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Abstract 

 The occurrence of extreme storms is a critical consideration in the design and 

management of a large number of water-resource projects. In current engineering practice, 

the estimation of extreme rainfalls is accomplished based on statistical frequency analysis 

of maximum precipitation data. The objective of this frequency analysis is hence to 

estimate the maximum amount of precipitation falling at a given point for a specified 

duration and return period. Results of precipitation frequency analysis are often 

summarized by “intensity-duration-frequency” (IDF) relationships for a given site. 

However, traditional methods in the development of IDF relations have two major 

limitations. Firstly, these existing methods were not able to account for the extreme 

rainfall characteristics over different time scales. Secondly, these traditional methods 

cannot take into account the potential impacts of climate variability and climate change. 

Therefore, the main objective of the present study is to propose an improved method for 

extreme rainfall estimation that could overcome these limitations. The proposed method 

was based on the scale-invariance GEV distribution and the statistical downscaling 

procedure to construct the IDF relations in the context of climate change. The Non-

Central Moment method was used for the estimation of the three parameters of the GEV. 

Results of a numerical application using Annual Maximum Precipitation (AMP) data 

from a network of 14 rain-gauge stations in South Korea has indicated the feasibility and 

accuracy of the suggested method. In particular, the observed AMP series displayed a 

simple scaling behaviour. In addition, the linkages between global climate variables given 

by two Global Climate Models (GCMs) (one from Environment Canada and one from the 

UK Hadley Centre) and the local extreme rainfall characteristics have been successfully 

established for predicting the resulting changes of the IDF relations under different 

climate change scenarios A2, A1B, and B2. It was found that the IDF relations for future 

periods (2020’s, 2050’s, and 2080’s) showed increasing or decreasing trends depending 

on the GCM used and the climate scenario considered.  
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Résumé 

 La fréquence des tempêtes extrêmes est un facteur critique dans la conception et 

gestion d’un grand nombre de projets de ressources en eau. Dans la pratique courante, 

l’estimation des pluies extrêmes est réalisée en se basant sur l’analyse de fréquence 

statistique des données de précipitations maximales. L’objectif de cette analyse de la 

fréquence est donc d’estimer le montant maximal de précipitations qui tombent à un 

moment donné pendant une durée déterminée, ainsi que la période de retour. Les résultats 

de l’analyse de la fréquence des précipitations sont souvent résumés par les relations 

Intensité-Durée-Fréquence (IDF) pour un site donné. Toutefois, les méthodes 

traditionnelles dans le développement des relations IDF ont deux limites majeures. Tout 

d’abord, ces méthodes n’ont pas été en mesure de tenir compte des caratéristiques des 

précipitations extrêmes sur des différentes échelles de temps. Deuxièmement, ces 

méthodes traditionnelles ne tiennent pas compte des impacts potentiels de la variabilité 

climatique et du changement climatique. Par conséquent, l’objectif principal de cette 

présente étude est de proposer une méthode d’estimation des précipitations extrêmes 

améliorée qui pourrait surmonter ces limitations. La méthode proposée a été basée sur 

l’échelle d’invariance de distribution GEV et la procédure de réduction d’échelle 

statistique pour construire des relations IDF dans le contexte du changement climatique. 

La méthode des moments non-centraux a été utilisée pour l’estimation des trois 

paramètres de la GEV. Les résultats obtenus par une application numérique des données 

de Précipitations Maximales Annuelles (PMA) à partir d’un réseau de 14 stations 

pluviométriques en Corée de Sud ont démontré la faisabilité et la précision de la méthode 

proposée. La série de PMA observée a particulièrement affiché une propriété d’échelle 

simple. En outre, les liens entre les variables climatiques globaux donnés par les deux 

Modèles Climatiques Globaux (MCGs) (un en provenance d’Environnement Canada et 

l’autre du Centre Hadley du Royaume-Uni) et les caractéristiques des précipitations 

locaux extrêmes ont été établis avec succès pour prédire les changements qui résultent des 

relations IDF selon des différents scénarios climatiques - A2, A1B, et B2. Il a été constaté 

que des relations IDF pour les périodes futures (les années 2020, 2050, et 2080) ont 

démontré des tendances qui augmentent ou diminuent dépendemment des MCG utilisés et 

du scénario climatique à l’étude.  
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1 Introduction 

 The frequency of rainfall of various magnitudes is important for a range of 

hydrological applications. In particular, rainfall frequency analyses have been extensively 

used for planning and design of engineering works that control storm runoff (e.g., dams, 

culverts, urban and agriculture drainage systems). This is because, in most cases, good 

quality flow data which has adequate length for reliable estimation of floods are generally 

limited or unavailable at the location of interest, while extensive precipitation records are 

often available. At a site where annual maximum precipitation (AMP) data series are 

available, frequency analysis is applied to estimate the amount of precipitation falling at a 

given point (or over a given area) for a specified duration and return period. Results of 

this analysis are often summarized by “intensity-duration-frequency” (IDF) relationships 

for a given site, or are usually presented in the form of a “precipitation frequency atlas”, 

which provides rainfall accumulation depths for various durations and return periods over 

the region of interest. For instance, estimates of rainfall frequencies for various durations 

and return periods are available for Canada in the Handbook on the Principles of 

Hydrology (Gray, 1973). 

1.1 Statement of Problems 

 Traditionally, to build IDF curves, a selected probability distribution is 

independently fitted to observed values of AMPs for various durations. This traditional 

IDF derivation method, however, has some limitations. Firstly, the traditional method 

does not take into consideration characteristics of precipitation over different time scales 

(time scaling problem). For instance, if the distribution is fitted to AMP data of 10-minute 

duration, then the results are accurate only for the 10-minute rainfall duration. Hence, the 

fitted model is accurate only for the specific time scale considered and cannot describe 

the statistical properties of the extreme rainfall processes at other time scales (Nguyen, 

2004). Secondly, the traditional method uses data available at a given local site only 

without considering the spatial rainfall variability in the study region (spatial scaling 

problem). Finally, the traditional method is unable to account for the possible impacts of 

climate change in the future.  
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 Recently, climate change has been recognized as having a profound impact on the 

hydrologic cycle at different temporal and spatial scales. For instance, some previous 

studies have indicated an increasing trend of extreme rainfalls in mid-latitude area 

including South Korea (Choi et al., 2008, 2009; Frich et al. 2002; Kim et al., 2008; Im et 

al., 2011; Parl et al., 2011; Jung et al., 2011). It is hence necessary to consider this climate 

variability in the frequency analysis of extreme rainfalls. In addition, General Circulation 

Models (GCMs) and Regional Climate Models (RCMs) have been recognized to be able 

to represent reasonably well the main features of the distribution of basic climate 

parameters at global and regional scales, but outputs from these models are usually at 

resolutions that are too coarse for many impact studies. Hence, statistical downscaling 

methods have been used for describing the linkage between the large-scale climate 

variables given by GCMs or RCMs to the observed extreme rainfall characteristics at a 

local site (Nguyen et al., 2006).  

 In summary, many previous studies have found an increase in extreme rainfall 

patterns in South Korea for the present time as well as for future periods (Kim et al., 2008; 

Kwon et al., 2009; Na, 2010). Having high population density in most urban areas in 

South Korea, it is necessary to develop appropriate measures to properly cope with the 

possible severe impacts of flooding caused by this change in extreme rainfall patterns. It 

is hence expected that the results of the present study will provide essential information 

for improving our design, planning, and management of the urban drainage systems in 

order to minimize the potential impacts of climate change on flooding in urban areas in 

South Korea. 

1.2 Objectives 

 In view of the above-mentioned issues, the overall objective of the present study 

is focused on the development of an improved method for extreme rainfall frequency 

analysis in the context of climate variability and climate change. The feasibility of the 

proposed method will be assessed using extreme rainfall data available from a network of 

14 raingage stations in South Korea. More specifically, this study aims at the following 

particular objectives: 
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(i) To propose a suitable method for selecting the best statistical distribution for 

Korean extreme rainfall data; 

(ii) To propose a reliable estimation method for estimating the parameters of the 

selected distribution model;  

(iii) To examine the scaling property of the Korean extreme rainfall processes; 

(iv) To construct reliable IDF relations for South Korea for the current climate; and  

(v) To develop IDF relations for South Korea for future periods in consideration of 

different climate change scenarios. 

 The current thesis is organized into five chapters. Chapter 2 presents a critical 

review of previous works related to the frequency analyses of extreme rainfalls in 

consideration of climate change. Chapter 3 presents a description of the study data and 

outlines the methods used in the statistical data analysis and the at-site frequency analysis 

of extreme rainfalls. Chapter 4 is dealing with the derivation of the IDF relations for 

future periods under some climate change scenarios. Finally, Chapter 5 states the major 

conclusions and provides some recommendations for future research.  
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2 Literature Review 

2.1 At-Site Frequency Analysis of Extreme Rainfalls 

 As mentioned previously, the objective of frequency analysis of hydrologic data 

is to relate the magnitude of extreme events to their frequency of occurrence through the 

use of probability distributions (Chow et al. 1988). In particular, for extreme rainfalls, the 

frequency analysis is to provide an estimation of the maximum amount of precipitation 

falling at a given point (or over a given area) for a specified duration and return period. 

This analysis consists of three steps: (i), obtaining and screening the observed extreme 

rainfall data; (ii), selecting a representative probability distribution and estimating its 

parameters; (iii), evaluating the adequacy of the selected distribution. For the first step, 

two types of extreme rainfall data exist: Annual Maximum Series (AMS) and Partial 

Duration Series (PDS). The AMS contains the maximum rainfall amount in each 

complete year of record, while the PDS is a series of data selected as being above a given 

threshold. Arguments in favour of both types have been given in several studies, but the 

difference between using AMS and PDS was found to be important only for short return 

periods (2 to 5 years) and insignificant for long return periods (10 years or longer)  

(Chow 1964; Stedinger et al. 1993). Due to its simpler structure, the AMS-based method 

is more popular in practice. 

 Once the selection of the observed annual extreme rainfall series is completed, an 

assessment is performed to detect outliers and trends in the screening data as well as to 

figure out the basic statistical characteristics. Outliers which deviate markedly from other 

members (Grubbs 1969) may cause the distribution shape changed, hence a choice to 

keep the outliers for analysis is crucial. If the outliers are caused from any source of 

errors, they are better to be removed; otherwise they are worth to keep. For a trend 

analysis, various techniques can be performed to detect non-stationarity (Hirsch et al. 

1993). For instance, extreme rainfall quantiles calculated for two different time periods 

can be compared (Gerold and Watkins Jr. 2005), and Mann-Kendal trend test is also 

commonly used. 

 The next step is the selection of a representative probability distribution. Table 
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2.1 shows candidate distributions generally used for frequency analyses of extreme 

rainfalls. Extreme Value Type Ⅰ distribution (EV1), also known as Gumbel distribution, 

has been broadly used for the extreme rainfall frequency analysis (Pilon et al. 1991). 

However, it has recently been found that EV1 theoretically and practically underestimates 

extreme rainfall amounts (Koutsoyiannis and Demetris 2004), particularly those at the tail 

of the distribution which are important in the extreme value analysis. The Generalized 

Extreme-Values (GEV) distribution which is inherently designed for the tail area is 

preferred. GEV distribution is said to be flexible because it is a generalized form of three 

extreme distributions: Gumbel, Weibull, and Frecher. Therefore, it generates less biased 

quantile estimates. Several studies have applied the GEV distribution for their frequency 

analysis (Fowler and Kilsby 2003; Lee and Maeng 2003; Nadarajah and Choi 2007; 

Nguyen 2004; Nguyen et al. 2002). Besides GEV, there are other candidate distributions, 

such as generalized Pareto (GPA), generalized logistic (GLO), lognormal (LN3), and 

Pearson type Ⅲ (PE3). The following table presents the cumulative distribution 

functions and the parameters of the EV1 and GEV distributions.  
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Table  2.1 Cumulative distribution functions (CDFs) used for frequency analyses and 
their parameters 

Name Cumulative Distribution Function Parameters 

EV1 F(𝑥) =  exp �−exp �−
𝑥 − 𝜇
𝜎

�� 
μ: location 

σ: scale 

GEV F(𝑥) = exp �−exp �ξ−1 log �1 − 𝜉 �
𝑥 − 𝜇
𝜎

���� 

μ: location 

σ: scale 

ξ: shape 

GPA F(𝑥) = 1 − exp �ξ−1 log �1 − 𝜉 �
𝑥 − 𝜇
𝜎

��� 

μ: location 

σ: scale 

ξ: shape 

GLO F(𝑥) =  
1

1 + exp �ξ−1 log �1 − 𝜉 �𝑥 − 𝜇
𝜎 ���

 
μ: location 

σ: scale 

ξ: shape 

LN31 F(𝑥) = Φ�ξ−1 log �1 − 𝜉 �
𝑥 − 𝜇
𝜎

��� 

μ: location 

σ: scale 

ξ: shape 

PE32 F(𝑥) = G �
4
𝛾2

,
𝑥 − �𝜇 − 2𝜎

𝛾 �

1
2𝜎|𝛾|

� /Γ �
4
𝛾2
� 

μ: location 

σ: scale 

γ: shape 

                                                 

1 Φ(. ) is the cumulative distribution function of the standard Normal distribution. 
2 G(𝛼, 𝑥) = ∫ t𝛼−1𝑒−t𝑑𝑑𝑥

0  is the incomplete gamma function, and Γ(.) is the gamma 
function. 
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 There is no single distribution that perfectly represents a data series, and 

therefore many tests are used to evaluate and select the best distribution. Goodness-of-fit 

test is the one that checks how well a selected distribution fits to the observed data. 

Generally, both graphical and numerical methods are used in the test. As an example of a 

graphical method, the probability plot illustrates how well the calculated distribution fits 

to the observed quantiles. The quantiles are plotted against probability, which is 

calculated using a plotting position formula, of which there are many kinds (e.g., Blom’s 

for normal distribution, Gringorten’s for extreme type Ⅰ distribution). Among them the 

Cunnane formulae is commonly used since it does not assume any distribution on data set 

(Cunnane 1978). For numerical methods, Chi-square test, Kolmogorov-Simirnov (K-S) 

test, and other tests based on L-moment statistics can be used (Hosking 1996). Besides 

these tests, evaluation criteria such as root mean square error (RMSE) and relative root 

mean square error (RRMSE) are also commonly used. In addition to numerical and 

graphical methods of goodness-of-fit test, characteristics of the distribution such as its 

number of parameters, its statistical properties, and the choice of descriptive or predictive 

ability should be considered (Nguyen and Nguyen 2003). Considering these three factors, 

GEV distribution is adequate for the frequency analysis of AMS of precipitation. About 

the number of distribution parameters, Wilks (1993) found that a three-parameter 

distribution could provide sufficient flexibility to represent extreme hydrological data. 

 Regarding the methods for parameter estimation, L-moment methods, maximum 

likelihood estimation (MLE), and non-central moment (NCM) method are currently 

popular. The L-moments are the combinations of order statistics, and the L-moments 

method is more robust than the conventional moment method in dealing with outliers in 

data. Also, even with a small number of samples, the L-moments method makes it 

possible for robust estimation. MLE method begins with building a likelihood function 

and then finds parameters that maximize the function, in other words, the probability. 

However, the MLE method suffers from the limitation that optimal solutions of the 

maximization problem might not be found for all distributions. When L-moments method 

and the MLE method were compared by Hosking (Hosking et al. 1985), the L-moments 

method showed better estimation results than the MLE method. Finally, the NCM method 

gives a formula relating NCM and GEV distribution parameters. Given the first three 
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NCMs, the three GEV distribution parameters are derived. The NCM method has 

advantages such as tractable calculation and easy interpretation. Also, the NCM method 

has the great advantage in applying scale-invariant properties in NCM to solve temporal 

scaling problems (Nguyen 2004). Therefore, the NCM method is useful for the station 

where rainfall data of short durations are missing.  

 Once a proper distribution and a parameter estimation method have been 

obtained, the annual maximum precipitation (AMP) quantiles for different probabilities 

(or return periods) can be calculated, and these quantiles can be used for the building of 

the intensity-duration-frequency (IDF) curves as described in the following section. 

2.2 Intensity-Duration-Frequency (IDF) Relations 

 IDF relations provide information about how often an intensive precipitation for 

a given duration occurs. Therefore, they are very important for the planning, design, and 

management of various water resource systems. Rainfall intensities associated with 

different return periods, denoted by i, are plotted against the duration, d, and this 

relationship is plotted for every computed return period, T. The following figure shows an 

example of IDF relations. 

 
Figure  2.1 An example of IDF relations 
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 Basically, there are two approaches to constructing IDF curves. For the first one, 

the IDF curves are directly estimated from the observed annual maximum data. After the 

annual maximum series (AMS) is sorted in descending order, a rank is assigned to its 

ordered values, and then the exceedance probability of each value is computed by 

appropriate plotting position formulae. The exceedance probability is the chance at which 

the rainfall amount over the corresponding data occurs. The inverse of the exceedance 

probability is the return period. Therefore, each value of the AMS has a specified return 

period. This computation is applied to AMS for all durations. The unit of AMS, which is 

for amount, is transformed to one for intensity. Intensities associated with specified return 

periods are plotted against duration to build IDF curves. This approach generates non-

smooth curves, and the maximum return period is limited by the length of the observed 

AMS data (Langousis and Veneziano 2007) 

 The second approach, which is widely used in practice, is to use a parametric 

model for intensity (i), which can be written as f(i) = g(T)h(d) (Koutsoyiannis et al. 1998). 

The model depends on return period (T) under the function of g(T) which relies on the 

fact that extreme rainfall follows the extreme type distribution; on duration (d) by a 

function h(d) which is based on the shape of IDF curves, traditionally fitted by several 

empirical equations. Parameters of the equations are calculated using the least-square 

method, and the selection of the best equation from many is done based on RMSE criteria. 

This approach suffers from certain weaknesses. For example, the dependence of i on T 

needs empirical validation, because there is no true distribution that describes perfectly 

the extreme data (Langousis and Veneziano 2007); and the dependence of i on d is not 

based on theory. Moreover, this approach requires a large number of parameter 

estimations and long-observed precipitation data. Actually, stations having a long period 

of observed data are rare, but when the scaling property is examined, valid IDF curves 

can be constructed even from a short length of observed data.  

2.3 Scaling Property in Rainfall Process 

 Scale-invariant property which is used in physics has recently been applied in 

hydrology. It was applied first in 1990 by Gupta and Waymire to a spatial rainfall study 
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and by Rosso and Burlando to depth-duration-frequency (DDF) curves. After that, the 

scaling concept has been widely used in extreme rainfall studies such as storm 

hyetographs (Koutsoyiannis and Foufoula-Georgiou 1993), design storms (De Michele et 

al. 2001), regional estimation (Yu et al. 2004), and IDF curves (Bendjoudi et al. 1997; 

Nguyen et al. 1998).  

 Scaling concept has its root in multi-fractal theory. The theory which is originated 

from the study of turbulence has been progressively employed in rainfall modeling for 

decades. This is because of its ability to achieve, over a wide range of spatial and/or 

temporal scales, a strong control on the statistical moments of a given distribution of 

rainfall, and simulation of synthetic rainfall series preserving the scaling property 

observed in real rainfall series (Deidda 2000). The scaling property implies a function of 

scale ratio to rainfall intensity, and the function is classified as simple scaling or multi-

scaling according to the type of the function. The simple scaling is an exponential form of 

scale ratio, and the multi-scaling is an undefined function that depends only on the scale 

ratio. Consequently, the scaling concept theoretically relates the change of time scale to 

the change of corresponding precipitation values.  

 The scaling property of rainfall process has been widely studied and applied to 

the derivation of the IDF curves by many researchers (BARA et al. 2009; Bendjoudi et al. 

1997; Menabde et al. 1999; Veneziano and Furcolo 2002; Nguyen 2004;). The fact that 

IDF curves satisfy simple scaling relations whereas temporal rainfall has multi-fractal 

scale-invariance is theoretically and practically shown in many articles (Daniele 

Veneziano and Furcolo 2002). In addition, construction of IDF curves using the simple 

scaling concept could be applied to cases where the observed data of short duration 

rainfalls are limited. Furthermore, the scaling approach has been used for downscaling of 

daily rainfalls to sub-daily extreme rainfalls and for developing IDF relations under 

different climate change scenarios given by Global Circulation Models (GCMs) (Nguyen 

2004; Nguyen et al. 2007). 

2.4 Statistical Downscaling based on General Circulation Models (GCMs) 
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 GCMs are comprehensive physical/numerical models of the atmosphere and the 

oceans which are accepted tools for simulating and understanding the behaviour of the 

climate system (Boer et al. 1992). Since the mid-1970s, GCMs have been used to study 

the potential impact of the increasing carbon-dioxide (CO2) concentration on climate 

(Washington and Meehl 1989). Because the GCMs are numerical models, even little 

change in CO2 emission rate, which is an initial condition of the model, leads to 

significant discrepancies in the climate change results. Hence, Intergovernmental Panel 

on Climate Change (IPCC) published a Special Report on emission Scenarios (SRES) in 

which scenarios are grouped into four families (A1, A2, B1, and B2) covering a wide 

range of demographic, economic, and technological driving forces and the resulting 

Green House Gas (GHG) emissions (IPCC 2000). 

 The A1 storyline assumes a world of global population peak in the middle of the 

century, rapid economic growth, and introduction of efficient technologies. In the 

storyline, three groups that describe different technological changes exist: fossil intensive 

(A1FI), non-fossil energy resources (A1T), and a balance across all energy sources (A1B). 

The A2 storyline describes a very heterogeneous world of high global population but slow 

economic development and slow technological change. The B2 storyline depicts a world 

of intermediate population and economic growth. Finally, the B1 storyline portrays a 

world of a population peak in the middle of the century and a rapid change in economic 

structures towards service and information economy (IPCC 2007). 

 As concerns about the impact of climate change on the earth are growing, 

hydrologists have been focusing on changes in rainfall-runoff and floods caused by 

climate change. However, there have been no available tools for the study except GCMs. 

But because GCMs were not primarily designed for climate-change impact studies, their 

spatial and temporal resolution is too coarse, and methods of downscaling have been a 

key challenge to hydrologists (Prudhomme et al. 2002). 

 Generally, GCMs generate variables at a spatial resolution of hundreds of 

kilometers and a temporal resolution of one day. These are very coarse and are not readily 

applicable in hydrology. To refine the resolution of the output variables i.e. to reduce the 

spatial resolution to a few kilometers and the temporal resolution to a few minutes, two 
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broad approaches have been developed for downscaling: dynamical downscaling (DD) 

and statistical downscaling (SD). While DD extracts regional scale information from 

dynamic modeling of regional climate process whose boundary conditions are large scale 

GCMs outputs, SD generates local scale weather data based on the statistical relationship 

between observed data and GCMs outputs. Matter of outstanding method has been argued 

and agreed as depending on areas and weather types, since each method has its own 

advantages and weaknesses (Conway et al. 1996; Gutowski et al. 2000; Kidson and 

Thompson 1998; Mearns et al. 1999; Murphy 1999; Pierce et al. 2012; Wilby et al. 2000; 

Yarnal et al. 2001). However, SD has been widely recognized as more practical over DD, 

especially in terms of flexible adaptation to specific study purposes and less 

computational requirements (Nguyen et al. 2006). SD can be classified into three groups: 

Transfer Function, Weather Typing, and Stochastic Weather Generator. The Transfer 

Function involves defining statistical relationship between large-scale upper air data and 

local surface climate and to define the relationship, several methods such as Multiple 

Linear Regression, Principal Component Analysis, and Artificial Neural Network can be 

applied. The statistical downscaling model (SDSM; Wilby et al. 2002) is a typical 

Transfer Function approach that calculates the relationship by Multiple Linear Regression 

and this has been widely applied (Chen et al. 2012; Khan et al. 2006; Wetterhall et al. 

2007). The Weather Typing method is composed of identifying weather types and building 

statistical model between the types and local station data. Stochastic Weather Generators 

such as WGEN (C.W. Richardson and Wright 1981) and LARS-WG (Semenov and E.M. 

Barrow 1997) are numerical weather models based on the relationship between station-

level weather data and area-averaged weather statistics, and recently have been extended 

for downscaling of GCMs (Semenov et al. 1998). 

 For temporal downscaling, Nguyen (2000) proposed a new method based on the 

“scale-invariance” concept that has been popularly practiced for modeling rainfall 

processes. He examined a function of the order of moments to define a simple scaling and 

then applied it to daily rainfall data to derive sub-daily rainfall values. This technique has 

been applied to the construction of IDF curves for observed rainfalls and further to 

rainfalls simulated by GCMs for future times with consideration of various climate 

change scenarios.   
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3 At-Site Frequency Analysis 

3.1 Study Site 

 The Korean Peninsula is located in the northeastern edge of the Asian continent; 

its geographic range is 33-43°N and 124-131°E. Seventy percent of the land is covered 

with mountains, and most of them are in the north and east parts of the peninsula, causing 

a geographic slope from east to west. Climatologically, heavy precipitation mainly occurs 

from typhoons and the convergence zone of the monsoon front from late June through 

July and August over Korea. The precipitation in that period accounts for more than 40% 

of the annual precipitation, and the horizontal distribution of heavy rainfall amounts is 

roughly similar to that of the total annual precipitation (Lee et al. 1998; Park and Jung 

2002).  

 The data used in this study is sub-daily and daily annual maximum precipitation 

(AMP) series obtained from the Korea Meteorological Administration (KMA) from a 

network of fifteen rain-gauge stations (Figure 3.1). Basic analysis was performed using 

the data from fourteen out of fifteen stations with whole available records (station 

Ullengdo was removed due to a large number of missing data). The available rainfall 

records for these stations are at least 30 years up to 1999, since the modern 

meteorological observation in Korea has been in operation since 1904 and the data is 

managed by the KMA (Park et al. 2011). To manage the issue of homogeneity, the KMA 

digitized the database for the entire period by using the same format and temporal 

resolution of modern observations. And it was stated that one station (Gwangju) out of the 

fourteen stations was relocated in 1960 (KMA, 1995), hence homogeneity test was 

performed on the station’s data. AMP data is split into two groups; one from 1939 to 1960 

(22 years) and the other from 1961 to 1982 (22 years), and then were assessed to check 

whether the two groups are from a same parental distribution. Mann-Whitney Test (M-W), 

Wald-Wolfowitz Runs Test (W-W), and Kolmogorov-Smirnov Test (K-S) were executed 

and results are presented in the following table. All p-values are less than 0.05, which 

imply that two groups of data can be reported to be extracted from the same distribution. 

Therefore, whole AMP data from Gwangju station is used in this study. 
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Figure  3.1 Locations of 15 stations where AMP data are obtained. 

Table  3.1 Results of three homogeneity tests; Mann-Whitney (M-W), Wald-Wolfowitz 
Runs (W-W), and Kolmogorov-Smirnov (K-S) Tests on Gwangju station. 

Duration 
P-values of Homogeneity Test Statistics 

M-W W-W K-S 
10 min 0.185  0.500  0.215  
20 min 0.108  0.500  0.215  
30 min 0.270  0.915  0.860  
40 min 0.348  0.439  0.621  
50 min 0.453  0.439  0.860  

1 hr 0.699  0.953  0.987  
1.5 hr 0.673  0.915  0.860  

2 hr 0.935  0.976  0.987  
3 hr 0.742  0.676  0.987  
4 hr 0.760  0.915  0.860  
6 hr 0.496  0.857  0.621  
9 hr 0.354  0.500  0.621  

12 hr 0.392  0.500  0.621  
15 hr 0.453  0.500  0.621  
18 hr 0.366  0.857  0.387  
1 day 0.324  0.953  0.860  
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3.2 Statistical Analysis of Data 

3.2.1 Basic Statistical Data Analysis 

 By examining the basic descriptive statistics of data, one could identify some 

basic characteristics of the probability distribution of extreme rainfalls. For instance, 

Table 3.1 presents these basic descriptive statistics (such as mean, standard deviation, and 

skewness) of sixteen AMP series for durations from 10 minutes to 1 day (1440 minutes) 

at Seoul station. It can be observed that the skewness varies with rainfall durations. When 

an absolute value of skewness, a measure of symmetry, is over 1.00, it indicates highly 

skewed, while the value between 0.5 and 1 indicates moderately skewed. When the value 

is under 0.5, the data are considered a approximately symmetric. As shown in Table 3.1, 

most AMPs have high skewness values, indicating a highly-skewed distribution for 

extreme rainfalls for most rainfall durations. Similar results for other stations were 

presented in Appendix A (Table A.1-13). 

 For purposes of illustration, Figure 3.2 provides a detailed graphical analysis of 

the highly right-skewed distribution of daily AMPs for Seoul station. The histogram, 

normal Q-Q plot, and Box plot all indicate a non-symmetric distribution for these data 

(positive skewness of 1.584). The de-trended normal Q-Q plot also confirmed this right-

skewed shape because the difference between the observed and the expected value of a 

normal distribution did show an upward curved pattern in both sides of the zero 

horizontal line, especially at the upper end. 
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Table  3.2 Descriptive statistics for AMP data at Seoul station for 1954-1999. 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 46 7.00 47.20 15.98 7.12 2.08 
20 min 46 9.50 60.50 24.02 10.69 1.20 
30 min 46 10.40 79.00 31.55 13.94 1.27 
40 min 46 10.80 96.00 38.07 17.33 1.36 
50 min 46 11.20 108.00 43.63 19.78 1.14 
1 hr 46 14.40 116.00 48.52 21.59 0.97 

1.5 hr 46 15.50 120.00 60.44 24.40 0.37 
2 hr 46 16.60 126.00 69.31 27.20 0.25 
3 hr 46 17.20 157.00 82.30 31.93 0.37 
4 hr 46 21.90 179.00 90.70 35.54 0.66 
6 hr 46 27.90 195.00 105.92 40.79 0.58 
9 hr 46 37.90 236.00 121.18 47.32 0.62 

12 hr 46 52.20 265.00 130.56 52.85 0.87 
15 hr 46 55.10 329.00 141.92 62.73 1.16 
18 hr 46 60.80 361.00 148.83 68.49 1.27 
1 day 46 62.70 445.00 161.04 79.89 1.58 
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Figure  3.2 Diagnostic plots of daily (1440 minutes) AMP data of Seoul during 1954-
1999 period. (a) Histogram, (b) Normal Q-Q plot, (c) Boxplot, and (d) De-
trended Normal Q-Q plot clockwise from upper left. 

3.2.2 Trends in AMP Data 

 To assess the trend in the AMP data the popular Mann-Kendall trend test was 

used. Table 3.2 shows the longest available AMP series without missing data at each 

station.  
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Table  3.3 The start year, end year, and data length (in years) of AMP for 14 stations 

 

 Each station has 16 AMP series of different rainfall durations, and the Mann-

Kendall trend test was applied to each of these data series. In general, no significant trend 

was detected for most stations and for most durations, except for Gangreung (for 10, 20, 

30, 40 and 50 minutes), for Daegu (for 15, 18 minutes and 24 hours), and for Gwangju 

(for 10 minutes) (Table 3.3). For further examination of these trends, parametric 

regression analysis was performed (Table 3.4). For purposes of illustration, Figure 3.3 

shows the significant increasing trends of the AMP series for Gangreung station for 10-, 

20-, 30-, and 40-minute durations. 

No. Station name Start year End year Data length

1 Seoul 1954 1999 46
2 Suwon 1964 1999 36
3 Incheon 1952 1999 48
4 Gangreung 1958 1999 42
6 Daegu 1916 1999 84
7 Busan 1948 1999 52
8 Gwangju 1939 1999 61
9 Jeonju 1970 1999 30
10 Mokpo 1923 1999 77
11 Pohang 1954 1999 46
12 Yeosu 1952 1999 48
13 Chupungryong 1955 1999 45
14 Ulsan 1954 1999 46
15 Cheongju 1967 1999 33
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Table  3.4 Results of Mann-Kendal trend test (Z values) for 16 AMP series in 14 Korean stations. Significant values (p-values are 
less than 0.025) are indicated in bold. 

Stations 
Duration (minutes) 

10 20 30 40 50 60 90 120 180 240 360 540 720 900 1080 1440 

Seoul 1.01  1.12  0.77  1.11  0.98  0.82  0.73  1.13  1.46  1.44  0.91  1.26  1.14  1.47  1.27  0.69  

Suwon 0.00  -0.30  -0.08  0.22  0.00  0.08  0.22  0.30  0.33  0.61  0.49  1.14  1.19  0.98  1.06  1.43  

Incheon 0.56  -0.10  -0.30  -0.04  0.38  0.30  0.74  0.54  0.28  0.00  -0.24  -0.33  -0.40  -0.55  -0.12  -0.26  

Gangreung 3.00  3.23  2.61  2.07  1.91  1.56  1.17  1.00  1.01  1.22  1.05  1.26  1.35  0.83  0.73  1.02  

Daegu 1.08  0.78  0.44  0.51  0.59  0.63  0.54  0.74  0.92  0.93  0.86  0.79  1.37  1.83  1.85  1.78  

Busan 0.92  1.40  1.37  1.07  1.15  1.22  1.04  1.03  1.10  1.23  1.37  1.29  1.28  1.34  1.44  1.49  

Gwangju -1.69  -0.53  -0.27  -0.06  0.09  0.43  0.52  0.90  0.10  0.12  0.08  0.53  0.37  0.42  0.68  0.77  

Jeonju 0.52  -0.07  -0.37  -0.46  -0.86  -1.07  -0.55  -0.59  -0.79  -0.86  -0.57  -1.09  -0.84  -0.91  -1.02  -0.82  

Mokpo -0.59  -0.88  -0.83  -0.34  -0.33  -0.39  -0.17  -0.82  -1.35  -1.26  -0.78  -0.27  -0.23  -0.22  -0.19  -0.43  

Pohang 0.52  0.48  0.49  0.25  0.29  0.16  0.08  0.74  0.66  0.03  0.38  0.84  0.71  0.93  0.43  0.34  

Yeosu 0.04  1.42  1.53  0.98  0.75  0.45  0.02  0.33  0.17  0.52  0.37  -0.21  -0.64  -0.77  -1.23  -0.99  

Chupung-

ryong 
-0.53  -0.24  0.18  0.07  0.26  0.50  0.68  0.80  0.56  0.59  0.48  0.19  0.51  0.80  0.76  0.45  

Ulsan 0.88  -0.16  -0.45  -0.14  0.09  -0.16  -0.45  -0.71  -0.78  -0.97  -0.79  -0.60  -0.85  -0.62  -0.59  -0.11  

Cheongju 1.23  0.25  0.29  0.22  0.03  0.06  -0.46  -0.40  -0.48  -1.46  -1.05  -0.87  -0.28  -0.08  0.36  0.71  
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Table  3.5 Values of regression coefficients along with t-statistics and their p-values. 
Significant p-values (< 0.05) are indicated in bold. 

Data Coefficient Values t statistics p-value 

Gangreung intercept -325.505  -3.538  0.001  

10 min slope 0.170  3.653  0.001  

Gangreung intercept -494.375  -3.428  0.001  

20 min slope 0.258  3.539  0.001  

Gangreung intercept -518.834  -2.854  0.007  

30 min slope 0.273  2.967  0.005  

Gangreung intercept -470.540  -2.185  0.035  

40 min slope 0.250  2.295  0.027  

Gangreung intercept -468.202  -1.869  0.069  

50 min slope 0.250  1.976  0.055  

Daegu intercept -483.309  -1.454  0.150  

1.5 hr slope 0.294  1.732  0.087  

Daegu intercept -547.277  -1.573  0.120  

18 hr slope 0.330  1.855  0.067  

Daegu intercept -531.349  -0.353  0.180  

1 day slope 0.327  1.633  0.106  

Gwangju intercept 114.608  1.777  0.081  

10 min slope -0.051  -1.560  0.124  
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Figure  3.3 Plots of AMP against year together with regression lines (coefficients are 
calculated by SPSS, having p-values less than 0.05) for Gangreung station. 
(a) 10 minutes AMP, (b) 20 minutes AMP, (c) 30 minutes AMP, (d) 40 
minutes AMP.  

3.3 Rainfall Frequency Analysis 

3.3.1 Selection of a Statistical Probability Distribution 

 For extreme rainfall frequency analyses, several different probability distributions 

have been applied to Korean extreme precipitation data: the two-parameter Gumbel 

distribution (Kim et al., 2008; Kwon et al., 2009), and the four-parameter Kappa 

distribution (Park and Jung, 2002). The Kappa distribution was used “because several 

established distributions used for modeling extreme rainfalls are special cases of the 

K4D”, including the general extreme value (GEV) distribution, generalized logistic (GLO) 

distribution, generalized Pareto (GPA), and Gumbel distribution. Nadarajah and Choi 

(2007) criticized the non-theoretical basis of the Kappa distribution and have suggested 

the GEV instead. Lee and Maeng (2003) used the L-moment ratio diagram to choose the 

appropriate distribution for daily AMP among the preselected GEV, GLO, and GPA and 
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found that the GEV and GLO were the most suitable. Hence, the Kolmogorov-Smirnov 

(K-S) test was further performed to select the GEV as the best model. 

 Since there is no general agreement on a representative distribution of extreme 

rainfall data, the one that fits well with observation and generates good estimates is to be 

selected. There is a graphical judgment, called ‘L-moment ratio diagram’, which allows a 

simple comparison between summary statistics, L-moment skewness and L-moment 

kurtosis, of sample and those of theoretical distributions. After those L-moments statistics 

are calculated from each of the observed AM precipitation series, they are plotted in a 

graph together with the theoretical L-moment ratio curve of the candidate distributions. 

The L-moment ratio curve is a simple expression of L-moment kurtosis in terms of L-

moment skewness for commonly used distributions. The distribution whose L-moment 

ratio curve locates near the mean of consistently spread sample L-moment statistics is 

selected. 

 L-moments were developed by Hosking (1986) to expand the utility of 

probability weighted moments (PWM) which were first proposed by Greenwood et al. 

(1979). The PWM-driven L-moments are more robust than conventional moments 

because L-moments are less influenced by the effects of sampling variability (Hosking 

1989). Mathematically, L-moments are linear combination of PWMs which are defined 

by (Hosking 1990):  

𝛽𝑟 = �𝑥{𝐹(𝑥)}𝑟𝑑𝑑(𝑥),              𝑟 = 0,1,2, … , n (3.1) 

Then, the r-th order L-moments (λr) are: 

λ1 = β0  

λ2 = 2β1 − β0 
(3.2) 

λ3 = 6β2 − 6β1 + β0 

λ4 = 20β3 − 30β2 + 12β1 − β0  
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By dividing the higher-order L-moments by the second L-moment (λ2), we obtain L-

moment ratios (𝜏𝑟): 

𝜏𝑟 =
𝜆𝑟
𝜆2

 (3.3) 

3.3.2 Estimation of Distribution Parameters and Quantiles 

 After selecting an appropriate distribution for extreme rainfall data, the 

distribution parameters are estimated using two common methods: the L-moment method 

and the non-central moment (NCM) method. For the generalized extreme value (GEV) 

distribution which is selected as appropriate for Korean extreme rainfall data, the 

cumulative distribution function, F(x) is defined as: 

F(𝑥) = exp �− �1 −
𝜅(𝑥 − 𝜉)

𝛼
�

1
𝜅
� ,                  𝜅 ≠ 0 (3.4) 

where 𝜅,𝛼, 𝜉 are shape, scale, and location parameters, respectively. 

The extreme rainfall quantiles for a given return period T (XT) can be calculated by the 

following equation:  

𝑋𝑇 = 𝜉 +
𝛼
𝜅

{1 − [−𝑙𝑙 (𝑝)]𝜅} (3.5) 

where p ( =1/T ) is the exceedance probability of interest. 

3.3.2.1 L-moments 

 The L-moment method is being considered as reliable, particularly with small 

samples, and is computationally tractable. Parameters of GEV distribution are obtained by 

substituting sample L-moments into the following equations: 
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c =
2

3 + 𝜏3
−

log2
log3

 (3.6) 

𝜅 ≈ 7.8590c + 2.9554c2 (3.7) 

𝛼 =
𝜆2𝜅

(1 − 2−𝜅)Γ(1 + 𝜅)
 (3.8) 

𝜉 = 𝜆1 +
𝛼�Γ(1 + 𝜅) − 1�

𝜅
 (3.9) 

where 𝜅,𝛼, 𝜉 are shape, scale, and location parameters respectively. 𝜆1, 𝜆2 are the first 

and second L-moments, 𝜏3 is L-skewness, and Γ() is the gamma function. The κ value 

on the Equation 3.7 is approximated by Hosking (1985b) and is reported to have accuracy 

better than 99.91% for −0.5 ≤ τ3 ≤ 0.5. 

3.3.2.2 Non-Central Moments 

 Nguyen (2004) proposed another parameter estimation method that is based on 

the non-central moments (NCMs) especially for GEV distribution. The k-th order NCM, 

𝜇𝑘 of random variable X is the mean value of k-times self-multiplied as shown following: 

𝜇𝑘 = E[X𝑘] (3.10) 

The NCM method is equating k-th order sample NCM to GEV parameters through the 

following equation (Nguyen and Pandey 1994): 

𝜇𝑘 = �𝜉 +
𝛼
𝜅
�
𝑘

+ (−1)𝑘 �
𝛼
𝜅
�
𝑘
Γ(1 + 𝑘𝑘) + 𝑘�(−1)𝑖 �

𝛼
𝜅
�
𝑖
�𝜉 +

𝛼
𝜅
�
𝑘−𝑖
Γ(1 + 𝑖𝑖)

𝑘−1

𝑖=1

 (3.11) 

From the Equation 3.11, three GEV parameters are calculated from substituting the first 

three sample NCMs estimated from the extreme rainfall data. 

3.3.3 Scaling Properties of Extreme Rainfall Processes 
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 For extreme rainfall frequency analyses, conventional methods are accurate only 

for the selected data of a particular duration. In other words, the analysis of extreme 

rainfalls of the duration of interest cannot be induced from the rainfall series of different 

durations, even though extreme rainfall amounts of different durations occur from the 

same rainfall process. The scaling property, however, allows us to analyze extreme 

rainfalls of a given duration in consideration of properties of rainfall series of different 

durations, which is physically more consistent and more accurate. The scaling property in 

terms of intensity-duration-frequency (IDF) curves, a graphical result of extreme rainfall 

analysis, is mathematically proven by Pandey (1995), and practically applied to build IDF 

curves of Quebec by Nguyen (2004). In this study, the scaling characteristic is also used 

to analyze extreme rainfall data in South-Korea. 

 By definition, a function is scaling if 𝑓(𝑡)  is proportional to its scaled 

function,𝑓(𝜆𝜆), presented as: 

𝑓(𝑡) = 𝐶(𝜆)𝑓(𝜆𝜆) (3.12) 

where 𝐶(𝜆) is a function of a scaling factor, 𝜆, which exists in a range of positive values, 

and t is the duration of rainfall. Inspired from the Equation 3.12, the Equation 3.13 can be 

proven (Nguyen, 2004). 

𝐶(𝜆) = 𝜆−𝛽 (3.13) 

where 𝛽 is a constant, and the Equation 3.14 is also proven. 

𝑓(𝑡) = 𝑡𝛽𝑓(1) (3.14) 

From Equations 3.13 and 3.14, the k-th order NCM, 𝜇𝑘(𝑡), of duration t can be defined 

as follows: 

𝜇𝑘(𝑡) = 𝐸{𝑓𝑘(𝑡)} = 𝛼(𝑘)𝑡𝛽(𝑘)      𝑖𝑖 𝑤ℎ𝑖𝑖ℎ        𝛼(𝑘) =  𝐸{𝑓𝑘(1)} (3.15) 

The rainfall process has a simple scaling behaviour if 𝛽(𝑘) = 𝛽𝛽. Otherwise, the 

process will be multi-scaling (Nguyen et al. 2002). Hence, the multi-scaling function will 

display a non-linear form when it is plotted in log-log scale, while the simple scaling 
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function shows a straight line in this plot. The slope of the straight line is the scaling 

exponent, 𝛽, which is proportional to the order of the NCM. It should be noted that if the 

slope 𝛽 has two different values, then the rainfall process exhibits two different scaling 

behaviours in two different ranges of duration, and the dividing point is called a ‘break 

point’. 

⎩
⎪
⎨

⎪
⎧∀𝑡 ∈ [𝑡1: 𝑡2]         𝑓(𝑡) = �

𝑡
𝑡2
�
𝛽1
𝑓(𝑡2)

∀𝑡 ∈ [𝑡2: 𝑡3]         𝑓(𝑡) = �
𝑡
𝑡3
�
𝛽2
𝑓(𝑡3)

 (3.16) 

where t2 is the time point that the break occurs, and in each interval scaling 

exponent has different values, 𝛽1,𝛽2. 

 On the basis of Equation 3.15, the sample estimates of the first three NCMs were 

used to assess the simple scaling behaviour of the AMPs from daily (the longest duration) 

to all sub-daily durations. As shown by Equation 3.11, for the GEV distribution, the first 

three NCMs can be computed using the following expressions:  
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𝜅
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𝜅
�𝛤(1 + 𝜅) (3.17) 
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𝜅
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2
𝛤(1 + 𝜅) (3.19) 

Hence, replacing the sample estimates of the first three NCMs into Equations (3.17), 

(3.18) and (3.19), the three GEV parameters can be estimated by solving this system of 

three equations. Once the parameters are determined, the quantiles corresponding to each 

return period can be calculated based on Equation 3.5. 

3.3.4 Construction of IDF Curves 

 To construct IDF curves (Figure 2.1), empirical and theoretical probabilities of 
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AMPs for each given duration are needed. The empirical probabilities are computed from 

the observed AMP data using a “plotting-position” formula (Nguyen et al., 1989), and the 

theoretical probabilities are computed using the fitted scaling GEV distribution. In the 

present study, the empirical probabilities of AMPs were computed using the Cunnane’s 

formula (Cunnane, 1978): 

𝑝 =
𝑖 − 0.4
𝑛 + 0.2

 (3.20) 

where p is the exceedance probability, which can be further converted into the return 

period by 𝑇 = 1/𝑝, and i is the rank of each AMP value in the ordered data series from 

the largest to the smallest value. The computation of the theoretical probabilities using the 

scaling GEV distribution was carried out using the procedure described in Section 3.3.3. 

The comparison of the estimated empirical and theoretical extreme rainfall quantiles will 

be compared using both numerical and graphical criteria as described in the following 

section. 

3.3.5 Performance Criteria 

 To assess the accuracy of the proposed methods, estimated values are compared 

with the empirical values given by the observed data using both graphical comparison and 

numerical assessment indices. 

3.3.5.1 Graphical Assessment 

 Dalgaard (2008) and Klein Tank et al. (2009) have suggested several forms of 

graphs as tools to assess the goodness of fit of the theoretical distribution to the data such 

as histograms, Q-Q plots, and probability plots. In particular, the Q-Q plot represents the 

agreement between estimated and observed quantiles and is commonly used to assess the 

accuracy of the fitted theoretical distribution. In addition, the probability plot can also be 

used to assess the goodness of fit of the theoretical distribution by displaying the 

agreement between the cumulative distribution function and the empirical probabilities 

estimated from the data using a plotting-position formula. Attention should be paid to the 
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selection of a suitable plotting-position formula for the computation of the empirical 

probabilities since different formulas were available for different underlying distributions 

of the data. In this study, the Cunnane’s formula was used since it is a compromise 

formula that does not require any assumption of a specific distribution of the data.  

3.3.5.2 Numerical Assessment 

 In this study, two numerical assessment indices were used: the root-mean-square-

error (RMSE) and the relative-root-mean-square-error (RRMSE):  

𝑅𝑅𝑅𝑅 = �
1
𝑛
��𝑋𝑂𝑂𝑂,𝑖 − 𝑋𝐸𝐸𝐸,𝑖�

2
𝑛

𝑖=1

 (3.21) 

in which 𝑋𝑂𝑂𝑂,𝑖 is the ith observed data point, 𝑋𝐸𝐸𝐸,𝑖 is the ith estimated value, and n is 

the number of data points; and 

𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛
��

𝑋𝑂𝑂𝑂,𝑖 − 𝑋𝐸𝐸𝐸,𝑖

𝑋𝑂𝑂𝑂������ �
2𝑛

𝑖=1

 (3.22) 

where 𝑋�𝑂𝑂𝑂is the mean value of observed data. 

 The smaller the values of RMSE or RRMSE are the better the fit of the assumed 

distribution will be. In addition, the outliers could have a higher impact on the RMSE 

values than the RRMSE ones (Tao 2001). 

3.4 Results and Discussion 

3.4.1 Choice of the Best-Fit distribution 

 In current engineering practice, there is no general agreement regarding what is 

the “best” distribution to represent the distribution of sample extreme rainfall data. For 

instance, several distributions have been used for extreme rainfalls in Korea such as the 

Generalized Pareto (GPA), Generalized Extreme Value (GEV), Generalized Logistic 
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(GLO), Log-Normal (LN3), and Pearson Type 3 (PE3) (Daniell and Tabios 2008). Hence, 

in the present study, the common L-moment ratio diagram method was used to identify 

the most suitable model for the AMP data considered. For purposes of illustration, Figure 

3.4 shows the L-moment diagram for the daily AMP series at 14 stations in Korea. It can 

be seen that the average location of these 14 points is quite close to the GEV curve. 

Similar results were found for other durations as well (see Appendix B). Therefore, the 

GEV distribution can be selected as the most appropriate distribution for the AMP data in 

Korea. 

 
Figure  3.4 L-moment ratio diagram for 1440 minutes annual maximum precipitation 

in Korea 

3.4.2 Estimation of Distribution Parameters and Quantiles 

 The L-moment method has been commonly applied to the estimation of the 

parameters of the GEV distribution. In addition, Nguyen et al. (2002) have suggested the 

use of the NCM procedure for estimating the GEV parameters because of the scale-

invariance property of the NCMs. In the present study, for comparison purposes both L-

moment and NCM methods were used for the GEV parameter estimation using the AMP 

data in Korea. This section shows the application results of these methods to the AMP 
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series (1957-1999) of Seoul station. The proposed method can be applied to other stations 

in Korea. 

 For purposes of illustration, Tables 3.6 and 3.7 present the estimated GEV 

parameters and estimated extreme rainfall quantiles obtained from the L-moment and 

NCM methods respectively for the Seoul station. In general, it can be seen that both 

methods have provided comparable estimates. In addition, Figures 3.5, 3.6 and 3.7 show 

the good agreement of the fitted GEV distributions with the empirical quantiles for AMPs 

for 10-minute, 60-minute, and 1-day durations respectively. Quantile plots for other 

durations are presented in Appendix C (Figure C.1-16). Furthermore, Table 3.8 shows the 

RMSE and RRMSE values of the two estimation methods for different rainfall durations. 

It was found that the accuracy of these two estimation methods was quite similar as well.  

In summary, based on the graphical and numerical comparisons, both L-moment and 

NCM methods can provide comparable results and hence these procedures can be used 

for estimating the parameters of the GEV distribution. The NCM method however was 

selected in the present study since the scale-invariance property of the NCMs is useful in 

the estimation of the sub-daily extreme rainfalls from the rainfall data of longer durations 

as indicated by Nguyen et al. (2002). 
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Table  3.6 GEV quantiles and parameters estimated by L-moment method for Seoul 
station. 

Duration  
GEV parameters Quantile estimates for T year of return period 

κ α ξ 2 yrs 5 yrs 10 yrs 25 yrs 50 yrs 100 yrs 

10 min 0.17  5.04  13.29  15.08  19.96  22.72  25.73  27.67  29.38  
20 min 0.06  8.03  19.35  22.26  30.87  36.25  42.72  47.29  51.63  
30 min 0.13  10.95  25.87  29.79  40.75  47.15  54.37  59.17  63.50  
40 min 0.16  13.65  31.32  36.17  49.49  57.05  65.38  70.79  75.57  
50 min 0.18  16.33  36.08  41.87  57.51  66.22  75.65  81.67  86.93  

1 hr 0.15  18.10  39.84  46.29  64.08  74.26  85.54  92.91  99.48  
1.5 hr 0.26  23.17  51.40  59.50  80.18  90.86  101.70  108.18  113.53  

2 hr 0.23  26.17  58.77  67.96  91.89  104.58  117.75  125.80  132.58  
3 hr 0.15  29.40  68.79  79.27  108.22  124.82  143.27  155.33  166.10  
4 hr 0.05  29.74  74.36  85.17  117.37  137.73  162.40  179.98  196.85  
6 hr 0.05  34.77  87.05  99.67  137.16  160.75  189.23  209.44  228.76  
9 hr 0.02  39.62  98.65  113.11  157.11  185.65  221.04  246.82  272.02  

12 hr -0.04  41.15  104.50  119.69  168.12  201.42  244.96  278.35  312.45  
15 hr -0.14  42.76  109.91  126.00  181.47  223.49  283.48  333.57  388.56  
18 hr -0.17  45.30  113.72  130.84  190.83  237.20  304.64  361.96  425.84  
1 day -0.21  48.87  120.51  139.12  206.42  260.48  341.91  413.50  495.61  
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Table  3.7 GEV quantiles and parameters estimated by NCM method for Seoul station. 

Duration 
GEV parameters Quantile estimates for T year of return period 

κ α ξ 2 yrs 5 yrs 10 yrs 25 yrs 50 yrs 100 yrs 

10 min 0.10  4.72  13.18  14.88  19.73  22.64  26.01  28.31  30.42  
20 min 0.10  8.06  19.62  22.52  30.84  35.84  41.64  45.59  49.25  
30 min 0.08  10.30  25.68  29.40  40.28  46.98  54.92  60.44  65.65  
40 min 0.04  12.28  30.61  35.08  48.55  57.18  67.76  75.38  82.76  
50 min 0.05  14.63  35.18  40.50  56.36  66.41  78.60  87.29  95.64  

1 hr 0.07  16.71  39.29  45.34  63.10  74.13  87.26  96.47  105.17  
1.5 hr 0.22  22.12  51.25  59.03  79.42  90.33  101.73  108.75  114.71  

2 hr 0.24  25.40  59.14  68.06  91.19  103.41  116.04  123.73  130.20  
3 hr 0.18  29.36  69.47  79.88  108.01  123.69  140.68  151.51  160.98  
4 hr 0.10  30.65  75.20  86.23  117.94  137.07  159.31  174.51  188.60  
6 hr 0.12  35.94  88.34  101.24  137.83  159.55  184.43  201.20  216.55  
9 hr 0.10  41.44  100.66  115.56  158.21  183.80  213.40  233.55  252.14  

12 hr 0.05  43.97  106.74  122.70  170.17  200.09  236.26  261.95  286.54  
15 hr 5.10E-04 49.22  113.22  131.26  187.02  223.91  270.51  305.07  339.36  
18 hr 7.91E-06 53.85  117.55  137.29  198.32  238.73  289.78  327.65  365.25  
1 day 7.58E-06 63.08  124.70  147.82  219.32  266.65  326.46  370.83  414.87  

 

  
Figure  3.5 Quantile plot of 10 minutes AMP, estimated by two parameter estimation 

methods and observed, at Seoul for 1957-1999 period.  
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Figure  3.6 Quantile plot of 60 minutes AMP, estimated by two parameter estimation 

methods and observed, at Seoul for 1957-1999 period. 

 

 Figure  3.7 Quantile plot of daily (1440 minutes) AMP, estimated by two parameter 
estimation methods and observed, at Seoul for 1957-1999 period.  
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Table  3.8 RMSE and RRMSE values of estimated AMP quantiles by two parameter 
estimation methods: L-moment method and NCM method. Values in bold 
indicate smaller errors of the estimates compared to their counterparts. 

Duration  
RMSE RRMSE 

L-moment NCM L-moment NCM 

10 min 1.071  1.034  0.069  0.067  

20 min 0.926  0.982  0.039  0.042  

30 min 1.897  1.757  0.061  0.057  

40 min 3.628  3.313  0.097  0.089  

50 min 4.322  4.012  0.101  0.093  

1 hr 3.850  3.589  0.080  0.075  

1.5 hr 3.250  3.231  0.054  0.054  

2 hr 2.379  2.400  0.035  0.035  

3 hr 2.667  2.734  0.033  0.033  

4 hr 5.040  5.108  0.056  0.057  

6 hr 6.914  6.659  0.066  0.063  

9 hr 6.161  5.866  0.051  0.049  

12 hr 7.480  7.484  0.058  0.058  

15 hr 9.130  9.574  0.064  0.068  

18 hr 8.897  10.512  0.060  0.071  

1 day 8.430  15.179  0.052  0.094  

3.4.3 Evaluation of the Scaling Properties of Extreme Rainfalls 

 In this section, the scale-invariance (or scaling) property of the NCMs of AMPs is 

examined using the available observed AMP data at Seoul station for the period from 

1957 to 1999. Figure 3.8 shows the plot of the relations between the first three NCMs of 

AMPs and rainfall durations in log-log scale. It can be observed that two log-linear 

relations were identified for two different portions of rainfall durations: from 10 minutes 

to 60 minutes and from 60 minutes to one day; indicating two different scaling behaviours 

of the AMP processes. 
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Figure  3.8 The 1st, 2nd, and 3rd NCMs against rainfall durations in log-log scale, 
Seoul station, 1957-1999 data period.  

 According to Equation 3.15, the slopes of the fitted regression lines of the NCM-

rainfall duration relations provide the values of the scaling exponent 𝛽(𝑘) as shown in 

Table 3.9. Figure 3.9 shows the strong linear relationship between the values of the 

scaling exponent 𝛽  and the order k of the NCMs. Indeed, the coefficients of 

determination (R2) of the fitted linear regression lines are 0.9999 and 0.9996 respectively 

for the 10 to 60 minutes interval and the 60 minutes to 1 day interval. This linear 

relationship 𝛽(𝑘) = 𝛽𝛽 indicated the simple scaling behaviour of the AMPs as presented 

in Section 3.3.3. 

Table  3.9 Scaling exponent values for time intervals of 10 – 60 minutes and 60 – 
1440 minutes, Seoul station, 1957-1999 data period. 

Interval of duration 
Order of NCM 

1 2 3 

10 min – 1 hr 0.636  1.296  1.976  

1 hr – 1 day 0.371  0.762  1.180  
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Figure  3.9 Plot of scaling exponent, 𝜷(𝒌) against the order of NCM, k, Seoul station, 
1957-1999 data period. 

 Table 3.10 presents the results of the scaling behaviour of the AMPs for all 14 

stations. It can be observed that some stations (Seoul, Busan, Gwangju, Jeonju, and 

Chupungryong) have a similar scaling behaviour (the break point of the log-linear 

relationship as shown in Figure 3.8 is located at the 60-minute duration), but other 

stations have a different scaling regime. However, the simple scaling property was 

observed for the AMP processes at all 14 stations as indicated by the very high R2 values 

(close to 1) of the fitted regression lines. Consequently, on the basis of the observed 

simple scaling behaviour the sub-daily extreme rainfall statistical properties can be 

derived from the properties of extreme rainfalls of longer durations.  
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Table  3.10 Scaling exponent and R2 values in each interval of duration for the 14 
Korean stations. 

Station 
Data Period 

Duration Interval 
Order of NCM, k 

R2 
(year) 1 2 3 

Seoul  1961-1999 
10 min – 1 hr 0.636  1.296  1.976  1.000 

1 hr – 1 day 0.371  0.762  1.180  1.000 

Suwon 1964-1999 
10 min – 3 hr 0.547  1.120  1.721  1.000 

3 hr – 1 day 0.388  0.799  1.251  0.999 

Incheon 1961-1999 
10 min – 1.5 hr 0.602  1.218  1.850  1.000 

1.5 hr – 1 day 0.356  0.754  1.189  0.999 

Gangreung  1961-1999 
10 min – 6 hr 0.563  1.139  1.743  1.000 

6 hr – 1 day 0.479  0.960  1.406  1.000 

Daegu 1961-1999 
10 min – 9 hr 0.438  0.871  1.290  1.000 

9 hr – 1 day 0.362  0.703  1.012  0.999 

Busan 1961-1999 
10 min – 1 hr 0.641  1.286  1.905  1.000 

1 hr – 1 day 0.427  0.861  1.318  1.000 

Gwangju 1961-1999 
10 min – 1 hr 0.598  1.200  1.801  1.000 

1 hr – 1 day 0.398  0.806  1.238  1.000 

Jeonju 1970-1999 
10 min – 1 hr 0.651  1.311  1.980  1.000 

1 hr - 1440 0.399  0.798  1.202  1.000 

Mokpo 1961-1999 
10 min – 9 hr 0.493  0.994  1.513  1.000 

9 hr – 1 day 0.316  0.664  1.083  0.997 

Pohang 1961-1999 
10 min - 50 min 0.563  1.116  1.657  1.000 

50 min – 1 day 0.455  0.928  1.427  1.000 

Yeosu 1961-1999 
10 min – 2 hr 0.562  1.145  1.746  1.000 

2 hr – 1 day 0.408  0.819  1.233  1.000 

Chupungryong 1961-1999 
10 min – 1 hr 0.543  1.093  1.655  1.000 

1 hr – 1 day 0.432  0.865  1.298  1.000 

Ulsan 1961-1999 
10 min – 4 hr 0.554  1.137  1.744  1.000 

4 hr – 1 day 0.410  0.853  1.356  0.999 

Cheongju 1967-1999 
10 min - 40 min 0.536  1.073  1.603  1.000 

40 min – 1 day 0.396  0.807  1.245  1.000 
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 In the present study, the accuracy of the estimation of extreme rainfall quantiles 

for all 16 durations using the scaling property of the NCMs (referred to as the “scaling 

NCM method”) was compared to the quantiles estimated by the “traditional NCM 

method”. Here, the traditional NCM method refers to the calculation of the quantiles by 

fitting the GEV distribution to the extreme rainfall data set of each duration independently, 

while the scaling NCM method allows deriving the sub-daily quantiles from the estimated 

GEV quantiles of longer durations based on the scaling property of the extreme rainfall 

NCMs. For purposes of illustration, Figures 3.10 and 3.11 show the comparison between 

the observed quantiles and the quantiles estimated by the traditional NCM method and the 

scaling NCM procedure for 10-minute and 60-minute duration respectively. In addition, 

the RMSE, RRMSE, and R2 values of the estimated quantiles by both methods for all 

durations for Seoul station are presented in Table 3.11. It can be seen that except for some 

noted difference in the RMSE and RRMSE values for the durations from 120 minutes to 

720 minutes the quantiles estimated by both methods are comparable. Furthermore, both 

estimation methods are accurate as indicated by the high R2 values (R2 > 0.90). Similar 

results were found for other durations as shown in Appendix D (Figures D.1-16). In 

summary, the scaling NCM method can provide extreme rainfall quantiles as comparable 

as those given by the traditional method and it is more suitable for the downscaling of 

extreme rainfalls from daily scale to sub-daily scales. 
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Figure  3.10 Q-Q plot of estimated quantiles versus observed quantiles for 10-minute 
extreme rainfalls for Seoul station. (Blue squares: quantiles estimated by 
traditional NCM method, red circles: quantiles estimated by scaling NCM 
method) 

  
Figure  3.11 Q-Q plot of estimated quantiles versus observed quantiles for 60-minute 

extreme rainfalls for Seoul station. 
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Table  3.11 RMSE and RRMSE values of estimated quantiles by traditional NCM 
method and scaling NCM method for Seoul station. 

Duration  
RMSE (mm) RRMSE R2 

NCM Scaling 
NCM NCM Scaling 

NCM NCM Scaling 
NCM 

10 min 1.034  1.191  0.067  0.075  0.963  0.951  

20 min 0.982  1.523  0.042  0.062  0.989  0.973  

30 min 1.757  2.113  0.057  0.066  0.979  0.969  

40 min 3.313  3.590  0.089  0.094  0.952  0.943  

50 min 4.012  4.219  0.094  0.096  0.949  0.943  

1 hr 3.589  4.005  0.075  0.081  0.967  0.959  

1.5 hr 3.231  5.231  0.054  0.091  0.980  0.948  

2 hr 2.400  7.024  0.035  0.110  0.992  0.927  

3 hr 2.734  8.969  0.033  0.121  0.992  0.918  

4 hr 5.108  9.404  0.057  0.114  0.979  0.928  

6 hr 6.659  12.573  0.063  0.131  0.973  0.904  

9 hr 5.866  12.065  0.049  0.108  0.985  0.935  

12 hr 7.484  10.581  0.058  0.085  0.980  0.960  

15 hr 9.574  11.605  0.068  0.086  0.977  0.966  

18 hr 10.512  11.153  0.071  0.077  0.977  0.974  

1 day 15.179  15.179  0.095  0.095  0.965  0.965  

3.4.4 IDF Relations 

 In the above sections, it has been demonstrated that the AMP processes in South 

Korea displayed a simple scaling behaviour and that the NCM scaling method can be 

used to estimate the GEV distribution parameters and the extreme rainfall quantiles for 

different durations. Consequently, this “scaling GEV” method can be used to construct 

the IDF relations at a study site where the AMP data for different durations are available. 

For instance, Figure 3.16 shows the IDF curves for Seoul station for six different return 

periods – 2, 5, 10, 25, 50, 100 years constructed by the scaling GEV method, and Figure 

3.17 shows the good agreement of the theoretical IDF curves with the observed empirical 

quantiles. Similar results were found for the IDF curves for other stations as presented in 
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Appendix E. For a close investigation of the accuracy of the scaling GEV method, Figure 

3.18 (a) – (p) show the good fit of the estimated scaling GEV distribution to the observed 

empirical AMP quantiles for each rainfall duration separately. Therefore, the scaling GEV 

method can be used as a suitable model for extreme rainfall frequency analysis and for 

the construction of the IDF relations at a given site. 
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Figure  3.12 Intensity-Duration-Frequency (IDF) curves drawn by scaling GEV 
method for Seoul station. 

 

Figure  3.13 Estimated IDF curves and observed quantiles for Seoul station. 
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Figure  3.18 The agreement between the estimated scaling GEV distributions with the 
observed empirical AMP quantiles for duration of (a) 10 min, (b) 20 min, 
(c) 30 min, (d) 40 min, (e) 50 min, (f) 60 min, (g) 90 min, (h) 120 min, (i) 
180 min, (j) 240 min, (k) 360 min, (l) 540 min, (m) 720 min, (n) 900 min, 
(o) 1080 min, and (p) 1440 min at Seoul station. 
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4 Construction of Future IDF Curves Considering Climate Change 

4.1 Data 

 As described in the previous chapter, it is feasible to construct the IDF relations 

by the proposed scaling GEV method for the current climate using the available AMP 

data at Seoul station for the present (1961-1999) period. The present chapter deals with 

the constructions of these relations in consideration of different climate change scenarios 

using the spatial-temporal downscaling method suggested by Nguyen et al. (2007). This 

downscaling method is a combination of a spatial downscaling of daily precipitation 

process for describing the linkage between global climate predictors and the daily rainfall 

process at a local site and a temporal downscaling of daily AMPs to sub-daily AMPs at 

the study site. Further detail of this spatial-temporal downscaling procedure can be found 

in the paper by Nguyen et al. (2007) 

In the present study, climate scenarios given by two popular Global Circulation 

Models were selected in this study: the scenarios A2 and A1B given by the Canadian 

GCM version 3 (denoted by CGCM3A2 and CGCM3A1B, respectively), and the A2 and 

B2 scenarios given by the UK Hadley Centre’s GCM model (denoted by HadCM3A2 and 

HadCM3B2, respectively). In addition, the spatial downscaling of the daily AMPs was 

performed using the Statistical Downscaling Model (SDSM) proposed by Wilby et al. 

(2002) for Seoul station. More specifically, a dataset of 100 simulations of daily 

precipitation time series have been produced for Seoul station for the current (1961-1999) 

period as well as for future periods for different selected climate scenarios: 2020’s (2010-

2039), 2050’s (2040-2069), and 2080’s (2070-2099). The daily AMP data were then 

extracted from each of these 100 simulations, and the median values of the extracted 100 

daily AMP series represent the downscaled daily AMP given by each given climate 

scenario of the two selected GCMs.  

4.2 Application of the Spatial-Temporal Downscaling Method 

 As described by Nguyen et al. (2007), it is expected that the spatially downscaled 

AMPs at a local site using the SDSM are biased as shown for instance by Figure 4.1 for 
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Seoul station (the observed daily AMPs lie far above the spread of the 100 spatially 

downscaled AMP time series from the HadCM3). It is hence necessary to perform a bias-

correction of these spatially downscaled AMPs in order to obtain a good agreement with 

the observed daily AMPs at a given site. Therefore, the downscaled AMPs will be 

adjusted by adding an amount called the “residual” that represents the difference between 

the downscaled and observed daily AMPs. The residual is computed by the following 

equation:   

 

Figure  4.1 Box-plots of 100 HadCM3 simulations compared with observed values 
(black points) for 1964-1999. The tops and bottoms of each “box” are the 
25th and 75th percentiles of the data, respectively. The distances between 
the tops and bottoms are the interquartile ranges, and the line in the 
middle of each box is the median. The whiskers are lines extending above 
and below each box, and the red + signs are outliers. Both simulated and 
observed data are sorted in ascending order before plotted. 

eτ = xτ − y�τ (4.1) 

where eτ is the residual, xτ is the observed data, and y�τ is the downscaled GCMs for 

the same return period τ. According to Nguyen et al. (2007), the residual can be estimated 
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from a second order polynomial relation as follows: 

eτ = m0 + m1 y�τ + m2 y�τ
2 + ε (4.2) 

where m0, m1, and m2 are parameters of the regression function, and ε is the resulting 

error term. After the residual is estimated, downscaled GCMs are adjusted by adding the 

residual to themselves as 

yτ = y�τ + eτ (4.3) 

4.3 Results and Discussion 

 Figure 4.2 shows the difference (residual) between the spatially-downscaled 

annual maximum daily precipitations (AMDPs) from the HadCM3 and the observed 

values for Seoul station. A correction of this difference is hence necessary. Figure 4.3 

shows the best fit of the 2nd order nonlinear regression curve to the residuals (Equation 

4.2) with very high values of coefficient of determination (R2) for CGCM3, HadCM3A2, 

and HadCM3B2 (R2 > 0.872). After making the adjustment of the bias using this second-

order function, the adjusted downscaled AMDPs did agree very well to the observed 

AMDPs as shown in Figure 4.4. Finally, Figure 4.5 shows the distributions of the 

downscaled AMDPs before and after adjustment as compared with the empirical 

distribution of the observed AMDPs. It can be seen that the adjustment (or bias correction) 

has provided a better agreement between the downscaled and observed AMDPs. 
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Figure  4.2 Q-Q plots of SDSM-downscaled GCM annual maximum daily 
precipitation (AMDP) vs. observed AMDP, respectively for CGCM3(a), 
HadCM3A2(b), and HadCM3B2(c), Seoul station, 1961-1999 data period 
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Figure  4.3 Plots of residual vs. downscaled GCM AMDP, along with 2nd-order 
nonlinear regression curve, for CGCM3(a), HadCM3A2(b), and 
HadCM3B2(c), Seoul, 1961-1999. 
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Figure  4.4 Q-Q plots of adjusted GCM annual maximum daily precipitation (AMDP) 
vs. observed AMDP, respectively for CGCM3(a), HadCM3A2(b), and 
HadCM3B2(c), Seoul station, 1961-1999 data period. 
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Figure  4.5 Distribution of AMDP, before and after adjustment, together with observed 
AMDP, CGCM3(a), HadCM3A2(b), and HadCM3B2(c), Seoul station, 
1961-1999 data period. 

 In the previous section, the bias-correction method has contributed to an 



53 

improvement in the goodness-of-fit between the downscaled and observed AMDPs. 

However, the validity of the bias-correction for the current period should be tested for 

making the appropriate correction of the AMDPs for future periods. More specifically, for 

the first step, the observed AMP for the 1961-1999 period for Seoul station was split into 

two series: one from 1961 to 1986 (26 years) for calibration and the other from 1987 to 

1999 (13 years) for validation. The fitted 2nd order correction function for the calibration 

period will then be applied to the data of the validation period for making necessary 

adjustment. Finally, the improvement in the agreement between adjusted AMPs and 

observed AMPs for the validation period will be assessed. 

 As described above, using the fitted second-order correction function for the 

1961-1986 calibration period (Figure 4.6) at Seoul station a significant improvement of 

the agreement between downscaled and observed AMDPs has been achieved as shown in 

Figure 4.7. Similar improvements have been found for other stations as presented in Table 

4.1.  

 The fitted correction function for the calibration period is now used to make 

correction of bias of the downscaled AMDPs for the 1987-1999 validation period as 

shown in Figure 4.8. In general, it can be seen that the correction function estimated for 

the calibration period did improve the agreement between the downscaled and observed 

AMDPs for the validation period. However, as expected this improvement is less 

significant than the improvement achieved for the calibration period.  Similar results 

were found for most of the 14 Korean stations considered (Table 4.2). In summary, the 

bias correction is necessary to improve the good match between the downscaled AMPs 

and the observed values at a local site for both calibration and validation periods. 
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Figure  4.6 Residuals of GCM downscaled annual maximum daily precipitation 
(AMDP) from observed AMDP, plotted against AMDP estimated by 
CGCM3A2(a), HadCM3A2(b), and HadCM3B2(c). 

 



55 

 

Figure  4.7 Distribution of downscaled GCM AMDP before and after adjustment, 
along with observed AMDP for calibration period (1961-1986) of Seoul, 
CGCM3A2(a), HadCM3A2(b), and HadCM3B2(c). 
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Table  4.1 RRMSE values of AMDP estimates without and with bias-correction for 14 Korean stations during the calibration 
period (1961-1986). Bold values indicate smaller errors. 

Station 
C3A2 C3A1B H3A2 H3B2 

before 
correction 

after 
correction 

before 
correction 

after 
correction 

before 
correction 

after 
correction 

before 
correction 

after 
correction 

Seoul 0.098  0.061  0.092  0.071  0.104  0.069  0.090  0.079  
Suwon* 0.335  0.058  0.335  0.058  0.322  0.060  0.319  0.059  
Incheon 0.205  0.066  0.205  0.066  0.332  0.058  0.335  0.066  
Gangreung 0.306  0.071  0.306  0.071  0.142  0.073  0.142  0.074  
Daegu 0.145  0.055  0.145  0.055  0.373  0.057  0.384  0.051  
Busan 0.353  0.085  0.353  0.085  0.147  0.074  0.139  0.066  
Gwangju 0.075  0.039  0.078  0.040  0.162  0.040  0.152  0.044  
Jeonju** 0.250  0.051  0.256  0.051  0.333  0.063  0.329  0.063  
Mokpo 0.214  0.110  0.214  0.110  0.324  0.090  0.343  0.093  
Pohang 0.197  0.071  0.197  0.071  0.300  0.072  0.306  0.078  
Yeosu 0.429  0.076  0.429  0.076  0.248  0.061  0.255  0.064  
Chupungryong 0.086  0.058  0.086  0.058  0.205  0.054  0.190  0.052  
Ulsan 0.384  0.111  0.384  0.111  0.251  0.113  0.257  0.111  
Choengju*** 0.061  0.043  0.064  0.041  0.249  0.041  0.240  0.042  
* Calibration period for Suwon is 1964-1987. 
** Calibration period for Jeonju is 1970-1989. 
*** Calibration period for Cheongju is 1967-1988. 
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Figure  4.8 Distribution of downscaled GCM AMDP before and after adjustment, 
along with observed AMDP for validation period (1987-1999) of Seoul, 
CGCM3A2(a), HadCM3A2(b), and HadCM3B2(c). 
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Table  4.2 RRMSE values of AMDP estimates without and with bias-correction for 14 Korean stations during the validation 
period (1987-1999). Bold values present less errors of estimated AMDP to the observed AMDP. 

Station 
C3A2 C3A1B H3A2 H3B2 

before 
correction 

after 
correction 

before 
correction 

after 
correction 

before 
correction 

after 
correction 

before 
correction 

after 
correction 

Seoul 0.238  0.195  0.256  0.234  0.328  0.273  0.406  0.362  
Suwon* 0.458  0.203  0.458  0.203  0.435  0.185  0.438  0.195  
Incheon 0.298  0.156  0.298  0.156  0.487  0.278  0.507  0.316  
Gangreung 0.380  0.149  0.380  0.149  0.133  0.085  0.136  0.058  
Daegu 0.116  0.124  0.116  0.124  0.359  0.113  0.366  0.118  
Busan 0.294  0.244  0.294  0.244  0.114  0.170  0.131  0.155  
Gwangju 0.144  0.118  0.158  0.128  0.162  0.102  0.169  0.119  
Jeonju** 0.113  0.279  0.130  0.326  0.134  0.408  0.146  0.385  
Mokpo 0.198  0.207  0.198  0.207  0.426  0.227  0.432  0.229  
Pohang 0.274  0.156  0.274  0.156  0.395  0.165  0.354  0.138  
Yeosu 0.296  0.314  0.296  0.314  0.254  0.344  0.207  0.269  
Chupungryong 0.162  0.184  0.162  0.184  0.368  0.182  0.354  0.201  
Ulsan 0.361  0.194  0.361  0.194  0.335  0.495  0.265  0.442  
Choengju*** 0.209  0.225  0.236  0.260  0.489  0.315  0.492  0.325  
* Validation period for Suwon is 1988-1999. 
** Validation period for Jeonju is 1990-1999. 
*** Validation period for Cheongju is 1989-1999. 
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4.3.1 Distributions of Annual Maximum Daily Precipitations in the Context of Climate 

Change 

 As mentioned previously, the AMDPs were extracted from the 100 downscaled 

daily precipitation time series for Seoul station for the current (1961-1999) period as well 

as for future periods for different selected climate scenarios (CGCM3A2, CGCM3A1B, 

HadCM3A2, and HadCM3B2). The median values of the extracted 100 daily AMP series 

represent the downscaled daily AMP at Seoul station for each given climate scenario. For 

the present study, the future period is divided into 3 phases: 2010-2039 (2020’s), 2040-

2079 (2050’s), and 2080-2099 (2080’s) so that changes in the precipitation pattern caused 

by climate variability can be studied and compared among these periods. 
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Figure  4.9 Distributions of AMDPs for current period and for future periods: 2020’s, 
2050’s, and 2080’s estimated by CGCM3A2 (a), CGCM3A1B (b), 
HadCM3A2 (c), and HadCM3B2 (d). 

 Figure 4.9 illustrates the changing distributions of AMDPs, estimated from two 

GCMs and three scenarios. Firstly, different GCMs generate different patterns; (a) and (b) 

derived from CGCM3 show narrower gaps among the distributions, while (c) and (d) 

from HadCM3 show broader gaps among the distributions. However, one common 

feature of all models is the increase of AMDP in the future and the highest amount in the 

2080’s. Specifically with the CGCM3A2 projection, the AMDP amount increases in the 

2020’s, stays the same in the 2050’s, and further increases in the 2080’s. For the 

CGCM3A1B projection, the AMDP amount gradually increases from the current level. 

The HadCM3 projection (Figure 4.9 (c) and (d)) shows an increase in the 2020’s, a 
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decrease in the 2050’s, followed by a relatively big increase in the 2080’s for both A2 and 

B2 scenarios. Especially in the HadCM3B2 case, the AMDP amount in the 2050’s 

becomes similar to the current amount in high return periods. Consequently, the GCMs 

give different projection results, but agree on a gradual increase of AMDPs at Seoul under 

climate change. 

4.3.2 Temporal Downscaling of Daily AMP to Sub-Daily Durations 

 Once the future daily AMP series is provided, the scaling property, discussed in 

section 2.3.4, allows deriving sub-daily AMPs, which can then be used to construct IDF 

relations in consideration of climate change for future periods. To examine the scaling 

property from the current period (1961-1999), the observed AMP data over 16 rainfall 

durations is used. Figure 4.10 shows the log-log plot of the first three computed NCMs 

against rainfall durations. Graphically, two linear relationships are displayed; the first one 

for shorter durations and the second one for longer durations. Table 4.3 presents the 

values of scaling exponents and their quantities in relation to the order of the moments 

that are used to determine the type of scaling property – simple scaling or multi-scaling. 

For this purpose, the scaling exponents are plotted against the order of moment as shown 

in Figure 4.11, and the relationship is almost perfectly linear, showing high value of the 

coefficients of determination – 0.9999 and 0.9996. Hence, the AMP series at Seoul station 

has a simple scaling property.  
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Figure  4.10 Log-log plot of the first three NCMs against rainfall durations, Seoul 
stations for 1961-1999 period. 

 

Table  4.3 Scaling exponent values corresponding to order of NCM and duration 
intervals, Seoul stations for 1961-1999 period. 

Interval of duration 

(minutes) 

Order of NCM 

1 2 3 

10 - 60 0.642  1.301  1.980  

60 - 1440 0.366  0.758  1.178  
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Figure  4.11 Plot of scaling exponent vs. order of NCM in two duration intervals, Seoul 
station, 1961-1999 period. 

 Using the simple scaling property explained above, future sub-daily AMPs are 

derived from the future daily AMP series in order to construct IDF curves for the periods 

2010-2039 (2020’s), 2040-2069 (2050’s), 2070-2099 (2080’s) as well as the current 

period. In Figure 4.12, IDF curves of the 4 periods are plotted in one graph so that one 

can easily examine its evolution. A measure of frequency – return periods – are selected 

as happening once in every 2 and 50 years to avoid confusion that arises from a large 

number of points in a graph. These graphs are provided to show the change of AMPs 

rather than to give an exact estimation of AMP. Similar to the previous section’s result, 

the AMPs over all durations increases from the current level and shows the highest level 

in the 2080’s. Also, CGCM3 estimates (Figure 4.12 (a) and (b)) show less evolution than 

HadCM3 estimates (Figure 4.12 (c) and (d)). IDF curves of a 2-year return period show 

similar evolution behaviour over the four models – though the rates are different. AMP 

intensity increases in the 2020’s, decreases in the 2050’s, followed by a large increase in 

the 2080’s. IDF curves of a 50-year return period, however, show different evolution 

patterns throughout the four models. For more exact comparison, future IDF quantiles are 

presented in Table 4.4 (a) and (b). Generally, HadCM3 projects more intense AMPs 
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compared to CGCM3, even though they project under the same A2 scenario. However, 

similar evolution procedures are detected throughout the 4 model projections, which is an 

“increase then decrease followed by another increase” behaviour. One interesting point is 

the greater evolution of the less extreme AMP – as return period years decrease, evolution 

rates become greater. 

 

Figure  4.12 IDF curves (50-year and 2-year return periods) of four periods for Seoul 
station estimated by CGCM3A2 (a), CGCM3A1B (b), HadCM3A2 (c), and 
HadCM3B2 (d). 

 



65 

Table  4.4  AMP quantiles for Seoul station estimated by (a) CGCM3A2. 

GCMs Periods Return 

years 

Rainfall Duration (minutes) 
10 20 30 40 50 60 90 120 180 240 360 540 720 900 1080 1440 

CGCM3 

A2 

1961 

-1999 

50 171.1  140.1  124.2  114.0  106.5  100.8  80.3  68.3  54.2  45.9  36.3  28.6  24.1  21.1  18.9  15.9  
25 160.8  130.1  114.6  104.7  97.6  92.1  72.8  61.5  48.5  40.9  32.2  25.2  21.2  18.6  16.6  14.0  
5 127.3  99.9  86.6  78.3  72.4  67.8  52.6  43.9  34.0  28.4  22.0  17.1  14.3  12.5  11.1  9.3  
2 95.9  73.8  63.3  56.8  52.3  48.8  37.4  31.0  23.8  19.7  15.1  11.7  9.7  8.4  7.5  6.2  

2020's 50 175.4  144.9  129.1  118.8  111.3  105.4  84.5  72.0  57.3  48.7  38.6  30.6  25.9  22.7  20.3  17.1  
25 167.5  136.6  120.8  110.6  103.2  97.5  77.4  65.6  51.8  43.8  34.5  27.1  22.8  20.0  17.9  15.1  
5 138.4  108.8  94.5  85.4  79.0  74.1  57.4  47.9  37.2  31.0  24.0  18.6  15.5  13.5  12.1  10.1  
2 107.2  82.2  70.5  63.2  58.1  54.2  41.5  34.3  26.3  21.8  16.7  12.8  10.7  9.2  8.2  6.8  

2050's 50 175.0  144.5  128.7  118.4  110.9  105.1  84.1  71.7  57.1  48.5  38.4  30.4  25.7  22.5  20.2  17.0  
25 166.9  136.0  120.3  110.1  102.7  97.1  77.0  65.2  51.5  43.5  34.3  27.0  22.7  19.9  17.8  15.0  
5 137.5  108.1  93.8  84.8  78.4  73.5  57.0  47.6  36.9  30.8  23.9  18.5  15.4  13.5  12.0  10.1  
2 106.4  81.6  70.0  62.8  57.7  53.9  41.2  34.1  26.1  21.7  16.6  12.8  10.6  9.2  8.2  6.8  

2080's 50 199.9  164.1  145.8  133.8  125.2  118.5  94.6  80.5  63.9  54.2  42.9  33.9  28.6  25.0  22.4  18.9  
25 188.9  153.1  135.1  123.5  115.1  108.7  86.0  72.8  57.4  48.4  38.1  29.9  25.2  22.0  19.7  16.6  
5 151.5  118.9  103.2  93.2  86.2  80.8  62.6  52.3  40.5  33.8  26.2  20.3  17.0  14.8  13.2  11.1  
2 115.0  88.4  75.8  68.0  62.5  58.4  44.7  37.0  28.4  23.5  18.1  13.9  11.6  10.0  8.9  7.4  
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Table  4.4 AMP quantiles for Seoul station estimated by (b) CGCM3A1B. 

GCMs Periods Return 

years 

Rainfall Duration (minutes) 
10 20 30 40 50 60 90 120 180 240 360 540 720 900 1080 1440 

CGCM3 

A1B 

1961 

-1999 

50 171.0 140.0 124.2 113.9 106.5 100.8 80.3 68.3 54.2 45.9 36.3 28.6 24.1 21.1 18.9 15.9 
25 160.7 130.0 114.6 104.7 97.5 92.0 72.8 61.5 48.5 40.9 32.2 25.2 21.2 18.6 16.6 14.0 
5 127.3 99.9 86.6 78.2 72.3 67.8 52.6 43.9 34.0 28.4 22.0 17.1 14.3 12.5 11.1 9.3 
2 95.9 73.8 63.3 56.8 52.3 48.8 37.4 31.0 23.8 19.7 15.1 11.7 9.7 8.4 7.5 6.2 

2020's 50 159.5 132.6 118.6 109.3 102.6 97.3 78.2 66.8 53.4 45.4 36.1 28.6 24.2 21.3 19.1 16.1 
25 153.9 126.2 112.0 102.7 96.0 90.7 72.2 61.3 48.5 41.0 32.4 25.5 21.5 18.8 16.9 14.2 
5 130.9 103.2 89.6 81.1 75.0 70.3 54.6 45.6 35.3 29.5 22.8 17.7 14.8 12.8 11.5 9.6 
2 103.5 79.3 67.9 60.8 55.9 52.2 39.9 33.0 25.3 20.9 16.0 12.3 10.2 8.8 7.8 6.5 

2050's 50 175.2 144.3 128.5 118.1 110.6 104.7 83.8 71.4 56.8 48.2 38.2 30.2 25.6 22.4 20.1 16.9 
25 166.7 135.6 119.8 109.6 102.3 96.6 76.6 64.8 51.2 43.2 34.0 26.8 22.5 19.7 17.7 14.9 
5 136.2 107.0 92.8 83.9 77.6 72.8 56.4 47.1 36.5 30.4 23.6 18.3 15.3 13.3 11.9 9.9 
2 104.3 80.1 68.6 61.6 56.6 52.8 40.4 33.5 25.7 21.3 16.3 12.5 10.4 9.0 8.0 6.7 

2080's 50 176.9 144.9 128.6 117.9 110.2 104.3 83.1 70.7 56.1 47.5 37.6 29.5 24.9 21.8 19.5 16.4 
25 166.1 134.4 118.5 108.2 100.9 95.2 75.2 63.6 50.1 42.3 33.3 26.1 21.9 19.2 17.2 14.5 
5 131.8 103.4 89.7 81.1 75.0 70.3 54.5 45.5 35.3 29.5 22.9 17.8 14.9 13.0 11.6 9.7 
2 100.4 77.3 66.3 59.6 54.8 51.2 39.2 32.5 25.0 20.7 15.9 12.3 10.2 8.9 7.9 6.6 
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Table  4.4  AMP quantiles for Seoul station estimated by (c) HadCM3A2. 

GCMs Periods Return 

years 

Rainfall Duration (minutes) 
10 20 30 40 50 60 90 120 180 240 360 540 720 900 1080 1440 

HadCM3 

A2 

1961 

-1999 

50 170.2 139.5 123.8 113.6 106.2 100.5 80.2 68.2 54.1 45.9 36.3 28.6 24.1 21.1 18.9 15.9 
25 160.3 129.8 114.4 104.5 97.4 91.9 72.7 61.5 48.5 40.9 32.2 25.3 21.2 18.6 16.6 14.0 
5 127.6 100.1 86.8 78.4 72.5 68.0 52.7 44.0 34.1 28.4 22.0 17.1 14.3 12.5 11.1 9.3 
2 96.2 74.0 63.5 57.0 52.4 48.9 37.5 31.0 23.8 19.7 15.2 11.7 9.7 8.4 7.5 6.2 

2020's 50 182.2 152.0 136.3 125.9 118.4 112.5 90.8 77.8 62.4 53.2 42.4 33.7 28.6 25.1 22.6 19.2 
25 177.8 146.5 130.3 119.8 112.1 106.2 84.9 72.2 57.3 48.6 38.4 30.3 25.6 22.4 20.1 16.9 
5 156.4 123.8 107.7 97.5 90.3 84.7 65.8 54.9 42.6 35.6 27.5 21.3 17.8 15.5 13.8 11.5 
2 126.1 96.5 82.6 73.9 67.9 63.3 48.3 39.9 30.5 25.2 19.3 14.8 12.3 10.6 9.4 7.8 

2050's 50 153.3 128.3 115.2 106.6 100.2 95.2 77.0 66.0 52.9 45.1 36.0 28.6 24.2 21.3 19.2 16.2 
25 149.8 123.7 110.2 101.4 94.9 89.9 71.9 61.2 48.6 41.2 32.5 25.7 21.7 19.0 17.0 14.4 
5 132.7 105.1 91.5 82.8 76.6 71.9 55.9 46.7 36.2 30.2 23.4 18.1 15.1 13.2 11.7 9.8 
2 108.2 82.7 70.8 63.4 58.2 54.3 41.4 34.2 26.1 21.6 16.6 12.7 10.5 9.1 8.1 6.7 

2080's 50 188.9 158.3 142.1 131.5 123.6 117.5 95.0 81.4 65.2 55.6 44.3 35.2 29.8 26.2 23.6 20.0 
25 184.4 152.4 135.8 124.9 117.0 110.8 88.5 75.3 59.8 50.7 40.0 31.6 26.6 23.4 21.0 17.7 
5 163.2 129.2 112.4 101.8 94.2 88.4 68.6 57.3 44.5 37.1 28.8 22.3 18.6 16.2 14.4 12.0 
2 133.2 101.9 87.1 78.0 71.6 66.8 51.0 42.1 32.2 26.7 20.4 15.7 13.0 11.2 10.0 8.3 
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Table  4.4  AMP quantiles for Seoul station estimated by (d) HadCM3B2. 

GCMs Periods Return 

years 

Rainfall Duration (minutes) 
10 20 30 40 50 60 90 120 180 240 360 540 720 900 1080 1440 

HadCM3 

B2 

1961 

-1999 

50 169.1  138.7  123.2  113.1  105.7  100.1  79.9  67.9  53.9  45.7  36.2  28.6  24.1  21.1  18.9  15.9  
25 159.6  129.3  114.0  104.2  97.1  91.7  72.6  61.4  48.4  40.8  32.1  25.2  21.2  18.6  16.6  14.0  
5 127.6  100.1  86.8  78.5  72.5  68.0  52.7  44.0  34.1  28.5  22.0  17.1  14.3  12.5  11.1  9.3  
2 96.5  74.1  63.6  57.1  52.5  49.0  37.5  31.1  23.8  19.8  15.2  11.7  9.7  8.4  7.5  6.2  

2020's 50 159.4  134.0  120.8  112.1  105.7  100.7  81.9  70.6  56.9  48.7  38.9  31.0  26.4  23.2  20.9  17.7  
25 157.4  130.9  117.2  108.2  101.5  96.4  77.5  66.2  52.8  44.9  35.6  28.1  23.8  20.9  18.7  15.8  
5 145.5  116.1  101.4  92.0  85.2  80.1  62.3  52.1  40.4  33.8  26.2  20.3  16.9  14.7  13.1  10.9  
2 123.6  94.6  80.9  72.4  66.4  61.9  47.1  38.9  29.7  24.5  18.8  14.4  11.9  10.3  9.1  7.6  

2050's 50 140.7  119.0  107.3  99.5  93.6  89.1  72.1  61.9  49.6  42.3  33.7  26.8  22.7  20.0  17.9  15.1  
25 137.9  114.9  102.7  94.5  88.6  84.0  67.2  57.2  45.4  38.5  30.4  24.0  20.3  17.8  15.9  13.4  
5 124.1  98.5  85.8  77.7  71.9  67.5  52.4  43.8  34.0  28.4  22.0  17.1  14.3  12.4  11.1  9.3  
2 104.1  79.5  68.0  60.9  55.9  52.2  39.8  32.9  25.2  20.9  16.0  12.3  10.2  8.8  7.8  6.5  

2080's 50 176.0  148.9  134.5  124.9  117.7  112.1  91.2  78.4  63.1  53.9  43.0  34.2  29.1  25.6  23.0  19.5  
25 173.5  144.9  129.8  119.8  112.4  106.6  85.6  73.0  58.1  49.3  39.1  30.8  26.1  22.9  20.5  17.3  
5 159.4  127.1  110.9  100.5  93.1  87.4  68.0  56.8  44.1  36.8  28.5  22.1  18.5  16.1  14.3  12.0  
2 135.7  103.7  88.6  79.3  72.8  67.8  51.7  42.7  32.6  27.0  20.7  15.9  13.2  11.4  10.1  8.4  
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4.3.3 Time-Changing Trends of AMP Simulated by GCMs Scenarios 

 Future projection of daily AMPs by four different GCMs scenarios shows distinct 

trend in their periods as shown in Figure 4.13 for the 50-year AMDP. At Seoul station, 

CGCM3 estimates future precipitation to be gradually increase, but it is emission scenario 

that differentiates trend in 2080’s. While CGCM3A2 shows a continuous increase, 

CGCM3A1B shows a decrease. On the other hand, HadCM3 projection somewhat 

fluctuates, and time-changing trends are similar between two different emission scenarios 

– A2 and B2 as indicated in Figure 4. 13. The 50-year AMDPs for other stations are 

presented in Table 4.5. 

 

Figure  4.13 Trends of the 50-year AMDPs given by CGCM3A2, CGCMA1B, 
HadCM3A2, and HadCM3B2 scenarios for current, 2020’s, 2050’s, and 
2080’s for Seoul station. 
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Table  4.5 The 50-year return period daily AMP intensity simulated by CGCM3-A2, 
CGCM3-A1B, HadCM3-A2, and HadCM3-B2 for periods of current, 
2020’s, 2050’s, and 2080’s. 

 CGCM3-A2 CGCM3-A1B 
Station Current 2020's 2050's 2080's Current 2020's 2050's 2080's 

Seoul 15.90  17.10  16.99  18.86  15.90  16.10  16.88  16.42  
Suwon 16.18  20.60  24.72  53.29  16.18  20.32  25.22  33.67  
Incheon 14.42  15.47  16.81  18.93  14.42  15.74  16.53  17.26  
Gangreung 13.62  15.41  14.74  15.44  13.62  14.80  15.48  15.18  
Daegu 9.27  9.66  10.55  10.79  9.27  9.14  10.54  10.33  
Busan 15.27  17.06  19.34  21.17  15.27  17.52  17.85  19.41  
Gwangju 11.41  12.64  13.45  14.95  11.41  11.81  12.10  13.22  
Jeonju 11.58  12.09  12.44  13.02  11.58  12.19  12.83  13.03  
Mokpo 11.61  12.50  13.48  17.30  11.61  13.39  15.17  16.50  
Pohang 10.98  12.28  12.33  12.47  10.98  11.60  10.97  11.33  
Yeosu 13.24  15.78  15.04  17.47  13.24  16.84  15.43  18.62  
Chupungryong 9.81  9.61  10.14  9.67  9.81  9.75  9.30  9.77  
Ulsan 15.02  15.64  17.03  19.21  15.02  15.07  16.81  17.06  
Cheongju 10.74  10.57  11.36  11.79  10.74  10.31  11.35  11.63  

 HadCM3-A2 HadCM3-B2 
Station Current 2020's 2050's 2080's Current 2020's 2050's 2080's 

Seoul 15.91  19.15  16.25  19.99  15.90  17.74  15.13  19.52  
Suwon 16.16  19.20  19.02  21.50  16.17  18.65  17.46  18.26  
Incheon 14.45  22.09  14.13  21.19  14.41  21.68  12.40  21.35  
Gangreung 13.65  12.51  14.54  13.13  13.66  13.59  14.11  14.02  
Daegu 9.29  10.54  9.25  10.89  9.29  10.84  9.26  10.77  
Busan 15.34  15.51  17.24  18.88  15.31  16.17  17.42  20.25  
Gwangju 11.40  10.97  11.43  12.71  11.39  12.50  11.34  13.36  
Jeonju 11.59  11.50  12.22  12.94  11.59  13.37  11.42  13.42  
Mokpo 11.65  16.55  12.06  16.13  11.67  18.95  12.38  17.20  
Pohang 11.00  13.45  15.65  16.45  10.97  13.77  12.87  18.86  
Yeosu 13.18  12.90  12.94  15.11  13.19  14.83  14.00  15.76  
Chupungryong 9.81  7.95  9.52  9.44  9.81  8.71  11.05  9.69  
Ulsan 14.99  8.65  12.46  10.41  15.05  9.29  15.02  10.96  
Cheongju 10.74  13.52  11.11  13.27  10.75  13.59  10.65  14.00  
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5 Conclusion and Recommendations 

5.1 Conclusions 

The following main conclusions can be drawn from the present research: 

Selection of the Best-fit Distribution 

(1) By the method of L-moment ratio diagram, the GEV distribution was found to be 

the most suitable distribution to represent the distribution of AMPs for all 14 

raingage stations in South Korea as compared to the GPA, GLO, LN3, and PE3. 

Parameter and Quantile Estimation 

(2) Both non-central moment (NCM) and L-moment methods provided comparable 

estimates of GEV parameters and quantiles. However, the NCM method was 

selected in the present study since the scale-invariance property of the NCMs is 

useful in the estimation of the sub-daily extreme rainfalls from the rainfall data 

of longer durations for downscaling purposes.. 

Scaling Property of Extreme Rainfall Processes 

(3) The AMP processes at 14 stations in South Korea displayed a simple scaling 

behaviour. However, some stations (Seoul, Busan, Gwangju, Jeonju, and 

Chupungryong) have a similar scaling property (the break point of the log-linear 

relationship is located at the 60-minute duration), but other stations have a 

different scaling regime. 

(4) On the basis of this simple scaling behaviour the sub-daily extreme rainfall 

statistical properties can be derived from the properties of extreme rainfalls of 

longer durations. 

Construction of Intensity-Duration-Frequency (IDF) Curves 

(5) It has been demonstrated that the scaling GEV method can be used to construct 

the IDF relations for a given location where AMP data for different durations are 
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available. 

(6) It has been shown that the spatial-temporal downscaling method can be used to 

construct the IDF relations for current and future periods under different climate 

change scenarios.  

(7) It was found that the second-order non-linear function can be used to make 

appropriate bias correction to improve the agreement between the spatially 

downscaled AMDPs and the observed empirical AMDPs a given local site for 

both calibration and validation periods. 

(8) Spatially downscaled then bias-adjusted AMDPs have provided reasonable 

projection of future daily extreme rainfall patterns, indicating different trends 

depending on different climate change scenarios. In general, with AMP data from 

South Korean stations, HadCM3 showed fluctuating trends, while CGCM3 

indicated a general increasing trend. Furthermore, the different projection results 

of AMP trends for future periods from different GCMs for the same climate 

scenario has indicated the high uncertainty of these models. 

5.2 Recommendations for Future Study 

(1) When scaling property was examined for the selected 14 Korean stations, a 

simple scaling behaviour of two different time intervals was detected, but some 

of these stations showed different scaling regimes. Considering the physical 

reason to explain the different scaling behaviours in terms of the rainfall 

dynamics and climatic conditions might be useful to delineate homogeneous 

regions for rainfall regional analyses, especially for the estimation of extreme 

rainfalls at locations with limited or without rainfall data. 

(2) In this study, the scaling property of extreme rainfall processes was successfully 

integrated into the GEV distribution and the associated NCM parameter 

estimation method for the estimation of rainfall extremes over different durations. 

It is hence useful to consider more general statistical and stochastic models (such 
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as the peak-over-threshold models) that could take into account the properties of 

hydrologic processes at different time and spatial scales. 

(3) The scaling-GEV technique can be categorized as a statistical temporal 

downscaling method, because it derives precipitation amounts in shorter 

temporal scales from the one in longer time scale based mainly on the statistical 

properties of the rainfall process. But, there are other dynamic downscaling 

methods that are strongly relying on the physical properties of the underlying 

rainfall process. The development of a combined statistical-dynamical 

downscaling method could be useful in this case. 

(4) IDF curves are of practical use in hydrology field for the design of various 

hydraulic structures that require runoff estimation. Hence, from the constructed 

IDF curves for current and future climates, it is necessary to develop the linkage 

between the extreme rainfalls and the runoff characteristics (e.g., runoff peaks 

and volumes) in order to be able to propose appropriate design procedures in the 

context of climate variability and climate change. 

(5) In the present study, the statistical properties of the annual maximum rainfall 

series have been considered as stationary (i.e., constant over time). However, due 

to climate change these properties might vary with time. It is hence necessary to 

develop an improved method for modeling and estimating extreme rainfalls in 

the context of nonstationarity.   
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Table A. 1 Descriptive statistics for AMP data at Suwon station for 1964-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 36  6.40  27.50  15.58  4.78  0.49  
20 min 36  10.80  36.60  23.97  6.68  0.28  
30 min 36  14.00  47.00  30.74  8.47  0.26  
40 min 36  18.00  57.00  35.91  9.47  0.40  
50 min 36  20.00  65.00  39.73  10.61  0.43  
1 hr 36  23.80  80.00  44.51  13.46  0.70  

1.5 hr 36  29.20  94.00  53.73  17.86  0.60  
2 hr 36  33.60  131.00  63.40  24.65  0.98  
3 hr 36  37.40  171.00  76.82  32.05  1.27  
4 hr 36  42.60  200.00  87.80  37.70  1.36  
6 hr 36  49.70  220.00  103.09  43.09  1.22  
9 hr 36  63.00  308.00  123.03  52.76  1.73  

12 hr 36  72.20  341.00  135.99  60.78  1.96  
15 hr 36  73.30  378.00  147.04  67.70  2.05  
18 hr 36  74.20  395.00  153.78  70.94  2.07  
1 day 36  85.80  462.00  173.76  85.58  2.07  

Table A. 2 Descriptive statistics for AMP data at Incheon station for 1952-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 48 6.00 24.30 14.28 4.73 0.34 
20 min 48 8.00 43.30 22.32 8.26 0.65 
30 min 48 10.50 56.80 28.43 11.39 0.81 
40 min 48 12.00 70.40 33.75 13.55 0.88 
50 min 48 13.00 82.00 38.23 15.48 0.91 
1 hr 48 13.50 103.00 42.65 17.77 1.18 

1.5 hr 48 15.00 123.00 52.77 22.73 1.17 
2 hr 48 16.50 139.00 61.36 28.06 1.17 
3 hr 48 17.50 164.00 71.47 32.98 1.28 
4 hr 48 24.00 204.00 80.47 36.63 1.45 
6 hr 48 28.50 258.00 94.32 44.02 1.60 
9 hr 48 31.50 297.00 108.41 52.19 1.54 

12 hr 48 51.50 338.00 119.61 58.95 1.61 
15 hr 48 53.90 349.00 126.00 63.18 1.59 
18 hr 48 56.30 353.00 132.06 64.98 1.51 
1 day 48 57.40 372.00 141.93 72.85 1.67 
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Table A. 3 Descriptive statistics for AMP data at Gangreung station for 1958-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 42 3.90 21.60 10.54 4.17 0.51 
20 min 42 7.00 40.00 15.97 6.48 1.14 
30 min 42 8.50 44.00 20.58 7.87 0.61 
40 min 42 9.70 45.80 23.74 8.99 0.57 
50 min 42 10.90 54.00 26.78 10.29 0.62 
1 hr 42 12.40 62.00 29.53 11.37 0.75 

1.5 hr 42 15.10 86.00 36.25 14.51 1.25 
2 hr 42 18.00 105.00 42.72 18.37 1.60 
3 hr 42 24.40 142.00 55.72 24.03 1.72 
4 hr 42 29.00 165.00 65.72 28.03 1.90 
6 hr 42 34.20 207.00 81.50 35.93 1.81 
9 hr 42 35.20 245.00 99.91 45.26 1.41 

12 hr 42 39.70 260.00 115.10 52.45 1.17 
15 hr 42 42.90 270.00 129.59 58.15 0.91 
18 hr 42 46.90 286.00 141.04 62.22 0.84 
1 day 42 48.20 328.00 158.28 69.99 0.83 

Table A. 4 Descriptive statistics for AMP data at Daegu station for 1916-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 84 4.60 44.40 12.67 5.79 2.20 
20 min 84 7.10 44.40 19.63 8.44 0.93 
30 min 84 10.50 56.70 24.71 10.14 0.89 
40 min 84 12.50 66.90 28.95 11.43 0.98 
50 min 84 14.60 79.20 32.16 12.66 1.22 
1 hr 84 14.70 80.90 34.94 13.84 1.17 

1.5 hr 84 19.70 99.90 41.83 16.71 1.21 
2 hr 84 21.90 111.90 46.89 17.97 1.07 
3 hr 84 24.60 121.00 54.53 20.98 0.86 
4 hr 84 27.00 130.00 60.09 23.28 0.89 
6 hr 84 29.50 140.50 68.87 27.02 0.93 
9 hr 84 30.00 182.40 78.49 32.29 1.18 

12 hr 84 35.50 194.30 86.04 35.50 1.13 
15 hr 84 38.00 212.10 92.47 38.19 1.01 
18 hr 84 41.50 220.80 98.16 40.08 0.94 
1 day 84 43.80 249.70 109.58 45.01 0.82 



84 

Table A. 5 Descriptive statistics for AMP data at Busan station for 1948-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 52 4.10 40.00 14.33 6.22 1.32 
20 min 52 4.30 51.00 21.58 9.60 0.85 
30 min 52 4.30 56.10 27.99 12.47 0.68 
40 min 52 4.30 71.10 34.23 16.09 0.66 
50 min 52 4.30 80.00 38.80 17.93 0.53 
1 hr 52 4.30 88.50 43.37 20.10 0.48 

1.5 hr 52 5.50 103.00 53.01 23.78 0.32 
2 hr 52 5.60 114.00 60.73 26.35 0.21 
3 hr 52 5.60 160.00 75.29 32.64 0.31 
4 hr 52 9.70 174.00 86.55 37.39 0.25 
6 hr 52 11.50 213.00 103.63 44.60 0.35 
9 hr 52 12.20 304.00 121.32 55.30 0.74 

12 hr 52 12.20 370.00 133.15 62.82 1.20 
15 hr 52 12.20 406.00 143.32 68.43 1.25 
18 hr 52 12.20 439.00 150.10 73.26 1.31 
1 day 52 43.40 444.00 158.12 75.63 1.28 

Table A. 6 Descriptive statistics for AMP data at Gwangju station for 1939-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 61 5.50 23.00 13.99 4.56 0.22 
20 min 61 9.10 39.00 21.39 6.99 0.56 
30 min 61 10.00 50.00 27.56 8.86 0.35 
40 min 61 12.40 60.00 32.10 10.94 0.54 
50 min 61 14.20 67.00 35.63 12.30 0.53 
1 hr 61 15.30 68.50 38.62 13.37 0.45 

1.5 hr 61 18.90 94.20 46.17 16.13 0.84 
2 hr 61 20.80 103.00 51.77 18.59 0.86 
3 hr 61 24.00 141.00 61.31 22.37 1.16 
4 hr 61 28.70 183.00 69.30 25.49 1.73 
6 hr 61 34.20 219.00 83.41 31.56 1.73 
9 hr 61 38.20 244.00 96.99 37.11 1.53 

12 hr 61 40.10 276.00 105.97 41.50 1.63 
15 hr 61 51.20 301.00 112.39 44.88 1.77 
18 hr 61 54.70 327.00 118.95 48.35 1.86 
1 day 61 55.60 336.00 129.94 52.09 1.43 
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Table A. 7 Descriptive statistics for AMP data at Jeonju station for 1970-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 30 6.60 21.00 13.91 4.13 0.02 
20 min 30 11.20 36.00 21.78 6.49 0.29 
30 min 30 12.00 49.50 29.23 9.67 0.28 
40 min 30 18.20 59.00 35.47 11.31 0.35 
50 min 30 20.70 64.50 39.91 12.44 0.19 
1 hr 30 22.00 75.70 43.78 14.36 0.39 

1.5 hr 30 24.00 91.50 53.40 17.86 0.30 
2 hr 30 25.30 99.10 60.94 20.07 0.34 
3 hr 30 31.40 133.00 72.14 24.46 0.66 
4 hr 30 39.10 157.00 83.00 28.95 0.85 
6 hr 30 46.00 197.00 98.98 34.42 1.02 
9 hr 30 61.00 223.00 114.47 38.80 0.99 

12 hr 30 71.00 250.00 127.24 41.82 0.96 
15 hr 30 77.00 261.00 135.03 44.80 0.87 
18 hr 30 77.00 277.00 141.64 48.11 0.90 
1 day 30 77.00 291.00 154.21 51.56 0.80 

Table A. 8 Descriptive statistics for AMP data at Mokpo station for 1923-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 77 4.80 22.00 12.78 4.19 0.17 
20 min 77 7.30 33.50 19.38 6.43 0.33 
30 min 77 8.90 42.70 24.55 7.70 0.21 
40 min 77 9.50 47.70 28.40 8.67 0.07 
50 min 77 10.30 51.00 31.36 9.26 0.01 
1 hr 77 10.90 54.30 34.47 10.15 -0.01 

1.5 hr 77 14.00 71.80 41.05 12.10 0.16 
2 hr 77 16.40 82.30 47.51 14.05 0.15 
3 hr 77 17.30 118.00 57.75 18.69 0.47 
4 hr 77 26.10 138.00 65.80 22.45 0.62 
6 hr 77 30.70 178.00 77.82 27.91 0.77 
9 hr 77 33.00 259.00 91.69 36.56 1.41 

12 hr 77 36.10 312.00 101.10 42.67 1.85 
15 hr 77 41.00 348.00 108.34 45.26 2.20 
18 hr 77 42.20 372.00 114.96 47.48 2.33 
1 day 77 42.90 401.00 125.08 53.36 2.05 
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Table A. 9 Descriptive statistics for AMP data at Pohang station for 1954-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 46 2.90 24.50 10.37 4.35 0.92 
20 min 46 5.30 29.60 15.23 5.70 0.77 
30 min 46 7.70 40.30 19.74 7.72 0.77 
40 min 46 10.20 46.50 23.28 8.75 0.71 
50 min 46 10.80 53.00 25.93 9.59 0.71 
1 hr 46 11.70 57.50 29.03 10.83 0.73 

1.5 hr 46 18.00 66.00 35.52 11.94 0.72 
2 hr 46 21.90 85.90 40.58 13.10 1.04 
3 hr 46 27.50 123.00 49.54 16.21 1.95 
4 hr 46 30.40 143.00 56.84 18.91 2.14 
6 hr 46 35.10 163.00 68.72 23.07 1.91 
9 hr 46 43.20 195.00 82.09 31.02 1.66 

12 hr 46 50.50 205.00 92.29 36.64 1.53 
15 hr 46 56.50 226.00 100.58 40.87 1.60 
18 hr 46 56.80 265.00 107.93 43.83 1.63 
1 day 46 61.10 348.00 121.72 52.48 2.04 

Table A. 10 Descriptive statistics for AMP data at Yeosu station for 1952-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 48 4.50 26.00 13.84 4.10 0.65 
20 min 48 6.00 40.00 21.15 6.73 0.53 
30 min 48 8.00 50.00 27.42 9.12 0.49 
40 min 48 10.00 60.00 32.77 11.44 0.64 
50 min 48 11.00 69.00 36.54 13.50 0.75 
1 hr 48 13.00 74.20 40.81 14.94 0.63 

1.5 hr 48 19.00 92.50 48.78 17.27 0.68 
2 hr 48 22.00 123.00 56.39 20.93 0.96 
3 hr 48 33.00 168.00 70.13 26.80 1.30 
4 hr 48 35.60 183.00 80.44 31.02 1.04 
6 hr 48 37.70 219.00 95.14 36.78 1.04 
9 hr 48 42.20 249.00 113.00 42.15 0.97 

12 hr 48 42.20 283.00 125.98 46.98 1.12 
15 hr 48 42.20 317.00 135.47 51.57 1.32 
18 hr 48 42.20 322.00 142.87 54.36 1.22 
1 day 48 69.60 331.00 156.38 60.20 1.11 
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Table A. 11 Descriptive statistics for AMP data at Chupungryong station for 1955-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 45 5.10 20.70 12.16 3.69 -0.04 
20 min 45 8.00 28.60 17.15 5.03 0.45 
30 min 45 10.50 39.00 21.80 6.55 0.44 
40 min 45 14.30 42.00 25.36 7.53 0.41 
50 min 45 16.20 48.50 28.54 8.66 0.45 
1 hr 45 18.30 54.50 31.76 9.75 0.47 

1.5 hr 45 19.50 81.20 37.84 13.13 1.14 
2 hr 45 23.00 89.00 42.90 14.25 1.30 
3 hr 45 27.00 103.00 50.25 15.66 1.42 
4 hr 45 31.00 111.00 57.51 17.03 0.95 
6 hr 45 36.40 123.00 69.12 21.07 0.66 
9 hr 45 43.80 159.00 84.04 26.91 0.78 

12 hr 45 50.10 167.00 93.55 28.60 0.77 
15 hr 45 51.20 177.50 102.15 33.10 0.91 
18 hr 45 52.80 205.50 109.47 37.24 1.05 
1 day 45 65.50 255.50 122.78 44.92 1.10 

Table A. 12 Descriptive statistics for AMP data at Ulsan station for 1954-1999 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 46 4.20 23.00 12.67 4.31 0.13 
20 min 46 7.50 43.00 19.31 7.82 0.94 
30 min 46 8.50 56.00 24.58 10.81 0.89 
40 min 46 9.10 68.50 28.98 13.23 1.02 
50 min 46 10.60 75.00 32.38 14.91 1.06 
1 hr 46 13.10 76.70 35.83 16.57 1.05 

1.5 hr 46 18.60 100.00 44.94 21.66 0.92 
2 hr 46 23.00 121.00 52.98 24.92 0.99 
3 hr 46 26.10 150.00 64.97 30.61 1.10 
4 hr 46 34.50 175.00 76.29 36.41 1.11 
6 hr 46 42.50 232.00 95.55 44.40 1.11 
9 hr 46 47.80 296.00 112.94 52.70 1.33 

12 hr 46 48.30 352.00 125.31 59.28 1.70 
15 hr 46 53.00 410.00 135.93 66.80 2.03 
18 hr 46 55.60 434.00 143.37 72.24 2.16 
1 day 46 59.80 458.00 154.93 76.34 2.30 
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Table A. 13 Descriptive statistics for AMP data at Cheongju station for 1967-1999 
 

Duration 

Basic Descriptive Statistics 

Number Minimum Maximum Mean 
Std. 

deviation Skewness 
of Data (mm) (mm) (mm) (mm)   

10 min 33 7.00 29.00 15.48 4.97 0.28 
20 min 33 8.50 42.10 22.73 7.55 0.31 
30 min 33 9.70 47.20 27.92 9.00 0.01 
40 min 33 11.50 53.50 32.62 10.61 -0.13 
50 min 33 12.60 57.70 36.41 11.87 -0.19 
1 hr 33 13.30 60.00 38.77 13.02 -0.10 

1.5 hr 33 19.50 89.50 46.31 15.34 0.56 
2 hr 33 24.50 102.00 50.73 17.32 0.96 
3 hr 33 34.50 108.00 58.79 19.99 1.00 
4 hr 33 40.50 173.00 68.67 26.51 2.17 
6 hr 33 46.50 195.00 80.48 30.08 2.09 
9 hr 33 54.60 213.00 96.19 36.09 1.77 

12 hr 33 56.20 226.00 107.15 40.88 1.75 
15 hr 33 56.90 282.00 115.92 48.08 1.79 
18 hr 33 57.20 282.00 120.74 48.44 1.59 
1 day 33 60.40 292.00 129.81 50.42 1.41 
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Appendix B 

 

Figure B.1 L-moment ratio diagram for 10 minutes AMP in Korea 

 

Figure B.2 L-moment ratio diagram for 20 minutes AMP in Korea 
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Figure B.3 L-moment ratio diagram for 30 minutes AMP in Korea 

 

Figure B.4 L-moment ratio diagram for 40 minutes AMP in Korea 
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Figure B.5 L-moment ratio diagram for 50 minutes AMP in Korea 

 

Figure B.6 L-moment ratio diagram for 60 minutes AMP in Korea 
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Figure B.7 L-moment ratio diagram for 90 minutes AMP in Korea 

 

Figure B.8 L-moment ratio diagram for 120 minutes AMP in Korea 
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Figure B.9 L-moment ratio diagram for 180 minutes AMP in Korea 

 

Figure B.10 L-moment ratio diagram for 240 minutes AMP in Korea 
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Figure B.11 L-moment ratio diagram for 360 minutes AMP in Korea 

 

Figure B.12 L-moment ratio diagram for 540 minutes AMP in Korea 
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Figure B.13 L-moment ratio diagram for 720 minutes AMP in Korea 

 

Figure B.14 L-moment ratio diagram for 900 minutes AMP in Korea 
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Figure B.15 L-moment ratio diagram for 1080 minutes AMP in Korea 

 

Figure B.16 L-moment ratio diagram for 1440 minutes AMP in Korea 
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Appendix C 

 

Figure C.1 Quantile plot of 10 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 
Figure C.2 Quantile plot of 20 minutes AMP, estimated by two parameter estimation 

methods and observed, at Seoul for 1957-1999 period. 
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Figure C.3 Quantile plot of 30 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.4 Quantile plot of 40 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 
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Figure C.5 Quantile plot of 50 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.6 Quantile plot of 60 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 
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Figure C.7 Quantile plot of 90 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.8 Quantile plot of 120 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 



101 

 

Figure C.9 Quantile plot of 180 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.10 Quantile plot of 240 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 
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Figure C.11 Quantile plot of 360 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.12 Quantile plot of 540 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 
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Figure C.13 Quantile plot of 720 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.14 Quantile plot of 900 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 
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Figure C.15 Quantile plot of 1080 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 

Figure C.16 Quantile plot of 1440 minutes AMP, estimated by two parameter estimation 
methods and observed, at Seoul for 1957-1999 period. 

 
 
 



105 

Appendix D 

 

Figure D.1 Q-Q plot of estimated 10 min quantiles versus observed 10 min quantiles, 
Seoul station, 1957 – 1999 data period.  

 
Figure D.2 Q-Q plot of estimated 20 min quantiles versus observed 20 min quantiles, 

Seoul station, 1957 – 1999 data period. 
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Figure D.3 Q-Q plot of estimated 30 min quantiles versus observed 30 min quantiles, 
Seoul station, 1957 – 1999 data period. 

 

Figure D.4 Q-Q plot of estimated 40 min quantiles versus observed 40 min quantiles, 
Seoul station, 1957 – 1999 data period. 
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Figure D.5 Q-Q plot of estimated 50 min quantiles versus observed 50 min quantiles, 
Seoul station, 1957 – 1999 data period. 

 

Figure D.6 Q-Q plot of estimated 60 min quantiles versus observed 60 min quantiles, 
Seoul station, 1957 – 1999 data period. 
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Figure D.7 Q-Q plot of estimated 90 min quantiles versus observed 90 min quantiles, 
Seoul station, 1957 – 1999 data period. 

 

Figure D.8 Q-Q plot of estimated 120 min quantiles versus observed 120 min quantiles, 
Seoul station, 1957 – 1999 data period. 
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Figure D.9 Q-Q plot of estimated 180 min quantiles versus observed 180 min quantiles, 
Seoul station, 1957 – 1999 data period. 

 

Figure D.10Q-Q plot of estimated 240 min quantiles versus observed 240 min quantiles, 
Seoul station, 1957 – 1999 data period. 
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Figure D.11Q-Q plot of estimated 360 min quantiles versus observed 360 min quantiles, 
Seoul station, 1957 – 1999 data period. 

 

Figure D.12Q-Q plot of estimated 540 min quantiles versus observed 540 min quantiles, 
Seoul station, 1957 – 1999 data period. 
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Figure D.13Q-Q plot of estimated 720 min quantiles versus observed 720 min quantiles, 
Seoul station, 1957 – 1999 data period. 

 

Figure D.14Q-Q plot of estimated 900 min quantiles versus observed 900 min quantiles, 
Seoul station, 1957 – 1999 data period. 
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Figure D.15 Q-Q plot of estimated 1080 min quantiles versus observed 1080 min 
quantiles, Seoul station, 1957 – 1999 data period. 

 

Figure D.16 Q-Q plot of estimated 1440 min quantiles versus observed 1440 min 
quantiles, Seoul station, 1957 – 1999 data period. 
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Appendix E 
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Figure E. 1 IDF curves drawn by scaling GEV method together with observed 
quantiles for stations in South Korea 
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