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ABSTRACT 

The problems of Connection-oriented Networking CaU Admission Control (CAC) and 

Routing Control (RC) in Integrated Networks are formulated as finite and infinite 

horizon finite-state Stochastic Dynamic Programs. In particular, Poisson Markovian 

communication networks are analysed in detail. Because of the complexity of com­

munication networks and of the operation of sorne kind of communication networks, 

such as the Internet, by multi-agents, it is effectively impossible to obtain the optimal 

solutions. Currently it is reasonable to use decentralized aggregation methods to ob­

tain sub-optimal solutions for CAC and RC communication problems. In this thesis, 

stochastic dynamic programming methods for the optimal control of such network are 

studied. The notion of a doubly stochastic network, which possesses Markovian aggre­

gated dynamics, is introduced, this is exploited in the hierarchical stochastic control 

of such hierarchical networks. 



, , 
RESUME 

Les problèmes de Contrôle d'appels (CAC) des Réseaux du contrôle de cheminement 

(Re) dans les réseaux intégrés sont formulés en tant que programmes dynamiques 

stochastiques d'etats finis, finis et infinis. En particulier, les réseaux de transmission 

markoviens de Poisson sont analysés en détail. En raison de la complexité des réseaux 

de transmission, il est évidemment impossible d'obtenir les solutions optimales. En 

pratique, il est raisonnable d'employer des méthodes décentralisées d'agrégation pour 

obtenir les solutions suboptimales pour des problèmes de CAC et de transmission de 

RC. Dans cette thèse, on étudie des méthodes de programmation dynamiques stochas­

tiques pour la commande optimale d'un tel réseau. En particulier, on présente la 

notion d'un réseau doublement stochastique possédant la dynamique agrégée Markovi­

enne; cette notion étant exploiteé dans la commande stochastique hiérarchique de tels 

réseaux. 
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CHAPTER 1 

Introduction 

Due to the complexity of communication networks, the CalI Admission Control(CAC) 

and Routing Control(RC) problems have been formulated as stochastic control prob­

lems for which a large number of suboptimal solutions have been proposed and partially 

analyzed ([3],[4],[8]). Indeed, because of the complexity of communication networks, it 

is effectively impossible to implement the solutions to the underlying optimal stochas­

tic control problems. Among the recent analyses of interest, Dziong and Mason ([3]) 

obtained suboptimal solutions by assuming the statistical independence of each link 

in the communication network; Marbach et al. ([4]) obtained the approximation re­

suIt by the method of neuro-dynamic programming where their method for multi-link 

networks is actually an extension of one for the single-link case. 

ln this thesis, we connect the fundamental optimal control theory of point processes, 

which dates back to 1970s ([5],[6],[7]), to stochastic communication network control 

problems. This work concerns centralized network control depending upon observa­

tions of the entire state of the system. In fact, in practical complex communication 

networks, this centralized optimal control method with full state observation cannot 

be implemented. Here, we provide a novel hierarchical control mechanism. The theo­

retical and computational consequences of this method are very significant; they le ad 

1 



CHAPTER 1. INTRODUCTION 2 

to problems of global state estimation and approximation from local data, and, in 

particular, lead to the use of state aggregation methodologies ([4]). In this thesis, we 

introduce the doubly hierarchical stochastic networks where the local state pro cesses 

are randomized at specifie instants, i. e. high level event instants, and the conse­

quential extended high level state pro cesses are Markov pro cesses. Furthermore, the 

sub-optimal solutions to the CAC and RC control problems for original networks are 

obtained by hierarchical control methods for approximate doubly hierarchical stochas­

tic networks. 

The thesis is organized as foUows. In Chapter 2, we present a formai definition of a 

communication network and formulate the optimal CAC and RC problems; in Chapter 

3, we present the construction of tractable Poisson (caU request and connection depar­

ture pro cesses) Markovian network models within the general framework of Chapter 

2; in Chapter 4, the hierarchical CAC and RC problems in complex communication 

networks are established; Chapter 5 concerns the conclusions and future work. 



SYMBOLS 

z ~ {- .. ,-1,0,1,2,··· }, i.e. the set of integers. 

Z+ ~ {O, 1,2,· .. }, i.e. the set of positive integers. 

N ~ {1, 2, 3,· .. }, i.e. the set of natural numbers. 

N_ ~ {-1, -2,· .. }, i.e. the set of negative natural numbers. 

3 



CHAPTER 2 

Formulation of CAC and RC 

Problems 

2.1 Communication Networks 

Definition 2.1 A network, or graph, Net(N,.c) consists of a set of nodes N = 

{nI,··· ,nN}, N E N and a set of links .c = {LI,··· ,Ld, L E N, where each link 

L E .c is an ordered pair (n, m) E N x N of distinct nodes. 

A network Net(N,.c) with (Link) capacities C = {Cs: 1 ~ s ~ L,Cs E Z+}, shaH be 

denoted by Net(N,.c, C). 

o 

Definition 2.2 A connection, r in the network Net(N, .c), connecting a no de xE N 

to a node yEN is a finite sequence of nodes r = (ml, ... ,mk), such that 

ml = x, mk = y, 

4 



CHAPTER 2. FORMULATION OF CAC AND RC PROBLEMS 5 

The set of connections in the network Net(N,.c) is denoted by n, and we set R = Inl, 
the cardinality of n. 

Figure (2.1) is an illustration of connections in a communication network. 

( 

.J 
v 
o 

Î 

! 
1 

\ 

/ 
\- " 

Figure 2.1: Three distinct connections in a communication network 

D 

Definition 2.3 The state set X (of admissible sets of connections) in n in the network 

with capacities Net(N,.c, C), is defined to be 

X = {x = (xr) E Z~: L xr ::; Cs, Vs, 1 ::; s ::; L} 
rER;/.Er 

D 

We observe that in the definition of X, for each fixed ls, the set of r E n appearing in 

the sum is the set of connections each of which contains ls as a link. 

Sinee the connections in n are in one-to-one correspondenee with the index of the 

components of a vector in Z~ C JRR, we shaH by abuse of notation let r E n also 

denote the integer indexing the corresponding vector component in JRR. 



CHAPTER 2. FORMULATION OF CAC AND RC PROBLEMS 6 

Definition 2.4 For the network with capacities Net(N, C, C), the cali (request) and 

(connection) depariure event set, E, is defined as: 

E = {0, e!t, e;; Vo, dEN, 0 i- d, Vr ER}, 

where e!t E E corresponds to an ordered pair (0, d), originjdestination pair, of distinct 

nodes in N x N, and e; E E corresponds to a connection r in R. 

D 

We interpret e;;d E E as a caU request from 0 E N to dEN, i.e. a request for a 

connection in N et(N, C, C) between 0 and d; e; E E is interpreted as the departure 

of a previously established connection r between the initial and terminal nodes of r. 

2.2 Stochastic Dynamics and Control 

For a network with capacities N et (N, C, C), a mapping x : [0, Tl E lR+ ~ X consti­

tutes astate process trajectory Xt E X for aU t, 0 :S t :S T :S 00. 

2.2.1 Control Set 

Definition 2.5 For the network with capacities Net(N, C, C), the control set U is 

specified by: 

U = {O} U U+ U U- = {O} U {Ir; Vr E R} U {-Ir; Vr ER}, 

where, Ir is a vector in the R dimension al space lRR with unit entry in the r-th position, 

and correspondingly, -Ir has an entry -1 in the r-th position. 

D 
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For a call (request) event etd E E, a control action assigning the call to a connection in 

{0}UR is a mapping u : E ----+ {O}uU+ E Z~, such that either u == u!t == u(etd) = Ir for 

sorne r E R, where r has initial node 0 and terminal node d, or u == ut == u(etd) = 0; 

the former is termed as the (controlled) acceptance and assignment of the call request 

e!t to r, and the latter as a (controlled) rejection of the call request e;d. 

Similarly at state x EX, for a (controlled) connection departure event e; E E oc­

curence, a control mapping: u : X ----+ U- E Z~, such that u = -Ir where r E x. 

We now introduce the stochastic framework for the analysis in this paper and hence­

forth we assume that all stochastic pro cesses shall be defined on the underlying (fil­

tered) probability space (0, F, {Fth~o, F s CFt, 0 ~ s ~ t, P). 

2.2.2 Event Instants and Event Process 

Definition 2.6 We term a sequence of (deterministic or stochastic) instants in lR+ 

at which call and departure events occur as a sequence of event instants, t : N+ ----+ lR+. 

o 

Before giving the formal definition of the set of state pro cesses x in N et(N, L, C) 

we declare that a typical state pro cess in X evolves in the following way: At any 

instant tk, k ~ 1, at which sorne event e occurs a control action u == Utk E U is 

instantaneously selected according to the pre-assigned controllaw (i.e. set of control 

responses) U. Then the state (value) x t - is instantaneously transformed into the state 
k 

(value) x t - +Utk. It then remains unchanged until the next event occurs at the instant 
k 

tk+l. In particular, this means the state equation is right continuous at the instant t. 

Definition 2.7 We term a sequence of event instants t(w) in lR+ 
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at which random call request and connection departure events occur as a sequence of 

random event instants t : N+ x n ---t 1R+. The sequence T : N+ x n ---t 1R+, with 

T == tk(W) - tk-l(W), where to(w) ~ 0 is defined as the sequence of event intervals 

(associated to t(w)). 

o 

Evidently, we obtain that tk = ~7=1 Ti· We call an instant tk(W) E 1R+ at which a 

call request event occurs as a random cali request instant tt; and similarly, an instant 

tk(W) E 1R+ at which a (random) departure occurs a random connection deparlure 

instant, ti:. 

Definition 2.8 We define the event process e( t, w) as a stochastic pro cess e : 1R+ x 

n ---t E. 

o 

2.2.3 Control Laws 

In this subsection, we will investigate a series of distinct Control Laws we are interested 

in. Information state is denoted as We, t E [8, Tl without further analysis right now, and 

in the latter part ofthis section it will be analysed. Furthermore, {F;V cFt; tE [8, Tl} 

denote the sub-O"-field of Ft generated by the information state process Wb tE R+. 

(1) control with full observations of past information; 

(2) control with partial observations of past information; 

(3) control with full observations of current information. 
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Definition 2.9 The set of measurable control laws with full observations of past in­

formation is denoted as Urs, Tl, s < T < 00, 

urs, Tl = {u : [s, Tl x n -t U; s.t. Ut(.) is ~ rneasurable, t E [s, Tl} 

urs, (0) = UT>sU[S, Tl 

o 

Definition 2.10 The set of measurable control laws with partial observations of past 

information is denoted as UQ[s, Tl, s < T < 00, where gr C gt cF;:; s :::; r :::; t :::; T, 

UQ[s, Tl = {u : [s, Tl x n -t U; Ut(W) s.t. Ut(.) is gt rneasurable, tE [s, Tl} 

UQ[s, (0) = UT~sUQ[S, Tl 

o 

Definition 2.11 The set of measurable control laws with full observations of current 

information also called Markovian Control denoted as UM[s, Tl, s < T < 00, 

UM[s, Tl = {u : [s, Tl x n -t U; s.t. Ut(.) is O"(Xt, et) rneasurable, t E [s, Tl} 

UM[s, (0) = UT>sUM[S, Tl 

o 

We now specify the controlled stochastic dynarnics of astate process x in N et(N, C, C) 

subject to (randorn) call request events, (randorn) connection departure events, and 

subject to sorne specified controllaw just defined here, i.e. u E Urs, Tl (or UQ[s, Tl, 

UM[s, Tl). 
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2.2.4 State Transition Equation 

Definition 2.12 We define the function IHItk : R+ --t {a, 1}, where tk, kEN is the 

instant at which k-th event occurs, as 

(2.2.1) 

Definition 2.13 The state response or transition equation, with the control law U E 

Urs, Tl (or uQ[s, Tl, UM[s, Tl), for the evolution of the state process x : [s, Tl x n --t X 

with initial state X s = ç, ° ~ s < T < 00, where ç is F-: measurable, is given by 

max{i; k.:;t} 

Xt = ç + z= utkIHItk(t) (2.2.2) 
k=l 

where the event instants satisfy s < t l < ... < tk-l < tk < tHl < ... < T, a.s. and 

where the control law 

U = Utk' k = 1, ... ,max{ i; ti < t} satisfy: 

(1) {u : {a, Ir : r ~ (ml, ... ,mj) E R, ml = 0, mj = dl, 

u--l r , subJecttorExtk-' 

(2) Xtk + U E X. 

if at h, e; E E occurs 

and where in general we say event pro cesses e can be dependent on past information 

h· t' (t- t-) lS ory, z.e. et = et X s ,es 

o 

Definition 2.14 We consider Network System with respect to Net(N, L, C) is de­

noted asNS == {Net(N,L,C);S,U} 

o 
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We shaH write (2.2.2) in state space transition form as Xt = x(xs, u;), t E [s, Tl, where 

u E Urs, Tl (or UQ[s, Tl, UM[s, Tl). 

The following (El),(E2) and (E3) are equivalent to Definition (2.13) 

(El) 

Vt E [s, Tl 

(E2) 

Xto = X s = ç, and t k+1 E [s, Tl; Vk E N 

(2.2.3) 

(2.2.4) 

o 

(2.2.5) 

(2.2.6) 

o 

(E3) We can express the state transition equation in term of stochastic differential 

equation (SDE) form with event pro cess inputs et; t E [s, Tl, 

with initial state X s = ç. 

or, in integral form: 

tE [s,Tl 

tE [s,Tl 

(2.2.7) 

(2.2.8) 

o 

With sorne admissible control u E Urs, Tl (or uQ[s, Tl, UM[s, T]), from Definition 

(2.13), we get the sample path of state process Xt; Xt E X,O ::; s ::; t ::; 00, please see 

Figure (2.2). 
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x(t) 

-
~ ____ ~ __ ~ ______ ~ __________ ~t 

C1 t 2 C3 t 4 

Figure 2.2: Sample path of state pro cess 

Remarks: The states in X == {Xl, X2,··· ,xIXI} are in one-to-one correspondence 

with {1, 2, ... ,IXI}, i.e. in Figure (2.2), x(t) = n, n E {1, 2, ... , IXI}, just me ans 

x(t) = Xn. 

Please see Figure (2.3), the state transition process. 

, n1 

n2", 

e_{2.3}~+ -- / ,n3 r12) 
or 

e_{3.2}~+ 
... ; 

\,n3 n2c;4 ~n3 

Figure 2.3: State transition process 

n2r! (n3 

1e--l,.31'. 

n1 

n2,I, 

From Definition (2.13), it may be seen that the state pro cess X is everywhere right 

continuous, i. e. continuous from the right and is constant between the countable set 
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of jump times ([5],[6]); hence x also has limits from the left everywhere. We shall be 

interested in the so-called M arkovian control which is a function of the current state 

Xt- and the event et. 

Since we wish to have a Markovian description of the system in this case, consequently 

we introduce the notion of an information state transition form for the system. 

2.2.5 Information State Process 

Definition 2.15 The information state transition equation with information state 

W : [s, Tl x n ---t (~), consists of the information state Wt = (X~_), where * = 0 if 

t is not an event instant {td and * = etk at the kth event instant tk. The system 

dynamics, with controllaw u E Urs, Tl (or UQ[s, T],UM[s, T]), have the representation: 

where the initial condition for the system is W s = (~). 

Rence we see that: 

(2.2.9) 

(2.2.10) 

(2.2.11) 

o 

(2.2.12) 

(2.2.13) 

(2.2.14) 

Please see Figure (2.4) or Figure (2.5), sample path of information state process. 
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10 

• 

• 

avent $8(1)$ -2 0 
instant $t$ 

Figure 2.4: Sample path of information state pro cess 

2.3 Framework for Dynamic Programming 

In this paper, we only consider the following situation: 

(SI) the (state conditionally) independent interval and event case, that is to say, the 

case where Xs and {( ~~) }:1 are (state Xtk conditionally) independent, and 

In other words, 

p ( ( ;;::11 ) 1 cr(Xtk)' cr(xs ), cr{ ( ~~ ):=1}) = p ( ( ;;::11 ) 1 cr(Xtk)) , 

pU ~~ ) 1 cr(Xtk+1)' cr{ (e';iJ:k+1}) = P ( (:~ ) Icr( Xtk+1)) ' 

(2.3.1) 

kEN (2.3.2) 

kEN (2.3.3) 

Lemma 2.1 With assumption (SI), event process {et} is state conditionally inde­

pendent of past state pro cess , i. e. 
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j" 

~ 
c: 
0 

~ 
E 
~ 

10 

6 ~ 

• 
5 C 0 

4 0 0 • 0 

• • 
0---·0 • 

• 

o~--~----~----~----~----~--~ 
o 3 

instant t 

Figure 2.5: Another indication of sam pIe path of information state pro cess 

Proof: 

=p (etk IO"( Xt), 0"(Xtk_2)' ... ,O"( Xt2)' O"(Xtl)) ' 

=p( etk 100(Xt), O"(x(Ç-, etl1 et2' ... ,etk_2))'··· ,O"(x(ç-, et! , et2))' O"(x(ç-, et!))), 

byassumption (SI) 

15 

o 

Theorem 2.1 With assumption (SI), process {Xt} and {Wt} are Markovian pro-

cesses. 



CHAPTER 2. FORMULATION OF CAC AND RC PROBLEMS 16 

Proof: 

First we consider the controllaw U E UM[s, Tl, i.e. control Ut = Ut(Wt) is the function 

of full observations of current information. 

(1) With assurnption (SI), {Xt} is a Markov process. 

Consider any s :::; t :::; t + s :::; T. 

First, we suppose tk-l < t + s < tk, for sorne kEN and tk-(m+l) < t < tk-m, for sorne 

mE {a,N}, 

Xt = Xtk_(m+l) ' tk-(m+l) < t < tk-m 

We denote the space 2x as X (X is a cr-field of set X), for any r E X, 

p(Xt+8 E rj{cr(Xr)}~=8) 

=P (Xt + x( Xt, {etk_i h=l, .. ,m) E rj { cr(xr) } ~=8) 

=p(Xt + x(Xto {etk_ih=l, ... ,m) E rjcr(Xt)) , 

=p( Xt+8 E rjcr(Xt)) 

by Lernrna(2.1) 

In the sarne way, we can prove in the following cases, t k- 1 < t + s < tb for sorne kEN 

and t = tk-m, for sorne m E {a, N} 

t + s = tk, for sorne kEN and tk-(m+l) < t < tk-m, for sorne m E {a, N} 

t + s = tk, for sorne kEN and t = tk-m, for sorne m E {a, N} 

still holds. That is to say {Xt} is Markov process. 
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(2) With assurnption (SI), {Wt} is a Markov process. 

Consider any s ::; t ::; t + li ::; T. 

17 

First, we suppose tk-l < t + li < tk, then for sorne kEN and tk-(m+l) < t < tk-m, and 

for sorne m E {a, N}, 

= AWtk_ 1 + BUtk_l (Wtk_J 

= A( W p + (etkO_l ) ) + BUtk_l ( w p + (et~_l ) ) 

(since Wtk_l = w p + (et~_l ) ), 

= Awp + BUtk_l ( w p + (et~_l ) ) 

= AWr + BUtk_2 ( W r + (et~_2 ) ) + BUtk_l ( AWr + (et~_l ) + BUtk_2 (wr + (et~_2 )) ) , 

(since Wtk_2 = W r + (et~_2 ) ), tk-3 < r < t k - 2 

= AWq + BUtk_3 ( w q + (etkO_3 ) ) + BUtk_2 ( AWq + (etkO_2 ) + BUtk_3 (wq + ( et kO_3 ) ) ) 

+ BU'H ( Aw, + (,,~_, ) + BU'H (w, + (,,~-J) 

+ BUt" ( Aw, + (,,~_,) + BU'H (w, + (,,~_, )) ) ) 
(since Wtk_3 = w q + (et~_3 ) ), tk-4 < q < h-3 

= AWt + W (Wt, {etk_j h=l, .. ,m), 

S < t l < ... < tk-(m+l) < t < tk-m < ... < t + li, li 2: a (by induction) 

(2.3.4) 
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We denote the space 2XxE as W (W is a a-field of set X x E), for any r E W, 

p( WtH E fI(a(wr))~=s) 

=p( AWt + w(Wt, {etk_Jj=l, .. ,m) E ri (a(Wr))~=s) 

a(xs ), 

a(wr) = a(xr), 

T=S 

i = 1,' .. ,k - (m + 1) 

i=1,···,k-(m+1) 

18 

=p( AWt + w(Wt, {etk_j }j=l, ... ,m) E fi (a(xs); a(xs) U a(etl); a(xt1 ); a(xt1 ) U a(et2); ... ; 

a(xtk-(m+2)); a(xtk-(m+2)) u a(etk_(m+l)); a(xtk-(m+l)); a(xtk-(m+l)) u a(etk_m)) 

where t i < t i < t i + 1 

=p(Xt + W(Xt, {etk_jh=l, ... ,m) E fi (a(xs); a(xs) U a(etl); a(Xt1 ); a(Xt1 ) U a(et2); ... ; 

a( Xtk-(m+2)); a(Xtk-(m+2)) U a( etk_(m+l)); a(Xt); a( Xt) U a( etk_m) ) 

( ) () 'f t tk-(m+l) t t a Xtk-(m+l) = a Xt , l, k-(m+l) < , < k-m 

=p(Xt + W(Xt, {etk_jh=l, ... ,m) E fla(Xt)) , by assurnption (SI) and by Lernrna (2.1) 

=P ( AWt + w( Wfl {etk_j L=l, ... ,m) E fla( Wt)) 

(2.3.5) 

In the sarne way, we can prave in the following cases, 

tk-l < t + s < tk, for sorne kEN and t = tk-m, for sorne m E {a, N} 

t + s = tk, for sorne kEN and tk-(m+l) < t < tk-m, for sorne m E {a, N} 

t + s = tk, for sorne kEN and t = tk-m, for sorne m E {a, N} 

still holds. 

The four equality relations above irnply that {Wt = (Xt-, ed, S ::; t ::; T} is a Markov 

pracess. 
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D 

2.3.1 Value Functions and their Martingale Properties for 

Systems subject to Control Laws in U 9 [s, T] 

The CAC and RC problems in the network N et(N, .c, C) can be formulated as dynamic 

programming problems, which require the specification of (i) the state dynamics and 

then Cii) a system loss function covering a given interval [s, Tl. 
For any s E [0, T) and ç : n ---t X, ç is F s measurable, state {Xt} in the general space 

transition form: 

X s = ç, a.s. 

and consider the cost function 

s ~ t ~ T, u E UQ[s, Tl, TE lR+ (2.3.6a) 

(2.3.6b) 

(2.3.7) 

with control u E UQ[s, Tl, where 9 : lR+ x X X U ---t lR+ is bounded and measurable 

w.r.t.(t, x, u). 

The value function VQ(s, ç) is defined as 

VQ(s,ç) = inf J(s,ç;u) 
uEU9 [s,T[ 

Let u, v E UQ[s, Tl and r E [s, Tl, we define 

'ljJQ(u,v,r) = E{lT 

g(t,Xt-,vt)dtjGr }, 

WQ(u,r) = inf 'ljJ(u,v,r) 
vEU9[r,T] 

where, Xt = x(x(ç, u:), v;) 

(2.3.8) 

(2.3.9) 

(2.3.10) 

Lemma 2.2 With the initial condition as X s = ç, ç : n ---t X and ç is F s measurable, 

the following hold: 
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(1) 1(s, x(ç, u!); u) = 1jJ(u, u, s), u E U9[s, Tl; 

(2) V9(r, x(Ç", u~)) = W9(u, r), r E (s, Tl, u E U9[s, Tl; 

(3) V9(s, Ç") = W9(u, s), 

Proof: 

(1) 

(2) 

u E U9[s, Tl. 

20 

(2.3.11) 

W9(u, r) = inf 1jJ(u, v, r) = inf E{lT 

g(t, Xt-, vddtlGr} == V9(r, x(Ç", u:)) 
VEUQ [r,T] vEUQ [r,T] r 

(2.3.12) 

(3) In the pro of of (ii), let r = s, we get 

(2.3.13) 

o 

Lemma 2.3 (1) For s ~ t l ~ t2 ~ T and u E U9[s, Tl, 

(2.3.14) 

(2) Furthermore, u is optimal on [s, Tl if and only if for aH s ~ t l ~ t2 ~ T, equality 

holds in (2.3.14). 

Proof: (1) 

For \:jE > 0, there exists a control v( E U9[t2 , Tl, such that 

1jJ9(U, v(, t 2 ) < inf 1jJ9(u, v, t 2 ) + E 
VEU Q [t2,T] 

= W 9 (u, t2 ) + E 
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The above inequality implies that 

So, we get, for an E > 0, 

Henee, 

whieh yields (2.3.14). 

(2) (i) Let u be optimal but suppose that, for sorne ft ~ t2 , t 1, t2 E [s, T], 

Sinee u is optimal, by the definition of WQ(u, tl), we have 

But this implies 
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which is a contradiction. 

So, according to (2.3.14), we get, for u optimal and for any ft ::; t 2 , tl, t2 E [s, Tl, the 

following equality holds, 

(2.3.15) 

then for t l = sand t 2 = T, (2.3.15) yields, 

w9 (u, s) == V 9 (s, ç), with the initial condition X s = ç 

= E{l
T 

g(t,Xt-,Ut)dtI9s} +E{W9 (u,T)19s} 

= E{l
T 

g(t,Xt-,Ut)dtI9s}, since W 9 (u,T) =0. 

That means u is optimal. 

o 

Theorem 2.2 For any u E U 9 [0, t], the following process 

(2.3.16) 

is a (9t, P) sub-mariingale. Furthermore, u E U9[0, tl is optimal if and only if this 

pro cess is a 9cmariingale, i.e. if and only if J-: = E{ JrI9s}, \ft> s ~ o. 
Proof: 
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For t2 > t l , and any U E U9[O, tl, 

E{ J~ 19t1} = E{ W 9(u, t2 ) + E{l
t2 

g(r, xr-, ur)drI9t2} 19t1 } 

= E{ W 9(u, t2 ) + E{jt
2 

g(r, Xr-, ur)drI9t2} + E{ {fI g(r, Xr-, ur)drI9t2} \9t1} 
tl Jo 

= E{jt
2 

g(r,xr-,Ur)drI9tl} +E{W9(u,t2 )1 9tl} +E{ ri g(r,xr-,ur)drI9tl} 
tl Jo 

~ W9(u, tl) + E{1
t1 

g(r,xr-, ur)drI9tl}' Lemma 2.3 

Furthermore, by Lemma (2.3), if u is optimal, 

J~ = WQ(u, tl) + E{l
t1 

g(r, xr-, ur)drI9tl} 

= E{jt
2 

g(r,Xr-,Ur)drI9tl} +E{W9(u,t2 )19tJ +E{ ri g(r,Xr-,Ur)drI9tl} 
tl Jo 

= E {W9 (u, t 2 ) + 1
t2 

g(r, Xr-, Ur )dr 19t 1 } 

= E{W9(u,t 2) + E{1
t2 

g(r, Xr-, ur)drI9t2} 19t1} 

= E{J~19tl} (2.3.17) 

Since J~ = E {Jt~ 19t1} holds for aIl 0 ::; t l ::; t 2 ::; T, the 9cadapted pro cess {Jr; ° ::; 
t ::; T} is a 9cmartingale. 

D 

2.3.2 Value Functions and their Martingale Properties for 

Systems subject to Control Laws in UM[s, Tl 

This section is parallel with section (2.3.1). In this section, we consider the state 

dynamics with Markovian controllaws u E UM[s, Tl. 
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The cast functian JM (s, ç; u) is defined as 

JM(S,ç;u) = E{lT 

g(t,xt-,uddt!cr(ws )}, 

The value functian V M ( s, ç) is defined as 

24 

(2.3.18) 

(2.3.19) 

Let u, v E UM[s, Tl and r E [s, Tl, we define 

1jJM(u,v,r) = E{lT 

g(t,Xt-, vt)dt!cr(wr )} , 

WM(u,r) = inf 1jJM(u,v,r) 

where, Xt = x(x(ç, u:), v;) (2.3.20) 

vEUM[r,T] 
(2.3.21) 

Lemma 2.4 With the initial condition as Xs = ç, ç : n -+ X and ç is F s measurable, 

the following hold: 

(1) JM (s, x(ç, u!); u) = 1jJM (u, u, s), u E UM[s, Tl; 

(2) VM(r, x(ç, u~)) = WM(u, r), r E (s, Tl, u E UM[s, Tl; 

Proof: 

(1) 

(2.3.22) 

(2) 

WM(u,r) = inf 1jJM(u,v,r) = inf E{lT 

g(t,Xt-,vt)dt!cr(wr )} == VM(r,x(ç,u:)) 
vEUM[r,T] vEUM[r,T] r 

(2.3.23) 

(3) In the proof of (ii), let r = s, we get 

(2.3.24) 

o 
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Lemma 2.5 (1) For s ~ il ~ i 2 ~ T and u E UM[s, Tl, 

(2) Furthermore, u is optimal if and only if equality holds in (2.3.25). 

Proof: (1) 

For 'liE > 0, there exists a control v{ E U M [i2' Tl, such that 

The above inequality implies that 

So, we get for aH E > 0 

Renee, 

which yields (2.3.25). 

25 

(2.3.25) 
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(2) (i) Let u be optimal but suppose that, for sorne t l S t2 , t l , t2 E [s, Tl, 

Since u is optimal, by the definition of WM(u, tl)' we have 

But this implies 

l
T 

g(t, Xt-, uddt < W M (u, t2 ), a(wtl )-a.s. 
t2 

which is a contradiction. 

So, according to (2.3.25), we get, for u optimal and for any t l S t 2 , t l , t 2 E [s, Tl, the 

following equality holds, 

(2.3.26) 

then for t l = sand t 2 = T, (2.3.26) yields, 

WM(u,s) == VM(s,Ç), with the initial condition Xs = ç 

= E{l
T 

g(t,Xt-,ut)dtla(ws)} + E{WM(u, T)la(ws)} 

= E{l
T 

g(t,Xt-,ut)dtla(ws)}, since WM(u,T) = O. 

That means u is optimal. 

o 

Theorem 2.3 For any u E UM[O, tl, the following process 

j~ = W M (u, t) + E{l
t 
g(r, Xr-, ur)drl.17} (2.3.27) 
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is a (FtW, P) sub-marlingale. u E U M [O,t] is optimal if and only if this pro cess is a 

Ftw-martingale, i.e. if and only if J~ = E{ JrIF:}, \It > s Z O. 

Proof: 

For t2 > t l , and any u E UM[O, tl, 

Furthermore, by Lemma (2.5), if u is optimal, 

J~ =wM(u,t l )+E{l
t1 
g(r,xr-,ur)drl~} 

= E{l
t2 
g(r,Xr-,Ur)drl~} + E{WM(u,t2)1~} + E{l

t1 
g(r,Xr-,Ur)drl~} 

tl 0 

= E{WM(u,t2) + lt2g(r,Xr_,Ur)drl~} 

= E{ W M (u, t2) + E{l
t2 

g(r, Xr-, ur)drl~} I~} 
= E{ J~I~} (2.3.28) 

Since J~ = E{ J~ IFt~} holds for aH 0 < t l < t2 < T, the F;V-adapted process 

{Jr; 0 ~ t ~ T} is a F;V-martingale. 

o 

2.3.3 Optimal Stochastic Control Problem 

Definition 2.16 The Optimal Stochastic Control (OSC) Problem is defined as: 

For any s E [0, T) and ç : n ---t X, ç is F s measurable, we consider the system state 
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(2.13) in the space transition form with controllaw u E Urs, Tl (or UQ[s, Tl,UM[s, Tl): 

Xt = x(ç,u~), s ~ t ~ T, 

Xs = ç, a.s. 

and consider the cost functions as 

f}(s, ç; u) = E{ l T 

g(t, Xt-, ut)dt IQs}, u E UQ[s, Tl 

J:F
w 

(s, ç; u) = E{lT 

g(t, Xt-, ut)dt I~}, u E u:F
w 

[s, Tl 

JM (s, ç; u) = E{ fT g(t, Xt-, Ut)dt la(ws )}, u E UM[s, Tl 

(2.3.29a) 

(2.3.29b) 

(2.3.30) 

(2.3.31) 

(2.3.32) 

where general filtering space {Qt; t E [s, Tl, Qt CFt}, 9 : [s, Tl x X x U --+ ffi.+ is 

bounded and measurable w. r. t. (t, x, u). 

The optimal stochastic control (OSe) Problem is given by the infimization: 

v:FW(s,ç) = inf Jr(s,ç;u), 
UEU:FW [s,Tl 

V M (s, ç) = inf JM (s, ç; u), 
uEUM[s,T] 

where, when it exists, the function VQ(s, ç) ( V:F
w 

(s, Ç), V M (s, ç)) : ffi.+ x X --+ ffi.+ 

called the value functions of the OSC problem and, when they exist, an infimizing 

function Û E uQ[s, Tl or (Ur [s, Tl,UM[s, Tl) shall be called an optimal control for the 

OSC problem. 

Furthermore, when Qt = F;:, t E [s, Tl, then the state-input (x, e) dependent optimal 

stochastic control (OSC) problem is given by the infimization: 

V(s, ç) = Vp',e (s, ç) = inf J(s, ç; u), 
uEU:Fx,e [s,Tl 

where, when it exists, the function V(s, Ç) : ffi.+ x X --+ ffi.+ called the value function of 

the state-input dependent OSC problem and, when it exists, an infimization function 

û E Up,e [s, Tl shall be called an optimal control for the state-input dependent OSC 

problem. 
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o 

The inequality parts of Lemmas (2.3, 2.5) and Theorems (2.2, 2.3) do not require 

the existence of an optimal control U E U Q [8, Tl ( or U M [8, Tl) as appears in the 

second part of each result. However, because the only constraint on the class of 

control functions UQ [8, Tl ( or UM[8, Tl) is the specified adapted measurability with 

respect to {9t, s ~ t ~ T}, an OSC problem in fact always has a value function and a 

corresponding optimal control. 

The first part of Theorem (2.4) below consists of a statement of the Dynamic Pro­

gramming (DP) Principle for OSC also does not require the existence of an optimal 

control. Moreover, while the equality in the statement of the Dynamic Programming 

(DP) Problem in the Theorem (2.4) below, it is an important aspect of the state 

space system is that it has optimal controls within the class of state-input (adapted) 

measurable controls UrW[s, Tl C UQ[s, Tl as stated in the second part of Theorem 

(2.4). 

2.3.4 Optimality Principle 

Theorem 2.4 For the SOCP (2.16), 

(1) For 8 E [0, T), ç : 0 ---+ X, ç is F s measurable, and for aH filtering spaces 

{{9t}s:::;t:::;T; 9t CFt, Vt E [8, TJ}, it is the case that 

VQ(s,ç) = inf E{ls 
g(t,Xt-,ut)dt+ VQ(s,x(ç,u!,e!)) \9s}, 

uEUQ[s,s] s 
(2.3.33) 

(2) For s E [0, T), ç : 0 ---+ X, ç is F s measurable, 

VM(s,ç) = inf E{ls 
g(t,Xt-,ut)dt+ VM(s,x(ç,u!)) \a(ws)}, 

UEUM[s,s] s 
(2.3.34) 

Proof: (1) 
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If U is optimal, then according to Lemma (2.3), we obtain 

VQ(s,Ç") == WQ(u,s) 

= E{1
8 

g(t,Xt-,Ut)dtlgs} + E{WQ(u,s)lgs} 

= E{l
s 

g(t, Xt-, uddtlgs} + E{ E{WQ(u, s)lgdlgs} 

== E{1
8 

g(t,Xt-,ut)dt + VQ(s,x(Ç",u!)) Igs} 

If u is not optimal control, then according to Lemma (2.3), we obtain 

VQ(s,Ç) == WQ(u,s) 

< E{1
8 

g(t,Xt-,Ut)dtlgs} +E{WQ(u,s)lgs} 

== E{1
8 

g(t,Xt-,ut)dt + VQ(s,x(Ç",u!)) Igs} 

So, 

By definition of VQ(s, Ç"), for any E > 0, there exists au E UQ[s, Tl, such that 

VQ(s, Ç") + E > JQ(s, Ç"; u) 

=E{l
T 

g(t,Xt-,ut)dtlgs} 

8 T 

=E{l g(t,Xt-,ut)dt+E{l g(t,Xt-,Ut)dtlgs} Igs} 

=E{l
S 

g(t, Xt-, ut)dt + J(s, x(Ç", u!); uf) Igs} 

~ i~f A E{1
8 

g(t,Xt-,Ut)dt+ J(s,x(Ç",u!);uf) Igs} 
uEU [s,sI s 

~ inf E{1
8 

g(t,Xt-,uddt+ inf J(s,x(Ç",u!);uf) Igs} 
uEUQ [S,8] s uEUQ [s,TI 

= i~f A E{l
S 

g(t,Xt-,Ut)dt+ VQ(s,x(Ç",u!)) Igs} 
uEU [s,sI s 

30 

(2.3.35) 
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Since, E > 0 is arbitrary, we get 

50, from (2.3.35) and (2.3.36), we get the conclusion. 

Proof: (2) 

If u is optimal, then according to Lemma (2.5), we obtain 

VM(s,ç) == WM(u,s) 

= E{ls 
g(t,Xt-,ut)dtla(ws )} + E{WM(u,s)la(ws )} 

= E{1
8 

g(t,Xt-,ut)dtla(ws )} + E{WM(u,s)la(ws)} 

== E{1
8 

g(t,Xt-,ut)dt+ VM(s,x(ç,u!» la(ws)} 

If u is not optimal control, then according to Lemma (2.5), we obtain 

VM(s,ç) == WM(u,s) 

< E{1
8 

g(t,Xt-,ut)dtla(ws)} + E{WM(u,s)la(ws)} 

== E{1
8 

g(t,Xt-,ut)dt+ VM(s,x(ç,u!» la(ws)} 

50, 

31 

(2.3.36) 

(2.3.37) 
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By definition of VQ(s, ç), for any é > 0, there exists au E UQ[s, Tl, such that 

VM(s,ç) +é > JM(s,ç;u) 

=E{1
T 

g(t,Xt-,ut)dt\cr(ws )} 

=E{ 1
T 

g(t, Xt-, ut)dt\F:} 

=E{l
S 

g(t, Xt-, ut)dt + E{l
T 

g(t, Xt-, Ut)dtIPs} IF:} 

=E{l
fi 

g(t, Xt-, ut)dt + E{ lT 

g(t, x(xs, u~), Ut)dtIPs} IF:} 
fi T 

=E{l g(t, Xt-, ut)dt + E{l g(t, x(xs, u~), Ut)dtIO"(ws)} IF:} 

=E{ l s 
g(t, Xt-, ut)dt + JM (8, x(ç, u!); uf) IF:} 

2': inf E{jS9(t,Xt-,Ut)dt+J(8,X(Ç,U!);uf) IF:} 
UEUM[s,s] s 

2': inf E{j8 g(t, Xt-, ut)dt + inf J(8, x(ç, u!); uf) IF:} 
uEUM[s,s] s uEUM[s,T] 

= inf E{j8 g(t, Xt-, Ut)dt + V M (8, x(ç, u!)) 100(ws )} 
UEUM[s,s] s 

Since, é > 0 is arbitrary, we get 

So, from (2.3.37) and (2.3.38), we get the conclusion. 

32 

(2.3.38) 

D 

Theorem 2.5 Information state dependent control( i.e. Markovian control) is opti-

mal control, i. e. 
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Proof: 

(1) Since U M CU, we got that 

inf E {lT 

g( t, Xt-, Ut (x~~ , e~o) )dtlF;;;'}::; inf E {lT 

g( t, Xt-, Ut( Xt- , et) )dtlF;;;'} 
uEU to UEUM to 

(2.3.40) 

(2) If for any f > 0, there exists sorne control Û E U M , such that the following holds, 

inf E{lT 

g(t,Xt-,Ut(x~~,e~o))dtlF;;;'} +f ~ E{lT 

g(t,Xt-,Ût(xt-,et))dtlF;;;'} 
uEU ~ ~ 

(2.3.41 ) 

then we can say 

inf E{lT 

g(t, Xt-, Ut(x~~, e~o))dtlF;;;'} ~ inf E{lT 

g(t, Xt-, Ût(Xt-, et))dtlF;;;'} 
uEU to UEUM to 

(2.3.42) 

So, next we show (2.3.41) holds. First suppose there exists the positive finite integer 

K, su ch that K = rninjEN{j; T < t j , a.s.}. 

(i) According to the Optirnality Principle Theorern (2.4), for any f > 0, there exists 

sorne control ;;0 E U M , such that the following holds, 

So, we see that ;;0 == 0 E uM . 

(ii) Sirnilarly, we can get that there exists sorne control ;;:i E U M , such that the 
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(iii) In the similar way, we can got that there exists sorne control u 2 E UM , the 

following holds, 

V(t2,Xt2) + K
E 

1 = inf E{l
T 
g(t,Xt-,Ut(x~~,e~o))dtl~} + K

E 
1 

+ uEU t2 + 

. {l t3 
t- t ) } E = mf E g(t,Xt-,Ut(xto,eto))dt+V(t3,Xt31~ +-K 

UEU[t2,t3] t2 + 1 

2: E{l
t3 

g(t,Xt-,;2 t2 (Xto,xtl,eto,etl,et2))dt+ V(t2,Xt2)1~} 
t2 

= E{l
t3 

g(t, Xtl' ;2t2(Xt2-' et2))dt + V(t3, xtJI~} 
t2 

Since the Markovian property of information state process, given state (Xi!, et2)' we 

observe that t3, 72 = t3 - t2 are independent of Xto, eto, etl. Furthermore 

---(iv) In the same way, we can got that there exists sorne control U K - 1 E U M , the 

following holds, 

V(tK-1,XtK 1) + -K
E 

= inf E{jT g(t,Xt-,Ut(x~~,e~o))dtl~ } + _E_ - + 1 uEU t K -1 K + 1 
K-I 

= inf E{jT g(t, Xt-, Ut(x~~, e~o))dtl~_J + -K E 
UEU[tK_I,T] tK-I + 1 
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Sinee the Markovian property of information state process, given state (XtK_2' etK_l)' 

Furthermore 

So, from (i)-(iv), we can get that 

V(to, Xto) + (~ - l)E > E{ J(to,;o) + V(tl' XtJI~} + (~ - 2)E 
+ 1 - + 1 

~ ~ (K - 3)E 
~ E{ J(to, ua) + E{ J(t l , Ul) + V(t 2 , Xt2)1~}I~} + K + 1 

Furthermore, we get 

~ ~ (K - 3)E 
= E{ J(to, ua) + J(t b Ul) + V(t 2 , Xt2)1~} + K + 1 

K-2 

~ E{ L: J(ti,~) + V(tK-l, XtK_l )I~} + K ~ 1 
i=O 

K-l 
~ E{L: J(ti , ~)I~} 

i=O 

V(to, Xto) + E > E{ J(to, û)I~} 
~ ~ --

where, û = (UO, u l , ... ,UK - l ) E U M 

So, according to (1) and (2) we get our conclusion. 

o 

Definition 2.17 The Infinite Horizon Discounted ose Problem is defined as: 

For any s E [0,00) and ç : n ---4 X, ç is F s measurable, we consider the system state 

(2.13) in the space transition form with controllaw u E Urs, 00) (uQ[s, oo),UM[s, 00)): 

Xt = x(ç, u~), s ~ t < 00, 

X s = ç, a.s. 

(2.3.43a) 

(2.3.43b) 
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and consider the cost functions as 

(2.3.44) 

(2.3.45) 

(2.3.46) 

respectively, where discounted fact (3 > 0 and general filtering space {9t; t E [s, (0), 9t C 

F;V}, g: [s, (0) x X x U ----t lR+ is bounded and measurable W.T.t. (t, x, u). 

The infinite horizon discounted ose Problems are given by the infimizations: 

(2.3.47) 

(2.3.48) 

(2.3.49) 

respectively, where, when they exist, the functions V 9 (s, ç) ( vP (s, ç), V M (s, ç)) : 

lR+ x X ----t lR+ called the value functions of the infinite horizon discounted ose problem 

and, when it exists,an infimization function û E U9[s, (0) (UP[s, oo),UM[s, (0)) shall 

be called an optimal control fOT the infinite horizon discounted ose problem with 

respect to controllawsU9 [s,(0) (U.rW[s,oo),UM[s,oo)), respectively. 

o 



CHAPTER 3 

Poisson Markovian Network 

Systems 

3.1 Call Request and Connection Departure Spec­

ifications 

In this section, we consider a special but important class of the CAC and RC problems 

formulated for a network system NS; this class will satisfy the foUowing hypotheses. 

(82) We suppose the caU request event process from node 0 to node d is a Poisson 

process with parame ter )..od, )..od > 0, equivalently, the interval between caU requests 

from node 0 to node d has the exponential distribution with parameter )..od; furthermore 

for each distinct pair (0, d) E NxN, the associated Poisson pro cesses are independent. 

(83) Any caU holding time T(t, r), t E [s, Tl, r E R, has an exponential distribution, 

with parameter T, T > 0, and the holding times T(tl, r(l)); T(t2' r(2));··· ; T(tn, r(n));··· 

on all connections initiated at any set of times {t l , t2 , ..• ,tn ,· .. } are independent 

random variables. 

According to the memoryless property of exponential distribution, the assumptions 

37 
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(82) and (83) actuaUy imply assumption (81) (i.e. the (state conditionally) inde­

pendent interval and event property) enunciated in the previous section. 

Lemma 3.1 For NS = {Net(N,.c, C); S,U} subject to assumptions (82) and (83), 

it is the case that: 

(1) The interval between caU requests in NS has an exponential distribution with 

parameter 2:=:d=l;O# ).,od· 

(2) The interval between the instant t at which the system state is Xt = (xi, ... ,x~), Xt E 

n, t E [5, Tl, and the instant at which the first caU connection departure occurs has 

an the exponential distribution with parameter JL 2:=~=1 xr· 
(3) At the instant t (with state Xt = (xi,··· ,x~), Xt E n, t E [8, Tl ), the in­

terval between the instant t and the instant at which first event (caU request or 

caU connection departure) occurs has an exponential distribution with parameter 

2:=:d=l;oid ).,od + JL 2:=~=1 x~. 
Proof: (1) We consider {T~; 0, dEN x N,o =1= d} as the set of intervals between 

caU requests from node 0 to node d , according to (82), they are independent ex­

ponential distributions with parameter ).,od E lR.+ respectively. So, we see the inter­

val between caUs request in Net(N,.c,C) denoted by T+ is T+ = min{T~;(o,d) E 

N x N, 0 =1= d}. For convenience, in the next part of this lemma, we arbitrarily arder 

{T~; 0, dEN x N, 0 =1= dl, and denote the reordered sequence of random variables as 

{ Ti+; i = 1, ... ,N (N - 1)}; there have the independent exponential distributions with 

parameters {).,i} which correspond one-by-one to {).,od} respectively. Carrespondingly, 

T+ = min{ T~; (0, d) EN x N, 0 =1= d} = min{ Ti+; i = 1, ... ,N(N - 1)}. 
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Firstly, we suppose r+ = min{ rt, ri}, then, 

P(r+ < t) = P(min{rt, ri} < t) 

= P({rt < t} U {r2+ < t}) 

= P(rt < t) + P(rt < t) - P({rt < t} n {r2+ < t}) 

= P(rt < t) + P(rt < t) - P(rt < t)P(ri < t) 

(since, rt and ri are independent) 

39 

(3.1.1) 

So, for r+ 6. min{ rt, ri}, the lemma holds. Next, we suppose r+ = min{ rt,· .. ,ri} 

satisfies, 

(3.1.2) 

and establish the lemma by induction. Let us define r+ = min{rt,··· ,ri,ri+l}' 

then 

P(r+ < t) = P(min{ rt, ... ri+l} < t) 

= P({min{rt,·· 'rt} < t} U {rt+l < t}) 

= P(min{rt,·· .ri} < t) + P(ri+l < t) 

- P ( { min { r t, ... ri} < t} n { ri + l < t}) 

= P(min{ rt,· .. rt} < t) + p( ri+l < t) - P(min{ rt, ... ri} < t) P(ri+l < t) 

(since, min{ rt, ... rt} and ri+l are independent) 

(3.1.3) 

So, we can get the conclusion that r+ ( = min{ r~; (0, d) E N x N, ° i= d} == 
min{ r i+; i = 1,'" ,N(N - 1)}) satisfies an exponential distribution with parameter 

E:d=l;old Àod' 

(2) Similarly, we get the interval, r-(xd, between the instant t at which state Xt = 

(x:" .. ,x~), Xt E R, t E [8, Tl and the instant at which sorne connection departure 

occurs satisfies the exponential distribution with parameter f1 E~=l x;. 
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(3) Finally, since the random variables T+ and T-(Xt) are independent and expo­

nentially distributed with parameters L::'d=l;oid )..od and JL L:~=l xr respectively, the 

interval, T(Xt) = min{ T+, T- (Xt)}, between current instant t and the instant at which 

first event (caU request or connection departure) occurs has an exponential distribution 

with parameter L::'d=l;oid )..od + JL L:~=l xr· 

o 

So, from the Lemma (3.1), we observe that, with state Xt, the rate of next event 

occurrence is L::'d=l;O#)..od + L:~=l XrJL· Now, we define a constant).. by 

N 

).. = L )..od + JL L Cl (3.1.4) 
o,d=l;oid lEL 

and 

N R 

)..(Xt) = L )..od + JL LX~' Xt ER (3.1.5) 
o,d=l;oid r=l 

So, we can see that since 0 ~ Xt ~ Cl when Xt E Cl, it foUows that 

(3.1.6) 

We can establish the study of framework for CAC and RC problems for an underlying 

network system NS subject to assumptions (S2) and (S3). 

3.2 Dynamic Programming for Poisson Markovian 

Network Systems 

In this section, we consider infinite horizon discounted OSC problems for Poisson 

Markovian network systems. 
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3.2.1 Uniform Transition Rate Case 

We consider the Markovian network system with identical interval, i. e. any interval 

between any instant and the instant at which the first event (caU request or connection 

departure) occurs has an identical exponential distribution. 

Lemma 3.2 

J(t',x;u) = J(t",x;u),x E X,O ~ t',t" < 00 (3.2.1) 

So, we can denote J(t', x; u) as J(x; u), i.e. discounted infini te horizon cost function 

J(t, x; u) with initial state Xt = x and controllaws u is time invariant. 

Proof: 

J(t',x;u) = E{l°O e- f3 (t-t')g(Xt-,Ut)dt} 
t' 

= E{l°O e- f3t g(x(t+t')-,ut+t,)dt} 

= E{l°O e-f3tg(xt_, ut)dt} 

(since state trajectory is time invariant with the same controllaws) 

= J(O,x;u) 

= J ( t" , x; u) 

o 

Definition 3.1 The Infinite Horizon Discounted OSC Problem for Poisson Marko­

vian Network Systems is defined as: 

In Definition (2.17), we consider the Poisson Markovian Network Systems with as­

sumptions (S2) and (S3) and suppose system is time-invariant, then : 

(1) Controlled transition probability from state Xt- = x E X to state Xt = Y E X with 

control Ut(Xt-) E U M is denoted as P(Xt- = x, Xt = y; u) == P(x, y; u); 
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(2) L08s function with control u, is g(Xt- = x, u) = g(x, u); 

(3) Cost function, with control u, J(8, x; u) in Definition (2.17) satisfies J(x; u) 

J(8, x; u) (Lemma (3.2)); 

(4) Value function is denoted as JO(x; u) = JO(8, x; u) = infuEuM JO(8, x; u), where, 

when it exists, an infimization function û E U M shaU be caUed an optimal control 

for the infini te discounted ose problem for Poisson Markovian network system with 

respect to the Markovian controllaws U M . 

o 

Theorem 3.1 For infinite horizon discounted ose problems for Poisson Markovian 

Network Systems with identical interval distribution with parameter À, for sorne À > 0, 

there exists an equivalent discrete infinite horizon discounted control problems with 

discount factor 0' = i3~>" controUed transition probability P(x, y; u), and loss function 

g(x,u) = gb~~), for aU x E X,u EU. BeUman's equation for discrete problems is 

Proof: 

JO(x) = min{g(x, u) + 0' L P(x, y; u)JO(y)}, 
uEU 

x E X 
yEX 

(since, Xt, Ut are constants for tk :-:; t < t k+1 , 

we denote them as Xk, Uk, respectively.) 

(3.2.2) 

(3.2.3) 
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Furthermore, 

l
tk+1 E{e-!3tk}(1 - E{e-!3Tk+I}) 

E { e -!3t dt} = -------"------"---'--------"----~ 
tk f3 

E {e-!3(Tl +'+Tk)}( l - E {e-!3Tk+l } ) 

f3 
IT7=1 E{ e-!3Tk}(1 - E{ e-!3Tk+l}) 

f3 
_ (E{e-!3T})k(1- E{e-!3T}) 

f3 
(since, Ti, i = l, ... , k are identical independent 

random variables as exponential distribution with 

parameter À. We consider such random variable as T ) 

ci(l - a) 

f3 

Where a ~ E{e-!3T} = E (00 e-!3T Àe-ÀT dT = ~ , Jo À+!3 

Then, we get 

l
tk+ 1 ak 

E{ e-!3tdt} = --
tk f3 + À 

(3.2.4) 

So, from (3.2.3) and (3.2.4), the co st function is transformed into the following form. 

JO(s,y;u) = E{l°O e-!3tg(t,Xt-,ut)dt} 

l 00 

= f3 + À L a
k 
E{g(Xk, Uk)}, 

k=O 

= f ak E{ g(Xk, :k)} 
k=O f3 + 

with Xo = y 
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So, Bellman's equation is obtained as: 

JO(Xto) 

=J°(to, Xto) 

44 

with Xto = X, Xtl = Y 

(3.2.5) 

o 

With the stationary contro11aw U = (u(xt),··· ,u(xlxl)); U(Xi) E U(Xi), i = 1,'" ,IXI: 

( 

g(Xl' u(xt)) l 
(1) The vector form of 10ss function is denoted as gu; 

9(xlxl' u(xlxl)) 



CHAPTER 3. POISSON MARKOVIAN NETWORK SYSTEMS 

( 

J(X1, U(X1)) 

(2) The vector form of co st function 

J(XIXI: ~·(XIXI)) 
(3) The controUed transition probability matrix 

is denoted as Ju ; 
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is denoted as Pu. 

o 

We implement the infinite horizon discounted ose problems for Poisson Markovian 

network systems with identical interval distribution with parameter À > a by policy 

itemtion algorithm [9]. 

(Step 1) Take an initial control UO(x), x E X e.g. a control with which the caU request 

from node ni E N to node nj E N is accepted if and only if it can be aUocated in the 

direct connection (ni, nj) . 

(Step 2) Implement the co st function Juk with control uk(x), x E X, k E {a, N}, 

guk 
( )-1 

Juk = f3 + À l - aPuk , 

(Step 3) A new control uk+1 is obtained from 

À 
where a = --f3 

À+ 

k+ 1 _ . { . gu D J } u - argmm u. -f3-- + aru uk 
+À 

if Uk+1 = uk, then Uk+1 is the optimal control, otherwise return to Step 2. 

3.2.2 Non-Uniform Transition Rate Case 

(3.2.6) 

(3.2.7) 

o 

In actual Poisson Markovian network system, caU request and connection departure 

event (we have analysed in Section 3.1) has transition rate À(Xt- = x) = À(x); x E X 
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which is time invariant and depends on state x. Nonetheless, we can establish an 

equivalent uniform transition rate case problem which we have studied in Section 

(3.2.1) for non-uniform transition rate case [9]. 

Here we define a new controlled transition probability from state x E X to y E X 

with controlled u E U which is related to control transition probability P(x, y; u) in 

uniform transition system, 

P(x,y;u) = { 
À~) P(x, y; u) if x -=1= y 

(3.2.8) 
À~) P(x,x;u) + 1- À~) if x = y 

Theorem 3.2 For infinite horizon discounted ose problems for Poisson Markovian 

network systems with interval distribution with parameter À(x) > 0, and controlled 

transition probability P(x, y; u), there exists an equivalent discrete uniform infini te 

horizon discounted control problems with discount factor 0' = ~~À' controlled transi­

tion probability ?(x, y; u) (3.2.8), and loss function g(x, u) = g~~~), for all x E X, u E 

U. Furthermore, Bellman's equation is 

JO(x) = min{g(x, u) + 0' ""' ?(x, y; u)JO(y)}, x E X 
uEU ~ 

(3.2.9) 
yEX 

D 

From Theorem (3.2) we see implementation of general infinite horizon discounted ose 
problems for Poisson Markovian network systems is just same as the corresponding 

uniform problems. 
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3.3 A Simple Example 

We consider a simple Poisson Markovian network system NS = {Net(N, L, C); S,U}, 

Figure (3.1), where N = {nI, n2, n3}' L = {h = (nI, n2), l2 = (n2, nd, l3 = (nI, n3), l4 = 

(n3, nI), l5 = (n2, n3), l6 = (n3, n2)} and C = {Cs = 1 : 1::; s ::; L = 6}. 

Figure 3.1: A fully connected 3-nodes network 

We get the set of connections as 

R = { rI = (nI, n2), r2 = (nI, n3, n2), r3 = (n2, nI), r4 = (n2, n3, nI), 

r5 = (nI, n3), r6 = (nI, n2, n3), r7 = (n3, nl), r8 = (n3, n2, nI), 

rg = (n2, n3), rlO = (n2, nI, n3), rll = (n3, n2), rl2 = (n3, nI, n2) } 

and the state set is, 

x = {Xl = 

o 
o 

o 

1 

o 

o 

1 

1 
, ... } ,X3 = 

0 

(3.3.1) 

(3.3.2) 

Even in this extremely simple network, the problem seems much more complex than 

we expected, e.g., for state X = (10···0), the cardinality of admissible control set 
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U(x) is 17, 

U(x) = { connection departure allocated at connection (nI, n2); 

accept only one of following call requests and allocate it in the direct connection 

n2 ---t n3, n3 ---t n2, n2 ---t nI, nI ---t n3, n3 ---t nI; 

accept only one of following call requests and allocate it in the multi-link connection 

n2 ---t n3, n2 ---t nI, n3 ---t nI; 

accept only two of following call requests and allocate it in the direct connection 

n2 ---t n3 and n2 ---t nI, n2 ---t n3 and nI ---t n3, 

n2 ---t n3 and n3 ---t nI, n3 ---t n2 and n2 ---t nI, 

n3 ---t n2 and nI ---t n3, n3 ---t n2 and n3 ---t nI, 

n2 ---t nI and nI ---t n3, n2 ---t nI and n3 ---t nI } 

In this section we have implemented an optimal CAC and RC problem for a very 

simple Poisson Markovian network. From this illustrated simple example we can see 

the complexity of the CAC and RC problems in communication networks and it is 

actually one of reasons to seek the sub-optimal controllaws with so-called decentralized 

control methods. 



CHAPTER 4 

Hierarchical CAC and RC 

Problems in Communication 

Networks 

Because of the great complexity of communication networks, we consider here hierar­

chical stochastic control methods and present the resulting sub-optimal control laws 

for the CAC and RC problems introduced in Chapter (2). The hierarchical formu­

lation of the control problems will innovate state aggregation methods and we refer 

the readers to ([1], [2], [11], [24], [27]) for related state aggregation methods for routing 

problems. 

See Figure (4.1) which is an example of this kind of communication networks. 

49 
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o 

i c 
\ 

Figure 4.1: A communication network 

4.1 Hierarchical N etwor k 

Definition 4.1 A set of local networks with respect to a network N et(N, L, C), de­

noted {Net(M, Li, Ci); i = 1,··· K}, is defined as: 

MeN, 

MnNj=0, Vi=/;j;i,jE{I,···,K}, 

U~l M = N, (4.1.1) 

Li = {l = (o,d) E L;o,d E M}, 

Ci = {Cl E C; l E Ld, 

Each local network 1'1 et i is a connected graph. 

(4.1.2) 

(4.1.3) 

(4.1.4) 

D 

Definition 4.2 A High Level Network 1'1 etH ~ 1'1 et(NH, LH, CH) with respect to 

a network Net(N, L, C) and its set of constituent local networks N H = {Neti = 

1'1 et(M, Li, Ci); i = 1, ... K} is defined as the directed multi-graph, where 

LH = {l = (o,d) E L;O EM,d ENj;Vi =/;j,i,j E {1,2,··· ,K}}, 

CH = {Cl E C; l E L H }. 

(4.1.5) 

( 4.1.6) 
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o 

So we see that the high level network Net H consists of the collection of local net­

works of Net(N, L, C), taken as the nodes of NetH, together with the set of edges 

of N et(N, L, C) connecting them and their associated capacities, now viewed as high 

level links and capacities. 

See Figure (4.2) which is high level network with respect to network shown in Figure 

(4.1); Figure (4.3) where bold links indicate information oflocal network N et(M, Li, Ci). 

We say a communication network has a hierarchical networks structure, if it is decom­

posed into a set of local networks as in Definition (4.1), in which case, we obtain the 

high level network given in Definition (4.2). 

Figure 4.2: High level network 

4.2 Stochastic Dynamics and Control for Local Net­

works of Hierarchical Networks 

For any local network Neti = Net(M, Li, Ci), i E {1,··· K} of hierarchical network 

Net(N,L,C), we denote set of connections, state set and event set as ni,xi and Ei 

respecti vely. 
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( 
'-

\ 

\ 
! 

1 
\ 

Figure 4.3: Information of a local network 
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Definition 4.3 For a local local network Net(M,.ci,Ci),i E {1,··· ,K}, the set' of 

boundary nodes, Mb
, is defined as: 

Mb = {n'E M; :3 nif E Nj,j =1= i,j E {1,··· ,K}, (n', nif) E .c} (4.2.1) 

D 

Definition 4.4 For a local network N eti , i E {1,··· ,K}, the call request and con­

nection departure event set, E i, is defined as 

where, EH,i = {0, e;, e!t; Vr E Ri, Vo, dEN, 0 =1= d and 0 ri- M or d ri- M}, 

(4.2.2) 

D 

The notion of (a) state (process) for a local network Neti is defined in exact analogy 

with that of (a) state (process) for Net in Definition (2.13). 
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Definition 4.5 For a local network N et(M, Li, Ci)' the control set is Ui, specified 

by: 

where, Ir is a vector in the Inil dimensional space ~1R.il with unit entry in the r-th 

position; correspondingly, -Ir has an entry -1 in the r-th position. 

D 

Definition 4.6 We term a sequence of event instants ti(w) in ~+ 

o < ti (w) < t~(w) < ... < ti(w) < ti+l (w) < ... , (0, F, {Fth~o, P), w E 0, 

at which random caU request and connection departure events occur as a sequence of 

random event instants t i : N+ x 0 -----+ ~+. The sequence Ti : N+ x 0 -----+ ~+, with 
... . Ô 

Tt == tic(w) - tic_l(W), where t~(w) = 0 is defined as the sequence of event intervals 

(associated to ti (w) ). 

D 

Evidently, we obtain that tî = 2.:;=1 Tk, i E {l,· .. , K}, t E ~+ 

Definition 4.7 We define the event process e i (t, w) as a stochastic process ei 
: ~+ X 

0-----+ Ei. 

D 

Definition 4.8 The set of measurable control laws with full observations of current 

information (Markovian control) is denoted by Ui,M[s, Tl, where i E {l, ... , K}, 

Ui,M[S, Tl = {ui : [s, Tl x 0 -----+ U; S.t. u~(.) is (j(x~-, eD measurable, tE [s, T]}, 

Ui,M[S, 00) = UT~sUi,M[s, Tl. 
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D 

We note that the control u~(.) for Neti is a function of the high level event through 

the process e~ E Ei = EH,i U EL,i, which depends upon both high level EH,i an local 

EL,i events as discussed below. 

We now specify the controlled stochastic dynamics of astate process Xi in N et(M, Li, Cd 

subject to call request, connection departure events and subject to sorne specified con­

trollaw just defined here, i.e. u E Ui,M[s, Tl. 

Before giving the formaI definition of the set of state pro cesses xi in Net(M, Li, Ci) 

we declare that a typical state pro cess in Xi evolves in the following way: 

• At a local event instant t~, a local event e E E i occurs: 

if e E E!t,i, then subject to current local capacity constraints, the call 

request is be instantaneously accepted and allocated by a pre-assigned local 

control law ui = u: i E Ui ,+, and the state (value) x\ _ is instantaneously 
k t k 

transformed into the state (value) X~i = Xii _ + U!i; 
k t k k 

if e E E~,i, then the local call request can be accepted or refused by a 

pre-assigned local control law ui = U!i E Ui , and the state (value) x\ _ IS 
k t k 

instantaneously transformed into the state (value) X~i = x\ _ + U~i; 
k tk k 

if e = é- E {EH ,- E L ,-} then the local control law ui = u i = -1r will 
r " tic 

be implemented. 

• During [t~, tk+1), the local state will remain constant, i.e. the state trajectory is 

piece-wise constant and right continuous. 

• At the instant t~+l' the local state evolves in the same way as at instant tic. 

Definition 4.9 For the network Net(M, Li, Ci), the state response or transition equa­

tian, with the control law u E Ui,M[s, Tl, for the evolution of the state pro cess 
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Xi : [S, Tl x n -----+ Xi with initial state x~ = çi, 0 ~ s ~ T < 00, is given by 

'f t t i i,+ E EH,i 1 a ,et = eod + occurs 

(1) i E {O 1 ( ) E 'T>i d} 'f t t i i,+ E EL,i Ut 'T: T = ml,"', mj ,'- ,ml = 0, mj = ,la ,et = eod + occurs 

U~ = -Ir. subject to T E x;_, if at t, e; E Ei occurs 

(2) x~_ + u~ E Xi. 

o 

Definition 4.10 For any i E {l, ... ,K}, sE [0, T) and çi : n -----+ Xi, çi is Fs measur­

able, we consider the system state (4.2.3a) in the space transition form with control 

law U E Ui,M[s, Tl: 

X i = Ci as s .", .. 

and consider the cast functian as 

where, gi : [s, Tl x Xi x Ui -----+ lR.+ is bounded and measurable W.T.t. (t,x,u). 

(4.2.3a) 

(4.2.3b) 

(4.2.4) 

o 

4.3 Stochastic Dynamics and Control for High Level 

Networks of Hierarchical Networks 

For the high level network Net(NH,LH, CH), we denote set of connections, state set 

and event set as n H , X H and EH respectively. 
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Definition 4.11 For the high level network N et(N H, L H , CH) of the hierarchical net­

work N et(N, L, C), the caU request and connection depariure event set, EH, is defined 

as 

(4.3.1) 

where, e;d E EH corresponding to an ordered pair (0, d) of distinct nodes (local net­

works) in N H x N H, and e; E EH corresponds to a connection r in nH. 

o 

For Net(NH, LH, CH), a mapping x H : [s, Tl E ~+ --+ x H constitutes astate process 

trajectory xf E X H for aU t, s :S t :S T :S 00. 

Definition 4.12 For network Net(NH,LH, CH), the control set is UH specified by: 

where, Ir is a vector in the InHI dimensional space ~lnHI with unit entry in the r-th 

position, and correspondingly, -1r has an entry -1 in the r-th position. 

o 

Definition 4.13 We term a sequence of event instants tH(w) in ~+ 

o < tf (w) < tf (w) < ... < tf (w) < tf+l (w) < ... ,(n, F, {Fth::::o, P), w E n 

at which random caU request and connection departure events occur as a sequence of 

random event instants tH : N+ x n --+ ~+. The sequence TH : N+ x n --+ ~+, with 

TH == tf(w) - tf_l(w), where t{f(w) ~ 0 is defined as the sequence of event intervals 

(associated to tH (w )). 

o 
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Evidently, we obtain that t~ = L:~=1 Tf!. 

Definition 4.14 We define the event process eH (t, w) as a stochastic pro cess eH 

lR.+ x n ---+ EH. 

o 

Definition 4.15 For the local network Net(M, Ci, Ci), i E {l,··· ,K}, at an instant 

t with local state as x~, then the feasible connection set from n' E ~b to n" E ~b, 

denoted by R(n',nl/)(xD, is defined as: 

R(n',nll)(xD = {r E Ri; r = (n(1),·· . ,n(k)), 

where n(1) = n',n(k) = n"and Cl- Lx~,r > O,Vi Er}. 
r'EI 

(4.3.2) 

o 

Definition 4.16 For the local network Net i = Net(M, Ci, Ci), i E {l,··· ,K}, sup­

pose at an instant t, the local state is xL then we define (Jeasibie connection) capacities 

as, 

h l" A rb 1 ~ " w ere, n ,n E JV i ,n r n , (4.3.3) 

and 

where, IQI = IMlliMI-I]. ( 4.3.4) 

The set of Q corresponding to aIl feasible local network states is denoted by Q. 

o 

EXAMPLE: We suppose that no local and high level connections are allocated at 

an instant t in Net2 ,i.e. x; = 0, in the hierarchical communication network of Figure 
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(4.4). Then we get: 

and so 

Q~n21,n24) = IR(n21 ,n24 )(x;)1 = 2, 

Q~n22,n24) = IR(n22 ,n24 ) (x;) 1 = 1. 
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Clearly, assignments of connections through N et2 are not independent, for instance if 

a (single) connection (which has capacity 1) is assigned to (n22' n24), then the feasible 

connection set becomes R(n22 ,n24 ) = {0}; R(n21,n24) = {(n21, n23, n24)} (with Q~n21,n24) + 
Q~n22,n24) = 1 < 3). 

""" 
i ",. Net

3 
J 

',------ ""-- 1 

-""--' 

Figure 4.4: A hierarchical communication network 

Definition 4.17 The set of (measurable) controllaws with (current) full observations 

(also called Markovian controllaws) denoted as UH,M[s, Tl, is given by: 

UH,M[S, Tl = {uH : [s,Tl x n -'> U; s.t. uf(.) is (J(x~,Qt-,ef) measurable,t E [s,Tl} 

UH,M[s, (0) = UT2:sUH,M[s, Tl 

o 

We now specify the controlled stochastic dynamics of astate pro cess x H in N et(N H, L H , CH) 

subject to call request, connection departure events, and subject to sorne specified con­

trollaw just defined here, i.e. u E UH,M[s, Tl. 
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Before giving the formaI definition of the set of state pro cesses x H in Net(NH, LH, CH) 

we declare that a typical state process in X H evolves in the following way: 

• Assume that at a high level event instant tf!, a high level event e E EH occurs: 

- in case e E E!, then it could be accepted or refused by a pre-assigned high 

level controllaw uH == u~ EUH, and the high level state (value) x~_ lS 
k ~ 

instantaneously transformed into the state (value) x~ = x~ _ + u~; 
k t k k 

- in case e = e;:'- E {E~}, then the high level control law uH = u~ = -Ir 
k 

will be implemented. 

• During [tf!, tf!+l) , the high level state will remain constant, Le. the high level 

state equation is right continuous and pairwise constant at instant t. 

• At instant tf!+l' the high level state evolves in the same way as at instant tf!. 

Definition 4.18 For the high level network Net(NH,LH, CH), the state response or 

transition equation, with the controllaw u E UH,M[s, Tl, for the evolution of the state 

process xH : [s, Tl x n ----t X H with initial state xIj = f,H, x~ = f,i, i E {1,··· ,K} and 

Qs = Q(x;,··· ,xf) = Q(f,I, ... ,f,K), ° ~ S ~ T < 00, is given by 

(1) 

uf E {O, Ir: r = (Netj} , ... ,NetjJ ) E RH, Net)! = 0, Net)j = d; 

Vk> 1, 3n' , n" E Mk and n(1) E Mk-l' n(2) E Mk+l' 

such that (n(1), n'), (n", n(2)) ELand Qi~/,n"\ri~) > 0, 

if at t, ef = e:;t E EIf. occurs 

H - 1 b· H Ut - - r, su Ject to r E x t -, if at t, e; E E~ occurs 

o 
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Definition 4.19 The high level information state transition equation with informa­

tion state WH : [s, Tl x n ---+ (:4:), consists of the information state wf = (~~~ ), 
w here * = 0 if t is not a high level event instant {tf} and * = e~ at the kth high level 

k 

event instant tf. The system dynamics, with high level control law uH E UH,M [s, Tl, 

have the representation: 

(4.3.5) 

(4.3.6) 

(4.3.7) 

where the initial condition for the system is w~ = (~). 

o 

Definition 4.20 For any s E [0, T) and x~ = çH and x~ = çi, i E {1,··· , K}, çH 

and çi, i E {1, ... , K} are F8 measurable, we consider the system state (4.4.1) in the 

space transition form with high level controllaw u E UH,M[s, Tl: 

s :S t :S T, 

and consider the cost function as 

(4.3.8a) 

(4.3.8b) 

( 4.3.8c) 

JH,M(S,çH,Q8;U) = E{lT 
gH(t,x~,Qt-,uf)dt la(x~,x!,.·· ,x~)}, u E UH,M[s, Tl, 

(4.3.9) 

where, gH : [s, Tl X X H x UH ---+ lR+ is bounded and measurable w.r.t. (t,x,u). 

o 



CHAPTER 4. HIERARCHICAL CAC AND RC PROBLEMS 61 

4.4 Doubly Stochastic Hierarchical N etworks 

The basic stochastic framework for the stochastic evolution of network connections 

developed in previous sections will now be generalized by a randomization phenomena; 

this will have the effect of retaining the overall features of the high level connection 

pro cess in hierarchical networks, but will permit a crucial Markovian property to ho Id 

for the aggregation which, in turn, will permit a stochastic dynamic programming 

analysis in order to find optimal stochastic hierarchical controls for the hierarchical 

networks. 

The extension of the previous formulation is defined as follows: 

It is assumed that the underlying probability space (0, F, P) is extended so as to carry 

all the new random phenomena introduced below; furthermore, parameter é > 0 is 

introduced to index the extended process. 

• 1 Let tf: be a high level event instant as defined in Definition (4.13), where this is 

a function of a predefined high level state dependent control u~ (x~_, QtH-, e~) 
k t k k k 

which has been defined for each feasible (xH , Q) E X H X Q. 

• 2 From tf: to the instant (tf: + é) - no event pro cesses are defined and hence no 

events occur. 

• 3 At (tf: +é), the collection of internaI connections of alliocai networks {N et i , 1 ::; 

i ::; K}, are randomized within their respective local networks with respect to a 

uniform distribution over the set of internaI connections, StiH + ~ (X H
tH , QtH )-1, 

k é k k 

which are compatible with the high level information (X H
tH , QtH). Necessarily 

k k 

only the information relevant to N eti forms a non-trivial constraint for the ran-

domization pro cess within N ek The randomization process above results in a 

crucial Markovian property for the hierarchical network because, conditioned on 

(XHtH' QtH )Netp the randomization process within Net i is (1) independent of the 
k k 

process of other local networks {Netj;j i= il, and (2) (by virtue of the uniform 
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distribution), independent of aH network events at any t, 8 ~ t ~ tf: + E. 

• 4 From (tf: + E) onwards the global event proeess conti nous with respect to the 

global system state (i. e. complete set of global and internaI local connections) 

with initial value XtH H' Renee in any given local network N et i , local connections 
k 

evolve only according to the e~+, e~'- E Ei. 

• 5 At tf:+l' when a high level event e;j+, e;!'- E EH occurs, the high level state 

of the network NetH makes an evolution as specified in Definition (4.18). 

• 6 During the subsequent period [tf:+l' tf:+l + E), no events occur. 

• 7 At tf:+l + E, the randomization proeess re-occurs, etc. 

Definition 4.21 For the hierarchical Markovian network N et(N, L, C) with its local 

networks Net(M,12i,Ci),i = 1,'" ,K, and its high level network Net(NH,12H,CH), 

the 8tate response or transition equation, with high level control law u H E UH,M [8, Tl 
and the local control laws ui E Ui,M[s, Tl, for the evolution of the state proeess 

(xH,xl, .. · ,xK) : [s,Tl x n ---+ X H x Xi X •.. X X K with initial state x~ = t,H, 

x~ = t,i, i E {l, . . . ,K}, 0 ~ 8 ~ T < 00, is given by 

(1 high level dynamics and control) 

(4.4.1) 

(3 randomization process over set S::: +E) (4.4.2) 

'\Ij, t~j E [t~ + E, t~+l)' 

(4 local network dynamics and control) (4.4.3) 

o 

Theorem 4.1 Given any high level event instant tH, let E > 0 be such that no event 

is defined in [tH, tH + E) and assume the randomization pro cess occurs at (tH + E), 
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2. e. X~H +E = çi (X~, QtH) is a random variable which is uniformly distributed over the 

feasible local network states which satisfy the constraints of the high level state given 

by (x~, QtH). Then 

s < ... < tk
H < tk

H < ... < T - +1 -, ( 4.4.4) 

is a Markov process, i.e. for s ~ t~ < ... < t~+m ~ T, the following holds: 

p(x~ ,QtH )EfI(J(x~,QtH),j=I,···,k)=P(x~ ,QtH ))EfI(J(x~,QtH)) 
k+m k+m j J k+m k+m k k 

(4.4.5) 

Proof: 

(i) First, we suppose m = 1, then by Definition (4.18), 

( 4.4.6) 

From Lemma (2.1), we can see that, 

{e~ } Il x H {x~, x~ , ... ,x~ } 
k+l tf: 0 1 k-l 

(4.4.7) 

And from Definition (4.16) we get 

(4.4.8) 

For high level event instants t~ and t~+1' s ~ t~ < t~+1 ~ T, we suppose t~ < tt < 

... < tL < t~+1 for each local network Net i (Ji could be zero, i.e. no local event , 
occurs in Net i in the period of (t~ + E, t~+1))' then we get 

(4.4.9) 

where, x!r: +E = çi is a random variable which is uniformly distributed over the feasible 

local network states which satisfy the constraints of the high level state information 

(Xt~,QtH), and is independent of past information of (xfi,Qd,t < tf. And, smce, 
k k 
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conditioned on state X~H +~' e~i ,'" ,e~i is independent of past local state information, 
k kl kJ. 

we can see that e~i ,'" ,e~i is indepe~dent of past information of xf, Qt, t < tf:. 
kl k Ji 

From (4.4.7) and (4.4.8), we get 

(4.4.10) 

(ii) for m = 2, 

=~p(x~ ,QtH )EfI(j(x~ ,QtH ))p(x~ ,QtH )Er'I(j(x~,QtH)) ~ k+2 k+2 k+l k+l k+l k+l k k 

=p(x~ ,QtH )EfI(j(x~,QtH») (4.4.11) 
k+2 k+2 k k 

(iii) Similarily, for any m > 0, mEN, tf:+m ::; T, 

p(x~ ,QtH ) E fi Œ(x~, QtH), j = 1,'" ,k) = p(x~ ,QtH ) E fi (j(x~, QtH») 
k+m k+m j J k+m k+m k k 

(4.4.12) 

o 

We conclude that Doubly Stochastic Hierarchical Networks establish Markovian high 

level pro cesses and hence we shaH sometimes refer to them as Hierarchical Markovian 

Networks. 

See Figure (4.5) for an example of a hierarchical Markovian network. 

We illustrate the state evolution of the doubly stochastic hierarchical networks with 

an ex ample , see Figure (4.6): 

• At (tf:) -, suppose there exist two high level connections on high level connection 

(Net2, Net3, Net5 ) in Figure (4.6), i.e. x~(}!et2,Net3,Net5) = 2 and hence we get 
tk 
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Figure 4.5: A hierarchical Markovian network 

• At tf:, suppose one of two high level connections on (N et2 , Neh, Nets) is dropped, 

then the high level state evolves into x~(Net2,Net3,Net5) = 1 and Q~~',n")(X~H) = 1. 
k k k 

• From tf: to (tf: + E) -, no event pro cesses are defined and hence no events occur. 

• At (tf: + E), aIl internaI connections of local network N et3 are re-assigned uni­

formly over the set of internaI connections in N et3 which is compatible with 

high level state information (x~(Net2,Net3,Net5), Q~~,n") (X~H)) = (1,1) and hence 
k k k 

independently of aIl previous events, 

. d·t· l ( H,(Net2,Net3,Net5) Q(nl,n")( 3 )) z.e., con IlOna upon X tH 'tH XtH· 
k k k 

4.5 Hierarchical CAC and RC Control for Hierar-

chical Markovian Networks 

In sections (4.2,4.3), we have analysed the stochastic dynamics and control for local 

networks and high level network of hierarchical networks, respectively. Section 4.4 has 

established the hierarchical Markovian networks where the high level state pro cesses 

with sorne feasible control are Markovian process. Here we define a novel hierarchical 
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At instant t" • one of high level connections is dropped; 
And al instan't t". +\cpsiion , randomization process is implemented. 

Figure 4.6: An example of randomization pro cess in the local network N et3 

CAC and RC control method for hierarchical Markovian networks in this section. 

Definition 4.22 For any sE [0, T) and x~ = t,H and x~ = t,i, i E {1,··· ,K}, t,H and 

t,i, i E {1,··· ,K} are Fs measurable, we consider the hierarchical state (4.21) in the 

space transition form with high level control law uH E UH,M[s, Tl and local control 

laws ui E Ui.M[S, Tl respectively: 

the cast functian of hierarchical Markovian network system is defined as 

JM(s cH Cl ... cK. uH u l ... uK) 
,~ ,~, ,~, , , , 

=E{ l T 

gH (t, xf1-, Qt-, ur)dt la(t,H, e, ... ,t,K)} 

K T 

+ LE{l gi(t,x~_,u~)dt la(t,i)} 
i=l s 

(4.5.1) 

where, gH : [s, Tl x X H x UH 
--t ffi.+ and gi : [s, Tl X Xi x Ui 

--t ffi.+ are bounded and 

measurable w.r.t. (t,x,u). 

o 
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Definition 4.23 The Optimal Hierarchical Stochastic Control (OHSC) Problem 1S 

defined as: 

For any s E [O,T) and f,H : [2 ---+ X H and f,i : [2 ---+ Xi, f,H,f,l, ... ,f,K are Fs 

measurable, consider the hierarchical state and cost function as in Definitions (4.21) 

and (4.22), respectively. 

The optimal hierarchical stochastic control problem is given by the infimization: 

(4.5.2) 

o 

Since, the hierarchical stochastic control methods introduced here use the doubly 

stochastic version of the network derived from the original model (by the random­

ization procedure) the controllaws which are optimal for the hierarchical network will 

in general be sub-optimal for the original network. It is important to analyse the 

degree of suboptimality. 
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Conclusion 

5.1 Contributions of the Thesis 

• CalI admission control (i. e. CAC) and routing control ( i. e. RC) problems in inte­

grated communication networks have been formulated and analysed via stochas­

tic dynamic programming. 

• CAC and RC problems in Poisson communication networks have been formulated 

and analysed as discrete-time stochastic control problems. 

• Doubly stochastic hierarchical networks have been defined, and CAC and RC 

control problems are then formulated as stochastic hierarchical control problems. 

5.2 Future Work 

• The properties of the doubly stochastic network models of Chapter (4) with 

respect to the standard models of Chapter (2) need to be thoroughly analysed. 

• Even though a stochastic hierarchical control methodology has been provided 

its properties from a stochastic control and complexity viewpoint remain to be 

68 
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analysed, as well as its performance in terms of implementation in realistic ex­

amples . 

• Many complex networks, e.g. the Internet, are independently operated by many 

independent agents who are interested in their own revenues or costs and whose 

private information cannot be observed by others. For such communication 

networks, the CAC and RC control problems have been considered as game 

problems, see (e.g. [10], [12]-[23], [25], [26], [28], [29]). Based upon the models 

introduced in this thesis the following work should be undertaken: 

- The hierarchical stochastic control methods provided in this thesis should 

be generalized to multi-agent network environments and their potential 

benefits should be studied. 

- The game theoretic issue of simple networks with small group of agents 

need to be established; CAC and RC control (via dynamic programming) 

and pricing mechanisms for network resource allocation for multi-agent net­

work need to be studied in detail, and Nash and other equilibria should be 

analyzed. 
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