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ABSTRACT

The prediction and control of the turbulent mixing of passive scalars is

of particular interest to a variety of engineering fields. The present research

aims to improve our incomplete understanding of this subject. In this re-

gard, we study, by means of both experiments and numerical simulations, the

evolution of a passive scalar (temperature) injected in a highly anisotropic

manner at small scales into an inhomogeneous turbulent flow. The source

of the scalar consists of a fine heated wire placed in the flow, generating a

thermal plume downstream. Multiple phenomena (including turbulent mixing

within the plume, molecular diffusion, etc.) play a role in the evolution of the

temperature fluctuations, θ, which dissipate with increasing distance from the

source. The scalar dissipation rate (εθ ≡ α〈(∂θ/∂xi)2〉, where α is the thermal

diffusivity of the fluid) represents the rate at which the scalar variance is de-

stroyed. The dissipation process occurs at the smallest scales of the turbulence

and is still not completely understood. In this work, particular attention is

paid to the evolution of the three components of the scalar dissipation rate,

i.e. εθx ≡ α〈(∂θ/∂x)2〉, εθy ≡ α〈(∂θ/∂y)2〉 and εθz ≡ α〈(∂θ/∂z)2〉, to further

understand the small scales of the scalar field and, in particular, examine the

return to isotropy of the (anisotropically-generated) scalar field.

The experiments were carried out in a turbulent channel flow facility. The

scalar fluctuations were measured by means of cold-wire thermometry and εθ

was determined by estimating the derivatives of the temperature fluctuations.

The transverse derivatives were estimated using a pair of parallel cold-wires,

whereas the longitudinal derivative was estimated using a single cold-wire and

Taylor’s hypothesis.
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Direct numerical simulations were also performed to both reproduce the

experimental results and provide additional data that is experimentally inac-

cessible. To this end, a new computer program, called 3DFLUX, was developed

and implemented. 3DFLUX is a fully three-dimensional, high-order, conser-

vative, monotonicity preserving, flux integral method for the solution of the

advection-diffusion equation. It is nominally third-order in space and second-

order in time, and generates low numerical diffusion and anisotropic distortion.

In addition, 3DFLUX, is guaranteed to be free of splitting errors and has a bet-

ter convergence rate than widely used one-dimensional techniques, such as the

piecewise parabolic method (PPM), the weighted essentially non-oscillatory

(WENO) method, and the recently-proposed jet scheme, which is based on

the level-set method. A detailed presentation of 3DFLUX is reported in this

thesis.

In contrast with recent research using alternate numerical approaches, we

show that the experiments and numerical simulations are in excellent agree-

ment for both the large- and small-scales statistics of the scalar field. In

addition, combining the obtained results with the two approaches enable us to

analyze and provide insight on the nature of a turbulent scalar plume injected

at small scales. We show that the return to isotropy of the small scales is never

perfectly observed in any region of the channel for the downstream distances

studied herein. However, the small-scale anisotropy measured in the central

region is smaller than the persistent anisotropy observed in the near-wall re-

gion, which is found to be most prominent in the numerical simulations, which

are performed at a lower Reynolds number than the experiments. The mean

velocity gradient plays a key role in the evolution of εθ and in this lack of

isotropization of the small scales of the scalar field.
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RÉSUMÉ

Les écoulements fluides turbulents jouent un rôle majeur dans de nom-

breuses applications industrielles. L’objectif de cette recherche est d’approfondir

notre compréhension des mécanismes mis en jeu lorsque ces écoulements sont

utilisés pour le transport ou le mélange de scalaires. Plus précisément, cette

étude, qui associe à la fois expérience et simulation numérique, s’intéresse à

l’évolution d’une quantité scalaire (la température) lorsque celle-ci est injectée

de manière anisotrope et aux petites échelles de la turbulence dans un écoule-

ment turbulent non-homogène. L’injection de température fût réalisée à partir

d’une source linéaire de chaleur (fil fin chauffé), créant ainsi un panache ther-

mique dans l’écoulement. Plusieurs processus physiques tel que le brassage

induit par la turbulence ou la diffusion moléculaire au sein du panache, con-

tribuent à l’évolution des fluctuations de température, θ. Ces fluctuations se

dissipent avec l’éloignement en aval du point d’injection. Le taux de dissipation

de la variance du scalaire (εθ ≡ α〈(∂θ/∂xi)2〉 ou α est la diffusivité thermique

du fluide) représente le taux auquel les fluctuations du champs scalaire sont

détruites. La dissipation s’opère aux petites échelles de la turbulence et les

mécanismes qui la mettent en œuvre sont encore mal compris de nos jours.

Dans cette étude, une attention particulière est portée sur l’évolution des trois

composantes du taux de dissipation du champs scalaire εθx ≡ α〈(∂θ/∂x)2〉,

εθy ≡ α〈(∂θ/∂y)2〉 et εθz ≡ α〈(∂θ/∂z)2〉, afin d’en extraire des informations

sur le comportement anisotrope des petites structures du champs scalaire.

Les expériences fûrent menées dans un écoulement turbulent de canal et les

fluctuations du champs scalaire fûrent mesurées au moyen de la thermométrie

à fil froid. Le taux de dissipation, εθ, fût déduit des mesures des dérivées spa-

tiales des fluctuations de température; les dérivées spatiales transversales étant
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mesurées à l’aide d’une sonde, spécialement conçue à cet effet, et possédant

deux fils froids parallèles alors que la dérivée longitudinale fût estimée à partir

d’une mesure de dérivée temporelle avec un seul fil (hypothèse de Taylor).

Des simulations numériques directes fûrent mises en œuvre afin de repro-

duire les résultats expérimentaux et de fournir des données d’analyse supplé-

mentaires et inaccessibles expérimentalement. Le développement d’un nou-

veau code numérique appelé 3DFLUX a constitué une partie importante de

cette recherche. 3DFLUX est basé sur une méthode numérique d’intégration

des flux. C’est un schéma multi-dimensionnel, parallelisable, d’ordre élevé,

conservatif et qui garantie la monotonicité de la solution. Nous montrons

notamment que 3DFLUX est d’ordre 3 et 2 respectivement en espace et en

temps et qu’il présente des taux de convergence supérieurs aux techniques

uni-dimensionnelles très répandues telles que les méthodes PPM « piecewise

parabolic method », WENO « weigthed essentially non-oscillatory » ou une

méthode récente nommée « jet scheme » et basée sur des techniques dites

« level-set ». Une description détaillée de 3DFLUX est rapportée dans cette

thèse.

En opposition avec des publications récentes et basées sur des méthodes

numériques différentes, nos resultats montrent une excellente corrélation en-

tre les approches numériques et expérimentales autant pour les grandes que

pour les petites échelles du champs scalaire. Finalement, cette étude ap-

porte plusieurs éléments nouveaux sur l’évolution d’un champs scalaire lorsque

celui-ci est injecté à petite échelle dans un écoulement turbulent. Le retour à

l’isotropie des fines structures du champs scalaire n’est pas clairement observée

dans le canal aux positions, etudiées dans ce mémoire, en aval de la source.

Toutefois, l’anisotropie des petites échelles est faible dans la région centrale du

canal en comparaison à celle mesurée dans la région pariétale, d’autant plus
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importante dans les simulations numériques; celles-ci étant réalisées à un nom-

bre de Reynolds qui est inférieur à celui des expériences. Le rôle du gradient de

vitesse moyenne dans l’évolution de εθ est analysé pour justifier ce non-retour

à l’isotropie.
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PREFACE

The work outlined in this manuscript thesis was carried out in the Depart-

ment of Mechanical Engineering at McGill University from September 2007 to

December 2012. It is submitted to McGill University in partial fulfillment of

the requirements of the degree of Doctor of Philosophy.

Contributions of authors

This manuscript-based thesis is composed of two articles. Although the

work for this thesis has been performed in close collaboration with my super-

visors, Prof. Luca Cortelezzi and Prof. Laurent Mydlarski, my contribution

has been the predominant one for each publication. The details of these con-

tributions are summarized below.

Manuscript 1 (Chapter 2): 3DFLUX: A high-order fully three-dimensional

flux integral solver for the scalar transport equation. This manuscript has been

published in the Journal of Computational Physics. Under the supervision of

my two co-authors, Laurent Mydlarski and Luca Cortelezzi, I:

i) developed and implemented the algorithm (3DFLUX),

ii) executed both the experiments and the numerical simulations,

iii) analyzed the results, and

iv) wrote the manuscript, which was subsequently edited by Luca Cortelezzi.

Manuscript 2 (Chapter 3): Evolution of the scalar dissipation rate emitted

from a concentrated line source in turbulent channel flow. This manuscript has

been submitted to the Journal of Fluid Mechanics. Under the supervision of

my two co-authors, Luca Cortelezzi and Laurent Mydlarski, I:
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i) executed the simulations,

ii) executed the experiments,

iii) analyzed the resulting experimental and numerical data, and

iv) wrote the manuscript, which was subsequently edited by Laurent

Mydlarski.

Statement of Originality

The objective of this thesis is to investigate by means of both experiments

and numerical simulations the scalar dissipation rate in a turbulent flow. To

that end, I developed a new numerical scheme (3DFLUX) to solve the scalar

transport equation, simulating the mixing of a scalar field in a turbulent flow.

The convergence rate and accuracy of 3DFLUX was characterized using sev-

eral multidimensional tests. 3DFLUX is found to be noticeably more accurate

than the currently available numerical schemes having the same convergence

rate and is expected to be a promising code for the simulation of practical

engineering applications. Reaping the complementary benefits of experiments

and numerical simulations, the scalar dissipation rate of the temperature field

generated by a line source in a turbulent channel flow was investigated. To the

best of my knowledge, the present research — which analyzes spectra, proba-

bility density functions, wall-normal and downstream evolutions, anisotropies

and conditional expectations of the three individual components of the scalar

dissipation rate by means of both experiments and direct numerical simulations

— has no analog in the scientific literature.
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CHAPTER 1

Introduction

The ability of turbulence to mix a scalar quantity (i.e. energy, chemical

species concentration, etc.) is of particular interest to a variety of engineering

fields, such as combustion, pollutant dispersion and heat transfer. For exam-

ple, combustion only occurs if the fuel and oxidizer are mixed at the molecular

level; ecological problems arise if dangerous chemicals are not sufficiently dif-

fused when emitted into the environment. In these examples, the prediction

and the control of the combustion or the pollutant dispersion require an accu-

rate understanding of the phenomena that govern mixing in turbulent flows.

However, our understanding of this process remains incomplete.

The present thesis focuses on the evolution of a scalar injected at small

scales into a turbulent flow. The source of the scalar (temperature, herein)

consists of a fine heated wire placed in the flow, creating a thermal plume

downstream of the source. After being injected, the scalar field is advected,

stretched and distorted due to the chaotic nature of the flow. Turbulent mix-

ing by eddies that are larger than the plume, turbulent mixing within the

plume (i.e. by eddies that are smaller than the plume), and molecular dif-

fusion are some of the phenomena that play a role in the evolution of the

temperature fluctuations. Repeated stretching and folding of the scalar field

results in smaller and smaller structures, until the scalar variance is removed
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(or “dissipated”) by molecular diffusion. This, being said, the mechanisms that

effect the scalar dissipation remain unclear. The present research aims to an-

alyze the scalar dissipation rate by means of both experiments and numerical

simulations.

As previously noted, the scalar under consideration in this work is tem-

perature. In addition, the latter is classified as a passive scalar when the

temperature differences are small enough to not affect the dynamics of the

flow. Note that the formalism presented in this study also applies to any other

passive scalar. The use of a passive scalar therefore permits observations of the

dynamics of the flow, which are responsible for the mixing, but independent

of the scalar field being mixed.

In theory and under certain conditions (described in section 1.1), the large

scales, strongly affected by the boundary conditions and therefore generally

anisotropic, are decoupled from the small-scales; the latter being statistically

isotropic. However, numerous experiments have reported persistent anisotropy

of the scalar field even when i) the scalar is advected by an isotropic velocity

field, and ii) both the large and small scales of the scalar field are of the same

order of magnitude as those of the velocity field (Warhaft, 2000). These results

contradict the notion of a possible independence of the largest and smallest

scales of the scalar field. Hence, the scalar field must be analyzed carefully

and separately, given that it does not emulate the turbulent velocity field in a

straightforward manner.

Furthermore, in many applications of turbulent scalar mixing, the length

scales of the thermal field are different (sometimes drastically so) from those

of the hydrodynamic turbulence. This difference only increases the difficulties

in modeling scalar mixing. For example, the same scalar, when injected at two

different scales, is not, a priori, expected to evolve similarly in the two cases.
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Consequently, the present research studies in detail the evolution of a passive

scalar when it is injected into a turbulent flow at scales far smaller than the

largest scales of the (advecting) velocity field.

1.1 Theoretical Background

The evolutions of the instantaneous velocity (Ũi) and pressure (p̃) fields

in a constant property flow are determined by the equations of conservation

of mass and momentum

∂Ũi
∂xi

= 0,
∂Ũi
∂t

+ Ũj
∂Ũi
∂xj

= −1

ρ

∂p̃

∂xi
+ ν

∂2Ũi
∂x2

j

, (1.1)

where ρ is the density of the fluid and ν is its kinematic viscosity. Given i) the

difficulty in finding solutions to the above equations in the turbulent regime,

and ii) the random nature of turbulent flows, the dependent variables lend

themselves to statistical analysis. To this end, instantaneous quantities are

decomposed into mean, 〈Ui〉, and fluctuating, ui, quantities using the Reynolds

decomposition: Ũi ≡ 〈Ui〉+ ui, where angular brackets (〈〉) denote averages.

The governing equations for the mean flow are obtained by applying the

above decomposition and averaging. The result is

∂〈Ui〉
∂xi

= 0,
∂〈Ui〉
∂t

+ 〈Uj〉
∂〈Ui〉
∂xj

= −1

ρ

∂〈p〉
∂xi

+ ν
∂2〈Ui〉
∂x2

j

− ∂〈uiuj〉
∂xj

. (1.2)

The new terms, 〈uiuj〉, which originate from the Reynolds decomposition are

called Reynolds stresses. They are unknown, and thus cause a closure problem

for the Reynolds-averaged Navier-Stokes (RANS) equations.

The tendency towards either laminar or turbulent flow depends upon the

balance of forces acting on the fluid. The inertial force (per unit volume) is

given by ρU2/L, whereas the viscous one is µU/L2, where L is some charac-

teristic length of the system, U is an average fluid velocity, ρ is the density

3



of the fluid, and µ is its dynamic viscosity. The ratio of these forces is de-

fined to be the Reynolds number (Re ≡ ρUL/µ). At low Reynolds numbers,

viscous forces dominate and the flow is laminar. Once the Reynolds number

exceeds some critical value, the inertial forces become predominant and the

flow transitions from laminar to turbulent.

The theoretical foundation of (hydrodynamic) turbulence was proposed

by Kolmogorov (1941). This work, commonly referred to as K41, provides

insight into the roles played by the different length scales within a turbulent

flow, from the largest (integral) length scale, `, to the smallest length scale,

η. Kolmogorov’s theory is based upon three fundamental ideas. The first is

that, at sufficiently high Reynolds numbers, the small scales of the turbulent

motion are statistically isotropic (the postulate of local isotropy). Given this,

Kolmogorov proposed two hypotheses pertaining to the nature of small-scale

turbulence. The first states that, at sufficiently high Reynolds numbers, the

statistics of the small-scale motions have a universal form that is uniquely de-

termined by the kinematic viscosity ν (= µ/ρ) and the dissipation rate of the

turbulent kinetic energy ε = (ν/2)〈(∂ui/∂xj + ∂uj/∂xi)
2〉. One consequence

of this hypothesis is that the Kolmogorov length scale η is given to be (ν3/ε)1/4.

The second states that, at sufficiently high Reynolds numbers, and for scales

that are neither large nor small (i.e. those found in the “inertial subrange”),

the statistics have a universal form uniquely determined by ε, and independent

of ν. Kolmogorov therefore establishes a distinct separation between the large

and the small scales. The former are anisotropic because of their dependence

on the geometry of the problem. They contain the majority of the turbu-

lent kinetic energy and have relatively long timescales/lifetimes. The smallest

scales are responsible for the dissipation of the kinetic energy. They have a

short lifetime and are assumed to be isotropic. Between the large scales, O(`),
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and the smallest scales, O(η), an inertial subrange exists in which turbulent

kinetic energy is transferred. This transfer is observed in the power spectrum

of turbulent kinetic energy and is characterized by the well-known “ − 5/3”

power-law.

K41 introduces several concepts necessary to the description of the trans-

port and dissipation of turbulent kinetic energy in a turbulent flow. As there

is also significant interest in heat and mass transfer, Kolmogorov’s arguments

were extended by Obukhov (1949) and Corrsin (1951) to the transport of pas-

sive scalars. Kolmogorov Obukhov Corrsin (KOC) phenomenology is based on

analogous notions to those of K41, starting with a similar postulate of local

isotropy for the scalar field, which states that, at sufficiently high Reynolds

and Péclet numbers (Pe = UL/α, where α is the scalar (thermal) diffusivity),

it assumes that there is a decay of any large-scale anisotropy when smaller and

smaller scales are considered. The first KOC hypothesis states that at suffi-

ciently high Reynolds and Péclet numbers, the statistics of the small scales

are uniquely governed by the kinematic viscosity, ν, the scalar diffusivity, α,

the dissipation rate of turbulent kinetic energy, ε, and the scalar dissipation

rate, εθ (≡ α〈(∂θ/∂xi)2〉). Secondly, it hypothesizes that, at sufficiently high

Reynolds and Péclet numbers, the large and small scales are connected by an

“inertial-convective subrange” in which the scalar statistics are uniquely de-

termined by ε and εθ and are independent of ν and α. This range comprises

scales smaller than the large scales, ` and `θ, and larger than the small dissipa-

tive scales, η and ηθ. The smallest hydrodynamic and scalar scales (η and ηθ,

respectively) are related by the Prandtl (Pr = ν/α) or Schmidt (Sc = ν/D,

where D is the molecular diffusivity of a chemical species in a fluid) numbers.

Note that ηθ and η are of the same order of magnitude in the air flow studied

herein, where Pr ∼ O(1).
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The evolution of the instantaneous scalar concentration, say temperature,

T , in a constant property flow is determined by the advection-diffusion equa-

tion
∂T̃

∂t
+ Ũj

∂T̃

∂xj
= α

∂2T̃

∂x2
j

+ S, (1.3)

where S is a source term. This equation governs the evolution of T̃ given its

transport by advection, its transport by molecular diffusion and the influence

of the source term, S, which accounts for the increase in internal energy due

to viscous dissipation. For an incompressible flow, at a sufficiently low Eckert

number (Ec = U2
∞/(cp∆T ) � 1, where ∆T is a characteristic temperature

difference of the flow), the source term, S, is negligible. The above equation

depends explicitly on the velocity field. When the latter becomes turbulent, so

can the scalar field, should the Péclet number be large enough. Thus, turbu-

lent scalar fields also lend themselves to a statistical description, where mean

quantities, 〈T 〉, and fluctuations, θ, are similarly related to the instantaneous

temperature: T̃ ≡ 〈T 〉+ θ.

The governing equation for the mean of the scalar, 〈T 〉, is obtained by

applying the above Reynolds decomposition to equation (1.3), and then aver-

aging it. The result is

∂〈T 〉
∂t

+ 〈Uj〉
∂〈T 〉
∂xj

= α
∂2〈T 〉
∂x2

j

− ∂〈ujθ〉
∂xj

. (1.4)

Furthermore, the scalar variance, 〈θ2〉, budget is obtained by subtracting the

mean equation (1.4) from the instantaneous equation (1.3), multiplying by θ,

6



and averaging it

∂

∂t
〈1
2
θ2〉︸ ︷︷ ︸

(i)

+ 〈Uj〉
∂

∂xj
〈1
2
θ2〉︸ ︷︷ ︸

(ii)

= − ∂

∂xj
〈1
2
ujθ

2〉︸ ︷︷ ︸
(iii)

+α
∂2

∂x2
j

〈1
2
θ2〉︸ ︷︷ ︸

(iv)

− 〈ujθ〉
∂〈T 〉
∂xj︸ ︷︷ ︸

(v)

−α〈 ∂θ
∂xj

∂θ

∂xj
〉︸ ︷︷ ︸

(vi)

. (1.5)

This equation provides insight into the physical phenomena that govern the

evolution of scalar fluctuations. It shows that the rate of change (i+ii) of 〈θ2〉

is controlled by turbulent advection (iii), molecular diffusion (iv), production

(v), and (molecular) dissipation, εθ (vi).

The existence of an inertial subrange in the kinetic energy spectrum re-

quires a large separation between the integral and dissipative scales. This

condition is respected when the turbulent Reynolds number (R` = urms`/ν)

is sufficiently high, because `/η ∼ R
3/4
` . Similarly, the transfer of the scalar

variance from the large to small scales, via an inertial-convective subrange,

is only possible when both the Reynolds and Péclet numbers are sufficiently

high. Therefore, for KOC theory to be valid, the scalar injection and dissipa-

tion scales must also be separated. However, when the injection is performed

at small scales, the statistics of the scalar field are significantly different when

examined near the source, as compared to far downstream. Near the source,

the scalar field is highly anisotropic, of small integral length scale (`θ), and

concentrated in a small region of the flow. Most of the contribution to the

scalar variance is due to the flapping of the plume by the large-scale veloc-

ity field. As the plume broadens, the range of scales increases. Sufficiently

far downstream of the source, the thermal wake develops internal large-scale

structures. In this region, the separation between large and small structures
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is more distinct and one could assume that the small scales tend to isotropy,

as hypothesized by KOC theory.

In equation (1.5), the large scales generate scalar fluctuations through the

action of the mean temperature gradient, the diffusion terms spread spots of

different intensities, and the smallest scales “dissipate” the fluctuations by ho-

mogenizing the scalar’s concentration. The three components of the scalar dis-

sipation rate (εθx ≡ α〈(∂θ/∂x)2〉, εθy ≡ α〈(∂θ/∂y)2〉 and εθz ≡ α〈(∂θ/∂z)2〉)

can be used to quantify the local isotropy of the small scales of the scalar field

and are consequently quantities of central importance that will be extensively

analyzed in this work.

1.2 Motivation and Objectives

The majority of studies of turbulent scalar mixing focus on the evolu-

tion of a scalar field injected at large scales. Furthermore, in many cases, the

flow under consideration in previous works was homogeneous and isotropic.

The assumption of homogeneity considerably simplifies the analysis and yields

interesting similarities between the scaling of the velocity and scalar fields

when the injection occurs at large scales. However, such a configuration is not

representative of many flows, which are generally inhomogeneous and exhibit

discrepancies between the scales of the velocity and scalar fields. Furthermore,

of the small subset of published articles that considered small-scale injection of

the scalar field, few focus on the dissipation rate of the scalar fluctuations, even

though εθ remains one of the less understood (yet most important) quantities

within a turbulent flow. The small-scale injection of a scalar in an inhomo-

geneous flow is of relevance to engineering applications, such as the transport

of a plume emitted by a smokestack in the atmospheric boundary layer, or

the transport of a species injected in a combustion chamber before ignition.

Although such applications are clearly important to modern life, few studies
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of turbulent scalar mixing i) resulting from small-scale injection, and ii) fo-

cussing on the scalar dissipation rate, have been undertaken. This fact is the

principal motivation for the present work.

The main objective of the present thesis is to further understand the

evolution of the scalar field when injected (in a highly anisotropic manner)

at small scales in an inhomogeneous turbulent flow. This research aims to

i) provide new data on the nature of a turbulent scalar plume injected at

small scales, and ii) ultimately improve our predictions of the phenomena that

rely on turbulent scalar mixing. This will be accomplished by studying the

evolution of the scalar dissipation rate in the flow under consideration.

The scalar dissipation rate is a critical quantity in the modeling and pre-

diction of turbulent passive scalars. In many cases, local isotropy is invoked

when estimating εθ. When the scalar is injected at small scales, such an

assumption is clearly inaccurate near the source. Furthermore, though this

assumption may increase in validity with increasing distance from the source,

the rate at which it does so is an important factor. Therefore, particular at-

tention will be paid to the evolution of the three different components of the

scalar dissipation rate.

The scalar dissipation rate was analyzed by means of complementary ex-

periments and numerical simulations. The latter can provide information that

is difficult or impossible to obtain experimentally. In addition, a sensible com-

bination of experiments and numerical simulations can provide deeper insight

into the complex physical processes underlying the dissipation rate of scalar

fields in turbulent flows.

1.3 Structure of the thesis

This document is a manuscript-thesis which contains two articles and is

divided into four chapters. In the current chapter, the theoretical background
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is discussed, and the motivation and objectives of the research are described.

Chapter 2 contains the first article in which a new numerical solver (3DFLUX,

designed for the solution of the advection-diffusion equation) is presented.

Chapter 3 contains the second article in which our experimental and numerical

analysis of the small scales of the scalar field generated downstream of a line

source in fully developed, high-aspect ratio, turbulent channel flow is presented

and discussed. Finally, the contributions of this research and possible future

work are reported in the last chapter, which concludes this thesis.

1.4 Note on the literature review

Due to the specific format of a manuscript-thesis and the specificities of

each article, i.e. the first one being related to a problem of computational

physics, whereas the second-one deals with fluid mechanics, two literature

reviews have been provided, separately, as a part of each manuscript.
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CHAPTER 2

3DFLUX: A high-order fully three-dimensional
flux integral solver for the scalar transport

equation

2.1 Preface

As previously noted, the goal of this thesis is to investigate the evolution

of the scalar dissipation rate that occurs when a scalar is mixed in a turbulent

flow. One approach to study such a subject is by way of experiments. Another

alternative is by means of numerical simulations. Both can reveal a great

deal of valuable information and each can be sufficient for the majority of

investigations of turbulent scalar mixing. However, noting that i) performing

accurate simulations that provide reliable data is challenging and frequently

requires validation using experimental data, and ii) numerical simulations can

provide detailed data that are difficult, if not presently impossible to measure

experimentally, both approaches are used in this thesis. Such a combined

approach is complementary and should serve to improve the analysis. To this

end, the present chapter describes the numerical method that was developed

to simulate the experiments described in the next chapter.

The evolution of a scalar in a turbulent flow is governed by the advection-

diffusion equation (1.3). An important problem in the realm of scientific com-

puting is the accurate solution of this equation on a discretized grid by means

of a high-fidelity solution that is undertaken at a reasonable computational
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cost. Thus, accurate high-order schemes are preferred because of their low

numerical dissipation and low dispersion errors. However, many aspects that

can be neglected when using low-order schemes must be treated carefully when

using high-order ones. To this end, I developed a new scheme, called 3DFLUX,

using a conservative formulation of the semi-Lagrangian method. To the best

of my knowledge, 3DFLUX is the first fully three-dimensional, high-order,

conservative, selective monotonicity preserving, flux integral method, for the

solution of the advection-diffusion equation. Its implementation is discussed

in detail in the present chapter.
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3DFLUX: A high-order fully three-dimensional flux

integral solver for the scalar transport equation
Emmanuel Germaine, Laurent Mydlarski and Luca Cortelezzi

Department of Mechanical Engineering, McGill University, Montreal,

Quebec, Canada

2.2 Abstract

We present a detailed derivation of a high-order, fully three-dimensional,

conservative, monotonicity preserving, flux integral method for the solution

of the equation for scalar transport in incompressible flow. This algorithm,

named 3DFLUX, produces highly accurate solutions that are nearly unaffected

by numerical dissipation, at a realistic computational cost. The performance

of 3DFLUX is characterized by means of several challenging multidimensional

tests. 3DFLUX is nominally third-order in space and second-order in time,

however, at low Courant numbers, it appears to be superconvergent and, de-

pending on the problem solved, is fourth-order or higher in space. Finally,

3DFLUX is used to simulate the transport of a scalar in a complex flow of

practical relevance, and its results are in excellent agreement with experimen-

tal measurements.

Keywords: flux integral method; multidimensional transport equation; selec-

tive flux-limiters; monotonicity preservation; advection-diffusion equation.
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2.3 Introduction

The scalar transport equation is encountered in a wide range of scientific

applications. For example, it models the transport of a scalar (e.g. mass,

energy, etc.) in a fluid flow, where it is known as the advection-diffusion

equation. In economics, it is used to model the temporal evolution of a financial

market, where it is known as the Black-Scholes equation. It constitutes an

important tool for medical image analysis, where it takes the form of the

Fokker-Planck equation. In biology, it can be used to simulate the dynamics

of living species in their environment.

In engineering applications, the scalar transport equation is most often

solved by finite difference or finite volume methods. The latter are employed to

simulate fluid flows because of their strictly conservative formulation and their

flexibility, which enables the solution of problems in complex geometries. Ex-

isting finite volume methods (Patankar, 1980; Versteeg & Malalasekera, 2007)

are very robust, low-order and widely used in commercial software packages.

They are reliable for industrial applications, but their accuracy is insufficient

for scientific research.

Numerical methods that simulate the transport of a scalar are divided into

two classes: Eulerian and Lagrangian. Eulerian methods solve the equation

on a spatially fixed grid. Lagrangian methods solve the equation by tracking

the path of the particles, and the nodes of the grid (used to discretize the

computational domain) move with the particles. Lagrangian methods are more

stable than Eulerian ones, but they require a re-meshing procedure that can

be complex to implement and computationally expensive.

Semi-Lagrangian methods (Staniforth & Côté, 1991) constitute an ap-

pealing alternative approach as they combine the positive aspects of Eulerian

and Lagrangian methods. Semi-Lagrangian methods solve the scalar transport
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equation on a fixed grid by tracking a different set of particles at each time-

step. They are widely used in meteorological applications because they are

more stable than Eulerian schemes and simpler to implement than Lagrangian

ones. The main disadvantage of semi-Lagrangian methods is that, in general,

they are not conservative.

A conservative formulation of a semi-Lagrangian method was first pre-

sented by Leonard et al. (1995) using a flux integral approach. Leonard’s

scheme provides an explicit single-step, forward-in-time, conservative control

volume update of the unsteady two-dimensional advection-diffusion equation.

Other conservative, multidimensional, flux-based semi-Lagrangian methods for

purely advective flows have been presented by Leveque (1996) and Harris et al.

(2011). The advantage of using a multidimensional formulation is to avoid

splitting techniques, which solve multidimensional problems as a sequence

of one-dimensional schemes (Strang, 1968; Leonard et al., 1996; Skamarock,

2006). Splitting techniques considerably simplify the algorithm on Cartesian

grids, at the cost of inducing local splitting errors (Kozlov et al., 2004). How-

ever, this advantage is lost on non-Cartesian grids where their implementation

is complex compared to a multidimensional scheme (Harris et al., 2011).

Crucial in the flux integral method is the type of interpolation used to

approximate the scalar field within the cells that discretize the domain. High-

order schemes require the use of high-order interpolations, which can degrade

the monotonicity of the solution where the gradients are poorly resolved. This

degradation leads to unphysical over- and undershooting, and oscillations of

the solution near its extrema. These detrimental effects can, however, be

avoided and monotonicity can be enforced by use of a flux-limiter scheme,

for example, the popular flux-corrected transport scheme proposed by Zale-

sak (1979). Complementing the flux integral method with a flux-corrected
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transport scheme (Zalesak, 2005) allows to correct the value of the fluxes af-

ter they have been computed and, consequently, enforce the monotonicity of

the solution. Thuburn (1996) proposed a multidimensional implementation of

a flux-limiter scheme, which is computationally less expensive than Zalesak’s

method, but has more stringent stability restrictions (Mittal & Skamarock,

2010).

The main disadvantage of the flux-limiter schemes is that they tend to

smooth the solution, consequently degrading its global accuracy. To overcome

this disadvantage, Blossey & Durran (2008) proposed an algorithm that only

activates the flux-limiter in regions where the gradients are poorly resolved.

Their algorithm preserves the global accuracy of the flux integral method at the

expense of negligible violations in the monotonicity of the solution. Recently,

Harris et al. (2011) confirmed the effectiveness of the selective limiter scheme

in conjunction with a two-dimensional conservative semi-Lagrangian method.

We leverage and extend the schemes and results discussed above to de-

rive and implement a highly accurate, fully three-dimensional, cost-effective

flux integral method, named 3DFLUX, for the solution of the scalar trans-

port equation. 3DFLUX is fully explicit and multidimensional. The latter

property guarantees that 3DFLUX is free of splitting errors and results in a

better convergence rate of the numerical errors when compared to widely used

one-dimensional techniques, such as the piecewise parabolic method (PPM)

(Colella & Woodward, 1984), the weighted essentially non-oscillatory (WENO)

method (Liu et al., 1994), and the recently-proposed jet scheme (Nave et al.,

2010; Seibold et al., 2012), which is based on the level-set method. 3DFLUX is

nominally third-order in space and second-order in time. It generates low nu-

merical dissipation and anisotropic distortion (Leonard et al., 1993). 3DFLUX
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allows the solution of problems of practical interest at a reasonable computa-

tional cost.

In the derivation of 3DFLUX, we restrict the value of the Courant number

to be one or less because our research focuses on the advection-diffusion of the

smaller scales of turbulent flows. However, there are no conceptual difficulties

in extending 3DFLUX to Courant numbers greater than one to target applica-

tions in atmospheric science. We characterize the convergence rate, accuracy

and cost-efficiency of 3DFLUX by running several multidimensional tests: a

two-dimensional purely advective mixing/unmixing problem (Seibold et al.,

2012), the rotation of a slotted cylinder (Orszag, 1971), a two-dimensional

purely advective unsteady deformational flow (Blossey & Durran, 2008), and

a three-dimensional advection-diffusion problem. We show that at the highest

possible Courant number — one in our implementation — 3DFLUX results

in a noticeably higher accuracy and better cost-efficiency than the currently

available numerical schemes having the same convergence rate. We also show

that, at low enough Courant numbers, 3DFLUX unexpectedly appears to be

superconvergent. Lastly, we complete the validation of 3DFLUX by simulating

an experiment in which a scalar (temperature) is released from a heated line

source in a fully developed turbulent channel flow. The statistics produced by

3DFLUX are in remarkable agreement with those measured in the experiment

(Lavertu & Mydlarski, 2005).

The remainder of this paper is organized as follows: In section 2.4, a de-

tailed derivation of the numerical method is presented. In section 2.5, two- and

three-dimensional numerical tests are performed to validate the performance of

our scheme, including a three-dimensional direct numerical simulation (DNS)
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of a thermal plume in a fully turbulent channel flow that exemplifies the po-

tential of our scheme to simulate flows of interest in engineering applications.

Lastly, conclusions are presented in section 2.6.

2.4 Numerical Method

The equation governing the unsteady, three-dimensional transport of a

scalar property, φ, can be written in a generic form as

∂(ρφ)

∂t
+ ~∇ · (ρ~uφ) = ~∇ · (Γ~∇φ) + S, (2.1)

where ρ is a physical property of the system, ~u = (u, v, w) is the advecting

velocity vector field, Γ is a diffusion coefficient of the system, and S represents

the source (or sink) terms.

Equation (2.1) states that the rate of change of φ depends on the balance

between advective transport, diffusive transport and source or sink terms. For

the sake of clarity, we limit our discussion to the well known advection-diffusion

equation governing the time evolution of the internal energy of a flow of a sim-

ple compressible substance, where ρ is the fluid density, φ is the temperature,

Γ = κ/cp, where κ is the thermal conductivity of the fluid and cp is its specific

heat capacity at constant pressure, and S = q̇/cp, where q̇ quantifies the volu-

metric heat source/sink terms. Obviously, any scalar transport equation that

can be cast in the form of (2.1) can be solved using the algorithm presented

herein.

The density, ρ, and the coefficient of diffusion, Γ, of the fluid are related

to the fluid temperature, φ, and the fluid pressure, p, by the constitutive equa-

tions, i.e. ρ = ρ(φ, p) and Γ = Γ(φ, p). These relations are usually non linear

and often cause major difficulties in the solution of equation (2.1). Conse-

quently, we restrict our attention to flow where ρ and Γ are constant. Under
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these assumptions, the equation (2.1) is fully determined and still correctly

models the evolution of a scalar in a wide range of engineering applications.

2.4.1 Discretization of the scalar transport equation

In the flux integral method, the computational domain is discretized with

a number of non-overlapping control volumes, or computational cells, of size

∆V = ∆x × ∆y × ∆z. The grid nodes are cell-centered and the value of

the scalar property, φ, at a node represents the average value of φ within the

control volume ∆V . The components of the velocity field are represented on

three different staggered grids so that the value of the three components of

the velocity, u, v and w, are stored at the center of each side of the control

volume. The flux integral method solves equation (2.1) by estimating the fluxes

exchanged between adjacent cells. With a staggered arrangement, the velocity

components are directly available at the cell-sides, where they are needed for

the calculation of the fluxes. This method is a multidimensional finite volume

method.
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Figure 2–1: (a) Computational cell of volume ∆V . (b) Arrangement of the
grid nodes and the staggered velocity components in a two-dimensional view
of the three-dimensional grid.

To implement the flux integral method, we need to introduce a nomencla-

ture (Patankar, 1980) to designate the location of the cell center and cell sides.

Let us focus on a grid point P , as shown in figure 2–1. Each neighbouring grid
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point of P is identified by one or more of the following six capital letters: W ,

E, N , S, B, F . These letters identify the nodes at the west, east, north, south,

back and front sides of the computational cell containing P , respectively. For

example, the node W is the closest neighbour to P located in the negative

x-direction, the node SW is the closest neighbor to P located in the negative

x- and y-directions, the nodeWW is the second closest neighbour to P located

in the negative x-direction, and so on. The same lowercase letters are used

to identify the sides of the computational cell, or control volume, containing

the grid point P . For example, φw and uw represent, respectively, the average

values of the scalar φ and the u-component of the velocity field on the west

side of the cell P .

The scalar transport equation (2.1) can be written in integral form as

follows∫
∆t

∫
∆V

∂(ρφ)

∂t
dV dt =

∫
∆t

∫
∆V

[
−~∇ · (ρ~uφ) + ~∇ · (Γ~∇φ) + S

]
dV dt, (2.2)

where ∆V is the volume of the computational cell. Since the value of φ at the

center of a cell is the average of φ within that cell, the left-hand side of (2.2)

can be written as ∫
∆t

∫
∆V

∂(ρφ)

∂t
dV dt = ρ(φt+∆t − φt)∆V. (2.3)

Since the flow is assumed to be of constant density, the first term on the

right-hand side of (2.2) can be written as

−
∫

∆t

∫
∆V

[
∂(ρuφ)

∂x
+
∂(ρvφ)

∂y
+
∂(ρwφ)

∂z

]
dV dt =∆y∆z

∫
∆t

(ρuwφw − ρueφe) dt

+∆x∆z

∫
∆t

(ρvsφs − ρvnφn) dt

+∆x∆y

∫
∆t

(ρwbφb − ρwfφf ) dt.

(2.4)
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Similarly, the second term on the right-hand side of (2.2) can be rewritten as∫
∆t

∫
∆V

[
∂

∂x

(
Γ
∂φ

∂x

)
+

∂

∂y

(
Γ
∂φ

∂y

)
+

∂

∂z

(
Γ
∂φ

∂z

)]
dV dt =

∆y∆z

∫
∆t

Γ

(
∂φ

∂x

∣∣∣∣
e

− ∂φ

∂x

∣∣∣∣
w

)
dt

+∆x∆z

∫
∆t

Γ

(
∂φ

∂y

∣∣∣∣
n

− ∂φ

∂y

∣∣∣∣
s

)
dt

+∆x∆y

∫
∆t

Γ

(
∂φ

∂z

∣∣∣∣
f

− ∂φ

∂z

∣∣∣∣
b

)
dt.

(2.5)

Note that the advective and diffusive terms on the west face of the control

volume can be rewritten as

∆y∆z

∫
∆t

(ρuwφw) dt = 〈ρuwφw〉∆y∆z∆t, (2.6)

and

∆y∆z

∫
∆t

−Γ
∂φ

∂x

∣∣∣∣
w

dt =

〈
−Γ

∂φ

∂x

∣∣∣∣
w

〉
∆y∆z∆t, (2.7)

where angular brackets 〈·〉 represent the time average over a time interval ∆t.

Finally, the last term on the right-hand side of (2.2), the source term, can be

rewritten as ∫
∆t

∫
∆V

S dV dt = 〈S〉∆V∆t. (2.8)

Hence, the equation (2.2) can be rewritten in flux form as follows

φt+∆t
P = φtP + fw − fe + fs − fn + fb − ff + 〈S〉 ∆t

ρ
, (2.9)

where the terms fw, fe, fs, fn, fb and ff , denote the sum of the advective and

the diffusive fluxes across the west, east, south, north, front and back sides of
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the control volume P , respectively. fw, fs and fb are defined as

fw =
∆t∆y∆z

ρ∆V

(
〈ρuwφw〉 −

〈
Γ
∂φ

∂x

∣∣∣∣
w

〉)
fs =

∆t∆x∆z

ρ∆V

(
〈ρusφs〉 −

〈
Γ
∂φ

∂y

∣∣∣∣
s

〉)
fb =

∆t∆x∆y

ρ∆V

(
〈ρubφb〉 −

〈
Γ
∂φ

∂z

∣∣∣∣
b

〉)
. (2.10)

Equation (2.9) is strictly conservative when the flux across two adjacent

control volumes is the same. Consequently, for a given control volume, only

the fluxes fw, fs and fb have to be calculated as the three remaining fluxes, i.e.

fe, fn and ff , are directly determined as follows

(fe)ijk = (fw)i′jk

(fn)ijk = (fs)ij′k

(ff )ijk = (fb)ijk′ (2.11)

where the indices i, j and k represent the components along the coordinate

axes x, y and z, respectively, and where i′ = i + 1, j′ = j + 1 and k′ = k + 1

. Note that equation (2.9) is equivalent to the two-step Lax-Wendroff scheme,

i.e. a second-order in time method, when the fluxes are computed at the

intermediate time step t+ ∆t/2 (Press et al., 2007, p.1040).

Note that in equations (2.10), the values of the scalar at the side of a

cell, i.e φw, φs and φb, and the gradients of φ normal to the side of a cell, i.e

∂φ/∂x|w, ∂φ/∂y|s and ∂φ/∂z|b, have to be computed before performing the

time average of the fluxes. The values of φ and its gradients are unknown at

the sides of the control volume, but they can be interpolated from the values of

φ known at the center of the cells. The computation of the fluxes is presented

in detail in the next subsections.
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2.4.2 Piecewise polynomial interpolation of face quantities

To compute the fluxes, the unknown values of the scalar and its gradi-

ents at the sides of a cell can be obtained by interpolating the known values

of φ at the center of the surrounding cells. One of the most common and

simple methods is piecewise linear interpolation. This interpolation leads to

very efficient second-order schemes whose applicability, however, is limited to

diffusion-dominated problems. In fact, these second-order schemes generate

questionable solutions, which are affected by spurious oscillations when the

magnitude of the advective terms is greater than that of the diffusive ones. In

fluid mechanics, for example, the Péclet number quantifies the ratio of the ad-

vective and diffusive terms. Hence, the validity of such second-order schemes is

limited to simulations of fluid flows where the local Péclet number, i.e. Péclet

number based on the local velocity, diffusivity, and cell dimensions, is lower

than 2 (Patankar, 1980).

The limitations of such second-order schemes can be overcome using up-

wind schemes, such as the popular first-order upwind schemes that use piece-

wise constant interpolation, where the unknown value of φ at any given side

of a cell is set equal to the known value of φ at the center of the adjacent

upstream cell. In other words, the west value φw is taken equal to φW when

uw is positive. Otherwise it is equal to φP (see figure 2–1). Despite their sim-

plicity, speed and robustness, first-order schemes are usually not adequate for

accurate simulations because they exhibit high numerical diffusion and poor

convergence properties in addition to producing erroneous solutions when the

flow is not aligned with the grid lines (Versteeg & Malalasekera, 2007; Nassehi

& Das, 2007).

Higher-order upwind schemes have subsequently been introduced over the

years, such as the popular Quadratic Upstream Interpolation for Convective
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Kinematics with Estimated Streaming Terms (QUICKEST) scheme, proposed

by Leonard (1979). QUICKEST is based on a quadratic polynomial interpola-

tion which leads to a third-order scheme. It has a limitation, however, as the

interpolation performed by QUICKEST is locally one-dimensional. As a re-

sult, QUICKEST produces anisotropically distorted results when used to solve

multidimensional problems (Leonard et al., 1993). To avoid these detrimental

effects, Leonard et al. (1995) proposed a Uniformly Third-Order Polynomial

Interpolation Algorithm (UTOPIA) implemented with a flux integral method.

Leonard et al. (1995) characterized the performance of UTOPIA by solving a

purely two-dimensional advective problem: the transport of a Gaussian bell in

a rotating flow. Subsequently, Leveque (1996) proposed a three-dimensional

scheme, equivalent to UTOPIA, for solving purely advective problems.

Over the years, flux-based methods have been used for atmospheric trans-

port and chemical models (Jakobsen, 2008). State-of-the-art solvers, such as

COCO (CCSR Ocean Component Model), developed by the Center for Climate

System Research (Hasumi & Daigaku, 2006), combine UTOPIA and QUICK-

EST to simulate ocean circulation and transport. More specifically, COCO

separately solves the two-dimensional planar advection using UTOPIA, the

vertical advection using QUICKEST and diffusion using a second-order, fi-

nite central difference scheme. This awkward combination of algorithms has

been devised to circumvent the complexity of implementing UTOPIA in three-

dimensions.

Leveraging Leonard’s work (Leonard et al., 1995), this article provides

the reader with a detailed derivation and a careful validation of a new, fully

three-dimensional, flux integral solver for the scalar transport equation. Our

solver (3DFLUX) is third-order accurate under the assumption that the fluid

properties are constant.
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The exact solution of the scalar transport equation (2.1), φ = φ(x, y, z, t),

is discretized over a number of cells covering the computational domain. At any

time t, the value stored at the center of a cell is the average of φ(x, y, z, t) over

the volume of the cell. A three-dimensional piecewise quadratic interpolation

is used to calculate the fluxes of the scalar across the sides of a cell. The exact

solution, at each time step, is approximated within each cell by a quadratic

polynomial of the form

ψ(x, y, z) =
2∑
i=0

2∑
j=0

2∑
k=0

cijkx
iyjzk, (2.12)

where cijk are ten unknown coefficients. To determine these coefficients at

each time step, we impose that the average value of the polynomial ψ and

its first-order, second-order and cross derivatives are equal to the value of the

average solution at the center of the cell and its corresponding derivatives.

west face

x
y

z

W

P(0,∆Y,0)

(∆X,∆Y,0)

(∆X,0,0)

(0,0,0)

(0,0,∆Z)

(∆X,0,∆Z)

(∆X,∆Y,∆Z)

(0,∆Y,∆Z)

Figure 2–2: Computational cells W and P .

As an example, we present the ten conditions used to determine the co-

efficients, cijk, of the interpolant, ψW , within the west cell (see figure 2–2),

where the subscript W indicates the name of the cell. As a first condition, we

impose the average value of the interpolant over the west cell to be equal to

the value of the average of the scalar over the west cell

25



1

∆V

∫
V

ψW dV =
2∑
i=0

2∑
j=0

2∑
k=0

cijk

(
∆x

2

)i(
∆y

2

)j (
∆z

2

)k
= φW , (2.13)

where (∆x/2,∆y/2,∆z/2) are the coordinates of the center of the west cell

(see figure 2–2). Similarly, the remaining nine conditions are obtained im-

posing that the average value of the first, second and cross derivatives of the

interpolant over the west cell are equal to the corresponding derivatives of the

average of the scalar over the west cell. We have

1

∆V

∫
V

∂ψ

∂x

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

icijk

(
∆x

2

)i−1(
∆y

2

)j (
∆z

2

)k
=
∂φ

∂x

∣∣∣∣
W

1

∆V

∫
V

∂ψ

∂y

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

jcijk

(
∆x

2

)i(
∆y

2

)j−1(
∆z

2

)k
=
∂φ

∂y

∣∣∣∣
W

1

∆V

∫
V

∂ψ

∂z

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

kcijk

(
∆x

2

)i(
∆y

2

)j (
∆z

2

)k−1

=
∂φ

∂z

∣∣∣∣
W

1

∆V

∫
V

∂2ψ

∂x2

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

i2cijk

(
∆x

2

)i−2(
∆y

2

)j (
∆z

2

)k
=
∂2φ

∂x2

∣∣∣∣
W

1

∆V

∫
V

∂2ψ

∂y2

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

j2cijk

(
∆x

2

)i(
∆y

2

)j−2(
∆z

2

)k
=
∂2φ

∂y2

∣∣∣∣
W

1

∆V

∫
V

∂2ψ

∂z2

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

k2cijk

(
∆x

2

)i(
∆y

2

)j (
∆z

2

)k−2

=
∂2φ

∂z2

∣∣∣∣
W

1

∆V

∫
V

∂2ψ

∂x∂y

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

ijcijk

(
∆x

2

)i−1(
∆y

2

)j−1(
∆z

2

)k
=

∂2φ

∂x∂y

∣∣∣∣
W

1

∆V

∫
V

∂2ψ

∂x∂z

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

ikcijk

(
∆x

2

)i−1(
∆y

2

)j (
∆z

2

)k−1

=
∂2φ

∂x∂z

∣∣∣∣
W

1

∆V

∫
V

∂2ψ

∂y∂z

∣∣∣∣
W

dV =
2∑
i=0

2∑
j=0

2∑
k=0

jkcijk

(
∆x

2

)i(
∆y

2

)j−1(
∆z

2

)k−1

=
∂2φ

∂y∂z

∣∣∣∣
W

,

(2.14)
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where ∂φ/∂x|W , ∂φ/∂y|W , ∂φ/∂z|W , ∂2φ/∂x2|W , ∂2φ/∂y2|W , ∂2φ/∂z2|W ,

∂2φ/∂x∂y|W , ∂2φ/∂y∂z|W , ∂2φ/∂x∂z|W are the first-order, second-order and

cross-derivatives of the average value of the scalar, φ.

The ten equations (2.13) and (2.14) yield a 10 × 10 non-singular system

of equations. This system can be cast in the matrix-vector form A · ~c = ~b,

where A is the Vandermonde matrix, ~c the coefficients vector, and ~b the vector

of conditions. The inverse coefficients matrix (A−1) can be pre-computed. It

has the form

1 −∆x
2
−∆y

2
−∆z

2
∆x2

12
∆y2

12
∆z2

12
∆x∆y

4
∆x∆z

4
∆y∆z

4

0 1 0 0 −∆x
2

0 0 −∆y
2
−∆z

2
0

0 0 0 0 1
2

0 0 0 0 0

0 0 1 0 0 −∆y
2

0 −∆x
2

0 −∆z
2

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1
2

0 0 0 0

0 0 0 1 0 0 −∆z
2

0 −∆y
2
−∆x

2

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1
2

0 0 0



. (2.15)

The ten coefficients defining the three-dimensional interpolant can then be

simply obtained by multiplying the inverse matrix by the vector[
φW ,

∂φ

∂x

∣∣∣∣
W

,
∂φ

∂y

∣∣∣∣
W

,
∂φ

∂z

∣∣∣∣
W

,
∂2φ

∂x2

∣∣∣∣
W

,
∂2φ

∂y2

∣∣∣∣
W

,
∂2φ

∂z2

∣∣∣∣
W

,
∂2φ

∂x∂y

∣∣∣∣
W

,
∂2φ

∂x∂z

∣∣∣∣
W

,
∂2φ

∂y∂z

∣∣∣∣
W

]T
.

(2.16)

The components of the above vector, i.e. the derivatives of the average

value, φW , at the center of the west cell are approximated using fourth-order

centered finite difference formulas. The derivatives of φW for the west cell are

27



expressed in the following form

∂φ

∂x

∣∣∣∣
W

=
1

12∆x
(φWWW − 8φWW + 8φP − φE) +O(∆x4)

∂φ

∂y

∣∣∣∣
W

=
1

12∆y
(φSSW − 8φSW + 8φNW − φNNW ) +O(∆y4)

∂φ

∂z

∣∣∣∣
W

=
1

12∆z
(φBBW − 8φBW + 8φFW − φFFW ) +O(∆z4)

∂2φ

∂x2

∣∣∣∣
W

=
1

12∆x2

(
−φWWW + 16φWW − 30φW + 16φP − φE) +O(∆x4

)
∂2φ

∂y2

∣∣∣∣
W

=
1

12∆y2

(
−φSSW + 16φSW − 30φW + 16φNW − φNNW ) +O(∆y4

)
∂2φ

∂z2

∣∣∣∣
W

=
1

12∆z2

(
−φBBW + 16φBW − 30φW + 16φFW − φFFW ) +O(∆z4

)

∂2φ

∂x∂y

∣∣∣∣
W

=
1

4∆x∆y

(
φN + φSWW − φNWW − φS) +O(∆x2∆y2

)
∂2φ

∂x∂z

∣∣∣∣
W

=
1

4∆x∆z

(
φF + φBWW − φFWW − φB) +O(∆x2∆z2

)
∂2φ

∂y∂z

∣∣∣∣
W

=
1

4∆y∆z

(
φFNW + φBSW − φFSW − φBNW ) +O(∆y2∆z2

)
. (2.17)

The above equations require the values of the scalar at twenty-five distinct

nodes, see figure 2–3. Of course, the use of fourth-order formulas does not

improve the convergence rate of our quadratic interpolation but, as shown by

Russell (1995), considerably improves its accuracy.

The stencils shown in figure 2–3 represent the collection of the nodes used

to compute the polynomial interpolants ψW and ψP . On the one hand, a

stencil of twenty-five nodes could be considered as unnecessarily large, making

their software implementation complex and computationally intensive. On

the other hand, such stencil leads to high-order interpolations. The recent

emergence of affordable multi-core processors and the constantly increasing
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size of memory chips make the use of large stencils realistic, as our multi-

threaded implementation of 3DFLUX shows.

E

NE

SE

BE

FE

EE
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W
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BB
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BW

NW
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WWW
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SSW
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FFW

NW

NNW

BW

BBW

SWW

FWW

BWW

NWW

FNW

FSW

BNW

BSW West Face

x

y

z

uw
>0

uw
<0

(a) (b)

Figure 2–3: Stencils used to compute the polynomial interpolant within the
cellW (a) and within the cell P (b), respectively. The polynomial interpolants
in the cells W and P are used to estimate the values of the fluxes at the west
face when uw > 0 and uw < 0, respectively.

Finally, the values of the scalar and its normal gradients, at the side of

a cell are estimated by averaging the polynomial interpolant of the upstream

cell over the side area of the cell. For example, the value at the west side is

evaluated by averaging the polynomial interpolant, ψW , over the area of the

west side, when uw is positive, or by averaging the polynomial interpolant ψP ,

when uw is negative, i.e.

φw =


1

∆z∆y

∫
∆z

∫
∆y

ψW (∆x, y, z) dydz, uw > 0

1

∆z∆y

∫
∆z

∫
∆y

ψP (∆x, y, z) dydz, uw < 0.
(2.18)

Note that ψW and ψP are determined using the stencil of nodes shown on

figure 2–3(a) and 2–3(b) respectively.
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Similarly, the gradient normal to the west side is computed as follows

∂φ

∂x

∣∣∣∣
w

=


1

∆z∆y

∫
∆z

∫
∆y

∂ψ(∆x, y, z)

∂x

∣∣∣∣
W

dydz, uw > 0

1

∆z∆y

∫
∆z

∫
∆y

∂ψ(∆x, y, z)

∂x

∣∣∣∣
P

dydz, uw < 0.
(2.19)

The polynomial interpolants ψP , ψS and ψB are computed following a similar

procedure. Note that this polynomial can also be obtained by an appropriate

permutation of the inverse coefficient matrix (2.15) and the components of the

vector (2.17).

2.4.3 Computation of the time-averaged fluxes

The flux integral method combines both Eulerian and Lagrangian point

of views – the solution of the scalar field is discretized in space on an Eulerian

grid, whereas it is discretized in time in a Lagrangian frame of reference. This

interesting semi-Lagrangian approach was first introduced by Courant et al.

(1952) and, since then, widely used for the simulation of the transport equation

(Staniforth & Côté, 1991; Xu et al., 2002; Falcone & Ferretti, 2002; Paoli

et al., 2006). Semi-Lagrangian schemes allow for larger time steps and have

better stability properties than the classical Eulerian explicit and semi-implicit

schemes.

We derive the time-averaged advective and diffusive fluxes using a La-

grangian description of the flow. For simplicity, we limit our derivation to the

fluxes across the west face of the cell P when the three components of the

velocity field are oriented in their positive directions, i.e. uw > 0, vw > 0 and

ww > 0. Furthermore, we also limit our implementation to Courant numbers

(cx = uw∆t/∆x, cy = vw∆t/∆y and cz = ww∆t/∆z) less than or equal to

unity. The time average of the advective and the diffusive fluxes over a time
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interval ∆t and across the west face are expressed as follows

〈ρuwφw〉 =
1

∆t

∫ ∆t

0

ρuwφw dt, (2.20)

and 〈
Γ
∂φ

∂x

∣∣∣∣
w

〉
=

1

∆t

∫ ∆t

0

Γ
∂φ

∂x

∣∣∣∣
w

dt, (2.21)

where φw and ∂φ/∂x|w are respectively the average value of the scalar and the

average of its gradient at the west side of the cell P .

The scalar flux quantifies the rate of advection-diffusion of a scalar trans-

ported across the west face, that is, the amount of the scalar that passes

through the west face per unit time. Consequently, the average of the advec-

tive and diffusive fluxes over a time interval ∆t is, respectively, the average of

the scalar properties ρuwφ and Γ ∂φ/∂x|w over the volume of fluid that crosses

the west face in the time interval ∆t.

Figure 2–4: Approximation of the volume of fluid that traverses the west face
in a time interval ∆t.

As the velocity is assumed constant in the vicinity of the west face of the

cell P , the volume of fluid that traverses the west face in a time interval ∆t is

approximated by a rectangular prism ∆Vp = uw∆t×∆y×∆z. This rectangular

prism is a backwards-in-time projection over an interval ∆t of the west face of

the cell P , where the magnitude and the orientation of the projection is given
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by the vector −~u∆t, i.e (−uw∆t,−vw∆t,−ww∆t), as shown in figure 2–4.

Note that, as the transverse velocity components vw and ww are non-zero, the

prism overlaps with several cells, i.e. cells W , B, SW and BSW . The volume

fraction of fluid particles transported from each distinct cells into the cell P

are the four sub-volumes V1 to V4 illustrated in figure 2–4. The coordinates of

the vertices A, B, C and D are determined by integrating backward in time

over an interval ∆t the equation of the motion of the fluid particles located at

the four corners of the west face of the cell P . The equation of motion of a

fluid particle located at ~x is

d~x

dt
= ~u (~x, t) , (2.22)

integrating it backward in time over a time interval ∆t with the final condi-

tions, x(∆t) = ∆x, y(∆t) = ∆y and z(∆t) = ∆z, we have
x(0) = ∆x− uw∆t

y(0) = ∆y − vw∆t = ∆y + vw
x(0)−∆x

uw

z(0) = ∆z − ww∆t = ∆z + ww
x(0)−∆x

uw
.

(2.23)

The integral of the scalar quantity, ρuwφ(0), over the rectangular prism,

∆Vp, can be rewritten as∫
∆Vp

ρuwφ(0) dVp ≈ uw

∫ ∆x

x(0)

(∫ z(0)

0

∫ y(0)

0

ρψW dydz

+

∫ z(0)

0

∫ ∆y

y(0)

ρψB dydz

+

∫ ∆z

z(0)

∫ y(0)

0

ρψSW dydz

+

∫ ∆z

z(0)

∫ ∆y

y(0)

ρψBSW dydz

)
dx, (2.24)

where the four terms on the right-hand side represent the integration of the

interpolants ψW , ψB, ψSW and ψBSW over the volumes V1, V2, V3 and V4,
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respectively, and computed at t = 0. Note that the average value of ρuwφ over

the prism ∆Vp represents the average flux across the west face during ∆t, i.e.

〈ρuwφw〉 =
1

uw∆t∆y∆z

∫
∆Vp

ρuwφ(x, y, z, t)dVp. (2.25)

To perform the above integration, we recall that the Lagrangian form of

the transport equation (2.1) is

D(ρφ)

Dt
= ~∇ · (Γ~∇φ) + S, (2.26)

where D/Dt is the material derivative. Hence, the time evolution of the scalar

ρφ transported by a fluid particle is obtained by integrating equation (2.26)

with respect to time t̃ from 0 to t as follows

ρφ(x, y, z, t) = ρφ(x, y, z, 0) +

∫ t

0

(
~∇ · (Γ~∇φ) + S

)
dt̃. (2.27)

Equation (2.27) states that the amount of ρφ transported by a particle is not

constant when it is subject to diffusion and source terms. Note that the value

of φ(x, y, z, 0) is unknown, therefore it is approximated by the polynomial

interpolant ψ computed at t = 0. The integral (2.27) can be easily computed

because ψ is a quadratic polynomial and the source terms are constant within

a cell during a time interval ∆t. For instance, the integral over the volume V1

can be approximated as∫ t

0

(
~∇ · (Γ~∇φ) + S

)
dt̃ ≈

(
~∇ · (Γ~∇ψW ) + S

)
t. (2.28)
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Using equations (2.24), (2.27) and (2.28), we derive the time average of

the advective fluxes as follows

〈ρuwφw〉 =
1

∆t∆y∆z
× (2.29){∫ z(0)

0

∫ y(0)

0

[∫ ∆x

x(0)

(ρψW ) dx+ uw
∆t2

2

(
~∇ · (Γ~∇ψW ) + SW

)]
dydz

+

∫ z(0)

0

∫ ∆y

y(0)

[∫ ∆x

x(0)

(ρψB) dx+ uw
∆t2

2

(
~∇ · (Γ~∇ψB) + SB

)]
dydz

+

∫ ∆z

z(0)

∫ ∆y

y(0)

[∫ ∆x

x(0)

(ρψBSW ) dx+ uw
∆t2

2

(
~∇ · (Γ~∇ψBSW ) + SBSW

)]
dydz

+

∫ ∆z

z(0)

∫ y(0)

0

[∫ ∆x

x(0)

(ρψSW ) dx+ uw
∆t2

2

(
~∇ · (Γ~∇ψSW ) + SSW

)]
dydz

}
,

(2.30)

where the subscripts identify the cells in which ψ and S are computed. Note

that using equations (2.22) and (2.23), we transformed the integrals in x into

integrals in t as follows∫ ∆x

x(0)

(
~∇ · (Γ~∇ψW ) + S

)
t dx =

∫ ∆t

0

uw

(
~∇ · (Γ~∇ψW ) + SW

)
tdt

= uw
∆t2

2

(
~∇ · (Γ~∇ψW ) + SW

)
. (2.31)

To determine the average of the diffusive flux at the west face, we first

take the derivative of equation (2.26) in the direction normal to the west face,

i.e. in the x-direction, and we multiply it by Γ to obtain

∂

∂x

[
Γ

(
D(ρφ)

Dt

)]
=

D
Dt

(
ρΓ
∂φ

∂x

)
=

∂

∂x

[
Γ
(
~∇ · (Γ~∇φ) + S

)]
. (2.32)

The above equation is then integrated with respect to time from 0 to t to

express the time evolution of the quantity Γ∂φ(x, y, z, t)/∂x

Γ

(
∂φ(x, y, z, t)

∂x
− ∂φ(x, y, z, 0)

∂x

)
=

Γ

ρ

∫ t

0

∂

∂x

[
~∇ · (Γ~∇φ+ S)

]
dt. (2.33)
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The polynomial interpolant, ψ, is used to approximate ∂φ(x, y, z, 0)/∂x which

is unknown. Hence, noticing that for any quadratic polynomial ψ we have

∂

∂x

[
~∇ · (Γ~∇ψ)

]
= 0, (2.34)

and assuming that the source term is constant within a cell during an interval

∆t, i.e. ∂S/∂x = 0, we derive the time average of the diffusive flux as follows〈
Γ
∂φ

∂x

∣∣∣∣
w

〉
=

Γ

ρuw∆t∆y∆z

∫ ∆x

x(0)

[∫ z(0)

0

∫ y(0)

0

(
ρ
∂ψ

∂x

∣∣∣∣
W

)
dydz

+

∫ z(0)

0

∫ ∆y

y(0)

(
ρ
∂ψ

∂x

∣∣∣∣
B

)
dydz

+

∫ ∆z

z(0)

∫ y(0)

0

(
ρ
∂ψ

∂x

∣∣∣∣
SW

)
dydz

+

∫ ∆z

z(0)

∫ ∆y

y(0)

(
ρ
∂ψ

∂x

∣∣∣∣
BSW

)
dydz

]
dx.

(2.35)

Equations (2.30) and (2.35) respectively express the time averages of the

advective and diffusive fluxes across the west face of the cell P . The average

fluxes for the other faces and the other velocity orientations are determined

using similar derivations.

2.4.4 Stability

3DFLUX is unconditionally stable when solving pure advection problems

because it is strictly a flux integral method (see Leonard, 1997, for details).

However, there exists a geometric constraint on the size of the rectangular

prism used to perform the backward integration, as it cannot exceed the di-

mension of one cell (see figure 2–4). This constraint limits the range of the

Courant numbers to

|cx| ≤ 1, |cy| ≤ 1, |cz| ≤ 1. (2.36)
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In theory, one could relax the above constraint by allowing larger rectangular

prisms when performing the backward integration. However, such a modifica-

tion would render the implementation of our algorithm extremely complex.

3DFLUX is only conditionally stable when solving purely diffusive or

advective-diffusive problems. To derive the stability constraint, we perform

a von Neumann type of stability analysis for the case of constant coeffi-

cients, no source, periodic boundary conditions and homogeneous grid, i.e.

∆x = ∆y = ∆z = ∆h. Writing the solution at node P and time t in a wave

form

φtp = eatei(k1x+k2y+k3z), (2.37)

where a is a constant, (k1, k2, k3) are the wavenumbers in the x-, y- and z-

directions, respectively, i =
√
−1, and substituting equation (2.37) into the

discretized equation (2.9), we obtain

ea∆t = 1 +
1

eatei(k1x+k2y+k3z)
[(fw − fe) + (fs − fn) + (fb − ff )] , (2.38)

where ea∆t = φt+∆t
p /φtp = G is called the complex amplitude ratio. The neces-

sary and sufficient condition for 3DFLUX to be stable is that

|G|max ≤ 1, (2.39)

where |G|max is the maximum magnitude of G.

For a pure diffusion problem, the fluxes in equation (2.38) are determined

from equation (2.35). For instance, using equation (2.11), the term (fw − fe)

can be written as

fw − fe = − Γ∆t

ρ∆h2

(
−1

8
φEE +

35

24
φE −

31

12
φP +

5

4
φW +

1

24
φWW −

1

24
φWWW

)
.

(2.40)
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Substituting equation (2.37) into equation (2.40), we obtain

(fw − fe)
eatei(k1x+k2y+k3z)

=

− Γ∆t

ρ∆h2

(
−1

8
e2iθ +

35

24
eiθ − 31

12
+

5

4
e−iθ +

1

24
e−2iθ − 1

24
e−3iθ

)
, (2.41)

where θ = k1∆h is the wavenumber weighted by the grid spacing and−π ≤ θ ≤

π. The other terms on the right hand side of equation (2.38) are determined

similarly. Finally, it can be shown that

|G|max =

∣∣∣∣1− 16
Γ∆t

ρ∆h2

∣∣∣∣ , (2.42)

and, consequently, the stability condition is

0 ≤ Γ∆t

ρ∆h2
≤ 1

8
, (2.43)

where Γ∆t/ρ∆h2 is a dimensionless diffusive coefficient.

In addition, this analysis shows that 3DFLUX is, as UTOPIA, only second-

order accurate when the problem is purely diffusive. In fact, equation (2.40)

can be rewritten as a second-order finite difference approximation of the second

order derivative of φ with respect to h, i.e.

fw − fe = − Γ∆t

ρ∆h2

(
∂2φ

∂h2
+

1

12
∆h2∂

4φ

∂h4
+O(∆h3)

)
. (2.44)

Leonard et al. (1995) showed, using a Taylor series analysis, that the coupling

between the advective and diffusive terms present in the flux integral method

(see equation (2.30)) leads to a third-order advection-diffusion solver. However,

when the coupling terms do not exist, i.e. when advection is absent, the

diffusion solver is equivalent to a second-order finite difference scheme.

2.4.5 Monotonicity preservation

A scheme is said to be monotonicity-preserving when it does not generate

new local extrema in the solution and the value of a local minimum/maximum
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is non-decreasing/non-increasing in time (Harten, 1983). Godunov (1959)

showed that any linear monotonicity-preserving scheme is, at most, first-order

accurate in space. Hence, advection schemes of orders higher than one are

not monotonicity-preserving, and generate spurious oscillations near disconti-

nuities or near poorly resolved gradients of the solution. Zalesak (1979) was

the first to propose a monotonicity-preserving high-order method called the

flux-corrected transport (FCT) method.

The FCT method corrects the high-order solution by using a low-order

scheme in the vicinity of the poorly resolved gradients and can be decomposed

in four steps. In the first step, a solution is computed with a first-order scheme.

It is called “transported and diffused” and is identified by the superscript “td”.

This solution is calculated as follows

(
φt+∆t
P

)td
=
(
φtP
)corr

+ floww − flowe + flows − flown + flowb − flowf + 〈S〉 ∆t

ρ
, (2.45)

where the superscript “low” indicates the fluxes computed with the low-order

scheme and (φtP )
corr is the corrected solution computed at previous time steps.

In our 3DFLUX solver, the low-order scheme has been implemented by simply

replacing the quadratic interpolant polynomial, ψ, in equation (2.12) with

a zero-order polynomial. Doing so, we obtain a first-order scheme that is

equivalent to the well-known upwind scheme proposed by Patankar (1980).

The second and the third steps consist of, respectively, computing the

fluxes with the high-order scheme and estimating the values of the corrected

fluxes. The low-order scheme is monotonicity preserving, has low accuracy

and is highly diffusive. The high-order scheme is not monotonicity preserving,

but more accurate and produces low numerical diffusion. Hence, the value of

the corrected fluxes has to be an optimal compromise between the values of

the low- and high-order fluxes so that the corrected solution benefits from the
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advantages of both schemes. The corrected fluxes are expressed, for instance

at the west face, as

fcorr
w = floww + βwAw, (2.46)

where Aw = fw − floww is called the anti-diffusive flux at the west face and the

parameter βw ∈ [0, 1] has to be evaluated at the west face. Note that the

corrected flux is equal to the low-order flux when β = 0 and equal to the

high-order flux when β = 1. The fourth and final step consists of computing

the corrected solution using equations (2.45) and (2.46) as follows

(
φt+∆t
P

)corr
=
(
φt+∆t
P

)td
+βwAw−βeAe +βsAs−βnAn +βbAb−βfAf . (2.47)

The main difficulty in Zalesak’s method stands in correctly estimating the

limiting parameters: βw, βe, βs, βn, βb, and βf . For further details, the

reader is referred to (Zalesak, 2005).

Ideally, a flux-limiting method preserves monotonicity without corrupting

the accuracy of the high-order scheme. However, Blossey & Durran (2008)

showed that although Zalesak’s method correctly damps the over- and under-

shoots produced in the vicinity of the poorly resolved gradient, it also incor-

rectly damps the extrema in the smooth and well-resolved parts of the solu-

tion. This results in an undesirable reduction of the overall accuracy of the

scheme. For example, Blossey & Durran (2008) showed that their third-order

scheme, based on a piecewise parabolic method (PPM) (Colella & Woodward,

1984), becomes only second-order accurate when it is combined with the FCT

method.

Blossey & Durran (2008) therefore modified Zalesak’s method to activate

the flux-limiter only in the regions of the computational domain affected by

unphysical over- and under-shooting. They showed that the PPM solver com-

bined with their selective monotonicity preserving method, remains third-order
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accurate while quasi-preserving the monotonicity of the solution (i.e. the over-

shoots and under-shoots are negligible with respect to the magnitude of the

solution). This selective monotonicity preservation introduces a smoothness

parameter, λ, to detect the presence of the poorly resolved gradients in the

solution. The value of λ is computed at each cell and compared to a predefined

threshold value, λMAX. When λ remains below the threshold, the parameter

β is set to one, which deactivates the monotonic limiter. Otherwise, the FCT

method is used to calculate the value of β, i.e.

β =

 β if λ > λMAX,

1 otherwise.
(2.48)

Blossey & Durran (2008) computed λ at the nodes using the first- and

second-order derivatives of the scalar field in the direction normal to the face.

Their approach was consistent with the PPM scheme that is based on a di-

mensional splitting method. Note that the parameter λ is analogous to the

one-dimensional smoothness metric used in the WENO scheme (Jiang & Shu,

1996). More recently, Harris et al. (2011) defined λ using the derivatives of

the scalar field in two directions, to be consistent with their two-dimensional

solver.

Herein, we propose a three-dimensional formulation of the parameter, λ,

as follows

λijk =
max`∈I,m∈J,n∈K {γ`mn}

min`∈I,m∈J,n∈K {γ`mn}+ ε
, (2.49)
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where

γ`mn =
1

2

[(
2∆x

∂φ`mn
∂x

)2

+

(
∆x2∂

2φ`mn
∂x2

)2

+

(
2∆y

∂φ`mn
∂y

)2

+

(
∆y2∂

2φ`mn
∂y2

)2

+

(
2∆z

∂φ`mn
∂z

)2

+

(
∆z2∂

2φ`mn
∂z2

)2
]
, (2.50)

and 
I = [i− 2, i+ 1]

J = [j − 2, j + 1]

K = [k − 2, k + 1],

(2.51)

where i, j, k and `,m, n are the cell indices in the x-, y- and z-direction, re-

spectively. The derivatives in (2.50) are directly computed using equations

(2.17) and ε is a small parameter required to prevent division by zero. We

obtained consistent results using ε = 10−8 and found that λMAX = 60 is an

optimal value to identify the regions of the domain in which the monotonic

limiter must be applied. This value is also consistent with the value reported

by Harris et al. (2011).

2.4.6 Implementation of the boundary conditions

Our third-order scheme uses a large stencil (see figure 2–3) to compute the

fluxes and update the average cell values at each time step. Therefore, near the

boundaries of the computational domain, some of the values at neighboring

cells required to construct this stencil are not available. To overcome this

difficulty, we extend the computational domain by introducing fictitious nodes,

also known as “ghost” or external nodes, on the outside of the domain, as shown

in figure 2–5. By doing so, the solution is computed at all interior cells using

the same stencil and scheme.
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Figure 2–5: Treatment of the boundary using ghost-nodes.

The value of the scalar field at the ghost-nodes is extrapolated, at the

beginning of each time step, from the boundary conditions and from the value

of the scalar field at the internal nodes in the previous time step. Note that

the computational scheme at the ghost-nodes can be entirely decoupled from

the numerical scheme used at the interior nodes (Leveque, 2002). To compute

the fluxes at the boundary with 3DFLUX, three ghost-nodes are required.

However, when the fluxes are prescribed at the boundary, only the values at

two ghost-nodes are required to compute the flux at the face of the first internal

cell.

In practical applications, the implementation of the ghost-node technique

is problem-dependent, see for example (Liu et al., 2003; Krivodonova & Berger,

2006; Tan & Shu, 2010). Consequently, we restrict our discussion in this study

to the treatment of the boundary conditions implemented in the test cases used

to validate our solver, i.e. periodic, inflow, outflow and Neumann boundary

conditions.

Periodic boundary conditions are used in all tests presented in section 2.5.

In this case, the values at the three ghost-nodes are set equal to the values at

the corresponding three internal nodes at the opposite side of the domain. In

figure 2–5, the value of the nodes φW , φWW and φWWW is respectively equal

to the value at the nodes φn−2, φn−3 and φn−4 (not shown).

The inflow and outflow conditions used in the last test of section 2.5 are

those used to simulate the inlet and outlet conditions of a flow in a channel.

The treatment of the inflow boundary conditions is trivial as the values of the

scalar field (and by extension the values at the ghost-nodes) are prescribed at
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the entrance of the channel. However, the treatment of the outflow boundary

conditions is more challenging. To illustrate our discussion, we impose an out-

flow boundary at the node n−1 in figure 2–5. Among the different techniques

that simulate an outflow boundary (Tsynkov, 1998; Lohéac, 1991; Nordström

et al., 1999; Schlatter et al., 2005), we have chosen the method presented by

Ferziger & Perić (2002). This method extrapolates the value of the scalar field

at the ghost-nodes by solving an unsteady convective condition of the form

∂φ

∂t
+ U

∂φ

∂x

∣∣∣∣
n

= 0, (2.52)

where U is the average velocity of the outflow and ∂φ/∂x|n is the derivative

of the scalar at node n in the outward direction normal to the boundary. Note

that U is constant at the outlet and is chosen so that the outflow mass flux is

equal to the incoming mass flux. The partial derivative, ∂φ/∂x|n, is approxi-

mated using a third-order backward finite difference scheme (Pozrikidis, 1998,

p.319)
∂φ

∂x

∣∣∣∣
n

=
11

6
φn − 3φn−2 +

3

2
φn−3 −

1

3
φn−4 +O(∆x3), (2.53)

and the time integration is performed using the explicit third-order Adams-

Bashforth method (Durran, 1991)

φt+∆t = φt − 1

12
U∆t

(
23

∂φ

∂x

∣∣∣∣t
n

− 16
∂φ

∂x

∣∣∣∣t−∆t

n

+ 5
∂φ

∂x

∣∣∣∣t−2∆t

n

)
. (2.54)

Note that the value at the node φn−1 is not used in equation (2.53).

The Neumann boundary condition is used in the first and last tests of

section 2.5. To implement this condition, we use a local third-order Taylor

expansion to extrapolate the value at the ghost-nodes. In the case shown in

figure 2–5, the values of φW and φWW are given by

φW = φP −∆x
∂φ

∂x

∣∣∣∣
w

+O(∆x3), (2.55)
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and

φWW = φE − 3∆x
∂φ

∂x

∣∣∣∣
w

+O(∆x3), (2.56)

respectively. Note that the no-flux boundary conditions is particularly simple

to implement because the values at the ghost nodes are equal to the values at

the mirror image internal points. In the case shown in figure 2–5, φW = φP

and φWW = φE.

2.5 Convergence rate and accuracy

The numerical errors that could affect the numerical solutions produced

by 3DFLUX are attributable to i) the spatial interpolation presented in section

2.4.2 and ii) the backwards integration presented in section 2.4.3. The overall

order of convergence of 3DFLUX in general is

O
(
∆tk,∆hp+1

)
, (2.57)

where k is the order of the time integration scheme, p is the order of the polyno-

mial interpolant, and ∆t and ∆h are the temporal and the spatial resolutions

of the scheme, respectively. Note that the maximum allowable time step, ∆t,

is controlled by the constraints (2.36) on the Courant numbers.

To assess the convergence rate and the accuracy of our solver, we present

a series of five numerical tests. By construction, 3DFLUX is third-order ac-

curate under constant flow conditions because the polynomial interpolation

is quadratic (p = 2) and there is no truncation error in the time integration

(i.e. equation (2.23) is exact). However, under non-constant flow conditions,

the accuracy of the time integration algorithm depends on the accuracy of

the approximation of the advective velocity field over the time interval, ∆t. In

3DFLUX, the components of the velocity field in equation (2.23) are evaluated

at the intermediate time step, t+ ∆t/2, by an explicit mid-point interpolation
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(Leveque, 1996; Xiu & Karniadakis, 2001) as follows

~ut+∆t/2 =
1

2

(
~ut+∆t + ~ut

)
. (2.58)

Note that this temporal staggering of the velocity field maxes 3DFLUX second-

order accurate in time when solving unsteady problems. However, as we will

show in the following tests, the lower accuracy of the time integration scheme

has a limited impact in practical applications. In fact, the accuracy of 3DFLUX

depends essentially on the form of the spatial integration (Leonard et al., 1993).

2.5.1 Test 1: Mixing/unmixing problem

We examine the accuracy and the convergence rate of 3DFLUX by solving

the mixing/unmixing test proposed by Seibold et al. (2012). In this test, the

computational domain is a two-dimensional square, i.e. (x, y) ∈ [0, 1] × [0, 1].

The initial condition for the scalar field is

φ(x, y, t = 0) = cos(2πx) cos(4πy), (2.59)

and the boundary conditions are doubly periodic. For t > 0, the initial dis-

tribution of the scalar field is purely advected and deformed by the velocity

field  u(x, y, t) = cos(πt
T

) sin2(πx) sin(2πy)

v(x, y, t) = − cos(πt
T

) sin2(πy) sin(2πx),
(2.60)

which is unsteady, divergence-free and periodic in time with period T (Leveque,

1996). After each half-period, the direction of the flow is reversed and the fluid

particles return to their initial position.

We perform a series of simulations in which the uniform size, ∆h×∆h, of

the cells is repeatedly halved. We then perform an error analysis by computing

the L∞ and L2 norms of the error, i.e. of the difference between the solution

after one period T and the initial scalar field. Recall that the L∞ norm of the
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error is the maximum of the absolute value of the error. In the time integration,

we use the largest possible time step allowed by the stability requirement

because: i) the value of the maximum velocity over a period is 1, and ii) the

upper limit of the Courant number is also 1, the largest possible time step is

∆t = ∆h.

Figure 2–6: Error analysis of the mixing/unmixing problem. Convergence
of the (a) L2 and (b) L∞ norms as a function of the cell size. The errors
computed with the 3DFLUX (•), UTOPIA (◦), WENO3 (/), and bi-cubic
jet (2) schemes using periodic boundary conditions, as well as the norms
computed with the 3DFLUX (+) scheme when using the no-flux boundary
condition are reported. The dashed and solid lines represent second- and third-
order convergence, respectively. Note that the L2 norm was not reported in
(Seibold et al., 2012) for the WENO3 and bi-cubic jet schemes.

Figure 2–6 reports the convergence rate of the numerical errors for several

schemes including the WENO3 third-order scheme, the bi-cubic jet scheme by

Seibold et al. (2012) and the third-order UTOPIA scheme. All schemes but

WENO3 exhibit a third-order convergence rate using the L2 and L∞ norms.

There are, however, significant differences in the accuracy of the schemes.

The accuracy of 3DFLUX is comparable to the accuracy of the bi-cubic jet

scheme, a recently proposed solver designed for the simulation of purely ad-

vective problems. The accuracy of UTOPIA is about an order of magnitude
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worse than that of 3DFLUX, while WENO’s accuracy is more than two orders

of magnitude worse.

As previously mentioned, Seibold et al. (2012) used periodic boundary

conditions in this test. However, because the velocity field is zero at any time

on the boundaries of the unit square, and because there are no diffusion effects,

the computational domain can be considered as a closed-domain. Hence, the

solution of the test remains unchanged if we replace the periodic boundary

condition with a no-flux boundary condition. We re-computed the solution

up to one period T for different spatial resolutions with the no-flux boundary

conditions and obtained the same results as in figure 2–6, therefore validating

our implementation of the no-flux boundary conditions.

Figure 2–7: Error analysis of the mixing/unmixing problem for decreasing
Courant numbers. Convergence of the (a) L2 and (b) L∞ norms as a function
of cell size. The error computed using 3DFLUX with periodic boundary con-
ditions at Courant numbers 1 (•), 0.1 (�), 0.01 (�) and 0.001 (+) is reported.
The solid and dashed lines represent the slopes of convergence of order 3.0 and
4.6, respectively.

3DFLUX is nominally second-order in time and third-order in space. This

is confirmed by figure 2–6, which shows that 3DFLUX is third-order when

using the highest possible Courant number. One might therefore conclude

that the spatial truncation error dominates the overall error. However, a series
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of simulations in which the time step is repeatedly divided by a factor ten

shows that a reduction in the time step leads to a considerable increase in the

convergence rate of the L2 and L∞ norms, see figure 2–7. This result implies

that the truncation error due to the time integration is not negligible. In fact,

the solution computed at the highest resolution is 20 times more accurate when

∆t is divided by 100. Figure 2–7 shows that the order of the convergence rate

can unexpectedly be as high as 4.6, much higher than 3 when the Courant

number is equal or lower to 0.01. Similarly, Blossey & Durran (2008) reported

an order of convergence higher than three when using a third-order piecewise

cubic method.

2.5.2 Test 2: Solid body rotation

This test, first proposed by Orszag (1971), examines the robustness of a

numerical scheme when the solution contains discontinuities in its derivatives.

The test consists in simulating the purely advective transport of a slotted

cylinder moving in a rotational motion around the origin, as shown in figure

2–8. The slotted cylinder conserves its original shape while transported, and

returns to its initial position after each period, T .

Figure 2–8: Rotation of a slotted cylinder over a period T . The position of
the slotted cylinder is shown at five different times, t = 0, T/4, T/2, 3T/4
and T .

The numerical domain is a unit square domain, (x, y) ∈ [−0.5,+0.5] ×

[−0.5,+0.5]. The initial condition for the concentration of the scalar field is a
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slotted cylinder of diameter 0.25 centered at (x, y) = (0.25, 0.), i.e.

φ(x, y, t = 0) =

 1 if r ≤ 0.125 ∧ [(y > 0.0) ∨ (0.225 < x < 0.275)]

0 elsewhere,
(2.61)

where

r =
[
(x− 0.25)2 + y2

] 1
2 . (2.62)

The velocity field,  u(x, y, t) = −Ωy

v(x, y, t) = Ωx,
(2.63)

transports the slotted cylinder over a circular path with constant angular ve-

locity Ω (positive for counterclockwise rotation). Note that the domain is large

enough to prevent the solid body from interacting with the boundaries. The

grid is uniform, and the Courant numbers, cx and cy, are both set to one for

each simulation, i.e. ∆t = 2∆h.

The gradient of the scalar field at the contour of the slotted cylinder

is discontinuous. Without a flux-limiter algorithm, 3DFLUX would generate

spurious oscillations that would rapidly deteriorate the shape of the slotted

cylinder – see for example (Xiu & Karniadakis, 2001). We show that im-

plementing 3DFLUX with a flux-limiter algorithm prevents oscillations from

occurring.

Figure 2–9 shows, for three spatial resolutions, three isocontours of the

scalar field, φ = 0.01, 0.5 and 0.99, after one and five revolutions of the slot-

ted cylinder. In addition, figure 2–10 shows, after one revolution, a one-

dimensional cross-section of the slotted cylinder along the x-axis and at y =

−0.05. The φ = 0.5 isocontour reproduces very well the slotted cylinder pro-

files, even after several rotations. The band delimited by the φ = 0.01 and

φ = 0.99 isocontours illustrates clearly the effects of the numerical diffusion
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Figure 2–9: The slotted cylinder after one (a) and five (b) periods of rotation,
respectively, for three different grid resolutions (Nx×Ny = 200×200, 400×400
and 800× 800). The isocontours corresponding to φ = 0.01, 0.5 and 0.99, are
compared to the exact solution (bold dashed line)

X

φ

0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

Figure 2–10: The 1D cross-section of the slotted cylinder at y = −0.05 for two
mesh resolutions, Nx×Ny = 200× 200 (�) and Nx×Ny = 800× 800 (◦), are
compared to the exact solution (solid line).

produced by the flux-limiter in the vicinity of the discontinuity. The flux-

limiter diffuses the discontinuity of the scalar field over three nodes on each

side of it, apparently independently of the spatial resolution (figure 2–10).
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Hence, length scales smaller than 6 cells, centered on the discontinuity, are not

fully resolved by 3DFLUX.

2.5.3 Test 3: Two-dimensional unsteady deformational flow

The pure advection test proposed by Blossey & Durran (2008) consists

of simulating the stretching and rotation of a cosine bell advected by a defor-

mational velocity field. The computational domain is the unit square (x, y) ∈

[0, 1]× [0, 1]. The initial condition for the scalar field is defined as

φ(x, y, t = 0) =


1+cos (πr)

2
if r ≤ 0

0 elsewhere,
(2.64)

where

r = 5
[
(x− 0.3)2 + (y − 0.5)2

] 1
2 . (2.65)

The unsteady, divergence free velocity field that advects the scalar field is

defined as  u(x, y, t) = (y − 1
2
)Ω

v(x, y, t) = −(x− 1
2
)Ω,

(2.66)

where the angular velocity, Ω = Ω(x, y, t), is

Ω(x, y, t) =
4π

T
×{

1 +

[
1− 2

(256ξ(x, y)2 − 16ξ(x, y) + 1)(16ξ(x, y) + 1)

]
cos

(
2πt

T

)}
,

(2.67)

where ξ(x, y) is

ξ(x, y) =

(
x− 1

2

)2

+

(
y − 1

2

)2

. (2.68)

Figure 2–11 presents the evolution of the cosine bell in the clockwise

direction at seven different time instants, t = 0, T/4, 2T/5, T/2, 3T/5, 3T/4

and T . During the first half period (figure 2–11), the velocity field deforms the

cosine bell and generates a long tail that stretches away from the center of the

51



bell. Sharp gradients appear on the lateral sides of the tail. At t = T/2, the

bell recovers its initial shape and position. In the second half period (figure

2–11), the orientation of the stretching is inversed while the orientation of the

circular motion remains in the clockwise direction. Finally, at t = T , the cosine

bell returns to its initial position. The exact solution to this problem after one

period is its initial condition, i.e. the scalar field defined in equation (2.64).

(A)

(B)

(C)

Figure 2–11: Advection of a cosine bell at different time intervals: t = 0 (A),
t = T/4 (B), t = 2T/5 (C), t = T/2 (D), t = 3T/5 (E), t = 3T/4 (F) and
t = T (G). The isocontours are plotted from 0.05 to 0.95 in increments of 0.1.

The time evolution of the cosine bell has been computed using the largest

time step possible corresponding to the largest Courant numbers admissible,

i.e. cx = cy = 1. Note that in contrast with the mixing/unmixing test shown

in section 2.5.1, where the transition from mixing to unmixing was obtained

by reversing the flow, the velocity field defined in the present test never re-

verses. Blossey & Durran (2008) recommended avoiding tests with inversions

of the velocity field because they can lead to phase error cancellation, masking

computational inefficiencies.

To quantify the numerical error of 3DFLUX, we compare the initial condi-

tion (the exact solution) with the numerical solution obtained after one period.

Figure 2–12 plots the contours of the exact and numerical solutions after one
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Figure 2–12: Comparison of the numerical solution after one period (solid
lines) computed with 3DFLUX and the exact solution (dashed lines) for three
different grid resolutions: Nx×Ny = 107×107 (∆h = 0.01), 207×207 (∆h =
0.005) and 407× 407 (∆h = 0.0025) where ∆h = ∆x = ∆y. The isocontours
are plotted from 0.05 to 0.95 in increments of 0.05.

period for three different spatial resolutions, Nx×Ny = 107× 107, 207× 207,

and 407 × 407. The coarser resolution does not accurately resolve the small

scales induced by the intensive stretching and, consequently, the solution is

deformed in the y-direction and the center of the cosine bell is not correctly

recovered. However, the monotonicity of the solution is preserved. Moreover,

3DFLUX does not generate spurious oscillations despite the presence of sharp

gradients. The results obtained with finer resolutions (207×207 and 407×407)

preserve well the symmetry of the cosine bell and its peak locations.

To characterize the convergence rate and accuracy of 3DFLUX, we calcu-

late the L2 and L∞ norms of the error while halving the grid resolution. In

figure 2–13, we compare the performance of 3DFLUX to those of UTOPIA

and a second-order in time and third-order in space PPM scheme (Blossey &

Durran, 2008). Figure 2–13 shows that, on average, at the highest resolution

(807× 807), 3DFLUX is twice as accurate as PPM and an order of magnitude

more accurate than UTOPIA.

In addition, figure 2–13 confirms the results obtained in test 1. 3DFLUX is

about one order of magnitude more accurate than UTOPIA in reconstructing
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Figure 2–13: Error analysis for the two-dimensional unsteady deformational
flow test. Convergence of (a) L2 and (b) L∞ norms as a function of the
cell size, ∆h, when cx = cy = 1.0. 3DFLUX (•), 3DFLUX with no limiter
(×), UTOPIA (◦) and the PPM scheme with selective FCT from (Blossey &
Durran, 2008)(.). Errors computed with the Courant numbers cx = cy = 0.1
using 3DFLUX (�) are also reported. The solid and dashed lines show the
slopes of third- and fourth-order convergence rates, respectively.

a smooth function that is subjected to substantial stretching. Apparently, the

simplified polynomial interpolant used in UTOPIA, where the cross-terms are

missing (Leonard et al., 1995), induces a substantial loss of accuracy when the

transport in the transverse directions is significant (see figure 2–13).

Although, 3DFLUX is nominally second-order in time and third-order in

space, this test confirms that the convergence rate and accuracy of 3DFLUX

improve at smaller time steps and, consequently, depend on the Courant num-

bers chosen. As shown in figure 2–13, the convergence rate of 3DFLUX in-

creases and tends to be third-order when the time step is reduced by an order

of magnitude. In fact, the slope of the L∞ and L2 norms for the two finest

spatial resolutions shown in figure 2–13 are respectively equal to 2.39 and 2.48

when cx = cy = 1.0 and they are equal to 3.00 and 3.39, respectively, when

cx = cy = 0.1. Note also the substantial improvement in accuracy when the

Courant number is 0.1.
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3DFLUX with 3DFLUX without
selective monotonic flux-limiter flux-limiter

∆h φmax φmin L∞ φmax φmin L∞

0.0400 0.583 −0.0000 0.492 0.605 −0.0741 0.447
0.0181 0.957 −0.0002 0.270 0.953 −0.0356 0.245
0.0095 1.004 −0.0002 0.112 1.006 −0.0196 0.109
0.0048 0.999 −0.0001 0.022 0.999 −0.0071 0.022
0.0024 0.999 −0.0001 0.003 0.999 −0.0009 0.003
0.0012 1.000 −0.0000 6× 10−4 1.000 −0.0001 6× 10−4

Table 2–1: Extrema and L∞ norm computed with and without the flux-limiters
after one period of the deformational flow. ∆h is the uniform spatial resolution
and the number of nodes, Nx×Ny, are 27× 27, 57× 57, 107× 107, 207× 207,
407× 407 and 807× 807.

It is important to note that the accuracy and the convergence rate of

3DFLUX remain unchanged with or without the activation of the flux limiter

presented in section 2.4.5. To obtain better insight into the efficiency of the

selective monotonic limiter, we report the values of the extrema generated

by the deformational flow for the different grid resolutions in table 2–1. As

expected, the flux limiter considerably damps the undershoots that appears

in a non-monotonicity preserving solution, and the remaining negative values

are so small that they can be neglected. Note that when even small negative

values are undesirable, a positivity preserving correction can be implemented

(see Blossey & Durran, 2008, for details). Finally, we remark that the effect

of the flux limiter becomes unobservable at the finest resolution reported in

table 2–1.

2.5.4 Test 4: Three-dimensional advection-diffusion problem

This test investigates the convergence rate of 3DFLUX when solving a

three-dimensional advection-diffusion problem. The test simulates the trans-

port of a Gaussian sphere. The initial scalar field is

φ(x, y, z, t = 0) = exp

[
(x− x0)2 + (y − y0)2 + (z − z0)2

−4Γ

]
, (2.69)

55



where (x0, y0, z0) = (0.8, 0.8, 0) are the coordinates of the center of the Gaus-

sian sphere. The velocity field
u(x, y, z) = Ω

[
−y cos2(π

4
)− z sin(π

4
)
]

v(x, y, z) = Ω
[
x cos2(π

4
)− z sin(π

4
) cos(π

4
)
]

w(x, y, z) = Ω
[
x sin(π

4
) + y sin(π

4
) cos(π

4
)
]
,

(2.70)

advects the Gaussian sphere along a circular trajectory lying on a diagonal

plane of the cubic domain at a constant angular velocity, Ω = 2π. After a

complete rotation, i.e. at time t = 1, the exact solution is

φ(x, y, z, t = 1) =
1

23/2
exp

[
(x− x0)2 + (y − y0)2 + (z − z0)2

−8Γ

]
. (2.71)

We simulate the evolution of the Gaussian sphere (2.69) within a cube,

(x, y, z) ∈ [−2, 2] × [−2, 2] × [−2, 2], using a uniform spatial discretization,

i.e. ∆x = ∆y = ∆z = ∆h, and a the time step corresponding to a Courant

number of 0.9. We estimate the numerical error by comparing our solution

with the exact solution (2.71).

Figure 2–14: Error analysis for the three-dimensional advection-diffusion prob-
lem. Convergence of (a) L2 and (b) L∞ norms as a function of the cell size, ∆h,
when solving the pure advection (�), the pure diffusion (�) and the advection-
diffusion (•) test with 3DFLUX. The dashed and solid lines show the slopes
of second- and third-order convergence rates, respectively.
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The L2 and L∞ norms of the errors are reported in figure 2–14. 3DFLUX

is third-order accurate when solving the advection-diffusion problems. Note

that for the coarser spatial resolution, the Péclet cell number (ρumax∆h/Γ), i.e.

the ratio of the Courant number over the diffusive stability constraint (2.43),

is 233, whereas for the finer spatial resolution it is 19. This is a considerable

improvement with respect to second-order central difference schemes, which

generate spurious oscillations for Péclet cell numbers higher than 2, see section

2.4.2.

Furthermore, figure 2–14 shows the numerical errors obtained in two ad-

ditional tests: one where the diffusive terms are zero, i.e. Γ = 0, and the other

where the velocity field (2.70) is replaced by a zero velocity field. The pure

advective solution is compared to the initial solution after one full rotation

whereas the pure diffusive solution is compared to the exact solution (2.71) at

t = 1. Figure 2–14 shows that 3DFLUX is third-order when solving the purely

advective problem, however, it becomes second-order when solving the pure

diffusive problem, as noted in section 2.4.4.

Figure 2–15: 3D advection-diffusion problem. Computational cost (a) and effi-
ciency (b) are reported for 3DFLUX (•), UTOPIA (◦) and the hybrid scheme
(4) at c = 0.45.

57



To characterize the computational cost and efficiency of our code, we

compare the CPU time required by 3DFLUX, UTOPIA and a traditional first-

order discretization scheme to calculate the solution of the present test up to

time t = 1. The low-order scheme is the hybrid scheme described in Spalding

(1972) and Patankar (1980) which combines upwind and central differencing

for the advective and diffusive terms, respectively, and use a second-order

Runge-Kutta method for the time integration. 3DFLUX, UTOPIA and the

hybrid scheme are all second-order in time. The hybrid scheme is a simple and

fast algorithm that is implemented in most commercial CFD codes. For all

computations, we set the Courant numbers to 0.45 because the hybrid scheme

becomes unstable for higher Courant numbers.

The computation was performed using two standard high-end multi-core

CPUs (Intel Xeon (R) E5645) running at 2.40 GHz with 48 GB of RAM.

We leveraged Intel’s Thread Building Blocks (TBB) library to exploit the

capabilities of the multi-core processor. TBB is an object oriented library for

C++ language that allows programmers to decide the extent of parallelism.

Figure 2–15(a) show the CPU time (in seconds) needed for the compu-

tation as a function of the spatial resolution. As expected, the first-order

scheme is significantly faster than the two others schemes because it performs

a substantially smaller number of flops and does not require a flux limiter.

We observe that UTOPIA is roughly 20% faster than 3DFLUX. Figure 2–

15(b) plot the CPU time as a function of the L∞ norm of the numerical error.

3DFLUX is clearly the most efficient scheme. For a given value of the L∞ norm,

3DFLUX is about 10 times faster than UTOPIA. The poor efficiency of the

hybrid scheme is due to its high numerical diffusion that affects considerably

the solution of the multidimensional problems.
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Figure 2–16: Release of a passive scalar from a line source in a turbulent
channel flow. The mean flow is oriented in the positive x-direction. (Imagery
produced using VAPOR, www.vapor.ucar.edu).

2.5.5 Test 5: Turbulent mixing in a channel flow

This test illustrates the potential of 3DFLUX to simulate complex flows of

practical relevance. To this end, we simulated a real experiment where a scalar,

temperature, is released from a heated line source in a fully developed turbulent

channel flow (Lavertu & Mydlarski, 2005; Lepore & Mydlarski, 2011). Note

that heat is released at a sufficiently small rate so that it has no effect on the

dynamics of the fluid motion, i.e. the problem is one-way coupled. For this

reason, we pre-compute the turbulent flow with a spectral solver and, once

the velocity field is available, we compute the evolution of the scalar field a

posteriori using 3DFLUX.

We simulate the experiment (Lavertu & Mydlarski, 2005; Lepore & Myd-

larski, 2011) in a numerical channel of size (x, y, z) ∈ {[0, 4π]× [−1, 1]× [0, π]},

oriented so that x is the streamwise direction, y is the wall-normal direction,

and z is the spanwise direction of the flow. The channel is delimited by two
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parallel flat walls located at y = ±1. The scalar field is injected in the flow at

constant power by a line source oriented in the spanwise direction located at

(x, y) = (0.24, 0), as shown in figure 2–16.

The turbulent velocity field is computed using a spectral code (Gibson

et al., 2008; Gibson, 2010a, http://channelflow.org/), which uses a spec-

tral discretization in space (Fourier × Chebyshev × Fourier) and a third-order

Runge-Kutta time integrator to solve the incompressible Navier-Stokes equa-

tions. The boundary conditions are periodic in the streamwise and spanwise

directions and consist of no-penetration and no-slip conditions at the walls.

The pressure gradient that drives the flow in the positive x-direction is ad-

justed dynamically to maintain a constant mass flux through the channel.

The code is initialized with a parabolic velocity profile, ~u = [(1− |y|)2, 0, 0]

plus a random disturbance to accelerate the onset of turbulence. The simula-

tions are performed at a Reynolds number Re = 〈U〉h/ν = 3475, where 〈U〉 is

the mean velocity at the centerline of the channel, where the brackets indicate

averaged values, h is the channel half-width and ν is the kinematic viscosity.

3DFLUX uses the precomputed velocity field as an input to solve the

transport equation for the temperature φ. We discretized the channel with a

grid Nx×Ny×Nz = 771×195×194 to resolve both the large and small scales

of the turbulent scalar mixing. The boundary conditions for the scalar field

are i) periodic in the spanwise direction, ii) inflow/outflow at the inlet/outlet

of the channel, and iii) adiabatic (no-flux) at the walls. The line source is

simulated by a sequence of nodes having a constant source term S.

The temperature field forms a plume that is transported in the stream-

wise and wall-normal directions, as shown in figure 2–16. The turbulent plume

induces mixing over a wide range of length scales. A statistical description of

the scalar field enables an analysis of the dynamics of mixing. In this test,
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we compare statistics of the numerical simulations with the ones obtained in

our experiments. In addition, we also report the data of Lavertu & Myd-

larski (2005), where available. Since the Reynolds number of the experiments,

Re = 10350, is higher than that used in the simulation, we use an appropriate

normalization to make a meaningful comparison between the experimental and

numerical results.

We first analyze the mean and root-mean-square (r.m.s.) temperature

profiles and their peaks and widths. To this end, we define the scalar excess as

∆φ = φ − φ0, where φ0 is the ambient temperature in the channel before the

injection of the scalar, and then we decompose it into a mean, 〈∆φ〉 = 〈φ− φ0〉,

and a fluctuating part θ, i.e. ∆φ = 〈∆φ〉+ θ. The average value of the scalar

field, 〈φ〉, at a given location (x, y) can be expressed as

〈φ〉 = 〈φ(x, y)〉 =
1

Nt

Nt∑
1

1

Nz

Nz∑
1

φ(x, y, z, t), (2.72)

where Nt is the number of time steps required to obtain converged statistics.

Since the scalar field is periodic, and thus statistically homogeneous in the

spanwise direction, the statistics are computed by averaging the scalar field in

the spanwise direction. We obtained converged statistics by running 3DFLUX

for 2.2h/uτ , which is equivalent to Nt = 5, 000 with ∆t = 4.39 × 10−4h/uτ ,

where uτ =
√
−(h/ρ)∂ 〈p〉 /∂x is the friction velocity and ∂ 〈p〉 /∂x is the mean

axial pressure gradient.

The mean and the r.m.s. temperature profiles normalized by their re-

spective peak values are plotted as a function of the wall-normal locations at

several locations downstream from the line source, see figure 2–17 and 2–18.

Both experimental and numerical mean and r.m.s. profiles agree very well.

The symmetry of the Gaussian distribution of the numerical profiles suggests

that the flow statistics are correctly converged. Figure 2–19 shows the standard
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Figure 2–17: Non-dimensionalized mean temperature excess profiles at differ-
ent downstream locations. Results from our experiments (a) and 3DFLUX (b)
are reported for ◦, x/h = 2.0; ×, x/h = 5.0; 2, x/h = 10.0; �, x/h = 12.0;
+, x/h = 15.0. The grey line indicates the transverse location of the source
(ys/h = 0.0) and the black lines are Gaussian curve fits to the data.

Figure 2–18: Non-dimensionalized r.m.s. temperature profiles at different
downstream locations. Results from our experiments (a), and 3DFLUX (b)
are reported for ◦, x/h = 2.0; ×, x/h = 5.0; 2, x/h = 10.0; �, x/h = 12.0;
+, x/h = 15.0. The grey line indicates the transverse location of the source
(ys/h = 0.0) and the black lines are Gaussian curve fits to the data.
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Figure 2–19: Non-dimensionalized standard deviation of the mean (a) and
r.m.s. (b) temperature profiles at different downstream locations. Our exper-
iments (�), 3DFLUX (×) and experimental results of (Lavertu & Mydlarski,
2005) (2). 〈U〉 and urms are the mean and r.m.s. velocities at the centerline
of the channel, respectively.

deviation of the mean and r.m.s. profiles normalized by the channel half-width

at several stations downstream the line source. All these results show an excel-

lent agreement between the numerical simulations performed with 3DFLUX

and the experiments.

2.6 Conclusions

We have presented 3DFLUX, a high-order, fully multidimensional, conser-

vative, monotonicity preserving numerical scheme for the solution of the scalar

transport equation. 3DFLUX is nominally third-order in space and second-

order in time. Its convergence rate and accuracy have been characterized via

several multidimensional tests, both purely advective and advective-diffusive

problems. In general, when using the highest possible Courant number (one

in our implementation), 3DFLUX presents a noticeably higher accuracy than

the currently available numerical schemes having the same convergence rate.

This is owed to the stencil presented in this article – a stencil that allows an

accurate three-dimensional interpolation of the solution over a computational
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cell. Unexpectedly, at low Courant numbers, 3DFLUX appears to be super-

convergent and, depending on the problem solved, is fourth-order or higher in

space.

3DFLUX is very attractive for research-oriented or high-end engineering

applications because it does not require dimensional splitting and generates

highly accurate solutions at a realistic computational cost. We successfully

tested 3DFLUX’s potentials by simulating a complex flow where a scalar is

released from a line source in a fully turbulent channel flow. We showed a

remarkable agreement between the statistics produced by 3DFLUX and those

measured in an experiment.
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CHAPTER 3

Evolution of the scalar dissipation rate emitted
from a concentrated line source in turbulent

channel flow

3.1 Preface

As discussed in the previous chapter, a novel numerical scheme (3DFLUX)

was developed to solve the advection-diffusion equation. 3DFLUX can be used

to calculate quantities that are not accessible experimentally. In the context

of the present work, such quantities include simultaneous measurements of

temperature derivatives and cross-derivatives, measurement of the temperature

fluctuations in the vicinity of walls, etc.

Reaping the complementary benefits of experiments and numerical sim-

ulations, both a quantitative description as well as a physical understanding

of the phenomena that govern turbulent mixing are described in this chap-

ter. The statistical analysis reported herein focuses on the scalar dissipation

rate of the temperature field generated by a line source in a turbulent channel

flow. The open-circuit high-aspect-ratio channel designed for the experiments

is shown in figure 3–1 and examples of the direct numerical simulation are

shown in figure 3–2.

One-dimensional spectra and probability density functions of temperature

derivatives are investigated to study the evolution of the small-scale anisotropy

within the thermal plume. The key role played by the velocity gradients near
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Figure 3–1: Channel and test section in which the experiments were conducted.

the wall is discussed in detail. To the best of my knowledge, such a statistical

analysis, performed by means of both numerical simulations and experiments

has no analog in the scientific literature.
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Figure 3–2: Examples of the direct numerical simulation. Top view of the
instantaneous scalar field for two line source locations.
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3.2 Abstract

The dissipation rate, εθ, of a passive scalar (temperature in air) emitted

from a concentrated source into a fully developed high-aspect-ratio turbulent

channel flow is studied. The goal of the present work is to investigate the

return to isotropy of the scalar field when the scalar is injected in a highly

anisotropic manner into an inhomogeneous turbulent flow at small scales. Both

experiments and direct numerical simulations (DNSs) are used to study the

downstream evolution of εθ for scalar fields generated by line sources located

at the channel centreline (ys/h = 1.0) and near the wall (ys/h = 0.17). The

temperature fluctuations and temperature derivatives were measured by means

of a pair of parallel cold-wire thermometers in a flow at Reτ = 520. The DNSs

were performed at Reτ = 190 using a spectral method to solve the continuity

and Navier-Stokes equations, and a flux integral method (Germaine et al.,

2013, 3DFLUX) for the advection-diffusion equation. The statistics of the

scalar field computed from both experimental and numerical data were found

to be in good agreement, with certain discrepancies that were attributable

to the difference in the Reynolds number of the two flows. The return to

isotropy of the small scales is never perfectly observed in any region of the

channel for the downstream distances studied herein. However, a continuous

decay of the small-scale anisotropy is observed for the scalar field generated

by the centreline line source in both the experiments and DNSs. The scalar

mixing is found to be more rapid in the near-wall region, where experimental
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results exhibit low levels of small-scale anisotropy. However, the DNSs, being

performed at lower Reτ , show that persistent anisotropy can also exist near the

wall, independently of the downstream location. The role of the mean velocity

gradient in the production of εθ (and therefore anisotropy) in the near-wall

region is highlighted.

3.3 Introduction

The ability of turbulence to mix one or more scalars within a fluid is of

particular relevance to a variety of engineering applications including combus-

tion, pollution dispersion and heat transfer. Using premixed combustion as an

example, reactions occur only if the fuel and oxidizer are sufficiently mixed at

the molecular level prior to ignition. However, our comprehension and ability

to predict turbulent mixing are limited because the fluid mechanics that gov-

erns turbulent mixing involve multi-scale phenomena for which the details are

not yet fully understood.

The turbulent mixing process stretches and stirs the scalar field, which

serves to increase the scalar gradients. The scalar fluctuations are then smoothed

out by the molecular mixing that principally occurs at the smallest scales of

the turbulence. The rate of destruction of the scalar variance is quantified by

the scalar dissipation rate, εθ(≡ α〈(∂θ/∂xi)2〉. It is the only term in the scalar

variance budget that must be non-zero in every turbulent flow. Consequently,

εθ is omnipresent and of critical importance to the description of turbulent

scalar fields. Furthermore, it is a quantity whose primary contributions derive

from the smallest scales of the scalar field.

The predominant theory related to turbulent scalar mixing, Kolmogorov

Obukhov Corrsin (KOC) theory, predicts that the small scales should be

isotropic and independent of the large scales of a scalar field; the latter being

anisotropic in most cases. However, it has been shown that departure from
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isotropy occurs at the small scales of the scalar field when its large scales are

anisotropic, which puts KOC phenomenology into question (Warhaft, 2000).

Investigations into the local isotropy of the scalar field (and, in particu-

lar, violations thereof) have been widely reported in the literature (e.g. Sreeni-

vasan, 1991). However, the large majority of these focussed on the evolution of

a scalar field injected into a turbulent hydrodynamic field at large scales. Fur-

thermore, in many cases, the underlying flow was homogeneous and isotropic.

The assumption of homogeneity considerably simplifies the analysis and yields

interesting similarities between the scaling of the velocity and scalar fields

when the injection occurs at large scales (Corrsin, 1952; LaRue & Libby, 1981;

Ma & Warhaft, 1986; Danaila et al., 2012). However, such a configuration is

not representative of real flows, which are generally inhomogeneous and exhibit

discrepancies between the scales of the velocity and scalar fields. Furthermore,

only a subset of the previous work has focussed on the dissipation rate of the

scalar variance, even though εθ remains one of the less understood (yet most

important) quantities within a turbulent flow.

The small-scale injection of a scalar by means of a point or line source

in an inhomogeneous flow is of relevance to multiple engineering applications,

including the transport of a plume emitted by a smokestack in the atmospheric

boundary layer, or the mixing of chemical species injected into a combustion

chamber. Given the importance of such applications, it is somewhat surprising

that relatively few studies of turbulent scalar mixing resulting from small-scale

injection and focusing on the scalar dissipation rate, εθ, have been undertaken.

This fact motivates the research herein.

The main objective of the present work is to further investigate and un-

derstand the evolution of the scalar field when injected in a highly anisotropic

manner at small scales in an inhomogeneous turbulent flow. In measuring the
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evolution of εθ downstream of the source, we aim to further our understanding

of the details of the scalar mixing process, which will improve our effectiveness

in predicting the phenomena that rely on this process. In many cases, local

isotropy is invoked when estimating εθ. When the scalar is injected at small

scales, such an assumption is clearly inaccurate near the source. Furthermore,

though this assumption may increase in validity with increasing distance from

the source, the rate at which it does so is an important factor. Therefore,

particular attention will be paid to the evolution of the three different com-

ponents of the scalar dissipation rate: εθx ≡ α〈(∂θ/∂x)2〉, εθy ≡ α〈(∂θ/∂y)2〉

and εθz ≡ α〈(∂θ/∂z)2〉. We focus our attention on the relative contributions

of εθx , εθy and εθz to εθ, and therefore on the evolution of this anisotropy. To

this end, all three components of the scalar dissipation rate have been studied

both, experimentally and by means of numerical simulations.

The remainder of this paper is organized as follows. The relevant liter-

ature is reviewed in §3.4. Then, the experimental apparatus and details of

the numerical simulations are reported, respectively, in §3.5 and §3.6. Results

are presented in §3.7, comparing, as often as possible, the experimental and

numerical results. Large-scale statistics (mean and root-mean-square (r.m.s.)

temperatures) are also compared to the previous results of Lavertu & Myd-

larski (2005) to validate our measurements. The evolution of the scalar dissi-

pation rate and its three components at several locations are then reported in

detail. Finally, conclusions are presented in §3.8.

3.4 Literature review

The theoretical foundation of (hydrodynamic) turbulence was proposed

by Kolmogorov (1941). This work, commonly referred to as K41, introduces

several concepts necessary to the description of the transport and dissipation of

turbulent kinetic energy in a turbulent flow. As there is also significant interest
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in heat and mass transfer, Kolmogorov’s arguments were extended by Obukhov

(1949) and Corrsin (1951) to the transport of passive scalars, referred to as

the Kolmogorov Obukhov Corrsin (KOC) phenomenology. At sufficiently high

Reynolds numbers (Re = UL/ν, where U is an average fluid velocity, L is some

characteristic length of the system, and ν is the kinematic viscosity of the fluid)

and Péclet numbers (Pe = UL/α or UL/D, where α is the thermal diffusivity

of the fluid and D the scalar (molecular) diffusivity of a chemical species in

the fluid), it supposes that there is a decay of any large-scale anisotropy when

smaller and smaller scales are considered, the scalar dissipative scales returning

to a statistically isotropic state. The smallest hydrodynamic and scalar scales

(η and ηθ, respectively) are related by the Prandtl number (Pr = ν/α) or

Schmidt number (Sc = ν/D). (Subsequently, in the interest of concision, we

will assume the scalar under consideration is temperature in our discussions.)

The relationship between η, ηθ and Pr depends on whether Pr > 1 or Pr < 1.

Note that ηθ and η are of the same order of magnitude in the air flow studied

herein, where Pr = 0.7 ≈ O(1). Therefore ηθ = ηPr−3/4 (Corrsin, 1951) where

η = (ν3/ε)1/4 and where ε ≡ 2ν〈sijsij〉 is the dissipation rate of turbulent

kinetic energy. (sij ≡ 1
2
(∂ui/∂xj + ∂uj/∂xi) is the fluctuating strain rate.)

The transport of a scalar quantity injected by a line source in a turbulent

flow has been studied since the early experiments of Taylor (1935) and Uberoi

& Corrsin (1952). Measurements taken downstream of a heated line source

in homogeneous, isotropic turbulence were carried out by Warhaft (1984) and

Stapountzis et al. (1986). The authors showed that, in isotropic turbulence,

the development of the mean thermal wake can be divided into three stages

corresponding to different times t: i) a molecular diffusive range (t� α/〈v2〉,

where 〈v2〉 is the velocity variance in the transverse direction), in which the

width of the mean temperature profile, σmean, increases as
√
t, ii) a turbulent
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convective range (α/〈v2〉 � t� tL, where tL is the Lagrangian integral time-

scale) in which the growth of σmean is linear in time, and iii) a turbulent diffu-

sive range (t� tL) where σmean is proportional to t(2−n)/2 (with n ≈ 1 being

the decay exponent of the velocity field). Subsequently, Karnik & Tavoularis

(1989) investigated the evolution of a thermal plume in a homogeneous (but

non-isotropic) turbulent shear flow. In contrast with grid turbulence, there

is a continuous supply of kinetic energy from the mean shear to the turbu-

lence, ensuring that the turbulence does not decay in this flow. The authors

observed that the decay of the scalar fluctuations close to the source was not

very different from that observed in isotropic turbulence. However, farther

downstream, the mean shear affected the scalar statistics, imposing the effect

of its large-scale anisotropy on the evolution of the scalar. Chung & Kyong

(1989) also investigated the dispersion of a turbulent temperature field be-

hind a line source in a homogeneous turbulent shear flow. Their goal was to

provide experimental data for the assessment of third-order transport models.

The mean and r.m.s. scalar profiles were found to exhibit nearly Gaussian

distributions except for a minor degradation in the center region of the r.m.s.

temperature profile. Livescu et al. (2000) used Direct Numerical Simulations

(DNSs) to study the development of the scalar plume produced by a line source

in decaying homogeneous, isotropic turbulence. Their study focused on a sta-

tistical analysis of moments of different orders and confirmed the experimental

results of Warhaft (1984).

Although previous work in homogeneous flows has drastically increased

our understanding of the mixing of scalars emitted from sources at small scales,

their applicability to engineering and natural flows remains somewhat limited

given that almost all “real” flows (e.g. jets, boundary layers, duct flows) are

inhomogeneous. Consequently, scalar dispersion within inhomogeneous flows
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has also been studied. To this end, Fackrell & Robins (1982) investigated

the evolution of a thermal plume emitted from a point source in a turbulent

boundary layer. The authors reported measurements of the variance, inter-

mittency, peak concentration values, probability density function and spectra

of the scalar field. They showed that most of the fluctuations are produced in

the vicinity of the source, and that the maximum amplitude of the fluctuations

is source-size dependent. Raupach & Legg (1983) studied the dispersion of a

thermal plume emitted in a turbulent boundary layer from a line source. Their

work was focused on testing first- and second-order closure models. To this end,

they measured the dissipation rate of the temperature fluctuations by assum-

ing local isotropy and using Taylor’s hypothesis (εθiso ≈ (3α/〈U〉2)〈(∂θ/∂t)2〉,

where angular brackets represent averaged quantities). They reported that

their measurements of εθ were 20% below its value inferred from the scalar

variance budget. Paranthoën et al. (1988) studied the evolution of the tem-

perature field downstream of a line source in a turbulent boundary layer and in

a planar jet. They reported mean and r.m.s. profiles of the temperature field

and proposed a rescaling scheme based on the temporal integral Lagrangian

scale of the vertical velocity fluctuations. The scheme was shown to be efficient

in rescaling the mean profiles, but not the r.m.s. profiles. Tong & Warhaft

(1995) studied the dispersion and mixing of temperature fluctuations emitted

in the self-similar region of an axisymmetric turbulent jet from two heated

annular (ring) sources. The two sources were used to study the mixing of two

independently introduced scalar fields. Their results contrasted with those ob-

tained in grid turbulence (Warhaft, 1984), where the mixing and dispersion was

slower. The authors also showed that far downstream of the jet exit, the scalar

field becomes independent of its method of introduction into the flow. Tong

& Warhaft (1995) also examined the relationship between the integral-scale
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and dissipation-scale fluctuations in the far-field. Even though they reported

that large- (θ2) and small-scale (∆θ2) quantities become less coupled as the

Reynolds number increases, conditional expectations of ∆θ2 on θ exhibited a

significant dependence of the former on the latter. Rosset et al. (2001) investi-

gated the transport of temperature behind a line source in a turbulent jet and

a turbulent boundary layer over a flat plate. The authors were particularly

interested in the behavior of the scalar dissipation rate, εθ. Near the source,

they observed a large anisotropy of the dissipative scales, which was explained

by the high temperature gradient imposed by the source and by the flapping

of the thermal wake. This anisotropy persisted downstream in the off-center

region of the plume. However, in the central part of the plume, they reported

a return to isotropy of the different components of εθ. Rosset et al. derived a

model to estimate the return-to-isotropy time-scale and proposed arguments

to explain this phenomenon. Nevertheless, they ultimately remarked that the

details of the process remain to be understood.

One subset of inhomogeneous flows is of particular interest. Fully-developed,

turbulent duct flows, of circular or high-aspect-ratio cross-sections, are only

inhomogeneous in one (the wall-normal) direction. Such a characteristic sim-

plifies the analysis given that the inhomogeneity of the underlying velocity

field is limited to one direction (as opposed to two or three). Brethouwer et al.

(1999) used DNS to study the turbulent mixing of a passive scalar in fully-

developed turbulent pipe flow. In their work, the scalar was released from a

point source at the centreline of the pipe. They presented large-scale statistics,

i.e., mean and r.m.s. concentration profiles, turbulent fluxes and probability

density functions (PDFs) which, in this case, at the center of the flow, com-

pared favorably to experimental data from grid-turbulence. The release of a
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scalar field from a line source in a turbulent channel flow has also been in-

vestigated in the experiments of Lavertu & Mydlarski (2005). The authors

studied the evolution of the temperature field in turbulent channel flow. The

line source was oriented in the spanwise (z) direction resulting in a thermal

plume that was statistically two-dimensional. The authors reported large-scale

statistics measured at different downstream locations in the scalar plume and

for several wall-normal locations of the line source. They observed significant

differences from the results in grid turbulence, which were attributed to the

inhomogeneity of this flow in the wall-normal direction. Vrieling & Nieuwstadt

(2003) and Costa-Patry & Mydlarski (2008) both studied the passive scalar

mixing downstream of two line sources in fully-developed turbulent channel

flow using DNSs and experiments, respectively. They showed that mean tem-

perature values can be inferred from measurements downstream of a single

source. However, the combined variance of two sources cannot be obtained

by adding the variance of the individual sources. In contrast with Lavertu &

Mydlarski (2005) and Costa-Patry & Mydlarski (2008), Bakosi et al. (2007)

used probability density function methods and the IECM (interaction by ex-

change with the conditional mean) model to investigate the dispersion of a

passive scalar released continuously from a concentrated source in a turbulent

channel flow. One-point statistics of the scalar field were compared to the DNS

data of Abe et al. (2004) and the experimental data of Lavertu & Mydlarski

(2005). The width of the mean scalar profiles obtained with the IECM model

were larger than those measured in the experiments at different downstream

locations from the source. Boppana et al. (2012) performed Large-Eddy Sim-

ulations (LESs) of the dispersion of a scalar from a line source in a turbulent

channel flow. They reported mean and r.m.s. profiles and PDFs of the scalar

fluctuations. Their results were also compared to the experiments of Lavertu
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& Mydlarski (2005), which exhibited discrepancies for both the width and lo-

cation of the profile’s peak. Note that in contrast to Bakosi et al. (2007), the

widths of the mean profile computed by Boppana et al. (2012) were smaller

than those obtained from Lavertu’s experiments. In addition, Boppana et al.

(2012) observed a double peak in the r.m.s. profiles at downstream locations

from the source (x/h > 7.4) that were not reported in the experiments. PDFs

of both the LESs and experiments were in good agreement, except for the

thermal fields generated by the centreline source. Lepore & Mydlarski (2011)

studied the downstream evolution of a three-dimensional thermal plume in the

turbulent channel flow released by a line source oriented in the wall-normal di-

rection. They examined in detail the mean and fluctuating temperature fields

at different locations in the thermal plume to highlight the differences between

lateral and transverse dispersion. Lastly, Mydlarski et al. (2007) focused on

the dissipation rate of a scalar field emitted from a line source in a turbulent

channel flow. The authors confirmed that small-scale anisotropy is amplified

at the interfaces between the plume and the ambient fluid. They reported that

a large anisotropy occurs in regions of high turbulent intensity and their results

showed that there may exist a competition between mechanisms that amplify

and destroy anisotropy. However, they did not directly measure εθ, but rather

inferred it from the scalar variance budget (given certain assumptions). In

contrast to their work, the present work directly measures (all three compo-

nents of) the scalar dissipation rate, using both experiments and numerical

simulations.

3.5 Experimental apparatus

The experiments were conducted in the same open-circuit channel as the

one used by Lavertu & Mydlarski (2005), Costa-Patry & Mydlarski (2008) and
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Lepore & Mydlarski (2011). The air flow is supplied by a Hudson Buffalo cen-

trifugal blower powered by a 7.5 h.p. electric motor whose speed is monitored

by an ABB ACS 600 controller. The air flow is filtered at the inlet of the motor

to prevent particles (of diameter greater than 3 µm) from entering the channel.

A flexible rubber coupling is used to join the blower output to the entrance

of the flow conditioning section to minimize the transmission of any blower

vibrations to the flow conditioning section. The latter consists of a wide-angle

diffuser, a settling chamber and a contraction. After exiting the contraction,

the flow that enters the channel is uniform and has a low-turbulence-intensity

(0.25%).

The test section is 8 m long and has a large aspect ratio, i.e. the height

of the channel in the spanwise (z) direction is large (1.1 m) compared to its

width (2h = 0.06 m) in the wall-normal (y) direction. Consequently, the flow

is statistically independent of z, away from the top and bottom walls of the

channel. The development of the flow is accelerated by the addition of two

3 mm diameter cylindrical rods (located 3 mm from each wall, at the entrance

of the test section) that trip the boundary layers that form on the test section

walls. At the downstream end of the test section, where the measurements are

recorded, the flow is fully-developed with a mean flow in the downstream (x)

direction and zero mean wall-normal (V ) and lateral (W ) velocities. In the

fully developed region, the flow is statistically stationary and one-dimensional

with velocity statistics depending only on the wall-normal distance (y). Note

that such a flow is statistically symmetric about the mid-plane. Lastly, 7.5 cm

of honeycomb mesh (of 5 mm cell size) is used at the outlet to prevent per-

turbations from outside the channel from being communicated upstream, into

the channel. The flow conditions are listed in table 3–1.
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Exp. DNS

〈U〉y/h=1 [m/s] 5.3 -
urmsy/h=1

[m/s] 0.22 -
uτ [m/s] 0.26 -
ηy/h=1 [m] 0.28× 10−3 -
Re(= 〈U〉y/h=1h/ν) 10600 3600
Reτ (= uτh/ν) 520 190
ys/h = 0.17 y+

s = 88 y+
s = 33

ys/h = 1.0 y+
s = 520 y+

s = 190

Table 3–1: Flow parameters. Properties of the flow considered in the experi-
ments and numerical simulations, and source locations in terms of wall units.
ν = 15× 10−6 m2/s.

In the test section, the scalar (temperature) is injected into the flow by

heating a fine line source. The latter is a 0.127 mm diameter Ni-Cr wire ex-

tended across the spanwise direction of the test section at wall-normal locations

of ys/h = 1.0 (channel centreline) and ys/h = 0.17 (near-wall region). The

wire was heated electrically by a DC power supply and the power consumption

was continuously monitored so that the energy released into the flow remained

equal to 45 W/m.

The temperature fluctuations, θ, and their dissipation rate, εθ, were mea-

sured by means of cold-wire thermometry. The sensors were inserted into the

channel from its outlet using a (915 mm-long) probe support (TSI-1155-36).

The accurate positioning of the sensor in the wall-normal direction was en-

sured by means of a precision transversing mechanism driven by computer

controlled stepper motor. The minimum step increment was 0.01 mm. The

sensor consisted of two parallel 90%–platinum/10%–rhodium wires of 0.63 µm-

diameter mounted on a TSI 1244 probe. Variations of the sensor temperature

are linearly proportional to its electrical resistance (over small ranges) and are

measured by a cold-wire thermometry circuit designed by Lemay & Benaïssa
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(2001). The output signals of the cold-wire thermometer were i) amplified

and filtered by a Krohn-Hite 3384 8-pole filter, and ii) digitized using a 16 bit

(±5V ) National Instruments PCI 6036E data acquisition card. The acquisition

procedure was undertaken using LabVIEW virtual instruments. Depending on

the wall-normal location of the probe, the sampling frequency (2.5 times the

low-pass filter frequency) was in the range [5− 10] kHz and the sampling time

was fixed at 200 s for each locations. The length-to-diameter ratio of the cold-

wire sensors was approximately 800 (i.e. lwire ≈ 0.5 mm) and its frequency

response was approximately 5 kHz when operated in a 5 m/s flow. Note that

the temporal resolution of the wire was sufficient given that the Kolmogorov

frequencies, fη = 〈U〉/(2πη), of the flow studied herein did not exceed 4 kHz.

In addition, the (temporal resolution) correction proposed by Lemay & Be-

naïssa (2001) was applied to the acquired data. However, the effect of this

correction was relatively small as it increased the estimate of the tempera-

ture dissipation by less than 1% when measured at the farthest downstream

location and by 5% when measured at the location closest to the line source.

The scalar derivative (∂θ/∂x) in the downstream direction was estimated

using Taylor’s hypothesis in conjunction with the time derivative of temper-

ature (∂θ/∂t). This measurement required only a single cold-wire, whereas,

two wires were needed to estimate the derivatives (∂θ/∂y) and (∂θ/∂z) in the

wall-normal and spanwise directions, respectively. Zhou et al. (2003) investi-

gated the effects of the separation between the two wires and found that the

spectra of temperature derivatives are significantly affected by the electronic

noise contamination from one wire to the other when the separation is smaller

than 3η. In addition, they recommended the use of a correction method simi-

lar to that of Wyngaard (1969) when the wire separation was larger than 3η.

As a consequence, we designed our sensors so that the separation between the
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two wires was nominally, 3η (= 0.75 mm), being slightly smaller than 3η at

the channel centreline, and slightly larger near the wall, as η is a function of

wall-normal position.

3.6 Numerical simulations

Direct numerical simulations were also performed to replicate the exper-

iments described in §3. The simulations solved the continuity, Navier-Stokes

and advection-diffusion equations, which govern the hydrodynamic and the

scalar fields over a numerical domain representing a channel delimited by two

parallel, flat plates. The boundary conditions for the velocity field are peri-

odic in the streamwise (x) and spanwise (z) directions, and no-penetration and

no-slip conditions at the wall. The streamwise mean pressure gradient that

drives the mean flow in the x-direction is adjusted dynamically to maintain

a constant mass flux through the channel. The boundary conditions for the

scalar field are periodic in the spanwise (z) direction, inflow/outflow at the in-

let/outlet of the channel, and adiabatic (no-flux) at the walls. The continuity

and Navier-Stokes equations are solved first using a spectral method, whereas

the advection-diffusion equation is subsequently solved using a flux-integral

method.

Spectral methods have become a classical tool to simulate turbulent chan-

nel flows. We therefore took advantage of their high-accuracy and kinetic en-

ergy conservation properties to solve the hydrodynamic field. However, the use

of a spectral scheme is not suitable for the solution of the scalar field considered

herein because the scalar is injected by means of a line source, i.e. a singularity

that introduces a sharp-gradient in the scalar field. It is well known that, in

the presence of sharp-gradients, the convergence rate of spectral schemes dete-

riorates to first-order when spurious oscillations develop in the vicinity of the

source (Gibbs phenomenon). In addition, and in contrast to the hydrodynamic
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field, the scalar field is not homogeneous in the streamwise direction. Spectral

methods lose their attractiveness when solving non-periodic problems. (See,

for example, Simens et al., 2009, for details.)

To solve the three-dimensional continuity and Navier-Stokes equations,

the code named “Channelflow” was used (Gibson et al., 2008; Gibson, 2010b,

http://channelflow.org/). Channelflow, licensed under the GNUGPL, uses

a spectral discretization in space (Fourier × Chebyshev × Fourier) and a finite

difference discretization in time (Runge-Kutta third-order). We implemented a

flux-integral scheme, 3DFLUX, to solve the advection-diffusion equation (Ger-

maine et al., 2013). 3DFLUX is a high-order, three-dimensional, conservative,

monotonicity preserving numerical solver. It is nominally third-order in space

and second-order in time. The scalar field is injected via a line source that is

simulated by a string of nodes having a constant source term and located on

a straight line, oriented parallel to the z-axis. Note that, as a consequence of

the line source orientation, the scalar field is statistically homogeneous in the

spanwise direction.

The velocity field is precomputed and then used as an input to solve the

advection-diffusion equation. In Channelflow, the velocity field has a spectral

representation with a resolution given by its number of Fourier and Chebyshev

modes. In 3DFLUX the computational domain is discretized with a number

of non-overlapping control volumes or cells. The scalar field is discretized

at the centre of each cell, whereas the components of the velocity fields are

stored at the centre of the faces of each cell (staggered grid). The velocity field

produced by Channelflow is passed to 3DFLUX by interpolating the spectral

representation of the velocity field on each face of the 3DFLUX grid.

The interpolation of the divergence-free velocity field from a spectral to a

finite-volume representation is a crucial and delicate step. Such interpolations
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velocity scalar scalar
ys/h = 1.0 ys/h = 0.17

Lx × Ly × Lz 2πh× 2h× πh 2πh× 2h× πh 2πh× 2h× πh
L+
x × L+

y × L+
z 1187× 378× 594 1187× 378× 594 1187× 378× 594

Nx ×Ny ×Nz 256× 193× 192 514× 195× 194 258× 390× 194

∆x+,∆y+,∆z+ 4.64, 0.025− 3.1, 3.1 2.32, 1.96, 3.1 4.64, 0.98, 3.1

∆x∗,∆y∗,∆z∗ at y/h = 1.0 1.25, 0.83, 0.84 − −
∆x∗,∆y∗,∆z∗ at y/h = 0.17 2.40, 0.88, 1.60 − −
∆x•,∆y•,∆z• at y/h = 1.0 − 0.50, 0.42, 0.66 0.99, 0.21, 0.66

∆x•,∆y•,∆z• at y/h = 0.17 − 0.95, 0.80, 1.27 1.91, 0.40, 1.27

t+sam 2770 665 665

Table 3–2: Details of the numerical grids for the computation of velocity, and
scalar fields with two different source locations. The superscript “+” indicates
the normalization by the viscous length (ν/uτ ) or time (ν/u2

τ ) scale, and the
superscripts “∗” and “•” are used for the normalization by the Kolmogorov (η)
and Corrsin (ηθ) length scales, respectively, estimated at y/h = 1.0 and 0.17
as specified.

have been the subject of several publications in the last decade (see for example

Balsara, 2001; Li & Li, 2004; Chamecki et al., 2008). The method proposed

by Chamecki et al. (2008) is efficient only when the grids of the two different

discretization methods are identical, and therefore not applicable herein. We

devised our own method in which we first used a spectral (exact) interpolation

to compute the value of the velocity components at nine points on each face,

i.e. one at the center, four at the corners, and four at the mid-side of the

edges of the faces. Then, we computed the value of each velocity component

at the face of each cell by averaging the nine interpolated values. Finally,

we applied a very small correction to the u−component of the velocity field

to guarantee the exact divergence-free condition. Note that i) the choice of

the u−component is arbitrary (it could have been the w−component), and ii)

this correction has a minuscule impact on the velocity field, as it modifies the

interpolated instantaneous values of the u−component by less than 0.01%.
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The simulations of the velocity and scalar fields were both performed

without turbulence models, by resolving the entire range of spatial scales. The

computational conditions are reported in table 3–2 for the (i) hydrodynamic

field, and (ii) scalar field for two source locations (ys/h = 1.0 and ys/h = 0.17).

These DNSs require that the computational domain be large enough to capture

the integral scales and the spatial resolution be small enough to resolve, as

accurately as possible, the dissipative scales. On the one hand, the large scales

are correctly represented when the two-point correlations in the streamwise and

spanwise directions are zero, respectively, at the half-length and half-height of

the domain (Kawamura et al., 1998; Moser et al., 1999). The domain size

selected herein is the same as in Kawamura et al. (1998), Moser et al. (1999)

and Schwertfirm & Manhart (2007). On the other hand, the Kolmogorov (i.e.

smallest) length scale should ideally be resolved. However, it has been claimed

that this requirement is often too stringent. Moin & Mahesh (1998) noted

that the smallest resolved length scale is required to be on the order of η but

not equal to η. They further reported that very good agreement of large-scale

statistics can be obtained between DNSs and experiments even though the

Kolmogorov scales are not fully resolved in the simulation. Kawamura et al.

(1998) validated the resolution of their simulations by showing substantial

drop-offs in the one-dimensional energy spectra at high-wave numbers.

Traditionally, the goal of most experiments is to resolve the scales given

by η. This being said, recent work has taken advantage of the constantly

increasing computational power to simulate turbulent scalar mixing at spatial

resolutions finer than η. For example, Schumacher et al. (2005) studied the fine

structures of homogeneous and isotropic turbulent scalar mixing using high-

resolution simulations (the grid spacing being smaller than η by a factor of

two). They showed that when large fluctuations of ε exist, a spatial resolution
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based on η (defined using its average value) incorrectly predicted the small-

scale statistics. Kozuka et al. (2009) and Galantucci & Quadrio (2010) both

performed DNSs of turbulent scalar mixing in channel flows at high resolution.

Galantucci & Quadrio (2010) carried out three DNSs at increasing spatial

resolutions that they labelled Low, Medium and High. The Low resolution

is comparable to the resolution of most wall-turbulence DNSs performed to

date (with passive scalars) whereas, in the High resolution simulations, all cell

sizes are consistently smaller than ηw, the averaged Kolmogorov length scale

evaluated at the wall. The spatial resolution denoted Medium was midway

between the two other resolutions. The authors reported several statistics

pertaining to the rate of dissipation of the scalar field (mean, variance, and

PDFs of εθ). They showed that the estimates of εθ can increase by 5% when

using the High or Medium resolutions instead of the Low one. The resolutions

used for the simulations presented herein (see table 3–2) are comparable to the

Medium resolution used by Galantucci & Quadrio (2010).

To investigate the resolutions of the smallest scales, we plotted normalized

(one-dimensional) dissipation spectra for both the simulations and experiments

in figures 3–14 and 3–15. These figures show excellent agreement between the

two sets of results, confirming that the numerical simulations are capable of

reproducing the dissipative scales measured in the experiments.

To compute the hydrodynamic field, uniform meshes were used in the x-

and z-directions whereas a non-uniform mesh (Chebyshev distribution) was

adopted in the y-direction. As shown in table 3–2, two different grids were

used to discretize the scalar field, depending on the source location. When

the source was at the centreline, i.e. ys/h = 1.0, a quasi-homogeneous grid

was used given that the scalar plume did not interact with the walls (for the

downstream locations studied herein). When the source was near the wall
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(ys/h = 0.17), the grid resolution was halved in the y-direction to capture the

smallest wall-normal fluctuations of the scalar field that occur in the vicinity of

the walls. The spatial resolution (∆x,∆y,∆z) of the scalar field generated by

the centreline source was, for either grid, smaller than or equal to the Corrsin

scale. The spatial resolution of the scalar field generated by the near-wall

source is, in the worst case, less than twice the Corrsin scale in the x-direction.

However, note that ∆y is always smaller than the Corrsin scale.

Lastly, to study the evolution of the scalar field at the farther downstream

locations, we adopted a strategy that consisted in connecting several channels

in series and computing the solution for the scalar field sequentially, i.e. the

outflow of the first channel became the inflow of the second one, and so on.

Note that the hydrodynamic field is the same in all channels because of its

periodic boundary conditions. In this paper, we limited our computation to

two channels, i.e. (x/h)max = 2Lx/h, where Lx is the length of one channel in

the x-direction.

3.7 Results

The results are divided into three sections. A few results pertaining to the

velocity field are first reported, followed by a thorough discussion of large-scale

temperature statistics. Lastly, the small-scale statistics, which comprise the

vast majority of the results presented herein, are discussed. Significant em-

phasis is placed on the evolution of the dissipation rate of the scalar variance,

as well as that of its components.

3.7.1 Velocity field

To be consistent with Lavertu & Mydlarski (2005), the experiments were

carried out (in the same experimental facility) at Reτ = 520. However, the

simulations were performed at a lower Reynolds number (Reτ = 190) to re-

solve all scales while keeping the flow turbulent and the computational effort
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feasible. Mean velocity profiles in fully turbulent channel flow from both the

experiments and DNSs are plotted in figures 3–3(a) and compared to the nu-

merical results of Moser et al. (1999) (Reτ = 180 and 590) and Abe et al.

(2001) (Reτ = 180 and 640). The experiments of Hussain & Reynolds (1975)

(Reτ = 640) are also include for comparison. The mean velocity profile ob-

tained from the present DNS is in very good agreement with those measured

in flows at Reτ = 180. As noted by Kim et al. (1987), even if Reτ = 180 is

a relatively low Reynolds number (for a turbulent flow), both linear and loga-

rithmic regions exist and are distinct. Small differences are observed between

the experiments and the DNSs. However, these differences can be attributed

to the difference in Reynolds number of the flows – a conclusion that is con-

firmed by the good agreement between the present experimental results and

the higher Reynolds number simulations of Moser et al. (1999) and Abe et al.

(2001). These simulations also exhibit smaller values of u+ for a given location

y+ in the logarithmic region.

The root mean square of the velocity fluctuations is plotted in figure 3–

3(b). The data of Hussain & Reynolds (1975), Moser et al. (1999) and Abe

et al. (2001) are once again reported for comparison, where available. The

values of the three components (u+
rms, v

+
rms and w+

rms) increase with Reτ and

are consistent with differences in the Reynolds number between the present

experiments (Reτ = 520), Moser et al. (1999) (Reτ = 590) and Abe et al.

(2001) (Reτ = 640). Furthermore, the present DNS (Reτ = 190) agrees very

well with the results of Moser et al. (1999) and Abe et al. (2001) (both with

Reτ = 180). In short, figure 3–3(b) shows good agreement between the present

and previous data obtained at similar Reτ . (Note that the peak value of u+
rms

measured by Hussain & Reynolds (1975) is somewhat low compared the other

results. This discrepancy may be justified by the difficulties in performing these
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(a) (b)

Figure 3–3: Velocity profiles in fully turbulent channel flow. Mean (a) and
r.m.s. (b) velocity profiles (normalized by uτ ) from experiments (Reτ = 520,
(•)), DNSs (Reτ = 190, (◦)) and compared to the DNSs of Abe et al. (2001)
(Reτ = 180, (- - -) and Reτ = 640, (—)) and Moser et al. (1999) (Reτ = 180,
(2) and Reτ = 590, (�)), and the experiments of Hussain & Reynolds (1975)
(Reτ = 640, (+)).

early near-wall measurements). Finally note that original and interpolated

velocity field are indistinguishable. Consequently only the former has been

plotted.

3.7.2 Large-scale statistics of the scalar field

In this section, large-scale statistics of the scalar field from experiments

and numerical simulations are analyzed and compared with those obtained in

Lavertu & Mydlarski (2005). As the experiments were performed at a different

Reynolds number than that of the numerical simulations, we normalized the

downstream location (x/h) by the ratio (urms/〈U〉)−1 where urms and 〈U〉 are

the r.m.s. and mean velocities measured at the centreline. Note that this

normalization is equivalent to normalizing the flight time from the source by

(an approximation of) the integral time scale (tL ≈ h/urms)

t/tL =
(x/〈U〉)
(`/urms)

≈ (x/〈U〉)
(h/urms)

=
(x/h)

(〈U〉/urms)
. (3.1)
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The mean temperature profiles at three downstream locations behind the

line source (t/tL = 0.08, 0.2 and 0.4) are shown in figures 3–4(a) and 3–4(b)

for the ys/h = 1.0 and 0.17 source locations, respectively. Given that mean

temperature excesses can be difficult to measure accurately due to drift in

the free-stream temperature, we used the technique proposed in Lepore &

Mydlarski (2011), which consists of sequentially measuring the free-stream

temperatures at the same location, immediately after measuring the mean

temperatures, to estimate the “instantaneous” temperature mean excess, which

accounts for drifts in the free-stream (i.e. ambient, room) temperature.

For the centreline source location (ys/h = 1.0), excellent agreement be-

tween the experiments and numerical simulations is observed, and the mean

profiles are well approximated by Gaussian curve fits. We note that the large-

eddy simulations of Boppana et al. (2012), carried out at Reτ = 520 (i.e., the

same value as the experiments herein), did not agree as well with the experi-

ments of Lavertu & Mydlarski (2005) (that give very similar results to those

herein – to be discussed shortly in the context of figures 3–6-3–9) and under-

estimated the plume width – see their figure 10(c). This presumably derives

from their under-resolved transverse velocity fluctuations – they obtained val-

ues of 〈v2〉 at y/h = 1 that were 20% lower than the those obtained by Moser

et al. (1999) at Reτ = 590 – see figure 5 in Boppana et al. (2012). Although

a 20% underestimate of 〈v2〉 may not seem egregious, the observed excellent

agreement between the present DNS and experiments implies that accurate

estimates of 〈v2〉 are critical to reliably predicting the evolution of the plume.

We furthermore remark that the PDF method simulations of Bakosi et al.

(2007) overestimated the width of the mean profiles for a centreline source.

However, the explanation in this case is less clear, especially given that they
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also under-resolved 〈v2〉 (see their figure 1(b)), as noted by Boppana et al.

(2012).

Similarly, good agreement between the experimental and numerical mean

temperature profiles is obtained for the near-wall line source (ys/h = 0.17).

However, for the farthest downstream distance considered herein (t/tL = 0.4)

the experimental mean temperature profile is wider than the numerical one.

Far downstream of the source, the (two-dimensional) plume grows and becomes

wider in the transverse direction. One edge of the plume is mixed with the

cold flow contained in the central region of the channel, whereas the other

edge comes in contact with the (nominally) adiabatic walls. Consequently, the

plume contains a hot region near the wall and a colder region away from the

wall. The discrepancies observed for t/tL = 0.4 in figure 3–4(b) are consistent

with an energy loss (in the experiments) to the walls due to the latter not

being perfectly adiabatic (because ∆Tpeak is smaller than it should ideally

be in the experiments due to the heat transfer from the plume to the wall).

For the case of the centreline source, both sides of the plume do not come

in contact with the channel walls and the mean temperature profile remains

symmetric about the line source location, in excellent agreement with the

numerical simulations. Like for the case of the centreline source, the large-eddy

simulations of Boppana et al. (2012) were found to underestimate the width of

the mean plume when ys/h = 0.17 at all downstream locations – see their figure

10(b). This presumably derives from their under-resolved transverse velocity

fluctuations, combined with the above-mentioned heat transfer to the wall

in the experiments, which results in overly wide (normalized) plume widths

farther downstream.

The simulations also exhibit a shift in the peak of the mean profile towards

the region of lower velocity (i.e. towards the wall) when ys/h = 0.17. A similar
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shift was reported in Karnik & Tavoularis (1989). At the wall, the simulated

mean temperature profiles must all exhibit ∂〈T 〉/∂y|y=0 = 0, consistent with

the adiabatic boundary conditions imposed in our simulations. Experimental

measurements in the range 0 < y/h < 0.1 were, however, not possible due to

interference of the probe with the wall.

The transverse profiles of the r.m.s. temperature fluctuations, θrms, nor-

malized by their peak values, θrms−peak, are reported in figures 3–5(a) and

3–5(b) respectively for ys/h = 1.0 and 0.17 at three downstream locations:

t/tL = 0.08, 0.2 and 0.4. The experimental and numerical results collapse

well for both line source locations, in addition to being well approximated by

Gaussian curve fits. At ys/h = 1.0, the peaks of the fluctuations remain be-

hind the line source, as expected, by the underlying symmetry of this flow.

However, for ys/h = 0.17, a drift of the peak towards the centreline is clearly

observed. Similar drifts have been reported in Fackrell & Robins (1982), Rau-

pach & Legg (1983) and Lavertu & Mydlarski (2005). Also note the excellent

agreement between the experiments and simulations at t/tL = 0.4 for the case

of the near-wall source. The good collapse of the two r.m.s. profiles (when

normalized by their peak value) reaffirms our hypothesis that the disagreement

observed in figure 3–4(b) for the mean profiles at the same location arises from

an underestimate of ∆Tpeak. For a centreline source, the large-eddy simula-

tions of Boppana et al. (2012) underestimate the plume width, similar to their

results for the mean profile. For the case of the source at ys/h = 0.17, the

r.m.s. profiles of Boppana et al. (2012) are of a similar shape, however are

offset and closer to the wall. Given that the r.m.s profiles are related to the

mean profiles (i.e., the former can be predicted from the latter using gradi-

ent transport theory, for example), such a result is consistent with their mean
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(a) (b)

Figure 3–4: Non-dimensionalized mean temperature excess profiles for two line
source locations, ys/h = 1.0 (a) and ys/h = 0.17 (b). Experiments (solid sym-
bols) and DNSs (open symbols) are reported at several downstream locations:
t/tL = 0.08, (• and ◦); t/tL = 0.2, (N and 4); t/tL = 0.4, (� and 2), respec-
tively. The vertical line indicates the transverse location of the source and the
solid lines are the best fit Gaussian curve fits to the numerical data.

(a) (b)

Figure 3–5: Non-dimensionalized r.m.s. temperature excess profiles for two
line source locations, ys/h = 1.0 (a) and ys/h = 0.17 (b). Experiments (solid
symbols) and DNSs (open symbols) are reported at several downstream loca-
tions: t/tL = 0.08, (• and ◦); t/tL = 0.2, (N and 4); t/tL = 0.4, (� and 2),
respectively. The vertical line indicates the transverse location of the source
and the solid lines are the best fit Gaussian curve fits to the numerical data.
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profiles that are not as wide. Similar to the mean profiles, the simulations of

Bakosi et al. (2007) overpredicted the width of the r.m.s.profiles.

The double-peaked r.m.s. profile in the vicinity of the source reported

by Warhaft (1984) and Karnik & Tavoularis (1989) for homogeneous flows is

also observed for the simulations (not shown). The double peak remains up

to t/tL = 0.1 (x/h = 2.0), after which the profile becomes single-peaked. Note

that when ys/h = 0.17 the double peak is not symmetric, as it must be for

the centreline source case, with the near-wall peak having a lower magnitude.

Lastly, note that experiments were not performed close enough to the line

source to observe double-peaked θrms profiles.

Figures 3–6 and 3–7 respectively show the downstream decay of the peak

of the mean and r.m.s. profiles normalized by a reference temperature

〈∆T 〉ref =

∫ 2h

0
ρcp〈U〉〈∆T 〉dy∫ 2h

0
ρcp〈U〉dy

(3.2)

(see Incropera et al., 2007, p.495), where ρ and cp are, respectively, the density

and the specific heat at constant pressure of air, and where 〈U〉 = 〈U(y)〉 is

the mean velocity. Note that the above definition of 〈∆T 〉ref is different from

that proposed by Rosset et al. (2001): 〈∆T 〉ref = (Ps/ls)/(ρcpUsds), where

Ps/ls is the electric power per length unit injected via the line source, Us is

the mean longitudinal velocity at the source location, and ds is the source

diameter. Such a reference temperature may not be appropriate if both the

diameter of the source and the input power change. For instance, when ds

and Ps are each multiplied by two (assuming that the change of diameter

has a negligible impact on the temperature profiles, which is reasonable for a

very small diameter line source like those used herein), 〈∆T 〉ref should also be

doubled to maintain a consistent normalization, which is not the case using

their definition.
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(a) (b)

Figure 3–6: Downstream evolution of the non-dimensionalized peak mean tem-
perature for two line source locations: ys/h = 1.0 (a) and ys/h = 0.17 (b).
Experiments (�), DNSs (2) and Lavertu & Mydlarski (2005) (×).

(a) (b)

Figure 3–7: Downstream evolution of the non-dimensionalized peak r.m.s.
temperature for two line source locations: ys/h = 1.0 (a) and ys/h = 0.17
(b). Experiments (�), DNSs (2) and Lavertu & Mydlarski (2005) (×).
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Figures 3–6 and 3–7 show good agreement between the numerical and

experimental results – both the present ones and those of Lavertu & Mydlarski

(2005). We note that the plateaus observed in figure 3–6(b) are a consequence

of the adiabatic walls. The downstream locations of the plateaus correspond

to the locations at which the peak “encounters” the wall, and subsequently

stops spreading on that side. Due to the adiabatic boundary conditions at the

wall, the peak remains at y = 0 for all subsequent downstream locations. A

similar plateau was observed for plumes emanating form a near-wall source in

Boppana et al. (2012). Such a plateau, however, was absent in the case of the

centreline source, as the downstream distances studied herein were not large

enough for the plume to have grown sufficiently for its edges to interact with

the channel walls.

The downstream evolution of the half-width of the mean and r.m.s. pro-

files are plotted in figures 3–8 and 3–9, respectively, for the two source loca-

tions. The standard deviations σ are determined by best fitting a Gaussian

curve fit to the data of figure 3–4. (Note that the standard deviation of the

Gaussian profile is linearly related to its half-width.) Once again good agree-

ment between experimental and numerical results is obtained. Note that in

figure 3–8(b), the standard deviation of the numerical results tends to be larger

than that of the experiments for the farthest downstream distance present

herein, in contrast with the results of figure 3–4(b). This difference in fact

derives from the fact that a Gaussian curve fit is not an especially accurate fit

far downstream of the line source.

To complement the preceding analysis of large-scale statistics of the scalar

field, we plot in figure 3–10 the instantaneous temperature fields generated by

our DNS downstream of both a centreline and near-wall line source. Note the

“holes” in the temperature field for the plume emanating from the centreline
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source. Such holes are absent in the plume emanating from the near-wall

source given the different nature of the mixing near the wall (including a

reduced tendency of the plume to flap). The presence of the wall i) limits

the plume’s growth on one side, ii) is the cause of the flow’s inhomogeneity

(which is strongest near the wall), and iii) affects the mixing, as will be further

discussed.

3.7.3 Small-scale statistics of the scalar field

We now proceed to investigate the small-scale structure of the scalar field.

Both experiments and numerical simulations are used in our analysis. We

present statistics at six locations, denoted by the crosses in figure 3–11. Three

measurements were performed downstream of the line source, whereas the

other three locations are closer to the plume edges. Note that, for the sake

of clarity, subsequent figures are arranged in a similar pattern to those of the

measurement locations in figure 3–11.

3.7.3.1 Spectra of θ, εθ and ∂θ/∂xβ

We begin by plotting the one-dimensional longitudinal power spectra of

the scalar fluctuations, Eθ(κ1), where κ1 is the longitudinal wavenumber. Re-

sults are presented for six downstream locations for the two line source loca-

tions studied herein, ys/h = 1.0 and 0.17, in figures 3–12 and 3–13, respectively.

The experimental results are obtained from time series, which provide Eule-

rian time spectra, Eθ(f). Eulerian spatial spectra, Eθ(κ1), are obtained using

Taylor’s hypothesis Eθ(κ1) = (〈U〉/(2π))Eθ(f), where κ1 = 2πf/〈U〉. Taylor’s

hypothesis is a reasonable approximation in most regions of the flow where

urms/〈U〉 < 10%. (See Sreenivasan et al., 1977; Prasad & Sreenivasan, 1990,

for example.) For consistency with the experiments, the numerical spectra

presented herein were also computed from time series, so as not to introduce
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(a) (b)

Figure 3–8: Downstream evolution of the non-dimensionalized width of the
mean temperature profiles for two line source locations: ys/h = 1.0 (a) and
ys/h = 0.17 (b). Experiments (�), DNSs (2) and Lavertu & Mydlarski (2005)
(×).

(a) (b)

Figure 3–9: Downstream evolution of the non-dimensionalized width of the
r.m.s. temperature profiles for two line source locations: ys/h = 1.0 (a) and
ys/h = 0.17 (b). Experiments (�), DNSs (2) and Lavertu & Mydlarski (2005)
(×).
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(a)

(b)

Figure 3–10: Instantaneous temperature fields generated (by DNS) down-
stream of line sources at two wall-normal locations: ys/h = 1.0 (a) and
ys/h = 0.17 (b). Reτ = 190. t+ = 2770 for the velocity field and t+ = 166
for the scalar field (where, in the latter case, t+ = 0 corresponds to the time
at which the scalar is first injected into the flow). Note that the legend is
non-linear in the non-dimensionalized temperature ((T − T∞)/(Tmax − T∞)).
Imagery produced by VAPOR (www.vapor.ucar.edu – see also Clyne & Rast
(2005); Clyne et al. (2007))
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Figure 3–11: Schematic of the measurement locations within the thermal
plume for the two line source locations (ys/h = 1.0 and ys/h = 0.17). The
crosses indicate the location where the small-scale statistics, reported in this
section, were measured.

any artificial differences associated with the (small) errors induced by the in-

evitable use of Taylor’s hypothesis in the experiments.

To compare experiments and simulations, the abscissa and ordinates were

normalized by small scale quantities, i.e. ε−3/4ν5/4εθx and η = (ν3/ε)0.25. Note

that the dissipation rate of the turbulent kinetic energy, ε, was determined

using the assumption of local isotropy, i.e., ε = 15ν
∫∞

0
κ2

1Eu(κ1)dκ1, where

Eu is the power spectrum of the longitudinal velocity fluctuations. εθx was

determined from its definition (−α/〈U〉2)〈(∂θ/∂t)2〉 and also invoking Taylor’s

hypothesis.

Figures 3–12 and 3–13 show very good agreement between the experimen-

tal and numerical results at large κ1, independent of the line source location.

However, some differences exist at small κ1 for the spectra measured down-

stream of the centreline line source (see figure 3–12) due to the difference in
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Reynolds numbers between the experimental and numerical flows. (Given that

the normalization is based on small-scale quantities, one cannot expect spectra

of the two flows at different Reynolds number to be the same at large scales.)

Note that the turbulence intensity (and therefore local Reynolds number) is

higher in the near-wall region and, hence, the mixing more effective (Lavertu &

Mydlarski, 2005). As a consequence, the agreement between experimental and

numerical results at small to medium κ1 is better for the scalar field generated

by the near-wall source (figure 3–13) than that for the centreline source (figure

3–12).

One-dimensional streamwise dissipation spectra, i.e. κ2
1Eθ(κ1), for ther-

mal fields originating from line sources located at ys/h = 1.0 and ys/h = 0.17

are plotted in figures 3–14 and 3–15, respectively. The experiments and DNSs

are in good agreement at all measurement locations for both line source loca-

tions. Note that the normalization used in these figures implies that the area

under each curve is equal to the Prandtl number (Pr = 0.7). As previously

noted, these results serve to confirm that the resolution of our DNSs is suf-

ficient to i) accurately resolve the contributions to εθ, and ii) reproduce the

range of length scales measured in the experiments.

The dissipation spectra are generally found to peak at κ1η ≈ 0.2 showing

that most of the dissipation occurs at length scales five times larger than η,

consistent with the finding of Kozuka et al. (2009). However, figures 3–14 (a,c

and f) show a slight drift of the peak locations with increasing downstream

distance from larger to smaller κ1 for the centreline source. (The peak oc-

curs at κ1η = 0.26, 0.21 and 0.17 for t/tL = 0.08, 0.2 and 0.4, respectively.)

Such a trend is not observed downstream of the near-wall sources. This may

be attributed to the increased mixing that occurs near the wall (Lavertu &

Mydlarski, 2005).
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We proceed to analyze the components of the dissipation spectra by ex-

amining one-dimensional spectra of the temperature derivative ∂θ/∂β, where

∂θ/∂β is the β-derivative of the scalar fluctuations (β = x, y or z). To this

end, figures 3–16 and 3–17 plot spectra of the streamwise (x), wall-normal

(y) and spanwise (z) components of the fluctuating temperature gradient, i.e.

E∂θ/∂β. E∂θ/∂x was measured by assuming Taylor’s hypothesis, whereas the

other two were measured using a second-order finite difference approximation.

Note that the streamwise (one-dimensional) spectrum tends towards zero at

large scales, which differs from the two other spectra that are subject to aliasing

and have a finite value at zero wavenumber (Van Atta, 1991). This difference

is therefore not dynamical and thus not indicative of a lack of local isotropy.

Note that the spectra were normalized by εθη/ν, where εθ = εθx + εθy + εθz

and where η was computed using the assumption of local isotropy.

The present spectra are similar to those reported by Van Atta (1991) and

Thoroddsen & Van Atta (1996), who studied scalar dissipation in decaying

stably stratified grid turbulence. The authors showed that the large and small

scales are anisotropic near the grid but become strongly anisotropic farther

downstream in their stratified flow. Interestingly, they noticed that all scales

develop anisotropies at about the same rate.

In the present research, the scalar is injected in a highly anisotropic man-

ner that produces sharp gradients in the y-direction in the vicinity of the

source. This anisotropy is shown in both figures 3–16(a) and 3–17(a) where

εθy > εθz . However, the gap between εθy and εθz diminishes considerably

with increasing downstream distance. Ultimately, the experimentally mea-

sured spectra of εθy and εθz at t/tL = 0.4 (figure 3–16(d)) are almost indistin-

guishable, which shows a clear tendency of the scalar dissipation rate towards

isotropy. It is also interesting to note that the collapse between the spectra of
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εθy and εθz appears even sooner when the source is in the near-wall region (i.e.

t/tL = 0.2 as shown in 3–17(b)). This can again be attributed to the higher

turbulence intensity (and therefore better mixing) that occurs in the near-wall

region.

Figures 3–16 and 3–17 exhibit good agreement between the experiments

and DNSs at large wavenumbers, especially for the centreline line source. Fur-

thermore, a similar good agreement is also reported at small wavenumbers

when the line source is located at the centreline, which reinforces the validity of

the results presented herein. However, discrepancies exist at small wavenum-

bers when the line source is in the near-wall region. The numerical results

exhibit a persistent anisotropy between εθy and εθz when ys/h = 0.17. These

discrepancies are related to the production of εθ by mean velocity gradients,

which occurs away from the centreline, near the wall. This effect will be dis-

cussed in more detail further on in this section. The reader is also referred to

Gonzalez (2000), which describes the effects of mean velocity and temperature

gradients on the isotropy of εθ in detail.

3.7.3.2 PDFs of ∂θ/∂xβ

The PDFs of the temperature derivatives are plotted in figures 3–18 and

3–19 for line sources located at ys/h = 1.0 and 0.17, respectively. There is good

agreement between the experiments and DNSs. The PDFs of the three compo-

nents are quite different from each other near the source and become similar

at the farthest downstream distance, where they develop quasi-exponential

tails. Close to the source, figure 3–18(a) shows three peaks in the simulated

PDF of the wall-normal temperature derivative, P (∂θ/∂y), whereas the PDFs

of the other two derivatives are unimodal. These triple peaks are due to

the nature of the temperature field immediately downstream of the source.

For very small t/tL, the plume is a top-hat profile and thus we expect the
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PDF to be given by two delta functions where the two peaks are nominally

at ± (Twire − T∞) /(ds/2), where ds is the source diameter. However, slightly

farther away from the source, after some mixing has occurred, the principal

peak (or mode) starts to emerge while the other two initial peaks recede. Even

farther away from the source, the peaks from the initial top-hat profile disap-

pear and the PDF develops exponential tails, in this case, characteristic of a

well-mixed scalar. In the near-wall region, the mixing being better, the initial

peaks disappear very quickly and the initial trimodal PDF is not observed for

the measurement locations considered herein. For a similar reason, the ex-

perimentally measured P (∂θ/∂y) (being at a higher Reynolds number) is also

unimodal although of a shape that would be consistent with a trimodal PDF

farther upstream. In addition, it is worth noting that the quasi-exponential

tails appear sooner for the near-wall line source than when the line source is

at the centreline.

3.7.3.3 The evolution of εθ

The instantaneous fields of the (total and three components of the) scalar

dissipation rate (i.e., εθ, εθx , εθy and εθz), are plotted in figure 3–20. These

are presented to provide qualitative insight into the scalar dissipation rate.

In the analysis that follows, we quantitatively discuss the evolution of εθ and

its components by analyzing specific statistics related to these quantities. For

example, it is already evident from figure 3–20 that the largest contribution to

εθ comes from εθy . However, one can also observe that its relative contribution

to εθ decreases with increasing downstream distance, as will be elaborated

upon below. We encourage the reader to refer back to these plots for further

insight in the course of the subsequent discussion.

Wall-normal profiles of the three components of the scalar dissipation rate

are reported in figure 3–21 for four downstream locations within the range
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(a)

(b) (c)

(d) (e) (f)

Figure 3–12: One-dimensional longitudinal spectra of the temperature fluctua-
tions for ys/h = 1.0 at three downstream locations: t/tL = 0.08 (a), t/tL = 0.2
(b,c) and t/tL = 0.4 (d-f) and at three wall-normal locations: y/h = 1.0 (a,c,f),
y/h = 0.8 (b,e) and y/h = 0.5 (d). Results from experiments (solid line) and
DNSs (dashed line) are reported.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–13: One-dimensional longitudinal spectra of the temperature fluc-
tuations for ys/h = 0.17 at three downstream locations: t/tL = 0.08 (a),
t/tL = 0.2 (b,c) and t/tL = 0.4 (d-f) and at three wall-normal locations:
y/h = 0.17 (a,b,d), y/h = 0.3 (c,e) and y/h = 0.6 (f). Results from experi-
ments (solid line) and DNSs (dashed line) are reported.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–14: One-dimensional longitudinal dissipation spectra of the temper-
ature fluctuations for ys/h = 1.0 at three downstream locations: t/tL = 0.08
(a), t/tL = 0.2 (b,c) and t/tL = 0.4 (d-f) and at three wall-normal locations:
y/h = 1.0 (a,c,f), y/h = 0.8 (b,e) and y/h = 0.5 (d). Results from experiments
(solid line) and DNSs (dashed line) are reported.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–15: One-dimensional longitudinal dissipation spectra of the temper-
ature fluctuations for ys/h = 0.17 at three downstream locations: t/tL = 0.08
(a), t/tL = 0.2 (b,c) and t/tL = 0.4 (d-f) and at three wall-normal locations:
y/h = 0.17 (a,b,d), y/h = 0.3 (c,e) and y/h = 0.6 (f). Results from experi-
ments (solid line) and DNSs (dashed line) are reported.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–16: One-dimensional spectra of the temperature derivatives (∂θ/∂β
where β = x, y or z) for ys/h = 1.0 at three downstream locations: t/tL = 0.08
(a), t/tL = 0.20 (b,c) and t/tL = 0.40 (d-f), and at three wall-normal locations:
y/h = 1.0 (a,c,f), y/h = 0.8 (b,e) and y/h = 0.5 (d). Results from experiments
(solid line) and DNSs (dashed line) are reported.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–17: One-dimensional spectra of the temperature derivatives (∂θ/∂β
where β = x, y or z) for ys/h = 0.17 at three downstream locations: t/tL =
0.08 (a), t/tL = 0.20 (b,c) and t/tL = 0.40 (d-f), and at three wall-normal
locations: y/h = 0.17 (a,b,d), y/h = 0.3 (c,e) and y/h = 0.6 (f). Results from
experiments (solid line ) and DNSs (dashed line) are reported.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–18: PDFs of the temperature derivatives (∂θ/∂β where β = x, y or
z) for ys/h = 1.0 at three downstream locations: t/tL = 0.08 (a), t/tL = 0.20
(b,c) and t/tL = 0.40 (d-f) and at three wall-normal locations: y/h = 1.0
(a,c,f), y/h = 0.8 (b,e) and y/h = 0.5 (d). Experimental and DNS results are
respectively denoted by the solid symbols (∂θ/∂x (•), ∂θ/∂y (�) and ∂θ/∂z
(N)) and by the open symbols (∂θ/∂x (◦), ∂θ/∂y (2) and ∂θ/∂z (4)). The
curve for P[(∂θ/∂x)/(∂θ/∂x)rms] is plotted normally, whereas remaining curves
are offset downwards in increments of two decades.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–19: PDFs of the temperature derivatives (∂θ/∂β where β = x, y or
z) for ys/h = 0.17 at three downstream locations: t/tL = 0.08 (a), t/tL =
0.2 (b,c) and t/tL = 0.40 (d-f) for three wall-normal locations: y/h = 0.17
(a,b,d), y/h = 0.3 (c,e) and y/h = 0.6 (f). Experimental and DNSs results are
respectively denoted by the solid symbols (∂θ/∂x (•), ∂θ/∂y (�) and ∂θ/∂z
(N)) and by the open symbols (∂θ/∂x (◦), ∂θ/∂y (2) and ∂θ/∂z (4)). The
curve for P[(∂θ/∂x)/(∂θ/∂x)rms] is plotted normally, whereas remaining curves
are offset downwards in increments of two decades.
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t/tL = 0.08 − 0.6. The scalar dissipation rate shown for both line source

locations has been scaled by tL/〈∆T 〉2ref .

For ys/h = 1.0, figure 3–21 shows good agreement between the exper-

iments and the DNSs. The three components of the scalar dissipation rate

have approximately Gaussian profiles with maxima at the channel centreline.

Outside the plume, a plateau is observed in the experimental data due to the

non-zero ambient thermal noise. Small-scale anisotropy is observed near the

source (t/tL = 0.08) where εθy > εθz ≈ εθx . Farther downstream (t/tL = 0.4),

the gap between the three components of εθ is considerably reduced.

For ys/h = 0.17, figure 3–21 shows differences between the experiments

and the DNSs for the near-wall data. Firstly, the experimental data appear to

be more isotropic, presumably due to their larger Reynolds number, whereas

the DNSs exhibit differences between the three components (εθy > εθz > εθx).

Furthermore, the peak of εθy (the largest component) measured from the DNSs

remains downstream of the source location for all measurement locations pre-

sented herein, whereas the peak of εθy measured in the experiments drifts

towards the channel centreline. This may be explained by the prominence in

the DNSs of the mechanism of production of εθy due to mean velocity gradients

(which, as previously mentioned, will be discussed shortly). The movement in

the peak of the scalar dissipation profile recalls the drift observed in the r.m.s.

profiles. Note that in both the experiments and the DNSs, the peaks of the

εθx and εθz profiles drift towards the centreline as t/tL is increased (but the

rate at which they do so is faster for the experiments). εθy also remains the

largest component. Note that if the scalar were injected uniformly, one might

expect that the scalar dissipation would peak near the region of maximum

shear. (Recall that in a turbulent channel flow, the turbulence intensity is

maximum in the buffer layer, i.e. y+ ∈ [5, 30]. In the present flows, y+ = 15
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corresponds to y/h = 0.03 and y/h = 0.08 in the experiments and the DNSs,

respectively.)

The evolution of the peak of the dissipation profile is somewhat similar

to the evolution of the peak of the r.m.s. profile (see figure 3–5(b)). Previ-

ous researchers have attempted to establish a parallel between the location

of the maximum of dissipation and that of the maximum temperature fluc-

tuations. For instance, Lockwood & Moneib (1980) measured the fluctuating

temperature in a heated round turbulent free jet. They showed that the scalar

dissipation rate of a turbulent jet attains its maximum at the location of the

maximum of the temperature fluctuation intensity. However, this conclusion

was contradicted by the observations of Antonia & Mi (1993), who studied the

temperature “jumps” (a relatively sudden increase in temperature followed by

a gradual decrease – also known as “ramp-cliff” structures) in a heated turbu-

lent jet, and who attempted to estimate their contributions to the temperature

dissipation. They showed that although the temperature “jumps” contributed

to an increase in the temperature variance, their contribution to the scalar

dissipation rate was small.

The downstream evolution of the centreline (y/h = 1.0) and the off-

centreline (y/h = 0.8) mean thermal dissipation is shown in figure 3–22 for

ys/h = 1.0. Excellent agreement between the experiments and the DNSs are

shown. At the centreline, the experiments and DNS both exhibit a power

law-decay of the form εθ ∼ (t/tL)n, where n varied between −2.2 and −2.0,

with the experiments tending to exhibit slightly more rapid decay exponents.

Away from the centreline, a power-law decay is also observed, but only after

a certain distance downstream (t/tL & 0.2), which approximately corresponds

to the point at which the plume is wide enough so that the sensor (located

at y/h = 0.8) no longer measures outside of the plume as it flaps. Analogous
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plots for the near-wall source are also given in figure 3–23. As for ys/h = 1.0,

the dissipation is maximum in the vicinity of the source and exhibits a power

law-decay with similar values of decay exponents, with the experiments again

tending to exhibit a slightly more rapid decay. Given the larger values of εθ

measured in the central region of the plume, one can furthermore conclude that

the efficiency in smearing the fluctuations in the scalar field is larger behind the

source than at the edges of the plume. However, at the farthest downstream

location, the difference between the two is smaller than 8%, indicating that εθ

tends to become more uniform inside the plume as it expands, as observed in

figure 3–21. We also note that Rosset et al. (2001) found εθ ∼ x−2.5 down-

stream of a heated line source placed in a turbulent boundary layer. Their

decay exponent, albeit slightly more negative, is quite similar to the values

measured herein, despite the differences in flow geometry, Reynolds number,

line source location, etc.

The components of εθ are investigated in figure 3–24 and 3–25 when

ys/h = 1.0 and 0.17, respectively, where the downstream evolutions of the

three components, εθx , εθy and εθz , are plotted. When the line source is at the

centreline, both the experiments and the DNSs converge towards an isotropic

state. Near the source, however, the dissipation is predominantly in the y-

direction due to the sharp temperature gradients (∂θ/∂y) there that are asso-

ciated with the plume boundary. The dissipation in the two other directions

(∂θ/∂x and ∂θ/∂z) are almost equal, indicative of the quasi-axisymmetric na-

ture of the turbulence at that location. For the near-wall source, the agreement

between the experiments and the DNSs is not as good as it is for the centreline

source. (Differences in the Reynolds numbers of the two flows may be more

significant in the near-wall region.) The experiments are found to be almost

isotropic, whereas the DNS results exhibit persistent anisotropy.
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To further investigate the anisotropy, we calculated the following ratios:

εθ/εθβ (figures 3–26 and 3–27) and εθβ/εθγ (figures 3–28 and 3–29), where

the indices β and γ can be x, y or z, and where β 6= γ. For an isotropic

flow, these ratios must be equal to 3 and 1, respectively. Figures 3–26 and

3–28 confirm that the small-scale anisotropy is reduced with the downstream

distance for the centreline source. Furthermore, figure 3–28 most clearly shows

that the anisotropy in εθ comes from εθy (which is equally offset/balanced by

the anisotropies in εθx and εθz). For ys/h = 0.17, figures 3–27 and 3–29 show

that the anisotropy decays until t/tL = 0.2 and then remains constant (and

anisotropic). Furthermore, note that the anisotropy is stronger when measured

at y/h = 0.17 than at y/h = 0.3, indicating that there exists regions in the

channel flow field that better lend themselves to returning to an isotropic state.

We will subsequently argue that the anisotropy is dependent on the presence

of velocity gradients (Antonia & Browne, 1986; Gonzalez, 2000), as well as

the Reynolds number of the flow. In this vein, we remark that the anisotropy

measured in the experiments is less strong than in the DNSs, presumably due

to its larger Reynolds numbers, which i) results from a more rapid elimination

of the large-scale anisotropy associated with the injection of the scalar, and

ii) explains the discrepancies observed in figure 3–25. Moreover, note that the

flow is no longer (quasi-)homogeneous in the regions plotted in figures 3–27 and

3–29, so the equal offset of the anisotropy of εθy by εθx and εθz is not observed

here (like in figures 3–26 and 3–28). Regarding these figures, we finally note

that the measured increase in anisotropy observed in figures 3–26(b), 3–27,

3–28(b) and 3–29 is presumably due to experimental errors arising from the

low signal-noise ratio at the farthest downstream location (t/tL = 0.6).

115



To investigate and explain the aforementioned anisotropy, consider the

evolution equation of the scalar dissipation rate, given by

∂εθ
∂t

+ 〈Uj〉
∂εθ
∂xj

=

P︷ ︸︸ ︷
−2α
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Γ

, (3.3)

(where repeated indices imply Einstein’s summation convention) and focus on

the two terms P(= Px + Py + Pz) and Γ(= Γx + Γy + Γz). The former is

the production of εθ by mean velocity gradients, and the latter quantifies the

dissipation of εθ by molecular processes. For channel flow, the components

of these two terms are: P = Py = −2α∂〈U〉/∂y〈(∂θ/∂y)(∂θ/∂x)〉 with Px =

Pz = 0 and Γx = 2α2[〈(∂2θ/∂x2)2〉 + 〈(∂2θ/∂x∂y)2〉 + 〈(∂2θ/∂x∂z)2〉], Γy =

2α2[〈(∂2θ/∂y∂x)2〉+〈(∂2θ/∂y2)2〉+〈(∂2θ/∂y∂z)2〉] and Γz = 2α2[〈(∂2θ/∂z∂x)2〉+

〈(∂2θ/∂z∂y)2〉 + 〈(∂2θ/∂z2)2〉]. Figure 3–30 shows the wall-normal profile of

the three components of Γ and Py, for the two source locations (ys/h = 1.0

and 0.17) at three downstream positions (t/tL = 0.08, 0.2 and 0.4). Both

experiments and DNSs are reported on the figures. Note that the y- and z-

components of Γ were not accessible experimentally as ∂θ/∂y and ∂θ/∂z were

not simultaneously measured.

The mean velocity gradient that exists in the wall-normal direction only,

contributes to the production of εθ (in the y-direction). The relative impor-

tance of this production depends on the wall-normal location within the chan-

nel. As the mean velocity gradient (∂〈U〉/∂y) is small in the centre of the

channel, there is very little production of the scalar dissipation by the mean

velocity field in the central region (and none at the channel mid-plane, by
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symmetry). On the other hand, the contribution of Py to εθy is not negligible

in the near-wall region, as the velocity gradients are large there. In fact, figure

3–30 shows that the production of dissipation in the wall-normal direction is

of the same order of magnitude as Γy near the walls. The figure also shows

that Py does not contribute to the evolution of εθy (or εθ) when the source

is at the centreline, as expected. Lastly, this production of εθ due to mean

velocity gradients now explains the aforementioned i) persistent anisotropies

for the near-wall scalar fields (figures 3–27 and 3–29), and ii) the persistence

of a maximum in εθy near the wall (figure 3–21).

Johansson & Wikström (1999) performed DNSs of turbulent channel flow

with an imposed mean scalar gradient. In the near-wall region, they showed

that the two mean gradient production terms (i.e. the first and second terms

on the right hand side of equation (3.3)) as well as the term that is the scalar-

field analogue to the vortex-stretching term in the turbulent enstrophy budget

(i.e. the fourth term in the right hand side of equation (3.3)) contribute the

most to the production of εθ. These results agree with those presented herein.

(Note that combined statistical moments of both the velocity and temperature

derivatives are not computed due to the fact that the velocity and temperature

field are not calculated nor measured simultaneously in the present approach.)

Anisotropy invariant maps for εθ (Antonia & Kim, 1994) are plotted in

figures 3–31-3–33 where the three solid lines are (often referred to as) the

Lumley triangle (Lumley, 1978). This triangle is delimited by the following
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three curves (in the (III,−II) plane):

III = −II
3
− 1

27
, (3.4)

III = −2

(
II

3

)3/2

, (3.5)

III = 2

(
II

3

)3/2

. (3.6)

II and III are the second and third invariants of the scalar dissipation rate

anisotropy tensor defined as:

tij = α
〈θ,xiθ,xj〉
〈εθ〉

− 1

3
δij, (3.7)

where δij is the Kronecker delta. The second and third invariants are given

by:

II = −1

2
tijtji, (3.8)

III =
1

3
tijtjktki. (3.9)

The plot of −II versus III represents all the possible states that characterize

the tensor tij. Curves (3.5) and (3.6) are respectively the right and left “axisym-

metric” boundaries of the anisotropic invariant map. The vertex II = III = 0

characterizes the isotropic state. The top right vertex of the line given by

equation (3.4) represents the one-component state and the bottom left vertex

represents the two-component state.

The return to isotropy behind a centreline source (figure 3–31(a)) is i)

clearly axisymmetric, consistent with the previous results of figure 3–28, and

ii) more rapid than that of the scalar field behind the near-wall source. The

axisymmetry of the scalar field behind the centreline line source is more clearly

observed in figure 3–32, which shows a very large level of axisymmetry at y/h =

1.0, but a slightly smaller degree of axisymmetry at y/h = 0.8. These results
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should be contrasted with those of figure 3–33, which depict the anisotropy

invariant maps for different wall-normal locations for the scalar field generated

by the near-wall source. Of particular interest is the evolution from a one-

dimensional state very close to the wall (Antonia & Kim, 1994) in figure 3–

33(c) to an almost axisymmetric state farther away from the wall in figure

3–33(d).

3.7.3.4 Conditional statistics

To gain further insight into the dependence of the scalar fluctuations, θ, on

their dissipation, εθ, which is of particular use in PDF models of scalar mixing,

we examine the expectation of εθβ conditioned on individual values of θ, i.e.〈
εθβ |θ

〉
, where εθβ is the β-component of the scalar dissipation (β = x, y or z).

Theoretical work has shown that the form of the conditional expectation pro-

files, 〈εθ|θ〉, depends on the PDF of the scalar fluctuation, θ (Pope & Ching,

1993). A Gaussian PDF of θ is associated with εθ and θ being independent.

In this case, 〈εθ|θ〉 is found to be a constant (e.g. Anselmet et al., 1994, fig-

ure 9b). A super-Gaussian PDF of the scalar is associated with a rounded,

concave-up V-shape for the profile (Sinai & Yakhot, 1989; Jayesh & Warhaft,

1992) whereas a sub-Gaussian PDF is associated with a rounded concave-down

V-shape for the profile (Mydlarski, 2003).

Figure 3–34 plots the expected value of the various components of the

scalar dissipation rate conditioned on the temperature fluctuations for ys/h =

1.0. In the present work, the scalar dissipation rate conditioned on the scalar

fluctuation exhibit a concave-down, rounded V-shape. Such a shape indicates

that large values of the scalar fluctuation are associated with low values of the

scalar dissipation. The behavior of the experiments and the DNSs is similar,

but not identical. Each plot begins with an approximately linear departure

from θ/θrms ≈ −1.5, increasing to a maximum, after which the conditional
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0                                                           1 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3–20: Instantaneous scalar dissipation rate fields – total and individual
components – generated (by DNS) downstream of a line source at two wall-
normal locations: ys/h = 1.0 (a), (c), (e) and (g); ys/h = 0.17 (b), (d), (f) and
(h). α(∂θ/∂xi)

2: (a) and (b). α(∂θ/∂x)2: (c) and (d). α(∂θ/∂y)2: (e) and
(f). α(∂θ/∂z)2: (g) and (h). Reτ = 190. t+ = 2770 for the velocity field and
t+ = 166 for the scalar field (where, in the latter case, t+ = 0 corresponds to the
time at which the scalar is first injected into the flow). Note that the legends
corresponds to the instantaneous scalar dissipation rates non-dimensionalized
by εθ(t/tL = 0.08, y/h = 1.0; ys/h = 1.0). Imagery produced by VAPOR
(www.vapor.ucar.edu – see also Clyne & Rast (2005); Clyne et al. (2007)).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3–21: Wall-normal evolutions of the three components of the scalar
dissipation rate for ys/h = 1.0 and ys/h = 0.17 at four downstream locations:
t/tL = 0.08 (a,b), t/tL = 0.2 (c,d), t/tL = 0.4 (e,f) and t/tL = 0.6 (g,h).
Experimental results are denoted by the solid symbols: εθx (•), εθy (�) and
εθz (N) and the numerical results are denoted by the open symbols: εθx (◦),
εθy (2) and εθz (4). The vertical line indicates the transverse location of the
source.
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(a) (b)

Figure 3–22: Downstream evolution of the total scalar dissipation rate for
ys/h = 1.0 at two wall-normal locations: y/h = 1.0 (a) and y/h = 0.8 (b).
Experimental results are denoted by the solid symbols and the numerical re-
sults are denoted by the open symbols. The solid line and dashed line are the
best-fit power laws to the experimental and numerical data, respectively.

(a) (b)

Figure 3–23: Downstream evolution of the total scalar dissipation rate for
ys/h = 0.17 at two wall-normal locations: y/h = 0.17 (a) and y/h = 0.3
(b). Experimental results are denoted by the solid symbols and the numerical
results are denoted by the open symbols. The solid line and dashed line are
the best-fit power laws to the experimental and numerical data, respectively.
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(a) (b)

Figure 3–24: Downstream evolution of the three components of the scalar
dissipation rate for ys/h = 1.0 at two wall-normal locations: y/h = 1.0 (a)
and y/h = 0.8 (b). Experimental results are denoted by the solid symbols: εθx
(•), εθy (�) and εθz (N), and the numerical results are denoted by the open
symbols: εθx (◦), εθy (2) and εθz (4).

(a) (b)

Figure 3–25: Downstream evolution of the three components of the scalar
dissipation rate for ys/h = 0.17 at two wall-normal locations: y/h = 0.17 (a)
and y/h = 0.3 (b). Experimental results are denoted by the solid symbols: εθx
(•), εθy (�) and εθz (N) and the numerical results are denoted by the open
symbols: εθx (◦), εθy (2) and εθz (4).
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(a) (b)

Figure 3–26: Downstream evolution of the ratios εθ/εθβ (where β = x, y or z)
for ys/h = 1.0 at two wall-normal locations: y/h = 1.0 (a) and y/h = 0.8 (b).
Experimental results are denoted by the solid symbols: εθ/εθx (•), εθ/εθy (�)
and εθ/εθz (N) and the numerical results are denoted by the open symbols:
εθ/εθx (◦), εθ/εθy (2) and εθ/εθz (4).

(a) (b)

Figure 3–27: Downstream evolution of the ratios εθ/εθβ (where β = x, y or z)
for ys/h = 0.17 at two wall-normal locations: y/h = 0.17 (a) and y/h = 0.3
(b). Experimental results are denoted by the solid symbols: εθ/εθx (•), εθ/εθy
(�) and εθ/εθz (N) and the numerical results are denoted by the open symbols:
εθ/εθx (◦), εθ/εθy (2) and εθ/εθz (4).
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(a) (b)

Figure 3–28: Downstream evolution of the ratios εθβ/εθγ (where β and γ = x, y
or z and β 6= γ) for ys/h = 1.0 at two wall-normal locations: y/h = 1.0 (a)
and y/h = 0.8 (b). Experimental results are denoted by the solid symbols:
εθx/εθy (•), εθy/εθz (�) and εθx/εθz (N) and the numerical results are denoted
by the open symbols: εθx/εθy (◦), εθy/εθz (2) and εθx/εθz (4).

(a) (b)

Figure 3–29: Downstream evolution of the ratios εθβ/εθγ (where β and γ = x, y
or z and β 6= γ) for ys/h = 0.17 at two wall-normal locations: y/h = 0.17 (a)
and y/h = 0.3 (b). Experimental results are denoted by the solid symbols:
εθx/εθy (•), εθy/εθz (�) and εθx/εθz (N) and the numerical results are denoted
by the open symbols: εθx/εθy (◦), εθy/εθz (2) and εθx/εθz (4).
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(a) (b)

(c) (d)

(e) (f)

Figure 3–30: Wall-normal evolution of the y-component of the production of εθ
by the three components of the dissipation of εθ and by the mean velocity gradi-
ent for ys/h = 1.0 and ys/h = 0.17 at three downstream locations: t/tL = 0.08
(a), t/tL = 0.2 (b) and t/tL = 0.4 (c). Experimental results are denoted by the
solid symbols: −2α2 (〈(∂2θ/∂x2)2〉+ 〈(∂2θ/∂x∂y)2〉+ 〈(∂2θ/∂x∂z)2〉) (•) and
the numerical results are denoted by the open symbols: −2α2 [〈(∂2θ/∂x2)2〉 +
〈(∂2θ/∂x∂y)2〉 + 〈(∂2θ/∂x∂z)2〉] (◦), −2α2 [〈(∂2θ/∂y∂x)2〉 + 〈(∂2θ/∂y2)2〉 +
〈(∂2θ/∂y∂z)2〉] (2), −2α2 [〈(∂2θ/∂z∂x)2〉 + 〈(∂2θ/∂z∂y)2〉 + 〈(∂2θ/∂z2)2〉]
(4). The production of dissipation −2α〈U〉y〈(∂θ/∂y)(∂θ/∂x)〉 is also reported
for the experiments (×) and the DNSs (+).
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(a) (b)

Figure 3–31: Anisotropy invariant map of εθ for ys/h = 1.0 (a) and ys/h = 0.17
(b). Statistics were computed at t/tL = 0.02 (◦), 0.08 (2), 0.2 (4) and 0.4
(×) and for y/h ∈ [0.8, 1.2] (a) and y/h ∈ [0.0, 0.4] (b).

expectation begins to decrease. The double peaks of
〈
εθy |θ

〉
measured in the

experiments in the vicinity of the source disappear farther downstream. These

may be related to the previously discussed PDFs of ∂θ/∂y, which were shown

to be bi- or trimodal near the source (see figure 3–18). Note that figure 3–

34(d) has been plotted with different axis ranges due to large rare excursions

in this part of the flow, where some measurements are outside the plume, and

the others in its outer edges.

Figure 3–35 plots the conditional expectation
〈
εθβ |θ/θrms

〉
/〈εθβ〉 when

the line source is near the wall (ys/h = 0.17). The general form of the profiles

is somewhat different from that with the centreline line source and is double

peaked. In contrast with the DNS profiles, the experimental profiles increase

near the upper limits of the range of temperature fluctuations. This increase

also appears when the source is at the centreline but with a (relatively) smaller

magnitude.

Kailasnath et al. (1993) investigated the conditional scalar dissipation

rate in three different shear flows: wakes, jets, and in the atmospheric surface
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(a) (b)

(c) (d)

Figure 3–32: Anisotropy invariant map of εθ for ys/h = 1.0 and y/h = 1.0 (a).
A close-up of figure (a) is presented in figure (b). Anisotropy invariant map
of εθ for ys/h = 1.0 and y/h = 0.8 (c). A close-up of figure (c) is presented in
figure (d). Statistics were computed from t/tL = 0.02 to 0.48.
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(a) (b)

(c) (d)

Figure 3–33: Anisotropy invariant map of εθ for ys/h = 0.17 and y/h = 0.17
(a). A close-up of figure (a) is presented in figure (b). Anisotropy invariant
map of εθ for ys/h = 0.17 and y/h = 0.01 (c) and for ys/h = 0.17 and y/h = 0.3
(d). Statistics were computed from t/tL = 0.02 to 0.48.
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layer. They also found that the “hot side” of the conditional expectation 〈εθ|θ〉

increased with θ. They concluded that the very hot events associated with

very high intermittent dissipation rates were non-universal. In addition, they

mentioned that the low temperature events may also be non-universal but their

contribution to the conditional expectation is small because the dissipation in

the cold fluid is small. These observations are consistent with the present

results.

Independently of the source location, figure 3–35 shows a tendency to

isotropic behavior as the downstream distance from the source increases. At

low θ/θrms, the experiments and DNSs agree relatively well, like in figure 3–

34. However, the discrepancies at large θ/θrms may be due to the difference

in the rare events arising from the difference in the Reynolds numbers. That

being said, the numerical simulations are more isotropic than the experiments.

However, it should be reminded that the statistics related to the large positive

fluctuations of θ are rare and may suffer from a reduced level of statistical

convergence.

The expectations of the components of the dissipation conditioned upon

individual values of the temperature derivatives,
〈
εθβ |∂θ/∂x

〉
, where β =

x, y or z, are plotted in figures 3–36 and 3–37 for the two line source lo-

cations presented herein. These figures show that larger magnitudes of ∂θ/∂x

lead to higher values of εθx consistent with the definition εθx ≡ α〈(∂θ/∂x)2〉.

In addition, εθy and εθz do not directly depend on ∂θ/∂x which explains the

flatter profiles obtained for
〈
εθy |∂θ/∂x

〉
and 〈εθz |∂θ/∂x〉. That being said,

they are clearly not independent, especially farther downstream. Overall, a

very good agreement between experiments and DNSs is observed.

Figure 3–38 and 3–39 compare the expectations of εθβ conditioned upon

individual values of ∂θ/∂x, ∂θ/∂y, and ∂θ/∂z. The figures show consistent
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results for all three components, where i) the correlation is highest when con-

sidering the component of εθ and the derivative of θ measured in the same

direction, and ii) a reduced, but clearly non-zero, correlation is observed for

the expectations conditioned on the temperature derivative in a different di-

rection.
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(a)

(b) (c)

(d) (e) (f)

Figure 3–34: The expectation of the components of the temperature dissi-
pation conditioned on the temperature fluctuations for ys/h = 1.0 at three
downstream locations: t/tL = 0.08 (a), t/tL = 0.20 (b,c) and t/tL = 0.40
(d-f) at three wall-normal locations: y/h = 1.0 (a,c,f), y/h = 0.8 (b,e) and
y/h = 0.5 (d). Experimental results are denoted by the solid symbols: 〈εθx|θ〉
(•),

〈
εθy |θ

〉
(�) and 〈εθz |θ〉 (N) and the numerical results are denoted by the

open symbols: 〈εθx|θ〉 (◦),
〈
εθy |θ

〉
(2) and 〈εθz |θ〉 (4).
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(a)

(b) (c)

(d) (e) (f)

Figure 3–35: The expectation of the components of the temperature dissi-
pation conditioned on the temperature fluctuations for ys/h = 0.17 at three
downstream locations: t/tL = 0.08 (a), t/tL = 0.20 (b,c) and t/tL = 0.40
(d-f) at three wall-normal locations: y/h = 0.17 (a,b,d), y/h = 0.3 (c,e) and
y/h = 0.6 (f). Experimental results are denoted by the solid symbols: 〈εθx|θ〉
(•),

〈
εθy |θ

〉
(�) and 〈εθz |θ〉 (N) and the numerical results are denoted by the

open symbols: 〈εθx|θ〉 (◦),
〈
εθy |θ

〉
(2) and 〈εθz |θ〉 (4).
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(a)

(b) (c)

(d) (e) (f)

Figure 3–36: The expectation of the components of the temperature dissipa-
tion conditioned on the x-partial derivative of the temperature fluctuations
for ys/h = 1.0 at three downstream locations: t/tL = 0.08 (a), t/tL = 0.20
(b,c) and t/tL = 0.40 (d-f) at three wall-normal locations: y/h = 1.0 (a,c,f),
y/h = 0.8 (b,e) and y/h = 0.5 (d). Experimental results are denoted by
the solid symbols: 〈εθx|∂θ/∂x〉 (•),

〈
εθy |∂θ/∂x

〉
(�) and 〈εθz |∂θ/∂x〉 (N)

and the numerical results are denoted by the open symbols: 〈εθx|∂θ/∂x〉 (◦),〈
εθy |∂θ/∂x

〉
(2) and 〈εθz |∂θ/∂x〉 (4).
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(a)

(b) (c)

(d) (e) (f)

Figure 3–37: The expectation of the components of the temperature dissipa-
tion conditioned on the x-partial derivative of the temperature fluctuations
for ys/h = 0.17 at three downstream locations: t/tL = 0.08 (a), t/tL = 0.20
(b,c) and t/tL = 0.40 (d-f) at three wall-normal locations: y/h = 0.17 (a,b,d),
y/h = 0.3 (c,e) and y/h = 0.6 (f). Experimental results are denoted by
the solid symbols: 〈εθx |∂θ/∂x〉 (•),

〈
εθy |∂θ/∂x

〉
(�) and 〈εθz |∂θ/∂x〉 (N)

and the numerical results are denoted by the open symbols: 〈εθx|∂θ/∂x〉 (◦),〈
εθy |∂θ/∂x

〉
(2) and 〈εθz |∂θ/∂x〉 (4).
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(d) (e) (f)

Figure 3–38: The expectation of the components of the temperature dissipa-
tion conditioned on the x-, y- and z-partial derivatives of the temperature
fluctuations for ys/h = 1.0 at t/tL = 0.40 and y/h = 1.0. Experimental re-
sults are denoted by the solid symbols: 〈εθx|∂θ/∂β〉 (•) and

〈
εθy |∂θ/∂β

〉
(�)

and the numerical results are denoted by the open symbols: 〈εθx|∂θ/∂β〉 (◦),〈
εθy |∂θ/∂β

〉
(2) and 〈εθz |∂θ/∂β〉 (4).

(d) (e) (f)

Figure 3–39: The expectation of the components of the temperature dissipa-
tion conditioned on the x-, y- and z-partial derivatives of the temperature
fluctuations for ys/h = 0.17 at t/tL = 0.40 and y/h = 0.17. Experimental
results are denoted by the solid symbols: 〈εθx|∂θ/∂β〉 (•) and

〈
εθy |∂θ/∂β

〉
(�)

and the numerical results are denoted by the open symbols: 〈εθx |∂θ/∂β〉 (◦),〈
εθy |∂θ/∂β

〉
(2) and 〈εθz |∂θ/∂β〉 (4).
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3.8 Conclusions

In the present work, the dissipation rate of a scalar (temperature) emitted

from a concentrated line source in a fully developed turbulent channel flow

was studied by means of both experiments and numerical simulations. The

aim was to investigate the evolution of the small scales of the scalar field by

measuring the (three components of the) scalar dissipation rate, εθ, at several

downstream and wall-normal locations. The scalar was injected in a highly

anisotropic manner and an examination of the downstream evolution of εθ

permitted an investigation of the return to isotropy of the small scales of the

scalar field.

Large- and small-scale statistics of the scalar field were reported for two

different source locations (ys/h = 1.0 and 0.17). Mean and r.m.s. statistics

were computed from both experiments and DNSs, then analyzed, compared,

and found to exhibit good overall agreement.

One-dimensional longitudinal power and dissipation spectra of the tem-

perature fluctuations were reported at several downstream locations, both

downstream of the source, as well as closer to the edges of the thermal plume.

The small-scales statistics of the experiments and numerical simulations agree

well, confirming that the DNS is capable of resolving the experimentally mea-

sured dissipative scales. In addition, comparison of the spectra measured when

ys/h = 1.0 and 0.17 support the notion that the scalar mixing is more rapid

in the near-wall region. The discrepancies observed at large scales were at-

tributed to the differences in the Reynolds number between the experiments

(Reτ = 520) and the DNSs (Reτ = 190).

One-dimensional spectra of the temperature derivatives were subsequently

presented. In the experiments, the y- and z-derivatives converge towards

isotropy with increasing distance from the source at both large and small
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scales, independently of the source location. εθy was clearly larger (when com-

pared to εθz) close to the source, and the two components became almost

indistinguishable farther downstream. The spectra obtained from the DNSs

also exhibit a trend towards isotropy, excepted for the small-scale derivatives

when ys/h = 0.17. These latter results exhibit persistent small-scale anisotropy

that were related to the high mean velocity gradients present in the near-wall

region. This anisotropy was not observed in the experiments because i) our

measurements were not performed sufficiently closed to the wall (due to techni-

cal constraints related to the size of the probes), and ii) they were undertaken

at a significant larger Reynolds number.

The PDFs of the temperature derivatives (∂θ/∂x, ∂θ/∂y and ∂θ/∂z) were

also studied at several downstream locations from the source. The results

showed that the PDFs of the three derivatives were very similar and symmetric

and develop exponential tails when measured sufficiently far downstream from

the centreline source. However, significant difference in the PDF of ∂θ/∂y were

observed close to the source. Consistent with previous results, it was observed

that exponential tails of the PDF, associated with a well mixed scalar field,

appear sooner for the near-wall source than for the centreline source.

The wall-normal and downstream evolutions of the three components of

the scalar dissipation rate were studied in detail. The experiments and DNSs

showed good agreement, except in the near-wall region where the former were

more isotropic than the latter. εθ was found to decay as x−2±0.2 downstream of

the source. Near the source, the y-component of εθ was clearly the largest, but

its three components tended to isotropy when ys/h = 1.0, whereas the decay

of the anisotropy reached a plateau and remained constant with increasing

downstream distance when ys/h = 0.17. Finally, conditional statistics were
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studied to investigate the dependence of the scalar fluctuations, θ, on their

dissipation, εθ.
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CHAPTER 4

Conclusions and Future Work

This research aimed to develop a deeper understanding of scalar mixing

in turbulent flows. In a turbulent flow that mixes a scalar, the large scales

effect the majority of its transport, whereas the small scales diffuse the scalar

fluctuations by molecular processes. Consequently, small-scale phenomena are

fundamental to both understanding and predicting turbulent mixing. The fact

that this phenomenon is not yet fully understood was the principal motivation

for this research. Particular attention was paid to the small scales and their

anisotropic behavior.

A passive scalar (temperature) was injected into a fully developed turbu-

lent channel flow via a line source and analyzed by means of both experiments

and numerical simulations. The scalar dissipation rate, εθ, was the focus of

the research because it quantifies the rate at which the scalar fluctuations are

destroyed. Measurements of its three components, εθx , εθy and εθz , were per-

formed at different locations in the streamwise and wall-normal directions of

the flow. In addition, the influence of flow’s inhomogeneity on the scalar mix-

ing was investigated by injecting the temperature at two different wall-normal

locations.

Complementary direct numerical simulations (DNSs) and experiments

were performed. To this end, I developed a new numerical scheme, named
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3DFLUX, for the solution of the advection-diffusion equation in three dimen-

sions. 3DFLUX uses the flux integral method, i.e. a conservative form of

the semi-Lagrangian method. It is a high-order (third-order in space and

second-order in time), explicit, fully multidimensional, conservative and selec-

tive monotonicity preserving numerical scheme. The latter property prevents

violations of the monotonicity of the solution near poorly resolved gradients

from occurring, while preserving the global accuracy of the scheme. In ad-

dition, 3DFLUX is very attractive for practical applications as it does not

necessitate dimensional splitting, leverages the multi-threaded architecture of

modern CPUs, and generates highly accurate solutions at a realistic computa-

tional cost.

As discussed in chapter 2, 3DFLUX has been tested on several multidi-

mensional problems, including purely advective and advective-diffusive prob-

lems, and has been shown to compare favorably with other methods. It notably

resulted in a substantial improvement in accuracy over UTOPIA, the original

version of the flux-integral method. In addition, 3DFLUX exhibited a better

convergence rate than widely used one-dimensional techniques, such as the

piecewise parabolic method (PPM), the weighted essentially non-oscillatory

(WENO) method, and the recently-proposed jet scheme, which is based on

the level-set method. Furthermore, the impact of the time integration scheme

on the accuracy of the solution and the convergence rate of the scheme was

shown. Somewhat surprisingly, it was found that, for very small time steps,

the convergence rate can even be higher than the expected theoretical value,

i.e. O(h3).

As discussed in chapter 3, 3DFLUX was used to simulate real experi-

ments in turbulent flow. Due to the emergence of multi-core processors and

the availability of high capacity memory chips, such complex simulations are
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now possible with multidimensional schemes. Hence, the evolution of the three

components of the scalar dissipation rate, εθ, was investigated at several down-

stream and wall-normal locations in the thermal plume behind a heated line

source. Experimental and numerical results were compared and exhibited good

agreement for both large- and small-scale statistics of the scalar field. Ex-

perimentally, the temperature fluctuations and temperature derivatives were

measured by means of a pair of parallel cold-wire thermometers in a flow at

Reτ = 520. In the DNSs, temperature derivatives were estimated by a finite

central difference approximation. To emphasize on the role played by the wall

on the scalar mixing, we performed our statistical analysis for two different

line source locations: at the channel centreline (ys/h = 1.0) and near the wall

(ys/h = 0.17).

The goal of combining both experiments and numerical simulations was

particularly efficient and produced a significant quantity of statistical data on

the scalar dissipation rate. It was observed that i) the small scales tend to

become isotropic with increasing distance when the source is located at the

centre of the channel, and ii) a return to isotropy of the small scales of the

scalar field was not observed in the presence of high mean velocity gradients, at

the lower Reynolds number characteristic of the DNS. An investigation of the

scalar dissipation rate (and its components) when the source is oriented in the

wall-normal direction, thus focussing on the lateral dispersion, would provide

further information on the role played by the walls on the small scales of the

scalar field. Further work examining the mixing from multiple line sources is

also worth pursuing.

From a numerical methods perspective, 3DFLUX presently solves the

three-dimensional linear advection-diffusion equation. However, further de-

velopment is possible and could be the subject of future challenging project.
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The present version of 3DFLUX uses a quadratic polynomial to approximate

the scalar field within each computational cell. Investigation on the benefits of

using higher-order polynomial should be performed. Furthermore, the use of

non-uniform computational grids, which are widely used in CFD of practical

applications, should be investigated. The solution of non-linear equations that

can be cast in the form of equation (2.1) is theoretically possible, and could

be, from my point of view, a major evolution for this code. Lastly, 3DFLUX

is limited to problems for which the velocity field has been precomputed, but

its scope would be considerably extended if it could also compute solutions to

the Navier-Stokes equations.
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