonable estimates of the stringent thick trace condition of Def. 2.10 for image
curves. Thus, ideally, a perfect “edge detector” should respond positively if and only
if there exists an edge in the image whose local description intersects the Voronoi cell
around which the detector is tuned. Each of the three conditions above amounts to a
practical translation of one aspect of the assertion that the operator be a reasonable

estimate of the thick trace intersection.
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Chapter 4 A Logical/Linear Framework for Image
Operators

The three qualitatively different kinds of image curves defined in §3.2 imply three
distinct sets of preconditions for the existence of an image curve. As noted previ-
ously, the curve description process must respect these distinctions. Focusing for the
moment on the line condition of (3.2L), we begin by adopting an oriented, linear line
operator similar to the one described in [CanS6).

Canny adopted the assumption of linearity to facilitate noise sensitivity analy-
sis, and relied on post-processing to guarantee locality and selectivity of response.
He arrived at a line operator whose cross-section is similar to a Gaussian second-
derivative, and an edge operator similar to a Gaussian first derivative, Neurophysi-
ologists [MTT78, SM84, JP§7] and psychophysicists [SL85] have adopted such linear
models to capture many of the functional properties of the early visual system, and
the mathematics for analyzing them is widely known (e.g. Fourier analysis). These
models are also attractive from a computational point of view because they exhibit
most of the properties required of a measurement operator for image curves. How-
ever, they also exhibit the false-positive responses described above (partially shown
in Figures 5.3 and 5.4).

To limit these false-positives, we will relax the assumption of linearity and test
the necessary structural conditions explicitly. This is accomplished by developing an
algebra of Logical/Linear (L/L) Operators which allow these conditions to be tested
as the operator’s response is being constructed, The resulting responses will appear
to be linear as long as all of these conditions are fulfilled. Curiously, under these

conditions they will mimic the response properties of “simple cells” in visual cortex.

42



4. A Logical/Linear Framework for Image Operators

4.1 Logical/Linear Combinators

As stated above, we wish to retain as much as possible of the desirable properties of
the linear operator approach while allowing for the kind of structural analysis which
can be used to categorize curves and verify continuity. We pursue these apparently
contradictory goals by starting with an optimeal linear operator, and then decomposing
it in a way that allows for it’s reconstruction, provided that the structural design
conditions are verified.

In particular, we

1. Begin with a linear operator and decompose it into a set of linear component

operators whose sum is identical to the initial operator.

2. These linear components represent measurement operators for the logical pre-

conditions of the designed feature’s existence.

3. The overall operator response is to be positive only if these structural precon-

ditions are satisfied

4. For the range of inputs generating positive responses, the operator should act

identically to the original linear operator.

The combination of operator responses to fulfill the third and fourth conditions
above can be derived from a mapping of the real line to logical values, Assume
that positive operator responses represent confirmation of a logical condition (logical
TRUE) and that negative responses represent rejection (logical FALSE). To derive the
numeric=logical mapping, we adopt the principle that all confirming evidence should
be combined if the logical condition holds, und contradiclory evidence combined if the

condition fails. This leads to the following set of logical/linear combinators:
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Definition 4.1 The Logical/Lincar combinators & and ¥ are given by

(e +y. fa>0Ay >0

Y, Ta>0Ay <
THYy = A
X, fa<0Ay>0;

L4y, fe<0Ay <0,
(a 4y, Ta>0Ay>0
€, fe>0Ay <0

zVy = ¢
Y, fe<0Ay >0

Lar-}-y, fae<ioAy <0,

Before we descend into technical detail, it should be noted that these operators
can be thought of as accumulating evidence for or against a particular hypothesis,
with positive values being evidence ‘for’ and negative values evidence ‘against’. Thus
if an hypothesis h requires that both of two prior hypotheses (& and y) be true
then consistent positive evidence from tliese inputs, represented by positive values, is
required to produce a positive output & = = A y. Should this combined hypothesis
instead be rejected, all evidence for this rejection is combined. In all cases, the logical
truth or falsehood of an hypothesis is contained in the sign of the value, while the
strength of the evidence for or against the hypothesis is represented by the magnitude.
It should be apparent that reasoning about the signs of derivatives (see §3.2) will be

natural with this formalism.

4.2 A Logical/Linear Algebra

We now proceed to develop general properties of these L/L combinators and define a
class of operators which embody these properties. With this background established,
we can then move on to the development of the specialized operators we wiil use for
early vision.

Using the combinators 4 and ¥, we define a generative syntax for L/L expressions.

Definition 4.2 A Logical/Lincar operator on the vector space X (z € X) is any
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function L : X — R in the language £ defined by the grammar:
L=¢iz); Lo L; L—oLAL L—-LVL

where each a; is a real constant and each ¥;(x) is a bounded, real-valued, linear

function.

Example 4.1 The expression
Fle,y) = z by

defines a L/L operator F: R?* = IR which is positive only if both z and y are positive,
in which case it evaluates as F(z,y) = = + y. An equivalent description of F as an
operator is given by

F = T 4 7,
where 7; is the projection operator which selects the #*! dimension of X.

There are two fundamental properties which justify the use of the term Logi-
cal/Linear expressions to describe these forms: they comprise a Boolean Algebra, and
they are linear on certain subspaces of their entire domain.

To show the first of these, consider thie universe of vectors I/ in R" excluding the

axes!
U= {zeR"|z; #0} (4.1)

and the subspaces {L(:r.) }o={zeU|Lx)>0}.
Theorem 4.3 (Logical) For the language of L/L operators L € L, the set of all
sets { L(z) }, and their complements { L{z)}, = U — {L(z}}, form a Boolean

Algebra with meet 4\, join V and complement —.

The following equivalences can be derived directly from Definition 4.1, for all

!For real-valued variables, the exclusion of the axes needed to demonstrate logical equivalence is
not problematic because it is a subset of mensure 0.
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4. A Logical/Linear Framework for lmage Operators

Ll,Lz € L:
{=Li{e) }, = {Li(2) },, (4.2)
{Li(z) & Lo} }, = { L)} 0 { La(x) },, (4.3)
{Li(z) ¥V Lo(x) }, = {Li(w) }, U{ La(e) }, . (4.4)

It is easy to verify that these sets form a field with the help of the equivalences above
(e.g. the equivalence of & and N ensures that if X and Y are members then X A Y is
also). Furthermore, these meet, join and complement operators are clearly isomorphic
to the standard set-theoretic N, U and complement. The further observation that @

and U are the bounds of this field ensure that this system is a Boolean algebra.

([Sik60], p. 3) .

The following equivalences can also be derived directly:

{a L(z)}, = {L(=)}, Te>0 {al(x)}, = {~L=)}, fa<g0

These demonstrate that the constant weights «; in the language £ act as cither identity

or complement and thus do not disturb the Boolean algebra.

Corollary 4.4 Each L/L operator has an associated Boolean function crealed by
substituting A and V for § and ¥ respectively, and by replacing each o; constant with
either the identity function if positive or = (negation) if negative. The truth value of

each expression ¥;(x) is TRUE if ¢;(x) > 0 and FALSE otherwise.

Thus, continuing Ex. 4.1, the equivalent logical function Ffor Fis
Fla,y)= (x> 0)A(y > 0).

The second fundamental property of these operators, their conditional linearity,
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4. A Logical/Linear Framework for Image Operators

is revealed by considering the minimal polynomials

Pi(z) = qz) A qulz) & 4 qulz) (4.5)

where g;(z) = ¥;(z) if bit ¢ in the binary representation of j is zero, ¢i(z) = —ti(z)
if bit ¢ is one. Then,

Theorem 4.5 (Linear) Auy L/L operator L is linear on the subspace { Pj(z)},

of any minimal polynomial P;(x).

Any Boolean polynomial can be equivalently expressed as the join of minimal poly-
nomials or the lower bound @ ([BM77}, p. 370). Thus { L{z)}, can be expressed as
the ¥ of a group of such minimal polynomials of the ¥;(x)’s (the disjunctive canonical
form (DCF) of L(z)). Without loss of generality, consider a particular such polyno-
mial Pj(z). Noting that every element 9;(z) for x € { P;(z)}, has a fixed value and
thus fixed sign, Definition 4.1 guarantees that 4 is linear on the subspace defined by
{ P;(x) }, (for fixed sign arguments, the branch chosen in the 4 is fixed). Thus, any
minimal polynomial P;(z) is linear on { P;(«r)},.

Consider now the DCF of L(2:). We know that each Pj{z) in this DCF is both
linear and of constant sign on { P;(xx} },. By the same reasoning as for 4 above, we
can state that ¥ is linear if its arguments have constant sign, and thus the DCF of
L(z) is a linear combination of expressions which are guaranteed linear on { P;(z) },.

Therefore, L(z} is also linear on every { F;(z) },. "

4.3 Logical/Linear Image Operators

By extension from the arithmetic operators, the L/L operators are applied pointwise
to sequences of vectors or images. Thus, reconsidering Ex. 4.1 above, the operator F

becomes

Ve X: F(I],Ig)(.’l?) = Il(:L‘) fa) Ig(.’l.')., [1, Iz!A’ - R.

We are now ready to develop the class of L/L operators that we shall require to reason

about images, and begin with an example.
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4. A Logical/Linear Framework for Image Operators

Example 4.2 Suppose that the linear operators ¢ and ¢'; provide a pointwise mea-
sure of two image properties (e.g. ¥ = D2 and ¢ = DS, the second directional
derivatives) which are components of a more complex image property (e.g. locating
convexity, the points where D3(/) < 0 and D3(J) < 0). If this aggregate property
can be expressed as a logical combination of the signs of the linear properties, then

we can build a L/L operator ¥ on the image such that

positive, il T is a convex point;

¥(I)(z) = {

negative, otherwise.

In this case, we would define
: W(I)(z) = (=D2xI)(x) & (— D2+ I)(a).

This example reveals a class of L/L operators appropriate for reasoning about

images.

Definition 4.6 A Logical/Linear convolution operator ¥ is a L/L operator on an

image I such that all ¢;(/) are linear convolutions of the form

oi(l) = 1111‘*1=/X1/1,-(:v—t) I(t)dt.

The operation of such an operator on an image is terined the Logical/Linear convo-

lution of I by ¥, and is written
W(l) = ¥«

Note that the linear convolution ¥ * [ is a special case.

Returning to Ex. 4.2, we can assert that

= (—Dgtl)l,\(—D:*I)
= (—DE.A—DE)*I
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4. A Logical/Linear Framework for Image Operators

thus justifying the notation we will use for describing L/L convolution operators:
¥ = -D:4-D2

This operator will produce an image wlhose elements are positive only for convex
points of the input image.

An important relationship we will use to design image operators is that between
a L/L operator and its linear reduction.
Definition 4.7 The linear reduction ¥ of a L/L operator ¥ is that linear operator
which is produced by substituting + for each L/L combinator in the L/L operator

description.

Corollary 4.8 Given a the linear reduction y(x) of 2 L/L operator ¥(z), a L/L
convolution of ¥ * [ is exactly equal to the linear convolution of ¥ % I if the logical

expression corresponding to the L/L expression is TRUE.

Thus in fulfilling our goal of developing L/L image operators which retain some of the
optimal behaviour of a particular linear operator, we will seek to design L/L operators
which reduce to ‘optimal’ linear operators.

Before we move on to actual design, it will be important to examine a second,
equivalent definition of the L/L combinators which has useful computational conse-

quences.

Definition 4.9 The p-approzimaie L/L combinutors are given by:

Thoy = .'1:(1 — o,(z) o'ﬂ(-y)) + y(l ~o,(y) Up("”m))1 z,y #0, (4.6a)

2%y = 2(1= 0,y ay-2) + ¥(1 - 0y(x) op(=1)), 7,y £0, (46b)
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4. A Logical/Linear Framework for Image MOperators

where
L S04
op(z) = F(1/2 4 pe) + J(1/2 = pa)’ (4.7)
e~Vr ifz>0
o - |
0, otherwise.

The ‘logistic’ sigmoid function of [RHWSG] is another option for o,(z), but the
fact that the function chosen is only non-singular (i.e. 0 < o,(z) < 1) on z €
[—1/2p,1/2p] means that the “hard” logic of §4.1 still applies for values outside of
this region.

The notion of p-approximate is clarified by the following.

Theorem 4.10

ﬂl_gyo Thoy = &y

limzV,y = a2Vy

Fiig 1]

Note that

1, ifa>0
limo,(z) = ofz) =
proo P 0, otherwise.

This function is a choice operator pivoting around zero, and as such it can be used to
directly define the L/L combinators above. If this limit is substituted in eqs. (4.6),

then they can be rephrased as

zHhy = (z unless { >0Ay £0})+(y unless {y >0Az <0})

zVy = (z unless {x S0Ay>0})+(y unless {y <0Az>0})

It can be verified that these are equivalent to Def, 4.]. |

The approximations represented by 4, and V¥, expose another relationship between

the linear sum and the L/L combinators. Since au(x) = 1/2, substitution of this value
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4. A Logical/Linear Framework for Image Operators

(8) 28,9, p=0 by 24y, p=8

) (d)zV,y p=0 (&) zVoy, p=8 (N z¥y p=o0

Figure 4.1: Graphs of the p-approximate L/L combinators varying p: (a), (b),

) and (c) show = 4,y, (d), (e), and {f) show =¥, y. Note that as p varies between
0 and oo, the combinators vary from putely linear to purely logical, with smooth
interpolation in between.
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4. A Logical/Linear Framework for Image Operators

into eq. (4.6) simplifies both L/L combinators to a linear combination

ahoy = 3/4 (x+y)

2Voy = 3/4 (x +y)

Thus, the p-approximates 4, and V, form a continuous deformation from a linear
combination to the absolute L/L operations as p goes from 0 Lo oo (see Fig. 4.1).

These p-approximates may be preferable to the ideal L/L operators in many prac-
tical situations. The most obvious situation in which one might prefer the smooth
approximates is one in which there is some noise or uncertainty in the inputs. It
could be disastrous if some small inputs are randomly positive or negative due to
noise, especizally if other inputs are strong and unambigous. The p-approximate L/L
operators solve this problem by smoothing the logical transitions around zero, and
thus significantly reducing the noise-sensitivity when small, potentially ambiguous
inputs are introduced. The p-approximates also have advantages il differentiability is
important (e.g. for optimization).

Of course, when we choose to use the approximate L/L combinators we are faced
with the difficulty of choosing p. This can be problematic when the range of = and
y is not precisely constrained. Since 1/2p is, in esseuce, a threshold on the logical
significance of z or y, p should normally be set based on the expected range and
uncertainty in x or y. Even if these are clearly defined, however, setting p Lo some
fixed value can be problematic, in particular, x 4,y does not monotonically increase
with increasing z for all values of y. Thus for some values of x and y an increase in
z can result in a decrease of z 4,y. This can he resolved simply by tying p to = and

y. In particular,

p = p[max(z,y)

will ensure that such points of non-monotonicity do not exist. We refer to the L/L

combinators with locally adaptive p as adaptive p-upprozimates.
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Chapter 5 Designing L /L Operators for Image Curves

Using the framework defined above, we now proceed to derive a family of L/L image
operators to locate and describe image curves as defined in Definition 3.1, We begin
by observing that the conditions expressed in eqs. (3.2b,3.2¢,3.2a) segregate into inde-
pendent one-dimensional conditions in orthogonal directions—along the tangent and
the normal. The normal condition selects the proper contrast cross-section to define
a (oositive or negative contrast) line or edge, and the tangential condition ensures
local C! continuity of the inferred curve. Thus, our solution is a separable family
of two-dimensional operators expressed as the Cartesian product of orthogonal, one-
dimensional L/L operators, one norinal N(y) and the other tangential T(z) to some
preferred direction. With (z,y) defining a local, orthonormal coordinate system, we

seek
U(z,y) = T(z)x N(y) or ¥ = TxN,

Moreover, the tangential condition (C' continuity), and thus the tangential operator
T, is identical for all three image curve types.

Thus, we divide the design into three stages:

e First, derive a set of one-dimensional L/L operators {Np,Nn,Ng} (for posi-
tive and negative lines and edges, respectively) which verify the cross-sectional
(normal) conditions of Definition 3.1, while avoiding the pitfalls discussed in

Chapter 3.

¢ Then, derive a one-dimensional L/L operator T which is capable of discrimi-
nating between locally continuous and discontinuous curves along their tangent

direction.

¢ Finally, form a family of direction-specific two-dimensional L/L image curve op-

erators by forming the Cartesian product of the two one-dimensional operators.
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13 15
125} 1.28
! 1}
075 s b
03 0.
0.25 | 0.25
[ o
-0.25 035 }
0.5 o5}
0I5F Gl aees 4 ~0.78 fr Y T 4
a1 G O] s ] - G 8} s
(a) (b)

Figure 5.1: Cross sections of image lines and edges. A line in an intensity
image (a) is located at the peak of its cross-section. Note that this coincides
with a zero in the derivative 8’ and a negative second derivative 87, An intensity
edge (b) occurs at peaks in the derivative ' of the cross-section. The derivatives
shown are derived from convolution by G’ and G" operators with ¢ = 3.

5.1 The Normal Operators: Categorization

For the purpose of illustration, we will begin with the analysis of a positive contrast
line (3.2b). The methodology developed will apply naturally to the two other image
curve types.

Since a necessary condition for the existence of such a line is a Jocal extremum in
intensity (fig. 5.1 is a display of typical 1D cross-sections of lines and edges), we will
first consider the operator structure normal to its preferred orientation, This is just
the problem of locating extrema in the cross-section g,.

A local extremum in a one-dimensional differentiable signal F(z) exists only at

those points where

B'(x) =0 and §"(x) # 0. (5.1}

Estimating the location of such zeroes in the presence of noise is normally achieved

by locating zero-crossings, thus in practice these conditions become

Bz —¢)>0and F'(x+¢)<0and f%x) <0 (5.2)
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5. Desiguing L/L Operators for Image Curves

(a) (b)

th

Figure 5.2: Central differences suggest. that an approximation to the n*" deriva-
tive can be obtained from a difference between two displaced (r—1)" derivatives.
Thus in (a) the sum of two G’ operators approximate —G”, and in (b) the sum
of two G” operators approximate G},

for some € > 0. An operator which can reliably restrict its responses to only those
points where these conditions hold will only respond to local maxima in a one-
dimensional signal.

A set of noise-insensitive linear derivative operators (or ‘fuzzy derivatives’ [KvD87])

are the various derivatives of the Gaussian,

which will be expressed as G/ (z), G(z), etc. These estimators are optimal for

additive, Gaussian, i.i.d. noise.
When convolved over a one-dimensional signal these give noise-insensitive esti-

mates of the derivatives of the signal, for example

Bo(z) = B(x)*Golz} = B(z)*G,(z), (5.3)

Theorem 5.1 8, (z—¢) > 0 and f;(x+¢) < 0 and §%(z) < 0 are sufficient conditions
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5. Designing L/L Operators for Image Curves

for a local maximum in the signal 8(.r).

The identity in (5.3) shows that these conditious are necessary and sufficient for
the existence of a local maximum in f.{x) = B(x) * Ga(x). The maximum principle
for the heat equation ([PW84], p. 161) implies that convolution by a Gaussian cannot

introduce new maxima. Thus the above conditions imply the existence of a maximum

in B(z). | |

This suggests a practical method for locating maxima in a noisy one-dimensional
signal. Comparing the results of convolutions by derivatives of Gaussians will allow
us to determine the points where Theorem 5.1 liolds. The loci of such points will
form distinct intervals with widths < 2¢. The parameter ¢ determines the amount of
smoothing used to reduce noise-sensitivity.

Observe by central limits that:

f(z) = lim (j'(:l.' +c} = flw - f))/zf-

=3l

e derivative estimates 8., one would expect tha
Thus for the derivat timate ld expect that

—B,(z) = (ﬁ.’,(-’tf ~e)=f(x+ c))/?c

with the accuracy of the approximation a function of ¢. Thus the conditions in The-
orem 5.1 can be verified from examiunation of the derivative G, (z)—a linear combina-
tion of two points will give —fF}(x). More specifically, we adopt the approximation
-Gl(z) ~ (GL(:B +€)~ G (a— c))/‘zﬁ, where ¢/o < 1. Figure 5.2a shows that for
€ = o /2 this is an acceptable approximation.

Thus, convolution by G’ allows testiug of all three conditions in Theorem 5.1
simultaneously. Using the L/L combinators of §4.1 we are now able to define a one-
dimensional operator which has a positive response only within a small range of local

maxima.
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5. Designing L/L Operators for Image Curves

Operator 5.1 The one-dimensional norinal operator for local mazima Ny is

Na = udu (5.4)
where
ny = (@ 4+ )2,
n, = -Gl (x—¢€)/2.

Clearly then, the key advantage of this Np operator is that:

Observation 5.2 The response Np(f)(x) will be positive only if there is local max-

imum in 8, within the region [x — ¢, & + (].

By reference to Definition 4.1 we can see that Np(8)(z) > 0 implies that both
nj(8)(z) > 0 and n.(B)(z) > 0. Equation 5.3 then implies that

nx)* flx) = Bulr—e)/2 (5.5)
() % B(x)

— B (x + €)f2 (5.6)

Thus a positive response ensures that g, (x — ¢) > 0 and G,(z + ¢) < 0, which in turn

imply the presence of a local maximum on G, between & — ¢ and z + €.} [ ]

The performance improvement from introducing this non-linearity is considerable.
The linear operator exhibits consistent patterns of false positive responses. The sim-
plest example is the response near a step (see fig. 5.3). The linear operator displays a
characteristic (false) peak response when tlie step is centered over one of the zeroes in

the operator profile. The logical/linear 4 operation prevents this error since both G’

!Observe that although the local maximum in G, is guaranteed to fall within this region, the
corresponding maximum in # is not necessarily so restricted. Qualitatively however, we can rely on
the observation that the maxima for a signal will converge on Lhe centroid of that signal under heat
propagation (or as we convolve with larger amd larger Gaussians). Cousidering the features of 8 in
isolation then, we can state that the smoothing will cause Lhe location of the local maximum in g,
to shift towards the centroid of the local intensity distribution, a phenomenon observed in studies
of biological visual systems (e.g. the vernier acuity studies of [\WWM8&31)).
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Figure 5.3: Responses of L/L positive contrast line operator and the linear

d operator —G" which it reduces to, near a step edge whose local profile varies

from the ideal. The graphs show the linage profiles being operated on, covering
(2) a simple step edge, (b) a compound step with slope above > 0, and (c) a
compound step with slope above < 0. It can be seen that the L/L operator

) blocks the unwanted response near a step which is net also a local maximum

(a,b), but that when the edge is also a local maximum (c) it does respond.
The linear —G” operator, however, responds positively in cich of these cases,
exhibiting consistent {and erroncons) displacement of the peak response.

) . halves of the operator register derivatives in the same divection and so do not fulfili
the conditions of (5.2). The L/L operator will respond positively only in the case
that the slope above the step is negative (i.e. only when the transition point is also
a local maximum).

J

A more specific operator can be derived by examining the implications of (3.2h)
beyond the local maxima. A discontinuous peak, such as that shown Fig. 5.1a is not
only a negative local minimum in 87, but a positive local maximum in B4, Thus

) two addition conditions are required

A () = 0 and A92) > 0.
This can again be captured by central differences, combining two offset third-derivative
estimates.
Operator 5.2 The one-dimensional normal operator for positive contrast lines Np is

’

. Ne = njan oni®an® (5.7
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5. Designing L/L Operators for Image Curves

I where
) .
nf‘” = — G+ €)/2,
n® =GB - o)f2c
) The extension of this analysis to the other curve types in §3.2 is straightforward.

The above analysis can be repeated in its entirety with a simple change of sign so as

to be specific for an identical feature of the opposite contrast.

) Operator 5.3 The one-dimensional operator for negative contrast lines Ny is
Ny = —nfd—n4p—ns-nd,
) Slightly more complicated is the case for edges. In the simplest case, a rising

discontinuity is signalled by a local maxima of the first derivative, thus imposing the

following conditions

) . B"(x) = 0 and 8™ (x) < 0 (5.8a)

or
B'(x—€)>0and §(x+¢) < 0. (5.8Db)

This condition is just the familiar zero-crossing of a second derivative, exactly the
condition used by Haralick [Har82] and Canny [Can8G]. Note that this operator
actually selects any inflection points in the signal.

4 Mirroring the analysis above, the verification of these conditions can be realized

in an L/L operator selecting inflection points Ny:

Operator 5.4 The one-dimensional operator N; for inflection points is
Ny = nf 4nl.

where
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5. Designing L/L Operators for Image Curves

nl = —Ghr - o).

Now as with the line operators, selection of more truly edge-like features is possible
by examination of other derivatives. Note that a blurred step edge has vanishing
even derivatives and sign-alternating non-zero odd derivatives (see fig. 5.1). The
description of an edge adopted in (5.8) is clearly consistent with this observation, but
incomplete. Note also that an ®edge” is the derivative of a “peak,” which was used
for analysing line-like images. With this additional information, we can adopt a more
selective operator for image edges which requires that all of the following conditions

must be verified
A'(z) > 0 and B"(z) = 0 and A(x) < 0 and AN(x) = 0 and A¥(z) >0  (5.9a)
or

B'(z) >0 and Bz —¢) > 0 and f"{z+¢) <0 and ANz —¢) <0 and gz +¢) >0
(5.9b)
These conditions® can be verified in an L/L edge operator Ng:

Operator 5.5 The one-dimensional operator Ng for edges is
Ng = uianf an? a4 nl

where

me = Gpla),
nf'” = — G 4 0),
n = G —~e).

This operator is significantly more selective than the ‘zero-crossing of a second-

2The condition 8'(z) > 0 is actually also imnplemented by Haralick ([1ar82) and Canny [Can80],
since their lateral maxima selection is lollowed by a threshold #'(x) > 8, where 0 is positive.
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5. Designing L/L Operators for Image Curves

derivative,” [MH80] which is only one of the logical preconditions on which this opera-
tor depends. One can therefore expecl less of a problem of non-edge signals generating
edge-like responses with this operator than with these other less specific operators.
It is important to realize that the operator family which forms the basis for this
analysis is the Derivatives of Gaussian family of operators. Koenderink [Koe88,
KvD90} derived this family as one orthonormal solution of the problem of deriv-
ing size-invariant spatial samplings of images. Members of this operator family can
be transformed into each other via a set of simple, unitary transformations. This
has definite computational advantages, since the higher derivatives and spatial offsets
from pixel centers may be derived from a small canonical set of operators by linear
combinations. In addition, Young [YouS85] has persuasively argued that tkis is exactly

these are exactly the basis functions which are used by primate visual systems.

5.2 The Tangential Operator: Continuity

So far only the normal image structure (8,) has been discussed. In order to extend
this result to two-dimensions, we must examine the tangential (curvilinear) structure
of the curves («). By Definition 3.1 we must verify the local continuity of candidate
curves. In addition, the extraction of orientation-specific measures was deemed es-
sential for further processing. In this section, these problems will be addressed by
imposing a further teugential structure on the operator. We will follow the same
course as for the normal cross-section—first a linear structure will be proposed which
will then be decomposed to reveal linear measurement operators for the components
of the structural preconditions. The emphasis again is placed on these preconditions
and their L/L combination.

Consider the image cross-section that is tangent to the image curve a at every
point. Assume that the intensity variation along this curve is everywhere smooth
and corrupted only by additive Gaussians noise. The local contrast along the curve
as compared against its background is an acceptable measure of the curve’s salience.

This suggests filtering image noise with a linear Gaussians operator t(z) = G,, along
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Figure 5.4: The signal is the tangential section of an image line near the
discontinuous termination of the line (the endline). Note that the linear oper-
ator (a) exhibits a smooth attenvation of response around the line ending. We
seek an operator (b) whose response attenuates abruptly at or near the endline
discontinuity.

the tangential direction.

Near a curve end-point, however, the tangential section will exhibit an abrupt dis-
continuity (see fig. 5.4). The indiscriminate smoothing of the Gaussians will obscure
this contrast discontinuity by, in eflect, assuming that no discontinuity is present be-
fore it is applied, thus violating the third criterion of §3.2. The local continuily of the
curve must be verified prior to smoothing.

To resolve this, consider a definition of the local continuity of a function. The
function f(z) is said to be continuous at @y iff

im f(x) = z-l-ig(}+f(:") = [(an). (5.10)

I—Ig~—

For our purposes, assume that the non-linearities associated witl the normal compo-
nents of the L/L image curve operators are evaluated before® those in the tangential

L/L operators. Then a curve termination point in the image must be signalled by

3With a pure linear operator expressed as the Cartesian product of normal and tangential one-
dimensional operators, order-of-evaluation is unimportant, but with Logical /Linear operators order-
of-evaluation can be essential.
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)

(a) (b) (@)

\

Figure 5.5: Schematic of the half-field decomposition and line endings. The
elliptic regions in each figure represent the operator positions as the operator is
placed beyond the end of an image line. In (a) the operator is centered on the
image line and the line exists in both hal-fields. In (b) the operator is centered
on the end-point and whereas the line only exists in one half-field, the other
hali-field contains the end-point. In (c) the operator is centered off the line and
the line only exists in one half-field.

a conlrast sign reversal in the image section seen by the tangential L/L operator—a
transition from a region which las been confirmed to be of the given category (pos-
itive response) to a region which has been rejected (negative response), We will call
the behaviour which the tangential operator must exhibit end-line stebility. A one-
dimensional operator is end-line stable if and only if it responds positively only when
centered on a uniformly positive region of the image.

Representing the intensity variation along the curve « as a function of the arc-
length I,(s), the worst-case line-ending (or beginning) is a step in intensity at s = 0.
End-line stability requires that the operator’s response T(/,)(s) be non-positive for
all s < ¢, and positive for s > ¢ Given the requirement for symmetric approach
outlined in eq. (5.10), from fig. 5.5 we observe that this can be achieved by separately
considering the behaviour of the curve in each tangential direction around the operator
centre.

We therefore adopt a partition which divides the operator kernel into two regions

along its length. Using the step function o(x) of eq. (4.3) a partition of G(z) around

4This property must also operate symmeLrically at the other end of the curve,
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Figure 5.6: A one-dimensional Gaussian (represeuting the tangential operator
t) partitioned into two regions (a) to obtain the two hall-field operators defined
by eq. (5.11). The addition of ‘stabilizers’ is shown in (h).

0 is given by
t~(z) = G{x) g(—x), t¥(z) = G(x) o(z). (5.11)
Operator 5.6 The one-dimensional operator for tangential continuity T is
T =t~ 4t%. (5.12)

Note that t=(z) + t*(z) = G(x) = t(x) for all a2, as required. The smooth partition
operator o,(z) of eq. (4.7) can be used for a smooth, stable partition.

Observation 5.3 The operator T is end-linc stable.

Consider the component responses in the neighbourhood of the step edge I,(s) =

o(s). The response of t* to this step is given by

tF(L)(s) = (1 * a)(s)
f°° (s — 1) o(r) dr
= fu“' o(s ~ ) G(s — 7)dr
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Figure 5.7: Responses (including component responses) of an unstabilized end-
line operator {a) and the stabilized version (b). Note that the L/L combination
of the unstabilized components (a) does not, in fact, reduce to zero beyond the
end «f line. This is due to the use of the L/L 4, approximation with p < co. In
orde to produce stable attenuation at a line ending, inhibitory regions (stabi-
lizers) are added to the t~ and t* components, which have the effect of pushing
the component responses ‘near' hut ‘off* the line-ending below zero (b).

= js o(r) G(r)dr

_ [ [amar, s>
0, if s <0.

The L/L AND of t* and t~ to produce T requires that both component responses
be strictly positive for a positive response, thus whenever s < 0 around the step
described above, the T response is also zero. It is obvious that the same analysis
applies to the symmetric t~ component and the 1 — o(s) step edge, which describes
behaviour around the other end of the line, Thus the T operator is end-line stable

symmetrically around a step edge. u

The above proof, however, depends critically on the use of ideal L/L combinators,
while in most cases we would prefer to use non-ideal combinators (4, where p < 00).
When the non-ideal combinators are used, the ‘end-line stable’ operator described

above does not properly attenuate responses beyond the line ending (see Fig. 5.7a).
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5. Designing L/L Operators for Image Curves

In order to achieve this attenuation, it is necessary to force the component responses
in the region just beyond a line ending significantly below zero.

This is achieved with the addition of the *stabilizers’ (shown in Fig. 5.6b):

t=(x) = G{z) ou(—) + bG'(x), (5.13)
t*(z) = G(a) au(x) — bG'(x). (5.14)

Thus, a smooth partition of G(«) by a,(:r) is augmented with an overshoot —b0G'(z).
The overshoot guarantees that wlien the center of the operator is near the line ending
(see Fig. 5.7b) one component will give a negative response over the region where the
operator is not centered on the line. Since the stabilizers are symmetric, it does not
matter whether the operator is near a rising or falling line-ending—if the operator
is centered over the positive region it will respond. Furthermore, since the integral
of the stabilizers is zero, they will have no eflect whatsoever on a locally constant
signal. The candidate tangential operator is then the L/L AND of these stabilized
components. The parameters a and b are chosen so thal the cutoll is exactly aligned
with the line ending,

An extension of this principle to multiple regions can lead to gres’tter noise in-
sensitivity (as suggested by Davis [DRA76]). For even n the increasing sequence of

partition points (zy,...,Tp-1) can be used to partition t(x) into n regions where

ti(z) = t(x) olx; —x)

o
-
—

8
L

1l

t(z) (o(w;—a) +o(e —zim) - 1)

ta(z) = t(x) o(e ~-x,y).

If we then constrain the z; so that Vi: [t;(w)dr = 1/u then this is a partition into
n equal-area regions with z./, = 0.0. In order to guarantee end-line stability for the
responses to these regions, their L/L combination must guarantee that at least one

of the regions ¢ < n/2 and at least one of those for which 7 > n/2 responds positively
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5. Designing L/L Operators for Image Curves

(i.e. there is positive support from hoth sides). Furthermore, if all of the regions
for which ¢ > n/2 have positive response then the overall response must be positive,
since this is exactly what happens at the end point of an ideal line. Finally, Davis
suggested that the majority of regions should be required to be positive.

We have examined two of the paossible L/L combinations which exhibit this be-
haviour.
Operator 5.7 The simple one-dimeusional combination for tangential continuity

over n components is

T = (tyyed tupasr) & ( At v A "-’)-

i<nf? i>nf2+1

Thus if both central regions are positive and either of the extensions to the left or
right, then the aggregate respouse is positive.
Operator 5.8 The majority one-dimensional combination for tangential continuity

over n components is

T = VAf-i,

C ieC

where C is a sequence of all choices of /2 + | regions from (1,...,n).
There are three observations we can make from these designs:
1. Both of these reduce to eq. (5.12) for n = 2.

2. For n > 2, both these operators impose a minimal length of the positive region

which generates a positive aggregate response.

3. In terms of pure L/L combinators, the implementation cost of the majority

combination for n > 4 is mucl greater than the simple combination.

Henceforth, when we show the tangential combination as t~ 4 t* we will assume that
the decompositions and either of the L/L combinations (simple or majority) may be
substituted without other modification. Finally, we note without further comment the
similarity between this approach and ihe ANDing of LGN (lateral geniculate nucleus)

afferents proposed by Marr and Hildreth [MHS0]).
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5. Designing L/L Operators for Image Curves

5.3 The Two-Dimensional Image Operators

Finally then, we can construct tlie two-dimensional image curve operators by taking
the Cartesian product of the normal and tangential components. In order to com-
plete the analysis, we unify this tangential continuity combination with the normal

combination (see Fig. 5.8 for an example).

Operator 5.9 The Logical/Lincar image curve operators W, (where i sclects the

operator category) are given by
U, = (t"xNj)A{tt xN;), i€ {P,NE}

where

Np = njdn 4 nsa) Al for Positive Contrast Lines,
Ny = —nja—-ua-u"a-n® for Negative Contrast Lines,

Ng = ntanfan’ant” anl®  for Edges.
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5. Designing L/L Operators for Image Curves

Figure 5.8: Illustration of the construction of the two-dimensional positive

contrast line operator. Each of the bottom row of operators is a linear operator
) which is formed by one of the linear component operators ny» X t; .. The middle

row represents the linear reduction of the operators t;,. X Np, in other words the

sum of the two operators below. The operator shown at the top of the pyramid

is the linear reduction of ¥p, the sum of the middle operators. The cross-hairs

represent the centre of each operator and are provided solely for purposes of
) alignment.
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Chapter 6 Logical/Linear Results

As per the decomposition into curve types described above, we create three different
classes of curve operator, for positive and negative contvast lines and for edges, The
operators in the following examples all have a tangential o = 2.0 and a lateral o =
v/2/2 pixels. The € of the the latera! operator separatious is v2/2. This ensures that
all curves are localized to connected regious with width < /2 pixels.

For the comparison images, Cauny’s algorithm was nppli(:il with an upper thresh-
old of = 15% contrast. This value was adequate for suppressing most noise, although
some of the examples shiow that thie noise has not been entirely eliminated, The low
threshold was set to 1% so as to come close to matching the sensitivity of the L/L
operators to very faiut structures,

A natural but informal evaluation criterion for edge operators is the degree to
which the ‘edge map’ produced corresponds to a reasonable line drawing of an im-
age. We therefore use a test image of a statue “Paolina” not unlike the subjects
in Michelangelo’s drawings. This drawing is particularly suitable because, as Koen-
derink has pointed out, the representation of creases and folds is especially important
for conveying a sense of three-dimensional structure {IN\vD76.-KvD82]. An examina-
tion of the Canny and L/L edge images for the statue reveals a marked difference
in the ability to distinguish perceptually salient edges from other kinds of intensity
changes. Comparison with Michelangelo’s treatment reveals clearly that the L/L
operators represent more of the significant. structure than the Canny operator.

Formal criteria for an image curve were established in §3.2, and these provide
less subjective demonstrations of where the Canny operator fails, We stress that
our goal here is not to focus on the shortcomings of the Canny operator, but rather
to indicate the shortcomings of the long tradition of edge operators that consist
of linear convolutions followed by thresholding, from Sobel [DH73] through Marr-

Hildreth [MHS80] and most recently in Cauny.
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4 6. Logical/Linear Results

(a) (b)

) Figure 6.1: Image of statue (a), provided by Pietro Perona, and edge maps
computed by: (b) Canny’s algorithm (h = 15%), and (c) L/L operators (both
algorithms are run at the same scale). Compare these representations with
the human expert’s line drawing in Fig. 6.2, especially around the chin and
neck. The Canny operator consistently signals non-salient ‘edges’, misses edges

® in complex neighbourhoods (e.g. near the T-junction of the chin and neck) and
shows discontinuous orientation changes as smooth. (The boxes represent the
approximate locations of the details shown in subsequent figures).
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6. Logical/Linear Results

Figure 6.2: Line drawings, such as this Michelangelo, demonstrate in a clear
and compelling manner the significance of image curves for the visual system. A
well-executed line drawing depends critically on curvature, line terminations and
junctions for its visual salience. Koenderink has stressed how the “hbilurcation
structures” define the arm and shoulder musculature and the manner in which
the chin occludes the neck. Observe the similarity between this and the L/L
operator responses, and differences with the Canny operator.
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6. Logical/Linear Results

The first criterion, the need for predictable hehaviour in the neighbourhood of mul-
tiple image curves is examined in each of the details from the statue image (Figs. 6.3,
6.4, and 6.5). In these circumstances, The Canny operator either leaves large gaps
(Figs. 6.3b and G.5b), or simply infers a smooth, undisturbed local contour (Fig. 6.4b).
This failure disrupts the ability to reconstruct the kind of information which gives a
sense of three-dimensional structure, since creases and folds involve the intersection
and joining of just such multiple image curves. In the worst case, nearby curves can
interfere with the Canny operator's ability to extract much meaningful structure at
all (Fig. 6.7b).

This leads us to the second criterion, the need to preserve line terminations and _
discontinuities. In our approach to early vision, we take curve discontinuities to
be represented by multiple, spatially coincident edges {LZ88, Zuc86, ZDI89]. This
holds for both “corners” and “T-junctions”—such discontinuities are inadequately
captured by the Canny operator. Where there are clear discontinuities and junctions
in the image curves, the Canny operator either leaves gaps or gives smooth output
curves (see in particular the detail in Fig. 6.4b). The L/L operators represent such
curve crossings and junctions by supporting multiple independent orientations in a
local neighbourhood, just the representation we require. So not only do the L/L
operators respond stably in the neighbourhiood of multiple coincident curves, but
they are also able to adequately represent this coincidence. Preceding attempts at
edge operators have relied on the a prior7 assumption (usually implicit) that only one
edge need be considered in each local neighbourhood, and thus that only one edge
need be represented at each point in the output image. By rejecting that assumption
and ensuring that the L/L operators perform stably in the neighbourhood of edge
conjunctions, we provide a stable, complete representation of these fundamental image
structures.

Recently, there has been some altempt to define “stecrable filters” for edge detec-
tion [FA91, PM91, Per92], and to have them provide a representation for image curve
discontinuities analogous to ours (i.e., as multiple orientations at the same position).

However, the linear spatial support of these operators again causes problems, in this
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6. Logical/Linear Results

case a “smearing” or blurring of the corner energy over a neighbourhood. An addi-
tional search process is therefore introduced to find the locations and directions of
maximal response [Per92], analogous to what we called “lateral maxima selection” in
earlier implementations of our system [ZDDI&S]. While such search processes provide
some of the necessary non-linear behaviour, they introduce additional interpretative
difficulties that do not arise with the L/L decomposition. Search also further com-
plicates parallel implementations by introducing sequential bottlenecks. Finally, the
standard steerable filters still exhibit mislocalization of line endings (which led in
[Per92] to the introduction of end-line detectors). The steerable fillers approach is
useful, however, for reasons of computational efliciency, and we suggest that they may
be used as a basis set for the linear components of our L/L operators.

Finally, the third criterion, the potential confusion between lines and edges, is
seen to be addressed by the L/L operator approach. This problem is acute with the
Canny operator, and is deliberately confounded by the “edge energy” methods [MB8S,
PM91], thus necessitating a second stage of analysis that vefers buck to ubsolule tmaye
intensities to fully describe the local structure of the image curve. The fingerprint
(Fig. 6.7) and the composite image of the statue (Fig 6.6) show the utility and richness
of a representation which separates edge and line information. The fingerprint is
clearly more appropriately and parsimoniously represented by the line image, while
the highlights on the statue (adjacent to some of the edges) are revealed by the line
image. It has been argued that most line-like structures can be revealed by looking
for locally parallel edge responses, but clearly not. all (e.g. the many highlights on the
statue’s surface). We submit that parsimonious representations will combine features
from both edge and line images and interpret them as appropriate.

It is also important to note Lhat computing Canny’s algorithm on a parallel archi-
tecture requires a number of iterations of dilalion in order to implement the *hysteretic
threshold’. Consider a planar parallel computer with one processor allocated to each
image pixel. The Canny algorithm’s time complexity on a such an architecture is
O(n), where n is the maximum length of a curve. Worst case, this is proportional

to the number of pixels in the image, thus representing a significant bottleneck in an
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Figure 6.3: Detail of statue (a) from lower left near jaw and neck, and edge
maps computed by: (b) Canny's algorithm, and (c) L/L operators {both algo-
) rithms are run at the same scale). Note that Canny’s algorithm does not connect
the two edges which join at the T-junction. The L/L operator responses repre-
sent the discontinuity by supporting two independent orientations in the same
local neighbourhood. . -
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Figure 6.4: Detail of statue (a) from upper right, and edge maps computed by:
(b) Canny’s algorithm, and (c) L/L operators (both algorithms are run at the
same scale), The Canny operator misses much of the rich structure in this small

» region as a result of interference between the nearby edges and the choice of high
threshold. A lower threshold would have the effect of exposing more structure,
but then the noisy responses seen in Fig. 6.1a would also be expanded. The
L/L operator exposes this structure and also represents the discontinuities and
bifurcations in the underlying edge structure.
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Figure 6.5: Detail of statue (a) from lower right near shoulder, and edge maps
computed by: (b) Canny’s algorithm, and (c) L/L operators (both algorithms

) are run at the same scale), Again the Canny operator does not represent the
conjunction of edges in this neighbourhood, while the L/L operators show the
edge bifurcation clearly.
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6. Logical/Linear Results

Figure 6.6: The statue as represented by the three categories of L/L operators.
The black lines show the edge responses while the white and grey lines show the
bright and dark lines respectively, Note that some features, such as the bottom
of the palm of the hand, are only clearly represented by the line images.
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Figure 6.7: Fingerprint image (a), and edge maps computed by (b) Canny’s
algorithm, and (c) L/L edge operators. The most appropriate representation (d)
is the L/L positive contrast line operator. The complexity of display and the

P proximity between nearby image features are the most significant contributors
to the breakdown of Canny’s algorithm in this case. These problems are dealt
with in the L/L operators by the explicit testing of local consistency before
combining component inputs. This serves to isolate features even when other
nearby structures exist within the spatial support of the operator.
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otherwise parallelizable algorithm. In contrast, the L/L operator implementation has

O(1) time complexity for such an architecture.
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Intrinsic Geometry
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Chapter 7 Relaxation Labelling

An image curve has both structure with respect to the image (i.e. it is an edge), and
structure intrinsic to its geometry (i.e. continuous curvature). No matter how well
local image operators work, they are restricted to direct analyses of the image and
thus are subject to disturbances. Part Il described methods for limiting both false
positive and false negative responses, but the operators obtained are not entirely free
from the effects of noise and confounding stimuli. Moreover, there is no guarantee
that their responses represent connected thick traces of continuous curves. If we hope
to produce descriptions of image curves which are verifiably thick traces we need
to reason about the continuity and consistrucy of the image curves considered as
geometric objects.

So our immediate problem is to select from amongst the responses of these initial
operators those which are most likely to form thick traces according to some local
geometry. To reason with thick traces directly, however, we are faced with a po-
tentially enormous explosion in the amount of data to be processed. For example,
if we represent 16 possible orientations of lines for each point in our image, then a
sampling of the total space of a 256 x 256 pixel image will contain over | million sites.
For a system to manage this data quickly and verifiably we will have to exploit as
much parallelism as possible. One well-defined system for solving exactly this kind of
problem (extracting consistent structures from discrete representations) is reluzation
labelling.

Designing a relaxation network for a specific problem can be difficult, however,
because of the problem of relating the pragmatic goals of a particular situation to the
fixed summative networks of relaxation labelling.

The contribution of this chapter is to define explicit criteria by whichk a set of
operator responses which constitute a noisy description of a thick trace may be trans-

formed into a verifiable thick trace. This will involve a formal describtion of the
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kinds of geometric models which form these thick traces and then a translation of
these models into support networks for relaxation labelling. The resulting labelling
assignments are verifiably accurate approximations to the thick traces allowed by the
model.

We found that in order to design initial operators which respected the structure
of images, we were forced to reason using an explicit hypothesis-testing framework.
In this chapter, we conclude that in order to reason about the intrinsic properties of
the curves themselves we must do the same. Moreover, we find that the L/L alge-
bra of Chap. 4 is a perfect match for the kinds of reasoning required in these new
situations. The resulting networks incorporate L/L combinators into the classical
relaxation framework, and are reliable, stable and converge very quickly (3 to 4 iter-
ations). We thus believe that the methodology described below is of general use for

early vision.

7.1 Definitions

Relazation labelling [HZ83) is a computational method for finding consistent structures
within a network of hypotheses. Closely related to popular neural network methods
[MZ92], it involves representing an assignment problem as a set of labelled nodes [
each with a set of associated labels A;. Each A € A; is interpreted as a possible value
to be assigned to node i. The scalar p;(A),7 € I,A € A; is the confidence that A

should be assigned to node i. There are two restrictions on these confidences

0<p(M) <t and Y (N =1
A,
If these restrictions hold for all # € 7 and A € A;, then the triple of (/,A,p) is
called a labelling assignment. The space of such labelling assignments is K. A simple
interpretation of such an assignment is that p;(A) is the confidence that the labe!l A
should be assigned to node 1.
The goal of relaxation labelling is to solve an assignment problem: to choose a

labelling assignment which maximizes some measure of consistency. In order to do
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7. Relaxation Labelling

this, we augment the labelling with a matrix r;;(A, A'), which is a measure of the

compatibility between label A at 7 and label A’ at node j.

Definition 7.1 The suppor! for a label A at 7 is

siap) = 20 2 mi( M) ().

JEI MeA,

An unambiguous labelling is a labelling assignment such that
Viel, Ae A pi(A) € {0,1}

which defines a mapping ¢ — A if and only if p;(A) = 1. We say that X is assigned to

the node i. A consistent lebelling is a labelling assignment which fulfills the condition

VieL,s € K ) pi(Nsi(Aip) 2 T wilM)sidAs),
X X

where K is the space of all labelling assignments.

Formally, relaxation labelling solves the problem of finding a consistent labelling
given an initial description (/, A, p) and the compatibility imatrix ri;. Il average local

consistency (for symmetric compatibilities) is given by

Alpy = X X pi(Nsi(A ),

€] A€A;

then the algorithm in Fig. 7.1 constitutes a gradient ascent on average local consis-
tency which terminates at a consistent labelling {HZ83].

For the early vision problems we consider here, the general case can be simplified
considerably, Remember that we are attempting to exiract cross-sections through
image bundles. We assume that one node is associated with every discrete point in
a image bundle and that the labels at each point are A; = { TRUE, FALSE}. Thus,
a node 1 represents the hypothesis that there is a cross-section which intersects the
Voronoi cell E;. We refer to this special case as two lubel reluzation lubelling [PZ85).

The two-label representation, and update and projection steps are considerably

84



7. Relaxation Labelling

1. Compute an initial estimate of p = {p;{A) } which consti-
tutes a labelling assignment. Call this p".

2. Repeat starting with 2 = 0 until p"* is consistent:
(a) Repeat foralli g I:

i. Compute pi = p* + Js,.

it. Project pf onto a valid labelling assignment. This
new assignment is pit!.

(b) Setn=mn-+ 1.

3. Generate the mapping i = A

Figure 7.1: The Hummel-Zucker algorithm for retaxation labelling [HZ83].

simplified. In terms of the representation, we need ouly evaluate and store p;{ TRUE)
since p;(FALSE) = 1 — p;(TRUE). In addition, il we impose the design condition
that s;(FALSE) = —s;(TRUE), then any evidence for a hypolhesis is naturally evi-
dence opposing its converse. This amounts to a condition on the structure of the

compatibilities r;;, and is easily realizable in practice, with
ri;(TRUE, TRUE) = —r;;(TRUE, FALSE) = —r;;( FALSE, TRUE) = r;;(FALSE, FALSE).

With these restrictions, we can simplify the notation, using p; to refer to p;( TRULE)

and s; to refer to s;{(TRUE). The support then simplifies to

si = X 7ij P (7.1)

jel

and the update rule becomes
=il + 8l

where [z]} is = truncated to the interval [0, 1].
Gradient ascent procedures are necessarily vulnerable to the presence of local

minima. One of the requirements of a problem definition using a relaxation labelling
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paradigm is thus to ensure that the combination of the initial estimate p® and the
compatibility matrix r;; produces only meaningful local minima. One way of thinking
of this is to require that both the initial estimate and the update function preserve
whichever features are deemed to bu essential for a viable solution (i.e. the support s;
is only positive when these features can he verified locally). These requirements must
be treated as design preconditions on the calculation of the initial estimates and the

derivation of the compatibilities,

7.2 Geometric Compatibility

As we have suggested, the problem of extracting geometrically “consistent” structure
from an image depends on the definition of consistency. If the representation is
in terms of a sampled fibre bundle, then the description of a consistent structure
will be the thick trace of some cross-section of the hundie. As we showed above,
the selection of the points in such a cross-section can be formulated as a two-label
assignment problem. However, selecting these points will depend critically on the
local geometry of these cross-sections; that is, on the compatibility structure chosen.

In this section we develop a framework for relating an image geometry to the
geometry of cross-sections in a fibre bundle. The resulting models match the structure
of the fibres to a description of the local image geometry, and constrain the cross-
sections. With this framework in place, we can determine if a pair of points in the
total space are “compatible” with the desired image geometry and, if they are not,
how “incompatible” they are. By then extending this investigation to a sampling of
the total space we will lay the groundwork for the design of a relaxation labelling
network whose fixed points are thick traces model cross-sections.

To clarify the reasoning and results, the derivations will be accompanied by an
elaborated example. For simplicity, we will consider the problem of finding continuous

straight lines in images.
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7.2.1 Continuous Spaces

We begin by introducing geometric models on fibre bundles. A geometric model is a
complete description of a geometric form on the base space of an image bundle.

Definition 7.2 A model M on the bundle € is a set of differentiable cross-sections
M : B = E of € which cover the tolal space E. If M is a partition of E (i.e. each
point p € E(£) has a unique cross-section M € M such that p € M) then we say

that the model M is minimal, and we can refer to the cross-section selected by p as

M,

For example, the set of all straight lines in the plane IR* and their orientations ¢ is a
model on the bundle £ : § — R?% Note that a minimal model can be expressed as a
mapping M : E x B — E where M(p,q) = M,(¢). We restrict these mappings M
to be differentiable.

To use this abstract construction for tle representation of geometric structure, we
assume that each cross-section Af is the instantiation of some geometric primitive,
We refer to this kind of model as a geomelric model, If this model s minimal, then
each point p € E is a complete description of the local geometry.

Whether a model is minimal or not, it can be used to group together all of the
points which share membership in one of its cross-sections, We say that such points

are compatible with each other.

Definition 7.3 For a model M, we define a compatibility relation Cam(p,q) between

points p,q € E(£) where
Cmip,g) & IMeM: peMudge M.

For minimal models this is clearly an equivalence relation. Moreover, for minimal
models this definition simplifies to the requirement that ¢ € Af,, but since ¢ uniquely

selects the cross-section M,

Cmipg) & g€ Myorpe M,
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(a) (h)

Figure 7.2: A diagram of a model of straight lines in planar images. In (a)
is shown the geometric description of lines in images. Compatible local models
(e.g. at points p and ¢) generate the same line. The model determines a family
of cross-sections in the natura! product bundle £ = X x © (b} which themselves
form straight lines. The geometry of lines in the plane thus induces a geometry
of cross-sections in the total space.

It is clear from the above results that minimal models give much more structure to
the compatibility relation than general models. It is for that reason that we will
henceforth restrict our analysis to minimal models. Much of the work below will
apply equally well to general models, but attempting to delineate the differences
would likely obscure some of the results.

Example 7.1 We know that a straight line in a plane is completely described by
a position and a direction. Thus, a model £ of straight lines in the plane image
I:X = Y where X C R? is defined on the bundle £z = (X x ©,7,X), where

© = [0,7), by the cross-sections:
L(x,0)(s) = (= + s(cosl,sinf),0),
for z € X and 8 € ©. We will refer to the line generated by p = (z,0) as
L(z,0) = {L(x,0)s)](x,0) e X xOands e R}.
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It is important to note at this point that topologically the total space E¢ is eylindrical,

since the orientation @ is the same as @ 4- n7 for integral .
Proposition 7.4 The model £ ix minimal.

The fact that this is a minimal model is clear from a purely geometric point of
view, since a point and an orientation nnignely determine a straight line. 1t is still
useful to explicitly prove minimality in terms of the model. We must show that all
L(q) intersecting the point p = (x,0) are identical. For any ¢' € L(g), we have
g = L(q)(s') = L(p)(s + &'). Thus ¢' € L(q) = ¢ € L{p) and therelore L{q) C L(p).
But this is also true for p and g reversed, so L(p) C L(g) and thus L(p) = L(¢). N

The straight line model illustrates a method for defining models by parameteriza-
tion.
Definition 7.5 A paremeterized modcl is a model M on € described by a family of

cross-sections

M={MpP:S=>E|pel}.

where S, the parameterization, is a neighbourhood of the origin in IR™ and M (p)(0) =

p.

Observe that since all M are cross-sections of €, n < dim(Ba).

Corollary 7.6 A parameterized model M is minimal if and only if for all ¢ € M(p),

M(q) is a reparameterization of M(p).

We have so far ignored the fact that localily is often an issue when applying
models to real situations. For example if the model is derived {rom a truncated
Taylor expansion of a local neighbourliood, then we can only be confident that it is
accurate within some bounded neighbourhoad. The extent of this neighbourhood is
determined by the distance travelled along w(M) = {7{c) ]| e € M }, the projection
of M into the base space. To see why this is so, it is sufficient to realize that since M
is a cross-section, motion on M is completely proscribed by motion in the base space

B (i.e. there is a one-to-one mapping from B to M),
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As a first step in understanding local compatibility tlien, we need to define a means
of relating both compatible and incompatible paivs of points in £ to the model M.
Initially, consider only compatible pairs.
Definition 7.7 The trunsport distunce dy(p, q) between two compatible points p, g €

M is the length of the shortest path between w(p) and 7(q) in #(M).

Since M is connected, such a patli does exist, and with the Riemannian metric on
w(M) inherited from B, the length of such a path is well-defined. In fact, since w( A7)
is a submanifold of B, we can deduce that the minimal path from p to g is a geodesic
on m(M) (thus justifying the use of the term “transport™). Given this, d'(p,q) is
clearly an induced metric on (M) and thus also on M.

To extend this to arbitrary pairs of poinls, we refer to the tubular neighbourhood
of M. This is a generalization of the perpendicular projection operator over M in E
which is a basic building block of modern differential geometry. We refer to the tubular
neighbourhood since it may help readers familiar with fibre bundle manipulations to
understand subsequent derivations. Other readers need only note that the tubular
map s is simply the perpendicular projection from £ onto A.

Treating the model cross-sections Af as differentiable submanifolds of E, we can
identify the tangent bundles of the total space T(E) and the submanifold T(M).
Definition 7.8 [Lan85, Kos93] The normal bundle vM of the submanifold M C
E is the quotient bundle 7as(E)/T(M). There exists a bundle xp : Ty = M,
unique under isotropies, equivalent to the normal bundle »Af such that Ty is a
neighbourhood of M in E and the zero section of mpy is M. The neighbourhood
T is the tubulur neighbourhood of M and mpy the fubuler map. In R™ the tubular
map is a perpendicular projection from Tas onto A. If Tjy = E, then the tubular
neighbourhood is said to be total. Finally, we note that the subspace of E normal to

the manifold M at e € M is just the inverse of the tubular map 75/ (e).

Now consider two points p and ¢ in the total space associated with the model
M. If p and q are compatible under M, then there exists some M € M such that

p,q € M. Otherwise, if p and g ave in the tubular neighbourhood of some cross-section
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M=, then mps-(p) and app-(g) are on A and thus compatible under M.

Definition 7.9 We define the incompatibility of p and ¢ with the model M as

[nd — 4 . - - Lo diS
E(pa) = jnf, ) + dla,q). (7.2)

where p* = mase(p) and ¢~ = mar+(q).

In essence, d°(p, q) is a measure of the minimal perturbation of p and ¢ which will pro-
duce a compatible pair. We refer to the triple (A, p*, ¢") as the minimal projection
of p and q onto M.

The minimal projection is used to extend the definition of transport distance to

arbitrary points.

Definition 7.10 The transport distance between points p,q € E is

dilpg) = d'(p".q")

where (M*, p", ¢°) is the minimal projection of p and ¢ onto M.

These two measures of compatibility between p and ¢ will form the basis for all of
our subsequent calculations with compalibilities.

Example 7.2 (continued) Consider two points p = (2, yp, 0, and ¢ = (4, y,,0,) in
E(L) = X xO and a cross-section M~(s) = f+s{cos 0°,5in 07, 0) where £ = (z°,4°,0°).
Now, let p" = M*(s;) and ¢° = M*(s;), and since (p~ =€) - (" — p) = 0 and
(" — &) - (¢" — q) = 0 we can express p* and ¢° as functions of £, Therefore if

p* = M"(sp) and ¢" = M*(s,)

d{p.q) = |8, — sy,
E(pya) = win d0 (0, p) + da"(E),0)

The projections p” and q are shown in Fig. 7.3a.
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(a) (b)

Figure 7.3: The minimal projection of two points p and ¢ onto the straight line
model £. The sum of the distances d(p, #°) and d(q, ¢*) is a measure of the incom-
patibility d°(p, ¢) between the lines p and g, while the distance d(7(p*), 7(¢")) is
the transport distance d'(p, ¢). When p and ¢ are compatible, then d°(z,q) = 0.
Of the two diagrams, (a) shows the symmetric minimal projection, while (b)
show the projection associated with the asymmetric compatibility of Def. 7.15.

7.2.2 Discrete Spaces

Before we can understand the impact of these measures on the derivation of relaxation
labelling compatibilities we need to investigate their translation inte sampled spaces.
We start by defining a relation on discrete points in the total space of a geometric
model. This relation is a discretization of the compatibility defined in Def. 7.3.
Definition 7.11 Given a model M on £ and a discretization E(€) of £, we define a

discrete compatibility relation Cas between points e;, e; € E(€) where

-

Camleie;) & Ine b, qe L, MeM:peMandge M.

That is, there is some cross-section in the model M whose thick trace includes both
points e; and e;. Note that, in contrast with the continuous definition, while this

relation is commutative, it is in general nof transitive, even if the model is minimal.

Theorem 7.12 The discrete compatibility relation C‘M(c,-, e;) for e e; € E isa valid
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discretization of Cpm(e;, €;).

For £ = E, the Voronoi cells E; and E, contract to the singletons {¢;} and {¢;},

and the equation above becomes

Cmleive;) & 3IM e M: ¢; € M aud ¢; € M,
exactly the continuous definition of Def. 7.3. [ |

As we noted above, this relation can be expressed in terms of thick traces. For a
minimal model, the thick trace of a cross-section provides a convenient verification of
compatibility since
Corollary 7.13 Ife; € THICK(A,,) or e; € THCK(M,,) then €; and e; are compat-
ible under the model M.

Furthermore, comparing the two definitions (2.10 and 7.11) immediately reveals that

Corollary 7.14 For a given point e;, the thick trace of the cross-section M., is a

subset of the set of points compatible with ¢;: {r-.-,- € £ | Cpmlei e5) }

These observations lead immediately to a second discretization of the compatibility
relation.

Definition 7.15 Given a minimal model M on £ and a discretization E‘(E) of £, we
define the asymmelric compalibilily relation (:"M(c,',e,-) hetween points ¢, ¢; € E'(E)
where

Culeie;) & ENM,., #0.

Apgain, the reduction to continuous compatibility is obvious.
Corollary 7.16 The discrete compatibility relation €'\ (ei,¢;) for eie; € Eisa
valid discretization of Cpm(ei, €;).

With this relation, the minimal projection becomes (M., €], ¢;} where

Y

Cl. = 71l‘AftJ(c'.)‘
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and the compatibility metric, transport distance and incompatibility are derived from
this new projection. However, this relation is neither commutative nor transitive
(hence asymmetric). We will see, however, that it provides the basis for mapping
geometric models onto relaxation labelling supports.

Example 7.3 (continued) Consider two points e; = (z;, 3, 0) and e; = (z;,y;,9;)
in E(L) = X x 0. Let €] = ¢; + s(cos #,sin 0;,0). The perpendicular projection of

e: onto L., is then found by solving (e — ¢;) - (¢] — ¢;) = 0 for s, which gives
s = (2i— ;) cos0; + (v — y,)sin b;.

The projection to e} is shown in Fig. 7.3h.
With this projection, we can explicitly calculate the transport distance and in-

compatibility between any two line elements ¢; and ¢;.

deine;) = Jsl. (7.3)
@ eqes) = Jef = el (7.4)

These definitions provide a basis for understanding compatibility relationships
in discretizations of geometric models, hut they leave a number of computational
questions open—most significantly the question of how to determine whether or not
a particular cross-section M intersects the Voronoi cell £;, Since the E; is a convex
polyhedron, it can be defined by a set of linear inequalities of the form (e—e;)n < 7,
one for each face. The problem of testing intersection between the cross-section M

and the cell E; is thus formalized as
MOE #£0 & Vfe F:3ee Mi(c—¢;) n; vy, (7.5)

where F is the set of faces of E;. While this is not an expensive computation for a
single cross-section M and Voronoi cell E;, when the tests number in the millions, it

may be prohibitive.

As an alternative, we suggest an approximation which may be significantly less
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expensive to compute. If E; is nearly spherical (i.e. we use a close-packed tesselation

or E is of high dimensionality), then it is clear that
|mar(e) —eil £ p(E)

is an approximate test for intersection between M and E;. The only circumstance in
which this is true but M N E; = @ is when mar(c¢i) € (bpey(ei) N E;). As long as E;
is nearly spherical Vol(E;) > Vol(byg,)(«i))/2, thus lor the majorily of points ¢; for
which this is true M N E; # 0.

The above approximation depends on the assumption that the samplings are un-
biused, that 5 that the E; are all very nearly spherical and of the same radius (e
Vi: p(E;) = p(E)). The usual regular samplings (e.g. square and hexagonal grids) are
unbiased. In general any sampling for which the sample points are the centers of a
spherical close packing [Con93] is also. We will assume below that all samplings are

unbiased.

7.3 Relaxation Labelling Support

We now have the machinery to answer the key question: what is the relationship
between compatibility as defined in §7.2.2, and the matrix #;; in relaxation labelling?

We can set up the labelling assignment problem by assumning that each point
e; € E(£) has an associated node i in the labelling. Furthermore associate with node
1 a confidence p; that for some point ¢ € £, \he projection m(e¢) in the image has
the local geometry M, € M. Thus p = | implies thal ¢; is in the thick trace of
some cross-section M in the model M. Since these cross-sections are continuous, an
unambiguous labelling for such a geometric problemn consists of a set of connected
components of the discrete total space each of which is associated with a single model
cross-section. We will call such a connected component a compatible subset of the
labelling.

The design problem is thus to develop a support function so that the fixed points

of the relaxation are labelling assignments which consist only of non-degenerate com-
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patible subsets. Each assigned node will then represent confirmation of the existence

\ ‘ of a patch of the selected geometry in Lhie associated image.

There are three goals which constrain the designing of lahelling supports for such
a system:

) e The labelling assignment in which all confidences are zero except those in the
thick trace of a model cross-section must be a fixed point of the relaxation. The
closest fixed point to sucl an assignment should be the unambiguous assignment
in which all of these labels have confidence . Therefore, nodes in such a thick

) trace should receive positive support.

o The thick traces extracted should be either disjoint or only connected at single
points. We would normally expect them to be disjoint, but allowing point con-

) nectivity, we shall see, will allow for the possibility of representing bifurcations
in certain geometric objects. Overall, this requirement for disjointness can be
seen as implying that there he an empty region surrounding each thick trace in

) . which all nodes have zero confidence. In terms of support then, nodes which are
near but not on a thick trace of assigned labels should receive negative support.

o Isolated labels should receive non-positive support.

)

Ideally, support for a lubel should be positive if and only if the lubel represents a point
which is on a4 model cross-section defined by some set of neighbouring lubels. If these
goals are met, then the effect of relaxation on an initial estimate of label confidences

) should be the selection of mutually supporting collections of labels which represent

continuous patches of model cross-sections. All other labels should be suppressed and
eliminated. A diagram of this plan is provided in Fig. 7.4—it will be useful to keep

) it in mind as we develop the solution.

Keeping these goals in mind, we seck to define a support. function s; such that
the thick traces of model curves are fixed points of the relaxation. From the point of

' view of a single node, the support for a point e; shonld be positive only if it can be

; . verified to be in such a thick trace. One method of calculating support would thus
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Figure 7.4: The fixed point of a geometric relaxation problem is shown. The
cross-section M is shown in the sampled total space £ with the points in its
thick trace e; € THICK{M) in solid black. Il these points are to be a fixed-point

) of relaxation labelling, then a labelling in which only the black points have
pi > 0 must produce a support [unction in which s; > 0 for only those points.
All points e; ¢ THICK(A) (open circles) receive non-positive support. Instead
we design a support function by reconstructing the cross-section M underlying
THICK(M). We then define a new trace TicK, (M) (including the gray points

Y as well) such that d(e;, M) < p for some p 2 pE). The support lunction is then
positive only if e; € THICK,(M). In this case, the trace THICK, (M) is the fixed
point of the relaxation.
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b

]

) 7"".f-\r'll (€:)

Figure 7.5: The model cross-sections in the neighbourhood of a point e;. As-
suming that ¢; and ¢; are compatible, then the cross-section M., intersects E;
) and e} € E;. Show are ¢} = M, N7 (¢} and ¢f = w1, (ei). Since M is smooth,
M., and M., are approximately parallel locally and thus d(c,-.cj-') = d(e;, }).
be to construct a smooth cross-section M € M from a labelling assignment and then

) . update p; based on whether or not. ¢; € TiICK(A). Section 7.2.2 concluded with an
examination of how to make this selection efficiently. Therefore, we seek a method
of combining the labels in a thick trace to form a smooth underlying cross-section
Me M.

’ Consider the neighbourhood of the point ¢; and the associated cross-section M.;.
If our reconstruction method is sound, then the smooth cross-section constructed
from TRHICK(M,,;) must pass through E;. For the moment focus on the points e; €

] THick(M,,). By Def. 7.11 we know that

e; € THICK(M,,) = C(ei¢;).
b s o . _
and thus, since ef = mpy, (e;) that
e; € by(ei).
b
. Now, on the fibre w;,i (&) of the tubular bundle of A, at e; (which we shorten
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to mxi(e;)), we can construct the poiut of intersection

(f = A, Nl

Assuming that the minimal model M considered as a mapping M : Ex B = E is

smooth, then for e € E;,

d((.‘,‘, f._':') =~ '(’.(C,', 'n‘MrJ(t:‘,))

(see Fig. 7.5). Thus, since ¢ = 71';,1,'(&‘,‘) we can conclude that for some radius
p = p(E;)
e; € TMICK(AL,) = (Viief € b(ei)).

Thus from the point of view of the fibre of the tubular bundle over ¢;, reconstructing
a smooth cross-section underlying the trace may be achieved by combining the points
e} into a single point e € m3{(e;). The point ¢; is then in the thick trace of this
cross-section if and only if e € E;.

A possible solution is suggested in [DZ90). We restate their observation in terms
of sampled bundles and cross-sections. The sampling of E implies that a point ¢; in
E represents an equivalence class of cross-sections which intersect E;. If we represent
this equivalence class by a Weiner measure over the cross-sections, then for any point
e; € M., the Weiner measure restricted to rr,'{,f,(e;-) (the subspace normal to M.,
at e}) is approximately Gaussian. The Weiner measure arises because the class of
continuous functions is equivalent to the sample functions of a Brownian motion
[Doo84). Because of this, the central limit theorem implies that the distribution of
points e = M. N ﬂ;d:i(e;-) for fixed ¢} and e € E; is approximately Gaussian. This
observation can be used to show that in the plane, the linear combination of a set of
Gaussians around the sample points on the thick trace of a curve forms a potential
field, the valleys of which are curves wilh the same thick trace!

We can apply similar reasoning to the more general problem of averaging values
on the fibres of a tubular bundle. First cousider the combination of discrete values

in R,
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Theorem 7.17 If P: IR" — IR is a weighted sum of Gaussians of the form

P(;{:) = Z i, G,,.(|::= —_ .'I.','l),

for some collection of x; € R",a; > 0, and o; > 0, then zll local maxima of P{z) are

within the convex hull of { z; }. Moreover, there is at least one such local maximum.

Consider the face F of the couvex hull of {;}. Define the half-plane
He={z|(x—xr)-vy<£0}

where zr € F and 7 is the inward facing unit normal to F. Taking the directional

derivative of P with respect to v gives

Pyz) = Za.-G,';(:r:)

where

G'(x) = Geollx — =il).

Since G'(z) is monotonically decreasing with increasing |z — z;|, we see that
(z—2;)-7y>0 & Gi(2)>0.
Therefore

r¢Hr = (z—wx) 7>0
= Gi(z)>0

= P,(z)>0.

Since local extrema coincide with a sign change in all directional derivatives, all local
extrema of P(x) must be in Hr. This conclusion holds for each face of the convex

hull, therefore the local maxima in f(x) must be in the intersection of all such half-
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planes-—the convex hull. To sce that such a local maximum exists we need only refer
to the maximum principle of the heat equation ([PWS84], p. 161} which guarantees
that for finite time (i.e. finite #) a global maximum (and thus a local maximum)

always exists if the initial value is non-constant. |

Since 73} (e;) is isomorphic with R" where n = dim(E) — dim(M), we can con-
struct a cross-section underlying the thick trace TicKk{AM) of M by constructing the

function
Ple) = X 15 Ga(d'(e6,)) o, (d(e,€5)),
3

where e; € THICK(M). Since tlhe restriction of this lunction to x5} (e;) is of the form

described in Thm. 7.17 with

a; = p; Ga(d'(e,€;5))

L
€;

2

the local maxima of P on w;,,l(e,-) are all within the convex hull of e;-". The distances
le; — e;] are bounded above by some constant p (since ¢f = ¢}). Thercfore, all local
maxima of P on 73} (e;) are in the ball b,(¢;} which is approximately the Voronoi cell
E;. Without proving that there is a unique such maximum (largely irrelevant since
the sampling will combine them), the discussion al the end of §7.2.2 suggests that we

can define the p-trace

THICK (M) = {ei ]| d{mplei)ses) S p)
which is an approximation to THICK(AM ) such that

p > p(X) = Tmck(M) c Timek,(M).

Moreover, THICK (M) is clearly connected for smooth M il p 2 p(X), thus the rela-
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tionship between the path-connectedness of Af and the connectedness of THICK(M)

is preserved in THICK,(Af). So, if we start with a labelling assignment of the form

pi =

{ I ile; € TINeK,(M);

0 otherwise,

and a support function s; which is positive if and only if there is a local maximum of

P(e;) in by(e;) Ny, (€:), then s; is positive il and only il e; € THICK,(M).

Corollary 7.18 Ifs; is positive exactly when there is a local maximum of P(e) in

by(e;) N wxi(ei) then the thick trace Tick, (M) for M € M is a fixed point of

relaxation labelling.

With the Logical/Linear Algebra of Chap. 3, we have a direct means of testing

this condition locally.

Observation 7.19 If z € X is a local maximum of P : X = IR in some neighbour-
hood b,(z}, then z is a local maximum of P in every neighbourhood b,(z) N & where

a: R = X is a diflerentiable curve with tangent ¥ = o'(x).

In order to locate local maxima in P we need only identify regions within which the

directional derivatives P, change sign and the second directional derivative P, < 0.

Definition 7.20 Let I' = (v;,...,7,) be an orthonormal basis for 75 (e;). The local

geomelric support for e; is given by

Si = A Pylei—pu) b —Polei+ pm)-
h<n
where P,, is the directional derivative of P in the direction 7.
This support S; is guaranteed to be positive il there is a local maxima in b,(e;) N
ma(e5).
Theorem 7.21 Given that p > p(E;) the geometric support S; is positive if there is

a local maximum of P(e;) on the subspace of E normal to M,, in the Veronoi cell E;.
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Referring to Thm. 5.1, we see that
Poles—pn) >0 and 2 (ei4+p1) <0 and P, () <0

guarantee the existence of a local maximumof P on tlhe line from ¢; — py; to €+ pyi.
Thus, when there is a local maximum of P in b,(¢;), this condition is true for all
directions 4 € I'. Therefore each of the expressions Py, (¢; — py) & = Py (€ + pyi) is
positive when there is a local maximum witlin /2.

By Def. 4.1 we know that the L/, AND of positive values is necessarily positive.
Thus the support S; is positive if there is a local maximumof P(e;) on 734 (e;) within

the ball b,(e;). Since p > p(£;), this ball encloses the Voronoi cell E;. |

Choosing an orthonormal basis for #34(¢;) is not difficult for the geometric prob-
lems we have investigated. Because the cross-section has a unique value on each fibre,
any orthonormal basis for the fibre  will be at a proper subset of a basis for m5q (e:).
If S, the domain of M, is of the same dimensionality as 3 then this basis is complete
since it is orthonormal, normal to A/ and of the required dimensionality. Otherwise,
we need only augment this basis with an orthonormal basis for the subspace normal
to S in B.

Finally we can relate the geometric support which we have developed to the relax-
ation compatibilities of §7.1. Recall that in the two label case, the relaxation support

simplifies to
8 = Z P tij.
J

Now, the local geometric support for ¢; is of the form

Sr' = /1\ ip‘n.»,y(ci F f”rkl‘))'

where the linearity of convolution and the derivative operator imply that

P.,”...(e,- ¥ p'fk[?) = z e G’fh/'g(t"i F f’7k/'l)'
J
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where

GHei) = Gald'(eiie;) Ga (e €5)).

Thus the geometric compatibility can be rewritten in the form

Sa = A ‘Sfa (7.6)
k
where
S =3 iy
7
and :
iy = 26, (e F o).

Note that because of the partial derivatives in normal directions, those points which
are laterally displaced from the inferred manifold by greater than p and are parallel
to it are inhibited. Thus the 5% components are referred to as the lateral inhibi-
tfon components of the support or simply the lateral components. The analogy with
traditional lateral inhibition metliods [RatG5] is obvious.

Thus we have a relaxation labelling algorithm wilth guaranteed fixed-points, the
thick traces of cross-sections M € M of some geometric model. And while it is true
that the L/L non-linearities obscire the relationship between the relaxation and a
gradient ascent, the behaviour of this relaxation meets the goals set out above. We
have already observed the fixed-point behaviour, and the lateral inhibition guarantees
that a label near M but not in THicK,(A) will be actively suppressed.

A number of free parameters avise in this calculation: the values of p, 0. and 0.
Significantly though, they are tightly constrained. As we have seen p in Def. 7.20
is currently constrained by p > p(f;). We have already shown that if this is true,
then the points selected by S; > 0 are a superset of those ideally selected. It is clear
that p = p(E;) for THICK,(A) to be a reasonable approximation to THICK(M), and
must certainly be constrained above by p < 2p(E;). Furthermore, P on w3} (e;:) is
a weighted sum of Gaussians Ga(le; — €f]) where |e; — e5| < p. Thus, for the L/L

combination of Def. 7.20 to provide a good estimate of the second derivative of this
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field we require that o, > p. However, o, cannot be much greater than this without

causing inappropriate merging of nearby independent traces [DZ90]. This discussion

is summarized by the conditions:

pLEDY < p < 2p(),

p < a. < 2p(l5).

Note that these constraints are independent of the particular geometric problem being
solved.

The last of the free paramneters a; is the least constrained. It is certainly obvious

that o; > o, since we wanl to combine points on the same cross-section even at some
distance. However, the upper bound of 7 is constrained only by the accuracy of the
model in reflecting the local structure of the image. The significant. question is over
what range we can safely assume that the model is an accurate description of the
image. For example using the line model, if we know that the extracted image curves
have curvatures which vary significantly {rom zero, then the straight line model may
only be accurate for as little as Lwo or three pixels around any point. This would
then require that o, = 1.0. Clearly this is not much context to contribute to the
construction of global curves. This is one reason Lhat our actual image curve models
incorporate curvature information directly.
Example 7.4 (continued) To define the local geometric support for our line model
we must determine a basis for the subspace normal to a model cross-section. Clearly
the vector 7, = (0,0,1) constitutes a hasis lor the fibre @ over any point in B(L).
Since the co-dimension of S in B(L) is one, we need only augment. this basis with the
vector v, = (sin#;, — cos 8;,0) at e; = (i, i, 8:). ' = {7,7 } thus forms a complete
basis of the subspace of F(L) normal to L,, at ¢;.

Given this basis, we can calculate the geometric support for e; as

Si = Pylei—pn) & —=Pyleid pm) b Poleci — pr} & = Prlei+ py). (7.7)
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Figure 7.8: The linear reduction of the L/L support for the horizontal line
label. Shown are the relative positions and orientations of compatible (white)
and incompatible (black) labels in the neighbourhood of a horizontal line label.
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(c) (d)

Figure 7.7: The four component support networks for the horizontal line label.
The four networks represent (a) P,, (e;—p71), (b) =Py, (ei+p71), (€) Py (€i—py2),
and (d) —P,, (e;+p7v2). The local support for the horizontal label is only positive
if the inner products of each of these fields with the local confidences is positive.
The networks (a) and (b) ensure that the horizontal line is at a local maxima in
position normal to its orientation, while (c) and (d) ensure that it is at a local
maxima in orientation.
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The four linear components of this support. are instantiated in the four support net-

works shown in Fig. 7.6.

7.3.1 Boundary Stability

Boundary stability is the requirement that the boundaties of cross-sections must nei-
ther dilate nor contract through iterations of the relaxation. This same property was
referred to as end-line stability in §3.2 in the context of image curve operators. It is
easy to appreciate that boundary stability is a generalization of this concept, since
the boundaries of lines are their end-points.

To see that this is a problem in the design of relaxation support we need only
refer to the analysis above. The support function as defined in Def. 7.20 involves
the selection of local maxima in directions perpendicular to a manifold, constructed
by a smooth combination of the confidence measurements on a thick trace. This
method ensures that regions of positive support will not. dilate perpendicular to this
manifold, but it deliberately encourages dilation along the manifold. Thus if the set
of selected labels is some subset of the thick trace of a model cross-section, then the
entire thick trace will receive positive support. This is a significant problem if the
target cross-sections are bounded, proper subsets of the model cross-sections.
Example 7.5 (continued) Each line L in the model £ is bounded if and only if the
base sp.ce X is bounded, However, an actual image of straight lines will contain a

number of line segments with arbitrary bounds. Assume that one such image consists
| of a single line segment ¢ and that an initial labelling correctly selects the thick trace
of this line. Thus, only those points in the thick trace have non-zero confidence.
Examining eq. (7.7) reveals that every point in the thick trace of tlie model line L for
which ¢ C L will receive positive support (see Fig. 7.8). Thus the fixed point of the

relaxation labelling will be the thick trace of the model line L and not the segment £.

This example suggests that the solution to the boundary stability problem may
be developed as an extension of the design of end-line stable image operators. Recall

the eventual statement of the continunity problem for image curves in §5.2: a one-
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Figure 7.8: Without incorporating end-line stability conditions, the region of
positive support (shaded) around the thick trace of a bounded line segment (the
heavy line) covers the entire model line, In order to ensure that support select
only the the thick trace of the segment, we must impose an additional condition
referred to as boundary stability.

dimensional operator is end-linc stable if und only if il responds positively if and
only if its centre is in a uniformly positive region of responses. We can restate this
condition for support on manifolds of arbitrary dimension as: geomelric support is
boundary stable if and only if il is positive croctly when cenlered on a uniformly
posttive region of the labelling mayp.

The problem thus becomes one of deciding when ¢; is within a region of positive
support defined by the labelling map.
Observation 7.22 Consider a closed, connected submanifold My of M. Il My is of
the same dimensionality as A, then for all regular curves o : IR = M such that
a(0) =e;

e; €My & Fp>0,Vs €[0,p):a(s) € M.

In essence, e; € My if and only if the My swrrounds e;. In geometric terms, cast a
ray out from e; in all directions on A7 and il eacl such ray intersects Mg in a neigh-
bourhood which includes e; then ¢; is surrounded. There may be other methods of
verifying whether or not a point is in the interior of a region, but this can be incor-
porated naturally into the calculation of support defined above. Since the support

field S; at a point e; is the sum of contributions from points in the neighbourhood
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/

;

(a) (b)

Figure 7.9: A decomposition of the neighhourhood of a point into quadrants
allows one to verify whether or not. the point is “inside” some convex region (in
gray) by verifying that all quadrants intersect the region.

of e;, if we need to verify that positive support is coming from all directions we can
decompose the support calculation into a small set of direction ranges and ensure
that there is positive support from all of these ranges. If we assume that locally, the
boundary of the region of positive support is linear or convex, then there is a simple

local decomposition which will verify this kind of “surround.”

Definition 7.23 Let Z = {(;,...,(. } be an orthonormal basis for the manifold M.

We can then define the n half-planes around m € M as
Him) = {zeM|(x—m) (~-m)>0}.

Define a partition of M around vn € A into the 2" regions Q;(m), which we call the

generalized quadrants of M around m., such that
Qim) = {zeM|Vie(l,...,n):x € Hi(m) & BIN({,7) =1}

where BIN({, ) is the i*" digil in the binary representation of [.

For example, if M is the real line, then the ¢;{m) are the hall-fields greater than or
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less than m; if M is the plane, then the Qi(m) are quadrants avound 1, and so on.
Each such quadrant is spanned by a compact, connected set of directions around m.
They thus form an ideal starting point for the discrimination described above since:
Theorem 7.24 If N is a convex, path-connected subinanifold of M with the same

dimensionality as M, then
(VENNQ(m)# W) = me N

IFVi: NN Qi(n) # @ then we can select one point @y from each quadrant @(m) such
that z; € N. The convex hull of these points H{xy,...,x,2) contains m. Since all

these z; are in N and N is convex, then H{zy,...,22) C N and thus m € N, [ |

The consequence of this result on the design of boundary stable support func-
tions is now clear. Since the boundaries on the model section M project to unique
boundaries on the base space B{M), we are concerned that w{e;) be inside a region
of positive support. The support network for ¢; is decomposed into the 2" regions
specified by the quadrants Qi (m(e;)) around w(e;) on w(AM,,) where n is the dimen-
sionality of M,,. The geometric support. will now be positive if and only if the support
in each of the 2" quadrants is positive. Assuming then that Z = {{),...,(. } is an

orthonormal basis for B, we define the quadrants
Qi(e;) = {e€ B|VYje(l,...,n)ie€ H;(e;) & BIN(l,7) =1},
around e; where
Hi(e)) = {e€ Bl{e—¢) (GG—ei) >0},
Then the geometric compatibility can be rewritten in the form

-.qi = A 49:
{

A S
k

r
i
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okl
&Sf Z P} 'J

where

T"J' =

. { :i:(z':’u”(c.- Fpup) e €Qp
0 otherwise.
This decomposition of the support network into suppor! regions guarantees that the
geometric support is stable near boundaries—positive inside and non-positive outside.
Referring back to the implementation of end-line stability for image curve opera-
tors in §5.2, we can see that there is an alternate definition for this. A characteristic

function of the quadrant Q(e:) is given by

‘H €, & ;) Hal((.: (t'J - f'l))

where .
a(x) ifBIN({L)=1;
a’f(:t:) =
g{—x) otherwise,

Thus
'L; = i(?,m((.,- F P'TI./'J) rﬂ(el'a ej)'

Example 7.6 (conlinued) The straight line of orientation @ has a basis in the plane
consisting of the vector { = (cosf,sinf). Thus, as with the image curve operator,
to produce a boundary stable support we decompose into two regions along the line.

The half-field partitions are defined as

qlene) = o(C (e ~ €)),

mleie;) = a(C- (e —¢;)).

Thus the geometric support of the line label ¢; is given by

AA?PJ o
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Figure 7.10: The linear reductions of (a) the left and (b) the right hand sides of
the boundary stability decomposition of the support network for the horizontal
line label.

() (f) (g} (h)

Figure 7.11: The eight component support networks for the horizontal line
label. Each field shows the relative positions and orientations of compatible
(white) and incompatible (black) labels in the neighbourhood of a horizontal
line label. The networks show are: (a) ri3', (b) r3', (c) 3, (d) 73}, (¢) rif%,
(f) r?}z, {g) r?j"z, and (h) r;-’f. All eight of these networks are instantiated for
each discrete position in the image and each discrete orientation,
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and

155‘ = :!:(l'i“m(f.'.' ¥ P‘]’t.-/'z) (l'f(t'."’ ej)‘

where

Gi(ei) = Ga,(d%{eire;)) Galds(ei €5)).

The resulting support networks are shown in Fig. 7.11.

7.4 Summary

In review, we have shown how Lo construct relaxation networks which solve geometric
pfoblems. After constraining the class of geomelric models to consider, we defined a
general method for translating these models into fixed relaxation labelling networks.
These networks produce good approximations to thick traces of model cross-sections.
Unlike previous approaches, this method formally identifies the fixed points of the
relaxation with particular cross-sections in the models. Moreover, by designing the
relaxation for stability in the prescnce of boundaries, we have ensured that the only
effect of the relaxation is to select and fill in thick traces where they previously existed.

The one concern that may remain in applying these methods to early vision is
the iterative nature of the relaxation method. Marr [Mar82] claimed that the speed
demanded of the early vision system precluded the use of relaxation or global opti-
mization methods which typically require tens or hundreds of iterations to converge
on stable solutions. However, we will show in the lollowing chapters that this geomet-
ric relaxation method typically converges in as few as three or four iterations, thus

rehabilitating it as a theory of early vision.
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Chapter 8 Image Curves

Reliable descriptions of image curves as piecewise smooth plane curves in images are
fundamental for much of high-level processing, especially recognition. In this chapter
we will reconsider the problem of designing a reliable system for extracting thick trace
descriptions of those curves in light of the results of Chap. 7.

In Chap. 3, an image curve was defined as the locus of one-dimensional disconti-
nuities in the intensity surface. We will build on this definition and the consequences
outlined in §3.2. In keeping with the focus of the previons chapter, we will now incor-
porate an explicit representation of Lhe local geome!ry of the curves into a geometric
model, and design a relaxation labelling system to extract thick traces of curves from

Logical/Linear operator responses.

8.1 Representation

The Fundamental Theorem of the Local Theory of Curves ({dC76] pp. 19) asserts
that the combination of local orientation and curvature maps defines a plane curve
uniquely under translation and rotation. It is not surprising then that curvature is
a fundamental building block of modern theories of contour shape [Ley88, Kim91,
KTZ92). Clearly then, a visual system must make curvature measurements explicit
for whichever higher-level processes construct descriptions of shapes prior to their
recognition. The only issue then s when curvature is made explicit,

In Chap. 3 we demonstrated that orientation must be made explicit in order to sim-
ply detect the presence image curves. Two pieces of evidence suggest that curvature
too should be made explicit at the earliest stages of curve description. Psychophysical
analysis of dotted lines suggests that purely local curvature information can strongly
bias the ability to reliably locate curve discontinuities [LZ88). Neurophysiologically,
curvature tuned neurons have been observed in primary visual cortex [DZC87).

From a purely empirical viewpoint, we suggest. that a model with explicit cur-
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m(\\\\\

Figure 8.1: The fibre space @x A’ for image curve representation is a cylindrical
space, with orientation/curvature pairs identified with points on the surface of
the cylinder.

vature will allow for faster, more accurate relaxation. Considering the orientation
and curvature as the first two terms in a local Taylor expansion of the curve, we can
assert that a description which includes heth will be accurate (to within sampling
uncertainties) over a larger neighbourhood than one which includes only orientation.
We will show that a relaxation system which incorporates local curvature explicitly
can thus integrate more local information in a single iteration, and therefore converge
very quickly.

Thus we choose an image bundle which explicitly represents local orientation and
curvature measurements on the fibve ' = © x K" (see Fig. 8.1) over each point z € X
for the image / : X — R. Given that hoth the base space X and fibre F will be
discretized by sampling, the image curves are represented in this sampled total space
as thick traces of the actual curves in the image.

Following the analysis of Chap. 2, we will first consider the sampling of the total
space of this bundle. A regular sampling of the base space is naturally provided by
the pixelization of the image. Thus for each pixel in the image we have a discrete
set of orientation/curvature pairs which represent possible local geometries for curves
passing through that pixel. Orientation is sampled regularly over either = or 2«
radians depending on whether the image curve has direction or simply orientation (we
will return to this with specific examples). Thus for n discrete orientations, we sample

at the points 0; = iw/n for 7 € {0,...,n — 1}. Curvature is also sampled regularly
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over the range K = [—#yyax, Ninax), Where a2 is chiosen appropriate to the scale (we
will return to this Below). With m curvatures we sample at 85 = Rygan(— 1425 /(m=1))
for 7 € {0,...,m —1}. The simplest Ricmanuian metric which ensures that this is
an unbiased sampling is an L, metric such that the distance between adjacent sample
points in each dimension is always 1. This is achieved with the metrics

[(¢; — 0;) mod, 7|

T/n N
lri = ;)
2""!-’\8/(”' - l)’

fl(O;,()j) =

d(h‘-,‘,ﬁj) =

and d(e;, e;) an Ly combination of these. The » mod, y operation is a centered modu-
lus, with the output values restricted to the interval (—y/2,y/2]. Since for lines only
relative orientation is significant » = v, whereas for edges r = 27, Thus for each pixel
in the image we have m x n discrete local geometries.

Referring to these samples of the fibre as local geometries depends, of course, on
the assignment of a model C to this image bundle. The single assumption needed to
develop such a model is the assumption of (locally) constant curvature. Each triple
of a point, orientation and curvature in the total space of the model then delineates
a unique circle. These circles can be described succinctly by a parameterized model,
which is equivalent to cocirculurity as defined in [PZ85)].

Consider first a circle passing through the origin with orientation 0 and curvature
k. An arc-length parameterization of thie position, orientation and curvature of this

circle is given by the following vector

sin{rs)/r
Culs) = (1 — cos(rs))/n

K&

I

Now, since all circles with the same curvature are simply rotations and translations of

such a circle, we can parameterize the image curve model over the entire total space
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E¢ by rotating and translating these circles.
Identifying a point in the total space as (wr,y,0,~) the image curve model C =

{ Czyox } is parameterized by the function

sin(ws)/w
Cryon(s) = Try Ro (1 = cos(ks))/x |

RS

K

where T, is translation by (,y) and Rg is rotation by 0 around the origin. Note
that Crys, is trivially re-parameterized around (&', 3", 0, k') = Czyox(s) by translation
Tzi—zy-y and rotation Rg—g, both of which are invertible.

Corollary 8.1 C is a minimal model.

8.2 Initial Estimates

The first practical problem in extracting the thick traces of image curves is of course to
define how those curves are instantiated in an image, and how to design local operators
tuned for this instantiation and a particular point in the fibre. The discussion and
motivation surrounding the development of the Logical/Linear operators of Part II
clearly establishes them as candidates for this task. They classify image curves into
bright and dark lines and edges, their response profiles cover the Voronoi cells for
the zero-curvature subspace of our total space, and they represent a stable, logically
well-founded approximation of the intersection condition which forms the foundation
of the definition of the thick trace (Def. 2.10) at least for isolated curves. Significantly
too, the graded responses from these operators can be interpreted as a “strength of
agreement” between the abstract model and the image, a clear foundation for their
use as initial estimates in a relaxation. The only difliculty is that these operators are
uniquely tuned for straight lines, exhibiting a monotonic decrease in response with
increase in curvature.

There is however a clear path avound this impasse. Dobbins has developed a theory
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of end-stopping in visual cortex which equates this phenomenon with curvature tuning
of simple cells {DZCS88, Dob92]. In the situplest form, an end-stopped operator is
constructed by taking the difference between the responses of an excitatory compounent

R, and an inhibitory component. . via the formula

Rgs = G(o(fty) — o(11-)),

where

e ile20
Bz) = {

0 otherwise,
The effect of the rectification operator ¢ is to prevent a negative response to the in-
hibitory component from contributing positively to the aggregate operator. In Dob-
bins’ work this is justified neuropliysiologically by reference to the low spontancous
firing frequency of neurons in primary visual cortex. For our work, the pragmatic
effect is more significant.

If both component operators are matched in position, cross-section and orienta-
tion tuning, then any differences in their sensitivity to variation in curvature will
result in an aggregate response which is maximal lor some specific, possibly non-zero,
curvature. In particular assuming that hoth components have respouse maxima at
zero curvature (e.g. the L/L operators of Part [1), then if the excitatory component
is broadly curvature tuned and the inhibitory operator is tightly tuned, the aggregate
response will be maximal for some non-zero curvature. The behaviour can be seen in
Fig. 8.2.

Dobbins’ work and analysis was built on tlie assumption that the component
operators were linear, so there may he some hesitation in applying it unmodified
to the L/L operators we use. Firstly, we can can question whether the analysis
used to support the model applies to Lhese operators. Secondly, we can ask how
the rectifying non-linearity compares with the L/L nonlinearities? The first concern
is at least partly dealt with by referring to the linear part of the L/L paradigm.
Within the region of input space for which the /L operators give positive responses

(a restriction imposed by the rectifying operator) we can assert that we are within a
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Figure 8.2: Tuning profiles of end-stopped components can produce an ag-
gregate operator tuned for non-zero curvature even when both components are
] tuned for zero curvature. In both profiles, the responses of both excitatory and
inhibitory components are shown dotted and their rectified difference is shown
solid. In the case (a) where the curvature responses of hoth the excitatory and
inhibitory components of an end-stopped operator are syinmetric, the aggregate
response is also symmetric and thus tuned for the magnitude of curvature. When
[ (b) the inhibitory component has an asymmettic curvature response profile the
aggregate operator can be tuned for hoth magnitude and sign of curvature.
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single linear subspace of the input space. Thus at. least some of Dobbins’ extensive
linear analysis can be rehabilitated for onr non-linear operators. To deal with the
second, we need only observe that the rectification operator ¢(z) is, at least in the

ideal sense, a Logical/Linear combinator itself! Counsider the equation
o) = G4

So there should be little conceptual difficulty in applying this “end-stopping equals

“curvature” methodology to the desigu of L/L operators.

The one final concern is that the simple Dobbins’ operator selects only curva-
ture magnitude, whereas it is essential to discriminate both sign and magnitude of
curvature. As seen in Fig. 8.2b this con be achieved with an asymmetric inhibitory
response. Significantly, this asymmetry can be obtained by creating an inhibitory
operator formed from a subset of the normal components whicli form the excitatory
operator. For example, for the positive contrast line operator we produce the in-
hibitory component by selecting the normal components whicli are on the side eway
from the preferred sign of curvature. Referring back to eq. (5.7) we thus describe the

normal cross-section of the inhibitory operator as

Ni_ = wan! o
Np. = nlau®,

depending on whether we are designing an operator for positive or negative curvature.
Thus we can extend our design from Chap. 5 to support curvature tuning.

Operator 8.1 The Logical/Lincar imaye curoc operalors W; tuned for non-zero cur-

vatures are given by

U, = Wy — dlw_W,2),
\I’H. = (L- XN£+)A(t+ XNH-)’

LIRS T4
VE = (o x NE) A (1h_ x NE),
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where w,. and w_ are weights, i € {P, N, £} and a,_ > 044 and

Ney = njHnlih 1153) FAS us,:”

Nie = nipaal®

N = nlan® for Positive Contrast Lines;
Nyt = —nid—nla—n"a-nt

Ni. = -—nla-ul

Ny- = —=nl4p-n? for Negative Contrast Lines;
Negs = ntanfan’Anant

Nt = ofon”

Nz. = n’4pnl® for Edges.

Examples of these operators for bright lines (WUp) are show in Fig. 8.3. The
curvature responses of these two operators are shown in Fig. 8.4. Note that normal
to the preferred orientation, each operator smooths with a Gaussian with o, = v/2/2
and localizes maxima to a region v/2 pixels wide. This produces a family of operators
tuned for perhaps the smallest scale possible while still reliably eliminating noise. At
this scale, 5 pixels is close to the minimum radius of a circle which can be reliably
distinguished from a blob and simultaneously categorized into either a line or edge-like
discontinuity. This is the source of the limit, £ = 0.2

Having seen that these operators are tuned for position, orientation and curvature
(the basis functions of the total space), the final piece ol data needed to justify their
use as estimators for the thick trace of image curves is some match between their
sensitivity and the Voronoi cells of the sampling. Consider a response map over
the points ¢; in the total space E¢ for an ideal image formed from the model curve
Ce;. In order to ensure that there are no blind-spots in the operators (ideal curves
which no operator will respond to), we must ensure that the total space is covered
by the positive responses of the aperators to these ideal stimuli. Locally, this means
that if we map the positive responses of an individual operator varying the position,
orientation, and curvature of the stimulus curve—the sensitivity region must cover

the respective Voronoi cell.



8 lmage Curves

]

)

) o
e e |

}

(a) (b)

Figure 8.3: Excitatory and inhibitory parts of curvature tuned positive con-

) trast line operators. For each of the operators shown, the aggregate response
is the difference between the response to the excitatory operator (top) and the
inhibitory operator {(bottom} is the aggregate response. According to Lhe results
of Dobbins [Dob92] this respanse should he tuned to a particular combination
of orientation and curvature, dependent on the relative lengihs of the excitatory

) and inhibitory operators. Two end-stopped bright line operators are shown: (a)
tuned for curvature £ = —0.2, and {b) £ = -0.1.
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(a) {1 {c)

Figure 8.4: Curvature responses for the two curved line operators of Fig. 8.3
and a straight (zero-curvature) operator, These are obtained by examining the
response to an ideal curve of width 2 pixels, The responses are for operators
tuned for (a) £ = =0.2, (b) & = =0.1, and (¢) £ = 0.

. Excilator Inhibitor
Lines Y Y
g |y |0y | o= [ we [ n-

k= 00280114 [ —
£=20.1]240]12} 4 [ 3.2
e=£02[1.67[13] 2 [ 2.3

4
4

[g%)

(R R
2ol

Edges Excitatory " Inhibitory

Ty | Wy |0y || o= | w2 | nc

k= 00[280[150] 4] —]—]—
k=01 240|1.60| 4 || 32|30 4
k=202 167|175 | 2 || 23 3.5 4

Table 8.1: Parameters for curvature tuned line and edge operators. All op-
erators used have the same normal parametors @, = V2 and ¢ = /2/2, thus
restricting responses to aspatinl region within the radius of a square pixel around
the curve. The parameters which are varied for curvature tuning are the tan-
gential extent oy, number of tangential regions n, and the relative weights w of
excitatory (+) and inhibitory (=} components.

Immage Curves
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Figure 8.5: The surfaces shown here are the responses of the curved line opera-
tors as we systematically vary model position in the total space Ee of our image
curve model C. These are obtained by generating ideal model enrves (positive
y contrast circles) parameterized around the modol points shown as axes of the
graphs. The responses are then oltained by simply computing the L/L response
to the operator examined. The responses are organized in columns with (a)

g = =02, (b) & = =0.1, and (¢} # = 0.0. Because of the equivalence of the
operators under rotation and translation, we examine only the operator response
) at the origin and zero orientation.
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We examine this by producing a series of maps of cross-sections through the opera-
tor's sensitivity map. The relevant maps for each of the bright line operators described
in Table 8.1 are shown in Fig. 8.5. The non-zero responses in these maps represent
ideal curves to which the operator responds—these non-zero responses should cover
the Voronoi cell for which the operator is tuned. We can see that as long as spatial
sampling has radius less than & | pixel, orientation sampling has radius less than ~
15°, and curvature sampling has radins less than & 0.15, then these operators will

cover the total space.

8.3 Relaxation

We can see from both the idealized probe stimuli and the empirical tests with real
images that the L/L operators do not produce fully consistent thick traces of the
image curves. The response maps for even ideal curves are not perfect matches
for the Voronoi cells. Significantly too, the operators are not entirely insensitive to
noise and other variations from the ideal, which cause both gaps and extraneous,
noisy responses. To szeparate ihe signal from the noise and fill in these gaps, we use
the local geometric information which the responses represent to construct smooth,
connected thick traces. This means developing a relaxation labelling network which
verifies membership in such a trace, using the confidences from the L/L operators as
a starting point, and relaxing to equilibrium,.

Following the analysis in §7.3 we use the asymmetric compatibility to define re-
laxation support. As we can see from Fig. 8.Gb, this is accomplished by choosing e}
as the perpendicular projection of ¢; onto the circle generated by e;. Assume for a

moment that e; = (0,0,0,x;), and ¢; = (;, 35,05, £;) then we can conclude that!

o = arg(wivyi — 1/r;).

1The function arg(z, y) is the angle of the ray from the origin to (x, y).
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(2) (1)

Figure 8.8: The calculation of compatibility for the inage curve inodel € starts

with the solution to the minimization problem in o). (7.2). In (&) is shown the

geometric solution of this problen. In () is shown the geometric solution of the

related asymmetric problem, which is salvable algehraicly (see eq. (8.1)). The
’ asymmetric compatibility is the basis for the support calculations.
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then
sin(e)/s;
oo | meonts |
o+ 7f2
Kj

unless £; = 0, in which case it becomes
e = («:,0,0,0).
Thus in the general case e; = (x;,y;,0;,/;)

¢ = al'g('T':r,,yJ ]'{0,(""1'3 yl) - (01 ‘l/h'J))
sin{@)/k;

e = Tuy Ro (1 — cos{®))/x; _ (8.1)
¢+ 7f2

iy

Note that this perpendicular projection (the tubular map) is unique for every point
in the total space except the center of the circle. Thus the tubular neighbourhood is

total except for the singularity.

From this, we can immediately define the structure of the geometric support

around the point e; = (=;, 1, ¢, &) in the sampled total space.

da(eie;) = lef —eil,

di(eies) = |gfn;l.
The basis functions for the tubular neighbourhood 4; are most naturally:

N = (—sin;,cost;,0,0)

v = (0,0,1,0)

Y3 (U,U,U,l)
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8. Image Curves

Figure 8.7: Shown are the lateral inhibition component networks of the full
support network for a curve label with 8; = 0.0 " and &; = 0.1. The interactions
shown are (a) rl;, (b) r%, (c) r¥;, (d) r};. Note that (a) and (b) together select
local maxima in position, (c) and (d) in orientation,
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(a) (b)

Figure 8.7: (continued) Shown are the lateral inhibition component networks
of the full support network for a curve label with 8; = 0.0° and x; = 0.1, The
interactions shown are (e} rf;, and (f) rf;. Note that (e) and (f) together select
local maxima in curvature.

Thus we have six components which make up the support around e;:

r; = Giles—pm), 14 = =G (ei+pm),
o= Ghlei—pm), rh = —Gi(e+om),
o= Gilei—pn)  rh = —Gila+pm),

where

Gi(e)) = Gou(de(ene;)) Gouldi(er, ).

From §7.3 we have the constraints oy > g, > p > 0.5 and ¢, < 1. We use the values
o. = p = v/2/2 and o, = 2.5. The support components calculated with these values
are shown in Fig. 8.9.

The boundary stability partition is straightforward. Since the model is one-

dimensional, we can use the partition developed for lines
¢ = (cos®;,siné;,0,0),
s(eie;) = (- (e —e),
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8. lmage Curves

milene) = o(slen)),

q;.((-.-. ('_,;) = a’(-s(c,-, ('_,‘)).

In the same way that the end-line extensions deseribed in §5.2, increased the re-
liability of the initial operators, we may increase the specificity of the support if we
partition into more than two regions and then combine using a stronger combina-
tion condition. Partitioning the support network into more than two regions can
be achieved by the same means as for the curve operators, since the curve model
is parameterized by arc-length s(e;,¢;). I (s),...,8,} is an increasing sequence of

partition points, then we can partition by the characteristic functions ¢

qi(ei e5) = ols) = s{ei,e;))
qilei e;) = a(s, = s(en o)) +o(s(eie;) —sim) =1

qﬂ(ehe.‘i) = O'(S(t.',',t:‘j)—.ﬁ,,_]).

such that
-[E(C) G'{e:) gleire;) de; = /.

The tangential components of this support network are then

S = A 3w rf;‘
O ]

To combine these component respouses we could acdopt either the simple or the
majority combination from §5.2. In this case, one of the goals of the relaxation is to
interpolate between nearby compatible curves, The “simple” combination rule has
a strong veto for the central regions, so it is uulikely to achieve this interpolation.
The “majority” rule is more lenient, but complicated Lo implement in terms of the
basic L/L combinators. Instead we seek an L/L combination which will interpolate
positive support into gaps only wlien there is no lacal negative support. Of course,
this combination must also be end-line stable as outlined in 5.2, The solution we

adopt is derived from an extension of the principle of “surround” introduced in §7.3.1.
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(c) (d)

Figure 8.8: Decomposition into regions of the support network for a curve label
with 6; = 0.0 " and «; = 0.1, Shown are the linear reductions of the networks for
four regions divided such that the ideal support from each region is equal.
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8. Image Curves

We start with an analogy. Imagine you are standing at a point and must determine
whether you are surrounded by gunmen. You look around. If the first person you see
in all directions has a gun, then you are surrounded. Any unarmed person between
you and the gunmen is evidence thal you may not be surrounded. Applying this
principle to the partition of the support network above, "all directions” simply means
s < 0 and s > 0, while “the first. person™ W each direction is the fivst unambiguous
response from one of the tangential support components! To embody this principle
then, the “surround” combinator should combine responses by selecting the nearest
unambiguous response and then adding to it those responses from further regions
which agree in sign. So if the nearest unambiguons is positive then we add together
all positive responses, and vice versa.

This process can be formalized by using the p-approximate L/I. combinators with

p < 00. In that case, the response « is ambiguous when @ € [=1/2p,1/2p], or when
apla) =) > 0
The responses z and y have the same sign when
o,(r)yo,(y) >0 or a,(=»)a,(-y)> 0.
Definition 8.2 For four regions {S}, 5%, 52,57} the surrownd combination is given

by
I.C.li = l.qi- A ..ql~+,

where

S; o= 4 8! (0,(S)0u(S) + o =SP) 7, (=51) + 20,(S2) 7,(~52)
St = 84 8¢ (0,(S0ul(SY) + 7, (~SP) 3, (~51) + 20,(SP) 7,(~SP).
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8. Image Curves
Thus if S =0, then S = S!. For p = oc, we have
ST = SPand St = §F

] * t

therefore S, = 5 A g3,

t 1

So it is fair to consider this to be a kind of Logical/Linear combinator. It is equivalent
to a simple Boolean combination of the signs of the inputs and the output is always
a linear combination of the wnumbiguous component. responses. It is, however, only
well-defined for p < oo.

The identities above also clearly show that this combination will be end-line stable,
since the combination §? A S? would he. Thus for this combination of support, the
point e; will receive positive support as long as there are unambiguous support regions
surrounding the point e;. Thus, Lhe surround combinator interpolates into gaps only
when surrounded and when local supports do not contradict the interpolation. This

is the behaviour we set out to design alove.

8.4 Results

We will reserve most of the comments on specific results to the figure captions, and
concentrate only on general points. Both the line and edge compatibilities were calcu-
lated with the same set of parameters, Curvature was sampled into five classes with
values {—0.2,-0.1,0.0,0.1,0.2 }, and direction was sampled into either 8 (lines) or
16 (edges) discrete direction classes. In Loth cases, the difference between adjacent
directions was 22,5°. Tle lateral components ol the support were implemented with
6. = € = /2/2, normalized to the distance metric. The tangential extent was deter-
mined by setting o; = 2.5 and dividing into fonr regious for end-line stability. The
compatibilities were normalized so that the maxinmum possible support for a label is
1 and only those compatibilities greater than 5% of maximum were used. The relax-
ation was performed with a step-size of 4 = 1. Finally, tle initial measurements used

the p-approximate L/L operators with p = 16, and the relaxation used the adaptive
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8. Image Curves

Figure B.9: A selection of the support networks for the image curve model
C. The networks shown are the linear reductions of the full support networks
for a sampling with 8 orientations and 5 curvatures { -0.2,-0.1,0.0,0.1,0.2 }.
) Shown are the networks supporting the labels (a) 6; = 0°and x; = —0.2, (b)
8; = 22.5" and k; = =0.1, (c) 6; = 45" and ; = 0.0, (d) 6; = (7.5  and &; = 0.1.
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8. Image Curves

p-approximates with p/ = 4.

To this point, we have not mentioued implementation at all. The system itself was
developed using a general image processing package developed by the author for the
MasPar MP-1. A SIMD parallel machine, the MasPar has between 1024 and 16384 4-
bit processors arranged in a planar array. Since all of the computations in this system
are either pointwise or involve only local communication, it was straightforward to
map the processing elements to both L/L operators and individual nodes in the .
relaxation. The resulting system will run on both the MasPar and uniprocessor
machines.

In examining the results we observe a number of general principles:

o In no case is structure “created™ by the relaxation. The only interpolation
performed is into regions surrounded by consistent structure. Thus small gaps

in curves are filled in, but large gaps result in distinct traces,

o The end-points of curves and lines are apparently stable, even when a number of
independent curves have coincident. end-points. These coincident endpoints are
the building blocks for much higher level processing as they signal the presence

of corners, und junctions.

o Curves do not inlerferc wilh ecch olher when they cross. This independence
is a function of their relative orientations at the crossing point. In general,
two crossing curves will not interfere as long as the difference between their
orientations is greater than the difference between adjacent orientations in the
sampling. With orientation sampled at 22.5" intervals there will be no inter-
ference for incident angles greater than 45 7. A finer sminpling will decrease this

threshold.

o In certain cases, bifurcations in curves are clearly described at a point by a
single trace approaching from one side and multiple traces approaching from

the other.
o Isolated points are not eliminated, but their confidences remain uniformly low,
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since they receive positive support only from themselves. Thus they may be

“seen” or noticed only ai the boundaries of the system’s own discriminability.

There is no need to adapt the initial operators or the relaxalion compatibilities
to different situations. The images used vary greatly in contrast and noisiness,
yet the results are uniformly good. This is not to say that there is no need
for adaptability or contrast renormalization in the initial operator responses—
their responses may improve [rom these enhancements. However, note that the
relaxation network is completely independent of the actual image, depending
only on the geometry of curves and the representation we have chosen for that
geometry. So the only thing that such changes might effect would be the quality

of the starting point for the relaxation,
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8. Image Curves

Figure 8.10: One of the basic tasks in interpreting a cerebral angiogram (a) is
to recognize and describe the blood vessels, which show up as bright lines. The
images are typically noisy and of low contrast. Shown are the results of applying
initial bright line operators (b), followed by 5 iterations of geometric relaxation
(c). The darkness of the lines displayed is proportional to the label confidence.
There are a number of features to note here: the sharpening of corners, the
enhancement of long faint curves, and the filling in of short gaps.
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) Figure 8.11: Two graphs showing the progress of the angiogram relaxation
through five iterations. In (a) is shown the wotal consistency of the labelling
after each iteration. We see that increases unilorinty and quickly, In (b) is shown
the number of labels with non-zero confidence alter each iteration, Clearly the
relaxation is quite selective, eliminating hall of the Iabels alter 5 iterations.
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Figure 8.12: The state of the relaxation of the bright lines in the cerebral
angiogram after initial operators (top left), and through five iterations {across
and down).
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Figure 8.13: A detail of the angiogram showing an area from the lower left (a),
initial operator responses {b), and the results after 5 iterations (c). Note the
removal of the “hair” around line endings, the increase in accuracy of the local
curvature estimates (shown by the curvature of the segments), the stability of

junctions and corners, and the filling in of short gaps.
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(b) (<)

Figure B8.14: A detail of the angiogram showing a loop in the upper right
(a), initial operator responses (b), and the results after 5 iterations (c). Note
the increasing accuracy of the curvature estimates, the stability of the crossings
and end-points, the filling in of short gaps. Of particular interest is the clear
description of the bifurcation which seems to occur in the lower part of the
image.
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8. Image Curves

Figure 8.15: Retinal microgram showing blood vessels on the retina (a), and
the results of applying initial bright line operators (b), followed by 5 iterations of
geometric relaxation (c). The major and most of the minor blood vessels show

) up clearly, The tree structure is readily apparent although in many places the
branch points of the tree seem disconnected. Where these gaps are observed is
exactly where the major vessels are more than two pixels wide, thus the minor
vessels generally abut on the boundury of these vessels.
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(b)

and the results of applying initial bright line

a),

(

operators (b), followed by 5 iterations of geometric relaxation (c). There is
virtually no interference between nearby curves even when they are parallel.

Figure 8.16: Fingerprint
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Figure 8.17: Fingerprint (a), and the results of applying initizl edge operators
(b), followed by 5 iterations of geometric relaxation {c). Note the correspon-
dence between the edge terminations and discontinuities, and between bifurca-
tion points. The flaws in the fingerprint also show up clearly. And again there
seems to be little or no interference between nearby edges even though in some
cases they are separated by as little as two or three pixels.
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Figure 8.18: The statue image from Chap. 6 (a), and the results of applying
initial edge operators (b), followed by 5 iterations of geometric relaxation (c).
Since little detail is visible, note only the elimination of much background noise
and the enhancement of the major bounding contours.

146



8. Image Curves

(b) (c)

Figure 8.19: A detail of the statue image showing the area around the hand-
neck occlusion (a), initial operator responses (b}, and the results after 5 iter-
ations of relaxation of the edge responses (c). Note the clear T-junction and
corner where the hand is occluded by the neck and hair. Note also the ability
of the relaxation to extract structure from very complicated regions like the fall
of hair and the tuft at the nape of the neck.
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(b) (c)

Figure 8.20: A detail of the statue image showing an area from the lower left
(a), initial operator responses (b}, and the results after 5 iterations (c). Note
the evolution of the local curvatures and the accuracy of the resulting sketch. In
regions of such high curvature a curve smoothing system which minimized total
curvature would likely displace the features significantly.
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)
)
(b) (c)

)
Figure 8.21: A detail of the statue image showing an area from the lower right
(a), initial operator responses (b), and the results after 5 iterations (c}. Note
that within a two-pixel neighbourhood there is both a T-junction and apparent
bifurcation. There seems to be little or no interference between them.

)
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Chapter 9 Texture Flow

Texture flow is a term we use to descrihe a certain class of oriented, static textures.
These textures consist of locally parallel, oriented elements which form a direction
field in the image. Familiar examples of such textures are random dot moiré patterns
(or Glass patterns [Gla73]) and hair patterns,

The perception of such textures has been extensively investigated, in both psy-
chophysical [Gla73, GS76, LZS7, ZIII90] and computational realms [Ste78, Zuc84,
KW87, RS91]. We will rely on two ohservations from the psychophysics to focus the
development of the computations below. The first of these is that sparse orientation
information can give rise to a dense texture (low percept, with implicit orientation
perceived everywhere inside the field. This suggests that a great deal of interpola-
tion is being performed. Because some of the effects observed (e.g. with moving,
overlapping fields [Z1H90]) seem to indicate that very low-level features are implicitly
constructed (i.e. as illusory features) within the interpolated areas—we suggest that
this interpolation takes place early in tlie processing stream.

The second observation which we regard as significant has to do with the percep-
tion of discontinuities in these fields. In psychophysical experiments it was shown
that, as with curves, the ability to reliably locate discontinuities in texture flow fields
depends on the availability of loca! curvature information [LZ87). Thus as with image
curves, we conclude from this that curvature information is explicitly managed in
the inference of texture flow fields. We will show below how local curvature can be
defined in such a field.

The description of texture flow fields will thevefore involve the computation of
dense descriptions interpolated from potentially sparse initial orientation estimates.
These estimates will be provided by L/L operators tuned for both orientation and local
curvature. Furthermore, the interpolation process will allow muitiple, transparent

flows to coexist in a region and will stabilize the discontinuities and boundaries of the
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'.i' Q-_W!"i—_l”l "

Figure 9.1: Two examples of texture flow: (a) a hair pattern taken from
[Bro66), and (b) an artificial Glass pattern. These are both perceived as dense,
locally parallel fields of oriented texture.

flow fields themselves. As we have shown, these goals can be achieved by implementing
the interpolation as a relaxation labelling process designed to extract thick traces of
smooth texture flows. We will show that the relaxation will interpolate a dense ficld
from sparse inputs without arbitrarily smoothing over discontinuities. This chapter
will cover the definition and implementation of this system.

Before continuing, it is important to point out a significant analogy. It has been
suggested that the similarities between texture flow and optical flow may be sign'[ﬁr.zmt.
[RS91]. In fact, a2 smooth texture flow may be modelled as the direction map of a
smooth velocity field. Beyond this there are basic similarities in the perception of

these phenomena which we feel expose similar styles of processing:
¢ Both flows give rise to dense percepts from sparse data;
¢ Both are stable with respect to transparency; and
o Both are stable at boundaries.

The last two of these are issues which are simply not considered by current theories of
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processing either texture “ow [KW87, RS41] or optical flow [HS81, Hee87]. A system
which can produce accurate descriptions of piccewise smooth texture fields, such as

the one described below, will require little modification to also work for optic flow.

9.1 Representation

We derive our model of texture flow F {rom a two-dimensional motion field by as-
sociating the direction of flow in the motion field with a static orientation in the
texture.

The simplest such motion field is clearly just constant paraliel low. However,
acceleration is a significant parameter in understanding motion flow (it is associated
with rotation and looming), and as we shall see is related to the curvature of the
static flow field. Thus we augment our flow model with curl and divergence terms,
generating a local non-deforming ficld with constant curl and divergence. Such a field

F(z,y) on the plane is defined by the equation

I 1 =,y + g

Flz,y) =

Iy Rod =+ Ky
Diflerentiation will verify that the divergence of this field is 2k, and the curl is 2k,.
Orientation maps of this field for a munber of values of &, and &, is shown in Fig. 9.2,
The choice of the symbols &, and &, is perhaps puzzling since & is usually asso-
ciated with curvature. We justify this clioice by examining the field at the origin.

Consider the local direction of the ficld

0(:!:, y) = arg{f. fy)'

If we take u as the unit vector parallel to the field at the origin and v as the unit

normal then

. Uleun
Ky = lun (ew)
1=#) ¢

*
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Figure 9.2: Four direction fickls centered around the origin (circled). The
fields are generated with # = 0 at the origin and (a) #, = 0.0 and &, = 0.0,
(b) ky = 0.1 and &, = 0.0, (¢} £, = 0.0 and &, = 0.2, and (d) «, = 0.1 and

Ky = 0.2. All fields are direction fiekls for velocity fields with constant curl and
divergence.
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Ko = !l—;nll ﬂ%ﬂ
Thus «, is a measure of change of otientation tangent to the field and &, is the change
of orientation normal to the ficld. Therelore we refer 1o &, as the langent curvature
and k, as the normal curvature.

We now have all of the building blocks needed to represent this texture flow field.
Since this is a static image, our base space is again the iimage plane X'. The fibre is now
three-dimensional including direction and two curvatures F'= 0 x K, x K,. Thus a
point in the total space E(F) is ¢; = (@, yi, Uiy Ry £ui). Sampling this fibre regularly
can be done with the same samplings nsed in Chap. 8. For n discrete orientations, we
sample at the points §; = iw/n for i € {0,...,n — 1 }. Both curvatures are sampled
regularly over the range A, = N\, = [—fuax Funs]. With m curvatures we sample
at £; = Kpax(—1+ 27/(n = 1)) for 5 € {0,...,m—=1}. The L, metrics for the

components of this total space are then

|0; — 8; moxl.
Tfn
{hus — g
?'Hlmm/(mu -1)
|"'m' - H‘"J'
26 gaxf (My = 1)

l‘l’(”,‘,ﬂj) =

d(""ﬂh H‘uj) =

(snistin;) =

and d(e;, ;) is the L, combination of these metrics. The resulting Voronoi cells are
5-dimensional cubes.

The model derived front these coustraints is straightforward. The directions de-
rived from the motion field form the basic structure of the texture flow cross-sections
Fe; which form the model F = { I}, }. The parameterization of F over the base

space (z,y) gives a natural parameterization of the model. As with image curves we
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initially define the model around the origin.

(o)
y

Flayg) = | ang(f 1) |
tulryy)

\ #elryy)

where

fulz,y) = (feru + fyrin + (Lr = Loy + H-f’))/(ff- + f3)3/'1
Ko(2,y) = (Jero — Jytu + (for + fyy)(""u.z + "uz))/(f: + f:):’fﬂ

The «, and &, components of this model are derived by reparameterizing the field

around (z,y). This can be done easily by noting that the field f(x,y) is singular at

( —hy, Ky )
. 0 . . .
Kot + 1?2 ki R2

By maintaining the location of this singularity and caleulating s, and &, with respect
to the direction 8(z,y) we obtain the curvature values above.

Finally, we define the extension of the model cross-section over the base space by
reparameterizing the static field at each point in the base space. As with image curves

this is simply the translation and rotation of the fields defined around the origin.

( \

-
y
Foposuwo(0y) = Toye Ro | ag(fn 1))
(2, y)
\ Fulrry) )

Note that x, and &, are invariant nuder rotation, since they are defined with respect

to the local orientation. Siuce the transport of the feld is actually defined by a
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reparameterization,

Corollary 9.1 The model F is ininimal,

9.2 Initial Estimates

The initial measurement of confidence is so similar to that used for image curves that
we need only slightly modify these estimates for texture flow. As we noted above, the
tangent curvature is a measure of change of otientation parallel to the field. Because
of this, there is a natural mapping from curved line or edge operators to operators
for texture flows with &, = 0. There is a dilficulty, however, in deriving operators
specific to non-zero normal curvatures. Before we explain how this might be resolved,
we modify the image curve operators slightly.

Psychopliysical evidence suggests that locally correlated dots in Glass patterns
must be of similar contrast in order to create a flow-like percept [GS76]. As one
way of interpreting this, we suggest thal the features underlying texture flow are
contrast-sign specific, but that the responses from these building blocks combine
across contrast and kind. That is, only oviented features with locally consistent
contrast (i.e. bright or dark lines) will contribute to the texture flow field, but the
responses for both signs of contrast will contribute equally to the sume texture flow
field. This is an argument for a complex cell [ITWV62] or “edge energy” building block
[MB88], which responds equally to cither contrast sign, but which is insensitive to
neutral contrast inputs (e.g. a dot pair consisting of one white and on black dot).
Within the context of L/L operators, this leads to an obvious extension of the image
curve operatlors.

Operator 9.1 Select two L/L line operators Wpe and Wa for bright and dark lines
respectively, and two edge operators Wg and Wy for opposite contrast edges. If they
are all of the same size, and tuned for the same orientation and curvature then a L/L
curved texture flow operator tuned for the given orientation and tangent curvature is
given by

Ve = Wp VWUV WV \IJ:E_
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Now we come back to the question ol how to develop to obtain initial estimates
of the normal curvature &,. One approach would be to augment these local operators
with laterally displaced ofl-parailel compounents, but it is not clear how effective this
would be. In general it should not he a requirement for the perception of a divergent
flow that there be matched pairs of of[-parallel line segiments (sec Fig. b).

Instead we have chosen an alternative strategy. We use the relaxation network
itself to develop the estimates of normal curvature. This is possible only because &,
is a directional derivative of £. If the initial direction estimates are accurate, then
K, is constrained everywhere by the local variation in this direction field. We thus
initialize all estimates of p; for a purticular position, orientation and tangent eurvature
with the tuned initial estimates {rom Op. 9.1. All normal curvatures at this point
are initialized with the same value. The relaxation then uses this starting position
without the lateral components which restrich positive supports to local maxima in
normal curvature. In this way, a local estimate of the normal curvature is actually
derived from the texture flow support field. This is similar to the approach used by

Parent [PZ85] to estimate local curvature without curvature-tuned local operators.

9.3 Relaxation

With image curves, had the initial operators performed perfectly (i.e. all and only
those operators on thick traces respond positively) we could have avoided the relax-
ation step entirely. In that case, it was largely the realization that no simple local
image operator can simultancously resolve all of the competing demands that the
thick trace representation requires and also be completely insensilive Lo noise. For
texture flow however, relaxation is not an option, even with perfect inputs. Remember
that texture flows generate a dense percept from potentially sparse data (e.g. Glass
patterns). Since the initial operators can only extract information from the image
data directly, the inference of dense strncture must be left up to some interpolation
process, in this case relaxation labelling. Moreover, as we showed zbove, the initial

estimates do not even provide a complete description of the model parameters. Thus
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9. Texture Flow

in order to create a dense description of the flow wliich includes normal curvature we
must incorporate a relaxation stage.

The design of the support network evolves directly from the equations in §7.3. The
model F developed above lias a simple tubular map. Since eacli model cross-section
covers the entire base space, in order to calculute ¢f for a given ¢; we need only project
onto F, on the fibre over e;. Assume for the moment that ¢; = (0,0,0, £y, £,) and
e; = (2,9, 0iy Kuir Bvi). Computing I on the fibre over e; (ie. at (z,y) = (i, 1)) we

thus have

()
Y
¢; = m'g(fa-,fu)
(1)
\ muly)

As with image curves, since only relative position (x; — x;,y; — ;) is significant,
we can transform this into general position by translation and rotation. Thus for

e = (0,0,0;, Kyjy kuy) and e; = (2,5, 05, Ky, k) we have

(z,y) = Reg, (=i —y;)

( 0 \
(}

ef = | arg(fafy) —0;
KTy y)

\  H(ny)

Thus gives the incompatibility and transport distances directly:

di(eie;) = d(ef =€),

de(eine;) = (a5,

We now have the necessary building blocks to define the local geometric support

for a texture flow label. Since the tubular map restricts the projection to an individual
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9. Textute Flow

Figure 9.3: The linear reduction of the texture flow field supporting a label
with §; =0, x, = -0.1, and &, = 0.0.

fibre, any basis for the fibre is a basis for the tubular neighbourhood of a point. Thus

the usual orthonormal basis for the fibre can be used, namely ' = {4, 73,73 } where

N = (01 01 11 0? 0)1
Y2 = (0) 01 01 17 0),
Ya = (O:Ua 0:0: 1)‘

However, since &, is a construct of the network, we do not create a pair of lateral
inhibition components in the <3 direction. Thus we have four lateral components

making up the support network around e; (shown in Fig. 9.4)
i = Gilei—pm), 1 = —Gilei+pm),
r'?j = Giui(el' _P'72): T?J = _Giui(ef +P'72):
where

Giei) = Go(dx(eir€;)) Gocldz(ei, €5))-
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(c) (d)

Figure 9.4: Shown are the four lateral inhibition component networks of the
full support network for a texture flow label with 8; = 0.0,s, = —0.1, and
xy = 0.0. The interactions shown are (a) rk, (b) r¥, (c) r§, (d) ri. Note that
(a) and (b} together select local maxima in orientation, (c} and (d) in tangent

curvature.
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9. Texture Flow

The decomposition into regions is simitarly straightforward. The real constraint
on this is that we wish discount the clfect of isolated curves, When a single curve
is not supported by other laterally displaced parallel curves, it should not by itself
cause a significant texture flow percept. Oue way to achieve this is to ensure that the
initial responses caused by a single curve arve segregated inlo just two of the quadrants
around a point. Since we are frce to choose eny orthonormal basis for the base space
X, we choose the one for whicl ¢; is offset by /4 from 0;. Thus if we set ) = 0;+ 7 /4

the basis is given by

G = (cosdl,sindl,0,0,0),

Co = (=sinf cos,0,0,0).
This produces four regions (sce Fig. Y.5):

qiei,e;) = (- (e —e)) oG - (€5 = €i}),
g2(eires) = oG- (ei—¢)) o (¢ — &),
aslei,e;) = o - (e — ei))alCa - (i — e5)),

qaleire;) = (- (ei— ;) a(Ce (e = ¢j)).

9.4 Results

For the most part, the paramelers coutrolling the texture flow relaxation are identi-
cal to those for image curves. We rense the image operators from Table 8.1 to build
the initial operators above. For this reason we have discretized s, into five classes
with values {-0.2,~0.1,0.0,0.1,0.2}, and # into 8 classes with the difference be-
tween adjacent directions was 22.5". The lateral components of the support were
implemented with o, = ¢ = v2/2, normalized to Lthe distance metric. Since x, is

a construct of the relaxation support, we tested discretizations with only one class
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(a) (b)

(c) (@)

Figure 8.5: Decomposition into regions of the support network for a texture
flow label with 6; = 0, ky; = —=0.1, and k,; = 0.0. Shown are the linear reductions
of the networks for four quadrants around the origin.
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Ky = 0 and with three &, € { =0.1,0.0,0.1 }. Since the &, values are not localized
with a pair of lateral inhibition components, we use a smaller o, = 0.5 in the &,
direction. As we explained above, the accuracy of the orientation estimates ensures
that the cross-section remains localized in this divection.

Since the support fields are circnlar, the support is divided into four boundary-
stability components as described ahove. The radius of this neighbourhood was estab-
lished by setting o, = 2.5. The compatibilities were normalized exactly as in Chap. 8
and only those within 5% of maximum were used. Finally, the initial measurements
used the p-approximate L/L operators with p = 16, aud the relaxation used the
adaptive p-approximates with p' = 4.

Note that except for the special treatment ol «, the parameters used in this case
are identical to those used for image curves, We take tlis as empirical verification of
the claim in §7.3 that the choice ol values for most of the “free parameters™ in the
relaxation is independent of tlie particular models used,

Again, we leave most of the specific comments on the resnlts to the figure captions,

and focus on general observations:

e The interpolation performed by the relaxation is very fast, producing dense
descriptions from initially sparse ones after only one or two iterations {Fig. 9.7).
Note also (Fig. 9.13) that the interpolation takes place even through non-empty

regions in the case of transparent. overlapping fields.

o The interpolation appears to be stable around singularities of the field such as

centers of rotation or expausion.

o Overlapping fields are clearly indicated by the presence of multiple, disjoint

labels coexisting at the same point in the image (Fig. 9.13).

e The boundaries of the regions appear to he stable and appear to “infer” a
smooth boundary around the field. One eflect of the “surround” requirement is
that these boundaries are slightly concave when they are interpolated through

blank regions.
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0. Texture Flow

o Discontinuities in the flow fickls are signalled hy eoineident boundaries (Fig. 9.11).

\ . The fields themselves need not actually overlap, but if the boundaries coincide
within a few pixels over a long distance, then they should be interpreted as a
texture discontinuity or occlusion and not. as independent transparent flows.

) o Flaws in the flow fields are clearly represented by either a hiole or a discontinuous
patch. This may be essential information in situations where the flaws are the
points of interest (e.g. for locating knots it wood).

)

)
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Figure 9.6: A circular Glass pattern (a), and the results of applying initial flow
operators {b), followed by 5 iterations of geometric relaxation (c). Note that the
flow is interpolated densely everywhere even though neither the image nor the
initial operator responses are dense.
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Figure 8.7: Thestate of the relaxation of the texture flow for the circular Glass

pattern after initial operators (top left), and through five iterations (across and

) down). Note that the interpolation takes place on the first two iterations after
. which orientations and curvatures are refined.
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Figure 9.8: A divergent Glass pattern (a), and the results of applying initial
flow operators (b), followed by 5 iterations of geometric relaxation (c). This
relaxation is performed with normal curvature x, = 0.0. Note that it is only
very near the singularity that we see an effect of the assumption that k, does

not vary from zero.
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Figure 9.9: A Glass pattern with both rotation and divergence (a), and the
results of applying initial flow operators (b), followed by 5 iterations of geometric
relaxation (c). This relaxation is performed with normal curvature s, = 0.0.
There are gaps in the field near the singularity, where the normal curvature
differs significantly from zero.
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Figure 8.10: A Glass pattern with both rotation and divergence (a), and the

results of applying initial flow operators (b), followed by 5 iterations of geomet-

ric relaxation {c). This relaxation is performed from the same starting point

as Fig. 9.13 except with three normal curvature classes &, € {-0.1,0.0,0.1}.

) There are no longer any gaps in the field near the singularity, where the normal
. curvature differs significantly from zero.
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Figure 9.11: A pattern of parallel lines with a local orientation discontinuity
(a), and the results of applying initial flow operators (b}, followed by 5 iterations
of geometric relaxation (c). The flow field extracted shows two distinct flow
fields with a common boundary (to within 2 pixels). Common boundaries signal
a discontinuity in the field, either because of a flow discontinuity or an occlusion.
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Figure 8.12: A Glass pattern with a local orientation discontinuity (a), and the
results of applying initial flow operators (b), followed by 5 iterations of geometric
relaxation (c). Note that exactly as with the ideal parallel lines, the flow field
extracted shows two distinct flow fields with a common boundary.
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9, Texture Flow
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9. Texture Flow
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Figure 9.15: Blowup of the fingerprint (a) and the flow field {b) around the
singularity. Shown are only the labels which received positive support at the 174
fifth iteration. Notice the curvatures associated with these labels. Also note the
“holes” at the singularity and rift.
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(c)

(b)

laxation (c). Note that the flow is stable around this very different type of
larity.

Figure 9.16: Another singularity in the fingerprint image (a), and the results
of applying initial flow operators (b), followed by 5 iterations of geometric re-

singu
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Figure 9.17: A picture of fur taken from [Bro66)], pp. 93 (a), and the results of
applying initial flow operators (b), followed by 5 iterations of geometric relax-
ation (c). The direction of flow varies smoothly over the image.
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9. Texture Flow

i
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|

Figure 9.18: A picture of tree bark taken from [Bro66), pp. 72 (a), and the
results of applying initial flow operators (b}, followed by 5 iterations of geometric
relaxation (c). Note the holes in the resulting flow field wherever there are knots
or flaws in the wood surface.
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Chapter 10 Conclusions

From a strict engineering point. of view, this thesis presented a general-purpose system
for analyzing curves and texture flow fields in early vision. In both cases, the results
obtained from this system are clearly accurate and robust.

For curves, the system is able to categorize the three kinds of local contrast-defined
image curves (bright and dark lines, and edges) accurately and without confusion.
The resulting descriptions stabilize the end-points of these curves, make coarse and
accurate measurements of hotli orientation and curvature, and implicitly represent
the locations of both corners and junction points, Moreover, the topological proper-
ties of the thick trace representation ensure that there is some continuous, smooth
model curve underlying each counected subset of points which survive the relaxation.
The resulting descriptions should be an excellent starting point for higher-level vision
systems. This is in contrast to the “industry-standard” alternatives now available
which: mislocalize line endings, are unable Lo properly represent corners and junc-
tions, impose continuity rather than revealing it, and depend on arbitrary thresholds
thus limiting sensitivity to faint stimnli.

For texture flow we have developed a system which can accurately describe smooth
texture flows in the presence of bolli discontinuities and transparency. It is able to
interpolate dense, smooth flows into blank regions, but only does so when those
regions are surrounded by consistent flow. This hehaviour seems to mimic human
perception when faced with Glass pattern stimuli. The system also localizes the
boundaries of regions of smootli flow even in the presence of independent, transparent
flows without such discontinuities. Altogether, the system presented is sufficient to
capture most of the fundamental properties which characterize the perception of such
flow-like textures.

Three new theoretical building blocks were developed in order to achieve these

goals: the thick trace distributed representations, the Logical/Linear algebra, and
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10. Conclusions

the theory of geometric compatibility lor relaxation labelling, In each case, the full
generality of the results should he clear. 1t shonld thus be straightforward to apply

the techniques we have developed to other problems in carly vision.

10.1 Future Directions

In considering the directions open lor future vescarch, we focus first on extensions Lo
the particular applications investigated, namely image curves and texture flows, and
then on broader issues.

Global Descriptions. The most obvious focus for future work is the integration
of these distributed representations into more global descriptions, Clearly a system
which produces more global representalions of curves or ficlds would be useful, espe-
cially one which made explicit some of the information which is implicit in the thick
traces: the locations of end-poiuts, corners, junctions and hifurcations. We hiave taken
care throughout to clearly define the descripticas which our system produces—thick
traces of cross-sections—and in Chap. 2 we described the properties of these Lraces,
so the input to such a system is well-defined. Moreover, a global integration problem
was solved implicitly during the desigu of the relaxation networks, using a technique
reminiscent of the solution for curves proposed in [DZ490]. It is still unclear, however,
how to efficiently integrate a connected trace of local descriptions into a unique global
description of a curve or flow field.

Scale. Another unresolved issue is the role of scale. In both of the systems
designed in this thesis, the scale of processing was fixed and restricted to the smallest
possible size with respect to tlic image sampling. Yet a curve which appeirs straight

locally may be pbviously curved if viewed more globally, and the same can be said

. of flow fields. Cur intuitions about the human visual systemn are often pointers to

solutions to general vision problems, and in this case our ability to choose the “right”
scale at which to describe a curve indicates that soine sort of multiscale representation
is being passed on to later stages of processing (after all we seem to be able to pick and

choose the scale we pay attention to depending on circumstances). Yet this multi-scale
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10. Conclusions

representation does not appear to he simply a function of smoothing (as suggested
by scale-space approaches [Wit86]), since fine low-contrast curves (which cannot be
detected once the image is smoothed) can produce very large, salient regions of low
perceived curvature. The same ellect is seen in random dot Moiré patterns in which
very small dots can be used to produce large, slowly curving fields. Clearly there is
something more going on here. One possible suggestion is provided by theories of
multi-grid relaxation {e.g. [Ter84]) which involve interactions hetween descriptions
at different scales.

Optical Flow. The means by which the texture flow model was developed in
Chap. 9 and of course the name “texture flow” deliberately evoke images of motion
fields. We suggest that the extractiou of optical flow may involve a natural extension
of the texture flow system to spatio-temporal images. The path is fairly clear. Linear
operators for detecting and describing local motion have been described {e.g. [Hee87))
and these would almost certaiuly henelit rom the introduction of L/L non-linearities.
Furthermore, just as the texture flow relaxation manages to resolve the competing
goals inherent when smoothing in the presence of discontinuities, so could a similar
approach to optical flow. Tle presence of transparent, overlapping fields is perhaps
even more endemic in motion that with static textures. Finally, short range motion
capture may be explained in terms of the “surround” processing of motion fields.

Implementation. Rather cousidering other applications of tliese ideas, another
issue of pressing importance is the question ol implementation. Even on modern
SIMD machines such as the MasPar or Connection Machine the computational scale
of the systems we have described can be overwhelming. Consider the combinatorics
of image curves. For the initial operators (for edges), we have 80 local operators each
of which is éomposed of 20 linear components. This means that 1600 convolutions of
the image are performed jusi to extract initial estimates. For a 512 x 512 image this
will produce an image bundle with 20.000,000 sampled points. To relax this system
involves evaluating as many as several hundred local interactions per node. At least
in scale, we have produced a system that has more in common with visual cortex

than “neural networks”.
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10, Counelisions

Yet there is hope for implementing these systews efliciently. We note that all
computations performed in the system can he decomposed into tdentical building

blocks of the form
yi = (Z‘HJ-"_;’)A (D biyry)
J J

where a;; and b;; are fized weights and the i, are small, bounded values communicated
over some local network. So the entire systems counsists of nothing more than fixed
summing networks and point non-lincarities, Morcover [or both the initial operator
responses and the relaxation iterations, o/l updules may be performed simultancously,
This suggests that some form of dedicated, bighly interconneeted VLSI system might
be able to perform these computations in veal-time.

But what would this system look like? The initial L/L operators were implemented
entirely in low-precision integer aritlimetic (8-16 bits), and the relaxation labelling
confidences were passed between iterations with similarly low-precision integers (8
bits). This suggests that useful systems can he developed with very low bit-rate
communication paths. A not nureasonuble path to pursue would thus be dedicated
VLSI, perhaps even analog VLSI [Mea89])., With interconnections built in and weights
either programmed or burned in, it would take no more than a few layers of hardware
to go from an image to a ully connected thick trace describing curves or texture flow,

Biology. The final suggestion [or [uture work is really just an exploration ol an
undercurrent of the entire project—the structure of hiological vision systems. Anyone
even vaguely familiar with the neurophysiology of early vision [HWG2, Orb84] will
have noticed echos of biology tlirougliont this work, We have previonsly investigated
some of the implications of the L/L operalors for theories of simple cells in visual
cortex [DIZ90). There were very promising councctions hetween the computational
theory and the behaviour of individual nenrons. We helieve that this should be
investigated further. Moreover, if the Logical/Linear non-lincarities do indeed have
correlates in the operations of newrons then the relaxation techniques may constitute

a theory of at least some of the interactions hetween nenrons in primary visual cortex.
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4-connected, 25
8-connected, 25

labelling
relaxation
two label, 84

base space, 19

bundle
discrete, 21
fibre, 19
image, 19, 84, 87, 116
natural product, 19
normal, 90
product, 19

cocircularity, 117
combination

majority, 67

simple, 67

surround, 133
compatibility, 95

asymmetric, 93

continuous, 87

discrete, 92

relaxation labelling, 84
compatible subset, 95
connectivity

discrete, 26

graph, 25, 26

strong, 25

weak, 25
consistency

average local, 84
convolution, 11
cross-section, 19, 21, 33, 84, 84, 92
curvature

normal, 154

tangent, 154
curve

image, 39

delta function, 11, 22

Index

description, 3
Dirac. see delta function
Dirichilet tiling, 13
discretization
decreasing sequence, 15
of functions, 11
sithset, 18
valid, 14

wdge, 39
[ihre, 19
graph, 19

image

bundle, 19, 84, 116
image curve, 115
incompatibility, 91
irreducible covering, 18

lahelling
assigniment,, 83, 85
consistent, 84, 84
relaxalion, 83
support, 84
unambiguous, 84

line
negative contrast, 39
positive contrast, 39

logical /linear
p-approximates, 49, 52
combinators, 44
convolution, 48
operator, 38, 44

minimal projection, 91
moclel, 87
geometric, 87
minimal, 87
parameterized, 89

normal condition, 39

operator
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edge, 60
image curve, 68
curved, 121
inflection, 59
line
bright, 58
dark, 59
local maxima, 57
tangent continuity, 64

parameterization, 89
partition, 87

point-spread function, 11, 16
projection, 19

quadrant
generalized, 110
quantization, 18

radius, see Voronoi radius
reduction, 49
relaxation
labelling, 83
two label, 84
representation, 3

sampling, 10
sparse, 13
unbiased, 95
stability
boundary, 108
end-line, 63
straight lines, 88
strong connectivity, see connectivity
submanifold, 20
support
geometric, 102, 105
regions, 112
support components
lateral, 104
regions, 112

thick trace, see trace, thick
thin

trace, 4
thin trace, see trace, thin
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total space, 19
trace, 19
discrote, 21
thick, 4, 23, 23, 92, 93, 116, 118,
122, 126
thin, 22, 22-24
transporl distance, 90
tubular map, 90, 128
tubular neiglhihourhood, 90, 128

Varonoi
cell, 13, 16
diagram, 13
kernel, 13
radius, 13

weak counectivity, see connectivity
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